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ABSTRACT 

Balau, a group consisting of 21 Shorea species, is widely used for outdoor application. In 

South Africa, Balau is one of the most popular materials used for decking. Due to the 

increasing scarcity of Balau, it is of economic importance to investigate the possibility of a 

substitute timber for decking material. One possible timber could be Colorado, a mixture 

containing one or more of the following: Eucalyptus camaldulensis, Eucalyptus tereticornis 

and their hybrids. These two species and their hybrids are extensively cultivated in countries 

such as Australia, India and parts of South America because of their short rotation period and 

easy adaptability to a wide variety of soil and climatic factors.  The timber was initially 

utilized as raw material for the pulp and paper industry but is now gaining importance in 

structural uses like furniture, flooring and decking. 

The aim of this exploratory study was to investigate relevant material properties and to 

examine the natural and accelerated weathering behaviour of Colorado and Balau to predict 

Colorado’s suitability as decking material.  

It was found that Colorado had smaller vessel lumina, fewer vessels/m2 and smaller rays than 

Balau and had a higher density than Balau. Although both timbers had a relatively low FSP, 

Colorado’s FSP was 2.3 percentage points higher than Balau’s. The swelling coefficients 

(radial and tangential) of Colorado were slightly higher than Balau’s but Colorado’s lower 

swelling anisotropy can result in a lower tendency to twist in service. Colorado had a higher 

water soluble extractive content than Balau, which can lead to the rapid initial colour changes 

when the timber is exposed uncoated. 

 The weathering performance of Colorado and Balau was investigated by exposing samples in 

a QUV accelerated weathering apparatus and to natural weathering at an inland and a marine 

location. During weathering Colorado showed a slightly higher colour change (∆E*) than 

Balau. Balau showed a higher increase in roughness (Rz), surface checking and check 

formation than Colorado. Colorado showed slightly more cup than Balau, however, Balau 

showed much larger amounts of twisting than Colorado. No statistically significant 

differences were found between the hydrophobicity of the two timbers. A coating was 

effective in increasing the initial hydrophobicity of samples and could maintain a relatively 

hydrophobic surface during weathering. No statistically significant differences were found in 

the effect of sample cut on timber species surface wettability. Although only long term 

exposure studies and using substantially more samples can confirm its weathering 

performance, the results of this exploratory weathering study indicated that Colorado can 

successfully be used as a substitute decking material for Balau. 
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 Samevatting  

Balau, ‘n houtsoort wat ongeveer 21 Shorea-spesies verteenwoordig, word wyd in 

buitenshuise aanwendings benut. In Suid-Afrika is Balau een van die mees gewilde materiale 

wat vir dek-doeleindes gebruik word. As gevolg van die toenemende skaarsheid van Balau, is 

dit van ekonomiese belang om die gebruik van ‘n moontlik plaasvervangende houtsoort vir 

dek-materiaal te ondersoek. Colorado, ‘n mengsel van een of meer van die volgende: 

Eucalyptus camaldulensis, Eucalyptus tereticornis en hibriede daarvan, kan as ‘n moontlike 

plaasvervanger gebruik word. Hierdie twee spesies en hulle hibriede word op groot skaal in 

lande soos Australië, Indië en dele van Suid-Amerika gekweek vanweë hul kort rotasieperiode 

en goeie aanpasbaarheid by ‘n wye verskeidenheid grond- en klimaatsfaktore. Die spesies is 

aanvanklik as grondstof in die pulp- en papierbedryf gebruik maar word tans al hoe 

belangriker in strukturele aanwendings soos byv. meubels, vloer- en dek-materiaal.  Die doel 

van hierdie verkennende studie was om relevante materiaaleienskappe te ondersoek en om die 

versnelde en natuurlike verweringsgedrag van  Colorado en Balau vas te stel om sodoende ‘n 

aanduiding van die geskiktheid van Colorado as dek-materiaal te kan kry. 

Daar is gevind dat Colorado kleiner vat-lumina, minder vate/m
2
 en kleiner strale as Balau 

besit en dat Colorado ‘n hoër digtheid het as Balau. Alhoewel beide houtsoorte relatiewe lae 

veselversadigingspunte (VVP) besit, is Colorado se VVP 2.3% persentasiepunte hoër as dié 

van Balau. Die swellingskoëffisiente (radiaal en tangensiaal) van Colorado is effens hoër as 

dié van Balau, maar Colorado se laer swellingsanisotropie kan op ‘n kleiner neiging tot 

skeeftrek dui. Colorado het ‘n hoër wateroplosbare ekstrakstofinhoud as Balau bevat, wat tot 

aanvanklik vinnige kleurveranderings kan lei wanneer die hout sonder oppervlaktemiddel 

blootgestel word.    

Die verweringsgedrag van Colorado en Balau is ondersoek deur monsters aan versnelde en 

natuurlike verwering bloot te stel. Eersgenoemde is in ‘n QUV versnelde verweringsapparaat 

uitgevoer en laasgenoemde in ‘n binnelandse en ‘n mariene lokaliteit.  Tydens verwering het 

Colorado ‘n effens hoër kleurverandering (∆E*) as Balau getoon. Balau het ‘n hoër toename 

in rofheid (Rz), oppervlaktekrake en kraakvorming as Colorado getoon. Colorado het effens 

meer kromgetrek terwyl Balau meer skeefgetrek het as Colorado.  Geen statisties beduidende 

verskille kon tussen die waterwerende eienskappe van die twee houtsoorte vasgestel word nie. 

‘n Oppervlakbedekking was effektief om die aanvanklike toename in waterwerende vermoë te 

verhoog en gedurende verwering te kon behou.  Geen statisties beduidende verskille kon 

tussen die invloed  van snit van die monster op die oppervlaktebenatbaarheid van die 

houtsoorte vasgestel word nie. Alhoewel slegs langtermyn blootstellingstudies en die gebruik 

van beduidend veel meer monsters die verweringsgedrag kan bevestig, dui die resultate van 
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hierdie verkennende ondersoek aan dat Colorado suksesvol as ‘n plaasvervangende dek-

materiaal vir Balau gebruik kan word. 
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Chapter1: Introduction and Purpose of Study 

Wood has been used as a building material for many millennia and despite the invention of 

new building materials over the last century, the utilization of wood in the construction 

industry shows little sign of declining. This can be attributed to wood’s versatile and 

attractive engineering and structural properties.  

 

Wood that is used for indoor applications is mostly exposed to regulated humidity and 

temperature, and little ultra violet light. However when wood is used under exterior 

conditions (e.g. as decks, window frames, roofs, etc.), it is subjected to the harsh weathering 

factors of nature.  

 

All man-made and natural materials, including wood, are susceptible to environmental 

degradation. When wood is exposed outdoors, above ground, a complex combination of 

chemical, mechanical, and light energy factors contribute to what is described as weathering 

(Feist, 1983). These weathering factors are as follows: solar radiation (ultra violet (UV), 

infrared and visible light), moisture (rain, dew, snow and changes in relative humidity), 

abrasion by windblown particles, heat and oxygen. In recent years, an additional weathering 

influence has arisen with the presence of atmospheric pollutants such as gaseous SO2, NO2, 

and O3 (Anderson et al, 1990). Abrasion of surfaces as a result of human activities such as 

walking on decks and maintenance such as cleaning surfaces with cleaners and brighteners 

and power washing cause further modification of weathering effects (Feist, 1990 and 

Williams, 2005). 

 

The weathering process of wood starts immediately after wood is exposed to sunlight which 

causes the photo-oxidation or photochemical degradation of the exposed wood surface 

(Williams, 2005). At first the colour changes and then the combined effect of solar radiation 

and moisture leads to surface roughening as the grain raises, formation of surface checks 

which later grow into large cracks, surfaces gather dirt and mildew, the wood loses its surface 

coherence and becomes friable, splinters and fragments come off (Feist, 1983). If boards 

contain reaction or juvenile wood, cross-grain checking may develop, the boards may cup and 

warp and pull away from fasteners, especially in decking applications (Williams, 2005).  

 

Weathering should not be confused with decay, which results from decay organisms acting in 

the presence of excess moisture and air (Anderson et al, 1990).  In the absence of decay, 

wood exposed to the weather only undergoes surface degradation, with the wood a few 
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millimeters under the surface essentially remaining unchanged and unaffected for many years 

(Feist, 1983). Decay on the other hand is a process that affects the whole thickness or bulk of 

the wood. Decay fungi can destroy wood in just a few years if the conditions are favourable 

for their growth (Williams, 2005). The performance of wood exposed to exterior conditions is 

greatly affected by species, size, shape, construction design which determine the degree of 

protection from prolonged wetting and finish type (Feist, 1983). 

 

To develop methods to retard or inhibit degradation and to increase the service life of all types 

of wood products in any type of environment,  it is important to understand the mechanisms 

of weathering that lead to chemical changes and degradation of physical properties.  

 

Balau is a group consisting of 21 Shorea species (Pande et al, 2005). The timber is widely 

used for outdoor application and in South Africa, Balau is one of the most popular materials 

used for decking. Due to the increasing scarcity of Balau, it is of economic importance to 

investigate the possibility of substitute species for decking material. One possible substitute 

timber could be Colorado, a mixture containing one or more of the following: Eucalyptus 

camaldulensis, Eucalyptus tereticornis and their hybrids. These two species and their hybrids 

are extensively cultivated in countries such as Australia, India and parts of South America 

because of their short rotation period and easy adaptability to a wide variety of soil and 

climatic factors (Sharma et al, 2005).  These two species were initially utilized as raw 

material for the pulp and paper industry, but are now gaining importance for commercial and 

structural uses like furniture, flooring and decking.  

 

The aim of this exploratory investigation was to study the weathering behaviour of Colorado 

(Eucalyptus camaldulensis and Eucalyptus tereticornis) and Balau (Shorea spp.) and evaluate 

their suitability as decking material.  To achieve this, the study was subdivided under the 

following objectives: 

1.  Investigate relevant anatomical, chemical and physical properties of Colorado and 

Balau 

2. Determine the natural weathering performance of Colorado and Balau for decking by 

evaluating the effect of: 

• environment: Mediterranean inland compared to a Mediterranean marine 

climate. 

• grain orientation: radial vs. tangentially cut, and  

• surface coating 



   

   3  

3. Assess the weathering performance of Colorado and Balau under accelerated 

weathering conditions.  

 

The structure and experimental layout of this thesis is schematically depicted in Figure 1.1. 

The results of this investigation are presented in Chapters 3 and 4. Both have been written in 

article format to enhance later submission for publication in scientific journals. Consequently, 

for the sake of completeness, a certain amount of duplication of text was unavoidable.  
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Figure 1.1: Diagram depicting the experimental layout and structure of this thesis. 
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Chapter 2: Literature review 

The aim of this chapter is to give a general overview on the wood properties and the 

behaviour of wood during its exposure to weathering, the environmental factors involved in 

the weathering process of wood and methods of studying the weathering behaviour of wood.  

 

2.1 Wood properties and weathering behaviour   

 2.1.1 Anatomical structure of wood 

Wood cell walls are multilayered and are surrounded by the middle lamella. These layers 

consist of the primary wall (P) and secondary wall. The secondary wall is further subdivided 

into three different layers namely the S1 outer layer, S2 middle layer and the S3 inner layer 

(Figure 2.1).  These layers differ from one another with respect to their structure which is 

determined by the orientation (Figure 2.1), thickness, number of fibrils, as well as their 

chemical composition (Figure 2.2) (Feist and Hon, 1984). The fibril orientation differs 

between juvenile and mature wood and between normal and reaction wood. The fibril 

orientation and the chemical components (Table 2.1) greatly affect the way in which wood 

weathers (Williams, 2005). The main components of wood are grouped into a number of 

organic compounds: cellulose, hemicelluloses and lignin. Table 2.1 shows the percentage of 

each in hardwoods and softwoods.  

 

Table 2.1: Chemical components of wood (Kollmann and Coté, 1968) 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Layering of a mature softwood cell wall (Haygreen and Bowyer 1982) 

 Cellulose Hemicelluloses Lignin 
 (% of dry weight) 

Hardwood 40-44 15-35 18-25 
Softwood 40-44 20-32 25-35 
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Figure 2.2: Diagram showing the relative amounts of cellulose, hemicelluloses and lignin across a 
cross section a softwood cell (Haygreen and Bowyer 1982) 

 

Cellulose, a linear and highly crystalline glucan polymer, forms the largest part of the cell 

wall and is located mainly in the secondary wall. Native cellulose is polydisperse and has a 

DP of at least 9000 – 10000 and possibly as high as 15000 (Rypstra, 1995). Hemicelluloses 

are polysaccharides mostly formed from glucose, mannose, galactose, xylose, arabinose, 4-O-

methylglucoronic acid and galacturonic acid residues. They generally have a lower DP than 

cellulose and some are branched. Lignin, a three-dimensional network of poly-phenols, is 

distributed throughout and between the cell walls. The relative concentration is the highest in 

the middle lamella region (Feist and Hon, 1984). These polymeric materials vary widely in 

their vulnerability to weathering. The variations in stability are caused primarily by 

differences in chemical structures, particularly in chromophoric functional groups. Metallic 

ions and other impurities which are introduced when treating wood may also promote 

deterioration by light (Feist and Hon, 1984). 

  

Besides the polymeric materials there are also extractives in wood. Extraneous components 

consist of a variety of organic compounds such as fats, waxes, resins, terpenes, simple sugars, 

starch, pectins, glycosides, gums, simple and complex phenolics, alkaloids, proteins and 

essential oils. They contribute to the colour, odour and decay resistance of wood (Rypstra, 

1995).  
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Figure 2.3: Cross-section of a young softwood stem showing the distinction between latewood and 
earlywood (Adapted from Fritts, 1979) 

 

2.1.2 Earlywood and Latewood  

Trees growing in temperate climates normally add one growth increment or ring to their 

diameter per year. In a summer rainfall area, growth proceeds rapidly in early spring 

(earlywood), slows down towards the end of summer (latewood) and ceases in the autumn. 

This kind of growth pattern results in variation of the wood being formed in various seasons 

of the year (Figure 2.3). Latewood is composed of relatively small diameter cells with thick 

walls and small lumens and, therefore, has a higher density than earlywood (Haygreen and 

Bowyer, 1982).  

 

Williams et al (2001) studied the erosion rates of various species with regard to the effects of 

proportion of earlywood to latewood. They found that erosion rates of earlywood and 

latewood differ when exposed outdoors, with the less dense earlywood eroding significantly 

faster than dense latewood during the initial phase of weathering (Figure 2.4) 

 

Figure 2.4: Radially sawn SA Pine; after weathering for approximately 3 years shows distinct 
variation in erosion rates between the earlywood and latewood regions. 

 

 

Latewood 

Earlywood 
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2.1.3 Heartwood and Sapwood 

Inspection of a tree’s cross section often reveals a dark-colored center portion surrounded by a 

lighter coloured outer zone. The dark center area is heartwood and the lighter area is sapwood. 

Heartwood and sapwood can be easily distinguished in species such as Colorado (E. 

camaldulensis and E. tereticornis). Sapwood consists of living cells which conduct water and 

nutrients upward in a living tree. Heartwood no longer functions physiologically but provides 

mechanical support to the tree (Haygreen and Bowyer, 1982). Heartwood is produced as the 

individual cells die and are impregnated with extractives, pitch, oil and other extraneous 

materials. Older trees have a higher percentage of heartwood as compared to younger trees 

(Williams, 2005). During the early stage of weathering, it is the heartwood that rapidly loses 

its colour because of leaching of the water soluble extractives.  

 

2.1.4 Juvenile wood 

Juvenile wood is formed at every age. In the base of a tree it is formed during the first five to 

twenty years of a tree’s growth. It differs from mature wood, and by most measures is lower 

in quality e.g. low modulus of rupture. Juvenile wood cells are shorter than mature wood cells 

(Williams, 2005) and in addition, the cell structure differs as well. There are relatively few 

latewood cells in the juvenile zone and a high proportion of cells have thin wall layers which 

results in low density and a corresponding low strength (Haygreen and Bowyer, 1982). Again 

comparing juvenile and mature wood, there appears to be a greater tendency for spiral grain in 

juvenile wood (Haygreen and Bowyer, 1982). The microfibril angles of the S2 layer in 

juvenile wood cells are larger than that of mature wood cells, which causes an increased 

amount of longitudinal shrinkage and a decrease in transversal shrinkage during weathering. 

This can cause severe warping, cross grain cracking and surface checking as wood weathers 

(Williams and Feist, 2001 and Williams, 2005). 

 

2.1.5 Reaction wood 

Reaction wood also plays a role in the performance of wood exposed to the weather. Reaction 

wood formed in softwoods differs from that in hardwoods. In softwoods, it is termed 

compression wood and in hardwoods, tension wood. Reaction wood properties differ from 

that of normal wood with many of its properties relating to those of juvenile wood (Haygreen 

and Bowyer, 1982). Reaction wood in species such as E. camaldulensis and E. tereticornis 

tends to produce fuzzy surfaces when sawn or planed. Tension wood also shows an increased 

amount of longitudinal shrinkage. Warp and twist can result when tension wood is present 
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along only one side or edge of a board and will also lead to cross grain checking as wood 

weathers (Williams, 2005).    

 

2.1.6 Texture 

Texture in general, refers to the coarseness of the individual wood cells and is regularly used 

in reference to hardwoods. Hardwoods are composed of at least four major kinds of cells 

namely: fiber (relatively short, small diameter cells), vessel elements (large-diameter pores), 

longitudinal parenchyma and ray parenchyma. Softwoods, in contrast, consist mainly of 

longitudinal tracheids which constitute 90-95% of softwood xylem, and ray parenchyma 

(Haygreen and Bowyer, 1982). The size and arrangement of the vessels, as visible on the 

cross section, may outweigh the effect of density and grain pattern on weathering. Hardwoods 

with larger diameter vessels may erode more quickly at the vessels than the surrounding fibers 

(Williams, 2005). 

 

2.1.7 Density 

The density of wood is one of its most important physical characteristics. It is directly related 

to the porosity of wood. It varies considerably from species to species. The swelling and 

shrinking behaviour of wood is largely determined by its density; the higher the density the 

higher the swelling and, therefore, high-density woods tend to warp and check more than the 

low-density woods (Williams, 2005). The density of wood also determines, to certain extent, 

the depth by which UV light can penetrate wood. Generally, the higher the density, the 

smaller the depth of UV penetration, and also the rate of erosion (Feist and Hon, 1984; Moore 

and Owen, 2001). 

 

2.1.8 Moisture content 

Wood is a hygroscopic material because of its polymers containing hydroxyl and other 

oxygen-containing groups which have a strong affinity for water. This gives wood the ability 

to remove water vapour from the surrounding air until it is in moisture equilibrium with the 

air. If it has an open structure, i.e. high porosity, it can also rapidly absorb liquid water. The 

amount of water that wood can adsorb from the air depends on the wood species. The 

majority of wood species can adsorb roughly 30% of their ovendry mass in water. When a cell 

wall of wood reaches its limit to the amount of water that it can adsorb, it is at fiber saturation 

point (FSP). The FSP of various wood species differs widely from the typical value, i.e. such 

as Rosewood (15% MC) compared to Ash (24%) and Douglas fir (26%) (Haygreen and 

Bowyer, 1982). One cause of variation in the FSP is the presence of extractives. Generally, 
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species high in extractives have a relatively low FSP. This could be ascribed to extractives 

occupying hydroxyl sites in the cell wall which would otherwise attract water (Haygreen and 

Bowyer, 1982).  

 

Moisture content of interior wood products is primarily controlled by the relative humidity 

(RH) and temperature of the surrounding air. As the RH changes wood will either loose 

(desorb) or gain (adsorb) water to reach an equilibrium moisture content (EMC). However, 

EMC is rarely achieved because of the constant changes in the atmospheric RH and 

temperature. When wood is exposed outdoors to the weather, the changes in RH can become 

radical. In addition, wood is subjected to liquid water in the form of rain and dew. Therefore, 

checking often occurs on decking boards; the fully exposed surface is much drier than the rest 

of the board. The sudden decrease in RH and associated lower temperatures cause shrinkage 

of the top of the board which goes beyond the elastic limit of the wood at the surface and 

checks form parallel to the grain (Williams and Feist, 2001). For this reason wood intended 

for exterior use should by protected with a finish. However, application of finish to wood 

does not decrease the EMC of wood but merely decreases the rate of water absorption when 

exposed to liquid water (e.g. rain, dew and snow). Chemical modification also decreases the 

FSP of wood, thus decreasing the maximum amount of dimensional changes, and also 

decreasing the amount of stress the wood would have encountered otherwise.  

 

2.1.9 Grain orientation 

Wood is an anisotropic material because of its different properties along its three main 

anatomical axes. For this reason, several properties of tangentially and radially cut boards 

differ. These include appearance, strength properties, permeability, dimensional stability, 

potential grain raising and grain separation, and ability to hold film-forming finishes 

(Williams and Feist, 2001). The ability of tangentially sawn boards to hold film forming 

finishes, or the lack thereof, can be attributed to the excessive swelling by the exposed 

latewood rings, which in effect increases the erosion rate of the finishing film (Figure 2.5). 

The different sawing patterns generating anatomical surfaces of different sizes are depicted in 

Figure 2.6. 
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Figure 2.5: Image of a tangentially cut board, containing a film forming finish which was weathered 
for 1 year.  

 

  
Figure 2.6: Characteristic shrinkage and distortion of flat, square, and round pieces as affected by 
direction of growth rings. Tangential shrinkage is about twice as great as radial (Wood Handbook - 
Forest Products Laboratory, 1999). 
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The swelling coefficient of tangentially sawn timber is usually about twice that of radially 

sawn timber (Williams and Feist, 2001); tangentially sawn timber can thus be expected to 

swell more across its face than radially sawn timber. Furthermore, tangentially sawn boards 

tend to swell and shrink unevenly and stresses are set up during the drying process. Because 

of this, boards start to cup and form checks and ruptures along the grain. The amount of 

cupping increases with wider boards (Williams, 2005). 

 

Another problem with tangentially cut timber is the increased potential for grain raising and 

grain separation during exposure. This normally occurs when the harder and denser latewood 

portion of each annual growth ring is projected above the level of the softer earlywood 

(Williams and Feist, 2001).  The bark side of tangentially sawn products weathers differently 

than the pith side. Raised or separated grain is much more pronounced on the pith side than on 

the bark side of tangentially sawn timber, and it is advantageous to orientate the timber, using 

the bark side as the fully exposed surface (Williams and Feist, 2001). 

 

2.2 Environmental Factors Involved in Weathering  

Numerous schemes have been designed to describe and summarize the effects of weathering 

on wood exposed outdoors. In 1988, Feist developed a scheme (Figure 2.7), where he 

described the sequential events during natural weathering.  

 

Wood exposed outdoors is subjected to the following weathering factors: sunlight (solar 

radiation), water (rain, dew, snow, etc.) and gasses such as oxygen. Photodegradation initiates 

the surface weathering process while water simultaneously gives rise to warping, checking 

and splitting of the wood material. This leads to micro-structural changes including removal 

of the middle lamella, destruction of bordered pits and loss of adhesion between cell wall 

layers. Furthermore, physical changes occur such as surface roughening and preferential 

removal of lower density tissue. The loosened wood fragments are then washed away by rain, 

revealing fresh wood tissue on the exposed surface, and the weathering sequence continues.  

 

2.2.1 Moisture 

Water is the most erosive force on our planet, sculpting mountains and forming valleys as it 

finds its way from the clouds back to the ocean. Water’s effect on wood has been recognized 

as one of the principle causes of weathering. It is the frequent exposure of wood surfaces to 

rapid changes in moisture content below fiber saturation point (FSP) and associated 

dimensional changes that causes wood to undergo degradation.  
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Figure 2.7: A schematic representation of the sequential events during natural weathering (Feist, 

1988) 

 

Moisture in the form of rain or dew that falls and precipitates on unprotected wood surfaces is 

rapidly absorbed by capillary action, followed by adsorption within the wood cell walls until 

they reach their FSP. Once the wood cell walls are saturated, water is absorbed and kept in 

liquid form within the cell lumens (Feist and Hon, 1984). Depending on the moisture content 

(MC) of wood and the relative humidity (RH) of its surroundings, wood will either loose or 

directly adsorb water vapour from the air to achieve equilibrium moisture content (EMC). It 

is this change in MC, below fiber saturation point (FSP) which causes wood to swell and 

shrink, and during this occurrence stresses are set up in the wood due to moisture gradients 

between the surface and the interior. These induced stresses become greater as the moisture 

gradient increases and are usually largest near the wood surfaces (Feist, 1983, Feist and Hon, 

1984, and Feist, 1988). Unbalanced stresses may result in quality defects such as warping and 
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surface checking, the likelihood of these occurrences increasing with the presence of natural 

“defects” such as spiral grain, juvenile wood and reaction wood.  

 

2.2.2 Light 

Sunlight is the main factor that causes the greatest change in the surface properties of wood 

during outdoor exposure (Fengel and Wegener, 1984; Tolvaj and Mitsui, 2005). The ultra 

violet (UV) and visible solar radiation that reaches the earth’s surface used to be limited to 

the range between 295-800nm (Williams, 2005), but because of the thinning of earth’s ozone 

layer, nowadays more ultraviolet (UV) radiation reaches the earth’s surface than before. 

Therefore, the UV B wavelength region (280–315 nm) has to be taken into consideration 

(Tolvaj and Mitsui, 2005). The radiation from 800 to about 3000nm represents infrared 

radiation. The radiation from 295-3000nm comprises distinct ranges that affect weathering: 

UV radiation, visible light and infrared radiation (IR) (Fengel and Wegener, 1984 and 

Williams, 2005) (see Figure 2.8).  

 

 

Figure 2.8: Electromagnetic spectrum (Louis E. Keiner – Coastal Carolina University, unknown date) 
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The intensity of light transmitted through wood decreases exponentially with depth as 

predicted by the Beer-Lambert equation. Browne and Simonson (1957) determined that short 

wave, high energy UV light usually penetrates no deeper than 75 µm, visible light only 

penetrates as deep as 200 µm and infrared rays can penetrate up to 1.5mm into the surface 

(Fengel and Wegener, 1984).  Beyond the zone immediately affected by light, the chemical 

and physical properties of weathered wood are believed to be largely unchanged (Kataoka et 

al, 2007), which explains why the weathering of wood exposed outdoors is only a surface 

phenomenon. 

 

Wood’s ability to absorb light can be attributed to a wide range of chromophoric groups 

present in the molecular structure of mainly the polymeric components of wood. The 

polysaccharides and polyphenolic lignin exhibit varying degrees of sensitivity towards light; 

the effect is mainly determined by the intensity and energy distribution of light (Feist and 

Hon, 1984). Absorption of UV light by wood results in the generation of free radicals or 

singlet oxygen at the chromophoric sites which in turn initiate a series of free radical and 

oxidative photolytic degradation reactions. For this reason, the concentration, location and 

nature of chromophores are highly significant in determining the rate of photo-degradation of 

wood (Feist and Hon, 1984). 

 

Very little UV radiation can penetrate common window glass. Therefore, wood does not 

undergo UV-catalyzed weathering indoors, although some colour changes can be caused by 

visible light (Feist and Hon, 1984 and Williams, 2005).  

 

Scientific investigation of the photo-degradation of wood during outdoor exposure is difficult 

because weather conditions are not repeatable. Therefore, the light-induced degradation of 

wood is usually investigated under artificial conditions. The artificial light source most 

frequently used in QUV devices are UVB (medium wavelength UV) and UVA (longer 

wavelength UV similar to black light). 

 

When conducting an outdoor weathering study it is important to consider the effect that 

sample orientation has on the amount of solar radiation. Wood samples are normally exposed 

facing an equatorial direction, tilted either at 45 degrees, or lying in a horizontal manner. In 

1995 Rypstra reported the effects that tilt has on solar radiation in Stellenbosch, South Africa. 

He reported that samples orientated horizontally receive 4.4% less radiation per year than 

samples tilted at 45 degrees (Figure 2.9) (Rypstra, 1995). 
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Figure 2.9: Image depicting the effect that sample orientation plays on the amount of degradation 
during weathering. These effects are visible on this board with the top of the board having been 
exposed to more solar radiation than the bottom half.  

 

It is important to note that sunlight and water tend to operate at different times. The action of 

the combined elements can follow different degradation paths, with irradiation accelerating 

the effect of water or the converse (Feist and Hon, 1984). 

 

2.2.3 Other factors 

Even though solar radiation and moisture are the major attributes of weathering, they are 

accompanied by other weathering factors such as heat, abrasion or mechanical action by wind 

blown particles, freezing and acid deposition. An increase in temperature causes the 

acceleration of photochemical and oxidative reactions, and when temperatures decrease to 

below zero degrees Celsius, water in wood freezes which can then lead to wood checking 

(Feist and Hon, 1984). 

 

An increasing awareness about the weathering effect of acid rain has developed over the last 

few decades. It is the increasing amount of sulfur dioxide in the surrounding air that causes 

acid rain which in effect plays a significant role in the weathering of wood. Acid rain 

concentrations have been reported in the range of pH 2.0. The effects of acid rain on painted 

materials are clearly visible in the degradation of the coating and substrate (Feist, 1988). 
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Solid particles such as sand in combination with wind can have a sandblasting effect on 

wood, leading to an increased rate of surface degradation and removal of wood. Smaller 

particles can also become lodged in surface checks and, through swelling and shrinking, 

weaken fibers in contact with particles (Feist and Hon, 1984). 

 

Products such as decking boards are often used to build features such as marine walks. If 

wood is exposed to such marine climates, salt deposition is an important weathering factor to 

consider. 

 

2.3 Biological Degradation  

Weathering is not to be confused with decay which results from organisms such as fungi and 

bacteria performing in the presence of excess moisture and air for an extended period of time 

(Feist and Hon, 1984). However, it is important to consider the effect brought on by 

biological attack when studying the deterioration of wood surfaces.  

 

Under circumstances suitable for the development of decay, wood can deteriorate faster and 

the outcome is far different from that observed for normal outdoor weathering (Figure 2.10) 

(Feist and Hon, 1984). Under artificial weathering conditions wood turns white due to the 

predominance of surface cellulose (Xie et al, 2008; Ghosh et al, 2009). Naturally weathered 

wood surfaces, however, take on a grey hue, which is practically always due to fungal growth 

on the surface of the wood (Feist and Hon, 1984). These fungi are able to metabolize photo- 

 

 

Figure 2.10: Image depicting the effect of brown rot in the middle of a surface coated pine board. The 
degradation is much different from that observed for normal weathering.  
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degraded lignin, holocellulose and derived sugars (Ghosh et al, 2009, Feist and Hon, 1984, 

Williams and Feist, 2001 and Xie et al, 2008). The most important fungal strain within this 

specific ecological niche are the ascomycetes Aureobasidium pullulans and Sclerophoma 

pithyophila. Hormonema dematiodes is another species responsible for blue staining of wood 

(Xie et al, 2008 and Ghosh et al, 2009).  Aureobasidium pullulans, more commonly referred 

to as mildew, grows on finished as well as unfinished or untreated softwood and hardwood 

surfaces (Ghosh et al, 2009). Mildew does not cause erosion of the surface but it may cause 

initial graying or an unsightly dark gray and blotchy appearance (Williams and Feist, 2001). 

Discolouration of wood by mildew is more general than commonly believed (Feist and Hon, 

1984) and the surface protection of wood is, therefore, of significant economic importance.  

 

2.4. Property changes during weathering 

2.4.1 Chemical changes 

Polymers in wood vary widely in susceptibility to photo-degradation because of the 

differences in their chemical structure, especially chromophoric functional groups (Williams, 

2005). The photo-degradation process of wood shows that by absorption of radiation energy, 

energy is transferred and localized in molecules resulting in splitting reactions such as 

depolymerization, dehydrogenation and dehydroxymethylation. Degradation of wood surfaces 

begins at relatively low irradiation intensities with an attack on the middle lamella. Higher 

intensities also degrade the secondary cell walls (Fengel and Wegener, 1984).  

 

The UV-degradation process is initiated by the formation of free radicals and apparently 

begins with oxidation of phenolic hydroxyl groups. This process leads to a decrease in 

methoxyl and lignin content and an increase in acidity and carboxyl concentration (Feist and 

Hon, 1984). These photochemical changes are largely influenced by moisture and, to a lesser 

extent, by heat (Fengel and Wegener, 1984; Feist and Hon, 1984). The decomposed products 

on the surface of weathered wood are mainly organic acids, vanillin, syringaldehyde and 

higher molecular weight compounds which are all leachable (Feist and Hon, 1984). Most of 

the decomposed lignin products are washed out by water and the remaining surface fibers are 

high in cellulose, resulting in the whitish to gray appearance on weathered surfaces (Fengel 

and Wegener, 1984). 
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2.4.1.1 Reactions in Cellulose and Hemicelluloses 

Cellulose is relatively little affected by degradation factors except for oxidation in the top 

surface layer. Wood surfaces are rich in cellulose after weathering (Feist and Hon, 1984). The 

degradation of cellulose by UV light is indicated by a loss of mass, a reduction of α-cellulose 

content and in the degree of polymerization (Fengel and Wegener, 1984). The loss of mass 

versus irradiation time is a linear function with the gradient increasing with elevating 

temperatures (Fengel and Wegener, 1984). 

 

The photo-degradation mechanism of cellulose and hemicelluloses depends on the intensity 

and energy distribution of the light (Feist and Hon, 1984). Shorter wave lengths cause a 

hydrolytic chain cleavage which produces aldehyde groups, whereas longer wavelengths 

cause degradation in the presence of oxygen to produce peroxide groups (Fengel and 

Wegener, 1984). For the photolytic degradation of cellulose the cleavage of carbon-oxygen or 

carbon-carbon bonds will require an energy level corresponding to wavelengths of 340nm or 

shorter. Among the volatile degradation products of cellulose are acetaldehyde, 

propionaldehyde, methyl formiate, acetone, methanol, ethanol, methane and ethane (Fengel 

and Wegener, 1984). 

 

It has been suggested that the absorbing chromophores are the hydroxyl, carbonyl, carboxyl or 

the acetyl groups at the C1 position of non-reducing glucose units (Fengel and Wegener, 

1984). 

 

2.4.1.2 Reactions in Lignin 

Lignin is a good UV absorber and is capable of autoxidation. For these reasons, lignin retards 

the photolytic degradation of cellulose (Fengel and Wegener, 1984). Lignin has an absorption 

peak at 280 nm with a tail extending to over 400 nm (Figure 2.11) (Feist and Hon, 1984). The 

absorption occurs at chromophoric structural elements within the molecular network of lignin 

(Fengel and Wegener, 1984).  Hon and Glasser (1979) classified the potential chromophoric 

groups as follows:  

• Chromophoric functional groups: phenolic hydroxyl groups, double bonds, carbonyl 

groups, etc. 

• Chromophoric systems: quinones, quinone methides, biphenyls, etc.  

• Leucochromophoric systems: methylenequinones, phenanthrenequinones, etc. 

• Intermediates: free radicals 

• Complexes: chelate structures with metal ions     
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Figure 2.11: UV absorption curve for lignin (Feist and Hon 1984) 

 

Studies on the formation of photo-induced free radicals using model compounds have elicited 

several facts. Hon (1981) deduced the following:  

 

1.  Lignin is easily degraded by light of wavelength shorter than 350nm. Significant 

colour buildup or formation of chromophoric groups is recognized. 

2. Light with a wavelength longer than 350nm has no effect on lignin, but photo-

bleaching or whitening of lignin can be observed when it is exposed to light longer 

than 400nm. 

3.  Reduction of methoxy content of lignin occurs. 

4.  Phenoxy radicals are produced readily from phenolic hydroxyl groups. 

5. Carbon–carbon bonds adjacent to α-carbonyl groups are photo-dissociated via the 

Norrish Type I reaction. 

6.  The Norrish Type I reaction does not occur efficiently in those compounds with ether 

bonds adjacent to the α-carbonyl group. Photo-dissociation takes place at the ether 

bond. 

7.  Compounds bearing benzoyl alcohol groups are not susceptible to photo-dissociation 

except when photo-sensitizers are present. 

8.  In addition, Feist and Hon (1984) reported that α-carbonyl groups function as photo-

sensitizers in the photo-degradation of lignin.  

The rate of radical formation is further influenced by the presence of moisture. Studies have 

shown that the rate increases from 0 - 6.3% MC, and then decreases with further increases in 

MC (Rypstra, 1995). 
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2.4.2 Physical changes 

2.4.2.1 Colour changes 

Discolouration of wood exposed to the outdoors is initiated rapidly (Feist, 1983, Feist, 1998). 

The rate and amount of discolouration is dependent on wood species (Schnabel et al, 2009). 

In the early stages of weathering, dark woods tend to become light and light woods, dark. 

Woods rich in extractives may become bleached before browning is visible. Eventually all 

wood surfaces become gray if fully exposed to sun and rain (Feist, 1983, Feist and Hon, 

1984). 

 

Discolouration of wood is mainly due to UV light (Temiz et al, 2005) and to a lesser extent 

by the visible and infrared light components of sunlight (Schnabel et al, 2009). Light acts in 

combination with moisture, heat, and oxidative agents to depolymerize lignin and cellulose in 

the wood cell wall (Temiz et al, 2005). 

 

Photo-degradation leads largely to the decomposition of lignin. This is due to lignin’s 

capability of absorbing UV light in the range of 300–400 nm (Fabiyi et al, 2008 and Temiz et 

al, 2005). Several studies have shown that de-aromatization, a decrease in hydroxyl groups, 

and an increase in carbonyl groups of lignin were the spectral changes most closely associated 

with surface discolouration (Fengel and Wegener, 1984, Dirckx et al, 1992, Temiz et al, 

2007, Fabiyi et al, 2008). Nevertheless cellulose also yellows under irradiation. The 

yellowing is attributed to the production of oxygen-containing groups such as carbonyl, 

carboxyl and hydroperoxide groups (Fengel and Wegener, 1984). 

 

As rain leaches the brown decomposition products of lignin, a silver-gray layer consisting of a 

disorderly arrangement of loosely matted fibers develops above the brown layer. The gray 

layer is composed chiefly of the more leach-resistant parts of the partially degraded wood 

cellulose (Feist, 1983, Feist and Hon, 1984, Feist, 1988). Studies have shown that naturally 

weathered wood surfaces become gray mostly because of fungal growth. However, Futo 

(1976) concluded that wood could turn grey without the influence of mould-fungi (Schnabel 

et al, 2009). 
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2.4.2.2 Surface roughening  

Along with chemical and colour changes occurring on wood surfaces exposed outdoors, 

mechanical damage also occurs. Deterioration of wood surfaces due to the combined effect of 

water and light leads to the formation of macroscopic to microscopic intercellular and 

intracellular cracks or checks (Feist, 1983 and Williams, 2005). As weathering continues and 

surface fibers swell and shrink, the strength of cell wall bonds is lost near the surface. Further 

erosion occurs as rainwater washes out degraded portions. All these effects lead to the 

roughening of the surface of wood (Feist and Hon, 1984). 

 

2.4.2.3 Surface wettability 

Wettability of a solid surface by a liquid is usually expressed as the contact angle between the 

solid and the liquid, a smaller contact angle signifying greater wettability. In a study by 

Kalnins and Feist (1993) on the water repellency of western red cedar surfaces, they found 

that contact angles reduced from 77° to 55° after four weeks of outdoor weathering. Increased 

wettability of wood surfaces during weathering is suggested as a contributing factor to the 

deterioration of wood surfaces. Water readily wets such a surface and is quickly absorbed into 

the wood. 

 

As mentioned previously, weathering causes gradual deterioration of wood surfaces as wood 

is converted to volatile and water-soluble degradation products. Lignin and extractives, which 

are suggested to be the hydrophobic components in wood, are quickly eroded and leached out, 

leaving the surface with a cellulose-rich layer. Cellulose is a hydrophilic material and with its 

increased exposure on the surface, leads to an increase in wettability (Kalnins and Feist, 

1993). 

 

2.4.2.4 Other physical changes 

The physical loss of wood substance from the wood surfaces during weathering depends on 

the species of wood, density, amount of irradiation, rain action, wind, degree of exposure and, 

generally, climate (Feist, 1983 and Feist, 1990). Softwoods such as pines generally erode 

faster than hardwoods such as E. camaldulensis and E. tereticornis. Studies on the rate of 

outdoor weathering have indicated that the dense hardwoods erode at a similar rate to that 

observed for the latewood of softwood species. Hardwoods on average erode at a rate of 

3mm/century compared to 6mm for softwoods (Feist and Hon, 1984).   

 



   

   24  

 

In addition to the slow erosion of wood surfaces, surfaces also develop checks and raised 

grain. This degradation is caused primarily by stresses which are set up due to MC 

fluctuations. Checks commonly form at the earlywood/latewood interface. On tangentially cut 

surfaces, checking occurs predominately on the bark side, however, the raised grain on the 

pith side can be a more severe problem (Williams, 2005). 

 

Because of wood’s anisotropic characteristics, it commonly does not swell and shrink 

uniformly. This leads to warping of boards, the amount of warping directly related to wood 

density.  Cupping is probably the most common form of warp. Cupping is the distortion of a 

board that causes a deviation from flatness across the width of the piece. Wide boards cup 

more than narrow boards (Williams and Feist, 2001 and Williams, 2005). Also, stresses are 

set up through the alternate shrinking and swelling of wood, which may lead to the 

development of severe checks or small ruptures along the grain of a board.  

 

2.4.3 Anatomical changes 

Microscopic changes accompany the gross physical change of wood during weathering. 

Lignin is the most photo-sensitive component in wood and because the lignin content is 

relatively higher in the middle lamella than in the cell wall, the photo-degradation occurs 

preferentially in this area of the wood surface. Williams (2005) confirmed the latter using 

micrographs showing the deterioration of the middle lamella in the early stages of weathering.  

 

Through a series of studies, Miniutti (1973) determined changes in softwood surfaces after 

outdoor exposure. The first sign of deterioration was enlargement of apertures of bordered 

pits in radial walls of earlywood tracheids. Next, micro-checks occurred. He also showed that 

these micro-checks enlarge principally as a result of contraction in cell walls. During 

weathering, the leaching and plasticizing effects of water apparently facilitate enlargement of 

the micro-checks (Miniutti, 1973).  
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2.5. Methods of Protecting Wood against Weathering 

Many finishing systems have been developed for exterior conditions. These finishes serve to 

retard the deterioration rate of wood surfaces exposed to UV light and water and help 

maintain appearance. Protection against these factors is highly important to increase the 

service life of wood, unfortunately most wood finishes may only last 1-2 years.  

 

The durability of outdoor finishes primarily depends on the wood substrate (Feist, 1988). 

According to Feist and Hon (1984), important wood properties for finishing are moisture 

content, density, texture, resin and oil content, width and orientation of growth rings, and 

defects such as knots, reaction wood and decayed wood. Other contributing factors are the 

nature and quality of the finish used, application techniques, pretreatment, time between 

refinishing, extent to which the surfaces are sheltered from the weather and climatic and local 

weather conditions (Feist and Hon, 1984).  

 

Different finishes give varying degrees of protection from the weather. Usually an increase in 

pigment concentration offers a higher level of protection i.e. paints provides the highest 

protection and clear varnish the least (Feist, 1988). 

 

There are two basic types of finishes used for wood protection namely film-forming (those 

that form a film (layer) or coating on the wood surface) and penetrating finishes (those that 

penetrate the wood surface and leave no distinct layer or coating).  

 

2.5.1 Film-Forming Finishes 

2.5.1.1 Paints 

Paint, being pigment rich, provides the highest degree of protection and essentially eliminates 

photo-degradation of the wood surface. A non-porous paint film retards penetration of 

moisture and thus reduces discolouration by wood extractives, paint peeling and checking and 

warping of wood (Feist, 1988). Paint, however, is not a preservative and will not prevent 

decay if conditions favourable for fungal growth are created. The durability of paint is 

affected by variables of the wood substrate such as moisture and type of paint (Feist and Hon, 

1984). 
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2.5.1.2 Varnishes  

Clear varnishes offer the most natural appearance for wood. Unfortunately, clear varnish 

finishes exposed to harsh exterior conditions require regular maintenance to maintain a 

reasonable appearance. The addition of colourless UV light absorbers to clear finishes 

sometimes helps to retain the natural colour and original surface structure of wood (Feist, 

1988). Even with the application of durable, clear, synthetic resin varnishes, the surface 

protection is still limited because UV light penetrates the clear varnish film and progressively 

deteriorates the wood underneath. Ultimately the varnish begins to flake and crack off, taking 

with it loosened wood fibers (Feist, 1988). Semi-transparent varnishes are not as esthetically 

pleasing as clear varnishes but offer better protection against UV penetration. Besides the 

retarding effect on UV light penetration, a non-porous varnish film also retards penetration of 

moisture and thus reduces discolouration by wood extractives, paint peeling and checking as 

well as warping of wood (Feist, 1988). 

 

2.5.2 Penetrating Finishes 

2.5.2.1 Oils 

Traditional oils such as linseed, tung and oiticica have been widely used as penetrating wood 

finishes. These oils unfortunately have a low resistance to UV light and water and do not tend 

to last longer than a year. Therefore, penetrating oils find limited use as outdoor finishes 

(Feist and Hon, 1984).  

 

2.5.2.2 Water Repellents 

Water, as previously discussed, plays a major role in the deterioration of wood surfaces. In the 

absence of water repellents, water can readily penetrate wood through open cracks and defects 

in coated surfaces.  

 

Water repellent preservatives generally comprise a resin (10-20%), solvent, wax (as the water 

repellent) and preservatives (fungicide) (Feist, 1988). They give wood the ability to repel 

water thus denying stain and decay fungi the moisture they need to live. They also reduce 

water damage to wood and help protect applied paint from the blistering, peeling and cracking 

which often occurs when water excessively penetrates wood (Feist, 1988). 
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2.5.2.3 Stains 

When pigments are added to water-repellent solutions (WRP) or to similar penetrating 

transparent wood finishes, the mixture is classified as a pigmented, semi-transparent, 

penetrating stain (Feist and Hon, 1984). The pigment provides colour and greatly increases 

the durability of the finish because UV light is partially blocked. They do not form a distinct, 

continuous layer, therefore, they will not blister or peel, even if excessive moisture enters the 

wood. They are especially useful in applications on tangentially sawn, weathered wood 

surfaces where paint does not perform well (Feist and Hon, 1984).   

 

According to Feist and Hon (1984), the durability of any stain system is a function of pigment 

and resin content, preservative, water repellent and the quantity of material (film thickness) 

applied to the wood surface (Feist and Hon, 1984).   

 

2.5.2.4 Preservatives 

According to Feist and Hon (1984) the three main types of preservative are preservative oils 

(coal-tar creosote), organic solvent solutions and waterborne salts. During the last couple of 

years however, the use of pentachlorophenol and CCA have mainly been phased out due to an 

increased environmental awareness. In general, the higher the preservative content of 

pressure-treated wood, the greater resistance to weathering and the greater surface durability. 

The chromium-containing preservatives also protect against UV light degradation. 

 

2.5.2.5 Chemical modification 

Several studies have shown that it is possible to improve the performance of clear finishes on 

wood by photo-stabilizing the wood before application of the finish (Feist and Hon, 1984, 

Evans et al, 2002, Ghosh et al, 2009). The following chemicals are often used for this 

purpose: anhydrides, acid chlorides, carboxylic acids, isocyanates, aldehydes, alkyl chlorides, 

lactones, nitrites and epoxides (Evans et al, 2002). These chemicals are capable of forming 

covalent linkages with the hydroxyl groups of lignin and cellulose and, in certain cases, also 

bulking the wood cell wall with reacted chemical (Evans et al, 2002). These chemical 

modifications decrease the interaction of water with the polymeric constituents of wood and 

thus enhance the dimensional stability and decay resistance of wood.   
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Studies by Hon and Feist (1984) showed that certain inorganic chemicals, when applied as 

dilute aqueous solutions to wood surfaces, provide the following benefits: 

 

1. Retard degradation of wood surfaces by UV irradiation. 

2. Improve durability of UV-light-transparent polymer coatings. 

3. Improve durability of paints and stains. 

4. Provide a degree of dimensional stability to wood surfaces. 

5. Provide fungal resistance to wood surfaces and to coatings on the surface. 

6. Serve as natural finishes for wood and obviate further treatment. 

7. Fix water-soluble extractives in certain wood species and thereby minimize subsequent 

staining of applied latex paints. 

 

2.6. Accelerated (Artificial) Weathering 

The effect of weathering on wood or surface treatments can be studied using either natural 

outdoor exposure tests or accelerated laboratory tests. These two major test types are not the 

same, however, many researchers have found good correlations between erosion rates from 

natural and accelerated weathering (Feist and Mraz, 1978, Anderson et al, 1990, Arnold et al, 

1991, Tolvaj and Mitsui, 2005). Accelerated tests are conducted with controlled artificial light 

and water sources, whereas natural weathering is performed on outdoor exposure racks or in 

field trials with real sunlight and natural moisture conditions. However, accelerated 

weathering tests do not make provision for the effect of biological degradation, acid 

deposition and the effects of soil and contaminants (Crewdson, 2008). The main problem with 

natural weathering tests are that the weather conditions are not repeatable and, therefore, 

accelerated weathering is more useful when studying the individual or combined effects of 

water and UV radiation on wood surfaces.  

 

According to Feist and Hon (1984), microscopic changes on wood surfaces during accelerated 

weathering are closely related to those observed during natural outdoor weathering.  These 

changes include the formation of longitudinal checks between adjacent walls of neighbouring 

cells that apparently occur in or close to the middle lamella, longitudinal checks in cell walls, 

and diagonal checks through pits that probably follow the fibril angle of the S2 layer (Feist 

and Hon, 1984). 
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2.6.1 Artificial Weathering Apparatuses 

2.6.1.1 Water application  

The Swiss Federal Laboratories for Materials Testing and Research (EMPA) compared the 

effects of water-condensation to water-spray systems on wood surface degradation (Arnold et 

al, 1991).  Their initial results with water condensation did not show the typical surface 

erosion of unprotected wood usually observed with carbon arc or xenon arc accelerated-

weathering chambers fitted with water-spray systems. The main result observed in the EMPA 

studies was the usual yellow to brown discolouration of the wood surface which is caused by 

UV light degradation. They concluded that water-spray systems are most suited for obtaining 

characteristic wood weathering degradation and significant wood surface erosion as seen with 

natural weathering, whereas water condensation systems have a smaller effect on wood 

erosion and roughening but show the same results for discolouration (Arnold et al, 1991). 

 

2.6.1.2 Artificial light sources 

Tolvaj and Mitsui (2005) studied the effect that light sources have on the photo-degradation 

of wood surfaces. In their study, wood specimens were irradiated with a xenon lamp and a 

mercury lamp. They found that xenon light was able to simulate the effect of sunlight during 

weathering only at long exposure times and that in the short term, the yellowing of wood is 

faster and greater in the case of xenon light irradiation than in the case of natural sunlight. The 

acceleration effect by xenon light is about three times that of sunlight. During exposure to 

xenon light or sunlight, the number of UV light-generated carbonyl groups absorbing the 

infrared light around 1700cm-1 appears to be correlated with the yellowing of wood. 

Furthermore, they found that light emitted by a mercury lamp does not simulate sunlight, and 

should, therefore, not be used in artificial weathering studies on wood (Tolvaj and Mitsui, 

2005). 

 

2.7. Techniques of measuring the weathering characteristics 

2.7.1 Fourier Transform Infrared Spectroscopy to study Surface Chemistry 

Infrared spectroscopy has a variety of uses as an analytical technique in the wood industry, 

including quantification and identification of individual components. Fourier transform 

infrared spectroscopy (FTIR) has also been proven useful in studying the surface degradation 

of wood samples during weathering (Moore and Owen, 2001).  
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The infrared region of the electromagnetic spectrum extends from the red end of the visible 

spectrum to the microwave region (Figure 2.8). The region includes radiation at wavelengths 

between 0.7 and 500 µm or, in wavenumbers, between 14000 and 20cm-1. The spectrum range 

used most is the mid-infrared region which covers frequencies from 4000-200cm
-1

 (Willard et 

al, 1988). It is convenient to divide the IR region into three parts: the far-IR (10-200cm-1), the 

mid IR (200-4000cm-1) and the near IR (4000-12800cm-1) (Griffiths and Haseth, 2007). 

 

2.7.1.1 Vibrational Behaviour of Molecules under IR radiation 

Infrared spectroscopy involves examination of the twisting, bending, rotating and vibrational 

motions of atoms in a molecule (Willard et al, 1988). Upon interaction with infrared radiation, 

portions of the incident radiation are absorbed at specific wavelengths. The multiplicity of 

vibrations occurring simultaneously produces a highly complex absorption spectrum that is 

uniquely characteristic of the functional groups that make up the molecule and of the overall 

configuration of the molecule as well. 

 

2.7.1.2 Correlation of Infrared Spectra with Molecular Structure 

The infrared spectrum of a compound is fundamentally the superposition of absorption bands 

of specific functional groups yet subtle interactions with the surrounding atoms of the 

molecule impose the stamp of individuality on the spectrum of each compound (Willard et al, 

1988). For qualitative analysis, one of the best features of an infrared spectrum is that the 

absorption or the lack of absorption in specific regions can be correlated with specific 

stretching and bending motions and, in some cases, with the relationship of these groups to 

the rest of the molecule. Thus, when interpreting the spectrum it is possible to state that 

certain functional groups are present in the material and certain others are absent (Willard et 

al, 1988).  

 

2.7.1.3 Fingerprint Region 

The mid-infrared region is divided into the “group frequency” region, 4000-1300 cm-1 and the 

fingerprint region, 1300 to 650 cm-1 (Griffiths and Haseth,  2007). The major factors in the 

spectrum between 1300 and 650 cm-1 are single-bond stretching frequencies and bending 

vibrations (skeletal frequencies) of poly atomic systems that involve motions of bonds linking 

a substituent group to the remainder of the molecule. This is the fingerprint region. 

Multiplicity is too large for assured individual identification of the bands but collectively the 

absorption bands aid in identifying the material (Griffiths and Haseth, 2007). 
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2.7.1.4 Assignment of IR absorption spectra bands in wood  

Photo-induced degradation of treated and untreated wood causes mainly changes in the 

absorption intensity at 1720–1740, 1592, 1508 and 1261 cm
−1

 (Temiz et al, 2007). The 

intensity and changes of these bands are related to changes in chemical composition of the 

functional groups and chemical structure of wood components. The assignments of these 

characteristic IR absorption peaks in wood are shown in Figure 2.12 below and are listed in 

Table 2.2. 

 
Figure 2.12: Typical FTIR spectrum of a wood sample (Temiz et al, 2007). 
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Table 2.2: Assignment of IR absorption spectra bands in wood (Temiz et al, 2007). 

Fr (cm
−1

) Group and class  
 

See Figure 
 

1720–40 
 
 

• C=O in:           - unconjugated ketones  
                              - aldehydes  
                              - and carboxyl groups 

 

Figure 2.13  -  a    
Figure 2.14 - a 
Figure 2.14 - b 

1645–60 
 
 

• C=O in:           -  para-OH substituted aryl  ketones                                     
                              - and quinones 

Figure 2.13 -  b   
Figure 2.15  

1600/1510 
 
 

• C=C in:           -  aromatic ring in lignin  

1462 / 1425 
 
 

• C–H in:          - lignin  
                             - and carbohydrates 

 

1375 
 
 

• C–H in:         - cellulose 
                            - and hemicelluloses 

 

1330 / 1320 
 
 

• C–H in:         - cellulose  

• C–O in:         - syringyl derivatives 

 
 

1268 
 
 
 

• Guaiacyl ring breathing (lignin) 

• C–O in:         - lignin  

• C–O linkage in guaiacyl aromatic methoxyl groups 

Figure 2.13 -  c 
 
Figure 2.13 -  d 

1244 • Syringyl ring breathing (lignin) 

• C–O in:         -  lignin  
                            - xylan 

Figure 2.13 -  e 
 

1162 • C–O–C in:    - cellulose Figure 2.16 

 

The 1800–1450 cm
−1

 range is of particular importance for the study of processes occurring in 

wood. The 1720 -1740 cm-1 band is characteristic of the unconjugated ketones in lignin 

(Figure 2.13-a) and aldehydes and carboxyl groups in xylan (Figure 2.14-a and b) (Anderson 

et al, 1990a and Temiz et al, 2007). 

 

The absorption at 1645–1660 cm-1 is related to the deformation of para-OH substituted aryl 

ketones (Figure 2.13-b) and quinines (Figure 2.15) present in lignin (Anderson et al, 1990, 

Moore and Owen, 2001, Temiz et al, 2007). 
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Figure 2.13: Assignment of IR absorption groups in areas of lignin (Adapted from Fengel and 
Wegener, 1984). a: unconjugated ketone, b: para-OH substituted aryl  ketones, c:  Guaiacyl ring 
breathing, d: C–O linkage in guaiacyl aromatic methoxyl groups and e: Syringyl ring breathing. 

 

The absorption at 1600 cm
−1

, 1510 cm
−1

, 1268 cm
−1

 and 1244 cm
−1

  are characteristic peaks 

of lignin due to the C=C stretching vibrations of the aromatic rings present in lignin while the 

aliphatic part of lignin is characterized by the 1462 cm−1 band. It has been reported that the 

aromatic lignin C=C band (1506/1511 cm
−1

) disappears within a few hours of exposure to 

accelerated weathering (Anderson et al, 1990, Moore and Owen, 2001, Williams, 2005 and 

Temiz et al, 2007). 

 

 

Figure 2.14: Assignment of IR absorption groups in areas of xylan (Adapted from Fengel and 
Wegener, 1984). a) aldehyde groups and b): carboxyl groups 

 

 

a b 

c

d 

e 

a 

b 
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Figure 2.15: Quinone structure present in lignin (Adapted from Fengel and Wegener, 1984). 

 

The absorption at 1268 cm
-1

 is characteristic absorption of guaiacyl ring breathing (Figure 

2.13-c), C-O in lignin and C–O linkages in guaiacyl aromatic methoxyl groups (Figure 2.13-

d) (Anderson et al, 1990a, Moore and Owen, 2001, Temiz et al, 2007). 

 

The absorption at 1244 cm-1 is characteristic absorption of syringyl ring breathing (Figure 

2.13-e), C-O in lignin, and C–O linkages in xylan (Anderson et al, 1990, Moore and Owen, 

2001 and Temiz et al, 2007). 

 

The C–O–C stretching of the pyranose ring of cellulose absorbs at 1162 cm−1 in its crystalline 

and at 1156 cm
−1

 in its amorphous cellulose form (Figure 2.16) (Anderson et al, 1990, Moore 

and Owen, 2001, Temiz et al, 2007). 

 

 

 

Figure 2.16: C–O–C stretching of the pyranose ring of cellulose (Adapted from Fengel and Wegener, 
1984) 
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2.7.2 Colour 

The aesthetic appearance of wood is an important factor concerning wood quality and colour 

has a significant impact on each individual’s perception of this appearance. Unfortunately 

wood surfaces undergo drastic colour changes when exposed outdoors and mostly turn grey 

(e.g. Colorado changes from red to grey whereas Balau changes from brown to grey).  

 

In order to compare the quality of different wood products, it is necessary to determine the 

rate of discolouration that wood surfaces undergo when exposed outdoors.  Colour can be 

measured using a wide range of spectrophotometers. The CIE-lab system is one of the 

systems used to quantify colour. The colour parameters of this system are as follows: the L* 

axis is the lightness (ranging from 0 (black) to 100 (white)), the a* and b* axes are the 

chromaticity coordinates (a positive a* value refers to red and a negative a* value to green 

while +b* and –b* denote yellow and blue respectively) (see Figure 2.17). ∆E* is the 

combined effect of the parameters and can be calculated according to equation 1: 

 

∆E* = (∆L*
2 + ∆a*

2 ∆b*
2)1/2            (1) 

 

 

Figure 2.17: Representation of the CIE-lab system (SHEEN – Micromatch Plus: User manual) 
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2.7.3 Surface Roughness 

Different instruments are available for the assessment of surface texture. These instruments 

either operate on mechanical, mechanical-electrical, pneumatic or optical principles.  

 

 
Figure 2.18: Example of roughness profiles measured with a stylus tipped roughness meter: (a) 
roughness profile of Balau before weathering (Ra = 6.6, Rz = 54.4) and (b) roughness profile of Balau 
after four weeks of weathering (Ra = 10.3, Rz = 61.2) 

 

Instruments commonly used in the analysis of wood surfaces are roughness meters containing 

a cone shaped stylus tip. The tip of the stylus is dragged across the wood’s surface, recording 

the profile curve as it continues. There are normally two modes used to characterize the 

average roughness namely Ra and Rz (DIN 4768, 1990). Ra represents the average deviation 

of the roughness profile but it does not differentiate between the peaks and valleys of a 

surface profile whereas Rz considers the mean peak to valley height (Ghosh et al, 2009). 

When using this instrument, its profile filter must be phase-corrected with a cut-off 

wavelength of 8mm. According to DIN 4768 (1990) wavelengths shorter than this value are 

considered as roughness and larger wavelengths as waviness.   
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2.7.4 Substrate defects 

During weathering, defects such as surface-checks, checks and cracks may occur in wood. 

One method of quantifying these defects on a sample is by means of a template. The template 

is sized according to the surface area of a sample and divided into a number of equally sized 

blocks e.g. 50 blocks. The percentage of defect free surface can then be calculated by 

counting the number of blocks which do not contain defects.  

 

2.7.4.1 Surface checks (Hair checks) 

Surface checks, as defined by SANS 1783-1 (2007), are very fine checks of width not 

exceeding 0.5mm. 

 

2.7.4.2 Checks  

Checks as defined by SANS 1783-1 (2007) are separations of the wood fibers along the grain 

of the wood that form a fissure but do not extend through a piece from one face to the 

opposite face (see Figure 2.19). 

 

2.7.4.3 Crack (split)  

A crack/split as defined by SANS 1783-1 (2007) is a separation of the wood fibers along the 

grain of the wood that forms a crack or fissure that extends through a piece from one face to 

the opposite face (see Figure 2.19) 

 

 

Figure 2.19: Representation of a check (SANS 1783-1: 2007) 
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Figure 2.20: Representation of a crack/split (SANS 1783-1: 2007) 

2.7.5 Deformation 

During weathering a sample may deform from its original state. Different forms of 

deformation exist namely bow, cup, spring and twist. Any form of these is known as warp and 

can be measured and quantified as explained in the following section.   

 

2.7.5.1 Bow 

 Bow as defined by SANS 1783-1 (2007) is the lengthwise curvature, in its own plane, of an 

edge of a piece. d is the variable that is measured as explained in Figure 2.21 below.  

 

2.7.5.2 Cup 

Cupping as defined by SANS 1783-1 (2007) is a curvature that occurs in the transverse 

section of a piece of timber. C is the variable that is measured as explained in Figure 2.22.  

 

 

 

Figure 2.21: Depiction of bow deformation (SANS 1783-1: 2007) 
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Figure 2.22: Depiction of cup deformation (SANS 1783-1: 2007) 

 

 

Figure 2.23: Depiction of spring deformation (SANS 1783-1: 2007) 

 

2.7.5.3 Spring 

Spring as defined by SANS 1783-1 (2007) is the lengthwise curvature, in its own plane, of the 

face side of a piece. S is the variable that is measured as explained in Figure 2.23 

 

2.7.5.4 Twist 

Twist as defined by SANS 1783-1 (2007) is a form of warp that appears as lengthwise spiral 

distortion in a piece. In order to quantify the amount of twist of a piece, t can be measured as 

the height from a flat surface or angle α can be measured as shown in Figure 2.24. 

 

 

 

Figure 2.24: Depiction of twist deformation (SANS 1783-1: 2007) 
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2.7.6 Changes in Surface Wettability  

As mentioned previously, weathering causes gradual deterioration of wood surfaces as wood 

is converted to volatile and water-soluble degradation products. Lignin and extractives which 

are suggested to be the hydrophobic components in wood are quickly eroded and leached out, 

leaving the surface with a cellulose-rich layer. Cellulose is a hydrophilic material and with its 

increased exposure on the surface, leads to an increase in wettability (Kalnins and Feist, 

1993). The roughening of the surface also leads to a decrease in topography and thus a smaller 

contact angle. This increase in contact angle can be explained by the increase of contact area 

between the liquid and the surface. 

 

Wettability of a solid surface by a liquid is usually expressed as the contact angle between the 

solid and the liquid (Figure 2.25), a smaller contact angle signifying greater wettability 

(Kalnins and Feist, 1993). 

 

 

Figure 2.25: Contact angle of a water drop (Image taken with an optical microscope at 25X 
magnification) 

 

2.8. Conclusion  

The properties of all unfinished wood products are degraded by outdoor weathering, the 

extent of the degradation depending on wood properties and the environmental conditions. 

The degradation process is slow and only affects the surface of wood. Water, sunlight and 

oxygen all play a role in wood weathering, the combined effect leading to discolouration, 

modification of surface texture and formation of checks and cracks, increasing the possibility 

of fungal attack. The durability of wooden structures is affected by the weatherability of 

wood. Therefore, it is important to protect wood by applying finishing systems and thus 

sustain the quality of wood when exposed to the harsh exterior factors of nature.   
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Chapter 3: Natural weathering behaviour of Colorado 

(Eucalyptus camaldulensis and Eucalyptus tereticornis) and Balau 

(Shorea spp.) 
 
Abstract  
Balau, a group consisting of 21 Shorea species, is widely used for outdoor application. In South 

Africa, Balau is one of the most popular materials used for decking. Due to the increasing scarcity of 

Balau, it is of economic importance to investigate the possibility of a substitute timber for decking 

material. One possible timber could be Colorado, a mixture containing one or more of the following: 

Eucalyptus camaldulensis, Eucalyptus tereticornis and their hybrids. These two species and their 

hybrids are extensively cultivated in countries such as Australia, India and parts of South America 

because of their short rotation period and easy adaptability to a wide variety of soil and climatic 

factors.  The timber was initially utilized as raw material for the pulp and paper industry but is now 

gaining importance in structural uses like furniture, flooring and decking. 

The aim of this exploratory study was to investigate relevant material properties and to examine the 

natural weathering behaviour of Colorado and Balau to predict Colorado’s suitability as decking 

material.  

It was found that Colorado had smaller vessel lumina, fewer vessels/m2 and smaller rays than Balau 

and had a higher density than Balau. Although both timbers had a relatively low FSP, Colorado’s FSP 

was 2.3 percentage points higher than Balau’s. The swelling coefficients (radial and tangential) of 

Colorado were slightly higher than Balau’s but Colorado’s lower swelling anisotropy can result in a 

lower tendency to twist in service. Colorado had a higher water soluble extractive content than Balau, 

which can lead to the rapid initial colour changes when the timber is exposed uncoated. 

The weathering performance of Colorado and Balau was investigated by exposing samples to natural 

weathering at inland and marine locations. During weathering for 30 weeks Colorado showed a 

slightly higher colour change (∆E*) than Balau. Balau showed a higher increase in roughness (Rz), 

surface checking and check formation than Colorado. Colorado showed slightly more cup than Balau, 

however, Balau showed much larger amounts of twisting than Colorado. No statistically significant 

differences were found between the hydrophobicity of the two timbers. A coating was effective in 

increasing the initial hydrophobicity of samples and could maintain a relatively hydrophobic surface 

during weathering. No statistically significant differences were found in the effect of sample cut on 

timber species surface wettability.  

Although only long term natural weathering studies and using substantially more samples can confirm 

its natural weathering performance, the results of this exploratory, natural weathering study indicated 

that Colorado can successfully be used as a substitute decking material for Balau.  
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3.1 Introduction 

 
Wood has been used as a building material for many millennia and despite the invention of 

new building materials over the last century, the utilization of wood in the construction 

industry shows little sign of declining. This can be attributed to wood’s versatile and 

attractive engineering and structural properties.  

 

All man-made and natural materials, including wood, are susceptible to environmental 

degradation. When wood is exposed outdoors, above ground, a complex combination of 

chemical, mechanical, and light energy factors contribute to what is described as weathering 

(Feist, 1983). These weathering factors are as follows: solar radiation (ultra violet (UV), 

infrared and visible light), moisture (rain, dew, snow and changes in relative humidity), 

abrasion by windblown particles, heat and oxygen. In recent years, an additional weathering 

influence has arisen with the presence of atmospheric pollutants such as gaseous SO2, NO2, 

and O3 (Anderson et al, 1990). Abrasion of surfaces as a result of human activities such as 

walking on decks and maintenance such as cleaning surfaces with cleaners and brighteners 

and power washing, cause further modification of weathering effects (Feist, 1990 and 

Williams, 2005).  

 

The weathering process of wood starts immediately after wood is exposed to sunlight which 

causes the photo-oxidation or photochemical degradation of the exposed wood surface 

(Williams, 2005). At first the colour changes and then the combined effect of solar radiation 

and moisture leads to surface roughening as the grain raises, formation of surface checks 

which later grow into large cracks, surfaces gather dirt and mildew, the wood loses its surface 

coherence and becomes friable, splinters and fragments come off (Feist, 1983). If boards 

contain reaction or juvenile wood, cross-grain checking may develop, the boards may cup and 

warp and pull away from fasteners, especially in decking applications (Williams, 2005).  

 

To develop methods to retard or inhibit degradation and to increase the service life of all types 

of wood products in any type of environment, it is important to understand the mechanisms of 

weathering that lead to chemical changes and degradation of physical properties. The effect of 

weathering on wood or surface treatments can be studied using either natural outdoor 

exposure tests or accelerated laboratory tests. These two major test types are not the same, 

however, many researchers have found good correlations between erosion rates from natural 

and accelerated weathering (Feist and Mraz, 1978, Anderson et al, 1990, Arnold et al, 1991, 
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Tolvaj and Mitsui, 2005). The main problem with natural weathering tests are that the weather 

conditions are not repeatable and vary from place to place, therefore, artificial weathering is 

more useful when studying the combined or individual effects of water and UV radiation on 

wood surfaces.  

 

Balau is a group consisting of 21 Shorea species (Pande et al, 2005). The timber is widely 

used for outdoor application and in South Africa, Balau is one of the most popular materials 

used for decking. Due to the increasing scarcity of Balau, it is of economic importance to 

investigate the possibility of substitute species for decking material. One possible substitute 

timber could be Colorado, a mixture containing one or more of the following: Eucalyptus 

camaldulensis, Eucalyptus tereticornis and their hybrids. These two species and their hybrids 

are extensively cultivated in countries such as Australia, India and parts of South America 

because of their short rotation period and easy adaptability to a wide variety of soil and 

climatic factors (Sharma et al, 2005).  These two species were initially utilized as raw 

material for the pulp and paper industry but are now gaining importance for commercial, 

structural uses like furniture, flooring and decking.  

 

This paper forms part of a larger study on the weathering characteristics of Colorado 

(Eucalyptus camaldulensis and Eucalyptus tereticornis) and Balau (Shorea spp.). The 

objective of this investigation was to determine the physical and chemical changes of 

Colorado and Balau when subjected to natural weathering at two different (marine and inland) 

Mediterranean exposure sites. The effect of sample orientation (horizontal vs 45° to the 

horizontal, north facing), grain orientation (radial vs tangential) and surface coating was also 

included in the study.  
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 3.2 Materials and methods 

3.2.1 Exposure conditions  

Weathering was performed under two different Mediterranean climatic (winter rainfall) 

conditions, i.e. on the Atlantic beach front at Yzerfontein and at Stellenbosch, an inland 

location. Samples were exposed in a small timber deck erected at each location. A 

complementary natural weathering study was conducted at Stellenbosch on smaller samples 

not fixed to a horizontal deck support structure but in exposure racks facing north and at an 

angle of 45° to the horizontal. Weathering of decks started on 1 May 2009 (late autumn) and 

periodic evaluation of properties was stopped after 30 weeks on 7 December 2009. The 

smaller samples were weathered for a shorter period to allow adequate time for permeability 

measurements on unexposed material. The weathering period started on 24 June 2009 and 

was terminated after 20 weeks on 9 December 2009.  

 

3.2.2 Sample preparation  

Twelve defect free heartwood samples of Colorado and Balau, of which six were radially and 

six tangentially cut, each measuring 3000 x 19 x 85mm, were obtained from commercial 

sources. As depicted in Figure 3.1 each 3m board was divided into matched samples required 

for parallel running natural and accelerated weathering studies.  

 

 

Sample no and purpose legend:  
(1) Density, fiber saturation point (FSP) and swelling coefficient determinations (50 x 85 x 19mm) 
(2) Natural weathering exposure on decks erected at Stellenbosch and Yzerfontein respectively (900 x 85 x 19mm) 

(3) Standard panels for permeability determination and natural weathering in north facing exposure racks at Stellenbosch  ( 
300 x 85 x19mm)  
(4) Anatomical studies and extractives determination 
(5) Accelerated weathering  (150 x 85 x 5mm) – not used in this investigation 

Figure 3.1: Cutting pattern of 3000mm boards  

 
The 24 small samples (no 3) were sanded with a commercial P100 grit abrasive paper. Half of 

the wood samples were coated with 3 layers of a commercially available penetrating finish 

according to manufacturer’s specifications. The coating was applied on five of the sample’s 

surfaces (4 edges and 1 face). The solvent borne finish contained a brown (“mahogany”) 

coloured pigment. Samples 1-4 were used in this study, samples 5 were only used in the 
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accelerated weathering study running parallel with this investigation and reported in chapter 

4. The samples were conditioned for two weeks before exposure at 20˚C/65%RH. 

 

The deck structures at the two respective sites were constructed using 700mm long, 120 – 

139mm top diameter poles (Eucalyptus sp.). CCA treated SA Pine was used as bearers. The 

bearers, of dimensions 2400 x 38 x 114mm, were fastened to the poles using M10 x 180mm 

bolts.  The 900x19x85mm deck samples were fixed onto the bearers using 60mm long 

galvanized screws and half of the samples were coated in the same manner as the smaller 

300x15x85mm panels.   

 

3.2.3 Determination of density, FSP and Swelling coefficients 

Two samples (Figure 3.1, no.1) from each 3000mm board were used for density, FSP and 

swelling coefficient determinations. The samples measuring 50 x 19 x 85mm, were squared 

on a bench sander and conditioned at 20°C/65%RH for one month. After conditioning, the 

samples’ mass and dimensions of the samples were determined, oven dried at 102°C for 24 

hours, and again, the mass and dimensions were measured. The oven dried samples were 

placed above water inside airtight containers, i.e. exposed to 100%RH at 20°C for three 

months. After this period, the mass and dimensions at FSP were measured. The following 

variables were calculated according to SANS 1783-1, 2007: (a) %MC at 20°C/65%RH, (b) 

FSP, (c) Density at 20°C/65%RH, (d) oven-dry density and (e) the radial, tangential and 

volumetric swelling coefficients (from 0%MC to FSP). 

 

3.2.4 Anatomical Investigation 

10mm (radial) x 10mm (tangential) x 15mm blocks were cut from each sample (Figure 3.1, 

no. 4). The blocks were softened by boiling them in water for 5 hours. Smoothly cut cross-

sections were prepared using a Reichert sliding microtome.  Micrographs were taken at 35x 

magnification with a Leica EZ4D optical microscope. Leica image analysis software was used 

to analyze the images.  
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3.2.5 Liquid water and water vapour permeability  

Standard panels, measuring 300 x 85 x 15mm, were used for the water vapour permeability 

(WVP) and liquid water permeability (LWP) tests (Eloff, 1999), following the procedure 

described in Appendix 1, p.125.  

 

Water vapour permeability (WVP) tests were conducted using an apparatus containing a 

rectangular basin with a surface area of 200cm2 of which the edges were fitted with a rubber 

O-ring. The basin was filled to 50% of its volume with distilled water. The conditioned 

samples were weighed and clamped on top of the basin with the O-ring preventing any vapour 

loss other than through the sample. In effect, the middle 200cm2 of the sample’s area was 

exposed to an atmosphere of 100% RH. Samples were clamped in the apparatus for a period 

of 7 days, and weighed again. The WVP (in g.m
-2

.day 
-1

) of a sample was calculated as 

follows:  

WVP = (Final Mass - Initial Mass)/ (0.2 x 7days)                           (1) 

 

Liquid water permeability (LWP) tests were conducted using the same apparatus which was 

used for the WVP determination but with a different configuration. For LWP measurements 

the lower water basin was turned upside down. This allowed liquid water to lie on top of the 

sample’s surface, whereby exposing the middle 200cm2 of a sample’s area to liquid water.  

 

Samples were clamped in the apparatus for a period of 1 day, and weighed again. The LWP 

(also in g.m-2.day -1) of the sample was calculated as follows:  

LWP = (Final Mass - Initial Mass)/ (0.2 x 1day)       (2)                         

         

WVP and LWP tests were conducted in a conditioned room at 20C°/65%RH. 

 

3.2.6 Ethanol/cyclohexane (E/C) and water soluble extractives content 

Solvent ethanol/cyclohexane (E/C) and water extractions were performed on wood powder 

(Figure 3.1, no 4) according to Tappi standard T 264 om-84. 
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3.2.7 Colour 

Colour measurements on samples no. 2 and 3 (Figure 3.1) were recorded using a Micromatch 

Plus spectrophotometer, equipped with a standard illuminant D65 (SHEEN) using the CIE-lab 

system. The colour parameters of this system are as follows; the L* axis is the lightness 

(ranging from 0 (black) to 100 (white)), the a* and b* axes are the chromaticity coordinates (a 

positive a* value refers to red, and a negative a* value to green, while +b* and –b* denote 

yellow and blue respectively).  These values are used to calculate the colour change ∆E* as a 

function of the weathering period according to the following equations: 

   ∆L* = ∆Lt* - ∆Li*         (3) 

   ∆a* = ∆at* - ∆ai*         (4) 

   ∆b* = ∆bt* - ∆bi*         (5) 

∆E* = (∆L*
2
 + ∆a*

2
 ∆b*

2
)
1/2 

        (6) 

Where i refers to time zero and t indicates measurements at specific times. 

 

Colour measurements were taken at t = 0, and after 4, 8, 12, 20 and 30 weeks of natural 

weathering exposure. Three measurements were taken per sample and colour changes were 

always monitored on the same location on the sample.  

 

3.2.8 Surface roughness 

Roughness was measured on samples no. 2 and 3 (Figure 3.1) with a MarSurf PS1 surface 

profilometer. The instrument’s needle had a cone shaped stylus tip with an angle of 90°. The 

measuring length was 17.5mm across the grain. The maximum vertical measuring range of 

the instrument was -200µm to +120µm. A phase corrected profile filter (Gaussian filter) was 

used in accordance with DIN 4768. The filter is characterized by a cutoff value. This value is 

the wavelength of a sinusoidal profile, the amplitude of which will be transmitted by the 

phase correct filter to a level of 50%. This cutoff defines which elements of the profile will be 

attributed to roughness or waviness. The Rz mode (mean peak-to-valley height (DIN 4287)) 

was chosen to characterize the average roughness. 

 

Roughness measurements were also taken at t = 0, and after 4, 8, 12, 20 and 30 weeks of 

natural weathering exposure. The three measurements taken per sample were also repeated on 

the same location of the sample’s surface. 
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3.2.9 Deformation 

The two forms of warp used to describe deformation of samples are cup and twist. 

Measurements were taken on samples no. 3 (Figure 3.1) after 20 weeks of natural exposure 

according to methods described by SANS 1783-1 (2007). 

 

3.2.10 Substrate defects 

The substrate defects which were measured  on samples no. 2 and 3 (Figure 3.1) include 

surface checks, checks, cracks and end-cracks as defined in SANS 1783-1 (2007). Perspex 

templates were used to calculate the percentage of defect containing surfaces. The areas of the 

Perspex templates were divided into 50 equally sized blocks, and from this, the number of 

blocks containing defects could be counted and a surface percentage calculated. 

Measurements were taken after 20 weeks on the 300mm samples and after 30 weeks on both 

decks. 

 

3.2.11 Surface wettability  

Wettability of samples no. 3 (Figure 3.1) surfaces was determined by dispensing a 1-µL drop 

of distilled water on the wood surfaces with a micropipette. Images of the profile of each drop 

at 25x magnification were recorded using a Leica EZ4D microscope. Images were taken 4 

seconds after drop disposal. Five measurements were taken per sample. Both right and left 

contact angles were measured on each drop using Leica software.  Contact angle 

measurements were taken at t = 0, and after 4, 10 and 20 weeks exposure. 

 

3.2.12 Mass fluctuations  

The mass of the 300mm standard panels were measured every 7 days. 

 

3.2.13 Statistical analysis 

The statistical analysis of data was conducted with Statsoft Statistica 9. Interactive effects 

between multiple variables were analyzed using a factorial ANOVA. A test for normality was 

performed and an F-test was used with confidence intervals of 95%.  

Response variables such as colour change (∆E) and roughness (Rz), taken at different time 

intervals, were analyzed using repeated measures ANOVA. An F-test was used with 

confidence intervals of 95%.   
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3.3 Results and Discussion  

3.3.1 Material Properties 
3.3.1.1 Density 

The average, and upper and lower density values of Colorado and Balau within the 95% 

confidence intervals are listed in Table 3.1 and depicted in Figure 3.2.  

 

Table 3.1: Average ovendry density of Colorado and Balau 

SPECIES 
Average ovendry density 

(g/cm
3
) 

Density  -95.00% Density  +95.00% N 

Colorado 0.92 0.88 0.96 24 

Balau 0.83 0.80 0.87 24 

 

The ovendry density of Colorado (0.922 g/cm3) was found to be statistically significantly 

higher than that of Balau (0.836 g/cm
3
). The Colorado used in this investigation was thus, on 

average, 9.3% more dense than Balau.  
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Figure 3.2: Average ovendry density of Colorado and Balau 

 

The following ovendry density results have been reported for Colorado and Balau by other 

authors whose results are summarized in Table 3.2. From the results reported by Pande et al. 

(2005) it is possible that Balau can have the same density as Colorado.  

 

Table 3.2: Ovendry densities of Colorado and Balau reported by other authors 

SPECIES Density  range 

Colorado 0.66  - 1.06* 

Balau 0.73  -   1.05** 

* Veenin et al  (2005); Doran and Wongkaew (2008); Sharma et al. (2005); Brink (2008) 
** Pande et al. (2005) 
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3.3.1.2 Fiber saturation point (FSP) 

The average, and upper and lower FSP values of Colorado and Balau within the 95% 

confidence intervals, are listed in Table 3.3 and depicted in Figure 3.3. Both timbers have 

relatively low FSP when compared to commercially used softwood decking timbers. The 

difference between Colorado and Balau’s average FSP was found to be relatively small but 

statistically significant. Colorado reached its FSP at 22.1 % MC, which was 2.3 percentage 

points higher than Balau (an average MC of 19.8%).  

 
Table 3.3: Average fiber saturation point (FSP) of Colorado and Balau 

 SPECIES Average FSP  -95.00% +95.00% N 

1 Colorado 22.1 21.4 22.8 24 

2 Balau 19.8 19.1 20.5 24 
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Figure 3.3: Fiber saturation points of Colorado and Balau 

 

Higgins (1957) reported that the FSP of some wood species vary widely from the typical 

value.  He argued that one of the causes of this variation could be attributed to the presence 

and amount of extractives in a species. Species generally high in extractives have a relatively 

low FSP. Presumably, the extractives occupy some sites in the cell wall that would otherwise 

attract water. A low FSP provides the advantage that dimensional changes as a result of 

moisture fluctuations are comparatively small thereby making these timbers acceptable for 

outdoor applications.  
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3.3.1.3 Swelling coefficients  

The radial swelling coefficients from ovendry to EMC at 20C°/ 65%RH of Colorado (3.1%) 

and Balau (2.2%) were found to differ statistically significantly (Table 3.4). The tangential 

swelling coefficients showed no significant difference (3.69 vs. 3.44%) (Figure 3.4a).  

However, the radial swelling coefficients from ovendry to FSP of Colorado (6.6%) and Balau 

(5.2%) were found to differ significantly. The tangential swelling coefficients from ovendry 

to FSP of Colorado (8.7%) and Balau (7.6%) were also found to differ significantly (Figure 

3.4b). Balau has relatively low radial and tangential swelling coefficients but even though 

Colorado’s swelling coefficients are higher than Balau, it has a smaller swelling anisotropy. In 

decking applications large dimensional changes are not as critical as a high swelling 

anisotropy. Colorado, having the smaller anisotropy of the two, should warp and twist less 

than Balau during moisture changes.  

 

Table 3.4: Average swelling coefficients of Colorado and Balau  

Swelling range N 

Average % swelling  
Ovendry – 12%MC 

Average % swelling  
Ovendry – FSP 

 SPECIES 

Radial Tangential Tang/Rad Radial Tangential Tang/Rad  

Colorado 3.10 3.69 1.19 6.57 8.68 1.32 24 

Balau 2.20 3.44 1.56 5.20 7.58 1.45 24 

 

 

Figure 3.4: Radial and tangential swelling coefficients of Balau and Colorado: (a) from ovendry to 
12% moisture, and (b) ovendry to fiber saturation point.  
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The higher the density of a sample, the more it will swell and shrink. It has also been reported 

that the lower the FSP of a sample, the less it will swell and shrink (Haygreen and Bowyer, 

1982).  These could presumably be the reasons why Colorado had a higher swelling 

coefficient than Balau.  

 

The following results have been reported on Colorado and Balau’s ovendry to FSP swelling 

coefficients and are listed in Table 3.5.  

 

Table 3.5: Average swelling coefficients of Colorado and Balau reported by other authors 

Swelling range 

Average % swelling  
Ovendry – FSP 

SPECIES 

Radial Tangential 

Colorado* 4.2 - 9.6 7.4 - 13.5 

Balau** 4.0 - 7.9 6.8 – 10.3 

* Doran and Wongkaew (2008); Brink (2008) 

** Pande et al. (2005) 

 

Haygreen and Bowyer (1982) reported that the difference in swelling between the radial and 

tangential direction of wood can be attributed to several anatomical characteristics, including 

presence of ray tissue, frequent pitting on radial walls, domination of earlywood in the 

tangential direction and differences in the amount of cell wall material radially vs. 

tangentially. 

 

3.3.1.4 Water vapour permeability (WVP) and Liquid water permeability (LWP) 

No statistically significant permeability differences existed between the rate at which liquid 

water and water vapour penetrated uncoated Colorado and Balau, or whether samples were 

radially or tangentially cut (Figure 3.5, Table 3.6). During exposure to weathering this would 

mean that penetration of water would be similar for the two timbers irrespective of how they 

were cut. As expected, surface coating had a significant decreasing effect on both WVP 

(Figure 3.5a) and LWP (Figure 3.5b); coated samples were thus less permeable than uncoated 

samples.  
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Table 3.6: Average water (WVP) and (LWP) values of coated and uncoated Colorado and 
Balau 

Species 

Colorado Balau 

Radial Tangential Radial Tangential 

 

Coated Uncoated Coated Uncoated Coated Uncoated Coated Uncoated 

WVP 
(g/m2) 
(n=3) 

0.91 1.12 0.91 1.28 0.66 1.19 0.86 1.26 

LWP 

(g/m
2
) 

(n=3) 

3.82 4.90 4.46 5.13 3.34 4.66 3.85 5.09 

 

Figure 3.5: (a) water vapour permeability of coated and uncoated Colorado and Balau (b) liquid water 
permeability of coated and uncoated Colorado and Balau 

 

Even though coated Colorado and Balau showed no statistically significant differences 

between their WVP and LWP values, their average values differed by nearly 10%. This is due 

to the relatively small sample size (n = 3) used in this study and the high level of variation 

within sample groups. Increasing the sample size in future studies should deliver more 

statistically significant results between coated Colorado and Balau.  

 

Tangentially cut samples showed higher WVP and LWP values than the radially cut samples, 

this could be attributed to the orientation of rays relative to the exposed surface, causing 

tangentially cut samples to absorb water more rapidly than radially cut samples. 
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3.3.1.5 Anatomical Investigation 

The results of the anatomical investigation are summarized in Tables 3.7 and 3.8. Two 

representative micrographs of transverse sections taken at 35x magnifications of Colorado and 

Balau are shown in Figure 3.6 below. 

 

Figure 3.6: Transverse sections of (a) Balau and (b) Colorado. – Micrographs taken at 35X 
magnification. 
 
 

Table 3.7: Comparison of general features between Colorado and Balau 

 Colorado  Balau 

Gross features   

Distinction of sapwood and   heartwood Distinct Distinct 

        Sapwood colour Pale red to yellow Pale brown, whitish 
yellow 

        Heartwood colour Red to brown 
 

Brown 

Texture Moderately coarse Fairly coarse 

Grain Interlocked Interwoven or wavy 

 

 
The sapwood of Colorado had a pale red to yellow colour and Balau’s sapwood was brown to 

white. The heartwood of Colorado was a bright red and sometimes had a slightly brown 

appearance, whereas the heartwood of Balau was brown. When the face of a tangentially cut 

Balau sample was inspected, white patterns were observed along the year rings. This 

characteristic was due to the presence of white resin canals in Balau.  The texture of Balau 

was fairly coarse, slightly more than that of Colorado. Both Colorado and Balau contain 

interlocked grain which might have given a wavy appearance.  

 
 

 

 

 

(a) 

(b) (a) 
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Table 3.8: Comparison of microscopic features between Colorado and Balau 

 Colorado  Balau 

 

Microscopic structure 

  

Growth rings Indistinct or absent 
 

Indistinct or absent 
 

Vessels   

      Arrangement Diffuse-porous Diffuse-porous 

      Frequency (mm2) 11-16 6-9 

      Size (visibility) Small Medium 

      Distribution Solitary 
 

Solitary, radial multiples 
of two or three 

      Tyloses Mostly present 
 

Mostly present 
 

Parenchyma Distinct, vasicentric Not distinctly visible 

Rays Fine to very fine Medium to fine, closely 
spaced 

Resin canals -- Filled with white deposits 

 
When comparing the above microscopic features of Colorado and Balau, it was found that 

there were many similarities between the two timbers. Both have indistinct growth rings, their 

vessels were arranged in a diffuse manner and both contained tyloses. Some of the few 

differences which were found are as follows: Balau had the bigger vessel lumina of the two 

timbers and slightly bigger rays than Colorado. This could explain Colorado’s higher density.  

Balau also contained resin canals filled with white resin which made it distinguishable from 

Colorado. This may have compensated for the reduction in the uptake of water associated 

with the larger vessel lumina.   

 

3.3.1.6 Ethanol/cyclohexane (E/C) and water soluble extractives 

The results of the water soluble and ethanol/cyclohexane extraction are listed in Table 3.9, 

and illustrated in Figure 3.7. Both these timbers contained a high amount of water soluble 

extractives. Colorado on average contained 5.01% water soluble extractives and Balau 4.08% 

which is 0.93% less than Colorado. On the other hand, Balau had the highest percentage of 

E/C extractives, containing 4.8%. Colorado only had 2.03% of E/C extractives, thus 

containing almost 3% less than Balau.  

 

Table 3.9: Water soluble and ethanol/cyclohexane (E/C) soluble extractives (based on 
ovendry mass) present in Colorado and Balau  

 SPECIES % Water soluble extractives % E/C soluble extractives N 

1 Colorado 5.01 2.03 6 

2 Balau 4.08 4.80 6 
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The amount of extractives is one of the important factors when estimating the amount of 

discolouration which will take place during weathering. During exposure to liquid water, the 

water soluble extractives can be dissolved and under favorable conditions be leached out of 

the wood. These extractives usually contribute largely to a wood’s initial colour such as the 

red colour observed in Colorado. When these extractives are eventually leached out, the wood 

can be left with a pale appearance. E/C extractives on the other hand retard the rapid 

penetration of water on the surface and thereby also retard the initial discolouration of a 

wood’s surface during weathering. These extractives are also largely responsible for the 

surface wettability of wood and as they degrade during weathering, the contact angle of a 

water drop decreases and thus increases surface wettability.  
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Figure 3.7: Percentage water soluble and E/C extractives (based on ovendry mass) present in 
Colorado and Balau 

 

3.3.1.7 Summary of material characteristics investigated 

• Colorado had smaller vessel lumina, fewer vessels/m2 and smaller rays than Balau. 

• Colorado had a higher density than Balau. 

• Although both timbers had a relatively low FSP, Colorado’s FSP was 2.3 

percentage points higher than Balau’s. 

• The swelling coefficients (radial and tangential) of Colorado were slightly higher 

than Balau’s but Colorado had a lower swelling anisotropy that would probably 

result in a lower tendency to twist in service.  

• Colorado had a higher water soluble extractive content than Balau which can lead 

to the rapid initial colour changes of uncoated wood. 
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3.3.2 Natural weathering characteristics 

3.3.2.1 Colour 

 
Colour changes of coated and uncoated exposed Colorado and Balau samples, relative to the 

colour of unexposed coated and uncoated samples are summarized in Table 3.10 and changes 

in individual colour parameters L*, a* and b* are shown in Figures 3.8 – 3.16.  

As expected the treatment of wood with a pigmented coating changed the colour parameters 

compared to the uncoated controls. Lightness (L*) was reduced (Figure 3.8, 3.9 and 3.10, t = 

0), and both chromaticity coordinates a*(Figure 3.11, 3.12 and 3.13) and b*(Figure 3.14, 3.15 

and 3.16) increased. The increase of a* indicated that the “mahogany” pigmented coating 

changed the colour of the samples toward a reddish colour, whereas the increase in b* was 

associated with a yellowing effect caused by the coating.  

 

3.3.2.1.1 L* Values 

 
Decks. A statistically significant difference was observed between Stellenbosch and 

Yzerfontein’s lightness values (L*) of decking samples at the end of the weathering period 

after 30 weeks. Besides initial differences at t = 0, the only statistically significant difference 

observed between Colorado and Balau’s L* was after 30 weeks. Uncoated Colorado ended 

slightly darker than Balau, however, this difference was so small, even though statistically 

significant, that it could not be distinguished by the human eye (Figure 3.8 and 3.9). The 

cutting pattern of the samples also contributed no significant effect to changes in L*.  Coating 

played a significant effect on the change in L* of samples.  Uncoated samples showed the 

largest decrease in L* over the first 4 weeks of weathering, thereafter, staying fairly constant 

up to 30 weeks of weathering. Both Colorado and Balau showed less change in lightness after 

weathering when coated compared to the uncoated samples. The results found for coated 

samples agreed with results found by Temiz et al. (2007) on the weathering of oil treated 

wood. According to their research the darkening effect during weathering was the result of the 

depolymerization of lignin on the exposed surface brought on by photo-degradation.  
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Table 3.10: Average colour changes relative to t = 0 of coated and uncoated Colorado and 
Balau after exposure to natural weathering at Stellenbosch (deck and 300mm standard panels) 
and Yzerfontein (deck)  

Time of exposure (weeks) Exposure 

site 
Species  Treatment Colour  

component 0 4 8 12 20 30 

∆L* 42.7 33.2 34.3 33.9 44.6 46.0 

∆a* 22.0 20.6 17.3 14.2 6.8 2.9 

∆b* 26.8 22.2 19.8 17.8 11.3 9.6 

Coated 

∆E* 0 9.3 10.3 13.0 19.8 24.2 

∆L* 53.6 43.9 41.6 39.0 40.7 38.0 

∆ a* 15.1 15.2 9.5 6.4 3.9 2.6 

∆b* 19.8 22.8 14.8 12.5 5.2 4.9 

Colorado 

Uncoated 

∆E* 0 11.4 15.7 20.0 24.1 26.5 

∆ L* 37.6 30.7 33.6 33.4 42.4 42.5 

∆ a* 16.3 11.8 10.9 9.7 4.8 2.8 

∆b* 20.7 17.6 15.8 15.8 9.8 8.6 

Coated 

∆E* 0 7.7 7.4 7.7 16.7 18.3 

∆ L* 51.7 41.7 42.7 42.6 43.1 40.4 

∆ a* 11.7 10.6 7.2 5.5 2.8 3.2 

∆b* 19.6 21.8 14.8 13.3 7.0 4.1 
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Balau 

Uncoated 

∆E* 0 13.7 14.1 15.8 19.8 22.9 

∆L* 40.3 32.7 35.0 36.4 43.7 45.0 

∆a* 21.0 19.7 17.0 13.3 5.1 2.0 

∆b* 23.5 19.9 18.9 15.6 10.6 6.5 

Coated 

∆E* 0 8.8 7.4 12.7 21.1 26.6 

∆L* 52.4 38.9 41.7 42.9 43.4 39.4 

∆ a* 16.5 13.3 7.1 4.7 2.2 1.2 

∆b* 20.6 19.8 14.2 11.7 6.5 4.2 

Colorado 

Uncoated 

∆E* 0 14.0 15.0 18.8 22.1 26.0 

∆ L* 33.3 29.7 34.9 36.3 45.8 44.0 

∆ a* 12.5 10.7 10.4 7.5 3.7 1.8 

∆b* 17.2 16.1 15.5 14.4 9.9 6.7 

Coated 

∆E* 0 5.9 7.1 10.9 19.6 20.7 

∆ L* 51.8 35.7 41.1 40.1 45.1 41.9 

∆ a* 10.3 10.8 7.1 5.6 2.4 2.8 

∆b* 20.9 17.8 12.5 11.3 8.0 5.4 
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Balau 

Uncoated 

∆E* 0 16.7 15.4 15.8 17.4 20.2 

∆L* 40.4 38.3 48.1 * 59.3 * 

∆a* 21.4 16.4 10.6 * 5.7 * 

∆b* 24.7 19.1 17.0 * 13.9 * 

Coated 

∆E* 0 9.6 10.7 * 15.7 * 

∆L* 56.6 51.3 57.4 * 56.1 * 

∆ a* 16.2 10.5 6.4 * 5.0 * 

∆b* 20.8 22.9 18.8 * 11.7 * 

Colorado 

Uncoated 

∆E* 0 8.9 17.5 * 27.6 * 

∆ L* 37.7 37.2 45.0 * 55.1 * 

∆ a* 18.1 11.6 7.0 * 5.6 * 

∆b* 23.3 16.6 16.1 * 14.4 * 

Coated 

∆E* 0 9.2 10.1 * 11.2 * 

∆ L* 55.8 49.8 54.8 * 54.3 * 

∆ a* 10.1 9.7 4.6 * 3.7 * 

∆b* 20.6 18.2 18.4 * 14.3 * 

S
te

ll
e
n

b
o

sc
h

 –
  

3
0

0
m

m
 s

ta
n

d
a

rd
 p

a
n

e
ls

 

Balau 

Uncoated 

∆E* 0 12.6 17.4 * 24.6 * 
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L*  - Stellenbosch deck
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Figure 3.8: Effect of natural weathering on the lightness values (L*) of coated and uncoated Colorado 
and Balau - Stellenbosch deck 

 

L*  - Yzerfontein deck
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Figure 3.9: Effect of natural weathering on the lightness values (L*) of coated and uncoated Colorado 
and Balau - Yzerfontein deck 

 
300mm standard panels. The weathering period of these panels started 10 weeks after the 

decking samples which allowed time to conduct permeability tests on them. This meant that 

these panels, in addition to a 45° tilt from the horizontal and north facing, experienced 10 

weeks less winter weather than the decking samples. The results found for the standard panels 

were similar to that of the decking; however, the darkening effect was not as dramatic as on 

the decking. This could be attributed to less fungal attack on the panels, because of their 45° 

inclination which allowed water to run of the surface more rapidly when compared to the 
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horizontally positioned decking boards.  After 20 weeks of weathering, no statistically 

significant differences could be observed between the two timbers. Cutting pattern also 

contributed no significant effect to the amount of change in L*.  

 

L* - 300mm standard panels
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Figure 3.10: Effect of natural weathering on the lightness values (L*) of coated and uncoated 
Colorado and Balau - 300mm standard panels at Stellenbosch 

 

3.3.2.1.2 a* values 

Decks.  No statistically significant differences were observed between Stellenbosch and 

Yzerfontein’s redness values (a*) (Figure 3.11 and 3.12) of decking samples throughout the 

weathering period. A significantly higher change in a* was found for Colorado compared to 

that of Balau. Both timbers, coated and uncoated, showed a decrease in a* over the first 20 

weeks of exposure. Thereafter, only a slight decrease was observed up to 30 weeks. After 30 

weeks of exposure, no statistically significant difference could be observed between the a* 

values of coated and uncoated Colorado and Balau samples surfaces. The decrease in a* 

indicated a reduction in redness, and consequently resulted in a green appearance. The larger 

decrease in a* of Colorado could be attributed to Colorado’s large quantity of water soluble 

extractives which leached to the surface and was washed away by rain and dew, leaving the 

wood with a green appearance similar to that of Balau. 

 

300mm standard panels. The results found for the standard panels (Figure 3.13) were 

similar to that of the decking and showed similar a* values after 20 weeks of exposure. After 

exposure no statistically significant differences were found between coated and uncoated 

Colorado and Balau sample surfaces.    
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a*  - Stellenbosch deck
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Figure 3.11: Effect of natural weathering on the redness values (a*) of coated and uncoated Colorado 
and Balau – Stellenbosch deck 

 

a*  - Yzerfontein deck
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Figure 3.12: Effect of natural weathering on the redness values (a*) of coated and uncoated Colorado 
and Balau – Yzerfontein deck 
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a* -  300mm standard panels
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Figure 3.13: Effect of natural weathering on the redness values (a*) of coated and uncoated Colorado 
and Balau – 300mm standard panels at Stellenbosch 

 

 

3.3.2.1.3 b* Values 

 

Decks.  No statistically significant differences were observed between Stellenbosch and 

Yzerfontein’s b* values (Figure 3.14 and 3.15) for the first 12 weeks of weathering. 

Thereafter, a difference was observed for the amount of change in b* between the Colorado 

samples at Stellenbosch and Yzerfontein. Both coated and uncoated Colorado and Balau 

showed an increase in b* over the first 4 weeks of weathering. Thereafter, the b* values 

decreased up to 20 weeks of weathering, and stayed constant up to 30 weeks. No significant 

differences were found between the uncoated Colorado and uncoated Balau’s b* values over 

the first 12 weeks of weathering, thereafter Balau showed a greater decrease in b* than 

Colorado at the Stellenbosch site, but decreased similarly at the Yzerfontein site. The initial 

increase in b* meant that the uncoated samples turned slightly yellow, and the later decrease 

meant that samples became slightly blue again. Muller et al. (2003) showed that there was a 

correlation between the yellowing which occurred during weathering and the accumulation of 

lignin degradation products on the exposed surface of wood. The decrease in b* value can be 

attributed to water leaching and washing away the degraded lignin products from the surface 

and thus leaving the wood slightly blue (Evans et al. 2005). 
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b*  - Stellenbosch deck
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Figure 3.14: Effect of natural weathering on the yellowing (b*) of coated and uncoated Colorado and 
Balau – Stellenbosch deck 

 

 

 

b*  - Yzerfonein deck
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Figure 3.15: Effect of natural weathering on the yellowing (b*) of coated and uncoated Colorado and 
Balau – Yzerfontein deck 

 
300mm standard panels. After 4 weeks of weathering, both coated Colorado and Balau 

showed a decrease in b* values. Uncoated Balau showed a decrease after 4 weeks, whereas 

Colorado showed a slight increase in b*. Thereafter both coated and uncoated Colorado and 

Balau showed a decrease in b* up to 20 weeks. After 20 weeks there was no statistically 

significant difference between coated and uncoated Colorado and Balau.  
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b*  - 300mm Standard panels
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Figure 3.16: Effect of natural weathering on the yellowing (b*) of coated and uncoated Colorado and 
Balau – 300mm standard panels at Stellenbosch 

 

3.3.2.1.4 Delta E Values 

 
Decks.  No statistically significant differences were found between the ∆E* values of the 

sample groups at Stellenbosch (Figure 3.17) and Yzerfontein (Figure 3.18). During the first 4 

weeks of weathering a rapid colour change was observed for both uncoated Colorado and 

Balau samples. Thereafter, no significant differences were found between the overall colour 

changes of species up to 12 weeks. After 12 weeks Colorado started showing higher ∆E* 

values than Balau for both coated and uncoated samples. After 30 weeks of weathering 

Colorado had undergone the most colour change. Coating had a significant effect on the 

amount on colour change, however, the difference between coated and uncoated was smaller 

than expected. According to Feist and Hon (1984) the protection of wood against 

discolouration should prevent the formation of free radicals induced by UV-irradiation and 

the access of water to the reaction sites. The results of this study agree with the latter where 

the coated samples suffered slightly less discolouration than the uncoated samples.  
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Figure 3.17: Effect of natural weathering on the colour change (∆E) of coated and uncoated Colorado 
and Balau – Stellenbosch deck 

 

Colour change - Yzerfontein deck
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Figure 3.18: Effect of natural weathering on the colour change (∆E) of coated and uncoated Colorado 
and Balau – Yzerfontein deck 

  
300mm standard panels. Figure 3.19 shows the overall change in colour (∆E*) due to 

natural weathering. During the first 4 weeks of weathering a rapid colour change was 

observed for both uncoated Colorado and Balau samples. Thereafter, no statistically 

significant differences were found between the overall colour changes of the two timbers. The 

total amount of discolouration, after 20 weeks of weathering, observed for uncoated samples 

was almost double the amount for coated samples.  
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Colour change - 300mm standard panels
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Figure 3.19: Effect of natural weathering on the colour change (∆E) of coated and uncoated Colorado 
and Balau – 300 mm standard panels at Stellenbosch 

 

3.3.2.2 Roughness 
 
The effect of exposure on the surface roughness of coated and uncoated samples is 

summarized in Table 3.11. The surface roughness of decking samples at Stellenbosch and 

Yzerfontein are depicted in Figures 3.20 and 3.21, and standard panels in Figure 3.22.  

 
Deterioration of wood surfaces due to the combined effect of water and light, leads to the 

formation of macroscopic and microscopic intercellular and intracellular cracks or checks 

(Feist, 1983 and Williams, 2005). During weathering water also causes the loosening and 

removal of the surface fibers and particles.  

 
Decks.  Figures 3.20 and 3.21 depict the surface roughness values (Rz) of coated and 

uncoated Colorado and Balau decking samples at Stellenbosch and Yzerfontein, respectively. 

No statistically significant differences were found between the Rz values for these two 

environments.  

 

Initially no statistically significant differences could be found between the Rz values of coated 

and uncoated samples. Both coated and uncoated samples showed an increase in roughness 

values as weathering continued. After 12 weeks, differences started showing between 

uncoated Colorado and Balau samples. The uncoated Balau samples showed significantly 

higher Rz values than the uncoated Colorado sample after 20 weeks of exposure. After 30 

weeks of exposure, significant differences were found between coated and uncoated samples 
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of both species. Balau had a significantly higher value than Colorado, which could be 

explained by the differences in density and anatomical structure of these two timbers, as 

discussed earlier in this chapter or Chapter 2. According to Hiziroglu et al. (2008) species 

with higher densities generally result in smoother surfaces after weathering, which is in 

agreement with the results of this study. 

 

No statistically significant differences were found between the roughening of radial and 

tangentially cut samples throughout the weathering period.  

 

Table 3.11: Average surface roughness (Rz) of coated and uncoated Colorado and Balau after 
exposure to natural weathering at Stellenbosch (deck and 300mm standard panels) and 
Yzerfontein (deck)  

Time of exposure (weeks) Exposure 

site Species  Cut Treatment 
4  

(Rz) 

8 

(Rz) 

12 

(Rz) 

20 

(Rz) 

30 

(Rz) 

Coated 73.2 83.6 86.9 108.6 120.3 Radial 
Uncoated 57.4 63.4 70.0 85 116 

Coated 70.6 72.3 70.4 86.3 129.3 
Colorado 

Tangential 
Uncoated 90.2 95.6 87.9 131.7 136 

Coated 86.9 94.7 101.6 108 124.6 
Radial 

Uncoated 88.4 93.3 101.6 113 124.3 

Coated 97.4 101.8 107.0 131.6 131.6 
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Balau 
Tangential 

Uncoated 90.5 102.7 108.1 134.3 134 

Coated 62.5 59.8 74.9 114 118.3 Radial 
Uncoated 77.9 80.5 87.2 123 122.6 

Coated 57.8 64.7 61.5 109.6 114 
Colorado 

Tangential 
Uncoated 80.2 71.5 78.3 122.6 122.3 

Coated 72.1 72.2 83.1 123 127.3 
Radial 

Uncoated 94.6 97.8 94.8 130 129.6 

Coated 90.8 96.5 94.2 129.6 134 
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 -
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Balau 
Tangential 

Uncoated 94.0 96.8 113.6 132.3 132 

Coated 58.8 63.3 * 88.9 * Radial 
Uncoated 97.3 99.2 * 108 * 

Coated 67.1 69.9 * 89.3 * 
Colorado 

Tangential 
Uncoated 83.4 105.5 * 113 * 

Coated 76.6 78.2 * 96.0 * 
Radial 

Uncoated 85.0 89.5 * 131.7 * 

Coated 75.0 64.6 * 131.6 * 3
0

0
m

m
 s

ta
n

d
a

rd
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Balau 
Tangential 

Uncoated 84.8 91.3 * 134.3 * 
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Roughness - Stellebosch deck (Coated vs. uncoated)
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Figure 3.20: Effect of natural weathering on surface roughness (Rz) of coated and uncoated Colorado 
and Balau – Stellenbosch deck 
 
 

Roughness - Yzerfontein deck (Coated vs. Uncoated)
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Figure 3.21: Effect of natural weathering on surface roughness (Rz) of coated and uncoated Colorado 
and Balau – Yzerfontein deck 
 

300mm standard panels.  Figure 22 depicts the surface roughness (Rz) values of coated and 

uncoated Colorado and Balau 300mm standard panels. After 8 weeks of weathering, no 

statistically significant differences were observed between the Rz values of Colorado and 

Balau. Coating, however, had a significant effect. After 20 weeks of weathering Balau started 

showing significantly higher roughness values than Colorado for both coated and uncoated 

samples.  
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Roughness - 300mm standard panels (Coated vs. uncoated)
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Figure 3.22: Effect of natural weathering on surface roughness (Rz) of coated and uncoated Colorado 
and Balau – 300 standard panels at Stellenbosch 
 

3.3.2.4 Deformation and substrate defects 

 
Table 3.12: Average deformation and % substrate defects after natural weathering 

Defects after 20weeks (standard panels) 
and 30 weeks (decks)* 

Exposure 

site 
Species  Cut Treatment 

%Surface  

     Checks 

%Checks %Cracks Cup Twist 

Coated 70 10.6 5.3 * * Radial 
Uncoated 83.3 4 0 * * 

Coated 46 6 1.3 * * 
Colorado 

Tangential 
Uncoated 100 36 2.6 * * 

Coated 100 7.3 1.33 * * 
Radial 

Uncoated 100 17.3 0 * * 

Coated 100 16.6 3.3 * * 

 

S
te

ll
en

b
o

sc
h

 -
 

d
e
ck

 

 

Balau 
Tangential 

Uncoated 100 80.6 2.6 * * 

Coated 68.6 11.3 0 * * Radial 
Uncoated 100 0 4.6 * * 

Coated 100 1.3 0 * * 
Colorado 

Tangential 
Uncoated 59.3 0 0 * * 

Coated 100 0 0 * * 
Radial 

Uncoated 100 0 2 * * 

Coated 100 36.6 0 * * 

Y
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k
 

Balau 
Tangential 

Uncoated 100 12.6 1.3 * * 

Coated 100. 0. 0 0 0 Radial 
Uncoated 100. 28.6 6.6 0 0 

Coated 48.6 0 0 0.21 1.85 
Colorado 

Tangential 
Uncoated 100.0 10.0 0 0.88 0.90 

Coated 2.6 0.6 0 0 0 
Radial 

Uncoated 100.0 17.3 0.6 0 0 

Coated 68.0 9.3 0.6 0 1.63 3
0
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Balau 
Tangential 

Uncoated 100.0 70.0 2.6 0.75 4.18 
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The effect of exposure on the deformation, and formation of substrate defects, of coated and 

uncoated samples is summarized in Table 3.12. Percentage substrate defects of decking 

samples at Stellenbosch and Yzerfontein after 30 weeks, and standard panels after 20 weeks 

of exposure are depicted in Figures 3.23 – 3.25. Deformation values of standard panels after 

20 weeks of exposure are depicted in Figure 3.26. Even though no cup or twist appeared on 

decks, prolonged exposure would cause screws to pull away from bearers and samples would 

start cup and twist.  

 

3.3.2.4.1 Surface Checks 

 
Figure 3.23 (a and b) depicts the average percentage surface checks formed after 30 weeks of 

exposure on the decking samples at Stellenbosch and Yzerfontein. Figure 3.23(c) depicts the 

average percentage surface checks formed on the 300mm standard panels at Stellenbosch 

after 20 weeks of exposure.  

 

Decks. After 30 weeks of weathering, no statistically significant differences were found 

between the percentage of surface checks present in the uncoated Colorado and Balau decking 

samples at Stellenbosch. The same applied for the samples at Yzerfontein, with the only 

exception being the uncoated, tangentially cut Colorado samples which only showed an 

average of 59.3 % surface checks.  

 

As expected, coated samples formed fewer surface checks than uncoated samples. Coated 

decking samples at Stellenbosch developed fewer surface checks than the samples at 

Yzerfontein. The results for the samples at Stellenbosch were as follows: After 30 weeks of 

weathering, coated, radially cut Balau showed 46 percent surface checks, compared to the 70 

percent present in the coated, radially cut Colorado. Tangentially cut Colorado (83.3%) 

exhibited fewer surface checks than tangentially cut Balau (100%). The results for the coated 

samples at Yzerfontein were as follows: Radially cut Colorado (68.6%) formed fewer surface 

checks than the tangentially cut (100%) samples. Both radially and tangentially cut Balau 

samples developed 100% surface checks.   

 

300mm standard panels: After 20 weeks of weathering, all the uncoated samples contained 

100% surface checks. The coating was effective in decreasing most of the surface check 

formation. The results for the coated samples were as follows: Radially cut Balau (2.6%) 

contained the least surface checks, followed by tangentially cut Colorado (48.6%), 

tangentially cut Balau (68%) and radially cut Colorado (100%).  
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Figure 3.23: Average surface check formation of coated and uncoated, radial and tangentially cut 
Colorado and Balau – (a) Stellenbosch deck, (b) Yzerfontein deck and (c) 300mm standard panels  

 

3.3.4.2.2 Checks 

 
Figure 3.24 (a and b) depicts the average percentage checks formed after 30 weeks of 

exposure on the decking samples at Stellenbosch and Yzerfontein. Figure 3.24(c) depicts the 

average percentage checks formed on the 300mm standard panels at Stellenbosch after 20 

weeks of exposure.  

 
Decks. After 30 weeks of weathering, the only statistically significant difference found 

between the percentages of checks contained by Stellenbosch decking samples compared to 

Yzerfontein samples was that of uncoated, tangentially cut Balau, which exhibited more 

checks at the Stellenbosch (80%) than at the Yzerfontein deck (12.6%) 
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(b) - Yzerfontein deck
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Of the coated samples, tangentially cut Balau (36%) contained the highest amount of checks. 

No statistically significant differences were found between the other samples groups. When 

comparing the swelling coefficients of Colorado and Balau, it can be seen that Balau had a 

larger difference between its radial and tangential swelling coefficients, which could explain 

the larger amount of checking found in Balau. The coated samples at Stellenbosch showed 

less checking than the uncoated samples which indicated that the coating was effective in 

controlling the moisture gradients in samples i.e. decreased the amount of substrate defects, 

however, the uncoated samples at Yzerfontein showed less checking. This result was 

unexpected and the reason for it is not clear.  

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.24: Average checking of coated and uncoated, radial and tangentially cut Colorado and 
Balau – (a) Stellenbosch deck, (b) Yzerfontein deck and (c) 300mm standard panels at Stellenbosch 
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300mm standard panels:  Figure 3.24(c) depicts the average percentage checks formed on 

the 300mm standard panels at Stellenbosch after 20 weeks of exposure. This result confirmed 

that the coating was effective in decreasing the amount of check formation as expected. 

Coated, radial and tangentially cut Colorado and Balau showed no significant differences. 

Uncoated, tangentially cut Balau (70%) contained the highest amount of checks. None of the 

other uncoated samples showed any statistically significant differences.   

 

3.3.4.2.3 Cracks 

 
Figure 3.25 (a and b) depicts the average percentage cracks formed after 30 weeks of 

exposure on the decking samples at Stellenbosch and Yzerfontein. Figure 3.25(c) depicts the 

average percentage cracks formed on the 300mm standard panels at Stellenbosch after 20 

weeks of exposure.  

 

Decks: On average, more crack formation was observed for the decking samples at 

Stellenbosch than at Yzerfontein, and at both locations radially cut Colorado and Balau, 

samples displayed more crack formation than the tangentially cut samples.   

 

The results for the coated samples at Stellenbosch were as follows: Radially cut Colorado 

(5.3%) displayed the highest amount of crack formation, followed by tangentially cut Balau 

(2.6%) and radially cut Colorado (1.3%). Results for the uncoated samples at Stellenbosch are 

as follows: Radially cut Balau (3.3%) showed the highest amount of crack formation, 

followed by tangentially cut Balau (2.6%) and radially cut Colorado (1.3%).  

 

No crack formation was observed for coated Colorado and Balau samples at Yzerfontein. 

Results for the uncoated samples at Yzerfontein are as follows: Radially cut Colorado (4.1%) 

showed the highest amount of crack formation, followed by radially cut Balau (2%) and 

tangentially cut Balau (1.3%). This indicates that the coating was effective in preventing crack 

formation in the samples at Yzerfontein.  

 

300mm standard panels: Figure 3.25c depicts the amount of crack formation that formed in 

the standard panels. For the coated samples, tangentially cut Balau (0.6%) was the only group 

to exhibit any cracks. The results for the uncoated standard panels were as follows: Radially 

cut Colorado (6.6%) showed the highest amount of crack formation, followed by tangentially 

cut Balau (2.6%) and radially cut Balau (0.6%). This indicates that the coating was effective 

in preventing crack formation during the 20 weeks of weathering exposure.  
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Figure 3.25: Average crack formations of coated and uncoated, radial and tangentially cut Colorado 
and Balau – (a) Stellenbosch deck, (b) Yzerfontein deck and (c) 300mm standard panels 
 

3.3.2.5 Deformation 

 
The width (85mm) of the smaller samples exposed at Stellenbosch exceeded the thickness 

(15mm) by more than 5 times which can result in excessive cupping of samples. The average 

deformation of standard panels are summarized in Table 3.12 and is depicted in Figure 3.26 (a 

and b)  

Cup: After 20 weeks of weathering, coated samples showed significantly less cup than 

uncoated samples and only cupping of tangentially cut samples occurred. Tangentially cut 

Colorado samples (0.25mm) were the only coated samples which displayed any cup. 

Tangentially cut, uncoated Colorado (0.89mm) displayed the highest amount of cup, followed 

by tangentially cut Balau (0.75mm).  
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Figure 3.26: Average deformation of radially and tangentially cut, coated and uncoated Colorado and 
Balau samples after 20 weeks of natural weathering: (a) cup and (b) twist 

  

Twist: After 20 weeks of weathering, coated samples showed significantly less twist than 

uncoated samples and twist only occurred in the tangentially cut samples. No significant 

difference was found between coated, tangentially cut Balau (1.7mm) and Colorado (1.8mm) 

samples. Tangentially cut, uncoated Balau (4.2mm) displayed the highest amount of twist, 

followed by tangentially cut Colorado (0.9mm). When comparing the swelling coefficients of 

Colorado and Balau (Table 3.4), it can be seen that Balau has a larger difference between its 

radial and tangential swelling coefficients, which could explain the larger amount of twist 

observed in Balau.  
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weathers. Water readily wets severely weathered surfaces and is quickly absorbed into the 

wood. The average wettability values of the 300mm standard panels, given as contact angles, 

are listed in Table 3.12 and shown in Figure 3.27.  No statistically significant differences were 

found between the contact angles of the two timbers during the weathering period.  

 

As expected, the treatment of wood with a coating changed the surface chemistry (wettability) 

of Colorado and Balau samples’ surfaces. The coating increased the initial contact angle of 

samples. The coating was also effective in maintaining a relatively hydrophobic surface 

during weathering, meaning that sample surfaces were not easily wettable. After only 4 weeks 
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of weathering, the contact angle of uncoated sample surfaces decreased by half of their 

original values. After 20 weeks of weathering, the contact angles of uncoated samples were 

basically zero, meaning that water penetrated the surfaces almost immediately after contact. 

The decrease in contact angle can be attributed to the degradation of extractives during 

weathering and with the continuation of weathering, the degraded extractive products were 

washed away. Besides the reduction of extractives and their water repellent effect, lignin, 

which is a hydrophobic component of wood was also degraded and removed during 

weathering. Cellulose, being more resistant to weathering effects became more abundant on 

the weathered surfaces. This presumably increases the hydroxyl concentration on the surface. 

Wetting is also assisted by the increase in checks which cause water to rapidly penetrate the 

surface. 

Table 3.13: Average contact angle values of coated and uncoated Colorado and Balau after 
exposure to natural weathering – 300mm standard panels at Stellenbosch 

Time of exposure (weeks) 
Species  Cut Treatment 

0 4 20 

Coated 73.9 73.6 77.3 
Radial 

Uncoated 58.9 34.3 0 

Coated 69.6 72.3 65.4 
Colorado 

Tangential 
Uncoated 61.4 36 0 

Coated 80.1 73.4 83.8 
Radial 

Uncoated 60.7 25.8 0 

Coated 69.5 61.6 64.1 
Balau 

Tangential 
Uncoated 65.4 27.5 0 
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Figure 3.27: Effect of natural weathering on contact angle values of coated vs. uncoated Colorado and 
Balau 



   

   80  

3.3.2.7 Mass 

Figure 3.28 depicts the deviation of samples’ mass from their original mass measured after 

conditioning and during exposure. During week 4 and 5 it was observed that the gain in mass 

of uncoated samples was nearly twice that of the coated samples, the same observation was 

made for the period weeks 9-10 and 12-15. This indicated that the coating was effective in 

controlling moisture uptake.  
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Figure 3.28: Mass deviations of (a) coated and (b) uncoated 300mm standard panels over 20 weeks at 
Stellenbosch 
 

After 19 weeks of weathering the driest time of the weathering period was reached. After this 

period, uncoated Colorado showed significantly higher mass loss than Balau. Colorado 

contained 1% more water soluble extractives than Balau (Table 3.9). These extractives would 

have leached out during the weathering period which would explain the higher mass loss.  
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3.4 Conclusion 

A. Comparison of the material (anatomical, physical and chemical) properties of 

Colorado and Balau: 

• Colorado had smaller vessel lumina, fewer vessels/m2 and smaller rays than Balau. 

• Colorado had a higher density than Balau. 

• Although both timbers had a relatively low FSP, Colorado’s FSP was 2.3 

percentage points higher than Balau’s. 

• The swelling coefficients (radial and tangential) of Colorado were slightly higher 

than Balau’s, but it had a lower swelling anisotropy resulting in a lower tendency 

to twist.  

• Colorado had a higher water soluble extractive content than Balau which lead to 

the rapid initial colour changes of uncoated wood. 

 
Balau is a popular choice when considering a timber for exterior use because of its reputation 

of performing relatively well during weathering.  From the many similarities found between 

the material properties of Balau and Colorado, one would expect little difference in the 

weathering behaviour between the two timbers.  

 

B. Comparison of the natural weathering behaviour Colorado and Balau as 

determined by their material properties, environment and processing (cutting 

pattern and surface treatment): 

 

Colour:  No initial differences were found for the overall colour change (∆E*) between 

Stellenbosch and Yzerfontein. However, after 30 weeks of weathering Colorado had 

undergone slightly more colour change than Balau. Coating had a significant effect on the 

amount on colour change, however, the difference between coated and uncoated was smaller 

than expected. 

 

A significant difference was observed between Colorado and Balau’s change in redness (a*). 

Colorado experienced a larger overall decrease in redness (a*) than Balau. This could be 

attributed to Colorado’s large quantity of water soluble extractives which were leached out 

and washed of the surface during weathering. Coating had no significant effect in decreasing 

the amount of change in redness (a*). 
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After 30 weeks of weathering Balau showed a greater decrease in b* than Colorado at the 

Stellenbosch site but the two timbers’ b* values decreased similarly at the Yzerfontein site.  

 

No statistically significant differences were observed between the lightness values (L*) 

samples at Stellenbosch and Yzerfontein. Both Colorado and Balau showed less change in 

lightness after weathering when coated compared to the uncoated samples. Uncoated 

Colorado ended slightly darker than Balau. However, this difference was so small, even 

though statistically significant, that it could not be distinguished by the human eye.  

 

Surface roughness: No statistically significant differences were observed between the 

roughness values of decking samples at Stellenbosch and Yzerfontein. During weathering 

Balau showed a significantly higher increase in roughness than Colorado. This could be 

explained by the lower density and higher swelling anisotropy of Balau. Radially cut samples 

showed a larger increase in roughness than tangentially cut samples. The increase in 

roughness observed for coated samples was lower than observed for uncoated samples, the 

coating was thus effective in retarding the roughening of surfaces.  

 

Substrate defects:  

Balau showed larger amounts of surface checking than Colorado at Stellenbosch and 

Yzerfontein. Environment played a role; the samples at Yzerfontein experienced more surface 

checking. As expected, coating decreased the amount of surface checks on Colorado and 

Balau.  

 

Balau showed larger amounts of checking than Colorado at Stellenbosch and Yzerfontein. 

Environment played a role; the samples at Stellenbosch experienced more checking. Coating 

also decreased the amount of checks on Colorado and Balau.  

 

Radially cut Colorado showed slightly higher amounts crack formation at Stellenbosch than 

Balau. Crack formation was more severe at Stellenbosch than at Yzerfontein. Coating was not 

able to decrease the amount of cracks formed.  

 

Deformation: Colorado showed slightly more cup than Balau, however, Balau showed much 

larger amounts of twist than Colorado. This could also be attributed to the higher swelling 

anisotropy of Balau.  Both these defects were mostly only observed for the uncoated, 

tangentially cut samples.  
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Wettability: No statistically significant differences were found between the hydrophobicity 

of the two timbers. The contact angle of the uncoated timber decreased towards zero after 20 

weeks of exposure. The coating was effective in increasing the initial hydrophobicity of 

samples and maintained a relatively hydrophobic surface during weathering. No differences 

were found concerning the effect of sample cut on sample surface wettability.  

 

C. Final comment 

From the results of this study it can be concluded that both timbers performed better at 

Yzerfontein than at Stellenbosch. This can be attributed to Stellenbosch’s lower and more 

fluctuating humidity levels in the summer time, causing excessive check and crack formation. 

Colorado is comparable with Balau as a decking material. Based on aesthetics considerations 

(colour change and surface defects), Colorado performed similar to Balau and twisted less. 
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Chapter 4:  Artificial weathering behaviour of Colorado 

(Eucalyptus camaldulensis and Eucalyptus tereticornis) and Balau 

(Shorea spp.) 

 
Abstract  
Balau, a group consisting of 21 Shorea species, is widely used for outdoor application. In South 
Africa, Balau is one of the most popular materials used for decking. Due to the increasing scarcity of 
Balau, it is of economic importance to investigate the possibility of a substitute timber for decking 
material. One possible timber could be Colorado, a mixture containing one or more of the following: 
Eucalyptus camaldulensis, Eucalyptus tereticornis and their hybrids. These two species and their 
hybrids are extensively cultivated in countries such as Australia, India and parts of South America 
because of their short rotation period and easy adaptability to a wide variety of soil and climatic 
factors.  The timber was initially utilized as raw material for the pulp and paper industry but is now 
gaining importance in structural uses like furniture, flooring and decking. The aim of this exploratory 
study was to investigate relevant material properties and to examine the accelerated weathering 
behaviour of Colorado and Balau to predict Colorado’s suitability as decking material. In this 
investigation it was found that Colorado had smaller vessel lumina, fewer vessels/m2 and smaller rays 
than Balau and had a higher density than Balau. Although both timbers had a relatively low FSP, 
Colorado’s FSP was 2.3 percentage points higher than Balau’s. The swelling coefficients (radial and 
tangential) of Colorado were slightly higher than Balau’s but Colorado’s lower swelling anisotropy 
can result in a lower tendency to twist in service. Colorado had a higher water soluble extractive 
content than Balau, which can lead to the rapid initial colour changes when the timber is exposed 
uncoated. The accelerated weathering performance was investigated in a QUV fluorescent 
UV/condensation weatherometer equipped with UVB-313 type lamps. Properties of samples were 
evaluated after 92h, 200h, 432h and 912h of exposure. FT-IR analysis showed that there were no 
statistically significant differences between the chemical changes which occurred on the uncoated 
surfaces of Colorado and Balau after 912 hours of weathering. A penetrating coating was not effective 
in preventing the photo-degradation of the aromatic rings present in lignin (1509 cm-1and 1597 cm-1).  
However, the coating was effective in preserving the 1461 cm-1 peak, which is characteristic of the C-
H vibrations found in lignin, the 1229cm-1 which is characteristic of syringyl ring breathing in lignin, 
and C-O stretching vibration in lignin and xylan.  The rest of the weathering characteristics of these 
timbers were similar to results found in a parallel running, natural weathering study conducted over 30 
weeks. Balau showed a higher increase in roughness (Rz), surface checking and check formation than 
Colorado. Colorado showed slightly more cup than Balau, however, Balau showed much larger 
amounts of twisting than Colorado. No statistically significant differences were found between the 
surface hydrophobicity (measured as contact angle) of the two timbers. The coating was effective in 
increasing the initial hydrophobicity of samples and could maintain a relatively hydrophobic surface 
during weathering. No statistically significant differences were found when the effect of grain 
orientation on surface wettability was assessed Although only long term natural weathering studies 
and using substantially more samples can confirm its natural weathering performance, the results of 
this exploratory, accelerated weathering study indicated that Colorado can successfully be used as a 
substitute decking material for Balau.  
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4.1 Introduction 
 
Wood has been used as a building material for many millennia and despite the invention of 

new building materials over the last century, the utilization of wood in the construction 

industry shows little sign of declining. This can be attributed to wood’s versatile and 

attractive engineering and structural properties.  

 

All man-made and natural materials, including wood, are susceptible to environmental 

degradation. When wood is exposed outdoors, above ground, a complex combination of 

chemical, mechanical, and light energy factors contribute to what is described as weathering 

(Feist, 1983). These weathering factors are as follows: solar radiation (ultra violet (UV), 

infrared and visible light), moisture (rain, dew, snow and changes in relative humidity), 

abrasion by windblown particles, heat and oxygen. In recent years, an additional weathering 

influence has arisen with the presence of atmospheric pollutants such as gaseous SO2, NO2, 

and O3 (Anderson et al, 1990). Abrasion of surfaces as a result of human activities such as 

walking on decks, and maintenance such as cleaning surfaces with cleaners and brighteners 

and power washing cause further modification of weathering effects (Feist, 1990 and 

Williams, 2005).  

 

The weathering process of wood starts immediately after wood is exposed to sunlight which 

causes the photo-oxidation or photochemical degradation of the exposed wood surface 

(Williams, 2005). At first the colour changes and then the combined effect of solar radiation 

and moisture leads to surface roughening as the grain raises, formation of surface checks 

which later grow into large cracks, surfaces gather dirt and mildew, the wood loses its surface 

coherence and becomes friable, splinters, and fragments come off (Feist, 1983). If boards 

contain compression or juvenile wood, cross-grain checking may develop, the boards may cup 

and warp and pull away from fasteners, especially in decking applications (Williams, 2005).  

 

To develop methods to retard or inhibit degradation, it is important to understand the 

mechanisms of weathering that lead to chemical changes and degradation of physical 

properties, to increase the service life of all types of wood products in any type of 

environment.  

 

The effect of weathering on wood or surface treatments can be studied using either natural 

outdoor exposure tests or indoor accelerated laboratory tests. These two major test types are 
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not the same, however, many researchers have found good correlations between erosion rates 

from natural and accelerated weathering (Feist and Mraz, 1978, Anderson et al, 1990, Arnold 

et al, 1991, and Tolvaj and Mitsui, 2005). The main problem with natural weathering tests are 

that the weather conditions are not repeatable and vary from place to place, therefore, 

artificial weathering is more useful when studying the combined or individual effects of water 

and UV radiation on wood surfaces, and allows one to study these effects in a shorter period 

of time.  

 

Balau is a group consisting of 21 Shorea species (Pande et al, 2005). The timber is widely 

used for outdoor application, and in South Africa Balau is one of the most popular materials 

used for decking. Due to the increasing scarcity of Balau, it is of economic importance to 

investigate the possibility of a substitute species for decking material. One possible substitute 

timber could be Colorado, a mixture containing one or more of the following: Eucalyptus 

camaldulensis, Eucalyptus tereticornis and their hybrids. These two species and their hybrids 

are extensively cultivated in countries such as Australia, India, and parts of South America, 

because of their short rotation period and easy adaptability to a wide variety of soil and 

climatic factors (Sharma et al, 2005).  These two species were initially utilized as raw material 

for the pulp and paper industry, but are now gaining importance for commercial, structural 

uses like furniture, flooring and decking.  

 

This paper forms part of a larger study on the weathering behaviour and associated wood 

characteristics of Colorado and Balau. The objective of this investigation was to determine the 

physical and chemical changes of these timbers when subjected to accelerated weathering. 

Practical aspects such as the effect of grain orientation (radial vs tangential) and surface 

coating were also included in the study.  
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4.2 Materials and methods 
4.2.1 Materials  
 
Twelve Colorado and Balau, defect free heartwood samples of which six were radially and the 

other six tangentially cut, each measuring 3000 x 19 x 85mm, were obtained from commercial 

sources. As depicted in Figure 4.1 each 3m board was divided into matched samples required 

for parallel running natural and accelerated weathering studies.  

 

 

Sample no and purpose legend:  
(1) Density, fiber saturation point (FSP) and swelling coefficient determinations (50 x 85 x 19mm) 

(2) Natural weathering exposure on decks erected at Stellenbosch and Yzerfontein respectively (900 x 85 x 19mm) – not used 
in this investigation 
(3) Standard panels for permeability determination and natural weathering in north facing exposure racks at Stellenbosch  ( 
300 x 85 x19mm) – not used in this investigation 

(4) Accelerated weathering  (150 x 85 x 5mm)  
(5) Anatomical studies and extractives determination 

 

Figure 4.1: Cutting pattern of 3000mm boards  

 
The 24 small samples (Figure 4.1, no 4) were sanded with a commercial P100 grit abrasive 

paper. Half of the wood samples were coated with 3 layers of a commercially available 

penetrating finish according to manufacturer’s specifications. The coating was applied on five 

of the sample’s surfaces (4 edges and 1 face). The solvent borne finish contained a brown 

coloured (“mahogany”) pigment. Samples 1, 4 and 5 were used in this study, samples 2 and 3 

were only used in the natural weathering study running parallel with this investigation and 

reported on in Chapter 3. The samples were conditioned for two weeks before exposure. 

 

4.2.2 Accelerated weathering chamber 

Samples were placed in a QUV fluorescent UV/condensation weatherometer (Q Panel, 

Cleveland, Ohio, USA). The lamps used were of the type UVB-313, which gives the highest 

irradiation at a wavelength of 313nm. These lamps are the most widely used light source in 

ASTM G-53 devices. Each 12h weathering cycle consisted of 8 hours UV exposure at 45°C, 

followed by a 4 hour condensation period at 50°C. Properties of all samples were evaluated 

after 92h, 200h, 432h and 912h of exposure. Measurements were taken at the lowest moisture 

conditions in a cycle, i.e. directly after completion of the radiation period to ensure repeatable 

moisture conditions and to maximize possible surface checking phenomena.  
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4.2.3 Determination of Density, FSP and Swelling coefficients 

Two samples (Figure 4.1, no.1) from each 3000mm board were used for density, FSP and 

swelling coefficient determinations. The samples measuring 50 x 19 x 85mm, were squared 

on a bench sander and conditioned at 20°C/65%RH for one month. After conditioning, the 

samples’ mass and dimensions were determined, oven dried at 102°C for 24 hours, and again, 

the mass and dimensions were measured. The oven dried samples were placed above water 

inside airtight containers, i.e. exposed to 100%RH at 20°C for three months. After this period, 

the mass and dimensions at FSP were measured. The following variables were calculated 

according to SANS 1783-1, 2007: (a) %MC at 20°C/65%RH, (b) FSP, (c) Density at 

20°C/65%RH, (d) oven-dry density and (e) the radial, tangential and volumetric swelling 

coefficients (from 0%MC to FSP). 

 

4.2.4 Anatomical Investigation 

10mm (radial) x 10mm (tangential) x 15mm blocks were cut from each sample (Figure 4.1, 

no. 5). The blocks were placed in water, and softened by boiling them for 5 hours. Smoothly 

cut cross-sections were prepared using a Reichert sliding microtome.  Micrographs were taken 

at 35x magnification with a Leica EZ4D optical microscope. Leica image analysis software 

was used to analyze the images.  

 

4.2.5 Liquid water and water vapour permeability  

Standard panels, measuring 300 x 85 x 15mm, were used for the water vapour permeability 

(WVP) and liquid water permeability (LWP) tests (Eloff, 1999), following the procedure 

described in Appendix 1.  

 

Water vapour permeability (WVP) tests were conducted using an apparatus containing a 

rectangular basin with a surface area of 200cm
2
 of which the edges were fitted with a rubber 

O-ring. The basin was filled to 50% of its volume with distilled water. The conditioned 

samples were weighed and clamped on top of the basin with the O-ring preventing any vapour 

loss other than through the sample. In effect, the middle 200cm
2
 of the sample’s area was 

exposed to an atmosphere of 100% RH. Samples were clamped in the apparatus for a period 

of 7 days, and weighed again. The WVP (in g.m-2.day -1) of a sample was calculated as 

follows:  

WVP = (Final Mass - Initial Mass)/ (0.2 x 7days)                           (1) 
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Liquid water permeability (LWP) tests were conducted using the same apparatus which was 

used for the WVP determination but with a different configuration. For LWP measurements 

the lower water basin was turned upside down. This allowed liquid water to lie on top of the 

sample’s surface, whereby exposing the middle 200cm2 of a sample’s area to liquid water.  

 

Samples were clamped in the apparatus for a period of 1 day, and weighed again. The LWP 

(also in g.m-2.day -1) of the sample was calculated as follows:  

LWP = (Final Mass - Initial Mass)/ (0.2 x 1day)       (2)                         

         

WVP and LWP tests were conducted in a conditioned room at 20C°/65%RH. 

 

4.2.6 Ethanol/cyclohexane (E/C) and water soluble extractives content 

Solvent ethanol/cyclohexane (E/C) and water extractions were performed on wood powder 

(Figure 4.1, no 5) according to Tappi standard T 264 om-84. 

 

4.2.7 Colour 

Colour measurements were recorded using a Micromatch Plus spectrophotometer, equipped 

with a standard illuminant D65 (SHEEN) using the CIE-lab system. The colour parameters of 

this system are as follows; the L* axis is the lightness (ranging from 0 (black) to 100 (white)), 

the a* and b* axes are the chromaticity coordinates (a positive a* value refers to red, and a 

negative a* value to green, while +b and –b denote yellow and blue respectively).  These 

values are used to calculate the colour change ∆E* as a function of the weathering period 

according to the following equations: 

   ∆L* = ∆Lt* - ∆Li*         (3) 

   ∆a* = ∆at* - ∆ai*         (4) 

   ∆b* = ∆bt* - ∆bi*         (5) 

∆E* = (∆L*
2 + ∆a*

2 ∆b*
2)1/2         (6) 

Where i refers to time zero and t indicates measurements at specific times. 

 

Colour measurements were taken at t = 0, and after 92, 200, 432 and 912 hours of accelerated 

weathering exposure. Three measurements were taken per sample and colour changes were 

always monitored on the same location on the sample.  
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4.2.8 Surface roughness 

Roughness was measured with a MarSurf PS1 surface profilometer. The instrument’s needle 

had a cone shaped stylus tip with an angle of 90°. The measuring length was 17.5mm across 

the grain. The maximum vertical measuring range of the instrument was -200µm to +120µm. 

A phase corrected profile filter (Gaussian filter) was used in accordance with DIN 4768. The 

filter is characterized by a cut-off value. This value is the wavelength of a sinusoidal profile, 

the amplitude of which will be transmitted by the phase correct filter to a level of 50%. This 

cut-off defines which elements of the profile will be attributed to roughness or waviness. The 

Rz mode (mean peak-to-valley height (DIN 4287)) was chosen to characterize the average 

roughness. 

 

Roughness measurements were also taken at t = 0, and after 92, 200, 432 and 912 hours of 

accelerated weathering exposure. The three measurements taken per sample were also 

repeated on the same location of the sample’s surface. 

 

4.2.9 Deformation 

The two forms of warp used to describe deformation of samples are cup and twist. 

Measurements were taken after 912h of exposure according to methods described by SANS 

1783-1 (2007). 

 

4.2.10 Surface wettability  

Wettability of the sample surfaces was determined by dispensing a 1-µL drop of distilled 

water on the wood surfaces with a micropipette. Images of the profile of each drop at 25x 

magnification were recorded using a Leica EZ4D microscope. Images were taken 4 seconds 

after drop placement. Five measurements were taken per sample. Both right and left contact 

angles were measured on each drop using Leica software.  Contact angle measurements were 

also taken at t = 0, and after 92, 200, 432 and 912 hours of accelerated weathering exposure. 

 

4.2.11 FT-IR  

All spectra were recorded at 4cm
-1 

resolution with the use of a NEXUS model FT-IR 

instrument, custom made by Thermo Nicolet instruments. The IR spectra were recorded in 

reflectance mode using a Golden Gate Smart Performer Attenuated Total reflectance (ATR) 

from Thermo, equipped with ZnSe lenses. Shavings, taken from the exposed surface of each 

sample, were placed on the ZnSe horizontal ATR, and 16 scans performed. Three 
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accumulated spectra for each sample were obtained at t = 0, and after 92, 200, 432 and 912 

hours of accelerated weathering exposure.  From each treatment group, six samples were 

scanned, their spectra accumulated and transformed into absorbance spectra averaged before 

baseline correction (1800-1850cm-1), and normalized to 1 absorbance unit for the highest peak 

at 1030cm-1. Instrument operation and data manipulation was performed using the available 

basic OMNIC software.  

 

4.2.12 Statistical analysis 

The statistical analysis of data was conducted with Statsoft Statistica 9. Interactive effects 

between multiple variables were analyzed using a factorial ANOVA. A test for normality was 

performed and an F-test was used with confidence intervals of 95%.  

Response variables such as colour change (∆E) and roughness (Rz), taken at different time 

intervals, were analyzed using repeated measures ANOVA. An F-test was used with 

confidence intervals of 95%.   
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4.3 Results and discussion  
 

4.3.1 Material Properties 
4.3.1.1 Density 

The average, and upper and lower density values of Colorado and Balau within the 95% 

confidence intervals, are listed in Table 4.1, and depicted in Figure 4.2.  

 

Table 4.1: Average ovendry density of Colorado and Balau 

SPECIES 
Average ovendry density 

(g/cm
3
) 

Density  -95.00% Density  +95.00% N 

Colorado 0.92 0.88 0.96 24 

Balau 0.83 0.80 0.87 24 

 

The ovendry density of Colorado (0.922 g/cm3) was found to be statistically significantly 

higher than that of Balau (0.836 g/cm3). Colorado was thus, on average, 9.3% more dense 

than Balau.  
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Figure 4.2: Average ovendry density of Colorado and Balau 

 

The following ovendry density results have been reported for Colorado and Balau by other 

authors whose results are summarized in Table 4.2.  

 

Table 4.2: Ovendry densities of Colorado and Balau reported by other authors 

SPECIES Density  range 

Colorado 0.66  - 1.06* 

Balau 0.73  -   1.05** 

* Veenin et al  (2005); Doran and Wongkaew (2008); Sharma et al. (2005); Brink (2008) 

** Pande et al. (2005) 
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4.3.1.2 Fiber saturation point (FSP) 

The average, and upper and lower FSP values of Colorado and Balau within the 95% 

confidence intervals, are listed in Table 4.3, and depicted in Figure 4.3. Both timbers have 

relatively low FSP when compared to commercially used softwood decking timbers. The 

difference between Colorado and Balau’s average FSP was found to be relatively small, but 

was statistically significant. Colorado reaches its FSP at 22.1 % MC, which is 2.3 percentage 

points higher than Balau which reached FSP at an average MC of 19.8%.  

 
Table 4.3: Average fiber saturation point (FSP) of Colorado and Balau 

 SPECIES Average FSP  -95.00% +95.00% N 

1 Colorado 22.1 21.4 22.8 24 

2 Balau 19.8 19.1 20.5 24 
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Figure 4.3: Fiber saturation points of Colorado and Balau 

 

Higgins (1957) reported that the FSP of some wood species vary widely from the typical 

value.  He argued that one of the causes of this variation could be attributed to the presence 

and amount of extractives in a species. Species generally high in extractives have a relatively 

low FSP. Presumably, the extractives occupy some sites in the cell wall that would otherwise 

attract water. A low FSP provides the advantage that dimensional changes as a result of 

moisture fluctuations are comparatively small thereby making these timbers acceptable for 

outdoor applications.  
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4.3.1.3 Swelling coefficients  

The radial swelling coefficients from ovendry to EMC at 20C°/ 65%RH of Colorado (3.1%) 

and Balau (2.2%) were found to differ statistically significantly (Table 4.4), whereas the 

tangential swelling coefficients showed no significant difference (3.69 vs. 3.44%) (Figure 

4.4a).   

 

The radial swelling coefficients from ovendry to FSP of Colorado (6.6%) and Balau (5.2%) 

were found to differ significantly. The tangential swelling coefficients from ovendry to FSP 

of Colorado (8.7%) and Balau (7.6%) were also found to differ significantly (Figure 4.4b). 

Balau has relatively low radial and tangential swelling coefficients, but even though 

Colorado’s swelling coefficients are higher than Balau, it has a smaller swelling anisotropy. In 

decking applications large dimensional changes are not as critical as a high swelling 

anisotropy. Colorado, having the smaller anisotropy of the two, should warp and twist less 

than Balau during moisture changes.  

 

Table 4.4: Average swelling coefficients of Colorado and Balau  

Swelling range N 

Average % swelling  
Ovendry – 12%MC 

Average % swelling  
Ovendry – FSP 

 SPECIES 

Radial Tangential Radial Tangential  

Colorado 3.10 3.69 6.57 8.68 24 

Balau 2.20 3.44 5.20 7.58 24 

 

 

Figure 4.4: Radial and tangential swelling coefficients of Balau and Colorado: (a) from ovendry to 
12% moisture, and (b) ovendry to fiber saturation point.  
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The higher the density of a sample, the more it will swell and shrink. It has also been reported 

that the lower the FSP of a sample, the less it will swell and shrink (Haygreen and Bowyer, 

1982).  These could presumably be the reasons why Colorado had a higher swelling 

coefficient than Balau.  

 

The following results have been reported on Colorado and Balau’s ovendry to FSP swelling 

coefficients, and are listed in Table 4.5.  

Table 4.5: Average swelling coefficients of Colorado and Balau reported by other authors 

Swelling range 

Average % swelling  
Ovendry – FSP 

SPECIES 

Radial Tangential 

Colorado* 4.2 - 9.6 7.4 - 13.5 

Balau** 4.0 - 7.9 6.8 – 10.3 

* Doran and Wongkaew (2008); Brink (2008) 

** Pande et al. (2005) 

 

Haygreen and Bowyer (1982) reported that the difference in swelling between the radial and 

tangential direction of wood can be attributed to several anatomical characteristics, including 

presence of ray tissue, frequent pitting on radial walls, domination of earlywood in the 

tangential direction and differences in the amount of cell wall material radially vs. 

tangentially. 
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4.3.1.4 Water vapour permeability (WVP) and Liquid water permeability (LWP) 

No statistically significant permeability differences existed between the rate at which liquid 

water and water vapour penetrated Colorado and Balau, as well as whether samples were 

radially or tangentially cut (Figure 4.5, Table 4.6). During exposure to weathering this would 

mean that penetration of water would be similar for the two timbers irrespective of how they 

were cut. As expected, surface coating had a significant decreasing effect on both WVP 

(Figure 4.5a) and LWP (Figure 4.5b); coated samples were thus less permeable than uncoated 

samples.  

 

Table 4.6: Average water (WVP) and (LWP) values of coated and uncoated Colorado and 
Balau 

Species 

Colorado Balau 

Radial Tangential Radial Tangential 

 

Coated Uncoated Coated Uncoated Coated Uncoated Coated Uncoated 

WVP 
(g/m2) 
(n=3) 

0.91 1.12 0.91 1.28 0.66 1.19 0.86 1.26 

LWP 

(g/m2) 
(n=3) 

3.82 4.90 4.46 5.13 3.34 4.66 3.85 5.09 

 

Figure 4.5: (a) water vapour permeability of coated and uncoated Colorado and Balau (b) liquid water 
permeability of coated and uncoated Colorado and Balau 
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4.3.1.5 Anatomical Investigation 

The results of the anatomical investigation are summarized in Tables 4.7 and 4.8. Two 

representative micrographs of transverse sections taken at 35x magnifications, of Colorado 

and Balau are shown in Figure 4.6 below. 

 

Figure 4.6: Transverse sections of (a) Balau and (b) Colorado. – Micrographs taken at 35X 
magnification. 
 

Table 4.7: Comparison of general features between Colorado and Balau 

 Colorado  Balau 

Gross features   

Distinction of sapwood and   heartwood Distinct Distinct 

        Sapwood colour Pale red to yellow Pale brown, whitish 
yellow 

        Heartwood colour Red to brown 

 

brown 

Texture Moderately coarse Fairly coarse 

Grain Interlocked Interwoven or wavy 

 
The sapwood of Colorado had a pale red to yellow colour, and Balau’s sapwood was brown to 

white. The heartwood of Colorado was a bright red, and sometimes had a slightly brown 

appearance, whereas the heartwood of Balau was brown. When the face of a tangentially cut 

Balau sample was inspected, white patterns were observed along the year rings. This 

characteristic was due to the presence of white resin canals in Balau.  The texture of Balau 

was fairly coarse, slightly more than that of Colorado. Both Colorado and Balau contain 

interlocked grain, which might have given a wavy appearance.  

 
 

 

 

 

 

 

(a) 

(b) (a) 
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Table 4.8: Comparison of microscopic features between Colorado and Balau 

 Colorado  Balau 

 

Microscopic structure 

  

Growth rings Indistinct or absent 
 

Indistinct or absent 
 

Vessels   

      Arrangement Diffuse-porous Diffuse-porous 

      Frequency (mm2) 11-16 6-9 

      Size (visibility) Small Medium 

      Distribution Solitary 
 

Solitary, radial multiples 
of two or three 

      Tyloses Mostly present 
 

Mostly present 
 

Parenchyma Distinct, vasicentric Not distinctly visible 

Rays Fine to very fine Medium to fine, closely 
spaced 

Resin canals -- Filled with white deposits 

 
When comparing these microscopic features of Colorado and Balau, it was found that there 

were many similarities between the two timbers. Both have indistinct growth rings, their 

vessels were arranged in a diffuse manner and contained tyloses. Some of the few differences 

which were found are as follows: Balau had the bigger vessel lumina of the two timbers and 

slightly bigger rays than Colorado. This could explain Colorado’s higher density.  Balau also 

contained resin canals filled with white resin, which made it distinguishable from Colorado. 

This may have compensated for the reduction in water uptake associated with the larger 

vessel lumina.   

 

4.3.1.6 Ethanol/cyclohexane (E/C) and water soluble extractives 

The results of the water soluble and ethanol/cyclohexane extraction are listed in Table 4.9, 

and illustrated in Figure 4.7. Both these timbers contained a high amount of water soluble 

extractives. Colorado on average contained 5.01% water soluble extractives, and Balau 

4.08%, which is 0.93% less than Colorado. On the other hand, Balau had the highest 

percentage of E/C extractives, containing 4.8%. Colorado only had 2.03% of E/C extractives, 

thus containing 2.77% less than Balau.  

 

Table 4.9: Water soluble and ethanol/cyclohexane (E/C) soluble extractives (based on 
ovendry mass) present in Colorado and Balau  

 SPECIES % Water soluble extractives % E/C soluble extractives N 

1 Colorado 5.01 2.03 6 

2 Balau 4.08 4.80 6 
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The amount of extractives is one of the important factors when estimating the amount of 

discolouration which will take place during weathering. During exposure to liquid water, the 

water soluble extractives can be dissolved, and under favorable conditions be leached out of 

the wood. These extractives usually contribute largely to a wood’s initial colour, such as the 

red colour observed in Colorado. When these extractives are eventually leached out, the wood 

is left with a pale appearance. E/C extractives on the other hand retard the rapid penetration of 

water on the surface, and thereby also retard the initial discolouration of a wood’s surface 

during weathering. These extractives are also largely responsible for the surface wettability of 

wood, and as they degrade during weathering, the contact angle of water drops decreases, and 

thus increases surface wettability.  
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Figure 4.7: Percentage water soluble and E/C extractives (based on ovendry mass) present in 
Colorado and Balau 
 

4.3.1.7 Summary of material characteristics 

• Colorado had smaller vessel lumina, fewer vessels/m
2
 and smaller rays than Balau. 

• Colorado had a higher density than Balau. 

• Although both timbers had a relatively low FSP, Colorado’s FSP is 2.3 percentage 

points higher than Balau’s. 

• The swelling coefficients (radial and tangential) of Colorado were slightly higher 

than Balau’s, but Colorado had a lower swelling anisotropy that would probably 

result in a lower tendency to twist in service.  

• Colorado had a higher water soluble extractive content than Balau, which can lead 

to the rapid initial colour changes when the wood is exposed uncoated. 
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4.3.2 Artificial weathering characteristics  

4.3.2.1 Colour 

Colour changes of coated and uncoated exposed Colorado and Balau samples, relative to the 

colour of unexposed coated and uncoated samples are summarized in Table 4.10 and changes 

in individual colour parameters L*, a* and b* are shown in Figure 4.8, 4.9 and 4.10 

respectively.  

L* - Values 

As expected the treatment of wood with a pigmented coating changed the colour parameters 

compared to the uncoated controls. Lightness (L*) was reduced (Figure 4.8, t = 0), and both 

chromaticity coordinates a*(Figure 4.9) and b*(Figure 4.10) increased. The increase of a* 

indicated that the coating changed the colour of the samples toward a reddish colour, whereas 

the increase in b* was associated with a yellowing effect caused by the coating.  

 

Table 4.10: Average colour changes relative to t = 0 of coated and uncoated Colorado and 
Balau after exposure to accelerated weathering  

Time of exposure  
Species  Treatment 

Colour  
component 92h 200h 432h 912h 

∆L* -4.53 (2.63) -5.22 (2.65) -5.66 (2.15) -6.88 (2.41) 

∆a*  3.46 (2.00) 3.16 (2.05) 0.79 (1.69) -1.98 (2.31) 

∆b*  1.03 (2.38) -1.48 (2.67) -2.92 (3.48) -3.22 (2.49) 
Coated 

∆E*  6.77 (1.37) 6.98 (2.68) 7.13 (2.83) 8.30 (2.95) 

 

∆L* -11.36 (3.83) -13.03 (4.68) -13.76 (4.13) -16.14 (4.04) 

∆ a* 5.89 (1.62) 6.15 (1.54) 3.12 (1.89) -1.38 (2.61) 

∆b* 5.01 (3.04) 4.43 (2.72) 6.47 (3.13) 4.10 (4.36) 

Colorado 

Uncoated 

∆E* 14.20 (3.35) 15.46 (4.23) 16.14 (2.60) 17.43 (3.54) 

 

∆ L* -1.51 (1.49) -2.05 (2.60) -1.41 (3.99) -1.92 (7.31) 

∆ a* 0.86 (0.79) 1.62 (1.02) 0.73 (1.73) -0.62 (1.90) 

∆b* -1.58 (2.23) -2.16 (3.75) -2.58 (6.29) -2.84 (6.52) 

Coated 

∆E* 3.31 (1.14) 5.35 (1.13) 6.94 (3.43) 8.63 (4.96) 

 

∆ L* -8.88 (4.05) -11.83 (5.13) -12.89 (5.40) -15.70 (5.94) 

∆ a* 2.85 (2.50) 4.30 (4.09) 4.82 (3.45) 2.06 (4.60) 

∆b* 6.15 (4.75) 6.28 (1.33) 2.16 (3.68) 2.83 (7.37) 

Balau 

Uncoated 

∆E* 11.75 (5.41) 14.46 (5.61) 14.49 (5.94) 17.76 (6.54) 

Values in parentheses are standard deviations 
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Figure 4.8: Effect of accelerated weathering on the lightness (L*) of coated and uncoated Colorado 
and Balau 

 

 
No statistically significant differences were observed between Colorado and Balau’s lightness 

values (L*) at t = 92h, 200h, 432 and 912h (Figure 4.8). The cutting pattern of the samples 

also contributed no significant effect to changes in L*.  Uncoated samples showed a 

significant decrease in L* for the first 200h of weathering, eventually becoming equal in value 

to that of the coated samples after 912h. Both Colorado and Balau showed less change in 

lightness after weathering when coated compared to the uncoated samples. The results 

obtained for coated samples agree with results found by Temiz et al. (2007) on the weathering 

of oil treated wood. According their research the darkening effect during weathering was the 

result of the depolymerization of lignin on the exposed surface brought on by photo-

degradation.  

 

a* - values 
A significant difference was found between the change in a* of Colorado compared to that of 

Balau. Both species showed an initial increase in a* for the first 200h of weathering, and 

thereafter a decrease, with Colorado showing a much larger change in a* than Balau. The 

increase in a* meant that the samples turned reddish, and the later decrease indicated that the 

samples returned towards its initial green colour. The reddening of Colorado could be 

attributed to its large quantity of water soluble extractives which leached to the surface when 
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exposed to water and radiation. As weathering continued, these extractives were washed of 

the surface and the wood faded back to a greener colour. 
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Figure 4.9: Effect of accelerated weathering on the redness (a*) of coated and uncoated Colorado and 
Balau 
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Figure 4.10: Effect of accelerated weathering on the yellowing (b*) of coated and uncoated Colorado 
and Balau 
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b* - values  
Uncoated Colorado and Balau showed a steep increase in b* over the first 92h of weathering 

(Figure 4.10). The b* values stayed constant up to 200h of weathering, and thereafter a slight 

decrease was noted up to 912h of weathering. The initial increase in b* meant that the 

uncoated samples turned slightly yellow, and the later decrease meant that samples became 

slightly blue again. No significant differences were found between the uncoated Colorado and 

uncoated Balau’s b* values. Muller et al. (2003) showed that there was a correlation between 

the yellowing which occurred during weathering and the accumulation of lignin degradation 

products on the exposed surface of wood. The decrease in b* value can be attributed to water 

leaching and washing away the degraded lignin products from the surface and thus leaving the 

wood slightly blue (Evans et al. 2005). 

 
Coated Colorado showed a slight increase in b* values over the first 92h of weathering, 

whereas Coated Balau showed a slight decrease. Thereafter both species showed a decrease in 

b* up to 912h of weathering. No significant differences were found between Colorado and 

Balau’s final b* values.  
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Figure 4.11: Effect of accelerated weathering on the colour change (∆E) of coated and uncoated 
Colorado and Balau 
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∆E* – Values  
Figure 4.11 shows the overall change in colour due to artificial weathering (∆E*). During the 

first 92h of weathering a rapid colour change was observed for both uncoated Colorado and 

Balau samples. Thereafter, no significant differences were found between the overall colour 

changes of species. The initial rate (0-92h) of discolouration of uncoated samples (∆E* = 14.2 

for Colorado and 11.75 for Balau) was double that of the coated samples (∆E* = 6.77 for 

Colorado and 3.31 for Balau). Later on discolouration rates declined down to approximately 

¼ of the initial slope for both the uncoated and coated samples. The total amount of 

discolouration, after 912h of weathering, observed for uncoated samples was more than 

double the amount for coated samples. According to Feist and Hon (1984) the protection of 

wood against discolouration should prevent the formation of free radicals induced by UV-

irradiation and the access of water to the reaction sites. The results of this study agree with the 

latter where the protected samples suffered only half the amount of discolouration.  

 

4.3.2.2 Roughness  

The effect of exposure on the surface roughness of coated and uncoated samples is 

summarized in Table 4.11 and depicted in Figure 4.12.  Deterioration of wood surfaces due to 

the combined effect of water and light, leads to the formation of macroscopic and microscopic 

intercellular and intracellular cracks or checks (Feist, 1983 and Williams, 2005). During 

weathering water also causes the loosening and removal of the surface fibers and particles. 

The amount of erosion and roughening on the surface was also dependent on the grain 

orientation of the wood (Figure 4.12b). As reported by Williams et al. (2001), radially sawn 

surfaces tend to erode and roughen slightly faster than tangentially sawn surfaces.  

 

Table 4.11: Average surface roughness (Rz) of coated and uncoated Colorado and Balau after 
exposure to accelerated weathering 

Time of exposure  
Species  Cut 

 
Treatment 

92h 
(Rz) 

200h 
(Rz) 

432h 
(Rz) 

912h 
(Rz) 

Coated 57.2(8.5) 61.1(4.9) 64.8(10.3) 74.4(12.4) Radial 
 Uncoated 63(13.8) 63.5(6.1) 68.7(15.1) 79.2(12.3) 

Coated 50.7(5.5) 68.8(9.0) 56.8(3.7) 66.2(7.5) 
Colorado 

Tangential 
Uncoated 55.8(13.8) 61.3(10.3) 60.7(12.3) 75.7(10.3) 

Coated 56.2(10.8) 67.8(11.0) 65.6(13.3) 80.0(11.2) 
Radial 

Uncoated 61.1(14.8) 66.6(13.8) 87.7(19.8) 92.0(15.6) 

Coated 57.5(11.6) 63.9(7.5) 59.4(10.0) 66.4(10.8) 
Balau 

Tangential 
Uncoated 66.9(10.2) 70.9(5.5) 75.5(5.5) 78.2(7.5) 

Values in parentheses are standard deviations 
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Figure 4.12: Effect of accelerated weathering on surface roughness (Rz) of Colorado and Balau (a) 
coated vs. uncoated samples (b) radial vs. tangentially cut samples 

 
Figure 4.12a depicts the surface roughness values (Rz) of coated and uncoated Colorado and 

Balau samples. Initially no statistically significant differences could be found between the Rz 

values of coated and uncoated samples. Both coated and uncoated samples showed an 

increase in roughness values as weathering continued.  

 

After 432h, differences started showing between uncoated Colorado and Balau samples. The 

uncoated Balau samples showed significantly higher Rz values than the uncoated Colorado 

sample after 432h of exposure. After 912h of exposure, significant differences were found 

between coated and uncoated samples of both species. Balau had a significantly higher value 

than Colorado, which could be explained by the differences in density and anatomical 

structure of these two species, as discussed earlier in this chapter. According to Hiziroglu et 

al. (2008) species with higher densities generally result in smoother surfaces after weathering, 

which is in agreement with the results of this study. 

 

Figure 4.12b shows the differences which occurred between the Rz values of radially and 

tangentially cut Colorado and Balau samples after weathering for 912h. It can be seen that 

radially cut samples roughened more during weathering than tangentially cut samples. After 

432h of weathering a decrease in roughness was observed for the tangentially cut samples, the 

reason for this is not quite clear, however, after 432h of exposure, resin which had leached out 

onto the surface appeared hardened, which could possibly have decreased the roughness 
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temporarily. Thereafter it is assumed that the resin was degraded and washed away after 

further weathering exposure. After 912h of exposure, radially cut Balau had the highest Rz 

value followed by radially cut Colorado. No difference was observed between the final 

roughness values of tangentially cut Colorado and Balau. These results are in agreement with 

the results found by Williams et al. (2001) on the rate of roughening between radially and 

tangentially cut samples. 

 

4.3.2.3 Surface wettability 

According to Kalnins and Feist (1993) the ability of wood to repel water is decreased as wood 

weathers. Water readily wets severely weathered surfaces and is quickly absorbed into the 

wood. The average wettability values, given as contact angles, are listed in Table 4.13, and 

shown in Figure 4.13.   

 Colorado

 Balau           0h

C
o

a
te

d

U
n

c
o

a
te

d

20

30

40

50

60

70

80

90

100

C
o

n
ta

c
t 

a
n

g
le

 (
d

e
g

re
e

s
)

92h

C
o

a
te

d

U
n

c
o

a
te

d

200h

C
o

a
te

d

U
n

c
o

a
te

d

432h

C
o

a
te

d

U
n

c
o

a
te

d

912h

C
o

a
te

d

U
n

c
o

a
te

d

 

Figure 4.13: Effect of accelerated weathering on contact angle values of coated vs. uncoated Colorado 
and Balau 
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Table 4.12: Average contact angle values of coated and uncoated Colorado and Balau after 
exposure to accelerated weathering 

Time of exposure  

Species  Cut Treatment 0h 

Angle (°) 

92h 

Angle (°) 

200h 

Angle (°) 

432h 

Angle (°) 

912h 

Angle (°) 

Coated 77.6(9.3) 79.5(11.1) 64.1(13.8) 69.6(18.5) 68.8(18.2) 
Radial 

Uncoated 59.5(10.2) 82.4(15.2) 63.1(11.3) 58.8(8.0) 42.9(17.9) 

Coated 78.4(14.7) 85.4(19.4) 79.9(14.1) 68.5(19.1) 74.3(9.9) 
Colorado 

Tangential 
Uncoated 71.8(12.8) 83.5(10.4) 78.5(9.5) 59.6(6.4) 50.8(10.1) 

Coated 74.3(8.1) 78.7(14.9) 55.6(10.8) 75.5(12.8) 62.6(9.4) 
Radial 

Uncoated 57.2(10.3) 71.9(5.7) 56.9(8.2) 45.8(12.8) 32.8(5.5) 

Coated 96.9(13.0) 81.6(15.9) 75.8(13.4) 58.4(12.2) 64.8(10.8) 
Balau 

Tangential 
Uncoated 53.5(8.5) 75.1(14.8) 75.2(7.8) 53.2(16.0) 51.2(10.1) 

Values in parentheses are standard deviation 

 

Up to 92h of exposure a remarkable increase in contact angle was found for uncoated 

samples. According to Kalnins and Feist (1993) this initial increase can be attributed to the 

following factors: 1) the migration of extractives to the surface and 2) the initial roughening 

of the surfaces both increase the hydrophobicity of surfaces. With the continuation of 

weathering exposure, however, the leached extractives are further degraded and washed away; 

this decreases the hydrophobicity of the surface. Besides the reduction in the amount of 

extractives and their water repellent effect, lignin, which is a hydrophobic component of 

wood, is also degraded and removed during weathering. Cellulose, being more resistant to 

weathering effects, becomes more abundant on the weathered surfaces. This presumably 

increases the hydroxyl concentration on the surface. These effects were visible in this study 

and can be seen in Figure 4.13 where the contact angle of both coated and uncoated samples 

decreased between 92h and 200h of exposure.  

 

As expected, the treatment of wood with a coating changed the surface chemistry (wettability) 

of Colorado and Balau samples surfaces. Treatment increased the initial contact angle of the 

samples before weathering (see Figure 4.13, t = 0), i.e. causing an increase in the 

hydrophobicity of the surface. After 200h of exposure, the contact angle of the coated samples 

stayed constant up 912h, whereas uncoated samples showed a decrease in contact angle up to 

912h. This shows that the coating was effective in sustaining the hydrophobicity of the 

samples. No statistically significant differences were found between the two timbers after 

912h.  
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4.3.2.4 Deformation and cracks 

Deformation values were measured after 912h of accelerated weathering. The width (85mm) 

of the samples exceeded the thickness (5mm) by 17 times which can allow excessive cupping 

within samples to occur.  Results are summarized in Table 4.13, and shown in Figure 4.14.  

 

Table 4.13: Average deformation of Colorado and Balau after 912 hours of accelerated 
weathering  

Defects after 912h of exposure  
Species  Cut Treatment 

Cup(mm) Twist (mm) Cracks (mm) 

Coated 1.08 1.37 0 
Radial 

Uncoated 0.49 1.33 0 

Coated 0.86 0.82 0 
Colorado 

Tangential 
Uncoated 0.90 1.42 34 

Coated 0.63 0.57 0 
Radial 

Uncoated 0.68 0.97 0 

Coated 0.58 1.63 42 
Balau 

Tangential 
Uncoated 1.48 6.33 87 

 

 
Figure 4.14: Average deformation of radially and tangentially cut, coated and uncoated Colorado and 
Balau samples after 912h of accelerated weathering: (a) cup and (b) twist 

 

Cup: No statistically significant differences were found between the cupping values of 

radially cut, coated and uncoated as well as the two timbers (Figure 4.14a). Only tangentially 

cut uncoated Balau samples showed significantly higher amounts of cupping. When 

comparing the swelling coefficients of Colorado and Balau (Table 4.13), it can be seen that 

Balau has a larger difference between its radial and tangential swelling coefficients, which 
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could explain the larger amount of cupping found in Balau. The coated samples showed less 

cupping than the uncoated samples which indicated that the coating was effective in 

controlling the moisture gradients in samples i.e. decreased the amount of deformation. 

 

Twist: No statistically significant differences were found between the amount of twist 

observed for coated Colorado and Balau (Figure 4.14b). The only statistically significant 

difference observed was the amount of twisting between uncoated tangentially cut Colorado 

and Balau.  Uncoated, tangentially cut Balau showed excessive amounts of twist relative to 

Colorado. The reason for this excessive twisting could also be attributed to the difference 

between Balau’s radial and tangential swelling coefficients.  

 

Cracks: The only cracks found in both Colorado and Balau were found in the tangentially cut 

samples. Balau showed a significantly higher amount of cracks when compared to Colorado. 

The coating prevented crack formation in the samples, except in the tangentially cut Balau 

samples. The excessive amount of crack formation in Balau could once again be attributed to 

stress formed in the samples because of Balau’s large swelling anisotropy.  

 

4.3.2.5 FT-IR surface analysis 

The FT-IR spectra of coated and uncoated samples before and after weathering are shown in 

Figures 4.15 - 4.16. Additional spectra are given on the weathering rates and comparisons 

between species, these results are presented in Appendix 2.  

 

Photodegradation of coated and uncoated wood causes mainly changes in the absorption 

intensities at 1720-1740, 1592, 1508, and 1230-1261 cm-1  (Temiz et al, 2007). The intensity 

and changes of these bands are related to changes in chemical composition of the functional 

groups and chemical structure of wood components of which lignin normally undergoes the 

biggest changes. The assignment of these characteristic IR absorption peaks in wood are listed 

in Table 4.14.  

 

The absorption band at 1509 and 1600 cm-1 are characteristic peaks for lignin due to the C=C 

stretching vibrations of the aromatic rings present in lignin. This peak usually appears 

between 1515 -1500 cm-1 and at 1600 cm-1 depending on the ring substituents. In this 

investigation, the peak at 1509 cm-1, for coated and uncoated Balau (Figure 4.15) and 

Colorado (Figure 4.16), had decreased significantly after 912h of exposure.  No significant 

differences were found between the intensities of these peaks for Colorado and Balau. 
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Furthermore, no differences could be observed between coated and uncoated samples. The 

same results were found for the peaks at 1597 cm-1. From these results it can be confirmed 

that lignin was degraded and that the coating was not effective in preventing the photo-

degradation of the aromatic rings present in lignin.   

 

Table 4.14: Assignment of IR absorption spectra bands in wood (Temiz et al, 2007). 

Peak  (cm
−1

) Functional                                       Contained in: 
group 

1720–40 
 
 

• C=O in:                                         - unconjugated ketones  
                                                            - aldehydes  
                                                            - carboxyl groups 

1645–60 
 

• C=O in:                                         -  para-OH substituted aryl  ketones                                     
                                                            - quinones 

1600/1510 
 

• C=C in:                                         -  aromatic ring in lignin 

1462 / 1425 
 

• C–H in:                                         - lignin  
                                                            - carbohydrates 

1375 
 

• C–H in:                                          - cellulose 
                                                            - hemicelluloses 

1330 / 1320 
 

• C–H in:                                          - cellulose  

• C–O in:                                          - syringyl derivatives 
1268 

 
 

• Guaiacyl ring breathing                 -lignin 

• C–O in:                                          - lignin  

• C–O linkage in guaiacyl  
      aromatic methoxyl groups 

1226-44 • Syringyl ring breathing                 - lignin 

• C–O in:                                         - lignin  
                                                           - xylan 

1162 • C–O–C in:                                    - cellulose 
 
 

The 1461 cm-1 peak is characteristic of the C-H vibration found in lignin and carbohydrates. 

A significant decrease was found in this peak for both uncoated Colorado and Balau. After 

912h of exposure no significant difference was observed between species. In contrast to 

uncoated samples, coated samples showed no significant decrease at these peaks.  This result 

would indicate that the coating was effective in protecting substructures in the lignin 

molecules.   
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Figure 4.15: FT-IR spectra of Balau showing the effect of treatment: (a) Coated Balau weathered for 
912h; (b) Uncoated Balau weathered for 912h.  

 
 

 

 
Figure 4.16: FT-IR spectra of Colorado showing the effect of treatment: (a) Coated Colorado 
weathered for 912h; (b) Uncoated Colorado weathered for 912h. 
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The absorption at 1229 cm-1 is a characteristic absorption of syringyl ring breathing in lignin, 

and C-O stretching vibration in lignin and xylan. These peaks were significantly decreased in 

the spectra of the uncoated samples after 912h of weathering. However, the absorption peaks 

at 1229 cm-1 of the coated samples did not change significantly; this is in agreement with 

results found by Temiz et al. (2007) on the weathering of oil treated wood.  They found that 

oil treatments could partly prevent the degradation of hemicelluloses. Their explanation for 

this was that oil filled the lumen and cell walls of wood, thus providing a chemical-

mechanical or physical protection of the hemicelluloses. It has also been reported that oils act 

as water repellents thus diminishing the consequences of the water’s washing effect. Oils 

cannot prevent lignin and cellulose degradation, merely retard it. 

 

In summary, no significant differences were found between the peak intensities of Colorado 

and Balau, and the coating was effective in retarding the rate and final amount of lignin 

degradation.  

 

4.4  Conclusion  

A. Comparison of the material (anatomical, physical and chemical) properties of 

Colorado and Balau: 

 

• Colorado had smaller vessel lumina, fewer vessels/m
2
 and smaller rays than Balau. 

• Colorado had a higher density than Balau. 

• Although both timbers had a relatively low FSP, Colorado’s FSP was 2.3 

percentage points higher than Balau’s. 

• The swelling coefficients (radial and tangential) of Colorado were slightly higher 

than Balau’s but Colorado had a lower swelling anisotropy which can probably 

result in a lower tendency to twist in service.  

• Colorado had a higher water soluble extractive content than Balau which lead to 

the rapid initial colour changes of uncoated wood. 

 
Balau is a popular choice when considering a timber for exterior use because of its good 

weathering performance.  From the many similarities found between the material properties of 

Balau and Colorado, one would expect little difference in the weathering behaviour between 

the two timbers.  
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B. Comparison of the accelerated weathering behaviour Colorado and Balau as 

determined by their material properties and processing (cutting pattern and surface 

treatment): 

 

Colour:  No significant differences were found for the overall colour change (∆E*) between 

the two timbers. The only significant difference observed regarding colour change between 

Colorado and Balau was the large increase of Colorado’s a* value. The reddening of 

Colorado could be attributed to its large quantity of water soluble extractives which leached to 

the surface when exposed to water and UV radiation. As weathering continued, these 

extractives were washed off the surface and the wood faded back to a greener colour. 

 

The coating was effective in decreasing the amount of discolouration. The total amount of 

colour change (∆E*) of the coated samples was less than half the amount observed for the 

uncoated samples.  

 

Surface roughness: Balau showed a significantly higher increase in roughness than 

Colorado. This could be explained by the lower density and higher swelling anisotropy of 

Balau. Radially cut samples showed a larger increase in roughness than tangentially cut 

samples. The increase in roughness observed for coated samples were not significantly 

different from uncoated samples, the coating was thus ineffective in retarding the roughening 

of surfaces.  

 

Deformation: Balau showed larger amounts of twisting and crack formation than Colorado; 

this could also be attributed to the higher swelling anisotropy of Balau.  Both these defects 

were only observed for the uncoated, tangentially cut samples.  

 

Wettability: No significant differences were found between the hydrophobicity of the two 

timbers. The coating was effective in increasing the initial hydrophobicity of samples, and 

maintained a relatively hydrophobic surface during weathering. No differences were found 

concerning the effect of sample cut on sample surface wettability.  

 

Surface chemistry: FT-IR studies showed that there were no significant differences between 

Colorado and Balau’s surface chemistry after 912h of weathering. The coating was not 

effective in preventing the photo-degradation of the aromatic rings present in lignin (1509 cm
-

1and 1597 cm-1).  However, the coating was effective in preserving the 1461 cm-1 peak which 

is characteristic of the C-H vibrations found in lignin, the 1229cm-1 which is characteristic of 
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syringyl ring breathing in lignin, and C-O stretching vibration in lignin and xylan. The 

explanation for this could be that oil fills the lumen and cell walls of wood, thus providing a 

chemical-mechanical or physical protection of the hemicelluloses. It has also been reported 

that oils act as water repellents thus diminishing the consequences of the water’s washing 

effect. Oils cannot prevent lignin and cellulose degradation, merely retard it. 

 

C. Final comment 

Although similar behaviour was observed, it should be noted that this artificial weathering 

study merely served as a screening test (number of samples, n = 12) and remains a simulation 

of natural conditions. Natural weathering of the material or when assembled in constructions 

might result in different outcomes. Based on the results of this exploratory, artificial 

weathering study, the properties and weathering performance of Colorado were comparable 

with Balau. Based on aesthetics considerations (colour change and crack formation), Colorado 

performed similar to Balau and but cupped and twisted less. 
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Chapter 5: Conclusions 

 
Weathering is a complex process and to measure the performance of a material during 

exposure to weathering factors is a complicated task. In this study there were many variables 

to consider and compare namely: Artificial weathering vs. Natural weathering, Balau vs. 

Colorado, Radial vs. Tangential grain orientation and Coated vs. Uncoated material. The 

conclusions of this study can be summarized as follows: 

 

A. Comparison of the material (anatomical, physical and chemical) properties of 

Colorado and Balau: 

 

• Colorado had smaller vessel lumen area, fewer vessels/m
2
 and smaller rays than 

Balau. 

• Colorado had a higher density than Balau. 

• Although both timbers had a relatively low FSP, Colorado’s FSP was 2.3 

percentage points higher than Balau’s. 

• The swelling coefficients (radial and tangential) of Colorado were slightly higher 

than Balau’s but Colorado had a lower swelling anisotropy resulting in a lower 

tendency to twist.  

• Colorado had a higher water soluble extractive content than Balau which lead to 

the rapid initial colour changes of uncoated wood. 

 
Balau is a popular choice when considering a timber for exterior use because of its good 

weathering performance.  From the many similarities found between the material properties of 

Balau and Colorado, one would expect little difference in the weathering behaviour between 

the two timbers.  

 

B. Comparison between the natural and accelerated weathering behaviour Colorado 

and Balau as determined by their change in material properties, environment and 

processing (cutting pattern and surface treatment): 

 

Colour 

Natural weathering: No initial differences were found for the overall colour change (∆E*) 

between Stellenbosch and Yzerfontein. After 30 weeks of weathering Colorado had 

undergone slightly more colour change than Balau. Coating had a significant effect on the 
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amount on colour change; however, the difference between coated and uncoated was smaller 

than expected. 

 

A significant difference was observed between Colorado and Balau’s change in redness (a*). 

Colorado experienced a larger overall decrease in redness (a*) than Balau. This could be 

attributed to Colorado’s large quantity of water soluble extractives which were leached out 

and washed of the surface during weathering. Coating had no significant effect in decreasing 

the amount of change in redness (a*). 

 

After 30 weeks of weathering Balau showed a greater decrease in b* than Colorado at the 

Stellenbosch site, but the two timbers’ b* values decreased similarly at the Yzerfontein site.  

 

No statistically significant differences were observed between the lightness values (L*) 

samples at Stellenbosch and Yzerfontein. Both Colorado and Balau showed less change in 

lightness after weathering when coated compared to the uncoated samples. Uncoated 

Colorado ended slightly darker than Balau. However, this difference was so small, even 

though statistically significant, it could not be distinguished by the human eye.  

 

Artificial weathering: Also, no significant differences were found for the overall colour 

change (∆E*) between the two timbers. The only significant difference observed regarding 

colour change between Colorado and Balau, was the large increase of Colorado’s a* value. 

The reddening of Colorado could be attributed to its large quantity of water soluble 

extractives which leached to the surface when exposed to water and UV radiation. As 

weathering continued, these extractives were washed of the surface and the wood faded back 

to a greener colour. The coating was effective in decreasing the amount of discolouration. The 

total amount of colour change (∆E*) of the coated samples was less than half the amount 

observed for the uncoated samples.  

 

Accelerated weathering showed the same amount of overall colour change (∆E*) after 912h 

of weathering as the decking after 12 weeks of weathering. The rate of colour change was 

thus 3 times higher under accelerated weathering conditions than under natural weathering 

conditions. The overall colour change (∆E*) of coated samples under accelerated weathering 

conditions, however, showed far less change than under natural conditions. This meaning that 

accelerated weathering was not a reliable method of predicting colour change for the natural 

weathering of coated timber.  
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Surface roughness 

No statistically significant differences were observed between the roughness values of 

decking samples at Stellenbosch and Yzerfontein. During natural and accelerated weathering 

Balau showed a significantly higher increase in roughness than Colorado. This could be 

explained by the lower density and higher swelling anisotropy of Balau. Radially cut samples 

showed a larger increase in roughness than tangentially cut samples. The increase in 

roughness observed for coated samples was lower than observed for uncoated samples. The 

coating was thus effective in retarding the roughening of surfaces under both types of 

weathering.  

 

Substrate defects  

These were mainly assessed during exposure of the timbers to natural weathering.  

 

Decking samples at Yzerfontein exhibited more surface checking than at Stellenbosch.  Balau 

showed larger amounts of surface checking than Colorado at Stellenbosch and Yzerfontein. 

Coating decreased the amount of surface checks on Colorado and Balau.  

 

Crack formation was more severe at Stellenbosch than at Yzerfontein. Radially cut Colorado 

showed slightly higher amounts crack formation at Stellenbosch than Balau. Coating was not 

able to decrease the amount of cracks formed.  

 

Deformation 

During natural and accelerated weathering Colorado showed slightly more cup than Balau, 

however, Balau showed much larger amounts of twisting than Colorado. This could also be 

attributed to the higher swelling anisotropy of Balau.  Both these defects were mostly only 

observed for the uncoated, tangentially cut samples.  

 

Wettability 

No statistically significant differences were found between the hydrophobicity of the two 

timbers. The coating was effective in increasing the initial hydrophobicity of samples and 

maintained a relatively hydrophobic surface during weathering. No differences were found 

concerning the effect of sample cut on sample surface wettability.  
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Surface chemistry 

FT-IR studies conducted during and after artificial weathering indicated that there were no 

significant differences between Colorado and Balau’s surface chemistry after 912h of 

weathering. The coating was not effective in preventing the photo-degradation of the aromatic 

rings present in lignin (1509 cm-1and 1597 cm-1).  However, the coating was effective in 

preserving the 1461 cm-1 peak which is characteristic of the C-H vibrations found in lignin, 

and the 1229cm
-1

 which is characteristic of syringyl ring breathing in lignin, and C-O 

stretching vibration in lignin and xylan. The explanation for this could be that oil fills the 

lumen and cell walls of wood, thus providing a chemical-mechanical or physical protection of 

the hemicelluloses. It has also been reported that oils act as water repellents thus diminishing 

the consequences of the water’s washing effect. Oils cannot prevent lignin and cellulose 

degradation, merely retard it. 

 

C. Final comment 

Artificial weathering was useful for studying the chemical changes that occurred during 

weathering but the physical changes did not correspond well with the results found during and 

after natural weathering. For this comparative study on Balau and Colorado, natural 

weathering is thus a more reliable method of studying timber weathering performance. From 

the results of the natural weathering study it can be concluded that both timbers performed 

better at Yzerfontein than at Stellenbosch; a result not anticipated as marine conditions are 

generally regarded as more harsh then inland conditions. This can be attributed to 

Stellenbosch’s very low and continuously changing humidity in the summer time, causing 

excessive check and crack formation. Although longer exposure, a much larger number of 

samples and other exposure locations are required to confirm these findings, Colorado has 

shown to be comparable with Balau as a decking material. Based on aesthetics considerations 

(colour change and surface defects), Colorado performed similar to Balau but twisted less. 
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Appendix 1: EVALUATING THE WATER REGULATING PROPERTIES OF WOOD COATINGS 

 
 

The Measurement of Liquid Water Permeability (LWP) and Water Vapour Permeability (WVP) of exterior) 

Finishes on Wood or Wood based substrates  

 
method developed by 

Tim Rypstra 
Dept of Forest and Wood Science 

Stellenbosch University 
 

1. Principle of test methods 
Determination of the amount of water (liquid or vapour), passing through a unit area of the coated 

wooden or wood-based substrate during a pre-selected period of time. 

 

2.  Test panels 
- Defect free, smoothly planed, tangentially sawn SA pine or other selected timber species 

- Sample dimensions: 300 mm (longitudinal length) x 100 mm (tangential width) x 15 mm 

radial thickness. 

- Samples must be coated on five surfaces; 4 edges and 1 face according to manufacturer’s 

specification 

- Samples must be conditioned to a constant moisture content (e.g. at 20˚C / 65% RH) for at 

least three weeks 

- Panel type, shape and dimensions are suitable for accelerated exterior weathering tests of 

coatings. 

 

3. Apparatus and components 
 - Rectangular basin with 200 cm2 rectangular area surrounded by rubber on edges 

 - 200 cm2, rectangular shaped mould with O-ring embedded in edge 

  - Threaded studs and wing nuts 

 - Base plate 

 
 

4. Permeability measurements 
 - Must be undertaken in the same room in which panels were conditioned. 

- If both water vapour and liquid water permeability are determined on the same panel, the water 

vapour determination, being the least damaging, should be done first. 

- After the water vapour determination, panels should be conditioned for at least four weeks 

before liquid water permeability tests can be conducted. 

- Keep distilled water needed for tests in the same conditioning room  

- The method is in principle suitable for other non-leaking substrates 

 
  

5. Water Vapour Permeability (WVP) determination 

 - After conditioning, weigh panel to nearest second decimal in grams. 

- Place rectangular basin on base of apparatus, and fill halfway with distilled water without 

wetting metal or rubber gasket surfaces that will come into contact with the wood panel. Place 

a custom-made polyethylene gasket on top of the rubber gasket to act as release agent for 

coated panels from the rubber gasket. 
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- Place coated wood panel with its coated face on the polyethylene gasket facing the water 

surface in the basin. 

- Place rectangular mould on the back of the panel, positioning the O-ring in line with where the 

wood panel is making contact with the polyethylene and rubber gaskets. 

- Tighten mould with wing nuts. 

- After 7 days, remove panel and weigh. 

- Calculate WVP of panel/coating composite as g water/1m2/7d by multiplying the gain in mass 

(in g) by 50.   

 

6. Liquid Water Permeability (LWP) determination 

 - After conditioning, weigh panel to nearest second decimal in grams. 

- Turn rectangular basin upside down and place on base plate of apparatus. 

- Place coated wood panel on the basin with its coated face upwards. 

- Place rectangular mould with O-ring touching the face of the panel. 

- Tighten mould with wing nuts. 

- Pour distilled water in mould (75% full should be sufficient). 

- After 24 h, pour out water without spilling on the panel, remove panel, blot off excess water 

with tissue paper and weigh panel. 

- Calculate LWP of panel/coating composite as g water/1m2/24h by multiplying the gain in mass 

(in g) by 50.   

 

7. Enquiries 
 Tim Rypstra 

 Tel: +27 (0)21 808 3317, Fax: +27 (0)21 808 3603; Email: tr@sun.ac.za 

 Date: 31 March 2006  
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Appendix 2: FT-IR 

 

 
Figure A -1 Calculation of an average FT-IR spectrum, using FT-IR spectra obtained from three 
replicas.    
 
 
 

 
Figure A-2 Example of the test for differences between FT-IR spectra obtained from radially and 
tangentially cut samples, also indicating the average spectrum calculated from these.  
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Figure A-3 FT-IR spectra of uncoated Balau and Colorado showing the difference between species 
before and after weathering: (a) Balau and Colorado unweathered; (b) Balau and Colorado weathered 
for 912h.  
 
 

Figure A-4 FT-IR spectra of uncoated Balau and Colorado showing the difference between species 
before and after weathering: (a) Balau and Colorado unweathered; (b) Balau and Colorado weathered 
for 912h. 
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Figure A-5 FT-IR spectra of uncoated Balau: (a) unweathered; (b) weathered for 92h; (c) weathered 
for 200h; (d) weathered for 432h; (e) weathered for 912h.  
 
 
 

 
Figure A-6FT-IR spectra of coated Balau: (a) unweathered; (b) weathered for 92h; (c) weathered for 
200h; (d) weathered for 432h; (e) weathered for 912h. 
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Figure A-7 FT-IR spectra of uncoated Colorado: (a) unweathered; (b) weathered for 92h; (c) 
weathered for 200h; (d) weathered for 432h; (e) weathered for 912h. 
 
 

Figure A-8 FT-IR spectra of coated Colorado: (a) unweathered; (b) weathered for 92h; (c) weathered 
for 200h; (d) weathered for 432h; (e) weathered for 912h. 
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