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Daily interactions between the hypothalamic circadian clock at the suprachiasmatic 
nucleus (SCN) and peripheral circadian oscillators regulate physiology and metabo-
lism to set temporal variations in homeostatic regulation. Phase coherence of these 
circadian oscillators is achieved by the entrainment of the SCN to the environmental 
24-h light:dark (LD) cycle, coupled through downstream neural, neuroendocrine, and 
autonomic outputs. The SCN coordinate activity and feeding rhythms, thus setting 
the timing of food intake, energy expenditure, thermogenesis, and active and basal 
metabolism. In this work, we will discuss evidences exploring the impact of different 
photic entrainment conditions on energy metabolism. The steady-state interaction 
between the LD cycle and the SCN is essential for health and wellbeing, as its chronic 
misalignment disrupts the circadian organization at different levels. For instance, in 
nocturnal rodents, non-24 h protocols (i.e., LD cycles of different durations, or chronic 
jet-lag simulations) might generate forced desynchronization of oscillators from the 
behavioral to the metabolic level. Even seemingly subtle photic manipulations, as the 
exposure to a “dim light” scotophase, might lead to similar alterations. The daily amount 
of light integrated by the clock (i.e., the photophase duration) strongly regulates energy 
metabolism in photoperiodic species. Removing LD cycles under either constant light 
or darkness, which are routine protocols in chronobiology, can also affect metabolism, 
and the same happens with disrupted LD cycles (like shiftwork of jetlag) and artificial 
light at night in humans. A profound knowledge of the photic and metabolic inputs to the 
clock, as well as its endocrine and autonomic outputs to peripheral oscillators driving 
energy metabolism, will help us to understand and alleviate circadian health alterations 
including cardiometabolic diseases, diabetes, and obesity.
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iNTRODUCTiON

The 24-h transitions between light and darkness [light:dark (LD) cycles] generated by the rotation 
of the Earth provide a strong temporal cue (i.e., the time giver, or zeitgeber) for most organisms, 
which display daily behavioral and physiological rhythms. In mammals, a hierarchical coordination 
is exerted from a central circadian clock at the suprachiasmatic nucleus (SCN) of the hypothalamus. 
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SCN activity orchestrates clocks in peripheral vegetative func-
tions by endocrine and autonomic outputs [reviewed in Ref. 
(1, 2)], in resonance with the cyclic environmental changes. 
Notably, such changes affect not only core body temperature 
(CBT), hormonal secretion, or the timing of sleep but also 
the homeostatic balance of nutrients intake, processing, and 
energy expenditure. Indeed, most mammalian genes oscillate in 
cell-autonomous clocks that interact directly or indirectly with 
feeding-fasting cycles (3). This helps to keep daily rhythms in  
tissue functions, setting adequate timing for nutrient assimila-
tion, mobilization and distribution, and metabolic waste removal. 
This center-to-periphery orchestration is phase stabilized by LD 
phototransduction at the SCN (4). A fine-tuning of this process is 
exerted by peripheral feedback into the SCN through behavioral, 
neural, and/or humoral factors, while peripheral oscillators 
receive entraining signals directly from systemic blood-borne 
metabolites (2).

Recent studies revealed that circadian disruption of this 
network at different levels might lead to metabolic and weight 
homeostasis alterations. Under normal light entraining condi-
tions, adequate phase relationships between the LD cycle and 
body rhythms (e.g., activity/rest, feeding/fasting rhythms, and 
metabolic hormones) are achieved, even when taking into 
account short-term acute variations induced by exercise or 
feeding. Indeed, the timing of behavioral activity and peripheral 
rhythms is separated through endocrine and autonomic outputs 
ensuring a day–night variation in cardiometabolic drive (5). This 
also applies to metabolic rhythms that are needed to sustain and 
even prepare the body for adequate alertness. For instance, basal 
glycemia is daily regulated by insulin, glucagon, and growth 
hormone rhythms, while glucocorticoids regulate both glucose 
uptake and catabolism in muscles, brain, and adipose tissue for 
awakening and activity onset (6).

This article will review the role of photic entraining conditions 
in circadian oscillation, metabolism and energy expenditure, and 
body weight homeostasis, considering the lighting conditions 
commonly used in the laboratory for animal’s studies (i.e., LD 
cycles, photoperiod length, constant light and darkness), as well 
as light pollution in urban environments, helping to understand 
its implications for human health alterations leading to metabolic 
syndrome (MS) and obesity.

THe CiRCADiAN SYSTeM

The SCN Clockwork
The circadian clock is located above the suprachiasmatic tract, 
receiving light information from the retina to entrain the SCN 
activity with LD cycles. The SCN is formed by two bilateral nuclei 
of ~20,000 neurons distributed into two major subregions: a 
ventrolateral region, receiving most retinal afferents expressing 
vasoactive intestinal peptide (VIP), and gamma-aminobutyric 
acid (GABA), and a dorsomedial region expressing arginine-
vasopresin peptide, GABA, and receiving/projecting afferents/
efferents from/to other hypothalamic nuclei (7). Most of the 
dorsomedial neurons exhibit circadian electrical activity through 
self-sustained transcription-translation feedback loops (TTFL) 
involving clock-gene expression and its post-translational 

regulation (8). The transcriptional factor CLOCK and ARNTL, 
and ARNTL2 form heterodimers which binds to E-boxes in 
the promoters of their own repressors, Period (Per1-3) and 
Cryptochrome (Cry1-2), and of the nuclear hormone receptors 
Rev-erb (α and β), and Ror (α, β, and γ). Two additional loops 
control Bmal1 expression, by REV-ERBα repression, and RORα 
activation through RRE elements in its promoter (9). The TTFL 
molecular machinery is functional in almost all cells in periph-
eral tissues and is driven by direct autonomic and/or endocrine 
outputs of the SCN, as well as by indirect blood-borne metabolites 
temporally gated by the SCN (3).

Photic entrainment of the Circadian Clock
Clock-controlled mechanisms allow anticipatory temporal 
organization of biological functions according to predictable 
changes (e.g., the daily LD cycle) and, just as importantly, a tem-
poral segregation between conflicting or incompatible processes 
(e.g., feeding and sleeping). Thus, daily photic entrainment of the 
SCN clock, i.e., to adjust its period with that of the LD cycle, is a 
key organizer for such temporal homeostasis. Light stimuli syn-
chronize the SCN through glutamatergic signaling by means of 
the retinohypothalamic tract (4). Ventrolateral neurons respond 
to photic stimulation during the subjective night in nocturnal 
rodents by increasing the expression of clock genes of the Period 
(Per) family, per1 and per2 (10–13). In turn, signaling from the 
retinorecipient ventrolateral neurons to the dorsomedial SCN 
synchronize self-sustained clock-gene oscillations. Rhythmic 
intercellular coupling allows the SCN to act as a tissue pace-
maker with coherent circadian outputs. Such coupling occurs by 
neuropeptide signaling, such as VIP (through VPAC receptors), 
GRP-mediated communication (14, 15), and NO and GABA 
neurotransmission (16–20). Uncoupling the SCN neuronal net-
work of gene and neurotransmitter activity by untimed circadian 
lighting generates dampened SCN outputs controlling behavior 
and physiology. The SCN acts as the hypothalamic link between 
the retina and oscillators in peripheral organs, entraining those 
organs to the LD cycle.

SCN Outputs That Temporize Tissue 
Oscillators
The SCN is a central timing structure that organizes circadian 
oscillators controlling metabolism, primarily by maintaining 
behavioral rhythms of activity/rest and feeding/fasting, through 
both synaptic (21) and diffusible factors (22) that couple the SCN 
with neuroendocrine and neural outputs. SCN neurons exhibit an 
endogenous rhythm of electrical activity linked to the molecular 
oscillator (23), driving rhythmic neurotransmitter release at their 
efferents (24) even under constant dark conditions (25). Many 
brain areas serve as effectors of the circadian clock, including pro-
jections to different targets such as the paraventricular nucleus 
of the hypothalamus (PVN) and other non-hypothalamic areas 
that gate physiologically relevant sensory information (26). One 
of the major outputs of the SCN is directed toward the control 
of hormonal secretions, by means of (1) direct contact with 
neuroendocrine neurons at the PVN, controlling the release of 
corticotropin-releasing hormone (CRH) and stimulating the 
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FiGURe 1 | Circadian rhythms are driven by a vast network of oscillators regulated by multiple interconnected feedback loops that, in turn, synchronize the entire 
organism. Here, we show a simplified system with three interconnected components: the hypothalamus, brain stem/spinal cord, and the periphery (including 
behavioral rhythms as feeding/fasting and activity/rest). In the hypothalamus, the suprachiasmatic nucleus (SCN) sends synchronizing signals to different 
hypothalamic areas such as the medial preoptic (MPO), paraventricular (PVN), dorsomedial (DMH), and the arcuate (ARC) nuclei. All these are interconnected and 
send feedback information to the SCN. In addition, PVN efferences connect to two main endocrine outputs: (1) a polysynaptic pathway relaying in the superior 
cervical ganglion (SCG) which controls the production and release of melatonin from the pineal gland via its sympathetic innervation and (2) the secretion of 
corticotrophin-releasing hormone, acting on the pituitary for the release of adrenocorticotropic hormone (HPA axis) and controlling adrenal glucocorticoids 
(corticosterone in rodents). The SCN exert a circadian control on PVN outputs for most autonomic nervous system (ANS) functions, driven at the brain stem/medulla 
through parasympathetic motoneurons in the vagal dorsal motor nucleus (DMV), and by sympathetic motoneurons in the intermediolateral column (IML). The 
nucleus tractus solitarius (NTS) acts as an integrative center for signals coming from the hypothalamus, peripheral ANS reflexes transmitted to the DMN and the IML, 
and feedback to the hypothalamus (not shown). Blood-borne factors like glucose, feeding/fasting regulatory hormones and, factors derived from physical exercise, 
can modulate circadian rhythms at peripheral organs, as well as regulate the ANS feedback to the hypothalamus.
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adenohypophysis for the release of adrenocorticotropic hormone 
(ACTH); (2) targeting intermediate neurons, e.g., neurons of the 
medial preoptic nucleus, the dorsomedial hypothalamic nucleus 
(DMH), or the sub-PVN; (3) stimulating autonomic PVN projec-
tions to intervene into autonomic nervous system (ANS) circuits 
that affects endocrine organs; and finally (4) by influencing its 
own feedback (24). In addition, CBT rhythm is a relevant SCN 
output which can temporize peripheral tissues (27). Figure  1 
outlines the integration of circadian energy metabolism, by the 
main brain structures regulating behavioral, endocrine, and 
physiological outputs, and the main pathways for peripheral 
interactions and feedbacks.

The SCN controls several outputs driving diurnal rhythms 
in metabolic hormones to regulate energy homeostasis. A main 
SCN–CRH–ACTH output drives a rise in adrenal glucocor-
ticoids just before activity onset. This promotes arousal and 
alertness by enhancing liver gluconeogenesis (from amino acids 
and fatty acids), promoting release of liver glucose to the blood, 

and increasing its uptake in the brain and muscles. Adrenal 
glucocorticoids have been implicated as a peripheral humoral 
cue for the entrainment of oscillators such as the liver (28). 
Glucocorticoids can also feedback to either the SCN or its outputs 
driving behavioral re-entrainment to light in a model of jet-lag 
(29). The systemic levels of the main metabolic hormones, insu-
lin, glucagon, and adrenalin also exhibit robust circadian rhythms 
controlled by the SCN (1). The circadian rhythm of glucose has 
a direct drive from the SCN through a sympathetic pathway that 
connects with the liver (30). The SCN increases insulin sensitivity 
through multiple pathways, resulting in an increase in glucose 
uptake in muscle, and simultaneously causes increased hepatic 
glucose production (31, 32). In addition, the SCN exerts a direct 
control on cardiac and glucose metabolism (24). Circadian and 
LD-controlled pineal melatonin release is driven by SCN output 
through a multisynaptic pathway relaying in the sympathetic 
superior cervical ganglion (33, 34), regulating metabolism in 
photoperiodic species (see below).

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


4

Plano et al. Photic and Circadian Regulation of Metabolism

Frontiers in Neurology | www.frontiersin.org October 2017 | Volume 8 | Article 558

entrainment of Peripheral Oscillators
Peripheral and central clocks are normally held in adaptive 
synchrony by the SCN. In particular, the central clock regulates 
rhythmic feeding behavior, which in turn produces rhythmic 
food intake generating circadian-metabolic signals in the periph-
ery. Endocrine and autonomic SCN outputs to peripheral tissues 
regulating nutrients intake, processing, mobilization, usage for 
fuel and/or storage provide a circadian control on global energy 
metabolism. While the circadian activity/rest rhythm is entrained 
to the LD cycle, the feeding/fasting rhythm appears to affect the 
timing and robustness of circadian rhythms in metabolic organs. 
As a general rule, peripheral oscillators (like the liver) respond 
rapidly to cycles of food availability, while the light cycle resets 
the SCN more quickly than does food (35, 36). Restricting food 
intake during the light, resting phase in nocturnal rodents under 
LD, in addition to affect CBT and glucocorticoid amplitudes, 
completely reverses clock-gene expression in the liver, kidney, 
heart, and pancreas, but do not affect SCN function (37). Indeed, 
the expression of genes controlling peripheral clocks can be 
regulated directly by the circadian clock, by systemic signals from 
periodic food ingestion, or by a combination of both mechanisms 
(38, 39). While the circadian component of this regulation opti-
mizes the anticipation of predictable fluctuations in the organ 
environment, the responsiveness to systemic cues adds a degree 
of flexibility to the system that is necessary to adapt to unpredict-
able changes in the environment (e.g., in times of caloric intake 
restriction, and/or temporal niche switching, see below).

Peripheral clocks are strongly affected by cell metabolism, the 
physiological and metabolic state of the surrounding tissue, and 
serum-borne signals. Several metabolic signals such as NADH/
NAD+, NADPH/NADP+, ATP/AMP, oxygen and its reactive 
species, carbon monoxide, or glucose, directly affect transcrip-
tional activity of circadian proteins (40). Peripheral oscillators 
such as the liver clock are additionally coupled to cellular and 
general physiology through energy and nutrient sensing systems, 
such as AMP-activated protein kinase (AMPK), PPARGC1A 
(also known as PGC1), metabolic feedback loops involving 
metabolites, such as polyamines, and nuclear hormone receptor 
signaling pathways.

Peripheral oscillators not only adjust their clock-genes 
rhythms to the master circadian clock by a mix of direct and 
indirect signals from the SCN but also can be differentially 
altered in phase by behavior (e.g., activity, or access to food) 
or light. While the liver clock adjusts its phase preferentially 
to feeding time, adrenal glands strongly respond to light input 
Ishida (41, 42). Animals receiving food six times a day lose their 
rhythm in white adipose tissue in seven of nine tested oscillatory 
metabolic/adipokine genes, but not in clock genes. By contrast, 
abolishing the daily corticosterone peak also rendered the peri-
pheral clock-genes arrhythmic (43).

Multiple circadian clocks drive local rhythms of cellular 
metabolism, synchronized by cues from the SCN as well as by 
other inputs. Autonomous rhythms in the mediobasal hypo-
thalamus might contribute to metabolic homeostasis (44–49). 
Moreover, the DMH might play an important role as a compo-
nent of the SCN-independent food entrainable oscillator (50–53). 
Importantly, regulation of body weight involves the integration 

of multiple signals in a neural network of several interconnected 
hypothalamic areas, including the SCN, the arcuate nucleus (AN), 
the ventromedial hypothalamic nucleus (VMH), and the PVN, 
whose interactions control the main three factors that underlie 
energy balance: appetite and food intake, deposition of fat, and 
energy expenditure (2, 54).

Circadian and Metabolic integrative 
Function in the Liver
The functions of the liver are rhythmically regulated; an analysis 
of transcriptions within the liver shows two peaks corresponding 
to the dusk and dawn oscillators, and this may reflect the dif-
ferences in physiological requirements such as energy demand  
(55–58). The liver orchestrates rhythms in energy homeostasis,  
i.e., levels of glucose transporters, the glucagon receptor, and 
enzymes regulating the metabolism of hexose sugars were observed  
with peak phase of expression in accordance with the rhythm of 
feeding. In addition, enzymes related to lipid homeostasis such 
as glycerol 3-phosphate pathway (e.g., glycerol-3-phosphate 
acyltransferase, 1-acyl-glycerol-3-phosphate acyl-transferase, and 
lipins), which regulates glycerol and lipid metabolism and triglyc-
eride accumulation, are expressed in a circadian manner (59).

The liver circadian clock acts by buffering the fluctuations 
of blood glucose levels originated by behavioral and feeding/
fasting cycles in a circadian fashion. Specific Bmal1 deletion 
in the liver reduced basal glycemia in mice during the fasting 
phase, mainly by altering liver glucose export (60), insulin and 
glucagon secretion (61, 62), and glucose production and uptake 
(32, 63). In addition, many clock-genes and clock-controlled 
genes have multiple roles in glucose metabolism. Cryptochromes 
regulate hepatic gluconeogenesis through interaction with G 
protein-coupled receptors, inhibiting cAMP storage and increas-
ing transcription of CREB-regulated gluconeogenic genes. In 
addition, overexpression of Cry1 in liver affects glucose levels 
in diabetic mice (64). Positive and negative regulators of the 
core clock oscillator control circadian regulation of the glucose 
metabolism. Multiple signaling pathways converge on rate-
limiting enzymes of glucose anabolism and catabolism, such as 
phosphoenolpyruvate carboxykinase or pyruvate kinase (65). 
As mentioned earlier, the liver oscillator is strongly coupled to 
feeding/fasting cycles, and its insulin-dependent fluctuations, in 
addition to being regulated at the level of Per1-2 genes (66).

LiGHTiNG CONDiTiONS AND THeiR 
iMPACT ON MeTABOLiSM AND weiGHT 
HOMeOSTASiS iN ANiMAL MODeLS

Murine models have long been the first choice to study the effects 
of environmental circadian challenges. Lighting conditions in 
the laboratory can be manipulated through many protocols: 
adjusting the LD period (i.e., generating T-cycles), determining 
the relative duration of light and dark intervals, regulating light 
intensity, applying light- or darkness-pulses, or maintaining con-
stant routines of darkness or light. The possibility of combining 
all of these should also be considered, thus providing a myriad of 
different challenging lighting environments.

http://www.frontiersin.org/Neurology/
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FiGURe 2 | Schematic changes found in mice and rats chronically exposed to different lighting protocols which might induce circadian and metabolic alterations. 
Actograms double plotted at modulo 24 h show alterations in the behavioral activity rhythm. Compared to standard light:dark (LD) conditions: (1) LDLAN (light at night) 
promotes a dispersed rhythm increasing both general and feeding activity bouts at the light phase, together with reduced suprachiasmatic nucleus (SCN) and liver 
clock-genes amplitude; (2) LL generates behavioral arrhythmicity with loss of the feeding/fasting rhythm, also with dampened amplitude of SCN and liver clock-
genes rhythms; (3) forced desynchrony protocols (i.e., chronic jetlag—CJL—and T cycles) generate two activity components at the behavioral and SCN clock-gene 
(regional) levels, with disrupted daily feeding/fasting rhythms, and with liver clock genes out of phase. Dampened melatonin rhythms occur both under LL and LDLAN, 
while this rhythm is out of phase under forced desynchronization. All lighting protocols promote a decrease in the insulin sensitivity rhythm, and an increased weight 
gain respect to LD.
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12:12 h “square” LD cycles with abrupt light–dark transitions 
constitute a “standard” condition in most chronobiology studies 
with rodents. However, it is difficult to state, from the metabolic 
point of view, which is the “normal” (i.e., eco-physiological) 
lighting condition, since it might be quite variable in the daily 
and/or annual photoperiodic environment. In addition, intrinsic 
photic features of the laboratory LD cycles, such as light intensity 
(i.e., the number of light hours per day, or photoperiod length), 
can modulate behavioral entrainment, metabolism, and weight. 
Spectral composition, abrupt or twilight transitions, and the irra-
diance contrast between light and dark portions of the LD cycle 
should also be considered. Several laboratories have designed 
“dim light at night” protocols to simulate night light pollution in 
urban environments, which will be discussed below (67).

Laboratory 24-h LD Cycles
LD Cycles and Temporal Niche Interaction
Besides circadian photoentrainment, and the subsequent inter-
est in peripheral oscillators, it is interesting to consider the 
temporal niche of the species and the adaptive plasticity of the 
circadian system (68). This is a major hallmark for present and  
future chronobiology, since it includes the comprehension of the 
center-to-periphery interactions among circadian oscillators, as 
well as their eco-physiological interactions with environmental 
cycles. Indeed, temporal niche variations (i.e., “switching”) 
is a strategy used in several rodents during their circannual 
or life cycle (69). In addition, most of the chronobiological  

studies utilize nocturnal rodents, and not all conclusions may be 
applied to understand metabolic alterations in humans, a typical 
diurnal mammal. Although activity/rest rhythms are 180° out 
of phase, diurnal and nocturnal species appear to conserve the 
same fundamental SCN rhythmicity: electrical activity, neuro-
transmission, molecular clock mechanisms, melatonin output 
(signaling the circadian night), and shape of the photic phase 
response curve are roughly equal in both cases [reviewed in Ref. 
(70)]. Downstream of the SCN, most hormonal rhythms reflect 
the changing demands in energy metabolism in coherence with 
the activity/rest and feeding/fasting cycles (see Figure 2 for an 
overview of this phase relationships in nocturnal rodents). The 
same vasopressin SCN signal inhibits (in nocturnal rodents) 
or stimulates (in diurnal species) adrenal glucocorticoids for 
mobilizing glucose uptake in brain and muscles (71). Opposite 
effects for insulin, glycemia, ghrelin, leptin, adiponectin, and 
lipogenesis/lipolysis have also been reported (6, 72).

As for changes between natural and captivity conditions, while 
C57/BL6 mice show typical “nocturnal” activity in the laboratory, 
they were found to be relatively diurnal or even cathemeral in the 
natural environment (73). However, mice coming from the wild 
are strictly nocturnal when placed into laboratory conditions 
(74). This suggests that under artificial LD cycles, the circadian 
clock is able to manage the entrainment of the activity/rest 
pattern, which is an essential output reinforcing clock activity, 
but the temporal activity distribution can also be determined by 
direct masking of light (75). From the point of view of energy 
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balance, the interaction between LD and temporal niche must 
optimize food intake, body mass, and energy expenditure. 
Indeed, locomotor activity can dramatically change to optimize 
food intake, and/or energy expenditure. In voles exposed to 
12:12 h LD with ad libitum feeding, access to a running-wheel 
generates an entrained nocturnal locomotor and feeding pattern, 
with both SCN and liver clock-genes expression in appropriate 
phase to the LD cycle. When the voles had restricted access to a 
running wheel, they showed ultradian activity and feeding bouts 
every 2–3 h throughout the day and night, with arrhythmicity in 
liver clock-genes expression, while the SCN remained in phase 
with the LD cycle (76). A complete temporal niche switching 
(from nocturnal to diurnal) under 12:12 h LD was observed in 
mice exposed to cold and simulated food shortage (77). Again, 
clock-gene expression analysis shows that the underlying neu-
ronal mechanism is downstream from or parallel to the SCN, 
and that the behavioral phenotype is accompanied by phase 
adjustment of peripheral tissues. In both examples, temporal 
niche and peripheral oscillators are phased to reduce metabolic 
costs: in voles, liver circadian rhythms are suppressed to deal with 
ultradian digestive demands; in mice, diurnality reduces energy 
expenditure in a spontaneously nocturnal animal, by reducing 
thermoregulatory costs, as observed in small burrowing mam-
mals in natural conditions (78).

Photoperiod Length
The hypothalamus acts as a photoneuroendocrine integrative 
center, encoding the photoperiod length at the SCN by changing 
phase synchronization of electrical activity between individual 
cells through VIPergic and GABAergic communication [reviewed 
in Ref. (79)]. In turn, a multisynaptic pathway controls pineal 
melatonin nocturnal duration by a sympathetic neuronal output 
(80). Measuring the relative length of the photoperiod (i.e., the 
number of light hours per 24-h cycle) is a predictive variable for 
the regulation of energy metabolism in photoperiodic species. 
For example, the maintenance of high CBT (i.e., euthermia) 
becomes energetically limited during prolonged periods of cold 
exposure and food shortages in winter. Seasonal mammals such 
as the ground squirrel, European hedgehod, or hamsters reduce 
energy expenditure by entering periods of hypometabolism with 
temporary suspension of euthermia, to undergo reversible hypo-
thermia (81). As a general view, this state of torpor last less than 
24-h and is accompanied by continued foraging. Torpor bouts 
lasting consecutive days to several weeks occur in hibernator 
animals that reach lower CBT than daily heterotherms, usually 
do not forage, but rely on energy stores (82). These animals 
exhibit annual cycles of adipose tissue accumulation and body 
weight (83), reflecting changes in the balance between food 
intake and energy expenditure. The most extended strategy is 
to increase food intake and body fat in spring/summer, entering 
hibernation (and bouts of torpor/arousals) during winter by 
reducing appetite, glycolysis, and catabolizing stored adipose. 
However, seasonal changes in food intake do not seem to result 
from hunger/satiety responses to starvation or caloric restriction, 
neither involving changes in the leptin-responsive pathways in 
the arcuate nucleus. Although there is a strong modulation of 
leptin secretion by melatonin (84), the effect of photoperiod on 

leptin modulation of food intake is still not clear. Plasma levels 
of adipose tissue hormones leptin and adiponectin respond in 
proportion to adiposity (85) and to photoperiodic changes in 
fat deposits. However, increased sensitivity to leptin-dependent 
mobilization of fat in short-day housed hamsters was not associ-
ated with changes in expression in either anorexic or anabolic 
peptides expressed in leptin-receptor rich structures in the arcuate 
nucleus (86). Moreover, homeostatic hypothalamic pathways that 
regulates short-term control of food intake involving mediobasal 
neuropeptide Y and pro-opiomelanocortin (87), and/or lateral 
orexin and melanin concentrating hormones [reviewed in Ref. 
(88, 89)], are likely not involved in this photoperiodic regulation.

When dealing with photoperiod-dependent changes in meta-
bolism, it is particularly important to consider established models 
of hibernation in the field, including food intake and regulation 
in hibernating bears (90). While mammalian hibernators cease 
food consumption for long periods of time, there are profound 
changes in metabolic sensor pathways that control weight. In 
particular, grizzly bears exhibit a dramatic change in insulin 
sensitivity, become insulin-resistant during hibernation but 
sensitive throughout Spring and Fall (the active periods during 
which they feed and put on weight) (91). In addition, bears do 
produce leptin all year-round, but the effect of exogenous admin-
istration of the hormone was also different in the Fall (reducing 
food intake) and the Summer (no effect on food intake). Other 
hormones also exerted differential effects: ghrelin levels tended 
to be higher before hibernation, thus contributing to the increase 
in body mass, and decreased during the winter, in accordance to 
the low energy utilization and food intake (92). In other words, 
it is not only the levels of metabolic hormones—e.g., leptin—that 
change seasonally but also their effects on weight and glucose-
sensing mechanisms that might be switched on and off to regulate 
metabolic rate, food intake, and body weight.

Other hormones are also instrumental in coupling environ-
mental to metabolic pathways. Levels of thyroid hormones are 
essential for the photoperiodic control of basal metabolic rate 
and thermogenesis, mainly by sensitizing tissues for the uptake 
and usage of glucose. Glial tanycytes play a central role in the 
photoneuroendocrine pathway integrating photoperiod and 
metabolic state (93). Located in the ependymal layer of the third 
ventricle in contact with the cerebrospinal fluid, they act as glu-
cosensors that have cellular projections to the median eminence 
in tight contact with the pars tuberalis of the pituitary gland, and 
to the arcuate nucleus, regulating their activity. Dense melatonin 
receptors on the pars tuberalis regulate photoperiodic synthesis 
and secretion of the thyroid-stimulating hormone β-subunit 
(TSHβ), which controls tanycyte deiodinase (DIO) expression 
across a wide range of seasonal mammals (94). During long 
photoperiods, higher levels of TSHβ and DIO2 favors the conver-
sion of thyroxin (T4) to triiodothyronine (T3), increasing energy 
expenditure and basal metabolic rate. Lower, short-photoperiod 
levels of TSHβ promote dominant DIO3 activity, which convert 
T4 to both inactive reverse T3 and diiodothyronine T2, increas-
ing food intake and adipose deposits (89). In addition, melatonin 
participates in the phase control of the glucocorticoid rhythm 
and modulates glucose homeostasis according to photoperiod-
dependent metabolic state (95).
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Melatonin and Metabolism
The importance of melatonin in photoperiodic responses leads 
to the notion that the pineal hormone is also a key regulator of 
several metabolic processes. Indeed, early reports revealed that 
both pinealectomy and the administration of pineal extracts 
significantly changed glucose levels and utilization in differ-
ent tissues (96–98). The lack of melatonin can lead to glucose 
intolerance and insulin resistance (99, 100). Such changes can be 
reverted by melatonin administration. In particular, melatonin 
regulates pancreatic function affecting both glucagon and insulin 
biosynthesis (101, 102). The pineal hormone acts by MT-1 and 
MT-2 receptor-related mechanisms on the insulin-signaling 
pathway (103) and, in addition, affects adipose tissue and there-
fore influences many aspects of metabolism (104–106).

The role of melatonin in the circadian control of energy 
metabolism has also been demonstrated by several studies 
that include pinealectomy and melatonin administration or 
replacement (107, 108). In general, the rhythm in melatonin 
secretion and plasma levels might influence the so-called  
“predictive homeostasis,” i.e., the preparation of tissues for opti-
mized responses to internal (e.g., other hormones) and environ-
mental (e.g., diurnal and photoperiodic changes) stimulation. 
In addition, there are some intriguing results indicating that 
melatonin might prevent obesity in animal models, presumably 
through its effect on adipocytes and/or, as indicated above, by 
affecting thyroid hormones (109, 110).

In summary, the pineal hormone not only couples circadian 
and seasonal cues to many body functions but might also be a 
key player in the regulation of metabolic rate. Indeed, changes 
in melatonin profiles—both experimental and induced by 
environmental disturbances related to human chronobiological 
disruptions—might reflect and even produce alterations in meta-
bolism that could be overcome by the appropriate ambient or 
pharmacological interventions.

Light at Night (LAN)
Completely dark nights are set in LD cycles as standard laboratory 
conditions in most chronobiological studies. However, reduc-
ing lighting contrast in LD cycles by dimly illuminated nights 
demonstrated to be a relevant feature for the circadian clock. 
The chronic (i.e., more than 1  week) exposure to dim LAN as 
comparable to moonlight levels (~5  lux), and to levels of night 
lighting in urban areas, are sufficient to cause important effects 
on the circadian system of both nocturnal rodents and humans. 
The effects of LAN were first described at the behavioral level, 
since it potentiates clock entrainment in Syrian hamsters using 
different protocols (111–113). Compared to controls exposed to 
nocturnal darkness, chronic exposure to LAN reduces PER1-2 
amplitude at the SCN level, as well as changes in the amplitude 
of glucocorticoid and melatonin cycles in the Siberian hamster 
(114). Reduced Rev-Erb alpha amplitude, but slight changes in 
Bmal1, Cry1-2, and Per1-2 amplitudes were found in murine 
white adipose and liver tissues, without concomitant changes 
in both general behavioral activity and glucocorticoid rhythms 
(115, 116). However, both studies in mice demonstrate that LAN 
increased body mass and epididymal fat and reduced glucose 
tolerance. Although daily food consumption was similar to LD 

controls, LAN reduced the amplitude of the LD feeding rhythm, 
by increasing food consumption during the light phase (115).  
The main changes found due to LAN exposure in nocturnal 
rodents are depicted in the Figure 2.

Since it was shown that mice fed during the day increase 
their body weight when compared with animals fed ad libitum 
(117), and restricting food access to the night in LAN-exposed 
mice restores the LD phenotype, this change in the feeding 
pattern seems to be an important factor for these alterations. 
Time-restricted feeding (TRF) to the dominant behavioral phase 
(i.e., night in nocturnal rodents) restoring weight homeostasis 
was also observed in other protocols (118) and is now being 
considered an important manipulation to regulate metabolic 
alterations (119), as discussed below. In addition, placing back 
the mice in dark nights after exposure to LAN partially reversed 
the increases in body mass, suggesting that the effects of LAN on 
metabolism are not permanent (120).

As a completely different approach, it is interesting that arti-
ficial nocturnal light might have profound consequences on our 
ecosystem, not only our physiology. Indeed, a recent study has 
demonstrated that LAN completely disrupts nocturnal pollina-
tion which adds to the expanding list of human activities that 
threaten ecological relationships in the planet (121).

Acute Nocturnal Light Exposure
A single, brief (5–60 min) light-pulse exposure is a typical envi-
ronmental stimulus used for chronobiological research studying 
non-parametric photoentrainment (i.e., the acute effects of light 
on phase-shifting mechanisms of the circadian clock). Moreover, 
in nocturnal rodents, other behavioral and physiological effects 
of light are equally important. Acute nocturnal light exposure 
typically abolishes behavioral activity (i.e., negative masking) for 
a brief, fixed interval (independent from the stimulus duration 
but dependent on irradiance) (122). It also induces somno-
lence and a rapid drop in CBT as well as reduces pineal NAT 
activity and melatonin synthesis (123, 124), perhaps through 
a common input pathway to the SCN (125). However, photic 
masking responses seem to be different between diurnal and 
nocturnal species (126); for example, such responses persisted 
after bilateral SCN lesions in the diurnal Nile grass rat (127). It 
is speculated that locomotor suppression by light in nocturnal 
rodents is part of the integrative response of the SCN enhancing 
light effects for the phase-shifting mechanisms (125).

At the peripheral level, the effects of acute nocturnal light on 
circadian genes has been shown to be fast and directly coupled to 
metabolic hormonal functions. Light received at ipRGC melan-
opsin-expressing cells is necessary for the entrainment of corti-
costerone rhythm to LD (128). Acute LAN processed at the SCN 
increase corticosterone surge in rats (129) and mice (41) via the 
ANS to rapidly increase Per1 expression, and also of several genes 
involved in corticosterone synthesis in adrenal glands (41). Also, 
exposure to a light pulse at circadian time 15 increases PER1-2 
expression in the liver in rats, which is abolished with autonomic 
denervation (130). Apart from this hierarchical control, using 
targeted SCN Bmal1 deletions that preserve neural SCN output 
circuitry (131), or temporally dissecting the sensitive-specific 
SCN-photic effects (42), provide intriguing evidence suggesting 
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that light can synchronize peripheral clocks in the kidney, liver, 
heart, and adrenals, through a retinohypothalamic SCN clock-
independent pathway.

Constant Conditions
The chronic absence of LD cycles is an abnormal condition for 
most organisms, except those living in extreme latitudes during 
winter such as the arctic ground squirrel (132) or the reindeer 
(133). Reindeers suppress their daily activity/rest pattern being 
active for most of the 24 h during the polar summer day in which 
constant lighting is present. On the other hand, the constant 
darkness observed during polar winter day diminished activity 
bouts and also generates arrhythmicity in reindeer species living 
at higher latitudes. During the polar Summer day, when constant 
light occurs, the daily rest/activity patterns of reindeers are sup-
pressed to permit near 24 h active behavior. By contrast, during 
the polar Winter, constant darkness reduces the activity bouts 
of reindeers and can lead to arrhythmicity in reindeer living at 
higher latitudes (but LD rhythms are kept at lower latitudes). 
Weak circadian (but not photic) control was found for reindeer 
melatonin levels, as well as for fibroblasts transduced with 
Bmal1:luc or Per2:luc reporters (134), and is proposed to be a 
rule particular to polar resident arctic mammals. Still, there are 
no data on energy metabolism for these species living in such 
extreme conditions.

Constant Light
Chronic exposure to light (LL) is a typical strategy to induce 
circadian arrhythmicity in nocturnal rodents or to study the 
circadian free-running period in diurnal species. LL gradu-
ally increases the circadian period of motor activity rhythm 
(in proportion to irradiance) in nocturnal rodents (Aschoff), 
resulting in arrhythmicity in rat and mice (112, 115, 135). 
Besides behavioral activity, the circadian feeding and drinking 
rhythm are also lost under LL (136, 137), and SCN-physiological 
outputs such as heart rate and CBT also exhibit arrhythmicity 
(138). Uncoupling of neuronal SCN oscillators (139), altered 
SCN expression of clock- and clock-controlled genes (135, 140, 
141), as well as reduced amplitude of SCN electrical activity 
rhythms (142) are functional correlates of the circadian behav-
ioral and physiological arrhythmicity. However, in vivo imaging 
of PER2:LUC oscillations in mice under LL showed peripheral 
rhythms in the liver, kidney, and submandibular glands with 
decreased amplitudes, and distribution of peak phases irrespec-
tive of the state of behavioral rhythmicity (143). This internal 
desynchronization due to LL is associated with several metabolic 
disturbances that, to some extent, resemble those observed  
with dim LAN protocols (see above). In mice, studies have 
shown that different LL protocols can induce abnormally 
high levels of body mass and fat tissue, alterations in energy 
expenditure, develop insulin resistance, and disrupt glucose 
metabolism, among other problems (115, 142–144). Increased 
adiposity in mice under LL was also attributed to decreased 
energy expenditure, by reduced sympathetic β3-adrenergic input 
to brown adipose tissue for the uptake of fatty acids and glucose 
for oxidation (145). Studies in rats have reported similar effects, 
also describing alterations in circulating levels of cholesterol, 

melatonin, glucose, and corticosterone (137, 146, 147). Figure 2 
shows circadian changes under chronic LL exposure in nocturnal 
rodents, and Table 1 supply references and additional details.

Constant Darkness
Laboratory studies are usually performed under chronic con-
stant darkness conditions (DD) to measure the spontaneous 
(i.e., free-running) circadian period in nocturnal rodents. In 
addition, activity/rest patterns in mice and hamsters chronically 
(i.e., months) exposed to DD are not necessarily stable, evolving 
in most cases from a consolidated activity bout to fragmented 
locomotion and eventually into crepuscular bouts (personal 
observations). Despite this, evidences on regulation of energy 
metabolism under chronic DD conditions are scant. One study 
with C57BL/6J mice (172) suggested that DD could be consid-
ered a cue triggering metabolic changes for hibernation, since 
hibernating mammals will seasonally encounter DD conditions 
inside a den. Although the mouse is not a true hibernator, it can 
undergo torpor under caloric or thermal restriction, a hibernator-
like behavior, entering brief sleep periods lowering CBT down to 
~30°C (173). Zhang et al. (172) found that mice exposed to 2 days 
under DD, or rendered torpid by food deprivation, increased 
circadian gene expression and activity of fat catabolic enzymes 
in peripheral metabolic tissues, together with elevated blood 5′-
AMP, a typical metabolic switcher acting intracellularly via AMP 
kinase to stimulate fatty acid oxidation, a necessary adaptation 
when glucose supplies are short. Indeed, a synthetic form of 
5′-AMP in LD exposed mice induces the hypothermic torpid 
state and expression of fat catabolic enzymes. The authors also 
reported that mice maintained under DD for a week consumed 
less food and water [similar to rats (174)], decrease body weight, 
rapidly re-directed metabolic status and showed higher non-
esterified fatty acids and lower glucose blood levels compared to 
mice kept under LD. This is surprising in laboratory mice, which 
are not usually photoperiodic and are routinely exposed to DD 
in circadian studies without reported weight loss or metabolic 
changes. Zhang et al. (172) also reported that peripheral circadian 
gene expression under DD reverses 5 h after re-exposure to LD, 
which emphasizes the complex effect of environmental light 
on peripheral physiology and metabolism. The authors did not 
assess other indirect effects as putative (acute) increased activ-
ity bouts in mice when transferred from LD to DD, increasing 
energy demand and thus 5′-AMP levels under DD [discussed in: 
Hastings and Loudon (175)]. In addition, photoperiodic coding 
by melatonin is absent in C57BL/6J mice, with a mutated gene 
for serotonin N-acetyltransferase (176). Also, it is intriguing that 
these acute responses to DD found in mice are consistent with 
how short photoperiods or darkness induce hibernal hypome-
tabolism in photoperiodic species, which are programmed over 
months (83).

Chronic Jet-Lag Simulations  
and T-Cycle Protocols
Protocols of chronic phase-shifting of the 24-h LD cycle  
(i.e., chronic jet-lag, CJL), or LD schedules with periods 
different from 24  h (i.e., T-cycles) that affect steady-state 
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TABLe 1 | Abnormal light:dark conditions and metabolic alterations in animal models.

Manipulation Species Alterations Reference

Constant light Mouse  – Increased body weight
 – Altered feeding patterns
 – Reduced glucose tolerance

Fonken et al. (115)

 – Increased body weight
 – Greater food intake
 – Decreased energy expenditure
 – Loss pattern of insulin sensitivity

Coomans et al. (142)

 – Reduced amplitude of liver and kidneys clock-genes rhythms Hamaguchi et al. (143)

 – Increased fat accumulation in response to high fat diet Shi et al. (144)

Rat  – Reduced food and water intake
 – Increased adiposity

Wideman and Murphy (137)

 – Increased circulating cholesterol levels Vinogradova et al. (147)

 – Disrupted patterns of plasma melatonin, glucose, lactic acid, and corticosterone Dauchy et al. (146)

Hamster  – Altered rhythms of glucocorticoid release Lilley et al. (148)

Light at night Mouse  – Increased body weight
 – Reduced energy expenditure

Borniger et al. (149)

 – Increased body weight Aubrecht et al. (150)

 – Increased body weight
 – Altered clock-gene expression in liver and adipose tissue

Fonken et al. (116)

Rat  – Reduced glucose tolerance Opperhuizen et al. (151)

Chronic phase shifting Mouse  – Increased body weight
 – Increased body fat
 – Higher levels of triglycerides
 – Altered adipocytes morphology

Casiraghi et al. (118)

 – Increased body weight
 – Increased white adipose tissues
 – Altered liver metabolic genes expression

Oike et al. (152)

 – Altered liver clock-genes expression
 – Suppression of glucocorticoid and melatonin receptors expression in the liver

Iwamoto et al. (153)

 – Increased progression of colitis Preuss et al. (154)

 – Increased insulin resistance
 – Increased fat accumulation

Zhu et al. (155)

Rat  – Increased body fat
 – Decreased serum insulin, leptin, and glucose levels
 – Altered profiles of liver metabolism gene expression

Herrero et al. (156)

 – Increased body weight
 – Higher fasting glucose levels

McDonald et al. (157)

 – Increased body weight
 – Reduced activity
 – Increased food consumption

Tsai et al. (158)

 – Lower plasma insulin levels
 – Increased fat in response to a high-fat diet

Bartol-Munier et al. (159)

T-cycles Mouse  – Increased body weight
 – Increased leptin and insulin levels

Karatsoreos et al. (160)

 – Reduced corticosterone levels Sollars et al. (161)

Ultradian light cycle Mouse  – Increased body weight
 – Reduced activity

Oishi and Higo-Yamamoto (162)

Sleep disruption Mouse  – Disrupted lipid metabolism gene expression
 – Increased liver and serum fatty acids

Ferrell and Chiang (163)

 – Altered feeding behavior
 – Global disruption of liver metabolic transcriptome
 – Impaired gluconeogenic capacity and glycogen storage rhythms

Barclay et al. (164)
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Manipulation Species Alterations Reference

Rat  – Reduced glucose tolerance Jha et al. (165)

 – Increased body weight
 – Altered feeding patterns
 – Liver clock-genes desynchronization
 – Disrupted rhythms of plasma glucose and triacylglycerols

Salgado-Delgado et al. (166, 167)

 – Increased body weight Marti et al. (168)

Mistimed feeding schedules Mouse  – Increased body weight
 – Hyperphagia
 – Induced leptin resistance
 – Higher levels of plasma insulin
 – Increased accumulation of cholesterol, triglycerides, and fatty acids in the liver

Yasumoto et al. (169)

 – Increased body weight
 – Increased calorie intake
 – Increased respiratory exchange ratio
 – Altered liver and other peripheral organs clock- and metabolic genes expression
 – Disrupted daily hormones variations 

Bray et al. (170)

Rat  – Increased body weight
 – Desynchronization of liver rhythms

Opperhuizen et al. (171)
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entrainment of the SCN clock, demonstrate to be a disruptive 
condition generating the internal desynchronization of the 
whole circadian system. It ranges from behavior (177, 178), 
ventrolateral-dorsomedial uncoupling of Per1 and Bmal1 SCN 
expression (177), to peripheral regulatory outputs as CBT and 
sleep stages (179) and melatonin secretion (180). Thus, it is 
not surprising that this chronic misalignment of the circadian 
clock with the photic cycles leads to metabolic alterations (see 
Figure 2 and Table 1). Exposing mice to chronic 6-h advances 
of the LD cycles every 2  days (i.e., CJL by advances) induces 
weight gain, increases body fat, plasma triglycerides, and 
adipocyte size, yet without a concomitant increase in food con-
sumption (118). Interestingly, these effects were not observed 
when applying a similar CJL delaying schedule, which allowed 
behavioral entrainment. Similar CJL protocols consisting of two 
6-h advances on a weekly basis, or of 8-h advances every 2 days 
also reported disrupted genes expression in the liver (152, 153). 
Some groups have tested protocols of alternating advances and 
delays of the LD cycle in rats and found increases in total body 
weight and adipose tissue along with alterations in metabolic 
hormones and liver function (156).

Rats exposed to T-cycles of similar length to their endogenous 
period (T25 and T26) show decreased body weight, food con-
sumption, and less weight gain/food grams when compared with 
those exposed to shorter T-cycles (181). This experiment provides 
an interesting hypothesis of circadian-metabolic resonance, in 
which light cycles very similar to the circadian period efficiently 
couple SCN-peripheral entrainment to nutrient intake/delivery 
with energy output. In agreement, mice exposed to shortened 
T-cycles of 20 h display high body weight, increased leptin, insu-
lin, and insulin/glucose ratio (160). Together, the studies using 
CJL and T-cycle protocols indicate that chronically forcing the 
clock to entrain by advances is the worse condition for the body 
energy metabolism and weight regulation.

LiGHTiNG eNviRONMeNTS iN HUMANS

Photic Responses of the Human Clock
Although social cues also act as relevant zeitgebers, the human 
circadian clock responds in a canonical way to light, similar to 
other diurnal mammals. It exhibits the main sensitivity to light 
in the late biological day/early biological night, delaying up to 
3 h the clock phase, a phase advance region (~2-h shifts) in the 
early biological day, small phase shifts during the middle of 
the biological day, and a transition point toward the end of the 
biological night (182). Importantly, this timed response to light 
is of functional significance for the entrainment of the human 
clock by natural daylight, shifting its phase (mid-sleep time on 
free days) to the time of dawn at different latitudes (183). It 
could be generalized that human rhythms, such as activity/rest 
and melatonin secretion, become significantly earlier and shift 
to the natural crepuscules when exposed to strong (“natural”) 
zeitgebers composed of bright daylight and absence of artificial 
nightlight (184, 185). Indeed, light pollution in urban areas, 
i.e., the artificial lighting during the biological night, might 
have induced a shift of human activity toward the night and 
is emerging as a negative factor for health increasing the risk 
for metabolic disorders (186). Altered exposure to the natural 
LD cycle by attenuated exposure to daylight within buildings or 
increased exposure to artificial nightlight is one of the mecha-
nisms leading to insufficient sleep (187). This is the so-called 
social jet-lag, i.e., the situation in which the body’s biological 
clock and the actual sleep schedules do not match, and which 
can be quantified as the difference between mid-sleep time on 
work days and mid-sleep time on free days (188). Poor (self-
reported) lighting exposure, together with metabolic factors 
(changes in weight and appetite) of the seasonal variations in 
mood, is a key to the MS in the Finland population (189). In 
addition, irregular activity-rest patterns with higher interdaily 

TABLe 1 | Continued
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stability was also associated in older (81.6 ± 7.5 years) adults 
with MS (190), although photic effects on the daily patterns 
were not determined in this study.

Light intensity of ~200  lux is able to shift the human circa-
dian clock (191) and even very dim light can decrease plasma 
melatonin levels (192), which indicates that subjects under typi-
cal indoor illumination can receive enough irradiance at night 
to affect their circadian system. Higher levels of LAN exposure 
(>3 lux) in elder people, resulted in higher body weight and body 
mass index (BMI), elevated triglyceride, and LDL-cholesterol 
levels independent of demographic and socioeconomic param-
eters, and without changing melatonin levels (193). Using satellite 
images of night time illumination, and clinical data on countries 
worldwide, a statistical significant association has been found 
between the exposure to LAN and being overweight (194).  
A similar study in Korean urban areas also found this association 
together with delayed and disrupted sleep (195). Taking together, 
the data from Wright et al. (184), de la Iglesia et al. (185), and 
Roenneberg and Merrow (188), it could be hypothesized that 
humans living in urban areas with access to electrical light likely 
experience LAN, delaying its biological clock, and therefore gen-
erating social jet-lag. Remarkably, a large-scale epidemiological 
study has demonstrated that social jet-lag is a key factor increas-
ing BMI and obesity, independently of sleep duration (196). 
Greater social jet-lag associated positively with triglycerides, 
fasting insulin, insulin resistance, waist circumference, and BMI, 
and negatively with HDL cholesterol (197).

Our current 24-h society requires an increasing number of 
employees to work nightshifts and, as a result, millions of people 
worldwide work during the evening or night for a certain period 
of their life. Most epidemiological studies indicate that LAN is 
a key factor in shift workers to develop metabolic impairments 
(198), and the risk of MS increases in health-care personnel 
working night shifts (199). However, the establishment of a 
direct link between LAN affecting the circadian clock and 
metabolic disease in shiftworkers has been prevented by a lack 
of consistent, quantitative methods for measuring LAN supply-
ing contradictory results [reviewed in Ref. (200)]. Moreover, 
nightworkers switch their temporal niche by a 180° shift of the 
activity/rest rhythm, imposing a circadian misalignment in the 
timing of energy metabolism for a diurnal mammal. The SCN 
clock tends to entrain to the LD cycle driving endocrine and 
autonomic outputs for diurnality, as for instance peaking insulin 
sensitivity at noon in subcutaneous adipose tissue (201). Night 
work forces the circadian system for repetitive arousals during 
the night, to sleep during the day, and to eat at abnormal circadian 
times. To simulate circadian misalignment due to shiftwork in 
laboratory conditions, imposing an activity/rest pattern differ-
ent from 24 h during 7 days generates eating and sleeping ~12 h 
out of phase from habitual times (202). This misalignment sys-
tematically decreases leptin, increases glucose despite increased 
insulin, increases postprandial glucose, completely reverses the 
daily cortisol rhythm, increases blood pressure, and reduces 
sleep efficiency. Similar studies also showed decreased insulin 
sensitivity (without insulin increase) (203) and altered rhythm 
of energy expenditure (168). This forced desynchronization 
protocols showed how changing the feeding pattern and timing 

of metabolic signals for only a week, leads to cardiometabolic 
alterations and a prediabetic state. In a 3-day study of 12-h 
simulated shiftwork, the misalignment between the endogenous 
circadian system and daily environmental/behavioral rhythms 
with nighttime feeding, affected glucose tolerance, by elevating 
postprandial glucose level. These changes in glucose metabolism 
are related to different insulin mechanisms: a decreased pan-
creatic β-cell function and decreased insulin sensitivity (204). 
Sleep deprivation and melatonin disruption are also observed in 
subjects chronically subjected to shiftwork (205), where sleep-
ing less than 6 h daily was associated with weight gain and an 
increase in BMI (206).

Shiftwork exposure has been hypothesized to increase the risk 
of chronic diseases, including cancer, cardiovascular disease, MS, 
and diabetes (198). Several epidemiological studies have evalu-
ated the association between shiftwork and MS. This syndrome 
is a cluster of risk factors including central obesity, elevated 
blood pressure, elevated triglycerides, lowered high-density 
lipoprotein cholesterol, and elevated fasting glucose, which are 
often seen simultaneously in an individual, and is a risk factor 
for cardiovascular diseases. Table  2 summarizes information 
regarding the association between night shiftwork and the differ-
ent parameters of this syndrome. In addition, these data indicate 
an association of shiftwork schedules with low concentrations of 
HDL cholesterol, higher diastolic and/or systolic arterial blood 
pressure, fasting glucose, insulin, and/or triglycerides. Some of 
these reports also show an increased risk factor of MS associ-
ated with a longer period of time working at night or in rotating 
schedules (207, 208). Moreover, these associations are stronger in 
females than in males (207, 209), and indeed it has recently been 
shown that the risk of obesity in shift workers was not related to 
these factors in males (210).

A dysregulation in the mechanism of hunger/satiety control 
and in energy expenditure may be related to the increase of BMI 
associated with night shift work. First, meal distribution during 
shiftwork is different. Shift workers tend to have smaller meals 
for breakfast and lunch but increase their snacking behavior. In 
the afternoon or nighttime, the frequency of snacking increases, 
with a tendency for a higher consumption of carbohydrates (199), 
which is indicative of obesity-related eating behaviors (213, 216). 
Second, a study including 14 adults in a 6-day simulated shift-
work protocol, showed decreased total daily energy expenditure 
in nightshift days compared with baseline, driven predominantly 
by a decrease during the sleep time (217). Third, there was an 
increase of fat utilization, together with a decrease of carbohy-
drate and protein, with similar levels of the hunger-stimulating 
hormone ghrelin and decreased levels of the satiety hormones 
leptin and peptide YY.

Other Protocols of Circadian/Metabolic 
Disruption
While light is the most potent zeitgeber, the availability of non-
photic cues such as food and exercise, may alter the internal 
circadian clock independently. Instead of modifying the envi-
ronmental cues, researchers force the timing of otherwise natu-
rally entrained behaviors or physiological variables. Two simple 
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TABLe 2 | MS symptoms in people working at night or in rotating shift.

n Population Age (years) Gender 
(F/M)

Country Years of 
shiftwork

Schedule Hours worked per 
shift/started at

Alteraciones Reference

27,485 nd 30–50 years F/M Sweden nd Self-reported nd Obesity, high triglycerides, and low HDL 
cholesterol

Karlsson et al. (211)

437 DW, 246 SW Factory employers 34–38 years M Argentina 
(European 
Ancestry)

nd 4 days, 3 rest, 2 
nights, 3 rest, 4 nights, 
3 rest, 2 days, 3 rest

12 h/06:00 h and 
18:00 h

High waist-hip ratio, diastolic arterial  
blood pressure, fasting glucose and 
insulin, HOMA index, and triglycerides

Sookoian (212)

98 DW, 100 SW Petrochemical plant 
employers

39–60 years M France >10 years 1–2 days, 1–2 
afternoon, 12 night, 
3–4 rest

8h/05:00, 13:00, 
and 21:00 h for SW, 
08:00 for DW

Rise triglycerides, free fatty acids, and 
gGTP and lower HDL cholesterol

Esquirol et al. (213)

1220 DW, 309 SW Employers of public 
administrations, 
private companies 
and a bank

35–59 years M Belgian >20 years Two rotating shifts nd High body mass index (BMI), waist 
circumference, systolic and diastolic  
blood pressure, low HDL cholesterol

De Bacquer et al. (214)

336 DW, 402 SW Nurses 37–40 years F/M nd >1 year 4 nights per month nd High BMI. Predictors of MS: sedentariness 
and SW (4-year follow-up: 9 vs 1.8%)

Pietroiusti et al. (199)

125 DW, 165 eSW, 
102 pSW

Workers of 
an electronic 
manufacturing 
company

25–31 years F Taiwanese >5 years 6 days, 3 rest,  
6 night, 3 rest

12 h/07:30 h and 
19:30 h

Increased percentage of development of 
MS in pRSW (5 years follow-up). Obesity 
and elevated blood pressure in pRSW

Lin et al. (215)

26,382 Dongfeng Motor 
Corporation’s 
employers

Retired 
workers 
(average 
63.6 years)

F/M Chinese 1–10, 
11–19, or 
>20 years

2 shifts, 3 shifts  
or 4 shifts

12, 8, and 6 h, 
respectively

Long-term shift work associated with MS 
in females. High blood pressure, waist 
circumference and glucose levels

Guo et al. (207)

2,661 DW, 656 SW nd 20–40 years F/M South Korean nd Self-reported nd Shift work was associated with MS in 
females

Yu et al. (209)

370 DW, 354 SW Nurses and 
midwives

40–60 years F Poland <10, 
10–20, or 
>20 years

2–7, or >8 night  
per month

12 h/7 p.m. Increased BMI, waist circumference and 
obesity in women reporting >8 night shifts 
per month

Pietroiusti et al. (199)

MS, metabolic syndrome; DW, day workers; NW, night workers; SW, rotating shift workers; eSW, ever rotating shiftwork; pSW, persistent SW.
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behavioral interventions are to manipulate the timing of wake/
sleep and to schedule feeding times. These behaviors represent 
both controlled outputs of the clock and feedback mechanisms 
or inputs to the system. Because of this, altering the phase of 
such events in relation to the light cycle (like when humans work 
night shifts) can have a profound effect on biological rhythms 
and hence in metabolism (see Table 2).

Sleep deprivation in mice has profound consequences on 
liver activity from the gene transcription level to metabolism of 
fatty acids and other metabolites and also alters feeding patterns 
(218, 219). Instead of simply preventing sleep, researchers have 
developed a “forced work” protocol to keep rats awake by forc-
ing them to remain active by placing them in constantly rotating 
running wheels. Under this protocol, rats develop obesity, show 
altered feeding behavior, and glucose and triglycerides levels, 
as well as desynchronization of clock-genes expression in the 
liver (166, 167).

Timing of food intake affects the rhythms of clock-gene 
expression in the liver (37, 39), the dorsomedial hypothalamus 
and the paraventricular nuclei, and the pituitary gland tissues, 
but not in the SCN (220). In consequence, feeding during the 
“wrong time” (e.g., the resting light phase in nocturnal animals) 
can internally desynchronize the circadian system, leading to 
disease. Studies have shown that forcing mice or rats to feed 
during the light phase leads to increased body weight and food 
consumption, variations in hormonal and metabolite levels 
in plasma, fat accumulation, alterations in the liver, and MS 
(169–171, 220, 221).

Strategies to Overcome Metabolic  
effects of Circadian Disruption
The unconstrained capacity to manipulate housing lighting 
conditions in the laboratory might be considered a prerequisite 
to test potential therapeutic tools. For that reason, researchers 
have sought model animals to develop strategies that may either 
overcome or alleviate the symptoms associated with situations of 
disruption of the circadian-metabolic system.

Behavioral interventions appear as easy alternatives in this 
sense and represent translatable potential tools for further 
research in human populations. The main objective of such 
protocols is either to reinforce entrainment to the LD or other 
experimental cycle or to provide a different entraining cue that 
may reorganize rhythms in a way to avoid possible alterations. 
Scheduling feeding regimes can be as deleterious when “wrongly” 
timed as can be beneficial under certain challenging conditions. 
Many studies have shown that TRF can be beneficial, for example, 
to counter the effects of obesity-inducing diets (222, 223). But 
it also can help to combat the consequences of protocols that 
disrupt the biological rhythms and metabolism.

Time-restricted feeding to a favorable circadian timing, 
i.e., when caloric intake can manage to balance anabolic and 
catabolic processes with energy expenditure, represents a thera-
peutic (and experimental) tool preventing metabolic alterations 
leading to weight homeostasis alterations (119). Some of 
the reported benefits in rodents include improved glucose 
tolerance, reduced triglyceride, reduced cholesterol, reduced 

systemic inflammation, and improved endurance. Forced- 
desynchronized mice under CJL can keep control weight values 
when fed only during the dark phases, with no changes in 
food intake (118). Rats that gain weight under the previously 
described “forced work” protocol during the rest phase can be 
phenotypically rescued by preventing feeding during that period 
and allowing it during the dark phase (166). TRF can be such a 
strong key that is able to reinstate the Rev-erbα and Bmal1 (but 
not Per1-2) gene expression rhythms at the SCN in behaviorally 
arrhythmic mice under LL (141).

Wehrens et  al. measured the effect of a 5-h meal delay on 
the human circadian system and observed that late meals delay 
rhythms of plasma glucose and adipose PER2 clock-gene expres-
sion, suggesting that meal timing may help to reset the circadian 
system in cases of shift work (224). A 16-year longitudinal study 
reported a 27% higher risk of coronary heart disease (measured 
by BMI, hypertension, hypercholesterolemia, and diabetes) in 
men who skipped breakfast and a 55% higher risk in men who 
ate late at night, in comparison with men who eat normally. 
However, no association was observed between eating frequency 
(times/day) and risk of coronary heart disease (225). In addition, 
a recent study using a smartphone app to monitor eating time 
in healthy adults revealed a daily eating pattern highly variable 
from day to day, indicating that more than 50% of adults spread 
their daily caloric intake over 15 h or longer. Interestingly, this 
report showed that reducing the daily eating duration to 10–11 h 
for 16  weeks, without decreasing calories or change nutrition 
quality, induced weight loss and improved sleep (226). This 
observation, together with previously mentioned data recorded 
in animal models, suggests an important role of eating patterns 
in metabolic diseases.

Running-wheel activity has been shown to represent a strong 
feedback mechanism to the circadian system, and as such repre-
sents a potential therapeutic tool for chronodisruption models. 
Voluntary wheel running enlarges the boundaries of behavioral 
entrainment to T-cycles (227) and increases the amplitude of 
SCN electrical activity rhythm (228). It was found that wheel 
access in mice modulates CBT and heart rate rhythm waveforms 
(i.e., increase these variables during or after energy demand for 
exercise) and couples the PER2:luc phase of adrenal and liver 
oscillators driving cardiometabolic output (229). In this direc-
tion, we demonstrated that the availability of a running wheel 
allowed for correct entrainment and prevented the elevated body 
weight gain observed in mice under the desynchronizing CJL 
schedule. We also found that social contact, achieved by housing 
mice in groups, is a successful intervention to alleviate metabolic 
symptoms in this model (118).

Of course, pharmacological tools have also been tested. One 
approach is to try to replace or substitute the action of disrupted 
hormonal function. For example, melatonin administration 
during the subjective night prevents MS-like symptoms in rats 
under LL (147). Another study showed that metabolic alterations 
derived from CJL protocols were prevented by treatment with 
estrogens (155). Yet, another type of pharmacological approach 
that requires further research is the application of drugs with the 
ability to induce or reinforce entrainment to environmental cycles 
and its changes.
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DiSCUSSiON

Potential Pathways Linking Photic 
environmental Challenges to Metabolic 
Disease
Protocols with photic alterations in nocturnal rodents (such 
as LAN and LL) provide evidences to approximate metabolic 
alterations due to circadian disruptions elicited by nocturnal light 
pollution in humans. Receiving LAN appears to be a common 
disrupting factor for both nocturnal and diurnals. The main 
limitations for these approaches, however, are that temporal 
niche determines a 180° difference between nocturnal rodents 
and humans, also regarding the regulation of metabolic variables 
and energy expenditure for behavioral activity. In addition, 
nocturnal rodents are more sensitive to nocturnal light than 
humans. Behavioral and feeding pattern misalignment with 
lighting schedule seems to be a key factor for most alterations, 
as discussed below.

Endocrine pathways directly modulated by light can play a role 
in photic-related metabolic alterations. Melatonin is released by 
the pineal gland and its nocturnal production is sensitive to light 
exposure during the circadian night (230). Its roles in metabolism 
go from participating in insulin production and secretion, syn-
chronizing feeding with the organism’s optimal metabolic state 
[reviewed in Ref. (108)], and regulation of leptin rhythm (95) 
photoperiodic resistance (see above). Also, melatonin rhythm 
disruption correlates with that of adipokines and obesity, and its 
exogenous administration reverse this phenotype (84). Because of 
this, it is tempting to speculate that disruption of the melatonin 
pathway under challenging light conditions (see Table  1) may 
underlie metabolic dysfunction and obesity. Indeed, LL and LAN 
protocols could be integrated by the SCN and melatonin signal 
as a “lengthened” photoperiod, thus encoding a summer-like 
metabolic state, increasing food intake and adipose deposits (see 
above). However, there is evidence that animals lacking mela-
tonin still suffer LAN-induced metabolic alterations and loss of 
weight homeostasis (115, 144), and the link of melatonin with 
leptin in human obesity is still inconsistent (84). Thus, photic 
melatonin disruption per se does not appear to be a factor linked 
to obesity neither in nocturnal rodents nor in humans.

Glucocorticoid hormones are key to the regulation of metabo-
lism and are also tightly linked to the circadian system (231), 
and as such, can also be considered as an underlying cause for 
metabolic disease in conditions of biological rhythms disrup-
tion. Alterations in the 24-h rhythm of glucocorticoid levels 
may promote circadian misalignment and its adverse health 
consequences. Multiple studies have shown that the 24-h profile 
of cortisol concentrations does not adapt rapidly to acute shifts in 
light–dark, activity–rest, and/or feeding cycles, as occurs in jet lag 
and shift work rotations, although its amplitude may be reduced 
under some conditions (232). But the revision of the literature 
on animal models (67) and human subjects summarized in 
the previous sections shows that under the different disrupting 
light conditions, glucocorticoids are impaired, increased, or not 
affected at all. A study in humans has found that light effects 
on cortisol are strongly dependent on light intensity, which can 

explain the seemingly contradictory reports in both humans and 
laboratory animals (233).

Figure 2 depicts a scheme of the main circadian changes found 
using protocols of photic desynchronization in nocturnal rodent 
models (mice and rats), to help the construction of a generalized 
framework. It seems that photic hormonal pathways alterations 
per  se cannot be considered the sole triggers of metabolic dis-
turbances under disrupting lighting conditions. Photic inputs to 
the SCN can directly and indirectly affect physiological responses 
given the presence of multiple pathways regulating peripheral 
oscillators (see above). Importantly, peripheral synchronization 
for metabolic organs such as the liver is achieved mainly by SCN 
entrainment of the feeding/fasting pattern, and derived entrain-
ing signals can act indirectly of photic effects (234) through 
blood-borne nutrients assimilated and/or metabolites (3). In this 
sense, a desynchronized feeding/fasting pattern with temporal 
niche driven by LD cycles can be considered as a main factor for 
most metabolic alterations.

Desynchronization of Feeding Patterns
We will now focus on behavioral effects of light disruption that 
have also metabolic implications: meal time shift, activity levels, 
and sleep disruption. To distribute feed bouts or meals during 
the rest phase, tending to the abolishment of the feeding/fasting 
pattern, results a common feature of most the aforementioned 
lighting protocols in rodents (dim LAN, LL, or CJL) (see 
Figure  2). Indeed, most metabolic disruptions are reversed by 
scheduled feeding (see Strategies to Overcome Metabolic Effects 
of Circadian Disruption), restoring normal weight homeostasis 
under CJL, even while gross locomotor activity remains desyn-
chronized with the LD cycle (118). The same can be said of 
decreased or disrupted locomotor activity levels and rhythms, or 
even the sleep/wake pattern (235, 236).

Postprandial glycemia is under circadian control (71). In 
humans, there is a decreased glucose tolerance during the 
evening and night as result of a reduced insulin secretion, as 
well as peripheral and hepatic insulin resistance. This pattern 
is independent of both the sleep/wake and feeding/fasting 
rhythms (204, 237) but depends on glucocorticoid rhythm (238). 
Moreover, increased caloric intake when the body is not able to 
manage it (i.e., to storage, mobilize, or fuel) is a key factor to 
develop insulin resistance, MS, and obesity (239, 240).

Circadian misalignment due to behavioral and/or photic 
desynchronization (e.g., shiftwork or CJL) alters endocrine and 
autonomic pathways set to manage metabolic fuels needed for 
energy demand (i.e., glucose, fatty acids, or ketone bodies under 
chronic starvation). Figure 3 schematizes the main disruptions 
that can be generalized in nocturnal rodents and nightworkers. 
First, the daily amount of food intake seems to be the same 
among day and shiftworkers. Wrongly timed circadian feeding 
leads to postprandial glucose increase, first due to misaligned 
circadian glucose sensitivity at the pancreas, both in nocturnal 
rodents (6) and humans (202, 204). Importantly, eating at night 
during simulated shiftwork reduced total daily energy expendi-
ture during nightshift schedules (217). Thus, impairments 
in glucose uptake (i.e., a prediabetic state) can be chronically 
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FiGURe 3 | The figure schematizes how nocturnal light exposure, together with a misaligned feeding pattern with respect to the regular activity/rest rhythm, 
generate metabolic disruptions in nocturnal rodents and human subjects. Humans under nightwork schedules tend to invert by 180° their activity/rest rhythm, 
increasing nocturnal feeding and light exposure during the night. When receiving light at night, nocturnal rodents alter their feeding pattern increasing episodes 
throughout the day. These changes desynchronize pancreatic and liver circadian functions regulating nutrient balance and caloric usage/storage, mainly by reducing 
postprandial glucose tolerance, and decreasing glucose usage. As main outcomes of these alterations, increased basal glycemia, free fatty acids, and adipose 
tissue are generally observed. When chronically established, this misalignment between the circadian clock activity, its photic inputs, and behavioral/physiological/
metabolic outputs can lead to metabolic syndrome and obesity.
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established due to changing the set point for glycemia, lead-
ing to further insulin insensitivity, and hyperglycemia. It is 
conceivable that, starting from reduced nighttime postprandial 
glucose tolerance, chronic dysregulation in the uptake and/or 
usage of glucose can lead to further increased usage of fatty 
acids from triglycerides stores in the liver and adipose tissue. 
This misbalance between carbohydrates/triglycerides usage can 
lead to dyslipidemia and hyper-triglyceridemia (i.e., increased 
free fatty acid levels) found in most animal and human studies 
described above and increased caloric storage. In addition, these 
alterations in caloric intake and storage, where also attributed 
to negative energy balance imposed by sleep debt (217, 241). 
Thus, eating, and being awake at the wrong time, i.e., when the 
circadian clock promotes sleep, is a risk factor for MS, weight 
gain, and obesity.

CONCLUSiON

We have covered a vast amount of evidence from laboratory 
rodent models and human studies of the diverse effects of lighting 
environments challenging biological rhythmicity on metabolism. 
While there are several features and alterations which repeatedly 
appear under the environmental conditions studied, no single 
pathway capable of explaining the disrupted metabolic can be 
clearly identified. We conclude that no particular alteration can 
be considered as the unique determinant pathway for metabolic 
disease caused by abnormal lighting protocols. Our hypothesis 
considers an accumulation of different disturbances at various 
levels, adding up to a global metabolic disruption, and further 

leading to disease. The combination and the level of specific 
alterations will depend on the features of circadian disruption, 
which is tied to the specific protocol, be it LL, LAN, or CJL. 
Circadian disruption, including photic effects on the circadian 
physiology, forced temporal niche shifting of behavioral and 
feeding patterns (i.e., by LAN, or shiftworking) could therefore 
represent the fundamental origin of metabolic alterations under 
abnormal lighting conditions. Although a complex scenario, to 
better understand how a pathological metabolic state occurs, 
we must first determine which pathways drive and integrate the 
interactions between circadian and metabolic homeostasis.
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