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Directions for Reading

The summary on page 375 describes the main topics of the thesis in a coherent man-
ner. It should be understandable for anyone with a basic knowledge of computer
programming. For readers who can understand Dutch: De Nederlandse samenvat-
ting op pagina 381 is goeddeels te volgen zonder voorkennis op het gebied van de
infonnatica.

A more detailed survey of the contents of the distinct chapter! can be found in
Sect. 1.4. Readers interested in a specific topic may find the schema below helpful
to get a quick impression of the relevant parts of the thesis. The definition index
on page 367 is likely to be useful in this case. It contains entries for terms referring
to formal notions, and for frequently used symbols. With respect to the symbol
entries, the index itself already provides some clue to their meaning, by listing the
term entry associated with the symbol. Indexed terms can be found in the headings
of a numbered definition, or in the running text. In the latter case, the first character
of the term is underlined in the text. Terms and symbols defined within a numbered
definition are represented by boldface page numbers in the index.

If you are specifically interested in: peruse or read sections:

the most important conclusions (1-2,) 8.2, 8.4

the notion of Informed Gambling 1.1.3, 2.2, 5.6, 5.8

the relation between IG and game theory 1.1.3, 5.3, 5.8, 8.4

the relation between IG and economics 1.1.3, 3.3.8

the inadequacy of Walrasian exchange

in markets with indivisible goods 3.3., 4.1, 4.9

adequate notions of agent rationality 1.2, 5.4, 5.6.3, 5.8.2, 6.2.4, 7.5.5-8

the methodology for statistical evaluation
of mechanism performance 4.5.1-2, 4.6.1, 6.5-6, 7.8.1-4

application of IG 5.4, (5.6,) 5.9, 8.3-4
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Chapter 1

Introduction

1.1 The Problem Statement

1.1.1 The research questions

The problem statement of the research project' that resulted in this thesis was
formulated as "to study the impact of architectural and protocol variations on the
global performance of a distributed multi-agent system". The primary question
associated with this problem statement is not

How can we solve . . . problems with multi-agent systems?

but the more fundamental question

How do the coordination rules and agent characteristics tn/Zuence the
performance of a multi-agent system?

Although the latter question does not refer to any specific problem domain, any
attempt to answer it necessarily involves the selection of a domain. Because we have
taken care in picking a problem domain of some practical relevance, and conceived
a netu multi-agent approach to tackle this domain, the thesis addresses 6ot/i of the
above questions.

1.1.2 The problem domain

Domain requirements

Our choice of problem domain has been guided by two requirements.

'NWO/SION project 612-322-014



CHAPTER 1. INTRODUCTION

1. The domain should not be too narrow, so as to allow for generalization of our
findings.

2. The domain should have practical relevance.

These requirements have led to the selection of a certain kind of a//ocaiion proft/ems
as our problem domain. The domain offers good prospects for generalization of find-
ings, because allocation can be qualified as a genenc problem. Many problems that
are usually not thought of as allocation problems can be reformulated as such. Ex-
amples are constraint satisfaction problems such as the 8-queens problem and map
coloring, and constrained optimization problems such as traffic routing and roster-
ing. The practical relevance of our domain lies in the fcind of allocation problems it
involves. We study a subclass of allocation problems associated with discrete opti-
mization problems. While substantial attention has been devoted to the conception
of multi-agent frameworks for optimization problems featuring continuous variables
(Welhnan, 1992; Wellman, 1994b; Huberman & Clearwater, 1995; Ygge, 1998), the
solution of discrete optimization problems by means of multi-agent systems is still
a largely virgin area. Since discrete optimization problems also tend to be more
difficult to solve with classical methods (i.e., by means of a monolithic algorithm)
than problems with continuous variables, an effective multi-agent approach would
be most welcome here.

Allocation and reallocation

In economic terms, an a/Zocahon pro6/em concerns the allocation of commodities to

Commodities can be virtually anything: houses, cars, oil, computing time, financial
budgets, taxes, tasks, countries, colors, marriage partners, . . . . In the following, we
use the terms yoods and resources as synonyms for commodities.^

In the above context, an agent can be anybody or anything to whom or which goods
can be allocated, as long as it is possible to define the a<;ent uti/i<y as a measure of
the satisfaction of an agent with its endowment (i.e., the goods allocated to it). In
economics, this measure is often ordinal: Agents are presumed capable of expressing
whether they prefer an endowment over some other endowment, but not necessarily
capable of stating how strong this preference is. We choose to use a more precise,
cardinal notion of agent utility. Quantification of the satisfaction of individual agents
allows us to define an allocation problem as the problem of finding a good allocation
of goods to agents, where the quality of an allocation is some /unction of the agent
utilities. For the purpose of mechanism evaluation we use different functions to

'Distinctions between tangible and intangible commodities, and between consumptive and
reusable ones are not relevant for our purposes.
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evaluate different aspects of solution quality. In most of the thesis, however, we
equate allocation quality with the average agent utility.

A rral/ocatton problem is an allocation problem in which goods are already rilfinrtwl
initially. If — as we assume throughout the thesis — the cost of performing ft
reallocation is negligible in comparison with its merits, the presence of an initial
allocation makes a difference only if the agents are self-centered and self-ruling.
Such an agent will refuse to accept a reallocation, if it prefers its original endowment
over the final endowment it would have once that reallocation would be performed.
The constraint that a reallocation should be such that no agent loses utility in
the process is known as tntfitnduai rattona/tty. In terms of preferences, individual
rationality entails that no agent should prefer its initial endowment over its tinal
one.

In economics literature, which devotes ample attention to allocation problems, the
term reallocation is rare, but most of the problems labeled as "allocation prob-
lems" are, in fact, rea//ocaiton problems (Takayama, 1985; Hildenbnind & Kirman,
1988; Mukherji, 1990). The lack of distinction between these two problem clasueu
in economic literature is due to the fact that mathematical economics is primarily
devoted to the conception of models for markets. Market activity concerns either
the exchange (trade) or the transformation (production) of goods — where money
is also viewed as a good. In both cases, an economic agent is unable to undertake
anything without an initial endowment. In other words, there are no allocation
problems here; there is only reallocation.

This is not the case in our computer science context: Some constrained optimization
problems translate to a//oca£ion problems, while others correspond with rea//ocotton
problems. Yet, the distinction between the two problem classes is not all that
important for our purposes either, because any allocation problem can be turned
into a reallocation problem by defining an initial allocation. In most cases, random
allocation of the available goods, followed by reallocation renders an acceptable
solution to the original allocation problem. In view of this, we use the term allocation
as an umbrella term that covers allocation as well as reallocation.

A taxonomy of allocation problems

The entire class of allocation problems is too broad for one single solution method
to work. Some taxonomy is required to study the performance of allocation mech-
anisms. Below, we classify allocation problems by distinguishing three different
categories of goods. The distinction between divisible and indivisible goods is com-
mon in micro-economics (Hildenbrand & Kirman, 1988), while that between typed
and untyped goods is our own.

We distinguish three categories of goods:
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divisible goods: These goods either do not possess any minimal quantity or are
usually traded in large quantities. An example is crude oil, where transaction
volumes usually involve many tons, and a/ways involve many minimal units
(molecules).

typed indivisible goods: Like divisible goods, typed indivisible goods have the
property that any two items (or, in the case of divisible goods, any two equal
volumes) of the same good are completely equivalent (and should therefore
have equal prices in a market-equilibrium situation). Typed indivisible goods
d»j(fer from divisible goods in that they are typically traded in small quantities.

* Examples are the 6oM/es of olive oil, hrw of soup, and pot« of marmalade you
buy at your local supermarket.

Untyped indivisible goods: Each instance of an untyped good is, in fact, a unique
item. Examples of such goods are works of art, designer clothes, and antique
furniture.

Note that (1) divisible goods are always typed, (2) untyped goods are always indi-
visible, and (3) grace to mass production, most indivisible goods are typed.

Solution procedures for allocation problems are sensitive to the category of goods
involved. Walrasian exchange, for example, is well suited for allocation problems in-
volving divisible goods, and it can also cope with untyped indivisible goods (Hilden-
brand & Kirman, 1988; Quinzii, 1984). It is, however, inadequate in the face of
typed indivisible goods, as we will show in Chapters 3 and 4. Because many con-
strained optimization problems translate to allocation problems with such typed
indivisible goods, these allocation problems constitute a problem domain of practi-
cal importance. In the sequel, we refer to a good that is typed and indivisible as a
^oo/, and to the associated reallocation problems as too/ rea//ocatton (TR) problems.
TR denotes the set of all TR problems. We will treat the reallocation of untyped
goods as a special case of TR. In other words, the problem class TR contains the
reallocation problems where all goods are indivisible, and £ypica//y — but not nec-
essarily — typed. The phrases 'typed market' and 'market with typed goods' refer
to allocation problems that feature at /east one typed good.

1.1.3 Informed Gambling

The Informed-Gambling framework

We use the Informed-Gambling (IG) framework primarily as a vehicle for fundamen-
tal analysis. However, because the targeted problem domain (i.e., TR) is a generic
domain, with practical relevance, the framework can also serve a practical purpose.
It can be used as a basis for the design of multi-agent mechanisms for certain types
of discrete constrained optimization problems.
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The general idea behind IG is that one can often prevent the onset of
behavior (brought about by the agents' selfcenteredness) by withholding information
from the agents. In IG, agents are required to commit themselves to certain courses
of action in the face of uncertainty. This feature of IG obviates certain assumptions
which are necessary in the context of existing mechanisms where agents do not
face uncertainty, such as the assumption of perfect competition in the Walrasian
exchange auction. Because the information made available to IG agents is of an
aggregate nature, we can employ a notion of rationality that is nearly perfect,' and
yet computationally feasible, grace to the fact that it is virtually impossible for IG
agents to gain from hypothesizing on the behavior of particular other agents. In
this respect, IG differs fundamentally from other multi-agent frameworks featuring
uncertainty, such as the model of Bayesian games (Harsanyani, 1968; Mertcns &
Zamir, 1985).

The Informed-Gambling testbed

The specific IG mechanism we have implemented to perform our experiments is a tool
ramijjnmenf mechanism. Reassignment is the special case of «allocation, where
each agent possesses one item, which it would like to exchange against one other
item. We have confined our experiments to reassignment, because such problems
are sufficiently simple to allow for fast computation of an optimal solution/ while
they are not too simple to allow for some generalization of our findings.

In a sense, tool reassignment is the purest form of tool reallocation. As indicated
by the dotted line demarcating TR within RR in Fig. 1.1, it is subject to discussion
how far the TR domain extends outward, because the distinction between divisible
and indivisible goods is hazy. The criterion for divisibility is not whether the good
is divisible,^ but whether it is accep(a6/e to treat it as if it were divisible. In the
context of allocation, a commodity that is traded in portions of integral units can
be regarded as divisible, if an allocation algorithm based on real-number arithmetic,
followed by a rounding of the output to integral numbers, renders an outcome of
acceptable quality.

Gasoline can be regarded as a divisible good, because no truck driver cares whether
there are 3,000,... ,000,000 or 3,000,... ,000,001 molecules in the tank (nor
whether there is 0 or 1). Spouses, on the other hand, cannot be treated as a divisi-
ble good, not because they cease to be a spouse when cut in half, but because most
people — as well as authorities — attach considerable significance to the differences
between having no spouse, one spouse, or two spouses.

""This entails that the agent's behavior can be described succinctly as 'utility maximization'.
*This is required to evaluate IG mechanism performance.
'Even the traditional example of a divisible good, oil, is not iru/y divisible, since it is traded in

portions that comprise a na(tira/ number of molecules.
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KK

Figure 1.1: Venn diagram of reallocation problem classes:
RR = reallocation of (divisible or indivisible) goods;
TR = reallocation of tools (i.e., indivisible goods);
AM = reassignment of tools;
UAM = reassignment of untyped tools.

Evidently, in intermediate cases where exchange transactions involve the delivery of
few, but more than one item, it is less easy to determine whether a good can be
regarded as a divisible good. Moreover, it is not feasible to draw a line between
TR and RR\TR which is solely based on the average, or minimal trade volume.'
It can depend on various aspects of the problem domain where the borderline lies.
Consider, for example, the problem of distributing 39 comic books over two children.
If the children are seventeen year olds or two year olds, you are unlikely to run into
trouble if you treat the books as a divisible goods, and round to one of the two
nearest integers to attain a feasible allocation. This procedure may cause a small
riot, however, if you are dealing with four-year olds who have just learned to count
to twenty... (E. Postma, 1998, personal communication).

Such considerations do not play a role in reassignment problems. In a reassignment
problem, downward rounding of the number of goods to be delivered amounts to no
delivery at all. This is not acceptable in any realistic context. Consequently, there
can be no discussion about the indivisibility of goods in the reassignment domain.

The operator \ in RR\TR denotes set difference.
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1.2 Basic Terms

Due to the fact that the research area of multi-agent systems is broad and young,
there tends to be considerable terminological inconsistency between authors. Hence,
to prevent misunderstanding, we explicitize the semantics that we assign to some
basic terms.

Computational entity A computational entity is a coherent piece of software that
allows for a surveyable description of its inputs, outputs, and functionality
within a software system.

ggent An agent is a computational entity whose output can be interpreted as the
outcome of a decision-making process determined by the agent's goals, ita
computational capabilities, and its knowledge of the situation.

multi-agent system A multi-agent system is a system that involves interacting
agents.

Self-centered A self-centered agent is an agent that is not sensitive to the needs
of other agents, and not responsive to explicit requests for help, unless it is
in the agent's own interest. Its behavior is determined purely by its sense of
personal profitability.

self-sufficient A self-sufficient agent is an agent that can perform its tasks without
supervision or aid from other (human or artificial) agents.

self-ruling A self-ruling agent is an agent that cannot be commanded to behave in
some desired manner. It may act in conformance with a request, but only if this
does not conflict with its own internal state (i.e., its goals and information).

autonomous An autonomous agent is a self-ruling agent.

tropistic An agent is tropistic if its behavior is based solely on observation of the
present situation.

hysteretic An agent is hysteretic if its behavior is based on present observations,
and recollection of past observations.

prospective An agent is prospective if its behavior is based on present observations,
and contemplations with respect to the future.

contemplative A contemplative agent is an agent that is hysteretic as well as
prospective, that is, its behavior is based on present observations, recollection
of past observations and contemplations with respect to the future/

'This is approximately concomitant with the notion of knowledge-level agent as defined in (Gene-
sereth & Nilsson, 1987).



CHAPTER 1. INTRODUCTION

Coordination Coordination entails the efforts needed to ensure that the global per-
formance of a multi-agent system is satisfactory, despite the fact that most or
all of the decisions are made by self-centered agents, on the basis of incomplete
information.

protocol A coordination (or interaction or negotiation) protocol is a description
of the interaction among agents or between agents and other computational
entities in terms of message response.

coordination module A coordination module is a computational entity that is
incorporated in a multi-agent system to coordinate the behavior of individual
agents.

mechanism A (multi-agent) mechanism is a multi-agent system that features a
coordination module, rather than a form of coordination that emerges from
direct interactions between agents.

weak informational decentralization A mechanism is weakly informationally
decentralized if the information which defines a problem instance is initially
distributed over the agents, and at least some of this information remains
private during the entire interaction process.

informational decentralization A mechanism is (strongly) inforrnationally de-
centralized if

(i) it is weakly informationally decentralized, and

(ii) it does not require that agents have a common representation formalism
for their private information.

operational decentralization A mechanism is operationally decentralized if the
computational and design complexities are distributed evenly over the agents
and the coordination module, to prevent the coordination module from be-
coming a bottleneck in computation or design.

An example of a mechanism that is weakly, but not strongly informationally de-
centralized is a monetary auction. The functionality of such a mechanism hinges
on the assumption that every agent is capable of expressing its private information
(in this case: utilities for different items) in terms of a common vocabulary (in this
case: currency). The Informed-Gambling framework involves strongly decentralized
mechanisms.
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1.3 Our Position within Computer Science

1.3.1 Distributed AI and multi-agent technology

This thesis is an account of research performed in the field of Distribute! Artificial
Intelligence (DAI) (Huhns, 1987; Bond & Gasser, 1988b; Gasser & Huhns, 1989),
nowadays often referred to as Multi-Agent Systems (MAS). While Artificial Intel-
ligence is mainly concerned with modeling or implementing individual intelligence,
DAI focuses on jroup intelligence. DAI researchers are interested in the rmrfyrnee
of group intelligence (i.e., collective behavior which is adequate from a global per-
spective) from relatively simple interactions between computational agents.

DAI is a broad research area. It is concerned with disparate subjects such as dis-
tributed constrained optimization and the design of agent communication languages.
One used to partition the DAI field into the subfields Distributed Problem Solving
(DPS) and Multi-Agent Systems (MAS) (Bond & Gasser, 1988a), but the distinc-
tion between DPS and MAS is far from clear,* and nowadays MAS tends to be used
as a synonym for DAI. In view of the broadness of the DAI field, some partitioning
is desirable, however. The partitioning I propose is normative, and involves two di-
mensions. The first of these concerns the distinction between Multi-Agent Modeling
(MAM) and Multi-Agent Technology (MAT). MAM comprises MAS research that
is motivated by the desire (or driven by the habit) to develop satisfactory models for
collective or social bman intelligence. Usually, the researchers in this area pay little
attention to computational efficiency or technological applicability, and statements
such as "AI is a science, not a technology" (Castelfranchi, 1997) indicate that this
is — at least for some researchers — a matter of principle rather than the state of
the art.

The ultimate aim in MAT is to develop useful technology. Developing concepts
which are satisfactory from a scientific point of view can play a role here, but only
inasmuch as this is relevant for technological development. Our own position is
within MAT.

1.3.2 Open versus closed multi-agent technology

In turn, MAT can be subdivided into research on closed systems and research on
open systems. In closed multi-agent systems, all agents are fully known system com-

'As an example, (Kraus e( a/., 1995) define DPS as the research area where system designers
have full control of the behavior of all agents, and MAS as the complementary area, where at least
some agents are not under the designer's control. Subsequently, they classify the work of Wellman
(1992) as MAS research, where — according to their own definition — it does not belong. The cause
of this inconsistency lies with their overeager conclusion that, since DPS agents can be designed to
strife for a global instead of a personal goal, they unf/ be designed as such.
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ponents. In open systems, there may be interaction with unknown, external agents.
Closed Multi-Agent Technology (CMAT) entails the design of entire multi-agent
systems capable of solving a concrete computational problem via agent interaction.
This includes the research area that used to be referred to as DPS. The primary
motivation for CMAT is the fact that the design complexity of a multi-agent sys-
tem tends to be lower than that of a functionally equivalent, monolithic algorithm.
Hence, CMAT may enable us to provide acceptable solutions for problems which
defy solution by means of classical algorithms, or to lower the cost of software devel-
opment in domains that are principally susceptible to both programming paradigms.
The attitude of CMAT researchers tends to be pragmatic rather than principled. Ex-
amples of CMAT are the design of distributed blackboard systems for sensor data
interpretation (Durfee, 1988), and the design of artificial markets for transportation
planning (Wellman, 1994b).

In contrast, Open Multi-Agent Technology (OMAT) involves the design or analysis
of par< of a multi-agent system which is not specified (or even specifiable) as a
whole. This part can be a coordination protocol for a specific environment like
the Internet (Decker e< a/., 1997), or a more general protocol suited for a variety of
existing, autonomous agents (Rosenschein, 1993), an agent communication language
(Finin e< a/., 1996), or it may concern an abstract conceptual framework for open
multi-agent technology in general (Hewitt, 1991). Because much of the research in
OMAT is rather abstract, and not bound to any specific application context, design
principles of a general, often philosophical nature play a dominant role here.

There exists a (large) twilight zone between OMAT and MAM of research literature
which many researchers regard as relevant for MAT, but which is based on concepts
that, in my view, are better suited for MAM, or — in some cases — not suitable for
MAS at all. These authors do not provide an explicit motivation for the ontology
they employ or propose, nor do they refer to other authors who provided such a
motivation. Their ontologies seem to stem from inarticulate intuitions on what
the essential concepts are in (human) information processing and social interaction.
Examples are (Cohen & Levesque, 1987; Werner, 1989; Shoham, 1993).

While our methods and views primarily stem from CMAT, our work does have
implications for OMAT. This is due to the fact that, in designing IG, we took care
to ensure that IG agents act in a way that permits viewing them as agents which are
self-ruling and self-centered. In retrospect, the dual goal of conceiving an effective
CMAT mechanism that is also useful for OMAT has led us into a lot of dead ends.
Ultimately, however, it did render a framework that is principally suited for both
research areas. Within CMAT, the IG framework can serve as a basis for the design
of a specific IG mechanism for a specific type of constrained optimization problem,
and within OMAT, the IG protocol can be used to reallocate tools between existing,
autonomous agents. More importantly, the dead ends we ran into render valuable
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insight in the limitations of popular OMAT concepts such as Pareto optimality, and
various notions of agent rationality.

Though relevant for OMAT, the Informed-Gambling framework is more akin to
constrained optimization techniques outside DAI — such as simulated annealing
(Aarts & Korst, 1989), and Boltzmann neural networks (Lenting, 1995) than to
many areas in OMAT. In particular, our work has little kinship to or relevance for
DAI research on agent communication languages such as KQML (Finin r( a/., 1996),
or DAI frameworks in the twilight zone between OMAT and MAM.

There is, of course, a relationship between our work and earlier DAI research on
allocation (Miao et ol., 1988; Kurose & Simha, 1989; Lumer & Huberman, 1990;
Sycara et a/., 1991; Kuwabara & Ishida, 1992; Kraus et a/., 1995). The DAI approach
most akin to Informed Gambling in this respect is the CMAT framework of Market-
Oriented Programming (MOP) (Wellman, 1992; Wellman, 1994a; Wellman, 1994b;
Huberman & Clearwater, 1995; Ygge, 1998). Like a MOP agent, an IG agent acts
like a homo economtcu5 who attempts to increase its satisfaction by exchanging
goods with other agents, and both frameworks involve centralized markets: Agents
do not interact directly, but via one or more auctioneers. However, due to the fact
that MOP is primarily targeted at reallocation of dtvtstb/e goods, while IG was
designed for tool reallocation, the two frameworks differ substantially. The most
important differences are listed below.

• In MOP, the agents perform simple, deterministic calculations based on price
information, while in IG, agents perform more complex, probabilistic compu-
tations based on information on supply and demand.

• IG agents act as entrepeneurs. They must take (calculated) risks to improve
their situation, whereas MOP agents do not face any uncertainties.

• In MOP, solutions are approximations of a market equilibrium (where sup-
ply equals demand for all goods), and the search for a solution is based on
the economic method of tätonnement, which resembles gradient descent. In
contrast, IG solutions are approximations of a correlated equilibrium (where
every agent sticks to its last bid), and the search process is reminiscent to that
of simulated annealing.

• MOP involves an artificial economy with traders, producers, and money. IG
involves neither money nor producers. It features only barter trade.

The absence of money in IG is not just a coincidental feature, but a deliberate
constraint that we impose throughout the thesis. The motivation for this constraint
stems mainly from the desire to arrive at a framework that is not only relevant to
CMAT, but also for OMAT.



12 CHAPTER l. INTRODUCTION

In a CMAT framework, artificial money can be introduced without undesirable side
effects, because the system designer can define the behavior of the agents completely.
In an OMAT context, however, the designer of a protocol or an agent does not have
any authority over existing agents. To constrain the spectrum of possible agent
responses in an open system, one usually employs the working hypothesis that all
agents will behave as self-ruling, self-centered utility maximizers. Since such agents
will refuse to attach any value to artificial money, one would have to use real money
in an open system. This has several disadvantages.

First, the e/fectivenes« of real money as an instrument of agent coordination can be
problematic, because it hinges on the assumptions that

(i) any absence of goods can be compensated with money;

(ii) every agent possesses enough money to compensate any other agent, if so de-
sired.

The combination of these two assumptions is known as the assumption of transferable
utility. It is often criticized by economists as being too strong. A concrete example
of a case in which the transferable-utility assumption is inadmissible concerns the
air-traffic control domain: No amount of money can compensate an airplane (crew)
for being repeatedly denied an approach corridor while the plane is running short
on fuel. More generally, any problem with hard constraints is troublesome in this
respect.

A second disadvantage of reliance on money in the context of open systems concerns
the fact that a self-centered agent may behave in an anti-social manner. A good
example is hoarding. While this can also occur in markets without money, it tends
to be much more difficult to gain from hoarding in a barter-trade economy.'

1.4 Thesis Overview

1.4.1 Tool reallocation problems

Chapter 2 comprises the specification and representation of tool reallocation (TR).
After an informal sketch of our prototype TR problem, we present some examples
of constraint satisfaction and constrained optimization problems that can be refor-
mulated as TR problems. This illustrates the genericity of the TR problem domain.

Our represenfrttton of reallocation problems differs from the representation com-
monly used in game theory and economics: instead of vectors, we employ bags

'This is especially so for frameworks svich as IG, where uncertainty is used — instead of money
— to ensure that cardinal utility differences are reflected in the final outcome, even though utilities
are not communicated.
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(a.ka multisets) as basic constructs. The bag is a better representation primitive
for TR than the vector, because TR problems are essentially discrete, and can be
represented more concisely in terms of bags.

Our formal 5p#ri/irohon of TR problems is distributed in the MBtt that tht MfattSM
of TR problems are defined in terms of exchange proposals rather th&a tin uodar»
lying agent utilities. However, the solution quality is defined as an aggregate of the
utilities obtained by the agents. As such, TR problems are specified as distributed
problems, seen through the eyes of an omniscient external observer. The key part
of this problem specification is our relative-utilitarian viewpoint. This entails that
the utility obtained by an agent expresses its degree of jahs/artion rather than its
profit. This viewpoint is the basis of our evaluation of IG mechanism performance.

1.4.2 Distr ibuted approaches to T R

Chapter 3 comprises an analysis of the prospects for distributed approaches to TR.
This analysis serves as a first step toward the conception of Informed-Gambling
mechanisms. Our goal has been to conceive a multi-agent approach to TR that ia
more distributed than constraint-directed negotiation (CDN) (Sathi & Fox, 1989),
where agents interact via a mediator agent who does most of the computation.

First, we explain why we refrain from considering the possibility to solve TR prob-
lems in a /u//j/ decentralized fashion, that is, without employing any coordinator
center(s): While coordination through local interaction is feasible for some problem
domains, it is too inefficient for domains which require multilateral coordination,
such as the TR domain.

Subsequently, we search for a form of centralized coordination in which the central
coordination module does not constitute a bottleneck, as it does in CDN. Inspired
by Sathi and Fox (1989), we consider two orthogonal strategies for TR: proposal
composition and proposal relaxation. Composition can be viewed as a bottom-up
approach. It entails the incremental construction of a solution which satisfies a
subset of the submitted proposals. Relaxation is a top-down approach. It comprises
the adaptation of proposals to arrive at a set of proposals that are jointly satisfiable.
In the CDN approach described in (Sathi & Fox, 1989), these two approaches are
intertwined. We consider them separately.

The main result of our analysis of composition-based reallocation is the following.
We prove that the general composition problem is NP-hard, and show that a re-
striction of the exchange proposals to elementary ones (i.e., one-for-one exchanges)
renders a composition problem that can be solved in polynomial time. This im-
plies that an approach which allows only elementary proposals constitutes a more
distributed form of mediated negotiation than that embodied in CDN: It turns the
composition task of the mediator into a tractable problem.
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In CDN-style re/oia<ton, the mediator tries to persuade agents to accept specific
proposal adaptations. Because the mediator is bound to constitute a bottleneck in
such an approach, we investigate another style of relaxation, in which the mediator
only provides incentives for proposal adaptation. Such a style of relaxation is used
in the Walrasian exchange auction. This mechanism lies at the root of the extensive
economic General Equilibrium Theory, which — in turn — has been used as the
basis for WALRAS, a MOP system that aims to solve constrained optimization prob-
lems by searching for a competitive equilibrium'" in the associated artificial markets
(Wellman, 1992; Wellman, 1994b).

We identify two drawbacks of Walrasian exchange: (1) meagre solution quality and
(2) frequent absence of Walrasian equilibria.

The solution-quality drawback of walrasian exchange is a consequence of the ab-
sence of money in combination with the indivisibility of the goods. In the context of
divisible goods, competitive equilibria have the agreeable property that the associ-
ated allocations are not only Pareto optimal, but also optimal in a utilitarian sense
(Ygge, 1998, Chapter 3). This is true even in markets with only one divisible good,
provided that this good is possessed and appreciated by all agents, so that it can be
used as money. Unfortunately, it is no< true for Walrasian exchange in TR markets.
We provide an example which shows that the utilitarian quality of Pareto-optimal
allocations can, in fact, be arfci<rari/j/ /ou> in this case. We also demonstrate that
the addition of money leads to a different equilibrium allocation, which is optimal
in the utilitarian sense.

In a pragmatic sense, the second drawback extends beyond Walrasian exchange, to
General Equilibrium Theory. Whether competitive equilibria exist or not, it ap-
pears to be hard to approximate them in reallocation problems featuring indivisible
goods. As a case in point, we mention the attempt to apply MOP to configuration
design (Wellman, 1994a). Wellman attributed the failure of this attempt to the fact
that certain conditions for equilibrium existence in micro-economic theory, such as
convexity of the agent-utility functions, can not be satisfied (or even defined) in
discrete problem domains.

Indeed, theorems on the existence of Walrasian equilibria in markets with indivisible
goods are rare, and pertain almost exclusively to markets with money. The only
theorem that applies to barter-trade markets concerns the reassignment of untyped
goods. In other words, micro-economic theory does not tell us anything about
equilibrium existence in 77? mar̂ e<s (i.e., barter trade markets involving reallocation
of typed indivisible goods).

'"The notion of competitive equilibrium is a generalisation of that of Walrasian equilibrium to
markets with money and/or production.
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1.4.3 Walrasian equilibria in TR markets

In Chapter 4, we combine theoretical analysis with experimental investigation to as-
sess how grave the aforementioned problem of equilibrium absence is for TR markets.
Our approach comprises three steps.

1. First, we conceive a fast algorithm to verify the existence of a Walr&tian equi-
librium for certain typed reassignment problems, sad prove its validity.

2. In our experimental investigation, we employ this algorithm to estimate the
percentage of markets that do have Walrasian equilibria for various kinds of
tool reassignment markets. The outcomes reveal that a Walrasian equilibrium
5e/rfom exists in such markets, except for markets with very few (say, at most
4) agents, or markets that are almost untyped (e.g., if all but one of the goods
are untyped, and there are only two instances of the typed good).

3. Finally, we explain why one can expect that the problem of equilibrium abfnot
is of comparable gravity in markets that constitute full-fledged rcallocation
problems (rather than reassignment problems).

1.4.4 The framework of Informed Gambling

Chapter 5 comprises the definition and theoretical analysis of Informed-Gambling
mechanisms. IG mechanisms are introduced in three steps.

1. First, we develop the enveloping notion of iterative mechanism, which has its
roots in mathematical economics (Maskin, 1985; Postlewaite, 1985; Myerson,
1985). In an iterative mechanism, agents repeatedly communicate with a cen-
tral coordination module, until some termination condition is satisfied. This
condition, as well as the final outcome, is a function of the messages last sent
by the agent.

2. Subsequently, we highlight the basic ideas behind IG by discussing its precur-
sor, delegated negotiation (DN). In view of the conclusions drawn in Chapter 3,
DN agents can only submit e/ementary reallocation proposals, that is, one-for-
one exchanges and unconditional offers or requests that involve only one tool
type. The key concept in DN — as well as in IG — is that of commitment
under uncertain^ as a means to prevent anti-social group behavior within an
agent community. Commitment under uncertainty entails that agent runs a
calculable risk of losing a tool it offered in exchange for a tool which it did not
ask for. This auction rule provides an incentive for rational agents to relax
their demands.

In DN, the agents do not get the opportunity to adjust their proposals to
information updates. After they have submitted their elementary exchange
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proposals, a partial reallocation immediately takes place. If some of an agent's
proposals are rejected, the agent may lose the tools offered in these proposals
in exchange for tools for which it has little use. Its only respite is a second
chance to exchange such tools for other tools of agents that suffered a similar
fate.

3. The third part of Chapter 5 comprises the formal definition of Informed Gam-
bling as a class of iterative mechanisms, where agents repeatedly adjust their
proposals until a quiescent state emerges.

In the remainder of Chapter 5, we provide a detailed (i.e., implementable) specifica-
tion of an IG mechanism for reassignment. We analyze its game-theoretic properties,
characterize the rationality of its agents, and demonstrate its effectiveness in pre-
venting the onset of certain anti-social agent behavior. We also identify a problem
with the termination of its relaxation process, and propose to use ne^ohahoT: weari-
ness as a remedy.

Finally, we explain how we envision the application of IG to real-life problems as
closed and open coordination mechanisms respectively.

1.4.5 Testbed experiments

Chapter 6 consists of two parts. In the first part, we describe the testbed that has
been used to experiment with different variants of Informed Gambling. The second
part comprises a survey of the experiments that were performed using this testbed,
and a discussion of the employed methodology.

1.4.6 Experimental results

In Chapter 7, we present and analyze the experimental findings. These concern
the performance of the IG reassignment mechanism defined in Chapter 5 on various
types of reassignment problems, the variations in performance that can be obtained
by changing the behavior of the agents, or the coordination rules, and a performance
comparison with other, Walrasian-like mechanisms.

1.4.7 Conclusions, reflection, and future research

Next to a summary of the most important conclusions, the final chapter comprises
a reflection on the implications of our research for fundamental research on MAS in
general, and some suggestions for future research.

The difficulties encountered in trying to come up with an efficient mechanism for
TR that can be used in open as well as closed systems has provided some insight
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which we believe to be useful for fundamental MAS NNMCh, which is often directed
toward open systems, and not targeted toward any specific domain We discuss the
implications of our findings and failures for reigning views on agent rationality, agent
autonomy, and the value of garnetheoretic concepts such as Pareto optimally, and
strategy proofness.

The suggestions for future research concern the application of IG to real-life opti-
mization problems, as well as some fundamental issues. Future fundamental research
concerns the suitability of IG's agent models for open systems, while our discussion
of IG's application prospects entails the formulation of properties a real-life domain
should have in order for IG to be a promising approach.
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Chapter 2

Tool Reallocation Problems

2.1 Informal Description of the TR Domain

2.1.1 Our prototype TR problem

The problem for which Sathi and Fox (1989) conceived their Constraint-Directed
Negotiation (CDN) approach has played a crucial role in our conception of the TR
problem domain. CDN was developed to solve a reallocation problem that arises
in a software-engineering company where different teams work on different projects.
Each team has one or more resources at its disposal for the duration of a project.
Resources, in this context, are computer workstations, and each agent represents
a project team. The company possesses different types of workstations. Because
different projects tend to require a different mix of workstation types, a reallocation
problem arises whenever a set of new projects is initiated.

Our perception of the tool reallocation domain is a generalization of the above
problem. It is described informally by the following prototype problem.

A number of agents, each owning one or more tools which they use in
dealing with a continuing stream of tasks confronting them, decide to
cooperate by combining their respective tools into one community pool.
From then on, they reallocate tools between them whenever it seems
appropriate to do so. To determine the appropriateness of reallocation,
the community maintains a statistic that measures the effectiveness of
the current tool allocation as well as the improvement that can be ex-
pected from reallocation. Reallocation is attempted whenever this statis-
tic drops below a certain treshold.

We describe the prototype TR problem as a recurring problem, because this pefmits
us to weaken the agents' self-centeredness without tampering with their identity as

agents. This is important in open systems in particular. Here, one usually

19



20 CHAPTER 2. TOOL REALLOCATION PROBLEMS

employs the working hypothesis that all existing agents behave rationally, that is,
as self-centered utility maximizers. While this is a plausible and concise character-
ization of the behavior of existing agents, the implied taboo on agent benevolence
complicates the task of conceiving an effective form of coordination considerably.
This setback can be mitigated by extending the temporal horizon of the agents. In-
come taxes used to finance support for the elderly would meet much more resistance
if twens were unconscious of the fact that they too will grow old. In this sense, be-
havior that is benevolent — and hence irrational — in the short run, can be rational
in the long run.

We make some assumptions with regard to tool characteristics and reallocation cost
that are not mentioned explicitly in the above description of our prototype problem.

(i) Tools are indivisible,

(ii) Tools are reusable.

(iii) The cost of the physical reallocation of tools is negligible in comparison with
differential tool utilities.

The criterion for tool reusability is whether the resource can be used a second time
without undoing the task that it helped to accomplish. Hence, nails and screws
are not tools, while execution time and memory space are. Note that reusability
is, in fact, already implied in the concept of recurring reallocation: It is difficult to
imagine such problems in the context of consumptive resources.

The last assumption is purely a matter of simplification. It ensures that physical
reallocation costs need not be taken into account when deciding what tools are most
appropriate in view of current tasks.

2.1.2 The problem context: closed vs. open systems

In Chapter 1, we distinguished between multi-agent technology for open systems
(OMAT) and for closed systems (CMAT) as the two areas within MAT. The above
description of our prototype TR problem aims to cover both areas.

If one thinks of the agents in the description as computational front ends for hu-
man agents, there are principally two possibilities. Either the computational agents
act as brokers for their human clients, collecting the necessary information on the
client's desires before engaging themselves in a negotiation with other computa-
tional agents, or there is ongoing interaction between computational agents and
human clients while the clients' problems are being solved. In both cases — and
especially so in the interactive case — it is appropriate to regard the computational
agents as autonomous and self-centered. In other words, we are dealing with an
OMAT context.
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However, there is nothing that forces us to regard the agents as front ends for
human computer users. The agents can represent something entirely different, if the
prototype problem is a CMAT problem. In a CMAT context, the notion of agent is
much broader. Typically, the only property that a computational entity must have
to qualify as a CMAT agent is that it either knows the utilities of all conceivable
endowments, or has the capability to compute these utilities. Hence, in CMAT, an
agent can be any construct to which a utility for tools can be attributed. As such, it
can represent the interests of a team of programmers working on a project, but also
those of an airplane approaching an airport, a queen seeking for a suitable position
on a chessboard, or even a color that 'desires to be assigned' to objects. Examples
of these last two cases are presented in the next section.

2.1.3 The genericity of TR

Allocation and reallocation are generic problems. Many problem« that are usually
not regarded as (re)allocation problems can be reformulated a-s such Below, we
present three examples of CMAT problems that can be reformulated as TR problems.
The first two of these are constraint satisfaction problems, while the third is a
constrained optimization problem. Note that we only provide a /ormulatton of the
respective problems as a (re)allocation problem. Effective so/uhon of the problems
by means of a distributed reallocation algorithm is another matter. We address
this issue later, in Chapter 8, when we characterize the kind of problem domains
for which an investigation of the applicability of our Informed-Gambling framework
would make sense. However, the actual application of IG or other reallocation
mechanisms to real-life problems is outside the scope of this thesis.

Example 2.1 (Map coloring)
J4 map coloring problem ts depicted in Fio. 2.i. TAe problem constitute« tne color-
ing o/ tfte iV = 8 countries on tAe map, usinj at most ^ colors, sucA tAat no two
net<//tfronno countries Aat>e tAe same color. Tnis can be re/ormu/afed as an a/location
problem by associating eacA o/ tAe ^ co/ors wttA an aaent, and mewing eacA coun-
try as a resource tAat must 6e allocated to an a^ent. £>e/ine t/ie satis/action o/ an
a</ent witA its endowment as tne num6er o/ countries m t/ie endowment wAteA are
not adjacent to anotAer country in tne endowment, minus AT times t/ie nurooer o/
pairs o/ net̂ Abortn*? countries in tAe endowment. TAis penalty /or possessing neioA-
&ortn<? countries ensures tAat any endowment wit/i nei</«6orm<7 countries in it w less
satts/actory tAan t/ie empty endowment. £>e/ine t/ie solution <?ualitj/ a« f/ie average
aoent satis/action. TAts amounts to tAe total num6er o/ allocated countries divided
6y tne number o/ aoents. Hence, t/ie ^ua/^y o/ an allocation ts oounded /rom above
6y 8/4 = 2 tn tAts case, wAere tAe maximum o/ 2 can be attained only i/ all countries
are allocated. 5»nce every map can be colored witA ^ colors, sucA a total allocation
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/« exists. Conseguent/y, any a/location o/ mazima/ so/u<«on gua/ity corresponds
wit/i a «o/utton 0/ i/ie map co/ortng pro6/em. A

Figure 2.1: A map coloring problem.

The above example reformulates the map coloring problem as an allocation problem
featuring untyped indivisible goods, and cardinal agent utilities.

Example 2.2 (8 queens)
77ie #-</ueens pro6/em con fte expressed as "Put # gueens on a c/iess6oard such t/iat
no (wo queens attacfc eac/i ot/ier, t/iat is, s/iare a row, column, or diagonal". T/iis
pro6/em can 6e trans/ated into an allocation pro6/em 6y associating an agent witft
eac/i gueen, and considering t/ie rows, co/umns and (itayona/5 as resources t/iat can
6e a//ocated to an agent. / / t/»e rows and co/umns are num&ered /rom i to Ä, eac/i
0/ t/ie i5 downward (ftayona/« can 6e described as {(c, r) | r + c = fc}, w/iere r
and c denote row- and co/umn-num6ers respective/y, and tAe va/ues fc are used to
numfcer t/ie diajona/s /"fc = 2 , . . . , 16/ Likewise, eac/i 0/ t/ie 75 upward diagona/s
is de/ined 6y {(c, j ) | r — c = / } , / ranging /rom - 7 to 7. Associating eac/i 0/
tne Ä co/umns wit/i an agent, agents s/iou/d try to get /10/d 0/ resource guadrup/ets
(r,r, A',/) t/iat match, t/iat is, r + c = A: and r — c = /. /n essence, t/iis comes
down to stating t/iat an agent must possess t/ie row, column, upward, and downward
diagonal associated witn a sguare 6e/ore it can p/ace a gueen t/iere (see Fig. 2.2/
Z?e/ine t/»e satis/action 0/ an agent as / t/ t/ie agent possesses /our resources, wnic/i
/orn» a mate/ting guadrup/et. Ot/»erwtse. t/ie satis/action is 0. De/ine t/»e g/o6a/
so/utton (jtia/«/t/ as t/ie average 0/ t/ie agents' satis/actions. Finding a so/ution to t/ie

pro6/em ts now tantamount to Ending an ai/ocation 0/ gua/tty one. A

The above example reformulates the 8-queens problem as an allocation problem fea-
turing untyped indivisible goods. Although the agent utilities are defined as cardinal
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Figure 2.2: To place its queen on square B3 an agent must p o i w i column B,
row 3, downward diagonal A4-D1, and upward diagonal A2-G8.

functions in the example, it should be clear that they can be defined ordinally also.
In essence, agent satisfaction is a boolean variable here.

Example 2.3 (Escherville traffic routing)
TAe tu//a<?e o/ £sc/iervi//e is a popu/ar mountain /to/iday resort /or the e/der/y. TAe
nine c/id7ets t/iat mate up t/ie vi//a<?e are re/ative/y /ar apart, and t/iouo/i mountain
pat/is ftetiween t/iem exist, t/iese are too steep /or most o/ t/ie visitors. Fortunate/y,
tfte c/id/ets are a/so connected 6y a network o/ mountain streams, WitcA are uh/ized
6y t/ie /oca/ canoe taxi company to provide transportation services. Canoes o/ varyina
sue ^ü-5 passenoers,/ are stationed near t/ie c/id/ets and eac/i taxi pedd/er operates
/»is or /ier canoe on its dedicated connection, /erryino downstream, and carryina the
canoe 6acÄ: fa/ony tfte pat/ij a/terwards.

T/ie networfc is drawn m Fi^. 2.5, tooet/ier wtt/i an examp/e trave/ /i.s .̂ 77ie numfters
next to a connection denote t/ie capacity o/ t/ie canoe t/iat is used to provide service
over tAe connection. 77ie num6ers in t/ie circ/es are the /iousenum6ers o/ t/ie c/id/ets.

Tfce taxi company /ias an opentno /or a t ra^c router, w/iose tasik u>t// 6e to deter-
mine a passenoer routino sc/iedu/e /or t/ie next day on t/ie basts o/ t/ie trave/ /ist /or
t/iat day. T/ie sc/iedu/e s/iou/d minimize t/ie average numoer o/ canoe changes per
passenoer. A

The above example describes an allocation problem with typed, indivisible resources.
Here, the passengers are the agents, the connections between chalets are the resource
types, and the number of instances of each type equals the capacity of the associated
connection. An agent's utility for a resource bag equals zero if the resources do not
constitute a path from its source to its destination, and M minus the length of the
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Figure 2.3: The Escherville transportation network.

path, otherwise. Here, M can be any sufficiently large number (i.e., the length of
the longest path plus one). The global utility equals the average agent utility.

2.2 Formal Representation of TR Problems

2.2.1 Representation as the first step to solution

Although one usually views problem specification, representation, and solution as
distinct activities, the choices one makes when conceiving a representation and spec-
ification for a problem inevitably influence the solution method.

In the present case, this pertains to the fact that our representation framework
involves reallocation proposa/s. This reflects our choice in favor of a solution method
that, comprises a negotiation (i.e., message exchange) process between agents and a
coordination module, where the agents communicate proposals rather than utilities.
While this choice stems primarily from our aim to conceive an approach to TR that
features a high degree of operational decentralization, there are, in fact, multiple
reasons to opt for the communication of proposals instead of utilities.

coininunication constraints Communication of ai/ utilities or preferences may
consume too much bandwidth or time.

privacy constraints Agents may not be willing to reveal their utilities.
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bounded rationality In many practical situations, human or artificial agent! do
not possess full, explicit knowledge of their utilities or even preferences. Often,
an agent is only aware of the alternative it likes best, and a few others that
come close.

simplification Imposing constraints on the information that is communicated is
liable of being detrimental to solution quality in the sense that the communi-
cated information may be insufficient to guarantee the opdmaiify of a solution.
However, the task of finding a solution that seems acceptable, tn ttrtw 0/ the
information that is available, will generally constitute a problem that is consid-
erably simp/er than the overall problem facing an omniscient problem solver.
As such, a distributed approach featuring information hiding may in fact lead
to tetter solutions than a centralized one, in cases where the requirement of
solution optimaittj/ (rather than acceptability) would incur too much compu-
tation cost anyway.

2.2.2 Bags as representation primitives

In economics, the endowments of agents involved in reallocation problems are re-
ferred to as "commodity bundles", and represented as vector« in R*. Such a repre-
sentation is less apt for indivisible goods. The natural representation for a bundle
of indivisible goods is a tuple of nonnegative integer numbers, that is, an element
of N* (where No = {0,1,2,...}). Representation and reasoning about indivisible
goods is easier if one thinks of portions of such goods as 6ags. The notion of bag (or
multi-set) is not used in mathematical economics, but fairly common in computer
science. A bag is similar to a set, except that the identity of a bag is not determined
by the elements it contains, but the number of times an element occurs in a bag. As
such, it is a useful notion in any context that features objects that are equivalent
in some sense. Tool reallocation problems constitute an example of such a context,
because a tool is a typed good. It does not matter whether an agent has hammer 1 or
hammer 2 at its disposal, as long as their task-essential properties (shape, material,
weight) are the same. For this reason, we represent the tool endowments of agents
as taps of tool types, rather than sets of tools.

In its formal definition, we identify a bag with its indicator function. While the
indicator function of a set is binary-valued, indicator functions for bags can take on
any nonnegative integer value. To support the reader in distinguishing bags from
sets, we denote bags with Greek and sets with Latin characters. N denotes the set
{1,2,3,...} of natural numbers, and H> denotes the set N U {0}. The abbreviation
iff stands for "if and only if.

Definition 2.4 (bag, domain, multiplicity, carrier, empty bag)
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Le< 5 6e a nonempty set. .4 6ao /? over 5 w a /unction •

5 t« re/erred to a« t/ie domain o//?. For i € 5, /?(x) M caZZed tne muZtipZicity o/x in
/3. T/ie su6set 4 = {x € S : /3(x) > 0} o/ S is caZZed t/ie carrier o/ /J. / / t/ie domain
o/ /3 is apparent /rom tAe context, /3 can 6e speci/ied 6y Zistino t/ie eZements o/ 4,
u/tt/i t/ieir respective muZtipZtcittes. /n sue/» cases, we use D^ to denote t/ie domain
o//3. 0 denotes t/ie empty 6ao for setj. A

Definition 2.5 (bag size, finite bags)
Let /? 6e a 6ao over t/ie nonempty set S. T/ien the sue o//? w

i4 6ao ts caZZed /tnite i/ it nas ^nite size. TAe set o/ aZZ ^nite 6ays over a domain 5
is denoted 6y <B~(S). A

In this thesis, we only consider finite bags. Note that the domain of a finite bag /?
can be infinite; only its carrier /3 must be finite.

If 5 is finite, 93(5) can be identified with (f^)'^', the set of |S|-tuples of nonnegative
integer numbers. Such a tuple representation is common in game theory. However,
small bags can be represented more concisely by enumerating their contents. This
is especially so if the carrier of a bag is much smaller than its domain. Suppose, for
example, that we are dealing with a bag of two type-a tools and one type-u; tool in
the context of a reallocation problem with tool types ranging from a to 0. We can
denote this bag by enumeration, either as {a,a,«;}, or as {a: 2, u>}. This is much
more concise than the tuple notation used in economics, which would come down to

(2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0)^ (2.1)

The element-of relation is defined for bags a s x € / 9 < = > z € / 3 . With respect to
indexinp over a bag, we remark that an expression like Hjg^ / ( ^ ) , with 0 = {a, a, to},
and / some function on Z)/j, should be interpreted as / (a ) + / (a) + /(u>), rather than
/ (a) + /(«.)•

Definition 2.6 (indexing over a bag)
Let / be a /unction on 5, /or examp/e, / : S - • R, and /3 e *B(S). Tnen
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Analogous definitions apply to indexing involving other repetitive operators than £ .

such as fl and (J, and to expressions of the form {x € <i | ... x...} In other words,

the latter expression denotes a bag, not a set. To represent the set of elements of 0

such that . . . , we use expressions of the form {x € 3 I • • •}•

The definitions of subset, superset, power set, union, intersection, set difference and
Cartesian product for sets are easily generalized into natural definitions for bags. In
each of the following definitions 5 denotes an arbitrary nonempty set.

Definition 2.7 (subbag, superbag, power set)
Let o and /J 6c 6ags over 5. 77»en

oCj3 o (Vx € S) a(x) < 0(x)

/n tAis case, a »s coi/ed a iu66a</ o/ /?, on«f /J a jurxrfoio o/ a. TVir gowrr srt
o/ /? is tAe set o/ ai/ su66ays o/ ft

As an example, the power set of {a, a, 6} is the set {0, {a}, {6}, {a, 6}, {a, a}, {a, a, 6}}

The union of two or more bags corresponds with the result of physically throwing
the contents of each of the bags together into one bag.

Definition 2.8 (bag union (at+l/3))
Let ft, i = 1 , . . . , n 6e 605s over S. TAe union y , „ ft = ft W . . . W ft, is tAe 6aj a,
de/ined 6y

(VxeS) a(x) = £ft(z)
1=1

We use W rather than U to indicate that the union of two bags, thus defined, is not
the straightforward generalization of set union: The union of setlike bags (i.e., bags
/?, such that (Vx 6 Ä) /3,(x) = 1) is generally not a set. The actual generalization
of set union to bags is what is usually (Banätre & Le Metayer, 1993) referred to as
the maximum Uj „/?, = /? of the bags, defined by

(Vx € S) 0(x) = max ß(x) (2.2)
i= l ..n

The intersection of a number of bags is the largest' bag with the property that it is
a subbag of each.

'Here, "largest" means that the bag is a superbag of any other bag with the same property.
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Definition 2.9 (bag intersection (on/?))
Let /?, , i = 1,.. . , n 6e 605s over 5. T/»e intersection fli..„ /?, = & n . . . D /?„ is t/ie
6a<? Q, de/ined 6y

(Vx € S) a( i ) = min ß(x)

The difference of a and /? is the bag you get if you physically remove the intersection
of the two from a.

Definition 2.10 (bag difference (a\/3))
Let a and /3 6e 605« ot>er 5. T/ien tAe dtj^erence a\/? o/a and /? w fie 605 7, de/ined
6y

(Vx<ES) 7(*) = max{0,a (*) - j9 ( i )}

The definition of bag product is identical to that of set product, except that the
multiplicity of (x, y) G A x #2 is the product of the respective multiplicities of x and
y in A and &•

Definition 2.11 (bag product (a x /3))
Let a € <B(S) and /3 € <B(T). T/ien a x /3 is <Ae 6a$ 7 € <8(5 x T), denned 6j/

(Vx e S) (Vy € T) 7((i, y» = a(x) • /3(y)

Example 2.12 (bag product)
7 /Q = {1,1,2} and/3 = {1,3,3} *Aen a x /? = {(1,1): 2 , (2,1), (1,3): 4, (2,3): 2}

A

The definitions up to this point are based on (Banätre & Le Metayer, 1993). The
ones that follow are our own.

A construct that appears to be useful is the bag £(/3) of the multiplicities occurring
in a bag ß. We refer to £(£?) as the multiplicity type of /}.

Definition 2.13 (multiplicity type)
Let /i G 'B(S) 6e denoted 6y {.r.i: m, , . . . , x„ : m„}. T/ien t/ie mu/tip/icity type 0/ /3 is
t/»e 6a<7

m,,}

denotes t/ie set 0/ frajs ower 5 «ntA muittp/icity type a.
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Example 2.14 (multiplicity type) <
Z*< Q = {a,a,a,6,6,c,<f,d,/}, and /i = {a,a,6,6,6,c,c,d,e}. TAen {(a) = {(0) •
{3,2,2,1,1}, an«i{(((a)) = {2,2,1}.

A

If we rename the tool types occurring in a (in Ex. 2.14) according to the schema

a<-6; 6 +- a; c* -e ; <f*-c; / «- d

a transforms into /?. In other words, a and /? are alphabetic variants. It is clear from
Def. 2.13 that two bags are alphabetic variants iff their multiplicity types are iden-
tical. Hence, the notion of multiplicity type can be used to get rid of repreaentation
symmetries.

2.2.3 Representation of allocations

In most scientific literature, an allocation is represented by a function / : A" -> V
that specifies, for each agent i in an agent space A\ an endowment y in a commodity
space K. In mathematical economics, the agent space X is usually a finite set,^ and
the commodity space y is typically a finite-dimensional continuum. In other words,
the most frequent semantics of "allocation" is that of a function / : { 1 , . . . , n} -» R* ,
where R+. denotes the set of nonnegative real numbers. Economic literature featuring
allocations of the form / : { 1 , . . . ,n} -> N§ exists also, though it is relatively rare.
However, in economics, a finite agent population X is a/way« viewed as a se<, never
as a bag.^

For most of this thesis, this view toward allocations is quite acceptable. In our
experimental evaluation of reallocation mechanisms, however, agents with the same
tool utilities are essentially indistinguishable. In such a case, representing allocations
as functions has the disadvantage that allocations represented by different functions
may actually be identical. One can avoid this by defining allocations as mappings
from a 6a<7 of agents to a bag of tools. To this avail, we introduce the concept of
mufti/unction. A multifunction is identical to a function, except that its domain
and value space are bags instead of sets.

Definition 2.15 below is a straightforward generalization of the definition of a func-
tion as a particular kind of relation. It expresses that a multifunction from a to /3
associates each element x in the carrier of a with a subbag of a(z) (not necessarily
all different) elements from /?.

' in some cases (e.g., (Allen & Hellwig, 1989) and (Artstein & Wets, 1989)), not only the com-
modity space, but also the agent space is uncountably infinite.

Sometimes one considers uncountably infinite agent communities X, partitioned into agent
(ypej. Although these can be regarded as infinite-sized bags, there are not denned as such.
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Definition 2.15 (multifunction)
.Let Q and /? 6e 6aos. 77ien a mu/ti/tmction 0 /rom a to /? is a sufcfcag o / a x ß
<Ae property

1/6 Dfl

Just as it is customary with functions to write /(x) = y instead of (x,y) € / , we
will use a notation of the form 0(x) = {yi :mi, . . . , y^w,,} to express that

i)) = mi A . . . A 0((x,y„» = m„

A (Vz*{Vi. . . . , y „ } ) 0 ( ( z , z ) )=O

Example 2.16 (alternative multifunction notations)
7/0= {(1,2), (1,3):2, <2,2):3}, t/ien 0(1) = {2, 3:2}, and 0(2) = {2:3}.

Multifunction are more expressive than functions. One can describe the recipe "Put
a grain of salt on two of the eggs and a grain of pepper on the third" in terms of a bag
of eggs a = {egg: 3}, a salt-and-pepper shaker /? = {sa/t: 1000, pepper: 1000}, and
a multifunction 0 : a -» /9 defined as 0(egg) = {sa/t:2, pepper}. It is not possible
to express this recipe in terms of a function / : Q -» 0. Since ä = {egg} and
/5 = {.sa/t,pepper}, there exist only two possibilities for / , namely /(egg) = sa/t,
and /(egg) = pepper. Neither of these expresses the recipe. To formalize the recipe
in terms of functions, we must first transform the bag of eggs {egg : 3} into the
set {eggi,egg2,egg3}. In other words, the first instruction to the cook would be to
number the eggs....

In Definition 2.6, we specified how to interpret a bag-indexed operation like
£*e/* /(x) if / is a normal function on the domain of /3. If the summand of a sum-
mation contains a multifunctional expression of the form 0(x) instead of a functional
expression like /(x) in the above summation, we interpret 0 as a nondeterministic
function. Such an interpretation is similar to the interpretation of correspondences
in economics (Hurwicz, 1986). Economists use correspondences to represent the
possible outcomes of nondeterministic procedures. Formally, a correspondence / is
a set-valued function. Yet, the semantics of /(I) = {1,2,5} is that the outcome of
the procedure / with input 1 is one of the numbers 1, 2, or 5 rather than the set
containing these numbers. Similarly, one can interpret 0(1) = {2,2,2,4} as "The
outcome of 0 with input 1 is either 2 (with a probability of 75%), or 4 (with a
probability of 25%)". The associated interpretation of

1 \""~> , .
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is that of the tipectfd outcome of <£ with an input from a. This interpretation of
multifunctional expressions underpins the following definition of bag-indexed sum-
mation of multifunctional expressions.

Definition 2.17 (multifunction indexing)
Let 5 and T be nonempty set», (T; +) an a6e/tan jerm-oroup,* a € ®(5), /? € ®(r),
and /et ^ : a —• /? 6e a muitt/unchon. 77»en

£>(* )* £ J> (2-3)

A

Again, analogous definitions apply to indexing with operators like f] and lil

If / .4 —> ß is a function with domain D C /I, the ronoe of / is defined as ft/ =
UX€D{/(J")}. The following definition of multifunction image is a generalization of
this definition of function range. Note that Def. 2.18 involves multifunction indexing.

Definition 2.18 (multifunction image)
Let 5 ,T ,Q, and /? 6e as in L>e/. 2. i7, and /et (/> : a —» /3 &e a mu/ti/unction. Then
tne imaoe o/ 0 is

Unlike functions, multifunctions 0 : a —> /3 generally do not have the property that
7m^ C /?. As an example, the image of the multifunction </>: {1,2,2} -» {1,2,2},
defined by 0 = {{1,1}, {2,1}, {2,1}} isAn<^ = {1} W {1} l±) {1} = {1,1,1}, which is
not a subbag of {1,2,2}. This is the reason that we choose to speak of the image of
a multifunction, rather than the range. Note, however, that Def. 2.18 does coincide
with the usual definition of function range, if the bag a happens to be a set.

To provide concise definitions of certain bag constructs, it is convenient to define
a 'flattening' operator that removes the outermost structure of composite objects,
thus turning a bag of bags of elements into a bag of elements.

Definition 2.19 (flattening a bag of bags)
let -> 6e a 6ao o/ fraos. T/ien I7 (pronounced as "/iat oamma'7 is the 6ao, de/med

± 7 = 1+1/3

A

*This ensures that indexed summation is well-defined on T.
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As an example, |{{a, a, 6}, {6, c}} = {a, a, 6,6, c}.

Definition 2.20 (bag allocation, partial allocation)
Le< a and /3 6e 6a</s over 5 and T, respecht>e/y. .4n af/ocation o/ a over /? for, to
tAc element« o/ /3j is a mu/ti/unchon <5 : /? —y P(a) u;itA <ne property t/iat

4./m<5 = a (2.4)

77ie set o/ a// a//ocations O/Q oner /3 u>iZZ 6e denoted as .4(a, /?). We speaA: o/ a partjaZ
a//oratton o/ /3 over Q, i/ not necessariZy a// o/ t/ie e/ements o/ Q are aZ/ocated, t/iat
»*, «/

| / m < J C a (2.5)

. A

Equation (2.5) simply states that one cannot allocate more than one has. In math-
ematical economics (Takayama, 1985), this is referred to as the /easiftiZtty of an
allocation. In our terminology, an allocation is feasible by definition. However, we
will sometimes speak of an allocation «5 of a over /? in situations where only the car-
rier or the domain of a is specified. In such cases, we assume that the allocation is
both feasible and total (i.e., not partial). In other words, a is then defined implicitly
by a = 4 /m o".

If the bag /? in Def. 2.20 happens to be a set (i.e., if (Vi € /?)/?(z) = 1), then our def-
inition of allocation coincides with the usual, function-based definition of a feasible
allocation. If/? does contain elements with multiplicity greater than 1, the two differ,
in the sense that some allocations which are distinguishable from the functional per-
spective are considered to be one and the same from the multifunctional perspective.
As an example, the function-based allocations /i = {(e<?Oi,saZt), (egg2,pepper)},
and /•» = {(t'Offi,pepper), (eg^.sa/f)} are essentially identical if egoi and egg2 are
indistinguishable (i.e., instances of the same type).

2.2.4 Representation of reallocation proposals

A reallocation proposal can be represented by a pair of tool bags, one specifying the
tools which the agent wishes to acquire (the demand bag), the other specifying the
tools which it wishes to release (the supply bag). However, it is more economical
to combine the demand bag and the supply bag into one construct, using positive
multiplicities for the demand, and negative ones for the supply. We refer to such
a construct as a oenera/ued bag or gbag. The gbag {a: 3,6: -2} thus represents a
proposal to release two 6's in exchange for three a's.
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Definition 2.21 (gbag, carrier, domain, site, finite gbags)
Let 5 6e a nonempty «et. .4 gbap •> otier 5 u a /unction :

-> : S->Z
5 « re/ermf to as tAe domain o/ 7. Tne su6set ^ = {1 € S | 7(1) # 0 } 0/ S M
ca//r</ tAe farrier 0/ 7. Tne sue 0/ 7 w de/inra a» £ , ^ |7(«)|. J4 finite o6ao is a
o6ao o//imfe *ue. 7%e set 0/ a/i/intte 0609s over 5 w denoted 6y (?(S). A

We will use a more concise notation for small gbags. The gbag {a, 6 : -2} is
represented in this notation as {66 ^ a}, the gbag {o: -2,6: — l,c: 2,d) as {aa6 ;=*
red}, and the gbag {a 2} as { ^ aa}.

Defs. 2.8 and 2.19 of W and j for bags can be applied to gbags and hags of gbags
without modification. As for the semantics in terms of reallocation proposals, the
union of two proposals describes their aggregation, and the flattening of a bag of
proposals describes the aggregation of the proposals in the bag. AH an example,
4.{{aa = 6}, {6 ̂  c}} = {oa «± 6} It) {6 = c} = {aa •* c}.

We categorize reallocation proposals along two orthogonal dimensions A proposal is
either elementary or composite, and it is either a one-way or an exchange proposal.
An exchange proposal expresses the desire to exchange tools against other tools.
Hence, it is represented by a gbag with positive as well as negative multiplicities.
A one-way proposal pertains to a transaction that involves either tool acquisition
or tool relinquishment, but not both. Hence, one-way proposals are represented
by a gbag that has only negative or only positive multiplicities. A proposal is an
e/emen<ary proposa/ if neither its demand bag nor its supply bag contains more
than one element. Hence, elementary exchange proposals are of the form {a ^ 6},
whereas elementary one-way proposals are either of the form {a ^ } or { ̂  a}. We
denote the set of elementary proposals involving tool types from the set Ä by £i(fl).
A composite proposal is a proposal that is not elementary.

In general, an agent in our Informed-Gambling framework submits a 6a# of proposals
rather than a single proposal. To motivate this design decision, we make a small
excursion from the current issue of representation to that of proposal semantics.

2.2.5 Semantics for reallocation proposals

Suppose that some agent communicates the proposal {ix == yy}. This gbag ex-
presses a desire to acquire two y's in exchange for two x's. But what does that mean
in a situation where this transaction is impossible, whereas it would be possible
to exchange one x for one y? Does the agent prefer the latter exchange over no
exchange at all?

If x stands for a bicycle and y for a motorbike, then this is probably so if the agent
acts on behalf of a pizza delivery service. But it is probably not so if the motorbikes
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are meant to be used by the agent's sons during their vacation in France. It would
be convenient if our representation covers both cases. One way to accomplish this is
to let the pizza delivery agent submit a 6aj of proposals (viz., {{x ^ y}, {x ^ j/}}
instead of {xi ^ j/y}), with the semantics "Please satisfy as many of these proposals
as possible".

If each agent is expected to submit a 6aj of proposals, both the pizza deliverer and
the vacation planner can express their desires accurately: the pizza deliverer can
submit {{x ;= y}, {x ^ y}}, and the vacation planner {{xx ?= yy}}.

Note that, while we commit ourselves to a representation of proposal submissions as
bags of gbags, we do not commit ourselves to any associated semantics. The seman-
tics "Please satisfy as many proposals as possible" proposed in the above scenario
merely serves as an example to illustrate that a representation of submissions as
bags of gbags is more versatile than a representation of submissions as gbags.

2.2.6 Representation of proposal-related constructs

To make sense of the definition of formal constructs below, the reader should keep
in mind that the context in which these constructs play a role is that of a message
exchange process between agents and a central coordinator. For now, one can think
of this exchange as a synchronous process, where all agents submit their proposals
simultaneously, and each agent receives a reply from the coordinator before any new
proposals are submitted.

We define formal representations for the following proposal-related notions.

demand and supply bags: These represent the demand and supply associated
with a single proposal (i.e., a gbag).

proposal profile: This represents the proposal bags of all agents (submitted in a
single round of the message-exchange process).

scarcity profile: This represents the net demand and supply associated with a
proposal profile.

market profile: This represents the gross demand and supply associated with a
proposal profile.

The demand and supply bags associated with a single proposal 7 are denoted by 7"*"
and 7" respectively. The formal definitions of these constructs are straightforward.
Recall that <B(5) denotes the set of all finite bags over 5, and </(S) the set of all
finite gbags over 5.
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Definition 2.22 (proposal demand bag)
Let 7 € £(S). 77ien tAe demand 6ao o/ tAe y6oy 7 u tAe 6ao 7+ € «(5) rfr/inrrf 6y

Definition 2.23 (proposal supply bag)
Let S 6e an onfened, nonrmpty set, and 7 € £(S). Then tAe *upp/y 6ay 0/ tAe
7 M tAe 6ao 7" G 09(5) de/ined 6y

(Vie 5) 7-(«)

The demand and supply bags associated with a proposal 605 (i.e., a bag of gbags)
are defined as the union of the demand/supply bags of the proposals in the proposal
bag. As such, they represent the gross demand and supply associated with the
proposal bag. Since the definitions for the supply bag >J and the demand bag /?+
of a proposal bag /? are analogous, we provide a formal definition for the supply bag
only

Definition 2.24 (supply bag of a proposal bag)
Lei 5 6e a nonempty set, and /3 € 33(5(S)) 6e a proposa/ 6ao. T/ien t/ie jupp/y &a</
0/ /3 ts tne 6aj /3~ € ®(S) de/ined 6y

As an example, the supply bag of the proposal bag /3 = {{a ^ 6}, {b = c}} is the
bag /T = {0,6}.

Definition 2.25 (proposal profile)
Let / denote a commum(jf 0/ agents, and il a set 0/ resource types. T/ien a proposa/
pro/i/e is a /unction 1/) : / -> *8(^(fi)). A

The scarcity of a tool type is its demand minus its supply. The scarcity profile
associated with a proposal profile describes the scarcities of the tools mentioned in
the proposal profile.

Definition 2.26 (scarcity profile)
Let V> : / -> 55(0(.ft)) 6e a proposa/ pro/i/e. 77ien tAe scarcity pro/i/e associated iw
0 is tAe 5603 a, de/ined 6y

a = | | /m
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The flattening operator is used twice in Def. 2.26 for the following reason. Accord-
ing to Def. 2.18 of /m, im^i is the 6oj of proposal toys submitted by the agents.
Hence, j /m V* is the bag of all submitted proposals, and 14- Aw V' is the gbag that
describes the aggregate effect of these proposals. Consequently, (44 /m ^)(z) denotes
the scarcity (i.e., the aggregate demand minus the aggregate supply) of tool type i .

The market profile /x associated with a proposal profile ^ describes the gross supply
and demand for tool types mentioned in the proposal profile. It is defined in terms
of the bag | /m ^ of all submitted proposals.

Definition 2.27 (market profile)
Le< ^ : / —> *B(£(/?)) 6e a proposa/ pro/i/e. T/ien tAe market pro/lie assoctateti tutt/i
^ t« tAe ordered pair o/ 6aas /i = {/i",/!*), where

If a reallocation proposal is accepted, it can be executed on the endowment of the
agent that communicated it. Formally, we define the execution of a single proposal
in terms of gbag union.

Definition 2.28 (proposal execution)
£et 7 € C(-R) denote a rea//ocation proposa/ suftmtMed 6t/ an aoent wit/i endowment /?.
T/ien t/ie eiecutton 0/7 on/? is de/ined tn terms 0/t/ie/unction exec : </(/?) x<8(i?) —>

ezec(7,/?) =

Obviously, the execution of a proposal should turn the original endowment /? into
a new endowment ea?ec(7,d). This implies that the outcome should be a bag, not
a gbag. This is the case iff the agent is actually capa6/e of delivering the promised
tools, that is, if the supply bag 7" of the proposal is a subbag of the agent's initial
endowment /i. We refer to a proposal with this property as a (locally) feasible
proposal.

For the execution of a proposal pro/i/e (as a whole) to be feasible, the profile must
meet two conditions. First, each agent must be capable of delivering the tools which
it proposes to supply. We refer to this property as the local feasibility of the proposal
profile. Second, we must have conservation of tools. In other words, gross supply
must equal gross demand for all tool types. This is referred to as the global feasibility
of the proposal profile. Formal definitions are presented below.
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Def. 2.29 states that a proposal profile is locally feasible iff the supply bag of each
agent's proposal bag is a subbag of its endowment.

Definition 2.29 (local feasibility)
Let / drnote a community o/ oj/ents, /? a «et o/too/ type.», anrf Jet <5(i) € *B(ß) denote«
tAe tmtia/ too/ endowment o/ o^ent i. T/ien tAe propoioi pro/lie ^>: / —f "B(£(fi)) it

/easio/e untA respect to A" ijf

( V i € / ) (*(•))" S *(•') (2.6)

Equality of gross demand and gross supply is equivalent to zero scarcity. Hence,
the global feasibility of a proposal profile can be expressed either in terms of the
associated market profile, or in terms of the scarcity profile. We use the latter in
the definition below.

Definition 2.30 (global feasibility)
Let v : / -+ !8((/(/?)) 6c <i proposa/ pro/i/e, and <r = H/rnV* lAe <M»oc»ate<f «carcity
pro^/e. T/ien t/' w g/o6a//j/ /easifr/e t^

a = 0 (2.7)

If a proposal profile t/> is globally feasible, and locally feasible with respect to an ini-
tial allocation <S, then £iec(t/>, (5) denotes the allocation that results from executing
4.V>(t) on J(t) for all agents t.

Definition 2.31 (proposal profile execution)
Let / denote a community o/ agent*, fi a set o/ too/ types, (5j : / -> *B(i?) an tnitta/
a//ocation, and ^ : 7 —> *B(^(/?)) a proposa/pro^/e t/iat is g/o6a//y /easi6/e, and
/east6/e wtt/i respect to Jj . T/ien t/»e ezecution o/ t/ie pro/i/e ^ on t/ie a//ocahon
renders a neu; a//ocatton £xec(t/',(5i) = <$2i denned 6y

(ViG/) Jj(t)

2.2.7 Representation of agent satisfaction

When contemplating the representation of an agent's satisfaction with its endow-
ment, an important distinction is that between uti/ittes and pre/erences. We will
speak of agent utility if an agent's satisfaction is expressed cardinally, by attaching
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a nonnegative number to any conceivable agent endowment, where a high number
denotes a high degree of satisfaction.

Preferences are ordinal measures. As such, they are less expressive than utilities.
An agent preference merely denotes, for any pair (x,y) of conceivable endowments,
whether the agents prefers x over y, y over x, or is indifferent with respect to x and
y. It does not express <o tu/iat extent the agent prefers x over y.

If agent satisfaction is expressed cardinally, the quality of an allocation can be de-
fined numerically, in terms of the agents' utilities, in various ways. Depending on
the problem domain, one can equate allocation quality with the average agent utility
(utilitarian), the average normalized agent utility (relative-utilitarian), the average
quadratic deviation from the average agent utility (egalitarian), or yet another for-
mula.

In the context of a preferential measure for agent satisfaction, it is unreasonable to
expect a fine-grained measure for allocation quality. In view of the relative coarse-
ness of preferences in comparison with cardinal agent satisfaction measures, any
derivative of such an ordinal measure will be relatively coarse also. In fact, common
preference-based measures for allocation quality, such as Pareto optimality and core
membership are binary-valued. An allocation is either Pareto optimal or it is not.
It is either a core element or it is not.

An advantage of ordinal measures over cardinal ones is that they are less demanding,
and hence, more widely applicable. Contrary to a cardinal measure, a preference
does not require that agent satisfaction is cardinally expressible, nor that the satis-
faction of different agents is comparable. In fact, the notion of preference has been
developed in response to the conviction (which grew in the 1930's among social
choice theorists) that the — then common — cardinal measures were unrealistically
demanding in these two respects (Sen, 1986).

For the portion of our research that pertains to CMAT, neither cardinal express-
ibility, nor inter-agent comparability constitute much of a problem. Open systems,
however, are a different matter. Inter-agent comparability amounts to the existence
of a universal standard measure for agent satisfaction. Such a fixed standard is at
odds with the very idea of openness. Since this thesis aims to be relevant for OMAT
as well as CMAT, we opt for a measure that does not require us to assume inter-
agent comparability. Our measure does presume cardinal expressibility. because we
believe that the boo/ear» solution quality measures associated with an ordinal repre-
sentation of agent satisfaction are too coarse for a proper evaluation of mechanism
performance.
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2.2.8 Relative-utilitarian agent-level utility <

Below, we define the agent-level utility as a relative-utilitarian measure for agent
satisfaction. The definition entails that the utility attached by an agent to a bag
of tools is a real number between zero and one (inclusive), and that the utility of
a bag of tools is never smaller than that of any subbag thereof. The philosophy
behind this definition is "It can be profitable to acquire more tools, but enough is
enough", while the common adage in game theory and micro-economics is "It is
always profitable to acquire more".

Definition 2.32 (agent-level utility)
Let /? 6e a «e< o/ resourre types, and /et F € ©(/?) denote tAe 6ao o/ toots present in
an <j(7fnt community /. 77ien an ajjent-tevf/ uttiity/unction M a/unction u : 7*(r) -4
[0,1] untn tAe /o//otwny properties

/. u(0) = 0

7i

While we consider the assumption "Enough is enough" more realistic for tool re-
allocation than "More is always better", Def. 2.32 does not Ainoe on the former as-
sumption. There may well exist some superbag 0 of F to which the agent attributes
a va/ue v(fl) that exceeds t>(F), but this is irrelevant for the agent's satis/action u,
if we presume that the agents are aware that they cannot acquire any tools except
those in F. In fact, if we think of the agent's satisfaction as based on its valuation
t> of endowments, it appears that only property 3 in Def. 2.32 is vital, in the sense
that it is the only property that requires us to make a constraining assumption on
r. This is illustrated by Prop. 2.33 below, which also clarifies why the agent-level
utility defined in Def. 2.32 was announced as a relative-utilitarian measure.

Proposition 2.33
Let F € *8(i?) denote tAe 6ao o/ toots present in some aoent community, and /et
v(x) denote tAe va/ue attri&uted to t/ie endot^ment i € 93(fi) 6y some aoent in tAe
community. .Assume t/iat u /»as tAe properties

(V7i,72 £ ®(Ä)) 7i C 72 => v(7i) < r(72) (2-8)
t,(F) > t;(0) (2.9)

e u in terms o/ i> as

«2.10,

TAen tAe restriction o/u to tAe domain P(F) Aas tAe properties / and 2 in i?e/. 2.52.
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The proof is left to the reader. •

Note that the condition t>(F) > t>(0) in Prop. 2.33 is not much of a restriction: In
view of (2.8), an agent for which this condition is not met cannot profit from any
reallocation within the agent community.

As such, the only constraining assumption underlying our notion of agent-level utility
is condition 3 in Def. 2.32: that an agent cannot gain utility by getting rid of
tools. While this is not very restrictive, one can imagine cases in which retaining
useless tools is costly, because the agent has to rent storage space for them. We can
accommodate such cases by changing (2.10) into

max

As a consequence, property 3 in Def. 2.32 disappears, and property 2 changes into

(3/3 C D u(/9) = 1

An important advantage of relative-utilitarian measures (such as the agent-level util-
ity of Def. 2.32) is that they employ only such weak assumptions. As a consequence,
a relative-utilitarian measure has a wider range of applicability than, for example, a
utilitarian measure. Utilitarian measures are more demanding in that they require
the satisfaction of different agents to be comparable. Agents are required to express
their satisfaction in the same language, so to speak. Hence, by basing our perfor-
mance evaluation on relative-utilitarian measures, we increase the generalizability
of our experimental findings.

A relative-utilitarian measure for solution quality expresses a point of view that
lies between utilitarianism and egalitarianism. From a utilitarian point of view, the
wealth of a country does not change, if all citizens donate their entire income to
the country's head of state. From a relative-utilitarian point of view, however, this
constitutes a dramatic decrease of the country's wealth.

Even though an allocation that is optimal in a relative-utilitarian sense need not be
optimal in a utilitarian sense, the conclusions we shall draw from our experiments do
have .some bearing on domains in which one employs a utilitarian measure, because
relative-utilitarian optimality does imply utilitarian near-optimality, if there are no
large differences between the utilities which different agents can attain if they acquire
their respective first preferences.
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2.3 Formal Problem Specification

2.3.1 Specification of allocation quality

The representations described in the previous section are almost sufficient to provide
a formal specification of our prototype TR problem. The only ingredient that is still
missing is a definition of allocation quality in terms of agent-level utilities.

Because TR is a generic problem, which occurs - in different guises in a variety
of contexts, there is no single optimality criterion that is always adequate. In-
deed, when evaluating reallocation mechanisms in Chapter 7, we will employ several
performance metrics to evaluate solution speed, and different aspects of solution
quality. However, there are two solution quality measures that are likely to be
the most important ones, certainly in most CMAT settings, and probably in many
OMAT settings as well. Both measures can be used to provide a formal specification
of TR problems, and the respective specifications are equivalent. The only differ-
ence between the two measures is that the allocation effectiveness is a norma/unttem
of the community-level utility: An allocation of maximal community-level utility
has an effectiveness of 1. In our experimental evaluation, we use the effectiveness
as our primary measure of mechanism performance, and the maximal value of the
community-level utility as a measure for the difficulty of TR problem instances.

Def. 2.34 defines the community utility of a tool allocation as the average agent-level
utility obtained by the agents in the community. The community tool bag is the
bag of tools available for reallocation (i.e., the union of the initial tool endowments
of the agents in the community).

Definition 2.34 (community utility)
Let i? 6e a se< o/ too/ types, an /et / denote a /inite set o/ agents unt/i aoent-/et>e/
uti/ittes u , ( ) as in Z)e/. 2.52, and too/ endowments <5(t) € *8(fl). Let F = |/m<$
denote t/ie community too/ 6ag, and .4(F, /) t/ie set o/ a//ocattons o/ F over / .
TVien t/ie community uti/tty is a /unction C : .4(r, /) —• [0,1], and t/ie community
uti/ity o/ J is de/ined as

A

The community utility is a suitable measure to compare the quality of different
allocations. However, it tells us little about the quality of an allocation in an absolute
sense, because its maximal value depends on the difficulty of the problem at hand.
For very difficult problems (where few of the agents' desires can be fulfilled) the
maximum value of the community utility can be close to 0, whereas for very easy
problems it can equal 1. As such, the community utility is not an adequate measure
for the performance of a reallocation mechanism.
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To obtain an adequate measure for mechanism performance, we divide the commu-
nity utility of the allocation by the community utility of an optimal allocation. We
refer to the resulting measure as the e/fec<it>eness of the allocation.

The allocation effectiveness is an atso/ute measure of mechanism performance in
terms of allocation quality. An effectiveness of 1 implies that no mechanism can
perform better, and an effectiveness of 0 means that no mechanism can do worse.

Definition 2.35 (allocation effectiveness, opt. community utility)
Let T, /, -4(r,7), ami <$ 6e as m Z)e/imtion 2.5^.
T/ien t/ie £/fec£tt>eness is a /unction £ : ,4(I\ 7) -• [0,1] that is de/med as /o//ou>s.
Let C* denote t/ie optima/ community uti/ity, that is, t/ie /liy/iest community uti/ity
2/iat con oe ofttained u>it/i on a/location /rom ^4(F,/). Forma//y,

C" = max C(</>)
«€4(r ; i

T/ien the ej^ecttveness o/ t/ie a//ocation <$ egua/s

Note that, while the (optimal) community utility and the effectiveness are relative-
utilitarian concepts throughout this thesis, they are not in/ieren% relative-utilitarian.
It depends on the underlying notion of agent-level utility whether the above defi-
nition of effectiveness constitutes a utilitarian or a relative-utilitarian measure of
allocation quality.

2.3.2 Formal specification of T R

Using the effectiveness metric as the measure of choice for the quality of reallocation
mechanism, we arrive at the following formal specification of TR as an inherently
distributed problem.

Definition 2.36 (tool reallocation (TR))
Let / (/enote <» set o/ agents, and fi a set o/ too/ types. J4 too/ rea//ocation pro6/em
is a pair (5, C/) where

• a":/-» *8(fi) is an «nitio/ a//ocation;

• t/ : / x P(r) -> [0,1] is a pro/J/e o/ a$ent-/et>e/ ut»/tt«es. i/ere, T = |/m<J
denotes the community too/ 6ao.

i4 proposa/ pro/j/e t̂ ' : 7 -> <B(£(i?)) constitutes an optima/ so/ution o/ (<$, C7) »

2. V w /oca//y /easifc/e wtth respect to 5, and
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e, and

5. execution o/ V o» J rvn(frrs an ai/ocation o/ manmaJ rj(frcfit>ene JJ, tnat it,

IVf urtii denote tAe «pace o/ ai/ 7*A pnoft/enw 6y TR. A

Def. 2.36 defines tool reallocation as the problem of arriving at a fully executable (i.e.,
locally and globally feasible) profile of reallocation proposals that, when executed,
renders an optimal allocation.

If TR problems are to be solved in a distributed fashion, by communicating reallo-
cation proposals, while the agents' utt/ifif« remain private information, no agent (or
coordination module) can acquire full knowledge of the problem instance. Hence,
demanding optimality may be too high-strung. In view of this, we will use Def. 2.36
only as a guide/me in our search for an adequate distributed .solution method. In
other words, a multi-agent mechanism need only render allocations of near-maximal
effectiveness to qualify as an adequate distributed solution method,

Obviously, the profile of the agents' first submitted proposals reflects their first
preferences. Hence, if these proposals happen to be jointly satisfiable, executing
them will render an optimal allocation. Of course, this is seldom the case. While
it is reasonable to assume that any submitted profile is locally feasible, an initial
profile is unlikely to be #/o6a% feasible. Usually, there are discrepancies between
the desires of different agents. As a consequence, some tool types will be scarce,
while there may be an abundant supply of others. Hence, solving a distributed TR
problem amounts to finding a way to turn the initial profile into one that is globally
feasible, without sacrificing too much allocation quality. In the next chapter, we
explore various ways to accomplish this in a distributed fashion.





Chapter 3

Distributed Approaches to TR

3.1 Coordination Strategies

3.1.1 Central vs. distributed coordination

For a globally coherent solution to emerge from agent interactions, these interactions
must be coordinated. In many natural multi-agent systems (e.g., ant colonies),
such coordination is entirely distributed. Ants who contribute to the coordinated
construction of an ant hill interact directly with other such ants, and there are no
coordination centers in the form of foremen.

While a fully distributed approach to TR is principally possible, we do not explore
this possibility. For TR, such an approach tends to be less efficient than approaches
which feature indirect communication via a central coordination module, because
adequate reallocation requires global knowledge of the problem. There are two main
reasons for this. First, reallocation problems typically call for mu/h/atero/ cooper-
ation. Two agents with exchange proposals {a — 6} and {6 ;= c} can cooperate
(i.e., exchange tools) only with help of a third party (e.g., an agent with a proposal
{c = a}). Second, reallocation problems typically feature con^tchn^ opportuni-
ties for cooperation. As such, a decision to seize an opportunity to cooperate can
obstruct a more profitable cooperation.

An example is provided in Fig. 3.1. The figure depicts an initial proposal profile
of a TR problem comprising 5 agents. Their respective proposals are listed inside
the circles. For the sake of simplicity, we assume that adaptation of the proposals
is not an option. If a submitted proposal is not accepted, the submitter does not
take part in the reallocation at all. With this assumption, the quality of a solution
is proportional to the number of tool exchanges that take place. In other words,
cooperation should involve as many agents as possible.

In the current example, there are are only two groups of agents that can cooperate

45
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b a; bi (b = (c=*d) d a
4 5

Figure 3.1: A drawback of direct agent interaction: The likely cooperation
between agents 1 and 2 obstructs the cooperation between agents
2, 3, 4, and 5.

(i.e., exchange tools): the group comprising agents 2, 3, 4, and 5, and the pair of
agents 1 and 2. However, once agents 1 and 2 decide to exchange their tools, the
cooperation within the group of four agents is no longer possible.

To decide which opportunities for cooperation should be grasped at, a 5/060/ per-
spective on the problem is required. To acquire such a global perspective, some
of the information that is distributed over the agents must be aggregated. Having
each agent perform this task on its own would lead to a lot of duplicate work. It
is generally more efficient, with respect to computation as well as communication,
to let a dedicated module take care of the aggregation of local information. This is
especially so if the module can communicate with all agents directly.

Once a coordination module has aggregated all local information into a global view of
the situation, it is principally capable of solving the problem as least as proficiently
as the community of agents could do after information aggregation. However, a
coordination module which, after collecting the necessary information, solves the
entire problem on its own, is a computation bottleneck by definition. We aim to
prevent this, and will strive for an approach where the coordination module does
not perform any complex computations.

3.1.2 Proposal composition and relaxation

With our formal definition of tool reallocation (Def. 2.36 on page 42), solving a
TR problem amounts to transforming an initial profile of reallocation proposals into
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one that is globally feasible, without sacrificing too much allocation quality. As we
explained in Sect. 1.3.2, we impose two constraints on a solution procedure for TR.

1. Agents communicate only reallocation proposals. All other information on
their utilities for tools is to remain private.

2. The procedure should not involve the use of real or artificial money.

In the current chapter, we investigate two strategies to solve the TR problem de-
scribed in Def. 2.36 in this manner: proposal composition and proposal relaxation.

Proposal composition entails the construction of a globally feasible ju6;>ro/i/r of pro-
posals within the original profile of agent submissions. As such, it ran he qualified
as a bottom-up approach. The term 'composition' steins from (Satin & Fox, 11)89),
who mention constraint composition as one of the techniques employed in their
Constraint-Directed Negotiation (CDN) approach. Although our notion of compo-
sition is basically the same as that of Sathi and Fox, we will embed composition in
a context where it plays a more prominent role than in CDN, and provide formal
definitions for several variants of composition.

Proposal relaxation entails persuading or motivating the agents to adapt their orig-
inal proposals so as to turn the initial proposal profile into one that is globally
feasible. As such, relaxation constitutes a top-down approach.

In CDN, relaxation is a matter of persuasion. The coordination module in CDN
acts as a mediator who queries the agents to attain a global perspective on the
problem, and attempts to persuade the agents to relax their proposals in a specific
direction. We will refer to this method of relaxation as mediated negotiation in the
sequel. Because mediated negotiation incurs a concentration of computation and
design complexity in the coordination module, this mediator is liable of becoming
a (design and computation) bottleneck. We prefer a method of proposal relaxation
with a higher degree of operational decentralization. Consequently, we focus on
approaches where the agents take the initiative, and the coordination module merely
provides incentives for relaxation. More particularly, we investigate the potential of
the Walrasian auction, in which an auctioneer provides such incentives by changing
the prices (i.e., exchange ratios) of the tool types.

3.2 Composition-Based Solution of TR

Before we specify the role we envision for composition as a strategy to solve TR
problems, we sketch how it was employed in constraint-directed negotiation. This
sketch is phrased in terms of our own terminology and notation, rather than those
of (Sathi & Fox, 1989).
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3.2.1 Composition in CDN

Sathi and Fox (1989) developed their constraint-directed negotiation (CDN) ap-
proach to tackle the (real-life) reallocation of computer workstations in a software-
engineering company. As we explained in Sect. 2.1.1, a workstation reallocation
problem can be regarded as an instance of TR, where an agent represents a project
team, and a tool is a workstation.

The CDN approach was conceived by studying how human problem solvers deal
with the problem. This led to the identification of three problem solving activities.

Composition concerns the construction of proposal clusters by matching a pro-
posal which involves a request for a tool of a certain type with another proposal
in which that tool type is offered. The aim is to form a cluster of proposals
such that any tool occurring in a proposal of the cluster is matched with a tool
in anot her proposal in the cluster. The entire cluster of proposals can then be
executed, since it amounts to a globally feasible bag of proposals.

Relaxation concerns a negotiation process in which the mediator suggests specific
adaptations of submitted proposals to the agents, which it deems to be useful
in the sense that these adaptations would allow for more extensive composition
to take place.

Reconfiguration concerns the exchange of workstation components (such as mon-
itors and other peripherals) to arrive at a community bag of workstation types
that comes closer to the desired community bag (i.e., the bag (F l+l /i+)\/x",
where F denotes the current community tool bag, and /i+ and /i^ denote the
demand and supply components of the current market profile.)

In each of the three activities, the initiative lies with the mediator. The activities
are intertwined. Composition can be used to perform a partial reallocation, but it
can also serve to identify useful relaxation and reconfiguration attempts. The overall
control scheme that determines how the mediator combines these activities is not
specified in detail by (Sathi & Fox, 1989). This suggests that it is complex.

3.2.2 Composition combined with revision

Because we are primarily interested in the TR domain as a test domain for funda-
mental research on multi-agent systems, we prefer a simp/e control structure that
is principal;/ suited for any TR problem over a comp/ex control structure that is
parttcu/or/y suited to solve a specific real-life reallocation problem. To arrive at
such a simple control structure, we refrain from incorporating reconfiguration and
relaxation. Instead, we combine composition with proposa/ revision.
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Proposal revision aims to ensure that any submitted proposal has at least some
chance of being accepted. To guarantee this, any tool type requested in a proposal
profile should be offered in at least one other proposal of the profile. Revision is easy
to implement as a message exchange process between the agents and the mediator.
The idea is for the mediator to communicate the set of tool types offered in the last
submitted proposal profile. The agents then respond by constraining their demand
to the tools types mentioned as deliverable by the mediator. Because it is conceivable
that an agent which has submitted {r = y} is no longer willing to relinquish tool
type x if it appears impossible to obtain y, the set of offered tool types can shrink
in the process of revision. Hence, the revision process will generally take more than
one round. It is, however, a trivial process, provided that we do not allow the agents
to offer a tool type in their proposals that they did not offer in previous rounds.

The combination of composition with revision constitutes a ^rrrdy approach to solve
TR problems. After revision of the initial proposal profile, the mediator searches
for a globally feasible subbag of the bag of submitted proposals, and executes this
subbag. Subsequently, the process of revision and composition is repeated with those
agents who submitted proposals that were rejected. This continues until all proposals
of the still active agents are accepted, or revision points out that all remaining agents
prefer their current allocation over anything their still active companions can offer
them.

The composition/revision scheme, thus described, is not guaranteed to work. The
process may go on endlessly, because one can conceive proposal bags that are stable
under revision, but do not contain any nonempty, globally feasible subbags.' To
make the above scheme work, we would have to add either some form of proposal
relaxation, or the simple, but crude method of excluding some agent(s) from further
participation, whenever composition stagnates. We do not bother to elaborate on
such a fail-safe provision, because it is not required in the composition/revision
scheme which we will ultimately arrive at.

Evidently, in whatever way composition and revision are combined, revision is not li-
able of turning the mediator into a computation or design bottleneck. Consequently,
we focus on composition.

3.2.3 Complexity of general proposal composition

The composition of reallocation proposals can be viewed as a heuristic reformulation
of Def. 2.36 of tool reallocation, which takes into account that the mediator does
not have access to the agents' utility information. It must go by the communicated
proposal profile. Because a proposal profile does not provide any clues as to how
important a specific proposal is to its submitter, the mediator assumes that all

'A simple example is the proposal bag {{aa ^ 6}, {6 := a}}
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proposals are equally important. We refer to this conjecture as the unt/orm-utt/tty
assumption, and to the associated interpretation of composition as the uniform-
utility composition problem (UUCP).

Although the mediator needs to know the coupling of proposals to their respective
submitters to ezecute the accepted proposals, the se/ectzon of these proposals (under
the uniform-utility assumption) does not require such knowledge. Consequently, we
can define UUCP in terms of the bag of all submitted proposals, instead of the
submitted proposal profile.

Even with the uniform-utility assumption, one can define UUCP in various, slightly
different ways. To clarify the differences between these variants, we provide a pic-
torial representation of a UUCP instance in the form of a three-dimensional puzzle.

rtype

a

b

c

9
- c
—t
—c

cf
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Figure 3.2: Representation of the UUCP instance
{{ab^cc},{aa^b},{cc^a}:
as a 3-dimensional puzzle.

This is done in Fig. 3.2. Each piece of the puzzle consists of a number of flexible
strings connected to a central core, with connector terminals of various shapes at the
ends of the strings. A tool type corresponds with a pair of connector types: A male
connector is used if a tool is offered in a proposal, and a female connector if the tool
is requested. Solving the composition problem thus corresponds to knitting pieces
together, in such a manner that there are no open ends (i.e., uncoupled connectors).
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Below, we define four variants of UUCP in increasing order of demand ingness.

random composition (UUCP*)
This is the simplest form of composition. It entails the «election and execution
of an ar6i<rory globally feasible subbag of the proposal bag.

random cluster composition (UUCP®)
This is the operational definition you would probably employ when asked to
solve the composition problem instance of Fig. 3.2. It involves the construction
of a cluster (i.e., a single, connected knit of puzzle pieces without open ends)
instead of a globally feasible subbag (which can contain multiple clusters).

L.BF composition (UUCP')
Largest-Bag-First (LBF) composition entails the selection and execution of a
maxima/, globally feasible subbag of proposals.

LCF composition (UUCP*)

Largest-Cluster-First (LCF) composition entails the selection and execution of
a maximal cluster of jointly executable proposals.

We recall from Sect. 3.2.1 that composition in CDN was inspired by the problem-
solving strategies used by human reallocators. Human problem solvers are inclined
to use a bottom-up approach, and tend to come up with a solution comprising a
single c/«5<er of proposals.^ In terms of our bag-based representation framework, a
cluster is a globally feasible proposal bag which cannot be split into sma//er globally
feasible subbags. Hence, any solution found with random cluster composition is
also a solution for random composition. Obviously, this also applies to LCF- and
LBF-composition. So variants of composition which involve cluster construction are
at least as demanding as the corresponding variants with proposal bags.

Sathi and Fox (1989) mention that human problem solvers exhibit a preference
for /arge clusters. We refer to this preference as the Largest-Cluster-First (LCF)
heuristic. It is not discussed in (Sathi & Fox, 1989) whether the use of this heuristic
is based on the experience that it tends to lead to better solutions.' Pondering on the
adequacy of the heuristic in terms of the effectiveness of the resulting allocations, one
can imagine that satisfying as many first preferences as possible is a good heuristic
in cases where the agent-level utility of second-best alternatives tends to be low
(say, 10% or less). On the other hand, one can also imagine problems where an
agent whose proposals were rejected can still obtain a considerable utility gain from
a renewed attempt involving 10 other agents, but much less so if there are only 2
other agents left.

*Sathi and Fox (1989) speak of a cycle, or cascade, where we use the term cluster.
Its popularity can also be explained psychologically, as stemming from the urge to get the job

over with as soon as possible.
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In any case, there is little ground to expect that the LCF heuristic will produce
significantly better allocations than the Largest-Bag-First (LBF) heuristic, since
both heuristics seem to be based on the belief that it is profitable to satisfy many
of the agents first preferences, and i/ this belief is correct, LBF will do at least as
well as LCF.

We provide formal definitions for UUCP* and UUCP*. UUCP® and UUCP® differ from
UUCP* and UUCP* only in the additional condition that the target subbag (a and
a* in the formal definitions below) should be a cluster. Formally, the condition that
the bag a be a cluster can be expressed as

(V-y S a) 7 * 0 => ±7 # 0 (3.1)

Because random composition does not involve any optimization, it is formalized as
a decision problem. Note that random cluster composition is associated with the
same decision problem.

Definition 3.1 (random composition (UUCP*))
Let /? <ientf<e a set o/ <oo/ /ype.s. 77ien UUCP* com/>ri5e.s t/ie /o//ou;in<7 profc/em.

Given a tap /? € 93(</(.R)) o/ reaüocation proposa/s, determine w/iet/ier

(3a C /?) a / 0 A | a = 0 (3.2)

Definition 3.2 (LBF composition (UUCP*))
Let i? denote a set o/ too/ type«. T/ien UUCP" comprises t/ie /o//ou;in<7 pro6/em.

Given a 6ap /3 € ^8((/(/?)) o/ rea//ocation proposo/s, determine a s«66o</ a" C /? with
t/ie property

| a * = 0 A (VoC/J) | Q = 0 => |Q| < |a*| (3.3)

A

Looking back at Fig. 3.2, neither variant of composition seems to be easy. The
following proposition tells us that this is indeed so.

Proposition 3.3
UUCP* is NP-comp/ete.

We prove the NP-completeness of UUCP* by restriction to the sti6set-sum proWem, a
well-known, NP-complete decision problem (Moret, 1998. p.251). More specifically,
we show that subset-sum is isomorphic (under one-reduction) to the special case
UUCPi of UUCP* where there is only one tool type, one of the proposals is a one-way
proposal with an empty demand bag, and all other proposals have empty supply
bags.
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Definition 3.4 (UUCP,)
UUCP, i« (Ar specio/ awe o/UUCP* witA 0 € $ (£ (£ ) ) *«*cn Mat

W 1*1 = 1
W (3!-r € /J) (3x 6 Ä) 7(«) < 0

The following definition describes the subset-sum problem in terms of bags.

Definition 3.5 (subset-sum problem)
Given 0 € 93(N), and A/ € N, determine wnetAer

(3a € <B(N)) a C / ? A £ x = M (3-4)
»Co

A

Proof of Prop. 3.3.
We show that the subset-sum problem is isomorphic with the special case UUCPj of
UUCP*, where /? € Q3(</(fl)) with |fi| = 1. We use fi = {a} in the proof, but the
identity of Ä does not matter as long as it comprises only one tool type.

Let S0.M be an arbitrary instance of the subset-sum problem. We will transform
this into an instance C-, of UUCP,, and show that

1. The answer to S#,M is always the same as the answer to C,.

2. The transformation involves a number of computation steps that is polynomial
in |/?| + 1, the size of 5^,«.

3. The transformation is one-to-one, and surjective.

Let / denote our transformation. We define / ( S ^ . M ) to be the UUCPi instance C-,
defined by the following proposal bag 7 € *8(5({a})):

(3.5)

Here {{a : fc}} represents a bag with one element, a gbag demanding fc € Z occur-
rences of a.

The answer to C-, is also the answer to S ^ M We prove this by showing that a
positive answer to C^ implies a positive answer to S ^ M . and vice versa.

A positive answer to C-, implies that there exists a subbag <r C 7, such that

<r # 0 A |<7 = 0 (3.6)
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Since {a : - M } is the only element of 7 that supplies a, while all other elements of
7 demand it, it follows from |CT = 0 and cr C 7 that {a : - M } € a, and that, hence,
||((T \ {{a : - M } } | = M. Together with (3.5), this implies that the bag a € Q3(N)
defined by

a & |+| {0(a)} (3.7)

is a subbag of /? that satisfies the condition 5Z,g<» z = Af in (3.4), in Def. 3.5 of
5^,M- So the answer to S/f.« is also "yes".

The converse is also true. If the answer to S(j,« is "yes" then (3.4) is satisfied by
some a. Using this a, define

(3.8)

Then a is a nonempty subbag of 7 such that |<7 = 0. So the answer to C-, is also

"yes"-

The transformation of S,J,A* into C, is polynomial in |S#,MI = |/?| + 1:
If a (g)bag Q is represented in computer memory as a list of pairs of the form
[..., ( I ,Q( ;C) ) , . . . ] , where x ranges over Q, the bag of gbags 7 (which defines C,)
is represented as a list of the form [..., ([(a, fc)],/)...], where the element shown
expresses that 7 contains / proposals offering fc type-a tools. Using such a represen-
tation, the construction of 7 according to (3.5) takes O(|/?| + 1)* steps.

Finally, it is obvious that the transformation / defined by (3.5) is a one-to-one
mapping from the set of all subset-sum instances to uucPi. If we replace a in
(3.7) by the bag 7 defined in (3.5), the obtained a equals the bag /3 of S^.M- In
other words, by replacing <x with 7, we turn (3.7) into a specification of the inverse
transformation / " ' of / . This inverse mapping is well-defined for any instance of
UUCP). Hence / is also surjective. •

Corollary 3.6 ßonrfom r/usfer composition fuucp®j is JVP-comp/ete, u>/ii/e
an</ Li7F-c-ompo5ttton fuUCP* and UUCP'J are W-/iard.

Apparently, neither of the four types of composition we have considered is tractable.
Hence, as an algorithmic component of a composition/revision strategy for TR, pro-
posal composition falls short with respect to our strife to prevent the mediator from
becoming a computation or design bottleneck. Since we think that the mediator's
task should at /east be tractable, and cannot conceive a variant of proposal compo-
sition that is less demanding than random composition, we will seek salvation in a
more rigorous simplification.
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3.2.4 Elementary composition

Elementary composition differs from general composition in that it only involves
elementary reailocation proposals, that is, proposals of the forms { j .-̂  y}. {r ^ } and
{— y}. The four variants of UUCP give rise to four kinds of elementary composition.
For reasons that will become clear later, we focus on the LBF variant KCP*, and the
comparison of this variant with the LCF variant ECP*. As with UUCP, we will use
the acronym ECP in statements that apply to either variant.

Initially, our analysis is confined to the composition of elementary exchange proposals
(i.e., proposals of the form {i ^ y}). One-way proposals ({x ss} and {** x}) will
be incorporated later.

The formal definitions of the four variants of elementary composition differ from the
associated variants of uucp only in that the proposals are elementary. Consequently,
we only provide a formal definition for ECP*.

Definition 3.7 (elementary LBF composition (ECP*))
Elementary £BF composition profelem comprtse* tAe /o/Zou/m^ pro6/em.
Given a se< o/ too/ type« fl, and a 6ao /? € *8(</i(.R)) o/ elementary eic/ianpe pro-
posals, determine a maiima/ 5u66ao a* C /J o/jointly execu(a6/e proposal«, t/iat t«,
a 5u66ao a*, satts^/tno

| Q - = 0 A (Va C /?) | a = 0 => |a| < |o*| (3.9)

A

3.2.5 Graphic representation of E C P instances

To gain insight in the characteristics of a problem domain, a graphic representation
of problems is often helpful. The natural graph representation of an ECP instance
associates proposals with nodes. We used such a proposal-centered representation in
Fig. 3.1, and a similar representation was used by Sathi and Fox (1989).

The proposo/ orop/i of a composition problem is a directed graph, in which each node
corresponds with a single proposal. An example is provided in Fig. 3.3. As apparent
from the figure, there is an arc from node i to node j iff the tool type offered in
proposal i equals the tool type requested in proposal j . The arc is labeled with this
tool type.

The structural characteristics of a proposal yrap/i can be interpreted in terms of the
associated composition problem as follows:

1. The indegTee (i.e.. the number of incoming arcs) of node t equals the number
of proposals that match with the right member (the tool type requested) of
proposal t, that is, the number of candidate suppliers to i.
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Figure 3.3: Proposal graph of {{d ^ 6}, {6 ̂  a}, {c ^ 6}:2,{a ^ c}}.

2. The outdegree of node i (i.e., the number of outgoing arcs) equals the number
of proposals that match with the left member (tool type offered) of proposal
i, that is, the number of candidate customers for i.

3. Any sunp/e cycle* in the graph represents a solution to the ECP® instance
described by the graph.

These cycles are simple, because an elementary exchange proposal involves the de-
liberation to exchange one tool for one other.

Hence, a soiutton to ECP* can be visualized in the proposal graph G as a subgraph
G' of G, which is maximal in terms of the nodes of G it comprises. Since each
proposal in ECP concerns only one exchange (viz. one tool to be received and one to
deliver), the indegree and outdegree of all nodes in the solution graph G' must be
1. In other words, the simple cycles which constitute the solution must be disjoint.
Hence, ECP' can be formulated in terms of the associated proposal graph as:

"Determine a set of disjoint simple cycles that comprises a maximum
number of nodes."

From the above structural properties, it is apparent that all of the incoming arcs of
a node representing the proposal {z ^ y} have the label y. In general, all of the
incoming arcs of a node have the same label, and so do all arcs emanating from a
node. As a consequence of these label consistency constraints, certain graph struc-
tures cannot occur within a proposal graph. An example is the structure pictured
in Fig. 3.4(a). A proposal graph that contains a subgraph like the one in Fig. 3.4(a)
does not represent any sensible composition problem. This is a consequence of the
requirements that each of the incoming arcs of a node must have the same label, as
well as all arcs emanating from a node. Subsequently applying these rules to the
arcs pointing from node 1, and those to node 2 in Fig. 3.4(a), reveals that the only
consistent labelings are those of the form shown in Fig. 3.4(b), where all arcs have
the same label. This implies that node 3 represents a proposal of the form x ^ i ,

*A cycle is simple iff it traverses no node more than once
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(•) (b)

Figure 3.4: A directed graph of the form (a) cannot occur within a proposal
graph, because it cannot be labeled sensibly (b).

which is obviously senseless, since the utility of a tool is completely determined by
its type.

We have shown that not every graph can occur as the proposal graph of a sensible
ECP instance. There is an alternative graphic representation which does not suffer
from this disadvantage, and is also more concise than the proposal-graph represen-
tation. As such, this representation is better suited as an instrument for the analysis
of ECP.

3.2.6 Tool graphs

O0O 0
Figure 3.5: The tool graph of {{d = 6}, {6 ^ a}, {c ^ 6} :2, {a =t c}}.

In the <oo/ jrapA of a composition problem, each node corresponds with a tool
type, and an arc from node i to node j represents an exchange proposal {j =± i}.
Obviously, the tool graph of a composition problem is the rfua/ of its proposal graph.
The structural characteristics of a tool graph can be interpreted as follows.

1. The indegree of node i equals the number of proposals that specify a tool of
type i as one they are willing to relinquish, in other words, the supp/j/ of tool
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type i.

2. The outdegree of node i equals the number of proposals that specify a tool of
type t as one they would like to acquire, in other words, the (iernanti for tool
type t.

3. Any cycle in the graph represents a solution to the ECP® instance associated
with the tool graph.

The tool-graph representation has several advantages over the proposal-graph rep-
resentation.

conciseness Since there can be multiple occurrences of a proposal in a proposal bag,
a tool graph is generally a multi-graph. Because a proposa/ yrop/i represents
different occurrences of the same proposal as dt.shnc< nodes, the tool graph of
a composition problem will generally be more concise than the proposal graph.

satisfiability From a tool graph, it can easily be determined whether the compo-
sition problem is completely satisfiable. This is so iff the indegree equals the
outdegree for all nodes.

viability With the tool-graph representation, it is easy to determine whether a
given graph is the tool graph of a viable composition problem. Any directed
multi-graph without /oops*' can occur as the tool graph of a viable composition
problem.

Due to the above advantages, the tool-graph representation offers better opportu-
nities to analyze the composition problem. To demonstrate this, we now return to
the question whether ECP* should be qualified as superior to ECP®. In Sect. 3.2.3,
we argued that both the LBF and the LCF heuristic express the belief that it is
advantageous to compose a large portion of the jruha/ proposals. If this is true, we
can compare the adequacy of the two heuristics in terms of the number of initial
proposals accepted by LBF- and LCF composition/revision. In this respect, LBF is
at least not m/ehor to LCF, since it selects at least as many such proposals as LCF
does. This raises the question to what extent LBF is superior to LCF. While it is
difficult to answer this question for UUCP* and UUCP®, it is easy to conceive a tool
graph which shows that ECP* can be superior to ECP® to an arbitrary extent.

The tool graph in Fig. 3.6 represents an initial proposal bag of eight exchange
proposals involving six different tool types. Because we only look at the number
of initial proposals in a solution, we can assume that revision is all-or-nothing.
Either the original proposal is resubmitted, or it is withdrawn. In this case, the
initial proposals accepted by LBF composition/revision are those selected by LBF
composition in the first iteration of the composition/revision process. In contrast,

'Loops are arcs from a node to itself
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largest cycle: abed
optimal solution: (bce.afd)

Figure 3.6: Superiority of the LBF over the LCF heuristic.

some of the initial proposals accepted by LCF composition/revision ran stem from
later iterations, if (and only if) there are cycles in the original tool graph which are
arc-disjoint with the maximal cycle selected in the first iteration. However, this is
not the case in the tool graph of Fig. 3.C. Here, the largest cycle is ufo-</, and there is
no other cycle in the tool graph that is arc-disjoint with a6cd. Hence, the outcome
of LCF composition/revision is the cluster {{a ^ 6}, {ft =; c}, {c ^ d}, {d ^ a}} of
the four proposals represented by the arcs of the cycle abed. In contrast, the LBF
heuristic selects the set of cycles {ftce,a/d}. Again, there are no arc-disjoint cycles
left once this selection is made, but the associated solution comprises six proposals,
instead of four.

The example in Fig. 3.6, which features a tool graph with a central cycle of four
arcs, adjoined by two peripheral cycles of three arcs, can be generalized to a graph
featuring a central cycle of 2n arcs, adjoined by n peripheral cycles of 2n - 1 arcs. If
we measure the relative adequacy of the LCF heuristic in comparison with the LBF
heuristic in terms of the fraction of accepted proposals, then the relative adequacy
of the LCF heuristic in the generalized example equals „^„"-D = STT' ^ other
words, in terms of the percentage of accepted initial proposals, LCF composition
can be inferior to LBF composition to an arbitrary degree.

However, the phrase "inferior to an arbitrary degree" should not be taken too heavily.
After all, it pertains only to the worst case. On average, the LCF heuristic may well
be nearly as proficient as the LBF heuristic. Moreover, while the LBF heuristic is
never inferior to LCF in terms of the percentage of /u//y satisfied agents, it can be
inferior in terms of the community utility of (i.e., the average degree of satisfaction
with) the final allocation. In the example of Fig. 3.6, we assumed that revision is all-
or-nothing, that is, no agent has any satisfactory alternatives for its first preference.
If we assume instead that the victims (i.e., the agents whose proposals are rejected)
of LCF do have satisfactory alternatives, while the victims of LBF do not, LCF may
well lead to an allocation of a higher community utility than LBF.
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Suppose, for example, that the second-best alternative for all agents is to stick to
their current endowment. If this alternative renders an agent-level utility of 99%
for the 4 LCF victims, and only 1% for the 2 LBF victims, the community utility
obtained with LCF equals £ W = " f i o o " > 99%, while C/^BF = ' ĝ on ' < 76%.

3.2.7 Tool-graph balancing

In TR problems that involve many instances of each tool type, a composition attempt
will often lead to the execution of the large majority of submitted proposals. On
average, it is easier to solve such composition problems in a top-down manner, by
determining which proposals should be rejected. Obviously, the complementary bag
is a solution to ECP* if the size of this 'dump bag' is minimal. Because the aim of
removing proposals is to achieve balance between tool supply and demand, we refer
to the problem of finding a dump bag of minimal size as </ie 6a/oncing proWem.

To turn an unbalanced composition problem into a balanced one without relaxation,*
two goals must be pursued:

• reduction of the demand for undersupplied tools;

• reduction of the supply for oversupplied tools.

Undersupplied tools are represented in a tool graph as sources (i.e., nodes where
the outdegree exceeds the indegree), while oversupplied tools are represented as
sinks. Hence, demand reduction for undersupplied tools can be performed in the
tool graph by removing one or more outgoing arcs at a source. Likewise, the supply
of oversupplied tools can be reduced by removing incoming arcs at a sink.

© •©

(a) (b)

Figure 3.7: Two relatively easy instances of the balancing problem.

If we are in the fortunate situation of Fig. 3.7(a), faced with only one ( + 1) source,
which is adjacent to a (-1) sink, we can achieve both goals at once by removing the

'Here, "without relaxation" means: without adapting existing proposals, or introducing new
ones.
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arc from source to sink. In the somewhat less fortunate situation of Fig. 3.7(b),
where the arc between source and sink points in the wrong direction, we must delete
other arcs. This, however, merely «/ii/t» the source and the sink to originally balanced
nodes. Obviously, to minimize the number of deleted arcs, we should proceed along
the sAorrejt patA from source to sink.

The situation is more complicated in the presence of multiple sources and sinks.
We have to determine shortest paths from sources to sinks, and find out w/itrA
(MJî nmeni of sources to sinks involves a minimum total number of deleted arcs.
Linear assignment problems can be solved in polynomial time (Papadimitriou &
Steiglitz, 1982), but the balancing problem is generally not a itnror assignment
problem: the cost (i.e., the number of arc deletions) associated with assigning some
source to some sink generally depends on the assignment of other sources to other
sinks. This is due to the fact, that some of the shortest paths may have shared arcs.
The presence of shared arcs implies that the shortest path between a source and a
sink may cease to exwt as a consequence of deleting a shortest path between another
pair of nodes. Fig. 3.8 presents an example.

Figure 3.8: A balancing problem with competing shortest paths.

The balancing problem features two sources, associated with the undersupplied tool
types a and 6, and two sinks, associated with the oversupplied types <? and /i. The
shortest paths from a and 6 to g and /i are a/<?, 6/p, a/^/i, and 6/<?/i, respectively.
Thus, the path sets {a/5,6/5/1} and {a/5/1,6/3}, would seem to constitute alter-
native solutions to the balancing problem, each comprising the deletion of 5 arcs.
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However, in both cases, the shortest paths from source to sink share the stno/e arc
from / to p. Since a single arc cannot be deleted twice, neither of the two path
sets constitutes a solution to the balancing problem. If we start with deleting the
shortest path from a to one of the sinks, the shortest path from 6 to /i in the reduced
tool graph becomes 6cdeg/i. In this case, the solution, {a/g,6cdeg/i}, comprises 7
deletions. If we choose to start with source 6, we arrive at the solution {6/5, ade<;/i},
comprising only 6 deletions.

The lesson in this scenario is that, in the presence of 6oM/enec&s (i.e., shared arcs)
in the set of shortest paths from sources to sinks, we have to try out rfij^ereni orders
of shortest-path deletion. The worst-case complexity, in this case, is O(n e t ! ) ,
where n and e denote the number of nodes and arcs in the tool graph, and t denotes
the tension between supply and demand/ Summarizing, balancing tends to be
computationally expensive for composition problems with bottlenecks and a high
tension.

3.2.8 Incorporation of one-way proposals

Up to this point, we have confined our attention to composition problems comprising
elementary exchange proposals. To express composite exchanges in terms of elemen-
tary proposals, we also need one-way proposals. If an agent currently endowed with
a type-.r workstation desires to exchange this workstation for two type-}/ PCs, it
can only express this in terms of elementary proposals if it is allowed to submit the
one-way proposal {;=: y}, next to the exchange proposal {x ^ y}.

To incorporate one-way proposals, we introduce a virtual tool type i-, different from
any real tool type. The one-way proposals {a ^ } and {^ a} are represented as
{a ^ 1} and {1 ^ a}. The node representing the special tool X in the tool
graph is treated like any normal tool node. This reflects that a mediator engaged
in balancing cannot overcome a discrepancy between supply and demand by merely
convincing agents to supply additional specimens of the undersupplied tools. To
arrive at an acceptable reallocation, the oversupply must be taken care of also. Of
course, it is usually easier to persuade agents to keep their tools than it is to persuade
them to release tools, but this is a matter of relaxation, rather than balancing.

This is illustrated in Fig. 3.9, which shows a tool graph equal to that of Fig. 3.8,
except for an additional, one-way supply of tool types a and 6 from the ±-node. The
sources at the a- and 6-nodes have disappeared, but a new source (of multiplicity
2) is formed at the 1-node. Consequently, to solve this balancing problem, the
same arcs as in Fig. 3.8 have to be deleted, in addition with those emanating from
the ±-node. Thus, convincing agents to supply additional tools does not solve this

'The tension is denned as the sum of the multiplicities of the sources (or the sinks), where the
multiplicity of a source (or sink) is equal to the absolute value of its indegree minus its outdegree.
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'0=0
Figure 3.9: The representation of one-way proposals {a ;=} and {6 ^ } .

balancing problem, unless the mediator also convinces some agents to accept the
surplus p- and fe-tools. This would be reflected in the tool graph of Fig. 3.9 by two
additional arcs from the g- and h-nodes to the ±-node. With the addition of these
arcs, the source at the J.-node disappears, as well as the sinks at the </- and h-nodes.
Since there are no sinks left, the relaxed composition problem associated with this
tool graph is completely satisfiable.

3.2.9 Elementary composition via linear assignment

In Sect. 3.2.7, we investigated the solution of elementary composition problems via
balancing of the associated tool graphs. It appeared that the balancing method is
adequate for (elementary) composition problems with relatively low tension, but not
very efficient in the general case.

In this section, we describe a procedure to reformulate elementary composition prob-
lems as linear assignment problems that is applicable to problems with low as well as
high tension. Linear assignment amounts to what was referred to earlier as untyped
assignment. The assignment, in this case, is not one of sources to sinks in the tool
graph, but one of items to agents. The standard representation for linear assignment
problems is a square utility matrix, where the element in row t, column j of this
matrix denotes the utility of item j to agent i. A solution to the linear assignment
problem is defined as an association of each row of the matrix with a column, such
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that (1) each column is used exactly once, and (2) the sum of the thus selected ma-
trix entries is maximal. In the following we specify how these matrix entries must be
defined to let a solution of the linear assignment problem correspond to a solution
of a given elementary composition problem.

Definition 3.8 (linear assignment problem)
J4 /wear assignment pro6/em con be /ormu/a£«f in terms o/ a square fn-6j/-nj utt/tty
matrix Q as

Determine a permutation TT of 1,2,... ,n such that 53 <?<,*(,) is maximal.

A

To translate an ECP* instance into an assignment problem, we must specify the
matrix Q of definition 3.8 in terms of the bag {{s, ^ dj}},g; of exchange proposals
that defines the ECP* instance (i.e., the bag /3 in Def. 3.7).

As a first step, we reforrnutate ECP*. Remember (hat "adherence tö the exchange
proposal {s ;=* d}" entails that the agent will either receive tool type d in exchange
for tool type s, or it will keep s.

Lemma 3.9
Let /3 = {{si ?i dj}}ig/ fce a ftag o/ e/ementari/ ezc/iange proposa/s wit/i / =
{ l , . . . , n } , s,,d; € / ?= {1 , . . . ,m}, and m < n. T/ien t/ie ECP* instance de/med 6y
/? can 6e re/ormu/ated as: "Find an assignment a : 7 —> i? o/ too/s to agents Wiic/i
maximizes t/»e numfter o/ proposa/s in /i t/iat are eiecuted, under t/ie constraints o/
conservation o/ too/s and ad/ierence to eic/iange proposa/s." Forma//»/, t/iis can 6e

as:

|{«|a(0 = *}l (3.10)

under the constraints

(Vr€Ä) |{» I a(i) = r} | = |{i | a, = r} | (3.11)

and

(Vi € /) a(i) = s, V a(«) = d, (3.12)

Proof.
The expression (3.10) denotes the number of accepted proposals, constraint (3.11)
expresses conservation of tools (i.e., global feasibility), and constraint (3.12) ex-
presses adherence to the proposals {a, ^ d,}. •
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Now that we have acquired a formulation of ECP" that is closer to our definition of
a linear assignment problem, we turn to the utility matrix Q in this definition. This
matrix Q is constructed in two steps. In the first step, we translate the proposals of
the agents into an n-by-m matrix Q. In the second step, this matrix is transformed
into the n-by-n matrix of Def. 3.8. The variable 5* in the second step denotes the
supply of tool type it, that is, S* = |{i € / | a, = Jk}|.

1. Construct an n-by-m matrix Q defined by

1 , J = 4
0 , ) = «.

- n , ot/ieru/tae

2. Construct the n-by-n matrix Q from the n-by-m matrix Q by copying columns
from Q to Q while replicating column it of Q into 5« identical columns of Q.
Let / be the function that maps column numbers of Q to corresponding column
numbers of Q, that is, Q,,j originated from Q,,/(j).

Proposi t ion 3.10
/ /ä = [<?i, <?2, • • •, 9n] «* o so/ution o/ t/»e assignment pro6/em Q, tz/it/i Q consfrucfetf «n
tAe a6o«e manner/rom an ECP" instance C = {{3i,d|}}i=i n. tAena(t) = /(9i),t =
1 , . . . , n deines a so/utton to C.

Proof.
We prove this by ensuring that each of the three conditions expressed in Lemma 3.9
(by the equations (3.10), (3.11), and (3.12)) is satisfied. First, we prove the adher-
ence to proposals expressed in (3.12). In view of the definition of Q, it suffices to
prove that none of the selected elements Q,,, equal —n.

(Vi € / ) Q,,,. # - n (3.13)

Suppose that Eq. 3.13 would not hold, that is, Q*,^ = —n for some fc. Then, the
total utility 5Z»=i n Qi.</, would be negative, since

n

£ 0,,. = Q*.„ + £ Q,„ < Q*.„ + (n - 1) • 1 = -n + (n - 1) = -1
1=1 I?!*

This would imply, however, that ä is suboptimal, since any permutation 7TQ that
satisfies (Vi e / ) / ( ^ ( i ) ) = s(i) (i.e., all agents keep their original tool types)
renders a /115/ier total utility (viz., 0). Hence, Eq. 3.13 holds for any solution 9, of
the assignment problem.

Prom the validity of Eq. 3.13, and step 1 in the construction of Q, it follows imme-
diately that all entries Q,,, selected from C? are either 0 or 1. Hence, constraint 3.12
(adherence to proposals) of the reformulation of ECP" in Lemma 3.9 is met. Con-
straint 3.11 (conservation of took) is met also, since d( ) only permutes the column
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indices of Q, S, of which are mapped to tool type j by /(•) (due to step 2 in Q's
construction). All that remains to be checked is that maximization of the quantity
5Z"=i Qi.», also leads to maximization of |{i : o(t) = d j | (3.10). This is obviously so,
since all of the 9, are either 0 or 1, and 9, = 1 «=> a(i) = d,. •

Since the time complexity of the above translation of elementary composition into
linear assignment is quadratic in the number of elementary proposals, and linear
assignment problems can be solved with combinatorial optimization techniques in
(third-order) polynomial time (Papadimitriou & Steiglitz, 1982), the translation
procedure defines a composition algorithm which is third-order polynomial in the
number of proposals.

Corollary 3.11 ECP* w <roctoWe.

3.3 Relaxation-Based Solution of TR

As a solution strategy within CDN, relaxation is not described as lucidly as compo-
sition. In (Sathi & Fox, 1989), relaxation is described as an ensemble of techniques
used in inter-human negotiations, without specifying how these techniques are com-
bined. However, we do not need a precise description of CDN-style relaxation to
conclude that it is not adequate for our purposes. Relaxation in CDN entails that
the mediator tries to persuade agents to accept specific relaxations. Since the agents
do not take any initiatives in this scheme, the full weight of the relaxation task rests
on the shoulders of the mediator. Hence, the mediator is bound to be a bottleneck,
in computation as well as design.

We prefer a form of relaxation where the mediator merely provides incentives for
relaxation, leaving the search for acceptable alternatives to the agents. A simple
mochanism featuring such incentive relaxation is the exchange of goods by means of
a J-Va/rasian auction (Hildenbrand & Kirman, 1988).

3.3.1 The Walrasian auction

The idea behind the Walrasian auction (conceived as a market model by the 19th-
century, French economist Leon Walras (Walras, 1874)) is that changes of commodity
prices can act as incentives for agents to change their reallocation proposals in a
manner that affects the demand for and supply of commodities. To reduce the
scarcity of a good, one can raise its price. This will make it more attractive to sell
the good, and less attractive to buy it. Likewise, one can attempt to reduce an
oversupply of some good by lowering its price.

Like any auction, the Walrasian auction is a centralized market: all agents commu-
nicate their bids to the auctioneer, who aggregates these into a scarcity profile, and
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sets new prices depending on the scarcities of the various goods. Instead of a single
auctioneer, one can employ multiple ones, each dealing with one specific tool type.
If these auctioneers reside on different processors, this can enhance the robustness of
the auction in terms of hardware failures. On the design level, however, this scheme
is equivalent to an auction with a single auctioneer.

It is also possible to get rid of the auctioneer altogether, by distributing its function-
ality over the traders, but this increases the conceptual complexity of the Walraaian
auction, and incurs a communication overhead (Hurwicz, 1986). An ox.unplr of such
distributization, and the communication overhead it incurs, will be presented later,
in Sect. 5.5.5. For now, however, we assume that there is one auctioneer.

The prices in Walras' original framework do not involve any money; they are ex-
change ratios. As such, the Walrasian auction is essentially a matter of barter trade.
Traders pay for a commodity bundle that they want to obtain with goods that they
currently possess. An agent may for instance pay for three pounds of rice and 2.21
gallons of beer with 10.5 pounds of potatoes and 5.4 pounds of cherries. Obviously,
this presumes that the goods involved are dit>isi6/e.

A bid in a Walrasian auction specifies the commodity bundle an agent would like to
possess in lieu of its current endowment. Except for the context of divisible goods,
this amounts — in our terminology — to a single, composite exchange proposal with
a supply bag that equals the agent's endowment.

In economic literature, one generally assumes that the auctioneer already knows all
initial endowments. Thus, the agents can specify their desired final endowments
instead of the desired exchanges. In this context, the 6udje< of an agent is the set
of commodity bundles that it can afford to bid on, in view of its current endowment
and the going prices of commodities. An agent always bids on a commodity bundle
of maximal utility within its budget. In general, this behavior initially leads to bids
that are not jointly satisfiable. The auctioneer tries to reduce the tension between
supply and demand by adjusting prices, after which the agents reassess their budget
and submit new bids. The bidding stops when supply equals demand for all goods.
Such a state — in which the exchanges implied by the last-submitted bids are jointly
executable — is called a Walrasian equilibrium, and the allocation that results from
executing the bids is called a Walrasian allocation. The attainment of Walrasian
equilibrium is referred to as marjfcet c/earance.

3.3.2 General Equilibrium Theory

The notion of Walrasian auction lies at the basis of the extensive General Equilib-
rium Theory (GET) of micro-economics (Hildenbrand & Kirman, 1988; Takayama,
1985). GET generalizes Walras' market model of traders by incorporating produc-
ers. Whereas trading can be described as an activity aimed at obtaining a com-
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raodity bundle of higher uh/iiy than ones current endowment, producers axe more
aptly characterized as pro/i< maximizers. Hence, contrary to the original Walrasian
framework, GET involves money as an integral component of its market models.
Here, money is formally defined as a commodity that can be used to compensate
any shortage of other commodities in the endowment of any agent.

GET has been used by Wellman (1992) as the basis for a computational reallocation
framework to tackle transportation in congestive networks. The framework is known
as the market-oriented programming (MOP) approach (Wellman, 1992; Wellman,
1994a; Wellman, 1994b).

Although Wellman's (1992; 1994b) MOP implementation is called WALRAS, the em-
ployed equilibrium concept is closer to a Marshallian than to a Walrasian equilibrium
(Takayama, 1985), and the auction in WALRAS differs from the Walrasian auction
(described in Section 3.3.1) in several respects. The auctioneer, for example, needs
to be somewhat more sophisticated than the prototypical Walrasian auctioneer, be-
cause agents do not simply specify their preference under the going prices. They
also convey how they wou/<i bid if prices were slightly different.

Also, the original MOP domain of transportation in congestive networks does not
involve allocation in the usual sense (of, for example, Def. 2.20), because the amount
of goods (in this case, transportation capacity) available in the agent community is
principally in/inite: Links in congestive networks are modeled as containers with a
capacity that is not bounded by any fixed constant, but by the fact that transporta-
tion costs become excessive as the network becomes congested. Despite — or rather,
because — of this anomaly, this problem domain is susceptible to solution by means
of a market-based algorithm. Later on, MOP has been applied successfully to other
optimization problems that do involve a finite supply of (divisible) commodities,
such as temperature regulation (Huberman & Clearwater, 1995), and power load
management (Ygge, 1998).

An attempt to apply MOP to a configuration design problem was less successful.
It appeared to be difficult to attain a (near-)equilibrium state. This problem was
attributed by Wellman (1994a) to the discrete nature of configuration design. This
can be interpreted as an indication that the application of market-based approaches
such as MOP and Walrasian exchange is problematic in domains involving indivis-
ible goods. On the other hand, the problem may also be specific to configuration
design. To gain more insight in this issue, we have investigated to what extent the
economic literature provides theoretical support for Walrasian exchange in markets
with indivisible goods. The discussion of our findings requires a more precise char-
acterization of the concepts involved than was given up to this point. Hence, we
describe the key notions of Walrasian equilibrium and Walrasian auction in formal
terms.

In contemporary economic literature, and DAI literature on research rooted in eco-
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nomics, such as MOP, the term 'Walrasian equilibrium' is often used as a synonym
for the GET term competitive equilibrium" (Ygge, 1998. p. 200). We do make a
distinction between the two concepts. In the following, the terms Walrasian equilib-
rium and Walrasian auction have their ortgina/ semantics, implying that the context
is one of pure exchange. Neither money nor producers play a role. The only devia-
tion from Walras' original framework is that we specifically look at the potential of
the Walrasian auction in the face of tndtt*stb/e goods.

3.3.3 Walrasian equilibria

We start with the formal definition of a Walrasian equilibrium in its original context:
that of an exchange economy with a finite number of agents and a finite number
of (fit'Mifr/e commodities Boldface lowercase symbols denote vectors, and boldface
capitals denote matrices.

Let / = {1 n} denote a community of agents, and Ä = {fi, . . . , r,} the set of
commodities available in this community. A commodity bundle allocated to or
desired by — agent t is represented as an /-tuple x, of nonnegative real numbers.
The j-th component x,, of such a tuple denotes the amount of good r, allocated to
agent t. Thus, an entire allocation of goods is represented by a matrix X where row
i specifies the endowment x, of agent i. In the context of a Walrasian auction, the
matrix X specifies the desired allocation associated with the bids submitted by the
agents. The intha/ allocation is denoted by the matrix E, and the initial endowment
of agent i by e,. The expression x X, y signifies that agent t prefers the commodity
bundle y over the commodity bundle x. Hence, a reallocation problem instance
can be specified as a pair (E, {>~,},e/) of an initial allocation and a tuple of agent
preferences.

Let p g 1^ denote an /-tuple of strictly positive prices, which define the exchange
ratios of the commodities. The budget ß,(p) of agent i is the set of commodity
bundles that agent i can afford under the current exchange ratios:

B,(P) = {x, € R' : £ p, • x„ < £ p, • e,,} (3.14)

In the following, we employ the usual shorthand notation p • e, for the inner product
of p and e,. Thus, Eq.( 3.14) transforms into

B.(p) = {x, erf I p x, < p e,} (3.15)

Definition 3.12 (Walrasian equilibrium)
Le< X. p. £?,. E, and {^,}, be de/med a« above. T/icn a bidding statr 'X,p) eon«<t-
tutes a H '̂a/raAtan egut/ibnum o/ the marifcet (E, {>-,},) t/f t/ie /ollotwnj three condi-
tion« are satis/ied.
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(Vi € {l,..,n}) Xj € -Bi(p) M" a//ocated commodity 6und/es
are aĵ orrfo6/ej

(Vy € R*) y >-j Xi =*• p • y > p • e* M"J/ commodity 6und/e pre/erred over
an a//ocated one is not ajQ'bra'at/eJ

e is conservation 0/ #oodsJ

Condition (iii) in Def. 3.12 is the target condition of the Walrasian auction. It is typ-
ically not fulfilled initially, while the conditions (i) and (ii) are met in every round.
They describe the bidding behavior of the agents in a Walrasian auction. Condition
(i) specifies that agents never bid on an endowment that they cannot afford. Con-
dition (ii) entails that they always bid on an (affordable) bundle which maximizes
their utility. Such bidding behavior is rational, provided that no agent is capable
of exerting a significant influence on the evolution of prices by communicating false
bids. The absence of agents that are sufficiently influential to manipulate prices is
referred to as per/ect competition in economics.

To ensure perfect competition, one usually assumes that markets comprise very
many traders, each contributing only little to the total trade volume. This is a
questionable assumption in CMAT, but then, we do not need perfect competition in
a CMAT context, since the system designer has full control over the behavior of the
agents. While rational agent behavior is desirable in CMAT, it is not an absolute
necessity. In the context of OMAT, however, perfect competition is vital for the
applicability of a Walrasian auction.

Because the agents in a Walrasian auction respond in a self-centered manner, the
attainment of condition (iii) — also known as market c/earance — is the task of the
auctioneer. The common strategy to accomplish this is referred to as tätonnement.
This is French for "groping". In its prototypical form, tätonnement resembles gradi-
ent descent. It entails that the prices of goods which are undersupplied are increased
(to reduce the demand and stimulate the supply of these goods), and the prices of
oversupplied goods are lowered (to stimulate their demand and reduce their supply).
Whereas the term tätonnement is often used in economic literature as a reference
to any price-setting algorithm that attempts to attain zero excess demand for all
goods, we reserve it for simp/e schemes that are so/e/y based on scarcity information,
such as the above, prototypical form.

The simplicity of tätonnement implies that the Walrasian auction constitutes a
relaxation-based approach to reallocation in which the central coordination mod-
ule (i.e., the auctioneer) is less of a computation bottleneck than the mediator in
CDN-style relaxation. Hence, the Walrasian auction can be qualified as operationally
decentralized.

Of course, this presumes that tätonnement will indeed render a Walrasian equi-
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librium within an acceptable number of rounds. This is not always the case, but
economic literature provides a wide array of useful sufficient conditions for the exi*-
tence of Walrasian equilibria and the effectiveness of tätonnement in markets with
divisible commodities (Hildenbrand & Kirman, 1976; Aliprantis ef «/., 1989). The
question is, of course, whether a similar statement can be made with respect to
indivisible commodities, and, more particularly, TR problems.

3.3.4 Walrasian auctions for T R

As far as a theoretical basis for the application of a Wtlrttinn auction to TR prob-
lems is concerned, we identify three minimal requirements:

1. an erwrence tAeorrm which guarantees the existence of a Walrasian equilibrium
in TR, or a relevant subdomain of TR;

2. an efficient auction proroco/ (such as tätonnement) that yields a Walrasian
equilibrium for TR problems within an acceptable number of bidding rounds;

3. a guarantee that the Walrasian allocations rendered by the auction are of
acceptable quality in a relative-utilitarian sense.

We discuss each of these requirements in a separate section.

3.3.5 Walrasian equilibria in T R problems

As mentioned earlier, the economic GET offers a broad spectrum of sufficient con-
ditions for the existence of Walrasian equilibria in markets with divisible goods.
Whereas some of these conditions (e.g., gross substitutability*) are criticized for be-
ing unrealistic (Hildenbrand & Kirman, 1988), the economic theory on equilibrium
existence can be qualified as an adequate theoretical foundation for computational
mechanisms to reallocate divisible goods (such as MOP).

Unfortunately, economic theory has much less to offer with respect to the existence
of Walrasian equilibria in TR markets. There are a few papers on the existence and
properties of Walrasian equilibria in markets with indivisible goods, but all of these
concern assignment maritets, that is, tool reallocation problems in which each agent
possesses and desires only one tool. Moreover, the majority of papers on this subject
pertains to markets with money (Kaneko, 1982; Quinzii, 1984; Gale, 1984; Tadenuma
& Thomson, 1991). Although Quinzii (1984) claims that his existence result for
general assignment markets with money also extends to assignment markets wi</iou<
money, it has been shown by Wako (1987) that, in the absence of money, Quinzii's

"Gross substitutability entails that raising the price of one good never incurs a decrease of the
demand for any other good.
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result only covers the degenerate case where there is guaranteed to be no trade at
all.

We have found only a handful of papers in economic literature on Walrasian eic/ianpe
in markets with indivisible goods. Each of these pertained to the special case of
un<j/perf assignment. In an untyped assignment market, each good comprises a
single unique item. Hence, each item can be assigned a unique price (Shapley &
Scarf, 1974; Roth & Postlewaite, 1977; Wako, 1984; Ma, 1994).

The' economics literature does not distinguish between untyped and typed goods.
However, from the proof of the theorem on Walrasian equilibrium existence in as-
signment markets (Shapley & Scarf, 1974), it is clear that the goods are presumed
to be untyped: The proof hinges on the assumption that it is allowed to assign a
different price to each item, rather than to each type of item.

In principle, we can use an algorithm that renders a Walrasian equilibrium in un-
typed assignment markets to solve a tool reassignment problem, by treating the
(typed) tools as if they were (untyped) items. However, this implies that we must
assign prices to all tools instead of only the tool types. This is not an attractive
prospect, especially if there are many more agents — and hence, many more tools
— than tool types. Moreover, though we can speak of a Walrasian equilibrium in an
untyped assignment market, the term Walrasian auction is not really appropriate:
the auctioneer in (Shapley & Scarf, 1974) uses a protocol in which price changes
depend on the submitted bids, instead of the induced scarcities. Moreover, this
protocol is such that agents are forced, rather than motivated, to adapt their bids.

The absence of satisfactory equilibrium existence theorems is not the only hindrance
for the application of Walrasian exchange to TR problems. Ending up in disequi-
librium is also more trou6/esome in the face of indivisibility. In computational im-
plementations of General Equilibrium Theory, such as MOP, one generally aims for
approximate equilibrium. As soon as the scarcities of all goods are dose to zero,
a reallocation takes place, in which (some of) the agents do not get exactly what
they asked for (Wellman, 1992). This is acceptable in the context of duusift/e goods:
Getting 7.496 tons of fuel instead of 7.5 is not really painful. However, the difference
between getting one oil tanker instead of two - or worse, none instead of one - is
another matter.

3.3.6 An auct ion protocol for T R

In view of the observed lack of economic theory on the existence of Walrasian equi-
libria in TR markets, it seems premature to ponder over auction protocols to attain
such equilibria. Nevertheless, we will discuss the Top-Trading-Cycles (TTC) algo-
rithm that can be used as an auction protocol to attain a Walrasian equilibrium in
an untyped assignment market (Shapley & Scarf, 1974).
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1. Assign the same positive price to all items, and
label all agents as unselected.

2. Solhcit bids from the agents by communicating
the current prices.

3. Compute the supply of and demand for the
items from the submitted bids.

4. If supply equals demand for all items, a Wal-
rasian equilibrium is reached. Perform the ex-
changes proposed in the bids, and finish.

5. Otherwise, portray the bids submitted by the
urue/ecfai agents in a tool graph, representing
agents who refrained from bidding by an arc
from the agent's endowment to itself. Select an
arbitrary cycle in the graph, label the agents
represented by the eures in this cycle as selected,
and decrease (e.g., halve) the price of the items
possessed by the remaining unselected agents.

6. Go to step 2.

Figure 3.10: The TTC algorithm, as a protocol for the auctioneer

Our motivation is twofold. First, we will use TTC later on to make an important
observation with respect to the quality of Walrasian allocations in TR markets.

Second, presentation of the TTC algorithm enables us to point out that, even though
TTC computes a Walrasian equilibrium, it should not be labeled as an auctioneer-
ing protocol for the Walrasian auction. In Sect. 3.1.2, we described the Walrasian
auction as a relaxation-based approach to reallocation, in which the auctioneer pro-
vides incentives for agents to relax their proposals in the form of prices. The TTC
algorithm does not provide incentives. It /orces the agents to adjust their proposals,
by deliberately keeping them from attaining certain goods. In this respect, the TTC
algorithm is more akin to composition/revision (cf. Sect. 3.2.2) than to tätonnement.

In Fig. 3.10, the TTC algorithm is specified in the form of an auction protocol that
tells the auctioneer how to change the prices in response to the agents' bids. Since
we are dealing with reassignment, the bids submitted by the agents are elementary
proposals that reflect the agents' first preferences under the going prices.

If agents are never indifferent between different items, the TTC algorithm described
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in Fig. 3.10 reaches a Walrasian equilibrium after at most n price adjustments, where
n is the number of agents. To see this, we make three assertions.

(i) Every arc in a tool graph of unselected agents points to a node within the tool
graph:
If a cycle is selected in some round, any arcs that point from a node not in
this cycle to a node in the cycle disappear in the next round, since the agent
in possession of the item represented by the outside node can no longer afford

" the item represented by the node in the cycle. Hence, there are no arcs in the
tool graph of unselected agents which point to a node of an already selected
top-trading cycle.

(H) There exists a cycle in each tool graph of unselected agents:
In view of assertion (i), and the fact that the tool graphs are finite, any path
that starts at an arbitrary node in the graph either returns to a node on the
path, or it ends at some node which points to itself. In the first case, there is
a cycle of at least two arcs. In the second case, there is a 1-arc cycle at the
terminal node. Hence, there always is a top-trading cycle (comprising at least
one agent) in the tool graph of unselected agents.

(iii) Once an agent is labeled as selected, it sticks to its last-submitted bid:
Once an agent is labeled as selected, subsequent price changes only /ower
the prices of items that were already affordable to it. Hence, the budget of an
selected agent (i.e., the items it can afford) never changes. Because the agent's
bid at the time of its selection represents the agent's (unique!) first preference
from this budget, it will stick to this bid in all subsequent rounds.

Assertion (ii) implies that one top-trading cycle, comprising at least one agent, is
selected in each round, after which the agents in the cycle are labeled as selected.
Hence, there are no unselected agents left after at most n rounds. The reassignment
defined by the bids of the selected agents is a Walrasian allocation, because each of
the three conditions in Def. 3.12 on page 69 is satisfied:

1. Since each agent receives an item from within its top-trading cycle, and all
items in a top-trading cycle have the same price, each of the allocated items
is affordable.

2. The motivation of assertion (iii) implies that no agent prefers any item within
its budget over the allocated item.

3. Since the reassignment is defined by a set of disjoint cycles, there is conserva-
tion of items.

TTC, as described above, is a simple algorithm. However, this is solely due to the
triviality of untyped reassignment. Since TTC comes down to composition/revision
with random cluster composition, any yenera/uafton of TTC from untyped reassign-
ment to TR problems is bound to be intractable (cf. Sect. 3.2.2).
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3.3.7 Economic measures for allocation quality

The quality of Wairasian allocations is the object of study in the subheld of we (/ore
economics. This field combines the two main economic themes: cooperation and
competition (Hildenbrand & Kirman, 1988). In economics, the quality of solutions
rendered by the competitive Wairasian auction is defined in terms of notions which
stem from cooperative game theory.

These notions have two characteristics that distinguish them from solution quality
notions in other mathematical fields, such as combinatorial optimization and control
theory. First, they are properties rather than measures for solution quality. This is
a consequence of the fact that they are based on ordina/ agent-level utilities (i.e.,
preferences), instead of cardinal agent-level utilities or costs. Second, their usage
implies that quality is equated with stabt/tty: A solution is considered optimal if no
group of agents is motivated and capable to revolt against it.

Definition 3.13 (Pareto optimal)
An al/ocahon is Pareto optima/ t/ no otAer a/iocatton exists tAat is as /east as pood
/or a// agents, ana" 6etter /or at /east one. A

Definition 3.14 (weakly Pareto optimal)
j4n a/Zocation is uieafc/y Pareto-optima/ i/ no other a/Zocation exists tAat is better/or
a// aoents. A

Definition 3.15 (individually rational)
Xn rea//ocation is indti>idua//y rattona/ i/ tAe orioina/ a//ocation is not 6etter tAan
tAe resu/tino one /or any agent. A

In the following definition of core, the phrase "the group G can attain the allocation
z" means that a: can be arrived at from the initial allocation by exchanging tools
within G. In this context, a group of agents can be any nonempty subset of the
agent community, including sets of one agent, and the entire community.

Definition 3.16 (core)
TAe core o/ an eic/ianoe economy consists o/ tAose a//ocations tAat cannot be im-
proved upon, in tAe sense tAat no group o/ aoents m tAe community can attain an
a//ocation tAat is 6etter tAan a core aZ/ocation /or eacA aoent in tAe group. A

Definition 3.17 (strong core)
77ie strono core consists o/ tAose a/Zocations tAat cannot 6e improved upon, in tAe

sense tAat no group o/ agents in tAe community can attain an a/Zocatton tAat is at
/east as good /or a// members o/ tAe group, and better /or at /east one. A
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Figure 3.11: Venn diagram of the core (C), strong core (C*), Pareto-optimal
set (P*), weakly Pareto-optimal set (P), and the set of individ-
ually rational allocations (IR).

These five concepts are related in the manner illustrated in Fig. 3.11. The strong
core is a subset of the core. Core membership implies individual rationality and
weak Pareto optimality. Strong-core membership implies individual rationality and
Pareto optimality. It is easy to see that these inclusion relationships hold, trom the
observation that the conditions that must be satisfied to assert individual rationality
or Pareto optimality are in fact specio/ case« of the conditions for core membership.
To ensure that an allocation is in the core, we must check for eac/i subgroup in the
community that this group will not revolt by refusing to exchange tools with agents
that are not in the group. Individual rationality involves the special case in which
only revolts by individual agents matter, and Pareto optimality pertains to the case
where the absence of revolt need only be ensured for the community as a whole.

In the context of indivisible commodities, these optimality concepts are related to
Walrasian equilibria in the following manner. In an untyped assignment market,
the relation between the core C, the strong core C", and the set W of Walrasian
allocations is (Wako, 1984)

C'CH'CC

Furthermore, if all agent preferences are strict,' IV = C* (Roth & Postlewaite,
1977). Since C* C P* (see Fig. 3.11). this implies that, in the absence of agent
indifference, every Walrasian allocation is Pareto optimal.

3.3.8 Effectiveness of Walrasian allocations in TR

As pointed out in Sect. 2.2.8, our chosen measures of solution quality are the concepts
of community utility and allocation effectiveness. Consequently, the above concepts
of Pareto optimality and core membership are valuable to us only if they can be

*We speak of a strict preference if no agent is ever indifferent between different tool types.
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related to these relative-utilitarian concepts. This is generally possible in money
markets, but not in barter trade markets where all goods tue indivisible.

We illustrate this with an example, in which we use the TTC algorithm to compute
a Walrasian allocation.

Example 3.18 (A Walrasian allocation of poor quali ty)
Consider an assionment marJket inrcWt'inj JW aycnfji, cucA endowed u>itA a (00/ 0/ a
dt/ferent type. We denote tAe aoents by 1,2,..., 6 and t/»e too/ typrj by a, 6 , . . . , / .
Let </ie intttai a//ocation 6e sue/» t/iat aoent 1 possesses a, agent 2 possesses 6, rt
cetera. We denote tnu intttai a//ocation 6y t/ie /ist e = [abcde/j. rtraZ/orationj are
represented by permutations 0/ e. J4« an eiamp/e, t/ie rea//ocatton Wien? aoent« 1
and 2 eze/ianoe tAetr too/s renders tAe a//ocatton [6a«fp/]. TAe re/atit>r aoent utt/itte«
are represented ("as perrentaoesj tn tAe matrix 1/ in ta6/e ^./. TAe matrix rrneaii

a
b
c
d

/

;

/o
/0o

2

i0
£0

i00

.70
;00

5

/00

/0
90

/00

/0

Ta6/e 5.i. T/ie utt/ity matrti denote neo/ioi6/e utt/ittesj.

none 0/ t/ie aoent« current/y possess too/s t/iat are 0/ stont/icant va/ue to t/iem,
and t/iat, /or aoents 2 and 5, acceptaft/e a/ternatiues exist /or t/ie too/s t/iey /tfce best.

A

Fig. 3.12a depicts the top-trading-cycle pattern for this economy. An arrow from
x to 1/, labeled i, expresses that agent i, currently possessing tool type 1 likes tool
type y best. Second-best options of the agents are represented by dotted arrows. For
clarity, we have represented agents which do not submit a second bid by an arc of
their endowment to itself. The only top-trading cycle in the primary TTC pattern
(i.e., the pattern of solid arrows) involves agents 2 and 5. Consequently, the TTC
algorithm will select this cycle as the first top-trading cycle, and lower the price of
all tool types, except 6 and e. The secondary TTC pattern (see Fig. 3.12b) that
forms in response to this price change contains only singleton cycles (of agents 1
and 4). It does not really matter which one of these is selected. The result is always
essentially the same: The agent that has expressed a preference for the associated
tool type is no longer able to afford it in the next round, and, since there is no other
tool it prefers over its initial endowment, it will, in turn, refrain from bidding. Thus,
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, . . (b) secondary pat-
fa) primary pattern

tern

Figure 3.12: The top-trading-cycles pattern of the example economy.

all agents other than 2 and 5 drop out of the auction in subsequent rounds, each
sticking to its initial endowment. When only agents 2 and 5 are left, an equilibrium
is reached. Therefore, the only Walrasian allocation is [aecd6/].

In this case, the strong core coincides with W. This follows from the observation
that, agents 2 and 5 maximize their subjective utility only if they exchange their
tools, and without the cooperation of these two agents, the other agents cannot
improve on their initial utility. W does not coincide with the core, which, apart
from the above Walrasian allocation, contains the allocations [becd/a] and [acdeb/].

With the Walrasian allocation w = [aecdb/], the sum of relative agent utilities equals
10+100+10+10+100+10 = 240. Hence, the community utility equals £/(u>) = ^ =
40%. There exists, however, an allocation ou<si<fe VF with a much higher community
utility. If agents 2 and 5 are prepared to concede just a little, opting for their
acceptable alternatives c and / , the allocation [6cde/a] with a community utility of
lootsu+ioo+iootDotioo = §|2 = 95% emerges. This non-Walrasian allocation, which is
optimal in the relative-utilitarian sense, is not even in the core. This indicates that
neither the notion of Walrasian equilibrium, nor the more general notions of core,
strong core, and Pareto optimality constitute adequate solution quality notions in
the present context.

It is important to understand in w/ia< s*<ua<«ons the core allocations rendered by
the Walrasian auction are poor solutions in a relative-utilitarian sense. Why, for
example, does the auction do such a poor job in the problem instance described in
Ex. 3.18? In this example, the low performance is partly due to the fact that two
agents hold the key to wealth or starvation of the community as a whole. A small
concession on their part would allow the entire community to prosper. If they do
not concede, all is not lost, provided that one of the other agents is prepared to
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sacrifice the little utility is has left. In that case, only this agent would starve.

However, with the common semantics of rationality, self-centeredness is the domi-
nant characteristic of a rational agent. This leaves no room for heroism or compas-
sion. Hence, the rational agents 2 and 5 in Ex. 3.18 will close the deal that optimises
their utility, impervious to the hardship this inflicts on the others, and none of the
other agents act as a savior for its peers.

In economic terms, one could say that the Walrasian auction is liable of bringing
about poor allocations, due to the absence of provisions against {ru.W /ormation.
One way to prevent the formation of such trusts can be found in MOP literature:
the addition of money to the market.

Ygge (1998, pp. 43-44) presents a theorem that relates Pareto optimally to utilitar-
ian optimality. The theorem states that any sppara6/r'" optimization problem can
be associated with an artificial market such that all Pareto-optimal allocations in
the market correspond with solutions to the optimization problem The definition
of 'separable optimization problem' (Def. 3.1 in (Ygge, 1998)) also covers rfmrrWr
optimization. This suggests that the theorem applies to problems with indivisible
goods also. However, we have just provided a counterexample showing that the ef-
fectiveness of Pareto-optimal allocations can be very low in an untyped assignment
market.

The key to this paradox lies in the nature of the market. The market in the theorem
is a market with money (which does not occur in the original optimization problem),
and the agents in this market are assumed to have a utility for goods plus money
that is quasi-linear in money. This amounts to an agent-level utility of the form

5(0, m) = w(/?) + m (3.16)

Here, m denotes the amount of money possessed by the agent, 0 its tool endowment,
and v the tia/ue it attributes to this tool endowment.

It is illuminating to inspect the effect of adding money to our Walrasian trust mar-
ket (Ex. 3.18 on page 77). Note that we cannot immediately employ (3.16). The
sum w(/J) + m in this equation entails that the agent's utility u(/?) for the tool
bag /? is already expressed in terms of the money m. This is not the case in our
example, since the utilities in Table 3.1 are relative utilities representing agent satis-
faction, rather than absolute utilities representing tool value. The relation between
these relative utilities «^(i) and the underlying absolute utilities t>j(z) is of the form
u,(x) = /, • u,(i) + <,(T), where the factors /, and the terms ^ are unknown real
numbers (cf. Eq. 2.10 on page 39). In other words, we cannot reconstruct u, from
u, unambiguously. We can, however, choose random values for /, and £< to attain
absolute utilities which are consistent with the matrix 1/ of relative utilities in Ta-
ble 3.1. For simplicity, we assume that /, = 1 and <, = 0 for all agents t. Thus we

'"An optimization problem is separable if it can be reformulated as an allocation problem.
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arrive at absolute utilities which are the same (in, say, dollars) as the percentages
listed in £/. :

Suppose that we add money to this example market by presenting every agent with
$1000, and specify tool-type prices in terms of dollars. If we start with a unity price
of, say, $100 for every tool type, and apply a standard tätonnement protocol, this
causes the prices of 6 and e to rise, while the prices of / and c drop. After the first
adjustment of the prices, the prices could thus be $110 for 6 and e, $80 for c and / ,
and $100 for all other items.

What are the rational bids for the agents in this situation? Agent 2 has two op-
tions. It can repeat its bid on e which, when exchanged for fc, would incur a utility
improvement of $90 ($100 minus $10). Or it could submit a bid on c instead of e.
This would incur a utility improvement of $70 ($80 minus $10), and a profit due to
the price difference of $30 ($110 minus $80). Hence, the total gain obtained with
this transaction is $100, ten dollars more than the gain associated with a bid on e.
Apparently, agent 2 receives sufficient monetary compensation to opt for c instead
of the inherently more valuable item e. It is left to the reader to check that a similar
remark pertains to agent 5, and that the other agents submit the same bids as they
did in Fig. 3.12(a).

With these bids, gross supply equals gross demand. In other words, the market
reaches a Walrasian equilibrium. More importantly, the associated allocation is
optimal in the (relative-)utilitarian sense.

3.4 Chapter Summary and Conclusions

In this chapter, we have explored two strategies to solve TR problems in a distributed
fashion, based on proposal composition and proposal relaxation, respectively. Com-
position entails the «ejection of a subbag of the submitted proposals that is globally
feasible, whereas relaxation constitutes an attempt to change the entire proposal
profile into one that is globally feasible by adapting proposals. As such, the compo-
sition strategy is basically a bottom-up strategy, while the relaxation strategy can
be qualified as a top-down approach.

In Sect. 3.2.2, we sketched how composition can be combined with proposal revision
to arrive at an approach to TR which is informationally decentralized. We then
focused on the question how to ensure that the approach is also operational decen-
tralized, that is, how to prevent the central coordination module from becoming a
computation bottleneck. In view of the simplicity of proposal revision, this question
pertains specifically to the composition of proposals.

The analysis in Sect. 3.2.3 has revealed that, if we allow the agents to submit general
proposals of the form {a ^ d} where a and d are tool bags, composition is not
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tractable. This is not only the case for the rather demanding form of composition
formalized in Def. 3.2 of UUCP* (i.e., the search for a mttxtmai, globally feasible
subbag of proposals), but also for seemingly easier variants such as UUCP* (the
search for a single, maximal duster of jointly executable proposals). It is even true
for the /east demanding form of composition one can think of: We proved that
UUCP*, the decision problem associated with random composition (i.e., the search
for an ar6trrary, globally feasible subbag of proposals) is NP-complete. Hence,
it seems that, to arrive at a composition/revision approach that is operationally
decentralized, we must constrain the kind of proposals that agents can submit.

This led us to e/emeniary composition, where agent are only allowed to submit
elementary proposals. We proved that ECP*, the elementary version of UUCP*, is
tractable, by reformulating it as linear assignment

As for the question which wanant of elementary composition (i.e., ECP*, ECP®, ECP*,
or ECP*) offers the best prospect of attaining a high allocation effectiveness with
composition/revision, we argued that ECP* and ECP® are unlikely to outperform the
other variants if there are considerable differences between the agent-level utilities
of first preferences and second-best alternatives. We then employed the graphic
representation of composition problems in the form of <oo/ (jrap/is to show that, in
such cases, ECP* can be superior to ECP® to an arbitrary extent on specific problem
instances, and is likely to perform better on average.

We also conceived a top-down approach to ECP*, based on tool-graph analysis. This
method, referred to as tool-graph balancing, is efficient for problems with little dis-
crepancy between supply and demand, but computationally complex in the converse
case, if the tool-graph contains bottlenecks. However, unlike the solution of ECP*
instances via reformulation as assignment problems, tool-graph balancing can be
used to identify the proposals for which relaxation is most desirable.

While switching from UUCP* to ECP* takes much of the burden from the mediator's
shoulders, it does not simplify the overall reallocation problem. The burden of prob-
lem solving is merely shifted from the mediator to the agents. It is an open question
how well agents can cope with the added difficulty that they are not allowed to
submit composite proposals. We will pay more attention to this issue in subsequent
chapters (viz. Chapters 5, 7, and 8), but a complete and final answer is outside the
scope of this thesis, because our mechanism-evaluation eiperimen<s are confined to
reassignment. Since reassignment problems involve only one-for-one exchanges, the
restriction to elementary proposals does not constitute a constraint here.

As we explained in Sect. 3.1.2, the persuasive style of relaxation employed in CDN
is likely to turn the mediator into a bottleneck in terms of computation as well as
design. Consequently, we have focused on the incentive style of relaxation that is
prominent in micro-economics. In particular, we investigated the potential of the
Walrasian exchange auction toward TR problems. In Sect. 3.3.4, we identified three
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minimal demands to be met for the Walrasian auction to constitute an adequate
approach.

1. a theorem which proves that — under suitable conditions — a Walrasian equi-
librium exists;

2. an efficient auction protocol to attain such an equilibrium;

3- a guarantee that the equilibrium allocations are of acceptable quality in a
relative-utilitarian sense.

Our discussion in Sect. 3.3 has revealed that there is little support in economic
literature for any of these requirements. Theory on equilibrium existence in exchange
markets with indivisible goods exists only for an insignificant subclass of TR: the
reas.st</nmen< of untyped goods.

The TTC auction protocol to attain equilibria in these markets is such that it is
questionable whether one can speak of a Walrasian auction: instead of a tatonnement
procedure based on the .scarcities of goods, the TTC protocol requires the auctioneer
to look at the submitted proposals themselves. Furthermore, instead of providing
relaxation incentives, the TTC protocol /orces the agents to revise their bids. As we
argued in Sect. 3.3.6, this protocol is, in fact, a composition/revision method with
random cluster composition. Consequently, even if we were able to generalize TTC
from untyped assignment markets to general TR problems, this would be of little
value, since the task of the auctioneer would not be tractable.

Finally, the quality of Walrasian allocations can be expressed in terms of game-
theoretic notions such as Pareto optimality and core membership. However, in
Sect. 3.3.8, we proved that this does not provide any guarantee with respect to the
quality of the allocations in relative-utilitarian terms. By means of an example, we
showed that the e,/ffct»veness of a Walrasian allocation in an assignment market can
be ar6t<7Yirt/y /oui, even if the allocation is Pareto optimal. We also showed that the
absence of monej/ is a crucial factor in this respect. In this context, 'money' should
be interpreted as

a perfectly divisible good, that can compensate every agent for any con-
ceivable loss of goods, and is possessed by every agent in abundance.

Even if all other commodities are indivisible, money (of the above kind) can be used
within a Walrasian auction as a vehicle for utility comparison between agents, which
enables an agent to convey to some other agent "Hey, I need this more badly than
you do" without any explicit or direct communication between the two.

Although we believe to have shown convincingly that there is insufficient tneoneticoZ
6o«w to regard the Walrasian auction as a promising approach for TR. this does not
constitute proof that such an approach is 6ound to be inadequate. The fact that
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there is no lower bound for the effectiveness of Walrasian allocations is certainly
discouraging, but it does not imply that the effectiveness of Walrasian allocations
is unacceptably low on average. Also, the lack of theoretical results on equilibrium
existence can be a matter of the state of the art. For all we know, powerful theorems
on equilibrium existence in important subclasses of TR may lie just beyond the
horizon.

This has prompted us to take up our own investigation on the existence of Walrasian
equilibria (and adequate auction protocols) in TR markets Unfortunately, the out-
come of this investigation, laid down in Chapter 4, confirms the pessimistic tone of
the conclusions drawn in the current chapter. Consequently, readers not specifically
interested in the Walrasian auction, should feel free to skip Chapter 4, and move on
to Chapter 5, where we continue our quest for an adequate general approach to TR
in a more constructive manner.





Chapter 4

Walrasian Equilibria in TR
markets

4.1 Chapter Overview

This chapter addresses the issue of equilibrium existence in TR. We aim to answer
the question whether Walrasian equilibria exist sufficiently often in TR markets
for the Walrasian auction to be applicable. In particular, we would like to know
whether there exist subclasses of TR, in which every problem instance possesses a
Walrasian equilibrium. One such subclass is known already. As we mentioned in
Sect. 3.3.5, a Walrasian equilibrium always exists in an untyped assignment market
(Shapley & Scarf, 1974). However, the problem class of untyped assignment markets
constitutes a degenerate case of tool reallocation. Hence, the question is whether
there are other, more relevant subclasses of TR, for which the Walrasian auction is
an adequate mechanism.

A Venn diagram of classes of reallocation problems is shown in Fig. 4.1. The envelop-
ing class RR is the class of reallocation problems, with either divisible or indivisible
goods. The subclass TR of RR comprises the tool reallocation problems, which fea-
ture indivisible goods. Within TR, AM denotes the class of assignment markets, tool
reallocation problems where no agent possesses or desires more than one tool. The
subclass SPAM of AM consists of those assignment markets where all agents have
strict preferences.' Finally, UAM denotes the class of untyped assignment markets,
in which the notion of tool type is meaningless, because no two tools in the market
are of the same type.

The boundary between TR and RR\TR is drawn as a dotted line, to indicate that it is
not sharply defined. The problem class RR\TR should be interpreted as the class of
reallocation problems with commodity spaces for which the set R* is an appropriate

'We speak of a strict preference if no agent is ever indifferent between different tool types.
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KK
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Figure 4.1: Venn diagram of reallocation problem classes:
RR = reallocation of (divisible or indivisible) goods;
TR = reallocation of tools (i.e., indivisible goods);
AM = reassignment of tools;
SPAM = reassignment of tools with strict agent preferences;
UAM = reassignment of untyped tools.

mode/, and TR as the problem class, for which this is not the case (cf. Sect. 1.1.3).
Due to the inherent vagueness of this distinction, it is not feasible to draw hard
conclusions about the existence of Walrasian equilibria in TR as a whole.

In view of this, our investigation focuses on the class AM, and more particularly
on SPAM. The reason that we look at SPAM in particular is that, even if we could
guarantee the existence of an equilibrium in every problem in AM\£PAM, this would be
a little value, because agents preferences must be strict for any form of tätonnement
to be effective. This issue will be discussed more elaborately in Sect. 4.7.

The method we use to gain insight in the existence of Walrasian equilibria in SPAM
is the following. First, we show that prices are essentially ordinal in a Walrasian
reassignment auction. We employ this to arrive at a characterization of Walrasian
markets (i.e., markets which possess a Walrasian equilibrium) in SPAM in terms of a
relationship between the initial assignment and the preferences of the agents. The
concept which embodies this relationship is called market stratifiability. The analysis
of this concept, leads to the conclusion that, though multiple Walrasian equilibria
can exist for a SPAM instance, the associated Walrasian af/ocatton is the same for
all equilibria. In addition, this theoretical analysis enables us to draw some negative
conclusions about the existence of Walrasian equilibria in certain subclasses of SPAM.

While our theoretical analysis does not lead directly to conclusions about the fre-
quency of Walrasian equilibria in SPAM as a whole, it does render an efficient
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tätonnement algorithm for SPAM. The algorithm is a genereUiatfon of UM 'ITC
algorithm to typed reassignment. It is not only able to find a Walrasian equilibrium
if it exists, but also to falsify the existence of Walrasian equilibria. We employ this
gTTC algorithm to estimate the jfairasian cferusty (i.e., the percentage of Walrasian
markets) within SPAM. Rather than doing this once, for SPAM as a whole, we esti-
mate Walrasian densities in various subspaces. The advantage of such a scheme over
a single estimation for SPAM is that it provides insight in the factors that influence
Walrasian density. In particular, our scheme provides information on the influence
of problem scale. In Sect. 4.8, we utilize this information to draw some (tentative)
conclusions on the Walrasian density that can be expected in subclasses of TR\AM.

An anecdotal example of success and failure in a Walrasian reassignment auction
is presented in Sect. 4.2 below. The example is enlighting, but not required to
understand the formal analysis in subsequent sections. Hence, readers who prefer
mathematical poetry over prose can skip this section.

4.2 A Walrasian Three-Story Story

The IGI insurance firm is located at the third floor of a former fire station in Paris,
Texas. Apart from the director, Mr. Woo, the company has eight employees. Every
workday at nine, they assemble in the lobby on the first floor, waiting for Mr. Woo
to unlock the elevator door, and escort them to their working place. The elevator is
not exactly IU-TEX, but it still works, and the management considers it quite safe
as long as it is not used more than once a day. Consequently, at the end of the day,
the employees use the fire poles between floors to return to their families.

Mr. Woo does his best to keep the company going, not an easy job in times of
management participation. The powerful Insurance Laborers Union in particular, is
an indepletable source of insomnia. Only two months ago, they harassed him with
this color problem. Hardly a mafr/e problem, if you ask Mr. Woo, but nobody did.

The trouble started with one of the firm's lesser valued employees complaining about
the dull gray color of his desk. It killed his creativity, and gave the firm a bad image.
Bollocks! Yet, it wasn't long before the other employees were affected. Within a
week or so, all employees were firmly convinced that this was the prime cause of the
turnover falling low. The Union was called in, and, after lengthy negotiations, a Bill
of New Desks came out. As a result, the firm was now blessed with a more colorful
image, comprising two blue, three pink, two green and one purple desk. Each of the
four departments had chosen its own vivid color. The workers were delighted.

Some of the customers seemed less enthusiastic. Many a brow was raised upon
glancing at the new furniture. Moreover, the enthusiasm of the employees faded
rapidly, up to the point that a// of the workers were again dissatisfied with the color
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of their desk.

Yesterday, the dreaded Union knocked on the door again. This time, they demanded
freedom of desk choice for each worker. Mr. Woo, soon weary of the negotiation,
settled for a half-way compromise. In the morning, each worker was to sit at his/her
own desk. In the afternoon, they could all pick a desk of their choice.

"Well, at least it didn't take a whole week again", Henry Woo said to himself as he
turned over in bed to switch off the light. Then he froze in his movement. What if
more employees prefer the color blue than there are blue desks? What if everybody
chooses to sit at the purple desk? They'll chat away for the whole of the afternoon.
Work will pile up. Angry customers! Falling turnover! Disaster!

Mr. Woo jumped out of bed, into his slippers, and paced back and forth in the
bedroom. He knew that the Union could not be persuaded to review the settlement.
But something had to be done to prevent his personnel from jabbering away the day.
What? He looked at his wife who was snoring happily, her rollers sparkling softly in
the light of the bed-side lamp. No use waking her up. Troubled, he went downstairs
and called Mr. Sotheby, his best friend from the good old days at Oxford.

Having heard the story, Mr. Sotheby, who was deeply moved by the problems of his
former roommate, hesitantly said that he might know of a solution that would not
require a breach of agreement. "I'm not gutte sure that it will work, though", he
said with his whining voice, so typical of Walrasian auctioneers. Mr. Woo didn't
care. He gladly welcomed any suggestion.

S: Well, I was thinking... At present, the first and second floors are vacant, is it
not?

W: Yes...

S: And the elevator cannot be used in the afternoon, can it?

W: No...

S: Then there may be a Top-Trading-Cycles solution.

W: A what?

S: Top-Trading-Cycles. It's an algorithm to find a Walrasian equilibrium in an
exchange economy with only one-for-one exchanges.

W: Oh?

S: The idea is that of a Walrasian auction. You try to diminish excess demand
for some good by raising its price, and get rid of excess supply by lowering it.
Only, you do not really work with prices, more with Zeve/s.

W: Ah?
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S: In your case, lowering prices would come down to relocating some of the i
to the lower storeys. This would prevent the agents at those desks from over»

;•.- crowding desks at the storeys above them..., since they cannot climb up the
M> fire poles.

W: Yes! Of course! Why didn't I think of that?

S: Easy now, old chap As I think I mentioned before, I'm not </ui<c sure that it
will work. Such a Top-Trading-Cycles solution always exists. But, in your case,
with eight desks, it may require seven storeys. And you only Imve three.

W: What do I need seven stories for? There are only four departments!

S: You mean to say that you do not want to split departments?

W: No, of course not!

S: Aahh.... I see. So where one pink desk goes, all pink desks go. That does
complicate matters, though.... It means that we are dealing with a typed
assignment market. Fortunately, I read something about those only yesterday.
In a Ph.D. thesis, mind you. Had a description of an algorithm in it. Very
simple.

W: So tell me. Which department should go where?

S: I can't tell you that! It depends on your workers' preferences. All I can tell
you is what procedure you should follow. But it's extremely simple, really. You
wait and see what happens at noon, if they all move to their favorite desk.
Take notice at which departments there are empty desks, and move all of such
departments downward. Then the next day...

W: The next day? How many days will this procedure take?

S: Difficult to say. Probably not too much, since there are only four tool types...
colours, I mean. And at least two of these departments, eh... colours, must
remain at the third floor to have equilibrium there.

W: Why is that?

S: Didn't you tell me that a// of your employees are dissatisfied?

W: Yes.

S: Well, then, if we were to leave only one department at the third, all of the -
dissatisfied - employees of this department would slide down the pole toward
their favorite desk, wouldn't they? And the resulting empty desks at the top
floor imply overcrowding - at least at j»me desk - down below.

W: Oh, yeah. Of course.
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S: So, where was I. Ah, yes, the second day. Well, you simply keep moving any
departments with empty desks to the floor below. Then at some point, you'll
either have equilibrium at the third, or no department left there. In the latter
case, there's no solution. Otherwise, you perform the same operations again at
the floor below.

- T V

W: Right.
• Still, Henry, I don't really fancy the idea of having to relocate for a week or so.
They won't like it one bit. If I relocate once, I could make them believe that it
has nothing to do with desk colors and stuff. But they'll surely feel that I try
to trick them out of the Union deal if I keep moving desks. So is there not a
way to do it all in one move?

S: In one move? ... Well, you could simu/ate the whole process beforehand. But
you would need to know all of their preferences, of course.

W: Can you provide the solution if I provide the information?

S: Sure! Just send it to me by email tomorrow, and I'll send the answer back.
Mind you, I do need to know a// of their preferences, not only their first choice,
but also their second, third, et cetera. At least up to the colour of their own
desk.

From wooBigi.com Tue Nov 17 16:49:36 1998
To: haroldfflsotheby.com.uk
Subject: color problem

PREFERENCE ORDER (decreasing)
green, pink, purple, blue
green, blue, pink, purple
green, pink, purple, blue
blue, purple, pink, green
blue, green, pink, purple
blue, green, pink, purple
green, purple, pink, blue
pink, blue, green, purple

WORKER
Mr.
Ms.
Mr.
Mrs
Mr.
Ms.
Ms.
Mr.

Smith
Brown
Fenn
. Bucket
McGull
Take
Gross
deVries

COLOR
blue
pink
blue
green
green
pink
pink
purple
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From haroldCuk.com.sotheby Tue Nov 17 10:28:04 1998

To: wooCigi.com

Subject: Re: color problem

Congratulations!

Just move the purple and the pink desks to the 2nd, and

... bingo! (Better not receive any customers there :-)

Harold

From wooCigi.com Wed Nov 18 21:23:31 1998

To: haroldCsotheby.com.uk

Subject: Re: color problem

Thank you very much!

There's a tiny (I hope...) problem, though.

The solution you suggested didn't work. As I looked at the

specification again, I noticed that I had accidentally

exchanged the pink and the purple desk in Ms. Take's preference.

Could you look at it once more? (Sorry for the inconvenience)

Henry

From haroldSuk.com.sotheby Thu Nov 19 04:29:56 1998

To: uoofligi.com

Subject: Re: color problem

Dear Henry,

That small change makes a big difference. There is no solution.

As 1 looked into this thesis again, 1 saw some statistics. It

appears that the chance of equilibrium existence is very dim

anyway. With eight employees and four departments, and a

3-2-2-1 colour distribution (as in this case) the probability

of existence is less than 67.. Walrasian auctions are of little

use for this kind of problem, I guess...

All the best,

Harold
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4.3 Characterization of Walrasian TR Markets

4.3.1 Preferences and prices

Upon considering the application of a Walrasian auction to tool reallocation, a first
observation is the following. If a Walrasian equilibrium exists in some market in
whirh agent i attributes utility u,(a) to a tool of type a, then that equilibrium
continues to exist if u< is changed to u- = /„u,, where / is a homomorphism, that is,
/ (x) > /(j/) «• i > y. In other words, the existence of Walrasian equilibria depends
on the agents' (ordinal) tool-bag pre/erences rather than their (cardinal) tool-bag
utt/ittes. In this section, we provide some basic definitions related to preferences.

Definition 4.1 (preorder)
/I preorrfer ^ o n a set S is a re/at»on wtt/i t/ie /o//otütnj properties.

re/Iextrtty; (Vi 6 5) x £ i

tranflitivtty; ( V x , j / , z € 5 ) x £ y A y £ z =*> x £ z

We use i ~ j / a j a s/ior<Aand /or x £ y A x >̂ y.'' 7Vo<e t/iat ~ deines an eguiva/ence
re/at»on on 5, t/iat ts, a re/atton wAtcft is re/lexive, <ransi<ii;e, and symmetric (x ~
y <=> y ~ xj. To express t/iat x £ y A x •/• y, we use D - j . A

Within mathematical economics, a preorder is often referred to as a preference or-
dering (Kelly, 1978). We deviate from this terminology, because we use preorders
for tool prices as well as tool preferences. The term 'preference ordering' would be
inappropriate and potentially confusing in the context of tool pricing.

Definition 4.2 (order, weak order , ant i -symmetr ic)
J4 preorder ^ on S is an order i/ it »s anti-symmetrtc, t/iat is, i^

(Vx,y € 5 ) x ~ y <=> x = y

f/sua//y, we wi// denote an order re/atton 6y >- or >; instead o/ £. To state tAat some
preorder «s de^n»te/y not an order, we use tAe term wea/c order. A

Relationships between a price preorder and a preference preorder are key elements
in the theory developed in this section. Consequently, we need two different symbols
for the two preorders. We choose to use >; for preference preorders and > for price
preorders. If we use a > 6 to express that tool type a is in a higher price class than
tool type 6, this may tempt the reader to assume that the price preorder is an order.
We therefore use a > 6 instead of a > 6 to express that a > 6 A a •*- 6. if the price
preorder is not known to be an order.

In the following, a strict preference is a preference that amounts to an order, and a
weak preference amounts to a weak order.

'Obviously, i ^ y «* y £ *•
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Definition 4.3 (total preorder, total order)
/In ^reorder £ on 5 « tota/ ijö*"

Throughout the thesis, we will assume that preferences and price orders are
preorders. We denote the set of total preorders over the set fi by PREORD(/?), and
the set of total preorders over some finite set of size m by PREORD[rn].' The subspace
of total orders over a set of size m is isomorphic with the space of permutations over
m elements, and will therefore be denoted by PERM[m].

Any equivalence relation ~ on a set 5 defines a partition 5/_ of S into equivalence
classes. Since any total preorder £ incorporate« an equivalence relation ~ (defined
by x ~ y o (x £ y A y £ x) ), the total preorder £ also defines a partition S/.̂ .
Moreover, the preorder £ induces a total order on the partition 5/^. We therefore
refer to 5/>- as the graVraf partition induced on 5 by £.

Definition 4.4 (maximal elements)
Let £ 6e an preorder on 5. 77ien the set o/ maxima/ e/ement« o / T c S under £

ts de/tned a«
best>-(T) = {x € T | (--By 6 T ) J ) - I }

For a tota/ order >; on S, best^(T) contain« exact/y one e/ement /or any 0 / T C 5.
T/its unique maxima/ e/ement is denoted 6y max>.(T). A

Up to this point, we have provided general definitions of concepts related to order-
ings, which are applicable to reallocation problems in general. The definitions that
follow presume that the context is reassignment.*

Definition 4.5 (preference profile)
Let / 6e a set o/ agents, and i? a set o/ too/ types. i4 pre/erence pro/i/e P o / / ouer

fl ts a set {£i}ig/ o/ tota/ preorders over Ä. For assertions in«o/t>ina ^,, we emp/oy
t/ie /o/Zowino notation.

0X56 "i4oent 5 pre/ers too/ type a over 6."
a ~5 6 Moent 5 is indifferent fretween too/ types a and 6."
a £5 6 "j4oent 5 ett/ier pre/ers a over 6, or ts indt^erent."

T/ie s/tort/iand notation [a.6.c, 6c.a] denotes t/ie pre/erence pro/i/e 0/ {1,2} oner
{a, 6.c}, de/med 6y a V) 6 v, c A 6 ~2 c >-2 a. A

•"pREORDJm] can be defined formally as a normal divisor of the equivalence relation "of the same
size" on the set of preorders over all sets of m elements.

'The defined concepts can be generalized to reallocation, but this is not always true for toe
notation.
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In our analysis of assignment markets, we will often restrict preference profiles and
assignments to a subset /?' C Ä of tool types, or a subset / ' C / of agents.

An initial assignment e : / —• i? can be restricted to pertain only to the agents in
a subset / ' C /, (direct domain restriction), or only to the agents endowed with
a tool type in i?' C ß (indirect domain restriction). We use the symbolf for such
domain restrictions. The formal definition below is based on the fact that a function
/ : X —> V is defined in mathematics as a subset of X x y. This implies that the
statement e(i) = r is synonymous with (i,r) 6 e.

Definition 4.6 (assignment restriction)
Le< e : / —> fi denote an assignment o/ too/s m /? to t/ie agents in /. Let /?' C Ä,

a n d / ' i { t € / | e(i) € /*'}.
T/ien t/ie restrictions o/e to /', and to /?' are de/ined as

Evsdent/y, gr-ace to t/ie de/inition o// ' , t/iese two restrictions are alternative defini-
tions o/ the same oftject. A

To arrive at a formal definition of profile restriction, we observe that a preference
preorder on a set i? is a relation on i?, which — like a function from it to itself — is
a subset of /? x i?. Hence, a preference pro/i/e for the agent community / and the set
/? of tool typos can be viewed as a subset o f / x f ix f i . In other words, if the profile
P involves the preorders £,, then a £, 6 can also be stated as (i,a,6) € P. Hence,
we can define profile restriction similarly to assignment restriction in Def. 4.6.

Definition 4.7 (profile restriction)
Let c : / - > / ? denote an assignment o/ too/s in i? to t/ie agents in /, and P a pro/i/e

o/pre/erencfs over i? o/ the agents in 7. Let ß ' C /?, and de/ine / ' = {i € / | e(i) €

77ien the restrictions o/ P to /', and to fi' are de/ined as /o//o«>s.

P f / . ^ P n ( / ' x fix /?)

P fR .^Pn( / ' x fl' x ff)

Example 4.8 (restriction of a preference profile)
Let /?' = {a,c} C {a,o,c,d} = / ? . / ' = {1,2,3} C {1,2,3,4,5} = / . and
P = [abc.d, a.6.dc, M.c.a, c.d.a6, cd.aft].
T/ien Pf;.= [atc.d, a.6.dc. 6d.c.a] and PFR.= [ac. a.c. c.a].
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4.3.2 Equilibria in assignment markets

In this section, we develop formal definitions for assignment markets and Widrasion
equilibria in such markets. On the basis of these definitions we will try to acquire
insight in the likelihood of existence of Walrasian equilibria in AM.

To promote this, we strive for a characterization of markets with a Walrasian ii|iiilib-
rium that is structure/ rather than beAatiore/. Conditions for equilibrium i-visionce
formulated in terms of behavioral constructs like the excess demand function* may
be useful if one seeks for suitable model assumptions, hut it is difficult to verify the
satisfaction of behavioral conditions for specific problem instances, let alone to em-
ploy them adequately to assess the likelihood of equilibrium existence in subclasses
of TR. In this respect, structural conditions, that is, conditions on constructs in the
problem specification, such as the preference profile and the initial allocation, are
more valuable.

As a first step toward a structural characterization of Walrasian markets in AM, we
provide general definitions for markets and Walrasian equilibria in TR, based on the
earlier definitions for TR problems (Def. 2.36 on page 42) and Walrasian equilibria
(Def. 3.12 on page 69).

Definition 4.9 (TR market)
4 77? marJfce« M is a tup/e (/, J?,<5,P), Wiere

• / = {1 , . . . , n} is a «et o/ agents,

• i? = {ri , . . . , r„} ts a set o/ tooi types,

• <$: / - • ©(/?) is an inttia/ a//ocatton, and

P € PREORD('P(4. /m<5))" is a pro/i/e o/ pre/erences over tAe set o/ su6baos o/
17m (5, tAe community too/ 6a<7.

Def. 4.9 of TR markets differs only marginally from Def. 2.36 of TR problems.
The utility profiles are replaced with preference profiles. Furthermore, while a TR
problem instance is denoted by a pair (<5, f/) of an initial allocation and a utility
profile, a TR market is denoted as a 4-tuple (/,/?, <$,P). The latter difference is a
matter of convenience. In our analysis, we often look at portions of a market that
involve only agents from a subset / ' C / or only tool types from a subset ß ' C Ä.
Such market portions are easier to denote if / and Ä are part of the denotation.

The following definition of Walrasian TR equilibrium reformulates Def. 3.12 in terms
of bags. Apart from that, the only difference between the two definitions is that

*An example of such a condition is that of gross substitutability, which plays an prominent role
in economic theory on markets with divisible goods.
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the prices in the definition of Walrasian TR equilibria are rational instead of real
numbers.

Definition 4.10 (Walrasian equi l ibr ium/al locat ion/pr ice assignment)
Let (/, Ä, (5, {£i},e/) &e a TÄ marfcet, and /et p : /? -> Q+ denote a price assignment

to too/ types. De_^ne tne 6ud</et set o/ aoent i under price assignment p as

J3,(p) = {/J e » ( A )

T/ien t/ie pair (u>,p) uiit/i a; : / —• 53(.ft) and p : /? —> Q+ is a Wa/rasian egui/iirium

(Vi 6 / ) w(i) € ß,(p)
a//ocated too/ 6aos are

(Vi 6 /)(V/3 € »(A)) /3 y w(i) => /? ^ ß,(p)
6ao pre/erred over an a//ocated one is not aj

= 4 / m (5
/Conservation 0/ too/s. j

/ / (u>,p) is a Wa/rasian eo«i/i6rium, u; is ca//ed a iMi/rastan a//oca<jon, and p a
JJfa/ra.sian price as.siynment. A

In an assignment market, each agent possesses exactly one tool of a certain type, and
may be interested in exchanging this tool for a tool of another type. Consequently,
in the context of AM, Def. 4.9 of TR markets can be simplified to the definition
below.

Definition 4.11 (assignment market )
/In (t.sst(/nmen< market is a tup/e (/, ß , e,P), wnere

/ = { 1 , . . . , n} is a set 0/ aoents,
i? = { r i , . . . , r,,,} is a set 0/ too/ types,
e : / - > / ? is an »n«t»a/ a//ocatton, and
P G (PREORD[m])" is a pro/i/e 0/pre/erences over fl. A

Example 4.12 (Assignment market representat ion)
To describe <s speci/ic AM instance (/,i?, e, P) , it s«j9?ces to speci/y tne imha/ as-
stynmrnt <' and t/>o pre/erence pro/i/e P. IVe represent f'mitta/ or/ina/j assignments
as c/iantctcr strinos enc/osed «n 6racfcets. T/ius, [afeoc] represents t/ie assignment 0/
a type-a too/ to aoent /, a type-6 too/ to apents 2 and 5, and a type-c too/ to aoent
^. /In «\ramp/r marilet ( / . ß , e , P ) »s represented 6y «nder/mnip t/ie endowment 0/
eac/i ayent in tne representation 0/its pre/erence. Thus, t/ie market (/,Ä, e,P) untA
P = [a.6c, 6.a.c, c.a.6, 6.ca] and e = [a66c] is denoted 6y [a.oc, 6.a.c, c.a.6, 6.ca].

A
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Fbr assignment markets. Def. 4.10 (of Walrasian TR equilibria) can be simplified
considerably. To begin with, the budget equation (4.1) simplifies to

B,(p) = {x € Ä | p(x) < p(e(i))} (4.2)

This reflects that, as we move from TR to AM, it is no longer relevant for an agent
to what extent the price of tool type a exceeds that of tool type 6, but only ui/irt/irr
p(a) > p(6). In other words, in the context of AM, a price assignment is essentially
ordinal, and can therefore be defined as a preonfer over fl. A formal proof for this
statement is provided in Def. 4.13 and Prop. 4.14 below.

Definition 4.13 (ordinal equivalence)
Two prtce (watjnment« p and </ arr ordmoi/y equivalent f p - q.) i/ f/»e ordinal
re/ations/ups between prices o/ any two too/ types are tAe same untn 6<>t/i assignment»,
tAat is, i/f

(Vr € fi) p(i) < p(» ~ fl(i) < «(j)
A

Proposi t ion 4.14
Le< M = (/,/?, e,P) 6e an assignment market wit/i a Wa/rasian e^wi/ifcrtum (tu,p),
and /et 9 6e a price asÄtynment suc/t t/iat q — p. T/ien (ui, g) is a/.so a Wairasian
equt/tftrium o/Af.

Proof.
Def. 4.13 implies that the budget set, redefined by (4.2)(!), does not change if we
replace p by 9, if q - p. Hence, conditions (i) and (ii) remain valid if we replace p
by q. Finally, condition (iii) in Def. 4.10 is not affected since it does not involve p.

•
The following proposition reveals that the equation defining the budget set can be
simplified even more, to an extent that obviates its definition altogether.

Proposition 4.15
// (u;,p) «s a Wairastan 77? egu»/t&num zn an assignment market Af = (/,./?, e,P),
tAen

(Vt € /) pMO) = p(e(t))

Proof.
Let, for any / ' C /, e(/') denote the bag of tools of the s '̂ocommunity /', that is,
e(7') = b,€/{^(0} Define u'(/') similarly. Extend p( ) to a price assignment to tool
6a0s, in the usual manner: (V/3 € *B(Ä)) p(/3) = Exe^P(x)-
Prom condition (i) in Def. 4.10, and the redefinition of the budget set in (4.2), we
know that

(Vt 6 /) pMt)) < p(e(i)) (4.3)
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Hence,

(V/' C /) p(u/(/')) < p(e(/')) (4.4)

Also, by condition (iii) of Def. 4.10, tt>(7) = | /mio = 4./me = e(7), and hence,

p(u>(/)) = p(e(/)) (4.5)

Choose io € / arbitrarily, and define /o = 7\{io}- Then by (4.4) and (4.5),

p(«,(io)) = p(u>(/)) - p(«»(/o)) > P(e(/)) - p(e(/o)) = p(e(t„)) (4.6)

At the same time, ( 4.3) tells us that p(w(to)) < p(e(io))- It follows that p(u>(to)) =

As a consequence of Prop. 4.15, Def. 4.10 of Walrasian TR equilibria can be refor-
mulated for assignment markets as follows.

Definition 4.16 (Walrasian AM equilibrium)
Let (/, 72, e, {£,}i6/) fee an assignment mariet T/ien t/ie pair (u>, >) wtt/i u> : 7 —> 7?

and > a price preonier on ß , ts a Wa/rastan egut/i6rtum i^ t/ie /of/owing condition«
ore met.

C»; (Vt e /) u»(i) ~ e(i)

^«; (Vt G 7)(Vr G Ä) r >-, u»(t) =• r > e(t)

With Def. 4.16, we have attained a characterization of Walrasian assignment mar-
kets that is substantially simpler than the corresponding definition (Def. 4.10) for
TR markets. However, the characterization is not a structural one, since it in-
volves existential quantification over the unknown variable u>. The notion of market
stratifiability, which we will develop shortly, gets rid of this unknown variable by
reformulating conditions (i) and (it) in Def. 4.16 in terms of the structura/ notions
of equilibria! market, market segment, and submarket.

Definition 4.17 (equilibrial market)
.A war/Iff ts equ»/i6no/1/ it possesses a W'a/rasian e?ut/i6rium untn one and t/ie same

price /or a// .goods. A

The above definition of equilibrial market is general, but not structural: implicitly,
it involves the same existential quantification over u> as Def. 4.16. However, as
Prop. 4.18 below states, equilibriality can be reformulated as a structural property
in the case of assignment markets in which all agent preferences are strict.
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Proposition 4.18 (equilibrial assignment markets)
£#t A/ = (/, ft, e, P) 6c an asji^nmeni marfcet untA a prr/e rence pro/Me P o/ jtrtct
pw/pTrnres v, on ft. TArn A/ w eguiiiona/ i/f <Ar 609 o//ir«f pir/errncr« {m&Xy,(ft) |
i € /} equals ine community too/ 609 | /me.

Proof.
=»:
An agent in a Walrasian auction always bids on an endowment that is a maximal
element (with respect to its preference) within its budget set, and the budget set
in an assignment problem equals ft if all tool prices are the same. Furthermore, if
agent 1 has a strict preference, there is a unique maximal element in the budget set
for every price preorder Hence, in this case, the bid 6(i) submitted by agent i is
6(1) = max,.,(ft). Because the market is equilibrial, while the agents' bids under any
price preorder are defined unambiguously, the bids 6(1) constitute, together with the
price preorder ~~ (of equal prices for all tool types) a Walrasian equilibrium (6, ~) .
Hence, by condition (iii) of Def. 4.16, | / m 6 = | /me . In other words, the bag of
first preferences equals the community tool bag.

•*=:
The proof for the converse implication is analogous, and left to the reader.

•
A market is always c/osed, that is, agent preferences only involve tool types which
are present within the community. To define stratifiability, we need to speak about
parts of a market which do not necessarily have this property. We refer to such parts
of a market as marJfce* segments. A market segment comprises a nonempty *u6*e< of
the tools types that occur in the enveloping market, and a// agents that (initially)
possess one of these tool types. Since the agents in a market segment still have their
original preferences, a market segment is generally not closed in the above sense.

Definition 4.19 (market segment)
Le< A/ = (/,ft, e, P) 6e on asstjnmenJ market.
77ien M' = (/',ft',e',P') w o morifce« seamen« 0/M t/f

;. ft' C ft A ft' ^ 0

2. / ' = {i € / I e(t) € ft'}

5. e' = ef,.
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By viewing conditions 2, 3, and 4 in Def. 4.19 as definitions of / ' , e\ and P', we can
associate any nonempty subset ft' with a market segment. We denote the market
segment induced by ft' in this manner by Af [/?•. Note that the correspondence
between market segments of M and subsets of .ft is one-to-one.

The closure of a market segment M' of M is referred to as the su&marfcet associated
with M'.

Definition 4.20 (submarket)
77ie suftmarifcet associated tuit/i a marA:e< segment Af = (7',7?',e',P') o/Af is tAe

marfcet

The intersection and union of market segments (and submarkets) are defined as
follows.

Definition 4.21 (intersection of submarkets/market segments)
Let M = (/,ft,e, P) 6e an asstynmen« marifcet, and /et A/' = (7', 7?',e\ P ') and

M* = (7*,ft*,e',P') 6e mar/ket segments o/ sufcmarJkets o /M. Let /n = / ' n 7*.
T/ien t/»e intersection o/ M' and M* is de/ined as

Definition 4.22 (union of submarkets/market segments)
Let M = (7,ft,e,P) &e an assignment marJfcet, and /et M' = <7\7? ' ,e \pi ) and

M* = (7*,Ä*,eVP»> 6e maritet segments o/ suftmaritets o/ M. Let 7u = 7* U 7*.
77ien t/ie union o/ M' and M* ts de/ined as

A

Note that the union of the market segments MFRI and MFRJ is the market segment
M T/JH.,RJ. In view of the one-to-one correspondence between subsets of ft and the
market segments induced by these subsets, this implies that the set of submarkets
of any market M is closed under segment union. The same applies to segment
intersection, provided that the two subsets of 7? are not disjoint.

The same correspondence between subsets of ft and market segments of M =
(7,7?, e, P) allows us to extend the ordered partition ft/> induced by a preorder
> on 7? to an ordered partition of M into market segments. We refer to such a
partition of A/ as a segmentation of A/.
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Definition 4.23 (market segmentation, head, tail)
i4 segmenfation S« = (Af' A/*) o/A/ wo /wt fi.r, on oniemf tup/rj o/disjoint

maribet segments Af' o/su6marlfcek o/Af, sucn tAat Uj«i,..,»A/' = A/.
Segments arc speci/ied in descending order, /n otAer words, A/' is tAe maxima/
e/ement m tAe segmentation (A/' Af*). /n accordance untA tAe usua/ de/imtions
o/ tAe Aead and tAe taii o/ a /wt, we de/ine tAe A.eod o/ 5JU a* Af', and tAe <ai/ o/ 5 «
a« (A/*,. . . , Af*). TAey are denoted 6y WS« and < 5 « , rwpective/y. Eiprewionj
W f W l ' 5 « j/iou/dfc interpreted aa W « I « S « = W(Af«,..., Af*) = AfV A

The following definition of j(rati/ia6<e market is the key definition of this chapter.

Definition 4.24 (stratifiable market, stratification, top stratum)
4n ajM^nment marJke/ A/ = (/, fl,e, P) w «troti/ia6/e i/tAere emt* a pntr prrordrr

> on tne «et fi o/ too/ type*, «ucA tnat tne segmentation Af> = (Af',. . . , Af") mreta
tAe /o//ourtno coostroint«.

«u6marJket5 fAf'l iwsociated unt/i tAe marfcet seoment* o/Af̂ . are eaui/ibna/
markets.

2. // an a#ent pre/ers a too/ type over a// too/ types u/tt/im its oum seoment,
t/its /anortte type resides wit/itn o /«oner seoment:

(Vt € /)(Vy € Ä) ((Vi ~ e(i)) y V, x) =J> y > e(i)

i4 seomentation Af> = (Af',... ,M™) ui/iicA satts/ies conditions / and 2 a6ove is
ca//ed a strati/ication o/ Af, and tne segments o/ Af> are tAe strata o/ Af. Af' is
ca//ed tAe top stratum o/ Af. A

Proposition 4.25
Let Af denote an assignment marfcet.
77ien Af is Wa/rasian o Af is strati/ia6/e.

Proof.
=>:
Suppose that Af possesses a Walrasian equilibrium (u>,>). We prove that
(Af' Af *) = Af> is a stratification of Af, that is

(1) Any submarket [API is an equilibrial market (for j = 1, . . . , * )

(2) (Vi € 7)(Vy € Ä) ((Vx ~ e(i)) y >-, x) => y > e(i)

Because the stratum Af •* comprises all tools of the price-equivalence class A' € fi/ >,
it follows from condition (i) in Def. 4.16 that, with the budget constraint in effect,
all trade within Af' concerns tools from fl'. Since this is the case for a// strata of
Af>. condition (iii) in Def. 4.16 implies that there is conservation of tools u/it/im eac/i
stratum. Since the fact that the submarket [Af'l is closed implies that the budget
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constraint is in effect, [AP] is an equilibrial submarket. Hence, condition (1) is met.
Condition (2) follows immediately from conditions (i) and (ii) in def. 4.16.

<=:
This is proven analogously to the converse implication, so we do not go into detail.
Condition (i) in def. 4.16 follows from conditions (1) and (2) above. In turn, this
implies, together with conditions (1) and (2) that condition (ii) in Def. 4.16 is met
also. Finally, condition (iii) is a direct consequence of condition (1).

•
We have shown that market stratifiability is a necessary and sufficient condition for
Walrasian equilibria to exist in an assignment market Af. Stratifiability is a struc-
tural notion, provided that the preferences of all agents are strict (cf. Prop. 4.18).
In view of this, we focus on assignment markets with strict preference profiles in the
analysis that follows.

4.3.3 Equil ibria in s t r ic t-preference assignment marke t s

Definition 4.26 (SPAM)
i4 5<rtc<-Pre/erence /Issj^nment Marke* for SPj4Afy is an assignment marfcet in

Wuc/i t/ie pre/erences o/ a// aoents are s<rtc<, Mat is P = {)-,}ig/ € (PERM[m])".
77ie proft/em space o/ a// SPJ4MS is denoted 6y SPAM. A

If it is clear that we are dealing with SPAMs, dots in preference specifications (cf.
Ex. 4.12) are superfluous. Hence, in descriptions of SPAM instances, we will omit the
dots from the preference profile. The preference o y f r ^ c ^ d v e will, for example,
be denoted by abcde instead of a.b.c.d.e if it occurs within a SPAM instance.

The main advantage of assuming that preferences are strict lies in the fact that,
with this assumption, the bid of an agent in a Walrasian auction is determined
unambiguously. As a consequence, any stratification of a SPAM is associated with
a sin^/e Walrasian allocation.

Proposition 4.27
Let A/ = (7,fi,e,P) 6e a stratt/>a6/e SP/iMu;»tn strati/ication M>, and /et (u>,>) 6c
a Wa/rastan egui/i&num /or M. 77»en u> is unamfeu/uous/y de/ined 6y

(Vt € /) w(t) = max({r e Ä | r ~ e(i)})

Proof.
By Prop. 4.15, every tool exchange takes place unt/iin a stratum, that is, u;(i) €
{r € fi | r ~ e(i)}. Furthermore, in a SPAM, the preference of each agent is
strict, so for any set Ä* C it, each agent's first preference maXv.(Ä') unambiguously
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determines a tool type. Thus, conditions (i) and (ii) in Def. 4.16 can be combined
into w(i) = max>.,({x € Ä | z ~ c(«)}), which determines it' unambiguously.

The above proposition shows that each stratification of a SPAM A/ is
with one and only one Walrasian allocation. To answer the question now many
Walrasian allocations exist, it would be most convenient if we wert' able to show
that even rft/ferent stratifications of a SPAM always correspond with one and the
same Walrasian allocation. The route that we will take to prove this is the following.

1. We define a canonical stratification, and show that, for any stratifiable SPAM,
a unique canonical stratification exists.

2. We specify a set of transformation rules that, when applied to an arbitrary
stratification of a stratifiable SPAM, will render the associated canonical strat-
ification.

3. We prove that the final (Walrasian) allocation associated with a stratification
is invariant under these transformation rules.

As a first step toward the definition of the canonical stratification, we visualize a
segmentation as a graph in such a way that we can determine whether the segmen-
tation is a stratification by merely inspecting the graph. The visualization is arrived
at by defining a relation between the segments of a segmentation in terms of the
(first) preferences of the agents in those segments.

Definition 4.28 (envy between market segments)
Let (M' , . . . , M*) 6e o segmentation o/ an assignment marlfcet M. T/ien seijmenf

M' envies segment AP t/ t/iere is an agent in M' to/io pre/ers some too/ type in
segment AP over a// too/ types in its own segment. Forma/iy,

A T < M ' «* i 7 j A (3o 6 f)(3r ' € ff )(Vr € rf) r* y . r

While the relation induced between market segments by a price preorder is an order,
that is, a relation which is reflexive, transitive and ant-symmetric, the envy relation
has none of these three properties. However, < is anti-symmetric (and transitive, of
course), if the segments are strata of a stratification (by condition (ii) in Def. 4.24).
Because of this property, we can use < to rephrase condition 2 in Def. 4.24 as "<
is an anti-symmetric relation". This implies that, if we picture < graphically (by
representing Af' < AP as an arc from node A/' to node AP), a market stratification
is recognizable as a cj/c/e-/ree digraph.

This is illustrated in Fig. 4.2 for the assignment market specified in Fig. 4.2a. It
is left to the reader to deduce from the problem description in Fig. 4.2a that the
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segmentation pictured in Fig. 4.2b is a stratification. Once we have established this,
we can deduce from the ^rop/i in Fig. 4.2b that the segmentation shown in Fig. 4.2c
is a stratification while that in Fig. 4.2d is not.

This is so, for the following reasons. The two bottom nodes (d and e) in Fig. 4.2b
can be joined into one segment without introducing cycles in the digraph, grace to
the fact they are <-unrelated. If we join segments d and e, the graph in Fig. 4.2b
transforms into the graph of Fig. 4.2c.

Nodes e and a are <-related via node {6, c}. Consequently, if we join these nodes
to arrive at Fig. 4.2d, we introduce a cycle ({a,e}<{6,c} and {6, c}<{a,e}) in the
graph. Hence, the segmentation in Fig. 4.2d is not a stratification.

a b c d e
a e b d c
c b a d e
b a c d e
a b £ d e
a c d. e b
b e c a d

market

(a)

stratification

(b)

canonical stratification

(c)

segmentation

Figure 4.2: A Walrasian market with two of its stratifications, and a seg-
mentation which is not a stratification.

= | in
If we define the uiety/i* of a stratification (M\ . . . , M*) by £ , ^ , the stratification
in Fig. 4.2c is heavier than the stratification in Fig. 4.2b, since term ^ p
the weight formula of the former stratification exceeds the sum ^ p 4- ^ p - 3 + 4
in the formula associated with the latter stratification. This illustrates that we can
turn a stratification into a heavier one by moving one or more tool types to a higher
stratum. In fact, the stratification in Fig. 4.2c is is the heaviest stratification that
exists for this problem instance. We refer to this stratification as the cononico/
stratification..

Below, we present a formal definition of the canonical stratification of a SPAM. The
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definition is constructive and recursive, defining the head (i.e., the top stratum) of
the stratification, together with the market from which the tail can he computed.
The definition uses the notions of reopening and rout/ibna/ morJtrf .«ej/mrnt. Re-
opening a submarket amounts to supplanting its preference profile with the original
profile (i.e., that of the enveloping market). An equilibrial market segment is a
segment with an eguiiibna/ associated submarket, which is effectively equal to the
segment itself, in the sense that all of the agents' /irst preferences lie within the seg-
ment. Consequently, none of these first preferences are affected when the preference
profile f of the segment is restricted to the set Ä* of tool types in the segment.

Definition 4.29 (Equilibrial Market Segment (EMS))
Let Af' = ( / ' , /? ,€ ' , P') fce a nwrifcet «yrnen« o/ a SP,4Af A/ = (7,f l ,e ,P),

P = {>-i}igi- T7»en A/' « an efut/ibnai marJket segment £̂?A/S^ within A/ i(f

^tj 77ie submartket [A/'] associated untn A/' w an equilibria/ marfcet

W (Vie / ' ) maXv,(Ä)€Ä'

77»e set o/ EAf5s in a 5P>1M M is denoted 6y E M S ( M ) .

Example 4.30 (EMS)
The segment A/' = [cad6, a6cd] is an #MS o/ t/ie 5Pi4Af A/ = [a6cd, cftad,
a6cd, bead], because

ftj [Af'] = [ca, ac] is an egui/ibria/ submarfcet o/Af, and

ẑ*̂  t/ie ^rst pre/erences o/ bot/i o/ t/ie agents in M' are in i?';

^j({a, b,c,d}) = c € {a,c}

y,({a,6,c,d}) = a € {a,c}

Reopening a submarket amounts to supplanting its preference profile with the orig-
inal profile (i.e., that of the enveloping market).

Definition 4.31 (reopening)
Let Af = (7,Ä,e,P) € SPAM, and /et A/' = (/ ' , /*' ,e ' ,P') be a submarlfcet o/Af.

Tfcen the reopening IRjvf(Af') o / M ' to Af eoua/s

The reopening o/ a segmentation is de/ined componentiwse, that i*,
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Definition 4.32 (canonical stratification)
Let Af = {/, /?, e, P) 6e a s<raii/ia&/e SP;4Af, and /et £ denote tAe union o/ a// egui-

/ifcria/ marki segments o/ Af. 77ien t/ie /lead A/' = (/',.R*,e',P') o/ t/ie canonica/
stratz/icatton CM egua/s £/, and t/ie tat/ o/ C^ egua/s t/ie reopening to M o/ t/ie
canonica/ strati/ication o/t/ie market [Af\Af]. A

Since, by Def. 4.29, the head Af' of any stratification M> of M is a (nonempty) EMS
of ,M, Def. 4.32 is well-posed. The canonical stratification, thus defined, is obviously
unique for any SPAM. From Prop. 4.27, we know that it is associated with a unique
Walrasian allocation. In the following, we show that a// of the stratifications of the
market lead to the same Walrasian allocation.

As a first step, we describe the structure of a canonical stratification in more detail,
discerning one or more minima/ equilibrial market segments within each EMS.

Definition 4.33 (Minimal EMS (MEMS))
Let M 6e an assignment marJfcet. 77ien M' is a minima/ egui/ifcria/ market segment

fAf £Af Sj o/ A/ iff

/. M' €EMS(M), and

2. -.(3M" € EMS(M)) M" $ M'

T/ie set o/ MBMSs in a 5P/1M M is denoted 6y MEMS(M).

Lemma 4.34
Let A#\Af» €MEMS(M) wit/i M' / Af». T/ien M' n Af» = 0.

A

M11 ^22

Figure 4.3: Two MEMSs A/' and M* of a SPAM A/ are always disjoint.

Proof.
Let M' and A/* be different MEMSs of the SPAM M. Define Af * = Af' n Af*,
Afn = Af'\A/', and A/22 = Af*\Af (cf. Fig. 4.3). Since A/' and Af- are MEMSs,
neither A/u nor A/aj is empty. If, for example, Af,i were empty, then Af would
be an equilibrial market segment within Af *, which contradicts the assumption that
M^ € MEMS(Af). If Af * / 0 then Af < Afj2, since, otherwise, Af would be
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an equilibrial market segment within Af* (which, again, would contradict Af* €
MEMS(M)). However, A/* C A/', and consequently, by Def. 4.28 of <, Af* < A/JJ
implies that Af' < Af*. This contradicts the fact* that A/' € MEMS(A/). So Af * = 0.

Lemma 4.34 implies that the fine-grain structure of a canonical stratification
like Fig. 4.4: The top stratum A/' of the canonical stratification of a SPAM Af is
the direct sum of all MEMSs of M. Stratum A/' is the direct sum of the rropemnps
of the MEMSs of [Af\Af'], ... e< cetera. We will refer to the components Afj (which
are reopenings of MEMSs) as the atorrw of C«. The arrows denote <i-relationship
between these atoms.

~n r M'

M?

Figure 4.4: The fine-grain structure of a canonical stratification.

To some extent, Fig. 4.4 also applies to ordinary (noncanonical) stratifications. For
an ordinary stratification 5M = (Af',..., Af"), each of the strata AP is the re-
opening of an EMS of [Uh>j Af|» and consequently, the direct sum of atoms. The
difference between the canonical stratification and an ordinary (noncanonical) one
is that, in an ordinary stratification, a stratum Af' need not contain a// of the atoms
(reopenings of MEMSs) of the submarket .M' = [Uj>. Af|. We could, for example,
move the atom Af/ from Af' to Af *, and the modified segmentation would still be a
stratification. In view of our goal to arrive at an arbitrary stratification by applying
a transformation to the canonical stratification, two questions arise.

1. Does every relocation of atoms in the canonical stratification render a strati-
fication?

2. Can every stratification be constructed from the canonical stratification via
atom relocation?

f' 6 MEMS(Af) => Af' 6 EMS(Af)
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The answer to the first question is negative. The relocation must be such that all
of the <-arrows point upward and cross stratum boundaries. If we, for example,
relocate atom M^ (cf. Fig. 4.4) into stratum M* or M*, the modified segmentation
(Af',M',M*) is no longer a stratification.

The answer to the second question is affirmative. As the following lemma states,
the set of atoms of any stratification of a SPAM M equals that of the canonical
stratification C« of M. In other words, it is not possible to construct a stratification
by recombining fragments of atoms in CM into new atoms which do not occur in

Lemma 4.35
Let CM &e Me canonica/ strati/ication o/ o SPJ4M martef M, and Jet 5M &e an
ar&ttrarj/ stratt/icatton o/ M. // $c <"»̂  &s denote the atom set« o/ CM and SM
respectttie/y, t/ien 21c = &s-

M

Figure 4.5: The atomicity of MEMSs in stratifications.

Proof (with induction to the stratum number t).
Let A/' = M,' ©.. . $ A/,'(,j (cf. Lemma 4.34) where each of the A/J are atoms of CM
Let SM = (S \ . . . ,S" ) be an arbitrary stratification of A/, and let '•2ls(S'') denote
the set of atoms which occur in stratum 5**. Then

(Vi : 1 < i < fc)(V> : 1 < J < /(t))(3p : 1 < p < n) Af* € «
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First step (i = 1):
We prove that every atom in the top stratum of the canonical stratification CM oc-
curs, as an atom, in some stratum of any stratification 5« Let Mo = {/°, /P\ <•", P)
be an arbitrary MEMS of M = (/, Ä,e, P) Since A/o = 9*M(A/O), Afo is, in fact, an
(arbitrary) atom in the top stratum A/' of CM. Since CM and 5M are stratifications
of one and the same market A/, all of the tools occurring in A/o must occur in some
stratum 5*" of 5« Let 5 ' be the highest stratum (i.e., the one with minimal x) of
5M which contains one or more tools from A/o, and let Q = (J, F, a, P) be an atom
of 5* in which such took occur. Let Q = (J,F,o,Z) be the MEMS of f|J,>. S*l
from which Q is computed (via Q = 9*M(Q)) The situation is depicted in Fig. 4.5.
Define F, = F n fl° and F, = F \Ä° . and let Q, = <J,,F,,afj,,P[j,> be the sub-
segment of Q which contains Fi, and Qj = (Jj ,Fj,afj , ,Ptj ,) the complementary
subsegment. Obviously, F, / 0. Since Q| C A/o and A/o is a segment within the top
stratum of CM, the first preference of agents in Qi is not constrained by CM. that
is, (Vi € Ji) maXv,(Ä) € fl' Moreover, in view of the fact that A/,, is an EA/5 of
A/, all of the (unconstrained) first preferences of agents in Ĉ i are in /?" C /?'. Since
no tools from i?° occur in any stratum above 5 ' in SM. the agents in Qi are not
e/fective/y constrained by 5M either. Formally,

(Vt€ J,) max(fl) = max(Ä) € fl° (4.7)

We now turn to the MEMS Q from which the atom Q € 5* was constructed. Q is
an EMS in [Uy>i ^" l . so the first preferences maxz, (i?) of all agents in Q, must lie
in F. Because of (4.7), we know that the first preferences max^,(ß) of the agents
within Qi C Q also lie in F. In fact, since Fj n i?" = 0, they must be in F,. This
implies (again, by (4.7)) that, within the equilibrial segment Q j)f 5 ^ , none of the
first preferences of the agents in Qi lie in F;. Consequently, <5i is an equilibrial
subsegment within [U„>,S»1. Since Q, C Q and Q € MEMS(fU„>,S»l), this
implies that Qi = Q and hence C?i = Q.

Induction step (1 ,2 , . . . , i - 1 -> i):
Let £ s ( 5 0 denote the subset of atoms in stratum 5 ' of the stratification 5M, and
2lc(A/') the corresponding set in stratum Af of CM Then the induction hypothesis
states that, for all X € 2lc(A/),

(3j e {i i - i » x

Consequently, we can remove the atoms in Uj=i ^ ( A / ' ) from CM as well as 5M,
and arrive at a canonical stratification C^ and an ordinary stratification 5 ^ of
A/ = [Uj>, A/^1. We now face exactly the same task as in the first step of the proof.
We must prove that
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All atoms in the top stratum (here: M') of the canonical stratification
C^ of a market M must occur as a w/io/e in some stratum of the ordinary
stratification 5,-; of M.

This can be proven by using the same line of reasoning as in the first step (i; = 1).

Corollary 4.36
JSnery strati/ication o/ a stratt^a6/e 5iMAf M contains tAe same atom«.

Lemma 4.37
//2ls(M) denotes tAe set o/ atoms o/t/ie strah^caiion 5« o/M, tAen tAe
allocation associated wtt/i 5M i« de/ined 6y

a e a s ( M ) Afol = ( / \ Ä \ e \ P * ) => (Vi€/')u/(i) = max(Ä')

Proof.
Let i4 be an arbitrary atom in äs(A/), and let M* = (/*,/?*, e*, P*) be the stratum
in which X resides. Let i = (/ ' .Ä'.e ' .P*) denote the MESM of |"|Jh>* 5*1 from
which i4 was computed (via J4 = 1KM(>4))- By Prop. 4.27, the Walrasian allocation
associated with SM is defined by

(Vt € /) u/(i) = max({r e i? | r ~ e(i)})

Hence,

(Vt€ /*)w(i) = max(i?*)

Since P* = Pf/j», this implies that

( V i € / ' M O = max(fi) (4.8)

By condition (ii) of Def. 4.29 (EMS), (Vi e /•) maxp»(J?) € Ä*. Since
P* =PrR-. Hence,

(Vi € / ' ) max(ß') = max(fi) = max(Ä)

Combining this with (4.8) renders



4.4. VERIFICATION OF STRATIFIABILITY IN SPAM 111

Proposition 4.38 '
/n any sfnati/iaMe SPJ4A/, a unique Wainman allocation exwt«.

Proof.
Corollary 4.36 states that all of the stratifications of a stratifiable SPAM A/ contain
the same atoms, while Lemma 4.37 entails that the Walrasian allocation associated
with a stratification depends only on the set of atoms of that stratification. Hence,
every stratification of a stratifiable SPAM is associated with the same Walrasian
allocation.

4.4 Verification of Stratifiability in SPAM

Having characterized the Walrasian SPAMs in terms of their preference profile and
initial endowment as strott^ob/e markets, and gathered some insight into the struc-
ture of stratifications, the time has come to tackle the second question of interest:
'How can we check (within an acceptable time) whether a Walrasian equilibrium
exists in a given SPAM.'

A first, rather obvious opportunity to answer this question is furnished by apply-
ing Prop. 4.14 to SPAMs. This leads to the conclusion that every price order >
unambiguously^ defines a final allocation ID by

(Vi G /) tu(i) - max({r € Ä | e(i) > r}) (4.9)

Hence, we could answer the question whether a Walrasian equilibrium exists in
a given SPAM involving m tool types in finite time by simply setting tool prices
according to all of the |PREORD[m]| price orders consecutively and checking whether
the final allocation u; determined by (4.9) satisfies the conservation of tools constraint
(condition (iii) of Def. 4.16). In the mean time, we know from Prop. 4.27 that this
requires each agent to be endowed (in the final allocation) with a tool type from its
own segment, which would speed up the verification of Walrasianess some more.

However, for this procedure to be tractable, |PREORD[m]| should not grow too rapidly
with m. Proposition 4.39 below reveals that this requirement is not met. As an illus-
tration, |PREORD[m]| = 3,13,75,541,4683,47293, and 545835 for m = 2,3,4,5,6,7,
and 8 respectively.

"The unambiguity is guaranteed within SPAM, but not in AM in general, since be«t>-_() ia gen-
erally a set of more than one tool if £ , is a weak preference.
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Proposition 4.39

|PREORD[m]| = 53 £( -1 )* ( „ " * ) (n - *)" (410)
n=l*=0 \ /

Proof.
Let 5m,n denote the number of different partitions of m elements into n equivalence
classes. These numbers, known as "the Stirling numbers of the second kind", equal
(Grimaldi, 1985)

The space of s<hc< total orders over a set of size m can be identified with the
space PERM[m] of permutations of the set {1,2,... ,m}, and therefore contains m!
elements. The set of total preorders can be partitioned into subsets O„,„ of preorders
featuring n equivalence classes (for n = 1,. . . , m). Then

m m

I = $3 |O„,„| = ^ n! • S„,„ (4.12)

Eq. 4.12 expresses that the total number of orders equals the sum of the cardinalities
of each of these subsets, where the cardinality of O,„,„ equals the number of strict
total orders over n elements, multiplied by S„,,„, the number of different partitions of
m elements into n equivalence classes. Substituting (4.11) into (4.12) yields (4.10).

As such, testing for market stratifiability by enumeration of all conceivable price
preorders is not a feasible option. Fortunately, we have by now gained sufficient
insight into the properties of stratifications to come up with a better alternative. The
algorithm is based on a property of the top stratum M' of a canonical stratification
(M' , . . . , A/*), which we will now prove. To this avail, we first define the supply and
demand for tool types in a market segment.

Definition 4.40 (supply, demand, and oversupply)
Lf< A/ = (/, fi, e, P) 6e a marJfcff segment o/ o S/MAf.

7Y»en tne Remand /or r 6 /? «n A/ eguais

<r+(r, Af) = |{t € / | max(fi) = r} | (4.13)

ond </»• supp/y o/ r € Ä »n Af equals

a-(r,M) = | { t € / | e(.) = r} | (4.14)

i4 too/ r 6 i? »s co//ed öuersuppiied in Af t/ it« supp/y exceeds its demand. A
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Proposition 4.41
/n a sfraf«/ia6ie SPJ4A/ A/ wifA canontcai strati/icahon (A/' , . . . , A/*), fi' dor* no<
contain any too/ types wntcn are oversupp/ird in any marJtct jeymrnt AI suc/i t/iat
Af' C A< C Af.

Proof.
Since A/' C A4,

ff+(r,Af')<<r+(r,A<) (4.15)

Sincere Ä',

<r-(r,A/') =ff"(r,A<) (4.16)

Since Af' is an equilibria! market segment of Af,

<r+(r,Af')-<r-(r,A/') = 0

Hence, by (4.15), (4.16),

0 = <r+(r, Af') - <T"(r, Af') < <7+(r,.M) - ff~(

Proposition 4.41 provides an efficient algorithm to check whether a Walrasian allo-
cation exists for a SPAM A/ = (/, Ä, e, P). The algorithm attempts to compute a
canonical stratification of M through iterative computation of tatf* M for fc = 0,1,...
When a newly computed tail is empty, the stratification is complete. When the head
appears to be empty while the tail is not, the market is not stratifiable.

This gTTC algorithm is specified in pseudocode in Table 4.1.

The most important steps in gTTC are those of the FORALL statement, which
comprise the removal of any oversupplied tool types from the current top stratum
fl'. This is justified by Prop. 4.41.

In the actual implementation of gTTC in the IG testbed, the WHILE-loop surround-
ing the FORALL statement in Table 4.1 is optimized, by performing a transitive-
closure operation before recomputing a. This operation repeatedly moves any tool
types initially assigned to agents in / ' with a first preference in Ä* from /?' to i?2.

In the form listed in Table 4.1, gTTC only reveals Wietner the market possesses a
stratification. However, it can easily be made to render the price preorder of the
stratification (presuming that it exists) by adding a print statement (viz. a command
to print the string of tool types in Ä', followed by a dot) just before the statement
Ä' := A* in the outer loop of Table 4.1.
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The pseudocode below presumes that the market Af is
a tuple (/,Ä,e,F), and that every update of Ä' trig-
gers a daemon which updates Af' accordingly, that is,
A/ ' :=(/ ' , Ä \ e \ P ' ) , where

BOOLEAN FUNCTION stratifiable
TOOL-TYPE-SET Ä',Ä*;
TOOL-TYPE r;
MARKET A/';
SCARCITY-PROFILE <r;
BOOLEAN success;

MARKET A/ );

BEGIN
Ä' := 0; fl* := Ä; success:= TRUE;
WHILE ( Ä* j * 0 ) DO
BEGIN

Ä ' : = Ä * ; Ä * : = 0 ;
CT:= scarcities-in(Af');
WHILE ( a / 0)DO
BEGIN

FORALL ( r e a" ) move-from-Ä'-to-K^(r);
ff:= scarcities-in(Af');

END;
IF ( Ä' = 0 ) THEN
BEGIN

success := FALSE; fl* :=0;
END;

END;
RETURN success;

END;

Table 4.1: The gTTC algorithm to determine market stratifiability.

The definition of P ' in the preamble of the algorithm efiFectively prevents the agents
in / ' U/- from submitting a bid on the tools in Ä\(fi' UÄ*). In a Walrasian auction,
this is effectuated by redefinition of the price assignment. Hence, by decreasing the
prices of the tool types in /?' after each traversal of the outer loop in gTTC



4.5. PRUNING AND STRUCTURING SPAM US

0/ redefining P ' , we can turn gTTC into an auction protocol for the auctio
in a Walrasian auction. Note that this is a tatonnement protocol, that is, a price»
adaptation procedure which is purely based on the scarcity information in 0.

Obviously, the label gTTC was chosen in view of the reminiscence with TTC. Con-
trary to TTC, gTTC is a tatonnement protocol. Yet, one can say that gTTC
generalizes TTC to typed reassignment problems, for if both are applied to the s&me
untyped reassignment problem, the outcomes are identical. To see this, we make the
following observations.

Since Prop. 4.41, on which gTTC is based, is a statement about oversupply of
tool types in the top stratum of the canonical stratification, the price preorder
computed by gTTC is the canonical one. In other words, the top stratum of a
stratification rendered by gTTC is always the /ary»t equilibrial market segment of
A/. This implies that, if we apply gTTC to an untyped assignment market, the top
stratum of the resulting stratification equals the solution rendered by elementary
LBF-composition (i.e., ECP* defined in Def. 3.7 on page 55) for this market. Con-
sequently, the (Walrasian) allocation rendered by gTTC is identical to the outcome
of LBF composition/revision.

As we argued in Sect. 3.3.6, TTC is tantamount to composition/revision with ran-
dom cluster composition (ECP®). At first sight, this would seem to imply that the
solutions rendered by TTC and gTTC are not necessarily the same. This is true for
typed assignment markets in general, for which gTTC renders at most one alloca-
tion, while TTC can render many different ones. However, on untyped assignment
markets, there is a Walrasian allocation, which — if the preference profile is strict
— is always rendered by both. Indeed, while the set of possible outcomes of LBF
composition/revision is generally a subset of the set of outcomes of random cluster
composition/revision, the outcomes of both are unique and identical in the case of
untyped reassignment. This is due to the fact that the indegree of a node (which
denotes the supply of the associated tool type) in a tool graph associated with an
untyped reassignment problem always equals 1. As a consequence, cycles in such
a tool graph are always arc-disjoint. Consequently, the order in which cycles are
selected does not matter.

4.5 Pruning and Structuring SPAM

The algorithm described in the previous section enables us to test whether a partic-
ular SPAM is a Walrasian market. It can verify/falsify the existence of Walrasian
equilibria in 10,000 markets of moderate size (with, say, 12 agents and 5 tool types)
within a few seconds (on a SUN-4). By taking a random sample from SPAM, and
applying the test to each market in the sample, we could acquire an estimate of the
Walrasian density' within SPAM, that is, the probability that a randomly selected
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market possesses a Walrasian equilibrium. However, SPAM is an infinite problem
space (without restriction of the number of agents in a market). Presenting an
estimate based on markets with | / | < n as an estimate of Walrasian density in
SPAM would therefore be incorrect. Moreover, we can acquire more insight if several
subspaces of SPAM are investigated separately. Hence, we will compute estimates
d(n,m) for the density d(n,m) within SPAM(n,m), that is, the subspace of SPAMs
(/, i?, e,P) with | / | = n and |il | = m, for various n and m. In fact, the subspaces
from which we take our samples are much smaller than SPAM(n, m), for two reasons.
First, not all problem instances that are formally in SPAM(n.m) constitute viable
problems, and second, we can filter out all alphabetic variants of a sample problem.
This reduces the effective problem space considerably, as we will show in the next
two sections.

4.5.1 Restriction to viable problem instances

Not every assignment market in SPAM constitutes a viao/e problem. As an example,
a SPAM in which each agent already possesses its favorite tool type is not much of
a problem. More generally, a market featuring n agents and m tool types does not
constitute a viable problem in sPAM(n,m) if any of these agents possess their first
preference. If A; of the n agents are initially endowed with their first preference, then
the market is a (viable) problem in SPAM(n - Jfc,m); not in SPAM(n,m).

This leads to the following formal definition for the problem space SPAM*(n, m) of
tnaMr SPAMs with n agents and m tool types.

Definition 4.42 (viable SPAM)
>1 5 P J 4 M A/ = (/,/?, e,P) «s on element o/ </»e ptx>6/em space SPAM*(n,m) i^ no

a,gent a/ready possesses its mos<-pre/emerf too/ type:

Furthermore, we de/ine SPAM* = Un>m>2 SPAM*(n,m) A

The restriction of the subclasses of SPAM to viable problem instances implies that
certain 'constellations' cannot occur. It is, for instance, not possible that all agents
in a SPAM* instance have the same preference.

Example 4.43 (identical preferences)
/I 5P.4A/ m te/ur/i the pre/erence o/ a// agents are tdenttca/ ts not t>ta6/e in
SPAM(fi, »0 /or any n, m > 0.
Consider, /or eiomp/e, Af = </,Ä,e,P) urith | / | = 5, |R| = 4, and P, = [afecd]
/or »' = 1, . . . ,5 . Since our de/mitton o/ marifcets requires these to fee f/osed,* there

"Hero, "closed" means that P = P [ R and (Vr e ft) r € I /me.
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must 6« some aoent in / finitia//yj endowed urctA a type-a tool. TAis agent a/rrady
poj5ej«e5 its /irit pre/erence and is tAere/ore not a vtab/r participant in tAe marinet.
//owever, a/ter removing a// sucA pAantom agents, tAere is no typf-u <oo/ /e/t in tAe
community /"a £ jime^. Con-»e(/tient/y, tAe too/ type a must 6e removed /rom tAe
pre/erence pro/i/e aiso. TAe new pro/i/e ronjtjf.» o/ tAe fidentica/j prr/rrrncrs (6rrf).
TAe same /me o/ reasoning can 6e app/ied to tAe otAer too/ type« untt/ - u/timate/y
— tAere are no agents or too/ types /e/t.

Ex. 4.43 specifies a preference profile P, such that the market (e, P) is not a viable
problem for any allocation e. Such profiles are rare. In fact, Ex. 4.43 (i.e., &
profile of identical preferences) is the only case we can think of. However, there
are many com6tnations of a preference profile P and a community tool bag F which
are incompatible, in the sense that there exist no viable market (e, P) such that
| An e = F. The following proposition characterizes these combinations in terms of
f and the bag * of first preferences of P.

Proposition 4.44
Let fl 6e a set o/ m too/ types, P a pro/i/e o/ n strict pre/erences over fl, and
F € B(fl) a too/ 6a</ untA |F| = n.
£>e/ine 7r € ®(fi) 6y 7r = {bes<p,(i?) | t € / } , and /et SPAM*(F,P) denote tAe space
o/ wa6/e marJtets (e, P) u;ttA pre/erence pro^/e P and community too/ 6a# | /m e = F.
Let Ep denote tAe set o/ via6/e a//ocattons /or P, tAat is, Ep = {e € fi' | (e, P) e
SPAM'(F,P)}.
TAen a necessary and su^icient condition /or £p / 0 is

(Vr G -R) 7r(r) + F(r) < n (4.17)

Proof.
The necessity of (4.17) can easily be established. Define, for i = 1, . . . ,n, A(i) =
maxp,. Suppose that Ep ^ 0. Then choose e £ Ep, r G f l arbitrarily, and define

Then |J,| = w(r) and |/, | = F(r). (t)
Furthermore,

, | = | / | - |J,| - n - ir(r)
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Since e is a viat/e allocation, . ,„ „ .

(Vi€/) (e(i)=r =>A(0*r) => *

(Vie/,) / » ( * ) * » • =>
/,C/f, => |/,| < |ff,| .

With (f) and (J), r(r) = |/,| < |ff,| = n - 7r(r).
Hence, T(r) + ?r(r) < n.

We prove sufficiency by induction for m > 2.
The initial step (m = 2):
Let Ä = {fi.rj} and let F and 7r be defined according to the description above.
Then (4.17) comes down to

f <n ..
< n <*•"*'

Since TT. T 6 <8({r,. r,}). and kl = |r | = n, ?r(r,) + Trfo) = n = H n ) + rfo) .
With (4.18), this implies that

< n - T ( r , ) =
rr(r,) < n -

In other words, the number of tools of type r2 suffices to allocate an rj to each of the
agents with a first preference for n and vice versa. This defines a viable allocation.

Induction step: ({2,..., m} -f m + 1)
Let Ä = {r,,...,r,,,+i}, and / = { l , . . . ,n} . Define TT and T 6 <B(fl) as before, and
suppose that (4.17) holds, that is,

< n

(4.19)
) < n

We will show that there exist a porha/ allocation involving (at least) the tools of
typo r,,,, i and the agents with a first preference for type r,„+,, which is viable, and
transforms the set of inequalities (4.19) into a set of at most m inequalities. By the
induction hypothesis, there exists a viable allocation involving the tool types in this
secondary set of inequalities. Combining this allocation with the partial one renders
a viable allocation that involves all of the m + 1 tool types.
Tho partial allocation is constructed as follows. Define the s/acA: 5, of tool type r\
as

£ ± n - »(I-,) - T(r,)
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Then the total slack in A equals
m+l m+1

S„ 4 £ 5, = 51 (n - *(r.) - T(r,)) = (m + l)n - n - n = (m - l)n
1=1 1=1

The partial allocation involves *(?•„,+,) + F(r„+,) allocation steps, where each step
comprises the allocation of one tool type to one agent. When we allocate a tool of
type r„,+i to an agent with a first preference for r, y* r„+,, we must update (subtract
one from) the values of r» and »r(r,). This does not alter the slacks 5, and S,„+i but
it reduces the slack of each of the tool types in A\{r,, r„,+ |} by 1, so the total slack
SR is reduced by m - 1.
The same holds when we allocate a tool of type r, ^ r„+, to an agent with A first
preference for r„,+ i. The associated updates of n and T(r.) do not alter 5, and Sm+i.
but they reduce the total slack by m - 1.
Thus, each step in the construction of the partial allocation involves a decrease of n
by one, and a decrease of the total slack by m - 1. This implies that the equation
5„ = (m - l)n remains valid throughout the construction. If we ensure that, in each
step, the selected tool type r, has minimal slack (i.e., 5< = min{5i,..., 5m}), then
the step does not invalidate (4.19) as long as there is at most one tool type with
zero slack. We will show that this condition is fulfilled during the entire construction
process. Suppose that two or more tool types in fi\{r„,+,} have zero slack. Then
the total slack of (m — l)n must stem from at most m - 1 tool types (including
!•„,+,). Since S, < n by definition, this would imply that S, = n for all of the tool
types, which, in turn, implies that 7r(r,) = T(r,) = 0. In other words, the situation
that we cannot perform a step without invalidating (4.19) can only occur when we
have already completed a viable allocation involving all m + 1 tool types.

•
Next to 'nonproblems' like the instance in Example 4.43, Def. 4.42 of problem vi-
ability also excludes problems that are already solved, that is, problem instances
where the initial allocation is a Walrasian allocation. This is expressed formally in
the following proposition.

Proposition 4.45
Let ICj, denote t/ie set 0/ Wa/rasian a//ocations 0/ t/ie marjfcet M = (/, A,e, P) €
SPAM'. T/ien

Proof.
If the market is not Walrasian, W« = 0, so e £ W»,. Otherwise, e e W\f <* W« =
{e}. Suppose that this is the case.

Let r be a tool type in the top stratum of a stratification associated with e. Then
any agent i with e(t) = r will possess its most-preferred tool type in the Walrasian
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allocation. Since W« = {e}, this most-preferred tool type appears to be e(i). Hence,
e is not a viable initial allocation. This contradicts M € SPAM". So e 6 W^ cannot
be true.

4.5.2 Exclusion of alphabetic variants

Trie software that was developed to test the stratifiability of a market in SPAM
is sufficiently fast to consider the possibility of eiact computation of the density
d(F, P) in a subspace of all markets with a certain, specified preference profile P ,
and a certain, specified tool bag F. ' Such exact computation involves the generation
of all initial allocations e of F over I, such that the market (e, P) constitutes a viable
problem in SPAM(n,m).'" Then the density d(F,P) equals the fraction of these
initial allocations for which the associated market is stratifiable. By selecting a
random sample of preference profiles, and averaging over the associated densities
d(F,P) , an estimate d(F) of d(F) can be acquired. Computation of estimates d(F)
for a// tool bags F with |F| = n and |F| = m would provide us with an impression
of the density in SPAM'(F) as a function of F. However, even for relatively small
values of n and m, the number of such tool bags is too large for such computation
to be feasible.

Fortunately, it is not necessary to compute estimates for a// of these bags. Provided
that the size of the profile sample is sufficiently large, d(F) will be approximately the
same for many different bags F, because d(Fi) = d ^ ) if F[ and F2 are a/p/mtettc
variant.«.

Example 4.46 (Alphabet ic variants)
Consider t/ie mordete Mi = [o6c, 6ac, ac6, c6o] and M2 = [c6a, 6ca, ca6, a6c].
/t is o6t>tou5, Maf A/i »s strati/taft/e »j(f A/2 »*. /or t/ie on/y dt^erence 6etu>een t/ie
tu>o marilrts is t/iat t/»e too/ <ype ui/iic/i is cai/ed "a" in Afj is ca//ed "c" in A/j,
and tuce versa. T/»e associated too/ 6aos are Fi = {a : 2,6, c} and Fo = {a, 6, c :
2}. // we were to compute t/ie densities d(F[) and d ^ ) exactly, t/iat is, use a
'somp/«"' ty/iic/i consists o/all possi6/e pro/i/es o/^ a<7ent5 over i? = {a, 6, c}, tnen tne
outcomes u;ou/d 6e identica/. .4s i//ustrated in Fto. ^.6, ant/ pro/i/e Pj t/»at /onns a
strati/ia6/e market wit/i t/»e tnttia/ a//ocation ei € ^4(Fi,7) corresponds in a one-to-
one /a.v/«ion tint/i an imtia/ a//ocation e2 6 ^4(Fj,/) and a pro/i/e Pj, ui/iere (e2,P2)
is tnc a/p/ia6etic variant 0/ (ei, Pi) wnic/i ts arrtt»ed at 6y excAanoino tAe a 's and tAe
c's. Consetjtientiy, an estimate/or Wairasian density in SPAM"(n,m) 6ased on oniy
one too/ 6ao Fi w jt«st as rdia6/e as an estimate 6ased on a num6er 0/ too/ oaos Fi,
Tj, • • •. 1/ a// 0/ tnese 6ays «re a/p/ia6etic variants. A

°ln prwticf, exact computation is feasible only for smalt dimensions, say m < 5. and n < 15.
'"Here, n = |r| and m = |f|.
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PI

P2

Figure 4.6: For two tool bags Pi and ^ which are alphabetir variants,
the associated tool type renaming a defines mappings between
preference profiles and initial allocations such that ( P I , P J ) and
taiA) (where e2 = o'(ei) and P2 = <?(Pi)) arc alphabetic vari-
ants, in other words, essentially the same markets.

Consequently, we need only investigate one tool bag from each equivalence class
under alphabetic variation. As pointed out in Sect. 2.2.2, each of these equivalence
classes corresponds with a muftip/tctty type of tool bags. More precisely, the set
of multiplicity types of size m and sum of elements n is the normal divisor under
alphabetic variation of the set of tool bags involving n tools and m tool types. For
the reader's convenience, we recapitulate (and expand) Def. 2.13 of multiplicity type.

Definition 4.47 (multiplicity type)
Let /?€ <8(5) 6e denoted 6y {ij :m, , .

0/ /3 15 t/ie frag
, i „ : m „ } . T/ien t/ie mu/ttp/icity type {(/?)

©„(•S) denote« t/ie set o/iai/s over 5 untn mu/ttp/»ctty type a, and SPAM*(a) denote«
tAe set 0/ marfcets (/, i?, e, P) € SPAM', suc/i t/iot ^(P) = a. A

Example 4.48 (multiplicity type)
Let Q = {a ,a .a ,6 ,6 ,c ,d ,d , /} , and /? = {a,a,6,6,6,c,c,d,e}. Tnen
{3,2,2,1,1}, ondC(€(a)) = {2,2,1}.

The notion of multiplicity type enables us to partition the subspaces SPAM*(n,m)
into a relatively srauil number of subspaces SPAM'(a) within which we can apply
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our algorithm to compute (estimates of) Walrasian density. The proposition below
provides the means to calculate the factor by which the problem space is reduced if
we use multiplicity types to get rid of alphabetic variation.

Proposi t ion 4.49
Let Q fee a mu/hp/icttj/ type tuit/i n = J3x€a x, and /et 5 6e an ar6z<rary set o/
cardina/tty |a|. 77ien tAe num&er o/ 6aos /3 o/ over 5 with £(/3) = a (i.e., the
number o/ a/p/ia6ettc tiartants associated wit/i a j e^wa/s

(4.20)

toAere {(a) denote« t/ie mu/tip/icity type o/ t/ie mu/ttp/tctty type a.

Proof.
Let us first look at the case £(ct) = {1 : m}, that is, a contains m = |a| different
elements. Then the number of bags of multiplicity type a equals the number of ways
in which we can label m distinguishable objects using m different labels. Obviously,
this can be done in m! different ways. If, however, fc elements of a are all identical
(and the others differ), we must divide m! by A:! to compensate for counting identical
permutations more than once. In general, if Q = {aj : mi , . . . , dp : rrip} (i.e.,
{(a) = {mi , . . . ,rrip}), then we must divide by m^ • . . . • m,! (i.e., Fixe«.») *0> *°
compensate for counting identical permutations more than once.

•
Table 4.2 shows the 9 multiplicity types associated with SPAM*(10,4), and the num-
bers of different bags (alphabetic variants) and allocations associated with each type.
The second column in the table specifies the number of bags (alphabetic variants)
associated with a multiplicity type a. This number is given by (4.20) in Prop. 4.49.

As an example, the first line in Table 4.2 features the multiplicity type a =
{7,1,1,1}. The number of bags associated with this multiplicity type equals the
number of ways to label the 4 'containers' which make up the multiplicity type with
4 different labels. Note that, initially, the containers can only be distinguished by
their size. The container of size 7 in a is thus distinguishable from the three con-
tainers of size 1. These three are indistinguishable, however. This amounts to a
number of different possible labelings (corresponding with the bags {a : 7,6, c, d},
{6:7 ,a , i \d}, {c:7,a,6,d}, and {d:7,a,6,c}) of 4!/3! = 4 . This number equals the
value specified by (4.20), since {(a) ={({7,1,1,1}) = {1,3}.

From tho first and third column of the table, we conclude that the number of allo-
cations lmodulo alphabetic variation), and hence, the size of the subspaces SPAM(a)
increases with increasing 'balance' within the multiplicity type. The imbalanced
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multiplicity type
{7,1,1,1}
{6,2,1,1}
{5,3,1,1}
{4-4,1,1}
{5,2,2,1}
{4,3,2,1}
{3,3,3,1}
{4,2,2,2}
{3,3,2,2}

9

nr of bags
4

12
12
6

12
24
4
4
6

84

nr of allocs/bag nr of alloca
10!/(7!) = 720
10!/(6!2!) = 2520
10!/(5!3!) = 5040
10!/(4!') = 6300
10!/(5!2!*) = 7560
10!/(4!3!2!) = 12,600
10'/(3!*) = 16,800
10!/(4!2!>) = 18,900

Ll0!/(3!'2!') = 25,200

95,640

2880
30,240
60,480
37,800
90,720

302,400
67,200
75,600

151,200

818,520

Table 4.2: Multiplicity types of bags of size 10 over {o,6, c, d}.

multiplicity type {7,1,1,1} is associated with only 720 allocations per alphabetic
variant, whereas the balanced type {3,3,2,2} is associated with 25200 allocations.

Another observation made from Table 4.2 is that using multiplicity types instead
of tool bags to partition SPAM*(n,m) reduces the number of subspaces for which
the Walrasian density must be computed (presuming that we wish to perform an
exhaustive investigation) by a factor y > 9.

The number M(n, m) of mu/t«p/tct<j/ types associated with SPAM"(n, m) can be com-
puted via a simple recurrent relation, as shown in Prop. 4.50 below. Values for
various n and m, listed in Table 4.3, demonstrate that M(n,m) rises relatively
slowly with n and m, in comparison with the number of allocations per bag as a
function of multiplicity type imbalance.

Proposit ion 4.50
77ie num&er 0/ mu/ttp/icity type* a unt/i
recurrent re/ation

' Q = n and lal = m

min{m,n— m}

£>(n,m) = (4.21)

6oun</ary £>(n, 1) =

Proof.
The number of multiplicity types a with 53 a = n and |Q| = m equals the number of
ways in which n indistinguishable objects can be divided over m indistinguishable
containers, with no container left empty. As such, the boundary values ö (n , 1) and
D(n,n) are obviously 1. When we have to divide the n objects over m containers,
with 1 < m < n, then m objects are needed to ensure that no container is empty.
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For the remaining n —m, we can choose. Either we stack all of them in one container
(D(n-m,l) ways to do this), or we divide them over 2 containers (D(n-m,2) ways to
do this), . . . , or we divide them over all of our m containers ((D(n-m,m) ways to do
this). Of course, if n — m < m, we can divide the n — m objects over at most n — m
containers, since each of these containers is to receive at least one object. This is
exactly what is expressed by Eq. 4.21.

n \ m
Q

4

7

Q

9
10
11
12
13
14
15
16
17
18
19
20

3
i

i

9

o

7
8
10
12
14
16
19
21
24
27
30
33

4

i

i

o

1

£

6
9
11
15
18
23
27
34
39
47
54
64

5

i

1

O

5
7
10
13
18
23
30
37
47
57
70
84

6

i

i

9

3
5
7
11
14
20
26
35
44
58
71
90

7

i

1

2
3
5
7
11
15
21
28
38
49
65
82

8

i

1
2
3
5
7
11
15
22
29
40
52
70

9

1
1
2
3
5
7
11
15
22
30
41
54

10

_
1
1
2
3
5
7
11
15
22
30
42

11

_
-
1
1
2
3
5
7
11
15
22
30

12

_
-
-
1
1
2
3
5
7
11
15
22

13

_
-

-
1
1
2
3
5
7
11
15

14

_
-
-
-
.
1
1
2
3
5
7
11

15

-
-
-
-
-
1
1
2
3
5
7

16

_
-
-
-
-
-
-
1
1
2
3
5

17

_
-
-
-
-
-
-
-
1
1
2
3

18 19

_

-
-
-
-

-
1
1 1
2 1

Table 4.3: The number of multiplicity types M(n,m).

The employment of multiplicity types instead of tool bags to partition SPAM*(n, m)
does not influence the precision of the density estimates, and tends to reduce the
computational complexity of density estimation considerably. We abstain from pre-
senting a table similar to Table 4.3 for B(n, m) to provide support for this state-
ment, in the conviction that a few examples suffice. One example can be derived
from Table 4.2: for SPAM* (10,4) the use of multiplicity types reduces the compu-
tational complexity by a factor of about 9 (84/9). The reduction factor tends to
grow rapidly with the size of the agent population: For SPAM'(12,5), it is about 25
(330/13), while it is only 3 for SPAM'5,3).

Skeptical readers are invited to perform their own computations with help of
Prop. 4.51 below, which specifies a formula for the number B(n,m) of different
too/ bags occurring in SPAM* (n,m) markets, that is, the number of bags J of size
|/8| = n and carrier size |$| = m.
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Proposition 4.51
Let 5 k an arbitrary set o/ cardtnaitty m, (et ((/?) denotes tAe multiplicity type
o/ tAe 6ag (J, and H(n,m) denote tAe set o/ mu/ttp/tcity types a untA |a| = m and
£ ,£„x = n- ^Ae number B(n,m) o/ bays 0 € <8(S) o/ sue |/?| = n and |/5| = n»
can be expressed in terms o/H(n,m) as

Proof.
Let *B„(5) denotes the set of bags over 5 with multiplicity type a. Then

<8„,(S)n<8„,(S) = 0 if a , / a , .

As such,

B(n,m)= X! l*

The size of the set Q3a(5) does not depend on 5. In fact, for any set S of size |a|,
= S ( Q ) , with B(a) defined as in Prop. 4.49, that is,

| g , ( S ) | = B ( a ) = ^ ' " ^, ' (t)

Substitution of (t) into (f) renders (4.22).

•
A second useful aspect of the notion of multiplicity type (next to the reduction of
the computational complexity of density estimation) is illustrated by the following
proposition.

Proposition 4.52
Let M e SPAM*(Q), and /et, /or any i £ a , a , C a denote tAe subbao o/mu/tip/tcittes
in a \ {x} tAat do not exceed x, tAat is, a, = {y € a \ {x} | y < x}. Suppose tAat

(Vx 6 a) x > 53 y (4.23)

TAen Af is not a Wa/raszan marfcet.

Proof.
Let A/ = (/,i?,e,P) € SPAM"(a), and let T = I/me denote the market's'tool
bag. Without loss of generality, we may assume that the tool types n , . . . , r„,
are numbered according to nonincreasing multiplicity in F = |Jme. That is, if
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a = {* I , . . . , f cm} , where fcj = r ( r < ) then fcj > fcj > . . . > A:.«. •
Then (4.23) can be expressed in terms of the elements fcj of Q eis

(Vi€{ l , . . . ,m})* ,> f; fc> (4.24)

Suppose that M is stratifiable. Let M> = ( M \ . . . ) be an arbitrary stratification of
M, and let in denote the Walrasian allocation of M.
We -will show by induction, for tool type r, (t = 1 , . . . , m), that none of the tool types
resides in the top stratum of M>. Since the top stratum of a stratification is not
empty by definition, it follows that M is not stratifiable, and, hence, not Walrasian.

First step (tool type ri): Let /i denote the set of agents, which are initially endowed
with a tool of type ri , and let Fi denote the subbag of tools from F which are not
of type r,. Formally, / , = {i € / | e(i) = r j , and F, = 4. Jme[,y,.
Now let us suppose that ri is in the top stratum M' of the (arbitrary) stratification
Af> of M. Since M is a viable market, this implies that (Vt € A) max^,(/?) € i? \{r i} .
Hence, (Vt € /i) u>(0 € / l \ { r i } . Thus, in the Walrasian allocation, each of the &i
agents in /i must possess one of the £™-2 ^j tools in F,. But this is not possible,
since, by (4.24), fcj > EJljifcj. So r, 0 M ' .

Induction step ({r , , . . . ,r\_i} -+ r\): If none of the tool types n , . . . ,r,_, are in the
top stratum of any stratification of M, then (due to Prop. 4.15) none of these tool
types can be allocated to an agent in the top stratum. (t)
Now suppose that T\ € M ' . Let /, denote the set of agents possessing a tool of type
r,, that is /i = {j € / | e> = f\}. Then all of the fc< agents in /, must receive a tool
type other than r, (because of viability), which is not an element of { r ^ . . . ,r ,_i}
(because of (f)). In other words, each of the fc, agents initially endowed with tool
type r, must be allocated a tool from the bag F, = 4. Jmefu,>,/, of tool types other
than r,. This, again, is not possible, since |F,| = £7=«+i *> < *• = |J.| (by (4.24)).
Hence, r, £ M ' .

Example 4.53 (A multiplicity type without Walrasian equilibria)
/ / M = ( / , ß , e , P ) is a marifcet m SPAM* sue/» </»o< F = | / m e = {a:^,6.2,c}
we can 6e sure t/»at no W^o/rastan egui/t6r»«m eitsts, wAatetier tAe va/ues o/ P and e
are. A

The usefulness of the notion of multiplicity type is not restricted to cases to which
Prop. 4.52 applies. It also tells us something about the decree o/ «mprot>emen< to be
expected from a Walrasian auction in cases that come c/ose to Eq. 4.23.

Example 4.54 (A low-prospect multiplicity type)
tf M = ( / ,Ä,e ,P) w a marJfcet «n SPAM* sucA tnat F = 17h» e = {a: 1 2 , 6 : 3 , c : 3 } ,
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then we can t«e tAe some /«ne o/ nwwontnj as in tne proo/ 0/ Prop. V 52 to deducf
t/iat. if a Wa/rasian egui/i6num eztsts, tAe ajsociatetf rro//orahon un// not intio/nr any
<yp«'-<i toois. Conse^uent/y, none 0/ tAe /S o^entj tnittai/y cnffowrtf witA a typr-a toot
uni/ 9am anytAtng 6y partaJbtng tn a Wainutan auction. &

If |Ä| = 4 instead of 3 as in the above example, then we cannot draw such a
conclusion. This is a consequence of the fact that the top stratum of a stratifiable
market in SPAM" must involve at least two tool types, but not necessarily more.
Suppose, for example, that F = {a : 12,6 : 4, c : 3, d : 3}. If each of the 'c-possessors'
has a first preference for type d and vice versa, a top stratum consisting of c and
d possessors could exist. In this case, the market is Walrasian if the preferences
of the a- and b-possessors are such that the number of a-possessors preferring b
over a equals the number of b-possessors preferring a over b." And the equilibrium
constitutes a gain for at least one a-possessor if this number is positive. Of course,
we can deduce that at most 4 of the 12 a-possessors will profit from a Walrasian
auction. Similar conclusions can be drawn for imbalanced tool bags if |/?| > 4.

Example 4.55 (Another low-prospect multiplicity type)
Let M = (7,Ä,e,P) € SPAM* wit/i £(M) = (12,4,4,2,1). 77ien at /east 0 0/ tAe
<we/i;e agents possessing t/ie most /reguent too/ type wti/ not pro/it /rom a Wa/rasian
auction. A

This follows immediately from the fact that (in view of Prop. 4.52 ) the tools with
multiplicity 12 cannot be in the top stratum, and the fact that the smallest top
stratum that can be formed consists of the two tools with multiplicity 4, leaving at
most 3 tools to satisfy agents which initially possess a tool type of multiplicity 12.

4.5.3 Inhomogeneity and eccentricity

In order to picture the dependency of Walrasian density on the multiplicity type
of a market, we would like to arrange the multiplicity types along an axis. Such
arrangement suggests the existence of a scalar metric on multiplicity types. In view
of the above account on the relatively low merits of Walrasian equilibria in markets
with 'strongly imbalanced' tool bags, we would like the metric to reflect this informal
notion of imbalance. As such, it is clear that {1,1,1,2,10} should qualify as "less
balanced" than {3,3,3,3,3}. But what about {2,2,3,3,5} and {1,1,2,4,4}? Which
of these is more balanced? Or are they equally balanced? There seems to be no
objective criterion to define t/ie most appropriate order, let alone a natural metric,
on multiplicity types.

"The market is also stratifiable if a// a(b)-possessors prefer their a(b) over b(a), but in this caae
none of these agents will gain anything.
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We have tried out different scalar metrics for multiplicity imbalance. None of these
appeared to allow for a stmp/e characterization of the relation between imbalance
and Walrasian density (like "The Walrasian density increases with multiplicity im-
balance"). Below, we use two of these metrics. The first, the zn/iomogenetty of a
multiplicity type, measures its variance as a series of numbers. It is relative fine-
grained, in the sense that it is often (but not always) one-to-one, mapping different
multiplicity types to different inhomogeneity values. The second one, the eccentric-
ity, is coarser. It reflects only the maximum difference of two of the numbers in the
multiplicity type. Both metrics are scaled so as to range over the closed interval
[0,1]. Formal definitions are provided below.

The variance in a series of m positive natural numbers A\ whose sum equals n is
maximal if the series is of the form n - m + l , l , . . . , l , a s i n the multiplicity type
(5,1,1,1). In this case the variance equals

V,-

This leads to the following definition for inhoinogeneity.

Definition 4.56 (inhomogeneity)
Let <» fee a mu/ttp/ictty tt/p<", and /et £ a and a 6e denned in t/ie natura/ manner,

t/iat ii.
\""* — ^^

160

and

Then t/ie tnnomooeneity in/»(a) 0/ a mu/tipficity type 0 eguafe

u;/»ere t/»e sco/tno /actor C

WAen wr speaA: o/ tAe inAomogenetty o/ a marifcet, we mean tAe tnAomooenetty o/ its
mu/ttplirity type. A
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In an assignment market with n agents, m tool types, and multiplicity type a,
n = J ^ , J „ I and m = |o|. Furthermore, the difference between the largest and the
smallest element of a attains a maximum of n - m at a = {n — m + 1, 1, . . . , 1}.
This leads to the following definition of eccentricity.

Definition 4.57 (eccentricity)
77»e eccentricity ecc(a) o/ a mu/ttp/tctty type a

— (max a — min a)

wfcere tAe sca/ing /actor C equals

Tfte eccentricity 0/ a mariket w tAe eccentricity o/ its multiplicity type. A

Without proof, we mention that both these metrics are one-to-one at their extremes,
that is, for any n > m and m > 2, we can speak of t/ie most eccentric multiplicity
type within SPAM*(n,m), and t/ie most homogeneous one. Moreover, the most ho-
mogeneous multiplicity type is also the least eccentric one, and vice versa. In other
words, the two metrics coincide in their extremes. We denote the subset of markets
in SPAM"(n,m) with minima/ eccentricity (or inhomogeneity) by SPAM"(n,m,_).

Example 4.58 (Minimal and maximal eccentricity)
Let SPAM" (n, m) denote t/ie c/ass 0/ marfcets M € SPAM* twit/i n agents and m
too/ types. 77ien Af € SPAM"(12,4) /ias minima/ eccentricity ^«iz. 0̂  1/ £(M) =
{3,3,3,3}, and maitma/ eccentricity fm,z. ^ j = 1J t/£(M) = {9,1,1,1}. Ltfceunse,
a marfcet m SPAM*(10,4) /ias minima/ eccentricity ft/iz. | j i/^(M) = {3,3,2,2},
and maxima/ eccentricity ftriz. /^i/^(M) = {7,1,1,1}. A

Note that, in general, the minimal eccentricity of assignment markets with n agents
and m tool types is 0 if n mod m = 0, and -̂ — otherwise.

4.6 Estimation of Walrasian Densities in SPAM

We shall present estimates d(a) of the density of Walrasian markets in different
subspaces SPAM* (a) of markets with (a community tool bag of) multiplicity type
Q. The density d(o) represents the probability that a market which is randomly
chosen from SPAM'(Q) turns out to possess a Walrasian equilibrium. As such, the
density <f(a) can be regarded as the mean value of the stochastic variable W (for
Walrasianess) in the sample space SPAM*(Q), where W = 1 if a sample market is
Walrasian, and W = 0 if it is not.
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4.6.1 Sampling method

We have computed the estimates d(a) of the Walrasian density in SPAM"(a) by aver-
aging over estimates d(F, P) for various preference profiles P, and a fixed F € ©„(A).
Each of these d(F, P) estimates is the percentage of (viable) problem instances (e, P)
(in a sample of initial assignments which are drawn randomly such that 4. /m e = F)
which turn out to possess a Walrasian equilibrium.

The.reason that we compute the estimates d(a) by averaging over the estimated den-
sities computed from samples taken from subspaces of SPAM*(a), instead of simply
taking a single sample from SPAM*(a) is that the latter method tends to render less
reliable estimates. In this respect, we have been inspired by the statistical method
known as strah/ied samp/m#(Hoel, 1984). Stratified sampling entails the estimation
of the mean X of a stochastic variable X in some sample space V as a weiy/ited av-
erage of estimates m, for X in subspaces K< of the sample space, where the weights
are proportional to the sizes of the sample subspaces. Formally,

The advantage of stratified sampling lies in the fact that it generally increases the
reliability of m.

Our approach diners from stratified sampling in two respects. First, the subspaces
SPAM*(F, P) from which we draw our samples do not form a partition of the overall
space sPAM'(a). We draw sample problems from the subspaces SPAM"(F, P) associ-
ated with only some 1000 preference profiles, because the total number of different
preference profiles (well over 10'™ for markets with 12 agents and 5 tool types (cf.
Prop 4.39 on page 112)) is far too large to compute an estimate for every subspace.

The second difference between our method and stratified sampling is that we do not
weigh the estimates rf(F, P) in proportion to the size of the subspace to which they
apply. We are indeed dealing with sample subspaces of different size: Prop. 4.44)
shows that the size of a subspace SPAM*(F, P) for fixed F depends on P.

We investigated the impact of subspace size differences on the estimates of <f(n, m, £)
by comparing estimates computed with proportional weighing, with estimates de-
rived with uniform weighing. As illustrated in Fig. 4.7 below, subspace size differ-
ences are insignificant for maximally homogeneous multiplicity types, but they can
have considerable impact on the density estimates for inhomogeneous multiplicity
types.

Nevertheless, we have employed uni/orm instead of proportional weighing in the
computation of d(n,m,o) from d(F,P). There are two reasons for this. First, the
size of SPAM*(F,P) is the number of allocations e which are compatible with F
(i.e., | /»»e = F), and viable with respect to P. Whereas the number of allocations
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propomoni wxghxg
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bihomogenaity ol resource bag

Figure 4.7: Differences in density estimates acquired via different weighing
methods (n — 10, m = 4).

compatible with a given multiplicity type is easy to compute, we know of no easy
way to determine the number of vtaft/e allocations that comply with a. Of course,
we could simply generate these allocations and count them. This is what we did to
determine the density with proportional sampling for Fig. 4.7. But this would be a
very costly matter for higher values of n and m.

The second reason to use uniform instead of proportional weighing is the following.
What we are ultimately interested in, is the probability that a reo/«sttc reassignment
problem possesses a Walrasian equilibrium. We have excluded the least realistic
problems (viz. those which are not viable), but among the remaining subspaces,
there may still be some that are less likely to occur in practice than others. Hence,
the wetj/i* (in the sense of importance) of SPAM*(F,P) should not equal its size in
terms of the number of viable, compatible allocations, but the probability that the
profile P and the tool bag F are encountered in practice.

One could argue that, in the absence of information about these probabilities, we
should make use of the information that we do have (or, at least, can acquire with
some effort), namely the size of the sample spaces in terms of the number of associ-
ated allocations. We provide a counterargument against this statement in the form
of example profiles for which we claim uniform weighing to be more appropriate than
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proportional weighing, even when the sizes of the problem spaces are known.

Example 4.59 (The size of problem spaces)
Consider </ie pro/i/es P* = [o6c, a6c, 6ac, 6ca] and P* = [a6c, ac6, 6ac, 6ca], and
t/ie aZZocations e' = [6caa] and e* = [cbaa]. T/ie too pro/iZes differ on/j/ in J/ie
pre/erence o/ <Ae second agent, and </ie <wo aZZocations m f/ie endowment o/ t/ie
/irst and </ie second agent. ./Vote t/ia< t/ie (wo aZZocations /iaue </ie same tooZ 6a§:
r = 4 k e ' = | J m e ^ { a : 2,6,c} o/muZtipZtcity type {2,1,1}.

/ / we view pro/IZe P ' as a tuple o/pre/erences (P/ .PJ ,Pj ,P,') fas we Ziaue 6een
doing most o/ «/ie timej, </ien M' = (e ' ,P ' ) and M^ = (e*,P') consh<u<e di^eren«
marA;e<s. Wotuener, i/ </ie endowments are not speci/ied, t/ien a/Z we fcnow o/ an ayent
ts its pre/erence. ConseguentZy, we can identify an agent wit/i its pre/erence. Two
agents wit/i t/ie same pre/erence t/ius ftecome two instances o/ t/ie same agent. j4n
agent popuZation tecomes a bag o/agents f=pre/erencesj. j4nd an aZZocation ftecomes
a multifunction'^ /rom a 6ag o/ agents to a 6ag o/ tooZ types, /n t/»is /rameworA;, t/ie
markets M' and M^ are identicaZ. /n /act, t/iej/ do constitute essentiaZZy t/ie same
rea/Zocatton protZem, so regarding t/»em as tdenttcaZ markets seems gu«te reasonatZe.
T/ns aZso impZies t/iat, in t/ie context o/ pro^Ze P ' , e' and e* are one and t/ie same
a/iorahon. /n t/ie muZti/unction notation o/De/. 2. i5, 6ot/i aZZocations are denoted
6y {(aftc, 6), (ate, c), (6ac, a), (6ca,a)}, /n t/»e contezt o/pro^Ze P" Aowever, t/ie aZ-
Zocattons e' and e' di^er, no matter w/iet/ier we regard aZZocations as muZti/unctions
or not, 6ecause pro^Ze P* consists o//our dij^erent pre/erences.

Summarizing, aZZocations tnat di^er in tne context o/ pro/iZe P ' , may 6e identi-
caZ in t/ie context o/ P ' . Xs a conseguence o/ t/iis and t/ie /act t/iat pro/lie P '
consists o/ /our di^erent markets, w/iereas two o/ t/ie /our pre/erences in P ' are
identtcaZ, t/ie si^c ('in terr7»s o/ t/»e numfcer o/ wiabZe marfcetsj o/ the respective as-
sociated marJfcet spaces di/fer. /n t/iw case, e' and ê  are the onZy vta6Ze aZZocations
/or pn)/iZc P*. i/ence, the sue o/SPAM*({a,a,6, c},P*) eguais 2, whereas the sue o/
SPAM'({a,o,6,c},P') eguaZs /. A

As such, when employing proportional sampling, one would attribute twice as much
weight to the estimate associated with profile P* as to that associated with profile
P ' . It seems questionable at the very least whether it is realistic to expect that
profile P" will occur twice as often in practice as profile P ' . After all, people tend
to exhibit at least some degree of unanimity in their preferences. Many people prefer
a Mercedes over a Toyota, and a Toyota over a Skoda. Consequently, if the number
of agents is large in comparison with the number of tool types, profiles consisting of
n different preferences may be relatively rare."

"Se« Sect. 2.2.2 for » definition of multi-functions,
one thing, they do not even «xu( if n > m!.
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One could suspect that the reduction factor 2 in the above example is an artefact
of the extremely small sizes of the respective problem spaces. Tb take away such
suspicion, we present one additional example.

Example 4.60 (The size of problem spaces (II))
Let 5 ' =SPAM*(F,P') and 5* =SPAM'(F,P*) 6e «u6*pac« O/SPAM*(6,6) un«A T =
{a,6,c,d,e, /}. Suppose tAat tAe proves sAare tAe sarn«- 6<io »r = {<i : 3,6 : 3} o/
first prr/ercnces, 6ut dij(fer tn tAe sense tAat P ' consists o/ siz different pre/errncej,
wAereas P* u a 6ao wttA on/y two di/ferent elmtn* types fP* = {P,* : 3, Pj : 3}^.
To count tAe nttm6fr o/ t>ia6/e initial (iZ/tx-otton.? /or P ' , we o6ser«e tAat tAr tfia6t/tty
constraint entatis tAat tAe type-a too/ must 6e ai/ocated to one o/ tAr tAree agents
tAat Aave typ« 6 as tAeir /avortte, and vice versa. TAere are 3 x 3 = 9 ways to do
tAis. For eacA o/ tAese, tAe otAer /our too/ types can fee dtstn6uted /rer/y ot>er tAe
remainmo /our aoents. TAus, tAe numoer o/ tta6/e a//orations /or pro/i/p P ' raua/s
9 x 4 ! = 216. Kiafci/ity untA respect to pro/Ue P ' a/so rntai/i tAut tAr type-a too/s
must be ai/ocated to tAe type-6 /ans, and vice versa, //owever, due to tAe /art tAat
a// tAe type-a /ans are identica/ fas are a// tAe type-6 /ans^ tAis represents on/y one
po55t6t/tty. 5imi/ar/y, tAe num6er o/ ways to dtstrt6ute tAe remaining /our too/ types
over tAe remaining aoents now comes down to tAe num6er o/ ways to sp/tt tAe /our
too/ types in two oroups o/ two. TAis can 6e done «n (J) = 6 ways. Conseguent/y,
tAere are on/y six dijfferent wa6/e a//ocations /or Pj. i4// in a//, tAe ;;ro6/em space
SPAM'(r.P') is 56 times /aroer tAan SPAM*(r, P ' ) . . A

In view of the fact that we employ uniform weighing to compute d(£)> the term
"density estimate" is somewhat inappropriate. d(£) does not estimate the density in
SPAM'(£), but the average of the densities in its subspaces SPAM*(F,P). However,
for the sake of conciseness, we choose to use the phrase "density estimate" instead
of "estimate of the average of the densities in subspaces SPAM'(F, P) of SPAM'(£)".

4.6.2 Wal ras i an dens i ty in m a r k e t s of min imal eccent r ic i ty

We now have gathered sufficient insight into the structure of SPAM' to estimate
the density of Walrasian markets (/,/?,e,P) within subspaces of SPAM". We will
present density estimates <f(m,n,£) for various m, n, and £. Here, n = | / | denotes
the number of agents, m = |Ä| the number of tool types, and £ the multiplicity type
of the market.

In view of the low number of potential beneficiaries of a Walrasian auction in a
strongly eccentric market, we start out with markets of minimal eccentricity.

Fig. 4.8 shows density estimates d(n,m,_) for 4 < n < 20 and 3 < m < n. These
estimates are the averages of single-profile density estimates of(F, P) over approxi-
mately 1000 randomly generated profiles. For m < 5. n < 15, each of the single-
profile estimates d(F, P) equals the eiact value of Walrasian density (i.e., the fraction
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data grid

avg. density (%)

Figure 4.8: Density as a function of problem dimension
(for markets of minimal eccentricity).

of the viable allocations that form a Walrasian market with P). For other values of n
and rn, the density estimates d(F, P) equal the fraction of 1000 randomly generated,
viable initial allocations that form a Walrasian market with P.

The grid points of the high plane (100% density at m > n) have no meaning. They
are plotted only to support the reader in seeing the 3D surface. The plot shows
that the density in SPAM*(n,m,_), which is 100% if n = m, decreases rapidly if
we decrease m. At very small values of rn (the number of tool types), the density
tends to rise somewhat again. The same observation can be made if we look at
increasing numbers of agexits with a fixed number of tools (except for the fact that
the density keeps decreasing with rising n). Figure 4.9 offers a different perspective
on the very same data. Logarithmic scaling is used to enhance the relief for low
densities. Furthermore, the surface is observed from a different point of view. We
now stand, as it were, to the right of the tool-types axis in Fig. 4.8, looking toward
the origin. From this plot, and its 2D projection on the tool-types/density plane
(in Fig. 4.10), we conclude that, if we start out from n = m, the density decreases
exponentially with decreasing rn, (approximately) until we reach the line n = 2m.
Here the surface levels out, and finally rises somewhat again at low values of m.

The plot in Fig. 4.10 is difficult to read at low values of m. Fig. 4.11 offers a clearer
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Figure 4.9: An alternate view at the data of Fig. 4.8.

view. Here, we have pictured <f(n,m,_) as a function of n for various m. The
plot reveals that the density decreases exponentially with increasing n, especially
for relatively large values of m.

The plot in Fig. 4.12 shows density isoclines at 80, 20, 5, 1, 0.5, and 0.1%. From
this plot, we can conclude that, beyond n = 15, the density drops below 5% for
the bulk of values for m. The picture suggests that it is to be expected that, for
values n > 20, finding a Walrasian market with n a; 2m via random generation of
preference profile and initial allocation, is like looking for the proverbial needle in
the haystack.

The plots suggest that Walrasian density in large, typed assignment markets (of
minimal eccentricity) is too low for a Walrasian auction to be a useful instrument
in this context. However, since the plots merely picture estimates, we would like to
have an impression of the reliability of these. Despite the relatively large number
(viz. approximately one million) of markets used for each data point in the plots,
the reliability tends to be low, especially for small values of m. This is due to the
fact that the estimates of <f(F, P), which form the basis of the estimates d(n,m,£).
generally cover the whole interval between 0 and 100%, and the two extremes are
often more frequent than the intermediate values. In fact, inspection of the numerical
data revealed that, for m = 3, a// of the estimates d(r, P) were either 0 or 100%.
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As we will show later (in Prop. 4.62) this is not a coincidence: Within the problem
space SPAM*(n,3), every density d(I\P) is either 0% or 100%.
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Figure 4.12: Density isoclines associated with Fig. 4.8.

profiles
904
989
984
999
1000
1000
1000
1000
1000
992
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

agents
5
5
10
10
10
10
10
10
10
15
15
15
15
15
15
15
15
15
15
15
15

types
3
4
3
4
5
6
7
8
9
3
4
5
6
7
8
9
10
11
12
13
14

viable
15.11
26.20
1.93
6.45

100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00

mean
15.15
51.64
7.93
4.33
5.82
3.99
9.64

21.11
46.14
5.65
1.74
0.82
0.35
0.55
0.42
0.62
1.39
3.11
7.44
17.85
41.93

min
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.90
1.60
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.10
1.20
2.90

max
100.00
100.00
100.00
100.00
100.00
100.00
100.00
72.20
86.60
100.00
100.00
100.00
13.40
9.20
8.20
6.00
9.60
12.10
27.10
50.00
75.90

stdev
35.86
35.06
27.02
11.74
10.42
5.95
8.17
12.82
18.97
23.08
10.84
5.18
0.97
1.07
0.80
0.71
1.25
2.30
4.59
9.03
15.32

none
767
54
906
360
90
52
1
0
0

936
924
633
467
298
331
126
35
4
0
0
0

all
137
141
78
9
5
1
1
0
0
56
11
2
0
0
0
0
0
0
0
0
0

Table 4.4: Context of density estimates at minimal eccentricity.

Tables 4.4 and 4.5 show some statistics on the data from which the density estimates
<f(n.n»,_) at m = 5, and n = 5,10,15,20 in Fig. 4.8 were computed. Each line in
the table represents data computed from a sample of approximately 1000 preference
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profiles
997
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

agents
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

types
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

viable
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00

mean
1.50
0.57
0.32
0.14
0.05
0.03
0.05
0.07
0.04
0.07
0.17
0.37
0.87
2.27
5.84
14.82
37.76

mm
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.20
1.40
4.30

max
100.00
100.00
100.00
100.00
8.00
2.20
4.60
3.60
0.60
1.20
1.70
2.40
5.60
9.40

21.30
41.00
72.30

stdev
12.17
6.47
4.55
3.17
0.35
0.10
0.22
0.19
0.08
0.12
0.21
0.37
0.70
1.54
3.40
7.45
13.33

none
982
958
914
874
875
829
773
685
770
585
355
151
44
6
0
0
0

all
15
4
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0

Table 4.5: Some context of density estimates at minimal eccentricity(continued).

profiles. For m = 3,4 and n < 15, the density estimates are the average of the ezact
values of the single-profile densities (i.e., the fraction of a// viable initial allocations
that turned out to constitute a Walrasian market in combination with the profile).
WP originally planned to perform this procedure for all values of n and m, but this
is not feasible due to the large numbers of viable allocations at higher values for n
and m.'* The other density estimates are therefore based on estimated single-profile
densities, that is, the 'Walrasian fraction' in a random sample of 1000 viable initial
allocations. For low values of n and m (e.g., n = 6; m = 5), the number of different
viable allocations can be less than or close to 1000, so the allocation samples may
contain some allocations more than once.

The column headings of Table 4.4 should be interpreted as follows:

profiles: the number of profiles on the basis of which an average density was
computed;'*

agents: the number of agents;

types: the number of tool types;

"For n = 20; m = 19 the maximum number of viable initial allocations for a profile approximately
equals 10".

"This number equals 1000 minus the number of generated profiles for which no viable allocation
appeared to exist.
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viable: the average percentage of allocations that formed a viable market together
with the profile;'*

mean: the average Walrasian density;

min: the minimum Walrasian density in the sample;

max: the maximum Walrasian density in the sample;

stdev: the standard deviation in the sample;

none: the number of profiles for which none of the viable initial allocations
turned out to be 'Walrasian';

all: the number of profiles for which ai/ of the viable initial allocations turned
out to be 'Walrasian'.

Several interesting observations can be made concerning Tables 4.4 and 4.5. First,
the sample standard deviations in the 8th column (pertaining to samples of ap-
proximately 1000 estimates d(F, P) for fixed T and varying P) are high indeed, in
comparison with the associated sample means in the fifth column.

The values in the 6th and 7th column (min and max, respectively denoting the
smallest and largest density estimate in the sample) provide an explanation for this
phenomenon, in combination with the values in the last two columns (none and all,
respectively denoting for how many profiles the extremes min and max were reached).
It appears that the high standard deviations occur in those cases in which the density
estimates range over a large portion of the interval [0,100] with a strong predilection
for the extremal points of the range. The lack of resemblance between the sample
distributions and a normal distribution implies that the standard deviation estimates
cannot be used to compute confidence intervals for the estimates of the mean.

In principle, there are various ways to overcome this problem. We could redo the
entire computation, computing median instead of mean densities and use nonpara-
metric methods to estimate the reliability of the medians. Or we could repeat the
computation of mean density estimates AT times to acquire a near-normally dis-
tributed sample of mean estimates. However, both of these procedures would be
extremely costly,'* and we do not really need greater precision to draw a meaningful
conclusion. The observation that the /up/iest estimates of local Walrasian density
over 1000 different profiles for n = 20, 7 < m < 17 are all below 10% is sufficient
to conclude that Walrasian equilibria are often absent in typed assignment markets.
Consequently, we have confined our supplementary experimentation to repetitive
computation of mean density estimates, for a small number of problem dimensions.

"A percentage of 100 indicates that we simply generated 1000 viable allocations randomly, instead
of a// of the viable allocations for the profile.

"i t already took about a week of processing on 5 (shared) workstations to generate the data for
the plots in Figures 4.8-4.12.
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The results are shown as histograms in Figures 4.13, 4.14, and 4.15. From the
data, we can estimate d(n,5,_) for n = 10,15,20 with greater accuracy, leading
to estimates of 6.190%, 0.911%, and 0.243%, with (95%) confidence intervals'* of
[6.14,6.24], [0.88,0.94], and [0.22,0.26] respectively.

(211 estimates)

20

r is

I ..
5

n ' rJTf. .

10x5

. 7 rril'
5.2 5.4 5.6 5.8 6 6.2 6.4 6 6 6.8 7
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Figure 4.13: Histogram of 211 estimates of d(10,5,_) in Fig. 4.8.
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Figure 4.14: Histogram of 198 estimates of d(15,5,_) in Fig. 4.8.

4.6.3 Walrasian density as a function of eccentricity

It is not apparent that the estimates of Walrasian densities in SPAM*(n,m,_) are
representative for the density in subspaces SPAM*(n,m,£) for multiplicity types £
other than those of minimal eccentricity. Therefore, we investigate how the density
estimates vary with the eccentricity (or inhomogeneity) of the markets.

Table 4.6 enumerates all of the 13 multiplicity types in SPAM'(12.4), together
with the respective values for inhomogeneity and eccentricity. In this case, the

"The confidence limits stem from a table of the Student ( distribution with 200 degrees of
freedom.
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Figure 4.15: Histogram of 200 estimates of d(20,5,_) in Fig. 4.8.

bag
aaabbbcccddd
aaaabbbcccdd
aaaabbbbccdd
aaaabbbbcccd
aaaaabbbcccd
aaaaabbbbccd
aaaaaabbccdd
aaaaabbbbbcd
aaaaaabbbccd
aaaaaabbbbcd
aaaaaaabbbcd
aaaaaaaabbcd
aaaaaaaaabcd

card, type
{3,3,3,3}
{4,3,3,2}
{4,4,2,2}
{4,4,3,1}
{5,3,3,1}
{5,4,2,1}
{6,2,2,2}
{5,5,1,1}
{6,3,2,1}
{6,4,1,1}
{7,3.1,1}
{8,2,2,1}
{9,1,1,1}

inhomogeneity
0.000
0.014
0.028
0.042
0.056
0.069
0.083
0.111
0.097
0.125
0.167
0.236
0.333

eccentricity
0.000
0.250
0.250
0.375
0.500
0.500
0.500
0.500
0.625
0.625
0.750
0.875
1.000

avg. density
4.20
2.09
1.34
0.86
0.85
0.06
2.62
3.23
0.38
2.45
1.47
2.00
6.27

Table 4.6: Numerical representation of imbalance and densities.

inhomogeneity is an injection, mapping different multiplicity types to different in-
homogeneities. This is not the case for the eccentricity. There exist, for example,
four different multiplicity types with an eccentricity of 0.500. To produce a plot
of average density as a function of eccentricity, the density values in the above ta-
ble are averaged, leading to an average density for the subspace of markets with
ecc(O = 0.500 of o-»5-H>-o<it2-«+3.23 _ i 69.

The plots in Figures 4.16, 4.17, and 4.18 have been derived in this manner. The first
two of these picture the average density in subspaces of SPAM*(12,4) as a function
of inhomogeneity and eccentricity, respectively. The curve in Fig. 4.16 is based on
13 values, one for each multiplicity type. The curve in Fig. 4.17 is only based on
8 values, some of which correspond with one, others with an average over several
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Figure 4.16: Walrasian density as a function of inhomogeneity.

Figure 4.17: Walrasian density as a function of eccentricity.

multiplicity types. The same curve is also drawn in Fig. 4.18 (on page 143), next to
similar curves for other population sizes.

Comparing Figures 4.16 and 4.17, we notice that the inhomogeneity curve is more
erratic than the eccentricity curve, which can largely be attributed to the averaging
that has taken place in computing the latter. However, both curves start out with
a relatively high leftmost density value (at minimal eccentricity/inhomogeneity),
somewhat lower values for the intermediate estimates, and reach their maximum
density at maximal eccentricity.

As Fig. 4.18 shows, the same holds for curves associated with other problem dimen-
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Figure 4.18: Density as a function of eccentricity
(for various problem dimensions).

sions (i.e., number of agents/tool types). There are two reasons to disregard the
maxima at ecc(£) = 1. First, as we contended in the beginning of this section, the
associated Walrasian equilibria tend to be of low quality in terms of the number
of agents that profit from Walrasian reallocation. Second, the associated subspaces
SPAM"(£) are very small in comparison with those associated with other eccentricity
values (cf., Table 4.2 on page 123). Consequently, it seems legitimate to consider the
density estimates <f(n,m,_) (i.e., those plotted in Fig. 4.8) as ophmtshc estimates
for d(n, m).

4.6.4 The special case of markets with three tool types

The subspace SPAM"(n,3) of markets involving three tool types differs in various
aspects from SPAM*(n, m) with m > 3. The propositions below pertain to the
following special characteristics of SPAM*(n,3).

1. Every Walrasian market in SPAM*(n,3) possesses exactly one stratification.

2. The Walrasian densities in subspaces SPAM'(F, P) of SPAM'(n, 3) are either 0%
or 100%.
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3. Theoretical derivation of a formula for d(3fc,3,_) is feasible. ' '

With respect to the latter aspect, we remark that, in princip/e, it is possible to
derive a formula for d(n, m,f) for ony n, m, and f. However, the combinatorial
nature of such derivations effectively prohibits the derivation of formulas for large
values of m. In fact, for any value of m that exceeds 3, derivation of the associated
formula is very complicated. Hence, we only present (in Prop. 4.64 below) a formula
for d(n,m,£) with n = 3fc,m = 3, and f = {/:,/:,/:}. Towards the end of this section,
we use this formula to compare the esttmo<es for <f(3fc, 3, {A:, fc, fc}) (produced by the
density estimation software) for Jfc = 2, . . . ,7 with the true (theoretical) values.

Proposition 4.61
Wa/rastan maritet in SPAM*(n,3) possesses eiac% one srrati/ication.

Proof.
The top stratum of a wa6/e stratifiable market must contain at least two tool types.
Hence, a stratifiable market involving three tool types (i.e., |f| = 3) can possess the
following stratifications.

S, = {a,6,c}|

5, = {o,6}|{r}

We must prove that no market in SPAM'(n,3) can possess more than one of
these stratifications. Let 5M denote the set of stratifications of the market M €
SPAM*(n,3). Then (because of symmetry considerations with respect to the alpha-
betic variants 5|, 5j , and 53) it suffices to show that

(i) 5, € 5« => 5, £ 5«

(ii) 5, € 5M => 5, £ 5«

(iii) 5j € 5M => 5j £ 5M

case (i): For {n,6,c}| to be a stratification of A/, {a,b,c} must be an equilibrial
market (cf., Def. 4.24 and 4.29). For a tna&fe market A/, this implies that,
among the agents endowed with a type-a, or a type-b tool, there must be T(c) >
1 agents with a first preference for tool type c. In the segmentation {a, 6}|{c} at
least one agent in the top segment would thus have a first preference for a tool
type of a lower segment. Hence, by Def. 4.24, the segmentation 5j = {a,6}|{c}
is not a stratification of Af.
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case (ii): For {a,6}|{c} to be a stratification of the tia6/r market M, eocA of the
agents endowed with a type-a tool must have a first preference for a type-b
tool, and vice versa. Hence, in the market as a whule, there is no agent with

' tool type c as its first preference. This implies that M is not an equilibrial
market, and, hence, {a, 6,c}| is not a stratification of A/.

case (iii): Again, for {a,fc}|{c} to be a stratification of the vtaft/r market A/, MC&
of the agents endowed with a type-a tool must have a first preference for a
type-b tool, and vice versa. Hence, in the segmentation {c, 6}|{<i}, each of the
agents endowed with a type-b tool (i.e., a tool type in the top segment) has
a first preference for a tool type (i.e., type a) in a lower segment. Hence, by
Def. 4.24, the segmentation S3 — {c, 6}|{a} is not a stratification of A/.

Proposit ion 4.62
L t̂ P, F 6e a pne/erence pro/i/e and a too/ 6oj u»/iir/» invo/uc <Arrp /oo/ (j/pes /i.e.,
SPAM-(r, P) C SPAM*(n, 3)j. T/ien d(r, P) = 0% V d(F, P) = 100%.

As in the proof of Prop. 4.61, we argue that there exist four possible stratifications
for a Walrasian market in SPAM*(n,3).

5, = {a,6,c}|

53 = {a,c}|{6}

54 = {c,fc}|{a}

To prove the proposition, its suffices to show that, in the context of each of these
stratifications

(3e) ( (e,P) € SPAM'(F.P) A (e,P) is Walrasian ) =>
(Ve) ( <e,P) € SPAM'(F.P) =>• (e,P) is Walrasian ) * ' '

We prove this for Si and S2. Proofs for the other cases (S3 and S4) are essentially
the same as that for S2-
In the following, 7r denotes the bag of first preferences in P.

Si: The market (e,P) is equilibrial iff (Vr € {a,fc,c}) jr(r) = F(r). In other words,
whether {a, 6, c}| is a stratification of (e, P) depends only on jr and F = 4 /m e;
not on e itself. Hence, (f) holds.

S2: The segmentation {a, 6}|{c} is a stratification for a trcafc/e market (e, P) iff all of
the agents endowed with a type-a tool have a first preference for type b, and
vice versa. (t)
Because of the viability of e, this implies that 7r(c) = 0. Let e2 be an arbitrary
P-viable allocation such that j . /m ej = F = | /m e. Then it follows from
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TT(C) = 0 and the viability of e2 that all of the agents endowed (under e2) with
a type-a tool have a first preference for type b, and vice versa. This implies (by
($)), that {a,6}|{c} is a stratification of (e2,P). Hence, (e2,P) is a Walrasian
market. •

Corollary 4.63
77ie pro6a6i/i£y <f»«<ri6u<ton o/ d(n, 3, £) is t/ie 6inomiai dis<rJ6utzon uii£/i parameter

Proposition 4.64
TAe density in t/ie su&space SPAM*(3fc,3,_)

Proof.
For a (viable) market with three tool types (say, i? = {a, b,c}), the only pos-
sible stratifications are {a,A,c}|, {a,6}|{c}, {a,c}|{i!>}, and {6,c}|{a}. In other
words, either the market is equilibrial, or it contains an equilibrial segment of
two tool types. By Prop. 4.61, the four cases ({a,6,c}|, {a,6}|{c}, {a,c}|{6}
and {6,c}|{a}) are nonoverlapping, in the sense that there exist no viable mar-
ket that complies with more than one of the stratifications. Furthermore, the
latter two of these stratifications are alphabetic variants of {a,6}|{c}. Hence,
d(n,m,_) = P({a,6,c}|) + 3 • P({a,6}|{c}). Here, P(X) denotes the probability
that X happens to be a stratification for a market that is chosen randomly from
SPAM*(3Jb, 3, {Jfc, fc, Jfc}). A market or market segment is equilibrial iff its demand bag
(i.e., the bag 7r of first preferences of the associated agents) equals its supply bag
(i.e., the tool bag of the market (segment)). In the current case, this leads to the
following stratification constraints.

For{a,6,c}| : (Vr 6 {a,6,c}) w(r) = I » = fc
For {a,6}|{c}|: (Vr€{a,6}) *(r) = T(r) = fc

Consequently, we can compute the probabilities P(X) as fractions of the number
of viable profile heads that satisfy the stratification constraint associated with X
divided by the total number of viable profile heads. Here, a profile head is a function
/ » : / - • fl, such that h(i) = maxp,. Hence, the demand bag JT equals | /m/i . For
a profile head to be viable as well as compatible with the stratification {a,6}|{c},
the first preference of the a-possessors must be b, and that of the b-possessors
must be a. Only for the c-possessors, there is more than one option for their first
preference, namely either a or b. Since there are Ä: c-possessors, this comes down to

"Here, the densities should be thought of as real numbers z with 0 < x < 1. rather than
percentages between 0 and 100.
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2* possibilities to choose a function to that is viable and stratification-compatible.
To comply with the viability constraint only, it suffices that none of the agents have
a first preference for their own tool type. This amounts to freedom of choice between
two tool types for any of the 3A: agents. Hence, , ,,, i,.,.;

) | ^

The expression for P({a,6, c}|) obviously has the same denominator 2'*, but the
numerator is more complex, due to the fact that we have to comply with viability
as well as stratifiability. Free choice is now restricted to:

1. Choose / a-preferences among the it b-owners (0 < / < fc). *
(This determines the preferences of the other it - / b-owners to be c, and the
number of a-preferences among c-owners to equal it - /.)

2. Choose it — / a-preferences among the it c-owners.
(This determines the preferences of the other / c-owners to be b,
implying that we must choose fc — / b-preferences among a-owners.)

3. Choose it — / b-preferences among the A: a-owners.
(This determines preferences of the / other a-owners to be c.)

This leads to the formula

= ( * _ / ) •

J=0

which, in combination with Eq. 4.25, renders

Table 4.7 below features a comparison of the rfenstty estimates for <f(3fc, 3, {fc, fc, fc})
(produced by the density estimation software) for fc = 2 , . . . , 7 with the true (theo-
retical) values, acquired via the formula in Prop. 4.64. Recall that, while estimating
densities, we approximate in three respects.

1. Estimates of d(n,m,_) axe based on estimates d(F,P) for only 1000 profiles.
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2. Estimates for n > 15 or m > 5 of d(F,P) are based on only 1000 viable
allocations.

3. In averaging over d(I\ P), we employed uni/orm weighing instead of weights
proportional to the size (in terms of number of viable allocations) of the sub-
spaces SPAM'(F, P).

In view of these approximations and the rather large sample variances (cf., Ta-
ble' 4.4), we would expect considerable differences between the estimates and the
true values. According to Table 4.7 below, this is not really so. The estimates turn
out to be better than expected, especially for small values of n (which were asso-
ciated with large variances in Table 4.4). In the context of a Walrasian (or other

n
6
9
12
15
18
21

estimated density
36.43%
15.05%
7.98%
5.65%
3.41%
3.51%

true density
34.37%
15.63%
9.62%
7.17%
5.78%
5.02%

trivial markets
45.45%

70%
87.81%
95.91%
98.73%
99.63%

Table 4.7: Comparison between experimental and theoretical values
for densities involving markets with 3 tool types.

kind of) auction, an equilibrial SPAM constitutes a trivial reallocation problem, in
the sense that an optimal allocation can be arrived at simply by having each agent
release its tool into one big community bag, and subsequently allowing each agent
to pick a tool of its favorite type from the bag. In the third column of Table 4.7,
we added the percentage of Walrasian markets that are equilibrial, that is, possess a
stratification {a,6,c}|. It turns out that this percentage rises rapidly toward 100%
with »i. In other words, for large A:, nearly all of the reallocation problems (in the
class SPAM*(3A-,3,_) which possess a Walrasian equilibrium are <nuia/ problems.
Of course, it is not necessarily so that the same pertains to markets in the other
subclasses of SPAM*.

However, experimental data suggest that something similar does hold for "uniformly
Walrasian' subspaces SPAM'(F.P) of SPAM*(£) for m = |£| > 3 (i.e., subspaces
that consist entirely of Walrasian markets). Checks performed during estimation of
rf(10,4,£) and d(12,4,£) provided us with estimates of the percentage of cases in
which uniformly Walrasian subspaces SPAM*(F, P) consist entirely of trivial problems
(i.e., equilibrial markets). These estimates are 95% for markets involving 10 agents
and 4 tool types, and 94% for markets with 12 agents and 4 tool types.
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4.7 Walrasian Density in AM\SPAM ; \»

In the previous section, we gave estimates for the density of Walrasian markets in
assignment markets where all preferences are strict. This invokes the question 'And
what if they're not... ?'.

If some (or all) preferences are weak, the density of Walrasian markets is higher
than described by the estimates for SPAMs. In the extreme case that each of the
agents is totally indifferent with respect to the tool type that is allocated to it, the
density equals one. This case, however, does not constitute a problem: Any initial
endowment is a Walrasian allocation. For less extreme cases, the observations below
give an impression of what is to be expected in

Definition 4.65 (SPAM enumeration)
i » M = (/, Ä,e, P) 6e a market in AM\SPAM, tfiat w, P = {£<}, contain« one or
more weaJb pre/erence«. 77»en t/»e SP>4Af enumeration A/* o/ Af i« tAe *e< o/ a//

t/iat

/. (Vi G / ) P'(») w a strict pre/erence >< on Ä

2. (Vi e / ) P'(i) is compatti/e wit/i P(i), tAat is
j € fl)ri >, rj =* r2 >;• »"I

Example 4.66 (SPAM enumeration)
77ie 5PJ4M enumeration o/M = [6.ac, ft.a.c, a6c, c.6.a] equals

M* = {[6.a.c, fc.a.c, a.i.c, c.6.a],
[b.c.a, ft.a.c, a.6.c, c.6.a],
[6.a.c, 6.a.c, a.c.6, c.6.a],
[6.c.a, ft.a.c, a.c.6, c.ö.a],
[6.a.c, 6.a.c, 6.c.a, c.6.a],
[6.c.a, 6.a.c, 6.c.a, c.fr.a],
[6.a.c, 6.a.c, ft.a.c, c.6.a],
[ö.c.a, o.a.c, 6.a.c, c.6.a],
[ft.a.e, 6.a.c, c.a.6, c.6.a],
[b.c.a, 6.a.c, c.a.6, c.6.a],
[6.a.c, fc.a.c, c.6.a, c.6.a],
[fr.c.a, fc.a.c, c.6.a, c.6.a]}
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Proposi t ion 4.67
j4n assignment market wit/i one or more weofc pre/erences is Wa/rasian <3> its 5 P J 4 M

enumeration contains a VVa/rasian market.

Proof.

Let M = (7,fl ,e,P) G AM\£PAM, with M* = {(/, Ä . e . P ' ) } ^ ^ . We prove the =>-
part by showing that if (w, >) is a Walrasian equilibrium of M, then there exists a
profile P ' G {P'}>e/f such that (ui, >) is a Walrasian equilibrium of (/, ß , e, P ' ) .
Let, for £? C Ä", best>-(<3) denote the tuple (be«t>-,(Qi),... ,best>-„ (<?„)). Define

analogously. Then, by definition of M*,

(VQ C Ä») best(Q) = (J {max(Q)} (4.26)

If (tu, >) is a Walrasian equilibrium of M, then

(Vi € /) u>(i) € best({r € fi | r ~ e(i)}

Hence, u; 6 beat)-({r € Ä" | (Vi € / ) r, ~ e(i)}. Consequently, by (4.26),

(3> € Jf) u» = max({r e Ä" | (Vi 6 / ) r, ~ e(i)}

Let jo € A' be such that u> = maxpj({r G Ä" | (Vi G /) r, ~ e(i)} Then (u>, >) is a
Walrasian equilibrium of (/, fl, e, P-"°).

The converse (•*=) part is completely analogous, and therefore left to the reader.

The statements above may tempt the reader to believe that a Walrasian auction
may bo applicable to many assignment markets after all (viz. those in AM\3PAM).

This is not so. Even though Walrasian markets generally occur more frequently in
this class, two remarks deserve to be made.

First, some of the indifferences do not count. Since Walrasian allocations are in-
dividually rational (no agent prefers its initial endowment over its newly allocated
tool), any indifference between tool types that are less desirable to an agent than
its initial allocation is irrelevant.

As'such, tho SPAM enumeration in Ex. 4.66 can be pruned into

A/* = {[b_.a.c, b . a c a.b.c., c.b_.a],
[b.a.c, b.ac, a.£.b, c.b_.a],
[&.a.c, b.fi.c, b.g.a, c.lj.a],
[b_.&-c, b.&c, b.a.c., c.b_.a],
[Jj-a.c, b.ac, g.a.b, c.b_.a],
[h-a-c, b.&.c, £.b.a, c.b_-a]}
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Second, even if a Walrasian equilibrium exists, it may be difficult to rrarfc it in a
Walrasian auction in case of weak preferences.** Especially in cases when many
agents have weak preferences (leading to large SPAM enumerations) the agent com-
munity may fail to clear the market even if the auctioneer sets prices according to
a Walrasian price assignment. The nondeterminism in the response of agents with
an indifference between most preferred tools in their budget set can, on a commu-
nity level, be described as "the community rondorn/y chooses one element from the
SPAM enumeration". As the following example illustrates, this turns the Walrasian
auction into a process similar to a Bernouilli experiment. For the sake of simplicity,
the market in the example is an untyped assignment market, but this is not essential.

Example 4.68 (The Bernouilli effect of indifference)
Let A/ 6c a marJL-et in UAM\SPAM m w/uc/i every aoent w dujatis/ifd wtt/i it* mitia/
endowment out in<fî enen< between any o/ t/»e otAer too/ type«. ;4n riomp/e o/ »uc/i
a maritef ts

M = [bedef .a, acdef .6, abdef .£, abcef .d, abedf .£, abcde./J (4.27)

5tnce M € UAM, M is a Wa/rasian market. Moreover, me indij^erenre fcetween any
two too/ type« in i?\{e(i)} imp/ies mat «t is an egui/i6rta/ market; .4ny a//ocation
to € W, = {ffl 6 PERM(fl) I u;(i) / e(i)} i« Wa/rastan under me prtce preorder >
de/med fry ri ~ r2 ~ • • • ~ r„. /n /act, IVv(^) = W,.
//oweuer, despite t/ie a6undance o/ Wa/rasian a//ocations under t/iis price ordenino,
t/»e pro6afei/«ty po o/ arrtuing at a Wa/rastan a//ocation w/ien t/ie auctioneer 6roadrast*
a// prices to 6e egua/ is /oui: /n response to t/ie price preorder >, eac/i o/ t/ie aoent«
wi// random/y se/ect a 6td x, /rom best^,(/?) = i?\{e(i)}. ^ence, t/ie num6er o/
possi6/e community responses /"i.e., proposed a//ocations^ (x i , . . . , x,,) egua/s (n - 1)",
u)/iere n = | / | = |i?|. T/ie numfter o/ responses t/iat /ead to market c/earance, t/iat
is, a Wa/rasian eoui/i6rium state eauais |H^| = (n — 1)!. Conseguent/y,

( n - 1 ) !

For me examp/e marJket M in ^.27^, tAw amount« to |^ = 0.008. A

The example describes a worst-case scenario, in the sense that other price preorders
compare favorably with >. If, for instance, the auctioneer happens to set prices as
*"i ~ r2 > r3 ~ r4 > • • • > r„_i ~ r„ (i.e., pairwise price equality), then po = 1.
The point is, however, that the auctioneer has no way of knowing that such a price
preorder will work. It could, of course, apply the Top-Trading-Cycles algorithm in
the above case, but this is not guaranteed to work for a market outside of yAM.

Such procedural considerations are often absent in economic literature on Walrasian equilibria,
but they are vital in a computational context like that of MAT.
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Moreover, it is questionable whether the term 'Walrasian auction' would still be
appropriate. The whole idea of a Walrasian auction is to let the auctioneer set tool
prices according to a simp/e schema, preferably adapting prices purely on the basis
of tool scarcities (or other aggregate information). Under this constraint, arriving at
a price setting like the pairwise equality preorder is a matter of /ucifc indeed.

4.8 Walrasian Density in TR\AM

In the previous sections, we have studied the existence of Walrasian equilibria in
assignment markets, concluding that, in many cases, a Walrasian equilibrium does
not exist. It would be interesting to know to what extent this conclusion can also
be drawn for tool reallocation problems outside of AM. In terms of Fig. 4.19, we
would like to conclude something about the existence of Walrasian equilibria in the
shaded area TR\AM.

Figure 4.19: Venn diagram of reallocation problem classes.

Recalling our remarks on page 85 in Sect. 4.1, it is not possible to draw steadfast
conclusions for the problems in this area, because of the fuzziness of its outer border
(i.e., the boundary between TR and RR\TR).

Also, tho lino of reasoning which we used to arrive at a tractable algorithm to test
market stratifiability in AM is of little use for problem instances in TR\AM. For one
thing, Prop. 4.15,*' which is vital for most of the derived properties of Walrasian
equilibria in assignment markets, no longer holds if (some) agents possess more
than one tool. We can, however, provide some plausible arguments as to why it is

"This proposition states that the tools involved in an exchange that is part of a Walrasian
reassignment always have the same price.
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unlikely that the Walrasian auction is a satisfactory mechanism for tool reallocation
in TR\AM. The argumentation involves a comparison of Walrasian auctioneering in
AM, TR\AM, and RR\TR, viewed as a static contro/ pro6/em, in which the auctioneer
attempts to control the scarcities of goods by means of prices. Because a bag-based
representation cannot be used in RR\TR, we employ a vectorial notation in the sequel.
As in Sect. 3.3.3, we use bold font for vectors to distinguish them from scalars.

Abstracting from utilities and preferences, the (aggregate) desires of agents can
be described in terms of the gicess demand /unrrson. This function describes the
scarcity of each good, as a function of the prices of the goods. It is common in
economic literature (Aliprantis «•( a/., 1989).

In the context of Walrasian exchange, a price is an exchange ratio. Hence, a price
vector p can be normalized to a unit length vector without loss of generality. In the
following, we therefore assume that

p e i r = {xe ir I IN = 1}

Thus, the excess demand function is a function £ : B™ —• R'", and the goal of a
Walrasian auction is to find a p 6 B'" such that ((p) = 0. As such, the auctioneer
attempts to control ((p) through p.

In economic literature (Hildenbrand & Kirman, 1976; Hildenbrand & Kirman, 1988;
Aliprantis e£ a/.. 1989; Mukherji, 1990), the preferences of agents over the set R™
of (individual) endowments are usually (e.g., in neoclassical exchange economies)
presumed to be strictly monotone. 'More is better', so to speak. Under this as-
sumption, an agent will always spend its entire budget in a Walrasian auction. In
other words, the commodity bundle x € R™ that it prefers to obtain in exchange of
its current endowment e € R'" is always ;us< affordable under the current prices:

m m

Z P J •*; = ! > ; •«> (4-28)

In terms of an agent's individual demand d = x — e, this implies that
m

I > , - 4 = 0 (4.29)
J=I

Since Eq. 4.29 holds for all agents, the excess demand C - H.^/d, of the entire
community / has the same property:

m

I > ; C(P);=O (4.30)

Equation 4.30 is known as Walras' Law. It implies that, tuAenei/er we change the
price vector p to another value in B™, this will cause the excess demand for (at least
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some) goods to change too. We use the term control space to denote a minimal
subspace of values for the controlling variables (in this case, the price vector p)
that axe effective in changing the variable to be controlled (in this case, the excess
demand ()• Hence, if we define the relation ~ between price settings as

p ~ p' «• C(P) - C(P')

then the control space of a Walrasian auction equals B™/». = B™ if the goods are
infinitely divisible.

In the face of tndtt;tsi6/e goods, the control space is much smaller. The observations
of low Walrasian densities in subspaces of AM in the previous sections can be ex-
plained in terms of these smaller control spaces. In an assignment market involving
m tool types, there are at most |PREORD[m]| effectively different price orders. In
other words, the size of the control space is bounded from above by |PREORD[m]|,
trrespechue of the number of agents participating in the market. In contrast, the
size of the problem space increases with n, and does not have an upperbound that
is independent from n. The fact that the number of control decisions has an upper
bound that depends on the number of tool types, but not on the number of agents,
implies that, in assignment markets where the numbers of agents is much greater
than the number of tool types, a Walrasian auctioneer will be unable to control
individual agents. In fact, the discrepancy between Walrasian density in UAM and
AM\UAM stems from the fact that, in UAM, changing the price of one tool amounts
to changing the budget set of exactly one agent, whereas in AM\UAM, such a price
change generally influences the behavior of many agents that currently possess the
tool type involved, and some others (for which the price change removes or adds the
tool type to the agent's budget set). The impact of the inability to control the be-
havior of individual agents grows, of course, with the courseness of the control. This
explains why the Walrasian density decreases if we keep m fixed, while increasing n.

A similar observation can be made for (at least some) problems in TR\AM. Consider,
for example, the subclass of tool reallocation problems involving m tool types, where
each agent is endowed with one or two too/s, and tool-bag preferences are such that
every agent prefers its initial endowment over any endowment that contains /ess
tools.*" In this case, tool-bag preference is essentially constrained to bags of the
same size as the initial endowment, and a similar property holds for the budget sets
of the agents (i.e., any differences between budget sets that pertain only to bags
containing more than two tools are irrelevant in the sense that, in equilibrium, all
budget sets rnus/ be limited to bags containing at most two took.) In TR problems
with the above characteristics, endowments must be of the type {x,y}. or {x,x} or

"This implies that differences in tool utility for different tool types are small in comparison with
the utility of any single tool.
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{z}. Hence, the maximum number of different endowments in such a community is

m + m (4.31)

Any mapping from endowments to budget sets can be defined by specifying the
relation "has at least as much value as" between any two eoncriua6/r endowments.
Consequently, the size of the control space is, in this case, bounded by"

|PREORD[A/„,]| = [(0PREORD 1 +2m (4.32)

Again, we have specified an upperbound on the control space that does not depend
on the number of agents. Hence, low Walrasian densities are to be expected in
markets with many more agents than tool types.

4.9 Chapter Summary and Conclusions

The main theoretical results we derived are the following.

• We have characterized the (typed) assignment markets in which a Walrasian
equilibrium exists in terms of their preference profile and initial endowment,
showing that such an equilibrium exists iff the assignment market is stratifi-
able.

• We have shown that, in a stratifiable assignment market with strict preferences
(a SPAM), there exists on/y one Walrasian allocation.

• We have shown that, within the class SPAM* of tnofr/e SPAMs, large subclasses
exist that consist entirely of non-Walrasian markets, and that most of the
markets in the (rare) subclasses which consist entirely of Walrasian markets
contain only egut/i&ria/ markets, which can be regarded as trwta/ reallocation
problems.

• An algorithm to test SPAMs (i.e., assignment markets in which the prefer-
ences of all agents are strict) for stratifiability was specified, based on derived
properties of market stratifications. It was indicated how this test can - in
principle - be applied to assignment markets with weak preferences also, via
the SPAM enumeration of such markets.

"The bound is not a sharp one, since it neglects that the price preorder must be consistent with
the subbag-of relationship.
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The algorithm was used to compute estimates for the density of Walrasian markets in
various subspaces involving strict-preference assignment markets. From such density
estimation, it appeared that Walrasian densities decrease rapidly as the number of
agents (or the average number of tools per tool type) increases. Except for some
trivial cases, these densities seem too low for a Walrasian auction to be useful.

On the basis of the theoretical and experimental results, we draw the following
conclusions.

1. Except for the special case of untyped reassignment, the application of Wal-
rasian auctions to tool reassignment problems is highly problematic, especially
for problems with many agents and relatively few tool types.

2. Our analysis of the existence of Walrasian equilibria in TR\AM suggests that
the Walrasian density in the space of general tool reallocation problems is
subject to the same pattern (of decreasing density with increasing population
size). Hence, the Walrasian auction does not seem suited for general tool
reallocation either.



Chapter 5

The Framework of
Informed Gambling

5.1 Chapter Overview

In this chapter, we describe Informed-Gambling (IG) mechanisms for Tool Reallo-
cation (TR), in terms of the bag-based representation introduced in Chapter 2. In
Sect. 5.2, we recapitulate the conclusions drawn in Chapter 3 on candidate dis-
tributed approaches to TR problems. In Sect. 5.3, we present the general notion
of iterative mechanism. This abstract notion provides the context for the formal
definition of Informed-Gambling mechanisms. It is, however, sufficiently general to
accommodate most game-theoretic and economic mechanisms, such as the Walrasian
auction, as well. The general idea of mechanism design is that the outcome mapping
serves as an incentive for rational agents to relax their demands if these conflict with
those of other agents.

In Sect. 5.4, we explain what is meant with 'rational agents'. This entails a short
discussion of four key notions: perfect rationality, bounded rationality, the principle
of minimal rationality, and the descriptive level of rationality.

In Sect. 5.5, we illustrate the effectiveness of the heuristics employed in the out-
come mapping of IG, by describing the mechanism that has been its precursor. This
de/e0a<ed-ne</o<iation (DN) mechanism (Lenting & Braspenning, 1993) features the
same outcome mapping as IG, but it is a simpler: DN is single-shot mechanism,
while IG is iterative. We show by means of an example how DN's outcome mapping
resolves clashes of interest between agents, by creating a situation in which agents
must make commitments in the face of uncertainty to satisfy their desires. In addi-
tion, we demonstrate how the mapping can be implemented in a fully decentralized
manner.

In Sect. 5.6. we formally define the class of IG mechanisms. A key component of IG

157
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mechanisms is a form of agent rationality which we refer to as fictitious rationality.
It is similar to the rationality exhibited by agents in a Walrasian auction, but it
is Bayesian in nature, due to the fact that we choose to keep the agents less well
informed. Its core element is the estimation of proposal success probabilities. Ex-
plicit formulas are provided for such estimation. In the general case of full-fledged
reallocation problems, these formulas do not constitute a complete definition of the
agent response, but they can serve as a basis to define a bounded-rational response
suited for a particular problem domain. For the tool reassignment domain, we pro-
vide a complete, implementable specification of fictitiously rational agent response,
and show that the associated mechanism is capable of avoiding the trust formation
that can lead to low-quality outcomes with the Walrasian exchange auction, or other
mechanisms that render solutions in the core of the associated assignment games (cf.
Section 3.3.8).

In Sect. 5.7 we show that the termination of the relaxation process in IG is a prob-
lematic issue, and propose the incorporation of negotiation weariness as a remedy.
This entails that agents gradually become more indifferent with respect to proposal
adaptation. Initially, the prospect of a minute utility gain is sufficient reason for an
agent to adapt its proposal, but as the negotiation process proceeds, agents gradu-
ally become less fussy. Whereas such behavior is anthropomorphically plausible —
it plays an important role in political negotiations between human agents — it does
constitute a breach with the game-theoretic dogma that one should assume agents
to behave rationally, that is, to grab every opportunity to increase their utility.

In Sect. 5.8, we attempt to characterize IG mechanisms in game-theoretic terms.
The stationary states of the relaxation process in IG can be viewed as correlated
equilibria. Apart from this, there appears to be little kinship with game theory or
economics: IG's outcomes are neither always individually rational, nor always Pareto
optimal. The kind of rationality exhibited by IG agents in the context of simple
(tool-reassignment) problems is neither perfect nor bounded; to characterize it, we
introduce the new notion of near-perfect rationality. And even the characterization
of IG's final states as correlated equilibria has little importance, since it only applies
to IG mechanisms without negotiation weariness, for which we cannot guarantee
that a correlated equilibrium will ever be reached.

In Sect. 5.9, we address the adequacy of IG as an instrument to solve real-life reallo-
cation problems. For CMAT, this involves a discussion of the kind of bounded ratio-
nality that is called for in IG mechanisms for real-life reallocation and constrained
optimization. For OMAT, we reflect on the adequacy of IG as a negotiation frame-
work for unknown, external agents. Since it is commonly considered permissable
to assume that unknown (computational) agents behave rationally, our reflection
focuses on the question whether the 'irrational' aspects of IG agent behavior (viz.
negotiation weariness, and the neglect of part of the available information by fie-
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titiously rational agents) qualify as acceptable assumptions in the context of open
systems.

The chapter is concluded in Sect. 5.10 with a summary of concepts and findings.

5.2 The Design Considerations for IG

An important goal behind the development of IG hat been to CMMSefo a framework
that is principally suited for CMAT as well as OMAT. These two fields induce
different requirements on the design. Computational efficiency and solution qual-
ity are relevant in both cases, but in OMAT, we face the additional requirement
that an agent-behavior specification should constitute a plausible model for the —
principally unpredictable — behavior of unknown, external agents. This additional
requirement complicates the design task considerably. For the sake of simplicity, we
choose to postpone the discussion of such complications, and present the IG frame-
work as if it were designed for CMAT only. This entails that, for the time being, we
merely mention aspects of the design which are at odds with OMAT agent proper-
ties like autonomy or self-centeredness. The motivation of our design choices in this
respect is postponed until Sect. 5.9.2, at the end of the current chapter.

In Chapters 3 and 4, we have drawn a number of conclusions that are relevant for
the design of tool-reallocation (TR) mechanisms, such as IG and its predecessor,
DN. These conclusions can be summarized as follows.

1. To solve TR problems, coordination via a central module is preferable to fully
decentralized coordination (Sect. 3.1.1).

2. If one aims at operational decentralization, one should not assign a complex
and demanding task to the central coordination module of a TR mechanism
(Sect. 3.4).

3. A mechanism that features communication of composite reallocation proposals
is liable of incurring excessive computational and design complexity in the
coordination module (Sect. 3.4).

4. The productivity of an iterative mechanism should not depend on the at-
tainment of equilibria which exist only under certain (restrictive) conditions
(Sect. 4.9).

5. It is worthwhile to develop a mechanism that does not make use of money
(Sect. 1.3.2 and 3.1.2).

6. Trust formation can lead to low-quality outcomes in markets without money
(Sect. 3.3.8).
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In Constraint-Directed Negotiation (CDN),' the coordination is taken care of by a
mediator who proposes partial solutions in an ongoing discussion with individual
agents. In view of the above conclusions, we have decided to let the coordination
module in IG mechanisms play a more modest role. It acts as an auchoneer, whose
main task is to aggregate data received from the agents into relevant global problem
characteristics, which are then communicated — as coordination messages — to the
agents. The agents respond by revising their previous proposals, and this dialectic
process continues until a stable state is reached. A decision protocol maps the
associated tuple of agent proposals to a final outcome.

The functionality of the coordination messages in DN and IG is similar to that
of the problem textures communicated among agents in the Cortes architecture
(Sycara e< a/., 1991): in conjunction with the rules of the decision protocol (which
is assumed to be known to the agents), the coordination messages enable the agents
to take collective interests into account without being aware of another agent's indi-
vidual goals, or even its existence. This implies that we need not concern ourselves
with second-order (or higher-order) beliefs of agents about beliefs of other agents
(Cohen & Levesque, 1987; Shoham, 1993), which are liable of greatly complicating
the negotiation process, with little or no gain in terms of the average agent satis-
faction. In this respect, the information in an IG market profile is akin to the price
information conveyed to agents in a Walrasian auction. The main difference between
the two kinds of coordination messages is twofold: In IG, the coordination messages
are loss informative, and easier to compose than in the Walrasian auction. Hence,
in terms of operational decentralization, IG surpasses not only CDN, but also the
Walrasian auction.

IG mechanisms for tool reallocation are based on the metaphor of the a//-paj/ auchon
(Wcl)i'i'. 1985; Milgrom, 1985). Contrary to most auction types, bidders engaged
in an all-pay auction are required to pay the amount mentioned in their (last) bid,
irrespective of whether they acquire the item they bid on. As such, the protocol
of an all-pay auction resembles that of lotteries and option markets. The all-pay
auction has been used in the past as a model for bribing and lobbying (Weber, 1985;
Baye & Kovenock, 1993). We use it as a metaphor for commitment in the face of
uncertainty. This plays a key role in IG.

Unlike the all-pay auction, IG features barter trade. Agents pay for tools with other
tools instead of money. As such, Informed Gambling can be characterized as a
mixture of an all-pay auction and Walrasian exchange.

'cf. S*ct. 3.1.2 and 3.2.1
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5.3 The Notion of Mechanism

The conceptual framework of self-centered agents acting autonomously within some
kind of m«/ianwm has proven useful to solve problems in a decentralized fashion.

Prom a software-engineering perspective, a mechanism is a software specification
that involves an agent model and a description of a coordination module. The agent
model specifies how agents behave in response to the messages of tho coordination
module. It is inherent to the notion of agent that this response is roliona/, that is,
understandable in view of the agent's personal interests and its current (knowledge
of the) situation. Rational agent behavior is commonly regarded as vital in the
context of open systems, where the designer of a mechanism designs only part of the
system (e.g., the coordinations module), and, consequently, has no absolute control
over the behavior of all agents. For the design of closed multi-agent systems, agent
rationality is merely convenient, because of the design modularity it incurs. Hence,
in CMAT, the agent model does not specify how external agents are assumed to
behave, but how they are designed to behave. Obviously, this leaves the mechanism
designer more slack to promote the efficiency of the mechanism.

To describe agent behavior within a heterogeneous agent population, multiple agent
models are required. In our IG framework, the agent population is assumed to be
homogeneous, that is, all agents use the same procedure to determine their responses
to external stimuli. This does not imply that all agents exhibit the same response,
because an agent's endowment and its tool bag utilities are variables in the agent
model. Furthermore, IG agent behavior is generally not completely deterministic,
so even if two agents have exactly the same endowments and tool-bag utilities, they
may behave differently.

The coordination module of a mechanism comprises a set of rules that determine a
mapping of the ensemble of agent messages to a final outcome. An agent that knows
these rules will take them into consideration when it chooses a strategy. Thus, the
rules in the coordination module can be used to constrain the agents' behavior
in some desired manner. In general, the coordination rules map a tuple of agent
messages to a se< of possible final states. As in economics literature, we refer to
such a nondeterministic mapping as a correspondence.

It is useful to distinguish between single-shot and iterative mechanisms. In a single-
shot mechanism, the agents get one opportunity to revise their original message in
response to a message of the coordination module. In iterative mechanisms, there
is room for multiple proposal revisions.



162 CHAPTER 5. THE FRAMEWORK OF INFORMED GAMBLING

5.3.1 Iterative mechanisms

An iterative mechanism features a dialectic process of agents responding to infor-
mation provided by the coordination module and vice versa, until some termination
criterion is met. Reaching a stationary state is the most common termination cri-
terion. The final outcome then depends on the messages communicated in the last
round of agent response. An IG mechanism, the target concept of this chapter, is
an iterative mechanism. So is a Walrasian auction.

coordination module

( m

Figure 5.1: Our general model of iterative mechanisms:
agent messages v< and coordination messages m are communi-
cated until some termination criterion T is satisfied; a final out-
come is then computed from the last-sent agent messages.

Our general model of iterative mechanisms, of which IG mechanisms constitute a
special case, is shown in Fig. 5.1. Iterative mechanisms are similar to message
iner/inni$ms, as presented in (Hurwicz, 1986). The main difference is that, in an
iterative mechanism, an agent does not perceive the messages sent by other agents,
but only an aggregate thereof. Furthermore, some of the mappings that are functions
in Hurwicz' model are correspondences (i.e., involve nondeterminism) in ours.
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The input to the mechanism is the distributed problem specification r = (ei,.. . ,e„)
in the lower part of Fig. 5.1. For tool reallocation problems, c, comprises the en-
dowment and the tool bag utilities of agent t. The information e, is private, that is,
only accessible to agent i. •

The a$er»< rrspoase corre5pon</pncr /, describes how agent i responds to the mes-
sages of the coordination module, rj denotes the response of agent i in round f to
the coordination message m'"' transmitted after round t - 1. The agent response
messages vf are elements of some message space A4,«. The response correspondence
/, describes how t'J depends on the agent's previous response t>j"' (if any), its private
information e,, the last coordination message m'~' (if any), and the time r (i.e., the
number of message rounds that have already taken place).

The coordination message m' € A<c is a function of the agents' response« w{,..., »£.•
We refer to the dialectic process of agents responding to coordination messages and
vice versa as the adjujtmenf procesj of the mechanism. Formally, tliin procettH is
described by a set of nondeterministic difference equations of the following kind.

6
m' =

where the initial agent response r° of agent i in round 0 is determined solely by its
private information e,. The termination of this process is governed by a termination
criterion T that depends on u' and t/~' (where i/' = (v{,..., vj,)), and sometimes on <.
The default criterion is i>' = u'~', but we will also consider others. If the adjustment
process terminates at step t, the outcome correspondence /i : A4^ —> 'P(Z) renders
a final outcome 2,' according to

z€/i( t ;{, . . . ,<) (5.2)

Thus, the coordination module of an iterative mechanism is represented by the
triplet (C, T, /i), and the behavior of agent i by /,, with e, as a parameter. Formally,
we define an iterative mechanism as a tuple

M = (M„,A4c£,.Z,C,T,/i,/) (5.3)

where A^^ and A^c are the message spaces for the agents and the coordination
module respectively, is is the problem space, Z the outcome space, C, T, and A are
defined as above, and / : is x A<c * A4|J x N -> P(Al^) describes the collective

'To accommodate for the Walrasian auction, one would have to add the previous coordination
message m'"' to the list.

'Here, T>(Z) denotes the power set of Z.
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behavior of the agent community. Here, .M^ 'S the usual shorthand notation for
.M,t x • • • x .M,t, the n-fold Cartesian product of A4 4 with itself. As apparent from
the above formulas, C is a deterministic function, but / and /i are nondeterministic
functions, represented as correspondences. The agents' knowledge of C and /i is
supposed to play a role in / , but we come to this later.

The above dynamic model of iterative mechanisms is associated with a static model,
that abstracts from the dynamic interplay between agents and coordination module,
described by C, T and / . The static adjustment correspondence is the mapping

that specifies the set of possible final agent response messages in the adjustment
process as a function of the private information e € £.
Formally, /x is defined as

/i(e) = {»'€ .M5 | (3«»,i>',...,t;'-») (
t />6/ (e ,± ,± ,0)

A V € / ( e , C(«>-'), w>-\ j - 1 ) , j € { l , . . . , t }
A 7 V , v ' - ' ) ) }

Here, the symbol ± signifies "undefined". In words, Eq. 5.4 expresses that a final
agent response tuple r ' is an element of /i(e) if it is the agent response component
of the end point i ' = (e,m', v',t) of a possible trajectory (x°,. . . , x ' " ' , i ' ) through
the state space f? x A4c * Â Ä * ?\ starting at the point z° = (e, _L, 1,0).

This definition of ^ is the intermediate step that helps us to define the overall effect
(in terms of possible final outcomes 2 G Z) of applying the mechanism Af to a
problem instance e € £• We refer to the overall mapping F ^ : £ -> P(Z) from the
problem space E = £1 x . . . x £„ to the (power set of the) outcome space Z as the
ger/ormance correspondence of M = ( A ^ . A ^ C i ^ . ^ . C 7",/»,/).
Formally,

F„(e) = {2 € Z I 2 € /»(v) A v € /i(e)} (5.5)

A gingle-shot mechanism is a special case of the above model for iterative mecha-
nisms, where the termination criterion T is "t = 1". Note that the first round is
round 0. Hence, the invocation of a single-shot mechanism involves the communi-
cation of one coordination message and two agent messages per agent.

5.3.2 Mechanism design

In literature on game theory, social choice theory, and micro-economics, the design
of mechanisms is a prominent topic.
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The goal of mechanism design in social choice theory is to guarantee some desirable
property, such as Pareto optimality of the final outcome, or truthfulness of the
agents' response. In social choice theory, mechanisms often do not involve any
coordination message. Such mechanisms do not really fit into our definition of
iterative mechanisms, but we will act as if they do (i.e., regard them as degenerate
cases of our general model), because the key idea behind their design is also relevant
for the design of iterative mechanisms within MAT. This key idea concerns the
conception for an outcome correspondence that can guarantee the desired property
by providing suitable incentive« to the (self-centered and self-ruling) agents (Maskin,
1985; Postlewaite, 1985; Myerson, 1985). In the sequel, we will use the term incentive
engineering for this style of mechanism design. In terms of our general model of
iterative mechanisms, the core activity of incentive engineering is the design of an
outcome correspondence /» which, given a rational* agent response correspondence
/ , guarantees the desired property for the performance correspondence Fjy.

The idea of incentive engineering also plays a role in the design of mechanism«
that serve as market models in micro-economics, such as the Walrasian auction,
but because these mechanism are iterative, the focus of attention lies elsewhere:
Most of the effort goes into the conception of a coordination message function C
(i.e., a tätonnement algorithm) that can guarantee the convergence of the dynamic
adjustment process (and is economically plausible) (Scarf, 1973; Joosten, 1996).

Another aspect in which iterative mechanisms differ essentially from single-shot
mechanisms or social choice mechanisms is the definition of rational agent response.
The fact that iterative mechanisms involve a sequence of agent responses complicates
the conception of a sound formal definition of rationality considerably.

In economics, one typically employs a convenient a-priori assumption to circumvent
these complications. In a Walrasian auction, for example, the assumption of perfect
competition ensures that it is rational for agents to take prices for granted, instead of
attempting to influence their evolution. Thus, within a Walrasian auction, tropistic
agent response is rational; neither past nor future prices are relevant for the agents'
present decisions.

In Informed Gambling, we do not assume perfect competition, because we regard
this assumption as too restrictive for MAT. As a consequence, conceiving an ad-
equate specification of agent response is more difficult for IG mechanisms than in
mechanism design in economics or social choice theory. This is particularly so in the
context of open systems, since the rationality of the agents' behavior is vital here.
Another complicating factor in this respect is the uncertainty, which is incorporated
in IG to prevent trust formation, and to enable cardinal utility comparison without

'For now, roftona/ should be interpreted as "motivated solely by the desire to maximize ones
own satisfaction"; more precise definitions will be given later.
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communicating utilities.*

In comparison with / , neither C nor /i involves much design effort in IG. As in
economic mechanism design, the outcome mapping A aims to provide incentives to
the agents to behave in a certain manner. However, unlike economic mechanisms, IG
mechanisms are not designed for their performance correspondence to have a specific
property. Our aim has been to conceive mechanisms that render outcomes of high
quality in a (relative-)utilitarian sense. Since this design goal is not susceptible to
rigorous mathematical proof, the design of the outcome mapping /i involves less
effort than in social choice theory: The mapping is heuristically motivated, and its
adequacy will be evaluated (in Chapter 7) by means of experimentation.

5.4 Rational Agent Behavior

In everyday speech, we label somebody's decision or action as rational if we can
ascribe a viable purpose to it. In view of its inherent subjectivity, this definition is
rather vague.

5.4.1 Perfect rat ional i ty

Definitions of rational (agent) behavior in artificial intelligence (and related dis-
ciplines such as game theory and micro-economics) tend to be more specific. A
common clement in most of these definitions is utt/tty maximization. Behavior is
considered rational iff it can be explained completely as stemming from the strife
for an outcome of maximal utility.

In the classical model of rational decision making, each agent picks a strategy from
its strategy space which it believes will lead to an outcome of maximal utility. Here,
outcome utilities are quantitative, a strategy space is a /intte set of strategies, and
a strategy is either a single deliberated action, or a course of action that extends
beyond the present. The beliefs of an agent on the causal connection between their
strategy choice and the outcome are based on the agent's knowledge of the strategy
spaces and outcome utilities of the other agents. This classical conception of rational
decision-making is known as per/ect rattona/tty.

In our IG framework, we use the above terminology, except that the term strategy
always refers to a single agent message, since IG agents are not supposed to plan
ahead.

The above conception of perfect rationality is not suited at all for computational
agents operating within an iterative mechanism like IG. The most obvious discrep-

*In this respect, the uncertainty incorporated in the IG framework can be regarded as a substitute
, for the price information communicated in a monetary Walrasian auction.



5.4. RATIONAL AGENT BEHAVIOR 167

ancy is that perfect rationality is grounded in fatou/edoe (or at least definite beliefs)
concerning the behavior of other agents, and the outcome is fully determined by
the strategy choices of all agents. An agent operating within an iterative mecha-
nism faces considerably more uncertainty. For such an agent, it is very difficult to
form definite hypotheses about the behavior of specific other agents, since it only
perceives the coordination message m = C(v) composed from the agent messages
v = {vi,...,«„}• And even if an agent succeeds in forming definite hypotheses on
the agent messages behind the coordination message, it is still not certain of the
outcome: It only knows that this will be some value in the set /i(t»i,... , t>„).

As such, the above description of perfect rationality pays too little attention to
uncertainty to be useful in our framework. The following formal definition of perfect
(Bayesian) rationality aims to mend this deficiency.

Definition 5.1 (perfect (Bayesian) rationality)
j4n ajjent t/jat is uncertain o/ Me consequence* o/ «(J derision.« nrhifrifa per/erf ra-
*tona/»<j/ i/f »t always c/iooses a strategy sue/» t/iat </ie conditional eirpre/ation o/ t/ie
utility o/ the outcome, oiven t/ie availa&le in/ormation, is moiimol. A

Note that Def. 5.1 differs from perfect rationality as described above, not only in that
it is a formal, probabilistic definition, but also in that it is essentially behavioral:
The criteria which determine whether or not an agent exhibits perfect Bayesian
rationality pertain solely to the decision the agent takes; how it arrives at this
decision is not taken into account. The definition can, however, be applied to a
decision procedure if 'always chooses' is replaced by 'is guaranteed to choose'.

5.4.2 Bounded rationality

The classical conception of perfect rationality was criticized in (Simon, 1955), be-
cause it neglects the facts that both the knowledge and the reasoning capacity of a
human being is 6ounde<i. Hence, it may not be feasible for a human agent to select
a strategy that is optimal in terms of outcome utility, due to insufficient computa-
tional capacity or incomplete knowledge. Furthermore, even if perfect rationality
is feasible, it need not be sensible, if it incurs a high computational cost. Simon
proposes the term 6ounded rahona/ity for a model of human decision making which
takes the above considerations into account.

Obviously, Simon's criticism is also relevant for computational agents, in OMAT as
well as CM AT. In Def. 5.1, we have — at least in principle — dealt with one of
the two objections against the classical conception of perfect rationality: its lack of
realism with respect to uncertain or missing information. To cope with the other ob-
jection as well, one needs to relax the requirement that the chosen strategy maximize«
the expected utility. This can be done in various ways. Although different domains
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tend to call for different implementations of boundedly-rational agent response, one
can distinguish a few domain-independent categories of bounded rationality. We
mention four such categories.

1. strategy-space filtering

2. strategy-space limitation

3. strategy-space expansion

4; £ost-calculative rationality

Strategy-space filtering entails that, to cut down on their computational expenses,
agents merely filter out those strategies that are o&wous/j/ m/erior to some other
strategy, and choose randomly from the remaining ones. This kind of bounded
rationality is adequate if the strategy space is small, some strategies can be compared
very easily, while other comparisons incur a high computational cost. We employ
strategy-space filtering in our specification of delegated negotiation, the forerunner
of IG.

Although strategy-space filtering avoids costly comparison procedures, it does re-
quire that, comparison is at least considered for each pair of strategies in the strategy
space. If strategy spaces are too large for this to be feasible, or if it is not immedi-
ately apparent for an agent what its strategies are, agents can employ strategy-space
limitation, or strategy-space expansion. Limitation simply means that agents only
investigate a small — possibly rather arbitrary — subspace of strategies. Expansion
is a refinement thereof, in which agents deliberate the investigation of other regions
of the strategy space, after, and on the basis of their previous investigation(s). We
will propose strategy-space expansion as a suitable basis for strategy selection by
agents in IG mechanisms for constrained optimization.

The last category, cost-calculative rationality, entails that agents estimate the com-
putational costs associated with deliberated calculations to decide which calculations
should be performed. This category is not disjoint from the others. It can be com-
bined with each of them, and may also be used in relation to other computational
tasks (e.g. to conditionalize the computation of outcome utilities that are not readily
available). We do not use such an approach.

Perfect and bounded rationality are commonly viewed as mutually exclusive char-
acterizations of decision making. However, with our formal definition of perfect
rationality (in Def. 5.1 above), these concepts are no longer disjoint: It is quite
possible that bounded rationality is perfect, because the label "bounded rational-
ity" pertains to the procedure of decision making, while perfect rationality — in
the sense of Def. 5.1 — pertains to the outcome of the decision process. Even a
procedure that does not aim for perfection can sometimes render a perfect result.
In Sect. 5.8.2, we will use this observation to characterize the agent response in IG
mechanisms for tool reassignment.
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5.4.3 Other aspects of rationality

Next to the notion of perfect (Bayesian) rationality, and the above CAtefwiw of
boundedly-rational strategy selection procedures, there are two aspects of agent
rationality that are relevant for the sequel, but not specifically related to the com-
putational cost of decision making. They pertain to the way in which an agent which
faces uncertainties forms hypotheses about its situation. These aspects are

• the principle of minimal rationality;

• the descriptive level of agent rationality.

The principle of minimal rationality entails that an agent which has to hypothesize
about the situation it is in, should opt for the simplest possible hypothesis if there
are no apparent objections against this. If, for example, the agent knows that the
value of some variable x is in some set X, but has no clue with respect to the
probability that x = y for any y in X, it should cither hypothesize that z has
some arbitrary value y in X, or assume that all values in X are equally likely.
In the absence of reasons to prefer the latter assumption, it should opt for the
simpler x = y. Similarly, if the agent does have some information, for example from
past observations of x, and knows that x tends to change gradually with time, it
may assume that the current value of x equals its last-observed value y, or it may
hypothesize a probability distribution centered around y. Again, it should employ
the definite hypothesis x = y, if there is no compelling reason to opt for the more
complex, probabilistic hypothesis instead. In view of the vagueness of the phrase
"no compelling reason", the minimal-rationality principle does not constitute any
de/inite specification of rational behavior, or even a category of such specifications.
It is merely a guideline, similar to Ockham's razor in theory development, and the
concept of null hypotheses in statistics. To arrive at a formal definition for the
rationality exhibited by IG agents, we will use the minimal rationality principle in
multiple respects.

The other aspect, the descriptive level of agent rationality, constitutes a classification
of rational behavior specifications according to the subject of the agents' hypotheses.
We distinguish between hypotheses on

1. the hypotheses which other individual agents will make;

2. the behavior which other individual agents will exhibit;

3. the collective behavior which the other agents will exhibit.

The bulk of agent rationality in AI research belongs in category 1. In most cases,
one pays little attention to the depth to which the recursion — inherent in this
type of hypothesizing — should be allowed to proceed. A notable exception is the
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research by Durfee and collaborators on the Recursive Modeling Method (RMM)
(Gmytrasiewicz & Durfee, 1995; Durfee, 1995; Vidal & Durfee, 1996).

With the exception of Bayesian equilibria (Harsanyani, 1968; Mertens & Zamir, 1985;
Myerson, 1985), the rationality conceptions implied by game-theoretic equilibrium
notions fall in category 2.

MAS research featuring rationality definitions in category 3 is largely confined to
economically inspired approaches, such as MOP (Wellman, 1994b). IG's fictitious
rationality is also in this category. Recently, category-3 rationality has been advo-
cated in multi-agent learning (Schmidhuber, 1996) and theoretical MAS research in
the spirit of classical, symbolic AI (Singh, 1998).

5.5 Delegated Negotiation:
A Single-Shot Mechanism

«5.5. i Z^sfcgaiteti in?gv>«!ia(!ron as a s tepping s^cme towarii / G

We envision different Informed-Gambling (IG) mechanisms for different kinds of
reallocation problems. The common elements in these variants are

• They fit in the framework of iterative mechanisms.

• The messages communicated by the agents to the coordination module are
e/emenfary reallocation proposals.

• A submitted reallocation proposal constitutes a commitment by the associ-
ated agent, rather than a constraint that must be obeyed by the coordination
module.

• The functionality of the coordination module is similar to that of an auc-
tioneer: it aggregates the reallocation proposals into a market profile, which
comprises the supply and demand of the tool types in the proposals, and com-
municates this market profile to the agents.

• The outcome correspondence embodies a heuristic that favors proposals which
offer scarce tool types.

One of tho key elements of the IG framework is the scarcity-based heuristic employed
in its outcome correspondence. We explain how this heuristic works by discussing its
use in IG's precursor, delegated negotiation (DN) (Lenting & Braspenning, 1993).
DN has the same outcome correspondence as IG, but is simpler in other respects.
IG is an iterative mechanism, in which the composition of tool exchange proposals
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is preceded by multiple rounds of relaxation. In contrast, DN is a single-shot mech-
anism that attempts to solve reallocation problems by means of composition alone
(cf. Sect 3.2).

5.5.2 Delegated negotiation for proposal composition

Delegated negotiation (DN) comprises only the easiest subtask in tool reallocation:
the composition of individual proposals into completely satisfiable cascades. In fact,
it is more appropriate to speak of pseudo-composition. The pseudo-composition
that takes place in delegated negotiation is similar to composition as defined in
Sect. 3.2.3, except that the conditionally in proposals is not always respected.

In mediated negotiation (Sathi & Fox, 1989), the proposal {z ;=s y} is interpreted
as a conditional constraint, expressing "I am prepared to relinquish tool x, protndrd
that I acquire tool y". This conditionally of {x ^ y} is respected by the mediator:
Though the mediator may propose a relaxation {x ^ ; } , it is the ayent that decides
whether this relaxation is acceptable.

In delegated negotiation, the proposal {x ^ y} is not interpreted as a constraint,
but as a commitment. An agent proposing {x ;=± y} expresses that it would like
to acquire y, and, in order to get y, it commits itself to relinquish x. The all-pay
characteristic of delegated negotiation entails that it must keep this commitment,
even if it ultimately obtains z instead of y. The motivation for this irreverence with
respect to agent desires is to prevent inflexibility of a single agent from obstructing
a trade cascade that would be proficient for many.

In CDN, the mediator negotiates with the agents to overcome such an obstruction,
by proposing relaxations of the agents' initial demands. Because this tends to be a
cumbersome process, the mediator is a computation and design bottleneck in CDN.
In contrast, the use of agent commitments in DN leads to a straightforward solution
procedure, which — apart from some trivial pre-processing by the auctioneer —
allows for fully decentralized implementation.

As shown in Fig. 5.2, the activity in delegated negotiation comprises four stages,
each with distinct communication and activity patterns.

In the first stage, both the auctioneer and the agents are active. Agents commu-
nicate their reallocation desires to an auctioneer in the form of a single, composite
reallocation proposal (e.g., {a,a,b ^ c,d}), which specifies their most-preferred tool
exchange.

The second stage features only auctioneer activity. The individual proposals are
aggregated by the auctioneer into a market pro/i/e. This profile comprises the com-
munity's demand and supply of the tool types in the proposals. In addition to this
market profile the auctioneer composes tool-seller lists. These specify, for each tool



172 CHAPTER 5. THE FRAMEWORK OF INFORMED GAMBLING

proposal proposal agenl pseudo-
collection aggregation information composition

Figure 5.2: Communication and activity in delegated negotiation
(boldface circles denote agent and auctioneer activity).

type, which agents have offered the tool type in their proposal.

In the third stage, all participants are active again. The auctioneer communicates
seller lists to the buyers, and market profile data to sellers and buyers of scarce tools.
This information determines the behavior of agents in the fourth stage, in which
pseudo-composition takes place in a decentralized fashion, without participation of
the auctioneer.

5.5.3 The pseudo-composition protocol

Initially, we will describe the protocol for pseudo-composition as if it were performed
by the auctioneer, since this is easier to explain.

The protocol must resolve the question who should get a tool of type i if the demand
for a- exceeds its supply. It does this by defining an eligibility ordering on proposals,
which is based on the scarcity (demand minus supply) of the tool type that is offered
in the proposal (if any)." The heuristic rule embodied in the protocol entails that
an agent is more e/iyt6/e to receive a scarce tool, if it can offer another scarce tool
in return. This creates an incentive for the agents to release tools that are valuable
for other agents.

In formal terms, the eligibility of the proposal {r s± y} is a nondecreasing function of
the scarcity of x. This leaves some room for variation. The eligibility can be equated
with the scarcity, or the sign of the scarcity, or yet another nondecreasing function
of scarcity. In Chapter 7, we experiment with various eligibility definitions to see to
what extent the various possibilities influence the quality of solutions. For now, we
define the eligibility of proposal { J = y} to be - 1 if x is oversupplied. and equal
to the scarcity of a- otherwise. The eligibility of an unconditional request for J (i.e..
a proposal {^ i}) is — 1. Proposals offering a tool type of scarcity zero are more

*The protocol allows only elementary proposals (i.e., proposals of the form {x — y}, {x ^ } , or
{? i y}) to be submitted.



eligible than those offering an oversupplied tool type, because the withdrawal of an
offer to relinquish a tool of zero scarcity would reduce the possibilities of cascade
formation.

Commitment and eligibility are combined into the following protocol rule» for
pseudo-composition, where 5(y) denotes the total supply of tool type y.

1 Grant all proposals that involve the acquisition of a tool which is not under-
supplied.

2. For each undersupplied tool type y, grant S(y) proposals asking for that tool
type in accordance with proposal eligibility, that is, in such a manner that no
granted proposal is less eligible than any proposal that is not granted.

3. Modify each proposal {x — y} that is not granted by substituting r for y,
where * is chosen random/y from the bag of (oversupplied) tools.

Since the rules of the pseudo-composition protocol allow only elementary exchanges,
an agent with a current endowment {a, a} and a preference for the endowment
{6, c, d}, can express its desire by communicating {aa — bed} in stage 1, but it
must decompose this composite proposal into a bag of elementary ones in stage 4.
This can be done in different ways. The proposal bags {{a ^ 6}, {a ;= c}, {^ d}}
and {{a =:}, {a ^ d}, {^ 6}, {= c}} are two of the many possible decompositions
of {aa == 6cd}. Because the probability that the entire proposal bag is accepted
depends on the decomposition chosen, some decompositions are more sensible than
others. Hence, an agent can profit from intelligent decomposition.

To prevent our illustration of the protocol's effectiveness from becoming too com-
plicated, we let our DN agents behave intelligently only in a limited sense. They
exhibit a form of bounded rationality that combines strategy-space limitation with
strategy-space filtering. The limitation entails that they search for a good strategy
to obtain their preferred reallocation un</iou£ considering the possibility of aiming
for anything else than this first preference. The filtering entails that they search for a
good strategy (i.e.. a decomposition of their composite reallocation proposal into el-
ementary ones) by rejecting the decompositions whose inferiority can be determined
without computing success probabilities, or inspecting their tool-bag utilities. They
then choose randomly from the remaining strategies.

5.5.4 A pseudo-composition example

Tables 5.1a, and b provide an example of delegated negotiation on a simple composi-
tion problem. We do not specify the tool-bag utilities of the agents. The goals listed
in the second column of Table 5.1a represent the agents' preferred exchanges. The
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agents exhibit the aforementioned form of bounded rationality, filtering out the ob-
viously inferior proposal decompositions, and choosing randomly from the remaining

ones.

agent
1
2
3
4
5

goal
{ac ̂  66}
{d^a}
{6e ;=: ac}
j/ftft ^ a6e}
{65 ̂  /ft}

strategy
{{a^6},{c^6}}
{{<^a}}
{{6^a},{e^c}}
{{/^a},{ft^6},{ft^e}}
{{6^/},{g^ft}}

outcome
{ac ̂  66}
jd ^ d} or ...
{6e ̂  ac}
{/ft ^ eg} or ...
{63 ̂  /ft}

(a) Outcome of delegated negotiation, with given agent goals and strategies

tool
demand
supply
scarcity

a
3
1
2

b
3
2
1

c
1
1
0

d
0
1

-1

e
1
1
0

f
1
1
0

g
0
1

-1

h
1
2
-1

(b) The associated market profile

Table 5.1: Delegated negotiation on an simple composition problem.

The example problem is such that this bounded rationality is perfect (in the sense
of Def. 5.1 on page 167) for all agents, except for agent 4. This agent must choose
whether it will use its most valuable* asset (/) to increase its chances of acquiring a
or 6. Neither of these options is obviously inferior to the other, and we will assume
that random selection results in agent 4 opting for a.

In view of the fact that the eligibility of {x ^ y} equals that of {^ y} if £ is
oversupplied, and exceeds it otherwise, the strategy {{x ̂  y}} is never inferior
to {{x ==^},{^ y}}- Consequently, agents 1 and 2 do not face much of a decision
problem. Since the scarcity of c is zero, the protocol guarantees that agent 3 will
obtain c. It has to worry only about a. Hence, the strategy {{e ̂  a}, {6 ^ c}}
is inferior to the strategy shown in Table 5.1a (since {6 ̂  a} is more eligible than
{e =: <«}). Agent 5 does not need to worry at all about its strategy. It is certain of
acquiring / and ft, since neither of these tool types is undersupplied.

The optimal solution of the general composition problem constituted by the agents'
<?o<i/,s (the second column of Table 5.1) is the empty bag. In other words, none of
the composite proposals (i.e., the agents' goals) is satisfied if one applies proposal

'Here, valuable means that the tool type is scarce, such that its use renders a highly eligible
proposal.
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composition. The elementary composition problem induced by the agents'
has an optimal solution consisting of the three proposals {a ^ 6} (from agent 1),
{/ ;= o} (from agent 4), and {6 ^ /} (from agent 5). In contrast, the solution
rendered by delegated negotiation satisfies 7 out of 10 elementary proposals and
3 of the 5 goals. As such, the example illustrates that the adaptation of proposals
brought about by DN's pseudo-composition is an effective means of promoting trade.

The delegated-negotiation solution shown in Table 5.1 is not unique, but the number
of satisfied proposals is the same for all possible outcomes. However, this is not a
general property of DN. It is the case in this particular example, due to the fact
that the proposals competing for a and 6 have different eligibilities. In general,
the number of satisfied proposals can vary if DN is repeatedly applied to the same
problem.

We cannot conclude from this example whether the outcome shown in Table 5.1
qualifies as a good solution, because we would have to know the agents' tool-bag
utilities to weigh the utility gains obtained by agents 1, 3, and 5 against a possible
utility loss suffered by agent 4. Such evaluation will be performed later, in Chapter 7.

5.5.5 Distr ibuted pseudo-composition

We have described the pseudo-composition protocol as a decision process performed
by the auctioneer. However, the involvement of the auctioneer is not required, once
the market profile has been computed. In the following, we describe how the protocol
can be effectuated by the agents themselves in a distributed fashion.

At first sight, one might expect that, once the market profile information is made
available to the agents, the remaining problem can be solved in a Contract-Net
manner (Smith, 1980). This is not entirely true. Distributed pseudocomposition
amounts to the execution of several re/ated contracting processes in parallel. This
requires more message traffic than the execution of a comparable number of inde-
pendent contracting processes in a Contract Net.

The distributed pseudo-composition in stage 4 of delegated negotiation involves five
types of messages, three of which (the buy bids) are sent from buyers to sellers, the
other two (sell bids) in the opposite direction. The contents and purpose of message
types are summarized in Table 5.2.

Below, we provide some explanation of the table by sketching the message traffic
that is required to sell the tools of an undersupp/ied tool type. A complete and
detailed account of the entire distributed pseudo-composition process is presented
in Appendix A.

The prospective buyers of the undersupplied tool type initiate the negotiation pro-
cess by sending option messages to a// agents that possess the tool type. These
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option messages contain — among other data — information on the eligibility of
the buyer, to enable a seller (who possesses one or more tools of the desired type) to
select the most eligible buyers. Election messages are then sent by the seller to these
selected buyers. Because message traffic takes place in parallel, and a prospective
buyer sends option messages to a// sellers of the desired tool type, the number of
tool offers (i.e., election messages) received by highly eligible buyers will generally
exceed the number of tools they require, and the converse will happen with buyers of
low eligibility. Hence, additional message traffic is required to tie all sellers to buy-
ers. A buyer that has received election messages from sellers sends one commitment
message to some seller for each required tool, and it sends retraction messages to
all other sellers. A seller that receives a retraction message removes the associated
buyer from its list of interested buyers, and sends an election message to the next
most eligible buyer. And so forth. Once a seller has sold all of its tools (i.e., once it
has received one commitment message for each tool), it sends rejection messages to
any buyers that are still waiting for a response to their option messages.

1 type
option

election
rejection

commitment
retract ion

class
buy bid

sell bid
sell bid

buy bid
buy bid

contents
sender, type, option-id,
tool type, eligibility
sender, type, opt ion-id
sender, type, option-id

sender, type, option-id
sender, type, option-id

semantics
offer to buy a tool

election of an option
rejection of an option

commitment to an option
retraction of an option

Table 5.2: The five message types of distributed pseudo-composition.

Apart from the information an agent has received from the auctioneer (scarcity and
demand of tool types they offer, and seller lists of tool types they require), selling
agents keep track of the number of options received for tool types with positive
scarcity, the number of tools not yet committed (for each tool type they offer), as
well as the number of unanswered election messages sent out. Buying agents keep
track of the number of tools they still have to acquire for each tool type.

The above description presumes that the agents are truthful in their communica-
tion. If nocessary, their truthfulness can be verified afterwards by letting the sellers
communicate an account of their deliveries to the auctioneer, who can then perform
a checksum-like audit.

Since the auctioneer does not participate in stage 4 of delegated negotiation (cf.
Fig. 5.2), it can perform other tasks, while the agents are engaged in pseudo-
composition. In the context of a large number of agents, one can make use of
this to decompose the overall problem in the following manner. Dividing the agents
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into groups, each group is assigned a separate auctioneer. While the group mcmban
solve their composition problem, the auctioneer engages in a similar negotiation with
other auctioneers, coordinated by a /nyAer-Zene/ auctioneer. A base-level auctioneer
can provide the necessary information to it» auctioneer, because the tool scarcities
computed in stage 3 (see Fig. 5.2) determine completely which tools will be left over
after solution of the local composition process by the agents it manages. It can
thus try to trade these tools within the community of base-level auctioneers. The
agents who saw (some of) their proposals rejected can profit from the outcome of the
higher-level pseudo-composition if they engage in a second attempt to reallocate.

Hence, the use of a distributed protocol facilitates the decomposition of large-scale
problems. However, there is a price tag attached to such decentralization: The
distributed protocol requires considerably more communication than the centralized

one.

message type:
option

election
commitment

retraction
rejection
election

commitment
retraction
rejection
election

commitment
rejection

from:
1,2,3,4,5

6,7,8
1
1
6

7,8
2
2
7
8
3
8

to:
6,7,8

1

7,8
2,3,4,5

2
7
8

3,4,5
3
8

4,5

number of messages
15
3
1
2
4
2
1
1
3
1
1
2

Total number of messages: 36

Table 5.3: Required message traffic to assign 3 tools among 5 agents.

This is illustrated in Table 5.3. The table lists the message traffic involved in the
distributed assignment of three tools of some undersupplied type x, currently pos-
sessed by agents 6, 7, and 8 among five prospective buyers, say, agents 1, 2, 3, 4,
and 5, with respective eligibilities ei > e2 > e3 = e4 = e .̂ If the protocol were cen-
tralized, the auctioneer would be able to define an assignment by telling agents 6,
7, and 8 to which agent they should transfer their x, that is, by sending 3 messages.
In contrast, assignment via the distributed protocol entails the transmission of 36
messages, as shown in Table 5.3.

The table is block-chronological. Messages that are in the same block (i.e., not sep-
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arated by horizontal lines) do not depend on each other, and can therefore occur in
an arbitrary temporal order. If two messages are in different blocks, the message
in the uppermost block is sent and received before the other message is sent. The
message flow depicted in the table is an arbitrary possible outcome of the nonde-
terministic negotiation process. Senders or receivers printed in italics result from
nondeterministic selections. In this particular case, this involves only two receivers:
agent 6 in the third block, and agent 7 in the fifth.

5.6 Informed Gambling:
A Class of Iterative Mechanisms

5.6.1 From DN to IG: the incorporation of relaxation

The main difference between DN and IG is that, in IG, pseudo-composition is pre-
ceded by proposal relaxation. This relaxation amounts to repeated execution of
the DN stages of proposal collection, proposal aggregation, and agent information
(stages 1, 2 and 3 in Fig. 5.2). In the first iteration of this cycle, IG does not differ
from DN. Each agent communicates its preferred exchange in terms of a composite
proposal (stage 1). The auctioneer aggregates these proposals into a market profile
of gross demand and supply (stage 2), and communicates this profile to the agents
(stage 3).

The relaxation in IG takes place in subsequent iterations of this cycle. The agents
can now use the information in the market profile, and their knowledge of the pseudo-
composition protocol to perform some analysis with respect to the bag of elementary
proposals they should submit. This analysis may lead to the submission of a pro-
posal bag that, is a decomposition of their initial, composite proposal, but it can
also involve an adaptation of this proposal. The auctioneer aggregates the newly
communicated proposal bags into a new market profile, and transmits this profile
to the agents again. This three-stage process is repeated until all agents stick to
their proposals. The pseudo-composition protocol is then invoked to implement a
reallocation.

Experiments with a prototypical IG mechanism pointed out that it is often worth-
while to allow agents which are dissatisfied with the outcome to engage in a renewed
reallocation attempt. The associated flow of control is depicted in Fig. 5.3(b). Ob-
viously, it is more complex than the flow of control in delegated negotiation. Solving
a reallocation problem by means of DN comprises a single application of a single-
shot mechanism, while solving it by means of IG entails the (generally repetitive)
application of an iterative mechanism.

We refer to a single application of the iterative mechanism in IG as a p/iasc. Each
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•tart
proposal
collection

proposal
aggregation

agent
information

pseudo-
compoMtion •to»

(a) Flow of control in delegated negotiation

•tart-
proposal
collection i

proposal
relaxation

in

pseudo-
compoMtion

agent
information

/all
yprorx
\salis •top

(b) Flow of control in Informed Gambling

Figure 5.3: Flow of control in DN and in IG.

phase consists of a number of relaxation rounds, followed by pseudo-composition.
Hence, in terms of Fig. 5.3b, a phase comprises the traversal of the action blocks
between start and stop, without entering the outer loop. The relaxation block cor-
responds with a sequence of three blocks in Fig. 5.3a, namely, proposal aggregation,
agent information, and proposal collection (in that order). The relaxation in the
inner loop constitutes the adjustment process of the iterative mechanism, while the
pseudo-composition protocol constitutes its outcome correspondence.

If some of the proposals are rejected in the pseudo-composition of the first phase, the
process is repeated with the agents associated with these proposals. This is indicated
by the outer loop in Fig. 5.3. Even though such a renewed attempt typically involves
only a small fraction of the original agent population, it tends to enhance the quality
of the ultimate outcome — in terms of average agent satisfaction — considerably.

Proposal collection in subsequent phases differs from that in the first phase in that
the agents are guided by an additional market profile from the auctioneer, based
on the last submitted proposals of the remaining agents. This explains the agent-
information block in the outer loop of Fig. 5.3. The combination of agent information
and proposal collection amounts to proposal revision, as defined in Sect. 3.2.2. The
entire IG auction ends if a phase terminates with the satisfaction of all last-submitted
proposals.®

'This includes the case in which all the remaining agents pass (by submitting empty proposal
bags).
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5.6.2 Informed-Gambling mechanisms

Informed Gambling constitutes a c/oss of mechanisms for Tool Reallocation (TR).
In view of the broadness of the TR problem domain, it is not realistic to expect any
single mechanism to be adequate for all kinds of TR problems. There are, however,
certain common elements in IG mechanisms. Apart from the above flow-of-control
schema, this involves the following characteristics.

An IG mechanism can be viewed as an auction, in which the coordination mod-
ule plays the role of auctioneer. However, an IG auctioneer should be thought of
as a device, rather than an agent. Its main task is to aggregate incoming reallo-
cation proposals into a market profile, and reveal this to the agents. In addition,
the auctioneer executes the rules of the pseudo-composition protocol described in
Sect. 5.5. As such, its response behavior is straightforward in pseudo-composition,
and extremely simple in relaxation, where it does little more than adding numbers.
In any case, an it is much less sophisticated than the auctioneers responsible for
the — often complex — tätonnement schemes in computational implementations of
Walrasian-like auctions (Scarf, 1973; Joosten, 1996).

The converse is true for the traders in IG. More so than the traders in a Walrasian
auction, whose response to price information is straightforward, because they do not
face any uncertainties, the traders in an IG auction resemble human decision makers:
They search for a good response by comparing alternative strategies in a manner
that even in simple domains such as tool reassignment — involves nontrivial
situation assessment.

In view of the above, it is appropriate to state that the relaxation in IG is performed
by the oj/ents, who respond to the market profiles revealed by the auctioneer in a
manner that is rational, in view of their tool-bag utilities and the decision rules
employed in pseudo-composition.

Below, we present the formal, general definition of "IG mechanism". Due to its
generality, the definition is of an abstract nature. It does not entail a precise for-
mulation of all that goes on within an IG mechanism. Components like the agent
response correspondence, the termination criterion for the relaxation process, and
the definition of eligibility are discussed, but not specified in full detail. Such specifi-
cation is possible, but the details depend on the nature of the application domain. In
Sect. 5.Ü.5, we provide a detailed specification of the agent response correspondence
for the tool-reassignment domain.

The formal definition of IG uses the terminology and notation introduced in Chap-
ter 2. For the reader's convenience, a survey of the semantics of the symbols occur-
ring in Def. 5.2 is presented in Table 5.4.

Concerning Table 5.4, we make the following remarks.
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symbol
/
A

»(«)
A

r
u
1/
p+

C(Ä)

*

•emantics
agent community
set of tool types

universe of tool bags
tool allocation

community tool bag
the power bag of P

agent level utility (for tool bags)
universe of agent level utilities

demand bag of the gbag p
supply bag of the gbag p

universe of reallocation proposals
universe of elementary proposals

proposal(-bag) profile
universe of proposal profiles

market profile (a pair of bags)
scarcity profile (a gbag)

definition

a finite set
a finite set

the set of finite bags over /?
A : / - • <8(Ä)

r±|*nA
{7 € *(«") : 7 C 0

u : P(D -» |0,1]

p+(r) *max(0, p(r))
p-(r)*max(0,-p(r))

the set of finite gbags over A
Ci(Ä)Mp€C(Ä) = |p+l< l A | p - | < l )

*:/-*»(0i(A))

/i * Oi-,/i*> * <U«i*(0- • W«i*(0*)

Table 5.4: Overview of symbols used in the formal definition of IG.

• The symbol tx denotes the normalized (i.e., relative-utilitarian) agent-level util-
ity as defined in Def. 2.32 on page 39.

• The bags /x~ and /*+ denote yross supply and demand, while <r~ and <r+ denote
net supply and demand (i.e., oversupply and undersupply). Note that, while
/i = (/i",/!*) denotes a pair of bags, cr is a gbag, in which the negative
multiplicities denote excess tool supply, and the positive ones denote excess
tool demand.

• In the sequel, we sometimes add an index to /i, /i~ or /i+ to indicate the round
number. Thus, /if denotes the gross supply associated with the proposal
profile V\ submitted in round i.

• It is left to the reader to check that the two alternative definitions cr = /i"*" —/i~
and cr = | /m V> are consistent.

An IG mechanism is an iterative mechanism (see page 163)

( ^ , M c , £ , Z , C , r , / . , / ( , where

• The agent message space .M* is 93(£i (ß)), the set of bags of elementary pro-
posals involving tool types of some set /i.

• The coordination message space is ®(i?) x 2$(/?). A coordination message is
a market profile, a pair of bags of tool types in fl, which describe the current
supply of and demand for took in the agent community.
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• The problem space £ is a set of tool reallocation problems.

• The outcome space 2 is a set of proposal-bag profiles. An outcome is a
proposal-bag profile, that is, a function 2 : / —• 33(£i(.R)), which specifies
the tool exchanges to be executed on the endowments of the agents.

• The message-aggregation function C computes a market profile /̂ (consisting
of a demand bag /i~ and a supply bag ji+) by aggregating the proposals of a

. proposal profile V»i, in the manner indicated by the definition of /u in Table 5.4.

• The termination criterion T varies between IG mechanisms, and is represented
by a parameter T in a mechanism representation.

• The outcome correspondence h is defined by the pseudo-composition protocol
of delegated negotiation with the eligibility specification € as a parameter.

• The agent response correspondence / is based on fictitious rationality, a behav-
ior characteristic that we will discuss shortly. However, the precise definition
of agent response varies between IG mechanisms, and is represented by the
parameter <R in a mechanism representation.

Although IG mechanisms apparently fit into our general model of iterative mech-
anisms, we do not use the general model to distinguish different IG mechanisms.
This would be unnecessarily verbose, since most of these constituents of the iter-
ative mechanism model are the same for all IG mechanisms. Hence, we represent
specific IG mechanisms as a triplet of constituents that do vary.

Definition 5.2 (IG mechanism)
/In /G mec/mmsm i« o trtp/et (<H,(S,T), u>/>ere

<R : <B(fl) x [/ x <B(/?)' x <B(£,(fl)) x N -> P(»(0,(Ä))) is on aoent response
correspondence, </»a< maps a <«p/e consisting 0/ an endowment, an a</ent-/et/e/
uti/ity /unrtton, a market pro/t/e, a previous/t/ s«6m:«ed proposa/ 6aj, ana" a
rr/axation round num&er to a set 0/ proposa/ 6aos. 77ie idea is t/iat every
/ij € 5R(£,u,^_i,/3,_i, i) denotes a proposa/ 6ag t/iat a rationa/ ao.ent iwit/i
endowment e, and too/ 6ao uh/t<»e5 u may communicate in round 1, i//i,_i «
t/ie marfcet pro/i/e a^oreyated /rom t/ie proposa/s communicated in tne previous
round, in tunic/» t/»e ajent itse//nas communicated ^ , _ j .

tf : ^(/?) -v PREORD(Ä) is an e>/t<;t6iitty spect^cation.^ (J maps a scarcity
;ir«>/i7r a to an e/tyt6t/ity preorder ^ on too/ types. <J(CT) denotes tne e/tot6i/ity
preordfr > that is denned on the set fi 0/ too/ types i/ o- is the current scarcity
pro/i/e. Scarcer too/ types tend to render hioner e/ioi6i/ity. that is. o-(r,) >

'PRBORD(K) denotes the set of preorders definable on the set fi, allowing element i of ß to be
either more eligible, or less eligible, or equally eligible than another element y of A.
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• I : t x t x N - > {False, True} w tAe («rrmmarion condition /or (Ar relaxation
«tage. T(V\,0i-i,i) denote« tAe trutA value o/frrminafion a/rer round t,
u tAe proposal pro/iif o/ round i, and i/\_i tAat o/ tAe prrvtou« round.

Def. 5.2 harbors a number of constraints for IG mechanisms that deserve to be
mentioned explicitly.

• The definition of !H constrains the information that agents use to determine
an appropriate response. It tells us, for example, that they do not use the
information embodied in earlier market profiles than the last communicated
one. Metaphorically speaking, an IG agent forgets a market profile as soon as
it receives a new one. As a consequence, IG agents cannot compare two sub-
sequent market profiles, and are therefore generally not able to assert whether
the current round will be the last one, even if they know that the termination
criterion is V\ = «/>,_i.
The definition of iH also tells us that IG agents do remember their previous
proposal while they deliberate their current one. Hence, if stationarity of the
adjustment process is the sole criterion for its termination (i.e., if T ^ (t/% =
0,_i)), IG agents can conclude that the current round will certainly not be
the last one, if they submit a proposal bag that differs from their previous
submission. In principle, a self-motivated agent can use this fact to attempt
the conception of a plan (i.e., a sequence of proposal-bag submissions) to lead
the adjustment process to a state in which the agent's optimal proposal(s)
are more eligible than they presently are. Again, the definition of <R tells us
that IG agents do not exhibit such strategic behavior; their response is always
tropistic: Except for the agent's last-submitted proposal bag, neither the past,
nor the future of the adjustment process play a role in the determination of
the agent's present response.

• If £ denotes the eligibility preorder £(<r), then £ is defined between any
two tool types in D„ (i.e., any tool types currently allocated to some agent
within the community), but it is generally not an order. Obviously, any
tool types with equal scarcities are equally eligible, but even tool types
with different scarcities can be equally eligible. The variation among eligi-
bility specifications in IG mechanisms lies in the extent to which the lat-
ter is the case. At one extreme, the eligibility specification £o> defined by
»"I >-o ^ ** 3to:n(<r(ri)) > s'ffnW»^)). only distinguishes between oversup-
plied, undersupplied, and zero-scarcity tool types. At the other extreme, the
eligibility specification £,, defined by r, y, rj •» <7(r,) > (T^) distinguishes
between any two tool types with different scarcities. An example of an eligibil-
ity specification between these two extremes is £., defined by r, ~ . r2 if both
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ri and T2 are oversupplied, and r*i £ , r2 •<=> ri £1 r2 otherwise. This eligibility
specification distinguishes between oversupplied tool types, zero-scarcity tool
types, tool types of scarcity 1, tool types of scarcity 2, . . . .

• The fact that an eligibility specification € maps a scarcity profile to a preorder
on /? rather than on ©(/?) implies that IG is only able to deal with e/eroen<arj/
exchange proposals. This is a vital restriction. The incentives embodied in
the definition of proposal eligibility cannot be generalized from elementary
proposals (elements of <7i(i?)) to general ones (elements of £(/?)), without
hampering the agents severely in their estimation of the probability that a
proposal will be executed.

• The motivation behind the definition of the termination criterion T as a func-
tion of t/>,, V»-ii *nd i lies in the following three valid'" reasons to terminate
the relaxation process.

1. The relaxation process reaches a stationary state, that is, ^ = V\-i-

2. The relaxation has led the agents to a proposal profile Vi that is com-
pletely satisfiable, that is, er, = | Jm^i = 0-

15. The relaxation has been going on for too long. The round number i has
reached a previously imposed deadline value, and the relaxation is broken
off.

5.6.3 Fictitiously-rational agent response

To implement relaxation in IG, we need to specify how the relaxation incentives
embodied in IG's pseudo-composition protocol affect the agents' responses.

Complex TR problems call for another kind of agent response than simple problems.
Whereas an (almost) perfectly-rational response may be feasible in the context of
a simple TR domain such as tool reassignment, it is most likely too demanding for
TR problems associated with complex, real-life optimization, such as transporta-
tion and rostering problems. A boundedly-rational agent response will usually be
called for in such cases. However, as apparent from our discussion of bounded
rationality in Sect. 5.4.2, some forms of bounded rationality (e.g., strategy-space
limitation/expansion) come down to applying (almost) perfect rationality to a suit-
ably confined portion of the agent's strategy space. We stipulate that such a scheme
is a feasible option for IG mechanisms designed to tackle complex TR problems."
Hence, in the sequel, we present an almost-perfect form of Bayesian rationality that
can serve as a definition of agent response in IG mechanisms for tool reassignment,

'"in Chapter 7, we experiment with these termination conditions to assess their validity.
"We will provide an example in Sect. 5.9.1.
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and as a basis for the definition of a boundedly-rational response for (at least some)
complex TR domains.

The response correspondence we propose to attain relaxation in IG mechanisms
for tool reassignment is a Bayesian variant of Brown-Robinson fictitious play, a
dynamic process that can be used to approximate mixed-strategy Nash equilibria
(Brown. 1951; Robinson, 1951; Jordan, 1993). In fictitious play processes, an agent's
strategy in round it is a weighted average of the currently optimal strategy and the
strategies chosen in the previous m rounds, for some m > 0. In our Bayesian variant,
m = 0. We refer to the agent rationality that is associated with such a response
correspondence as /ictsrtous ratsonaiity.

The general idea of fictitious rationality is similar to that of Nash equilibrium. It is
reflected by the following 'agent instruction'.

"Select, in each round, a strategy that maximizes the conditional expec-
tation of your outcome utility, under the condition that each of the other
agents sticks to its last-chosen strategy."

Agents in an iterative mechanism do not know the actual strategies (i.e., the re-
sponses) of other agents. They only know the coordination message composed from
these responses. As a consequence, agents who exhibit fictitious rationality within
an iterative mechanism actually employ a weaker assumption. Their behavior is
consistent with the following instruction.

"Submit, in each proposal round t, a proposal u{ that maximizes the
conditional expectation of your outcome utility, under the condition that
the responses of the the other agents are such that they, in combination
with your previous proposal, would lead to the most recently received
coordination message being sent again."

If we denote the utility of the outcome 2 for agent i by u,(z), and the conditional
expectation of x, given y, by £?{x|y}, the above description of fictitious rationality
can be expressed formally, in terms of the symbols used in our definition of iterative
mechanisms as

/,(e,,m',i;;,t) € {s € 5, | 5 maximizes £{u,(Ä(s, t;J)) | m' = C(«,t>{)} } (5.6)

Eq. 5.6 features Ä instead of /i, the symbol for the outcome correspondence in our
model of iterative mechanisms, because the expression £{u,(/i(«, Uj))|...} is not
well-defined. Since /i represents the outcome correspondence, the expression /i(a, i>j)
denotes a set of outcomes. Hence, the only reasonable interpretation of w,(/i(«,Dj)
is that of the set of utilities associated with these outcomes. However, for £{x| . . .}
to make sense, x must be a stochastic variable. This implies that, to define fictitious
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rationality properly, we must turn the nondeterministic mapping A : S -
into a s<oc/iast»c mapping Ä : 5 -> Z (i.e., a function Ä that maps each s € 5
to a «<oc/ia«<tc variable Ä(s)). The method to arrive at such a stochastic mapping
depends on the kind of mechanism. In the next section, we explain how one can
obtain "the natural stochastic equivalent" of a nondeterministic mapping for IG
mechanisms, by applying the minimal-rationality principle.

5.6.4 T h e es t imat ion of expec ted utili t ies

IG agents are supposed to use their knowledge of the protocol, together with the
market-profile information, to estimate the expected utilities of proposals. However,
the protocol is a nondeterministic, procedural description of pseudo-composition.
To enable the agents to compute expected utilities of alternative strategies, a
more informative description is required. Such a description is provided below by
Prop. 5.4, which transforms the pseudo-composition protocol into a probabilistic
input-outcome mapping.

For the reader's convenience, we recapitulate the pseudo-composition protocol of
delegated negotiation (and IG) from Sect. 5.5.3.

Definition 5.3 (Pseudo-composition protocol)
Pseudo-composition comprise« t/ie /o//ou/ino steps, to 6e executed 6y the auctioneer
in t/ie order /»sted.

/. Execute a// proposals t/>at int;o/ue acquisition o/ a too/ u;/iic/t is not undersup-
p/ied.

2. For ffic/i undersupp/ied too/ type y, execute /i~(y) proposa/s asfcinc; /or t/iat
too/ type »n accordance untn proposa/ e/i</i6i/ity, tnat is, «n suc/i a manner t/iat
none o/ f/»e executed proposa/s are /ess e/i<?i6/e tAan any proposa/ /̂ia< is not
executed.

5. A/odt/y any proposa/ tnat is not executed in tne previous steps, 6y sufcstitutino
; /or y, uinere ^ ts drawn random/y /rom tne Coversupp/iedj too/s that are sti//
at'ai/a6/e.

^. Execute the modi^ed ;>ropo5ais.

Steps 2 and 3 of the protocol involve nondetermiuism. Step 2 does not specify
which of two competing proposals will be executed in case of equal eligibility. Step
3 encompasses a random selection from the oversupplied tools. To turn the nonde-
terministic procedure into a probabilistic mapping, we employ — putting ourselves
in the position of an IG agent — the principle of minimal rationality. In this case.
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this leads to two assumptions. First, we assume that the selection of proposals to be
executed is impartial, that is, the probability that a proposal is executed depends
onij/ on its eligibility. This implies that proposals of equal eligibility have equal
success probabilities.

Second, we assume that the probability of receiving - instead of j/ (in the case
that y is undersupplied) is proportiona/ to the multiplicity of 2 in the bag of excess
oversupplied took.

These two assumptions lead to a description — presented in Prop. 5.4 below — of the
input-outcome mapping in terms of a probability distribution over the elementary
exchanges that can take place. We denote the event that some agent proposes
{x = y} by prop(z = y), and the event that this proposal is executed on the
endowment of the agent by exec(z ^ y).

Proposition 5.4 (objective proposal success probability)
Let P„ denote the conditional pro6a6i/ity t/iat t/»e proposal {r ^ y} w executed, otuen
lAe proposal pro/lie </' and t/»e eligibility de/inition £ ." Formally,

P„ 4 P{exec(x - y) | prop(x ^ y),V»,«}

Let Pj denote </ie pro6afct/tty t/iot t/»e proposa/ »5 rejected, and exec(z ^ z) tafce»
p/ace instead o/exec(x ^ y). FormaZ/y,

P, = P{exec(i = 2) | prop(x ^ y), ^, ff}

Let 7j, denote t/ie 6ay o/ too/s o^ered 6y aoent« in exc/ianpe /or y, t/iat w, 7, = {r €
i? I |{r — y} e /mi/i}. Let 7_, 70, and 7+ denote the su66aos 0/7,, rontatnmo t/ie
too/5 t/iat are /ess e/tot6/e, eoua//y e/toi6/e, and more e/1016/e than z, t/iat »

7- = {rG 7yk -< 1}
7o = {r € 7,|r ~ x}
7+ = { r € 7 y | r v x }

Let q denote u>/iat ts /e/t 0/ t/ie supp/y M~(y) 0/ V «/*cr a// proposa/.« {X — y} t/iat
are more e/igt6/e t/ian {x == y} Ziave 6een executed. Forma//y,

T/ien

"The proposition basically aims to cover only the case in which the multiplicity of {1 =± y} in
is one. If there are multiple proposals {1 s= y} in ta^, Py denotes the probability that a

one of these proposals is executed, not the probability that at least one of them is executed.
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ft/ //ff(y) < 0 tfien P„ = 1 and Zience, P, = 0 /or a// 2 # y.

fa) / / <r(y) > 0 </ien

P„ = 0 if g < 0

P„ = 1 if 9 > |7o|

P,= (1-P„)

Proof.
The proposition is not more than a transcription of the procedural description of the
nondeterministic protocol in terms of outcome probabilities, under the assumptions
of impartiality and proportionality. Hence, we merely indicate which steps of the
protocol are used to arrive at the above statements.

Statement (i) in the proposition follows immediately from step 1 of the protocol.
Statement (ii) follows from steps 1 and 2, together with the assumption of impar-
tiality. Statement (iii) is a consequence of steps 1, 2, and 3, together with the
assumption of proportionality. •

The outcome probabilities P„ and P, in Prop. 5.4 represent the probabilities as
they would be perceived by an omniscient observer. The agents, however, are not
omniscient. Their knowledge of other agents' proposals is confined to what they can
derive from the market profile and their knowledge of their own proposals in the last
round. Since they cannot determine 7„ (or its derivatives 7_, 70 and 7+) from /1,
they are unable to compute P„ or P, as in Prop. 5.4. However, they can compute a
subjective estimate P„ of P„ based on their knowledge of the market profile /1. This
estimate, in turn, can be used to compute P, = (1 - P„) • 77^7

Let us look at the estimation of P„ by an agent that has submitted { J = y} in
the previous round, and is deliberating to submit the same proposal again. In the
following, we refer to this agent as "the estimator". The estimator exhibits minimal
rationality in two respects.

1. Since it has no indication as to what the other agents may propose in the
current round, except for the market profile computed from their proposals in
the previous round, it assumes that their response in the current round will
be such that the same market profile will be the same, if the estimator itself
re-submits its previous proposal.

2. To assess the (subjective) success probability of its proposal, the estimator
hypothesizes which tool types are offered by its (unknown) competitors (i.e.,
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the agents interested in the same tool type). Again, the market profile is
its only clue in this respect, so it assumes a probability distribution over the
possible bags of tool types offered by their competitors based on the relative
frequencies of tool types in the supply part of the market profile.

As a first step toward calculation of P„, the estimator can conclude that the took
which may be offered in exchange for j / in the competing proposals are the tools in
the bag

7 ^ { r € / i - | r # y } \ { x } (5.7)

We refer to this bag as the bag of potential adversaries (to x). To arrive at a concise
formula for P„, we attach some symbols to relevant quantities that can be derived
from 7 and /J.

/: the supply of y

A:: the number of actual adversaries, that is, the number of competing proposals
(*±/*+(»)-1)

s: the number of potential adversaries
Ml7l)

t: the number of potential adversaries that are less eligible than x
(« = l{r€7lr-car}|)

i>: the number of potential adversaries that are equally eligible as i
( t ; ^ | { r € 7 | r ~ z } | )

w: the number of potential adversaries that are more eligible than x
(tu 4 |{r e 7l r->-*}|)

A formula for P„ in terms of these symbols is specified in Prop. 5.5 below. Here, P„
denotes the subjective success probability of {x =̂  j/} where this is the on/y proposal
to be submitted by the estimator, and the same proposal that was submitted in the
previous round. The general case, in which the estimator deliberates the submission
of multiple proposals, not necessarily the same as those submitted in the previous
round, will be discussed later.

Proposition 5.5 (subjective success probability of an isolated proposal)
Consider an agent tno< Aas submitted {x :=± y} in <Ae prewiotM round, de/i&erates
repeatmo f/its proposal in tAe current round, and caZcu/a<es a subjective estimate P„
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0/ Me success pro6a6i/i<y 0/ </ie proposal on <Ae 6asw 0/ <Äe marfce* pro/i/e.
Let A;, /, 3, v, and u> 6e de/med as atone. £>e_/ine

^ 0 if n < m. (5.8)

TAen <Ae subjective success pro6ati/ity o/proposal {x ^ y} egua/s

(0
Proof.
Let W, V, and T denote the actual values associated with u;, u and t. In view of the
definitions of 7+, 7o, and 7_ in Prop. 5.4, and the difference between 7„ in Prop. 5.4
and 7 in Eq. 5.7,

W = 17+1

T = | 7 - |

To the estimator, who has no knowledge of these actual values, W, V, and T are
stochastic variables. Let P,j reflect the probability distribution which the estimator
attributes to the triplet (W, V,T). Formally,

''..j - ^ { ^ = » ^ ^ = J A T = it - i - j | tw,u,t} (5.10)

For the t-stimator, it is as if the relative eligibilities of its adversaries are determined
by a stochastic experiment. The estimator has just drawn a violet ball from a vase.
Its it adversaries stand next to the vase which now contains w white balls, t> violet
balls, and f terra-cotta balls, and each adversary draws a ball from the vase (without
replacement). In other words, in view of the information available to the estimator,
it will attribute a hypergeometrical distribution to (W, V, T):

_ V . / W / W» ' / (5.11)

Note that, grace to (5.8), Eq. 5.11 defines P,,, for all nonnegative values of i and j
such that i + j < it (that is, even if i > u> or j > v). Note also, that the same holds
if we replace it by 1: since y is undersupplied, its demand fc + 1 exceeds its supply /,
so f < it.
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With regard to statement (ii) in Prop. 5.4, we note that, if i = |7+| and j = j-y©! - 1,
then 9 = / - |7+| = / - i, and hence, the objective success probability P, can be
defined in terms of i and j as

Pj> = 0 if 1 > /

1 if t < / A / - t > j + 1
^ if t < / A / - i < j + 1

This can be expressed more concisely as

PJ' = 0 if i > /

Thus, we have obtained an expression for PJ' that is valid for any nonnegative 1 and
ji. The expression for P,j in Eq. 5.11 is valid for any nonnegative 1 and j such that
» + J < fc> and we have observed that / < Jfc. Consequently, we can combinatorialize
P„ over P,,j to obtain

^ = EE^-^ (5.12)
1=0 >=0

Substitution of the expressions for Pj,j and PJ-* in this equation renders Eq. 5.9.

For the derivation of Eq. 5.9, we have assumed that {1 ^ j/} is the only proposal
submitted by the estimator, and that it submitted the same proposal in the previous
round. If the estimator submits a single proposal that diners from the proposal(s)
submitted in the previous round, the quantities /, fe, a, t> and tt; in Eq. 5.9 can no
longer be computed directly from the market profile of the previous round. First, we
must modify the profile to account for the difference between the estimator's current
proposal and its proposal bag in the previous round. Thus, we arrive at the profile
that will result from the current round if the estimator submits its new proposal as
planned and the other agents re-submit their previous proposals.

If the estimator's (new) proposal bag contains other proposals next to {1 ^ j/},
these other proposals constitute a-priori knowledge of r/\> the proposal profile of
the current round. To account for such knowledge, modification of Eq. 5.9 may be
required. Prop. 5.6 below describes the computations that must be performed to
estimate the success probability of {1 — y} in this case.

Proposition 5.6 (subjective proposal success probability)
Suppose t/iat agent m, to 6e re/erred to as "the estimator", /las «uömittea* t/ie propo«a/
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6aa /3,_i in round i — 1, and de/tfcerates t/ie suimission o/ t/ie proposa/ 6ao /?< in round
i. Forma//y,

V,_,(m) = /?,_, A & ( m ) = Ä (5.13)

Suppose tAat agent m wants to estimate the success pro6a6i/ity o/ {x ^ y} G &,
under tAe assumption that t/ie ot/ier agents u;i// re-suömit their /ast proposa/s, t/iat

( V j e / ) j / m ^ V.O) = V.-iO") (5.14)

Let /ii_i denote the mar/cet pro^/e computed/rom V"i-i> oid /et /J, denote the market
pro/i/e associated with V>, de/ined 6j/ ^5./5j and ^5./^j, that is, the pro/i/e that the
estimator expects to resu/t /rom the current round, i/ it submits ß<. Forma//u,

Z?e/ine the proposa/ bags 0 and £, the too/ 6ay 7, and the guanttties s", u»*, v*, s, u;,
11, / and A' a.« 6e/ow, where X denotes an ar6itrary too/ type in fi.

7 Ä {r

« =
u) ^ |{r € 7 | r >- x}| - u;*
t- i | { r G 7 | r ~ x } | - »'

Then the sukjective success profea6i/ity 0/ {x ^ u} eoua/s

p r

0
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Proof.
We prove the proposition by comparing it with Prop. 5.5 on page 189, and showing
that all a-priori knowledge of the estimator is indeed incorporated in (5.16).

The a-priori knowledge that the estimator has of 0, involves its own proposal bag /V
The relevant information in this knowledge is expressed in the subbags 0 and £ of
/3,. 0 contains the proposals of which the estimator knows that they are competitors
to {x ;=: i/}, and ( contains the known noncompetitors.

The definition of the bag •> (of potential adversaries to x) differs from the corre-
sponding definition in Prop. 5.5, in that the tools in the supply bag (~ of £ are
removed. These are the tools that the estimator uses to obtain other tools than y.
Hence, the estimator knows that these tools are no< potential adversaries to x.

The semantics of the symbols a', w', and t>* is analogous to that of a, w, and v in
Prop. 5.5, except that they pertain exclusively to the fcnoum adversaries. Thus, tu*
denotes the number of adversaries Jtnoum to be more eligible than r, »>* the number
of adversaries itnoum to be of equal eligibility, and a" denotes the total number of
fcrtouin adversaries.

Since a*, w*, and v" are subtracted in the corresponding definitions of a, w, and t>
above, the latter symbols pertain exclusively to unJknown adversaries. Similarly, /
now denotes the number of available y-tools that is left, after any known competitors
more eligible than {x ^ y} have taken their share, and A: denotes the actual number
of unknown competitors.

Hence, next to the presence of r* in the formula, (5.16) differs from (5.9) on page 190,
in that it features combinatorialization over the number (i) of unknown competitors
that turn out to be more eligible than {x :=* y}, and the number (j) of anboum
competitors that happen to be of equal eligibility.

This explains the appearance of r* in "min(l, „.'̂ ~'+,)": The latter expression rep-
resents the objective success probability of {x ;=s y} if the supply of y is / + tu*, and
there are i + u>" competitors more eligible than {x ^ y}, and j + r* competitors of
equal eligibility (cf. Prop 5.4).

By providing formulas for subjective proposal execution probabilities, we have sug-
gested that the estimation of success probabilities is a vital part of the agents'
rationality in any IG mechanism. However, it may not always be /eaatfe/e to inves-
tigate the strategy spaces of agents exhaustively to ensure that the expected utility
of the selected strategy is maximal. Such exhaustive investigation is not a prob-
lem when solving reassignment problems, but strategy spaces can be quite large in
general reallocation problems, where agents are endowed with multiple tools. To en-
sure that a bag of elementary proposals constitutes an optimal strategy, a separate
calculation is required for each proposal bag with a higher utility than the agent's
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current endowment.

Moreover, the exact computation of the subjective success probability of a single
proposal 6a<7 is much more cumbersome than that of a single proposal. Prop. 5.6
specifies a formula for the success probability of a single proposal in a bag, not for
the probability that a// of the proposals in the bag are accepted. If the success
probabilities of different proposals in a proposal bag were independent, we could
simply multiply the single-proposal probabilities to arrive at the success probability
of the entire bag. Unfortunately, single-proposal probabilities are almost always
dependent. Consequently, to compute the success probability of a proposal bag,
we would have to perform a calculation similar to that of Eq. 5.16, except that we
must now combinatorialize over tuples of competitors for the different proposals in
the bag. This turns the computation of expected utilities of proposals into a very
cumbersome task.

Hence, to apply IG to the (typically full-fledged) reallocation problems associated
with real-life optimization problems (cf. Sect. 2.1.3), bounded rationality is called
for. How the agents' rationality should be bounded depends on the underlying
optimization problem. We pay more attention to this issue in Sect. 5.9.1. For now,
we turn to a subclass of reallocation problems that poses none of the above problems:
the class of reassignment problems.

5.6.5 An IG mechanism for tool reassignment

In a reassignment problem, each agent is endowed with one tool, which it would like
to exchange against a tool of some other type. Because the endowment of an agent is
a tool, rather than a bag of tools, we denote endowments by Latin, rather than Greek
letters." An IG reassignment mechanism features the same elementary exchange
proposals as a reallocation mechanism. However, the agent now only submits one
proposal {x ^ y} in each round, and it cannot vary x. In view of this, it is more
economical to let the auctioneer keep track of the tool types offered by agents in
their first proposal, and abbreviate subsequent proposals {x ;= y} as 'y\ If an agent
endowed with a type-a tool submits the proposal 'a', we will interpret this as an
empty proposal (signifying "I pass") instead of an offer to exchange a type-a tool for
another type-a tool. The latter, literal interpretation would make little sense, since
the utility of a tool is determined completely by its type. Furthermore, if type-o
tools are undersupplied, submission of {a ^ a} would amount to the altruistic offer
"Please, take my o and give me back any junk that you would like to get rid of".
For clarity, we denote the empty proposal by ' - ' in the text that follows. Note that
' - ' i s not a rfe/imt«ve pass bid. An agent that passes in the current round may take
part again in the bidding of the next round.

"Greek letters «re reserved for bags and bag constructs (cf. Sect. 2.2.2).
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Because a proposal is now identified by a tool type instead of a bag of elemen-
tary gbags, a proposal profile is no longer a bag construct, but simply a function
that maps each agent to a tool type. We therefore represent proposal profiles in
reassignment mechanisms by the Latin letter p instead of the Greek letter 0.

For the formal definition of an IG mechanism as a tuple (<H, <f,T), the above implies
that the agent rationality specification <K is of the form

!R(e,u,/i,_i,6,_i,i) € ß, where B, C Ä

instead of (see page 182)

*(e,u,/ i i_, ,Ä_,, i)€2, whereH, C »(0,(Ä))

The particular IG reassignment mechanism that we propose has the following fea-
tures.

<H: Agents are risk-neutral expected-utility maximizers.
t: luul eugiuuuy is equaieu Wim scaiciiy.

1: A relaxation process terminates when all agents re-submit their last proposals.

Attributing the same semantics to <r and P„ as in Prop. 5.6, this can be expressed
formally in terms of (91, £,T) as

,u,^,_i,6,-,,i) 6 {6 € Ä| (Vr e Ä) «(&) > fi(r)> (5.17)

where ü(e) = u(e)

4 >; where (Vr,,ri € Ä) r ^ r j ** ff(ri)><r(rj) (5.18)

i,P.,t)= P. =P,-i (5-19)

To see what the behavior of agents is like in such a reassignment mechanism, we
recall a reassignment example (Example 3.18 on page 77) which we used to illustrate
the computation of a Walrasian allocation via the Top-Trading-Cycles algorithm.
Table 5.5 recapitulates the relative agent-level utilities of this example, and Table 5.6
shows the profile po of initial proposals and the initial market profile /ii computed
from po.

From the market profile, agents 1 and 5 conclude that their most preferred tool is
undersupplied. Agent 1 has two viable options for its proposal in the next round.
It can propose ' —', satisfying itself with the little utility its currently allocated
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u
a
b
c
d
e
f

1
10%
100%

2

10%
80%

100%

3

10%
100%

4

10%
100%

5

100%

10%
90%

6
100%

10%

Table 5.5: Agent-level utilities (dots denote negligible utilities).

agent
endowment
proposal

1
a
b

2
b
e

3
c
d

4
d
e

5
e
b

6
f
a

(a) initial proposal profile

tool
demand
supply
scarcity

a
1
1
0

b
2
1
1

c
0
1

-1

d
1
1
0

e
2
1
1

f
0
1
-1

(b) market profile and scarcities

Table 5.6: Proposal and market profiles after the initial bidding round.

tool provides, or repeat its bid on 6. Due to the considerable increment of utility
associated with acquiring 6, a risk-neutral agent will opt for the latter. From the
market profile, it can deduce that its single competitor can possess any one tool of
type c, rf, e or / with equal probability. In two of these four cases, agent 1 is more
eligible. In one case, the eligibilities are equal, rendering a toss. Thus, the subjective
success probability P» of acquiring 6 equals ^ P = | , rendering an estimated utility
ü(6) of at least" | • 100% = 62.5%. This exceeds ü(- ) = 1 • 10% = 10%. The same
line of reasoning leads to agent 4 proposing e. Agent 5 must choose between 6 or / .
In view of the small difference between the utilities of 6 and / , a risk-neutral agent
would generally be inclined to opt for / . In this particular case, however, agent 5
can deduce from the market profile that the only other agent that is equally eligible
as itself possesses 6, and can therefore not be a competitor for 6. In other words, a
bid on 6 is certain to succeed. A similar conclusion can be drawn by agent 2 with
respect to a bid on e. Hence, each of the agents 1,2,4 and 5 sticks to its original bid.
Since the others have no reason to change theirs, the same proposal profile occurs
again, and the relaxation is terminated.

In the pseudo-composition that follows, agents 2, 3, 5 and 6 will acquire their most
preferred tool, and agents 1 and 4 will receive one of the oversupplied tool types c
and / . Hence, the outcome will be one of the allocations [ced/ba] or [/erfc6o], with
a community utility of approximately *jp « 67%. In terms of community utility,
IG performs significantly better than a Walrasian auction could. As we derived in

"We neglect the second term in the definition of i(y) in Eq. 5.17.
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Sect. 3.3.8 (at page 78), the only Walrasian allocation is [arcdfr/], with a community
utility of approximately 2|9 = 40%.

In this particular example, the commilmfnl required by IG from agents bidding on
a tool is instrumental to its outperforming a Walrasian auction. In other cases,
however, the uncertainty about the endowment and preferences of the other agents
is more important. Situations such as the one described above, in which an agent
can be certain of success when bidding on a scarce tool are relatively rare. In many
cases, such uncertainty is capable of preventing a «ma// «jroup of agents (in the above
example: agents 2 and 5) from frustrating community interest.

Suppose, for example, that we face a problem similar to the one described above,
but with two additional agents possessing / , that have a preference for tool type d.
The corresponding market profile after the first round differs from that of Table 5.6b
in that the supply of / and the demand of d now equal 3. This implies that d is now
the scarcest tool. As a consequence, agents 2 and 5, no longer certain of success, will
opt for their alternatives c and / , rendering the optima/ allocation [6rde/aj(f ] with a
community utility of 73%.

In contrast, application of the Top-Trading-Cycles algorithm to this problem in-
stance would render the (unique) Walrasian allocation [aecd6j07] with a community
utility of only 32%.

5.7 Termination of the Relaxation Process in IG

In Def. 5.2 on page 182, we mentioned three reasons to terminate the relaxation
process.

1. The sequence of proposal profiles reaches a stationary point.

2. The current profile features zero excess demand.

3. The number of rounds reaches a previously imposed deadline.

The presence of the third condition suggests that the other two, in isolation or in
combination, are insufficient to ensure timely termination of the process. This is
indeed so. The termination of the relaxation process is a problematic issue.

Initially, we envisioned stationarity (i.e., the event that the proposal profile ^, equals
the profile ^_ i of the previous round) as the sole condition for termination, because
it amounts to attaining the goal of relaxation: to arrive at a state where each of the
agents willingly commits to its proposal and the risk it may encompass. In any case,
it is pointless to continue if the collective agent response to the associated market
profile /i, happens to be deterministic: in this case, the stationary state will persist.
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Hence, the termination criterion should at least include this stationarity condition
as a sufficient condition for termination.

The validity of the second condition, market clearance, is less obvious. In a Walrasian
auction, market clearance is always a (persistent) stationary state, but this is not
the case in IG. Upon reaching a state of zero excess demand, an IG agent may well
change its proposal if given the opportunity to do so. Hence, the incorporation of
market-clearance as a sufficient condition for termination incurs a violation of the
design principle of agent autonomy: Agents may be forced to accept a commitment
that they did not willingly engage in.

In CMAT, where the proper attitude in design is to be pragmatic rather than prin-
cipled, the market-clearance condition may still be viable, if it incurs a considerable
improvement of solution quality. There is at least some reason to expect that this is
the case: Pseudo-composition on a proposal profile with zero excess demand amounts
to executing a// of the agents' proposals. This will often render a relatively high
average agent satisfaction. Thus, while the market clearance condition can lead to
a violation of agent autonomy, it may enhance mechanism performance. To weigh
these two conflicting design goals, we have performed experiments, whose outcomes
will be discussed in Chapter 7. For now, we assume that an IG relaxation process
can terminate for two reasons only: due to reaching a stationary state or due to
reaching the deadline.

The deadline condition is, of course, the least attractive of all. Like the market-
clearance condition it violates the agents' autonomy. Moreover, it is more likely
to have an adverse effect on mechanism performance than to enhance it. Indeed,
our only motivation to incorporate the deadline condition is to have an emergency
measure in case things go wrong. That things can go wrong, in the sense that
the relaxation process may never reach a stationary state, is demonstrated in the
following example.

Example 5.7 (Non-termination due to cyclic behavior)
Consider Me reassignment pro6/em described 6y t/ie utt/itj/ matrti m Ta6/e 5.7. TAe
pro6/em comprises 7 agents and ^ too/ types. 77ie initial endowments o/ the agents
are under/tned in t/ie matrix. 77»us, tnitia//y, agents 7 and 2 possess a tj/pe-a too/,
agents .V and ^ a type-6 too/, etc. We investigate tne re/azation process that un/o/is t/
the examp/e pro6/rm is /ed to the /G reassignment mechanism de/ined in Sect. 5.6.5.

The course that a re/axation process taAes is described 6y a sequence o/ proposa/
pro/i/rs t/\. We denote a proposa/ pro/i/e by a string o/ characters, where the i-th
character in the string indicates the too/ type requested in the proposa/ o/ agent i.
To e/ucidate our argumentation, we also present the associated market pro/i/es ftij
and scarcity pro/Ues ftr,̂ . The /irst round, in which the agents communicate thetr
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Ta6/e 5.7: J4 termination pro6/fm.

/irst pre/erence» to tAe auctioneer, /eads to tAe /o//owing state.

0, = 'bbadcbc', /i, = ({aatocdd}, {ab66ccd}), a, = {od ^ 6c}

/n new o/ tAeir too/ uti/tties ^see Tab/e 5.7J, agents ^, 5, 6, and 7 u/t// stidk to tAeir
inttta/ proposals no matter wAat tAe current market pro/i/e is /tike. Conjeouent/y, we
need on/y consider tAe reasoning emp/oyed by agents /, 2 and &

.Agent J conc/udes /rom <Tj tAat b is scarce. TAe subjective success probabi/ity P» in
the context o//ii can be computed/rom Eg. 5.9 on page iP0. 7t egua/s 0.58?.'*. 7"Ais
/eads to an expected uti/ity /or {a ^ b} 0/

= 0.58? • 100 + 0.410 • 40 = 75%

Since t/iis is /ess t/ian t/ie uti/ity 0/ its current endowment (#0%j, agent / w»// submit
'—' in t/ie next round. >4gent 2, u//io /aces ezact/y tAe same situation, wi// do tAe
same.

j4gent •? wi// stielt to its previous propose/ {b ^ a}, since tAis proposa/ »s guaranteed
to succeed under CTi. /fence, tAe situation a/fcer tAe second round 0/ bidding is

^2 = '—adebe' , /i2 = ({b&afd}, {abeed}), <7j = {M ^ oc}

/n tAis situation, agents 7 and 2 are — or ratAer, feel — certain 0/ tAe success 0/
{a = b}. and u/i// bid according/y. /n contrast, agent 5 is no /ongpr rertam 0/ tAe
success 0/ {b =̂  a}, /n /act, tAis proposa/ is certain to /ai/ under /J2, wAicA /eature«
zero supp/y o/a. Wence, tAe expected uti/ity o/{b ^ a} eoua/s u(a) = 0-100+1- ̂ ^ =
5%, /ess tAan tAe uti/ity 0/ its current endowment. 5o agent 5 wi// submit '— '. TAM
/eads to

03 = 'aa-debe', /i, = ({aabedd}, {bobced}, <7j = {aa ^ bb}

/n tAts situation, a proposa/ {a =̂ b} by agent / or 2 is doomed to /at'/ again, wAi/e
{b s± a} by agent 5 is certain 0/ success, //ence, tAe situation a/ter tAis round is

04 = ' - - adebe ' , ^4 = ({bbcdd},{abccd}), 0-4 = {bd — ac}

"0.583 is a shorthand for the number 0.5833333 ... , that ia, 0.58 + j , likewise
the number 0.4218218218 ... .

denotes
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We ofr-serve </iat 1/14 = V2 • TYie re/aiatton process /las entered a cyc/e, and wi// 50 on |
inde/mite/y, i/ Ze/t <o its own dynamics. A y

I
The relaxation process in the above example never reaches a stationary state, even ^
though such states do exist. If the process would reach the state

V>* = ' - afcdcbc', /i' = ({a66cdd}, {a66ccd}), a' = {rf ^ c} <

then agents 2 and 3 would stick to their proposals, because the zero scarcities for a
and 6 guarantee the success of their proposals. However, agent 1 would also stick to
' - ' . Its subjective success probability for {a ^ 6} under ^" equals 0.58?, leading to
ü(6) = 75% (as we saw earlier). This is lower than ü(-) = 80%.

That the above stationary state is never reached is due to lack of coordination
between agents 1 and 2, which, in turn, is a consequence of the fact that they
respond to the last market profile in parallel. If the agents would submit their
proposals sequentially, on the basis of a market profile that incorporates the latest
submitted proposal, the stationary state would be reached. Of course, sequential
bidding is not really attractive for a distributed mechanism. We would prefer to
retain ;it least some parallelism and still prevent the overcompensation by agents
from stalling the termination of the relaxation process indefinitely. This can be
obtained if we employ asynr/inmous parallelism.

Termination under asynchronous parallelism

Asynehronously parallel proposal updating entails that the agents submit proposals
in a random and varying order, and the auctioneer computes a new market profile as
soon as it has received the responses of a certain percentage (say, fc%) of the agent
population on the previous profile. The agents must communicate a round number
together with their proposal, to indicate on which market profile their proposal is
based. This enables the auctioneer to discard proposals that are based on outdated
market profiles. In turn, the communication from the auctioneer to an agent involves,
next to a market profile, a flag indicating whether an update of the agent's proposal
has been incorporated in the profile.

This procedure can be applied in all rounds, with one exception. If the auction-
eer observes that the new proposal profile'* equals the previous one, it waits until
o// agents have submitted their responses, and uses the complete profile to decide
whether the relaxation process can be terminated. If it would not do this, agent
autonomy could be violated by binding agents to commitments that they did not
willingly engage in.

"The new profile comprises the new proposals of the fc% agents that have managed to submit
these, and the last submitted proposals of the remaining agents
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In the above example with 7 agents, asynchronously parallel updating guannfeaM
that the relaxation process reaches a stationary state within a finite number of
rounds with probability 1, provided that the parallelism is sufficiently asynchronous
(which is the case if fc/100 < 6/7). The question is, of course, whether such a
sufficient condition for termination exists for every assignment problem.

Unfortunately, this is not the case, as the example below shows. The example is
derived from a randomly generated problem, which I ran a number of times on
the Informed-Gambling Reassignment Testbed. In each trial run, the relaxation
terminated by reaching the deadline (which was set to 2000 rounds). The trials
involved asynchronous bidding using various values of it, as well as sequential bidding
in a randomly varying order. This prompted for a closer examination, which is
recorded below.

Example 5.8 (Cyclic behavior with asynchronous parallelism)
Consider tAe too/ reassignment pro6/em de/ined 6y tAe uti/ity matru in Ta6/e 5.Ä.
77ie inttia/ endowments o/ tAe agents are underlined in tAe malm. WV emp/oy t/ie
same notattona/ conventions /or V, /*> and a as in £zamp/e 5.7. tVe do not spe//
out tAe reasoning processes o/ a/Z agents, out con/ine ourse/ves to tAose agents tAat
cAange tAeir proposa/s at some point m tAe re/axation process, /n t/iis particu/ar
eiamp/e, t/iis pertains on/y to agents 2 and 2. /t turns out t/iat a// ot/iers «<tcA: to
t/ieir zniho/ proposa/s m eacA o/ t/ie /our states reac/»ed 6y fAe re/aiation proce»«.
J4/SO, we descnoe t/ie reasoning 6y agents 2 and 2 m terms o/ tAeir ezpected utt/ttte«
/or proposa/s, ratAer tAan tAe under/ymg success pro6a6i/itie*.
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Ta6/e 5.Ä: J4 trou6/esome termination proWem.

TAe tnitta/ state o/ tAe re/aiation process is

^i = '/cA/ac/oda', /i, = ({aa66cde/gA}, {aafcccd/J/A}), <7i

/n tAis situation, agent 2 is tAe on/y agent tAat is motivated to deviate /rom tts tnttia/
proposa/. TAe new state tAat arises /rom tAts update prompts agent 2 to deviate,
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prompte agent 2 <o c/iange oacA: <o its tntha/ proposa/, e<c. TAis resu/ts in a
re/axation process o/ t/ie /orm V'I . V"2i ^3i */"4> V"i i • • • rAe reasoning processes 0/ agents
/ ana" 2 in t/ie /our di/ferent states tnat occur in t/ie re/azation process are described
in Tab/e 5.9, in terms 0/ <Ae expected uti/ities Wiic/i f/ie agents compute /or t/ieir
options, //ere, an option is any too/ type wit/i a greater uti/tty t/ian t/ie agent's
current endowment, /nspection 0/ Ta6/e 5.Ä te//s us t/iat agents i /»as on/y two
options // and gj, w/iereas agent 2 /ias /ive /'ft, c, d, /, and /ij.

ü
state:

>̂i = ' / c . . . '

^2 = ' / b . . . '

V*3 ~ S^' • • '

^4 ~ *S '̂ • • '

options /or agent .7:

/ 9

6.6 Ä.0

options /or agent 2:
b c d / /i

5.0 5.2 2.5 .7.7 7.9
5.0 5.2 2.5 .7.7 /.9
5.0 7.2 ^.7 5.7 2.«
5.0 7.2 4.7 5.7 2,9

Ta6/e 5.9/ Expected uti/ities 0/ agent options in ^ states.

Ta6/e 5.9, tye conc/ude t/ia<, in tfie initia/ state Vi, agent / wi// sticfc to '/',
w/ii/e agent 2 c/ianges to '6'. //ence, <ne neu; state is V"2, »n u>/iic/i agen< 7 c/ianges
<o 'g', and agent 2 sficfcs <o '6'. 77ie process reac/ies state V3, «n w/itc/i agent / shcfcs
to 'g', and agfn< 2 cnanges to 'c'. 77us brings about state ^4, w/iic/i prompts agent
i to cAange to '/', Wii/e agent 2 sticits to 'c'. TAe resu/t is Mat we are 6adfc in state
t/'i again. A

In the context of asynchronously parallel updating, the relaxation process is a Marko-
vian process, which generally takes different paths through the state space in dif-
ferent trial runs. In the case of this particular reassignment problem however, the
relaxation process is fully deterministic, due to the fact that, in each state that can
be reached from the initial one, only one agent is motivated to deviate from its
previous proposal. This explains why asynchrony is, in this case, not able to "break
the cycle", as it did in Example 5.7. No matter how we choose the asynchrony
parameter Jfc, either the single agent that wants to deviate is among the first fc%
that manage to submit a proposal, or it is not, and — so as not to violate agent
autonomy — the auctioneer waits for it to submit its proposal.

Hence, the relaxation process will never reach a stationary state, no matter whether
the mechanism features synchronously parallel, asynchronously parallel or sequential
proposal updating. Note that this still does not mean that there is no stationary
state, only that the process will never reach one if the initial state is t'i • So perhaps
it should start somewhere else. But since we have no clue as to what would be "good
initial states", this does not help us much. Restarting the relaxation process from a
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different initial state does not seem a very attractive idea, since we cannot preclude
that this amounts to investigating the entire state space.

The inevitable conclusion is that, even with asynchronously parallel updating, we
still need to incorporate the deadline condition in the termination criterion to ac-
commodate the cases in which the relaxation process ends up in a persistent cycle.
However, as remarked earlier, incorporating a deadline is a rather unsatisfactory
measure. If the deadline is reached too frequently, we may just as well refrain from
relaxation altogether. An alternative way to guarantee termination within an ac-
ceptable number of rounds would be welcome.

The alternative that we have thought of for IG involves a modification of the agents'
rationality (i.e., of the response correspondence !R). We presume that agents will
grow weary of prolonged relaxation. This negotiation scanne« characteristic is
implemented in *R as follows.

Instead of simply bidding on a tool type y of maximal expected utility ü(y), the
agent compares ti(y) with the expected utility of its previous bid x (under the
current market profile), and bids on y only if the difference ü(y) — ü(x) exceeds a
certain treshold level L. Otherwise, it repeats its bid on x. The treshold value L
starts at zero, and increases linearly with the round number t, according to

L = 1 (5.20)

Here, D is the value of the deadline parameter of the mechanism. Since the range of
ü() is the interval [0,1], the incorporation of weariness guarantees that the relaxation
process becomes stationary in or before round £>. In practice, however, the number
of relaxation rounds rarely exceeds D/4.

Although the incorporation of negotiation weariness is a less extreme measure than
the incorporation of a deadline, it can theoretically lead to severely suboptimal
responses. If this happens frequently, negotiation weariness would constitute a rather
irrational aspect of the agents' behavior. Furthermore, it can cause a significant
degradation of mechanism performance. Hence, it is important to know how often
weariness plays a role in the relaxation process, and how large the concessions are
that it brings about. In Chapter 7, we will discuss our observations in this respect.

5.8 Characterization of IG

We characterize IG in two respects. First, we compare its key elements, the sta-
tionary states of its adjustment process, and the notion of rationality employed in
its agent response correspondence to common conceptions of equilibria and ratio-
nality in game theory and AI. Second, we investigate whether the performance

SSL
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correspondence of the specific IG mechanism proposed for tool reassignment has
any game-theoretic properties (such as Pareto optimality).

5.8.1 Characterization of IG equilibria

Equilibria and rationality in game theory

In game theory, equilibrium concepts and rationality notions are intimately con-
nected. In fact, solution concepts like the well-known Nash equilibrium notion
de/ine a conception of rationality. In the following, we discuss three equilibrium
notions in competitive game theory in this respect: pure Nash equilibria, mixed-
strategy Nash equilibria, and correlated equilibria. The latter equilibrium notion
is the game-theoretic concept that is most akin to equilibria attained in IG mech-
anisms. Our discussion of the other two notions merely serves as a leg up for the
definition of correlated equilibria. Hence, readers already familiar with the notion
of Nash equilibrium and its purpose as a characterization of rational agent behavior
shotriti feei' free to j'timp Co otir cfescripilron o/correi'atecf equn'iorra on page 359.

In game theory, the relative desirability of possible outcomes is expressed in terms of
(cardinal or ordinal) utilities, called payoffs. In classical, competitive game theory
(Neumann & Morgenstern, 1947), a player in a game is supposed to pursue only one
goal: to maximize its payoff. A yame m normal /ortn (Wang & Parlar, 1989) is an
abstraction of real-life multi-agent decision problems that comprises the following
entities:

• a finite set of players, identified by the natural numbers 1,. . . , n;

• a finite" set 5, of strategies for each player i;

• a cardinal payoff function û  for each player, which associates a real-valued
payoff with each strategy tuple (s , , . . . , s„), where s, 6 5, denotes the strategy
chosen by agent t.

The usage of the terms player and payoff is largely confined to game theory In
the sequel, we therefore speak of agents instead of players, and u<»/tt«es instead of
payoffs. We will, however, use the game-theoretic term 'srrafe^j/'. instead of action'
or 'decision', because this term has become common in MAT, as well as in economics,
social choice theory, and game theory.

The idea of a game in normal form is that the agent's decision problem is to se-
lect a strategy that will lead to an outcome of maximal utility. Here, the outcome
of a game is the joint strategy'* itself, not a mapping thereof, as in our model of

"in same theory, the strategy space can also be infinite, but we do not discuss such games
"The joint strategy is the tuple of strategies selected by the agents
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iterative mechanisms. One distinguishes between games with complete and games
with incomplete information. In the former, the agents all have prr/ert Jl-now/etfye,
that is. each agent knows the strategy spaces and the outcome utilities of the other
agents. An agent with perfect knowledge can determine, for each of the possible
joint moves of its opponents, which of its strategies would be best. It can also form
hypotheses about the deliberations of other agents in this respect. The combination
of these two kinds of inferences comprises a straightforward strategy-selection pro-
cedure only if there happens to be a strategy in the agent's strategy space that, is
best in all cases, that is, no matter which strategies the other agents choose. Such a
dominant jtroteoj/ is not likely to exist very frequently. In the complementary case,
the agent may get entangled in reciprocal reasoning of the form

She'11 probably ( . . . ) , so I'll ( . . . ) .

But then, she may expect that I '11 ( . . . ) , because I expect her to ( . . . ) ,
and will therefore (. . .) instead of ( . . . ) , so I '11 ( . . . ) .

But then, if she ezpccti that I expect that she expects that 1 '11 ( . . . ) ,
she will ( . . .) instead, so perhaps I 'd better ( . . . ) .

It is clear that reciprocal reasoning poses a serious obstacle to the definition of
(multi-agent) rational behavior: The outcome generally depends on the depth to
which the recursion is performed, and there is no genera/ a-priori reason to opt for
any specific depth.

The Nash equilibrium notion provides a way out of this dilemma by looking at the
stationary states of the reciprocal-reasoning process. As such, it focuses on likely
outcomes, rather than on how and when these might be arrived at. In words, a Nash
equilibrium is a strategy tuple s* such that no agent i can profit from unilateral
deviation from s*. A formal definition is given below.

Definition 5.9 (Nash equilibrium)
Let (5, u) denote a aame in normal /orm, to/iere 5 = (Sj , . . . ,5„) and u =
(ui , . . . ,u„) , unt/i S, and u, de/ined as above. Let a*|,-,_, denote t/ie «u6.sh<uhon
o/ s /or a" in a" = (a j , . . . , a ' ) , t/iat is, (a j , . . . ,a*_,,s,a*+,, . . . ,«*) . Then the out-
come s* = (a j , . . . , a*) t5 a fpure-strategj/j Mw/i eoui/j&num /or (5, u) i^

(Vi€{ l n}) (VseS.) u , ( O >u, (« ' | . ;_ . )

The standard context of the Nash equilibrium notion is that of agents with perfect
knowledge, who select a strategy s»muitaneo»«/j/. Its usual interpretation as a defi-
nition of agent rationality (Damme, 1991) entails that the pure strategies a* do not
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merely specify the choices which the agents (intend to) make, but also the choices
that each agent expects or assumes the other agents to make. As such, a Nash equi-
librium can be viewed as a tuple of consistent beliefs and intentions with respect to
agent behavior that constitutes a stationary state in a reciprocal-reasoning process.
Here, consistency entails that the strategy s*, which all agents other than i expect
agent i to choose, is optimal for agent i, if every other agent j picks the strategy s*
which agent t expects it to pick.

Example 5.10 (Nash Equil ibrium)
Consider t/ie 2-apen< jome dep»c(erf in Ta6/e 5. iO. 77ie e/ements o/ row i , co/umn
y in t/ie <a6/e denote t/ie ult/itie« o/ t/ie outcome (z,y) /or t/ie two apents, w/iere
tAe number in t/ie /ower /e/t corner denotes t/ie utt/ity /or apent i, and t/ie number
in t/ie upper rij/it corner denotes t/iat o/ opent 2. T/ius, according to t/ie tab/e, t/ie
uti/ity o/ t/ie outcome (sj,S2) is 5/or apent 7, and 0/or apent 2.

apent 7 's
s/rat«rpy.-

«i

apent

2

2
/

0

2's stratepy:

7Vib/e 5.70: i4 2-apent pame wit/i Nas/» egui/i6hum (si,S2).
Numbers in upper-rtp/it corners represent outcome uti/ities o/

' apent 2; t/iose in /ower-Ze/t corners pertain to apent 7.

77ie joint stratcpy (si,5i) is a Mis/> egui/iferium, since uni/atera/ deviation 6y apent
/ tt»ou/d /ead to (sj,Si) u>ttn a uti/«ty o/0 instead o/2 (/or apent 7 ,̂ u>/»t/e uni/aterai
deviation 6y apent 2 wou/d /pad to (s,,Sj) wttA a utiiity o/ 0 instead o/ 2 (/or apent
2 / /n tAis case, tne egut/ibrium »s untaue. T/ie outcome ( s j , ^ ) is not a MuA
e^ut/ibrtum, since uni/atera/ deviation wou/d be pro/i<a6/e /or apent 7. A

A Niush equilibrium does not always exist, and if it exists, it need not be unique.
In Tkblo 5.11a, there are two Nash equilibria ((si,Sj) and (s^.Si)). In Table 5.11b,
there is no Nash equilibrium. The scissors-paper-stone game is another example of
a game without Nash equilibria."

"This game involves two players, who simultaneously choose one of the strategies scissors, paper.
or stone. The winner is determined by the rules: scissors cut paper, paper wTaps stone, and stone
smash«« scissors.
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(a) (b)

Table 5.11: Games may have multiple (a) or no (b) Nash equilibria.

A common basic demand for any notion of rationality is that there should be at least
one rational approach to any problem, and preferable only one. Since game-theoretic
equilibrium concepts are supposed to constitute definitions of rational behavior, it is
unacceptable for equilibria not to exist in certain games. It is also undesirable to have
many equilibria in a single game. The agents in the game of Table 5.1 la, for example,
still face a reciprocal-reasoning dilemma. The presence of <iuo Nasli equilibria implies
that they must choose between the following two alternative hypotheses.

1. My opponent will aim for the equilibrium with the highest payoff (i.e. (Ä2, SI)
for agent 2, and («1,52) for agent 1).

2. My opponent will expect me to aim for the equilibrium with the highest payoff,
and will select its strategy accordingly.

In the absence of any prearranged conventions, or some other means of coordination,
neither of the above hypotheses is more attractive than the other. As a consequence,
all of the four possible outcomes are equally likely, and the probability that the
outcome is one of the two Nash equilibria is only 50%.

The strife for existence and uniqueness of equilibria led to the conception of several
refinements of the above notion of Nash equilibrium. We discuss two of these con-
cepts. The first one, the concept of mixed-strategy Nash equilibria, is based on the
notion of randomized strategy.

Strategy randomization entails that agents define a probability distribution on their
strategy space, and select a strategy randomly, according to this distribution. The
original (nonrandomized) strategies are referred to as pure strategies; the term mixed
strategy is used to denote a randomized strategy, including the extreme cases in
which a specific pure strategy is selected with probability 1. The term mixed-
strategy egut/ifcrtum is commonly reserved for the case that none of the probabilities
p, equal 1. Otherwise, one speaks of a pure-strategy equilibrium.

A mixed strategy for an agent with a (pure-)strategy space «i, . . . ,«„ , can be repre-
sented as an m-tuple of probabilities ( (pi , . . . ,Pm))i where p* denotes the probability
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that the application of the mixed strategy leads to selection of strategy s<. Obvi-
ously, £™ i p, = 1, so a mixed strategy in a game with a strategy space of only two
(pure) strategies for each agent (as in the games of Table 5.11) can be represented
by the single probability p that the agent will select «i. If the game involves two
agents — as in Table 5.11 — a joint mixed strategy can then be represented as
(PiiP2)i where p< denotes the probability that agent i will select Si.

The joint mixed strategy (5,5) (i-e., a coin-toss by both agents) is not a Nash
equilibrium in Table 5.11a, because ( | , 1) has a higher expected utility for agent 2.
To see whether a mixed-strategy Nash equilibrium exists for the game in Table 5.11a,
we write down the expected utilities ü, of the joint mixed strategy (pi,p2) as a
function of pi and P2.

«l(Pl,P2) = 3p, ( I - P 2 ) + 2 ( l - p , ) P 2 + ( 1 - P l ) - ( 1 - P 2 ) =

= 2pi - 4p,p2 + P2 + 1 (5.21)

üa(Pi,Pa) = 2p, ( I - P 2 ) + 4 ( 1 - p , ) P 2 + ( 1 - p i ) • (1 - Pa) =
= p, - 5p,p2 + 3p2 + 1 (5.22)

To determine for which mixed strategy p, the expected utility ü, for agent i is
maximal, we differentiate ü, with respect to p,

•^(Pi-Pa) = 2 -4p2 (5.23)

^ ( P i . P a ) = 3 - 5 p , (5.24)
«Pa

From (5.23) and (5.21), it follows that üi has a local maximum of | , independent
from pi, if pa = 3- Likewise, we conclude from (5.24) and (5.22) that Ü2 has a local
maximum of f, independent from P2, if pi = | . From the independence of üi(pi, 5)
from ;>i, and that of Ü2(|,P2) from P2, it follows that ( | , 5) is a mixed-strategy Nash
equilibrium in Table 5.11a.

Because there are only two (pure) strategies in each strategy space in this case, any
border extreme of ti,(pi,p.>) is a pure strategy. Hence, ( | , | ) is the only mixed-
stratogy Nash equilibrium.

A similar computation leads to the conclusion that the joint mixed strategy (5,5)
is the unique Nash equilibrium in the game of Table 5.11b, with expected utilities
of I and 5 for agents 1 and 2 respectively.

The notion of mixed-strategy Nash equilibrium has two major advantages over the
pure-strategy version. First, a mixed-strategy equilibrium always exists. Second,
it can be arrived at without any communication between the agents. There is also
a disadvantage, however. If we compare the mixed-strategy equilibrium with the



$,8- CHARACTERIZATION OF IG 209

two pure strategy equilibria (« i ,^) and ( « J ^ I ) , we observe that the total expected
utility (ü, + üj) of the mixed-strategy equilibrium is significantly below that of the
pure-strategy equilibria. In this respect, the mixed-strategy Nash equilibrium is
unsatisfactory from a utilitarian point of view. However, a more profitable solution
concept is not available, as long as the agents are unable to coordinate their behavior.

If coordination is possible through indirect*" communication via a mediator, the
profitable joint strategies (« i ,^ ) and (aj,«i) are attainable as corre/ated e^utitbna
(Aumann, 1974; Aumann, 1987).

Correlated equilibria

Aumann's (1987) definition of correlated equilibrium is a generalization of mixed-
strategy (Nash) equilibrium. Whereas, in mixed-strategy equilibria, the probability
distributions that constitute the mixed strategies of agents are independent, this
is not necessarily so in correlated equilibria. Metaphorically speaking, in a mixed
equilibrium each agent tosses its own coins, while in a correlated equilibrium, some
or all of the agents share them.

Myerson (1985, p. 252) describes correlated equilibria in the context of a mechanism,
where a fully informed mediator (i.e., one that knows the strategy space and the
outcome utilities of each agent) suggests a strategy to each agent. The mediator
chooses an outcome (i.e., a strategy tuple) by applying a random procedure similar
to that of a mixed strategy, informs the agents of the procedure (i.e., the probability
distribution) that it has used to arrive at the outcome, and advises each of the agents
which strategy it should select to bring about this outcome. It does not reveal the
outcome itself. Prom the employed procedure and the mediator's advice, each agent
can compute the expected utilities of its strategies under the assumption that the
other agents will follow the mediator's advice. The probability distribution on the
joint strategy space that is used by the mediator to pick an outcome is called a
corre/ated strategy. A correlated strategy is a correlated equilibrium iff no agent can
expect to gain utility by deviating from the mediator's advice, as long as the other
agents follow the advice which the mediator gave them. A formal definition is given
below. If / is a function with domain 5 = Si x • • • x 5„, and « 6 5 then a_ is short
for (s i , . . . ,a j_i ,Sj+i , . . . ,a„) , and / (x , s_ ) is short for / (*i , . ..,«<_,, z,«j+i,.. . ,«„).

Definition 5.11 (correlated equil ibrium)
Let g = (5, u) 6e ^ame in norma/ /orm wtt/i joint s<ra£e<7j/ space 5 =
outcome utiZities u, : S -> R. Let p : S -> [0,1] 6e a corre/ated strategy. / / t/ie
mediator advises aoent i to use strategy a", and in/orms it o/p, t/ien t/»e assumption
fa/aoent ij tAat t/ie ot/ier aoents ufi///o//ou> t/ie mediator's advice induces a

If we would consider coordination by direct communication between the agents, we would enter
the field of cooperative game theory.
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distribution p\(s*) on S7, tne joint strategy space 0/ </ie ot/ier agents, let
Pi(s*)(s?) denote t/ie pro6a6tZ«<j/ t/iat agent i attaches to t/ie event t/iat t/ie joint
response 0/ t/ie otner agents u/i// 6e sj. T/its probabi/ity is re/ated to p and s," in t/ie
/o//owtng manner.

fc(O(-f) = ^ ' ^ . (5-25)
()

Let üj(s,) 6e t/ie stoc/iastic variab/e tnat denotes t/ie uftV ŷ t/iat agent t un// obtain
i/ it se/ects strategy s,. T/ien p is a corre/ated egut/i6ri«m i/f

(V«'€5) (Vie{l,..n}) (Va, €5.)
ß{üiK)|p,(s;)} > £;{ü,(3,)|p,(s')} (5.26)

A

Example 5.12 (Correla ted equil ibrium)
Consider t/»e (fame in Ta6/e 5.//a. / /we denote tfte mediator's corre/ated strategy
6y t/»f /u/i/e (pniPi2>P2i.P22) w/iere p,j denotes t/ie pro6a6»/ity t/iat t/»e outcome
(s,,3j) w»// 6e «e/ected, then any corre/ated strategy p* 0/ t/ie /orm (0,p, 1 - p , 0 )
u;it/i 0 < p < 1 fi.e., a "convex comftmation" 0/ t/ie pure-strategy TVasA egui/i6ria^
i* a corre/ated egui/ifcrium: // aoent / receives t/»e advice to se/ect «j, tt can deduce
f/rorn p,, = Oj t/iat, uiitft pro6a6i/tty /, t/ie mediator /»as advised aoent 2 to se/ect S2.
(/ndcr t/jf assumptton t/iat aoent 2 u)i// /o//ow t/ie mediator's advice, t/ie expected
uti/tty o//o//ou)ino t/>e mediator's advice is 0 0 + 1 • 3 = 3, m/iereas t/iat 0/ deviating
/rom «t 6y sr/ectino Sj egua/s 0 2 + 1 1 = 1. /fence, it is not advantageous /or aoent
/ to dct'tate /rom 5|. 5imt/ar/y, i/agent 2 receives t/ie advice to use strategy Sj> •'
deduces /rom pjj = 0 tnat agent / tui// use strategy Si twit/» pro6a6i/ity /. //ence, a/so
/or «(/frit 2, it is 6es< to /o//oui t/ie mediator's advice. ./Vote t/iat. even m tne un/i£e/y
event tAat t/»e outcome o/app/ytngp* is one 0/t/ie 2ero-pro6a6i/ity tup/es (si,Si), or
(33,93), t/ie agents tzn// 5ti///o//ow t/ie mediator's advice. A

In the above example, the total expected utility obtained at the correlated equilib-
rium (0, p, 1 - p, 0) equals (3 + 2) p + (2 + 4) • (1 - p) = 6 - p, which is considerably
moro (for any p € [0, lj) than the total expected utility of § + f = 3.1 that is
obtained from the mixed-strategy equilibrium (5,5)- However, the expected total
utility associated with a "truly correlated" equilibrium is not always higher than
that of a mixed equilibrium, and sometimes the mixed equilibrium is the only cor-
related equilibrium. In the game of Table 5.11b, for example, we can derive from
Eq. (5.26) that a necessary condition for p* = (pn,pi3,P2i,P22) to be a correlated
equilibrium is p,j < 2pn < 2pji < P32 < P12 This implies that ( | , j , | , j) is the only
correlated equilibrium. The associated total expected utility at p* is | , the same
as that of the mixed-strategy Nash equilibrium {5,5) This is not really surprising,
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since computation of the outcome probabilities associated with the mixed-strategy
equilibrium shows that the it coincides with p*.

Another advantage of the notion of correlated equilibrium over that of Nash equilib-
rium is that the correlated equilibrium does not require the agents to have perfect
knowledge. To attain a correlated equilibrium, an agent need not know the out-
come utilities of the other agents. In this respect, the suggestion in (Myerson, 1985,
p. 252) that the notion of correlated equilibrium presumes complete information is
misleading: In the above account, the mcrfiotor is completely informed with respect
to the outcome utilities of agents, but the agents themselves are not. What the
agents must know in the above model is the correlated strategy employed by the
mediator, or at least that part of it that pertains to the mediator's advice to the
agent. In the case of Ex. 5 12, this is the row of (the matrix representation of) the
correlated strategy (p,j) that corresponds with the mediator's advice. More gener-
ally, in a game with n > 2 agents with m strategies for each agent, a correlated
strategy is an n-dimensional hypercube of m" probabilities, and the knowledge that
agent i must have of this hypercube is the intersection of this hypercube with the
hyperplane a, = «*, where a* is the mediator's advice to agent t. This section of the
hypercube can be viewed as the joint, conditional probability distribution of agent
i on the (pure) strategies that the other agents will choose, under the assumption
that they will follow the mediator's advice.

The kinship between IG and correlated equilibria

Since the notions of pure and mixed Nash equilibria presume perfect knowledge,
they bear little resemblance to the equilibria attained in IG mechanisms. The same
applies to other refinements of the original notion of Nash equilibrium, such as
subgame-perfect equilibria. Our above account of Myerson's interpretation of corre-
lated equilibria reveals that IG equilibria (in the absence of negotiation weariness)
are significantly more akin to correlated equilibria. First, neither concept requires
agents to have perfect information. Second, both concepts involve indirect commu-
nication between agents. Third, and most important, we can rephrase the above
characterization of the information supplied by the mediator as

The mediator provides the agents with information (viz. the mediator's
correlated strategy and the recommended strategy) from which the agent
can derive a conditional probability distribution on the joint response of
the other agents (i.e., on the pro^/e of proposals that will be submitted),
assuming that these responses will be in line with the's recommendations
communicated by the mediator.

Likewise, one can describe the information supplied by the auctioneer in an IG
auction as
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The auctioneer provides the agents with information (viz. the market
profile) from which the agent can derive a conditional probability distri-
bution on the co//ective response of the other agents (i.e., on the fern; of
proposals that will be submitted), assuming that this collective response
will be in line with the market profile communicated by the auctioneer.

The similarities between these two characterizations are clear. It is also clear what
the difference is: The rationality notions associated with the two frameworks differ
in their descrtpttue /eve/ (cf. Sect. 5.4.3). The inferences of agents in the correlated-
equilibrium model are on the level of individual agent behavior, while those of IG
agents pertain to collective behavior.

As mentioned in Sect. 5.4.3, some rationality notions employ yet another level of
description: that of inferences about the inferences of other agents.^' This third de-
scriptive level is used in the framework of Bayesian games, and for historic reasons,^
it is still popular in MAS research.

Ill

In

In

an informed world,

a

a

correlated world,

Bayesian world,

agents

agents

agents

ask

ask

ask

themselves

themselves

themselves

"Will some agent
fr

"What will agent
ft

"What does agent ]

do Y?"

X do?"

>t think?"

Table 5.12: The reasoning levels of Bayesian games, the correlated equilib-
rium model, and IG.

Summarizing, the spectrum of rationality notions involves three different levels of
agent reasoning: hypothesizing on the hypotheses, the behavior, and the collective
behavior of other agents. These are the descriptive levels of the Bayesian, correlated,
and IG equilibrium notions respectively. A reformulation of this categorization, in
terms of the kind of questions which the agents focus on, is presented in Table 5.12.

As suggested in Table 5.12, the Bayesian games model describes multi-agent decision
process on the level of the agents' thought processes. Agents in a Bayesian game
attach probabilities to what specific other agents believe (Harsanyani. 1968; Mertens
& Zamir. 1985; Myerson, 1985). This is the basis of their inferences about the
behavior of other agents, which, in turn, is the basis of their strategy selection.

"inferring other agents' inferences amounts to the same thing as hypothesizing about their hy-
potheses, or holding beliefs about their beliefs.

""Hypothesiiing about hypotheses" is one way to express what (D)AI's symbolic paradigm
entails.
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The original description of the correlated-equilibrium model in (Auiuann, 1974) is
too abstract to associate it with any specific level of agent reasoning, but Aumann's
later (1987) qualification of correlated equilibria as "the rrsuif of Bayesian rational-
ity", and Myerson's (1985) account on the relationship between correlated equilibria
and mechanism design (cf. Sect. 5.8.1) describe correlated equilibria on the level of
agents attaching probabilities to the fre/iawor of (specific) other agents, rather than
to the agent beliefs which cause this behavior.

To arrive at estimates of proposal success probabilities, IG agents hypothesize about
the submitted 6aj of proposals — rather than the proposal profile - behind a given
market profile. As such, the agents' hypotheses pertain to collective, rather than
individual agent behavior.

Apart from its level, the reasoning of agents in IG differs from that of agents in
the correlated-equilibrium framework — and other game-theoretic models — in an-
other respect. In the correlated-equilibrium framework, the agents exhibit perfect
rationality. It is not evident that IG's fictitious rationality can be regarded as such.

5.8.2 Characterization of fictitious rationality

We characterize fictitious rationality by determining the extent to which it can be
labeled as perfect. For the reader's convenience we recall the black-box definition of
perfect Bayesian rationality provided in Sect. 5.4.1.

An agent with uncertain information on the consequences of its decisions
exhibits perfect rationality if it always chooses a strategy such that the
conditional expectation of the utility of the outcome, given the available
information, is maximal.

The above definition of perfect rationality is sufficiently sharp to pose the question
whether fictitious rationality is perfect, but the question is rather hard to answer.
The reason to suspect that fictitious rationality is not perfect is that fictitiously
rational agents ignore part of the information that is available to them:

• the coordination messages m' , . . . ,m'~ ' communicated to the agent by the
coordination module prior to m';

• the information (or, more appropriately, knowledge) that the adjustment pro-
cess will not terminate as long as the agent never submits the same proposal
in two subsequent rounds.

The first kind of unused information can — in principle — be used to formulate
hypotheses about the presence of certain proposals in the proposal profile which
underlies the current market profile. Suppose, for example, that an agent which has
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submitted {c ^ a} in all rounds has made the following observations with respect
to, say, the last twenty rounds:

1. The demand for type-a tools was always 2.

2. The supply of type-a tools was always 1.

3. The supply of type-6 tools was always 1.

4. The supply of type-c tools fluctuated between 1 and 3, has dropped to 1 five
times, and is now 2.

5. The supply of tool type d fluctuated between 0 and 4, has dropped to zero two
times, and is now 3.

6. The supply of tool type e fluctuated between 0 and 4, has dropped to zero
three times, and is now 4.

Prom these observations, a smart agent might infer that its most likely adversary in
the competition for the type-a tool is the agent endowed with a type-6 tool, since
the demand for a never changed, and this agent is the only agent — apart from
itself— that has never refrained from bidding. In contrast, the probability which a
fictitiously rational agent will assign to the event that its adversary is endowed with
i is in this case — proportional to the present supply of x. Hence, a fictitiously
rational agent will regard the agents endowed with e or d as its most likely adversaries
(with probabilities J and j respectively), and it will assign a probability of only |
to the event that its adversary is endowed with 6.

This illustrates that ignoring the information present in the sequence of market
profiles ran have a significant impact on the computed estimates of proposal success
probabilities. However, it seems to be rather difficult to compute the conditional
probability that the competing proposal is {6 ^ a}, given the above observations, let
alone, to come up with a general formula for the subjective success probabilities of
proposals that takes all information present in the sequence of communicated market
profiles into account. Furthermore, there are situations in which the information
embodied in the sequence of earlier market profiles is irrelevant. A simple example
is that of an agent with negligible utilities for all tool types except for its first
preference. It. is difficult to assess how often this will be the case, but it is at least
po.s'sWWe that the information in previous market profiles is seldom relevant in the
sense that it leads to another strategy being selected.

In combination with intuitions based on our experience with the interactive IG
testbed, the above argumentation leads us to the following postu/afe.

The information present in the sequence of market profiles communicated
before the current one is difficult to use, and seldom decisive for strategy
selection.
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This postulate is also plausible with respect to the other neglected information.
With stationarity as the sole termination condition, an IG agent can be certain
that the current round will not be the last one. The agent can use this certainty
as an opportunity to respond strategically rather than tactically. This entails that
the agent plans ahead, with the purpose of arriving at a more profit able market
profile." Obviously, such an endeavor constitutes an attempt to manipulate the
other agents. It is, as yet, rather unclear how effective such a strategy can be
within the context of an IG mechanism. It seems likely, however, that a random
trial-and-error approach to manipulation will seldom be effective. To manipulate
other agents effectively, an agent should at least have some capability of predicting
how other agents will respond. Such prediction is even more cumbersome than
the formation of hypotheses about the sequence of proposal profiles behind a given
sequence of market profiles. As such, we contend that the above characterization
of market-profile sequence information as "difficult to use, and unlikely to have
significant impact" also applies to the manipulation of the other agents.

Summarizing, with our (fec/araftve semantics for perfect rationality, fictitious ratio-
nality is unlikely to be perfect in general. However, proceduna//y, it is much more
akin to perfect rationality than to aforementioned forms of bounded rationality such
as strategy-space filtering, or calculative rationality. Furthermore, there are proba-
bly many situations in which it w perfect. In view of this, we characterize fictitious
rationality as near-per/ect. A general description of near-perfect rationality is pro-
vided in the following informal definition.

Definition 5.13 (near-perfect rationality)
/In agent ex/i»6«t.s near-per/ect rationa/ity t/

(t̂  tf a/u>ays se/ect5 a strategy t/iat maiimizes t/ie condittona/ expectation o/ its out-
come utt/tty, ojuen a precwe/y demarcated portion o/ t/ie avai/ab/e m/ormatton,
and

fti^ t/ie comp/ementary ("unused̂  portion o/ t/ie atw/aö/e m/ormatton ts di/fiicu/t to
emp/oy, and uniiifce/y to malde a di^erence.

Note that, whereas the first half of this definition is sharp, the second half is in-
herently vague. Yet, we believe this definition to be useful. Not only does it single
out the essential properties of fictitious rationality; it also helps to emphasize that
the main idea behind fictitious rationality is widely applicable: it is often easy to
compute a good estimate of the expected utility of an action, in cases where exact

"Here, 'more profitable' means that the expected utility of the proposal(s) that are optimal under
this market profile exceeds the expected utility of the profile(s) which are optimal under the current
profile
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computation of the expected utility would be extremely complex, or even impossi-
ble in finite time. Typically, such estimation involves discarding information that
is principally there, and easy to demarcate, but difficult to employ, and unlikely to
have a significant impact.

5.8.3 Game-theoretic properties of Informed Gambling

The different points of departure of MAT and game theory cause many game-
theoretic notions and principles to be "not entirely appropriate" for MAT in general
and "utterly inappropriate" for CMAT. Yet, to characterize IG, we would like to
know whether IG's performance correspondence has certain game-theoretic proper-
ties.

We address two questions in this respect.

• Are solutions rendered by IG guaranteed to be individually rational?

• Are solutions rendered by IG guaranteed to be Pareto optimal?

We answer these questions only for the IG reossijnment mechanism defined in
Sect. 5.6.5. The first question is an easy one. The answer is "No, unless ...".
The key ingredient of IG is "commitment under uncertainty". This implies that an
agent must bo prepared to take risks so as to achieve its goals. If things turn out
badly, the agent may therefore end up with a tool of lower utility than its initial
endowment. The recapitulation of Example 3.18 at page 196 provides an exam-
ple: Agents 1 and 4 end up with a tool of negligible utility, whereas their initial
endowment rendered them a utility of 10%.

However, this conclusion with respect to the fowic mechanism of Sect. 5.6.5 is not
gonenili/.able to the class of IG mechanisms as a whole. One of the parameters that
can be varied in our IG testbed is the maximal utility decrease an agent is prepared
to accept. If we set this parameter to zero, then — obviously — the solution is
guaranteed to be individually rational. However, such a constraint may incur a
significant decrease in the averaye agent utility (which we chose as our primary
measure of solution quality in Chapter 2). The severity of this effect is one of the
issues that will be investigated experimentally in Chapter 7.

The stxond question, whether the solutions rendered by IG are guaranteed to be
Pareto optimal, is more difficult to answer, but the answer itself is simple: no. An
example is given in Table 5.13 below.

In the utility matrix of Table 5.13, the underlined values indicate the initial endow-
ments of the agents, and the constants f and (5 are small, positive numbers. The
dots in the matrix denote zero utilities.
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u
a
b
c
d
e
f

1
100-£
100

2
100

100-f

3
100

4

100

5

£
100

6

£

100

7

100-c
100

8

.

100
100-g

Table 5.13: A problem with a Pareto-suboptimal IG solution.

The problem involves 8 agents, 4 of which are endowed with tools of utility 100 - c,
that is, close to 100%, while the other 4 have an endowment of utility (5, close to
zero. The problem is highly symmetrical. Agents 1 and 2 would like to exchange
their tools, and so would agents 7 and 8. Agents 3, 4, 5, and 6 would like to obtain
one of the tools of agents 1, 2, 7, and 8. The initial proposal profile associated with
this problem is shown in Table 5.14a, and the associated market and scarcity profiles
are shown in Table 5.14b.

agent
endowment
proposal

1
a
b

2
b
a

3
c
a

4
c
b

5
d
e

6
d
f

7
e
f

8
f
e

tool
demand
supply
scarcity

a
2
1
1

b
2
1
1

c
0
2
-2

d
0
2
-2

e
2
1
1

f
2
1
1

(a) initial proposal profile
(b) market profile and scarcities

Table 5.14: Proposal and market profiles after the initial bidding round.

Prom the market profile, agent 1 can derive that its most-preferred tool type (b)
is contested, that there is one actual competitor for this tool type, and 6 potential
competitors, 2 of which (viz., the possessors of type-e and / tools) are equally eligible
as agent 1 itself. This implies that there is a positive chance — say p% — that its
proposal {a = 6} will fail. In that case, it will receive one of the oversupplied tool
types c or d in exchange for its a, and end up with zero utility. Hence, the expected
utility of submitting {a ^ 6} equals (100 — p)%, which is less than the expected
utility 100 - £% of {-}, if 0 < £ < p. Hence, if we choose a value of e between 0
and p, then agent 1 will submit { —} in round 2. In view of the symmetries in the
problem, the same conclusion can be drawn for agents 2, 7, and 8.

Agent 3 can deduce from the market profile that its most-preferred tool type (a) is
contested, that there is one actual competitor for a, and 6 potential ones, 3 of which
are of equal eligibility as agent 3. Hence, the success probability of {c ^ a} — say
q — is positive. Consequently, the expected utility of submitting {c = a}, 100g%,
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exceeds that of submitting {-} (viz., <5%), if we choose <5 between 0 and 100<j. Let
us do that. Then we can be sure — again, in view of the symmetry in the problem
— that each of the agents 3, 4, 5, and 6 will stick to their previous proposals as long
as agents 1, 2, 7, and 8 stick to theirs. However, we have just concluded that agents
1, 2, 7, and 8 will switch to { —} in round 2, This implies that agent 3 switches to
{-} in round 3, since it can deduce from the market profile computed from round-2
proposals that tool type a is no longer supplied, and the same conclusion can be
drawn for agents 4, 5, and 6.

Hence, the response pattern that unfolds is

In round 1 all agents propose to exchange their endowment for their most-
preferred tool type.

In round 2 agents 1, 2, 7, and 8 switch to {-}, while the other agents stick to
their previous proposals.

In round 3 agents 1, 2, 7, and 8 stick to {-}, and the other agents switch to {-}.

In round 4 all agents stick to {-}.

Apparently, the outcome is the empty reallocation. The final allocation equals the
initial allocation. However, the initial allocation is Pareto-dominated by [6accrfd/e].
Hence, the outcome is not Pareto optimal.

5.9 Application of IG Mechanisms

In Sect. 1.1.3, Informed Gambling was characterized as a framework that is primarily
a vehicle for fundamental study, but also offers some application prospects. In the
next two sections, I will explain why and how I believe IG to be useful as a basis for
the development of practical instruments to tackle real-life problems, in a CMAT
and OMAT context respectively.

Because we shall not delve deeply into any specific real-life problem setting, the argu-
mentation in the sequel is often conjectural. Yet, I believe that it is valuable, not only
for future application of IG, but also because an experimental study (such as that of
Chapter 7) loses much of its value in the absence of clear connections between the
necessarily simple experimentation domain and the more complex problems which
are encountered in practice.

5.9.1 Closed IG mechanisms

In the context of CMAT, IG can serve as a basis to design entire multi-agent mecha-
nisms for constrained optimization. In this case, IG tackles optimization problems in
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the same manner as MOP, that is, by reformulating them as (re)allocation problem».
If IG is to be applied to the — typically full-fledged — tool reallocation problems
associated with real-life constrained optimization domains (cf. Sect. 2.1.3), fictitious
agent rationality is too demanding. For one thing, it entails the exhaustive inves-
tigation of the strategy space. In full-fledged reallocation problems, the agents'
strategy spaces are typically too large for such an approach to be efficient. Here,
bounded rationality is called for. The kind of bounded rationality we deem to be
suited in many optimization domains is strategy-space expansion. This entails that
IG auctioneering is interleaved with — rather than preceded by — the translation
of the optimization into a reallocation problem. Below, we use the problem domain
of transportation across a finite-capacity network (Ex. 2.3 on page 23) to illustrate
why and how such a technique must be used.

Consider a passenger routing problem like that in Ex. 2.3 where each passengers
must be assigned a route across a unidirectional network with finite link capacities.
Our description of fictitious rationality in Sect. 5.6 presumes that agents know the
utility of every possible outcome. For an agent involved in reallocation, this implies
that the agent must know the utility of any tool endowment. In the context of
passenger routing, a tool endowment is a bag of unit transportation capacities over
route segments. Hence, even in a small-scale problem with a network of, say, 20
route segments and a uniform transportation capacity of 9 units per segment, a
complete specification of the tool bag utilities of a *m#/e agent comprises as many
as 10*" utility values. The large majority of these tool bags have utility zero, since
they do not contain any complete path from source to destination. However, even
if we omit these zero-utility bags, the strategy spaces are still unnecessarily large.
Especially if the destination D is close (e.g., adjacent) to the source S, it would be
ludicrous to compute all the strategies (i.e., all bags comprising paths from S to D),
before investigating the feasibility of transportation along the shortest path.

The alternative we propose, strategy-space expansion, entails that reformulation
and solution are interleaved. An agent starts with a world model that comprises
only a fraction of the network, possibly only a single shortest path from its present
node to its destination node. From this restricted world model, it determines what
its strategies and tool-bag utilities are. In the course of the relaxation process, the
agent can expand its current world model by adding network paths, and expand its
strategy and utility space accordingly. A somewhat more detailed account is given
below.

Suppose that the agent needs to travel from S to D, that there is a path of (minimal)
length 3 from S to D, comprising the network links a, b, and c, and that its current
endowment is the bag (of network links) A. In this case, the initial strategy space is
the set of all possible decompositions (bags of elementary proposals) of the composite
proposal {A = {a, 6, c}}, and its utility for a tool bag 7 is 100% if {a, 6,c} € 7, and
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0% otherwise. If the subsequent market profile reveals that its chances of obtaining
an endowment that includes the entire path ({a, 6, c}) to its destination are low, the
agent can decide to expand its partial network model by including (possibly longer)
paths of network segments composed of links which are less scarce. It then computes
the associated tool-bag utilities — which are now no longer binary, but depend on
the length(s) of the path(s) to D present in the tool bag —, and replaces some of
its previous proposals by proposals that request transportation capacity along the
newly added paths.

Obviously, the basic idea behind the alternative approach to transportation prob-
lems, interleaving problem translation with auctioneering, is also applicable to other
constrained optimization problems. The specie /OTTTI of bounded rationality, how-
ever, will no< be the same, because the translation procedure — which is now an
integral part of the agents' reasoning — will differ for different problem domains.

Even with strategy-space expansion, we still face the problem — mentioned earlier
in Sect. 5.6.4 — that the exact computation of the success probability of a spe-
cific proposal 6ao is complex, due to the fact that the success probabilities of the
constituent elementary proposals — for which Prop. 5.6 specifies a formula — are
generally not independent. If one ignores this, and computes the success probability
of the entire proposal bag by multiplying the success probabilities of the constituent
elementary proposals, one generally introduces an error. Such errors are systematic:
If they occur, a computed success probability is always an opttmwttc estimate of the
actual (subjective) probability that all of the elementary proposals will be executed.
The following example explains why this is so.

tool type
demand
supply
scarcity

a
1
1
0

b
2
1
1

c
1
1
0

d
2
1
1

e
3
1
2

f
0
4
-4

Table 5.15: Market profile associated with Ex. 5.14.

Example 5.14 (Naive computation of a success probability)
Let 007 6e <m aypn< Wio ii'isnes fo compute t/»e success pro6a6tlity o/ t/ie proposal
bap {{o =± 6}, {c ^ d}}, on tne 6asis o/ tne marlfce* pro/ile s/ioum m Ta6/e 5.i5, on«<
i<* recollection o/ /»ai'ino suomitfed t/»e same proposal ba</ tn the previous round. L«t
P{ exec(c =s d) } denote t/ie su&/ectit>e success probability o/ 007's proposal {c ^ <f}.
as df/ined 6y P„ in Prop. 5.5. This w tAe conditional profcabi/itj/ tAat tne proposal
succeeds, oiven tAe in/ortnation embodied in

/. tne last-sent marfcet pro/ile;
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f. tAe prt»po*a/ 6ao »uftmitted 6y 007 tn tAe pirthou» round; >

5. tAe otAer proposa/s /m tAts coae, {o ^ 6}^ wAtcA 007 intend* fo su6mtt in tAe
current round.

;4/tAouoA P{ exec(c = d) } u /orma/Zy a condittona/ proba6t/ity, u»e rr/er to it in tAe
segue/ as "tAe 'unconditiona/' success pro6a6i/ity" to dtsttnautsA it /rom P{ exec(c ?s
d) | exec(a ~ 6) }, wAicA entatis tAe additiona/ condition tAat 007's otAer proposa/
{a ^ 6} succeed«, /rrespecttve o/ ony dependency 6etween proposals, u»e Jlnout tAot

P{

P{ exec(a ^ 6) } • P{ exec(c =* d) | exec(a ^ 6) } (5.27)

TAe interestinp part o/ tAts /ormuia u tAe 'condittonai' profca6i/i£y m tAe noAt mcm-
6er. // our conjecture is correct, tAat is, t/ <mum»n<? independence nrt»er /ead« to o
posimutic estimate, tAen we sAouid Aat>e tAat

P{ exec(c ^ d) | exec(o ^ 6) } < P{ exec(c ^ d) }

/n tAe present eiamp/e, tAe 'unconditional' success pro6a6t/ity P{ exec(c ;=* d) } is
easy to compute. 5mce tAe too/ type d /eatures supp/y / and demand 2, 007 Aas one
competitor. 77ie 6ao 7 0/ potentia/ adversaries egua/s | j ~ \ {d, c} = {a, 6, e , / : 4}.
Two 0/ tAese seven potentia/ adversaries /'viz. 6 and ej are more e/1516/e tAan 007's c;
t/ie otAers are /ess e/toi6/e. /fence, tAe 'unconditiona/' success pro6afci/ity 0/ {c ^ d}
eaua/s | . j4s/or tAe 'conditional success pro6a6i/tty, tAe in/ormation present in tAe
datum exec({a ^ 6 } ) is tAat tAe so/e competitor /or 0 apparent/y did not o^er d or
e in return, /or m tAat case tAe proposa/ {a ^ 6} wou/d Aave /at/ed. TAts imp/ies
tAat, in tAe context o /P{ exec(c ^ d) | exec(a ^ 6) }, tAere are on/y six potentia/
adversaries /or d, two 0/ IDAICA fviz. 6 and ej are more e/ioife/e tAan 007's c. //ence,
tAe 'conditiona/' pro6a6t/ity tAat {c = d} succeeds, ytven tAat {a =̂ 6} does, e^uafo
j ; less tAan tAe 'uncondtttona/' pro6abi/tty 0/ ^. A

The example is clearly generalizable: If an agent deliberates the submission of the
proposal bag /3, & is an arbitrary subbag of /3 such that 0 £ & $ /3, and 72 is a
proposal in /?\/?2 — then the only information in the assumption Exec(^) which
is relevant for the success probability of 72 is of the form "Not more than . . . tool
types with an eligibility higher than X have been offered by competitors for tools
requested in the proposals of / V , where X is some tool type offered by the agent
in some proposal of Z -̂ In other words, if an agent considers the submission of a
proposal bag /3, then

(V/3, Q 0) (V7, € /9\Ä) P{ exec(7.) > P{ exec(7.) | Exec(Ä) }
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Consequently, if we denote the 'unconditional' success probabilities of the elementary-
proposals 7i, 72, • • •, 7* in a proposal bag /? by Pi, P2 > • • •. P* respectively, and define
A - U><i{7j}. we have that

P{ Exec(/?) } = f [ P{ exec(7.) | Exec(ß) } < f l P. (5.28)
i = l « = 1

In words, Eq. 5.28 expresses that the unwarranted assumption of independence be-
tween the 'unconditional' success probabilities of the elementary proposals in an
agent's proposal bag never leads to a pessimistic estimate of the probability that
all of these proposals will succeed. Assuming independence either leads to a proper
estimate for the probability that the entire bag is executed, or to an optimistic one.
Intuitively, it is clear that the latter is more likely. Equality in Eq. 5.28 implies
that the datum Exec(/3,) contains no information at all. This is the case only if all
proposals in /3, are certain to succeed.

More important than the likeliness of deviations is their magnitude. An interesting
observation in this respect is that the impact of assuming independence on the
estimation of expected utilities is inversely proportional to the size of the agent
population. In the above example, where the population is small — between 2 and
15, and most likely around 5 agents'* — the assumption of independence incurs a
deviation in the success-probability estimate of about 0.05 (73% instead of 68%). In
larger populations, the individual contribution of an agent to the total trade volume
is (percentually) smaller, so the impact of misperceptions with respect to their own
contributions is smaller also. Conversely, the impact increases proportionally with
the average size of proposal bags. If we translate this to a concrete problem domain
like transportation of passengers or cargo across a finite-capacity network, it entails
that enlarging the npfuwrA: increases the average impact of assuming independence,
while enlargement of the /»opu/aJiem decreases the impact. All in all, we stipulate
that the dependence between the success probabilities of elementary proposals in a
proposal bag is less of a problem than it seemed to be at first sight: At least in some
cases," ignoring the dependence of elementary success probabilities will have little
impact on the computed expected utilities, and hence, little effect on the attained
solution quality. The latter inference is somewhat tentative, but we shall verify it
experimentally in Chapter 7.

The above account shows that it is principally possible to use IG as a vehicle to
solve constrained optimization problems. It also reveals that IG mechanisms for
full-fledged reallocation require more sophisticated agents than IG reassignment

"The estimate of 15 concerns the extreme case where all the other agents have submitted a single,
unconditional proposal; the more realistic assumption that agents submit 2 exchange proposals on
average leads to an estimate of 4 5.

" i n the case of transportation: if the destinations tend to be relatively close to the sources, or if
the net wink links have high capacities, and are heavily used.



ft.9. APPLICATION OF IG MECHANISMS 223

mechanisms, or MOP mechanisms for reallocation. In this respect, IG is an at-
tractive alternative to MOP in cases where application of the latter /aiter«, for
example because equilibria are hard to find or often absent.

The greater need for agent sophistication in IG is a consequence of the fact that
problem «fecomposirion is easier in (continuous) systems'* of subsystems linked by
one or more conttnuot« adhesive' variables — such as artificial money in MOP —
than in (continuous) systems where the adhesive variables are (essentially) durrefe
(such as tool scarcities in IG). This breakdown of (de)composability in the face
of discretization is a very general phenomenon, that can be observed in seemingly
unrelated research areas like (qualitative reasoning on) differential-equation systems,
(the chain-store paradox in) game theory, and (the lottery paradox in) nonmonotonic
logic (Lenting, 1992a).

5.9.2 Open IG mechanisms

We envision three architectural schemes to use IG mechanisms within OMAT, that
is, as coordination modules for existing, external agents. The schemes differ in the
degree to which the external agents are kept informed of the present state of IG's
adjustment process. They are described below, in increasing order of informedness.

trusted brokers The first option is to use CMAT-IG agents as brokers for exter-
nal agents in an OMAT-IG mechanism. In this scheme, an external agent
communicates strategies and outcome utilities to its broker, who then perform
the same computations as a CMAT-IG agent to select a strategy, submits the
associated proposals, and communicates the submitted proposals and their
expected utility to the external agent. Obviously, the private information of
the external agents is not truly private in this scheme: At least some of it is
communicated to the broker (which is why we speak of Jrtwted brokers).

untrusted brokers A second option is to let the external agents communicate
candidate proposals only, to which the broker responds by transmitting the
associated success probabilities (under the last-communicated market profile).
In this scheme, the external agents do not receive any market-profile informa-
tion.

no brokers The third option is to have the external agents play the same role as
IG agents in a CMAT-IG mechanism. As such, they interact directly with the
auctioneer in this scheme.

The main difference between CMAT and OMAT is that, in CMAT, the system de-
signer designs the entire system, while in OMAT, at least some of the agents are

In practice, 'continuous' means that the system features variables with a large value space, such
as the agent-utility variables in IG.
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external, and therefore principally outside of the designer's control. As a conse-
quence, an agent model for external agents is a descriptive rather than a normative
model. An OMAT agent model for external agents describes how these agents are
assumed — rather than designed — to behave. If an IG mechanisms is to be ade-
quate within an open environment such as the Internet, these assumptions should
be plausible in the following sense. As in CMAT, mechanism design in OMAT aims
to ensure a certain level of performance. Typically, such a guarantee is based on the
assumptions embodied in the agent model. Hence, the actual behavior of external
agents should at least be approximately consistent with these assumptions. A suit-
able rule of thumb in this respect is that, in an open system, there should not be any
/tJfce/y deviations from the agent model which can incur a significant deterioration of
mechanism performance.

It is difficult to translate this into general strucJun»/ conditions for the adequacy of
an agent model. Some 'golden standard' has arisen in DAI literature, however. This
standard entails that the following assumptions on external agents are considered
appropriate.

autonomy External agents cannot be commanded to behave in any specific manner.

rationality External agents behave in accordance with a single top-level goal: the
maximization of their own satisfaction.

self-centeredness The top-level goal of an external agent does not involve any
desire to please other agents, nor any other inclination that seems to have no
other purpose than to prevent or mitigate anti-social behavior.

Whereas this golden standard is obviously not a good model for human behavior
in general, it is a plausible model for computadona/ agents in an open environment
such as the Internet."

The IG agent models proposed in earlier sections of the current chapter feature
fictitious rationality in combination with increasing weariness, either as a precise
behavior specification, or as a basis for boundedly-rational behavior. If we evalu-
ate this basic IG-agent-behavior specification against the background of the above
golden standard, there are three 'irrationalities' in IG behavior that seem to conflict
with the standard.

amnesia IG agents ignore the information in past market profiles.

honesty IG agents do not attempt to manipulate the other agents by submitting
false proposals.

fatigue IG agents exhibit weariness in case of prolonged negotiation.

"its only serious deficiency in this respect is that it does not (explicitly) consider the possibility
that an external agent may have been designed to wreak havoc.
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In the first (trusted-brokers) scheme for OMAT-IG, none of these irrationalities a n
relevant, since the trusted brokers are internal agents of the IG mechanism, whose
behavior can be specified by the auction designer. However, this scheme has t he
serious disadvantage that it does not guarantee the privacy of the external agents'
utilities.

In the second (untrusted-brokers) scheme, which does safeguard this privacy, amne-
sia is not an issue, since it pertains to the computation of success probabilities, which
is performed by the (internal) brokers. The other two irrationalities are relevant.
Whereas the untrusted-brokers scheme is perfectly suited for IG reassignment mech-
anisms, the absence of market-profile information can constitute a serious hindrance
for agents facing full-fledged reallocatiou problems. In the passenger transportation
domain (see Sect. 5.9.1), for instance, the market profile can bo a valuable guideline
to select promising candidate routes for strategy-space expansion (cf. Sect. 5.9.1).

In the last (no-brokers) scheme, the external agents have access to all the infor-
mation that is available to a CMAT-IG agent. Consequently, the aforementioned
hindrance does not exist. The other side of the coin is that each of the three irra-
tionalities conflict with the golden standard. In the sequel, we confine our attention
to this scheme, since it is apparently the most problematic one with respect to the
admissibility of its behavior assumptions.

The prospect of utility gain from speculation by hysteretic agents

It is relatively easy to conceive an example sequence of market profiles that provides
sufficiently valuable clues on the underlying sequence of proposal profiles to allow
a hysteretic agent to come up with a better response than a fictitiously rational
one. However, it tends to be difficult to extract useful information from an 'average'
sequence of market profiles, cumbersome to quantify such information in terms of
success probabilities, and unfathomable to specify a strategy-selection procedure
of acceptable complexity that is perfect for a// conceiva6/e profile sequences. The
only effective method for such perfect information extraction that we can think of
involves the enumeration of all problem instances consistent with the sequence of
market profiles and the agent's private information. Obviously, the computational
complexity of such a procedure is overwhelming.

Furthermore, even this scheme does not work properly, if the relaxation procedure
features asynchronous parallelism (of the sort described in Sect. 5.7), since most
market profiles comprise information that is actually outdated for some («arytny
subset) of the agents. In other words, in the context of asynchronous proposal
submission, it is very unlikely that a hysteretic agent, no matter how sophisticated
it is, will ever compute a completely correct estimate of the proposal profile behind
the current market profile.
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Finally, upon implementing and applying such a procedure, one may well discover
that the information present in market-profile sequences is seldom sufficiently rich
to make a difference in strategy selection.

From the above argumentation, we conclude that the prospect for a hysteretic agent
to gain utility from speculation is sufficiently discouraging in the IG framework for
the assumption of agent amnesia to be admissible in open systems.

The prospect of utility gain from manipulation.

In principle, it can be profitable for an agent to communicate false proposals (i.e.,
proposals that it cannot comply with) to /ure other agents into relaxation. Consider
an agent that would like to obtain some tool type, has had reasonable chances to
obtain it in earlier relaxation rounds, but has seen its chances diminished in the
last few rounds. The agent can try to jolt the relaxation process by offering large
quantities of some scarce tool type X (which it does not possess), and withdrawing
the associated proposals again in a later round. If "reaching a market equilibrium"
is not among the termination conditions, the agent can do this safely: It knows that
it will not be obliged to keep the commitments expressed in its proposals as long as
it refrains from resubmitting its last proposal, and no deadline is impending.

Without focusing on any particular application domain, it is not feasible to predict
how often such behavior will be worthwhile. This kind of manipulation can be
viewed as providing an autonomous** dynamic system (viz. the community of ot/ier
agents) with input during some time interval, after which the system is left to its
own dynamics again. Hence, it depends on the attractors (and their basins) of the
autonomous system whether the jolt has the desired effect. If there is but a single,
global attractor, it will have no effect whatsoever. If their are multiple attractors,
the jolt has an effect only if it is sufficiently strong to lead the process state into
the basin of another attractor, and, depending on this attractor, the effect can be
utility gain as well as utility loss.

In the passenger transportation domain, manipulation seems — at first sight —
unlikely to be effective. Suppose that an agent faces the situation in which there is a
very high excess demand for some link(s) on the shortest path p to its destination X,
while the second-best path to X is much longer. Such an agent can gain considerably
utility if it surrenfo in manipulating the other agents to pick an alternative route
disjoint with p. However, while it is easy for the manipulator to attain a femporarj/
decrease of traffic across such links (e.g., by submitting false proposals that offer
large amounts of transportation capacity across nearby links) the traffic on p is
bound to increase again after the agent has withdrawn its false proposals. Hence, to
succeed, the manipulator must somehow prevent the other agents from responding

In the theory of dynamic systems, 'autonomous' means 'without external input'.
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to the decreased scarcity of p-links that results from the withdrawal of its false
proposals.

At present, I can think of only one way to accomplish this. This concerns the case
in which all other agents behave tropistically, and there is a fixed deadline D for
the relaxation process (possibly combined with other termination conditions), which
is known to the agents. Say that the two termination conditions are stationarity
and deadline transgression. In this case, postponement of the withdrawal of false
proposals until round D is an effective manipulatory strategy: since the other agents
do not get the opportunity to respond to this last-moment action, the manipulator
will acquire the desired transportation capacity on p.

The remedy against this form of manipulatory behavior (which is extremely dam-
aging to the solution speed and likely to incur a significant deterioration of the
solution quality) should obviously be sought in the termination condition. If the
deadline is random rather than fixed, the above manipulation strategy is ineffective:
the manipulator is more likely to be committed to its false proposals than to reach
its objective. Hence, for open systems, it is imperative to turn "termination due to
deadline transgression" from a boolean-valued function of the round number into a
stochastic one. To prevent frequent deadline transgression, the probability of such
termination should be low or nil in an early stage of the relaxation process. A dead-
line value of £> could, for example, be implemented as termination with probability
zero in rounds 0 to D/2, and probability (2r - £>)/D in subsequent rounds r.

The prospect of utility gain from sustained wariness

Of the three irrationalities in basic IG agent behavior, the increasing-weariness char-
acteristic constitutes the most flagrant deviation from the golden standard. It is
an adaptation of fictitiously rational behavior that was incorporated with the sole
purpose of ensuring timely termination of the negotiation process, and there is no
a-priori bound to the magnitude of the utility concessions which it may incur. De-
creasing wariness due to increasing weariness is a common — and often vital —
characteristic in inter-human negotiations. It is less plausible, however, as a behav-
ior characteristic of autonomous computational agents, since computer programs do
not tend to experience fatigue. Moreover, a computational agent which does not
exhibit weariness (in IG auctions where other agents do exhibit it) is bound to gain
at least some utility from its deviant behavior in the long run, and since its tool-bag
utilities are private, this cannot be detected by any other computational entity.

(Kraus et a/., 1995) tackle this problem by focusing on problems where time pres-
sure ensures that lengthy negotiation is not merely costly in a computational sense,
but also incurs a significant decrease of the utilities which the agents beget from
the outcome. Thus, negotiation weariness is rational behavior in their approach,
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grace to the nature of the problem domain. However, in view of the computational
power of present-day computers, I suspect that cases where the time pressure is
sufficiently high to ensure that autonomous computationa/ agents do not waste time
in negotiation are rare. Furthermore, it will seldom be the case that the time pres-
sure is equally strong for all agents. If a few of the agents are in much less of a
hurry than the others, the former group can force the latter into submission. As we
have shown in our discussion of trust formation within the Walrasian auction (in
Sect. 3.3.8), this can lead to allocations of very low quality (in terms of the average
agent satisfaction).

Another way to turn negotiation weariness into rational agent behavior is to associate
a fee with proposal submission or proposal adjustment. In such a scheme, it is
rational for agent designers to incorporate negotiation weariness, since the cost of
taking part in the auction can become unnecessarily high if they don't. However,
asking a monetary fee for auction participation is at odds with our design decision
to abstain from using money (cf. Sect. 5.2). Furthermore, to ensure that the fee
is sufficiently high to be effective in this respect, and not too high to allow for
adequate relaxation, one needs to have at least some idea of the (unnormalized)
tool-bag utilities of the agents. Hence, this approach is at odds with the requirement
of informational decentralization.

The above OMAT requirement of a stochastic instead of a deterministic deadline
provides a better solution to the problem. Without involving money, this too pro-
vides an incentive for agent designers to incorporate weariness, if — as seems likely
— termination due to deadline transgression tends to render less satisfactory final
outcomes than termination due to stationarity. The specific probabilistic definition
of the deadline that was given above is less suited in this respect, since it provides
an incentive for agent designers to postpone the employment of the weariness rule
until round D/2. However, slightly different schemes (e.g., choosing a random value
between 1 and D instead of the fixed value D/2 for the termination probability to
increase) do not provide such an undesirable incentive.

5.10 Chapter Summary

In this chapter, we have formally denned IG mechanisms. We have explained what
the notion of mechanism entails in our approach and how and why IG mechanisms
differ from mechanisms in game theory, social choice theory and economics. These
differences are mainly due to the different requirements of multi-agent technology:
unlike the aforementioned mathematical fields, MAT mechanism design calls for
performance to be expressed in numerical measures of solution quality and speed,
rather than specific properties such as individual rationality and Pareto optimal-
ity. Similarly, where game theory searches for definitions of agent rationality that
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are adequate from the viewpoint of a mathematician who aims to model human
decision-making, MAT calls for definitions which are pni.cpnaftr for software engi-
neering Within CM AT, this entails that efficiency comes first, and modularity
second. Within OMAT, it entails that a balance must be sought between the con-
flicting demands of computational efficiency and descriptive accuracy.

These considerations led to the conception of/icftts'ouj rofiona/ify as a suitable spec-
ification of agent response to coordination messages in an iterative mechanism. We
have shown that fictitious rationality is computationally feasible for IG reassignment
mechanisms, and explained — by means of a transportation scenario — why it is too
demanding for complex reallocation problems derived from constrained optimization
problems. Such problem domains call for a form of 6oun<fr<f rationality that inter-
leaves IG mechanism application with problem translation (from transportation to
reallocation). Finally, we argued why the specific form of bounded rationality used
in the transportation scenario is not suited for all transportation problems, let alone
for all constrained optimization problems that can be reformulate.I .is i< allocation
problems. As such, bounded rationality for IG reallocation mechaniMii» is domain-
dependent.

Because of this domain-dependence, the agent response correspondence, which serves
as the carrier of agent rationality in iterative mechanisms, is an o6«<rac< parameter
in our general definition of IG reallocation mechanisms. However, IG mechanisms for
reass»0nmen< problems do not require a domain-dependent rationality specification,
and fictitious rationality is adequate for any reassignment problem. As such, we were
able to provide a precise, concrete description of the agent response correspondence
in IG reassignment mechanisms.

Starting out with a procedural definition of the mechanism's key component, the
pseudo-composition protocol, we derived the corresponding declarative definition,
in the form of a probabilistic input-outcome correspondence. The agent response
correspondence was then defined by taking .some of the information available to an
agent into account, namely the information present in the most recently received
coordination message.

Next to the agent response correspondence, the general definition of IG mechanisms
features two other variable components: the termination criterion for the message
passing process that takes care of proposal relaxation, and a definition of the relative
eligibility of proposals as a function of tool scarcity.

The variability of the eligibility definition is not essential, but it creates the oppor-
tunity to experiment with different architectural variants, and assess the influence of
the resolution of protocol rules on the quality of solutions. In contrast, the presence
of a termination parameter is a grim necessity. The termination of the relaxation
process in IG is a problematic issue. Our analysis revealed that the adjustment pro-
cess in an IG reassignment mechanism may not terminate, even if a correlated equi-
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librium exists, and irrespective of whether the mechanism features synchronously
parallel, asynchronously parallel, or sequential agent response. Although the adap-
tation process is more likely to terminate in the latter two cases, we provided an
example which shows that termination is not (guaranteed. Termination problems
have been addressed by other researchers in DAI, and in various other fields that
feature dynamic systems for problem solving, such as neural networks. We conceived
nejohahon weariness as the countermeasure of our choice. Negotiation weariness
constitutes a relaxation of the requirement that agents behave rationally which is
anthropomorphically plausible. In political negotiations, human agents tend to be-
come less fussy as the negotiation drags on. This is approximately what happens
with IG agents featuring negotiation weariness.

To characterize IG mechanisms in game-theoretic terms, we investigated game-
theoretic equilibrium concepts with respect to their appropriateness in the context of
iterative mechanisms, and IG mechanisms in particular. This led to the conclusion
that, among game-theoretic equilibrium notions, the notion of correlated equilib-
rium is most akin to the equilibria in IG mechanisms. If the agents in an iterative

mecKanism exliibit fictitious rationality wit/iout weariness, trie stationarity states of
the relaxation process can be viewed as correlated equilibria.

However, one should not conclude from this characterization that IG is akin to game-
theoretic mechanisms In this respect, labeling IG equilibria as correlated equilibria
is comparable to describing a giraffe as "a kind of cow" (with a relatively long neck):
there are some communalities, but also important differences between equilibria in
IG and correlated equilibria. For one thing, the correlated-equilibrium and the IG
framework have different descriptive levels: Agents in the correlated-equilibrium
framework reason about the behavior to be expected from other tndimdua/ agents,
whilo IG agents reason about co//ect»t;e behavior. Furthermore, the correlated-
equilibrium framework assumes that agents exhibit perfect (Bayesian) rationality,
while IG agents exhibit near-perfect rationality, in combination with weariness. The
latter behavior characteristic is required to ensure the effectiveness of IG. Indeed, IG
mechanisms differ fundamentally from mechanisms in game theory and economics,
in these and other respects. The solutions rendered by IG mechanisms are, for
example, neither guaranteedly individually rational, nor Pareto optimal.

While a game-theorist would not dream of proposing a mechanism that does not
guarantee either of these properties, it is of little concern to us. A property like
Pareto optimality would be 'nice' for IG, but it is nowhere near the top of our list.
Our first and foremost criteria for MAT mechanism performance are solution quality
(in terms of the average profit or agent satisfaction), and solution speed. These call
for experimental, rather than theoretical validation.



Chapter 6

Experimentation

6.1 Chapter Overview

In this chapter, we discuss the means and methods of our experimentation with
IG. Our means of experimentation is the Informed Gambling Reassignment Testbed
(IGRT). As this name indicates, the experiments pertain to reassi(/nmpn< problems
rather than general reallocation. The motivation for this restriction is that it enables
us to perform an extensive, systematic exploration of the entire problem domain.
This is not feasible for general reallocation problems, for two reasons.

First, the computation of an optimal solution is tractable for reassignment, but not
for reallocation in general (Papadimitriou & Steiglitz, 1982). Hence, the evaluation
of mechanism performance is problematic in the general-reallocation domain.

Second, reassignment problems are sufficiently simple to categorize them in terms
of a small number of parameters. This allows us to be fairly certain that our ex-
periments cover any conceivable kind of problem in the domain. Because of the far
greater complexity of reallocation problems,' such*a categorization is not feasible
for general reallocation.

The contents of this chapter is as follows. In Sect. 6.2, we describe the structure
of the interactive testbed and the semantics of the parameters that can be adjusted
by the user. While the interactive testbed has been useful to obtain a preliminary
impression of the influences of testbed parameters, we developed an batch-oriented
version of the testbed to gather performance statistics. This version generates a
desired number of problem instances with certain - adjustable - properties, and
produces raw data for each investigated problem instance as well as statistics on the
entire batch.

Because the batch-oriented testbed differs only marginally from the interactive one,

'The space complexity of reassignment is O(n'), where n denotes the number of agents, while
that of general reallocation is O(2* ).

231
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as far as the parameter interface is concerned, we describe the batch-oriented testbed
by explaining how it differs from the interactive version. This is done in Sect. 6.3.
Sect. 6.4 contains a survey of the questions that we address in our experiments. In
Sect. 6.5, we describe the approach we use to address these questions experimen-
tally, and in Sect. 6.6, we discuss some methodological issues to justify the chosen
approach. Except for Sect. 6.6, all sections of the current chapter are recommended
reading for a good understanding of the discussion of our findings in Chapter 7.

6.2 The Informed Gambling Reassignment Testbed

The interactive Informed Gambling Reassignment Testbed (IGRT) offers the op-
portunity to experiment with architectural variants of the basic Informed Gambling
mechanism for tool reassignment described in Sect. 5.6.5.

IQ interactive t«stb«d

3

problem
generator

problem
analyzer

monitor

agent type
selector

auction type
selector

agentss [_J j

auctioneer

Figure 6.1: The structure of the IGRT.

Figure 6.1 shows the conceptual structure of the interactive IGRT and the com-
munication that occurs between its components. Solid arrows denote data being
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communicated, whereas dotted arrows represent control via parameter communi*
cation. Below, we describe the testbed parameters componentwise. The aim is to
enable the reader to understand our discussion of the experimental results. Hence,
we do not provide implementational details.

The two most vital testbed components are the agent type selector and the auction
type selector. The remainder of this section describes the semantics of the para-
meters associated with each of the components, and the semantics of the output
generated by the auction monitoring and problem analysis components. A survey
of the parameters associated with the various components is shown m Table 6.1.

component
problem generator

problem analyzer
monitor
agent type selector
auction type selector

parameters
number of agents, number of tool types, tool bag,
allocation, utility mode, utility file, utility range,
zero utility, low alternative, high alternative
walras mode
tracking mode
caution, volatility, maxloss, weariness
resolution, asynchrony, deadline

Table 6.1: Parameters associated with testbed components.

6.2.1 The problem generator

The problem generator is the component that defines the reassignment problem that
is to be generated and solved. As apparent from Table 6.1, problem generation is
parametrized by the size of the agent community ("number of agents"), the number
of different tool types available within the community ("number of tool types"),
the community's tool bag ("tool bag"), the initial allocation ("allocation"), and the
utility matrix. The latter is either read from file or generated randomly, under
the constraints defined by the problem generator parameters "utility range", "zero
utility", "low alternative", and "high alternative". In the following, these and other
parameter names will be typeset in this font, whenever they occur in the text.

Representation of tool types, bags, and assignments

Tool types are represented in the user interface by lower-case letters. Consequently,
tool bags and assignments can be represented as lower-case strings. If the string
denotes a bag, the order of letters in the string is irrelevant. If a tool bag is generated
by the user interface (e.g., when the user changes the number of agents or tool types),
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the letters are displayed in alphabetic order. In an assignment string, the letter at
position i denotes the tool type currently possessed by agent i.

Utility matrix generation

To further processing speed and storage economy, we represent real-valued para-
meters by integer approximations, whenever this is not too restrictive. Thus, agent
utility, which is formally real-valued, is represented as an integer number. Moreover,
the range of utility values is kept relatively small (between zero and 99 inclusive),
to ensure that the presentation of a utility matrix in the interactive testbed is sur-
veyable.

The primary parameter for utility matrix generation is u t i l i t y mode, a toggle
parameter which can be set to "file", "shuffle", or "random". In file mode, the
utility matrix is read from the file u t i l i t y f i le .

In shuffle mode, a new matrix is generated by permuting the rows of the current
matrix randomly. This can be interpreted as agents being confronted with new tasks,
while the bag of task types within the community remains the same. Within the
IGRT, agent populations are homogeneous, in the sense that any two agents that
take part in the same auction and have the same utilities and endowment exhibit the
same bidding behavior. As such, any two such agents are effectively identical within
the IGRT. This implies that shuffling a utility matrix is equivalent to permuting the
assignment (cf. Fig 4.6 at page 121).

In random mode, the agent utilities which form the rows of the utility matrix are
generated randomly, subject to the following parametrized constraints.

1. One randomly chosen tool type renders the maximal utility specified by
u t i l i t y range.

2. A percentage of the other tool types, specified as zero u t i l i t y , render mini-
mal (zero) utility.

3. All matrix entries that have not yet been assigned a value at this point
are assigned a (uniformly distributed) random integer value between low
al ternat ive and high al ternat ive (inclusive).

With u t i l i t y mode set to "random", the generation of agent utilities is performed
independently for different agents, but the same generation constraints are applied
to all agents. In particular, the percentage of useless (zero-utility) tool types is the
same for each agent. We refer to such a utility matrix with an equal number of
zero's in each row as

= burden.
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The testbed user can also generate Äeterogemic utility matrices, that is, matrices in
which the number of zero entries per row differs between rows. There are three ways
to do this. The first one is to read a heterogemic matrix from tile, and subsequently
change utility mode to "shuffle". Thus, one effectively experiments with a single
heterogemic matrix with varying initial allocations.

It is also possible to generate heterogemic matrices randomly. If a nrgattt'r value
r is assigned to zero u t i l i t y — while u t i l i t y mode = random , the problem
generator produces a matrix in which the first n/2 rows contain -z% «ero entries,
and the other rows (100 + ;)%. Note that both percentages pertain to m - 1, the
number of tool types that do not render maximal utility to the agent

Finally, it is possible to vary the number of zero entries per row in a less controlled
fashion by setting low alternative to zero. Of course, the resulting variation
will only be significant if the value of high alternative is relatively low. If, for
example, an agent community comprises 10 agents with tools of 4 different types, a
parameter setting of u t i l i t y range = 2, zero u t i l i t y = 0%, low alternative
= 0, and high alternative = 1 will produce utility matrices with a number of
zero entries per row between 0 and 3 (inclusive), with probabilities £, i, | , and £
for rows with 0, 1, 2, and 3 zero entries, respectively.

6.2.2 The problem analyzer

Whenever the reassignment problem faced by the community changes (i.e. when
the user changes either the utility matrix or the initial assignment), the problem
analyzer computes several so/utton guo/t̂ j/ ranges, which express the difficulty of
the reassignment problem defined by the matrix and the current endowment. These
ranges comprise the minimum and maximum solution quality of assignments subject
to various constraints. Unless stated otherwise, solution quality is expressed in
terms of the community utility, that is, the average norma/ized agent utility (see
Sect. 2.3.1).

Depending on the setting of the walras parameter, the problem analyzer computes
three to four ranges. The unconstrained ranoe (UR) simply specifies the lowest and
highest possible community utilities. The autonomy ran<je (AR) is the community-
utility range of assignments subject to the constraint that any agent which already
possesses a tool of maximal utility keeps its tool. The individual-raltonaitty ran</e
(IR) is the quality range of assignments subject to the constraint of individual ra-
tionality, that is, no agent utility is allowed to decrease due to reassignment. In
problem instances that are generated randomly by the IGRT, there is a single tool
type of maximal utility for each agent. In this case, any reassignment that is in-
dividually rational is also autonomous. Hence, if u t i l i t y mode = "random", IR
C AR c UR. If a problem instance is vtat/e, in the sense of Def. 4.42, no agent is
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initially endowed with a tool of maximum utility. Hence, for viable problems, AR
= UR. Because the batch-oriented testbed generates only viable problem instances,
it does not compute autonomy ranges.

All of the above solution-quality ranges are computed by means of a polynomial-time
algorithm, which is an adaptation of an existing algorithm for untyped assignment
problems (Jonker & Volgenant, 1987) to typed reassignment problems with con-
straints.

If the walras parameter is set to "all", an additional range is computed. This TTC
so/uhon ran^e indicates the lowest and highest possible community utility associated
with Top-Trading-Cycle allocations. The TTC solution range is important as a
reference for two reasons. First, as discussed in Sect. 3.3.5, the set of Walrasian
allocations is a subset of the set of TTC allocations. Consequently, the TTC solution
range is an upper bound on the allocation quality that can be expected from a
Walrasian auction. Second, Top-Trading-Cycle allocations are also rendered in CDN
(Sathi & Fox, 1989), a reallocation mechanism discussed in Sect. 3.2.1.

The motivation for conditionalizing the computation of the TTC solution range is
that such computation is often costly. The computation of a single TTC solution is
a matter of microseconds, but to compute the TTC solution ram/e we must compute
a// TTC solutions. This requires another algorithm, and may take minutes, even for
a relatively small reassignment problem involving, say, 15 agents and 5 tool types.
A delay of several minutes per problem instance is clearly not acceptable, neither in
interactive simulation of a single problem instance, nor in a batch comprising tens
of thousands of problem instances.

If the walras parameter is set to one, the program computes a single Walrasian
allocation. Using the stratification algorithm described in Sect. 4.3.3, a Walrasian
allocation can be computed for stratifiable SPAMs within an (interactively) accept-
able time interval. The (preferential) assignment market (e, P) associated with a
(utilitarian) reassignment problem (e,t/) is in SPAM iff the matrix £/ is row mono-
forur, that is,

(Vi e /) (Vj. * € Ä) > / fc => £/., # tf« (6.1)

Any utility matrix that is generated in the IGRT with moderate or high zero
u t i l i t y does not comply with (6.1), due to the presence of multiple zero entries per
row. However, as we stipulated earlier in Sect. 4.7, the algorithm can be used also
if all of the indifferences in agent preferences pertain to tool types which the agent
does not prefer over its current endowment. Hence, multiple zero entries do not
mat tor. For the algorithm to be applicable, it suffices that the matrix (/ is u/eaMy
row monofonic, that is,

(Vi 6 /) (Vj, fc € Ä) (> * * A t/„ / 0) =» C/„ * f/,t (6.2)
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If the utility matrix is not weakly row-monotonic, the associated preferential assign-
ment market lies in AM^PAM. Such a market can have more than one Walrasian
allocation. We could compute a Walrasian quality range by applying the stratifiabil-
ity test to each of the markets in the SPAM enumeration of the assignment market,
and compute the community utility for each of the Walrasian allocations found.
However, this can incur excessive computational cost. We have therefore chosen
to apply the stratifiability algorithm only to a single market in the SPAM enumera-
tion. The preference profile of this market is the lexicographic nionotonization of the
preference profile associated with the matrix £/. Formally, it is defined as follow«.

Definition 6.1 (lexicographic monotonization)
Let t/ = {u,},g/6ea uti/»ty matrix t/iat is not fwraJb/ŷ  roui-monotonir, and Jet P de-
note t/ie pre/enence pro/iZe associated unt/i {/. T/ien t/ie Zextcoorapntc monotonuation
P o/ P is f/ie tup/e o/ strict agent pre/erences >-,, de/ined 6y

(Vi € /) x y, y = u,(x) > u,(y) V (u,(x) = u<(y) A x > y) (6.3)

Were, t/ie sym6of > in x > t/ denotes t/ie usuai a/p/ia6etic order on too/ types (i.e.,
a < 6 < c < • • J A

If the SPAM market associated with a reassignment problem does not possess a Wal-
rasian allocation, the IGRT renders "( none )" as the Walrasian allocation and —1
as its community utility. As apparent from the above, a message that no Walrasian
allocation exists may be /orma//y incorrect if the utility matrix is not weakly row-
monotonic. The message does make sense, however, because — as we have shown
in Chapter 5 — a Walrasian auction will have great difficulty in /mrfmo a Walrasian
allocation, if the SPAM enumeration contains some, but not many Walrasian mar-
kets. Since this is typically the case, the notification "Walras sol.: ( none )" by the
IGRT can be interpreted as "A Walrasian auction is likely to be ineffective for this
problem.".

6.2.3 The auction type selector

The basic sequence of events in an IG auction was described formally in Sect. 5.6.
For an assignment market, an informal account of the sequence of events is the
following. An auction consists of one or more bidding phases. Each phase ends
with a partial reassignment, after which the agents that have not acquired the tool
specified in their last proposal are allowed to engage in additional bidding phases.
A phase consists of the following steps.

1 • The auctioneer invites the agents to propose their preferred exchange, and the
agents respond.
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2. The auctioneer aggregates the proposals into a market profile, which comprises
the demand and supply of each tool type. This market profile is revealed to
the agents. |

3. The agents respond to the last sent market profile, by selecting a proposal of ;
maximal expected utility, given their tool utilities, their current endowment, ^
and their knowledge of the decision rules used by the auctioneer. 1

,4. Steps 2 and 3 are repeated until either a morfcet egut/t&rium (a state in which :
supply equals demand for all tool types), or a correlated equilibrium (a state
in which the proposal of every agent equals the proposal it submitted in the
previous round), or the deadline is reached.

5. Re allocation takes place according to the proposals and the market profile in
the last round.

This basic sequence of events is parametrized in the testbed by four parameters, as
described below. •

Resolution

We recall from Sect. 5.5.3 that the eligibility of an exchange proposal is a non-
decreasing function of the scarcity of the tool offered. The resolution parameter
determines to what extent different scarcities give rise to different eligibilities. The
IGRT offers a choice between three levels of resolution. Low resolution entails that
the eligibility equals the si</n of the scarcity. With high resolution, the eligibility
equals the scarcity itself. Mixed resolution amounts to low resolution for oversup-
plied tool types and high resolution for scarce ones. The converse mix would be less
appropriate for reassignment problems, because an agent cannot adjust its supply
(since it only possesses one tool), while it can adjust its demand.

Asynchrony

The IGRT is a monolithic, sequential program. Hence, asynchronously parallel agent
response in IG is simulated in the IGRT. Below, we explain wAat we simulate.

While the agents submit their proposals asynchronously, the auctioneer synchronizes
the bidding to a certain extent by waiting for some percentage of the agents to
submit a proposal before it reveals an updated market profile. The asynchrony
parameter async equals 100 minus this percentage, with a minimum of one agent.
As an example, in a population of 20 agents, async values of 0, 25, 50, and 100%
correspond with new profiles being revealed after the auctioneer has received 20, 15,
10, and 1 proposal(s) respectively. The agents specify, together with each proposal,
the round number associated with the market profile on which the proposal is based.
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This enables the auctioneer to skip proposals that are based on an outdated market
profile.

With asynchrony defined in this manner, high asynchrony implies that there is little
parallelism; in the extreme case of maximal (100%) asynchrony, each round com-
prises the processing of only one proposal. Any other responses to the same market
profile are simply discarded. Yet, proposal processing with maximal asynchrony is
not the same thing as sequential processing. With maximal asynchrony, it is possi-
ble that all proposals processed in, say, the last ten rounds stem from one and the
same agent. This never occurs with sequential processing; in this case, all submitted
proposals are processed, and agents submit proposals in a fixed order.

The asynchrony parameter dictates the auctioneer's profile revelation behavior in all
rounds, except for the first and the last round in a phase. Bidding in these rounds
takes place synchronously, because the responses of a// agents must be processed. In
the first round, this is not really imperative, but it does not harm either. However,
skipping agents in the last round can imply that they are asked or forced to accept
an exchange to which they have not willingly committed themselves.'

The above definition of asynchronous parallelism differs essentially from definitions
in literature on distributed processing. In (Bertsekas & Tsitsiklis, 1988), for example,
parallelism is qualified as synchronous whenever the ratios of the response times of
different agents are bounded by some constant. This is a useful definition to study
issues like productivity in the context of possible processor failures, but it is not
adequate for our purposes.

The asynchrony parameter may also be assigned a negative value. A value of —1> has
the same meaning as a value of u, except that an updated market profile is revealed
after each bid. Again, 100 — v percent of the agents bid in each round, in a random
order, but the agents' bids are now based on a fully up-to-date market profile. This
is almost the same as sequential bidding. The only differences are that the agents
do submit proposals in a random order, and a round comprises the submission of
Y53 • |/| proposals instead of |/|. As such, comparison of the outcomes with async
= f, and async = —1> enables us to assess the — possibly detrimental — effect of
information backlog in the normal, positively asynchronous mode of operation.

Deadline

The declarative semantics of the deadline parameter is "the maximal number of
rounds in an IG bidding phase". If negotiation weariness is not incorporated in the
agent behavior, a phase is terminated by the auctioneer whenever round deadline
is reached. In this case, the value of deadline is known only to the auctioneer. By

'Such noncommitment can occur if an agent's last proposal was based on a market profile that
differs from the present profile.
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default, negotiation weariness is incorporated in the IG mechanism of the IGRT, In
this case, deadline determines how soon agents grow weary of proposal adjustment.
Since deadline is essentially an agent parameter in this case, and the auctioneer
need not know its value, we discuss its effect on agent behavior together with the
other agent parameters in Sect. 6.2.4.

To assess the consequences of om»(tmj weariness from the agent behavior, the testbed
user can assign a negative value to deadline. In this case, agents will never grow
weary of prolonged bidding, and the absolute value of the deadline parameter sig-
nifies the number of bidding rounds after which a phase is terminated (if it did not
end earlier by reaching a correlated equilibrium or a market equilibrium). The IG
protocol is then executed on the basis of the current proposal profile. If deadline
is negative, it does not influence agent behavior. The agents then behave as if there
were no deadline at all.

6.2.4 The agent type selector

The agent type selector determines the agents' attitude in bidding, especially with
respect to risk. In Informed Gambling, the basis of an agent's rational responses to
the auctioneer is the maximization of expected utility, under the constraints of fic-
titious rationality. Agents will submit a proposal to exchange their tool endowment
x for an other tool j / if their estimate Au of the expected utility increase associated
with this proposal is maximal, and positive. Au is defined as

Au({i * y}) = P, • u(y) + (1 - P J • [/_ - u(i) (6.4)

Here, P„ denotes the subjective success probability of the proposal {.r ^ y} in view
of the current market profile, as defined in Prop. 5.6 on page 191. u(-) represents
the agent's utility function, and I/_ denotes the expected utility upon failure, that
is, the weighted average of the agent's utilities for the oversupplied tools.

However, (6.4) merely describes our definition of 6a.s»c agent rationality. The agent
rationality that is implemented in the testbed is a parametric variation thereof. The
four parameters that modify the agents' rationality are discussed below.

Caution

The caution parameter determines how much optimism (or pessimism) the agents
display when estimating the success probability P„ (cf. Eq. 6.4). The default value
of caution is 1. This renders an unbiased estimate P. Other values of caution
correspond with optimistic or pessimistic estimates, in the following manner. Let P
denote the unbiased estimate of proposal success probability obtained from Prop. 5.6
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i page 191. If C denotes the agent's caution, then the distorted estimate p equals

1.0, if C = 0.0

/»-"*, i f C < - 1 . 0 <"•*>
unde/ined, o(/ieruitde

0.2 0.4 0.6
undistorted estimate

0.8

Figure 6.2: Probability estimate distortion as a function of caution.

As an example, for C = -2 , -1,0,1,2,2.5, and 3, the distorted estimates p equal
\/P, P, 1.0, P, P*,P*\/P and P ' respectively. The effect of using caution values
other than 1 is shown graphically in Figure 6.2. As apparent from the figure, values
of caution above 1 render pessimistic (risk-aversive) agents, values below - 1 render
optimistic ones, and a value of 1 (or — 1) leads to risk-neutral agents. A caution value
of zero indicates that the agents are utterly reckless. They simply assume that every
proposal will succeed. Caution values between - 1 and 1, other than 0, are illegal.

By Eq. 6.5,

p(P,0)= lim p(P,C)
C->-3C

Hence, if caution= 0, the agents are /e«s cautious than if caution= c < 0.

In the interactive testbed, we have chosen to use integer-valued parameters whenever
possible. However, as shown in Fig. 6.2, there is a rather large difference between
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the curves corresponding with adjacent integer values such as C = 1 and C = 2.
We would prefer to be able to tune the agents' caution a little more finely. For
this reason, the caution parameter in the testbed interface equals 10 • C instead
of C. Thus, the user can specify an inbetween value like C = 1.5 by setting the
testbed's caution parameter to 15. Any caution values mentioned in the remainder
of this chapter reflect the setting in the testbed interface. Thus, in the following,
caution=10 corresponds with risk-neutral agents.

Maxloss

Human decision making involving risk usually does not only concern the probability
of failure, but also the impact thereof. The maxloss parameter defines an acceptance
limit in this respect. Whenever there is a possibility that the agent's (normalized)
utility will decrease by more than maxloss% as a consequence of proposal failure,
the agent will not submit the proposal. As an example, if maxloss= 50%, then an
agent with a current utility of 80% will not submit any proposal with a (subjective)
success probability below 1.0 if there exists an oversupplied tool type with a utility
of less than 30%. The default value of maxloss is 100%. In other words, in the
default setting, agents pay no attention to worst-case impact. In the following, we
refer to an agent's "maxloss value" as its ^aringness.

Volatility

The volatility parameter determines the (ie«tre /or c/iange in the agents in the fol-
lowing sense. With vola t i l i ty at its default value of 0, an agent will consider
as viable alternatives ("options") for its current tool only those tools that render
a higher utility. The effect of a positive volatility is that the agent depreciates its
current endowment by subtracting volat i l i ty% of its normalized utility. As an
example, with volatility set at 10%, an agent endowed with a tool of 80% utility will
be interested in any tool type with a utility of more than 70%.

The motivation for the volatility parameter is that a nonzero volatility may cause an
agent to submit a proposal, where it would normally refrain from doing so. Thus, a
positive volatility can lead to better opportunities for ot/ier agents to improve their
utility. As such, it can be regarded as a weak form of altruism: A volatile agent is
prone to 'help' other agents, as long as it does not hurt its own utility (too much)
Note, however, that this kind of altruism — unlike altruism in human agents — is
not a matter of conscience or morals. The altruistic behavior is emergent; it does
not require the agent to be perceptive of the needs of other agents.

Like caution, volati l i ty is an integer-valued parameter. It denotes a percent-
age that corresponds with a floating-point variable r € [0,1]. In other words.
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r = *°'*ro"* • *°^ '*' *°k '" determining the set of options O, for an agent with
a normalized tool utility function u() and current endowment i is described by

O, ± {y 6 fi | u(y) > ti(x) - r} (6.6)

However, the depreciation r of the agent's current endowment x extends
option selection. It is also applied when comparing the expected utility of a bid on
y with the empty proposal ' - ' . With vola t i l i ty at its default value of zero, an
agent will prefer a bid on y over the empty proposal if ü(y) > u(x).' With a positive
value for vola t i l i ty , this condition is relaxed to ti(y) > u(x) - T.

The fact that the raw (i.e., unnormalized) agent utilities in the utility matrix are
integer numbers between 0 and u t i l i t y range (inclusive) implies that different
values of vo la t i l i ty sometimes have an identical effect on the option set, in any
problem instance that is generated randomly with a specific setting of tin- pmMi-in
generation parameters. Suppose, for example, that u t i l i t y range 10 Then
every value for vo la t i l i ty in the set {1,2,...,9} will have the effect that the
default option set ({y € fi | u(y) > u(x)} U {x}) of an agent endowed with an x is
enlarged with the tool types z ^ x such that u(z) = u(x). More generally, different
values V, for vo la t i l i ty will lead to equal option sets if the associated rational
numbers ^ * utility_range have the same integral part, while none of them are
integer numbers. However, this does not imply that such values V, are completely
equivalent. With the above value of 10 for u t i l i t y range, Vi = 1 and Vi = 5
always render the same option set, but the ultimate choices /rom the option set may
differ: It may occur that V2 leads to a bid on y / x, while Vi leads to ' - ' (viz. if
r, < ü(y)-u(x) < rj).

While values of r » ^.^ ' ^ e *** likely to incur a significant decrease of agent
utility, a small, but positive value will not do much damage in this respect. In
fact, a vo la t i l i ty of 1 amounts to enlarging the agents' option sets with those
tool types that render the same utility as the ones that are currently allocated, and
can therefore decrease the agent's utility only if its proposal is rejected/* Because
a positive volatility can be proficient for other agents, especially those with few
options, a vo la t i l i ty of 1 may well lead to a higher average community utility.

Weariness

If the value of the deadline parameter is positive, negotiation weariness is incor-
porated in the agents' bidding behavior. By default, this is the case, negotiation
weariness entails that agents gradually grow weary from prolonged negotiation. In

'This pertains to the comparisons made to select a bid of maximal expected utility, that is,
/one the agent's weariness and daringness are taken into account.

This is true for any value of ut i l i ty rang« that is allowed in the testbed ({2,. . . ,99}).
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the long run, they do not take the trouble anymore to adjust their proposal to
changes in the market profile which have little impact on the utility they can expect
to obtain. Thus, weariness can influence the behavior of agents that contemplate
a proposal which differs from their previous one. Before it actually submits a de-
liberated proposal (i.e., a proposal which is optimal in the sense of Eq. 6.4, taking
into account the values of caution, maxloss, and volat i l i ty) , the agent checks
whether the excess (normalized) utility it expects to gain by deviating from its pre-
vious proposal exceeds its current indifference level. It can adapt its proposal (i.e.,
submit the deliberated proposal instead of its last-submitted one) only if this indif-
ference level is exceeded. We shall refer to this as the weariness constrain«, and to
the agent's indifference level as its weariness treshold. The weariness treshold starts
at zero, and increases linearly with the round number. If the round number reaches
the deadline, the agent has become completely indifferent. Thus, the termination
of the proposal adaptation process due to stationaxity is guaranteed to occur at or
before the deadline. Formally, the weariness treshold L equals

Here, r denotes the current round number, and D the value of the deadline param-
eter.

It is possible that the weariness constraint conflicts with the daringness constraint
specified by maxloss. By sticking to its previous proposal, the agent may run some
risk (which it did not run under the previous market profile) of ending up with a tool
type with a normalized agent utility that is more than maxloss% below that of its
current endowment. Any such conflict is treated in the following manner. Say that
a bid on tool type x would render maximal expected utility, but weariness dictates
the agent to stick to its previous bid on j / . If sticking to its bid on j/ conflicts with
the daringness constraint, the agent deliberates the alternative to submit an empty
proposal, that is, to stick to its current endowment i. If the difference between the
expected utility of its bid on x and its utility for ; does not exceed its weariness
treshold, it submits ' - ' . Otherwise it violates the weariness constraint and bids on J.
We choose to violate the weariness, rather than the daringness constraint, because
this does not endanger the desirable property of bid convergence at or before round
deadline." In contrast, a violation of the daringness constraint can be final, in the
sense that it may lead to a final outcome which comprises a decrease of normalized
agent utility of more than maxloss%.

except, possibly, when d«»dlin« is extremely low.
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6.2.5 The monitor

The value of the tracking parameter determines to what extent the auction is mon-
itored. If tracking = off, then only final auction results are displayed. With
partial tracking, the monitor also displays the proposal and market profiles after
each round. The subwindow marked auction status in Fig. 6.3 shows what this
monitor output is like, for round 2 of phase 1. If the user opts for full tracking, the
monitor also displays a detailed account of the deliberations of eacli agent that has
contributed to the market profile (cf. Sect. 6.2.3). An example is the subwindow
marked agent 2 in Fig. 6.3, which reveals the deliberations of agent 2 in round 3 of
phase 1.

agent 2
pop.bag: abcccdef
utilities: 0.8.0.7.0.10
own resource: a (utll 0)
supply: acccef
deaand: acddef
undersupply: dd
oversupply : cc
options: bdf
scores: 8.0:0.0:10.0
best option: f (utll 10)
uln-prob.: 1.000
lossutil.: 0.00
bid: f

utility Hod«: RANDOM
utility File: ualras.ccc
Zero utility: 502
utility Range: 0 - 10
Lou alternative: 4
High alternative: 9

Utilities duaP Step reVert

ai
round nr.
prev.alloc.
curr.alloc.
activa
prev.bids
curr.bid3
undersupply
oversupply

iction status
1.2
badfccec
badfccec
badfccec
-fbcabdf
-f-cadde
dd
cc

1
2
3
4
5
6
7
8

a

0
0
0
0
10
0
0
0

b

10
8
10
6
0
10
5
9

c

5
0
0
10
9
0
6
0

d

0
7
9
6
0
8
10
0

e

0
0
4
0
5
0
0
5

f

4
10
0
0
0
9
0
10

I Hit ENTER to continue (or f/p/n to change Tracking Node)

Figure 6.3: Screen image of monitor output with full tracking.

For the evaluation of IG performance, the final auction results are all that matters.
Hence, we only discuss the output rendered by the monitor if tracking = off.

The auction results reported by the monitor comprise the following information:

1- the initial assignment, with its community utility, and its effectiveness;
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2. the final assignment, with its community utility, and its effectiveness;

3. the total number of rounds in all phases;

4. the number of rounds in the longest phase;

5. the phase termination string (Tp);

6. the total utility decrease in the population (I/");

7. the worst agent utility decrease (ul);

8. an agent that suffered this worst decrease;

9. the highest agent-utility concession due to weariness (u*).

The phase termination string consists of characters 'd', 'm\ and 'b', which indicate
the (primary) termination condition that led to the termination of each phase. As
an example, T,, = 'dbm' signifies that the first phase ended due to the deadline being
reached, the second due to bid convergence (i.e., reaching a correlated equilibrium),
and the third and last phase due to market equilibrium. The order in which the
ICtRT chocks these three sufficient termination conditions is b-m-d. This implies that
a phase that ends in a state which is a correlated equilibrium as well as a market
equilibrium is reported to have ended due to reaching a correlated equilibrium.

The total utility decrease in the population is the summation of the decreases in
normalized agent utility over all agents whose utility decreased.

The highest weariness concession u". is defined as follows. Let t,j denote the tool
type mentioned in the proposal by agent i in round j , where — for simplicity — we
do not reset the round counter upon commencing a new phase. Let f'̂  denote the
tool type that would have been mentioned by agent i in round j if the weariness
constraint would not have been applied by the agent in that round, and let ü,(z)
denote the expected utility of a bid on x in the face of the market profile of round
i.* Then the highest jjieannc55 concession of that auction equals

; , ( ( ; ) - ü , ( « J ) (6.8)

The other descriptions of auction results are presumed self-explanatory.

*Here, "the profile of round i" should be interpreted as "the profile that is used by the agents
in round i", that is, the profile computed from the proposals in round i - 1.
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6.3 The Batch-Oriented Testbed

The batch-oriented version of the IGRT differs from the interactive version in thrw
respects.

1. Some design flaws in the interactive version were corrected.

2. The interactive user interface is replaced with a command-lin<> interface.

3. The batch-oriented version calculates statistics on various performance at-
tributes.

The design flaws in the interactive version are a consequence of the fact that the
interactive testbed was conceived in an early stage of the project, before the first
versions of chapters 4 and 5 were written. Consequently, the insights gathered in
the process of writing these chapters have not influenced its design The design
improvements implemented in the batch-oriented testbed are the following.

problem viability In the interactive testbed, generated problem instances are not
always viable. In the batch-oriented testbed, they are. As a consequence, the
distinction between the unconstrained and the autonomy range (of community
utility) no longer exists.

user-specified matrices If u t i l i t y mode = shuffle, the interactive version al-
ways generates the first utility matrix randomly. In the batch-oriented version,
the matrix is generated randomly only if the file specified by u t i l i t y f i l e
does not exist.

market clearance In the interactive testbed, market clearance (i.e., reaching a
state of equilibrium between supply and demand) is always a sufficient con-
dition for phase termination. By default, this is not the case in the batch-
oriented version. The user can, however, activate the test for market clearance
by assigning a negative value to maxloss

The command-line interface of the batch-oriented testbed is much simpler than the
user interface in the interactive version, because testbed parameters are not set in the
command line. Instead, they are read from a parameter file that can be constructed
by means of an auxiliary program. In this program, the testbed parameters can be
set via an interface similar to that of the interactive IGRT.

The command-line interface comprises the following options.

1. The user must specify a parameter definition file.

2. The user can specify the sizes of the sample sets.
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3. The user can control how the random number generator that is used to generate
problem instances is initialized.

4. The user can control how the random number generator that is used to take
nondeterministic decisions and simulate asynchrony is initialized.

5. The user can specify that the results of the individual auctions should be saved
to a file.

6. The user can specify that either the fc-th problem instance of the sample, or
the first A: instances used should be written to a file.

7. The user can ask for a trace of each auction, which shows the allocation ef-
fectiveness that would have been obtained, if the deadline were invoked after
round it ( for fc = 1,2,3,... up to the final round ).

8. The user can choose between six modes of simulation.

A few of these added features require some clarification.

(3): The control that can be exerted on the random number generator used for
problem instance generation can be used to ensure that different invocations of
the batch testbed use the same set of sample problems. This is desirable when
comparing IG performance with different settings of some agent or mechanism
parameter.

(4): The control over the initialization of the other random number generator serves
little purpose for performance evaluation. It was incorporated primarily as a
debugging option.

(5): Storing the results of individual auctions enables the computation of frequency
histograms, next to statistics. This will prove to be a valuable feature in the
sequel.

(6): In combination with options 3 and 5, this options enables us to retrieve specific
problem instances in the sample (e.g., a sample problem on which IG performed
very badly), without having to record all problem instances in the sample.

(7): Effectiveness tracing was incorporated to get an impression of the efficiency of
the collective search process. It proved to have little information value: the
effectiveness trace mows up and down erratically, and the final effectiveness
is often not the highest one in the trace. In retrospect, it is a bit foolish to
expect any search efficiency from an algorithm that comes down to a heuristic
random walk.

(8): The six simulation modes constitute the most important feature of the batch-
oriented testbed. They are explained below.
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linear sampling: The program gathers statistics (minima, maxima, averages and
variances) on the performance of IG on the indicated number of problem In-
stances, all of which are generated randomly within the constraints imposed
by the values of problem generation parameters.

grouped sampling: The program gathers statistics as with linear sampling, except
that the sample consists of several subsamples, and the variance is computed
from the subsample averages instead of data from problem instances. This
reduces the variances and ensures that the stochastic variables from which
samples (i.e., subsample averages) are taken are (approximately) normally
distributed. This is convenient for the assessment of the statistical significance
of observed differences in performance.

fixed matrix-simulation The program gathers statistics (by means of grouped
or linear sampling) on a specified number of viable problem instances, which
share the same utility matrix.

exhaustive fixed matrix-simulation The program gathers statistics (by means
of linear sampling) on a// viable problem instances associated with a specific
utility matrix.

tentative fixed-instance simulation The program gathers statistics on repeated
application of IG to a single problem instance, thus portraying the extent
to which the nondeterminism in Informed Gambling is responsible for the
variances of performance attributes. The invocation of IG is repeated as long
as the number of invocations is less than fc times the number of different
solutions encountered (for some specified positive value of fc).

systematic fixed-instance simulation The program gathers statistics on a spec-
ified number of invocations of IG to each of a specified number of randomly
generated problem instances. The statistics, in this case, are the number of
different solutions found, and the minimal, maximal, and average values of the
primary performance attributes (solution effectiveness and auction duration in
terms of the total number of rounds).

The performance attributes on which statistics axe gathered comprise most of the
final auction results reported by the monitor in the interactive testbed. A complete
survey of the performance attributes of which the IGRT computes statistics is listed
in Table 6.2. We distinguish between three types of performance attributes. These
types differ in the number of values which the attribute can have if the experiment
involves on/y one auction. In such a case, a cardinal attribute can have one of many
values, a boolean attribute only one of two, and a conditional attribute need not
have a value at all. We provide an example of each type.
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attribute label
effectiveness
rounds
zero-loss
losers
average loss
highest loss
zero- weariness
weariness concession
convergence
clearance
deadline

attr. type
cardinal
cardinal
boolean
conditional
conditional
conditional
boolean
conditional
boolean
boolean
boolean

(sample) semantics
(avg. of) effectiveness of the final allocation
(avg. of) total number of rounds in all phases
(% of) auction(s) without utility loss
(avg. of) % of agents which lose utility
(avg. of) average utility loss among losers
(avg. of) highest utility loss
(% of) auction(s) without weariness
(avg. of) highest weariness concession
(% of) phase termination due to bid convergence
(% of) phase termination due to market clearance
(% of) phase termination due to deadline excession

Table 6.2: Performance attributes covered by the batch-oriented IGRT.

cardinal : The rounds attribute for a single auction can — in principle — have any
integer value greater than one.

boolean: In case of a single auction, the value of the ze ro - loss attribute can
only be 0% (signifying that some agent(s) experienced utility loss) or 100%
(if no utility loss occurred in the auction). Note that the phase termination
attributes pertain only to the termination of the /trst phase.* Hence, they too
are boolean attributes.

condit ional: The average loss attribute is defined only if the auction features
ze ro - los s - 0'/., that is, if at least one agent utility decreases due to reas-
signment. The same applies to the other conditional attributes. Hence, the
semantics of l o se r s for a sample of auctions is "the average percentage-of-
agents-in-the-population-who-lost-some-utility over those auctions in the sam-
ple in which utility loss occurred".

The reason that we distinguish between different attribute types in this manner is
that our estimates of the mean value of an attribute tend to be relatively reliable
for cardinal attributes, but less so for boolean and conditional attributes. This is
due to the fact that the IGRT computes statistics in a uniform manner, without
paying attention to the type of performance attribute. We return to this issue when
discussing the computation of confidence limits in Sect. 6.5.4.

The primary performance attributes are solution effectiveness, and auction duration
(in terms of the total number of rounds in all phases). In the discussion of experi-
mental outcomes that follows, these two primary performance attributes are always
included. Secondary performance attributes are discussed only if the associated
outcomes are surprising or useful to explain the statistics on the primary attributes.

*In virtually nil parameter settings, this is by far the longest, and hence, the most relevant phase.
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6.4 Questions to be Answered

The batch-oriented version of IGRT has been used to perform a wide variety of
experiments. The questions that motivated this experimentation roughly comprise
six categories.

(A) How well does the default IG mechanism perform on the default problem space?

(B) To what extent does IG performance depend on the kind of problems to which
it is applied, that is, on the setting of the problem generation parameters?

(C) Is the chosen set of problem-generation parameters adequate (1) to ensure
that the generated samples are not too easy, and (2) to characterize the tool-
reassignment problems that are most difficult for IG?

(D) How does the setting of the agent and mechanism parameters influence the
performance of IG?

(E) How well does IG perform in comparison with other reassignment algorithms,
such as the Walrasian auction, delegated negotiation, and mediated negotia-
tion?

(F) What portion of the variation in IG performance is due to nondeterminism, and
to what extent can this be reduced by changing the mechanism parameters
asynchrony and resolution?

Preliminary experimental investigation of the questions in category (D) revealed
that many parameters did not exert a sta<t«ttca//t/ sjjni/icanJ influence on solution
quality, due to very large sample variances. There are two possible causes for this
phenomenon: Possibly, the influence of parameter changes varies with the kind
of problem instance in a manner that is not captured by our problem generation
parameters. This prompted us to pose the questions in category (C). On the other
hand, the nondeterminism in IG could be a major source of variance. The degree
of nondeterminism, in turn, is liable of being influenced by some of the mechanism
parameters. This prompted us to pose the questions in category (F).

6.5 Methodology

6.5.1 General approach

In most cases, we have used the following approach to answer the questions formu-
lated in the previous section.

1. Pick a suitable sample space.
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2. Draw a sample of problem instances from this space.

3. Produce performance statistics (for IG and/or other mechanisms) by applying
the mechanism(s) to each problem instance.

The reason that we draw problem instances from specific sample spaces, rather
than simply using the overall problem space as our sample space, is that the latter
approach tends to lead to samples with too many easy problems. This is explained
more elaborately in Sect. 6.6.

6.5.2 Exploration of the parameter space

Since the caution parameter is essentially real-valued, and the deadline parameter
is principally unbounded, the parameter space is — at first instance — uncount-
ably infinite. By discretizing caution and bounding deadline, the IGRT turns this
space into a finite one. However, this finite space is still too large to gather perfor-
mance statistics with every allowed parameter setting. We have therefore limited
our exploration of the parameter space by focusing on a default setting of IG's agent
and mechanism parameters, and a default sample space. As an example, nearly all
questions in category D (on the dependence of IG performance on the parameter
setting), are addressed by using this default sample space, and investigating the ef-
fects of changing one parameter at a time, with all other parameters at their default
value.

The defaults for the parameter setting are based on observations during experimen-
tation with the interactive version of the IGRT. They are listed in Table 6.3, together
with the value ranges of the parameters.

parameter
caution
volatility
maxloss
weariness
deadline
clearance
resolution
asyuchrony

IGRT value range
{ - 8 0 , . . . , - 1 1 , - 1 0 , 0 , 1 0 , 1 1 , . . . , 8 0 }
{0 ,1 ,2 , . . . , 100}
{0,1.2 100}
{TRUE.FALSE}
{1,2 2000}
{TRUE.FALSE}
{LOW. MIXED, HIGH}
{0,1.2 100}

default value
10
0
100
TRUE

500
FALSE

MIXED

50

Table 6.3: Value ranges of agent and mechanism parameters.

The clearance parameter in Table 6.3, is only present in the batch-oriented version of
the IGRT. It indicates whether market clearance is treated as a sufficient condition
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to terminate a phase. As apparent from the table, this is not the case in the default
setting. The limits imposed on the value ranges of caution and deadline are more
or less arbitrary. Experimentation with the interactive testbed had made clear that
it would not be worthwhile to expand these ranges.

6.5.3 Sample space selection

Like the parameter space, the IGRT problem space is already constrained to a finite
grid on the infinite space of reassignment problems by the architecture of the IGRT.
Problem dimension (i.e., the size n of the population and m of the tool set) is
confined to the set {(n,m) || 2 < n < 20 A 2 < m < n}, and the entries of utility
matrices are confined to the finite set {0,1,2,... ,99}.

A sample space is a subspace of the problem space from which the IGRT draws its
sample of problem instances. With u t i l i t y mode set to random, the sample space
is defined by the setting of the problem generation parameters nr of agents, nr
of tool types, tool bag, u t i l i t y range, zero ut i l i ty , low alternative, and
high alternative.

parameter
nr of agents
nr of tool types
tool bag
max. utility
zero utility
nr of zeroes
high alternative
low alternative

symbol
n
m

r
M

Z
H
L

value range
{2,...,20}
{2....,n}
<8(n,m)

{1.....99}
{-100%,..., 100%}

{ 0 , . . . , m - l }
{1,...,M}
{0 ff}

default value
12
5

{a,a,a,6,6,6,c,c,d,d,e,e}
10

-25%
K/3)

9
3

Table 6.4: Value ranges and defaults of problem generation parameters.

The value ranges and defaults of the problem generation parameters are listed in
Table 6.4. Single-character symbols are associated with the parameters to arrive at
concise formulas for the size of problem spaces, which we compute in the Sect. 6.6.2.
In this context, it is convenient to work with the numfcer (rather than the percentage)
of zero entries per row. This explains why there is no symbol for the zero u t i l i t y
parameter, while there is a symbol (Z) for the number of zeroes per row. By default,
zero u t i l i t y equals -25%. In the context of the default values 12 and 5 for n and
m, this corresponds with 1 zero entry in each of the uppermost six rows of the
matrix, and 3 zero entries in each of the other rows. This explains the entry *l(/3)'
in Table 6.4.
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The zero u t i l i t y parameter is an exception to the rule that we never vary more
than one parameter simultaneously, in the sense that we use two default values for
this variable. The primary default -25%, is listed in Table 6.4. Next to this primary
default, which leads to a heterogemic utility matrix, we often also use the value 50%
as a secondary default. Originally, we planned to use zero u t i l i t y = 50% as the
(sole) default. Later, we realized that matrices with the same number of zeroes in
each row may be too peculiar to draw general conclusions, and added the option to
generate heterogemic matrices.

nr of Agent«: 8
nr of resource Types: 6
resource Bug: abcdefcc
allocntloN : bndfccec
Caution: 10 tOlerttnce: OX
Deadline: ?0
tracKlng: PARTIAL
asYnehronlc1ty: OX

• utility statistics
I autonomy range : 13 - 75X

utility Modo: RANOOH
utility File: «alras.ccc
Zero utility.: 50Z
utility Range: 0 - 10
Low alternative: 4
High alternative: 9

Utilities duaP Step

a b c d e f|

IIC solution range : 60
best auton.: bfdc.cce
b..t TTC iol: bfdc.ee.

75X <3> 2
3

5
6
7
8

1 .
0
0
0

10
0
0
0

^ ,
8

10
6
0

10
5
9

>
0
0

10
9
0
6
0

- . A

7
9
6
0
8

10
0

0
4
0
5
0
0
5

A

10
0
0
0
9
0

10

reVert

Figure 6.4: User interface of the interactive testbed.

Most of the value ranges and defaults for the parameters in the batch-oriented
testbod stein from the constraints imposed by, and the experience gained with in-
teractive simulation.

The general guideline which led to the default setting, listed in Table 6.4, has been
tha,t the typical generated problem instance should be 'average', without being too
easy, since this would blur the performance differences due to different parameter
settings. The latter constraint was originally checked only tentatively in the interac-
tive testbed, but we will corroborate it in Sect. 7.3 by investigating the performance
of the default IG mechanism with various sample spaces.

In the following, an expression of the form 5(Q, Af, Z, L, //) denotes the sample space
associated with a specific setting of the problem generation parameters (to a, A/, Z,
L, and i/). Here, a represents the multiplicity type of the community tool bag F.
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We use Q rather than F to express that a problem instance is an equivalence class of
problem representations under alphabetic variation (i.e., agent renumbering and/or
tool-type renaming).' Two problem representations with different tool bags may
well be equivalent, but two representations with different multiplicity types always
denote essentially different problem instances.

Expressions like S(a,A/) and 5(a,L, //) denote problem spaces that are the union
of the sample spaces with fixed values for the listed parameters, and variable values
for those that are omitted. Formally,

and

,Z,I,if) (6.9)
Z.i.H

* (J S(Q,M,Z,L, / / ) (6.10)
M.Z

6.5.4 Confidence intervals

The outcomes of our experiments are presented in the form of sample averages of
performance attributes. These are pictured graphically. To indicate to what extent
the observable differences between sample averages are statistically significant, we
plot confidence intervals around the data points. The endpoints of these intervals
are computed in the following manner.

We have gathered statistics by means of grouped sampling. As pointed out in
Sect 6.3, this entails that the estimates for the mean value of the attribute and
for its confidence limits are not computed directly from the obtained measurements
{-X*}*, but from group averages V, = 1/G £ , X^. This has little effect on the
ultimate estimate, but the sample variance in {y,}, is much lower than that in
{-V,J},J. Since the size of the confidence intervals depends linearly on the standard
deviation of the sample, grouped sampling leads to smaller confidence intervals. In
fact, grouped sampling is not merely convenient, but required to compute reliable
confidence limits in cases where the distribution of X* is not known to be normal.
No matter what this distribution is like, we can be sure that the distribution of V*
is approximately normal, if the group size G is sufficiently large.

In most of the experiments, the sample consists of 200 groups of 100 measurements
each. Provided that the group size of 100 is sufficient for V, to be approximately
normally distributed, we can compute confidence limits by making use of the fact
that, if the distribution of V, is .A/"(/i,(r), and /i and <r* denote the sample mean
and the sample variance, then the distribution of Z, = \/2ÖÖ • * ^ resembles the
Student < distribution with 199 degrees of freedom. We have used the Student *

Examples of alphabetic variants are provided in Sect. 6.6.
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table in (Kreyszig, 1970, p. 454) to compute confidence limits with a confidence
level of 95%.

The crucial assumption in our method is that a group size of 100 is indeed sufficiently
high for the distribution of V, to be approximately normal, and identical for different
i. It is suggested in (Kreyszig, 1970, p. 192), that the smallest allowable group size
is 30, if the distribution of X* is "not too skew". Unfortunately, the skewness in
the distributions of our performance attributes varies significantly with the tt/pe of
attribute.

In general, the employed group size of 100 is sufficiently high to ensure that skew-
ness is not a problem for the cardinal and boolean performance attributes. Only
the auction duration (i.e., the rounds attribute in Table 6.2 on page 250) can be
problematic in this respect. This only occurs, however, if negotiation weariness is
not incorporated, while the deadline is set to a high value. In this case, auction
duration is relatively low (in comparison with the deadline) for most auctions, but
in some cases the deadline is reached. This amounts to a skew distribution of the
number of required rounds.

The distribution of X»,. for a 6oo/ean attribute is skew, but the distribution of V* is
the binomial distribution ß(100,p), which closely resembles the normal distribution
,V( HH)p, 100p(l — p)). Thus, while the confidence intervals are generally larger for
boolean attributes than for cardinal ones, the confidence limits are reliable.

The conditional attributes are the most problematic ones. This is not so much a
matter of skewness of the attributes' distributions, but a consequence of the fact
that conditional attributes are not always defined. Because we treat them in the
same manner as the other attributes, this implies that the e/fectoe group size for a
conditional attribute can vary, and is often well below 100.

As an example, consider the weariness concession attribute. This attribute is the
average of the highest utility concession due to weariness that takes place during
an auction, where the average is computed over those auctions in which at least
one such concession occurs. In many cases, however, weariness does not influence
the behavior of agents. If the deadline is high, a phase will often end due to bid
convergence in an early stage, before the weariness constraint is ever invoked. If
this happens, no value is assigned to weariness concession. The boolean zero
weariness attribute describes how often this has occurred. Hence, if the outcome of
a simulation involves a high zero weariness — of, say, 90% — the computed value
(and the confidence limits) of weariness concession is not very reliable, because
the effective group size employed in this computation is not a fixed value, but a
random one, which is binomially distributed, with an average of 10 instead of 100.

While it is principally possible to adapt the testbed in a way that ensures the relia-
bility of the conditional attributes under all circumstances, we have decided not to
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do this, because the unreliability is confined to those cases where the attributes hm*
little significance anyway. More elaborate justification for this decision is provided
in the next section.

6.6 Methodological Justification

In this section, we motivate some of the decisions mentioned in the previous section
(such as drawing sample problems from specific 5ufr«pacfs of the problem space),
and verify the assumptions underlying our statistical methods. Knowledge of the
contents of this section is not required to understand the presentation and analysis
of experimental outcomes, so readers primarily interested in the outcomes of our
experiments should feel free to skip this section, and proceed with the next chapter
(at page 269).

6.6.1 The importance of sample-space selection

Alternative algorithms for a problem domain can be compared by gathering perfor-
mance statistics on a set of sample problems. It is usually easier to generate sample
problems by means of a computer than to collect a representative set of real-life prob-
lems. This is certainly the case in the reassignment domain. However, when problem
instances are generated by a computer program, the outcome of performance eval-
uation may depend heavily on the particular sample space that is chosen. This has
been observed in literature concerning various problem domains, such as game tree
search (Plaat, 1996, pp. 81,109), constraint satisfaction (Williams & Hogg, 1992),
and the theory of cooperative games (Derks & Kuipers, 1996, pp. 11-14). There are
two criteria which should be met by a sample space in such domains.

• The generated problems should be realistic.

• The generated problems should not be too easy.

In most domains, not every randomly generated problem representation constitutes
a realistic problem. In some domains, randomly generated problems are se/dom
realistic, if the sample space is not chosen carefully. The domain of game tree
search is a good example in this respect. In (Plaat, 1996, p. 81), four properties are
identified which a game tree must have so as to constitute a realistic problem. One
of these is that the game tree' should not be a tree.'"

In the case of game tree search, it is relatively easy to identify properties that are
necessary and (approximately) sufficient for a problem representation to be quali-
fied as realistic, because the associated real-life domain (viz., games such as chess,

'"in board games such as chess and checkers, most game states can be arrived at via different
paths.
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checkers, four in a row, . . . ) is relatively sharply demarcated, and formal in nature.
For tool reassignment problems, the identification of such properties is much more
difficult. The only such property that is immediately apparent is the one we have
already discussed: A TR problem instance must be v»a6/e).

In retrospect, there is one aspect of our problem-generation method that can be
qualified as a shortcoming as far as realism is concerned: In the samples generated by
the IGRT, the correlation between preferences of different agents is zero on average.
In real life, there tends to be at least some positive correlation between preferences
of different persons. It is not feasible to say anything definite about the amount
of correlation that should be present in a sample to qualify it as realistic, but a
problem-generation method where the average correlation between preferences is
one of the problem-generation parameters would seem preferable.

We believe that we did take sufficient measures to ensure that the other criterion
(that the generated problems should not be too easy) is met. This criterion is
important, because the average performance of IG will be high on a sample with
many easy problems, no matter which parameter setting we use. In other words,
a high proportion of trivial problems will blur the effects of agent and mechanism
parameters on IG's performance.

Our primary performance measure is the allocation effectiveness, the portion of the
optimal community utility" that is attained by the mechanism. If IG obtains a low
effectiveness on some problem, this indicates that the problem is difficult /or /G.
In contrast, a low optimal community utility implies that, the problem is difficult «n
yencru/, in the sense that allocations with a high average agent satisfaction do not
exist.

The above criterion that sample problems should not be too easy refers to an inter-
mediate form of problem difficulty: The generated sample problems should not be
too easy for algorithms Wfce IG, that is, for (strongly) tn/ormattona//j/ decen£ra/«zed
mechanisms. An essential characteristic of such algorithms is that it is difficult —
and may often not be possible at all — for the agents and the coordination module
to avoid suboptimal decisions. Hence, it is reasonable to expect that the impact of
such unavoidable mistakes is the main factor in the challenge posed by a problem
instance. The generation parameters that are most influential with respect to this
impact are zero u t i l i ty , low alternative and high alternative.

In problems generated with a low zero u t i l i t y and a high high alternative
setting, an agent generally has an abundance of good alternatives to choose from.
Hence, the average utility loss induced by a suboptimal decision is relatively low.
The same is true for problems generated with a low zero u t i l i t y setting, or with a
high zero u t i l i ty , but low high alternative setting. In this case, there is little

Vf. I>f. 2.35 on page 42
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hope (for most agents) to attain a significant improvement of their utility anyway.

Computation of confidence limits

When computing confidence limits for the measured averages of the performance
attributes, we treat all attributes in the same manner. As a consequence, the confi-
dence limits associated with conditional attributes are not always reliable.

To ensure that a// computed confidence limits are reliable, we would have to perform
additional simulations to obtain sufficient data on the conditional attributes, such as
the weariness concession attribute. These simulations would be relatively costly,
and especially so when their outcomes are least relevant: in sample spaces with very
high zero-weariness, that is, if weariness rarely plays any role. Such simulations are
not worth the effort.

We shall not issue an explicit warning for every graph that features some unreliable
confidence intervals, because such cases of unsubstantiable computation tend to
stick out clearly: the confidence intervals are either extremely large, or adjacent
intervals vary erratically in size. As such, plotting the intervals, even when the
computed confidence limits are largely devoid of meaning, does serve some purpose.
It indicates graphically that the associated data points are not very reliable.

6.6.2 The size of the sample spaces

The procedure we use to compute confidence limits hinges on the assumption that
the sample size is negligible with respect to the size of the sample space. To validate
this assumption, we determine lower bounds on the sizes of the two most frequently
used sample spaces: the default space (which features heterogemic utility matrices),
and the default homogemic sample space.

Unfortunately, we cannot determine the size of these sample spaces by means of
a simple combinatorialization. This is due to the fact that we represent a reas-
signment problem instance as an ordered pair (e, t/) of an initial endowment e and
a utility matrix t/. This representation is natural and clear-cut, but it possesses
many symmetries. In other words, different representations often correspond with
one and the same problem. Hence, if we would estimate the size of a sample space
by counting the number of different representations that are consistent with some
problem generation parameter setting, the resulting estimate is an upper bound of
the actual size. Since we need a lower bound, we must correct for the representation
symmetries.

As an example of representation symmetry, consider the problem instances (e, l/j)
and (e, t/j) where e is the assignment [aa&6ofej, and the matrices t/j and t/2 are
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defined as
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(6.11)

The matrices C/j and [/? differ considerably, but (c, C/j) and (e.l/j) represent the
same reassignment problem. Two kinds of representation symmetry have been used
to transform (e,C/i) into (e.l^)-

tool type renaming A reassignment problem does not change if we rename the
tool types. In the above example, we applied the renaming a6cde -> 6adec,
thus transforming (c, £/i) into the intermediary representation (e ' ,^) (not
shown in (6.11). Here, e' = [6feaa<fec], and I/3 is the result of permuting the
columns of f/i accordingly.

agent renaming A reassignment problem does not change if we rename the agents,
that is apply some permutation ?r( ) to the initial assignment as well as to the
rows of the utility matrix. In the above example, we used the permutation
that transforms e' back to e. Applying this permutation to the rows of [/j
renders £/j.

While it is fairly easy to get rid of one of the symmetries (by employing a suitable
canonical form), it appears to be difficult to get rid of both. Hence, to obtain a lower
bound on the size of a problem space, we count the number of different representa-
tions in the probiem space, and correct for representation symmetry by dividing this
number by the maximal number of alphabetic variants any single problem instance
can have.

As in Sect. 6.5.3, the expression S(a, A#, Z, L, H) denotes the problem space associ-
ated with a specific setting of the problem generation parameters {to a. A/, Z, L,
and H), where a represents the multiplicity type of the community tool bag F, and
A/, Z, L, and / / denote the values of the other problem-generation parameters asax.
u t i l i t y , nr of zeroes/row, high alternative and low alternative. Expres-
sions like S(a, M) and S(a, L, if) denote problem spaces that are the union of the
sample spaces with fixed values for the listed parameters, and variable values for
those that are omitted.

Sample spaces associated with different settings of a, M, Z, £,, and ff in the IGRT
need not be disjoint. In particular, for any fixed multiplicity type a. the sample
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space S'(a) = S(a, 99,0,0,98) contains all of the sample spaces S(a,A/,Z,L,ff)."
This would seem to imply that, to get an impression of the average performance of
IG, we should take our samples from the sample spaces 5(o). However, it is doubt-
ful whether a random sample from such a space is representative for reassignment
problems that occur in practice. As we have remarked earlier, and will corroborate
in Sect. 7.3, the number of reasonably high entries per row of the utility matrix is
a good measure of problem difficulty (for IG as well as for other informationally
decentralized mechanisms). In this respect, the average performance of an algo-
rithm on problem instances of 5(Q) is hardly interesting, because it is very easy to
obtain a solution of high effectiveness on the majority of such problem instances.
In other words, the average problem difficulty in S(o) is generally (for most, and
especially for high values of m) too low. In our experimentation, we have therefore
chosen to take samples from problem spaces where at least 50% of the agents have
few good alternatives for their most-preferred tool type. We either use homogemic
matrices with 2 alternatives per agent (with a normalized utility between 30% and
90%), or heterogemic matrices where half of the agent population has only oue such
alternative (while the other half has m — 2 alternatives).

Since the only thing we need to know about the sample spaces is that they are much
larger than the samples drawn from these spaces, it suffices to compute a lower
bound on the sample space size. Such a lower bound is provided by Prop. 6.2 for
problems with homogemic utility matrices, and by Prop. 6.3 for heterogemic ones.

Proposition 6.2
Le< o = £(F) denote <Ae mufttp/tctty type o/ a too/ 6ao F o/ size n, and earner «tze
m. Let M > 1, 0 < Z < m - 1, amf 0 < I < // < M. TVien « /ower oound
/or tne size o/ tne /GAT samp/e space S(a, A/, Z, L,i/) o//lomotjemtc
pro6/ems is

z
(6.12)n

Proof.
One of the consequences of problem invariance under agent renaming is that, to
compute the size of the space of viable problems (e, I/) for some getting of the
problem generation parameters F, A/. Z, L, and //, it suffices to count the number
of problems (e",{/), where e* is some /urea" initial assignment. Hence, the size of

''This is a white lie. It would be true if the entries of the utility matrix were real numbers. Sine«
they are integers, we should state that 5"(o. A/) contains all problem spaces S(o, A/', Z, L, //) with
•V mod A/' = 0.
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S(a, M, Z, L, H) equals the number of different, viable problems (e*, [/} that can be
formed by combining a utility matrix compatible with M, Z, L, and / / with some
/ize<i endowment c*, which is compatible with a. To fill in a row of the utility matrix
we must pick one column for the agent's first preference out of m - 1 columns."
Prom the remaining m - 1 columns, we choose Z zero entries, and for each of the
other m - Z - 1 columns, we can choose any value fc such that L < A: < //. Hence
the number /C of different matrix rows that ensure viability and comply with the
constraints associated with m, Z, L, and // equals

i-Z-1 (6.13)

The number of different utility matrices that can be formed from such rows equals
K", but some of the A'" problem representations (e*,f/) are alphabetic variants.
If, for example, e* = [aaaW>c<f], and t/' equals f/, except that the first three rows
occur in a different order, then (e*,C/) ~ (e*,[/') where ~ denotes equivalence due
to agent renaming. In general, we can ensure that none of these equivalence classes
are counted more than once, if we divide if" by

However, this division is not sufficient to correct for a// representation symmetries.
In combination with the fixation of the endowment, it corrects for alphabetic variants
due to agent renaming, but two-tiered combinations of tool type and agent renaming,
such as the two matrices in Eq. 6.11 are not dealt with yet. To deal with this
kind of symmetry also, we observe that — grace to the fact that we have fixated
the endowment — any tool type renaming that is involved in such representation
symmetry is confined to tool types that have the same multiplicity in the community
tool bag F. In the context of a = £(F), the number of such two-tiered alphabetic
variants equals at most

n *<
*€£<<»)

Performing the two above corrections leads to (6.12) as a lower bound for the size of
5(o, A/. Z, L, / / ) . Even in extreme cases like S(Q, A/, m-1 , L, H) or S(o, A/, Z, L. L),
the denominator of (6.12) is very small in comparison with the numerator. Since
the replacement of the denominator by 1 renders an upper bound, this implies that
the lower bound is reasonably sharp.

Below, wo use the expression 5(o, Af, Z, L. //) to denote the sample space of het-
erogemic reassignment problems with Z zero entries per row in the uppermost n/2

"The column corresponding with the agent's endowment is forbidden, to ensure viability.
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rows (where the symbol ' / ' denotes integer division), and m - 1 - Z sero entries per
row in the other rows,

Proposition 6.3
Let Q = £(F) denote tAe mu/ttp/tctty type o/ a tooi 6ao F o/ sue n, and carrier *ue
m. Let A/ > 1, 0 < Z < m - 1, and 0 < L < J/ < A/. TAen a /ouier 6ound
/or tAe size o/ tAe /CAT samp/e space S(a, M, Z, L, / / ) o/ Aeterooemic
pn>6/ems u

^ " (6.14)

and

Proof.
Eq. 6.14 differs from (6.12) in Prop. 6.2 in that there are now two factors in the
numerator. The first factor, A"" , denotes the number of different upper halves
of £/ that are consistent with the problem generation constraints (Z zero entries,
and m — 1 — Z alternatives), while the second factor, A'£ , pertains to the lower
half of t/ (where each row has m - 1 - Z zero entries, and Z alternatives). Since
L > 0, the matrix is truly heterogemic in the sense that the number of zero entries
per row is different in the two halves of (/. Consequently, no row in the upper half
equals any row in the lower half. Hence, the fraction of alphabetic variants among
the representations counted in the numerator is lower than in the corresponding
homogemic sample space S ( Q , M, Z, L, / / ) . Because the denominator in (6.14) equals
that in (6.12), it follows that (6.14) is a lower bound on the size of S ( Q , M, Z, L, f/).

Example 6.4 (Some sample space sizes)
7b get an impression 0/ </ie size« 0/ </»e samp/e spaces Wiic/i we used «n tAe ezpert-
nients, we compute tne /otuer bounds on tne size 0/ tne de/au/< space /or nomooemtc
matrices, 5 ( Q , 10,2,3,9), «ntn a = {3,3,2,2,2}, f/»e associated enve/opmo space
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S'(a) = 5(a,99,0,0,98), and t/»e /letero^emic de/au/t «pace 5 ( Q , 10,1,3,9). /lpp/y-
tny Prop. 6.2, we </et, a« a /ou;er bound on t/ie size o/t/ie de/au/t /lomoyemzc pro6/em
«pace;

12

_ (4 6 49)" _ 7 • 10"
" (3!)>-(2!)< * 3456

2 • 10"

( (

, we obtain, /or tAe size o/ tne enue/opm«? space S*(a):

12

3456 3456 3456
* 3

Final/y, Prop, 6\5 r«na'ers a /ower bounti on tAe sue o/ £/»e neterooemic de/auit
space 5(a , 10,1, 3,9), w/iic/» u;as used in (/>e majority o/ t/ie per/ormed experiments.
5u6s(itutino </ie appropriate t;a/ue«, we (;e<

A', =

and nence,

4
1

4
1

4
1
4 '
3 ,

7' = 5488

• 7 = 112

Statistical methods usually assume that the size of a sample is negligible in compari-
son with that of the whole population, and that the sample does not contain (m)any
replicas. These assumptions also underlie our computation of confidence limits. If a
sample contains most of the problem instances in the problem space, the computed
confidence limits will be overly pessimistic. If most of the instances in a sample are
the same, while the sample covers little of the problem space, computed confidence
limits will be overly optimistic. Hence, we need to make sure that neither is the
case. Ideally, we should ensure that all of the instances in the sample are different,
while the si/.e of the sample is negligible in comparison with the size of the problem
space. However, the sample problems generated by the IGRT are drawn indepen-
dently with repetition from the representation space. Hence, we cannot prec/ude
that the same problem representation is generated more than once. Moreover, it is
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possible that different problem representations constitute alphabetic variants of the
same problem. The analysis below shows, however, that this is unlikely to happen
very often.

The outcome of the computations in Ex. 6.4 reveals that we need not worry about
sample sizes approaching or exceeding the size of the sample space, if we use our
(heterogemic or homogemic) default sample spaces. The size of the samples which
we used to obtain performance statistics vary between 100,000 and 200,000, while
the smallest default sample space S ( Q , 10,1,3,9) contains more than 10" different
problem instances. Hence, computed confidence limits will not be overly pessimistic.
To show that they are not overly optimistic either, we need to examine the probabil-
ity that a sample contains multiple occurrences of the same problem representation,
or different representations of the same problem. If we draw a random sample of
200,000 problem instances from a sample space of 10" problem instances, the prob-
ability that the sample contains more than one occurrence of any problem instance
is negligible.'* Because the difference between the size of the rYprrtrntafion space
(from which we draw the sample problems) and the actual problem space is negli-
gible in comparison with the size of the problem space, it is not relevant that we
generate problem representations rather than problems. The probability that a sam-
ple comprises more than one alphabetic variant of the same problem instance is also
negligible.

For the majority of our experiments, the above assertions are less crucial than they
are in most statistical analyses, for the following reasons.

Confidence intervals usually serve to express the likelihood that the computed samp/e
average is close to the actual samp/e spoce average. While this certainly also plays
some role in our experiments, the primary purpose of most graphs in this chapter is
compare the average performances obtained with different parameter settings, or to
compare the performance obtained by IG with those of other mechanisms. In this
context, issues such as the negligibility of the sample size in comparison with the
sample space size, and the degree to which the sample is representative for the sample
space are less vital, because we use the same sample for all of such experiments.

Of course, this is not the case for the experiments on the influence of the problem
generation parameters. For the reliability of these impressions, the above method-
ological issues are vital. Furthermore, these experiments employ other then the
default sample spaces, for which we did not yet verify that the sample size is neg-
ligible with respect to the size of the sample space. Hence, we will remain aloof in
this respect, when we discuss the influence of generation parameters in Sect. 7.3.

We do not prove this. Although exact calculation of the probability is not feasible, one can
obtain a lower bound on the complementary probability that is very close to 1, by making use of
fact that the functions / i ( i ) = (1 — (1/x)*)* are monotonically increasing on [1, oo), for any fc € N.
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6.6.3 Sample representativity

We claim that the samples generated by the IGRT are reasonably representative
for the sample spaces from which they are drawn. The only flaw in this respect is
that we draw problem instances from a uniform distribution on the representation
spa«:«' associated with a problem space. Consequently, problems with few alphabetic
variants have a smaller chance to occur in a sample. However, since the number
of alphabetic variants is largely determined by the problem-generation parameters
(a and Z, in particular), this is not much of a problem: within a specific sample
space, the number of alphabetic variants will be roughly the same for most problem
instances.

To allow our readers to make their own judgements on the randomness of our
problem-generation procedure, we explain how this is implemented in the IGRT.

The generation of a problem instance by the IGRT comprises two steps:

1. the generation of a random utility matrix 17, compliant with the setting of the
generation parameters;

2. the generation of a random initial assignment e, compliant with the tool bag,
such that the problem instance (e, [/) is viable.

In both steps, random permutation is a key element. To generate a homogemic
utility matrix we first generate a sequence s of m agent utilities that is compatible
with the settings of u t i l i t y range, zero u t i l i ty , low alternative, and high
alternative. The first Z elements of this sequence are zero, the last element
equals u t i l i t y range, and the others are chosen independently from a uniform
distribution on the range of alternatives.

We then use the following procedure to permute s randomly.

procedure RandomPermute(s,m) ::•
for i :» 1 to m-1 do
begin
"Pick a random integer k between i and m (inclusive)"
"Exchange the elements at positions i and k in s"
end

The random numbers it are generated by means of the random number generator
rani described in (Knuth, 1997), which renders floating point numbers that are
uniformly distributed over the interval [0.1). By defining it as the integral part of i +
(m —i+ l)-r<ml(), we obtain random integer numbers which are uniformly distributed
over the set {i,t + I,. . . ,»»}. This implies that the distribution of permutations
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acquired by subsequent invocations of the procedure RandomPerroute is also uniform
(on the set of permutations involving rr» elements)."

The generation of random alternative utilities and the random permutation of the
resulting matrix row is repeated (with new random numbers) for each of the n rows.

Heterogemic matrices are generated in the same manner, except that the upper and
lower halves are generated separately with the appropriate values for the number of
jero entries per row.

A random viable assignment is then generated in two steps. First we generate a
random assignment by applying the procedure RandomPennute to (a copy of) the
tool bag. Then we check whether the resulting problem is viable by asserting that
no agent is endowed with its first preference. If we encounter an agent i that is
endowed with its first preference y, we look for another agent, with an endowment
and first preference different from y. If there is such an agent j , w<> exchange the
endowments of i and j . If no suitable exchange candidate is found, we generate a
new random assignment.

The number of exchanges that are necessary to turn the random assignment into
a viable one can be high if there is a large discrepancy between supply (i.e., the
tool bag) and demand for tool types (i.e., the bag of first preferences). Because the
search for exchange candidates always starts with agent 1, the tool types which are
first preferences for many agents tend to end up predominantly in the first part of
the assignment (as a string of characters). Hence, the initial assignments that are
ultimately rendered are not uniformly distributed over the set of viable assignments.
However, since there is no bias in the order of the matrix rows, this does not imply
that the generated proft/ems are biased. Only the generated representations are.

A formal proof could be given by establishing, with induction to m = 2,3, and / = m,m —
11 w — 2, . . . . 1, that the conditional distribution of the initial positions of the elements which turn up
at final position I, given the initial positions of the elements at final positions before /, are uniform.





Chapter 7

Experimental Results

7.1 Chapter Overview

In this chapter, we present and analyze the experimental findings obtained with the
IGRT. For a proper understanding of this analysis, perusal of the (relevant portions
of) Chapter 6 is required, with the exception of Sect. 6.6.

7.2 IG Performance with the Default Parameter Setting

For the reader's convenience, we reproduce the default parameter setting, specified
earlier in Tables 6.3 and 6.4, in Table 7.1 below.

Agent parameters:
caution
volatility
maxloss
weariness

10
0%

100%
TRUE

Problem generation parameters:

nr of agents
nr of tool types
tool bag

max. utility
zero utility
high alternative
low alternative

12
5

aaa666ccddee

10
-25%

9
3

Mechanism parameters:

deadline
clearance
resolution
asynchrony

500
FALSE
MIXED

50%

Table 7.1: The default values of IGRT parameters.

In the following, we sometimes use the symbols n and m for the number of agents
and the number of tool types respectively. In the table, we have used the phrase
"max. utility" instead of "utility range", because the u t i l i t y r a n g e parameter
actually defines the upper bound of the range only. The lower bound is determined
by zero utility or by low alternative.'

The lower bound of the utilities is zero if zero ut i l i ty is nonzero, and equal to low

269
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Recall that, in the context of 12 agents and 5 tool types, the default value for
zero u t i l i t y of -25% signifies that the utility matrix is heterogemic with 1 zero
entry (25% of 5 - 1) in the uppermost 6 rows, and 3 in the lowermost ones. If not
stated otherwise, the simulations are performed with grouped sampling, generating
200 groups of 100 problem instances. The statistics output by the IGRT, if all
parameters are set to their default value, are pictured in Table 7.2. To facilitate
discussion of some of this output, the lines are numbered.

STATISTICS OVER 200 x 100 AUCTIONS (with various matrices):

1 opt. unconstrained community ut i l i ty: 72.50-100.00 (avg=93.12; var=0.1206)
2 opt. ind.rat. effectiveness: 81.82-100.00 (avg=99.64; var=0.0126)
3 in i t ia l allocation effectiveness: 0.00-69.91 (avg=32.21; var=0.7897)

4 final allocation effectiveness: 70.00-100.00 (avg=92.45; var=0.2761)
5 perc. of zero-loss auctions: 65.00-86.00 (avg=76.81; var=17.8139)
6 avg. norm, ut i l i ty loss per loser: 10.00-90.00 (avg=40.91; var=19.1457)
7 highest norm, ut i l i ty loss: 10.00-90.00 (avg-41.43; var=18.6954)
8 percentage of losers: 8.33-25.00 (avg= 8.73; var»0.1450)
9 perc. of zero-weariness auctions: 81.00-97.00 (avg=90.08; var=8.5794)

10 max. norm, weariness concession: 0.00-12.41 (avg= 1.06; var=0.2691)

11 nr of bids: 30.00-742.00 (avg=55.06; var=13.4168)
12 nr of rounds: 2.00-67.00 (avg= 5.17; var-0.1258)
13 nr of phases: 1.00- 3.00 (avg= 1.70; var=0.0019)

Termination of f irst phase:
14 perc. of bid convergence: 100.00-100.00 (avg=100.00; var=0.0000)
15 perc. of market clearance: 0.00- 0.00 (avg= 0.00; var=0.0000)
16 perc. of deadline exceeded: 0.00- 0.00 (avg= 0.00; var=0.0000)

Table 7.2: The statistics rendered by the IGRT in its default setting.

Each lino of the table specifies the minimum, maximum, average, and variance of the
data obtained on a specific problem attribute (the first three lines) or performance
attribute (the other lines). The semantics of the average values are fixed, but those
of the minima and maxima depend on the attribute type. For problem attributes
and cardinal' performance attributes (lines 1-4, 11-13), the minima and maxima
are the extremes of all 20,000 measurements. For the boolean attributes (lines 5, 9,
14-16), the minima and maxima pertain to the 200 group averages instead of the
raw measurements.* Finally, the minima and maxima of the conditional attributes

alternativ* otherwise
*For the precise meaning of "cardinal attribute", see Table 6.2 on page 250.
'The raw value of a boolean attribute is either 0 or 100%, so the raw extremes of boolean
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are obviously restricted to those auctions in which they are denned. As such, the
minimum of 8.33 for the percentage of losers tells us that, the lowest number of
losers in auctions with at least some utility loss was 1 (8.33% of 12).

Some lines in Table 7.2 deserve further explanation. Lines 1-3 have no immediate
bearing on IG performance. They describe sample space properties rather than
algorithmic performance attributes. The values specified on these lines can be in-
terpreted as indicators of the average problem difficulty in the chosen sample space,
where "problem difficulty" has a slightly different meaning on tin* three lines The
optimal community utility in line 1 reflects the difficulty of obtaining a high level of
average agent satisfaction. Its value is an upper bound that cannot be improved on
by any algorithm.

The optimal effectiveness under individual rationality in line 2 is the percentage of
optimal community utility that can be obtained (at most) if we demand solutions to
be individually rational. As such, it defines a lower bound on the cost of demanding
individual rationality. As line 2 shows, this minimal cost is very low if individual
rationality is the on/y constraint. We shall see later that the cost tends to be much
higher if we also impose strong informational decentralization, as we do in IG and
in the Walrasian (exchange) auction.

Finally, the effectiveness of the initial allocation in line 3 provides a reference value
for /ou; algorithmic performance. These values constitute lower bounds on the per-
formance statistics of the least sophisticated reassignment algorithm that one can
think of: random selection of an assignment.''

Strong informational decentralization is bound to incur some deterioration of the
community utility that can be obtained by an algorithm. As line 4 shows, the
average deterioration is low with IG: it obtained more than 92% effectiveness on
average in the default sample space. The worst-case effectiveness of 70% (over
20,000 auctions), however, is much lower than the average.

A disadvantage of IG in comparison with Walrasian exchange is the fact that it does
not guarantee that solutions are individually rational. Agents that take part in an
IG auction run the risk of losing some utility instead of gaining some. However,
as apparent from line 5, the solutions rendered by IG are individually rational in
roughly three out of four cases, even if we do not constrain maxloss at all. From
the minimum, maximum and average values of losers in line 8, we conclude that
there is seldom more than one loser, and never more than three. However, Wien the
utility of an agent decreases, it tends to decrease considerably: In those (23%) of
the auctions that feature utility loss, the normalized utility of the foremost victim

Attributes have no information value.
These lower bounds are rather /ooje, because the initial assignments in the testbed are such

that no agent is completely satisfied (due to the constraint that all generated problem instances
must be viable).
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decreases by as much as 43% on average. This high value is mainly due to the
default setting of zero u t i l i t y to -25%. This implies that, for half of the agent
population, 3 of the 5 tool types are utterly useless. In this respect, auctions are
relatively risky with the default parameter setting.

Prom line 12, we conclude that the auction duration (in rounds) is pleasurably low
in comparison with the deadline of 500 rounds per phase. The average duration
in rounds is only approximately 1% of the deadline, and even the longest duration
among the 20,000 auctions is quite modest (67 rounds, that is, less than 14% of
the maximally allowed number of a rounds in a single phase). Apparently, negoti-
ation weariness can constrain the duration of the auction effectively, even at a low
weariness treshold level.

Indeed, we observe, from line 10, that the highest weariness concession ever done by
an agent in one of the 20,000 auctions was less than 13%, and the average weariness
concession in those 1984 auctions* where weariness played any role at all is as low
as 1%. In Chapter 5, we articulated our worries that weariness would constitute a
considerable deviation from rational agent behavior, when applied at a high treshold
level. From the above observations, we can conclude that there is little reason to
worry, if we use the default parameter setting. The 'irrationality' appears to be
marginal in this case.

As for lines 11 and 12, the observant reader may have noticed a discrepancy be-
tween the minimum number of rounds of 2, and the minimum number of bids of
30. How can 2 rounds comprise 30 bids if there are only 12 agents? The cause of
this anomaly lies in a minor inefficiency in the implementation. With async at its
default value of 50%, the auctioneer processes 6 (50% of 12) proposals per round,
except in the first and last rounds of a phase, which should comprise the proposals of
all agents (cf. the explanation of asynchrony in Sect. 6.2.3). In a maximally efficient
implementation, the auctioneer would, upon discovering that each of the 6 agents
whose proposals were processed stuck to its previous proposal, wait for the other 6
agents to respond to the last market profile before checking for bid convergence. In
the current implementation, the auctioneer communicates the (same) market profile
again, and then waits for all 12 agents to respond. This leads to the observed total
of 12 + 6 + 12 = 30 bids.

We have not bothered to eliminate this inefficiency, because the total number of
submitted bids hardly plays any role in our evaluation: the auction duration is
nearly always expressed in rounds.

In the default setting, lines 14-16 do not have any informative value. Since
clearance = false, the IGRT does not check for market clearance in this case,
and the setting weariness = true ensures that the deadline condition is never

*The number 1984 stems from line 9, which tells us that wariness played a role in 9.92% of the
20,000 auctions.
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invoked either.

7.3 Influences of Problem-Generation Parameters

The setting of the problem-generation parameters determines the sample space from
which the IGRT draws its problem instances. Investigation of the influences of these
parameters serves three purposes.

1. rorroboration of our hypothesis (based on intuition and interactive simulation)
that the default (heterogemic and homogemic) sample spaces are adequate
for the investigation of the influences of the other (agent and mechanism)
parameters, in the sense that problem instances drawn from these spaces are
not too easy;

2. determination where the really hard problems lie, in terms of the values of the
problem-generation parameters;

3. evaluation of the adequacy of the chosen set of problem-generation parameters
in this respect: To what extent are they capable of singling out the hard
problems?

As noted earlier, we do not vary all parameters simultaneously. For the problem-
generation parameters, the experimentation scheme is as follows.

1. variation of zero u t i l i ty , low alternative and high alternative

2. variation of the multiplicity type of the tool bag

3. variation of the number of agents and the number of tool types

In all of these cases, we picture the influence of the parameters on IG performance
against the background of their influence on 'general problem difficulty'. This is
done in terms of the IGRT sample-space attributes "optimal community utility"
and "initial effectiveness". The first of these attributes indicates to what extent it
is feasible to satisfy all agents, while the second is a measure of the average effec-
tiveness attainable by means of random reallocation. Since the initial effectiveness
is computed by averaging over vta6/e allocations (i.e., cases in which no agent is
endowed with its first preference), this measure is, in fact, a very loose lower bound
of what random reallocation will attain on average. Hence, it has little value as
a reference value to evaluate mechanism performance in an absolute sense. Like
the optimal community utility, however, it does provide information on the re/attve
difficulty of sample spaces.
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7.3.1 Zero utility, low alternative, and high alternative

The zero u t i l i t y parameter specifies the percentage of tool alternatives (i.e., tool
types other than the agent's first preference), that are utterly useless for an agent.
Obviously, differences in zero u t i l i t y are meaningful only if the values are suf-
ficiently wide apart. Since the number of tool types in the testbed never exceeds
20, the zero u t i l i t y values of 0% and 1% are always equivalent. In the default
context of 5 tool types, there are 7 different (equivalence classes of) zero u t i l i ty
settings. The values 0%, 25%, 50%, 75% and 100% give rise to homogemic utility
matrices with 0, 1, 2, 3, and 4 zero elements per row respectively. The negative
settings -100% and -25% render heterogemic matrices with 0 or 4 and 1 or 3 zero
elements respectively.
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Figure 7.1: Influence of zero u t i l i t y on problem difficulty.

Before we go into the effects of zero u t i l i t y variation on IG performance, we
discuss its effects on the sample-space attributes "optimal community utility" and
"initial effectiveness".

The graphs in Fig. 7.1 portray these effects for three different settings of the
range of alternative utilities. The low-alts curves correspond with the setting lo»
alternative = 1 and high alternative = 2. The normal-alts curves correspond
with the default range (alternative utilities between 3 and 9 inclusive), and the
high-alts curves with alternative utilities between 8 and 9 inclusive.

The data points in the graphs are connected by lines to help to reader to distinguish
between the three settings for the range of alternatives. Please note that these
connecting lines have no meaning other than this, since there are no intermediate
values of zero u t i l i t y between any two data points. Also, the ordering of the data
points along the horizontal axis is partly arbitrary. It reflects a sample space ordering
in the homogemic part of the graphs on/y. The problem instances associated with
the data points at zero u t i l i t y = -25 are, in fact, closer (i.e., more similar) to
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the instances associated with zero u t i l i t y = 25 than to those with zero u t i l i t y
= 0. Hence, it would be nonsensical to speak (or think) of "a steep increase of initial
effectiveness in the zero u t i l i t y interval between -25 and 0". To stress this, we
have drawn a vertical line that separates the homogemir and heterogemic parts of
the graphs. We discuss these two parts separately.

Confidence intervals were originally plotted around each data point, but turned out
to be so small that they were hardly visible. We left them out to be able to use
point labels.*

The homogemic parts of the graphs hold no real surprises. The average agent satis-
faction decreases with increasing zero u t i l i t y in both cases. This is understand-
able. An algorithm that searches for the best assignment (in terms of average agent
utility) tends to avoid the zero entries of the utility matrix. This, however, becomes
progressively more difficult if the percentage of zeroes increases. As for the linearity
of the decrease in the second graph, the average community utility obtained with a
random, viable initial allocation will decrease linearly with increasing zero u t i l i ty .
And because the variation (due to zero u t i l i ty ) in the average community utility
of initial allocations is much greater than the corresponding variation in optimal
community utility, the average effectiveness of the initial assignment, which approx-
imately equals the fraction of these two, is approximately linear in zero u t i l i t y
also.

That the three community utility curves have a common endpoint is not surprising
either. At zero u t i l i t y = 1007,, the alternative-range setting does not have any
influence on the optimal community utility, since there are no tool alternatives. All
entries of the utility matrix other than those of maximal utility are zero.

As for the heterogemic parts of the graphs, we observe that the heterogemic settings
of zero u t i l i t y = -k'/., which are a mixture of the settings of Jt% and 100 -
fc%, are also inbetween settings in terms of optimal community utility and initial
effectiveness. It does seem, however, that the matrix half with many zero entries is
dominant in this respect.

Fig. 7.2 depicts the influence of zero u t i l i t y on IG performance, for the three
different ranges of alternative utilities. As in Fig. 7.1, we removed the (almost
invisible) confidence intervals of the effectiveness graph to get a proper point-label
legenda. This legenda also applies to the other graphs, that is, the data point
marking is the same in all graphs: The points of the high-alts curves are marked
with squares, and those of the normal-alts curves with plussigns The low-alt curves
are easier to recognize from the solid connecting lines then from their (diamond-
shaped) point markers.

The gnuplot package cannot handle point labels in combination with confidence intervals in
graphs with multiple curves.
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Figure 7.2: Influence of zero u t i l i t y on IG performance.

Note that the confidence intervals (and hence the data points) of the curves in the
highest-loss graph are unreliable for those data points which correspond with a high
percentage of zero-loss auctions (cf. Sect. 6.5.4). This is the case for the data points
of the low-alts curve in particular.
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We make the following general observations concerning the graphs in Fig. 7.2.

1. The impact of low alternative and high alternative on the fjffrcts of
i... varying zero u t i l i t y appears to be largely a matter of intensification. In

most graphs, the three curves have roughly the same form, but the effects of
varying zero u t i l i t y are most pronounced in the high-alts curve, and least
so in the low-alts curve.

2. IG performance at the default settings (represented by the data points of the
normal-alts curve at zero u t i l i t y values of -25 and 50%) appears to be
relatively low in comparison with the other settings. This indicates that the
default heterogemic and homogemic sample spaces are sufficiently challenging
to be used in subsequent experiments.

3. The ordinates of the heterogemic data points in Fig. 7.2 li»' between those
of the associated homogemic value pairs, while the sparse half of the utility
matrix seems to dominate the effects. In other words, the influence of zero
u t i l i t y in the heterogemic case seems to be approximately the same as in the
homogemic case, if we match the two cases according to "the highest number of
zero entries in any row". This was confirmed by another experiment (pictured
in Fig. 7.3), involving problems with 20 agents and 9 tool types.

20 agents; 9 tool types 2Oijentt, 'Moo)

2 5 4 5 6 7
(highest) m of zeroes/row

3 4 5 6
(highe«) nr of zejoei/row

Figure 7.3: IG performance on homogemic problems appears to be compa-
rable to that on heterogemic problems with the same (highest)
number of zero entries per row.

With respect to observations pertaining to individual graphs, we confine ourselves
to the primary performance attributes (i.e., allocation effectiveness and auction du-
ration).

The effectiveness graph reveals that, with the exception of 100% zero u t i l i t y ,
problems with many useless tool types per agent are generally more difficult for IG
than those with few or no useless tool types. This is consistent with our hypothesis
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(cf. Sect. 6.6.1) that the performance of IG depends mainly on the impact of the
errors which the agents are bound to make.

As for the exception at 100% zero u t i l i t y , it is not surprising that IG obtains
100% effectiveness on such problem instances: there are no useful alternatives for
the agents' preferred tool type, so every agent will stick to its original proposal in
the second round. Execution of the pseudo-composition protocol will then render
either maximal utility to an agent, or zero utility, and the community utility that is
obtained depends only on the percentage of agents that obtain maximal utility. Since
the protocol always assigns as many first preferences as possible, this percentage is
maximal. In other words, IG attains 100% effectiveness.

The number of rounds initially incrawej with zero u t i l i t y , attains a maximum
at zero u t i l i t y = 50%, and decreases again to a minimum of 3 rounds at 100%
zero u t i l i t y . An explanation for the minimum at 100% was provided in the
previous paragraph. The observation that a moderate value of 50% tends to lead to
a higher auction duration than the more extreme values of 25% and 75% is much
more difficult to explain. All our attempts to do so led to explanations involving
multiple competing influences which defy quantitative comparison, and are therefore
highly conjectural.

Comparison of the zero-weariness curves and the rounds curves shows that, as one
would expect, weariness is more often applied if the auction takes more time. The
weariness concessions appear to be low even for high values of zero u t i l i t y . Note
that the curves show the alienage over the sample sets of the highest utility concession
that was made by any agent in the auction. Whereas we usually confine ourselves
to the sample set averages, we make an exception here, and also show some worst
cases. *

zero utility
-100%
-25%
0%
25%
50%
75%

worst-case concession
10.00%
12.86%
10.00%
12.41%
15.15%
15.87%

Table 7.3: Worst-case weariness concessions.

The worst-case concessions observed with the default setting of the range for alterna-
tive utilities ('normal alts') are listed in Table 7.3. We conclude that the worst-case

'One of the reasons to make an exception is the relative unreliability of the estimates produced
for conditional attributes, of which the weariness concession is one.
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concessions for varying zero ut i l i ty are never much larger than that of the de-
fault (-25%) setting. As such, the conclusion that we need not be overly worried by
the onset of irrational behavior due to weariness (which we drew in Sect. 7.2 with
respect to the default sample space) remains valid if we vary zero uti l i ty.

7.3.2 The multiplicity type of the tool bag

symbol
mO
ml
m2
m3
m4
m5
m6
m7
m8
m9
mlO
mil
ml2

tool bag
aaabbbccddee
aaabbbcccdde
aaaabbccddee
aaaabbbccdde
aaaabbbcccde
aaaabbbbccde
aaaaabbccdde
aaaaabbbccde
aaaaabbbbcde
aaaaaabbccde
aaaaaabbbcde
aaaaaaabbcde
aaaaaaaabcde

multiplicity type
{3,3,2.2,2}
{3,3,3,2,1}
{4,2,2,2,2}
{4,3,2.2,1}
{4,3,3,1,1}
{4,4,2,1,1}
{5,2,2,2,1}
{5,3,2,1,1}
{5,4,1,1,1}
{6,2,2,1,1}
{6,3,1,1,1}
{7,2,1,1,1}
{8,1,1,1,1}

eccentricity
1
2
2
3
3
3
4
4
4
5
5
6
7

inhomogeneity
0.03
0.08
0.08
0.13
0 18
0.23
0.23
0.29
0.39
0.44
0.49
0.69
1.00

Table 7.4: The multiplicity types for n = 12 and m = 5.

In Table 7.4, we have listed the 13 possible multiplicity types of the tool bag if
the parameters agents and tool types are set to their default value of 12 and 5
respectively. The effects of using a multiplicity type different from the default one
(mO) on IG performance is shown in Fig. 7.4.

Fig. 7.4 reveals that tool bag eccentricity has little impact on the duration of the
auction, but the allocation effectiveness decreases considerably as the eccentricity
of the tool bag increases. On the other hand, IG appears to perform better on
problems with (very) eccentric tool bags in terms of the frequency of utility loss. A
plausible explanation for these two performance effects is the following.

In the problem sample, the first preferences of an agent are evenly distributed over
the tool types. Because there are 8 type-a tools and only one of each other tool type,
type-a tools will nearly always be strongly oversupplied, while the other tool types
tend to be undersupplied. Hence, agents endowed with a type-a tool will generally
be less eligible than the other four agents. At first sight, one would expect these a-
Possessors to withdraw from the auction upon becoming aware of their low eligibility,
*> as to avoid utility loss. However, interactive simulation revealed that even a-
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Figure 7.4: Influence of tool bag eccentricity on IG performance.

possessors with initial utilities as high as 80 or 90% stick to their original proposal,
despite the extremely low success probability. The reason for this seemingly reckless
behavior is that, in very eccentric markets, the most numerous tool type tends to
be the on/j/ owrsupplied one. As a consequence, agents endowed with this tool type
can afford to be reckless. While the risk of failure is generally very high, the impact
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of failure is nil: if their proposal is rejected, they keep their initial endowment, since
it is the only oversupplied tool type.

In contrast, agents endowed with a tool type i , other than a, and a higher utility for
x than for o will a/ways lose utility if their proposal fails. And any type-a possessor
that happens to share the first preference of these agents induces a decrease in
their subjective estimate of the probability of success. As we have observed in
the interactive simulator, the fierce competition by a-possessors often incents other
agents to adjust their proposals or withdraw from the auction, despite the fact that
they are more eligible, and would, in fact, have succeeded in obtaining their first
preference had they been more courageous.

The combination of fearless a-possessors and intimidated others explains why there
is little utility loss: The a-possessors cannot lose any utility, while the others seldom
dare to take the risk. And the fact that the eligibility heuristic of IC! has no effect
on the bidding behavior of a-possessors, and an adverse effect on others explains
why IG performs poorly in terms of allocation effectiveness.
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Figure 7.5: Influence of tool bag eccentricity on problem difficulty.

In Fig. 7.5, we see that reassignment problems with an eccentric tool bag are also
difficult in a general sense, as far as the optimal community utility is concerned.
The low value of the optimal community utility at ml2 can be attributed to the fact
that at least four of the eight a-possessors are doomed to end up with their current
endowment.

The average-initial-effectiveness curve, however, seems to indicate that the effec-
tiveness attainable with random reallocation increases with increasing eccentricity.
Note, however, that the average initial effectiveness is not a good indicator for prob-
lem difficulty in this case, since it is computed over wa6/e initial assignments only.
Thus, it indicates how much effectiveness one can expect to obtain /rom t/iose too/
'J/pes wnic/» ane not ,/irs< pre/erences. However, in markets with low eccentricity,
most of the attained community utility stems from first preferences. Hence, if we
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were to compute the average effectiveness obtained with random reassignment (i.e.,
wit/tout demanding viability) the resulting curve would most likely be decreasing
with increasing eccentricity, just like the optimal-community-utility curve.

7.3.3 The number of tool types

The number of tool types (m) determines, together with the number of agents (n),
whether a problem instance is typed or untyped. Up to this point we have used
this distinction as an binary one: Problems with m = n were labeled as untyped,
while all other cases (i.e., m < n) were referred to as typed problems. It seems
likely, however, that mechanism performance on problems that are 'nearly untyped'
(e.g. with m = n - 1) differs little from performance on untyped (m = n) problems.
Hence, we can 8ay that the number of tool types determines (in relation to the
number of agents) to what ei<en< the problem instances in the sample space are
typed.

If one investigates the impact of the 'typedness' of problems on IG performance
by varying m while clamping all other parameters to their default setting, one is
confronted with oscillatory fluctuations of the form shown in Fig. 7.6.
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Figure 7.6: Oscillatory variations in performance and problem difficulty as
functions of the number of tool types.

The oscillations are relatively minor in the effectiveness graph, but very pronounced
in the initial-effectiveness graph. Apparently, the value m = 4 does not lead to the
generation of problems of an inbetween nature of those generated with m = 3 and
m = 5. The cause of these oscillations lies with the zero u t i l i t y parameter, or
rather, the interaction between this parameter and the number of tool types.

The zero u t i l i t y parameter specifies the percentage of zero entries in the rows of
the utility matrix. With the (homogemic default) zero u t i l i t y value of 50%, the
actual percentage of zero entries varies nonmonotonically with m due to rounding-
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For odd m, 50% of m - 1 is integer, while for even m, it is not. Hence, rounding
takes place iff m is even. As a consequence, the actual percentage of zero elements
per row of the utility matrix is more than 50% (of m - 1) if m is even (e.g. 67, 60,
and 57% for m = 3,5,7).

From our investigation of the effects of varying zero u t i l i t y with a fixed number of
tools, we know that both the effectiveness and the initial effectiveness are decreasing
near zero u t i l i t y = 50%, but the rate of decrease is much higher* for the initial
effectiveness attribute. This explains why the oscillation is more pronounced in the
second (initial-effectiveness) graph of Fig. 7.6.

The oscillation disappears if we clamp the number N of useful alternatives instead
of the percentage of useless ones. This has been done in the simulations that underly
Fig. 7.7. The graphs in this figure reveal the influence of the number of tool types
on IG performance and problem difficulty, if TV = 2.

It is subject to discussion which of the two alternatives (the number or the percentage
of (non)zero entries per matrix row) constitutes the best problem type indicator.
This becomes most apparent if we look at a problem from the default homogemic
sample space, and ask ourselves which sample space we are referring to if we speak
of problems that are three times as large, but of the same type. Presuming that
"three times as large" means three times as many (i.e., 36) agents and three times
as many (i.e., 15) different tool types, the question is whether "of the same type"
means that there are 2 or 7 tool alternatives for each agent.

While we will return to this question when discussing scaling effects, it is not nec-
essary to answer it at present: From Fig. 7.6 and Fig. 7.7, we can conclude that
— whichever option we choose — IG tends to perform better on problems that are
(strongly) typed than on problems that are (nearly) untyped. The same is true with
respect to the general difficulty in terms of the optimal community utility.

The latter phenomenon is the easiest one to understand. Our method of problem
generation is such that the correlation between agent preferences for tool types is
zero on average. Consequently, when the agents specify their first preferences in the
first bidding round, the tool scarcities will be low in comparison with the total trade
volume if the market is highly typed. Hence, a relatively large portion of the agents'
first preferences can be allocated. This explains why the optimal community utility
tends to be high in such markets.

It is less obvious why the average effectiveness is also higher in highly typed markets.
A plausible explanation is the fact that relatively low scarcities imply relatively high
success probabilities of the agent's proposals. Hence, agents will be less prone to
withdraw from the bidding and stick to their current endowment (which usually

To compare the rates of decrease, one should take the different vertical scaling» of the three
graphs into consideration.
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Figure 7.7: Influence of nr of tool types with a fixed number of tool al-
ternatives.

hurts some other agent, and sometimes also the withdrawing agent itself).

7.3.4 Scaling of performance

In the context of untyped reassignment problems, the scale of problems is determined
by a single parameter: the number of agents n. If we define the scale of a problem
as a quantity proportional to the number of bits needed to represent it, the scale of
a tj/jwd reassignment problem is roughly proportional to the product of the number
of agents (n) and the number of tool types (m). However, it is not at all evident
that any change in n m constitutes a change of scale.

On one hand, there are good reasons to speak of an increase of scale, if the number of
agents doubles, while the number of tool types does not change. To provide a (more
or less) concrete example, we recall the software-engineering company that was used
to describe our prototypical tool-reallocation problem (Sect. 2.1.1; page 19). In
this context, an agent represents a project team of programmers, and a tool is a
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computer. Hence, if the number of agents doubles, the number of tools is likely to
double — or at least increase — also. However, it is quite possible that the number
of tool types does not change at all. Yet, one would definitely speak of an increase
of scale.

On the other hand, we have qualified our experiments involving variation of m
with fixed n as an investigation of the impact of the typednej« of problems on IG
performance. Typedness is not synonymous to scale. Indeed, it would be improper
to qualify the difference between a problem with 12 agents and 12 tool types and a
problem with 24 agents and 12 tool types as a matter of scale: The two problems
differ in nature; the first one is untyped, while the second is typed.

The question how one should define 'variation of scale' in the context of typed
reassignment is not an academical one, because the effect of an increase of scale on
the quality of solutions (in terms of allocation effectiveness) depend« on the particular
definition that we choose to employ.

If we regard an increase of n with constant m as a scale increase, the average
solution quality increases with scale, while it appears to be approximately constant
if we define an increase of scale as an increase of n • m which does not involve any
change in the typedness of the problems (i.e., the ratio ^ ) . Moreover, if we employ
a variant of the latter scale-increase definition in which we fixate the num6er of
useful tool alternatives per agent instead of the percentage (as defined by the zero
ut i l i ty parameter), the average solution quality decreases with increasing scale.

Because it depends on the specific real-life context of the reassignment problem which
of these three definitions of scale is the most appropriate one, we have performed
separate experiments for the three interpretations. Below, we discuss the outcomes
in the following order.

1. the effects of increasing the population size n with constant m;

2. the effects of increasing n and m, with constant typedness ^ and constant
percentage of tool alternatives (i.e., constant zero ut i l i ty; )

3. the effects of increasing the scale n m with constant typedness, and a constant
number of tool alternatives per agent.

7.3.5 Effects of increasing the population size

Fig- 7.8 portrays the effects of increasing n with constant m, for m = 4, 5, and 6.
Both the average effectiveness and the average auction duration appears to increase
with n. In other words, with increasing population size, IG performance tends to be
lower in terms of computation time, but /itjAer in terms of allocation effectiveness.
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Figure 7.8: Influence of population size on IG performance.

This is conform our expectation. It is to be expected that it takes more time to
reach an equilibrium state if there are more agents. As of the increase of allocation
effectiveness with population size, this is not really an enigma either, upon realizing
that increasing n with a fixed m increases the 'typedness' of the sample problems,
that is, the proportion ^. In Sect. 7.3.3, we provided a plausible explanation for the
observation that the average effectiveness obtained by IG on highly typed problems
is relatively high.

The curves in Fig. 7.8 seem to consist of an oscillation superimposed on a monotonic
trend. This is most clearly visible in the rounds plot. The graphs in this plot exhibit
humps. Moreover, the width' of these bumps seems to correlate with HI: it equals
4 for the lowermost (m = 4) curve, 5 for the middle (m = 5) curve, and 6 for the
topmost (m = 6) curve.

These bumpy curves can be described as the superposition of an oscillation and a
monotonic trend. In the sequel, we will refer to such curves as

'The width of A bump is defined as the number of datapoints encountered as we move from one
local minimum to the next.
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The observation that the curves are semi-periodic with period rn suggests that the
quantity n mod m should be viewed as a problem characteristic which exerts its own
influence on IG performance, independent of the problem scale (and the typedness

boootetBK. Z O T U . 5 0 *

I I 20

Figure 7.9: Influence of population size on problem difficulty.

That the semi-periodicity is indeed due to the variation of a problem attribute,
rather than to properties of IG in particular is confirmed by Fig. 7.9, which pictures
the influence of the population size on two aspects of general problem difficulty: the
sample-space properties "optimal community utility" and "initial allocation effec-
tiveness". Again, the curves appear to be semi-periodic, with a period of m (though
the oscillation is less pronounced in the second graph).

7.3.6 Scaling effects with constant typedness

The above outcomes indicate that increasing the population with a fixed number of
tool types does not only influence the scale, but also the nature of the generated
problem instances. To get rid of the spurious oscillations, we have performed exper-
iments on the effects of increasing m, with fixed n mod m and ndt'vm. Thus, the
typedness ^ is approximately constant, and the quantity n mod m does not change
at all.

In the experiments underlying Fig. 7.10, n mod m = ndivm = 2. For the het-
erogemic curves, we used the default setting zero u t i l i t y = —25%. For the ho-
mogemic case, we have set zero u t i l i t y to -50% instead of 50%, to reduce the
downward bias at even values of m.'° This change of the zero u t i l i t y setting has
no effect for odd m, while it decreases the average number of zero entries per row
for even m from m/2 to m/2 — 1/2. With m = 8 (for example), the setting zero

Z.
This downward bias was observed in Fig. 7.6, and diagnosed as a consequence of rounding of
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Figure 7.10: Scaling of IG performance with fixed zero u t i l i t y .

u t i l i t y = -50% renders matrices with 3 zero entries per row in the upper half and
4 per row in the lower half. Formally, such matrices are heterogemic. but they are
nearly hoinogemic, so to speak.

There appears to be little difference between the average effectiveness obtained on
the hoinogemic and the heterogemic problems. Also, the effectiveness obtained by
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IG appears to be almost insensitive to problem scale. The average auction duration,
however, rises relatively quickly with the scale of the problems. Not surprisingly,
this is accompanied by a considerable decrease of the percentage of zero-weariness
auctions, but the problem scale appears to have little impact on the highest weariness
concession, which is approximately 1% (on average) for each of the investigated
problem dimensions.

As for utility loss, the bottom two curves show a considerable decrease in the per-
centage of zero-loss auctions with increasing scale, while the amount of utility Ion
tends to decrease somewhat (though not monotonically). Please note that the fact
that utility loss is more likely to occur if the auctions are larger does not imply
that agents who take part in large auctions will suffer utility losses relatively of-
ten. We will argue later (in Sect. 7.3.8) why the probability of an individual agent
experiencing utility loss is virtually independent of the problem scale.

••2a»]

§

Figure 7.11: Scaling of problem difficulty with fixed zero u t i l i t y .

7.3.7 Scaling effects with a fixed number of tool alternatives

In Fig. 7.11, we can observe that the average problem difficulty in the sample space
(in terms of the maximally attainable community utility) <fecrea«e« with increasing
problem scale. This contradicts our intuition about the influence of scale on problem
difficulty in real life. Is it really true that larger tool-reassignment problems are
easier in the sense that they allow for a higher average degree of agent satisfaction
to be obtained?

The answer to this question depends on our definition of scaling: what are "similar,
but larger" problems? It turns out that such problems are indeed easier if "similar"
means that the two samples are generated using the same value of zero u t i l i t y ,
but they are more difficult if it means that the number of tool alternatives per agent
is the same.



CHAPTER 7. EXPERIMENTAL RESULTS

100
D*2m+2,2 atenuiivet/ageni

4 5 6 7 1 9
M of lool typt*

n*2m»2. 2 •honaivei/agail

100
n-2m»2:

5 6 7 « 9
v of tool typo

4 J 6 7 8 <>
IM of lool types

Figure 7.12: Scaling effects with a fixed number of useful alternatives.

The outcome of experimentation with the latter interpretation of 'similar' is shown
in Fig. 7.12. In this case, the average problem difficulty (in terms of the optimal
community utility) appears to increase with scale, while IG's average performance
decreases, in terms of solution quality as well as auction duration.

7.3.8 The impact of scale on the risk of utility loss

Upon looking at the outcome of our experiments on scaling of IG performance with
constant zero u t i l i t y (cf. Fig. 7.10), one would be tempted to conclude that the
severity of utility loss does not change a whole lot if the problem scale increases,
but the nsfc of experiencing some utility loss increases considerably. This is not
true, however. Even though the frequency of auctions with utility loss increases, the
probability P, of utility loss that an apenf has to reckon with if it takes part in an
IG auction is approximately 2% in all cases.

Denoting the average percentage of zero-loss auctions by ZL and the average per-
centage of losers (in case of utility loss) by PL, the relation between ZL, PL and
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P. =
100-ZL

100
(7.1)

Table 7.5 contains a survey of the relevant statistics for heterogemic problems of
different dimensions. As apparent from the fourth column, P, is hardly affected
by the scale of the problem, because the decrease of ZL with increasing scale is
compensated by a decrease of PL.

dimension
n

10
12
14
16
18
20

m
4
5
6
7
8
9

ZL

83.5
77.1
74.0
67.4
65.5
65.0

PL

10.3
8.7
7.6
6.9
6.2
5.6

P,

1.7
2.0
2.0
2.2
2.1
2.0

number of
min.

1
1
1
1
1
1

avg.
1.03
1.05
1.07
1.10
111
1.12

osers
max.

3
3
3
3
3
3

horn. P|

1.7
2.2
2.3
2.3
2.2
2.2

Table 7.5: Utility loss statistics for different problem dimensions.

In the last column (labeled "hom. P("), we listed the values of P/ in the homogemic
problem spaces. Except for the low value of 1.7% associated with the smallest
problems, .P/ is virtually the same for all problem dimensions in this case also.

7.4 Evaluation of the Chosen Problem Parameters

Up to this point, our interest in difficult problems was primarily due to the require-
ment that the sample space used to compare the performances of various architec-
tural variants of the basic Informed Gambling mechanism should at least provide
some challenge to IG. I claim that the default setting of the problem generation
parameters is adequate in this respect. The experiments have rendered estimates of
sample space averages for IG effectiveness that varied between 89% (the data point
at ml2 in Fig. 7.4) and 99% (the data points on the low-alts and high-alts curves
at zero u t i l i t y = 07. in Fig. 7.2." As such, the default sample space, with its
estimated average IG effectiveness of 92%, can be qualified as moderately difficult,
and is therefore a suitable sample space to investigate the impact of architectural
variation.

'We have excluded the 100% effectiveness scores obtained on the trivial problem spaces with
zero uti l i ty = 10OX
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7.4.1 Where are the rea/Zy difficult problems?

However, it is also important to know what the reai/y difficult problems are, not
only to uncover possible weak spots of IG, but also to determine whether the chosen
set of problem parameters is adequate in the sense that these problems can be
characterized in terms of the setting of these parameters.

We have already observed that sample spaces associated with highly eccentric tool
bags tend to be difficult for IG. Another problem attribute that appears to correlate
with low IG performance is a high (but not maximal!) percentage of useless tool
types, in particular in combination with a range of alternative tool utilities that is
narrow and close to maximal utility.

We did not vary all generation parameters simultaneously, so we may be able to
witness an even lower average IG effectiveness if we combine the above settings
of generation parameters. To this avail, we tried out the problem parameter set-
ting of 75% zero u t i l i t y , low alternative = 8, high alternative = 9 and a
tool bag of maximal eccentricity. The IGRT output with this setting is shown in
Table 7.6.

STATISTICS OVER 200 x 100 AUCTIONS (with various matrices):

opt. unconstrained community ut i l i ty: 31.67-96.67 (avg=67.91; var= 1.1919)
opt. ind.rat. effectiveness: 91.67-100.00 (avg=99.97; var= 0.0008)
ini t ia l allocation effectiveness: 0.00-94.44 (avg=30.66; var= 1.9750)

final allocation effectiveness: 60.24-100.00 (avg=90.69; var= 0.5460)
perc. of zero-loss auctions: 95.00-100.00 (avg=99.10; var= 0.8760)
avg. norm, ut i l i ty loss per loser: 80.00-90.00 (avg=82.51; var=14.4010)
highest norm, ut i l i ty loss: 80.00-90.00 (avg=82.51; var=14.4010)
percentage of losers: 8.33- 8.33 (avg= 8.33; var= 0.0000)
perc. of zero-weariness auctions: 83.00-98.00 (avg=90.72; var= 8.5816)
max. norm, weariness concession: 0.00- 8.50 (avg= 1.13; var= 0.0525)

nr of bids: 36.00-596.00 (avg=66.23; var= 4.6182)
nr of rounds: 3.00-47.00 (avg= 5.93; var= 0.0620)
nr of phases: 1.00- 2.00 (avg» 2.00; var= 0.0000)

Table 7.6: IGRT statistics on 5(aooaaaaa6cde, 10,3,8,9).

Contrary to our expectation, the average IG effectiveness associated with this sample
space (90.69%) exceeds the average effectiveness obtained on the most difficult space
that was encountered thus far (89.06%, with a tool bag of maximal eccentricity).
Apparently, problem difficulty that stems from different generation parameters does
not simply add up.
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There is another figure in Table 7.6 that deserves our attention. The lowest effec-
tiveness obtained on any problem in the sample appears to be 60.24%. This is so
far below the lowest sample-space average (of 89.06%) we encountered that it raises
doubts about the adequacy of the chosen problem-generation parameters as tools to
characterize the difficult problems.

In our analysis of the low average IG effectiveness obtained with the sample space
5(aaaaaaaa6cde, 10,1,3,9), we identified the high probability that tool type a will
be the on/y oversupplied tool type (in most rounds of the auction) as a primary cause
for IG's relatively low performance. Hence, a problem parameter that correlates with
such concentrated oversupply could prove to be more adequate in capturing problem
difficulty than our problem generation parameters. A promising candidate in this
respect is the tension in the reassignment problem.

We have already defined the tension for an elementary composition problem in Chap-
ter 3.2.7, as a measure of the discrepancy between tool type supply and demand.
The tension in a reassignment problem is defined analogously.

Definition 7.1 (tension)
Let F and 7r denote t/ie too/ 6a<j and t/ie 6ao o/ /irst pre/erences o/ a reassignment
problem (e, [/) unt/i inttta/ assignment e and utt/tty matrtz {/. TVien t/ie tension t o/
(e, f/) equals

£-V|r(*)-*(*)! ' (7.2)

The sum in (7.2) counts the total oversupply plus the total undersupply. Since these
two entities are always the same, the tension can be defined in words as the total
oversupply that will occur if every agent proposes to exchange its initial endowment
for its first preference.

There are several reasons to expect that the tension may prove to be a good predic-
tor for the effectiveness that can be obtained by IG. First, a problem instance with
minimal (i.e., zero) tension amounts to an equilibrial market. Such problems are
obviously trivial for IG. both in terms of effectiveness and in terms of auction du-
ration. In contrast, if a problem instance features maximal tension, only few agents
can be endowed with their first preference. In other words, many agents will have
to seek for alternatives. It is plausible that the average effectiveness obtained by IG
(or any other informationally decentralized mechanism) on such problems will be
low, because many agents have the opportunity to take a wrong decision.

Second, there is a correlation between eccentric tool bags and the occurrence of
problems with high tension, as expressed in Prop. 7.2 below.
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Proposition 7.2
77w; /u /̂î sf tension t/iat can occur in any vta6/e pro6/em instance witn a too/ tap r
o/ size n ana* mu/hp/tct<y type a is ./

n - 2 • min a

Proof.
Let F, Q, and n be defined as above. Define /? = f. We assume that |fl| > 2. Since
Jj» r ( i ) = £» 7r(z) = i , the sum in (7.2) is maximal if we focus all of the demand
7T on a single tool type Xo, with minimal multiplicity in F. In other words, if

r(io) minr(i)

then the expression (7.2) for the tension attains its maximum value ( of n — F(xo)
), with the preference bag TTQ = {io:n}.

However, in Prop. 4.44, we derived the following necessary and sufficient condition
for the rxistence of a viable reassignment problem, in terms of the tool bag F, the
bag of first preferences 7r, and the number of agents n.

(Vx € Ä) ir(x) + F(x) < n (7.3)

Hence, since 7r,,(xo) + F(io) = n + F(io) > n, 7TQ conflicts with the datum that we
are dealing with a tna6/e problem instance. To comply with (7.3), we must ensure
that TT(XO) < n - F(io) = n - mini F(x). To do this, while keeping the demand as
focused as possible, we pick an arbitrary xi € Ä\{xo}, and define

rr, ^ {xo:n-F(xo) , x,:F(xo) }

Now we have

7r,(x,,)+F(xo) = n - F(xo) + F(io) = n
ir,(ar,) + r(x,) = F(xo) + F(x,) < n
jr,(x) + F(x) = F(x) < n, Vxefi\{io,x,}

In other words, ?Ti complies with (7.3). Hence, there exists a viable problem instance
(e,t/), compatible with F and TT,. The tension in such a problem instance equals

* = | • £ |F(X) - 7T,(X)| =

Because |Ä| > 2, and F(xo) = min, F(x), we know that F(x„) < n - F(XQ). Hence,

= i ( 2 n - 4 F ( x o ) ) = n - 2 m i n F ( x ) =

= n — 2 • min a



7 4 EVALUATION OF THE CHOSEN PROBLEM PARAMETERS

Of course, JTJ is not the only kind of first-preference bag that can result from moving
T(xo) of no's preferences for r„ to other tool types. We can also distribute these
F(xo) preferences over «everoi other tool types. Note, however, that if we adapt irj
by moving fc of the preferences for x, to some other tool type xj 6 fl\{xo,Xi}, this
does not change the tension. The contribution |F(xi) - TT,(XI)| of Xj increases, but
— since (Vx € Ä) A: < F(xo) < F(x) — that of xj decreases by the same amount A;.
Hence, there is no preference bag that renders a higher tension than (a bag of the
form) JTJ.

All in all, it seems worthwhile to investigate to what extent high tension correlates
with low IG effectiveness. We do this by comparing the effectiveness obtained by
IG on problem samples with various, fixed values of tension. Because there is no
problem generation parameter in the IGRT that can generate utility matrices with
a prespecified tension, we have resorted to fixed-matrix simulation to obtain such
samples. We picked a utility matrix that was generated by the IGRT with the default
homogemic setting of the generation parameters, and exchanged agent utilities to
obtain matrices with tension 1,2,..., 8.
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(7.4)

The matrices t/i and t/2 in Eq. 7.4 are the first two of these eight matrices. Matrix
t/2 was constructed from t/i by exchanging the elements in columns 1 and 3 of row
4 (i.e., the utilities that agent 4 associates with tool types a and c). This changes
the bag of preferences from TTJ = aaafc66caidde for l/j to n^ = aafcitcccddde for
IV Because the tool bag is aaa66fecc<idee in both cases, the tension is increased
by one (< = (|3 - 3| + |3 - 3| + |2 - 2| + |2 - 3| + |2 - l |)/2 = 1 for £/,, and
(13 - 2| + |3 - 3| + |2 - 3| + |2 - 3| + |2 - l |)/2 = 2 for I/,. The other matrices
are constructed in a similar fashion ([/3 from t / j , . . . ) . The associated bags of first
preferences are shown in Table 7.7.

Exhaustive fixed-matrix simulation entails the application of IG to all viable prob-
lems (e, {/), for some fixed utility matrix [/. Consequently, the performance-attribute
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3
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3
3
2
1
1
1
0
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2
3
4
4
5
5
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6

3
3
3
4
4
5
5
6

1
1
1
1
1
1
1
0

Table 7.7: The first-preference bags associated with f/j, • • •, f/g.

averages reported by IG (and plotted in Fig. 7.13) represent exact values, rather than
estimates.

Even though the respective sample spaces are smaller than those we have investi-
gated earlier, the samples (which are the sample spaces in this case) comprise more
than the usual 20,000 problem instances. The number of different viable assign-
ments for the matrices vary between 108,657 (for f/i) and 143,200 (for t/5). Because
of this, and the fact that the matrices are all very similar except for their tension,
the results constitute convincing proof that there is indeed a strong correlation be-
tween (high) tension and (low) IG effectiveness. From the first graph in Fig. 7.13,
we conclude that the tension of a reassignment problem has a greater impact on
IG effectiveness than any of the problem generation parameters investigated earlier.
Moreover, high tension also appears to correlate positively with low performance in
other respects (in terms of auction duration as well as the frequency of utility loss
and weariness), and with high problem difficulty in general (in particular in terms
of optimal community utility).

The matrix [/» with maxima/ tension constitutes a somewhat surprising exception to
the general pattern of decreasing performance with increasing tension. The sample
space with f = 8 renders a /ujj/ier average effectiveness than the sample space with
( = 7. This suggest that the most difficult problems are those with near/y maximal
tension. At this point, the evidence for such a hypothesis is rather scanty. I cannot
exclude that a different choice of the preference bags JT, might have led to a perfor-
mance low at / = 8 instead of t = 7 ." However, there is at least one other finding
that seems to support the hypothesis. In our analysis of the low average effective-
ness obtained in the context of an eccentric tool bag, we identified the presence of a
sinj/c oversupplied tool type (with high multiplicity) as a primary cause of failure.

"in particular, it may make a difference if we choose to focus the demand on a single tool type,
thus working toward ir» = {c:10,d:2} instead of {c:6,d:6}
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Figure 7.13: Influence of tension on performance and problem difficulty.

The argumentation used in this analysis allows for some generalization: It is likely
that the relaxation incentives which IG's eligibility definition is intended to provide
will work less well if most of the oversupply is confined to /ewer tool types. This
provides us with a plausible explanation as to why the lowest average effectiveness
seems to be obtained with near-maximal tension: The oversupply is usually more
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focused in problems with moderate tension than in those with maximal tension."

There is still a considerable gap between the lowest average effectiveness of problems
with near-maximal tension (viz. 84.84% at t = 7) and the lowest effectiveness
obtained on an individual problem instance (viz. 60.24% obtained with the sample
space S(aaaaaaaa6cde, 10,3,8,9).'*). This suggests that the tension is not really
adequate to characterize the most difficult problems either.

However, the gap is smaller than the figures 84.84 and 60.24 suggest. Because IG
features nondeterministic decisions, its lowest performance ever is bound to involve
some bad luck, which is not due to an;/ property of the associated problem instance.
Hence, upon testing the extent to which the tension can explain low IG performance,
we should not compare the average performance in the < = 7-sample-space with the
worst performance ever exhibited by IG, but with the average performance of re-
peated application of IG to the problem instance which led to the worst performance.

We have performed such repeated IG-invocation to two difficult problem instances:
the instance which rendered the aforementioned effectiveness low of 60.24%, and
another problem instance which rendered — in a second simulation run with the
same sample space — an even lower effectiveness: 54.79%. The associated utility
matrices fire shown in Eq. 7.5 below. Before presenting the outcomes of repeated
invocation, we trace the original invocation of IG to the two problem instances.
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(7.5)

When IG was first applied to the problem instance (ej,V\) = (aeadtaaaacaa,VI),
with an initial effectiveness of 12.33%, it rendered the final assignment oaaceadaabao.
With this assignment, every agent obtains either 100% utility (viz. agents 4,5,7 and
10) or none whatsoever. The optimal community utility for this problem instance

" A s an illustration, if ((F) = {3 ,3 ,2 ,2 ,2} , the highest tension values at which all initial over-
supply in a viable problem instance can be confined to Jt tool types are t = 3 for fc = 1 and ( = 6
for * = 2.

"See Table 7.6.
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" i » ~ 60.83% (obtained, for example, by the assignment adaaaeaa6aac). Hence,
the effectiveness obtained by IG is *S = 54.79%.

Likewise, for the problem instance (CJ.VJ) = (da6aaacaeaaa, Vj), with an initial
effectiveness of 21.69%, and an optimal community utility of 69.17%, IG rendered
the final allocation carf&aeaaaaaa with an effectiveness of 60.23%. Again, the final
allocation is an all-or-nothing solution. Agents 1,3,4,6 and 9 obtain 100% utility,
while the others obtain no utility at all.

With Vi, the bag of first preferences is { a : 0 , 6 : 4 , c : 4 , d : l , e : 3 } . Since the tool bag is
{ a : 8 , 6 : l , c : l , d : l , e : l } , the tension in (e, , V,) equals 0.5-(8 + 3 + 3 + 0 + 2) = 8. This
is relatively high, but less than the highest tension that can occur with the tool bag
T = aaaaaaaa6cde (which, by Prop. 7.2, equals n - 2 • min,(r(a:)) = 12 - 2 = 10).
For t/j, we find a bag of first preferences {o : 1,6 : 3,c : l , d : 4,e : 3} , rendering a
tension of 0.5 (7 + 2 + 0 + 3 + 2) = 7.

Thus, the two problem instances provide further support for the hypothesis — de-
rived from Fig. 7.13 — that the most troublesome problem instances are those with
high, but not maximal tension.

problem instance:

outcomes:

Totals/averages:

(ei.Vi)

final eff.
. 55%

64%

66%
75%

65.25%

freq.
201
198

185
216

800

allocations
aaaceadaabaa
aaaceaaaa6ad
aaaceaaaabda
aadceaaaaiaa
abaceadaaaaa
abaceaaaaaad
abaceaaaaiufa
a6<fceaaao<iaa

<ea.V»)

final eff.
60%
71%

82%

72.84%

freq.
93
317

190

600

allocations
cad6aeaaa<uui
eadaaeabaaaa
c<K#>aaaaaaea
cbdaa«aaaaaa
cadaaaa6aaea
cMaaaaaaaea

Table 7.8: Nondeterministic variation of IG performance.

We have applied tentative fixed-problem simulation (with a repetition factor of fc =
100)'* to the above problem instances (ei, Vi) and (e?, Vi) to see how much 'bad luck'
was involved. The results are shown in Table 7.8. IG rendered eight different final
allocations when applied to (ei, Vi), with three different final effectiveness values.'*
Application of IG to (e2, Vi) rendered six different solutions associated with three

"See the survey of simulation modes on page 248.
"The effectiveness values shown in the table are rounded to the nearest integer numbers. This

is how they are rendered in the raw output file produced by the IGRT.



300 CHAPTER 7. EXPERIMENTAL RESULTS^

different effectiveness scores. Apparently, there was some bad luck involved in both
cases. The minimal effectiveness of 55% (corresponding with the floating point value
54.79%) occurred in approximately 25% of the 800 invocations. The minimum of
60% (corresponding with 60.23%) on (ej, Vj) occurred even less frequently: in about
16% of 600 invocations.

The average effectiveness values of 65.25% on (ei, Vi), and 72.84% on (ej. V2) are less
extreme than the single-invocation values that we found for these problem instances
in the grouped-sampling experiments, but they are still considerably lower than any
sample space average we have encountered up to this point. This indicates that the
tension is an important source of problem difficulty, but not the only one.

The sample spaces used for the tension experiments (of Fig. 7.13) differ in three
respects from the sample spaces of the two difficult problem instances.

• The tool bag is less eccentric.

• The agents have more alternatives for their first preference.

• The average utility for the tool alternatives is lower.

The latter two of these differences comprise problem properties which do influence
IG performance, but do not correlate with the tension. Hence, if we want to find
out to what extent high tension is responsible for low IG effectiveness, we should
compare the average effectiveness obtained with f = 7 with the average performance
of repeated application of IG to the problem instance responsible for the lowest effec-
tiveness in the corresponding (default homogemic) sample space. As noted earlier,
the lowest observed effectiveness in a sample from this space was approximately 70%.
Tentative fixed-problem simulation on the associated problem instance rendered an
average IG effectiveness of 76.38% (over 900 invocations). This is fairly close to the
average effectiveness of 84.84%, obtained with problems from the tension-7 problem
space.

In view of the above analysis, we postulate that low IG performance is due to the
following causes (some of which are interrelated).

1 frequent competition for tools;
this correlates with

la high tension.

2 faltering eligibility heuristics, due to highly focused oversupply;
this correlates with

2a highly correlated agent preferences;
2b a highly eccentric community tool bag.

3 few tool alternatives (i.e., high zero u t i l i ty )

4 high utilities for the tool alternatives (i.e., high low alternative)
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7.4.2 An effectiveness of 92%: admirable or pityful?

When we discussed IG's performance on a sample from the default sample i p m ,
we remarked that it is not reasonable to expect that one can impose strong infor-
mational decentralization without incurring any detereoration of performance. We
then qualified the average detereoration incurred by IG — from 100 to 92.45% —
as "low". One can rightfully ask on uViai ground« such a label was attached. It is
quite justifiable to speak of an effectiveness of 100% as "high", since it implies that
a solution of maximal community utility was found. At first sight, it may also seem
justifiable to label 99% effectiveness as "high", since the community utility of the
rendered solution is very close to that of an optimal solution Such a label can be
misleading, however, because an assignment with an effectiveness of 99% can be the
worst possible assignment. This would be the case, for example, if the problem that
is solved involves a utility matrix with row maxima of 100, while all other entries
are 99. In other words, except for effectiveness values of 0 or 100%, we need to know
what the proWem is, before we can evaluate the effectiveness that was obtained. To
know whether 92% effectiveness is admirable or pityful, it is not enough to define a
(problem-independent) ceiling of 100%, corresponding with an optimal assignment.
We must also define a (problem-dependent) ^oor, some rock-bottom value designat-
ing the effectiveness which a decentralized algorithm should a< /ea.v< attain on the
particular problem instance at hand.

As we noted earlier, the average initial effectiveness is too pessimistic to be a suitable
reference level for the average final effectiveness to be obtained by IG, since it is
computed from assignments in which no agent is fully satisfied. In this respect,
the tensjon in the reassignment problem is a better candidate. Below, we define
a reference level for the average effectiveness in a problem sample, based on the
average tension in that sample.

If every agent proposes to exchange its current endowment for its first preference
(as IG agents do in the first round of an auction), the tension equals the total
undersupply. Hence, if the tension of a problem equals r, there exists an assignment
in which n - < agents possess their first preferences, while there is no assignment
where more than n - < agents attain maximal utility. This enables us to define a
lower bound on the optimal community utility that is much sharper than the initial
utility of a viable problem. The optimal community utility C* for a problem (e, [/)
with tension f, and an agent community of size n is at least

100 (7.6)

C* (pronounced as "C bottom") is a relatively »Aarp lower bound if the tension is
low in comparison with the size of the agent population. Note, however, that —
even with low tension — it is not always optimal to assign as many first preferences
as possible.
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As an example, consider the reassignment problem

/ Q 9 10 \
(ate, tf)= 10 Q 9 (7.7)

\ 10 6 Q /

The ttQflion in this problem is 1, so it is possible to assign 3 - 1 = 2 first preferences,
either to agents 1 and 2, or to agents 1 and 3. This would lead to one of the
assignments cab and c6a, with respective community utilities of ^ % 87% and
j£ as 67%. In the optimal assignment frca, only agent 3 possesses its first preference,
but the community utility is higher: jjj =s 93%. We have counted the number of
problem instances in the default sample for which the computed optimal solution
comprised less than n - < completely satisfied agents. This appeared to be the case
for about 40% (7,845 of 20,000) of the problem instances.

The quantity C''" in Eq. 7.6 is not only a lower bound for the optimal community
utility associated with a problem, but also a suitable reference value for the com-
munity utility that should at /east be obtained by an informationally decentralized
algorithm like IG. It expresses the portion of community utility that is due to agents
who receive their first preference, if the number of such agents is as high as possible.
Since agents in IG (as well as in other decentralized reassignment mechanisms, such
as the Walrasian auction) convey their first preferences in the first round of bidding,
it is quite easy to attain at least this community utility. All that needs to be done,
is to grant as many of the first-round proposals as possible. For mechanisms which
ensure individual rationality, this can be far less than n - £ (cf. Chapter 3), but
for IG, it is always possible to satisfy n - t proposals. Indeed, the bottom-level
community utility C^ is a lower bound for the community utility that will be at-
tained by a r̂eerfy IG mechanism, such as one with zero caution. In the de/au/t
IG mechanism, however, agents are risk-neutral instead of risk-insensitive. Hence,
in this case, the community utility obtained by IG may turn out to be less than
C""" for some problems. This does not imply that the risk-insensitive variant of IG
is superior, for the risk-neutral version performs much better on average. Because
we are primarily concerned with the average performance, the average bottom-level
community utility C-"- in a sample space is a suitable rock-bottom reference for the
at>era</e community utility that should be obtained by IG on that sample space.

Because the IGRT reports the average ejjfectiveness attained by IG, we use the
bottom-level community utility to obtain a reference level £^ for the average effec-
tiveness. Formally, if C^(s) and C"(s) denote the bottom-level community utility,
and the optimal community utility associated with the problem instance s, the as-
sociated average bottom-level effectiveness f?^ for a sample space 5 equals
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Exact computation of E -̂ would require adaptation of the IGRT. Since the bottom-
level community utility is a sharp lower bound in case of low tension only, this is not
worth the effort. We therefore^ choose to compute a rough estimate of E-*- instead.
This 6o5e-iere/ eĵ echt;ene*s E-"- for a sample space is defined in terms of the average
tension t and the average optimal community utility ?* in the sample space.

In Fig. 7.13, one can observe an almost linear relation between the tension and the
average optimal community utility in sample spaces associated with a sing/e matrix.
This suggests that E^ is a reasonably accurate approximation of E ' .

To compute the base-level effectiveness for the default sample space, we need to know
the average optimal community utility and the average tension in that space. As
apparent from Tables 7.2 and 7.6, the IGRT reports the average optimal community
utility, but not the average tension. However, we can deduce the latter (for the
default problem space) from the common endpoint of the C"-curves in Fig. 7.1 on
page 274. At 100% zero u t i l i ty , agents can only contribute to the community
utility if they obtain their first preference. Hence, in this case C* = C^. Thus, we
can derive the average tension in the associated sample space from the value C* =
76.30% reported by the IGRT. This renders a value of 2.844 for the average tension
in 5({3,3,2,2,2},10,4,3,9). Since the IGRT chooses the first preferences of the
agents independently from a uniform distribution on the tool types (cf. Sect. 6.5.4),
the tension in a sample space depends so/e/y on the multiplicity type of the tool
bag. This multiplicity type is the same for all of the problem spaces associated with
Fig. 7.1. Hence, the tension in the default problem space S({3,3,2,2,2}, 10,1,3,9)
also equals 2.844.

Together with the reported value of 93.12% for C* in the default problem space,
this leads to a base level effectiveness of 81.94%. For the default hornogemic sample
space, which has a marginally higher average optimal community utility (93.27%),
we arrive at an estimated base-level effectiveness of 81.81%.

Because it is always somewhat hazardous to rely on the randomness of pseudo-
random number generator output, we have incorporated tension computation in a
later version of the IGRT. This version reports average tension values for the default
problem space of 2.85% (with rounding of the second decimal). From the raw output
supplied by this IGRT version, we also estimated the distribution of tension in the
default sample space, pictured in the leftmost graph of Fig. 7.14. In this case,
we allowed the generation of (trivial) problem instances with zero tension, which
are normally suppressed by the IGRT. It appears that such problems are rarely
generated anyway. They comprised only 0.7% (144 of 20,000 problem instances)
of the sample. The other graph in Fig. 7.14 pictures the tension distribution in
the sample space 5({1 : 12}, 10,1,3,9) of untyped problems. The average tension
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in this sample space is 4.22, considerably more than the average tension in the
default (heterogemic and homogemic) spaces. The fact that the tension apparently
increases if the number of tool types is increased (while the number of agents is not),
confirms our earlier explanation why IG performs less well (in terms of effectiveness)
on untyped problems than on typed ones (See Fig 7.6).
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Figure 7.14: Distribution of tension in typed and untyped problem spaces.

The base-level effectiveness values of approximately 82% for the default (heterogemic
and hoinogemic) sample spaces are useful for the discussion of the influences of agent
and mechanism parameters in the next section. They allow us to conclude when
an architectural variation brings about unacceptable detereoration of performance.
Also, they give us some idea as to when performance differences between different
variants of IG are negligible, and when they are not. Note, however, that, though
base-level effectiveness is a much better reference for rock-bottom performance than
the average effectiveness of viable assignments, it is by no means perfect. Because
it reflects only the portion of community utility that can be contributed by agents
that receive their favorite tool type, it can be overly pessimistic if there are few such
agents (i.e., if the average tension is high), while there are many tool alternatives
(i.e., if zero u t i l i t y is low).
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7.5 Effects of Varying Agent and Mechanism Parame-
ters

In this section, we discuss the outcomes of the experiments performed to assess the
influence of agent and mechanism parameters on IG performance. If not stated
otherwise, performance statistics are obtained on (one and the same sample from)
the default sample space 5(a, 10,1,3,9). This sample space contains reassignment
problems with 12 agents, and 5 tool types. The tool bag is aaa666ccdd, and the utility
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matrices are heterogemic, with 1 or 3 zero entries per row, and one maximal entry
(of 10) per row. The other entries are integer numbers between 3 and 9 (inclusive).

In most cases, we only vary one agent or mechanism parameter at a time. We
make an exception for the boolean parameters weariness and clearance. These
are varied in combination with the deadline parameter. Except in the histograms,
confidence intervals are plotted around the data points in all of the plots. If a plot
displays more than one set of data points, the points of each set are connected by
lines to facilitate distinguishing between the sets.

7.5.1 The influence of deadline and weariness

Fig. 7.15 pictures the influence of the deadline and weariness parameters on the
primary performance attributes effectiveness and rounds. All of the experiments
that involve the deadline parameter comprise the settings deadline = 1, 2, 5, 10,
20, 50, 100, 200, 500, 1000, and 2000. With logarithmic scaling along the horizontal
axis, these ordinates are approximately equidistant. The scaling along the vertical
axis is usually linear. For brevity, we sometimes use D instead of deadline.

The first plot in the figure portrays the difference in the effectiveness obtained by
IG with and without weariness. Moving along the two curves from right to left (i.e.,
from high deadlines to lower ones), we see that the curves run closely together at first,
but split at D = 20. If we decrease the deadline further, this seems to incur only a
slight decrease in the average effectiveness of IG without weariness, while the average
effectiveness of IG with weariness drops dramatically toward about 31% at D = 1.
In view of the base-level effectiveness of 82%, the value of 31% is dramatically low
indeed. In fact, it equals the initial effectiveness in the default sample (cf. Table 7.2
on page 270). This is not a coincidence. With weariness incorporated, setting the
deadline to 1 round has the effect that the weariness treshold is 100% from the
start. In other words, no agent is ever permitted to deviate from its previous bid.
Formally, there is no previous bid in round one. In the IGRT, however, the proposal
profile is initialized to an array of empty proposals before the auction commences.
Consequently, each agent is forced to submit an empty proposal in round one. This
leads to a final assignment that equals the initial one.

With the deadline at 2 rounds, something similar occurs, though not to the same
extreme. In round one, the weariness treshold is now 50%. This means that only
those agents with an initial utility less than 50% are allowed to submit a nonempty
proposal. Since the treshold reaches 100% in round 2, the other agents cannot
improve on their initial utility. This leads to an average effectiveness which is higher
than with D = 1, but still well below the base-level effectiveness of 82%, and hence,
unacceptable.

Because of the extremely low value of 31%, the scaling of the first plot does not show
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Figure 7.15: Influences of deadline and weariness.

clearly what happens at high values of D. The second (upper right) plot is the same
as the first, except that it is scaled so as to provide a clearer view. It appears that,
with a deadline of more than 20 rounds, the difference in obtained effectiveness of IG
with and without weariness is marginal and not statistically significant. Also, once
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we have chosen a deadline of at least 50 rounds, there is little point in increasing
it further, as far as the average effectiveness is concerned. However, the 'slight'
decrease in average effectiveness that we observed in the leftmost plot (without
weariness) when moving from a high deadline value toward D = 1 appears to be a
considerable decrease after all.

From the third plot in Fig. 7.15, we conclude that, for large values of the deadline,
the incorporation of weariness significantly reduces the average auction duration.'*
At deadline = 50 the reduction is still moderate (from 6 down to 4.2 rounds), but
at deadline = 2000 it amounts to a factor 5 (from 30 rounds down to 6 rounds).
However, the confidence intervals in the plot indicate that the averages computed
for IG without weariness are very unreliable if the deadline is high. In fact, the
confidence intervals themselves are unreliable. This is due to the fact that, without
weariness, the deadline is sometimes reached. As the 4th plot shows, this does not
happen very often, but if the deadline is high, it does imply that the distribution of
the number of rounds — shown in the 5th plot of Fig. 7.15 — is too skew to satisfy
the near-normality condition of our confidence limit computation (cf. Sect. 6.5.4,
p. 256).

Histograms of the distributions underlying the data points at deadline = 1000 are
shown in the 5th and 6th plot. The occurrence counts were performed on value cate-
gories between low (inclusive) and high (exclusive), as indicated along the horizontal
axes. Thus, the first bar in the histogram indicates that there were approximately
5800 problem instances in the sample with an auction duration of 1 or 2 rounds,
the second bar represents some 7000 instances which required 3 or 4 rounds, etc.
Comparison of the 5th and the 6th plot shows that the difference in the average
effectiveness between IG with and IG without weariness is primarily due to the
fact that auction durations of 1000 or more rounds occur only if weariness is not
incorporated.

Fig. 7.16 depicts the frequency and impact of weariness. As expected, weariness
concessions occur frequently if the deadline is low. They also involve considerable
concessions on the part of the agents in this case. If the deadline is set to a sufficiently
high value, however, weariness seldom plays any role in the agents' decision making,
and if it does, the associated utility concessions tend to be marginal.

Fig. 7.17 pictures the frequency and severity of utility loss. If we take into ac-
count the conclusion drawn from the effectiveness plot (Fig. 7.15), that the deadline
should be 50 rounds or more to attain an acceptable average effectiveness, Fig. 7.17
is not very interesting. The percentage of zero-loss auctions at £> = 50 differs only
marginally (less than 2%) from any value at a higher deadline, and the same is true
for the highest utility loss. Yet, the setting D = 2 without weariness is interesting,

"To interpret the curves properly, one should be aware that the scaling of this plot is logarithmic
on iot/> axes.
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Figure 7.16: Frequency and severity of concessions due to weariness.
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Figure 7.17: Frequency and severity of utility loss.

because the associated IG mechanism amounts to a reassignment version of dele-
gated negotiation (See Sect. 5.5). This setting renders a slightly higher percentage
of zero-loss auctions and a lower auction duration at the expense of some (0.6%)
effectiveness.

se
D

500
50

2

•tting

TRUE
TRUE
FALSE

eff.

92.4
92.5
91.9

rounds

5.19
4.22
2.87

ZL

75.1
76.9
79.1

P I

8.73
8.80
8.68

P,

2.17
2.03
1.81

/ /L

42
42
44

Table 7.9: Tradeoffs between zero loss and effectiveness.

Table 7.9 compares the relevant statistics of I> = 500. D = 50. and D = 2 without
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weariness. W stands for weariness, and eff. for effectiveness. The semantics of the
symbols ZL, PL, and Pi are zero-io*«, percentage o/ losers, and pro6a6t/ity 0/ /OM
(cf. Table 7.5 on page 291). / /L stands for /itg/ie jt toss.

It is conceivable that the scale of the problem has some bearing on the best value for
deadline. One would, for example, expect that a relatively low value of deadl ine
which still renders an acceptable solution quality for small-scale problems, may well
prove too low to ensure the same on problems of a larger scale. To verify this, we
have also investigated the influences of the deadline parameter on problems with
20 agents and 9 tool types. The results, shown in Fig. 7.18, point out that the above
intuition is incorrect: With 20 agents and 9 tool types, the effectiveness curve levels
off at the same deadline value (viz. £> = 20) as with 12 agents and 5 tool types.
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Figure 7.18: Deadline influence at different problem dimensions.

7.5.2 The influence of the clearance parameter

The motivation to consider market clearance as an additional sufficient condition
for phase termination — next to proposal convergence and deadline excess — was
the intuition that this could possibly increase the average effectiveness and decrease
the average auction duration.

In Fig. 7.19, we see that the above intuition was principally correct, but the effects
are marginal. The first curve shows no effectiveness differences at all. If we zoom
in on the curves by rescaling from 92% upwards (in the third plot), it appears that
the differences are virtually never'* statistically significant, and amount to less than
0.1% for all values of £>. The second curve shows a statistically significant, but
equally marginal decrease of the average auction duration if market clearance is
incorporated. The fourth curve explains why incorporating market clearance has
little impact: It is seldom instrumental.

"At D = 500, one can observe a barely significant difference.
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Figure 7.19: The impact of incorporating market clearance.

Because market clearance adds to the conceptual complexity of Informed Gambling,
these findings strongly suggest to leave it out.

7.5.3 The influence of the resolution parameter

The resolution parameter determines whether the eligibility heuristic of IG features
fine or course distinctions. High resolution implies that proposals differ in eligibility
whenever the scarcities of the offered tool types differ. Low eligibility implies that it
matters w/ietAer the offered tool type is scarce or oversupplied, but not Äotr scarce or
owrsuppliod it is. Mixed resolution implies that the degree of scarcity does matter
if the tool type is scarce, but not if it is oversupplied.

In Sect. 6.2.3, we motivated the omission of the converse case (distinction between
different degrees of oversupply, but not between different degrees of scarcity) by
stating that, in a reassignment problem, an agent can adapt its demands in various
ways while there are only two options for its supply: It either supplies its initial en-
dowment or withdraws, not supplying anything. It is not immediately clear whether
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the provision of an incentive to an agent to change its demand from a tool type
that is strongly undersupplied to one that is only slightly undersupplied can have
a positive effect on mechanism performance, but in any case the agent is oapa6/e of
such a relaxation. This is not the case for an incentive to relax its supply from a
tool type that is strongly oversupplied to one that is slightly oversupplied, at least
not in reassignment problems, where each agent can supply only one tool type.

In view of the above considerations, one would expect that the setting of the rei-
olution parameter would have a considerable impact on IG performance, and that
mixed resolution would lead to the highest performance. Fig. 7.2Ü shows that the
latter is true, but the former is not.
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Figure 7.20: Influence of the resolution parameter.

The first plot in Fig. 7.20 shows that the difference between the effectiveness levels
obtained with low, mixed and high resolution is marginal: in the order of magnitude
of 0.1%. The second plot shows that there is hardly any difference between the
average auction duration with low and mixed resolution, but high resolution incurs
significantly longer auctions.

Next to low, mixed and high resolution, the plots in Fig. 7.20 also picture the average
effectiveness and auction duration obtained with zero resolution. Zero resolution
amounts to disabling the eligibility heuristic altogether. Originally, this setting was
not in the value range of the resolution parameter. It was conceived as a refinement
of the base-level effectiveness, which tends to be too low as a reference value in case
of high tension, because it only counts the contribution of first preferences to the
community utility. IG with zero caution and zero resolution constitutes an almost
trivial mechanism, where the agents blindly strive for their first preference, and the
auctioneer greedily satisfies as many proposals as possible. As such, I expected it
to be an improvement of the base-level effectiveness, that would provide a «Ziorper
lower bound for the average effectiveness that an IG mechanism should attain at the
very least.
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It was a bit of a shock to see how sharp this 'lower bound' really was. Apparently,
the eligibility heuristic has an adverse effect on the average effectiveness!

This does not imply that the eligibility heuristic has no virtue whatsoever. As the
second plot in Fig. 7.20 shows, it incurs a decrease of the average auction duration
(from 5.7 to 5.2 rounds), at the expense of a barely significant decrease of the average
effectiveness (of about 0.1%). Furthermore, the heuristic does not always have an
adverse effect on solution quality. For some other sample spaces (e.g. with a highly
eccentric tool bag), the average IG effectiveness is higher with the heuristic than
without it. We discuss such cases later, in Sect. 7.7.2.

7.5.4 The influence of the asynchrony parameter

In Sect. 5.7, we introduced asynchronous proposal processing as a first attempt
to guarantee the termination of the adjustment process. An example showed that
asynchronous processing, by itself, cannot guarantee proposal convergence in finite
time. The incorporation of negotiation weariness can provide such a guarantee.

Since the incorporation of weariness guarantees proposal convergence at or before the
deadline, irrespective of whether proposals are processed synchronously or not, the
question arises whether asynchronous processing is still preferable over synchronous
processing, once negotiation weariness is incorporated. Also, earlier research on
Boltzmanu neural networks (Lenting, 1992b) has pointed out that the information
backlog inherent to unconstrained parallel processing can cause a considerable de-
tereoration of solution quality if the deadline is low, and a formidable increase in
the duration of the computation is the deadline is high. Because the functional-
ity of weariness in IG is akin to that of the temperature in Boltzmann machines,
information backlog may well play an important role in IG as well.

Fig. 7.21 pictures the influences of the asynchrony parameter. The percentages
along the horizontal axis (starting at 0) correspond with market profiles being com-
puted on the basis of 12, 11, . . . , 2, and 1 submitted proposal(s). As such, the
investigated parameter range covers all cases.

From the first plot in Fig. 7.21, we conclude that the asynchrony setting has no
bearing on the average effectiveness, except that synchronous bidding lead to a
marginally higher (+0.1%) effectiveness. However, this gain is obtained at the ex-
pense of a large increase of the average number of rounds (the second plot), ac-
companied by an equally pronounced decrease of the percentage of zero-weariness
auctions. Apparently, negotiation weariness is unable to keep the average auction
duration down to an acceptable level in case of synchronous bidding.

We have designated the number of rounds as the metric of choice for the auction du-
ration. This is fine in most cases, since the number of rounds is usually proportional
to the number of processed proposals. However, if we vary asynchrony. we vary the
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Figure 7.21: Influence of the asynchrony parameter.

number of processed proposals per round. The amount of reo/ time consumed by
an auction that takes ten rounds to complete depends on the number of processed
bids per round, and hence, on the value of asynchrony. With asynchrony = 50%
the auction can involve twice as much real time as with asynchrony = 75%, if the
auctioneer is slow or if there is a large variation in the speed of agent response to a
market profile.

Because of this, a fourth plot was added to Fig. 7.21, which pictures the auction
duration in bids. The general pattern is in this plot is surprisingly similar to that
in the rounds plot. In both cases, there is no significant difference between the
averages obtained with different asynchrony settings, as long as the asynchrony is
moderate (say, between 40 and 75%). These settings are also better than the more
extreme values in both cases. A plausible explanation for the apparent similarity
is that, though the required number of bids per round is low at high values of
asynchrony, this does not necessarily mean that the effective number of bids is also
low. Whenever the proposal profile in some round equals that in the previous round,
the auctioneer requests all of the agents to submit a proposal to test whether the
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phase can be terminated because of proposal convergence. This is bound to happen
much more often if there are only few responses initially.

Another explanation is provided by the no-backlog curves in the topmost two plots.
These depict the average effectiveness and auction duration that would have been
obtained in the absence of information backlog. This comes down to sequential
bidding, except that proposals are submitted by a random subset of the agents,
in a random order. As apparent from the second plot, information backlog has a
considerable adverse effect on the auction duration. The first plot shows that the
average effectiveness is not adversely affected by information backlog, however.

7.5.5 The influence of the caution parameter
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Figure 7.22: Influence of the caution parameter.

The influences of the caution parameter setting are shown in Fig. 7.22. The data
points in the plots are connected by a line that indicates the conceptual order among
caution values. If the line were omitted, the reader might be tempted to view the
setting caution = 0 as an intermediate setting between caution = -10 and caution



EFFECTS OF VARYING AGENT AND MECHANISM PARAMETERS

= 10. This is technically correct, but conceptually wrong. The caution values —10
and 10 represent the same setting, and with zero caution, agents are /rss cautious
than with caution = -60. Henceforth, we speak of "increasing caution" if the
agents become conceptuai/y more cautious. As such, changing caution from 0 to
-60 will be referred to as tncretumj caution.

Prom the first plot in Fig. 7.22, it appears that, if we start at caution = 0 and move
toward more cautious agents, the average effectiveness increases relatively slowly,
attaining its maximum at the default setting of caution = 10. Thereafter, the
effectiveness decreases quickly. The auction duration (in the second plot) appears to
increase monotonically with increasing caution. So does the percentage of zero-loss
auctions (in the fourth curve). The percentage of zero-weariness auctions decreases
with increasing caution.

Upon introducing the caution parameter in Sect. 6.2.4, we defined the caution pa-
rameter in the testbed interface as the integral part of the actual, internal caution
(the exponent C in Eq. 6.5 on page 241) mu/<tp/ie<i 6j/ a /actor /0. We motivated
this detour by stating that the distortion of risk perception associated with C = 2
(i.e., caution = 20) is likely to be too gross for caution = 20 to be a profitable
setting. A more modest distortion such as that associated with C = 1.1 seems more
promising. In view of this argument, the experimental results pictured in Fig. 7.22
are insufficient to conclude that risk-neutral agents perform best. We need to exper-
iment with caution on a finer scale. The outcomes of such experimentation is shown
in Fig. 7.23, for caution values of 10, 11, 12, 13, 14, 15, 17, 20, and their negative
counterparts.

Figure 7.23: Fine tuning of the caution parameter.

Inspection of Fig. 7.23 shows that the preliminary conclusions, drawn on the basis
of Fig. 7.22 are held upright: the highest average effectiveness is obtained with risk-
neutral agents, and the average auction duration increases with increasing caution.
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7.5.6 The influence of the maxloss parameter
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Figure 7.24: Influence of the maxloss parameter.

The maxloss parameter is related to the caution parameter in that both describe
aspects of the agents' attitudes toward risk. As such, both parameters can be used
to increase the percentage of zero-loss auctions. We have seen that we can attain a
percentage of at least 95% zero loss, if we set the caution to 60. However, there is
a tradeoff with the effectiveness of IG. Decreasing the probability of utility loss is
accompanied by a considerable decrease of effectiveness.

As apparent from Fig. 7.24, the effectiveness decrease is even higher if we use the
maxloss parameter to reduce the (frequency of) utility loss. On the other hand,
the maxloss parameter offers the opportunity to juonin/ee that the reallocation is
individually rational (by setting it to 0%).

If maxloss = x > 0, no agent can suffer a utility loss of more than x% (in terms
of normalized agent utility). The fourth curve in Fig. 7.24 shows that, except for
maxloss = 10, the highest utility loss is actually less than x.
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7.5.7 The cost of demanding individual rationality

The caution and maxloss parameters constitute alternative means to reduce —
or, in the case of zero maxloss, prevent — utility loss in IG. As we have seen in
the previous two sections, this does involve some cost in terms of allocation effec-
tiveness. The average decrease in effectiveness induced by demanding the solution
to be individually rational (by setting maxloss to zero) is somewhat over 4%. It
is interesting to compare this with the 'theoretical' minimum for this average cost:
the average effectiveness difference between optimal individually rational allocations
and optimal allocations. For the default sample space, this turns out to be as little
as 0.36%!'»
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Figure 7.25: The cost of individual rationality wtt/iout (strong) informa-
tional decentralization.

As Fig. 7.25 shows, this minimal cost of individual rationality is low in other sample
spaces also: The average effectiveness of optimal individually rational allocations
was never below 99% in any of our experiments. Apparently, individual rationality
is a much more cumbersome constraint for IG than it is for centralized algorithms,
or weakly decentralized ones such as a monetary Walrasian auction. We shall see
later that the Walrasian eze/ian</e auction (which — like its monetary sibling —
guarantees individually rational solutions, but — unlike the monetary auction — is
ifronjj/j/ decentralized) attains an average effectiveness that is comparable to IG with
the maxloss= 0 setting. This suggests that strong informational decentralization
can be held responsible for the relatively high cost of individual rationality in IG.
In other words, the cost of demanding individually rational solutions may well be
high for a// mechanisms featuring such decentralization.

"See line 2 of Table 7.2 on page 270.
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7.5.8 The influence of the volatility parameter

The purpose of volatility is to lure the agents into weaJfc/y a/trutshc 6e/iavior. The
motto is "Love thy neighbor if it does not cost thee much". Sometimes agents can
do other agents a big favor, if they opt for a tool type with the some (or almost the
same) utility as their current endowment, when they would normally withdraw from
the auction because of lack of prospects of utility gain. The altruism brought about
by positive volatility is emergent altruism: Positive volatility does not reduce the
agents' self-centeredness. It works by distorting the agents' perception. The agents
are made to perceive their endowment as less useful than it actually is. We pointed
out earlier that such a distortion of agent perception is bound to be harmful to the
community utility of the final assignment, if the depreciation of the endowment is
large. It may lead to a higher community utility, however, if the depreciation is
small.
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Figure 7.26: Influence of vo la t i l i ty on different sample spaces.

Fig. 7.26 shows that this intuition is correct, but the effectiveness gain incurred by a
small, positive volatility is marginal. The two plots in Fig. 7.26 contain two curves,
which correspond with different sample spaces. We discuss the default curves (i.e.,
those associated with the default sample space) first. For brevity, we use the symbol
V for vola t i l i ty .

The simulations are performed with volatility values of 0, 1, 10, 20, 30, 40, and
50%. Although the average effectiveness is indeed higher at V = 1 than at V = 0,
the difference is not statistically significant. Moreover, the two effectiveness scores
arc wry close together (92.43% at V = 0, and 92.49% at V = 1). So, in terms of
otloctiwness gain, the advantage — if any — of positive volatility is slim.

In the second plot, we observe a similarly minute difference between the average
auction duration at V = 0 and V = 1. However, the average number of rounds
drops considerably if we move to V = 10, while the average effectiveness at V = 10
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is approximately the same (92.45%) as at V = 0. It appears that positive volatility
does not significantly improve the quality of the solution, but it can reduce the
average auction duration at no expense in terms of solution quality.

Because the default curve in the first plot reveals somf gain in average effectivene«
with small, positive volatility, it seemed worthwhile to investigate whether the gain
is insignificant for any kind of reassignment problems. Obviously, it is best to do this
on a problem space that offers good prospects. The curve labeled "other" in Fig. 7.26
corresponds with the sample space S({3,3,2,2,2},3,2,1,2). The parameter setting
of this sample space is that of the default homogemic problem space, except that
u t i l i ty range = 3, low alternative = 1, and high alternative = 2. Since
equal entries in the same row occur more frequently in this setting than in the
default setting, there are generally more opportunities for agents to do some other
agent a favor at no expense.

As the first plot shows, the difference between the average effectiveness at V = 0
and V = 1 is statistically significant with this other sample space. However, it is
still marginal (94.6% at V = 0 and 94.7% at V = 1). As with the default sample
space, the average auction duration can be reduced (at no expense) by setting V to
10%, but the reduction is less impressive than that obtained with the default sample
space.

7.6 Performance Variation due to Nondeterminism

The analysis of the influence of the deadline parameter has made clear that IG
performance can vary considerably between different problems in the same sample
space (See Fig. 7.15). Hence, if a parameter setting X renders a better average
performance than setting Y (in whatever respect) on some sample space, this does
not imply that X leads to better performance than Y for a// problem instances in
that sample space.

The analysis in Sect. 7.4 has shown that there can even be considerable variation in
performance, if IG is repeatedly invoked on the same problem instance, due to the
nondeterministic nature of IG mechanisms. This is unpleasant, since it implies that
low performance is not necessarily confined to difficult problems. It can simply be
a matter of 6ad /udk.

An example was provided in Table 7.8 on page 299. This table concerns the two
problem instances associated with the lowest IG effectiveness values observed in any
of the sample-space experiments: 55 and 60%. Repetitive application of IG rendered
an aueraye IG effectiveness for these problem instances of 65 and 73% respectively.
This is still low, but considerably higher than the original performance lows.

Of course, repetitive application could be used to select the best solution in a se-
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quence of trials. This would surely enhance the average IG performance. However,
the associated mechanism is not informationally decentralized. Hence, picking the
best solution from a series is only a viable option if informational decentralization
is not a hard constraint. It could, for example, be imposed to tackle a constrained
optimization problem which is too complex to be solved efficiently by means of a
centralized algorithm. Obviously, this is never the case for reassignment problems.
In this rase, the only conceivable reason for informational decentralization is pri-
vacy, or some other /lard constraint which precludes certain information from being
gathered by a central system component.

Hence, we would like to know where the variance due to nondeterminism comes from,
to see if we can reduce it (without adversely influencing the average performance).
There are three potential sources for such performance variance.

the decisions taken by the auctioneer: In case of undersupplied tool types, the
auctioneer employs the pseudo-composition protocol to decide which of the
competing proposals will be satisfied. For an undersupplied tool type with
supply it, the auctioneer's decision is deterministic iff, among the proposals
requesting the touJ type, there «re it proposals that are «tore ehgibJe th«n
any of the others. Obviously, both the frequency of and the variance due to
nondeterministic decisions depends on the value of the resolution parameter.
With zero resolution, the decision is always nondeterministic, and any agent
that has requested the tool type is a candidate to receive it. At the other end
of the spectrum, high resolution will more often lead to deterministic solutions
than mixed resolution, and if the solution is nondeterministic the number of
candidates will often be smaller.

the decisions taken by the agents: If agents happen to have two or more op-
tions with maximal expected utility, they choose one of these at random. The
frequency of such nondeterminism is governed primarily by the problem gen-
erations parameters low alternative and high alternative. If these are
wide apart, the agent utilities for different (useful) tool types will all differ
in the majority of generated problem instances. And if they are all different,
lioinlt'tonninistic agent decisions will be very rare.

asynchronous proposals processing: If the auctioneer employs asynchronous
proposal processing, the identity of the agents that contribute to the update of
the market profile varies nondeterministically. In case of synchronous proposal
processing, this source of variance is absent. Hence, the asynchrony parameter
is the relevant parameter in this case.

The prospects for reduction of the performance variance due to nondeterminism
depend on the extent to which the variance stems from any of the above three
sources. If the variance would appear to be mainly due to the nondeterministic
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decisions of the auctioneer, we could try to reduce the frequency of such decisions
by adding a "very-high" resolution value. One possibility to achieve this would be
to have the auctioneer keep track of the average demand and supply of tool types
over the last fc rounds, and use this as a tie break in case of equal eligibility. This
would not reduce the frequency of nondeterministic decisions to zero,-" but it would
most likely reduce it, and have no undesirable side effects.

If the bulk of the variance is due to one or both of the other sources, the prospects are
not as good. The only agent parameter that can be used to reduce the frequency of
nondeterministic decisions by agents is the max loss parameter, but lowering maxloss
comes down to reducing the number of options. As we have seen in Fig. 7.24, this
incurs a considerable decrease of the average effectiveness. The use of synchronous
proposal processing to combat the third source of variance has a similar drawback.
We know from Fig. 7.21 that this incurs a considerable increase of the average
auction duration.

To assert the relative influence of the three sources of performance variation, we
performed systematic fixed-instance simulation'" on the default sample space, for
various settings of the resolution and asynchrony parameters. We then computed,
for each of these settings, the average number of different solutions per problem
instance, and the range of incurred effectiveness variation. The outcomes are listed
in Table 7.10. Because the simulation involved 200 invocations of IG to each of
100 different problem instances, the values in the table are the averages of only
100 numbers. Consequently, they are much less reliable than the statistics rendered
in other experiments. This is illustrated by the fact that the reported average
effectiveness, listed in the last column of the table, is slightly higher with the default
IG mechanism (in the first row) than with resolution set to zero (in the fifth row),
while we know from Fig. 7.20 that the converse is true for the sample space as a
whole.

In view of the relative unreliability of the data, and the absence of confidence limits,
we should be careful in drawing conclusions from Table 7.10. One can conclude, how-
ever, that there is not much difference between the degree of nondeterminism (the
4th column) and the incurred variation in effectiveness (the 6th column) between the
first and the third, or the second and the fourth row. In other words, the choice be-
tween mixed and high resolution has little impact on the degree of nondeterminism
and the incurred performance variance. Comparison of the relevant columns of the
first and second rows, and those of the third and fourth shows that the asynchrony
setting is more influential. The highest degrees of nondeterminism and effectiveness
variance occur in the bottom two rows, which pertain to IG mechanisms that do not
make use of any eligibility heuristic.

'"Agents endowed with the same tool type will still be equally eligible.
See the survey of simulation modes on page 248.
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asynchrony

50%
0%
50%
0%
50%
0%

resolution

mixed
mixed
high
high
zero
zero

avg.
nr.sols

5.0
2.8
4.9
3.0

18.5
11.0

max.
nr.sols

36
10
24
24
99
90

avg.eff.
range

5.8
3.6
5.6
3.7

11.1
9.0

max.eff.
range
20.0
20.0
20.0
20.0
29.2
29.2

avg.eff

92.8
92.7
92.9
92.9
92.5
92.8

Table 7.10: Impact of asynchrony and resolution on nondeterminism.

All in all, the prospects of variance reduction do not seem to be very good. The
variance reduction incurred by using high instead of mixed resolution is so small
in comparison with that with using synchronous instead of asynchronous proposal
processing that the addition of a "very-high" resolution (as suggested above) does
not seem worthwhile.

7.7 Performance Comparison with Other Mechanisms

In this section, we compare IG with other strongly decentralized reassignment mech-
anisms, with respect to performance (in terms of allocation effectiveness), and also
with respect to informational and operational decentralization.

In previous sections, we have discussed a number of mechanisms for decentralized
reallocation. Some of these concern newly proposed approaches (e.g., delegated ne-
gotiation), while others are existing frameworks (viz. CDN (Sathi &: Fox, 1989),
and MOP (Wellman, 1994b)). These two frameworks are specifically aimed at re-
allocation problems that go beyond reassignment. Because we confine ourselves to
reassignment, the performance comparison in this section does not involve these
frameworks in their full capacity. We compare IG performance with rawsu/nment
mechanisms that reflect the ideas behind these general frameworks.

For MOP, this means that we investigate Walrasian excAanye auctions instead of
MOP mechanisms based on General Equilibrium Theory, which involve money, and
protluction as well as consumption (such as Wellman's (1994b) WALRAS mechanism).
For CDN (See Sect. 3.2.1), it means that we evaluate Top-Trading-Cycle (TTC)
algorithms for elementary composition. Other components of CDN either do not
make souse in the context of reassignment (e.g., reconfiguration), or are not described
in sufficient detail in (Sathi &; Fox, 1989) to produce an equivalent implementation
(e.g., the interleaving of composition and relaxation).

Next to TTC mechanisms and the Walrasian exchange auction, the comparison also
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mechanism description
Individually rational mechanisms:

WALRAS
TTC
TTC+
ITC*
JTC*

computes a Walrasian assignment (if it exists)
the default, nondeterministic Top-Trading-Cycles algorithm
TTC + largest-cycle-first heuristic
TTC + largest-cycleset-first heuristic
computes aM TTC-solutions

IG-related mechanisms:
IG
IGo
IG*
IG?
DN

the default IG reassignment mechanism
IG with caution = 0
IG without the eligibility heuristic
IG^ with caution = 0
IG with deadline = 2, weariness = FALSE,
and asynchrony = 0

Table 7.11: Reassignment mechanisms.

involves some mechanisms closely related to IG, such as delegated negotiation. A
concise description of each of the mechanisms is provided in Table 7.11. In the table,
we have separated the mechanisms that ensure individual rationality from those that
do not.

WALRAS Our WALRAS algorithm computes a Walrasian assignment (if it exists)
by means of stratification, as described in Sect. 4.2 and 4.4. Note that this is
not the WALRAS framework described in (Wellman, 1994b), nor a reassignment
version thereof.

TTC The basic Top-Trading-Cycles algorithm is described in Sect. 3.3.5 (near
page 73). A decentralized version of this TTC algorithm comprises the follow-
ing sequence of instructions (to be performed by the auctioneer).

1. Ask the agents to specify their endowment and their first preference, and
compute tool type supply.

2. Communicate the current tool type supply to the agents in the audience.
3. Ask these agents to specify their first preference m <Ae current «upp/i/
4. If there is no TTC that involves at least two agents, finish.
5. Pick a TTC that involves at least two agents, perform a (partial) reas-

signment according to this TTC, remove the associated agents from the
audience, and update the supply.

6. If some tool type has vanished from the supply due to the most recent
reassignment, go to step 2. Otherwise, go to step 4.
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TTC+ This algorithm is the same as the above TTC algorithm, except that a
TTC of maximal size'* is chosen in step 5. Note that TTC+ involves much
more effort on the part of the auctioneer than plain TTC, which only needs
to compute one top-trading cycle.

TTC" This algorithm is the same as TTC, except that, in step 5, the auctioneer
searches for a maximalst of TTCs that can be satisfied simultaneously. At first
sight, computing a maximal set of TTCs may seem to involve a higher compu-
tational cost than computing a single maximal TTC. However, because TTC*
makes use of the elementary composition algorithm described in Sect. 3.2.9, it
is, in fact, less expensive than TTC*.

TTC* This is a computationally costly backtracking algorithm based on the bal-
ancing algorithm described in Sect. 3.2.7. It proceeds similarly to TTC*,
except that it computes all TTC sets that cannot be expanded further, and
explores all of these alternatives. Also, it is not informationally decentralized:
Tlw mediator needs to know the preferences of all agents (up to their initial
endowments).

IG^, IG,f These mechanisms differ from IG and IGo in that they do not employ
any eligibility heuristic. All competing proposals are equally eligible. Hence, if
we stick to the letter of Def. 5.2 of IG mechanism, they are not IG mechanisms.
However, they can be selected in the IGRT, and are obviously closely related
to IG.

DN We described delegated negotiation in Sect. 5.5 as a single-shot reallocation
mechanism, where each agent has one opportunity to submit an exchange
proposal which it considers optimal in view of the tool type supply and demand
conveyed by the auctioneer. Because we did not provide a formal definition of
agent rationality in DN, this description does not define a DN reassignment
mechanism unambiguously. However, if we assume that the agents in DN
exhibit fictitious rationality, as they do in IG, the above description implies
that a DN reassignment mechanism is equivalent to IG with 0% asynchrony,
no weariness, and a deadline of 2 rounds per phase.

Before we discuss the differences in average effectiveness obtained by (some of) these
mechanisms, we summarize the differences in the respective designs. This is done in
Table 7.12, in terms of informational and operational decentralization.

As apparent from Table 7.12, TTC* is not a serious contender among these reassign-
ment mechanisms, because it is not informationally decentralized, and has a very low
degree of operational decentralization. Moreover, it is not tractable. Nevertheless,
it is included in the effectiveness comparisons, because it provides an upper bound

"The site of a TTC is the number of agents involved in it.
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mechanism
IG
IGo
IG*
IG?
DN

TTC
TTC+
TTC*
TTC*

WALRAS

inform, decentr?
yes
yes
yes
yes
yes
yes
yes
yes
no
yes

agent workload
high
low
high
low
high
low
low
low
low
low

auctioneer workload
medium
medium

low
low

medium
medium

high
high

very high
medium

Table 7.12: Mechanism characteristics.

for the effectiveness of TTC mechanisms. The TTC mechanisms TTC* and TTC*
have in common that they reassign tools incrementally, satisfying the exchange pro-
posals of agents in one or more top-trading cycles in each step. They differ in
the heuristic that is employed to determine in which order top-trading cycles are
processed. TTC+ employs the Largest-Cluster-First (LCF) heuristic, while TTC*
uses the Largest-Bag-First (LBF) heuristic.*' We cannot imagine a better heuristic
than LBF at present, but this, of course, does not mean that a better one does
not exist. Hence, it is interesting to know how much improvement such a heuristic
could bring about. TTC* answers this question by providing an upper bound for
the effectiveness that can be obtained by a TTC mechanism.

In the following, TTC* denotes the TTC oracle, the /»j/po</ie<ica/, informationally
decentralized mechanism that renders a TTC solution of maximal effectiveness when-
ever it is invoked. Except as a means to compute TTC*'s effectiveness, we also use
TTC" to evaluate the performance of TTC. This is possible, because the IGRT keeps
track of the averages of the minimal, maximal, and average TTC solution effective-
ness over a sample of problems, if TTC* is activated. Since a sample average of the
average TTC solution effectiveness reported by T T C is an unbiased estimate of the
average effectiveness obtained by TTC on the associated sample space, we can use
TTC to evaluate TTC. In fact, this is preferable to the more direct approach of
implementing TTC itself as an algorithm that greedily satisfies the proposals asso-
ciated with any top-trading cycle it encounters, because the effectiveness obtained
by such an algorithm will depend on implementational details (in particular, Aou; it
searches for a top-trading cycle).

Because Walrasian equilibria are rare in sample spaces of typed reassignment prob-
lems, and the IGRT has no provisions to generate only Walrasian markets, we would

*cf. Sect. 3.2.3.
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have to generate very many problem instances to come up with statistically signif-
icant differences in average effectiveness between IG and the Walrasian auction.
Furthermore, even if we would do this, the comparison between IG and the Wal-
ra«ian auction is bound to be of little value. As we pointed out in Sect. 4.6.4, there
are indications that a large proportion of the typed reassignment problems that
do possess a Walrasian equilibrium are trivial problem instances (viz. equilibria!
markets).

In view of this, the comparison between IG and WALRAS is performed on sample
spaces of untyped reassignment problems with weakly row-monotonic utility matri-
ces. In such spaces, each problem is a Walrasian market, and if the utility matrix is
row-rnonotonic, all of the TTC algorithms coincide with WALRAS, that is, they ren-
der tin' (unique) Walrasian assignment. If the utility matrix is not row-monotonic,
there are generally multiple TTC solutions, but each of these corresponds with the
Wiilra.siaii allocation of some market in the SPAM enumeration of the problem.
This implies that the average performance of WALRAS on a sample from an un-
typed problem space is indicative for the average performance that can be expected
of any of the individually rational mechanisms in Table 7.11.

It is computationally costly to obtain statistically significant findings on large prob-
lems with the TTC* algorithm. To solve one problem with 10 agents and 4 tool
types, TTC* requires approximately 100 ms (within the IGRT on a 486 PC). Solv-
ing a problem with 12 agents and 5 tool types takes almost one second. Apparently,
adding 2 agents and one tool type incurs a tenfold increase in computation time.
If we extrapolate this finding exponentially** to problems with 20 agents and 9
tool types, processing a standard-size sample (i.e., one of 20,000 problem instances)
would take more than 6 years. Hence, we only apply TTC* to sample spaces with
12 agents and 5 tool types.

I have not implemented TTC+, for two reasons. First, it is very unlikely that this
algorithm will ever outperform TTC* in terms of average solution quality. The LCF
heuristic in TTC+ is based on the hypothesis that it is profitable to satisfy as many
agents as possible with their (current) first preference. If this hypothesis is correct,
the LCF heuristic is never better than the LBF heuristic of TTC*, while we have seen
(in Fig 3.6 on page 59) that there are cases where LBF leads to much more satisfied
agents than LCF. Second, our implementation of TTC* is fast, because it makes
use of the same (polynomial) algorithm we use to compute the optimal community
utility of a problem instance (Jonker & Volgenant, 1987). It is not obvious that a
similarly fast algorithm for TTC* exists.

"Exponential extrapolation amounts to the assumption that the addition of 2 agents always
incurs a tenfold increase.
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7.7.1 IG versus the Walrasian auction

We compare the effectiveness obtained by IG with that obtained by a Walrasian auc-
tion on sample spaces with various problem sizes. It has become clear in Chapter 4
that Walrasian equilibria seldom exist for typed reassignment problems, especially if
one excludes (trivial) zero-tension problems, as the IGRT does." Hence, the solu-
tion quality comparison is performed on problem spaces with untyped reassignment
problems, for which a Walrasian equilibrium always exists. Except for the tool bag,
we use the default setting of problem generation parameters. In other words, for all
of the investigated sample spaces, u t i l i t y range = 10, low a l t e r n a t i v e = 3,
and high a l t e r n a t i v e = 9, while zero u t i l i t y equals —25 in the heterogemic
case, and 50 in the homogemic one. Thus, the sample spaces associated with the
data points in each of the graphs differ only in the multiplicity types of the associated
tool bags ({1 : n}, where n = 10,12,14,16,18,20). In the following, we denote these
sample spaces by S,, if they are homogemic, and by 5,, if they are heterogemic. The
base-level effectiveness values of each of the sample spaces are listed in Table 7.13.

nr of agents (n)
avg. tension in 5,,
avg. C* in S„
£-L of 5»

avg. tension in 5,,
avg. C* in S„

J5^ of 5„

10
3.49
90.3
72.1

3.48
90.6
72.0

12
4.22
91.3
72.0

4.22
91.5
71.8

14
4.97
92.0
70.0

4.97
92.0

70.1

16
5.69
92.6
69.5

5.70
92.6

69.5

18
6.42
93.1
69.1

6.43
92.9
69.2

20
7.17
93.5
68.7

7.16
93.4
68.8

Table 7.13: Base-level effectiveness (£?•"•) of the sample spaces.

The base-level effectiveness appears to vary roughly" between 72% for the small
problems and roughly 70% for the large ones. Note, however, that the tension in
a problem space with large problems (e.g., S20) is considerably higher than the
tension in the default space. Hence, the associated base-level effectiveness is an
overly pessimistic estimate of the effectiveness that an unsophisticated mechanism
can obtain. Consequently, it is not permissable to conclude from the decreasing
£^ with increasing problem size that larger problems are more difficult. In fact,
the rising effectiveness curves in Fig. 7.27 strongly suggest that larger problems are
easier.

"See the remarks about Walrasian subspaces of SPAM*(12,4) near the end of Sect. 4.6.4.
**The differences between the average tension reported in the homogemic and heterogemic samples

indicate that the third digit of the computed £•"- values is not entirely reliable (since the average
tension in the sample jpac;J is the same in both cases).
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Figure 7.27: Performance comparison of IG and Walrasian exchange
(a) on heterogemic problems.
(b) on humogemic problems.

As apparent from Fig. 7.27, IG outperforms the Walrasian auction, both on het-
erogemic and on homogemic problems. The performance differences appear to be
somewhat larger in the heterogemic case. This is probably due to the fact that the
cost of ensuring individual rationality tends to be higher for heterogemic problems
than for homogemic ones. In both cases, the differences in average effectiveness are
statistically significant. They are also considerable in comparison with the variations
observed between different IG mechanisms in the previous section.

To get a better idea of the differences between the quality of the solutions rendered
by the two mechanisms, we do not only compare the overage solution quality, but
also inspect the respective distributions. Fig. 7.28 portrays the distribution of the
effectiveness obtained with IG and that of the Walrasian assignments of the 20,000
sample problems from which the data points at agents = 12 in the leftmost (het-
erogemic) graph of Fig. 7.27 were computed.

As Fig. 7.28 shows, there is more variation in the effectiveness of Walrasian equilibria
than in that of IG solutions. Furthermore, the distribution curve of the Walrasian
auction lies entirely above that of IG for effectiveness values below 90%, and entirely
below it for higher effectiveness values. As such, there is a consistent pattern of more
frequent high performance and less frequent low performance of IG, in comparison
with the Walrasian auction.

This does not imply, however, that IG performs consistently better than a Walrasian
auction on each of the sample problems. If we plot the distribution of the difference
between the effectiveness values on the same problem instances, the effectiveness
obtained by IG appears to range from 25 percent below to 35 percent above the
effectiveness of the Walrasian equilibria. This differential distribution is shown in
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Figure 7.28: IG and Walrasian effectiveness distributions.
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Figure 7.29: Differential distribution (IG minus Walrasian effectiveness).

Fig. 7.29.

Conceptually, IG differs from the Walrasian auction in two respects.

1. The reassignments rendered by IG are not always individually rational, while
those rendered by a Walrasian auction are.

2. The distinction between "slightly better" and "much better" influences the
decisions of agents in an IG auction, while it does not play any role in a
Walrasian (exchange!) auction.

This prompts the question which of these differences is the most important one.
In other words, what is the primary cause of IG's superior performance? To test
this, we have repeated the simulations underlying Fig. 7.27, 7.28, and 7.29 on het-
erogemic sample spaces with u t i l i t y range = 99, and low alternative = high
alternative = 98. With this parameter setting, the generated utility matrices
are very nearly binary, all agent-level utilities equalling either 0, or 1, or (98/99 =)
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0.9899. In other words, agents are either (almost) fully satisfied with an endowment,
or utterly dissatisfied.

At first sight, one might be prone to conclude that cardinal distinctions — which
do not play any role in binary problems — play a relatively minor role in near-
binary ones. The converse is true, however. In the context of the near-binary utility
matrices, a final endowment that is "somewhat better" for the agent than its initial
endowment involves an improvement in agent-level utility of about 1% (from 98.99%
to 100%), while a "much better" final endowment can only be attained by agents
with zero initial utility, and constitutes an improvement in normalized agent utility
of virtually 100% (from 0% to either 98.99% or 100%). As such, the difference
between "somewhat better" and "much better" in this sample space is about as
large as it can get.

The other aspect in which IG differs from WALRAS is the absence of an individual-
rationality constraint. As for the relative impact of this difference on allocation ef-
fectiveness in the case of near-binary matrices, it is difficult to draw conclusions on
tlicdiclK ;il grounds. However, the outcomes of our experiments with the near-binary
problems rendered two indications that the absence or presence of an individual-
rationality constraint has relatively little impact on the final effectiveness that can
be obtained. First, the /owest observed effectiveness values of optimal individually
rational reassignments were 99.99% for n = 10, 99.91% for n = 12, and 100% for the
other population sizes. Second, IG solutions were virtually always individually ratio-
nal: the percentage of zero-loss auctions was 99.99% in the samples with population
sizes of 14 and 20, and 100% in the other samples.

Summarizing, with near-binary problems, IG's ability to reckon with cardinal utility
differences is bound to have a greater impact on allocation effectiveness (than with
problems drawn from the default sample space), while the absence of an individual-
rationality constraint is of relatively minor importance. Hence, if IG outperforms
WALRAS to a jrea/er extent on the near-binary problems than it did on problems
generated drawn from the default sample space, we can conclude that the most
important difference between IG and WALRAS is IG's ability to take cardinal utility
differences into account. If, on the other hand, the effectiveness difference between
IG and WALRAS is much smaller with the near-binary problems, this would indicate
that the absence of an individual-rationality constraint is the primary cause of IG's
superior performance.

The outcomes of our experiments with the near-binary problems are pictured in
Fig. 7.30. The first plot shows the average effectiveness obtained by the two
mechanisms on samples of near-binary problems, with population sizes ranging
from 10 to 20 agents. The second plot shows the distribution of the extra effec-
tiveness obtained by IG on problems with 12 agents (i.e., problems drawn from

: 12}, 99,3,98,98)).
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Figure 7.30: Effectiveness comparison on near-binary problems.
(a) Effectiveness of IG and WALRAS for various n.
(b) Distribution of the extra effectiveness (£|Q — £WALRAS) ob-
tained by IG over WALRAS with n = 12. .

It appears that IG outperforms the Walrasian auction on these sample spaces also.
Moreover, comparison of the first plot with Fig. 7.27 reveals that the differences
in average effectiveness are larger than with the untyped default problem spaces,
and comparison of the second plot with Fig. 7.29 shows that the superiority of IG
is also more consistent on the near-binary problems. Hence, we conclude that the
most important advantage of IG over WALRAS is its emergent capability to take
cardinal differences between the utility gains of different agents into account.

7.7.2 IG versus T T C mechanisms

The Top-Trading-Cycle mechanisms are not plagued by the absence of equilibria.
Hence, we measure their effectiveness on sample spaces of typed reassignment prob-
lems. The sample spaces used are listed in Table 7.14.

space

S
5
5„
"tec

•?20x9

deviation from

none
zero u t i l i t y
zero u t i l i t y
a = {8,1,1,1}
a = {3,3,2,2,2

the default parameter setting

= 50%
= 0%

,2,2,2,2}

Table 7.14: The sample spaces used for mechanism evaluation.
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The comparison involves IG, the related mechanisms IGo, IG*. IGJ\ and DN, and
the Top-Trading-Cycle mechanisms TTC, TTC", and TTC*. We employ TTC*
to emulate TTC* as well as TTC, using the reported maximum and average TTC
effectiveness respectively. In view of the computational complexity of TTC* (cf.
page 326), we did not attempt to apply it to S2o*9- The attempt to apply TTC
to 5,« failed for the same reason. Consequently, there are no experimental data on
the solution quality obtainable with TTC and TTC* on S20X9 or 5«c

The numerical outcomes of the other experiments are shown in Table 7.15. A
schematic display of these outcomes is presented in Table 7.15.

sample
space

S
5,,

IG

92.4
93.0
96.3
89.1
92.8

IGo

912
92.2
95.9
89.4
91.6

avg. effectiveness obtained by
IG*

92.6
92.9
96.1
87.8
93.6

IG?
91.5
92.2
95.9
89.1
91.6

DN

91.8
92.1
96.0
88.4
91.1

TTC

89.6
91.2
95.0

-
-

TTC*

89.9
91.5
95.4
86.8
89.9

TTC*

96.2
97.1
98.3

-
-

W

89.9?
91.3?
95.4?
82.9?
92.2??

%W

1.6
1.4
1.6
3.1

0.07

Table 7.15: Numerical performance comparison of IG- and TTC-like mech-
anisms (in terms of the average effectiveness obtained on the
sample).

The precision of the data in Table 7.15 generally reflects the level of statistical
significance." This is not the case, however, for the last two columns. The data
in these columns represent the measured average effectiveness of Walrasian assign-
ments, and the percentage of the sample problems for which such an assignment
turned out to exist. From the percentages in the last column, it follows that the
averages in the ' W column are based on a number of problem instances, ranging
between 14 for S20X9 and 620 for S,,«- Hence, none of the entries in the "W column
are reliable, and the bottom entry constitutes little more than a wild guess.

The reliable data in Table 7.15 are reflected in Table 7.16, in the form of an ondinai
comparison of the performance of the mechanisms. In each column of the table,
the mechanisms are listed in (top-down) decreasing order of average effectiveness
for the associated sample space. The presence of a horizontal line between two
mechanisms in the same column indicates that the performance difference between
these two mechanisms is statistically significant.** Note that a statistically signifi-
cant performance difference can still be marginal. This is the case, for example, for

"The size of the confidence intervals varies between 0 006 and 0 07.
"Here, "statistically significant" means that the (95%) confidence intervals around the respective

estimates of the average effectiveness do not overlap.
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5
TTC*
IG'
IG
DN
IG«'
IGo

TTC*
TTC

S
TTC*

IG
I G '
IG«
IG«'
DN

TTC*
TTC

s,.
TTC*

IG
I G '
DN
IGo'
IGo

TTC*
TTC

?

IGo
IG^
IG
DN
IG'

TTC*
?

5jOx9
?

IG '
IG

IGo'
IG«
DN

TTC*

Table 7.16: Ordinal performance comparison of IG and TTC mechanisms
(in terms of top-down decreasing effectiveness).

the difference in average effectiveness obtained by I G ' and IG on 5, which as
inspection of Table 7.15 reveals — equals approximately 0.2%.

The question marks represent conjectures on the positions of TTC and TTC* in
the ranking for the sample spaces S,.^ and SJOXSI on which the application of TTC*
was not feasible.

From the table, we conclude that the average effectiveness of the Top-Trading-Cycle
mechanisms TTC and TTC* is below that of eac/i of the IG-related mechanisms
on a// of the investigated sample spaces.^ Inspection of the table reveals that the
difference between the performance of TTC* and the worst performance of any IG-
related mechanism is always statistically significant, though sometimes marginal:
Numerically (cf. Table 7.15), the performance differences range from 0.2% (with
SJOXS) to 1.0% (with S,,-,-).

In general, the IG mechanisms with reckless agents (i.e., IGo and I G ' ) obtain a
lower average effectiveness than those in which the agents perform risk estimation.
However, this is not the case on 5,.,-r- Here, reckless agents appear to have an
advantage.

To explain this phenomenon, we recall our analysis of the relatively low IG perfor-
mance on problems with eccentric tool bags in Sect. 7.5. Here, we mentioned that,
in the context of an eccentric tool bag, the most numerous tool type is often the
only oversupplied one. This causes the agents endowed with this tool type to 6eAo«c
recklessly, even though they are not reckless (in the sense that they do perform
risk estimation). This can lead to outcomes of low community utility, because these
'auction hogs' tend to mhmi<fa<e the other agents. With this in mind, it is not
surprising that it appears to be advantageous to refrain from risk estimation in the

As in the case of the Walrasian auction, this does not imply that the IG-related mechanisms
perform better than the TTC mechanisms on every individual problem instance.
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context of an eccentric tool bag: Reckless agents are not susceptible to intimidation.

While IGo usually provides solutions of lower quality than IG, it performs better than
IG if the tool bag is very eccentric. This indicates that the effects of parameters in
the context of the default sample space are not necessarily indicative for the effects
in other sample spaces. In particular, the observed superiority of IGo prompts
the question what the 6e«< setting for the caution parameter is, if the tool bag is
eccentric. To answer this question, we performed the experiments with the caution
parameter again, on the sample space 5,«^" The results are shown in Fig. 7.31.

60 -50 -40 30 -20 -10 0 10 20 M 40 50 60
caution

•60 • » -40 JO -20 -10 0 10 20 » 40 50 60
caution

•60-50-40-M-20 10 0 10 20 M 40 50 60
caution

-6O-SO-4O .» -20 • 10 0 10 20 .» 40 50 60
caution

Figure 7.31: Influence of the caution parameter on 5«c-

The influences of caution in Fig 7.31, in the context of the sample space S,„ appear
to be quite different from those exhibited in the context of the default sample space,
shown in Fig. 7.22 on page 314. This is especially so for the influence of caution
on effectiveness. While caution = 10 renders maximal average effectiveness for
problems in the default sample space, the best setting for problems in S«c lies
somewhere near caution = -50. As the second plot in Fig. 7.31 shows, this is also
a good setting in terms of the average auction duration. Furthermore, the difference

"cf. Tnble 7.14 on page 331.
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between the average effectiveness at this value and that at the default caution value
of 10 is considerable (approximately 2%).

The second plot also differs considerably from the rounds plot in Fig 7.22. In the
context of S,cc> the default setting of caution = 10 appears to be the very worst
setting (together with caution = 20), as far as auction duration is concerned.

The most important lesson from this experiment is that there is no single best
attitude toward risk. What the most rewarding attitude is, depends on problem
characteristics, even within a relatively confined problem domain such as reassign-
ment.

The average effectiveness of the 6e«t TTC solution, rendered by the hypothetical
TTC* mechanism, is considerably higher than the average effectiveness obtained by
any of the IG-related or (real) TTC mechanisms. While this shows that there is room
for improvement on TTC's LBF heuristic, it does not imply that improvement —
in the sense of finding a superior heuristic — is feasible.

In fact, we claim that such a heuristic does not exist for the general case. In the
absence of any information other than the bag of submitted proposals, the LBF
heuristic is obviously optimal: It maximizes the conditional expectation of the com-
munity utility under the condition that the carrftno/ utilities associated with pro-
posals are distributed uniformly and independently. A superior heuristic only exists
if there is information to the contrary (on these probability distributions). In the
present context, the only such information is the preference information embodied in
proposals that were communicated earlier. In general, it is very difficult to translate
this information into hypotheses on the underlying cardinal utilities. Hence, any
algorithm that makes use of such information is are bound to be complex if it is to
constitute a significant improvement over TTC" (let alone IG). The term 'heuristic'
would be inappropriate for such a complex reasoning scheme.

7.8 Chapter Summary and Conclusions

7.8.1 Experiment-categories

The conducted experiments fall into five categories:

1. performance evaluation of the default IG mechanism on various sample spaces
(selected by using different settings of problem-generation parameters);

2. characterization of the problems that are difficult for IG;

3. performance evaluation of various IG mechanisms (selected by using different
settings of agent- and mechanism-parameters) on the default problem space;
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4. performance comparison of IG mechanisms, Walrasian exchange, and Top-
Trading-Cycle mechanisms;

5. investigation of the impact and sources of nondeterminism in IG.

Below, we summarize the most important findings in each of these categories, to-
gether with some concepts that were conceived in the process of analyzing the ex-
perimental results. Unless stated otherwise, the conclusions about IG performance
pertain to the primary performance attributes allocation effectiveness and auction
duration, with the emphasis on the former.

7.8.2 Sample-space selection

The experiments in category 1 revealed that our default sample space (which was
used in the majority of experiments) is adequate in the sense that the generated
problems are sufficiently 'average' without being too easy.

Variation of the setting of problem-generation parameters — usually involving vari-
ation of only one or two parameters with all others at their default setting — led to
the following observations. Variation of the number of tool types revealed that IG
performs better on (highly) typed problems than on (nearly) untyped ones. Also,
IG performance tends to be higher on problems with homogeneous tool bags than
on problems witli highly eccentric ones. A high zero u t i l i t y (i.e., percentage of
useless tool types) is detrimental for IG performance. Finally, the utility range
of alternatives for the agents' first preferences — defined by the parameters low
alternative and high alternative — appears to influence the impact of the zero
u t i l i t y on IG performance. The variation of performance with zero u t i l i t y is
most pronounced if the utilities of tool alternatives lie in a narrow band near 100%.

7.8.3 The impact of problem scale

Our analysis reveals that there is no unambiguous answer to the question how IG
performance scales up, because it is not immediately clear what a scale increase
amounts to for /t//>e<i reassignment problems. If one is solely interested in the per-
formance aspect of auction duration, this is not much of an issue, since the auction
duration increases with increasing scale, whichever (sensible) definition of scale we
employ. The effects of problem scale on solution quality, however, differ substantially
for different interpretations of 'scale increase'.

It depends on the nature of the (real-life) problem context whether the average
effectiveness obtained by IG increases, decreases, or is approximately constant with
increasing scale. In a domain where a scale increase is synonymous with an increase
of the population, the performance of IG increases with scale. In a domain where
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an increase of the population is usually accompanied by an increase of the number
of tool types, IG performance is either approximately constant, or it decreases with
scale. It depends on the number of useful tool types per agent which of these
two cases applies. In domains where the number of useful tool types tends to be
proportional to the total number of tool types, the average IG effectiveness is not
significantly affected by the problem scale. If the number of useful tool types per
agent is approximately constant, that is, independent of the total number of tool
types, the average IG effectiveness decreases with increasing scale.

Neither of these scaling effects are special features of IG; in our analysis, we ar-
gued why it is to be expected that they also pertain to other strongly decentralized
mechanisms: They can be explained as a consequence of the nature of reassignment
problems in combination with the fact that we use an measure of solution quality
that is an average of individual agent satisfaction.

7.8.4 Characterization of difficult problems

Most of the above problem generation parameters appear to have a considerable
impact on IG effectiveness, even if we confine ourselves to single-parameter varia-
tion. However, we observed that there is a considerable gap between the average
effectiveness of IG on the most difficult sample spaces and the lowest effectiveness
obtained on individual problem instances.

This suggests that the chosen set of problem-generation parameters is not adequate
to characterize the hard problems. We identified the <ertston (i.e., the discrepancy
between initial supply and demand) of a reassignment problem as a quantity that
is a good measure of problem difficulty, and showed experimentally that problems
of near-maximal tension are among the most difficult problems. Yot, the average
tension in a sample space is not the sole determinant of IG's performance on that
space. Another important problem property in this respect is the degree to which the
oversupply is spread over different tool types. Our analysis of experimental outcomes
revealed that IG's eligibility heuristic falters if there is only one oversupplied tool
type, because the agents endowed with this tool type cannot possibly lose any utility,
and therefore behave recklessly. Such a focus of oversupply on one (or very few) tool
type(s) correlates with high tension, but it cannot occur in (viable) reassignment
problems of maximal tension. This is a plausible explanation why problems with
near-maximal tension tend to be more difficult for IG than problems with maximal
tension.

The tension itself is not a suitable problem-generation parameter, because efficient
generation of problem instances with a prespecified tension is feasible only for sample
spaces associated with one specific utility matrix.

However, we identified the corre/ohon between agent preferences as a candidate
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problem-generation parameter that correlates with the tension, and does allow for
efficient sample-space selection. The incorporation of a preference-correlation pa-
rameter would also offer the opportunity to improve the extent to which the gen-
erated problems can be qualified as realistic. In retrospect, we concluded that our
assumption of zero average correlation between the preferences of different agents is
a shortcoming in this respect.

We also used the tension to define a (problem-dependent) reference level for the
average effectiveness that a decentralized mechanism should at least attain. Knowl-
edge of this fowe-Zeue/ e/fectiuenej« is required to judge whether a measured average
effectiveness of less than 100% qualifies as admirable or pityful performance. The
base-level effectiveness of a single problem instance equals the amount of effective-
ness stemming from first preferences, if one assigns as many first preferences as
possible. Hence, it is a lowerbound on the effectiveness that can be obtained by a
trivial variant of IG, where all proposals are equally eligible, and agents simply stick
to their first preferences, without paying any attention to the risk of failure.

7.8.5 Impact of agent- and mechanism-parameters

The outcomes of our experiments indicate that negotiation weariness should def-
initely be incorporated in IG, and that the market clearance condition for phase
termination is best omitted: It is hardly ever invoked, and has hardly any impact
on the average performance.

Volatility is probably best left out also. Although our expectation that a small
positive setting would lead to better performance than the default setting of zero
volatility appeared to be principally correct, the improvement is so marginal that it
does not outweigh the disadvantage that a positive volatility constitutes irrational
behavior.

As for the best setting of the other agent and mechanism parameters, there are often
tradeoffs between solution quality and auction duration, or between different aspects
of solution quality (such as effectiveness and zero-loss). If we regard the effectiveness
as (by far) the most important performance attribute, the following conclusions can
be drawn.

1. The default setting of the agent and mechanism parameters appeared to be
optimal, or nearly so, on the default sample space, with respect to the primary
performance attributes (the average effectiveness and the average auction du-
ration in rounds).

2. The resolution parameter, which determines the courseness of the eligibil-
ity ordering employed in the pseudo-composition protocol, appears to have
only a marginal effect on IG effectiveness. Within the original value range
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; (low,mixed,high), mixed resolution comes out first but the differences with
respect to average effectiveness are minute, and not statistically significant.
It turns out, however, that the value e l ig ib i l i ty = zero, that is, the IG
mechanism in which eligibility plays no role at all, performs (marginally, but
significantly) better than IG with mixed resolution in terms of effectiveness,
and only slightly worse in terms of auction duration. In other words, for re-
assignment problems, the eligibility heuristic is of little value. The original
idea behind this heuristic was to incent agents to release scarce tools so as
to improve their chances of obtaining other scarce tools. Because an agent
in a reassignment problem only possesses a single tool, while an agent in a
full-fledged reallocation problem can possess tools of many different types, the
merits of the eligibility heuristic may well be greater in the context of full-
fledged reallocation.

3. Asynchrony appears to have a considerable effect on auction duration, but
its influence on effectiveness is marginal. Also, if one opts for asynchronous
parallelism (i.e., for asynchrony > 0), the exact setting is not very important.
Grossly, moderate asynchrony (say, between 40 and 75%) is preferable over
more extreme settings. With weariness incorporated, employing synchronous
parallelism becomes a viable option: It leads to a higher average auction du-
ration, but also to a (marginally) higher average effectiveness.

4. If weariness is incorporated in IG, the deadline is an agent parameter, quanti-
fying the negotiation stamina exhibited by the agents. In this case, the default
setting of the deadline parameter (to 500 rounds) appears to be unnecessarily
high. A deadline value of about 30 rounds is high enough for the default
sample space. Smaller values (e.g., 5 or 10) render a much lower average
effectiveness, but the curve that pictures the influence of the deadline on ef-
fectiveness levels off at deadline = 20. There are no statistically significant
differences between the effectiveness values obtained with higher deadlines.
This observation pertains to the default sample space of problems with 12
agents and 5 tool types, but scale does not seem very relevant here: the curve
for the sample space of problems with 20 agents and 9 tool types levels off at
deadline = 20 as well.

5. The remaining agent parameters, caution and maxloss, are alternative means
to reduce the frequency and severity of utility loss. Utility loss can only be
prevented completely by setting maxloss to zero, but this tends to be costly in
terms of decreased effectiveness (incurring decreases like from 92.5% to 87.9%).
If utility loss is considered acceptable, provided that it does not occur very
often, the caution parameter is a preferable handle to reduce the frequency
of utility loss. A reduction of the percentage of auctions featuring utility loss
from 22 to 9% costs about 2% in effectiveness decrease with caution as a
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handle, and about 2.5% with maxloss. These effectiveness decreases are much
larger than the difference between the effectiveness of an optimal allocation
and an optimal, individually rational allocation (viz. 0.39% on average for the
default sample space).

Furthermore, our experiments point out that Walrasian exchange and TTC
mechanisms are also relatively costly means to produce individually rational
solutions: The average effectiveness of (individually rational) Walrasian allo-
cations is approximately 2% below the average effectiveness obtained by IG
on the same samples.

Together, these observations suggest that the cost of preventing or reduc-
ing utility loss is considerably higher in strongly informationally decentralized
mechanisms (such as IG and Walrasian exchange) than in mechanisms without
such decentralization (such as the monetary Walrasian auction).

6. The percentage of zero-loss auctions can vary considerably for different values
of a parameter, but this is often compensated by the percentage of agents
that loses utility. As an example, the percentage of zero-loss auctions tends to
decrease with increasing problem scale, but this is compensated by a decrease
of the average percentage of agents that lose utility. As a consequence, the
probability that an agent which takes part in an IG auction will lose utility is
not significantly dependent on problem scale. This probability equals 2% with
the default parameter setting for all of the investigated problem sizes.

7. It turns out that the optimal setting for the caution parameter depends heavily
on the kind of reassignment problems IG is confronted with. Risk-neutral

! neutral agents perform best (in terms of effectiveness) on the default problem
space, but risk-insensitive agents do better in the context of a community tool
bag that is very eccentric. In this case, the caution value of 50 is optimal,
both in terms of average effectiveness and average auction duration. In both
cases, excessive pessimism is more damaging (to effectiveness as well as auction
duration) than excessive optimism.

7.8.6 Performance comparison of IG and other mechanisms

On all investigated sample spaces (which involve only untyped reassignment problems
in the case of the Walrasian auction), all of the major variants of IG appear to
outperform the Walrasian auction as well as decentralized TTC mechanisms in terms
of average effectiveness.
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7.8.7 Nondeterminism

Our experiments have revealed that the variation in performance within a problem
sample tend to be much larger than the differences between the average values of
performance attributes over the samples. In other words, if mechanism X outper-
forms mechanism Y, the superiority of X over Y is all but consistent. This is partly
due to the fact that IG mechanisms tend to involve many nondeterministic deci-
sions. As a consequence, an observed on-average superiority of IG mechanism X
over mechanism Y is not even guaranteed to be consistent in repeated application
of X and Y to the some problem instance.

This prompted us to investigate to what extent the agent- and mechanism-
parameters can be used to reduce the variation in performance due to nondeter-
minism. There are three candidate parameters in this respect. The resolution pa-
rameter affects the frequency of nondeterministic decisions by the auctioneer, the
maxloss parameter affects the frequency of such decisions by the agents, and the
asynchrony parameter affects the amount of nondeterminism due to variations in
agent response speed and communication delays. Maxloss is a less suitable handle,
because it reduces the amount of nondeterminism by narrowing instead of sharpen-
ing the agents' eyesight. Thus, reduction of nondeterminism by means of maxloss
is relatively costly in terms of effectiveness decrease. Hence, we confined our exper-
iments to the asynchrony and resolution parameters.

It turns out that these two parameters, in combination, exert a considerable influence
on performance variation due to nondeterminism. The average number of different
solutions rendered for one and the same problem varied between 18.5 (with 50%
asynchrony and zero resolution) and 2.8 (with 0% asynchrony and mixed resolution),
with associated variations in average effectiveness of 11.1% and 3.6%.

However, the prospects of a further reduction of the effectiveness range (to less than
3.6%) do not seem very bright: The amount of nondeterminism due to asynchrony is
already at its minimum with asynchrony = 0%, and a higher-than-high resolution is
technically possible, but unlikely to have the desired effect, in view of the observation
that changing the resolution from mixed to high does not decrease the amount of
performance variation at all.





Chapter 8

Conclusions, Future Research,
and Reflection

8.1 Chapter Overview

This last chapter comprises three parts. In Sect. 8.2, we recapitulate the most
important conclusions, and put these into perspective. In Sect. 8.3, we suggest some
topics for future research on Informed Gambling. Finally, in Sect. 8.4, we reflect on
our work, and discuss how and why it differs from most other MAS research.

8.2 Conclusions

In Chapter 1, we announced that the thesis would address two questions.

1. How do agent characteristics and coordination rules influence the performance
of a multi-agent system?

2. How can we solve TR problems with multi-agent systems?

The second question played a dominant role in the first five chapters, and was
ultimately answered with the presentation of the Informed-Gambling framework.
We then used IG in chapters 6 and 7 to address the first, more fundamental question.

Conclusions on the second question

The conclusions drawn in chapters 1 to 5 with respect to the second question, the
quest for an adequate multi-agent approach to TR, are based on five demands im-
posed on multi-agent mechanisms. These demands are recapitulated below.

1. The mechanism should be operationally decentralized.

343
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2. The mechanism should be informationally decentralized.

3. The adequacy of the mechanism should not hinge on the assumption of trans-
ferable utility.

4. The mechanism should be productive.

5. The mechanism should render high-quality solutions on average, where the
solution quality is defined as the average agent satisfaction.

The main conclusions, drawn in view of these demands, are as follows.

Chapter 3:

• We concluded that the TR problem domain calls for a multi-agent approach
which features at least some central coordination. In principle, a fully decen-
tralized approach is possible, but it would be very inefficient, since, in the
context of TR, the desirability of a local transaction cannot be determined
without global knowledge of the problem.

• To ensure operational decentralization, it is vital that the messages which
the agents sent to the coordination module are stmp/e. Composite realloca-
tion proposals appear to incur an unacceptable workload for the coordination
module, even if one employs a straightforward composition/revision scheme.

• The incentive relaxation scheme employed in the Walrasian auction, and re-
lated approaches such as MOP, tends to be an adequate approach for problems
featuring divisible goods. Moreover, they are capable of ensuring optimality
in the context of transferable utility. However, if the goods are indivisible, and
utility is not transferable, the Walrasian auction has two shortcomings.

1. The relaxation process may never end, since equilibria are generally not
guaranteed to exist.

2. If an equilibrium is found, the associated solution is not guaranteed to be
optimal; in fact, the solution quality can be arbitrarily low.

Chapter 4:

• The Walrasian density (i.e., the probability that a randomly picked problem
features a Walrasian equilibrium) is low for tool reassignment problems, except
for problem spaces with very small-scale problems. The density, which is 1 for
untyped reassignment, decreases exponentially as the typedness (the ratio of
tools to tool types) increases. In the problem space of reassignment problems
with a 3-2-2-1 distribution of 8 tools over 4 tool types, it is already as low as
6%.



a.2. CONCLUSIONS 345

• We did not measure Walrasian densities in problem spaces of full-fledged tool
reallocation problems. However, our theoretical analysis points out that one
can expect similar observations here: The Walrasian density is bound to de-
crease with increasing typedness, and will approach zero as the ratio of agents
over tool types approaches infinity. '

Chapter 5:

• An Informed-Gambling mechanism is a combination of the two approaches
studied in Chapter 3. Incentive relaxation is combined with a heuristic vari-
ant of composition/revision. In this combination, commitment in the face of
uncertainty plays an essential role. Such commitment is capable of prevent-
ing the trust formation which can lead to low-quality solutions in mechanisms
based on Walrasian exchange.

• IG agents exhibit behavior that is reminiscent of human agents who grow weary
of lengthy negotiations: They become progressively less fussy with time. If ne-
gotiation weariness is not incorporated, the stationary states of the relaxation
process correspond with the game-theoretic notion of correlated equilibrium.
In that case, however, the timely termination of the relaxation process cannot
be guaranteed, even if such a correlated equilibrium does exist.

• Agent weariness conflicts with the usual golden standard of perfect rationality
as the only admissible model for unknown external agents. Yet, we claim that
IG agent models are adequate for open systems, provided that the deadline is
changed from a deterministic into a stochastic value.

Conclusions on the first question

With respect to our first question, how agent characteristics and coordination rules
influence the performance of a multi-agent system, the most important conclusions,
drawn from experiments with the IG reassignment testbed, are the following.

Chapter 7:

• On average tool reassignment problems, the least sophisticated coordination
rules appear to work best. IG's eligibility heuristic seems to have no positive
impact on IG performance in this case. On difficult, tightly constrained prob-
lems, the default IG mechanism (i.e., IG with the eligibility heuristic) tends
to perform better.



346 CHAPTER 8. CONCLUSIONS, FUTURE RESEARCH, AND REFLECTION

• It is hazardous to extrapolate the above observation to full-fledged reallocation.
The eligibility heuristic is likely to be more effective in this case, because agents
can adjust their tool «upp/y as well as their demand.

• On average problems, risk-neutral agents tend to perform best. However,
overly optimistic agents tend to render considerably better outcomes than
overly pessimistic ones. On difficult problems, overly optimistic agents even
outperform risk-neutral agents. This observation is pleasant for IG's appli-
cation to real-life problems: as demonstrated in Sect. 5.9.1, the bounded ra-
tionality proposed for such problems results in estimates for proposal success
probabilities that are usually optimistic, and never pessimistic.

• Tho frequency and severity of utility concessions due to negotiation weariness
tends to be marginal. This observation supports our conjecture that nego-
tiation weariness is an admissible characteristic of agent behavior, even in
open systems. Furthermore, IG mechanisms with weariness tend to render
much better solutions than mechanisms without weariness in cases of very low
(leadline values. For high deadline values, the average solution quality is ap-
proximately the same. Thus, weariness allows for IG to be used as an anytime
algorithm.

• All variants of Informed Gambling outperform all variants of Walrasian ex-
change on all investigated problem spaces in terms of the average solution
quality in a problem space.

• IG does not outperform Walrasian exchange on every problem instance. This
is partly due to nondeterminism. If IG is repeatedly applied to the same
problem instance, the quality of the rendered solutions can vary considerably.

• Individual rationality appears to be much more costly in strongly informa-
tiunally decentralized algorithms than in centralized ones. If IG agents do not
take any risk, the solution is individually rational, but in this case, the aver-
age solution quality drops considerably, to the level of other mechanisms that
guarantee individual rationality, such as Walrasian exchange.

8.3 Future Research

We envision two areas of useful future research: a further investigation of the admis-
sibility of IG agent models in open systems, and the development of IG mechanisms
for real-life optimization problems.
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Admissibility of fictitious rationality in open systems

In Sect. 5.9.2, we claimed that IG agent models are admissible in open systems,
because the prospects of gaining utility by deviating from the behavior specified in
the model are sufficiently discouraging. This statement is not backed up by hard
numbers, and hence, open to future research.

A useful and feasible endeavor in this direction would be to determine, by means of
testbed simulations, how much utility gain can be obtained by an agent with perfect
knowledge of the last proposal profile, within a community of agents who only know
the last market profile (cf. (Sandholm & Ygge, 1997)).

In view of the discussion in Sect. 8.4 and 5.9.2, investigation of the gain obtainable
from mampu/ation seems neither feasible nor necessary: the transformation of the
deadline into a stochastic variable will most likely frustrate any attempts in this
direction. However, the effects of the transformation itself on IG performance do
deserve further investigation.

Application of IG to real-life optimization problems

In Chapter 7, it has become clear that, on tool reassignment problems, IG compares
favorably with Walrasian exchange in terms of allocation effectiveness. Of course,
it is not certain that this is indicative for IG's potential with respect to constrained
optimization, since this typically involves full-fledged reallocation instead of reas-
signment. However, the strategy-space expansion which we proposed in Sect. 5.9.1
as a feasible approach for such problems still involves fictitious rationality as a ba-
sic reasoning schema. Consequently, commitment in the face of uncertainty plays a
prominent role in IG reallocation mechanisms as well. Since this type of commitment
is instrumental in IG's superiority over Walrasian exchange in the reassignment do-
main, an investigation whether IG is also superior in domains involving full-fledged
reallocation is called for.

For such an investigation to be worthwhile, a problem domain should have the
following characteristics.

soft constraints: The coordination module of IG has no provisions for constraint
satisfaction. Consequently, the satisfaction of hard constraints is the respon-
sibility of the agents. Since IG agents generally run some risk that their
proposals fail, and may lose valuable tools if this happens, IG is less suited for
problems with a tight set of hard constraints.

discreteness: For problem domains that can be tackled by IG as well as by MOP,
MOP has the distinctive advantage that its producer agents incur an emergent
problem decomposition. Hence, problem domains which are not discrete can
probably be tackled more satisfactorily by MOP.
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no transferable utility: If the assumption of transferable utility is admissible, a
GET-based approach such as MOP should be able to ensure optimality. Unless
there are other impediments to MOP application (such as discreteness), there
is little purpose in developing an IG mechanism for such domains.

separability: To translate an optimization problem into a (re)allocation problem,
the optimization criterion should be expressible as a function of agent utilities
which do not depend on the allocations to specific other agents. Since an
IG agent is only informed of the collective response behavior of other agents,
an agent whose satisfaction depends on the final endowment of spect/ic other
agent(s) is unable to determine the expected utility of a proposal, even if it is
guaranteed to succeed.

We remark that separability is less restrictive than the above description suggests.
It docs not require that an agent's utility is unaffected by the allocation of goods
to other», but only that it should not matter to u;/»«c/» agents these other goods
are allocated. An example of a domain where this distinction is important is air
traffic control. If we define agents as airplanes, and tools as reservations of approach
corridors during time intervals, the assignment of tools to agents must comply with
the safety rules on separation between airplanes (F. Mulder, 1996, personal commu-
nication). Hence, for an airplane, the allocation of corridors adjacent — in space
or time — to its own corridor is relevant, but it it is not relevant to whom these
tools are allocated. Consequently, air traffic control problems can be reformulated
as allocation problems in the same manner as the 8-queens problem (Ex. 2.2 on
page 22).

8.4 Reflection

We conclude with a reflection on our work. This thesis differs from most other re-
search endeavors in MAS by its nature. It is fundamental, but contrary to most
fundamental research, its basic assumptions are grounded in considerations of ap-
plicability to a specific — albeit broad — problem domain.

As a consequence, some of the conclusions are more tentative than is common in
fundamental research. This pertains, for instance, to the existence of Walrasian
equilibria in TR\SPAM, in Sect. 4.9. Our applicability considerations also led to
some definitions which are semi-formal. The definition of near-perfect rationality
(Def. 5.13 on page 215) is a good example.

Another consequence of the emphasis on applicability is that the thesis uses only a
few established MAS concepts. Most existing concepts proved inadequate for our
purposes. Notions of agent rationality proposed in MAS literature invariably in-
curred excessive computational complexity in the context of TR, or were based on
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inappropriate assumptions.' Game-theoretic concepts suffered from similar deficien-
cies, or were at odds with our design requirements of operational and informational
decentralization.

However, the difficulties experienced in the search for adequate basic concepts are
not due to the nature of our research per se. A more fundamental cause is the
discrepancy between the the requirements of MAT and the purpose- for which fun-
damental notions of MAS, game theory, and micro-economics have been conceived.
This is particularly true for multi-agent mechanism design. As a case in point,
we discuss the deficiencies of three game-theoretic notions in the context of MAT:
Pareto optimality, strategy proofness, and incentive compatibility.

Finally, we explain why mechanism design calls for another research paradigm than
agent design. This is important for a proper understanding of our suggestions (cf.
Sect. 5.9.2) on how to deal with speculative agent behavior in open systems.

Requirements for MAM, CMAT, and OMAT

In Sect. 1.3.2, we proposed a subdivision of the MAS research field into the research
areas of MAM and MAT, and a further subdivision of MAT in CMAT and OMAT.
The three areas MAM, CMAT, and OMAT call for different research attitudes, and
different basic notions, because their respective purposes differ.

These differences are pictured schematically in Table 8.1. In view of the current
popularity of game theory and micro-economics as concept repositories for MAS,
these research fields are included in the table as well.

The table represents our own view on these research areas. The entries in column 2
(na/ure) indicate whether the research area is descriptive or normative. Most areas
contain elements of both. In that case, the entry reflects the primary inclination.
The entries in column 3 (norm) indicate what the (primary) norm is. Column 4
(description (aroe<) does the same for descriptive fields. Columns 5 and 6 indicate,
for the MAS areas, to what extent descriptive accuracy, and computational efficiency
are relevant. The entries for game theory and micro-economics in these columns
indicate how much attention is actually paid. Here, (>) indicates that researchers
in the area have argued that more attention is required.

The entries for the MAT research areas in the last two columns indicate that OMAT
is inherently more difficult than CMAT, because it imposes demands on computa-
tional adequacy as well as descriptive accuracy. Comparison of these entries with the
associated entries for game theory and micro-economics point out where problems
can be expected if one attempt to use these fields as concept repositories for OMAT:

'An elaborate account of the inadequacy of DAI rationality notions for TR mechanisms can be
found in (Lenting, 1999b).



350 CHAPTER 8. CONCLUSIONS, FUTURE RESEARCH, AND REFLECTION

research
area

MAM

CMAT

OMAT

game
theory
micro-
economics

nature

descriptive

normative

normative

normative

descriptive

norm

symbolic
paradigm

computational
adequacy

computational
adequacy

mathematic
soundness

mathematic
soundness

description
target

human
agents

computational
agents
human

agents (?)
economic

agents

relevance of
descriptive
accuracy

major

minor

major

minor (>)

major (>)

relevance of
computational

efficiency
minor

major

major

minor

minor

Table 8.1: Differences between MAS subfields, game theory, and micro-
economics

computational adequacy may prove to be a problem.

Deficiencies of some game-theoretic notions

In the past decade, many MAS researchers have employed notions from game theory
(Rosfiischein et a/., 1988; Ephrati & Rosenschein, 1991; Zlotkin & Rosenschein,
1992; Durfee e< a/., 1993; Kraus et a/., 1995) and micro-economics (Wellman, 1994b;
Hubennan & Clearwater, 1995; Ygge, 1998). Below, we point out that many such
notions have serious deficiencies in the context of MAT, due to the different nature
and requirements of the respective fields.

Pareto optimality

At first sight, Pareto optimality seems perfectly suited as a target notion for mech-
anism design in MAT. Since it is formulated in ordinal, rather than cardinal terms,
it is also applicable in contexts where cardinal expressibility is a problem. And how
could it be wrong to require that an optimal solution be such that no agent can do
better, without some other agent being worse off?

It is true that a solution which is not Pareto optimal is not optimal in the usual
utilitarian sense either. However, in OMAT, optimality is a bit too much to ask.
Especially for /orje open systems, such as national economies, or the Internet, Pareto
optimality is far too strong a demand.

Curiously, it. is also too weak, in small-scale as well as large-scale open systems. This



8.4. REFLECTION 351

becomes apparent if one considers an easy method to attain a Pareto-optimal allo-
cation: allocating everything to a single agent. This allocation is Pareto optimal,'
while it is obviously /ar from optimal in the relative-utilitarian sense.

Economic mechanisms such as the Walrasian auction attain more than just Pareto
optiniality. Their core solutions are significantly better than Pareto-optimal solu-
tions: the above 'monocratic' allocation is not a core solution, and if the assumption
of transferable utility is admissible, a core solution is optima/ in the utilitarian sense.

Unfortunately, in open systems, it is often not realistic to assume transferable utility.
Hence, in such systems, properties like Pareto optimality and core membership can
only be used as neuristic« to attain an acceptable level of utilitarian solution quality.
Our research reveals that they are not very proficient in this respect. Even core
membership appears to be a medtocne heuristic: On reassignment problems, the
average solution quality of the core solutions rendered by the Walrasian exchange
auction is below the average solution quality obtained with IG^. Since IGj is among
the least sophisticated reassignment mechanisms one can think of,' there seems to
be little justification for the present-day prominence of Pareto optiniality in MAS
literature.

Strategy proofness

A mechanism is strategy proof if it is always best for each agent to be truthful in
its communication, irrespective of how the other agents behave. As such, strategy
proofness is, in principle, a useful concept for mechanism design in OMAT.

However, the demand for strategy proofness can conflict with other desirable out-
come properties, such as Pareto optimality (Muller & Satterthwaite, 1985). An
example in (Lenting, 1999a) reveals that there can also be repercussions in terms of
utility loss, if one employs a relative-utilitarian solution quality criterion, and the
possibility of mistakes, signal noise, or foul play cannot be excluded.

Incentive compatibility

In micro-economics, strategy proofness is less prominent than in social choice theory.
The key notion in micro-economics is incentive compahfci/ity (Hurwicz, 1986; Myer-
son, 1985). A mechanism is incentive compati6/e if rational responses of the agents

'Formally, the Pareto optimality of this allocation hinges on the assumption of monotonic pref-
erences (i.e., "more is always better", but this is a very common assumption.

~*In IGj\ the agents simply submit the proposals which reflect their first preferences, without
paying any attention to their chances of success, and the rules of the composition protocol are
equally indiscriminate: For any tool type that is scarce, all contenders have equal chances to obtain
the tool.
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always lead to a final outcome with certain desirable properties, such as Pareto op-
timality and individual rationality. Incentive compatibility is similar, but slightly
weaker than strategy proofness. Where the property of strategy proofness can be
described concisely as "Truth is a dominant equilibrium", the essence of incentive
compatibility is "Truth is a Nash equilibrium".

Incentive-compatibility is defined in the context of a mechanism with a central me-
diator. The mediator asks the agents to reveal their private information. It then
computes a global solution that it deems acceptable in face of its (now complete, but
not necessarily correct) knowledge of the problem, and finally suggests actions to the
agents that will bring about the desired solution. To obtain incentive compatibility,
the suggestions of the mediator must be such that none of the agents have an incen-
tive to lie about their private information, or to deviate from the suggested action.
This implies that the mediator must perform considerably more computation than
would be required to solve the whole problem in a centralized fashion (Myerson,
1985, p.245). Again, we have stumbled on an aspect of a game-theoretical notion
which is not a problem in the descriptive context of micro-economics, but a serious
deficiency in MAT.

Agent design versus mechanism design

Differences in research requirements exist even within MAT. In particular, the re-
quirements of mechanism design differ from those of agent design. In Sect. 5.9.2, we
argued that the IG agent model of fictitiously rational agents with weariness can be
turned into an admissible model for external agents in open systems by a suitable
definition of the (stochastic) deadline. The idea behind this conjecture deserves
some attention.

The main idea of mechanism design for OMAT is to ensure that autonomous, self-
centerod agents behave in a globally desirable manner by providing suitable incen-
tives. In IG, the main incentive is the uncertainty which the agents face if they
take part in an IG auction. The fact that they must make commitments under
uncertainty appears to suppress certain undesirable behavior (viz. trust formation).

Our proposal to employ a stochastic deadline to prevent agents from exhibiting
behavior that deviates from the IG agent model is based on the same idea. It
entails using added uncertainty as a roadblock for agents which might otherwise
be inclined to speculate on the proposal profile, or even on the utilities of their
fellow agents, to improve on their expected utility. This idea is similar to that
of encryption: There exists no encryption code that cannot be broken, but one
can come up with algorithms that guarantee deciphering to be extremely costly on
average (Herschberg, 1998).

Speculation is worth preventing. This is not only true for IG, but also for MAT
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mechanism design in general. From the (global) point of view of a mechanism
designer, speculation amounts to wasting computational resources, since it is unlikely
to render any p/o6a/ utility gain. Moreover, if agents speculate with the purpose to
mon:pu/a<e other agents, a course of events similar to an arms race may unfold,
in which agents are drawn ever deeper into the swamp of reciprocal reasoning, to
prevent other agents from pulling their leg. f 71«

Our conviction that speculation should be avoided is not shared by all MAS re-
searchers. Indeed, from the point of view of agent design, speculation is an op-
portunity, rather than a problem. In computer chess, opponent mode/ing involves
speculation on the depth to which the opponent searches the game tree (Gao et of,
1999). The potential gains are obvious. Within MAS, speculation is welcomed as an
opportunity with even greater enthusiasm. The Recursive Modeling Method (Gmy-
trasiewicz & Durfee, 1995; Vidal & Durfee, 1996) does not merely strive for insight
into the potential gain of speculation on agent behavior, but also aims to investigate
the gain of deeper-level reciprocal reasoning (cf. Sect. 5.8.1). At present, one has
not gone beyond level-2 speculations (Vidal & Durfee, 1996), studying the gain a
single agent can obtain if it has a perfect model of the other agents, who are only
able to learn from observations. As such, there are many more levels to go...

Even though the ultimate goal of RMM is unclear, studying the gains that can be
obtained from reciprocal reasoning at various depths is, in principle, a viable course
of research if one is engaged in agent design. However, as mechanism designers, we
hope to obviate such research in the near future.

The essence of IG

As some readers may have noticed, the above description of the game-theoretic
notion of incentive compatibility is very similar to our earlier account on Myerson's
interpretation of correlated equilibria (on page 209).

In our characterization of IG/ we described its equilibria as correlated equilibria,
except that the strategy recommendations of the fully informed mediator are re-
placed by the probabilistic assertions which the agents derive from their observation
of a shared aggregation device (viz. the IG auctioneer). Where the mediator mes-
sages are the glue from which the correlated equilibrium is formed, proposal success
probabilities are the seeds of correlated agent behavior in IG.

A similar comparison can be drawn between the above mediation scenario for incen-
tive compatibility and our proposals on how one should stimulate agent designers
to endow their agents with fictitious rationality and weariness. As in IG itself, we
sought the solution in confronting the agents with (more) uncertainty, in the form

''This pertains to the original conception of IG, in which the agents do not exhibit negotiation
weariness.
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of a stochastified deadline parameter.

Hence, the essence of Informed Gambling can be described as "an alternative to the
game-theoretic implementation of incentive compatibility, based on the use of uncer-
tainty as an incentive". The main advantage of IG-style incentive compatibility over
the game-theoretic version, is that is does not conflict with the MAT requirements
of informational and operational decentralization.



Appendix: i
Distributed Pseudo-composition
Protocols

Response Protocol for Buyers

CASE m.type

"election":

OF

r := m.tooltype
IF items-left[

send-to( m
ELSE

send-to( m
decrement(

Fl

" rejection":

r ] = 0THEN
sender, ( my-address, retraction, m.option-id ) )

sender, ( my-address, commitment, m.option-id ) )
items-left[ r ] )

/ * NO RESPONSE REQUIRED */

ESAC

355



356 APPENDIX

Response Protocol for Sellers

CASE m.type OF

.. . ., .. : :<o-ni>nr>g*I bMii
option :
r := m.tooltype ._,f, . ^
IF items-left[ r ] = 0 THEN " " <

send-to( m.sender, ( my-address, rejection, m.option-id ) )
ELSE

IF scarcity[ r ] <r= 0 THEN
IF election-counter[ r ] < items-left[ r ] THEN

send-to( m.sender, ( my-address, election, m.option-id ) )
increment( election-counter[ r ] )

ELSE
push( option-queue[ r ], m )

Fl
ELSE / • SCARCE RESOURCE • /

push( option-queue[ r ], m )
increment( option-counter[ r ] )
IF option-counter[ r ] = demand[ r ] THEN

WHILE election-counter[ r ] < items-left[ r ] DO
m2 := best-option( option-queue[ r ] )
remove-from( option-queue[ r ], m2 )
send-to( m2.sender, ( my-address, election, m2.option-id ) )
increment( election-counter[ r ] )

OD
Fl

Fl
Fl

"commitment":
r = m.tooltype
decrement( items-left[ r ] )

" retraction": see next page
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Response Protocol for Sellers (cont.)

" retraction":
r := m.tooltype
IF empty( option-queue[ r ] ) THEN

decrement( election-counter[ r ] )
ELSE

IF scarcity[ r ] > 0 THEN / • SCARCE RESOURCE * /
m2 := best-option( option-queue[ r ] )
remove-from( option-queue[ r ], m2 )

ELSE
m2 := pop( option-queue[ r ] )

Fl
send-to( m2.sender, ( my-address, election, m2.option-id ) )

Fl
ESAC
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Summary

This thesis reports on research in the area of Multi-Agent Systems (MAS). Its subject
is the design of mu/fi-o^ent mec/iontsms, i.e., computer programs in which computa-
tional agents solve a problem collectively, by interacting with a mediating agent or a
coordination device. More specifically, the thesis addresses two research questions:

1. How can we solve a certain class of problems with a multi-agent mechanism?

2. How do coordination rules and agent behavior characteristics influence the
performance of a multi-agent mechanism?

To answer these questions, we use the following approach. We select a broad problem
domain of practical relevance, and develop a mechanism design framework for this
domain. We then use the framework to design mechanisms for a subdomain that is
sufficiently simple to allow for a thorough systematic investigation of the influence
of agent behavior characteristics and coordination rules on mechanism performance.

The overall problem domain for which we develop the Informed Gambling (IG)
framework is <oo/ reo//ocotion (TR). In this context, the concept 'tool' is a gener-
alization of the tools we use in everyday life, such as hammers, toothbrushes, and
computers. Such goods typically have the following two properties. First, they are
typed goods: unless your hammer is an archaeological find, there exist different,
but completely equivalent hammers in the store where you bought it, or in other
people's homes. Second, tools are mdtwisii/e goods. Tool exchanges between users
usually involve few — often only one — tools of the same type. Consequently, the
trade volumes in tool exchanges can generally not be cut into a number of equal
portions. This distinguishes tools like hammers and computers from divisible goods,
such as water and gasoline. In the context of TR, we label any good that is indi-
visible and typed as a tool. Thus, next to reallocation of everyday tools, TR also
covers problems like the reallocation of reservations on trains or airplanes. Grace to
this generalization, the TR domain has considerable practical relevance: many dis-
crete optimization problems can be reformulated as TR problems. As an example,
transportation in networks with finite-capacity links can be reformulated as a TR
problem where each tool is a unit of transportation capacity across some link.

Our IG framework for TR mechanism design is based on an economic metaphor.
Agents in an IG mechanism act as entrepreneurs in a tool exchange market. They
submit tool exchange proposals to an auctioneer, who will ultimately employ a
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fixed decision protocol to deal with conflicting proposals. The decision rules of
this protocol resolve conflicts between proposals by defining an eligibility order on
proposals. The order is based on the scarcity (i.e., demand minus supply) of the tool
type offered in a proposal. Invocation of the protocol results in acceptance of the
most eligible proposals, and adaptation or rejection of the remaining ones (if any).

Before the protocol is invoked, the agents get multiple opportunities to adjust their
proposals so as to reduce the risk of unfavorable adaptation or rejection. To arrive
at sensible proposal adjustments, the agents can use their knowledge of the protocol,
and a survey of tool supply and demand, broadcasted by the auctioneer. The agents
use this information to estimate acceptance probabilities for candidate proposals.
This enables them to select proposals which maximize or enhance'' the expected
utility of the outcome (i.e., their expectation of their satisfaction with their final en-
dowment). These two steps (proposal submission and broadcast of supply/demand
information) are repeated until all agents stick to their last proposals. The decision
protocol is then invoked to compute and execute a feasible reallocation. If some
agents are dissatisfied with the outcome, the entire process is repeated with the
dissatisfied agents.

Proposal adaptation by the auctioneer entails that the agent receives, in exchange for
the tool offered in its proposal, a tool that is selected randomly from the o%'ersupplied
tools. This implies that agents often run at least some risk of ending up with a
tool endowment that is /ess valuable to them than their initial endowment. In
this respect, IG differs fundamentally from other economically inspired multi-agent
approaches, such as Market-Oriented Programming (MOP).

MOP tends to perform very well on optimization problems with continuous variables,
but its application to discrete problems is problematic. In the face of discreteness —
that is, in economies with indivisible goods — equilibria often do not exist, and even
if they do, it tends to be difficult to steer the artificial economy toward an equilibrium
state. Furthermore, in economies with equilibria, the associated allocations need not
correspond with optimal solutions. In fact, the allocation quality — defined as the
average satisfaction of agents with their endowments — can be arbitrarily low. unless
real or artificial money can be used as a filler to turn the discrete problem into a
continuous one. To ensure that money is effective in this respect, the economy
must have a property known as "transferable utility". This property entails that (1)
every agent is willing to sell any good if the price is sufficiently high, and (2) every
agent is sufficiently rich to buy any endowment of goods which she values more than
any other agent. Obviously, transferable utility is never a problem in closed systems,
where the system designer can simply specify how an agent should behave. However,
in open systems (such as mechanisms to coordinate existing computational agents),
utility is often not transferable.

complex reallocation problems agents strive for a high, but not necessarily maximal utility.
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One advantage of the IG framework is that it does not require transferable utility,
because IG employs uncertainty where MOP employs money. The functionality of
money in MOP is to allow for comparison of the utilities attached to some tool by
different agents, without commurncattne; any such utilities. The idea is that an agent
who attaches a relatively high utility to some tool is willing to pay a relatively high
price for it. In IG, the basic idea is that an agent who attributes a relatively high
utility to some tool is willing to take a relatively high rwJfc to obtain it.

The IG framework aims to be suited for closed as well as open mechanisms. The
design of an open mechanism is more difficult than that of comparable closed mecha-
nisms. Because the designer of an open mechanism has no control over the behavior
of the external agents, she faces the additional constraint that any a-ssuniptums on
agent behavior made to further computational or design efficiency must be reo/t«tic.

In fundamental MAS research, one usually translates this constraint to the assump-
tion that the behavior of an existing agent is per/ec</t/ m/iono/, that is, completely
determined by the strife to obtain an endowment of maximal utility (to itself), with-
out regard for the effort required to achieve this. I postulate that a greater regard
for the computational cost of decision making, coupled with a shift of attention from
the rationality of computational agents to t'he rai'ionaYity oi Yfumuii a/gwA dtsvgrsvtir»,
can lead to the conception of open negotiation mechanisms with a better overall
performance. This postulate is the background of my claim that the IG agent model
for open systems is preferable to the standard model of perfectly rational agents.

The agent behavior specified in the IG agent model for simple TR problems is
a combination of negotiation weariness and fictitious rationality. Agent weariness
amounts to an indifference among agents toward small utility gains that is growing
with time. Its purpose is to ensure timely termination of the negotiation process.
Fictitious rationality differs from perfect rationality in that a fictitiously rational
agent (1) ignores information that is principally there, but difficult to use, and (2)
does not contemplate the possibility of attempting to manipulate the other agents.
The rationale for these differences is that, with the kind of uncertainty which IG
agents are facing, perfect rationality incurs excessive design and computational com-
plexity, while the reward of using perfect instead of fictitious rationality (in terms of
extra utility) is often low, possibly nil, and typically difficult to estimate in advance.

In the IG framework, we turn this rationale into a design principle for open sys-
tems: a key activity in designing open IG mechanisms is the conception of ways to
increase the design complexity and the reward uncertainty associated with perfect
rationality, so as to keep agent designers from developing agent behavior schemes
which deviate from the relatively simple scheme of the IG agent model. Thus, un-
certainty is used to turn agent behavior that may well be irrational from the agent's
point of view into a behavior specification that is rational from the viewpoint of an
agent designer. This is antithetical to the ruling paradigm that the rationality of
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autonomous computational agents is a datum that can and should not be tampered
with.

Applicability considerations have played an important role in the conception of IG.
Yet, our research is /unrfamenio/ rather than applied. Instead of focusing on a
single, challenging real-life problem, we perform a systematic statistical analysis
of mechanism performance on various sample spaces of TR problems. For such
an analysis to be feasible, the complexity of computing an optimal solution for a
problem instance must be low. This is why most of our theoretical, and all of
our experimental research is confined to tool reassignment, the subdomain of tool
«allocation where each agent possesses and desires only one tool. Contrary to full-
fledged TR, tool reassignment is tractable.

Our experiments on the influence of agent characteristics and coordination rules
on mechanism performance were carried out on a testbed with a parametrized IG
reassignment mechanism as its core element. The investigated agent behavior char-
acteristics are negotiation weariness and various aspects of the agents' attitudes
toward risk. The investigated coordination rules are the criterion for proposal eli-
gibility, the deadline for (i.e., the duration of) proposal relaxation, and the kind of
parallelism employed in the relaxation process. The main conclusions drawn from
these experiments are the following.

Conclusions with respect to research question 1:

1. Uncertainty can serve as an alternative to money, to reduce the solution
quality decrease incurred by informational decentralization: IG performs
significantly better than TR mechanisms that feature neither money nor
uncertainty, such as Walrasian exchange.

2. Uncertainty is, however, less proficient than money in the context of
transferable utility: in most cases, IG cannot ensure optimality.

Conclusions with respect to research question 2:

1. Agent weariness is a valuable characteristic. Both the frequency and the
severity of utility concessions due to negotiation weariness tend to be
marginal. This observation supports our conjecture that agent weariness
is an admissible characteristic of agent behavior, even in open systems.
Furthermore, IG mechanisms with weariness tend to render much better
solutions than IG mechanisms without weariness in cases of very low
deadline values. For high deadline values, the average solution quality is
approximately the same. Thus, weariness allows for IG to be used as an
anytime algorithm.
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2. The kind of parallellism employed in the relaxation process has little
influence on mechanism performance. If negotiation weariness is incorpo-
rated, even synchronously parallel proposal updating — which normally
leads to severe convergence problems — is a feasible option.

3. It pays for agents to perform risk estimation. A community of agents
who estimate proposal acceptance probabilities, and select a proposal
which maximizes their expected utility tends to obtain better allocations
than a community of totally reckless agents, who simply assume that the
proposal describing their preferred exchange will be accepted.

4. In general, a pessimistic agent attitude toward the probability of proposal
acceptance is more detrimental to allocation quality than an optimistic
attitude, but it depends on the difficulty of the problem (more specifically,
on the initial discrepancy between tool demand and supply) what the
best attitude toward risk is. For average problems, with only moderate
discrepancy between supply and demand, a risk-neutral attitude (i.e.,
unbiased estimation of proposal acceptance probabilities) appears to be
best, but for problems with large discrepancies, a considerably optimistic
attitude is profitable.

5. Demanding that reallocations must be individually rational (i.e., demand-
ing that agents should never end up with a final endowment that is
/ess satisfactory than their initial one. appears to be much more costly
in strongly informationally decentralized algorithms than in centralized
ones. If IG agents do not take any risk, the solution is individually ratio-
nal, but in this case, the auerai/e agent satisfaction drops considerably,
to the level of other mechanisms that guarantee individual rationality,
such as Walrasian exchange. In contrast, imposing the constraint of indi-
vidual rationality in a centro/tzed allocation algorithm incurs hardly any
decrease of the average agent satisfaction.

6. The proposal eligibility criterion has little influence on mechanism perfor-
mance. Contrary to our expectation, it matters very little which proposal
selection heuristic is employed to decide between conflicting proposals.
Even more surprising is the observation that, on average problems, the
highest average allocation quality is obtained by using no heuristic at
all (i.e., by choosing randomly between conflicting proposals). In prob-
lems with large discrepancies between tool supply and demand, the use of
heuristics does lead to better allocations. In all of these cases, however,
the differences in allocation quality are marginal.

As for future research, the conclusions of the thesis call for additional fundamental
as well as applied research. Additional fundamental research is required on the use
of uncertainty in mechanism design for open systems. Future applied research is
required on the actual application of IG to real-life discrete optimization problems.





Samenvatting

Dit proefschrift beschrijft onderzoek naar het ontwerpen van multi-agent mechanis-
men. Dit zijn computerprogranima's waarin computationele agenten" gezamelijk een
vraagstuk oplossen door tniftrecte onderlinge communicatie, via et>n bemiddelende
agent of een coördinerend apparaat. De kerngedachte achter multi-agent mechanis-
men is dat complexe vraagstukken vaak gemakkelijker kunnen worden opgelost door
er niet een, niaar meerdere programina's op te zetten, die elk slechts een bepaald
aspect voor hun rekening nemen. Een nadeel van een dergelijke aanpak is dat de
agenten, als gevolg van hun beperkte blikveld en him onafhankelijkhoid, geneigd zijn
met deeloplossingen aan te komen die onderling oiiven-nigbaar zijn. Het is de kuiist
om coördinatieregels te vinden die dit kunnen voorkomen zonder het onafliankelijk
opereren van de agenten te belemmeren.

In het proefschrift wordt in het bijzonder aandacht besteed aan de volgende twee
onderzoeksvragen.

1. Hoe kan een bepaald type problemen worden opgelost met behulp van multi-
agent mechanismen?

2. Wat is de invloed van coördinatieregels en agentgedrag-karakteristieken op de
prestatie van een multi-agent mechanisme?

Onze aanpak om deze vragen te beantwoorden is de volgende. We kiezen een breed
probleemgebied met praktische relevantie, en ontwikkelen een raamwerk voor het
ontwerpen van multi-agent mechanismen voor dit gebied. Vervolgens gebruiken we
dit. raamwerk om mechanismen te ontwerpen voor een deelgebied van problemen die
voldoende eenvoudig zijn om de tweede onderzoeksvraag rigoreus te onderzoeken.

Het brede probleemgebied waarvoor we de Informed-Gambling (IG) ontwerpmetho-
diek ontwikkelen betreft het (her)verdelen van ondeelbare goederen onder agenten.
In het Engels duiden we dit gebied aan met de term "tool reallocation" (TR). Naast
het toedelen van tastbare objecten aan menselijke agenten (bv. computers aan
werknemers) omvat TR ook logistieke problemen waarin de 'goederen' niet tastbaar
zijn en/of de agenten niet menselijk. Voorbeelden hiervan zijn het toewijzen van
routes aan transporten en het aanpassen van werkroosters bij ziekmeldingen.

"Een computationele agent is een (onderdeel van een) computerprogramma dat, met een grote
mate van onafhankelijkheid. in samenwerking of competitie met andere agenten, een eigen doel
nastreeft.
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Ons IG-raamwerk voor het ontwerp van TR-mechanismen is gebaseerd op de
economische metafoor van ondernemers die opereren in een ruilmarkt, gecoördineerd
door een veilingmeester. In een IG-mechanisme zijn de ondernemers computationele
agenten. De veilingmeester daarentegen heeft meer weg van een apparaat, dat vol-
gens vaste gedragsregels — - die niet zijn ingegeven door eigenbelang — reageert op
de biedingen van de ondernemers.

In IG dienen de agenten ruilvoorstellen in bij de veilingmeester, die reageert met een
overzicht van vraag en aanbod van de verschillende typen goederen. Op basis van dit
overzicht kunnen de agenten een inschatting maken van de kans dat een ingediend
voorstel gehonoreerd zal worden en het eventueel vervangen door een ander voorstel,
dat meer kans van slagen heeft. Dit proces van aanpassen van voorstellen en leveren
van marktoverzichten gaat door totdat alle agenten vasthouden aan hun voorstel, of
het aantal biedrondes een bepaalde bovengrens bereikt. Ook in de eindtoestand zijn
doorgaans niet alle voorstellen onderling verenigbaar. De veilingmeester beslist dan,
volgens vaste, bij de agenten bekende regeis, welke van de voorstellen gehonoreerd
zullen worden. Deze beslissingsregels komen neer op het definieren van een volg-
orde van verkiesbaarheid, gebaseerd op de sc/taarete (d.i. vraag min aanbod) van
het in een ruilvoorstel aangebodene. Een agent kan dus de kans om een schaars
goed te bemächtigen vergroten door een ander schaars goed in ruil aan te bieden.
Hierbij loopt hij echter wel een risico. Als de verkiesbaarheid van zijn ruilvoor-
stel onvoldoende hoog is (doordat mededingers nog schaarsere goederen aanbieden
in hun voorstellen), is hij verplicht om het aangebodene te leveren, terwijl hij in
plaats van het gevraagde iets ontvangt waarvan het aanbod de vraag overstijgt. Dit
impliceert dat een agent die vasthoudt aan een voorstel om schaarse goederen te
ruilen het risico loopt dat zijn eindsituatie minder bevredigend is dan zijn situatie
vöör reallocate. In dit opzicht verschilt IG fundamenteel van bestaande economisch
geinspireerde multi-agent raamwerken als Market-Oriented Programming (MOP).

MOP is een krachtige methode voor het gedecentraliseerd oplossen van veel logistieke
Problemen, maar het werkt niet altijd. IG rieht zieh met name op problemen waar-
voor MOP niet geschikt is: problemen van discrete aard (d.w.z. met geheeltallige
variabelen) waarin de aanname van overdraajtore uh/ttet? niet gemaakt kan worden.
Deze aanname houdt in dat het logistieke probleem vertaald kan worden naar een
markt waarin (1) iedere agent bereid is welk goed dan ook te verkopen als de prijs
maar hoog genoeg is, en (2) iedere agent voldoende geld bezit om goederen te kopen
die voor hem waardevoller zijn dan voor alle andere agenten. Overdraagbaarheid
van utiliteit is nimmer een probleem in gesloten Systemen, waar de systeemontwer-
per domweg kan specificeren hoe agenten zieh hebben te gedragen. In open Systemen
is het echter vaak een te zware eis.

Overdraagbaarheid van utiliteit is geen vereiste in IG, omdat IG gebruik maakt
van onzekerheid waar MOP gebruik maakt van geld. In MOP bewerkstelligt de
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aanwezigheid van geld dat de verschillen tussen de utiliteiten (d.w.z. de waarde) die
verschillende agenten aan eenzelfde goed hechten tot uiting komen in de uiteindelijke
herverdeling, sonder dat deze utiliteiten worden geconnnuniceerd: Een agent die veel
waarde hecht aan bepaalde goederen zal bereid zijn hiervoor een relat ief hoge prys te
betaleu. In IG wordt hetzelfde bereikt doordat een agent die veel waarde hecht aan
een object bereid is een relatief groot rw»co te nemen om het object te verkrijgen.

Het IG-raamwerk is zowel geschikt voor open als voor gesloten Systemen. Het ont-
werp van mechanismen voor open Systemen is moeilijker, omdat de ontwerper in dit
geval geen controle heeft over het gedrag van de agenten. Zij moot or dus voor zor-
gen dat iedere wenselijke" aanname over agentgedrag ook een rea/whsc/ie aanname
is.

De huidige trend in fundamenteel onderzoek naar multi-agent Systemen is om deze
extra randvoorwaarde te vertalen in de aanname dat het gedrag van een bestaande
agent altijd vo/Jtomen nihonee/ is. Dit houdt in dat een agent altijd kiest voor een
ruilvoorstel waarvan het te verwachten resultaat optimaal is, gezien do hem beschik-
bare informatie. Hierbij wordt de computationele complexiteit van hH. sclecteren
van een dergelijk ruilvoorstel genegeerd. Ik postuleer dat men tot betere mechanis-
men voor open Systemen kan komen door zieh te richten op de ratioualiteit van de
on<u;erpers van agenten, in plaats van die van de agenten zelf. Als leidraad rnoet
dienen dat het niet lonend mag zijn voor een ontwerper/programmeur om een agent
te ontwerpen waarvan het gedrag afwijkt van dat van het IG-agentmodel.

Het gedrag beschreven in dit agentmodel is een combinatie van onderhandelings-
moeheid en iets dat ik "fictieve rationaliteit" noem. De onderhandelingsmoeheid
houdt in dat IG-agenten in toenemende mate onverschillig worden met betrekking
tot kleine verschillen tussen de te verwachten utiliteiten van ruilvoorstellen. Dit
is van belang voor een tijdige beeindiging van het proces van aanpassing van de
voorstellen. Fictieve rationaliteit houdt in dat IG-agenten (1) informatie die moei-
lijk te benutten is negeren, en (2) geen poging doen om andere agenten te manipu-
leren. Het motief voor deze gedragsaannames is dat volkomen rationaliteit, door de
onzekerheid waarmee IG-agenten geconfronteerd worden, extreem arbeidsintensieve
berekeningen vergt, terwijl de resulterende extra utiliteit voor de agent veelal laag,
mogelijk nihil, en doorgaans niet goed vooraf in te schatten is.

In het IG-raamwerk wordt dit motief verheven tot een ontwerp-6e(/m«e/ voor open
Systemen: Een hoofdaktiviteit in het ontwerpen van open IG-mechanismen is het
scheppen van extra onzekerheden om te voorkomen dat ontwerpers agenten ont-
werpen waarvan het gedrag afwijkt van het IG-agentmodel. Door extra onzekerhe-
den in te bouwen in een IG-mechanisme kan zowel de ontwerp-complexiteit van
(meer) volkomen rationaliteit als de onzekerheid omtrent de hieraan verbonden
utiliteitswinst verhoogd worden. Dit bewerkstelligt dat het voor een agentontwerper

' wenselijk met het oog op het prestatienivo van het mechanisme of de eenvoud van het ontwerp
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niet lonend — en diis irrationeel — is om het gedragsrepertoire van hun agenten
af te laten wijken van de gedragsspecificatie van het IG-agentmodel, on<fanJb het
feit dat het resulterende agentgedrag in sommige situaties irrationeel is vanuit het
oogpunt van de agent. Deze ontwerpstrategie Staat haaks op de heersende zienswijze
dat fie rationaliteit van autonome computationele agenten een gegeven is waaraan
niet getornd mag of lean worden.

Toepasbaarheid is een belangrijke richtlijn geweest in de coneeptie van IG. Het in dit
proefschrift beschreven onderzoek is echter van fundamentele aard. Het rieht zieh
niet op een enkel concreet praktijkprobleem, maar omvat een systematisch statistisch
onderzoek naar de prestatie van IG-mechanismen op een klasse van meer abstracte
TR-problemen. Om een dergelijke statistische prestatie-analyse mogelijk te maken is
het noodzakelijk dat de onderzochte probleemklasse uit problemen bestaat waarvan
de optimale oplossingen relatief gemakkelijk kunnen worden bepaald. Dit is de reden
dat het merendeel van het theoretische en al het experimentele onderzoek beperkt
is tot de klasue van herverdelingsproblemen waarin iedere agent slechts een object
bezit, en dat hij zou willen ruilen tegen een andersoortig object.

De experimenten om de invloed van coördinatieregels en agentgedrag op de prestatie
van mechanismen te onderzoeken zijn uitgevoerd met behulp van een testprogramma
waarin een geparametriseerd IG-mechanisme de centrale component is. De onder-
zochte agentgedrag-parameters hebben betrekking op de onderhandelingsmoeheid
en op verschillende aspecten van het omgaan met risico's. De parameters die be-
trekking hebben op de coordinate door de veilingmeester omvatten het criterium
voor de verkiesbaarheid van ruilvoorstellen, de maximale duur (in biedrondes) van
het biedproces, en de aard van het parallellisme dat in dit proces wordt gebruikt.

De belangrijkste conclusies die uit de resultaten kunnen worden getrokken zijn de
volgende.

Conclusies m.b.t. de eerste onderzoeksvraag:

1. Onzekerheid kan, in plaats van geld, gebruikt worden om het verlies
van oplossingskwaliteit als gevolg van informationele decentralisatie te
beperken. IG-mechanismen presteren in dit opzicht beter dan TR-
mechanismen waarin geld noch onzekerheid een rol spelen.

2. Onzekerheid is echter minder adequaat dan geld in de context van over-
draagbaarheid van utiliteit: In de meeste gevallen zijn de door IG opge-
lewrde allocaties goed, maar niet optimaal.

Conclusies m.b.t. de tweede onderzoeksvraag:

1. Onderhandelingsmoeheid is een waardevolle component van IG. Het blijkt
dat een geringe dosis onderhandelingsmoeheid in de regel voldoende is
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om een tijdige beeindiging van het proces van aanpassing van do ruil-
voorstellen te bewerkstelligen, zonder dat de kwaliteit van do oplossingon
hieronder lijdt. Een snel toenemende onderhandelingsmooheid levert een
zeer snelle beeindiging van het proces op -- na pakweg 3 tot 5 ronden
— met een oplossingskwaliteit die weliswaar lager is dan norniaal, maar
veel hoger dan wanneer men zonder onderhandelingsinoeheid zo'n kort
aanpassingsproces gebruikt.

2. De aard van het parallellisme dat in het aanpassingsproces gebrnikt wordt
heeft geen noemenswaardige invloed op de prestatie van IG-mechanisinen.
In IG-mechanismen met onderhandelingsmoeheid levert zolfs sj/nc/iroon
parallelle verwerking van de ruilvoorstellen geen problemen op, torwijl
dit in mechanismen zonder onderhandelingsinoeheid het boreiken van een
stationaire toestand dikwijls onmogelijk maakt.

3. Risico-inschatting loont voor IG-agenten. In IG-mechanismen waarin
agenten een poging doen om het risico van aanpassing of vorwerping van
hun voorstellen in te schatten is de kwaliteit van do oplossingen doorgaans
aanzienlijk hoger dan in mechanismen waarin do agenten domweg aan-
nemen dat hun voorstellen zonder aanpassing zullen worden geaccepteerd.

4. Een pessimistische inschatting van de acceptatiekansen van ruilvoorstellen
is veel schadelijker voor de kwaliteit van de eindallocaties dan een opti-
mistische inschatting. Het hangt echter af van de moeilijkheidsgraad
van een herverdelingsprobleem (en met name van de initiele discrepantie
tussen vraag en aanbod) wat de meest profijtelijke houding jegens risico
is. Voor doorsnee problemen (d.w.z. problemen met enige, doch geen
al te grote discrepantie tussen vraag en aanbod) blijkt risico-neutraal*
agentgedrag de beste resultaten op te leveren. Voor relatief moeilijke
problemen (met grote discrepantie) leidt een flinke dosis optimisme tot
een aanzienlijk hogere gemiddelde oplossingskwaliteit dan risico-neutraal
gedrag.

5. Het opleggen van de eis dat de herverdeling individueel-rationeel® dient te
zijn blijkt aanzienlijk kostbaarder in de context van sterke decentralisatie
van informatie'" dan in gecentraliseerde Systemen. Men kan in IG indi-
viduele rationaliteit garanderen door de agenten geen enkel risico te laten
nemen. De kwaliteit van de oplossingen is met een dergelijk agentgedrag

* Risico-neutraal gedrag houdt in dat de agenten een ruilvoorstel kiezen zodat de zuivere
verwachtingswaarde van de hieraan verbonden utiliteit maxim aal is.

"in een individueel-rationele herverdeling gaat geen enkele agent erop achteruit.
'"Sterke informatie-decentralisatie houdt in de context van herverdelingsproblemen in dat (1)

informatie over de utiliteit die een agent hecht aan een pakket goederen niet gecommuniceerd kan of
mag worden aan andere agenten, en (2) dat geen gebruik kan worden gemaakt van geld om ondanks
deze informatiebeperking toch een afweging mogelijk te maken van de utiliteiten die verschillende
agenten hechten aan eenzelfde pakket goederen.
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echter aanzienlijk lager dan met het standaard (risico-neutrale) agentge-
drag. Zij is bij benadering gelijk aan de oplossingskwaliteit die verkregen
kan worden met andere mechanismen die individuele rationaliteit waar-
borgen, zoals een Walrasiaanse ruilmarkt. Dit verlies van oplossingskwa-
liteit staat in scherp contrast met het zeer marginale verlies dat gepaard
gaat met het opleggen van individuele rationaliteit in gecentraliseerde
herverdelingsalgoritmen.

6. De aard van het criterium voor de verkiesbaarheid van ruilvoorstellen
blijkt nauwelijks van invloed te zijn op de kwaliteit van de oplossingen.
Geheel tegen de verwachting in, maakt het nauwelijks uit of men een fijn
of een grof criterium hanteert." Nog verrassender is de observatie dat
een IG-mechanisme wonder verkiesbaarheidscriterium (d.w.z. een mecha-
nisme waarin de selectie van ruilvoorstellen volledig aan het toeval wordt
overgelaten) op doorsnee problemen een Ziojere gemiddelde oplossings-
kwaliteit bereikt dan IG-mechanismen met een verkiesbaarheidscriterium.
De heuristiek om agenten die een veelgevraagd goed kunnen leveren te
stimuleren om "in de bieding te blijven" blijkt dus contraproduktief te zijn
« f w jtlnntRtvRf pwihlninnn Vhnr .hftrvftrdftlinjojiwihlftrnftri .n\«t .mr ^jsvitp

discrepantie tussen vraag en aanbod leveren IG-mechanismen met een
verkiesbaarheidscriterium wel een iets hogere gemiddelde oplossingskwa-
liteit. De verschillen in oplossingskwaliteit zijn echter in alle onderzochte
gevallen marginaal.

Do uit het onderzoek getrokken conclusies geven aan dat verder onderzoek naar
TR-mechanismen zinvol is. Dit betreft zowel fundamenteel als toegepast onder-
zoek. Extra fundamenteel onderzoek is gewenst met betrekking tot het gebruik van
onzekerhoid als iniddel om agenten in open Systemen te weerhouden van gedrag dat
vanuit globaal oogpunt schadelijk of nutteloos is. Toegepast onderzoek is nodig om
te bepalen in hoeverre Informed Gambling een geschikte basis is voor het gedecen-
traliseord oplossen van discrete optimaliseringproblemen uit de praktijk.

"Bon tijn criterium houdt in dat de relatieve verkiesbaarheid van een ruilvoorstel afhangt van het
aiitwoord op de vraag /iw schaars het in het voorstel aangebodene is; een grof onderscheid betekent
dat alleen gekeken wordt o/ het aangebodene al dan niet schaars is.
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