

Calhoun: The NPS Institutional Archive

An analysis of Naval Officer student academic performance in the Operations Analysis curriculum in relationship to academic profile codes and other factors

Blatt, Norman William.
Naval Postgraduate School: Monterey, California.

Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

DUULEY KNOX LIBF.ARY
NAVAL PGSTGRADUATE SCHOOL MONTEREY, CALIFORNIA 93943

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
T. REPORT NUMBER ${ }^{\text {a }}$ - GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
An Analysis of Naval Officer Student Academic Performance in the Operations Analysis Curriculum in Relationship to Academic Profile Codes and Other Factors	5. TYPE OF REPORT a PERIOD COVEREO Master's Thesis September, 1985 6. PERFORMING ORG. REPORT NUMBER
Norman William Blatt	0. Contract or grant number(e)
Naval Postgraduate School Monterey, California 93943-5100	10. PROGRAMELEMENTPROJECT, TASK AREA WORK UNIT NUMBEAS
11. Controlling office name and adoress Naval Postgraduate School Monterey, California 93943-5100	12. REPORT DATE September, 1985 13. NUMBER OF PAGES 98
14. MONITORING AGENCY NAME A AOORESS(If difteront from Controllina Office)	

16. DISTRIBUTION STATEMENT (Of tht a Report)

Approved for public release; distribution is unlimited.
17. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, If different from Report)
18. SUPPLEMENTARY NOTES
19. KEY WOROS (Continue on reverse alde if noceseary and ldentlity by block number)

Correlation, Regression, Analysis, Academic Performance, Prediction of Academic Performance
20. ABSTRACT (Continue on reveree alde if noceasary and ldentify by block number)

The ability to forecast the academic performance of Naval Officer students in the Operations Analysis curriculum is an issue of importance to the Navy. In the interest of cost effectiveness and achieving the required numbers of operations analysis graduates, this thesis studies the present student selection factors for the OA curriculum and suggests several alternative factors to improve the selection decision. An analysis of variance approach was taken to explore the relationship of the student's academic profile code and several
20. other variables to determine their importance in explaining the $O A$ student's academic performance. A study of 159 OA Navy OA students was completed. The analysis showed the student's overall total college grade point average, the time from completion of college to commencement of work in the OA curriculum (in fact performance does not decrease over time), the student's designator and his college degree to be the most important factors in explaining the variability of student performance.

Approved for public release; distribution is unlimited.

An analysis of Haval officer student Academic performance in the Operations analysis Curriculumin Relationship to Acadenic Profile codes and other Pactors
by
N. William blatt
B.S. Commander, Unitedistates Navy

Submitted in partial fulfillment of the requirements ror the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH
from the

NAVAL POSTGRADUATE SCHOOL
September 1985

ABSTRACT

The ability to forecast the academic performance of Naval Officer students in the operatıons Analysis curriculum is an issue of impor tance to the Navy. In the interest of cost effectiveness and achieving the required numbers of operations analysis graduates, this thesis studies the present student selection factors for the od curriculum and suggests several alternative factors to improve the selection decision. An analysis of variance approdí was taken to explore the relationship of the student's academic profile code and several other variables to determine their importance in explaining the $C A$ student's academic performance. A study of 159 Navy $O A$ students was completed. The analysis showed the student's overall total college grade point average, the time irom completion of college to commencement of work in the oA curriculum (in fact performance does not decrease over time), the studert's desigrator and his college degree to be the most important factors in explaining the variability of stuadent performance.
I. INTEODUCTION 10
II. BACKGROUND 12
III. DISCUSSION OF THE DATA 16
IV. PRELIMINAEY ANALYSIS OF THE DATA 23
A. $4 T H$ QUARTEE QPR VEESUS APC1 23
B. $4 T H$ QUARTER QPE VERSUS APC2 24
C. $4 T H$ QUARTER QPE VERSUS APC3 25
D. $4 T H$ QUARTEE QPR VERSUS COLLEGE DEGREE 27
E. $4 T H$ QUARTER QPR VERSUS DESIGNATOR 28
F. $4 T H$ QUARTER QPR VEFSUS LENGTH OF REFRESHER 29
G. $4 T H$ QUARTER QPR VERSUS COLLEGE RATING 31
H. $4 T H$ QUARTER QPR VEESUS YEAR GRADUATED FROM
NPS 32
I. $4 T H$ QUARTER QPR VERSUS TIME SINCE COLIEGE 33
V. RESULTS OF THE ANALYSIS 36
A. APPROACH OF THE ANALYSIS 36
B. MULTIPLE LINEAR REGRESSION ANALISIS 36
C. MODEL 37
D. ASSUMPTIONS FOR LINEAR REGRESSION 37
E. THE THO COFACTOR ANL SIX MAIN EFFECTS MODEL WITH INTERACTIONS 42
F. THE IWO COFACTOR : SIX MAIN EFFECTS MODEL HITHOUT INTERACTIONS 43
G. THE FOUR COFACTOR AND THREE MAIN EFFECIS MODEL WITH INTERACTIONS 46
H. STUDY MODEI :THREE MAIN EFFECTS : FOUR COFACTORS : NO INTERACMIONS 49
VI. CONCLUSIONS AND RECOMMENDATIONS 53
A. CONCLUSIONS 53
B. EECOMMENDATIONS 55
APPENDIX A: ACRONYMS AND ABBREVIATIONS 56
APPENCIX B: ACADEMIC RECORD EVALUATION 57
APPENDIX C: THE STUDY DATA 58
APPENCIX D: ADDITIONAL PRELIMINARY ANALYSIS 64
APPENDIX E: EXPLANATION OF THE "ANOVA" PROGRAM 91
LIST OF REFERENCES 96
BIBLICGRAPHY 97
INITIAL DISTRIBUTION IIST 98

LIST OF TABLBS

I EXPLANATION OF THE STUDY'S VARIABLES 22
II 4 th QTR QPR VS APC1 24
III $4 T H$ QTR QPR VS APC2 26
IV 4 IH QTR QPB VS APC3 27
V $4 T H$ QTR QPR VS COLIEGE DEGREE 28
VI 4TH QTR QPR VS DESIGNATOR 30
VII $4 T H$ QTR QPR VS LENGTH OF EEFRESHER 31
VIII $4 T H$ QUARTER QPR VERSOS COLLEGE RATING 32
IX 4 TH QUARTEE QPR VERSUS YEAR GRADUATED FROM
NPS34
X 4 TH QUARTEE QPR VERSUS TIME SINCE COLLEGE 35
XI CORRELATION BETHEEN THE STUDY VARIABLES 41
XII ANOVA TABLE 43
XIII BETA COEFFICIENTS 44
XIV ANOVA TABLE 46
XV beta coefficlents 47
XVI ANOVA TABLE 48
XVII BETA COEFFICIENTS 49
XVIII ANOVA TABLE 51
XIX BETA COEFFICIENTS 52

LIST OP FIGORES

2. 1 Calculating APC's 13
3.1 AEC Main Effects 18
3. 2 College Rating 19
3.3 Collєge Degree 20
3.4 Lergth of Refresher 21
3.5 Designator 21
4. 1 4th QTR QPR VS APC1 23
4.2 4th QTR QPR VS APC2 25
4.3 4th ©TR QPR VS APC3 26
4.4 4th QTR QPR VS College Degree 28
4.5 4th QTk QPR VS Designator 29
4.6 4th CTh QRR VS Length of Refresher 30
4.7 4th Qtr QPR VS College Rating 32
4.8 4th QTR QPR VS Year Graduated from ivPS 33
4.94 th \&uarter $Q P R$ Vs Time Since College 34
5. 1 Plots of Residuals from the Study Model of Choice 38
5.2 Residual Plot and Data : Study yodel 39
5.3 Scatter Rlot of Residuals :Study Model 40
5.4 Two Cofactor and Six M/E Model with Interactions 43
5.5 Two C/F and Six M/E Model without Interactions 46
5.6 4 Cofactor and $3 \mathrm{M} / E$ Model with Interactions 48
5.7 4 Cofactor and $3 \mathrm{M} / E$ Model without Interactions 50
D. 1 6th Qtr Grad QPR vs APC1 64
D. 2 8th Qtr Grad QPR vs APC1 65
D. 3 8th Qtr Total QPR vs APC 1 66
D. 46 th Qtr Grad QPR VS APC2 67
D. 5 8th Qtr Grad QPR vs APC2 68
D. 6 8th Qtr Total QPR vs APC2 69
D. 7 6th Qtr Grad QPR \quad S APC3 70
D. 8 8th Qtr Grad QPR vs APC3 71
D. 9 8th Qtr Total QPR vs APC3 72
D. 10 6th Qtr Grad QPR vs College Degree 73
D. 11 8th Qtr Grad QPR vs College Degree 74
D. 12 8th Qtr Total QPR vs College Degree 75
D. 13 6th Qtr Grad QPR vs Designator 76
D. 14 8th Qtr Grad QPR vs Designator 77
D. 15 8th Qtr Total QPR vs Designator 78
D. 16 6th Qtr Grad QPR vs Length of Refresher 79
D. 17 8th Qtr Grad QPE vs Length of Refresher 80
D. 18 8th Qtr Total QPR vs iength of Refresher 81
D. 19 6th Qtr Grad QPR vs College Rating 82
D. 20 8th Qtr Grad QPR vs College Rating 83
D. 21 8th Qtr Total QPR vs College Ratıng 84
D. 22 6th Qtr Grad QPR vs Year Graduated NPS 85
D. 23 8th Qtr Grad QPR vs Year Graduated NPS 86
D. 24 8th Qtr Total QPR vs Year Graduated NPS 87
D. 25 6th Qtr Grad QPB vs Time Since College 88
D.26 8th Qtr Grad QPR vS Time Since College 89
D. 27 8th $\overline{t r}$ Total QPR vs Time Since College 90

I. INTRODUCTION

The purpose of this thesis was to investigate various factors affecting the academic perforiance of Navalofficer students in the operations analysis Curriculum at the Naval postgraduate school. The original goal was to arrive at a predictive model which would improve the present selection process and possibly reduce the mumbers of student academic transfers out of the Operations Analysis Curriculum. These transfers have bistorically been about 10% of the original class. Due to the relatively small sample size (159), it was not possible to cross validate . Because of this the results are not presented as a predictive model. The utility of the study is rather in its analysis or those factors influencing the student's academic performance; the resultant promotion of understanding, and suggestions for further study of the subject.

The pertinent variables that were readily available and are in this study are college $Q P R$, college degree, the Officer's designator, college quality rating, elapsed time from completicn of college to starting the operations Analysis Curriculum, year graduated from the oA curriculum, and the length of refresher attended at the vaval postgraduate School. Current practice using orly the "apc" codes as a predictor achieves a multiple correlation coefficient of. 21 when run through the anova package. The wodei recommended in the study has an R^{2} of .41 while another model achieves an R^{2} as high as . 53.

The study subjects include approximately one-half of the Navy CA graduates from the period 1974 to 1985. This was the case sirce APC's were only available for about one-half of the graduates. The study includes only those students
with academic profile codes of 435 or better. The recommended APC for the operations Analysis Curriculum is 324 or better. There were 43 individuals includec in the study whose APC was , at least in one of the three digits, outside that recommended for OA. Cf these 43 people, 6 went straight into the curriculum ithout any refresher.

A review of the literature reveals a thesis written by Heru Soetrisno in 1975 titled "Prediction of Academic Performance of the U. S. Navy Officer Students in the operations Eesearch/Systems Analysis curriculum at the Naval postgraduate School" [Ref. 1]. The study was a regression analysis using biographical data. a personal interest survey and the graduate record examination. It covered all the Navy students in oA in the Spring of 1974 (72 students). The thesis concluded that the three above mentioned variables and combinations of them were better predictors of student performance than undergraduate QPF and college quality.

Numerous articles have alsc been written concerring the subject of predicting academic ferformance. A review of many of these articles has left the author with the impression that it is clearly not a clean-cut issue as to what test cr measure is the best in predicting academic performance. However of all the choices, it is recognized that prior academic performance and aptitude tests are generally considered to the most important predictors of future academic performance [Bef. 2: page 10].

The study opens with the development of the acajemic profile code and a review of the data. The analysis is conducted by first a preliminary look at the independent variatles in relationship to the dependent variable and then with an analysis of variance technique. The study ends with several conclusions and recommendations for future consideration.

II. BACKGRODND

The Navy Military Personnel Command (NMPC) is responsiblefor filling quotas at the Naval Posgraduate School. The current procedure is to convene anaually a Graduate Selection Board [Ref. 3]. This board meets and reviews those officer's records who are potentially eligible for graduate education as shown in enclosure four of [Ref. 3]. The bcard bases their determination for possible graduate education on the Officer's frofessional performance and their academic ability as evidenced by their acaderic profile code (APC) [Ref. 4]. The most recent board screened 13.000 records and selected 4.000 for possible graduate studies. Approximately 90% of those students eventually completing fully funded graduate studies vill receive their degrees froll the Naval postgraduate School [Ref. 5: page 25].

The APC is a three digit code summarizing the previous education of each officer and is calculated as seen in Figure 2.1 .

Afpendix B is a sample academic record evaluation (ARE) sheet. The ARE is used by the director of admissions at the Naval postgraduate School as a worksheet to compute an APC for every newly designated Naval officer each year. The ARE is filed and maintained at the Director of admission's office at the Naval Postgraduate School and is kept on file until the officer has been designated as a subspecialist or has keen determined not suitable for graduate education. NMPC annually directs the Naval Postgraduate School to remove and destroy the $A R E \cdot$ for those above mentioned Officers.

Pigure 2.1 Calculating APC's.

The APC is originally based on the individual's college performance and rarely changes unless the individual corresponds with tine Director of Admissiors at tue naval postgraduate School and fetitions to raise (improve) his APC with written proof of additional accredited academic achievement [Ref. 4: page 11].

A Naval Officer wust possess an APC of 324 or better (e.g. 112) to directiy enter the Operatıons analysis Curriculum [Ref. 5: page 32]. Additionally, a Naval officer may \in nter the $O A$ Curriculum with an APC of 344 after completing one or two quarters of the Engineering Science Curriculum. The Engineering Science Curriculum is designed to provide an opportunity for cfficers with inadequate mathematical and physical science backgrounds to establish a good uath foundation to be able to qualify for a technical curciculum [Ref. 5: page 36]. There is also a six week refresher available that is designed to rapidly cover the calculus and physics fundamentals for those Officers who are direct inputs into the oA curricuium without any quarters of Enginєering Science. Exceptions are made and it is fossible for an incividual to enter the oA curriculum without the minimum APC. It is also possible for an Officer to start $O A$ without any refresher at all as did 63 of the study subjects.

The oa curriculum is of a technical nature and students with solid college performance and technical majors are encouraged to enroll in it. However, there are some very good professional jfficers who do not have the required academic background to directly enroll in OA. The Navy would like some of these officers to be able co attend NPS in a technical curriculum. In response to this need, the Navy has recently introduced (1985) the Technical Transition Program (TTP). This program is designed to allow those professionally exceptional cfficers with seak college
backgrounds to enter a technical curriculum via a one or two quarter individually tailored preparation program. This program is slightly different from the Engineering Science curriculum in that it is individually structured to meet each student's needs while it also varies from different curriculum to curriculum. This program not only provides an opportunity to officers that at one time had no or little hope cf attending the Naval postgraduate School but it also provides more graduate trained subspecialists for the Navy.

The college records of these candidates for the TTP are screened at the $N a v a l$ Postgraduate School and a decision is made whether or not to allow an individual to start the program in hopes of eventually entering a technical curriculum. This study reveals several important factors and considerations in order to help the decision maker better access the potential academic performance of future oA students.

III. DISCOSSION OP TBEE DATA

The study data was gathered from several sources including the Office of the Registrar, Director of Admissions, the operations Analysis Curricular office at the Naval postgraduate School and from the Naval Military Personnel Command. Most of the data was obtained from the individual student files maintained by the operations Analysis curriculum secretary. These files containedmach of the student data such as university attended and what dates attended, college degree, designator and length of refresher attended at the Naval postgraduate school. These same files contain the stuadents grade sheet summary of all course work completed at the waval postgradute School. From this sheet, the dependent variable ir the study was calculated. Four different quality point ratings (QPR) were studied. The first was the student's total grade average after four quarters of the operations Analysis curriculum. This grade is of special importance as it is at this point in the curriculum that a final decision must be made as to continue a margirally performing student in nopes that nis overall grade point average will improve or co allow him to possifly transier to another curriculum with erough time remaining to successfully complete that program. It is also important to note that through the first four quarters each option is essentially the same. Hence, there is uniformity in the program. If a model cculd be constructed that would improve the present selection process and reduce the numbers of these transfers, a savings in tıme and money could be realized by the Navy.

The three other deperdent variables looked at were the student's quality point rating after six quarters (when most
of the stringent course requirements are finished). his graduate q pr after eight quarters and also the total overall quality point rating after eight quarters which completes the degree. All these qpr's were determined by dividing the weighted total of the grade points earned by the total hours attempted for the respective quarter totals. None of these qpr's included any grades earned during refresher courses.

The academic profile codes were the most difficult data points to obtain. Although the Director of Admissions maintains a computer printout of all current APC's, very few of the study subjects were still on the listing. Of the 343 Navy CA students completing the operations Analysis curriculum at the Naval Pcstgraduate School from 1974 to 1985. only 80 of them had APC's in the printout, in their files or in their academic record evaluation sheets. The additional APC's were obtained from the Officer's data card sent to the Naval postgraduate School by NMPC. a total of 172 APC's were obtained. Of these 172 APC's, 159 were used in the study. The thirteen individuals removed irom the study were in very low populated levels of several of the variables. The variables for the academic profile codes are seen in Figure 3.1 .

The 159 Naval officer study subjects all graduated with Master Degrees in Operations Analysis. Although not a random sample, they were treated as a random sample for the purpose of the study. There was no apparent grouping or special distribution of the study sutjects compared to the entire population of 343. The data were tabulated into an 159 by 18 matrix and is included as Appendix C.

The variable college rating was obtained from the Gourman feport [Ref. 6: page 7]. This report evaluated 1.845 colleges and universities in terms of the institution's objectives, curriculum, faculty, faculty research and honors, admiaistration, library, budget, resources, student

$$
\begin{aligned}
& \mathrm{APCl}=\text { College } \mathrm{QPR} \\
& \text { code main effect level 非 of data points }
\end{aligned}
$$

Figure 3.1 APC Main Effects.
scores on standardized tests, admission policy, ard several other tactors. Tne range for the college rating variable as
a cofactor was 4.99 for the highest rated institution down to a rating of 2.01 for the lowest. This variable was also looked at as a possible main effect and was divided into categories as seen in Figure 3.2 .

rating	range	level	非 of data points	
strong	4.41-4.99	6		34
good	4.01-4.40	5		85
acceptable	3.51-3.99	4		18
adequate	3.01-3.50	3		19
marginal	2.01-2.99	2		3
			total	159

Figure 3.2 College Rating.

The variable college degree is seen in Figure 3.3. The groufing Naval Science was reguired due to the twelve students included in the study who graduated from the Naval Academy prior to 1973. Prior to that time oriy one aegree was confirmed by the institution and although the midshipmen took a variety of courses, many of wnich were of an trgineering nature, they received a B.S. iegree in Naval Science.

The variable refresher was investigated as botn a main effect (yes=attendea cr no=did not atterd) and as a cofactor listing the length, in quarters, of refresher taken at the Naval fostgraduate School. There is a six week rerresher for each class frior to startirg the curriculum. Additionally, a student may possibly receive one or two quarters of refresher depending on several factors. These quarters of refresner are gererally undertaken by students

Degree	level	非 of data points
Business	1	14
Engineering	2	31
Humanities	3	4
Math	4	59
Social Science	5	16
Naval Science	6	12
Operations Analysis	7	23
		159

Figure 3.3 College Degree.

not feeting the minimum recommended APC for OA or for students who have not been in ar academic environment for a long feriod of time. The decision is generally made at the Curricular officer and Academic Associate's concurremce and with apfroval from the student's detailer. There is nothing concrete aoout this process ard it is possible to start the curriculum directly without ary refresher. The cofactor length of refresher was grouped as seen in Figure 3.4 .

The variable designator was viewed as a main fffect. Each Naval officer has one designator which is gererally assigned after completing a school or traininy course. They retain this designator for their entire length of scrvice with the few exceptions of individuals transfering to another specialty and hence changing desıgnators. The designators of the stuiy group car be seer in Figure 3.5 .

Table I is a summary listing of all the varlables and their levels that were investigated in tine study.
quarters of Refresher level 0 l
. 5
1

2

TABLE I

EXPLABATION OP TEE STUDI'S VARIABLES

Cofactors

time since college in months
college rating
year graduated from NPS
length of refresher (quarters) Mairr, Effects

APCl college qpr *
APC2 math code *
APC3 technical code *
College Degree
Business 1
Engineering 2
Humanities 3
Natural Science (Math)
Social Science
Naval Science 5

Operations Analysis
Designator
110x Restricted line 1
llx Unrestricted line 2
112x Submarines 3
$131 x$ Aviator 4
132x Naval flight officer 5
140x Engineering Duty officer 6
161x Intelligence officer 7
$310 x$ Supply officer 8
113x Special Warfare officer 9
\therefore Coded as APC + 1 for computer indexing

IV. PKELIMINAEY ANㅡIISIS OF THE DATA

A preliminary analysis of the data was conducted using APL and Grafstat caparilities of the IBM 370 located at the Naval postgraduate School. Each variable was investigated in relation to tne dependert variable "4th quarter gpr". All remarks of signíiicant differences are a result of a formal "t" test with a . 05 level of signi天icance.

A. $4 T H$ QUAKTEB QPR VERSES APC1

The first $A P C$ dijit representing the individual's overall college qpr was plotted against his acadeuic performance in the $O A$ curriculum through the fourth guarter.

Figure 4.1 4th QTB QPR VS APC1.

Pigure 4.1 is a graphical representation of the statistical relationsnip while the cesults are tabulated in Table II.

TABLE II
 4th QTR QPB TS APC1

CATEG. NO.PTS ₹-PTS Y-MEAN Y-DVN . 25 .50 . 75

ALL

1.
0.050314
0.1761
0.49686
0.24528
0.031447

3.373	0.33011
3.72	0.24068
3.5386	0.27132
3.3448	0.3088
3.2826	0.32053
3.042	0.34672

3.12
3.43
3.36
3.09
3.07
3.02
3.36
3.63
3.47
3.34
3.25
3.11
3.64
3.96
3.75
3.59
3.46
3.15

These results show the student's performance in coliege has a direct and logical relationship to hls performance through the furth quarter of the $O A$ curriculum. The kigher one's college qpr tne better one's ferformance in oA. The study group's average apC for the first digit is very ciose to two while the overall grand mear for their fourth fuarter grade was ミ. 37. The highest code of zero had a significant đifference compared to ríc overall mean.

B. $4 T H$ QUARTER QPR VERSOS APC2

The second $A P C$ digit representing the student's urdergraduate calculus proficiency was piotted against his 4 th guarter gpr. Figure 4.2 is a represertation of this relationship and the numerical results are tabulated in Iable III. Ihere is a slgnificant difference among the first two Levels of this variable and the overall mear. Iterecommended $A P C$ for ∂d in math is three or better while four is acceptable via the engineering science curiculum. Tine study group's average was 1.7 whlle the entire group had a math APC of three or better. Tıe overall relationsalp is
just a sligat positive one where the lover (better) one's math code translates to a higher 4th yuarter grade.

C. 4 TH QUARTEE QPR VEBSOS APC 3

Figure 4.2 4th QTR QPR VS APC2.

The third APC digit representing the student's tecn nical code was similary studied and is shown figure 4.3 and Table IV. This relationship does not show a logical progression of high 4 th guarter performance with the better technical codes. It in fact jumps back and forth with no apparent logic. Admissior to the $O A$ curriculum way reslect some compensating feature.

The iast level (those students with an APC3 code of five) of thirteen individuals had the second test average qpr. Tnese thirteen subjects vere looked at indiviaually to

CATEG.	NO.PTS	\%-PTS	Y-MEAN	Y-DVN	. 25	. 50	. 75
ALU	159		3.373	0.33011	3.12	3.36	3.64
0	24	0.15094	3.4963	0.26836	3.29	3.43	3.75
	29	0.18239	3.5034 3.3143	0.2918	3.29	3.59	3.7
$\frac{2}{3}$	76 30	0.47799 0.18868	3.3143	0.32307 0.3607	3.08 3.03	3.3 3.22	3.49 3.58

Figure 4.3 4th $C T B$ QPR VS APC3.
try to determine a possible reason for this. It was discovEred, that as a group, their average first digit ApC for their college performance was 1.4. This is هuch tetter than the \in ntire study grouf's average of 2. 1. The only difífr encas between the six level means and the overall mean that

TABLE IV

4TH QTR QPR VS APC3

were statistically significant were the first level zero and the n ext to last level four.

D. $4 T H$ QUABTER QPR VERSUS COLIEGE DEGREE

Ccllege degree was the next variable plotted against the 4 th guarter qpr. Figure 4.4 graphically presents and Table v Iists this data.

Althougn none of the differences are statistically significant, the busidess, engineering, math and operations analysis majors performed atove the mean of the study sample. If one disregards an outlier or two within the $O A$ level. $O A$ would have shown a greater positive difference rrom the grand mean and this can be seen inits interquartile range. The data shows an intuitively logical assumption that students with a social science or humanities undergraduate degree would do less well in a technical curriculum when compared to students with a more quantitative college degree such as engineering or mathematics. The performance of those people with naval science majors is relatively low. This may be a result of several confounding factors not readily apparent.

Figure 4.4 th QTB QPR ∇S College Degree.

TABLE
$4 T H$ QTB QR VS COLLEGE DEGREE

E. 4 IH QUARTER OPE VERSUS DESIGNATOR

The student's designator was the next variable plotted against 4 th quarter pr. Disregarding the very small levels of 1400, 1610, and 1130 from the discussion, leaves only

1120 (submariners), 1320 (naval flight officers) and 3100 (supply) designators that did better than the grand mean. This can be seen in Figure 4.5 and Table VI. A test of significance showed only the 1120 and 3100 designators performeà better and the 1100 designator performed worse than the overall mean.

Figure 4. 5 4th QTR QPR VS Designator.
P. 4th quarter qpr versus lengta of represher

The variable length of refresuer was plotté agairst th quarter qpr as seen in Figure 4.6 and Table VII.

It can be seen that those individuals who do not attend refresher do slightly better than tae students that attend refresher. This could mean tiat a good job is done iäentifying those individuals who need reiresher. It is also

TABLE VI
UTE CTR QR VS DESIG\&ATOR
CATE. NO.PTS \%-PTS Y-MEAN Y-DVN . 25 . 50 . 75

ALL	159	1	3.373	0.33011	3.12	3.36	3.64
1100	6	0.037736	3.3517	0.30954	3.07	3.34	3.63
1110	10	0.31447	3.2456	0.31481	3.04	3.19	3.43
1120	10	0.062893	3.6544	0.32855	3.35	3.82	3.96
1310	41	0.25786	3.341	0.23245	3.15	3.37	3.47
1320	1	0.16352	3.4588	0.31471	3.26	3.46	3.75
1400	3	0.0062893	3.29	0.3868	3.4533	0.31753	3.29
1610	20	0.12579	3.553	0.35289	3.1	3.39	3.29
3100	0.012579	2.88	0.26	2.65	3.69	3.87	
1130	2						2.62
					3.14		

Figure 4.6 th QTR QPR $V S$ Length of Refresher.
possible that the students themselves nave an influence in whether or not they attend refresher. It could also be that those students tint have a very confident opinion of their academic background may be deliberately deciding not to report until well after refresher starts.

This sort of

4 TH QTR QPR VS LENGTG OP REPRESHER

CATEG.	NO.PTS	\%-PTS	Y-MEAN	Y-DVN	.25	.50	.75	
					3.373	0.33011	3.12	3.36

tiased selection could be affecting the results of this variable. The result of the stuients with one guarter of refresiner doing better than the mean could also be artificial. Once they demonstrated that even though they fit the categcry of individuals who should get refresher, they really could handle the pace without it then they could be set kack into their original class with a few scheduling arrangements made. There is also no permanent incenrive to do well in the 460 curriculum since the grades do not count and are not reflected in the student's total grade average. The formal test of significance showed that onfy the students with two quarters of refresher performed at a staristically lower level than the overall grand meau.

G. $4 T H$ CUARTER QPR VERSOS COLIEGE RATING

The variable college rating was the next variable plott $\in \dot{d}$ against 4 th quarter $g p r$ and is shown in Figure 4.7 and Table VIII. The data does not show a significant dıfference among any of the college ratings. Disregard the lowest rating as it only contains three individuals. The remaining four categcries shcw a slight decrease in $4 t h$ quarter qpr as the rating decreases but it is not statistically significant.

Figure 4.7 4th Qtr QPR ∇S College Rating.

TABLE VIII
4TH QUARTEE QPB VERSUS COLLEGE BATIMG
CATEG. NO.PTS \%-PTS Y-MEAN Y-DVN . 25 . 50 . 75

ALL	159	1	3.373	0.33011	3.12	3.36	3.64
$2.0-2.99$	3	0.018868	3.3967	0.260081	3.16	3.27	3.76
$3.0-3.5$	19	0.1195	3.4005	0.29915	3.07	3.43	3.69
$3.5-3.99$	18	0.11321	3.3	0.28746	3.12	3.28	3.43
$4.0-4.4$	85	0.53459	3.3554	0.32538	3.11	3.35	3.56
$4.41-4.99$	34	0.21384	3.4382	0.36992	3.12	3.4	3.81

H. 4TH QUAETER QPR VEBSUS YEAE GBADUATED FBOM NPS

The variable year graduated from NPS was piotted against 4 th quarter qpr and is seen in Figure 4.8 arj Table IX. Ibe data is seen to be teavily concentrated in the three most recent years (46% of all study subjects). The years 74 and 75 show $\in d$ a statıstically significant mean that was delow
the overall mean of 3.37. The year 1980 was the only year that was significantly above the overall average. This could possibly reflect the "luck of the draw" as difierent student sections progress through the curiiculum with different combinations of professors and grading practices.

Figure 4.8 4th $\mathbb{C} T R$ QPR VS Pear Graduated from NPS.

I. $4 T H$ CUARTER QPR VERSOS TIME SINCE COLLEGE

The variable time since college was plotted against the 4th quarter qpr as seen in Figure 4.9 and Tabie X.
After discarding the first $i \in v \in l$ with orly tyo otservetions, it is or interest to note the very slight improverent in gpr as time since college increases. Once again the differences betwefn the overall mean and the individual level means are not siynificant in a formal test of signifıcance. The

TABLE II
$4 T H$ QUARTER QPR TERSUS YEAR GRADUATED FROA NPS

CATEG.	NO. PTS	\%-PTS	Y-MEAN	Y-DVN	. 25	. 50	. 75
ALL	159	1	3.373	0.330	3.12	3.36	3.64
1974	8	0.050314	3.1388	0.24174	3.04	3.11	3.29
1975	12	0.075472	3.1825	0.25898	2.99	3.09	3.31
1976	7	0.044025	3.4314	0.25525	3.08	3.5	3.59
1977	7	0.044025	3.47	0.21024	3.22	3.45	3.67
1978	2	0.012579	3.515	0.085	3.43	3.43	
1979	14	0.08805	3.3514	0.33939	3.03		
1980	9	0.056604	3.6178	0.21186	3.58	3.69	3.76
	11	0.069182	3.2918	0.28074	3.1	3.15	3.48
1982	15	0.09434	3.4433	0.39383	3.27	3.56	3.76
1983	31	0.19497	3.3881	0.355	3.08	3.39	
1984	27	0.16981	3.3441	0.2765	3.14	3.32	3.47
1985	16	0.10063	3.4381	0.37902	3.26	3.43	3.82

Figure 4.9 4th Quarter QFR ∇ sime Since College.
relative constant performance over tris variable is surprising as one vula logically expect ferformance to be degraded as the time since completing college and commencing another academic situation ircreases.

TABLE
$4 T H$ QUARTEE QPR VERSUS TIAE SINCE COLLEGE
CATEG. NO.PTS \%-PTS Y-MEAN Y-DVN . 25 . 50 . 75
ALL
$0-36$
$37-60$
$61-84$
$85-108$
$109-132$
$133-185$

159
28
58
38
27
19
15

1.012579	3.373
0.012595	
0.36478	3.3
0.23899	3.4037
0.16981	3.38
0.1195	3.4516
0.09434	3.436

0.33011
0.165
0.30956
0.34813
0.35614
0.29108
0.31117
3.12
3.43
3.11
3.11
3.1
3.1
3.1
3.36
3.43
3.29
3.39
3.38
3.48
3.34
3.64
3.76
3.47
3.67
3.64
3.76
3.79

The preceeding relationshifs were iooked at to investigate the basic properties of the variables studied and not to draw conclusions on these results. It would be incorrect to draw the conclusion that these one to one comparisons imply any airect cause and effectwithout studying the interactions of all the variables concerned. Chapter v will investigate these relationships with an analysis of variance approach. Appendix D contains the same figures and tables for the other three dependent variables (6th guarter graduate gpr. 8th quarter graduate total gpr and 8tin quarter total GFr).

จ. BESOLTS OP TBE ANALYSIS

A. APPROACH OF THE ANALYSIS

This chapter describes the analysis techniques used and the results from the analysis. The analysis of the data was conducted with the aid of the Naval postgraduate School's IBM 370 computer using an "ANOVA" package designed by Professor kussell Richards of the Naval Postgraduate School. The "ANOVA" package is capable of performing multiple linear regression on unbalanced data. It is an apl program with anay and varied outputs. Appendix E is an explanation of $t h \in$ "ANOVA" program. its capabilities and required input data format. The program uses the least squares approach and calculations are done in matrix format.

All of the 159 stuaents that comprised the population of this study were included in the anaiysis to develop a model for possible prediction of student performance. A cross validation procedure, using a portion of the data, would have reen a useful technique to check the validity of the results. This procedure was not employed due to the iimited numper of academic prcfile codes that were available for the study.

B. MULTIPLE LINEAR REGRESSION ANALYSIS

Multiple linear regression techniques were employed using the "ANOVA" program to develop the explanatory variables to be included in the model and then to estimate the coefficients describing the weights to assign to the variarles.
C. $\triangle C D B L$

The model used is of the matrix form:

$$
Y=X B+\epsilon
$$

(eqn 5.1)

where, | Y is a vector of dependent variables |
| :--- |
| X is a matrix of independent variables |
| B is a vector of coefficients |
| |
| \quad e is a vector of error terms. |

In ANOVA applications of linear models, the qualitative (main and interaction) effects are estimated on an interval scale and have arbitrary origins. Hence the matrix X is singular. The "ANOVA" package (Professor Richards) solution manages this problem by deletion of selected columas and these selected columns are listed for the user. A selected column represents an omitted variable whose estimated coefficient is the negative of the total of all other variables in its category. .

D. ASSU日PTIOAS FOR LIAEAR REGRESSION

While using the linear regression approach, a number of assumptions must be made concerning the error terms. The errors must be independent, have zero mean, constant variance and must be normally distributed [kef. 7]. Each time the "ANOVA" progran was run on a different version of the model the residuals were plottej to verify these assumptions. Figure 5.1. Figure 5.2 and Figure 5.3 display these results for the particular model that will later be developed as the study model of choice. These figures ana the discussion in the following paragraph show the assumptions are adequately met.

The variables included in the model must also be independent. The pearson's product moment correlation

NORMAL DENSITY FUNCTION, N=159

NORMAL CUMULATIVE DISTRIBUTION FUNCTION, N=159

Figure 5.1 Plots of Residuals from the Study Model of Choice.

NORMAL PROBABILITY PLOT

NOFMAL DISTRIEUTION

X	DO
SELECTION	ALL
LABEL	RESIOLALS FFTOM ATH OTR UCOEL
SAPLE SIZE:	159
HINIMM	-. 550
maxliam	. 829
CENSCRINO	NOIE
EST. LETHOO:	MAXIHEM LIKELIHOOO

KS. AD. ND CV SICHIF. LEVELS MOT EXACT WITH ESIIMAIEO PAKAMETEKS

Figure 5.2 Residual plot and Data :Study Model.

Figure 5.3 Scatter Plot of Residuals :Study Model.
coefficiert (r) was calculated for the entire data matrix. Table XI is the results of these calculations. Several of tie $v a r i a b l e s ~ w e r e ~ l o o k e d ~ a t ~ a s ~ b o t h ~ m a i n ~ e f f e c t s ~ i q u a l i t a-~$ tive) and, after a transformation of the data, as cofactors (quantitative). In these cases of correlation between two scales of the same variable, a high r will be calculated. In all other possible correlations, the r value is low enough to be able to assame independence tetween the variatles of the study.

The serial autocorrelation statistic was used to verify that the error teras were ind ϵ pendent. Tinis statistic is provided by the output menu of the "ANOVA" progran. For the error terms to e considered independent, the serial

TABLE XI

CORRELATION BETEREN TEE STODY VARIABLES

Column/Row
1
2
3
4
5
6
7
8
9

Title
APCl
APC2
APC3
4th Qtr Qpr
6th Qtr Qpr
8th Qtr Qpr
8th Qtr Total Qpr
College Degree
Designator
Time Since College
Refresher (Yes: or no)
College Rating (Gourman scale)
Year Graduated NPS
$1 \begin{array}{lllllllllllllll} & . & .46 & .02 & -. & 38 & -. & 36 & -.36 & -.39 & .10 & -.08 & .19 & -.16 & .21\end{array}-.11$
$1 \quad .25-.24-.18-.18-.22-.09-.11 \quad .16-.17 \quad .16 \quad .19$
$1-2-.15-.14-.15-.16 \quad .07 \quad .06 \quad .02-.18-.21 \quad .23$
$1.91 .91 \quad .96-.14$. 21 . 12 . 17 . 06 . 13
$1 \quad .97 \quad .95-.11 \quad .19$. 11 . 20 . 08 . 18

1 . 198 -. 11.23 . 11 . 21 . 09.16
$1-.12 \quad .23 \quad .11 \quad .18 \quad .09 \quad .16$
$1-.11-.10 \quad .03 \quad .00 \quad .03$
$1 \quad .27 \quad .03 \quad .00-.06$
$1-.23$. 10 . 20
$1-00-.03$
$1-.02$
autocorrelation statistic should be equal to zero [Ref. 7: page 450]. For the model of choice, this statistic was equal to .06 and hence the error terms are considered to be indep \in ndent.

A total of forty different models were analyzed by the "ANOVA" package. The four covariance models of inighest interest will be discussed individually. While these four models use the fourth quarter qpr as the dependent variable, each of the other three gpr's were analyzed as the dependent variable also. The results of those analyses were rot significantly different from the 4 th quarter models.

E. THE TWO COFACTOR AND SIX MAIN EPPECTS MODEL WITH I ATEBACTIOAS

This model used time since college and college rating as coiactors and the three academic profile codes, college degreє, refresher (yes or nol and year graduated from NPS as main $\in f$ fects. The model included the interactions between APC1 and APC2. APC1 and college degree, and collegt degree and refresher (yes or no). Table XII is the ANOVA table from the "anova" program.

The coefficient of multiple determination $\left(R^{2}\right)$ of .532 is the highest of any of the models analyzed in the study. Thus this model is able to explain 53% of the variability in fourth quarter $O A$ grades by Navy students. The model is relatively signiricant (.006) but only the one variabie. thme since college, is individually significant above the .05 level (.029). None of the interactions show any significance. The covariance model is shown in figure 5.4 .

Table XIII is a listing of the jeta coefficients provided as an output from the "anova" program. It is interesting to note taat the coefficient for time since college is positive.

ANOVA TABLE

$$
\begin{aligned}
Y_{i}= & \beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i z}+\beta_{4} x_{i 4}+\beta_{5} x_{i 5} \\
& +\beta_{6} x_{i 6}+\beta_{7} x_{i 7}+\beta_{8} x_{i 1} x_{i 2}+\beta_{9} x_{i 1} x_{i 4}+\beta_{10} x_{i 4} x_{i 5} \\
& +e_{i} \quad i=1, \ldots, 159
\end{aligned}
$$

Figure 5.4 Two Cofactor and Six M / E Model with Interactions.
F. TEE THO COPACTOR : SIX GAIN EFFECTS MODEL WITHOUT I ATERACTIONS

This model is the same as the previous section's model. however, the insignificant interactions were not included. Table XIV is the aNOVA table from the "aNOVA" program.

The coefficient of multiple determination (R^{2}) has decreased to. 373 but the significance of tie f model has improved a bit to .0004 . Now both time since college

TABLE XIII

BETA COEPFICIENTS

TERM
COVARIABLES $\left.\begin{array}{l}\mathrm{X}\left(\frac{1}{2}\right): \\ \mathrm{X} \\ 2\end{array}\right):$
CONSTANT:
MAIN EFFECTS

FACTOR (2):
$\left.\begin{array}{l}\text { IEVEL } \\ \text { IEVEL } \\ \text { IEVEL } \\ (2) \\ 3\end{array}\right) \vdots$ IEVEL (4)
FAC

FACTOR (4)
LEVEL (1) IEVEL (2) 2 : LEVEI (4): LEVEI (5) LEVEU (7) FACTOR (5) LEVEI (1): LEVEU (2): FACTOR (6)

INTERACTIONS NUMBER (1):

BETA COEFFICIENTS
.025 Time Since College
3.642 College Rating
3.642

APCl APC Code
.203 APCO
-.068 APCl
-. 134 APC2
$-.142 \quad$ APC3
$A P^{-1} 2$
$\begin{array}{rr}.038 & \text { APCO } \\ .054 & \text { APC1 } \\ . .046 & \text { APC2 }\end{array}$
-.046 APC
APC 3
.019 APCO
-. 010
-.06
-.07
-.078
. 07
COILEGE
. 509
-. 02
.259 Humanities
-. 017 Math
-. 295 Social Science
-. 340 Naval Science
.087 Operations Analysis
REFRESHER
-. 116 Refresiner Yes
.116 Rezresner No
GRADUATED NP
-. 1331974
-. 1151975
-. $056 \quad 1976$
.1861977
-. 0881979
.032198
-. 1091981
$\begin{array}{ll}.064 & 1982 \\ .068 & 1983\end{array}$
-. 0421984
APCl X APC2 INTERACTIONS
$\begin{array}{rr}-.089 & 1 \times 1 \\ .213 & 1 \times 2 \\ .032 & 1 \times 3 \\ .447 & 2 \times 1 \\ -.275 & 2 \times 2 \\ . .075 & 2 \times 3 \\ -.073 & 3 \times 1 \\ -.341 & 3 \times 2 \\ .248 & 4 \times 1\end{array}$
beta Coefficients (cont'd.)

NUMBER (2):

NUMBER (3):
4×5 INTERACTION

.192
.134
-.591
.046
.025

(significance of .03) and APC1 (significance of.005) are seen to be very significant factors. This version of the covariance moãel is simple with fewer terms and is shown in Figure 5.5 .

Tatle $X V$ is a listing of the beta coefticients provided as an output from the "ANOVA" program. The levels of the APC 1 variatle are seen to contribute positively at the first two levels asd negatively at the lower three levels as one would lcgically expect. The ApC2 variable also "behaves" in a similar fashion from level one through level four.

TABLE XIV

AHOVA TABLE

R-SQUARE $=.37$ SERIAL AUTOCORRELATION $=.017$
SOURCE OF VARIATION
TOTAL
ERROR
MODEL
XI TIME SINCE COLLEGE
X COLLEGE RATING
FACTOR 1 APC
FACTOR 2 APC 2
FACTOR 3 APC 3
FACTOR 4 CL. DEGREE
FACTOR 5 REFRESHER
FACTOR 6 YR GRAD RPS

$$
\begin{aligned}
& Y_{i}= \beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\beta_{4} X_{i 4} \\
&+\beta_{5} X_{i 5}+\beta_{6} X_{i 6}+\beta_{7} X_{i 7}+e_{i} \\
& i=1, \ldots, 159
\end{aligned}
$$

Figure 5.5 Two C / F and Six \triangle / E Model without Interactions.
G. THE POUR COFACTOR AND THREE GAIN EFFECTS GODEL WITH InTERACTIONS

The next model uses the variables time since college, college rating, year graduated from NPS an length of refresher as cofactors. It includes APC1, college degree and designator as main effects. The model also evaluates the interaction between APC1 and college degree. This covariance model has a coefficient of multiple determination

TABLE IV

BETA COEPPICIENTS

TERM
COVARIABLES
$X(1):$
$\times(2):$

CONSTANT:
MAIN EFFECTS

BETA COEFFICIENTS
.026 Time Since College
3.064 College Rating
3.371

APCl	APC Code
.352	APC0
.149	APC1
-.007	APC2
. .070	APC
. .424	APC4
APC2	
.055	APC0

.054 APC1
-.032 APC2
-. 07
.066
. 026
.072
-.007
-. 095
.068
COLIEGE
.148
.079
$-.166$
.022
-. 099 Social Science
-. 144 Naval Sclence
REFRESHER YES OR NO
.001 Refresher No
YEAR GRADUATED NPS
-. 0751974
$-.151 \quad 1975$
.1051977
-. $048 \quad 1978$
$\begin{array}{ll}.015 & 1979 \\ .134 & 1980\end{array}$
-. 0401981
.0061982
$-.0551983$
$\begin{array}{ll}.011 & 1984 \\ .024 & 1985\end{array}$
of . 4G6 waile the significance of the model i.s.000026. The sigrificant variables were time since coliege (.026). dミC1 (.008). college degree (.027) and aesignator (.004). Table XVI is the ANOVA table from the "aNOVA" program.

TABLE Y VI
 ANOYA TABLE

R-SQUARE $=.47$
SOURCE OF VARIATION
TOTAL
ERROR
MODEL

SERIAL AUTOCORRELATION $=-.004$

BF	SS	MS	F	SIG
158	17.3	.109		
119	9.3	.08		
39	8.1	.21	2.66	.00003
1	.39	.39	5.07	.026
1	.15	.15	1.90	.171
1	.03	.03	.37	.545
1	.07	.07	.87	.355
4	1.13	.28	3.65	.008
6	1.86	.193	2.48	.027
8	1.01	.06	3.02	.004
17		.77	.730	

Cree again the interaction term does not appear to be significant. The particular covariance model is shown in Figure 5.6 .

$$
\begin{aligned}
& Y_{i}= \beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 3}+\beta_{4} X_{i 4}+\beta_{5} X_{i 5} \\
&+\beta_{6} X_{i 6}+\beta_{7} X_{i 7}+\beta_{1} X_{i 8}+\beta_{9} X_{i 1} X_{i 2}+e_{i} \\
& i=1, \ldots, 159
\end{aligned}
$$

Figure 5.64 Cofactor and 3 M/E yodel with Interactions.

Table XVII is a listing of the beta coefficients from the "ANCVA" program. It can be seen tint the variable length of refresher coutriuutes negatively to tue overall performance average. The APC 1 variable performs logically in decreasing order from the o code to the lower APC code of 4 .

TABLE XVII

BETA CORFPICIENTS

TERM
COVARIABLES

CONSTANT:
MAIN EFFECTS
$\mathrm{X}(1)$
$\mathrm{X}(2)$
$\left.\mathrm{X}\left\{\begin{array}{l}3 \\ \mathrm{X} \\ \mathrm{X}\end{array}\right\} \begin{array}{l}\text { (}\end{array}\right\}$

INTERACTIONS
NLMBER (1)

BETA COEFFICIENTS

> | .022 | Time Since College |
| ---: | :--- |
| .076 | College Rating |
| .005 | Year Graduated NPS |
| .035 | Length of Refresher |

APCl APC Code
.798 APCO
.024 APC
$\begin{array}{rr}-.063 & \text { APC3 } \\ -1.021 & \text { APC4 }\end{array}$
COLEGE
DEGREE
Business
.138 Engineering
-. 194 Humanities
.016 Math
-. 246 Social Science
-. 251 Naval Science
DESIGNATOR

0.177	1100
-.041	1110
.217	1120
.117	1310
.117	1320
.082	1400
.056	1610
-.554	3100
.85	1130

APC1 X APC2 INTERACTION

H. STUDY HODEL :THEEE MAIN EPFECTS :FOUR COFACTORS : MO I ATERACTIONS

The interaction between the variables APC1 and college degree was removed and the resulting model is the one
selected as the study model. Once again the four cofactors are time since college, college rating, year graduated from NPS and length of refresher. The main effects are the first academic profile code (APC1), college degree and designator. The model is seen in Figure 5.7.

$$
\begin{aligned}
& Y_{i}= \beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 3}+\beta_{4} X_{i 4}+\beta_{5} X_{i 5} \\
&+\beta_{6} x_{i 6}+\beta_{7} X_{i 7}+e_{i} \\
& i=1, \ldots, 159
\end{aligned}
$$

Figure 5.74 Cofactor and 3 M/E yodel without Interactions.

Table XVIII is the ANOVA table from the "ANOVA" program. The coefficient of multiple determination is - 408 and tic model has an extremely high significance of . 00000007 . This model shows the significance of time since college (.015). APC 1 (.00002) , college degree (.032) and designator (.034) to all be important factors in explaining the variability in fourth quarter gur's of students in the of curriculum.

Table XIX is a listing of the beta coefficients from the "ANOVA" program. The cofactors time since college, college rating and year graduated from $N P S$ have a positive contriblion to the fourth quarter gur while length of refresher contributes negatively. APC 1 behaves in a very logical fashion. The better one's college períormance reflects a more positive contribution to the dependent variable fourth quarter ger). This same variable contributes in a negative manner as the college pr decreases to the lower two levels. The college majors of business, engineering, math and operations analysis all have a positive beta coefficient while the social science, humanities and naval science majors have

TABLE XVIII

AHOVA TABLE

R -SQUARE $=.41$	SERIAL AUTOCORREUATION $=.057$				
SOURCE OF VARIATION	DF	SS	MS	F	SIG
TOTAL	158	17.3	. 110		
ERROR	136	10.3	. 08		
MODEL	22	7.1	. 32	4.25	. 00000007
Xl TIME SINCE COLIEGE X2 COLLEGE RATING X3 YR GRAD NPS	1 1 1	.46 .20 .02 .08	.46 .20 .02 .08	6.13 2.71 .30 1.09	.015 .102 .583 .298
X4 LENGTH OF REFRESHER $\text { FACTOR } 1 \text { APCl }$	4	2.08	. 08	7.09	. 298
FACIOR 2 COLLEGE DEGREE	6	1.08	. 18	2.39	. 031
FACTOR 3 DESIGNATOR	8	1.79	. 22	2.96	. 004

negative coefficierts. In this model, all designators except for 1100,1110 and 1130 have a positive beta coefficient. Although this model did not have the highest coefficient of multiple determination, it is a straigatforward, significant model.

TABLE IIX
BETA COEPPICIENTS

TERM
COVARIABLES

CONSTANT:
MAIN EFFECTS

BETA COEFFICIENTS
.023 Time since ©ollege
.083 Colleae Rating
.004 Year Graduated NPS
-.037 Length of Refresher
3.265

APCl
.351 APCO
.195 APCI
$.001 \quad$ APC2
$-.433$
COLJEGE
.061
Business

- 138 Engineering
-. 175 Humanities
.033 Math
-. 097 Social Science
-. 101 Naval Science
. 141 Operations Analysis
DESIGNATOR
-. 0911100
-. $045 \quad 1110$
.2181120
.1001310
$\begin{array}{ll}.117 & 1320 \\ .072 & 1400\end{array}$
$.030 \quad 1610$
.1483100
-. 5491130

VI. COBCLDSIONS AND RECOMEENDATIONS

A. CCHCLUSIONS

The study shows some interesting insights into evaluating future performance in regards to the operations Analysis curriculum. It would initially seem quite logical to assume that the longer an individual has been out of college the harder it would ke for him or her to return and succeed in the academic environment. However, this does not appear to be the case as reflected by this stuay. In searching for an explanation, motivation could play a major role. Those students who start a curriculum middle to late in their military service, have most likely decided to make the service a career. They are likely to realize how important successful completion of their chosen subspecialty is to their remaining time in the service and are consequently willing and reddy to make whatever effort is required to accomplish that goal. More correctly, they are out to do the best they can possibly do while earning their degree. This grcuping would also imply that they are most probably of an age to have their families and a maturity to be able to concentrate their efrorts toward a long term goal.

In aimost every model tested, the variable for college academic performance (APC1) was seen to be a significant factor. Surprisingly, the math (APC2) and technical code (APC3) did not prove to be very meaningful in the manner of explaining the variability of student performance. Given a choice it appears to be more logical to select a student based on his performance in his chosen field rather than to strictly choose based on his undergraduate degree.

The negative contribution oí lenyth of refresher probably means those individuals who need it most are in fact getting the extra quarter or two. This is possibly confounded by the ability to get an extra quarter or two "after the fact", in that, early poor performance can "flag" a student and draw attention to him. gith liasion between the curricular officer and the student's detailor, an additional quarter or two can get added to his tour at NPS.

With the possible exception of busizess majors, there are $n c$ surprises in the college degree variable. Those students with college majors of math, engineering, operations analysis and business in fact nave performed as an average better than the humanities and social science majors.

The designator variable was in fact significant to the model and showed the designators 1100,1110 and 1130 to have a negative contribution toward fourth quarter academic performance.

The study population covered only those students who successfully completed the ca curriculum. of course one would want to infer that the insights gained from the study group would apply to the target group of future oA students. This can not be done in the strict predictive sense but the study can suggest that any selection of future oA students be influenced by these results.

The model preferred by the author is discussed in secticn H of Chapter V. This model has an R^{2} value of 41 while another model investigated (section E of Chapter V) attains an R^{2} of .53. The model of section H has a much higher level of significance and is a simpler less complex model.

B. RECOMA EMDATIOHS

A very interesting study to complement this one would be to investigate those Navy students who started but did not complete the OA curriculum during the last ten years. The study group would not be very large but it could possibly provide additional insight into the problem.

Recent interest has been generated to have all NPS students take the Graduate Record Examination (GRE). Currently, this predictor is available for very few individuals in this study. Exactiy when the test will be taken is still to be determined but a study combining academic profile codes and the GRE could prove to be much more successful in developing a predictive model. In this regard, the recommendation that the $A P C^{\prime} s$ and GRE scores be maintained by NPS as a permanent part of the student's transcrift is a necessity for future studies of this type.

Another study of interest would be to determine the validity and usefulness of the newly established rechnical Transition program. This new program will require a few years before the data can be collected studied but adequate records must be maintained in order to evaluate it in the future.

APPENDIX A
 ACRONYMS AND ABBREVIATIONS

APC	Academic Profile Code
APC1	Academic Profile Code lst Digit
APC2	Academic Profile Code 2nd Digit
APC3	Academic Profile Code 3rd Digit
ARE	Academic Record Evaluation
GRE	"Graduate Record Examination
NMPC	Naval Military Personnel Command
NPS	Naval Postgraduate School
OA	Operations Analysis
QPR	Quality Point Rating
r	Pearson's Product Moment Correlation Coefficient
R^{2}	Coefficient of Multiple Determination
TTP	Technical Transition Program

ACADEMIC RECORD EVALUATION
NPS 5040/2 (12-81) NF

- Yelenmingy. Oceanography. Geology

APPENDIX C THE STUDY DATA

```
Column
    l Index
```

$$
2
$$

```
Index
APCl
APC2
APC3
4th QIR QPR
6th QTR QRAD QPR
8th QTR Total GRAD QPR
8th QTR Total QPR
College Rating -- Main Effect
College Degree
3 = Business
6 = Engineering
7 = Humanities
8 = Math
9 = Social Science
10 = Naval Science
\(11=0 A\)
Designator
\(1=110 X\)
\(2=111 \mathrm{X}\)
\(3=112 \mathrm{X}\)
\(4=131 \mathrm{X}\)
\(5=132 \mathrm{X}\)
\(6=140 \mathrm{X}\)
\(7=161 \mathrm{X}\)
\(8=310 \mathrm{X}\)
\(9=113 \mathrm{X}\)
Time since college (in months)
Refresher ( 1 = yes, 2 = no)
College Rating (cofactor)
Year graduated from NPS
A selection value
Length of Refresher (in quarters)
Time since college (main effect)
```

| 1 | 2 | 2 | 2 | 3.07 | 3.15 | 3.25 | 3.20 | 5 | 10 | 1 | 62 | 1 | 4.36 | 74 | 1 | .5 | 3 |
| :--- |
| 2 | 1 | 0 | 2 | 3.43 | 3.21 | 3.25 | 3.40 | 5 | 10 | 2 | 55 | 1 | 4.36 | 74 | 1 | 1 | 2 |
| 3 | 2 | 0 | 2 | 3.29 | 3.22 | 3.26 | 3.33 | 4 | 8 | 6 | 61 | 1 | 3.96 | 74 | 1 | .5 | 3 |
| 4 | 2 | 0 | 2 | 3.43 | 3.24 | 3.32 | 3.45 | 5 | 8 | 4 | 63 | 1 | 4.36 | 74 | 1 | 2 | 3 |
| 5 | 2 | 2 | 3 | 3.11 | 3.03 | 3.06 | 3.03 | 5 | 10 | 8 | 57 | 1 | 4.36 | 74 | 1 | .5 | 2 |
| 6 | 4 | 2 | 4 | 3.11 | 3.08 | 3.26 | 3.24 | 6 | 6 | 5 | 39 | 1 | 4.56 | 74 | 1 | 2 | 2 |
| 7 | 2 | 0 | 1 | 3.04 | 3.17 | 3.22 | 3.15 | 6 | 6 | 2 | 52 | 2 | 4.70 | 74 | 1 | 0 | 2 |
| 8 | 3 | 2 | 3 | 2.63 | 2.83 | 3.08 | 2.98 | 5 | 10 | 8 | 63 | 1 | 4.36 | 74 | 1 | .5 | 3 |
| 9 | 3 | 2 | 3 | 2.85 | 3.19 | 3.30 | 3.22 | 5 | 10 | 2 | 57 | 1 | 4.36 | 75 | 1 | 2 | 2 |
| 10 | 2 | 0 | 3 | 3.17 | 3.08 | 3.13 | 3.22 | 6 | 8 | 2 | 58 | 1 | 4.69 | 75 | 1 | 1 | 2 |
| 11 | 2 | 2 | 3 | 3.16 | 3.21 | 3.35 | 3.29 | 2 | 9 | 5 | 63 | 2 | 2.76 | 75 | 1 | 0 | 3 |
| 12 | 3 | 2 | 4 | 2.99 | 3.18 | 3.27 | 3.16 | 5 | 10 | 8 | 135 | 1 | 4.36 | 75 | 1 | .5 | 6 |
| 13 | 2 | 1 | 2 | 3.07 | 3.08 | 3.17 | 3.16 | 3 | 3 | 3 | 50 | 1 | 3.12 | 75 | 1 | 2 | 2 |
| 14 | 2 | 1 | 3 | 3.09 | 3.03 | 3.13 | 3.18 | 5 | 9 | 2 | 60 | 1 | 4.06 | 75 | 1 | 2 | 2 |
| 15 | 2 | 3 | 4 | 2.97 | 3.06 | 3.13 | 3.07 | 5 | 3 | 4 | 75 | 1 | 4.21 | 75 | 1 | 2 | 3 |
| 16 | 1 | 0 | 3 | 3.89 | 3.83 | 3.78 | 3.80 | 5 | 8 | 8 | 58 | 2 | 4.36 | 75 | 1 | 0 | 2 |
| 17 | 2 | 0 | 3 | 3.31 | 3.36 | 3.39 | 3.37 | 3 | 3 | 4 | 87 | 1 | 3.03 | 75 | 1 | 2 | 4 |
| 18 | 2 | 1 | 2 | 3.02 | 3.00 | 3.16 | 3.20 | 5 | 6 | 2 | 75 | 1 | 4.4 | 75 | 1 | .5 | 3 |
| 19 | 2 | 2 | 2 | 3.35 | 3.28 | 3.28 | 3.35 | 5 | 8 | 4 | 58 | 1 | 4.01 | 75 | 1 | .5 | 2 |
| 20 | 1 | 0 | 3 | 3.32 | 3.33 | 3.50 | 3.48 | 3 | 8 | 2 | 46 | 1 | 3.49 | 75 | 1 | 2 | 2 |
| 21 | 4 | 2 | 3 | 3.02 | 3.04 | 3.08 | 3.06 | 6 | 6 | 4 | 165 | 1 | 4.91 | 76 | 1 | .5 | 6 |
| 22 | 4 | 1 | 0 | 3.50 | 3.41 | 3.40 | 3.40 | 5 | 11 | 4 | 58 | 1 | 4.36 | 76 | 1 | 2 | 2 |
| 23 | 1 | 0 | 0 | 3.59 | 3.47 | 3.44 | 3.53 | 4 | 6 | 4 | 82 | 1 | 3.96 | 76 | 1 | .5 | 3 |
| 24 | 3 | 2 | 3 | 3.08 | 3.28 | 3.36 | 3.36 | 5 | 10 | 4 | 81 | 2 | 4.36 | 76 | 1 | 0 | 3 |
| 25 | 2 | 2 | 2 | 3.76 | 3.76 | 3.77 | 3.77 | 5 | 11 | 2 | 34 | 1 | 4.36 | 76 | 1 | .5 | 1 |
| 26 | 2 | 2 | 3 | 3.49 | 3.49 | 3.55 | 3.57 | 5 | 11 | 2 | 39 | 2 | 4.36 | 76 | 1 | 0 | 2 |
| 27 | 2 | 0 | 1 | 3.58 | 3.67 | 3.64 | 3.62 | 5 | 6 | 5 | 74 | 2 | 4.21 | 76 | 1 | 0 | 3 |
| 28 | 2 | 2 | 3 | 3.61 | 3.08 | 3.41 | 3.43 | 6 | 3 | 4 | 57 | 2 | 4.54 | 77 | 1 | 0 | 2 |
| 29 | 2 | 2 | 3 | 3.45 | 3.42 | 3.51 | 3.52 | 5 | 9 | 4 | 87 | 2 | 4.36 | 77 | 1 | 0 | 4 |
| 30 | 2 | 2 | 1 | 3.79 | 3.72 | 3.74 | 3.79 | 5 | 6 | 5 | 51 | 2 | 4.36 | 77 | 1 | 0 | 2 |
| 31 | 2 | 2 | 3 | 3.34 | 3.20 | 3.07 | 3.21 | 5 | 3 | 2 | 58 | 2 | 4.36 | 77 | 1 | 0 | 2 |
| 32 | 1 | 1 | 1 | 3.67 | 3.52 | 3.60 | 3.63 | 5 | 8 | 5 | 75 | 2 | 4.36 | 77 | 1 | 0 | 3 |
| 33 | 3 | 2 | 1 | 3.21 | 3.05 | 3.25 | 3.17 | 6 | 6 | 4 | 47 | 2 | 4.57 | 77 | 1 | 0 | 2 |

34	3	32	3.22	3.14	3.2	. 3	5	10	4	82	14.36	77	2	
35	0	35	3.43	3.40	3.4	3.41				23	23.29	78	0	
36	2	12	60	3.6	3.66	3.6		8	2	111	14.36	78	. 5	
37	3	34	. 97	. 98	98	. 99		3	4	85	14.69	79		
38	2	34	3.91	. 85	3.93	3.89		8	3	75	23.94	79		
39	2	21	2.93	3.21	3.32	3.19			2	46	23.15	79	0	
	3	24	3.45	3.41	3.48	3.41		11	4	63	14.36	79		
	2	12	66	3.71	3.69	. 68		10	2	12	. 36	79		
	2	23	2.94	3.24	3.27	. 23	5	6	5	52	24.1	79		
43	2	2.3	53	. 49	3.5	. 5		11	4	58	24.3	79	0	
	3	21	3.32	3.34	3.40	3.40		6	4	12	24.4	79	0	
	3		3.03	3.21	3.33	3.21		9	4	12	. 3	79		
	3	34	2.78	2.95	3.04	. 0		11	2	46	14.36	79		
	2	34	37	3.39	3.3	. 36		8	4	70	4.1	79	2	
48	3	2	. 37	3.23	3.31	. 36		8	8	14	4.5	79	. 5	
49	2	23	36	. 5	3.60	. 48		8	3	99	4.36	79	0	
5	2	23	3.30	3.49	3.5	3.48		11	5	87	4.36	79		
51	2	33	3.58	3.68	3.71	3.65	6	6	2	97	14.73	80		
52	3	23	. 69	. 58	3.56	. 5		8	4	10	4.3	80		
53	0	12	. 85	3.83	3.85	3.84	5	11	5	51	4.3	80		
	3	23	3.73	63	3.68	3.71		8	8	10	4.5	80		
5	2	21	3.64	3.74	3.77	3.73		10	4	87	2	80		
56	1	10	3.77	3.80	3.8	. 85	6	6	8		24.69	80		
	2	13	12	. 31	. 30	. 1		8	2	59	4.5	80		
58		23	. 42	3.44	3.57	3.52		6	8	88	4.3	80		
59		04	3.76	3.77	3.77	3.7		8	8	83	22.7	80		
60		25	3.73	3.82	3.83	3.81		9	8	59	13.10	81		
61	3	22	3.1	3.14	3.32	. 25		11	2	51	24.3			
2	2	11	84	3.82	3.85	. 86		6	8	111	24.8	81		
63	3	3	3.48	3.59	3.5	3.5		3	4	124	13.1	81	2	
64	2	23	3.15	3.39	3.40	3.27		5	2	46	24.3	81	0	
65		0	. 13	3.43	3.4	3.30		4	8	117	23.70	81	0	
	3	23	. 22	. 25	3.36	. 32		56	2	87	14.4	81	. 5	
67	3	12	3.10	3.23	3.32	3.23		48	7	100	23.90			

8	3	34	3.03	3.11	3.26	3.1	5	11	4	66	14.36	81	2	
		24		3.64	3.71	3.62	5	11	5	58	2	81	0	
	2	24	2.93	3.22	3.25	3.09	5		4	94	14.36	81	. 5	
	0		3.97	3.95	3.94	3.94			3	51	24.36	821		
	3	35	3.12	3.24	3.24	3.18	4	7	4	47	13.52	82	2	
	4		2.43	2.90	3.02	. 77	5	11	2	45	24.36	821		
	3		3.76	3.72	. 73	. 75	56	6	2	109	38	82		
	2	23	3.87	3.84	3.83	3.82	66	6	7	63	2	82	0	
	21		3.83	3.88	. 8	. 87				88	24.88	821		
		03	3.36	3.53	52	3.44	5	8	2	47	2	82	0	
	11	11	3.67	3.69	3.75	3.75	6	6	8	69	14.57	82	. 5	
	11		3.59	3.6	3.72	. 71	6		8	11	24.6	82	0	
	1	2	3.28	3.47	3.49	3.44	48	8	2	47	3	82	. 5	
	20		3.56	3.62	3.64	3.63	5	8	5	64	14.17	82		
	2	34	3.40	3.42	3.42	3.38	6	3	5	123	14.6	82	2	
	10	02	3.27	3.33	3.37	3.36	2	8	5	70	2.3	821	. 5	
	21			3.06	3.1	. 06		8	2	71	13.90	82		
	2	25	3.64	3.61	3.60	3.61	6	8	5	88	14.59	82		
	2	23	3.65	. 5	3.60	. 66	4	8	1	71	13.72	83		
	32	23	3.25	3.40		. 40	5	8	4	58	14.36	83	. 5	
	10	04	3.39	3.33	3.38	3.42	4	11	7	75	23.97	83	0	
	3	31	3.39	3.52	3.52	3.48	6	6	4	70	1	83	2	
	1		3.83	3.82	3.7	. 8	6	7	5	10	14.93	83		
	2		3.15	3.05	3.15	3.20	5	8	2	57	4.0	83		
	1	13		3.56	3.60	3.5	4	9	2	46	13.7	83		
	2	21		3.09	. 2	3.20	5	6	2	45	24.0	83	0	
	1	0	3.75	3.67	3.70	. 73	4	8	5	18	13.5	83	. 5	
	0		3.96	3.96	3.9	. 9	5	6	3	63	24.3	83	0	
	0	0	3.99	3.95	3.90	3.90	5	8	3	63	24.3	831	0	
	1	15	3.46	3.4	3.40	3.44	3	8	5	76	13.	83	2	
	2	2	2.89	3.00	3.15	.08	5	9	2	51	14.3	83	,	
	3	34	2.77	2.94	3.07	3.09	4	8	5	86	13.93	83	2	
	0	3	59	. 6	3.6	3.60	3	9	1	93	13.4	83		
01		3	32	. 32	. 3	.				118				

$\begin{array}{lllllllllllllllll}102 & 2 & 2 & 3 & 3.30 & 3.35 & 3.43 & 3.43 & 6 & 9 & 4 & 147 & 1 & 4.9 & 83 & 1 & .5 \\ 6\end{array}$ $\begin{array}{llllllllllllllll}103 & 3 & 2 & 4 & 3.30 & 3.10 & 3.21 & 3.33 & 5 & 11 & 2 & 51 & 1 & 4.36 & 83 & 1\end{array} \quad .5 \quad 2$ $\begin{array}{lllllllllllllllll}104 & 1 & 3 & 3.97 & 3.97 & 3.96 & 3.97 & 6 & 3 & 8 & 106 & 1 & 4.85 & 83 & 1 & .5 & 4\end{array}$ $\begin{array}{lllllllllllllllllllll}105 & 2 & 1 & 3 & 3.70 & 3.62 & 3.67 & 3.72 & 5 & 8 & 2 & 142 & 1 & 4.36 & 83 & 1 & .5 & 6\end{array}$ $\begin{array}{llllllllllllllll}106 & 2 & 1 & 3 & 3.51 & 3.46 & 3.53 & 3.56 & 5 & 11 & 4 & 63 & 2 & 4.36 & 83 & 1\end{array} 0$ $\begin{array}{lllllllllllllll}107 & 1 & 4 & 2.62 & 2.86 & 3.13 & 3.09 & 6 & 9 & 9 & 99 & 1 & 4.63 & 83 & 1\end{array} 2$ $\begin{array}{lllllllllllllllll}108 & 2 & 2 & 1 & 3.82 & 3.85 & 3.86 & 3.86 & 6 & 6 & 3 & 135 & 1 & 4.9 & 83 & 1 & .5\end{array} 6$ $\begin{array}{lllllllllllllllll}109 & 2 & 3 & 4 & 3.19 & 3.22 & 3.29 & 3.31 & 3 & 8 & 2 & 63 & 1 & 3.38 & 83 & 1 & 2\end{array} 3$ $\begin{array}{lllllllllllllllll}110 & 0 & 0 & 2 & 3.34 & 3.18 & 3.33 & 3.39 & 4 & 8 & 1 & 171 & 1 & 3.93 & 83 & 1 & 1\end{array} \quad 6$ $\begin{array}{llllllllllllllll}111 & 3 & 2 & 4 & 3.06 & 3.22 & 3.27 & 3.25 & 3 & 9 & 5 & 63 & 2 & 3.21 & 83 & 1\end{array} 0$ $\begin{array}{lllllllllllllllll}112 & 3 & 3 & 3 & 3.07 & 3.16 & 3.28 & 3.23 & 5 & 6 & 2 & 123 & 1 & 4.36 & 83 & 1 & .5\end{array}$ $\begin{array}{llllllllllllllll}113 & 2 & 2 & 1 & 3.05 & 3.27 & 3.33 & 3.25 & 6 & 8 & 2 & 105 & 2 & 4.86 & 83 & 1\end{array} 0$ $\begin{array}{llllllllllllllllll}114 & 3 & 2 & 3.08 & 3.04 & 3.14 & 3.19 & 5 & 6 & 2 & 135 & 1 & 4.36 & 83 & 1 & .5 & 6\end{array}$ $\begin{array}{llllllllllllllll}115 & 2 & 1 & 2 & 3.82 & 3.77 & 3.74 & 3.77 & 5 & 11 & 3 & 63 & 1 & 4.36 & 83 & 1\end{array}$ $\begin{array}{llllllllllllllll}116 & 2 & 2 & 4 & 3.41 & 3.39 & 3.45 & 3.49 & 5 & 6 & 2 & 45 & 2 & 4.03 & 83 & 1\end{array} 0$ $\begin{array}{lllllllllllllllll}117 & 3 & 2 & 3 & 3.82 & 3.77 & 3.74 & 3.79 & 3 & 8 & 5 & 130 & 2 & 3.13 & 84 & 1 & 0 \\ 5\end{array}$ $\begin{array}{llllllllllllllll}118 & 2 & 2 & 2 & 2.95 & 3.15 & 3.20 & 3.13 & 5 & 8 & 2 & 45 & 2 & 4.36 & 84 & 1\end{array} 0$ $\begin{array}{llllllllllllllll}119 & 2 & 2 & 3.34 & 3.39 & 3.46 & 3.50 & 5 & 6 & 2 & 45 & 2 & 4.36 & 84 & 1 & 0\end{array} 2$ $\begin{array}{lllllllllllllllll}120 & 2 & 0 & 3 & 3.44 & 3.45 & 3.45 & 3.47 & 5 & 8 & 4 & 57 & 1 & 4.36 & 84 & 1 & .5\end{array} 2$ $\left.\begin{array}{llllllllllllllll}121 & 2 & 2 & 4 & 3.32 & 3.43 & 3.47 & 3.46 & 6 & 9 & 2 & 45 & 1 & 4.81 & 84 & 1\end{array}\right) .5 \quad 2$ $\begin{array}{llllllllllllllll}122 & 2 & 3 & 5 & 3.11 & 3.18 & 3.23 & 3.20 & 5 & 7 & 4 & 70 & 1 & 4.14 & 84 & 1\end{array} \quad 2 \quad 3$ $\begin{array}{llllllllllllllll}123 & 2 & 3 & 2 & 3.07 & 3.13 & 3.15 & 3.13 & 6 & 3 & 4 & 59 & 1 & 4.69 & 84 & 1\end{array} \quad 2 \quad 2$ $\begin{array}{llllllllllllllll}124 & 3 & 3 & 4 & 2.96 & 3.02 & 3.11 & 3.09 & 3 & 8 & 4 & 95 & 1 & 3.06 & 84 & 1\end{array} 2$ $\begin{array}{llllllllllllllll}125 & 1 & 4 & 3.47 & 3.53 & 3.54 & 3.54 & 5 & 3 & 4 & 58 & 1 & 4.12 & 84 & 1 & .5\end{array} 2$ $\begin{array}{llllllllllllllll}126 & 2 & 2 & 3 & 3.17 & 3.25 & 3.31 & 3.32 & 6 & 8 & 2 & 47 & 2 & 4.6 & 84 & 1\end{array} 0$ $\begin{array}{lllllllllllllllll}127 & 1 & 5 & 3.35 & 2.84 & 2.95 & 3.10 & 5 & 9 & 3 & 82 & 2 & 4.14 & 84 & 1 & 0 & 3\end{array}$ $\begin{array}{llllllllllllllll}128 & 2 & 2 & 3 & 3.81 & 3.86 & 3.87 & 3.86 & 6 & 8 & 2 & 47 & 2 & 4.55 & 84 & 1\end{array} 0$ $\begin{array}{lllllllllllllllll}129 & 2 & 3 & 3 & 3.38 & 3.54 & 3.54 & 3.48 & 5 & 8 & 4 & 107 & 1 & 4.11 & 84 & 1 & .5\end{array}$ $\begin{array}{lllllllllllllllll}130 & 3 & 3 & 3 & 3.81 & 3.76 & 3.54 & 3.48 & 5 & 11 & 2 & 118 & 1 & 4.36 & 84 & 1 & .5 \\ 5\end{array}$ $\begin{array}{llllllllllllllll}131 & 2 & 2 & 3 & 3.14 & 3.22 & 3.30 & 3.27 & 4 & 6 & 9 & 112 & 1 & 3.95 & 84 & 1\end{array}$ $\begin{array}{llllllllllllllll}132 & 3 & 2 & 2 & 3.14 & 3.04 & 3.13 & 3.19 & 5 & 6 & 2 & 50 & 2 & 4.36 & 84 & 1\end{array} 0$ $\begin{array}{lllllllllllllllll}133 & 2 & 3 & 5 & 3.00 & 3.08 & 3.12 & 3.12 & 3 & 9 & 5 & 114 & 1 & 3.17 & 84 & 1 & 2\end{array} 5$ $\begin{array}{lllllllllllllllllllll}134 & 3 & 3 & 3 & 3.79 & 3.76 & 3.79 & 3.82 & 5 & 6 & 4 & 164 & 1 & 4.4 & 84 & 1 & 2 & 6\end{array}$ $\begin{array}{lllllllllllllllll}135 & 1 & 0 & 4 & 3.25 & 3.02 & 3.07 & 3.16 & 4 & 8 & 8 & 93 & 1 & 3.9 & 84 & 1 & .5\end{array}$

136	4	3	4	3.15	3.17	3.22	3.22	5	11	4	111	1	4.36	84	1	2
5																
137	3	2	4	3.79	3.62	3.66	3.72	5	6	2	52	2	4.28	84	1	0
138	2	2	1	2.98	2.96	2.99	2.99	4	8	2	52	2	3.9	84	1	0
2																
139	3	2	3	3.27	3.28	3.35	3.34	5	10	4	159	1	4.36	84	1	.5
140	2	1	4	3.42	3.33	3.36	3.39	5	11	5	63	1	4.36	84	1	.5
141	2	1	5	3.29	3.23	3.25	3.28	3	8	3	40	2	3.06	84	1	0
1																
142	2	2	1	3.38	3.40	3.43	3.40	4	8	4	88	2	3.9	84	1	0
143	1	1	3	3.69	3.24	3.67	3.71	3	8	8	100	1	3.5	84	1	.5
144	2	3	4	3.84	3.81	3.83	3.82	5	3	8	151	1	4.4	85	1	1
145	2	2	3	3.35	3.41	3.46	3.45	5	8	2	46	1	4.36	85	1	.5
146	1	0	5	3.82	3.80	3.77	3.78	3	11	2	71	2	3.46	85	1	0
147	2	2	4	3.26	3.30	3.36	3.36	5	11	5	58	1	4.36	85	1	.5
148	2	2	4	2.83	3.01	3.10	3.05	5	9	2	46	1	4.36	85	1	.5
149	0	1	3	3.63	3.69	3.72	3.69	3	8	1	47	2	3.5	85	1	0
150	2	3	4	2.83	3.03	3.16	3.13	6	8	1	107	1	4.74	85	1	.5
151	2	2	3	3.59	3.63	3.63	3.63	6	8	5	58	1	4.71	85	1	.5
152	1	1	2	3.43	3.43	3.48	3.50	5	8	5	58	1	4.36	85	1	.5
153	3	2	3	3.30	3.29	3.38	3.39	5	10	2	178	1	4.36	85	1	.5
154	2	2	4	2.74	2.99	3.10	3.04	6	8	2	71	1	4.69	85	1	.5
155	3	2	4	3.27	3.28	3.33	3.35	5	11	2	58	2	4.36	85	1	0
156	2	2	1	3.85	3.82	3.82	3.85	6	8	8	142	2	4.9	85	1	0
157	2	2	1	3.98	3.93	3.92	3.93	5	6	5	64	1	4.06	85	1	.5
158	1	0	5	3.83	3.77	3.76	3.79	3	8	5	59	1	3.46	85	1	.5
159	3	2	1	3.46	3.48	3.55	3.56	5	6	4	94	1	4.36	85	1	.5
1																

APPENDIX D

ADDITIOAAL PRELIMINARY ANALISIS

Figure D. 1 6th Qtr Grad QPR vS APC1.

ALL

 (manes)

CATEG. NO.PTS \%-PTS Y-MEAN Y-DVN $.25 \quad .50 \quad .75$

ALL CODFS
159
8
28
79
39
5
$\begin{array}{ll}1 . & 3.4409 \\ 0.050314 & 3.7163 \\ 0.1761 & 3.5782 \\ 0.49686 & 3.4201 \\ 0.24528 & 3.3667 \\ 0.031447 & 3.138\end{array}$
0.2634
0.21592
0.22533
0.25442
0.22948
0.2132
3.22
3.41
3.44
3.2
3.19
3.06
3.41
3.69
3.56
3.39
3.33

41
69
56
39
33
3.65
3.9
3.77
3.63
3.48
3.24

Figure D. 3 8th Qtr Total QPR vs APC1.

CATEG. NO.PTS \%-PTS Y-MEAN Y-DVN . 25 . 50 . 75
$\begin{array}{crllllll}\text { ALL CODES } & 159 & 1 & 3.398 & 0.2883 & 3.18 & 3.39 & 3.63 \\ 0 & 24 & 0.15094 & 3.4742 & 0.27154 & 3.22 & 3.43 & 3.67 \\ 1 & 29 & 0.18239 & 3.49 & 0.28439 & 3.24 & 3.52 & 3.71 \\ 2 & 76 & 0.47799 & 3.3551 & 0.27236 & 3.15 & 3.29 & 3.53 \\ 3 & 30 & 0.18868 & 3.3567 & 0.31022 & 3.11 & 3.24 & 3.67\end{array}$

Figure D. 4 6th Qtr Grad QPR vs APC2.

CATEG .	NO.PTS	$\%-P T S$	Y-MEAN	Y-DVN	25	50	. 75
AIJ CODES	159	1	3.4503	0.2524	3.26	3.41	3.66
0	24	0.15094	3.4975	0.2384	3.32	3.44	3.7
1	29	0.18239	3.5445	0.25465	3.32	3.6	3.74
2	76	0.47799	3.4195	0.23794	3.26	3.38	3.56
3	30	0.18868	3.3993	0.26589	3.16	3.29	3.57

Figure D. 5 8th Qtr Grad QPR vs APC2.

CATEG.
NO.PTS \quad-PTS
Y-MEAN Y-DVN
ALJ CODES
159
24
29
76
30
1.15094
0.158239
0.187999
0.18868
3.4409
3.5179
3.5462
3.4017
3.3767
0.2634
0.22493
0.26059
0.2557
0.26924
3.22
3.36
3.28
3.21
3.13
3.41
3.45
3.63
3.36
3.31
3.65
3.73
3.75
3.56
3.51

Figure D. 6 8th Qtr Total QPR vs APC2.

Figure D. 7 6th Qtr Grad QPR vs APC3.

CATEG. 1	H.PTS	$10 / 0-P T S$	Y-MEAN	1	$Y-D V N$	1	.25	1	.50	1.75
ALL		159	1	3.4503	0.2524	3.26	3.41	3.66		
	4	0.025157	3.6575	0.24108	3.4	3.44	3.81			
	19	0.1195	3.5374	0.25819	3.32	3.55	3.77			
1	25	0.15723	3.4036	0.24289	3.25	3.32	3.66			
2	59	0.37107	3.4737	0.2243	3.31	3.46	3.63			
3	39	0.24528	3.3715	0.25334	3.15	3.33	3.54			
4	13	0.081761	3.4669	0.28361	3.24	3.41	3.76			

Figure D. 8 8th Qtr Grad QPR vs APC3.

| CAIEG. | M.PTS | $10 / 0-F T S$ | Y-MEN | Y-OVN | .25 | .50 | 1.75 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ALL | | 159 | 1 | 3.4409 | 0.2634 | 3.22 | 3.41 | 3.65 |
| | 0 | 4 | 0.025157 | 3.685 | 0.22809 | 3.4 | 3.53 | 3.85 |
| 1 | 19 | 0.1195 | 3.5163 | 0.28521 | 3.2 | 3.56 | 3.79 | |
| 2 | 25 | 0.15723 | 3.4232 | 0.2404 | 3.2 | 3.36 | 3.64 | |
| | 3 | 53 | 0.37107 | 3.4615 | 0.23384 | 3.27 | 3.47 | 3.63 |
| | 4 | 39 | 0.24528 | 3.3462 | 0.27195 | 3.09 | 3.33 | 3.51 |
| | 13 | 0.081761 | 3.48 | 0.27211 | 3.2 | 3.44 | 3.78 | |

Figure D. 10 6th Qtr Grad QPR vs College Degree.

CATEG.	NO.PTS	\%-PTS	$Y-M E A N$	Y-DVN	. 25	50	75
ALL MAJORS	159	1	3.4503	0.2524	3.26	3.41	3.66
BUSINESS	14	0.08805	3.4821	0.29145	3.17	3.41	3. 72
ENGRG	31	0.19497	3.5003	0.25036	3.26	3.46	3.74
HUMANITIES	4	0.025157	3.3775	0.23826	3.23	3.24	3.25
MATH	59	0.37107	3. 47	$0.24+44$	3.3	3.45	3.67
SOCIAL SCI	16	0.10063	3.3656	0.26014	3.13	3.33	3.51
NAVAL SCI	12	0.075472	3.3358	0.2006	3.25	3.27	
OA	23	0.14465	3.4439	0.22145	3.31	3.4	3.55

Figure D. 11 8th Qtr Grad QPB vs College Degree.

CATEG.	NO.PTS	\%-PTS	Y-MEAN	Y-DVN	. 25	. 50	75
ALL MAJORS	159	1	3.4409	0.2634	3.22	3.41	3.65
BUSINESS	14	0.08805	3.4786	0.28891	3.21	3.41	3.
ENGRG	31	0.19497	3.4984	0.25995	3.23	3.5	3.75
HUMANITIES	4	0.025157	3.32	0.23592	3.09	3.18	3.2
MATH	59	0.37107	3.4647	0.25204	3.27	3.44	3.59
SOCIAL SCI	16	0.10063	3.3506	0.25418		3.25	3.52
NAVAL SCI	12	0.075472	3.3167	0.21615	16	3.31	39
OA	23	0.14465	3.4278	0.2468	3.31	3.41	3.57

Figure D. 128 th Qtr Total QPR vs College Degree.

Figure D. 13 6th Qtr Grad QPR vs Designator.

CATEG.	NO. PTS	\%-PTS	Y-MEAN	Y - DVN	. 25	50	75
$\begin{array}{r} \text { ALL } D E S \\ 1100 \\ 11120 \\ 1310 \\ 1320 \\ 1400 \\ 1610 \\ 3100 \\ 1130 \end{array}$					3.26	3.41	3.66
	6	0.037736		0.21067	3.25	3.33	3.63
	50	0.31447	3.3616	0.2255	3.15	3.32	3.52
	10	0.062893	3.629	0.35294	3.25	3.74	3.93
	41	0.25786	3.4041		2. 27	3.4	3.52
	26	0.16352	3.5223	0.22378	3.36	3.53	3.71
	$\frac{1}{2}$	0.0062893	3.26	0	3.26	3.26	3.26
	3	0.018868	3.51	0.2276	3.32	3.38	3.33
	20	0.12579	3.608	0.28889	3.31		3.83
	2	0.012579	3.215	0.085	3.13	3.13	

Figure D. 14 8th Qtr Grad QPR ∇S Designator.

CATEG.	NO.PTS	\%-PTS	Y-MEAN	Y-DVN	25	50	. 75
ALE QTRS	159		3.398	0.2883	3.18	3.39	3.63
0 O	63	0.39623	3.4702	0.28855	3.23	3. 44	3.74
0.5	58	$\begin{aligned} & 0.36478 \\ & 0.050314 \end{aligned}$	3.3833 3.4638	0.27511	3.18	3.33	3.62
$\frac{1}{2}$	${ }^{8}$	0.050314	3.4638 3.2573	0.35181	3.08	3.21	3.81
2	30	-. 8868	3.2573	0.23245	3.08	3.19	3.41

CATEG.	NO.PTS	\%-PTS	Y-MEAN	$Y-D V N$. 25	50	75
ALL QTRS	159		3.4503	0.2524	3.26	311	
0	63	0.39623	3. 5168	0.25817	3.32	3. 512	3.66
0.5	58	0.36478	3.4353	0.23415	3.26	3. 43	3.53
$\frac{1}{2}$	308	0.050314	3.5075 3.324	0.31565	3.15	3.33	3.83

Figure D. 17 8th Qtr Grad QPR vs Length of Refresher.

CATEG.	NO. PTS	\%-PTS	Y-MEAN	V-DVN	. 25	50	.75
ALI QTRS	159	1	3.4409	0.2634	3.22	3.41	3.65
	63	0.39623		0.27381	3.25	3.43	3.77
0.5	58	0.36478	3. 4286	0.25112	3.21	3.4	3.63
1	8	0.050314	3.55	0.27704	3. 22	3.4	3.31
2	30	0.18868	3.3103	0.19982	3.16	3.24	3.44

Figure D. 18 8th Qtr Total QPR vs Length of Refresher.

CATEG.	NO.PTS	\%-PTS	Y-MEAN	Y-DVN	. 25	50	7
ALL	159	1	3.398	0.2883	3.18	3.39	
2.0-2.99	3	0.018868	3.4367	0.24074	3.21	3.33	3. 77
3.0-3.50	19	0.1195	3. +163	0.26252	3.22	3.36	3.69
3.5-3.99	18	0.11321	3.3239	0.24468	3.18	3.24	3.47
4.0-4.40	85	0.53459	3.3814	0.27817	3.17	3. 39	3.53
4.41-4.99	34	0.21384	3.465	0.33393	3.13	3.43	3.82

Figure D. 19 . 6th Qtr Grad QPR vs College Rating.

CATEG.	NO.PTS	3-PTS	Y-MEAN	Y-DVN	25	50	75
ALI	159		3.4503	0.2524		3.41	
2.0-2.99	3	0.018868	3.4967	0.19345	3.35	3.37	3.77
3.0-3.5	19	0.1195	3.4695	0.23123	3.27	3.41	3.72
3.5-3.99	18	0.11321	3.3728	0.23137	3.24	3.33	3.49
4.0-4.4	85	0.53459	3.4319	0.24036	3.25	3.4	$3: 6$
4.41-4.99	34	0.21384	3.5224	0.28697	3.26	3.47	3.82

Eigure D. 20 8th Qtr Grad QPR vs College Bating.

CATEG.	NO. PTS	\%-PTS	Y-MEAN	Y-DVN	. 25	50	75
ALI	159	1					
2.0-2.99	3	0.018868	3.4733	0.21171	3.29	3.36	3.65
$3 \cdot 0-3.5$	19	0.1195	3.4621	0.24126	3.25	3.44	3.
3.5-3.99	18	0.11321	3.3683	0.23448	3.18	3.33	3.5
.0-4.4	85	0.53459	3.4228	0.25242	3.21	3.4	3.5
4.41-4.99	34	0.21384	3.5097	0.30149	3.22	3.46	3.82

Figure D. 21 8th Qtr Total QPR vs College Rating.

CATEG.	NO.PTS	\%-PTS	Y-MEAN	Y-DVN	. 25	50	. 75
ALL	159	1	3.398	0.2883	3.18	3.39	3.63
1974	- 8	0.050314	3.1163	0.12727	3.03	3.15	3.21
1975	12	0.075472	3.2192	0.21589	3.06	3.18	3.28
1976	7	0.044025	3.4457	0.22199	3.28	3.47	3.67
1977	7	0.044025	3.3043	0.23469	3.08	3.2	3.52
1978	2	0.012579	3.515	0.115	3.4	3. 4	3.63
1979	14	0.08805	3.4336	0.2669	3.23	3.39	3.57
-980	9	0.056604	3.6422	0.16423	3.58	3.68	3.77
1981	11	0.069182	3.4218	0.24822	3.22	3.39	3.64
1982	15	0.09434	3.5267	0.2876	3.33	3.61	3.72
1983	31	0.19497	3.4106	0.31246	3.16	3.39	3.64
1984	27	0.16981	3.3204	0.26655	3.13	3.25	3.53
1985	16	0.10063	3.4794	0.30202	3.28	3.43	3.77

Figure D. 22 6th Qtr Grad QPR vs Year Graduated NPS.

CATEG.	NO. PTS	\%-2TS	Y-MEAN	$\mathrm{Y}-\mathrm{DVN}$. 25	50	. 75
AIL	159		3.4503	0.2524	3.26	3.41	3.66
1974	- 8	0.050314	3.2125	0.086422	3.08	3.25	3.26
1975	12	0.075472	3.2992	0.18382	3.13	3.27	3.35
1976	7	0.044025	3.4629	0.20527	3.36	3.44	3.64
1977	7	0.044025	3.4071	0.21258	3.25	3. 1	3. 6
1979	14	0.08805	3. 4843	0.24625	3.32	3. 4	3.66
1980	19	0.056604	3.6722	0.16396	3.57	3.71	
981	11	0.069182	3.48	0.2129	3.32	3.4	$3:$
1982	15	$0.09+34$	3.554	0.26439	3.37	3.6	3.75
1983	31	0.19497	3.4661	0.25627	3.27	3.43	3.67
1984	27	0.15981	3.3667	0.24291	3.15	3.35	3.54
1985	16	0.10063	3.523	0.26076	3.33	3.48	3.76

CATEG.	NO. PTS	\%-PTS	V-MEAN	Y-DVN	. 25	50	75
ALL	159	1	3.4409	0.2634	3.22	3.41	3.65
1974	8	0.050314	3.2225		3.03	3.2	3.33
1975	12	0.075472	3.2917	0.18672	3.16	3.22	3.35
1976	7		3.4729	0.21083	3.36	3.53	3.62
1977	7	0.044025	$3 \cdot 4371$	0.20967	3.21	3.43	3.63
1978	2	0.012579	3.525	0.115	$3 \cdot 4 \frac{1}{3}$	3.41	3.64
1979	14	0.08805	3.4464	0.25903	3.23	3.4	3.56
1980	9	0.056604	3.6478	0.19303	3.57	3.71	3.77
1981	115	0.069182	3.4045	0.24585	3.23	3.3	3.62
1982	15	0.09434	3.514	0.31603	3.36	3.61	3.75
1983	31	0.19497	$3 \cdot 4 \geqslant 35$	0.26266	3.25	3.43	3.72
1984	27	0.16981	3.3763	0.241	$3 \cdot 16$	3.34	3.5
1985	16	0.10063	3.52	0.27729	3.35	3.5	3.78

CATEG.	NO.PTS	${ }^{\text {\% -PTS }}$	Y-MEAN	$Y-D V N$. 25	. 50	75
ALJ	159		3.4503	0.2524	3.26	3.41	3.66
0-36	2	0.012579	3.59	0.18	3.41	3.41	3.77
37-60	58	0.36478	3.3897	0.23747	3.21	3.33	3.53
61-84	38	0.23899	3.4558	0.26435	3.26	3.37	3.64
85-108	27	0.16981	3.5037	0.2609	32	3.54	3.68
109-132	19	0.1195	3.51	0.21369	3.31	3.54	3.72
133-185	15	0.09434	3.48	0.26092	3.27	3.38	3.79

CATEG.	NO.PTS	\%-PTS	Y Y-MEAN	Y-DVN	.25	.50	.75	
-	159	1	3.4409	0.2634	3.22	3.41	3.65	
ALJ	2	0.012579	3.59	0.18	3.41	3.41	3.77	
$0-36$	38	0.36478	3.3798	0.25011	3.19	3.35	3.54	
$37-60$	27	0.23899	3.4579	0.2712	3.25	3.41	3.66	
$61-84$	19	0.11951	3.4781	0.27162	3.23	3.48	3.71	
$85-108$	3.4884	0.23293	3.27	3.48	3.71			
$109-132$	$133-185$	15	0.09434	3.4867	0.27538	3.19	3.39	3.82

CATEG.	NO.PTS	\%-PTS	Y-MEAN	Y-DVN	25	50	. 75
ALJ	159	1	3.398	0.2883	3.18	3.39	3.63
0-36	2	0.012579	3.58	0.18	3.4	3.4	3.76
37-60	58	0.36478	3.3324	0.26608	3.09	3.28	3.49
61-84	38	0.23899	3.4039	0.30993	3.18	3.33	3.67
85-108	27	0.16981	3.4356	0.30548	3.23	3.44	3.67
109-132	19	0.1195	3.4932	0.24151	3.22	3.58	3.72
133-185	15	0.09434	3.424	0.28621	3.18	3.29	3.76

Pigure D. 27 8th Qtr Total QPR vs Time Since College.

APPENDIX E
Wel come to the Anova package.
This package was developed by Prof. Russell Richards at NPS. The latest revision occurred on May 21, 1985. Please provide your camments to Prof. Richards in Root 271.

Type DESCRIBE for basic documentation. Other instructions are obtained by typing:

EXTRACTHOW (explains the use of the function extract) GLOBAL (lists the global variables in the workspace) SYNTAX (shows the syntax for use of several functions)

In addition, the function called, AOVUIY, provides a menu of options which should be somewhat self-explanatory.

This package is still under development.
To use the general linear model package for analysis of variance, you must first enter your data in the form required. Your need an NX l array, Y, containing the observed values of the dependent variables, an N X NCOV array, COV. containing the values of the NCOV covariables (NCOV may be 0), and an N X NF array, data containing the subscripts of the NF factors to be considered in the analysis. Note: The columns of data contain subscripts which must be integers $1,2, \ldots, \mathrm{M}$ where M is the number of levels of a factor. You can execute the function called RECODE to rewrite the values in data so that they satisfy this requirement (simply type RECODE). The function named EXTRACT may be useful for creating these arrays if the data can be extracted from a larger array which contains the necessary data. Type EXTRACTHON for info on the use of extract. If you want to enter the data at the
terminal, you can use the function called INPUT.
After the necessary data are entered into the workspace, type RUN O to begin the analysis (the argument O indicates the initial run with the given data; for subsequent runs using the same data, enter RUN 1). For the first run with a given set of data you will be prompted to enter various information needed by the program. This information includes names for the factors, covariables, and for the job. It also asks if you want to transform the data. If so, the original values of the dependent variable are stored in the array OLDY and a new Y array is created.

With the initialization completed, you will be asked to enter the interactions desired to be included in the analysis (if any). You should enter the interactions by typing a vector containing the numbers of the factors which comprise the interactions. For example, if you want to include interactions between factors 1 and 2; factors 1 and 3; and factors 1, 2, and 3 you should enter the vector 1213123.

The program then performs the following tasks:

1. A matrix D having N rows and a number of columns which depends the number of levels of each of the NF factors is generated. This is the portion of the design matrix corresponding to the main effects. It contains only the values 0,2 , and -1 . The main effects are automatically normalized so that the main effects sum to 0. A bookkeeping array, DF, of size NF X 2 is also generated. The elements of the ith row of BF indicate which cols of D correspond to the i th factor.
2. An array, $D D$ containing N rows is generated. The number of
cols of DD depends on the number of interactions and the number of levels of each interaction. DD is that portion of the overall design matrix which corresponds to the interaction terms. Like D, DD contains only the values 0,1 , and -1 . A scalar, NI, indicating the number of interactions is created, and a bookkeeping array, Bl of size NI X 2 is generated. It indicates which cols of DD correspond to which interactǐons.
3. The overall design matrix X, is generated by catenating COV, D, and $D D$.
4. The design matrix is checked to see if it is nonsingular. If not nonsingular, the rank is determined and a set of cols that can be eliminated is indicated. If the design matrix can be made nonsingular by elimination of one or more cols from the interaction set, that is done autamatically. If not, program execution terminates.
5. The analysis of variance is performed on the model, $Y=$ XBETA. Output consists of the R-squared statistic, the ANOVA table with the covariable effects. The main effects and the interaction effects all indicated. For each effect, the degrees of freedom, the sum of squares, the mean square, and an F ratio are presented. The error and total sums of squares and degrees of freedom are also given. Finally, summary statistics for each of the covariables and for the dependent variable for each level of each of the main effects are provided. This information consists of the observation counts. The mean, the variance, and the standard deviation. The summary statistics are given for the original data, not the transformed data.
6. Available at the conclusion of the run is a GLOBAL vector called

BETA which contains the estimates of the parameters included in the full model.
7. After the analysis of variance is performed, various utility functions can be performed on the output by executing the function, AOVUTY. That function presents a menu of your choices. The function called EXTRACT can be used to create the input arrays required by the ANOVA package. It should be used when you already have an array from which all of the required data can be extracted. The syntax of the function is:

EXTRACT DATA

Where data is a two-dimensional array.
The EXTRACT function will prompt the user for the information it requires. The user must know which columns of data correspond to the data that he wants to extract.

One of the questions asked is the colurn of the selection variable. It is assumed that the user wants to select only specific rows of data corresponding to values of a selection variable. For example, suppose the third column of data contains 1 or 2 with 1 representing males and 2 females. If the analysis is to be performed on males only we select those observations with a 1 in column 3 .

The values of the variables in the columns that are used to refer to factors must be integers 1, 2, 3, ... etc. that will be used by this package as subscripts (factor level indicators).

After using EXTRACT to create the input data arrays, the user can then perform the analysis of variance by typing RUN O.

The syntax of the major functions in the ANOVA package are: EXTRACT ARRAY (Extracts the required data from array)

RECODE	(Operates on the GLOBAL array data)
INPUT	(Creates the arrays needed for run)
RUN K	(K is 0,1 , or 2)

AOVUTY GLOBAL (Consists of various useful utility functions)
This provides a description of the GLOBAL variables used by the ANOVA package. The convention used in naming GLOBALvariables is to always use underscored names for GLOBAL variables.

Y - The vector of values of the dependent variable.
N - The number of observations in Y.
NCOV - The number of covariables to be considered.
COV - The array of size N by NCOV containing the values of the NF .
NF - The number of factors to be considered.
DATA - The array of size N by NF containing the subscripts of the NF factors for each of the N observations.
D - The design matrix containing N rows of the values 0,1 , and -l corresponding to the main effects to be considered in the model. The number of cols of D depends on the number of levels of the $N F$ factors. A factor having K levels will have $K-1$ cols in $D . K-1$ dummy variables will be defined with values 0 or 1. The Kth level is defined so that the sum of the effects is zero.

BG - This is an array of size NF by 2 containing bookkeeping info concerning which factors correspond to which columns of D.
$D D$ - This is an array of N rows containing the portion of the overall design matrix corresponding to the interactions to be considered. It consists entirely of the values 0,1 , and -1 . The number of ∞ ols of $D D$ depends on the factors and interactions considered.

1. Soetrisno, H., Prediction of Academic Performance of the U. S. Navy Officer Students in the Operations Researci/ Systems Analysis Curriculum at the Naval Postgraduate School, M.S. Thesis, Naval Postgraduate School, Monterey California, March 1975.
2. Naval Postgraduate School Technical Report NPS 54-81-001, The Prediction of College Achievement from the Scholastic Aptitude Test and the High School Record, by R. A. Weitzman, February 1981.
3. U. S. Department of the Navy, Office of the Chief of Naval Operations, Notice 1520, 9 May 1984.
4. Naval Postgraduate School Catalog, 1985.
5. Catalogue of Self-Study Courses, Naval Postgraduate School Monterey, California, 1984-1985.
6. Gourman, J., The Gourman Report, pp. 160-178, National Education Standards 1983.
7. Neter, J., Wasserman, W., and Kutmen, M. H., Applied Linear Statistical Models, Richard D. Irwin, Inc., 1985.

Abraham, B. and Ledolter, J., Statistical Methods for Forecasting, John Wiley and Sons Inc., 1983.

Bibby, J. and Toutenberg, H., Prediction and Improved Estimation in Linear Models, John Wiley and Sons Inc., 1977.

Conover, W. J., Practical Nonparametric Statistics, John Wiley and Sons Inc, 1980.

Lindman, H. R., Analysis of Variance in Complex Experimental Designs, w. H. Freeman and Company, 1974.

Searle, S. R., Linear Models, John Wiley and Sons Inc., 1971. Naval Postgraduate School Technical Report NPS 55SE 75061, A Comparison of Prediction of Graduate Student Performance: Is it All worth the Bother?, by J. Senger and R. Elster, June 1975.

Willingham, W. W., Predicting Success in Graduate Education, Science, pp. 273-278, 25 January 1974.

Winer, B. J., Statistical Principles in Experimental Design, McGraw-Hill, $19 \overline{9} 7$.

1. Defense Technical Information Center

Cameron Station

Alexandria, Virginia 22304-6145
2. Library, Code 0142

Naval Postgraduate School
Monterey, California 93943-5100
3. Professor A. R. Washburn l

Code 55ws
Naval Postgraduate School
Monterey, California 93943-5100
4. Professor R. R. Read 1

Code 55Re
Naval Postgraduate School
Monterey, California 93943-5100
5. Professor J. D. Esary
Code 55Ey
Naval Postgraduate School
Monterey, California 93943-5100
6. Ted Calhoun, Director of Admissions I

Code 0145
Naval Postgraduate School
Monterey, California 93943-5100
7. CDR Thomas E. Halwachs, USN

Code 30
Naval Postgraduate School
Monterey, California 93943-5100
8. CDR N. William Blatt, USN 2 8834 Shadowlake Way
Springfield, Virginia 22153

```
: Thesis B5543
Blatt
```


24039

```
c. 1
An analysis of Naval Officer student academic performance in the Operations Analysis curriculum in relationship to academic profile codes and other factors.
```

