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Abstract

We characterise minimal strong Grobner bases of R[x], where R is a commutative
principal ideal ring and deduce a structure theorem for cyclic codes of arbitrary length
over R. When R is an Artinian chain ring with residue field R and gcd(char(R),n) = 1,
we recover a theorem for cyclic codes of length n over R due to Calderbank and Sloane
for R=27/p"7.
© 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

All rings in this paper are commutative. This work originates from two structure
theorems: (i) for certain cyclic codes over R = Z/p¥Z, with p a prime and k an
integer, k>2 [5, Theorem 6] and (ii) for a minimal strong Grébner basis (SGB) of an
ideal of D[x], D a principal ideal domain, [9]. Intuitively, the first resembled a
‘minimal SGB’. Since we had already developed a theory of SGBs over a principal
ideal ring in [15], it was natural to ask whether (i) and (ii)) have a common
provenance. We confirm this and generalise (i) to a cyclic code of arbitrary length
over a principal ideal ring.

In more detail, a cyclic code of length n over a ring R is an ideal of R[x]/ {x" — 1.
The structure theorem for cyclic codes over R of [5] requires that ged(p,n) = 1 and
the proofs used non-trivial results from Commutative Algebra on the ideal structure
of R[x]/{x"—1). A generalisation of [5, Theorem 6] to cyclic codes over an
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Artinian chain ring was given in [14]. We formalised the notion of a ‘generating
set in standard form’, [14, Definition 4.1] and showed that a cyclic code has
a unique generating set in standard form [14, Theorem 4.4]. See also [19,
Theorem 3.9].

In addition, we recover the generating set in standard form of a cyclic code over an
Artinian chain ring R as a minimal SGB using [15]. This provides an alternative
proof of [14, Theorem 4.4]. Moreover, a similar result holds for arbitrary n (see
Theorem 4.2 and condition (iv)) and also for codes over a principal ideal ring (see
Theorem 5.6).

We begin with some preliminaries on Artinian chain rings R (e.g. Galois rings)
and then characterise the structure of minimal SGBs of R[x|; see Theorem 3.2.
This result is similar to the principal ideal domain case of [9], recalled as
Theorem 2.11; see also [18]. In Section 4, we show that if p is the characteristic of
the residue field of R and ged(p,n) = 1, minimal SGBs coincide with generating sets
in standard form for cyclic codes over R. In Section 5, we generalise the structure
theorems for minimal SGBs mentioned above to a principal ideal ring. In the final
section, we discuss connections between minimal SGBs over R and the representa-
tion of a regular f'e R[x] as f = uf* with f* monic and u a unit in R[x] of [10,
Theorem XIII.6].

We have thus found a common background for the structure theorems of [1,5,9].
Some of the results of this paper appeared in [17]. We remark that Allan Steel has
implemented an SGB algorithm in Version 2.8 of Magma [3] using [15, Corollary
5.13] generalising Faugeére’s algorithm [7] to Galois rings.

We use results from [15] extensively. Related independent work for the special case
of a Galois ring 4 appears in [4], where an SGB is called a GB. Their approach
depends on whether the elements of 4 are represented additively or multiplicatively.
On the other hand, our notion of reduction is independent of how the elements of 4
are represented and how the operations are performed in A, as needed for working
over principal ideal rings in general.

More importantly, there is another strictly weaker notion of a (weak) GB
over any ring, [1, Definition 4.1.13]. The key result [4, Theorem 2.5.10] depends
on the characterisation of a (weak) GB (rather than an SGB) in terms of
homogeneous syzygies of monomials in R[x] given in [I, Theorem 4.2.3]. This
means that [4, Theorem 2.5.10] only yields a (weak) GB and not necessarily
an SGB as in [4, Definition 2.4.1]. It turns out a (weak) GB is an SGB
over an Artinian chain ring, [15, Proposition 3.9], but this point is not considered
in [4].

Thus, while one could potentially generalise parts of [4] to finite chain
rings, we prefer to avoid circular arguments (i.e. appealing to [15, Proposition
3.9]), a ‘pre-selected division algorithm’ and homogeneous syzygies. For example, we
need only specialise [15, Theorem 4.10] to the univariate case, as in Corollary 2.8
below. Finally, concerning the decoding application of [4], we note that a
characterisation of the set of solutions of the key equation and a quadratic decoding
algorithm for an alternant code over a finite chain ring appeared in [13]. We do not
know if the decoding application in [4] runs in polynomial time.
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2. Preliminaries

First some notation and known results on Artinian chain rings, SGBs and minimal
SGBs.

2.1. Notation

Throughout this paper, R will denote a principal ideal ring which is not a field. We
write the ideal of R generated by ry,...,rn€R as {ry,...,ry, »g. The ideal of R[x]
generated by fj, ..., [,,€R[x] is written as {fi,...,f,,»> and <, > denote strict
inclusion. As usual, f = Zio cix'e R[x] with ¢;#0 has degree d = deg(f); It(f) =
x? is its leading term and lc(f) = ¢, is its leading coefficient; we say that £ is monic if
le(f) = 1. The leading monomial of f is Im(f) = lc(f)It(f) and we denote by cont(f)
a content of f i.e. a gcd of all its coefficients, which is well-defined up to a unit by
[15, Lemma 4.3(iii)].

2.2. Artinian chain rings
We will need the following structure theorem:

Theorem 2.1 (Zariski and Samuel [20, Theorem 33, Section 15, Chapter 4]). A
principal ideal ring is isomorphic to a finite direct product of principal ideal domains
and Artinian chain rings.

Recall that a chain ring is a ring whose ideals are linearly ordered by inclusion [6].
In this section, R will denote an Artinian chain ring. The main properties of R are:

Proposition 2.2. R is a local principal ideal ring with maximal ideal J(R); the elements
of J(R) are nilpotent and the elements of R\J(R) are units.

Let y be a fixed generator of J(R) and v the nilpotency index of vy i.e. the smallest
positive integer for which y' = 0. (i) The distinct proper ideals of R are {y'> g, i =
1,...,v—1. (i) For any element re R\{0} there is a unique i and a unit u such that
r=uwy', where 0<i<v — 1 and u is unique modulo y'~'. (iii) Ann(y") = ("~ > .

It is not hard to see that a local principal ideal ring is a chain ring. Thus, Artinian
chain rings are precisely the Artinian local principal ideal rings.

From now on, y and v will be as in Proposition 2.2. It follows that any f'e R[x]\{0}
can be written as y’g where 0<i<v — 1, deg(f) = deg(g) and y does not divide g.
The exponent i is uniquely determined and ¢ is unique modulo }"~.

For any reR, the canonical projection ¢,:R—R/{r)y induces a ring
homomorphism R[x]—(R/{r)g)[x], which we also write as ¢,. Of course, ¢,
projects R onto its residue field R = R/J(R), and in this case we write f for ¢, (f).

The next theorem is stated for finite local rings in [10], but the proofs only use the
fact that R is local and that the maximal ideal is nilpotent and finitely generated;
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R itself need not be finite. Recall that a polynomial in R[x] is called regular if it is not
a zero-divisor.

Theorem 2.3 (McDonald [10, Theorems XIII.2 and XIIL.6]). Let [ =
S, fix' e RIx]\{0}. Then:

(1) f is a zero-divisor iff y\|f; for i =0, ...,m; (ii) f is a unit iff fo is a unit and y|f;
fori=1,...,m; (i) If f is regular then there are f*,ue R[x] such that f = uf*, uis a
unit and f* is monic.

The polynomials /* and u in Theorem 2.3(iii) are constructed by Hensel lifting. We
generalise the construction in Theorem 2.3(iii) to any polynomial in f € R[x]\{0} by
defining f* = y'g* where 7' econt(f) and f = y’g. It follows that there is a unit
ue R[x] such that f = uf™. It is easy to show that f/* is unique in the sense that it
satisfies the following property:

if £ =wvh,v a unit in R[x] and lc(k) =y’ econt(f), then h = f*. (1)

Also, the unit u is unique modulo "~
The following consequence of Property (1) will be used later.

Lemma 2.4. Let f € R[x|\{0} and y'econt(f). Then deg(f*) = deg(¢,~1(f)).

Proof. Write f = y'g. By definition, f* = y’g* and there is a unit ue R[x] such
that f =yug*. Applying the homomorphism ¢ 1 we obtain @ i(f) =
@1 (Y1) @41 (g*). By Theorem 2.3(ii), deg(¢,ii(uy)) =0. Since ¢* is monic,
deg(i-1(¢")) = deg(g*) = deg(f*). Hence, deg(p1 (f)) = deg(f*). O

2.3. Strong reduction and strong Grobner bases

Let f, g, he R[x]. We write f' > gh if f strongly reduces to h w.r.t. G in one step and
also say that f is strongly reducible w.r.t. G (see [1, p. 252] for the definition of strong
reduction). The reflexive and transitive closure of —» ¢ is denoted »§. When > %h
we say that f strongly reduces to h w.r.t. G. If h is not strongly reducible w.r.t. G then
h is a remainder of f w.r.t. G (by strong reduction). The set of such remainders is
SRem(f', G). We adopt the conventions 0» 50 and SRem(0, G) = {0} for any set G.
Note that for any polynomial f there is at least one remainder of f w.r.t. G (by
strong reduction) and if > %0 then fe (G ). As in the case of a field, we have:

Theorem 2.5. Let I be a non-zero ideal of R[x| and G a finite subset of I\{0}. The
following assertions are equivalent: (1) any f €1 is strongly reducible w.r.t. G; (ii) f €l if
and only if f »%0; (iii) f' €l if and only if SRem(f, G) = {0}.

Let 7 be a non-zero ideal of R[x] and G a finite subset of 7\{0}. Then G is an SGB
for I if it satisfies any of the conditions of Theorem 2.5. If G is an SGB for an ideal
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I, then I = {G). When we say ‘G is an SGB’, we will mean G is an SGB for (G ).
We will also appeal to:

Proposition 2.6 (Norton and Salagean [15, Corollary 3.12, Proposition 4.2]). Let
f€R[x]. Then {f} is an SGB if and only if f = rg for some re R\{0} and g€ R[x] such
that 1c(g) is not a zero-divisor.

In [15], we characterised SGBs for ideals of R[x, ...,x,] in terms of S- and G-
polynomials (see [2, Definition 10.9]) of pairs of polynomials and ‘A4-polynomials’:
an A-polynomial of f is any polynomial af where Ann(lc(f)) = {a) g [15, Definition
4.9]. Sets of S-, G- and A-polynomials are denoted Spol(fi,f>), Gpol(fi,/f2) and
Apol(f), respectively.

We now restate [15, Corollaries 5.12 and 5.13]) for univariate polynomials, (c.f. [4,
Theorem 2.5.10]).

Corollary 2.7. A finite subset G of R|x|\{0} is an SGB if and only if (A) for any
g1, 92€ G with g1 # g», there is an he Spol(gi,ga) such that h—->%0; (B) for any ge G,
there is an he Apol(g) such that h~>%0; (C) for any g1, g>€ G with g\ # g there is an
heGpol(g1, g>) which is strongly reducible w.r.t. to G.

Algorithm SGB-PIR of [15] constructs an SGB from a finite set of generators
using Corollary 2.7.

Corollary 2.8. Let R be an Artinian chain ring. A finite subset G of R|x|\{0} is an SGB
if and only if (A) for any g1,g>€ G with g, ga, there is an he Spol(gi, g>) such that
h->%0 and (B) for any ge G, there is an he Apol(g) such that h—-> 0.

2.4. Minimal SGBs

If G is an SGB, then G is minimal if no proper subset of G is an SGB for (G ).
One can easily see that an SGB G is minimal if for all distinct /', g€ G we have Im(f)
does not divide Im(g). Other properties of minimal SGBs are described in [15,
Section 7]. We recall some of these results for R[x]:

Corollary 2.9. Let G = {qgo, ...,9s} = R[x] be an SGB. Then G is minimal if and only
if for i=0,....,s =1 (1) <le(gi) > g2 <Ic(gi+1) ) g and (i1) deg(g;) >deg(gi+1)-

Theorem 2.10. Let F = {f1, ..., [} and G = {g, ..., g1} be minimal SGBs for an ideal
I of R[x]. Then k = I and there are units u;€ R such that after a suitable renumbering

Im(f;) = u;Im(g;) fori =1, ..., k.

When R is a principal ideal domain, more is known about the structure of a minimal
SGB. We recall a theorem based on [9]; see also [18]. Our formulation is close to the
one in [1, Theorem 4.5.13 and Exercise 4.5.12].
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Theorem 2.11. Let D be a principal ideal domain which is not a field and let
G< D[x|\{0}. Then G is a minimal SGB if and only if G = {dygo, ...,dsgs} for some
die D, g;e D[x] such that for 0<i<s— 1, (1) {d;> gD {dit1)g; () lc(g;) = lc(giy1);
(iii) deg(g;)>deg(gi+1) and (V) di19i€ {dit1gis1, ... dsgs>. Moreover, dogs =
ged(dogo, -, dsgs)-

3. Minimal SGBs over an Artinian chain ring

Throughout this section, R is an Artinian chain ring. The following result shows
that all polynomials in a minimal SGB are of the form vf*, v a unit in R.

Proposition 3.1. (i) Let f'e R[x]\{0}. Any minimal SGB of {f) is equal to {vf*} for
some unit ve R. (i) If G is a minimal SGB, then any f € G is equal to vf™* for some unit
veR.

Proof. (i) This follows easily from Property (1) and Proposition 2.6. For (ii), let
f =uf* where veR[x] is a unit of minimal degree. It is enough to show that
deg(f) = deg(f*). We know that deg(f)>deg(f*). Since f*=v"!fe(G),
Im(g)|lm(f*) for some ge G. Hence, if deg(f) >deg(f*), deg(f)>deg(g) and f #g.
This contradicts the minimality of G since Im(g)|lm(f*)|lm(f). Hence, deg(f) =
deg(f*) and veR. O

Thus, any principal ideal of R[x] admits an SGB consisting of a single element. This
is no longer the case if R is not an Artinian chain ring or the polynomials are not
univariate; see [15, Examples 6.6, 6.12]. Corollary 2.9 can be improved, giving an
analogue of Theorem 2.11.

Theorem 3.2. Let G R[x|\{0}. Then G is a minimal SGB if and only if G =
{1090, ..., rsgs} for some s<v — 1, where (1) r; = i for 0<jo< -+ <js<v — 1; (ii) le(g;)
is a unit in R for i=0,...,s; (iii) deg(g;)>deg(g;+1) for i=0,...,s —1 and (iv)
Fis19i € {Tix1Givts oy Tsgsy for i=0, ..., s —1.

Proof. Let G = {fi, ..., f;} be a minimal SGB. By Corollary 2.9 we may assume that
deg(f;) >deg(fi11) for i =0, ...,s — 1. Define j; by yecont(f;) for i =0,...,s and
write f; = y/ih; with h; e R[x]. By Proposition 3.1(ii), there are units v;€ R such that
fi = v = v/l 1If we now put r; = 9/ and g; = v;h¥ fori = 0, ..., s, then (i)—(iii) are
easily checked. To prove (iv), let /= riy g — riy1gis1x9c8@)—deelivt) e ( G>. Since
h->%0 and deg(h)<deg(g;), only rit1git1,...,rsgs can be used in the strong

reduction, so he {ris1git1, -, rsgs ) - Hence, rip19i€ {riy1givty s 1sgs ) -
Conversely, assume that G is as in the theorem and 0<i<s. We will prove by
induction on i that G; = {rig;, ..., rsgs} is an SGB. The case i = s follows from

Proposition 2.6. Assume that i <s and G;y is an SGB. Firstly, Apol(r;g;) = {0} since
lc(g;) is a unit. Now let i<j<k<s and consider h = ryg; — rpgxicel9)—deelo) ¢
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Spol(r;g;, regr). We first show that he {( Giyy », which is clear if i<j. If j =i then
tiy19; € { Giy1 ) by (iv) and rj1|rk, so rrgje { Gip1 » 1.e. he {Giy1 ). By the inductive
hypothesis h—»‘gMO and therefore h—»’(“;’_O. By Corollary 2.8, G; is an SGB as
required. Thus, G = Gy is an SGB, and it is minimal by Corollary 2.9. [

Condition (iv) of Theorem 3.2 implies that g|g,—1]---|go. It might be expected that
rogs|rig: for i =0, ..., s as in Theorem 2.11. However, this is in general false:

Example 3.3. Let R=7/8Z and G = {x* —1,2(x? + 1),4(x — 1)} = R[x]. Putting
ro=1,go=x*~1,r =2 gi=x>+1 and r, =4, go =x— 1, one easily sees
that G is a minimal SGB by Theorem 3.2 and that r;g; is not divisible by ryg>.
Moreover, no other minimal SGB {gj), 24,445} (by Theorem 2.10) for {G) has this
property. For using Theorems 2.10 and 3.2 and the fact that 2'g} > %0 we see that, up
to multiplication by units of R, we can only have 2¢g| = 2g, or 2¢g| =29, + 4¢> =
2x2 +4x+6 and that 4¢, =4g> so ¢y =g +2a=x+2a—1 for some aeR.
Evaluating 2¢} at x = 1,3, 5,7 shows that 2¢g is not divisible by g5.

It is clear that if G satisfies Theorem 3.2(i),(ii),(iii) and condition (iv)" gy|---|go then
G is a minimal SGB. Example 3.3 also shows that the converse is not true in general.
It is however true under certain circumstances:

Theorem 3.4. Let I be an ideal of R[x]. If there is a monic f € I with f square-free, then
I has a minimal SGB G' = {ryg,, ...,d.} which satisfies Theorem 3.2(i)~(iii), (iv)’
above, jo = 0 and gjlf.

Proof. Let G be a minimal SGB for [ as in Theorem 3.2. As f is monic and f > %0,
Jo=0. By (iv), git1|gi for i =0, ...,s — 1. Also go|f because fel = {go». Putting
h_y =f/Go, hi = §i/Giv1 fori =0, ...,s — 1 and hy = gs, we have f = h_ hy---hy. Since
f is square-free, the factors /; are pairwise coprime and Hensel lifting yields
f =N kK. with the #; monic, pairwise coprime and //; = h; for —1<i<s. Put
g =hi---I for 0<i<s. It is easy to check that g;|f and that G’ satisfies (i)—(iv)’.
Thus, G’ is a minimal SGB.

It remains to show that < G’ ) = I. To show that r,g;el fori =0, ...,s, we will use
a technique similar to that of [5, Corollary of Theorem 6]. Since §; = g_ﬁ-, gi=¢i+vi
for some /;€ R[x]. It suffices to show that r;pl;el. We know that gi|gg|f, so f = vig}
for some v; € R[x]. Since f = v_,-g_:- = 7;g; and fis square-free, 7; and g; are coprime. By
[10, Theorem XIII.4], v; and ¢g; are coprime in R[x] i.e. 1 = av; 4+ bg; for some
a, be R[x]. Multiplying by r;y/; gives

rivly = avi(riyly) + b(rivli)gi = aviri(g; — gi) + brivligi = (ar;)f + (byl; — av;)rigie I

and so {G') <=I. For the reverse inclusion, suppose that 71el\<{ G'> has minimal
degree. Since G is an SGB for /, we have Im(r;g;)[Im(h) for some j. But Im(r;g}) =
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Im(7;g;), so h is strongly reducible w.r.t. G', h—> @ h; say. Then h —h e (G ), h #0
(otherwise hel) and deg(h;) <deg(h), for a contradiction. [

Remark 3.5. (i) The hypothesis of Theorem 3.4 can be relaxed to I having a minimal
SGB G = {rogo, -..,rsgs} of Theorem 3.2 with ro = | and g;/g;41 pairwise coprime
fori=0,...,5s — 1. (i1) The minimal SGB of Theorem 3.2 is similar to the ‘canonical
generating system (CGS)’ of an ideal of R[x] [11, Proposition 13], although GBs and
cyclic codes were not mentioned in [11]. A CGS has been generalised to an ideal I of
R[xi, ..., x,) for which R[xy, ..., x,]/I is finitely generated in [12]. Some connections
with Corollary 2.8 are discussed in [12, Section 5].

4. Cyclic codes over a finite chain ring

We now consider cyclic codes of arbitrary length # over an Artinian chain ring R.
As usual, such codes correspond to ideals of R[x]/<{x"—1). Let
q: R[x]—> R[x]/{x" — 1) be the quotient map. The following result is a straightfor-
ward generalisation of the corresponding result for fields (see [2, Theorem 9.19]).

Proposition 4.1. Let I be an ideal of R[x| with X" — 1€I and let G be an SGB for I.
Then for f € R|x], q(f)eq(I) if and only if f > %0.

Using Theorem 3.2 and Proposition 4.1 we obtain:

Theorem 4.2. Let C<R[x]/{x" — 1) be a non-zero cyclic code. There is an s<v — 1
and a G = {rogo, ...,rsgs} < R[x] such that q(G) generates C and (i) r; =y for
i=0,...,5 and 0<jo<---<jy<v—1; (ii) le(g;) is a unit for i=0,...,s; (ii)
n>deg(go) > -+ >deg(gs) and (iv) rit19i€ {ris1giv1, -, 1sgsy for i=0,...,5—1.
Moreover ro(x" — 1) > %0 and if deg(f) <n then q(f) € C if and only if f > 0.

Note that the last property of the preceding theorem gives an error-detection
algorithm for C. Theorem 4.2 implies in particular that gg|---|go|x" — 1. Since x" — 1
is square-free if and only if gcd(char(R),n) = 1, Theorem 3.4 and Proposition 4.1
yield:

Theorem 4.3. If gcd(char(R),n) = 1, then Theorem 4.2 holds with property (iv)
replaced by the stronger condition gs|---|go|x" — 1.

The restriction ged(char(R),n) =1 is essential in Theorem 4.3 as Example 3.3
shows. The existence of a set of generators for a cyclic code as in Theorem 4.3 was
proved in [5, Theorem 6] when R = Z/p¥Z and ged(p, n) = 1; see also [14, Theorem
3.17] and [8]. For negacyclic codes, constacyclic codes, or, more generally, codes
which are ideals in R[x]/{g) for a given ge R[x], we can obtain analogues of
Theorem 4.2 by simply replacing x” — 1 by ¢. If 7 is square-free, then we also obtain
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5. Minimal SGBs over a principal ideal ring

We generalise Theorems 2.11 and 3.2 to a principal ideal ring using some technical
results collected in Subsection 5.1.

5.1. Preliminaries

Suppose that 4 = 4; x --- X A, is a direct product of rings. The projections
n;: A— A; induce maps 7;: A[x]—> A;[x]. It is straightforward to check that the
induced map n: A[x]—>A;[x] X -+ x A,[x] given by n(f) = (71(f), ..., mm(f)) and
the map « : 4;[x] x -+ x A,,[x] > A[x], which collects coefficients of like terms, are
mutually inverse ring homomorphisms.

Definition 5.1. Let G; < 4;[x]\{0} for i = 1,2. Then G, Y G, the strong join of Gy, G,
is the subset Gy x {0} U {0} x Gy U {(t1g1, 1ag2): gi€ Gi, t; = lem(1t(gy),1t(g2))/1t(g:)}
of A;[x] x Az[x].

It was shown in [16] that

Theorem 5.2. Let I be a non-zero ideal in A|x] and G;=m;(I)\{0} for i =1,2. Then
k(G2 Gy) is an SGB for I if and only if G; is an SGB for n;(I) for i = 1,2.

We will use the following lemma:

Lemma 5.3. Any non-zero ideal of R[x| has an SGB {rogo, ...,rsgs} where r;eR,
Ic(g;) =r for i =0, ...,s and re R is not a zero-divisor.

Proof. If R is a principal ideal domain or an Artinian chain ring, the result follows
by Theorem 2.11 and by Theorem 3.2, respectively. Suppose now that R = R| X R,
where Rj, R, are principal ideal rings such that the theorem holds in R;[x] and R[x].
We will show that the theorem holds for R[x]. Let I be an ideal in R[x]. By
hypothesis, for / = 1,2 there are r!) € R, which are not zero-divisors, s;>0, rgl) ERy,
g\ e Ry[x] with Ic(g") = r¥) for i = 0, ..., s; such that G) = {ré”gé”, s r§f>g§f)} is an
SGB for m)(I). Let G = k(G2 G?). By Theorem 5.2, G is an SGB for I. Let
s =|G| — 1 and denote the elements of G by fy,...,f;. Let r =x(r!"),r?). Since
neither ") nor r are zero-divisors, r is not a zero-divisor. For k = 0, ..., s we will
define r € R and gi € R[x| such that f; = rrgx and le(gr) = r. If f = K(rﬁl)ggl), 0) for

(m
some 0<i<sy, define 1y, = (", 0) and g = x(g", F(2) ydee(s)’ N Iffi = K(O,rj(-z)g]@)

1

. @ el 2y i i
for some 0<j<sy, define ry = x(0,r;”) and gx = x(rVx" 4%, g;7). Finally, if

, (2) (1) . (1) 2)
i = w(rD gD man(0deg(e)”)—des(q; )} () () max{0dest])~den(s;”)}

i LAV
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1)

. . 2
for some 0<<i<s; and 0<j<s,, define ry = K(r; ,r; )) ;

ax ) _dea(sD ax D)_deg(a?
i = (gD xmexi0deets)dealo] ) 2) max(odesty")—deatq )}

It is easy to verify that f; = rpgx and lc(gx) =r for k=1, ...,s. The result now
follows easily from Theorem 2.1. [

5.2. Characterisation of minimal SGBs over a principal ideal ring
We now generalize Theorems 2.11 and 3.2 to a principal ideal ring:

Theorem 5.4. A finite set G< R[x]\{0} is a minimal SGB if and only if
G = {rogo, ..., rsgs} for some r;e R and g;€ R[x| such that (i) {r;) gD {riy1y g for
i=0,...,s—1; (i) le(g))=r for i=0,....,s and r is not a zero-divisor,
(it) deg(g:)>deg(gi+1) for i=0,...,s =1 and (iv) ris19:€ {ris1gists -, 1sgs ) for
i=0,..,s—1.

Proof. Let G = {fo, ..., f;} with deg(f;) >deg(fiy1) for i=0,...,5s — 1 be a minimal
SGB for I = (G ). By Lemma 5.3 there are re R, r not a zero-divisor, s’ >0, r}eR,
g;€ R[x] with Ic(g}) = r for i = 0, ..., s" such that G’ = {rygy, ..., 7, g.} is an SGB for
I. Without loss of generality, we may assume that G’ is minimal. By Theorem 2.10,
§'=s. By Corollary 2.9, we may also assume that deg(g)>deg(g;,,) and
(rile(gy) > r2 <1y le(gi ) >r for i=0,...,s—1. Since Ic(g;) =r for all i,
{r;» g2 ¥ > r- By Theorem 2.10 again, there are units u;€ R such that Im(f;) =
u; lm(vig}) = uri1m(g}), fori =0, ..., s. Now fix an 7 with 0<<i<s. Since G’ is an SGB
for I and f;eI, we have f; »¥,0. In this reduction, only polynomials of degree at most
deg(f;) = deg(g;) can be used, so fie {rig;, ...,r.g, . Since r|r} for all i<k<s, we
have r}|f;. So there is a g; € R[x] such that f; = u;r}g;. Since lc(f;) = u;r;1c(g:) we can
choose lc(g;) to be equal to lc(g;) =r. Putting r; = u;}, we have f; =r;g; and
conditions (i)—(iii) are verified. Condition (iv) can be checked as in the proof of
Theorem 3.2.

Conversely, assume that G has the form G = {rogo, ..., rsgs} with r;, g; having the
properties specified in the statement of the theorem. We will prove that G is an SGB
using Corollary 2.7. Conditions (A) and (B) follow by the same arguments as in the
proof of Theorem 3.2. For condition (C), note that r;g; € Gpol(r;g;, r;g;) is obviously
strongly reducible w.r.t. G for any 0<i<j<s. Hence, G is an SGB. The minimality
of G follows from Corollary 2.9. O

If G satisfies Theorem 5.4(i), (i), (iii) and (iv)’ gi11|g; for i=0,...,s — 1
then G is a minimal SGB. However, condition (iv)" is not a necessary
condition, as Example 3.3 shows. We saw that when R is an Artinian
chain ring we have §|g,—1|---|go. This weaker divisibility property generalises
to principal ideal rings.
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Corollary 5.5. Let G = {rogo, ..., "sgs } be a minimal SGB with r;, g; as in Theorem 5 .4.
Fori=0,...,s, let a;€ R be such that a;r; = ripy and {a;y g = ({rip1 ) g: 1), with the
convention ryiy = 0. Then goa/_(gj)|goaj(g,-) for all 0<i<j<s.

Proof. The existence of the a; follows by [15, Proposition 5.1]. A simple induction
on j—1i shows that rjg;e (rjg;,...,rsgs> for all 0<i<j<s. (The base of the
induction follows from Theorem 5.4(iv)). Hence, there are /;, ..., hy€ R[x] such that
rigi = rigih + riz1gjis1hi + -+ +rsgshg. This can be rewritten as r;(g; — g;hj) —
ripth =0 where h=g; 1hj1 +a1gj2hja + - +aj1 a5 19shs. Hence, 1;(g; —
gihj — a;h) = 0, i.e. each coefficient of g; — g;h; — a;h is in Ann(r;) = ({0)z: ;) S
(rjs1 ) r: 1j) = <4 ) g- Hence, ¢,.(9;i — g;h; — ajh) = ¢,,(9; — g;l;) = 0, i.e. ¢,(¢))]
q)a,'(gi)- U

Since Proposition 4.1 clearly applies to any ring, we deduce from
Theorem 5.4:

Theorem 5.6. Let CcR[x]/{x"—1) be a cyclic code over a principal ideal
ring. There is a G ={rogo,...,rsgs} such that q(G) generates C and r;eR,
gi€ R[x] satisfy the conditions (i)-(iv) of Theorem 5.4. Moreover, deg(go)<n,
ro(x" —1)>» %0 and for any feR[x] with deg(f)<n we have q(f)eC if and only

i 50.

6. Some algorithmic consequences

Throughout this section R will be an Artinian chain ring, called. Let ' € R[x]\{0}.
We can compute f* by Hensel lifting ([10, Theorem XIII.6]) or we can use
Proposition 3.1(i) and compute a minimal SGB for {f > via Algorithm SGB-FCR of
[15, Subsection 6.2]; see also [16, Appendix].

We now compare their worst-case complexities. If n = deg(f)=m = deg(f™)
and d =n—m+ 1, computing f* by Hensel lifting has complexity O (vdm)
since there are v lifting steps, each requiring at most dm operations.
Computing an SGB of {f} requires O(v’dn) since at most vd new
polynomials (of degree at least m and at most n) will be added to the basis and
computing the remainder of an S-polynomial or an A-polynomial will take at most
dn operations. It is worth noting that by Lemma 2.4 we can stop the algorithm as
soon as we obtain a polynomial of degree deg(q,ii(f)) in the basis, where
Y econt(f).

Thus, the worst-case complexity of Hensel lifting is somewhat lower than
that of SGB-FCR({f}). In practice however, the complexity of Hensel lifting
varies little with the particular input polynomial, whereas the complexity of
computing an SGB varies significantly and the worst-case behaviour is rarely
achieved. Examples suggest that Algorithm SGB-FCR may be more efficient in
general for computing /*.
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Proposition 3.1(ii) yields a variant of Algorithm SGB-FCR for R[x]:

Algorithm 6.1 (SGB IN R[x], R AN ARTINIAN CHAIN RING, USING THE *-CONSTRUC-
TION).
G < SGB-FCR*(F)

Input:  F a finite subset of R[x]|, where R is a computable Artinian chain ring.
Output: G an SGB for (F).
Note: Bis the set of pairs of polynomials in G whose S-polynomials still have to be
computed.
begin G g*|ge F; Bfi.filfi. o€ G.fi #f;
while B#( do
select f1,/> from B
B B\fl 7f2
compute e Spol(fi, f2)
compute ge SRem(/, G)
if g#0 then compute g*; B« Bug*,f|f € G; G« Gug*; end if
end while
return(G)
end

Note that g* can be computed by Hensel lifting or via the original algorithm SGB-
FCR ({g}), and that adding ¢g* rather than g to the basis is advantageous as
deg(g*) <deg(g) and Im(g*)[Im(g).
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