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Abstract

Essays on information acquisition

Weijie Zhong

This dissertation studies information acquisition when the choice of information is fully
flexible. Throughout the dissertation, I consider a theoretical framework where a decision
maker (DM) acquires costly information (signal process) about the payoffs of different al-
ternatives before making a choice. In Chapter 1, I solve a general model where the DM
pays a cost that depends on the rate of uncertainty reduction and discounts delayed pay-
offs. The main finding is that the optimal signal process resembles a Poisson signal —
the signal arrives occasionally according to a Poisson process, and it drives the inferred
posterior belief to jump discretely. The optimal signal is chosen to confirm the DM’s
prior belief of the most promising state. Once seeing the signal, the decision maker is
discretely surer about the state and stops learning immediately. When the signal is oth-
erwise absent, the decision maker becomes gradually less sure about the state, and con-
tinues learning by seeking more precise but less frequently arriving signals. In Chapter 2,
I study the sequential implementation of a target information structure. I characterize
the set of decision time distributions induced by all signal processes that satisfy a per-
period learning capacity constraint on the rate of uncertainty reduction. I find that all
decision time distributions have the same mean, and the maximal and minimal elements
by mean-preserving spread order are exponential distribution and deterministic distri-
bution. The result implies that when the time preference is risk loving (e.g. standard or
hyperbolic discounting), Poisson signal is optimal since it induces the riskiest exponential
decision time distribution. When time preference is risk neutral (e.g. constant delay cost),
all signal processes are equally optimal. In Chapter 3, I relax the assumption on informa-

tion cost by assuming that the measure of signal informativeness is an indirect measure



from sequential minimization. I first show that an indirect information measure is sup-
ported by sequential minimization iff it satisfies: 1) monotonicity in Blackwell order, 2)
sub-additivity in compound experiments and 3) linearity in mixing with no information.
Then I study a dynamic information acquisition problem where the cost of information
depends on an indirect information measure and the delay cost is fixed (the DM is time-
risk neutral). The optimal strategy is to acquire Poisson type signals. The result implies
that when the cost of information is measured by an indirect measure, Poisson signals
are intrinsically cheaper than other signal processes. Chapter 4 introduces a set of useful
technical results on constrained information design that is used to derive the main results

in the first three chapters.
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Introduction

This dissertation considers the following question: what is the optimal way to acquire
information over time to learn about the payoffs of different options? This is a very clas-
sic question that has been extensively studied in the literature starting from Wald (1947)
and Arrow, Blackwell, and Girshick (1949). However, we still do not have a complete
answer to this question, as the conventional approaches have been searching within very
limited types of information, e.g. many models consider only Brownian motion type in-
formation. Typically, papers in the literature study the optimal choice of “when to stop
learning” taken a specific process of information as given, or the optimal control of a
specific parameter of a given parametric family of information processes.

The goal of this dissertation is to answer the question by searching among all con-
ceivable types of information, and completely endogenize the information acquisition
strategy.

The practical motivation for permitting such flexibility in the type of information is
that in practice the process of information acquisition can often be controlled in multi-
ple aspects. The rapid development in statistics, data science and computer science is
making information acquisition increasingly more flexible. For example, nowadays if a
tech company wants to figure out the market’s response to an internal innovation, it can
launch an A-B test on an online marketing platform, fine-tune hundreds of parameters of
the test design and change them adaptively when data arrives. Another example is that
FDA recently published its guidance of adaptive design for clinical trials (see FDA (2018)).
The guidance states that clinical trial designs with adaptive sample size, adaptive dose
selection and response-adaptive randomization might improve the efficiency of the trials.
In these examples, there is no a priori reason why some ad hoc restrictions on the type of
information, e.g. the acquired data is generated from a normal distribution, are satisfied.
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The optimal information acquisition process might generate skewed and fat-tailed data,
which can only be fully covered in a completely flexible information acquisition model.

The theoretical framework for the entire dissertation is a sequential decision making
model building upon the Wald framework. I consider a decision maker who makes a
one-time choice from a set of actions, whose payoffs depend on a state unknown to the
decision maker. The state is initially selected by the nature and remains fixed over time.
At any instant of time, the decision maker chooses whether to stop learning and select an
action or continue learning by choosing nonparametrically an informative signal structure
for the next moment of time. Both delaying the decision and acquiring information are
costly. Of course, hardly any prediction can be made in a model with such generality.
I will proceed by solving this optimization problem, keeping the full generality in the
decision problem and information acquisition, but imposing three different sets of more
restrictive assumptions on the cost of delay and the cost of information in the following
three chapters.

In Chapter 1, entitled “Optimal dynamic information acquisition”, I study the case that
(i) the decision maker discounts delayed utilities in a standard way, (ii) the cost of in-
formation depends on how fast the uncertainty about the unknown state is decreasing
(also known as posterior separability). The goal of Chapter 1 is to fully solve for the op-
timal dynamic information acquisition strategy in a fairly general model with standard
assumptions (discounting and posterior separable cost structure).

There are two main results. The first result states that although the model is non-
parametric and allows fully flexible strategies, the optimal information acquisition strat-
egy modeled as the induced posterior belief process can be restricted to a simple jump-
diffusion process without loss. The second result fully characterizes the optimal belief pro-
cess, which involves only a compensated Poisson jump process almost surely. In other
words, it is optimal to conduct experiments that generate skewed and fat-tailed data.

2



Such experiment can be a stress test against the most promising state: Passing the test
is rare but a pass is a conclusive proof that the state is very likely and a corresponding
action should be adopted immediately. Otherwise, failing the test does not immediately
end the test. I also show that conditional on failures, the future tests have higher difficulty

— passing rate is lower but a pass is more precise.

The analysis in Chapter 1 illustrates that the optimality of Poisson type signal pro-
cesses is a joint implication of the two assumptions in the model: exponential discount-
ing and the information cost structure. Discussion in Appendix A.1.4.1 suggests that the
posterior separability assumptions is essentially a neutrality condition: learning a target
information structure through all equally costly strategies takes the same amount of time
on average. To further understand the roll played by the two assumptions, I generalize

each of them in the following two chapters.

In Chapter 2 on “Time preference and information acquisition”, I keep the assumption on
information cost and generalize the cost of delay to general convex or concave time cost.
To get tractability in the model with further generality, I impose additional restrictions
that (i) the flow cost of information acquisition is fixed (ii) the target decision rule is fixed.
These restrictions shut down the dynamics of target decision rule and flow cost level, and
highlight the implication of information on decision time. The main result of Chapter 2
is that for all convex time cost functions, the optimal dynamic information acquisition
strategy is a Poisson signal process that either implements the target decision rule at a Pois-
son rate or generates no information with large probability. For any concave time cost,
the optimal dynamic information acquisition strategy is a pure accumulation strategy that
only accumulates information but makes no decision until a deterministic date. Noticing
that the neutrality condition makes all information acquisition strategy equally efficient
on average. So the key implication of difference strategies is that the Poisson signal pro-
cess induces decision in a riskiest way on the dimension of time: decision is either taken

3



very early on or there is a long delay. On the contrary, the pure accumulation strategy
minimizes time-risk involved in decision making.

Chapter 2 reveals a key implication of information acquisition: it determines the risk
in the decision making time. Therefore, under the neutrality condition (posterior separa-
bility assumption), all information acquisition strategies induce the same expected deci-
sion time and they only differ in the risks. Then, the preference on information acquisition
strategies is solely pin down by the preference on time risk.

To deepen our understanding about the cost of information, I generalize the assump-
tion on information cost in Chapter 3 on “indirect information measure and dynamic learn-
ing”. I assume that (i) the cost of delay is linear in time (time-risk neutral) and (ii) the
cost of information depends on an indirect information measure. An indirect information
measure takes an arbitrary cost function of information as primitive, and for each signal
structure derives the minimized expected total cost from a sequence of signal structures
that replicates the original signal structure. In other words, the assumption I put on the
cost of information is essentially that (i) I allow within period sequential minimization
of information measure, (ii) there is increasing marginal cost to the information measure
per period. The main result of Chapter 3 is that the optimal signal process is a direct
compound Poisson signal: signal arrives according to a Poisson counting process and the
arrival of signal suggests the optimal action directly, where the optimal action profile can
be solved in an equivalent static rational inattention problem.

The analysis in Chapter 3 suggests that Poisson type information acquisition is not
only the “riskiest” when we restrict the information cost to satisfy neutrality i.e. all learn-
ing strategies to be equally fast, it is also the “fastest” when we relax such restrictions on
information cost, as long as the cost can be justified by within period information measure
minimization.

Chapter 4 introduces a set of useful technical results on constrained information de-

4



sign, which are used to characterize the optimal strategies in Chapters 1 and 3. I character-
ize the set of all combinations of expected value of finite objective functions from design-
ing information. I show that the set is compact, convex and can be implemented by signal
structures with finite support when the state space is finite. Moreover, the set as a corre-
spondence of prior belief is continuous. Based on this result, I develop a concavification
method of Lagrangian that works with general constrained optimization. Other appli-
cations of the results include persuasion of receivers with outside options and screening

using information.



Chapter 1

Optimal dynamic information acquisition




1.1. Introduction

1.1 Introduction

When individuals make decisions, they often have imperfect information about the
payoffs of different alternatives. Therefore, the decision maker (DM) would like to ac-
quire information to learn about the payoffs prior to making a decision. For example,
when comparing new technologies, a firm may not know the profitability of alternative
technologies. The firm often spends a considerable amount of money and time on R&D
to identify the best technology to adopt. One practically important feature of the infor-
mation acquisition process is that the choice of “what to learn” often involves considering
a rich set of salient aspects. In the previous example, when designing the R&D process, a
tirm may choose which technology to test, how much data to collect and analyze, how in-
tensive the testing should be, etc. Other examples include investors designing algorithms
to learn about the returns of different assets, scientists conducting research to investigate

the validity of different hypotheses, etc.

To capture such richness, in this chapter, I consider a DM who can choose “what to
learn” in terms of all possible aspects, as well as “when to stop learning”. The main goal is
to obtain insight into dynamic information acquisition without restriction on what type of
information can be acquired. In contrast to my approach, the classic approach is to focus
on one aspect while leaving all other aspects exogenously fixed. The seminal works by
Wald (1947) and Arrow, Blackwell, and Girshick (1949) study the choice of “when to stop”
in a stopping problem with all aspects of the learning process being exogenous. Building
upon the Wald framework, Moscarini and Smith (2001) endogenize one aspect of learn-
ing, the precision, by allowing the DM to control a precision parameter of a Gaussian signal
process. Che and Mierendorff (2016) endogenize another aspect of learning, the direction,
by allowing the DM to allocate limited attention to different news sources, each biased in
a different direction. Here, by allowing all learning aspects to be endogenous, the current
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Chapter 1. Optimal dynamic information acquisition

chapter contributes by studying which learning aspect(s) is(are) endogenously relevant
for the DM and how the optimal strategy is characterized in terms of these aspects.

In the model, the DM is to choose from a set of actions, whose payoffs depend on
a state unknown to the DM. The state is initially selected by nature and remains fixed
over time. At any instant of time, the DM chooses whether to stop learning and select
an action or to continue learning by nonparametrically choosing the evolution of the belief
process. The choice of a nonparametric belief process models the choice of a dynamic
information acquisition strategy with no restriction on any aspect. I introduce two main
economic assumptions. (i) The DM discounts delayed payoffs. (ii) Learning incurs a flow
cost, which depends convexly on how fast the uncertainty about the unknown state is
decreasing. The main model is formulated as a stochastic control-stopping problem in
continuous time.

The main result shows that the optimal strategy is contained in a simple family char-
acterized by a few endogenously relevant aspects (Theorem 1.1) and fully solves for the
optimal strategy in these aspects (Theorems 1.2 and 1.3). Specifically, the first result states
that although the model is nonparametric and allows for fully flexible strategies, the belief
process can be restricted to a simple jump-diffusion process without loss. In other words, a
combination of a Poisson signal—a rare and substantial breakthrough that causes a jump in
beliet—and a Gaussian signal—frequent and coarse evidence that drives belief diffusion—
is endogenously optimal. A jump-diffusion belief process is characterized by four param-
eters: the direction, size and arrival rate of the jump, and the flow variance of the diffusion.
The four parameters represent four key aspects of learning: the direction, precision and
frequency of the Poisson signal, and the precision of the Gaussian signal. The first result
suggests that the DM need consider only the trade-offs among these aspects; any other
aspect is irrelevant for information acquisition.

The second result fully characterizes the parameters of the optimal belief process. I

8



1.1. Introduction

tind that the Poisson signal strictly dominates the Gaussian signal almost surely, i.e. no

resources should ever be invested in acquiring the Gaussian signal. The optimal Poisson

signal satisfies the following qualitative properties in terms of the three aspects and the

stopping time:

e Direction: The optimal direction of learning is confirmatory— the arrival of a Poisson
signal induces the belief to jump toward the state that the DM currently finds to be
most likely. As an implication of Bayes rule, the absence of a signal causes the belief
to drift gradually towards the opposite direction, namely, the DM gradually becomes

less certain about the state.

Precision: The optimal signal precision is negatively related to the continuation value.
Therefore, when the DM is less certain about the state, the corresponding continuation

value is lower, which leads the DM to seek a more precise Poisson signal.

Frequency: The optimal signal frequency is positively related to the continuation value.
In contrast to precision, the optimal signal frequency decreases when the DM is less

certain.

Stopping time: The optimal time to stop learning is immediately after the arrival of
the Poisson signal. Therefore, the breakthrough happens only once at the optimum.
Then, the DM stops learning and chooses an optimal action based on the acquired

information.

The optimal strategy is very heuristic and easy to implement. In the previous example,

the firm can choose the technology to test, as well as the test precision and frequency. As

a result, the optimal strategy is implementable. The optimal R&D process involves test-

ing the most promising technology. The optimal test is designed to be difficult to pass,

so good news comes infrequently, as in a Poisson process. A successful test confirms

9



Chapter 1. Optimal dynamic information acquisition

the firm’s prior conjecture that the technology is indeed good and the firm immediately
adopts the technology. Otherwise, the firm continues the R&D process. No good news
is bad news, so the firm becomes more pessimistic about the technology and revises the
choice of the most promising technology accordingly. The future tests involve higher
passing thresholds and lower testing frequency. As illustrated by the example, although
this chapter studies a benchmark with fully flexible information acquisition, the optimal
strategy applies to more general settings where information acquisition is not fully flexi-

ble, but involves these salient aspects.

The main intuition behind the optimal strategy is a novel precision-frequency trade-off.
Consider a thought experiment of choosing an optimal Poisson signal with fixed direc-
tion and cost level. The remaining two parameters—precision and frequency—are pinned
down by the marginal rate of substitution between them. Importantly, the trade-off de-
pends on the continuation value. Due to discounting, when the continuation value is
higher, the DM loses more from delaying the decision. Therefore, the DM finds it op-
timal to acquire a signal more frequently at the cost of lowering the precision to avoid
costly delay. In other words, the marginal rate of substitution of frequency for precision
is increasing in the continuation value. As a result, frequency (precision) is positively

(negatively) related to the continuation value.

In addition to precision and frequency, this intuition also explains other aspects. First,
the Gaussian signal is equivalent to a special Poisson signal with close to zero precision
and infinite frequency. The previous intuition implies that infinite frequency is generally
suboptimal except when the continuation value is so high that the DM would like to sac-
rifice almost all signal precision. As a result, the Gaussian signal is strictly suboptimal
except for the non-generic stopping boundaries. Second, for any fixed learning direction,
Bayes rule implies that the absence of a signal pushes belief away from the target direc-
tion; to ensure the same level of decision quality the signal precision should increase over
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1.1. Introduction

time to offset the belief change. By acquiring a confirmatory signal, the DM becomes more
pessimistic and, consequently, more patient over time. Therefore she can reconcile both
incentives through reducing the signal frequency and increasing the signal precision. By
contrast, if the DM acquires a contradictory signal, she becomes more impatient over time
and prefers the frequency to be increasing. The two incentives become incongruent, thus,

learning in a confirmatory way is optimal.

This intuition suggests that the crucial assumption for the optimal strategy is dis-
counting — discounting drives the key precision-frequency trade-off. This observation
highlights the deep connection between dynamic information acquisition and the DM’s
attitude toward time-risk. Discounting implies that the DM is risk loving toward payoffs
with uncertain resolution time, as the exponential discounting function is convex. Intu-
itively, the riskiest information acquisition strategy is a “greedy strategy” that front-loads
the probability of success as much as possible, at the cost of a high probability of long
delays. The confirmatory Poisson learning strategy in this chapter exactly resembles a
greedy strategy. The key property of the strategy is that all resources are used in verify-
ing the conjectured state directly and no intermediate step occurs before a breakthrough.
By contrast, alternative strategies, such as Gaussian learning and contradictory Poisson
learning, involve accumulating substantial intermediate evidence to conclude a success.
The intermediate evidence in fact hedges the time risk: the DM sacrifices the possibility

of immediate success to accelerate future learning.

Extensions of the main model further illustrate the role played by each key assump-
tion. The first extension replaces discounting with a fixed flow delay cost. In this spe-
cial case, all dynamic learning strategies are equally optimal, as the crucial precision-
frequency trade-off becomes value independent. This extension also illustrates that all
learning strategies in the model are equally “fast” on average and differ only in “riski-
ness”. This result further illustrates that the preference for time risk pins down the opti-
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Chapter 1. Optimal dynamic information acquisition

mal strategy. Second, I consider general cost structures and find that the (strict) optimality
of a Poisson signal over a Gaussian signal is surprisingly robust: it requires a minimal con-
tinuity assumption. Third, I study an extension where the flow cost depends linearly on
the uncertain reduction speed. In this special case, learning has a constant return to signal
frequency. As a result, the optimal strategy is to learn infinitely fast, that is, acquire all

information at period zero.

This chapter provides rich implications by allowing learning to be flexible in all as-
pects. First, the main results highlight the optimality of the Poisson signal compared to
the widely adopted diffusion models. Specifically, the diffusion models are shown to be
justified only under the lack of discounting. Second, the characterization of the optimal
strategy unifies and clarifies insights from some existing results. In these results, although
the DM is limited in her learning strategy, she actually implements the flexible optimum
whenever feasible and approximates the flexible optimum when infeasible. Moscarini
and Smith (2001)’s insight that the “intensity” of experimentation increases in continu-
ation value carries over to my analysis. I further unpack the design of experiment and
show that higher “intensity” contributes to faster signal arrival but lower signal precision.
Che and Mierendorff (2016) make same prediction about the learning direction as that of
my analysis when the DM is uncertain about the state. But they predict the opposite
when the DM is more certain about the state— the DM looks for a signal contradicting the
prior belief. I clarify that the contradictory signal is an approximation of a high-frequency

confirmatory signal when the DM is constrained in increasing the signal frequency.

The rest of this chapter is structured as follows. The related literature is reviewed in
Section 1.2. The main continuous-time model and illustrative examples are introduced
in Section 1.3. The dynamic programming principle and the corresponding Hamilton-
Jacobi-Bellman (HJB) equation are introduced in Section 1.4.  analyze an auxiliary discrete-
time problem and verify the HJB equation in Section 1.5. Section 1.6 fully characterizes
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the optimal strategy and illustrates the intuition behind the result. In Section 1.7 I discuss
the key assumptions used in the model. Section 1.8 explores the implications of the main
model on response time in stochastic choice and on a firm’s innovation. Further discus-
sions of other assumptions are presented in Appendix A.1, and key proofs are provided

in Appendix A.2. All the remaining proofs are relegated to Appendix B.

1.2 Related literature

1.2.1 Dynamic information acquisition

This chapter is closely related to the literature about acquiring information in a dy-
namic way to facilitate decision making. The earliest works focus on the duration of
learning. Wald (1947) and Arrow, Blackwell, and Girshick (1949) analyze a stopping prob-
lem where the DM controls the decision time and action choice given exogenous informa-
tion. Moscarini and Smith (2001) extend the Wald model by allowing the DM to control
the precision of a Gaussian signal. A similar Gaussian learning framework is used as the
learning-theoretic foundation for the drift-diffusion model (DDM) by Fudenberg, Strack,
and Strzalecki (2018). Following a different route, Che and Mierendorff (2016), Mayskaya
(2016) and Liang, Mu, and Syrgkanis (2017) study the sequential choice of information
sources, each of which is prescribed exogenously.

Other frameworks of dynamic information acquisition include sequential search mod-
els (Weitzman (1979), Callander (2011), Klabjan, Olszewski, and Wolinsky (2014), Ke and
Villas-Boas (2016) and Doval (2018)) and multi-arm bandit models (Gittins (1974), Weber
et al. (1992), Bergemann and Valiméaki (1996) and Bolton and Harris (1999)). These frame-
works are quite different from my information acquisition model. However, the forms
of information in these models are also exogenously prescribed, and the DM has control
over only whether to reveal each option.

Compared to the canonical approaches, the key new feature of my framework is that
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Chapter 1. Optimal dynamic information acquisition

the DM can design the information generating process nonparametrically. In a similar
vein to this chapter, two concurrent papers Steiner, Stewart, and Matéjka (2017) and
Hébert and Woodford (2016) model dynamic information acquisition nonparametrically;
however they focus on other implications of learning by abstracting from sequentially
smoothing learning. In Steiner, Stewart, and Maté&jka (2017) the linear flow cost assump-
tion makes it optimal to learn instantaneously, whereas in Hébert and Woodford (2016),
the no-discounting assumption makes all dynamic learning strategies essentially equiva-
lent.! By contrast, the main focus of this chapter is on characterizing the optimal way to
smooth learning. I analyze the setups of these two papers as special cases in Sections 1.7.1
and 1.7.3.

A main result of this chapter is the endogenous optimality of Poisson signals. Sec-
tion 1.7.2 shows a more general result: a Poisson signal dominates a Gaussian signal for
generic cost functions that are continuous in the signal structure. This result justifies Pois-
son learning models, which are used in a wide range of problems, e.g., Keller, Rady, and
Cripps (2005), Keller and Rady (2010), Che and Mierendorff (2016), and Mayskaya (2016);

see also a survey by Horner and Skrzypacz (2016).
1.2.2  Rational inattention

This chapter is a dynamic extension of the static rational inattention (RI) models,
which consider the flexible choice of information. The entropy-based RI framework is
tirst introduced in Sims (2003). Matéjka and McKay (2014) study the flexible information
acquisition problem using an entropy-based informativeness measure and justify a gen-

eralized logit decision rule. Caplin and Dean (2015) take an axiomatization approach and

1Steiner, Stewart, and Matéjka (2017) assume the decision problem to be history dependent. Therefore,
non-trivial dynamics remain in the optimal signal process. However, the dynamics are a results of the his-
tory dependence of the decision problem rather than the incentive to smooth information. In the dynamic
learning foundation of Hébert and Woodford (2016), all signal processes are equally optimal because of a
key no-discount assumption. They select a Gaussian process exogenously to justify a neighbourhood-based
static information cost structure.
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characterize decision rules that can be rationalized by an RI model. On the other hand,
this chapter also serves as a foundation for RI models, as it characterizes, in detail, how
the reduced-form decision rule is supported by acquiring information dynamically. In
several limiting cases, my model completely reduces to a standard RI model.

The RI framework is widely used in models with strategic interactions (Matéjka and
McKay (2012), Yang (2015a), Yang (2015b), Matéjka (2015), Denti (2015), etc). My work
is different from these works as no strategic interaction is considered and the focus is on
repeated learning. Despite the strategic component, Ravid (2018) also studies a dynamic
model with repeated learning. In Ravid (2018), an RI buyer learns sequentially about the
offers from a seller and the value of the object being traded. Similar to the DM in my
model, the buyer systematically delays trading in equilibrium, and the stochastic delay
resembles the arrival of a Poisson process.? However, in Ravid (2018), the delay is an
equilibrium property that ensures the buyer’s strategy is responsive to off-path offers. By
contrast, the stochastic delay in my work is a property of an optimally smoothed learning
process.

I use the reduction speed of uncertainty as a measure of the amount of information
acquired per unit time. This measure captures the posterior separability from Caplin and
Dean (2013). The posterior separable measure nests mutual information (introduced in
Shannon (1948)) as a special case and is widely used in Gentzkow and Kamenica (2014),
Clark (2016), Matyskova (2018), Rappoport and Somma (2017), etc. I provide an axiom-
atization for posterior separability based on the chain rule in Appendix A.1.4.1. Caplin,
Dean, and Leahy (2017) axiomatize (uniform) posterior separability based on behavior
data. Morris and Strack (2017) provide a dynamic foundation for posterior separability

based on implementing an information structure with Gaussian learning. In addition to

2Precisely speaking, in the analysis of Proposition 2, Ravid (2018) shows that when quality is determin-
istic, the delay time distribution is exponential, which is the same as the stopping time induced by a Poisson
signal process.
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axiomatizing posterior separability, Frankel and Kamenica (2018) relates to my work in
another interesting way. The valid measure of information defined in their paper coincides
with the uncertainty reduction speed per unit arrival rate of a Poisson signal derived in

this chapter.
1.2.3  Information design

In this chapter, I use a belief-based approach to model the choice of information.
This approach is widely used for studying Bayesian persuasion models (Kamenica and
Gentzkow (2011), Ely (2017), Mathevet, Perego, and Taneva (2017), etc.). An impor-
tant methodology in this literature is the concavification method developed in Aumann,
Maschler, and Stearns (1995) (based on Carathéodory’s theorem). An alternative ap-
proach to model information is the direct signal approach * used in both information
design problems, such as Bergemann and Morris (2017), and rational inattention prob-
lems. However, neither of the two methods applies to my dynamic information acqui-
sition problem. I take the belief-based approach as in Bayesian persuasion models, but

utilize a generalized concavification method developed in Chapter 4.
1.2.4  Stochastic control

Methodologically, this chapter is closely related to the theory of continuous-time stochas-
tic control. The early theories study control processes measurable to the natural filtration
of Brownian motion (see Fleming (1969) for a survey). The application of Bellman (1957)’s
dynamic programming principle leads to the HJB equation characterization of the value
function. On the contrary, the main stochastic control problem of this chapter has general
martingale control process, which is a variant of the (semi)martingale models of stochastic

control studied in Davis (1979), Boel and Kohlmann (1980), Striebel (1984), etc. However,

3This approach applies to settings where without loss of generality we can restrict the problem to con-
sidering only signals that are direct recommendations of actions.
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none of the existing theories are sufficiently general to nest the stochastic control problem
studied in this chapter. I introduce an indirect method that proves a verification theorem

for a tractable HJB equation.

1.3 Model setup

The main model is a continuous-time stochastic control problem. A DM chooses an
irreversible action at an endogenous decision time. The DM can control the information

received before the decision time in a flexible manner, bearing a cost on information.

Decision problem: Time t € [0, +o0). The DM discounts the delayed utility with rate
p > 0. The DM is a vINM expected utility maximizer with Bernoulli utility associated with
action-state pair (a,x) € A x X at time ¢ being e *'u(a, x). Both the action space A and the
state space X are finite. The DM holds a prior belief 4 € A(X) about the state. Define

F(v) = max,ea Ev[u(a, x)] given belief v e A(X).

Information: 1 model information using a belief-based approach. A distribution of
posterior beliefs is induced by an information structure according to Bayes rule iff the
expectation of posterior beliefs is equal to the prior. Hence, in a static environment the
choice of information can be equivalently formulated as the choice of a distribution of
posterior beliefs (see Kamenica and Gentzkow (2011) for example). Extending this for-
mulation to the dynamic environment studied here, I assume that the DM chooses the
entire posterior belief process (y;) in a nonparametric way. Now Bayes’ rule should be
satisfied at every instant of time—Vs > ¢, the expectation of i is ;. Thus, I restrict (uy)
to be a martingale, with (F}) as its natural filtration. A formal justification that choosing
a belief martingale is equivalent to choosing a dynamic information structure is provided
in Appendix A.1.4.
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It is useful to define the following operator £; for any (y;) and f : A(X) — R:

By definition, £;f captures the expected speed at which f(y;) increases. Let Z(f) be the

cof ) = £| L

domain of (y;) on which L; f(y;) is well defined.* For well-behaved Markov process {})
and C® smooth f, Lf is the standard infinitesimal generator (subscript t omitted).
Cost of information: I assume that the flow cost of information depends on how fast

the information reduces uncertainty. The flow cost of information is C(I;), where:
Assumption 1.1. I; = —L;H(u;), where H : A(X) — R is concave and continuous.

I call H an uncertainty measure—because H is concave iff E[H(u)] captures the Black-
well order on the belief distribution. By Assumption 1.1, I; is the speed at which un-
certainty falls when the belief updates. I call I; the (flow) informativeness measure. One
example of H is the entropy function H(u) = — > uxlog(px). Revelation of information
reduces entropy; hence, the entropy reduction speed is a natural measure of the amount
information. Assumption 1.1 is the main technical assumption in my analysis. I general-
ize this assumption in Section 1.7.2. For further discussions, see Appendix A.1.4, where
I show that it is the continuous-time analog of “posterior separability” and provide an
axiom for posterior separability.

Stochastic control: The DM solves the following stochastic control problem:

V()= sup Ele_pfF(yT)—fTe_ptC(It)dt] (1.1)
(uryeM,t 0

“Formally, (u;y € 2(f) if the uniform limit (w.r.t t) exists almost surely. Let 2 = Nfeciax) 2(f)- 2

contains all Feller processes, whose transition kernels are stochastically continuous w.r.t. t and continuous
w.r.t. state y. However, & is much more general than Feller processes as it allows the transition kernel to
be discontinuous in state y.
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where M is the set of all martingales (y;) in 2(H) with cadlag® path and satisfying po = y,
and 7 is a (F;)-measurable stopping time.®

The objective function in Equation (1.1) is fairly standard in canonical information ac-
quisition problems. The DM acquires information that affects (;) and chooses stopping
time T to maximize the expected stopping payoff E[e ?TF(i)] less the total information
cost E[§ e *'C(I;)dt]. The novel feature is that the DM is allowed to fully control (i), in
contrast to canonical models, where the DM controls only a few parameters determining
(ut). The nonparametric control of the belief process exactly captures the flexible design
of information by the DM.

I make the following assumption on the cost function C(I) to generate incentive to

smooth learning over time.

Assumption 1.2. C : Rt — R™ is weakly increasing, convex and continuous. Ilim C'(I) = 0.
—00

The increasing and continuous cost function assumption is standard. The convex-
ity of C(I) and the condition lim C'(I) = o give the DM strict incentive to smooth the
acquisition of information. Given Assumption 1.2, if the DM acquires all information im-
mediately then uncertainty falls at infinite speed and the marginal cost C’(I) is infinite,
hence suboptimal.” I solve a special case violating Assumption 1.2 in Section 1.7.3, where
I assume C to be linear. In this case the optimal strategy is to acquire all information at

t = 0 (a static strategy).

Scadlag: p; : t — A(X) is right continuous with left limits. Note that assuming martingale (i) being
cadlag can be weakened to assuming (F;) being right continuous (see the martingale modification theorem
in Lowther (2009)).

®] postpone the formal definition of integrability in Equation (1.1) to Section 1.5.1. For now, assume that
the integral is well defined for all admissible strategies. Further discussions in Remark A.2 provide a formal
justification that ignoring the integrability is innocuous.

7 A weaker sufficient condition can guarantee information smoothing: sup; AI — C(I) > psup F, where
A = lim;_, ., @ This condition explicitly states that when I is sufficiently large, C is sufficiently convex
that the utility gain from smoothing information dominates the loss from waiting longer. All the following

theorems in this chapter are proved under this weaker condition.
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In Example 1.1, I present a few examples of canonical Wald-type sequential learning
models, each of which is a variant of Equation (1.1) with additional constraints on the set
of admissible belief processes. Example 1.1 first illustrates how different learning tech-
nologies can be systematically compared under the same framework with an entropy-
based cost function. The comparison also illustrates why a fully flexible learning frame-

work is useful.

Example 1.1. Let the state be binary X = {/, r}. The prior belief of state x = ris p € (0,1).
A = {L, R}. The DM wants to choose an action that matches the state: u(L,[) = u(R,r) =
1, u(L,r) = u(R,I) = —1. The discount rate p = 1, H is the standard entropy function:
H(u) = —plog(u) — (1 — p)log(1 — u), and the information cost C(I) = %12.

I consider three simple heuristic learning technologies: Gaussian learning, perfectly
revealing breakthroughs and partially revealing evidence. A DM who uses a specific
learning technology is modeled by restricting the admissible control set M to include
only the corresponding family of processes. In each case, the DM controls a parameter

that represents one aspect of learning.

1. Gaussian learning: The signal follows a Brownian motion whose drift is the true state,
and whose variance is controlled by the DM. Therefore, the posterior belief follows a

diffusion process (Bolton and Harris (1999)), so the set of admissible controls are:

Mp = {{pp)|dpt = ordWi}

The DM controls the signal precision (c}). According to Ito’s lemma, [; = — %UtzH "(e) =

—2%((?2— mE This problem is studied in Moscarini and Smith (2001)8, where the value func-

8With “belief elasticity” defined as & () = u(1 — p) in my model.
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tion is characterized by HJB:

1 1 2 2
oVp(u) = sup 5 2Vh(p) — 5 (m)

>0

The solution Vp(p) is plotted as the blue curve in Figure 1.1. The shaded region is the

experimentation region and the non-shaded region is the stopping region.
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0.8} 0.8}
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0.2¢
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Figure 1.1: Incremental information Figure 1.2: Breakthroughs

2. Breakthroughs: The DM observes breakthroughs that perfectly reveal the true state with
arrival rate A;. Then, belief follows a Poisson process that jumps to 1 if the state is ¥ and

to 0 if the state is [. The set of admissible control is:

Mp = {<.ut>’dﬂt = (1= p)dJ} (Apae) + (0 — pr)dJP (Ae(1 — ]/‘t))}

(Ji(-)) are independent Poisson counting processes with Poisson rate (-). The DM con-
trols the signal frequency (A;). The Entropy reduction speed is AH(u). The H]B equa-

tion is as follows:

oVe(p) = sup A(PE() + (1= u)F(0) — Vp(p)) — %(AH(F))Z

The solution Vp is plotted as the red curve in Figure 1.2. The two arrows show the belief
jumps induced by breakthroughs at .
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3. Partially revealing evidence: The DM allocates one unit of total attention to two news
sources, each revealing one state with arrival rate v = 2. Then belief follows a compen-

sated Poisson process, and the set of admissible belief processes is:

dpe =(1 — pe) (d]} (pype) — apypedt)
Mp = 4 {pt)
+(0— ) (dJ2((1 = )y (1= pae)) = (1 — )y (1 — ) dt)

{Ji(-)) are independent Poisson counting processes with Poisson rate (-). The DM con-
trols («;), the attention allocated to the signal revealing state r. This control process is
identical to that in Che and Mierendorff (2016). Applying their analysis, optimal a; is a

bang-bang solution, and the HJB equation is:

V() =max{ e (F(1)~Vilg)~ Vh(30) (1))~ (v (HL (o) + H () (1))
1

2
v (1=) (F(O) =V (1) =Vp () (0—p1)) =5 (7v(1=p) (H () + H' (1) (0—p))) }
The solution Vp is plotted as the black curve in Figure 1.3. The optimal strategy is qual-
itatively the same as in Che and Mierendorff (2016). In the deep gray region, optimal
learning direction is confirmatory: the arrival of news reveals the a priori more likely
state (represented by solid arrows). In the light gray region, optimal learning direction

is contradictory: the arrival of news reveals the a priori less likely state (dashed arrows).

-
Figure 1.3: Partially revealing evidence Figure 1.4: Comparison
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In this example, the three learning technologies are analyzed for the same underlying
decision problem and the same entropy cost function. Therefore, the utilities are directly
comparable. I plot all three value functions in Figure 1.4 and use differently colored re-
gions to illustrate the order of utility. Each color corresponds to a learning strategy be-
ing optimal: blue—Gaussian learning, red—breakthroughs, and gray—confirmatory evi-
dence.® As shown in Figure 1.4, allowing the DM to use a rich set of strategies improves
the decision-making quality.

More interestingly, there appears to be a pattern when optimizing in different aspects.
When the prior belief is highly uncertain, a fully revealing Poisson signal that can bring
the DM directly to a conclusion is optimal. When the prior belief is quite uncertain but
asymmetrically in favor of one state, allocating attention to the more promising direction
becomes optimal. When the prior belief is very certain, an imprecise but frequent Gaus-
sian signal becomes optimal. The formal analysis for fully flexible information acquisition
in Section 1.6 illustrates that this pattern is systematic: the optimal direction, precision
and frequency of learning are exactly the relevant aspects and are closely related to the

location of the prior belief.
1.3.1 Motivation for a flexible model

Example 1.1 implies that single-aspect models are insufficient for modeling a dynamic
information acquisition problem with a rich strategy set. For instance, the model consid-
ering only partially revealing evidence predicts that seeking contradictory evidence is
generally optimal when the belief is uncertain. However, further analysis shows that
this prediction is misleading when Gaussian signals are also feasible. Studying a model
where information acquisition is flexible in all aspects enables us to obtain insights about

information acquisition without interference from any ad hoc restriction. Such insights

In this example, whenever contradictory learning dominates confirmatory learning, contradictory
learning is dominated by Gaussian learning, thus, contradictory learning is not optimal in any region.
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include which aspect(s) is(are) endogenously salient for information acquisition and how

each of these aspects is determined by the DM’s incentives.

Although the results are derived in a fully flexible model, they apply to much more
general settings where information acquisition is not flexible in all aspects. First, all re-
sults directly apply to all settings where information acquisition is flexible in those en-
dogenously salient aspects, as all other aspects are redundant for implementing the un-
constrained optimum. Second, even for settings where some of the relevant aspects are
constrained, the intuitions from the flexible model identify the DM’s most important in-
centive and how the hypothetically ideal strategy might be approximated by adjusting
other aspects. In fact, the analysis of the flexible model in Sections 1.4 and 1.6 shows that
the set of endogenously salient aspects is quite small, and the optimal strategy satisfies
very simple qualitative properties in these aspects. Therefore, the findings of this chapter

are useful in a very wide range of settings.

1.4 Dynamic programming and HJB equation

Solving Equation (1.1) is not an easy task due to the abstract strategy space. To the
best of my knowledge, no general theory applicable to this stochastic control problem
exists. The most closely related problems are studied in a set of remarkable papers on the
martingale method in stochastic control (Davis (1979),Boel and Kohlmann (1980),Striebel
(1984)). These papers introduce abstract formulations of stochastic control problems with
general (semi)martingale control processes. The problems have finite horizon and specific

objective functions; hence, they do not nest Equation (1.1).

Nevertheless, it is useful to introduce the general dynamic programming principle
and HJB characterization. On the basis of the intuition of dynamic programming, the
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conjecture that V (y;) satisfies the following HJB is reasonable:

max { F(ue) = V(pe), —pV(ue) +sup{ LeV(pr) —C(-LeH(ue)) }} =0  (12)
—_—— ) — duy —_—— —_———
stopping value discount continuation value control cost

HJB Equation (1.2) is conceptually the same as the standard H]B equation. Recall the def-
inition for operator £, £;V () is the flow utility gain from continuing. The exact form
of £;V and L;H depends on the probability space, the filtration and the control process
in the neighbourhood of t (which are summarized by the symbol dy;). Therefore, Equa-
tion (1.2) essentially states the dynamic programming principle: at any instance when the
control is chosen optimally, either stopping is optimal (the first term is 0) or continuing is
optimal and the net continuation gain equals the loss from discounting (the second term

is 0).

For a simple example, let M be a family of Markov jump-diffusion belief processes,

characterized by the following SDE:

dpr = (v(pe) — pe)(dJi(p(pe)) — p(p)dt) + - o (pr)dWi (1.3)
o ~- J/ E’_j
compensated Poisson part Gaussian diffusion

where (p,v,0) : ur — R* ® A(Supp(u)) ® RISWPPHI-1 are control parameters, J;(-) is a
Poisson counting process with Poisson rate (-), and W; is a standard one-dimensional
Wiener process. Note that this example also nests all three families of strategies in Ex-
ample 1.1 as special cases!’. Itd’s lemma implies an explicit form for the infinitesimal

generator:

19The admissible control sets in the second and third cases in Example 1.1 are not exactly nested in
Equation (1.3). However, they can be viewed as mixed strategies of pure Poisson-jump processes defined
by Equation {1.3).
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1
LV(u) = p(V(v) = V() = VV () (v =) + S0 HV(u)o
- ~- - ~———
flow value of Poisson jump & drift flow value of diffusion

where V and H are the gradient and Hessian operators, respectively. By replacing £ in
Equation (1.2) with its explicit expression, we obtain a parametrized HJB Equation (1.4):

pV(ﬂ)=maX{pF (1), sup P(V(V)—V(W—VV(ﬂ)(v—y)H%UTHVW)U (1.4)

pv.o

(PG~ HW)+ VG -0) - 30 HH o ) |

On the other hand, when M is the jump-diffusion family, the jump-diffusion control
theory (see textbooks, e.g., Hanson (2007)) provides a verification theorem that proves that
the value function for Equation (1.1) is exactly characterized by H]B Equation (1.4).

This simple example illustrates how a specific stochastic control problem relates to an
HJB equation. Now, consider the general problem Equation (1.2) without any restriction
on the admissible belief process. First, we require a verification theorem stating that the
HJB Equation (1.2) characterizes the solution of Equation (1.1). Second, a representation
theorem for the abstract operator £; is also necessary to make Equation (1.2) practically
tractable. The existing theories on martingale methods have little power for both tasks.!!
In Theorem 1.1, I achieve both goals by showing that the solution of Equation (1.1) is

characterized by a simple parametric HJB equation:

Theorem 1.1. Assume H is strictly concave and C?) smooth on interior beliefs in A(X), As-

sumptions 1.1 and 1.2 are satisfied. Let V() € CVA(X) be a solution'? to HJB Equation (1.4);

UFirst, the existing martingale methods verify the HJB equation for different sets of problems that do not
cover this specific problem. Moreover, the martingale method only states the existence of such £;V (for
example theorem 4.3.1 of Boel and Kohlmann (1980)) and does not provide an explicit representation. This
issue is considered to be the main drawback of the martingale method (see discussions in Davis (1979)).

12The C(M) solution to the second-order ODE is not well defined. To be precise, V is a viscosity solution
(see Crandall, Ishii, and Lions (1992)). In the viscosity solution, cTHV (u)c is replaced by D?*V (u,0)||o||?,
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then V (u) solves Equation (1.1).

Theorem 1.1 first states that V(u) is characterized by a HJB equation. More surpris-

ingly, Theorem 1.1 also states that the HJB is exactly Equation (1.4). As a direct corollary,

Equation (1.1) can be solved by considering only the family of Markov jump-diffusion

processes characterized by SDE (1.3). The compensated Poisson jump part and Gaussian

diffusion part in SDE (1.3) each represents a simple learning strategy.

e Poisson learning: The DM uses Poisson learning or acquires a Poisson signal when a
compensated Poisson part exists in the belief process. A Poisson jump in the belief
process can be induced by observing non-conclusive news whose arrival follows a
Poisson process. The compensating belief drift is induced by observing no news
arriving. The control variables for Poisson learning are (p, v), which represent three
endogenously relevant aspects of Poisson learning. The arrival rate p represents
the frequency of learning. The direction of belief jump represents the direction of

learning. The magnitude of belief jump represents the precision of learning.

Gaussian learning: The DM uses Gaussian learning or acquires a Gaussian signal
when a diffusion part exists in the belief process. Gaussian diffusion in the be-
lief process can be induced by observing the realization of a Gaussian process, with
state x being the unobservable drift. The flow variance ¢ represents the signal pre-

cision.

Equation (1.4) suggests that to determine the optimal strategy in all relevant aspects,

the DM considers four types of trade-offs : (i) the standard continuing-stopping trade-

off in optimal stopping problems, captured by the outer-layer maximization; (ii) the in-

formation cost-utility gain trade-off, which determines the total cost spent on learning;

where D2V (u,0) = ﬁe

V(u+60)—V(u)—VV(u)do )
lle®
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(iii) the Poisson-Gaussian trade-off, which determines the proportion of cost allocated to
the Poisson signal (p,v) and the Gaussian signal ¢; (iv) the precision-frequency trade-
off, which determines the marginal rate of substitution of signal frequency for precision.
These trade-offs, especially the precision-frequency trade-off, will be discussed in detail
to characterize the solution to Equation (1.4) in Section 1.6.

The proof of Theorem 1.1 uses an indirect method. I characterize Equation (1.1) as
the limit of a series of auxiliary discrete-time problems. The discrete-time analyses are
presented in Section 1.5. Readers interested in the solution of HJB Equation (1.4) can

jump to Section 1.6.

1.5 The auxiliary discrete-time problem

In this section, I introduce the steps for proving Theorem 1.1 using an auxiliary discrete-
time problem. First, in Section 1.5.1 I introduce a discrete-time stochastic control problem
that converges to the continuous-time problem. Then I characterize the Bellman equation
for the discrete-time problem in Section 1.5.2. In Section 1.5.3, I introduce a key lemma

that links all the discrete-time analyses and proves Theorem 1.1.
1.5.1 Discrete-time problem

I consider a stochastic control problem that is a discrete-time analog of Equation (1.1).
Then I illustrate the discretization of the original problem. The discretization serves as a
useful intermediary showing that the discrete-time problem converges to the continuous-
time problem.

Decision problem: The primitives (A, X, u, u, p) are the same as those in Section 1.3.
Time is discrete t € IN, and the period length dt > 0. The payoff delayed by t periods is
discounted by e~P*,

Information: The DM chooses the posterior belief process (ji;) in a nonparametric

way. (i) is restricted to be a martingale. Let <]—A}> be the natural filtration of (ji;).
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1.5. The auxiliary discrete-time problem

Cost of information: Define Cy(I) = C(4;)dt. The per-period cost of information is
assumed to be Cy;(E[H (ji¢) — H(}ir41) |.7?t]) Note that this is exactly the finite-difference
analog of the flow cost C(—L;H(y;)) in the continuous-time problem.

Optimization problem: The DM solves the following stochastic control problem:

21
Va(w) = sup E|eP"TR(fi) — 3 e Cyy (E|H() — H(firs) |ﬁt])] (1.5)
(ineM,z =0

where M is the set of discrete-time martingales satisfying jip = y,and Tisa <]—A"t>—measurable
stopping time. Note that in this section, all discrete-time stochastic processes and random
variables are labeled with “hat” to differentiate them from continuous-time processes.

The purpose of analyzing the discrete-time problem is to characterize the continuous-
time value function V(u). Therefore, the first step is to show that Vj;(y) approximates
V(u). To study the relation between V;(u) and V(p), let us discretize the objective func-

tion in Equation (1.1). For any admissible strategy ({y¢), T), consider the Riemann sum:

0 i—1
Wa (e, T) = > Prob( € [(i — 1)dt, idt])E [e_ipth(pLidt) - e_jpdtC(det)dt]
i=1 j=0

where [z = E [H(ﬂ jdt)_dHt(H(j +1i) ‘}—J'df]‘ The objective function in Equation (1.1) is defined
in the notion of the Riemann-Stieltjes integral as limy; o Wy;(pt, T). I call the martingale

13 Unless otherwise stated, M is re-

{pyy integrable if the limit limy, o Wy (pe, T) exists.
stricted to contain integrable processes, an innocuous restriction that enables me to avoid

technical discussions of integrability.!* Then it follows that V() = sup (ueM,T limg; 0 Wy (pt, 7).

13The standard definition for integrability also requires the limit to exist uniformly for all alternative
nonuniform discretizations of the time horizon and all alternative measurable stopping times. Here I use
the weaker integrability requirement for notational simplicity. The optimal strategy actually satisfies the
stronger integrability requirements, so the current definition can be used without loss. The discretization
of (It) is WLOG given the uniform convergence in the definition of Z(H).

4The detailed discussion of why restricting belief to be integrable is innocuous is in Remark A.2.
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Chapter 1. Optimal dynamic information acquisition

Now, consider the relation between Wy; and V. I argue that the objective function
in Equation (1.5) is equivalent to Wy, (¢, T). This result can ben verified by noting that if

((puey, T) and ({jir), T) jointly satisfy ji; = ps.4; and T = [T/dt], then:

T-1
War(ur, T) = E | e PUTF (jiz) — Z e PIiCy, <E [H(ﬁt) - H(ﬁt+1)|Ft])]
=0

Given feasible strategy ((ut), T), such ((jit), T) can be constructed by simply discretiz-
ing the continuous-time strategy. Given feasible strategy ({ji;), T), such ({(y¢), T) can be
constructed by the Kolmogorov extension theorem. Therefore, it follows that Vy(u) =
SUP 5 v Wt (pt, 7). Now that both V and Vj; are characterized using Wy, Wy; can be

used as an intermediary to link V and Vj;:

V() = sup lim Wy (pt, 7)
<yt>’,[.dt—>0

i o
lim Var (1) dl;g}) sup Wy (pt, 7)
{ue),T

Clearly, V and lim V}; are obtained by taking the limit of Wj; in different orders. Therefore,
Vi approximates V when the two limits are interchangeable, which is indeed true as

proved in Lemma 1.1:
Lemma 1.1. Given Assumption 1.1, Vu € A(X), limg;_,o Vg () = V().

1.5.2  Discrete-time Bellman equation

Equation (1.5) is a discrete-time sequential optimization problem with bounded pay-
offs and exponential discounting. Therefore, standard dynamic programming theory ap-

plies and provides the Bellman equation that characterizes Vj;.

Lemma 1.2 (Discrete-time Bellman). Vy; is the unique solution in C(AX) of the following
functional equation:
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1.5. The auxiliary discrete-time problem

N
V() = max {F(ﬂ)zf{}?}( e PN piVar(vi) = Cay (H(V) -, Pz’H(Vi)> } (1.6)
v i=1

s.t. Z pivi=H

where N = 2|X|, p € A(N),v; € A(X).

Equation (1.6) is a standard Bellman equation, except that it covers a restricted space
of strategies. The choice of signal structure is restricted to have support size no larger
than 2|X]|, while the original space contains signal structures with an arbitrary number
of realizations. This simplification is based the generalized concavification methodology
developed in Theorem 2 of Chapter 4. The standard concavification methodology is an
application of the Carathéodory theorem to the graph of the objective function in the
belief space.!® Equation (1.6) involves an additional term Cg(H(u) — . p;H(v;)), which
makes the standard method inapplicable. The general method suggests that the maxi-

mum is characterized by concavifying a linear combination of V;; and H.
1.5.3 Convergence and verification theorem

The following figure illustrates the roadmap for proving Theorem 1.1.

% Lemma 1.1 Vi
Theorem 1.1 Lemma 1.2
4
Continuous- Lemma 1.3 Discrete-time
time HJB Bellman

Theorem 1.1 is represented by the red dashed arrow on the left. The discrete-time prob-
lem’s value function Vj; is the solution of the Bellman equation Equation (1.6) (the dou-
ble arrow on the right, proved in Lemma 1.2). I have shown that V;; converges to the

continuous-time optimal control value V (the arrow on the top, proved in Lemma 1.1). In

15Gee Aumann, Maschler, and Stearns (1995) and Kamenica and Gentzkow (2011))
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Chapter 1. Optimal dynamic information acquisition

the next lemma, I show that solution of HJB Equation (1.4) is the limit of solution of Equa-
tion (1.6) (the arrow on the bottom, to be proved in Lemma 1.3). Therefore, the function
solving HJB Equation (1.4) is the value function of the continuous-time stochastic control

problem Equation (1.1).

Lemma 1.3. Assume H is strictly concave and C?) on interior beliefs, Assumption 1.2 is satisfied.

Suppose V() € CW is a solution to Equation (1.4). Then Vy dLaoo V.
t—

Lemma 1.3 proves that whenever Equation (1.4) has a solution, the solution is unique
and coincides with the limit of solution to discrete-time problem Equation (1.6). Verifica-

tion theorem Theorem 1.1 is a direct corollary of Lemmas 1.1, 1.2 and 1.3.

1.6 Optimal information acquisition

In this section I prove the existence of the solution to the continuous-time HJB Equa-
tion (1.4) and fully characterize the value and policy functions, assuming binary states
and two forms of flow cost function: a hard cap and a smooth convex function. In both
cases, the optimal strategies share the same set of qualitative properties. Then in Sec-
tion 1.6.2, I discuss the key trade-offs in the optimization problem and provide the intu-

ition for the optimal strategy. First, I introduce the assumptions for tractability:

Assumption 1.3.

1. (Binary states): |X| = 2.
2. (Positive payoff): Vu € [0,1], F(u) > 0.

3. (Uncertainty measure): H" (u) < 0 and locally Lipschitz on (0,1), 1ir611 |H'(u)| = oo.
u—0,

Assumption 1.3 comprises three parts. First, I restrict the state space to be binary.
Therefore, the belief space is one dimensional, and I can use ODE theory to construct a
candidate solution. Although the existence of the solution technically relies on the binary

state assumption, the characterization generalizes to general state spaces, as discussed in
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1.6. Optimal information acquisition

Appendix A.1.3. Second, I assume that the utility from decision making is strictly positive
so that “delay forever” is strictly suboptimal. This restriction is made without loss of
generality in the sense that we can always add a dummy “outside action” that gives ¢
payoff. Third, I assume that H is sufficiently smooth, strictly convex (which rules out
free information) and satisfies an Inada condition (which guarantees a non-degenerate

stopping region).
1.6.1 Main characterization theorem

Theorem 1.1 states that to characterize V(u), it is sufficient to find a smooth solution
to HJB Equation (1.4). I prove the existence of a solution and characterize the optimal
strategy under Assumption 1.2-a or Assumption 1.2-b, two slightly stronger variants of

Assumption 1.2.

) 0 when [ < c
Assumption 1.2-a (Capacity constraint). There exists ¢ s.t. C(I) =

+o0 whenl > ¢

Assumption 1.2-a restricts the cost function C to be a hard cap: information is free
when its measure is below capacity ¢ and infinitely costly when it exceeds this capacity.!®

This condition forces the DM to smooth the information acquisition process over time.

Theorem 1.2. Given Assumptions 1.1, 1.2-a and 1.3, there exists a quasi-convex value function
V e C(0,1) solving Equation (1.4). Let E = {u € [0,1]|V(u) > F(u)} be the experimentation

region. There exists policy function v : E — [0, 1] satisfying:

where v(p) is unique a.e. and satisfies the following properties. 3u* € argmin V s.t.

16lim;_,, C'(I) is not well defined with Assumption 1.2-a. However, it is not hard to see that Assump-
tion 1.2-a still satisfies the weaker formulation discussed in Footnote 7. As a result, Theorem 1.1 applies
with Assumption 1.2-a.
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Chapter 1. Optimal dynamic information acquisition

1. Poisson learning: pV (u) > —c% Vu e E\p*.

2. Direction: y > p* — v(u) > pand y < y* — v(p) < p.
3. Precision: |v(u) — u*| is decreasing in |y — p*| on each interval of E.

4. Stopping time: v(u) € EC (a successful experiment lands in the stopping region).

Theorem 1.2 proves the existence of a solution to Equation (1.4) and characterizes
the optimal policy function. The theorem first states that the optimal value function is
implemented by a Poisson signal, i.e., seeking a breakthrough that causes the belief to
jump to v(¢). Moreover, property 1 states that the Gaussian signal is strictly dominated,
except for at most one critical belief. Therefore, as discussed in Section 1.4, the optimal
strategy is Poisson learning, which can be characterized by three aspects of learning and
the stopping time.

Direction: Property 2 states that the optimal direction is confirmatory: when p > u*,
the DM holds a high prior belief for state 1 and acquires a signal whose arrival induces
an even higher posterior belief v () and vice versa for y < u*.

Precision: Property 3 states that the optimal precision measured by |v(y) — p*| is neg-
atively related to how certain the belief is (measured by |y — p*|). Since u* € argmax V, the
property equivalently states that precision is negatively related to the continuation value.

Frequency: With Assumption 1.2-a, frequency is automatically determined given the

precision, according to p(u) = — A0 GO =HT y)f U MICMEDE Thus, the optimal frequency is
positively related to the continuation value.

Stopping time: Property 4 states that the image of v is always in the stopping region.
In other words, the optimal stopping time is exactly the signal arrival time.

By combining these properties, we can qualitatively determine the optimal learning
dynamics. The DM seeks a signal that arrives according to a Poisson process. The arrival
of the signal confirms the DM’s prior belief and is sufficiently accurate to warrant an im-
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1.6. Optimal information acquisition

mediate action. Absent the arrival of a Poisson signal, the DM becomes less certain about
the state, following Bayes’ rule. The DM’s continuation value decreases correspondingly;

hence, she continues seeking a Poisson signal with lower frequency and higher precision.

Assumption 1.2-b (Convex cost). C e C®R*, C(0) =0, C'(I) = 0, C"(I) > 0, Ilirn C'(I) =
—00

Q0.

Assumption 1.2-b restricts the cost function C to be C(?) smooth and strictly convex:
acquiring an additional unit of information is of strictly increasing marginal cost. The
condition on lim C'(I) in Assumption 1.2 is retained. If we replace Assumption 1.2 with

Assumption 1.2-b, we obtain the following characterization theorem:

Theorem 1.3. Given Assumptions 1.1, 1.2-b and 1.3, there exists a quasi-convex value function
V e C1(0,1) solving Equation (1.4). Let E = {ue[0,1]|V(u) > F(u)} be the experimentation

region. There 3 policy functions v : E — [0,1] and I € CV(E)Y satisfying:

where v and 1 are unique a.e. and satisfy the following properties. Iy* € argmin V s.t.
1. Poisson learning: pV () > max 202V () — C(—302H" (n)) Vi € E\p*.

Direction: y > p* = v(p) > pand y < y* — v(u) < u.

Precision: |v(pu) — p*| is decreasing in |y — u*| on each interval of E.

Stopping time: v(u) € EC.

U

Intensity: I(u) is increasing in V (u) .

With the exception of property 5, the optimal strategy has the same set of properties as

Theorem 1.2. Property 5 states that the informativeness measure I of the optimal signal

7Note that given v, selecting I or p is equivalent. They uniquely pin down each other according to
equation I(4) = p(u)(=H(v()) + H(p) + H'(u)(v(p) — p))-
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Chapter 1. Optimal dynamic information acquisition

is higher when the continuation value is higher. Since the belief process drifts down-
ward the value function conditional on continuation, the DM invests less in information
acquisition as time passes.

The intuition for property 5 is discussed in Moscarini and Smith (2001). The marginal
gain from experimentation is proportional to the continuation value while marginal cost
is increasing in I. Therefore, the optimal cost is increasing in the value function. This
property is called “value-level monotonicity” in Moscarini and Smith (2001), where the
level (flow variance of the diffusion process) is a parameter for both the cost and precision
of a Gaussian signal. My analysis identifies this intuition separately from another impor-
tant trade-off between signal precision and frequency. I refer to property 5 as “value-
intensity monotonicity”. Here I rename parameter I the intensity of learning, which is

more intuitive and concise than “informativeness measure”.
Examples

In this section, I first provide a minimal working example that illustrates Theorem 1.3
in Example 1.2. Then I provide supplementary examples to illustrate a rich set of impli-
cations of my model, including multiple phases of learning in Example 1.3 and learning

from a one-sided search in Example 1.4.

Example 1.2. Consider the problem studied in Example 1.1. F(y) = max{2u — 1,1 —2u},
H(u) = —plog(p) — (1 — pu)log(l —p), p = 1, and C(I) = 3I%. No parametric assumption
is placed on the set of admissible belief process.

The solution is presented in Figures 1.5 and 1.6. In Figure 1.5-(a), dashed lines depict
F(u), the blue curve depicts V(u), and the blue shaded region is experimentation region
E. Figure 1.5-(b) shows the optimal posterior v(y) as a function of the prior. As stated in
Theorem 1.3, the policy function is piecewise smooth and decreasing. The three arrows in

Figure 1.5-(a) depict the optimal strategies prescribed at three different priors. The arrows
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1.6. Optimal information acquisition

start at the priors and point to the optimal posteriors. The blue curve in Figure 1.5-(c)
shows the optimal intensity I(y) as a function of the prior. Clearly, I(u) is isomorphic to

V(u) in the experimentation region.

Value function Optimal posterior Optimal intensity
v I
1.0 I
e’
0.8 !
0.6
0.4 i
02} o |

‘ e 0.0
of T 02 04 06 08 10" 00 02 04 06 08 Lo

Figure 1.5: Value and policy functions

Figure 1.6 illustrates the dynamics of the optimal policy. Figure 1.6-(a) depicts the op-
timal belief process. Conditional on no signal arrival, the posterior belief drifts towards
the critical belief level u* = 0.5. In this example, two phases of learning occur (represented
by different colors of shaded regions in Figure 1.6-(a)). In the first phase (blue region),
the DM seeks a Poisson signal to confirm the most likely state. As time passes, the signal
precision increases while signal frequency and learning intensity decreases (as in Fig-
ure 1.6-(b)&(c)). Eventually, the DM believes that the two states are equally likely and
switches to the second phase (gray region). In the second phase, she seeks two signals
that confirm each state in a balanced way such that before any signal arrives her posterior
belief is stationary.

Recall the three learning technologies in Example 1.1. They approximate the full solu-
tion in Example 1.2. In general, the optimal signal is a confirmatory Poisson signal with
varying precision and frequency. However, in Example 1.1, the precision and frequency of
the confirmatory Poisson signal are exogenously fixed. Therefore, for very certain prior
beliefs, the ideal high-frequency Poisson signal is approximated by a Gaussian signal.
For very uncertain prior beliefs, the ideal signal is approximated by acquiring perfectly
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Belief path Frequency path Intensity path
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Figure 1.6: Dynamics of optimal policy

revealing breakthroughs with low frequency.

Example 1.3 (Multiple phases). Figure 1.7 depicts an example with four actions, whose
expected payoffs are represented by the four dashed lines in Figure 1.7-(a). The two blue
dashed lines are called riskier actions, and the two red dashed lines are called safer ac-
tions. The upper envelope of the four lines is F(u). The experimentation region contains
three disjoint intervals. For the middle interval, in the red regions, the DM has a more
extreme belief and searches for a signal that confirms a safer action (red arrow). In the
blue region, the DM has a more ambiguous belief and searches for a riskier action (blue
arrow). Figure 1.7-(c) depicts the optimal belief process with a prior belief in the red re-
gion. The experimentation follows three phases, the DM searches for a safer action in

phase 1, searches for a riskier action in phase 2 and searches in a balanced way in phase

3.
Value function Policy function Belief path
4
1.0 ™ !-_-;-"
0.8 e
0.6
0.4
, 02f i
A - - 1. - u g ol . - i . . . . -t
0.0 02 04 06 08 1.0 02 04 06 08 1.0 0.0 02 04 06 08 1.0

Figure 1.7: Example with four alternatives
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Example 1.4 (One-sided search). Figure 1.8 depicts an example where the optimal strat-
egy includes only one-sided search. A safe action with deterministic payoff and a risky
action whose payoff is higher than that of the safe action in state 1 exists. As illustrated in
Figure 1.8-(a), both F(u) and V(u) are monotonically increasing. According to property
1, 4 > p* in the entire experimentation region E. Figure 1.8-(b) shows that the optimal
strategy is always to search for a Poisson signal that induces a posterior belief higher than
the prior. Figure 1.8-(c) shows that in this example, only one phase occurs. If no signal
arrives before the belief reaches to the critical belief, the optimal solution is for the DM to
stop learning and choose the safe action.

This example illustrates more precisely the definition of confirmatory evidence: the
optimal belief jump is in the direction of a more profitable state. The profitability of a
state depends jointly on its likelihood and the corresponding payoff of the actions. In this
example, consider a prior belief less than 0.5. Although state 0 is more likely, since it is
dominated by state 1 for any action, state 1 is unambiguously more profitable to learn

about. Therefore, the optimal confirmatory evidence is always revealing state 1.

Value function Policy function Belief path
Vv v M
0.25¢ 1.0 \/ 1.0 P
0.20 0.8} | 08t :
0.15} 0.6f 0.6 '
0.10} 0.4 0.4
0.05 02 L 020 ___3

0.0 02 04 06 038 1.0# 02 04 06 08 1.0” 00 02 04 06 08 1.0t

Figure 1.8: Example with one-sided search

1.6.2  Proof methodology and key intuitions

In Section 1.3, I introduce four types of trade-offs. Now, I discuss the trade-offs in
detail and illustrate how they determine the optimal strategy in each salient aspect. I
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tirst derive a geometric characterization of the optimal policy in Section 1.6.2.1. Then,
I discuss how the key trade-offs are represented by the geometric characterization and
provide intuitions for the optimal policy. In Section 1.6.2.2, I present the sketch of a proof

for Theorem 1.2.

1.6.2.1 Geometric representation and key trade-offs

A though experiment is useful to gain intuition. Fix the value function V and consider

a simplified optimization problem:

sup p(V(v) = V(u) = V() (v —p)) = C(p(H(n) — H(v) + H'(u)(v — p))) (1.7)

p=0,v

Equation (1.7) is more restrictive than Equation (1.4). I assume that the DM acquires

only a Poisson signal. Let us temporarily ignore the Gaussian signal. Define:

Up,v) =V(v) = V(p) = V() (v—pn)

J(w,v) = H(p) — H(v) + H' (1) (v — 1)

The interpretation of U(y, v) is the flow value per unit arrival rate from a Poisson signal
with posterior v. Similarly, J(u,v) is the flow uncertainty reduction per unit arrival rate

from the Poisson signal. Then Equation (1.7) can be rewritten as:

sup p-U(u,v) —C(p-J(1,v))

p=0v

I2p-J (1) (U(u,v)>
——> su — 2. I —-C(I
2P\ T, v) ()
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The problem is separable in choosing I and v. The solution (v*, I*) is characterized by:

v* € arg max l]l((lf ’;/))
v 7
POT*Y U(pv)
c'(I*) = max T
The optimal posterior v* maximizes L]I((;’ ’11//)) —the value to uncertainty reduction ratio. Let
A = C/(I*) = max l}[((;”;/)); then, U(u,v) < AJ(u,v) and the equality holds at v*.!® Define

G(u) = V(u) + AH(pn). I call G(u) the gross value function. Then, the definition of U and V
implies U(p,v) —AJ(u,v) = G(v) — G(u) — G'(u)(v — ). Hence, U(p, v) < AJ(p,v) implies

that the gross value function has the following property:

Gv)<Gu)+G'(Wv—p) Vvelo1]

G(v*) = G(u) + G'(W)(v* — u)

(1.8)

Equation (1.8) states that G(v) is everywhere (weakly) below the tangent line of G at y,
except G(u) and G(v*) touch the tangent line. The tangent line is linear (hence concave)
and thus weakly dominates G’s upper concave hull co(G). Therefore, G(u) = co(G)(u)
and G(v*) = co(G)(v*). See Figure 1.9 for a graphical illustration.

Value function Uncertainty Measure Gross value function
A\

Figure 1.9: Concavification of the gross value function

1BWith Assumption 1.2-a, I* = c and A = max l]l((;: VV )) is the Lagrangian multiplier for constraint I < c.
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Figure 1.9-(a) and Figure 1.9-(b) depict the value function V' and the uncertainty mea-
sure H, respectively. Figure 1.9-(c) depicts the gross value function G = V + AH, where
A is calculated for the prior . As discussed, G touches the upper concave hull at both u
and v*. When v* is unique, y and v* are the two boundary points of the concavified region

(the interval (¢, v) on which G < co(G)).

Equation (1.8) is called a concavification characterization as it is an analog to the con-
cavification method in Bayesian persuasion problems. The difference is that in a Bayesian
persuasion problem, the boundary points of a concavified region are optimal posteriors,
whereas in the current problem, the prior is also on the boundary of a concavified region.
This property has clear economic meaning. G is called the gross value function because
it integrates value function V and uncertainty measure H using marginal cost level A.
A is a multiplier that captures the marginal effect of reducing uncertainty on flow cost.

Therefore, solving:

sup p(G(v) — G(p) — G'(v)(v — ) (1.9)

p=0,v

is equivalent to solving Equation (1.7). Whether Equation (1.9) yields a positive payoff
depends on whether G(u) < co(G)(u). Suppose G(i) < co(G)(p). Then, there is a strictly
positive gain from information and Equation (1.9) is strictly positive. However, Equa-
tion (1.9) is linear in the signal arrival rate p. As a result the DM has incentive to increase
p, which drives up marginal cost C'(-). Thus, when the optimum is reached, C'(-) (or
A) must be such that solving Equation (1.9) yields exactly zero utility: G(i) = co(G)(u).
This characterization illustrates that in the continuous time limit, information is smoothed

such that uncertainty is reduced by only an infinitesimal amount at every instant of time.

Now, suppose that the HJB is satisfied, i.e., Equation (1.7) equals the flow discounting
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loss pV(u). Then applying I* = p* - J(u,v*) and C'(I*) = L]I((ﬁf:)) to the HJB implies:
PV () =p* - U(p,v") = C(p" - J(u, 7))

= oV(u) = I*C'(I*) — C(I") (1.10)

Combining Equation (1.8) and Equation (1.10) dentifies the value function V and cor-
responding strategies p,v.! Now, I analyze key trade-offs in the dynamic information

acquisition problem by studying Equations (1.8) and (1.10).
1. Utility gain vs. information cost

Equation (1.10) illustrates the utility gain vs. information cost trade-off. Since C is a
convex function, IC'(I) — C(I) is increasing in I?°, that is, the optimal flow informative-
ness measure I is isomorphic in continuation value V(y). This property is exactly the
“value-intensity monotonicity” I introduced in Section 1.6.1.

The intuition for this property is simple. The marginal cost of increasing the intensity
of the signal proportionately is IC'(I). The marginal gain is obtained from increasing the
arrival rate proportionately (keeping the signal precision fixed, as in the envelope the-
orem). Increasing the arrival rate by a unit proportion reduces the waiting time by the
same proportion, so the marginal gain from increasing I by a unit proportion is discount
pV plus cost C(I). At the optimum, the maginal cost equals the margina gain; therefore,
we obtain Equation (1.10) and the flow informativeness is monotonic in value function.

If we consider the case with Assumption 1.2-a, then A in Equation (1.8) is replaced by
the shadow cost of increasing informativeness (see Footnotes 18 and 19). Equation (1.10)
can be written as pV (u) = cA. Although the intensity is fixed, in this case, a monotonicity

between the shadow cost and value function remains.

19 With Assumption 1.2-a, C(I*) = 0 and I* = c. Thereofre, pV (i) = Ac.
204 (1¢’(I) - C(I)) = IC"(I) = 0
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In summary, by studying the utility gain vs. information cost trade-off, I established
a monotonicity between the shadow /marginal cost A and the continuation value V(y). (I
refer to both as the “value-intensity monotonicity” for notational simplicity.) Now that I

characterized A, we can proceed to Equation (1.8).
2. Precision vs. frequency

A novel trade-off characterized by Equation (1.8) is the precision vs. frequency trade-
off. The value-intensity monotonicity determines I from the value function. Now, the
DM allocates total intensity I to precision (parametrized by the size of belief jumps) and
frequency (parametrized by the arrival rate of jumps). Equation (1.8) suggests that the
optimal signal precision can be solved by concavifying the gross value function G(p). In
this section, I illustrate how this trade-off changes for different priors and explain the

intuition.

Figure 1.10: Precision-frequency trade-off

Figure 1.10 shows how varying A affects the optimal jump size. In Figure 1.10-(a) the
blue curve is G(y), and the dashed curve is co(G). I call the blue region, where G(u) <
co(G)(u), the concavified region and the white region, where G(yt) = co(G)(u), the globally
concave region. The prior u and optimal posterior v are on the boundary of a concavified
region. Consider G| = V + A1 H, where A; > A. Figure 1.10-(b) depicts both G (the dashed
curve) and G; (the blue curve). Since G is G plus a strictly concave function, any belief in
the globally concave region of G is still in the globally concave region of G;. As a result, as
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A increases, the white region is expands and the blue region contracts (see Figure 1.10-(c)).
Thus, the prior and optimal posterior move closer together. Recall that A is monotonic in
V, which means the DM is more willing to choose a signal that induces shorter belief
jump when the continuation value is higher.

The intuition for this property is as follows. When the DM is more certain about the
state, the continuation value is higher; hence, the utility loss from discounting is higher.
The DM wants to receive a signal more frequently to benefit from the high value sooner.
In other words, the marginal rate of substitution of frequency for precision is increasing in
the continuation value. In this analysis, the continuation value is isomorphic to A, which
controls the shape of G. The marginal rate of substitution of frequency for precision is
exactly captured by the global concavity of the gross value function; thus, the analysis
presented by Figure 1.10 exactly illustrates the intuition.

Confirming vs. contradicting: The analysis above determines the magnitude of the op-
timal belief jump. The optimal jump direction remains to be determined to pin down the
optimal posterior. Now, I show that the precision-frequency trade-off also implies the
optimality of confirmatory learning.

Let us hypothetically consider a belief i at which jumping toward the right is optimal
(weakly). In both panels of Figure 1.11, y is the prior and v, vg are optimal posteriors on
each side of y. Jumping to vg (the black arrow) is better than jumping to vy (the dashed
black arrow). Let V be increasing around p. Now consider the DM’s incentive at
slightly larger than u (in Figure 1.11-(a)). Although the corresponding optimal posteriors
could also move, keeping them fixed at v; and vg has only a second-order effect on utility.
We can compare v and vg to pin down the optimal posterior for y. Since yuq > p, vy is
closer to prior, and v is farther from prior. Moreover, V(y1) > V(u) implies that the DM
has a stronger preference for frequency to precision with belief y;. Since V' > 0, the effect
is first order. Therefore, vy is strictly preferred to vy at yq. Consider y; slightly smaller
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than p (in Figure 1.11-(b)). A similar analysis shows that now size of jump to vy is larger,
and the DM has a stronger preference for precision with belief y5. Thus, v is also strictly

optimal for ;.

- -

B -~
M -~
N 1
VL u VR

Figure 1.11: Confirmatory v.s. contradictory

In this analysis, jumping in the direction of increasing value function means the sig-
nal is confirmatory. When value function is quasi-convex, this property is equivalent to
property 2 of Theorems 1.2 and 1.3. Therefore, the precision-frequency trade-off implies

that the incentive for confirmatory learning is self-enforcing.
3. Poisson vs. Gaussian

Thus far, I have ignored the possibility of Gaussian signals. In fact, Gaussian signals
are implicitly modeled in Equation (1.8). Consider the optimization w.r.t. Gaussian sig-

nals:

sup o2 V" () — C(—0*H" (1))

(o

— FOC : V" (u) + AH" (u) = 0

— G"(u) =0 (1.11)

where A = C’(—0?H" (1)) with Assumption 1.2-a or A = £V/(y) with Assumption 1.2-b.
Comparison of Equations (1.8) and (1.11) shows that Equation (1.11) is exactly the limit of
Equation (1.8) when optimal posterior v converges to prior u. This result is intuitive since
a Gaussian signal can be approximated as a Poisson signal with very low precision and
high arrival rate.
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The comparison of Gaussian and Poisson signals is effectively the comparison of a
special imprecise Poisson signal and other Poisson signals. Therefore, this trade-off is a
special case of the precision-frequency trade-off. Selecting a Gaussian signal is a corner
solution when the DM wants to sacrifice almost all precision for frequency—a slightly less
patient DM is willing to avoid any waiting and stop immediately, while a slightly more
patient DM is willing to wait for a more precise Poisson signal. Therefore, the Gaussian
signal is optimal only on the boundaries of the experimentation regions. Given this in-
tuition, one could imagine that the Gaussian signal is generically suboptimal except for
special cases where the precision-frequency trade-off is invariant. Since the preference
between precision and frequency depends on the loss from delaying, the trade-off is in-
variant only when the DM does not discount future payoffs. This intuition is confirmed
in a no-discounting special case in Section 1.7.1, as well as in the model of Hébert and

Woodford (2016).
4. Continuing vs. stopping

Consider the optimal stopping time. Theorems 1.2 and 1.3 states that repeated jumps
are suboptimal. I prove by showing that repeated jumps can be improved by a direct
jump. Let v be the optimal posterior for prior u (see Figure 1.12). Then, Equation (1.8)
Y U
implies that % = ]—60 = A(u).

Value function Uncertainty Measure
A% H

u v v
Figure 1.12: Continuing vs. stopping
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Hypothetically, imagine that at v, it is optimal to continue, and the optimal posterior
isv’. Then, % = A(v),and A(v) > A(p) by the confirmatory evidence property and value-
. . . . U)W
intensity monotonicity. I want to show that this result implies 7777 = hH{l > Au),

i.e., jumping to posterior v’ directly is strictly better than a two-step jump. By elementary

geometry, there exists a s.t U] = allp and J| = aJo.2! Therefore, the value to uncertain

Upy') _ Up+aly
](]/lﬂ//) B ]1+’X]0

reduction ratio is a weighted average of % and %, which is larger than

Mp).

The intuition for the stopping rule is now clear. If we combine a two-step jump into
a direct jump, the flow utility gain is a weighted sum of that of the two jumps. The
flow uncertainty reduction is exactly the same weighted sum of that of the two jumps.
Therefore, the net value from a direct jump is a weighted average of the net values from
each jump. As a result, sequentially jumping to higher values is dominated by directly

jumping to the highest value.

Remark 1.1.

The intuition behind the value-intensity monotonicity is driven purely by convexity of
cost function h and is clearly independent of the formulation of the information measure.
The intuition behind the optimality of a Poisson signal over a Gaussian signal is the use of
the precision-frequency trade-off to compare a generic Poisson signal with an extremely
imprecise Poisson signal. The result does not depend on the exact form of I. I generalize
the optimality of a Poisson signal to the generic cost of information in Theorem 1.5, Sec-
tion 1.7.2. I also discuss confirmatory evidence and immediate stopping properties with
generic cost functions in Section 1.7.2.

The precision-frequency trade-off also does not depend on the size of the state space.

I confirm this result via a general characterization of optimal strategy with more states

21See Figure 1.12. % = LII—(,;S = A(p) implies l]l—f = A(u), hence, % = % I assume the ratio to be «.
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(Theorem A.3) in Appendix A.1.3. However, the binary states assumption is crucial for
proving the existence of the solution to the HJB equation. A constructive proof of the
binary state case based on ODE theory is introduced in Section 1.6.2.2.

Our discussion thus far does not rely on the exact form of A. The qualitative properties
of all these trade-offs depend only on the monotonicity of A in continuation value, which
is true with both Assumptions 1.2-a and 1.2-b. Therefore, when I introduce the sketch of

the proof, I discuss only Theorem 1.2, and the proof extends to Theorem 1.3.
1.6.2.2  Sketched proof of Theorem 1.2

I prove Theorem 1.2 by construction and verification. I conjecture that the optimal
policy for Equation (1.4) takes the form of Theorem 1.2: a single confirmatory signal as-

sociated with an immediate action. I first construct V(y) and v(u) via three steps:

e Step 1. Determine u*. Since u* € arg min V, except for the special case where V is strictly
monotonic, u* is essentially the unique belief at which V’'(y*) = 0, and searching for
posteriors on either side of u* is equally good. The HJB equation implies:

F(v) F(v)

sup — > = sup —
vae 1 EIGe00) e 1+ B (00, 0)

V(pu*) and v(u*) are pinned down correspondingly. The special case occurs when F

is strictly monotonic. Take F > 0 for example. p* is the smallest belief that pF(p) <

F(v)—F(uw)—F' (1) (v—p)
J(uv)

sup —c , and vice versa for F’ < 0.

=
e Step 2. Solve for the value function while holding the action fixed. Let a be the optimal
action for optimal posterior v solved in step 1. Let F,(u) = E,[u(a, x)]. Now, solve for

the value function given payoff F,(v):

vz H(v)— H(p) — H'(u)(v — p)
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The primitives in the objective function are all sufficiently smooth in v. Then, the first-
order condition w.r.t. v yields a well-behaved ODE characterizing v(y) with initial
condition v(u*). Therefore, we can solve for the optimal policy v and calculate value
V(u) accordingly for y > p*. V(u) and v(u) for all p < p* are solved by a symmetric

process.

e Step 3. Update the value function w.r.t. all alternative actions and smoothly paste the
solved value function piece by piece. This step begins with solving the ODE defined in
step 2 at p*. Then, I extend the value function towards p = {0,1}. Whenever I reach
a belief at which two actions yield the same payoff, I setup a new ODE with the new
action. This process continues until the calculated value function V() smoothly pastes

to F(p). This procedure generates a quasi-convex value function (minimized at y*).

Solving the ODE characterizing v(y) directly implies monotonicity of v(y) in each con-
nected experimentation region. Now, I need to verify the optimality of the constructed
strategy. The verification takes three steps, which rule out repeated jumps, contradic-
tory evidence and Gaussian signals. The intuition for the suboptimality of these three
alternative strategies is explained in Section 1.6.2. The formal proof is relegated to Ap-

pendix A.2.3.

1.7 Discussion

In this section, I discuss, in detail, the assumptions I make in the baseline model, which
can be categorized into three classes.
1. Economic assumptions:
¢ Discounting (positive p).
e Informativeness measure (Assumption 1.1).
e Convexity of cost function (Assumption 1.2).
2. Restrictive assumptions: Finite actions and binary states (Assumption 1.3).
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3. Technical assumptions: Smoothness and positiveness assumptions (Assumption 1.3).

The economic assumptions are crucial for my results and deserve an in-depth dis-
cussion. To illustrate the role of discounting, in Section 1.7.1, I discuss the case with no
discounting but a flow waiting cost, and show that without discounting, the trade-off
between precision and frequency diminishes and the dynamics of information become
irrelevant. In Section 1.7.2, I generalize Assumption 1.1 to general information measures
and show that a Poisson signal almost always strictly dominates a Gaussian signal. I also
explain that immediate action and confirmatory learning properties are tightly tied to As-
sumption 1.1. To illustrate the role of Assumption 1.2, I discuss the case where the cost
function is linear in Section 1.7.3 and show that without convexity, the optimal strategy is

static.

The restrictive assumptions do limit the generality of the model. However, relaxing
them does not fundamentally alter the key intuition, and the methodology generalizes.
The discussion of these assumptions is relegated to the appendix. In Appendix A.1.2, I
relax the finite action assumption and show that the problem with a continuum of ac-
tions can be approximated well by adding actions. In Appendix A.1.3, I relax the binary
state assumption. Although the constructive proof of existence no longer works with the
general state space, I show that all the properties in Theorem 1.2 extend. The technical as-

sumptions do not restrict my model in a meaningful way and are therefore not discusses.

1.7.1 Linear delay cost

As is discussed in Section 1.6.2, discounting is the key factor driving all the dynamics.
With exponential discounting, the trade-off between the arrival frequency and precision
of signals changes according to the continuation value. A sensible conjecture is that if
we replace exponential discounting with linear discounting, i.e., the DM pays a fixed
flow cost of delay, the time distribution of the utility gain and information cost no longer
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matters to the DM. In fact, this conjecture is correct. Consider the following problem:

T

V(u)= sup E {F(yr) —mT — J C(It)dt] (1.12)

(ueyeM, T 0
Theorem 1.4. Given Assumptions 1.1 and 1.2, suppose V () solves Equation (1.12); then:

- m+C(A)

V) = sup  Ep[F(n)] - "

PeA?(X),A>0

Ep[H(u) — H(v)]

Theorem 1.4 illustrates that solving Equation (1.12) is equivalent to solving a static ra-

tional inattention problem, with —meM)

being the marginal cost on the information mea-
sure (see Caplin and Dean (2013) and Matéjka and McKay (2014)). The optimal value
function can be obtained through various learning strategies. Assuming (P*, A*) to be the
solution to the problem in Theorem 1.4, then all dynamic information acquisition strate-
gies that eventually implement P* (i.e., oo ~ P*) and incur flow cost A* achieve the same
utility level V(u).2

Note that in Equation (1.12), the utility depends on the decision time only through ex-
pected delay E[T]. Therefore, the previous analysis implies that all dynamic information
acquisition strategies that eventually implement P* and incur flow cost A* have the same
expected delay. This result suggests that the cost structure specified by Assumptions 1.1
and 1.2 has the property that all learning strategies are equally fast on expectation, but
they might differ in terms of riskiness. The linear delay cost case is a knife-edge case where

the DM is risk neutral on the time dimension and, consequently, all learning strategies are

equally good.

When the DM discounts delayed payoffs, as is assumed in the main model, she is risk

loving on the time dimension; therefore, the DM prefers a riskier strategy. Intuitively,

22This result is stated and proved formally in Chapter 3.
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the riskiest information acquisition strategy is a “greedy strategy” that maximizes the
probability of early decision (at the cost of a high probability of long delays as the ex-
pected delay is fixed). The confirmatory Poisson learning strategy exactly resembles such
a greedy strategy. The key property of the strategy is that all resources are used in verify-
ing the conjectured state directly, and no intermediate step exists before a breakthrough.
Alternative strategies, such as Gaussian learning and contradictory Poisson learning all
involve the accumulation of substantial intermediate evidence to conclude a success. The
intermediate evidence accelerates future learning and hence hedges the risk of decision
time. Moreover, the decision time is further dispersed by acquiring signals with decreas-
ing frequency.

Equation (1.12) is the dynamic learning foundation provided in Hébert and Woodford
(2016) to justify Gaussian learning.?? The analysis of Equation (1.12) suggests that a linear

delay cost is a knife-edge case.
1.7.2  General information measure

Technically, Assumption 1.1 helps throughout the entire analysis. The methodology
of concavifying “the gross value function” is possible only when the expected utility gain
and information measure take consistent forms. However, I want to show that one key
teature of the baseline model—the optimality of Poisson learning—does not depend on
this assumption. Let J(y,v) and x(y, ) be bivariate functions. Consider the following

functional equation:

PV () = max {pF(s), sup p(V) = V()= V)0 = i) + 302V} (113

pv,02

s.t. pJ(p,v) +x(p,0) <c

23In Hébert and Woodford (2016), informativeness measures that are more general than Assumption 1.1
are also considered in the Appendix.

53



Chapter 1. Optimal dynamic information acquisition

The objective function of Equation (1.13) is exactly the same as that of Equation (1.4) with
Assumption 1.2-a. I assume that the DM controls a jump-diffusion belief process. The
gain from information is the same as before. I assume J(y, v) to be an arbitrary function
that is both prior and posterior dependent. The cost of the diffusion signal is x(u,0). 1

impose the following assumptions on J(u,v) and x(u, o).

Assumption 1.4.
1. Je C®(0,1)%
2. Ve (0,1), J(u, ) = Iy (u, ) = 0, and Ji;, (u, ) > .
3. x(p,0) = 507, (1, 1)-

First, | is assumed to be sufficiently smooth to eliminate technical difficulties. [(p, i) =

0 is the implication of “an uninformative Poisson signal is free”.?* ]! (u, 1) = 0 and
o (i, ) > 0 are implications of “any informative Poisson signal is costly”. Within this
continuous time framework, these assumptions are imposed on | without loss of general-
ity. The crucial assumption is the third condition: x(y, o) = 302J, (4, ). This assumption

states that the cost functional is “continuous” in the space of the signal structures. Con-

sider a Poisson signal (p,v). When v — y, the utility gain from learning this signal is:

(V) = Vi) = VG = 1) = p( 5V 000 = 2 + Ol = )

Therefore, (p,v) approximates a Gaussian signal with flow variance p(v — u)?. Mean-

while, the cost of this signal is:

pIrv) =p (1) )0 = )+ 3T )0 = 0+ O — )

1
=5pv - 2T, (u, 1) + pO(v — uf)

24n this setup, J (4, ) = 0is WLOG. If an uninformative signal has a strictly positive cost, we can always
shift the capacity constraint c to normalize [(y, ) to 0.
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Hence, if the cost of a Gaussian signal is consistent with the cost of imprecise Poisson
signals in the limit, x(y, ) = 302J0, (1, ).

Theorem 1.5. Given Assumption 1.4, suppose V e C®(0,1) solves Equation (1.13), and let
L(p) be defined by:

2 2o 2+ Joo (1) Joop (. 1)

(4) (4)
1,//1/(]1, ‘M) - ]VVVP‘(‘”/ V) + ]vvyy(]/l, "I/l)

L(w) = S 10, (o)
Then in the open region: D = {y’V(y) > F(u) and L(u) # 0}, the set of y s.t.:

V()
va)_CﬁA%u)

is of zero measure.

The interpretation of Theorem 1.5 is that a Poisson signal is almost always strictly
superior to the diffusion signal. In the experimentation region where L(i) # 0, V()
can be achieved by a diffusion signal only at a zero measure of points. L(y) = 0is a
partial differential equation on J(y, v) in the diagonal of space. Therefore, the set of points
that L(¢) = 0 could contain an interval only when J(y,v) is a local solution to the PDE.
The solution to a specific PDE is a non-generic set in the set of all functions satisfying
Assumption 1.4. In this sense, for an arbitrary information measure J(y,v), the optimal
policy function contains a diffusion signal almost nowhere.

A trivial sufficient condition for L(y) # 0 is Assumption 1.1. Assumption 1.1 implies
that ]15%,)(],1,1/) is invariant in p. In this case L(u) = 2]/ (4, 4)? > 0 for certain. The first

corollary of Theorem 1.5 characterizes D when | is almost locally posterior separable.

vf € C(0,1)?, define anorm || ()5 = sup,cps -y {1/ (x, ) [V f(x, 0)l] 2}

Corollary 1.5.1. Given Assumption 1.4, suppose V e C®)(0,1) solves Equation (1.13); then, for
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any 6 > 0, there exists € s.t. if ]5%

‘5 < ¢, then in the interval [5,1 — 6] the set of i s.t.:

V" (u)

oV =

is of zero measure.

The condition in Corollary 1.5.1 states that ], (y, v) is approximately constant over y
for v close to p. This result verifies my analysis in Section 1.6.2.1 that the comparison
of Poisson and Gaussian signals relies only on the local properties of J. Another simple

sufficient condition for L(y) # 0 is high impatience or low learning capacity.

Corollary 1.5.2. Given Assumption 1.4, suppose V e C3(0,1) solves Equation (1.13). Then,

. . p . . .
forany 6 > 0, there exists A s.t. if © > A, then in the interval [5,1 — 6], the set of p s.t.:

V" (u)

oV =

is of zero measure.

Corollaries 1.5.1 and 1.5.2 complement the discussion in Section 1.7.1 and illustrate the
complete picture of how the DM’s incentives pin down the optimal learning dynamics.
First, when Assumption 1.1 holds, Theorem 1.4 implies that the cost structure does not
favor any learning strategy. Any positive discount rate gives the DM incentive to choose
a Poisson signal. All learning strategies, including Gaussian learning, become equally op-
timal only when time preference is risk neutral. Second, when Assumption 1.1 is violated
by a small amount, then even though the cost structure might favor a Gaussian signal,
the incentive is dominated by discounting. Third, when the cost structure provides arbi-
trarily strong incentive for a Gaussian signal, sufficiently high discount rate overweights
the incentive.
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Although Poisson learning is generally optimal, immediate action and confirmatory evi-
dence are implications of Assumption 1.1. Imagine a case in which high-precision signals
are relatively inexpensive (e.g., J(y,v) is truncated both below and above). Then, when
the prior is close to the boundary of the stopping region, seeking confirmatory evidence
(with low precision and high frequency) results in very high cost, whereas seeking for a
precise contradictory signal is inexpensive. Searching for a contradictory signal causes
the belief to drift rapidly toward the more likely state, which effectively enables quick
confirmation. Therefore, the contradictory signal becomes optimal. In fact, this example
has the same intuition as the findings in Che and Mierendorff (2016). In their setup, the
DM allocates limited attention to two exogenous Poisson signals, each revealing a state.
When the DM is more uncertain, their model predicts that the DM acquires a confirma-
tory signal. However, near the stopping boundary, their model predicts a contradictory
signal, as the contradictory signal approximates an infeasible confirmatory signal with
low precision and high frequency.

On the other hand, consider the immediate action property. Imagine a case in which
low-precision signals are inexpensive. Then, breaking a long jump into multiple short
jumps may be profitable. The immediate action property is called the single experiment
property (SEP) in Che and Mierendorff (2016). In their paper, SEP is also shown not to be

a robust property in a generic Poisson learning model.
1.7.3  Linear flow cost

In this subsection, I study the case where the flow cost C(I) is a linear function. As-
sumption 1.2 is replaced by the following assumption:

Assumption 1.2 (Linear flow cost). Function h is defined by C(I) = AI, A > 0.

The convexity of C(I) in Assumption 1.2 gives the DM incentive to smooth the acqui-
sition of information. When C(I) is a linear function, the optimal value is achieved by
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acquiring all the information and immediately making a decision.

Theorem 1.6. Given Assumptions 1.1 and 1.2', suppose V (i) solves Equation (1.1), then:

V() = sup Ep[F(v)] = AEp[H(p) — H(v)] (1.14)
PeA?(X)

The intuition for this result is simple. At any instant in time, suppose that the optimal
decision is to continue learning for a positive amount of time. The value is the discounted
future value at the next instant of time (¢ + dt) less the flow cost of information. Now, con-
sider moving the learning strategy at t 4 dt to the current period. Then, both the future
value at t + dt and the cost are discounted by dtf less. If the net utility gain from learn-
ing at t + dt is nonnegative, then this operation increases the current utility by reducing
the waiting time.? If the net utility gain from learning at ¢ + dt is negative, then stop-
ping learning immediately increases current utility. This operation can always be applied

recursively and strictly improves the strategy until all information is acquired at period

0.26

In fact, given Assumptions 1.1 and 1.2/, Equation (1.1) is a variant of the more gen-
eral model in Steiner, Stewart, and Matéjka (2017), which considers a varying state and
repeated decision making. With linear cost function C(I), no motivation for smoothing
the learning behavior exists. The dynamics in Steiner, Stewart, and Matéjka (2017) are a

result of the intertemporal dependence of decision problems.

BThis step utilizes Assumption 1.2/, which implies that the cost of a combined signal structure is the sum
of the cost of each of them.

26Gtrictly speaking, an immediate learning strategy is not admissible because its belief path is not cadlag.
However, there always exists a way to implement a signal structure in an arbitrarily short period of time,
and the payoff approximates the immediate learning payoff.

58



1.8. Applications

1.8 Applications

1.8.1 Choice accuracy and response time

The two-choice sequential decision making problem has been extensively studied in
the psychological and behavioral studies. One of the key objective is to explain the data on
choice accuracy and response time from experiments. The drift-diffusion model (DDM)
has been the most popular theoretical model for these decision problems, for the reason
that DDM is very tractable and fits the accuracy/ response time data well. However,
accounting for the joint distribution of choice accuracy and response time remains a chal-
lenge for DDM. In this section, I apply my model to predict a systematic feature in the
data: the crossover of response time-accuracy relationship.

The crossover happens when the difficulty of decision problem varies: the error re-
sponses are faster than the correct responses when the task is easy; the error responses
are slower than the correct responses when the task is hard (see Luce et al. (1986), Rat-
cliff, Van Zandt, and McKoon (1999)). First, I illustrate the crossover of time-accuracy

relationship in Example 1.5.

Example 1.5. Consider the same decision problem as in Example 1.1. F(u) = max{1 —2u,2u — 1}
and p = 1. Assume prior belief ;1o = 0.5 and let Hy(u) be the entropy function. Define

uncertainty measure H(y) as:

Ho(p) if p €10.5,0.65]

H(p) = { Ho(u) — | — 05> if 4 <05

Ho(p) — 4|p — 0.65 if u > 0.65

\

H(u) is an asymmetric uncertainty measure, and H(y) is slightly more concave than Hj
when u < 0.5 or > 0.65. The different difficulty levels are modeled as different capacity
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constraints on —LH (), the higher the capacity constraint is, the easier the decision prob-
lem is. I study the joint distribution of choice and decision time conditional on the true

state being r (4 = 1). Figure 1.13 depicts the latency-probability (LP) and quantile-probability
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Left panel: The latency-probability function (the thin line) and the data points simu-
lated from 8 difficulty levels. Right panel: The quantile-probability functions (the thin
lines, from bottom to top: 0.1, 0.3, 0.5, 0.7, 0.9 quantile) and the data points simulated
from 8 difficulty levels. The correct responses are to the right of 0.5, the errors are to
the left of 0.5. Red points: the errors have shorter response times. Blue points: the
errors have longer response time.

Figure 1.13: LP and QP plots

(QP) plots. The horizontal coordinates of the points to the right of p = 0.5 shows the
choice probability of the action R (the correct choice). Each such point has a correspond-
ing point to the left of p = 0.5 showing the remaining probability of the action L (the
error). The vertical coordinates of all points show the response time measured by mean
(in LP plot) or by quantiles (in QP plot).

The crossover of time-accuracy relationship is illustrated by the differently colored
points. The red points are data points where the errors happen earlier than the correct
responses (measured by both mean or quantiles). They are simulated with high capacity,
thus are of higher accuracy in general. On the contrary, the blue points are data points
where the errors happen later than the correct responses. They are simulated with low
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1.8. Applications

capacity, and of low accuracy in general. In fact, Figure 1.13 is qualitatively the same as
the LP and QP plots documented in Ratcliff and Rouder (1998) and Ratcliff, Van Zandyt,
and McKoon (1999).

Low difficulty High difficulty

02 04 06 08 10 02 04 06 08 10
Figure 1.14: The critical beliefs of different difficulty levels

The main reason for the crossover is explained in Figure 1.14. When the capacity is
low (the task difficulty is high), the optimal size of belief jump is small. By construction
of H(y), when the posterior belief is not far away from pg, learning the state L is more
costly than learning the state R. As a result, the critical belief * at which searching for
both direction is indifferent is biased toward left. Since yy > p*, the correct responses
are font-loaded. Applying the same intuition, when the capacity is high, o < u* and the

errors are font-loaded.

Applying the idea from Example 1.5, creating a crossover of u* and ji is necessary for

creating a crossover of the response time-accuracy relationship.

Proposition 1.1. Suppose |A| = 2, Assumption 1.2-a is satisfied. Hy(p) and F(u) are symmetric
around po = 0.5 and satisfy Assumption 1.3. ¥V partition of R™ : {0,c1,-- -, cx, 00}, there exists

uncertainty measure H(u) satisfying Assumption 1.3 such that:

1. When c € {ci}, u* = po, and the optimal strategy at y is the sames as that with Ho(p).
2. When c increases on R™, the sign of u* — g alternates on each partition.
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Proposition 1.1 states that the flexible learning model can fit an arbitrary number of
crossovers of the response time-accuracy relationship at given difficulty levels. The stan-
dard DDM predicts identical decision time distribution for the correct responses and the
errors (Ratcliff (1981)). To accommodate a non-trivial speed-accuracy trade-off/complementarity,
DDM with varying boundary (Cisek, Puskas, and El-Murr (2009)) or DDM with random
starting point and drift (Ratcliff and Rouder (1998)) are proposed, and there are a lot of de-
bate about which variation works better. Fudenberg, Strack, and Strzalecki (2018) shows
that the collapsing (expanding) boundary maps exactly to the complementarity (trade-
off), and in an uncertain-difference DDM with endogenous stopping, decision boundary
collapses to zero asymptotically and accuracy declines over time. These analyses sug-
gest that DDM is able to fit the crossover, however at the cost of adding trial dependent
parameters. Meanwhile, it remains to be disentangled which set of parameters in DDM
are task specific and which set are subject specific. On the contrary, the flexible learning
model predicts the crossovers clearly with varying only a task difficulty parameter, while

keeping the task payoffs and the learning technology constant across trials.
1.8.2  Radical innovation

An important question in the study of innovation is to understand what characteristics
of a firm foster innovation. The second application relates the radicality of firm’s R&D
and innovation to its safe option. I consider two firms: an incumbent (1) and an entrant (E).
They face the identical set of risky new products. The only difference between the two
tirms is that the incumbent has a better existing safe product. I am interested in which
firm innovates more radically in the R&D process. Intuitively, there are two competing

incentives:

1. Impatience effect: The incumbent has an overall higher continuation value than the
entrant. Therefore, by the value-precision monotonicity, the more impatient incum-
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bent should prefer the frequency of signal to the precision of signal. So the impa-

tience effect suggests that the entrant innovates more radically.

2. Threshold effect: The incumbent has a better outside option. Therefore, it has a higher
threshold of belief for accepting a risky option. The relative value of a precise signal
to an imprecise signal is higher for the incumbent. Therefore, the threshold effect

suggests that the incumbent innovates more radically.

I model the problem using the following setup. There is one safe product Ps and K
risky products {Py, - - - , Px}. The state is x € {G, B}. x = G means the new technology is
good, and the new products are better than the safe product: Vi, k u;(P, G) > u;(Ps;, G).
When x = B, the new technology fails, and Vi, k u;(P, B) < u;(Ps, B). Vx,k, up(Py, x) =
ug(Py, x) and uy(Ps) > ug(Ps). The two firms share the same H(u) function and capacity
constraint ¢’ Let v;(j1) be the two firms’ optimal strategies. I define that a firm is looking
for more radical innovation given belief u iff |vi(u) —pu| > |v_i(y) — |, namely firm i is

searching for a more precise Poisson signal.

Example 1.6. I calculate a simple example. There is only one risky product and K = 1. The
incumbent’s safe option pays u(Ps, x) = 0.3 and the entrant’s safe option pays ug(Ps, x) =
0.15. The risky option pays 1 when x = G and —1 when x = B. H is the standard entropy
function, p = 1,c = 0.3.

Figure 1.15 depicts the value functions (red curve: incumbent; blue curve: entrant).
The two dashed lines are the payoffs of the corresponding safe options. Figure 1.16 de-
picts the policy functions (red curve: incumbent; blue curve: entrant). There is clearly a

crossover of the policy functions. In the union of the two firm’s experimentation regions,

21t is straightforward that if the cost of R&D is flexible, the incumbent invests (strictly) more as a di-
rect implication of the value-intensity monotonicity. So I fix the capacity and focus on the choice of signal
precision. It is not hard to extend the results to the flexible cost case.
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Figure 1.15: Value function Figure 1.16: Policy function

when y < p. the entrant seeks more radical innovation, when p > ji the incumbent seeks

more radical innovation.

The result of Example 1.6 can be summarized by the following proposition. Suppose

K =1, let Eg be the union of the two firms” experimentation regions.

Proposition 1.2. There exists p. s.t. Yu € Eo, u > po = |vi(p) — u| > |ve(u) — p| and
w<pe = |vi(p) —p| < |ve(p) — p|. Moreover, Eq( (0, uc) # & and Eo (\(pe, 1) # &.

Proposition 1.2 first states that there exist a threshold belief that the incumbent looks
for more radical innovation if (and only if) the belief is higher than the threshold. More-
over, there exist none degenerate regions that either firm is innovating more radically
than the other. Therefore, the order of radically of the two firms” innovations switches ex-
actly once when the belief changes. Here is the intuition for the crossover. The entrant’s
value function is always steeper than the incumbent’s, hence, the difference in the contin-
uation value is decreasing in the belief. As a result, the impatience effect is diminishing
when p increases. On the other hand, when y is higher, it is ex ante more likely that the
risky arm will be chosen. As a result, the threshold effect outweighs the impatience effect
when p increases. Therefore, when y increases, the incumbent is increasingly favoring a
more precise signal, comparing to the entrant. Thus, there is a crossover.
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Proposition 1.2 extends to multiple risky products as well. When K > 1, the exper-
imentation regions are no longer simple intervals. Instead, they are unions of open in-
tervals. In any experimentation interval where V never touches F;, the two firms use the
identical strategy (since the outside option is never triggered). So we only consider the
leftmost interval in each firm’s experimentation region. Let Ey be the union of the two

firms’ leftmost intervals of the experimentation region.

Proposition 1.3. There exists p. s.t. Yu € Eo, y > po — |vi(p) —u| > |ve(u) — p| and
u<pe = |vi(p) — | < |ve(p) — p|. Moreover, Eq(\(0, pc) # & and Eo (\(pe, 1) # &.

1.9 Conclusion

This chapter provides a dynamic information acquisition framework which allows
fully general design of signal processes, and characterizes the optimal information ac-
quisition strategy. My first contribution is an optimization foundation for a family of
simple information generating processes: for an information acquisition problem with
flexible design of information, the optimal information structure causes beliefs to follow
a jump-diffusion process. Second, I characterize the optimal policy: seeking a Poisson
signal whose arrival confirms the prior belief is optimal. The arrival of the signal leads
to an immediate action. The absence of the signal is followed by continued learning with

increasing precision and decreasing frequency:.
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Time preference and information acquisition
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2.1 Introduction

Consider a decision maker (DM) who is making a one-shot choice of action. The pay-
off of each action depends on an unknown state of the world. The DM can design a
sequence of signal structures as her information source subject to a flow informativeness
constraint. The informativeness of a signal structure is measured by a posterior separable
measure. The DM is impatient and discounts future payoffs. Here I want to study the fol-
lowing question: fix a target information structure, what is the optimal learning dynamics
that implements this target information structure?

In Example 2.1, I analyze this problem in a very simple toy model. In the example,
I consider three simple dynamic signal structures: (i) pure accumulation of information
before decision making, (ii) learning from a decisive signal arriving at a Poisson rate and
(iii) learning from observing a Gaussian signal. This example suggests that different dy-
namic signal structures mainly differ in the induced decision time distribution. Since the
form of discounting function prescribes the risk attitude on the time dimension, the dis-
counting function (or time preference) is a key factor determining the optimal dynamic

signal structure.

Example 2.1. The unknown state of the world can take two possible values x = {0,1}.
Prior belief is 4 = 0.5 (the probabiltiy that x = 1). Suppose that the target information
structure is full revelation (induced posterior belief is either 0 or 1). I consider a model
in continuous time. The flow information measure of belief process y; is assumed to be
E[—%H (ut)|Ft] (the uncertainty reduction speed, introduced in Chapter 1), where H(y) =
1 —4(u — 0.5)%2. Assume that the flow cost constraint is ¢ < 1. The DM has exponential
discount function e~. T assume the utility from the optimal actions associated with each

state to be 1. In this example, I compare three different learning strategies:

1. Pure accumulation: the DM uses up all resources pushing her posterior beliefs towards
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Chapter 2. Time preference and information acquisition

the boundary. This strategy is a continuous time extension of the suspense maximizing
strategy introduced in Ely, Frankel, and Kamenica (2015). At each prior y, the strategy
is to seek a signal that induces posterior belief v = 1 — u with arrival probability p =
4(1+2ﬂ)21' The DM makes decision once her posterior arrives at 0 or 1. The posterior

belief will either drift along one of two deterministic iso-time curve or jump between

the two curves at the Poisson rate.

107
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Figure 2.1: Belief trajectory

Figure 2.1 illustrates the two iso-time curves (thick dashed curves) and a possible path
of belief (blue curve). By the standard property of compensated Poisson process, the
DM'’s posterior belief drifts towards the boundary with speed 4(2;—_1). Therefore, one
of the belief trajectory follows the following ODE:

: 1
K= 121

1(0) = 0.5

It is easy to solve that u(t) = # As aresult, the DM’s decision time i.e. the time that

belief process hits 1 is deterministic at t = u~!(1) = 1. Then the expected utility from

DY — (H(p) — Hw)p + H' ()(v — p))p <

IThis can be calculated using the cost of Poisson signals E[—
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the pure accumulation strategy is discounted by one unit of time: V4 = e~! ~ 0.368.

. Gaussian learning: the DM observes a Gaussian signal, whose drift is the true state and
variance is a control variable. By the standard property of Gaussian learning, the DM’s
posterior belief process follows a martingale Brownian motion. The flow variance of
the posterior belief process satisfies the information cost constraint E[—%H ()| Ft] =
—%O'ZH” (1) < c. Therefore, we can solve for 0> = }L when the constraint is binding.
It is obvious that it is optimal to have the constraint binding. The value function is

characterized by the following HJB:

V() = 50V () = V")

with boundary condition V(0) = V(1) = 1. There is an analytical solution to the ODE:

B 62\5 + e4\/§x B

24/2x
Vin) = 1+ ¢2V2

— Vg = V(0.5) ~ 0.459

. Poisson learning: the DM learns the state perfectly at Poisson rate A. If no information
arrives, her belief stays at the prior. By the flow informativeness constraint E[— %H (ue)|Ft] =
A(H(ue) — 3H(1) — 3H(0)) < ¢ = A = 1. The value function is characterized by the

HJB:

oVp = A(1 - Vp)
.V, —05
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Clearly:
Vp > VG > VA

Now we introduce the intuition why the values are ordered in this way. First, all of
the three strategies induce the same expected decision time 1. This is due to the linearity
of posterior separable information measure in compound experiments. The measure of
a signal structure that fully reveals the state at prior 0.5 is exactly 1, and it must equal
the expected sum of the total learning costs. Since in each continuing unit of time flow
cost 1 is spent, expected learning time must be exactly 1. Therefore, what determines the
expected decision utility is the dispersion of decision time distributions. Since exponen-

tial discount function e !

is a strictly convex function, a learning strategy that creates the
most dispersed decision time attains the highest expected utility. Now let us study the

decision time distribution induced by the three strategies:
1. Pure accumulation: t = 1 with probability 1. The decision time is deterministic.

2. Gaussian learning: The decision time is the first passage time of a standard Brownian

motion at either of the two absorbing barriers:

1 1
= 1 —_ —_ = 1
T mm{t‘z + th 0or }

The distribution of T is characterized by a heat equation with two-sided boundary
conditions at x = 0, 1. This equation has no analytical solution (solution can be charac-

terized by series). Here I numerically simulate this process:

Figure 2.2 depicts the evolution of the distribution of posterior beliefs over time. We
can see that at any time, the distribution over posteriors is a Normal distribution cen-
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1.5

Figure 2.2: Belief distribution of Gaussian learning

sored at the two absorbing barriers 2. The normal part is becoming flatter over time

because learning leads to mean preserving spread of posterior beliefs.

3. Poisson learning: As is calculated, the Poisson signal arrives at a fixed arrival fre-

quency A = 1. The stopping time distribution can be calculated easily:

F(t)y=1—¢""!

Evolution of posterior beliefs is shown in Figure 2.3: Figure 2.3 depicts the evolution of
the distribution of posteriors over time. At any time, distribution over posteriors has
three mass points at the prior and the two target posteriors. The mass on prior is de-
creasing over time (following an exponential distribution) and the mass on posteriors

is increasing over time.

Obviously, pure accumulation is always the worst in this example since it induces

deterministic decision time. By comparing Figures 2.2 and 2.3, one can easily see the dif-

2The distribution has point mass at 0,1, represented by the straight lines in Figure 2.2. The relative
height represents the size of the probability mass. But the point mass part and Normal part does not share
the same scale.
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Figure 2.3: Belief distribution of Poisson learning

ference between Gaussian learning and Poisson learning: Gaussian learning accumulates
some information that induces intermediate beliefs over time, while Poisson learning uses
up all resources to draw conclusive signals. It seems that Poisson learning induces higher
decision probability in the beginning while Gaussian learning induces higher decision
probability later on (when prior becomes more dispersed). Therefore, Poisson learning

has more dispersed decision time. We can verify this conjecture by plotting the PDFs and

the integral of CDFs:
pdf [cDF
1.0} i 20k
i ' i
0.8F ] !
[ I L.57
0.6 ] f
i ! 1.0}
02F i 051
P S S S S I S T S S S SO SR | t gi t
0.5 1.0 15 2.0 2.5 3.0 f
Figure 2.4: PDFs Figure 2.5: Integral of CDFs
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In figure Figures 2.4 and 2.5, the black curves represent Poisson learning, the red
curves represent Gaussian learning and the dashed lines represent pure accumulation.
It is not hard to see from Figure 2.5 that the decision time of Poisson learning is in fact
a mean-preserving spread of that of Gaussian learning. So Poisson learning dominates
Gaussian learning for not only exponential discounting, but also any other convex dis-

counting function.

In Example 2.1, I compare three kinds of dynamic learning strategies. These three
strategies are chosen to be representative. First, the three strategies are simple heuristics
that are very tractable. Second, these three strategies are also representative for three

kinds of learning frameworks widely used in the literature:

e Pure accumulation has a flavor of the static rational inattention models. Like in
Matéjka and McKay (2014), decision is made once and there is no dynamics. Even
in dynamic rational inattention model like Steiner, Stewart, and Matéjka (2017), in-
formation is acquired in one period, and there is no smooth of information. In this
example, the belief processes induced by learning has neither time dispersion nor

cross-sectional dispersion when using the pure accumulation strategy.

e Gaussian learning itself is well studied in the literature, for example by Moscarini
and Smith (2001), Hébert and Woodford (2016). On the other hand, Gaussian learn-
ing is one kind of symmetric drift-diffusion model (Ratcliff and McKoon (2008)).

Gaussian learning captures the idea of gradual learning both over time and over

beliefs.

e Poisson learning has been studied in Che and Mierendorff (2016). Poisson bandit is
also used as a building block for strategic experimentation models (see a survey by
Horner and Skrzypacz (2016)). My example considers a simplest stationary Poisson
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stopping strategy that stochastically reveals the true state. Poisson learning is only

gradual over time, but is lump sum in the belief space.

Example 2.1 suggests a key trade-off to be studied: gradual accumulation of infor-
mation v.s. seeking decisive evidence. I want to study how the choice between gradual
accumulation and decisive evidence seeking determines the decision time distribution.
In Section 2.2, I develop an information acquisition problem that imposes no restriction
on the specific form of information a decision maker can acquire. The DM can choose an
arbitrary random process as signals, and she observes the signal realizations as her infor-
mation. There are two constraints on the signal process. First, flow informativeness of the
process is bounded. Second, the signal distribution conditional on stopping is fixed. If
the DM chooses to learn gradually, then she is able to accumulate sufficient information
before making any decision. After accumulating information, she can run the target ex-
periment successfully with very high probability and achieves close to riskless decision
time. On the contrary, if the DM chooses to only seek decisive signals, then the signals

arrive only with low probabilities. So the corresponding decision time is riskier.

The main finding of this chapter is that among all decision time distributions induced
by feasible and exhaustive® learning strategies, the most dispersed decision time distri-
bution is induced by decisive Poisson learning—only decisive signals arrive as Poisson
process. Meanwhile, the least dispersed time distribution is induced by pure accumula-

tion, as I have already shown in Example 2.1.

This chapter is structured as follows. Section 2.2 setups a general discrete time infor-
mation acquisition framework. Section 2.3 proves the main theorem. Section 2.4 extends

the result to a continuous time model. Section 2.6 concludes.

3A feasible strategy is exhaustive if it is not leaving any capacity unused or acquiring unrelated infor-
mation.
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2.2 Setup of model

The model is in discrete time. Consider a decision maker who has a discount function
pt decreasing and convex (both weakly) in time t and lim;_, Z;D:t ps = 0. There is a finite
state space X and action space A. The prior belief of the unknown payoff-relevant state
is u € A(X). The DM’s goal is to implement a signal structure that induces distribution
7 e A*(X) over posterior beliefs*. By implementing a target signal structure, I mean
conditional on stopping, the signal structure in the current period must be a sufficient
statistics for the target information structure. The informativeness of signal structure is
measured by a posterior separable function I(p;, vilu) = >, pi(H(u) — H(v;)). In each
period, the DM can acquire information for no more than c unit, i.e. E[I(p}, vi|u")] < c.

The optimization problem is:

supE[p7u(A, X)] (2.1)
St,T

-

I(St,‘X’St_l, 17’2,5) <c

st. ¢ X - S; — Aconditionalon 7 =t

\X—>St—>17’>t

where 7 € AN is a random stopping time. S;_1 is defined as summary of past infor-
mation (Sy,...,85t-1). Sp = ¢ is assumed to be degenerate. The objective function in
Equation (2.1) is the expected discounted utility from taking the action. The first con-
straint is the flow information cost constraint, it states that conditional on any history, the
information cost incurred in a period is less than the constraint c. The second constraint
is the target information structure constraint. It states that at each period, conditional

on stopping the acquired information structure is statistically sufficient for the target ac-

“State and signal realization can be equivalently represented as a pair of random variables (X, A).
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tion profile. The remaining constraint is a natural information process constraint (or the

standard measurability constraint for stopping time).

Remark 2.1. This model is restrictive in the design of information in the following sense:
At any instant in time, conditional on stopping, the information acquired must be statis-
tically sufficient for a time invariant random variable A. Other than this restriction, the
DM can freely choose her learning dynamics. The interpretation of this constraint is not
easy, as it is an aggregate constraint for each period, unconditional on the history of past
signals. This model does not necessarily cover Gaussian learning in general, but it does
in a symmetric cases (i.e. target posterior distribution and H are symmetric around prior

u, like in Example 2.1).

The main reason for imposing this constraint is for tractability. I restrict learning dy-
namics in this way to abstract away from the fact that the optimal target information
structure itself is changing over time, which creates time varying incentive for search di-
rection, search precision and search intensity (highlighted in Chapter 1). In the current
chapter, I want to focus on the trade-off between gradual information accumulation and

decision evidence seeking.

I assume that the DM follows the suggestion of signal structure A in choosing the
action. This is WLOG since given any signal structure, the induced optimal action itself
forms a Blackwell less informative signal structure. Therefore, the original learning strat-
egy is still statistically sufficient for the direct signal structure. So if we take the optimiza-
tion of A also into account, then it is WLOG to assume that A is a direct signal. Then the
optimal implementation of A still follows a solution to Equation (2.1). The optimization
of A is studied in Section 2.5.1.
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2.3 Solution

2.3.1 Anauxiliary problem

Let [ = I(A; X) and V* = E[u(A, X)]. Consider a relaxed problem which only tracks
the average accumulated information measure I at every time t, rather than the entire

signal process conditional on all histories:

o]
sup > pr(1—Pry)pV* 2.2)
Pt t=1

;
(I=I)pt+ (L1 — L)1 —ps) < c

sty P =P+ (1—P1)ps

LPO =0,[1 =0

where p; € [0,1] and I; > 0. 1 — P;_; is the surviving probability at period t, p; is the
conditional stopping probability. I; is the total expected information measure of the entire
path of non-stopping signals up to period t.

The constraints in the relaxed problem Equation (2.2) capture a key feature of posterior
separable information measure: I; is accumulated linearly over time and the information
measure required to implement S is exactly the remaining information measure I — ;.
It is more relaxed than Equation (2.1) in the following sense: in Equation (2.1), the flow
informativeness constraint is imposed on all histories of &1 and 17<;. However, in
Equation (2.2), the first constraint is imposed only on each period unconditional on the
history. In other words, the first constraint in Equation (2.2) is an average version of the
flow informativeness constraint in Equation (2.1). p; can be interpreted as the expected

stopping probability and I;’s as the expected accumulated informativeness.

Lemma 2.1. Equation (2.1) < Equation (2.2)
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Lemma 2.1 verifies the previous intuition, that Equation (2.2) is a relaxation of Equa-
tion (2.1). Now I first solve Equation (2.2). Then we can use the auxiliary problem to

provide some clue for solving the original problem Equation (2.1).

Theorem 2.1. p; = < solves Equation (2.2).

[4
I

Theorem 2.1 states that the relaxed problem Equation (2.2) has a simple solution: no

information should ever be accumulated. It directly implies that I; = 0 and the optimal
t—1

value equals > ;7 o <1 — %—) £V*. I prove Theorem 2.1 by approximating the convex

discount function p; with a finite summation of linear functions. Then for each linear

discount function, I prove by backward induction that choosing I; = 0 is optimal.
2.3.2  Optimal learning dynamics

By Lemma 2.1 and Theorem 2.1, to solve Equation (2.1), it is sufficient to show that

- c\t-lc_ .,
t_zlpt(l—f_> -V (2.3)

is attainable by a feasible strategy in Equation (2.1). Consider the following experimen-
tation strategy: A is observed with probability % in each period. If A is successfully
observed, the corresponding action is taken. If not, go to the next period and follow the
same strategy. Formally, S; and 7 are defined as follows. Let sg, ¢y ¢ A be two distinct

degenerate signals.

so  with probability 1if ;1 € A J{so}

St =4 A with probability ;7 if S;—1 = ¢co (2.4)

co with probability 1 — % if S;_1 = co

\

T =t lfStEA
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Here signal sy means stopping. Signal cp means continuation. Any signal in A indicates

the action to take. Then it is not hard to verify that:

o Objective function:

Tu(A, X)]

piP(St € A)E[u(A, X)]

||
s =

,...
II
_

-1
ot H P(Sr = co|Sr-1 = c0)P(Sr € A[Si—1 = co)E[u(A, X)]
=0

(=550

~~

o

,...
Il
_

o

H.
Il
_

o Capacity constraint:

I(Sp; X[St—1, 172¢)
=15, =, 1(St; X|{co}, 1) + 1, ¢y 1(50; X|St-1,0)
=1s,_1=c,(P(St € A)I(A; X) + P(St = co)I(co; X)) + 15,1, 0

I<c

~il O

=15, 1=~

e Decision time distribution:

(2.5)

I show that Equation (2.4) implements the expected utility level Equation (2.3), hence

solves Equation (2.1). It is easy to see that Equation (2.4) induces expected decision time

O I~

for all feasible strategies. In fact, the proof of Lemma 2.2 suggests that E[7| >
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. By Lemma 2.2, which is stated below, g is the lower bound of expected decision time
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when there is some waste of information: either capacity constraint c is not fully used, or

St contains strictly more information than A conditional on taking action.

Lemma 2.2. Let (S, T) be a strategy that satisfies the constraints in Equation (2.1), then E[T]| >

I~

I~

I call an information acquisition strategy exhaustive if the corresponding E[ 7| = -. The
decision time distribution P; induced by strategy Equation (2.4) is a exponential distribu-
tion with parameter . Equation (2.4) being the optimal strategy, independent of choice

of p; implies that Vp;, V information acquisition strategy (S’t, 7~')

Elpzu(A; X)] < Elp7u(A; X)]

= E[pz] < E[pT7]

Since p; ranges over all positive decreasing convex functions, P; as distribution over time
is second order stochastically dominated. Summarizing the analysis above, I get Theo-

rem 2.2.

Theorem 2.2. Equation (2.4) solves Equation (2.1). The decision time distribution of any feasible

and exhaustive information acquisition strategy is a meas preserve contraction of P;.

2.3.3 Gradual learning v.s. decisive evidence

My analysis illustrates the gradual learning v.s. decisive evidence trade-off in the
flexible learning environment. The trade-off is: the speed of future learning depends on
how much information the DM has already possessed. Accumulating more information
today speeds up future learning. So the DM is choosing between naively learning just for
today or learning for the future. If all resources are invested in seeking decisive evidence,
then signal arrives at a constant low probability, and the decision time distribution is
dispersed. If some resources are invested in information accumulation, then learning will
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accelerate, at a cost of lower (or even zero) arrival rate of decisive signals in the early

stage. As a result the decision time is less dispersed.

When the decision maker has convex discounting function, decisive evidence seeking
is optimal. The intuition behind this result is natural. Convex discounting function means
that the decision maker is risk loving towards decision time. Seeking decisive evidence is
the riskiest learning strategy one can take: it payoffs quickly with high probability, but if it
fails, learning is very slow in future. In practice, evidence seeking is a very natural learn-
ing strategies. A researcher tends to form a hypothesis, then seeks evidence that either
confirms or contradicts the hypothesis. Usually there is a clear target of what to prove
(the hypothesis), and what kind of signals (data from experiments) proves/contradicts
the hypothesis. Running the research protocol itself is usually more mechanical than the
designing stage. What is common in natural science is that the principal investigator(PI)
designs the whole research plan. Then all experiments, data collections and computa-
tions are run by doctoral students. The PI usually has a permanent position and there is

no deadline, so he can enjoy the expected payoff from this risky project design.

Two elements in my framework are crucial to this result. The first is the flexibility in
the design of signal process. In contrast to my framework, if one considers a dynamic in-
formation acquisition problem with highly parametrized information process, then other
kind of trade-offs tied to the parametrization constraints might have first order effects.
For example, if one only allows Poisson learning or Gaussian learning, then the trade-off
of gradual learning and decisive evidence is directly assumed away. As a result the choice
among signal types (Che and Mierendorff (2016),Liang, Mu, and Syrgkanis (2017)) or the
trade-off between intensity and information cost (Moscarini and Smith (2001)) becomes
tirst order important. If one only allows DM to choose between to learn or not to learn
in each period, then the trade-off between exploration and exploitation becomes first or-
der. Meanwhile, in my framework, the DM can freely design the optimal signal type, and
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hence the corresponding decision time®. So the aforementioned trade-offs actually do not
exist, the trade-off between gradual learning and decisive evidence becomes central to
the analysis.

The second is the posterior separability assumption on information measure. Pos-
terior separability is equivalent to the linear additivity of compound signal structures
(see the discussion in Section 1.7.1). This assumption restricts the relative price between
gradual learning and evidence seeking. Any amount of informativeness invested today
to accumulate information transfers one-to-one to the amount of reduction of informa-
tion cost tomorrow. Lemma 2.2 shows that the expected decision time is identical for
all feasible and exhaustive learning strategy. As a result the trade-off between gradual
learning and decisive learning translates to choice of dispersion of decision time distribu-
tion. If one assumes either sub-additivity or super-additivity in informativeness measure,
then choosing different learning strategies might also change the expected decision time,

which makes my key trade-off entangled with other effects.

2.4 Continuous time model

In this section, I study a continuous time version of Equation (2.1). Let p; : R* — IR* be
a decreasing and convex discounting function. Let F(u) = sup, E,[u(a, x)], the expected
utility from choosing the optimal action given a belief. Consider the following stochastic

control problem:

sup E[prEx[F(p)]] (2.6)
{ueeM,t

ot —E[%H(,ut)’]-}] <c

Ho =, Pt ~ T

>The DM can affect the decision time distribution by choosing the information acquisition strategy.
However, not all decision time distributions are implementable.
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where T is a stopping time measurable to the natural filtration of y;. The objective func-
tion of Equation (2.6) is the same as that of Equation (2.1). In the stochastic control prob-
lem, the decision maker chooses the optimal posterior belief process {y;) and stopping
time T, subject to the 1) stopping time is measurable to belief process. 2) belief process is
a martingale. 3) flow increase in informativeness measure is bounded by c. 4) conditional
on stopping time, y; has distribution 7.

It is not hard to see that Equation (2.6) is a continuous time extension of Equation (2.1).
I take a belief based approach when formulating Equation (2.6). However, I did not for-
mally proof how a stochastic process of posterior beliefs can be induced by a stochastic
information acquisition strategy. Equation (2.6) is constructed by taking analog of Equa-

tion (2.1). Let V* = E[F(u)]. Then

Lemma 2.3. Equation (2.6) < Equation (2.7).

(0
V= supj pt(1 — Py)p:V*dt (2.7)
pr JO
Ip=0,1; >0, jtéc—pt(f—ft)
s.t. < .
| Po=0, P = (1—P)p:

where py is a positive integrable function.
Theorem 2.3. p; = $ solves Equation (2.7).

Lemma 2.3 and Theorem 2.3 are exactly the continuous time analogs of Lemma 2.1
and Theorem 2.1. Lemma 2.3 states that Equation (2.7) is a relaxed problem of Equa-
tion (2.2). Theorem 2.3 characterizes the solution of Equation (2.7): no information should
ever be accumulated. I; = 0 and the optimal value equals {;’ ptef%t%V*dt. Theorem 2.3
is proved by discretizing the continuous time problem and invoking the result of Theo-
rem 2.1.
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2.4.1 Implementation

By Lemma 2.3 and Theorem 2.3, to solve Equation (2.6), it is sufficient to show that:
0
f pte_ftdtgv*
0 I

can be attained in Equation (2.6). Consider the following information acquisition strategy.

Let v be a random variable with distribution 77 and define:

d]/lt = (1/ — ]/lt) . dNt
(2.8)
T =tif dNt=1

where N; a standard Poisson counting processes with parameter 7 and independent to v.
(ut) is by definition a stationary compound Poisson process. The jump happens when the
Poisson signal arrives and belief jumps to posteriors according to distribution 7r. Once the

jump occurs, decision is made immediately. It is easy to verify:

e Martingale property: We know that each compensated Poisson process dN; — £dt is

martingale, therefore:

E[dpt|pe] =E[(v — pe) - ANi]
=Ex[E[(v —p) - dN[v]]
:En[(v ) E[dNt - %dt“ + En[(v ) _dt]

—0

therefore, yi; is a martingale. The second equality is the law of iterated expectation.
Third equality is by E[v] = p and dN; — 7dt being martingale.

o Capacity constraint: If Ny > 1, then E[—de—(t”t)Wt] = 0 < c. If Ny < 1, then by the Ito
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formula for jump process:

The second equality is the law of iterated expectation. The third equality is the

martingale property of dN; — dt.

o Decision time distribution:
p=1-¢ 1

Therefore, Equation (2.8) implements utility level {;° pt%e_%tV*dt.

Lemma 2.4. Let (uy, T) be a strateqy that satisfies the constraints in Equation (2.6), then E[t] >

I~

As in the discrete time case, I call an information acquisition strategy exhaustive if the

corresponding E[7]| = g Since Equation (2.8) is optimal independent of the choice of

convex p, previous analysis implies Theorem 2.4.

Theorem 2.4. Equation (2.8) solves Equation (2.6). The decision time distribution of any feasible
and exhaustive information acquisition strategy is a mean preserving contraction of P;.
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2.5 Discussion

2.5.1 Optimal target signal structure

In this section, I solve for the optimal target signal structure in decision problem Equa-
tion (2.6). Assume that p; is differentiable. By Theorem 2.4, the optimization problem can

be written as:

T ¢ Ex[F(v)]

su e H-ExHWI"dt - (2.9)
neAZI()X) 0 b H(p) — Ex[H(v)]
st. Ex[v] = p

Define f(V!,V2) = { pre HG-V1 ‘dt . . Then it is not hard to verify that f(V!,V?)

c-V?
H(p)-v?
is differentiable® in V!, V2. Optimization problem Equation (2.9) fits in Theorem 4.2
from Chapter 4. Applying the theorem gives a necessary condition for 7t* solving Equa-

tion (2.9):

' Enlfl g,

“H@ E.HEO]__E
§o (—pr)e M Fn Hi) -
W]

Tt € arg rr;?&) Ex|F(v)+ SOO E—
te w—
0 Pte

E «
Ex[v]=p d

Notice that the objective function is the expectation of the linear combination of two belief

dependent functions. If we define:

Ly
g(x) = fo (=pe)e M= i dt

§o pre” F="dt

Then by the standard argument in Bayesian persuasion, 77* can by characterized by con-

cavifying the gross value function F + ((E+[H(v)]) - Ex+[F(v)])H. Moreover, by
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rem B.1, there exists 7* with support size 2| X| solving Equation (2.9). So I get the follow-

ing characterization:

Proposition 2.1. There exists 7v* solving Equation (2.9) and |supp(7t*)| < 2|X|. Let A =

Q(Exx[H(v)]) - Ex«[F(v)], any maximizer 7t* satisfies:

" e arg max Ex[F(v)+A-H(v)]
meA?(X)
Er[v]=p

Suppose the discounting function is a standard exponential function: p; = e !, then

g(x) = chp(IfW' Notice that the objective function:

(e )t EnlFO)] o En[FW)]
() foe H(:)— Ene[HO Y~ 04 p(H(p) — Ene[HO))

Therefore, the optimality condition becomes:

" € arg max Egx [P(v) + BV(y)H(v)] (2.10)
meA?(X) ¢
Er[vl=p

Equation (2.10) is very similar to the optimality condition I derived in Chapter 1, where
the optimal posterior is solved from concavifying V(-) + £V (u)H(-). The problem solved
in Chapter 1 is the continuous time limit of Equation (2.1) without the restriction on con-
stant target signal structure and with exponential discounting. In both problems, £V (i) is
adjusting the concavity of the gross value function. Therefore, higher continuation value
corresponds to more concave gross value function and less informative signal structure.
This suggests that the monotonicity in precision-frequency trade-off is extended to our
model as well. In Chapter 1, the trade-off is illustrated as decrease in precision of target in-
formation structure at each decision time. In the current chapter, target information struc-
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ture is forced to be constant over time. However, if I endogenize the target information
structure, then at more extreme prior beliefs associated with higher decision value, less
informative target information structure is optimal (and corresponding expected waiting

time is shorter).

2.6 Conclusion

In this chapter, I characterize the decision time distributions that can be induced by a
dynamic information acquisition strategy, and study how time preference determines the
optimal form of learning dynamics. No restriction is placed on the form of information
acquisition strategy, except for a time invariant target signal structure and a flow informa-
tiveness constraint. I find that all decision time distributions have the same expectation,
and the maximal and minimal elements by mean-preserving spread order are exponential
distribution and deterministic distribution. The result implies that when time preference
is risk loving (e.g. standard or hyperbolic discounting), Poisson signal is optimal since it
induces the riskiest exponential decision time distribution. When time preference is risk

neutral (e.g. constant delay cost), all signal processes are equally optimal.

88



Chapter 3
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3.1 Introduction

Information plays a central role in economic activities. It affects both strategic in-
teraction in games and single agent decision making under uncertainty. Information is
often endogenously acquired by a decision maker, as opposed to being exogenously en-
dowed. Therefore, it is important to understand how information is acquired. This boils
down to a simple trade-off: the value of information and the cost of acquiring informa-
tion. The value of information is often unambiguous in a single agent decision problem
with uncertainty. It is measured by the increased expected utility from choosing optimal
actions measurable to informative signal realizations(see Blackwell et al. (1951)). How-
ever, there has been less consensus on the proper form of information acquisition cost.
One (probably most) popular measure of informativeness being used in many informa-
tion acquisition models is the Entropy based mutual information and its generalizations.
This approached was initiated by Sims (1998, 2003), and is applied to a wide range of
problems (Matéjka and McKay (2014), Steiner, Stewart, and Matéjka (2017), Yang (2015a),
Gentzkow and Kamenica (2014), etc.). Despite its great theoretical tractability, Entropy
based models suffer from criticism on its unrealistic implications, including prior depen-

dence, invariant likelihood ratio of action, etc.

Two approaches can be taken to build a solid foundation for studying information ac-
quisition. One approach is to fully characterize the behavior implications associated with
mutual information and its generalizations. Then we will be able to empirically test the
behavior validity of these models. Caplin, Dean, and Leahy (2017) takes this approach
and proposes testable axioms for the Shannon model of rational inattention and its gen-
eralizations. The other approach is to impose only minimal assumptions on the cost of
information and study the robust predictions in an information acquisition problem. In
this chapter I take the second robust approach and focus on a dynamic information acqui-
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sition problem: a decision maker acquires information about a payoff relevant state before
choosing an action. She can choose an arbitrary random process as observed information,

subject to cost on information and cost on waiting.

I accomplish two main goals. First, I characterize the “minimal assumptions” on a
(static) information measure if a decision maker can choose from not only all information
structures but also all sequential combinations of them to minimize expected information
measure. I show that an indirect information measure is supported by expected learning
cost minimization— given any general measure of information, and for any informa-
tion structure (Blackwell experiment), the DM minimizes the expected total measure of a
compound experiment which replicates the original information structure— if and only
it satisfies three simple conditions. 1) Monotonicity: Blackwell more informative experi-
ment has higher measure. 2) Sub-additivity: the expected total measure of a replicating
compound experiment is weakly higher than the measure of the original experiment. 3)
C-linearity: mixing uninformative experiment with a proportion of informative experi-

ment has measure proportional to the mass on the informative part.

Second, I solve a dynamic information acquisition problem with those assumptions
imposed on the flow information measure. I prove that solving the dynamic problem can
be divided into two steps. The first step is to solve a static rational inattention problem
for an optimal static information structure. The second step is to solve for the optimal
dynamic implementation of the solution from the first step. The optimal information
process involves direct Poisson signals: signal arrives according to a Poisson counting
processes and the arrival of signal suggests the optimal action directly. When no signal
arrives, posterior belief process stays at prior.
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Related Literature

This chapter is closed related to two sets of works that aim at understanding the mea-
sure of information. The first tries to characterize implications (testable or non-testable)
of commonly used information measures. Basic mathematical implications and charac-
terizations for Entropy and Entropy based mutual information was provided in standard
information theory text books like Cover and Thomas (2012). Matéjka and McKay (2014)
and Caplin and Dean (2013) study the behavior implications of rational inattention model
based on Mutual information and posterior separable information measure respectively.
Caplin and Dean (2015) studies the implications of rational inattention model based on
general information measure. A set of full behavior characterizations for mutual infor-
mation, posterior separable information cost and their generalizations are provided in
Caplin, Dean, and Leahy (2017), Denti (2018), and Frankel and Kamenica (2018). Mean-
while, the second set of works seeks to build a dynamic foundation for common informa-
tion measures. Morris and Strack (2017) shows that the posterior separable function can
be represented as the induced cost from random sampling. Hébert and Woodford (2016)
justifies a class of information cost function (including mutual information) based on a
continuous-time sequential information acquisition problem. This chapter contributes
to this literature by providing a new optimization foundation for posterior separabil-
ity. Posterior separability is actually equivalent to additivity — both sub-additivity and
sup-additivity — in the expected measure of compound experiments. I show that sub-

additivity is justified by expected information cost minimization.

This chapter is also closely related to the dynamic information acquisition literature,
in which the main goal is to characterize the learning dynamics. A common approach
in this literature is to model information flow as a simple family of random process.
The decision maker can control parameters which represents aspects of interest. Wald
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(1947) first studies stopping problem with exogenous information process. Moscarini
and Smith (2001) and Che and Mierendorff (2016) go further by edogenizing information
process into optimization problem in Brownian motion framework and Poisson bandits
framework to study dynamics of learning intensity and direction respectively. Some re-
cent papers edogenize the random process family as well and give decision maker full
flexibility in designing information. Chapter 1 studies flexible dynamic information ac-
quisition with a posterior separable information measure and shows that confirmatory
Poisson signal is optimal. Steiner, Stewart, and Matéjka (2017) studies a repeated rational
inattention problem with mutual information as cost. This chapter contributes by relax-
ing the restriction on information cost to only minimal assumptions. I show that when
impatience is measure by fixed delay cost, the dynamic problem is closely related to the

static rational inattention problem, and Poisson learning is robustly optimal.

The rest of this chapter is structured as follows. Section 3.2 introduces the characteriza-
tion of indirect information measure based on expected information measure minimiza-
tion. Section 3.3 setups a dynamic information acquisition problem and characterizes the

solution.

3.2 Indirect information measure

3.2.1 Information structure and the measure of informativeness

In this subsection, I formally define “information” and a “measure of informative-
ness” in decision making problems. I extract key factors in any abstract “information”
that matters in a decision making problem and characterize a well defined equivalence
class that characterizes all information structures. Then, I use an “indirect information
measure” characterization to derive the minimal assumptions that we should impose on
an information measure.
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Definition 3.1.

1. Bayesian plausible posteriors: Let AX < RIX| be the belief space over X. Let A>X be
the space of probability measures over AX. I1(y) = {m € A*X|§vdm(v) = u} is the set of
Bayesian plausible posterior distributions. Let T = { (71, ) € A2X x AX|m e I1(p)}

2. Information structure: Let S be an arbitrary set (set of signals). Let p € AS x X be a
conditional distribution over S on x € X. (S, p) is an information structure. (S, p) can be

equivalently represented as S, a random variable whose realization is determined by p.

I would like to study the “set” of all information structures as a choice set for deci-
sion maker. However, since S is an arbitrary set, the “set” of all possible S is not even a
well-defined object from the perspective of set theory. Instead, I use II(y) to equivalently
characterize the “set” of all information structures. V (S, p), Vs € S, the posterior belief
from observing s can be calculated according to Bayes rule. The distribution of all such
posteriors forms a Bayesian plausible distribution as defined in Definition 3.1. Since dif-
ferent signals inducing the same posterior belief affect neither the choice of action nor the
expected utility, I claim that I'l(y) already summarizes all possible information structures
(up to the equivalence of posterior beliefs). I is defined as the set of all pairs (7, 1) where

7t represents an information structure given prior belief y.

Definition 3.2. An information measure is a mapping I : T — R*. T will represent (7, i)
using 1(S; X|p) in an interchangeable way, where u is the distribution of X and S induces belief

distribution 1.

Information measure I is defined as a mapping from prior-information structure pairs
in I' to extended non-negative real numbers. The only (implicit) restriction I put on I is
that different information structures that induce the same distribution of posterior 7t at u
have the same measure. This restriction is actually without loss of generality because the
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induced distribution of posterior of an information structure is always a sufficient statis-
tics for any feasible decision rule. Suppose different information structures have different
measure, then the DM is always able to choose an appropriate information structure with
the lowest information measure.! Definition 3.2 is the same as information cost function
defined in Caplin and Dean (2015). The only difference is that I explicitly modeled prior
dependence of I: u is an argument in I. In Caplin and Dean (2015) prior is chosen and
fixed in the beginning so there is no need to explicitly specify information cost function
for different priors.

From this point on, for simplicity I represent the choice set of DM with information
structures S. However, I don’t differentiate two information structures that induces same
distribution of posterior beliefs. By using notation -|S, I mean conditional on the posterior
beliefs induced by realization of S. The next step is to impose some restrictive assump-
tions on I. The restrictions I impose is about comparing measure of information structure
when they satisfies some information order. So first let’s formally define the information

order.

Definition 3.3 (Information processing constraint). Given random variables X,S,T and

their joint distribution p(x,s,t). Let p(t|s), p(t|s,x) be the conditional distribution defined by

{p(t;s,x)dx

_ p(t,sx)
— {p(tsx)dxdt

- § p(t,s,x)ds and:

Bayes rule: p(t|s) and p(t|s, x)

p(tls, x) = p(tls)

for s, x with positive probability, then the triple X, S, T is defined as a Markov chain:

X8 T

1Discussing this issue formally leads to the problem of choosing inf from all possible S, which is not a well defined set. I avoid
dealing with this problem by making this restriction explicitly.
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The information processing constraint in Definition 3.3 defines a most natural con-
straint in the acquisition of information: When decision time 7 is chosen based on in-
formation S, the choice should be purely a result of information. Therefore, conditional
on knowing the information, choice should not be dependent to the underlying state any
more. This is the key constraint I'm going to impose in Section 3.3. The information

processing constraint has several equivalent characterizations:

Proposition 3.1. The following statements are equivalent:
1. X -S—-T.
2. X and T are independent conditional on S.
3. S is a sufficient statistics for T w.r.t. X.

4. S is Blackwell more informative than ‘T about X.

Proposition 3.1 comes mostly from Blackwell et al. (1951) and links the information
processing constraint to other well-known notions in probability theory and information
theory. It is intuitive that these notions are equivalent. They essentially all characterize
the fact that S carries more information about X’ than 7. From this point on, I use the
four equivalent notions in an inter-changeable way.

Now I can define what I refer to as the minimal assumptions on the measure of infor-

mation.

Assumption 3.1. I(S; X |u) satisfies the following axioms:
1. (Monotonicity) Yu, if X — S — T, then:

I(T;X|p) <I(S; X|u)

2. (Sub-additivity) Yu, ¥V information structure Sy and information structure Sp|s, whose
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distribution depends on the realization of Sy:

[((S1,82); X[u) < 1(S1; X|p) + E[1(S2; X[S1, 1)

3. (C-linearity) Vu, V information structure S ~ (u;, p;). YA € [0,1], consider Sy ~
(i, 1, Api, 1 — A) 2, then:

[(Sy; X[u) = AL(S; S|p)

Assumption 3.1 imposes three restrictions on the information measure I. Monotonic-
ity states that if an information structure § is Blackwell more informative than (statis-
tically sufficient for) information structure 7, then the information measure of S is no
lower than that of 7. Sub-additivity states that if one breaks a combined information
structure into the two components sequentially, then the information measure of the com-
bined information structure is no higher than the expected total measure of the two com-
ponents. C-linearity is a strengthen of sub-additivity in a special case: if a combined
information structure can be decomposed into pure randomness and an informative in-
formation structure, then its information measure is exactly the expected total measure of

these components.

With Assumption 3.1, my model nests some standard measures of information. Mono-
tonicity directly states that my information measure is consistent with the Blackwell par-
tial order of information (Blackwell et al. (1951)). My model includes the mutual infor-
mation measure used in rational inattention models ( Sims (2003), Matéjka and McKay

(2014) etc. ) as a special case. Mutual information is a case where my sub-additivity

28, is defined that with 1 — A probability, the posterior is identical to the prior. With the remaining A
probability, the distribution of posteriors is identical to that of S. That is to say, S, is obtained by mixing S
with a constant signal by weight (1,1 — 7).
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assumption is replaced by additivity and an extra logarithm structure is imposed on the
information measure. In Gentzkow and Kamenica (2014) and Chapter 1, a posterior sep-
arable information measure, which is more general than mutual information is used to
model the cost of information. Posterior separability is equivalent to additivity (see the
discussion in Chapter 1), thus a special case of sub-additivity. Generally speaking, As-
sumption 3.1 nests most information measures used in the recent “information design”
literature, where information is modeled in a non-parametric way. However, it still ex-
cludes many interesting settings. For example, it’s hard to verify whether Assumption 3.1
is satisfied in a parametric model. It also fails the prior independence, which is a very nat-

ural assumption when we think of information as objective experimentations.
3.2.2 Information cost minimization

Imagine that a decision maker is allowed to flexibly choose any information structure
to learn. The cost of information is captured by a general measure of information as de-
fined in Definition 3.2. Consider the information measure as the cost paid by the DM.
Then if the decision maker is further allowed to choose any (sequential) combinations
of a set of information structures, then she might be able to replicate a single informa-
tion structure using a combination of information structures with paying a lower cost on
expectation. For each single information structure, I call the minimal expected sum of in-
formation measure of any sequential replication the Indirect information measure. In fact, if
we consider the indirect information measure as the effective measure of informativeness

of information structures, then Assumption 3.1 is without loss of any generality:

Proposition 3.2. Information measure 1*(S; X |u) satisfies Assumption 3.1 iff there exists an

information measure I(S; X |u) s.t. Yu, S:

N
I*(S; X|p) = mf E[E (si;)qsl,...,sf—l)]
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s.t.X—><81,...,8N>—>S

Proposition 3.2 states that when a DM can choose from all sequential combinations
of information structures that replicate a given information structure to minimize the ex-
pected total measure, then the effective measure for a piece of information satisfies As-
sumption 3.1. The intuition for Proposition 3.2 is quite simple. Consider the expected
information measure as a cost of information. If a Blackwell less informative information
structure has a higher measure, then it is never chosen because by choosing the more
informative structure, a DM can still accomplish any decision rule feasible with the less
informative structure and pays a lower cost. This implies both monotonicity and sub-
additivity. C-linearity is in fact an implication of sub-additivity when adding irrelevant
noise to information. On the one hand, combining noise with an information structure S,
one can create Sy, implying inequality from one direction. On the other hand, by repeat-
edly acquiring S, conditional on observing only noise, one can replicate S. Therefore,
additivity from both direction implies C-linearity.

In practice, there are many scenarios in which such minimization of expected infor-
mation measure is present. If we consider information as a product provided in a compet-
itive market, then the minimization problem in Proposition 3.2 is very natural. The price
of information is the marginal cost of information. And cost minimization on the sellers’
side implies that the price of information satisfies Assumption 3.1. ( In a monopolistic
market there might be positive markups and varying information rents so pricing might
be very different, as is discussed in Zhong (2018). ) Another example is information pro-
cessing of a computer. Modern computer programs are designed to balance work loads
from independent processes onto nodes/threads. As a result what matters is the aver-
age informational bandwidth, (as opposed to the peak bandwidth or other measures). If
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we consider information as data processed by a computer, then in each CPU tick time,
an optimally designed algorithm will minimize expected bandwidth required to process

information.

3.3 Dynamic decision problem

In this section, I study the implication of the indirect information measure in a dy-
namic information acquisition problem. I consider a decision maker (DM) acquiring in-
formation about the payoffs of different alternatives before making a choice. She can
choose the information structure flexibly within each period, contingent on the history of
signals. The cost of information acquired within a period depends on an indirect infor-
mation measure, and the DM pays a constant cost of delay per period. The major finding

is that this model justifies learning by acquiring Poisson type signals.
3.3.1 Model

Assume that the DM faces the following dynamic information acquisition problem:

e Decision problem: The time horizon t = 0,1,..., 0 is discrete. Length of each time in-
terval is dt. The utility associated with action-state pair (a, x) is u(a, x). The DM pays
a constant cost m for delaying on period. If the DM takes action a € A at time f condi-
tional on state being x € X, then her utility gain is u(a, x) — mt. I assume that the utility

gains from actions are bounded: sup, , u(a,x) < .

o Uncertainty: Not knowing the true state, the DM forms a prior belief 4 € AX about the
state. Her preference under uncertainty is expressed as von Neumann-Morgenstern
expected utility. I am going to use two essentially equivalent formulations to express
expected utility. 1) Given belief y, the expected utility associated with each actiona € A
is Ey[u(a, x)]. 2) State and action are represented by random variables X, A. Expected
utility is denoted by E[u(.A, X)].
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3.3. Dynamic decision problem

o Information Cost: I use the information measure I defined as in Definition 3.2 as a flow
measure of information within a period, and define a time separable information cost
structure. In each period, with prior belief i, the DM pays information cost f (I(S, X|u))
which transforms the measure of information acquired in the period into utility loss.

f:R" — R is a non-decreasing convex function which maps to extended real values.

e Dynamic Optimization: The dynamic optimization problem of the DM is:

V(u) = sup E[u (AT, X) —mT — Zf(I(St;X}St_1,17—<t)) (P)
StALT t=0

X -8 =17y
s.t.

X — St=1 5 At conditional on T = ¢

where 7 € AN, t € N. S is defined as a degenerate random variable that induces
belief same as prior belief y of the DM (just for notational simplicity). S*~1 is defined as
the summary of all past information (S L...,S t_l). The DM chooses the decision time
T, the choice of action conditional on stopping A’ and the signal structure S’ subject to

information cost, waiting cost and two natural constraints for information processing;:

1. The information received in last period is sufficient for stopping in current period.

2. The information received in last period is sufficient for action in current period. 3

In Equation (P), the DM is modeled as choosing the information process S', decision time
T and choice of action A’ jointly, to maximize utility gain from action profile net waiting
cost and total information cost. Within each period, informativeness is measured by I and
incurs cost f(I). Across period, information costs are aggregated by the expected sum

of f. Since the information measure is defined on information structure-prior pairs. It’s

3Noticing that in every period, the information in current period has not been acquired yet. So decision can only be taken based
on the information already acquired in the past. So the Markov chain property on information and action time/action will have
information lagged by one period. This within-period timing can be defined in different ways and it doesn’t affect the main results.
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Chapter 3. Indirect information measure and dynamic learning

important to define clearly how prior is determined. In each period, information measure
is evaluated conditional on the realization of past signals and choice of stopping. This is
a natural setup since past information plus whether action is taken in current period is
exactly what the DM “knows” in current period. Therefore this is the finest filter on which

she evaluates information cost.

Let me illustrate the cost structures of dynamic information acquisition with a simple
two period model: ¢ € {0,1} and the DM has prior belief . The timing is as following;:
when t = 0, the DM first chooses whether to take an action and which action to take.
Second she decides what information to acquire. When ¢ = 1, DM takes action based on
information acquired in period 0. First let’s consider deterministic continuation decision.
In period 0 no information has been acquired yet so if DM want to make a choice, her
expected utility will be calculated with the prior y: E,[u(a, X)] and there is no waiting
or information cost. If DM wants to collect information before decision making, she can
acquire information structure S, now it’s for sure 7 = 1 and X — S — A. Therefore she
gets expected utility E[u(.A, X)], pays waiting cost m and information cost f(I(S; X'|u)).

The problem becomes less trivial when continuation is random: suppose DM chooses
to continue with probability p (independent to states because she has no information yet
about state). Only conditional on continuation, she acquires S. Within my framework, to-
tal costis p- f(I(S; X, u)) + (1 — p) - 0 by calculating conditional cost on 17 <. One might
think that just conditional on information but not continuation decision, the same infor-
mation structure is essentially S, and cost is f(I(Sp; X|p)). However, this is saying that
when DM is choosing information after decision making in period 0, she acquires a signal
correlated to her previous choice of continuation. This piece of randomness (whether to
continue) is already resolved. Since our DM can not revert time, this case is physically
impossible. f(I(Sp; X'|p)) will be the right cost if the decision of continuation is delayed
to the next period.
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3.3. Dynamic decision problem

3.3.2 Solution

In this section, I solve the dynamic information acquisition problem Equation (P) un-
der Assumption 3.1 on the information measure. First, I characterize the optimal expected
utility as a solution to a simple static information acquisition problem. Second, I provide
a simple stationary strategy that implements the expected utility from choosing any in-

formation and action strategy in the equivalent static problem.

Theorem 3.1. If I satisfies Assumption 3.1, Vu € AX, suppose the expected utility level V (u)

solves Equation (P), then:

V(y) = max{sup E[u(a,X)], sup E[u(4, X)] - (% + @)I(A;XW)} (3.1)
acA I(A;X|p)=A

The first superemum is taken over a, the second superemum is take over both A and A.

Theorem 3.1 states that solving the optimal utility level in Equation (P) is equivalent
to solving a static problem under Assumption 3.1. In the static problem, the DM pays
a fixed marginal cost (% + @) on each unit of information measure I(.A4; X' |u). Notice
that the optimal parameter A depends on only m, f when the constraint I(A; X'|y) > A

doesn’t bind. There is an explicit algorithm to solve Equation (3.1):

Proposition 3.3. If I satisfies Assumption 3.1, V(u) solves Equation (P) if and only if it solves
the following problem: Let A* = sup{A € R™|m + f(A) > A - df(A)} and solve for

VO(u) = sup E[u(a, X)]

acA
m o FONN
V(1) = sup Elu(A, 1)) (2 + L5 )i 62)
V2(j0) = sup E[u(A, )] — 1 — F(I(A; X ) 33)

A
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Let A be the set of maximizers of Equation (3.2)*, then

max{ VO(), V! ()} if sup I(A; X|p) = A*
V(p) = Ah

max{ VO(u), Vz(pt)} otherwise

Proposition 3.3 states that the value function in Equation (P) can be solved by solv-
ing three static problems. The first value V' is a no-information benchmark when value
equals expected utility from choosing the optimal action according to only the prior. The
second problem Equation (3.2) is a standard rational inattention problem with marginal

ES
cost%+f(/\)‘*)

on information measure I. The interpretation is that under Assumption 3.1,
the dynamic information acquisition problem is separable in two parts. The first part is

the dynamic allocation of information, keeping the aggregate information fixed. Marginal

cost of increasing the aggregate information is reflected by % + f (/\A:), which measures
both the impatience and the smoothing incentive jointly. The second part is a static prob-
lem that optimizes the aggregate information. The third problem Equation (3.3) is a spe-
cial case when there is under-smoothing. This happens only when waiting is so costly that
it is optimal for decision maker to scale up information cost and wait for less than one pe-
riod. Since fractional period length is not feasible, in this case decision maker solves a

one-period problem.

Once the static problems Equations (3.2) and (3.3) are solved, let A be an optimal in-
formation structure of the static problem, then A can be modified to construct an optimal

dynamic information structure in Equation (P).

Proposition 3.4. If I satisfies Assumption 3.1, Vu € AX, Ae AA x Xand \* < I(A; X|n), let

41f \* = too, define A = 5. Here A includes both A’s that exactly solve Equation (3.2) and sequences {A’} that approach
Equation (3.2). Given a sequence {.Ai } € A, I(A; X|u) is defined as lim sup I(A’, X|u)
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(St, A%, T) be defined by®:

1. S71= Co-
(
S0 if St=1e Al {so}
2. 8" = { Awith probability I(A/\—j(m) if S = ¢
; 1 A Q=1 _
<o with probability 1 — AR ifS'™ =co

T —t
3. ifSt=1e A.
At = St—1
Then:
E[u(A, )] - (Aﬂ + f%*))m;w) - E[u(AT, ) T - Y (IS XIS 1)
t=0

Proposition 3.4 complements Theorem 3.1 by showing that the optimal value from
Equation (3.1) can be implemented using a simple stationary experimentation strategy
that is feasible in Equation (P). The information structure S’ explicitly codes three kinds
of signals: Stop so, Wait ¢y and Action in A. The first condition defines the initial informa-
tion. The second condition defines the information structures in the following periods by
induction: If S*~1 = sy or A it means that action is already taken and information acquisi-
tion stops from now on so St = sy and so on so forth. If S!~1 = ¢ it means that do nothing
and delay all decision to the current period. Conditional on continuation, S’ realizes as
A with I(AA—;’\W probability. And in the next period the action is taken according to the
realization of S. With 1 — I(AA—;ly) probability cy realizes and the decision is delayed to
the next period. The Third condition explicitly defines 7: when action is taken in period ¢

as indicated by S~1, then 7 = t. It's easy to verify the information processing constraints
y y y p g

550 and ¢y are chosen to be distinguishable from any element in action set A.
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in Equation (P) are satisfied. First, conditional on S'~!, the distribution of 17, is degen-
erate. When S*~1 = ¢( it’s 0 and 1 otherwise. So S — S~ — 17 < t. Second, conditional
on S'~1 and knowing 7 = t, A is also degenerate. It is exactly the realization of S*~1.

Therefore X — St=1 — A,

Sketched proof.

Here I provide a simplified proof which illustrates the main intuition for Theorem 3.1
and Proposition 3.4. Since there is no discounting on the utility gain from actions, given
an action profile A7, the expected utility is completely determined by 1) the aggregate
distribution of actions A. 2) the expected waiting time E[7|. How actions are allocated
over time doesn’t affect the expected utility at all. Since actions are driven by information,
this observation indicates that solving Equation (P) can be divide into three steps: Step 1 is
to solve for the optimal distribution of information over time to minimize the information
cost given any aggregate information structure and expected waiting time. Step 2 is to
solve for the optimal waiting time given any fixed aggregate information structure. Step
3 is to solve for the optimal aggregate information structure and the associated action

profile.

Step 1. Given any strategy (S’, A’, T), the DM can implement the same action distri-
bution A7 and expected waiting time E[7 | with a information process of lower cost. First,
consider combining all information S = (S7,...,S8,...). By sub-additivity I(S; X|u) <
> E[I(S'; X|S*1)]. Then consider averaging I(S; X |u) into E[T | periods:

I(S; X)L E[1(S5X]S)]

E[T] — E[T]
(1S B XS
E[T] )~ E[T]

— ETIf (N ) < SEl(S X))
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The second inequality is first by monotonicity of f then by convexity of f. That is to say:
there is incentive to combine small information (by sub-additivity of I) and smooth infor-

mation over time (by convexity of f). The last inequality is from I(S; X'|u) < I(A; X|n)

and the Blackwell monotonicity of I. Then an ideal strategy is to spend f ( “gﬂw )> on

information acquisition every period.

Then I implement the aforementioned information cost using a strategy defined as
in Proposition 3.4. By C-linearity, acquiring A with probability ﬁ exactly has cost
f (%) On the other hand, taking action with probability ﬁ in each period ex-
actly the implements aggregate action distribution .A and the expected waiting time E[7T .
Then it is WLOG to consider:

[(A X \#))

sxgE[u(.A,X)]—mT—Tf( T

where E[ 7] is replaced by T for notational simplicity.

Step 2. Maximizing over E[T | (or T in the simplified problem). This can be done easily
by solving the first order condition w.r.t. T: —m — f(+) + 4 f/(%) = 0. Replace A = £, we

get the expression for A: m + f(A) = Af’(A) and further simplified problem:

N (m )
op Elu(A, )] - (5 + ) a0

The formal theorem covers general cases without smoothness assumption so f’ is re-

placed with sub-differentials 0f.

Step 3. 1 will refer to the Weierstrass theorem to show the existence of solution. See

Proposition 3.5 for detailed discussion.

In the sketched proof I implicitly assumed f to be differentiable, first order condition
has solution and optimal T > 1. The formal proof for more general cases is provided in
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Appendix D.2.1
3.3.3 Existence and uniqueness

In this section, I first show a general existence result for the solution of Equations (3.2)
and (3.3). Then I established its uniqueness in different dimensions. By toggling the
inequalities defining the monotonicity of I, the concavity of f and the sub-additivity of
I to strict inequalities, my model predicts unique belief profile, unique information cost

allocation and unique strategy correspondingly.
Proposition 3.5. If A, X are finite sets, I satisfies Assumption 3.1, then

o Existence: Ve > 0, let Ve = {A|P|a|x] > €}, then there exists a non-empty, convex and
compact set of solution A, to Equation (3.1) subject to A € V.
- If3e >0, A (\V? # &, then | Sy, Ay is the maximizer of Equation (3.1).

- IfVe >0, A\ V! = &, then any sequence in | | A, approaches V ().
o Uniqueness:

— If I satisfies strict-monotonicity, then posterior belief v(a) associated with any action

a is unique for all optimal A.

— If f(-) satisfies strict-convexity, then ¥/ optimal strategy (S', A', T) to Equation (P),
I(S5 X|SY 1, 11<y) is the same.

— If I satisfies strict-sub-additivity, then the solution (S', A',T) to Equation (P) is

unique.

Proposition 3.5 first states the existence of solution to Equation (3.1) and the unique-
ness of different aspects of the solution. First, with Assumption 3.1, very mild extra as-
sumptions (finite A and X) can guarantee the existence of solution to Equation (3.1) (and
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3.3. Dynamic decision problem

solution to Equation (P) as well). Second, when strictly more informative information
structure has strictly larger information measure, the belief inducing each action can be
uniquely pinned down by optimization. Third, when the information cost function f
is strictly convex, then the optimal cost level incurred in each experimentation period
is constant over time. Finally, if a combination of informative experiments has strictly
larger measure than the expected summation of each component’s measure, then whole

dynamic strategy is uniquely pinned down.

The existence result is non-trivial in the sense that I don’t impose any continuity as-
sumption on I. However, I being an indirect information measure function actually guar-
antees it to be convex in an appropriate space. In Equation (3.1), the strategy space is all
random variable A. If we consider the space of all conditional distribution over A on X
(Markovian transition matrices), then this is an Euclidean space and any indirect infor-
mation measure [ is a convex function on this space: if S is a linear combination of &;
and S, then S can be implemented as randomly using S; or S, (and not knowing the
choice of experiment). Therefore, monotonicity and sub-additivity guarantees S to have
weakly lower measure than the linear combination of measures of S, Sp. Convexity of
I implies both objective function to be continuous and choice set to be compact on any

interior closed subset of the strategy space.

The incentive for inter-temporal smoothing of information is clearly illustrated in the
proof of Proposition 3.4 and Theorem 3.1: The convexity of information cost f implies the
incentive to smooth the cost over time. Sub-additivity of I implies incentive to smooth
the choice of information structure over time. The incentive for choice of aggregate infor-
mation structure is illustrated in the proof of existence: monotonicity and sub-additivity
implies a concave objective function. Now if any of aforementioned incentives is strict,
then the solution is uniquely pinned down in the corresponding aspect. First, consider
the proof for convexity of I in the last part. Randomly using S; or S; (and knowing
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choice of experiment) carries strictly more information than S (which discards informa-
tion about which experiment is used). Therefore, strict monotonicity implies that he ob-
jective function is strict concave (except when &1 and S, have the same row vectors).
Second, consider step 1 in the proof of Theorem 3.1. Suppose f is strictly convex, when-
ever information cost is not constant over time, the total cost is strictly dominated by a
stationary strategy. Third, when there is strict sub-additivity, then any non-stationary ex-
perimentation strategy is dominated by the stationary one I constructed. Moreover, the
objective function in Equation (3.1) is strictly concave w.r.t any A. In this case, the whole

solution is uniquely pinned down.

3.4 Conclusion

In this chapter, I explore the robust predictions we can make when the measure of
signal informativeness is an indirect measure from sequential cost minimization. I first
show that an indirect information measure is supported by sequential cost minimization
iff it satisfies: 1) monotonicity in Blackwell order, 2) sub-additivity in compound experi-
ments and 3) linearity in mixing with no information. In a sequential learning problem,
if the cost of information depend on an indirect information measure and delay cost is
tixed, then the optimal solution involves direct Poisson signals: arrival of signal directly
suggests the optimal action, and non-arrival of signal provides no information. I also

characterize the existence and uniqueness of the optimal learning dynamics.
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4.1 Introduction

Let X be a non-empty finite set (state space). A(X) e RIX! is the set of all probability
measures on X. Let u denote an element in A(X). A%(X) is the set of all probability
measures (standard Borel sigma algebra) on A(X). Let P denote an element in A?(X).
Let {Vi}:.l:l be a finite set of continuous functions on A(X). Let f : R” — R denote a

continuous function. Let D(u) : A(X) =3 R” be a closed valued correspondence.

My objective is to solve the following constrained maximization problem:

sup f(Ep[vl], . .,Ep[V”]> (4.1)
PeA?(X)

y (Ep[Vl],...,Ep[Vn]) e D(p)

Ep[v] =

Suppose n = 1 and D = R, then Equation (4.1) can be solved by concavifying V(1) (Ka-
menica and Gentzkow (2011), Aumann, Maschler, and Stearns (1995)). And Theorem 4.8
implies that it is without loss to consider information structures with no more than | X| sig-
nals. This gives tractability both analytically and computationally. However, even when
n = 2, with a general f or a nontrivial constraint D, concavification no longer works and

we might need to search over an infinite dimensional space to solve Equation (4.1).

To solve Equation (4.1), I study the set of all possible expected valuation vectors that
can be implemented by designing the information structure P — the information design
possibility set. In Section 4.3, I proved a two-step concavification method: First, the in-
formation design possibility set itself can be implemented by combining finite number of
information structures that implement its extreme points. Second, each extreme point can
be implemented by concavifying a linear combination of Vs, hence involving only finite
number of signals.
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The general concavification method developed in this chapter can be applied to a wide
range of information design problems. In Section 4.4, I first provide two applications
on static information acquisition and dynamic information acquisition to show that the
optimal solutions have a nice Lagrange multiplier characterization. Then I provide an
application on persuading receivers with outside options to illustrate how the Lagrange
characterization can simplify the optimal persuasion problem. Finally I provide an ap-
plication of Lemma 4.1 on screening using information structures, to illustrate how the
theory developed in this chapter reduces the dimensionality of the problem and makes

the problem tractable.

4.2 Information possibility set

Notations used in this section: given a convex set C, let ext(C) be the set of all extreme
points of C, let ext;(C) be the set of all k-extreme points of C !. Let exp(C) be the set of

exposed points of C. F(C) is set of faces of C.

Definition 4.1. Information possibility set V(u) € R" is defined as:

V() = {(Ep[vl],. . .,EP[V”]> ‘P e A%(X),Ep[v] = y}

Lemma 4.1. Yy, V(u) is a compact and convex set. Yov € ext(V(u)), there exists P € A*(X)

such that:

0 = (Ep[V']..., ER[V")

[supp(P)| < (k + 1)[X]

Proof. First of all, we prove that V() is compact and convex.

lext(C) = exty(C) and C = Uk<n extr(C).
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e Boundedness: VP € A%(X), min,ea (x) Vi(u) < Ep[V'] < maXx,ea(x) Vi(u). Therefore,
Vo € V(u), it is bounded from 0 by maxyeA(X),i‘Vi(y)\ by sup norm. So V(u) is a

bounded set.

e Convexity: Vv, v, € V(j), there exists Py, P> € D*(X) s.t. v; = (Ep[VY], ..., Ep[V"]).
Since A%(X) is a linear space and expectation operator is linear functional, V8 € [0, 1],

Pg = Py + (1 — B)P, € A*(X) and:

op =(Ep,[V'],..., Egy[V"])
:5(15131 [VY,...,Ep, [V”]) +(1-B) (Epz[vl], N .,Ep2[vn]>

=Bo1 + (1 - B)va

Therefore, fv1 + (1 — B)va € V(i) so V(i) is a convex set.

e Closeness: A(X) is a finite dimensional simplex. If we consider the Prokhorov met-
ric on A?(X), then A%(X) is a complete and separable space (Theorem 6.8 of Billings-
ley (2013)). Now since A(X) is compact, by Theorem 4.9, A?(X) is a compact, com-
plete and separable space with the Prokhorov metric. Prokhorov metric induces a
topology equivalent to weak* topology(by Theorem 6.8 of Billingsley (2013)). So
Yoy € V(u), if vy — v, then consider the sequence P; such that vy = Ep [(V?)]. By
compactness of A2(X), pick a subsequence Py “—> P. Then ¥V, since V' is contin-

uous, Ep [V'] — Ep[V']. So v e V(i) and V(i) is a closed set.

e Compactness: V() is a finite dimensional bounded and closed set, so it is compact.

Vo € exty(V(u)), v is an interior point of a k-dimensional face F of V(u). Then by
Theorem 4.7, v € conv(ext(F)). By Theorem 4.8, there exists {v]};{ill c ext(F)and ), 7tj = 1
s.t. 3, 7Tjv; = v. By Lemma 4.4, {0;} < ext(V(u)). The next step is to prove that Vj, there
exists P; € A%(X) s.t. v; = (Ep[V'],..., Ep[V"]) and |supp(P;))| < |X].
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Lemma 4.2. Vi, Vo € exp(V (1)), 3P € A*(X) and |supp(P)| < |X] s.t. v = Ep[(V7)].

Proof. By definition of exposed points, there exists a linear function / € L(R") s.t.
[(v) > (V") Vo' e V(x),v' # v

In finite dimensional space, a linear function /(v) can be equivalently written as >} A;v; + c.

Consider the following maximization problem:

sup Ep [2 AV 4+ c] 4.2)
PeA?(X)
s.t. Ep[v] = u

By Theorem 4.8, Equation (4.2) can be solved by convexifying the graph of >} A; V() + c.
The maximum is achieved by a P s.t. [supp(P)| < |X|. Of course Ep[(V?)] € V(u). Then
by definition of I, I(v) > Ep[>A;V' + c]. On the other hand, there exists P’ € A%(X) s.t.
v = Ep/[(V")], by optimality of P, [(v) < Ep[>}A;V' + c]. Therefore, since v is the unique
element in V(u) achieving [(v), we have Ep[(V?)] = v and |supp(P)| < |X]. [

ol € ext(V(y)), by Theorem 4.6, there exists {0/'},” | < exp(V()) and lim; ., o/ = o.

By Lemma 4.2, there exists P! € A%(X) s.t. [supp(P')| < |X| and o/ = Ep;[(V?)]. Now

X

each P/' can be represented as (p]tl, ;uil> e R?XI, where:

t=1

-

il
thjt =1

il il
Syipiu =

il i/ jl il .
| X Vi) =} vi

—

. 1A AN . . .
Since (p]t , 1 ) is in finite dimensional vector space, there exists a subsequence converging
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to <p1, ‘u]t> when | — 0. Therefore, since V' is each continuous, it is easy to verify that:

th{le
VP = H

S Vi) = ) Vi

Therefore, v/ is implemented by P/ € A?(X) and ‘supp(Pj )| < [X]. So P =] 7'(ij €
A?(X) and |supp(P)| < (k+1)-|X|. By linearity of expectation operator, Ep[(V')] =

Z 7T]'EP]‘ [(Vl)] = Z 7'L']'Uj = 0. [
Lemma 4.3. Correspondence V : A(X) =3 R" is continuous. Gr(V) is convex and compact.
Proof.

e Boundedness: A(X) is a bounded set. Vu € A(X), V is uniformly bounded by ra-
dious max;,c A(X),i‘Vi(y)‘ by sup norm. So Gr(V) is bounded.

o Convexity: V(u1,v1), (p2,v2) € Gr(V). Va € [0,1]. Since A(X) is convex, p, =
apy + (1 —a)pp € A(X). Now we prove that v, = avy + (1 — a)vy € V(puy). By defi-
nition, there exists Py, P, € A?(X) s.t. Ep,[(V?)] = v1, Ep,[v] = p1 and Ep,[(0)] = vy,
Ep,[v] = pp. Define P, = aP; + (1 — a)P,, then by linearity of the expectation
operator, Ep,[v] = aEp[v] + (1 —a)Ep,[v] = pa- Ep[(V')] = aEp[(V)] + (1 -
#)Ep,[(V')] = vy. Therefore, v, € V(o). SO (Mo, va) € Gr(V).

e Closedness: V{(uj,v;)} = Gr(V), suppose jj — p, v; — v. Want to show that
e A(X)and v € V(u). First of all, since A(X) is complete, 1 € A(X). Now by

116



4.2. Information possibility set

Lemma 4.1, there exists (p;, v;) such that:

(n+1)[X] pk 1

k=1 j

$ (A DIX] kK
k=1 PjVi = Hj
(n+1)[X] k _
k=1 p VZ( ]) —U;-

Now since p; € A((n +1)|X]) and v; € A(X) are both compact spaces. Consider

stadard Euclidean metric on product space A((n + 1)|X|) x A(X)**+DIXI it is also

compact. Therefore there exists convergincing subsequence p; — p and 1/]’-‘ — VN

Then

A

-

k21(11+1)|X| kal( ) N hm}—»oo Z n+1 )X p

k

DX 1D|X
SR e _ fin, L SO e
e Pk = Timg o STV R = iy =

Vi(v ) = lim; ., v;. =0

k=1 j

Therefore, (p, v) implements v at . Sov € V().

Compactness: Since Gr(V) is closed and bounded, it is compact.

Continuity: Since Gr(V) is compact, V(p) is upper hemicontinuous. Now we only

need to show lower hemicontinuity. ¥(u,) < A(X), pm — p € A(X). Vv € V(u). By

Lemma 4.1, v is impelemnted by (p,v) with support size (n + 1)|X|. There exists a

stochastic matrix g, such that:

= m(ﬂl%lr e Bo1gj,-1)

pi = 2k Mkdik
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-

Opj:f%k
Hk J
2
iqj1 — Hi1q;
= < W]—qu]l when k = [
Wit _ Pj
P g
He | ZHAdjx ;72{“7”‘ when k # |
j

\

Therefore, since each pj > 0, when pu,, is sufficiently close to y, corresponding
(Pm, vm) will be bounded from (p, v) by | — pim|. By continuity of V/, vy = (3 pm Vi (vm)) —
(3 pVi(v)) = v. Therefore, V(i) is both upper hemicontinuous and lower hemicon-

tinuous.

4.3 Main theorem

4.3.1 Existence and finite support

Theorem 4.1. Let X be finite and non-empty, {Vi}?zl c CA(X), f € CR™. Yu € A(X), suppose
V() (\D(n) # &, then there exists P* € N*(X) solving Equation (4.1) and |supp(P*)| <
(n+1)-]X|.

Proof. By definition of V (i), Equation (4.1) is equivalent to the following problem:

sup f(v) (4.3)
veD (\V(p)

By Lemma 4.1, V(y) is a compact set. Then V(u) () D(u) is compact and non-empty. By
Weierstrass’s theorem, there exists v* € V(i) () D(u) solving Equation (4.3). Then by
Lemma 4.1, there exists P* € A*(X) s.t. v* = (Ep«[V?],..., Ep«[V"]) and [supp(P*)| <
(n +1) - |X]|. Therefore, P* solves Equation (4.1). |
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4.3.2  Necessary condition for the maximizer

Theorem 4.2. Let X be finite and non-empty, {V'}; | = CA(X), f : R" — R s differentiable.

Let D = IR". Then a necessary condition for P* solving Equation (4.1) is:

P* e arg max Vf(Eps[VY],..., Ep«[V"])- (Ep[vl],...,Ep[V”]) (4.4)
Ep[v]=p

Proof. Solving Equation (4.1) is equivalent to solving Equation (4.3). Suppose by contra-
diction that Equation (4.4) is violated at optimal P*. Then it is equivalently saying that

there exists v € V(u) such that:

Vfi@*)-v* < Vf(v*) v

By Lemma 4.1, V(u) is a convex set. Therefore v, = (1 —a)v* +av € V(u). Consider
h(a) = f(vy). Then H'(0) = Vf(v*) - (v —0*) > 0. So there exists ' > 0 s.t. h(a’) > h(0).

Then f(v*) < f(v,). Contradicting optimality of v*. [

Theorem 4.3. Let X be finite and non-empty, {Vl}n+m c CA(X), f: R"™™™ — R is constant
in the last m arguments. Let D = {v|v' > 0Vi > n}. Then there exists P* solving Equation (4.1)
and A € By, y, such that:

P* € arg max Ep [Z A’Vl]

PA2
EP[] V
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Proof. VP* solving Equation (4.1), let v* be corresponding value. Define:

vy =0 +a(0,...,0,1,...,1)
(R

Then by definition f(v,) = f(v*). v9 = v* € V(). Since V(u) is bounded, for large
enough a, v, ¢ V(i). Then since V(p) is compact, there exists a s.t. v, € 0V (p). Since V(u)

is convex, there exists € L(R"*") s.t. v, € argmaxyey(y) [(v). Let [ = 3] Avl, then:

v, € arg max Y A0’
veV(u)

Let P, be the corresponding information structure implementing v, (existence of P, guar-

anteed by Lemma 4.1). Then

Py € arg Pn;?x Ep [Z /\lvz]

Ep[v]= P‘

Since f(vy) = f(v*), Px solves Equation (4.1) as well. [

4.3.3 Convex optimization

Theorem 4.4. Let X be finite and non-empty, {V'}; | = CA(X), D = {v|g(v) = 0}. If both
f and g are quasi-concave and continuous, then there exists P* solving Equation (4.1), v* =
(Ep[V']) and A € By, such that:
* AV
P* € arg Pérg?x EP[Z/\ V]
EPH ?4

viearg min A0
f(©)=f(0*),0eD
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Proof. First, by Theorem 4.1, P* solving Equation (4.1) exists. Then by optimality of P*:

V(u)(Y{eloe D, f(v) > f(v")} = &

Since f and g are quasi-convex, {v|v € D, f(v) > f(v*)} is a convex set. Then by separating

hyperplane theorem, there exists c and A s.t. Vo € V(u), v' € D and f(v') > f(v*):
Av<cand A-v' >¢

By continuity of f and g, v* € cl({v|v e D, f(v) > f(v*)}). So A-v* = c. Then it is easy to

verify that A satisfies the conditions in Theorem 4.4. |

Corollary 4.4.1. Let X be finite and non-empty, {V'}; | = CA(X), f : R" — R is quasi-
concave. Let D = {v|g(v) = 0}, g is quasi-concave. If f and g are both differentiable, then there
exists P* solving Equation (4.1), v* = (Ep[V']) and v, 1 = 0 such that:

Pearg max V(') + 718" (EolV'], -+ EnlV")
Eplv]=p

Proof. By Theorem 4.4:

* i A 4.5
vE argf(v)}?g‘}),veD v ( )

It is easy to verify that Equation (4.5) as a dual problem is a convex optimization problem.
Since both f and g are differentiable, by Kuhn-Tucker condition, there exists 7y, 77 > 0 such
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that:
A=n-Vf(@")—v-Jg*) =0
Then by definition of A:

P earg max (1VF(v") +7-Jg(") (E[V'], - En[V"])
Eplv]=p

4.3.4 Maximum theorem

Theorem 4.5. Let X be finite and non-empty, {Vi}?zl c CA(X), f € CR". Suppose D(u) is
a continuous correspondence and Yy € A(X), V(u)(\D(p) # &. Let «(u) be the maximum of
Equation (4.1) and P(u) be the maximizer of Equation (4.1), then x(u) is continuous and P(u)

is compact-valued and upper hemicontinuous>.

Proof. Theorem 4.5 is an application of the maximum theorem. Since by Lemma 4.3
V(u) and D(p) are both continuous, V() () D(p) is non-empty, compact valued and con-
tinuous. Equation (4.1) is equivalent to maximizing f(v) on V() () D(p). Therefore, by
maximum theorem, x () is continuous and the argmax correspondence V* () is comapct-
valued and upper hemicontinuous.

Now we show that P(u) is compact valued and upper hemicontinuous.

e compactness: (sequential comapctness will be sufficient) V{P,,} < P(u), consider

om = Ep,[(V")]. Then vy, € V*(u), so there exists subsequence (without loss assume

Zwith respect to Prokhorov metric.
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to be v)m itself) v,, — v € V*(u). Then since A?(X) is compact by Theorem 4.9, there
exists subsequence P, “—> P € A2(X). Then Ep[(V)] = lim Ep, [(V1)] = lim oy, =
ve V*(u).SoPeP(u).

e upper hemicontinuity: Vu,, — u, Py, ©~", Pand Py € P(tm). Thenv,, = Ep [(Vi)] €
V*(tm). By definition of w-* convergence, v,, — v = Ep[(V?)]. By upper hemiconti-

nuity of V*(u), v € V*(u). Therefore, P € P(u).

4.4 Applications

4.4.1 Costly Information acquisition

A direct application of Theorem 4.1 is costly information acquisition problems. Con-
sider a variant of the rational inattention model. Decision utility at each belief is F(y) =
max, E,[u(a, x)]. The information measure of any experiment P is I(P|u) = Ep[H(u) —
H(v)] where H is the standard entropy function. Assume that the cost of experiments is

convex in their measure, the decision problem can be written as:

sup Ep[F(v)] — f(Ep[H(u) — H(v)]) (4.6)
i

In a standard rational inattention problem, f is linear. Then standard concavification
method suggests that optimal experiment involves signals no more than |X|. The reason
why we want to deviate from a linear f is that standard RI has two kind of debatable pre-
dictions: 1) prior invariant choice of optimal posteriors (see Caplin and Dean (2013)). 2)
no dynamics if we allow repeated experiments (see Steiner, Stewart, and Matéjka (2017)).
However, when f is more general, say convex, we knew little about how to solve Equa-
tion (4.6). Theorem 4.2 becomes useful.
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Proposition 4.1. There exists P* solving Equation (4.6), |supp(P*)| = 2|X|. Moreover, if f is

differentiable, P* solves:

P arg max Ep[F(v) — f/(Epe[H(p) — HW))) - HO)]
o

4.4.2 Dynamic information design

Consider the following Bellman equation:

V(4) = max {Fw, sup ¢ PMEp[V(v)] — F(Ep[H(k) — H(vm} 47)
PeA?(X)
Ep[v] = u
s.t

Proposition 4.2. If F,H € CA(X), f € CR. F(x),f(x),C = 0. Then there exists unique
V e CA(X) solving Equation (4.7).

Proof. Let Z = {V € CA(X)|F <V < co(F)}. We define operator:

T(V) () = max {w),Ps;%)e—ﬁdfgp[vw)] ~ F(EpH () - H(v)])} @8)

By Theorem 4.1, the max operator is well defined. When P = 6, Ep[v] = pand Ep[H (u) —
H(v)] = 0 so the sup operator is also well defined. Now we prove that T is a contraction

mapping on (Z, Ly).

e T(Z) c Z: First of all, given the outter max operator in Equation (4.8), T(V)(u) >
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F(u). Then VP € A?(X) such that Ep[v] = p and Ep[H(x) — H(v)] < C:

e PHER[V(1)] — f(Ep[H(p) — H(v)])
<e PEp[V(v)]
<Ep[co(F)(v)]

=co(F)(u)

First inequality is from f being non-negative, second inqeuality is from V being
non-negative, e *¥# < 1 and V < co(F). Last equality is from co(F) being linear.

Last step is to show T(Z)(u) € CA(X). This is directly implied by Theorem 4.5.

T(V) is monotonic: Suppose U(y) = 0and U+ V € Z If T(V)(u) = F(u), then by
construction T(V + U) = F(u) = T(V)(u). If T(V)(u) > F(u), let P be solution to
Equation (4.8) at y for V:

T(V +U)(p) ze P Ep[V(v) + U(v)] - f(Ep[H(p) — H(v)])
=T(V)(u) + e P Ep[U(v)]

=T(V)()

And constraints Ep[H(¢) — H(v)] < C and Ep[v] = p are independent of choice of

V so still satisfied.

T(V) is contraction. We claim that T(V + a)(4) < T(V)(u) + e ¥a. Suppose not
true at y. Obviously T(V +«)(u) > F(p). Then let P be the solution of Equation (4.8)

at u for V +a.

T(V)(u) ze " Ep[V(v)] — f(Ep[H() — H(v)])
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—e P Ep[V(v) +a] — F(Ep[H() — H(v)]) — e P¥a
—T(V +a)(u) — e

>T(V)(p)

Similar to last part, constraints Ep[H(;) — H(v)] < Cand Ep[v]| = yu are still satisfied.

Contradiction.

Therefore, by Blackwell condition, T(V) is a contraction mapping on Z. There exists a

unique solution V € Z solving the fixed point problem T(V) = V. u

4.4.3 Persuade voters with outside options

Consider a politician who can strategically design a public signal to voters to influence
their voting behavior (the setup in Alonso and Camara (2016)).

Voting game: There are n > 1 voters who chooses from a binary policy set A = {ap, a1}
There are two states X = {xp,x1}. Each voter gets Bernoulli utility u;(a, x) from voting
for the policy a. Assume that a; is unanimously preferred to ag when x; is the true state
and vice versa. The politician has state independent utility over policies and prefers a;
strictly to ap. I assume that ag is a default policy. For a; to be proved, the politician
needs more than m (m < n) voters to voter for a;. The politician can design a signal
structure to influence voters” decisions. Equivalently, I assume that the politician chooses
a distribution over posterior beliefs P € A%(X).

Outside option: Different from Alonso and Camara (2016), where number of potential
voters is fixed, I assume that each voter has opportunity cost ¢; of participating in the
voting game. Therefore, to approve the new policy, the politician should first attract at
least m voters to the game and then persuade them to vote for 4;.

To simplify notation, I write all voter’s utility as functions of belief F;(y). Let #; be the
threshold belief for each voter to vote for a; The politician’s optimization problem can be
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written as:

sup Ep[l#(mi,)zm] (4.9)
i1yeeif, P /
EP[Fz]] = Ci;
s.t.
Ep[v]=p

Notice that in Equation (4.9), the politician doesn’t necessarily need to exclude voters
outside of {iy,..., i}, so the maximum from Equation (4.9) must be weakly larger than
the politician’s optimal utility. On the other hand, for any strategy in Equation (4.9),
potentially including more voters to the voting game can only make the politician better
off. So Equation (4.9) exactly characterizes the politician’s optimization problem.

For any voter, except for ji;, there is another critical belief fi;:

F=LE0) + BRI = «
Hi i
Suppose voter observes information structure inducing posterior belief 0 and i;, then the
voter is exactly indifferent between paying the opportunity cost and entering the voting

game and not.

Proposition 4.3. Let u* be the smallest belief s.t. #{i|pi; = u*} = mand #{i|ji; > p*} > m, then

the optimal strategy for Equation (4.9) is:

and {iy, ..., i} = {i| min{j;, j;} > p*}.

Proposition 4.3 states that when voters must pay opportunity cost to enter the voting
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game, then there are potentially two pivotal voters. One is the one who’s most difficult to
persuade to adopt a1, and the other is the one who’s most difficult to attract to the voting

game. Both difficulty levels are measured by the location of the critical beliefs.

Proof. The key step of proving Proposition 4.3 is to apply Corollary 4.4.1 to Equation (4.9).
Notice that the objective function is Equation (4.9) is in fact an indicator function with
some threshold belief level (say u’, which is the lowest belief to persuade at least m voters
to vote for a1). So Corollary 4.4.1 is directly applicable to Equation (4.9), and the objective

function is in the form of:

S max{o, . ﬁij} 1y (4.10)

It is easy to see that Equation (4.10) is a convex function on y € [0, ¢//] and a linear function
on y € [y, 1] (there is no point to include voters who will never vote for a7.). So optimal
persuasion strategy must induce either belief 0 or interior belief v > y’. Of course since at
least m voters are included and persuaded, v > p*. On the other hand, it is easy to verify

that the strategy define by u* induces at least m voters to participate, so y* is optimal. W

4.4.4  Screening with information

Consider a problem of Bayesian persuasion with unknown receiver types. Let © be
the set of receiver types, X be the finite set of states and A be the set of actions. V0 € O,
decision utility at each belief is Fy() = max, E;[u(a, x,0)]. Sender’s utility at each belief
given receiver type 6 is Vy(pt). Assume that the type distribution is 77(6) € A(®). The
sender can screen the receivers by providing a menu of information structures. Then by

revelation principle, sender’s optimization problem is:

sup JEPQ[VQ]H(G)dG (4.11)
Ppe®@xA2(X)
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EPQ[FQ] = EP(;/ [Fg] Vo, 0O
s.t.

Ep,[v]=uv8ec®

When © and A are both infinite, solving Equation (4.11) is difficult due to the dimension-
ality of strategy space. When A is finite, it is WLOG to restrict the sender to use direct
message which suggests the actions being played conditional on the state. Then Equa-
tion (4.11) reduces to a screening problem with finite dimensional strategy function (plus
a few more obedience constraints). In the remaining case where © is finite but A is infi-
nite, it is still unclear whether it is WLOG to consider only finite dimensional screening

mechanisms.

Now consider the finite ® case. Suppose © = {1, ..., N}. Define:

\%m={5ﬂﬂ£ﬂﬁhufﬂh]

Pe 8%(X), Evlt] - 1}

D(‘Ll) _ {,0 c ]R(NX(N—H))

i+1 i+l -
v =20 Vz,]}

Then Equation (4.11) is equivalent to the following problem:

sup 0} (4.12)
veD () N x4, Vi(p)
By Lemma 4.1, each V;(p) is compact set. Therefore, D(u) () x V;(u) is compact. It is easy
to see that D(u) () x V;(u) is non-empty. By Weierstrass’s theorem, there exists v* solving
Equation (4.12). Then by Lemma 4.1, there exists P} € A%(X) s.t. v} = <Epi>l< [Vi], Epx [F1], ..., Epx [FN]>
and |supp(P})| < (N +2) - |X|. Therefore, (Pj, ..., P;) solves Equation (4.11) and we get

the following proposition:

Proposition 4.4. If © is finite, then Vu € A(X), there exists (Pf,...,Py) € A?(X)N solving
Equation (4.11) and each ‘supp(Pi*)‘ < (N+2)-[X|.
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Proposition 4.4 states that it is WLOG to consider only mechanisms with finite support
when solving Equation (4.11). Therefore, it is sufficient to maximize over N(N + 2) - | X]|
posterior beliefs and N(N + 2) - | X| corresponding probabilities to solve constrained opti-

mization problem Equation (4.11), which is a computationally tractable problem.

4.5 Conclusion

In this chapter, I study the set of all possible combinations of expected valuations that
can be implemented by designing information. I show that the set can be implemented
only using information structures with finite realizations, and all extreme points of the
set can be characterized using a concavification characterization. I developed a Lagrange
method in the information design setup, and applied the results to various applications
including static and dynamic information acquisition, persuasion of receivers with out-

side options and screening using information.

4.6 Theorems used in proof

Here I list the key theorems used for my proof. Theorem 4.6 is Straszewicz’s theorem
(Straszewicz (1935), see Theorem 18.6 of Rockafellar (1969)). Theorem 4.7 is Krein-Milman
theorem(see Theorem 3.23 of Rudin (1991)). Theorem 4.8 is Carathéodory’s theorem
(Carathéodory (1907)). Theorem 4.9 is Prokhorov’s theorem (see Theorem 5.1 of Billingsley
(2013))

Theorem 4.6. Let C € IR" be a closed convex set, cl(exp(C)) = ext(C).
Theorem 4.7. Let C € R" be a compact and convex set, C = conv(ext(C)).
Theorem 4.8. Let C € R", if x € conv(C) then x € conv(R) for Rc C, [R| <n+1.

Theorem 4.9. A tight set 11 of probability measures on Borel sets of metric topological space X is
relative compace in weak-* topology.
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Lemma 4.4. Let C be a convex set in R". Then VF € F(C), ext(F) < ext(C).

Proof. Vx € ext(F) there exists affine f defining face F. Vy,z € C. Suppose y € F, then
f(x) = f(y). If there exists & € (0,1) s.t. ay + (1 —a)z = x, then af(y) + (1 —a)f(z) =
f(x) = f(z) = f(x) = f(y) soz € F. Since x € ext(F), x € {y,z}. Suppose y ¢ F,
then f(x) = af(y) + (1 —a)f(z) < f(x) by definition of f, contradiction. To sum up,
x € ext(C). [ |
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A.1 Further discussions

In Appendix A.1, I first discuss the convergence of discrete-time optimal policy in
Appendix A.1.1. It is shown that the discrete-time optimal policy’s support as a corre-
spondence of prior belief converges to that of the continuous-time optimal policy. Then I
complete the discussion in Section 1.7 by generalizing each of the restrictive assumptions.
Appendix A.1.2 generalizes the finite actions assumption and shows that the solution of
a problem with infinite actions can be approximated by solutions to a series of problems
with increasing number of actions. Appendix A.1.3 generalizes the binary states assump-
tion in Assumption 1.3 and shows that the properties of optimal policy in Theorem 1.2 all
extend in a problem with general finite state space. The proofs of theorems stated in this

section are relegated to Appendix B.5.
A.1.1  Convergence of policy

By Theorems 1.2 and 1.3, the optimal policy solving Equation (1.4) is essentially unique
in the jump-diffusion class. However, Theorem 1.1 does not rule out other possible op-
timal policies for the original stochastic control problem Equation (1.1). To get behavior
predictions from my model, additional refinement of optimal policy of Equation (1.1) is
necessary. In this discussion, I show that the discrete-time optimal policy of Equation (1.6)
converges to the solutions defined in Theorems 1.2 and 1.3. I define a modified version of

Lévy distance that characterizes the difference between two policy correspondences:

Definition A.1 (Lévy metric). Let F, G: [0,1] — 201 be two correspondences. The Lévy metric
d #(F, G) is defined as:

dy(F,G) := inf{s >0

inf dy(F(x),G(y)) <eVxe|0, 1]}
ly—x|<e

where dy is the standard Hausdorff metric on R.
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dy(F,G) = ameans thatVu € [0,1], Vy € F(u), there exists some y’ in a-neighbourhood
of u such that y is in the a-neighbourhood of G(y’). When G is continuous at #, and a is
sufficiently small, it simply states that the images of F and G at y are close to each other

(measured by dy). If d #(F, G) = 0 then F and G are identical.

Theorem A.1 (Convergence of policy). Given either Assumptions 1.1, 1.2-a and 1.3 or As-
sumptions 1.1, 1.2-b and 1.3, let v(u) be the policy correspondence solving Equation (1.4). Let

N(p) = {u}Jv(n). Let Ny (p) be the support of optimal posteriors solving Equation (1.6). Then:
lim d ¢ (N,Ng) =0
lm d.#(N, Nai)

Theorem A.1 states that the graph of policy function of discrete-time problem Equa-
tion (1.5") converges to the graph of the continuous solution defined in Theorems 1.2
and 1.3. The convergence is illustrated in Figure A.1. I calculate the discrete-time policy
function using parameters in Example 1.2. The red, blue and green lines represent the
set of optimal posteriors as functions of prior when Vy; > F with dt = 107>,10~3 and
1072. As is shown in the figure, when dt — 0, one of optimal posterior is converging to
the prior, and the other optimal posterior is converging to the continuous time solution.
The posterior converging to prior captures a drift term and the other posterior captures a

Poisson jump in the limit.
A.1.2  Infinite action space

In this section, I extend my model to accommodate infinite actions (or even contin-
uum of actions) in the underlying decision problem, i.e. |A| = 0. Mathematically, the
difference is that the value from immediate action F(y) = sup,_, E[u(a, x)] is no-longer a
piecewise linear function. There are several technical problems arising from a continuum
of actions. For example whether the supremum is indeed achieved and whether F has
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Figure A.1: Convergence of policy function

bounded subdifferentials. I impose the following assumption to rule out these technical

issues:
Assumption A.1. F(u) = max,eca E[u(a, x)| has bounded subdifferentials.

Assumption A.1 rules out two cases. The first case is that the supremum is not achiev-
able. The second case is that some optimal action being infinitely risky: the optimal action
with belief approaching x = 0 has utility approaching —co at state 1 (and similar case with

states swapped). A sufficient condition for Assumption A.1 is:
Assumption A.1'. A is a compact set. Vx € X, u(a,x) € C(A)[TB(A).

It is useful to notice that the proof of Theorem 1.1 does not rely on the fact that F(u)is
piecewise linear. Actually the only necessary properties of F(i) are boundedness and
continuity in Lemma 1.2, which prove the existence of solution to discrete time func-
tional equation Equation (B.1). Therefore Assumption A.l1 guarantees that Lemma 1.2
and Lemma B.8 still hold when there is a continuum of actions. With Assumption A.1, the
problem with continuum of actions can be approximated well by a sequence of problems
with discrete actions. I first define the following notation: VF satisfying Assumption A.1,

V4 (F) is the unique solution of Equation (1.6) and V(F) = limg_,g V4 (F)".

IThe existence of limit is guaranteed by monotonic convergence theorem.
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Lemma A.1. Given Assumption A and Assumptions 1.2 and A.1, V is a Lipschitz continuous

functional under Lo, norm.

Lemma A.1 implies that a problem with continuum of actions can be approximated
well by a sequence of problems with discrete actions in the sense of value function conver-

gence. Next, I push the convergence criteria further to the convergence of policy function.

Theorem A.2. Given Assumptions 1.1, 1.2-a, 1.3 and A.1, let {F,} be a set of piecewise linear
functions on [0,1] satisfying:

1. ||Fa—F|,—0;

2. Yue[0,1], im F),(u) = F'(u).
Then |V(F) — V(F,)| — 0 and:

1. V(F) solves Equation (1.4).

2. Yus.t. V(u) > F(n), if each vy, is maximizer of V(F,) and v = limy,_, o, v, exists, then v is

the optimal posterior in Equation (1.4) at p.

Theorem A.2 states that to solve the problem with a continuum of actions, one can
simply use both value function and policy function from problems with finite actions to
approximate. As long as the immediate action values F, converge uniformly in value
and pointwise in first derivative, the optimal value functions have a uniform limit. The
limit solves Equation (1.4) and the optimal policy function is the pointwise limit of policy
functions from the finite action problems.

Figure A.2 illustrates this approximation process. On both panels, only y € [0.5,1] is
plotted (policy and value on [0,0.5] are symmetric). On the right panel, the thin black
curve shows a smooth F(u) associated with continuum of actions. Since optimal policy
only utilizes a subset of actions, I approximate the smooth function only locally as the
upper envelope of dashed lines (each represents one action). The optimal value function
with continuous actions is the blue curve and the discrete action approximation is the red

142



A.1. Further discussions

Policy function Value function
4
1.0f
0.9¢
0.8 .
7’
,I
,/
0.7} v
//
06 7
//
,/
‘ ‘ ‘ ‘ N ‘ ‘ ‘ ‘ "M
06 07 08 09 1.0 05 06 07 08 09 1.0

Left panel shows the optimal policy function of discrete actions
(red) and continuous actions (blue). The dashed line is v = p.
Right panel shows the optimal value function. The thin black
line is value from immediate action F(y), the dashed lines are
discrete approximations of the continuous function F.

Figure A.2: Approximation of a continuum of actions

curve. The left panel shows the approximation of policy function. The blue smooth curve
is the optimal policy of the continuous action problem and the red curve with breaks is
the optimal policy of the discrete action problem.

To approximate a smooth F(), one can simply add more and more actions to the finite
action problem and use F’s supporting hyper planes to approximate it. Then the optimal
policy functions have more and more breaks as optimal policys involve more frequent
jumps among actions. In the limit, as number of breaks grows to infinity, the size of

breaks shrinks to zero and approaches a continuous policy function.
A.1.3 General state space

In this section, I extend the size of state space. The constructive proof for Theorems 1.2
and 1.3 relies on the ODE theory to guarantee existence of solution. With a larger state
space, construction of value function relies on existence of PDE. There is no general theory

ensuring existence of solution.? Nevertheless, the verification part still works. In fact, the

>The maximization problem can be translated into a PDE system. What is problematic is the bound-
ary conditions. In fact, to solve for V() searching over one action, I need to use the value function at
regions where DM is indifferent between two actions as a boundary condition. That boundary condition is
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discussion in Section 1.6.2 seems to extend to higher dimensional spaces in a natural way.
I formalize a partial characterization theorem in the section.
Let n = |X|. Consider value function V() on A(X). Let V(u) € CA(X) and C®
smooth when V(i) > F(u). Consider the following HJB equation:
PV (1) = max{ oF (1) max p(V (1)~ V() -V V (v )+ HV (| (A

s.t. —p(H(v)=H(u)—VH(u)-(v—p))—c " HH(u)o < ¢

where v € A(supp(i)), p € Al and o € RSP, Equation (A.1) comes from applying
Assumption 1.2-a and smoothness condition to Equation (1.4). ® I only discuss Assump-
tion 1.2-a because the intuition is the same and similar proof methodology can be applied

to Assumption 1.2-b to show an analog result.

Theorem A.3. Let E = {y € A(X)|V(u) > F(u)} be the experimentation region. Suppose there
exists C?) smooth V(i) on E solving Equation (A.1), then 3 policy function v : E — A(X) s.t.

 Fv(p) V() - VV)(v(p) — )
PV =~ F () — s~ VEE) () — )

and v satisfies the following properties:

1. Poisson learning: pV () = sup —c?ﬁ%.
2. Direction: D,V (u) = 0. ’

3. Precision: D, v(u) -HH(v)(v —pu) <0.
4. Stopping time: v(u) € EC.

There exists a nowhere dense set K s.t. strict inequality holds on E\K in property 1,3 and 4.

unknown, in contrast to the one dimensional analog V(¢*) which can be easily calculated.

SHH(u) is defined on boundary where V(1) = F(u) as continuous extension of interior Hessian’s by
Kirszbraun theorem.
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Theorem A.3 states that if a solution V() to Equation (A.1) exists, then V(y) can be
solved with only Poisson signals. The four properties are extensions to the four properties
in Theorem 1.2 respectively. Property 1 and 4 are exactly the suboptimality of Gaussian
signal and the immediate action property. Property 2 and 3 are weaker than the cor-
responding properties in Theorem 1.2. Property 2 is the extension to the confirmatory
signal property. It states that optimal direction of jump is in the myopic direction that
value function increases. Property 3 is the extension to the increasing precision property.
D, yv(p) is the direction v is moving when y is moving against v. HH(v)(v — u) is the
direction (v — u) distorted by a negative definite matrix HH(v). In a special case when
H(p) = ||t — poll5, HH(v)(v — p) is in the same direction as (¢ — v), which implies (to-
gether with property 3) that the distance between u and v is increasing when p is drifting

against v. In a generic case, this property does not directly predict how ||v — p|| changes.

710

/0.5
7

Figure A.3: Value function with 3 states

Figures A.3 and A .4 illustrate Theorem A.3 in a numerical example. There are three
states and three actions. Belief space is a two-dimensional simplex. F(u) is assumed to
be a centrally symmetric function on belief space (Figure A.3-(a)). Value function V(u) is
the meshed manifold in Figure A.3-(c). Each blue curve in Figure A.3-(b) shows a drifting
path of posterior beliefs. Take a prior in lower right region. The optimal policy is to
search for one posterior (red points in lower right corner of Figure A.4-(c)), and posterior
belief conditional on receiving no signal drifts along the curve in arrowed direction as

145



Appendix A. Appendix for Chapter 1

in Figure A.4-(c). Once belief reaches the boundary, optimal policy becomes searching
for two posteriors in a balanced way and posterior drifts towards center of belief space
(see Figure A.4-(b), arrowed blue curve is belief trajectory and dashed arrows points to
optimal posterior). Finally, if belief reaches center, optimal policy is to search for three

posteriors in a balanced way (Figure A.4-(a)).

“i;?,,

I3

02 04 06 08 10 02 04 06 08 10

Dashed arrows start from priors and point to optimal posteriors. Blue arrows repre-
sents drift of posrtior beliefs conditional on no signal arrival. Left panel shows a point
at which a balanced search over three posteriors is optimal. Mlddle panel shows a
curve along which searching over two posteriors is optimal. Right panel shows curves
along witch searching over one unique posterior is optimal.

Figure A 4: Policy function with 3 states

A.1.4 Discrete-time information acquisition

In this section, I introduce a general discrete-time information acquisition problem. In
the general problem, information is explicitly modeled as state-dependent signal process,
and the cost of information is defined using a posterior separable function. I show that the
discrete-time auxiliary problem Equation (1.5) introduced in Section 1.5.1 is a reduced
form of the general problem. In Appendix A.1.4.1, I axiomatize posterior separability.

Decision problem: Time is discrete t € IN. Period length is dt > 0. The other primitives
(A, X,u, u,p) are the same as in Section 1.3. The Bernoulli utility of action-state pair (a, x)
in period t is e *¥**u(a, x).

Strategy: a strategy is a triplet (S, 7, A!). S!is a random process correlated with
the state, called an information structure. The realization of S’ is called a signal history.
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The signal history up to period ¢ is denoted by St. Each S* specifies the signal structure
acquired in period t conditional on all histories up to period t.* T is a random variable
whose realization is in IN. T specifies a random decision time. The action choice A’ is a
random process whose realization is in A. Each A’ specifies the joint distribution of action
choice and state conditional on making decision in period t. Let the marginal distribution
of the state be denoted by random variable X"

Cost of information: Define Cy(I) = C(4;)dt. The per-period cost of information is

Ca(I(S% X|St1,1:<4)),> where the measure of signal informativeness I is defined as:

Assumption A. I(S; X|u) = Es[H(u) — H(v(:|s))], where v is the posterior belief about x

according to Bayes rule.

It is not difficult to see that I(S!; X|St1,1.«;) is exactly the finite difference formulation
of —L:H(p)dt. Assumption A is called (uniform) posterior separability in the literature. If
H is the standard entropy function, then I is the mutual information between signal S*
and unknown state X’ (conditional on history).

Dynamic optimization: The dynamic optimization problem of the DM is:

o0
Va(p) = sup E e PHTY (AT, X)) — Z e‘pdt'tht(I(St; X|SH1L, lo<t)) (1.5")
St At t=0

s.t.

X — 81 5 A! conditional on T = ¢

The two constraints in Equation (1.5") are called the information processing constraints. No-

tation X — S — 7 means X' I T|S. The first constraint states that signal history prior

48~1 is defined as a degenerate random variable that induces belief same as prior belief  for notation
simplicity.

1., is an indicator whether learning is already stopped up to current period, which is known to the
DM. So (8*1,17;) summarizes all knowledge of the DM.
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to action time is sufficient for action time. The second constraint states that signal history
prior to period t is sufficient for action at time ¢.* They are extensions to the standard mea-

surability requirement, allowing randomness unrelated to unknown state to be added.

Equation (1.5") is more general than Equation (1.5) in that it explicitly models the fully
flexible choice of information. Take any strategy in Equation (1.5), if we consider belief
as direct signal, then it resembles a special kind of strategy which is feasible in Equa-
tion (1.5). These special strategies involve no irrelevant randomness and unused informa-
tion, which are permitted in Equation (1.5"). In fact, Equation (1.5”) is more general than
Equation (1.5) only in permitting irrelevant randomness and unused information. It is
quite intuitive that allowing those more general strategies doesn’t improve utility at all.
In fact, it is proved in Lemmas B.4 and B.5 that Vj;; defined by Equation (1.5') is identical

to that defined by Equation (1.5), for which reason I do not differentiate the notation.

Given the discussion above, Equation (1.5") serves as a formal justification for using a
belief based approached to model dynamic information acquisition. Moreover, it also re-
lates Assumption 1.1 to posterior separable function — a measure for information widely
used in rational inattention problems. In addition to existing attempts to axiomatize or
microfound Assumption A, I provide a different axiomitization based on sequential in-

formation decomposition in Appendix A.1.4.1.

A.1.4.1 Axiom for Assumption A

Theorem A.4. I(S; X|u) is a non-negative function of information structure and prior belief. I
satisfies Assumption A if and only if the following axiom holds:

Axiom: Yy, ¥ information structure Sy and information structure Sy|s, whose distribution de-

®Notice that in every period, the information in current period has not been acquired yet. So decision can only be taken based
on the information already acquired in the past. As a result in the information processing constraints information is advanced by one
period. This within period timing issue does not make a difference when going to continuous-time limit.
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pends on realization of Sy:

[((81,82); X|p) = 1(S1; X|p) + E[I(S2; XSy, )]

Theorem A 4 states that the chain rule (the name for a key property of mutual informa-
tion in Cover and Thomas (2012)) is not only a necessary condition but also a sufficient
condition for posterior separability. Given any experiment, we can divide it into multiple
stages of “smaller” experiments. This axiom requires that the total informativeness of
this sequence of small experiments is “path-independent”: it always equals to the infor-
mativeness of the compound experiment.
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A.2 Omitted proofs

A.2.1 Roadmap for proofs

Figure A.5: Roadmap for proofs

Theorem B.1, P186

F Corollary of Theorem 4.4, Chapter 4

Theorem 1.1, P26

}7 Lemma 1.2, P30 Lemma B.4, P202 — Lemma B.1, P185

Lemma B.5, P205
Lemma B.6, P207

{Theorem B.1, P186

1
!

— Lemma 1.1, P30 —!ELemrnal.Z, 7P739A

Lemma B.3, P194
Lemma B.8, P210 —[} Lemma B.3, P194

3
|

'Lemma 1.2, P30

3
|

Lemma B.10, P218

L Lemma 1.3, P32 —{ Lemma B.9, P214
Lemma B.7, P209

Theorem 1.2, P33

— Lemma A.2, P177

1

— Lemma A.3, P180 — Lemma B.16, P226 —[ Lemma B.15, P224
Lemma B.17, P231

- Lemma A.3/, P233 — Lemma B.1¢’, P234 -[Lemma B.15, P224

!
Lo e e e e e e - - = 1

Lemma B.17/, P234
— Lemma B.18, P235

- Lemma B.18/, P239
- Lemmas B.11, B.12, B.13 and B.14, P221

Theorem 1.3, P35

— Lemma B.20, P250

1

- Lemma B.21, P254 — Lemma B.22, P257
— Lemma B.21/, P260 — Lemma B.22’, P261
- Lemuma B.23, P261

- Lemma B.23’, P265

L Lemma B.19, P242 —Lemmas B.11 and B.12, P219,

L

Theorem 1.4, P52

|

Theorem 1.5, P55

|

Theorem 1.6, P58

|

Theorem A.1, P140

% Lemma B.25, P287

Theorem A.2, P142

Theorem A.3, P144

}[ Lemma A.1, P142 — Lemma 1.3, P32
‘ Lemma B.27, P297 — Lemma B.26, P296 — Lemma A.2, P177,

Theorem A.4, P148

0 TTTTTTTTTTTTTT
|




A.2. Omitted proofs

Figure A.5 illustrates the roadmap for proofs in Chapter 1. Each node in the figure
displays a theorem/lemma’s name and its page number. Proof of each node depends
(indirectly) on all nodes linked (indirectly) to it on the right. From top to bottom, the
nodes are ordered by order of proofs: each node only depends on nodes on the right of
it or above it. So it is clear that there is no circular argument. Dependent nodes that
have been proved earlier are boxed by dashed lines. From left to right, the nodes are
ordered by importance. Lemmas in the first layer are conceptually important and are
directly supporting the proof for theorems. Lemmas in the second layer or above are

more technical lemmas.

A.2.2 Proof of Theorem 1.1

The general road map for proving Theorem 1.1 is introduced in Section 1.5.3. The
proof relies on three lemmas. Lemma 1.1 proves that the value function Vj; of discrete-
time optimization problem Equation (1.5") converges to the value function V of continuous-
time optimization problem Equation (1.1) as dt — 0. Lemma 1.3 proves that the solution
of discrete time Bellman Equation (1.6) converges to the solution of continuous time HJB
Equation (1.4) as dt — 0. Lemma 1.2 proves that V; is also the solution of Bellman Equa-

tion (1.6). Therefore, V is the solution of HJB Equation (1.4).

Among the three lemmas, Lemmas 1.1 and 1.2 are quite standard, and the proofs are
mostly variations of standard arguments. In Appendices A.2.2.1 and A.2.2.2, I discuss
only the main proof ideas and some non-standard details and relegate the standard parts

and purely technical details to Appendix B.2.1.

Lemma 1.3 is the key lemma for Theorem 1.1, as it provides an important link between
discrete time Bellman and continuous time HJB. Proof of Lemma 1.3 is provided in details
in Appendix A.2.2.3. The discussion also formalizes the definition of HJB Equation (1.4)
by clarifying the notion of viscosity solution I am using.
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A.2.2.1 Proof of Lemma 1.1

Remark A.1. The proof of Lemma 1.1 uses Lemma 1.2 for some minor technical arguments.
However the main proof idea does not conceptually depend on Lemma 1.2. So I show the

proof of Lemma 1.1 first.

Proof. As already stated in Section 1.5.1, it is sufficient to show that the order of limits

can be switched:

sup lim Wy (pe, 7) = im sup Wy (pe, 7) (A.2)
()T dt—0 dt—0 ()T

Here Wy, (u4, T) is defined in Section 1.5.1 as the discretized payoff of continuous time strat-
egy (yt), T. The inner limit of LHS in Equation (A.2) is then by definition the payoff of
strategy (y¢), T in the continuous time problem Equation (1.1). So the LHS is V(u). The
inner limit of RHS is Vj(u) (as the problem optimizing W, is a discrete time problem
equivalent to Equation (1.5"), formally shown in Lemma B.5, a dependence lemma for
Lemma 1.2). So RHS is lim Vj; (a technical lemma Lemma B.8 guarantees existence of
such limit).

I prove by showing inequality in two directions. The direction V(y) < lim Vj(p) is
trivial since Wy;(pr, T) < Vy(p) for all {uy), T,dt. The key is to prove the other direction
V(p) = lim Vg (p). I prove this claim by showing that Vdt > 0, there exists a continuous
time strategy that achieves a payoff in Equation (1.1) no less than Vi (u).

Given time period dt, by Lemma 1.2 there exists discrete time optimal solution y; and
T*, where pf | F; has support size N. The goal is to construct an admissible continuous-
time belief process (y;), which satisfies two properties: 1) at each discrete time idt, y;
has exactly the same distribution as y;, 2) within each dt period, uncertainty reduc-
tion speed of y; is exactly E[H(pu}) — H(u},,)|Fi]/dt. Such (u;) with stopping time T*
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achieves higher payoff than V(). Now this construction can be done by a technique
introduced in Lemma B.3. Vi and conditional on F;, apply Lemma B.3 to the distribution
of uf,, to smooth it on [idt, (i + 1)dt]. Lemma B.3 states that there exists a continuous-
time martingale {ji;) (with a corresponding probability space) satisfying: Vs,t € [0,1],
s > t: E[H(us) — H(us)|Fi] = (s — t)E[H(u}) — H(u}, ;)| Fi]. For t € [idt, (i + 1)dt], define
Fi. Therefore, Vt € [idt, (i + 1)dt):
—LoH () =Slil}1 5 [H(l/‘ti : ?(P‘S) ]_—t]

(s — HE[H(u}) — H(u}, )| Fi]

s—t+ s—1t

=H(uf) — Y. plH(u;]))

Vt’]:idt = ﬁ%

Let T = t*dt. It is easy to see that by construction T is measurable to the natural

tiltration of y;. Therefore:

V(i) =E|e PTF(ur) — J TePtC(It)dt}
0

—F e‘Pdt'T*F(yT*) _ E 1C<H<lu;k> — Zng(V;]i’l)>e—pdt't . 1- epdt]

i t=0 dt P
[ -1 ®) ] #]

>E e_Pdt-T*F(VT*) — C <H<yi ) Z(:l PiH(]/li+1) ) e patt, dt]
i t=0 t
[ . ey , ,

—E|e T F(ug) = 3 Car(H(pP) ~ ZpﬁHwiil))e"’d”] = Va(p)
i t=0

Second inequality is from 1 — e~ < x. Therefore, V(y) > lim V(). |

Remark A.2 (Non-integrable (y;)). In fact, the integrability requirement introduced in
Equation (1.1) (defined as existence of lim W in Section 1.5.1) is not necessary for my
analysis of Theorem 1.1. Suppose now I extend the set of admissible belief profiles M to
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satisfy only the first two conditions: cadlag path, martingale property and initial value
po = p. Then the limit of finite Riemann sum Wy, (y, T) might not exist (although each
tinite Riemann sum is always well defined). Whenever this is the case, I define the payoff

of strategy (u¢), T as:

T
E{EPTPC”T)_J e P'C(—LeH (pur))dt | = limsup W (s, 7) (A.3)
0 dt—0

Since Wy (¢, T) is bounded above by max F, Equation (A.3) is always well defined. Equa-
tion (A.3) is the essential upper-bound of payoff of an ill-behaved strategy, and when (p;)
is integrable it is consistent with the original definition of V. Obviously, such extension of
admissible strategy set weakly increases the value of V(). Here I call the extended value
function XA/(pt) = sup lim sup Wy (us, 7).
{ugy, Tt dt—0

In the proof of Theorem 1.1, Lemmas 1.2 and 1.3 are not affected at all since they are
about the discrete-time problem and corresponding value function V. If Lemma 1.1 can
be extended to \7@1) = limgy o Vj;, then Theorem 1.1 still holds with V replaced with
V. This extension is quite trivial by observing V(u;), T,dt, Wa (s, T) < V() —
limsup Wy (pe, 7) < lim Vi (p) — 17(#) = limsup < lim Vg (p).

To sum up, if we extend the admissible strategy set, and relax the definition of the ob-
jective function to its essential upper-bound, a solution to HJB Equation (1.4) still achieves

the value function. Therefore, it is WLOO to eliminate all those ill-behaved strategies from

the admissible control set.
A.2.2.2  Proof of Lemma 1.2

Remark A.3. The proof presented here is stronger than the statement of Lemma 1.2 in Sec-
tion 1.5.2. It proves that the Bellman Equation (1.6) characterizes both Equations (1.5)
and (1.5") (while Lemma 1.2 only states that Equation (1.5) is characterized by Equa-
tion (1.6)). The first step of the proof shows that Vj; defined by Equations (1.5) and (1.5")
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are identical (Lemmas B.4 and B.5), and can be rewritten as a recursive problem (Lemma B.6).
To proof the Lemma 1.2 exactly stated in Section 1.5.2, one can simply skip Lemmas B.4
and B.5 and start with Lemma B.6, noticing that Equation (B.9) is simply rewriting Equa-
tion (1.5).

Proof. The proof of Lemma 1.2 is mostly the standard theory of discrete-time dynamic
programming with a few tweaks. The proof involves 4 steps:

Step 1. Rewrite the sequential problem into the recursive problem. The technical de-
tails of the rewriting of problem is shown in Lemmas B.4, B.5 and B.6. The only non-
standard analysis is to show that in Equation (1.5"), §; may contain unused information/
randomness which can be discarded without loss of utility. Then the sequential prob-
lem without any redundant information can be represented in the belief space and easily
written as a recursive problem.

Step 2. Verity the standard transversality condition. This is trivial as the payoff is
bounded by max F and discounted exponentially.

Step 3. Verify the Blackwell contract mapping condition. The contraction parameter
in Equation (1.6) is trivially the discount factor e~ The non-standard analysis is to
show that the optimization operation is into the domain C(AX). To show this I invoke a
maximum theorem in information design problems (Theorem 4.5 of Chapter 4, it shows
the existence of maximum as well).

Step 4. With steps 1-3, I invoke the standard contract-mapping fixed point theorem and
show that value function V; is the unique solution to Equation (1.6). The final bits show
that I can restrict the optimal strategy of Equation (1.6) to have support size N. This part
is proved using a generalized concavification result: Notice that the objective function
in Equation (1.6) is not in the standard “expected valuation” form as in the literature of
information design (see Kamenica and Gentzkow (2011)). Instead, there is an extra Cy(-)
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term. However, intuitively this problem can be handle using a Lagrange method and
take the term inside Cy(-) to combine it with E[V] linearly. This intuition is formalized

by Theorem B.1, which is a corollary of a more general result in Chapter 4. [ |

A.2.2.3 Proof of Lemma 1.3

Before going to the proof of Lemma 1.3, I first formally rewrite the problem to accom-
modate viscosity solutions (see Crandall, Ishii, and Lions (1992)). First define a space of

functions on A(X):

L‘—{V:A(X)H]RJF

Vu e AX,u' € A(supp(p)), lim sup Vi) = Vip) € IR}

won I =l
where ||-|| is Euclidean norm on AX. By definition, £ is the set of pointwise Lipschitz
functions on A(X). Two technical lemmas Lemmas B.8 and B.9 guarantee that lim Vj; is
well defined, and there exists V € £ which is the uniform limit of V;;. Now I show that
V coincides with the solution of the HJB equation. Consider the following HJB equation

defined on L:

R e > R 5 ) O]
vleA(supp(
(,Enp{\supp( )l +—||c7]| D2y V(p,0) (A.4)

( >, pilH(vi) = H(p) = VH(u) - (v, —y>>—§6—T-HH<u>-?r)}

V and H denote gradient and Hessian operator (well-defined on all interior points). Since
V is not necessarily differentiable, I use operator D and D? to replace the Jacobian and
Hessian operators on V. D and D? are defined as follows. Yy € BIS*PP(*)I=1 (Unit ball in

|supp(x)| — 1 dimensional space):
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Definition A.2 (General differentials). Vf € L:

Df(x,y) = liminfs .o W
D2f(x,y) = limsup,_, 2/ 0~/ -&Df )l

3llyl®

Notice that if f ¢ C)(AX), then Df(x,y) = %. If f € C@(AX) then D?f(x,y) =
% It is not hard to verify that for C) smooth value function V (1), Equation (A .4)

is equivalent to Equation (1.4).

Proof.

Consider Lemma 1.3 by replacing Equation (1.4) with Equation (A.4). If the statement
is proved with Equation (A.4), then since V = V is C(1) smooth, V is smooth and Equa-
tion (1.4) automatically holds. I prove by induction on dimensionality of supp(u). First
of all, Lemma 1.3 is trivially true when u = dy since V(i) = V() = F(u) when the state is
deterministic. Now it is sufficient to prove V = V on interior of AX conditionalon V = V

being true on 0AX (boundary of AX).

The proof takes three steps. Before going to the details, I introduce the steps briefly.
The first step is to show that V is unimprovable in HJB Equation (A.4). The proof is quite
standard as any continuous-time strategy that improves V can be approximated by a
discrete-time strategy. The second step shows V > V. Proof is by a standard contradiction
argument. If V < V, then there exists a belief s.t. the same strategy implements strictly
higher HJB with V, which violates unimprovability. The last and most difficult step is to

show that V > V.

Unimprovability: First I show that V is unimprovable in Equation (A.4). Suppose
for the sake of contradiction that V is improvable at interior y, then there exists p;, v;, 0, |
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such that:

oV () <D pi(V(vi) = V(i) = DV (i, 1 = > pivi) | Y. pivi — HH + DV (1,37 — C(I)

where I = = p;(H(vi) = H(p) = VH(u) - (v; — p)) = Y6 HH(p)3;

Then if we compare the following two ratios:

S pi(V(v) = V() =DV, S pwvi — S pivi — pul| D2V (w,3)|[5)?
— 2. pi(H(v;)) = H(p) — VH(u) - (v; — p)) " —0THH(u)o

At least one of them must be larger than M;FC(D.

e Case1:

2pi(Vvi) = V(w) =DV, Y pwvi — I X pivi =l _ Py + CD)
— 2 pi(H(vi) = H(u) = VH(u) - (vi — ) I I
By Definition A.2, there exists ,¢ > 0 s.t. :
(V) = V() = L=V (p=0E pvizpn) _
Zpi(Ven) - V) A=) > {T)V@‘) * @ Te (A-5)
2 pi(H(u) — H(vi)) + 3

where ¢ is sufficiently small that pig = u — (>, pivi — i) € AX°. Then by construction, if

we assume:

r 1
Po = 153
[
Pi 1+(5p1
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Then (p), v!) is Bayesian plausible:
xpi=1
2ipivi =

where 0 is also included in indices i’s. Replacing terms in Equation (A.5) and let

I(vilp) = H(p) — 2 piH (vi):

SPVe) -V pp, €O
R A
— D) - e > (14p Vg et (a9

It is easy to verify that I(v;|u) is continuous in J and it is zero when § = 0. So é can be

chosen sufficiently small that

1010 I(vi|p) o 1 pyk+l k el (vi|p)
0 — = = . . .
e <1+p : 2;(k+1ﬂ<l> Ml Tl < S0 (A7)

The equality is from Taylor expansion of exponential function. Plug Equation (A.7) into

Equation (A.6):

7w~ U ey = o () + S1tln)

:ﬁgwwwxzhﬁnwg—lwm”qn

- V(0 e_pm el(vilp) B (1 _ e—pW) HLI'W)C(I) (A.8)

N

I(vilw)
Noticing that <1 et )I (vi|u) is a second order small term. Then we can pick ¢
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such that Equation (A.8) implies:

) (Z pQV(Vi)> _ IV%(:([) > V() + gI(ViL”)

From now on, we fix € and ¢. Pick dt = I(U}W ) ,dty, = %. By uniform convergence, there

exists N s.t. Ym > N:

vi|lu)/m
e_pdf (Z p;thm Vz dt C( ‘]/l / ) thm(‘u)

— p—pmdty <Z A > _ Z o~ 0Tt C tm< (t;l:u)) > Vg, (1)

That is to say we find a feasible experiment, whose cost can be spread into m periods
(the split of experiment is done by applying Lemma B.3). This experiment strictly dom-
inates the optimal experiment at y for discrete time problem with dt,,. Contradiction.

Therefore, V must be unimprovable at p.

o Cuase 2:

Then by the definition of operator D? in Definition A.2, there exists 7, 6,¢ > 0 s.t.:

+ 2¢

“H(u+60)+ Hp) + 5VH(;L) AR

Then by the definition of operator D in Definition A.2, there exists ¢’ s.t.:

V(p +60) - V() — XWTp® L
—H(p + 66) + H(p) + 6 LW H=00) [
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Letpy = p— &' and Ho=U+060,p = %/5// p2 = 5f§/z then:

NALDE (1 + pl(”—l’”)) V(p)+ W;"” Je(n) + elulp) (A9)

Noticing that Equation (A.9) is exactly the same as Equation (A.6) in Case 1. Then using

same argument, This case is also ruled out.

Equality: I show that ¥ smooth function V solving Equation (A.4), V = V. Notice that
this automatically proves the uniqueness of solution of Equation (A .4). I prove inequality

from both directions for u € A(X)°:

e V(1) = V(u): Suppose not, then consider U(u) = V(u) — V(u). Since both V and
V are continuous, U is continuous. Therefore argmin U is non empty and minU <
0 according to our assumption. Choose y € argminU (4 € AX° since V = V on

boundary). Since V(1) = F(u), V(1) > F(u). Let (p;, v;, &) be a strategy solving V (u):

oV () = pi(V(vy) = V(p)) - DV(%Z pivi — V) HZ pi(vi—u) H
+ 2DV ()] (A.10)

2
~ ¢~ Spi(Hn) — Hn) - VG- ) - 50T HH(?)

Now compare DV and DV:

VW) = V(') _ V) = V) + UG —U@) _ V() = V)

=l [ — 1| S le—w
17 X7 . /
liming V(u) V/(V) < lim V(u) V/(ﬂ)
| — ']l [ —w']]

— DV (i, — || = p|| < VV () - (0 =)
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Compare D?V and D?V:

V()= V() =DV (u, 1 — )l — pll LY@ = V) =NV - (0 —p) + UG) = Up)
Il — ul® Iy — ||
— D?*V(u,0) =D*V(u,0)

Therefore Equation (A.10) implies:

oV () < X (T () ~ V) — (U(v) - U())
DV Yvi— 0[S v - k]| + 507V 321

~C(- Sp(Hn) — Ho) + TG - ) - 50T HH(?)

<oV(n)

The first inequality comes from replacing DV and D?V with DV and D?V. The second

inequality comes from U(v;) — U () > 0 and unimprovability of V. Contradiction.

o V(u) = V(u): I prove by showing that Vdt > 0, V > V. Suppose not, then there
exists u/, dt s.t. Vy(u') > V(i'). Let dt, = %. Since Vj, is increasing in 7, there exists
e>0s.t Vg, (4)— V(i) = eV¥n e N. Now consider U, = V — V. U, is continuous
by Lemma 1.2 and U, (') < —e&. Pick y" € argmin U,. Since A(X) is compact, there
exists a converging sequence lim y" = y. By assumption, U, (1") < —e¢, therefore since
U(p) = im U, (p") < —e, p must be in interior of A(X). So without loss, y" can be

picked that u" € A(X)O. Now consider the optimal strategy of discrete time problem:

p
thn (7"”) = e_pdtn Z p?thn (Vzn) - dtnc(1n>
Y 2L PHHE") — HP) = Ludty

| Dopivi =" p =1
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By definition of Uy (1):

AR ) =3 P (Viar, (V) = Vi, (") — U (") + U (v}1))
>ZP1 Ve, (V) = Vg, (1))
=@W%—4>wmgﬂ)+wﬂmwcu@
>0t Vi, (") + 8, C (1)
>pdtye + pdtn (1) + eP¥ndt, C(I,)

= oV (n) < — pe +Z dtn V(u")) — et C(I,)
= V() < ps+§]dM V(u") = C(In) (A11)

The first equality is by the definition of U,,. The first inequality is from p" € argmin U,,.
The second inequality is from e* —1 > x. The third inequality is from U, (") < —e.
Now since the number of posteriors v/' is no more than 2| X|, we can take a subsequence
of n such that all lim v}’ = v;. Partition v} into two kinds: lim v}’ = v; # y, lim 1/]’7 = .
Since V is unimprovable, Ve, & we have D2V (1, 5)||7||* < UTHH(y)(AT(FT'V(y) + @)

Since Ve Cl HeC®, V7, there exists 0 s.t. V|pu' — p| < o:

|[HH(u) —HH(@)|| <7

V(p) V')l <
T NnNA
- v <(fow ) 2
~T ~
< (%V(H) + @) (_(7 T;(ZP‘)‘T) + (§ sup F + @)q + ‘(_I)WHHH(P‘)H
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If we pick # and 6 properly:

S
V(y',5) < (’—I’V(y) n @) <_0' I’T;'(zmcf) e IC(I)17

Then there exists N s.t. Yn > N,

1/]?Z — y’ <, |u" — | < 6. Now I want to do a second-
. : ny _ ny _ n\(4, M _ 1 .

order approximation of V(v]-) V(u")—VV(u )(1/]. u"). To apply Taylor expansion

to a not necessarily twice differentiable function V, I invoke a technical Lemma B.10 to

g(0) = Vav! + (1 - a)p"):

Vi) = V(") = VV (")) —pu") = g(1) —g(0) — g'(0)

_ o
<} sup D%(a,1) = sup limsup @ T D =8 (@)
2 0(6(0,1) 0(6(0,1) d—0 d

V@A) )~ V(©) — IV — )
= sup limsup 7
ge(um i) d=0

2
n

1
<z sup DZV(g,v]”—,u”)
|G—pl<o

<- % <§V(u) + @) (v — " THH(u) (v} — ") +

n
Vi —

1+ C(I)
or

n n

Vi —

(A.12)

Therefore, by applying Equation (A.12):

>V - viem)
= VPRV = V") = VY = i) + Y p (V) = V) = TV (v = u") )
<SPV - V(") - TV ()~ )

- 3(Bvin+ SR St - s - ) + Sy Sy

2

n n
V]—]/l

(A.13)
Notice that Equations (A.12) and (A.13) are true uniform to I, so we can replace I with
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I, and Equation (A.13) is still true. Now let p}' = %,

—GTHH(u")6" dty = 3. p! <H(y”) — H(v!) + VH(u)(v) — y”)), we have:
D P (HW") = HW!) + H' (6" (v} — @) — G HH(§")G = Ly (A.14)

(p,v!',0y) is a feasible experiment for Equation (A.4). Therefore, by optimality of V at

u'", we have

SRV - V) = V() - i) < (Tn+ o THE) ( Lv e + S
I I,

~ o"THH(u)d" [ o - C(I)
D2V (", 5" < — L AW (—v n +_ﬂ)

(A.15)

Then we study term ) p}“(v]’.1 — 2. Apply Lemma B.10 to g(«a) = H(ow]” + (1 —a)u™):

Zp,( HW}) + VH(") (] = "))
>—€n lﬁffyn]zpy( (v} — ") THHE) W) — "))
——ZP] — ") THH(u)(v] — ") 2772;9, v — (A.16)
Therefore, to sum up:
ZZ;] (V) = V) <SPV = VE") = V() ) - pt)

) Z;; (—(v}ﬂ - TG00 - ) (v + )
S (]
< (I + 3" THH(u")5" ) (IﬁV(y”) + %)
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(Z o HOP) + THG) 1)
1 77 n n 2 P C(In)
1 alln onlPL+C)

T Ezpj v 21, U

— (I + 3" THH(u")5" ) (ﬁvw) + C(I”))

Iy Iy
~nT _ﬁ ﬁ CU")
+< HH(u")o" +dtn Zp] ><InV(y)+ I,
1 Al 121+ C(1y)
+EZP]' vi — —o1, !
21+ pV(u)+2C(1
<pV(u") + Cln) + 7~ W < : (Z)z (n))’?+P’7

The first inequality is Equation (A.13). The second inequality comes from Equation (A.15)
and Equation (A.16). The next equality comes from definition of 02. The last inequal-
ity comes from canceling out terms and —¢"THH (u")" < I, (Notice the difference

between V(y) and V(u")). Then by plug into Equation (A.11):

(1 + oV (u) +2C(I)

PV (") < —pe+pV (") + - W I oL )17+m7

Moreover:

\aTHH u)o|

n
2.7) TR

< D P = WHH(u) (" — p") < Lty +1 ) pl

n
Vi

2

Ldt
n|l,n n e
I [oTHHGe]
7 el
1
— pe < 5(1+pV () +2C(Ly)) |UTHZ<y)a| e
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T
By Lemma B.7, C(I,) is uniformly bounded above. Since H is strictly concave inf %
TH

is positive. The inequality holds when 7 is chosen smaller than inf, % By tak-

ing 7 — 0, the LHS is eventually larger than the RHS. Contradiction. Therefore:

VW)=Mn?mV%W>=VW)
t—0

A.2.3  Proof of Theorem 1.2

Proof. I prove Theorem 1.2 by guess and verification. To simplify notation, I define a

flow version of information measure:

J(u,v) = H(p) — H(v) + H' () (v — )

Then total flow information costis p - J(u,v). Let F; = E,[u(ay, x)] and reorder ay, s.t. Fj,
is increasing in m. Let j,_be each kink points of F: F(u) = F(y) < ue [Ek—l’ﬁk]' m is
the smallest index s.t. F,, > 0.
Algorithm:

In this part, I introduce the algorithm for constructing V(u) and v(p). I only discuss the
case y = u*. The remaining case y < u* follows by a symmetric method. The main steps
are illustrated in Figure A.6. The first step is to find critical the belief p* at which two
sided stationary Poisson signal is optimal (¢*=0.5 in a symmetric problem). Then value
function is solved by searching over optimal posterior beliefs, given choosing an action
(say a;). Then the remaining actions are added one by one to consideration. And value
function is updated when each additional action is added. Finally, after all actions have
been considered, I complete the construction of value function.
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The two black (dashed and solid) lines are Fy,_1 (1), Fu (1).
The blue line is optimal value function from taking immediate action .

The red line is optimal value function from taking immediate action m — 1.

e Step 1: Define:

F,(v)

maxX ——
vzp 1+ %)](]/l,v)

F,(v)

0.5 0.6 0.7 0.8 0.9 1.0

Figure A.6: Construction of optimal value function.

max PR v
vsp 1+ z](]/l, 1/)

In Lemma A.2 I analyze the technical details of V™ and V™. The main property is that:
V* isincreasing and V™ is decreasing. There exists u* € [0,1] s.t. V() > V(i) when

p=p*and V- (i) < V~(u) when p < p*. Define V(i) = max{V*(u), V= (p)}.
e Step 2: I construct the first piece of V(y) to the right of u*. There are three possible cases
of u* to be discussed (I omitted y* = 1 by symmetry).

Case 1: Suppose u* € (0,1) and V(u*) > F(u*). Then, there exists m and v(u*) € (u*,1)
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s.t.

Initial condition (Plo =u*, Vo= V(y*), Vé = O) satisfies Lemma A.3, which states that

there exists V;,;(y) solving:

This refers to Figure A.6-1. Define

F(u)if p < p*
Vi (1) =

Vin(u) if p = p*

Be Lemma A.3, when V«(u) > F(u), V= is smoothly increasing and optimal v(y) is

smoothly decreasing.

Now update V)« (i) with respect to more actions (in the order of decreasing index m).

First consider F,,_; and let i, be the smallest # > u* such that:

~

) ¢ For 1 (V) = Vig () = Vo () (v — i)
Viee (i) = mac 2 T v) (A17)

At i, searching posterior on F,,_; first dominates searching posterior on F,’. This
step refers to Figure A.6-2. iy, is the smallest intersection point of blue curve (V= (i),
LHS of Equation (A.17)) and thin red curve (RHS of Equation (A.17)). If Vi, () >

A

Fy—1(fim) then solve for V,,_1 with initial condition yo = fiy, Vo = Viu(fim), V5 = Vi (fim)

"Existence is guaranteed by smoothness of Vy* and J. Noticing that V,, (i) = Fy—1(fim). Otherwise,
there will be a i), < fiy s.t. Viu(i},) = Eu—1(ji},) and it is easy to verify that V,, is weakly larger than the
maximum. So there is an even smaller Ji,,, contradiction.
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according to Lemma A.3 and redefine V(i) = Vj,—1 () when p > fi,,. Otherwise skip
to looking for ji,_1. If m —1 > m, continue this procedure by looking for fi,,_1 and
update Vy«|,>;  with corresponding Vj,_ ... until m = i (No action with the slope
of F), being negative is considered). This refers to Figure A.6-3. Now suppose Vy; first
hits F(p) at some point p** (u** > p* since Vi, (u*) > F(p*)). V,x is a (piecewise) smooth

function on [p*, u**| such that:

F(u)ifp <p*orp=p*™

Vie(p) if i € [fik, fig—1]®

By construction, optimal posterior v, () is smoothly decreasing on each (jix1, fix) and
jumps down at each 7i;°. Notice that it is not yet proved that this order of value function
updating is WLOO. It is possible that optimal policy function is non-monotonic. This
is taken care of by Lemma B.18, which proves the order of updating being WLOO.
I relegate the proof of Lemma B.18 to supplemental materials to conserve space, but

it uses exactly the techniques of the verification step 2. Now I can claim that Yu €

[,

Vs (p) = max — E (A.18)

Case 2: Suppose u* € (0,1) but V(u*) = F(u*), let p** = inf{p > p*|V(u) > F(u)}.

Case 3: Suppose p* = 0, then F'(0) > 0 (by Lemma A.2). Consider

P() = max ch(v) - R(p) - Hv—p)

vk O J(u,v)

8Define i, 11 = p* and fi; = p** for consistency.

9Since F;_4 always crosses F from above, when indifference between choosing F;_1 and F, the posterior
corresponding to F;_; must be smaller.
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Define, u** = inf{y|‘7(y) > Fl(y)}. By Assumption 1.3, lim,,_,o|H'(1)| = o, then there

exists d s.t. Vu < 4, Vv > Ky ]SEJEVF)

< inf F. Therefore u** > 6 > 0. This step refers to

Figure A.6-4.

e Step 3: Solve for V to the right of y**. For all 4® > u** such that:

_ O\ _ pl— (4,0 0
F(e) = max S 0D~ FO9) — P ()0 = ) A19)

vk P J(ue,v)
Let m be the index of optimal action. Solve for V;, with initial condition yg = u°, Vg =
F(u°),V§ = F'=(p°). ¥ Then take same steps in Step 2 and solve for jiy and Vj_;
sequentially until V,, first hits F. This step refers to Figure A.6-4,5. Now suppose Vy,

first hits F(p) at some point y°° (can potentially be y), define:

F(u) ifuy <u®oru>pu>
VMO(P‘) =
Vi) if e [, i

By Lemma A.3, V), is piecewise smooth are pasted smoothly. So V), is a smooth func-
tion on [y, ¢”"]. Optimal posterior vy (j) is smoothly decreasing on each (jij1, jix) and

jumps down at each jix. By Lemma B.18 and our construction, Vu € [u®, u®°]:

Vi) = ma ¢ (V) = Vie () = Ve () (v — 1) (A18)

Let () be the set of all such y’s.

19By definition of u**, ugy is bounded away from {0,1} and Equation (A.19) implies conditions in
Lemma A .3 are satisfied.

UDefine 7,41 = #° and fi,;, = u°® for consistency.
Hm+ H Hmy = H Yy
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e Step 4: Define:

Vi (1) if pep*,pw]

Vi) = _ N (A.20)
sup{Vie ()} ifp>p
ueeQ)

In the algorithm, I only discussed the case y* < 1 and constructed the value function on
the right of u*. On the left of y*, V can be defined using a totally symmetric argument by
referring to Lemma A.3’ and Lemma B.18'.

Smoothness:
I need to verify that V(u) that defined as Equation (A.20) is a C() smooth function on
[0,1]. This claim is purely for technical use (for example, the validity of using V' and
V"). Irelegate this technical proof to Appendix B.2.1 in Lemmas B.11, B.12, B.13 and B.14.
In addition, it is shown in Appendix B.2.1 that there exists a set of y¢ such that on each
interval when V(i) > F(u), V() is defined as one V.

Unimprovability:

Finally, I prove unimprovability of V().

e Step 1: I first show that V() solves the following problem:

Vi) = { ), g B0 V0V 010 *0)

v =y wheny > p*

v <y when p < p*

Equation (P-C) is the maximization problem over all confirmatory evidence seeking
with immediate decision making upon arrival of signals. Equation (P-C) is implied by
Equation (A.18) for i € E. So it is sufficient to prove Equation (P-C) for u € E€. Suppose
for the sake of contradictoin that there exists y > p* s.t. Equation (P-C) is violated. Let
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F(u) = F(p). Then it is equivalently stating that:

¢ F(v) — R(p) — F(v—p)
vk'>k P J(u,v)

> F(u)

Consider H (the intercection of Fy and F;_1). By Lemma B.11, there exists I s.t. M € I
At by = sup Iy, U(by) < Fi(by). Therefore, since U(u) is continuous, by intermediate
value theorem there exists largest yi’ between y, and p s.t .U(y') = F(y'). Then Equa-
tion (A.19) is satisfied at y’ so consider V.. Sicne V(i) < V(u) = Fi(p), there exists
Whe (Wop) st Vip(u') < B(p") and V,, (4") < Fe(u"). Therefore U(u") > F(p") im-
plies V,,(u") > F ("), contradiction. Apply a symmetric argument to y < p*, I prove

Equation (P-C).

Step 2: 1 show that V(u) solves the following problem:

v =y wheny > p*

v<puwhenpy < p*

Equation (P-D) is the maximization problem over all confirmatory learning strategies.
It has less constraint than Equation (P-C): when a signal arrives and posterior belief v
is realized, the DM is allowed to continue experimentation instead of being forced to

take an action.

*

I only show the case p > p* and a totally symmetric argument applies to p < p*.

Suppose Equation (P-C) is violated at y, then there exists v’ such that:

~ ay SEnW) V) = VI (v —p) e V) = V() = Vi) (V' — p)
V0= B J(u,v) P J(uv) A2

V?Vr
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Let V = V(). Suppose the maximizer is v, m. Optimality implies first order conditions

Equation (A.27) and Equation (A.26):

o gx”/H’(u) — V() + §1~/H’(y)

~

(Futv)+ EVHW)) = (Vo + EVHG) = (Vi + EvinH o - )

We define L(V, A, u)(v) and G(V, A)(u) as:

LIV, A w)(v) = (V(i) + AH(p)) + (V' () + AH () (v — )

G(V,\)(v) = V(v) + AH(v)

(A.22)

Then L is a linear function of v and G(F,, %)17)(1/) is a strictly concave smooth function

of v. Consider:

L(V, gf/, y) (v) — G(Fm,

a

V)W)
Equation (A.27) implies that it attains minimum 0 at v. For any m’ other than m,

L(V,

a D

V,n) )= G(Ew, EV) )
is convex and weakly larger than zero. However by Equation (A.21):

L(V,

o

V,y) W) — G(V,

oW =)

V)W) = =(ve) = Vi) =V =) = EVIG)) <0

Therefore L (V, %)17, y) (v)-G (V, 5‘7) (v) has strictly negative minimum. Suppose it’s

minimized at i (§ > p since L(V, A, u)(u) = G(V,A)(u)). Then FOC is a necessary
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condition:
V() + EVH (u) = V(i) + EVH ()
Consider:
L(v.2v, i) (@) - G(Ea BV) @)
~L(V.2V, 1) (i) ~ G (Fu, £V ) (v()
+ V(@) = V() + EVHGE - H) = (V) + EVE G ) (- )

In the first equality I used Equation (A.27) at ji. In first inequality I used suboptimality

of ji at u. However for m’ and v(ji) being optimizer at ji:

Contradiction. Therefore, I proved Equation (P-D).

e Step 3: I show that V satisfies Equation (A.4), which is less restrictive than Equation (P-
D) by allowing 1) diffusion experiments. 2) evidience seeking of all possible posteriors

instead of just confirmatory evidence.

First, since V is smoothly increasing and has a piecewise differentiable optimizer v,
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envelope theorem implies:

oy =V () (v —p) —H"(u) (v —p)
I (T

_ CV—H " P "
——EN%W(VOU+;WWH(W)>0

— V() + Vv H (1) <0

Therefore, allocating to diffusion experiment is strictly suboptimal. Moreover, consider:

V() =max S YW =V = VI = )

S J(1,v)
L " Or—pqm
== o (Ve BV H ()

V= (u) is by definition the utiltiy gain from searching contradictive evidence, given
value function V(u). By definition of u*, V~(u*) = V(y*) and whenever V(u) = V—(u)
V~'(u) < 0. Therefore, V—(u) can never cross V(u) from below — V~(y) is lower than
V(u) and V(u) is unimprovable with contraditive evidence. That is to say:
1
PV (1) = max{ pF (1) max p(V (v) = V() = V() = ) + 3V (e

v,p,0

s.t.pJ(u,v) + %H”(y)az <c

To sum up, I construct a policy function v(y) and value function V(u) solving Equa-
tion (A.4). Now consider the four properties in Theorem 1.2. First, by my construction
algorithm, in the case yu* € {0,1}, I can replace y* with u** € (0,1). Therefore WLOG
u* € (0,1). Second, E = {pe[0,1]|V(u) > F(u)} is a union of disjoint open intervals
E = | In. By my construction, V(y) = Vym(p)|uer,- On each Ly, vym(p) is sctrictly de-
creasing and jumps down at finite ji;’s. Finally, uniqueness argument in Lemma A.3
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implies that v is uniquely determined by FOC. Therefore, except for those discountinous
points of v, v is uniquely defined. Number of such discontinuous points is countable,

thus of zero measure. [ |

Lemma A.2. Define V* and V=

B Enu(v)
Vi(p) = S 14 BT (u,v)
P01 o Fal®)

There exists u* € [0,1] s.t. V5 (u) = V= (u) Yu = p*; VI (u) < V= (u) Y < p*,

Proof. I define function U, and U,, as follows:

+ _ Fu(v)
Uy, (1) = M TP o) 2 v)
Uy () = max 9

vs<p 1+ %)](Vrv)

First of all, I'solve U,};, U,, on interior u € (0, 1). Since Fy,(p) is a linear function, J(y,v) = 0
is smooth, the objective function is a continuous function on compact domain. Therefore
both maximization operators are well defined. Existence is already guaranteed, therefore

I can refer to first order condition to characterize the maximizer:

FOC: F,(1+ g J(,v)) + En()E (H'(v) = H'()) = 0 (A.23)

o

SOC : gp,; (H'(v) - H' () (A.24)

First discuss solving for v > u. Since (1+£]) > 0, H” < 0, H'(v) — H'(4) < 0 and
inequality is strict when v > u. Therefore, if F), < 0, FOC being held will imply SOC
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being strictly positive at v > p. So VF,, < 0, optimal v is a corner solution. Moreover:

Fn (1)
1+ 8](pu, p)

Fu(1)

= Fu(p) > Fu(1) > m

So U, (y) = Fy(p). If F), = 0, then Vv > u:

Fn(p)

. . Fu(v)
m = Fu(p) = En(v) =

1+ E](pv)
Therefore VF,, < 0, U,; (1) = Fu(n). Then consider the case F,, > 0. It can be easily
verified that SOC is strictly negative when FOC holds and v > p. Therefore solution of
FOC characterizes maximizer. Consider:

hm%ﬂ+§ﬂMWH$Mw

V—u

(H'(v) ~ H'(4)) = Ejy > 0

Al ol

gﬂau+%Wm»+m@)uﬂw_Hw»:_w

Therefore be intermediate value theorem a unique solution v € (y,1) exists by solving
FOC. Since FOC is a smooth function of u, v and SOC is strictly negative, implicit function
theorem implies v being a smooth function of u. This is sufficient to apply envelope
theorem:

d o+

_um (7/[) =

En()(H"(1)(v — 1)) _
dp

(1+EJ(p,v))?

Moreover, Equation (A.23) is strictly positive when v = p. This implies U}, (#) > Fun(p)

when F), > 0.

New consider limit of U,; when u — 0,1. When u — 1, U,} () < max,>y, Fu(v) = F(1).
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When u — 0, consider FOC Equation (A.23):

;1}35 F (1 + ‘C—) T(1, v)) + Fy (v)%)(H’(W — H'(p))
- ]141%5’” (1 + gj(v, y)) + Fm(ﬂ)g(H'(V) — H'(p))

=Fy (14 £70,0)) + 1im B (o) (' (v) ~ H' () = o0

Therefore, when y — 0, optimal v — 0. Therefore HFB"’]((V; ” < Fu(v) — F4(0). To conclude,

U, (1) = Eu(u) when p = 0,1. Let i1 be the first F/; > 0 (not necessarily exists). Let:

U™ (u) = max U,, (1)

m=m

Then U™ (p) is a strictly increasing function when 7 exists. Symmetrically I can define m

to be last F), < 0 and:

U~ (p) =maxU,, (i)

m<m
There are three cases:

e Cuase 1: when F is not monotonic, then both U™ and U~ exists. Moreover, F(0) >
F#(0) and F(1) > F(1). Therefore, U (0) < U~ (0) and U* (1) > U~ (1). There must

exists unique p* € (0,1) s.t. U (p*) = U~ (u*).
e Case 2: when F’ > 0, then define pu* = 0.

e Case 3: when F’ < 0, then define p* = 1.

Finally, define V:

V() = max{F(u), U*(u)}
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V™ (u) = max{F(u), U ()}

V(p) = max{V*(p), V" (u)}

Given our construction, u* always exists and satisfies the conditions in Lemma A.2.

Lemma A.3. Assume py > pu*, F, = 0, Vo, Vj = 0 satisfies:

V(uo) = Vo = Ful(po)
_ ¢ Bu(v) = Vo — Vi(v — po)
v=po 0 ](,MOI V)

¢ Bn(v) = V() = V() (v — p) (A.25)

and initial condition V(ug) = Vo, V' (o) = V5. Maximizer v(p) is CW) and strictly decreasing
on {p|V(p) > Fu(p)}-

Proof. Istart from deriving the FOC and SOC for Equation (A.25):

B = V) Ea) = V) = VI = 1) ey gy
FOC: ==+ TR (H'(v) - H' (1)) =0

H'@W)—H'(p) (B = V(@) | Bn() = V@) =V @)W —p) s v
0 ) ( ) (v () - H(x ))>
T (Bal) = V() = V() = ) <0

If feasibility is imposed:

V) = S0 =V = VG v = ) (A.26)
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FOC and SOC reduces to:
FOC: F!, — V() + %)V(y)(H’(V) ~H'(4)) =0 (A.27)
SOC: gH”(v)V(y) <0 (A.28)

Let us proceed as follows. I use FOC and feasiblity to derive an ODE system with in-
tial value defined by V{, V. Then I prove that the solution V must be strictly positive.
Therefore, SOC is strict at the point where FOC is satisfied, the solution must be a lo-
cal maximizer. Moreover, since H'(v) — H'(u) < 0, when FOC is negative, SOC must
be strictly negative, then FOC can cross zero only from above and hence the solution to

FOC is unique. Therefore the solution I get from the ODE system is the maximizer in

Equation (A.25).

( . Eu(v) = V'(u)(v —p)
Equation (A.26) — V(u) =

< quation (A.26) (1) 15 2, v)

| Equation (A.27) = V'(u) = F}, + ‘(E)V(y)(H'(v) ~ H'(p))

( E,
V(]/l) = p;éu)

= . PV'y() )(H'(v) — H' () (A.29)
, , SFu(u H'(v)— H'(u
|V =B T

Consistency of Equation (A.29) implies that v = v(u) is characterized by the following
ODE:

0 Fu(p) 0 Fuw) . . CE.(w)(H(v)—H(p)

T Ly T R TG B T L R W oo (A.30)
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Simplitying Equation (A.30):

B S0 0) - H () | S0 H' ) —0),
—eJv,p) (1-EJ(, )) (1-LJ(v,p))
:Féﬁ (=FyJ (v, u) + F(u)(H'(v) — H' (1))
1-8J(v, )

(1

— Fu(p)(H'(v) — H'(4)) + Fu
= (=FuJ (v, 1) + B () (H'(v) = H'())) (1 = p J(v, 1))

= En()H"(vV)(p —v)v = —F, ] (v, 1)1 = =] (v, Pl)) —](V/V)Fm(ﬂ)(H'(V)—H'(M))

Fu(1— (v, 1)) + EEn(p) (H'(v) — H' (1)
En(p)H"(v)(v — )

VH"(v)(p = v)v

P
c
H'

— v =J(v,u)

Since I want to solve for Vj on [ug, 1], I solve for vy at yg as the initial condition of ODE
for v. The technical details proving the existence of solution to the ODE is relegated to
Lemma B.16, which checks standard conditions and invokes the Picard-Lindelof theorem.

Lemma B.16 requires an inequality condition and I show it here:

The FOC characterizing v is Equation (A.29):

(B = V3) (1= G0 ) ) + o) (H () = H () =0
= F (14 ET0r0,v0) ) + EFu(0) (H' (v0) — H'()) = V(1= L (w0, )

= Fupo) (Ep (1+ £ (w0, v0) ) + EFu(vo) (H'(v0) = H'(1))) = ViFu(po) (1 = £ vo, o))

Fn(po)
1—2](vo,po)

Then Lemma B.16 guarantees existence of unique v(y), and v(y) is continuously decreas-

Since Vp = > 0, LHS is weakly positive. This satisifes the condition in Lemma B.16.

ing from po until it hits v = u. Suppose v(p) hits v = u at i, < 1, define V(u) as
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following:

Fin (1)
Vi) =41 BT (), w)

if € [Ho, im)
Fu () if p € [fim, 1]
Then I prove the properies of V:

1. V is by construction smooth except for at . When yu — i, v(i) — pu. Therefore

J(v,u) — 0. This implies V() — Fy(p). So V is continuous.

2. By Equation (A.29), when u € [uo, fim):

V'(u) = Fy, +
When y — fm, H(w(p)) — H(u) — 0, Jv(p),u) — 0. Thus V'(u) — F,,. SoV' €
Cluo, 1] = Ve CW[ug,1].
3. Rewrite Equation (A.29) on [pg, 1]:

B (L4 8] (1)) + Fu(v)(H'(v) - H'(1))
—EJ(v, )

V'(n) (A.31)

According to proof of Lemma B.16, V'(y) > 0 Yu € (uo,1]. Moreover since V) > 0,

Ve (po, 1] V(p) > 0.
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B.1 Proofs in Section 1.5
This section contains formal proofs for theorems and lemmas in Section 1.5.
B.1.1 Useful lemmas

I first establish a useful Lemma B.1. Lemma B.1 is an analog to three key theorems on
mutual information proved in Cover and Thomas (2012), generalizing the log-sum struc-

ture in mutual information to any function while keeping the key posterior separabiltiy.
B.1.1.1 Information theory resutls
Lemma B.1. Information measure I1(S; X|u) satisfies the following properties:
1. Markov property: If X — S — T, then I(T; X|S) = 0.
2. Linear additivity: 1(S, T, X|u) = I(S; X|u) + E[I(T; X|S, u)].
3. Information processing inequality: If X — S — T, then I(T; X|u) < I(S; X|n).
Proof.

1. Markov property: Suppose the signal realization of S, T are denoted by s, t. Then:

[(T; X|S) = Es[H(p(x[s)) — E[H(p(x]t,5))ls]]

= Es[H(u(x|s)) — E:[H(u(x[s))]s]]
~0

First equality is by definition of I. Second equality is by 7 LX'|S, then conditional on

s, t will not shift belief of X at all.

2. Chain rule: Suppose the signal realization of S, T are denoted by s, t. Then:

IS, T;X|p) = Ess[H(u) = H(p(x[s, 1))]

= Es[H(p) — H(u(x[s)) + (H(p(xls)) — H(pu(xs, )))]
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= (H(u) — Es[H(p(x[s))]) + (Es[H(p(x[s)) — E¢[H(p(x]s, t))Is]])
= I(S; X|u) + E[I(T; X|S, u)]

First equality is by definition. Second equality is trivial. Third equality is by chain rule

of conditional expectation.

3. Information processing inequality:

L(S; X[u) = 1(S,T; X|p) = I(T; X|S, p)
=I(S,T;X|u)
=I(T; X|u)+ I(S; X|T, n)
= I(T; X|p)

First and third equalities are from chain rule. Second equality is from Markov property.

B.1.1.2  Concavification theorem

Theorem B.1 (Concavification). Let X be a finite state space, V € C(AX), y € AX. H € C(AX)
is non-negative. f : R™ — R* continuous, increasing and convex. Then there exists P s.t.

Isupp(P)| < 2|X] solving:

sup Ep[V(v)] — f(H(u) — Ep[H(v)]) (B.1)
PeA2X
s.t. Ep[v] = u

Let I* = H(u) — Ep[H(v)], there exists A € df (I*) such that:

co(V +AH)(p) = Ep[(V + AH) ()]
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Proof. Theorem B.1 is a corollary of Lemma 4.1 and Theorem 4.4 of Chapter 4.

Support size: since objective function is monototic in (Ep[V], Ep[H]), optimal solution
must be on the boudary of set {(Ep[V], Ep[H])|Ep[v] = p#}. Lemma 4.1 implies that there
exists P solving Equation (B.1) and |supp(P)| < 2|X|.

Concavification: Suppose f(I) = oo <= [ > I. Since v — f(H(u) — h) is a concave
function in (v, /), and H(u) —h < I is a linear constraint, we can apply Theorem 4.4 of

Chapter 4: let V* be maximum of Equation (B.1), there exists A s.t.

-

P e arg max Ep[AV —AyH]|

PeA?(x)
) Eplv]=p
(Ep[V],I") earg min Ajv— Ayl
o D=V

\

Then by Kuhn-Tucker condition (generalized to subgradients), there exists 7,y > 0 such

that:

)\1217

Ay e —ndf(I") =

If 7 = 0, then v > 0 and P maximizes Ep[yH], then optimal P is uninformative and I* = 0,
contradiction. So 7 > 0. If v = 0, then we can normalize (A1, —A3) to (1,A) and A € 0f (I*).
If v > 0, the complementary slackness condition implies that I* = I and A?/5 € Of(I*).
So we can also normalize (A1, —A;) to (1, A) and A € 0f (I¥). |

B.1.1.3 Decomposition of information

In this section, I prove two important lemmas. Lemmas B.2 and B.3 shows that any
static information structure can be decomposed into a continuous time belief process on

unit time interval such that the flow reduction of informativeness is constant.
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Lemma B.2. Vu € A(X), VY € A*(X), {t(v)dv = u and |r| is finite. Then there exists
probability space (), F,IP) and stochastic process (i) s.t.:

1. {pyy is a Markovian martingale.

2. uo =W, 41 ~ 7T
3. W, ty € [0,1]and ty < tp, E[H(ut,) — H(ps,)|F1] = (t2 — t1)E[H(pto) — H(p1)]-

Proof. Define 7t(v) as (v;, m;)N ;. Let M = ¥, m;H(v;) — H(). Consider the space A(N).
Let x; = (0,---,0,1,0,---,0), which is an N dimensional vector with only ith element
being 1. Then {xi}izil is an orthogonal normal base of A(N). Let x;, = (711, - -+, 7ty). Then
it is easy to see that x, € A(N). VA; € [0,1], let x; \, = Ajxy + (1 — A;)x; € A(N).

Define map f : A(N) — A(X) as f(x) = Z;il xjvj (f is a linear map). Then consider

=] xz A (H(f(xi0,)) — H(vj)) (B.2)

Now consider properties of Q. First of all, since H is continuous and f is linear, Q;(A;) is

continuous in A;. Second, suppose A} > A; and A;, = aA; + (1 — a)A’, consider:

Qi(Aia) —aQi(A}) — (1 —a)Qi(A;)
=H(f(xip,,)) — “H(f(xi,A,-)) — (1= a)H(f(x; 1))
= (), — e, — (- ) lA,)H(V]')
=H(f(xip,,)) —aH(f(xip,)) = (L= a)H(f (x; 1))
=H(f(lxxm +(1-a) ]N)) —aH(f(xi0,)) — (1 =) H(f (x; 1)
=H(af (xﬁ,Al.) +(1—a)f (xf,A;)) —aH(f(xi,)) — (1 —a)H(f (x;1,))

=0

The first equality is by definition of Q;. The second and third equalities is from linearity
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of x; 5, in A;. The forth equality is from linearity of f. The last equality is from concavity
of H. Hence, Q;(A;) is concave in A;. It is easy to verify that when A; = 0, x; ,, = x; and
f(xip,) =vis0Q;(0) =0. When A; =1, x5, = xu and f(x;,) = pso Qi(1) = X mj(H(p) —
H(vj)) = M. Since Q; is concave, the only possibility is that Q; is first increasing then
decreasing. Since Q; is a continuous function, V¢ € [0,1], there exists A; in increasing

region of Q; s.t.:

Qi(Ai(t) = (1-t)M

Since (1 — t)M is strictly decreasing M, A;(t) is strictly decreasing in M. When t € (0, 1],
Ai(t) € [0,1). Let f(x;,)) = pi(t). Define:

It is easy to verify that:

Z 7Tz ,uz :f
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Now for any t,t' € (0,1], and ' > ¢, define:

Alftz; A; D ) ifi
GO = A 1A
O s wr
It is easy to verify that:
St ) =4 (1= + Ty S )
S 02300,
AT i+ (- A + MDA O
=f(Ai(B)xy + (1= Ai(1))x:)
=pi(t)
and:

; 1 1—A;(t i Aj(t) = Aj(F) 7Tj /
St =5 (1 I TR = ;},@m(t))

2 T=A;(0)
1 T 7T T '

= : + — 7T (t

s (e (S Sim) )

1—/7\Tii(t’) / 1—7;;(”)

= o+ t) - o

2TAm 2TAm
=;(t)

(BA4)
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Now we verify the dynamic consistency of ;. Vr > s > t:

Zﬂ, slpi (£)) 71 (7| (5))

—Z A sl 0) + 1= ()
i} <t> M) 1= M) M) — M) 1-AB1-As) (B
RS R v v e R e v s v
w) Air) 1 Ad(h)
R O B0
(rlp )

The second equality is from Equation (B.4). Now define the stochastic process (). First,
I complete the definition of y;(t) and 7t;(t). Let u(0) = p, 7r;(t|u(0)) = m;(t). Vt > 1, define
ui(t) = vi, mi(tpi(1)) = 1,=;. Define S; = {p;(t)|t € (0,1]}. Since v; are distinct, S; are
disjoint sets. Since A;(t) is strictly decreasing, y;(t) is a one-to-one map from (0,1] to S;.

Let S = (JS;) U{p}. Define: T: S — [0, 1]:

wiH~H(v) ifpes;

0 ifv=u

T(v) =

Now we can define the Markov transition kernel of (y;): Vx,y € S, t € RY,

Zly pi(T(x)+1) 7i(T(x) + t|x)

We verify the Chapman-Kolmogorov equation: Vx,z € S, t,s € R*:

o If T(x) +t+s <1, then:

JPt(x, Y)Ps(y,z)dy =) Loy ey (r() +4)) ) T (T(X) + H2) 75 (T(p(T(x) + 1)) + s[pj(T(x) + 1))
i,j
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—le i)+ +9) TG (T(X) + Hx) 753 (T(x) + £+ sl (T(x) + 1))
le wi(T(x)+s+t) nz( (x)+t+s|x)

:Pf+5(x/ Z)

The second equality is from definition of 7. The third equality is from Equation (B.5).
o If T(x)+t =1, then:

fPt(x,y)Ps (y,z)dy =)’ L (e () ) +9) T (T() + H) 70 (T (T (%) + 1)) + 8] (T(x) + 1))
i

= Loy i(1x) (1 + s[v))
ij

= Z 1oy, 7i(1])
—le pi(T(x)+t+s) 7i(T(x) + t + s|x)
:Pt+s(xl Z)
e If T(x) = 1, then the C-K equation is trivially satisfied:
fpt(x/ ]/)Ps (]// Z)d]/ = Z lz=vi1v,-=v]~1vj=x =1,y = Prys(x, 2)
i
e Now for any general case 7(x) < 1 and 7(x) +t+s > 1, we can add 1, and apply

the C-K equation in the last two cases jointly to establish the C-K equation in the

general case.

Since we verified the C-K equation for Markov transition kernel P;(-, -), it is easy to see
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that V¢4, ..., t,, the measure given by:

Py, (X1, .00, 20) = Py (1, x1) H Pti+1_ti<xi/ Xit1)

satisfies the conditions in Daniell-Kolmogorov theorem (see Dellacherie and Meyer (1979)).
Then, a simple corollary of Daniell-Kolmogorov theorem states that there exists a proba-
bility space (Q, F, IP) and stochastic process {j) such that any finite dimensional marginal
distribution of {y;) is given by P. Now Equation (B.3) implies (y;) is a martingale and the

C-K equation implies that (y;) is Markovian.

What remains to be verified is the third property of Lemma B.3. Vtj,t, € [0,1] and

tl < t2/ vl/ltl € {]“ll(tl)}/

E[H(Vil) - H(sz)u:fl] :H(th) - E[H(Vtz)wfl]

=H(put,) — JPtz—tl (tty, wey)H(pe,)dy

H(p,) Zm T(ty) + t2 — b1 ey ) H(pi(T(pie,) + 2 — 1))

H(pyy) — Y miltal e ) H(pui(t2))

i

=H(us,) 27771 bl ) (Z 7T (A]pi(£2)) ))
Zﬂi(tzﬂtl)( (pi(t2)) ZTC] 1pi(t2)) H(v )>
( ]’ltl ZTL’] 1|‘Mt1 ) Zﬂz t2|ﬂt1 Ql( ( ))

=(1-t)M— 2 7i(t2|pe ) (1 — t2) M

=(t2 — t1)(H(po) — E[H(p1)])
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Lemma B.3. Yy € A(X), © € A*(X) and §7t(v)dv = . Then there exists probability space
(Q), F,IP) and stochastic process (yy) s.t.:

1. {pyy is a martingale.

2. uo =W, 41 ~ 7T
3.V, tr € [0,1] and t1 < tp, E[H(pt,) — H(pt,)|Fr, ] = (t2 — t1)E[H(po) — H(p1)]-

Proof. If |Supp(7)| is finite, the Lemma B.3 is identical to Lemma B.2 and the proof
is done. Now I discuss the general case where Supp(7) is an infinite set. Let M =
§(v)(H(p) = H(v))dv.

Step 1. Discretizing A(X). Since H(yu) is a continuous function on A(X), by Heine-
Cantor theorem H(y) is uniformly continuous. Pick g, = 2Mk and let J; be corresponding
continuity parameter for . Discretize A(X) into a set of nested grids with grid size

di < 6. Let DX be each dj-cube containing p. Then Vu € A(X), V7' € A(D’;l):
| e - ) <

Step 2. Index all dq-cubes as {D1 } L Vi; € I, define:
el

I

( 1 SveDl.llvn(v)dv
My §,ept (v)dv
1,001 (V) M;, = f”z’ll (v)(H () = H(v))dv
\ 7k (v) = <Py and . 1 1
11 SUEDl 7T(1/)d1/ M = Z qll (H(;’l) - H(]/l11>>
i1
qlll = LeDl t(v)dv
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It is easy to verify that:

gt =n

1 _ 1
Jnilvdv = 1,

| 2297, (v) = 7(v)

1
Z\/Il'1 < 81

M'+ > gl Mj = M

Now consider distribution (q}l, y}l ). Letx;, = (0,...,0,1,0,...,0) where only i; th element
is 1. Then {x; } is an orthogonal normal base of A(I;). Let x, = (41,..., q}l). Then it is
easy to see than x, € A(N). VA € [0,1], define x;, ) = Ax, + (1 —A)x;,.

Define linear map f : A(l;) — A(X) as f(x) = ZZ 1x11pt111 (x is i;th coordinate of

vector x). Then consider:
Qzl Z xl A xl1,)\)) - H(V]l) + M]l)

Now consider properties of Q;,. First of all, since H is continuous and f is linear, Q; (A)
is continuous in A. Second, Q; (0) = Mil1 and Q; (1) = M. Since M > & > Mill, by

intermediate value theorem there exists A; s.t. Q; (A;;) = 1. Now define:

le
i = flxia,)
i ~ N N
B0 M%l - j L () (HIE,) ~ Hv)dv

! and

2?:1 = = S (H0 - H)
Z xll Ay ]

~1
) qi, =
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It is easy to verify that:

D, = 1
fﬁ}lvdVZﬁill
9
2,07, (V) = 7(v)
~ M ~y M
1_M > M
(Ml =Z, M =2

Step 3. Recursively apply step 2. Suppose I have defined a discrete time stochastic

process forie {0,...

Noticing that I have verified that (y, (qZ P‘zl)

,k} satisfying u® = u, u* ~ 7t and:

r‘Supp(y") | <L<owoVi<k
E_yi]-"j] — Wi <i
T . i=1 ap (B.6)
E|H() — H(u') || = Zz—
[k NS M
|E|HH — HG) |7 | = 5

) we find in step one satisfies this con-

dition for k = 1. Now we prove that we can construct a discrete time stochastic process

with k + 1. Define a new process (') exactly as in the assumption for i < k. Now for any

sample path in F_;, applying the procedure in step 2 to prior pF~!

and distribution of
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(1%). Then I get (ql , yl , ’k) satisfying:

(St =

fﬁm=%

<Zqzk AL (v) ~ | Fin

| @) - Hepar = 3 = 2k (HOE - HGE),

\ I

(B.7)

In the new process, let u*|F_; ~ (rﬂ‘k, ﬁi‘k) and 1 Fp_y, ﬁi‘k ~ ﬁf‘k . Now let us verify
Equation (B.6). The first condition is trivially satistied for i < k. If i = k, by construc-
tion the support size of ﬁi‘l is finite. The second condition is true for i = k, k + 1 given
Equation (B.7)’s first two properties. The third and forth condition are implied the last

k+1

condition of Equation (B.7). u° is still  and p**! ~ 77 by third property of Equation (B.7).

Hence, for any positive K, a (u');<k is well defined. And by construction, for any
K; < Kj, the two processes have exactly same path distribution for i < K. So except if I

need to explicitly use the distribution of X, otherwise I refer to (4') as an infinite process.

Step 4. Extension to continuous time. Let Ty = 1 — zl—k The main idea is to define
finite dimensional joint distribution at Ty’s according to (1*). Then within each interval

[Tk, Ti+1], the process is defined using Lemma B.2. For any sequence of iy, . .., i1, define:

P(ut, = pMpo, ... uz, ) = P(uk\ul = pr, VI < k)

Now for any ty,...,tx and ¢, ..., us, I define the joint distribution of the sample path.

First assume t; < 1. Then there exists a unique sequence of:

0T, bty Tryv1 - Ty b1ty Tyt - Thps by 41 B

J

" v~ "

Interval 1 Interval 2 Interval n
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Noticing that ¢, 11 can be same as T;_, and t;,, can be same as Tj 1. Now for any se-
quence of (p7, ), apply Lemma B.2 to prior ur,_ and distribution P(ur, alHos - Hr,)-
Lemma B.2 implies that there exists a space (Q, F,IP) and (ji;) s.t. jig = pr, and ji; ~
P(ut,,,) (the dependence of all terms on (y7, ) is omitted for notational simplicity). De-

fine:

P<ytm571+1’ ey ;’ltms/ VTIS-H ;’lOI ceey VTIS>

=P (yzls'(tms,1+1_Tls) = ]/ltms—l'H’ ey ]/lzls.(th_Tls) = ,ui'msl ,ul = PlTls-‘rl ]’10/ ey ;’lTls>

Now we can define the finite joint distribution of y,:

P(po, ..., me,)

n—1 ls41
= f H H P(urlpo, - 1ty |- P<ytms,. cor Mty BT |HO VT15+1> dur, ... pu1,
s=1 j=l+1

Noticing that by definition of (j), each P(ur;|po, ..., p1,_,) is a probability measure. By

definition of (i), each P <ths, R Y L N L Ry +1> is a joint probability mea-

sure. Therefore, P(yyo, . .., }it,) is a joint probability measure.

Now consider the case t; = 1. Since t;_; < 1, there must be some finite T; > f;_;.

There exists a unique sequence of:

O o Tll/tl e tm1, T11+1 U le/ tml-i-l e tﬂ’lzl T12+1 e ,tk,l, T1n+1 U tk

Interval 1 Interval 2

Pick K = I, + 2, for any given sequence of yo, ..., it, ,,, VS = A(X) define:

P(S‘yo,. . -fVTz,m) = ]P(VK €S yﬁl = ur, vVl < K)
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Now we can define the finite joint distribution of y,:

P(po, - .-, pt,)
n—1 ls 41

:JH H P(P‘T]‘WOI---/VTjﬂ) 'P(”“”S""’yt’”sﬂ’yTlsH“
s=1| \j=lL+1

P(S}‘uo, . -/P‘Tz,,+1>dP‘T1f- .. :uTln-H

Ho, .- ‘uTZsH)

Same as the previous case, each P(y1|po, . .., pr;_,) and P (Vtms/ e Bt BT

Ho,- - ‘uTls-s-l)

are joint probability measures. Moreover, P(S|uo, ..., it,_,) is a probability measure. Im-

portantly, by definition of (4*), for K; < K, P is defined consistently:

P(S|po, - - -, ur,—1) = JP(SWO/---/,uK—l)d]/lKlr---/,uK—l

Therefore, P(uo,...,us,) is a joint probability measure. To sum up, we defined a finite
dimensional joint probability measure satisfying the conditions in Daniell-Kolmogorov
theorem. Hence, there exists probability space (Q), F,IP) and (it )sc[0,1] satisfying all finite

distributions.

Step 5. Verify that () satisties Lemma B.3. yp = p is true by construction. VS < A(X):
P(S) = P(u' e S) = n(S)

So y1 ~ t. Now I verify property 1 and property 3. Vt1,t, € [0,1] and ¢, > £y,
e Case 1. If 3k s.t. Ty < t; < tp < Ty, then by construction of (p) in [T}, Tjy1], pt is

Markovian and E[pu¢,|Ft, | = Elpt, |t | = pe,-

E[H(pt,) — H(py,) ] =2%(tr — 1) E[H (uy,) — H(pigy.,, )| Fs,]
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=(th—t1)M
e Case 2. There exists a unique sequence of:
0---Tj,t1, Tj1 - Ti, b2, Then
By construction, for all path on [0, t1],

Elpal 1] =E[ [ |71,

el

fh]

=E[Wj+1 \ftl}

=Hy

and

H(py,) — E[H (1) | Fy ]
=H(u,) - E[H(VTJH)\EJ + E[H(VT]-H)’}_tl] — E[H(pt1,)|F4,]

. M
=d(Tj1—h) o5 + E[E[H(VT]-H) - H(utz)!ﬂm] Ftl]

~(Tj1 — )M + E| H(pr,,) — E| H(pg, )| Fr,,, | + E[H(p,,) = H(po)| P, |

M
:(T]'*‘l — tl)M + Elﬁ + E[H(,uTjJrz) - H(ll/ltZ)“FTj[+1j| ‘Ftli|
1 k-1 M
g 5 et - B
j+1
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k—1
1 M 1
:(1_F_tl)M+ E zlﬁ+<t2_1+?>M
j+1

—(tr — )M

Case 3. tp = 1. Then there exists k s.t Ty < t; < Tj1. By construction, for all path on

[0, tl]l

E[Vﬂffl] :E[E[Vt|ka+1]|Ft1]
:E[‘uTk+1|Ftl]

=Ky

and

H(pt,) — E[H(p1)|F1]

=H(p,) — E[H(pt,,)|Fe | + E[E[H(pteg,,) — H(p1) | Frp, || F ]

1 M
=(tr —t1)M

B.1.2  Proof of Lemma 1.2

Proof. I break the proof of Lemma 1.2 into three lemmas. Lemma B.4 shows that solving
Equation (1.5") is equivalent to solving Equation (B.8), which reduces the signal struc-
ture to be nested, and containing only action as direct signals and continuation signals.
Then Lemma B.5 shows that solving Equation (B.8) is equivalent to solving Equation (B.9),
which transforms signal process formulation to conditional distribution formulation. Then
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Lemma B.6 shows that solving functional equation Equation (B.10) is equivalent to solv-
ing sequential problem Equation (B.9) using the standard methodology. Finally, we apply
Theorem B.1 to Equation (B.10) to further reduce the dimensionality of strategy space to
Equation (1.6). [

Lemma B.4 (Reduction of redundency). (S*, T, A7) solves Equation (1.5") if and only if there
exists (S‘ tT, AT> solving :

o i e‘Pdt~t<P[T — (E[u(AL X)| T = £]) = P[T > t]E[Cdt (1(5’62{}5*—1)) 7 > t])
tT AT =0

-

So when T <t+1

st St={ A when T = t+1 (B.8)

St when T >t+1

\

What'’s more, the optimal utility level is same in Equation (1.5”) and Equation (B.8).

Proof. Suppose (S, T, A") is a feasible strategy to Equation (1.5"). I first show that it is
WLOO that the DM discards all information after taking an action: take given 7 and A,

let sp be a degenerate signal, define signal process St as:

g St whenT >t+1

so whenT <t

By definition, St = St conditional on T = t + 1. Therefore:

R R I(S85X[8Y L, 17<,) whenT >t+1
I(St;X|8t‘1,1T<t> - ( <)
0 when 7 <t

X — St — A" conditional on T = ¢
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1. By definition, when 7 > t + 1, St = St. So conditionalon T = t+1, X — St —
A+l implies & — St AL

2. When 81 = 50, 17<; = 1. When 81 # s

Prob (T > t\8t71> = Prob(T > HSTL X, T = t)Prob(’T > t!St’l,X>
= Prob(T > HSTL X, T = t)

— Prob(T > 181 X) _ Prob (T > ty§f—1)

which is independent to realization of X. So X — St=1 ., 17<;. The first equality

is by the law of total probability (conditional on 7 > t), X — S*! — 17 and

when St=1 # sy, Prob(7T = t) = 0. The second equality is by when St~1 = s,
Prob(7 >t) = 1.

3. Total information cost:

=E

The first

[ oo T-1
e P C, (1(Sh xS ] [ e P Cy (1(Sh x|S1,1 ]
e Ca(1(830I8 N Ara)) | < E| 3 e Ca (185418 1))
[ 71
Z e_Pdt-tht<I<St;X’8t—1’ 1T<t ] E[i —pdt: tC St X‘St 1 1T<t))]
| t=0 t=0

equality is by St being degenerate when t > 7. The second equality is from

St = St when T > t. Therefore, (3’ E AL T> is a feasible strategy dominating (S t AL T).

Now we define St:

-

So when7 <t+1
S'={ A whenT =t+1

St when 7 >t+1

\
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Initial information S is defined as a degenerate(uninformative) signal and induced be-
lief is the prior. St replaces the signal defined in St by a direct signal that suggests the
corresponding action profile in next period when 7 = t + 1. Verify that the St satisfies

the information processing constraints in Equation (1.5”) and improves utility:

1. When S8t e {so} | J A, it’s for sure that T < t. Otherwise, T > t. Therefore 17, is a
direct garbling of S*1. So X — St — 17,
2. When 7 = t, Al = S'=1. Therefore S — &1 — A implies X — S*1 — A!

conditional on 7 = t.

3. Information measure associated with (§ L T) when T > t:

(852877 > t)
Ay (AL XS T = t41) 4 1y (S5 XS T > £41)
=17=t+11<,4t“;2€y§f—1,7 — 1) 4 1T>t+11(§f;2€y§f—1,7 St 1)
<1T:t+11<§f;2(\§*—1,’r - 1) + 1T>t+11<§f;2(\§*—1,’r >t 4 1)

—1(85x|871,T > 1)

First equality is simply rewriting two possible cases of 7. Second equality is from def-
inition of S when 7 > t + 1. The inequality is from X — &' — A" conditional on
T = t+ 1. Therefore, <§ ET, .At> dominates the original solution in Equation (1.5") by
achieving same action profile at lower costs. (§ LT, .At) is a feasible solution to Equa-
tion (B.8). Therefore solving Equation (B.8) yields a weakly higher utility than Equa-
tion (1.5"). What remains to be proved is that any (5 LT, .Af> feasible in Equation (B.8)
can be dominated by some strategy feasible in Equation (1.5”). It’s not hard to see that
the strategy is feasible in Equation (1.5"). Finally we show that the two formulation gives
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same utility:

E[e_Pdt~TE AT )] Ze Pdttcd ( (gt’,X|§t—1’1T<t>>]

oe]

= e (BT = ) (E[u !, V)T = 1))~ E[Ca(1(85.218 172, ) )

0

....
Il

_ i e (PIT = F)(E[u( A, X)|T = t]) — P[T > E| Car (1( S X|S*)) ]T > 1])

0

H.
II

First equality is from rewriting the utility part conditional on decision time 7" = ¢. Second
equality is from rewriting the information cost part conditional on decision time 7 < t

and 7 > t. Therefore, Equation (1.5") is equivalent to Equation (B.8). [ |

Lemma B.5 (Tranformation of space). With Assumption A satisfied, (S!, T, AT') solves Equa-
tion (1.5") if and only if there exists p* (u'*1|u') : AX — A2X and g (') : AX — [0,1] solving:

[e¢]
sup Zef’d”f max Y u(a, %)) - |q¢(p")
(i) =0 AL\ T

— Cat (H(ﬂt) -

H(phpt (! )dut“>(1f7§(ut))] (B.9)
AX

t—1
U [Tr e A = gl (™))dp’ . .. u“) du'!
AX1 20
t t .t
s.t. J up'(plp')dpu = p
AX

What'’s more, the optimal utility level is same in Equation (1.5") and Equation (B.9).

Proof. Let p!(-|u') be the distribution of posteriors generated by S | 7ot §-1_gi1, Where p!

is posterior belief associated with signal 51, Let gt (u!) = P[T =St =81 T > t].

Now we can explicitly represent the distribution of S, T, A with the conditional distribu-
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tions. First, P[T = t] and P[T > t] can be calculated by integrating g (u'):

P[T — f] =E|P[T = 1$71]|

E[P|T =487, 7 > 0[p|T > 05|
=(1=qJ(°)P[T = [T > 0]

—(1 - g2(u*)E[P|T =T > 0,8°|
~(1- 200 [ [T =7 = 1,8 Oy

=(1—q8(y0))JP:T=tlT>1,SO P[T > 1T > 1,8 |p (s [1)dps

=(1- (1) JE | T =7 > 1,8 || (1= gt (u")p" (' 1)

=JHP (M) (1= g3 () gt (uhdpt ot

Similarly, we can get:

PIT > 1] - fﬂp (e = g (= g g

Then we can calculate the joint distribution of 7 and u':

-

P[T - J H Y ) (L= g e gl )

P[T > t,u' =] JHPT (M) (1= g5 (1) (1 = gé(p')dpt .t
_ =0
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Therefore:
d S TTeso P ) (1 — g (ue)dpt gl ()
T T pr e i) (1 — g2 (1) < Hdpl ..t
| SHTOP (™ ™) (1 — gZ () dpt (A — gh(ph))
T T pr (e ) (1 —q:(y )(1 —%(uf))dul...w
This implies:

P[T = fE[u(A’, 2)| 81, T = t]
Tas dp' ..oty
JAXmuaxZ a, %)) i} th 11:[p PO =i (u)as(u)dp .. udp

P[T > t]E[Cdt(I<St-X\St’1)> 7>t

:J Cdt( f H t+1 H—l‘]/l )d]x[t+1>
AX

j H e ) (= g )= g

To sum up, we showed that starting from S , T, A solving Equation (B.8), we can construct
p!, gt such that the value of Equation (B.8) is achieved in Equation (B.9). Next, we start
from (p',4') solving Equation (B.9). We can easily define 7: 7|, bt ™ B(gL(u")) condi-
tionally independent across all ¢, ji'. gt}fr>t’yt ~ pt(|ph), At‘fr:w{t = argmax 3 u(a, x;)p;.
Therefore, the previous calculation shows that the value of Equation (B.9) is also achieved
in Equation (B.8). Combining with the previous result, we conclude that Equation (B.8)
and Equation (B.9) are equivalent in the sense that (g T, A) solves Equation (B.8) if and

only if the corresponding (p', 4%) solves Equation (B.9). [ |

Lemma B.6 (Recursive representation). Vj;(y) is the optimal utility level solving Equation (B.9)
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given initial belief y if and only if Vi (u) satisfies the following functional equation:

Var (1) =ma><{maxE[u(a,x)lﬂ], sup e“"“f Var(w)p(u)dp — Cyy (H(u) -
a peA2X AX

H(v)p(v)dv) }

AX

(B.10)

s.t. f vp(v)dv = p
AX

Proof. We first derive the recursive representation of Equation (B.9). Consider the fol-

lowing functional equation:

Var(p) = sup qs(u>(mgxzu(a,xj)uj)
qs (1), p(:[1)

# (=) [ Vaplidy ~Ca(Ho0 - [ HOpwmr )|

AX

s.t. J vp(viu)dv = u
AX

Since RHS is linear in gs(y), it will be WLOG that we only consider boundary solution

gs(p) € {0,1}. Therefore, it is be exactly the same as Equation (B.10).

Now consider the equivalence between the sequential problem and the recursive prob-
lem. By assumption E[u(a, x)|11] is bounded above by max,  u(a, x). Therefore, e P E[u(a, x)|u]
is uniformly (for all choice of y, a) converging to zero when t — . Then V(p) is the so-

lution of Equation (B.9) by the standard theory of dynamic programming. u

B.1.3 Convergence

I first prove two useful lemmas. Lemma B.7 shows that optimal strategy has informa-
tiveness of signal in each period of same order of df. Lemma B.8 shows that there exists a
unique limit of Vj; in L, norm.
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B.1.3.1 Bounded flow cost

Lemma B.7 (Bounded flow cost). With Assumption 1.2 satisfied, there 3A € R™ s.t. I5, () <
Adt. Yy, dt. Where I3,(n) = > pi(H(u) — H(v;)) for optimal (p;, v;) in Equation (1.6)

Proof. V (p;,v;) which solves Equation (1.6), assume the value is Vy(y) and I},(n) =
2. pi(H(u) — H(v;)). Now for I < I}, consider a different information acquisition strategy:

e At prior p, use the following information structure:

V§ = v; with probability Ii*pi
dt

uy =y with probability 1 — -

dt

This information structure mixes uninformative signal into (p;, v;) with probability
1- Ii* > 0. It is Bayes plausible by definition.
dat
e At any posterior other than y, follow the original strategy.

Now let’s calculate the expected utility of this strategy. The utility gain from experimen-

tation is:

I I
V() =e P iV (vi) + e (1 - 1_*) V/()
dt dt
e—pdt L

— Y piV(v) — "V () :(2 PiV(Vi)) :

(1-e ) (1- %)
1- e—Pdt(l - IL*)

dt
I*
<maxuv - 2pdt (% — 1)

<maxo -
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The first inequality is from bounding V with maxv. The second inequality is from 1 —

e P < 20dt, e P < 1and 1 — - > 0. On the other hand, the discounted total cost of this

I
strategy is:
Cost () ~Cal1) + e+ (1 - 1 ) Cost () - 442
I3 1 — p—pdt (1 _ IL*)
dt
# * Cyu(l
= Cy(I3,(n)) — Cost'(u) =Cy(I3,) — ar(1) 1
Idt
> Cu(ry) — Sl

I

I

The inequality is from e *# < 1and 1 — 7= > 0. Therefore, by optimality of (p;,v;) at p,
dt

the new strategy I defined should not improve the expected utility:

e (3 piV(vi)) = V'(4) — (Car(I) — Cost'(w) = 0

— N V() — eV () — (Car(I,) — Cost' (1)) = 0

= maxuv- 29‘”(% — 1) > Cy (L) — M
I I (I o1
sl ) ge(B) of ) e
L)~ I \dt t T,
By Assumption 1.2, 3 A s.t. V4§ > A, there exists a € (0,1) s.t. aC(%) — C@%) >

2omaxv. Let I = «alj, then I < [}, and Equation (B.11) is violated. By contradiction,
I3, < Adt. [
B.1.3.2 Convergence of Vy

Lemma B.8. With Assumption A and Assumption 1.2 satisfied. Let V(i) = limsup, o Vi ().

Then lim [[Viy(1) = V(u)]|, = 0.

Proof. We break down the proof of Lemma Lemma B.8 into three steps:
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e Step 1: Prove thatif V; = limsup, | V% , then H Vi — Vf—;ﬁ — 0. First V4 is an increasing

o7
sequence, because every experimentation strategy associated with g—ﬁ can be replicated in
a problem with 2,‘11%: the DM can always split the experiment into two stages with equal
cost in two periods and get an identical distribution of posterior beliefs at the end of

second period (Lemma B.3). Moreover, V, is always bounded above by fully informed
1

utility. Then existence of V;; = lim V4 is guaranteed by monotonic convergence theorem.
n

Now let’s prove the convergence is uniform in sup norm, i.e. V% is a Cauchy sequence
under sup norm. Vm > n, Yo, consider the problem with g—n’i, consider the optimal ex-
perimentation (p;(p), vi(4)) and associated action rule Ar, information measure Ir, the
expected utility is:

Vi (o) = X e T3 Eyy | u(Ar, X) — C g (In) .

X
dt 2l dt
=Y N e P Ey [u(Agnir e, X) = Cy (lnoris) | (B12)

=0

The second equality is get by rewriting T = 2" "T’ + 1. Then take summation first over

T then over T’ (and relabel T’ to be T).

Now we construct an experimentation strategy for problem with %. We combine all ex-
periments between 2" "T and 2"~ "(T + 1), and get the joint distribution of posteriors.
We use this as the signal structure in each period T. Given this construction, at the end
of each 2"~ "T, the posterior distribution will be exactly same as that using original ex-
periment. Then we assign same action as before to each posterior. By construction this
action profile satisfies Markov property of information (i.e. signal realization is a suffi-
cient statistics for action). Therefore if we let U(pg) be the discounted expected utility
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associated with the aforementioned strategy at y:

Va (o)
=U(po)
T dt 2" -1 dt | 2" -1
=MlefTar [ N e P Ey [u(Agnryg, X)] — Epg Cy 0 Eppp[lon—n7se]
=0 | =0
0 27" n 1 [
T o T
>Z€ (3 Z e P2 Azm "T+T’X)]_E}40 CéiTtl Z I2m7”T+T
Tdt 27”77!_1 0 271’! n 1
>Z€_p om Z €_p27Ey0[M(A2m—nT+T, X)] — E}lo Z Sm— nCdé Zm_ IsznT_i_T)
=0
i 2m n 1 2m n 1
=Ze_PTT” Z e ‘02” A2m ”T+TIX)] — E,”O Z Cdt Izm "T+T) (813)
=0
om—n_1q om—n_1q
o Ze—PT 1 Eplu(Apn-nrie, X)] = Y€ oT 3 > EpoC g, (In-n77)
=0 =0
om—n_q »
e P3T Ze‘PT Z e PP Ey [u(Agm-nt iz, X))
=0
2t dt
n T I’I - A
b3 Ze Pia ZO e P2 Euo[czﬂ%(lzm—"ﬂrr)]
T=

>V%(y0) - <1 - e*pgf'tl> maxuov — <epzd*’t' - 1) maxv

=V (o) — <€p%’t’ — 6_92%> max v (B.14)
om

Where maxv is an upper bounded of total utility from action. The second and third
inequalities are from concavity of f. Equation (B.13) is obtained by definition of Cy(-) =
dt - C(3;). Noticing that Equation (B.13) is different from Equation (B.12) by only one term:
the discounting term in inner summation (e 7" instead of e #2"). This characterizes the

experiment design in problem zt In each period T, actions are all postponed to the end
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of period. Therefore they are discounted by at most 2, which is period length and costs

271/

are shifted to the beginning of each period. The next inequality is from e~ # < 1and
m > n. By Lemma 1.2, both utility gain and information cost are uniformly bounded by

dt _pdt
max v, then Hth —Vau <maxv<ep2" —e p2”> — 0whenn — 0.

Tt

Step 2: Prove that Vdt > 0, V; are identical, WLOG we can call it V(y). vdt,dt’ > 0, Vn,

< NI <4 < (N +1)2.

consider th Pick m large enough that there exists N s.t. 3; dt <
Consider optimal experimentation and action associated with & gk, we construct experi-
mentation strategy for problem with g—fn. For each time period T in the original problem,
split the experiment in period T into N + 1 periods and take any action at the end of
N + 1th period (apply Lemma B.3 recursively). In the new experiment strategy, the ef-
fective period length will increase from % to (N + 1)%—,5;. First, suppose the information
measure incurred in any period is I in problem with d—,ﬁ. Then per-period information

measure from the aforementioned strategy is Nﬂrl < 2" mdt 1. This leads to per-period

cost % -C <(I\,I+—2f;dt,> < %% -C <2;i ) Therefore, the total cost from experimentation will
increase by no more than M times and that will be bounded by + max v. Second, since
induced posterior distribution and action distribution are still the same, Markov property

still holds. Finally:

N
=— 2 (epTg’i — ePT(NH)%) Euolu(Ar, X)] - %maxv
2 e=PT _ 2 e PTIN+1) 5 1 max v
o PE _ pp(N+1) 5

= —maxv — 37 maxo

(1 . e—f’é’%) (1 _ e—p<N+1>§im’> N

! !
e—pNg—tm B e—p(N-i—l);% 1
= —maxvo — — maxvo
- (1—e P52 N

- dar’ dt 1
V%; (no) — Vﬁ% (no) = Z e PT(N+1) 57 Ey, [u(Ar, X)] — Z oPT 3 E}io[u(AT/ X)] — — maxo

= —maxvo
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dat’

—oN 5 /
e 2 dt 1
= —maxv——— (2" — 1) — — maxv

(1—eP2ar)2 N

d
e_pznil ar’ dt’
= —maxv —dt(epz”’ — 1) + T Aam—n—1
(1—ePar)2 dt -2

First inequality is from suboptimality of the constructed experiment and bound of cost

. . o —pTit - a’ o e
difference. Second inequality is from e ?T27 > ¢ PTN*127 = Third inequality is from
dt
on+1-+

% > N g—ﬁ;. Last inequality is from N ‘zi—f,: > Take m — oo on both side, we have
Vi (1o) = Var (po). Then take n — 0 on both side Vyy (pg) = Vi (po). Since this holds for
21’!

arbitrary dt, dt’ and o, we conclude that Vy; = V.

o Step 3: ||Vay — V|| — 0 when dt — 0. Fix any dt > 0, then Ve > 0, there exists N s.t.

Vn > N,

Var — VH < 5. Then given the proof in last part, for any dt’ < %, suppose there
on
exists N s.t. 2jli—f1 < Ndt' < % < (N + 1)dt, then the difference between V4 and V will
o7

be bounded by:

dt
eip 2714—1

(1—6_"2%)

n+1

/
T dt

/ 2
maxov (P — 1) +

Actually such N = [%] exists for any dt’ < %. Thus there exists ¢ s.t. Vdt' < §,

H Vip — Var
271

< %, then ||th/ — VH < E&.

B.1.3.3 Lemmas for Lemma 1.3

Lemma B.9. With Assumption A and Assumption 1.2 satisfied. Let V(u) = limg_q V(1)

Then V € L (pointwise Lipschitz function).

Proof. We prove by induction on dimensionality of . When u = Jy, supp(y) is single-
ton. So Lemma B.9 is trivially satisifed. Now it is sufficient to prove that V is pointwise
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Lipschitz at any interior u.

First, since V is the uniform limit of continuous Vi, V is continuous. Vu € AX°,

[V (1) =V ()|

> n.
ln—pull

suppose by contradiction V is not pointwise Lipschitz. Then 3 u, — u,

There are two possibilities:

° W > n. Now let v, be a point in 0AX s.t. py, 4, v, are three ordered points on
n

a straight line. Let p,,q, be such that p, + g, = 1, puptn + guvn = u. Pick any I s.t.
C(I) < oo We have:

% % V(pn)=V(p) — -
Vivn) = V(i) + == v — pll o V) =V v —pl

H () = H(vw) = 2= vy — | H(p) = H(va) = 2=20 v, —

I

Noticing that the only difference between LHS and RHS is that (HV)—;H(M) is replaced
with  on RHS. Since the nominator is bounded, y being interior suggesting ||v, — u|| is
strictly positive in the limit. Take n — c0 on RHS, we observe that RHS goes to infinity.

Therefore, there exists N s.t. ¥n > N, RHS is larger than 3p sup F + 2C(I).

V(vn) — V() + L=V0 ),
B s il > 3psup F +2C(I)
H(u)—H(w)—ﬁ‘;—yHHw il
(ltn = #lDV (vi) + v = pllV () = Ulptn = ] + lve = plDV () _ 3p 2C(I)
— > Poupr+
i — I H i) — |[vn — el Hin) + (lpin — el + [[vn — e VH () ~ T °F I
Pn (P‘n)‘i’qn (vn) — ( ) 3p 2C(I)
nd > —supF + ——
—puH(n) — quH(vn) + H(p) I P I
PV (Hn) +nV(va) = V(n) _ 3p 2C(I)
= on, v l) S R
_ — 3 I(pn, vy
— PV (un) + 40V ()~ V(0) > 2 sup I, vy ) + 20 (1) ool

_ _ I , Uy _
— V) + qu¥ () ~ 200 ) o ) (1428 1, 1)) + stap F T, vilp)

2C<[)M >

B v,
I (et ) - sup FE 1, val)

<l

— PuV (in) + qaV () —
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Last inequality comes from Vx > 0, 1+ 2x > ¢*. Now we have:

n,Vn — — (pn,vn|p) I
P ) G b u T () — 260 o (,”nfll/n“/‘)
— _ Invnp)

>V(p)+e 1 SUPP§1(Vann|V)

Since y,, are converging to y, limy,_.o I(pn, vu|pt) = 0. Then we can pick N sufficiently
large that Vn > N:

_ (#nvnlﬂ)
e P (

I(pn, vy = Iy, vy
PuVitn + qnV (vn)) — MC(I) > V() + wsupp

From now on, we keep n fixed. Then we pick dt = I(V”—IV”W) and dt,;, = gnﬁ m is chosen

sufficiently large that |V — V;,, |e§1 (pnvnlpt) < % sup F, then:

_I(unvnlp)
e P (

I(pn, vy dt
PnVat, () + qnVat,, (V) — dtC( L dt W)) > Ve (1) + stupF

We consider an experimentation strategy that divides information measure I(p,, Vi |1t)

into 2™ periods uniformly, and wait until the end of the 2™ periods to take action:

2m_1
Iy, v 2m
(Pant (n) + qnVay,, ( Vn Z e Tty ( = d:y)/ >
m

2'" 1
>3_p (Pant (Vn)"’ﬂnvdtm Vn Z e pdtdt <

nsVn
—e P4 (Pant (V”)+Qantm(1/n)—dt-C<%>)

dt
>V, (1) + 'OT sup F

I(pn, valp) /2"
dty,

First line is expected utility from taking the aforementioned experiment at p. Second

line is replacing all discounting in cost with a term larger than 1. Taking m sufficiently
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large, last line will be strictly larger than Vj (u). Thus this experiment dominates

optimal value of dt,, problem at y. Contradiction.

% < —n. Then pick v, € IAX s.t. u, pn, vy are three ordered points on a straight

line. Let py, g, be such that p, + g, = 1, pupt + Guvn = pn. Pick any I s.t. C(I) < 0. We

have:

IWVH—VWnH—V‘FLVM o —pall V)~ V) + nln —
H(ptn) — H(vy) = BB gy || H(p) — H(vy) — 298Gy |
ln—pll

Take n — oo on RHS, we observe that RHS goes to infinity. Therefore, there exists N s.t.
Vn > N, RHS is larger than 3p sup F + 2C(I).

17 I7 n n 17 I rvn n
— V() + 3uV (V) — ZC“)M >V (1) + 3% sup F

ottt () + oI (1, valpin)

i sup F

Similar to last part, N can be chosen sufficiently large that:

I(pvnlpn)
e_p 1 (

pnV (1) + GV (vn)) — MC(D > V(un) + pl(”—}/”'””) sup F

Then pick dt = I(’”—f'””) and dt,, = g,ﬁ m can be chosen sufficiently large that:

dt
e (P Vit (1) + G Vaty (V) — dEC(T) = Vi, (1) + - sup F

We consider a similar experimentation strategy as before that divides experiment uni-

formly:

m
e P (puViar,, (1) + 4n Var,, (va)) Z e Pt gy, . <I(V,V2L#n)/2 >
m
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dt
=V, (Un) + pT sup F

RHS is strictly larger than V;, (u,). This experiment dominates optimal experiment of

dt,, problem at y,,. Contradiction.

Lemma B.10. Vf(x) differentiable on (a,b). ¥Yx,y € (a,b),

sup D*f(z,y)ly — x|
ze(x)

N —

3 .0nf DGyl =2 < f4) = f2) ~ f ()Y =) <

Proof.

e First inequality: let D = inf,¢(, ) D?f(z,y). Suppose by contradiction the statement

is not true, then there exists ¢ s.t. Qz_£|y - x\z > f(y) — f(x) — f(x)(y — x). Let

h(w) = f(w) — f(x) — f'(x)(w—x) — Qgg(w — x)2. Then h(x) = 0, ¥'(x) = 0 and
h(y) < 0. Now consider max; h(z) — %(z — x). By continuity of h, maximizer z*
exists in [x,y]. FOC implies I'(z*) = % so z* # x. The objective function is 0 at

both x,y so z* # y. Then optimality of z* implies Ydz sufficiently small:

h(z* +dz) — :(_yl (z¥+dz—x) < h(z") - yh(_—yzc(z* —X)

— f(z* +dz) — f(z*) — f'(x)dz — %(zz* ~2x + dz)dz

<dz(f'(z*) — f'(x) — (D — &) (z* — x))
_ fE+ds) —flz) -~ f)dz D¢

dz2 )
— sz(z*,y) <D

Contradiction.
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e Second inequality: let D = SUP,c(y ) D?(z,y). Suppose by contradiction the state-

ment is not true, then there exists ¢ s.t. %W —xP < fly)— f(x)— f'(x)(y — z). Let

h(w) = f(w) — f(x) — f'(x)(w — x) — %(w —x)2. Then h(x) = 0,l'(x) = 0 and
h(y) > 0. Now consider min, h(z) — %(z — x). By continuity of &, minimizer z*
exists in [x, y]. FOC implies /'(z*) = ’;—2 so z* # x. Then optimality of z* implies

Vdz sufficiently small:

h(z* +dz) — %(z* +dz—x) = h(z") — -
— f(z* 4+ dz) — f(z*) - f'(x)dz — ?(22* _2x +dz)dz

> dz(f'(z%) — f'(x) — (D +¢)(z" —x))

fz* +dz) — f(z*) — fi(z")dz _ D+e
— dz? -2
— D*f(z*,y) > D

Contradiction.

B.2 Proofs in Section 1.6

B.2.1 Proof and lemmas of Theorem 1.2
Proof of smoothness in Theorem 1.2

I first show that there exists a set of i such that on each interval when V(u) > F(u),
V(u) is defined a V,;. Then I utilize this result to show that V is C (1) smooth on [0, 1].
Proof. This is true when y < p** by definition of V,«. So I prove this for y > p**. First

prove some useful lemmas:

Lemma B.11. Vk, there exists pg € (2 s.t. Vy, (Ek) > F(Ek)'
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Proof. Suppose F = F_; at ™. Equation (A.18) implies p, > p** > p . Consider:

Uy (1) = max S EW = F) — F-(1)(v — )

Vi P J(u,v)

Uy is continuous by maximum theorem on [p**, i, ). Since Ui (u*™*) = F(u™*), limy, . U(p) =
+00, there exists pg s.t. Ug(po) = F(po) and Ux(p) > F(u) Vu € (yo,Ek). Now consider
Viio (). I claim that V(i) > F(u) Vi € (po, pi)- Suppose not, then by intermediate value
theorem, there exists p’ s.t. Vy,,(i') < F(pu) and V(') < F(p). However, this implies

¢ F(v) = Vi (1) = Vi (v — ')

Vi (') = max —

naxs 1G0.0) > Ur(p) > F(i')

Contradiction. Now assume V), hits F at p;. Then Uy (p) < 0 and limp,_,gk+1 (n) = +o,

so we can find V, (Ek+1) > F(Ekﬂ)' By induction on k, Lemma B.11 is true. |

Lemma B.12. Vg < py € Q, let I; = {u|Vy,(u) > F(u)}. Then either Iy(\ 1 = &, or I < I

and Vig = V.

Proof. The only possible contradiction of Lemma B.12 is that 3’ € Ip( ) I; s.t. V,,, (i) >
Vi(i'). Since at pq, V(1) > Vi (u1) = F(u1), by intermediate value theorem, there
exists ¢ € (1, (') s.t. Vi, (§) > V(&) and V' (u1)(8) > V'(po)(E)- Since & € I, there exists

v, m solving Equation (A.18) for V},, (¢):

¢ Fn(v) = Vo (§) =V, (E) (v = )

Vi (§) =

p J(Ev)
¢ Fn(v) =V, (§) = V3, Q) (v = 8)
>E I(g/ 1/) - Vlll (C) > V]lo (C)
Contradiction. So Lemma B.12 is true. [ |

Lemma B.13. V = {max’_,{V,,}} is totally bounded and equi-continuous on [u**,1].

v;€Q,nelN
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Proof. V. is bounded above by sup F(y) and below by inf F(u). Consider VP’IO. When
Ve (i) = F(u), obviously direvative is bounded by max|F'|. When V,o(u) > F(u). Sup-
pose Vy. () > max|F'|, then F(v) — Vo () = Vo () (v — ) < F(v) = F(u) = F'(v)(v — p) <
0, contradiction. By Lemma A.3, V. > 0. So V). are uniformly bounded in [0, max|F’].
Now consider Vn, Yv; € Q, V,, € [inf F,supF] = max;{V,,} € [infF,supF]. By
Lemma B.12, max{Vvi} is piecewisely defined as V;, on finite disjoint intervals. So its
derivative is piecewisely defined as V), therefore bounded in [0, max|F'[]. Therefore V is

totally bounded and equi-continuous on [p**, 1]. [

Lemma B.14. There exists A s.t. Yv; € Q, on {u|V,, (1) > F(u)}, V(i) has Lipschitz parameter
A.

Proof. Vi € (i1, k), v is smooth in p and V), > 0, by envelope theorem:

! _ cv—py " P "
Vi) == Sy (V0 + V00 H () > 0

— Vi (u) + ngi(u)H”(w <0

Vi, (1) is bounded by sup F. It is easy to see that sup Q) < i (where n is the largest
index). By Lemma B.11, there is g € Q) s.t. V), (En) > F(En)' By Lemma B.12, sup () =
sup{p|Vy,(1) > F(u)} < v(uo) < 1. Therefore, i is bounded away from 1. Then by
Assumption 1.3, —H”(u) is bounded above. Therefore, A exists for all such .

Then consider u = fi, since V; is bounded on both side by A, Vy/ (1) < A. Therefore

at u V, has Lipschitz parameter A by Kirszbraun theorem. |

e Step 1: prove V e C[u**,1].
Sort all rational numbers in [p**,1] as {r,}. VN, there exists u,p € Q s.t. V(ry) —
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Viu(ra) < 5. Let Vy = maxu{V}, , }, then {Vy} = V and Vy converges to V point-
wisely on {r,}. Let V = lim Vi, by Lemma B.13, Ve C[u**,1]. By definition V< V.
Suppose YA/(y) < V(u), then there exists V,,(u) > ‘7(;{) Since both V), and V are
continuous, Vyo ~ V on an open interval, containing some r,. Contradiction. So

V =V e Clu**,1]. Let {u=pu**|V(u)>F(u)} = |JLn where I, are disjoint open

intervals.

o Step 2: prove Vly, exists py € Qs.t. V(p) = lim Vy,, (u) and V'(u) = lim V() on L.
Pick any p € Iy. Let O(u) = {y® e Q|Vye(u) > F(u)}. Then by definition of V (),
O() is non-empty. Let V = SUp eco(u) Voo VN, there exists pyn € O(p) s.t. V(ry) —
Vin(rn) < 5. Since V() > F(u), by Lemma B.12, there exists V,,, = max{V},  }.
Therefore, lim V,,; = V on {r,}. By Lemma B.13 V = lim Vi € Cl[u**,1]. Now suppose
V(p) > V(y), then there exists V;,o (1) > V,, (1) > F(u). Then p° € ©(u) by Lemma B.12,

contradiction. Therefore, lim Vi, = Von Iy.

Let Iy = (am, bm). Now consider {V} }. V; (am) = F'(a). Lemma B.14 implies that V),
are totally bounded and equi-continuous on I;;. Therefore, there exists subsequence

V,, being Cauchy w.r.t. sup norm on [ay, by|. So V as limit of V,,, is differentiable on

[am, b] and V' = lim V]in.l

e Step 3: prove VI, exists p™ € Qs.t. V(u) = Vym on Iy,
Let p™ = inf I,. By step 2, it is easy to verify that y, — ™. Then since Equation (A.19)
is continuous in y, it is satisfied at ™ and p™ € Q). Since both V), and V;, converges

on I, Equation (A.18) is satisfied for V on I,,. Let F(u™) = (™).

As an intermediate step, I first prove that Equation (A.18) is solved for kK’ > k in a non-
degenerate neighbour of u™. Take any y' > u™ s.t. V(u') > F(i'), since V(™) = F(u™),
there exists pu* € (", y') and e > 0stVu € (", u*) V(u) — Fe(p) < V(') — F(p') — e

IThis result is ex. 14.2.7 from Tao (2016).
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I claim that Equation (A.18) is solved at all y € (u™, u*) with k' > k. Suppose not, then

for n sufficiently large:

cF(v)—Vy, (n) -V, v—
vy € PO = Va0 = V000 =

0 J(p,v)

¢ Fe(v) = Fe(p) = Vi, ) (v — )
P J(u,v)
=B = Vi, 0) 505

Therefore F| > V,, (y). By construction of V;,, at any " > y Equation (A.18) is solved
with k, therefore F, > V,,, (u”) holds for all " > u. This implies Yu" > p, V,, (") —
Fe(u") < Vyu,(u) — Fe(n) < V(') — F(y') — e. Take n — oo and p” = y/, contradiction.
Therefore, Equation (A.18) is solved at all u € (u™, u*) for V() with k' > k.

Now consider Vyn(p). By my construction, suppose V) is updated up to action k + 1.
I claim that V;m = V when p € [u™, u*). Suppose not true, then there exists y at which
Vir() < V(1), Vi () < V'(). Tt is easy to verify that Equation (A.18) is violated at
Vi, (#). Therefore, if V,m =V, itmust happenin (y*, by,). Again we can find p € (u*, by,
s.t. Vi () < V(p), Vi () < V'(pt), which is not possible. So V(y) = Vym (i) on L.

To sum up, V can be represented as:

-

Viee () if e [, p™]
V() = Vun(p) ifpel”

F(u) otherwise

Now I prove smoothness of V(y) on [p*,1]. By Lemma B.14, Vi € L;:

Fl(am) — Ap — am| < V'(u) < F'(am) + Alp — ap|
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F'(by) + Alp —by| = V(1) = F'(bw) — D|pt — by
Therefore |V'(i) — F'(u)| is bounded by A|I,|. Define:

Vim(u) whenpely,m<n
Va(p) =
F(p) otherwise

Then V(1) — V(u). By Lemma B.11, we can without loss assume first n V,» have I,
covering B Fix n, Yu,Ym = n,if y € yand m < nor u ¢ |J Iy, then V,(u) = V,,(n),
else if y € I, m > n, then |V, () — F'(u)| and |V,, (1) — F'(p)| are all bounded by A|L]|.
Therefore, V;, (1) is a Cauchy sequence. Then V, (u) — V'(u) pointwise. Since each V, is

continuous, V is a smooth function on [0,1] and V' = F/ when V = F. [ |

Other lemmas for Theorem 1.2

Lemma B.15. V6, > 0, Vu,vs.t. y,ve (6,1 —9), |Fu(p)| > 1,

F,(1+£J(u,v)) + EFy(v)(H'(v) — H' (1))
(v — ) En(p)H" (v)

L(p,v) = J(v, u)

L(u,v) is uniformly Lipschtiz continuous in v and continuous in u.

Proof. There exists 0, A > 0s.t. Vu e (6,1 —9)

-

A= [Fn(p)| =1

108 = [H' (0)] > ¢

| H(w)l,

A= |H'(n)

Eyl

Since [4,1 — J] is compact, H” is Lipschitz continuous on [, 1 — 4] with Lipschitz param-
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eter A. Then:

IL(p,v) — L(p, V")
| I

h (v —u)Fu(p)
JE (L8] (v) + EFa(v)(H'(v) = H'(n)) (1 + 8] (u,v")) + B (V) (H' (V') — H' (1))
H”(V) H”(V/)

Eb(1+2](u, ")) + EEu (V) (H' (V) — H'(u))l
H//(l//>

+ ](V/]/l) _](V/’y)
/

vV—u vVi—u
Ep (18 (uv) ) + € B (V) (' (v) — H' (1))
~Ep (L8] (")) + £ (V) (H' (V') —H' (1))
2A|H” H"

28| H'(v)) — H'(u)|) - En(1+ 210u)) + ERa(v) (H V) = H' ()|

_|_

n | H'(vV)H"(p)
Jw,p) T, ) || Fn(+ 8] (1 V) + ERu(v)(H'(V) = H'(w))
v—pu V' —pu H"(v')

Ey (14 8] () + 2 Fu(v) (H' (v)—H' (1))
(14 (u"))+ £ En0!) (H () H' ()
2A\H"(v') — H"(u) 4
e e I(A+ESA2)+

ZA
178

_.I_

2A
<—
ne

Jw) W, p) ‘A + 6547

v—pu vV —-upu e

207 + 10843
ne?

F, <§H’(v)> + gFm(y)H”(?)“v—v’\ + Al —v|

"~ ](171114) /
|

2A% + 102A3 A + £5A2
—CA‘V/ _ 1/‘ + __c-

—H”( ) ;H//( )

<%‘2£A2“v—v’\ + v —
nel=c

ne

_[4EA° . 2A% +108A4 . 2A? + 108A3 v
<\ e e . vV —v

Therefore, L(y,v) is uniformly Lipschitz continuous in v. It is easy to see that L(y, v) is

continuous in y when y is bounded away from v. Now we only need to consider y — v:

L(p,v)
V=

_‘w V) H' () EEn (7) (v — >'<A2

2y —u2Ea(WH"(v) | 1
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Therefore, L(v, i) is uniformly Lipschitz continuous in v and continuous in .
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U(p) is defined by: £](v(u), u) = 1.

v () is defined by: Fy, (1+ £J(u, vis (1)) + £ (v (1)) (H' (v¥ (1)) — H'(n)) = 0.
The red line and blue lines are solution path of ODE y = L(y, v) with initial value satis-
fying Lemma B.16.

Figure B.1: Phase diagram of (y, v).

Lemma B.16. Assume pg € [p*,1), Fy(po) # 0, Fy, = 0, v € [po, 1) satisfies:

Ea(po) (Ep (1 + £ 0,v0)) + EEw(v0) (H'(v0) = H'(10))) = 0
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Then there is a continuous function v on [uo, 1] satisfying initial condition v(pug) = vo. On

{p|lv(n) > u}, v is differentiable, strictly decreasing and satisfis ODE:

b= g P 810v) + ER ) (H ) — H ()
- AR (v — ) Fu () H' (v)

Proof. Before we proceed to solving the ODE, we characterize the dynamics of (y,v) on
[0,1]%. Figure B.1 shows the phase diagram of 7,  on [0, 1]? and some important functions
that determines the dynamics of (y, v). The horizongtal axis is y and vertical axis is v. The

black line is v = u. The two thin black lines characterizes () as the solutions to:

The two dashed black lines characterizes v*(y) as the two solutions to:

B (1 01,77 (1)) + B (o) (H'(* () = H (1) = 0

Since we are discussing the case v > y, we only focus on the upper left half of the graph:

e F(yp) < 0. This corresponds to the left half of the graph.

Fp(1+ 81 (u0,v0) ) + B (v0) (H(v0) = H' (o)) < 0

= v = V" (M)

Therefore our initial condition means (o, vg) lies in the red region. v = 0 when v(p) =
v*. otherwise v < 0. When F(u) is close to 0, v goes to negative infinity if v > v*(u). So
the dynamics of v in this region must have v strictly decreasing and reaches v* when
F(u) = 0. Intuitively, v will never reach the region v > 1y. Then uniform Lipschtiz
continuity of L(p,v) on v € [u,vp], for u € [po, F~1(—7)] will be enough to guarantee
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existence of solution.

e F(up) > 0. This corresponds to the right half of the graph.

B (1 21 (010,10)) + £ Fu(vo) (H'(v0) = H' (o)) > 0

= 1y < V" (Hp)

Our intial condition will lie below the dashed line in blue region. L(p,v) < 0 in this
regionand L(y,v*) = 0. So the dynamics of v in this region must have v strictly decreas-
ing until it reaches v = p. Then uniform Lipschtiz continuity of L(y,v) onv € [, 1p] for

1 € [po, 1] will be sufficient ot guanrantee existence of solution.
Then we characterize formally the solution of ODEs:

e Fu(yp) > 0. Our conjecture is that solution v will be no larger than vy within the region:
1 € [po, v, v € [po,vo]- Therefore, we modify L(p,v) to define L(u,v) on the whole

space:

L(p,v) = L(max{min{y, vo}, po}, max{min{v, vo}, p1o})

It's not hard to see that L is uniformly Lipschtiz continuous w.r.t v € R for u € [0,1] and
continuous in y € [0,1]. We can apply Picard-Lindelof to solve for ODE # = L(u,#) on

the space with initial condition 7(jg) = vp.

— Consider 7 on [p, 1], it starts at v9 > pg. It first reaches v = p at ji € (pp, 1] (we
define it to be 1 when it doesn’t exist). Then for u € (p, ##), we must have L(y, 7) <
0. Suppose not, then there exists 7(t) > v;;, (1) > vo. We pick a smallest i such that
this is true. Then this y must be strictly larger than po because L(p,0,19) = 0 <
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vE (o). Then at u, 3(u) = 0 but v,(1) > 0. It's impossible that 3 crosses v, from

below. Contradiction. Then # < 0 until it hits v = I

— J < vp. Suppose ji = g, since 7 < 0 on (yo, i), V(1) < vp. Contradiction. There-

fore, 7 on [po, ] will be with region [, vp].

In the region [, ] x [po, Vo], L coincides L. Therefore, 7 is a solution to original ODE

Equation (A.30). We define v:

U(p) if p e [po, 1
v(p) =

Iz if pep1]

It’s easy to verify that v satisfies Lemma B.16. The blue line on Figure B.1 illustrates a

solution in this case.

Fu(po) < 0. Define u® = F~1(0), our conjecture is that solution v will be decreasing on
[1o, u°). Vi > 0, define " = F_1(—7), we modify L(u,v) to define L(y,v) on the whole

space:

L(p,v) = L(max(min(p, "), po), max{min{v, vo}, v, (1)})

It's not hard to see that L is uniformly Lipschtiz continuous w.r.t. v € R for u € [0,1]
and continuous in y € [0, 1]. We can apply Picard-Lindelof to solve for ODE # = L(u, 7))
on the space with initial condition #(yg) = vp. 7 will be strictly decreasing on (po, u"].
Because when 7 first touches v}, is must crosses from below and this is not possible.
Then, when i € [pg, u'], we have L(y,7) = L(p, 7). Therefore ¥ is a solution to original
ODE Equation (A.30).
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Then we extend ¥ to [y, u°) by taking 7 — 0 and define:

o(p) if j € [ppo, 1)
v(ip) =4 . :
lim,_p1y0(p) if p=F(0)
First since 7 is decreasing, the sup limit will actually be the limit and v € C[o, #°]. Then

we show that this extension is left differentiable at . Consider:

_ Fm(?‘)
1—E(w(p), )

V(u)

By Equation (A.31), we know that on [ug, u°) sign of V' is determined by sign of 1 —
ET(w(u), u). At initial value, V) > 0 = 1—£](vp, uy) > 0. On the other hand, V()
will be bounded above by V. So 1 — £](v(u), 1) as a continuous function of y has to
stay above 0. Therefore V'(1) > 0 on [uo, #°). By monotonic convergence, there exists

lim,_, 0~ V(). Define it as V(u®). We define:

L0
Y = e ) (v ) — )
Now we show that 1’/(;10) = limy_)yo vy ;:;OV 0). Suppose not, there exists € > 0, y,, — pto
s.t. |v(u?) — % > ¢. Suppose V() > v(u®) + (V(u°) — €) (pn — u°):
Fn(p)
V) =T 00 (00) — ) — ), o)
F/
R ) < m :
5 V) ST G0 + G0+ B (0 () — i) (9(0) — 9)
F,
SECH () + H (O + H' (1) (v(:0) — 10)i(0)
=V (u°)
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First strict inequality is from 1 — %)](1/, ) strictly increasing in v. When F,(u) < 0,

Fun(p)
1_g](1//]’£)

of V(pun) with L'Hospital rule. Third strict inequality is from ¢ > 0, H” < 0. Last

will be decreasing in v. Second inequality is by taking limit of lower bounded

equality is from definition of v(1"). We get contradiction. Similarly, we cna rule out
v(un) < v(u®) + W(u°) + &) (un — u°). Therefore, we extended v to [1g, 1°] such that it’s
differentiable on [po, #°] and smooth on (ug, u°).

/

Let o = 1% vo = v(1%), v = v(°), then vy > pp and

1—£J(vo, o) =0

F), . 7
0< E(H' (po)—H' (vo)+H" (vo) (vo—po)vy) Vipo) < V(po)

Then by Lemma B.17, we can solve for v(u) on [u° 1] satisfying the conditions in
Lemma B.17. Moreover, v(u°) = 1y, then v is differentiable at u°. For any other points in

{ulv(p) > u},vis CV smooth. Since v < 0, then the solved v will be strictly decreasing.
[
Lemma B.17. Assume Fy(po) = 0, F;, > 0, v € [po, 1), v satisfies

— BJ(vo, o) =0

Fon

H' (o) —H' (vo)+H" (vo) (vo—pto)v{) < Vipo)

0<£<

Then there is a continuous function v on [po, 1] satifying initial condition v(jg) = vo, V(po) = V.

On {ulv(u) > u}, v is differentiable, strictly decreasing and satisfies ODE:

Fu(1+£](u,v)) + EFu(v)(H'(v) — H' ()
(v =) En(p)H" (v)

v=J(v,u

Proof. V uy € (po, 1), Vi1 € [p1,v;,(11)), we consider the solution of ODE with initial
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condition (ug,vp). V7 > 0, define 7 = F~1(57). Then like the proof of Lemma B.16, we
can solve for a smooth v on [u”, ji]. v will be strictly decreasing below v;;, and strictly
increasing over v;;,. Consider the slope of v:

HG) - HG@
oo e

V=

v itself satisfies ODE Equation (A.30), then unigness of solution to ODE implies v < v

Vu e [u, 1]. So solution must lies in the blue region in Figure B.1. Let

Fin (1)
1—2J(v(p), n)

Vi) =

When v; — ¥(p1), 1 = EJ(v(u), ) — 0. Thus V(u) — . On the other hand, when
p1 — po, v1 = H1, V(i) = Fu(po) = 0. Define

Ey

= B () — /() + HY ) (w0 — o))

I want to show that there exists there exists 1, v7 s.t. V(i) — Vo when p — pp.

Index V(u°) by initial value (pq,v1): Vo(py,v1). I claim that Vy(p1,v1) is continuous
n (p1,v1). Suppose not, then there exists limyp n .y, v, Vo(ui, vY) # Vo(p1,v1). On the
other hand, index V' (u") by initial value (p1,v1): V3 (p1,v1), then continuous dependence
of ODE guanrantees that limy?ﬂ,if_,m,vl Vy(u,v) = Vy(u1,v1). Therefore, YN, there exists

1 s.t.

hmﬂ'f/Vf—’PlllVl VO(V?/V?) - VO(,”lr Vl)

> 3N
|0 — |
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Then by continuity, we can have # sufficiently small that:

Ly iy 0y Vo(ui, vi) = Vi (1, v1)

[0 — |

> 2N

Then we can have 7 sufficiently large that:

Vo(ut, vi') — Vi (uff, v1)]
|V0 —P‘ﬂ

> N

Then there must exists jiy s.t. |V/(jin)| > N. On the other hand, |V’| must be bounded

because:

Fn(v) = V(1) (v — )
1+ 8J(u,v)

V) =

When V' going to positive infinity, V(u) will go to Fy,(1). When V' going to negative
infinity, V(u) will go to positive infinity. Both cases are impossible. Therefore, Vj(p1,v1)

will be a continuous function on initial value. There exists y1,v1 such that lim,, o V() =
Fun (1)

Vo. Apply L'Hospital rule to V(p) = T 0G0 Ve 88 that:
Vo = Fo = lim V() =y
E(H'(no) — H'(v0) + H" (vg) limy—yyy v/ (1)) H=Ho

Smoothly extend v(y) to ug. Therefore, v(y) associated with initial value (1, v1) satisfies
iy

(H' (p0)—H' (v (10)))

implies vy < 0. [ ]

v(u%) = vj. Since ¥ satisfies 7 = V(pp), the assumption in Lemma B.17
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Lemma A.3'. Assume g < p*, F,, <0, Vp, V} satisfies:

V(uo) = Vo = Fu(po)
¢ Bn(v) = Vo — Vi(v — po)
V<o P J(po,v)

V() = max —

A.25
e TG 0) (A25)

and initial condition V(o) = Vo, V' (o) = V.

Lemma B.16'. Assume pg € (0, u*], Fu(po) # 0, F, <0, vg € (0, o] satisfies:

Fun(pto) (—=Fn (1+ E1 (10, 10) ) + EFun(00) (H'(10) = H'(19))) = 0

Then v € C|0, po| satisfying initial condition v(pg) = vo. On {ulv(u) > v}, v is differentiable,

strictly decreasing and satifies ODE:

Fu(1+£](u,v)) + EFu(v)(H'(v) — H' (1))
(v =) En(p)H" (v)

v=J(v,u)

Lemma B.17'. Assume Fy,(p9) = 0, F, <0, vo € (0, po], v satisfies

— B (vo, o) = 0

0 > £(H (o) — H'(vo) + " (v0) (vo — pioJvo) > “{5

Then 3 v € C[0, po] satifying initial condition v(pg) = vo, v(po) = vy. On {plv(p) > u}, v is
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differentiable, strictly decreasing and satisfies ODE:

Fu(1+8](u,v)) + EFu(v)(H'(v) — H'(n))

v=](v,u) (v —u)Eu(u)H" (v)

Lemma B.18. Suppose at ug, Vo, Vj), k = 1 satisfies:

Vo = max & fnek@) = Vo= Vov —po) € Fuv) = Vo = Vo(v — ho)
v=Ho 0 J(po, v) v=Ho P J (1o, v)

V(po) = Vo = Fy_k(po)

Vin—k is the solution as defined in Lemma A.3 with initial condition Vy, Vi, then Yy € [po, v(po)]:

¢ B (V) = Vini (1) =V, () (v — )
Vi— = max -
k(‘u> veum'e[m—km] O ](]/l/ V)

Proof. I first claim that:

— — / —
Vo> max © Vin—k(v) = Vo — Va(v — po)
ve [Ho,ﬁm] % ](“l/lo, V)

Suppose not, then there exists y’ s.t.

7\ _ !/ !
Vo<ng—k(V) Vo — Vo(u' — po) (B.15)

o J(po, ')

By definition of V), we must have V,,, (') > F,,_x(y'). The inequality is trivial because
if Fy,_x(4') = Vy_x(¢'), then choosing y’ will be suboptimal. Therefore v(y’) > p’. Opti-
mality implies Equation (A.27) and Equation (A.26) at y = po:
/ P / oy P /
mek + EV()H (1/(“1/[)) = VO + EV()H (]/l)
(B v + EvoH(u) ) = (o+ EvoH(n) = (Vi + Evor' () () — )
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We define L(V, A, u)(y') as a linear function of u':

LV, A u) (') = (V(u) + AH(u) + (V' (i) + AH () (' — ) (B.16)

Define G(V, A)(u) as a function of u:
GV, A)(#) = V(u) + AH(p) (B.17)

Then G(Fy—, £V (p0))(1') is a concave function of y’. Consider:

L(Vow 2V (10), 10 ) () = G (Bt EVin i) ()

This is a convex function and have unique minimum. Therefore, the minimum will be de-
termined by FOC. Simple calculation shows that it is minimized at v() and the minimal

value is 0.

FOC : Vy, . (10) + £V x(m0) H (o) = i+ £V, (o) H' 1)

It’s easy to see that this equation is identical to the FOC for v (). Now consider:

L Vit EVori(p10), 10) () = G (Vi £V, iu0) ) 1)
= (Vi) + E Vo) Hpo) ) + (Vi) + E Va0 H' ) ) (' = o)
- (mek(]/l/) + gvmfk(VO)H (u’>)

= = (Vi k() = Viu i) = Vi pi0) (' = pi0) = BV i) (o, 1)) < 0

The last inequality is from rewriting Equation (B.15). Therefrore, L(V,,_, £V,,_«(o), pto) (') —

G(Viu—tr Vi (p0)) (') will have minimum strictly negative. Suppose it's minimized at
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1’ (Since L(po) — G(po) = 0, ¢/ must be bounded away from pg). Then FOC implies:
Vi k(Ho) + FC—)mek(VO)H/(VO) = Vi) + ng—k(VO)H (#)
Consider:

L (Vi SV slpio) 1) (0)) = G (Bt SV i(110) ) (1)
~L (Vi £V k10, 10) (1)) = G (B £V i) ) (v(3))

Vi k1) = Vi) + EViu g0 (HGH') = H(po)) = (Vi o) + EH (o)) (' = o)
> Vi k() = Vin-s(pt0) + E Va0 (H(H') = H(po)) = (Vg ipto) + EH o)) (4 = po)

=G (Vi ko BV 1 00)) () = (Vi E Vi (at0), 10 ) 1) > 0

In the first equality we used FOC. In the first inequality we used suboptimality of v (') at

Ho. However:

0 =L (Vs SV i), ) (1) = G (B BV 1)) (1)
~L(Vorto £V 1 010), 1) 0 (0) = G (B E Vi 00) ) (v(1)
(Vin—k (1) = Viui () (H(p') = Hw () + H' () (v (1) — "))

k(1) = Vi () J (W, v(p')) > 0

+

a

<

e
>C(

Contradiction.

Now we show Lemma B.18. Suppose that it is not true, then there exists p’ € (yo, V(1))

and p" > p st

“m!
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Then by definition:

Fu ko SV 10), v(10) ) (") = G (B, SV (110) ) (4")
) - G(Vm—k/ ng—k@lO)) (1)

(
(
(
~L (B SV 10), v(10) ) 1) = G (Vi i E Vi i10) ) (1)
(
(

e}
N
h
s
L
|
3
=
=
N
=
[en)
SN——
=

Futo SV i), v(310) ) (4) = G (B, Vi (0 ) ()
Foto 2 Vo ali0), v(10) ) (4") = G (B, E Vi (h0) ) (1)

© Vaoelb) ~ Vi) It 1)

L(Fute O Vo), v(000) ) () = G (Vi &V 1)) ()
=L (Fnto EViuir0),v(10) ) () = G (Vi E Vi) ) )
+ B (Vi) = Vi 10)) T o, 1)

>0

~—

Now we consider L(V,,_x, 2V, ('), ') (-):
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The two equalities are directly from definition of L and G. First inequality is from subopti-
mality, second inequality is from previous calculation. Therefore L(V,,_x, £V, ('), 1) (*)
is lower at ¢/ and L(F,,_, Vi, (1'), v(10)) (-) is lower at v(jip). Since both of them are lin-
ear fuinctions, then L(V,,_, £V,, _(y'), ') (-) must be higher at any " > v(p). Therefore,

this implies:

L Vot Vo), 1) 0 = G (B, EVa i) ()

Contradicting that " is superior than v(y'). |

Lemma B.18'. Suppose at po, Vo, V{, k = 1 satisfies:

cEni) =Vo-Vo(v—po) _  cEn(v) = Vo— V(v —po)
vspio 0 J(po,v) V2o P J(ro,v)

V(uo) = Vo = Fyix(po)

Vin+k 18 the solution as defined in Lemma A.3 with initial condition Vo, Vi, then ¥y € [v (o), po:

¢ By (V) = Vi () = V(W) (v — )
V, = =
m—i—k(l/‘) véy,iﬂ?riz(,m+k] [Y ](,u/ V)

B.2.2  Proof of Theorem 1.3

Proof. In this part, we introduce the algorithm to construct V(y) and v(u). We only dis-
cuss the case y > u* and the case y < p* will follow by a symmetric method.

Algorithm:

e Step 1: Define:
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V* is increasing and V™ is decreasing. There exists u* € [0,1] s.t. V™ (u) = V()
when y > p* and V= (u) < V~(u) when u < p* (See Lemma B.20). Define V(u) =
max{V*(u), V= (1)}

e Step 2: I construct the first piece of V() to the right of y*. By Lemma B.20, there are

three possible cases of y* to discuss (y* = 1 is omitted by symmetry).

Case 1: Suppose u* € (0,1) and V(u*) > F(u*). Then there exists (m, v(u*) > u*, 1) s.t.

With initial condition (ug = p*, Vo = V(u*),Vj = 0), we solve for V;, (i) on [u*,1] as
defined by Lemma B.22. Define

F(p)ifp < p*
Vi (1) =

Vin(u) if p = p*

Be Lemma B.22, when V)« (u) > F(p), V)= is smoothly increasing and optimal v(u) is

smoothly decreasing.

Now update V};«(p) with respect to more actions. Let i, be the smallest u > p* that:

Vi) = maxe LEn10) = V1) = Vi) (v =) _ C(D

v=pl P J(u,v) o

If Vi (4m) > Ep—1(fim) we solve for V,,_1 with initial condition pg = fim, Vo = Viu(fim), V§ =

Vi (im). Then redefine V(p) Viu—1(pt). Otherwise skip to looking for ji,, 1. If

‘HZﬁm =

m —1 > m, we continue this procedure by looking for fi,,_; until m = m. Now suppose

240



B.2. Proofs in Section 1.6

Vin first hits F(p) at p** > p*. V,x is a smooth function on [p*, u**] such that:

&3k

Fuifu<wpy*oru=up
Vie(p) if pt € [fik, fig—1]?

By construction, optimal posterior v,« (1) is smoothly decreasing on each (jiy1, fix) and

jumps down at each jix. By Lemma B.23 and our construction, Vu € [p*, u**]:

B [EW) = Vi () = Vi (v — 1) (1)
Vi) = s (6, o (B18)

Case 2: Suppose u* € (0,1) but V(u*) = F(u*), let p** = inf{u|V(u) > F(u)}.

Case 3: Suppose u* = 0, consider:

F(ﬂo) — max £Fk(v> - F(VO) - F/_(VO)(V - ]/lo) B C<I) (B19)

v=uk 0 J(ue,v) P

Let m be the index of optimal action. Solve for V;, with initial condition yg = u°, Vpy =
F(u®),V§ = F'~(u°). Then take same steps in Step 3 and solve for ji; and V_; sequen-

tially until V,,, first hits F. This step refers to Figure A.6-4,5. Now suppose V,, first hits

'Define fi,; 11 = p* and jiz; = p** for consistency.
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F(u) at some point 4°° (can potentially be ), define:

F(u) ifuy<p®oru>u*
Vw(l/‘) =

Vi(u) if p € [, e

By Lemma B.21, V), is piecewise smooth are pasted smoothly. So V), is a smooth func-
tion on [y, u”]. Optimal posterior v, (y) is smoothly decreasing on each (fix1, jix) and

jumps down at each jix. By Lemma B.23 and our construction, Vu € [u®, u®°]:

B [ E(v) = Vie(u) = Ve (W) (v — ) C(I)
K TR () et

Let Q) be the set of all such u°’s.

e Step 4: Define:

Smoothness:
I want to show that V(u) is piecewisely defined as V),;’s. This is true when y < u** by
definition of V,x. So I prove this for u > p**. First it is easy to verify that Lemmas B.11,
B.12 and B.13 still hold. The original proof directly applies by replacing Equation (A.18)
with Equation (B.18) and Lemma A.3 with Lemma B.21.

Lemma B.19. There exists As.t. Vyu; € O, on {|Vy, (1) > F(u)}, V' () has Lipschitz parameter
A.

3Define fi,y 1 = p° and fim, = u°° for consistency.
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Proof. Vy € (fix11, fix), v is smooth in y and V> 0, by envelope theorem:

Vi) == ==L (Vi () + C'(DH" (1)) > 0

— Vi (w) + C'(DH"(u) < 0

C'(I) is bounded since C(I) is bounded by sup F. It is easy to see that sup () < , (Wheren
is the largest index). By Lemma B.11, there is yig € Q) s.t. V), (En) > F(En)' By Lemma B.12,
sup QO = sup{p|Vy, (1) > F(u)} < v(o) < 1. Therefore, i is bounded away from 1. Then
by Assumption 1.3, —H”(p) is bounded above. Therefore, A exists for all such y.

Then consider = jig, since V}/, is bounded on both side by A, Vi (1) < A. Therefore

at p V,,, has Lipschitz parameter A by Kirszbraun theorem. |

o Step1: V e C[u**,1]. Sort all rational numbers in [p**,1] as {r,,}. VN, there exists y,, p1 €
Qs.t. V(rg) = Vi, u(rn) < 5. Let Vy = max,{V}, , }, then {Vy} = V and Vi converges
to V pointwisely on {r,}. Let V =lLmV,, by Lemma B.13, VecC [p**,1]. By definition
V < V. Suppose V(i) < V(u), then there exists Vi (1) > V(u). Since both Vi, and
V are continuous, V,; > V on an open interval, containing some r,. Contradiction.
SoV =Ve Clu**,1]. Let {p = u**|V(u) > F(n)} = | Ln where I, are disjoint open

intervals.

o Step 2: Yy, exists pp € QA s.t. V() = im V), (1) and V' () = lim V; (u) on Iy. Pick any
e Iy Let () = {u® e QVye(u) > F(u)}. Then by definition of V(u), ®(p) is non-
empty. Let V= SUp eco(u) Vuo- VN, there exists piy,m € O(p) s.t. V(rn) — Vin(Tn) < %
Since V), (#) > F(p), by Lemma B.12, there exists V,, = max{V,, }. Therefore,
lim V,,, = V on {r,}. By Lemma B.13 V = lim Viuy € C[u*,1]. Now suppose V(u) >
I7(pt), then there exists Vjo(u) > V), (#) > F(u). Then y° € O(pu) by Lemma B.12,
contradiction. Therefore, lim V,,, = V on I,.
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Let Iy = (am, b). Now consider {V;, }. V}, (am) = F'(a). Lemma B.19 implies that V;
are totally bounded and equi-continuous on I,. Therefore, there exists subsequence

V’in being Cauchy w.r.t. sup norm on [a,, by]. So V as limit of Vi, is differentiable on

[am, b] and V' = lim V, .

o Step 3 VIy, exists p™ € O s.t. V(pu) = Vym on I,. Let p" = inf [, By step 2, it is easy to
verify that p,, — pu™. Then since Equation (B.19) is continuous in y, it is satisfied at y™
and pu™ € Q). Since both V), and V;, converges on I,;, Equation (B.18) is satisfied for V
on I,. Let F(u™) = F.(u™).

As an intermediate step, I first prove that Equation (B.18) is solved for k' > k in a non-
degenerate neighbour of y™. Take any y' > u™ s.t. V(u') > F(i'), since V(™) = F(u™),
there exists p* € (™, y')and e > 0s.t Vu e (u™, u*) V(u) — Fe(p) < V(u') — F(y') —e. 1
claim that Equation (B.18) is solved at all u € (u™, u*) with k¥’ > k and I. Suppose not,

then for n sufficiently large:

_TER(v) = Vi, () = Vi, ) (v =) C(I)

Vi) =5 J(p,v) P
TERW) = B(p) = Vi, () (v — 1)
o J(p,v)
=(F - V() ]V(y_ f)

Therefore F| > V;, (). By construction of V), at any y” > p Equation (B.18) is solved
with k, therefore F, > V,, (4”) holds for all " > u. This implies Vu" > u, V,,, (4") —
Fe(u") < Vi, (u) — Fe(n) < V(u') — F(¢') — e. Take n — oo and p” = '/, contradiction.
Therefore, Equation (B.18) is solved at all y € (u™, u*) for V(u) with k' > k.

Now consider V)= (p). By my construction, suppose V), is updated up to action k + 1.

I claim that V;m = V when p € [u™, u*). Suppose not true, then there exists y at which

V() < V(p), V;/ﬂ"(ﬂ) < V'(u). It is easy to verify that Equation (B.18) is violated at
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Vi, (1). Therefore, if Vm =V, itmust happenin (y*, by,). Again we can find p € (u*, by,
s.t. Vim(p) < V(p), V;lm(y) < V'(u), which is not possible. So V() = Vymu(p) on L.

To sum up, V can be represented as:

-

Vis(p) it e [p, p]
V(i) = { Vin(p) ifpe ™

F(u) otherwise

\

Now I prove smoothness of V(u) on [1*, 1]. By Lemma B.19 |V’(u) — F'(p)| is bounded by
A|I,|. Define:

Vym(u) whenpely,,m<n
Va(p) =
F(p) otherwise

Then V(1) — V(u). By Lemma B.11, we can without loss assume first n V,» have I,
covering y . Fixn, Yy, ¥m > n,if p € Ly and m < nor p ¢ |J I, then Vi () = Vi, (),
else if y € I,,, m > n, then |V, () — F'(i)| and |V}, (1) — F'()| are all bounded by A|L,]|.
Therefore, V;, (1) is a Cauchy sequence. Then V, (u) — V'(u) pointwise. Since each V;, is
continuous, V is a smooth function on [0,1] and V' = F' when V = F.

Unimprovability

Finally, I prove unimprovability of V(u).

o Step 1: We first show that V(i) solves the following problem:

v=puwheny > p*
v < pwhenpy < p*
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We still focus on the case u > u*. For the case y < p*, a totally symmetric argument
applies by referring to Lemma B.23". Equation (P-C1) is implied by Equation (B.18) for
u € E. So it is sufficient to prove Equation (P-C1) for 4 € EC. Suppose there exists
u = p* s.t. Equation (P-C) is violated. Let F(u) = Fi(¢). Then without loss we can

assume that:

B [R{W) - Fp) - FKv-p C()
R TR R I

By Lemma B.11, there exists I s.t. M, € Iy. At by = sup Iy, U(by) < Fi(by). Therefore,
since U(y) is continuous there exists largest i’ < p s.t .U(y') = F(y'). Then Equa-
tion (B.19) is satisfied at y’ so consider V.. Sicne V,/(u) < V(u) = F(p), there exists
p'e (Wop) st Vip(u") < F(u) and V), (u") < Fe(p). Therefore U(y") > Fe(y") im-
plies V,/(4") > F(4"), contradiction. Apply a symmetric argument to y < p*, I proved

Equation (P-C).

e Step 2: Then we show that V() solves the following problem:

_ [V) =V =V —pu C)
V(u) —max{F(y),nl}jaIx(—) 1GLv) - ” } (P-D1)

v = yuwheny > p*

v < pywhenpy < p*

Suppose not, then there exists:

¥ — max L) = V() = V@ —p) _ C(D)
vyl o ](;M/V) 0
I_”V(;Lt”) _ V(]l) o VI(.”‘)(]M” o P‘) B C(I”)
=V o J (s ) 0
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Suppose the optimizer is v, m, I. Optimality implies Equation (B.22):

V) V() =V v —n) _ ~

1, v) ()

Together with Equation (B.20), we have I'C'(I') = pV + C(I'). Then combine with

Equation (B.21), we get:

Fy + C'(DH'(v) = V'(u) + C'(I' H' (1)

(Fu(v) + C'(INH(v)) = (V () + C(INH()) = (V'(u) + C(IH' (1)) (v — p)

We define L and G as in Theorem 1.2. Then L will be linear and G(F,,, C'(I'))(v) will be

a concave function of v. Consider:
L(V,C(I'), u)(v) — G(Fy, C'(I'))

FOC implies that it will be convex and attains minimum 0 at v. For any m’ other than

m,
L(V,C(I))(v) = G(Ew, C'(I') (v)
will be convex and weakly larger than zero. However:

L(V,C(I), u)(u") — G(V,C'(I')) (")
=— (V") = V() = V' () (" — ) = C' (I (1, 1))
<0
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The inequality is from definition of I .

I/C/(I/) o C(I/) < I//CI(I”> o C(I”)
— C(T") < C(I")

oy < YWD =V = Vi) ()
o J(p 1)

Therefore, L(V,C'(I'), u)(-) — G(V, C'(I'))(-) will have a strictly negative minimum. Sup-

pose it’s minimized at ji, Then FOC implies:
V() + C(INH' () = V'(j1) + C'(INH' (1)
Consider:

L(V,C'(I"), 1) (v(i1)) = G (Fu, C'(I')) (V)
=L(V,C/(I'), p) (v(31)) — G (Em, C'(I)) (v (j1))

+ V() = V(u) + C(I)(HGE) = H(p)) = (V' () + C' (I H(p)) (1 = )
2V(ji) = V() + C'(I)(H(E) = H(w)) = (V' (1) + C'(I)H' (1)) (1 — p)
=G (v, C(1) (1) = LV, C'(I"), 1) ()

>0

~ ~

Let n’, v(ji), I be maximizer at i, IC'(I) = pV (#) + C(I):

0 =L(V,C'(I), i) (v(f)) — G(Fy, C'(1)) (v(j0))
=L(V,C'(I'), i) (v(#)) = G(Fy, C'(I)) (v (1))
+(C'(D) = C'(I)] (i, v(f)

>(C'(1) = C'(I)J (g1, v(1))
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~

Since i > p, we have C'(I) — C'(I') > 0. Contradiction. Therefore we proved Equa-

tion (P-D1).

e Step 3: We show that V satisfies Equation (1.4). First, since V is smooth, envelope

theorem implies:

Therefore, allocating to diffusion experiment will always be suboptimal. What’s more,

consider:

M5 T v) T
Y _£ V—HU ’ 1
Vi () p](y,v)(v (n) + C(DH"(n))

V= (u*) = V(pu*) and whenever V(u) = V~(u), we will have V~/(u) < 0. Therefore,
V~(p) can never cross from below, that is to say:
PV (1) = max{ pF(u), max p(V () V() V') = ) + V" (1i0® ~ (D)}

st.pJ(u,v)+ H'(u)o? =1

Lemma B.20. Define V" and V-~ :

T - max 1) = CIGv)

vzu,m,l I+ p](]/l, 1/)
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— IFy(v) — C(D](p,v)
Vo) = max TG y)

There exists u* € [0,1] s.t. V¥ (u) = V= (u) Vu = u*; V() < V= (u) Yu < u*. Moreover
V(u*) > 0.

Proof. We define function U,; and U,, as following:

IR - C(DJ ()
Un () = max = TG )
o () - CDI ()
() = vl T+ ()

Since C(I), F; () and J(p, v) are all smooth functions, the objective function will be smooth.

First consider FOCs and SOCs:

FOC-v :F/, (1 4 § ](,u,v)) - (@ + ‘T’Pm(v)> (H' () — H'(v)) = 0

FOC-I :pFy(v) + C(I) — C/(I)(I + pJ(u,v)) = 0

LpFn(v) + C(D)(I+p] (1, v))H" (v) 0
0 —J(u,v)(I+ p](p,v))*C"(I)

SOC: H=

Noticing that SOC is evaluated at the pairs (v, I) at which FOC holds.

Remark B.1. Details of calculation of second derivatives:
o Hy,t

&2 IFu(v) — C(D)] (1, v)
a2 I+p](pv)

1
= 20%(1E,(v) — C(D)J(w, v))(H (1) — H'(v))?
I+ o] (1,0) o~ (IFm(v) — C(D)] (1, v))(H (1) (v))

=2p(I + pJ (u,v))(H' () — H'(v)) (IF;, — C(I)(H' () — H'(v)))
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+ oI+ pJ (1, V) IFuv) — C(D ], v)) H' (v)
+<1+p}<u,v>>2c<I>H”<v>]

(C(I) + pEn(v))(H'(n) — H'(v))
I+p](pv)

0 IFu(v) = C(D)] (1, v)

vt I+pl(pv)

1

STETST [sz(IFm(v) — C(D)J (u, v))(H (1) — H (1))
+20(I1+ o] (u,v))C(I)(H' (1) — H (v))?
—20(C(I) + pF(v))(H' (1) — H' (v))?
+o(I+pJ(,v))(IFu(v) — C(I)](u,v))H" (v)
+(I+p] (V,v))‘ZC(I)H”(y)]

0 p}l(% 07 [p(l + o) (1, v))(IEn(v) = C(D)] (u,v))H" (v)

+<I+pf<u,v>>2c<I>H“<v>]

FOC-v = F, =

=(I'+pJ(u,v))H"(v)(0IFn(v) — pC(I)] (1, v) + IC(I) + pC(I)] (11, v))
_1(pFn(v) + CU))(I +p] (1, v))H" (v)
(I+pJ(u,v))3

¢ IFu(v) = C(D)](p,v)
o2 I+p](u,v)
1

T ) - CO )

—2(I+pJ (1, v))(Eu(v) = C'(D)J (1, v))

—f(w)(l+pf<u,v>>ZC”<I>}

FOC-I — IFu(v) = C(DJ(p,v) = (I +p] (1, v))(Fn(v) = C'(D] (1, v))
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0% 1Fu(v) — C(D)] (u,v)
o T+p](uv)

~ e 20 P D E) ~ C D)

201 + o (1, ) (Eu(v) — C' (1) (1,v)
mv)(r+p1<u,v>>2c”<1>}

—J (1, v)(I + p] (1, v))*C"(I)
(I+p](pu,v))3

® I1yr:

32 IFm(V) B C(I)](V/V)
olov I+p](u,v)

1

=TT | 2P ) = CODJ ) ()~ H )

—p(L+p] (1, v))(Fn(v) = C'(D)] (1, v))(H () — H'(v))
= (I+p](p,v))(IE, = C()(H'(p — H'(v))))

+ (I +p](,v))? (Fy = C'()(H (1) — H'(v))

e | 20TE ) — COT ) () — H ()

= p(IEu(v) = C(I)] (1, v))(H'(p) — H'(v))

(C(D) + pFn(v)) (H' (i) — H'(v)) / /
— (I +pJ(n,v))U T+ 0] (s, v) CD(H (= H(v))))

N (HP](%V))z((C(I) + pFn(v))(H'(p) = H'(v)) /(1) (H () H/@)))]

I+p](p,v)
H'(p) - H'(v)
~T+ 0], 0)P (pIFn(v) = pC(D)] (1, v) = I(C(I) + pFin(v))

+(I+pJ (1, v))C(I) + (I +pJ (1, v)(C(I) + pEn(v))) — (I + pl(u,V))zC’(I))
-0
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The only term we don’t know its sign is

Therefore, H will be ND if v > y and F,, > 0, or v < u and F,, < 0. In these cases, FOC
uniquely characterizes the maximum. Suppose v > yand F;, < 0or v < pand F), > 0, the
H will never be ND, and choice of v will be on boundary. What’s more, simple calculation

shows that choosing v = u will dominate choosing v = 0, 1. Therefore:

U, (1) = Fy(u) when F, < 0

U,,(#) = Fu(u) when F), > 0

When F, > 0, envelope condition implies:

4 gty = “H W@ =W(CD + Fa)

du " (1+67(u,v))°

Similarly, when F;, < 0, envelope condition implies:

diUm(W _ —H"(@)(v = w)(CI) + TEn(v))

5 <0
M (1+87(u,v))

Therefore, U}, and U, have exactly the same properties as in Lemma A .2, the rest of
proofs simply follow Lemma A.2. What’s more, we define v;;, and I;;, as the maximizer in

this problem.

Now I prove that V(u*) > 0. We know that V(u*) solves:

_ F(v) — S 7(px F(v) — SW(q»
V(") — max (v) 1 J(u*,v) max (v) - J(p*,v)
vl 1+ 8], v) veps, L T4+ 5] (u,v)
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Consider the following term:

CC) gy
max p1F(p1) + paF(p2) — =7 I(pilp*)

V=
pispirl 1+ S1(plp*)

Suppose u;, p;, I solves V. Then:

C(I)  piF(m) + p2F(pa) -V
- 1 —p1H(p1) — p2H(p2) + H(p*)

I want to claim that V < V(u*). Suppose not, then:

priE(p) +p2F(pa) — V() p1iE(u) + poF(p) —V
—p1H (1) — p2H(p2) + H(p*) = —p1H (1) — p2H(p2) + H(p*)

Then at least one of the following:

F(uy) — V() . F(up) — V(u*)
—H(p1) + H(p*) + H'(u*)(p1 — p*)" —H(p2) + H(u*) + H' (p*) (g2 — p*)

is larger than £V (u*) + @ Suppose the fisrt term does, then:

= e Fu) = V(")
PV () < I=HE - )

Contradicting optimality of V(u*). Same argument applies to the second term. So V (u*) >

V. However:

. c{ .
lim p1F (1) + p2F(p2) — ¥I(P‘i|ﬂ ) = p1E(m) + p2F(u2) = C'(0)I (il ) > 0
Therefore, V(u*) = V > 0. [
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Lemma B.21. Assume yg > u*, F;, = 0, Vy, Vjj satisfies:

V(uo) = Vo > Ful(po)

J— — / J—
Vo P = o= Vilv =) €l
vzl O J(u,v) Y

Then there exists a C1V) smooth and strictly increasing V (u) defined on [po, 1] satisfying:

IF(v) = V(p) - V'(wv—p) C(I) (A.25-C)

and initial condition V(ug) = Vo, V(o) = V.

Proof. We start from deriving FOC and SOC for Equation (A.25-c):

I(F,—V'(u)  Fulv)—V(u) —V'(u)(v—pn) )
FOC-v: — - + H(y) — B 0
P < J(u,v) T(u,v)2 (H'(v) — H'(p))
— _ ! .
P J(u,v)
—2(H'(u)—H'(v))(FOC-v) I (En(v)=V () =V’ (1) (v—p))H" (v) 1 i
SOC: H = [() o T LFOC-v

C"(I
1FOC-v _%

Noticing that Hy; < 0, therefore I satisfying FOC will be unique given p, v. On the other
hand, FOC-v is independent of I. H,, < 0 when FOC-v > 0. Therefore, solution of F)C-
v will be unique. When FOCs are satisfied, H is strictly ND, then the solution of FOCs
are going to be maximizer. Therefore, FOC-v and FOC-I uniquely characterize optimal

choice of v, I. Now we impose feasibility:

IR0 -V -V —p) )
"o T(1,v) 0 (B.20)

V(u)
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FOCs reduces to:

FOC-v:(F,, — V(1)) + M(H’@) — H'()) =0 (B.21)

FOC-I: IC'(I) = pV (1) + C(I) (B.22)

Differentiate FOC-1, we get:

P (B.23)

Plug Equation (B.23) into Equation (B.21) and Equation (B.20):

f= L (B, +C()H W) - H W)

1C"(I)
170 C() + pFn(p)
R e

(B.24)

We obtained an equation system with one ODE of (c, I) and one regular equation for v.
Since J (v, p) is strictly monotonic for v > u, we can also define an implicit inverse function

M to eliminate v in the equation.

J(M(y, u),u) =y

Therefore we get an ODE:

(e ) ) )

We define I,,(10)C'(L,,(1t0)) — C(L,,(po)) = pFu(p) when this equation has solution and

L,(u) = 0 when pF,(u) is so small that this equation has no solution. Since Fy () is
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increasing in y, I,,(j) is increasing and strictly increasing when I,,,(11) > 0. We consider
the initial conditions:
IoC'(Io) — C(Io)

Fu(po) < Vo = 5 < V(uo)

—> Ly(po) < Io < Ly (o)
Then Lemma B.22 guaranteed the existence of an increasing function I(y) on [po,1]. W
Lemma B.22. Define M as [(M(y, u), u) = y. Assume yg € [p*, 1), Iy satisfies:
Lu(no) < lo < Iy (po)

Then there exists a C\V) and strictly increasing I on [uo, 1] satisfying initial condition I(pg) = I.
On {u|l(n) > L, (1)}, I solves:

(e ) ) )

Proof. We first characterize some useful properties of the ODE. We denote the ODE by
I=R(u1I).

e Domain: By definition of I, (1), Vu € (0,1)

C(L, (1)) + pFu(p)
Lo =—"ct a0y~ °

Since I,, = 0, then C(L,,(u)) + pFn(pt) = 0. Therefore at I = I,,(u):

0 C(I) +pFn(p)\ _ CU) + pFu(p) ~
ﬁ(l‘ /() )‘ cue <=0
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Figure B.2: Phase diagram of (y, I )
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Therefore, VI > I, (1), [ — %&F)’”(”) > 0. Strictly inequality holds when I > I,,,(¢). On

the other hand, when I < L,,,(u), if F(#) = O, then I — %&IF)’”(“) < 0. Elseif Fy,(p) <0,
then I, (1) = 0. Since M only applies to non-negative reals, we know that the ODE is

only well defined in the region: {I|I > I,,(1)}.

e Continuity: It is not hard to verify that the ODE is well behaved (satisfying Picard-
Lindelof) when p is strictly bounded away from {0, 1}, I is uniformly bounded away

from I,,,(1). One just need to calculate My (y, #) by implied function theorem:

1
- H'(M(y, 1)(M(y, p) — )

0
a_yMy(y/P’) =

M(y,u) = p implies J(v, 1) = 0, implies 2—,(1 - %W) = 0. Since I is uniformly

bounded away from I,,(y), then M(y, i) — p is uniformly bounded away from 0.

e Monotonicity: When I = I%, (1), I = 0. This can be shown by considering FOC on I}::

F,, —C(I)(H'(p) = H'(v)) = 0

(I+p](u,v))C'(I) = C(I) + pFn(v)
= (I —pJ (v, w))C'(I) = C(I) + pFu(p) + pFy, (v — ) + C'(I)(H'(v) — H' () (v — 1)
= (I—pJ(v, w))C(I) = C(I) + pFu(p)
el ). )

— I =R(u,I)=0

Then we consider the monotonicity of R(y, I):

%R(u, 1) = (1) (H'(M) — H'()) + C'(1) M) __LE(D + pFin(p1)

Fonu-Mp o C D=0
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Therefore, R(y, I) will be positive in {1, (1) < I < I (u)}. This refers to the blue region
in Figure B.2.

Y6 > 0, we consider solving the ODE I = R(, I) in region: p € [6,1 — 6], 1 € [L, (1) +
0, Iy (n)]. The initial condition (g, Iy) is in the blue region of Figure B.2. (When H’ is
finite, we can take p € [0,1].) Picard-Lindelof guarantees a unique solution satisfying
the ODE in the region. What’s more, it’s straight forward that the solution I(y) will be
increasing. A solution is a blue line with arrows in Figure B.2. A solution I(x) will lie
between I, (1) and I () until it hits the boundary of region.

Now we can take § — 0 and extend I(y) towards the boundary. Since the end point
of I(i) has both p, I monotonically increasing, there is a limit I, # with L,,(1) = I. Then
since R(p, I) has a limit %, we actually have lim,,_,; V'(u) = F;, by Equation (B.23). So
the resulting V(y) calculated from

will be smooth on [, 1]. |

Lemma B.21". Assume o < p*, F}, = 0, Vo, V] satisfies:

V(uo) = Vo > Fu(po)

Vo — max IFEu(v) = Vo= Vov—p) C(I)
vspol P J(u,v) o

Then there exists a C1V) smooth and strictly decreasing V (i) defined on [0, po| satisfying:

v [Fu(v) = V() = V'(w)(v—p) C(I) (A.25-T')

) = max — —

v<pl O J(n,v) %

and initial condition V(ug) = Vo, V' (o) = V.
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Lemma B.22'. Define M as J(M(y, u), it) = y. Assume pg € (0, u*], Iy satisfies:

L, (no) < Io < I, (po)

Then there exists a CV) and strictly decreasing I on [0, o) satisfying initial condition c(ug) = Iy.

On {u|l(p) > L, (1)}, I solves:

(e S ) ) )

Lemma B.23. Suppose at jo, Vo, Vj, k = 1 satisfies:

Vo = max LEnlv) = Vo = Yol = o) _c) > max I En(v) — Vo - Vo(v — po) _Cc()
vzl O ](VO/ V) Y v=po,l O ](VOI V) 0

Viu—k is the solution as defined in Lemma B.22 with initial condition o, Vo, Vj, then Yy e

[p0, v(po)]:

[ Fw(v) = V(1) = Vo (W (v =) C(I)
Vo e(p) > -
k) Z o k1 p J(1v) 0

Proof. We first show that:

/
Vo> max IV (v) = Vo= Vo(v —po)  C(I)
velpo fim) 1 P J(po,v) 0

Suppose not, then there exists v, I s.t.

p J(po,v) p B.26
Vinik(v) = Vo = Vo (v — po) _ (1) (5:26)
](‘uo, V)
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Let IyC'(Iy) = pVy + C(Ip), then optimality implies Equation (B.20) and Equation (B.21) at
B = Ho:

Fyi + C'(I)H' (v()) = Vg + C'(Io)H' (1)

(Fn—k(v(u)) + C'(I)H(v(p))) — (Vo + C'(I)H(u)) = (Vo + C'(Io)H' (1)) (v(p) — p)

We define L(V, A, u)(v) and G(V, A)(u) as Equation (B.16), Equation (B.17). Consider:

L (mek/ CI(IO)/ VO) (V) -G (mek/ CI(L))) (V)

L is a linear function and G is a concave function. Therefore this is a convex function and
have unique minimum determined by FOC. Simple calculation shows that it is minimized

at v(po) and the minimal value is 0. Now consider

L (mek/ C/(IO)/ "l/lo) (V) -G (mek/ C/(IO>> (V)
= = (Vink(v) = Viu—i(p0) = Vi (p0) (v = o) = C'(10) ] (pt0, v))

<0
The inequality is from Equation (B.26) and definition of Ij:

I,C'(Iy) — C(Iy) < I'C(I') — C(I)
— C(Iy) < C'(I)

Vin—k(v) = Vo — V(v — po)

— Ch) < T(ho,7)

Therefore L(V,,_x, C'(Ip), to)(v) — G(Vyy—, C'(Ip)) (v) will be strictly negative at v and will

have minimum strictly negative. Suppose it’s minimized at p” (u” > pp), then FOC im-
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plies:

Vo k(po) + C'(Io)H' (po) = V(") + C'(Io)H(p")

Let I"C'(I") = pV,_x(1") + C(I"), then we have I” > Iy and C'(I") > C'(Iy). Consider:

L(Vin—x, C'(Jo), ") (v(u")) = G(F—k, C'(I)) (v(u"))
=L(Viu—x, C'(lo), o) (v(4")) = G(Fn—t, C'(T0)) (v(1"))

+ Vi (") = Vip—i(p0) + C'(Io) (H(u") — H(po)) — (V' (o) + C'(I0)) (1" — po)
=Vi—k (1) = Vini(po) + C'(Io) (H(1") — H(po)) — (V' (o) + C'(Io)) (1" — po)

=G(Viu—t, C'(10)) (") = L(Viy—t, C'(Io), o) (") > 0

However:
0 =L(Vyut, C'(I"), p")(v(p")) = G(Fpt, C'(I")) (v(1"))
=L(Vi—x, C'(T0), u") (v(")) — G(Fu—x, C'(I0)) (v(u"))
+(C'(W") = C'(Io))(H(u") = H(v(u")) + H'(u") (v(1") — u"))
>(C'(I") = C'(Io))J (1", v(")) > 0
Contradiction.

Now we show Lemma B.23. Suppose it’s not true, then there exists v € (uo, v(po)),

p'=zp ,andI”st.

P E ) = Vi 0) = Vi l0)a =) 1)
Vin—i(v) < 0 T(v, 1) 0
For(W") = V3 (V) =V (V) (" —v)

J(v, u")

_ CI(I//)
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If welet I'C'(I') = pV(v) + C(I'), then I’ > Iy and C'(I') > C'(Ip). By definition:

0 <L(Viu—t, C'(To), o) (") = G(Eyr, C' (o)) (")
=L(Ey—k, C'(lo), v(po)) (1) — G(Fyw, C'(I0)) (1")
0 <L(Vin—t, C'(To), po) (v) = G(Eyr, C'(I0)) (v)
=L(Fy—k, C'(lo), v(p0)) (v) = G(Ey, C'(Io)) (v)
— L(Fy—i, C'(I'), v(p0)) (") = G(Fyr, C'(I)) (")
=L(Ey—, C'(To), v(p0)) (#") = G(Fyw, C'(I0)) (")
+ (C/(I") = C'(10))] (o, ")
>0
L(Fy—k, C'(I'), v(p0)) (") = G(Epw, C'(I)) (")
=L(Fy—k, C'(Io), v(po)) (v) = G(Ey, C'(Io)) (v)

+(C'(I') = C'(Io))] (4o, v) > 0

No we consider L(V,,,_, C'(I'),v)(-) and L(F,,_¢, C'(I'), v(10))(-):

-

L(Vin—t, C'(I), v)(v) = G(Viu—t, C'(I'))(v)
L@k, C'(I), v)(v(p0)) = G(Viu—g, C'(I'))(v(p0))
L(En—k, C'(I'), v (o)) (v) > G(Vyu—g, C'(I)(v)

L(Fu—, C'(I'), v(0)) (v (1)) = G(Vin—t, C'(I')) (v (pi0))

\

L(Viu—ie, C'(I"),v)(v(p0)) = L(Ey—ie, C'(I'), v(p0)) (v (o))

L(Vin—k, C'(I'),v)(v) < L(Fyy—t, C'(I'), v(0)) (v)

\

Since both functions are linear: (f_yL<Vm—k/ c(I,v)(u) > %L(Pm_k, C'(I''v(po))(u), then
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L(V,_, C'(I'),v)(-) must be larger than L(F,,_x, C'(I'),v(uo))(-) at any u” = v(po). This

implies:

LVt C' (I, v) (") > G(Ey, C'(I) (")

Contradicting the assumption. n

Lemma B.23'. Suppose at g, Vo, V5, k = 1 satisfies:

Vo = max iFerk(V) — Vo= Volv—p) — cl) > max lFm(V) — Vo — V(v — po) B C(I)

v<po,l 0 J(po,v) o v<plp J(po,v) o
V(po) = Vo = Fuir(mo)

Viuik is the solution as defined in Lemma B.22 with initial condition o, Vo, Vjy, then Yy €

[v(#0), Hol:

IRy (V) = Vi) = Vi (v =) C(I)

Vi = max
+k('u) v<pu,ve[mm+k|,I P ](V/ V) P

B.3 Proofs in Section 1.7
B.3.1 Linear delay cost
B.3.1.1 Proof of Theorem 1.4
Proof. V{(y)e M, 7,
dH ()

EUOT C(It)dt} >C<%>E[ﬁf dt] _ C(E[Sg _E[E[it ff]dt])g[r]

) (E[ T dH(ut)dt]>E[T] _ C(E[H(y) - H(yf)])E[T]

dt
E[7]
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First inequality is by Jensen’s inequality. First equality is by definition of I;. Second
inequality is by iterated law of expectation. Last equality is straight forward. Since (y;) €

M, E[pr] = p. Let yr ~ Pand A = E[H(u) — H(pr)]/E|[ 7], then:

E lFWT) —mT - JO ' C(It)dt} < EplF()] - 2 (P‘)A_ HW 4 oo
~m+C(A)

= V() < sup  Ep[F(v)] )

PeA2(X),A>0

Ep[H(u) — H(v)]

On the other hand, VP € A%(X),A > 0, let (;;) be a compound Poisson process which

realizes according to P with Poisson rate m, T is jump time of {y;). Then it is
easy to verify that:
° m+ C(A
E|Fiue) e~ [ ctnar] = Entrw - "N G0 - Ho)

B.3.2  General information measure
B.3.2.1 Proof of Theorem 1.5

Proof. Consider Equation (1.13), it’s sasy to see that both the inner maximization prob-
lem and the constraint are linear in p; and o?. Therefore, Equation (1.13) can be written

equivalently as choosing either one posterior or a diffusion experiment:

_ max sup SV W) = V) = V() (v —p)) cV'(p)
PV (1) = max | pF (1) sup Tu,v) T

Now suppose € D and pV () = ¢ ],‘,//(/L” ;). This is saying, the maximization problem:

(V) — V(i) = V() (v — )
P TG, v)
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will be solved for v — yu. Therefore, consider the FOC:

VW) -V L)
PO =T T2

(V) = V() = V(v - p)

It must be < 0 when v — p* and > 0 when v — u~. Otherwise, the diffusion experiment
will be locally dominated by some Poisson experiment. Whenv — u, J(u,v) — 0, V'(v) —

V'(u), V(v) = V(u) — V'(u)(v — u) — 0. Therefore, we can apply L'Hospital’s rule:

_ timy (V1) — Iy () OV 000, FOC)
lim FOC = : /
v limy, ., J}, (1, v)
iy (V) = T (e v) V0000010 )
) lim, ., J,(#,v)
g limy o (VO () = J5 (, v) 0B g () - FOC)
2 fimy . /7, (1, V)
1 VO ) — o 1) iy
—3 v — (B.27)
3 VV(V’ y)
Now consider V(p) — f) ]2/]///(/;}2). By assumption, it’s non-negative and achieves 0 at y.

Therefore it is locally minimized at :

d o V) N
du <V(y ) p]{/’v(u,u)) 0

by VO . V'
O w

5 (G ) + T2 )) = 0

3 R {C) V" (u) 3
. VO () = Ton (1, y>]£’v(%ﬂ) _ EV/(V) V) ]1(/1/);1(7/‘; 1)
(1, 1) c ()2
VO () — T8 (1, 1) 22 ()
T T (up) [ Y ]vvy (#, 1)
— — Eviu) + By ) 2 B.28
o (W, 1) c ) c () v (W, 1) (B25)
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By smoothness of V and J, for FOC to be non-positive when v — u* and non-negative

when v — u~. So Equations (B.27) and (B.28) implies:

V(1) Tt gt 1) + V() Fn (1) = 0

Now suppose there exists p, — p s.t. pV(pn) = c],,v(l;f—f’;)”), we have:

V() Iy (s ) + V (i) ke (i, pin) = O

By differentiability of the whole term, we have:

e (V0T )+ V0T 10) =0

— VGO TG 1) + V) (250 1) + T 1)) + V() (TSt 1) + bt 1)) = 0

V(‘Z/l) (3) (3) 3)
7, 1) (2]1/1/;1(.”/ ],[)2 + Jovv (1, H)]wy (1, y))

V00 (Tt 1) + T8 (o)) = 0

205G 2+ oo () T (e 1)
v (o )

— ‘C—)VW) (i, ) —

+ T 1) + Joode (i 1) = 0

— %)JL’V(V, 1)

By assumption, y € D, therefore the differential equation must not be satisfied. This

implies that there doesn’t exist such p;, — p. So the set:

O o)

is a closed set (closed w.r.t. D) containing no limiting point. That is to say, within any
compact subset of D, this set is finite. This set is a Borel set, thus Lebesgue measurable.
By definition of Lebesgue measure, the measure of a set can be approximated by compact

subsets from below. Therefore, this set has zero-measure. |
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B.3.2.2  Construction of a special cost function

Take any general cost structure J(y,v) and x(y, o) that satisfies Assumption 1.4. In
the section, I introduce the method to construct a cost structure such that (i) the cost of
Gaussian learning is x(y, o) and (ii) the DM is exactly indifferent between using Guassian

learning and Poisson learning.

Step 1. Let g(i) = Ji, (4, ) (then x(p,0) = %g(y)az). Restrict the DM to using only

Gaussian learning, then Equation (1.13) becomes:

pV(M)=1naX{pFOU,§GDW”%u>} (B.29)

Equation (B.29) can be solved by solving the following ODE and applying smooth past-

ing:

V()
WM—pgw) (B.30)

Change parameter and let v(y) = dd—y log(V(p)), then v(u) satisfies the following ODE:

o () +o(n)? = Eg(n) (B31)

By Assumption 1.4, g(u) is a smooth function on (0, 1). Therefore it is easy to verify that
on any closed sub-interval of (0,1), Picard-Lindelof is satisfied that there exist unique
solution to Equation (B.31) given initial condition. Let v(y, C1) be the solution indexed
by free parameter C;, then V(u) = Czesg v(CV)AV The two free parameters (Cy, Cp) can be

269



Appendix B. Supplemental materials for Chapter 1

pinned down by two smooth pasting conditions:

r

Coel' “CotI — F(yuy)

Coel Gy, v(C1, 1) = F'(p1)

zeSO Cl V)d P(HZ)

CzeSO oCndVy(Cy, up) = F(p2)

Notice that smooth pasting need to be checked for at most C|2A| pairs of actions, index all

solutions by V;. Then V(i) = max{V;(y)} solves Equation (B.29). Let E = {u|V (1) > F(u)}.

Step 2. Vu € E, define Jo(p,v) as

c
]O(,U, V) - E

It is easy to verify that Jo > 0. Now let us verify the solution of Equation (1.13):

PV (1) = max {pF(u), sup p(VI0) — Vi)~ V/()(v = ) + 302V}

pv,02

1
st. plo(p,v) + E]()W(y,y)(fz <c

First of all, by definition, V (1), p = 0 and 02 = o (Cy 1y is feasible and satisfies the equality

condition. Now Yv € [0, 1]:

CV(V) - VO;J(;";;(V)(V —H) pV(u)

Therefore, any Poisson learning strategy is as good as the Gaussian learning strategy. By

definition of Jo, 5 Jov (#, )0 = 38()0* = K(u,0).

Step 3. Smooth extension of Jy. So far, Jj is only defined on E. Jp can be extended
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smoothly onto [0, 1] satisfying Vu € E¢:

Jovw (1, 1) = g(1)

cV()=V(p) =V ()v—p)
Jo(p,v) = ; Vi) Y

v

The extension is intuitively simple but quite technical, which is ommited here.

Such a Jo(u,v) is uniquely defined for u € E. For u e EC, there can be many de-
grees of freedom because Gaussian learning is anyway strictly dominated by stopping.
So it is sufficienly to make Poisson learning also dominated. Now, suppose J(y, v) and
k(u, o) are such that Gaussian learning is weakly optimal. Then J(y, v) must be pointwise
weakly higher than Jo(y,v), Yu € E. On the other hand, since [, (1, 1t) = Jouwv (4, 1), this
implies [,3(u, 1) = Jo,5(p, ). That is to say, assuming Gaussian learning being weakly
optimal is imposing an additional third derivative constraint on J(y, v) on the constriants

in Assumption 1.4, making the set of cost functions non-generic.

B.3.3 Linear cost function
B.3.3.1 Proof of Theorem 1.6

Proof. I first prove a result in discrete time. Take any information acquisition strategy
(S, A!, T) that satisfies the constraints in Equation (1.5"). The achieved expected utility
will be:

o0
E [e—pdt-Tu(AT, X)) — Z e PIIAL(SE; x|SHT, 1T<t)]
=0

We can separate the utility gain part and information cost part. Utility gain part is:

e
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It’s easy to see that this is determined only by action time 7 and action process A7 . Let

S = (17—, A |_;)- Then by information processing constraint in Equation (1.5"), we

have:
Prob (gt‘St, X) =Prob (17—¢11, At |St, X) = Prob(17<t+1, At ‘St, X)
=Prob (17,1, A"1|S") = Prob <§t\8t>
— X > St v§t
Therefore:

e PIAE[1(SY; X[SYY 17<4)]

18

t

[ =

A efpdt'tE[I(St, 17’@5,’ X) - I(Still 1T<t; X)]

t

I
o

A e PE[I(SYS X) + I(17<; X|SY) — 1(ST LX) — I(17<; X|STT)]
t=0

o0
=AY e PHE[I(SG X)) — 1(SYT X))
t=0

0
A e’Pdt'tE[I

t=0
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Therefore, by replacing signal process S! with St, the DM can achieve the same utility

gain and pay a weakly lower information cost. Now consider:

E[e (AT, 2) |- A Y e [ 1(85 4130, 17|

t=0

—Prob(T = O)E[u (AO, X)]
+ Prob(T > 1)E[e’9dt'7— u (AT , X) 7 > 1]
- M (8% Xu) - A i e | 1(85 X187 174 )|

)

)-
—Prob(T = 0) E[u (AO,X
) ALX)|T =1] - a1(8% X

+Prob(7 =1 E[e Pty uT > 0)

o8]
—pdt-T T _ —pdt-t qt. Qt—1
+Pr0b(T>2)E[e P u(.A ,X>\T>2] A;f? P E[I(S,X}S ,1T<t>]
Suppose the term:

Prob(7 > 2)E[e*pdt7 ” (AT, X) 7 > 2] —A i opitt E[I<§t,~ X]S”f*l,lm)] (B.32)

t=1

is negative, then discard all actions and information after first period will give the DM
higher expected utility. This information and action process satisfies this theorem. There-
fore, WLOG we assume Equation (B.32), as well as all continuation payoffs are non-

negative. Then:

—pdt-T T _ S dt-t qt. qt—1
E[e o u(A X)] Atzge o E[z(s,x\s ,1%)]
—Prob(T = o>E[u(A0, X)]
+ Prob(T = 1)<E[e—Pdfu (Al,X)W' - 1] - AI<§0;X

y,7'>0>)
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+ Prob(7 = 2) E[ —pdt-T <AT X)‘T > 2] /\ie‘pdt'tE[I<§t;X‘gt_l,lfrgt)]
<Prob(T = 0) E[u (AO 2()]
+ Prob(T = 1) (E[e™"u(A%, )T = 1| - A1(8% X[, T > 0))

[00]
—pdt-(T-1) T _ —pdt-(t—1) qt. qt—1
+Prob(T = 2)E|e* u(A ,X)\T>2] )\t;e o E[I(S,X\S ,1T<t>]

E[e_pdtu<A1,X>|T = 1} — )LI(gO;X\y,T > 0>)
E|ertu(A% X)|T = 2| - A1(8 X8, T > 1))

+ Prob(T = 3)E|e T~ Vu( AT, x)|T >3] -2 i eI DE1( 8 2|8 174, |

- <E[e’pdtu (A%, 2)|T = 1] = A1(8% X|w, T > 0))
(£]

e Pty (.Az, 2\.’) T = 2] — AI<§1;X\§O,T > 1))

+ Prob(T > 3)E|e T2y (AT, X)|T >3] - A i e DE (8 X8 174 )|

<Prob(7 = 0)E [u(AO X)]
dt T. e ot. ot—1 )
P71 (e (AT )72 1] - 3 [1(85218 17,7 5 1)
=Prob(7 = 0)E u< )]
+ Prob(7 > 1 ( —pdty AT X ] A}ggl(é’t X‘T > 1))

E|

)
—Prob(T = 0)E|u( A%, ¥)|

>1)

+ Prob(T < [ —pdt <AT;X>‘T> 1] —/\I(.AT;X‘T> 1>>
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Therefore:

* ~ ~,
E[e_Pdt'Tu <.AT, X)] _ A;)e—pduE[I(St;X|St—1,17_<t)]

<P[T = 0JF(u) + (1~ P[T = 0]) (E|e u (AT, x) | - A1(AT; X[n))

< max{F(y), sup E [e_pdtu(A, X)] —AI(A; X)}
A

Therefore, we showed that any dynamic information acquisition strategy solving Equa-
tion (1.5") will have weakly lower expected utility level than a static information acquisi-

tion strategy solving Equation (1.14).

Now let us consider the continuous time problem. It is clear by Lemma B.5 that any

discretization of Equation (1.1) can be implemented by Equation (1.5"). Hence,

V(p) < lim Vg (p) <lim max{F(y),sip E[e*f’dtu(A, X)] — A(A; X)}

=sup E[u(A, X)] —AI(A; &)
A

= sup Ep[F(v) — /\(H(,‘I/l) —H(v))]
PeA2(X)

On the other hand, take any P and dt > 0, by Lemma B.3, there exists {(j1;) € M such that:

S L
0

—pdt 1—eri
~ Eple ™ F(v)] ~ ———AEp[H(y) ~ H(v)
. —pdt ]. - e_pdt
— V(u) = sup lim Eple P F(v)] — T)\EP[H(]J) — H(v)]
Pen2(x) 40 p

— V(u) = sup Ep[F(v) —A(H(p) — H(v))]
PeA?(X)
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Combining the two inequalities, Equation (1.14) is proved. [

B.4 Proofs in Section 1.8

B.4.1 Choice accuracy and response time: proof of Proposition 1.1

Proof. Since both Hy(y) and F(u) are symmetric functions around g = 0.5, by symmetry
and quasi-concavity of value function (Theorem 1.2), Vci, u* = uo. Let the expected utility
of the action favoring beliefs > 0.5 be F,(y), and the utility of the other action F;(u). Vcg,

by the proof of Lemma A.2, there exists unique v} and v = 1 — pf s.t.

Vk S arg max Fr( )
vz 1+ £ Jo(po, v)

F
1/,1< € arg max 1)

vei 1+ EJolpo,v)

Where Jo(p,v) = Ho(p) — Ho(v) + Hj(4) (v — ). Now I determine the location of {vi, i}

by studying the following cross derivative:

d? E(v)
dC dv1+p]0( ) *y:
_p* E(v)(Hy(u) — Hy(v)) (Fr(u) (Hy (1) — Hy(v)) + FJo(v, )
F(1+

c3 p]O ]/‘/ )) v=v"*, u=ug

>0

The equality is by plug the FOC determining v* into the cross derivative. The inequality
follows by Hy(u) being strictly concave, F/ > 0 and F(p9) = F(pp) > 0. Since the cross
derivative w.r.t. v and c is strictly positive at v"*, the standard comparative statics analysis
suggests that the optimal belief v™* is strictly increasing in parameter c. A completely
symmetric argument applies to v/* and v'* is strictly decreasing in parameter c. Therefore,
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all the {v7, v} are ordered on [0, 1]:

1 )
O/Vk/"' /1/1/]/[0/1/‘1’/' o IV;;/]-

I

Moreover, Vc € (¢, ¢iy1), v™*(c) € (v{,v] ;) and v (c) e (Vii,v

v}). Now assume that the
goal is to make the sign of u* — g strictly positive (negative) when ¢ € (cp;, c2i41) (¢ €
(c2i—1,¢2:)). To achieve this goal, define H(y) based on Hy(y). Let M, ;(u) be a function

on R with the following properties:

e Parametera,be Rand a < b.
o Va,b,u, M,p(n) <0if pe(a,b)and M, = 0 otherwise.
o Va,b, M, p(u) is C® smooth on R and ‘M:z/,b(l/‘)’ is bounded by 1.

The choice of function M can be quite arbitrary. For example, it is not hard to verify that:

(b— a)4 e—(ﬁntﬁ)z

Ma,b(]/l) = _1a<y<bﬁ
256¢ (-7
r [
satisfies these properties. Define v ; = 12—1/" and v} = 1/2—" Since Hy(p) satisfies As-

sumption 1.2-a, there exists e s.t. Yy € [v}(H,v,ZH], H"(u) < —2e. Now define H(yu):

H(V) = HO(V) + Z MVEi/V§i+1 T Z M"z: Vai g

I verify that H(pu) satisfies the conditions in Proposition 1.1. It is easy to verify that

J(p0,v) = J(po,v) when v ¢ J(vh;, v3;,4) or U(vh), vai_1- T(pto,v) > Jo(po,v) otherwise.

First, when c € {c;}:

sup Fr( ) > su Fr(V) < Fr(V{) _ Fr(Vir> > Fr(V>
v=n 14 8] (o, v) ~ vmp 1+ BJo(po,v) — 1+ C%](Plo, vi) 1+ %]0(#0,1/{) v=n 1+ 8] (o, v)
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sup Fi(v) S F(v) . Fy(v}) _ F(v)) - F(v)
van 14+ 8] (o, v) ~ vep 1+ BJo(po,v) — 1+ %](}40, vh 1+ C%]o(#o,vf) ven 1+ 8] (o, v)
F(v]) F(v)) F(v) F(v)

= =sup——5———— _—
1+ EJ(po,v)) 1+ EJ(no,v))  vop 1+ EJo(uo,v) v 1+ Elo(pio, v)

Therefore, u* = ug and the optimal strategy at yq is the same as that with Hy ().
Now I prove that the sign of u* — g strictly positive (negative) when ¢ € (cp;, cpi11)
(c € (ci_1,¢2i)). For the first case c € (cpj, ¢pi+1), since J(po,v"™(c)) > Jo(u,v"™*(c)) and

T (1o, v'*(c)) = Jo(po, v™*(c)),

T+ (o) — max — M) B
V) S T o) < T Do)
‘77(]40) = max & = max o)

v<i 14+ 2T (o, v) — v<ie 1+ 2Jo(po, v)

The first strict inequality is from uniqueness of optimal v"*(c), J(po, v"*(c)) > Jo(u,v"*(c))
and continuity of the objective function in v. Therefore, V* () < V= (up). Since V() is

increasing in ¢ and V~(u) is decreasing in y, their crossing point u* > p. For the other

case ¢ € (€j—1,¢2i), J (1o, vV"™*(c)) = Jo(u,v"*(c)) and ](],to,vl*(c)) < Jo(po, vl*(c)). Therefore,

V) = ma B B
V) R o) Y T Lo )
‘7_(#0) _ max Pl (1/) Pr(V>

vs<p 1+ gj(yo,v) v<p 1+ %)fo(ﬂo,v)

Therefore, V* (ug) > V~(po). Since V' (u) is increasing in  and V= (i) is decreasing in y,

their crossing point u* < . [

B.4.2  Radical innovation: proof of Propositions 1.2 and 1.3

Proof. Consider the solution to the problem of firm L, where the payoff to riskless arm
is up (Ps). By Theorem 1.2, the policy function vy (v) is a strictly decreasing function on
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experimentation region Er. vy (y) is piecewise smooth. Each discrete point of vy (y) cor-
responds to a critical point where the DM is indifferent between confirming two beliefs
associated with two different actions. Now I call the set of those critical beliefs { P‘j}]Ly

where y; is the smallest and y4 is the largest. I first prove the following useful lemma.

Lemma B.24. At each y;, let y£ < 17].L be the smallest and largest optimal posterior beliefs for firm

L. Then either vs(p;j) < ij or vs(pj) > V)

Proof. Define L(V, A, u)(v) and G(V, A, u)()v and G(V,A)(u) as Equation (A.22). Con-

sider:

L(ve Evitup), ) ) = G(EEviu)) ) (B.33)

Optimality condition Equations (A.26) and (A.27) implies that it attains minimum 0 at

both 2]1; and 17jL (and at no other beliefs outside of the range (ij), 17]L) Now consider:

L(Vs, EVe(m)o ) ) - G (F EValup) )

Since in L’s experimentation region V|, > Vs, the term is strictly positive for v > p;. Now

the optimality condition implies that

L(Vs, Evs(uy), i) (v) = 6 (F Vi) ) ) (B34)

attains minimum 0 at vs(y;). Notice that Equation (B.34) is equivalent to:

L(Vs, EVem)o ) ) - G (E OVl )
=L (VL, gVL(P‘j)/ Vj) v) -G (F/ %)VL(W)> (v)

+(Vs(pj) = Vi) + (Vi(uj) = Vi) (v — 1))
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+=(Vs(pj) = V() (H(p) — Hv) + H' () (v — )

SRS

Notice that the second term is linear in v and the third term is concave in y. Since Equa-
tion (B.33) is minimized at ij and 17ij the two points share the same supporting hyper-
plane. Now Equation (B.34) equals Equation (B.33) plus a strictly concave term. As a
result, Equation (B.34) has positive first derivative at ij and negative first derivative at
V].L. Therefore, the posterior belief that minimizes Equation (B.34) is either strictly less

than v/ or strictly larger than v} . n

Step 1. I prove that in the region u > p;, there exists critical belief . that the satisfies
the property of Proposition 1.3. By Lemma B.24, there are two possible cases.
The first case is that vs(u1) < vi. Now if at belief y1, firm S’s optimal posterior is already
associated with a less risky action, then since by definition of y; firm L doesn’t use any
action less risky than that associated with Ei at all. So y. = p1. If otherwise firm S’s and
tirm L’s optimal beliefs are associated with the same action, then by the previous analysis,
vs(pj) < ij. Now I prove that vs(p) < vp(p) for all p > p;. This can be easily seen from
the phase diagram Figure B.1. Since the two firms are using the same action, their optimal
belief is characterized by the same set of ODEs (except for different in initial value). Since
we know that V; > Vg, then the policy function v;, must touch the diagonal line later
than vg. By Picard-Lindelof solution to ODE doesn’t cross, vi(it) > vs(u) for u > pg and
v (u) < vs(u) for u < pp (po is the critical belief the action giving zero expected payoff).
Giving this single crossing property, since vr(uy ) > vs(uy), vi () > vs(u) for all p > py.
The second case is that vs(1) > vi. Now for some u > wy, vs(p) stays above vp(u)
whenever it corresponds to a more risky action. However, the analysis in the first case
shows that when firm S switches action, it either jumps to a strictly less risky action, or
stays at the same action as firm L for some beliefs (but vy (y) and vs(p) crosses once). In
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either cases, the single crossing property holds. So there exists such critical belief .

Notice that the analysis in this region is already sufficient to prove Proposition 1.2.

Step 2. I prove Proposition 1.3 by induction. I prove the following statement that if for
1, there are two possibles cases: vs(p;j) < ij and vs(p) < vp(p) Vpu = pj; or vs(p;) > 171
and there exists yic > p;, then the same statement is true for pj 1.
Ifvs(pjp1) < ijH, then the argument is simple. Case 1 is that firm S has already switched
to a less risky action, then before the firm H switches, vi(p) > vs(p) for sure, up to y;.
Then vy (u) > vs(p) for p > p;j as well by assumption in induction. Case 2 is that firm S is
using the same action as firm L. The by the argument in step 1, before either firm switches
to a less risky action, vy (4) > vs(p). Suppose by contradiction that firm L first switches to
a less risky action at i, then by Lemma B.24, vs(y]._) > VL(y]._), contradiction. Therefore,
to sum up vs(p) < pp(p) Yu > ijH.
If vs(pjr1) > 17];1, the we only need to discuss that firm S ever uses the same action as
firm (because otherwise either single crossing happens and we are in the case vs(y;) < y]I;,
then the induction assumptions shows vs(u) < vp(p) for all p > pj; or crossing doesn’t
happen, then the induction assumptions shows that single crossing happens for . > p;).
In this case, the analysis in step 1 shows that vy (u) and vg(u) crosses at most once, and
afterwards, the induction assumptions shows vs(y) < v(p) for all p > p;. To sum up,
I prove that vy and vs crosses at most once in firm L’s experimentation region. Notice
that V; > Vg, therefore, there exists y in L’s experimentation region where Vs(u) = F(u)
already. Obviously for such belief vy (4) > vs(u). On the other hand, on the left end of L’s

experimentation region:

F(v) = Vi.(n) _ F(v) — Vs(p)

Hu)—Hwv)+H'(y)(v—pn) Hpu)—HWv)+H(u)(v—pn) < Vs(p)

So since Vi(u) > Vs(p) it must be that V(i) > 0. Therefore, there exist y in S’s experi-
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mentation region where V(1) = F(u). This proves that Eg()(0, pc) # & and Eo [ \(yc, 1) #
.

B.5 Proofs in Appendix A.1

B.5.1 Convergence of policy
B.5.1.1  Proof of Theorem A.1

Proof. The original statement in Theorem A.1 is equivalent to: Ve > 0, there exists ¢
s.t. Vdt < 6, Vu € [0,1], there exists [y’ — p| < € and any optimal posterior induced
in discrete time problem with period length dt will be within either [y’ —¢, ' + €] or
[v(p') — e, v(i') + €] Now pick any € > 0, let’s discuss two cases separately:

Case 1: u € [0,1]\E. I first prove the case with Assumption A and Assumptions 1.2-a
and 1.3. I will show that for any dt, any informative experiment is suboptimal. Suppose

not, and there exists v; # u s.t.:

e‘Pdthint(Vi) = Var(p)
and

2 pivi =M

H(u) — > piH(vi) < cdt

Now consider a problem with %. Consider the following strategy: mix experiment p;, v;
and prior with probability % Then obviously Bayes plausibility and capacity constraint

are satisfied. The expected utility from this strategy is:

_pdt ¢ 1 1
Ve (1) 223 P ZP:‘V%(W) 5f = 2—_,?2}71"/@(1/1')
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>e Pt Z in% (v;)
2e PN piViar(vi)

=>F(u)

First inequality is from optimality of V%. Second inequality is from 5~ > x* for x € (0, 1).

Third inequality is from V% > V. Last inequality is from assumption. Therefore F(y) =
Vip) = V% > F(p). Contradiction. So for p € [0, 1], Ny (u) = {p} for any dt > 0. Noticing

that this satisfies Theorem A.1 independent of choice of dt and «.

Then consider the case with Assumption A and Assumptions 1.2-b and 1.3. Suppose

not true, and there exists v; # u s.t.:

B I
e S p V() _dt-C(E> = Var(p)

and

2 pivi=
H(p) = Y piH () = 1
Now consider a problem with %. Consider the following strategy: mix experiment p;, v;

and prior with probability 3. Then obviously Bayes plausibility and capacity constraint

are satisfied. The expected utility from this strategy is:

V(1)

—p4t 1 _pdty 1 dt I
2;6 (o) ZPinztO/i)'?_;)e (% ?E E
epdt it s |
:?( SOWAAGEE Zdtc(%>)
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_ I
>e pdt Z sz% (1/1') —dtC (%>
_ I
>e P piVia(vi) — dtC (E)

>F(u)

1

- > x?forx e (0,1).

First inequality is from optimality of V%. Second inequality is from
Third inequality is from V4 > V. Last inequality is from assumption. Therefore F(y) =
2
V(u) = Vg > F(u). Contradiction. So for u € [0,1], Ny (¢) = {p} for any dt > 0. Noticing
2

that this satisfies Theorem A.1 independent of choice of df and .

Case 2: u € E. Suppose Theorem A.1 is not true. Then there exists ¢ s.t. Vdt, there exists
tar € E s.t. Jvg € Ny (pgr) and Vu € Be(pgr), du(var, N(i)) > €. Now pick dt, = 27" — 0.
Since (pgs,,var,) is an infinite sequence in compact space [0,1]?, we can WLOG assume
(Hat,, var,) — (u,v). V' € B¢ (1), there exists N sufficiently large that Vn > N, i’ € Be(par,)
and dy (var,, N(i')) > €. N can be picked sufficiently large that |vy, — v| < §. Therefore
dp(v, N(i')) > §. To sum up, we find a converging sequence (g, Vat,) to (1, v), which

is bounded away by 5 from the graph of N(-).

Let v be the non-empty set of optimal posteriors (including u itself) at y solving Equa-

tion (1.4). Let

gV(y) with Assumption 1.2-a

C'(I(u)) with Assumption 1.2-b

Consider:

G() = V() + AH()

284



B.5. Proofs in Appendix A.1

Then optimality condition implies that:

Gv) =Gu)+G'(Wv—p) Yvev
(B.35)
G(v) < G(u)+G'(u)(v—pu) otherwise

By Theorem B.1, Vdt, there exists Ay s.t. Equation (1.6) is solved by concavifying G, =

Vat, + Aar, H at pgy,.

Obviously Ay is non-negative. Suppose it diverges to +oc. Then consider function
Gar, () = Var,(-) + Age, H(). Let vy 1 and vg, » be two optimal posterior. Let Véltn =

1
5 (Va1 + Vat,2)- BY |vat, — ar,| > 5, we know that |vg, 1 — var, »| > § by Lemma B.25.

1
Gat, (Var,) = 5 (Gar, (var,1) + Ga, (Vat, 2))
1
=Var, (Vg ) — > (Va, (Hat, 1) + Var, (Var, 1))

() ~ 5 (v, 0) + H,2)))

1 2
<supF + /\dtng sup H" (var, 1 — Var,2)” — —%

So for n sufficiently large, 3, will be higher than the connected straight line of 4, and

Vg, on Gy, . Contradicting optimality of v, . So A4, is a bounded sequence.

Suppose there exists convergent subsequence lim Ay, < A. If p # p* then pick y such
that p’ is in the same interval as y in E and lim Ay, < A(p') < A, let A = A(p'). If p = p*
then let A(p*) > A’ > lim Ay . Now consider concavifying V + A’H. By monotonicity
in Theorem 1.2 and definition of y*, we know that optimal posteriors are bounded away
from p. Moreover, V(u) + A'H(u) < cov(V + AN H)(pu). Pick ¢ > 0 sufficiently small such
that optimal posteriors of V + A'H are bounded away from y by eand V(u) + A'H(p) + € <
cov(V + A'H)(u). Let v; < p < v, be two optimal posterios for V + A'H closest to u. By
continuity, there exists 0 s.t V|u" — u| < 3, V(u") + 'H(u") + § < cov(V + A'H)(u"). Pick
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dty s.t. ||V, — V|| < g, then

Var, (") + A'H(p")

<V(")+ NH(") +

<cov(V + NH)(i") - %‘8
<cov(Vy, + A'H)(u") — £

The last inequality comes from the fact that any convex combination of points on V + A'H
is less than § higher than convex combination of those points on V, + A'H, therefore
less than cov(Vy;, + A'H) + §. Therefore, we showed that any point y” within  ball of y
can’t be on supporting hyperplane of V;; + A’H. So any optimal posterior of V;; + A'H

Then, optimal posterior of Vy + A’H is bounded away from j;, by %. By definition of

is bounded away from p by J. Pick N sufficently large than ¥n > N

A', N can be picked sufficently large that ¥n > N Ay < A’. Therefore, by Lemma B.25,
optimal posteriors are even further from p 4 . To sum up, we found N s.t. Vi > N, the
optimal posteriors from concavifying V;; + Ay, H are bounded away from p 4 by %. The

experimentation cost of any such information structure is:

Z Pz (Mar,) — (thn,i>)
1
= Z pi < (Mat,) P‘dtn - thn,i> - EH”(‘;) (thn,i - th,,)2>

52
>—supH"Z >0

Therefore, for sufficently large n, experimentation cost will eventually exceed cdt,. Con-

tradiction.

Suppose there exists subsequence lim Ay, = A’ > A. By definition, there exists linear
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function L, (i) s.t.

r

Gn (thn) =Ly (thn )

Gn(pat,) = Lu(par,)

A

Gu(v) < Ly(v)

\

Since Ay, — A, G, is bounded at pg, and vy, . Therefore, L, has bounded slope and

constant term. It’s easy to see that L, will converge uniformly to linear function L, on

belief space AX. Moreover, Vv € AX:

Gu(v) = Vg (V) + Agy, Hw) — V(v) + VH(v) = G(v) < Lop(v)
Gn(tar,) = Var, (Har,) + A, H(ar,) — G(p) = Lo (1) (B.36)

Gn(var,) = Var, (Var,) + Aar, H(vg, ) — G(v) = Lop(v)

Second and third convergence comes from Vj;; uniformly convergent and V' continuous.

é(,u) = G(u) + (A — A)H(p). Equation (B.36) implies that L, is a supporting hyperplane

of graph of G, tangents G at p and v. Since G is a smooth function, we know that G'( U =
%E(”). On the other hand, Equation (B.35) implies that:

G(v) < G(u) + G'(u)(v—n)

Contradiction. Last inequality is from concavity of H : H(v) — H(u) < H'(u)(v — n).

Therefore Theorem A.1 is true.
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Lemma B.25. Let X be closed interval in R. Let V be a continuous function on X, H be a concave
function on X. Let Ey = {x € X|cov(V + AH)(x) > V(x) + AH(x)}. Then {E,} are ordered
monotonically as A by set inclusion: if A = A', then ¥ interval I in E,, there exists interval I' in

EvstIcT.

Proof. VA, takeany I € E,. Let I = [x,y]. Define:

L Yy) - V() + AH(y) - AH(x)

L(z) = V(x) + AH(x) y—x

(z—x)

Then Vz € X:

-

L(x) = V(x)+ AH(x)

L(y) = V(y) + AH(y)

L(z) > V(z) + AH(z) ifze (x,y)

L(z) > V(z) +AH(z) ifz<xorz>y

\

Now take any A’ < A and consider V + A’H. Let:

V(y) - V(x) + NH(y) — A'H(x)
y—x

—L(z)+ (A =A) <H(x) + W(z - x))

> L(z) + (A = MH(z) ifze[x,y]

L(z) = V(x) + AH(x) + (z —x)

L(z)+ (M = A)H(z) ifz¢[x,y]

A

L(x) = V(x)+ A'H(x)

= VL) = V() +VH()

L(z) > V(z) + N'H(z) if z € (x, 1)

Therefore, Vz € (x,y), cov(V + A'H)(z) > V(z) + A’H(z). So there exists interval I’ € E/
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st.IcT. [ |

B.5.2  Continuum of actions
B.5.2.1 Proof of Lemma A.1

Proof. We prove with two steps:

Step 1: We first show that if we let V;(F) be the solution to Equation (1.6), then Vy; is
Lipschitz continuous in F under L, norm. VF;, F, convex and with bounded subdifferen-
tials, consider F = max{F;, F>}, F = min{F;, F,}. Then by properties of convex functions,
F,F are convex. 0F(u),0F(u) = 0F;(u)|J0Fx(p). Therefore F and F are both within the

domain of convex and bounded subdifferential functions with the following quantitative

property:

F>F,KE>F

[F—E|=|F - B
It’s not hard to see that V is monotonicaly increasing in F. Therefore, we have:
Vat(E) < Var(F), Var(F2) < Var(F)

Now let (p;, 14;) be the policy solving V;(F). Let Vg = Vg (F), Vg = Vit(E). Let C be total

expected cost associate with this strategy. Then consider:

Var(#) 21y, <0 E W) + 1y, (0=F0¢ " D pH () Var(p)
217, 0<Fo EW) + 17,0550 " 2271 1017, <P 1)5(”3) -C
—20d
T lvdt(ﬂ)>ﬁ(ﬂ)e % tZ Pi (]/t th sz 'ul
>

289



Appendix B. Supplemental materials for Chapter 1

_Ze o dt. 2 le v,ﬁ ZP: 17, igﬁ(y;)ﬁ(ﬂf)—c

Lit—1

>Ze i Z HPz (i )y, sz )17, i)gﬁ(yg)l_:(#f)—c

il Ztl

_2 Z le 1th sz th )F(V§)|F‘_£‘
1.

i ltl

:th(ﬂ) - ‘F —E‘

Therefore,

~Vy| < |[F—F| = |Va(F) = Va(R)| < |F — B V4(F) has Lipschitz
parameter 1.
Step 2: VF;, F,, Ve > 0, by Lemma 1.3, there exists dt s.t. |V(F;) — Vg (F)| < ¢|F; — B|.

Therefore:

V(F) =V(R)| <[V(R) = Va(B)| + V(B) = Va(B)| + Var(F) = Var ()|

<(1 +2€)|F1 — F2|

Take ¢ — 0, since LHS is not a function of ¢, we conclude that V(F) is Lipschitz continuous

in F with Lipschitz parameter 1. |

B.5.2.2  Proof of Theorem A.2

Proof. We prove the three main results in following steps:

e Lipschitz continuity. By Lemma A.1, we directly get Lipschitz continuity of operator V

on {F,, F} and the Lipschitz parameter being 1.

e Convergence of derivatives. Let V,, = V(F,), V = V(F), we show that Vu s.t. V(u) > F(u),
V'(u) = lim V},(u). Since V(i) > F(u), by continuity strict inequality holds in an closed
interval [y, uz] around p. Then by Lemma B.27, limy,_o, V,,(¢') exists Vu' € [p1, p2].
Now consider function V;,(u). Since V;/(y) is uniformly bounded for all n, V;,(u) are
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uniformly Lipschitz continuous, thus equicontinuous and totally bounded. Therefore
by lemma Arzela-Ascolli, V,, converges uniformly to lim V;,. By convergence theorem

of derivatives, V' = lim V}, on [u1, uz]. Therefore, V() = limy,—o0 V;,(1t).

Feasibility. For u s.t. V(i) = F(u), feasibility is trivial. Now we discuss the case V(u) >
F(u). We only prove for p > p* and p = p*, the case y < p* follows by symmetry. If
pu > u*, there exists N s.t. ¥n > N, up > u;. N can be picked large enough that in a
closed interval around y, V,,(4) > F,(i). Therefore, there exists v, being maximizer for

V(1) bounded away from p and satisfying:

€ Falt) = Vo) — Vala) (v — 10
Y ](y,vn)

Va(p) =

Pick a converging subsequence v, — v:

cFlv) = V() = V'(p)v—mn)

Y J (4, vn)

e Faltn) = Valr) = Vi) — )
n—w 0 ](Pl/ Vn)

- i Vi

=V(u)

Therefore V() is feasible in Equation (A.4).

Suppose u = p*. Then there exists a subsequence of y;; converging from one side of
u*. Suppose they are converging from left. Then p > uj;. Previous proof still works.
Essentially, what we showed is that the limit of strategy in discrete action problem

achieves V(u) in the continuous action limit.

Unimprovability. First, when u € {0,1}, information provides no value but discounting
is costly, therefore V(y) is unimprovable. We now show unimprovability on (0, 1) by
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adding more feasible information acquisition strategies in several steps.

— Step 1. Poisson experiments at V(u) > F(u). In this step, we show that Yy > u* and

V(u) > F(p):

PV = mgxe (3, v)

Suppose not true, then there exists v s.t.:

lim pVy () =pV (1)

W) =V —V')(v —p)

J(u,v)
i W) = Valp) = Vi) (v — )
1—00 J(m,v)
< lim oV (p)

Second line is by the contradictory assumption. Third line is by convergence of F, by
assumption, convergence of V,, by Lemma A.1 and convergence of V,, by Lemma B.27.
Last inequality is by suboptimality of v.

Similarly, for the case y < u*, we can apply a symmetric argument to prove.

— Step 2. Poisson experiments at V(u) = F(u). In this step, we show that Yy > u* and

V(u) = F(u) (The symmetric case y < p* is ommited).

First of all, we show that V is differentiable at y and V'(u) = F'(u). Suppose not,
then since V(u) = F(u) and V > F, we know that V — F is locally minimized at .

Therefore DV, () > DV_(u). By Definition A.2, there exists ¢ > 0, uf / u and

)
iy "\ st Vi ,2 X() Vv Let 6] = p — i, 0y = py — p, this implies:

= 8
+ =K

H—py . Py — 1 . 2 — 1) — py)
yg—‘u’f(v(m) V(u) + i m( (u1) = V(n) =€ T
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_n
— ‘un _ylnv<y2>+ :MZ “I/l
Hy — g My — Uy

V(u1) = V(p) + e -min{dy, 55 }
On the other hand:

]/l—y? . n .MZ H . n
P‘EZ—P‘T(H(V) H(py)) + . V1(H(m H(p1))

—_yh 1
LB (0 - ) + 1@ )
Mo — Mg
P‘z H
P‘z Hi

I (g )+ G- )

(B0 )+ 5@ 2)

¢t and ¢} are determined by applying intermediate value theorem on H'. Now we

can choose N s.t. Vin > N, maxye(yn, ) {H" (')} < 2H"(p). Therefore:

H— ;ul . n “I/lg——‘u _ n
o S PL(H(p) — H(u)) + - (H(p) — H(ut))
<H"(p)(ug —p)(p — p1)
=H"(1)0703

Now we consider a stationary experiment at y that takes any experiment with poste-
riors (uy, py) with flow probability EUmpn ) 5o Then by definition the flow cost of this

information acquisition strategy is less than c, thus is feasible. The expected utility

is:

o Ve V) - T

P i (HOD — HO)) + 5l (H(n) — H()
V)~ V(i) +emin{d?, 55}
HY(1)575]
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~ V(u) + eminid?, 6%
= V(u) = (1) pgrf/lm{ n nz}
: 571, ol QH// onsn
:V(V)+€mln{ pZ}” c a (n:u) 1%2
1+ GH"(1)o16;
¢ — H" () max{é}, 65 }
1+ EH"(u)576%

=V(p) + min{éy, 65}

n can be pick large enough that ¢ — H” () max{é}, 6} } is positive. Therefore \7(]/1) >
V(u). Now fix n and define:

%WZE ;gw%>: Vi) ~ T
— lim V() = Wﬂ) > lim Viu(p)

There exists m large enough that V(1) > Vi (1), violating optimality of V,,. Contra-

diction. Therefore, we showed that V'(u) = F'(u).

Next we show unimperovability. Suppose not, then Jv s.t.:

c F(v) = F(u) — F'(u)(v — )
o J(u,v)

By continuity of V, 3¢ and a neighbourhood y € O, Vi’ € O:

CEW) - V() — Fwv—p)
o J(W'v)

V(') +e<

By uniform convergence of F,, and V;,, there exists ¢ > 0 and N s.t. Vn > N:

N, € _ cE(v) = Va(p) - F(p)(v—u)
< 1,v)

R V() - Vi) (v — ) e _ e Fav) = V(@) — () (v — 1)
P J(W,v) 2 p J(W,v)
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/ / / ﬁ](:ulfv)
= Vu(u') = F(u) + pRT—

J(#'v)

V—]/l/ 7

In an interval around p, V;, (') — F'(y) > & which is a positive number inde-
pendent of n and uniformly bounded away from 0 for all ¢/. Then it’s impossible

that V'(u) = F/(u). Contradiction.

What’s more, since V' is Lipschitz continuous at any V(u) > F(u), it can be extended
smoothly to the boundary. Since V' = F" at V(u) = F(u), then the limit of this smooth

extension has lim V' (i) = F/(u). Therefore V is C() smooth on [0, 1].

Step 3. Repeated experiments and contradictory experiments. With the convergence
result we have on hand, we can apply similar proof by contradiction method in step

1 and 2 to rule out these two cases. We omitted the proofs here. Therefore:

_ max max Y W) = V() =V ()(v —p)
e T

Step 4. Diffusion experiments. Suppose at y, diffusion experiment is strictly optimal:

c 2
Vi) < DV

o H"(u)

Then by Definition A.2, there exists ¢, é; s.t.:

cV(p+6)—V(p) = V'(uo

V(p) +e< o H(u) —H(u+61) + H ()6

Then by definition of derivative, there exists J; s.t.:

V4 €< C 525 (Vi +61) = V(i) + 525 (Vi = &) = V(w)
2 p 52 (H(u) — H(p +61)) + 525 (H(p) — H(p — &)
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By convergence of V;, there exists n s.t.:

c (slfst(sz(Vn(P‘ +61) = Vulp)) + (sl(st(sz(Vn(l/‘ —02) = Va(p))

s
Vn(]l) + Z <

—s

Vn(}l + 51) +

01
+ (52 (52 Vn(y B 52)

o1
6 )
=) (1+ £ (00 - 525 HGu 6 - 22 H- ) )

s

e L0 s
+ 8 (H0 - 5 2o - 22 HO-0)) 5

P 52 (H(p) — H(p+61)) + 5% (H(u) — H(p — 52))

If we consider the experiment with posterior beliefs y + 1, u — 6, at p. Taking this

experiment at y with flow probability:

c

H(u) - 51‘1252H(y +01) ~ 535

H(p —67)

Then the flow cost constraint will be satisfied and the utility gain is:

~ _ (51+52Vn(7/‘ +61) + 575 +52 Va(p —62)

Viu(
1+ 8 (H(w) — 525 H(p + 81) = 555 H(u = )
s e (H(w) — 525 Hp + 61) - ﬁ;HW—@D ‘
=Vn Pl -
1+ %)(H(M) 51(25 H(p +61) — 3140, +(5 H(p— 52)) 4
>Viu(p)
Contradiction.

To sum up, we proved that V(u) solves Equation (A.4).

Lemma B.26 (Convergence of u*). Suppose Assumption A and Assumptions 1.3,1.2-aand A.1

are satisfied. Let F, be piecewise linear function on [0,1] satisfying:
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1. |[F,— F| > 0;
2. Vue[0,1], im F),(u) = F'(n).
Let i}, be as defined in Lemma A.2 associated with F,. Suppose u* = lim p;;. Then,
1. Vu > p*, AN s.t. Yn = N, vu(p) = p.
2. Vu <p*, AN s.t. Yn = N, v, (n) < p.
Proof. Vy > u*, by definition lim y}, = p*, there exists N s.t. Vn > N: |y}, — p*| < |p — p*|.

Therefore p > yj, and thus v,,(4) > u. Same argument applies to u < p*. |

Lemma B.27. Suppose Assumption A and Assumptions 1.3, 1.2-a and A.1 are satisfied. Let F,
be piecewise linear function on [0,1] satisfying:

1. |F,—F|—0;

2. Vue[0,1], im F,,(u) = F'(n).
Define V, = V(F,) and V- = V(F). Then: YV € [0,1] s.t. V() > F(u), IUm V},(p).

Proof. With Lemma B.26, we can define y* € [0, 1] (we pick an arbitrary limiting point
when there are multiple ones). First by assumption lim F;(u) = F'(u), and V,, = F,
on the boundary by construction in Theorem 1.2, the statement is automatically true for

u € {0,1}. We discuss three possible cases for different i € (0, 1) separately.

e Case 1: y > u*. If V(u) > F(u), then by convergence in L, norm, there exists N
and neighbourhood yt € O s.t. Vn = N, y' € O, Vu(y') > F,(y'). We know that by
no-repeated-experimentation property of solution v, (u) to problem with F,, v,(u) >
sup O. Now consider V;,(u). Suppose V,,(#) have unlimited limiting point. Then exists
subsequence lim V,,(y) = « or —co. If lim V;(u) = oo, consider v = 0, else if lim V}, (i) =

—o0, consider v = 1:

V(p) = lim V;(p)

n—0o0
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> tim S EW) = Va(p) = Vi()(v = p)
n—w 0 J(1,v)

_cFw)-V() .. o, VU

o Jmy e TG0

=+

Contradiction. Therefore we know that V}, (1) must have finite limiting points. Now
suppose V, (i) doesn’t converge, then there exists two subsequences lim V;,(u) = V|
and lim V;,(u) = V,, V] # V5 € R. Suppose V] > V,. Now take a converging subse-
quence of optimal policy at y v,, — v!. By previous result v! > sup O. Therefore v

will be bounded away from y. Consider:

V(p) = lim Vi, (p)

k—o0
¢ B W) = Vi, () = Vi, () (V! — )
> lim —

k=0 0 J(pu,vh)
_cFh) V() - V(v — )

P J(p,v1)
. Fu (Vi) = Vi () = Vi () (W — 1) (V] = V3) (v — )
= Jm J (4, v, ) " J(u,vh)
>V(u)

Contradiction. Therefore, limit point of V() must be unique. Such limit point exists

since V,, are uniformly bounded. To sum up, there exists lim V;, (u).

Case 2: y = p*. Since V(u*) > F(u*). This implies that AN s.t. Vn > N, V,,(u*) > F,(u*).
In this case, by Lemma A.2, u}; are unique. Since i is the unique intersection of U"*
and U"~ (Definition of U"*, U" ! are as in Lemma A.2, 1 is index), we can first establish
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convergence of u* through convergence of U"+ and U"~!. By definition:

F.(y
Ut(p) = max () /
wepmzp 1+ ] (p, ')

Therefore, suppose the maximizer for index n is vy, m,, then for index n':

n'+ Fn’(Vﬂ)
T )
>un+<‘u) + Fﬂ(vﬂ) - Pn’(vn)

1+ 8J(p,vn)
>U"*(u) — |Fy — Fy|

Since n and 1’ are totally symmetric, we actually showed that the functional map from
F, to U"" is Lipschitz continuous in F, with Lipschitz parameter 1. Symmetric argu-
ment shows that same property for U"~. Since by assumption F, is uniformly con-
verging, we can conclude that U"* and U"~ are Cauchy sequence with L, norm.
Therefore converging. Then U"* — U"~ uniformly converges and their roots will be
UHC when n — . To show convergence of uj, it’s sufficient to show that such

limit is unique. This is not hard to see by applying envelope theory to U"* and U"":

%U”*(y) = f%’F(V”)ﬁ;SE 3)(;’”_” ). Therefore U"*+ — U"~! will have slope bounded below

from zero, therefore the limit will also be strictly increasing. So u* is unique.

Since u}; — p, and V;/(u) are all bounded from above:

V(™) =Vo(ps) + Vi (8) (0" — 1)

=V (Ca)(u* — ) — 0

e Case 3: u < p*. We can apply exactly the symmetric proof of case 1.
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B.5.3 General state space
B.5.3.1 Proof of Theorem A.3

Proof. Vu € E, consider X = supp(u) (This is without loss since we can always focus on

only the support of u). Let (p, v, £) be optimal policy at .

Step 1. Derive optimality condition. Suppose p # 0:

VW)= V() - VV()(v—p)
PV = R H(u) ~ VEG) (v~ p)

(B.37)

Now let p = — H@)=H( y)fv S (MICEDE As an analog to Equation (1.8), first order condition

implies:

FOC —v:VV(v) = VV(u) + A(VH(v) —VH(u)) =0
FOC—p:V(v) = V(u) = VV () (v — ) + A(H(v) = H(p) = VH(u)(v — 1)) = 0
G=virn | VGV) = VG(n)

Gv) = G(u) = VG (v—p) =0

(B.38)

Feasibility condition Equation (B.37) implies A = gV(],t).Moreover, optimality implies
V' e A(X):

— G(V') = G(p) = VG(u)(v' =) < 0 (B.39)

Suppose p = 0, then ~ # 0. Pick any non-zero row o, then feasibility condition of
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Equation (A.1) implies:

_ oTHV(p)o
oV (u) = —Cm

Optimality condition also implies Equation (B.39).
Step 2. Prove V(v) > V(u). Suppose by contradiction that V(v) < V(u). Consider
V(pa) where puy = av+ (1 —a)u, a € (0,1). Since A(X) is convex, p, € A(X). Now by

Equation (B.39), G(pa) < G(i) + VG(p)(pa — p). For a sufficiently small, p, € E. VA’ < A,

let G’ = V + A'H. Then since H is strictly concave, G’ is more convex that G, therefore

G'(4a) = G' () = VG (1) (4o — ) <0
G'(ta) = G'(v) = VG (v)(pta —v) < 0
= G'(pta) + VG (o) (1 — pta) < G' (1)
or G'(pa) + VG (4a) (v — pta) < G'(v)

So optimality condition is not satisfied at y,. Suppose V(j,) is achieved with non-zero p;,
Then A characterizing FOC at p, must be strictly larger than A. Therefore V(y,) > V(p).
Suppose V() is achieved with zero p;. Then V (u,) < V(u) again implies Equation (B.39)
violated. So V' (uy) > V(u). This implies

d
—V(pa) 20

A
— YV ) >0

= V()= V(u) = VV(u)v—un) <0

Contradicting Equation (B.37).

Step 3. Prove V(v) = F(v). Suppose by contradiction that V(v) > F(v). By the analysis
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instep 2 let A = 20 and G = V+AH. Let A’ = &% and G’ = V + A'H. Then
V' e A(X), v # v:

G(') <G(v) + VG) (V' —v)
— G'(V) =G() + (A = )H(/)
<G(v) + VGW)(v' —v) + (A = NH(V/)
<Gv) + VGW)(V —v) + (N = NH(v) + VHW)(v' —v)

=G'(v)+ VG (v)(v' —v)

On the other hand, Vv/, G(v') < G(v) + VG(v)(v' — v) implies HG(v) being negative semi-
definite. Then Vo, cTHG(v)o < 0. Therefore, Vo, cTHG(v)o + (A = A)eTHH(v)r < 0 —

BV(v) < — g;gz((z))‘; Contradicting V(v) being sovled in Equation (A.1).
cTHV (u)o

~oTHH(z)s 18 1O where dense.

Step 4. Prove that the set of y at which £V (y) =

Suppose by contradiction that there exists an open ball O = E on which Yy, £V(u) =

cTHV (u)o
oTHH ()0

maxg — . Let O be a non-degenerate closed ball contained in O. Since V is contin-
uous on V, there exists y* € arg min,co V(p). Yu € O, by definition HV () + %(V)HH ()
is negative semi-definite. Therefore, HV (u) + wHH (u) is negative semi-definite.
Now consider G(p) = V(u) + EV(u*)H(u) on O. G(u) has pointwise negative semi-
definite Hessian. So G(u) is a convex function. On the other hand, optimality of Gaus-
sian signal at p* implies G(p) to be concave. Therefore G(u) is linear on O. So V(u) =
L(p) — %’V(y*)H(y) on O, where L(y) is a linear function.

Now I show that V(u) is a constant on O. Suppose not, V(y) > V(u*). Then V(-) +
%(”)H() = L(-) + &(V(u) — V(u*))H(-) has negative-definit Hessian at y1. So there ex-

ists no o s.t. cTHV (u)o + wUTHH (u)o = 0. Contradiction. However, V(y) being a
constant on O implies HV () = 0 on O, contradiction.
Step 5. Prove that Yu € E, exists v € EC satisfying Equation (B.37). Suppose p > 0,
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then as discussed in step 1, proof is done. Now suppose p = 0. Then by step 4, there is
a converging sequence of yu, — u and v, satistying Equation (B.37) for each yu,. By step
3, v, € EC so v, are bounded away from y, by positive distance. Since v, € EC and E€ is

closed subset of A(X), there exists converging subsequence v, — v € EC. Therefore, by

smoothness of V and H,

) . V(vn) — V(Vn) - vv(ﬂn)(Vn - P‘n)
V) = i V) = i )~ Fl i) — NV E (pr) (v — i)
V() — Vi) - V() - p)

=—c

w) — VV(u)(
H(v) — H(p) = VH(u)(v — )

Step 6. Prove the strict inequality. Define K = {y‘pV(y) = sup,, _CZ;EIZEZ gg } Then by

step 4, K is a nowhere dense set and the inequality in property 4 is satisfied by construc-

tion. Now I prove property 1 on E\K:

Dy V(1) () — 107 - VV (1) = (v(p) )T - = (—5 PM’% — Vi) = VVG) W) ~ ) )

e mHV() ) + OV () (~HH(p
=) ) ( o H(w(x) ~ H(p) ~ VG (s

Now I prove property 3 on E\K: Define J(u,v) = H(u) — H(v) + VH(u)(v — ). Then
Equations (B.37) and (B.38) implies

(i F0) = (=" - VV(p)
YT )
19V = ((VH©) = VH@)w - )" + 1+ 21 0)1)

(FW)(VHW) = VH() + (1 + £ (1)) VF)

-1

( F
= §(IP(£1)W)
) P _
VV(y) = VF + cF(m(lV_HB(}/zV ;H(m)
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Then v = v(u) satisfies the following PDE Va:

s %% N Dv%% s (w . gpwv_Hg(;()J;H(m
— F(u)Dav - HHW)(v = ) = [, 1) (& VE(1 = EJ v, ) + EFGua (VH(v) - VH(u)
::DWMHH@XV—M:jwwggg%%y»Dﬂdm
— D, v -HH(v)(v— p) = J(v. 1) (=Dy_u V() <0

F(u) (1= ] (v, )
The inequality comes from V(y) > 0 and D,V (u) > 0. |

B.5.4 Axiom for posterior separability
B.5.4.1 Proof of Theorem A.4

Proof. Let Sp be a fully revealing information structure i.e. with any prior belief y, each

signal induces posterior belief 6, with probability u(x;). Vi € AX, define:
H(p) = 1(So; X|p)
VS which induces v with probability h(v) with prior u:

I(So; X |p) =1(S; X[u) + E[I(So; X|S, )]
_1(S; X|p) + ff(so,- X|v)h(v)dv

=H(S; X[p) + Ep[1(So; X |v)]

— (S X|p) =H(p) — Ex[H(v)]

Moreover, H(Ey[v]) — Ey[H(v)] = 0 for all distribution & implies that H is a concave func-

tion on AX. [}
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C.1 Omitted proofs

C.1.1 Proof of Lemima 2.1

Proof.

Step 1. Value from solving Equation (2.1) is no larger than value from solving Equa-

tion (C.1):

supE[pru(A, )] )
ST

-

E[I(St;X\St,l, 17’;15)‘7' = t] <cC

st. {4 X - S — A conditional on 7 = ¢

kX—)St_)lT>t

Equation (C.1) is more relaxed than Equation (2.1) in the first constraint. In Equation (2.1),
the flow cost constraint is imposed on each prior induced by previous information and
decision choice. Equation (C.1) only requires the average cost conditional on not having

stopped yet being bounded by c:

I(St,'.)qgtfl, 1T>t) <cC

= E[I(St,'X‘St_l, ITZt)’T = t] < E[C‘T = t] =C

Therefore, any feasible strategy for Equation (2.1) is feasible for Equation (C.1). So

Equation (C.1) is a more relaxed problem than Equation (2.1).

Step 2. Value from solving Equation (C.1) is no larger than value from solving Equa-
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tion (2.2). V (S, T) satisfying constraints in Equation (C.1), define:

I = I(Se_y; X|T > 1)
Vpe =P(T =tHT =1t)

P =P(T <t)

\

Want to show that (I, pt) is feasible and implements same utility in Equation (2.2) as

(St, T) in Equation (C.1). First, consider the objective function:

E

—

pru(A; )]

P(T = t)p:E[u(A; X)|T = t]

s

N
|
o

s

P(T = HT = H)P(T = tp;V*

,...
I
o

pt(1—=P_1)p:V*

s

‘...
Il
o

Second, consider feasibility constraint:

¢ ZE[I(S; X|St1, 170)|T = t]
—P(T = t|T = E[I(S;; X|Se_1, 17=1)|T = t]
+P(T > t|T = )E[I(St; X|St-1, 174)|T > 1)]
=pt(I(St, 1725 X[T = t) = I(St-1, 1724 X[T = 1))
+(1=p)(I(St, 7oy X[T > 1) = [(Se-1, 17> X|T > 1))
=pil(S,; X|T =t)+ (1 — pe)[(Se; X|T > t)
—(pel(Se-1, 175 X|T = 1) + (1 = p)[(Se-1, 1726 X[T > 1))

>pl(A;X) + (1 —pi)li1 — I(See1, 176 X|T = t)
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=pil+ (1 —pi)lis1 — It

First inequality is feasibility constraint. Fist equality is law of iterated expectation. Second
equality is chain rule from posterior separability. Third equality is rewriting terms. Notic-
ing that conditionon 7 = t + 1, 17« is degenerate. Second inequality is from information
processing inequality and applying chain rule again. Last equality is by definition. It is

easy to verify by law of total probability that:

=P(T <t)=P(T =) +P(T <t-—-1)
=P(T =t)P(T =t|T =t)+P(T <t-—-1)

=(1=Pra)pi + P
Then we verify initial conditions:

I = I(Sy; X|T >1) =0

Py =P(T <0) =0

C.1.2  Proof of Theorem 2.1

Proof. First, assume p; = max{O 111 We show that the statement in Theorem 2.1 is
correct with the assumed p;. Since p; = 0 when t > T, Equation (2.2) is finite horizon. So

we can apply backward induction. Define:

—supZ 1— 1)pV*

Pt 1=t
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-

(I—I)pr+ (Irr1 — ) (1 —pe) <

St.4Pr =P, 1+ (1—Prq)ps

P1=01=1I
\

Then V; solves functional equation:

Tt
Vi(I) = SUPTPV* + (1= p)Viga(I') (C2)
p

st (I-Dp+(I'-T)1-p)<c

I conjecture that for I > 0:
T-t-1 c+1
(1 — :) when 5 <1

T
T—tc+1 c+1
R v 1_7_

~ T I ( > :Z I

%V* when ¢ + I

(C3)
>1

solves Equation (C.2). This is clearly true for t = T —1. Since whent =T -1, V;;1 =0
so there is no utility gain from accumulating I. Now we prove the conjecture by back-
ward induction on t. Suppose the conjecture is true for t. Consider solving V;_; from

Equation (C.2).

e Case1: I < c+ 1. Then choosing p = 1 gives utility - T_TV* immediately, thus optimal
and V(1) = TZtv* = V(D).

e Case 1: I > ¢ + I. Consider the one-step optimization problem choosing I":

T—tc+I1-T [—1—c~
Vi(I) = Vi g ——— Vi (I'
¢(I) SUP T + 5 Vin(I)
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When I’ < I — ¢, the objective function is:

T—tetl-1 ., T-1-cT—i1
T I-T1 I-Tr T
11-1-

FOC: —=o— V" <0
— TTA-TR

When I’ > I — ¢, the objective function is:

T—te+I—1 I-I—c(T—t—1c+T c+I'\ < o\ T2
F Dy 1 Ve (1- S5 1-¢
T -1 I-T ( T 1 < I > ver(i-3) >

T=t+2

' NT-t=1T—-T—¢c _,

To sum up, decreasing I’ is always utility improving. So optimal I’ = 0 and optimal

solution of Equation (C.2) is

T—te+l_, c+I\(T—t-1c_, o\ v T—T.,cp, c\T-t2
=" +<1_ I >< T 1 <_T) —Vi-3) )
T-—

T—tc+I c+1 T
TR () 8

Therefore, V;(I) solves Equation (C.2). So with p; defined by max{0, It }, Equation (2.2)

is solved by strategy I; = 0 (i.e. p; = %) and optimal utility is V1(0).

¢
I

Now, consider a general convex p;. We want to show that p; = 7 is still optimal
strategy for Equation (2.2). By definition lim; . >},~;0r = 0, so Ve there exists T s.t

=1 Pt < & Pick T to be an even number. Now define p’ recursively:

e oI = max{pr + (t — T)(oT — pr_1),0}. Define pL = pr — pI when T < T and pI =0

otherwise. It is not hard to verify that pT is convexin T and pf =0Vt > T — 1.

o pI72 = max{pl ,+ (t—T+2)(p%_, —pk 5),0}. Define pI =2 = pT — pI~2. Tt is not
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hard to verify that p1 2 is convex in Tand pL 2 =0Vt > T — 3.

T2k

o pl72k = max{p% M2 4 (T~ T +2k) (p% 2w+2 _pi- %ﬁ%) 0} Define pI—2 =

T2k
Pr -

Vp; satisfying constraints in Equation (2.2) and corresponding P;:

18

pr(1—P_1)piV*

-
Il
—_

[T/2]
Z oi ) |1 —P_y)piv*

I
18
D53
_Q )
/—\

|
—_
[uiy

A
s =
=)
Al |

— -
~
~
N
—

2K —PL_)piV* +eV*

=l
~2 |
NS
-
[
—_

N
s

pZ"—Zk(l — Pt_l)ptV* +eV*

=~
Il
_
-
I
_

pt(1 = P_q)piV* + eV*

/)
s

-
I
—_

ST—2k+2 _
=Pz

First inequality is from -7 o; < &. Second inequality is from optimality of p; in last part.

Last inequality is from »;,_ ¢ > 0. Therefore, by taking ¢ — 0, we showed that:

0

Q0
Zpt —P_)piV* < Z (1= Prq)p:V*
t=1 t=1
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C.1.3 Proof of Lemima 2.2

Proof. First of all, redefine gt s.t.

- S; conditionalon 7 >t
Sy =

sp conditionalon 7 <t
where equality is defined as signal distribution conditional on X and 7 being identical.
It is not hard to verify that S;, T still satisfies constraints in Equation (2.1):

e If 7T < t, I(gt; X\gt_1,17—>t) = 0 since 5} is degenerate. If 7 > t,then 7 >t —1so
I(gt,'X|§t_1, 1T>t> = I(St}.)(|8t_1, 17'>t) <cC

e Conditionalon 7 =t, §t =SisoX — §t — A.

o If §t = 50, then 7 < t for sure, so 17~; is independent to X'. If 5} # 8o, then T >t

for sure, so 17; is independent to X'

So replacing S with S we still get a feasible strategy and induced decision time distribu-
tion 7 is unchanged. From now on, we assume WLOG that S; = so when 7 < t. I only

discuss the case E[T ] < . If E[T] = o then Lemma 2.2 is automatically true.

t ColNNee
=5 > 1=>>P(T =

fla}
j
[
18
hac}
\‘l
|
T
RE

=1 t=1 =1 T=1t=71
o8] 1 0]

=Y P(T=t)==->P(T=>t)c
t=1 €0

P(T = HE[I(Sy; X|Se-1, 174)| T = t]

WV
A=
T8

—_

QlllH QIIIH
s IDJs
—_

,.,
I
_

(P(T = HE[I(S; X|St-1, 1721)|T = t] + P(T < HE[I(St; X|Se-1, 1751)| T < t])

8

E[I(S; X|St—1,17>4)] ZZ (S, X) — I(Si—1; X))
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C \t—®

0
= (hm I(Sg X) + lim > [(Sy X) — I(Se-x; X))
t=T1

=1 lim S P(T = HE[I(S; X|T = 1)|T =t]

Third line is from flow informativeness constraint. Forth line is from St’T ~; = so. Fifth
and sixth line is from chain rule of posterior separable information measure. Seventh line
is from information process inequality and law of interated expectation. Second last line

is from information processing constraint. [ |

C.1.4 Proof of Lemma 2.3

Proof. Take any strategy (i, T) feasible in Equation (2.6). Define
(C4)

Now we prove that Equation (C.4) is a feasible strategy in Equation (2.7) and implements
same value. First, since H is concave, then I; > 0. Since yg = y, Ip = 0. Since pt|7—; = 7

and jg = p, then Py = 0. Now we verify I; < ¢ — ps(I — I;)

EMH(pesar)|T > t] = = H(4) = E[H(ptrsa)|T > t + dt]P(T > t + dt[T > 1)

—E[H(pspra)|T € (¢, t + dt]|P(T € (t +dt]|T > t)

1-F Prigr — Pt

= Iyyar =H(p) — 7—5—— | E[IH(ps1ap)|T > t] — ———5—E[H(pp1ar)| T € (£, t + dt]]
1— P 1-P

— Lyygr — It =E[H(us)|T > t]
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1, <E[H<ut+dt>|fr S =15 AIC e dtﬂ)
1— P 1-P
1-P
=~ p, (ELH(uo) = Hipean) I T > 1)

A B Bt = BB ) — G a0) T € (8t + dt)]) — E[H () — H )T > £])

1-P 1-F
Progi — P \?
_(1——1%) E[H(ut)|T > t]
dP,
— Al =E[~dH ()| > 1] = 3= (Ex[H(w) = HW)I - 1)
— I <c— PtP(I_—It)
— It

First equality is law of iterated expectation. Second, third and forth equalities are rear-
ranging terms. Fifth equality is from taking dt — 0. Inequality is from E[dH (p)|p:] <
ddt.

Finally, deifne p; = 5 f fpt. Then

0 o0
Elo7] =JO prdPr = fo pt(1 — Pr)pedt

To sum up, for any feasible strategy in Equation (2.6), there exists an feasible strategy in

Equation (2.7) attaining same value. So the statement in Lemma 2.3 is true. |

C.1.5 proof of Theorem 2.3

Proof. Itis easy to verify that p; =  is feasible in Equation (2.7) and the objective function
is exactly {,’ pfe_%t%dt. Therefore, it is sufficient to show that V < { pte_%t%dt. Pick any
p:t satisfying constraints in Equation (2.7). Now since p; and p; are integrable, Ve > 0,

there exists T s.t.

0 T
f pt(l — Pt)ptdt < J pt(l - Pt)ptdt + €
0 0
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Then there exists df > 0 s.t.:

[T/dt] (k+1)

Z Pkdt f (1= Pr)pcdt+e
=1 kdt
[T/dt]

(k+1)dt -
= Z Pkdt fkdt e %o Psdsp dr + ¢
k=1

[T/dt]

kdt (k+1)dt
Z Okt (e o prdv e~ o ”TdT) +e

[T/dt] kdt (k+1)d
= prae o P TdT< — e Juar TdT) te

k=1
[T/dt] o
Z Okdt Prar (1 —e Sk N tPTdT) .

k=1

T
JO Pt(l — Pt)ptdt <

Now consider the following sequence:

)
Pk = Pk-dt

R (k+1)dt

pr=1-—¢" Sear - pedtT

\ Pe—1 = Prar

Iy = Iiar

¢ = cdt
We verify that:

(T—T)px + (1 — (1 —pr) <€

Py = P_q+ (1= Pe_1) P

e Solve ODE defining P;, we get Py =1 —¢~ o prdt Apply this to calculate ﬁk — 13,(_1 =

(k+1)dt

Pges1yar — Prar = (1 — Prat) (1 —e pTdT) = (1 — Pr_1) -
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e Solve ODE defining I;, we get:

t
I =f el Psds(c — Tpo)dr
0

= lgrnar — Iear = L(k“)dt e s (¢ — Tpg)d fokdt e P — Tpo)dr
_ J(k+1)dt e pst(c Ipadr 4 (eslg;?l)dt peds 1) J(k+l)dt K pst(C _Ipde
kdt 0
(e i pads 1) Ty + ol " peds J e el Pl (e Tp)dT
kdt
. Afk(l B ﬁk) _ (1 = S}ggrﬂw ds )fk N cJ(kH)dt jlt peds gp f(k+1)dt eg;:u psdspTdT
kdt kdt

(k+1)dt

, (k+D)dt .,
P <Ik a I) fkdt o (fkdt o "pedr - ﬁk)

First, since when 7 € [kdt, (k + 1)dt], Sﬁdt psds <0, Sk];fl A 5" pedsd < dt. Then we

consider
(k+1)dt S}fﬁ pods q R
kdt ‘ Pedt = P
(k+Ddt (k+1)dt
= J elr psd *prdT—1+4¢" Skar - psds
kdt
Let

t ,

Hit, t/> :J eStT deSPTdT— 14e Si psds
t

OH(t,t")

ot’
= H(t,t') =0

—0&H(t,t) = 0

Therefore, to sum up:
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We have checked that py, Py, Iy is feasible in problem Equation (2.2) with parameter p; and

¢. Then by Theorem 2.1:

[T/df]A R ~ ©  sr_p\klg
]; Pk(l_Pk—1>Pk <;Pt<7) 7
2 (I-a\'¢e
— J Ot 1—Pt)ptdt Iglpt<—-) T+28
o0 ke
ZZpkdt<1——_dt> Sdt+e
k=1

Since log(1 — x) < —

0 0
—<kdt€
Jo pr(1 = Py)pedt < Z Pkdte ’kdtf—df +2¢
On the other hand, since pte*%t is integrable, there exists dt sufficiently small that

& c C © c
2 pkdte_fkdt—_dt < J pte_Ttdt +e€
k=1 I t=0

e} a0 c
— f pt(1 — P)pedt < J pte_ftdt + 3¢
0 0

Let ¢ — 0, then we showed that:

® C
V< f ore” T'dt
0
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C.1.6  Proof of Lemima 2.4

Proof. Similar to discussion in proof of Lemma 2.2, I only prove for E[7]| < 0. Let:

P =P(T <t)

Then be proof of Lemma 2.3:
dp, .
dly = E[~dH (u)[T > t] = 7— ;t (I-1) (C.5)

Consider E[T]:

1 o0

E[T] - -J (1— P)cdt
¢ Jo
1 0 0]
> | a-PoE-dHGIT > 1
1
c

(

4 J‘OO<(1 — Pt)dlt + Itd(l - Pt))
0

+L(1=Py)ly

f “( - pydr, + f s It)dPt)

0 0

|~

QA ~Q |~

Inequality is flow informativeness constraint. Second equality is by Equation (C.5). Forth

equality is by intergral by part. n
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D.1 Proof in Section 1.3

D.1.1 Proof of Proposition 3.2

Proof. (Necessity) First suppose I*(S; X|u) satistfies Assumption 3.1. Then choose I* it-
selfas . Vuand S. VX — (S81,...,8V) - S:

E[i 1*(31',-X|31,...,51'—1)] >I*<<Sl,...SN>;X|y>
i=1

>1*(S; X|p)

N
— inf E|) I*(S;xS8%,..., 81 ]>1*(5,~X|y)
B R )

First inequality is from sub-additivity. Second inequality is from monotonicity. On the

other hand, let S! = S, N = 1, then

N
ElZ 1*(51';2(;81,...,81'—1)] = I*(S; X|u)
i=1

N
— inf E|) I*(S;x(SY,..., 81 ]gl*(S;XW)
B R )

Combining the two direction of inequality:

N
(;215)15[2 1*(5i;.)c|51,...,3i—1)] — I*(S; X|p)

(Sufficiency) On the other hand, suppose given I(S; X|u),
(i)
I*(S; X|u) = inf E[ I(s;xlst,..., st ]
(8'N) s

st X — (51,...,3N) S
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Then
0. Uninformative signal: First it’s not hard to observe that acquiring no informaiton

is sufficient for an uninformative signal S. Therefore if choose N = 0 we have,
> I*(S; X|p). Then:
I(S; X|u) =0

1. Monotonicity: ¥(S') st. X — (S8%,...,8Y) — 8. Since ¥ — & — T, we have
X — (8Y,...,8N) — T. Therefore:

(,;Iff)E[Z I(Tl X7 .. ,Ti1>]

s.t.X—><Tl,...,TN>—>’T
<E[§]I(Si;X|Sl,...,Si_1)]
— nf, E[ZI(TZ TIT,.. ,Ti—l)]

st. X — (Tl,...,TN> - T
< It E[i (82187, ,Sil)]
(8%018%) =8

— I"(T, X|u) < I'(S; X|u)

st X —

First inequality comes from that factor that (S') serves as one feasible group of
(7") in the minimization. Second inequality comes from taking inf on RHS. Final

inequality comes from definition of I*.
2. Sub-additivity: Suppose S = (S1,S2). V(S%,...,Si\h> s.t. X — (S},...,S{\h) — &
V(Szl, .. .,Sé\b) conditinal on &7 s.t. V realization of &1, X — <S§, .. .,82N2> — 8.
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Therefore:

X - (311,...,351,3;...,352) S (81,8) > S

Ny ‘ ‘ Np ’ .
— I*(S; X|u) < E[Z 1(3;,-5|511,...,5;1)] + E[Z 1(55;X|51,521,...,351)]
i=1 i=1

Ny Ny
— I*(S; X|u) < infE[Z 1(3{;5|511,...,3;'—1)] +infE[Z I(S5; XSy, S5, .. .,35—11
i=1 i=1

— (S X|p) < I'(Sp; X|p) + E[I*(S; X[S1, )]

3. C-linearity: ¥S, consider S! = ({0,1},A,1 — A) being an uninformative binary signal.
S§% = S when S' = 0 and constant when S = 1. Therefore (S',S?) = S,. By sub-

additivity:
I*(Sp; X[u) < AI*(S; X|p)

On the other hand, consider S! conditional on S 1. If Sy induces v # u, then S Lis

uninformative. Otherwise S = S. Then (S,, S') = S, by sub-additivity:

I*(8; X ) < I*(Sp; Xpp) + (1 - AIF(S; X )

— AI*(S; X|u) < I*(Sy; X|p)

To sum up, AI*(S; X|pu) = I*(Sp; X|p).
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D.2 Proof in Section 3.3

D.2.1  Proof of Theorem 3.1

Proof. Let V(u) be expected utility in Equation (P). Then by assumption V(y) > 0. Sup-
pose V(u) = 0, then Theorem 3.1 is straight forward. V() is achieved by choosing doing
nothing and acquiring no information. From now on, we assume V(u) > 0. Pick any

e < V(u), we want to show that there exists A, T s.t.:

V(p) —e < E[u(A, X)) —mT - Tf(w)

T

Suppose (S', A!, T) solves Equation (P) approches V(i) up to §:

t=0

Vi -  <E| (A7) T = (s 17|

R R
where

X — St=1 5 At conditional on T = ¢

Lemma D.1 shows that we can assume that the signal structure WLOG takes the following

form:

, S0 when 7 <t
S ==

At when T =t+1

Therefore, A'*1,17<; and 17—, are all explicitly signal realizations included in S*. We
discuss two cases separately:
Case 1. E[T] = 1: Consider ST = (80,8 1.8 T) as a combined information structure of
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all signals in first T periods. By sub-additivity in Assumption 3.1:

™
s

I(St, X‘St_l, 1T§f)]
| ¢

I
o

=E

D8

0

—1(8"% X|n) +E[§ 1(8%; x|StY) ]
(8% x0u) + E[1(s% (87 + [i 1(s% x5t ]

0
I(S%; X|p) +E[ZI (8 x|st1) ]

I(Sf,-x\st—l)]

| ¢

t=2
Z...
>I<ST;X|y> +E[ Z I(St;X‘St_l)]
t=T+1
— ME[FI(S5X|8Y)] = 1(ST;&n) vT (D.1)
=0

Now consider:

18" ¢js )]
=0
i(Prob(T HE[I(S'; X|SYY|T < t] + Prob(T > HE[I(S; X|SYH|T > t])
= 2(Pr0b(T < E[I(s0; X|S)|T < t] +Prob(T > t)E[I(S5 X|SY1)|T > t])
= i Prob(T > tE[I(S5; X|SY"1|T > t] (D.2)
i=0
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Since V(i) — &€ > 0, then:

E[T] < maxv

— Prob(7 > T)- T -m < maxv

maxuo
mT

= Prob(7T < T)E[u(.AT, X)‘T < t] > E[u(.AT, X)] —Prob(7T > T) - maxv

— Prob(7 > T) <

2

— Prob(7 < T)E|u( A, &)|T < t| > E[u( AT, x)| - m;XTU

(T >t)=
E[T], then we have:

I(ST;X‘],O < ;}Prob(T > t)E[I(St;X‘St_l)‘T > 1]

I(ST; X|p) _ i Prob(7T > t)
E7] &3 Prob(T > 1)

(ST x & Prob(T = ¢ _
— p(HE A ) D e 7 o (ELS ST = 1)

——

E[I(S; x|SYY|T > t]

(ST XW) o £, t—1
mf(—m )<ZP b(T > DE[F(I(S XIS, 17-)]

T. 0
() <ol o

Consider AT+1 = (AO, A2, ATH) as a random variable which summarizes realiza-
tions of all A’. Since A'*! are directly included in S, we have X — ST — AT+1. There-

fore, by Assumption 3.1:

I(.ATH;XW) < I(ST;XW)

325



Appendix D. Appendix for Chapter 3

(ATH XW) < S £, t—1
mf(—m >\E[§Of(1(8ﬂ|8 >>]

That’s to say, if we can implement AT with expected waiting time E[7 ] and information
cost E[T]f (M>, then utility level will be weakly higher than V. We define the

new strategy as follows:

1. In each period, acquire a combined information structure by mixing AT*! with
probability ﬁ and uninformative signal structure with probability 1 — ﬁ
2. Following arrival of signal AT*1, choosing the corresponding action.

3. If no informative signal arrive, do nothing and go to next period.

It’s not hard to see that in this strategy, action and signal are identical thus the three
information processing constraint are naturally satisfied. In each period, the probabiltiy
of decision making is E[T] and the distribution of actions is AT*1. Therefore, totally utility

gain is:

i (1 - ﬁ) tﬁE[u(AT“, )] = E[u(A™, )
=0

Expected waiting time is:

Expected experimentation cost is:

S(1-ai) (S5 e ()

t=0
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Therefore, we find a strategy which is no worse than original strategy than 5. Then:

T4+1.
V() <E[u(AT™, X)] - mE[T] - [ﬂf(%) e

<sup E[u(A, X)| —mT — Tf(M) + € Ve

AT !

Therefore, we proved Theorem 3.1 when E[7 ] > 1.
Case 2. E[T] < 1: Since T € N, E[T] < 1 means P(T = 0) > 0. When 7 = 0, no

informatin is acquired yet and decision making is based on prior. Therefore:

.
E [u(AT, X)—mT = f(I(S; X|8*‘1))]

t=0

—Prob(T = O)E[u(AO,X)|T - o}

T
+ Prob(T > 1)E [u(AT, X)—mT =) f(I(St;X\St_l))‘T > 1]
t=1
<Prob(7T =0) max Eu[u(a, X)]
-
+ Prob(7 > 1)E [u(.AT, X)—mT — Z f(I(St;X\St_l))‘T > 1]

t=1

First equality is from law of iterated expectation. Inequality is from when 7 = 0, choice

of A? is not necessarily optimal. Suppose:

-
max Ey [u(a, X)] > [ u(A7, x) - Z ( I(St x|St 1))‘7%]
:>E[u(AT,X) mT — Zf Isf X\Stl ] max Ey[u(a, X )]
t=0
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Then strategy (S!, Af, T) is dominated by acquiring no information and this already

proves Theorem 3.1. Suppose on the other hand:

max Ey[u(a, X)] < E

a

1

u(AT, X) —mT — Zf( (S x|St 1)>‘T>1]

( (St X|St 1))]

( (St x|St 1))‘7’21]

— E|u(A7,x) -

<E|u(AT,X)

Then we define strategy S}, A%, 71 where: (Si, A}, T7) = (S, A, T | T = 1). Thenit’s

straight foward that:

E|u(AT, X) = mT; - Zf( (S XISt 1))]

—E|u(AT,X)—mT — Zf( I(S x|St 1))‘T>1]

We only need to verify the information processing constraints.

e When Ty < t: 8 =5
e When 77 = t+1: St = §t = A1 = AL

e 71 = 0 happen with zero probability.

However, in this case E[7 > 1]. Therefore this goes back to case one. To sum up, we

showed that:

Vp) < max{sup E[u(A,X)], sup E[u(A, X)]—mT — Tf(I(A;;Hj))}
A AT>1
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On the other hand the inequality of the other hand is straight foward, any strategy achieve

the RHS can be achieved in origianl problem Equation (P). Therefore:

Vp) = max{sup E[u(A,X)], sup E[u(A,X)]—mT—-Tf (L;Hj)) } (D.3)
A A, T>1

Finally, we consider solving optimal T in Equation (3.1). Fix I, consider:

ni(rmerr(z))

I first show that the objective function is quasi-convex. mT is already linear, so it’s suf-
ficient to show quasi-convexity of T(%) By transforming argument, it’s not hard to see

f(

that it’s equivalent to show quasi-convexity of ! - wrt. I. Now consider I; < I, and

A € (0,1). Suppose by contradiction:

f(h) _ f(B) _ fALQA=MD)

L b AL+(A-MDh
A+ (- N)f(h) _ fOR(1-A)h)
AL+ (1 - )\)Iz Al + (1 — /\)Iz

contradicting convexity of f(I). Therefore, mT + T(:ir) is quasi-convex in T. Since f is
convex, it always has one-side derivatives well defined. So an necessary condition for T

solving the problem will be:

S ORAUREORIE
25 g () AL <0< m b FA) — AFL()
m+ f(0)

— T e ap)
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What’s more, since f is convex, the correspondence f(A) — Af'(A) is increasing (in set
order). Therefore, the set of A such that m+f € Jf(A) must be an connected interval.

m+f

Therefore, € 0f (A) is actually also sufficient for minimizing mT + T f (%)

Case1.: {A|m + f(A) € Adf(A)} # J: Since f is convex, df is a continuous correspondence,

therefore the set is closed. Pick the smallest A:

mT+Tf<%> =m§+§f()\)
(55

Therefore, the total cost paid can be summarized by:

(5 + A )i

Finally, the constraint T > 1 can be replaced by:

I(A; X|p)
A

— (A X) = A

=1

Theorem 3.1 is proved.

Case 2.: m + f(A) — Adf(A) > 0 VA. That is to say:

mT + Tf(%)

is strictly increasing in T V1. Therefore, independent of choice I, choosing smaller T will

yield higher utility. T will eventually be smaller than 1. So we can rule out this case.
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Case 3.: m+ f(A) —Adf(A) < 0 VA. That is to say:

mT+Tf(%)

is strictly decreasing in T V1. However this is not possible since:

lim mT + Tf(%) =+

T—0

To sum up, if {A|m + f(A) e Adf(A)} = &, then we define A = oo. Then the constraint for

second term in Equation (D.3) can never be satisfied and V(u) = sup, E[u(a, X)]. |

Lemma D.1 (Reduction of redundency). (S', T, AT) solves Equation (P) if and only if there
exists <§ T T, AT> solving :

sup Z(P[T— t](E[u(At,X)\T: t] —m-t) (D.4)
SUT, AT =0

- P[T > HE[ £ (1(S5 X(87))|T > t])

S0 when T <t+1
st St =4 AT when T =t+1

St when T >t+1

\

What’s more, the optimal utility level is same in Equation (P) and Equation (D.4).

Proof. Suppose (S!, T, A) is a feasible strategy to Equation (P). Let first show that it’s
WLOG that the DM can discard all information after taking an action: take given 7 and
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Al, take sg as a given degenerate signal, define St as:

a St whenT >t+1
St—

so whenT <t

By definition, St = St conditional on T = t + 1. Therefore:

R R (85 XS8Y L, 17<,) whenT <t
1(562(|3t—1,1¢<t) e <)
0 when 7 >t+1

X — St - A" conditional on T = ¢

To show that the first information processing constraint is satisfied, we discuss the case

S=spand S # s separately:

e When St = so, T <t — 1. Therefore:

Prob(T > t]gt_l =5, X) =0

Prob(T < t’g’t—l =50, X) =1

which is independent of realization of X.

e When 81 %55, 7 > t. Then by law of total probability:

Prob (T > t]St_1>
=Prob (T > 1S, X)
—Prob (T > HSEL A, T > t) Prob(T > t|S'1, )
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+ Prob (T > S X T < t) Prob(T < t[St1, &)
:Prob<T > St X, T = t)Prob(T > 1S )
— Prob(7 > |8, x)
Prob(’r > t|§f—1)
" Prob (7’ > t|§f—1,2()

—Prob <7' > t|§f—1)

which is independent of realization of X'.

Therefore, we proved that:
X -8 1y

Therefore <§ E AL 7') is feasible and :

™
s

f(l(gt,-x\gt—l,%t))]

ST
(e}

1

T f(f(gt,-x}gtl,lm))]

0
a7
Ll

W f(z(st,-;c\st—l,lm))]
0

I
-~
II

FI(SE XS 1<) )]

N
™
18

0

I
—
II
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Therefore, (3 AL ’T> is a feasible strategy dominating (S', A, 7). Now we define St

-

So when T <t+1

S'=1 A% whenT =t+1

St when 7 > t+1

\

Initial information S is defined as a degenerate(uninformative) signal and induced be-

lief is the prior. Verify the properties of S*:

1. When 81 € {so} U 4, it's for sure that T < t. Otherwise, T > t. Therefore 1< isa
direct garbling of St=1. S0 we must have X — S=1 — 17«
2. When T = t, At = 81, Therefore X — St~1 — A! conditional on T = t.

3. Information measure associated with (5‘ t AL T> when 7 > t:

1(85X8Y T > )
=1¢Zt+1I<At+1; X|8CL, T =t + 1)

+ 1T>t+11<§f,~ X|8¢LT >t 1)
:lT:MI(AfH,- X8 T =t + 1)

+ 1T>t+11<§f,~ X8 T >t + 1)
<1T:t+11(§f; X8, T =t + 1)

v 1T>t+11(§f,- X|8¢,T >+ 1)

=I<§t; X’S\tfl,'f > 1)

First inequality is simply rewriting two possible cases of 7. Second equality is from def-
inition of S' when 7 > t + 1. First inequality is from X — S' — A*! conditional on
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T = t+ 1. Therefore, <«§t, T, .At) dominates the original solution in Equation (P) by
achieving same action profile but lower costs. (5’ LT, At> is a feasible solution to Equa-
tion (D.4). Therefore solving Equation (D.4) yields a weakly higher utility than Equa-
tion (P). What remains to be proved is that any (gt, T, .At) feasible in Equation (D.4)
can be dominated by some strategy feasible in Equation (P). It’s not hard to see that it’s

feasible in Equation (P). Finally we show that the two formulation gives same utility:

E

| —

E[u(AT, X)] —m- T — i e—Pitt f<1<§t; x|81, lm))]
t=0

_ i (PLT = (1 (E[W(A, X)IT = t] = m- 1) — | £(1(8% %|8 7 174) ) |)

t=0
= 2 (PIT = H(E[u( A", X)|T = t] —m - H)P[T > E[ £ (1( S X|S)) )T > 1)
t=0
Therefore, Equation (P) is equivalent to Equation (D.4). |

D.2.2  Proof of Proposition 3.3

Proof. The outer maximization of Equation (3.1) is trivial. We focus on solving:

_ (AN
V= sup EAX) (5 + I8 )i (D.5)

Case 1. A* < . By definition of A*, we know that

o m
A —mfargm)‘m(X%—T)

Let

m + f(min{l, A*})
g(l) = ( min{l, A*} )I
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Then m+{9*)1 < g(I) < m+ f(I) and g(I) is a convex function on [0, c0).Equation (D.5)

can be rewritten as:
V(p) = sup E[u(A, X)] = g(I(A; X)) (D.6)

Therefore by definition:

Now it is sufficient to show that if sup 4. I(A; X|p) > A* then V(i) > V1(u), other-
wise V() < V?(u). First of all, suppose sup 4.5 I(A; X|p) = A*, then by definition of
sup gep I(A; X|p) there exists {A}} s.t:

E[u(Al, X)) - (Aﬂ + f()ff))1<,4;i,26|y> > Vi) _%
(AL X ) > A — % e
Bl )] - A () - v

— V?(u) = E[u(A}, X)] —m ‘f<I<A§’X‘”>>

R S N et e ) (s

Now suppose sup 4. p I(A; X |p) < A*. Assume by contradiction that V(i) > V2(y). Then
I first claim that V.A’ solving Equation (D.6), limsup I(A’; X|u) < A*. If this claim is true,
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then there is immediately a contradiction:

lim I(A%; X |p) = A*
lim E[u(A', )] — g (1(A' 1) ) = V()
— lim E[u(A}, X)] — g(A*) = V(n)

— lim E[u(A’, X)) £ (1(A5 X)) = V() > V()
Suppose the claim is not true, then V() < V1(x) and there exists:

lim I(AL; X|p) = A > A*

lim E[u(A}, X)] - wm Q;XW) = V(p)
lim I(Ab; X|u) = A" < A*
Cm+ f(AY)

lim E[u( A5, )] — "5 1( A5 &) = v )

Va e [0,1] consider compound experiment: S is an unrelated random draw with out-
come 1 with probability 1 — a and 2 with a. Conditional on 1, do experiment A} and
follow recommendation. Otherwise do A} and follow recommendation. Call this infor-

mation structure A’,. Then Assumption 3.1 implies:
I( Ay X|p) < (1= a)I(A}; X|p) + al(Ap; Xp)

Since I’ > A* > A, WLOG we can assume [ (A;.;X lit) is bounded within A/, A" by e
and 2¢ < A’ — A*. Now consider the utlity of strategy A, in Equation (D.6). Suppose
I(Ai; X|u) < A* for all « > 0, then:

lim E[u(A;;X)] —g(1<«4f;;X!u>)

a—0
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>E[u (.Ai); X] —g(A%)

=V + (8N —¢) - g(A") — =

Since g is a strictly increasing function with A > A*, given any 6 < g(A' —

exists o' s.t.

E[u( i )] - g (1AL K1) > Vi)~ +0

Suppose there exists a’ s.t. [ (A;i ; X|u) = A%, then:

E|u(Al; )| - g (I(AL; X))

ZE[M(.AL‘}X)] —w ( [xz/X| )
T () + (V) — V() — -

IR (0w 1AL 1) + (AL X ) — 1AL 1)

V() + (VA ()~ V(p)
- % + %ﬁ«m((l —a)(A =€) +a(A" —e) - %)

mt f(A%)

=V(u)— -+ max{tx(Vl(y) —V(n)), T(A’ —a(A = A" —¢

€) — g(A*), there

)

The maximum is independent to i and strictly positive for any a. Therefore:

lim E|u(Al; )| = g (1(AL; X)) > V()

1—00

Contradicting optimality of V(i). To sum up, I show that when sup 45 I(A4; X |p) < A%,
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V(u) = V2(u). Therefore:

Vi) if sup I(A; X|u) = A*
V(y) = a8
VZ(u) if sup I(A; X|u) < A*

AeA
Case2. A* = +o0. By definition of A%, <% + @) is strictly decreasing in A. V.A, A being
feasible in Equation (D.5), it can be improved by replacing A with I(.A; X|u) (feasibility is
still satisfied). Therefore, it is without loss of optimality to assume constraint binding and

Equation (D.5) becomes:
sup E[u(A, )] =m = f(I(A; X))

which is exactly Equation (3.3). n

D.2.3  Proof of Proposition 3.5

Proof. Existence: Equations (3.2) and (3.3) can be solved prior by prior. Therefore, I some-
times don’t explicitly include prior any more in this proof. It's not hard to see that it’s

sufficient to prove existence of solution to:
sup Elu(A, ) = fUL(A X)) (D.7)

where 4 € AA x X and f is convex. Equation (D.7) can be modified to accommodate
Equation (3.2) by setting f to be a linear function. This can be WLOG directly modeled
by changing the information measure I. Equation (D.7) is different from Equation (3.3) by
only a constant. Therefore, it is sufficient to show existence of solution to Equation (D.7)
under Assumption 3.1.

Next let’s explicitly model the set of all feasible .A’s as Markovian transition matrices:
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AA x X e RUAIEDXIXI Tet’s call this set A and any conditional distribution p(a|x) € A.
We define I: A — R™:

where v = (71, u) € I and 7t is defined by distribution of posteriors induced by p:

_ _pGxpp)
Hs(x) = s nn

t(ps) = 2y P(sly)u(y)

Our original problem Equation (D.7) can be written as:

?;5%] plal)u(xyu(a, x) £ (T(p))
To prove Proposition 3.5, it is sufficient to show the convexity of I. If T is convex, the
objective function is continuous in p on the interior of A and any space A is compact (a
closed and bounded set in Euclidean space). Now let’s study the convexity of I. Consider
V p1,p2 € A. Let p = Apy + (1 — A)pz. It's not hard to verify that p € A as well. Want to

show:

~ ~

I(p) < M(p1) + (1= M(p2)

Now define p’ on A x {1,2} = {ay,4ay,...} with twice number of signals than A. Let

)\1 = )L,)Lz = 1*)\, Va, x

p'(ailx) = Aipi(alx)
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Then p’ will be Blackwell more informative than p:

11 00 -~ 00
00 11 -~ 00|

P=r (D.8)
00 00 --- 11

On the other hand, p’ can be written as combination of p; and p,. Let Sy be randomly
{1,2} with probability A1, Ap. Let (511, 4) ~ p1 and (S1/2, 4) ~ p2. Then it’s easy to see
that (So, S1, ) ~ p’. Therefore:

=1(So, S1; X|p)

<I(S(),X“u) + )\1[(81‘1,.)(“]1) + )\2[(81‘2,.)(“]1)

~ ~

=AI(p1) + (1= A)I(p2)

First inequality is from monotonicity, second inequality is from sub-additivity. Therefore
I is a convex (and continuous) function. It’s easy to see that A is a compact set. So we can

apply Weierstrass theorem to conclude existence of solution.

Now suppose p1,p2 are two distinct maximizer. Consider p = ap; + (1 — a)pa. By

convexity of Iand f:

Eu[u(a, x)p(a, )] =aEy[u(a,x)pr(a,2)] + (1 - &)Ey[u(a, x)paa, )]
F(Tp)) <af (Tpn) + (1= a)f (T(p2))

Therefore p weakly dominates p; and pp and p € A. A is convex.

Uniqueness: Now suppose I also satisfies strict-monotonicity. Then consider proof
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~ ~

in last section. First, let p1 # pp. Suppose equality I(p) = I(p') holds, then strict-

monotonicity implies that p is Blackwell sufficient for p’:

M-p=p

Where M is a stochastic matrix. Consider the following operation: If p| ~ p}, then proof is
done. Otherwise, first remove replication of p’ (when two rows of p’ are mutiplications of
each other, then add them up) and get p’. Since p} # p), we can assume p} = p}, s = Ph.
Define p; = pj + p; and p; = p;_,. By definition p’ Blackwell dominates p. On the other
hand, p Blackwell dominates p, so dominates p’, and p’. By Lemma D.2, p’ and p are

identical up to permutation. Then p} must equal to some p;.

e Case 1. If i = 1, then p + p) is a multiplication of p/!, which is a multiplication of

p}- This means pj and p/, are replication, contradiction.

e Case 2. If i > 1, then p] is a multiplication of p;, which is a multiplication of p;_;.

Contradicting definition of p'.

Therefore, p} and p) are replications. Now permute p’ and apply the same analysis on all
Phi_1, Pa;i- We can conclude that any row of p; is a replication of that of p;. To sum up, a
necessary condition for I( p) = ocf(pl) +(1—a)( p2) is that each row in p; and p; induces
same posterior belief v.

Now consider A being set of solutions to Equation (3.1). Suppose by contradiction
there exists .4; and A; and a such that they induces different posterior with realization
a. Let p1, p2 be corresponding stochastic matrices, consider any A ~ ap; + (1 — a)p2. By
previous proof, I(A; X|u) < al(p1) + (1 —a)I(py). In first part, we show that A is convex,
so A is feasible. This contradicts unimprovability.

To sum up, solutions to Equation (D.7) always have the same support. Of course if A
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is uninformative, then it induces prior p. In both case, support of posteriors is uniquely
determined.

Lemma D.2 (Blackwell equivalence). Let P and P’ be two stochastic matrices. P has no repli-

cation of rows. Suppose there exists stachatic matrices Mpp: and Mpip s.t.:

P' = Mpp-P

P = Mpp - P/

Then Mpp: and Mp/p are permutation matrices.

Proof. Let P; = (pi1, pio, - - .) be ith row of P. Suppose P; can not be represented as positive

combination of P_;’s. Then by construction P; = Mpp/; - Mp/p - P, we have:

Then by non-negativity of stochastic matrices, suppose Mpp;j > 0, then Mpp; are all 0
except Mprpj;. Then for all such rows j, we have Mpp/; be a vector with only ith column
being non-zero. However this suggests they are replicated rows. So the only possibility

is that j s.t. Mppr;j > 0 is unique. And
MPP'ij X MP'Pji =1

Since stochastic matrices have elements no larger than 1, it must be Mpp/jj = Mp/pj; = 1.
This is equivalently saying P]{ = P,. Since permutation of rows of P’ doesn’t affect our
statement, let’s assume P/ = P; afterwards for simplicity.

So far we showed that if P; is not a positive combinations of P_;’s, then P/ = P;. We do
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the folloing transformation: P,P are P, P’ removing ith row. Mpp/, M prp are Mppr, Mpip

removing ith row and column. It’s easy to verify that we still have:

13/ = ]r\\/fp/p']3

~ ~

P = Mpp - P

and M. PP/, M prp still being stochastic matrices since previous argument shows Mpps;; and
Mp/pj; being the only non-zero element in their rows. Since they are both 1, they must also
be only non-zero element in their columns. So removing them doesn’t affect the matrices

being stochatic matrices.

Now we can repeat this process iteratively until any row P; will be a positive combi-
nation of P_;. If P has one unique row, then the proof is done. We essentially showed that
P = P’ (up to permutation of rows). Therefore we only need to exclude the possibility of

P having more than one rows.

Suppose P has 1 rows. Then P; is a posistive combination of P_s:

i=2
and P, is a positive combination of P_;’s:
n
~ s
P, =) aiP,
i#2
n
=a%P1 + Z aiZPi
i>2
n
=aasP, + Z (a;?' + a‘%a}) P;
i>2

Since all rows in P are non-negative (and strictly positive in some elements). This is
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possible only in two cases:

o Case 1. a3a) = 1and Y, (a? +a2a!) = 0. This implies P, = a}P,. Contradicting

non-replication.

e Case 2. a%a% < 1. Then P; is a positive combination of P;-,. Of course P; is also a

positive combination of P;-,.

Now by induction suppose p,..., Dare positive combinations of 13j>i- Then:

=N atlal, P+ Z ZaZ“Lla;{Jral“ P;

;H <land P, isa positive

combination of 13j>i+1- Then by replacing IBI-H in combination of all 13]<i, we can conclude

Similar to previous analysis, non-replication implies Z;:l

that 131, ceey 131-“ are all positive combinations of 13]->,-+1. Finally, by induction we have all
E<n being positive combination of P,.. However, this contradicts non-replication. To sum
up, we proved by contradiction that P has one unique row. Therefore, P must be identical

to P’ up to permutations. |

345



	List of Figures
	Acknowledgments
	Dedication
	Introduction
	Optimal dynamic information acquisition
	Introduction
	Related literature
	Dynamic information acquisition
	Rational inattention
	Information design
	Stochastic control

	Model setup
	Motivation for a flexible model

	Dynamic programming and HJB equation
	The auxiliary discrete-time problem
	Discrete-time problem
	Discrete-time Bellman equation
	Convergence and verification theorem

	Optimal information acquisition
	Main characterization theorem
	Proof methodology and key intuitions

	Discussion
	Linear delay cost
	General information measure
	Linear flow cost

	Applications
	Choice accuracy and response time
	Radical innovation

	Conclusion

	Time preference and information acquisition
	Introduction
	Setup of model
	Solution
	An auxiliary problem
	Optimal learning dynamics
	Gradual learning v.s. decisive evidence

	Continuous time model
	Implementation

	Discussion
	Optimal target signal structure

	Conclusion

	Indirect information measure and dynamic learning
	Introduction
	Indirect information measure
	Information structure and the measure of informativeness
	Information cost minimization

	Dynamic decision problem
	Model
	Solution
	Existence and uniqueness

	Conclusion

	Information design possibility set
	Introduction
	Information possibility set
	Main theorem
	Existence and finite support
	Necessary condition for the maximizer
	Convex optimization
	Maximum theorem

	Applications
	Costly Information acquisition
	Dynamic information design
	Persuade voters with outside options
	Screening with information

	Conclusion
	Theorems used in proof

	References
	Appendix for chapter:1
	Further discussions
	Convergence of policy
	Infinite action space
	General state space
	Discrete-time information acquisition

	Omitted proofs
	Roadmap for proofs
	Proof of Theorem 1
	Proof of Theorem 2


	Supplemental materials for chapter:1
	Proofs in sec:foundation
	Useful lemmas
	Proof of lem:recursive
	Convergence

	Proofs in sec:characterization 
	Proof and lemmas of thm:conf
	Proof of thm:conf:conv

	Proofs in sec:ext
	Linear delay cost
	General information measure
	Linear cost function

	Proofs in sec:application
	Choice accuracy and response time: proof of prop:RT
	Radical innovation: proof of prop:innovation,prop:innovation:1

	Proofs in sec:A:ass
	Convergence of policy
	Continuum of actions
	General state space
	Axiom for posterior separability


	Appendix for chapter:2
	Omitted proofs
	Proof of lem:relax
	Proof of thm:1:C2
	Proof of lem:expected:time
	Proof of lem:relax:cont
	proof of thm:cont
	Proof of lem:expected:time:cont


	Appendix for chapter:3
	Proof in sec:model
	Proof of prop:sub

	Proof in sec:dynamic
	Proof of thm:stat
	Proof of prop:solution
	Proof of prop:exist



