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INTRODUCTION

As the water pollution problem has become more acute,

interest has been generated in the extent of pollution provided

by farm animal water in surface runoff. The necessity of farm

animal wastes treatment arises under the radical changes of cattle

industry within the past decade. The water pollution aspect of

animal wastes consists of fish-kill and disease infection. For

Instance, Smith(2) reported that of 27 fish kills in Kansas

during 196^+, fifteen were believed to be caused primarily by runoff

from commercial livestock feedlot operations. According to

Kull(3), 56 diseases might be transmitted from cattle to man.

The control of water pollution by feedlot runoff can not be

accomplished effectively without an appropriate understanding of

the system. It is the Job of the biochemist, chemist, sanitary

engineer, chemical engineer, agricultural engineer, and specialists

in many other fields to work out the approved scheme of handling

this problem.

A study of the water pollution potential of cattle feedlot

runoff has been carried out by Xiner(l). In his report, both

qualitative and quantitative analyses of the samples from a feed-

lot system have been made extensively. However, since an inde-

pendent input variable (rainfall, for example) does not generally

remain at a steady state value and since the runoff system is an

extremely transient one, an unsteady state dynamic model is needed.

Furthermore, the development of a general identification scheme

of the pollution dynamics may also be desired. In this study, the



emphasis will tie on obtaining a mathematical relation which

relates the important dependent variables of the system to the

important independent input variables

.

Water Pollution (12)

All water comes in the form of precipitation. It is evapo-

rated from the ocean, condenses to form clouds, and precipitates

over land. As the water falls in the form of rain or snow or

sleet or hail, it picks up the dust and dirt in the air. Naturally,

the first water that falls picks up the greatest concentration of

contaminants. After a short period of fall, the precipitation is

relatively free of impurities. Whan the water hits the ground,

a portion of it sinks into the ground. The water running across

the surface of the ground has been designated surface water. It

picks up a variety of substances as it flows back to the ocean,

such as microorganisms, organic matter, and minerals.

Surface water collects in areas forming lakes and ponds,

and being rich in nutrients it becomes a medium for the growth of

all types of microorganisms. All forms of microbial life are found

in surface water. The types and numbers of microorganisms are a

direct reflection of the conditions in the water. If the water is

free of minerals, little, if any, biological life will be found.

As more organic matter and minerals find their way into the

surface water, bacteria, algae, and protozoa grow. Fairly pure

water supports a small total number of microorganisms but a

relatively large number of different species. As more contaminants

enter the water, the total number of microorganisms increases,



while the number of species decreases. Water high in inorganics

shows excellent algae growth, while waters polluted with organics

show predominantly bacteria growths.

The bacteria are the keys to the normal biological cycle.

It is the role of the bacteria to convert the soluble organic

matter into bacteria cells and inorganic elements. The inorganic

elements are taken by the algae and converted into algae cells.

The newly formed bacteria and algae become food for the protozoa,

rotifers, and crustaceans. The animal forms and some of the

large algae and bacteria become food for the minnows and tiny

fish. The small fish become food for the large fish which become

food for man. Kan discharges his wastes back into the stream

where the bacteria metabolize the organic matter and complete the

so-called normal biological cycle, as shown in Figure 1.

A high mountain stream shows little biological life because

of the lack of nutrients in the water but a river flowing through

a rich agricultural area will teem with biological life. The

demand for oxygen in a stream is a direct result of the aerobic

metabolism of the microorganisms in the stream. Normally, the

metabolic activity in streams is limited by the lack of nutrients.

The low organic level permits only a few bacteria and fungi to

grow. These in turn limit the growth of the animals in the

stream. The sudden introduction of organic wastes increases the

food concentration and allows the bacteria and fungi to speed up

their rate of growth. The increased growth results in a propor-

tional decrease in oxygen concentration in the stream. If the

organic load is sufficiently high, the entire oxygen resources
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are depleted and the stream becomes anaerobic, with resultant

odors and black colors.

In liquid wastes, dissolved oxygen is the factor that deter-

mines whether the biological changes are brought about by aerobic

or by anaerobic organisms. The former use free oxygen for

oxidation of organic and inorganic matter and produce innocuous

end products, whereas the latter brings about such oxidations

through the reduction of certain inorganic salts such as sulfates,

and the end products are often very obnoxious. Even man is

unable to live close to the polluted river.

If nuisance conditions are to be avoided in a stream, or if

certain types of fish are to be maintained, it is essential that

the dissolved oxygen level in the water does not drop below

certain values.

The water flowed over a feedlot area is heavily polluted,

because the manure is a rich organic material. Immediately

following rainfall, septic conditions, high BOD, high ammonia

concentrations, and high bacterial counts were recorded at the

time of the observed fishkills. For example, Henderson(20)

reported in 1962 that, under appropriate conditions, the BOD

from agricultural runoff makes the sewage and industrial waste

load of the area of Potomac Hiver watershed above Washington, D. C.

seem insignificant.

Chemical Oxygen Demand and Biochemical Oxygen Demand (12, 19)

Adequate dissolved oxygen (abbreviated DO) is necessary for

the life of fish and other aquatic organisms. The DO concentra-



tion may also be associated with corrosivlty of water, photosyn-

thetio activity, and septicity.

In dealing with the pollution potential of a water, a single

quantitative enumeration of the general type of microorganisms

such as bacteria, algae, fungi, protozoa, and rotifers is merely

a qualitative measure of the stream condition. It has a limited

value in itself.

The Biochemical Oxygen Demand Test (BOD Test) measures the

organic strength of sewage water. It is essentially the measure-

ment of the oxygen needed to stabilize the organic matter in

contaminated water, or the amount of oxygen required by bacteria

while stabilizing decomposable organic matter under aerobic

conditions. The 5-day BOD test comes from England and was evolved

from the fact that in England none of the streams had more than

a 5-day flow period, and thus, the 5-day BOD is the maximum oxygen

demand which would be exerted in any stream in England. The B.O.D.

test transported to the United States lost most of its original

significance since many streams have more than 5 days flow to

reach the ocean.

The prime factor in the B.O.D. test is the presence of micro-

organisms in the sewage. The test is essentially a bioassay proce-

dure involving the measurement of oxygen consumed "oy living

organisms (mainly bacteria) while utilizing the organic matter

present in a waste, under conditions as similar as possible to

those that occur in nature. The B.O.D. test is, therefore, widely

used to determine the pollutional strength of domestic and indust-

rial wastes in terms of the oxygen that they will require if



discharged into natural watercourses in which aerobic conditions

exist

.

The Chemical Oxygen Deir.and (C.O.D.) determination is a

measure of the oxygen equivalent to the portion of the organic

natter in a sample that is susceptible to oxidation by a "strong"

chemical oxidant, under acid conditions. During the determination

of C.O.D. , organic matter is converted to carbon dioxide and water

regardless of the biological assimllabllity of the substances.

It is, therefore, a rapidly measureable parameter for stream and

industrial-wastes studies and control of waste treatment plants.

In the absence of a catalyst, however, the method fails to include

some organic compounds (such as acetic acid), which are biologi-

cally available to the stream organisms, while including some

biologic compounds (such as cellulose), which are not a part of

the immediate biochemical load on the oxygen assets of the receiv-

ing stream. As a result, C.O.D. values are greater than the

corresponding B.O.D. values and may be much greater when signifi-

cant amounts of biologically resistant organic matter is present.

Consequently, the chief limitations of the C.O.D. test is its

inability to differentiate between biologically oxldizable and

biologically inert organic matter. In addition, it does not

provide any evidence of the rate at which the biologically active

material would be stablized under conditions that exist in nature.

In spite of these shortcomings, however, the C.O.D. test is widely

used as a means of measuring the pollutional strength of waste

water. The reason is that the C.O.D. test has the advantage of

speed of measurement. The determination can be made in about 3



hours rather than the 5 days required for measurement of 3.O.D.

It is, therefore, used as a substitute for the 3.O.D. test in many

instances. C.O.D. data can often "be interpreted In terms of

B.O.D. values after sufficient experience has been accumulated to

establish reliable correlation factors. For example, Kiner(l)

reported that a factor of about 9.5 was observed for feedlot

runoff water.

In this study, accordingly, the concentration of Chemical

Oxygen Demand is used as the measure of pollution strength, and

the basis for system analysis of feedlot runoff.

General Description of the Feedlot System (1)

Two experimental cattle feedlots were built near the Kansas

State university campus. One was surfaced entirely with concrete,

the other had concrete only around the feed bunks. Each lot was

92 by 24 feet (0.5 acre) with a constant slope in the lengthwise

direction of two per cent. Six-inch concrete curbs prevented

entrance of runoff from other areas and restricted runoff to one

outlet point in each lot.

Twelve part-circle Irrigation sprinklers were placed around

the periphery of the lots in six locations to simulate rainfall.

Provisions were made to allow operation of one or more sprinklers

at each location. Nozzles of J- and 7/32- inch diameter vxere

used to provide flexibility of rainfall application rates. The

system produced rainfall Intensities ranging from .h to 2.5

Inches per hour. The sprinklers were mounted inside specially

cut barrels. These barrels were cut to limit sprinkling to the



lots and collect other water for return to the water source.

Twelve rainfall collection cans were distributed in each lot to

measure the amount of rainfall applied.

From the discharge point of each lot, runoff dropped into a

rectangular box which was the approach to an HS-type flow measur-

ing flume. Specially constructed proportional sampler were

located to pass through the fluae discharges and transfer a

sample to a steel barrel for compositing. Figure 2. shows the

layout of the experimental feedlot. The measured samples are

expressed in terms of C.O.E.

The experimental data obtained by Kiner(l) are used as the

source data in this work.
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MATHEMATICAL MODELING OP TEE SYSTEM

Models are, by definition, simplifications of the actual

processes which they represent. For this reason, models must be

neither so simple that the actual' process cannot be represented,

nor so complex that no insight into the significant characteristics

of the system is gained. The study of water pollution due to

surface runoff requires consideration of both quantitative and

qualitative aspects. Each aspect, however, is controlled by a

variety of factors, many of which are hard to evaluate.

The difficulty of describing the feedlot runoff system in a

simple mathematical expression comes from the complexity of the

system itself. However, a gross behavior prediction of the system

can be made by neglecting less important effects and concentrating

upon only the significant features of the system.

Models which may represent the feedlot system have been

suggested by Mlner(l). In his work, however, some simplifications

have been made to overcome the mathematical complexity in regard to

the nonlinear property of the system. The development of modern

computers has made it possible to solve a set of nonlinear differ-

ential equations effectively by either analog simulation or through

the use of digital numerical integration technique (for example,

the Eunge-Kutta method of numerical Integration) . In this work,

the dynamic behavior of the system has been modeled and studied by

taking into account the nonlinear characteristics of the system.

ihallow Basin Model

—

Hydrological Model
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Two types of hydrologic modeling of feedlot runoff system

have been suggested by Kiner(l). The first one is called the

sloping plate model, in which the system is considered as a flat

sloping plate, originally dry and clean, to which water is added

uniformly from the top. This unsteady state model would yield

runoff quantity as a function of rainfall intensity, slope of the

plate, and time. However, this simplest model does not represent

the physical system satisfactorily as reported by Niner(l).

Another type of the model is called the shallow-basin model.

In the second model, the runoff pattern from a feedlot is

approximated by considering the feedlot to be a single shallow

basin. As a natter of fact, a feedlot surface consists of many

small basins formed by the cattle hooves in the soft surface. In

this model, discharge is controlled by flow over an imaginary

single broad-crested weir at the lower end of the lot. Thus no

discharge would take place until the reservoir is filled to the

level of the weir crest. Once the runoff starts, the discharge

increases until it reaches a steady state flow rate, that is, equal

to the rate of rainfall on the lot surface. As reported ~oy Miner,

this model appears to represent reasonally well the hydrology of

the experimental feedlots. In this study, therefore, this model

is employed for representing the hydraulic behavior of the system.

The side-view of the model may be represented as Figure 3 (a).

The flow over a broad-crest weir, according to KlHg(4J , may

be represented by the following expression

0/2
Q = XLH (1)
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Q = discharge from feedlot, cfs

X = weir constant, 2.6 suggested, ft/sec

L = weir length, ft

H = water head over the weir crest, ft

Stirred Tank with Injection I-'odel — !
Jass Transfer Konel

To characterize the mass transfer aspect of the system, three

models have been proposed by Kiner(l), namely, the Stirred Tank

model, the Stirred Tank with Injection model, and the Series

Stirred Tank with Injection model. The simplest model among them

is the Stirred Tank model. In this model the feedlot system is

considered as a single completely stirred tank, with an initial

concentration of COD, C Q . The runoff concentration of COD with

respect to time can thus be represented by the following differ-

ential equation

v ff = -CQ, C = C at t = (2)

where C = concentration of COD

V = tank volume

Q = out flow rate

t = time.

This over-simplified model, which shows a nonotonic decrease of

COD concentration with respect to time, does not fit the experi-

mental data satisfactorily.

A modification of the preceding model is called the Stirred

Tank with Injection model. According to this model, the system
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may be visualized as a single completely mixed tank originally

filled with a solution to which both clear water (rainfall) and

a feed(manure) are added at constant rates. This model recognizes

that not all of the organic matter on the lot surface is soluble

Immediately but assumes that it enters the solution at a constant

rate, W, after the runoff is started. The model is illustrated

in Figure 3(b)

.

Another more complex model is the Series Stirred Tanks with

Injection model. This model considers the feedlot system as a

connection of two stirred tanks in series, the first of which

receives injection. This second tank initially contains no manure

but is partially filled with water. The water in the second tank

represents that portion of rainfall which lands near the outflow

and runs off without having had significant contact with the

manure. Heedless to say, a more complex model would give a better

representation of the real system, however, it introduces addition-

al parameters, which in turn make the analysis of the system's

behavior more difficult. According to the recommendation of

Miner (1), the Stirred Tank with Injection model is chosen to repre-

sent the mass transfer behavior of the system.

The balance of COD based on this model can then be written as

V || = W - CQ , C = C
Q

at t = (3)

where tf = injection rate, lbs./min.

C = chemical oxygen demand(COD), lbs./cu.ft.

V n tank volume, fta

Q = outflow rate, ft 3 /min.



16

The tine Is measured from the onset of the runoff. In Equation (4),

the tank volume V is defined as

V = A(K + 5) CO

3
where, A = area of feedlot, ft

6 = weir height, ft.

H = head over the weir crest, ft.

If the volume change of the water caused by the dissolving

organic matter and suspensions is neglected and, furthermore , the

water loss from feedlot surface by infiltration and evaporation

is ignored, the function of the water head may be represented in

a first-order differential equation, i.e.

I S B AS* Q . H = at t = ( 5)

dt

where B represents rainfall intensity in ft./mir.., and the initial

time is assigned at the point when the runoff starts.

In equations (2), (3), CO. and (5), the initial concentration

C , the injection rate W, and the weir height 6 appear as three
o

parameters of the system which are to be determined. The equations

are nonlinear. They can not be solved analytically. An analog

computer may be employed to solve the equations for a set of given

values C , W-, and 6.

The assumptions made in the foregoing mathematical model can

be summarized as follows:

(1) The system is assumed to be time-invariant for simplici-

ty; therefore 6 can be considered as a constant.



1?

(2) Solid suspensions in solution are neglected, in the

material balance.

(3) The infection rate W is assumed constant throughout the

rainfall period.

(4) Only the mean value of rainfall intensity is considered.

(5) The rough lot surface with pot-holes made by cattle

hooves is taken into account by an assumed weir crest 6.

(6) The slope effect of the feedlot is ignored.

(7) The solution in the tank is assumed to be stirred

completely so that the concentrations are the same both

in the tank and at outflow.

(8) Infiltration and evaporation processes of the system are

neglected.
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ANALOG SIMULATION AKB DETERMINATION OP PARAMETERS

Simulation as a technique for analyzing the behavior of

physical systems has a long history, but only in recent years has

its use become widespread as a tool for problem-solving. This has

come about as part of the rapid development of operations research

and systems analysis and associated advances in electronic

c omput ers

.

The term "computer simulation" means that the differential

equations which represent the dynamic characteristics of the system

components are solved simultaneously to produce time-varying output

voltages which resemble the transient behavior of the real system

(7). In a sense, simulation is nothing more than a solution of a

set of simultaneous differential equations. The analog computer is

now recognized as an important tool in the study of transient

behavior and control. Functions of the analog computer consist of

both linear and nonlinear operations. The linear operations in-

clude summation, integration, and multiplication by a constant.

The nonlinear operations include a function generater, multiplier,

diode etc. Through the combined use of these operations, a high

order linear differential equation or a nonlinear equation can be

solved without difficulty. The approach for analog simulation is

essentially the same for both nonlinear and linear problem.

rho computer simulation method offers the following advantages!

(1) The dynamic response of a system for various values of

process parameters can be obtained with little effort once an

analog circuit has been constructed. The parameters are usually



19

changed, merely by adjusting potentiometers.

(2) The computer can be operated as a component in an actual

physical process.

The computer c. I be oime-scaled so that the response

frc the computer is very fast compared with the response of the

actual system which is being simulated.

The limitation of the use of analog computer to solve a

problem depends on the capacity of the computer and the required

operators in solving the desired equation or equations.

Simulation of the Feedlot System

The four equations which represent the feedlot runoff system

are rewritten here for convenience. They are

Q = XLHV2 (6)

V = A (H + "ft) (7)

A 41 = AE - Q, K = at t = (8)

V H «= W - CQ, C = C at t = (9)

where Q = out-flow rate

6 = weir height

L = weir length

X = a constant

:: = head over weir crest

V = tank volume

A = area of feedlot (cross-section area of tank)

H = rainfall intensity
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C = COD concentration

1/ = injection rate.

These four equations are to be solved simultaneously with the

given initial conditions.

To ottain satisfactory results from an analog computer,

problem variables should be properly scaled. The scaled quantities

are then substituted into the original equations. Let d K / d t

and d C / d t be denoted by H and C respectively, and let

SQ = scale factor for outflow rate, Qj

S3 = scale factor for rainfall, Ej

SH = scale factor for water head, Hj

Si": = scale factor for dH/dt, or H;

3C = scale factor for concentration, C;

SC = scale factor for dC/dt, or C;

SV = scale factor for tank volume, V;

SV
_
= scale factor for 1/V, or V~ .

3y employing these scale factors, Equations (6), (7), (8), and (9)

can be written as,

[Q] = I^Ch]
372

3-./a (10)x " (SH)

[V] = K
2 p [e] + KASV) (11)

^ = iCH]-i||LQ] (12)

til = K
2A C?] "

( SC )(g)(sV-i)
C^c][Q] (13)

[6] = -fS- [1] { H 1 _ [c] [Q] }S7-1 •/ (. ^ 3C)(SV-1 )

J
(1*)
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where -:1= al

K = A
2

K = A6
3

K^ = W

and [ ] denotes the scaled quantities.

An analog computer circuit diagram for the solution of these

four equations is shown in Figure ^, in which four nonlinear

2
operators are employed. The numerical values used are A = 2210 ft,

L = 2^ ft, and X = 2.6 x 60. The graphical analog solutions of

flow rate Q, water head H, and COD concentration C are shown in

Figure 5 for & set of given values of C , >;, and 6. Referring to

Figure 5> the outflow rate Q and x<rater head E increase from zero

to certain steady state values, while the concentration of COD

increases at first then decreases to a steady state value. The

time required for flow rate Q, and water head H to reach the steady

s~ate condition is relatively shorter than that of the concentra-

tion of COD.

The investigation of the effects of changing only one of the

three parameters C , W, and 6 at a time, while keeping the other

two constants can be carried out on an analog computer. The

effects of varying these parameters on the shape of the output for

the same constant input (i.e. rainfall intensity) are illustrated

in Figures 6, 7, and 8, in which a rainfall intensity of 0.?2

in./hr. has been assumed. The following quaMtat _ve tendencies

of COD may be noted with regard to Figures 6,7, d

(1) In Figure 6, the pea;-: concentration increases as C

becomes larger. However, the concentration reaches the same steady
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state condition at about the same time, and there is very little

decrease in the tine of occurrence of the peak concentration as

the value of C becomes larger.

(2) In Figure ?, the peak concentration of COD, the time to

reach the peak concentration, and the steady state concentration

increase as W is increased. The tine to reach the steady state

concentration is not affected by the change of injection rate if.

(3) In Figure 8, the peak concentration decreases a con-

siderable amount as 6 is increased, while the time to reach the

steady state concentration increases as 6 is increased. The tine

of the occurrence of peak concentration seems to increase slightly

for a larger value of 6

.

An interpretation(l) of the initial increase of runoff con-

centration of COD is that it is due to the arrival at the dis-

charge point of water - which has traveled the full length of the

feedlot. Initial runoff is relatively uncontaninated water which

has fallen near the discharge point. Once runoff has been

established, the decrease in COD concentration is due to a decrease

in contact. time between rainfall and the feedlot litter and to a

removal of the soluble portion of the litter.

Determination of Parameters of the Systerr

As mentioned previously, one of the advantages of using an

analog computer in solving differential equations is that the

parameters of a model representing the system under consideration

can be represented by potentiometers, and therefore, the effect

of changing the parameter can be investigated by merely adjusting
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the appropriate pot settings and observing the output curves.

The three parameters contained in the proposed model of the

feedlot system, namely the initial concentration C , the injection

rate W, and the weir height 6 are to be determined. This can be

accomplished by fitting the analog solution to the experimental

data in accord with different rainfall intensity. Twenty sets of

experimental data which corresponding to various situations of

feedlot surface are available in Miner's dissertation(l) . 3y using

the rainfall intensity measured in each experimental run, and the

following numerical values

A = 2210 ft 2

i

X = 156 ftVain

L = 2k ft,

different sets of parameters have been obtained. Simultaneous

determination of the values of C, W, and 6 for a proper fit COD

curve is essentially a matter of trial and error. The qualitative

investigations made by changing parameters as shown in Figures 6,

7, and 8 are thus helpful to obtain adequate fitting.

The rainfall intensities and surface conditions together with

the parameters obtained by data fitting are shown in Table 1. An

examination of these parameters shows that the value of the initial

concentration ranges from 1.2 to 0.2, with most values lying around

0.45, while the value of W ranges from 1.2 to 0.1 and 6 from 0.55

to 0.1.
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Table 1. Parameters determined by fitting the
analog solution of COD to experimental data.

Experimental Lot Rainfall Initial Injection weir
run(a) condition(b) intensity cone. rate height

ln./hr. lbs/ft3 lbs/sin in.

1(8) SK 0.72 1.200 0.300 0.543

1(0) SK 0.S8 0.400 0.600 0.217

2(S) SK 0.38 0.550 1.150 0.543

2(0) SK 0.98 0.375 0.675 0.543

3(3) D 0.3* 0.430 0.195 0.109

3(0) D 0.53 0.520 0.650 0.135

4(s) W 0.1*0 0.900 0.600 0.109

4(0) W 0.50 0.500 0.550 0.272

5(3) SK 0.39 0.500 0.350 0.380

5(0) SK 0.38 0.301 0.250 0.217

6(s) SK 0.36 0.400 0.320 0.136

6(0) SK 0.46 0.350 0.350 0.190

7(3) K 0.33 0.480 0.180 0.244

7(0) P 0.54 0.380 0.430 0.217

8(3) K 0.43 0.575 0.400 0.191

3(U) P 0.59 O.36I 0.390 O.I36

9(s) M 0.63 0.392 0.335 O.I36

9(0) P 0.42 0.201 0.160 0.217

10(3) H 0.58 0.590 0.510 0.109

10 (U) p 0.22 0.285 0.101 0.164
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Table 1. (cont'd.)

notei (a) Miner, J. E. ; dissertation (1), pp. 133 - 142

5 - concreted lot

U - nonconcreted lot

(b) SK - lot surface slightly moist before experiment

began.

D - lot dry before rainfall started.

W - lot saturated with water before experiment

began.

M - manure mounded in the lot one day preceding

experiment

.

P - manure moved to the edges on the lot and

the surface smoothed to provide a flow-way

down the center on the day preceding experi-

ment.
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Stability of Parameters of The Porposed Nonlinear Todel

If the parameters of a mathematical model of a physical system

have values ranging from a positive quantity to a negative quantity

for various inputs, and the mode of variation of these parameters

is erratic, then the parameters may be said to be unstable.

Instability of parameters may indicate that the system may have

been inadequately described by the mathematical model used (21).

The proposed model for the feedlot runoff system has three

parameters, namely C
Q

, W, and 6. These parameters are determined

from fitting analog solutions to the experimental data. The method

of analog solution has been discussed in the preceding section.

The parameter W obtained for various experimental runs is found to

be stable and ranges from 1.2 to 0.1.

Intuitively, the injection rate W may be expected to be a

function of (1) the solubility of the manure, (2) the area of the

manure water contact surface, (3) the water velocity over the

manure area, and ( k) the disturbance caused by the down-fall of

rain water. The last two assumptions suggest that there nay be

some correlation between rainfall intensity and injection rate VI,

since heavier rainfall intensity will increase the velocity over

the manure area and cause much more disturbance. A simple plot of

W versus rainfall inters ity H as shown in Figure 9 reveals the

fact that these two variables do have very approximately , a linear

relationship.

Two types of relationship have been proposed., The first one

considers that the relation between W and rainfall intensity R can

be represented in the expression
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V = K
x

R (19)

where W = Injection rate

H = rainfall intensity

K- = a constant

.

This expression implies the assumption that, if there is no rain-

fall, then no injection would occur.

The second one assumes that the relationship is linear

with an interception, i.e.

W = K
2
H + K_ (20)

where K„ and K« are constants. This expression does not satisfy

the assumption that at zero rainfall intensity given oy W = 0,

although it gives the better fitting of the data. By setting

W = in Equation (20) we obtain,

H
c = ~? .

(Whr.) (21)

It may be interpreted physically, that the rainfall intensity

has to exceed a certain value H to cause injection of organic

matter; or, equivalently, no runoff would occur for a rainfall

intensity less than this value.

The values of X , K , and K are thus obtained for the

following three different cases

.

(1) by considering both concreted and nonconcreted lot

together,

(2) by considering only the concreted lot,

(3) by considering only the nonconcreted lot.
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The best fitting lines based on the conventional least squares

criterion are shown in Figures 9, 10, and 11. For the first case

we obtain

W = 0.91 H (22)

and

'./ = 1.365 E - 0.266 (23)

where the units of tf and E are in lbs./min. and in./hr. respec-

tively. For the second and third cases, we obtain

W = 1.0 H , and (2*j.)

W = 1.44 8 - 0.164 (25)

for the concreted lot, and

V = 0.33 E , and (26)

V? = I.38 E - 0.34 (27)

for the nonconcreted lot. The units of V, and E are the sane as

those in Equations (22) and (23). Further investigation of these

results shows that the organic material of the umconcreted lot

is relatively unsoluble as compared to the concrete lot, due to

the smaller values of K^ and K
2

in the injection equations. This

decreased solubility on the nonsurfaced lot can be attributed to

the effect of the "binding properties" of the soil.

The values of B
6

for the three cases are calculated to be

0.196 (in./hr;), 0.033 (in./hr.), and 0.246 (in./hr.) respectively.

Triey are in reasonable agreement with the observed value (0.06 -

0.6 in./hr.) as reported by Miner (1). Furthermore, a larger

value of H would be expected for the unsurfaced lot due to the
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infiltration processes; the results do reveal this fact.

Considering the physical system which has been described,

the diffusion mechanise should be taken into account. In the case,

however, that the manure surface is not covered completely by

water, or that the water layer on top of the lot surface is very

thin, the mass transfer phenomenon in the feedlot system can be

considered to be caused mainly by the turbulence of flow over

manure. Accordingly, it is reasonable to presume that rainfall

impact is the major factor. This suggested model may be called

the "Rainfall Impact Kodel of Injection Hates".

The values of weir height 6 obtained from data fitting range

from 0.55 to 0.1. It ^ay be expected that the value of 6 should

be some function of the surface condition of the feedlot. Unfor-

tunately, due to the complexity of the system, no adequate scheme

has been found to correlate the parameter to the physical system.

The values of initial concentration of COD are found to be in

the range from 1.2 to 2.0, with most values lying around 0.^5-

Further consideration of Equation (3) shows that the right-

hand side dropped out at steady state conditions. Therefore,

we obtain

W = C Q (23)

for the steady state condition. If the pollution potential of a

system Is to be considered both qualitatively and quantitatively,

the product of COD and outflow rate Q may be regarded as Indicating

the pollution strength more adequately. In this sense, the

injection rate H which equals this product at the steady state
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condition may be considered as the most important characteristic

of the system. The curve of CQ is shown in Figure 12 as an

illustration.

The preceding argument may not be too conclusive. This is

because data of field studies are usually scattered, and fitting

these data to the analog solution by eye has the potential of

introducing further error. However, as compared to the. basic

variability property of the feedlot system, it is not considered a

serious weakness.
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DIKEN3IOKAL ANALYSIS AND SIMULATION; STUDY OP THE SYSTEM

Dimensional analysis is a technique of applying the principle

of similarity to physical systems. The principle states that

"the spatial and temporal configuration of a physical system is

determined by ratio of magnitudes within the system itself and does

not depend upon the size or nature of the units in which these

magnitudes are measured" (14). In this section, the system equa-

tions are rewritten in dimenslonless form to obtain the character-

istic dimensionless groups. These dimenslonless groups can then

be used to obtain a better prediction of the system's behavior.

The fluctuation of rainfall intensity as a function of time

may also be taken into account in simulation studies by using

dimensionless systems equations. The response of the system to

four different time input functions is considered. These four

functions arei

!l) Sinusoidal function,

(2) Superposition of three sinusoidal functions,

(3) Square-wave function, and

(4) Function of random variable

Both digital and analog computers are employed in this study.

" -lonless Fon of The System Equations

Before converting the system equations Into dimensionless

form, a further assumption may be made. The injection equations
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W = ^E (29)

and W = K H + K„. (30)

It is reasonable to postulate that the injection rate VI is

proportional to the size of the feedlot surface. Then the injec-

tion equations can be written in the forms

w = acs (3D

and

A k
2
H - Ai, (32)

where A is the surface area of the feedlot. If the rainfall

intensity in Equations (31) and (32) is expressed in terms of

ft/mln, we obtain

Jc, = -y x 720 ^ 33)

>
2
= '-j- x ?20 (3*)

lc
3
= -^x720.

( 35)

where the values of K,, K. and K- have been given in the preceding

section. The foregoing assumption implies that the values of k-j_,

k
?

and k~ do not change with feedlot surface area.

Substituting of Equations (31) and (32) into Equation (3) 1 we

obtain*

CQ type (I) (36)

(37)

, Ak,K - CQ type (I)

dt - [ A1<
2
H - Ak

3
- CQ type (II)
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Equation (36) or (37) together with Equations (1), (4), and (5)

are then employed for the dimensional analysis of the system.

The following dlmensionless variables may "oe defined

H Q y
T" * q AH '

v = TUT
s s S

(38)
c

H_T O M
s
x C"

where the lower case letters represent the dimensionless vari-

ables. We also define 1

T = a characteristic time of the system

B = average rainfall intensity

C* = a characteristic concentration.

To avoid repetition, only the injection rate equation of type

(II), i.e., Equation (37) is used in the following derivation.

Equations (1), (4), (5), and (37) can be rewritten In terms of

the foregoing dimensionless variables, by setting t = 9T, r = rP.„,

Q = qAH
g

, V = vTAH
s , H = hR,,T and C = cC*

,

q= (J£ (TR
S )

3/3
) h

3/3
(39)

v= h + (JL) (40)

g - r - q (41)

If the characteristic concentration C* in Equation (38) is chosen

to be k
2 , Equation (42) can be simplified to
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Furthermore, the characteristic time T may be defined by

letting the steady state dimensionless tank volume v
s = 1. Thus

from Equation (38), T can be expressed in an explicit form as

T - £g> (44)AH

AH s/a
8-

XLc<-rf.J . + #
(45)

where V is the steady-state tank volume under constant rainfall

intensity. Equation (45) is obtained by recognizing that at the

steady state condition,

3/2
Q = AH„ = JtLH ••' (^6)
8 *-* "_

and
V
s

= A(K
S
+6). (47)

T can thus be considered as some kind of residence time of the

system.

Examination of Equations (39), (40), (41) and (43), sives

rise to the following dimensionless groups, namely,

a = (J*L) (43)
'c2"s

p _ TH„ A~l a/a ?;

° [(— ) + 6]
XL

Y - #" (TRS )

3/2
(50)
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XL AB »/• a/s
Y = — LTf > .

+ '] (51)

A further algebraic manipulation shows that y can be expressed

in terms of g by the following equation

3/2
(1 - S)

(52)

Thus g and y are dependent.

In these dimensionless equations the "scale factors", that

is, A, L, R„, and 6 which appear in the original equations are

concentrated in two dimensionless groups a and g. Two different

systems with the same values of a, g and dimensionless Initial

conditions are said to be "dynamically similar"; that is, the

dimensionless responses of the system are the same in each case.

If the Injection equation of type (I), i.e., aquation (3D is

considered, we have only one independent dimensionless group, a

being equal to zero since k = 0. This can be seen by comparing

Equations (36) and (37). The system can thus be identified by

one parameter g with a specified initial concentration. The

characteristic concentration C* is chosen to be 3c in this case.

The numerical ranges of a and g defined In Equations • (4-8) and

(^9) can be determined from the following considerations!

, ,
k_

(1) Since the case of H < .•—' must be excluded from a
s k

2
practical point of view as discussed in a previous section, and

values of k , k_, and R are all positive quantities, the range of

a should, therefore, be between zero and one, that is

< a < 1 (53)
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AH„ 2/a
t (2) Since 6 and (——) in Equation (49) are both positive

KLt

quantities, the range of g is obviously

o< p < l (54)

Analc- Solution of Dimensionless Equations

The dimensionless system equations are summarized as follows

i

(1 - g)
3/2

.3/2
(55)

v = h + B (56)

dh
da

do f * " °1'
V *~-~ U-,-cq,

=0 at e = (57)

oq, type (I) (58)

type (II) (59)

where r = 1 for constant rainfall intensity.

The dimensionless system equations have essentially the

same form as the original system equations. They are nonlinear.

The analog solutions can be obtained for various values of a and p

and a specified initial concentration. The analog computer circuit

is shown in Figure 13. The analog solution of dimensionless out-

flow rate q for r = 1 (constant rainfall) is shown in Figure 14

and the dimensionless concentration c for r = 1 (constant rainfall)

are shown in Figures 15,16. and 1?. Initial concentrations of 1.0

and 1.6 are employed for injection equations of types (I) and (II)

respectively. The following remarks can be made by referring to

Figures 1*, 15, 16, and 1?

.

(1) In Figure 14, the time of dimensionless flow rate q to
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reach the steady state value increases as 3 is decreased. The

steady state value is one for all cases. Furthermore, the flow

rate q is independent of a as can be seen from dimenslonless

equations. The figure is identical for both types of injection

rate equations.

(2) In Figure 15. the time to reach the peak concentration

of COD increases as the value of a is decreased. However, the

time to reach the steady state value is the sane for all values of

a. The steady state concentration for each case tends to the value

of (1 - a). This can also be seen from Equation (59) ~oy setting

the left hand side equal to zero and recalling that the steady

state flow rate q equals one for all cases.

(3) In Figure 16, the peak concentration, the tine of

occurrence of peak concentration, and the time to reach the steady-

state condition all increase as B is decreased. It is also "seen

that the steady-state concentration is independent of S.

(4) In Figure 1?, the injection equation of type (I) is

employed. The shape of the curve is very similar to those of type

(II). The steady state concentrations for various values of ,3 all

tend to the value one, as can be expected froa Equation (53). The

peak concentration and the time to reach the peak concentration

increase as 6 is decreased.

It may be concluded that smaller values of a and 3 indicate

heavier pollution of water. This implies that higher rainfall

intensity would cause heavier polluted runoff. Equation (51)

indicates that for constant 6, an increase of (—0 would decrease
XI*

the pai-aneter 3 and thus consequently increase the concentration
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AH s/a
at tho initial stage. If the value of (—-) is of several

XL
orders of magnitude greater than 6 , a decrease of 6 would decrease

pi. On the other hand, if {-r—l is of several orders of
XL

' AH a/3
magnitude smaller than 6, a change of 6 or (—-) would not

X.L

affect g considerably.

System ?.esnonae against Time-Varying Hainfall Intensities

Constant rainfall intensity during the runoff period is con-

sidered in the preceding sections. This is merely a simple approx-

imation of the real system.

Justification of this assumption can be made by using a

simple time-varying function of simulated rainfall as an input to

the system. This varying function can be a function of regular

shape such as sinusoidal function, squarewave function, or super- .

position of two or more sinusoidal functions. It can also be a

function of random variables, such as a function of a uniformly

distributed random variable or a normal distributed random

variable. In this section, four types of time-varying input

functions are considered .

(1) The first case considered is the sinusoidal input func-

tion. The dimensionless rainfall intensity is assumed to be a

sine function with respect to time, which can be written as

r = r„ + b sinue (60)
s

where r_ = mean value or steady state component of rainfall

intensity

b = amplitude of variation in rainfall intensity

co = angular (radian) frequency, rad/time.
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According to the preceding argument, it ca:_ be seen that the

value of r is equal to one. Equation oC' i . ;r_ substituted

into Equations (57), (58), and (59) to ibtai:

£ = 1 + b sinuS - q
|

(61)

d0 / 1 + b sinuS - cq, type (I) (62)

I 1 + b sinuS - cL - cq, type. (11) (63)

Equations (55) > (56). (6l) combined with equation (62) or

(63) can then be solved on an analog computer (Figure 18). The

desired sine function is generated on an analog computer. The

analog solutions of dimensionless flow rate q and concentration c

together with rainfall intensity are shown in Figure 19 in whloh

response of steady state rainfall is also presented for comparison.

It shows that both flow rate and concentration fluctuate."with the

same frequency as the rainfall function. The amplitude of input

fluctuation is greater than the output fluctuation. For example,

in Figure 20, with & = 10 a kQ% fluctuation of rainfall from the

constant value results in a fluctuation of outflow rate of about

10..J and a concentration fluctuation of less than f% from the

responses to constant rainfall input.

Different amplitude and frequency of rainfall functions have

been used. As may be expected, increasing the amplitude and

decreasing the radian frequency of the assumed rainfall function

will Increase the fluctuation of system response. This can be

seen in Figure 20.

(2) The next input function considered is the superposition
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of three sinusoidal functions. Three sine functions, each having

different amplitude and frequency, are superimposed to produce a

simulated random-like function; generation of this function is

shown in Figure 21. The rainfall intensity and output response

curves are shown in Figure 22. It is seen that the flow rate

curve has a moderate deviation from that of the constant rainfall

input case. The COD curve, however, deviates relatively slightly

from the response of constant rainfall intensity. Figure 23 shows

that the deviation of response curves decreases as the angular

frequency of the rainfall function Is increased.

(3) In the third case we consider the rainfall input as a

square-wave function. In Figure 24, the response curve of square-

wave functional rainfall Is shown. Both flow rate and concentra-

tion curves are of zigzag shape. The square-wave functional input

is generated by the functional switch on an analog computer.

(4) In the fourth case, rainfall intensity as a function

of time is given by random varlates. A particular outcome of

an experiment, that is, a numerical or sample value of a random

variable, is called a "random variate". Rainfall pattern is

assumed to be a random process. Generation of pseudorandom

variates was carried out on an IBK computer 3o0 by using the

multiplicative congruential method. Random variates with different

distributions (for example, normal random variates) can be obtained

from a set of uniformly distributed random numbers. A brief

description of these techniques is summarized in the Appendices.

Further information can be found in Reference (11).

Substituting of Equations (55) and (56) into Equations (5?)
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and (59). we obtain

dh 1 ,y=
dO - r

fn fl

,a/i « -

[1 - p) :

h =

do . 1 r_ .

'

i

d9 " (1+ *) L x a

(i - rf"

-. at 9 = (64)

a/a n
oh J , c = c

Q
at e =

(65).

For a set of given values a, 3, and c , Equations (64) and (65)

are integrated simultaneously by employing the 3unge-Itutta

integration method with an increment in G of 0.1. She random

variates with desired distributions are generated and supplied to

the main program where numerical integrations of Equations (64)

and (65) are carried out. These random variates are supplied in

two different ways in order to affect the frequency change of the

oscillating function. In the first, one variate is supplied for

each increment of S ; in the second, one variate is supplied for

every two increments of S of the numerical integration.

Random variates with uniform distribution and normal distribu-

tion are employed. Computed results of dimensionless concentra-

tion and outflow rate q are shown in Figures 25, 26, 27, and 28

for different cases. Out-flow rate q is calculated from Equation

(55)' It can be seen that the computed solutions depend on the

variances of the random variates and the time Interval in which

random variates are supplied. Increasing the variance of random

variates and this tine interval will increase the deviation of the

system responses from those of the constant input (rainfall)

.

The computer flow chart and computer program for this calcula-

tion using normal random variates are given in the Appendices.



Conclusion

In the first part, the method of dimensional analysis is used

to analyse the system. The group of curves in Figures 14 through

1? nay be used to predict the unknown flow rate and COD concentra-

tion in terms of two (or one) dimensionless characteristic para-

meters a and $ (or J only) for various systems. These parameters

are related through Equations (48) and (49) to the quantities A* fts

L, k^, !:_, and weir height 6; some of then are measurable. She

difficulty of the problem is the inability to correlate the vjeir

height, 6. and the initial concentration to the physical system.

These two variables affect the transient behavior of the system at

the initial stage as can be seen in Figures 6 and 8

.

In the simulation study, the system response to the tine-

varying rainfall intensity is observed. It is true in every case

that increasing the amplitude of the deviation from the mean value

and decreasing the frequency of change of the input function would

increase the deviation of the system response from that of the

constant input (rainfall). If the rainfall function of the real

system is deviated moderately from the mean value and the frequency

of change is in a proper range, the response of the system is

essentially very close to that of the constant input, therefore,

a constant rainfall intensity is a good approximation. In the

case of artificial rainfall events, especially, it can be treated

as a steady state function with respect to time.
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QUASILIHEARIZATIOM TECHNIQUE POH P,tfiAKETEHS RECOVEHY

Quaslllnearization is originated from Kantorovieh's extension

of the well-known Newton-Raphson procedure to function space which

treats the non-linear problem as a Unit of a sequence of linear

problems (6). This technique has been well developed by Bellman

and Kalaba (6) and has been widely used to solve non-linear

boundary value problems in many fields of engineering. In this

section, it is shown how the technique of quasllinearization can

be applied, with some modifications, to the water pollution problem.

The specific problem considered here is to obtain a set of "best

fit" parameters of the feedlot system with the recovery of the

initial condition for a given set of experimental data. Since in

a complex system the observed initial data are not usually the true

initial value of the system as described by the proposed model,

this missing initial condition can be treated as an additional

parameter of the system. The meaning of the term "best fit" depends

on the particular criterion used. This choice, however, does not

affect the development of the computational scheme in general.

Quasllinearization technique for parameter estimation Has

tiiat used by Box and Hunter (29) in estimating kinetic coeffi-

cients.

The most recent papers concerning the curve fitting, para-

meters determination, and problem identification are those by Van

Leeds (5), Donnelly and Quon (16) and Lee (13). This teohnAqqe

is briefly described in the following subsection without going

into a detailed discussion of the theoretical background.
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General Description of the Technique

lo simplify the derivation of the technique, the system to be

discussed is assumed as being described by an ordinary differential

equation with one parameter, that is

d£
e(f, a, y) (66)

where f = a known forcing function; it nay be a function of the

independent variable z

a = parameter of the system

y = state or dependent variable of the system

Equation (66) Is first linearized by a truncated Taylor's

series expansion omitting the second and higher-order terms, i.e.

•g: = S(f, a*, y*) +
3_
3a

y=y* ly=y*

d:c ~ L aa a=a*> * Lff
y=y*

a«,a*37 + Le( f
-

a*> **)

y=y*

a a
a* - i£

a=a* d-y

y=y*
a=a
y=y*

* y*] (68)

where a* and y* are the points about which the Taylor's series are

expanded.

Note that Equation (68) is a first-order linear differential

equation in terms of y and a. If parameter a is a constant which

is independent of x, the following linear differential equation

can be written
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da
dx (69)

Equation (69) nerely shows that the derivative of the constant

parameter is aero. Thus a pair of linear differential equations

has to be solved. Because of the additive property of a linear

system (the superposition principle) the general solution of these

two equations can be written as the sun of a particular solution

and two homogeneous solutions, that is

y(x) = yP<x) + C^yJ (x) + C
2;^ (x)

a(x) = sP(r.) + C
xaJ (x) + C

2
a^ (::)

where the superscripts p and h represent the particular and

homogeneous solutions of y and a respectively, and C, and C ? ar

two arbitrary constants.

The particul;.:* s 1: tlon is obtained by solving

(?o:

(71)

d:c
_

-3i
/]a +

'
r«

y=y*

aa

a=a«
y=y"

ay
iy=y

a*
y=y*

da
=

(72)

(73)

and the homogeneous solutions are obtained "oy solving

dx
- -a -

L a"a" a=a-

dx
=

..]a + [ ay a=a*> (7*)

(75)
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simultaneously. Furthermore, if the initial values in solving

the particular and homogeneous solutions are chosen to be

i
y
p
(0)

ap (0)

and

yj(o) = 1

aj(0) =

yj<0) =

>>) = 1

(76)

(77)

(78)

respectively, Equations (70) and (71) can be rewritten as

y£x) = yP(x) + y(0) yj(x) + a(0) y*(x) (79)

a(-,:) = a(0) (30)

where y(0) and a(0) are the initial conditions of the complete

solutions of y and a respectively. They are also the initial

values of the dependent variable (system response) and the para-

meter of the model to be determined. To obtain the particular

and homogeneous solutions by solving Equations (72) and (73), &-&

Equations (7*0 and (75) respectively, the numerical integration

mod can be employed (for example, the R nge-Kutta method of

Leal inte ration). The complete solution is then calculated

by Equations (79) and (80). The two constants a(0) and y(0) are

chosen so as to make the complete solution the "best, fit" of a set
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of observations. To achieve this, an error 6.^ is defined as

e i = y
e
ix

x
) ~ y(::

i
) (S1)

inhere y a (x ) is the observation at the point of the independent
e i

variable x = x, . The mathematical problem is posed as one of

finding a(0) and y(0) such that some function of £ . is minimized.

For illustrative purposes, the conventional "least squares" is

used in the following derivation. According to this criterion,

the minimizing function is defined as

$=
ifi

6*" iC7e^ ; " y( *
l)]1

(82)

where m denotes the total observations available for one experimen-

tal run. It is noted that the observations are usually taken at

discontinuous points. The functional $ is thus defined in a

discrete manner. Equation (79) is substituted into, Equation- (82)

to obtain

$- x Cye (^) - y
p(:0 - yJu^yO) - y^Wojf (83)

The minimization of functional $ can be carried out through the

use of various minimization methods such as search technique and

by the simple differentiation. When the differentiation method is

employed, functional ^> is partially differentiated with respect

to y(0) and a(0) and the resulting derivatives are set equal to

zero, i.e.
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9$
aa(0)

= (35)

rhis jives riso to the following equations

Efry^xJ - y (x.JHy^s. ) + [y
h
(x, )]

s
y(0)

i_X
x e 1 i 1 i ' *

+ fyxx
) Sfjtx^') a(0)}=

s{[yp (x.) - y (x.)]y^(x. ) + y?(x. ) y£(x. ) y(0)
« f l e i 2 1 11 *

f
l

+ [yjjt^D* a(o)}= o

Equations (86) and (8?) can be rewritten in matrix notation as

n h. ,,*
n h. . h

(86)

(87)

^ y
i
(xifl iflV^ y

2
U

i

2 y^Cx ) yVx ) 2[y*(x )]'

1=1 1 1 2 x 1=1 2 1

(33)

y(0) and. a(0) are then solved by Cramer's rule, as follows

2 &P(au) - y (::,)] y^x) Ejf(r) :^(xj
1=1 .

e -
-
1 x 1=1 l % 2 i

£ [ jT(*. ) - yjx
t

)] y (x. ) 2 [ y*(x, )]

1=1 x e i 2 l j_i 2 l

y(0)=-

,- h. 5 h, , h, ,
2 y. (x ) y,(x )

i=1 1 i 2 i
£ [yHx a
1=1 1 x

I?. 1 Si
2 y.(x,) y (x ) z [y^Cx )]

i=i -
1 x 2 1 1=1 2 :L

(89)
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i(0)

i?i?
y
i
(X

i
>]3

Jl^^^ "
7*Ui

)] ^ (X
i

}

S yj{x,j y*(x.) 2 [y
p
(x.) - y(x)] y£c*,

1=1 1 i 2 1 i=l x ° x 2 1

^ y, (x ) y (x )

i=1 1 1 2 1

or

y(0)

a(0) =

1=1 x x

£ y"(x ) yj(x ) 2 [y (x )J
1=1 1 1 2 1 i=l 2 1

{
s [y?ix

1
) - y^x^] rj(«i>}

"
CjJcx tf

(90)

(9D

(92)

where y (x ), y^_(x ), and y^(x ) are calculated numerically. The

parameter a(0) and the Initial value y(0) are thus determined by

Equations (91) and (92).

In Equation (68), the original system equation are linearized

by omitting the second and higher-order terms of the Tayler's
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series expansion. Therefore, the correct result for y(0) and

a(0) can not be obtained in one step. The final solution of the

desired accuracy is obtained by an Iterative process.

?or this purpose, the Taylor's series expansion in Equation

(67) is rewritten in terms of the following recurrence relation,

a a a=a„ (a
n+l"

a
n ] + W

y=yv

a=a ' yn+l~ yn'
y=y„

dy
n+l
dx

2£
aa a=a n+l T ay =a yn+l + *< f

• V *J
y=y„

(93)

is ay
ay

I

y=y^' y=y„

. . , da
with n+l

dx
=

(94)

(95)

It is noted that y* and a* in Equation (67) are replaced by y

and a
n respectively. The subscripts in Equations (93), (9*0 and

(95) denote the number of iterations. The results y and a
n n

obtained in preceding calculations are then used to obtain the

next improved solutions. To start the iterative procedure, a set

of initial solutions of y and a must be estimated.
o o

ar.T.ary of The Procedure

The procedure used in the quasillnearization techniques to

determine the parameters and the missing initial condition of non-

linear system, given a set of observations, can be summarized as



76

follows I

1. The set of equations which describe the system is first

linearized by the Taylor's series expansion as shown in Equation

(67).

2. The recurrence relation for the linearized differential

equation is constructed using Equations (9^) and (95)

•

3. The appropriate approximate function y(x ) and a are

assumed as the initial trial solution.

k. Forming the appropriate nonhomogeneous and homogeneous

equations. as shown in Equations (72) and (73) end Equations (7^)

and (75) > these equations are then solved numerically for a set

of given initial values.

5. The obtained homogeneous and particular solutions with

given experimental data are then used to calculate y(0) and a(0) by

Equations (91) and (92). The improved solutions are obtained by

Equations (79) and (80).

6. The improved approximate solutions replace the initial

trial solutions. Steps k. and 5. are repeated until the solution

converges to the desired accuracy.

Amplication of Quaslllneai-izatlon Technique to the Feedlot Syster

The equations describing the feedlot system are rewritten

below for convenience, they are

Q = XL H
3/3

(96)

V = A(H + 6) (97)

§§- a -| , h=o it.o (98)
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V || = W - CQ, C = C © t = (99)

Substituting Equations (96) and (97) in Equations (98) and (99),

we obtain

3/3
SE m B * 1.69 H H = @ t = (100)
dt

f = - 000^2 Tab" - 1 ' 69TOT c = c
o

@ fc - °
<
101 >

where the following numerical values are employed.

A = 2210 ft
2

L m 2fr ft

X = 2.6 x 60 ft Vain

Equations (100) and (101) are linearized by the Taylor's

series expansion truncated after the first order tern and the

following recurrence differential equations are constructed.

^n+l lx> , t-*/* *
= (H - l.«9C ) " CS^nr K )(2.535)H^,

dt - v" •" '"n '• ' n+1 • n

H 1= © t = (102)

dcn+l 1 it .,.,...-... . ,„„ J»/J
r.+1

dt
_ T-1 n' n

3
-lj-

T
{[.OO0i.52»,

l
- 1.690^3 * .000*»(»wl- »

n )

n n

.000452VJ -1.69C V.H^
/2

,

- £vrv [

—

(h :
nn

]}
< 103>

Two additional equations are added. They are

d':,
T

.

_2±I _ (10^)
dt
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d&-# = o
'

(105)

Equations (104) and (105) show that ;the derivatives of the

constant parameters are zero.

Equations (102), (103), (104), and (105) are four first order

Simultaneous differential equations with one known initial condi-

tion, H -,= © t = 0. By making use of the known initial condi-

tion, solutions of these four equations can be represented as the

sum of a particular solution and three homogeneous solutions,

namely

,

_ 3 h
H ,(t) = Hp ft) + 2 a.. . H, .(t) (106)
n+1 n+1 . ^ j,n+l 3 .n+1

B 3 ' h
C ft) = <T ,(t) + 2 a. , C, ,(t) (10?)
n+1 n+1 j=1 3 .n+1 3, n+1

W n (t) = WP , (t) + 2 a, , W7 .(t) (108)n+l v n+1' T
i=1

3 .n+1 3t«*l

6 .(t) = 6
P ,(t) + 2 a, , 6^ ,(t) (109)n+1' n+1'

T
J=1

3. n+1 J, n+1*

where the superscripts p and h represent particular and homogeneous

solutions respectively, and a. 's are integration constants.

It should be noted that both the particular and the homogeneous

solutions can be obtained numerically using the Eunge-Kutta method.

The particular solutions are obtained by solving the following

equations

,

-$** = -2.535 kX+i + < R + °- 845 H
n ) (no)

^ T 1 3^
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1-«9CW C
n
)K? CVl" V^2 '5* °A

(.000452Wn-l.69cnK^)
3

< r
.00O»52»ln-li9CnH;;)

(H +6 )

>(6n+l-6n )L RTl JJ(lll)

-IF
1

= ° Cll2)

d&

-$1 = (113)

And the homogeneous solutions are obtained by solving

dH
,

i

-S±l = -2.535H; HLA (114)
dt J n n+1

-

1UPCr {.000452 'W
n+1

-1.69C
n+1

H
ndt ~ TfT , . .

n' n

r i (.000452 w„- 1.69 c„c^
(K +6 )n n

"n+1

p
. 000452 wn

- 1.69 CnH^
] J

dW

- 6
n+i C inr&

£L-8-]J (115)

-ar- = ° (116 )

d6 -

-# = (11?)

The set of initial values used for numerical integration to

obtain the particular solution is chosen as
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Hp ,(0) =
h+1

C
n+i

(0) = °

Wp (0) =
(113)

n+1

U^(o) = o

And the three sets of Initial values for solving homogeneous

solutions are chosen as

(1)

r H
l,n+l

(0) = °

C" (0) = 1.0
l,n+l

h.r»\ (0)

6. , (0) =
l.n+1

(119)

H" (0) =
2, n+1

(ii)

c" (0) =
2, n+1

tf„ (0) . 1.0
2, n+1

6" (0) =
2, n+1

(120)

(ili)

H" (0) =
3, n+1

Q* (0) =
3. n+1

W
3.n+l

(0) " °

»5.n+l
(0) = 1 '°

(121)
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Choosing zero as the initial values of H in obtaining the

particular and homogeneous solution satisfies the known initial

condition of H
n

(0) = 0. Furthermore, by letting t = in

Equations (107), (108), and (109), and using the initial values

given in Equations (118), (119) t (120), and (121), the initial

concentration can be expressed as

C ,•«>>« CLl (°) + E a
i ru/l

c^ ^.i CO) (122)
n+1 n+1 ,=1 j,n+l o,n+l

C , (0) = a. (123)
n+1 1 , n+1

and the two parameters W and 6 can be expressed as

w
-, C03 = WL, (0) + £ a W\ (0) (124)

n+1 n+1 j=1 J, n+1 J ,n+l

W (0) . a (125)
n+1 2, n+1

and
3 .h

6 (0) . «* (0) + 2 a, I (0) (126)
n+1 n+1

j=1 J, n+1 Jin+1

6 (0) = a,
,

(127)
n+i 3 1 n+1

respectively. Therefore Equations (107), (103), and (109)

can be rewritten as

C (t) = C
P ,(t) + C , (O)C^ (t) + W ,(0)C« (t)

n+i n+l v T
n+1 1

1,11+1 n+l v
2, n+1

1
'

n+1 3 , n+i
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Vl (t) = Vl (0) (129)

6
n+l

(t)
=

6
n+l

C0) (130)

The missing initial concentration and two parameters are to be

determined by fitting the numerical solution to a set of experi-

mental data based on a certain criterion. The conventional "least

squares" is used. According to this criterion, the minimizing

function is defined as

m
t> h h

$ , = S [C (t ) + C , (O)C, ,(t ) + W ,(0)C (t )* n+1 s=1
"- n+1 4

s n+1 4 l,n+l 4

s n+1 2,n+i s
;

h -i
a

+ 6 ,(0)C (t ) - C (t )] (131)
n+1 3,n+i s e s

where C (t ) denotes the experimental data observed at the time
e s

t = t , and "m" stands for the number of observations available.
s

The constants C ,(0), W -,(0) and 6 , (0.) are chosen so as ton+x n+x n+x

minimize the functional^ ... By letting

a$ n+1 - .-,_.
3C

n+1 (0) = ° (132)

S$ n+1 . ,iw^W = ° ^33)

3$ n+1 . ,,-u,
96 ToT

= ° (1W
n+1

we obtain

m
2 [C (t ) + C , (O)C, (t ) + W (0)C ft )

=1
L n+1 4 ' n+1 4

l,n+i
4

s'
T

n+1
4

2, n+1
4V

+ Vl ( ° 1CLl lV - °e
(ts^ <W (V = ° 4^>
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,_q_ n+1 s n+1 l,n+l s n+1 <2in+l s
'

m

S:

+ 6^ ,(o)c!? (tj - c (t )] c* ft ) = o (136)n+1 3. n+1 s e s J 2, n+1 s

,"

i^i'V + c^(o)Cl|^(ts ) + '.'

Wi (o)c^
n+1

(t
s

)

After some simplification, Equations (135) . (136) and (137) are

rewritten as

-11 h s m h h
C .(0) I [£, .(t )] + M n (0) 2 [C„ (t )C (t )]n+1 S=1

L
1,11+1 s /J T n+l v

'

S=1
L 2,M+1

X
s l.n+i s

J
,

+ 5 (0)SC, •u.i'teJC* ,(*_) + 2 [C^ (t )-C (t )]C^ ft ) =
n+1 s=1

jifi+l s l,n+l s
S
_-

L

L- n+1 s e s J l,n+l s

(136)

°^ 0)^l^\icl^^ + Vi<°>J^S^*.*'
+6 ,(0) 2 Co wl (t )c; .(t)+ 2 [C

P
-,(t )-C (t )]c'„ „ _(t ) =

n+1 s=1 Jt"+± s 2,n+l s s_i n+1 s e s -1 2, n+1 s

(139)

Cn+i(^j
1^<\n+i

(t
s >s,n+i(s)^+i;°)j>5, n+1

ct
s
)c5^

i
ct

s
)]

(1^0)

Applying Cramer's rule, we obtain
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\ A
2

A
3

\ B
2

B
3

C (0)

D
*

D
2 °3

11*1)n+r ; "

A- A
2

A,

3
1

B
2

3
3

D
l

D
2

D
3

*1 A
4

A
3

B
l

B
4

B
3

U I ) .

D
l

D
4

D
3

(142)
n+l l0) "

A
l

A
2

A
3

1

j 3 -—

3
i V."*3

D. D« D„
1 -2 3

*i
A
2

A4

3
1

B
2

B
4

a (o) -
D
l

D
2

D
4

(143)
n+l

*1 A
2

A
3

B
l

B
2

B
3

D
l

D
2

D
3

m - h -) a

where ^ = J^Cc^Ct,)] (144)

A
2 - j-^.n+l'V 4.^jl (V3 (145)

m h Vi

A = 2 fc" (t ) Ci
1

,(t )1
3 s=l 3, n+l s l.n+1* b'J (146)

a p
A, = 2 [C (t ) - C (

* s=i
L n+l 8 e

t )] 0? (t )

s l»n+l s
(14?)
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ra

\ "
s=̂

C
l,n+l<V °J.^.« (148)

B
2 =

sfV
C
2.n+l

(t
s
)]3 (149)

b
3 = iCflw;v cUi (t

s
)] '

(i5o)

EL = sCc!? ,{tj C^ „ ,(t )] (152)
S;
,_1 1,6+1 s 3»n+l s

D
2 "

s!l
CC^l !ts) C 3.n+l

(t
s
)] (153)

V-iE^^j?
"

(154)

D
^ - i^V " VV3 &WV (155)

The calculations were carried out on an IBM computer J60.

The computer flowchart and computer program are shown in Figure

AVI - 1 and Table AVI - 2 respectively.

Furthermore, in actual calculation the initial values of &

which appear in Equations (118), (119). and (120) are set equal

to a very small value (for example 10 ) to avoid computer

overflow. Since at initial time the term (H +6 ) which appears

as a denominator would be equal to zero, the value of 6 ,(0) &s

calculated by Equation (126) is essentially unchanged by this

adjustment and hence Equation (12?) is still a good approximation.

Convergence Consideration of Calculation

What is really desired in the theory of differential equations,

and functional equations in general, is a method of succesive
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approximations which yields rapid convergence to the solution

whenever the solution exists and throughout its whole domain of

existence. The convergence aspect of the feedlot problem under

consideration is found to be two-fold.

First, the evaluations of C (0), W ,(0) and 6 (0) by
n+1 n+± n+1

Equations (141), (142), and (143) would cause the computer to over-

flow whenever the determinants appearing in the denominators - «

approach zero. This kind of difficulty was encountered occasion-

ally in actual calculations. To overcome this inefficiency, the

integration constants C ,(0), W ,(0) and 6 (0) can be deter-n+1 n+1 n+1
mined by using an alternative method, namely, a three-dimensional

pattern search technique as will be shown later. This will avoid

the evaluations given by Equations (l4l), (142) and (143). Second,

the quasillnearization technique is a second-order iterative

process; convergence, if it occurs at all, is quadratic and hence

rapid. However, if the initial trial solution is not sufficiently

close to the true solution, then convergence may not occur with

the scheme described in the preceding section. For this problem,

parameters estimated through the use of the analog simulation of

Table 1, which appeared in the previous section are thus helpful

in guessing a initial trial solution.

Also to achieve convergence, in general, the special scheme

suggested by Donnelly and Quon (16) may be used. According to

their method, the total increment in going from the n-th itera-

tion to the (n+1) st iteration might not be used but rather only a

fraction. The following equations may be used to describe this

method, i.e.



87

H* = H +% (H - H ) (156)
n+1 n 1 n+1 n

C
n+1 - C

n + l»% " <V (1^

Cl= Wn^3 (Vl- V (158)

6* = 6 +e , (6 , - 6 ) (159)
n+1 n s 4 n+i n

where < 1. < 1.0 (1 = 1, 2, ... kT*. Instead of using H lf

C , , W , and 6 for the next calculation, K
,'_

, C* , , W n ,n+1' n+l n+1 n+1 n+1 n+1'
5'

, are used as the new estimated solution for next calculation.
n+1

The choice of 5 . = 1.0 gives rise to the original algorithm which

is used previously.

This technique was used satisfactorily In recovering several

sets of parameters. In fitting the experimental data 5(U), for

example, the use of the original algorithm did not give rise to a

convergence, while with a choice of \ . = 0.5 (1 = 1. 3. b) and

%2 = O.k, this technique gave rise to a convergence with four dig-

ital accuracy in 18 iterations. The tendency and speed of

convergence also depend on the values of % . used. For example,

In fitting the experimental data which is noted above, a choice

of % . = 0.8 (i = 1, 2, 3i fc) did not give rise to a convergence,

which for a choice of ^ = 0.5 (i = 1, 3, k) and 5 2
= O.k; 18

iterations were required, and for a choice of £ « = 0.3 (i = 1,2,

3, 4) 27 iterations were required to obtain a convergence with h

digital accuracy. The choice of an optimal value of \ . in fitting

a specific set of experimental data so as to minimize the number

of iterations required is a matter of trial and error.
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The Use of the Search Teachnloues

A pattern search technique is usually the most straight-

forward approach of optimization. l-Ihen the evaluation of Equations

(1^1), (1^2), and (143) on a digital computer is unstable, a

search technique can be employed in minimizing the functional©.
n+1

which is given in Equation (131).

In solving a n-dimensional optimization problem, various

pattern search techniques are available, for example, the Simplex

method (8), the Box Method (9), etc. The computer program used in

this calculation is developed by Chen (18). This program consists

of three search techniques, namely, the Simplex method, the Box

method, and a modified method in which the centrold of searching

points is defined in a more elaborate manner than in the original

Simplex method so as to obtain a better succeeding point. The

search method desired is chosen by reading in the proper constant

in the main computer program. The computer program is shown in

Table AVI-2.

This technique was found to be useful. All sets of para-

meters except 3(U) and 4(U) appeared in Table 2 were recovered

by the use of this computational scheme. The additional comput-

ing time required by this modification was found to be insignifi-

cant as compared to the use of the differentiation method.

Further Considerations and Conclusions

The observed data of field study (for example, surface run-

Off) are usually scattered due to the complex characteristics of

the system. Data fitting by the conventional "least squares"
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criterion in which the same weighting factor is employed for every

observed data point is not an adequate criterion for all cases.

A modified "least squares" criterion which defines the minimizing

functional as

»
- £ TO;?*' v

e i

is proposed by Sugle (10). Different weighting factors are now

imposed on different observations. In other words, the relative

deviation is taken into account instead of the absolute deviation

Which was considered previously.

Tables 2 and 3 show the parameters and initial concentration

determined by the quasilinearization technique using two different

criteria. Table 3 contains more unreasonable sets of parameters

than those in Table 2. It may be concluded that the use of this

modified criterion is not Justifiable for this specific problem.

Furthermore, if a set of observations is very scattered,

the convergence of the "best fit" solution may not exist. This

is found to be true in several sets of experimental data.

Irrational sets of parameters may also be obtained in fitting sets

of observations with unexpected form, for example, in Table 3,

the injection rates are found to be negative quantities for

experimental runs 6(S) and 7(U).

The progressive iterations are sketched for several sets of

data fitting. Figures 29 and 30 show the convergences of water

head H and COD concentration C for 4(U) experimental run respec-

tively. The convergences of Injection rate W and weir height 6
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are tabulated in Table k. Convergences of data fitting for

8(S) and 8(U) experimental runs are shown in Figures 31 and 32

and Table 5, and Figures 33 and 3k and Table 6 respectively.

The convergence of water head H was obtained in fewer iterations

(about k) than those required for the concentration of COD.
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Table 4. Convergence of Injection rate W and weir
height a for 4(U) ezperinental run

Number of
Iteration

Injection rate
W, lbs/min

Weir height
6, ft

0.3000 0.04000

1 0.785? 0.03571

2 0.5666 0.01976

3 0.4372 0.03552

4 0.4348 0.05394

5 0.3945 0.06685

6 0.3803 0.07113

7 0.3733 0.07166

8 0.3781 0.07169
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Table 5. Convergence of Injection rate W and weir
height 6 for 8(3) experimental run

100

Number of
iteration

Injection rate
V , lbs/min

Weir height
6, ft

0.400000 0.009000

1 0.523190 0.004709

2 0.379049 0.007031

3 O.369639 0.013073

4 0.383846 0.017540

5 0.396602 0.017701

6 0.396602 0.017701
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Table 6. Convergence of injection rate W and weir
height 6 for 8(U) experimental run

103

Number of
Iteration-

Injection rate
W, lbs/min

Weir height
6, ft

0.200000 0.005000

1 0.673847 0.001921

2 0.344508 0.002656

3 0.366133 0.005685

k O.363I83 0.009912

5 0.367367 0.010950

6 0.369096 0.010707

7 0.369805 0.010493

8 0.369464 0.010669

9 0.369464 O.OIO669
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CONCLUSION MD SEC OMMENDATIONS

The first phase study of stream pollution by cattle feedlot

has been presented. By virtue of the complexity of the physical

system, it is difficult to make decisive conclusions on this

problem. However, according to this study which has attempted to

predict the gross behavior of the system, several remarks can

be made.

(1) Consideration of the dynamic characteristic of the system

by using the Stirred Tank with Injection model seems justifiable.

This consideration gives rise to the characteristic initial in-

crease of COD concentration which can only be obtained by employ-

ing the Series Stirred Tank with Injection model, as was shown by

Miner (1). The use of the latter model would introduce five para-

meters (rather than three) in the system. These will complicate

the system analysis and simulation study. Furthermore, use of the

Series Stirred Tank with Injection model together with the con-

sideration of the dynamic characteristic of the system would

require seven nonlinear operators on an analog computer in simula-

tion study. These can not be afforded by a compact-sized analog

computer in some cases.

(2) The outflow rate Q as function of time is an important

characteristic of the dynamic study of the system. Additional

observations on outflow rate Q from the feedlot may add information

to conduct a better investigation. It is suggested that more

experimental data of flow rate from feedlot with respect to time

be taken.



105

(3) Despite the various surface conditions of the feedlot

system, the injection rate W under different cases is found to

have an approximately linear relation with rainfall intensity. The

correlations have been shown in Figures 9, 10, and 11. This dis-

covery may largely simplify the analysis and the management of

the pollution problem in many aspects.

(4) A sufficient number of observations are required to

conduct a concrete investigation of the system. The experimental

data available in this study are limited. Several sets of exper-

imental data of COD concentration versus time are found to have

too much scatter to use them in the quasilinearization technique

of parameter recovery. Furthermore, most sets of data were taken

in a large time Interval (10 - 30 min. ) . This is considered as

an inefficiency in mailing a proper fit by analog simulation. Kore

data taken in a short time interval are thus desirable.

(5) For a system of three parameters, fitting data by

"twiddling" the knobs in an analog computer may be used easily

when too much accuracy is not required. By this method convergence

can almost be assured even if the data are scattered. The use of

quasilinearization technique is more general and accurate in a

ser.se. When the convergence of the solution occurs, that is, when

the experimental data are in good agreement with the proposed model,

this technique is very effective. The convergence of the solution

by quasilinearization technique is partially dependent on the

initial trial solution. The pre-study of analog simulation is thus

helpful in making a proper guess.
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APPENDIX I. THE RUNGE-KUTTA METHOD OP TWO SIMULTANEOUS
EQUATIONS (1?)

The Hunge-Kutta method for numerical integration has been

described by Eunge (22) and elaborated by Kutta (23). In this

nethod, formulas are devised that enable the direct calculation of

the increment in dependent variable y corresponding to an incre-

ment in independent variable x. To integrate numerically higher

order equation or simultaneous equations by this method, essen-

tially the same method Is used as that used for: a single equation.

Consider the following 'set .of ..simultaneous equations.

g-f
x
U. 7. » (1)

42= f? U, y, z) (2J
ax ^

Starting at the initial values x , y , z , the increments in y

and z for the first increment in x are computed by means of the

formulas

k
i = f

i
(x

o' v z
o
)Ax (3)

V: 1
k
2 " f

l
(V t' yo+ f '

Z
o+ T> AZ (5)

1
2 = f

2
(x

o
+ T' yo+ T'

z
o+ T )AZ (6)

ic

3
=f

1 ( 2o+ f, y
o+ ^, z

o+
5|)^x (?)

V VV-T' V-T' zo+T )A:: (8)
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H = f
2
(:C

o+ f ' V T'
Z
o
+ f >

AX (10)

AY = 4(-^ + 2k
2
+ 2k- + 1^) (11)

az = -^-(l.^ + 21
2
+ 21

3
+ 1^) (12)

thus

,

y, = y rsy (14)

2 = 2
Q + 42 (15)

To compute the next increment, it is necessary only to replace

S i 7-i and z in the above formulas by x , y , and z, and continue
o ° o 111

this procedure.

The procedure is continued until the desired final values

of the dependent variables y and z are obtained. A choice of

smaller increment Ax will give a solution with better accuracy.
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APPENDIX II. RANDOM NUJ1BE3 GENERATION (11)

1. Introduction

There are many ways to generate a set of random numbers

.

The principal requirement of a sequence of random number is

statistical independence. Four alternative methods have been

used by practitioners to generate sequences of random numbers.

They are

1. Manual methods.

2. Library tables.

3. Analog computer methods.

4. Digital computer methods.

Hanual methods are the simplest and also the least practic-

able of the methods for generating random numbers. These methods,

are usually too slovf for general use. Another disadvantage is '

that it is impossible to reproduce a sequence of random numbers

generated by such devices

.

A number of Library Tables of random numbers (for example , the

Hand Corporation's A Iiillion Random Digits) have been published.

Of course, these numbers must first be generated by one of the

aforementioned methods before recording them in table form. The

advantage offered by this method is reproducibility. However,

it suffers from a laclc of speed and the limited length of the

random numbers sequence.

Analog computers have also been used to generate random

numbers. They are deemed to yield "truly" random numbers, since
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analog computer methods depend on some random physical process.

These methods are much faster than either manual methods or

library tables, but share a common handicap with manual methods-

nonreproduclble sequences of random numbers.

Three modes of providing random numbers for use on digital

computers have been suggested by Tocher (24). They are (1)

external provision, (2) internal generation by a random physical

process, and (3) internal generation of sequences of digits by a

recurrence relation. The third method is the most satisfactory

way of generating a sequence of "pseudorandom numbers". The term

"pseudorandom numbers" has been defined by Lehner (25) as "a vague

notion embodying the idea of a sequence in which each term is

unpredictable to the uninitiated and whoso digits pass a certain

number of tests, traditional with statisticians and depending

somewhat on the use to which the sequence is to be put". Tocher

(26) has stated that, "the principal objection to this solution

is on the rather philosophical grounds that a sequence of digits

generated by a pure deterministic rule is the direct antithesis of

a random sequence". However, this objection can at least partially

be overcome by talcing the pragmatic view that a sequence may be

considered random if it satisfies some predetermined set of

statistical tests of randomness. From this point of view the

method of generating a sequence is totally irrelevant.

An "acceptable" method for generating random numbers must

yield sequences of numbers which are (1) uniformly distributed, (2)

statistically independent, (3) reproducible, and (4) nonrepeating

for any desired length. Furthermore, such a method must also be
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capable of (5) generating random number at high rates of speed,

and yet (6) requiring a minimum amount of computer memory capacity.

The congruential methods to be discussed were designed specifically

to fulfill as many of the aforementioned requirements as possible.

2. Congruential methods for generating pseudorandom numbers

The congruential methods for generating random numbers are

completely deterministic because the arithmetic process involved

in the calculations uniquely determines each term in a sequence of

numbers. In fact, formulas are available for calculating in advance

the exact value of the 1-th number in a sequence of numbers n ,

o
r
"l'

n2' "' n
j_'

••• "Def°3re the sequence is actually generated.

Properties (3) and (6) of the afore-mentioned requirements of

random number generators are automatically satisfied by the appli-

cation of congruential methods because the sequences generated by

these methods are completely reproducible and require only a

minimum amount of memory capacity on a computer. Properties (4)

and (5) are the only requirements whose degree of satisfaction

depends entirely on the properties of the methods applied.

Congruential methods are based on a fundamental congruence

relationship, which may be expressed as the following recursive

formula

n
l+l

2 a n
i
+ c ' aiod m )*

(1)

By definition, two Integers a and b are congruent modulo m iftheir difference is an integral multiple of m. The cor~~ue-cerelation is expressed by the notation a = b (mod m) , which
reads "a is congruent b modulo m"j this also means thatUJ (a - b) is divisible by m and (2) a and b leave identical
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where n. , a, c, and m are all nonnegative intergers. Writing

Equation (1) for 1 = 0, 1, 2, we obtain

n, = an + c (mod m)
J- o

n 3 an, + c = a 2n + (a + 1) o (mod m)
2 1 o

a, a a3n + (a 2 + a + 1) o = a3nn + SiSlx1 > ( mod a) (2)Jo o (a-- 1)

^ = ain
o + °jf_-x^ (mod m)

Given an initial starting value n , a constant multiplier a,

and an additive constant c, then Equation (2) yields a congruence

relationship (modulo m) for any value of i over the sequence

in , n , ..., n. , ...1. The subsequent terms of •[ n \ as deter**

mined by Equation (2) are all integers forming a sequence of

residues modulo m. This implies that a. < m for all n . Xow, the
1 i

question is what conditions can be imposed on n , a, c, and m so
o

that the period of i n "V is as large as possible ? Bjt number

theory it can be shown that it is impossible to obtain nonrepeat-

ing sequences by congruentlal methods. In practice, however, the

period of a sequence can be set satisfactorily high by choosing

a sufficiently large modulus or by other techniques (27).

3. The Multiplicative Congruential Method

remainders when divided by m . Example i 5590 = 6 = - 2
(mod 8) and 232? = 27 (mod 10 3

)

** For a given a the smallest positive integer n such that
a = n (mod m)" is said to be a residue modulo m. There are
m distinct residues (mod m) ; 0, 1, 2, ...... m-1.
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Most computerized versions of the multiplicative congruential

method employ a modulus m = p
e

, representing the word size of

the computer, where p denotes the number of numerals in the

number system utilized by the computer and e denotes the number

of digits in a word, for binary computers p = 2, and for decimal

computers p = 10. The formula for generating power residues is

(by setting c = in Equation (1) )

n
l

•= a^ (mod p
e

) (3)

For a binary computer (for example, an I3M computer 3-60)

we choose a = 2 , where b is the number of binary digits(bits)

in a word. According to the number theory (11), the maximum

attainable period is h = 2 . The next problem is to find

constant multipliers that have order h = 2 . It can also be

shown by number theory that a must be relatively prime to m.

Furthermore, if a is relatively prime to m = Z° , it must be an

odd number. It can be shown that those values of a, which satisfy

these requirements, reside in a residue class represented by the

congruence relation (28)

a = + 3 (mod 8) (4)

This relation can also be written as

a = 8t + 3 (5)

where t is any positive integer.

According to Greenberger's formula, values of a that are close

b/azo 2 will minimize first-order serial correlation between the
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pseudorandom numbers. Since snail serial correlation is a highly

desirable characteristic of random number generators, this rule

will be applied in determining the "best" constant multipliers

for both the binary and decimal cases. Having selected a constant

multiplier, we must now consider a method for choosing a starting

value. According to number theory, n must be relatively 'orime
o

to 2. This requirement can be satisfied by selecting any positive

odd number for a starting value.

The multiplicative procedure for generating random numbers

on a binary machine may be summarized as follows!

(1) Choose any odd number as a starting value.

(2) Choose an integer a = 8t + 3> where t is any positive

integer for a constant multiplier. A value of a close to 2 ' 2

will satisfy the Coveyou-Greenberger condition (for an I3K
16

computer 3-60, b = 31, thus a = 2 + 3 = o5539 is a good selec-

tion).

(3) Compute a n using fixed point integer arithmetic. This

product will consist of 2b bits, from which the higher-order "o

bits are discarded, and the low order b bits represent n . (The

integer multiplication instruction in FORTRAN automatically
.

discards the high-order b bits).

[k) Calculate Y. = n /2 to obtain a uniformly distributed

variate defined on the unit interval.

(5) Each successive random number n is obtained from the
1+1

low-order bits of the product an .

The statistical properties of pseudorandom numbers generated

by this deterministic method are not random in the sense. However,
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so long as our pseudorandom numbers can pass the set of statis-

tical tests implied by the idealized chance device, these pseu-

dorandom numbers can be treated as "truly" random numbers even

though they are not. The chl-square test are most general method

for test of randomness. It has been shown (11) that the pseu-

dorandom numbers generated by this manner passed satisfactorily

the statistical tests.
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1Y = 1 X & So53.9

Set
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R£TURN

ig.All-L Computer flow chart for QZ'arc
:

:.:r

uniform random numbers between

zero end one .
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APPENDIX III. RANDOM WUMBEB WITH UNIFORM DISTRIBUTION

The desired uniform distribution with specified mean A
2

can be Generated ay the relationship

X = A + (B - A) x H

where S = random variable between and 1

A = specified upper range of desired distribution

3 m specified lower range of desired distribution

X = desired distribution.

The technique of generating random variable H was described

in Appendix II.

The computer flow chart for generating a random numbers with

uniform distribution with mean — + 5 is show in Figure AIII-1.
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SUBROUTINE

UNIFORM (A, 8,X8

r CALL

rig. AE-! Fiow chert for cer.ercticri of uniformly

distributed random vcriates with rncc."
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APPENDIX IV. RANDOM VARIABLE WITH NORMAL DISTRIBUTION

Random varlates with normal distribution can be generated from

a set of uniform distributed random variatoa. According to the

central limiting theorem (15), the random variable of a normal

distribution with mean zero and variance one can be obtained from

a set of random sample of uniform distribution between zero and

one. The equation which relates these two random variables can be

written as

1: 1

,JWl2

where I has a normal limiting distribution with mean of zero and

variance of one, X^^ is the random sample from a uniform distribu-

tion, and k is the number of values of X to be used. Z approaches

a true normal distribution if k approaches infinity.

The desired random sample of a normal distribution with

specified mean and variance can be obtained as

where <r = specified standard deviation

/l = specified mean

$' = desired random variable.

The technique of generating a uniform distributed random

variable has been discussed in the preceding two sections. The

flow chart for a computing scheme for generating a random variate
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with normal distribution is shown in Figure AT. I - 1.
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CALL \

GAUSSviX
,

s,a:/,v)

SUBROUTINE
£AUS5(iX,S,AM, V )

\SUM--u.o
{

1 5C

.48/
'

I

/ CAL L \

I RANDUUX.)
\ iY, yfl; /

1 IX= '

i

u
!

Y
i

*

! SUM"SU j

;

V a'-{:.5.«UM-l20«S+AM

RETURN

Hg.Al-i.Fl.ow chert for generation of norm* i/uncies
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APPENDIX V. COMPOTATX0H IN RANDOM SIMULATION

The computer flowchart and FORTRAN computer program for ran-

dom simulation arc presented in Figure AV - 1 and Table A7 - 2

respectively. The nonlinear system equations are solved by using

the Bunge-ICutta numerical integration method.
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R^ od c(0)

T

h(0) <* .

!

P IX const snts

pi-

GAUSS (iX, S, \

A«, -RR) /

R £ K t L - I j - ?. ft

V":

«W-—

i

R(n,cai,ba),Qm
|

;

i r- ! «

1

q(I).[ ,.r ]
-

integrate

"ft," «C, h. S)

. .411= g(c, !., R5 by

(3±T

Fig. AY- J- Computer flowchart for random simulation
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Table AV - 1. Program Symbols and Explanation

Program
Symbols

Explanation

A dimensionless parameters

AM mean of random variables with

normal distribution

3 dimensionless parameter

C-, initial concentration

C(I) COD concentration

DC increment of C(I)

DH increment of H(I)

DT increment of

H{I) water head

II constant

K initial value used in generating

uniform random variate

JJ constant

Q(I) flow rate

H(i) rainfall intensity

BH normal random variate

S standard deviation of random variables

with normal distribution

I time

Mathematical
Symbols

a

o

C(t)

A C

Ah

A3

Mt)

4(t)

r(t)

y'

<r
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2sole AV - 2. Computer proeraa for rar.dor.
siaulation

D:v:\sro\i ci iooi , hi ico , quccs ,«( icoj
ioi pG.<;-iAr: :f:o.2, u: i0.j,3f-.io.5} __

T i 2 : 5 , I r I . 2 ) •

f 1 3 F 1 . 2 )

102 Ft.KM
"- 3 T :" a ,-:

7!// r 7X»2iif-,GX,2ilr'.= ,cX,^thCCC=,3X 7 2r*h=,cX v
2."

uio?) n, jj, or ._ __
is, toznt.-jj.ct

hX.ITE 13, 1031C1.A.3
: X=7c5432i

,/;

CALL GAUSS 1 IX, S, AM.RR )

seise- 1 , j

j

'.~. k l
'.:. t •_ - 1 '; - K K

C322 1 = 1,1!

fui=< ;s! i )-a-(C! i i*hj : ;**.. sj/i ( i.-.bj**i.5) i/tKin-

22^C; I )+Fi_2/2.

.-.2= i (K,-< E ;-A-!C2*( -2 1**1.3 ; / ( f i.-«3>**l.5) 1/IH2+S) }'

R'i = l- ( I J+FK2/'2. . ,

z^=z: : jtfi.2/2.
rX.'.= {RU >-H$**l. 5/11.-8 )**1.5>*DT ........

FL3» ( tll( I )-*ii'tC3*£H3)**tvS'}/ Kl«-B)**1.5 1)/.{H3+S> S*i

c-,-c ; : >-rFj.3/2.
<',<<.= !R(I>-H4##i.5/(1.-B).**.1.5}*DT.
r.',- : (R< : )-A-{C4*!H4.)**i.5)7( IU-B)**1.5) 1/IH4+S))*:
*^= ( fKl*-2. *( FK2+FK3.)'+FK.4) /6

:; = ;;: n/u.-sj JA2X.5

I i-l 5=C < I J+OC . _.

r*{AI~l.)*DT .....
// A.::T££3,:cii)r,.R(i)',c(i),H(iJ,C(i i

'
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iblo AY - 2. (cont'd}

SUt; *cuTl\C- gauss ( 1X,S,a;-;,v;

L'J-j^. I =1 ,<t<3

CALt HANDill IX , TY, Y.'Ll

V=C.!S*AA-12.0)*S+AK._ ..

KcTUKN

. susaouTiMS rangui :x, :y,yfu.

5 iY,»IY+2l'.74S36V7*l

YFu«YHL*.^65661it-9
KiTL^.N
END '
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APPENDIX VI. COMPUTATION 0? PARAMETERS DETERMINATION

The computer flowchart and FORTRAN computer program for the

computation of parameter determination by using quasilineariza-

tion technique are shown. Figure AVI - 1 shows the computa-

tion scheme of this technique. The quasilinearizatior. technique

with differentiation method is shown in Table AVI - 2. The

quasilinearization technique with the use of search technique is

shown in Table AVI - 3.
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Table AVI - 1. Program Symbols and Explanation

Program Explanation Mathematical
oymbols Symbols

[t <= 2, 3, 4]

h ~ \

B
i

45 - AS functlonals defined by Eauations

(144) through (m-7)

B5 - BS functlonals defined by Equations

(143) through (151)

C2XP(I) experimental data of COD C (t )
e 2.

CI1 initial trial solution of COD C (t)
o

c (Ji 1) particular solution of COD Cp (t)
n+1

C 1J > L ) _ ,,.J th homogeneous solution of COD h , .

LL= 2, 3, 4] e
Ji n+1

(t)

CODO initial concentration of COD c (0)
n+1

c? v'J, L) approximate solution of COD used C (t)
n

for calculation

CSOL(J) new approximated solution of COD C (t)

D5 - K3 functionals defined by Equations D-D,
I 4

(152) through (155)

EC increment of COD in numerical AC

integration

DD2L increment of 6 in numerical ' ' a 6

integration

ESLI1 initial trial solution of weir 6 (t)
o

height

D2L(I, 1) particular solution of weir height '

6
P

ft)

Di.L(J, L) j th homogeneous solution of h

weir height $• n+1
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Table AVI - 1. (cont'd)

Program Explanation Mathematical
Symbols Symbols

DELO initial value of weir height 6. ,(0)

D2LP(J, L) approximate solution of weir height 6 (t)
n

used for calculation

DELSOL(J) new approximate solution of weir 6 (t)
B+l

height

BH increment of H in numerical AH

integration

O? increment of time in numerical At

integration

DW increment of W in numerical aw

integration

EEB1 constant 6

ERB2 constant 6
2

ERR3 constant 6
3

EBBft constant o

initial tric'al solution of water head H (t)
o

-C J . 1) particular solution of water head Fp (t)
n+1

~iJ « L ) , J th homogeneous solution of water head h
"

LL = 2, 3. 4] H. (t)
J, n+1

HP (J, L) approximate solution of water head H (t)
n

used for calculation

HSOL(J) new approximate solution of water H (t)
n+1,

head

If JJ ( K, Kl constants
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Table AVI - 1. (cont'd)

Program Explanation - Mathematical
Symbols Symbols

rate

LL, KM, m constants

H rainfall intensity R

i tine t

WII initial trial solution of injec- W (t)

tion rate

'•.'(J, 1) particular solution of injection W" (t)
a*!

W(J, L) j th homogeneous solution of vr? ,(t)
L = 2, 3. ^ 3 'n+1

injection rate

WO initial value of injection rate W (0)
n+1

WP(J, L) approximate solution of injection "«{*)

rate used for calculation

WSOL(J) new approximate solution of W , (t)

injection rate
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Table AVI - 2. Computer pro;;ran for
quaslllnearizatlon technique

DV'.NMCN ::P;~SO,M ,il( *50«4! ,CP< 3:»0»4 1,0*350,4] ,»P( 150 .4! ,W
i (350. '4' .nri.pc".o.<H ..or i. d')".'.) ,hiij i«vi ,c:p(«vi .•.np<4j .:.•!. :pt4";
- ,.-£.\.-: ^ -: .rrt i?.ii ..".bi l ?) ,Af, ( ;? ) >A7( : ?) ,Ac( ( 12) ,:•,= (

• ? , ,-'f. (
- ? ;

?.B'n? 1>.3S!l?) •:;'
( 12 ) ,06(12) >07(l-2) >'D8<12!,hSCLt350) .CSCLI';:

40!.WSCU(3 3l?) »DFL5CL<35Qi
00 .-CKv.AT('iI5]

:0! r'CSV.\7( '..-! -.7)
102 rCO'A"!//, ?.<,-. BMTERATISN* . 13,/ )

103 t CVWM2 :!>,Fo.l,4P'12.6l
10'. -^-at; IFU'.S)
10 5 rCi -'AT

; ?X.j?rtIT ,3X»3H>iG. .4X,?HT= »6X»4MCO0«»8X»5Whl>l J*,7X,2HW
l = .-X.;-iM--.-LT^=,/)

1 05 FCPMA T
S

" r 5. 1 . l-F? 1 .ft
)

• I'.OlNN.Kl ,Ll.,JJ,^M
i i 1 130 i i\.'\ ><1 ,I_L > J J >''"'

' ,

10 1 IHIPi'I ) .CI Pi I ) ,WIP( I ) i5:L;? ( i )

13, 1 01 in IP! I) ,CIP( 1 ) .WIP( I ) lO-tUPI 1 )

i«lBl JHii.CH.Vr'II .OELM
13 • 1 1 ) Hi 1 , C I 1 . W I i . iDE L i I

, lOSSDt.S
'.v- :"-<",.! 0tl1T,S
R".".D( ; »".06 1 ER»1 >£RR?»FRR3,FfiR4
WRT7t 12,106) !:R.R2 »£RS2»£RR3»£RR4
ec?2v»j ."
read ' ': .104 icfxp(m)

/ ' WRi"c(3.; 04)ChXP(M!

.J=\ J

J

t'J , l_ I
*'

rt i

E ti , L 1
c C i

.1 i

H< 1 ,. i=H. '! I )

ci.j ;=c:p< i i

tf ! : , i l«WIP( ! )

3 !>£!.': ,1 > = DsLlP( I I

' 7 i' I - . I 2 ; <
•

' - = '. • 1. 1.

d:.-j-i ,m



Table AVI - 2. (cont'd)

wVlJ=WP(J.Li
DELP1 J- M U ; J-i i

IT- rL.5E.il6S T:: ''''

•••a '•: '-:;•. wt>* !H?U.i-*« i . ^

PAR"; H .?•'.'•'. C i'! J ;1 tHPJJ)«*3 .>+.00'V»:>2-»','hJJ)/ (HI*-! J + -" "L ;'! j j

G-0 T C 'V

i3 p APT 3=0.
j i - r :-' » o

.

•i FKi ' (
''-. vT I-.' . U40*n i J > L )

•-•
C

:-
1
•-» i J )

>•••. b i *u~
'<"

'.
- \-\ . V'» ( up u )**t . 5iy (tti*iJr+D"LV ; J i

»?=< ?.-^----cp: j-- ihPuj »-».^)/ (:-:Pi Jt::-lpiji + ( .;;oc'rS2*.-;^ T j-; .&'<

-1 -• = . 0004 5 2 / ( HP ! J+D.F. LP I j )

'is-
1
.OC04 5 2*WJ

J j-1 .frQeCPT J*<i-.PlJ)**1i,5f/(rSPI J+0PLi»lJ)J*»2
r L : = :

J A3T?-rPl*C I J»L 1-P2»M ( J*L )*f>3*Wt j »L )+P4*0cLJ J»L }J »3T

13^

?*r.< J.l_] tF<1/2*
?iC( jijTr'Ll/?.
? ''.-. UiLJtrWl/J.
=X2=d-l; j,li -r:\: /?.
£? = ; PA .^i? 1-2 . :>40*fj2* ! ripl Jl S*.5 >*!)T

L?" t^A3T2TP2*C2-£2*ri2+P3*W2+P4*C/El.2 i*DT
y. : -0.

M?. - .

-iff-L?/?.
.) -rF''2/?.

. ( J»L )-r\?./?.
<"".-2.~ 4 5"-;*(n?; J) **,5 l*OT ''

<T2-fPl*C3-P2 <'rt3"t-P3*W3Tp<t#06L3 ) *DT

W3*W

"< '" = ' -1
r-

-._; -rF<5/2.-
JtL) +FLV2.
J * _ ; t r '!V 2

.

UtL i J , L ) tFN3/2.
'-:'<' \ -? .i I,' -ri/.*<i:PI j|«.3itO-
;-/ KT2+? ] «C4-P>2*H4+P3*W4,+'Pi*D5 1-4

C.4«C
/.- i . - v.

!>H4
i- :-' 4 -

- ._ L -.

FMAs
"::4:-0.

D8= I "lfl+2.* i FK2+F <•*! ) +FK4 i /6 .

DC = (fU *-/.--; Fl2rf c'i) +FL4J/6.
CW=(FMl+2.*(Fv.2+f-y-3j>p|/,4)/6.
:-:..- F,1t 2.«tF.\2*-,FN3)+fN4)/6
- ' >: .L i=.-ii J ,.L)rOH
C(JtI ,L,-C ; J ,. 1-rOC

)*D1

5 OFL :..-'. .LJ-O'L ( J.L IrjjfL



135

Table AVI - 2. (cont'd)

cc ; l -i. i-ci ; -D
CCi? •! )*C<?3 .L. )

CC I
» •M r I 6-1.1.)

CC (
•'. - !_

I - '
( $ 1 , L )

Ce.(3»L>*C< Kl.L)
CC ( 6 . 1. ) = C ( 1* 1 . 1 1

c c ; /-_)= c ; : a : >u
CC [-6 iL)*C(221»Ll
A ' = .

ft > .

•\ ~ = .

-.- = 0.

|}i =o.

'.; 4 = 0.

'.."J := .MM
A54M)»'CC(M.2t*CC(M'.2 !

P010M=1 ,•••'

A-*: ;,i)=CC .'•'. 5)'*CC:.V >? )

,A
5 c ', ? - .',

<i ;
v

)

do: :••=: .mm

i7(Ml*CO»1»4>*CClM»2 !

-'
i

:

- ) =CC ( M . 2 1 * ! CC I V, , i ) -CcXP (V.) )

LI, = --, A — •"• -.
(

--!
>

'.-.':( -'.;=cc ;;'., 2 \*ZZ\Hil i

-*C ] ":- i >t;l.*'

; MM! -CC! M.3 l*fCt''<t^ )

B2*B2-B*>(MI

'"':k;--'C'" , »4)v-'Cc; x.3j

: ' -,;',=
: ,MM

.": M ! -CC ( M,3 )* [ CO "' » 1 > -CiXP 1 V ) 1

Bi*B4 •B8rwi

p: :k)~< C(v.,2 i*CC{Ms, A )

P;*Dt»D5i.Mi

:.•• ' =-'.cr r
.-'. i«rf(">4 i



Table AVI - 2. (cont'd)
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ii

j>ri yM= ! .MM

33 =33 +i/7-l Ml

&S!M)=CC! '-','( )- (CC ('•',
j l-fi-XPlM; )

,\«ai if£>2*D
,

?-r;-l«'C"?<»A
,?f01*rt?'«-??-A3»iii:*(>}-u3*l;2*A3-

AA5 'AA*B203*i*4«D2*A3*©fti"83*/v2-A3 B-t»2*6<»-b:>«i>2«A'4

A.A2-A". 1, B-»*D3TUl*D4.*A3+0^*U3*A''it-A3*u^«Dl-B3'*l54'*A}
AA3* A3 3. > *r^-r-;*o;>*A4Tr)i*BA*AZ-A4«o^*oi-!iAs;:2*A;
CCOO = -Ai ] /AA '

(0&-AA7/AA
3t..~ = -— 3-/AA

DO"J"V.JJ
HSOl ! J! =:-.( J, 1 l+<"O0O*H( j»?i +WC#H(J >3 )+OFLC*H ( Ji4J
fSS'-U !

=•"( J. ] ; <K?ftC*C : j ,?) *wr*C< J»3)+0HXC*C( J,'4 I

WSOLf J >*•.({ J. 1 l-i-CSPC* '.-.'( J,^>f-WC*W(4.»3>i-D£t-C^V.'(J»4)

: r ; i,ftS [h&Ct('Jl -HP 1 J, 1 ) )-ER"-:i I 32 ,32 , AC

d;,33j=: >jj
:

" .-'
.

r-? : CSCK J)-CP( J. 1 ) )-EfiS2 )34,3A,A0
Tf»TI,\U_'

t> '_o *J s r JJ
!r (A8SIWSCK J ) -WP ( J,l ) 1-FRR3 ) 36,3 6,40
com -

:
'-

D03 ' J s : ., J J

I F iAe?CO = LSCul< J)-D?LPi J,l) ) -ERR4 ) 3 6 , 3 6 , AC
CCNT t

* i, '3

doa:j=j »jj

HP f J » L ) = HSC i. ( J )

c" ; At, ?=csOi.{ ji
US :..»!. f*W5SL<J.)
DELFf J.-Ll «nEt,SSl.< J)

DC6J*] -J.J,?

AJ= J

"-• 'AJ-'. . 1»3T
W -

! V - i 3 , I 3 '; K , J , T , C? ( J , l
! , riP t J , 1 ) , *P i J , 1 )', DELr I J .

GC'f"f? '

-DA*'; ".
•-•/.?

>EL!Jt4)

:
-

( A

.

.-. -
.

- T,CP(J,1 ) ,rii'(. 1 1*P ( .J , I ) .1 )



'j?c.bXo AVI - j. Co:.-put^L- program ?;it/: cearc, tschriic-AG

DIMENSION HP ( 292.4 ! ,hi 2 92.4) »CP (,£92 .4) ,C I 292.4) >'/JP ( 292 > '- , >W
I.Del? (292 .4) ,0El( 292,4) ,HIP ( 4 > ,CIP (4 > >W1P < 4 ) ,DELIP ( 4 i >CEXP(

DIMENSION DLTVX{4»5) . S ( 7 ) . DC VX I 4 . 7 1

COMMON CC.CEXP.Mrt
?:s^a: (515)

13?

2 92.'-,

2; ,CC;

101 FORMAT <- ')

- *R v .". T ( / / , 2X , 1 Oh I TFRAT I GN = . I 3 . / i

FORMAT. (215 »FS.l »4=I»I2. 6)
FORMAT (.IF 10. 3)

o .-ORy.ATi2X.2ri:

ex i iriDELTA=>/)
Sri NO. • 4X.2HT»».6Xt4HCCD=»8X>5HHPIJ»»7X»2rlV.'

( i

ecrxa^ies.i.ifii.o)
FORMAT! 1)15)
FORMAT! 7F1 0.0)
FORMAT i/liri EVALUATION NO =15/)

read : ; , ioo )n,\,k: »ll > J J .mm
ws

:

te : 3. loo; nn .,<: ,ll » jj »mm

read! i >ioi ;h:p( : i .ci?( i i .w:p( : ; .del.;?; i i

WRITE I 3. 101; HIP! I ) ,C:P( I > . WIP( I

)

»DELIP( I

)

read i i . ioi in: ; »c: : .w:

i

,oeli :

'•VR.TE!3 . ICli HI 1 ,Ci I , WI I .DELI I

READ; 1.103 !DT> R

•vRI T£(3. 105 ) DT >R

•READ!lsl07!Gl»G2»G3,G4
>.R I TE ( 3 » 107 ) Gl » G2 »G3 »G4
D022*»*l .MM
RfADi 1»1Ca>CEXP!V.)
''.'R:TEI3,l04)CEXP(M)
D02L=: . L-
D02 J=l > JJ
HP U>L) "Ml
CP(

/
J.L!=CII

DcLP(J.L) DELI

I

ca.n=cip(i
'.-. c. : i=wip; :

D;_; 1»: !=DEL:P( I

)

RFADI 1 .201 iND.'M.NOPT.NDIMPl .MAXNG .METhOD
RrAD-i 1 .202 I'EftRCRtSUPLIM
RE -3, 1,20 2) (DCVXI I » 1 ) » I = 1 , NO I M

>

RE.- 3: 1.202),i (OLTVXf I , J ! . I = 1 , ND I M ) » J = l .NOIXPi j

/.'RITE (3.2CU NDI.X.NOPT .NDIMP1 ,MAXNC .METHOD
- .'

" E ( 3 . 2 04 ) ERROR . S'JPL I M
'•'RITE (3. 204) IDCVX! I , 1 1 , 1 = 1 ,NDI M !

• '-
: e : 3 . 204; (

i

dlTvxi ;

.

j i »i =i .ndimj . j=i .ndimp: )

303.< = 1 ,<:
"-'

i TE! 3 . 102 )<
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DC5J-1 ,\\

£p!j=cp(j.u
KPU=tvV!J,U
dflp:j=D£lp; J,L>

PAR" •5*{HP.IJ1,«*1.5
>*CPIj*tKPIJ)* 1.5- }452*WPIJ)/

I

;lp: j;

3 3 ?AR~1=*

>c?:.
3 ~ =

l PART 1-2. 540*H

!

Jtt

)

*<HPIJ 1***5 )*DT
-1 • 69* I HPI J 1**1. 5 ) / <HPJ J + DEi_P I J

)

>.54*CPIJ«(HPIJ) **.5>/ (HPIJvDELPU)-: .000452
KriPU) #*.: . 5 1 / ( h.p : j+delp i j ) **j

.

:oCA52/:HP:j-rDELP:j)
: .00045 2»wp : j-i . 6 9*cp: j* i h? u :

•-•*!
. 5.) / ( h? r j+c

(?ART2tP:*C< J»L)-P2*H( J'.LN>P3*Wi j,L)tP4*3EL

J-- _f-.t,.«.

C2=c: j.l.

+f.<:/2.
Ft 172.
FM1/2.
J»U+F«UV2.

•

r <2= ; PAR
FL2= .PAR

F.\2 = 0.

"1-2. 54Q*K2*(HPIJ! **.5 )*OT
'2t? 1*C2-P2*H2+P3*W2+P4*0E

H3 = rt ( J , L +FK2/2.
+FL2/2.

*'3 = Wf J»l +FM2/2.
J.D+FN2/2.

FK3= i PAR'
Fi.3=< PAR
r y. 3 = 0.

' 1-2 . S40*H3* ( HP I J ) ** . 5 )*DT
"2+Pl*C3-P2*H3+(»3*W3+P4*l>E

.L)+.-<3/2.
IJ-.D+FL372.

.L>+FH3/2.
>Ep4=OEL( J»Ll-rPN3/2.
: K4* (PART 1-2. 54Q*H4* ( h? I J) **'.5 j*DT
r .-,= (PAST2tP1*C4-?2*H4+P3*W4+P4*DEL4)*D1

5n= ,' r<l-r2.*fS<2+FK3 I +FK4.J/4.
&C=(Fl1+2.*.(FL2+?1.3)+FL4")/6.
avstr^lirZ,*! rM2+Frt3)fFH4)/6'.
33EL = iF;\l+ 2.*; FM2+FH3 >*t-FN4) /i
H I J •'"I » L ) =H ! J jL i -r^n

CIJ-: iL)»CtJ .LiTJC
: ;-l»!.!=W(J>L.I+DW

3FL(J+i .L!»0ELU»La+D£>Ei

cc:2>Li=c;2:»Li
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l-V-'Ie 4,Vi (cont'd)

CCi

:io:
j
.l )

»L )

WRIT::
•.' R I

'

ZMi

GKCHENI
:;3>2C4)
[(3.204)
£(3,

203

L 05

L!

IM.METri :d,v,ax.\c> ERR C-8.SUPL
NDIM+2 ) . IDCVX( I

.

NDI M+21 ,1=
dcvx; :

,

J) eNl.NC I Ml .J=1»NC
< i ! »i=i ,NGPT)

.TVX. DCVX, £,,,«;

HSCL=H(J,1 >+0CVX(l .1 )*K( J,2!tDCVX
CSCL=C( J 1 1 1+DCVX tl .1 )*C(J«2 J+DCVX
W SO L. = W (J . 1 1 +DCVX ; 1 . 1 ) #« t J , 2 ) +DCVX
B£LSCL"OEt(J >1 i+OCVX ! 1 » 1 )*DEL ( J .2

(2.1 *H(J,3)+OCVX
f'2.1 *C!J,3V+DCVX
; 2,i *W( J .3 1+DCVX

(3i ;»4)

:vx!2»i: J > 3 j 1-2-CVX ;

:

HP( J ._:=-? (J ,L 1+G1* f HSCL-HP (J »L ) )

c? ; j ,d =cp i j , l ; tG2# ( cscl-cp t j »>_ n
:? t J >L ) =WP CJ »L >+G3* ( WSCL-WP ! J , L i !

? 3£_? ;.;>;_; =delpij»l)+g**(OElscl.-delP(j»d
;

3"C6 J = l » J J , 4

A J a J
T= ( AJ— 1 . ! *D~

6 WRITE !3»103) .<, J.T.C? ( J,l ) .HP I J,l ) >WP( J»l ]

RETURN
END

5ELPU:



^ablo AVI - 'j. (cont'd)
1^-0

SU3ROUT : NE GKCHEN i MD I M, METHOD .MAXNC .ERROR »SUPL
DIMENSION DLTVXU.5) .CC5) ,DCVXY«>7) >S(7! .CNTRC

110 r DNXAT I /19h This IS NEW METhCD/j
111 FCKMATC/16H THIS IS SIMPLEX/)
:'.2 FOSMAT(/12H TnIS IS BOX/)
113 ,- ."< >; A T < / 16H * « *« WARMING *« * * / )

11- FORMAT! SDH INADEQUATE GIVEN MAX. NO FOR FUNC
115 F0RKAT(47H INCREASING THE MAXNC OR CHANGING Tr

GO TO U16.117.118) .METHOD
116 JMCnrN=l

<CHE.N=1
ALPr.C=1.0
3ETA=0.5

GAMMA=2.0
'/.' R I T £ ; 3 » 1 1 )

I M

»

L

X(Aj
"VX.DCVX.S .,<;<)

EVA^o
IP SIZ

:.\ > j

e/;

.7 Jf.CH.6Nel

,<C-:E\ = 2

AL?HO=1.0
EETA=0 . 5

GAMKA=2.0
WRITE (3,111 )

"N = NDIM
;=i'.3

.12)

CALL SU8NAM<NDIM»J»SUPLlM.S*0CVX»KK!
<=NDIM+JMCHEN

DC 3 J = 2>.<

DC 2 r=l »NDIM
2 DCVXf I .J) =DCVX( 1,1 )+DLTVX< I »J-1

)

CALL SUBNAM(NDfM»J»SUPLIM»S»DCVX»XK)
3 CONTINUE
a m=:<

c-^_ order (m.nm.m.s.dcvx!
DO 5 I»1.KLT1

s C; I ; = i.

CA_L CNTRCD(NDIM»,<LT1,C»CNTRCX>DCVX)
d DO 7 :=:>NDIM
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?c.blc AVI - 3- (cont'd)

7 DCVX( I.Ktl )=C.\TROX< I ) +ALPHA*f CNTRCX t : 1-DCVXI I ,<) !

CALL SUBNAMi NDIV. • J > SUPL IN > S .DC VX > .<.< )

! F1KK-MAXNC) 6.3,36
8 GO TO (9.9.23) .MHTHCO
9 IF(S(K+1)-S"I il )10.10j23

10 DO II I«I.NDIM
11 DCVXI I »;<h-2 ("CNTRCXI I l+GAN'w'.A* ! DCVX ( I.K+1 ;-C\TKCX( I)

)

„ = .<-r2

CALL SU3NAMI NOIM. J .SUPLlMrS . DCVX > KK

i

if (<:s-V.AX\C) 12.12.36
12 GO TC ! 16. 13 ! »KCH£N
li :f ;s(;<-2!-s: i) ) il, ii.,21

14 s;<;=si.<->-2

)

DO 15 L = 1,\DIV.

15 D0VX!L.K}'«DCVX(L«K+2)
'

GO TC 35

16 IF(SC<+2)-S(K*l ) 117,17,21
17 5(K!«S(Kt2)

DC 13 L*1»M0I«
18 &CVX(L.IC)*DCVXtL»K+2)

CA__ ORD£R<M,NDIM»S»DCVXJ
CALL SCHECK.<K»SUJ1»NDIM»5)
Ir<SUM-£RRCR}37.37»19

Iv CVALUc*2*N0IM-l
DO 20 I = 1,;<L71

C(I)=CVALU£
20 CVALV£=2*NDiM-2

Call cntrcd(.\din:»klti»c.cntrcx.dcvx;
AL?.-.A =ALPhC*COErF
GO TO 6

21 s;<;=s;k-i;
do 22 L='l.NDIM

2 2 DCVX!L..<; =DCVX(L.< + 1 i

GO "0 35

I- 3 lF(S(K"<-i>-SiK-l>>21.21.2«
24 :f;£;k-i;-s;<) )25>25 ,27

25 .s;.o=s ;:<-".

)

DO 26 I = 1 » ND I

M

'26 DCVXU ,K)=DCVX( I.K+1

)

27 DO 2c r=l.N0IM
. , ICVXI : ><-rl)-CKTR0X( I )+SETA»(DCVX( I ,.<) -0\TRCX i I 1 !

CALL SUB.\AM [ ND1M» J . SUPLIM»S» DCVX , ,s.\ 1

."-:<<-y.AX,\0) 25,29,36
29 :.-;o::<-ii-£(,o )30.3C .32

3 S(K)»5f-K+l)
DO 31 :-l,,\D:y.

31 DCVX1 I ,:<i -DCVX< I .< + ! !

GO TO 35



'-'able AVI
( eor.t'd.)

1^2

37
3 5

CTC 34 J = 2»K
DC 33 1 = 3 uNOlM
dcvxi : ,ji -;3cvx( :

,

d+dcvxi i-,jj j/2.
CALL SU3N AM ( ND I M» J »SUPL IM, S« DCVX •, K& i

CONTINUE
f r 1 3CK—MAX NO] 35 »33 » 36
CAUL SCHcCKI K»SUM.NDIM»S)
I F(SUM-ERRCR)37.37»4
WR:T£(3.113J
w?i:te;3, ::a;
;vs:te;3,: is)
GO T C 40
DC 3cs . = 1»,nL.T1

C ( I ) = 1

Call CNTRCD(NDlMfKLTl»C»CNTRCX»DCVX)
DC 39 I=l»NdIM
DCVX! I ,X+l )=CNTRCX( I )

CALL SU5\Ay.;.\0I,X,J>SU?LIM»S»DCVX»,<;<)
RETURN
END
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Table AVI - 3. (cont'd)

SI .- ROUT : \ £ SU3.NAM ( .ND I Mi J.SUPU M >S »OCVX » <S.)

DIMENSION S(7) .DCVX! 4 ,7 ! »X ( 3 f.XCPT (4 ) . A II ! 1 2 ) , A I ( 1 2 1 ,CC! 12,4; ,CE-XP

1 .
'. .":

!

COMMON CC.C£XP»l*tM

1 FORMAT! 31H THE OPTIMUM FUNCTION VALUE IS E13.6)

1 r ;^.vVAT E 6£13»6 )

3 FOSMAT i 1014)
IF! J-D4.4.5

4 KC0XT=10
I r\ ,1 = ] u '

~ " f> Ao w • w o

3 .\\ = N\tI
^ ^ -» "— T V "", TV

o ^» J . -.ii\J.r.

x ; :

:

=dcvx( I . j)

7 CONTINUE
T~0*
00991=1 »MM
A I I ( I )= CC; I »i )+X( 1 ) *CC( I »2)f XI 2)*CC< I »

3

|fXt'3)*CC( I ,41-cex?- : I !

A I ! I )=A2 I (

I

)«AII(I>
99 t=~ta; ( i

i

£( I
S aT

IF1U-1 19.9.11
9 oo ic ; = : .ndim

>;o?t ; ; )=x< 1

1

10 CONTINUE
S0?"=T
I- (J-l) 17,17,1?

11 IFiSil )-S! J! ) 12,9,9
12 I ,-;:C<-;CCO.NT! 14,13.13
13 WS!T£«3.1)SCPT

,.^ITE;3,2) (XOPTil ) ,I=1,N0IM)
'

v;RITEi3,3)KX
;

.

'

.nC0NT = (nCONT- _ u

-.4 5?!S( J)-ER«) 15>li,lT
13 ak i Tc I 3 » 1 } o-r

1

WHITE! 3, 2) iXOPT! I ) ,1 = 1. NDIM)
'.-.'

-. I T E C 3 , 3 ) «
E=3=ER3*C.l
GO -0 17

15 SfJ)=SUPLIK
17 RETURN

EnD
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Tabic . :.VI - 3. (coni'd)

SU3RCJT : ,\£ ORDER 1 K»NDIM ,S»&CVX )

dimension S(Y(»ocvxt4,7)

DC 5 I = liiCLTl

IF($<Mtl )-S( J) )2>2»^
2 A = £'(M+1 )

s («*! ;=s( j)

DC 3 L = l»ftlDlM
D=DCVX (L.MtI i

DCVX(_.y,Tl )<=DCVX(L,J !

DCVX [L> J1=S
2 CC.\7I.\UE
- continue
5 continue '.' .

RE T ijS.\

end
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Table AVI - 3. ( cont'd)

Sl'.'XCMT.'.NE CXTRCDi'NDIM.KLTJ »C ,CNTRCX»DCVX

)

.".
.
v ::\s:CN C I 5 ) » CNTRCX < 4 ! .DCVX I 4 >7

)

CSUM=G«
do i !j=i,:<lti

1 CSliM=CSUMi-C i -

)

2C 3 : = i»,\diy.

A X I S s •

DC 2 j=:,klt:
C\7aCX i 1 ) = AXlS-rCiJ}*L>CVX( I »J ,

AX.S-C.\TRCX( t )

2 CONTINUE
CN7ROX1 :

)

bCNTRCXI I 1/CSUM
3 CONTINUE

RETURN '

SUBRCUT : N £ SCHECK ( K .SUM. ND IM, S

)

DIMENSION Si 7)

SAVG=0

.

sc : l«o >;<

; SAVGaS(L)+SAV5
A .< = .<

SAVG=SAVG/AK

DC2 L=1»H
2 SUM=SUMi-<S<L*)-SAVG>*#2

AM,O!.«=N0.IM

SW:«SUM **C.5/A,\DIM
tfETURN
E.O
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NOMENCLATURE

a parameter of a system

a(0) initial condition of a

a. integration constants
o in-)- j.

a* a constant

A area of feedlot

A. ,
, . functionals defined ~3y Eouations (144) through

b amplitude of variation

°i (i=l 2 3) amplitude of variation

3 . .. functionals defined by Equations (143)i \,imx, <:,..«* ) through (151)

c diaiensionless concentration of COD

C concentration of COD

C initial concentration of COD

C (t ) experimental data of COD concentration at t = t.

c
.^+1

complete solution of COD for (n+l)st iteration
h

J,n+1 ^th homogeneous solution of COD concentration

_p
c
rj_T

particular solution of COD concentration

a characteristic COD concentration

D, ,. ._ ... functionals defined by Equations (152)i 11=1, .. »j through (155)

t forcing function of a system

-- water head over weir crest

H - complete solution of water head for (n^-l)st
" -

iteration

._h

° i yjj.1
J-to homogeneous solution of water head
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p
B

1
particular solution of water head

1 a constant

j a constant

3£- ,k 9 ,k„ constants

K. ,K,,K^ constants

L width of feedlot system

a a constant

n a constant

q dinensionless outflow rate

Q out flow rate

Qyt.1
" complete solution of outflow rate for (n+l)st"T iteration

Q. , jth homogeneous solution of outflow rate

Sp , ^articular solution of outflow rate

r dinensionless rainfall intensity

^
s

steady state component of dinensionless rainfall
intensity

H rainfall intensity

H average rainfall intensity

t tine

I characteristic time of the system

Jf dinensionless tank volume

V tank volume

V injection rate of COD

" , complete solution of injection rate for (n+l)st
"

iteration

•

'n
''j

n j
jth homogeneous solution of injection rate

n+1 particular solution of injection rat „

independent variable of a system
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y state of the system

y. jth aomogeneous solution of yJtn+1

y
1

_ . particular solution of y

constant

y (:c ) observation on! y at x = ?..ex j

Greek Letters

a dimensionless parameter of the system

j3 dimensionless parameter of the system

Y dimensionless parameter of the system

6 weir height

8 dimensionless time

a. a constant

5;, constants between and 1

<£ minimising functional in curve fitting

w angular frequency

standard deviation of a normal distribution

yj^ mean of a normal distribution
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II

The cattle industry has undergone radical changes within the

past decade. The water pollution aspects of cattle feedlots have

become of wide concern in the midwest. In the past, however,

little attention was given to manure disposal and pollution

control in the design of animal feeding facilities.

The nature of runoff from cattle feedlots has been studied

by Miner (1) in both quantitative and qualitative aspects. The

considerations of the dynamic characteristics of the system's

behavior are, however, relatively untouched. Independent variables

of the system as a function of time are important in the case of

extended rainfall events. This study emphasizes the dynamic char-

acteristics of the system's behavior. The experimental data

obtained by Kiner are used as source data in this study.

A simplified nonlinear model of the system is first proposed.

An analog computer is used to solve the nonlinear equations.

System parameters and missing initial conditions are recovered by

fitting analog solutions to the experimental data, Correlation of

the system parameter to the rainfall Intensity is discussed.

Dimensional analysis is then employed to obtain the characteristic

dimensionless groups which may be used to investigate the system's

behavior more generally. The unsteady state property o;' rainfall

as a function of time is also taken into account by the computer

ulation technique. The sinusoidal, square-wave and random

functional responses are thus observed. Finally, a general

technique for parameter determination and problem identification

is discussed, namely the quasilinearization technique. Use of

this technique is effective when the number of system parameters



iii

is increased, and convergence exists.

Analog computer simulation was found to be satisfactory in

the study of transient behavior of the system. Based on the

proposed model, the injection rate of the organic natter into the

runoff solution is found to be very approximately linear with

respect to the rainfall intensity. Strangely enough, this injec-

tion rate is somewhat independent of the surface condition of the

feedlot system. Constant rainfall intensity is a good approxima-

tion according to the simulation study by assuming various time-

variant rainfall functions. The scattering of the experimental

data limits the extensive use of the quasilinearlzation technique.

Convergence could not be achieved for several sets of data.

?or a complex physical system, the response of the system

under varied input variables may be the most informative knowledge

to justify a proposed modeling. It is suggested that additional

hydraulic and concentration data be taken systematically and in

a shorter time interval.


