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Abstract

Given a 0nite quiver Q of Dynkin type An, it is well known that the ring of semi-invariants
SI(Q; d) is a polynomial ring. We show that the ideal de0ned by semi-invariants of positive
degree in Rep(Q; d) is a complete intersection. It follows that the action of SL(Q; d) on Rep(Q; d)
gives a cofree representation. In particular, we have that the modules of covariants are free
k[Rep(Q; d)]SL(Q;d)-modules.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A quiver is an oriented graph Q = (Q0; Q1) where Q0 is the set of vertices and Q1

is the set of arrows. For 	∈Q1

	 : t	→ h	:

We say x∈Q0 is a sink if for every 	∈Q1, x �= t	. We say x∈Q0 is a source if
for every 	∈Q1 x �= h	.

Let k be an algebraically closed 0eld. A representation V of a quiver Q is a collection

V = {(Vx; V (	)) | x∈Q0; 	∈Q1};
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where Vx is a 0nite dimensional vector space over k and V (	) is a linear map from
Vt	 to Vh	. We usually denote the linear maps V (	) simply by 	 when the notation is
unambiguous. The dimension vector of V is the function dim V : Q0 → N given by

d = (d(x))x∈Q0 ;

where d(x) = dim Vx. We denote the set of dimension vectors by NQ0 .
A morphism between two quiver representations, � : V → W consists of linear maps

�x : Vx → Wx for x∈Q0 such that the following diagram commutes:

Vt	
V (	)−−−−−→ Vh	

�t	

�

�
�h	

Wt	
W (	)−−−−−→ Wh	

Two representations of Q, V and W , are isomorphic if and only if �x is invertible for
all x∈Q0.

Fix a quiver Q and a dimension vector d∈NQ0 . A representation V of Q with
Vx = kd(x) for all x∈Q0 is determined by a point of the vector space

Rep(Q; d) =
⊕
	∈Q1

Homk(Vt	; Vh	):

There is an action of the group

GL(Q; d) =
∏
x∈Q0

GLd(x)(k)

as well as its subgroup

SL(Q; d) =
∏
x∈Q0

SLd(x)(k)

on Rep(Q; d) given as follows. For V ∈Rep(Q; d) and g∈GL(Q; d),

g · V = (gt	 · V (	) · g−1
h	 )	∈Q1 :

Two representations V and W of Q are isomorphic if and only if they are in the same
orbit under the action above. Thus, to study the representation theory of quivers, we
only need to consider the orbits under the action of GL(Q; d).

The ring of regular functions on Rep(Q; d) is

k[Rep(Q; d)] = k[x	ij | 	∈Q1; 16 i6d(t	); 16 j6d(h	)]:

There is a linear action of GL(Q; d) on k[Rep(Q; d)] induced by the action on the
vector space Rep(Q; d). Speci0cally, for f∈ k[Rep(Q; d)],

g · f(M) = f(g−1 ·M):

A polynomial f∈ k[Rep(Q; d)] is called a semi-invariant of weight � if there is a
character � of GL(Q; d) such that g · f = �(g)f for all g∈GL(Q; d). We denote by
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SI(Q; d)� the space of semi-invariants of weight �. The semi-invariants of various
weights form a ring

SI(Q; d) =
⊕
�

SI(Q; d)�:

This ring coincides with the ring of the invariants under the action of SL(Q; d) on
Rep(Q; d). Thus,

SI(Q; d) = k[Rep(Q; d)]SL(Q;d):

Henceforth, we use the term GL(Q; d) semi-invariants and SL(Q; d) invariants inter-
changeably.

Assume that characteristic of k equals zero. Let {V�} be the set of irreducible rep-
resentations of G = SL(Q; d). For simplicity, let S = k[Rep(Q; d)]. Then

S =
⊕
�

V� ⊗M�;

where M� is an SG-module, known as the module of covariants. In this paper we prove
that for char(k) = 0 and for quivers Q of type A and arbitrary dimension vector d the
module M� is a free SG-module.

We recall 0rst some generalities, working again with k of arbitrary characteristic.
Let G be a reductive group acting linearly on a vector space V = Rep(Q; d). Let
S = k[V ] = Sym(V ∗) and SG be the invariants in S under the induced action of G on
S. The representation is cofree if S is a free SG-module. In general, it is diCcult to
determine the module structure of S. However, if S is cofree and if char(k) = 0, then
there is a G-invariant space H such that S = SG ⊗ H , and we can study the module
structure of H .

The representation V of the reductive group G is coregular if SG is a polynomial
ring. Let I = (SG)+S be the ideal generated by the positive degree invariants, and let
Z(I) ⊆ V be the zero set of the ideal I . V is cofree if and only if V is coregular
and codim Z(I)=dim SG, where the dimension on the right-hand side is the number of
generating variables. In the case of char(k)=0 Schwarz [17,18] classi0ed coregular and
cofree representations of simple groups. Littelmann [12] classi0ed coregular irreducible
representations of semisimple groups.

We use the following result of Sato and Kimura [14] to 0rst determine when a
representation Rep(Q; d) of the group GL(Q; d) is coregular.

Theorem 1.1 (Sato-Kimura [14]). Let G be a connected linear algebraic group which
acts on a vector space V . If the action of G has an open orbit, then SI(G; V ) =
⊕� SI(G; V )� is a polynomial ring:

SI(G; V ) = k[f1; : : : ; fs]:

Moreover, if fi ∈ SI(G; V )�i then the �i are linearly independent in char G.

If the underlying graph of a quiver Q is of Dynkin type A, D, or E, then GL(Q; d)
acts on Rep(Q; d) with a 0nite number orbits [8]. In fact for Dynkin quivers, it is
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shown in [3] that there is a bijection between the indecomposable representations and
positive roots of the corresponding root system. Each orbit of Rep(Q; d) corresponds
to a decomposition of d into a sum of positive roots. Since there is a 0nite number
of orbits, we know that there is an open orbit. Thus, we know that all algebras of
semi-invariants, SI(Q; d), of Dynkin quivers Q are polynomial algebras.

Our main result shows that for any quiver of any orientation, whose underlying
diagram is of Dynkin type A, the generating semi-invariants of SI(Q; d) generate in the
coordinate ring of Rep(Q; d) an ideal which is a complete intersection. More precisely,

Theorem 1.2. Let Q be a quiver of Dynkin type An, and SI(Q; d)=k[f1; : : : ; fs]. Then

codim Z(f1; : : : ; fs) = s:

Note that this is not the case for other Dynkin types, in particular for type D or E.

Example 1.3. Consider the representation of the quiver of type D4 with the following
dimension vector.

1�
�

1 	−−−−−→ 2
 ←−−−−− 1

The ring of semi-invariants is generated as a polynomial ring by

k[det(	;  ); det(	; �); det( ; �)]:

Since these functions are 2× 2 minors of a 2× 3 matrix, we see that

codim Z(det(	;  ); det(	; �); det( ; �)) = 2:

Corollary 1.4. Assume that char(k) = 0. Let Q be a Dynkin quiver of type An. Then
the modules of covariants are always free SG modules.

This corollary follows easily from the following result of Kostant which can be
found in [11] and in [18]. For all weights �, let M� be the module of covariants,
which is an SG-module. We know that

depth M�¿ depth I:

If depth I = s, f1; : : : ; fs form a regular sequence on S.

Proposition 1.5 (Kostant [11]). Assume that char(k) = 0. Suppose SG is a polynomial
ring, i.e.,

SG = k[f1; : : : ; fs]:

If f1; : : : ; fs form a regular sequence on S then all the M� are free SG modules.

Proof. See Section 1 of [11] and the discussion preceding Proposition 4.6. in [18].
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In order to prove Theorem 1.2, we need to give a good description of the semi-
invariants f1; : : : ; fs. Then to compute the codimension of Z(f1; : : : ; fs), we only need
to compute the codimensions of each of the orbits that occur in

Z(f1; : : : ; fs);

since if fi vanishes on a point x it vanishes on the entire orbit of the point x under the
action of our group. Thus, we need to identify on which orbits all our semi-invariants
vanish. Then, to compute the codimension of an orbit we use the following result of
Voigt which can be found in [13].

Lemma 1.6. Let V be a representation of Q with dimension vector d. Let O(V ) be
the orbit of V under the action of GL(Q; d). Then

codimO(V ) = dim ExtQ(V; V ):

This paper is organized as follows. In Section 2, we will review how to relate
semi-invariants to indecomposable modules. This will also give us a recipe for deter-
mining when a semi-invariant vanishes. In Section 3 we outline the results of Abeasis
and Del Fra on degenerations for type A quivers. In Section 4, we give some prelim-
inary results required in the proof of the main theorem as well as the proof of our
main theorem for the case when the quiver is equioriented. In Section 6 we describe
the well-known Coxeter functors which we then use to reKect to simpler quivers.

The authors would like to thank Hanspeter Kraft for suggesting the ideas involved in
Section 4 of lifting to the larger quiver to examine vanishing of certain semi-invariants.

2. Constructing semi-invariants

Due to recent progress by Derksen and Weyman [6], and also by Scho0eld and
Van den Bergh [15,16] semi-invariants are easily computed using representations. A
representation V de0nes a natural semi-invariant as follows.

Let V and W be two representations of a quiver Q such that dim V=d and dim W=e.
The Euler inner product is de0ned by

〈V;W 〉=
∑
x∈Q0

d(x)e(x)−
∑
	∈Q1

d(t	)e(h	):

Ringel [13] shows that

〈V;W 〉= dim HomQ(V;W )− dim ExtQ(V;W ):

Furthermore, there is a natural sequence

0→HomQ(V;W )→
⊕
x∈Q0

Homk(Vx;Wx)
dV
W−−−−−→

⊕
	∈Q1

Homk(Vt	;Wh	)

→ ExtQ(V;W )→ 0:
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Scho0eld [15] showed that if V ∈Rep(Q; d) and W ∈Rep(Q; e) with 〈d; e〉= 0 then
dW
V above is a square matrix and

c(V;W ) = det dW
V

de0nes an SL(Q; d) × SL(Q; e) invariant on Rep(Q; d) × Rep(Q; e). De0ne cV to be
the restriction of c(V;W ) to {v} × Rep(Q; e), and cW the restriction of c(V;W ) to
Rep(Q; d)× {w}.

For a 0xed V , we then have

cV (W ) = det (dV
W )∈ SI(Q; e)〈d;−〉

and for a 0xed W

cW (V ) = det (dV
W )∈ SI(Q; d)−〈−;e〉;

where 〈d;−〉 and 〈e;−〉 are integer valued functions on the set of dimension vectors
which can be realized as GL(Q; e) or GL(Q; d) weights. All semi-invariants are spanned
by the semi-invariants of type cV (resp. cW ).

Theorem 2.1 (Derksen and Weyman [6], Scho0eld and Van den Bergh [16]). Let Q
be a quiver without oriented cycles. The ring of semi-invariants SI(Q; e) is spanned
by the semi-invariants cV with 〈d(V ); e〉= 0 (cW with 〈e; d(W )〉= 0).

When in doubt, denote by cVe the semi-invariant of weight V in SI(Q; e), since
cV alone does not distinguish which dimension vector we are considering. For V an
indecomposable representation of a quiver of Dynkin type, we may refer to V simply
by its dimension vector.

Example 2.2. Let Q be the equioriented quiver of Dynkin type A4, i.e.,

1 	←−−−−−2
 ←−−−−−3

�←−−−−−4:

If d = (2; 2; 2; 2), then the semi-invariants, SI(Q; d), are generated by

c0100
2222 = det 	; c0010

2222 = det  ; and c0001
2222 = det �:

If d = (2; 3; 3; 2), then the semi-invariants, SI(Q; d), are generated by

c0010
2322 = det  and c0111

2322 = det 	 �:

Example 2.3. Let Q be the following quiver of Dynkin type A4:

1 	−−−−−→2
 ←−−−−−3

�←−−−−−4:

If d = (1; 3; 3; 2), then the semi-invariants, SI(Q; d), are generated by

c0010
1322 = det  and c1111

1322 = det(	;  �):

Assume that 〈V;W 〉= 0. A property of the cV ’s is the following. Let V ′ and V ′′ be
two representations with dim V ′ = d′ and dim V ′′ = d′′. Consider the decomposition

V = V ′ ⊕ V ′′:
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If 〈d′; e〉=0 and 〈d′′; e〉=0 then cV (W )=cV
′
(W )·cV ′′

(W ). If 〈d′; e〉 �= 0 then cV (W )=0.
Thus, to obtain generators of the semi-invariants, we simply look at the set of cV such
that V is indecomposable.

With the semi-invariants established, we also want to know when does cV (W ) vanish
identically. We can use King’s theorem to identify when a semi-invariant vanishes.

Theorem 2.4 (King [10]). Let W be a module with dimension vector e. f(W ) = 0 for
all f∈ SI(Q; e)n% if and only if W has a submodule W ′ such that %(W ′)¿ 0.

Since for Dynkin quivers the weight spaces of rings of semi-invariants have dimen-
sions 6 1 by Theorem 1.1, in this case King’s theorem says that cV (W ) vanishes if
and only if W has a submodule W ′ such that

〈V;W ′〉¿ 0: (2.1)

Given an indecomposable V , this puts a necessary condition on what kind of submod-
ules must occur in W in order to establish vanishing of cV .

Example 2.5. Let Q be the equioriented quiver of Dynkin type A4, i.e.,

1 	←−−−−−2
 ←−−−−−3

�←−−−−−4;

as in our example above. Applying King’s theorem, we have that for d = (1; 2; 2; 1),

• c0010
1221 = det  vanishes at W if and only if there is a submodule W ′ ⊆ W such that

w′(3)− w′(2)¿ 0.
• c0111

1221 = det 	 � vanishes at W if and only if there is a submodule W ′ ⊆ W such that
w′(4)− w′(1)¿ 0.

Example 2.6. Let Q be the following quiver of Dynkin type A4:

1 	←−−−−−2
 ←−−−−−3

�←−−−−−4:

If d=(1; 3; 3; 2), the vanishing of the semi-invariants require the following submodules

• c0010
1322 = det  vanishes at W if and only if there is a submodule W ′ ⊆ W such that

w′(3)− w′(2)¿ 0.
• c1111

1322 = det(	;  �) vanishes at W if and only if there is a submodule W ′ ⊆ W such
that w′(1) + w′(4)− w′(2)¿ 0.

To establish vanishing of semi-invariants, we must study the degenerations of the
open orbit.

3. Degenerations for type A quivers

We assume that the underlying diagram of our quiver is the Dynkin diagram of type
An.
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We want to characterize the degenerations of representations. For a representation
V ∈Rep(Q; d), we denote by either OV or O(V ) the orbit of V under the action of
GL(Q; d) on Rep(Q; d). We call W a degeneration of V , sometimes denoted W 6g V ,
if OW ⊆ OV . For quivers of type An, Abeasis and Del Fra [1] give a simple combi-
natorial criterion for degenerations based on the decomposition of our modules into
indecomposables. We sketch their results in this section.

For a type An quiver of any orientation, reading the diagram from left to right, the
sources and sinks alternate. Let 1; : : : ; n be the n vertices of the Dynkin quiver of type
An, and Q be a quiver of type An of any orientation.

1◦ ← 2◦ ← 3◦ → 4◦ → · · · ← n◦

Let s0 = 1¡s1 ¡ · · ·¡sv ¡sv+1 = n be alternating sequence of sources and sinks,
see example below. A Dynkin quiver of type An is determined up to direction by the
alternating sequence of sources and sinks. We refer to sinks and sources as critical
points.

Example 3.1.
s0◦ ← ◦ ← s1◦ → ◦ → ◦ → s2◦ ← ◦ ← ◦ ← s3◦ → ◦ → s4◦ ← s5◦

Recall that the indecomposable representations of a Dynkin quiver are in one to
one correspondence with the positive roots of the Dynkin diagram, independent of the
orientation. For type An, there is an indecomposable representation, denoted by Epq,
for each pair (p; q) with 16p6 q6 n. In particular, this corresponds to a module
with dimension vector d= (dj)∈NQ0 with dj = 1 for p6 j6 q and dj = 0 otherwise.

Example 3.2. If the underlying diagram of our quiver is A8, the indecomposable E35

is given by the diagram

0→ 0← 1← 1→ 1→ 0→ 0← 0

If we consider Epq as an indecomposable representation of Q, then the pair (p; q)
uniquely determines the pair of integers (a; b) such that

sa−1 ¡p6 sa; sb6 q¡sb1 :

Moreover, it uniquely determines the nearest sources or sinks encompassing p and q.
Thus (p; q) determines the subsequence {sa; : : : ; sb}, which is possibly empty. Epq is
called “even type” if the determined subsequence has an even number of critical points.
Otherwise, Epq is called “odd type”.

Let V be a representation in Rep(Q; d). The isomorphism class OV is determined by
its decomposition into indecomposables. In particular, we can describe V by the set of
non-negative integers mpq such that

V =
⊕

16p6q6m

mV
pqEpq:
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3.1. Elementary degenerations

We recall some operations introduced by Abeasis and Del Fra on indecomposables
Epq called “elementary degenerations”. This will ultimately give a partial ordering on
the orbits giving the degenerations. However, we note that this does not necessarily
determine minimal degenerations.

(e) For each pair of indecomposables Ehk ⊕Ert such that h¡r6 t ¡ k and Ert is of
even type, consider the operation

De
hrtk : Ehk ⊕ Ert �→ Eht ⊕ Erk :

Example 3.3.

(e′) For each indecomposable Ehk and each integer t such that h6 t ¡ k we consider
the operation

De′
hk �→ Eht ⊕ Et+1; k :

Example 3.4.

(o) For each pair of indecomposables Eht ; Erk with h¡r6 t ¡ k and Ert of odd type,
we consider the operation

Do
hrtk : Eht ⊕ Erk �→ Ehk ⊕ Ert :

Example 3.5.

Note that the elementary degeneration of type (e′) is a special case of (e) where one
is switching with the empty indecomposable direct summands.

De'nition 3.6. Given V;W ∈Rep(Q; d), we say that OW 6c OV if and only if the set
of indecomposable factors of W is obtained from the one of V with a 0nite number
of elementary operations of types (e), (e′) or (o).

Proposition 3.7 (Abeasis and Del Fra [1]). For V;W ∈Rep(Q; d), the two orderings,
OW 6c OV and OW 6g OV , coincide.
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Henceforth, we refer to degenerations of representations as cuts or switches or
anti-cuts or anti-switches depending on whether the indecomposables involved are of
even or odd type. We denote switches of even type (e) or (e′) simply by De without
the subscript.

The following theorem is necessary in computing the codimensions of degenerations
of orbits.

Theorem 3.8 (Bongartz). Let C be the category of representations of a Dynkin quiver.
Consider two objects M and N in C. Then N is a minimal degeneration of M if and
only if there is an exact sequence E : 0 → U → M ′ → V → 0 with the following
properties:

(a) U and V are indecomposables with M = M ′⊕Up−1⊕Vq−1⊕X and N = Up ⊕
Vq ⊕ X . Here U ⊕ V and M ′ ⊕ X are disjoint.

(b) U ⊕ V is a minimal degeneration of M ′.
(c) Any common indecomposable direct summand W �� V of M and N satis;es

[W;N ] = [W;M ].
(d) Dually, any common indecomposable direct summand W �� U of M and N

satis;es [N;W ] = [M;W ].

Here, U; V;M ′; p and q are uniquely determined by M and N . Furthermore, we have

codimO(M) O(N ) = codimO(M ′) O(U ⊕ V ) + 3(p + q− 2);

where 3 is 1 for V �� U and 2 for V � U .

Proof. The proof follows from Theorem 4 in [4] and Corollary 4.2 in [5].

4. Preliminary results and equioriented case

Let Q be a Dynkin quiver of Dynkin type A, D or E. Recall, there is a one to one
correspondence between indecomposable modules and positive roots of the correspond-
ing root system. In particular, the dimension vectors of indecomposables correspond to
positive roots.

Let d be the dimension vector associated to a quiver Q. Then d has a canonical
decomposition into a sum of positive roots,

d = 	1 + · · ·+ 	n;

which gives the open orbit in Rep(Q; d). This tells how a generic module in the open
orbit in Rep(Q; d) decomposes into indecomposables. Note that other decompositions
of d into a sum of positive roots will give other orbits of GL(Q; d) in Rep(Q; d). By
abuse of notation, let Vgeneric denote both the open orbit and a generic module in the
open orbit of Rep(Q; d).
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To determine if a decomposition of d gives the open orbit, we use the following
criterion.

Proposition 4.1. If d = 	1 + · · · + 	s and V	i is the corresponding indecomposable
such that dim V	i = 	i, then the decomposition gives the open orbit if and only if
ExtQ(V	i ; V	j) = 0 for all 	i and 	j which occur in the sum.

Proof. The codimension of the open orbit is 0. Thus, by Lemma 1.6 we have that
codimO(Vd) = dim ExtQ(Vd; Vd) = 0.

De'nition 4.2. Let Z ⊆ Rep(Q; d) be a Zariski closed GL(Q; d)-stable subset. We say
that a representation M ∈Rep(Q; d) is a component of Z if the closure of the orbit OM

of M is an irreducible component of Z .

This de0nition will be used for the sets Z which are zero sets of some semi-invariants.
Sometimes by abuse of notation we will talk about a representation M being a subset
of Z . In such cases we always mean orbit of M . Also, each of irreducible components
of a set Z is a closure of an orbit of a representation M . We will often identify this
component with the corresponding representation.

Lemma 4.3. Let Q be the quiver of type An with an equioriented path from z to x,

· · · ←−−−−− x◦ 	←−−−−− y◦  ←−−−−− z◦ ←−−−−− · · ·
and the representation of Q with the dimension d such that d(x)=n, d(y)=p, d(z)=m
with p¿max(m; n). Consider the quiver Q̃:

· · · x◦ 	 ← z◦ · · ·
and the corresponding map of representations,

6 : Rep(Q; d)→ Rep(Q̃; d̃)

given by

(: : : ; V (	); V ( ); : : :) �→ (: : : ; V (	 ); : : :)

where d̃(i)=d(i) for i �=y. Then there is an isomorphism of the rings of semi-invariants,
i.e. k[Rep(Q; d)] ∼= k[Rep(Q̃; d̃)], and the codimension of the nullcones are preserved.

Proof. By Cauchy’s formula, (see for example [7, Section A.1]) one can show that
there cannot be a weight of a semi-invariant % with %y ¿ 0, hence there is a correspon-
dence of semi-invariants. Let SI(Q; d) = K[cV1 ; : : : ; cVs ] and SI(Q̃; d̃) = K[cṼ 1 ; : : : ; cṼ s ],
where Ṽ i = 6(Vi). Next, consider the Koszul complex K(cV1 ; : : : ; cVs). Then for G :=
GL(p), K(cṼ 1 ; : : : ; cṼ s) = K(cV1 ; : : : ; cVs)G which implies

Hi(K(cṼ 1 ; : : : ; cṼ s)) = Hi(K(cV1 ; : : : ; cVs))G:
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Therefore Hi(K(cV1 ; : : : ; cVs) = 0 implies Hi(K(cṼ 1 ; : : : ; cṼ s)) = 0. Hence

codim Z(cV1 ; : : : ; cVs))6 codim Z(cṼ 1 ; : : : ; cṼ s):

We claim that codim Z(cV1 ; : : : ; cVs))¿ codim Z(cṼ 1 ; : : : ; cṼ s). First, observe that for
V;W ∈Rep(Q),

〈V;W 〉= 〈6(V ); 6(W )〉+ (dim Vz − dim Vy)(dim Wx − dim Wy):

Hence the Euler form is preserved under 6 for all V;W ∈Rep(Q) unless dim Vy �=
dim Vz and dim Wx �= dim Wy.

Recall by the Auslander–Reiten duality [2] that for the indecomposable representa-
tions V;W of a Dynkin quiver Hom(V;W ) �= 0 implies Ext(V;W )=0 and Ext(V;W ) �=
0 implies Hom(V;W ) = 0. Thus, we note, that for all V and W indecomposable repre-
sentations of Q such that 〈V;W 〉 = 〈6(V ); 6(W )〉 we have to have dim Hom(V;W ) =
dim Hom(6(V ); 6(W )) and dim Ext(V;W ) = dim Ext(6(V ); 6(W )). In fact, for V =
Ea;y and W = Ey;b the discrepancy in the Euler form lies in the diQerence between
Hom(V;W ) and Hom(6(V ); 6(W )), i.e. dim Ext(V;W ) = dim Ext(6(V ); 6(W )). For
V = Ez;b and W = Ea;x the discrepancy in the Euler form lies in that dim Ext(V;W ) �=
dim Ext(6(V ); 6(W )).

Consider cVi ∈ SI(Q; d), which has weight %=〈Vi;−〉. Then, %y=dim(Vi)y−dim(Vi)z=
0. Hence, if cVi vanishes at W , then by King Theorem we must have a submodule
Wi ⊆ W where 〈Vi;Wi〉¿ 0. Since dim(Vi)y = dim(Vi)z, the Euler form is preserved
under 6 and we have 〈Vi;Wi〉= 〈Ṽ i; 6(Wi). Thus cṼ i vanishes at 6(Wi).

Let M be a generic representation of Rep(Q; d) and let Mu1 , for 16 u16 n, be a
generic representation in each of the n components of Z(cV1 ). Further, let Mu1 ;u2 , for
16 u26 n(u1), be a generic representation in each of n(u1) components of Z(cV2 ) ∩
O(Mu1 ), and Mu1 ;:::;ut for 16 ut6 n(u1; : : : ; ut−1), be a generic representation in each of
n(u1; : : : ; ut−1) components of Z(cVt ) on O(Mu1 ;:::;ut−1 ). In particular, Mu1 ;:::;us is a generic
representation in a component of Z(cV1 ; : : : ; cVs).

We next claim that the indecomposables of the kind V = Ez;b and W = Ea;x do not
occur as summands in any component of Z(cV1 ; : : : ; cVs). If we assume our claim, then
for any component Mu1 ;:::;us of Z(cV1 ; : : : ; cVs), 6(Mu1 ;:::;us) ⊆ Z(cṼ 1 ; : : : ; cṼ s) and

dim Ext(Mu1 ;:::;us ; Mu1 ;:::;us) = dim Ext(6(Mu1 ;:::;us); 6(Mu1 ;:::;us)):

Since 6(Mu1 ;:::;us) cannot be obtained as a sequence of s minimal degenerations,

codim Z(cV1 ; : : : ; cVs)¿ codim Z(cṼ 1 ; : : : ; cṼ s):

To prove our claim that indecomposables of the kind V = Ez;b and W = Ea;x do
not occur as summands in any component of Z(cV1 ; : : : ; cVs), we proceed by induc-
tion and show that these indecomposables do not occur in any component Mu1 ;:::;ut of
Z(cV1 ; : : : ; cVt ) for any t6 s.

Consider the generic decomposition in Rep(Q; d), which can be computed by Propo-
sition 4.1,

M =
r(0)⊕
i=1

Eai(0); bi(0) ⊕
s(0)⊕
i=1

Eci(0);di(0) ⊕ kEy;y
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where y∈ [ai(0); bi(0)], y �∈ [ci(0); di(0)], and k = min(p − m;p − n). We see that
V = Ez;b and W = Ea;x cannot be summands in M since p¿max(m; n). Suppose

Mu1 ;:::;ut =
r(ut)⊕
i=1

Eai(ut); bi(ut) ⊕
s(ut)⊕
i=1

Eci(ut);di(ut) ⊕ mEy;y

and V = Ez;b and W = Ea;x are not summands in Mu1 ;:::;ut . Then, if cVt+1 �= cEy; z ,

Mu1 ;:::;ut+1 =
r(ut+1)⊕
i=1

Eai(ut t+1); bi(ut+1) ⊕
s(ut+1)⊕
i=1

Eci(ut+1);di(ut+1) ⊕ mEy;y:

Since we did not make a cut between vertex x and y nor between vertex y and z,
V = Ez;b and W = Ea;x cannot be summands in Mu1 ;:::;ut+1 . If cVt+1 = cEy; z then to force
cVt+1 to vanish, a switch must be made between one of the Eai(ut); bi(ut) and Ey;y. Thus

Mu1 ;:::;ut+1 =
r(ut+1)⊕
i=1

Eai(ut t+1); bi(ut+1) ⊕
s(ut+1)⊕
i=1

Eci(ut+1);di(ut+1) ⊕ (m− 1)Ey;y

and the indecomposables V = Ez;b and W = Ea;x still do not appear as summands in
Mu1 ;:::;ut+1 .

5. The equioriented case

In this section, let Q be the following equioriented quiver of type An:

◦ 	1← ◦ 	2←· · · 	n−1← ◦ :
Before we introduce our next result, we introduce a partial order 6s on the inde-

composables V1; : : : ; Vs as follows.

De'nition 5.1. Let Vi and Vj be two indecomposable representations of Q with dimen-
sion vectors ei and ej, respectively. Then, Vi6s Vj if and only if ei(x)6 ej(x) for all
x∈Q0. Otherwise, we say that Vi and Vj are incomparable.

Consider the representation M ∈Rep(Q; d). We de0ne

rankM (a; b) = rank(	a ◦ 	a+1 ◦ : : : ◦ 	b−1); (5.1)

where 	i is a simpli0ed notation for the linear map M (	i).

Example 5.2. Let Q be the equioriented quiver of Dynkin type A9, i.e.,

1← 2← 3← 4← 5← 6← 7← 8← 9:

Let d = (1; 2; 3; 3; 2; 1; 2; 2; 1). Then the semi-invariants, SI(Q; d), are generated by
cV1 ; cV2 ; cV3 ; cV4 ; and cV5 , where

dim V1 = (0; 0; 0; 0; 0; 0; 0; 1; 0);

dim V2 = (0; 0; 0; 0; 0; 0; 1; 1; 1);
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dim V3 = (0; 0; 0; 1; 0; 0; 0; 0; 0);

dim V4 = (0; 0; 1; 1; 1; 0; 0; 0; 0);

dim V5 = (0; 1; 1; 1; 1; 1; 0; 0; 0);

with V16s V2 and V36s V46s V5. Furthermore, for the general representation V with
dimension vector d, rankV (1; 6) = 1, rankV (2; 5) = 2, rankV (3; 4) = 3, rankV (6; 9) = 1,
rankV (7; 8) = 2.

Throughout, let M , N denote representations in Rep(Q; d). Let OM , ON be the orbits
of M and N under the action of GL(Q; d), and let OM be the orbit closure of M .

Lemma 5.3. Let f= cV , for Vi =Ea;b, be a nonzero irreducible semi-invariant on OM .
Then

(1) d(a− 1) = d(b) and d(j)¿ d(b) for a6 j¡b,
(2) rankM (a− 1; b) = d(b), and
(3)

M = Ea1 ; b1 ⊕ : : :⊕ Eal; bl ⊕ Ea;u1 ⊕ : : :⊕ Ea;um ⊕ Et1 ; b1 ⊕ : : :⊕ Etu; b1 ⊕ X ⊕ Y;

where ai6 a − 16 b6 bi, l = d(b), ui6 b − 1, a6 ti, any Et;u ⊆ X has the
property a6 t6 u6 b− 1, and any Er;s ⊆ Y has the property that either b¡r
or s¡a− 1.

Proof. It is clear that cEa; b is a non-zero semi-invariant if and only if

cEa; b = det(	a−1	i1 · · · 	b−1) �= 0:

Thus we must have that

d(a− 1) = d(b)

and

d(j)¿ d(b) (5.2)

for a6 j¡b. Since f is irreducible, the inequality in (5.2) must be strict. Our last
point follows directly from the 0rst two observations.

Corollary 5.4. Let cV ; cW be two nonzero irreducible semi-invariants in SI(Q; d). Let
V = Ea;b and W = Ec;d.

(1) If V and W are incomparable with respect to ¡s, then without loss of generality
b¡c.

(2) If V ¿s W then a¡c6d¡b.

Proof. The proof follows from Lemma 5.3.
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Lemma 5.5. Let f = cV , for V =Ea;b be a nonzero irreducible semi-invariant on OM ,
for M ∈Rep(Q; d). Decompose M as follows:

M = M1 ⊕M2 ⊕M3

where

M1 =
u⊕

i=1

Xi such that Ea;b ¡s Xi;

M2 =
v⊕

i=1

Yi such that Yi ¡s Ea;b;

M3 =
w⊕

i=1

Zi such that Ea;b and Zi are incomparable:

Assume that X1; : : : ; Xp are minimal among Xi’s with respect to 6s, and that Y1; : : : ; Yq

are maximal among Yi’s with respect to 6s. Then the following statements are the
consequences.

(1) The irreducible components of Z(f)∩OM are the orbit closures of the represen-
tations Ni; j (16 i6p; 16 j6 q) where

Ni; j = De(Xi ⊕ Yj)⊕
u⊕

r=1;r �=i

Xr ⊕
v⊕

s=1; s �=j

Ys ⊕
w⊕

k=1

Zk ;

where De(Xi ⊕ Yj) is a switch of even type from Section 3.
(2) codimOM

ONi; j = 1.
(3) For Xi = Ei1 ;i2 minimal and Yj = Ej1 ; j2 maximal, we have that rankNi; j (r; s) =

rankM (r; s)−1 if i16 r ¡ j16 j2 ¡s6 i2 and rankNi; j (r; s)=rankM (r; s) otherwise.

Proof. First notice that by Lemma 5.3, Ea;b cannot be a summand of M . Recall that
f = cV vanishes at W ∈Rep(Q; d) if and only if there exists a submodule W ′ of W
such that

〈V;W ′〉¿ 0: (5.3)

Since f = cV , where V = Ea;b, does not vanish on OM this implies for all W ′ ⊆ M ,
〈V;W ′〉6 0, i.e., for all W ′ ⊆ M with dimension vectors w′ = dim W ′,

〈Ea;b; W ′〉= w′(b)− w′(a− 1)6 0: (5.4)

In particular, for W ′ = Xi; Yi or Zi in the decomposition of M , Eq. (5.4) holds.
In order to produce a W ′ with property 5.3, a switch must be made between one of

the Xi’s and Yj’s. If Xi = Ei1 ;i2 , Yj = Ej1 ; j2 , then we know that

i16 a6 b6 i2 and a6 j16 j26 b

since Ea;b6s Ei1 ;i2 and Ej1j2 6s Ea;b. Thus,

De(Ei1 ;i2 ⊕ Ej1 ; j2 ) = Ei1 ; j2 ⊕ Ei2 ; j1
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and

〈Ea;b; Ej1 ;i2〉¿ 0:

Why must Xi be taken minimal and Yj-maximal with respect to 6s? If De was ap-
plied to an Xr which is not minimal then the resulting component would not be a
minimal degeneration of M , and can be obtained as a degeneration of a minimal one.
Speci0cally, let Xu ¿s Xi for some 16 i6 u. Then we claim that

P = De(Xu ⊕ Yj)⊕
u−1⊕
r=1

Xr ⊕
v⊕

s=1; s �=j

Ys ⊕
w⊕

k=1

Zk

is a degeneration of

Ni; j = De(Xi ⊕ Yj)⊕
u⊕

r=1;r �=i

Xr ⊕
v⊕

s=1; s �=j

Ys ⊕
w⊕

k=1

Zk :

To see the exact path it takes, we set

X =
u−1⊕

r=1;r �=i

Xr ⊕
v⊕

s=1; s �=j

Ys ⊕
w⊕

k=1

Zk :

Then

Ni; j = De(Xi ⊕ Yj)⊕ Xu ⊕ X = Ei1 ; j2 ⊕ Ei2 ; j1 ⊕ Eu1 ;u2 ⊕ X

and

P = De(Xu ⊕ Yj)⊕ Xi ⊕ X = Eu1 ; j2 ⊕ Ej1 ;u2 ⊕ Ei1 ;i2 ⊕ X:

We show that P is obtained as a degeneration of Ni; j by two switches. First,

P′ = De(Eu1 ;u2 ⊕ Ei1 ; j2 ⊕ Ej1 ;i2 ⊕ X = Eu1 ;j2 ⊕ Ei1 ;u2 ⊕ Ej1 ;i2 ⊕ X;

and then

P = De(Ei1 ;u2 ⊕ Ej1 ;i2 ⊕ Eu1 ; j2 ⊕ X ) = Eu1 ; j2 ⊕ Ej1 ;u2 ⊕ Ei1 ;i2 ⊕ X:

A similar argument shows that Yj has to be chosen maximally.
To show that the codimension is correct, we use Bongartz’s Theorem on minimal

degenerations. We have M =M ′⊕X and Ni; j =U ⊕V ⊕X , where M ′ =Ei1 ;i2 ⊕Ej1 ; j2 ,
U = Ei1 ; j2 , V = Ej1 ;i2 , and

X =
u⊕

r=1;r �=i

Xr ⊕
v⊕

s=1; s �=j

Ys ⊕
w⊕

k=1

Zk :

Furthermore,

codimOm
ONi; j = codimOM′OU⊕V + 3(p + q− 2):

In our case 3(p + q− 2) = 0, since p = q = 1. Thus,

codimOM′OU⊕V = dim ExtQ(U ⊕ V;U ⊕ V ) = 1
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for any quiver of type An. Finally, since all summands in Ni; j are the same as in M
with the exception that the indecomposable Xi was switched with the indecomposable
Yj,

rankM (r; s) = rankNi; j (r; s)

except when i16 r ¡ j16 j2 ¡s6 i2, when the rank comes down by one.

Proposition 5.6. Let cV and cW , for V = Ea;b, W = Ec;d, be two distinct nonzero
irreducible semi-invariants on OM for M ∈Rep(Q; d). Suppose that

rankM (c − 1; d) = d(d):

Let N be a generic representation in any component of Z(cV ) ∩ O(M). Then

rankN (c − 1; d) = rankM (c − 1; d):

In other words, cW is nonzero on every component N of ZM (cV ).

Proof. Suppose V ¿s W , i.e. a¡c6d¡b.
Since cV and cW are nonzero irreducible semi-invariants, from Lemma 5.3 we know

that

M = Ea1 ; b1 ⊕ · · · ⊕ Eal; bl ⊕ Ea;u1 ⊕ · · · ⊕ Ea;um ⊕ Et1 ; b−1 ⊕ · · · ⊕ Etn; b−1 ⊕ X

⊕Ec;r1 ⊕ · · · ⊕ Ec;rp ⊕ Es1 ;d−1 ⊕ · · · ⊕ Esq;d−1 ⊕ Y ⊕ Z

where

(1) ai6 a− 16 b6 bi; l = d(b),
(2) either ui ¡c − 1 or d6 ui,
(3) either d¡ ti or ti6 c − 1,
(4) for Et;u ⊆ X , a6 t6 c − 16d6 u6 b− 1,
(5) ri6d− 1,
(6) c6 si,
(7) for Er;s ⊆ Y , c6 r6 s6d− 1, and
(8) for Ep;q ⊆ Z , q¡a− 1 or b¡p or d¡p6 q¡b or a− 1¡p6 q¡c − 1.

By Lemma 5.5 any generic representation N in a component of ZM (cV ) has the
property that it was obtained from M by a switch between one of the summands
Xi = Eai; bi and Yj = Ej1 ; j2 where a6 j16 c − 16d6 j26 b − 1. Furthermore we
know that a switch of this type aQects the ranks as follows.

rankN (r; s) = rankM (r; s)− 1 if ai6 r ¡ j16 j2 ¡s6 bi;

and otherwise rankN (r; s) = rankM (r; s). Hence,

rankN (c − 1; d) = rankM (c − 1; d):

Similarly, any generic representation N ′ in a component of ZM (cW ) has the property
that it was obtained by a switch between one of the summands Xi = Ei1 ;i2 where
a6 i16 c − 16d6 i26 b− 1 and Yj = Ej1 ; j2 where c6 j16 j26d− 1. Hence

rankN ′(a− 1; b) = rankM (a− 1; b):
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Suppose V and W are incomparable. Without loss of generality we may assume that
a¡b¡c¡d. By Lemma 5.3 we have that

M = Ea1 ; b1 ⊕ : : :⊕ Eah; bh ⊕ Ea;u1 ⊕ : : :⊕ Ea;ul ⊕ Et1 ; b−1 ⊕ : : :⊕ Etm; b−1 ⊕ X

⊕Ec1 ;d1⊕ : : :⊕Ecn;dn⊕⊕Ec;r1⊕ : : :⊕Ec;rp⊕Es1 ;d−1⊕ : : :⊕Esq;d−1 ⊕ Y ⊕ Z;

where

(1) ai6 a− 16 b6 bi,
(2) ui6 b− 1,
(3) a6 ti,
(4) for Et;u ⊆ X we have a6 t6 u6 b− 1,
(5) ci6 c − 16d6di,
(6) ri6d− 1,
(7) c6 si,
(8) for Er;s ⊆ Y we have c6 r6 s6d− 1, and
(9) for Ep;q ⊆ Z we have b¡p6 q¡c or q¡a− 1 or d¡p.

By Lemma 5.5 any component generic representation N in a component of ZM (cV )
has the property that it was obtained from M by a switch between one of the summands
Xi=Eai; bi and Yj=Ej1 ; j2 where a6 j16 j26 b−1. Furthermore, we know that a switch
of this type aQects the ranks as follows.

rankN (r; s) = rankM (r; s)− 1 if ai6 r ¡ j16 j2 ¡s6 bi;

and otherwise rankN (r; s) = rankM (r; s).
Since j16 j26 b− 1¡c,

rankN (c − 1; d) = rankM (c − 1; d):

Theorem 5.7. Let Q be an equioriented quiver of Dynkin type An, and SI(Q; d) =
k[f1; : : : ; fs] where f1 = cV1 ; : : : ; fs = cVs are the irreducible semi-invariants. Then for
any subset {i1; : : : ; im} ⊆ {1; : : : ; s},

codim Z(fi1 ; : : : ; fim) = m:

Proof. It is enough to prove the theorem for {i1; : : : ; im} = {1; : : : ; s}. Indeed, if the
set of some subset of semi-invariants f1; : : : ; fs would have a component of codimen-
sion smaller than the cardinality of this subset, then the same would be true for the
set {1; : : : ; s}. We claim that ft; : : : ; fs are nonzero on every component Mu1 ;:::;ut−1 of
Z(f1; : : : ; ft−1) for 16 t6m−1. We show it by induction on t. For t=1 the statement
is obvious. For t = 2, consider a generic representation M ∈Rep(Q; d). Since f1; : : : ; fs

are distinct nonzero irreducible semi-invariants on OM , by Proposition 5.6 we know
that f2; : : : ; fs are nonzero on every component Mu1 of Z(f1). Suppose ft−1; : : : ; fs are
nonzero on every component

Mu1 ;:::;ut−2 ⊆ Z(f1; : : : ; ft−2):
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Again by Proposition 5.6, ft; : : : ; fs are nonzero on every component Mu1 ;:::;ut−1 of
Z(ft−1) ∩Mu1 ;:::;ut−2 . Thus we have proved our claim and may conclude that

codim Z(f1; : : : ; fs) = s:

6. Re,ection functors

In this section we recall the notion of reKection functors which we will use to obtain
more complicated orientations from the equioriented quiver of type A. We show that
some of the properties of representations are preserved under reKection functors. Let
Q be a quiver. Let x∈Q0 be a sink or a source.

Then %xQ is the new quiver obtained by reversing the orientation of all the arrows
going into or out of x. If x is a sink, at the representation level, we get a functor

C+
x : Rep(Q)→ Rep(%xQ)

V �→ W = C+
x (V );

where Wy = Vy for y �= x and Wx = ker(Vt	1 ⊕ · · · ⊕ Vt	n → Vx). If x is a source, we
obtain a similar functor,

C−
x : Rep(Q)→ Rep(%xQ)

V �→ W = C−
x (V );

where Wy = Vy for y �= x and Wx = coker(Vx → Vh	1 ⊕ · · · ⊕ Vh	n). If d = dim V , we
denote by %xd the resulting dimension vector for C+

x (V ) or C−
x (V ).

Suppose x is a sink. The following theorem has an analogue when x is a source,
which we will omit.

Theorem 6.1 (Bernstein–Gelfand–Ponomarev [3]).

(1) If V = Sx then C+
x = 0.

(2) If V �= Sx is indecomposable, C+
x (V ) is indecomposable, C−

x C+
x (V ) = V , and

dim(C+
x (V ))y =




dim Vy if y �= x;
∑

dim Vt	i − dim Vx if y = x:

Throughout this section, let Q be a quiver with a sink at vertex x. Further, let
x1; : : : ; xn be the neighboring vertices of x and 	1; : : : ; 	n the corresponding maps be-
tween the vertices xi and x. The next proposition follows easily from Theorem 6.1 and
also holds when x is a source and when C+

x is replaced with C−
x .

Corollary 6.2. Let V and W be representations of Q. Suppose the simple module Sx

is not a summand of V or W . Then

〈V;W 〉= 〈C+
x V; C+

x W 〉:



88 C. Chang, J. Weyman / Journal of Pure and Applied Algebra 192 (2004) 69–94

Proposition 6.3. Suppose the simple module Sx is not a summand of V or W . Then

dim HomQ(V;W ) = dim HomQ(C+
x V; C+

x W )

and

dim ExtQ(V;W ) = dim ExtQ(C+
x V; C+

x W ):

Proof. Consider the map C+
x : HomQ(V;W ) → HomQ(C+

x V; C+
x W ). Suppose �∈

Ker C+
x . Then �y = 0 for all y �= x. We claim that �x = 0. If �x �= 0 and �y = 0 for

all y �= x, then we de0ne the submodule V ′ of V by setting V ′
y = Vy for y �= x and

V ′′
x = Ker �x. We have an exact sequence

0→ V ′ → V → ⊕Sx → 0:

Since Sx is a projective representation, this sequence splits and Sx is a direct summand
of V , which contradicts our assumption. Hence �x = 0 and we see that the map C+

x
is injective. Consider the map C−

x : HomQ (C+
x V; C+

x W )→ HomQ (C−
x C+

x V; C−
x C+

x W ).
Let us take  ∈Ker C−

x . Then  y = 0 for y= 0. We claim  x = 0. If not, we de0ne the
quotient module Ṽ on C+

x V by setting Ṽ y=(C+
x V )y for y �= x and Ṽ x=(C+

x V )x=Ker  x.
We have an exact sequence

0→ ⊕Sx → C+
x V → Ṽ → 0:

Since Sx is injective in Rep(%xQ) the sequence splits, and Sx has to be a direct summand
in C+

x V . This contradicts our assumption. Hence C−
x is injective. But also we see that

by our assumption the modules V and C−
x C+

x V are isomorphic, and similarly W and
C−

x C+
x W are isomorphic. Thus both maps C+

c , C−
x have to be isomorphisms. This

implies 0rst statement of the Proposition. The second follows from the 0rst and the
corollary.

If x is a source, we can make a similar conclusion whenever Sx is not a summand
of W . Furthermore, if HomQ(V;W ) is preserved, since the Euler product is preserved,
ExtQ(V;W ) is also preserved under reKections.

The next proposition follows easily from the previous two propositions.

Proposition 6.4. Let f=cV ∈ k[Rep(Q; d)] and Sx �= V . Suppose Sx is not a summand
of W . If f = cV vanishes at W , then f̂ = cC

+
x V vanishes at C+

x W .

Proof. Recall by King’s criterion, cV (W ) vanishes if and only if W has a submodule
W ′ such that 〈V;W ′〉¿ 0. Since 〈V;W ′〉=〈C+

x V; C+
x W ′〉, f̂=cC

+
x V vanishes at %xW .

Corollary 6.5. Let k[Rep(Q; d)]SL(Q;d)=k[cV1 ; : : : ; cVs ] and Z(cV1 ; : : : ; cVs)=X1∪· · ·∪Xn.
Suppose the simple module Sx is not a summand of Xi for any i. Then

C+
x X1 ∪ · · · ∪ C+

x Xn ⊆ Z(cC
+
x V1 ; : : : ; cC

+
x Vs):

Proof. The proof follows immediately from Proposition 6.4.
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Lemma 6.6. Let Q be a quiver of type A. Consider the representation of Q with the
following dimension d:

where d1 ¡ d2 ¡ · · ·¡ dm. Let

SI(Q; d) = k[cV1 ; : : : ; cVs ]:

Then

(1) There is no semi-invariant cV with V = Sx.
(2) (%xd)1 ¡ (%xd)2 ¡ · · ·¡ (%xd)m.
(3) There is a one to one correspondence between the components of Z(cV1 ; : : : ; cVs)

and the components of Z(cC
+
x V1 ; : : : ; cC

+
x Vs) given by applying the Coxeter functor

C+
x to the representative of each component of Z(cV1 ; : : : ; cVs).

(4) If Xi is a component of Z(cV1 ; : : : ; cVs), then codim Xi = codim C+
x Xi.

Note, the results is also true when we reverse all the arrows.

Proof. Let A be the Euler matrix for our quiver

A =




1 0 : : : 0

−1 1 0 : : :

0 −1 1 0 : : :

: : : : : : : : :

0 : : : 0 −1 1 0

0 −1 1 0

0 1 0

0 1 −1 0

: : :




:

Examining the rows of A we see that the weight of Sx cannot be the weight of a
semi-invariant.
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To prove our second point, since (%xd)y = dy for y �= x we must only compare the
dimensions at vertex x−1; x and x+1. At these vertices, dx−1 ¡dx+1 +dx−1−dx ¡dx.
Hence, we prove our second point.

To prove the third and fourth points, consider a generic representation M in
Rep(Q; d):

M = E1; b11 ⊕ · · · ⊕ E1; b1d1
⊕ E2; b21 ⊕ · · · ⊕ E2; b2; d2−d1

⊕ · · · ⊕ Em;bm1 ⊕ · · · ⊕ Em;bm; dm−dm−1
⊕ E;

where bij¿m and the summands Ea;b ⊆ E are such that m¡a. Since d1 ¡d2 ¡ · · ·¡
dm, there is no semi-invariant cV with V = Ei; i for i¡m. Hence, degenerations which
force semi-invariants to vanish involve switches between two summands of M or a cut
along a summand Ea;b of M where m¡a. Thus Mu1 , a component of Z(cV1 ), must be
of the form

Mu1 = E1; c11 ⊕ · · · ⊕ E1; c1d1
⊕ E2; c21 ⊕ · · · ⊕ E2; c2; d2−d1

⊕ · · · ⊕ Em;cm1 ⊕ · · · ⊕ Em;cm; dm−dm−1
⊕ Eu1 ;

where cij¿m and the summands Eab ⊆ E	1 are such that m¡a. Let Mu1 ;:::;ut−1 be a
component of Z(cV1 ; : : : ; cVt−1 ). Suppose

Mu1 ;:::;ut−1 = E1;f11 ⊕ · · · ⊕ E1;f1d1
⊕ E2;f21 ⊕ · · · ⊕ E2;f2; d2−d1

⊕ · · · ⊕ Em;fm1 ⊕ · · · ⊕ Em;fm;dm−dm−1
⊕ Eu1 ;:::;ut−1 ;

where fij¿m and the summands Ea;b ⊆ E	1 ;:::;	t−1 are such that m¡a. Then, again
since d1 ¡d2 ¡ · · ·¡dm, degenerations which force semi-invariants to vanish involve
switches between summands of Mu1 ;:::;ut−1 or cuts along Ea;b where m¡a.

Hence, for Mu1 ;:::;ut−1 a component of Z(cVt ) in OMu1 ;:::;ut−1
,

Mu1 ;:::;ut = E1; g11 ⊕ · · · ⊕ E1; g1d1
⊕ E2; g21 ⊕ · · · ⊕ E2; g2; d2−d1

⊕ · · · ⊕ Em;gm1 ⊕ · · · ⊕ Em;gm; dm−dm−1
⊕ E	1 ;:::;	t ;

where gij¿m and the summands Ea;b ⊆ E	1 ;:::;	t are such that m¡a.
Since in each of the degenerations, M , Mu1 ; : : : ; Mu1 ;:::;us , we never made a cut along

a summand Ea;b with b¡m, we see that the simple module Sx = Ex;x does not occur
as a summand in Mu1 ;:::;us .

Finally, since a component Xi of Z(cV1 ; : : : ; cVs) is just one of the components Mu1 ;:::;us
by Corollary 6.5

C+
x X1 ∪ · · · ∪ C+

x Xn ⊆ Z(cC
+
x V1 ; : : : ; cC

+
x Vs);

and by Proposition 6.3 dim Ext(Xi; Xi) = dim Ext(C+
x Xi; C+

x Xi). Hence codim Xi =
codim C+

x Xi.
Conversely, consider the quiver %xQ with dimension %xd:

d1 ← d2 ← · · · ← dx−1 → dx+1 + dx−1 − dx → dx+1 ← · · · ← dm → dm+1 · · · ;
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where d1 ¡d2 ¡ · · ·¡dm. The general decomposition in this dimension %xd is of the
form

M ′ = E1; h11 ⊕ · · · ⊕ E1; h1d1
⊕ E2; h21 ⊕ · · · ⊕ E2; h2; d2−d1

⊕ · · · ⊕ Ex−1; hx−1; 1 ⊕ · · · ⊕ Ex−1; hx−1; dx−1−dx−2
⊕ Ex;hx1 ⊕ · · · ⊕ Ex;hx; dx−dx−1

⊕Ex+1; hx+1; 1⊕ · · ·⊕Ex+1; hx+1; dx−dx−1
⊕ · · ·⊕Em;hm; 1⊕ · · ·⊕Em;hm; dm−dm−1

⊕ E;

where hij¿m, and the summands Ea;b ⊆ E are such that m¡a.

Z(cC
+
x V1 ; : : : ; cC

+
x Vs) = Y1 ∪ · · · ∪ Yt:

Again we see that the simple module Sx does not occur in any summands of the
nullcone. Hence,

C−
x Y1 ∪ · · · ∪ C−

x Yt ⊆ Z(cC
−
x C+

x V1 ; : : : ; cC
−
x C+

x Vs);

and we see that n = t and Yi = C+
x Xi.

Corollary 6.7. Let Q be quiver of type A. Consider the representation of Q with one
of the following dimension vectors d

where n1 ¡n2 ¡ · · ·¡nm. Let SI(Q; d) = k[cV1 ; : : : ; cVs ], and

Z(cV1 ; : : : ; cVs) = X1 ∪ · · · ∪ Xn:

Using the re=ection functors

C+ = C+
1 C+

2 C+
1 · · ·C+

m−2 · · ·C+
1 C+

m−1 · · ·C+
1 ; or respectively;

C− = C−
1 C−

2 C−
1 · · ·C−

m−2 · · ·C−
1 C−

m−1 · · ·C−
1 ;

we obtain the quiver Q̃ with dimension e

(nm − nm−1)→ (nm − nm−2)→ · · · → (nm − n1)→ nm+1 · · · ;
or respectively

(nm − nm−1)← (nm − nm−2)← · · · ← (nm − n1)← nm+1 · · · ;
where

(1) SI(Q̃; e) = k[cC
+V1 ; : : : ; cC

+Vs ],
(2) Z(cC

+V1 ; : : : ; cC
+Vs) = C+(X1) ∪ · · · ∪ C+(Xn), and

(3) codim Xi = codim C+(Xi).
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Proof. The 0rst point follows from [9].
Notice that our quiver representation with dimension d satis0es the conditions of

Lemma 6.6. Hence, we can apply Lemma 6.6 as long as the conditions are satis0ed.

7. Main theorem

Lemma 7.1. Let Q be a quiver of type A. Consider the representation of Q with one
of the following dimension vectors d

n1 ← n2 ← · · · ← nm → · · · ;
where n16 n26 · · ·6 nm. Let ni=ni+1 for i¡m. Hence cEi+1; i+1 is a semi-invariant in
k[Rep(Q; d)]. Assume that cV , for V �= Ei+1; i+1, is nonzero on On, for N ∈Rep(Q; d),
and let P be any component of ZN (cV ). Then

rankP(i; i + 1) = rankN (i; i + 1):

In words, the rank associated to cEi+1; i+1 does not change when we force cV to vanish.

Proof. Every component of Zn(cV ) is obtained by making a switch or a cut between
the summands of N . Since V �= Ei+1; i+1, we do not need to make a cut between
vertices i and i + 1 to obtain any component of Zn(cV ). Hence, we see that the rank
from vertex i + 1 to i does not change.

Theorem 7.2. Let Q be a quiver of Dynkin type An, and SI(Q; d) = k[cV1 ; : : : ; cVs ].
Then

codim Z(cV1 ; : : : ; cVs) = s:

Proof. First, let N (Q; d) = Z(cV1 ; : : : ; cVs).
For a quiver of type An, let 1=s0; : : : ; sv+1 =n be the alternating sequence of sources

and sinks. If v + 1 = 1 then we have the equioriented quiver.
To prove our main theorem, we proceed by induction on the number of vertices in

the quiver, n, the number of changes in orientation, v + 1, the sum S =
∑

x∈Q0
d(x),

and the length until the 0rst change in direction, s1. When n = 1 we are done since
there are no semi-invariants. In fact, when n= 2, we are done since this implies when
v + 1 = 1, we are done by Theorem 5.7 since this is the equioriented case.

Let Q be the quiver of type An and consider the representation with dimension vector

n1 ← · · · ← ni−1 ← ni ← ni+1 ← · · · ← ns1 → ns1+1 → · · · → ns2 ← · · · :
If n1 ¿n2 then there is no semi-invariant with weight % where %(1) �= 0. Hence, we
may assume that n16 n2. If ni−16 ni and ni ¿ni+1 then we may reduce using Lemma
4.3 to the quiver

n1 ← · · · ← ni−1 ← ni+1 ← · · · ← ns1 → ns1+1 → · · · → ns2 ← · · · :
Hence we can assume that ni6 ni+1 for all 16 i6 s1.
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We induct on the length of s1. If s1 = 2, then Q is a quiver with the following
dimension vector

n1
�← n2 → n3 → · · · ns2 ← · · · :

If n1 ¡n2 then we can apply Corollary 6.7 and reduce to the quiver

n2 − n1
�̃→ n2 → n3 → · · · ns2 ← · · ·

and we are done by induction on the number of changes in orientation. If n1 = n2 then
all semi-invariants other than det � do not depend on the entries of �, hence we can
reduce to looking at the following quiver

n2 → n3 → · · · → ns2 → · · · :
Again, by induction on number of changes in orientation we are done.

Now, for s1 ¿ 2, consider the quiver with dimension vector

n1 ← · · · ← ni−1 ← ni ← ni+1 ← · · · ← ns1 → ns1+1 → · · · → ns2 ← · · · :
If n1 ¡n2 ¡ · · ·¡ns1 then we can apply Lemma 6.7 to reduce to the quiver

(ns1 − ns1−1)→ (ns1 − ns1−2)→ · · · → (ns1 − n1)→ ns1+1 · · · ;
and we are done by induction of number of changes in orientation. If n16 n26 · · ·6 ns1

then let i be the smallest index such that ni = ni+1. Hence our quiver dimension vector
is as follows:

n1 ← · · · ni−1 ← ni
�← ni ← · · · ← ns1 → · · · :

Let cV1 = det �. First, to 0nd Z(cV1 ) we look at the following larger quiver with
dimension d1

Q1 : n1 ← · · · ni−1 ← ni
�1←− ni − 1

�2←− ni ← ni+2 ← · · · ← ns1 → · · ·
and consider the map

?1 : Rep(Q1; d1)→ Rep(Q; d);

where ?1(�1�2)=�. The image of the general representation of Rep(Q1; d1) in Rep(Q; d)
will be equal to Z(cV1 ). By the First Fundamental Theorem of Invariant Theory,

im ?1 = Rep(Q1; d1)=GL(ni − 1):

Clearly no other semi-invariants cV2 ; : : : ; cVs vanish on im ?1. Let M = Z(cV1 ). Then

ZM (cV2 ; : : : ; cVs) ⊆ M ⊆ Rep(Q; d)�
T?1

�
?1

Z(?∗
1 (cV2 ); : : : ; ?∗

1 (cVs)) ⊆ Rep(Q1; d1)
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By Lemma 7.1, we see that the dimension of the generic 0bre of ?1 and ?1 are
the same. Denote this dimension by p. Hence since dim Rep(Q1; d1) = dim M +p and
dim Z(?∗

1 (cV2 ); : : : ; ?∗
1 (cVs)) = dim ZM (cV2 ; : : : ; cVs) + p, we have that

codim ZM (cV2 ; : : : ; cVs) = codim Z(?∗
1 (cV2 ); : : : ; ?∗

1 (cVs)):

Now to 0nd the vanishing of the rest of the semi-invariants, we may project to the
quiver Q2 with the dimension vector d2:

n1 ← · · · ni−1 ← ni ← ni+2 ← · · · ← ns1 → · · · :
Now consider SI(Q2; d2) = k[cW1 ; : : : ; cWt ]. We may have introduced a few more semi-
invariants. However, the image of cV2 ; : : : ; cVs in SI(Q2; d2) are a subset of the semi-
invariants CW1 ; : : : ; cWt . By induction on the sum of dimensions, S, codim Z(cW1 ; : : : ;
cWt ) = t. Moreover cW1 ; : : : ; cWt form a regular sequence. Since these are homogeneous
elements, any subset of these form a regular sequence. Hence we are done.

When this article was in press, the authors learned that C. Riedtmann and G. Zwara
obtained similar results for arbitrary Dynkin quiver.
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