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Abstract

We characterise minimal strong Gröbner bases of R½x�; where R is a commutative

principal ideal ring and deduce a structure theorem for cyclic codes of arbitrary length

over R: When R is an Artinian chain ring with residue field %R and gcdðcharð %RÞ; nÞ ¼ 1;
we recover a theorem for cyclic codes of length n over R due to Calderbank and Sloane

for R ¼ Z=pkZ:
r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

All rings in this paper are commutative. This work originates from two structure

theorems: (i) for certain cyclic codes over R ¼ Z=pkZ; with p a prime and k an
integer, kX2 [5, Theorem 6] and (ii) for a minimal strong Gröbner basis (SGB) of an
ideal of D½x�; D a principal ideal domain, [9]. Intuitively, the first resembled a
‘minimal SGB’. Since we had already developed a theory of SGBs over a principal
ideal ring in [15], it was natural to ask whether (i) and (ii) have a common
provenance. We confirm this and generalise (i) to a cyclic code of arbitrary length
over a principal ideal ring.
In more detail, a cyclic code of length n over a ring R is an ideal of R½x�=/xn � 1S:

The structure theorem for cyclic codes over R of [5] requires that gcdðp; nÞ ¼ 1 and
the proofs used non-trivial results from Commutative Algebra on the ideal structure
of R½x�=/xn � 1S: A generalisation of [5, Theorem 6] to cyclic codes over an
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Artinian chain ring was given in [14]. We formalised the notion of a ‘generating
set in standard form’, [14, Definition 4.1] and showed that a cyclic code has
a unique generating set in standard form [14, Theorem 4.4]. See also [19,
Theorem 3.9].
In addition, we recover the generating set in standard form of a cyclic code over an

Artinian chain ring R as a minimal SGB using [15]. This provides an alternative
proof of [14, Theorem 4.4]. Moreover, a similar result holds for arbitrary n (see
Theorem 4.2 and condition (iv)) and also for codes over a principal ideal ring (see
Theorem 5.6).
We begin with some preliminaries on Artinian chain rings R (e.g. Galois rings)

and then characterise the structure of minimal SGBs of R½x�; see Theorem 3.2.
This result is similar to the principal ideal domain case of [9], recalled as
Theorem 2.11; see also [18]. In Section 4, we show that if p is the characteristic of
the residue field of R and gcdðp; nÞ ¼ 1; minimal SGBs coincide with generating sets
in standard form for cyclic codes over R: In Section 5, we generalise the structure
theorems for minimal SGBs mentioned above to a principal ideal ring. In the final
section, we discuss connections between minimal SGBs over R and the representa-
tion of a regular fAR½x� as f ¼ uf n with f n monic and u a unit in R½x� of [10,
Theorem XIII.6].
We have thus found a common background for the structure theorems of [1,5,9].

Some of the results of this paper appeared in [17]. We remark that Allan Steel has
implemented an SGB algorithm in Version 2.8 of Magma [3] using [15, Corollary
5.13] generalising Faugère’s algorithm [7] to Galois rings.
We use results from [15] extensively. Related independent work for the special case

of a Galois ring A appears in [4], where an SGB is called a GB. Their approach
depends on whether the elements of A are represented additively or multiplicatively.
On the other hand, our notion of reduction is independent of how the elements of A

are represented and how the operations are performed in A; as needed for working
over principal ideal rings in general.
More importantly, there is another strictly weaker notion of a (weak) GB

over any ring, [1, Definition 4.1.13]. The key result [4, Theorem 2.5.10] depends
on the characterisation of a (weak) GB (rather than an SGB) in terms of
homogeneous syzygies of monomials in R½x� given in [1, Theorem 4.2.3]. This
means that [4, Theorem 2.5.10] only yields a (weak) GB and not necessarily
an SGB as in [4, Definition 2.4.1]. It turns out a (weak) GB is an SGB
over an Artinian chain ring, [15, Proposition 3.9], but this point is not considered
in [4].
Thus, while one could potentially generalise parts of [4] to finite chain

rings, we prefer to avoid circular arguments (i.e. appealing to [15, Proposition
3.9]), a ‘pre-selected division algorithm’ and homogeneous syzygies. For example, we
need only specialise [15, Theorem 4.10] to the univariate case, as in Corollary 2.8
below. Finally, concerning the decoding application of [4], we note that a
characterisation of the set of solutions of the key equation and a quadratic decoding
algorithm for an alternant code over a finite chain ring appeared in [13]. We do not
know if the decoding application in [4] runs in polynomial time.
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2. Preliminaries

First some notation and known results on Artinian chain rings, SGBs and minimal
SGBs.

2.1. Notation

Throughout this paper, R will denote a principal ideal ring which is not a field. We
write the ideal of R generated by r1;y; rmAR as /r1;y; rmSR: The ideal of R½x�
generated by f1;y; fmAR½x� is written as /f1;y; fmS and C;* denote strict

inclusion. As usual, f ¼
Pd

i¼0 cix
iAR½x� with cda0 has degree d ¼ degðf Þ; ltðf Þ ¼

xd is its leading term and lcðf Þ ¼ cd is its leading coefficient; we say that f is monic if
lcðf Þ ¼ 1: The leading monomial of f is lmðf Þ ¼ lcðf Þltðf Þ and we denote by contðf Þ
a content of f i.e. a gcd of all its coefficients, which is well-defined up to a unit by
[15, Lemma 4.3(iii)].

2.2. Artinian chain rings

We will need the following structure theorem:

Theorem 2.1 (Zariski and Samuel [20, Theorem 33, Section 15, Chapter 4]). A

principal ideal ring is isomorphic to a finite direct product of principal ideal domains

and Artinian chain rings.

Recall that a chain ring is a ring whose ideals are linearly ordered by inclusion [6].
In this section, R will denote an Artinian chain ring. The main properties of R are:

Proposition 2.2. R is a local principal ideal ring with maximal ideal JðRÞ; the elements

of JðRÞ are nilpotent and the elements of R\JðRÞ are units.
Let g be a fixed generator of JðRÞ and n the nilpotency index of g i.e. the smallest

positive integer for which gn ¼ 0: (i) The distinct proper ideals of R are /giSR; i ¼
1;y; n� 1: (ii) For any element rAR\f0g there is a unique i and a unit u such that

r ¼ ugi; where 0pipn� 1 and u is unique modulo gn�i: (iii) AnnðgiÞ ¼ /gn�iSR:

It is not hard to see that a local principal ideal ring is a chain ring. Thus, Artinian
chain rings are precisely the Artinian local principal ideal rings.
From now on, g and n will be as in Proposition 2.2. It follows that any fAR½x�\f0g

can be written as gig where 0pipn� 1; degðf Þ ¼ degðgÞ and g does not divide g:

The exponent i is uniquely determined and g is unique modulo gn�i:
For any rAR; the canonical projection jr : R-R=/rSR induces a ring

homomorphism R½x�-ðR=/rSRÞ½x�; which we also write as jr: Of course, jg

projects R onto its residue field %R ¼ R=JðRÞ; and in this case we write %f for jgðf Þ:
The next theorem is stated for finite local rings in [10], but the proofs only use the

fact that R is local and that the maximal ideal is nilpotent and finitely generated;
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R itself need not be finite. Recall that a polynomial in R½x� is called regular if it is not
a zero-divisor.

Theorem 2.3 (McDonald [10, Theorems XIII.2 and XIII.6]). Let f ¼
Pm

i¼0 fix
iAR½x�\f0g: Then:

(i) f is a zero-divisor iff gjfi for i ¼ 0;y;m; (ii) f is a unit iff f0 is a unit and gjfi

for i ¼ 1;y;m; (iii) If f is regular then there are f n; uAR½x� such that f ¼ uf n; u is a

unit and f n is monic.

The polynomials f n and u in Theorem 2.3(iii) are constructed by Hensel lifting. We
generalise the construction in Theorem 2.3(iii) to any polynomial in fAR½x�\f0g by

defining f n ¼ gign where giAcontðf Þ and f ¼ gig: It follows that there is a unit

uAR½x� such that f ¼ uf n: It is easy to show that f n is unique in the sense that it
satisfies the following property:

if f ¼ vh; v a unit in R½x� and lcðhÞ ¼ giAcontðf Þ; then h ¼ f n: ð1Þ

Also, the unit u is unique modulo gn�i:
The following consequence of Property (1) will be used later.

Lemma 2.4. Let fAR½x�\f0g and giAcontðf Þ: Then degðf nÞ ¼ degðjgiþ1ðf ÞÞ:

Proof. Write f ¼ gig: By definition, f n ¼ gign and there is a unit uAR½x� such

that f ¼ giugn: Applying the homomorphism jgiþ1 we obtain jgiþ1ðf Þ ¼
jgiþ1ðgiuÞjgiþ1ðgnÞ: By Theorem 2.3(ii), degðjgiþ1ðugiÞÞ ¼ 0: Since gn is monic,

degðjgiþ1ðgnÞÞ ¼ degðgnÞ ¼ degðf nÞ: Hence, degðjgiþ1ðf ÞÞ ¼ degðf nÞ: &

2.3. Strong reduction and strong Gröbner bases

Let f ; g; hAR½x�: We write f7Gh if f strongly reduces to h w.r.t. G in one step and
also say that f is strongly reducible w.r.t. G (see [1, p. 252] for the definition of strong

reduction). The reflexive and transitive closure of 7G is denoted 7n
G: When f7n

Gh

we say that f strongly reduces to h w.r.t. G: If h is not strongly reducible w.r.t. G then
h is a remainder of f w.r.t. G (by strong reduction). The set of such remainders is

SRemðf ;GÞ: We adopt the conventions 07n
G0 and SRemð0;GÞ ¼ f0g for any set G:

Note that for any polynomial f there is at least one remainder of f w.r.t. G (by

strong reduction) and if f7n
G0 then fA/GS: As in the case of a field, we have:

Theorem 2.5. Let I be a non-zero ideal of R½x� and G a finite subset of I\f0g: The

following assertions are equivalent: (i) any fAI is strongly reducible w.r.t. G; (ii) fAI if

and only if f7n
G0; (iii) fAI if and only if SRemðf ;GÞ ¼ f0g:

Let I be a non-zero ideal of R½x� and G a finite subset of I\f0g: Then G is an SGB
for I if it satisfies any of the conditions of Theorem 2.5. If G is an SGB for an ideal
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I ; then I ¼ /GS: When we say ‘G is an SGB’, we will mean G is an SGB for /GS:
We will also appeal to:

Proposition 2.6 (Norton and Salagean [15, Corollary 3.12, Proposition 4.2]). Let

fAR½x�: Then ff g is an SGB if and only if f ¼ rg for some rAR\f0g and gAR½x� such

that lcðgÞ is not a zero-divisor.

In [15], we characterised SGBs for ideals of R½x1;y; xn� in terms of S- and G-
polynomials (see [2, Definition 10.9]) of pairs of polynomials and ‘A-polynomials’:
an A-polynomial of f is any polynomial af where Annðlcðf ÞÞ ¼ /aSR [15, Definition
4.9]. Sets of S-, G- and A-polynomials are denoted Spolðf1; f2Þ; Gpolðf1; f2Þ and
Apolðf Þ; respectively.
We now restate [15, Corollaries 5.12 and 5.13]) for univariate polynomials, (c.f. [4,

Theorem 2.5.10]).

Corollary 2.7. A finite subset G of R½x�\f0g is an SGB if and only if (A) for any

g1; g2AG with g1ag2; there is an hASpolðg1; g2Þ such that h7n
G0; (B) for any gAG;

there is an hAApolðgÞ such that h7n
G0; (C) for any g1; g2AG with g1ag2 there is an

hAGpolðg1; g2Þ which is strongly reducible w.r.t. to G:

Algorithm SGB-PIR of [15] constructs an SGB from a finite set of generators
using Corollary 2.7.

Corollary 2.8. Let R be an Artinian chain ring. A finite subset G of R½x�\f0g is an SGB

if and only if (A) for any g1; g2AG with g1ag2; there is an hASpolðg1; g2Þ such that

h7n
G0 and (B) for any gAG; there is an hAApolðgÞ such that h7n

G0:

2.4. Minimal SGBs

If G is an SGB, then G is minimal if no proper subset of G is an SGB for /GS:
One can easily see that an SGB G is minimal if for all distinct f ; gAG we have lmðf Þ
does not divide lmðgÞ: Other properties of minimal SGBs are described in [15,
Section 7]. We recall some of these results for R½x�:

Corollary 2.9. Let G ¼ fg0;y; gsgCR½x� be an SGB. Then G is minimal if and only

if for i ¼ 0;y; s � 1 (i) /lcðgiÞSR*/lcðgiþ1ÞSR and (ii) degðgiÞ4degðgiþ1Þ:

Theorem 2.10. Let F ¼ ff1;y; fkg and G ¼ fg1;y; glg be minimal SGBs for an ideal

I of R½x�: Then k ¼ l and there are units uiAR such that after a suitable renumbering

lmðfiÞ ¼ ui lmðgiÞ for i ¼ 1;y; k:

When R is a principal ideal domain, more is known about the structure of a minimal
SGB. We recall a theorem based on [9]; see also [18]. Our formulation is close to the
one in [1, Theorem 4.5.13 and Exercise 4.5.12].
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Theorem 2.11. Let D be a principal ideal domain which is not a field and let

GCD½x�\f0g: Then G is a minimal SGB if and only if G ¼ fd0g0;y; dsgsg for some

diAD; giAD½x� such that for 0pips � 1; (i) /diSR*/diþ1SR; (ii) lcðgiÞ ¼ lcðgiþ1Þ;
(iii) degðgiÞ4degðgiþ1Þ and (iv) diþ1giA/diþ1giþ1;y; dsgsS: Moreover, d0gs ¼
gcdðd0g0;y; dsgsÞ:

3. Minimal SGBs over an Artinian chain ring

Throughout this section, R is an Artinian chain ring. The following result shows

that all polynomials in a minimal SGB are of the form vf n; v a unit in R:

Proposition 3.1. (i) Let fAR½x�\f0g: Any minimal SGB of /fS is equal to fvf ng for

some unit vAR: (ii) If G is a minimal SGB, then any fAG is equal to vf n for some unit

vAR:

Proof. (i) This follows easily from Property (1) and Proposition 2.6. For (ii), let

f ¼ vf n; where vAR½x� is a unit of minimal degree. It is enough to show that

degðf Þ ¼ degðf nÞ: We know that degðf ÞXdegðf nÞ: Since f n ¼ v�1fA/GS;
lmðgÞjlmðf nÞ for some gAG: Hence, if degðf Þ4degðf nÞ; degðf Þ4degðgÞ and fag:
This contradicts the minimality of G since lmðgÞjlmðf nÞjlmðf Þ: Hence, degðf Þ ¼
degðf nÞ and vAR: &

Thus, any principal ideal of R½x� admits an SGB consisting of a single element. This
is no longer the case if R is not an Artinian chain ring or the polynomials are not
univariate; see [15, Examples 6.6, 6.12]. Corollary 2.9 can be improved, giving an
analogue of Theorem 2.11.

Theorem 3.2. Let GCR½x�\f0g: Then G is a minimal SGB if and only if G ¼
fr0g0;y; rsgsg for some spn� 1; where (i) ri ¼ gji for 0pj0o?ojspn� 1; (ii) lcðgiÞ
is a unit in R for i ¼ 0;y; s; (iii) degðgiÞ4degðgiþ1Þ for i ¼ 0;y; s � 1 and (iv)
riþ1giA/riþ1giþ1;y; rsgsS for i ¼ 0;y; s � 1:

Proof. Let G ¼ ff1;y; fsg be a minimal SGB. By Corollary 2.9 we may assume that

degðfiÞ4degðfiþ1Þ for i ¼ 0;y; s � 1: Define ji by gjiAcontðfiÞ for i ¼ 0;y; s and

write fi ¼ gji hi with hiAR½x�: By Proposition 3.1(ii), there are units viAR such that

fi ¼ vif
n

i ¼ vigji hn
i : If we now put ri ¼ gji and gi ¼ vih

n
i for i ¼ 0;y; s; then (i)–(iii) are

easily checked. To prove (iv), let h ¼ riþ1gi � riþ1giþ1x
degðgiÞ�degðgiþ1ÞA/GS: Since

h7n
G0 and degðhÞodegðgiÞ; only riþ1giþ1;y; rsgs can be used in the strong

reduction, so hA/riþ1giþ1;y; rsgsS: Hence, riþ1giA/riþ1giþ1;y; rsgsS:
Conversely, assume that G is as in the theorem and 0pips: We will prove by

induction on i that Gi ¼ frigi;y; rsgsg is an SGB. The case i ¼ s follows from
Proposition 2.6. Assume that ios and Giþ1 is an SGB. Firstly, ApolðrigiÞ ¼ f0g since
lcðgiÞ is a unit. Now let ipjokps and consider h ¼ rkgj � rkgkxdegðgjÞ�degðgkÞA
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Spolðrjgj; rkgkÞ: We first show that hA/Giþ1S; which is clear if ioj: If j ¼ i then

rjþ1gjA/Giþ1S by (iv) and rjþ1jrk; so rkgjA/Giþ1S i.e. hA/Giþ1S: By the inductive

hypothesis h7n
Giþ1

0 and therefore h7n
Gi
0: By Corollary 2.8, Gi is an SGB as

required. Thus, G ¼ G0 is an SGB, and it is minimal by Corollary 2.9. &

Condition (iv) of Theorem 3.2 implies that %gsj %gs�1j?j %g0: It might be expected that
r0gsjrigi for i ¼ 0;y; s as in Theorem 2.11. However, this is in general false:

Example 3.3. Let R ¼ Z=8Z and G ¼ fx4 � 1; 2ðx2 þ 1Þ; 4ðx � 1ÞgCR½x�: Putting
r0 ¼ 1; g0 ¼ x4 � 1; r1 ¼ 2; g1 ¼ x2 þ 1 and r2 ¼ 4; g2 ¼ x � 1; one easily sees
that G is a minimal SGB by Theorem 3.2 and that r1g1 is not divisible by r0g2:
Moreover, no other minimal SGB fg0

0; 2g0
1; 4g0

2g (by Theorem 2.10) for /GS has this

property. For using Theorems 2.10 and 3.2 and the fact that 2ig0
i7

n
G0 we see that, up

to multiplication by units of R; we can only have 2g0
1 ¼ 2g1 or 2g0

1 ¼ 2g1 þ 4g2 ¼
2x2 þ 4x þ 6 and that 4g0

2 ¼ 4g2 so g0
2 ¼ g2 þ 2a ¼ x þ 2a � 1 for some aAR:

Evaluating 2g0
1 at x ¼ 1; 3; 5; 7 shows that 2g0

1 is not divisible by g0
2:

It is clear that if G satisfies Theorem 3.2(i),(ii),(iii) and condition ðivÞ0 gsj?jg0 then
G is a minimal SGB. Example 3.3 also shows that the converse is not true in general.
It is however true under certain circumstances:

Theorem 3.4. Let I be an ideal of R½x�: If there is a monic fAI with %f square-free, then

I has a minimal SGB G0 ¼ fr0g
0
0;y; g0

sg which satisfies Theorem 3.2(i)–(iii), ðivÞ0
above, j0 ¼ 0 and g0

0jf :

Proof. Let G be a minimal SGB for I as in Theorem 3.2. As f is monic and f7n
G0;

j0 ¼ 0: By (iv), giþ1jgi for i ¼ 0;y; s � 1: Also g0j %f because %fA %I ¼ /g0S: Putting

h�1 ¼ %f= %g0; hi ¼ %gi= %giþ1 for i ¼ 0;y; s � 1 and hs ¼ %gs; we have %f ¼ h�1h0?hs: Since
%f is square-free, the factors hi are pairwise coprime and Hensel lifting yields

f ¼ h0
�1h

0
0?h0

s with the h0
i monic, pairwise coprime and %h0

i ¼ hi for �1pips: Put
g0

i ¼ h0
i?h0

s for 0pips: It is easy to check that g0
0jf and that G0 satisfies (i)–(iv)’.

Thus, G0 is a minimal SGB.
It remains to show that /G0S ¼ I : To show that rig

0
iAI for i ¼ 0;y; s; we will use

a technique similar to that of [5, Corollary of Theorem 6]. Since %gi ¼ g0
i; g0

i ¼ gi þ gli
for some liAR½x�: It suffices to show that rigliAI : We know that g0

ijg0
0jf ; so f ¼ vig

0
i

for some viAR½x�: Since %f ¼ vig
0
i ¼ vigi and %f is square-free, vi and gi are coprime. By

[10, Theorem XIII.4], vi and gi are coprime in R½x� i.e. 1 ¼ avi þ bgi for some
a; bAR½x�: Multiplying by rigli gives

rigli ¼ aviðrigliÞ þ bðrigliÞgi ¼ aviriðg0
i � giÞ þ brigligi ¼ ðariÞf þ ðbgli � aviÞrigiAI

and so /G0SDI : For the reverse inclusion, suppose that hAI\/G0S has minimal
degree. Since G is an SGB for I ; we have lmðrjgjÞjlmðhÞ for some j: But lmðrjg

0
jÞ ¼
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lmðrjgjÞ; so h is strongly reducible w.r.t. G0; h7G0h1 say. Then h � h1A/G0S; h1a0

(otherwise hAI) and degðh1ÞodegðhÞ; for a contradiction. &

Remark 3.5. (i) The hypothesis of Theorem 3.4 can be relaxed to I having a minimal
SGB G ¼ fr0g0;y; rsgsg of Theorem 3.2 with r0 ¼ 1 and %gi= %giþ1 pairwise coprime
for i ¼ 0;y; s � 1: (ii) The minimal SGB of Theorem 3.2 is similar to the ‘canonical
generating system (CGS)’ of an ideal of R½x� [11, Proposition 13], although GBs and
cyclic codes were not mentioned in [11]. A CGS has been generalised to an ideal I of
R½x1;y; xn� for which R½x1;y; xn�=I is finitely generated in [12]. Some connections
with Corollary 2.8 are discussed in [12, Section 5].

4. Cyclic codes over a finite chain ring

We now consider cyclic codes of arbitrary length n over an Artinian chain ring R:
As usual, such codes correspond to ideals of R½x�=/xn � 1S: Let
q : R½x�-R½x�=/xn � 1S be the quotient map. The following result is a straightfor-
ward generalisation of the corresponding result for fields (see [2, Theorem 9.19]).

Proposition 4.1. Let I be an ideal of R½x� with xn � 1AI and let G be an SGB for I :
Then for fAR½x�; qðf ÞAqðIÞ if and only if f7n

G0:

Using Theorem 3.2 and Proposition 4.1 we obtain:

Theorem 4.2. Let CCR½x�=/xn � 1S be a non-zero cyclic code. There is an spn� 1

and a G ¼ fr0g0;y; rsgsgCR½x� such that qðGÞ generates C and (i) ri ¼ gji for

i ¼ 0;y; s and 0pj0o?ojspn� 1; (ii) lcðgiÞ is a unit for i ¼ 0;y; s; (iii)
n4degðg0Þ4?4degðgsÞ and (iv) riþ1giA/riþ1giþ1;y; rsgsS for i ¼ 0;y; s � 1:

Moreover r0ðxn � 1Þ7n
G0 and if degðf Þon then qðf ÞAC if and only if f7n

G0:

Note that the last property of the preceding theorem gives an error-detection

algorithm for C: Theorem 4.2 implies in particular that gsj?jg0jxn � 1: Since xn � 1

is square-free if and only if gcdðcharð %RÞ; nÞ ¼ 1; Theorem 3.4 and Proposition 4.1
yield:

Theorem 4.3. If gcdðcharð %RÞ; nÞ ¼ 1; then Theorem 4.2 holds with property (iv)
replaced by the stronger condition gsj?jg0jxn � 1:

The restriction gcdðcharð %RÞ; nÞ ¼ 1 is essential in Theorem 4.3 as Example 3.3
shows. The existence of a set of generators for a cyclic code as in Theorem 4.3 was

proved in [5, Theorem 6] when R ¼ Z=pkZ and gcdðp; nÞ ¼ 1; see also [14, Theorem
3.17] and [8]. For negacyclic codes, constacyclic codes, or, more generally, codes
which are ideals in R½x�=/gS for a given gAR½x�; we can obtain analogues of
Theorem 4.2 by simply replacing xn � 1 by g: If %g is square-free, then we also obtain
gsj?jg0jg:
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5. Minimal SGBs over a principal ideal ring

We generalise Theorems 2.11 and 3.2 to a principal ideal ring using some technical
results collected in Subsection 5.1.

5.1. Preliminaries

Suppose that A ¼ A1 �?� Am is a direct product of rings. The projections
pi : A-Ai induce maps pi : A½x�-Ai½x�: It is straightforward to check that the
induced map p :A½x�-A1½x� �?� Am½x� given by pðf Þ ¼ ðp1ðf Þ;y; pmðf ÞÞ and
the map k : A1½x� �?� Am½x�-A½x�; which collects coefficients of like terms, are
mutually inverse ring homomorphisms.

Definition 5.1. Let GiCAi½x�\f0g for i ¼ 1; 2: Then G1
%
0 G2; the strong join of G1;G2

is the subset G1 � f0g,f0g � G2,fðt1g1; t2g2Þ: giAGi; ti ¼ lcmðltðg1Þ; ltðg2ÞÞ=ltðgiÞg
of A1½x� � A2½x�:

It was shown in [16] that

Theorem 5.2. Let I be a non-zero ideal in A½x� and GiDpiðIÞ\f0g for i ¼ 1; 2: Then

kðG1
%
0G2Þ is an SGB for I if and only if Gi is an SGB for piðIÞ for i ¼ 1; 2:

We will use the following lemma:

Lemma 5.3. Any non-zero ideal of R½x� has an SGB fr0g0;y; rsgsg where riAR;
lcðgiÞ ¼ r for i ¼ 0;y; s and rAR is not a zero-divisor.

Proof. If R is a principal ideal domain or an Artinian chain ring, the result follows
by Theorem 2.11 and by Theorem 3.2, respectively. Suppose now that R ¼ R1 � R2

where R1;R2 are principal ideal rings such that the theorem holds in R1½x� and R2½x�:
We will show that the theorem holds for R½x�: Let I be an ideal in R½x�: By
hypothesis, for l ¼ 1; 2 there are rðlÞARl which are not zero-divisors, slX0; r

ðlÞ
i ARl ;

g
ðlÞ
i ARl ½x� with lcðgðlÞ

i Þ ¼ rðlÞ for i ¼ 0;y; sl such that GðlÞ ¼ fr
ðlÞ
0 g

ðlÞ
0 ;y; r

ðlÞ
sl

g
ðlÞ
sl
g is an

SGB for plðIÞ: Let G ¼ kðGð1Þ
%
0Gð2ÞÞ: By Theorem 5.2, G is an SGB for I : Let

s ¼ jGj � 1 and denote the elements of G by f0;y; fs: Let r ¼ kðrð1Þ; rð2ÞÞ: Since
neither rð1Þ nor rð2Þ are zero-divisors, r is not a zero-divisor. For k ¼ 0;y; s we will

define rkAR and gkAR½x� such that fk ¼ rkgk and lcðgkÞ ¼ r: If fk ¼ kðrð1Þi g
ð1Þ
i ; 0Þ for

some 0pips1; define rk ¼ kðrð1Þi ; 0Þ and gk ¼ kðgð1Þ
i ; rð2Þxdegðgð1Þ

i
ÞÞ: If fk ¼ kð0; r

ð2Þ
j g

ð2Þ
j Þ

for some 0pjps2; define rk ¼ kð0; r
ð2Þ
j Þ and gk ¼ kðrð1Þxdegðgð2Þ

j
Þ
; g

ð2Þ
j Þ: Finally, if

fk ¼ kðrð1Þi g
ð1Þ
i x

maxf0;degðgð2Þ
j

Þ�degðgð1Þ
i

Þg
; r

ð2Þ
j g

ð2Þ
j x

maxf0;degðgð1Þ
i

Þ�degðgð2Þ
j

ÞgÞ
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for some 0pips1 and 0pjps2; define rk ¼ kðrð1Þi ; r
ð2Þ
j Þ and

gk ¼ kðgð1Þ
i x

maxf0;degðgð2Þ
j

Þ�degðgð1Þ
i

Þg
; g

ð2Þ
j x

maxf0;degðgð1Þ
i

Þ�degðgð2Þ
j

ÞgÞ:

It is easy to verify that fk ¼ rkgk and lcðgkÞ ¼ r for k ¼ 1;y; s: The result now
follows easily from Theorem 2.1. &

5.2. Characterisation of minimal SGBs over a principal ideal ring

We now generalize Theorems 2.11 and 3.2 to a principal ideal ring:

Theorem 5.4. A finite set GCR½x�\f0g is a minimal SGB if and only if

G ¼ fr0g0;y; rsgsg for some riAR and giAR½x� such that (i) /riSR*/riþ1SR for

i ¼ 0;y; s � 1; (ii) lcðgiÞ ¼ r for i ¼ 0;y; s and r is not a zero-divisor;
(iii) degðgiÞ4degðgiþ1Þ for i ¼ 0;y; s � 1 and (iv) riþ1giA/riþ1giþ1;y; rsgsS for

i ¼ 0;y; s � 1:

Proof. Let G ¼ ff0;y; fsg with degðfiÞ4degðfiþ1Þ for i ¼ 0;y; s � 1 be a minimal
SGB for I ¼ /GS: By Lemma 5.3 there are rAR; r not a zero-divisor, s0X0; r0iAR;
g0

iAR½x� with lcðg0
iÞ ¼ r for i ¼ 0;y; s0 such that G0 ¼ fr00g

0
0;y; r0s0g

0
s0 g is an SGB for

I : Without loss of generality, we may assume that G0 is minimal. By Theorem 2.10,
s0 ¼ s: By Corollary 2.9, we may also assume that degðg0

iÞ4degðg0
iþ1Þ and

/r0i lcðg0
iÞSR*/r0iþ1 lcðg0

iþ1ÞSR for i ¼ 0;y; s � 1: Since lcðg0
iÞ ¼ r for all i;

/r0iSR*/r0iþ1SR: By Theorem 2.10 again, there are units uiAR such that lmðfiÞ ¼
ui lmðr0ig0

iÞ ¼ uir
0
i lmðg0

iÞ; for i ¼ 0;y; s:Now fix an i with 0pips: Since G0 is an SGB
for I and fiAI ; we have fi7

n

G00: In this reduction, only polynomials of degree at most

degðfiÞ ¼ degðg0
iÞ can be used, so fiA/r0ig

0
i;y; r0sg

0
sS: Since r0ijr0k for all ipkps; we

have r0ijfi: So there is a giAR½x� such that fi ¼ uir
0
igi: Since lcðfiÞ ¼ uir

0
i lcðg0

iÞ we can
choose lcðgiÞ to be equal to lcðg0

iÞ ¼ r: Putting ri ¼ uir
0
i; we have fi ¼ rigi and

conditions (i)–(iii) are verified. Condition (iv) can be checked as in the proof of
Theorem 3.2.
Conversely, assume that G has the form G ¼ fr0g0;y; rsgsg with ri; gi having the

properties specified in the statement of the theorem. We will prove that G is an SGB
using Corollary 2.7. Conditions (A) and (B) follow by the same arguments as in the
proof of Theorem 3.2. For condition (C), note that rigiAGpolðrigi; rjgjÞ is obviously
strongly reducible w.r.t. G for any 0piojps: Hence, G is an SGB. The minimality
of G follows from Corollary 2.9. &

If G satisfies Theorem 5.4(i), (ii), (iii) and ðivÞ0 giþ1jgi for i ¼ 0;y; s � 1

then G is a minimal SGB. However, condition ðivÞ0 is not a necessary
condition, as Example 3.3 shows. We saw that when R is an Artinian
chain ring we have %gsj %gs�1j?j %g0: This weaker divisibility property generalises
to principal ideal rings.
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Corollary 5.5. Let G ¼ fr0g0;y; rsgsg be a minimal SGB with ri; gi as in Theorem 5.4.
For i ¼ 0;y; s; let aiAR be such that airi ¼ riþ1 and /aiSR ¼ ð/riþ1SR: riÞ; with the

convention rsþ1 ¼ 0: Then jaj
ðgjÞjjaj

ðgiÞ for all 0piojps:

Proof. The existence of the ai follows by [15, Proposition 5.1]. A simple induction
on j � i shows that rjgiA/rjgj ;y; rsgsS for all 0piojps: (The base of the

induction follows from Theorem 5.4(iv)). Hence, there are hj;y; hsAR½x� such that

rjgi ¼ rjgjhj þ rjþ1gjþ1hjþ1 þ?þ rsgshs: This can be rewritten as rjðgi � gjhjÞ �
rjþ1h ¼ 0 where h ¼ gjþ1hjþ1 þ ajþ1gjþ2hjþ2 þ?þ ajþ1?as�1gshs: Hence, rjðgi �
gjhj � ajhÞ ¼ 0; i.e. each coefficient of gi � gjhj � ajh is in AnnðrjÞ ¼ ð/0SR: rjÞD
ð/rjþ1SR: rjÞ ¼ /ajSR: Hence, jaj

ðgi � gjhj � ajhÞ ¼ jaj
ðgi � gjhjÞ ¼ 0; i.e. jaj

ðgjÞj
jai

ðgiÞ: &

Since Proposition 4.1 clearly applies to any ring, we deduce from
Theorem 5.4:

Theorem 5.6. Let CCR½x�=/xn � 1S be a cyclic code over a principal ideal

ring. There is a G ¼ fr0g0;y; rsgsg such that qðGÞ generates C and riAR;
giAR½x� satisfy the conditions (i)–(iv) of Theorem 5.4. Moreover, degðg0Þon;
r0ðxn � 1Þ7n

G0 and for any fAR½x� with degðf Þon we have qðf ÞAC if and only

if f7n
G0:

6. Some algorithmic consequences

Throughout this section R will be an Artinian chain ring, called. Let fAR½x�\f0g:
We can compute f n by Hensel lifting ([10, Theorem XIII.6]) or we can use
Proposition 3.1(i) and compute a minimal SGB for /fS via Algorithm SGB-FCR of
[15, Subsection 6.2]; see also [16, Appendix].

We now compare their worst-case complexities. If n ¼ degðf ÞXm ¼ degðf nÞ
and d ¼ n � m þ 1; computing f n by Hensel lifting has complexity OðndmÞ
since there are n lifting steps, each requiring at most dm operations.

Computing an SGB of ff g requires Oðn2d3nÞ since at most nd new
polynomials (of degree at least m and at most n) will be added to the basis and
computing the remainder of an S-polynomial or an A-polynomial will take at most
dn operations. It is worth noting that by Lemma 2.4 we can stop the algorithm as
soon as we obtain a polynomial of degree degðjgiþ1ðf ÞÞ in the basis, where

giAcontðf Þ:
Thus, the worst-case complexity of Hensel lifting is somewhat lower than

that of SGB-FCRðff gÞ: In practice however, the complexity of Hensel lifting
varies little with the particular input polynomial, whereas the complexity of
computing an SGB varies significantly and the worst-case behaviour is rarely
achieved. Examples suggest that Algorithm SGB-FCR may be more efficient in

general for computing f n:
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Proposition 3.1(ii) yields a variant of Algorithm SGB-FCR for R½x�:

Algorithm 6.1 (SGB in R½x�; R an Artinian chain ring, using the * -construc-
tion).
G’ SGB-FCR*ðFÞ

Input: F a finite subset of R½x�; where R is a computable Artinian chain ring.
Output: G an SGB for /FS:
Note: B is the set of pairs of polynomials in G whose S-polynomials still have to be
computed.

begin G’gnjgAF ; B’f1; f2jf1; f2AG; f1af2;
while Ba| do

select f1; f2 from B

B’B\f1; f2
compute hASpolðf1; f2Þ
compute gASRemðh;GÞ
if ga0 then compute gn; B’B,gn; f jfAG; G’G,gn; end if

end while

returnðGÞ
end

Note that gn can be computed by Hensel lifting or via the original algorithm SGB-

FCR ðfggÞ; and that adding gn rather than g to the basis is advantageous as

degðgnÞpdegðgÞ and lmðgnÞjlmðgÞ:
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