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ABSTRACT

Astronomical data compiled during the last 70 years by the internha-
tional organizations (ILS-IPMS, BIH) providing the coordinates of the instan-
taneous pole, clearly shows a persistent drift of the ""mean pole" (= bary-
center of the wobble).

This. study was undertaken with a specific objective in mind: to inves~
tigate the possibility of a true secular motion of the barycenter; that is,
an actual movement of the earth pole of figure resulting from differential
mass displacement due to lithospheric plate rotations.

The method developed assumes the earth modeled ag a mosaic of
1° X 1° crustal blocks, each one moving independently in accordance with
their corresponding absolute plate velocities.

The differential contributions to the earth's second-order tensor of
inertia were obtained and applied, resulting in nod significant displacement
of the earth's principal axis.

In view of the above, the effect that theoretical geophysical models
for absolute plate velocities maj have on an aggzirent displacement of the
"mean polé” as' a consequence of station drifting was ana'tlyz'ed.

The investigation also reports new values for the crustal tensor of

inertia (assuming an ellipsoidal earth) and the orientation of its axis of figure,

reopening the old speculation of a possible sliding of the whole crust over
the upper mantle, including the supporting geophysical and astronomic evi-

dence.
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"Quand on veut appliquer les théories de la mécanique
rationnelle a 1'étude des phénomenes naturels, on se
irouve toujours en présence de questions d'une compli-
cation extreme. Si l'on voulait traiter ces questions en
toute rigneur, on ne pourrait jamais y parvenir, et’cela
pour des raisons diverses que je n'ai pas besoin d'enu-
merer. Nous sommes donc obligés de nous contenter
de resoudre, non pas les questions elles—mémes que
nous avons en vue, mais d'autres questions qui s'en
rapprochent plus ou moins, et qui présentent un degré
de simplicité assez grand pour que nous puissions en
aborder la solution plus ou moins rigourcuse. C'est ainai
que nous sommes conduits 4 substituer aux solides de la
nature de corps solides de forme absolument invariable;
c'est ainsi encore que nous attribuons habituellement aux
ligquides une propiété de fluidite absolue qui n'existe nulie-
ment dans la nature, etc. Mais nous ne devons pas perdre
de vue que, en agissant ainsi, nous nous mettons a c6té
de la réalité, et nous devons toujours nous préocuper de
1'influence gue les circonstances dont nous avons fait
abstraction peuvent avoir sur le résultat auguel nous
sommes parvenus'.

C. &, Delaunay

“"Sur 1'hypothése de la fluidité interieure du globe terres-
tre'; C. R. Acad. Seci. Paris, 67, p. 68 {1868).
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1 INTRODUCTION

1.1 General Background

The earth rotation vector is characterized by its magnitude (instantaneous
spin rate) and its dirzeiion, which can be referred about any prescribed reference
gystem.

Due to the nature of the rotational motions of the earth and other related
geodynamic phenomena, two basic reference frames are required to fully specify
the orientation of the instantaneous rotation vector: an external system with di-
rections fixed in space (inertial system) and a system rigidly linked to the eaxth
(terresirial system).

The rigorous definition and realization of these systems is a matter con-
cerning the International Astronomic Union (IAU), the International Union of
Geodesy and Geophysics (IUGG) and the International Association of Geodesy
(IAG). A recent colloquium in Torud (Poland) was held to initiate and coordinate
efforts by the international scientific community in the arduous task of defining
future reliable reference frames {accuracies of 5 X 10”7 radians and sbout 1
cm. in orientation and in position, respectively for both the inertial and terres-
trial systems ). Diverse viewpoinis were presented and debated, but only the
basie requirements seem to be fairly well established [Koinczek and Weiffen—
bach, 1975, p. 13].

Since the earth rotation vector continually changes in magnitude and di-
rection, its study requires the subdivigion into three major demains:

(i) Variations of instantaneous rate of spin.. . - S

(ii) Inertial orientation

(iiil) Terrestrial orientation

Table 1.1 piven in [Rochester, 1973] and adapted from [Kaula, 1969] tab-

ulates the various compononts of the rotational motion of the earth.

1
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Table 1.1  Spectrum of Changes in the Earth's Rotation*
A, Inertial Orientation of Spin B. Terrestrial Orientation of C. Instantaneous Spin Rate
Axis Spin Axis (Polar Motion) twabout Axis
1. Steady precession: amplitude 1. Secular motion of pole: ir- 1. Secular acceleration:

23°.5; period = 25,700 years.

2. Principal nutation: amplitude
9”,20 (obliquity); period 18.6
years,

3. Other periodic contributions
to nutation in obliquity and
longitude: amplitudes <1';
periods 9.3 years, annual,
semiannual, and fortnightly.

4. Discrepancy in secular de-

crease in obliquity: 0.1/
centuxy (7).

Os

regular, 20", 2 in 70 years,

'"Maxkowitz' wobble: amplitude
=0".02(?); period 24-40 years(?).

Chandler wobble: amplitude
(variable) == 0”.15; period
425-440 days; damping time
10-70 years(?).

Seasonal wobbles: annual, ampli-
tude = 0", 09; semiannual, ampli-
tude == 0". 01.

Monthly and fortnightly wobEles:
{theoretical) amplitudes =0 001,

Nearly diurnal free wobble:
amplitude < 0”.02(?); period(s)
within a few minutes of a sider-
eal day.

Oppolzer terms: amplitudes == 0".02;

periods as for nutations.

w/ w==-5 x 107 %yr,

2. Irregular changes: (a)
over centuries, w/ws x5
x 107 fyr; (b) over
1-10 years, w/w < 80 x
10" %r; (c) over a few
weeks or months (‘abrupt'),
w/ws £500 x 10 " Yyr.

3. Short-period variations:
(a) biennial, amplitude
== 9 msec; (b) annual,
amplitude = 20-25 msec;
{c) semiannual, ampli-
tude == 9 msee; (d)
monthly and forinightly,
amplitudes =1 msec,

A ATt s e e Bty D

*From {Rochester, 1973].
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The scope of this investigation is restricted, in general, to the terres-
trial orientation of the instantaneous spin axis (Polar Motion) and in partic-
ular to its apparent secular motion.

Mo_ré 'thétln fifteen yeé.rs have passed since the p_ﬂblication of the mono~
graph "The Rotation of the Earth: a Geophysical Discﬁséidn" by Munk and
MacDonald {1960']; neveriheless, its contents remain surprisingly up-to-
date and many of its conclusions subsﬁntidly valid. The work describes
and studies diverse geophysical dquestions, several still unsolved or without
completely satisfactory answers.

The most recent advances in this area were discussed at the second
Geodesy/ Solid-Farth and Ocean Physlics (GEOP) research conference on the
I{otatlon of the Larth and Polar Motion held at the Ohlo State Univoersity
[Mueller 1975 or Rochester 1973].

Secular motion of the pole is a broad term embracing different pos—
sﬂule mterpretatmns It seems necessary at this point to introduce the ex-
plicit terminology used in this report to avoid any future misinterprotations.

. By secular motion of the pole is commonly undersiood the displace-
ment of the astronoﬁlically—redueed center of the wobble (mean pole or bary-
cent_e)_:) referred to the Conventional International Origin (CIO) (see section
2.4). The interval of time covered by observa.tidns is less than 100 years.

Polar wandering implies a geologic time seale and therefore pos-
sible large variations in the pole; hence It will not be the primary concsrn
of this work.

The asironomically-derived seéular fluctuations of the pole, a8 is
well recognized, may in fact be

(a) true secular motion _

(b} apparent secular motion caused by systemmnmtic-drifting of the

observing stations or variations in their deflections of vertical

(e} true and apparent effects combined

{
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There are speculations about the possibility of a true secular dis-
placement of the pole, at this time still a controversial question, with sev-
eral well-known authors for and against it. Observation data clearly shows
a persistent drift of the barycenter, but the reasons for this drift are not
vet clear. Recent geophysical theories have been postulated to explain this
phenomenon. In the following two sections the available astronomical evi-

dence and different geophysical interpretations will be reviewed.

1.2 Astronomical Evidence

Although the possibility of displacement of the earth pole of figure
due to geological causes (earth mass displacements) was recognized a long
time ago by geophysicists [Darwin, 1877], geodesists [Helmert, 1880, p. 420]
and astronomers [Tisserand, 1891, p. 485], the chservational verification
needed to wait until accurate instruments and methods were available.

Several erroneous rates for the secular polar motion were reported
prematurely, probably caused by over-anxiely to second the theoreticians.
The indisputable fact that the pole has a progressive motion was established
after the founding of the Infernational Latitude Service (ILS) in1899. The
ILS uses five stations located at nearly the same latitude (38° 8’ N) allow-
ing them to obsexve the same stars, thus eliminating the effects of certain
systematic errors in the star catalogs [Muelier, 1969, p. 81].

Lambert [1922] was the first to report a definite polar drift derived
from ILS data. This initial estimate marks the beginning of an international
campaign aimed at detecting the reality of a secular displaéement of the pole.

Table 1.2, adapted from [Poma and Proverbio, 1976], presents various
rates and directions of the secular drift of the mean pole based on ILS ob-

servations.
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A
Table 1.2 _“_
Values of the Secular Motion and Direction of the Mean Pole :
Determined by Different Authors Based on ILS Latitude Observations* '
Author Year Apgular Direction Period of ’w—_
_ Velocity {Longitude W) Chservations
Lambert, W,D. - 1922 0“.0066/yr 83° 1900-1918
Kimura, H. 1924 58 67  1900-192¢ | ______
Wanach, B. 1927 47 42 1900-1325 '
Wanach, B. and Mahnkopf, N. 1932 63 84 1900-1911 ,
Wanach, B. and Mahnkopf, N. 1932 51 62 1900-1923 | L
o Hattori, T. 1947 45 73 1900-1939 '
Hattori, T. 1959 359 65.2 19001947
Markowitz, W. 1960 - 32 60 1900-1959 o
Yumi, S. and Wako, Y. | 1966 269 72.9 1933-1966 T
Stoyko, A. 1967 32 69.8 1890-1966
Proverbio, E. et al. ~lem 294 65.6. 1900-1962
~ Proverbio, E. etal. 1972 217 60.7 1900-1962 T
Proverbio, E. and Quesada, V. 1973 307 69.6 1900-1969
*From [Poma and Proverbio, 1976] | o

e e e et 1ttt it i3 47 2 22 A S bt A 1 Atk A e et 11 3 . . ~

SR St o 3t b P T = L A - . P : . -
. y y om0 et s it Aty St At S Sk Bk et -t norh e r e - . btk s b ey D ot £ ks et et N L e et berde e . T - T




3 .
e e i hi

i

After reviewing all the available polar motion data, Sekiguchi [1954]
showed for the first time that besides a progressive drift of the pole, some
random digcontinuities were also present. In 1960 when the secular motion
of the barycenter seemed to be well confirmed, an empirically derived li-
brational componenf (about a 24-year period) was reported by Markovitz
[1960]. |

The ILS was reorganized in 1962 into the International Polar Motion
Service (IPMS). Since then it provides the fundamental pole path derived
from the five initial stations, and alsc publishes a pole path based on varia-
tions of latitude received from about 40 other cooperating stations (see
Table 4.10)that observe different stars [Yumi, 1975].

Since 1955 another service, the Bureau International de 1'Heure (BIH)
has also reduced latitude observations. Since 1967 measurements of time
and latitude from about 50 observatories have been used simultaneously for
computing the coordinates of the pole, while previously only latitude deter-
minatiohs were utilized. Unlike the IPMS, the BIH deals with problems con~
cerning the preservation of its newly-defined system (1968 BIH system)},
therefore providing the possibility of adding or cancelling cooperating obser-
vatories [Guinot et al., 1970]. |

A recent study by’ [Poma and Proverbio, 1976] shows unquestionably
that the secular drift of the barycenter, as deduced from BIH polar coordi~
nates, corresponds completely to that obtained with IPMS data, corroborat-
ing the reality of a secular motion of the mean pole. However, as mentioned
above, because of crustal motions, etc., the observed secular drift of the

pole may not represent a true polar drift.

1.3 Geophysical Theories

The intuitive agsertion that changes in the earth's mass distribution

may produce displacements in the direction of the earth's principal axes was

6
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originally formulated analytically by Darwin [1877]. The failure to detect
any sensible polar shift through astronomical observations diminished the
interest in thé subject until 1922, when the first estimates of secular drift
of the mean pole were reported.

Later, around 1950, the question was very much reopened after devel~

opments in paleomagnetism suggested that large-scale displacements of -

the rotation pole had occurred. Extensive material has been published show-
ing different pole positions according to the location of the magnetic rock
specimens. A recent investipation suggests that the polar wander path as
derived from paleomagnetic data reflects mainly continental motions and

not true polar shift, which remains within 4° in 55 m.y. [Jurdy and Van

der Voo, 1974]. '

The first modern considerations to explain a possible drift of the
pole are due to Gold [1955], who following Darwin's reasoning, postulates
the great importance of mass redistributions in the changes of the earth |
pole of figure. ‘ '

Burgers [1955] in his analytical treatment, confirmed Gold's conclu-
sions, primarily that agsymmetric contributions to the moments and products
of inertia of the earth are the main motive for polar wandering. i

Several papers including [Pekeris, 1935] and [Runcorn, 1962] have
suggested mantle convection as a possible cause for polar wandering.

Munk and MacDonald [1960] extensively reviewed the pros and cons
of polar wandering, using different theoretical models. After claiming that
from examination of various possible excitations of polar wandering it ap-
pearsAthat the distribution of continents and oceans exceeds other possible
causes by a factor of 1,000, their final conclusions recognize the complex-
ity of the problém (polar wandering), stating that it remains unsolved.

New support to the theory that inertia changes in the earth may pro-

duce large~gcale polar wandering was introduced in the often-quoted paper
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by Goldreich and Toomre [1969].
Takeuchi and Sugi {1972], using a crude calculation based on Darwin's

equations (see section 4.5), concluded that mantle convection may cause

secular changes in the earth products of inertia z;,nd consequently polar dig—

placement. The direction of wandering calculated is about 90° W but it

rate is about three times as large as the aglronomically observed value. ,
While this work was in progress [Liu et al., 1974], using Darwin's

approach, obtained changes in the products of inertia of the earth due to

new creation of lithospheric material and found a secular shift of the pole

toward the direction 67° W although only 10% of the astronomically observed

rate.

Finally [Pan, 19751 speculates that polar wandering is dynamically
linked with the secular tectonic movements in the earth's upper layers.
Thus, as can be seen, the majority of authors tends fo agree with

one hypothesis: changes in the inertia tensor of the earth may produce secu-

T

lar motion of the pole on a short term basis and polar wandering, if large

redistribution of mass=s oceurs.

-

1.4  Scope of the Investigation

The main objective of the present study is o caleulate the effect of

st fo s o o 2

crustal mass displacements on the séeular motion of the earth's pole within

the past 70 years.
The differential coniributions to the earth tensor of ineriia from

T ——

differential tectonic plate rotations are evaluaied to verify the geophysical

Laz—.-:ntmn._m.-.my- ot B LIV o e et ST A A T g o cope o

theories.
Borrowing the following quotation from dJeffreys [1974],

-

"A theory consists of three parts:
(1) 2 hypothesis p is set up for consideration;
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(2) the consequences of p are worked out, as for example, d1,49z...
(8) finally, ¢1,qs... are compared directly with observations.

Part (2) is generally mathematical; part (3) may involve considerable
statisties.

I all 91,¢s... are found to agree with observations, we may say
that p is strongly confirmed. I some agree but existing observa-
tions do not test the others, there is some confirmation, but less
strong. If even one is definitely confradicted by observation, p

must be either rejected or modified".

This investigation is eoncerned primarily with point (2). The hypo-
thesis considered is the influence that tectonie plate motions may have on
the true or apparent secular motion ol the pole.

At this point one should consider that the astronomical observations
cover an interval of time of less than a century, while the absolute plate

velocity models used in this investigation have implicit longer-term rates.

Thus the observations essentially reflect possible current changes of the mean

pole, while the geophysical plate models involve velocity rates given for
one year but obtained from data covering a geological time span.

The following chapter studies some basic geodynamic problems after
reviewing the rigid earth case. The necessary theory for evaluating the
differential contributions to the earth tensor of inertia due to differential
mass digplacements is introduced. A compleie formulation for transform-
ing tensors of inertia is included in Appendix 1B, where a novel approach for
matirix diagonalization is presented. Contrary to the usual procedures, the
orthogonal matrix of the transformation is obtained first, from which the
eigenvalues are easily computed. Other derivations relevant to this as well
as the other chapters are given in the different appendices in a convenient
unified matrix notation.

The third chapter describes the various modesls adopted in the inves-

tigation. These include a crustal model based on the theory of isogiatic
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compensation, plus the assumed break-up of tectonic plates and their abso-
lute velocities with respect to the underlying mantle, | | _
: Chapter 4 is the presenfation of the numerical experiments and the

results obtamed The effect on the pole dzsplacement of changes in 1nert1a.

or pos31b1e statmn dr1ftmg 1s a.nalyzed A R
The last chapte:r contains the’ summary of the mvestlgatlon and the -

conclusions reached,
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2  GEODYNAMICS

The study of the rotation of the earth about its center of mass has
constituted a fundamental problem in asironomy for centuries. Recent im- |
provements in the theories of earth mechanics and the development of instru-
ments and new ohserving techniques have forced the inclusion of the topic
in the domains of geophysies.

Unfortunately the subject matter is greatly complieated by the hei-
erogeneity and deformability of our planet, plus the action ol changing forces
mainly due to the attraction of other bodies in the solar system.

The effect on the rotational dynamics ol the earth of such varied
phenomena. as winds and moving air masses; atmospheric, oceanic and bod-
ily tides; sea level changes and tectonic motions; rigidity, elastieity or
plasticity of the earth mantle, the nature of its core and their interactions,
are not yet fully undersiood. The fact is, earth dynamics remains a challenpg-
ing area for investigation proved by the intensive world-wide theoretical and
applied research efforts devoted to the subject.

This chapter will present alternatives for formulating the general
Lagrange-Liouville equations after congideration of specific geodynamic

hypotheses. Some known kinematical and dynamical postulates will be re-

- viewed for use in subsequent chapters.

For its simplicity and great didactic importance, the ideal case of
rigid earth will be freated first. Besides the necessary formulation, this

should provide a conceptual guidarice for understanding ulterior developments,

11
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2.1 Preliminary Concepis and Nofation

To facilitate writing mathematical expressions, a simplified matrix
notation will be used throughout this work. In this way the explicit represen—
tation of all elements in the equations is avoided.

The benefits of matrix caleulus over vector or tensor methods are
obvious in a computationally—oriented scientific community. The resulting
formulas can be programmed immediately, taking advantage of matrix alge-
bra and the subroutines available in most computer centers.

Unless otherwise stated, the following notation will he uged in the

present and remaining chapters:

2.1.1 Coordinate Systems
Right-handed rectangular coordinate systems will be represented in

general by the convention
(%1,Xa2,%Xa) = (X) (2.1-1)

with the implied origin denoted by Ox. In dynamics, when the system has
the center of mass (CM) of a body as its origin, it will be called a "central

system' and the following notation applies

(Xo1 s Xpz »Xo3) = (Xp)
2.1.2 Vectors

In the treatment of vectors, several approaches are possible. In

12
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this study vectors referred to an (x) coordinate system will be presenied

by column matrices denoted as

23
{al, = {a, (2. 1-2)

&g | x

A vector of this type is called a column vector and defines a point in the
E® Euclidean space which can be specified by three numbers a, (i = 1,2,3)
expressing the coordinates along the Cartesian frame (x).

To conform with matrix multiplication rulés, sometimes the compou-

ents of the same vector {al, will be arranged in horizontal array
fali={as a; aak 2. 1-3)

and termed row vector.
One~dimensional vectors are called scalars.
In cases where the coordinate system used is clear by the context,

the subindex x in the vectors will be omitted.

2.1.3 Ma.tricés

In generala 3 X 3 real matrix will be denoted symbolically by [ M].
Nevertheless throughout the text some well-known types of matrices are wril-
ten without the brackets. TFor example, this is the case of the rotation malrix
R between two Cartesian systems of coordinates.

The following special types of matrix notations are introduced and
subsequently used:

a) Skew-symmetric (anti-symmetric)

To every vector {al], it is possible to associate a skew-symmetric

mairix denoted by

13
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[al: = | a3 0 -8y (2.1-4)
- =8 0 %
where clearly:
[alx = -[alx (2.1-5)

The mairix in (2.1-4) is also referred to in mathematical literature ag "axial
vector' or '"'pseudovector'. Anti-symmetric transformations are reviewed
in Appendix A.

b) Identily matrix

The 8 X 3 unit matrix will always be denoted by [1].

c) Symmetrie

Such matrices usually will be denoted by the upper triangular elements
only, and an "s" in the lower left of the mairix.

d) Diagonal

The symbolic notation ["MM.] will apply to diagonal matrices excluding

the unit matrix.
2.1.4 The Tensor-Mairix Concept

In general, an operator L) , such that

()
(%) > (x') (2. 1-6)

is called linear if Vv{x}, {y} € (x) andany real number k, the following

two properties are satisfied,

L) (kx}=%kL) {x]} (2. 1-7)
and

L& {x+y} = L0 {x}+ 1y}  @2.1-8)

14




A linear operator L) (L(®) : gcalar) is called a tensor of order
(rank) r if

vrzl and V {x}

the application L ¢*? {x} is a tensor of rank r - 1.

A consequence of the above definition is that

(i} Any vector is a tensor of order 1, since when applied to other
vectors it gives a scalar, i.e.,

{x}" [y} = scalar (order = 0) == [x} is a tensor of order 1 .

(ii) Matrices are tensors of order 2, that is,

[M] {x} =veetor (order = 1) ==- [M] is a tensor ol order 2.

Accordingly, 3 X 3 matrices obtained through the components of any
vector {x} such as {x} {x}" and [x][x]" are tensors of second order.
The term "dyadic, ' infrequently used today, occasionally is mentioned synon-
imously with the {x}{x}’ tensor.

In general the number of components in a tensor of order r and dimen-

sion n is given by n*. This study will be limited to tensors of r <2 and n= 3.

At this point one should notice the difference between rank of a tensor
and rank of a matrix (Rank [ M ] = the number of linearly independent columns
of [M]. Obviously 1< Rank [M] < 3).

As a general rule, the algebra that has been developed for matrices
may be used for tensors as well. In particular, tensors of sccond order,
like matrices, may be diaponal, symmetrie, anti-symmetric, orthogonal, ete.

TFinally, the process by which from a tensor of order r 2, oiher
tensors of order r - 2 are derived, is known as "coniraction" of a tensor.

The contraction of a tensor of order 2 iz a scalar equivalent to the trace of

its matrix.

gy PP

My 2

e emmer

LA

o a e e e e it £5irern e .

B PP

o e 3 ks 4

o o b e st




2.2 Thertia Tensors

There is little agreement in physical and mathematical literature
about what is referred to as the tensor of inertia. Therefore, in order

to avoid confusion, the following definitions and notations will be used:
2.2.1  Associate Tensor of Inertia (Associate mertia Matrix)

The associate tensor of inertia of a body with respect to a gystem

(x) with originOx is defined by

BrRE X Xz ~X1Xs A -F -E
1 =f[_:_i_][§]'rdm = H+xa  -XpXs |dm = B -D
¥ s x%-x% 3 C

) | (2.2-1)

where A, B and C are referred to as the "moments of inertia™ of the body
with respect to the % , x; and Xz axes respectively, and D, E and F are
called "products of inertia" with regard to the axes %, & Xz, %3 & X and

% & %, respectively. The set of moments and products of inertia are known
as the six constants of the body with respect to the {x} system.

Congidering {2.1-5) one may write:
[1x1[x]" 1" = [xlx]" =[x]"[x]=-[x}x]=-[x]? (2.2-2)

Thus the associate inertia tensor is clearly symmetric.
By an orthogonal transformation (which preserves the rectangular
Cartesian character of the coordinates), the matrix [I] may be reduced to

the diagonal form

16
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A, 0 0
Md = B, 0 (2.2-3)
s Cp

Then the values Ay, By, C, are called the "principal moments of inertia"
(with respect to the reference point Ox=0x;) and the (x;) axes of the trans-
formed coordinate system are called the '"principal axes of inertia®.

The tensor of inertia referred to a {x,) sSystem with origin at the
CM will be called "central tensor of inertia'. If the ceniral tensor is prin-
cipal (i.e., diagonal) its associate system is called ""eentral principal axes"
or sometimes ''axes of figure" of the body. They will be represéated by
the notation

(Xop1s Xopas Xopa) = (Xop)
Observe that according to the above definitions the principal axes of

inertia of a body are not necessarily central.
2.2.2 The Tensor of Inertia (Imertia Matrix)

The tensor of inertia of a body with respect to a system (x) with

origin Ox is defined as

2 mx X
[I] = f{X}{X}Tdm = X XaXa | dm
" s 5 (2. 2-4)
T Iy, I, i) I, F E _l
= T, Uas| = s D |
E 113% 3 ]Ia;sJ

where L1y, Mgy, Haa are roferred to as ithe moments of inertia with regard
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to the planes x; = 0, x3 = 0 and xz = 0 respectively, and D, E and F the
products of inertia with respect to planes X =0 & %2 =0, xy =0 & x5 == 0
andx; =0 & x5 =0.
The symmeiry of [ I] follows immediately from the matrix equation
[}z = (x}Hx)
Finally the moment of inertia with respect to the origin of the coordi-
nate system is given by the contraction of the tensor [I ] or

tr[I{]=f{x}T{x}dm = f(x§+ x4+ %% )dm (2. 2-5)
M

M
In Appendix B the reader may consult the different transformations

between the tensors [I] and [ ] as well as the translation and rotational

effects on the tensors of inertia.

2.3 Rigid Earth Case

Assumption 1: The earth is rigid.

Assumption 2: The central principal axes of the rigid earth (xoy)

are taken as system of reference. This system is body-fixed but moves with -

the earth in space. Under the above two hypotheses, the Lagrange-Liouville
equations given in Appendix D by the general expression (D.2-12) will reduce
to the well-known Euler's dynamical equations.

The following simplifications dre a consedquence of the two assump-

tions established:

[Io] = [0]
[ATI] = [0]
A1) Rigid earth == { {5w} = [0}
(b} = {o}== {n} = {0}
{L;} = {o}

A 2) Reference system: (xgp,) == Dy =By = Fo=0=[1] — {‘fDJ
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Hence, equation (D.2-12) reduces to
{1} = rlol{w) + [w]Me]{w] (2.3-1)

After the matrix multiplications are performed, the above equation may be

explicitly written as

L, = AW, - (B-C)WzWy (2. 3-2a)
Ly = Bw, - (C-A)wgty (2. 3~2b)
Ls = CWgs - (A-B)w, wg (2. 3-2¢)

wheire all the vector components and the moments of inertia clearly refer to

the selected reference system (Xop)-
2.8.1  Point of View from the Earth Surface

A variant of equations (2.3-2), inferesting from the point of view of
an observer on the earth, is obtained under the following assumption:

Assumption 3: The body torgues acting on the earth are zero. ‘

The solution of the differential equations (2.3-2) when {L} = {0]
is well documented in the classic works__c_)n dynamics (FFrench literature
comiudnly uses the notation p - w3, d Wy andr - Wa).

An analytic solution of (2.3-2) under the constraint imposed by the
third assumption is possible. The obtained values of {w} ave expressions
containing Jacobi's elliptic functions. TFor a detailed discussion and exfen-
sive bibliography on the subject, consult {Leimanis, 1965].

Nevertheless, similar final conclusions may be derived. from the
simplified case when two principal moments of inertia are equal. This is
a rather good approximation since the carth is nearly axially symmetric.
Thus,

Assumption 4: A = B.

v
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The above assumption implies that all the lines in the principal equa-
torial plane (plane through the CM normal to the axis of figure, also referred
to ag "dynamical' equatorial plane) are prineipal. Therefore the first two
axes of the reference system are not uniquely defined. In the analysis that
follows the original Cartesian frame (Xo,) Will be kept as reference system.

That is, the axes of reference are the principal axes of the rigid earth cen~

‘tral momental ellipsoid satisfying the condition A <B < C.

Thus finally, equations (2.3-2), after assumptions 3 and 4 are imple-

mented, become

Wy +nwWs = 0 (2. 3-32)
Wa -nWy = 0 (2. 3-3b)
Ws = 0 (2. 3-3¢)

where the following substitution has been introduced

n = CAA W \ (2.3-4)
Fguation {2.3-3¢) immediately gives

wa(t) =Wz (0) =ws = constant (2. 3-5)
Changing to complex variable notation, and defining

We = Wy +iWs (2. 3-6)

the remaining two differential equations (2.3-3a & b) can be combined in a

single differenﬁal expression in W,
W, - inwe =0 ‘ (2. 3-7)
Equation (2.3-7) has the exponential solution
i(nt+
wolt) = celBFF) (2. 3-8)
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where « and 8 are two constants of integration.

Equation (2.3-8) yields the known periodic solutions:

) () ocos(nt -+ ) . {2.3-9a)

wa (£ asin{nt+ ) (2.3-9b)

The earth rate of spin is the magnitude of the angular velocity vector {w].

| w] = ‘J i ultwd = ‘J ¢®+ wi - constant (2. 3-10)

From (2.3-6) and (2. 3-9) one may conclude that the vector w, describes

a circle of radius ¢ in the principal equatorial plane while ws remains con~
stant. Hence {w] precesses uniformly in the body frame about the symmetry
axis with apgular velocity n (see Figs. 2.1 and 2.2). Once the differential
equations are solved, other important quantities related to the rotation vec-

tor, such as its direction cosines, can be obiained immediately {sece Fig.2.1}).

wi . . : . &
mi T —— (1 = 1, 2, d) (2. 3_11)
| w

The coordinates of the instantaneous rotation axis P, in a plane parallel
to the dynamical equator through the north "inertia pole" of the earth (inertia
pole = point of intersection of the earth with its axis of figure), and referred
to the axes of reference xp,1 and x4 are

W,
Xopr = — I'p {2.3-12a)

g
Wa

XOPB = — rp (2- 3"‘12b)
g

where
ry ¥ semiminor earth axis

The rate at which the angulaxr velocity veeior (instantaneous spin axis) turns

about ive xg,5 axis was given by
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” T =Te

XopL (A)

=Y
Yy =

== Xpp (B)

Xoga= 0 =1, =principal equatorial plane

Fig. 2.1. Instantaneous Angular Velocity Vector {w} in
the Ceniral Principal Frame (Xqp) :

CIo

polhode =wobble

fie plane

Xﬂpl

Fig. 2.2. Rigid Earth Wobble and Pole Coordinates i
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The moments of inertia of the earth are approximately related by

9;—‘“‘ ~ 0.0033 (2. 3-13)

The component ws of the angular velocity is for all practical purposes equal
to} w] (one rotation per day); thus finally,
n =~ 0.0038 rotations per day

Therefore, the period of {w} around the rigid earth axis of figure is
T = I}las 305 sidereal days | (2. 3-14)

This is generally termed the Eulerian period. In conclusion the following
dynamical postulate may be stated when assumptions 1 to 4 arc flfilled:
Postulate 1: An observer at rest on the earth will sce that the instan-
taneous rotation axis intersects its surface tracing out a circle (polhode)
around the reference pole (mean pole : pole of figure) and moving in a retro-
grade direction with a period of about 305 sidereal days.
The polhode may also be referred to as wobble or free wobble.
As a corollary, one has: The mean position (center} of the wobble
described by the spin axis coinecides rigorously with the pole of figure.
Sometimes the name "free nutation" is applied to this motion vn
the earth of the instantaneous angular velocity veetor. This denomination
is nevertheless unfortunate, as rightly pointed out by Rochester et al.,
[1974] and should be applied only in connection with a space-fixed system,
as ig implied by the term ''nutation®.
The fact that the earth is not rigid introduces further difficulties

discussed later in this chapter.
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2.3.2  Point of View from Space |

Up to now the described motion of the instantaneous spin axis of the . ,

1

rigid earth conforms with an observer at rest in the rotating body—fixed !
reference frame. b

The situation changes if one considers an external observer related .g
to an inertial (space-fixed) system. !
As is known (see section D. 1) an immediate consequence of the assump-
tion {L} = {0} is that the total angular momentum vecior {H]} is constant i
in the inertial frame. Hence the direction of {H} will remain truly fixed
in space and for this reason is also called the "invariable axis™. The plane
through the earth CM normal to {H} is termed the "invariable plane'.
| The relation between {H} and the earth angular rotation vector {w} B
! (the components of this vector are known for any particular instant at which 1
| the differential equations of motion are solved) is given by equation (D.1-22),
namely:
{H} = [Tol{w}+ {n] (2.3-18)

Thus the direction cosines of the vector {H} with respect to the earth-fixed

T

system are immediately available:

~ Hi N :
hy = — i=1,2,3) (2.3-16) oo
| E] |

After consideration of assumptions 1 and 2 equation (2.3-15) reduces

| to |

| {H} = To3{w} (2.3-17) i

l or ,

H, = Aw (2.3-18a) L

! §
H; = Bup (2. 3-18h)
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H; = Cws (2.3-18¢)

and

H? = AP0+ B2ul+ CPuwd (2.3-18d)
Denoting by (0,0,1) the components of a unit vector along the earth axis
of figure, the condition of coplanarity between this principal line and the
vectors {w] and {H} is
0 0 L

V] wg wa = 0 (2- 3"’19)

Aw, Bw, Cg
or

By s - Ay = 0 (2. 3-20)

The above equation implies that when the fourth assumption (A = B) is satis-

fied, the three axes (rotation, figure and angular momentum) are in the same

plane at any instant. Since {H] is constant, the plane rotates around the
invariable axis.
The axial vector representing the angular momentum forms an angle
with the earth axis of figure defined by (see Figs. 2.3 and 2.4)
—_—— (2.3-21)
Hs

where the components of {H} in general may be computed from equation

tan@ =

(2.3-15).

If rigidity and A = B are assumed, one has

\/Af‘ w? + wd Aa
@itwa) . = (2. 3-22)

= T constant
Cws Cws

tanf =

Hence the following postulate can be stated:

Postulate 2: The axis of figure describes & cone in space whose axis

is the invarigble tine ({11]) and whose semiangle s 6.
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The apgle £ between the instantaneous spin axis and the earth axis

if figure is given by the relation

Ny
Wit s (2.3-23) ;

and under the four mentioned assumptions, it follows

tan § = = constant (2.3-24)

Elr

Thus the instantaneous rotation axis forms a cone (body cone) of
constant angle £ with the axis of figure. This was also implied previously
by eguations (2. 3-5) and (2. 3-9) and was summarized in Postulate 1. )

As a consequence, one has the following corollary: The invariable :
line describes a cone in the body whose axis is the axis of figure and whose
semiangle is 8.

From (2.3-22) and (2.3-24) it is obvious that for a rigid earth and
A tan £ = 9tzme

A
The above implies that the displacement of the pole of figure from the pole
of rotation is greater than its displacement from the pole of angular momentum
by a factor g ~ 1.00327.
Finally, the angle between the angular momentum vector and the

instantaneous rotation axis may be computed through the egquation

(B} {w} ,

cos (L HOP)) = (2. 3-25)
((HY (H)Y? (o) {wh¥?
In the particular case of rigidity and A= B
AP+ Cu?
cos (L HOP,) = = constant (2. 3-26)

VAZA G A e+ o
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Postulate 3: The instantaneous axis describes a cone in space {space
cone) whose axis is the fixed angular momentum axis and whose semiangle
is £ - 0.

This motion of the instantaneous earth rotation axis around the invar-
iable axis, even in the absence of torques, has been called "sway'" by Munk
and MacDonald [1960, p. 48], but as opporfunely mentioned [Rochester et
al., 1975] the name "free nutation' is mor.* appropriate.

Clearly f A=B=C,

cos (L HOP;) = 1 == L HOP, = 0
This implies the vectors {H} and {w} have the same direction.

Therefore, the instantaneous rotation axis and the total angular mo-
mentum axes are coincident only when A = B = C. (The momental ellipsoid
is a sphere and every diameter is a principal axis).

Moreover, one has

A=B=C== n=90
Thus the spin axis is fixed in space and in the body.

Equations similar to (2. 3-25) may be applied to obtain the cosine of

the angles 8 and {

Cws

cos B = - (2. 3-27a)

VA% 1 CPu
Wa

cos f = ———— (2. 3-27h)

Vol + 0l
Therefore, recalling (2.3-22) and (2. 3-24)

sinf = Ao 2. 3-28a)
VAZaP + CPuld

Sinf = ——oe 2. 3-28b)
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Thus, finally one can write (2.3-26) as

W3 Cws o Ao
cos (L HOP,) = +
VeP+ud A AP+ CPud VaPre? | ATeP+ P
= goglcos B+ sinsinf = cos(f - 6) (2.3-29)
and
LHOP, =¢-6 (2. 3-30)
Similarly,

sin (£ HOP,) sin(f - 8) = sinfcos B - cos{sinb
Cuws o C-A C-A
= = cosfsinl — (2.3-31)

VA%ePr c% oP+uE  C C

When the angles are small, as in this case,
sin{l HOR) ~ LHOE , cosf~1 , sinl ~ L

From astronomic observations,

H = 9—"5A— = 0.003272 = dynamical ellipticity (2. 3-32)
and

£ <08 ~ 9.5m (2.5-38)
Thus

LHOP, ~ 07,00098 ~ 3.108 cm (2. 3-34)

Let an inertial system (X } be introduced with origin OX = CM and the third
axis in the direction of the fixed angular momentum vector {H}. This sys-
tem can be related to the earth—-fixed central principal axes through the

Euler angles ¢, 8,  (see Fig. 2.3) through the transformation
{X} = R {%0,} (2.3-35)
where the rotation matrix IR is given by

R = Ra(-0) Ry (-~ 8) Ry (~1) (2. 3-36)
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or
{x0p} = RT{X] (2. 3-37)

where
RT = Ra(h) Ry (B) Rs )

Tn this case, the Euler kinematic equations are given by {(see Appendix C)

W, sinBsin ¥ cosy) O ®
Wy } = | sinBeosy -siny 0 5 (2.3-38)
Wy cosB 0 1 11)

Clearly, the values of the angular velocities cg), 9 and z,l') will give the rate
of precession, nutation and spin ol the earth-fixed system (xg, ) with respect
to the inertial frame (X).

Applying the above to the ideal case of rigidity and A = B, it follows

immediately from (2.3-22) that 6=10.

Substituting the values of (W, ,wy, wWa) from (2.3-5) and (2.3-9) in

(2‘3_38)9
©sinBsing = asin(nt B) (2. 3-392)
c,c.)sinecosz,b = acos(nt+B) (2. 3-39Db)
b+ ©cosh = wa 2. 3-89¢)

From the first two equations it follows immediately that

o8 = o == @sinh = ka (2. 3-40)
Substituting the above in (2. 3-3%a) one has

b = nt+f == P = n (the rate of spin) (2. 3-41)
where n is given hy (2.3-4).

Replacing (2.3-41) in (2. 3-39¢)

. C-A C
weos8 = wy-n CUH(].—T) Kw.q (2. 3~42)
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w . (n)= |
XOIBE(C) AXS:H ¥ [L} {O} ] :
Py ]

/ free nutation (sway)=herpolode

> =
V‘ space cone :
M ;

wobble =polhode —=

Xo = (B)

—F % PA .

b £-6

body cone dynamical (principal) .

eguatorial plane
Invariahle %2
plane Xop = (A)
X

Fig. 2.3. Euler's Angles between the Inertial (X)
and Central Principal (xp,)} Frames

H(Ty=Tz)
A { Tocoession {1} # {0)

Observatory (Tg)

C(Tz)

body cone (Ty) \ / -bedy cone (Ta)

Q
i

CM

¥ Observatory (Ty)

Fig. 2.4. Eaxth's Spatial Motion
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and therefore, using (2.3-40) and (2. 3-42)

02 = o2+ (g)e R A (2.3-43)
and
tan 8 = é £z constant
C Wy

as was found before in (2.3-22).

The result of equation (2.3-41) may be interpreted kinematically as
the rolling of the body cone on the fixed-space cone without slipping (sce Fig.
2.3) at a rate of spin n preeisely the same as found boelore for a)} when it
was referred to an carth-fixed frame [ Poingot, 1851].

In order o visualize the complex bebavior of the motion of the earth
even under the simple assumption of rigidity, the description of IMig. 2.4
may be illustrative.

The position of the body cone has been drawn af two different epochs

Ty (initial epoch)
Tg = Ty + g (T~ 305 days)
The invariable axis remains fixed in space at all times when {L} = {0].

Attached to the bedy cone is represented an ideal observatory, the
position of which with respect to the rigid earth will not change from epochs
Ty to Tz. Nevertheless, it will wobble in space as the earth does. (Notice
that for the purpose of clarity the figure is not drawn to scale ).

The graph shows elearly the variation of observed instantaneous co-
latitude at epochs Ty and T,, while the reduced colatitude (referred to the
axis of figure or mean pole) remains constant. Thus knowing the position
of the instantaneous rotation axis with respect to the axis of figur.: (polar
motion), one may obtain the observatory reduced colatitude. (In practice
a conventional "geographie' reference system is used, although the same
conclusions apply. [n this case reduced colatitude will apply to the thivd

axis selected [rame).
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Note that Wl}en two observatories are 180° apart, the ohserved cola~

titude variations should be opposite in phase, that is, at the sar}.xe epoch
Ty, maximum colafitude in one observaitory will correspond fo minimum
colatit-&de in the other. As it furned out, this was the way polar motion
was corroborated in 1851 after observations in Hawaii and Berlin were pro-
cessed, For a complete account of the intricate hisiory of the discovery of
latitude variations, the review in [Lambert et al., 1931] is recommended.
The methods currently used for cbiaining latitude are properly explained in

[Mueller, 1969] and [Melchior, 1957] where many other references on the

subject are available. For specific data reduction procedures at the appro~

priate international organizations, consult the annual reports of the BIH
and of the IPMS,
Up to now the condition {1} = {0} was enforced. I is quite well

known that this is not the case and that the action of external body torgues

(primarily due to the gravitational effects of the sun, moon and planets) cause

motions of the invariable axis in the inertial system. Consequently the vec-

tor Ewill precess and nutate in space. Other periodic contributions to nu-
tation (i.e., annual, semiannual) are possible because the external body
forces acting on the earth depend on the ephemeris of the celestial bodies
where clearly several periodicities are present.

No further considerations will be devoted fo the case when the body
torques are not zero. The interested reader may consult classical works

like [Tisserand, 1870] or the modern treatment by Woolard [1953].

2.4 Non-Rigid Earth

Although in the previous section the hypothesis that the earth is a
rigid body was considered, some given functional relations using (H} or

{w] are general and may be applicable to any eircumsiance in which these
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vectors are known.

Under the agsumption of absolyte rigidity, the relative nositions of
all mass particles are congtant, so the extérna.l form as well as the value
of the central {principal) tensor of inertia is fixed and independent of time.

It has become increasingly clear that the assumption of rigidity for
the earth is incorrect and a better modeling should be investigated. Because
the mass distribution of our planet is subject to variations. with time (tidal
deformation, crustal motions, ete.) producing changes in iis central inertia
tensor, the rotational dynamiecs of the earth is better studied by the general
Lagrange—Liouville equations as given by (D.2-9), (D.2-12) or (D.2-15),
depending on the reference system adopted. In the case of 2 deformable body,
the total action of the torques is expressed by the sum {L}+ {L,] where
{L} are the body torques and {L .} the surface torques (see Appendix D).

Theoretically an infinite number of reference systems are possible,
although it is convenient to select the one best suited to its specific purpcse
and which ig practically feasible.

Previously a theoretical reference system was selected, the one de-
fined by the ceniral principal axes of the rigid earth. Considering that this
frame is not available through observation, a crust-fixed or "geographic"

system is generally adopted.

The present choice of this type of a terresirial system conventionallv
used by geophysisists, astronomers and geodesists, is defined as follows

(see Fig. 2.5):

. Origin: Close as posgible to the geocenter (center of mass of the earth in-

cluding the atmosphere).

xp axis: Directed toward the CIQ (Conventional Infernational Origin) aa
defined by the IPMS (International Polar Motion Service) and the
BI (Bureau International de "Heure). Some doubts about the deli-

nition of the CIO had been ralsed and other possible redelinitions
33
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mentioned [Melchior, 1975].

x; axis: Passes through the point of zero longitude as defined by the 1968
BIH system [Guinot et al., 1971].

X axis: Forms a right-handed coordinate system with the x; and x5 axes.

Clearly, for short periods of time (~ 1 year) the above conventional

system may be considered earth-fixed., I is known that rigorously this is

not the case, due primarily to crustal tectonic motions which produce system-

atic drifts of the observatories.

This system will be referred to as CIO terresirial system, or simply
"terrestrial system', In the geophysical literature the term "geographic
system" is customarily used.

A gecond two~dimensional frame often mentioned and rélated to the
CIO is the following: The axes are on a plane normal o the x; terresirial
axis at the point of intersection with the earth. They are parallel to the
%y and x, axes, but the following sign convention applies:

X=x =K
Y = ¥yp = -%
This frame will be termed "CIO polar system."

Once the basic reference system has been agreed upon, the mathe-
matical theory describing the orientation of the instantaneous rotation vector
of the earth in the "crust-fixed" frame, assuming that body and surface
torques are zero, is summarized by the following matrix differential equa—

tion (see equation D.3-13).

{0} = [Tol{w} + [To] few} + [wI[To1{w]} + [w]{n}+ {B} (2.4-1)
where

[w] = skew-gymmetric matrix of the earth rotation vector

[Io] = central earth tensor of inertia of second order
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Mean axis (1966.0-67.5) ) *s

Conventional
zero meridian

Greenwich

Greenwich = Xe
meridian
Conventional terresirial equator
Fig. 2.5. Conventional Terrestrial {Geographic) System
Y =Yp CIO
~ ()

Rigid earth /
constant wobble path
Ca(T)

Earthquake cecurred here
at epoch T,

H X'l ' X;l = X

Periodic variations due i
to earth lides

I'ig. 2.6, CIO Polar System
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{h}

relative angular momentum vector

Equation (2.4-1) can be solved for the general case of a deformable earth
by taking into consideration all the possible variations of [Io] and {h}.

For example, one may write

[To]=1I]e+ [ALlg+ [AI],+ [ATle+ [AT],+ [AI]p+ other effects (2.4-2)

where

[T1e = initial value of the earth tensor of inertia (independent of
time)

[AI]r = contribution to [I]e due to rotational deformation
[AI]l; = contribution to [1]g due to tidal deformation
[AIJ = contribution to [I]e due to major faulting (seismic effects)
[AT], = contribution to [1]; due to atmospheric air mass shifts
[AIl, = contribution to [I]e due to crustal mass displacements

or plate tectonics

By the same logic the different contributions to the initial relative angular

momentum of the earth can be given as
{h} = {hl; + fhlz + {h}; + [hl}; + {h}s + other effects (2.4-8)

The values of [1,] and {h]} thus depend on the particular geophysical models
adopted for describing the earth and its disturbing agents.

In effect, one may express
n
[AI], = 12-1{AI]H (2.4-4)

where n is the number of tectonic plates constituting the earth crust.

Likewise,
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k
[AT], = jzl [AT];, (2. 4-5)

where j = 1,2... k and refers to the moon, sun and planets producing tidal
deformation. _

When all the contributions to the initial values [I]¢ and {h}; are known
at some specified times, the differential equations (2.4~1) may be solved
numerically. To this date an analytical solution of such a complex equa-
tion seems an insurmountable task, although it is conceivable that in the
future it may be done by digital computers through symbolic math-Jogic pro-
grams. Nevertheless, numerical solutions of first-order differential equa-
tions are possible by using currently available tested subroutines, such as
the so called DVDQ~available step, variable order Adams integrator {Krogh,
19691.

Once the equations of motion have been integrated and the vector
{w} obtained at different time intervals, the coordinates of the pole at these

specific epochs may be computed by means of equations (2.3-12).
2.4.1  Inertia Tensor of a Deformable Earth

The contributions to the earth inertia tensor due o deformations
{tidal, rotational, etc.) are obtained through relations involving the external
potential of the deformed earth and the disturbing potential.

For example, explicit values for [AT]; were derived in [Groves,
1971} following the above mentioned standard approach. The final equations
involve the fluid Love number k, and the mass and positions (ephemeris)

of the external bodies exerting torques.

By the same procedure Munk and MacDonald [1960, p. 25] give

the corresponding expressions for [AT]g. Nevertheless, recently Rochester

and Smylie [1974] have questioned these results for the lirst time, based
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on the fact that the trace of the inertia tensor is not invariant for deformations
with spheroidal component of degree zero, as was assumed by Munk and Maao~
Donald. (This is not the case for tidal deformations produced by an external
body force derived from a potential that is a solid harmonic of degree 2).
According to [Rochester and Smylie, 1974] equation (5.2.4) in [Munk
and MacDonald, 1960] should be rewritten as (with the notation adopted here)

5
[ALLg = k—% [{w]{w}T - é (tr({w}{w}‘ ~ [AT aaol )) [1]] (2.4-6)

where to the first order of {fu}

18T = 4 [ pun ) (o a 2. 4-)
and Y

p:z(r) = density of the undeformed earth (function of the distance
to the CM)

{x} = position vector of any point P

{6u} = vector displacement at point P caused by the deformation

ko = Love's number of degree 2 describing the elastic yielding
of the earth to the second degree term in the centrifugal
force potential

G = gravitational constant

a, = earth semi-major axis

Similar expressions for [AI]; and [Al]; may be consulted in [Sdn-
chez, 1974] where a different approach through integration is also given.
Several models for the computation of the contribution to the moments
and products of inertia due fo earthquake faulting or slip displacements
are available in literature [Mansinha and Smylie, 1967], [Dahlen, 1973],
[Israel et al., 1973], but up to now only analytical solutions of the Lagrange-
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Liouville equations using the approximations established in [Munk and Mac-
Donald, 1960, p. 38] have been investigated.

Thus, the fact that the mass distribution of the earth is subject to
variations which are functions of time, produces changes in the earth iner-
tia tensor as expressed by equation (2.4-2). The nature of these changes
will depend on the earth model adopi:ed and its variations with time. Clearly
periodic changes in [I ]z may be caused by the effect of [ AT]; and [AT], ;
sudden variations, if any, will be due to thc effect of [AT .

Resulls reported in [Sinchez, 1974] show that the effect of the luni-
solar deformation on w has a maximum periodic variation in the wobble of

the order of 24 mm. The cifects ol the rotational deformations are impor-

tant only in the lengthening of the Kulerian period.

A widely debated point today is the question of possible excitation of
the earth rotation vector by earthquakes. This originated [rom the hypothe-
sis advanced by Mansinha and Smylie [1967] about the cumulative effects
of large earthquakes and their influence on the random excitation ol the

wobble. The resulting coniroversy has continued up to the present time with
no definitive results established as yet [Mueller, 1975]. Large-scale crugtal
motion that occurs with major seismic activify may abruptly change the
earth inertia tensor associated fo the reference system, and therefore con-
tribute to a sudden change in the earth rotation vector.

Schematically Tig. 2.6 shows the effect of lunisolar tides and sudden
mass shifts (earthquakes) on the wobble and mean pole, compared to a regu-
lar curve for the case of rigid carth.

The earth atmosphere can produce periodic contributions [AT],
to the initial tensor of inertia due to seasonal variations in the distribution

of air masses. This can be estimated from vbservations of pressure on the
ground. Munk and lHassan [1961] showed that the twelfth-month wobble is

excited atmospherically, most ol the vontribution coming lrom Asia, due to
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the high pressure over Siberia in winter. A more detailed discussion in
iWilson and Haubrich, 1976] leads to essentially the same conclusion. These
authors also indicate that contrary to previous beliefs, the motions of air and
water play an important role in maintaining the Chandler wobble. Winds
acting along the earth surface cause a change {h},s in the earth angular mo-
mentum, The semiannual and annual components in the spin rotation axis

of the earth are caused by winds, according to Munk and MacDonald [1960,'

p. 1311. The important finding by Lambeck and Cazenave [1973] was to
correlate the biennial component (in the rate of rotation) between atmospheric
zonal winds and the observed astronomiecal values originally reported

[Ijima and Okazaki, 1966]. However, today there is still no unanimous
agreement among the authors as to whether the biennial zonal winds are an
intermittent phenomenon or their period is 24 months, rather than 26 or

28 months. Hence a final conclusion cannot be drawn.

The wobble of the instantanecus rotation axis of a deformable earth,
after being affected by all the random geophysieal effects mentioned above,
departs from a perfecdt conic and is irregular and complex. Other related
phenomena, such as its excitation, damping or even its period, hive not yet
been fully studied and clarified.

For example, the rigid earth Eulerian period of about 305 sidereal
days is extended to what is known, after its discoverer, as the Chandlerian
period, which is of about 14 months [Chandler, 1892]. As early as 1892,
Newcomb showed that the lengthening of the Eulerian period is mainly due
to the yielding of the earth and oceans.

Chandler [1892] zlso discovered the twelve-month period, which is
due primarily to metereological effects, as was mentioned. The composi-
tion of these two periods (Chandler and annual) produces a beat effect of
about a six-year period.

Recently the question of the influence of the liguid core on a possible
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diurnal wobble has been reopened and theoretically analyzed. The reader
is advised to consult the papers [McClure, 1973], [Rochester et al.,
1974] or {Toomre, 1974] where a complete list of classgical works on the
subject is given.
Fig. 2.7 presents the polhode of the real earth as observed by the
IPMS during the period 1968.0-1974. 1. Also shown are the barycenters
(computed ceniers of the wobblq = poles of figure). The determination
of the barycenters is somewhat arbitrary, due to the complexity of the observed
wobble. These points will probably not coincide exactly with the axis of maxi-
mum moment of nertia of the earth al the particular epoch, although they
should be very close to it. Note that a manifest sccular motion of the bary-
center is present in the figure.
The secular motion of the mean pole { = barycenter), if any, will be
caused by secular contributions to the tensor of inertia. As mentioned in
the introduction of this work, one plausible cause, postulated by many au-
thors, is the effect on [I]; of differential mass displacements due to the
motion of different tectonic plates in which the earth crust is broken up.
This being the subject of this investigation, it will be studied at length in the
following sections and chapters. The next section presents the necessary
formulation for computing the values of the contributions, us used in this
study.
It should be emphasized here that the polhodes of the real earth as
observed by the stations of the international organizations, IPMS (with the
IL.S stations) and BIH, are not coincident, and systematic differences as large

as 0".03 are present.
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Fig, 2.7. Polar Orbit (from IPMS Latitude Observations) for 1962.0-
19'74.1. Near the Center of the Orhit the Barycenters at Epochs
1965.0...1971.0 Are Shown. From [Yumi, 1975].
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2.5 Total Coniribution [ AT] to the Tensor of hertia Due to _Mass Digplace-
ments

2.5.1  Differential Changes in [ 1] Due to Infinitesimal Changes
in the Cartesian Coordinates

By definition the value ol the inertia fensor [I] may be written in one

of the following lorms

1] = f[g:l[zfdm - f.ox{gn;grdv (2.5-1
M ¥

where the element ol volume is given by
dv = dX'l ng dX3 (2. 5_‘2)
and the density p, is assumed constant for each mass element but notl neces-

sarily cqual to the density in the neighboring elements,

Explicilly equation (2.5-1) may be writlten

. XrXs  XiXp  “XiXa
(11 = § o G+ x5  —XaXe | dv (2.5-3)
3 Xi‘*x‘;

v

The differential changes in [I] as a consequence of differential varia-
tions 6x, (i = 1,2,38) in the mass element Cartesian coordinates are (second

and higher order partials are neglected)

3
[AT] = 2 g-[;Il 6xy =[A1]8x +[ATz] 8% ' [Als]fxa (2.5-4)
1=1 1
where
U "‘.\'.-.] -\|
Il . - 9 <
a}{l [ A } 1] £y 2 X1 0 v
2){1
v
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and similar equations hold for the other coefficients.

Thus, finally

0 —Xa Xz 2X2 -X3 0
[ A I] = Py 2% 0 O0xy + 0 ~X3 GXz

g 2X1 . 2X2

v . S ]

— —
2Xa 0 =X,

+ 2%3 X | Oxz || dv

| ’

(2.5-5)

2.5.2 Differential Changes in [I] Due to Infinitesimal Changes in
the Spherical Coordinates

The earth being approximately a sphere, it will be more practiecal to
obtain the differential changes in [I] as a funciion of variations in latitude
&), colatitude 68 and radiug 6r, and at the same time to integrate in func-

tion of spherical coordinates.

The transformation between spherical and Cartesian coordinates is

given by the well-known matrix equation

Xy r sinBcos A
¥z ) = { rsinB sin A (2.5-6)
Xa r cosO

and the following linearized differential mapping applies between infinitegimal

changes in spherical and Cartesian coordinates [Soler, 1976]
X, 80, br)—S—> (5, , 0%z, 6%a) (2.5-T)

where the elements of the Jaccobhian matrix J are
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0Xs _ . on Xy _ . Xy _ . oo X
3 rsinfsin A = -Xo =9 reosBcos A= Xzco8 A 3T ginfBcos A -
Ap _ . 3 dXp _ N . 0o _ .oy . Xz
YUl rsinBeos A= x Y rcosfsin A= Xzsin A oy sinBsin ) =
BX;; . an . X3 | axs Xa
— —— E— -— ———— 8 _——
sy -0 56 - Tsin®= -2 ax % r
(2.5-8)
Thus
Bx1 = ~XzOA+ xgcos A 66+ 2-{—5 Gr (2. 5-9a)
O0xg = % BA+ XzasinA 60+ ?3 or (2. 5-9b)
X3 Ka
- - R 2.5-9¢
5){3 cOoS A 68 r ( 9 )
and substituting the above equations in (2.5~5) , fcllows
2% Xz - X2Xa
[ATll= § P ~2%) Xz -x3%s | OA
3 ]
v
— . 23 X . 5 xi i
2XzXaSINA — -661?% ~XoX3 COS A- X, XaSin A -x3} cosA— colsPL
) _qu_xa B _ XaXs
+ 2%; Xg COS A oo x3sin A o5 66
s 2% Xz COS A+ 2XgX%a SinA
I— X+ X5 ¥ Xz “XiX3
2 2
* X+ X5 “XpXg | O dv (2.5-10)
5 X+ Xg

I'rom the law of conservation of clements ol mass, it lollows

oo 2mn s Aasurmsdis

P T U A a

L e oo e aasl.



dm = p,dv = g )|J| dAadedr (2.5-11)

where |J | is the Jacobian of the transformation between spherical and Car-

tesian coordinates. It is known [Soler, 1976] that

|J] = ]H| = hyhyhy =r®sind ‘
Thus, replacing the values of (2.5-6) in (2.5-10) with the above con- :
siderations, finally one has an expression of the form ‘
[AT] = {AIl]6>\.+ [AIB]69+ [AT.]6x {2.5-12)
where ,
sBs2)  -sfe2 ) cOs A
iat,1= f o -s8s2) -cBe) |rsin®Adrd fdr
A (A Gy 1) .é
s 0 |
v (2.5-13) 1
-s26c®A  -sBefs2)  ~c2Be ) !
[AL] = -526°X  -c28s\ | r*sinfdAd6dr ’
3 s28 g
(2.5-14) 3
and 3
.
10PN ~Pfsach  -sBeel *
[AL,1j=2 ¥ p 1-s28s®) -sBefsh | rPsinBdAadBdr %
(s, 1) i
s 26 : .
v (2.5~15) |
In the above matrices, due to space limitations, the following notation equiva- ;
lences hold: :
!
5 =sin E
1
¢ = cos i
|
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Observe that as expected a rotation in A\ does not contribute any
differential change to the original moment of inertia about the x; axis.

When the above integrals are evaluated over the volume of the earth,
it is common to assume that the variation of density for neighboring "curvi-

linear mass elements" is only a function of the radius. Hence

= p(r
p(?\,ﬂ,r) p( )

2.5.3  Value of Trace [AT]

Eqguation (2.5-12) may be written

[AT] = [ATgy ]+ [ATge] (2.5-16)
where

[Alggs] =[AI)&]6>L+ [AI,166 (2.5-17)
is the contribution to the initial tensor of inertia [I]; due io differential

rotations §X and 66 while
[Alpp] = [AL] 6r (2. 5~18)

is the contribution due to exponsions or contractions, that is, radial variations.
It is known that {r [ I ] is invariant under rigid rotations of the refer-

ence sysiem (see seciion B.3 in Appendix B).

Thus, if
[I]l¢ = initial earth inertia tensor
and
[I1 = earth inertia tensor after rotations §) and &8
then
[I1 = [Ile + [ATge] (2.5-19)

Therefore, the following implications must hold asg i consequence of

the tensorial properties of [ 1]




tr{I]=tr[I]e => tr[ Alny] =0 => tr[AL1=tr[AT =0

A

The fulfillment of the above coaditions is immediately seen from equations
(2.5-13) and (2.5-14).

The situation is different with respect to the contribution due to radial
deformations as expressed by equation (2.5-18). In this case after considera-
tion of (2.5-15) and assuming that the density is only a function of r, one has

tr[ATae] =tr{ATL] 6r=4[p(r)r5r dv # 0 (2.5-21)

¥
which agrees with the previously given equation (2.4-7).

2.5.4 Inertia Tensor [I] in Spherical Coordinates

From equations (2.5-10) and (2.5-15) it immediately follows

[1] = 5[AL] (2.5-22)
Thus,
i-s28cos® N -s°Bs)ie) -sBeBe)
[I1= p(m ) 1-s?8s®A  -sBeBs A | risinfdadédr
Uy
s s26
v (2.5~23)

2.5.5  Value of Trace [I]

Using equations (2,5-21) and (2.5~22) it is possible to show that

(only radial density variations are assumed)
tr[I1 = A+B+C = zfp(r)radv (2.5-24)
v
But in the spherical case
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v = gﬂ'l‘s = dv = 4gr°dr
Thus
r, 1
tr[I] = Sw/p(r)r‘*dr = Sﬂrf—/p(r)r‘*dr (2.5-25)
0 0

2.5.6  Relative Angular Momentum {h}

By definition

{h}=f[ﬁ]{é]dm=fpx[£}{£}dv=/P(.\ 9 )[1{_]{;:}|J|d)\.dﬁdr
# v v aah

(2.5-26)
but
-xa;},g + xazza ~r?sin A6 - 1?8in6 cosBeos Xi
[x] {}.i} = X:al;ll - x1>.<3 = r? cos)\.é - r®sin6 cosd sin X).\ (2.5-27)
~XpXy + Xy Xp r?sin? 8\
Thus, finally with
6 = 86
A= B
{a} = 686 [ang}+ Py {an, ] (2.5-28)
where
-sin ),
fan.} = f»p r*sin® { cosX } dBd)dr (2.5-29)
B (A, 8,1)
0
v
and
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-sinfcosBecos A

r*sin6 | -sinfcos sin) } d8d\dr (2.5-30)

]

Ah

¢ K} pm.a.w
sin® 8

¥

Notice that radial deformations (i.e. expansions and contfractions) do not

contribute to {h}; therefore the following implications are established:
rigid hody => {h} =0 but - {h}=0 = rigidbody
Finally, the equations given below hold:

Ah)q = AI?\ga 3 Ah)\a = HAIlm ; Ah?ta =Igm =C

2.6 Differential Contributions to the Earth Inertia Tensor Due to Plate
Motions

As a real application to the earth of the equations given in section
2.5, one may compute the differential changes in the earth tensor of inertia
due to differential tectonic plate motion. This may be expressed by equation

(2.4-4), namely
n
[AI], = 121 [ATgorles (2.6~1)

where n ig the number of tectonic plates constituting the earth crust. The

elements in the summation of the right-hand side in the above equation will

be given by
[ATggrley = kz_:l (ﬁlg[AIl}k + 6sk[AIelk) {2.6-2)
where
m = number of sample blocks on plate P,
[AIk]k = differential changes in the tensor of inertia of block k

due to an infinitesimal motion § Ay
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[AIQ],c = differential changes in the tensor of inertia of block k

due to an infinitesimal motion 68,

Observe that in equation (2.6-1) the assumption 6r = 0 is implied; thus ver-
tical crustal fluctuations are neglected.

Although conclugive evidence exists supporting the argument that in
addition to horizontal tectonic displacements of the earth!'s crust {orogenic
movements), vertical fluctuations (epirogenic movements) also take place
{the Fennoscandian uplift being the best documented); the assumption &r = 0
will continue to be used until precise global data regarding vertical continen-
tal motion is available, and a unifying [ramework for vertical movemonts
is known. The detection of such movements is hampered by the diificulty
in separating rising of sea level (custatic sea level change) with ginking of
continents, or vice versa.

The computation of [AI;\]k and [AIB]“ as expressed by equations
(2.5-13) and (2.5-14) involves the integration over the mass of every sample
crustal block k. Hence changes of density in the adopied earth model must
be taken into consideration. Therefore in order to perform the integration
in (2.5~13) and (2.5~14), a properly defined crustal model should be estab-
lished.

On the other hand, the summation in equation (2,6~-2) agsumes know-
ledge of the plate boundaries and the differential motions for every block k
{see Fig. 2.8)}. For this reason some kind of plate model and corraspond-
ing absolute plate velocities with respect to the underlying static maatle
must be adopted.

In the following chapter, the particular models adopted in this inves-

tipation will be described.
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3 TECTONIC MODELS

This chapter emphasizes the major assumptions inherent in the se-

lected models used in the numerical integration and the values of the adopted

constraints and parameters.
Two major models are required: a crustal model defining the compo~

gition of the thin upper layer of the earth, and a plate model describing the
boundaries of the different tectonic blocks and absolute angular veloecities

with respect to the underlying mantle.

3.1 Crustal Model

Knowledge of the earth's crustal struciure has advanced considerably
in the last half cenfury, primarily due to investigations in the fields of geod-
esy {gravimetry) and geophysics (seismology).

Seismic research shows a marked boundary between the crust and
the upper mantle known as the Mohorovidid discontinuity (also referred to
as Moho or M discontinuity), which separates two layers of very distinct

density and seismic velocity.

It is now fairly well-established that the Airy-Heiskanen depth of
igostatic compensation (partially formulated a long time before the seismo-
logical data was available) agrees well with the depth of the M discontinuity
in the ocean basins as well ag continental plateaus. This reinforces the
hypothesis that on a continental scale the earth's crust is at lsast approxi-

mafely in a state of isostatic equilibrium. Excess of mass above gea level
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Fig. 3.1  Standard Continental and Oceanic Blocks
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is balanced by a deficiency of mass inside the earth, while the lack of mass

in the oceans is compensated by an excess of mass beneath.

Although there are regional disapreements which tend to conform

with the Pratt-Hayford system of isostatic compensation, these are not

globally significant and therefore will not be considered.

To model the upper shell of the earth as closely as possible to phys-

ical realitly in a manner which is computationally feasible, the Airy-Heis—

kanen isostatic ideas and the formulation givean by [Heiskanen, 1938] and

[Heiskanen and Vening-Meinesz, 1958, p. 137] will be adopted.

Consequently, the following basic assumptions are made:

(2)
(®)
(c)
(d)

(e)

isostatic compensation is complete

the compensation is local (as opposed to regional)

the density of the earth's crust is constiant cverywhere
(pe=2.87 g/em®)

the density of the underlayer upper mantle (tectosphere) is also
constant everywhere (0, = 3.27 g/em®)

the normal depth of compensation is assumed to be T' = 30 km

T'ig. 3.1 shows schematically the cases of emerged and submerged

blocks with the corresponding notation.

Written beiow are the two equations which give the values of the roots

and antiroots for land and water compartments respectively.

t=&h31+

t’=uh'31+

2T + (Ot Db @T+ AW[2T F g+ D] _ T(T+ A by (A7 - D i
r 4

. r.” r, 3r,”

@3.1-h)

2T+ (u+ D' (@T+ ph')[2T+ (u+ DH] T(T+ph)) (LB-Hh’?
T, ¥ r.” S A T

-] a

(3.1-2)

=1
&t
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where

tf

hl’

Po

and

11}

Hi

il

1]

length of mountain roct for a land block

length of ocean antiroot for a water block (' > 0)
height above sea level

depth below sea level (h' <0)

earth radius

1.027 g/ecm® = sea water density

Ap = pPo-Pe
~ P
A'c - AP
" = Ec = Pq
Ap

(3.1-3)

(3.1-4)

(3.1-5)

For the purpose of this investigation and for reasons explained in the

following section, an ideal boundary 50 km deep (see Fig. 3.2) which con-

tains all inequalities of the erust will be taken as depth limit of the upper
shell of the solid earth model.

It should be understood that the final results are slightly dependent

on the type of model selected. This work has used the best model obtainable

at the present time. Naturally, in the future when a more thorough knowledge

of the crustal siructure becomes available, changes in the model may be

expected and consequently the results may improve.
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Fig. 3.2. Computer Generated Crustal Section Along 8= 60° = v = 30° Obtained Using Equations
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3.2 Absolute Plate Velocity Model

In order to model the earth’s crustal motions, the most recent geo—
physical theories are taken into consideration.

The rigid outer shell of the planet (lithosphere) is divided into plates
which are in continual motion. Depending on the authors, the number, bound-
aries and velocities of these plates vary, although there is consistent agree-

ment with respect to the major important ones (macroplates).
3.2.1 DBoundaries

The boundaries between the different plates have been defined clas~
sically by maps of intense seismic activity, even though recently a strong
correlation between 1° X 1° mean free air gravity anomalies and the plate
perimeters was reported [Wilcox and Blouse, 1974].

Three types of tectonic boundaries are generally recognized [Cox,

1973]:

{i) Ridpes: where two plates are diverging, permifting the

upwelling of magma that ereates new lithosphere.

(i) Trenches: where two plates are converging, with one plate
moving beneath the other, eventually to be absorbed into the
mantle, or "destroyed".

The direction of relative motion of two plates need not be perpendic-

ular to the ridge or trenches.

(iii) Transform faulls: where two plates are moving tangential

to each other. Lithosphere ig neither croated nor desiroyed.
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The direction of relative motion of the two plates is exactly
parailel to the fault.

Tig. 3.3 shows the major tectonic features on the earth.

The plates are assumed fo be internally rigid but uncoupled from
each other. At their boundaries two plates may pull apart or one may slip
beneath the other, but within the plates there is no deformation.

In this investigation the tectonic plate model described originally in
[Solomon and Sleep, 1974] and shown in Fig. 3.4 was adopted. The surface
of the earth is divided into eleven rigid blocks, avoiding the minor contro-
versgial plates (e.g., Gorda, Fiji, Iran, etc.) The division hetween North
American and South American plates is not yet fully accepted, and therefore
to combine them in a single plate (American) with a unique set of absolute
velocities is reasonable. In the figure land masses are drawn up to the lim-
it of the continental shelf ( ~ 2000 m isobath) while subduction zones are
shown as heavy dashed lines.

Among other plate models available in the geophysical liierature
and previously used by investigators are [Minster et a”., 1974 and Kaula,

1875].

3.2.2  Absolute Angular Velocities

Tor the purpose of studying the movements of the earth's shell and
to facilitate treatment of sections of oveanic and continental areas as units,
it is assumed that the crust is joined rigidly to the upper part of the litho-
sphere (the tectosphere) and moves with it. This is in accordance with the
new slab theory which supposes the crust to be a mere passenger driven

by slabs and clearly contradicts the old coneept that the continents just float
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on a viseous mantle.

Consequently in this investigation crust and tectosphere move as a
mechanical unit. An imaginary boundary at 50 km deep containing the whole
crust is assumed to approximate as closely as possible the effect of the dif-
ferential displacement of the irregularities of the crust due to plate motion.
Below that boundary the earth is thought to be siructured in some fashion
not producing any variation in the crustal tensor of inertia.

Several theoretical models for absolute plate velocities have appeared
recently in the geophysical literature. Small final differences depend mainly
on the initial assumptions and the total number of plates considered.

One of the most complete sets of absolute plate velocities was pre-
sented in [Solomon et al., 1975] after postulating that no net forque is
exerted on the lithosphere as a whole. Absolute angular velocities of the
Pacific plate relative to the underlying mantle are given, affer considera-
tion of several driving mechanisms which can be modeled guantitatively
and which are capable of affecting final absolute velocity.

The description of the different models and their corresponding ab-
solute angular velocity for the Pacific plate is given in Table 3.1.

Also given in [Solomon et al., 1975] are the relative angular veloci-
ties of the other piates, assuming the Pacific plate to be stationary (see
Table 3.2). Then ile absolute angular velocity of any plate P, may be

computed as follows
{w, }Pt = [wr}n + {wg ke (3.2~1)

where
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{we}s, = relative angular velocity vector of any plate P,
” with respect to an arbitrary reference plate (Pacific);
{w, }sp = absolute angular veloeity vector of the reference
plate (Pacific) with respect to the underlying mantle;
{w, ]Pi = absolute angular velocity vector of any plate P,

with respect to the underlying mantle.

Table 3.2 tabulates the assumed absolute angular velocity vectors

{w,}s, for all the plates (other than the Pacific) computed from the values

{w.)p, and {w, }s given in [Solomon et al., 1975].

3.3  Changes (8%, 08,) in Each Block Due to Plate Motions

Cnce the absolute angular velocity vector {w, }pl for each plate is
known, the changes &XA, and 60, in longitude and colatitude for a sample
block k belonging to the particular plate may be computed.

Observe that the components of {w, 1, , in Table 3.2 can be consi-

dered differentially small and that the given values conform with a right-

hand rotation rule.
The required formulation for evaluating the differential changes in

the curvilinear spherical coordinates at a point, after a differential rota-
tion is performed, may be obtained following the general theory presented
in [Soler, 1976].

The final equations are in the form

58 r, 5in B cos A
5 = H'R{8w], { r.sinBsin (3. 3~1)
or r,cos 6
k k
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Table 3.1
Absoclute Velocity of the Pacific Plats*

Model ws ki Ws |eo | Orientation of {ew]
Name Description 10 ™7 deg/yr Latitude Longitude
A3 Uniform drag coefficient -1.490 2.410 -6.494 7.08 -66%.4 121°.7
heneath all plates
B3 Drag beneath continents -1. 800 3.412 -8.040 8.92 -64.4 117.8
only
B4 Continents have 3 times -1.605 2,876 ~7.142 7.86 -65.2 119.2
more drag than oceans
@ C3 Drag opposing horizontal -1.333 2.21 -6.147 6.67 ~67.2 121.1

translations of slabs,
oceanic subduction zone

only

C4 Same but including ARBT -1.353 2.427 ~G,395 6.97 -66.5 19,1
and HIMT (see TFig. 3.4)

D1 Maximum pull by slabs -1,385 3.558 -6.570 7.59 -60.0 110.86
plus plate drag

E2 Drag beneath 8 mid-plate -0.755 2.460 -6.972 7.43 -69.7 107.1

hot spots of {Morgan, 1971)

E3 Drag beneath 19 hot spots -1, 290 3.0091 ~7.538 8.25 -66.0 12,7
of [Morgan, 1971]

The components of { w} are referred to the geographic system (x). A right hand rule applies to the vector {wl,.
* From [Solomon et al., 1975].




where

iy

it

in this work, one has

"metric matrix' of the differential transformation

between curvilinear and Cartesian coordinates;

rotation matrix of the transformation between the

geocentric and "local moving" frames;

skew-symmetric matrix of the absolute angular
velocity vector for the particular plate P contain-

ing the bloclk k.

Observe that here | Jf‘;w},,l {w, }pi

TFor the specific curvilinear coordinates and sign convention used

and for a given tectonic plate

r, 0 0
H = r,sin8 0 (3.3-2)
B i
| cosBecos )\ cos Bsin A -gin @
R=Ry(B) Ra(A} = -ginA cos A 0
] sinBcos A sin Bsin )k cos 6 |,
(3. 3-3)
0 ~ Gy 6wa
(6wl = | buwy 0 - s,
- 6&)3 60)1 0
Py
G5
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< Table 3.2
oo
P . - . e
P Relative and Absolute Angular Velocity of Plates Other Than Pacific
5
f:..
b.
1= ;
Model Veloe. Plate Name
: 107 deg/yr AFRICAN AMERICAN ANTARTIC ARABIAN CARIBBEAN
{“"}"1* 2.406 -4,112 8.973( 1.364 -3,611 5.687( 0.675 -3.680 92,596 | 4,709 -3,784 10.343 | 1,051 -2,794 6,332
A3l 0,916 -1,702 2.479%|-0.126 -1,201 -0.807 |-0,8l5 -1.270 3,102 | 3.219 ~1.874 3,349 |-0.438 -0.384 -0,162
B3 0.606 -0,700 0.933 | ~0.436 -0.199 -2,353 |-1.125 -0,268 1.556 | 2.909 ~0,372 2.803 |-~0.749 0.618 -1.708
R
B4 0.801 -1.236 1.881 | -0.241 -0.736 -1.455 |-0.930 ~0.804 2.454 | 3,104 -0.908 3.201 | ~0.554 0.082 -0.810
C3 1.073 -1,901 2,826 | 0.031 -1.400 ~0.460 | -0.658 -1.469 8.449 | 8.376 -1.573 4.196 | -0.282 -0.588 0.185
{wg]ri
C4 1,053 -1.686 2.578 | o.ol 1,184 ~0,708 |-0.678 ~1,253 3.201 | 8,356 ~1.357 3,048 | ~0,5302 -0.367 -p,063
DL 1.071 -0.554 2.403 | 0.028 -0.053 -0.883 | -0.660 -0.122 3.026 | 3.374 -0.226 3,773 | -0.284 0,764 -0.238
E2 1.651 -1.652 2,001 | 0,609 -1,151 -1,285 |-0,080 -1,220 2,624 | 3.354 -1.324 3,371 | 0.296 -0.834 ~0.640
E3 1116 ~1.021 1.435 | 0.074 -0.520 -1.BBl }-0.615 ~0.5B9 2,058 {3.419 -0.693 2,805 {-0.239 0.297 -1,206
*From [Solomon et al,, 1975].
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Table 3.2 (Cont'd)

Relative and Absolute Angular Velocity of Plates Other Than Pacific

Model Veloc. FPlate Name
1077 deg/yr COCOS EURASIAN INDIAN NAZCA PHILIPPINES
fw, . *= | -4.715 -14.428 13.332| 1.313 -3.569 B.267| 6.33¢ -0.221 10.890 | 0.693 -9.001 [3.692| 5.836 -1.362 0.806
1
A8 -6.205 -12.015 6.838) -0.177 ~1.159 1.773} 4.B44 2,185 4,396 -0,797 -6.591 7.198 | 4,346 1.048 -5.6B8
B3 -6,515 -11.018 5.292| -0.487 -0.157 0.227| 4.534 8.181 2.850| -1,107 ~5.589 5.652) 4.036 2.0560 -7.234
B4 -6.320 -11.549 6.150( -0,292 -0.893 1.1251{ 4,729 2.855 43.748( ~0.912 -6.125 6,550 4,231 1,514 -6.336
fo%:] ~6.048 -12.214 7,185 -0.020 -1.358 2,120 5.001 1.990 4,743 -0.640 -6.790 7.545| 4,503 0.849 -5.341
{w.l }P
c4 L -6.068 -11.998 6.937| -0.040 -1.142 1.872( 4,981 2,206 4.495]| -0.660 -6.574 7.297} 4,483 1.0656 -5.588
Dl -§.050 -10.867 6.762) -0.022 -0.411 1.697| 4.99% 3.337 4.320| -0.642 -5.443 7.122] 4,501 2,196 -5.764
72 -5,470 -1I.965 6,360 0.558 -1.109 1.295| 5,579 2,238 3.313 | -0.062 -6.541 6.720) 5.081 1.098 -6.166
E3 -6.005 -11.334 5.794| 0.023 -0.478 0.729| 5.044 2.870 3.352| -0.597 -5,810 6.154| 4,546 1.729 -6.732

*From [Sclomon et al., 1975].
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After these matrices are substifuted in equations (3. 3-1), it easily
follows that

A, = Owg— Bwcos A cotf, - Bwysin i, cot By {3.3-4a)

68, =-—06w,sink, + Gwscos A, (3. 3-4h)

When the above values are expressed in radians, one may change

to linear units as follows:

BA, = r.sinBy b\, (3.3-52)
88, = 1,66, (3. 3-5h)

If the plate rotations were not differentially small, the matrix [ &), ,
in (8.3-1) should be replaced by

Ra() - [1] (3.3-6)
where the rotation mairix Rq{w) is given by (see Appendix A)

Ro@) = cosw 1]~ (l-cosw)[ P]+ sinw] &] (3.3-7)
and

rotation angle along the lire of direction

€
m

cosines {a}

il

[P fal fal™ = projection matrix (3.3-8)
Notice that for small angular rotations,

cosew = 1

sinw = §w
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and (3.3-7) reduces to

Rg(bw} = [1]+ owla] (3.3~9)
In this case,
6, vV i=1,2,3 (3. 3-10)

ek T

where 08w, (i =1.2.3) are the components of the angular velocity along the

three Cartesian axes.
Therefore equation (3.3-9) has the form

Rg(bw) = [11+[06w] (3.3-11)

and finally, expression (3.3-6), as expected, reduces to [ 6w ].
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4. NUMERICAL EXPERIMENTS AND RESULTS

Based on the theory discussed in sections 2.5 and 2.6, the differen-
tial contributions to the earth inertia tensor as a consequence of tectonic
mass displacements can be evaluated.

The manner in which this is accomplished practically and the inhexr-
ent restrictions will be discussed in the following section.

Afterwards, the computed values of the matrices involved will ke giv-
en. As a preliminary calculation the earth tensor of inertia is obtained.
Although there is a possibility of evaluating [ 1], approximately for a spher-
ical earth through integration, using equation (2.5-23) and a density model
(e.g.,[Bullen and Haddon, 1967]),in this study the latest satellite data is
used. It should be mentioned here that in this investigation, as will be seen
later, the matrix [ 1] has only a relative role and therefore an approxi~

mate value is sufficient.

4,1 Integral Evaluation

The basic expressions to be evaluated, namely [ I]:, [AL k]
and [AI 8] involve integrations over the total volume of the earth's upper
layers, under the assumption that the density distribution is known. These
triple integrals are evaluated along the domains of each plate, so that the
individual plate contributions can be accounted for.

The integrations involve itwo parts:
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{1) Integration with respectio r

(2) Integration with respectto A and 8

4.1.1 Integration with Respect to r

As is known, from the characteristics of the crustal model discussed
in section 3.1, all variables involved in the integration with respectto r
are assumed to depend only on the height above or below sea level. The other
parameters are adopted constants like T, P and the set of densities.

Thus a limitation on the integration is imposed by the requirement
of a global set of earth elevations suitable for digital computation.

At the present a magnetic tape is available [rom the Defense Mapping
Agency Aerospace Center (DMAAC), lormerly Aeronautical Chart and Infor-
mation Center (ACIC), Saint Louis, Mo., which containg 1° x 1° mean ele-
vations of the earth solid surface arranged in latitude belts [Czarnecki, 1970].

It is appropriate to mention now that in areas covered by ice, such
a3 Antartica and Greenland, the value given in the tape was used as mean
elevation of the terrain topography. No other alternative is left fo the user
because no ice elevation is specified. Therefore this work does not consider
changes in density due to ice coverage. After tlis report was completed
the author became aware of the availability of data sets containing Greenland
and Antartic 1° x 1° mean ice thicknesses and topographic surface eleva-
tions. This data was compiled by Anderson [1976] from maps supplied by
the Australian National Antartic Research Expeditions (ANARE). Although
no major changes are expected with respect to the basic conclusions published
here, a better modeling may be accomplished after the changes in density

due o ice coverage have been considered.

Consequently, in this investigation, the crustial layer is supposed
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to be divided into individual 1° X 1° sample blocks which are not homogen-
eous, having variable heights and a constant depth of 50 km.

For every one of these blocks an analytical integration with respect
to the variable r may be performed. The following two cases are possible

{(consult section and figure 3, 1 for the proper interpretation of parameters):
(a) Emerged block (h > 0)

In this case one has

r.+h r, T, ~(T+L)
fp(r)r‘*dr=p{ r¥dr+ pcjr r*dr+ pnf rdr
EMERGED Te r,-(Tt) ry~F
B_c . _ gy _ B_ . _TnG
- o, [(ra-%h) S[rg (7] ] “ b, [[3, ('I‘+t)]5 (r,-P) } @.1-1)

(b) Submerged block (h’ < 0)

In a way similar to case (a), it follows

r r,+h’ r,~(T-t")

a

fp(r)r"'dr = p{ rdr+ p.,f r*dr- pm‘[ r*dr
r,+h’ re~(T-t") r,-P

SUBMERGED

v, o -(r,+h")® T +h')5-[r, ~(T-t")° T, ~(T-t)1®~(r, -P)°
AT U A G O g D S

4.1-2)

These integrals are determined for each block k in a systematic

computational manner. With the location of the block a search in the earth's
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mean elevation tape will immediately identify it as emerged or submerged,
depending on the sign of h. Fatering it info the proper equation (4¢.1-1) or
(4.1-2) the integration with respect to r is easily evaluated.

To account for the earth's ellipticity in a reasonahle way, the value

of r_, appearing in the above formulas is the geocentric radius of the earth,

namely
r, = ao[l—(f4-f—3f"")cosaei-gfzcoseef...] {4.1-3)
where
a, = 6378140 m - earth's equatorial radius (4.1-4)
£ = 1/298.257 - earth's [iattening {4.1-5)

are the current representative estimates recommended by the International

Agsociation of Geodesy (IAG) in the first resolution of the XVI' Genoral Assem-

bly [IAG, 1975].
The use of the geocentric radius will introduce what may be considered
a block deflection, i.e., each biscck k will be alighed with its central radius
vector and therefore will not be normal to the earth ellipsoid. The error in-
troduced is negligible considering that the maximum deflection at about 45°
latitude for an ellipsoid the size of the earth is only 12°, clearly insignifi-

cant in the context of these compuiations.

4.1.2  Tntegration with respect o X and 6

The integration with respect to A and 0 requires ithe plate perimeter
because evaluation must be done over individual tectonic plates.

It was meniioned in section 3, 2 that the plate boundary selected was

the one given in [Solomon and Sleep, 1974].  These investigators kindly
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Fig. 4.1. Actual Plate Boundaries Used in Evaluating the Integrals
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provided a string of data, punched on cards and containing latitude-longitude
points of the boundary lines. 'This digitized data was not necessarily ordered
in a continuous streamline; thus it was preprocessed to make it compatible
with the information contained on the mean elevation iape.

Tirstly, points at exact 1° intervals (the nearest to the plate bound-
ary lines) were selected. This set of poinis was still further reduced to
evaluate the integration by colatitude belts from A= 0° to A= 360°. Only
a minimum number of points, all of them significant to the identification of
each plate, were finally chosen. Fig. 4.l presenis the exact number of
border points used in the integration process at their corresponding longitude-
colatitude location.

Finally, the individual plate contributicn to the initial tensor of iner-
tia due to a differential motion of the erust was numerically implemented
by using equation (2.;~1). The values (8\,, 68,) were computed for the
center of each block from equations (3.3-1) which are dependent on the abso-
lute angular plate velocity components.

Consequently each of the individual 1° x 1° solid blocks forming
the crustal model hag independent differential motions (86X, 66,) consist-

ent with their plate absolute velocity.

4.2 Tarth Teusor of Inertia [ 1]

It is well known that relationships exist between the earth moments
and products of inertia and the satellite-derived potential coefficients.
These may be derived by equating the expressions of the earth graviiaiional
potential, as given by the spherical harmonic expansion, with the develop-

ment of the same potential, as expressed by formulas of the MacCullagh

type.

Th




Thus one obtains

Choe = é(pw B) - C (4.2-1a)
Chz = %(B— A) (4. 2-1b)
Chy = E (4.2-1¢)
Sep = D (4.2-1d)
285, = T : (4.2-1e)

Note that the potential coefficients as given a*nve have the dimen-
sions of the moments and products of inertia, that is, ML®. Nevertheless,
in practice they are usually in unitless dimensions aad generally in a fully
normalized form.

Hence the following known general transformations apply {Heiskanen

and Moritz, 1967, p. 60].

Cha Cos Can
vm #0 - M - M"E‘:\/g(aim]m” )
She Sae Sua
(4.2-2a)
Yym=20: C\, = M,aﬁ“\fﬁﬁ Chro (4. 2-2b)
where
C ‘;m s S"run = conventional spherical harmonic coefficients of
degree n and order m (unit - L"M)
Cizs S < unnormalized coefficients {unitiess)

T4




Cuns Enm fully normalized coefficients (unitless)

1t

L}

M,, a2, mass and mean equatorial radius of the earth

From (4.2-la} and (4.2-1b) one has

A = Chpo-2ChH;+ C (4.2-3a)
B = Chot+ 2Cha+ C (4. 2-3b)
Thus finally
C [a.o"?- C Iz,z -25 ’z,a -C la,l
[Ile = C[ 1] * Che2Chz -S4
s 0
4.2-4)

The value of the maximum moment of inertia may be determined under the
assumption that the earth has rotational symmetry.

In this case
Cho = A-C 4.2-5)
Knowing the dynamical ellipticity of the earth H, as expressed by equation

(2.3-32) it follows that

Cf
C = __g_.o_ (4.2-6)

The value a, needed in equations (4.2-2) was given previously in (4.1-4).
The mass of the earth M, is obtained from the current representa-
tive estimates of GM, and G as recommended by the International Associa~

tion of Geovdesy [TAG, 1975]:

GM, = 3.986005 x10¥m’s™
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6.672 x 107 m®sF kg™
resulting in

M

s

5974.228118 x 10*°g

The set of fully normalized potential coefficients used were those of
the Smithsonian Astrophysical Observatory (SAQ), Standard Earth 111 (de-

noted SE3) as given in [Gaposchkin, 1974], namely,

Cap = -4.84170 x107*

Ca,z 2.3799 x 107"
By, = -1.3666 x107°¢

The selection of the SE3 coefficients is such that
(i) El,o = Cp = 5, =0

(i) Cop = S0 = 0 => D = E = 0

Thus the tensor of inertia [ I ] will refer to a central system, the third
axis of which is principal,
After the selected values are substituted in the general equations

(4.2~-2a and b), one has

Coo = -1082.637 x 107°

Caz = 1.5362188 x 107°

Sz = -0.88149101 x 107"
Choe = -0.26311809 x 10™gem”
Chao = 0.37335410 x10*%gem?®
She = -0.21423268 x 10°%g cm”

and

TH




C = 8.041506418 % 10*gem®

Thus, {inally, recalling equation (4.2-4) the current estimate of the earth

tensor of inertia [ I]g, as derived from satellite values is given by

8.015119938 x 10™ 0.428465360 x 10%° 0
[T} = 8.015269280 x 10™ 0
5 8.041506418 x 10¥

- (4. 2-7)
where all the units are expressed in gem®.

As a consequence of the corollary of postulate 1 discussed in section
2,3.1, it will be proper fo assume that the computed center of the earth
wobble (harycenter) practically coincides with the earth axis of figure, to
which [ I]; refers.

Thus one may transform the second-rank tensor of inertia [ I[]g to
another system with the third axis coinciding with the CIO terrestrial axis
and the two olher axes in the terrestrial equatorial plane.

Making use of the tensor transformation equation (3. 3-7) one may

write

[Ilg = R[IIRT (4.2~8)

where now the rotation angles being small, the value of R is given by

1 0 Xg
R = Rp(-xg)Ryi(-ys) =~ | O 1 ~Ye (4,2-9)
~Xs Yo 1

and (xg, ¥a) are the coordinates of the barycenter in the CIQO polar sysiem.
These values may be obtained graphically from Fig. 2.7.

For the year 1970 one has

Xg =~ 07,028
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Ve =~ 07.246 (4. 2~10b)

After transforming them to radians and substituting in (4.2-9), equation
(4.2-8) finally gives the tensor of inertia with respect to the CIO system

as (units in gem?)

8.015119938 x 10** 0.4284653600 x 10°°  0,3633007384 x 10*
(Il = 8.01526928 x 10*  -0.3129732002 x 10°7
s 8.041506418 x 10™

n (4.2-11)

If the matrix [-f]E is now diagonalized, the principal moments of
inertia of the sarth and the direction of the central principal axis with respect
to the CIO terrestrial system may be determined.

After diagonalization, using the eigentheory formalism as explained

in section B. 4.2 of Appendix I3, one obtains

A, = 8,01510851% x 10" gcm® (4.2-12n)
B, = 8.015280700 x 10 gem® (4.2~12D)
Cop = 8.041506418 x 10™ gem® (4.2-12¢)

The spherical coordinates of the positive direction of the central

principal axes are given by

Ag = ~14°55'25".2955 (4. 2-132)
XO "
"1 en = -0° 0 0%0904 (4. 2-13b)
Mz = TB° 473477044 (4. 2-13c)
xnpz
0,z = 0° 0’ 0”.2305 (4.2-13d)
Aoz = ~83°30723".3089 (4.2-13e)
Xopa orq e’
s = 89°59'59" 7524 {4.2-13f)
1
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The direction of x,,5 was expected, because it corresponds to the
used values of (4.2-10).

A major result is the direction of the earth's first principal axis
which, according to the above values, is practically on the conventional
terrestrial equator, but about 15° west of the meridian of zero longitude.

Therefore the earth's central momental ellipsoid will have its great-—
est axis along x,p; and the semimajor axis of a triaxial earth lies 14° 92
W of the geographic zero meridian. This agrees very well with the finding
by Burda [1970] that the longitude of the meridian in which a, is situated
for a best-fitting triaxial ellipsoid is 14°.8 W.

The transformation of coordinates between lhe central principal

and the terresirial systems may be implemented as follows:

R {x} or {x} = rix,} (4. 2-14)

{%0p}
where
R = Ra(-Ap1)Ra(-x5)Ra(-yg) (4, 2-15)

with the meaning of the symbols X;1, Xp and yg as mentioned above.

4,3 Crustal Tensor of lmertia [ 11.

In this section the results concerning the evaluation of the crustal

tensor of inertia according to the model described in section 3.1 are reported.

The numerical integration of the matrix elements in equation (2.5-23)
was performed following the formalism of section 4. 1.

The results are presented in table 4.1, Tabulated are the individual
tensors of inertia for each plate, as well as the corresponding iotal tensor

of inertia for the whole crust up to 50 km depth.
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Table 4.1

Tensor of Inertia for Each Individual Plate
and the Total Crust (50 Km Deep)

1 PLATE i TENSOR OF INCRTIA [
| HNAHME I NO | L1 Jes i
AFRICAN 1 0.15493 750400443 ~.5746112666D+42 0.1434525736D+42
0.3659G239270+43 0.26123597810+42
\ «3BA79530540+43
|
AMERICAN 2 0.45659579430+43 0.99767866270+42 0.49BR294053D442
0.3779194901D+43 O0.47R53ATAZ15N+42
.339543R508D+43
ANTARTIC 3 0.3210393813D443 —,1098232871D0+42 0.14502205420+42
0.2B46084920D+443 0.16233108080+42
‘ «B90L6T0153D+42
ARABIAN 4 D.1779691540D+42 —.11B17301370N+42 —.T7202012894D+41
0.164676450060+42 ~=,T472999R4804 41
0.2432130936D+42
l -
CARIBBEAN 5 0.1953842879D+42 0.50409955046D+41 —.1326980322D441
0.29814B4370D+41 0.45724T56540+41
0.20043455140+42
cocos 5 0.19412473250+42 —.1803535167044)1 0.37013024870+40
0.9776T1B41RD+40 (0.2A377056550+4]
0.192426942904+42
I EURASIAN 7 0.33064761550+43 0.2195409T450+42 ~.3B175A25690N+42
0.25444190750+43 —.96734RATATD+42
0.2067458743D+43
' INDIAN 8 0.27358797690+43 0.3761912903D442 ~.55716172140+42
0.1626619564D+43 0.49073793A5D+42
0.295891197TD*43
NAZCA 9 0.81B82257550+42 —.4107306785D+41 ~.1381307408D+4]
0.1262283106N+42 —,2244R25A63D+42
0.T465976881D+42
PACIFIC 10 0.2816670441D¢43 —.92973343030D+42 0.1T7R21465703N+42
D4TRTH3LSTED+43  =.13439654750+42
0.49502053700+43
PHILIPPINE 11 0.1930333366D¢42 0.1459722513D+42 0.6953150710D+41
0.18358535920+42 —.7057441023N4+4]
\ 0.29085204115D+42
ettt A S 1 3 3 3 St I S I I P S S 33 RS 14 =]
CRUST = [1], D.1976512725D+44 —.165629136RD+40 —.67571552960+38
0.1975795564D+44 —.45A7592137D0+40
0.19811629350+44
R R R R RS R N I I I L N N R R N SN s R E R S N N e R I S RN A S S N S I L EE TR R E SR X KEE B W
NOTE 2 ALL TENSDRS ARE SYMMETRIC AND REFER TO THL TERRESTRIAL SYSTEM.

AL PAGE |5

QUALITY;

THE UNIT OF EACH ELFMENT IS gem®
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Table 4.2

Principal Moments and Principal Axis Directions for Each Individual Plate

and the Total Crust (50 Km Deep)

R p—

DIRECTINR OF PRINCTPAL AXES

| PRINCIPAL MDMENTS
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PLATE

NAME
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One should notice that as a consequence of the way the integration
with respect to A and 6 was determined, the values ol these tensors refer
to the CIO terrestrial system.

Following the eigentheory treatment of section B. 4.2 in Appendix
B, the symmetiric matrices in table 4.1 can he diagonalized. The resuvlting
eigenvalues (principal moments of inertia) and the polar coordinates (A, ©)
of the corresponding eigenvectors (i.e., directions of the principal axes)
with respect to the terrvesirial system are shown in table 4. 2.

Comparing the results for the crust at the end of lable 4.2 with the
values for the carth given in (¢4.2-12) and {4.2-13), the following conclusions

can be drawn:

1)  The principal momenis of incrtia of the earth crustal layer (50
km depth) represent only 29 of the principal moments of the

earth;

2) The axis of maximum moment of inertia of the modcled crust
is situated about 5° from the CIO pole in the direction of
A=z -89°% Recall that the earth axis of figurce was situated in
the direction A=~ -83°.5 according to the plotted barycenter
(epoch 1970.0) as determined from astronomical ohservations

processed at the [PMS.

——p——

3) The crust has a principal axis of inertia near the eqguatorial plane

but at A=:-11° As known from satellite data, the carth has

a principal axis in the same plane and at A= -15°.

A major disagreement with previously reported values appears to
be in the above results. Milankovich in 1941 [see Scheidegger, 1963, p. 179]
and Munk [1958] as well as other investigators, have found the pole of the

earth's "continental-ocean' distribution neayr Hawaii.

L1




Before interpreting the results of the pole's location, publishad to
date, the reader should be aware of the major differences between the assump-

tions inherent in the various solutions. These are as follows:

(i} Milankovich used a 20° X 20° grid, while Munk employed a

10° x 10° grid in the integration between continental boundaries.

(ii) Their model was much more simplified. Milankovich's work
was restricted to standard continental coastlines. He weighted
the areal mass density for continents differently as compared
with oceans, withoul rigorous evaluation of the intepra«ls.

Munk included in his caleulations the continental structure up
to 1000 fathoms depth. He used a mean elevalion of 0.9 km lor

land masses after postulating global isostatic compensation.
(iii) Both investigators assumed a spherical earth.

After the discrepancies between the different results were noticed,
an attempt was underiaken to compare them and new evaluations of the inte-

grals were made under various modeling hypotheses:

(a) Crust-M: only the standard crust is considered. (This includes
the crustal masses contained above the Moho discontinuity and

therefore excludes the layer of tectosphere down to 50 km depth).
(b) Crust-M-S: as above for a spherical earth.

{¢) Crust-S: this case uses the crustal model selected originally

in this investigation, but assumes the earth to be spherical.

The results concerning case (a) are presented in table 4.3 and clearly
show agreement with previous findings by Milankovich and Munk [1958].

The maximum moment of inertia of the siandard crust is about an
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axis with polar coordinates,

)y 9°20°11”, 869 { A = -170°39°48", 131
or
¢

o = 14°45'42".450
This corresponds to an area west of the Hawaiian archipelago, close to

It

~14°45 42", 450

It

Wake Island. The minimum moment of inertia is about an axis passing
through the northern part of Russia near the city of Gorki.

The magnitude of the principal moments in this case represents
only 1% of the total earth.

Case (b) gives basically the same results, as can be seen by inspect-
ing table 4.4. Consequently when only the standard earth crust is integrated,
the effect of the earth's ellipticity may be considered negligible. This im-
plies that the asymmetric continental muzsses {(dominant in this case) are dis-
tributed over the earth in such a way that their principal axes are not affected
even when the effect of the equatorial bulge is considered. In general terms,
this means that land masses are situated primarily north and south of the
present equator, in a sense contradicting the "Polfluchtlkraft' theory [see
Scheidegger, 1963, p. 166] which postulates that continents as floating masses
on the mantle, will tend to drift to the equator. The above resulis enforce
the theory that continents are nct just floating masses on the mantle, but
inhomogeneities forming part of lithospheric plates.

The last part of this analysis concerns case (¢) which introduces
drastic changes with respect to the original results of table 4.2 where the
elhpticity of_ the earth is té.ken into consideration.

Using the crust-tectosphere model as defined in section 3.1 but under
the assumption of spherica.l earth, the maximum principal moment of inertia
axis is 1o longer close to the CIO pole, but at the point-with coordinates

A=-18° and ¢~ 10° as presented in table 4.5.

Consequently the bulge of the earth becomes an important factor when :
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Table 4.4 P
Principal Moments and Principal Axis Directions for Each Individus! Plate |
and the Total Crust (Including only Down to the Moho Discontinuity) }
under the Assumption of Sphericity l
I PLATE 1 PRINCIPAL MOMENTS DIRECTION OF PRINCIPAL AXES K " :
I NAME | NG c1d LONGITUDE LATITUDE | ' o
AFRICAN 1 0.1879774250D0+443 104° 0 _0.078 45° 53’ 7.328 .
0.1704436039D+43 108 21 37.317 = 44 1 53.890 ;
! 0.58270283180+42 16 15 2.708 - 2 10 50.195 ; :
AMERICAN 2 f 0.2702458323D+43 36 16.34B 18 14 40,570 Coe
0.1649227451D+43 134 13 26.209 33 32 4.287 = ;
0.14450905640+43 =82 2 Z1.307 50 34 52.306 5 |
. i -
ANTARTIC 3 = 1454337697D+43 =~ 13 8 4B8.634 1 50 27.806 i
0.1295372029D+43 77 1 59.835 5 35 10,133 :
.3482772750D+42 =121 19 19.188 84 & 59%.230 .
j
ARABIAN 4 0.1640976624D+42 — 25 42 44,710 -~ 35 1 31,810 ;
0.16251942850+442 ~ 0 42 27.783 5 15 21.969 i
0.3760111855D+40 3 29,033 24 3 10,598
CARIBBEAN 5 0.1031B97742D+42 137 26 19.809 T4 23 40,352
0.10194255710+42 17 10 46.5238 8 0 41.673
0.20566969T0D+40 105 1& 21.271 ~ 13 18 8.965
cocos & 0.7973855473D+41 T 44 35.641 56 49 2,908
0.7886779705D+4)1 — 10 45 13.421 ~ 31 48 20,462
0.1525655971D+40 B4 33 1R.766 - 8 29 B.561
1 ‘ :
EURAS IAN T 0.21061006670+43 36 7 45.312 -~ 35 28-408 :
' 0.16996B5487D+43 = &0 5 45.455 23 35 57,552 : J
.68242104568D+42 B3 & .967 51 23 46,703 : ;
INDIAN 8 0.1458605405D+43 174 29 20.074 53 42 37.601 ; ‘
0.11132326520+43 38 25 3.663 27 %2 17.946 : i
0.54258316770442 116 31 4%4.531 - 21 1T  0.550 ; g
o
NAZCA 9 0.31069901780+42 3 3 1.574 =~ 19 42 4.544 ; 1
0.3092558780D+42 =~ 42 2B &6.508 62 55 51.125 : i
0.19784310T40+41 86 26 57.369 17 &7 55,591 , ! 3
* 3
PACIFIC 10 0.1807041551D443 113 34.4T1 -~ 30 21 _9.043 ; %
0.1683952130D0+43 111 35 54.13% 59 38 23.471 g ;
.B86651186530+42 22 3B 56.97T -~ 0 36 55.630 s i |
PHILIPPINE 11 0.1158815520D+42 31 46 10.956 18 27 43.117 % ;
0.1149305885D+42 — %2 45 8.279 62 48 15.946 1 3
0.3028105058D+40 134 27 40.898 19 14 25.706 | ;
:‘x‘zﬁ:k::I‘:I‘:R::lKtzﬁttﬂtﬁﬂﬂﬂztﬂztmixn::ﬂ::.l':!llt:t:=Il':'ﬂ=-58‘==--l-z:!.ﬂ g
CRUST-4-5 0.9174892481D+43 g 5 55,735 = 14 5 30.808 oo
‘0.8B6TT462340+43 104 41 38,107 —~ 21 13 32,028 - : |
0.85503293940443 6T 55 9.157 &4 85,5637 .o
EEEREr R C R A N FE A R R R G E N E N SN A A NEE RN ERA S A EESE N E AN RE AR E XN XS :
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Table 4.5

Principal Moments and Principal Axis Directions for Each Individual Plate

and the Total Crust (50 Km Deep) under the Assumption of Sphericity

!
!

DIRECTION OF PRINCIPAL. AXES

1 PRINCIPAL MOMENTS

PLATE
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the masses below the oceanic standard crust are considered.

Comparing the results pertaining to the crust in tables 4.2 and 4.5,
one actually may conclude that at the present the more dense inhomogenei-
ties of the earth's crustal layer are situated around the equatorial belt.
Therefore, the role of the continents as sole agents in the phenomenon of
balancing the earth's axis of figure lacks consistency. A better intuitive
picture is attained when the whole plate teetonic structure is considered.

The layer of higher density below the oceanic plates makes all the difference.
These masses were systemmatically neglected in previous investigations.

Hence the present ellipsoidal earth seems to be quasi~dynamically
bhalanced, as the distribution of plate masses proves, with the lavge dense
oneg (primarily oceanic) occupying the areas around the equatorial bulge.
Thus the assumption of polar wandering on a large scale in recent geologi-
cal history seems unlikely, primarily because the mechanism to explain it
is not yet available. Nevertheless, a possibility of random secular polar
motion due, for example, to small lithospheric motions and other redistri-
bution of matter cannot be ruled out completely.

Further examination of tables 4.2 to 4.5 also shows that the loca-
tion of the principal moments of inertia axes of each individual plate remains
practically unchanged, corroborating the fact that ellipticity is not as impor-
tant as mass distribution.

Small plates hardly change the direction of the principal axes in the
case of spherical or ellipsoidal earth., The macroplate change (a few degrees
only} mostly reflects their assymmetry with respect to the equator.

A fipal remark should be made here: If the plates as units are as-~
sumed to rotate without any friction or exiernal forces, the dynamical pos-
sibility of rotation about their axes of figure ﬂv:ays exigts. Then the indi-

vidual pole of rotation will correspond tosthe individual maximum principal
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moment of inertia axes.

Although the IOCafion of the pole of rotation for the absolute angular
velocity of the Pacific plate according to table 4. 2 agrees very well in longi-
tude with the values found by Solomon et al. [1975], for the different models
(see table 3.1), there is a significant unexplained disagreement in latitude

(about 30°).

4.4 Contribution of Differential Plate Rotations [ AT}, to the Earth
Tensor of Inertia

The contribution [ AT], to the earth fensor of inertia [—I]E as a
consequence of differential plate rotations was computed according to the
theory presented in Chapter 2 and the numerical approach described in sec-

tion 4. 1.

In synthesis it will involve the double summation

n n ’
[ATY = 3 3. (BAIAT Io + 80, J Alply) (4.4-1)
=1 k=1 A
where

n = number of plates (eleven)

m = number of 1° X 1° blocks in any particular plate P,
[ Al‘kl v : given by equation (2.5-13)
[ AT e] " : given by equation (2.5-14)

(6X, 80), : given by equation (3.3-1). It depends on the abso~
lute plate velocity model.

Since the expression in (4.4-1) is dependent on the plate's absolute velocity
modal, several chbices are available from the set of sight models charac—

terized in table 3.1 and given {or other than the Pacific plate in table 3.2,
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Table 4.6

Contributions to the Differential Rotation Tensor [A Iz, ] as a Consequence

of Absolute Plate Rotations (Model B4} for Each Plate and the Total Crust
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Table 4.6 (Cont'd)

Contributions to the Differential Rotation Tensoxr [ATgze ] as a Consequence
of Absolute Plate Rotations (Model B4) for Each Plate and the Total Crust

i PLATE f M O o) E B4 |
I NAME I NO | LOATATL - and 88 [A] i
EURASIAN 7 0.6828396997D429 —.11364346107D+30 —.36426174050+430
0.1B8913%72080+30 0.6062339410D+30
~.25741B&9BTD+30
- e B
] —.1111062252D+31 0.59076227B8D+30 —.1901900474D+30
J 0,11110622520+321 ~.%142777216D+30
INDIAN a —.1860433120D0431 0.567714227810+30 =.1237136072D+31
~.246459633ED+30 0.4502807057D+30
0.2106892753D0+31
0.2401100458D+30 0.285615200980430 0.23048493710430 f
- 2401100458D+30 8.33325216030+30
:
NAZCA 9 —e1B77725314D+30 0.6548406379D230 —.27523492570+30 |
—.22B37006960+31 0.95985825510+306 1
0.24T14732300431 |
' — |
-.3918174142D0+31 0.6270389380D+3]1 0.4794055988N+31 =
»3918174142D+31 0.13746734320+31 ;
| : ;
—— L] 1‘
PACIFIC 10 ~.11092527060+31 -.5813347106D+29 ~.10001442R8ND+31 .
~30466456124D+28 —.52415446000+29 :
0.11122993520+31 |
- ' é
~+339735612010+29 0.32323732580+30 —.3R205350060D429 ;
0.33973612010+29 8'32900150510+30 i
- 3
%
‘ PHILIPPINE 11 0.2367765599D+30 —.27238027400+30 0.3433B04559D+31 i
0.3133376619D+30 —-.3950140280D4+31 ;
—.8501142217D+30 |
1
0.7759657071D+31 —.1090548679D+31 =~,.3099312539D+30 ]
~.TT5965707T1D+31 —.26941912B8D+30 i
- :
;;;:::::::'—':::::-‘-22 SESES=ESc=ZoSsD ===========;:="“’ r——+—F L ¢ 8- FF 3+ 382 2 4 & ¢ | j
TOTAL —.3371836835D0+31 0.1646712007D+31 —,189792864TD431 - o
-+9404264102D430 0.51R7554845D+31
0.431224632460431
0.5907767929D+3%1 0.12551818231D+32 0.47773948365D+31
—.59077679230+31 3.34604645620+31
::xx::::::.—.:x::::é:zzz:z::::—.::x===z::::::au:n::n:::::3:x::.—.:=x==:==xxx===:==t‘ﬂi;l'

NOTE : ALL TENSORS ARE SYMMETRIC AND REFER TO THE TERRESTRIAL SYSTEH.

THE UNIT OF EACH ELEMENT IS5 g om®
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Recently Kaula [1975] used an independent method to compute absolute
plate veloeities by minimizing the translational motion of tectonic plate
boundaries. Solomon et al. [1975] model B4 (continents have three times
more drag than oceans) appears to agree most closely with Kaula's published
values. According to Kaula [1975] this is the most plausible model, being
well supported by seismologic evidence. )

For the reasons stated above the B4 model was used initially in this
investigation. It will be seen later that all the models lead to the same basic
conclusions.

Table 4.6 containg the values Z 6A[ AI)L] and T8O AIE)]
k k

for each plate and the total crust respectively. It can be noticed that, as

was explained in section 2,5:
(a) there is no coniribution to [?]E due to a A rotation.

(b) the traces of the differential coniributions (as a consequence

of rotations) to the earth tensor of inertia are zero.

Table 4.7 tabulates the combined rotation effect. Point (b) ment,ioned

above still holds if one considers the basic matrix property
tr([M]+[N]) = fr[M]+tc[N]

Because the final effect of each plate depends on diverse faciors,
mainly

(i) Type of plate (continental or oceanic)

(ii) Dimensions

(iii) Earth location

(iv) Absolute velocity
it is extremely difficult to make an "a priori" forecast of results.

Obgerve, for example, that the Nazca plate, although small, gives
a significant contribution to the initial tensor of inertia {T]E , while the

Antartic plate,. primarily due o location, has a minimum effect.
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Table 4.7

Differential Rotation Tensor [ Alger]
and the Total Crust Due to Absoclute Plate Rotations (Model B4)

{AT}p for Each Plate

84
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Absolute Plate Rotations for All Models

Table 4.8
Differential Rotation Tensor [ Alse] =[AT], Caused by

—

MODEL 1

TOTAL CONTRIBUTION TO EARTH TEMSOR OF INERTIA |

.

N AHM

E | NO I

[Al]

A3

1

0.95024700520+30

0.1649147382D+32
~«5199709473D+31

0.3348F 791280+31
0.T874B4B246D+31
0.4249462468D431

B3

0.4T726181552D0+31

D.11114399700+32
—~+314815898270+31

0.2202304196D+31
0.75749870T0N+31
0.44354082750+31

B4

0.25359310%4D+31

0.1421853022D+32
-.6B848194339D+3]

D.2ZBT2469T19D+31
0.7648024407D+31
D.43122563246D+31

c3

0.1044350038D+430

0.1768498427D+32
—e423951023400+31

0.37073485430+21
0.7T6422835840+31
0.4135075337TD+31

e ———

C5

0.71376935110+30

0.1679902451D+32
—.4850922470D+31

0.3550972278D+31
0. T43646033TD4+3]
0.41371%53118D+31

D1

0.1207872429D431

0.1577566927D+32
~+52562982250+31

0.33383941590+31
0.6018229126D431
Ca4048425T97D+31

E2

0.2100683629D+31

0.1490717325D+32
—.5750310776D+31

D.402953968TD+31
0.5539290979D+3)
0.384962714TD+31

E3

0.3500387515D+31

0.1284520232D0+32
- T542893181D+31

0.306516456540+3)
0.6408530605D+31
0.4042505664D4+3]

NOTE

: ALL TENSORS ARE SYMMETRIC AND REFER TO THE TERRESTRIAL SYSTEM,.
THE UNIT OF EACH ELEMENT IS gom®
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Table 4.8 presents the differential tensor [ ATze,] for all available
models. It is evident from the tabulated values that all contributions from
the different models are very similar. By the common sign of all the prod-
ucts of inertia in the given matrices, one can predict that the displacement
of the principal axis of the original tensor of inertia will be in the same

quadrant for all the models.
It should be mentioned here that the values in table 4.8 correspond

to a one-year span. Thus they will be the contributions te the earth inertia

tensor [ I]; as a conseguence of the rearrangement of masses in the earth

_due to the motion of the plates for a period of one year.

To this date only a linear value for the plate absolute velocity is
known, and this fact should always be kept in mind. Fortunately, the rates
of rotation are so small (see table 3.2) that for a period of time < 100 years,

extrapolation of velocities under the assumption of linearity may be considered

satisfactory.

4.5 Final Mean Pole Displacements

The position of the mean pole after the lithospheric plate motions are

considered may be computed by diagopalizing the matrix [ I] given by
[1] = [1le+ [AT] (4. 5-1)

¢ As implied by the evaluation of [-I—]E and [ AT]., the tensor [ I] refers to
the CIO terrestrial system. In the following analysis, this ideal refersnce
frame is assumed to be mantle-fixed, and consequently is not going to be
affected by the transfer of mass involved in the tectonic fluctuations. As
mentioned before, this may be considered a reasonable hypothesis for short
time infervals.
The differential eontribution [AT1], to the original earth tensor

[-I_]E alters the initial position of the earth principal axes, displacing them
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after the crustal masses have moved.

Hence a preliminary problem involves the diagonalization of [ I].
After this, the new position of the disturbed earth axis of figure will be
known, and a comparison with the undisturbed one possible (principal axis
before ary mass displacement is considered).

The diagonalization process may be expressed by
R[[Thet [T R = P (4.5-2)

Thus the numerical computation of [~I'); is reduced to the determination
of the eigenvalués and eigenvectors of the matrix [ I] given in (4.5-1).

Before pregenting the results, the relationship between the general
expression (4.5-2) and previously given formulae [Darwin, 1877}, [Helmert,
1880, ». 4201, [Tisserand, 1891, p. 485] for obtaining the variation in the
axis of figure as a result of a given earth mass displacement will be estab-
lished.

Selecting the principal axis of the earth as reference gystem, equa-

tion (4.5-2) reduces to

R[rIJE+LAIlp]R’ = 1Y (4. 5-3)
and now

[I1 = Tle+ [ AT {4.5-4)

Agsuming small counterclockwise rotation angles between the two

principal frames, before and afier the crustal motions, one has

1 5&3 “Gag
R ~ |-604 1 N = [6a]"+[1]
50(2 "5&1 1
(4., 5-5)
98
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Thus

rre = [teer s 111]rn1taer v 1]
Neglecting second~-order terms,

FIe ~ [6d"[I1+[T1[6a]+[I]
and the following conditions are established

(153—122)5&1 + Ie]. ﬁaz - 1136&3 +
—Lipboy 4+ (IO, +  Tebos  F

Iwboy - Igmbey 1 (Igg~Ty)b60ta

I 13

ha

(4. 5-6)

@.5-1T)

(4.5-8a)
(4.5-8b)

(4.5-8a¢)

From the above gystem ol three equations with three unknowns, a unigue

set of values 6ay (i = 1,2,3) can easily be obtained. Tor cxample, using

Cramer's rule, the rotation angle about the [irst principal axis is given by

‘Izs 112 -l
ST In~1Iag Im
ol BT Iz Toa— T4
6&1 =
IBS—IEQ Ilg “[13
-Ti Ty1-Tgy S P
T —Im Ip~In

with similar equations for 6o, and §cy.

(4. 5-9)

A further simplification of the equations (4.5-8) is possible if one

supposes that the products &0, 1y, (vi,j=1,2,3 and i# j) are small, and

all of the same order of magnitude. Then their differences a8 shown in

equation (4.5-8) may be neglected.
Thus {4.5-8) simplifies to
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601 (Igg=Im)+ Izm = O (4.5-10a)
60(I1-Tas)+ Ts = 0 (4.5~10b)
ds(Tge-In)+ Iy = 0 (4.5-10¢)
which gives
_I33
oy, = —F— {(4.5-11a)
R - el P .
=1y .
bo, = —2— (4.5-11h)
Iyn~Tas
-112 -
oty = ———— (4.5~11c)
Ip—In
if one writes
A 0 0 a - -E
[I] = [Lle+[AI) = B 0 |+ b ~D
3 C s G
(4.5~12)

Then substituiing the proper values of (4.5-12) in equations (4.5~11) one
finally has

D

b (Crc) - (Bth)

(4.5-13a)

= E -
bo, = (Atra) - (Cre) {(4.5-13b)

- ¥ -
b0 = Enm (4.5-130)

The above equations ara in the form given by Darwin, and have the digsadvan -

tage that in the case of rofational aymmeiry, 8oy is undefined.
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In this investigation the rigorous approach using eigentheory was

the selected operational process. Neverthelegs, as a conseguence of the
smallness of the rotations, the same results are obtainable from equations
(4.5-18), if the elements of the matrix [ I]¢ given in (4.2-12) and [ AI],

from table 4.8 are used in (4.5-12).
In the present study the effect of tectonic plate motions on the displacy—

ment of the mean pole of the whole earth as well as on the crustal pole were

determined.

The results are shown in table 4.9. Several conclusions may be drawn

from the final tabulated resulis:

(a) The first and most important one is that lithospherie motions a8
described by recent geophysical theoretical models of absolute
velocities [Solomon et al., 1975] do not produce any significant
changes in the principal pole of inertia over a time period of
approximately 70 years.

This contrasts emphatically with previous published results [Liu et

al,, 1974] claiming that tectonic plate movement may provide a secular drift
of the mean pole (10Y% of the observed value).

In this respect two points should be clarified:

(i) The above authors divided the short par.er in several parts. The
“Analysis' follows literally the work of Darwin [1877]. Thus
primarily eguations 4,5-18 are applied.

(ii} The part of the paper termed "Results of Computations' is de-
ficient in the presentation of what may be considered to be basic

intermediary results, such as the integrated values of the prod-

uct of inertia used in Darwin's equations, or fundamental assump-'

tions like the plate boundary model used. I is coincidental that

the reported pole direction of gecular motion agreeg within 2°
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Table 4.9

Displacement of the Polar Principal Axis of the Eaxrth and Crust Due to
Mags Displacements as a Consequence of Tectonic Plate Motions

7\# e

!
Barth's Inertia Pole Displacement Crustal Inertia Pole Displacement P
AModel 1 Year 70 Years 1 Year 70 Years |
Xo (mm) Yo {mm) | Xo(mm)  yo(mm) X (mm) ye (mm) Xg (mm) e (mm) @
A3 0.008 -0.019 0.56 -1.33 0.23 -1.00 i5.96 ~69.,93 1
B3 0.005 -0.018 0.35 -1.26 0.14 -1,01 9.45 -70,93
B4 0.007 -0.018 0.49 ~1.26 0.18 -0.99 13.37 -69. 30
C3 0.009 ~-0.018 0.63 -1,26 0.26 ~0,96 18,48 -67.20 L
C4 0.008 -0.018 0.56 -1.26 0.25 ~-0,94 17.78 -66,31 |
D1 0,008 -0, 014 0.56 -0.98 0.24 -0.78 16.94 ~54,74
E2 | 0.009 -0.013. 0.63 -0.91 0.35 -0.73 24.43 ~50.75
E3 0.007 -0.015 0.49 -1.05 0.24 ~0.85 16.66 ~59.43
Note. The values of the above coordinates are referred to a coordinate system parallel to the CIO polar
frame centered at the mean pole x%,,y, and crustal pole x.,y. respectively. (See below; sketch
not drawn. to scale). ‘
: Y ¥:=Y +CIO T
¥e —
Yo C:
X=X ‘
X Zo :
|
|
:
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with the empirical value published by Markovitz {1960] and based
on ILS data.

In the author's opinion the above-mentioned paper has a discon-
tinuity between Darwin's theory and the final statement that

| plate tectonics may account for 10% of the secular drift of the

pole, supposedly in the right direction. Practically everything

in between is left to the reader's imagination.

If other changes of mass distribution in the earth (eustatic sea level
changes, melting of ice in Greenland, epirogenic motions, etc.) are postu-
lated as possible causes of secular drift of the pole, their cifect should be
simulated in the most rigorous way before any conclusive answer is estab-
lished. One feels that the differential contribution to the earih inertia iensor
as a result of plate tectonic motions is greater in importance, mainly because
of the magnitude of the masses involved and their asymmetrice distribution l
on the earth. Internal shift of masses (i.e.,convection currents) is always
a possibility, although there is no viable way today of knowing if they really
exist. More precise satellite dynamical solutions in the future may clarify

some questions in this area after reliable data for a number of consecutive

decades is analyzed.

() While the eaxth axis of figure remains practically unaffected by

plate motions, even during periods of a century or more, the

o N S AT e e M,

pole of the crust moves only about one centimeter per decade
in the general direction of the earth maximum moment of inertia
axis. The vector displacement for the motion of the erustal pole

is about 50 times larger than the one for the mean pole.

—_— ———— s e .

(¢} The general direction of the motion of the pole of the crust coin~

cides with the prediction of Milankovich and Jardetzky {1962]

l.w-—'na..-:!af:\m.',m;-:»-z- e i

and is in accordance with "Milankovich's theorem' [Scheidegger,

et ——
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Table 4. 10
Coordinates Used for the ILS-IPMS Observatories

PLATE

STATION

I
1 wWLLL bl kiastwtis
cafizm sooIcdc acsoons
. a Ccoo ) NI, el S e T A D
2o C oo m O N O R RO R TR T R N Y |
- o - i -t COCcCc oClcSogo Soeooa
.o | E L otdiofpr ofotaaiiie! oinioariefodial
Z b Tt ot R Ty R o )l | et el w il e et et vl et i  a an p2 7 v S vt vt pl el v o st et oL e b= e
- Bl b AR D PRI BRI RNGVIVIE GHAWE e G rindtinsd RN R
WD NRANS DANDSDRe Deratai AAconnd AS wuesCa KXl o a ) DRI
L}
1
- e LI S A 4 a0 vt 4 [ RN [N [ RN ) LN L ] LR L]
[ ~SMOCH OO0 SUGEo QSISO ColnINKGg SOCICOO OISO BBOCOOoN - meademinnd
v m BTOSYNOO OTrRIMAAL DMIeiarnm Ormd=so SACHMO0 MeanfiGed FOSE0OW NinyShnt
[
bad FOMEMNeS MONGTMM e OCRAIN e C o0 RNTEE Y et O NN ST s m
-ty ONOMEIEIN MmCAST T QeinCOmMm OGO [AFSHNGNE  NINNNNGNT  MAND-TSE - Qloesrem
=
L=
= il QO NN QGO e QTN e OO e QI
= HNOGEGTE MO et O eSS (=t e Rt L P e Wl S EIe W SN~
e " PR MO O LB AT T ~t LTy
(2]
c
Woogﬂﬂ Mref-cQe NGESCPO SGNCCO— CCOOC M QO0AMGD fAOOSCO NOmN-O
-4 D oGNS NGNS MGeO-ND ON=OCHr NOLSCoNN TPF=T0 CCOCAO GHngod
NMAOEEA ~SOONASD FUBINGO SIRINGTe OCNCOr QNAUEd-T CCOTCno  WoeNoo
c)w UL AN U B NN s Foah s 5 &9 &g a0 e &+ & ed 4 a0 wd «a 8w 3 d oy (R N NN LN N
Q MEearHD s MIAYARCH N ~PAOY CSwOMTO  FOMKGRY SO adsE O PGr-t=0  MeQr~NG
ol O ML Q-M emfiennird AAOEONID DR -aE NN FOMNS =0 DNNBao-E  ~ndein T Soorminrt
g .
[
= @QPELEOON GUNTGIMN FETOOOH NDNGOMN  GND 0N OO oMMy @ % oo o
H Orfin AN MO minD  BINN=CST S AN MVmENGN OO Mel  FehdJani monneamn 0o0o0Soo
QOMNEING ROMNIMNE TACHCNN MOONONRD NSTAKEN MROTOCTY MAMEaONe GEereD
AT WIGINN LA ﬂ46%335 545%143 NAMMWEED 0T e ﬂﬂﬂBﬂzﬁ MmN e e
m [l ad ot ad ot o B 0 oF o Y I ] a1 o o ol ol e EAT E TV I T o o ool o S B o ol o8 Tl R [ T oM o Lo B ol T L]
5]
=
o
ot =
=i Wi o L]
IO o Q » [=] =
- (% ] - -t - = v = Z M- AL b
=o [} x —rQ [ lal-4o] =< 0 a s b=
£ = . ot wo -« O e = O e Zz Z IOk o £ mwvl o<
iy o L =0 Our Z = Wit (8 Z-EXmCad] Gt X IS Zm X Co X
[ <Zraw DDk W A b X AR =l Onag e UL W «<D<Z O - L) 2
NOWE 1= «0«rX>=>0 L2300 DL2<UI-~ FTAVi<€ii<o WZwelil. G9——0r = OO Te
=] DUED A =X CECZN Ly D0 SUWHE TODIMORV DS e e Th-TE Dttt
[ Eam Ve ST T TR g - - T X enid) EDWZUN QN B UG Z QXEZsiay) Nt
- T HZL ODAWC WY A= 0 CWUEID<=€ gm0 0D o< Sl =t il a e
EAOsMURY Al.FOALA LEREERE 2wl duiszon LoDI<a ViinIXdea EXOoudo
- -~ - - —
a MO BOCHNME DOFRSEE oMo OO TN M nner-m SOrb-tmm At
= e et N AN NN m e SN -3 N N ttﬁﬁﬁw
o - N

ILS 0BSERVATORIES

*

REFERS TO TABLE 4.1

1

el
=
L




.

1968, p. 177]. This implies that the inertia of contidental plates
is less than that of oceanic plates. This is a fact established
before, and does not contradict any isostatic model. Once again
global tectonics fits the geopliysical scenario perfectly, avoiding
previously reported contradictions in the direction of polar wan-

dering {see Munk and MacDonald, 1960, p. 277].

4.6 Apparent Motion of the Mean Pole Due fo Station Shifts

It became cvident by the results of the previous section that the earth
axis of figure (i.e., the polar principal axis) does not suffer any significant
displacément as a consequence of tectonic plate motions during a 70-year
span. Thus, there is no true secular motion of the pole in this period of
time, at least under the hypothesis and models used in this investigation.

This section studies the possibility of an apparent gecular motion in
the computed barycenter of the ochserved wobble, produced mainly by the

drifts of the observatories monitoring polar motion.

Previous investigations in this area [Arur and Mueller, 1971] remained
inconclusive, primarily because only the relative angular velocity for the

plates available at the time and too noisy observations were used.

Depending on the selection of the set of ohservatories, two different
cases will be analyzed:

(i) Apparent motion of the mean pole induced by the ILS stations;
(ii) Apparent barycenter displacements in the TPMS.

‘Table 4. 10 compiled from [Yﬁmi, 1975] shows the principal charac-

AL s ras

teristics of the participating stations.
Systematic "'errors" at the different ohservatories caused by plate

rotations were determined according to the following procedure:
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Table 4.11

Number of Years of Common Activity for the Different ILS Observatories*

e —— ..,{......h..*‘.J -~

et i bbb o AP e E LA B 2 ¢ 3 e’ b et e w45 e

S T

f Stations Co-observing Time Span
Mizushwa Tchardjui**  Carloforte Gaithersburg Ukiah Cincinnati 16 years
Mizusawa . Tchardjui Carloforte Ukiah Cincinnati 4 years
Mizushwa Tehardjui Carloforte Ukiah 4 years
Mizus%awa. Carloforte TUkiah 11 years
Mizusfawa Kitab ' Carloforte Ukiah 2 years
Lﬁzusfawa. A Kitab Carloforte Gaithershurg Ukiah 11 years
Mizusiawa Kitab Gaithersburg Ukiah 3 years
Mizusgawa Kitab Carloforte Gaitherspburg Ukiah 19 years

.Data source: [Déjai;f:fe, 1972].
* The coordinates of Tchardjui and Kitab are assumed to be equal.



First, differential changes in the Cartesian coordinates at each sta-
tion j due to the differential rotations of the corresponding plate P, were

obtained uging the expression
{dX}:. = [_‘5_"-9191{3}3 (4.6-1)

where the vector {x}; was given as a function of spherical coordinates by
equation (2.5-6); the skew-symmetric matrix {§w lp1+ was defined in section
3.3.

After the proper plate roiations are applied to each observatory, a

new set of disturbed station coordinates {X1}, is found
{f}j = {X}J + {dx}, (4.6-2)

These coordinates define a new Cartesian system (the final or rotated one.)
. The problem is then reduced to determining the angles which will
transform the original system (x), say at epoch T, to the new apparent
system (X) at epoch Ty. 7This displacement, in a sense equivalent to the
one between the barycenters of the wobble, at epochs T, and Ty, is a con-
sequence of the station motions. Hénce the position of the (¥) system may
be considered the apparent position of the (x) frame induced by the motion

of the observatories themselves in the interval Ty - 1.

The coordinates of the two systems, assuming differential displace-

ments, are related by the known transformation

(x}; = Refxdy = [[6a]"+[11](x}, (4.6-3)

&ty
By ¢ P
8tta

where in the usual notations:
it
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are the counterclockwise rotations about the initial (CIO) reference frame.

By & least square solution, the values of 6, (i = 1,2, 3) for each
particular absolute velocity plate model using ILS and IPMS statio.ns were
obtained.

The results are plotted in Fiss. 4.2 and 4.3 for a 70-year span
(T, = To =70 y). The figures show the apparent displacement of the mean
pole csused by the motion of the TLS and IPMS observatories for the eight
absolute velocity plate models deseribed in Table 3.1.

It is known that the activity of the ILS observatories was sporadiec
and that all the stations were not observing on a continuous basis.

The discontinuity in the mean pole path in Fig. 4.2 reflects the changes
in the number of active cooperating stations throughout the 70-year period
covered by the observations. The values used are shown in Table 4.11
where the different groups of co-observing stations and the approximate
number of years of simultaneous operation assumed, are given. TFigures
4.2 and 4. 3 thus reflect the apparent systematic error in the mean pole
caused by individual station drifts and accummulated during a 70-year span.
The figures also show the apparent displacement of the equatorial x axis
{(point of zero longitude). All the models except B3 (drag beneath continents
only) and E3 (drag heneath 19 hot spots) produce an apparent westward dis-
placement at the equator.

The following conclusions may be drawn:

(a) An apparent displacement of the mean pole is evidenily produced
as a consequence of tectonic plate motions and should be impli-

cit in the IS data as well as the IPMS latitude observations.

(b) The rate and direction of the barycenter drift depend on the to-
tal number of observing stations and on the absolute velocity

= plate model. The magnitude of the pole displacement represenis
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(d)

only 10% to 20% of the astronomically observed value. Model C3 '

(drag opposing horizontal translations of slabs, oceanic subdue-
tion zone only) produces the maximum shift while model D1
(maximum pull by slabs plus plate drag) gives the minimum dis-
placement,

There is not 2 complele agreement in direction hetween the
obgerved mean pole displacement and the one derived using
absolute plate velocity models. In general models B3 (drag
beneath continents only) and B4 (continents have three times
more drag than oceans) give the best correlation with the ob-

served pole displacement.

1t is clear comparing the LS and IPMS results that if the num-
ber of stations is increased, the amount of displacement is re-
duced and the direction of the drift changes slightly toward the
90°W longitude. It also appears that greater numbers of ohserv-
ing stations located on different plates fend to average hetter

and produce less apparent motion of the pole.

While in the case of possible true displacement of the earth axis
of figure studied previously, all the geophysical models provide
practically the same answefs; when the apparent position of the
mean pole is obtained after consideration of siation drifts, the
dependence on the model increases. TFor example Model E2
(drag beneath eight mid-plate hot spots) is in complete disagree-
ment with the others, producing an apparenf displacement of the
mean pole in a different quadrant (~ 10° & longitude).
Consequently, caution should be exercised in the uge of absolute
velocity plate models, because they are theoretical and do not

necessarily reflect the actual displacements of the plates. Ilence
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these models should not be assumed valid and practically imple-

mented for the correction of presently cobhserving stations.

Current observational technology (VLBI, Lunar-Laser Range) pro-
vides the possibility of establishing a geodetic network capable of detecting
relative tectonic motions of large plates on the earth with better accuracy
than the optical asironomical observations. These undoubiedly may contribute
to the fundamental understanding of global tectonics, providing ground fruth
for comparison with theoretical geophysical models. An initial study was
conducted [Mueller and Schwartz, 1972] in order to decide il existing stations
and baselines relative to surface plates could provide the precise measure-
ments of intercontinental distances needed to recover the plate rates of dis-
placement.

To this day no major geodetic results in this area have been reported,
primarily because of the limited number of facilities available and the poor

network geometry.
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5 SUMMARY AND CONCLUSIONS

There is conclusive proof now (see Table 1.2) that the mean pole
of the earth has a secular motion of the order of 0”. 003/yr toward the direc-
tion of 70° W latitude.

The fundamental objective of this investigation was directed to answer
the controversial question:

Is there a irue secular motion of the pﬁle ?

An examination of the geophysical hypotheses available to explain the
astronomically observed drift of the mean pole suggest changes in the earth's
inertia tensor as a plausible cause.

Rapid accumulation of geophysical and geologic evidence during the
past decade strongly indicates that the earth surface is mobile. Large plates
constituting the outer 50 to 100 km of the earih's crust appear to be moving
with respect to one another at average rates fxfc;m 1 em/yr to as much as
15 em/yr. 'This general siructural schemé is termed "global plate tectonies'.

On this basis a differential method was applied to determine the con-
tributions to the earth's inertia tengor caused by infinitesimal plate motions.
The approach is consistent for short intervals of time (<100 years), simpli-
fying the earth model assumptions to present day configuration.

Nevertheless, the final resgults are subject to the following modelling
congtraints:

(1) Crustal model

(2) Plate boundaries

(3) Abgolute velocity model
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The most recent geophysical ideas have been implemented and used
in the simulation. Among them, the eight theoretical models for absolute
plate velocities established by Solomon et al. [1975] provide the framework
of this investigation and should always count in any final interpretation.

The major conclusion of this quantitative analysis may be summarized

as follows:

No evidence of a frue secular motion of the earth axis of figure can

be found from the earth's changes of inertia due to tectonic plate movements.

The indisputable astronomic evidence reflects the apparent motion
of the wobble's barycenter due to drift of the observing stations as a conse-
quence of lithospheric motions.

The above hypothesis is not fully supported by the results of section
4.6 where it was shown that the apparent fluctuations of the pole caused by
the motion of the ohservatories due to tectonic plate rotations may aceount
for only from 10% to 20% of the total observed displacement, depending on
the absolute velocity model used and the number of stations involved.

Thus, neglecting other conjectural influences on the earth tensor of
inertia due to mass redisiributions (sea level changes and ice meltfing, con-
vection currents, ete.), primarily because a unifying global framework des-
cribing the phenomenon is not yet available, the following old question should
be reopened:

Is there a sliding of the whole lithospheric erust ?

The idea preceded global plate tectonics by many years [Wegener,
1924, p. 152]. Several models have been proposed as possible driving mechan-
isms, although none of them is fully accepted. Among others, convection
currents in the mantle, manfle plumes or hot spots and, recently, tidel drag
are the most commonly referenced [Bostrom, 1971 and Bostrom et al., 1974].

Within a short time opposition arose to the theory of tidal drag as a driving
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mechanism producing westward motion of the crust. Jordan [1974] in a
brief note showed that tidal torques are far too small to drag the lithosphere
at any appreciable velocity.

A novel, conceptually simple driving mechanism appears implicit
in the results of this investigation. Having a dynamical base, it fits the
geophysical as well as the astronomical evidence.

Assume that the whole crustal upper layer, as modeled in this study,
can glide over the mantle. According to basic gyrodynamic theory, the tend-
ency of the thin shell ig to attain dynamical stability, that is, the principal
axes of the erust will constantly tend to purgue the prineipal axes of the
whole earth until they interlock [Munk, 1958], [Ingles, 1957]. Thus the mechan-
ism postulated in accordance with the results of gection 4, 3 will produce a
westward drift of the lithosphere at the equator and an eastward displacement
at the poles, as is schematically shown in Fig. 5.1.

Crustal gliding over the manth, as theorized above, is not opposed
by geophysical formalism. Munk and MacDonald [1960, p. 282} point out
that a thin outer shell sliding over the interior could result in a displacement
of a few degrees at most, and that the stress generated is too small to lead
to failure. The maximum displacement considered here is about 5°, congist-
ent with Munk and MacDonald [1960]. The same authors [p. 285] have also
stated that a crustal gliding over the mantle does not appear to constitute a
reasonable model for polar wandering; however, as mentioned in the intro-
duction to this work, a clear difference should be established between secu-
lar motion of the mean pole and polar wandering. The results of this inves~
tigation leave the enigma of polar wandering as well as that of large-scale
continental drift basically unanswered. All the conclusions of this study are
in agreement with the hypothesis of preseant global tectonics, not implying
the support of theories of polar wandering or major continental drift on a

geologic time scale.
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Jardetzky [1962] congidered the posgibility of a gliding of the crustal
shell over the mantle, analyzing the available paleographic evidence which
supports the hypothesis: transgressions and regressions, the formation
of guyots, vertical displacements of individual blocks forming a continent,
and some features in connection with shear pattern distributions, were re-
viewed as favorable evidence in defense of a gliding of the crust.

Of all the above phenomena resulting from an infinitesimal sliding
of the crustal shell, the formation of shear patterns may provide the needed
correlation between real tectonic features on the earth and analytically-
obtained shear patterns.

The first theoretical treatment for calculating such patterns under
the assumption that the earth crust is ideally elastic, ig due to Vening Mein-
esz [1947]. It is known that the final computed positions of the shear patierns
with regard to the earth depend on the direction of polar path assumed [Sehei-
degger, 1973, p. 284}. Recently [Liu, 1974] essentially following Vening
Meinesz' theory, but agsuming the modern values of a shift of the poles over
80° N along the meridian of 75° W obtained a N-S fracture pattern which
agrees roughly with the existing boundary system of the major plates. I
an equatorial westward rotation of the crust about 14° W is assumed, it may
provide the other E-W boundaries, such as the Pacific~-Antartic ridge or
South East Indian Rise.

A westward rotation of the crust is also supported by astronomic
observations. Recently Proverbio and Poma [1976] considered a group of
16 BIH observatories located on six different plates. After analyzirg time-
scale data from 1962 to 1967, they obtained a final westward drift of the whole

crust which accounts for the observed deceleration in the earth rotation.
Astronomically obgerved latitude also supports the proposed hypothe-

sis of the sliding of the crust at the poles in the opposite direction of the
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reduced secular motion of the mean pole. It should be mentioned here that
Cecchini in an infrequently referenced paper [Cecchini, 1950] after aﬁalyz-
ing astronomical data, shows skepticism about a true secular motion of the
barycenter, su, Jorting the almost absolute fixity of the mean pole. Fip.
5.2 from [Yumi and Wakeo, 1970] shows the variation of latitude at the five
ILS stations for an interval of more than 60 years. The straight lines in
the figure represent the variation of mean latitude of each observatory if
the secular variation of the mean pole as obtained from the five ILS stations
is considered. Note that for a sliding crust rotating as mentioned above,
the variation of latitude will have the trend shown in the ligure, with decrease
or increase in station latitude depending on whether they are in the eastern
or western hemisphere. It should be noted that the latitude of Carloforie,
being close to the Greenwich meridian, does not vary greatly.

It would therefore appear that a crustal sliding over ithe mantle is
a possibilify that should not be overlooked, and further research should be
devoted to this topic.

Tig. 5.3 represents schematically the actual situation at the north
pole, if an assumed easterly slippage of the crust occurs. Two hypotheti-
cal epochs Ty ~1900.0 and Ty, ~ 1970.0 are shown. The axis of figure of
the whole earth will hardly change during that period of time. (Although
changes in the inertia of the earth due to crustal sliding may move the polar
principal axis a few millimeters, there is no way io detect this motion with
the present instrumentation). The initial CIO point assumed to be a bench
mark on the crust will move with it, thus causing an apparent motion of the
mean pole or barycenter, precisely in the direction opposiie o the crustal
displacement.

In reality the actual apparent displacement of the crust will consist

in the composition of two movements:
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(1} The apparent motion of the mean pole originated by the crustal
slippage.

(2) The apparent motion of the barycenter of the wobble due to the
drifting of the stations, as a consequence of plate tectonics.

In Fig. 5.4 these two apparent motions are illustrated for a 7T0-year
span. One arrow represents the apparent direction of the principal poie
of inertia due to the eastward motion of the crust (its axis of figure pursues
the earth principal axis in the opposite direction). The other arrow is the
apparent motion of tile IPMS barycenter caused by siation drifts (model
B4 was used tere). Observe that the resuliing vector of these two motions
closely agrees with the actual observed position of the barycenter.

All of the above evidence indicates the necessity of taking a new look
at the secular motion of the pole.

Tror a short time span (< 100 years) the principal polar axis of the
earth may be assumed to be f{ixed, that is, mantle-fixed, since it will pierce
the crust at different points, given the apparent impression that it is moving.

Thus it is recommendable that all observations be referred to this
quasi mantle fixed axis.

It is general practice today to apply what is known as polar motion
correction to reduce the observations to a common CIO system. Unfortu-
nately, what may oceur is that, depending on the epoch of the reduction,
different ficticious reference axzes are obtained. Hence every polar motion
reducticn today may create a new reference system as a consequence of the
possible movement of the erust and its attached CIO point. 7This is the pri-
mary disadvantage of a erust-fixed refetence system: asironomically re-
duced latitudes (or other coordinates) at different epochs do not refer to a
common system.

The principal polar axis of inertia of the earth (axis of figure) has

the advantage of being dynamical in nature and notl slrietly geomeirieal,
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as the CIO axis.

It will be preferible to refer all observations to a unique mantle-fixed
gsystem. 7To be able to do that, geodesists and astronomers need the pole
wobble referred always to the same point (polar axis of figare), disregard-
ing the apparent seculaxr motion of the barycenter. In this way polar correc-
tion will refer the observatories to the unique prineipal axis of inertia of
the earth. At the same time the international organizations in charge of
latitude observation should give the secular displacement of the mean pole,
since this would provide a way of knowing, for éxample, the rate and direc-
tion of crust slippage, an important factor in geophysical research.

After about 100 years a new mean pole should be defined to account
for possible minor true displacement of the earth's axis of tigure.

Proponents of a mantle-fixed reference system are not few in number;

among them [Mueller, 19751, [Melchior, 1975] postulated its advantages.
Previously Fedorov et al. [1972], after studying the effects of relative dis-
placement of the zeniths at the observing stations, also recommended using
the mean pole of the epoch of observation instead of the current CIO system.

Tinally, it should be mentioned also that the possibility of a libra-
tional component is compatible with the above~described theory of crustal
slippage.

If the earth axis of figure has a small periodic motion, as proposed
by Busse [1970] due to the coupling beiween the inner core and the mantle
of the earth, this may create an apparent libration, as seen in the astronomi-
cally-reduced barycenter.

In all, a careful study ahbout these matters should be undertaken be-
fore new resolutions on the subject of reference systems are adopted by the

TUGG or AU,
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 APPENDIX A
(Referenced in Sections 2.1.3 and 3.3)

Al Special Types of Linear Transformations

In what follows several important particular cases of the general
linear transformation L in the Euclidean space E° will be studied.

Congider in general the linear transformation given by
&l s k') = x1=mix) (A.1-1)

where [L] is i-mown as the matrix of the transformation and satisfies the
properties gpecified in section 2. 1.4.

Explicitly equation (A.1-1) may be written:

K = L1iX t LiaXap t L1sXa
Xz = LaiXy t bogXp + faaXs (A.1-2)
Xz = L£a1Xy + fgaXp t faaXs

where

2, ER (R = set of real numbers)

The following specific examples of transformation matrices will be

reviewed.

[P] = projective transformation matrix

[A] = antisymmetric transformation matrix

Rg = rotational
[N1 = orthogonal transformation matrix { 84 = symmetric
[1] = identity
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A.2 Projective Transformations

When [L] is symmetric, and of the form

of iz Oy Qg
[P] = {elfal’ = o 0aCls
s '
where o, (i=1,2,3)ER
and the condition
3
trifa}al'1= © of =1
1=1
is fulfilled, then
[P}
{x] > {x7}

is called a projective transformation and [P] its matrix.

The above implies

Oy (2 02 4%y)
e} =1P1{x} ={ aa(Ta,x) = (Teyxg){ad

Ua (L yXy)

(A.2-1)

{A.2-2)

(A, 2-3)

(A.2-4)

Geometrically this means that the point {x, } is the projection of {x} on the

line with direction cosines {a}. In this respect the following equivalences

are implied

¢y = cosgy (i=1,2,3)

(A, 2-5)

The above geometric interpretation may be shown very easily using classi-

cal vector representations.

If (see Fig. A.2)
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ﬁ
u = unit vector with direction cosines {a}
then

OP = {x,} = (3. SQ) LU= (T oy x,y){al

as was already given by equation (A.2-4).
Among the important properties of the projective transformation

matrix are:

(i) [P] is idempotent == [P]? = [P]

This is immediately proved,
[P]1? = [P][P] = (Za)[P] = [P]

(ii) The matrix [P] is singular

[P] is singular == det[P] =0

o 0O, 0y 0 0r Gz O
det[P] = as Qals | = 0100 | 6y Op Qs | = 0
2
s 023 a, 0O 0Oy

and from the above it follows that

Rank [P] =1 = tr[P]
Therefore the transformation in (A.2-3) is an application from E® to E*
(i.e., vectors (points) in the three dimensional Euclidean space E® are pro-
jected onto the line with {a} direction cosines).

(iii) The following equalities are easily proved

x}'P1{x} = (T ax,)?
and'

{x}*[[P] + [P] ] (x} = (Sa,x,)°+ (T afx,)
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A.3 Antisymmetric Transformations

The linear transformation [L] given by (A.1-1) is called antisym-~

metric and denoted by [A] if

fx} 4] > {xi} == {x.}is normal to {x}
that is,
i) = x{x} = 0 (A, 3-1)
but
{xi} = [A1{x} (A, 3-2)
thus one has
() {xi} = (xF[A1{x} = 21008+ 25235 253535+ (Raa+ 8ap)XaXa
T (a1t a3 Xa X 1Ay gt Ag1 ) XaXe = O
(A. 3-3)

Hence, in order to fulfill (A, 3-3) it is necessary and sufficient that

817 = 23 = 23z = 0

dpz T ~ Aag
A1 T — Mg
Qaz = ~ap

Using the notation,

dag T @ ag 7 Ap 31 ~ fla

finally one may write

0 ~dg Qz
[A] =[a]l ={ a2 0 & (A 3-4)
g a,, 0
and clearly
[al’ = -[al (A. 3-5)
Note that
iy} - i) = (2" {a) = - x1{n} = -12)" {x] (A, 3-86)
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and
(3 = &Ial = (al'[x] = -{al'(x]" = ~{x]"[a] (4.3-7)

which implies in the classical vector representation

-2, = -
Xy = 84 A X where A= vector or cross product

and - N
|=] = la] |x]| sin6 (A.3-8)

A precautionary note should be made here with respect to the sign con-
vention implicit in the cross product. The rule for the sign of ; A is that of
a right-handed (or clockwise as viewed along Z,{ ) rotation which ecarries
2 into ; through an angle < 180° and making sin 8 > 0.

It is customary in geodesy to use the convention that a positive rota-
tion is one which appears counterclockwise to an observer looking from the

positive region of an axis toward the origin, Thus
-a] = [a]" =implies positive counterclockwise rotation

Fig. A.1 illustrates the above sign convention with a simple example

: >
Counterclockwise rotation : [k]7{j} = {i} = Ak

- =
Clockwise rotation : [k] {j} =~ [i} = kAa}

|

-5
k(0,0,1)

=l

(0,1,0)

¥

+ /

- @ i(1,0,0)

&)

Mg. A.1. Sign Conventions for Clockwise and Counterclockwiss Rotationa
12H

e+ o L mpmespedoe o MW

o e

NP By Bt 1 3t = o ek s e o Bt AL €€ Pt et i SR B RSt SR 2 P 0 et e o i e+ttt et e e P B¢ e

.
t‘”&k%nn—&u& i bm sk . bl s 0




From (A.3-6) and (A.3-T) it is obvious that in the particular case
{x} = {a}
[x1{x} = [x1"{x} = -[x]1{x} = {0} (A. 3-9)
and
ZPx1" = x'[x] = -&x}7[x]" = {0} (A.. 3-10)

It is immediate to prove that
det{a] = 0 and Rankfal] = 2
Notice that if

|2l = 1= %a% = 1 == a - u (unit vector)
then -
0 -0y Gy
[uj = Ol 0 -0y | = [a]
-Qg oy 0

..9
where {a} are the direction cosines of the unit veetor u.

A.4 Orthogonal Transformations

¥ is very well known that in peneral a transformation like (A.1-1)

is called orthogonal when the mairix of the transformation fulfills the property
Ny" = (N]* (A.4-1)

K det [N] = +1 the transformation is called '"proper!, or "direct!. Every
orthogonal direct transformation conserves the length and the angles between

vectors.

A.4.1  Relations between Orthogonal and Antisymmetric Transfor-
mation Matrices

{a) Direct orthogonnl matrix as s function of antisymmetric mairix
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It may be proved that if [a] is the matrix of an antisymmetric trans-

formation, then

vy = (121 - a1 ] {121+ el |? (A.4-2)

is the matri:; of a direct orthogonal transformation.
Observe that det[a]=0 but det [[1]1+[al]= 1 # 0
Given a square matrix {a] one-has
[[a1+111][[al-111]= (2P~ (11 = [[al-(11]{[a}+[1]]
In the same way it may be proved that
[f21-1al]) [113+{al ]* = [111+(21] " (111 - (a)]
Then, if [a] is antisymmetric, and
N] = [[1]-[al][[11+(a]]> (A.4-3)
one has
INT" =[[21+ [a) J7[11]~(al" J=[[1]-[2] J*[(1]+ [a]]
but )
v = 121+ [a] | 12 - [21]*

thus
(N1 = [N7*

and the statement related {o equation (A.4-2) is proved.
(b) Antisymmetric matrix as a function of a direct orthogonal matrix
Reciprocally, if [N] is direct orthogonal, then
(2l = [+ 121]* {111 - o1 (A4t
and the following condition must be fulfiiled :

det [[N]+ [1]]# O (A.4-5)
Let equation (A.4-3) be written in the form
WNi[iti+1al J= [1]1-1a] (A.4-6)
or
[NJ[1]1+ [N][a] = [1]-{a]
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which gives
[[1+[11] [a] = [1]-[N]
Consequently, if condition (A.4-5) is fulfilled
fal =[ N7+ [11]"[ (1] - [N]]
which proves equation (A.4-4).
Now it will be proved that the given expression for [a] in (A.4-4)
is antisymmeiric. Affer transposing (A.4-6)
[[1)+[al' J[N]"= (1] - [a]'==>[1] +[a] = [[1] - (2] JIN]
(A 4=T)

Multiplying (A.4-6) on the left by [N]”
[11+(a]l = [N]"[[1]~1a]] (A.4-8)
Multiplying (A.4-7) on'the right by [1] + [a] as given by (A.4-8), one has

[rar+ ()] foars 121 ] = 121~ 21" ] 111 - fa1]
thus finally,

T+ [al + 121"+ Tailal = 121~ [a] - [a]” + TBHYa]

2 [[al"+[a]l] = (0] = [a]' = -[a]

A.4.2  Orthogonal Transformation Matrix for a Rotation around
a Line of Direction Cosines {a}

In the following treatment all counterclockwise rotations as defined in
section A, 3 are going to be considered positive. ,

Suppose one has a vector {x} = OQ (see Fip. A.2) referred to a
Cartesian frame (x;. A line of direction cosines {a] is given and a rota-
tion O around this line performed. '

After the rotation the vector {x} will be transformed inio the {xf L

The problem is to find the orthogonal matrix R g(8) of the transformation,
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Ra(8)

{x] ————— {xz} or [x:}=Rq(08){x}

(A.4-9)

- A 1 e !
In Fig. A.2 the vectors OP = {x{} and QA = {x', ] transformed from

{x} by the previously studied projective and antisymmetric transformations

are shown.
That is,
e
OP ={x%}=1P]{x]}

where, recalling equation (A.2-1)

[P] = {a}{a]’

and . '

__)

OA =[x} =[al'(x} = [x]{a}

From the picture, clearly
' - - >

{x4} =OR= 0P+ PR
but

> - -

PR=0OMcos B~ QA sinb
and

- - -
oM = 0@ - OP

(A.4-10)

(A.4-11)

(A.4-12)

(A.4-13)

(A.4-14)

Therefore, replacing the value given by (A.4-14) in (A.4-13) and this result

in (A.4-12), one has

, - > - -
{4 1=0P+ (OQ - OP)cos B~ OAsinf

(A.4-15)

Substituting above the values from (A.4-10) and (A.4-11) one obtaing

{xa} = [P1{x] + { {x1-(P1{x} }cos 6+ [a] {x}

or

(x4 = [(P1+[121- [P1] cos 0 + [0 sinp |{x]

Hence, finally recalling (A.4-9)

Rg (BY = cosB[1] 1 (1 - corB) ] + sin O] a]

13

(A.4~16)
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which gives the value of the rotation matrix R4 (8) as a function of the known
parameters: the rotation 8 and the direction cosines {a}.
Note that
Rg' (8) = Rq(~0) = cosB[ 1]+ (1~ cosH)[P]~sind[a] (A.4-1T7)
Clearly the above equation will apply to the clockwise rotation case.
In order to prove that Rgq (8) = Rgq™(B) (cbserve that this cannot be
done by direct inversion of (A.4-16) because [P] and [@] are singular matrices)
one will show that
Ry (B)Re(8) = 1

After multiplying the matrices
Rg (8)=[P]+[1]cosB - [P]cosB - [¢] sinb
Ra (B8) =[P]+[1]cosB - [P]cosb + [] sinb

and after simplification, considering that

(i) [P]is idempotent == [P]®=[P]
(i) [al[P]1=[Pllel= [0]
one has
Rq' (8) Re(B) = [P] + cos® B[ 1] - cos® B[P] - sin® B]a]?
It may be proved that (see B.1-9 in Appendix B)

[@]®=[P] - (tr[PD[ 1]

but tr[P] =1, thus
[@l®=[P]-[1]

Then finally

R (8)Rq(B) = [P]+ cos®B[1] - cos® B[P] - sin® B[P + sin®8[1] = [1]

(A.4-18)

and the orthogonality condition of Rq(8) is fulfilled.
Remark. The transformation matrix Ra(6) as derived above rotates (coun-

terclockwise) vectors in P while keeping the basic frame (x) fixed.
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That is, it transforms the vector components (w.r.t. the same fixed Carie-
sian system) before the rotation to the components after the rotation. iIn-
stead, when the reference frame is rotated (counterclockwise! while keeping
the vectors fixed, their components will be transformed by the matrix RS (6).
The basic concept is self-explained below in Fig. A.3.

a) Rotation of Vectors (Frame-Fixed) b) Rotation of Frame (Vector-Fixed)

{xi}e = Ra(8) {x]: ,  Ix}e=Rg(0)ixl)
X2 Xa X
fxq J >
x} 7 0 {x]
3]
Xa) X X5 © Xa 5 X
{Xa }x = {X}x‘ xfx
Frame-Fixed Vector-Fixed

Rq(6) : Counterclockwise rotation of vectors <=> Clockwise rotation of frame

R (0): Cloclwise n MM «&=> Counterclockwise " "

Fig. A.3. Rotation of Vectors and Frames

In particular, the fcllowing notations apply when the countercloeckwise rota-
tions are taken around the three Cartesian axes: Rig,(8) = R,(8) Vi=1,2,3
where oy (i =1,2,3) are the direction cosines of the x; Cartesian axes. This

can be easily proved using (A.4-17).

A.4.3 Knowing the Orthogonal Matrix Ry (0), to Obtain the Line
about which The Rotation 6§ Is Performed

The problem will be divided into two parts:

(a) Computation of the direction cosines {a}

As shown in the previous section, every orthogonal rotation matrix
keeps the direction cosines {&} of the rotation axis invariant.

This is also true for the mairix R§(8).
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Thus, for any vector {x] of {a} direction cosines, it follows that

Ra(6) {x} = R (O){x} = (x}
whence
[Rq(8)~Rg'(8)] (x} = [alix] = {0}

which implies
- = - - - X
anx = 0 => aand x are collinear

->
Thus the components of a will define the axis of rotation, that is,
0 Fya—Tay Tiz~—Tz1

[a]= Rq(B) - R (B) = | ra1-TI1ga 0 I'ga-Yaz

Fa1~Tais Tag~TYag 0

I the counterclockwise sign rule as defined in section A.2 is followed,

81 = Izz~Taz (A.4-192)
8z = Ya1-Tys (A.4-19Db)
Az = Ty-Tp1 {A.4-19¢)
and the direction cosines sought will be given by
%1 vi=1,2,3 (A.4-20)

(b} Computation of the rotation angle 6

it is known that the trace of a second-order tensor is invariant under
rotation (see section B.3.1). Therefore from equation {A.4-186) it follows
tr[Rq(8)] = 8cosB + (1-cosB) =1+ 2cosb
and

tr{Re (8)] - 1
cosf = [ a(2)] (A.4-21)

Ag an illustrative example, assume that the following orthogonal
matrix i{s given
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1 ] 0
. 0 cosB sinf
0 ~sinf cosfB
' (i) Direction cosines of the rotation axis

From (A.4-19) it can be found

a, = 0
a =0

Thus
o = 2 sinf -

QE = Qg = 0
(ii) Angle rotated
Using (A.4-21) ’ ‘

cosl = 2008924- 1-1_ cosf

Therefore, the given mairix is, as expected, R, (8) : rotation of an angle

6 around the first axis.
A.4. Symmetric (Orthogonal) Transformations

In order that Rq(0) be symmetric, it is necessary and sufficient that

sinf[@] = [0]
which implies
sinf = 0 == 8 = nTr VYRER
Two particular cases may be studied:
{a) n is an even numbher. n=2k ,VkER

Then

6-2ky and Rq(2km) =[1] (A, 4~22)
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This was obviously expected, because when a rotation of a multiple of 21
around a line is given, the transformed vector is itself. Thus the unit matrix
is a particular case of rotation for 6= 2ks.
() nis an odd number => n= 2k+1 , VkER
In this case,
Ro(m) = 2[P] - [1]

and

{x1 = Rotm){x} == {x/}=2[P1{x] - [11{x}

thus
{xg 1+ {x}=21P1{x]

which implies that {x } is symmetric to {x} with respect to the line of direc~
tion cosines {w}.
Therefore, the matrix of a symmetric transformation [S] is given by
Sa = Re{m)=2{P] - [1] (A.4-23)
Thus the matrices of the symmetric transformations are orthogonal
and symmetric.

Clearly the symmetry with respect to the origin may be obtained

from (A.4-23) when {a} = {0}.

-1 0 0
S = —-[1] = -1 0
s -1

In particular, symmeiries with respect to the three axes are easily

obtained. For example the symmetry respect to the first axis is given as

1 0 0
S]_ = -1 0
-1

3
In general, 8, denotes the symmetry mairix whose elements s,

are equal to zero except
Sy~ 1

Sy =Sk -1
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APPENDIX B
(Referenced in Sections 2.2, 2.5.3, 4.2, 4.3, A.4, D.1, D.2 and C,2)

B.1 General Comments

This appendix summarizes the transformations between the second-
order inertia tensors [I] and [ ] as defined in Section 2.2. When the con-
text makes the difference between the symbols [ 1] and [ I ] clear, the word
"agsociate" for the inertia tensor will be cmitted.

The accuracy of present observations (VI.BI, Lunar Laser Range)
will require congidaration of these tensor transformations buetween selected
frames of reference. It is standard practice today to give the principal mo-
ments of inertia of the earth without clearly specifying the system to which
they are practically referred. The same situation applies to the set of satel-
lite-derived potential coefficients. |

This work treats the tensors of inertia as individual entities. This
generalization results, in particular casges relating moments and products
of inertia, some of which may be found in classical texthooks on dynamics
[Routh, 1905, I]. From the point of view of the reader, the anlysis is greatly
simplified because only the basic concepts in matrix algebra are needed to
establish the dynamieal formalism.

Basged on Binet's theorem, a new approach is presented for computing
the moments of inertia and the directions of the principal axes at any point
of a body. This is generalized to the diagonalization of matrices uging par-

ticular rotation matrices.

B.1.1  Relations between the Tengors [T] and [ I}

The following matrix equality is easy to prove,
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3 {ylT = [ylix1+ (x1"{yH1] (B. 1~1)

where the coefficient in parenthesis may be expressed in one of the following

forms:
5yl = 1) = e )Y = wily) &30 (B.1-2)

Similarly, -
(y}x}T = [ {y)T17 = [x10yl+ (Gx}70yd) 2] (B.1-3)

and properties analogous to (B.1-2) hold.
From (B.1~1) and (B. 1-3) ope has

Myl = izl - [x1ly1+ {y}{x}7 (B.1-4)
or

{v}ix}" = rx10y] - [y1ixl+ (x}{y}" (B.1-5)

Equations (B. 1-4) or (B.1-5) immediately yield

[x10y17 = (y17ix1+ x}{y}"- {y3{x]T (B. 1-6)

Consequently, in general - i

[x1iy1" # [¥17(x)

In the particular case when {x} = {yl the following matrix rela-
tions may be established: ) !
(i) From (B.1-6)

[x]1[x]7 = [x]7[x]
which is obviocus from the basgic definition of skew-symmetric matrices and

was already given by equation (2.2-2).
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(ii) From (B.1-1)

x}{x}" = (x1%+ ({x}"{x})[1] (B. 1-7)
where clearly recalling (B.1-2)

B ) = e BT (B.1-8)
Thus finally, one concludes

[x1% = {x}{x}"- (x}7{xhH11] (B.1-9)

The above eguation gives another way of expressing the associate ten-

gsor of inertia,

[1]= —f{_}g_]adm =f[( x3Txhi1] - {x3 {x}’f}dm (B.1-10)

Taking into consideration (2.2-4) and (2.2-5) the relation between the

matrix tensor [ Il and [I] follows immediately,

[I1 = @r[ID[1]-[E] (B.1-11)

Applying traces on both sides of the above matrix equation, one has

il

tr[l} = 3(x[1])~-tr[0]

which results in the relation between the traces of [I] and [I]

it

tr[I] = 2tc[I] (B.1-12)

Hence it is now possible to express [IL] as a function of [I]. Introducing

(B.1-12) in (B, 1-11)
[T} = 2 (&[I])[1] - 1] (B.1-13)

From (B.1-13) or (B.1-11} it immediately follows,

A<B<C =10, > T, > Iy
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B.1.2  Variaticis of [II] and [I] with respect to Time

The following notation will be employed
. d
[1] = 5[]

where as usual the dot means differentiation with respect to time., Similar

representation will apply for [I].
Differentiating (B.1-11) with respect to time

. d .
[11 = gy (r{ID{1] - [T] (B. 1-14)

hut
£ i) - %([{x}‘{x}dm) =[{5c}‘{x}dm 4-[{x}*{i}dm
M

M M

and recalling (B. 1-2) one may write

f{};]T[x}dm =[[x]‘{;{}dm =ftr[ {x] {x}T"1dm '—“'/tr[ {x} {x] "1 dm
M M (] M (B.1-1b)

Thus

d%(tr[]I]) = 2f{§}T{x]d1n (B. 1-16)
Similarly from (B.1-12)
9 gy = 28 rpny = 4 [ %} (x}dm (8. 1-17)
at - at y
M

Therefore (B.1-14) may be rewritten in one of the following forms

(1] = Z(J[{};]T{x}dm)[ll-[ﬁ] (B.1-18)
H
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(11 = 5 £ (erinan - 06 (8. 1-19)
or finally,
[iy = %(A+ﬁ+é)[1]—[1’[] (B. 1~20)

The values of | I.I] are readily available from any one of the above

equations.

B.2 Effect of Coordinate Systemn Translations on the Tenscrs of Inertia

As implied by their definition, the values of [ ] and [I] refer

to a particular Cartesian coordinate system with origin at some specified

point.
The effects of a tranglation of the coordinate system on the tensors

[E} and [I] and their traces will be investigated. In the first place, the

formulation of the problem under the agsumption that one of the coordinate

systems is central is considered.
B.2.1 General Theorem of Parallel Planes

This theorem relates the moments of inertia of a body about a plane

-

through the center of mass to the moments of inertia about any other parallel

plane, and viceversa. The proof given in this section is general and based

on tensors of inertia.
Suppose that the following values are known,

total mass of the body in question

L]

M

value of the tensor of inertia referred to a system (xq)

il

[0l
centered at the CM {"central tensor of inertia")
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{6x0} = -coordinates of the origin of the (final) system (x) after

a parallel dispiacement with respect to the (x0) frame
From figure B.1 one has immediately
{x} = {xol- {tx0} (B.2-1)
Thus, after substituting (B.2-1) in the definition of [T ] given by eduation

(2.2-4),

[I] =f{X}{x}Tdm =f
"

M

- [6xo}" f{xo} dm + [b6x0} {6xc} T[dm (B. 2-2)

]

{x0} [xo}Tdm - {6xc} f{xo}Tdm

It is well known that

fdm =M ; f{Xo}Tdm = {0}7 ; f{Xo}dm = {0} (B.2-3)

Therefore, finally

[E] = [To] + M{6xo0} {6x0}" (B.2-4)

The second-rank tensor {86xo} {6x0} " will be called the "translation tensor"
and represented by the (franslation) matrix,

[ D] = {Bxo}{6x0}” (B. 2-5)

The following theorem holds: The tensor of inertia with respect to
any orthogonal frame parallel to the central coordinate system, is equal
to the central fensor of inertia plus the product of the mass of the body and
the translation tensor between the two systems.

It should be noted that eguation (B.2-4) is a generalization of the
often-quoted theorem of parallel planes, according to which: The moment
of inertia of a body with respect to any plane is equal to the moment of iner-

tia with respect to the plane through the CM plus the product of the mass of
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Fig. B. 1.

Transformation of Tensors of Inertia Asso-
ciated to Particular Coordinate Systems
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the body and the square of the distance between the two planes.
Lo = Top + Md%,
From (B.2-4) it is obvious that
[Lo] = [E] - M[{ o] (B. 2-6)

which gives the central tensor of inertia as a function of the parallel tensor
of inertia about any point and its translation matrix.

Taking traces on both sides of the matrix equation (B.2-4)
triu] = tr[Mo] + Mir[ Aol (B. 2-7)

but (see fig. B.2-1)
tr{ Aol = 8x% + 60z + 0x%a = d° (B.2-8)

where

d = distance between the origins of the (%) and (x) systems.

Thus (B.2-T) expresses what may be called the Theorem of Origin:
The moment of inertia with respect to the origin of any system is _equal to
the moment of inertia with respect to the CM plus the produect of the mass
of the body and the square of the distance between the origin of the two sys-
tems. The above can be applied to any point in E® and may also be obtained

independently after substitution of (B.2-1) in (2.2-5).
B.2.2 General Theorem of Parallel Axes

As in the preceding section, the well-known theorem of parallel
axes will be proved through a more general theorem relaiing the associate

tensors of inertia.

Substituting (B.1-12) into (B.2-7)
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-;-’tr[I] = %tI‘IIo] + Mtr[ A ]

oY
tri1] = tr[lo] + 2Mtr[ Ab] (B. 2-9)

Recalling (B.1-13) and (B.2-9} one may write

[T} = 2 (tr[To])[1] + M(trf Au1)[1] - [I] (B.2-10)

5 (
From {B.1-13) it is known that

[To] = § (tr[T D)1} - [To] (B.2-11)

Replacing the values of (B.2-10} and (B.2-11) in (B. 2-4) and after
simplification

[I1 = [To] + M[ Aol (B.2-12)
where the "agsociate translation tensor” [ Ag] is given by the matrix

[Bo] = ([6%)7{6%1){1] - [6x0} {6x)" = [6x1[8%]1" = -[6x0]1”
(B.2-18)

Hence the following theorem may be stated: The associate tensor of inertia

with respect to any frame (x) parallel to a central coordinate system

{x0) is equal to the associate central tensor of irertia plus the product of

the mass of the body and the associate translation tensor between the originsg.
Chserve that as an application of equation (B.2-12) the moments of

a body with respect to a given line or axis can be obtained.

From (B.2-13) and fig. B.2.1, one may write,

dzl '—5X01 5}{02 - 5}{01 5}{03
[Bo] = d%, ~ 6% 0g 6% ca (B. 2-14)
5 d?;
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Thus from (B.2-12) the parallel axis rule follows immediately
Tax = Toax + Md%y B.2-15)

The moment of inertia of a rigid body about a given axis through a
point is equal to the moment of inertia about a parallel axis through the
CM plus the product of the mass and the square of the distance between the
two axes.

Finally one should notice that equations (B.2-4) and (B.2-12) give
exactly the same values for the products of inertia. This was expected by

simple consideration of the definition of the quantities D, E and T.

B.2.3 Relation between Two Non-Central "Parallel' Tensors of
Tnertia

In this section the equation relating two non~central tensors of iner-
tia [I] and [I'] referred to parallel systems (x) and (x') respectively,
will be given. '

From (B.2-4) and the shift sign convention implied by fig. B.1,

[X] = [To] + M{6x0}{6x0}

and

[I'] = [To] + M{8x0}{6x5}"
Thus

[T'] = [I] + M[{8x0}{6x0]" - {6%0}{6x0}] (B.2-16)
oxr

[I'] = [I]1+ M [Ab]-[4o] : B.2~17)

If the shifts {6x} between the (x) and (x’) systems are known
{ox} = {6xo}- {6x0} == (6xb} = {6x}+ {60}

which can be substituted in (B, 2-16) and gives
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[I'7 = [U71+ M[{6x} {6x}"+ {6x}{6x01"+ {6x0){6x]"] (B.2-18)

A consequence of (B.2~18) is that to obtain the relation between two
non-central "parallel” tensors of inertia [T} and [I’'], the position of at
least one of them with respect to the central (xg) system is regquired, in

addition to knowing the shifts between the (x) and (x’) systems.

Similarly to (B.2-17) one has for the associate tensor of inertia,
[I'] = [I]1+M [Ab] -[Ao] (B, 2-19)

and the same conclusion mentioned above also applics here.

B.3 Effect of System Rotations on Tensors of Inertia

In this case one is seeking the tensor transformation

SENN Y (B.3-1)

(]
where R is the orthogonal matrix of the mapping beiween the coordinnte

systems (x)} and (‘1;), to which the two tensors are relerred, that is

R . (x1 or x} = rix} (B.3-2)

{x}

Applying (B.3-2) to the definition of [I]

[I] =f{;{] x}"dm =fR{x}{x}TRTdm = Rf{x} (x} dm k',

which gives
[E] = R[I]R (B. 3-3)

This proves an important theorem in tensor analysis for transforming
second-rank tengors under rotation. Observe the simplicity by which il was

obtained here, using only the notions of matrix caleculus.
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B.3.1 Invariants under Rotaticn

By definition,

tr[ 1] =f{x}’[x}dm

Substituting (B. 3-2) above gives

tr[I] =f{x}TRTR{x}dm =f{x}*{x}dm = fr[1]
Thus " "

tr{L] = tr[I}] (B. 3-4)
apd recalling (B.1-17)

tr[1] = (I} (B, 3-5)

Consequently the trace of the inertia matrix is invariant under rotation. This
invariance of the traces of the inertia tensors makes an important check

when equation (B.3-3) is pumerically computed.
It also follows that the determinant of the inertia matrix is invariant
under rotation. Taking determinants in (B. 3-3) and after consideration of

the orthogonality condition of R (R orthogonal == det R = det R =+ 1),
det [T} = det Rdet [L]det R = det [X] (B. 8-6)

The same properties and transformations apply to the associate tensor of

inertia.

Equation (B.3-3) holds in general for any transformation under rota-
tion of second-rank Cartesian tensors. Thus, for the associate tensor of

inertia one can write,

[1] = R[T]K (B.3-T)
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The above relation may be proved independently after substituting (B.3-18)
in ({B.3~3) and considering (B. 3-5).
Recalling that the matrix R is orthogonal, from (B.3-3) and (B. 3-7)

it immediately follows that

RI[IIR (B. 3-8)

[I]

and

[1] = R[IIR . (B.3-9)

It is known that R is the matrix of direction cosines of the three

Cartesian axes of the (;c.) system with respect to the (x) system.
B.3.2  Applications

(1t Transformations of variance-covariance matrices

At this point one should notice that an immediate application of (B.3~3)
to geodetic problems is the transformation of point variance-covariance

matrices (VCM) between different Cartesian coordinate systems. In this

case, if

{v} = R{X}
then

[T,] = R[Dx]RT (B. 3-10)
where

[Z4] = VCM with respect to the X system
[Zy] = VCM with respect to the Y system

When the transformation of variance-covariance matrices between Cartesian
and curvilinear geodetic coordinates is intended, then the following linear-

ized relation applics [Soler, 1976],

(dx,, dxy, dxy) (dX, dep, dh)

1h1

r—




or
dx dx,
do = J*< dxp (B.3-11)
dh dxa

where J is the Jacobian matrix of the transformation between Cartesian

and curvilinear geodetic coordinates.
Thus if the transformation between local VCM of Cartesian and curvi-

linear geodetic coordinates is desired, one has

[y on] = T TTxpapeg 1037 (B. 3-12)
whexre ) }
oSk _Co8h 0
{N + hjcos® (N + h)coz
r=1- sinpcos A _ singsin X cos®
M+ h M+ h M+ h
CcOS (oS A cos psin A sine
;

Note that in this case the second-rank tensor [T ;\({Jhl is not "Carte-
sian" and the transformation mairix is not orthogonal, but of the Jacobian

type. As a consequence, the following conversion of units will hold:

(rad)® (rad)® rad X m
[Zx 2zl ——> (rad )y rad xm
(all m®) 5 m°

Observe that the analytical form of equation (B.3-12) cannot be obtained
directly through the classical propagation of errors approach, because the

curvilinear geodetic coordinates are not expressable as simple functions

of the Cartesian coordinates.

{2) Momental and gyration ellipsoids

A particular problem often mentioned in dynamics is the computation
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of the moment of inertia with respect to a line of known direction cosines

{a] through the origin of coordinates. In this case the matrix R in (B.3-7)

will be reduced to a single row matrix {al}".
Thus, the moment of inertia with respect to the line (axis) when the

direction cosines are known is given by

Ly = fa}'[17]{a} (B.3-13)
Similarly, the moment of inertia with regard to a plane whose
normal has direction cosines {&}, is
I, = {o}7[1]{c]} (B.3-14)
i one now considers the following relations
{x} = pla (B. 3-15)
where p is the radius vector of the {x} point, that is,
p* o= T x} = e x5 e xd
then
{a} = ,1; {x] and (o}’ = 1 {x¥
o p
After substituting the above equation in (B.3-13),
P2 Ty = [x}7[111{x}
and taking the value of the radius vector equal to
5 g M
IAX
one will have,
{x}'[11{x} = M€* = k = constant (B. 3-16)

which is the equation of a quadric associate to the tensor [T1] and the point
Ox; € is an arbitrary length introduced to keep the dimensions of equation
(B.3-16) correct. This quadric (known as the inertia or momental ellipsoid)

has the property that the moment of inertia about any radius vector is inverasly
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proportional to the square of that radius vector.

Thus I,y will be maximum whén 5 is mipimum, and viceversa.
Furthermore, if a,, by, ¢s are the semiaxes of the momental ellipsoid
at any point P with respect to which A,, B, and C, are the principal mo-
ments of inertia and if A, <B,<C,, then a, >b, >cy.

The axes of this ellipsoid are the principal axes of the body at the
point. The relation betwesn the principal moments of inertia and the semi-

axes of the momental ellipsoid is immediate. Using equation (B.3-16) one

may write

Il {x) = & | (B. 3-17)

ar

A ¥ B35 Oy = ko= 21y T2y X3 o g
ko k

and finally,

a®, = k/A, , b = k/B, , ., = k/C, (B. 3-18)

which gives
A<B,<C, == a,>by>cy

If two principal moments at any point P are equal, the ellipsoid becomes
a rotational ellipsoid; if the three principal moments are equal, the associate
quadric to the tensor ['I] becomes a sphere, and every diameter is a princi-
pal axis.

It should be noticed that the longest and the shortest axes of the cen-
tral momental ellipsoid (which is unique in a solid body) coincide in direc-
tion with the longest and the shortest axes respectively of the material body.
Thus the central momental ellipsoid resembles the general shape of the

body, is elongated when the body is elongated and flattened when the body

is llatiened.
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The reciprocal surface of the momental ellipsoid is termed "ellip-
soid of gyration". Iis equation is given hy

~y

a, "B, C, o (B. 3-19)
and thus

2, = A,/M , b, =B,/M, cf = C/M (B. 3-20)
Therefore

Ap<B,<C, == a <b, <ec,

Hence the (central) ellipsoid of gyration has the reciprocal shape of

the body and its (central) momental ellipsoid.

B.4 Tinal Transformation Iquations

The final transformation equations for the inertia tensors [I] and

[1] after consideration of parallel shifts with respect to the CM and rotations

of the Cartesian system, may be written by the follow'ng respeciive equationg:

[T} R[{HD]-» M[A\o]]R‘ (B.4-1}

and

I}

[1] R[[Io]+M[Ao]]RT (B.4-2)

As an example of the utility and application of the general equations,

two particularly interesting problems may be reviewed:

(i} Moment of ineriia of a body of mass M about any straight line
having equation

Xl—a‘:xz-bz)‘:s—c (B.4“3)
oy U Qg

with respect to a central system. The above implieg that the line has diree-

tion cosines {&} and contains the point (2, b, ¢); thus as a particular case
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of (B.4-2) one may write:

I, = {a}f [[ID]+ M{ Ao]] {a} (B.4-4)
or
T = [ [Io]{ad+ M{al'{ Ayl {a]
where in this case
b%+ ¢? -ab -ac
[Ag] = a®+ ¢” -he (13. 4-5)
a®1 b’

(ii) Similarly, as an application of (B.4-1) the moment of inertia
of a body about a plane containing the point (a, b, ¢) and having normal

vector of direction cosines {o} is:

Tp, = {a) [[I[ol+ M A\o]] {odl (B.4-6)
and
a® ab ac
[ A1 = b? be (B.4-T)

The following subsections will try to elarify when a tensor of inertia
is principal (i.e., diagonal), deiaending on the orientation and origin of the

system to which this tensor is referred. In other words, the condition under
which the mairix equation
R [[10] + M[ Ao]] R" = pL

is fulfilled will be investigated. Although not described here, the same pro-
In conclusion it will be [ound that

(B.4-8)

cess may be followed for the tensor [I].
a body has infinite sets of principal axes, one at every point. However, a

body has only one set of central principal axes. This infuilive assertion

may be proved easily {rom (B.4-2) as follows:
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[ Aol = [0] == {8x0} = {0]
[I]1 = [Io] only if and
R = [1]

i.e., the systems (x) and (xgs) are coincident.
Clearly the fulfillment of the same conditions will apply o the par-
ticular case
[ = [Tod
implying

(%) = (Xop)
B.4.1 Principal Axes Which Are Parallel to a Ceniral System

This section investigates the conditions under which a non-central
tensor of inertia referred to a frame (x) parallel to a system centered at

the CM is principal.
By the parallelism assumption, one has R = [1]. [t follows from
equation (B.4-2) that only three cases are possible:

(i) The central tensor of inertia is principal
This is equivalent to solving the following diagonalization problem, _ J
[Tol+ M[Ao] = '] (B.4-9)

The above equation is true only when the matrix [ Ao] is diagonal. That

is, one of the three conditions given below must be [ulfilled.

5X01 = 5X02 =0 (B.4"10&)
ﬁxo]_ = 6X03 = 0 (B.4"10b)
6?(02 = 6}(03 =0 (B.‘}‘lOC)

Consequently the following theorem may be stated: Every Cariesian system

(x) parallel to the central prineipal ixes (xg,) and with origin in any of




its points is also principal.
The following inequalities clearly hold from (B.4-9)
A,>Aop, By>Bo,, Cp>Cop
That is, the minimum principal moments of inertia are obtained when the
reference system has the CM as origin.
Consequently, recalling (B.3-18) the momental ellipsoid of maximum

volume is the central momental ellipsoid.
(ii) Two central products of inertia are zero

This condition implies that only one of the central axes is principal.
Assuming, for example, that Do = Eo = 0 (i.e. the xaxis is principal),
one has

Ap -Ts 0
Bo 0 + M[ Aol = [ (13.4~11)
s Co

which immediately gives the following three conditions to be satisfied:

FO+ M(SXD]_ 6x02 = 0 (B.4-12a)
0xXp10Xpz = 0 (B. 3—12b)
6X026X03 =0 (B-3“120)

Therefore,

Fo?{o ==> 6X01#0 and 5}{02#0

The above implies that to fulfill the conditions b or ¢ in equations ;;3_44—-12),
§Xos = 0. This means that the origin of the new (x,) system must be on
the plane Xo1Xoz , that is, the plane through the CM and normal to the only
central principal axis.

Fquation (B.4~123) gives

a

Mdxo1bxpe = - Fo
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or

T .
ﬁXQ]_ 6X02 = - I'\_/[g (B'4-—13)

which is the equation of a rectangular hyperbola referred to its asymplotas

as coovdinate axes and parameter X = %’ .
Hence all the coordinate systems parallel to (x,) and with origin
in the hyperbola given by (B.4-13), which lies in the xo1X0z plane, are e
principal (see Fig. B.2 ). Similar solutions can be obtained with
Do = Fp =0 or Ep= Fo = 0.
(iii) None of the central products of inertia are zero. |
In this case the given central tensor of inertia is not principal. Con-
"
sequently one should solve the general diagonalization problem, z
[To]+ M[Ao] = ] (B.4-14)
This implies the simultanecus fulfillment of the conditions .
For MBXo,0Xos = 0 (B. 4-15a) ]
o+ M8Xo10%Xes = O (B. 4-15b)
Do+ MOXopbXos = 0 (B.4-15¢)
After solving for 6x.,, (i = 1,2,3) above, one has ‘
H
—
= of Eofa 16
%01 =4 1z B (B.4-16a)
e
DT . !
BXop = 'M%% (B.4~16b)
3
Eo I _
6Xoy = ‘/M__—OF; (B.4-16c) i

Therefore, in any body there are iwo specific points where one has a prinei-

pal system (x,) which is parallel to any given contral frame (xo0). The !
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two points are in opposite quadrants and equidistant from the center of mass,

and their coordinates are given by equations (B.4-16).
B.4.2 Eigentheory and the General Case with Rotations

The most general case will be the computation of the principal tensor
of inertia at a given point of 2 body when the central tensor of inertia is known
and no assumption of parallelism is made.

This may be represented in matrix notation by the equation

R{T R (B.4-17)

NN

where

[_I_l [Io] + M[ &b (B. 4-18)

Equation (B.4-17) expresses a well-known theorem in matrix diago-

Il

nalization theory, implying that any symmeiric matrix [-I—] may be diagonal-
ized by premultiplying and postmultiplying it by some peculiar orthogonal
mairix and its transpose.

It may be proved thai

R -+ matrix of orthonormal eigenvectors of [_f]
L] = diagonal mairix of the eigenvalues of [T]
Thus, by the use of eigentheory the computation of [I] from [T]
may be achieved. The problem is then reduced to finding the vectors

{x}, (i =1,2,3) such that

[11{x}, = A=z} (B.4~19)

Ohserve that equation (B.4-19) implies that the vectors {x}, (i=1,2,3)
after being multiplied by the symmetric tensor [—[_] do not change their

direction bul only their magnitude, i.c¢., any vector in a given diroction,
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after being premultiplied by 2 symmetric tensor, is stretched into a vector

in the same direction but of proportionate size.

This is not the case for tensors in general, which transform vectors
into others of different magnitude and orientation. As is known, for example,
the vectors transformed by orthogonal tensors keep their magnitude but change

their orientation.
It is well known that by definition
A, (i=1,2,3) - eigenvalues of [I]
fx}, (i=1,2,8) eigenvectors of [ 1] corresponding 1o the
A, eigenvalues
In general, cquation (B.4-19) is equivalent to

[T (M1{x} = {0} (B. 4-20)

where the abbreviated notation
[T(M] = [T]-A[1] (B.4-21)

has been used.

The system of homogeneous linear eguations given by (13.4-20) has

a non-trivial solution {x} # {0} if and only il
det [T (A)] = O (B.4-22)

which is known as the characteristic equalion of [T (M) ]

Eguation (B.4-20) implies that the eigenvectors coerresponding to
the different eigenvalues A, are orthogonal to the row vectors of the ma-
irices [Y( A)]. Thus the eigenvector direction cosines are proportional
to the rows of [?{)\1)], i.e., to the rows of det [? (X}1, and consequently
they will also be proportional to the minors of the elements of its rows.

The left-hand side of (B.4-22) is called the characteristic polynomial

and represented by @({X).
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Observe that

O(N) = det{I (M)] = ¥-a, 0%+ azh-ag = 0 (B.4-23)

where the coefficients and the roots of ¢@(A) = 0 are related by the equa-

tions
a, = tr{1] = tr[I] = A1+ Aa+ As (B. 4-24a)
2 = 3 (w117 - w[TF) = Mdo* Agkot Aaki  (B.4-24D)
as = det[I] = det[I] = Aihzha (B.4-24¢)

Notice that starting with equation (B.4-19) one is referring to ihe eigenvalues
and eigenvectors of the matrix [_I—] and not of 1{[—1—] R" as should be done
according to equation (B.4-17), which expresses the initial diagonalization
problem.

It will be shown now that the matrices R[T]R' and [I] have identi-
cal characteristic equations and therefore their eigenvalues and eigenvectors

are the same.
By simple consideration of the orthogonality properties of R, one

may write

det [ R{T]& - RA[1] RT]
det [R[[T] - A[11] RT]

det Rdet [ [I1- M 1]] det R’

det [R[T] R - A 1]]

il

= det [[T] - A[l]]
Thus, as a consequence, all coefficients in the charactieristic equation are
invariant under orthogonil transformation. They are called the principal
invariants. Observe that the invariance under roiation of the coefficients
tr [?] and det[_I_] was already proved independently in section B, 3. 1.

It is known that the values of A, (i = 1,2, 38) for a real symmetric

163

R e e e e an o e

L e s s s

ek A1 3 i b a4 a0 A



mairix are all real but not necessarily all distinct.
Assuming now that A, and X, are two distinct eigenvalues of [?]
and {x} and {y} their two corresponding eigenvectors, and making use

of (B.4~19), one mayv write,

A1 {x} (B.4-251)

1171 {x}

[T1{y} = X210y} (B.4-25h)

Premultiplying (B.4-25a) by {y}® and (B.4-25b) by {x}' and subtracting,
(yPI0xd - GIITI v} = MOy} ixd - A (x} {v)
but [_I"] being symmetric, the following equality holds
YVl = 7T {y) (B.4-26)
Therefore, finally
(M- Ag) x} {y} =0
By assumption Ay # Xz => A1 - Ap ¥ O

thus (x}'{y} = ¢ == ({x} and {y} arc orthogonal. Hence the
eigenvectors of a symmetric tensor corresponding to different eigenvalues
are orthogonal (In general this is not valid for non-symmetric tensors).

If the three eigenvalues are distinct, the three corrngponding eipen-
vectors form a unique orthogonal basis in E°. The associated quadric to the
[?] tensor will be an ellipseoid of three parameters. I two eigenvalues are
equal, the associated quadric will be a rotational ellipsoid, implying that
all the systems obtained hy rotation of the axis with the only distinct eigen-
value are possible. If all the roots of the cubic equation (B.4-22) are equal,
any system through the origin associated to the tensor are principal.

As a practical application of the above eigentheory Lo the analysis

of inertia tensors, suppose the gencral case ol finding the three principal
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axes and moments of inertia of a body of mass M atl a point (X1, §%0g, 6X0a)

when the central tensor of inertia [1,] is known.

This is equivalent to determining the eigenvalues and eigenvectors

of the matrix given by (B3.4-18), namely

[I]1 = [Io]+ M[ Aol

Therefore, the principal moments of inertia at (6xg1, 0%0z, 6X0a) are the

roots of the cubic equation

AgtM(Sx g F6Xo 2}~ ~Fo~Mbxg18%02 ~Bo~M 6%g1 5%
Bo+ M(8xg + %0 a)~ A ~Do~M&Xoz0Xo0s = 0

5 Cot M (8x01+ BXg gl

(B.4~-27)
Hence
A0 0 A, 0 0
] = Aa 0 = B, 0 (B.4-28)
5 Aa s Ce

and the direction of the principal axes are the orthogonal eigenvectors corres-
ponding to the values of A,(i= 1,2,3). Notice that as mentioned above, not

all the A, need necessarily be distinct.

B.4.3 Some Geometric Interpretations

(1) Foci of inertia

It was proved in section B.4.1 that all the Cartesian principal systems
parallel to a given central system (with only one principal axis) have their
origin in a rectangular hyperbola, situated in the plane through the CM and

normal to the only central principal axis.
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Clearly the system (X91, Xoz» Xos = ¥ppa) can be made coincident
with the central principal frame (Xqp) after a rotation 6 around the princi-
pal axis Xgpa (see Fig. B.3).

The rotated coordinate axes Xg1 Or Xgp Will intersect the rectangu-
lar hyperbola in two points symmetric with respect to the CM and with coordi-
nates (0Xop1, 0, 0) or (0, Oxgpz, 0) respectively.

One may write the equation of the hyperbola in the new central princi-
pal coordinate system (xq,) after considering the fransformation of coordi-
nates:

{%0} O {x0p1) (B3.4-29)
Thus
{x0} = Ra"(0) {Xop]

which gives

Xo1 = €08 0Xgp1 — SinBxpgp (B.4-30a)
%pp = Sin8xgp1 + €08 Bxpy2 (B. 4-30Db)
Xos = Xops (B.4-30c)

and similar equations hold for 6xq, (i= 1,2,3). &Xga = 8Xgps = 0.

>

Substituting the above values in the equation of the hyperbola (B.4-13)

and after considering that

FQ =fx°1X03d1n
M

2sinBcos 6
cog” 8 - sin® 8

arrd

tan 28 =

one has, after algebraic simplification,

2M 5x°p15xop;,-a~Mtan29(ax"op1—eix'“‘c,le)«»tanzef(x%ﬂ—r”opg)dm = 0
" (B.4-31)
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The above represents the equation of the rectangular hyperbola in
the central principal .coordinate system (Xq,). Observe that the variables

are the coordinates (8xop1, GXopa)-

By simple inspection of equation (B.4-31), if

'[(XBOPl_Xaopz)dm >0 = ]I-Opll >]I0p22 = BO_P >A0p
M (B.4-32)
then

6X0p1 = 0

which implies that the central principal axis will always infersect the hyper-
bola along the axis of greater moment of inertia.

Assuming (see Fig. B.3)
Agp > Bgp == Oxgpa = 0 (B.4-33)

then equation (B.4-31) gives

1 paz-lop App—Boyp
0Xop1 = ‘/ﬁf(xzow'xgom)dm = ‘/ o 32M L = DM 2
M
(B.4-34)

Clearly all the lines through the points (6xgpy, 0, 0) and (-6xgp1, 0, 0)
in the plane xg,1 Xops are prineipal at this point and with moments of iner-
tia equal to Ag,. The momental ellipsoid at Ox is a rotational ellipsoid.
Every body has six of these points known as foci of inertia, two in each prin-

cipal plane.

(2} Binet's theorem

Assume the following diagonalization problem
R [[‘Io.,] + M| AD]]H* = PIJ (B. 4-35)

where the diagonal elements of the central principal tensor of inertia are

given by
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Aoy = Bop=Ma®g, , Cop = Mco, (B.4-36)

For simplicity the condition that the two equatorial moments arc the
same is enforced (== 8o, = Dhog).
The problem is then equivalent to determining the principal axes and

moments of an inertia tensor [I] given by
[T] = [To]+ M[ Ao} (B.4-37)

which is referred to a frame parallel io the central principal axes and with
origin at the point P (6xp1, 0Xpz, 0%oa)-

According to section B.4.2, this may be reduced to oblaining the
eigenvalues and eigenvectors of the symmeiric matrix [I1]. Consequently

the following eguation in A must be solved:

M(aogs*‘ 5X022+ 5X023)“)\ ~-M 6x010%02 - M 6%g16%0a
M(agg+ Bxg o+ 6% 1)~ A ~M bxoz 6Xoa =0
) M(Coug | 61‘14:)21 t 63‘(:?9)‘>L
(B.4-38)
Making the substitution,
M (5x 2, Fxciat Bxdim)=A = MX (B.4-39)
equation (B.4-38) simplifies to
-8xg 7, + (3035 t Ni) -0%01 6Xoa ~0x91 8Xo3
-6xg'p+ (ao:zg'*n):) ~0Xo 5 0%on = 0
: ~Bxda b (Co'yt A
(B.4-40)
and the corresponding cubic equation becomes
(ads+ M) (et N)-0xg (607 + M)~ Bxca(edgt M)-BRa'a(ad ¢+ A) = 0 (B.4-41)
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Dividing through the above equation by (ac,aB l"\)'*:)(c:;j?E !-ri) finally the following

quadratic equation in A

6X§1+5x§2 8xo s
ToE Yo g (B.4-42)
aggt A Y

will have two roots by , and By ». An ellipsoid of revolution will correspond

to one of the ﬁ?«i, and a hyperboloid of revolution to the other.

These surfaces will be confocal with .
i

2 a2 2 -
Oxo1tbxop , OXo3 . (B.4-43) ;

dog Cog ;

z

which is the rotational ellipsoid of gyration centered at the CM. As is known,
the two confocal surfaces will intersect orthogonally.

The orientation of the principal axes at the given point (8Xo1 » 0%oz, 0Xoa)
will be the same as that of the eigenvcotors corresponding to the computed
eigenvalues. It was shown previously in relation to equation (B.4-20) that
for any XA, the direction cosines of the eigenvectors are proportional to the ;
minors of the rows of the determinant given by (B.4-48), that is to say, to |
the determinant in (B.4-40).

They are thus proportional fo the quantities
(ad+ M) (egy* M)-0%oa(acs - 5xZalca, 1 A) + BXa1 BXon (Copt A) 5 |

%1 8Xoa (a025-+ri); dividing by (ac;‘ls IFX)(cogsi Fi) the nbove thr.e expressions

reduce to
]
5x%0a° 5Xozn" 6%018%00 5% 01 0% "
1- S Tz, Tliter 2 =2 (13, 4-44)
Cot A Aget A Ao, A Cogh A |

but recalling (B.4-42), the above simplifies to

6%an 6x010%0z Bx018x0n
'2 o~ * '2 —~ 3 N ~ ;
ot A anl A et A ‘;
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or finally, the eigenvector direction cosines are proportional to the quantities

GXQ 1 6}:0 2 GXOS

3 r
2,75
3.05"*' A

= o (B.4-45)
a&i+ A c&i+ A
which are the direction cosines of the normal to thg,:"u.::on;t‘ocal surfaces passing
through the point (6xg1 , 68pz» 6%pa)- |

Two of the principal axes at P are the normals to the respective mem-
bers of the confocal surfaces which pass through the point. The third princi-
pal axis must therefore be the axis mutually orthogonal to them, thus it will
be on a plane through P parallel to the xg51Xg2 plane. Two of the principal
moments of inertia are given by the eigenvalues X, and A, that may be
determined from eguation (B.4-39) after substitution of "%. The third mo-
ment can be computed using the parallel axis theorem as follows,

M( 8xga+ 6%g g+ B gt 302;,)

This remarkable geometric {inding that the principal inertia axes
at any point P are the normals to the threc orthogonal families of surfaces
passing through P confocal with the ellipsoid of giration, was originally
given by Binet [1813].

In the next section some important congequences of this seldom ref-
erenced theorem in the diagonalization of symmetric tensors of second-

order will be examined.

B.5 Dizgonalization by Rotation Mairices

After the geometric conclusions derived from Binei's theorem, which
unusually, links dynamics and geometry, a novel approach (fo the author's
best knowledge) [or determining the principal axes and moments of inertia

al any point of a body is preaented hero,
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In [Soler, 1976] the theory for obtaining the rotation matrix R between
the central and local frames (the axes of which are normal to the conflocal
surfaces) was studied. The problem here is thus reduced to computing
the orthogonal matrix of the transformation between central and local frames
from the available data.

The initial values of M and ['Iy.] will provide the ellipsoid of gyration
parameters from which R may be determined at the specilicd point
(8Xo1, 0Xog, 0Xp3)-

Once R is known the matrix [ 1] given by (B.4-37) can immediately
be diagonalized

R{I]R" = [}

By this simple geometric interpretation implicit in Binet's theorem, a dif-
ferent method is found for obtaining the principal axes of inertia independently
of the standard approach through eigenvalues and eigenvectors.

A simple practical algorithm is given below for the particular case

of (rotational) momental ellipsoid treated in the previous seclion.

Central principal moments

Mass of inertia Point
Given quantities: M Agy = Bg, Cop | Oxo1 , 0%0a, o3
equation (B.4-36) Transformation be-

ellipsoidal coordi-

Central gyration
ollipsoi dgyara— . T, nates [Heiskanen and

P p Or? ~Og Moritz, p. 228]
meters

1 B Y i
Ellipsoidal para- Cogs B =\ag:~Coy ~ (A, B, u)
melers
Rotation matrix oI,
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The value of R, in the case of rotational ellipsoidal coordinates was

given in [Soler, 1976] as

- gink COSA 0
1 . i TJJCOS
R, = -2 sinf cosA = — ginfsinA P ‘B.. n
W, Wo w, (u?xr%)
v u gin
cosfcosk ~ ———————cosfsin) W £
WG(UBIEE)US Wﬂ (u.lii‘:d)lfll‘ P J
-
(3.5-1)
where
i . 2 1=
u+E° sin
w, = ( & B) (B.5~2)
u * E°

In the above equations the + and - signs refer to oblate and prolate (rotational)
ellipsoids respectively. In the latter case, E =Jc035 - a(;'?. The rows of
R, are the direction cosines of the three principal (local) axes at the point
P(8%o1, BXoa» OXoa) - P(A, B, U).

The principal moments at P arc the elements of the diagonal matrix
obtained as a function of the given moments of inertia through the transforma-
tion

RJITR. = 1] (B. 5-3)
where

[1] = [Tod - M[8xo]® (B. 5-4)

The method can even be applied to the case of diagonalization of 3 X 3 symmetric

positive definite non-singular matrices.

Every symmetric matrix [ M | may be expressed as the addition of
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two other matrices, one diagonal ["M.] and the other of the form {x} {x}".

Thus

[M] = M4+ {x} &)

(B.5-8)

To ['M’] one may associate a central quadric that in the most general case

will have three orthogonal families of confocal surfaces (equivalent to the

ellipsoid of gyration in dynamies).

At the point {x] the local moving [rame will have the direction of the

eigenvectors of [ M J. Thus through this point a confocal quadric to the one

represented by rML] will pass. (In dynamics this point will have principal

axes parallel to the system assoviated to the tensor [ M 1).

The point {x] then is found in form similar to the »1ce explained in

section B.4.1. It will satisfy the condition

X1 X — Iyp
X1Xa = Dha
XaXa = IMga
and
Myaig
= 12y
Mya
Mz Mza
%o = 12 s
{ Mn
_ MzMoa
X3 =
mMyp

{(B.5-60)

(13. 5-6b)

(B. 5-6¢)

Once the point {x} is known, the rotational matrix R between central

and local systems may be found as formerly described, using the parameters

of the quadric associate to {'M']. Finally, [ M ] can be diagonalized usging

the standard appronch
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RIM]R = [M]

The following subsection shows two simple examples where the rola-

tion matrix R is immediately obtainable, although the method is general and

may be applied to any 3 X3 symmetric positive definiie non-singular matrix.

B.5.1 Examples

(1) Spherical case

2 1 1
Diagonalize the matrix [M] =} 1 2 1
1 1 2

From equations (B.5-6) one has

xx=1 3 %=1 ; x3=1

Therefore the given matrix may be decomposed according to (B.5-5) as

(M1 = M4+ {x}{x}

or
2 1 1 1 0 0
&
2 1 = 1 t
5 2 g 1

]

T

In this case it is clear that a sphere of radius 1 is associated to the matrix

['ML). Thus it will be easy to obtain the spherical coordinates of the point

{x}. From Fig. B.4 it immediately follows

w[%l
» |
(mll—*

sinA = singp =

%]}—'
|4-‘
- | S

cos\ = cosy =

e
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X3
g
g
(0,0,1)
5 -
€5 €3 ~¥
ey /,/Tl‘
P(1,1,1)
lb -
X (0,1,0) :
1,0,0
(1.0,0) (1,1,0)
Xy

N
Fig. B.4. Local Frame (n,£,L) and Base (e;,e5,e3)

Then the rotation matrix of the transformation between central and local

systemns is

B -sini CosA 0 -

R=Rl(g—zb)R3(k+g)= -sincoshA -sinsink cosy | =| -

| cospcosh cosPsind siny |

- 2 2
Thus the eigenvectors have the direction of the local base (ey,eaz,€3). 1Pin-

ally the given matrix [ M ] is diagonalized as {ollows

1 Y 0

RfM R - 1 0 [M ]
5 1
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By the classical formalism of eigenvalues and eigenvectors,the same

result is obtained. According to (B.4-22)

2-A 1 1
detf M(\)] = 2~ X\ 1 = 0 == (2-0°-32-1M)+2 =0
3 2-A
Therefore the eigenvalues are A, =A,=1 and Az=4.
It may be shown that the unit vectors in the direction of the eigen-
vectors corresponding to the eigenvalues X, (i = 1,2,3) are the rows of the

R matrix.
Finally, it should be observed that the propertics of the principal

invarianis described in section B.4.2 hold:
(i) tr[M] = tt[M] = N+ Az +*Ag = 6
(ii) % ((tr[M D -tr[M ]") = % ((trrMJ)a - tr[‘M,]S)

- )\1;\.2 b Ag}-a -+ kg kl = 9
(iiYdet[M]=det[M]= XiAzig = 4

{2) Ellipsoidal (rofational) casgse

2 1 0
Diagonalize the matrix [M] = 2 0
2

S

Following a procedure similar to example (1), one has

X =X <=1 3 Xz =0

Thus

[M] = 1 0] 1 0
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In this case the quadric associated to the matrix [M 1] is

4 2 2
2 Xy F X X, . .
Xo+ Xo+ 255 = 1 == 1_1_3 + 2 = 1 == f{lattened ellipsoid
3

of revolution with parameters a=b=1 and ¢ = —
9

=

Thus the linear excentricity E is given hy

S
\[2

The curvilinear ellipsoidal (rotational) coordinates at P(1,1,0) may be obtained

using equations (6-8) in [llciskanen and Morilz, 1967, p. 228]

~ " . ) .y 1 1 4 ].'."2{:.‘;
2 i
u® = (X} b xpF Xz - EN| o+ -4/l 4 o i, o =
! 2 A ( 2 2‘[ (Xi FoXp ) Xy - KTY

oo 2
'\".3U+E

tanﬁ'::‘___.._...__:_-o :‘.;Bﬁo
u“x’:{kxg

k= X2 = 1 = -
Xy

[ WA

3

=13

Thus through the point P(1,1,0) passcs a confoeal cllipsoid with parameters
e
~ 3 1
u ‘--J—- and I

2 X J-z:
Vi

and from (B.5-2) it immediately follows that w, ~ 5

Thus the rotation matrix which makes the central (principal) system
parallel to the local (moving) frame at Pix, = 1,%, = 1,%3 = 0) P(A=1/4,

B8=120, If——\[ﬁ/\ﬁ‘,) can be obtained from equation (B.5-1).
- 1Af2 14f2 0
0 0

1 /\/':'a 1 ,/'\!L* 0
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and finally

1 0 0
R,JMI]R, = 2 0
s 3

Observe that when the confocal ellipsoids are flattened, the resulting cle-

ments in the diagonal (ecigenvalues) are obtained in ascending order

M <Az <Xg

and correspond i« the directions of the ), § and ¥ local axes respectively.

It may be shown as in example (1) that the prineipal invariant proper-

ties hold.

By the formal approach of eigenvalues and cigenvectors the same re-

sults are derived.

Eigenvalues:

2-x

£

Figenvectors:

A1=1:

Ag—"‘"z :

Ao =3 ¢ [M]0x}=3x}=

1 0 R'l = 1
2-2X 0 |- 0 == @2-N[E2-N1 - 0 =={ Ay = 2
2"‘}\ kg = 3

[M][]—-—{r}==>‘x3_=0 l==> unit veector (—%,«l, 0)
X x }XB = _x ‘ O \[2 JE
==> unit vecior (0,0,1)

e o x1=x2=0l
(M1 x) = 2 {x) { o

§x1=xel 1

le =0 ’ == unit vecior (%_,\13, 0)

In the general case the quadric associated to the matrix [M ] will be

an ellipsoid of three parameters (i.e. the three elements in the diagonal

will be different), Alhough the same approach may be tollowed, the intro-

duction of general orthogonal ellipsvidal coordinates is required and
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consequently the computation of R is more involved.
By the same procedure explained above the errors ellipsoids [rom
point variance-covariance matrices may be obtained . Observe that the re-

sult has strictly a geometrical meauing ol difficult statistical interpretiation.
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APPENDIX C
{Referenced in Sections 2.3.2, D.1 and D.1.1)

C.1 Velocity and Acceleration in the Inertial System

In this appendix the following notations will apply:

(¥X1,X5,X3)  inertial (space fixed) system

(%1 ,%z,X3) body fixed rotlating system

{w}, T angular velocily components along the (X} system

{ox1} : coordinates of the CM with respect to the (X) sysitem

It is well known that the transformation of coordinates between the
two systems is given by the matrix relation

{x}=R{x}+ {6X} (C.1-1)

where R is the rotation matrix between the (x) and (X ) systems.
C.1.1 Veloecily

The derivative of the vectors and matrices with respeci to time will
be denoted as usual by a dot. Let

{5{} = velocity components of any point relative lo the (X)) system.

From (C.1-1)

(X}=R{x}+ R{x}+ {6X} (C. 1-2)
but
fx} = RT{X} - ’7{6x} (C. 1-3)
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thus
[X}= RR'{X-6X}+ R{x}+ {6X) (C. 1-4)

where the "angular velocity matrix' is given by

[wly = RR7 (C.1-5)
Thus finally
(X} = [wl{X-6x}+ R{x}+ [6X] (€. 1-6)

C.1.2 Acceleration

Differentiating (B. 1-6) with respect to time, one has
(X} = (@1 {X-8X3+ [w]x{X-8X}+ Rix}+ R{x]+ {6X) (C. 1-7)
or, after simplification,
X} = p@l{x-ex}+ [whi{x-6x)r 2R {x} v R{x} 1 {6X)
but from (C.1-5)

R o= {w]ik

Thus finally,
(X} = (@ (X~6x}1 [whi{X-6X}r 2[w]R{x}r R{X}' (6X}  (C.1-8)
where the different terms in (C. 1-6) and (C. 1-8) have the lollowing meaning:

[Q]X{X"GX} Q ) ‘ veloaity % of a particle P of the body in

. the (X tem resuliing fron
[w]x {X-6X} 5 lacceleration ¢ (%) system resuliing from

velocity
the angular{ } of the (x) system
acceleration
[ L_L)]L;i {X-6X1 = the centrifugal acceleration in the (X ) system ot a particle

P stationary in the (x) system
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<3

R{x] = (X . velocity

Ny

27 g]xR[}z] = Coriolis acceleration of the ﬁiov’ing particle

5 y of a particle P in the (X) system con-
=4{ } sidered relative to the (x) system

R {;;] = [5;: 1 nousleration ) treated as stationary
{6%] velocity | |
. = of the CM in the (X) system
6%} acceleration

C.1.3  Velocity and Acceleration under the Assumption [GX] =0

FOX =0x = [6X]={0}and [X}=R{x]}, then equations (C. 1-6)
and (C.1-8) simplify to

(X} < [l (X1 + R (%] = [wl (X} + (X7 (C.1-9)

(X) = [wl XY [ {X]+ 2[wlxR{x]} + R{x]

or

X] = (i (X}r (@R (X} + 2[w]lx (X} + (X1 (C.1-10)

C.2  Anpular Velocity Matrices

The angular velocity mafrix [W]x respect fo the‘(}:i) ‘system was given
in (C.1-5) by
[wly=RER ,, (C.2-1)
It may be proved easily that [wlx isa skew-symmetric'matr'ix. Differen-— -
tiating : -
RR' = [1] _ {C.2-2)
one has '

RR™+ RRT={0]=% RR" =-RR" = ~(RR")’
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Thus

@l = -[wl}

- (C.2-3)

The angular velocily maitrix with respect to the body-i’ixed or rotat-

ing system may be obtained after transforming the tensor [ w1y under rota-

tion (see section B.3).

Sy

© i,

®
' R
{x} >{X} or X}=RI{x] (C.2-4)
~ then . .
[wly = RIW]R = [w]=R[whkR (C.2-5)
and substituting equation (C.2-1) above
[w] = W'R (C. 2-6)
From (C.2-6) one immediately has
R = R{w] (C. 2-7)
which are the Poisson equations, and with
Oil ag Cd;g,
R = B Bz B2
Y1 Ya Vi
are generally given in the form
1o do
ldtl = Olpty - OaWy ; E"z =y = OWn Tt = 0 W - Oty
d
and with similar equations for ——C-ﬁ—l- ; %%i ¥Yi=1,2,3

I particular if {o} are the direction cosines of a line réspect to a moving
frame with angular velocity {w] one has

- [Q]T[g,] S .o
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C.3 Euler's Kinematic (Geometric) Equations

The so-called Euler's kinematic equations give the components
(wy , w5 ,ws) of the angular velocity as a function of Buler's angles ¢, 6
and . The term "geometric equations" is applied by some authors.
Assume that the transformation between the inertiél and body—.fixed

systems is given by (see Fig. 2.3)

{x1 = r{x} (C. 321)

with

R = Ra (~0) Ry (~8) Ra (-3h) (C.3-2)
thus -

RT = Ra()Ra(6)Rs(0) (C.3-3)

The components of {w]} along the (x) frame may be obtained from

equation (C.2-6)

[w] = R'R (C.3-4)
where
R = R (~0) By (-8) Ra (1)) + R (~©) By (~0) Bg () + Rs{~0) Ra (- 8) Ro ()
(C. 3-5)

Considering that in general, for any angle % one has

Ry (-0 Ry () = Ry 00 By (1) = %[a], Vi=1,2,3 (G. 3-6)
where
Ry (1) = RI(x) (C-3-1)
and [¢ ], are the antisymmetric matrices corresponding to the unit vectors

which have the direction cosines of the three Cartesian axes. That is:

0 o0 0
i=1=w {@}7 ={1,0,0}=> [al, =[ 0 0 -1 (C.3-8a)
| b 1 0 |
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- T
0 0 1
i=2=={a}"={0,1,0} = [ala={ 0 0 O (C.3-8b)
L-—l 0 0
0 -1 0
i=3=={a}"={0,0, 1} == [als = 1 0 0 {C. 3-8¢)
‘ 0o 0 0
From (C.3-6) it obviously follows ~ -
RY (%) Ry () = Ry O RI00) = n{ee]]  Vi=1,2,3
Therefore from (C. 3-6) one may write
Ro(-n)= ®[@L R (%) Vi=1,2,3 (C. 3-9)

which can be substituted in (C. 3-5) giving

=@ ale R+ ORa(-0) (@] B (-8) Ra() + § Ba (-0) Ba (-8) [ Ta Ro ()
- (C. 3-10)

and the angular velocity matrix takes the form

[w]= R’ = Ra (1h) i:Rl(e) [J)Ra @) &laRa{-) + é[_ﬂ_]l:l Ry (-0) + J)[E}a] Ra (-1h)

0 o 0
= Rg () [Rl ® | o 0 -8 | Ri(-)+ J’[E]S] Ra (-}

0 6 0

»
0 —(;j cosB—tZJ qo sinf
= Rz () 0 -8 Rg ()
ANTISYMMETRIC ¢
and finally _
e “th 0038-4.; c,‘osinﬁcosa})—ésin:,b
[w]= S} -(;-) sinesimb-écostp (€. 3-11)
ANTLBYMME TR 1C 0

L}_‘_‘M-ﬁ4.-:-‘i-‘~.:‘ﬁ< R, - 5
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or
wy = q.) sinfainy + 6 cos W (C.3~12a)
Wy = ® sin O cos P~ 6 sin (C.3-12b)
Wg = (.p cos B + zp (C.3-12¢}) ’
and in matrix form: e
sinBsiny cos ¥ 0 (p
fw} =| sinBeosy  -singy O 8 (C. 3-13)
‘ cos® 0 1 P

By the same approach one may compute the componeuts of {w]} along the

inertial frame (X)
[@lx = RE'

After matrix operation and simplification, one arrives at

0 COS (P sin@ sine q.:u
fwly = | 0 sin @ ~-ginBcos @ 5 (C.3-14)
1 0 cos B J; .

Although it is possible to obiain equations (C.3-13) and (C.3-14) by
geometric considerations only, the approach followed here is general, and

may be applied to any case where the rotation matrix I3 between the inertial

and body~fixed frames is known.
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APPENDIX D
{Referenced in Sections 2.3, 2.3.2 and 2.4)

Although recently many investigators have studied the mathematieal
theory of the rotational motion of deformable bodies about their center of
mass, it is common to resort {o the vector or tensor nolation to formulate
the principal equations.

In this appendix the general Lagrange~Liouville equations extended
to deformable bodies are derived only by means of matrix algebra, which
one feels may also be used to advantage in formulating the basic equations.

In another respect, the approach presented here is different from
previously published ones. The point of departure is the fundamental axiom
of mechanics called "Principle of balance and moment of momentum" that

can be stated as: The time rate of change of moment of momentum about
a fixed point is equal to the resultant moment about the point.

One arrives at the same final results as previously published papers
using varied approaches; i.e. [Kopal, 1968] bases his study on the fundamental
equations of hydrodynamics, while [Tokis, 1974} starts from Cauchy's first
law of continuum mechanics; the analysis by Grafarend [1973 and 1977]

originates in the so-called virial equations of second order.

D.1 Basic Dynamical Eguations of Motion

This section emphasizes primarily the general principles by which
the differentinl equations describing the motion of any material system of
particles can be set up., Obviously the specification of the positions of the
particles defines the botdy and its configuration. | R »
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The equations of motion of a body about its center of mass with respect

to a space-fixed (inertial) system denoted by

(Xl: XE: XS) = (X}

is .

L}y = {H}4 (D. 1-1)
where

(&), = S (u)
and

column vector of total angular
momentum about OX (D. 1-2)

{1l

H
=
[
=
ﬁ.
g

Lk = [X1{fy}Jdm = column vector of total body
M : torques (about OX) acting on
the body {D.1-8)
{f,1 = body force per unit mass exerted on each par-

ticle of the body (see section D, 3-1)

If {£,} = {0} the system is said to be "isolated". In this case one
has a torque-free body and the angular momentum vector is constant (i.e.,
[H}; =0 == [H]y = constant), having a fixed direction in inertial space,
hence forming an invariant a;:is.

Let a second rotating system (Xg1,%02,Xo4) = (¥o) be introduced,
centered at the CM and not necessarily fixed to the body, but related to the

inertial frame at any instant through the orthogonal rctation matrix R, i.e.,
R
%0} —— {x} or {X}=R {xo} (D. 1-4)

(In what follows the vectors referred to the (x5) Cartesian system will be

unsubseribed). Then,

)}, = r{nl (D. 1-B)

[

and
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{I:I}x' = R{H}+ R{H) - (D.1-6)

Therefore, equation (D.1-1) may be written

(L}, = R{E}+ R{H)} (D. 1-7)
but

{Lh = riv}
Thus . . —

{L} = R'R{H}+ R"R{H} (D. 1-8)
The matrix .

R'R = (6] (D. 1-9)

is the angular velocity matirix with whick the system (xo) is rotating. The
components of {8} are referred to the (xo) frame.
Observe that applying the theorem of section B. 3 for transforming

second-rank tensors under rotation, one may write
[81x = R[BIR = RR (D. 1~10)

which gives the angular velocity matrix of the rotating system (x,) with
respect to the fixed frame (see also Appendix C).

Substituting (D. 1-9) in (D. 1-8) and recalling the orthogonality con-
dition of RR, it follows

{L} = (p1{H}+ {7} (D. 1-11)

which is the equation of motion of the body with respect to the moving (rotat-
ing) system when OX = Ox, = CM.

In the particular case when the rotating frame (xg) is body-fixed

{61 = {w} = apgular velocity vector of the rotating body (D. 1~12)

and .
(r} = [wl{g}+ {0} (D. 1-13)

this being the basic equation of motion in a rotating reference gystem tied to

the body.
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D.1.1  Total Angular Momentum

The total angular momentum with respect to the fixed (X) system

was defined in (D.1-2) by

(), =f[z<1£5<}dm

The absolute velocity [}.{} may be expressed as (see Appendix C)
(X} = [w]{X-6X}+ Rx}+ {6X) (D. 1~14)

Let us obtain the value of {H}y along the rotating frame (xo). Using the
law for transforming second-rank tensors under rotation discussed above,

one may write
(X1 = R[x]RT

Thus after multiplying the above matrix by equation (D. i-14) and referring

the resulting free vector components to the (xy) system, one has

[X1{X} = Rixol[w1{%o] + RIxlw]{%} + R{%o1{Xo, } ~ R[xo]{8x} (D.1-15)
Recalling equationg (D.1-2) and (D. 1-5) the value of the total angular momen-
tum referred to the (x) system is

{H} = R"{H}; = ijT[_I_fI{fc}dm (D. 1-16)
M

where [X] [X) is given by (D.1-15).
Therefore, after (D.1-15) is substifuted in (. 1-16) the total angular

momentum {H} may be: given in the form

{0} = {H}s + (0] {1ro, (D. 1-17)
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(b)

(c)

{H}.r is the contribution to {H} due to the translation of the

origin Ox, and is expressed by

{H}x =f[§qllg:<o]'dm{w}—f[_:go]{es:?ko]dm (D. 1-18)
M M

Clearly if {6x5} = {0} == Ox, = CM and
{H}e = {0} (D. 1-19)

{h] is the relative angular momentum given by

{h} = f[gi_o]{?:'cw}dm (D. 1-20)
M

where {;fm-} = relative veloeity of the body partieles with respect
to the (xg) rotating frame

This contribution to {H} is due to the proper motion of the
particles themselves besides the motion of the body as a whole

due to rotation.

Finally {H} e, is the angular momentum caused by the rotation

and hasg the form
{Hlpor = f[fo][ﬁo]Tdm{UJ} = [IoHwl ({D. 1-21)
M

where by definition

[To] = f [ %61[ %] " dm
[t

is the central tensor of inertia associated fo the system (xg).

Hence, the total angular momentum respect to the rotating (xg) system

Whez_l Oxg = CM is given by

fH} = [151{w])+ .[h} (D. 1'-2'2)
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D.2 Classical Lagrange-Liouville Eguations

The equations of motion of a changing body may be established by
substituting: equation (D.1-22} in {D. 1-11). The final differential matrix

equation
(L} = [To]{@}+ [Tol{wd + [81iIo1{w} + [81{n] + {R] (D.2-1)

is not resiricted to the rigid body case, as clearly can be seen by the pres-
ence of the time derivative of the inertia fensor and the relative angular
momentum vector {h}. Thus, equation (D.2-1) may be applied to more gen-
eral situations, such as guasi-rigid bodies having particles moving amoug
themselves, gyrostatic motions, expansion or contraction of systems of
particles, etc.

All the vector components in equation (D. 2-1) ancd the agsociate ten-
sor of inertia refer to a central reference system of coordinates (xp} not

necessarily attached to the body and rotating with angular velocity {8].

- The vector {w] represents the angular velocity of the body about the axes

of reference. Obviously when the axes of reference are hody—fixed, {6} = {w]}.
Although equation (D.2-1) is usually credited to Liouville [1858]

because it appears that he formulated it explicitly for the first time, Tisserant

[Mecanique Celeste, Vol. II, p. 500] remarks that the go-called Liouville
equations are implicit in the general equations of motion of a dynamical sys-
tem given already by Lagrange [1815].

In effect, the Lagrange eqnations may be expressed by
d /8T (BT ) aT
= - — | )= b1 ==
Ly dt ( BwJ.) _ % dwg/ - 2 fs O 5

. 4d ( AT _(BT 3T
L, T aw_l— .95 —aal).- B ==
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d /9T oT aT
s = aw3>* Bl(awg) o0,
or in the abbreviated matrix notation used in this work,
T
{rl ~{ }+ [9]{5—} (D. 2-2)

where

T = % f {x}7{x}dm - total kinetic energy of the system  (D.2-3)

and
{x} - absolute velocity of the particles.
Assuming the origin of the (x) system at the CM (f.e. (x) " (X))
x} = %) = [w1lxo}+ (%0} = 201" [w}+ [xo;)

where

{}.cgr} = components of relative velocity w. r. t. the (x5 ) Lrame and
(ol o} = (W) [xollx0]" fw} + 2({w) [20] (o) + {Xor )" Ixor )

Thus integrating the above equation over the mass ol the body and making

use of (D.1-19) and (D.1-22),

-t

s{w} [Tl {w}+ {w} {h} + 5 f [Xm} {xor § dm (D. 2-4)

(i)

where the value

1 j {;rm}T {xor }dm = kinetic energy of the relative motion
g
Hence, taking the partials of equation (D. 9-4) with respect to {w]

oW

'tnd tlmlly compuung‘ the derivative respect to time ol the above equation

f.,xves
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{2} = [ioltw) + 11td) + (5] (0. 2-6)

After replacement of (D.2-5) and (D.z—(s; in (D.2-2) one arrives at equation
(D.2-1), which from now on will be refe,?;red to as the Lagrange-Liouville
equa};.ion. The recent popularity of the f.agrange—Liouville type of equation
in geophysical literature should he credited to [Munk and MacDonald, 1960,
p. 101 who applied them to the solution of some geodynamic problems.

As mentioned previously, the Lagrange-Liouville equations (D.2-1)
refer to a Cartesian system with origin at the CM. A more general expres-
sion with respect to a parallel non-central system may be obtained by making

use of equation (B.2-12), namely
[I1 = [To] + M[Ag]

Consideration of the above will introduce the following contribution to equa-

tion (D.2-1)
M{81[Agllw} + M[A]{wl + M[A]{w] (D.2-7)

where clearly the velocities of the origin of the new frame are involved
through the matrix [Ao] .

A final remark should be made here about the Lagrange-Liouville
equations as given by (D.2-1). They are functions of the associated central
tensor of inertia [Io]. Recalling the relationship between the tensors [ 1]
and {I] and their time derivatives as expressed by equations (B.1-11} and
(B. 1-14), a new form of the Lagrange-Liouville equations in function of the

tensor [ 5] may be obiained easily,

L} = (Tou* Toz+ Toss) [} - (Lol (@} + (Hou * oz + Tom) w])
- [ Lo} {w} - [81[ To}{wd + [61{n] + (1] (D.2-8)
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D.2.1  Selection of Reference Coordinate Systems

In the application of the Lagrange-Liouville differential expressions,
various approaches are prssible in order to select the reference coordinate
gystem. It is a common practice to choose the reference system in such
a way as to facilifate the maximum simplification of the equations. Severil

options follow.

(i) Absolute body-fixed reference system
For convenience it is usual to select 2 reference gystem fixed fo
the body in some way. It is known that in this particular case {8} = {w];

thus from {D.2-1)
(L} = [Iol{w}+ [Tol{w}+ [w]lIel{w} + [wlfh}+ {h) (D. 2-9)

Observe that in this instance the tensor of inertia associated with the refer—
ence coordinate system will vary if the mass configuration of the body changes.
Thus the value of [ 1] should be a known function of time. Hence the com-
ponents of the tensor [ 15] may be considered to be composed of a constant

part [T]; and a contribution [AT] (time dependent) which will account for

the differential variations in the tensor of inertia due to the changes involved

in the body. Therefore,
[Io] = [T]z + [AI] (D.2-10)

Similar reasoning may be applied to the relative angular momentum

vector that should be expressed as
{h} = {nl;+ {Ah}

A note of precaution. Although in a non-rigid body one may find such

types of absolute body~fixed axes, ihe sitnation is complicated greally in

..
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the case of the real earth, primarily because the crust moves and any bench
marks fixed to it defining the coordinate axes will inevitably change with

time.

(ii) Central principal axes as reference system

If the instanianeous posgitions of the central principal axes are taken
as the axes of reference, then Dy = Eg = Iy = 0 and the tensor of ineriia
will be diagonal. This simplifies considerably the explicit form of equations
(D.2-1}. Nevertheless, observe that the axis to which the diagonal tensor
is referred will move if transport of mass is assumed. This is a major
disadvantage of this option.

- Thus only at the initial instant
{6} = {w} (D.2-11)

but forr any subsequent time {6} = {w+ w]} where the vector {fw] represents
the variation in the components of {w} as a consequence of the motion of the
principal system itself; that is, the angular velocities with which the central
principal axes (axes of figure) are separating from the initial reference
system.

Hence equation (D.2-1) will reduce to:

L} = Mol{t}+ Mollw}+ [wtdwlllol{w)+ [wtbw]{h}+ (A}  (D.2-12)

All the values in the above equation are referred to the instantaneous central
principal axes.
In this instance, as in (i) the principal moments of inertia must be

known as a function of {ime, thus
[Tl = [Tole + [AT] (D. 2-13)

In the particular case that the ceniral principal axes move only differentially

in the body, the following simplification applies
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[AT] ~[0] (D. 2-144a)

and
(6w}~ {0} (D. 2-14b)

(iii) Mean axes as reference system
A third alternative often mentioned, advocates the selection of the
reference system in such a way that at the instant of selection
fhl = {0} == {n}= {0}
simpliying equation (D.2-1) accordingly to
L} = (b1l [Tol{w) + (81 Tol{w} (D. 2-15)

Although the imposition of the above condition will "freeze' rotations {currents)
of the moving particles, the body still can have radial deformation (see 2.5.6).
This set of axes has been called "mean axes' [Tisserand, 1891, Ch. 30] but they

have the disadvantage that they are not uniquely determined [Routh, I, 1905, p.21].

D.3 Lagrange-Liouville Equations Extended to Deformable Bodies

Tn section D.1 the total torque acting on the body was defined by
equation (D. 1-3)
wl = [ islen
"
where {f,} represents the body forces per unit mass exerted on each particle

of the system.
These are not the only forces that may act on the deformable body.

It is also possible to consider surface forces per unit area {f,} which will

create surface torques of the type
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(L.} = f [x1(£,} ds - (. 3-1)

Body and surface forces are the resultant effeet of several components origi-
nated in different ways (i.e., directly applied forces, reaction forces due

to congtraints on the system, etc.) and which finally may produce deforma-

tions on the body.
The individual description of these forces and the mathematical formu~

lation to compute them follow.
D.3.1 Body Forces

The body forces acting upon a body may be divided into two large

groups:

(iy External-forces resulting fro:a the interactioﬁs with objects out-
side the system (i.e., gravitational_ attraetions, e_leci_;rostatic '
forces, etc.) a :

(i) Internal forces corresponding to different interaction of particles
located in the interior of the body (i.e., Newtoni.an gravitationb,l

forces, centrifugal forces associated with rotation, efc.)

Body forces are expressed in general by the vector equation

(] = { %} v | (D. 8-2)

where the symbol{ Sa; } is a vector-operitor and the scalar W represents .
the total potential acting on the body.

The value of WV 'is given by the sum of a.]l the con_tr_ibuting potentials
in the particular problem at hand. |

For example,
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L] = f[,zg]‘[o][n}ds =/[:‘51diV[GIdv - f[;gi{c‘ri{‘-aa—x} av
8 v .

WV = Ve +Vy+V, + VD + V, + other potentials

B
where
Ve = potential of the stationary (equilibrium) state of undistorted
configuration
Vu = the total potential arising from the mass
Vs s VD s VB = pravitational potentials due to the atiraction of the

sun, moon and planets.
D.3.2  Surface Forces

Suriace (contact) forces, also referred to as surface streasses, de-
rive from the action of one portion of the material on another through the
bounding surface (i.e., forces from hydrostatic pressure, wind drag, fric-
tion, viscous force, etc.)

These forces are given by
{£,} = [o1{n} (D. 3-3)

where

Oz = gtress tensor (D. 3-4)

8 Oz _]

{n} = vector normal to the element of surface ds and with

]
Bq.

[o]

magnitude equal to the area

The corresponding torque, after consideration of the Gauss integral

equation; may be written

(D. 4-5)
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The stress tensor of an isotropic elastic medium (one whose elastic pro-

perties at any point are independent of direction) is given by

[c] = Aftr[e)[1]+2u[D] . (D. 3-6)
where the following notations are introduced -
. . .
B 7 o' 3% %
o1 €12 €13 0xXy axy BX.]_
el bz Ca {Bx } x) %, 9%, |  tensor
|3 - : % | (D.3-T)
trfe] = ep = dilatation (increase in volume per unit of volume of the
medium
=108 Vet '{i}?)_} ™N. 1. .
[D]=5 ({ S }[x] v {x] . 5 ( [el+ [e] ) deformation rate
tensor (D.3-8)
A, = Lame's elastic constants. These quantities are the most con-
venient parameters to use in theoretical work. In applications
to the earth they are methodically substituted by Love's num-
bers. MNevertheless, Lame's constants have the advantage of
being directly related to other common elastic parameters,
such as Young's modulus and Poisson's ratio.
In the case of a linear viscous fluid, one has
[o]l=-(p-Air[eD[1]+ 2u[D] {D. 3-9)
where now ' o -
p = hydrostatic pressure
o= coefficient of Visc’osity

il enn ba proved that in thie Instance
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A=~ g N (D. 8-10)

and equation (D.3-9) may bhe written in the form

[01=-(p+ Sptrie]) {11+ 2(D] (D. 3-11)
In the paftiﬁular case of perfect fluids g = 0, thus

[c]l=-p[1] (D. 3-12)
When applying the above equations, it is typical {o begin with the assufnption
that the body initially is in hydrostatic equilibrium

fol=-pol1]

and then examine small deviations from these equilibrium conditions.

D.3.3  Final Equations

The final Lagrange~Liouville equations applicable to a deformable

body, when elasticity, viscosity, etc. are taken inio consideration, is given by‘
(L}+ (L) =111{w} + [To] fw} + [0][ Lol {w}+ [ 81{h]+ {n] (D. 3-13)
The above matrix differential equation is in a form sufficiently general fo
impose few restrictions on deformation when the contributions to [ I5] and
{h} are properly computed. |

The torques {L} and {L,} must be obtained for the particular assump-

tions involved, and in general are expressed by

{r} =[[5]{§;{}de _ (D. 3-14)

M
where VWV represents the total potential created by the body forees acting on

the system, and
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{L} =f{§][0]{-:}-{}dv (D. 3~15)

¥
whieh gives the équations of the torques governing the appropriate stress-

strain relations.
All the vectors and secpnd~ord_er tensors in equation (D.3-13) refer
to a pre-selected reference system with the simplifications described in

section D. 2.1 possible.
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