

Det här verket har digitaliserats vid Göteborgs universitetsbibliotek och är fritt att använda. Alla tryckta texter är OCR-tolkade till maskinläsbar text. Det betyder att du kan söka och kopiera texten från dokumentet. Vissa äldre dokument med dåligt tryck kan vara svåra att OCR-tolka korrekt vilket medför att den OCR-tolkade texten kan innehålla fel och därför bör man visuellt jämföra med verkets bilder för att avgöra vad som är riktigt.

This work has been digitized at Gothenburg University Library and is free to use. All printed texts have been OCR-processed and converted to machine readable text. This means that you can search and copy text from the document. Some early printed books are hard to OCR-process correctly and the text may contain errors, so one should always visually compare it with the images to determine what is correct.

GUIDELINES FOR COASTAL MONITORING

Fishery biology

Gunnar Thoresson

Guidelines for coastal monitoring

Fishery biology

Contents
BACKGROUND 3
POPULATION STUDIES 5
Abundance of demersal fishes 5
Density of fry 9
Age distribution 9
ANALYSES ON INDIVIDUALS 14
Growth 14
Reproduction 16
Reproduction of Viviparous blenny 18
Energy storage 19
AMBIENT DATA 20
Hydrography and meteorology 20
REFERENCES 21
FORMS 22
CODES 31

National Board of Fisheries
Institute of Coastal Research
P.O. Box 584

S-740 71 Öregrund
Sweden
January 1993
ISSN: 1102-5670

BACKGROUND

Fish are studied to an increasing extent in environmental monitoring around the coasts of Sweden, and the coastal fishery has a good potential for further development. Standardized techniques for long-term monitoring and prognosis of the size and productive capacity of fish populations, as well as continuous control of their health in a wide context thus are required. This report describes a basic programme and guide-lines designed to study coastal fish. The system also constitutes a basis for an integration of physiological health studies and measurements of contaminant levels with basic ecological data. Both population monitoring and collection of fish for analytical purposes are done by means of fishing using established methods - gill nets and fyke nets. A detailed description of the principles behind the system is given by Neuman (1985).

The monitoring and prognosis system is designed for coastal species. Such species mainly occur close to the bottom; the dominating pelagic fishes are mainly found further out to sea. In order to be able to link the reactions of the fish to the environmental situation in a specific study area, priority is given to stationary species, particularly with regard to measurements on the individual level. In addition, the system concentrates on relatively large species because they are often of commercial interest, they allow individual chemical and biological analyses and are easy to catch with established methods.

The species monitored, i.e., demersal (bottom-living) fairly large fish, can be grouped into two communities on the coasts of the Baltic: littoral, mainly stationary warm-water species, and less stationary cold-water species living in deeper water. The most common fish in the former group are perch, roach and ruffe, whereas the latter mainly consists of flounder, cod, sculpins, viviparous blenny, and whitefish. At the Swedish West Coast, cold-water species such as cod, flatfish, viviparous blenny and sea scorpion dominate also in shallow water; eel is the only major representative of warm-water fishes.

The design of the test fishing, as in all other monitoring of inter-year variations in biological processes, places strict demands on statistical planning. The methods described here have been developed through many years of pilot studies and statistical tests. By means of stratification as regards choice of species and size groups, depth intervals, stations and times of year, it has been possible to create statistically satisfactory programmes at reasonable expense. Consequently, this programme has a design that definitely separates it from inventory studies. However, such geographical mappings of, e.g., species distribution should be included in the preliminary studies that should be made prior to each individual monitoring programme.

The flow of information in the system is described in the chart on p. 4. Other measurements on the individual level, being outside the scope of the basic programme described here - physiology, pathology etc. - can easily be included. A large number of such methods have been described by Neuman (1985). The basic programme is applied both in reference areas (Thoresson, 1993)), e.g., areas without local anthropogenic influence, and in polluted areas (Thoresson, 1992).

Population studies

ABUNDANCE OF DEMERSAL FISHES General

Most methods of measuring changes in fish abundance provide catches of several species and thus also information on changes to the species composition. An important objective in fisheries management and nature conservation is to retain a natural abundance and species composition of the fish. Studies of stationary fishes in environmental research allow analyses of exposure and effects in long-living organisms integrating numerous ecological processes.

In abundance studies, certain restrictions and priorities must be made depending on the demands of the statistical tests and according to costefficiency analyses. Absolute density can not be measured using common techniques but instead studies are made of the changes in the relative measure catch per effort and the species composition. Bottom gill nets are generally considered to be the best method but cannot be used in biotopes with strong water movements. Small fyke nets can be used in flowing water and on all bottoms except block bottoms.

Choice of net

The choice of nets is governed by the species composition in the community to be studied and the desire to catch fish which, on one hand are large enough for consumption and sampling, and on the other sufficiently young for population prognoses. Nets used are shown in the table below (for net codes, see p. 31 and 32).

In the Gulf of Bothnia and the Baltic proper the fishing in shallow waters concentrates on warm-water species and in deep water on cold-water species. On the west coast of Sweden, mainly viviparous blenny, eel and sea scorpion are monitored in shallow water together with young gadoids and flatfishes, whereas older fish are monitored in deeper water.

Description of the nets

The coastal survey net consists of 3 m (10 feet) deep bottom gill nets the height in the water is about 2.5 m - with a length of 35 m (see sketch to the right). The lower net-rope (main line) is 10% longer than the upper net-rope ($=38.5 \mathrm{~m}$). The nets are made up of five parts, each 7 m

long. These have different mesh sizes and are placed in the following order: $17 \mathrm{~mm}, 22 \mathrm{~mm}, 25 \mathrm{~mm}, 33 \mathrm{~mm}, 50 \mathrm{~mm}$. The nets are made of green monofilament nylon of 0.20 mm diameter in the two largest mesh sizes and 0.17 mm in the others. The upper net-rope for coastal survey nets is patented net-rope no. $2^{1 / 2}$, the lower net-rope is plastic net-rope no. 2 (weight $=3.2 \mathrm{~kg} / 100 \mathrm{~m}$).

The set of nets consists of a number of bottom gill nets which are 1.8 m (6 feet) deep and made of spun green nylon. Each net consists of a 60 m long stretched net bundle which is attached to a 27 m net-rope (pat. netrope $1 \frac{1}{2}, 35 \mathrm{~cm}$ between floats, buoyancy $6 \mathrm{~g} / \mathrm{m}$) and a 33 m lower net-rope (pat. net-rope $1^{1} / 2$ weight $2.2 \mathrm{~kg} / 100 \mathrm{~m}$). A set of nets is composed of nets with different mesh sizes according to the table below.

Yarn thicknesses in the Baltic are no. 210/3 for mesh size 60 mm , no. $210 / 2$ for $50-33 \mathrm{~mm}$ and no.110/2 for the other sizes. On the Swedish West Coast the thickness is no. $210 / 3$ for all mesh sizes stated in the table below. Mesh quality is stated according to the Tex-system (e.g., 210/3 means 3 filaments each weighing 210 g per 10000 m).

The fyke nets are 55 cm high with a semi-circular opening and a leader or wing that is 5 m long. They are made of 17 mm mesh in the arm and 10 mm in the crib of yarn quality no. 210/12 in twisted nylon.

Localities

The smallest geographical unit is a station at which either a net set, two coastal survey nets or two fyke nets joined leader to crib are placed. A group of neighbouring stations with similar conditions (depth, exposure, etc.) and exposed to the same influence of environmental disturbances, forms a section. Within a section the bottom depth at the nets must not differ more than 2 metres between stations. An area (p. 31) is a named geographical area within which there may be one or more sections.

Fishing performance

Fishing techniques

Nets must be set lightly stretched from an anchored buoy, which is placed out at the start of the fishing period and removed at the end. The direction of the net (the set) should be constant when fishing in shallow water. A main rule is that the nets

are set parallel to the shore. At deep places, in open water, the nets are laid in the direction of the prevailing current.

Fyke nets are set tightly stretched at right angles to the shore. The fyke nets are placed in pairs with leader to crib as illustrated in the figure to the right. Stones with buoys are attached with short lines to the inner leader and the outer crib.

Before the fishing is started each station must be carefully documented as regards the type of bottom and position (longitude, latitude). Landmarks and buoy sites can be photographed.

Occasional broken mesh are tolerated in gill nets but not in fyke nets. Checks must be made on every occasion when the nets are emptied. Before the fyke nets are used they must be checked on land to ensure that when they are stretched all parts are extended.

Exposure

The nets are set between 14 and 16 hrs, but before sundown. They are collected on the following day between 7 and 10 hrs . Fiyke nets are emptied daily between 7 and 10. They are replaced immediately after being emptied. The times given are standard times (= solar time). Within each area the times for laying out and emptying should vary as little as possible between fishing efforts.

Fishing period

Gill net fishing in shallow water is done during the period July 25 August 15 , if possible within a 14 -day period. Other fishing programmes are started immediately after the autumn circulation when the water temperature at the bottom has decreased below $12^{\circ} \mathrm{C}$. They are completed within three weeks. Fyke net fishing is done during the period October $15-31$. Areas to be compared should be fished with as short a time difference as possible.

Frequency

At least six fishing efforts are done at each station. All stations within a section are fished on the same day. If all sections cannot be fished on the same day, the fishing is continued in the remaining sections before returning to the first section.

Data registration

Form 56 (see p. 22) is used for both gill net and fyke net fishing. Instructions to fill in the form are given on the reverse (see p. 23).

The form is divided into three parts, so-called card types, namely hydrographical and meteorological data, catch data and disease data. The heading of the form (columns 1-15) is the same for all three parts. Code lists and abbreviations are given on pp. 31-34.

Ambient data

For registrations of ambient data, see p. 20.

Catch data

The catch is reported by station and is separated into species (for species code list see p. 33) in 2.5 cm length groups. Weights need not be registered.

Disease data

External visible signs of disease are always examined in the catches. Species and length group of diseased fish are registered separately on the form. The disease codes are listed on the reverse of the form. Six different codes are used. If code 6, other symptoms, is chosen then an explanation must be given on the reverse of the form. Notes are made of species, length group, number and the kind of symptoms present, preferably with reference to Thulin et al. (1989).

Other considerations

The fishing effort must always be one (applies to both gill nets and fyke nets). The disturbance code is given according to p. 35.

Data processing

Since stratified sampling is used when planning the fishing efforts, the variation in the material is minimized, which enables measurements of changes in the fish populations to be made on the basis of relatively small catches. By analyzing large data sets, it was demonstrated that this can be done ir there are 6 or more stations. The variation between fishing efforts made at the same station within the same time period is relatively small for most common species and thus six fishing efforts per station are usually enough.

In the statistical processing of the material it is assumed that the catch per station and day is an observation of an hypothetical population which, during the relevant fishing period would be generated by, e.g., six fishing efforts at a very large number of stations. The material can be treated by trend analysis and analysis of variance by ranks using non-parametric methods. The trend for an individual station can be calculated using, e.g., Kendall's tau. A common trend for a group of stations (section) can be calculated using Mann-Kendall's test and chi-2 which, in favourable situations, provides evidence of population increases or decreases already after a few years. The Kruskal-Wallis test is recommended for comparisons between individual years. In this test the mean value for a station is used as an observation of the above-mentioned hypothetical population. Parametric methods can also be used. Logarithmic transformation, or square root transformation, of data often stabilizes the variance and gives approximative normal distribution.

FRY ABUNDANCE
 General

The only studies of fry included in the basic programme of the monitoring and prognosis system concern viviparous blenny. The species gives birth to living fry after a long gestation period, which allows us to study the number of fry, mortality and growth through analysis of pregnant females. The approach used is described in the section on "Reproduction in viviparous blenny" (see p. 18).

AGEDISTRIBUTION

 GeneralBy means of annual rings in different types of bony tissue it is possible to study the age distribution and growth. How to analyze annual rings is explained in the section on "Growth" below. The age composition of the fish stock can be used for calculating recruitment from the changes in the survival of the young-of-the-year (0+) in different years, the so-called yearclass size, and the mortality in catchable ages. Knowledge of the absolute number of surviving fry in an area is not obtained but the method is useful in illustrating changes in the relative size of year-classes. Normally only a random sample of the catch is age-determined but as the lengths of all fish are measured in the test fishings it is possible to estimate the age distribution of the entire catch on the basis of the relationship between age and length. The same material is used in the analyses of both age and growth, and the collection and sampling is described below.

Collection

Sampling is done in connection with the test fishing. A pre-determined number of individuals is collected from different length groups. The number depends on, for example, the size and growth rate of the species. If it is a slow-growing species then it is essential to have more individuals within each length group (2.5 cm). The table below shows the suitable sampling routine for perch, roach and viviparous blenny.

Length range	12.6-15.0	15.1-17.5	17.6-20.0	20.1-22.5	22.6-25.0	25.1-27.5	27.6-30.0	>30 (cm)
Length group	14	16	19	21	24	26	29	≥ 31
Perch (\%O)	1)	50	50	50	50	1)	1)	1)
Roach (\% \%)	50	50	50	50	1)	1)	1)	1)
Viviparous blenny (\% \%)	1)	1)	50	50	50	50	1)	1)

The collection must be started already at the first test fishing to secure as much material as possible from less common length groups. Once collection of a length group has been started it must not be interrupted within a net (survey net), fyke net or station (net set) catch but must be completed regardless of the numbers stated in the table above. In this way consideration is also paid to the size variation which may occur within length groups.

The routines mentioned above cannot be directly used for whitefish since this species has a wide variation in length. Instead, all whitefish are collected until there is a total of 250 (of both sexes). Collection must not be terminated within the catch from a net (coastal survey net), a fyke net or a station (net set).

Sampling

The samples are stored in scale sample bags. Notes are made on these of, at the top, the serial number in the sampling series and below it the area code, section code (when applicable), fish species, total length (mm), sex and date of catch (year-week-day).

Scales

Samples of scales are taken from the belly of whitefish, the left flank of roach, silver bream and ide, and from ruffe according to the illustrations below. The knife or other implement with which the scales are removed must be rinsed or cleaned after each fish so that scales from different fishes do not become mixed in the same bag. Each sample must consist of at least 10 scales. Before the scales are analysed, the impressions of, usually, six of them are pressed by means of a "scale-mangle" into a plastic disc of the same size as an object glass. The impressions give clearer annual rings than the scales and are used in the analysis.

Gill cover (operculum)

The operculum is collected from perch. It is removed by hand only, or from larger fish by using a knife, whereby the centre of the operculum, the pointed part of the bone, must be included (see figure under "Growth" on page 15). The operculum is put in boiling water for about a minute after which it is easy to remove skin and meat residues in cold water under a running tap, as well as the bone that is attached to the rear edge (suboperculum). If possible the left-hand gill cover should be chosen.

Otoliths

Otoliths are removed from viviparous blenny, flatfish, cod and burbot. The preparation is as described below. Both otoliths must be collected and rinsed clean in water. The samples must be carefully handled as otoliths are fragile.

burbot, viviparous blenny, cod

Wing bone (metapterygoid)

For pike, the age determination is done by analysis of the wing bone. The preparation is done by boiling the entire skull sufficiently long to enable removal of both left and right wing bones. The location of the wing bone is shown in the illustration to the right.

Analysis of annual rings

The method is described under "Growth", see p. 14.

Data recording

Described under "Growth", see p. 16.

Data processing

Year- class sizes
Calculation of the relative year-class sizes requires sample collections from several years. The number of fish of a certain age in a sample from a certain catch-year can then be weighed both against the total number of fish in the sample and against the percentage of that age in the total material from all years.

In order to compare the year-classes with each other, i.e., to calculate the relative strength of the year-class, a modified version of the method described by Svärdson (1961) is recommended. A description of this method is given below based on age samples of perch collected during 1984-1988. In this sampling the material has been taken randomly from the catches; thus the routine recommended on p. 9 has not been followed. When using the routine, the age distribution in the total catch is used for the analysis after it has been calculated with the help of a length-age key.

Standardization of year-class sizes

year of	total number	age			
		4	5	6	7
1984	198	128	54	15	1
	\%	64.7	27.3	7.6	0.5
	\%	144*	77	45	17
1985	130	47	74	7	2
	\%	36.2	56.9	5.4	1.5
	\%	81	161*	32	50
1986	134	58	45	30	1
	\%	43.3	33.6	22.4	0.8
	\%	97	95	133*	27
1987	147	42	74	25	6
	\%	28.6	50.3	17.0	4.1
	\%	64	142	101	137*
1988	157	68	24	52	13
	\%	43.3	15.3	33.1	8.3
	\%	97	43	197	277
Percentage age distribution for the entire material					
	\%	44.8	35.4	16.8	3.0

The upper row for each catching-year gives the number of individuals caught at different ages in the sample. The next row gives the percentage age distribution in the sample. Subsequently, the number of fish of different ages is summed for all years, after which the percentage age distribution of the entire material is calculated. If the samplings cover many years then this distribution gives a measure of what is normal for the species in the area studied.

With the help of the table, the calculation for the year-class 1980 can be demonstrated, i.e., fish which were 4 -year-old in 1984. These 4 -year-olds make up 64.7% of the total number of fish $4-7$ years old in the sample. Perch younger than 4 years and older than 7 are excluded because the former are not wholly recruited to this sampling and the latter are too few to provide reliable figures. For the entire period 1984-1988 the 4-yearolds make up 44.8% and thus the 1980 year-class in catch-year 1984 is 44% stronger $(64.7 / 44.8=144)$ than average.

Correspondingly, calculations are made for the 5-year-olds in 1985, when the 1980 year-class is 161% of the average. The same approach is used for the 6 and 7 -year-olds in 1986 and 1987, respectively. Mean values of 144, 161,133 and 137 show the size of the 1980 year-class in relation to the average in the material. Other relative year-class sizes can be seen from the following table:

Year of birth	1979	1980	1981	1982
$\%$	45	144	139	145

Mortality

The total mortality from age t to (t+1) is defined as $A_{t+1}=\left(N_{t}-N_{t+1}\right) / N_{t}$ ($N=$ the number of fish). The instantaneous mortality (Z) is obtained by differentiating with respect to t, which gives: $Z=-\left(\ln N_{t+1}-\ln N_{t}\right)$ and thus $A=1-e^{-2}$.

When calculating mortality it is possible to start with the percentage age distribution in a sample. This method is sensitive to variations in recruitment. However, over a long period it can give a measure of the average mortality. According to the table above, the mortality for 4 -year-olds is 21\% (\{44.8-35.4\}/44.8) during the years 1984-1988.

Normally the calculations are based on catches per fishing effort. Using a length-age key it is possible to establish the age of fish in the different length classes. In this way the total catch in a test-fishing is treated. By following the catch per effort in different age classes it is possible to avoid problems with varying recruitment. The number of 4 -year-olds in the catch in year 1 is related to the corresponding figure for 5 -year-olds in year 2 , etc. Calculations of A are done in the same way as above.

A third method is to use catch curves - for an individual year the logarithmic catch per effort (y -axis) is plotted for the age-classes (x -axis) included. The slope ($=-Z$, see above) of the straight line gives the size of the mortality. This method assumes, as also with the former method, that there is a constant recruitment.

Analyses on individuals

GROWTH

General

Growth studies are essential when estimating production. Growth rate can also be utilised as an indication of the status of individuals. As such, it has the advantage of integrating at a high level but the disadvantage of being exposed to large variations between years and individuals. Length growth in each year of life can be calculated in some species, (see analysis of annual rings below). If desired, the length growth can be converted via weight-length relationships to weight increment. Growth of young-of-theyear ($0+$) can be measured directly from their length or weight; a special method for viviparous blenny is described below (p. 18).

Collection and Sampling

Collection and sampling have been described above under the heading "Age distribution" (p. 9 and 10).

Analysis of annual rings

Most fishspecies in Swedish waters do not grow during the winter. When the translocation of calcium in bone tissue also ceases in connection with the termination of growth, irregularities occur in the bone structure, socalled annual rings or annuli. These rings are visible in the gill cover and otoliths as transparent bands, and on scales as fractures on the densely packed ripples or striation which run parallel to the edge of the scale.

In many fish species the spacing between the annual rings in some organs is in a given relationship to the length increment of the fish in corresponding years, which allows us to determine their size by means of back-calculations, see the illustration to the right.

Back-calculations can be made on scales, gill covers, wing bones and, in some species, otoliths. The relationship between the sizes of these organs and body length differs slightly in many species with the length of the fish and thus in such cases cannot be described linearly but instead by a gently sloping curve. In order to establish this mathematically, the mean fish length is determined for different scale/gill cover classes, preferably in the range from young-of-theyear up the largest fishes present. In most cases the relationship is described by an exponential function: $L=k x R^{b}$, where L is the length of the fish, R the scale/gill cover radius, k the intercept of

the line, and b the slope of the line for the regression log-fish length on logscale/gill cover.

Back-calculated body lengths can be obtained from the relationship $L=L_{\mathrm{s}} x(r / R)^{b}$, where $L=$ the back-calculated body length, $L_{\mathrm{s}}=$ the final body length, $r=$ the intermediary scale radius. The table below gives a survey of the k - and b-values of species where growth can be calculated according to the above relationships.

Species	Organ	k	b	Reference
Perch	gill cover	19.45 cm	0.861	Agnedahl, 1968
Roach	scale	65.85 mm	0.824	Thoresson, 1979
1 de	scale	104.50 mm	0.690	calc. fr. Cala, 1970
Pike	wing bone	17.77 cm	0.824	unpub. data,own and from
			Moli	värdson

A linear relationship applies to ruffe. Biro (1971) proposes for ruffe a relationship scale length/body radius of $R=0.250+0.02 \times L_{c}$, where $R=$ oral scale radius (mm) and $L_{c}=$ the total length of the body excluding the tail fin (standard length). This has been modified by our own data to total length so that $L=(r / R)\left(L_{s}-18.97\right)+18.97$ (according to the definitions above).

For whitefish (Coregonus lavaretus), a simple linear function without an intercept is used, which gives $L=L_{s} \times r / R$.

The distance between the annual rings is determined by means of a stereomicroscope, a projector or by means of computerised pictorial analysis techniques. Combinations of the latter and the former also occur. The centre and the outer edge are marked on the enlarged picture together with the annual rings along a radius (R) in the part of the growth sample shown in the figures below. If growth has taken place during the year of collection, $a+$ sign is noted in the report form.

Organs which do not permit back-calculations, such as otoliths, can only be used for a determination of the relationship between age and size when caught. The mean growth of the year-classes can, however, be studied if sufficient material of different age at capture is available. Determination of age by means of otoliths today often makes use of videotechniques combined with computerised pictorial analysis.

Data registration

All registration of growth data is done on form 67 (see pp. 24-25). In cases where registration is done manually there are instructions on how to use the form on the reverse. For species where no back-calculation is done, the age together with information from the scale sample bag are noted in a table for later processing.

Data processing

The average increase in length during each year of life is calculated according to the formulas described above in the section on analysis of annual rings. Growth rate varies with age and often also with sex. By standardizing with regard to these factors, all data can be used to create mean values for different calender years and areas. Differences in growth between calender years, year-classes and areas are compared using analysis of variance.

REPRODUCTION

General

Fecundity, i.e., the number of eggs per female, is an important parameter illustrating population dynamics. Both harmful substances and food availability may influence the reproduction capacity of the fish. Generally, use is made of the gonad somatic index (GSI = gonad weight in relation to body weight) as a measure of the reproductive capacity, but this measure is strongly influenced by fish condition. A more correct measure is obtained by relating the weight of the sexual organs to the length of the fish. If the analysed random samples contain fish of different lengths, than differences between, e.g., areas of investigation, can be studied by means of regression analyses. Since the gonads grow during the entire period until spawning it is, naturally, important that samples to be compared are collected simultaneously. As regards females, a rough measure of differences in fecundity is obtained in these comparisons. Direct measurements of fecundity will naturally give more reliable measures of reproduction but are extremely laborious and thus should not be attempted unless there are indications on disturbances in relative gonad size studies.

In addition to studies of gonad weight, controls are also made of the occurrence of such fishes which will not spawn in the subsequent spawning period. The simplest way of doing this is to assess the developmental stage of the sexual organs according to some standardized routine - here it is recommended to use four classes. Because of the special reproduction biology of viviparous blenny and its special role as an environmental indicator, this species is treated separately (see p. 18).

Information on the nutrient status of the fish is required for analyses of variations in reproduction capacity. The condition factor, i.e., the relation between weight and length, provides such information. The material collected for gonad analysis must, thus, also be studied in respect to condition, see Storage of energy, p. 19.

Collection

For spring-spawning species the collection starts during the early autumn following the start of gonad growth, in perch and roach during September. A given number of individuals is collected from different length groups, using either coastal survey nets or sets of nets. 25 fishes per length class from and including length class $16(15-17.5 \mathrm{~cm})$ up to and including class 31 ($30-32.5 \mathrm{~cm}$) and all individuals from larger length classes should be collected.

Sampling

The sampling must be done on fresh material immediately after catching. If this is impossible for some reason and the catch is frozen, then it must be remembered that freezing affects both length and weight.

When sampling, the total length (mm) of the fish is measured and the total weight (0.1 g). The fish is opened, after which the sex is recorded. The gonads are weighed (0.1 g) and the sexual stage is determined. Intestines and stomach are removed (but not the liver), after which the somatic weight is measured (0.1 g)

When determining the sexual stage, a classification is used where class 1 consists of juvenile fish and those with no visible gonad growth. Class 2 consists of fish with observable gonad growth, class 3 those with loose roe or milt (running ripe fish), and class 4 spent fish. Classes 3 and 4 do not occur during the prescribed sampling period. Individuals with clearly diverging, defect gonads are placed in class 9.

Data registration

Form 70 is used. Instructions how to use the form are given on pp. 26-27.

Processing

The proportion of fishes with normally growing gonads (class 2) is determined for each sex both in the total catch and in the different length classes. If this proportion is low in the smallest group then it may be assumed that the random sample has contained many which were not sexually mature. For fishes with developed sex organs a calculation is made for each sex of the relationship between gonad weight and total length. Differences between individual years and areas can be studied with regression analysis. Changes over longer periods are studied using trend analysis.

Reproduction of viviparous blenny General

After a long period of pregnancy ($4-6$ months), the viviparous blenny gives birth to its young, sized $35-55 \mathrm{~mm}$, in numbers ranging from a few tens to a few hundreds. The reproductive capacity of the single female and the mortality among the early fry stages, which are normally particularly sensitive to environmental disturbances, thus can be studied with high precision. By means of the length distribution of the fry, it is possible to record growth inhibition, which indicates an increased risk of mortality. It is also possible to link properties associated with the female, e.g., load of toxic substances or deteriorated health status, to poorer survival and growth of the fry.

Collection

Pregnant females are collected in small fine-meshed fyke nets, normally in connection with the standardized test fishing for bottom fish. However, the catches also can be done in other ways provided that strict uniformity is observed between years and areas compared.

The collection is done during 15-31 October. The collection period should be kept as short and as similar between areas as possible. Sufficiently many viviparous blennys are collected in order to allow at least 50 pregnant females to be studied. In order to be able to register the proportion of pregnant fish all fish in a sample (the catch in at least one fyke net) must be kept for analysis. The fish are stored alive.

Sampling

The fish are killed, after which the belly is cut open for establishment of sex. In females the total length (mm) and the total weight (g) are registered. The ovary is quickly cut open. Living and dead fry are counted and classified in length groups of 2.5 mm . Fry which had died at an early development stage can also be registered since they are conserved in the ovary fluid. The somatic weight (g) of the female is measured after the sexual organs, stomach and intestines have been removed. When 50 frycarrying females have been found the sampling is continued until the entire sample has been examined, after which the sampling is terminated.

Data registration

Form 78 (see pp. 28-29) is used. Instructions how to use the form are given on the reverse.

Processing

The proportion of fry-carrying females provides information on size and age at sexual maturity and on disturbances during the earliest phases of the reproduction processes. The reproductive capacity of the females is estimated as the total number of fry per female in relation to the somatic weight of the female. The relationship is described with regression analysis.

Even in natural areas it often occurs that fry die soon after hatching (at a length less than 15 mm). On the other hand, it is very rare that larger fry die. When calculating fry mortality, i.e., the proportion of dead among the total number of fry in a sample, the early and late deaths are divided into, and treated as, separate groups. Influence is also measured as the frequency of females with large ($>15 \mathrm{~mm}$) dead fry.

The length distribution of the dead fry provides information on when death has occurred during the period of gestation, whereas the length distribution of living fry may reveal growth inhibitions. The total length distribution of living fry can be compared between areas and years, assuming simultaneous spawning, and that the natural conditions for fry growth have been similar. By basing the analysis on individual females it is possible to avoid these restrictions. The analysis is then based on the assumption that fry belonging to the two largest length groups in a female are "normal" whereas shorter fry are retarded. A percentage value of influenced fry is obtained for each female, and this is compared between samples. All comparisons are made with the chi-2 test.

STORAGE OF ENERGY

General

The fish use the ingested food for somatic growth and also to create energy reserves required for growth of genital organs and to be able to survive periods of starvation during the winter. The energy status of the fish thus provides information on its possibilities to survive and reproduce, and also may be regarded as an indicator of its general health status. For the fish to start gonad growth it is necessary that it has recovered from the previous year's spawning. Interpretation of gonad data according to the section on "Reproduction" will be made with higher precision if information is available on the energy status of the fish. The measure usually used to indicate energy status is the condition factor, which is calculated from the relation between weight and length.

Collection, sampling and data registration

See section on "Reproduction", p. 16.

Processing

The condition factor, C , is calculated from the formula:

$$
\mathrm{C}=\frac{100 \times \text { weight in grams }}{(\text { length in } \mathrm{cm})^{3}}
$$

The mean value is calculated from the entire material divided by sex and length group. Comparisons between years and areas are made with analysis of variance. Trend analysis is used to study changes with time.

Ambient data

HYDROGRAPHY AND METEOROLOGY

General

The abiotic ambient factors influence behaviour and metabolism in fish. Thus, for example, locomotory activity normally increases with increasing temperature, and thus also the catches in the test fishings with passive nets. Locomotory activity may also be influenced by changes in the wind, current, salinity and visibility. When interpreting catches, the importance of these factors should be considered, and thus they are registered during the test fishings.

Since fish are poikilothermal organisms, the metabolism is strongly governed by temperature, affecting growth and survival. Growth capacity has a strong positive temperature dependency up to an optimum temperature depending on species and size. Consequently, when analysing growth it is essential to include temperature. Survival during the first year of life is both directly and indirectly, via food uptake and growth, linked to temperature. To be able to interpret variations in growth and survival it is thus essential to have access to continuously measured temperatures and not just to the temperatures measured at the test fishings. Such continuous measurements are an important part of the monitoring and prognosis system and are also the basis of prognoses of relative year-class strengths, and thus the development of populations of commercial interest. The prognoses are made with the help of day length and temperature related recruitment models, which require at least daily temperature data from the environments where the fish are growing. The measurements are made by hand or by means of automatically recording instruments.

Observations during the test fishings

The ambient data are recorded section by section on Form 56, see p. 22. The exception is the bottom temperature of the deepest point at each station, see below.

An account of how the different measurements are made is given below. The accuracy of the instrument should be checked regularly.

Water depth is not normally registered.
Water temperature is measured with a thermistor or a thermometer fitted into a water-collector. The surface temperature at one point per section is entered onto the ambient data part of the form, whereas the bottom temperature of the deepest point at each station is recorded on the catch data part. All temperatures are registered in tens of degrees Celsius without using the decimal point.

Wind direction is estimated and is given according to the compass $\left(0-360^{\circ}\right)$ as the direction from which the wind is coming.

Wind velocity is estimated in $\mathrm{m} / \mathrm{sec}$.

Water current direction is estimated. It refers to the direction in which the current is flowing and is given according to the compass direction. For example, 360° current comes from the south.

Salinity is measured using a salinometer (usually not measured in the Baltic).

Industrial operations are not usually recorded.

Fog is not usually recorded

The visibility is measured in sheltered conditions under a shaded surface using a round white Secchi disc, 25 cm in diameter. The disc is first lowered so far that it cannot be seen and is then lifted up. The visibility depth, given in decimetres, is the depth at which the disc first becomes visible. The line must be held vertically in the water.

Air pressure is measured in mm Hg but is not normally measured.

Continuous temperature measurements

Long-term temperature measurements are made during the ice-free part of the year in the recruitment areas by automatic registration or by measuring by hand. The latter should be done at least from Monday to Friday at depths of 0.5 m and 1.0 m once a day using a water-sampler (of Ruttner type, etc.). Automatic temperature registration is done every third hour at 0.5 m and 1.0 m with an Aanderaa measuring instrument fitted with a land-based three-channel data collection unit.

REFERENCES

Agnedal, P.O. 1968. Studier av abborre och fiskets avkastning i Erken. 120 p. (Unpublished). Department of Limnology, Uppsala University.
Biro, P. 1971. Growth investigation of ruffe (Acerina cernua L.) in Lake Balaton. Annal. Biol. Tihany 38:131-142.

Cala, P. 1970. On the ecology of the ide Idus idus (L.) in the River Kävlingeann, south Sweden. Rep. Inst. Freshw. Res., Drottningholm 50:45-99.
Neuman, E. 1985. Fisk. In: Recipientkontroll vatten - metodunderlag. Ed.: N. Brink. Naturvårdsverket Rapport 3075. 184 p.

Svärdson, G. 1961. Ingen effekt av sikodlingen i Kalmarsund. Svensk Fiskeri Tidskrift 70:23-26.

Thoresson, G. 1979. The body/scale relationship in roach, Rutilus rutilus (L.), from a Baltic archipelago. Rep. Inst. Freshw. Res., Drottningholm 58:184192.

Thoresson, G. 1992. Handbok för kustundersökningar. Recipientkontroll. Kustrapport 1992:4. 88 p.
Thoresson, G. 1993. Handbok för kustundersökningar. Referensområden. Kustrapport 1993: , in preparation.
Thulin, J., J. Höglund and E. Lindesjöö. 1989. Fisksjukdomar i Kustvatten. (Summary and Figure notes in English.) Naturvårdsverket Informerar. Allmänna Förlaget, Stockholm. 126 p.
TEST FISHING

form no 56
75 Disease registration considers external visible symptoms ｜Disease data（card type 3）
The disease code i column 25 is recorded according to the codes in the frame below．For each new length group the code
of the species has to be repeated．Codes of species and length groups can be recorded in an arbitrary order． 1 Wounds．Open wound．Don＇t record scares or healed 2 Skeletaldefect．Evident spinal shortening／spinal curvature． papilloma on flat－fish，cauliflower disease on eel， 4 Fin rot／erosion．Shortened，often pussy fins，sometimes 5 Lymphocystis．One or more nodules on skin or／and fins．
6 Other symptoms．Could be used to describe less com－ mon diseases．Use your own words or refer to figure no in Thulin et al． 1989 ＂Fisksjukdomar ikustvatten（Fish diseases in the remark field．Code 6 could be used for other remarks
as well．
Exemple of description of symptoms by disease code 6.

\qquad bottom of the form，see adjoining part under disease data． Catch data（card type 2）
If different gear－numbers， If different gear－numbers，stations or segments are registered
here，disturbance codes and temperatures mustalso beentered here．The surface temperature shall always be registered under the ambient data above．
17 Gear number．Segment or Station，numeric code according \qquad 20 Temperature at bottom（ s, I ）is measured in degrees For traps only when they are lifted（I）． 26 Species according to codelist in GM p．33．Start to the left 30 Total weight in kg with two decimals（preprinted
decimalpoint）for all fish on this line．
35 Length group with 2.5 cm width．

35	Length group with 2.5 cm width．				
lgr	9	11	14	16	

data fields $(90+)$ e．g．a pike in lengthgroup 104 is written
 Note！The last numberfield is left empty．If there is more than
nine length groups，use an additionalline．For theseocassions
you write a duplication sign（ $($ ）in the column 17－29．
37 Number of fish in the foregoing length group．
INSTRUCTIONS TO FORM 56
 according to fishing gear is explained below．
All references are made to＂Guidelines for cuastal monitoring，
fishery biology＂，shortened＂GM＂below．Column number refers to the first column in each data field．
Col_{3} Area，Letter Code i accordance to abbreviations in GM
Section，Numeric code for the section in question．
Type of gear，Numeric code according to list in GM p．31．
13 Week number．Week no 1 is the first week of the yea
15 Day number．Monday＝1 etc．

 －is recorded with minus sign if the level is below
20 Water temperature（ s, I ）Surface temperture at 0.5 m
 one station is to be recorded，else bottom temperatures should be recorded under catch data（column 20－26）． one decimal（the decimalpoint is preprinted on the Wind direction（s） $0=n o$ wind， 360 wind comes from Wind velocity（s）in $\mathrm{m} / \mathrm{sec}$ Wind direction and velocity Water current direction（ $(\mathrm{s}, \mathrm{l})=$ no current， 360 current
Salinity（Marine waters， s, I ）is measured as per mille with one decimal（the decimal point is preprinted） discharge（at power plants），2＝discharge at normal 62 Fog（s） $0=$ none or natural fog， $1=$ fog caused by cooling 63 Visibility（s）in m with one decimal（preprinted exceeding the maximal visibilty．If no such place is to be found within reasonable distance 999 is recorded．
74 Disturbance according to code list in GMp．35．If column disturbance code should be recorded i column 19 ．

INSTRUCTIONS TO FORM 67
This form is used for registration of age and growth data. All references $\mid 24 \quad$ Final length in mm according to the sample bag. With final are made to "Guidelines for coastal monitoring, fishery biology", length is meant the tail-fin stretched maximally in the length
direction of the fish. the distance from the center of the scale (operculum etc) to the annuli. The degree of magnification is without importance. Knowing the relation between the scale (operculum, wing bone) length and the body length the distances are transformed to real body lengths.
27 First annual ring.
Eighteen lengths can be written on one line. shortened "GM" below. Column number refers to the first column in each data field.

Col no Explanation

3 Area. Letter code in accordance to abbreviations in GM p. 31. Species according to code list in GM p. 33. Start to the left in the
data field, e. g. I|D Type of gear. Numeric code according to list in GM p. 31. Section. Numeric code for the area in question. Station. Numeric code for the station in question. 14 Year of catch. Two last digits.
Year of birth. Two last digits. 18 Sex. 0=female (O), $1=$ male $\left(O^{7}\right)$ och indeterminate sex=9. 19 Number. Each fish is given a serial number according to the sample bag. The number is unique within area and year. This also applies to other samples, e. g. individual status.
22 Number of lines. If more than one line is needed a 9 is recorded here. The column $11-19$ will have to be repeated. This might be
done with the duplication sign (\sim) here. The column 11-19 will have to be repeated. This might be
done with the duplication sign (\sim)
23 Growth the year of catch. If there has been growth the year of catch 9
11
12
14
16
18
19

[^0] Sear. Numeric code for the station in question.
27-78
Intermediate body
へ

form no 70
Individual status

INSTRUCTIONS TO FORM 70

This form is used for registration of individual status. All references are made to "Guidelines for coastal monitoring, fishery biology", shortened "GM" below. Column number refers to the first column in each data field.

Col no Explanation

Area, Letter code i accordance to abbreviations in GM p. 31. Section, Numeric code for the section in question.
Station, Numeric code for the station in question.
Type of gear, Numeric code according to list in GM p. 31.
Year. Two last digits from the catching-year
Week number. Week no 1 is the first week of the year that holds four or more days
Number of day. Monday=1 etc.
16 Species according to code list in GM p. 33. Start to the left in the data field, e. g.
Number. Each fish is given a serial number, unique within area and year. This also applies to other samples, e. g. growth.
Total length in mm - tail-fin stretched maximally in the length direction of the
Length code. Referring to column 29-32, other length. Is recorded according
Other length. Is specified within each project. In this case column 28 always
Total weight in grams with two decimals. (10 grams is noted as 1000. Do not put any decimal point).
Somatic weight in grams with two decimal (somatic weight= total weight with gonads, intestines and stomach removed.
$\left.O^{\prime}\right)$ and inderminate $s e x=9$. Sex status. $1=$ the gonads not developed, $2=$ growing gonads, but not mature for spawning, 3=mature for spawning, running ripe, 4=spawned and 9=abnormal or deseased.
Samples taken. If a sample has been taken it is recorded in the specified column. Method of preservation 1=frozen/dried, 2=formalin and 3=alcohol. Other methods of preservation are specified within each project. The whole fish is preserved. Stomach sample Growth sample
Material secured for examination of parasites, 1 is recorded in the column Remarks - in reserve. Instructions are given within each project. Instructions from back of form 70.

$\stackrel{\sim}{\sim}$ ํ
 3 5 7 9 11 13

~

N

FEMALE BLENNY

remark

星
n

$$
\because \mid
$$

If the number of fry of a certain length group exceeds 99 the length group is repeated and the remaining number registered
There is room for seven length groups on a line. If more than one line is needed for a female the serial number (column 17-19) will have to be repeated. This might be done with the duplication sign (\sim)

77 Remarks.

Disease data (card type 2)
Female serial number is reported (see above, column 17). Disease code is recorded according to the explanation below.
Col. no Explanation
20 Disease codes
Tumour. Protuberances from skin or fins. Example: papilloma on flat-
fish, cauliflower disease on eel, lymphosarcoma on pike.
Fin rot/erosion. Shortened, often pussy fins, sometimes with black-
pigmented edges. Don't record fins injured by nets.
5 Lymphocystis. One or more nodules on skin or/and fins.
Other symptoms. Could be used to describe less common diseases.
Use your own words or refer to figure no in Thulin et al. 1989
 le below. This should be done in the remark field. Code 6 could be used for other remarks as well. 21 Remarks

Exemple of description of symptoms by disease code 6. 1. LEFT GILL COVER SHORTENED
2. SYMPTOMS IN ACCORDANCE TO FIGURE 22-23 (LATERAL LINE NECROSIS).

This form is used for registration of number and length distribution of living respectively dead fry of the viviparous blenny. All references are made to "Guidelines for coastal monitoring, tishery biology, shortened "GM" below. Column number refers to the first column in each data field.

Col. no Explanation

3 Area. Letter code in accordance to abbreviations in GM p. 31. Section. Numeric code for the section in question. Type of gear. Numeric code according to list in GM p. 31. Year. Two last digits from the catching-year.

Number of week. Week no 1 is the first week of the year that holds four or more days.
15 Number of day. Monday=1 etc.
Sample data (card type 1)
17 Number. Every female is given a serial number, unique within that area and
20 Total length in mm - tail-fin stretched maximally in the length direction of
the fish.

Total weight in grams.
Somatic weight in grams. Somatic weight=total weight with gonads, intestines and stomach removed.

34 Disease registration considers external visible symptoms of disease on the
 found. Affected fishes will be registered at the bottom of the form, see adjoining part under disease data.

FRY are recorded in length groups and numbers, living and dead separated
35 length group. 2.5 mm width.
> etc
> $7.5-9.9 \mathrm{~mm}$

The code refer to the whole number closest to the middle of the interval.
37 Number of living fry, referring to length group.

Species:
Area: \qquad
Stations):
Year - week - day:
Gear:

Area code list

BB Barsebäck
BF Brofjorden
BS Brunskär
BT Biotestsjön
BY Byske
DG Daugava
EÖ Eckerö
FB Finbo
FJ Fjällbacka
FM Forsmark
FT Fardume träsk
GB Gävlebukten
GG Göteborg
GU Gustavs
GÅ Gålö
GÖ Gräsö
HA Haninge
HL Hornslandet
HM Hiiumaa/Dagö (Moonsund)
HJ Hjälmaren
HU Husum
HÖ Holmöarna
IS Iggesund
JM Jämförelseområdet
KB Karlsborg
KH Karlshamn

KM Kuršiu Marios/Kurisches Haff (Litauen)
Kvädöfjärden se JM
KÖ Kyrkogårdsö
LU Luleå
MA Marviken
MÖ Mönsterås
NB Norrbyn
NS Norrsundet
NH Nynäshamn
OX Oxelösund
RH Ringhals
RÅ Råneå
SA Sandarne
SE Seglinge
SI Simpevarp
SM Simskäla
SS Stenungsund
SU Sunnäs
SV Svinesund
TH Torhamn
TÄ Tärnharen
VA Vallvik
VH Vikhög
VI Vittersjön
VÖ Valsörarna

Code list of fishing gear and units of fishing effort

1. Pound net for eel (with stakes, covering the whole water depth)
day
2. Floating trap for eel (with anchors and floats, covering the whole water depth))
day
3. Big fyke net for eel (height over 1.20 m) day
4. Small fyke net for eel
(height under 1.20 m) - single gear day
5. Trap net - big mesh size (whitefish, salmon, etc covering the whole water depth)
6. Fyke net - big mesh size for e.g. pike
day
7. Herring trap net catch
8. Other small traps day
9. Coastal survey net - multi mesh size gill net day
10. Net set - one mesh size per net
$(17,22,25,30,33,38,50$ and 60 mm$)$
day
11. Herring gill net
day
12. Flounder gill net
day
13. Whitefish gill net day
14. Salmon gill net
day
15. "Ordinary" gill net
day
16. Bottom trawl pulled by one vessel
hour
17. Bottom trawl pulled by two vessels
hour
18. Floating trawl pulled by one vessel
hour
Code list of fishing gear... (contin.)
19. Floating trawl pulled by two vessels hour
20. Seine net catch
21. Beach seine catch
22. Salmon hook-and-line (long line) (10 hooks=1 gear) catch
23. Other hook-and-line (100 hooks $=1$ gear) catch
24. Pound net with stakes - big mesh size, with bottom, without crib (covering the whole water depth) catch
25. Floating trap net for eel, without chamber (covering the whole water depth) day
26. Makerel net day
27. Crab net day
28. Lobster and crab pots day
29. Net set (17, 22, 25 mm) day
30. Trolling hour
31. Cod net day
32. Dynamit detonation
33. Cod fyke net day
34. Fishing rod hour
35. Fyke nets - set in pairs arm to arm day
36. Trammel net day
37. Deep trap net for salmon, trout and whitefish (floating, not covering the whole water depth) day
38. Bait net day
39. Eel pot day
40. Drift gill net for herring hour
41. Isaacs-Kidd trawl (stationary in streams) day
42. Isaacs-Kidd trawl (trawling) min.
43. Sprat net day
44. Bongo net m^{3}
45. Gulf V larvae sampler m^{3}
46. Net set $(38,50,60,76 \mathrm{~mm})$ day
47. Net set $(22,30,38,50,60 \mathrm{~mm})$ day
48. Net set ($17,22,25,30 \mathrm{~mm}$) day
49. Fyke nets (small mesh size) - set in pairs crib to arm day

Code list of species

Rules for coding: If the species name in Swedish is not a compound word the code is made of the first four letters. For compounded names the code is made of the first two letters in each part. If there will be a duplicate (marked ${ }^{*}$) the last letter in the code is replaced with the one following immediately after until there is a unique code.

LATIN	ENGLISH	SWEDISH	CODE
Abramis ballerus	blue bream	faren	FARE
Abramis brama	bream	braxen	BRAX
Acipenser sturio	sturgeon	stör	STÖR
Acipenser ruthenus	sterlet	sterlett	STER
Agonus cataphractus	armed bullhead	skäggsimpa	SKSM*
Alburnus alburnus	bleak	löja, benlöja	LÖJA
Alosa fallax	twaite shad	staksill	STSI
Ammodytes lancea	lesser sandeel	tobis	TOBI
Anarchias lupus	Atlantic catfish	havskatt	HAKA
Anguilla anguilla	silver eel	blankả\|	BLÅL
Anguilla anguilla	yellow eel	gulảl	GUÅL
Arnoglossus laterna	scaldfish	tungevar	TUVA
Aspius aspius	asp	asp	ASP
Barbus barbus	barbel	flodbarb	FLBA
Belone belone	garfish	horngädda	HOGÄ
Blicca bjoerkna	silver bream	björkna	BJÖR
Brama raii	Ray's bream	havsbraxen	HABR
Callionymus lyra	common dragonet	randig sjökock	SJKO
Cancer pagurus	edible crab	krabba (krabbtaska)	KRAB
Carassius carassius	crucian carp	ruda	RUDA
Carcinus maenas	shore crab	tångkrabba	TÅKR
Centrolabrus exoletus	rock cook	grässnultra	GRSN
Chirolophis ascanii	Atlantic warbonnet	tångsnärta	TȦST
Chondrostoma nasus	nase	noskarp	NOKA
Ciliata mustela	five-beard rockling	femtömmad skärlånga	FESK
Clupea harengus harengus	herring	sill	SILL
Clupea harengus membras	Baltic herring	strömming	STRÖ
Coregonus albula	vendace	siklöja	SILÖ
Coregonus lavaretus	whitefish	sik	SIK
Cottus gobio	bullhead	stensimpa	SSIM
Crenimugil labrosus	thick-lipped mullet	tjockläppad multe	TJMU
Ctenolabrus rupestris	goldsinny	stensnultra	STSN
Cyclopterus lumpus	lumpsucker	sjurygg	SJRY
Cyprinus carpio	carp	karp	KARP
Dicentrarchus labrax	sea perch (sea bass)	havsabborre	HAAB
Engraulis engrausicholus	anchovy	ansjovis	ANSJ
Entelurus aequireus	greater pipefish	havsnål	HANA
Esox lucius	pike	gädda	GADD
Eutrigla gurnardus	grey gurnard	knot	KNOT
Gadus morhua	cod	torsk	TORS
Gaidropsaurus vulgaris	three-beard rockling	tretömmad skärlånga	SKLÅ
Gasterosteus aculeatus	three-spined stickleback	storspigg	STSP
Glyptocephalus cynoglossus	sole witch	rödtunga	RÖTU
Gobius niger	black goby	svart smörbult	SVSM
Gymnocephalus cernua	ruffe	gers	GERS

LATIN	ENGLISH	SWEDISH	CODE
Hippoglossoides platessoides	American plaice	lerskädda	LESK
Hippoglossus hippoglossus	halibut	hälleflundra	HÄFL
Homarus vulgaris	European lobster	hummer	HUMM
Hyas araneus		maskeringskrabba	MAKA
Hyperoplus lanceolatus	greater sandeel	tobiskung	TOKU
Labrus berggylta	ballan wrasse	berggylta	BEGY
Lampetra fluviatilis	lamprey	flodnejonöga	FLNE
Leander adspersus	common prawn	tångräka	TÅRÄ
Leucaspius delineatus	beliga	groplöja	GRLÖ
Leuciscus cephalus	chub	färna	FÄRN
Leuciscus idus	ide	id	ID
Leuciscus leuciscus	dace	stäm	STÄM
Limanda limanda	dab	sandskädda	SASK
Liparis liparis	common sea-snail	vanlig ringbuk	RIBU
Liparis montagui	Montagu's sea-snail	Montagus ringbuk	MORI
Lophius piscatorius	anglerfish	marulk	MAUL
Lota lota	burbot	lake	LAKE
Lumpenus lampretaeformis	snake blenny	spetsstjärtat långebarn	SPLÅ
Melanogrammus aeglefinus	haddock	kolja	KOLJ
Merlangius merlangus	whiting	vitling	VITL
Merluccius merluccius	hake	kummel	KUMM
Microstomum kitt	lemon sole	bergtunga	BETU
Molva molva	ling, drizzie	långa	LANG
Myoxocephalus quadricornis	fourhorned sculpin	hornsimpa	HOSI
Myoxocephalus scorpius	bullrout, sea scorpion	rötsimpa	RÖSI
Nephrops norvegicus	Norway lobster	havskräfta	HAKR
Onchorhynchus mykiss	rainbow trout, steelhead trout	regnbåge	REBÅ
Onos cimbrius	four-beard rockling	fyrtömmad skärlånga	FYSK
Osmerus eperlanus	smelt	nors	NORS
Pelecus cultratus	kaife	skärkniv	SKKN
Perca fluviatilis	perch	abborre	ABBO
Petromyzon marinus	sea lamprey	havsnejonöga	HANE
Pholis gunnellus	butterfish	tejstefisk	TEFI
Phoxinus phoxinus	minnow	elritsa	ELRI
Phrynorhombus norvegicus	Norwegian topknot	småvar	SMVA
Platichthys flesus	flounder	skrubbskädda	SKSK
Pleuronectes platessa	plaice	rödspotta	RÖSP
Pollachius pollachius	pollack	lyrtorsk	LYTO
Pollachius virens	saithe	gråsej	GRSE
Pomatoschistus minutus	sand goby, little goby	sandstubb	SAST
Pomatoschistus pictus	painted goby	bergstubb	BEST
Portunus puber	fiddler crab	simkrabba	SIKR
Psetta maxima	turbot	piggvar	PIVA
Pungitius pungitius	nine-spined stickleback	småspigg	SMSP
Raniceps raninus	lesser forkbeard	paddtorsk	PATO
Rutilus rutilus	roach	mört	MÖRT
Salmo salar	salmon	lax	LAX
Salmo trutta	trout	öring	ÖRIN
Salvelinus alpinus	arctic charr	röding	RÖDI
Salvelinus fontinalis	brook trout	bäckröding	BÄRÖ
Salvelinus namaycush	lake trout	kanadaröding	KARÖ
Scardinius erythrophthalmus	rudd	sarv	SARV
Scomber scombrus	mackerel	makrill	MAKR
Scophthalmus rhombus	brill	slätvar	SLVA
Scyliurhinus caniculus	lesser spotted dogfish	småfläckig rödhaj	RÖHA

LATIN	ENGLISH	SWEDISH	CODE
Solea solea	sole	äkta tunga	ÄKTU
Spinachia spinachia	fifteen-spined stickleback	tảngspigg	TÅSP
Sprattus sprattus	sprat	skarpsill	SKSI
Squalus acanthias	picked dogfish, spurdog	pigghaj	PIHA
Stizostedion lucioperca	pike perch (zander)	gös	GÖS
Sygnathus typhle	broadnosed pipefish	tångsnälla	TÅSN
Symphodus melops	corkwing wrasse	skärsnultra	SKSN
Taurulus bubalis	longspined bullhead	oxsimpa	OXSI
Thymallus thymallus	grayling	harr	HARR
Tinca tinca	tench	sutare	SUTA
Trachinus draco	greater weever	fjärsing	FJÄR
Trachurus trachurus	horse mackerel	taggmakrill	TAMA
Trisopterus minutus	poor cod	glyskolja	GLKO
Vimba vimba	vimba bream	vimma	VIMM
Zeugopterus punctatus	topknot	bergvar	BEVA
Zoarces viviparus	eel-pout, viviparous blenny	tånglake	TÅLA
	disturbed fishing with no catch		KVAD
	empty tool		TOMT
	fish, for consumption**)		KDSK**
	fish, not for consumption**)		SKFI**)
	herring for consumption**)		KDSI**)

[^1]
Disturbance code

Code
0 No disturbance
1 Gale
2 Storm
3 Strong algal growth on the gears. Noted for trap nets and fykes when they are cleaned.
4 Clogging by drifting algae.
5 Damaged gear due to a big catch (fishes have been lost).
6 The gear is full. No more fish can be caught.
7 Drifting ice.
8 Ice cover over the gear.
9 Other reason.
Refering to the codes $1,2,3,4$ and 7 the disturbance should have been so severe that it has really affected the catch.

When there is ice cover code 8 shall always be recorded.
Regardless type of disturbance the catch shall always be recorded. If the disturbance is so severe that no catch could be registered the "species code" KVAD is recorded.

Kustlaboratoriet

Box 584

74071 Öregrund

Tel.: 0173/31305
Fax: 0173/309 49

Laboratoriechef: Erik Neuman
Miljöproblem: Olof Sandström
Rekrytering: Peter Karås
Fisktillgångar, modeller: Gunnar Thoresson Laboratorium (0173/ 303 06): Rose-Marie Svensson
Bottenfauna ostkusten (0173/307 29): Kerstin Mo

Kungsbacka

Tel.: 0300/73 720, 73721
Fax: 0300/192 44
Beståndsövervakning, miljökontroll: Alvar Jacobsson
Bottenfauna västkusten, skaldjur: Susan Smith

Ringhals

Tel.: 0340/609 87
Kontroll Ringhalsverket och Värö Bruk: Kurt Torildsson

Barsebäck

Tel.: 046/7754 88
Kontroll Barsebäcksverket: Göran Lundh

Simpevarp

Tel.: 0491/342 47
Rekrytering, kontroll Oskarshamnsverket: Jan Andersson

ISSN: $1102-5670$

[^0]: $a+s i g n$ is recorded here.

[^1]: **) professional fishing only

