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ABSTRACT 

This paper is devoted to further development of the method studying the 
condition numbers for the computation of the Krylov orthonormal bases and sub- 
spaces ~j(A, f )  -- span[f, Af . . . . .  A j - i f ] ,  where A is a matrix and f is a vector. 
The condition numbers were obtained by means of a first-order analysis of the 
sensitivity of the Krylov subspaces and their orthonormal bases under small perturba- 
tions of the matrix. We give perturbation bounds of the Krylov orthonormal basis and 
associated Hessenberg form of a matrix with respect to matrix and starting-vector 
perturbations. The bounds obtained depend on the condition number of the Krylov 
orthonormal basis. © 1997 Elsevier Science Inc. 

1. I N T R O D U C T I O N  

This paper contains further development of the idea proposed in [3]. That 
paper  provided a first-order analysis of the sensitivity of the Krylov subspaces 
and their orthonormal bases under small perturbations of the matrix. It 
should be noted that perturbations of the starting vectors were not consid- 
ered. The technique was to explore the structure of the skew-symmetric 
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matrices that are first-order approximations of orthogonal matrices. It is 
shown that the elements of these particular skew-symmetric matrices satisfy a 
triangular system of equations. The 2-norm of the inverse of this triangular 
matrix then gives the condition number of the Krylov basis, while the 2-norm 
of a subset of the rows of the inverse gives the condition number of the 
Krylov subspace. As shown in [3], the condition numbers of the Krylov 
subspace and its basis do not depend on the basis in which the matrix and the 
starting vector are expressed. Observe that the condition numbers a matrix 
and its transpose may be very different. Therefore the condition numbers 
depend on the structure of the matrix. 

In the present paper we give perturbation bounds of a natural orthonor- 
mal basis of the Krylov subspace and the Hessenberg form of a matrix to 
matrix and starting-vector perturbations. 

We consider the Krylov subspaces ~ (  A, f )  = span{f, Af, . . . .  A J- i f} ,  
where A ~ • '×"  is a matrix and f c  R n is a vector. A natural orthonormal 
Krylov basis of 4 ( A ,  f )  is an orthonormal basis F k = {fl, f~ . . . . .  fk} such 
that for 1 ~< j ~< k, Fj is an orthonormal basis of o~j( A, f ) .  It is obvious that a 
Krylov natural orthonormal basis can be constructed by the Arnoldi process 
for example (see [1]). Observe that if F k is a natural orthonormal basis of 

~ ( A , f ) ,  then the matrix n k = F~AF k is a Hessenberg matrix. 
The paper is organized as follows. We first obtain in Section 2 some 

useful estimates for the solution of Sylvester's equation, in which the un- 
known matrix is a skew-symmetric matrix. Note that this equation for 
Hessenberg matrices was considered in [3]. Based on these estimates, we also 
prove some bounds for the condition numbers of the Krylov subspace and its 
orthonormal basis. The main problem is to obtain a perturbation bound of a 
natural orthonormal basis of the Krylov subspace built from a Hessenberg 
matrix and starting vector e 1 to matrix perturbations. We study a system of 
relations including an initial-value problem for the orthonormal basis of the 
Krylov subspace built from a perturbed Hessenberg matrix and e 1. Estimates 
for the solution of this Cauchy problem, as well as some properties of real 
orthonormal matrices presented in Section 4, are essential to establish a 
measure of sensitivity of a natural orthonormal basis of the Krylov subspace 
to matrix and starting vector perturbations in the general case. 

We state the principal result of this paper in the form of the following 
theorem. 

THEOREM. Let Fj be a natural orthonormal basis of  the subspace 

~ ( A ,  f ) ,  and let I = d i m ~ ( A , f ) .  Assume that the matrix A 1 ~ R "×" and 
vector f l ~ R" are such that 

IIA - A~LIF ~ 811AIIF, IIf -- f~ll2 ~ ~llfl12. 
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Then f o r j  <~ l and for  sufficiently small 8 there exists a natural orthonormal 
basis Qj = {ql, q.z . . . . .  qj} =- R ~×j (qx = f x / l l f l l l 2 )  of the Krylov subspace 
/~(Al,f l )  = span[ft, A l f j . . . . .  A J-If1], such that the following inequality 
olds: 

JlQj - Fill2 ~< 20/xb{~( A o , f ) } e ,  

where/Zb{o~jj( A, f)}  denotes the condition number of the natural orthonormal 
basis ej. 

As a corollary, we obtain a perturbation bound of the Hessenberg form of 
a matrix with respect to matrix and starting-vector perturbations. Observe 
that this corollary may be treated as the essential supplement to the implicit 
Q theorem (see [4]). These results are obtained in Section 3. 

We follow the notational convention used in numerical analysis. In 
particular, I1" IIF denotes the Frobenius norm in the space of matrices, and 
I1" 112 denotes the 2-norm for both vectors and matrices. Furthermore, e i 
denotes the ith coordinate vector in R'. 

2. DEFINITIONS AND PRELIMINARIES 

It is convenient to recall the main definitions and the results from [3]. 
Let W ~ R" ×" be an orthogonal matrix. It is well known that the set of 

eigenvalues of W, denoted hy Sp(W), lies on the unit circle. It is evident that 
if Aj(W) = ei~J ~ Sp(W), where o~j(W) is real, then -Aj(W) = e-i°'J E 
Sp(W). We may suppose that for any ~oj(W) the following condition holds: 

DEFINITION 2.1. 

= ( i o9 • 

Let g-and ~' be two subspaces o f R  n of dimension k, and let F and G be 
two orthonormal bases of ~ar and if,  respectively. Then, there exist some 
matrices W ~ R nx" such that W * W  = I and G = WF. Let 7 f  be the set of 
such matrices. 
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DEFINITION 2.2. The distance between F and G is given by d(F,  G) = 
minT ~ r  p ( W ) ,  where 7 f =  {W ~ R ~x~ : G = WF and W * W  = I}. 

The distance between ~r and ff  is given by d(~,, i f )  = minF, c d(F,  G) 
where F and G are respectively orthonormal bases of 9- and ge. 

We recall here the definitions for the condition numbers of the Krylov 
subspace 3z, fk(A, f )  and of its Krylov basis through a matrix perturbation A. 
These condition numbers are denoted by i.L{.Yi~k(A,f)} and /%{~(A,  f)}, 
respectively. 

For 1 ~<k ~<l, let: 

(1) ~ = ~ ( k ( A , f ) ,  and F be its Krylov basis. Since k ~< l, F is of 
dimension k. 

(2) ~ = ~ ( A  + A, f ) ,  and g be its Krylov basis. 

We assume that IIAIIF is small enough to ensure that ff is also of 
dimension k. We apply the usual definition of condition number [9] where 
the metric in the set of subspaces is defined by Definition 2.2 and we choose 
the Frobenius norm on the space of matrices. 

DEFINITION 2.3. For 1 <<, k <~ l, 

(a(~, ~) ) 
~ { ~ ( a , f ) }  = inf sup [IAIIF 

,>0 IlallF<, IIAI[F 

and 

~ b { ~ ( A , f ) }  = inf sup [1~1~ IIAIIF 
~>0 IIAtlF< ~ 

For l < k ~< n, 

/x{,X(k( A,  f ) }  = /~b{o,~k( A, f ) }  = ~. 

Let A ~ R "x~ be a Hessenberg matrix. In this case a practical method 
for estimating the condition numbers of the Krylov subspace ~j (A,  e 1) is 
based on the solution of a large system of linear equations with a triangular 
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matrix (see [3]). This system was obtained from Sylvester's equation for 
finding a first-order approximation of a small rotation that transforms the 
natural orthonormal basis of subspace ~j(A,  e 1) to the natural orthonormal 
basis of subspace ~ ( A  + z'~, el). 

Let 

and define the matrix S k by 

S k = -  
• . 

The matrix B (A'k) is the {bllowing triangular matrix built with the elements 
of A: 

~/2'lln- 2 / 
a 2 . 2 J ~  - -  AC4~ a3.2I,~_ 3 

a n-2 0 
2, 3 J n  4 " . . " . . 

• . .  " .  . 

a n-2 a n-k+2 1 
2 , k - I J n  k "'" k 2,k-lJ~-k ak-l.k-IJ~ ~--k+ -A(~+I) a k , k - l l , - k  

(2.1) 

where 

a~-x . . . . . .  a~, n ) 
A (i) = •. 

t2n,n-1 an,n 

E a ( n - i + l ) × ( n - i + 2 ) .  

In [3] we proved the following theorem for the condition numbers of 
o~jj(A, e 1) in the case of A ~ R "×" is a Hessenberg matrix: 
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THEOREM 2.1. Let 1 be the dimension of ~ ( A ,  el). Then for k 
[2, min(l, n - 1)], the matrix C (A'k) = (B(A'k)) -1 exists, and then 

(1) The condition number of a natural orthonormal basis of ~ (  A, e 1) is 

/zb{,Z~} ( A, el) } = IIC (A' k)llzll AIIF. (2.2) 

(2) The condition number of ~ (  A, e 1) is 

/ z { ~ (  A, el) } = 116 (A, k~l1211AIIr, (2.3) 

where ~(A, k) is the matrix composed by a few rows of C (A" k) such that 

~(A.k~ = SkC(a,k). (2.4) 

The proof of the last theorem given in [3] does not permit us to establish 
perturbation bounds for the matrix B (A' k) that are necessary for the follow- 
ing. Therefore we have to give another proof of this theorem and we obtain 
the explicit form for B (A' k) through the Kronecker product of matrices. 

Let us consider Sylvester's equation 

X A  - A X  = C,  ( 2 . 5 )  

where A, C, and X ~ R n ×" are arbitrary matrices. 

DEFINITION 2.4. Let M = {mij}l<i, j<~n ~ Rn×n. Then vec M is the 
vector of dimension n ~ defined by 

M*I I 
vec M = M ,  21 / 

M:, n ] ] 

= (ml , , ,m~, l  . . . . .  mn,l lml,2 . . . . .  mn,2 ,1 . . . I  . . . .  ran o) T. 

It is well known (see [7]) that the matrix X in (2.5) is the solution of the 
following system: 

( A  T ® I n -  I, @ A)vec X = v e c C ,  (2.6) 
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where ® denotes the Kronecker product of matrices. It  is obvious that the 
system of linear equations (2.6) has dimension n 2. 

DEFINITION 2.5. L e t  M ~ R nxn. Then .~k{M} denotes the first k - 1 
columns below the subdiagonal of M, i.e. 

. . . . . .  

0 

m3,1 

= 

m k + l , k - 1  

m n ,  1 """ I n n ,  k - 1 

. . . . . .  0 ~ 

0 

0 ..- 0 

0 ... 0 

REMARK 1. "~k is linear, and its kernel is the subspace of Hessenberg 
matrices for the first k - 1 columns. 

Let us choose a natural number  k ~< n. In the system (2.2) we consider 
only equations with the entries c~,j for i > j  + 1, j < k in the left-hand side, 
i.e., we will consider the equation 

XA - AX} = Z d C } .  (2.7) 

As in [3], we want to find a skew-symmetric matrix X (X* = - X )  solving 
(2.7) and having the following structure: 

X = 

' 0  0 . . . . . . . . . . . .  0 

0 0 - x 3 ,  2 . . . . . . . . . .  xn ,  2 

X 3 , 2  

0 

X k +  l , k  

0 Xn ,  2 "'" Xn ,  k 

- - X k +  l ,  k . . . .  Xn ,  k 

0 

(2.s) 
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We remark that the number of unknown entries of X in (2.7) denoted by m 
is equal to the number of equations where 

k ( k  + 1) 
m =  ( k -  1)n + i 

2 

Let us define the matrices L k ~ R re×n2 and M k ~ R m×'2 as follows: 

L k ~- 

j r t  2 

0 
J~"- 3 

0 

j n  

O n  - n(k - 1) 

M k = 

J.~- 2 

0 0 
jn_ 3 

0 

Jn_k 

0.2_.k 

REMARK 2. It is easy to show that finding the solution X ~ R "x" of 
Equation (2.7) is equivalent to determining the solution of the following 
system of linear equations: 

Lk ( A T ® I,, - I,, ® A)vec X = Lkvee C. 

Consider now that X in (2.7) has the structure (2.8). Then finding the 
solution of Equation (2.7) is equivalent to determining the solution of the 
system of linear equations 

[ L k ( A  r ® I n - I n  ® A ) M ~ ] M k v e c X = L k v e c C .  

DEFINITION 2.6. Let A ~ R nxn. Then for 2 ~< k ~< n - 1, B (a'k) E 

R m × m is the matrix defined by 

B {a'k~ = L k ( A  r ® I. - I .  ® A ) M f f .  
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REMARK 3. It is easy to show that 

B(A,  k) = B ( A - X I , , . k )  

where  A is an arbitrary chosen real scalar. 

Remark  2 gives us the following lernma: 

LEMMA 2.1. Let A, C, and X ~ R "×~. Then f inding a skew-symmetr ic  
matrix X,  with the structure (2.8), that is a solution o f  the system (2.7) is 
equivalent to determining the solution o f  the fol lowing system o f  linear 
equations: 

B ( A , k ) x ( k )  = C (k), 

where 

x ~ = M~ v e c  X = (x~ .~  . . . . .  r , ~ , ~ l x ,  ~ . . . .  I . . .  I ~ - - 1 , ~  . . . . .  ~ o , J  ~ R ~ ,  

C (k ,  = L k v e c C  = (c3, 1 . . . . .  c , . , I  . . .  l e ~ + , , k - ,  . . . . .  c o , ~ _ , ) ~  ~ R m. 

Now we prove some useful est imates for the 2-norm of  the matrix B (A' k) 
In particular, it is easy to verify the validity of  the following statement.  

LEMMA 2.2. Let  A ~ R ~×~ and 2 <~ k <<, n - 1. Then the fol lowing 
estimate holds: 

IIn(A'k)ll2 <~ 211AII2 ~< 21[AHF- 

LEMMA 2.3. Let A and A 1 ~ R ~ × ~ be such that 

IIA - AIlIF <<. elIAIIF. 

Let  us assume that the matrix B ( A' k) is nonsingular. Then, i f  

1 
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the matrix B ( A ~, k) is nonsingular and the fol lowing estimate holds: 

II(B A' k') ' 112 -< 211( k')  112 

Proof. Since 

we have 

B ( A - A D  k) = B ( A ,  k) __ B(A,.k), 

lIB (a'k) - B(A"k)II2 ~ 2~IIAIIF. 

Applying the inequalities for singular values from [5, p. 40, Theorem 4.41 to 
the last estimate, we ensure the fulfilment of the following inequality: 

Io)(B(a 'k))  - o)(B(a~'k))l ~< 2ellel lF,  

where o)(A) ( j  = 1,2 . . . . .  n) are the singular values of A ~ R "x". 
Let A ~ R '~x'. We know that the following equalities hold: 

1 
IlAIle = maxo) (A) ,  IIA-1112 

j mini o) (A )  ' 

then the required inequality follows from the last estimates. • 

It is not difficult to check that if A ~ R "x~ is a Hessenberg matrix for 
the first k - 1 columns, i.e. 

-~kA = 0 ,  

then B (A'k) is the triangular matrix having the form (2.1). 

REMARK 4. Based on Theorem 2.1 and Lemma 2.2, it is easy to establish 
the following estimate: 

1 

for k >/2, A ~ R "x", f ~ R". 
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Applying Theorem 2.1, we find the following lemma.  

LEMMA 2.4. Let  A ~ R "×" be a Hessenberg matrix for  the first 1 
columns and aj+~,j 4:0 f o r j  = 1,2 . . . . .  1. Then for  k < 1 - 1 the following 
estimates hold: 

IIAIIF .~{~( a ,  e , ) }  >/ max 
j=x,z laj+~,~l' 

IlallF 
~{,o.~(k( A, e l )  } >/ max - - .  

j=l,1 laj+141 

LEMMA 2.5. Let l = dim ~,,(A,  f ) ,  where A ~ R "x",  f ~ R". Then for  
k ~ [2, rain(l, n - 1)1 we have 

/z{,Y;k( A , f ) }  :.~ p.b{,X(k( a , f ) }  - tZb{~ ~( A , f ) } .  

Proof. We have already ment ioned  that the condition numbers  of  the 
Krylov subspace and its basis do not depend  on the or thonormal  basis in 
which A and f are expressed. Therefore  we can suppose that A is a 
Hessenberg  matrix and that f = e t. In this case the condition numbers  
/x{JTk( A, f )}  and /zb{o,~k( A, f ) }  are given by (2.2)-(2.4). 

Recall that  (!(A,k) is the matrix composed  by a few rows of  C ¢A'k) and 
def ined by (2.4). It is easy to construct  the matrix ~(A,k) of  the same 
dimension as C (a' k) such that 

116(A'~lh = IId(A'k)lh. (2.9) 

(replace in C CA'k~ by zero all rows which are absent in ~ a ,  k)). 
Let  

D(A,k) = c(a~k~ _ ~(a ,k)  (2.10) 

It  follows from (2.1) and Definition 2.6 the matnx  C (A'k~ has the structure 

11' I 0) 
for k ~ [2, min(l,  n - 1)]. 

I f  a row in the matrix /9 (A' k) is not equal to zero, then  that row is present  
in the matrix 



12 S.V. KUZNETSOV 

In view of the last equality, we have 

IID(A'~)II2 < II/)¢A'k)ll2 = IIc(A'k-~)ll2. (2.11) 

Using (2.9)-(2.11), we obtain that 

IlcCA'k)[12 ~< IID(A'k)II 2 + 116(A'k)l12 ~< [IC(A,~-x)II 2 + IIcCA'k)II2. 

Multiplying both sides of the last estimate by II All F, we arrive at the required 
inequality. • 

3. THEOREMS OF CONTINUITY 

Let A ~ R  n×" be a Hessenberg matrix such that a . + l j  =~0 for j =  
J , 

1,2 . . . . .  1. Under the above assumption, the following condition holds: 
d im~j (A,  e 1) = j  f o r j  ~< l, where e 1 = (1,0,0 . . . . .  0) r. Observe that Gj = 
{e 1, e 2 . . . . .  Q} is the natural orthogonal basis of the subspace ~j (A,  el). 

Consider a continuously differentiable matrix function A ( t )  ~ R "×" that 
satisfies the conditions 

A(O)  = A ,  
dA( t ) 

dt F < t ' l lA(t)llr,  

where u is a sufficiently small parameter• For 2 ~<j ~ l, let Vj(t) ~ R ~xn be 
an orthogonal matrix defined as the solution of the Cauchy problem 

nvj(t) 
dt x j ( t ) v j ( t ) ,  vj(o) = In, (3.1) 

where the skew-symmetric matrix X j ( t )  ~ R "×" has the structure 

x j ( t )  = 

ro o 
o o 

• x 3 , 2 ( t )  

0 X n ,  2 

. . . . . . . . . . . .  0 

- x3 ,  2 . . . . . . . . . .  x , , 2 ( t  ) 
• . .  • . • "- 

• . .  o - x j ÷ , . j ( t )  . . . .  x ° , M )  

x j + , . j ( t )  

: 0 

• .. x ° g t )  

(3.2) 
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For j ~< l we consider the fi)llowing system of equations: 

dA( t ) V* .~ j (Xj( t )Zj( t )  - Z j ( t )Xj( t )  + V j ( t ) ~  j ( t ) )  = 0 ,  

Zj( t )  = Vj( t )A( t )Vj*( t ) ,  

Zj(0) = A, 

(3.3) 

where Xj(t) ~ R "×" and Vj(t) ~ R "×" satisfy (3.1)-(3.2). 
Recall that the condition numbers were obtained by means of a first-order 

analysis of the sensitivity of the Krylov subspaces and their orthonormal bases 
under small perturbations of the matrix. It follows from Lemma 2.3 and the 
above that there exists a small neighborhood of the matrix A such that the 
solution of the first equation in (3.3) for the matrix Xj(t) will be a continuous 
function in a neighborhood of t = 0. 

By virtue of (3.1), we obtain 

Czj( t )  =0. 

Hence matrix Zj(t) is a Hessenberg matrix for the first j - 1 eohmms. 

REMARK 5. Let Qj(t) ~ R n×j be defined by 

Qj(t) = VN*(t)Gj, (3,4) 

where G, = {e I e 2 . . . .  ej} ~- R "×j. Taking account of (3.1)-(3.3), we can 
easily prove that the columns of Qj(t) form a natural orthogonal basis of the 
subspace ~ ( A ( t ) ,  e 1) = span[e 1, A(t)e 1 . . . . .  A"-l(t)el ]. 

Now we prove that for sufficiently small t there exists a natural orthogo- 
hal basis of the subspaee ~j(A(t) ,  e 1) close to the natural orthogonal basis Gj 
of the subspace ~ (  A, el). Observe that this required basis can be found from 
the formula (3.4). 

First we obtain the estimate of closeness of natural orthogonal bases of 
subspaees ~jj(A(t), e~) and ~j(  A, e a) for sufficiently small t. 

THEOREM 3.1. Let Vj(t) ~ R "x" be the orthogonal matrix defined as 
the solution of the Cauchy problems (3.1)-(3.3). / f  

1 

O<<.t <~ 16vtzb{~(A, el)}[l~b{~(A, el)} + 1] (3.5) 
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I I ~ * ( t ) G j  - ~1t~ ~< 2~{~(  A,el)}Vt. (3.6) 

Let us consider the first equation in (3.3), and let X(J)(t) and 

mj = ( j  - 1)n + 1 

defined by 

x~'( t )  = (x~, ~(t) . . . .  

j ( j  + 1) 

,x,, (t)lx43(t) . . . .  I...  I x j + . ( t )  . . . . .  x . ( t ) )  

o(J) ( t )  = (o3 .1 ( t )  . . . . .  o , , . ~ ( t ) ] . . . ] o j + ~ , j _ l ( t )  . . . . .  0n,j ~(t)) 7, 

where Xi,y(t)  are the entries of the matrix Xy(t) ,  and 0 , j ( t )  are the entries of 
the matrix 

. . d A ( t )  * . 
% =-vj(t)--27-vj (t). 

It follows from Section 2 that if X j ( t )  is the solution of the first equation of 
(3.3), then the vector x(J)(t)  built with the elements of X j ( t )  is the solution 
of the following system of linear equations: 

B(ZJ ('), J )x(J ) ( t )  = 0 (J~( t ) .  

We will now prove that B(ZJ (°'j) is nonsingular for sufficiently small t, and 
then we obtain an estimate of the 2-norm of (B(ZJ (t)' J))-1. 

In next section (see Lemma 4.5) we establish that the matrix Vj(t) defined 
as the solution of the Cauchy problem (3.1)-(3.2) satisfies the following 
inequali~: 

f0'll x j (~ ) l l ,  a t  
I l k ( t )  - I,,112 < 2s in  2 
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Since 

Let us introduce the notation 

6j(t) = 2sin 
s,:ll x~( e)112 ae 

pj ( t )  = {26j(t)  + tv[1  + 6j(t)]}IIAIIF. 

( 3 . z )  

IIA(t) -AIIF = f t A ( s C )  dE F Jo dE <~ tvllAIIv, 

the following inequalities hold: 

I l z j ( t )  - All 2 = l l v ; ( t ) a ( t ) v ; * ( t )  - All 2 

=llv; ( t )A( t )v;*( t )  - A(t)Vj*(t)  + A(t)Vj*(t)  

-AV;*( t )  + A V ; * ( t ) -  All 2 

~< (1  + t t , ) ] lVj(t  ) - znll211A,~ 

+ IIvl(t) - r,,II211AIIF ÷ t~l lal l~ 

{28j(t) + tv[1 + ~j(t)]}IIAIIF = pj(t).  

In view of continuity of the function pj(t) and the condition pj(O) = O, we 
establish the estimate 

for sufficiently small t. It follows from Lemma 2.3 in Section 2 that the 
matrix B(ZJ (t)'j) is nonsingular and the estimate 

II(B(ZJ"'J')lll2 ~ 211(B(A J)) 1112 

is valid for all t satisfying (3.8). 
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Applying the last inequality, it is easy to show that 

II xj(t)112 -< It x,(,)ll~ _-II x~,,(,)ll~ -< II<,~,z,,'-,)-' 11211 o,.(t)ll= 

dA( t ) 
< 2 (B'A,,~) - '  I~ vj(t) - ¥ -  5"( t ~" 

t dA(t) 

~< 2/.*,,{...Wj'j( A, el)}V. 

It is obvious that if t satisfies (3.8), then 

o < - - - -g ; -  < cos 2 Ilxj(t)ll~ <llxj(t)ll~" 

Thus we have 

d~j(t) 
dt 

- -  < 2 , b { ~ ( A ,  < ) } . .  

Integrating both sides of the last inequality, we easily obtain the following 
estimate: 

IIvj(t) -/nil2 < 8j(t) < 2~b{~( A, eO}vt. (3.9) 

Observe that the estimate (3.6) follows from (3.9). 
We now consider the restriction (3.8) and prove that this inequality holds 

for all t satisfying (3.5). 
Note that 

20,<t)11¢ B'A"> ~11~ = 2{2a~<,) + t.[1 + a~¢01}~b{~< A, el)}" 

In view of (3.9), it is sufficient to prove the estimate 

4tv/xb{~j(A, el) } + tv[1 + 2tvt%{~j(A,  e0}  ] ~< 
4#b{-Wj( A, el) } " 
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It is easy to verify that the last inequality must hold for z = t v  satisfying the 
condition 

1 
O <~ z = tv  <<, 2~b{~ j (  A,  ea) } . 

If z = t v  satisfies the last inequality, then 

4tv/zb{~j( A, el) } + t v [1  + 2tv/xb{.g~j ( A, el)}] 

~< 2 tv[1  + 2/xb{~jj (A,  ex)}]. 

Thus the estimate (3.8) is true for all t satisfying (3.5). • 

Let ,4 ~ R" x,  be such that 

IPA - AIIF < elIAllF, (3.10) 

and let us define the continuously differentiable matrix function A ( t )  ~ R n x n 

by 

A ( t )  = A + t, (3.11) 
8 

where s is a number from the segment [0, 1]. In view of (3.10)-(3.11), we 
have 

aA(t) 
dt F < --IIAIIF.s 

Applying Theorem 3.1 to the matrix A ( t )  defined by (3.11) and with 
v = G/s, we obtain the following theorem. 

THEOREM 3.2. Let ,4  ~ R ~×n be such that 

[IA - AIIF ~ ellAll~, 
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1 

6 ~< 16V~b{~( A, el)} [ ~b{o,~j( A, el) } + 1]" 

Then there exists a natural orthonormal basis Qj ~ R "xj of Krylov 
subspace ~jj(A, e 1) = span[el, Ae 1 . . . .  , ~n-1el  ] such that 

IIQj - Gill2 ~< 2/Xb{,~j ( A, el)}O°. 

Let us consider the Krylov subspaces ,2z~j(Ao,f) where A o ~ R "x" and 
f ~ R " .  Let l be such that d i m ~ ( A  0 , f ) = j  f o r j ~ l  and let E be a 
natural orthonormal basis of subspace ~,(  A 0, f )  for j ~< I. Let V = (F z, F') 

d p 

R "xn be an orthogonal matrix such that F is an orthonormal basis of 
,Yz'il ± (A, f ) ,  and such that the matrix H 0 defined by the equality 

H o = V*AoV 

is a Hessenberg matrix. 
As shown in [3], for j ~< l the following equalities hold: 

lz{~j( Ao, f ) }  = tx{~j( no, ei)}, ~b{~j( Ao, f ) }  = tZb{~j( no,el )}  • 

(3.12) 

Along with subspaces ~ ( A o ,  f )  we shall consider subspaces ~ j (Al , fx) ,  
where A 1 ~ R "xn and f l  ~ R" such that 

IIA0 - Allle ~< ellA011v, I I f - f l l l 2  ~< EIIfll2. 

Under the above assumptions the following theorem holds. 

THEOREM 3.3. Let 

1 

e <~ 112/.%{,~j( A0,f)}[/xb{S/ej(A0,f)  } + 1]" (3.13) 



PERTURBATION BOUNDS OF THE KRYLOV BASE 19 

Then for j <<. l there exists a natural orthonormal basis Qj = {ql, q2 . . . . .  q } 
Rn×J (ql  = f1 / l l f l [12)  of the subspace ~j j (Al ,  f l ) =  span[jF~, 

A l f  1 . . . . .  AJl-lfl] such that 

I[Qj - Fill2 ~< [3 + 14/.tb{~j( A 0 , f ) } ] e  ~< 20/zb{~j(A0, f )}8 .  (3.14) 

Proof. Observe that V*f  = e~llfll2. Since 

] f f~ I I lf-f~ll2 Illfl l2-llfl l lzl  
Ilfl12 IIf~l12 < Ilfl12 + Ilfl12 < 2~,  

it follows from Lemma 4.6 (see next section) that there exists a real orthogo- 
nal matrix V ~ R n ×" such that 

Q*ft = elllf~llz, IIW - X?IIF < 2V~E. (3.15) 

By virtue of the last inequality, we obtain 

IIXT*A0 ~ - V*A0VlIF ~< IIXT*A0 x? - n011F < 4v~611AII~. 

Using the inequality 

lilY*A0 ~7 - ~?*A~711e ~< ~llAIle, 

it is easy to ensure the fulfilment of the following estimate: 

IIV*A1 ~7 - n011F = IIXT*A1V - V*AoVIIF 

-<< (4v~ + 1)EIIAIIF ~< 7811AIIr. (3.16) 

Under the restriction (3.131) and j ~ l, it follows from Theorem 3.2 there 
exists a natural orthonormal basis Qj = {ql, q2 . . . . .  qj} ~ R"xJ of the sub- 
space o~jj(Q *Ax~ 7, e~) = span[e~, Q *AIVe~ . . . . .  V ' A  J- 1Qe~] such that 

IIQj - Gill2 < 14/-tb{o~j(n0, el)}8, (3.17) 
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where Gj is a natural orthonormal basis of the subspace ~ ( H  o, e l) defined 
by 

%=(0  
Note that the columns of the matrix 17@ = Qj ~ R"XJ form a natural 

orthonormal basis of the subspace o~j(Ax,fl) and the columns of Fj = VGj 
form a natural orthonormal basis of ~jj( A 0, f) .  

Remark 4 and Equations (3.12), (3.15)-(3.17) imply the required inequal- 
ity: 

[3 + 14/zb{o, j ( Ao,f)}]s 20tzs{.. j( Ao,f)}e. 

Let us prove two important corollaries of the last theorem. 
The first corollary provides a measure of the sensitivity of a natural 

orthonormal basis of the Krylov subspace to starting vector perturbation only. 

COROLLARY 1. Let us assume that dim~(A0,  f )  = j ,  and Fj is a 
natural orthonormal basis of  the grylov subspace o~jj( Ao, f ). Let f l be such 
that 

where 

IIf-fxll2 ~< 611fllz, 

1 

~< 96~b{~j(ao,f)}[  ~b{~(ao,f)} + 1]" 

Then for j <~ 1 there exists a natural orthonormal basis Qj = 
{ql, q~ . . . . .  qj} ~ a"×J (ql =fl / l l f l l l2)  of the subspace ~jj(Ao, 
span[f1, A o f l  . . . . .  aJo-1./'1] such that 

IIQ~ - Fill2 ~< 2v~[1 + 4tzb{~( A0,f )}]8  ~< 12~/-2/zb{~( A0,f )}s .  
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It is easy to obtain a measure of the sensitivity of the Hessenberg form of 
a matrix to starting-vector and matrix perturbation. 

Let the Krylov subspaces ~ j (Ao ,  f )  and ~jj(A1, f l )  be 

Ilao - A,II~ < 811AolIF, IIf--f l l l2 < EIIfll2, 

and ~ fj be a natural ortho.o,~l  basis of ~ (  ao, f )  for j <. l, where 
1 = dim J~.(Ao, f ) .  

tf  ~ satisfies (3.13), the.for the Hessenberg matrix Hj d~ned by 

there exists a Hessenberg matrix I4j such that the following conditions hold: 

~=e;alej, 

IIHj - Hjlle < e[7 + 28/%{o~jj( Ao,f)}]l lAollF (3.18) 

< 428t tb{~(  ao,f)}llAolle. 

where Qj is a natural orthonormal basis of  ~jj( Al, f l ) .  

Let us assume that there exists k such that the following condition holds: 

/ z ~ { ~ ( A o , f )  } = /z{~,~k(Ao,f) } = oo. (3.19) 

We shall prove that if the matrix A 1 ~ R ~×'~ and the vector f~ c R" are 
close to the matrix A 0 and vector f respectively, then the condition numbers 
/xb{~k( A~, f,)} and /x{~( A1, f,)} will be sufficiently large. 

LEMMA 3.1. For l < k <~ n - 1, let the matrix A o ~ R "×" and the 
vec to r f  ~ R" satisfy (3.19) where 1 = d i m ~ ( A 0 , f l ) .  Let us assume that 
A 1 E R nxn and f l  ~ R" satisfy thefoUowing estimates 

I[A0 - AIlIF ~< wllA011w, I I f - - f ,  llz -<< wllfllz. 



22 s . v .  KUZNETSOV 

Then  f o r  smal l  e and  k > I the  f o l l o w i n g  es t imates  hold: 

l, = d i m g F . ( A , , f l  ) /> l, 

/~b{.Yfk( AI, f l )}  >/ 

/z{~7-Ck( AI ,A)}  >/ 

6114 + 56/zb{~( Ao, f )}]  ' 

1 

6114 + 5 6 ~ b { ~ ( A o , f ) } ]  " 

(3.20) 

Proof .  The first inequality in (3.20) immediately follows from Theorem 
3.3. Let us prove the other two estimates. 

L e t  F t = {fl, fz . . . . .  fl} be a natural orthonormal basis of the Krylov 
subspace ~t(  A0, f ) .  It follows from Theorem 3.3 that for sufficiently small e 
there exists a natural orthonormal basis Qt = {ql ,  q~ . . . . .  qt} of the Krylov 
subspace ~ (  A 1, f l )  such that 

H P t -  Fill2 ~ [3 + 14/~b{o~tt(Ao,f)}] ~ 

II nz - H~112 ~ e [7 + 28~b{~Tz( A0, f ) ) ]  II A0 II F, 

where H t = F~AoFt ,  I~I1 = Q ~ A 1 Q  z. 
Let V = (F  l, F) ~ R "×" and V 1 = (Qt ,  Q )  ~ Rnxn  be orthogonal matri- 

ces such that the matrices H and W defined by 

H = V A o V ,  W = V ~ A 1 V  1, 

are the Hessenberg matrices. Recall that the condition ~b{,5~k(A 0, f)} = o~ 
for k > l is equivalent to the equality hi+l,  l = 0. Prove that the absolute 
value of entry wt+ l, t will be sufficiently small. Indeed, by virtue of the 
equalities 

w l + l , t q t + l e  T = A 1 Q  t - QtI~z, A o F  t - F t H  1 = O, 

we have the estimates 

Iwt+a,zl ~ 6114 + 561zb{3;5(Ao,f)}]llAolfv. 

Then the required estimates immediately follow from Lemma 2.4. • 
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Let  V ~ R" x .  be  an orthogonal  matrix. It  is well known that  all eigenval- 
ues of  an orthogonal  matrLx lie on the unit circle. There fore  an eigenvalue 
Aj(V) of  V may be  represented  in the form Aj(V) = e~J (v) where  toj(V) is 
real. Without  loss of  generali ty we suppose that  toj(V) are o rdered  in the 
following manner:  

- - ' W ~  O)l(V ) ~ ¢z/2(V ) ~ ... ~ Caln(V ) ~ Tf. 

LEMMA 4.1. Let V ~ R" x ~ be an orthogonal matrix. Then 

liE - 1.112 = 2 sin - -  
'on(V) 

Proof. Let  us consider the symmetr ic  matrix S (S = S*) def ined by the 
formulae 

s = ( v *  - I n ) ( v  - t . )  = 2In -- (V*  + V ) .  

It  is known that  (see [5]) 

l l v  - = m a x  (4.1) 

where  hk(S) are eigenvalues of  S. 
Observe  that hk(S) can be calculated from the equality 

,,,~(v) 
x k ( s )  = 2 - [ x k ( v )  + X ~ ( v ) ]  = 2 1 1 -  cos ~ k ( v ) ]  = 4 s i n  2 2 

(4.2) 

The  equalities (4.1) and (4.2) immediate ly  prove the statement.  

Next we prove the following statement:  

LEMMA 4.2. Let  V ~ R nxn, V 1 ~ R "xn, V 2 ~ R n x n  be orthogonal ma- 
trices where V = V1V 2 and ton(V 1) + t%(V2) ~ or. Then 
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Proof. Let x ~ R" (tlxlh = 1) be an arbitrary vector. Consider the 
vectors y ~ R" and z ~ R" defined by 

y = V2x,  z = V l y .  

It is not difficult to check that (see [2]) 

/ ( x , z )  < z_(x, y) + L(y ,  z), 

where / - - (u ,  v)  is the angle between the vectors u and v defined by 

/ - - (u ,v )  = arccos ( u , v )  . 
Ilulhllvlh 

Since 

~ ( x , V ~ x ) = / ( x , y ) < ~ ( v ~ ) ,  L_(y, va y) = L_(y, z) ¢ o~o(Vx), 

we have 

L(x,Vx) < ~.(v~) + ~.(v,) (4.3)  

for any vector x ~ R n. 
It is obvious that there exists a vector x E R n such that 

/ ( x , v x )  = o~(v).  (4.4) 

I f  we apply the inequality (4.3) to a vector x satisfying (4.4), we obtain the 
required inequality. • 

Taking into account the last two lemmas it is easy to prove the validity o f  
the following statement. 

LEMMA 4.3. Assume that V1, V 2 ~ R ~ x ~ are orthogonal matrices where  

~ , ( V  l) + ~ ( V  2) <~ zr. Then 

I I V i V 2  - Lib ~ 2sin 
o~.(vl) + o~n(v2) 

= 2 sin arcsin -~ . 
\ j = l  
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By induction on the statement of Lemma 4.3 we easily obtain the result of 
the following lemma: 

LEMMA 4.4. Let V1, V 2 . . . . .  V,~ ~ R "x" be orthogonal matrices, so that 
E ] ~ , w . ( ~ )  4 -/'r. Then 

/ m ) 
IlVlV2 " ' "  w,,, - I . I b2  ~< 2 sin ~ arcsin I Iv j  - I ~ l l z  

\ j = l  ~ " 

We now consider a matrix function V ( t )  ~ R "x" defined as the solution 
of the Cauchy problem 

~ v ( t )  
dt - X ( t ) V ( t ) ,  V(O)  = I n, (4.5) 

where X(t)  is a continuous skew-symmetric matrix function, i.e. X*(t)  = 
- X ( t ) .  It is obvious that V ( t )  is a orthogonal matrix, i.e. V * ( t ) V ( t )  = I~. 

LEMMA 4.5. Let  X(t) in (4.5) be such that 

follX( ~)11~ d~ < ~-. 

Then f o r  V(  t ) a solution o f  (4.5) the foUowing estimate holds: 

l i E ( s )  - x~ll~ < 2 s i n  
fdll x( ~)11~ d¢ 

Proof. Let us split the segment [0, s] into equal parts by the points 

t o = 0  < t  1 < t  z < ... < t  u = s ,  t j - t j _ L  = A = s / M .  

The orthogonal matrices V(U)l ,V(M),z . . . , V ~  M) ~ R'X" are defined as the 
solutions of the Cauchy problems: 

avj(M)(t) 
dt = X ( t ) v / M ) ( t ) ' v j ( M ) ( t j - 1 )  = In" 
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It is evident that 

v ( s )  = v ( t M )  = v~M~t~ ~ ~,~v~t~-l~ ~ - ~  "'" v ~ ( t ~ ) .  

On the basis of  L e m m a  4.4, we establish the inequality 

IIV(s) - Inll~ <~ 2sin( ~ares in  IIVJ(~'(tj) - Inll~ ) 2 (4.6)  

It  is easy to check that the matrix function ~(M) defined as the solution of  
the Cauchy problem 

dVj(M~( t ) 
dt = X(tj-a)V-j(M)(t)' r~J(M)(tj-1) = In 

satisfies 

~ (M)( t )  -- I n ~ = 2sin 2 ' 

Letting M tend to oo in (4.6), we obtain the required estimate. • 

LEMMA 4.6. L e t f ~  R n and f ~ R n be such that 

I I f - f l l 2  ~< 6 ,  Ilfl12 = Ilfllz = 1. 

Assume that the orthogonal matrix V ~ R n x n (V *V = I n) satisfies the foUow- 
ing equality: 

V'f= e I = ( 1 , 0 , 0  . . . . .  0) r .  

Then there exists a matrix V ~ R n x n such that 

~7,Q = In ' ~7* f=  el ' IIv - ~711F ~< ~f26.  

Proof. Without  loss of  generality we may suppose that 

f = e  1, V = I  n, f =  ( 1 -  a , , a  2 . . . . .  an)  r , 
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w he re  

a 1 9 0 ,  

I n t r o d u c e  the  no ta t ion  

j = 2  

Let  us cons ide r  the  o r thogona l  basis Q .  = {ql, q2 . . . . .  qn} w h e r e  

ql = f  = el ,  q2 = (0 ,  ot2//o- . . . . .  ffk//o " . . . . .  o t . / o - )  r .  

Obse rve  that  . f =  Qn i ~, wh e re  

/3 = (1  - a l ,  o r , 0 , 0  . . . . .  0)  r , 11/311z = 1. 

Let  us de f ine  the  matr ix  . ~  ~ R n × n by  the  equa l i ty  

= 

cos q~ sin q~ 0 

- s i n q ~  cos~p 

1 

0 

where  cos q~ = 1 - a l ,  sin q~ = o-. Since 9 f l  = e 1, t h e n  1 7 " f =  el ,  whe re  

17 = p , ~ , ~ p *  ~ R ,~×n 

Using  (4.7), we easily ob t a in  

1117- 1.112 ~< 1117 - Inl]F = II,~* - lnllF = ¢ 2 [ ( c o s  q~ - 1) 2 + sin 2 ~p] 

,$5o  
V j = l  

(4 .7 )  
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The author is indebted to S. K. Godunov, V. I. Kostin, and J.-F. Carpraux 
for their helpful remarks about this paper. 
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