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Chapter 1.

1*1 Introduction.

It is not an exaggeration to say that the knowledge of 

the interatomic potential energy is the stepping stone to the physical 

properties of matter. In the case of gases the most important commutation 

on the path of development is between the Interatomic potential energy on 

the one hand and the equation of state and the transport properties - viz. 

conductivity, viscosity and diffusion - on the other hand. However, for 

the solid state, the role of interatomic forces in crystal structures

should not be overlooked. It is clear that the development is reversible

in that the potential energy could be determined from one or more of the 

physical properties mentioned above, and vice versa. A groat many of the 

existing interatomic potential energies in the literature (E.A. Mason and 

W.E. Rice, 1954j B.N. Srlvastava and M.P. LLadan, 1955; T.Kihara, T.Midzuno 

and T. Shi zume, 1955 )• are of this phenomenological kind obtained by 

fitting the experimental results to on analytic function. Theoretically 

it should be possible to determine this energy from first principles and 

thereby arrive at values for the physical properties for comparison with 

the experimental results. The latter is the objective of this investigatio

1*2 The form of the potential.

The force Pi » 60 / & and therefore the potential 0

* The references have been collected and arranged alphabetically at the

end of the work.



between non-polar atoms is a function of the Interatomic separation r,

0 = 0(r)
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The cohesion of matter (J.E. Lennard-Jones, lflSl.) dictates that 

there oust be an attractive force between molecules while at the scum time

to prevent a total collapse of matter there must be also very strong 

repulsive forces* This 1b reconciled by the a priori assumption that 

the potential energy is due to a long range attractive force and a short 

range repulsive force; the Justification being that it accounts for the

nature of cohesion.

The long range, or so called van der Waals forces have been studied 

in detail and the main contributions to these arise from the electro static , 

induction and dispersion effects which lead to an attractive term in the 

potential energy proportional to the inverse sixth power of the interatomic 

separation. Higher multipoles such as quadrupoles, octo x>lea> etc. , give 

rise to inverse 8 th, 10 th, etc. power terms, but in the main it is 

unnecessary and indeed even too complex to account for these.

Theory has not been so successful in dealing with the short range 

forces. Experimentalists for the want of a lead have tried various 

functional representations to fit their results. This has led to two 

main forms - the inverse 12 th power of interatomic separation and 

the negative exponential of the separation.

The most widely used form is the Lennard-Jones 6-12 potential

0(r) 4 e (c^/r)12 - (cr-/r)6



figure 1*1

Figure 1*2
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'where 0(r) = 0 at r = and 6 Is the depth of the potential

well which occurs at r » (Figure 1*1 )•

R.A. Buckingham (1958) however used the exponential fom for the

repulsion term

0(r) a b e^>(»ar) • cy'r^ -

vhere a,b,cf and d are variable parameters. He included the contribution 

due to the quadrunole moment as being of sufficient importance. This 

latter empirical function was criticised on the grounds that it went to 

minus infinity at r a 0 whereas it is more natural to expect that it 

should go to plus infinity. Buckingham and Comer (1947) and Comer (1948) 

took this anomaly into account and proposed the functions

° a(Hfl) - 6 - [(<W)«sp{-a(j/rB - x)]

-<4/r6 * /rH)e2p[-4<rm/r -l)5]

for r r _ \ maxand

0(r) S3 a(l-HJ) - 6 - 8P
(6+ep)e^pj-a(r/rB - 1)^ - a(r®/rG + Pr8/r8)]

f°r r > rmsx

Finally the Wisconsin group ( E.A. Mason, 1954) under Hirsehfelder 

presented the modified (ex>-6) Buckingham potential (Figure 1*2) which 

is receiving much attention in the present day literature. The stipulation 

is that for r r , 0(r) = oo, and for r > r^^,

0(r) ’ rr^r[(^a)eipta(Ul/r^j - («h/r)6]

I



where ■ position of energy ndniiman ^(r^) ■ -€

C a greatest attractive energy, while a is a measure of the

steepness of the repulsive curve.

- 4 -

1*3 The equation of state and the second virial coefficient.

The equation of state for a perfect gas is

p V = R T

where p is the pressure of the gas, V its molar volume, R ■ Nk the 

gas constant and T the absolute temperature. It is experimentally and 

theoretically obvious that real gases are not perfect due to the interaction 

and finite size of the molecules for example, and it is then usual to define 

the equation of state by a series - the virial series

p V - NkT ( 1 ♦ B(T)/V ♦ C(T)/Tr ..................).

The coefficients B(T), C(T), • ••• are respectively the 2nd, 3rd, »••• 

virial coefficients which can be expressed in terms of the intermolecular 

potential by straight forward statistical mechanical reasoning which

becomes somewhat tedious for the higher coefficients. The first two are:
*•

B(T) a 2xllj^jl - exp ^-0(r)/kTj j tP dr

C(T) - - ea^(r2S)/W^^l - ea?^j(r15)/k^

The second coefficient is the result of binary collisions and
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the third of tertiary collisions, etc. , so that it is seen that at low 

gas densities where only binary collisions are of importance very few 

coefficients are required. The series is divergent for the liquid state 

and is no longer of practical use. The theory i3 based on the assumption 

that the potential energies of and between the particles are additive. Thia 

natter has been recently discussed by Jansen and Slawsly, (1954), and 

McGinnies and Jansen, (1956).

Two approaches can now be made to the problem. The empirical 

potential energy function can be fitted to the experii ental data, or , 

using a trial potential function the second virial coefficient integral 

can be integrated analytically to obtain the second virial coefficient.

Writing the potential energy function in the Lennard-Jones form

0(r) £( Vr*” - Vr*m)c

where r* « r/<T the reduced distance and £ is the depth of the well, 

B becomes a function of and € for any set of n and m. As we 

have seen, the attractive van der Waals part of the potential implies 

that m = 6. The experimental values of B and T are used in a 

plot of In B against In T; and by trial and error for various values 

of n, the empirical curve of In B* » In B - 5 lncT against 

In T* a In T ♦ In k - In 6 is compared with it. Lennard-Jones 

found that the curve was rather insensitive to the value of n and that 

indeed any value of n between 8 and 14 would give a reasonable

corresoondence: n = 12 was chosen as a matter of convenience. The
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relative linear displacements of the graphs with respect to each other 

determines O- end £ . ( Lcwnard-Jones, 1924; and de Boer, 1940.)

Theoretically then the: conctmto in the potential energy function 

are determined and the other virial coefficients could be computed. In 

the main this has not been applied except to the third virial coefficient 

simply because the expressions for the higher coefficients are so complex.

Rice and Hirsehfelder (1954) using the modified Buc.JLngham 

potential have prepared tables of the second virial coefficient for 

a » 12*0 (0*5) 15*0 and T* from 0*4 to 20 by numerical integration

of the reduced equation

3*(a,T*) a -J/T* [ I*8 a >*(r*)/dr* ezp f -0*(r*)/T*J dr*

1*4 The Transport rhenor^ena.

Tho transport phenomena is the collective name for the group of 

physical properties arising from the presence of gradients in matter. It 

comprises conductivity - in gases usually confined to thermal conductivity 

- being the transfer of heat along a tenuerature gradient; viscosity which 

is the transfer of momentum across a velocity gradient; and diffusion, 

the transfer of mass arid perhaps energy due to a non-uniform particle 

distribution.

The foundation of the theoty of transport phenomena is rigorously 

expounded in the classical treatise of Chapman and Cowling (1959). The 

theory will not be re-recorded here because of its length and of its 

incomparable presentation in the above.
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The outcome of the theory is that the transport coefficients D, 

ry and \ ; of diffusion, viscosity and conductivity respectively can

all be expressed relative to one set of integrals, the collision integrals, 

\/ . Despite its prolixity, the Chapman - Enskog treatment is subject

to severe limitations which in brief are:

1. Binary collisions only are included, thus restricting the 

application to low density gases.

2. Being a classical theory, temperature regions where quantum effects 

become important must be treated witli caution.

3. The zeroth approximation theory can only be used when the physical 

gradients are small, higher approximations lead to the Navier -

Stokes and the Burnett equations.

For a constructive discussion on the Chapman - Enskog theory we 

refer to Uhlenbeck, (1955a).

Following common usage, reduced values will be incorporated. The 

reduced collision integrals (Te) are functions of the reduced
cross sections sd)(K) which in turn are dependent on the angle of 

deflection of the binary collision.

We shall merely present the functions here and refer to Bason, 

(1954), for details. It is clear that the transport properties defend 

fundamentally on the intermolecular potential energy 0(r).
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nu)j(»*)n+sy1

S^X\k) » 2 £ «-*

"X, (▼,*>) ■ * - 2b J [l -

5 /« e
3 = \ » /

X p-^-V
52 V k M / N r- o m

D12 ’ -12 16
/Mt ♦ Mr> 2 R T'
V Ki“a

« A^/2 6 , t* » ka/e , P -
v « absolute value of the relative initial velocity,

b the collision parameter, yu.the reduced mass of the colliding molecules, 

rc is the closest approach during collision and f^, fx and fp are 

rapidly converging polynomials of the collision integrals*

1*5 The Cxystal Properties*

Because of the regular though dense errangement of a tons and

molecules in a crystal yet another method is available in the determination 

of the interatomic potential energy. Por example, Neon forms a face 

centred cubic crystal. If we denote the atomic separation by r and 

the equilibrium separation by rQ, then the general expression for the



potential energy (TeroinrcU-Jotiea and Ingham, 1925) is

0(r) » S^X/r3 - 24^/r - 4«908 q/rC - l«604 d/i?

or as Buckingham (1958) suggests

0(r) a 24 b eap(-r/p) - 24/*/*° - 4,903 «/*6 - 2*156 d/i?

Besides, the energy of the crystal containing N atoms is

Uo » 0-25 N 0(rQ)

and therefore from the experimental values of r^ and we can 

attempt to fit values to the constants s or p, \ or b,^, c and d. 

With the development of Bucldoi^ham’a idea of the exponential repulsion 

term, Corner (1948) recalculated the interatomic potential using crystal 

data, while still later Mason and Rice (1954) used the modified 

Buckingham potential mentioned in section 1*2. We refer to these papers

for further details.

1*6 Theoretical Considerations.

The assumption in the definition of a perfect gas is tliat there 

is no interaction between the particle a making up the gas. That is, of 

course, unrealistic, and long ago it mas realised that the perfect gas 

equation
p V =» R T

as defined previously could not possibly explain the real gas state. Many 

at tenets therefore were made to formulate an equation of state which

- 9 -
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would do just tills.

The equation derived by J. D. van der V aals was both simple and 

plausible

( p + e/V2 ) ( V - b ) = SI.

The constants a and b account for the mutual attraction of the molecules 

and their finite size respectively. The latter determines the degree of 

interpenetrability or the short range repulsion of the atoms or molecules. 

Although the van der Weals equation took the interwolecular forces into 

account, his theory in no way explained the physical basis of these forces. 

It is in fact a phenomenological equation. Following van der Waals, many 

famous physicists - Laplace, Maxwell, Boltzmann and Sutherland - 

contributed to the solution of the fundamental problem, but the first 

conclusive results were those of Keesom (1921) and Debye (1920). Keeoom 

followed up a suggestion of Reinganum who pointed out that the forces due 

to molecules having a dipole moment are undoubtedly dependent on the 

orientation of the dipole.

The result of averaging over all orientations leads to a mean 

interatomic energy contribution proportional to the inverse si;rth power 

of the atomic separation. This, the Keesom Richteffekt, is however 

negligible at high temperatures where the actual interatomic attraction 

is observed to persist.

Including molecules having no dioole moments and countering also 

the temperature dependence of the Richteffekt, Debye’s theory introduced
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the polarizability and treated the molecule as a deformable structure. 

This became known as the Induction effect. A dipole contribution gave

for quadra xfie-dinole.

The above two effects do not in themselves explain the deviation 

of the rare gao atoms from the perfect gas lava. In the later 1920 *s 

v/ith the advsnccEKxnt of the quantum theory the oroblem was viewed from a 

different angle. Heitler and London (1927) gave a first order jxnturbation 

quantum mechanical treatment of hydrogen and Helium in amplification of the 

earlier paper by bang in the sane year. By 1920, london and Eisenschitz 

(1930) had considered the second order perturbation fron which arose the 

formulation of the so called dispersion effect because of its correlation

with Ontical dispersion.

To study the repulsion between atoms the paper by Heitler and 

London (1927) is the best starting point: most of the ab^ve references 

are concerned mainly with the longer range attractive forces, Hix suing 

a quantum mechanical argument, they attempted a solution of the Schxftdinger 

wave equation first using a zero order v/ave function and then allowing for 

the wave function distortions due to the interactions of the functions 

from the two centres. The first oi-der perturbation energy calculation 

was carried out for two hydrogen atoms, the two solutions being shown 

qualitatively in figure 1*3. They are a direct consequence of the Pauli



Figure 1-5
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principle, corresponds to a binding solution there being at rQ an

attractive stationary state corresponding to the ecuilibrium separation of 

the atoms: -while gives at all distances repulsion, the two electrons 

having the sane spin in tills case.

An analogy illustrates the plausibility of this: as the atoms 

approach each other the ’charge clouds’ of the Is electron in each atom 

overlap. Should the spins of the electrons be different, it is possible 

that the two charge clouds coalesce to form one distorted s shell charge 

cloud enclosing both nuclei (case E^). On the other hand, if the electrons 

are of the sane spin they cannot be accorxodated in the sane s shell and 

so there is exclusion or repulsion of the atoms ( case I^).

Reitler and London ran into difficulties, tlwugh, on applying 

their theory to two Helium atoms, for of the four solutions to the eigen- 

problem only one is allowed (corresponding to complete anti syrane try) and 

that leads to repulsion. In the view of their theory, a bound state 

would necessitate fitting the four electrons into one combined s shell 

encompassing both nuclei, which is clearly impossible from the quantum 

conditions. Of course, the valence bond theory will alv ays give repulsion 

when applied to closed shell atoms such as Helium, Neon, Ai'gon etc.

The first order perturbation gives always repulsion with these 

elements and so we must examine the second order perturbation. This was 

done by Eisenschits and London (1950). Two types of terms arise from this 

work, the coulomb and the exchange forces, of which the former leads to a
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long range attraction - the so called dispersion forces - and the 

latter, discussed later, to repulsion.

There are two principal methods of solution of the cuantur 

mechanical nroblen: the perturbation method as used above, or the 

variational method which has certain advantages over the former. It 

always gives a result which is greater than the actual, but includes 

both the long and short range effects. By suitable or iterative adjustment

of the wave function parameters it is possible to i ake the method more 

and more accurate. her tree by a further extension developed his method 

of the self consistent field but this will be discussed in chapter 2.

The general trend in present day quantum meclianical treatments

of the multi-electron problem is to use the variational method to obtain

a good approximation to the wave function and then use the perturbation 

methods for the interatomic potential determination.

The interaction of two rare gas atoms can be written as the sum 

of three terms, assuming the additivity of the component potentials, of

course
V “ V. * Ve * Vd ’

where is the short range or valence energy of repulsion resulting

from the first order perturbation. This is in fact the only term which 

will be considered in the later stages of this work, VQ is trie second 

order exchange energy resulting from the second order perturbation.

Margenau (1939) has svown this to be negligibly small for Neon atoms.

is the dispersion energy resulting from the coulombic terms of the
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second order perturbation. *t can consist of a series of terms varying 

as l/r^> l/1^* etc., corresponding to the energy of the induced dipole-

dioole, quadrupole-quadru^ole, etc.

The energy of repulsion of two Neon Atoms has been calculated 

previously by Bleick and Mayer (1934) using the Heitler - London first 

order perturbation. The wave function employed were those of Brown (1933) 

obtained from a self consistent field calculation. However this paper is 

vague in its presentation and makes assumptions which may be misleading, as 

commented by Nargenau and Posen (1953). In view of this it was considered 

tliat a moi-e thorough investigation of the repulsive potential between two

Neon atoms should be made.

1*7 the Theory of Kirkwood.

Of interest is the theory of Kirkwood et al. (1941 et seq.). He 

ahooses a Gaussian potential form corresponding to repulsive forces only

exp -0(r) = 1 - exp -ar^

and finds that a gas of elastic spheres ( only repulsive forces between

the molecules) shows a phase transition. At high pressures we get a

solid phase surrounded by a liquid phase whose densities and entropies

are different. It has been suggested ( Uhlenbeck, 1955b) that this

transition may help to explain the solidification of Helium at high

pressures when the temperature is above the critical temperature. The

weak attractive forces in Helium are of the order of kT . t ( Tcrit v crit



is about 5°K ) and can hardly account for the solidification at these

higher temperatures.

It appears that the solid state could be reached at any temperature 

if the pressure applied were great cnou^u Such a state of affairs would 

suggest a sharp repulsive core.

If the Gaussian model for purely attractive forces is chosen, we 

find there is a divergence fror. fact since this theory results in the free 

energy being proportional to instead of to N. Van hove (1949) has

shown that the sliarp repulsive core is necessary for the proportionality 

of all themodynmiical quantities with II and therefore for the existence 

of the equation of 3tate.

o
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Chapter 2.

2* 1 The General ;ua:ittgn ?!eclia-dcrl "Iipblem.

Atomic units will be used throughout the text unless specifically 

stated to the contrary. ( see Appendix I )•

The fundamental Bchrbdinger equation can be v/ritten in the form

Sop'P “ E,P

and potential energy operators, and E is the set of eigenvalues of the 

energy. We shall restrict ourselves to the ground state energy and so 

to Fo. The first requirement is the construction of a suitable 

molecular wave function (I) .

For a single electron it is possible to find a wave function which 

will give an e:sact solution to the equation, but when more electrons are 

added with their consequent interactions, such exactness is well ni^h 

impossible. Any method of solution, then, must necessarily be one of 

approximation of which there are several well known types:

(a) The perturbation method as used in the Heitler - Tendon atomic 

case and by Slater to include the molecular case.

(b) The variation method extended D.H. Hartree

(1927) in his method of self consistent field, the solution of 

which is numerical. It was further developed by Pock (19S0) 

resulting in the well known Hartree - Pock variational equations.
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(c) The simple analytic method as used by Hylleraas (1950) and

by Zener and Guillemin (1950). This method was improved upon by 

Horse, Young and Haurwitz (1955) and later by Duncanson and 

Coulson (1944).

(d) The K.K.B. mctliod which is only a good approximation for 

high quantum numbers and is therefore not very suitable for the 

ground state problem which interests us.

Thgjv^ejblmc^

In the case of Helium where there are only two electrons in the 

atom several stages of approximation have been attempted. However when

the number of electrons reaches the order of ten as in the Neon atom such

an optimistic procedure would involve so much labour that the task would 

indeed be monumental. In fact, as we shall see, the zeroth order approx­

imation already entails enougli complexity.

The seroth order approximation to the wave function is obtained 

by permuting the product of the single electron wave functions.

^102^5^4^5..........^n

The wave function of the j-th electron in the i-th orbital state win 

be written j) and will include spin. The permutation set is

identically represented by a determinant
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0t(l) 0t(2) ........................................................0t(n)

M*) ............
$

W 0„<2) ................................................ 0n<n)

If the atom IS contains n electrons then the symmetric 

molecule Hg will contain 2n electrons and the zero order wave 

function will be as above but where now the determinant will be of 

order 2n instead of n. It is pointed out, too, that any one 0^ 

and (J) can appear but once in any one permutation of the single wave 

functions.

Discussion of the wave function.

To obtain a solution to the Schrbdinger wave equation for the 

case of poly-elcctron atoms and molecules it is necessary to find an 

approximate wave function which will allow a solution. I^robably the most 

accurate approximation is that of the self consistent field method of 

Eartree ( section (b) Of 2»1)» Unfortunately this method yields only 

numerical solutions which have to be fitted to analytic functions to be 

of practical use in our problem. Slater (1952) has shown this to be

possible. These ortho penalised functions contain nodes but thev can be*
expressed as a linear combination of the nodeleso functions of Slater (1951) 

which are of the form
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Is type (

2s type (k?/5*)-r

2Px’)
2py|type ( k5/*;7

2Pa)

vhcre x » r sin 0 cos 0, y = r sin 0 sin 0, and a » r cos 0

Looking ahead to the calculation of the interaction energy we find 

that all the recent surveys of the evaluation of the inherent integrals 

emnloy the wave functions in the nodeless Slater form ( Barnett and Coulson, 

1951; Roothaan and I'tldenberg, 1951 ). It is desirable therefore that we 

choose our wave functions to be of this type also.

Tzit us enamine now the wave functions for Keon in the literature.

1. Worse, Young and Ilauiwitz (1955) using a variational and simple 

analytic method f ~>und an approximate 3et of wave functions for Neon 

containing four variable parameters. Their calculations were repeated by 

runcanson ano Coulson (1944) who corrected several major errors. The 

numerical results quoted will be those of the latter group.

In the ground state of the atom an absolute mini urn exists* it is 

therefore possible to determine the parameters by minimising the energy 

with respect to variations in the parameters: yu. defined below is in effect 

a scale factor and can be determined analytically, while a, b and c are 

found numerically. Although the wave functions obtained by this method 

arc not so accurate as those resulting from the hartree self consistent
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field method, they h^ve the advantage of being much simpler. Furthermore 

they are accurately orthonomal on the atom and include exchange. The wave

factions are:
da) - (4a>“ •"kir

(2s) » (k^ /5aN)2 ( r e-^1 - s\/J^ • )

(2p3) - ( k| /* )5 r oob © e-^5-’

(8px) = ( kj( /n )2 r sin © cos 0 e“!^r

(2p ) = ( k^ /% )’2 r ain 0 sin 0

where the parameters are

kl 3 /** « 9*66 a =» 5*29

*2 ” /*• a 2*954

ks = « 8*97 b a 5*06

k4 = /x c « 2*88 c = 0*90

/xhna an accuracy of 2 rrbile the absolute accuracy of a, b and 

c is 0*01, and of these c is the least accurate since the variation of 

energy vzith it is slow. K is the normalisation factor and X is a constant 

determined by the orthogonality of the Is and 2s functions. It is 

found on solving the normalising and orthogonal!sing equations simultaneously 

that
S 4-X « (a+b)/(l+a f ‘ a 0*754

and N « 1 - 48 X/ ( 1 + b )x + sX/V « 0*926

^t is clear that the 2s function can be put into tho form

H 2s» H* is’
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for, on expanding,
2b =. - 5 kCSNb5)^ (4 A)1

- H (/a/S*)^ e-k2r - H* (k| /*)s" e”^3r

VThere H » 1*059 and H* = 0*254

H2 » 1*080 H*2 » 0*0645 2HH’ . 0*528

Tabulating the numerical values of the k^ of the Slater-like 

wave functions, we have

k(ls) « kl a 9*6®
k(2s*) » kg « 2*954

k(ls*) - kj = 8*97

k(2p) » k4 c 2’88

2. Brown (1955) has calculated the Hartree field for neutral Kean 

taking into account 2p electron exchange. In this method it is assumed 

that the electron wave functions can be written as a product of the radial 

and angular functions:

(x,y,z) ■ R(r) . 1(9,0)

Both partial functions are normalised separately as will be shown in the 

following discussion. The energy is calculated by Slater* s method (1929) 

and minimised with respect to the radial functions. As was mentioned 

previously, the Hartree method gives a numerical solution for each function 

which must be fitted analytically to a sum of nodeless functions of the 

Slater type. To take full advantage of the accuracy of the numerical
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method quite a number of terms in the sum are necessary and this

complicates and lengthens the molecular energy calculation considerably*

The repulsion energy of two Neon atoms has been calculated by 

Bleick and Mayer (1954) who used the wave functions of Brown with slight 

modifications to make the approximation better for large radii* The paper 

suffers, however, from a vagueness in not detailing the assumptions made 

in the work. The radial functions quoted and used are:

RlB(r) = 60*70 r e-9’75r

RgB(r) = 15*6 9-Q’2Zr _ r(14*7 e"5*69r + 4.76 e“2,15r)

RgpCr) « r( 17*9 e“5’80r + 2*50 e_1’69r )

The energy was calculated to the Heitler - London first order 

approximation although an allowance was made for the second order

contribution.

The most up to date numerical determination of the Neon functions 

using the Hartree self consistent field method including exchange has been 

done by Miss B.H. Worsley* I received the results, which are unpublished, 

in a private connunication from the author for which I should Hire to 

express my gratitude, and on comparing them with the Bleick and Mayer 

data it is seen that the difference between them is small, see figure 2*1*

This is a convenient point to say a little about the normalisation

of the functions in the two methods.
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Duncanson and Coulson have chosen their normalisation constants

such that /»
I ^*(x,y,z)^(x,y,z) dx dy dz ■ 1.

In the Hartree treatment the wave function is split up into radial 

and angular parts, both being non talised separately,

since k|/(x,y,z) = R(r) T(d^) and dx dy dz « r^oind dd c0 dr

J r^R*(r)R(r) dr = 1

J T*(e.0) X(8^) sind dd c0 3 1

To come into line with the literature we shall Introduce

f(r) a r R(r)

for it is the f values which are tabulated in the Hartree numerical

solution* The radial normalisation is therefore

f*(r) f(r) dr 3 l

Let us now split up the Duncanson and Coulson type functions into 

radial and angular parts* Starting with the Is function (k5 /xp e”klr

e"kir

which when normalised leads to

J^f*(r) f(r) dr 3 /% e*2klr dr

= / (2k^)^x « 1 / 4x

The normalisation of the angular function is

sind dd \ <# 3 4x
o Jq

and so jf*(r) f(r) sir® dft dr =. 1 as stated.
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A similar splitting of the 2s type function vzill lead to the 

sane factors* Por the 2p function the radial normalisation gives

J f*(r) f(r) dr = A j*r4 e“2k4r ar

S k& A • 24/(2k4)6 - S/4*

while the angular function Is

f'"' I'”’’
J^coa?© 3in» as j = Ws

In order to compare the two functions, it will be necessary to 
divide the Hartree method f values by 1/(4*)^ **or 3 functions

and by (5/4*) 2 for the p functions.

The is and 2s functions are almost identical and figure 2*2 

shows the degree of comparison of the 2p functions.

A little foresight is invaluable here because of the v/ork involved 

in evaluating the integrals, and especially the exchange integrals, in the 

energy calculation. Although the Hartree type results are the more accurate 

the tremendous computational problem to which their choice would lead 

could not be undertaken with the means and time available. Only the 2p 

function seems to show the loss of an extra term, the 2s function being 

in quite good agreement. We shall therefore use the Duncanson and Coulson

results in our calculations.

Finally we see tliat these v/ave functions are v/holly real and

contain no imaginary nart; therefore in fact
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2*5 Hie 3nergy Detenaination.

Y«riting the Schrodinger equation once again for a symetric 

molecule in the ground state, it is

M- E$

Multiply now by the complex conjugate and integrate over the

coordinate space of all 22 electrons, dt being the volume element 

of the coordinate space; 2 is the atomic number which is 10 for Neon.

f dt 3 f e $ at

- BJ | at

. e « J J* h at / j | at

22
dt « TT dt where dt id the volume element of the m-th1 L m mn»l

electron space.

We have chosen our atomic wave functions such that they are

orthonormal: that is

j 0^(1) 0p(3) separately on each centre a and b.

6 is the Kronecker symbol which « 0 when i / J

= 1 when i « J

Prom now on the complex conjugate sign * will be omitted, the Justification 

having been given at the close of section 2*2.

It should be noted that this orthonomality is not true when i 

and J are on different atoms in the molecule, hence the restriction to 

the separate centres. The wave functions of the electrons in the first
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atom or the second atom have coordinates relative to their ov,n nucleus 

and therefore car be made orthonon.-al rdthout question. hen the electron 

wave functions i and j belong to different nuclei the coordinates of 

each are witli respect to different origins and wo are not likely in the 

general case to get orthonormality. This is discussed independently of 

this work by ’argenau and Rosen (1955). A similar difficulty arises 

when we talx the zeroth order approximation of the molecular wave function.

V<e know from the ~5auli Principle that each state is doubly occupied 

viz. that two electrons of opposite spin can have the same spatial 

coordinates. Consequently we can split the total electron wave function 

up into the spatial and spin components:

0k(D -

where T* is the spin component of the wave function and the spin 

denomination T is either a or P according as the spin is in one 

direction or the opposite; vj/^i) is spatial function. As is 

customary the s>in wave function will be taken to be orthonormal both 

between the centres of integration and on each of them

(<rk(r)<rfc(r) a - 6<fY,

The result of the orthonormality condition is to reduce the 

number of different permutations from (2Z)J to Si the total number 

of permutations being the sun of the identical permutation and twice the 

remaining permutations of the spatial wave functions. Care must be taken
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not to duplicate the identity permutation as it is unique and must therefore 

be treated separately.

The ground state when written out in full iss

E

r css).* k tj z: (-i)k>1pk^1(i)....js8z(2z)
J 1b* 1___

(23).’

f (2Z).» 37 (2Z)S _ t
J X (-1) " ^(SZ) 21 (-1) 'P/i<i).«02Z<2Z> dt

nt=l

v.here we have introduced the notation

pk ■ pk ^id)............02z<2Z)

Note that the identical permutation is
2Z

?! « T7 ^i(i)

Pk is the result of the k-th permutation operating on P^. It is well 

know that the (2Z)i permutations form a group as defined in group theory. 

Each element in the group has a reciprocal and it is also a member of the 

group. The reciprocal permutation P^ must therefore be one of the (2Z)i 

permutations, say P4 Therefore

P-k Pk " Pi Pk • pi

by definition of the reciprocal.

Multiplying the energy equation above by P*, the energy remains
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unchanged on the permutation of the electron coordinates, and so we have,

(22) jr (sz)j
I V. P v pv H P, P_ dt

E = J ST “k te °P ST 1 m
(22) J,2Z)i{ P , P, > P, ? dt1 -k k i n>X IBs i

PUt P4 P « P. . i m j It is clear that P^, PB, and are all 

members of the same (2Z)l order group.

• * • s ~

Now Xp_kPk - (2Z): Px

2Z)J
pl% Pjat

(22):
pi Zl p. dtJ 1 >r i

J
where

(-l)J-1 = (-1)

The Hamiltonian Operator.

On the assumption that tho molecule as a whole is at rest, the 

hamiltonian operator io the sun of the kinetic and potential energy 

operators, respectively

H = T + V op op op

where
op

Z

22 o
- w»l

T V being the gradient operator $ and where

fel • li( ' 32/b]V
>1 ikl — OA J

R is the intemuclear distance ab, ^i and r^ are the ^ctren—nuclear

distances and r^j is an electron-electron distance.
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The Hamiltonian now reads:

222 2 Z
-Z(^ai^rM) ♦ Z7RII

°P »1 " i,>l "* fc>l

In view of this, the ground state energy equation becomes a sum of four

terms
« » T ♦ Tx ♦ V2 ♦

each of which will be treated in turn. Mow the ground state energy of the 

molecule is the sum of the ground state energies E& and E^ of the 

individual atoms v.hich to a fair approximation are independent of R and 

the intermolecular potential E’, the last of which is of immediate

interest to us.
E a E + + E*

Prom now on we shall only be concerned, with those terms which 

contribute to the intermolecular potential E* : all other terms will be

omitted.

2*4 The Integrals.

The (22).* oermutations P, « P are made up from the
>1 °

permutations

permutations
a amongst the functions solely on centre a; from the 

amongst the functions solely on centre bj and from 

the permutations Pab between the functions of the two centres. 

Consider first the integrals of the type

(2Z){
p~1 p, at =5 i

w <J

the so called overlap integrals.
>1
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Because of the orthonormnlity of the chosen atomic v/ave functions, all of 

the PR and P^ will lead to aero except the identical permutation. Por 

the interatomic contribution P^ to the permutations, it is recalled 

tliat between the centres it is assumed that the soln wave functions are

orthonormal and that the snatial wave functions are neither orhtogonal 

nor normalised. If we define the product wave function

0^(1)......................................... *>2Z(22)

in such a way that tho alternate 0’s arc all of the sane spin, we see 

irmediately that all the non-zero permutations are effected by interchange

of electrons of the same coin.

We must consider each of the 22 cases wiiere we permute K 

electrons at a time ( K = 0 »•••••••• 22 ). Since Neon is a closed

shell element, electrons can only be permuted in naira for our interatomic

case. It is clear that if K is odd we find that one of the factors will 

be a^a^ or b^.b^ which either reduces the permutation to tho K-l 

order v/hen i = j or makes it aero for i / j ( orthanormality of atomic 

wave functions). Therefore we may only permute naira of electrons, one of 

the nair from each atom.

and
'/'ll'11’

the spatial wave functions

by ••••••• ............aw(W)

by ............ ............W20)
signifying the centres to which they belong. In furtner amplification 

the number in the brackets will be omitted if it is the same as the suffix
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or if it is clear from the context what it should be. It follows from

the two fold degeneracy of the snatial wave functions and from the

symmetry of the two atoms that 

^a^b^ dt « jb^dt « (I) »

53 1^5®$ * (II) “

Ja5b5 dt ® » (HI) »

dt = dt - (IV) =

jVo dt = IVo dt " W 3

Jatb5 dt = ft^a, dt = (VI) =

ln1^5 d^3 K1* d^ = “

j r,.bg dt = d^ “ (VIII) “

(IX) = dt “ i^s dt

(X) a Va4^4 dt “ i^4a4 d^

(XI) . ya6bc dt = jtogag dt

(XU) a dt = Jb8ag dt

(XHI) a jat0ko dt = Jb^ dt

(XIV) a Ja2b4 dt = Jb2a4 dt

(XV) = ja.b6dt a ju,a6dt

(XVI) a i'a4b6 dt a jb4ag dt

To complete the representation the identical permutation will be

denoted by (0). The roman numerals in brackets are a mere symbolic

representation of which a general member will be denoted by (i), ( j), etc. 

The remaining overlan integrals i.e. those of a^b^, al^*a2^10>

*5^7* *5^9* a4^1D> ®6*te> °5^> are 556X0
because the integral of their angular eoaponent is zero.

The totality of overlap integrals can then be written

1^ c 1^ - q 2
l = (o) -^(D + sLuror

16

y^i p/yi=i
(i) (J) (fc) * ••••

fc=l

16
,(i)2(o):'(k)£(l)^m)"(n)£(o)2(p)2

q^tl-y ±= 1

The last term is the one in which we take 16 electrons at a time, V<hen

more than 16 electrons are all permuted, at least one of the zero integrals
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detailed above is bound to be included, and so we have in fact accounted 

for all the non-zero overlap inte -rals.

Vrc recall that the energy integral is

E* L = f
*30 Hop P al b dt ID

where P of course is the set of permutations P , • As we have seen ab
in section 2*2 the splitting of the hamiltanian o erator leads to & sum

of four terms:

E’ L = ( T ♦ ♦ Vo ♦ V ) L
p r 20 o IQ ID x 1

J + ^i3/r*j ’ 5i(J/r*i * * r/T b dt30

;2fte.tic ater-ar, Briwffld, ,

f 80 „TL ‘J*!........IVP al.........................*30
1

dt

for electron w we have

ID
X

v,w=

ID

since both atoms are identical.

ID
t l = JJgJ bv] atv J*^»b p at;

where xb expresses the product b« ......b.,
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and where

similarly

Tib’v
dt ’ is w dt

nb without the factor

without the factor

20
dt TT dt,

W=1 w

The spin orthonornality conditions restrict the v, w susrna 

a ray that it is reduced to

in such

’• ’ 1 = 2 Z- 1 \> K,r
v,w=l 9

where L * I fta* ~Vr,v j w

and (% T « j %

5
2

VfTP=l

Kb P na r.b* dt*

2
w vb. dtw

w

This is the energy of interaction between all pairs of electrons.

10XL -I bloZ_ Vr±1 P ax 
i,j=l 1J

b10dt

We see irr ediately that the integrals of l/r^ are equal to the integrals

of frora the symmetry of the problem. This fact will be used later

in the numerical evaluation. Four cases arise:

1. Both electrons centred wholly on the same atom. The integrals

resulting in this case are the so called mononuclear integrals M and 

will not be considered further since tney do not depend on R.
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CL =

2. One electron centred wholly on each atom - the Coulorib Integrals

denoted by C.

5. One electron centred wholly on one atom, the other electron 

resonating between the two atoms. The Integrals derived from this state 

are the hybrid integrals I and are an intermediate stage between the 

coulomb and exchange integrals.

4. Both electrons resonating between the two atoms. These are the 

exchange integrals A, without doubt the most complex type of molecular 

integrals to evaluate.

« C ♦ X ♦ A

where C» I and A will be defined in full below.

The Coulomb Integrals> C.

h-V dh p %

Since electrons are indistinguishable it is perhaps better to define the 

separation of any two as l/r,o rather than 3/r« - • A coulomb integral 

then is the interaction of two quite unspecified electrons one of which is 

wholly on one centre and described by wave functions i and i’f while the 

other is wholly on the othei' centre and described by v/ave functions j and J* 

The iji’j* summation is not unrestr icted since the s in conditions make 

zero any product of the i and i* functions if the anins are in opposition. 

The i summation is therefore over ID but the i* only over 5.
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Raw since the spatial wave functions are doubly degenerate and since the 

s-»in functions are orthonormal we need only consider the double .jucrcatian 

of the i’s of one spin* Therefore the 1 and i* ousanations are over 

5 instead of 10. Similarly for the j and j* summations making in all

10

iji’j’=l iji’J’el

Briefly then we define from the above equation

ShcJ&teja . I.

ifea Vi&3 ai'bd* dti dtJ Ab P xb> d*«I L «= 4
iJi’J

A hybrid integral is the interaction of tvo electrons one of which is 

described by the wave functions i. i* on one atom, while the other is 

described by wave functions j, j* on different atoms. We can define

I L s= 4
iji’d

“=i I(aiaj nai‘hP h ijisj'

The Exchange Integrals, A,

AL = 4 SL—. L.a K.b dt dt, (wlai MbPnaxh'b' dt'
iji’d’-l 1 3 1C 1 J 1 J ) * J i* d' «
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Kach electron is described by tr?o nave functions one on each atom. As above,

AL = 4 __ / a a • a. • » b • • b L
1 3 1 J' A ij,i' j»iji’J

Tt in important to note the difference between

4i,j,i’,d' and A ij,i’j*

The Potential Sner,.r/« 7g.

Because of the symmetry of the molecule, we need only sum over

one centre

-4
'10

10

i-1
b1Q dtV L «

Applying the conditions of spin orthogonality, the sunr ation ia reduced 

to 5 instead of 10. Two kinds of terras result from Vf)2S

V„L a - 4 21 Z ( a. —, dt. f ,iai *b P nal. xb dt.'
2 ii'.l J - raib - i J - 1

- 4 2Z. 2 (a. b., dt. fxa! Jib P Ra xb!, dt!
ii’=l J 1 ^b1' 1 J 1 i’ i

A convenient notation which Is self explanatory is

V2 L = - 4 ti Z<ai ii’ ' 4i5?l u£»/ ^2 i,i*ii
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The Totential. KnerQix^.

V = «i........\0 <7‘2/R) P al.......... blD dt

Since S2/R ia a constant of the particular separation R, it can be 

taken outside the integration altogether leaving

V8 . z2/n
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Chanter 3.

5*1 The Problem of the I.valuation of the Integrals.

The computation of the integrals occurring in molecular structure 

investigations is one of no little difficulty, particularly in. the case of 

the exchange integrals. In atomic integrals where thf spree of integration 

is spherically cymetric it is a simple straight forward calculation hut 

the molecular nroblen has the complication that in general there is no 

longer s herical symmetry. The integrals have to be evaluated over two 

or more centres of integration. Hany papers ( Bartlett, 1951; Rosen, 1951; 

Furry and Bartlett, 19512; Coulson, 19:7) have been published containing 

such integrations but the various autlx>ro wore content to restrict their 

efforts to solving the problems associated only with the particular integrals 

directly affecting their own requirements, so great was the numerical work 

involved. Ao a result there was an agglomeration of different integrals 

calculated or approxboated by various methods using diverse notations.

It was not until a Japanese group led by ’rofesaor Kotanl (1958,

1940) published their tables of integrals for the calculation of molecular 

energies that any unified attempt was made to give a co;.r irohenaive method 

of evaluation of all the integrals arising in problems of molecular structure* 

Ac was stated in the previous chapter, atomic wave functions can be 

approximated by a sum of nodeless Slater type wave functions. All the
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Integrals can then be resolved to integrals containing only the Slater type 

wave functions* V.ith the orbital functions thus chosen, Kotani followed 

the Heitler - London theory rather than the more elaborate and more highly 

specialised theory of Janes and Coolidge ( 1955 )• The h’eunonn expansion 

for 3/r is used in conjunction with elliptic coordinates and the integrals 

are listed in terms of auxiliary functions which are tabulated at sone 

length in the two papers.

After tte war the subject was taken up again and was tackled by 

various grouos in different ways. At the Conference on Quantum Mechanical 

Methods in Valence Theory, (1951), it was the opinion of those gathered 

that since none of the methods so far adopted had really been thoroughly 

proved in their applicability to oorrouting machines, electronic or othervzise, 

it would be wise to pursue the several methods simultaneously. The necessity 

and the strength of tills bond linking the subject with computing machines 

io realised when one e barks on the evaluation of the tr.o centred integrals. 

After my experience in the field I should say that if any degree of accuracy 

is contem. lated the con utation can only be done with the aid of electronic 

com 'Uting machines, for the tine tai en to do the sane work on a desk nac’r ine 

is prohibitively long, and even so it is questionable whether the work 

involved is in many cases not too great for the results obtained ( see 

Liscusaion ). However it is a fallacy to suppose tl.at the bigger the machine 

the better.

The two main post war methods of evaluation were published just
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prior to the aforesaid Conference; they are

1. The Barnett end Coulson (1951) method using zeta functions as

auxiliaries.

2. The Chicago group under Hoothaan (1951) and Rhdenbcrg (1951) 

who interpret the integrals as interactions of charge distributions on the

atomic centres.

Since the war too Kotani's approach has been expanded and numerical 

corrections made to the tables. Kotani (1954) himself has made further 

contributions but more comprehensive is the series of papers by Kopinock 

(1950, 1951, 1952) and finally Breuss (1954). The latter papers are however 

restrictive in that they assume all the kj equal ( see chapter 2 for 

the definition of 1m )• Numerical tables have been constructed using 

the values of the auxiliary functions in the first tro papers of Kbtahi.

In this chapter we shall consider a selection of all but the 

exchange integrals which due to their complexity will bo the subject of 

chapter 4.

5*2 The T ethod of Roothaan.

The reader is referred directly to the original paper (Roothaan, 1951) 

for the detailed analysis: only a brief outline will be resented here with 

a slightly altered notation.

Three coordinate systems are introduced:

Cartesian coordinates at centres a and b with the two x and y axes 

parallel, the z a^es being directed towards each other along the line



- 41 -

joining the centres a and b, (see figure 4*1)»

Spherical coordinates defined by

ra - +

»a “ ten0a“ ye/*a

and similarly for r^, and 0^

Prolate spheroidal coordinates given by
5 - (ra ♦ rb) A, *\ - (*a - A.

an- 0 ■ 0a « 0b«

Slater ty->e wave functions are retained as in .previous methods viz.

(2k) n+t (an).’ rn_1 e-1^ 3^,0)

rhere 2^(9,/} are the nor. alised real spherical harmonics; and n> 1, m 

are the usual orbital, angular and magnetic quantum nuniber gynl)ola.

The integralo fall into tro classes: tlic one electron type (a:M:b) 

There 12 is a totally nymetric o;aerator; and the two election type 
j (ab! Vrab :a?b’) dt abbreviated to (ab::a'b’) v.hicfc is interpreted 

as the interaction of two charge distributions aa* and bb\ Also coming
Sz(a V^b «•') dtinto this class are the nuclear attraction integrals

abbreviated to S(aa’) since in effect they are the interactions of the 

cliarge 2 on atomic centre b with the distribution aa’. these 

charge distributions are tabulated in the paper as functions of the general 

charge distribution
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0,1w - VttI ’”■* •"■■=■ ’“‘’•w

These basic charge distributions are denoted by (NS), (NPa), (NPx), (NPy), 

etc., or in general by (J£).

NOTE the chrn e in notation of the exponent's coefficient from to kj

so that k ~ s(k + k1) and x = (k - k’)/(k + k’).

For tho coulomb integrals we inust define further

“ *<ka *

Ta B ♦ kA>

k « 0*25(k^ ♦ k^ + + k£)

e H*b+

% • - %V(1% ♦ >%)

’ • + k4 - % -
(1^ * ic; ♦ kb; kp

Each non-vanishing ’two electron’ nuclear attraction and coulomb 

integral is listed in terms of tiie basic charge distributions. These 

distributions which are funet-ions of k and p = kR are found in terms 

of the auxiliary functions

^<p) . f y «•<* di = m p-^1z. P yu J • >0
and

Bn(p) 7 •"P’1 dq = -^(p) - (-l)%(-p)

with the condition that p 0 otherwise the former integral diverges.

With the coulomb integrals it is necessary to transform the 

coordinates of one distribution to those of the other. The integration 

over the coordinates of one electron amounts to calculating the pn-fc^n+.j a],



a



- 4S -

of the corresponding charge distribution which we will take to be

P(r) 3^(0^).

That being so, the potential for electron 2 at P due to tliat charge 

distribution of electron 1 is (see figure £•!)

^(r2,«2^2) - Z 5,-5 [?<*!> 4 drx d^
I

'where c^, is a function of spherical harmonics. 3y identifying a with 

0, b with P and R with r<> we have fcatumed to the nuclear attraction 

integral type.

The non-vanishing coulomb charge distributions are listed In terms 

of the parameters k, t, p, X, pa, p^, where-

<«■!(* + |) pa = V- Pb -

It ia now tine to return to the one electron integrals (a:E:b).

They comprise the overlap integrals, li « 1; the kinetic energy integrala,
< o -II s= arki ^liC one electron nuclear attraction integrals, M b yr..

The last two arc expressed in terms of the first (overlap) type quite

simply from

-?V'(n9l9*) * | 2( 2j/(2&~l) )s (&-l,l,mJ

- .Ate .♦. A)Jte ---L---AL /_ 2 t 

|2n(2»-l)(2n-2)(2»-S)]2 ’’

and Vr (n,l,n) = 2Zk (2n)^ (2n-l)~^ (n-l,l,m)

The overlap integrals are given in terms of the -^n(p) Bn(p)

defined above. The formulae do not hold in geneial for T «= 0 nor p » 0
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and in these cases the Units of end p^O have to be calculated,

and are Hated separately. Bingel (1956) presents a method of calculating 

the nuclear attraction integrals for 0<p<l«0 using an auxiliary function 

provided in tabular fora.

5* 5 The Fethod of Barnett and Coulson,(l951).

Figure 5*2 defines the notation; a and b are the atomic

centres. The rave fine t ions employed are again of the Slater type. The 

basic plan of this method is to express the wave functions centred on say b 

in terms of r and 6 by means of an infinite 3eriest
Q ci

xg-1 e-kTb
oo _ .2m* 1
n=0 v&

*a)^n,n(k>raJR) .......... <•**>

bat son (1952) page 566.
oo.-n*l 2n*l ?»(OOS »8><Sn.n<1‘t’P)rr-0 Jtp ’ B' Jn,n'

where t and p are the dimensionless variables

* k

t = krr a
p » kfc

Tlic seta functions are the rain nuzdlinxy functions and

are obtained by partial differentiation with respect to k from the 

particular function

*3 o,n = M(kR) r^R-

The I and K are Vessel functions of purely irajinery argument. Jfn the

two centre integrals can be reduced to a series of the standard J functions
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defined as

J(i,», ,n2) = «“klra -«r *b oo-ji jAt r^2 “i at

When the espanaion (S*l) is inserted in J the an.cjilar integration can 

be carried out iranediately leaving

k<ni+D2+1' . M f>t at
\l Jo

/£b
The f functions nr linear combinations of the a ~J n,ra

- g. r* in>J
>0

‘Jil > f • P (cob ©) COB1© sir© d© = i-----
3 Ao r ' [(i-J)/fip (k+J+l)J

This final integration of the J integrals can be p r»|onned

mcaerically or with the help of tables of tho seta functions pi*e >ared by

the National Pliysioal Laboratory (1952), or by the 3 method described

in detail in Barnett and Coulson (1951)« The last method is not

irrnediately x'eco mendable as it is indeed a lengthy procedure conpared to 
v/ethe other methods nor available* All the integrals v.iiich require (except 

the exchange) are tabulated in the article and will be referred to when 

needed*
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3*4 Spot values using various methods.

The various methods were tried and compared for spot values of the 
parameters for the coulomb integral J 2s 2s 2s 2a and the

electron nuclear attraction integral 1 2s l/r . 2sr at. The parameter
J a a2s^ a

values were

R ® 2, k = k s■ 2*5*b - \

1. The coulomb integral

a) fo** method of Roothran

Using the form of the integral in the paper,

£ S £ S
C « (2sa2B^ : 12^23^) a (l-«a) (Mg) (**%) (l^b) (SS.tSS^

but = 0

• • C = (3Sa:SSV
k/n f 1 «. (i + p + . 119 p' _3 4 1 5 1 € i 7\^PL1’“U+ 256 P 123 P *W2P + 24 p * 9?? p + 1JD P +T&SP ) e

Now p = Rk = 5 and « 0*CaX)0453999S

0 = J [ i - (597*1643.1) (0*00004639993)^

= 0-46 C4444.

Some tine after the conpu tat ion had been done, Roothsan (1955) 

published a set of tables of integrals and the integral was computed from 

these, the result being identical i. c. 0*4864444.
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C

t r-.^i i r 1
-------dt

b) The method of Barnett and Coulaon.

Abstracting from the paper

« |(ka + fci) - Kkj, + k£)
p°

(2sa2sft: tSa^Se^) = Hc(2fl2s2a£s) j t? ga(2e2s2s2»tt) dt

239 VTTJ
oo

• 0*002745053 ft£ «J, (^“t^^d.t^k^R) dt 

Put SkjjR = T - 10,

But the National Physical laboratory Seta function tables are .given 

in terms of the Chi functions related thus:

njia ® X> m>n / ^JtT (Note the ouffi;: order change.) 
j?e>

C = 0*002745035^ (K’t) Qt^T2)'! f.;/2{T - tj? dt

But R* « k^/kfc = 1

and Js(t) = 24 - (24 + ISt + 6^ ♦ t5) e_t

Integrating now using Simeon’s Pule

♦ *(») ♦ s[f(2) + ffl») +...+ f(n-2)^ + d[f(l) ♦ f(3) +...♦ f(n-l)jj

*’* C = 0*002745033 £M(i) f f(ik - f(i). ~|
L i *' 1 > 1 j

have been set doer in Table 5*1.
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Table 5*1 Simpson’s Rule.

1 M(i) *^1,1

1 1*33 0*098615122 0*006175143

2 0*66 • 0*55S208056 0*118980472

5 vss 8*015388666 0*781797555

4 0*66 6*140884500 3*37964540

5 1*33 17*0801802 11*709255

6 0*66 44*5080424 55*215518

7 1*35 109*254047 94*959156

8 0*66 248*914205 229*63950

9 1*33 501*712941 479*557957

10 0*66 756*55667 755*66602

11 1*35 616*00554 595*70665

12 0*66 375*61500 350*11449

IS 1*35 805*28781 288*55077

14 0-66 102.86438 92.994966

15 1*55 49*859987 45*824770

16 0*66 25*449256 ±9*997588

17 1*55 10*768605 8*9069570

18 0*66 4*8577545 5*8928070

19 1*55 2*1588965 1*6756055

20 0*66 0*94754S4 0*7122081
21 1*33 0*4114552 0*2995267
22 0*66 0*1770124 0»1240319
25 1*55 0*0755521 0*0516185
24 0-55 0*0519961 0*0211982
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|i-80(88-71S21) ♦ 0-66(88-47135) + 0-3S(0-01979788)jC B 0 •0027460?::

* 0*4366169,

c) r*ke method of .Kopinedc (1950) after Kotani.

It mat be observed first of all that vhereas to are using atomic 

units this article employs the ordinary c.g. s* system and therefore to 

compare results tho appropriate modifications have to be made* Jfa 

oonaideration it is aeen that Z«2/2ao «» k, and the integral in his 

notation is 0 , In comparison of the formulae (^opineck , 1950,p,42?)

with the corresponding eq ntions of Roothaan it is ii mediately obvious that 

they are identical and so it is not surprising that ne find using the 

tables the value

C « 5(0*097289) « Q> 466445,

2. The two electron nuclear attraction into ral*

a) lhc method of hootlman.

Prom the paper,

▼2 = Z(2s,28n) ■= Z(l+r) (l-%) (Vp) Jp - (l + l-5p + p2 + 0-,”3p5) e_2P;

but t “ 0 and p » Id-; « 5,

Vg = Ql - (1 + V5p + p2 ♦ 0-58p5) e-2pj

V2 “ L1 “ (78*l)(O«O0OC455999)J = 0-49629 Z.



b) The rtethod of Barnett and Coulaon.

V£ - Z(2Sa2Sa) . ^12 (k® (2k* R)'1 J3(2V>

but ka = lLa 15 ^a = k 
Vr = (2/24E) ^24 - (24 + JBs ♦ 6c" + a3) a-3 J

where 3 = 2kE
■ 0*02085 ( 24 - 0*0019016) Z « 0*49829 Z.

c) -*lc TiQtlx>,d of ■Loplnook.

Taking the sarae precautions as in lo), wo find t at 

V2 = Kbs * 5C°eO99€59)" = Z

From the above ezswroles we are able to gauge the work required In 

each of the methods. The numerical tables available although helpful for 

rough checking are not very suitable for our orohlcn since the effort of 

accurate interpolation outwsighs the effort recuired to calculate from the

basic formulae. j
The method of Kopinock suffers further iron the disadvantage as J

mentioned previously of assuming all the equal which is not always so.
I

As fax as the coulomb integrals are concerned it appears tiiat the Roothaan

method is on tho whole faster than the Barnett and Coulson method when a

desk maciiine i3 used. It is possible tiiat with an electronic machine such 

as the I.B.M. 62C as recommended by Dr Barnett, it would be faster and 

more efficient to vso his method for all the integrals including the exchange 

when the auxiliary eota functions had been prepared in advance. With the 

liiuited facilities available the Iieothaan nattod was clio^cn. H»e nuclear 

attraction integrals have been computed by both methods with good agree? .cnt.



8-5 The Overlap, Bxteg&a.

It io logical to start with the overlap integrals appearing as they 

do as a factor in all the other integrals. Once again they ares

dt s (I) s Sloa l8b 4* ss (lets)

dt sc (n) c $2eft 2^ dt s (2b2s)

1*8^5 dt K (in) S3 J V SB (Spj^Pg)

dt e (IV) SB I2pxa2pxbdt C (SPjj^P,)

dt s (▼) SB
l^ya^yb4*

IB (2?y2Py)

Kbs dt » (VI) EX [l8a 2% dt = (ls2a)

Ialb5 dt s (VE) S Il8a 2p«bdt a (la2ps)

I “8*8 dt s (VIII) as f2Sft 2pAdt SS (2B2pB)

But we defined

2b = H 2s’ - H* Is*

Jekbj dt = (II) • 1^(2s’28') - 2HH'(l8’2s’) ♦ H’Us’la’)

dt - (VI) = H(1b2b') - H’(Isis’)

1*3*5 dt . (VIII) - H(2s’2pa) -

The actual form and parameter values of the wave functions

represented by the ns and np are those stated in chapter 2. In all the

integrals except (ls’Ss*), (la£6')t (lsls*), (2s’2p ). and (ls*2p ) 
z z

« kjp that is % e 0.

We can use the special forr noted by Roothaan for these cases and their 

evaluation presents no difficulty: p « kE.
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(Isis) • ( X ♦ p ♦ 0-3p ') o"P ( k « 9*66 end 8-97)

(2s2s) r ( 1 + p + O-4p2 + 0-3pC ♦ 0-02p* ) e~P ( k = 2-954)

(SPjgSpg) » (-1 - p - 0-2p2 + 0-15p5 ♦ 0-0Cp4) e"P ( k = 2*88)

(2p^2pac) » (2?y2py) e (l ♦ p + O*4p‘ ♦ 0e06p^) e~P ( k » 2-88)

The other integrals horxver require further consideration.

(18-28’) [.(1_K) ^2(1+K)(9-5K) ♦ (l-2K)pa^e-Pa

+(l+«) j_2(l-K)(2-5K) + 4( «*» - »{} ’‘’’'’I 

ka = 8*97 k. = 2*954 ko 5*952

pft = Ekft p >= Rk^ t ■ 0*50705645 K = 1*2596117

(la'2e*) - 0*9S1429C8/p ^-0*2596117 {-7-69904C4 -l*479228pQ^ e"P»

+2*2596117 ^0*825706 -0*95844C8pt + p~ t e“Pb 1

Nor (ls2s) = H(1^3') - Helals')
(la2s*) a [-(1-K) [?.(1+K)(2-5K) + (l-2K)pa^ e“P»

+(l+K) ^2(1-K)(2-5K) +4(1-K)pb + Pto} e"Pb] 

kft o 9-66 k^ o 2-954 . k = 6-297

Pa " Pb “ IJJcb X = 0*554063(5 K a 1*20525

.V**

♦ 2*20525 lo*654~6336 - 0*8150pb + pb\e"Pb

H(la2a’) a 0*9406128/p £o*20325 ^-7*0955654 - l*4065p
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H* (Isis’) x r(Va.2j2 f-( l-K) ^2( 1+K) + pa^e-pa + (l>K) ^2(l-K) ♦Pb^“Pbj

lc a 9*66 kjj ■ 8*97 .'. k = 9’516

X = 0*057087 K a IS*5185

H’(lsls’) e 6*8535019/p I18*5185(29*03704 + pa)e"pR
+ 14*5186( -25*05704 + pb)e’Pb]

(ls2pa) - -X- ^J'[-(l-K)2{6(l+K)(l+pa) ♦ 2pa 'Je"pR

+(1«K) {6(l^K)?(l«ph) ♦ 4(UK)p2 ♦ b]

k a 9*06 kjj a 2*88 1 = 0*5406093

1* 1951136
(1s2»j*) «- 0-08C1G365/H2 f- 0*03806952^13* 170632(l+pft) + 2p* j e"Pa

+ 2*19511Sc|o*2284159(l+pb) - 0*7804544p^-»p® Je"Pbl

Now (2s£p*) a H(2s’2p3) - H’(ls’2p )

For H(2s’2ps) the values of kQ and are 2*954 and 2*88

respectively. By talcing = 2*88 tiie error involved is small and

for simplicity tils will be used.

H(2s’2ps) a 0*86580858R (1 + p + 0*46p2 + O^lSp5) e"P

For H’(ls’2pa), k* = 8*97, k^ = 2*88, 1=0*1159241, K a 1*2298684.

2H’(la’2pa) a 0*024356799/R2^-0*052859[l3*3792l(l+pa) + 2p|^e"Pa 

+ 2* 229e684^0* 317057(l+pb) - 0*919474p2 ♦ pbU-ph
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referring to the aporooriatc tables in the appendix it only remains 

to tabulate the values of these integrals and their squares (Table 5*2)

prior to the calculation of L itself. Ibis is a summation of such< ' 1 ) »
magnitude and monotony that in my estimation its execution would serve no 

other purpose in this context than to emphasize the droo-in-the-ocean 

contribution to the whole project.

Using the special relation for R - 0 from the Roothean paper 

the overlap integral (lsa2s^) was calculated and found to be zero, which 

is to be ezected since the model has degenerated into an atomic or one 

centred problem, the wave functions of which were Liade accurately

orthonormal at the start;.

In computing the integral it must be remembered that the 2s 

function is a difference: the integral in question then reads

H(lsa2s^) - H*(lsnlap in which the are respectively

9*66, 2*954 9-CX3, Q«97

R s 0, the integral is
i £|H l_S(l+t1)8(3rT1)5] - r[(Ut2)S(J^2/|

but = 0*5540038 b 0*057057

the integral n 0*2555852 - 0*2535052 b 0

An interesting paradox shows up if one assumes the election wave 

functions orthonormal on each atom, and orthogonal but not normalised 

between the atoms which at first sight seems a plausible assumption.





E 0*5 VO 1.5 2*0 2*5

(1» !• ) •10867552 •0026C42 •044554 •0659 •0P7

(2a*2a*) •894C315O •64961006 •59025920 •20070410 •09157488

(la' 2s’) •25453360 •12992826 •04825710 •01547367 •0045349e

(la* la*) •13746743 •00467877 •O510727 •05204 •075

(2s 2b ) •8?992°90 •65317250 •59594451 •20854930 •096461)60

(2Pf2pg) -•514C6152 • 12551822 •24916075 •26951950 •15704598

(2Pj2p^ •82163894 •495S9C75 •24152444 •10526578 •04017914

(2Py2Py) •82163394 •49259373 •24152444 •10526578 •04017914

(la 2a') •24049221 •12150248 •04467961 •01424641 •00420299

(la la’) •03157440 •0C090941 •041787 •0C29

(1b 2b ) •20911385 •12C535C7 .•04466174 •01424512 •00420299

(la 2p^) •55207299 •19179457 •07521060 •02484625 •00756098

(28*21)^) •5-3940559 •53022696 •427C1015 •25960125 •15245657

(la* 2?^ •09031750 •05452857 •02152749 •00710024 •00217107

(2a 2pa) •29088586 •4759C139 •40568264 •25270101 •1502C550

(la 1b )2 •01180991 •05710 •0^2

(2a 2a )2 •7054805C •40090712 • 15677171 •04549514 *00950465

(2p^Pa)2 •2€425771 •01504775 •06208115 •07255500 *02466281

(2pJ[2px)2 •67517264 •24344232 •05355445 •01066582 •00161456

(la 2a )2 •04575067 •01464268 •00199467 •00020286 ‘041766

(la 2pg)2 • 11027247 •05878508 •00565666 •00061753 «045717

(2a SpJ2 •00955277 •22648215 •16457840 •06585780 *01697426



3*0 5*5 4*0 4-5 5«0

•0381242C

1

•01476527 •0054037C •00188768 •00063454

•00129389 •05S5305 •0*94C6 •0*2460 •05635

•04043270 •015756S3 •00578512 •00202517 •OS6B1S1

•07658085 •03525098 •01529455 •00500316 •00178795

•01459505 •00502915 •00166539 •00053312 •O516576

•014E950S •00502915 •00166559 •00055312 •O516376

•00113266 •0*-52196 •0*8566 •0*2238 •05577

•00110266 •0SS2198 •o*55ee •0*2238 •06577

•00218924 •0261305 •0*16762 •0*4509 •0*1192

•059603 IT. •02471424 •00954762 •00350396 •00122^46

•0S6306^ •0S17702 •0*4372 •0*1306 •05546

•05917751 •02455722 •00949889 •90340090 ♦00122500

•00165865 •0S24828 •0*3347 •05410 •0C46

•00596465 •00110563 •0s17674 •0*2503 •05320

•0^21296 ♦0*2529 •05277 •0628 •078

•O514O •oeio •C^7

•05479 •Oe58 •07S

•00550200 •0S802075 •0*9025 •0*1218 •06150
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In this case there are only five different terms (I) (H) (III) (IV) and 

(V) instead of the eight in the co.)lete3y non-orthonormal case which we 

have Just treated* The total overlap integral then reals

- 4 (i)
jj=i

(i)(d) ...♦ 2(i)(n)(in)(iv)(v)]

and the numerical values for the intenauelear separations of 0*5, 1*0 and 

1*5 atomic units are respectively -0*9548, -0*5249, '*0*4026.

But the overlap integral L is a positive definite quantity 

hence the paradox. Sue . an example selves to illustrate the danger of 

false assumptions over oversimplification wiiich in this case is the 

assumption of orthogonality of the wave functions between different atoms. 

In fact the overlap integrals neglected there are of prime importance.

5* 6 The I cthod of I?.pothaan and the Kinetic Energy Integials.

In chapter 2 we saw that the kinetic energy integral was

’1 ' f • V’

- pt <•» » V •
VfWtsl ’

As was stated in section 5*2 these integrals can he expressed as 

functions of the overlap integrals. Some of the integrals are symmetric 

in the in wiiich case x = 0. The modified and simpler form of the

overlap integrals can therefore he used again.
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Pocuasint our attention on the (a^. 1 Lv) the different intc-rala 

occurring are

(Is T Is)

(Is T 2s) = H (Is T 2s’) - R’ (is T is’)

(Is T 2pg)

(2s 5 2s) = H2(2s’l' 2s') - 2Wi'(ls“£ 2s') + H’^ls'i Is') 

(2s T 2p3) ■> H (2s‘T 2pz) - H' (ls’TSpg)

(2pxT 2px;

(2pyS 2py)

The numerical value3 of the integrals are in ieole 5*5 at the end

of the section*

(lsaT 1%. - 9-C62 [(ls^) - 2{2 (08*18^]

«= 95-3156 ( -1 - p + p2/S ) e"P

vrhere p ~ kF = 9-fCR

ir(2s;T 2s£) o H2(2-934)2 [(23f)2sb) - 4(ls^s^/JS ♦ 2j2 (Os^s^/Js J

> H28-6G6S5G (- 1/3 - p/S - pL/9 + p4/45) •**

v/here p c kF c 2*954R

H’2(is;i la^) «= H’2(c-97)B ^(leaiab) - 2J5 (Os^)]

= H*2 30-4609 ( -1 - p + p2/S) o'*

v;here p = k£ c 8*97K



—
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(Sp^TSp^ = 2*88“ [(Sp^Sp^ -

= 8*2944 ( 1 + p - p“/5 - 0*5&p* + p4/S0) «"p

v.here p = ItR = 2*88 R

= (Spys.MPyb) = 2-882 [(2?^^) - 4(Ip^]

= 8*2944 ( - 1 - p - 0*26pg + 0*06pl) e“2 

WHERE p = kE = 2*38 R

2HH’(1b^T 2a^ ■ 5*352g(l+t)2 2HH' - 2J2 (03^2^)]

= 5*952‘ (l+t): 2HK’ (iMr2)^/^ tp

[-(1-K)[8(1+K)(2-5K) + (l-2K)pA - 2(l-2K)J e"?*

<• ^(l-KXl+K-SK2) + 4(l-K)Kph - (JUl)pH e"Pt>]

whore p = 5*952 R, t = 0*507056, K ■ 1*2596117,

kft ■ 8*97, k e 2*954.

H (1bb T 23^ b G*2972(l+t)2 H (l^t2)>/4a tp

{-(UK)[2(1O(2-SE) ♦ (i-2K)pa - 2(l~2K)} e“Pa

+ {2(1-K)(1+K-SK£) + 4(l-K)I<pb - (R-l)p2 \ e“P*

where p c 6*297 R, 1 = 0*554064, K e 1*205240,

ka = 9*C6, = 2*954.

H’(laaTls^ = 9*5152(l«)2 H' [(la^ls^ - 2^(O^ls^]

= 9*S152(1^)2H( 1-tM l-(l-K) (2K+p \ e“Pa + (i_k) (214-pJ e"Pb
Tp L «

whore p « 9*515 R, x = 0*057057t K = 15e5185135f

ka ex 9«CGS kQ = 8*97
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Table 5*5 The two centre Kinetic Energy Integrals#

B 0*5 1-0 1-5 2*0 2-6

1*450600 •1217025 •00259058 •04S952 •0G48
H2(2s'T 2s') -2-293916 -1-221628 -•5346182 •04227098 •1072861

2HH*(ls*T2s') -•72539^2 — 11005S4 •0315347 •02090421 •0097025
H'2(ls'T Is') •0713564 •C111156 •035415 •0S74 •0614

(2s T 2s) -1-497169 -1-099679 -•5656115 •01837419 •0975840

(2p,T 2pg) 1*865380 -5*329663 -5*287528 -1*701650 -•6915899

(2pxT 2?*) —5*489845 -2*094721 -•5489862 -•0749577 •0177049

(2Pyj 2Py) -5*489345 -2*094721 -•5429582 -•0749577 •0177049

H(ls T 2s’) -1-537455 — 1298562 •0571952 •0421985 •01695188

H’(ls I Is') •5C83153 •0309009 •0S6577 •04100 •06l

(la T 2s ) -1*705748 -•2207571 •0565574 •0421885 •01695176

(Is T 2pa) -5*242079 -•9914017 •0085469 •0551558 •02626578
H (2s'T Zpj -1*877745 -2*505885 -1*028964 -•2495887 •02815286
H'(ls'T 2?*) -1*406445 -•2244417 •0S7256 •0153643 •00745G71
(2s T 2pe) — 3813018 -2*079443 -1*029689 -•2649550 ♦02069614



5*0 5«5 4*0 4*5 5*0

•0^6

•0759695 •05967865 •0176857 •007116558 •00266247

•0057423 • 0S9S575 •052829 •O^TBIS •042101

•032

•0722167 •05869508 •0174023 •0070584C6 •00264146

-*0259920 —07546652 -•0199572 —0C46945C1 —058568

•0197561 •0104645 •0C44482 •C01C37915 •0^5955

•0197561 •0104645 •0044482 •001687915 •0£5955

•0056S8S •0017066 •0£4086 •0S15805 •O^IB

•0056535 .0017066 . O'-4386 •0£15805 •04561B

•0094155 •0029964 •os8926 •0S255S4 •047076

•0687757 •0470944 •0240921 •0106579 •00425925

•0026951 •ou86i54 •0"27655 •O^/STO •042047

•0C6080C •0462528 •0258155 •0105641 •0042588
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(1B& T 2p2b> .

Tdiero p

v.here p

H(2a^ T 2pab) «=

K

v/here p

H’(ls; T 2Pzb) .

6*272(1«)2 [(lsa2pal}) - 2j2 (OBaSp^)]

6*272(1*»)2 lAp2

[-(UK)2 {(6X+2)(l«pa) ♦ 2p®J e“P*

+(1-K)S [(eK+2)(Upb> ♦ 4<1-K)7^ ♦ (K-l)pQo-P^ 

« 6*27 R, t = O*MO6099, K = 1*1951156,

K, = 9*66, It- 2*88.

5*9252(l-w)2H’[(l8a2pab) - 2j5 (Os^p^l 

5*9252(l+>r)2 /(l45t)/(l-x) H’/xp2

["(l**K)2 [(CK+2)(l-tpa) + 2p2^ e-Pa

Xl-^)" {-.cK+£)(l+pb) ♦ 4(l-K)Kpb + (K-l)pbje~Pbj 

= 5*925 R, x • 0*51592405, K • 1*2298684,

ka = 8*97, k. = 2*88.

2*382 [(2sa2p3b) - 4(l8a2pzbj/^ ♦ SjS (OB.Sp^/JJ (

2*882 p/SOyS [- 5 - 5p - ISp" ♦ 2p5 I e“P

= k R » 2*88 B.

5*7 The Potential energy V9«

From chapter 2 ne recall,
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1. The integrals

The descri

looks erroneous at

These interrrls go under a variety of names: Roothaan classes them as 

two electron and one electron inte orals respectively; while Barnett and 

Coulson designate the first one by one electron coulomb integral and the 

second by resonance integral.
5*1 .4, dtr

tion of these by Roothaan as two electron integrals 

first sight. The .justification lies in the acceptance

of the nuclear charge Z aa a negative electron cliarge distribution. The 

evaluation was carried out independently by both methods in many cases and 

the results a preecL This is only to be expected, however, for a closer 

examination of the final formulae in each method s’/ows that tliey are in 

fact identical although they were reached by different ways.

The different integrals are:

Z(laal®a)

2(2oa2saj « 2(23^28^ - 2HH’ Z(lS;2s;) + H'" Z^ls^

Z^za^)

. Z(2P»2P;»)

Z^^ya^ya^

Z(laa23a) - H Z(lOft2S;) - H' Z(laalap

ZdaaZPsa) ................ '

Z(2Ba2Paa) - « 2(242?^) - H’ Z(l3^Pza)

In moat cases the Roothaan formula (R) and the Barnett and Coulson

formula (BC) will he given ( in simplified form when k = k')a a*
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to enable the comparison between the two to be made. The Roothaan parameters 

are p t= kR and while those of Barnett and Coul son are s = 2p and k.

Z(l8alea) = 3/P. L1 “ (1'tP)e”2p] <R)

B 3/2R ^2 - (2+s)e"3] (BC)

where p = Jk R = 9*66 R

Z(2s^2sp = 3/P [_1 - (1 ♦ Sp/2 + p2 + p73)«"M (K)

b 3/2® ^24 - (24 + 3Sa + 6a2 ♦ bS)o"s^ (BC)

where p = k R = 2*954 R

Z(lsa2sa) b Us [l - (1 + 4p/S + 2p2/S)e"M

b O*O455583i/R [{3 - (6 + 8p + 4p2)e-2P^ (R)

b | (k“l^/S)- k~5 s-1 ^6 - (6 ♦ 4s + a?)©-3}

b O*O455581S/R ^6 - (6 + 4a + r2)©”3} (BC)

There p = k R = 5*952 R, t = 0*50705645,

ka “ 8,97 iza ~ 2<954*

Z(la;ia;) b 3/R [ 1 - (Up)©"5** ] 

where p = k R s= 8*97 R

“ VE [l - (1 ♦ 3p/2 + p2 + p8/3)®_2P ]

♦ l-(i + 2p+2p2+ 4pS/3 ♦ 2p4/» ♦ Ep5/^©’^] (R)

« C*00S7C760ty'ES 9C + 8s2 - (96^96a+56s2+2285+684+85)®"8] (BC) 

where p e k R = 2*38 R

The numerical results are collected together in table 5*4.
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' VR [l “ * V2 ♦ PB ♦ P5/»)®_2p]

- SV2p5 fl-(l + 2p + 2p2 + 4pS/S + 2p4/S + 2pC/9)e-2p] (E)

« 0‘007555204/R5 f -24 + 4s2 + (24+243+8s2+s5)c~s] (BC)

Z(l8aSsp = K^a’/S)^ i”S a"1 [c - (6 + 4s + s?)e“3 ] 

b 0040040C5/R f6 - (6 ♦ 4a + a?)o“s ~j

■where o ~ 12*594 R

Z(lsals^) = (k^,5)* k~2 S_1 [2 - (2 ♦ s)e’3]

= O-49697155/E [2 - (2 + s)e"8J

where s = IB*65 K

Z(laa2W B Kk^')'* *”£ »"2 [e - (8 + 3s + 4t£ + S2)®"8 ]

= 0*00546154/R2 [a - (8 + 8s + 4s2 + 83)e”8]

v.here & = 12*54 R

Z(l3^2p_j slillarly

= 0«006475485/E2[8 - (8 + 8s + 4a2 + s5)e“s]

where s » il»35 R

^2sW “ <*£*6 7»)' *"4(2s)"2 [«> - «*<40c+20s2+«aS+a4)e“s]

= 0.012529SQ3/R2 [40 - (4C+40s«-20s2+635+s4)e-3]

where s 5*76 R.
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Table 5*4 The Integrals Zfa^a^,).

B 0*5 1-0 1*5 2*0 2*5

Z(ls IS) !•999256 1*0000000 •G6GG6667 •50000000 •40000000

H®Z(2 o’ 2b*) 1*425852 l«0112857 •71584094 •55940410 •45137273

-2HH’Z(1b'2s’) •2805222 •14420853 •C9C15995 •07212005 •05769604

H,2Z(1s*1»’) •1288890 •0644C799 •04297866 •05225399 •02578718

Z(2b 2s) 1*272598 •95154511 •660eC8C4 •49951305 •C9996589

Z(2pe2pz) 1*554885 1-1285512 •75391409 •54557074 •42501975

1-17367C •85384722 •6156C494 •47742141 •58842733

Z(2Py2Py) 1*175670 •85584722 •61566494 •47742141 •58842755

HZ(ls 2e*) •4057256 •25532325 •1X3891246 • 12667691 •10154152

-H'Z(1b Is') •5066981 •25347752 •16898502 • 12675877 • 10159102

Z(ls 2b ) -•0109745 -•OJ015429 -•0^9256 -•046186 -•0';4950

Z(1b 2ps) •1555924 •04555945 •01958512 •01090508 •00697797

HZ(2b*2pz) •1862116 •05569588 •02591409 •011958 56 •00860921

•H*Z(lB’2pe) •1281969 •09559469 •05574450 •05158791 •C2034899

Z(2b 2pa) •0580128 -•C4169881 -•02985021 -•01964935 -•01173978



5*0 5*5 4*0 4*5 5-0

•33533335 •28571429 •25000000 ♦22222222 •20000000

•55992156 •30050625 •2C994511 •25994944 •21595455

•04808005 •04121145 •05606002 •03205555 •02384602

•02143933 •01341945 •C1611C99 •01432622 •01289359

•35330866 •2 571429 •24999999 •22222222 •20000000

•34671963 •29414952 •25565141 •22619137 •20289553

•32663542 •23149652 •24717452 •220257C4 •19855324

•02665542 •23149652 •24717452 •22025764 •19855524

•06445127 •07258685 •06335646 •05650084 •05067076

•084492:>2 •072422154 •065569366 •05632654 •05069551

-•044125 -■(fc>525 —045C9£ -•O4275O -•042475

•00464581 •00356019 •00272577 ♦00215569 •00174450

* 005y7802 •00459246 •00536298 •00215230

•01414279 •01039155 •00795611 •00623651 •00509191

- *00816417 -•00599909 -•00459515 -•00362914 -•00293961
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2. The Integrals dt.

Barnett and Coulson cell these resonance integrals end list them 

in terms of the seta functions* I consider this method of integration on 

a desk machine long compared with the Kootliaan method, and therefore only 

the latter was employed. When detailing the integrals we must note that 

since there is no longer symetzy, 2(18^28^) / S(2se±t^j. We have:

Z(lSpl3b)

2(2on2^> a K£Z(2c^2a^) - HH’Z(U^23^) - HH’Z(2B’la?) + H,2Z(ls£lap

^aa5*^

Z(2n 2o J yer“yv
Zda^Sa^ « HZ(laa2s^) - H'Z^lay

2(28^1^) b HZCSa^la.) - II’Z(Is^Ib^)

2(2»a8Pah) » ***•&*) - H,Z<l8a%b>

Z(2pza2sb) = "^sa2^ " “’^aa^P

Z(lsals^, « 9*66(1 * p)e*P

where p = k R ~ 9*66 R

Z(2s;2»{))P2 e iH‘2’934 (i + p + 4o2/9 ♦ p£/9)e"P 

v/here p ® k F «= 2*954 R
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HH’ZCls^Bp «=

where

H’^ls^Lay . 

where

Z(2Pza2i>2b> K
where

^Sp^a^Pib) = 
where

HZ(l«a28y =

where

EH'Z(2^1a^i =

5*952HE*(l*i)(l-T2) V43 <p L-(l-K)(l-2K)e“Pa
♦ |(l-K)(l»2K) ♦ 2(X-K)pb ♦ PfeJe"Ph]

2*S2527C5/p ^-(l-K)(l^2K)e~Pa +[(l-K)(l-2K) + 2(l-K)pb-t?2]«A>j

= Bi = 5*952R, t = 0*80795645, K = 1*2890117, 

k = 8*97 kj, = 2*854.

5*9S2HK’(i+-»)(l-T2)^Xjs ip [-(l-K) (s(l+K) + pft^ e"Pa 

j + (1+K) £?( l-K) + pb^ e"Ph
?*52527CE/p[-(l-K)^2(l+K) ♦ p^e-Pa + (l+E)[2(l-K) ♦ Ph\e~Pbj 

p = 5*952R, T <= 0*5C7C5C45, K «= 1*2896117,

kR = 2*984, . 8*97.

» H’2 8*97(1 + p)e"P

p e 8*971?

| 2*08 f-1 - p + p5/3^e"P 

p ■ 2«S8 R

- I 2*88 [l ♦ p ♦ p~/s] e-P

p « 2*88 R

6*297 H (l Ki)(l-x2)-7j5 ip [_ -(l-K)(l-2K)e"Pa 

+ {(l-K)(l-2K) ♦ 2(1-K)pb + pj} e-Pb^

p > 6*297 R, 1 - 0*584064, K = 1*298249,

k„ = 9*06, k. a 2*954.

Table 5*5 contains the numeric*! values of the integrals*
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H’Z(lsal9y = n» 9*315(l+x)(Ux2)V<P [-(l-K)e"Pa ♦ {(l-K) ♦ Ph|®"P^ 

where p «= 9*515 R, x « 0*057057, K « 15*5185,

* 9*66, kfc » 8*97.

fl’ZClo^ls^ aa above but with k. e 8*97, k^ = 9*66.

IE^la^ » 6*297H(l«)(l~j2)V>|Sxp [-(UK){2(l+K) ♦

+ (i+K){8(l-K) ♦ p^«TPb]

where p = 6«297 R, x = 0«534004, K = 1*203249

k » 2’934, - 9-06.

Z(lea2pab) = 6*27(l+x)^l*t)/( Ux) l/tp2 {-2(1-K)::(l*pa) e“P®

+ {2(l-K)r(l4pb) ♦ 2(UK)p£ ♦ P^e"Ph]

where p == 6*27 R, X c 0*5406699, K e 1*1951136,

l:ft « 9* 66, li = 2*38.

H’Z(lsi2r',.1>i aa above but with k^ = 8*97, k^ = 2*88,

p = 5*925 R, X «= O*53J5924O5, K « 1*2298684.

z(2?za11^ = 6*27(l+x)^(l-x)/(l+x) l/xp2 [-(l-K){2(l+K)(Upa) ♦ ."Pa

+(1+K) {"( UK) (1-tpfc) + p£ e-Pb]

where p = 6*27, x = 0*5406699, K = 1*1951136,

ka = 2*88, l5jj = 9*66.

HfZ(2p IjJp as above but with » 2*88, = 8*97,

p = 5*925 R, x = 0*5.1592405, K « 1*2298684.

HZ(2sg2pz^>) c 2*88p/2f§ (l + p + where k » 2*88.

^(^Pza^sfc) * 2*88p/6{5 (l ♦ p ♦ p^)e*P where k • 2*88.
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Table 5«5 The Integrals 2( f).

8 0*6 1*0 1*5 2*0 2*5

Z(la Is ) •44001031 •00C56885 •04762S •0680 •0^7

H®Z(2b*28*) 1«S7S6555 •89025545 •45612091 •19969153 •07860761

-HH’Z(la’2e’) •52146962 •15685517 •05620644 •01764402 •00515507

-HH*Z(2a* la’) •41705564 •114274C4 •02302T82 •00665948 •OC156299

H,2Z(lB*la') •0557C266 •0S75520 •04U16 •O61S .C?2

Z(2a 2a ) •67589065 •61987632 •37139694 •17558806 •07188955

^(Sp^p^) -•4920 2962 •52998734 •49^79931 •25057544 •12493722

zCtp*^*) 1«0681654 •55703058 •22102944 •08085657 •02759211

Z(2p^pp V0631654 •55708058 •22102944 •08085657 •02759211

HZ(la 2a*) 1«2S070C4 •59674984 •21282345 •06660568 •01942134

-H*Z(la la*) •1535R4CC •00246966 •04S660 •0C4S •cP*r

Z(la 2a ) VC971194 •59427998 •21278(£5 •06C6C51S •01942153

HZ(2a*ls ) 1*0288814 • 11750235 •02155996 •00450177 •0S90689

-H*Z(la*ls) •11345500 •01002567 •ooBose •0C62 •0^8

Z(2a la ) •91542640 •10747668 •02125962 •00431118 •o59O688

Z(la 2pe) 1*8516564 •97856999 •56282596 •11715475 •03516017

Z(2psla ) •95301579 •07195294 •01205095 •00239767 •0S50802

HZ(2a*2ps) •92271704 •92789660 •57279302 • 27938582 •11851111

-H*Z(1b*2p!B) •477912-2 •25622128 •09564868 •05099967 •00952505

Z(2a 2ps) •44480492 •67167052 •47714934 •24853613 •10698606

HZ(2pJ!2a’) •44556505 •56C66796 •39676825 •20872617 •09292776

-H*Z(2pBla’) •52556164 •02517552 •00415915 •0S82076 •O517371

Z(2ps2a ) •11480141 •54151444 •39262912 •20790541 •09275405



5*0 5*5 4*0 4*5 5*0

•oflneoc4? .00930765 •00521472 •00101570 •0^51145

•00142678 .•OS30O5O •O51CS44 •0*2694 •06695

•0SSC4SC •0*3405 •0*1969 •0545C •O5106

•028BC88C •00955255 •00509160 •0S9842C •O830347

•05230715 •01995416 •00710756 •00241449 •087865l

•00879577 •00271259 ^eiisi •0525752 •0*6784

•00^79577 •00271259 •0531151 •052S732 •0*0734

•00541992 •00146669 •0s5S843 •05101124 •0*2596

•00541992 •00140669 •0S58843 •CS101124 •0*2593

•0519614 •0*4506 •0S956 •214.10-6 •0648

•0519614 •0*4508 •O’ 956 •0r>214 •0C4S

•01003689 •002'0595 •CS7C54S •03a»57 •0*5595

•0S11151 •0*2439 •05002 •0b129 •ocao

•04557"16 •01640200 •00560607 •00184507 •055Q600

•00267954 •0S74C13 •0S20S191 •0*5448 •0*1457

•04239632 •015G5642 •00540488 •00179059 •0s 57165

•05709555 •01570707 • 0478554 •00159958 •0S514Q2
•o*3gos •05349 •05192 •0C44 • •oGio

•05705555 •01569858 •00478142 •001599139 •0851472
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5*8 The Coulomb integrals.

As was pointed out in section 5*4 when spot values of the inte <rals 

v ere computed the labour involved in the Barnett and Coulson evaluation is 

considerable whei only a desk imehine is available* ferly on in tiiis 

project several attempts were made to use the original Z method as 

outlined in Barnett and Coulson (1951a) but the great number of auxiliary 

functions and tables v/hich had to be calculated and constructed oxoved the

method uneconomic and time consuming*

The coulomb integrals are those ap earing in the summation

C “ - 0(0*1^: or 4 : sb^,)
ii 0 Q ~1

to facilitate comparison with Roothaan. This totals 625 terms, but the 

number of different integrals is reduced since the atoms centred an a and 

b are symmetric and identical resulting in (a^a^ixb.bp « (a ,a_.: tb^lx). 

Besides many of the integrals arc aero on integration of the angular 

component leaving in all 56 different integrals of vdiich we have chosen 14.

C-, = (lsa laa sflSfc lBfj )

(laa lsft 8x2^ 2^ ) 

(l8a lsa

(lsa laa 8:20^^ 

(tsB laa 8

(2ee 2sa 8 82^ 2^ )

°7 . (2ea 2sfi :x2p!ib2pz,b)

2
CS

C5
C„ =

's

V11' 

C12 c 

CU5 *

14

(2oa 2oa : sSp-jfrffp.gfrJ 

2sa : :2pyl^pyb'

^naa2- za:
^xa^aa* !2pyb2pyb) 

i2pza2psa8:2pja?Psb> 

(^ja2p!=a8 s2pyfc?PyP

C10 “



We must note too thrt the 2 s function, as defined in chapter 2, 

la the difference of two ter^a,

2a = H 2a’ - H* la'

where H = 1*059, H’ = 0*2559.

The integmla thud affected are C<;, Cg, CU, Cg, and Cg

Cg = ( laR lan I ( H 2s^ - H* ls£ )( H 2a£ - H’ la,'. ) )

= T!2(laRlaa!2s^2sy - 2Hr’(i3alsa:ia£?a{3) + H’“(l^laB» ls^lap

- h2 c2<1 - an* c2#2 ♦ h’2 c2<5

This follows since there is only one centre of integration 

involved on the right hand side of the colon: i. e.

(la^ls^la^ay - (18^:2^18^

C6 = ((Iffia; - H'la4)(H2ai - H’ls^) t (Ii2a^ - H’laj^HSsk - H’lop)
= ^(Sa^2a^2s^sp - 4}I~ l,(2aB2aB«la^Bj)> + 2rfiH’2(2a^2a;itlsp.B{>)

♦ - 4JH’s(u£i8^is{£»y + H’4(ia;isjl«iBp.sy

- ^C6.l - 4h5h’ C6.2 * 2^‘2c6.S

* - 4®- C6>5 ♦ H’4 Cg>6

taking into account the reason given above, and because the value of the 

integral is not altered by complete interdi^nge of the centre of 

integration; i. e*

<alelsb?j) (Vpyajai)
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C? » ( (HSs^- li’lsX) (H2a^ - H'ls;) s Sp^Sip^)
= 5^(28^23^: Spja^^j) - 2dH'(lo^2s^:2pzb2pj,b> + H’2(lt£la^t2pi5b2psib)

C7.2 * H’2(57.3

= H2(23p3;:2p^J2p^ - 2HH’(la;2sa:2Pja^»3fl)) + H*2(l8;ia;«2p,Jb2pjeb)

= H8 <3.1 " 2HH‘ °8.2 + H’2 C8.5

C9 - U2(2a^23^:2?jb2pyb) - 2H3'(la^:2x^2^) + K'^lo^lapSpyfc&Syh)

- H2 C9>1 - 2HH’ C9<2 ♦ H'2 Cg.s

The wave functions of and Sp^, are identical exceot for the

f6 component which is coq^ in one and six$ in the other* In these

integrals they always appear as —__ *•«
] cos? 0 or J sin~ j6

which give the same result. The following integrals then are equal,

C4 * C5 %.l * °9.1 C8.2 * C9.2

°8.3 * C9.S C11 “ °12*

Each of these integrals is tabulated as a function of the Roothaan 

charge distributions 8.g. (IS^SSh) whose coefficients are
(1 + ’a* C1 “ *a^ U ♦ U ” Tb^

which is abbreviated to (edef). In many oases the ta and Tb are ■ 0.
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Table 3*6. The Coulomb integrals in tenrs of the charge distributions.

Ct = (l3& 3*s& Lsb ) =(^553) (lSa tlSfc )

°2.1* (lsa lBa :2®t Sab ) “(356®) (lSa <3^ )
Cj^ (laa lsa :1s; 1^ ) =(5835) |js (lSa sESg )

C2.5“ <Ua lBa ,i6b leb > =<3538> <1Sa ,13b )
Cg = (lSa lsa »2pst^pah) =(3585) [(lSa «S8|, ) ♦ 3(lSa :3D^|]

C4 = (lsa ISr s2Px!^Pj*) =(835S) Bls& ,3&b ) " 'B^isa :3D^b)]

ce,i= (2sa 2s^:i2a{, Ea^ ) =(5555) (5Sa tSSj, )

C6.S= (lo; 2aa s23b 23b > c(3555^ (2SasSSb>
C6.5c (laa l3a :2sL 2*t ) =(8353) (lsa,3Sb)
CG.r <la^ 2sa !lafe 2af> > =(2555) |(2Sa:2Bb)

c6>r (is; is; -.is; 2b; ) =(3335) 4J5 (is^iss^)

<W <l3a lsa 't3b lab > “t3855) (IS^lSg)
07.!= (23; 2b; sEp^Pgb) =(5555)[(3Sa:SSb) + 3(3Sa:5E8b)}

Cy.^ (is; 2s; :2p^?lib> =(3855) |J3 [(ZS^SS^ ♦ 3(88^5®^]
07.5= (Is; la; :2j?s^Psjb) =(5355) [(iS^SSg) ♦ 3(lEa:£D^)]

Cs.l= (2s; 2e; =(5555) [(SS^SSg) - ^SS^SD?^]
Cg.g= (is; 2o; ^p-a^p^ =(S555) ij£[(2Sa:5Sh) - |(2Saj3D£b)]

<W (la; la; .Sp^*) =(3355)[(lSa,3Sb) - f< 1^:31^]

C10= =(5355)[(3Sa»3Sb) ♦ 8(SSf,«SDfb) + 3(50^:58^
♦ 9(5D?a:3Dlb)]

Cu= (Zpa^p^sEp^Epja,) =(5555)[(3Sa:3Sb) - |(5Sa:8Drb) ♦ 3(3D2a»SSb)

- ^SD^lSDEg)]
C15 = (2pXa2psa:2p^2p^ “(S»»8) [(58^28^ - |(3Sa:3D2^ - 2/2(30^:38^ 

* S^SDJ^SDIfc) ♦ 27/4(SD a:SZ»t)]
C14 " (^sa^sa^y^Pyb) =(555E) [(5SaiS8b) - |(3Ba:5X»Sb) - 3/2(802^38^ 

+ 9/4(50^:512.^ - 27/4(30^:30^ j
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roceeding now to the details of the calculation. In each case 

the paraneter3 and the formulae will be given, the main numerical values 

beint; collected in Table 5*12 at the end of the section. Subsidiary 

tables will be inserted at the appropriate places for the calculation of 

integrals which are the sum or difference of charge distributions.

k value3 will be given in preference to p = k R.

Ci - “ 1/R^l - (1 + 13/8 p + 5p2/4 + p5/6) o”^]

where t = 0, k = *= = 9*66

C2.l“ ^a:3Sb> “ 3/K [l - (3^K/ [(1-5X^V- Kp^8^ ."SP®

- (l+K)2[(15-22iU15X2-4X?)/l6 ♦ 5(:-f.K+K2Jpy/3 ♦ (2-K)p^4

♦ P^12 J e"2pbJ

where k = 6*297, k ~ k ’ = 9*66,
“* ci Q

tf = *yj =0, < = 0*554064,
!% = kfe = 2*954,

K = 1*205249.

C2.2 “ 4J» (1*%) U-%) (iSa^S,,) o
0*27£5495/R (\ - (l-K)2[(l-.K-K£)/4 + (l-2K)pa,/12 jo"2?*

- (l+K)£[(5-5K*K2)/4 ♦ (2-K)Pt/5 «• PV^e"2^]

where k = 7*806, k& = = 9*66, k^ = 8*97, k? = 2*954,

fa = 0, T,u ■ 0*50705646, T = 0*2575096, K = 2*225955.

C2.5a (1Sa:1Sb) = VH[l- (l-K)2{(2>K)/4 + p/4^e-e4a

- (1-K)2 [(2«K)/4 ♦ p^lje-^b ]

where k ■= 9*515, kp a = 9*G6, = Jc? = 8*97

■»a “ ’b “ °» ’ = 0*057057, K > 15*5165185.
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C5 = (ISasSSh) + 3(18^502^)

c4 » (lSa!5Sb) -
These two integrals can he done together » Table 3*7: let us put

0* - (lS^SS^ = 3/e[i - (1-K)5 . ipa^e-^pa

- (l+X)" f (15-22.^15^-^? j + S(5-5K+&2)ph + (&-K)pt ♦
I 16 8 4 12 J J

[l - (l-K)4£(SgEX1+2Pa) ♦ iZ±Wp£ ♦ ^®_2Fa
and

c* - (ls^sn^t,)

(UK)3 ( (^tCK+9gW')(l+2ph) + j&:=W2E&^)pg
k J V 1C 24

+ (ll-tt«+8K3)pg ♦ (2-K)p* + p&'lS^ e“^ j
12 ~ 6 

where k « 6-27, ka - k^ = 9*66, kjj = = 2*88

’a = *b « °» T » 0*5406699, K e 1*1951156.

'6.2

'6.1

IJS (l^a) (^a) (SS^SSh)
0*275549^,1 - (l-K^f (ll-19K.44K3-20KS) ♦ t l-SK^K^p - Kp3 1 «-^>a 

L I <B 12 12 J
-(1+K)2 f (57»52K-59Kg-t56K::-g0K4) ♦ (C"-iv-ciK:--h4g-iipv,

4B 8
♦ (vs-xm ♦ -4^^ 1 •”2pto ]

where k = 4*445, 0 8*97, k^ = 1% = fci •- 2*954,

ta « 0*50705645, Tb = 0, % a 0*38965558, K = 1*6419847.

(SSj^tSSjj) = 2/R^l - (1 + l*656719p + l*27S427p2 + 0»619791p3

♦ 0*2083p‘i ♦ 0*05p' + *0088pc + *057936p7) e_2pj

where 2 = k. -= k£ c= kj, = k< = 2*954, T = 0
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s (lsa!5Sb) 5(lSas5D b) C3 C4
0*5 1*2005615 •21963669 1*4199800 1*0905520

1*0 •9229069 • 1-748947 !•1103964 •82916217

1*6 •6595653 •09232755 •75189287 •61540155

2*0 •4998964 •04597964 •54537607 •47740661

2*5 •3999519 •02305095 •42500285 .28842644

s.o •55552968 •01S38358 •84671826 •52668539

8‘5 •28571421 ♦00848538 •29414549 •28149283

4*0 •25000000 •00565157 •25565137 •24717452

4*5 •22222222 •00596915 •22619137 *22025765

5*0 •20G00GC0 •00289558. •30289555 •19655525

'i'able 2-8

S ( 5S&sSS^ S(SSa:5D b) <V.i C8.1
0*5 •97416412 •02318900 •99735512 •96256062
1*0 •80658959 •05574962 •86255899 •77871459

1*5 •65057602 •05402543 •05459950 •60556428
2*0 •49409836 •05652542 ♦55042888 •47595575
2«5 •59915401 •O23S295O •42093551 •38828941

5*0 •35322498 •01822141 •34644649 •32661428

5*5 •28570158 •00641497 •29411655 •28149414

4*0 •24993862 •00564906 •25564770 •24717418
4*5 •22222222 •00396891 •22619115 •22025777
5‘0 •20000000 ♦00289549 •20289549 •19855325
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n.s

6.4

*6.5

6.6

(lS.sSSjj) = 1/R fl - (l-K)5 f (USK^K2)/!^ - Kpy8^e_2pa

- f i+tr (is-sRK-isrUgh + sCs-sk-*?^ ♦i2=£)pS ♦ Pb}®2^

v.tinrc k = 5*952, - k^ = 8*97,

Ta = tb = 0, f » 0*50705045,

ko = kJ = 2*9^4, 

K « 1*2390117.

u

C

0*75(l^q)3(l-ta) (2Sas2Sb)
0*07471982/R Qt - (l + l*5416p + l*063p2 + 4pS/9 ♦ p4/9 +2p5/l35)e2pJ 

viiero k « 5*952, k& = ®8*97, k£ = k,^ = 2*954,

To » ® 0*50705645, 't a 0

4js (l^^d^ds^ss^
O.2753492/E [l - (l-lQa f 0*25(WC-K2) + (l-2K)p^l2t e-2Pa

- (HK)2|(5-5K+B?j + (2-K)pb + pty'O ^«“2pb]

where k <= 7*401, k, = kR = 8*97, k^ = 8*97, kJ = 2*934,

t? = 0, <b = 0*50705045, t « 0*2022517, K = 2*5732929.

(lS^lS^ = 3/R [l - (1 + l*575p + C*75p2 ♦ pS/6) e_SPj[ 

where k = ka= = k^« k^ = 8*97, t « 0.

^7.1 e * S(*>Sa:-u
°8.1 » (SSaiSS,,) - |(3SR«5D2b)

These tun integrals can be comute’. concurrently ( see table 5*8) 

since the parameters are the same:

c 2*954, k^ = k^ = 2*88, .'. T = 0*0092879.
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It is seen that the value of t is very small. 3y putting 

x = = 0, and k = 2*38,

it was confirmed that the error incurred by such a step at R = 1*0 is in 

the region of 0e0002 in 0.2750 or less than 0*1 . Taking thei'afore,

C* ■= (ijS^tSS^ = J/R [l - (1 ♦ l»63€7JBp + l’2754375pL ♦ ’6i979i66p5

+ ’2083p4 + ’05p5 +’0083p6 ♦ •0£i79365p7) e-2P ]

C£ = (SS^sSD^j) a k/E2 [l - (1 + 2p + 2p2 + 4p-/3 +2p4/5 + ’255277pr’
♦ •086UlpG + «0226t91p7 + ’004497p3 + ’0252910p9 e-2P]

<\-.2 = 4I& [(22^3^ > 3(88^302^]

Gj.g • -|(8SatSD^)]

Again these integrals will be done together by putting 

CJ ■ (SSaSSS^ = 1/E [l - (1-K)5£( H-19K-44K2-2OK?Wl-SB^iK^-Kp? ja“3

—(l+K)2 | (37-gSK-39K2t5GK' -S0g4) +(G»K-8K2+4K ;p^ 
<- 48 8

+ (l±2K)p§ \ e"2^ 1 
4 ° G J J

C2* (3Sa»3D$,) « k /(l-t)2p5 [l - (1-K)4{ (IS+aet+lDI^Xuap^/^B

+ (49+60K-i-30g'bC + (lJjgK)p; + pl/lsXe-^a
72 £ J

-(l+K)2 t (29-3K-S3K2<.4iC:-U)K4)(l>2p + (79-M>KH931^-iq0f -20K4;pi
L 6 ° 72

+ (7+2K-9X2+4r )p£ + (l+K-K2^ + di§K)Pb 1 «""P'b I 
12 I 54 4 J

■where k » 4«41C, k^ = 0*97, k^ b 2’9£4, kb « k^ = 2*38

ta= ’50705645, "% = 0 < = •54782C1, K . 1’611413.

The numerical results are in Table 3*9.
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C7.5 ’ ^a:3Sb) ♦ 5(lSas5Drb)
Cg.<5 = (lS^SS^ - ^(lSat5DXjj)

Let us put
C* « VR [l - (i-K)5 £ (1-SK-4K®)/16 - Jp../8^ e_2P*

- (1-t-K)2 $ (l5-Sa&-15KS-4I?)*a(5-5K-rf^'io.-»■ (2-K)pg +_Bi,le“2pbl
L 16 8 * 12 J J

C* = (lSa:3D2b) = [l- d-K)*[(SgS)(l+2pa)*(2^)pl + -£^e“2Pa

♦ * (2=s)ph ♦ u-b 1 i12 6 Ifl J

rchere k = 5*925, k& = k^ » 8*97, k& = k^ = 2*88,

Xa = x Ot * » 0*51392405, K = 1*2296624.

The numerical results have been collected

For Cio> ^11’ C±3 an<^ Ci4 w rcust first 

auxi?-iary charge distributions v?hich Tdll be 

CJ x (3Sa:5Sb)

C* a (Sf^iSDZjj) both of vrtiich have already

same parameters in the integrals C? end C& 

here again.

C5 = (3Mas5D2b) = 6k/p £l - (l+2p+2p2+4p /5+2p4/S+’26614p:)+«087847p6 

+*024C58p7+-00e261£)2pC>+»0C15875p'‘ +»CrS021p °+«04588pil) <

in Table 5*10

commute the five

been calculated for the

and will not be given
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Table 5*9
B g(2Ea:3Sb) £g(2Sa:5D£b) °7.2 9s.2

0*5 •55496568 •03940559 •57446112 •21521799

VO •24917512 •04359175 •29276407 •22737724

V5 •17271925 •02402156 •20374061 •16770288

2-0 •13644229 •01108409 •14832638 •15050025

2*5 •10952011 •00622709 •11560825 •10617617

5*00911 •09111488 •005S5804 •09477553 .08928556

5*5 •07809968 •00250572 •08040540 •07694682

4.0 •06133732 •00154479 *22988211 •06756493

4*5 •06074429 •00108497 •OC182925 •00020181

5*0 •05466980 •0379094 •05548080 •05427439

Table 3*1j

B (I3a»»8b) 3(13^30^) °7.8
0*5 V2783808 •21494612 1« 49502692 1*1714078

VO •92675795 •IS609296 V11285088 •85569145

V5 •65972162 •09215219 •75185581 •61S68M8

2*0 •49940039 •04595904 •54535943 •477420 7

2*5 •39995176 •02504906 •42300082 •58842725

5*0 •55352965 •01558842 •34671807 •52663544
3*5 •28571420 •00845569 •29414965 •26149660

4*0 •25000000 •U0565137 •25565137 •24717452
4*5 •22222222 •00596915 •22619157 •22025765
5*0 •20C000C0 •00289550 •20289555 •19855324

g ©•2755495
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c» = (SD^sSD^) = k/p5 [ 1 - (l*8p+2p2«4p5/>'j+2pVs+*26Sf'41£p5+«082658p6 

+•019* 4286p7+*0051746pc +«0E26458p9) e"2P j

c* • (SD^tSSfc) ® (SSa8SDS^) for this ease of x = 0 and -where for the

above five integrals

A. T s Of k = ka k; = i% = k£ > 2*88.

Only the C* integrals will be listed in Table 5•11; the main

Integrals will be found in Table 5*12 at the end of the section*

C1O „ C* + 6C* ♦ 9C<?

C11 « C! * 3°8 - Scsv

C13 . CJ - 80g ♦ ^c? +

C14 a C* - 5Ci1 2 * - T°i

Table 5*11
■

R (SSe:2Sb/ S(5Sa:5D b) 9(55 a:5D b) 27/4 (59 a(SD b)

0*5 •97416411 •0251 900 •02405564 •04479681

1*0 •80658950 •055749-2 -•0?'4764 •02040467

1*6 •eaoazecs •05402-43 •010443536 •00744555

2*0 • 49409.556 •O3C52545 •01021074 •00259175

2*6 •599154.1 •02132910 •00591486 •0"'96247

5«o •55522491 •01522147 •X294449 •O'"'40007

5*5 •23570163 •00341497 •00145950 •0518295

4-0 •24099362 •00564903 •Ch 76253 •049456

4*5 •22222222 •GO59G591 •0^42495 •045S19

5*0 •20000000 •00289549 •0^25115 •045159
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Table 3*12. Tho Coulomb Integrals: numerical values.

B 0*5 1*0 1*5 2*0 2*5

C1 1-994397 •9999991 ♦0666666 •5000000 •4000000

C2.1 V2995731 •9320728 •6605563 •4995001 •5999619

C2.2 •55262021 •2752385 •1/322525 •1306747 •1095397

C2.5 1*9925632 •9999965 •6666666 •5000000 •4000000

°» 1*4199602 1* 110396 •7518929 •5433761 •4230028

C4 1*0905521 •8291622 •6154016 •4774066 •3884264

°6.1 •98964013 •8146859 •6535183 •4947777 •5992862

C6.2 •55907592 •2504649 •1799506 •1364737 •1093236

C6.3 1.29591E6 •9313685 •6604621 •49949052 •3999611

ce.4 •13425520 •0745218 •0499115 ♦05755990 •0293379

C6.5 •50155890 •2751719 •1822322 •13c 6747 ♦1095597

C6.6 1*9905155 •9999969 •6C66666 •5000000 •4000000

^7.1 •99735312 •3625590 •6345995 •5304238 •4209333

°7.2 •37440107 •2927G40 •2037406 •1483264 •11560821

^.5 1’495S269 1*1128509 •75385S8 •5433594 •42500085

•96256062 •7737146 •6055643 •4759557 •5882394

^3.2 •31521800 •2275773 •16770'6 •1305G02 • 1061762

^8*3 1*1714077 •8336915 •6156555 •4774209 •3884272

C10 1*0445933 •9130410 •7490726 •5769599 •4437275

cn •97373082 •8344882 •6525629 •5071557 •4071112

cl» 1*00178581 •7712326 •5066103 •4629174 •3797059

C14 •91219219 •7504232 •5717196 •4577339 ♦3778410



5*0 3*5 4*0 4*6 5*0

•33353533 •28571428 •25000000 •22222222 •20000000

•33555052 •23571428 •25000060 •22222222 •20000000

•09111643 •07809865 •06835733 •06074429 •05466986

•33553555 •28571428 •25000000 •22222222 •20000000

•34671626 •29414542 •25565137 •22619157 •20239353

•32665539 •23149251 •24717456 •22025766 •19355525

•55524616 •28570461 •24999999 •52222222 •20000000

•09111522 •07809971 •06813732 •06074429 •05156986

•52535051 •2.571423 •25000000 •22222222 •20000000

•02490661 •02104l 52 •01867995 •01C60440 •01484596

•09111645 •07809665 •06833752 •06074429 •05466966

•23553352 •2:571428 •25000000 •22222222 •20000000

•34644C44 •29411657 •25564773 •22619112 •20289549

•09477553 •08040540 •06933211 •0611:2925 •05546062

•34671607 •29414965 •25565137 •22619157 •20239555

•32661422 •23149415 •24717411 •22023777 •19855525

•08928556 •C7G940C2 •0C75C495 •06020131 •05427439

•32f 60544 •28149660 •24717452 •22023765 •18885524

•2C261253 •30099104 •26205956 •23058502 •20003812

•33836345 •2 917944 •25244195 •22599421 •20132122

•32133963 •27780444 •24463476 •21841275 •197200GB

•32053951 •27746865 •24445742 •21650655 •19713792
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$•9 flhe Hybrid Integrals*

While taking the hybrid integrals aa a particular case it was 

intended to make a oo^letoly general approach to the computation of 

roolecul&r integrals in a nethod applicable to the smaller type of 

machine. Although the hybrid, coulomb and other integrals will he produced 

as ’by~products’ of the exchange integral project now under consideration 

for the I B M type 704 electronic macliine it is often desirable to 

compute the integrals without going to the expanse of applying the exchange 

type programme*

Elimination shows that there are tw principal functions occurring, 
vis, the ^(r) and hl (r.S).

The are sizzle polynomial typo functions (see table

basically
+ !>!«* + ^r2 +................... + h^)

-Mie the (r,R) are root adeqtmtaiy described in Barnett and Coulacm(

All the 5 m ca'1 commuted fror. the

50n(i.r,R) . Yn(l,r,R) a In^(r> ^(R) for r<R

3 VH' V?(r> for ’>*

where ln+| and M are the well known bessd functions of the first 

and second kind respectively of imginaxy argument and half integral order

^»w4Ar) ® r~ er <^2iff. tJ/ (ati;.* />Q W-C A J *<“1} .tol^fenr)
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Wr> (V2x)^ e"1*

Ml the molecular accent the exchange integrals arising from 

consideration of the first two electron orbits can be reduced to some 

function of the Yn where n ranges from -1 to 4. It is expedient 

to compute not the rn(r,B) themselves but 2jxR Yn(r>R) and these 

are shown in table 5*14.

Table 3*15

Values of J^r) for first t.vo orbits.

Ji(r) sc 2 - (2+r)e“r

SB 8 - (6+4r+x^)e*r

J?(r) SS 24 * ( 24+18 r+6z^+r^)e~~

J4(r) s= 8 - (8^x*+4x2+i^)e*r

= 40 - (40+40r+20a^+6x^+r^)e*r

s £(iA4 - (144>i44iMV2ii+6t^+Gr4fri')e”1']

*jfr^[24 - (24+lSrH:2^+i^)e*r] 

dy(r) • 144 - (l44+l44r+72r^+8r^+8r4+z^)e*r

Jq(r) » -W124 - (24>jSr+Cx^+x^)e“r]



Pl'nire 5*5

The general ochere of evaluation of the hybrid integrals

I •±lar(bo ? v1 ♦ - . -5
+ V ♦ -...............) I

Ila jn<r)
1

and
1

Ub

Ilia
1

* djr)
1

1
Tn(r,B)

1
IITb

P^(r,S)
* I

IV

1
%(*»»)

1
V

i the several functions of
V, p, and a VI

VII The Hybrid Integrals # vu
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Table $•14

V for the first two orbits: initial values are for rCR 
latter values for r>R

2jxS Y_1(r,R) = (er + »-r) e~

= (eP + c“®) e"r

eJxG Yo(r,R) « (e: - e~rj e“;

■ (eP — e“®j e”1

2jrr Yjr.R)

2JS r2(r,H)

2jxfl Y5(r,R)

[er(l-£) ♦ e“r(l*p)] e^l+l/R)

[cE<3^|) t s“1'(H-l/K)]er(t+

Jer(- e’~(l+y»|g) 3

[cPCl-^+Sg) - e"R(l-^+^g}]e‘T(l*^§2> 

[cr(l^J£r.5~) ♦ e”r(l»&2£t3^)] e"k(i+£+^+^.)

2jirP T4(r,R)

The most general function embracing both j and Y types la

*kr,. - . ±1 . -2 - ±5 .
a (*>-, * fcjX* * ♦ bgr +.........)

Several hybrid integrals were taken as illustrations and the general 

scheme for their evaluation is shown in figure 5’S,



— ———---------------- —

In chapter 2 we wrote the hybrid integral gyriolically

Xs “ X8^8ia5 :sai'hj’)

- BJK ** •*&M ) d*

which follows from Jamett and Coulson (1951a) on redefinition of terms.

Since the _ are all greater by sJtsTj thic factor m3t bo absorbed: 

therefore N. a 2ji K’ and the t- is no longer explicit. The g

function of the above paper is split up in such a way that it is here a
*

function of m only. S is the factor unity or k^R: the argument of

3 is r « 2kat/k4 and k » k, /k^. Table 5* 15 shorn the various integrals,

I The general function

Ikr , ±1 *2 .e (bo T b, r + y «• b^r ....................... )

The commutation in tills section was performed on an I.3.K. 602A

mechanical calculator and all wort: in subsequent sections on the I.B.K.G26 
± lefty*type electronic machine. The initial quantities b^, r, and e > were 

introduced into the machine which for each increment of r first formed 

the exponential by multiplication of the previous and the initial values, 

r was generated by simple addition of the dr while the polynomial was 

built up in a cyclic process: finally the polynomial was multiplied by 
the exponential and the result punched on cards. It had been toped to 

include a step to oroduce the 1/t in the same programme but tlds proved 

to be beyond the prograiaae ca acity of the machine. Consequently the 

polynomial of the inverse of r was done by reversing the order at K
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generating the positive power polynomial^ and dividing that "by the 

highest power of r appearing in the series. A detailed description of 

the machine technique rill be found in Append!:: XT# The evaluation was 

carried out at intervals of 0*2 in the range 0 to 6*0 vhere it was 

considered that the integral would be negligible*

Ua The Jn(r) functions.

They were slnsxLy obtained by subtracting the polynomials of section 

I from constants and in some cases xsultiplying by a further constant and 

power of r.

Ilia The X Jn(r) tm functions.

The required powers of t multiplied by X where necessary were 

punched on the respective j cards and by merging with cards containing 

the oapanenticl a simple multiplication rocedure was sufficient to obtain

the functions.

ITb The Y+ and '-'L function^.n **

Referring to the table of r functions it is evident that the 

technique of section I leads to a convenient def inition of v* and T*

Y*(r) a e* (bor^ + b^r'"1 + + ..... ♦ b^)

V'(r) = ete/«* (b^ - b^1 ♦ hgr-2............(-)\)

The functions were computed for tlie variable t in the range 

0(0*2)6*0 and for the constants T.
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IITc The Tn(t»T) functions,

To proceed to the Yn functions it is necessary to split t into 

the two ranges 0<t<T and T<t and anltiply the Y* and 7* as 

required fror. the Y table.

IV The pn(t,T) functions.

The higher order aata functions are found from the Y?s by

convenient recurrence formulae: in the case of the p functions the

following v ere used

P-1 * (t.i) r_t - t r0

Po • (T+i) rQ - t r.!

P.1 = («/s)(vo-r2)

P2 = (tt/sX^ - v5)

PcV » («/7)(y2 - r4)

*4 « -7(Vt + a/t)r; + 5y2 + 9T4 ♦ pg

All the equations were easily handled on the laachine using card 

programming.

V The acnly a, appearing in the list of Integrals is the relation

for which is
% «* («/l)(p_1 - pt) - pQ

VI The several functions of T9 g and q»

These several functions are listed in column 10 of table 3*15 and 

their simple form presents no difficulties in their commutation.

______________ __



VII Tlie Hybrid Integrals.

The values of the hybrid integrals at the incremental points are 

then simple products of sections Ilia and VI and of In many cases

it was found that at t = 6*0 the integrand had not readied negligible

proportions and therefore allowance for the cut off in the final integration 

will have to he made. Since the rrximv?* of the integrand does not 

necessarily occur at any of the increi ental points, Sim son □ integration 

rule will not be valid. However for cjex orison such an integration was

carried out.

Results:

It was a sufficiently major undertaking to compute the 12 selected 

hybrid integrals for one value of R R « 1 was the value chosen).

Table 3*16 suems the results of the Simpson Rule integration which in 

every case agreed with a series of planiroter readings on the graphed 

points. Rxom the form o{ the graphs It was clear that the out off error 

v&s very small except of course for I^( T « 9*66 and 8*97) where the 

maxhaum of the integrand was not reached.

The curve of the integrands was not smooth since the maxima of 

the component functions ( Ilia and VI of figure 5*5 ) did not coincide. 

This resulted in a tendency for the fairly sharp peaks to separate ani to 

lower the accuracy of the integration procedure. To resolve the difficulty 

the interval of Integration would require to be smaller by a factor of two
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or five and the integration to extend over* the range t « 0 to at least 

2*5T. To conclude then we see that tho scheme is at least wxtoble.

Time has prevented a comparison with the recently published 

method for dealing with hybrid integrals by d^donberg, lioothaan and 

Jannserls (1956) and Poothaon (1956). '$y defining a new auxiliary function

introduced specifically to deal with the hybrid integrals they show how 

it can be extended to incorporate all tiie other integrals except the

excliange type.

Table 5*16 The liybrid integrals Ig

8 T *s *
1 9*66 0*004637
1 8*97 0*006402
2 2*934 2*461766
5 2*88 1*566199
4*1 2*88 1*381311
4*9 2-88 1*727595
4 2*88 0*576082
5 2*934 0*554096
€ 2*954 7*121795
7 2*88 4*624015
8*1 2*88 4*106686
8*2 2*88 5* 107151
8 2*88 1*000475
9 2*934 22*698220

10 2*88 15*848195
11*1 2*88 14*970620
11*2 2*88 17*506891
11 2*88 2*557968
12-1 2*88 10* 229655
12-2 2*88 2*273757
12*5 2*88 9*071743
12*4 2*88 2*529946
1? 2*88 1* 101701
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Chapter 4.

The Thanh Anoe Integrals*

By far the most difficult type of integral to confute in 

colecular potential work is the exchange integral* The general form from

Chanter 2 is
J 1a a. —b.h,. dt

1 J *12 J' V
••••*.(4.1/

and if we write the general form of the wave function as

n-i -kr B r e P

where D is a numerical coefficient defined later; n is the orbital

quantum number and P is a spherical function* we can exoand equation (4.1)

to
ezP(-klrai " Vbl ” ^5rs2 " k4rb2) dt

see figure 4*2.

Several different methods have been expounded in the quest to 

evaluate integrals of the kind. >

1. The j© thod of Kopincck

2. The method of Ttfideriberg

5. The met lod of Barnett and Coulson.

As was mentioned in chanter 3 there is a similarity between the first two

methods.

4*1 The method of Kcrvineck.

H.J. Kopineek (195C et sect.) and H. Preusa (1954) have published

a series of papers in which they treat various two centred integrals
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associated with the first tvn electron shells- It is noted once more

however that there is a severe restriction on the generality of this work

since it is assumed that

*5. * *2 * *3 ® k4
aa defined in an earlier chapters The results follow the series of Japanese 

naners (Kotani, /memiya and Simose, 1958, 1940) and include corrections of 

the latter. Use is made of the Neumann expansion of l/r in elliptical 

coordinates and the integrals are listed in terms of the functions

W^(m,n;a) vlth numerical coefficients. It is erroneously asserted in the 

third paper (Kopineck, 1952; that

T'j(n»n) = (»»»)

where the / function is from the paper of RUder.berg (see below) whose 

notation has been substituted. 3n examination of the results it is seen

tiiat the equivalence should read

• (-1)M <x - M>: "1 A1 *

It is obvious that the lack of generality makes the method of little 

practical use and does not justify further consideration here.

*•2 The pethoq of Sttderiberg (195,1).

A bidef outline will be presented here to avoid continual 

reference to the original paper. The general form of the integral

IVj V*12
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is represented thus (a^b^,: >♦

As In tlie Zopineck scheme, VT*p expressed as a function of

both centres a and b by the Keuraann (1B78) expansion which is 

unfortunately not a closed form*

The wave functions of each electron arc treated as diarge distrib­

utions XT
(«l\i: sa .b^,) = ($2V- $.) = (SI « « j))

where are the charge distributions, and as in the paper a bar is used

over symbols referring to electron 2*

Of the Legendre functions included there are the normalised 

Legendre fir ctions

The associated Legendre polynomials

P^* (cos©) = sinr\i ^'(cofl&)

(<»•&) • d^dteoa^)1’ P^(cos»)
where P^(cos£) are the Legendre polynomials anu P^^(oos©) are 

intermediate functions* She direct relation between the associated

Legendre polynomials i3

(i-VT~ a’/'at1’1 PjCt)

The nodeles3 Slater wave functions Then normalised can be written 
r V 2 (b b 0, l+K n )

”» e-’-p

sin



vA

i

HV
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rhere = (8k)n+V [<2n)i] *2

* = -JR - 2fiL

Prom figure 4*1 we see that the polar coordinates are

3^ = e X ya = yb = T fi B ( X + Y )p
~ ~ “ CO3~^ (V<K) = SX2l“ “ (V<i>

» ifi + 2

CO3©a « 3a/ra COB^b • %/*\>

The charge diatributions are oroduct3 of pairs of the Slater 

functions. Using the identities

cos s$ cos m’/ » -g- co a (m + m*)0 ♦ | cos (m - m’)$

sin n0 sin m’$ = -i’ cos (m + e? * i cos (m * m’)$

sin cos m’jtf = •§• sin (m ♦ m’)$ + i sin (n - m’)/S

the general charge distributions are simple linear combinations of

DnB& ra-1 ^’lc^-kara-kbIV^'"^/'<o6^

rcos (m + m’)0 

sin (m + m’)/ 

cos |m - ei* |j&

^sin (la - m’ljd

which are of the fona

«_ t r cos 10
D eap(-k?ra - d‘J d" j

I sin

where 2q is an even number* D depends on k& and k^, M is aero or 

a positive integer and p is a homogeneous polynomial in (za* ra>zb,rlP
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Transforming to elliptic coordinates 6 .D

ra E ' ^■"1 rb s 7 <»

a « |R [_ (’j- l)(l-»{)]* 2 = iR'jr! 1

the charge distributions become

, s rcosi#

1 1 Vain i.$

where a = 1E (ko + k^) 3 = -J-R (kg - k^)

K «= R"S (Rka)nr (Rkb)n*£

vjCj 9 ) is a oo lynorJLai in *3 > whose coefficients ©re real numbers.

The constants w^.. ©re related to

H«1 - wY • £ L’» Tf n
n=0 J^O *

end are listed for the various charge distributions on pages 1462 - 1466 

of the paper.

The nomenclature is such that v/hen M = 0 the charge distribution 
is of the + type; M * 1, E?sr it isTT type; end M « 2 it is & type.

For a given value of M the charge distributions form the basis 

of an irreducible representation of the tro dimension rotation reflection 

group C v and so the exchange integrals will be different from aero

only if both distributions in the integral have the same value of M.
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T^et the first electron occupy the charge Retribution

K ,« )e3p(-&^ + . CT- 1/M(1-ip cos 10

the second electron having the saiae distribution but with Kf w, a and p, 

■while is e^)aiKied by the Neumann series

R o° +1 
r12 -1-

where Q® arc the associated Legendre functions of the second kind and 

where • Now, i*1 elliptic coordinates the volume element is

dt = (3®) V-'f) d1^

so that the exchange integrals aastre the fom

A . R-^Kk • } ' (Rk^) «■ a'(Rke)n***(ra^A*-? 21 I £l
Ml "l~w1=M

N N
in which ______ ^(p) ^(p) jfifaft)

»H> SfeO n nf-

v,ith j^(a,a) = (_i)“j3eg| J. qjft) q\, Jjid#

f A *)[®"^’j “ Jdx ^(xXs&.l)^ e-* -j] jc i dx r^(x)(x?-l)'2“e*’x 
* Jl

’4<5) -gMi1®

■O ■ K-r1 8$jT pi tiX1-)1)* •*’ i,1 ..........<♦•»>
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Therefore it is found that

A 1*0 So So IoWnJ ^(t5)

The upper limits Nt N, J, J are determined by the values of the

all of "which are zero due to the delta function except those listed - loc. 

cit» page 1462 - 6. The distinction between na> n^f n and N should be 

noted. N is the upper limit of the running index n in the summation 

«hile na and % are the principal quantum numbers in the various charge 

distributions. It is seen that in the

Z. type distribution, na ♦

TT type distribution, na * %

type distribution, ♦ n^

N

N ♦ 1

N ♦ 2

The problem is reduced to the calculation of the and the

0^(a,a) functions. The latter are Independent of the charge distributions 

except for the symmetry characteristic M.

By studying the equation for the B (p) functions it is seen that 

E^C-e) « (-1)4*1*4 E^L(fJ)

These two facts enable us to make a further simplification : consider the 

charge distributions
(a.^) and (a-jb*).

These will give rise to two different polynomials w(^ , q ) and w‘(^J , q ) 

which by definition of the various quantities will satisfy the relation

_____________
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hut

•’• Xl, = (-l)j w„.

It follows from the above equations that

(P) = »n(-P)

Finally,
(•?? . (-1)1* <.?1).

The argument of the B functions is 0 « ^R(k& - k^) and it is 

necessary to consider its different ranges in the calculation of the B’s. 

Roughly ©leaking the range division is

1. 0 « 0

2. 0 < 0*5

3. 0 > 0*5

1. 0x0

It is clear that such B functions will he constant for all

values of R, the intemuclear separation, and so we can tabulate the 

results once and for all. From equation (4*2)

(1 - Vs) ept? ooz. •••••••••(4.5)

i• • «P* ? oo
z
l^M

(14M).*
i

• . • • (4* 4)



99-

when - 0| v/e get

8»] Mn- *S.(o)

by differentiation of , OO 1
t*3 =22 B A(0)(Pn(t) from equation (4*5) and

1^0 1
comparing with equations (4*2) and (4*4), we have

pi *
B^O) > 42(21 + lj P^t) tP* tJ dt ............(4. 5)

Now, the integral can easily be evaluated (Whitaker and Watson,1950, p. 510)

tJ at - {fOI

for j-1^ 0 and even; otherwise it is zero for all other j values.

B^o) B1n^ITr HBSHt

for j-1^0 and even

ss 0 otherwise

’^O) ■ 4W TjSr ’>i <°>

W i ii
for j-1+1 0 and even

0 otherwise
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3jX(°)
\l

(1+2)1 ji 42.(21+4 (. ,|(,A+A+211L 
(1-2)1 (j + 1 + 3)1 ( 3-1+2)}.'

for j-1+l^.O and even

b 0 otherwise*

Table of B?\o) values 
J

T.-* 0 1 2 5 4 5

0 1* 4142155

1 0 0*8164666

2 0*4714045 0 0*42165701

5 0 0*4898980 0 0*21580899

4 0*2828427 0 0*56140315 0 0*10774960

5 0 0*5499271 0 0*25756554 0 0*05414621

6 0*2020505 0 0*50116929 0 0*14695127 0

'Aable of Bj1(°) v»l«eo

il 0 1 2 5 4 5

0 0 1* 1547004

1 0 0 0*51659778

2 0 0*25094012 0 0*24688556

5 0 0 0*22151555 0 0*12046772

4 0 0*09897454 0 0*16459024 0 0*059514205

5 0 0 0*12295385 0 0*10951610 0

-



'■^able of 32\o) values

0 1 2 3 4 5

0 0 0 1-05279557

1 0 0 0 0-59056002

2 0 0 0-14754222 0 0-170567078

3 0 0 0 0* 13012001 0 0-07846551

4 0 0 0-04918074 0 0*09292749 0

2. P < 0*5.

When p «= 0*5 the coefficient of the 6th term is 1G~6 times 

the coefficient of the 1st term. Writing

4/d3 . ^X(P) - ^t(P)

we can use the Taylor expansion

f0>o ♦ h) . ^(PJ
lc=0 kJ j+k' o'

Por small values of p therefore,

£ ? (□> 
iteO M J*k

In this method it would seen useful to have a table of P /kJ values. 

This in fact was done before starting the computation#

5. P > 0-1.

When £ is greater than about 0*5 the seides given above does 

not converge rapidly enough for quick calculation. Therefore the present
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method, vzhich overlap a the previous, is adopted.

Using a Legendre recurrence relation we get

= yp ^(1_1)o) ♦ yi*D ^(1+1)(e)

where ^(1) « ao(l)^l - and aQ(l) “ (* * V^2)

These a,r(l) functions are constants for all values of 0 and and

are listed in the table below.

Table of a^(l) values.

1 1 yi) 1 yi)

0 0*0 0z 0*0 0 0*0

1 0*5775502 1 0*0 1 0*0

2 0*51659777 2 0*447215585 2 0*0

5 0*50709254 5 0-478091451 5 0-377964462

4 0-50595265 4 0-487950036 4 0-456455778

5 0-50251891 5 0*492565958 5 0-460566189

6 0-50174520 6 0*494727455 6 0-475049910

7 0-50128041 7 0*496158957 7 0*480584461

8 0*50097945 8 0*497050125 8 0*485071249

9 0-50077540 9 0*497672606 9 0*488252082

10 0*50062617 10 0-498116751 10 0-490511459

11 0-50051752 11 0*498444775 11 0*492174777

12 0*50045459 12 0-493695945 12 0-495455157
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^ow,

and

E°x(e) «= [2(21 + i)] bj(e) 

r'
g 1 F-(t) dt from equation (4’5)

..........(4*6)« (V2P)* i^p)

which is the Bessel function of purely iiaaginaiy argument and half integral 

order (Watson, 1952). Besides,

,u
B°X(0)

- ainh 0 hO “ | ( cosh 0 - bg ).

The Bessel function recurrence relation

(21 ♦ 1) bx =0 (bj-1 - bx+1)

is valid but with it errors due to differencing effects increase rapidly 

and it is advisable to start at the greatest value of 1 with

*0 - .(&.♦. a) v ♦ *
p

1+21o

and descending to lower 1 values. In practice, however, the recurrence 

relations ere not very consistent and we must unfortunately revert to a

laborious seri.es calculation.

Split P into the ranges (a) P< 1 and (b) P>1

(a) When P is small we can use the infinite series

!l4(P) -
tfcO

ffa+at+i): 2t

1 „2t OO
<(0) « (20) 0

t=0
-IK..t.'(21+2t+l).'

from equation (4* 6).

0

seri.es
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(b) Y/hen p is no longer small wo cannot use the infinite series 

expansion for : instead we must employ

and therefore

JL y d+frMTP).** 7 dywxpr*
fed ^’(1-^ 2*1+ (-1)1*1 e*

Examples of this type of e;q?ansion have already been given in 

cha ter 5 when dealing with the hybrid integrals. It was found ( see 

numerical examples later) that the error incurred was small if the 

expansions were calculated for selected values of 1 viz. 1 « 0,1,4,5,8,9, 

while the values of the b^(p) between these were filled in using recurrence 

relations. Using these recurrence formulae more tlian twice led to errors 

greater than could be tolerated in the calculation.

Having constructed a table of the b^(p) we can proceed to the 

B^(p) which are, from the functions listed previously;

B°X(f3) = 2(21 + 1) bj(0)

B?W - %(D Bo1"1 * Bo1+1

b^O) - M1) ®i1_1 ♦ stt*) B?1+1

- aQ(l) B°1-1 ♦ ao(l+l) B°1+1

and so on
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B^O) . x 1 iAttoli \l (l-i):

b^O) . ^(1) b^-1

B^(3) . ax(l) bJ1-1

and

B^O) - 1 J.fosu.
e \ (i-2)j

b1X0)

B^O) = -20) B^1

and

BoX(P)

♦ a1(l+l) bJ1*1 

+ agl+1) B^*1

so on.

B®X(P)

♦ ®2(1*D Bo1+1

♦ aj,(l*l) B^+1 

30 on.

The 0^ (a, I) lunations.

Partial integration of the 0 function and introduction of

results in

*&■.*> /••[<» oto#

It is remarked that all the 0^i are positive.

Let us take the sicplest case; viz. 0^

0^(afa) « [ d’J /(*?-1)({ e-ax dx f di}

►•AXx dx



lf)f

-a
I L ~®

i -(a+a)(2r-l)

..•*n

- is-(a-Ki) 0-1)

♦ c

G
\j — 1 * 1

s - l 5 + i" S _ i ■j + i J

Following Jahnke and. Ende (1955) we shall define
oo

- Ei(-x) at ®o> x> o

and use this in the integral evaluation. Besides it is convenient to expand

oooo n
E.(x) = C + ln|x| ♦

1 n=l n-2U
at the lower Unit 5 c 1, so that the infinities at that point will cancel. 

C is Euler’s constant ( = 0*577215665).

Further,we use the notation

^(x) ■ i [c + In 2x - e2xEi(-2x)^j

and find that /°°(a,a) reduces to

-hi—d p
---- | “L (») * £.(»)- £ (a- ♦ ») f

We shall Introduce

SO<») • e”1 £.(<*)

&n(») » (-l)n ( ^/do”) Go(a)
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which lead directly to

®o(«) = I [c + In 2a - e2® Eji-Sajj

Gt(a) » i e~® [c + In 9a + e2® EjJ-aa/l

W = W®> - W®>

and
Ao(a) = (l/a) e“®

Aja) . £ a*"®4 tn dt = (-l)n(cP/£kin) AQ(a) 

giving the recurrence relation

\<») = “V/®) ♦ e-a

and
W“) * ("1)a+“ a»n*V>an^)

the recurrence relation for which being

-<x~ae
aa (a + a)

Ann - 'STTT' [IVi,n + * An(a) A“(B)]

vhere 1 • A/®) Ao(»)

Finally we can write

0^Ca.i) • lLe_a Qo(®) * so(®) - Go(® ♦ ®)j

which gives the recurrence relation
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.oo 
nh a5r » ♦ W * ® G«(a)

Wa *a>J
To obtain tho ve siiall define

«* C * C21 - w iSlfc0°2 - (P°-^nn nn 1 ^1

Rhderiberg proves

4>i
and.

<‘1-2 /h-P <f 2? 4 S1
l^n.l.n+l * n+2.n ’‘Pn.n.sl

bQ s 1 and b^ = 4 - (l/l^) 1^,1

The method of evaluation is ftton the tO \ to the lb vticnce 
1 nn ' nn

Cf1*1

rih 1>.2

Uz1 = d/ b2 + b.
i nh 1 nn

viiere

to the nxT For 1 ss 0,1 wo must add the following

q/»_
nn

<U •'I’i

a^n+l,n+l + <¥ n,n “ n+l,n+l “ n+2,h o
n,h+2

♦ Vtt> W*> * AnU<*> An<») 

n,n “ <f nU,a+l “ An(a) Afi(i) "

We have then,

0^(a.a) - Ct>tW) - - Ami<a»a>

__________
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,• ir-.>n ^n,n+2j

= * 5^ajAfi+l^^ + An+l^a^Ma^

"8te,a(a*K) + Cn+2(a’*) *An(a>Afi<5) *Wa’S^

*2M - ^,6.1 * 'C ’ - “k*2’” *

«C - i4®Si,s.i * 5*S ♦ - “^s.,» * C Jj * *£

1250°- . 4O50°4 _ . ♦ 16J0°S + 22^°\ _ „ - SlsU^L
^nn ^n+l,n+l ^nn n+l,n+l Ln*2J

- 5GfS°i 
^nn

for 1^4 there is the general for ula

i!<si -5> ■ <a - -’)(21 -1)2

+[(21 - 5)(1 - l)2 + (21 - 1)(1

. + (21 - 1)(21 - 5)2 ^g-+1

- (21 - 1)(21 - 5)(21 - 8)b^“*B

- (21 - 1)(1 - 3)2 jtf?’4

Hsving obtained the 0^i we can proceed to the 

of the recurrence relations ^srhioh are derived in the RUdenberg paper, viz.

«r)i ■ - m tf-1’ - w

- 2)2!

+ 0°^"2 1 
n,ft+2 j

,M1 by means

or specifically,
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>11 -«ol X 1+1rin ^n+l/n+l * rm 21+1

.21 = 0u w^L-0l.W. ._1_01>1>1 
^nfi n+l,n+l 2B+1 nn 21*1 nn

and so on.

numerical Procedure.

The evaluation of ^O) and /^(a,a)
nn present such a

formidable problem of computation that a clear cut programme of action is 

essential. For each atomic separation R, the parameters a, at P, P»

n, n, and M should be tabulated; then for the B(P) and 0(a) we have 

the respective programmes.

The B(p) Functions.

1. List the different B(p) functions required.

2. Group the various p values occurring according to their ranges as

defined previously.

5. p c 0. The values of B(0) are constant and are already tabulated.

4. 3 0*5
a) tabulate p^/ld

b) tabulate 3jX(P)

c) tabulate I*A^(P)

d) tabulate B^X(b)
V

5. p 0*1. The fijT(l) are constant for all values of R and are already 

tabulated.

a) Evaluate the bo(p) functions



- Ill

for 1) the range O*1<£<1

2) the range 1<P
b) Tabulate all the b^(0) values thus obtained.

c) Tabulate the ^(3).
V

The j£(a.,a) Functions.

1. Tabulate e~y, 2y, -e2yEi(-2y), In 2y, e2y for y = QL, ‘•■•f ® + O'*

e“^ « antilog( -y. 0*4542945), similarly o*y e antilog( 2y. 0*4542945). 

NOTE: The co ron logarithms are denoted by ’log* end the natural or

Naperian logarithms by ’In*. At least seven figures must be 

taken because the final results are very small differences and 

are liable to be meaningless unless this precaution is observed. 

Char bar’a seven f1 pure Mathematical Tables (Chambers, 1945) were 

used.

In the tabulation of -e^ E^(-2y), we can use the British Association 

tables (Cambridge, 1951) for -K(-y) in the range y<15. Y,hen y>15 

the infinite series expansion is useful:

^x p t 1 1 2. 5*-e E±(-x) ----------
x2 Xs

2. Tabulate A^(a), A^(d), /-(a ♦ a) to i = 9, 9, and 16 respectively.

5. Tabulate G^(a)f G^ (a), G^(a ♦"&) to 1=9, 9t and 113 respectively.

The maximum values of 1 quoted above are chosen where It v/as found that

the differencing effects in the recurrence formula bega.; to be noticeable.
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a ♦ a

n
•V5) At(a) A2(&) A^a) ........

0 12 5

A0(a) 0

At(a) 1

^(a) 2

5. Evaluate 0^2(a>a) fror; the scheme

a/x e“a Go(a) e~a G^(a) ®"a &2^S^ e a M3)

no,

• - -
e“®Ox(a) —--- ---_„ ... ,., ---- ——

Go(a+5) e-» G2(a)

G.(a-rH)

G2(a.hi)

Gs(a+a)

6. Tabulate 0^(a,5)

7. Tabulate rm
8. Tabulate

9. Tabulate

10. Tabulate

STOP AT THIS POINT IP M = 0,
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11* Tabulate ''nn' * '
12. Tabulate 0^(0.,5) iin
15. Tabulate 0^(a»s)

14. Tabulate

15. Tabulate

STOP AT THIS POINT IF M = 1

16. Tabulate

17. Tabulate 0^i(a,a)

IS. Tabulate

19. Tabulate /^(ata).
etc*

Numerical Exanoie 3.■ ggr.'VB.'ii - ■.iJSS jgyjr

Several numerical examples were calculated: they were

A<1*a2Pxb‘’2sa8pja^

^Ba^Bb’^Ba^d?

where kls » 8*97 = 2»95< » 2*88 kgp « 2*88.

P = 2*0 atonic units.
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Applying the final A equation on page v we can write out

the sunnations for these integrals -

A(lBa^:s28ft2P3^ “

cjj? R\

♦ B2O)B,((i) ^02(a,a)

where k& = 8*97 k8 = 2*954

- 3gO)B0(3) 0os(a,a)

- %(?)82(» ^2ll‘a»a)
♦ XiggCa,*) J

kb = k< = 2-88

« 6*09 0*054 a » 11*85 a es 5*814

R9kf‘ SL t's?1(0)^1(0) ^(afa) + 2t£1(0)b£1(0) 0gj(a,»)
1-0 •—

- [2Bg( 3)30(‘J) ♦ 2B2(0)B4(0) /02(a,a)

+ K(0)^(0) ♦ 2B0(0)B4(0) ♦ B4(0)B4(0)^ 022(a,a)

-[2^5(0)32(0) + 2B4(0)3g(0)^ f424(a,,3.)

+ Bg(0)B2(0) 044(a,a) J

where _
1=a e “ kb c kb = £>88
£ = fc = 0 a = a = 5*76

for the above case and also for the remaining three integrals set out below



- 285(0)1^(0) 0c2(a.a) + 2B^(0)B1(0) 0O5(a,a) 

+ B^OjBj/O) ^(a.a) + 2B5(0)B^(0)

- 8B^(0)B1(0) /ic(a,a) ♦ BU(O)BQ(O) 022(a,a)

- £1^(O)BX(O) /J23(a,a) ♦ B1(O)B1(O) j5w(c.,a) j

A'2Wpxb: ‘^xa^xV

- 2D^( O)B23(O) ♦ B^OjB^Ojp^afa)

♦ 2^-Bj,(O)B^(O) + Bj,(O)B4(O) ♦ B4(0)Bc.(0) - B^OjB^O^^a.a)

♦ 2 {Bg(0)^(0) - B2(0)^(0) - B4(0)I^(0) ♦ B4(0)B2(0)^04(a,o)

♦ {bo(O)BLo(O) - 2E^(0)B4(0) ♦ B^O^O)] 022(a,a)

+ 2^-B0(0)^(0) + 1^0)80(0) - 84(0)B0(0) - B4(0)B2(0)y24(a,a)

♦ £^(0)^(0) - rJ-b(O)Bg(O) ♦ 82(0)Bg(0)] 0u(a.,a) j

A(2Pxa2pxb: ’Sp^xb)

_i- p! 512
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Starting with the calculation of the B functions; tables were given 

earlier for the case p = 0. With the appropriate range equations the 

following table was compiled for £ o 0*0" 4.

Table of E^1(0*054)

1 0 1 2 3 4
J
0 1*000436/2 0*01S^ 0*0001944/T& 0*0

1 0*016/5 0* 333624/6 0*0072/55 0*0

2 0*353024/5 0*0108/5 C*1534/10 0*003086^14 0*00011l/2

3 0*0108/5 0*20021/6 0*00617/55 0*05723/14 0*004114^5

4 0*2002l/£ 0-00771/5 Q-1145JlO 0-COS429jl4 0*0762/2

Aable of 8^(0*054)

1 0 1 2 5 4
d
0 0-0 0*66678/5 0*0072/l5 0*0

l 0*0 0*0072/5 0*13338/15 0*002057/42

2 0*0 0*13346/3 0*00308Gils 0*038127/42 0*002057/10

5 0*0 0*00617/3 0*05714/l5 0*001371/52 0*03814/55

The other case directly connected with the problem is 0 « 6*09.

Two sets of auxiliary functions are involved: the a^(l) which were 

tabulated earlier and tlie defined previously. For certain values

of 1 the b*s were evaluated directly from the equations while the 

remining values were obtained by the appropriate bessel function recurrence

relations.
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by direct equations forward recurrence 1am m*. i rnm/nt aa

V 56*259575

V SO*289277 30*289241

to? 21*318744 21*518722o
V 12*786204 12*786185

V C*6213696 6*6219582

to5o 5*0000252 3*0059132

V 1*2052086 1*2054651

0*4515982 0.4526282

*o° 0*1598980 0*1401580

to9 o
b w o

0*0413601

0*0197978

^omoarison shows that these recuirreneo relations soon break down

due to differencing effects which are fully described in Barnett and

Coulson (1951a). Trouble fror: such effects was also encountered in the
ooranilation of the 3^ and B'P' tables below, 

j d

The time involved in a 0(a) calculation for a single integral at 

one value of R is in excess of 50 hours using a desk computing machine* 

T.hen one considers that there nay be many such integrals all to be evaluated 

at a series of separations R, it is dear that the complete project io 

impossible on account of the time factor. Not only that, no time has been 

included for cheeking the results in the above estimate, and that is 

extremely important since in handling the complex recurrence formulae
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Table of B°X end B^(6-09)

B01
d

11

X
4. 0 1 8 3 0 1 2

0 51*250489 42-855506 37*382975 52-954257 0 0 0

1 74* 193281 64-402806 57-045 14 51*301206 17-229086 11*586345 9*2642287

2 67*415717 62*573326 57*772537 53*515901 25-906974 20-715441 15*916752

3 47-841526 48-544574 47-444206 45-950545 27*213121 22*453775 19-425675

4 28-094658 31-380935 33*007710 35-865266 20-G51D40 19*509780 17*551129

5 14*071356 17*202210 39-807464 21*795396 12*665499 13*594121 15-438148

6 6-1467938 8-2480704 30*380565 12-341095 6*5411763 7*7056492 8*5168630

7 2*3696035 5-4099557 4-7955147 6*1907506 2-9117575 3*8102709 4-6407381

8 0-8157406 1-5148616 1-9704960 2*7631001 1-1565829 1-6450365 2-2052777

9 0-2550C45 0-4455559 0*7223736 1-0979554. .. . . 0*3973633 0*6256765 0-9172834

numerical errox's creep in ell too easily. Although most of the results 

quoted have been checked by repetition, a guarantee could not be given 

on their accuracy without performing the same integration by a different 

method. This has not yet bean possible. As with the 3 functions, trouble 

arose due to the differencing effects in the application of the recurrence 

relations; so much so that sore of the values of 0, a positive definite 

function, became negative.

The values of the intermediate functions A, G, and ft are not

included: only the final 0’s appearing in the integral are tabulated here.
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n
& 0 1 9 s 4

0 0*0^566169 0* 0G438 1940 0*0^4855955 0*0^5746885 0*0^6970274

1 0*0^4782876 O*O6556OS16 0*066595011 0*0^3015002

9 0*0^6475808 0*0®769660? 0*0^9575526

5 0*0C’91C8947 0*051119844

4 0*0^1573857

ig « ’ S* t « ’
0 0.0^155025 0*0^1720448 o*oeisaoo8o 0*0* 2267950 0*0^2674875

1 0*0®1953914 0*0®22 15046 0*0®2570911 0*0®3045062

9 0*0^2528558 0*0629E7U6 0*0®5514822

5 0*0^3459106 0*0®4151548

4 A 0*0^4962006

z>°2 1 * 1 . r'.' .
nn ♦
0 0*078262096 0*079200157 0*0®1055386 0*0®'1180624 0*061367169

1 0*0®3027857 0*06U60B51 0*0®1529691 0*0® 3547522

9 0*061516791 0*0* 1515665 0*0®1773085

S 0*0^1754851 0*0C2067455

4 0*0®2454678

<1

0 0*075089£5 0*075C26948 C*07C285S8C 0*077098009 0*0 8128455

1 0-07624CS28 0*077077950 0*07795l46C 0*079158533

2 0*077909304 0*079024774 0*0f3046945

5 0*063037210 0«06321291B
4 0*0^8174896
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n —*

'iin 0 1 2

0 0’0952C7627 0’09S850C46 0’094606415

1 0’095555289 O’O94175816 O’Ov5C1490r

2 0’095G88285 O’O94571557 0’095491202

znn
0’01017804550 0.0101207C12 0’0i01411S61

1 0’0101375529 O’O1O1C558S4 O’O1020S7715

2 0’0i0i571039 0’010190JB22 0’01O2544795

0^

0 0’0XXE52417 0’0X19158800 O’O101199996

1 O’O1OUJ559£1 O’O301576625

2 0’01C 1089956 O’O101595152 0’010l£79122

0™nn
0 0’01:L6E151ie 0’0XXG75?112 O’CXi89G26Cl

1 0’0117126,59 0’0119486645 O’O101031664

2 0’0la81444f>7 0’01X9723G55 O’O101137551

^nn
0 0’0X15900251 0’0XX6445S57

1 0’0U669’.026 0’0X1S40ie21

0’095C79165«
O’O9 6181105 

O’O9C77O51O

0’01022S3648

0’0lu2558228

0’0102952098

0’0101482210 

O’O101695225 

O’O101352562

O’O101110954 

O’O101286027 

O’0101488148

5

___________ _______________
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0 1 2 5 4

0 0-07341524€ 0-075755489 0-074165785 0-074678450 0-075510098

1 0-074168469 0-074656898 0-075255651 0-075989620

2 O-O752O£382 0-0^5916995 0-07CC13825

5 0-0®2152 0-0*5822

4 0-0*1195

Item these results 12Psb'' “
20,102,109/64 ? ( 0*0^517566 - 0*0107496 - O-O10^^)

= 0*0455S2

taking the sumation only as far as 1 * 5* To take it further than that 

would necessitate more than the 8 significant figures which I carried 

throughout since differencing errors prevent further extension to the 

present tables. With this in rind it is seen that the Eddenberg method has 

a major practical, disadvantage.

For the rest of the exasples of exchange integrals the sunxnatian 

was carried to 1=4 and even then tlic differencing effects caused a 

divergence in Quoting the resultst

’ZPAb) » 0‘ 101152 

= 0-007964

sSP-EpSp-sfo) • 0*0007 approx.

^2paa2pai)::2p.sa2pai)) = 0-24605

It 3houid be noted that the results are very approximate for although 

the series v^as truncated at 1 = 4 it is not so rapidly convergent. The

1=4 tenn is still only smaller than the 1 = 0 term by a factor of 10.
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4*5 The Method of Barnett and Coulson,

This was outlined In section **5 and can he extended straight 

away to the exchange Inte^rrals. For detailed treatnent we refer to Barnett 

and Coulson (1951a,b).

With the expansions

the radial components of the wave functions can he expanded around a 

common origin, tho nucleus a, Figure 4*2,

The 5, function is not to he confused with the "Cwnecker delta 

symbol with which it has no connection;

6^rl»r2^ * for rl^r2

js r^ / t? 1 x for r4 r2' 1 2

The general exchange integral quoted in the introduction was

'ife -Map i "bS dt

On expanding the integrand in terms of coordinates centred on ’a’ we have,

, . - , 1,+^ l3ieapC-^el -k5ra#) ral ra2
t

1 Jk ”\+1»f J rat»ra2^+1>k4»ra2,fi^ 

^al ^'82

°° 00
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where(?
ijk

io the integral of all the angular functions. Incidentally the

triple summation is not so large aa it appears at first si^xt since the 

orthogonality of the Legendre functions reduces the number of terms considerably 

and analytic integration of the angular coaponents is not without the bounds 

of practicability. Integration over the radial variables r^ and r^ 

however lias to be done by numerical cuadrature.

This is complicated by the form of the 6^ function which for j 

greater than 4 becomes very strongly peaked around the line ral = ra2*

In order to obtain reasonable accuracy therefore with a limited number of 

points Gaussian integration would be neoessaxy. Besides, since the derivative 

of the integrand is discontinuous along the line r = R, the r integration 

is divided into 5 oarts aa shorn in figure 4*5. In such a situation 

Gaussian integration is difficult and tedious.

Doubts have been cast on the acceptance of the delta factor and results 

are available ( Pr H.H. Robertson, National ^lysical Laboratory in a private 

communication for which I should like to express ry gratitude) wiiich show 

that the delta function method gives rise to a non convergent summation.

4* Modification to the Barnett and Coulson Method.

(The work in this section was done under the supervision of

DrM.P. Barnett, by courtesy of I.B.M. Ltd., London.)

The difficulties of the seta function evaluation of the exchange

integrals have been overcome and the method sisplified by the introduction
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of an integral representation for the delta function* This approach was 

suggested by Dr Cogbetliants to whom I should like to express njy gratitude.
Q*

Kcw *42 =S J,7+l(rRlt) J /r*8*> dt

«o
w t) J/r^t) ata2

e 0

from page 406, TVataon, 1952.

for ra2 < rai 

> r:.i

for ral ra2 

for rai>ra2

Vr*i’r«aPI• • JjjWW) J/ra2*) * J/ral*)l dt

The exchange integral now reads

(J wgX-k^ -Va2> rrll i jk^lnti(ke»ral»R)Il+l,k(fe4»ra2.»)

U Wr^*> Vraa*) * Wr^*> Jj(ral*)]di ^al ........<4*7>
o

The procedure is then to invert the oxxter of integration after 

separation of the integrations with respect to rft^ and r^j i.e. to 

integrate over ral and r^ first, then over t.

The application is not limited to two centre exchange integrals: in 

fact it extends to the multieentre integrals as well, thus amplifying the 

scope and power of the seta xAmction method in its modified form.
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A systematic study of the component bessel transforms of th© kind

r°
J \ e-kr J.Crt) dr dt ........,...(4*8)

o

was carried out and the results fojJlow in the next section. These are Just 

double integrals and it will be shown that a sinnle Simpson's rule integration 

is adequate, necessitating only one set of r.; and one set of rg values 

in contrast to the complications of the Gaussian integration.

4*5 Study of the Bessel >mn:3fo„n.:s..

It was hoped that an analytic method ooul.d be found to perform the 

double integration.

1. J.(rt) ran expanded as a power series in t using 

th© basic bessel function expansion

Jj(rt) irt) J+2m

m.-.o 3iJ (d+m)J

Thio war combined with the analytic treatment of the sots, functions - the

J3 method as described in Barnett and Coulson 195ia,b. Taking into account

the divergence of the 2, functions, it was found that the power expansion

in t was reasonably convergent only for $<0*5. For example, taking the

first term ir the sumaation over j, vis. j •« 0 and where m = n ® 0 in

UB iS m,n i,e' the Po^1*37*^ functions 
©o
X L IcJo(rt) e“ ” d; Po(l,r,R) <1t j at 

we find with k ■» 1 = 1, E = 2 and



- 126 -

oo
(k,I?) • J pn(l»r,R) r1' dr

by definition that there results
oo .9 ,8

A>,v • ? £o»Y + Hi A ” 235* £»»’£ * WisS
q - . •• i dt ••(4*9)

• V J

The P’s are independent of t and can be evaluated by the «£ function

procedure so that a term by term integration over t is possible.*
6Por t » 0-5, the first four terms ( up to t ) are

0-20734, 0-061605, 0-00912, 0-00100

allowing that for t greater than 0-5 the convergence is no longer 

reasonably fast.

2. The basic integral equation (4-7) could also be 

expressed in terra of tho hy pergeozaetrie function but there are no 

comprehensive tables of this function to make furtlier investigation of this

fact worth-while.

3. Yet another possibility ’vas to express tie bessel 

function in terms of tiie trigonometric asyiq totic expansion (V. at son, p.195) 

and try to fit the zeta functions to a polynomial giving on integral of the

form
I e-Kr cos dr

sin

which could be integrated analytically. Reference is made in this 

connection to Luke, (1254). The best polynomial approximation is

obtained with the Tchebycheff polynomials T*( x), because they give



faster convergence than any other polynomial. It is important to 

differentiate between the different variations regartting definition of these 

polynomials. We refer to ’Tables of Chebyc eff Jolynomials, 1952, and 

Clenshaw, 1954. The recommended method in the former reference page JVIII 

was followed, taking not equally spaced points but points corresponding to 

tlie zeros of the first neglected T (x). This steolifies the orthogonal
*•» 9

properly of the polynomials and at the same tine gives the best fit in the 

least square sense.

f(x) « ko * ®l ’lC’O *........ * cn_i ^iCs) ♦ 2% 2a(x)

where ( n
Cfc « f(x ) cos kaa/n

OmQ w

» cos a^n, a =» 0,1, • n

The resulting fit w&3 not good end the method was abandoned.

Since no simple general analytic method could be found to integrate 

equation (4eQ), numerical quadrature seemed the only other way out.

The integrand of equation (4*8y is oscillatory and therefore the 

first operation was to try several simple bessel transforms using Simpson's 

rule with a varying number of points between the nodes. Transforms with 

analytically known values were chosen to enable eheclnng between theory 

and calculations. In the first instance, the transform

J «"‘ar Jn(rt) rK dr
<aW)B+*J7 ................... (4*10)

(n&taon, page 586) was chosen where n « 0, a = t 1
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« 3/f8 - 0-707107.

An I.B.M. G02A computer was nrograinmed for a modified Simpson's 

rule procedure (Appendix XI* 1) and with an interval of intention

dr « 0*08, the result was 0*707107 

&r a 0*16, the result was 0*706905.

Taking now t = 5f a = i, n = 0, the analytic value of equation 

(4*10) is VJ26 « 0*1961. uith only 100 strips and dr • 0*20 

corresponding to three points between nodes, Simpson s Rule gave 0*1957.

In the next case, the seta function

ajs •'r Xx/r,s) * r e”r A*/’*8) ■ 1 ........... (4,n)

was generated in the machine (Appendix 11*2) and punched on cards for 

r = 0(0*01)10*00. These cards were interleaved with packs of cards bearing 

selected values of in such a way that the transform

Jr e"rX,oo(r,5) JQ(rt) ir

was evaluated for a variety of t values. The results are given in 

the table below and where an analytic determination was possible it has 

been added; the details of which are expounded below.

To provide a check on the numerical quadrature, the integration

was performed analytically wherever possible,
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Table of values of the transform £r e’"rXjQ(r,5) JQ(rt) dr

Limits and interval by Simpson s Pule no of strips t analytic integration 
of integration

0(0*05)10*00 -0*000405 200 10

0(0*1)10*00 -0*000059 100 5 -0*000061

0(0*02)5*00 -0*002263 250 4

0(0*02)10*00 -0*007313 500 2 -0*007811

0(0*04)10*00 0*012726 ? 250 1

0(0*06)10*00 0* IB5771 125 0*5 0* IB5807

0(0*1)10*00 0*293721 IOC 0*0 0*296722

By definition,
7- (r,R) - e-’**’- «-<**»>
9 00' ’ z

and so the transform I'ea&s

I - [(1 - e~2r) e“ r JQ(rt) dr ♦ j e~2r(eP - e~R) r JQ(rt) dr (4*12)
O 00 n

« (eP - e~R) f r e“2r JQ(rt) dr ♦ e~R J r JQ(rt) dr

- eR J e*2r r JQ(rt) dr 

Examining this term by term, the first is

(«P - e*R) ( r e“ r JQ(rt) dr » (eR - e“R) >
J° (4+t?)>A

WataoUf page 386, equation (6)
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pR
The second term r JQ(rt) dr

o

Consider
Jk

rt Jo(rt) o rdrJltrfc) + 

V.atson* page 459 equation (5),

then r 1
rP" j r dQ(rt) dr 1 » ©**/* J L^dr^**) * J dr

by parts

« S/t e~R Jx(rt)

The third term:
J*

Consider J e sr r JQ(rt) dr 

and put rt - v,

then

therefore r = v/t 
at

j e~ar r JQ(rt) dr as j e“av/^ ♦ t/V • Ja(r) dr

Tfc=O
on expanding the e^oaential as a power series* 

oo
- W)

n=0
.Rfcvdiere

Now

« tt I/n+ijo(v) dT

* v*2^ ("<7 w*>

*n+1(Rt) “ "r2 'W**) * <8t)“ Ist Jl<Et) * n Jo<Rt)} 

Watson, page 155* equation (4)

• • In - -jy'(n-l).aE/*2.In_2 ♦ (-aR)11/*2^ [Rt Jx(Rt) + n J(
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I ■ l/t2 J v Jo(v) dT “O <3
(see analysis of second term)

p*fc c
II «= I v2 J0(t) dr

= t/t5 A Jo(r) dr - aVt2. Jx(Rt) + *o(Rt) )
Jo

inking the recurrence relation for the T (Et) above.

All J./Rt), Jt(Rt) and Go (v) dv can be found immediately 

from tables. Returning now to our problem, namely the evaluation of the 

third term in the integral I, vre see that

oo
r Jo(rt) dr = 2L 2>(2»t) 

n=0

This analysis is suitable for t^2 and although the series of 

In(a,t) is only slowly convergent ( up to 50 terras had to be taken to 

get four significant figures in the final value of I for t ■ 2), it is 

subject to very rapid computation on a desk machine.

For t = 2, tiie three terms give

1*7709268 - 1*7580751 - 0*0206629 = -0*007811(2).

For t ss 5, tiie three terms give

0*2565895 + 0*0061269 - 0*2627774 -0*000061(2)

A more general but longer to compute method follows from

equation (4*12)
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e 2r r J,

I B e“B |r J,(rt) dr - e“r U"22? r Jo(rt) dr 
% J<*

* (e2 - e"R)fr e“2r J0(rt) dr - (oR - e_R)
= (eR - e"B)£r ®”2r Jo(rt) * c~£r Jo(rt)

» eKj e*2x r JQ(rt) dr • •(4*19) 

Consider now the third term of the last equation

eRf e"23f r J frt) dr = eH f e~"r r JQ(rt) dr - eE F e*2r r J„(rt) dr 
and tho last tern of this can be transformed oy change of variable,

(rt) dr

r = x + R

thus <ao
e'pj e*2r r Jp(rt) dr » eRtJ^y(2xf2R) J0(xt + Rt) dx

° fips*00

* R e-sp-2x (-1)“ Js(xt) Ja(Rt) dz
3S=~00

wiiich follows immediately from Watson, page 145, equation (l) and page 15 

equation (2).

It is convenient to define the auxiliary integral

- J Jn(rk) dr

Equation 4® 12 now reads

I « (eR - e”R) 3^(2,*) ♦ e‘R ^(O.t) - oK IQ1(2,t)
OO OJ

♦ e 21 (-DS *8i(2.t) Js(Bt) + R «-HX hl)3 1,0(2,t) J (Bt)3=-OO '— —

OJ
2

SB-OO
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-R

+ ©-R oo

^-00
(-i)c + 5 V2»*>1 ,(®t)

Because cf the qymetxy of the product <r(xt) Ja(Rt) only positive 

values of s need be considered in the sunination. Finally then* .

I . e“Rrio,(O,t) - \)t(3,t) + {^(M) ♦ B W2,t>Vo(Rt)

* s£(-l)S flsl(2,t) ♦ B 1^,(2,t)}
3=1 v J

The evaluation of the X^^C^t) presents little difficulty s

First* « pr JQ(rt) dr

Row

• •

rt JQ(rt) > r gj J3(rt) ♦ Ji(rt)

V;atson, page 45* equation (5)
Jr,rJo(rt^dr • V'tjj? 3£Jl(rt) ♦ } dr

■ Ij/t . J, (Kt) by partial integration

IqiCo.t) = l/t . ^(Rt)

w**>

SS

<SO
f e-®® J (rt) r dr » •■-■”$
L ° ' /JClST(a2+t2)K Jx 

V.atson, page 386, equation (6).

j ®"”ar i”" “ (2t)nP (a+jj
° (a^t2)11*

Watson, page 586, equation (5).
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f4'
W - (rt) dr = ( 4 a2+t" - a )W

t“ {a? + ?

Watson, page 586, equation (8)»

The only other values required are I^(a,t)

Consider

v/here du

I (a>t) ran
-ar and

Jn(rt) dr 

v s r^ J_(rt)

dr = E Jn ♦ t

But Jn - Jn-1 - • Jn

• dv » (ra-n) Jn + t Jn-1

fintegrating by parts V du = uv - ] u to

“ (,n"n)/a ’ * Va •

* * ~n j5 a* = t/a • * (»-!)/a . I^Ca,!)

To examine the results of the analytic integration, take first t

1. Using immediately the notation of Barnett and Coulson( 1951b), the 

integral is
2jsJrk e’r^(l,r,5) to = 2j3 j*o> (1,5)

= 2js e“5 J3 

» 0*296722

2. Recoiling equation 4*15, the integral is

e“E ( B*/2 - 0*25 ♦ (2R+l)/4 ) = 0*298722

Simpson's Rule integration using only 100 strips in the interval 

r = 0(0*1)10*00 gave tho value 0*29672, to five significant figures.
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At t 3 0*5 the porzer series expansion of the bessel function was 

used cf. equation(4*9). In this case the series was taken to the 12th 

power tern in t.

I • 2jS j^G^JlfS) w * So,^4/64 * 04

+ G „t8/l47,4S6 - G ot10/l4,745,600 + G ot12/^, 123,566,400 
~°»t J

■ 0-2987224 - 0-1550248 ♦ 0-0222075 - 0-0022654 + 0-0001801

- 0-0000128 + 0-067

= 0-125307 to six significant figures.

4*6 Conclusion.

The seta function method with the bessel modification is workable

and the integration over t is seen to be rapidly although oscillatorily 

convergent. The results of this investigation have been passed on to a 

computing group in the United States of fmerica viiere the method is being 

applied to high speed electronic computing machines. It is reasonable to 

expect results for the exchange integrals in the not too distant future.



- 136 -

Chanter 5.

5«1 Ehe investigation ofatouad state

In the Investigation of the stationary state of Neon the argument 

of J. de Boer (1940) ms follnvod. The Schrodinger equation is

- |£ £^nl ♦ [_V(r) ....(5-1)

where r^ is the radial wave function, m the mass of the Neon atom,

V(r) the interatomic potential, and n and 1 are respectively the 

orbital and angular quantum numbers.

From the behaviour of the wave function in the case 1 « 0, E ■ 0 

at large values of r, conclusions can be drawn on the existence of discrete 

energy levels in the molecule. If the wave function rv|> increases as a 

function of r as r tends to infinity and has no nodes, there is no 

stationary state (figures 5*la and 5*lb) t if the wave function cuts the 

r axis there is a stationary state possible in the attractive potential 

field for a negative energy (figure 5*2). In the case of the wave function 

becoming constant (figure 5-5), it could be said that the stationary 

state occurs exactly at aero energy. Kilpatrick, Keller and Hammel (1955) 

have used the behaviour of phase shifts to determine the existence of 

discrete energy levels.

Applying the de Boer conditions the Schrbdinger equation reads

- t • 0 ............. (5‘2)
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Two potential functions r/erc investigated*

I The Lennard-Jones Function.

Vt(r) = Acejj/r12 - l/rfc] ....................(5«S)

where cr is the value of r whan V(r) = 0, and 6 is the depth of 

the potential well cf. figure 5*5.

The values of tho parameters were those listed by J. Comer (1948) 

€ ss 1*150 x 10 ~ 4 atomic units 

CT = 5*55 atomic units

In non-dimensional atomic units with x « r/cr end y » x^, the

differential oquation is

- 470455 .V ■ 0 ......(5*4)

II The modified Buckingham exp-6 function.

V0(r) • e/(a - 6) [seap a(l - r/rj - a(rffi/r)Cj........... (5*5)

where £ is the depth of the potential well, rtt its position, and a is 

a dimensionless numerical parameter. ?<ason and nice (1954) give values of 

these derived experimentally ftom viscosity, second virial coefficient and 

crystal data.
«4a = 14*5, r^ s 5*9456 atomic units, 6 » 1*2052 x 10 atomic

units.

introducing non-dimensional atomic units with x - r/r-L and y « x^, the 

differential equation reads



2C4«7C34/h\y « 0 ..(5«6)d?y/<ia? - [lO9*5597 eap 14«5(l-2c)

The boundary conditions are y » y* = 0 at x » 0. The equations 

(5*4) and (5*C) are not capable of analytic solution and therefore & 

numerical step by step method mat be sought.

5*2

Two methods were coE^pa/ od in a test run with Judiciously chased V(r).

Actually they were V^(r) and ^g(r) scaled down by the ratio of the mass 

of the Koon atom to the mass of the electron to give a lee3 steep solution

especially near the origin.

a) In the first place the differentiation formulae (Bickley, 1941) were 

employed

y» s
O Vh < -2y-5 + 9y-2 '• iaywl + llyo)

fe ( 2y_s -■ ®y-2 ♦ 4y_i - y0)

^2 = h2 ( y-5 " 2y.2 + y-i>

The scheme was to choose x «= y a 1 arbitrarily (since it is a homogeneous 

second order differential equation; , guess a value of y’ at that point 

and by recurring backwards with equation (5*7) find that y’ which will 

give y « 0 at x « 0. .*

y„, . - y-2 * *-l
2-1? V(x)_4 ................. (5.7)
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Recursion forward from x = 1 with equation (5*8) would then decide the 

existence or non-existence of a stationary state.

yo “ y-a[_2 " h£ ” 5y_2 * 4y-i ........<5*8)

In practice it was impossible to reach :: «= 0 due to V(x) tending

to + oo as x tended to 0. and therefore two bounding solutions were *•
found between which the true one should lie. The interval of Integra tian 

was h « 0*01. In the forward recursion from x « 1*00 it was h « 0*05 

in the first instance, and with both potential functions the two bounding 

solutions were of the type shown in figure 5*2, but when h was reduced 

to 0*01 the bounding solutions diverged from each other this deciding 

nothing: consequently another method was investigated.

b) The method. of Pox and Goodwin (1949).

For the numerical solution of the second order differential equation

y" = f(x) y

Pox and Goodwin peasant

£->s*J*o(*)]yo = +| h\i<x)]y-i - f1 -iih2Wx)]y-8

whore & = (- -r^ 5 ♦ isi2p +..••) y_x

in viiicli S' ani S' arc the oi;rth and eighth
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The two potential functions were modified (figure 5*5) so that the 

Lennard-Jones potential was

V (r) e Vt(0*40) for 0<r<0*40 I' Ju
and as defined in equation (5*2) for r^0*40; 

vhile the Bucbingliaia potential was

V_(r) = V3(O*1B) for 0<r<0«lB

and as defined in equation (5*5) for r^0*13.

Analytic integration was possible to X = 0*40 and O*1F respectively while 

the vis. at x « 0*41 and 0*19 were found from a Taylor series 

expansion. Therefrom step by step integration was effected using equation 

(5*9) in which h » 0*01 and continued until the gradient became virtually 

constant. In both cases the solutions wore typified by figure 5* la. With 

starting values from the previous iteration, tiie integration was repeated 

from x » 1 with h » 0*05. The solutions for both potentials agreed with 

the he 0*01 values to within 0e3# thus verifying the consistency of
ithe method. It is seen that this method is to be preferred to the first 

one, being more accurate In that it neglects only the sixth and higher 

differences which are snail here. T ethod a) on the other hand assumes 

the derivatives of order higher than three to be aero which witli the func$iac 

in question is certainly not so.

5’8 The Solutjgu

In the solution of tiie Schrodinger equation we shall use equation (5. 

If as in tiiis case the sixth and liigher order differences are very small, we
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can justifiably put Z\= 0; arranging equation (5*9) to nake it suitable 

for the automatic macliine
2 * 4 »2 w«>f1 ” 12 h fn^x^}yn
1 - il h8w«> L1 - TS h‘f-n-1^ yn-l

1

‘L1 - h2fn-l(x>] yn»2 —(5,10)

The tiiree auxiliary functions are defined thus

............... t8*11)

Bn » yn(i ♦ wn) . ............... (8* 12)

» (2 - 10^} / (1 ♦ ............... (8’1S)

The recurrence relation (5*14) follows immediately from equation (5*10)

*n ’ %-iVx - H»-S .............. <8‘u>
Finally,

yn • ^»/(1 + vw-

As was cursorily mentioned in the previous sec tion, the form of the 

potential, V(r « 0) a 1 oo, makes it impossible to integrate step by 

step wise from z • 0. ^l-creupan as in the test case it was assumed constan 

but very large for all z less than a specific value U according to the 

potential form used. In this constant region the solution is

y a A 02e>(Jv z) ♦ A’ exp(*JV z) «.«..........(5*15)

But y b 0 at x as 0, therefore A « - A*.
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The constant potential ms chosen so large that the negative 

exponential was small enough to he neglected compared with the positive 

exponential. Since the Schrhdinger equation is homogeneous the value of 

A merely deter ines the scale of the solution and it shall he chosen here 

for numerical convenience. T aving found y from equation (5*15)t y^ was 

obtained hy using a Taylor expansion and equation (5*X5)f neglecting the 

second tern.

yd ■ y ♦hy' + K/SJ y" + h8/». j£* + ....vo o o o
oo n

■ h) yo /*^ ■ y„ oap(hjv) ............(5«ifi)
fee ° °

The preparation of the auzdli&ry functions and the programming 

details will he found in Appendix H*4.

In the first instance equations (5*4) and (h*6) were solved on the 

machine. Several restrictions prevented starting the solution at very 

small X. The programme was not able to handle negative values of (2 - 10w 

and (l + v.rr) and thi.3 meant that the least x was 0*52 for the Buckingham 

and 0*62 for the Lennard-Jones potential. The restricted counter capacity 

of the machine enabled the calculations to he done throughout to only eight 

figures. Commencing resnectivcly at x ® 0*52 and 0*62 the gradient of 

the solution was so steep that although y^ was chosen to he unity in the 

lowest digital position the subsequent y,* very quickly overflowed the 

counter. The starting value of x was gradually increased until the y^ 

could just he contained In the counter. Even this was not wholly
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satisfactory smaller yo the less accurate was y^. A compromise 

is suggested in v.tiich the yo is not too small and the x^ is not too 

large. Several yr and :: were talsen for both potentials.

a) Leonard-Jones potential:

With x& « 0*70 it ms found that the counter overflowed; 

but starting at Xq « 0*75 and xQ = 0*8C the solution retained within the 

counter capacity. The initial values were respectively

y' = 0 *0000100v o
y a OQ0C0304A.
a = 3-1S35856

o
Rx « 0*0000278

yQ » 0*0010000 

y a 0*0020442

= 2*4445532

R s 0*0009574 o
Rx « 0*0019712

In both, cases the solutions were of the type as shown in figure 5*2 

with the maximum around x » 1* 12 and the intersection of the x axis 

between x = 1*26 and x « 1*27. The conditions for a stationary state

were therefore fulfilled.

b) Buckingham potential:

Vfith a 0*G0 the counter overflowed but from xQ » 0*61 

and Xj « 0*70 the solutions did not exceed the capacity of the counter. 

The starting values were respectively
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y0 S3 0*0000100 y0 S3 0*0010000

n as 0*0000227 as 0*0022050

S3 5*5291950 *i S£ 2*5518492

«0 X= 0*0000098 Rc S3 0*0009480

»1 S3 0*0000294 R1 s 0*0021061

In both cases the solutions ware of the form shown in figure 5*2 

with the around x » 1*01 and the intersection of the x axis

between x « 1*12 and 1*15. The conditions for a stationary state v/ere

therefore fulfilled.

J^3~oZgy. .<&. £5SaS*
The method of estimating the energy of the bound state was one of

trial and error, but this roved to be quite sufficient for the nonce*

Squation(5*l) nor reads

■ ; 5^ • D™ - *'

which in non-uibiiensiona?. atorio units is 

d2y/a^ - I, [Vj(x) - E~j y

nhere L n 1*034456 7 106 atomic units

and aSy/ta2 - B [vB(x) - Ej y

v.here 3 . 1*2' 3279 ' ID® atonic units

X'po ■ 0 ..........(S’ 17)

■ 0 .......... (5*13)

( LennaxtU-Jones cesc)

e 0 ..........(5*19)

(Buckxo^iap case)

The actual function of E as read into the machine however was



h2 L 2/12 or h2 B s/l2 and the absolute values of these were increased 

if the previous trial resulted in the form of figure 5*2 and decreased 

if it was similar to figures 5* la or 5* lb. It was found that the nearer 

the true value one approached the more pronounced became the form of 

figure 5* lb. The ultimate ain of course was to get a solution like 

figure 5*4.

Commencing at x « 0*75 the result was h*L 1/12 » 0*0005992 to four 

significant figures, while starting at x • 0*80 to three significant figures 

h2L 1/12 = 0*000595. The difference between the results shows that the energ 

io dependent on where the iteration is started and suggests that the 

assumption of potential constancy w to x = U in figure 5*4 Is too crude. 

The above figures lead to an attractive energy of approximately 0«46 • KT 4 

atomic units.

For the Buckingham potential the agreer^ent was not good between the

results by starting at x « 0*70 and x » 0*C5: for the former

h^B E/12 = 0*00068 and for the latter h£B 1/12 « 0*000764. The .
•4approximate attractive energy is then E « 0*65 x 10 atomic units.

The differences between the two results in either set was not

apparent in the E = 0 solution because the gradient at the intersection 

of the x axis was very steep.

It is concluded then that on the assuxrotion of the rather artificial

potential form (figure 5*5), a bound state does exist at a depth of approx- 
-4 *imtely 0*5 x ID atomic units (0*0015electron volts) with both potentials.
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liscussion.

When we embarked on the project of finding the interatomic 

potential of Neon we did not anticipate the vast amount of numerical wort: 

which it has subsequently incurred.

The quantum mechanical approach is indeed one of no little 

magnitude and tiie leading question is: do the initial crude approximations 

make it wot'thwhile canying through the calculations to the exacting limits 

demanded by the various methods and particularly their constituent

Three main topics are worthy of consideration:

1. The wave function approximation

2. The number of integrals

3. The confutation project

1. The wave function anproxxmation was fully discussed in chapter 2. 

Theoretically it should be possible to obtain a very accurate representation 

of the v/avc function by a sum of Slater tyoe nodeless vwe functions 

provided a sufficient number of terms are taken. However the more terms, 

the greater the task of determining the coefficients and with an eye to the 

integral /ro ;ect.4 tnc fantastically -roc.4 number of integrals t.» be computed

2* The number of integrals: even although the v/ave functions are 

of a very simple form the enormous number of integrals and the just as vast 

field of permutations to be accounted for immediately suggests the question 

of simnli&dng assumptions. These have been considered and have been



rejected, cf. the overlap integral paradox in chapter 5. In some cases of 

the more difficult integrals a selection from the total nuxabei' was 

calculated but no attempt was made to find the residual overlap integral 

pernait&tions (chapter 2)

xa xb P xa xb dt

which consisted of hundreds of terms.

5. The computation project: It is clearly seen that to evaluate 

the integrals a major computation project is inevitable. In order to obtain 

a sufficient number of values of the atomic potential for a graph the project 

is not only major but well nigh prohibitive. Consider finally that all thia 

results from a mere zero order solution of the Schrodinger equation.

Reasonably accurate experimentally deterrnined potentials being 

simple of formulation and easy of access, I consider it inadvisable to 

press this mammoth theoretical project itirther. As it is wo are not even 

able to e:q>loit fully the accuracy of the available computational results.

(^•O* O-* v0»O
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Appendix I.

Units.

As far as possible a unified system of units has been maintained 

throughout the thesis. It is the system of atomic units (hartree, 1927)•

The unit of length

The unit of cliarge

The unit of mass

The unit of action

The unit of energy

a. j the radius of the first Bohr orbit of 

Hydrogen

« hi-/4x‘‘meJ » 0*5295 Angstrom units.
-IDe the electron charge « 4*80.10 E.S.U.
—28m the electron mass » 9*11.10 gm.

« 1*054.10”^ erg secs.

** 2hcR twice the ionisation potential

of the hydrogen atom.

= 27*206 electron volts

= 4*5584 . 10“ " ci’gs.

( R is here the Rydberg constant)

The unit of time 1/^'acF-.
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Ap endix II.

The pro, Ing of CQBputtng i aobtoes.

In the course of the evaluation of the integrals and in solving the 

Schrddinger equation, I.B.M. calculating machines types 602A and 626 were 

employed. The handbooks of those machines, published by I.B.M. Ltd, 

contain full details of their capabilities and modes of operation but an 

independent summary will follow below.

The tyoe CO2A is a purely mechanical relay decimal calculating 

punch while in the type 626 the storage units are read into mechanically 

yet the actual calculating Is effected electronically. • Both machines do 

all the arithmetic operations of addition, subtraction, multiplication and 

division. Numerical information is fed in on punched cards to either the 

storage units (holding about 100 digits) or to the counting devices which 

arc known technically as accumulators liolding in all 40 digits. The 

operation of the machines is actuated by appro priate wiring of the control 

panel. This is a matrix of impulse exits and entries which emit and receive 

resoectively at narticu ar times during the machine cycle. Selectors are 

incorporated which allow alternative paths for instructional impulses. These 

paths are determ ined by the state of the selector which is either 

"transferred" when it has been "picked up" or "normal" when it has been 

"dropped out". Coselectors which appear in batteries of five function 

similarly to the selectors and are used primarily for filtering digits.

On being fed into the machine a card is read by the reading brushes 

whence it is moved to the punch bed where it remains until the red
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norflwnor of programme steps has been carried out, then it is ejected, 

punching of information fron the storage units having been effected if

required. Four main programmes will be explained:

1. Simpson’s Integration Rule.

2. The modified Zeta Functions.

5. The polynomial Function.

4. The Stationary State.

Programmes 1, 2 and 5 were compiled for the G02A while 1 and 4 were 

preoared for the type 626.

II* 1 Simpson* s Integration Rule with multiplication.

a) for the 0O2A machine:

The purpose of the programme was to multiply one factor on primary 

cards with another on secondary cards and to integrate the product by the 

single Simpson’s Integration Pule. She actual, order of computation was 

multiplication of the prisrry factors by the Simpson’s Rule coefficients 

viz. 1-4-2-4-2 etc., and multiplying the product by the secondary 

factors, the total products being accumulated in a counter unit. There was 

provision for the possibility of secondary factors being negative when an X 

punched on 3uch a card actuated a selector so tliat the second product was 

subtracted from instead of added to the product accumulator. The description 

of the actual programming is best done in tabular form, Table 11*1. The 

primary and secondary cards v/ere interleaved and the pack headed by a master 

card containing 0 and X punched in column 1. ( The cards have 80 

columns each with 12 punching locations - 0 to 9, X and 12).
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Table 11*1 Simpson’s Rule Product

Card Program 
step

(deration Storage 1 
(multiplier)

counters 1-2-5-4 
(coupled)

M C EC

P 12

select P 12 R I

R S

primary R C
card

P 1
P 2

select P 1> 2

multiply

R I 1 or4 or 2

secondary 
card R C

P 5
P 4

select P 5,4

multiply

R I secondary
factor

plus or minus
R 0

Table 11*2 Simpson's Rule Product
Card Program 

step
Operation liultiplier counters 1-2-3-4 

( coupled)
M C R C

P 4
pick up P 4

primary R C
card

P 1

P 6

pick up P 1,6

multiply 8 
figures

from (2)

BO to (1)

secondary R C 
card

P 5

P 4

pick up P 5,4

multiply 8 
fi^^ures

from (2) plus from

trailing R C 
card

P 5

pick up P 5

punch, storage 
read in

•

B 0 to (1)

E S
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for machine ty je 602A

counters 7-8
(coupled)

Storage 2 Storage S Storage 7

R 8

R I

plus
R 0

R I primary
factor

R 0
K I ftrcmlT-cJ

R S

R I

R 0
R I

for machine type 626
counters 5-6

(c)upled)
Storage 1 Storage 2

R I S Ui R I S Ui -

plus 1 or 4 
or 2

from*[lj - - —+
primary factor

R 0 to multiplier
R I S U

1

s o a s to [i]

secondary factor
R 0 to imltiplier

R I S U R I S U

from [lj
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The code number zero In eolurii 1 of the secondary cards nicked up a 

selector which determined whether the Timpson's Rule coefficients or the 

secondary factor reached the multiplier. The coefficients 4 and 2 were 

alternated by e other selector which was normal and transferred for altemat 

cards. The initial 1 was taken through the final selector picked up from 

the X on the master card. The alternating selector also arranged which 

programme stea3 wore to he performed. It must be noted that it was assumed 

that the integrand was negligible at the upper end of the range of integrati 

The programmes are tabulated in a code which is explained hereunder:

(x) denotes storage unit x w denotes counter unit x

P

R 0

nro.grarr'.e step

read out

R I

M C

D C

read in

resetB S -

master card

detail card

RC -

cos

read cycle

coselector

R I S U - read in set up (626 only)

After the read cycle the 602A automatically runs tlirough all of it 

12 programme steps in order, unless it has been instructed to omit any or 

all of them, and continues to the read cycle of the next card. The 626 on 

the other liand will perform after the read cycle in numerical order only 

those of the 14 programme steps wiiich have been picked up, before 

proceeding to the read cycle, of the next card. One can add to (plus), 

subtract from (minus), read out of ( R 0 ), or reset to zero (R S) the 

counters which can be used singly or coupled in sequence. Reading out of 

and into storage units on the CO2A can be effected on any cycle, the read
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in (R I) impulse resetting the unit anu inserting the required information* 

It is not so simple with the type 626 since reading into storage units can 

only be done on mechanical or long cycles. The unit must be P. I S U'd on 

a previous electronic cycle. This instruction resets it to zero and orespart 

it to accent the required data on the next mechanical cycle. It is however 

possible to road out of the units on any cycle. 1th the electronic machine 

too, the multiplying and dividing hub chosen de ends on the number of digit! 

in the multiplier or d visor. The physical size of the machine limits the 

number of operations which can be performed on any cycle and it is often 

necessary on larger programmes to choose the sequence of operations 

judiciously that they nay dovetail most efficiently and in the least number 

of steps.

b) for the 62C machine:

The purpose of the programme v/as identical with that for the 602A 

and the scheme is shown in table II* 2. Tho code punchings were slightly 

different and provision vzas made to punch tlic accumulated total on a 

trailing card.

To obtain the actual result of the integration it remains to msultipJ 

the accumulated total by 1^5 where h is the interval of integration.t

II-2 The Modified Zeta Function.

r I = r e_1Xoo(r»5) equation (4*11)

• r e-2r (eR . e-R) for R^r
r • r 1 - e***) for R > r



154

The programs ie was arranged to cope with both ranges of r by

subtracting R for each card from the running argument nAr and using the

negative balance when it existed to select the appropriate quantities. It

was necessary to add F again since the argument n&r was required later

in the programme.
p —2Ar p «»Pc“K, e , e - e , and unity wore read into the respective 

storage units as shown in table 11*5 fron the master card for which only 

programme steps 11 and 12 were performed. That had the effect of clearing 

the counters and inserting unity into the couoled counters 5,6 and 7. The 

computation fell into several sections: steps 1 to 4 were concerned wit!

the generation of the exponential by multiplying in two stages the previous 

value by the initial e’"^r. Since the calculations were carried through 

in thio case to 12 figures and the multiplier capacity is only 8 digits, 

two stage multiplication was necessary. According as there was a negative 

balance or not, steps 5 to 9 by a two stage multiplication gave either

e~R( i • e"2z) or e~"r(eP - e" ).

A final single multiplication using nar as multiplier sufficed to reach 

tiie required function. The final steps 11 and 12 wore preparatory 

operations for the next card. It io clear tliat for the first detail card 

the first two programne steps should be omitted since the first value of th 

exponential would be there already and would therefore merely be multiplied 

by unity. Counters 1,2,5 and 4 were coupled to form a 20 digit 

accumulator in which the significant figures of the 12 by 12 products

were developed. The leading 12 digits were tai .en and rounded off by an
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Table H*5 The Modified Zeta Function

card program
step

operation storage 1
(multiplier)

counters 1-2-5-4
(coupled)

counters 5-6-7
(coupled)

M C R C select P 11> 12

P 11 R 0 R S to (6) R S

P 12 plus 1

D C R C all steps but 
omit P 1>2 for 
first D C.

R I from 
(5) E

P 1 multiply plus

P 2

P 5 multiply

R I from 
(5) t

plus

P 4 R 0 8 S to [fi]
and (5)

minus 1 giving
1 - exn(-2n r)

P 5

P 6

P 7

P 8

multiply

multiply

R I from 
(8)B orl5]t

R I from
(5)L or[5] A

plus (2) or (4) 
to give Tj.

plus (2) or (4) 
to S*™* Ytotal

R 0 teminal 
digits to (1)

R 0 Initial 
digits to (l)

P 9

P UO

Pll

multiply

R I ndr 
from £ 8J

R 0 R S to (7)

plus (7) to 
give I
E 0 E S to (6) R 8

P12 plus 1
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counter 8 storage 2 storage 5 storage 4- storage 5 storage6 storage 7
loft right

R S R I e"K R I e"2Ar RI _ 
eR - e-E

R I 1

RIO

plus r R 0 to
(1)

minus R

R O’to-----
01term

R 0 to 
Winit

R 0 to (1)

R I e_2n
W

r from

plus R

P. 0 to[l] R 0 to M

r o to (i;

R 0 to
(1)

R 0 to(l)

R I I 
from fl]

r I r 
from fl] 
r o r 
to [Xl
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ia^wlae which, before the multiplication, reset the counter to zero and 

added a 5 to the 15th digit position.

Care had to be exercised over the possibility of back circuiting 

in the counter aid storage entries and exits which required, that co selectors 

be used to block certain paths at the troublesome programne steps. In this 

case there was little difficulty with that, cf. sections H*5 and II* 4, 

but co selectors were used to read in the multiplicand to the different 

counter positions as required in the two stage multiplication.

H-5 The PolynorAal Function.

It was required to compute the general polynomial function

e>* (tig + axr + + a4r4 " e^r"' + agr6 + a^r7)

This programme exploited the 602A to the full: so much so that 

the division steps had to be withdrawn ultimately to allow the other steps 

to be spread out, otherwise the machine omitted instructions and performed 

multiplication wrongly at random intervals. The coefficients wore 

limited to homogeneous 5 digit figures and all 8 were read into the 

storage units 2 and 4 with e , At, and unity into storages 5, 6 and 

7 respectively from the master card which v.ns followed by no programme stej

On the subsequent detail cards the calculation fell into five parts. 

1. Programme steps 5,4,5,6.

The exponential was for ied by multiplying in two stages the previous

value from storage 7 by the incremental value from storage 5* the
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counter entry positions for the two stages wre determined by co selectors 

which were first transferred and then nomel for stage 2.

2. Programme steps 7 >8 >9.

The running argument n&r was built up by addition of Ar for 

each card. The former was stored in the right hand component of storage 6 

(6R)> while the latter was in the left hand section (6L). read out

to the coupled counters 5,6>7>8 and to this was added Ar which was also 

read into a other part of the sane counter through a co selector. Both were 

then transferred to their resoective sections of storage unit 6.

5. T-1rogrars2e steps 10 >11.

Theoretically these steps could have been used for the production 

of the factor l/r when it was necessary but as explained earlier this was 

not practical.

4. ^'Togramne stens 12>1>2.

The generation of the polynomial was effected by cycling these three 

steps eight times, adding in a different coefficient a. each time and 

multiplying by r. The cycling was controlled by three selectors operating 

in series such that the first was alternately normal and transferred; the 

second was normal for two cycles and transferred for two cycles etc; while 

the third was normal for four cycles and transferred for the other four. 

These selectors picked up corresponding oosclectors which instructed the 

appropriate storage unit to be read out> (2) or (4)> and selected the 

contents to allow only one to reach the accumulator at a time. Provisior 

was made for both the positive and the alternating positive-negative types
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Table 11*4 The Polynomial Function.

card program operation storage 1
(multiplier)

counters L-2-3-4 
(coupled)

counters 5-C-7-8 
(coupled)step

V 0

D C

R C

R C

omit all 3tep3
using coa 9 
start at P 3,

punch

1 • >
R 0 to (8)

•

P 5 R I from (7L) R 8 R 0 R S to (S)

P 4

P 5

multiply

R I from (7R)

plus (5) thro*
cos ID,11 T

P 6 sultlply plus (5) thro’ 
cos 10.11 N

P 7 R 0 R S to (7) plus from (6R)

P 8

P 9 PI r from [5j

plus 1 thro ’ 
selector

plus from (6L)

R 0 R S to (1),(6) 
cos 8.12 T

P1O divide R 0 to minus from (l) plus (quotient)

Pll R I l/r 
from E 5l

R 0 R S to (1) 
coa 8f12 T

Pll

P 1

P 2

R I 1 on
last cycle
multiply

R I 1 on
last cycle

R 8

plus/niinus^fron
ca

R 0 tofcjthro’ 
cos 5.6.7 T

plus eu from 
(2) or (4)

R 0 R S to (S) 
end Cll

plus for + poly 
-/+• for 4- doIy

P 5 R I from (7L R S R 0 R S to (5)

P 4

P 5

multiply

R I from (7R,

plus (3) thro’ 
cos 10,11 T

P 6 multiply plus (3) thro’
co3 10,11 K

• by a selector if there is a negative balance.



storages storages sto^ stores storage 6 storage 7 storage©
left right left right

E I ®4
to ®7

R I ao
to a5

R Ie~khr
R I
Ar

punch
ntr

R I 1

punch e“-nAr
poly. fh.

R I fr >m
H

S 0 to
W

R 0 to
W -

R 0 to 
(1)

RO tt
(1)

RO to£< 
cool T 

R I i
6r

R 0 to
15]

From f 5] 
nAr

R I froi» fl]

RO tot^
cos 2>5

R I fror.: 
[5]

RO tots]
cos 2,3

R I from
fcj

R 0 to [l]
R 0 to 

(1) R 0 to 
(1)

R 0 to[j]
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of polynomial and even, using the negative balance impulse, for the 

possibility of the function going negative since in its oomplerientaxy form 

erroneous multiplication would result* ihen a counter goes negative an 

impulse is available at the negative balance (NB) hubs. On the addition of 

the last ooeificient aQ the polynorial is complete and therefore the 

final multiplication on step 2 is by unity and not by r. Thia was taken 

account of in the programme.

5. Programme steps 3,4,5,6.

These steps are repeated for the final multiplication of the 

polynomial just generated -and stored in (3) - and the exxmcntial produced 

in the previous actuation of these steps - and stored in (7).

Figure 11*1 shoxvs the v.iring arrangement of the storage and 

counter ezit and entry hubs, and indicates how the co selectors isolate the 

various circuit blocks when required. The exits are laid out, as always, 

on the left hand side while the entries are opposite on the right.

II *4 The Statlonaiy State.

The initial computational problem was the production of the V£(x) 

and V^(x) leading to the f.. (x) ana f^(x)

fL(x) « 476*344 Vjx) - IE « Fj/x) - LB

s 476*544 - l/xG) - LB from equation (5*4)

fB(x) = 109*5597 cap 14*5(1-x) - 2C4*769/xG - BE
equation (5*6)

= Fb(x) - BE
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(%)
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Figure H*1
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where I* and B are constants corresponding to the Leonard-Jones and 

Buckingham potentials respectively.

x6 and xi2 were calculated in the range 0*20< x<3*00 and hy 

a simple operation 476*344(xC - IJ/aA2 was formed and punched out an 

cards at intervals of x » 0*01. FB(x) presented no greater difficulty. 

The type 626 machine used had a limited counter capacity and because of 

this it was necessary to compute from the F(x) the corresponding W(x) 

and punch on the cards 2 - 10'. (x) and 1 ♦ W(x). These detail cards 

were typified by an x punch in column 1$ while a 12 in the same 

column denoted a negative W(x).

When a suitable value of x had been chosen at which to start the 

solution ( i.e. from yQ) Rq, h2L 1/12 or h2B £/l2 and y^

were read into the machine from the master card ond first detail card, see 

table II*5. dn the detail cards’ read cycles the y,^., fron the previous 

calculation and 1 * V*n, 2 - were rean into storage units. Program

steps 1 to 4 T7ex*e concerned with the formation of

R ea R -R n n-1 n-1 n~2

in the coupled counters 1,2 and 3 while rn-t Y7as held, in counters 4,5,6

also coupled. The ’RT storage units oould then be cleared and the new

pair of values K. and R were returned to the storages. By combining

the W with either L E or B E in 3teps 5,6,7 the functions 2 - lOw ** ]
and 1 + w were prepared for the next 3tagc in the programne. Since w 

* n
was negative in the lower and positive in the upper range of V(x) a
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coselector was picked up by the 12 in column 1 of the negative cards 

and in this way added or subtracted the L E or BE as required* The
■1 •v ‘. . . * ■ ' , . ' 4 1 » • *

rather tricky wiring of storage and counter units made it easier in this 

case to read the E product into two separate storages (CL) and (6R) ii 

order that the factor 10 be accounted for without reverting to the use of 

co selectors which were fully occupied in any case. a^ was produced by 

division of 2 - 10vn by 1 + wn in steps 8 and 9, the result being 

stored for use on the next card. A further division on steps 10 and 11 

yielded yp in counters 4,5,6. To give an indication of the curvature 

of the solution (yr„; * yn) v'rhich is proportional to the gradient was 

calculated on step. 12 and 13 and m8 along with yR were read into two 

storages for visual inspection on each card.

The counter capacity being limited the wiring was a trifle 

complicated and necessitated a considerable amount of selecting to avoid 

back cicuits, figure U*2. For instance on step 1, storage 5 exit and 

counter 1,2,5 entry must be Isolated from storage 4,5,6 exit and 

counter 4,5,6 entry by co selectors 1,2,5,4,8 and 9 otherwise the

information being transferred would have become mixed up and quite useless.
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Table H*5 The solution of the second order equation.

card pro tram
1

operation multiplier counters 1^2>S 
(coupled)

counters 4-5-6 
(coupled)steo

MCi R C pickun P14

P14

« C2 R C pickup PIS

PIS minus R 0

D C R C P.U.^tolS R 0 R S to (2) R 0 R S to (1)

P 1 minus Rq from (S) plus R^ from (4)

P 2 multiply 8 IL fror. plus an from (5)
figures (♦) to give Eg

P S

P 4 storage 
read in

R 0 R S to (4) R 0 R S to (5)

P 5 plus 2-10v’ plus

P 6 olua/nrinus* S Erinus/plus* S
from (61) from (6E)

P 7 storage
read in

R 0 R S to (9R) R 0 R S to (9L)

P 8 plus 2-10V

P 9 divide 8 minus I-kt plus quotient to
figures from (9L) R S give a

P10 storage 
read in

plus R, from (4) R 0 R S a to (3)

PH divide 8 minus plus quotient to
figures from (3L) R S give y2

P12 plus y^ from (l)

PIS minus yg to give R ° y2 to [l]

D C R C pick up
yi-y2

R 0 R S R 0 R S to (1)
P 1 to IS (2)

by a selector fror a 12 on negative cards.
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storagel

R I S U

R 0 y, 
tolfl 1 
R I S U

*2

o*:orage2 storages storage 4 storages storage 6

R I S V R I S U r i s n RI SU

Ro *1 al h2LF/12

R I s u

R 0 Ro R 0 R-i
to M to to*

R 0 R. 
to mult.

R 0 a,,
to Cm

R I S U RI S U

R^ from
*to

R^ fron
* w

R 0 X* to hl
and T: to 14]

RI S V

EOS, 
to (if2 ®2

R I s u

*1 ” *2

l*w

R 0 to 
(U

l*r’

storage 9 
loft right

BISD

1+w' 2~lDw'

R 0 to
GH
RI SU

R 0 to
til

2-10w

R 0 to
u

R 0 to (tf
R I S U

2-10w’

r
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