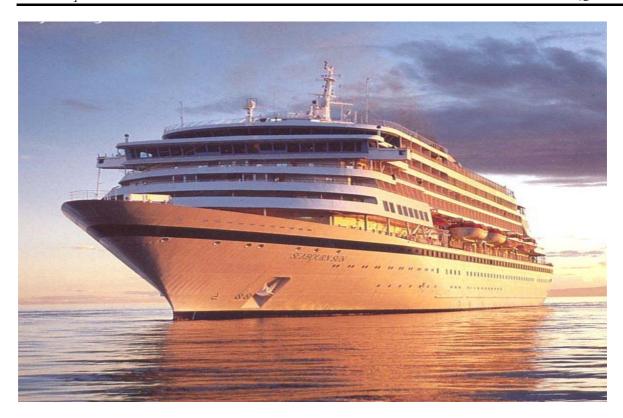


PROYECTO NÚMERO 1491


Buque de Crucero

Memoria explicativa del tipo de buque y servicio al que se destina

Tutor: Arias Rodrigo, Carlos

Autores: Urrutia Nebreda, Juan

Vicario González, Jorge

1 EL ÍNDICE

	1	El índice	. 3
	2	El análisis de la misión y filosofía del proyecto	
		2.1 Las características requeridas del proyecto	. 4
		2.2 La filosofía del proyecto	. 5
	3	Los problemas principales del proyecto	. 6
dato		La metodología y criterios aplicados en el desarrollo del proyecto (Las bases	de

2 EL ANÁLISIS DE LA MISIÓN Y FILOSOFÍA DEL PROYECTO

2.1 LAS CARACTERÍSTICAS REQUERIDAS DEL PROYECTO

Buque de crucero de lujo con capacidad para 250 pasajeros y 125 tripulantes, sin ningún tipo de restricción en sus rutas de navegación.

La distribución del pasaje se ajustará de la siguiente manera:

- 4 suites de lujo dobles.
- 26 camarotes dobles de 25 m².
- 98 camarotes dobles de 14 m².

De tal forma que al menos un 80 % de los mencionados camarotes sean exteriores.

Se dispondrá de salones para 400 personas a 6 m² por persona, como media sobre el total.

La habilitación de tripulación se distribuirá según:

- 3 camarotes para Capitán, Jefe de máquinas y Armador de 40,88 m².
- 12 camarotes sencillos de 14 m².
- 36 camarotes dobles de 14 m².
- 10 camarotes cuádruples de 28 m².

todos ellos con baño incluido.

La clasificación del buque se llevará a cabo según Det Norske Veritas, con los siguientes criterios:

- Cámara desatendida.
- Clean Sea.
- Comfort 1.
- Redundancia RPS.

Cumpliendo además los convenios internacionales para la seguridad de la vida humana en la mar (SOLAS) y de polución marítima (MARPOL).

El buque, que admitirá un peso muerto de 2000 T, asimismo deberá alcanzar una velocidad de 19 kn a plena carga y al 85 % MCR. La autonomía del buque será de 4000 nm al 85 % MCR y con un 20 % de margen de servicio.

2.2 LA FILOSOFÍA DEL PROYECTO

Si estudiamos las características del barco que se dan en el punto anterior y las comparamos con las de otros buques de crucero podemos ver que el barco ante el que nos encontramos es singular en algunos aspectos.

Por un lado el número de pasajeros del barco es bastante reducido, pero no así el espacio destinado a cada pasajero, que al compararlo vemos que está por encima de la media, tanto en tamaño de camarotes como en superficie de espacios públicos.

De estas características se puede deducir que el barco ante el que nos encontramos será de gran lujo, destinado a un pasaje con gran poder adquisitivo. Esto hace que todo el buque deba ser planteado buscando el mayor confort y lujo posible para el pasaje, aunque ello conlleve que el barco no sea todo lo técnicamente eficiente que podría llegar a ser.

Al estar destinado a un público específico, con gran poder adquisitivo y una media de edad alta, los servicios y las diversiones que se van a prestar al pasaje van a diferir de los que se prestan en buques de mayor tamaño y menos exclusividad, en los que los servicios deben estar planteados para contentar a un público más variado. Estas consideraciones hacen que espacios como el casino cobren preponderancia frente a otros, como pueden ser discotecas y gimnasios. También se deberá tener muy en consideración el acceso a todas las zonas del barco destinadas al pasaje de personas con movilidad reducida.

3 LOS PROBLEMAS PRINCIPALES DEL PROYECTO

Las características antes presentadas hacen que nos encontremos ante un barco singular, existiendo en el mundo pocos cruceros con las mismas características. Esto va a hacer que no puedan utilizarse durante el desarrollo del proyecto muchos de los métodos basados en un buque base, aunque sí se podrán realizar regresiones partiendo de una base de datos.

Los principales problemas que puede presentar este barco provienen de los camarotes, aunque ninguno de ellos es imposible de solucionar:

- En todos los buques de cruceros los camarotes van encajados entre cada dos bulárcamas, para poder minimizar la distancia entre la pared del camarote y el costado. Esta limitación en anchura hace que haya que tener cuidado con los camarotes de 25 m², una clara de bulárcamas pequeña hará que estos camarotes resulten muy estrechos y excesivamente largos, impidiendo además un aprovechamiento óptimo del espacio. Para solucionar este problema se va a llevar la clara de bulárcamas hasta un valor límite, ligeramente superior al que técnicamente sería óptimo.
- El tener que encajar en la misma manga dos tamaños diferentes de camarotes va a obligar a jugar con los anchos de pasillo, lo que hace probable la aparición de espacios poco aprovechados o de difícil aprovechamiento.

4 LA METODOLOGÍA Y CRITERIOS APLICADOS EN EL DESARROLLO DEL PROYECTO (LAS BASES DE DATOS)

Como se ha comentado anteriormente la realización del proyecto no se va a realizar sobre la comparación con un buque base. A pesar de todo se considera muy conveniente el contar con una base de datos de buques semejantes al de proyecto para realizar distintas regresiones para obtener unos rangos de valores iniciales que es necesario conocer a priori durante el desarrollo del proyecto.

Al realizar las distintas regresiones, en general, se tomarán los valores límite de los rangos obtenidos que maximicen la comodidad de los pasajeros, aunque esto conlleve que el barco no sea todo lo óptimo técnicamente que podría ser. Este criterio de diseño va a llevar a que los gastos de explotación del barco aumenten, esto se compensará con un alto precio del pasaje. Un precio alto del pasaje no supone un gran inconveniente para este barco, ya que, como ya se ha dicho, está destinado a un público con un gran poder adquisitivo; además un alto precio del pasaje conlleva una mayor exclusividad, lo que hace que el barco resulte más apetecible para el público al que está destinado. Además este barco se encuentra en un segmento en el que existe muy poca competencia, al contrario que otros buques más convencionales en los que la competencia es muy alta.

A continuación se recogen los buques de crucero más parecidos en tamaño al nuestro:

Nombre	Pax	Trip	Motor ppal (kW)	v (kn)	GT (T)	<i>PM</i> (T)	PR (T)	L_{pp} (m)	B (m)	$T\left(\mathbf{m}\right)$	Hélices proa	Potencia eléctrica (kW)
												2 × 1000
Renaissance II	100	65	5040	15,5	3990	523	_	74,9	15,20	3,70	_	2 × 800
												1 × 240
Seabourn Pride	208	150	7280	10.2	9975	780	5940	112 /	19,00	5,00	2 paso	2 × 1200
Seabourn Fride	200	130	7200	19,3	9913	700	3010	3 112,1	19,00	3,00	controlable	1 × 880
Crown Monarch	560	200	15950			1250	7612	130.8	20,62	5.20	1	4 × 648
Clown Wonarch	300	200	13930	_	_	1230	7012	150,6	20,02	3,20	1	1 × 130
Asuka	501	240	22540	21.0	28000	2506	_	160.0	15,95	6 60	2 paso	2 × 1700
Asuka	J0 4	240	23540	21,0	20000	3370	_	100,0	13,73	0,00	controlable	3 × 1700

Buque de Crucero

Nombre	Pax Trip	Motor ppal (kW)	v (kn)	GT (T)	<i>PM</i> (T)	PR (T)	L_{pp} (m)	B (m)	T (m)	Hélices proa	Potencia eléctrica (kW)
Fujimaru	603 145	19900	_		2880	_	145 5	24,00	6.56	1 paso	3 × 1700
Tujillaru	003 143	19900	_	_	2000	_	145,5	24,00	0,50	controlable	2 × 1600
Ninnan Mary	607 160	19630			2050		1440	24.00	6.56	1 paso	3 × 1500
Nippon Maru	607 160	19030	_	_	2950	_	144,9	24,00	6,56	controlable	2 × 1500

PROYECTO NÚMERO 1491

Buque de Crucero

Dimensionamiento

Tutor: Arias Rodrigo, Carlos

Autores: Urrutia Nebreda, Juan

Vicario González, Jorge

1 EL ÍNDICE

1	El í	índice	·	3
2	La	búsqı	ueda de buques similares. Las bases de datos	5
3 Las alte			ición de la configuración, de las dimensiones y de los coeficientes de fo	
	3.1	El p	oredimensionamiento del buque	8
	3.1	1.1	Las superficies unitarias	8
	3.2	La	evaluación de alternativas	11
	3.2	2.1	La definición de alternativas.	11
	3.2	2.2	Los criterios de evaluación de alternativas	13
	3.3	La	manga	15
	3.4	La	eslora	17
	3.5	El p	ountal	18
	3.6	El c	ealado	18
	3.7	El f	rancobordo	19
	3.8	La	potencia	19
	3.9	El p	peso en rosca y el desplazamiento	19
	3.9	9.1	El centro de gravedad del peso en rosca	20
	3.10	E	El peso muerto	20
	3.1	10.1	El pasaje	21
	3.1	10.2	La tripulación	21
	3.1	10.3	La autonomía	22
	3.1	10.4	El combustible	22
	3.1	10.5	El aceite lubricante	23
	3.1	10.6	El agua dulce	23

3.10.7 Los víveres
3.10.8 Los cargos y pertrechos
3.10.9 Los sistemas antiescora
3.10.10 La piscina
3.10.11 Los varios
3.11 El coeficiente de bloque
3.12 El coeficiente de la maestra
3.13 El coeficiente prismático
3.14 El coeficiente de la flotación
4 El estudio sobre viabilidad técnica de la alternativa seleccionada (potencia/velocidad, pesos, volúmenes, francobordo)
4.1 Las condiciones de carga
4.1.1 La condición de plena carga, salida de puerto: (100 % carga, 100 % pasaje, 100 % consumos)
4.2 La compartimentación
4.2.1 Las claras
4.2.2 Los mamparos
5 El dimensionamiento. Breve resumen final
6 La nomenclatura
6.1 Las variables
6.2 Los puntos geométricos
7 La bibliografía

2 LA BÚSQUEDA DE BUQUES SIMILARES. LAS BASES DE DATOS.

En primer lugar se realiza un búsqueda general de todos los buques de crucero construidos en los últimos años, en la que se indican las características principales. En la tabla siguiente se muestran estos datos.

Nombre	Pax	Trip	Motor ppal (kW)	v (kn)	GT(T)	<i>PM</i> (T)	L_{pp} (m)	B (m)	$T(\mathbf{m})$
Renaissance II	100	65	5040	15,5	3990	523	74,9	15,20	3,70
Seabourn Pride	208	150	7280	19,3	9975	780	112,4	19,00	5,00
Crown Monarch	560	200	15950	_	_	1250	130,8	20,62	5,20
Asuka	584	240	23540	21,0	28000	3596	160,0	15,95	6,60
Fujimaru	603	145	19900	_	_	2880	145,5	24,00	6,56
Nippon Maru	607	160	19630	_	_	2950	144,9	24,00	6,56
R-Ones	702	372	19440	20,2	30277	2000	157,9	25,46	5,48
Crown Dinasty	800	320	17350	_	_	1869	141,2	22,42	5,45
Crown Jewel	820	300	17250	_	_	1869	142,5	22,5	5,40
Crystal Harmony	960	480	34560	22,0	48621	5039	205,0	29,60	7,30
Aida	1186	370	21720	21,0	38531	_	170,3	27,60	6,00
Horizon	1354	642	19980	21,4	46811	4300	175,0	29,00	7,20
Sally Albatros	1400	0	17900	_	_	1703	138,5	25,00	5,60
Windward	1500	486	18490	21,0	39000	4800	160,0	28,50	6,80
Statendam	1629	602	34560	20,0	55451	5500	185,0	30,80	7,50
Mistral	1670	494	30600	19,5	47300	4500	187,0	28,80	6,50
Volendam	1824	0	43200	20,2	61000	6150	202,0	32,25	7,80
Crown Princess	1900	650	38880	19,5	70000	5400	204,0	32,25	7,85
Superstar Leo	1964	1125	58800	24,0	76800	6000	235,6	32,20	7,90

Buque	de	Crucero
-------	----	---------

Nombre	Pax	Trip	Motor ppal (kW)	v (kn)	$GT(\mathbf{T})$	PM (T)	L_{pp} (m)	B (m)	$T(\mathbf{m})$
Oriana	1975	760	39750	24,0	69153	7270	224,1	32,20	8,20
Legend of the Seas	2066	734	58500	24,1	69490	4800	221,5	32,00	7,55
Costa Victoria	2250	820	50700	23,0	76000	8000	217,3	32,25	7,60
Aurora	2290	936	58800	24,0	76152	6450	242,6	32,20	7,90
Disney Magic	2400	947	57600	23,2	85000	6175	256,2	32,25	7,70
Grandeur of the Seas	2440	760	50400	22,0	74140	_	236,9	32,20	7,60
Millenium	2449	997	59000	24,0	91000	8500	272,9	32,20	8,00
Fantasy	2604	980	42240	21,0	70367	7000	224,0	31,50	7,75
Elation	2634	980	47520	_	70390	_	224,0	31,50	7,75
Costa Atlántica	2680	902	62370	22,0	85700	7100	260,6	32,20	7,80
Monarch of the Seas	2744	826	21840	22,0	74000	6000	236,0	32,20	7,53
Grand Princess	2992	1109	69120	23,0	109000	6800	242,4	36,00	8,30
Carnival Destiny	3360	1040	63360	22,5	101353	10400	230,0	35,43	8,20
Voyager of the Seas	3840	1180	75600	22,0	137300	_	274,7	38,60	8,60

A continuación se restringe la búsqueda a los buques de tamaño más parecido al de proyecto y se amplían los datos de cada uno de ellos. La nueva tabla con los datos se muestra a continuación:

Nombre	Pax	Trip	Motor ppal (kW)	v (kn)	$GT\left(\mathbf{T}\right)$	<i>PM</i> (T)	PR (T)	L_{pp} (m)	<i>B</i> (m)	T (m)	Hélices proa	Potencia eléctrica (kW)
												2 × 1000
Renaissance II	100	65	5040	15,5	3990	523	_	74,9	15,20	3,70	_	2 × 800
												1 × 240
Cashayun Duida	200	150	7290	10.2	0075	700	5 040	112.4	10.00	5.00	2 paso	2 × 1200
Seabourn Pride	208	130	7280	19,3	9975	780	3640	112,4	19,00	3,00	controlable	1 × 880

DIMENSIONAMIENTO

Nombre	Pax	Trip	Motor ppal (kW)	v (kn)	GT (T)	<i>PM</i> (T)	PR (T)	L_{pp} (m)	B (m)	T (m)	Hélices proa	Potencia eléctrica (kW)
Crown Monarch	560	200	15950			1250	7612	120.9	20,62	5 20	1	4 × 648
Clown Wollarch	300	200	13930	_	_	1230	7012	130,8	20,02	3,20	1	1 × 130
Agulzo	501	240	23540	21.0	28000	2506	_	160.0	15,95	6.60	2 paso	2 × 1700
Asuka	304	240	23340	21,0	28000	3390		100,0	13,73	0,00	controlable	3 × 1700
Evilence	602	1 15	10000			2000		1455	24.00	656	1 paso	3 × 1700
Fujimaru	003	145	19900	_	_	2880	_	143,3	24,00	0,30	controlable	2 × 1600
Niman Mam	607	160	10620			2050		1440	24.00	656	1 paso	3 × 1500
Nippon Maru	607	160	19630	_	_	2950	_	144,9	24,00	6,56	controlable	2 × 1500

3 LA DEFINICIÓN DE LA CONFIGURACIÓN, DE LAS DIMENSIONES Y DE LOS COEFICIENTES DE FORMA. LAS ALTERNATIVAS.

3.1 EL PREDIMENSIONAMIENTO DEL BUQUE

3.1.1 Las superficies unitarias

Tanto las especificaciones del proyecto, en cuanto a zonas públicas para la acomodación del pasaje y la tripulación, como los reglamentos internacionales, en lo relativo a mínimos necesarios para permitir una seguridad adecuada, nos dan un primer punto de partida a la hora de calcular la superficie de cada espacio dentro de la disposición general.

En la siguiente tabla se indican los valores de la superficie unitaria considerada para cada una de las distintas zonas del buque, así como un rango de variación en el que se encuentran la mayoría de buques de esta categoría.

Espacios pasaje	Pax	Sup unit (m ²)	$\begin{array}{c} Sup\ unit\\ considerada(m^2) \end{array}$	Sup real (m ²)
Camarotes pasaje I	97 × 2	14,00	13,99	1357,03
Camarotes pasaje II	24 × 2	25,00	25,08	601,92
Suites I	2×2	_	51,95	103,90
Suites II	2×2	-	77,26	154,52
Suites III	2×2	-	31,49	62,98
Vestíbulo principal	250	_	-	173,87
Vestíbulos secundarios	95	_	_	228,86
Pasillos	_	5 % – 10 % superficie habilitada	-	1466,49
Escaleras	_	_	_	557,29

Espacios pasaje	Pax	Sup unit (m ²)	Sup unit considerada(m²)	Sup real (m ²)
Salón principal	250	1 – 1,5	375,00	524,13
Salón secundario	100	1 – 1,5	150,00	435,26
Comedor	250	1,3-2	500,00	593,13
Café principal	100	2,4	240,00	205,35
Café secundario	25	2	50,00	87,96
Casino	150	2,5	375,00	456,32
Biblioteca y videoteca	15	2,7	40,50	63,92
Gimnasio	20	14	280,00	123,46
Piscina	_	_	_	45,76
Superficie exterior	_	_	_	2383,15
TOTAL				9625,3

Espacios tripulación	Trip	Sup unit (m ²)	Sup unit considerada(m²)	Sup real (m ²)
Camarote Capitán	1	-	20,44	20,44
Oficina Capitán	1	-	20,44	20,44
Camarote Jefe de Máquinas	1	-	20,44	20,44
Oficina Jefe de Máquinas	1	-	20,44	20,44
Camarotes oficiales	3	-	20,44	61,32
Camarotes tripulación I	47	14,00	658,00	631,68
Camarotes tripulación II	12	30,00	360,00	327,6

Espacios tripulación	Trip	Sup unit (m ²)	Sup unit considerada(m²)	Sup real (m ²)
Salón oficiales	42 ¹	2,0-3,0	126,00	159,35
Comedor oficiales	42	1,3 – 2,0	54,60	101,12
Salón / comedor tripulación	83 ²	1,5 × 1,5	186,75	211,13
Sala de reuniones	40	2	80,00	123,44
TOTAL				1697,4

Servicios	Trip	Sup unit (m ²)	Sup unit considerada(m²)	Sup real (m ²)
Hospital	_	_	_	84,50
Cocina pasaje	250	1	250,00	313,16
Cocina tripulación	125	0,7	87,50	313,10
Gambuza pasaje	250	0.8 - 1	212,50	420,07
Gambuza tripulación	125	0.8 - 1	106,25	420,07
Basuras	375	0,3-0,6	150,00	165,84
Lavandería	375	0,3	112,50	130,88
Oficios	5	10	50,00	107,02
Espacios contra incendios	17	5	85,00	99,55
Botes salvavidas	1,5 × 375	-	_	264,00
Puente	_	_	_	141,87
Local grupo de emergencia	. -	15	15	18,17

¹ Oficiales: $\frac{1}{3}125 = 41, \hat{6} \approx 42$

² Tripulación: $\frac{2}{3}125 = 83, \hat{3} \approx 83$

Buque de Crucero

Servicios	Trip	Sup unit (m ²)	Sup unit considerada(m²)	Sup real (m ²)
Local de baterías	_	15	15	18,17
Equipaje	_	_	_	174,13
Local del servomotor	_	_	_	32,00
TOTAL				1969,36

La superficie total de salones asciende a 2920,84 m^2 y la superficie total habilitada a 12736,42 m^2 .

De esta forma se cumplen las condiciones exigidas por el proyecto, según las cuales era necesario disponer de 6 m² de espacios públicos por persona, y en este caso se dispone de algo más de esos 6 m² por persona.

3.2 LA EVALUACIÓN DE ALTERNATIVAS

3.2.1 La definición de alternativas

Siendo las distribuciones más comunes para los buques de pasaje la disposición de tres o cuatro cabinas en la manga, con dos pasillos de acceso tanto en una solución como en otra, vamos a probar estas dos alternativas:

- I) Tres cabinas por manga, con pasillos de 1,65 m de anchura.
- II) Cuatro cabinas por manga, con pasillos de 1,50 m de anchura.

Para cada una de estas dos alternativas vamos a seleccionar diferentes claras de bulárcama (cada una de ellas dividida en cuatro claras de cuaderna):

- a) Clara de bulárcama: 3,0 m.
- b) Clara de bulárcama: 3,3 m.
- c) Clara de bulárcama: 3,5 m.

Por último podemos seleccionar aquellas relaciones eslora / manga que deseemos utilizar:

1) L/B = 5.5.

- 2) L/B = 6.0.
- 3) L/B = 6.5.

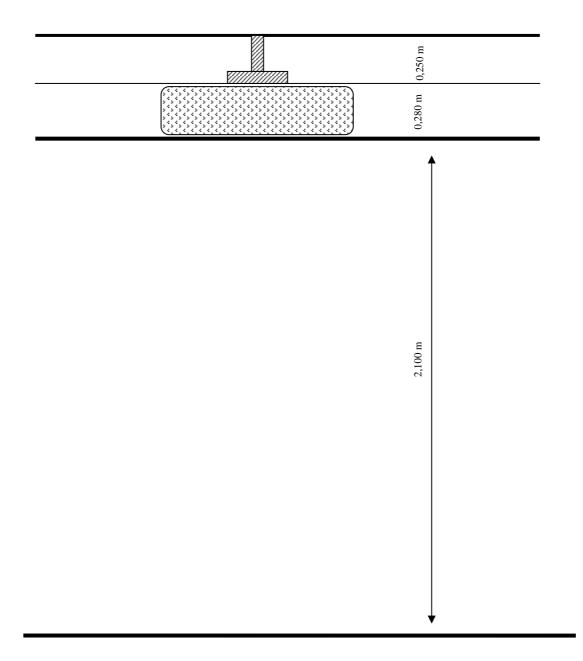
Con estos datos ya elegidos podemos presentar nuestras alternativas:

Alternativa	Clara de bulárcama (m)	Manga cabina (m)	Manga total (m)	Eslora (m)	Área camarotes/ $(L \cdot B)$	Puntal (m)	H/B
I a 1	3,0	4,67	17,3	95,2	1,3	19,4	1,12
I a 2	3,0	4,67	17,3	103,8	1,2	19,1	1,10
I a 3	3,0	4,67	17,3	112,5	1,1	18,8	1,09
I b 1	3,3	4,24	16,0	88,2	1,6	20,0	1,25
I b 2	3,3	4,24	16,0	96,2	1,4	19,7	1,23
I b 3	3,3	4,24	16,0	104,2	1,3	19,4	1,21
I c 1	3,5	4,00	15,3	84,2	1,7	20,5	1,34
I c 2	3,5	4,00	15,3	91,8	1,6	20,1	1,31
I c 3	3,5	4,00	15,3	99,5	1,5	19,8	1,29
II a 1	3,0	4,67	21,7	120,8	0,8	17,9	0,82
II a 2	3,0	4,67	21,7	131,8	0,7	17,7	0,81
II a 3	3,0	4,67	21,7	142,8	0,7	17,6	0,80
II b 1	3,3	4,24	20,0	111,5	0,9	18,3	0,90
II b 2	3,3	4,24	20,0	121,6	0,8	18,1	0,89
II b 3	3,3	4,24	20,0	131,8	0,8	17,9	0,88
II c 1	3,5	4,00	19,0	106,2	1,0	18,6	0,96
II c 2	3,5	4,00	19,0	115,8	0,9	18,4	0,95
II c 3	3,5	4,00	19,0	125,5	0,9	18,2	0,94

3.2.2 Los criterios de evaluación de alternativas

La estabilidad del buque está gobernada por la relación puntal / manga, relación en la que no podemos permitirnos sobrepasar el valor límite de H / B = 1,2 si no queremos ver afectada nuestra estabilidad inicial. De la misma manera tampoco podemos optar por una solución de máxima estabilidad (mínimo de la relación H / B), ya que esto supondría unas aceleraciones transversales sobre el buque de tal intensidad que resultarían molestas tanto para la tripulación como para el pasaje.

Las alternativas c) han sido rechazadas porque una clara de bulárcama de 3,5 m es demasiado grande y ello obligaría a utilizar unas esloras con un escantillón excesivamente alto. De la misma manera se descartan todas las alternativas I) por motivos de estabilidad, ya que la relación H/B es superior o muy próxima al límite de 1,2.


La solución que se adopta en primera aproximación es la alternativa (II b 1), ya que es la que consigue unas menores dimensiones del buque. Asimismo esa clara de bulárcama nos permite una mejor distribución del espacio en los camarotes de pasaje, ya que de lo contrario serían muy estrechos dando sensación de agobio.

3.3 LA CLARA DE BULÁRCAMA

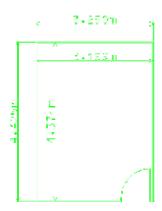
La elección de una clara de bulárcama tan aparentemente alta como la elegida (3,300 m) tiene su razonada justificación como se verá a continuación, a tenor de las siguientes razones:

- La disposición general del buque nos obliga a ubicar los camarotes de forma que ocupen una única clara de bulárcama, ya que de otra forma su disposición interior no sería posible por la existencia de los refuerzos de las bulárcamas.
- Si bien es cierto que un incremento en la clara de bulárcama se va a ver penalizado por unos escantillones mayores en la estructura de los refuerzos secundarios (baos y esloras), esto no representa grandes problemas que no sean solventables.
- La solución por la que se ha optado es tomar una altura de 2,700 m entre cubiertas, de forma que a pesar del tamaño de los refuerzos, dispongamos de una altura libre de al menos 2,100 m. Para calcular el espacio libre que tenemos calcularemos primero todos aquellos espacios perdidos que tenemos:
- Los perfiles utilizados para las esloras, dan el módulo resistente mínimo, alcanzando una altura de 0,25 m. Por debajo de los baos y esloras se dispondrán los conductos de aire acondicionado, tuberías de agua y cableado eléctrico. Son los conductos de aire acondicionado los que más ocupan, y para estos se dotará un espacio de 0,250 m de alto por 0,400 m de ancho, de manera que no haya problemas por superficie de circulación insuficiente. Tanto por encima como por debajo de estos conductos se dejará una holgura de 0,015 m. Por último debemos

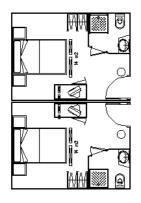
contar con el espacio ocupado tanto por el pavimento sobre el suelo como por el techo, que supondremos en 0,050 m y 0,020 m respectivamente.

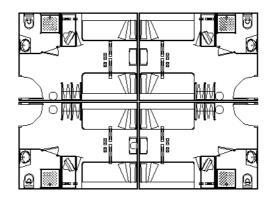
• Con estos datos se cumple la condición de partida, de suponer una clara de bulárcama ligeramente más alta a los que suele ser habitual es buques de este tipo, que se veía perjudicada por los escantillones de los refuerzos. Con la disposición indicada se logra obtener una altura libre de 2,100 m. En las cubiertas de pasaje dedicadas a salones y espacios públicos en general se ha considerado incluso el aumentar la altura entre cubiertas a 3,100 m de forma que en éstas la altura libre sea de 2,500 m.

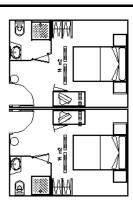
3.4 LA MANGA


El cálculo de la manga nos va a venir condicionado tanto por la estabilidad transversal del buque como por la disposición interior de los espacios, es especial de los camarotes.

La manga será tal que admita en su interior un determinado número de cabinas, sus pasillos correspondientes y los refuerzos exteriores.


Según la solución adoptada en primera aproximación vamos a trabajar con espacios para cabinas de 3,3 m de eslora, ocupada como sigue:


- Espacio de separación entre cabinas: 0,050 m.
- Espesor de cada pared de la cabina: 0,025 m.
- Eslora interior útil de la cabina: 3,200 m.

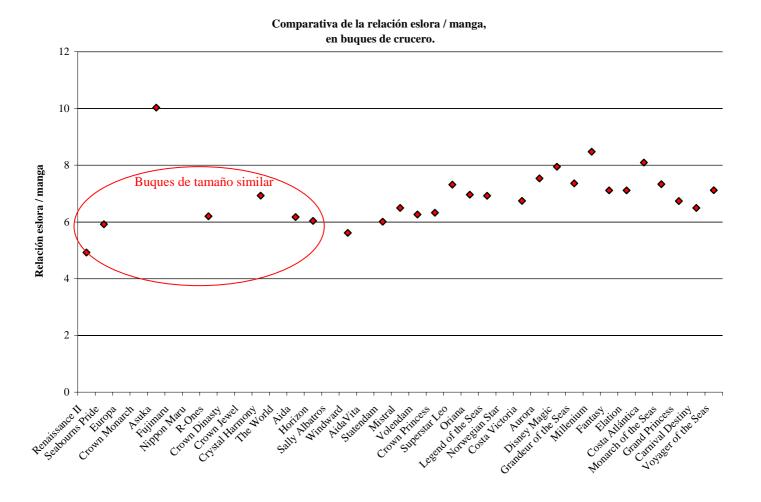

Los camarotes han de tener un espacio útil de 14 m^2 . De esta forma los camarotes tienen una manga interior de 4,374 m., cumpliéndose los requisitos de espacio $(3,200 \text{ m} \times 4,374 \text{ m} = 14,00 \text{ m}^2)$.

Con estos datos ya podemos hacer un cálculo más aproximado de la verdadera dimensión de la manga del buque, sabiendo que lleva cuatro camarotes en la manga, y dos pasillos intermedios para dar acceso, tal y como se muestra en la figura siguiente.

La manga total será el resultado de sumar el espesor de los refuerzos en las dos bandas $(2 \times 0,300 \text{ m})$, la manga exterior de los cuatro camarotes $(4 \times 4,425 \text{ m})$ y el ancho de cada uno de los dos pasillos $(2 \times 2,000 \text{ m})$.

Así: B = 22,350 m.

Los camarotes grandes, con un espacio útil de 25 m², se disponen de forma que su anchura (en la dirección de la eslora del buque) ocupe también una única clara de bulárcama. Así su longitud interior útil será de 7,814 m. En este caso la disposición será tal que la manga estará ocupada por dos camarotes con un único pasillo central de acceso.



Habiendo tomado como clara de bulárcama 3,3 m, se decide dividirla en cuatro claras de cuaderna, cada una de 0,825 m. La distribución de puntales se realizará cada dos claras de bulárcama, estando éstos separados una distancia de 6,6 m.

3.5 LA ESLORA

Si se observa una muestra de buques de crucero, y para cada uno de ellos se calcula su relación eslora / manga podemos ver como este valor está fuertemente centrada en el rango de 5 < L / B < 8, como se aprecia en la siguiente gráfica.

En nuestro caso hemos elegido una alternativa en la que esta relación vale L/B = 5,2. La eslora que calculamos en primera aproximación es de: 22,35 m \times 5,2 = 116,220 m.

Buque de Crucero

Para conseguir que tanto la perpendicular de popa como la perpendicular de proa coincidan sobre una cuaderna del buque, la verdadera eslora entre perpendiculares aceptada es de $L_{pp} = 116,532$ m.

3.6 EL PUNTAL

Con la configuración adoptada anteriormente hemos optado por tener dos cubiertas para alojar al pasaje. La configuración final de nuestro buque será la siguiente:

•	Cubierta 8:	Puente	H = 2.7 m.
•	Cubierta 7:	Exterior	H = 3.1 m.
•	Cubierta 6:	Camarotes pasaje	H = 2.7 m.
•	Cubierta 5:	Camarotes pasaje	H = 2.7 m.
•	Cubierta 4:	Salones	H = 3.1 m.
•	Cubierta 3:	Principal, tripulación	H = 2.7 m.
•	Cubierta 2:	Tripulación	H = 2.7 m.
•	Cubierta 1:	Cámara de máquinas	H = 3.8 m.
•	Cubierta 0:	Doble fondo	H = 1,5 m.

El puntal a la cubierta techo del buque será de H = 25,00 m, si bien es cierto que las dos cubiertas superiores no están completas y podemos calcular un puntal equivalente, H = 22,41 m.

El puntal a la cubierta principal es de H = 8 m.

3.7 EL CALADO

El calado es un dato del buque que fijaremos en virtud de sus necesidades, tanto de estabilidad en las diferentes condiciones de navegación como de acceso a puertos o canales de calado restringido.

Para nuestro caso el calado será T = 5.4 m.

Con este calado la distancia H-T es de: 2,6 m, que se encuentra dentro de los valores admisibles [2,5 m; 2,8 m].

3.8 EL FRANCOBORDO

El francobordo tabular exigido por el Convenio de Líneas de Carga de 1996 para un buque de tipo B, de la eslora de nuestro buque, es igual a 1,723 m.

Las correcciones que se realizan son las siguientes:

• Corrección por superestructuras: -1,068 m

• Corrección por arrufo: 0,122 m

• Total de correcciones: - 0,946 m

El francobordo geométrico después de las correcciones es de 0,777 m, con lo que se comprueba que el buque cumple con todos los requerimientos de francobordo.

3.9 LA POTENCIA

Para obtener un valor de la potencia podemos utilizar el método predictivo de Holtrop y con los datos del buque calculados anteriormente se obtiene una potencia propulsora *EHP* = 5263 kW.

Se supone el rendimiento propulsivo de 0,60. Se toma en la parte baja del rango de variación para tener un margen de seguridad a la hora de dimensionar los tanques de combustible y no tener problemas más adelante al dar la autonomía.

Suponiendo que las hélices tienen un rendimiento propulsivo de 0,60, la potencia total necesaria para propulsión es de 8772 kW al 85 % de la MCR. Con lo que la potencia propulsora nominal asciende a 10320 kW.

3.10 EL PESO EN ROSCA Y EL DESPLAZAMIENTO

Para estimar el peso en rosca del buque podemos seguir varios métodos que nos ayudarán a encajar el valor correcto.

Como primera aproximación a este valor utilizaremos una regresión a partir de una muestra de buques de crucero, en la que se observa que se cumple la relación:

$$0.113 \,\mathrm{T \cdot m^{-3}} < \frac{PR}{L \cdot B \cdot H} < 0.115 \,\mathrm{T \cdot m^{-3}}$$

Tomando un valor medio de 0,114 podemos calcular el peso en rosca por este método:

$$PR = 0.114 \text{ T} \cdot \text{m}^{-3} \cdot L \cdot B \cdot H = 6654 \text{ T}$$

Una vez estimado este primer valor, se puede dar un paso más y calcular un nuevo peso en rosca por un método más preciso, como es el de la silueta. Para ello no basaremos en el buque "Seabourn Pride", cuyo peso en rosca es conocido (5840 T) y sus dimensiones sólo difiere en 4,132 m en eslora y 3,350 m en manga.

Con este método se obtiene un peso en rosca de 6614 T

Con este valor el desplazamiento del buque será:

$$\Delta = PR + PM = 6614 \text{ T} + 2000 \text{ T} = 8614 \text{ T}$$

3.10.1 El centro de gravedad del peso en rosca

El centro de gravedad suele encontrarse en el rango del 43 % al 45 %, normalmente más cerca del 43 % que del 45 %. En nuestro caso supondremos que el centro de gravedad se encuentra al 43 % del puntal equivalente a la cubierta más alta.

$$KG_{PR} = 43 \% \cdot 22,41 \text{ m} = 9,636 \text{ m}.$$

La posición longitudinal del centro de gravedad del peso en rosca también se estima como el 45 % de la eslora entre perpendiculares.

$$XG_{PR} = 45 \% \cdot 116,532 \text{ m} = 52,439 \text{ m}.$$

3.11 EL PESO MUERTO

El peso muerto que se especifica en el proyecto es de 2000 T que se distribuyen según las siguientes partidas:

Concepto	Peso (T)	$KG(\mathbf{m})$	XG (m)
Peso pasaje	25,00	19,050	58,266
Peso tripulación	18,75	12,205	58,266
Combustible	767,88	3,400	68,475
Aceite	60,00	0,750	52,800
Agua dulce	619,37	3,400	79,200
Víveres	112,50	9,350	95,000

URRUTIA NEBREDA, Juan

Buaue	de	Crucero
Dillin	UVU	CIVICIO

Concepto	Peso (T)	<i>KG</i> (m)	$XG(\mathbf{m})$
Cargos y pertrechos	77,50	12,000	58,266
Sistemas antiescora	200,00	3,400	34,687
Piscina	69,00	18,450	70,125
Varios	50,00	12,000	58,266
TOTAL	2000,00	5,000	68,622

3.11.1 El pasaje

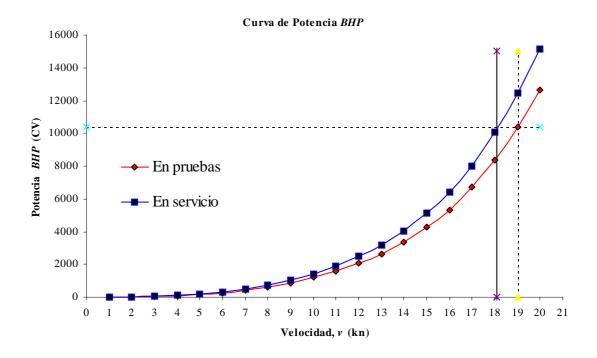
Se supone un peso unitario de 100 kg por pasajero. El pasaje se distribuye uniformemente a lo largo de toda la eslora entre las cubiertas 4 a 7. El centro de gravedad de la persona se considera un metro por encima del suelo.

$$KG = \frac{(H_7 + 1) + (H_4 + 1)}{2} = 19,050 \text{ m}$$

$$XG = \frac{L_{pp}}{2} = 58,266 \text{ m}$$

3.11.2 La tripulación

Se supone un peso unitario de 150 kg por tripulante. La tripulación se distribuye uniformemente a lo largo de toda la eslora entre las cubiertas 1 a 7. El centro de gravedad de la persona se considera un metro por encima del suelo.


$$KG = \frac{H_{equiv}}{2} + 1 \,\mathrm{m} = 12,205 \,\mathrm{m}$$

$$XG = \frac{L_{pp}}{2} = 58,266 \text{ m}$$

3.11.3 La autonomía

La velocidad de pruebas requerida del buque es de 19 nudos. Para calcular la velocidad de servicio tomamos un margen de servicio del 20 % en la potencia. Las curvas de potencia en pruebas y en servicio se pueden observar en la gráfica siguiente.

Conocida la curva de potencia de servicio y la potencia que tenemos, podemos conocer la velocidad de servicio, que resulta ser de 18,1 nudos.

Los requerimientos del proyecto exigen una autonomía de 4000 nm, lo que navegando en servicio a una velocidad de 18,1 nudos implica una duración del viaje de:

$$t = \frac{4000 \,\mathrm{nm}}{18.1 \,\mathrm{kn}} = 210,5 \,\mathrm{h}$$

3.11.4 El combustible

Estimamos un consumo específico de 0,180 kg·kW⁻¹·h⁻¹. Aplicando un margen de exigencia del 10 % el consumo total de combustible es:

$$Comb = 0.180 \text{ kg} \cdot \text{kW}^{-1} \cdot \text{h}^{-1} \cdot (85 \% 10320 \text{ kW}) \cdot 1.75 \cdot 210.5 \text{ h} \cdot 1.10 = 767.87 \text{ T}$$

Al tener que cumplir las condiciones de Clean Sea, los tanques de combustible no pueden situarse directamente sobre el fondo. Por esta razón irán colocados sobre la cubierta 1.

$$KG = \frac{(H_1 + H_2)}{2} = 3,400 \text{ m}.$$

3.11.5 El aceite lubricante

Las necesidades de aceite lubricante se estiman en 60 T, que se alojarán en dos tanques situados en el doble fondo del buque.

$$KG = \frac{H_1}{2} = 0,750 \text{ m}.$$

3.11.6 El agua dulce

A bordo del buque únicamente es necesario llevar tanques de agua dulce con una capacidad equivalente al consumo de dos días, ya que el resto del mismo se genera a bordo.

Si suponemos un consumo unitario de 500 l·per⁻¹·día⁻¹, necesitaremos llevar un mínimo de 375 T de agua dulce.

La posición del centro de gravedad del agua dulce depende de la disposición de los tanques, que deberán ir instalados en isla.

Para completar las 2000 T de peso muerto se añaden 244,37 T de agua dulce.

3.11.7 Los víveres

Se considera un peso de 300 kg por persona, que irán almacenados en la gambuza, sobre la cubierta 3.

$$KG = \frac{(H_3 + H_4)}{2} = 9,350 \text{ m}.$$

3.11.8 Los cargos y pertrechos

Se estima su peso en 40 T que irán repartidas a lo largo de todo el buque, por lo que su altura del centro de gravedad será:

$$KG = \frac{H_{equiv}}{2} + 0.8 = 12,000 \text{ m}$$

El 0,8 que se suma corresponde a la altura del centro de gravedad de los cargos y pertrechos respecto al suelo.

3.11.9 Los sistemas antiescora

Se supondrá que tienen un peso de 200 T e irán situados entre las cubiertas 1 y 2.

$$KG = \frac{(H_1 + H_2)}{2} = 3,400 \text{ m}$$

3.11.10La piscina

La piscina tendrá una profundidad media 1,5 m y una superficie de 45,76 m², por lo que su peso será de 69 T, estando su superficie al nivel de la cubierta 7.

$$KG = H_7 - \frac{1.5 \text{ m}}{2} = 18,450 \text{ m}$$

3.11.11Los varios

Se estima en 50 T e irán repartidos a lo largo de todo el buque como los cargos y pertrechos.

3.12 EL COEFICIENTE DE BLOQUE

Conocidos el desplazamiento del buque y sus dimensiones principales se puede calcular el coeficiente de bloque del barco.

$$CB = \frac{\Delta}{1,025 \cdot L_{pp} \cdot B \cdot T} = 0,598$$

Para estimar la validez del valor calculado existen diversas formulaciones empíricas para aproximar el coeficiente de bloque hidrodinámicamente ideal, y se considera que la sugerida por R.L. Towsin es la más idónea para este tipo de buque.

$$CB = 0.7 + \frac{1}{8} \arctan \left[25(0.23 - FN) \right]$$

El número de Froude que tenemos es:

$$FN = \frac{19 \,\text{kn} \cdot 0,51445 \,\text{m} \cdot \text{s}^{-1} \cdot \text{kn}^{-1}}{\sqrt{116,532 \,\text{m} \cdot 9,8 \,\text{m} \cdot \text{s}^{-2}}} = 0,289$$

Así obtenemos un coeficiente de bloque CB = 0.578

Se observa que el coeficiente de bloque del barco es ligeramente mayor al que sería óptimo hidrodinámicamente.

3.13 EL COEFICIENTE DE LA MAESTRA

A la hora de determinar el coeficiente de la maestra hay que tener en cuenta tanto criterios de estabilidad, a mayor coeficiente de maestra mayor es la masa de barco situada en la zona central, es decir, donde la manga es máxima, lo que resulta en una mayor estabilidad, como criterios constructivos, ya que el radio de pantoque debe ser tal que sea fácilmente obtenible con las plegadoras existentes.

El coeficiente de la maestra es un valor cuyo rango de variación es bastante estrecho. Como primera aproximación tomaremos el valor obtenido aplicando la fórmula:

$$CM = 1 - 2FN^4$$

con lo que se obtiene un valor de CM = 0.986.

3.14 EL COEFICIENTE PRISMÁTICO

El coeficiente prismático lo calculamos como cociente entre el coeficiente de bloque y el coeficiente de la maestra.

$$CP = \frac{CB}{CM} = \frac{0,598}{0.986} = 0,606$$

3.15 EL COEFICIENTE DE LA FLOTACIÓN

El coeficiente de la flotación tiene una importancia decisiva en la estabilidad inicial del buque. Un aumento del coeficiente de la flotación conlleva un aumento de estabilidad, pero a su vez lleva aparejado un aumento de la resistencia al avance, aunque en segunda derivada, por lo que el aumento de resistencia al avance es menor que el aumento de estabilidad. Por lo tanto el coeficiente de la flotación se debe tomar como un compromiso entre estabilidad y resistencia al avance.

El coeficiente de la flotación lo podemos estimar en CF = 0.8.

Este valor debe ser tal que la estabilidad inicial del buque, tal y como se calcula más adelante sea suficiente. En estos cálculos el coeficiente de la flotación, aunque no aparezca explícitamente, influye en el valor de los coeficientes utilizados.

4 EL ESTUDIO SOBRE VIABILIDAD TÉCNICA DE LA ALTERNATIVA SELECCIONADA (POTENCIA / VELOCIDAD, PESOS, VOLÚMENES, FRANCOBORDO).

Debemos comprobar que la alternativa elegida es técnicamente viable, para ello comenzaremos por realizar un estudio de la distribución de pesos en diversas condiciones de carga para comprobar que se cumple con los criterios de estabilidad y francobordo establecidos.

4.1 LAS CONDICIONES DE CARGA

4.1.1 La condición de plena carga, salida de puerto: (100 % carga, 100 % pasaje, 100 % consumos)

En una situación de plena carga la distribución de pesos es la vista en el punto 3.11, que se resume en la siguiente tabla:

Concepto	Peso (T)	<i>KG</i> (m)	XG (m)
Peso pasaje	25,00	19,050	58,266
Peso tripulación	18,75	12,205	58,266
Combustible	767,88	3,400	68,475
Aceite	60,00	0,750	52,800
Agua dulce	619,37	3,400	79,200
Víveres	112,50	9,350	95,000
Cargas y pertrechos	77,50	12,000	58,266
Sistemas antiescora	200,00	3,400	34,687
Piscina	69,00	18,450	70,125

Buque de Crucero

Concepto	Peso (T)	<i>KG</i> (m)	<i>XG</i> (m)
Varios TOTAL	50,00	12,000	58,266
	2000,00	5,000	68,622

El peso en rosca y la posición del centro de gravedad del mismo se calculan en el punto 3.9, como resumen tenemos:

- PR = 6614 T
- $KG_{PR} = 9,636 \text{ m}$
- $XG_{PR} = 52,439$ m (medidos a partir de la perpendicular de popa)

Con estos datos podemos calcular el desplazamiento y la posición del centro de gravedad del barco:

- $\Delta = 8614 \text{ T}$
- $KG_{Buque} = \frac{KG_{PR} \cdot PR + KG_{PM} \cdot PM}{\Lambda} = 8,584 \,\mathrm{m}$

•
$$XG_{Buque} = \frac{XG_{PR} \cdot PR + XG_{PM} \cdot PM}{\Lambda} = 56,111 \text{ m}$$

Una vez calculado esto podemos estimar la estabilidad inicial del barco mediante las fórmulas del Cap. III de los apuntes del Profesor Luna

Estimamos la altura del centro de carena como:

$$KC = C_1 \cdot T = 0.55 \cdot 5.4 = 2.970 \,\mathrm{m}$$

y el valor de *CM* se haya mediante:

$$CM = \frac{C_2 \cdot B^2}{12 \cdot \delta \cdot T} = \frac{0.65 \cdot 22.350^2}{12 \cdot 0.598 \cdot 5.4} = 8.379 \,\mathrm{m}.$$

Ahora se puede estimar la altura metacéntrica inicial como:

$$GM = KM - KG = KC + CM - KG = 2,765 \text{ m}$$

Se puede comprobar que el valor calculado de la altura metacéntrica inicial se mantiene por encima del 10 % de la manga del buque:

$$GM = 2.765 \text{ m} > 2.235 \text{ m} = 10\% B$$

Buque de Crucero

Los coeficientes hidrodinámicos para esta situación de carga son:

FN	CB	CM	CP
0,289	0,598	0,986	0,606

La posición longitudinal del centro de carena, ideal desde el punto de vista hidrodinámico, se estima en función de la fórmula de Troost:

$$XC = (17, 5 \cdot CP - 12, 5) \frac{L_{pp}}{100} = -2,208 \,\mathrm{m}$$

La posición real del centro de carena en el buque debe ser tal que no haya trimado, o que si lo hay sea hacia popa, de tal modo que para tener un margen de error en el cálculo del peso en rosca conviene que el centro de carena se sitúe a proa del centro de gravedad del barco. Al ser la posición del centro de gravedad del buque -2,155 m. respecto a la cuaderna maestra el centro de carena se situará en -0,500 m. Con este valor es de esperar que se presente un trimado hacia popa de 0,83 m, valor que resulta razonable.

4.2 LA COMPARTIMENTACIÓN

4.2.1 Las claras

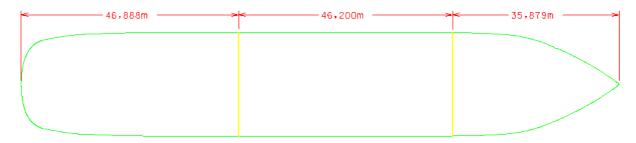
En este punto del proyecto, vamos a hacer una primera aproximación a la compartimentación del buque. Estudiaremos tanto la compartimentación contraincendios como la compartimentación estanca. Para ello hemos de determinar en primer lugar los espaciados entre cuadernas bulárcamas y puntales.

Como se definió después de seleccionar la alternativa actual la clara de bulárcamas es de 3,3 m, dividida en cuatro cuadernas. Los puntales se toman cada dos claras de bulárcama.

• Clara de cuadernas: 0,825 m.

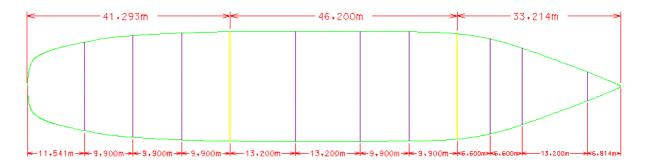
• Clara de bulárcamas: 3,3 m.

• Clara de puntales: 6,6 m.


4.2.2 Los mamparos

A continuación se detalla la configuración típica de la cubierta de pasaje y de la cubierta principal:

4.2.2.1 Compartimentación contra incendios


El espaciado máximo entre mamparos contraincendios, siguiendo el SOLAS (cap. II-2, regla 27), es de 40 metros. Sin embargo, si damos continuidad a los mamparos estanco y contraincendios, dicho espaciado máximo puede llegar hasta los 48 metros, siempre que la superficie sea menor de $1600 \, \text{m}^2$.

4.2.2.2 Compartimentación estanca

Según el SOLAS, la eslora de inundación no será inferior al valor:

$$L_{inundación} \ge 3 \% L_{pp} + 3 \text{ m} = 6,496 \text{ m}.$$

En nuestro caso este valor mínimo es de 6,496 m. Se elige el espaciado entre mamparos estancos de modo que sea múltiplo de la clara de bulárcamas, es decir de 3,3 metros.

Por debajo de la cubierta principal el espaciado de los mamparos estancos será de 9,9 m o de 13,2 m. Esta subdivisión estanca se mantiene hasta la cubierta principal.

Recordando la forma típica de la curva de esloras inundables situamos los mamparos más juntos en las zonas a $\frac{1}{4} \cdot L_{pp}$ y $\frac{3}{4} \cdot L_{pp}$.

Esta compartimentación adoptada será verificada más adelante, en el Cuadernillo 4, mediante una curva de esloras inundables.

4.2.2.3 Mamparo de colisión

Según Det Norske Veritas , la distancia entre la perpendicular de proa y el mamparo de colisión debe estar entre el 5 % L_{pp} y el 5 % L_{pp} + 3 m (entre 5,827 m y 8,827 m). En nuestro caso se encuentra a 6,807 m.

4.2.2.4 Medios de evacuación

Para efectuar la evacuación del buque se embarcará en los botes en la cubierta 5. Para facilitar el acceso a la zona de embarque, colocamos cuatro troncos verticales de escape, de los cuales dos de ellos dan directamente a la cubierta 5 con salida a botes y los otros dos dan a la cubierta de intemperie desde la que se accede a la zona de embarque de botes.

Por debajo de la cubierta principal cada uno de los compartimentos estancos tiene dos medios de escape; uno en horizontal, a través de una puerta estanca que comunica con la zona contigua, y uno en vertical con una escalera que da a un pasillo protegido que conduce a los troncos de evacuación principales.

5 EL DIMENSIONAMIENTO. BREVE RESUMEN FINAL.

El buque escogido posee las siguientes características principales:

Magnitud	Valor	Unidades
L_{pp}	116,532	M
В	22,350	M
T	5,400	M
H_{cp}	8,000	M
H_{equiv}	22,410	M
PR	6614	T
Δ	8614	T
СВ	0,598	
CM	0,983	
CF	0,800	
CP	0,606	
KM	11,349	M
X_{CC}	-0,500	M
Pax	250	
$V_{pruebas}$	19	kn
Pot	10320	kW
Nº de camarote Pax	125	
Tripulación	125	
N° cam. Trip.	55	

6 LA NOMENCLATURA

La nomenclatura que se ha empleado en este documento es la siguiente:

6.1 LAS VARIABLES

• L Eslora.

• L_{pp} Eslora entre perpendiculares.

• *B* Manga.

• *T* Calado.

• *H* Puntal.

• H_{cp} Puntal a la cubierta principal.

• H_t Puntal a la cubierta techo.

• H_{equiv} Puntal equivalente.

• H_i Puntal a la cubierta i-ésima.

• *FB* Francobordo.

• $CB \equiv \delta$ Coeficiente de bloque.

• $CM \equiv \beta$ Coeficiente de la maestra.

• $CF \equiv \alpha$ Coeficiente de la flotación.

• $CP \equiv \phi$ Coeficiente prismático.

• *Pax* Número de pasajeros.

• *Trip* Número de tripulantes.

• *Per* Número de personas.

• *v* Velocidad.

• *GT* Arqueo bruto.

Buque o	de Ci	rucero
---------	-------	--------

• <i>PM</i>	Peso muerto
• <i>PR</i>	Peso en rosca.
• Δ	Desplazamiento.
• <i>V</i>	Volumen desplazado.
• Pot	Potencia del motor principal.
• t	Autonomía.
• <i>XG</i>	Abscisa del centro de gravedad.
• <i>KG</i>	Ordenada del centro de gravedad.
• <i>KC</i>	Ordenada del centro de carena.
• <i>CM</i>	Radio metacéntrico transversal.
• <i>KM</i>	Ordenada del metacentro transversal.

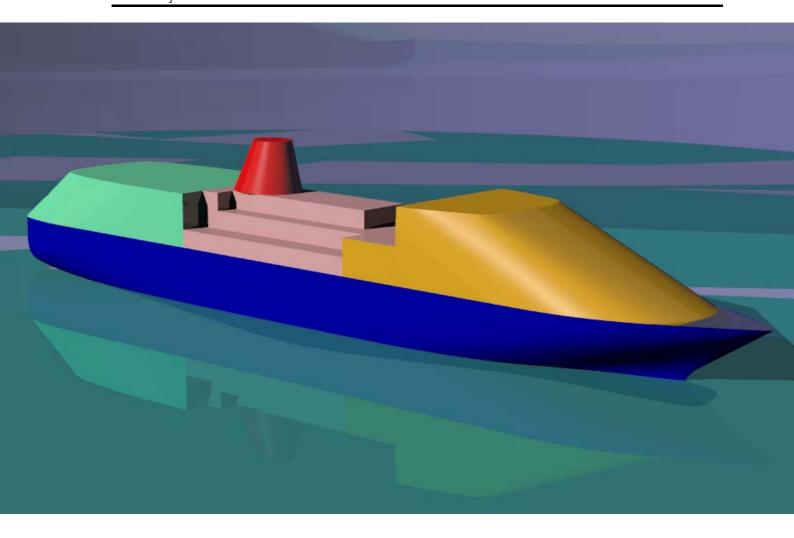
6.2 LOS PUNTOS GEOMÉTRICOS

- K Punto base.
- G Centro de gravedad.
- M Metacentro transversal.

7 LA BIBLIOGRAFÍA

- ALVARIÑO, R., AZPÍROZ, J.J., MEIZOSO, M. «El proyecto básico del buque mercante». F.E.I.N. C.O.I.N. 1997.
- LUNA, A. «Apuntes de proyectos ».
- MEIZOSO, M. «Apuntes de proyectos».
- «Convenio sobre la seguridad de la vida humana en la mar». I.M.O.
- *«Hansa n° 3/4»* 1989.
- «Significant Ships»
- «Ingeniería Naval»

PROYECTO NÚMERO 1491


Buque de Crucero

Formas

Tutor: Arias Rodrigo, Carlos

Autores: Urrutia Nebreda, Juan

Vicario González, Jorge

1 EL ÍNDICE

1	El í	ndice	. 3
2	El a	nálisis previo de la calidad de las formas base adoptadas	. 5
3	Las	dimensiones y los coeficientes de formas	. 6
	3.1	La eslora	. 6
	3.2	La manga	. 7
	3.3	El calado	. 7
	3.4	El coeficiente de bloque	. 7
	3.5	El coeficiente de la maestra	. 7
	3.6	El coeficiente prismático	. 8
	3.7	El coeficiente de la flotación	. 9
	3.8	La posición longitudinal del centro de carena	. 9
4	Los	perfiles de proa y popa	10
	4.1	Las consideraciones sobre el perfil de proa	10
	4.2	Los parámetros del bulbo	10
	4.2	.1 La selección del tipo de bulbo	11
	4.3	Las consideraciones sobre el perfil de popa	12
5	Lav	viabilidad de las formas	14
	5.1	La obra viva y la obra muerta	14
	5.2	El espacio de máquinas	15
	5.3	La altura del cuarto del servomotor	15
	5.4	La posición de los ejes y las hélices	15
	5.5	La longitud de los ejes de cola	15
6	La	creación o derivación de formas	17
7	La	curva adimensional, normalizada, de áreas seccionales	18

Buque de C	rucero	Formas
8 El pla	no de formas	19
9 Las fo	ormas. Breve resumen final	20
10 La	nomenclatura	21
10.1	Las variables	21
11 La	bibliografía	23
12 El a	anexo	24
12.1	La cartilla de trazado	24
12.2	La curva de áreas	27
12.3	El plano de formas	28

2 EL ANÁLISIS PREVIO DE LA CALIDAD DE LAS FORMAS BASE ADOPTADAS

El proyecto de formas de un buque pretende conseguir, los siguientes objetivos:

- Disminuir la resistencia al avance del barco y por lo tanto disminuir en la medida de lo posible la potencia necesaria de propulsión.
- Conseguir una estabilidad adecuada, a efectos de que el buque sea cómodo para el pasaje y la tripulación, y que cumpla los reglamentos de estabilidad intacta y después de averías.
- Conseguir que el flujo en popa sea lo menos turbulento posible, con una buena distribución de velocidades en el disco de la hélice, y que en proa el bulbo funcione de forma que la resistencia por formación de olas sea la menor posible.

Para conseguir todo esto se utilizan dos métodos:

- Basarse en la experiencia de buques anteriores similares al de proyecto cuyo comportamiento hidrodinámico haya sido estudiado con resultados favorables.
- Ensayar la carena en un canal de experiencias hidrodinámicas.

En la práctica, el proyecto de formas se realiza utilizando ambos métodos conjuntamente, pero dada la dificultad de disponer del estudio en canal, en nuestro caso el proyecto de formas se basará únicamente en las formas de buques similares.

El diseño de las formas debe cubrir también otro factor importante como es el de dar cabida en su interior a todos los espacios del buque. Especialmente tendremos problemas con el espacio de la cámara de máquinas y ciertos condicionantes geométricos para garantizar la posición correcta de las hélices y timón.

3 LAS DIMENSIONES Y LOS COEFICIENTES DE FORMAS

A continuación se detallan las dimensiones principales que son necesarias para el cálculo y realización del plano de formas. Estos datos que aquí se tratan ya han sido obtenidos como primera aproximación durante el proceso de dimensionamiento. Posteriormente al cálculo de los parámetros de las formas, se comprobará que éstos son los adecuados desde un punto de vista hidrodinámico.

3.1 LA ESLORA

Durante el proceso de dimensionamiento se ha partido de la eslora calculada durante el predimensionamiento para obtener finalmente una eslora entre perpendiculares de:

$$L_{pp} = 116,532 \text{ m}$$

También son de destacar los valores que se han obtenido, durante el desarrollo de las formas, para la eslora en la flotación, $L_{flot} = 123,225$ m, y la eslora máxima del buque, $L_{máx} = 139,132$ m.

La influencia de la eslora sobre la hidrodinámica de la carena es muy grande debido a:

- La resistencia viscosa aumenta con la eslora, en la medida que lo hace la superficie mojada.
- La resistencia por formación de olas está intimamente relacionada con el número de Froude, y éstos disminuyen al crecer la eslora.
- Con esto se puede concluir que existe una eslora para la cual la resistencia total es mínima.

La considerablemente alta velocidad de proyecto del buque nos hace irnos a valores del número de Froude por encima de los que sería recomendable, y por tanto en la resistencia por formación de olas, que es la componente predominante en la resistencia total. La solución que se plantea es reducir el número de Froude a costa de aumentar la eslora respecto a buques de iguales características pero menor velocidad.

3.2 LA MANGA

La manga final que se ha obtenido coincide con el valor que ya se calculó como predimensionamiento, siendo:

$$B = 22,350 \text{ m}$$

Este dato se ha mantenido constante por la imposibilidad de reducir la manga, ya que es la manga mínima que permite la disposición de las cabinas. Tampoco se ha aumentado porque esto implicaría un aumento de la resistencia al avance, innecesario ya que con esta manga se cumplen las necesidades de estabilidad.

3.3 EL CALADO

Este valor quedó fijado durante el proceso de dimensionamiento en 5,400 m. Los buques de crucero siempre tienden a tener calados bajos debido a su pequeño peso muerto y a los condicionantes de entrada a puerto.

$$T = 5,400 \text{ m}$$

3.4 EL COEFICIENTE DE BLOQUE

El coeficiente de bloque de un buque se define como:

$$CB = \frac{\Delta}{1,025 \cdot L \cdot B \cdot T}$$

El valor del coeficiente de bloque calculado en el dimensionamiento fue 0,598, calculado utilizando la eslora entre perpendiculares. Después de realizado el diseño de las formas se ha obtenido un coeficiente de bloque final de:

$$CB = 0.598.$$

3.5 EL COEFICIENTE DE LA MAESTRA

El coeficiente de la maestra se define como:

$$CM = \frac{A_M}{B \cdot T}$$

El valor obtenido del coeficiente de la maestra después del diseño de las formas es de 0,981, valor que es muy similar al estimado en el predimensionamiento, que era 0,983.

$$CM = 0.981$$

Los criterios que se han seguido a la hora de adoptar este valor del coeficiente de la maestra han sido tanto la estabilidad inicial como la disminución del radio de pantoque para facilitar el proceso constructivo del buque.

Este valor resulta dentro de los límites adecuados, puesto que a medida que el coeficiente de bloque decrece, la longitud del cuerpo cilíndrico disminuye, y en ocasiones puede ser necesario reducir también el coeficiente de la maestra para evitar que las líneas de agua inferiores posean hombros muy pronunciados. En este caso, como se podrá comprobar más adelante, este hecho no se produce, y por tanto se puede tomar como válido el valor de *CM* obtenido.

3.6 EL COEFICIENTE PRISMÁTICO

El coeficiente prismático define el reparto volumétrico de la carena en la eslora de forma que al aumentar aumenta la uniformidad del volumen ocupado en la eslora. Así se define el coeficiente prismático como:

$$CP = \frac{CB}{CM}$$

La mayor influencia del coeficiente prismático es sobre la resistencia al avance del buque, ya que:

- Un aumento del coeficiente prismático supone unas formas más llenas y por lo tanto, un aumento en la resistencia friccional.
- Dicho aumento disminuye la resistencia por formación de olas.

El valor obtenido del coeficiente prismático después del diseño de las formas es de 0,610, valor bastante próximo al estimado en el dimensionamiento inicial (0,606).

$$CP = 0.610$$

3.7 EL COEFICIENTE DE LA FLOTACIÓN

El coeficiente de la flotación se define como:

$$CF = \frac{A_{flot}}{L \cdot B}$$

El valor del coeficiente de la flotación estimado en el dimensionamiento fue de 0,800, mientras que tras la fase de diseño se ha alcanzado un valor de CF = 0,825. En buques con formas finas, el valor de CF depende en gran medida del momento de inercia que se debe alcanzar en la flotación para que la estabilidad resulte satisfactoria.

$$CF = 0.825$$

Con este valor del coeficiente de la flotación se obtiene un KM = 12,58 m. Este valor es ligeramente superior al obtenido durante el predimensionamiento, que fue de 11,35 m, por lo que se puede esperar que el barco no tenga problemas por falta de estabilidad.

Este valor de *KM* resulta excesivo, por lo que habrá que introducir en el barco medios suficientes para evitar que la estabilidad del buque resulte excesivamente incómoda para el pasaje. Estos medios consistirán en aletas estabilizadoras y tanques pasivos antibalance.

3.8 LA POSICIÓN LONGITUDINAL DEL CENTRO DE CARENA

Este parámetro tiene influencia directa sobre la resistencia al avance del buque, reduciéndose notablemente cuanto más a popa se encuentre, sin embargo, la situación de dicho punto viene condicionada por la situación de trimado del buque, por lo que el punto óptimo viene dado por el compromiso entre estas dos condiciones. El valor obtenido en el diseño de las formas es de 57,955 m a proa de la perpendicular de popa (el valor calculado en el dimensionamiento fue de 57,766 m.

$$XC = 57,955 \text{ m}$$

La posición a popa del centro de carena, condiciona el perfil de la curva de áreas, de forma que esta curva se traslada hacia popa, como se verá más adelante.

La posición del centro de carena está muy influenciada por la posición del centro de gravedad del buque. Para evitar un trimado por proa del barco en el caso de cometerse un error en la estimación de la posición del centro de gravedad del buque en rosca se suele situar a proa del centro de gravedad. En nuestro caso el centro de gravedad del buque se sitúa a 56,111 m a proa de la perpendicular de popa. Con estos datos cabe esperar un ligero trimado del barco hacia popa.

4 LOS PERFILES DE PROA Y POPA

La configuración de los contornos de proa y popa ejerce una gran influencia en la resistencia al avance del buque y constituye una buena condición de contorno para el trazado de las formas.

4.1 LAS CONSIDERACIONES SOBRE EL PERFIL DE PROA

La intersección del perfil de proa con la flotación de proyecto, determina la posición de la perpendicular de proa, por lo que tendremos un primer punto de referencia para construir el perfil definitivo.

Por encima de la flotación de proyecto, el trazado de la roda normalmente debe poseer lanzamiento hacia proa, debiendo ser éste superior al abanico de las secciones transversales, pues de otro modo, las formas producirían la impresión de que el buque está achatado por la proa.

En buques de pasaje se suele tender a proas muy lanzadas, que dan una gran apariencia al barco y actúan como una característica estética para hacer el buque más atractivo al pasaje. También se debe tener en cuenta que el punto más a proa del buque sirve de referencia para el gobierno del barco en las maniobras de aproximación, por lo que conviene que esté más a proa que el bulbo.

4.2 LOS PARÁMETROS DEL BULBO

El contorno de proa por debajo de la flotación de proyecto, está condicionada por la existencia del bulbo, sus dimensiones y su configuración.

Según los datos del Canal de Experiencias Hidrodinámicas de El Pardo (CEHIPAR), el 95 % de los buques que llevan bulbo, se encuentran dentro de los rangos siguientes:

$$5 < \frac{L_{pp}}{R} < 7$$

En nuestro caso, CB es 0,566, y la relación $\frac{L_{pp}}{B}$ es 5,21. Para la elección del tipo de bulbo se calcula el coeficiente de afinamiento, obteniendo:

$$CA = CB \frac{B}{L_{pp}} = 0,109$$

Teniendo en cuenta que se recomienda la no instalación para valores superiores de *CA* superiores a 0,135, se decide sí instalar bulbo a proa.

Tras decidir que se instalará bulbo a proa es necesario tener en cuenta unas consideraciones acerca de éste:

- La conveniencia de la instalación del bulbo resulta de la reducción de la resistencia por formación de olas, pero a cambio no hay que olvidar que aumenta la resistencia de fricción debido al aumento de la superficie mojada.
- La existencia del bulbo implica un aumento en el coste de construcción por la complicación añadida de la estructura así como un aumento del peso en rosca.
- En la condición de plena carga, el bulbo no debe estar muy sumergido, pues su efecto puede llegar a anularse.
- En la condición de lastre, el bulbo nunca debe emerger por completo, pues su efecto sería negativo.

4.2.1 La selección del tipo de bulbo

Para fijar los parámetros más representativos del bulbo, y para su trazado, ha de tenerse muy en cuenta los calados de proa para las diversas condiciones de explotación. En el caso de nuestro buque, no se producen diferencias significativas en el desplazamiento para las distintas condiciones de carga, y por tanto tampoco lo serán las distintas diferencias de calado.

De entre todos los tipos de bulbos existentes (elíptico, gota de agua y peonza) debemos elegir aquel que presente la idoneidad adecuada a nuestro buque de proyecto. Para esta elección se siguen determinados criterios:

- Concentración del volumen del bulbo (parte alta, media o baja).
- Variaciones de calado del buque.
- Comportamiento en mala mar.
- Secciones de proa del buque.

En nuestro caso el buque posee muy pocas variaciones de calado, necesita un buen comportamiento en cualquier estado de la mar y posee unas secciones de proa con formas en V. Teniendo en cuenta esto el bulbo de tipo peonza resulta ser el más adecuado.

La elección de los parámetros del bulbo se realiza de la siguiente forma:

- Altura del bulbo en el extremo más a proa (H_{bulbo}): este valor suele darse en forma adimensional como $h = \frac{H_{bulbo}}{T}$, conviniendo que sea superior al 45 % del calado. En nuestro caso el valor es $H_{bulbo} = 3,724$ m, siendo h = 0,690.
- El área del bulbo en la perpendicular de proa es de 12,32 m², que representa un 10,2 % del área de la cuaderna maestra.
- El centro de gravedad de la superficie del bulbo en la perpendicular de proa se encuentra a 3,140 m sobre la línea de base.
- El coeficiente de Taylor: $t = \frac{L_{pp} \cdot \text{tg}(CA)}{2 \cdot (S_{10} S_{20})} = 0,0588.$

4.3 LAS CONSIDERACIONES SOBRE EL PERFIL DE POPA

El diseño del contorno de popa en buques que no poseen hélice en crujía, suele ser tal que las terminaciones sean esbeltas y suaves, disminuyendo por tanto la resistencia al avance.

Por otra parte, la caída de la bovedilla del codaste debe ser siempre suave, pero no muy plana y con ligeras curvaturas hacia los costados, para evitar así el riesgo de slamming. Por tanto hemos tomado un ángulo de 6.88 ° respecto de la horizontal.

Se ha colocado un quillote en crujía, para conseguir un área de deriva lateral suficientemente grande como para que el buque pueda tener una buena estabilidad en ruta.

El diseño de las formas de popa tiene influencia decisiva en las características del flujo de entrada de agua en la hélice, que debe ser lo más uniforme posible en el disco de la hélice. Habrá que tener en cuenta:

- Condicionantes del flujo que afectan al campo de estelas. En nuestro caso, y por tratarse de un buque con dos líneas de ejes, los ejes se encuentran separados de crujía 3,921 metros, lo que favorece el flujo de agua al disco, esperando por tanto que la estela sea homogénea.
- Posición relativa de hélice y timón. Existen recomendaciones sobre la manera de encajar el contorno de popa en buques dotados de un propulsor en crujía, pero para dos hélices, la sociedad de clasificación sólo recomienda mantener una distancia mínima entre las palas y el casco, y entre las palas y los arbotantes,

pero no dice nada respecto al espacio entre la hélice y el timón. Tomaremos para cada hélice y timón los mismos huelgos que si se tratara de un propulsor único.

5 LA VIABILIDAD DE LAS FORMAS

5.1 LA OBRA VIVA Y LA OBRA MUERTA

La obra viva del buque se ha diseñado de forma que cumpla con todos los condicionantes geométricos calculados en el dimensionamiento, así como tratando de obtener unas formas los más hidrodinámicas posibles a fin de disminuir la resistencia al avance.

La obra muerta se ha considerado como una extensión de las formas de la obra viva, hasta la cubierta 5, manteniéndose asimismo estanca a la intemperie. Por encima de ésta, la obra muerta está formada por una superestructura que se extiende de banda a banda, y cuya eslora disminuye en las cubiertas más altas. De esta forma se han compatibilizado los condicionantes estéticos de la obra muerta con unas formas que no presenten una excesiva superficie de resistencia al viento.

Además de los condicionantes anteriores las formas de la obra viva y la obra muerta deben ser tales que se puedan acomodar en ella todos los espacios definidos durante el predimensionamiento. Estos espacios suman una superficie total de: 12736 m². La suma de la superficie total de las cubiertas 1 a 7 es de: 15515 m². Por lo tanto se comprueba que en las formas adoptadas se puede dar cabida a todos los espacios necesarios.

Es también necesario comprobar dos puntos importantes, la posibilidad de instalar las maquinas principales y auxiliares del barco en los espacios destinados para ellas y la altura libre en la zona de la maquinaria del aparato de gobierno. Ambas comprobaciones se realizan a continuación.

En este punto es necesario hacer una consideración de hasta que cubierta va a ser el buque capaz de ofrecer empuje. Para ello definiremos el punto de inundación progresiva como el punto más bajo a partir del cual se produce la inundación del espacio interior del buque. Con esta definición el buque es estanco hasta la cubierta de francobordo, pero por encima de ésta, la superestructura aún es capaz de resistir la entrada de agua.

El primer punto en el que se produce la inundación se corresponde con el borde inferior de las ventanas situadas en la cubierta número 5. Estas ventanas de las cubiertas ya han dejado de ser estancas a la intemperie y por tanto son un punto para la posible entrada de agua al interior. El punto considerado como de inundación progresiva se encuentra a 14,8 m sobre la línea de base. Dicho punto veremos más delante que se mantiene sobre la superficie del agua hasta que se alcanza una escora de 47,38 °. Visto esto pensaremos que el buque ofrecerá empuje hasta la cubierta número 5.

5.2 EL ESPACIO DE MÁQUINAS

Para el espacio de máquinas se ha reservado la zona central del buque, situada sobre el doble fondo. Se ha elegido esta zona ya que el espacio disponible para las máquinas es mayor que en las secciones más extremas y porque además contribuye a lograr una posición longitudinal del centro de gravedad aceptable.

El espacio de máquinas está dividido en dos compartimentos estancos contiguos a popa de la cuaderna maestra. El espacio para motores principales se encuentra entre las cuadernas 48 y 64; y el espacio para máquinas auxiliares y purificadoras entre las cuadernas 64 y 80.

Este espacio de máquinas se comprueba que es suficiente para alojar todos los equipos necesarios para el buen funcionamiento del buque.

El espacio útil para motores principales es de 1370 m³ y de 1564 m³ para auxiliares.

5.3 LA ALTURA DEL CUARTO DEL SERVOMOTOR

Los cuartos para el servomotor se han situado en la cubierta inmediatamente superior a la cubierta de máquinas. La altura de esta cubierta en la zona en donde se encuentra el cuarto del servomotor es de 2,700 m.

5.4 LA POSICIÓN DE LOS EJES Y LAS HÉLICES

La posición longitudinal de los timones viene determinada por la mecha de estos que coincide con la perpendicular de popa del buque. Las hélices se han colocado a proa de los timones y separados de estos una distancia de 3,000 m.

Al ser la propulsión del buque mediante dos líneas de ejes, éstas se encuentran igualmente separadas de crujía una distancia de 3,916 m.

5.5 LA LONGITUD DE LOS EJES DE COLA

Según Det Norske Veritas la longitud máxima del eje de cola es de 17 m. En nuestro caso, para lograr compaginar una longitud admisible del eje y unas formas de popa limpias que permitan el libre flujo de agua a las hélices se ha optado por inclinar los ejes 3 ° en sentido vertical, manteniéndose en un plano paralelo a crujía. Así los ejes de cola resultantes tienen una longitud de 14,432 m.

El diámetro mínimo de los ejes también viene determinado por esta sociedad de clasificación en función de las revoluciones a las que gira y la potencia transmitida. Este diámetro mínimo es de: $d_p = 0,406\,\mathrm{m}$

6 LA CREACIÓN O DERIVACIÓN DE FORMAS

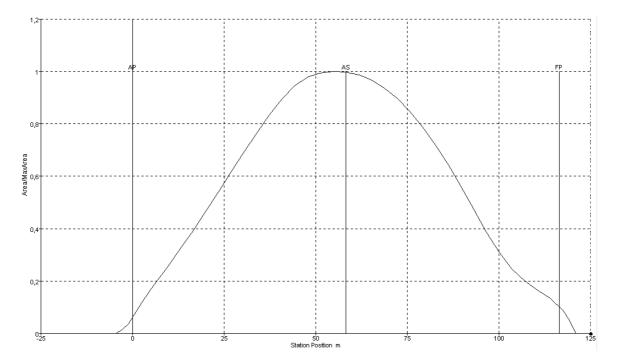
Para la creación de las formas del buque de proyecto se han observado las correspondientes a varios buques de crucero de características muy similares.

La creación se formas de realizó con ayuda del programa Maxsurf, partiendo de una superficie cilíndrica abierta por los extremo que se fue corrigiendo y ajustando mediante la adicción de puntos de control para lograr las características deseadas.

Estas características que deben cumplir las formas son las definidas en el Dimensionamiento inicial del buque:

- Eslora, manga y calado.
- Desplazamiento.
- Posición longitudinal del centro de carena.
- Coeficientes de forma.
- Parámetros del bulbo.

7 LA CURVA NORMALIZADA, SECCIONALES

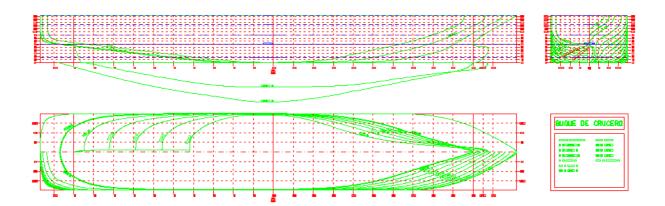

ADIMENSIONAL, DE ÁREAS

La curva de áreas resulta de una enorme importancia para poder juzgar adecuadamente la calidad de unas formas, pues en ellas se define la distribución longitudinal de la obra viva. Dada la importancia que posee esta curva, nosotros tomaremos como punto de partida el diseño de dicha curva, y sobre ella basaremos el trazado de las secciones de forma que se adapten convenientemente, y cuyas líneas de agua sean adecuadas desde el punto de vista hidrodinámico.

Para el trazado de la curva de áreas nos hemos basado en las recomendaciones de Lindblad, y en las curvas de áreas de buques similares.

El aspecto de la curva de áreas en la zona de proa debe ser recto, en aquellos casos como el nuestro en que el número de Froude sea superior a 0,24. En la zona de popa debe ser recta, excepto en el extremo de popa, donde ligeramente toma una forma de "S".

La curva de áreas se presenta adjunta como «plano 2.6.1», habiendo sido obtenida ésta a partir de las formas deducidas mediante el programa "Maxsurf ©Formation Design System". En ella se puede observar que al estar el centro de carena de nuestro barco a popa de la cuaderna maestra, el área de la curva a popa de las maestra, es ligeramente superior al área de la curva a proa de la misma. También se ha intentado mantener los hombros de proa y popa lo más redondeados posibles.



8 EL PLANO DE FORMAS

El plano de formas que se presenta tiene las siguientes características:

- Tres longitudinales, separados de crujía 2,794 m, 5,588 m y, 8,381 m ($\frac{1}{4}$, $\frac{1}{2}$ y $\frac{3}{4}$ de la semimanga respectivamente).
- Quince líneas de agua, estando la línea de agua 6 en la flotación de proyecto, a 5,4 m sobre la línea de base. La separación entre líneas de agua es de 0,9 m.
- Veinticuatro cuadernas, de forma que entre las perpendiculares de proa y popa se han colocado 21 secciones equiespaciadas (0 a 20), con una separación de 5,827 m entre ellas. Además se han dibujado las secciones: -1, 20½ y 21.
- Dos diagonales definidas por:
 - Altura: Línea de Agua 6.
 Extremo a ¹/₂ de la semimanga (64,21 ° con crujía).
 - Altura: Línea de Agua 5.
 Extremo a la manga (51,15 ° con crujía).

Se adjunta copia a escala 1:300 como «plano 2.7.1».

9 LAS FORMAS. BREVE RESUMEN FINAL.

El buque escogido posee las siguientes características principales:

Magnitud	Valor real		Valor est	imado
L_{pp}	116,532	m	116,532	M
В	22,350	m	22,350	M
T	5,400	m	5,400	M
H_{cp}	8,000	m	8,000	M
H_{equiv}	22,410	m	22,410	M
PR	6614	T	6614	T
Δ	8614	T	8614	T
СВ	0,598		0,598	
CM	0,981		0,983	
CF	0,825		0,800	
CP	0,610		0,606	
X_{CC}	57,955	m	57,766	m
KM	12,580	m	11,349	m

10 LA NOMENCLATURA

La nomenclatura que se ha empleado en este documento es la siguiente:

10.1 LAS VARIABLES

• L_{pp} Eslora entre perpendiculares.

• L_{flot} Eslora en la flotación.

• $L_{m\acute{a}x}$ Eslora máxima.

• *B* Manga.

• *T* Calado.

• $CB \equiv \delta$ Coeficiente de bloque.

• $CM \equiv \beta$ Coeficiente de la maestra.

• $CF \equiv \alpha$ Coeficiente de la flotación.

• $CP \equiv \phi$ Coeficiente prismático.

• *CA* Coeficiente de afinamiento.

• A_M Área de la sección maestra.

• A_{flot} Área en la flotación.

• Δ Desplazamiento.

• H_{bulbo} Altura del bulbo en el extremo más a proa.

• *h* Altura del bulbo adimensionalizada.

• *AP* Perpendicular de popa.

• AS Sección maestra.

• *FP* Perpendicular de proa.

• *GM* Altura metacéntrica transversal.

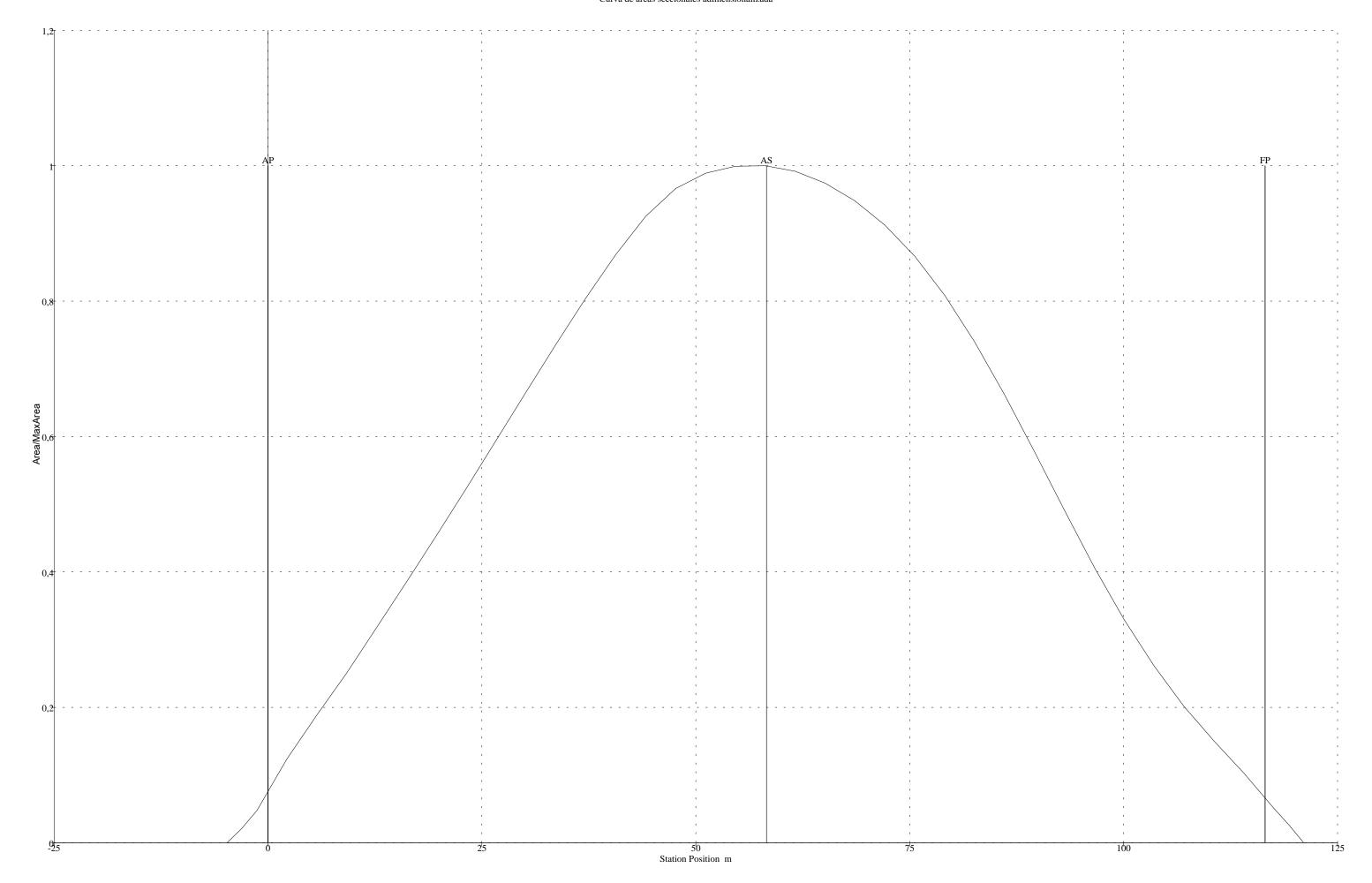
• *XC*

Abscisa del centro de carena.

11 LA BIBLIOGRAFÍA

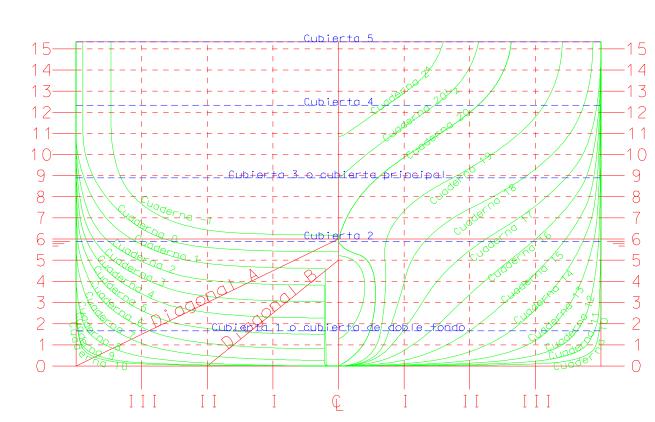
- ALVARIÑO, R., AZPÍROZ, J.J., MEIZOSO, M. «El proyecto básico del buque mercante». F.E.I.N. C.O.I.N. 1997.
- BAQUERO, A. «Lecciones de resistencia al avance».
- O.M.I. «SOLAS Convenio sobre la seguridad de la vida humana en la mar».
- Formation Design System «Maxsurf v9.0 User Manual».
- Formation Design System «Hydromax v9.0 User Manual».

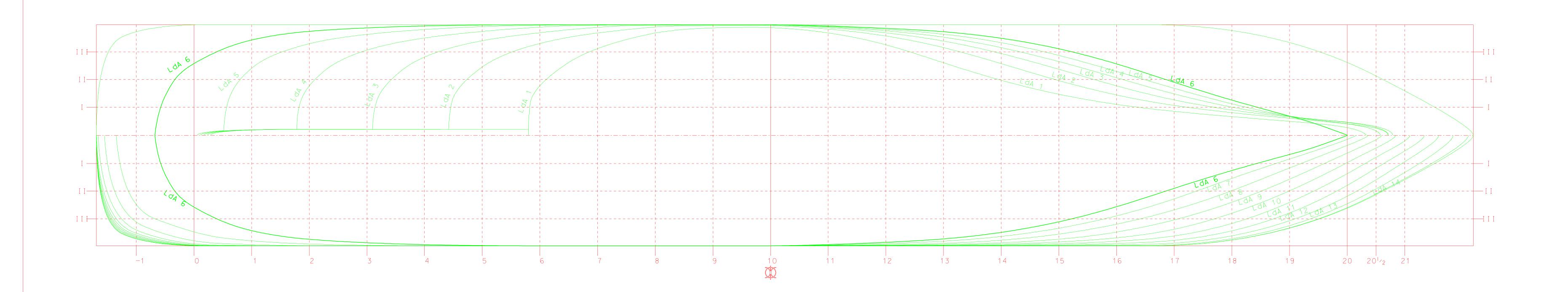
12 EL ANEXO


12.1 LA CARTILLA DE TRAZADO

Líneas	de agua	Cuadernas								
Número	Altura	-1	0	1	2	3	4	5	6	7
0	0			0,000	0,000	0,000	0,000	0,000	0,000	0,000
1	0,9			0,536	0,600	0,600	0,600	0,600	5,011	8,199
2	1,8			0,544	0,600	0,600	0,600	6,829	8,688	9,925
3	2,7			0,551	0,600	1,684	7,532	8,988	9,963	10,645
4	3,6			0,556	5,254	8,020	9,291	10,065	10,580	10,962
5	4,5			6,487	8,491	9,602	10,235	10,633	10,936	11,135
6	5,4		6,908	8,690	9,870	10,421	10,746	10,964	11,109	11,165
7	6,3	6,446	8,755	9,799	10,534	10,828	10,995	11,094	11,152	11,173
8	7,2	8,479	9,749	10,471	10,864	11,018	11,105	11,151	11,171	11,175
9	8,1	9,188	10,376	10,888	11,054	11,129	11,162	11,174	11,175	11,175
10	9	9,455	10,713	11,112	11,157	11,174	11,175	11,175	11,175	11,175
11	9,9	9,567	10,820	11,175	11,175	11,175	11,175	11,175	11,175	11,175
12	10,8	9,573	10,821	11,175	11,175	11,175	11,175	11,175	11,175	11,175
13	11,7	9,573	10,821	11,175	11,175	11,175	11,175	11,175	11,175	11,175
14	12,6	9,573	10,821	11,175	11,175	11,175	11,175	11,175	11,175	11,175
15	13,5	9,573	10,821	11,175	11,175	11,175	11,175	11,175	11,175	11,175
Contorno	13,8	9,573	10,821	11,175	1,175	11,175	11,175	11,175	11,175	11,175
Perfil	(Alturas)	5,626	4,766	0,000	0,000	0,000	0,000	0,000	0,000	0,000

Líneas	de agua					Cuadern	as			
Número	Altura	8	9	10	11	12	13	14	15	16
0	0	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1	0,9	9,938	10,926	10,963	10,572	9,504	7,971	6,227	4,510	3,002
2	1,8	10,855	11,119	11,141	11,015	10,408	9,251	7,661	5,949	4,263
3	2,7	11,070	11,173	11,175	11,130	10,832	10,080	8,769	7,136	5,409
4	3,6	11,169	11,175	11,175	11,156	11,022	10,636	9,732	8,283	6,558
5	4,5	11,175	11,175	11,175	11,168	11,115	10,947	10,475	9,394	7,743
6	5,4	11,175	11,175	11,175	11,171	11,148	11,088	10,890	10,255	8,937
7	6,3	11,175	11,175	11,175	11,172	11,158	11,126	11,056	10,762	9,886
8	7,2	11,175	11,175	11,175	11,173	11,163	11,144	11,104	10,974	10,524
9	8,1	11,175	11,175	11,175	11,174	11,167	11,154	11,130	11,055	10,841
10	9	11,175	11,175	11,175	11,174	11,170	11,162	11,147	11,102	10,982
11	9,9	11,175	11,175	11,175	11,175	11,172	11,167	11,158	11,132	11,065
12	10,8	11,175	11,175	11,175	11,175	11,173	11,171	11,166	11,152	11,117
13	11,7	11,175	11,175	11,175	11,175	11,174	11,173	11,171	11,165	11,149
14	12,6	11,175	11,175	11,175	11,175	11,175	11,174	11,174	11,172	11,167
15	13,5	11,175	11,175	11,175	11,175	11,175	11,175	11,175	11,175	11,175
Contorno	13,8	11,175	11,175	11,175	11,175	11,175	11,175	11,175	11,175	11,175
Perfil	(Alturas)	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000


Líneas	de agua			Cuad	lernas		
Número	Altura	17	18	19	20	20,5	21
0	0	0,000	0,000	0,000			
1	0,9	2,000	1,553	1,221			
2	1,8	2,818	1,917	1,429	0,938		
3	2,7	3,745	2,413	1,599	1,136	0,386	
4	3,6	4,753	3,070	1,839	1,193	0,789	
5	4,5	5,851	3,907	2,099	1,009	0,621	
6	5,4	7,031	4,898	2,641	0,025		
7	6,3	8,234	6,002	3,458	0,339		
8	7,2	9,288	7,157	4,462	1,088		
9	8,1	10,144	8,292	5,558	2,127		
10	9	10,655	9,389	6,703	3,289	1,314	
11	9,9	10,893	10,148	7,917	4,472	2,521	0,242
12	10,8	11,030	10,496	8,847	5,721	3,736	1,666
13	11,7	11,112	10,686	9,245	6,756	5,030	2,938
14	12,6	11,156	10,785	9,439	7,155	5,661	4,001
15	13,5	11,174	10,823	9,518	7,325	5,916	4,388
Contorno	13,8	11,175	10,826	9,526	7,351	5,960	4,460
Perfil	(Alturas)	0,000	0,000	0,000			


12.2 LA CURVA DE ÁREAS

12.3 EL PLANO DE FORMAS

Caracteristicas principales

ETSI Navale

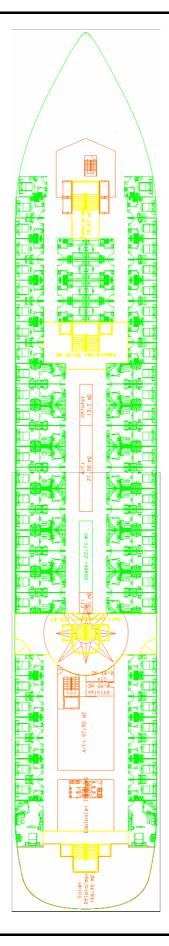
Buque de crucero Proyecto 1491

URRUTIA NEBREDA, Juan VICARIO GONZÁLEZ, Jorge

Plano de formas

Escala 1 : 175

PROYECTO NÚMERO 1491


Buque de Crucero

Disposición General

Tutor: Arias Rodrigo, Carlos

Autores: Urrutia Nebreda, Juan

Vicario González, Jorge

1 EL ÍNDICE

1	El indice					
2	Los condicionantes para la configuración de la disposición general					
	2.1	El c	compartimentado	. 5		
	2.2	Las	zonas contraincendios	. 5		
	2.3	El e	estudio de los flujos	. 6		
	2.3	.1	El salvamento	. 6		
	2.3	.2	La evacuación. El escape a botes	. 6		
	2.3	.3	Los equipajes	. 7		
	2.3	.4	Los embarques de pasaje	. 7		
	2.3	.5	Los embarques de mar	. 8		
	2.3	.6	Los alimentos	. 8		
	2.3	.7	Las piezas de máquinas	. 8		
	2.4	Los	otros condicionantes	. 8		
3	La	livisi	ón del buque	. 9		
	3.1	Laj	ustificación de la estructura	. 9		
	3.1	.1	La clara de bulárcamas	. 9		
	3.1	.2	La clara de cuadernas	. 9		
	3.1	.3	El espaciado de puntales	. 9		
	3.1	.4	El espaciado de mamparos	10		
	3.2	La c	división por zonas verticales	10		
	3.2	.1	Los mamparos contraincendios	10		
	3.2	.2	Los mamparos estancos	11		
	3.3	La c	división por cubiertas	12		
	3.3	.1	Cubierta 0, Fondo ($H = 0 \text{ m}$)	12		

	3.3.2	Cubierta 1, Cubierta de doble fondo (<i>H</i> = 1,5 m)	12
	3.3.3	Cubierta 2 (<i>H</i> = 5,3 m)	13
	3.3.4	Cubierta 3 o Principal ($H = 8.0 \text{ m}$)	13
	3.3.5	Cubierta 4 (<i>H</i> = 10,7 m)	14
	3.3.6	Cubierta 5 (<i>H</i> = 13,8 m)	14
	3.3.7	Cubierta 6 (<i>H</i> = 16,5 m)	15
	3.3.8	Cubierta 7 (<i>H</i> = 19,2 m)	15
	3.3.9	Cubierta 8 (<i>H</i> = 22,3 m)	15
	3.3.10	El cuadro de distribución de espacios	16
4	La tripul	ación	20
5	La habili	tación. El camarote tipo	21
5	.1 La	disposición tipo del camarote de 14 m ²	21
5	.2 La	disposición tipo del camarote de 25 m ²	22
6	El plano	de Disposición General	23
7	La biblic	ografía	25

Buque de Crucero

Disposición General

2 LOS CONDICIONANTES PARA LA CONFIGURACIÓN DE LA DISPOSICIÓN GENERAL

Son muchos los condicionantes que se presentan al intentar configurar el plano general de este tipo de barcos; no solo por su cantidad, sino por su importancia final, resulta indispensable tenerlos en cuenta desde las primeras etapas del proyecto. Todos los puntos que ahora trataremos, han sido considerados desde que se realizó el primer dimensionamiento, y es ahora el momento de concretarlos adoptando soluciones que se plasmen en un plano de disposición general.

Los condicionantes más importantes a tener en cuenta se pueden resumir en los siguientes puntos:

2.1 EL COMPARTIMENTADO

El buque de pasaje debe ser seguro desde el punto de vista de una posible inundación. Esto hace necesario la subdivisión del buque en compartimentos separados por mamparos estancos que garantizan la flotabilidad del buque en caso de avería.

La posición de los mamparos condicionará de una manera importante la distribución de los espacios del barco. Una variación en la posición de un mamparo o compartimento puede afectar a toda la distribución. De ahí que sea muy importante realizar un estudio inicial del Compartimentado, anterior a la configuración del plano.

2.2 LAS ZONAS CONTRAINCENDIOS

La seguridad contraincendios que debe tener un buque de pasaje hace imprescindible la protección de espacios contra el fuego, y la rapidez de detección y extinción del incendio. La protección se traduce en la división del barco en zonas verticales, que se estén separadoras por medio de mamparos transversales contraincendios. Estas zonas verticales según la reglamentación del SOLAS no deben ser mayores de 40 metros, con la excepción de 48 metros en el caso de existir continuidad vertical entre mamparos contraincendios y mamparos estancos (este es nuestro caso). A su vez estos mamparos contraincendios dividirán el buque en zonas de pasaje y de tripulación.

La posición de estos mamparos y la división en zonas verticales condiciona la distribución de espacios del buque, así como los medios de acceso entre las diferentes zonas.

2.3 EL ESTUDIO DE LOS FLUJOS

El estudio de los flujos es uno de los más importantes a la hora de definir la disposición general del buque.

Este estudio debe realizarse tanto para las personas a bordo y sus equipajes como para las distintas mercancías que se llevan a bordo.

2.3.1 El salvamento

El gran numero de pasajeros que transportan este tipo de barcos, obliga a tener en cuenta la facilidad de acceso a las cubiertas de embarque en botes de todas las personas, cualquiera que sea el espacio donde se encuentren. Esto implicará estudiar la distribución de medios de escape y acceso a dichas cubiertas.

2.3.2 La evacuación. El escape a botes.

Desde el punto de vista de la evacuación podemos dividir el barco en dos zonas claramente diferenciadas, una que cubre las primeras cubiertas, hasta la cubierta principal, donde hay que dar salida a los compartimentos estancos, y otra que comprende las cubiertas situadas por encima de la principal, donde la evacuación se realiza por los troncos principales.

En las cubiertas 1 y 2, que se encuentran divididas por mamparos estancos, cada compartimento estanco debe tener un mínimo de dos salidas, siendo una de ellas una escalera. La otra vía de escape se dispondrá en horizontal, dando paso a otro compartimento. El conjunto de los escapes de las cubiertas bajas desemboca en un pasillo de servicios, protegido, en la cubierta 3. Este pasillo de servicios comunica los escapes de las cubiertas bajas con los troncos principales de evacuación.

A partir de la cubierta 3, la cubierta principal, la evacuación se realiza mediante cuatro troncos de escape. Como más adelante se explica, el buque se encuentra divido en tres zonas verticales principales por dos mamparos contraincendios. Cada una de estas zonas verticales deberán disponer de dos vías de evacuación protegidas que conduzcan, bien a la zona de embarque de botes, bien a la cubierta expuesta. A continuación se explican estos escapes:

• Zona de popa: Se dispone de dos rutas de escape, una principal y otra auxiliar. La vía de escape secundaria la constituye una escalera situada en el extremo de

popa del buque, esta escalera, durante el servicio normal del buque será utilizada por la tripulación. En la cubierta 6 esta escalera comunica con el siguiente tronco de escaleras más proa mediante un pasillo protegido, a través de este tronco de escaleras se accede a la zona de embarque de botes. La ruta de escape principal de esta zona se realiza mediante unas escaleras situadas junto al mamparo contraincendios que limita por proa la zona vertical principal de popa. Esta escalera da servicio a los pasajeros, permitiéndoles el movimiento desde la cubierta 4 hasta la 7. En la cubierta 6 se puede acceder desde estas escaleras a la zona de embarque de botes.

- Zona central: La vía de escape principal es el tronco de escaleras situado junto al mamparo que delimita por proa la zona vertical. Esta escalera sube hasta la cubierta 7, desde aquí sale a la cubierta expuesta y mediante unas escaleras exteriores se accede a la zona de embarque de botes. La ruta de evacuación secundaria es la escalera situada junto al mamparo de popa de la zona vertical (que a su vez es la ruta de escape principal de la zona vertical de popa).
- Zona de proa: Su vía de escape principal es la escalera situada más a proa del barco, que sube hasta la cubierta expuesta (cubierta 7) y desde aquí mediante una escalera exterior se accede a la zona de embarque de botes. La vía de escape auxiliar es la escalera situada junto al mamparo que delimita por popa la zona vertical (que a su vez es la ruta de escape principal de la zona vertical central).

2.3.3 Los equipajes

Los equipajes se embarcan al buque a través de una puerta lateral situada en la cubierta principal (cubierta 3). Por esta puerta se accede a un almacén temporal donde se estiban las maletas mientras se realiza su distribución a los camarotes.

Desde este primer almacén los equipajes se trasladan a las cubiertas de camarotes por el tronco de servicio de popa. En ambas cubiertas de camarotes se han dispuesto sendas zonas de estiba para las maletas, desde las que se distribuyen los equipajes a cada camarote.

2.3.4 Los embarques de pasaje

El embarque de los pasajeros al barco se realiza a través de sendas puertas en los costados situadas en la cubierta 5. Por estas puertas se accede al vestíbulo principal del buque. Desde este vestíbulo los pasajeros se distribuyen por las dos cubiertas de camarotes, cubiertas 5 y 6.

Para el movimiento entre las distintas cubiertas los pasajeros disponen de tres troncos de escaleras principales, cada tronco a su vez dispone de 2 ascensores de gran capacidad.

2.3.5 Los embarques de mar

El acceso al mar para deportes acuáticos o salidas en botes de recreo se realizará por la cubierta principal (cubierta 3), a través de la misma puerta que se ha utilizado para el acceso de equipajes.

2.3.6 Los alimentos

El acceso de los alimentos al barco se realizará mediante sendas puertas situadas en la zona de proa de la cubierta principal del buque. A través de estas puertas se accederá directamente a la zona de gambuzas, desde donde se distribuirán y almacenarán los alimentos.

2.3.7 Las piezas de máquinas

Para el acceso de piezas y equipos de respeto se utilizará el acceso ya previsto para equipajes.

2.4 LOS OTROS CONDICIONANTES

Deberán ser estudiados los diferentes flujos interiores y exteriores de pasaje, tripulación, carga, basuras, etc., y evitar las interferencias entre los mismos. Además hay que tener en cuenta las superficies necesarias para diversos servicios que doten de cierta comodidad al pasaje, como son el aire acondicionado, ventilación, almacenamiento de alimentos, basuras, zonas de recreo, etc.

Un condicionante básico será la simetría respecto a crujía de la disposición, aspecto que se ha mantenido siempre que ha sido posible.

Además, debemos tener en cuenta la condición de proyecto que nos obliga a disponer un 80% de camarotes exteriores, condición esta que hemos cumplido holgadamente y que influye de manera decisiva en la disposición general del buque.

3 LA DIVISIÓN DEL BUQUE

3.1 LA JUSTIFICACIÓN DE LA ESTRUCTURA

Se elige una estructura mixta con cuadernas en los costados y fondo y longitudinal en cubierta. Para evitar un escantillonado excesivo de la estructura de las cubiertas ésta se reforzará con puntales.

3.1.1 La clara de bulárcamas

La clara de bulárcamas va a definir de estructura del buque de una manera fundamental, comenzado por las dimensiones de los camarotes.

Al tener que introducir 30 camarotes de 25 m² la clara de bulárcamas será lo más amplia posible para evitar que estos camarotes resulten excesivamente largos. Este valor tampoco se puede tomar excesivamente grande porque sino nos encontraremos que los escantillones necesarios para los refuerzos longitudinales de la estructura (esloras) nos limitan la altura libre que queda en cada cubierta.

Teniendo en cuenta estas consideraciones se llega a la solución de compromiso de elegir una clara de bulárcamas de 3,300 m.

En las zonas de proa (a proa de la cuaderna 140) y popa (a popa de la cuaderna 12), coincidiendo con los piques de proa y popa, la clara de bulárcamas se reduce a un 75 %, es decir, a 2,475 m.

3.1.2 La clara de cuadernas

Cada clara de bulárcamas se dividirá en cuatro claras de cuadernas, lo que nos da una clara de cuadernas de 0,825 m en la zona central y 0,619 m en las zonas de proa y popa antes definidas.

3.1.3 El espaciado de puntales

Los puntales se situarán cada dos bulárcamas, es decir, cada 6,600 m en la zona central y cada 4,950 m en las zonas de proa y popa.

URRUTIA NEBREDA, Juan

La separación de los puntales respecto al plano de crujía será de 3,467 m, de tal manera que resulten aproximadamente equiespaciados en la manga.

3.1.4 El espaciado de mamparos

Todos los mamparos del buque, contraincendios, estancos, de colisión, etc. coincidirán con bulárcamas, por lo tanto en espacio entre ellos deberá ser múltiplo de la clara de bulárcamas.

3.2 LA DIVISIÓN POR ZONAS VERTICALES

Por ser un buque que transporta más de 36 pasajeros, se deberán cumplir los requerimientos del SOLAS referentes a división del buque en zonas contraincendios (capítulo II-2). El casco y superestructuras están divididas en zonas verticales principales separadas entre sí por mamparos de clase A. La longitud en eslora de estas zonas no excede de 48 m. (máximo permitido en el caso de existir continuidad vertical con los mamparos estancos) y los mamparos que limitan estas zonas por encima de la cubierta de cierre, están en la misma vertical que los mamparos estancos de compartimentado, extendiéndose de cubierta a cubierta y hasta el forro exterior.

Se han dispuesto las siguientes zonas:

- ZONA 1: Entre la popa y la cuaderna nº 48 (longitud 46,986 m).
- ZONA 2: Entre la cuaderna nº 48 y la cuaderna nº 104 (longitud 46,200 m).
- ZONA 3: Entre la cuaderna nº 104 y la proa (longitud 45,946 m).

3.2.1 Los mamparos contraincendios

Para delimitar las zonas verticales definidas anteriormente se dispondrá de los siguientes mamparos contraincendios:

- MAMPARO C.I. nº 1: cuaderna nº 48.
- MAMPARO C.I. n° 2: cuaderna n° 104.

Estos mamparos se extienden de abajo a arriba a lo largo de todas las cubiertas del barco. La elección de la ubicación de los mamparos se ha realizado de acuerdo con los siguientes criterios:

- En los espacios por debajo de la cubierta de cierre, los mamparos contraincendios no separan los espacios destinados a maquinaria propulsora y auxiliar.
- En las zonas de pasaje, los mamparos contraincendios delimitan los salones, cocinas, comedores y vestíbulos

Se instalarán puertas contraincendios, de accionamiento a motor, controladas a distancia desde el puente de navegación y controladas localmente a mano, según se exige en la normativa SOLAS en las posiciones que se indican en el plano de disposición general.

3.2.2 Los mamparos estancos

Los espacios situados por debajo de la cubierta principal estarán divididos por mamparos estancos para lograr una subdivisión adecuada que asegure la supervivencia del buque en caso de inundación.

Los mamparos estancos se han hecho coincidir con los mamparos contraincendios para lograr una continuidad en la resistencia contra el fuego.

Cada compartimento estanco dispone de un mínimo de dos salidas, siendo una de ellas una escalera, independiente de las puertas estancas, que conduce de manera protegida hasta la zona de embarque o la cubierta expuesta.

Los mamparos estancos adoptados son:

- Mamparo de pique de popa: cuaderna nº 12.
- Mamparo estanco nº 1: cuaderna nº 24.
- Mamparo estanco nº 2: cuaderna nº 36.
- Mamparo estanco nº 3: cuaderna nº 48.
- Mamparo estanco nº 4: cuaderna nº 64.
- Mamparo estanco nº 5: cuaderna nº 80.
- Mamparo estanco nº 6: cuaderna nº 92.
- Mamparo estanco nº 7: cuaderna nº 104.
- Mamparo estanco nº 8: cuaderna nº 112.
- Mamparo estanco nº 9: cuaderna nº 120.
- Mamparo de pique de proa: cuaderna nº 136.

3.3 LA DIVISIÓN POR CUBIERTAS

Como puede apreciarse en el plano general, el buque está dividido en las siguientes cubiertas cumpliendo las siguientes funciones:

3.3.1 Cubierta 0, Fondo (H = 0 m)

Todos aquellos tanques que no requieren disposiciones especiales se sitúan en el doble fondo para aprovechar este espacio a la vez que se rebaja la altura del centro de gravedad del buque. Aquí se sitúan los tanques de aceite, lodos, aguas grises, aguas negras y agua técnica.

En los laterales del doble fondo, fuera de la manga de averías, se instalarán los tanques de lastre necesarios para la correcta navegación del buque en las distintas condiciones.

3.3.2 Cubierta 1, Cubierta de doble fondo (H = 1.5 m)

En el primer compartimento por popa, entre las cuadernas 36 y 48, se sitúan los tanques antiescora, a ambas bandas y con un volumen suficiente capaz de minimizar los movimientos de escora de media frecuencia.

El compartimento situado entre las cuadernas 48 y 64 se destina al alojamiento de los motores principales. Se trata de cuatro motores semirrápidos, acoplados por parejas a una misma reductora y eje de cola. Las calderas se sitúan junto a los costados, y pegadas al mamparo de proa. Este compartimento tiene conexión directa con el espacio para la salida de gases, necesario para los escapes de los motores principales y de las calderas.

Entre las cuadernas 64 y 80 se ha situado un compartimento en que se colocarán todas las máquinas auxiliares. Asimismo se ha aprovechado el espacio junto a los costados para situar ahí las purificadoras de aceite y de combustible. Tanto este compartimento como el anterior, debido a las grandes dimensiones de los equipos que alojan, han de ocupar la altura de dos cubiertas.

A continuación, entre las cuadernas 80 y 92, se disponen los tanques de sedimentación y servicio diario de fuel oil tanques almacén de fuel oil, tanques almacén y servicio diario de diesel oil y tanques de lodos, de forma que estos no lleguen más allá de *B*/5 de la manga.

El compartimento entre las cuadernas 92 y 108 se utiliza para colocar tanques de agua dulce. Dada la necesidad de situar estos tanques en isla, su manga está limitada por la manga de averías y longitudinalmente está separados por un coferdam de 1,650 m de anchura.

3.3.3 Cubierta 2 (H = 5.3 m)

En la zona de popa se encontrará la lavandería, en cuyo interior se disponen los locales para los servomotores de los timones del barco, ya que esta es la primera cubierta que se dispone por encima de los timones.

A continuación se sitúan tres espacios que se dedicarán para los distintos servicios del buque que necesitan estar cerca de la cámara de máquinas.

Los dos siguientes espacios se utilizan para ubicar los motores principales y auxiliares, así como la sala de control de máquinas y la sala de purificadoras de aceite y combustible. Estos dos espacios forman un tambucho con la cubierta inferior para dar cabida a los motores y a los equipos de gases de escape.

Más a proa se situarán camarotes para la tripulación, 10 camarotes dobles y otros 10 camarotes cuádruples, junto con varios oficios, espacios contraincendios y pañoles. A proa se situará un compartimento para las hélices de proa.

3.3.4 Cubierta 3 o Principal (H = 8.0 m)

En la zona de popa se ha situado un tronco de escape, que en principio será de uso exclusivo para la tripulación como escalera de servicio. Este tronco se comunica con todos los restantes troncos y escapes de los compartimentos estancos a través de un pasillo protegido que existe a lo largo de toda la eslora del buque.

Entre las cuadernas 12 y 16 se han situado dos espacios para la entrada de equipajes y piezas de maquinaria. Los espacios, uno a cada banda del buque, cuentan con una puerta estanca, que permite el acceso a estos espacios desde el exterior.

Entre las cuadernas 29 y 48, se inician dos troncos de escaleras que suben hasta las cubiertas más altas. El principal, situado junto al mamparo contraincendios, se trata de un tronco más espacioso para uso del pasaje, mientras que el otro es una tronco de servicio para uso de la tripulación.

A popa del mencionado mamparo se ha colocado toda la habilitación de tripulación, dejando el resto del espacio para servicios de tripulación (comedor de oficiales y tripulación) y en general (gambuzas, cocina de pasaje y tripulación y basuras). Se ha optado por la solución de situar la cocina en la misma cubierta que las gambuzas y el espacio de basuras. De esta forma los alimentos pueden pasar directamente de la gambuza a la cocina. De la misma forma el extremo opuesto de la cocina de haya comunicado directamente con el espacio de basuras a través de un pasillo.

La zona del pique de proa, a proa de la cuaderna 140, se deja para la caja de cadenas.

3.3.5 Cubierta 4 (H = 10.7 m)

Esta cubierta está totalmente dedicada a salones de pasaje, además a popa y proa se encuentran los equipos de amarre.

En la zona de popa estará situado el salón principal con capacidad para 250 personas, con una superficie total de 524 m^2 .

A continuación se encontrará el hospital, la biblioteca / videoteca, esto es así para disponer del hospital cerca de los salones, del comedor y de uno de los troncos de escaleras para procurar una rápida atención médica en caso de necesidad.

En la zona central del buque se situarán un bar y el comedor de pasaje para 250 pax, con una superficie de 515 m². Se ha optado por esta disposición para uniformizar el flujo del pasaje antes y después de las comidas desde y hacia las zonas de recreo (Salón Principal y Casino). Además el comedor se halla situado encima de la cocina, a la que está unida mediante cuatro montacargas. La situación del comedor se ha hecho tal que su comunicación con la cocina sea lo más rápida posible, de manera que se pueda mantener un flujo constante. Asimismo se han procurado dos accesos distintos, uno de entrada del comedor, proveniente de la cocina en la zona más a proa del comedor; y otros desde retirada desde el comedor hacia la cocina, en la zona más a popa del comedor. De esta forma se evita que exista un flujo cruzado de alimentos.

En la zona de proa irá situado el casino, ya que así todos los salones primarios del barco se encuentran en una única cubierta.

3.3.6 Cubierta 5 (H = 13.8 m)

Esta cubierta estará dedicada, casi en su totalidad, a habilitación de pasaje.

En la zona de popa, por detrás de la escalera de servicio de popa, se ha situado un salón para oficiales, con acceso directo a este tronco de escaleras, a través del que se tiene acceso desde las cubiertas más bajas. Dicho salón se encuentra incomunicado del resto de espacios de esta cubierta para evitar mezclar a la tripulación con el pasaje.

La distribución del pasaje se ha realizado de forma que la mayoría de los camarotes sean exteriores. El espacio interior se ha aprovechado para colocar espacios de aire acondicionado y servicios.

La escalera de servicio de popa tiene salida directa a un espacio que se ha reservado como almacén de equipajes antes de su distribución por los camarotes.

Por la zona central de esta cubierta se realizará el embarque de pasajeros, para lo cual se dispone de un vestíbulo principal de distribución de gran superficie, que comunica con los pasillos que recorren toda la cubierta hacia los camarotes de pasaje..

En la zona de proa se dispondrá de superficie exterior destinada a paseo, con una superficie de 200 m².

3.3.7 Cubierta 6 (H = 16,5 m)

Esta cubierta se destinará totalmente a camarotes de pasaje y zona de botes. Se dispondrá de 57 camarotes dobles de 14 m^2 (3 interiores) y de 4 suites exteriores, 2 de 52 m^2 y 2 de 77 m^2 .

En la zona central se realizará el embarque a los botes, estas zonas de embarque se aprovecharán como zonas de paseo. Una vez en la posición de embarque la altura de la quilla del bote es de 10,1 m; que es superior a los 2 m de altura mínima que marcan los reglamentos. En la posición de estiba la altura desde la superficie del agua al enganche de los botes es de 13,8 m, que es inferior a los 15 m de altura máxima requeridos.

3.3.8 Cubierta 7 (H = 19.2 m)

Esta cubierta se divide dos zonas claramente diferenciadas y separadas. Una zona para la tripulación, a proa, donde se encuentran los camarotes individuales para el capitán, el jefe de máquinas y otros oficiales.

El resto de la cubierta se dedica al pasaje, disponiéndose en ella de diversos espacios al aire libre, incluida la piscina, así como otras zonas de ocio.

Todos los troncos de escape que llegan a esta cubierta tienen salida directa al exterior, para poder acceder libremente hasta la zona de botes.

3.3.9 Cubierta 8 (H = 22.3 m)

En esta cubierta se situará el punte de gobierno, de 148 m², junto con el grupo de emergencia y el local de baterías. El resto de la cubierta se preparará como zona de paseo exterior.

3.3.10 El cuadro de distribución de espacios

A continuación se presenta un cuadro resumen de la distribución de espacios por cubiertas:

Cubierta	Local	Superficie total (m²)
	Puente	141,87
	Local baterías	18,17
Cubierta 8	Grupo emergencia	18,17
	A/C centro	36,35
	Escaleras centro	74,82
	Camarote Cap/JM/Of	81,76
	Camarotes oficiales	61,32
	Salón secundario	435,26
	Gimnasio	123,46
	Sala reuniones	123,44
	Café	87,96
	Piscina	45,76
	Oficina	25,25
Cubierta 7	Varios	12,53
	A/C centro	141,2
	A/C proa	55,45
	Escaleras popa	79,42
	Escaleras centro	74,82
	Escaleras proa	54,12
	Escaleras servicio	24,12
	Pasillos popa	16,17
	Pasillos proa	47,20

Buque in C		D131 031C101V
Cubierta	Local	Superficie total (m²)
	Camarotes 14 m ²	797,82
	Suites	258,42
	Oficios	19,84
	Equipajes	64,42
	A/C proa	104,9
	A/C centro	23,45
California	A/C popa	85,12
Cubierta 6	Escaleras proa	31,49
	Escaleras centro	88,10
	Escaleras popa	65,44
	Escaleras servicio	67,98
	Pasillos popa	169,69
	Pasillos centro	225,84
	Pasillos proa	98,18
Cubierta 5	Camarotes 14 m ²	559,87
	Camarotes 25 m ²	655,68
	Oficios	22,85
	Equipajes	72,82
	Salón oficiales	159,35
	A/C centro	27,05
	A/C popa	97,30
	Escaleras proa	39,67
	Escaleras centro	95,00
	Escaleras popa / Vestíbulo principal	173,87
	Escaleras servicio	73,87

Cubierta	Local	Superficie total (m ²)
	Pasillos proa	120,12
	Pasillo centro	178,80
	Pasillo popa	137,28
	Casino	456,32
	Bar	205,35
	Hospital	84,50
	Biblioteca / Videoteca	63,92
	Salón principal	524,13
	Varios	32,87
Callianta 4	Comedor pasajeros	593,13
Cubierta 4	Escaleras proa	39,67
	Escaleras centro	74,80
	Escaleras popa	79,71
	Escaleras servicio	72,57
	Pasillos proa	47,91
	Pasillos centro	74,8
	Pasillos popa	9,44
Cubierta 3	Camarotes simples + dobles	497,28
	Camarotes cuádruples	54,60
	Oficios	27,93
	Cocina	313,06
	Salón / Comedor de tripulación	211,13
	Comedor oficiales	101,12
	Basuras	165,84
	Gambuzas	420,07

URRUTIA NEBREDA, Juan

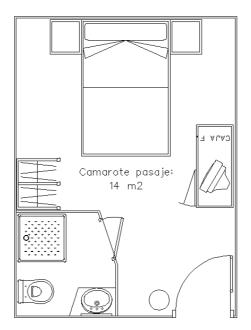
Cubierta	Local	Superficie total (m²)
	Escaleras proa	20,50
	Escaleras centro	29,59
	Escaleras popa	76,80
	Escaleras servicio	65,28
	Escaleras de escape	70,18
	Pasillos proa	42,55
	Pasillos centro	108,61
	Pasillos popa	138,42
	Camarotes simples + dobles	134,40
	Camarotes cuádruples	273,00
Cubierta 2	Oficios	36,40
Cubicità 2	Escaleras centro	23,27
	Escaleras de escape	76,56
	Oficina de máquinas	94,76

Tenemos un total de 127 camarotes (incluyendo las suites), con nueve de ellos interiores, cumpliendo de esta forma la condición de proyecto de un mínimo del 80 % de camarotes exteriores.

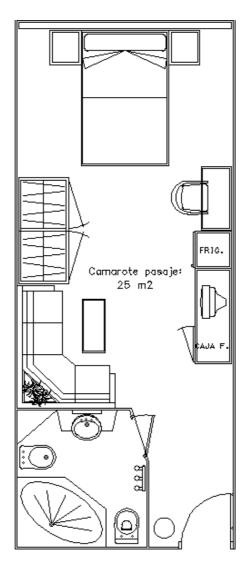
4 LA TRIPULACIÓN

Según las especificaciones del proyecto la tripulación es de 125 personas. Consideraremos que se dividen en un tercio de oficiales (42 personas) y dos tercios de tripulación (83 personas).

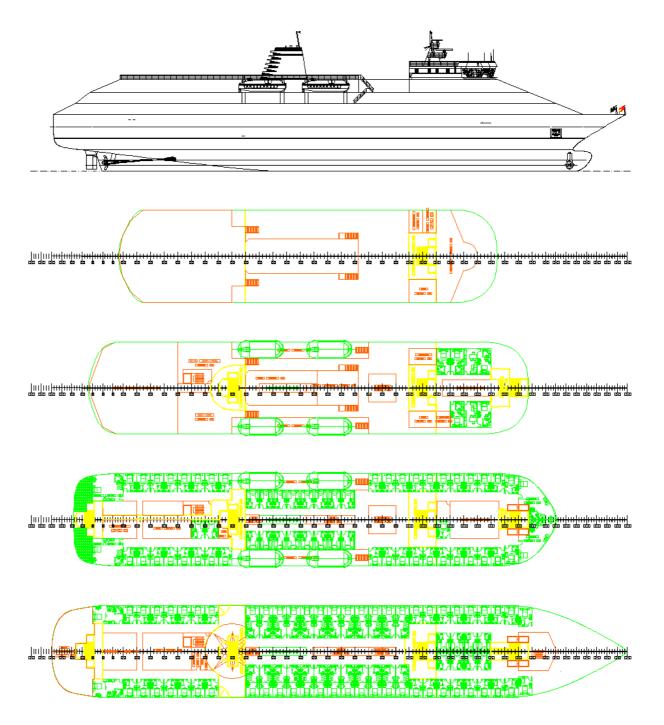
Para la habilitación de la tripulación se han dispuesto camarotes tanto simples como dobles y cuádruples.

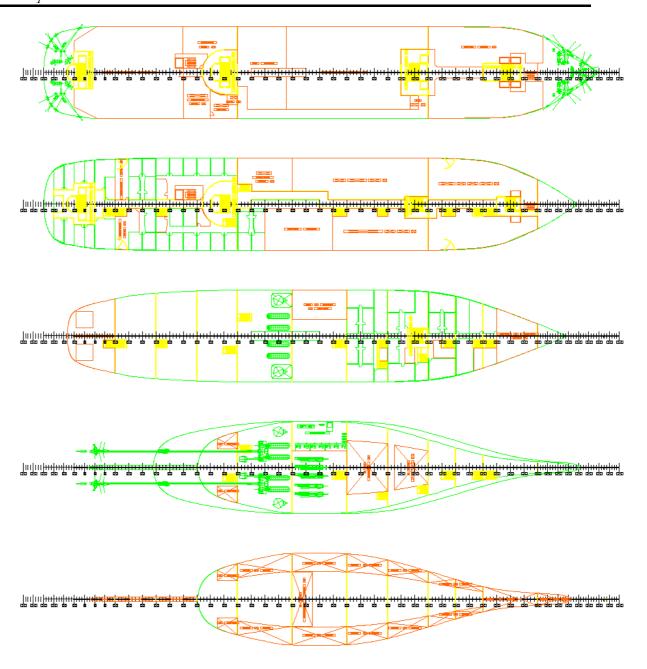

Tipo de camarotes	Cantidad	Número de tripulantes
Capitán	1	1
Jefe de máquinas	1	1
Camarotes individuales de oficiales	3	3
Camarotes simples	8	8
Camarotes dobles	28	56
Camarotes cuádruples	14	56
TOTAL		125

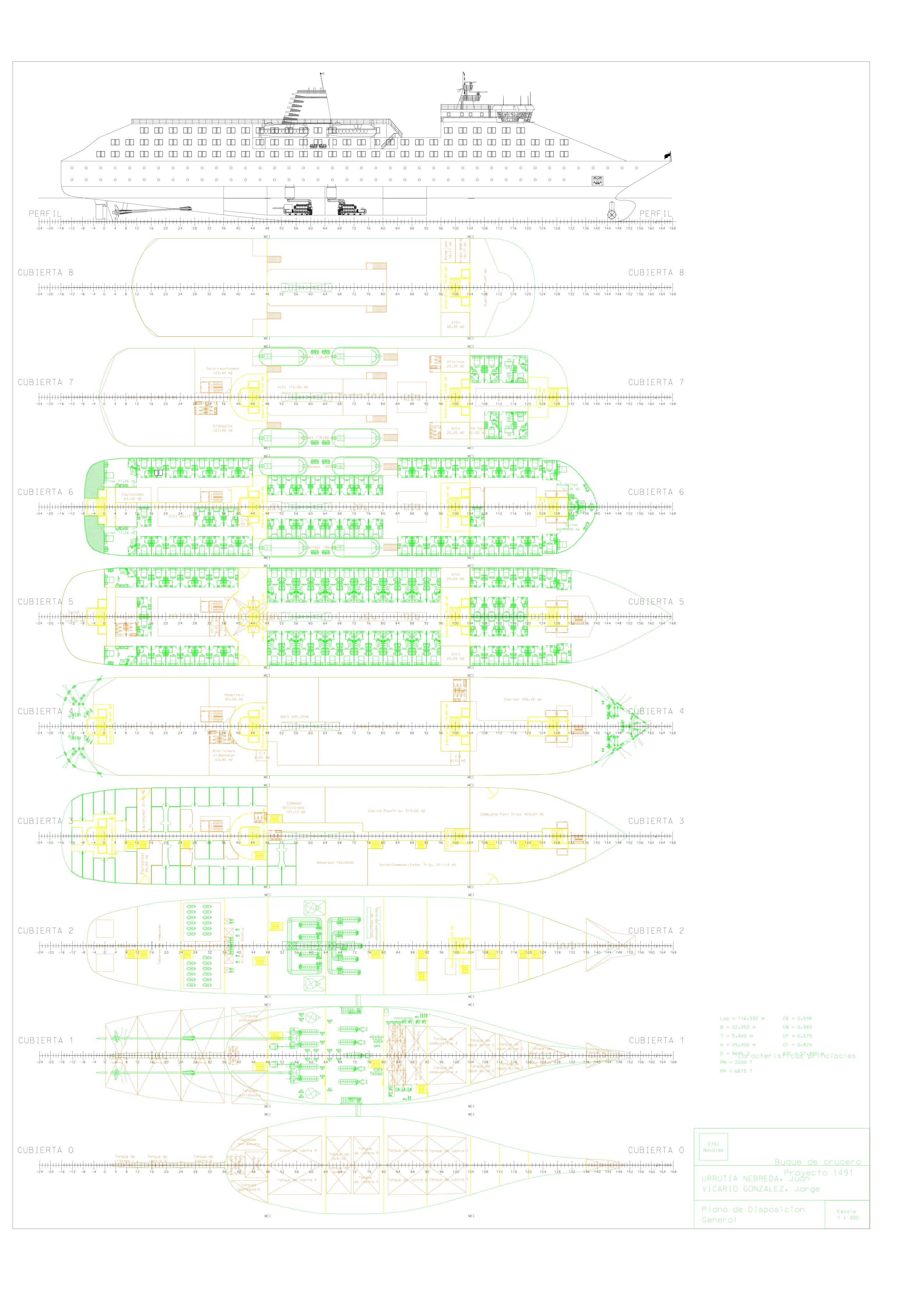
5 LA HABILITACIÓN. EL CAMAROTE TIPO.


La habilitación consiste principalmente en dos tipos de camarotes para pasaje de $14 \text{ m}^2 \text{ y}$ 25 m^2 . Estos se han diseñado de forma que su anchura (según la eslora del buque) ocupe una clara de bulárcama completa (3,300 m). La anchura útil de los camarotes será esta última descontando el espesor de las paredes (0,025 m) a cada lado más el espacio que ocupan los puntales (0,050 m) que se colocarán entre cada dos camarotes. Así la anchura útil de los camarotes es de 3,200 m (3,200 m = 3,300 m – 0,025 m – 0,050 m – 0,025 m).

Con esta eslora y conocida la superficie de los camarotes se obtiene una longitud (según la manga del buque) de 4,374 m para los camarotes pequeños (3,200 m \times 4,374 m = 14,00 m²) y de 7,813 m para los camarotes grandes (3,200 m \times 7,813 m = 25,00 m²).


5.1 LA DISPOSICIÓN TIPO DEL CAMAROTE DE 14 M²




5.2 LA DISPOSICIÓN TIPO DEL CAMAROTE DE 25 M²

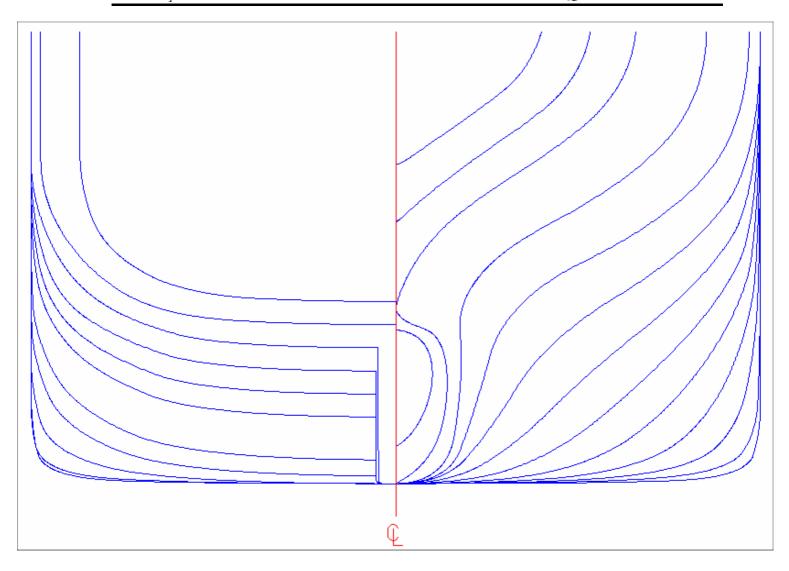
6 EL PLANO DE DISPOSICIÓN GENERAL

7 LA BIBLIOGRAFÍA

• O.M.I. «SOLAS – Convenio sobre la seguridad de la vida humana en la mar».

Cuadernillo

PROYECTO NÚMERO 1491


Buque de Crucero

Cálculos de Arquitectura Naval

Tutor: Arias Rodrigo, Carlos

Autores: Urrutia Nebreda, Juan

Vicario González, Jorge

1 EL ÍNDICE

1	El íı	ndice	. 3				
2	Las	Las características hidrostáticas.					
	2.1	La tabla de características hidrostáticas	. 5				
	2.2	La curva de características hidrostáticas	. 7				
	2.3	Las curvas de Bonjean	. 7				
3	Los	brazos de adrizamiento	. 9				
	3.1	El punto de inundación progresiva	. 9				
	3.2	La tabla de isoclinas	. 9				
	3.3	La tabla de carenas inclinadas	11				
4	La c	calibración de tanques	14				
	4.1	La tabla de capacidades	14				
	4.1	.1 El combustible	14				
	4.1	.2 El agua dulce	15				
	4.1	.3 El aceite lubricante	16				
	4.1	.4 Los tanques antiescora	17				
5	Las	esloras inundables	19				
	5.1	Los mamparos estancos	19				
	5.2	La línea de margen	19				
	5.3	La curva de esloras inundables	20				
6	El f	rancobordo	22				
	6.1	El francobordo tabular	22				
	6.2	La corrección por eslora	22				
	6.3	La corrección por coeficiente de bloque	23				
	6.4	La corrección por puntal	23				

Buque de Crucero

	6.5	La corrección por posición de la línea de cubierta	23
	6.6	La corrección por superestructuras	23
	6.7	La corrección por arrufo	24
	6.8	La corrección por altura mínima de proa	25
	6.9	El francobordo geométrico	26
	6.10	El francobordo de verano	26
	6.11	El francobordo tropical	26
	6.12	El francobordo de invierno	27
	6.13	El francobordo de Atlántico Norte, invierno	27
	6.14	El francobordo de agua dulce	27
7	El a	rqueo	28
	7.1	El arqueo bruto	28
	7.2	El arqueo neto	28

2 LAS HIDROSTÁTICAS

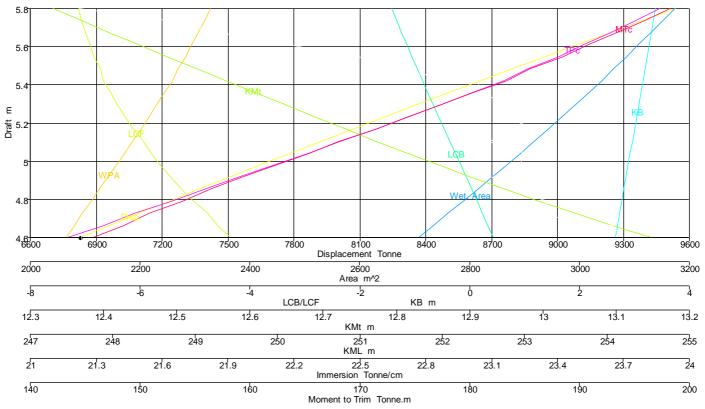
CARACTERÍSTICAS

2.1 LA TABLA DE CARACTERÍSTICAS HIDROSTÁTICAS

La tabla de características hidrostáticas con el buque adrizado es:

Calado (m)	Desplaza miento (T)	Escora (°)	Calado en proa (m)	Calado en popa (m)	Calado en el centro de flotación (m)	Trimado (m)	Eslora de flotación (m)	Manga en la flotación (m)	Sup. mojada (m²)	Sup. de la flotación (m²)
4,6	6888	0°	4,6	4,6	4,6	0	119,615	22,35	2727,364	2020,186
4,7	7096	0°	4,7	4,7	4,7	0	119,045	22,35	2769,678	2043,615
4,8	7307	0°	4,8	4,8	4,8	0	117,525	22,35	2808,054	2061,44
4,9	7516	0°	4,9	4,9	4,9	0	117,431	22,35	2821,773	2071,332
5,0	7729	0°	5	5	5	0	118,032	22,35	2868,201	2097,573
5,1	7946	0°	5,1	5,1	5,1	0	118,756	22,35	2910,004	2122,111
5,2	8165	0°	5,2	5,2	5,2	0	119,478	22,35	2953,517	2148,391
5,3	8386	0°	5,3	5,3	5,3	0	120,265	22,35	2996,375	2174,433
5,4	8614	0°	5,4	5,4	5,4	0	121,122	22,35	3038,286	2199,932
5,5	8837	0°	5,5	5,5	5,5	0	121,959	22,35	3069,803	2214,700
5,6	9065	0°	5,6	5,6	5,6	0	122,781	22,35	3115,239	2243,051
5,7	9297	0°	5,7	5,7	5,7	0	123,528	22,35	3156,26	2267,318
5,8	9530	0°	5,8	5,8	5,8	0	124,198	22,35	3196,812	2290,639

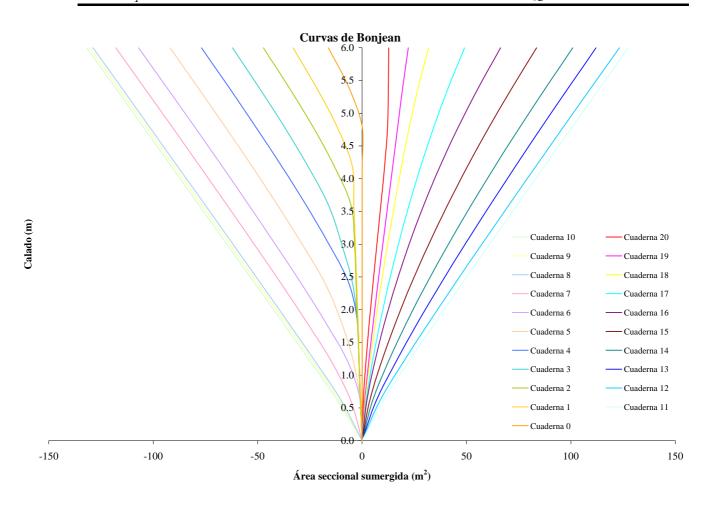
	Coofigionto	Conficiente	Cooficiente	Coeficiente	LCB(m)	LCF (m)		
Calado (m)	prismático	de bloque	de maestra	de la flotación	respecto a la maestra		<i>KB</i> (m)	<i>KG</i> (m)


	PROYECTO	1491							
	Buque de Cruce	ero		Cálculos de Arquitectura Navai					
4,6	0,558	0,546	0,979	0,756	0,396 Fwd	5,131 Aft	2,627	8,544	
4,7	0,565	0,554	0,98	0,768	0,234 Fwd	5,508 Aft	2,686	8,544	
4,8	0,577	0,565	0,98	0,785	0,064 Fwd	5,766 Aft	2,745	8,544	
4,9	0,581	0,570	0,98	0,789	0,081 Aft	5,836 Aft	2,804	8,544	
5,0	0,583	0,572	0,981	0,795	0,247 Aft	6,299 Aft	2,864	8,544	
5,1	0,584	0,573	0,981	0,8	0,416 Aft	6,647 Aft	2,923	8,544	
5,2	0,584	0,574	0,982	0,805	0,588 Aft	7,025 Aft	2,983	8,544	
5,3	0,585	0,574	0,982	0,809	0,763 Aft	7,383 Aft	3,043	8,544	
5,4	0,585	0,575	0,982	0,813	0,939 Aft	7,690 Aft	3,103	8,544	
5,5	0,585	0,575	0,983	0,812	1,112 Aft	7,731 Aft	3,163	8,544	
5,6	0,585	0,575	0,983	0,817	1,284 Aft	8,112 Aft	3,223	8,544	
5,7	0,586	0,576	0,983	0,821	1,457 Aft	8,381 Aft	3,283	8,544	
5,8	0,587	0,577	0,983	0,825	1,629 Aft	8,621 Aft	3,344	8,544	

Calado (m)	BMT (m)	BML (m)	GMT (m)	GML (m)	<i>KMT</i> (m)	KML (m)	TPC (T/cm)	<i>MTC</i> (T·m)	
4,6	10,033	238,811	7,26	236,038	12,66	241,438	20,711	139,523	
4,7	9,898	238,254	7,185	235,54	12,585	240,94	20,951	143,427	
4,8	9,768	235,694	7,114	233,039	12,514	238,439	21,134	146,116	
4,9	9,625	230,562	7,03	227,966	12,43	233,366	21,235	147,027	
5,0	9,509	231,437	6,972	228,901	12,372	234,301	21,504	151,829	
5,1	9,397	231,961	6,92	229,484	12,32	234,884	21,756	156,473	
5,2	9,286	233,301	6,868	230,884	12,268	236,284	22,025	161,766	
5,3	9,181	234,613	6,823	232,256	12,223	237,656	22,292	167,145	
5,4	9,075	235,779	6,778	233,482	12,178	238,882	22,554	172,521	
5,5	8,958	233,335	6,721	231,098	12,121	236,498	22,705	175,247	

Buque de Crucero					Cálculos de Arquitectura Naval							
	5,6	8,858	235,634	6,681	233,457	12,081	238,857	22,996	181,615			
	5,7	8,755	236,592	6,638	234,476	12,038	239,876	23,245	187,059			
	5,8	8,65	237,3	6,594	235,244	11,994	240,644	23,484	192,389			

2.2 LA CURVA DE CARACTERÍSTICAS HIDROSTÁTICAS


Los datos anteriormente presentados se pueden observar en la siguiente gráfica:

Draft = 4.600 m Disp. = 6825.305 Tonne

2.3 LAS CURVAS DE BONJEAN

A continuación se presentan las curvas de Bonjean para un rango de calados de 0 a 6,0 m, en intervalos de medio metro.

3 LOS BRAZOS DE ADRIZAMIENTO

El cálculo de carenas inclinadas ofrece, en este tipo de buques, unos resultados de brazos de adrizamiento muy altos, debido a la gran superestructura que poseen.

El cálculo se realizará para los ángulos de escora de 5, 10, 15, 20, 30, 40, 50 y 60°, pudiendo trimar libremente, y considerando las superficies libres de los tanques.

El brazo de adrizamiento se obtiene a partir del valor de KN, de la altura del centro de gravedad del buque, KG y del ángulo de escora θ , por medio de la expresión:

$$GZ = KN - KG \cdot \text{sen }(\theta)$$

3.1 EL PUNTO DE INUNDACIÓN PROGRESIVA

Consideraremos el punto de inundación progresiva como el punto más bajo a partir del cual se produce la inundación del espacio interior del buque. El buque es estanco hasta la cubierta de francobordo, pero por encima de ésta, la superestructura aún es capaz de resistir la entrada de agua.

El primer punto en el que se produce la inundación se corresponde con el borde inferior de las ventanas situadas en la cubierta número 5. Estas ventanas de las cubiertas ya han dejado de ser estancas a la intemperie y por tanto son un punto para la posible entrada de agua al interior.

El punto considerado como de inundación progresiva se encuentra a 14,8 m sobre la línea de base. Dicho punto se mantiene sobre la superficie del agua hasta que se alcanza una escora de 47,38°.

3.2 LA TABLA DE ISOCLINAS

D	KN (°)									
Desplazamiento (T)	2	4	6	8	10	12	14	16	18	20
8000	0,445	0,889	1,331	1,770	2,207	2,641	3,071	3,497	3,918	4,332
8053	0,444	0,888	1,329	1,768	2,204	2,637	3,067	3,492	3,913	4,327
8105	0,444	0,887	1,328	1,766	2,202	2,634	3,063	3,488	3,908	4,322

URRUTIA NEBREDA, Juan

D (T)	KN (°)									
Desplazamiento (T)	2	4	6	8	10	12	14	16	18	20
8158	0,443	0,886	1,326	1,764	2,199	2,631	3,059	3,484	3,904	4,317
8211	0,443	0,884	1,324	1,762	2,196	2,627	3,056	3,480	3,899	4,313
8263	0,442	0,883	1,323	1,759	2,193	2,624	3,052	3,476	3,895	4,308
8316	0,442	0,882	1,321	1,757	2,191	2,621	3,048	3,472	3,890	4,303
8368	0,441	0,881	1,320	1,755	2,188	2,618	3,045	3,468	3,886	4,299
8421	0,441	0,880	1,318	1,753	2,186	2,615	3,041	3,464	3,882	4,294
8474	0,440	0,879	1,316	1,751	2,183	2,612	3,038	3,460	3,878	4,290
8526	0,440	0,878	1,315	1,749	2,181	2,609	3,034	3,456	3,873	4,285
8579	0,439	0,877	1,313	1,747	2,178	2,606	3,031	3,452	3,869	4,281
8614	0,439	0,877	1,312	1,746	2,176	2,604	3,029	3,450	3,866	4,278
8632	0,439	0,876	1,312	1,745	2,176	2,603	3,027	3,448	3,865	4,276
8684	0,438	0,875	1,310	1,743	2,173	2,600	3,024	3,445	3,861	4,272
8737	0,438	0,874	1,309	1,741	2,171	2,597	3,021	3,441	3,857	4,268
8789	0,437	0,873	1,307	1,739	2,168	2,594	3,018	3,437	3,853	4,264
8842	0,437	0,872	1,306	1,737	2,166	2,592	3,014	3,434	3,849	4,259
8895	0,436	0,871	1,304	1,735	2,164	2,589	3,011	3,430	3,845	4,255
8947	0,436	0,870	1,303	1,733	2,161	2,586	3,008	3,427	3,841	4,251
9000	0,435	0,869	1,302	1,732	2,159	2,583	3,005	3,423	3,837	4,247
Desplazamiento (T)					ΚN	<i>I</i> (°)				
	22	24	26	28	30	35	40	45	55	60
8000	4,737	5,128	5,502	5,857	6,193	6,962	7,648	8,279	9,462	9,994

4,732 5,124 5,498 5,853 6,190 6,961 7,649 8,280 9,467 10,000

4,727 5,119 5,494 5,850 6,188 6,960 7,649 8,282 9,472 10,007

URRUTIA NEBREDA, Juan

8053

8105

D	KN (°)									
Desplazamiento (T)	22	24	26	28	30	35	40	45	55	60
8158	4,722	5,114	5,490	5,846	6,185	6,959	7,650	8,284	9,476	10,014
8211	4,718	5,110	5,485	5,843	6,182	6,958	7,650	8,285	9,481	10,021
8263	4,713	5,105	5,481	5,839	6,179	6,956	7,650	8,287	9,485	10,028
8316	4,708	5,101	5,477	5,836	6,176	6,955	7,651	8,289	9,489	10,035
8368	4,704	5,096	5,473	5,832	6,174	6,954	7,651	8,290	9,494	10,041
8421	4,699	5,092	5,469	5,829	6,171	6,953	7,652	8,292	9,498	10,048
8474	4,694	5,087	5,465	5,826	6,168	6,952	7,652	8,294	9,502	10,055
8526	4,690	5,083	5,461	5,822	6,165	6,951	7,653	8,295	9,506	10,062
8579	4,685	5,079	5,457	5,819	6,162	6,950	7,653	8,297	9,510	10,069
8614	4,682	5,076	5,455	5,816	6,161	6,949	7,654	8,298	9,513	10,073
8632	4,681	5,074	5,453	5,815	6,160	6,949	7,654	8,299	9,514	10,075
8684	4,676	5,070	5,449	5,812	6,157	6,948	7,654	8,301	9,518	10,082
8737	4,672	5,066	5,446	5,809	6,154	6,947	7,655	8,303	9,522	10,089
8789	4,667	5,062	5,442	5,805	6,152	6,946	7,655	8,304	9,526	10,095
8842	4,663	5,057	5,438	5,802	6,149	6,945	7,656	8,306	9,529	10,102
8895	4,659	5,053	5,434	5,799	6,146	6,944	7,657	8,308	9,533	10,108
8947	4,655	5,049	5,430	5,795	6,143	6,942	7,657	8,310	9,537	10,115
9000	4,650	5,045	5,426	5,792	6,141	6,941	7,658	8,312	9,541	10,121

3.3 LA TABLA DE CARENAS INCLINADAS

A continuación se da la tabla de características hidrostáticas con el buque quilla a nivel.

Escora (°)	Desplaza miento Cal	Calada a	Colodo o	Eslora en la	Calado	Manga en	Área
			popa (m)	flotación		la flotación	•
	(\mathbf{T})	proa (III)	popa (III)	(m)	(m)	(m)	(\mathbf{m}^2)

Escora (°)	Desplaza miento (T)	Calado a proa (m)	Calado a popa (m)	Eslora en la flotación (m)		Manga en a flotación (m)	Área mojada (m²)
0	8615	5,028	5,703	123,223	5,681	22,350	3047,057
2	8615	5,025	5,701	123,219	5,679	22,364	3046,143
4	8615	5,027	5,685	123,406	5,863	22,405	3044,297
6	8616	5,025	5,662	123,683	6,152	22,473	3039,760
8	8616	5,022	5,630	123,964	6,436	22,569	3036,098
10	8616	5,017	5,587	124,262	6,718	22,695	3031,519
12	8616	5,011	5,535	124,590	6,987	22,849	3027,467
14	8616	5,003	5,473	124,869	7,253	23,034	3022,314
16	8616	4,992	5,400	125,215	7,509	23,229	3018,732
18	8616	4,978	5,317	125,592	7,750	23,433	3015,152
20	8615	4,958	5,223	125,993	7,975	23,640	3011,489
22	8615	4,932	5,117	127,113	8,195	23,728	3006,437
24	8616	4,898	4,998	127,797	8,398	23,513	3000,206
26	8615	4,854	4,863	128,246	8,581	23,084	2991,073
28	8615	4,796	4,711	128,686	8,743	22,541	2980,199
30	8615	4,724	4,541	128,982	8,884	22,008	2969,603
35	8616	4,476	4,025	129,588	9,160	20,995	2947,854
40	8615	4,110	3,360	129,840	9,313	20,413	2933,513
45	8614	3,600	2,510	129,613	9,335	20,277	2922,655
55	8614	1,945	-0,021	128,052	9,034	21,076	2873,748
60	8614	0,616	-2,086	125,978	8,681	21,988	2852,018

Área de la flotación (m²)	Coef. prismático	Coef. de bloque	LCB (m)	VCB desde flotación (m)	GZ (m)	LCF (m)	TCF (m)
2273,978	0,578	0,537	55,968	2,228	0,000	50,481	0,000
2272,846	0,579	0,537	55,958	2,230	0,142	50,511	-0,346
2270,269	0,579	0,518	55,970	2,236	0,284	50,602	-0,695
2264,911	0,579	0,491	55,971	2,245	0,424	50,778	-1,042
2260,552	0,579	0,467	55,972	2,258	0,563	50,960	-1,391
2255,583	0,581	0,444	55,974	2,274	0,701	51,193	-1,738
2251,571	0,583	0,423	55,976	2,293	0,837	51,442	-2,085
2246,742	0,585	0,403	55,979	2,315	0,972	51,753	-2,428
2243,304	0,589	0,385	55,981	2,340	1,105	52,054	-2,776
2239,905	0,593	0,368	55,985	2,368	1,237	52,403	-3,128
2235,212	0,598	0,354	55,988	2,398	1,366	52,750	-3,488
2228,219	0,600	0,340	55,991	2,429	1,491	53,163	-3,864
2217,719	0,605	0,333	55,995	2,460	1,609	53,549	-4,275
2203,410	0,610	0,331	56,000	2,490	1,717	53,925	-4,711
2186,628	0,616	0,331	56,004	2,517	1,812	54,255	-5,161
2173,230	0,621	0,333	56,008	2,540	1,893	54,602	-5,606
2152,634	0,631	0,337	56,020	2,581	2,049	55,286	-6,668
2157,652	0,639	0,340	56,031	2,596	2,158	55,861	-7,636
2189,506	0,648	0,342	56,043	2,590	2,249	56,263	-8,502
2303,717	0,662	0,345	56,062	2,533	2,502	56,605	-10,025
2320,316	0,673	0,349	56,080	2,468	2,666	57,011	-11,072

4 LA CALIBRACIÓN DE TANQUES

4.1 LA TABLA DE CAPACIDADES

4.1.1 El combustible

Sondas (m) '	'Ullage'' (m)	Llenado (%)	Capacidad (m ³)	Capacidad (T)	LCG (m)	TCG (m)	VCG (m)	FSM $(T \cdot m)$
6,500	0,000	100,000	808,660	763,618	68,451	0,000	4,779	0,000
6,371	0,129	98,000	792,406	748,269	68,450	0,000	4,714	1874,831
6,250	0,250	96,100	777,151	733,864	68,450	0,000	4,654	1874,608
6,000	0,500	92,200	745,645	704,113	68,449	0,000	4,528	1874,148
5,750	0,750	88,300	714,141	674,364	68,448	0,000	4,402	1873,685
5,500	1,000	84,400	682,641	644,617	68,447	0,000	4,277	1873,093
5,250	1,250	80,500	651,144	614,875	68,445	0,000	4,151	1872,361
5,000	1,500	76,600	619,651	585,136	68,444	0,000	4,025	1871,611
4,750	1,750	72,700	588,162	555,402	68,442	0,000	3,900	1870,840
4,500	2,000	68,800	556,678	525,671	68,441	0,000	3,774	1869,823
4,250	2,250	64,900	525,201	495,948	68,439	0,000	3,648	1868,579
4,000	2,500	61,100	493,731	466,231	68,437	0,000	3,522	1867,134
3,750	2,750	57,200	462,272	436,523	68,434	0,000	3,396	1865,013
3,500	3,000	53,300	430,826	406,829	68,432	0,000	3,270	1861,906
3,250	3,250	49,400	399,402	377,155	68,429	0,000	3,143	1857,382
3,000	3,500	45,500	368,009	347,511	68,426	0,000	3,017	1850,948
2,750	3,750	41,600	336,657	317,905	68,422	0,000	2,890	1842,722
2,500	4,000	37,800	305,359	288,350	68,418	0,000	2,764	1832,272

Sondas (m)	"Ullage" (m)	Llenado (%)	Capacidad (m ³)	Capacidad (T)	LCG (m)	TCG (m)	VCG (m)	FSM (T·m)
2,250	4,250	33,900	274,127	258,859	68,414	0,000	2,637	1819,338
2,000	4,500	30,000	242,978	229,444	68,409	0,000	2,511	1803,818
1,750	4,750	26,200	211,928	200,123	68,404	0,000	2,384	1785,257
1,500	5,000	22,400	180,997	170,916	68,398	0,000	2,257	1763,128
1,250	5,250	18,600	150,211	141,844	68,392	0,000	2,131	1736,754
1,000	5,500	14,800	119,600	112,938	68,385	0,000	2,004	1704,697
0,750	5,750	11,000	89,209	84,240	68,378	0,000	1,877	1664,507
0,500	6,000	7,300	59,099	55,807	68,371	0,000	1,751	1614,847
0,250	6,250	3,600	29,336	27,702	68,363	0,000	1,625	1554,994
0,069	6,431	1,000	8,056	7,607	68,357	0,000	1,535	1504,848

4.1.2 El agua dulce

Sondas (m)	"Ullage" (m)	Llenado (%)	Capacidad (m³)	Capacidad (T)	LCG (m)	TCG (m)	VCG (m)	FSM (T·m)
6,500	0,000	100,000	630,499	630,499	79,140	0,000	4,907	0,000
6,379	0,121	98,000	617,826	617,826	79,139	0,000	4,844	1639,319
6,250	0,250	95,800	604,323	604,323	79,138	0,000	4,778	1638,104
6,000	0,500	91,700	578,160	578,160	79,135	0,000	4,649	1635,403
5,750	0,750	87,600	552,012	552,012	79,132	0,000	4,520	1632,411
5,500	1,000	83,400	525,881	525,881	79,129	0,000	4,391	1629,124
5,250	1,250	79,300	499,769	499,769	79,125	0,000	4,261	1625,052
5,000	1,500	75,100	473,681	473,681	79,122	0,000	4,131	1620,279
4,750	1,750	71,000	447,623	447,623	79,118	0,000	4,000	1613,706
4,500	2,000	66,900	421,606	421,606	79,113	0,000	3,869	1605,002

Sondas (m) "	Ullage" (m)	Llenado (%)	Capacidad (m³)	Capacidad (T)	LCG (m)	TCG (m)	VCG (m)	<i>FSM</i> (T·m)
4,250	2,250	62,800	395,647	395,647	79,108	0,000	3,737	1592,024
4,000	2,500	58,600	369,772	369,772	79,103	0,000	3,605	1574,125
3,750	2,750	54,600	344,012	344,012	79,097	0,000	3,472	1550,430
3,500	3,000	50,500	318,402	318,402	79,091	0,000	3,339	1520,470
3,250	3,250	46,500	292,979	292,979	79,085	0,000	3,206	1483,973
3,000	3,500	42,500	267,785	267,785	79,078	0,000	3,073	1440,989
2,750	3,750	38,500	242,867	242,867	79,071	0,000	2,939	1391,112
2,500	4,000	34,600	218,272	218,272	79,064	0,000	2,805	1333,812
2,250	4,250	30,800	194,055	194,055	79,057	0,000	2,672	1270,142
2,000	4,500	27,000	170,266	170,266	79,050	0,000	2,539	1201,626
1,750	4,750	23,300	146,949	146,949	79,043	0,000	2,406	1129,688
1,500	5,000	19,700	124,142	124,142	79,036	0,000	2,274	1055,644
1,250	5,250	16,200	101,880	101,880	79,029	0,000	2,142	980,492
1,000	5,500	12,700	80,197	80,197	79,023	0,000	2,012	904,506
0,750	5,750	9,400	59,130	59,130	79,016	0,000	1,882	828,302
0,500	6,000	6,100	38,714	38,714	79,009	0,000	1,753	752,314
0,250	6,250	3,000	18,989	18,989	79,003	0,000	1,626	676,924
0,084	6,416	1,000	6,289	6,289	78,998	0,000	1,542	626,915

4.1.3 El aceite lubricante

Sondas (m)	"Ullage" (m)	Llenado (%)	Capacidad (m³)	Capacidad (T)	LCG (m)	TCG (m)	VCG (m)	<i>FSM</i> (T·m)
1,495	0,000	100,000	76,527	70,405	52,823	0,000	0,799	0,000
1,467	0,028	98,000	74,989	68,990	52,823	0,000	0,785	889,066

Sondas (m)	"Ullage" (m)	Llenado (%)	Capacidad (m³)	Capacidad (T)	LCG (m)	TCG (m)	VCG (m)	FSM (T·m)
1,400	0,095	93,100	71,220	65,522	52,824	0,000	0,751	886,498
1,300	0,195	85,800	65,642	60,390	52,826	0,000	0,699	882,044
1,200	0,295	78,500	60,074	55,268	52,828	0,000	0,648	876,616
1,100	0,395	71,200	54,519	50,158	52,830	0,000	0,596	869,723
1,000	0,495	64,000	48,982	45,063	52,833	0,000	0,544	859,688
0,900	0,595	56,800	43,470	39,993	52,836	0,000	0,492	846,197
0,800	0,695	49,600	37,993	34,954	52,840	0,000	0,440	827,135
0,700	0,795	42,600	32,565	29,960	52,844	0,000	0,388	802,048
0,600	0,895	35,500	27,202	25,026	52,849	0,000	0,335	769,262
0,500	0,995	28,700	21,926	20,172	52,855	0,000	0,282	727,186
0,400	1,095	21,900	16,766	15,425	52,864	0,000	0,228	671,918
0,300	1,195	15,400	11,769	10,828	52,877	0,000	0,175	597,839
0,200	1,295	9,200	7,022	6,461	52,896	0,000	0,120	488,393
0,100	1,395	3,600	2,765	2,544	52,923	0,000	0,064	289,326
0,040	1,455	1,000	0,759	0,698	52,946	0,000	0,029	107,815

4.1.4 Los tanques antiescora

Sondas (m)	'Ullage'' (m)	Llenado (%)	Capacidad (m ³)	Capacidad (T)	LCG (m)	TCG (m)	VCG (m)	FSM (T·m)
6,500	0,000	100,000	434,374	445,32	34,670	0,000	4,934	0,000
6,380	0,120	98,000	425,644	436,37	34,670	0,000	4,872	193,644
6,250	0,250	95,800	416,252	426,74	34,670	0,000	4,806	193,621
6,000	0,500	91,700	398,132	408,164	34,671	0,000	4,678	193,513
5,750	0,750	87,500	380,016	389,592	34,672	0,000	4,549	193,327

Sondas (m)	"Ullage" (m)	Llenado (%)	Capacidad (m ³)	Capacidad (T)	LCG (m)	TCG (m)	VCG (m)	FSM (T·m)
5,500	1,000	83,300	361,906	371,026	34,673	0,000	4,420	193,047
5,250	1,250	79,200	343,808	352,472	34,675	0,000	4,291	192,656
5,000	1,500	75,000	325,724	333,932	34,676	0,000	4,162	192,158
4,750	1,750	70,800	307,658	315,41	34,677	0,000	4,032	191,535
4,500	2,000	66,700	289,612	296,91	34,679	0,000	3,901	190,763
4,250	2,250	62,500	271,594	278,438	34,681	0,000	3,770	189,834
4,000	2,500	58,400	253,608	260	34,683	0,000	3,639	188,660
3,750	2,750	54,300	235,67	241,61	34,685	0,000	3,506	186,830
3,500	3,000	50,100	217,806	223,296	34,687	0,000	3,374	183,987
3,250	3,250	46,100	200,052	205,092	34,689	0,000	3,240	180,106
3,000	3,500	42,000	182,44	187,038	34,692	0,000	3,107	175,245
2,750	3,750	38,000	165,008	169,166	34,695	0,000	2,973	169,496
2,500	4,000	34,000	147,788	151,512	34,699	0,000	2,838	162,912
2,250	4,250	30,100	130,812	134,108	34,703	0,000	2,704	155,645
2,000	4,500	26,300	114,112	116,988	34,707	0,000	2,569	147,728
1,750	4,750	22,500	97,726	100,188	34,713	0,000	2,434	138,947
1,500	5,000	18,800	81,716	83,774	34,719	0,000	2,298	128,686
1,250	5,250	15,200	66,17	67,838	34,726	0,000	2,163	116,616
1,000	5,500	11,800	51,2	52,49	34,735	0,000	2,027	102,910
0,750	5,750	8,500	36,936	37,866	34,745	0,000	1,892	87,854
0,500	6,000	5,400	23,522	24,114	34,757	0,000	1,759	71,810
0,250	6,250	2,600	11,132	11,412	34,773	0,000	1,628	55,352
0,101	6,399	1,000	4,344	4,454	34,788	0,000	1,551	45,538

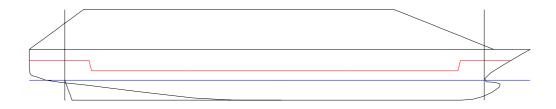
5 LAS ESLORAS INUNDABLES

5.1 LOS MAMPAROS ESTANCOS

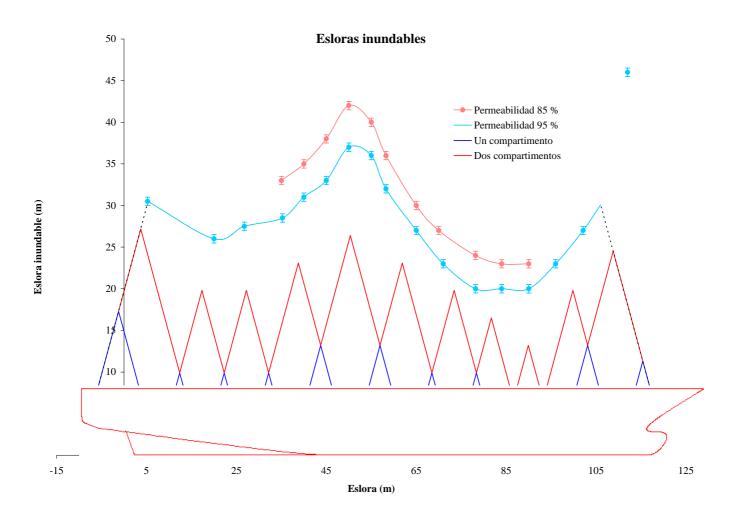
Los espacios situados por debajo de la cubierta principal estarán divididos por mamparos estancos para lograr una subdivisión adecuada que asegure la supervivencia del buque en caso de inundación.

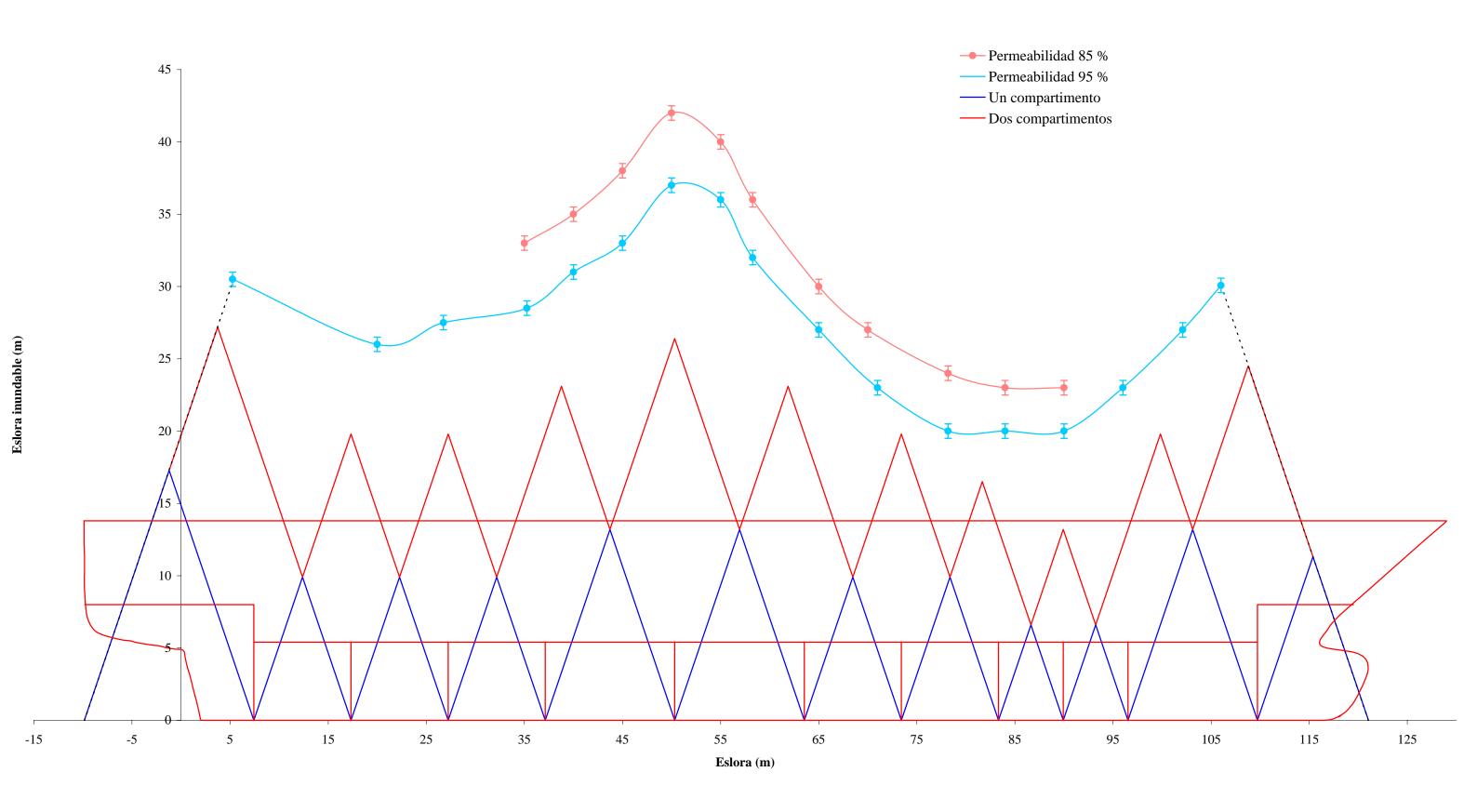
Los mamparos estancos se han hecho coincidir con los mamparos contraincendios para lograr una continuidad en la resistencia contra el fuego.

Cada compartimento estanco dispone de un mínimo de dos salidas, siendo una de ellas una escalera que conduce de manera protegida hasta la zona de embarque o la cubierta expuesta.


Los mamparos estancos adoptados son:

- Mamparo de pique de popa: cuaderna nº 12 (7,425 m).
- Mamparo estanco nº 1: cuaderna nº 24 (17,325 m).
- Mamparo estanco nº 2: cuaderna nº 36 (27,225 m).
- Mamparo CI y estanco nº 3: cuaderna nº 48 (37,125 m).
- Mamparo estanco nº 4: cuaderna nº 64 (50,325 m).
- Mamparo estanco nº 5: cuaderna nº 80 (63,525 m).
- Mamparo estanco nº 6: cuaderna nº 92 (73,425 m).
- Mamparo CI y estanco nº 7: cuaderna nº 104 (83,325 m).
- Mamparo estanco nº 8: cuaderna nº 112 (89,925 m).
- Mamparo estanco nº 9: cuaderna nº 120 (96,525 m).
- Mamparo de pique de proa: cuaderna nº 136 (109,725 m).


5.2 LA LÍNEA DE MARGEN


Se ha tomado como cubierta resistente la cubierta de francobordo, situado a 8,000 m sobre la línea de base. La línea de margen se ha situado 0,076 m por debajo de la cubierta de francobordo (7,924 m) entre el mamparo de pique de popa (cuaderna nº 12) y el mamparo de

pique de proa (cuaderna nº 136). Tanto en la zona del pique de popa como en la zona del pique de proa la línea de margen se ha levantado hasta la cubierta más alta a la que llegan dichos piques (cubierta nº 4, a 10,700 m).

5.3 LA CURVA DE ESLORAS INUNDABLES

6 EL FRANCOBORDO

A continuación se procederá al cálculo del francobordo del buque. Para ello se utilizará el Convenio Internacional de Líneas de Carga (ICLL) de 1966 con las correspondientes enmiendas aprobadas en 1971, 1975 y 1979.

Este convenio es aplicable a nuestro buque ya que no se encuentra en ninguno de los casos exentos que se detallan en los artículos 5 y 6 de dicho convenio.

Los datos necesarios para el cálculo del francobordo son:

- Puntal a la cubierta de francobordo: 8,0 m.
- Puntal mínimo de trazado: 8,0 m.
- Eslora de francobordo: 121,690 m.
- Manga de trazado: 22,350 m.
- Puntal de francobordo: 8,0 m.
- Coeficiente de bloque: 0,567

La eslora de francobordo que se ha adoptado es el 96 % de la eslora en la flotación, calculada a un calado igual al 85 % del puntal de francobordo, por ser ésta mayor que la medida entre la mecha del timón y la cara de proa de la roda correspondiente a esta flotación.

6.1 EL FRANCOBORDO TABULAR

El buque se considera de tipo B. El francobordo tabular se calcula como interpolación en los datos de la tabla de francobordo para buques tipo B. Se obtiene un francobordo tabular de 1,723 m.

$$FB_{tab} = 1,723 \text{ m}$$

6.2 LA CORRECCIÓN POR ESLORA

Al ser la eslora del buque superior a 100 m la corrección por eslora es nula.

$$FB_{correc\ eslora} = 0 \text{ m}$$

6.3 LA CORRECCIÓN POR COEFICIENTE DE BLOQUE

Al ser el coeficiente de bloque del buque inferior a 0,68 la corrección por coeficiente de bloque es nula.

$$FB_{correc\ CB} = 0 \text{ m}$$

6.4 LA CORRECCIÓN POR PUNTAL

Como el puntal de francobordo (D=8,000 m) del buque no excede de $\frac{L}{15}$ (8,113 m) el francobordo no debe aumentarse en: $\left(D-\frac{L}{15}\right)\frac{L}{480\,\mathrm{m}}$. En este caso la corrección por puntal es nula.

$$FB_{correc\ puntal} = 0 \text{ m}$$

6.5 LA CORRECCIÓN POR POSICIÓN DE LA LÍNEA DE CUBIERTA

Como el puntal real hasta el borde superior de la marca de la línea de cubierta es igual al puntal de francobordo, la corrección por posición de la línea de cubierta es nula.

$$FB_{correc\ linea\ cubierta} = 0\ \mathrm{m}$$

6.6 LA CORRECCIÓN POR SUPERESTRUCTURAS

La altura normal de las superestructuras definida en la regla 33 de la ICLL66 para un buque de eslora 121,690 m es de 2,267 m. La altura real de las superestructuras del buque de proyecto es de 2,700 m, lo que corresponde a una cubierta por encima de la cubierta principal. Como esta altura es superior a la normal es por lo que se aplica la presente corrección.

La longitud efectiva de la superestructura se considerará la eslora de francobordo, ya que es totalmente continua y de altura mayor a la normal.

La reducción a efectuar de acuerdo a la regla 37 es de: 1,068 m

$$FB_{correc\ superestructuras} = -1,068 \text{ m}$$

6.7 LA CORRECCIÓN POR ARRUFO

El buque de proyecto cuenta con una superestructura continua hasta una altura de 13,800 m sobre la línea de base. Esto da una altura de superestructura de 5,800 m, mayor que la altura normal de superestructuras. Se define Z como la diferencia entre la altura real de superestructuras y la altura normal.

Situación	Eslora (m)	Ordenada está	ndar (m)	Ordenada	real (m)
Popa	0,000	$25\!\!\left(\frac{L}{3}\!+\!10\right)$	1,264	Z	0,433
$\frac{L}{6}$	20,282	$11,1\left(\frac{L}{3}+10\right)$	0,561	0,444 Z	0,192
$\frac{L}{3}$	40,563	$2.8\left(\frac{L}{3}+10\right)$	0,142	0,111 Z	0,048
Cuaderna maestra	60,845	0	0,000	0	0,0
$L-\frac{L}{3}$	81,127	$5.6\left(\frac{L}{3}+10\right)$	0,283	0,111 Z	0,048
$L-\frac{L}{6}$	101,408	$22,2\left(\frac{L}{3}+10\right)$	1,122	0,444 Z	0,192
Proa	121,690	$50\left(\frac{L}{3}+10\right)$	2,528	Z	0,433

El reglamento de francobordo define los siguientes factores en la regla 38.8

Situación	Factor
Popa	1
$\frac{L}{6}$	3

Situación	Factor
$\frac{L}{3}$	3
Cuaderna maestra	1
$L-\frac{L}{3}$	3
$L-\frac{L}{6}$	3
Proa	1

La suma de los francobordos reales y normales, multiplicados por sus correspondientes factores son:

	Proa	Popa		
Arrufo estándar (m)	6,745	3,373		
Arrufo real (m)	1,154	1,154		
Defecto de arrufo (m)-0,699-0,277				

El defecto de arrufo medio es de: -0,488 m. Así la corrección por exceso de arrufo es este exceso multiplicado por $\left(0,75-\frac{S}{2L}\right)$, siendo S la longitud de las superestructuras cerradas.

$$FB_{correc\ arrufo} = 0,122 \text{ m}$$

6.8 LA CORRECCIÓN POR ALTURA MÍNIMA DE PROA

La altura mínima de proa para un buque de menos de 250 m de eslora es: $\frac{56L}{1000} \left(1 - \frac{L}{500 \,\text{m}}\right) \frac{1,36}{CB + 0,68} = 5,156 \,\text{m}. \,\text{En nuestro caso la altura real de proa es de 8,4 m}$ (13,800 m – 5,400 m), por lo que no se hará ninguna corrección al ser mayor que el mínimo.

 $FB_{correc\ altura\ proa} = 0\ \mathrm{m}$

6.9 EL FRANCOBORDO GEOMÉTRICO

El francobordo geométrico de verano es el francobordo tabular afectado de todas las correcciones anteriormente mencionadas y tiene un valor de 0,777 m.

 $FB_{geom\ verano} = 0,777\ \mathrm{m}$

6.10 EL FRANCOBORDO DE VERANO

El valor de francobordo geométrico obtenido deberá ser corregido por estabilidad, puesto que la situación del disco de francobordo viene condicionada por el calado de proyecto para el que:

- Se ha demostrado que el buque es seguro desde el punto de vista de estabilidad.
- Se han calculado las esloras inundables.

Y por el calado de escantillonado (5,700 m) para el que se realizará el escantillonado y el cálculo de resistencia longitudinal.

Por tanto las últimas correcciones serán:

• Francobordo geométrico: 0,777 m.

• Corrección por escantillonado: 0,300 m.

• Corrección por estabilidad: 1,523 m.

• Francobordo de verano: 2,600 m.

Se puede ver que el puntal a la cubierta principal (8,000 m) menos el francobordo de verano (2,600 m) es el calado de proyecto (5,400 m).

6.11 EL FRANCOBORDO TROPICAL

El francobordo tropical se obtiene restando al francobordo real un cuarentayochoavo del calado de verano. Este vale 2,488 m

URRUTIA NEBREDA, Juan

 $FB_{tropical} = 2,488 \text{ m}$

6.12 EL FRANCOBORDO DE INVIERNO

El francobordo de invierno se obtiene sumando al francobordo geométrico de verano un cuarentayochoavo del calado de verano. Este vale 2,713 m

$$FB_{invierno} = 2,713 \text{ m}$$

6.13 EL FRANCOBORDO DE ATLÁNTICO NORTE, INVIERNO

Para buques de más de 100 m de eslora, coincide con el francobordo de invierno.

$$FB_{Atlántico\ Norte} = 2,713\ \mathrm{m}$$

6.14 EL FRANCOBORDO DE AGUA DULCE

El francobordo de agua dulce se calcula restando del francobordo de verano $\frac{\Delta}{40TPC}$.

$$FB_{agua\ dulce} = 2,508 \text{ m}$$

7 EL ARQUEO

7.1 EL ARQUEO BRUTO

El arqueo bruto de un buque, *GT*, se calcula según la regla 3 del Convenio Internacional sobre Arqueo de Buques, aprobado por una conferencia de la OMI el 23 de junio de 1969 en Londres y que entró en vigor en España en 1982.

Los datos necesarios para este cálculo son V, volumen total de todos los espacios cerrados del buque.

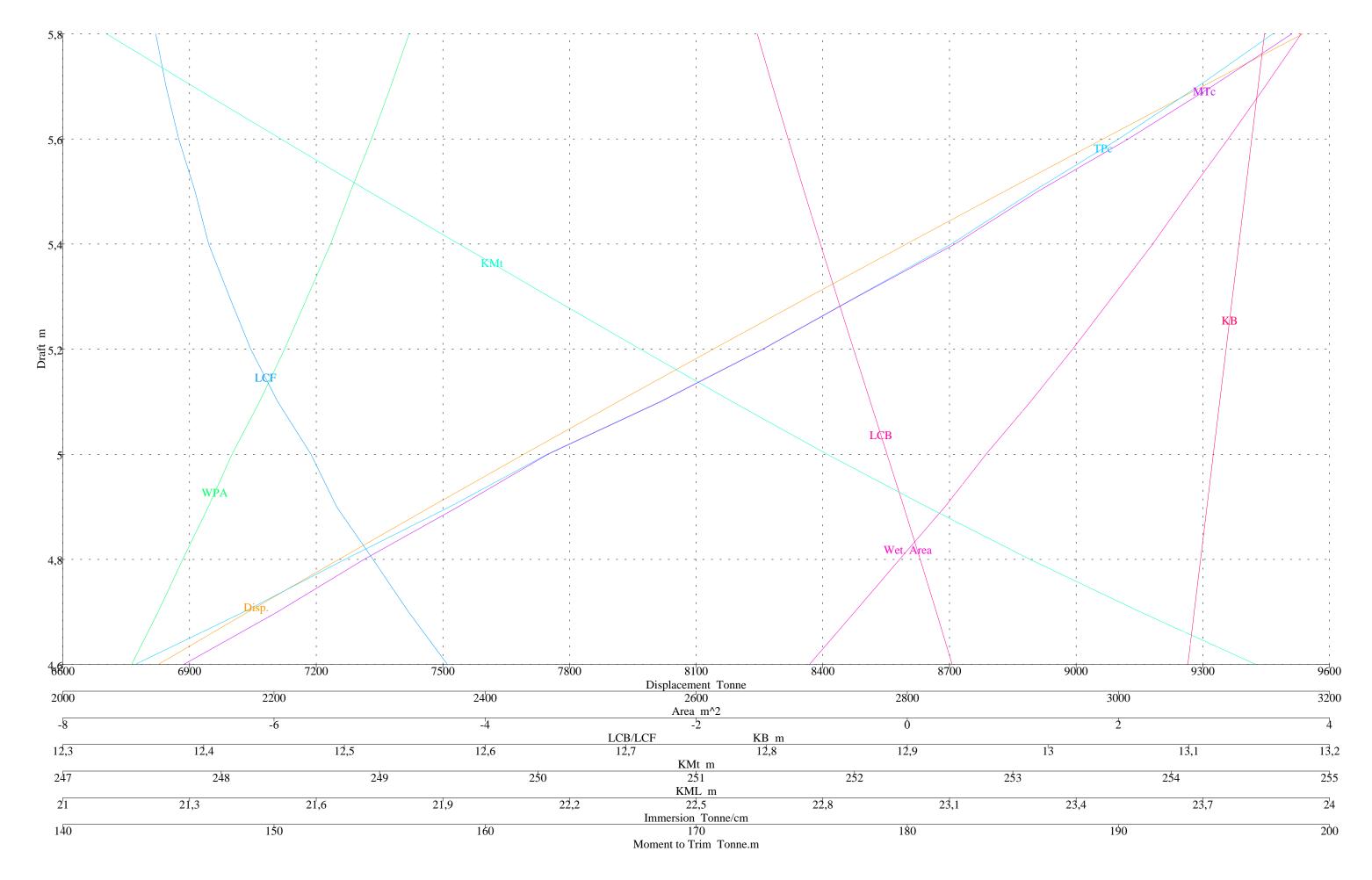
$$GT = (0.2 + 0.02 \log V)V$$

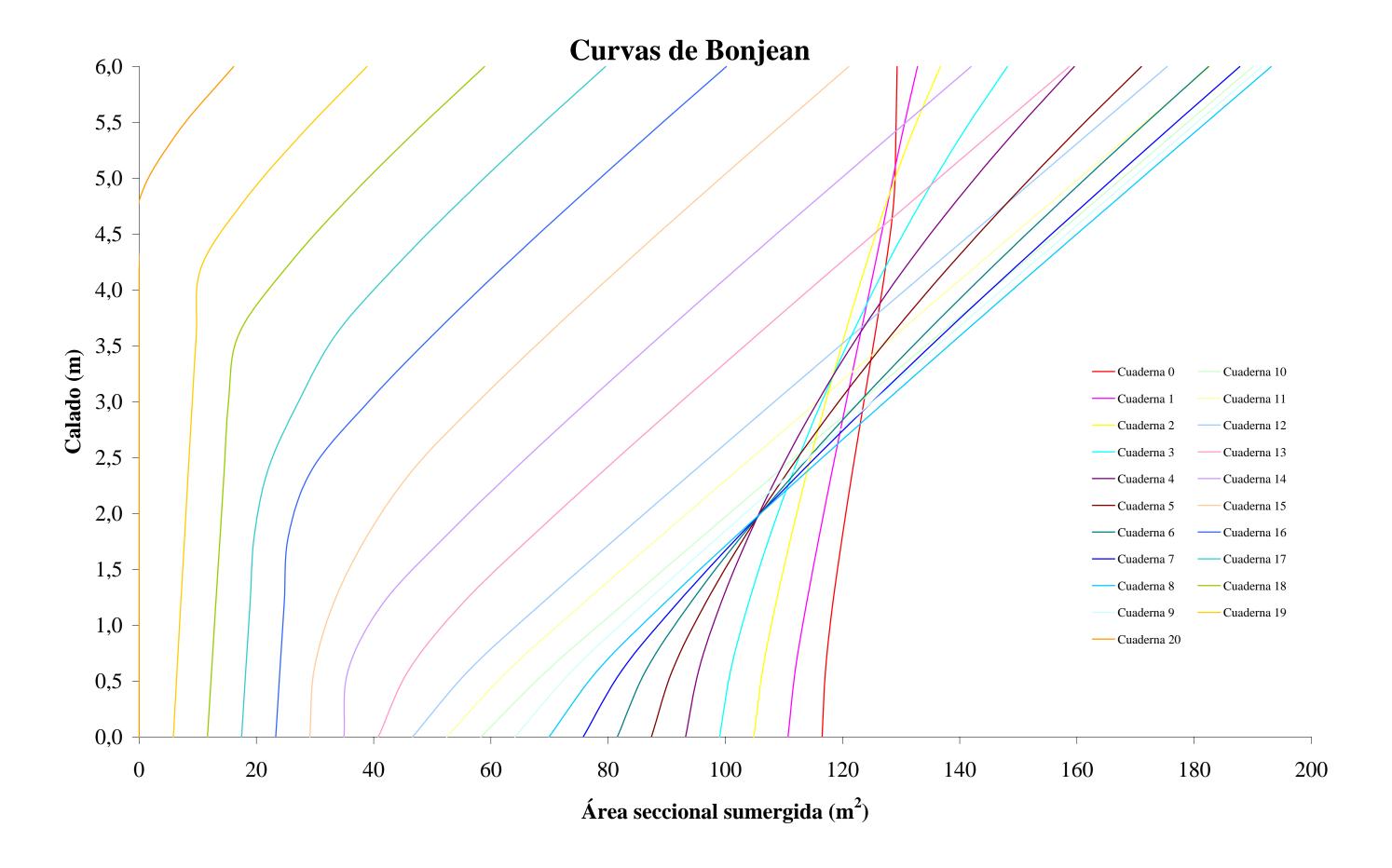
El volumen V se estima en 51228,9 m³, y el arqueo bruto en 15071 GT.

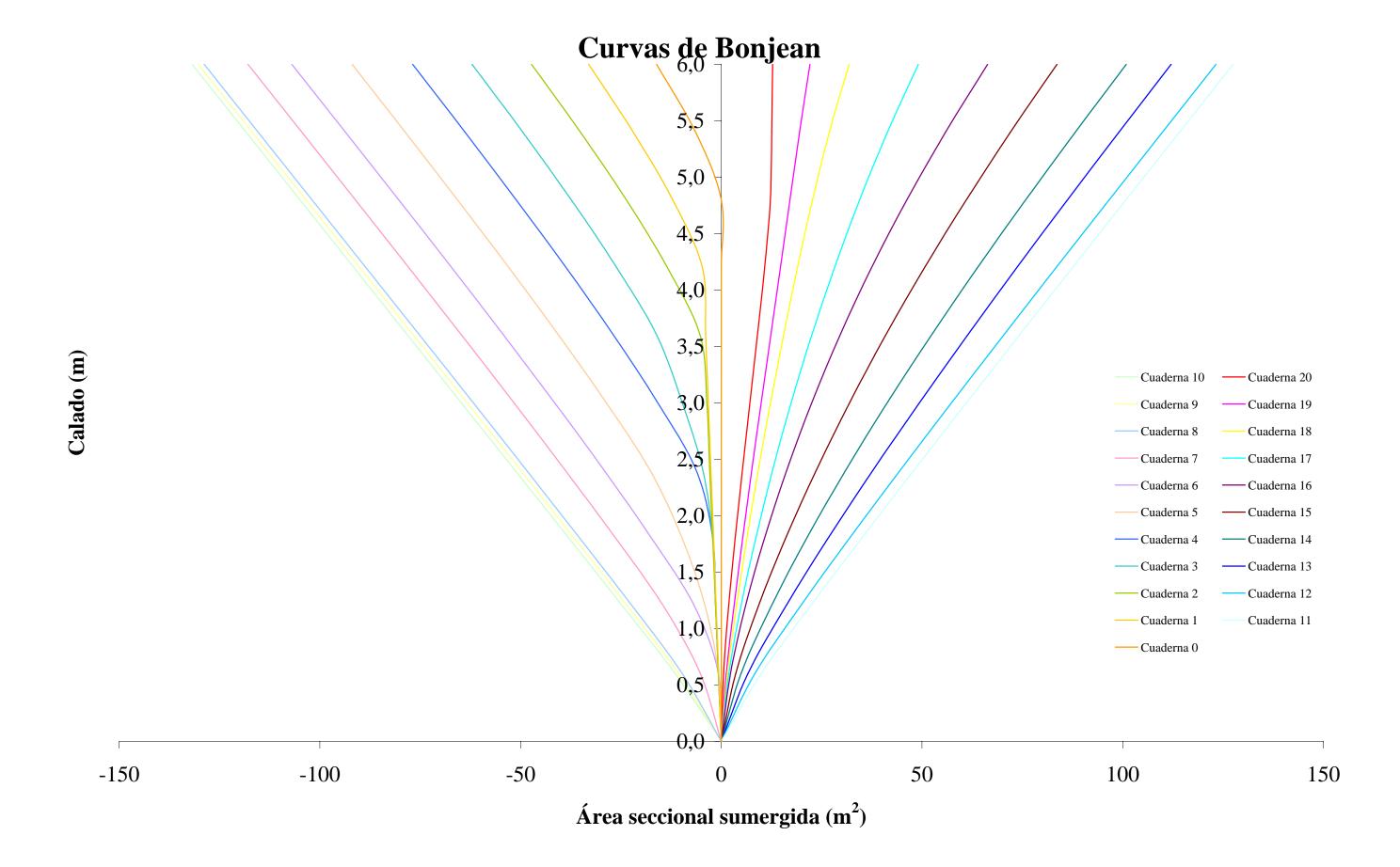
$$GT = 15071 \text{ GT}$$

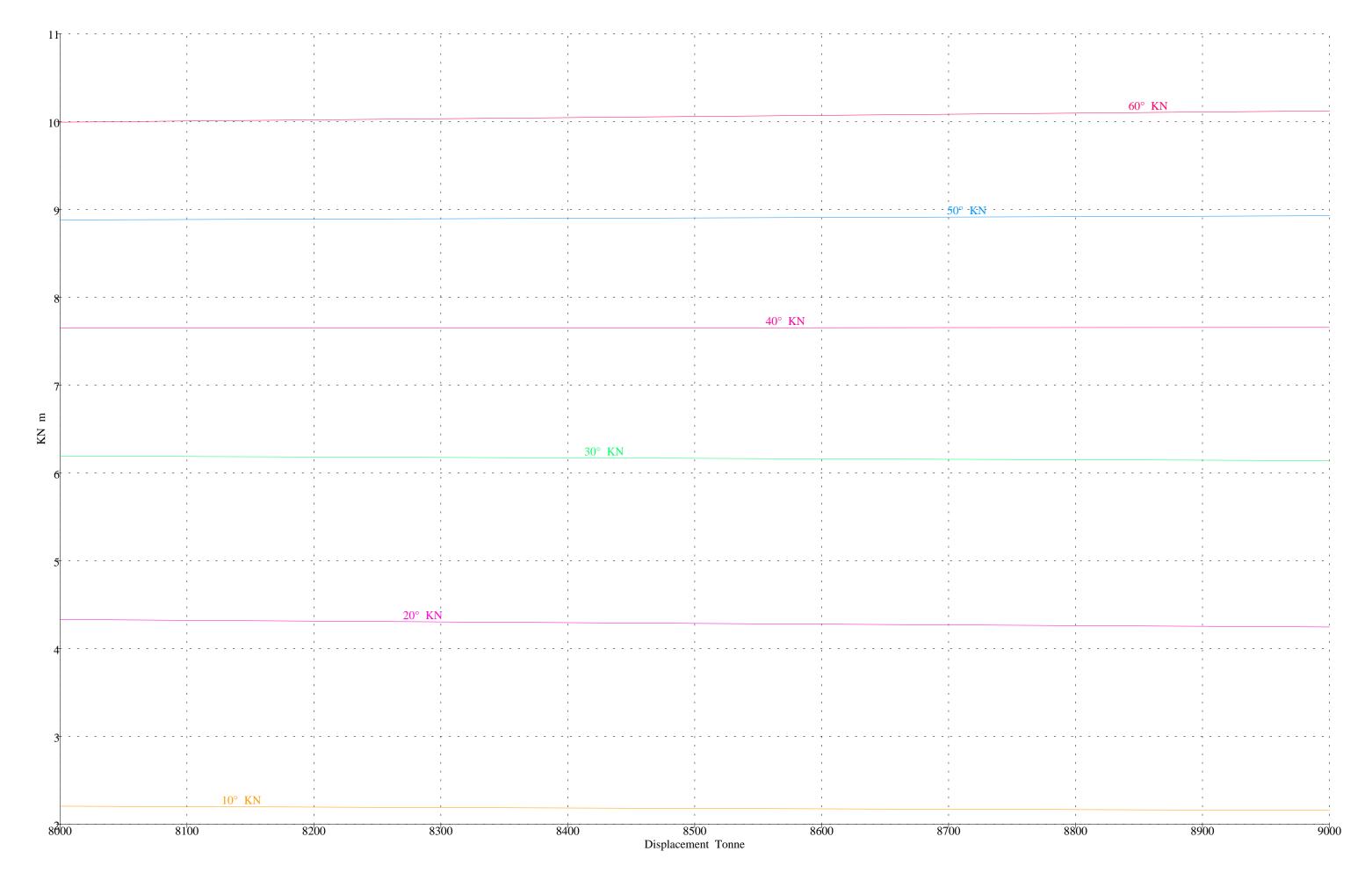
7.2 EL ARQUEO NETO

Según la regla 4 del mencionado convenio, el arqueo neto se calcula como:


$$NT = k_2 V_c \left(\frac{4d}{3D}\right)^2 + k_3 \left(N_1 + \frac{N_2}{10}\right).$$

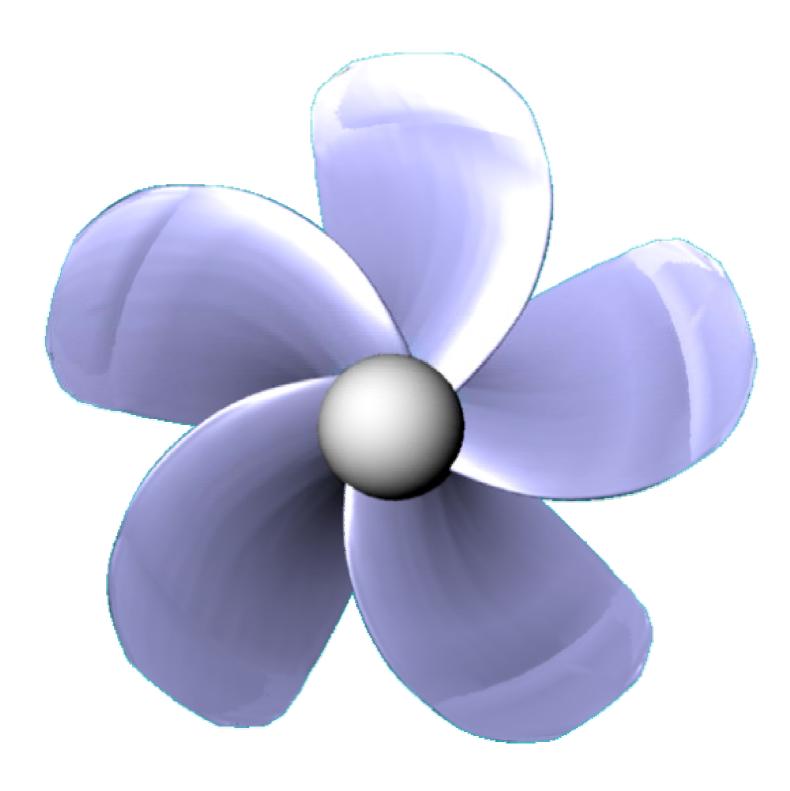

Los datos necesarios son:


- V_c , volumen total de los espacios de carga.
- $k_2 = 0.2 + 0.02 \log V_c$
- d, calado de trazado en el centro del buque.
- D, puntal de trazado en el centro del buque.
- $k_3 = 1,25 \left(\frac{GT + 10000}{10000} \right)$.
- N_I , número de pasajeros en camarotes que no tengan más de ocho literas.
- N_2 , número de los demás pasajeros.


Con estos datos se calcula el arqueo neto como NT = 4551,2 NT, valor que es mayor que 0,3 GT con lo que se acepta como válido.

NT = 4551,2 NT

PROYECTO NÚMERO 1491


Buque de Crucero

Predicción de potencia. Diseño de propulsores y timones.

Tutor: Arias Rodrigo, Carlos

Autores: Urrutia Nebreda, Juan

Vicario González, Jorge

1 EL ÍNDICE

1	El í	índice	3
2	La	introducción	8
3	La	estimación de la potencia propulsora	9
	3.1	La descripción del método	9
	3.2	Los datos de entrada	9
	3.3	Los datos de salida	10
	3.4	La valoración de los resultados	12
	3.5	La obtención de los resultados	12
	3.6	Las curvas de Resistencia al avance – Velocidad y Potencia – Velocidad	13
4	La	elección de los motores principales	15
	4.1	Los motores dentro del rango de potencia	15
5	La	elección del propulsor óptimo	19
	5.1	La elección del tipo de propulsión	19
	5.2	La fijación del número de ejes	19
	5.3	La fijación del número de motores por línea de ejes	20
	5.4	La elección del tipo de hélices	20
	5.4	4.1 Las consideraciones generales	20
	5.5	El tipo de propulsor	20
	5.6	Los datos iniciales	21
	5.7	El desarrollo de los cálculos	21
	5.7	7.1 Los cálculos previos	22
		5.7.1.1 El número de palas	22
		5.7.1.2 La holgura superior	22
		5.7.1.3 La holgura inferior	nido.

Buque ae Crucero	PREDICCION DE POTENCIA, DISENO DE PROPULSORES Y TIMON	E5.
5.7.1.4	El diámetro máximo	. 22
5.7.1.5	La relación área extendida / área proyectada	. 23
5.7.1.6	El rendimiento rotativo – relativo	. 24
5.7.1.7	El coeficiente de estela a igualdad de empuje	. 24
5.7.1.8	El coeficiente de succión	. 24
5.7.1.9	La velocidad de avance	. 25
5.7.1.10	El sentido de giro	. 25
5.8 El resul	tado de los cálculos del propulsor	. 25
5.8.1 Lo	os rendimientos máximo para cada $\frac{H}{D}$. 25
5.9 Las con	clusiones sobre el propulsor óptimo	. 27
6 El diseño del	l propulsor	. 29
6.1 La distr	ribución del paso en las secciones radiales de la hélice	. 29
6.2 La distr	ibución de espesores	. 31
6.2.1 Lo	os datos iniciales	. 32
6.2.2 El	espesor requerido	. 33
6.2.3 El	espesor utilizado	. 33
6.3 Los par	ámetros de las secciones circunferenciales	. 34
7 El cálculo y	diseño del timón	. 36
7.1 Las cara	acterísticas de maniobrabilidad	. 36
	nagnitudes e índices representativos de las características	
7.2.1 La	s magnitudes representativas	. 37
7.2.2 Lo	os índices cualitativos	. 37
7.2.2.1	Para la facilidad de evolución	. 37
7.2.2.2	Para la facilidad de gobierno	. 38
7.2.2.3	Para la facilidad de cambio de rumbo	. 38

7.2	.2.2.3.1 El avance:	38
7.2	.2.2.3.2 El número <i>P</i> :	38
	as relaciones entre los parámetros geométricos de la carena, la fuer lices de maniobrabilidad	
7.3.1	La facilidad de evolución: Índice DG	39
7.3.2	La facilidad de gobierno	39
7.3.2	2.1 El índice T' _m	39
7.3.2	2.2 El ancho del ciclo de histéresis, a _h	40
7.3.3	La facilidad de cambio de rumbo	40
7.3.3	3.1 El número P de Norbin	40
7.3.3	3.2 El avance	41
7.4 Las aceptables. 41	as condiciones de maniobrabilidad del buque. Los criterios n	nínimos
7.4.1	Para la facilidad de evolución	42
7.4.2	Para la facilidad de cambio de rumbo	42
7.5 El ₁	proyecto del timón. El proceso seguido. Los resultados obtenidos	42
7.5.1	El criterio seguido para fijar el número de timones	43
7.5.2	El proceso seguido para el cálculo del timón	43
7.5.2	2.1 El esquema del proceso	44
7.5.3	Los resultados obtenidos. Los otros cálculos.	45
7.5.4	El diseño del timón. Las distribuciones de áreas y espesores	47
7.6 La	a geometría del timón	49
7.6.1	La cartilla de trazado del timón	49
7.6.2	La sección del timón	52
7.6.3	El diseño esquemático del timón	52
7.6.4	La distribución de espesores del timón	53
7.6.5	La distribución de carga en el timón	53

	7.6.6	Las fuerzas en el timón	54
8	La biblio	ografía	56
9	Los anex	KOS	57
	9.1 Las	variaciones de $\frac{H}{D}$	57
	9.1.1	$\frac{H}{D} = 0.50$	57
	9.1.2	$\frac{H}{D} = 0.59$	60
	9.1.3	$\frac{H}{D} = 0.68$	63
	9.1.4	$\frac{H}{D} = 0.77$	67
	9.1.5	$\frac{H}{D} = 0.86$	70
	9.1.6	$\frac{H}{D} = 0.95$	74
	9.1.7	$\frac{H}{D} = 1,04$	77
	9.1.8	$\frac{H}{D} = 1,13$	80
	9.1.9	$\frac{H}{D} = 1,22$	84
	9.1.10	$\frac{H}{D} = 1,31$	87
	9.1.11	$\frac{H}{D} = 1,40$	90
	9.2 La	cartilla de trazado del propulsor	94
	9.2.1	$\frac{r}{R} = 0.2$	94

9.2.2	$\frac{r}{R} = 0.3$	95
9.2.3	$\frac{r}{R} = 0.4$	97
9.2.4	$\frac{r}{R} = 0.5$	99
9.2.5	$\frac{r}{R} = 0.6$	101
9.2.6	$\frac{r}{R} = 0.7$	103
9.2.7	$\frac{r}{R} = 0.8.$	105
9.2.8	$\frac{r}{R} = 0.9.$	106
9.2.9	$\frac{r}{R} = 1,0$	108

2 LA INTRODUCCIÓN

En este cuaderno se desarrollarán los cálculos necesarios para el diseño de los propulsores, dentro de los cuales ha de ser incluido el cálculo de la potencia necesaria para propulsar el buque a la velocidad requerida por las condiciones de proyecto. También se incluyen aquí los cálculos para el diseño del timón.

Durante el predimensionamiento del buque se hizo una primera estimación de las necesidades de potencia para la propulsión, cuando aún éste no estaba por completo definido. En este punto nos encontramos con que conocemos no sólo las dimensiones principales sino las formas del casco y podemos permitirnos hacer una predicción de potencia mucho más ajustada a la realidad que en etapas anteriores.

No podemos pasar por alto que los que aquí se desarrolla es sólo una forma teórica de estimar la potencia, pudiéndose siempre recurrir a ensayos de canal para comprobar la validez de nuestras afirmaciones.

Las hélices del buque serán de paso variable debido a la gran flexibilidad que ofrecen en cuanto al régimen de navegación como a la maniobrabilidad. El punto óptimo de funcionamiento escogido para el diseño de las hélices es tal que funcionando el motor al 85 % de la potencia nominal en condiciones de pruebas, las hélices sean capaces de propulsar el buque a 19 nudos. No se indica nada sobre las revoluciones del motor ya que. Como se verá más adelante, será los más apropiado la utilización de motores de tipo semirrápido, por lo que las revoluciones de éstos no afectan a las del propulsor en tanto que será necesaria la utilización de reductoras.

Los propulsores, como se explicará más adelante, se proyectarán mediante la utilización de la "Serie B del Canal de Wageningen", usando los polinomios $K_T - K_Q$ para optimizar el rendimiento de los mismos.

Los timones se desarrollarán con las directrices proporcionadas por D. Antonio Baquero en su Tesis Doctoral y siguiendo las recomendaciones de Det Norske Veritas en cuanto a su escantillonado.

3 LA ESTIMACIÓN DE LA POTENCIA PROPULSORA

3.1 LA DESCRIPCIÓN DEL MÉTODO

Para la estimación de la potencia propulsora se comentó en el cuaderno 1 la existencia de dos métodos claramente diferenciados como son el ensayo de un modelo del buque en un canal de ensayos hidrodinámicos o la utilización de un método basado en regresiones.

Debido a la falta de datos sobre ensayos en canal de buques similares se ha decidido emplear el método de Holtrop para estimar la potencia de remolque necesaria; método que se basa en el trabajo presentado por Holtrop en 1982 como resultado del análisis de regresión de una muestra de buques constituida por 1707 ensayos de remolque y 1287 ensayos de autopropulsión.

Como datos de entrada para este método se han utilizado los siguientes:

3.2 Los datos de entrada

Parámetro		Valor	Unidad
Eslora entre perpendiculares	L_{pp}	116,532	m
Eslora en la flotación	L_{flot}	123,220	m
Manga de trazado	В	22,350	m
Volumen de desplazamiento	V	8405,277	m^3
Calado medio	T_m	5,400	m
Coeficiente de bloque	СВ	0,569	
Coeficiente de la maestra	CM	0,980	
Coeficiente prismático	CP	0,580	
Coeficiente de la flotación	CF	0,826	
Posición longitudinal del centro de carena	x_{CC}	-2,296	$\%~L_{pp}$
Coeficiente de formas de popa		0	

Parámetro		Valor	Unidad
Área transversal del bulbo de proa	A_{bt}	7,719	m^2
Altura del centro de gravedad de la sección transversal del bulbo de proa	T_b	1,676	m
Área transversal del espejo de popa	A_{spj}	0,000	m^2
Semiángulo de ataque de la flotación	E_{flot}	21	o
Superficie mojada	S_m	3047,016	m^2
Viscosidad cinemática del agua	ν	$1,188 \cdot 10^{-6}$	$m^2 \cdot s^{-1}$
Densidad del agua	ρ	1025,000	$\text{kg}\cdot\text{m}^{-3}$
Rugosidad del casco	R	150	μm

Apéndices	Factor de forma (1 + <i>k</i> ₂)	Superficie				
Quillote	1,70	200,00	m^2			
Timones	2,80	80,00	m^2			
Ejes	3,00	45,00	m^2			

Hélices de maniobra	Cbto	Diámetro	
Hélice de maniobra a proa	0,005	1,500	m

3.3 LOS DATOS DE SALIDA

Dato	Valor			
Factor de forma	1 + k	1,184		
Coeficiente de correlación	CA	0,000475		

La resistencia de remolque total se calcula mediante el procedimiento tridimensional de Hughes utilizando la línea básica de fricción ITTC-57. Esta resistencia total se ha considerado descompuesta en los siguientes términos:

- R_{apend} , resistencia debida a los apéndices del buque.
- R_{olas} , resistencia por formación de olas.
- R_{bulbo} , resistencia por presión producida en el bulbo.
- R_{visc} , resistencia viscosa o friccional.
- R_{spi} , resistencia de presión en el espejo de popa.
- R_{corr} , resistencia ficticia debida a la correlación modelo—buque.

A continuación se presentan los resultados de la aplicación del procedimiento de Hughes.

v (kn)	Fr	Re	$R_{ap\acute{e}nd} \ ({f N})$	Rolas (N)	$egin{aligned} R_{bulbo} \ (\mathbf{N}) \end{aligned}$	R_{visc} (N)	R_{spj} (N)	$egin{aligned} R_{corr} \ (\mathbf{N}) \end{aligned}$	R_{total} (N)	EHP (CV)
1	0,015	53344986	226,4	0,0	1,8	846,4	0,0	180,6	1411,3	1,0
2	0,030	106689972	821,1	0,0	14,0	3056,1	0,0	722,4	5177,1	7,2
3	0,044	160034959	1748,9	0,0	46,9	6491,4	0,0	1625,3	11109,5	23,3
4	0,059	213379945	2993,5	0,0	110,1	11089,1	0,0	2889,5	19127,1	53,6
5	0,074	266724931	4544,5	0,0	212,4	16808,1	0,0	4514,8	29179,3	102,1
6	0,089	320069917	6394,2	0,4	361,5	23618,0	0,0	6501,4	41230,6	173,1
7	0,104	373414904	8536,3	5,1	564,0	31495,2	0,0	8849,1	55257,3	270,7
8	0,118	426759890	10965,9	35,0	825,2	40420,1	0,0	11558,0	71257,7	399,0
9	0,133	480104876	13678,9	160,5	1149,2	50376,4	0,0	14628,1	89282,6	562,4
10	0,148	533449862	16671,6	550,5	1538,8	61349,9	0,0	18059,4	109483,1	766,3
11	0,163	586794848	19940,8	1524,4	1995,5	73328,2	0,0	21851,9	132162,3	1017,5
12	0,178	640139835	23483,7	3589,9	2519,6	86300,3	0,0	26005,5	157812,7	1325,5
13	0,192	693484821	27297,7	7453,6	3110,8	100256,3	0,0	30520,4	187126,0	1702,7
14	0,207	746829807	31380,7	14034,9	3767,6	115187,2	0,0	35396,4	221007,2	2165,6
15	0,222	800174793	35730,4	24269,8	4487,9	131084,8	0,0	40633,6	260378,5	2733,7

v (kn)	Fr	Re	R _{apénd} (N)	Rolas (N)	$egin{aligned} R_{bulbo} \ (\mathbf{N}) \end{aligned}$	R_{visc} (N)	R_{spj} (N)		R_{total} (N)	EHP (CV)
16	0,237	853519780	40344,9	39115,4	5269,2	147941,5	0,0	46232,0	306183,4	3428,9
17	0,252	906864766	45222,5	61268,4	6108,2	165750,5	0,0	52191,6	361105,5	4296,7
18	0,266	960209752	50361,5	93086,1	7001,7	184505,2	0,0	58512,4	427489,5	5385,8
19	0,281	1013554738	55760,3	131523,2	7946,1	204199,5	0,0	65194,4	502277,7	6679,6
20	0,296	1066899724	61417,5	170743,7	8937,8	224827,8	0,0	72237,5	579622,4	8113,8

3.4 LA VALORACIÓN DE LOS RESULTADOS

A la vista de los resultados precedentes podemos sacar algunas conclusiones.

- La resistencia por presión en el espejo de popa es nula, ya que las formas elegidas no tienen popa de espejo.
- Las características elegidas para el bulbo ofrecen resultados satisfactorios en cuanto a reducción de resistencia por formación de olas, mientras que por sí mismos ofrecen una resistencia de presión muy baja, sobre todo a velocidades cercanas a la de proyecto.
- Al comparar la influencia de la resistencia viscosa y la resistencia por formación de olas sobre la resistencia total se deduce que:
 - A velocidades bajas, número de Froude por debajo de 0,25, la resistencia friccional tiene una mayor preponderancia que la resistencia por formación de olas.
 - A velocidades altas, número de Froude por encima de 0,25, y en particular a la velocidad de proyecto (19 kn) se observa que ambos términos tienden a igualarse.

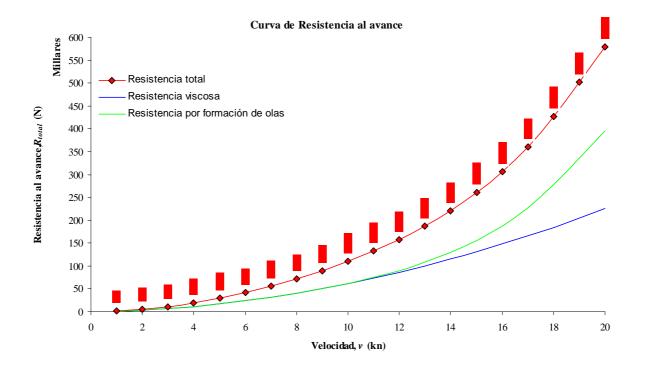
3.5 LA OBTENCIÓN DE LOS RESULTADOS

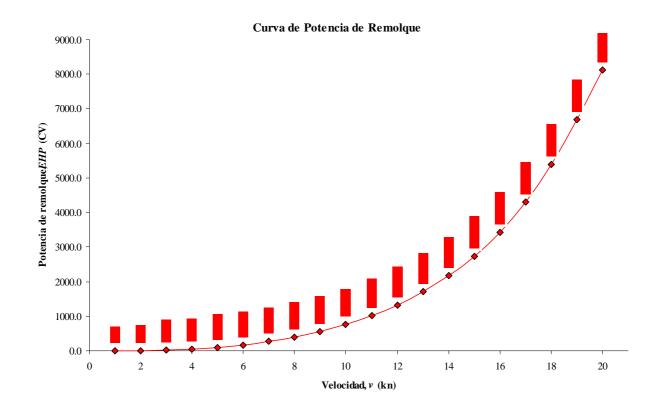
Con estos datos y con la velocidad de proyecto v = 19 kn se ha obtenido la resistencia de remolque y la potencia.

$$R = 502,3 \text{ kN}$$

$$EHP = 6679.6 \text{ CV}$$

$$EHP / eje = 3339,8 \text{ CV}$$


Con esto ya se puede calcular la potencia utilizada en el punto de funcionamiento, en el que, como se ha indicado, el motor funcionará al 85 % de la MCR y suponiendo un rendimiento total de la línea de ejes y de la hélice $\eta = 0.642$, obtendremos una potencia instalada de:


$$BHP = \frac{EHP}{\eta} = 10399,6 \text{ CV}$$

$$MCR = \frac{BHP}{85\%} = 12234,8 \text{ CV}$$

3.6 LAS CURVAS DE RESISTENCIA AL AVANCE – VELOCIDAD Y POTENCIA – VELOCIDAD

En las siguientes gráficas se representa la variación de la resistencia al avance y la *EHP* en función de la velocidad del buque.

4 LA ELECCIÓN DE LOS MOTORES PRINCIPALES

4.1 LOS MOTORES DENTRO DEL RANGO DE POTENCIA

Conocida la potencia que vamos a necesitar para la propulsión, *MCR* = 12234,8 CV = 8992,6 kW, dividiremos esta potencia en dos líneas de ejes, cada una de ellas movida por dos motores. Cada uno de estos motores tendrá que suministrar una potencia de 2248,1 kW.

Para seleccionar el motor que mejor se ajusta a nuestras necesidades seguiremos una serie de criterios que se indican a continuación:

• Rango de potencia ajustado: Entre 2250 kW y 2500 kW.

• Velocidad de giro: Motores semirrápidos, entre 600 rpm y 800 rpm.

- Consumo y tipo de combustible: Se elegirán motores que tengan capacidad para consumir combustibles pesados.
- Peso y empacho.
- Fiabilidad.
- Mantenimiento.
- Garantía
- Precio

Los motores existentes en el mercado con una potencia dentro del rango de 2250 kW a 2500 kW, y del rango de velocidades de giro de unas 750 rpm, son los siguientes:

PROYECTO 1491

Buque de Crucero

PREDICCIÓN DE POTENCIA. DISEÑO DE PROPULSORES Y TIMONES.

Fabricante	Modelo	Ciclo	Número cilindros	Giro (rpm)	Diámetro	Carrera	Potencia (kW)	Potencia unitaria (kW·cil ⁻¹)	(10^5)	Velocidad del pistón (m·s ⁻¹)	Peso	Longitud	Ancho	Altura C	yl, Lay,
Akasaka Diesels Ltd	8U28AK	4	8	720	280	380	2427	306	22	9,1	31	5212	1160	1840	L
Caterpillar Motoren GmbH	8M25	4	8	750	255	400	2400	300	23,5	10	25	4812	2129	3671	L
Hanshin Diesel Works Ltd	8 8MX28	4	8	730	280	380	2427	303	21,3	9,3	32	6782	1170	3209	L
MAN B&W Diesel AG	7L27/38	4	7	800	270	380	2380	340	23,5	10,1	33,5	5515	2035	3595	L
MAN B&W Diesel AS Alpha	7L27/38	4	7	800	270	380	2380	340	23,5	10,1	33,5	4000	2090	3435	L
Niigata Engineering Co	MG28H X	4	8	750	280	370	2353	294	21,5	9,2	29,3	6318	1976	3170	L
Rolls-Royce Marine AS, Bergen	KVM	4	12	750	250	300	2430	202	22	7,5	22,5	4867	2300	3271	V
SEMT Pielstick	8PA6CL	4	8	750	280	350	2360	295	21,9		18,4	4707	1405	2690	L
Wartsila Corp	32LNGD	4	6	750	320	350	2460	410	21,9	8,8	29,2	5083	1993	3480	R

URRUTIA NEBREDA, Juan

PROYECTO 1491

Buque de Crucero

Predicción de potencia. Diseño de propulsores y timones.

	Fabricante	Modelo	Ciclo	Número cilindros	Giro (rpm)	Diámetro	Carrera	Potencia (kW)		$(10^5$	Velocidad del pistón (m·s ⁻¹)		Longitud	Ancho	Altura	Cyl, Lay,
_	Wartsila Corp	Vasa 32LN	4	6	750	320	350	2460	410	21,3	8,7	29,2	5083	1993	3480	R
	Yanmar Diesel Engine Co	6N330- SN	4	6	620	330	440	2427	404	21,2	9	39,4	6568	1789	3853	L

Teniendo en cuenta los criterios anteriores el motor elegido finalmente es el modelo 7L27/38 de MAN B&W. Las características de este motor son:

Característica	Valor	Unidad
Velocidad	800	rpm
рте	23,5	10 ⁵ Pa
Número de cilindros	7	

Modelo	Potencia (kW)	Potencia (BHP)
6L27/38	2040	2775
7L27/38	2380	3235
8L27/38	2720	3700
9L27/38	3060	4160

Consumo específico en condiciones ISO.

MCR	$\begin{array}{c} Consumo \\ (g \cdot kW^{-1} \cdot h^{-1}) \end{array}$	$\begin{array}{c} Consumo \\ (g \cdot BHP^{-1} \cdot h^{-1}) \end{array}$
100 %	182	134
85 %	180	132

5 LA ELECCIÓN DEL PROPULSOR ÓPTIMO

5.1 LA ELECCIÓN DEL TIPO DE PROPULSIÓN

Las condiciones del proyecto no indican nada en lo que respecta al tipo de propulsión, por lo que la elección del tipo de propulsión a utilizar es una cuestión a estudiar.

Las opciones más comúnmente utilizadas en buques de crucero son:

- Propulsión mecánica, con motores semirrápidos conectados a una hélice de paso variable por medio de una reductora.
- Propulsión eléctrica, con un grupo motor-generador que alimenta a un motor eléctrico acoplado al propulsor.
 - Hélice de paso fijo.
 - Hélice de paso variable.
 - Propulsor POD.

Para elegir entre un tipo de propulsión u otra podemos atendere a los siguientes criterios que aconsejan el uso de propulsión eléctrica:

- Por su situación en los finos de proa o en los de popa en general no hay espacio para instalar un motor diesel alineado con las líneas de ejes, y que además impediría el flujo de entrada o salida de agua a la hélice.
- La demanda eléctrica del buque como factoría es muy elevada en momentos donde la demanda de propulsión es muy reducida, lo que permite una mejor utilización de la planta de potencia con dos usos complementarios.

De lo anterior puede deducirse la conveniencia de instalar una hélice convencional de paso variable movida por un motor diesel con reductora.

5.2 LA FIJACIÓN DEL NÚMERO DE EJES

Debido al alto grado de seguridad que se exige a este tipo de barcos los sistemas principales del buque se duplican para evitar que un único fallo deje el barco a la deriva. Siguiendo estos principios se montan dos líneas de ejes.

5.3 LA FIJACIÓN DEL NÚMERO DE MOTORES POR LÍNEA DE EJES

El número de motores que se elija por línea de ejes debe estar en consonancia con la disposición geométrica de la cámara de máquinas. En los buques de crucero la altura de la cámara de máquinas se encuentra limitada, ya que ésta resta espacio útil.

Un motor con una potencia adecuada para mover una de las hélices (4500 kW) o bien necesita una altura de cámara de máquinas excesiva, que impediría instalar el resto de equipos que van montados en los conductos de escape, o bien tiene un número de cilindros excesivo, lo que aumenta innecesariamente el mantenimiento del motor.

Teniendo en cuenta todo lo anterior se ha decidido montar dos motores por cada línea de ejes.

5.4 LA ELECCIÓN DEL TIPO DE HÉLICES

5.4.1 Las consideraciones generales

Los propulsores, que se elegirán para hacer posible el cumplimiento de las especificaciones, serán de la "Serie Sistemática B de Troost (NSMB Wageningen)", de tal manera que sean capaces de propulsar al buque a una velocidad de 19 nudos en pruebas y al 85 % del *MCR* del motor.

5.5 EL TIPO DE PROPULSOR

Apoyándonos en la base de datos que se expuso en el predimensionamiento, se puede realizar un estudio de buques parecidos al de proyecto en el que se concluye que la mayoría de ellos llevan dos propulsores de paso controlable. Son varias las razones que aconsejan el uso de este tipo de propulsores:

- Evita la sobrecarga de los motores de una línea de ejes cuando se produce una parada en la otra línea de ejes.
- El paso controlable permite optimizar el punto de funcionamiento de la hélice, no sólo para la velocidad de proyecto, sino también para cualquier otro valor. Para cada velocidad se puede calcular el valor del paso que maximiza el rendimiento propulsivo total y, por tanto, hace mínima la potencia requerida, lo que se traduce en un ahorro de combustible.
- Aumenta la maniobrabilidad del buque. Esto se debe a la posibilidad de controlar el paso sin necesidad de que el motor sea reversible.

• Se trata de hélices que tienen una mayor complejidad constructiva y que por tanto requieren una mayor inversión inicial.

Los datos de partida para el cálculo del propulsor serán, teniendo en cuenta que tanto las potencias como los empujes están referidos a las dos líneas de ejes:

5.6 LOS DATOS INICIALES

- El número de palas de la hélice: z = 5.
- La potencia efectiva requerida, *EHP* = 6679,6 CV.
- La velocidad de pruebas, v = 19 kn.
- El diámetro máximo del propulsor, D.
- La inmersión mínima del eje, h.
- El huelgo superior entre la hélice y el codaste, $h_{sup} = 0.773$ m.
- La altura de la línea de ejes sobre la línea de base, h = 2,016 m.
- Los coeficientes de succión (t) y estela (w), de acuerdo con las formas del casco en popa.
- Rendimiento mecánico de la línea de ejes, $\eta_m = 0.98$.

Teniendo en cuenta que los motores elegidos son de tipo semirrápido será necesaria la utilización de reductoras, lo que nos proporcionará un grado de libertad en las revoluciones de los propulsores.

5.7 EL DESARROLLO DE LOS CÁLCULOS

El proceso que se ha seguido para obtener la hélice de rendimiento máximo es el siguiente:

- Las revoluciones serán el parámetro que se deja libre a la hora de optimizar la hélice.
- Se calcula el diámetro máximo.
- Se calcula la relación área extendida / área proyectada, mínima por el método de Keller.

• Entrando en los polinomios de Oosterveld y Van Oosanen, se obtienen los coeficientes de empuje (K_T) y de par (K_Q) en función de la relación paso / diámetro y de las revoluciones, buscando con ellos el máximo de los rendimientos para un rango de revoluciones.

5.7.1 Los cálculos previos

5.7.1.1 El número de palas

Desde el punto de vista del rendimiento propulsivo, cuanto más bajo sea el número de palas, más alto será éste. Además se tiene que tener en cuenta que las palas no se carguen demasiado y la cavitación se mantenga dentro de unos límites. Por ser un propulsor de paso variable, resulta complicada la inserción de un número de palas mayor de cinco.

En este punto hay que hacer un inciso para comentar el uso de una hélice con cinco palas cuando lo habitual en este tipo de buques, donde la potencia no es excesivamente grande, es el uso de hélices de cuatro palas. La justificación del uso de cinco palas es una mejora del rendimiento propulsivo de la hélice (3,4 %) con respecto a la misma hélice con cuatro palas.

Según estas consideraciones se decide usar cinco palas.

$$z = 5$$

5.7.1.2 La holgura superior

Según Det Norske Veritas el huelgo superior se calcula como:

$$c = (0.6 - 0.02 z) R = 0.773 m$$

siendo:

- c la distancia mínima entre el extremo de la pala y el codaste.
- z el número de palas.
- R radio de la hélice.

5.7.1.3 El diámetro máximo

Para obtener el máximo rendimiento posible, debemos ir siempre al máximo diámetro compatible con las formas del codaste y el calado de proyecto.

El diámetro máximo del propulsor viene determinado por la posición del mismo y por las holguras calculadas anteriormente.

El diámetro máximo que se obtiene es de D = 3,537 m.

5.7.1.4 La relación área extendida / área proyectada

Existen básicamente dos métodos para el cálculo de $\frac{A_E}{A_0}$, el método de Burril y el de

Keller. El primero se basa en el cálculo del numero de cavitación local, que depende entre otras variables de las revoluciones del propulsor, que como se ha dicho anteriormente es un valor a determinar. El segundo tiene en cuenta consideraciones geométricas así como el empuje soportado por la hélice.

Para la elección del valor más apropiado, se utiliza el criterio de Keller que propone como valor mínimo:

$$\frac{A_E}{A_0} = \frac{(1,3+0,3z)T}{(p_0 - p_v)D^2} + K$$

en donde:

- Z, número de palas.
- T, empuje.
- p_0 , presión estática en el centro de la línea de ejes.
- p_{ν} , presión de vapor.
- K = 0.1 para 2 hélices de cunial y 0.15 para dos hélices de bronce.

Una vez calculado el propulsor óptimo, se comprueba que también cumple el criterio de Burril de cavitación.

Burril estimó el empuje máximo por unidad de área proyectada, para que la hélice tuviera un grado de cavitación aceptable, que fijó para que no se produjese cavitación en más de un 5 % de la pala.

$$\tau = \frac{\frac{T}{A_p}}{q_{0.7R}}$$

$$q_{0,7R} = 0.5\rho \left(v^2 (1 - w)^2 + \left(0.7 p D \frac{n}{60} \right)^2 \right)$$

$$s_{0,7R} = \frac{10159 + 1026h}{q_{0,7R}}$$

Burril representó, para cada valor de $s_{0,7R}$, el límite superior aceptable de τ para buques mercante. Por tanto, una vez que se haya diseñado el propulsor óptimo, se calculará el valor de $s_{0,7R}$ y entrando en el diagrama, se obtendrá el τ mínimo aceptable. Obtenido este valor, y puesto que serán conocidos el resto de los parámetros, se podrá obtener el valor de A_p y con él calcular:

$$\frac{A_E}{A_0} = \frac{\frac{A_p}{A_0}}{1,067 - 0,229 \left(\frac{H}{D}\right)_{0,7R}}$$

$$\frac{A_E}{A_0} = 0,815$$

5.7.1.5 El rendimiento rotativo – relativo

Se utiliza la expresión recomendada por Holtrop:

$$\eta_{rr} = 0,9922 - 0,05908 \frac{A_E}{A_0} + 0,07424 (CP - 0,0225x_{cc}) = 0,993$$

5.7.1.6 El coeficiente de estela a igualdad de empuje

Este coeficiente valora la influencia de la pérdida de velocidad del agua que entra en la hélice.

Una buena estimación del coeficiente de estela para buques de dos ejes es la dada por la fórmula de Taylor.

$$w = 0.55 CB - 0.2 = 0.113$$

5.7.1.7 El coeficiente de succión

Este coeficiente valora la diferencia entre el empuje que da el propulsor y la resistencia al avance del buque.

También en este caso el método de Taylor ofrece una buena aproximación del coeficiente de succión para buques de dos ejes.

$$t = 0.7 w + 0.06 = 0.139$$

5.7.1.8 La velocidad de avance

La velocidad de avance es la velocidad media de incidencia del agua en el disco teóricamente ocupado por el propulsor. Si bien, una vez calculado el coeficiente de estela, calcularemos la velocidad de avance a partir de la ecuación:

$$v_A = v \left(1 - w \right)$$

en donde v es la velocidad del buque.

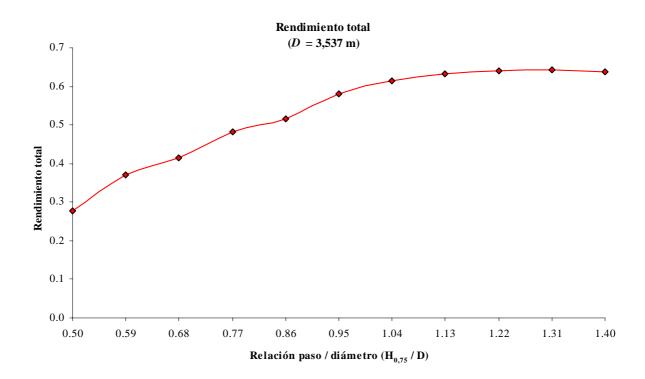
5.7.1.9 El sentido de giro

Para conocer cuál es el sentido de giro óptimo los armadores suelen exigir la realización de ensayos en el canal de experiencias hidrodinámicas.

Como es habitual en latitudes donde se realiza navegación entre hielo, las hélices girarán, viéndolas desde popa, la de babor en sentido antihorario, y la de estribor en el sentido horario; o sea, el modo de giro es dextrógiro para expulsar el hielo.

5.8 EL RESULTADO DE LOS CÁLCULOS DEL PROPULSOR

En el proyecto de la hélice tenemos todavía tres variables que determinar, de forma que obtengamos la hélice óptima:


- Relación paso / diámetro.
- Relación área extendida / área proyectada.
- Revoluciones de giro del propulsor.

5.8.1 Los rendimientos máximo para cada $\frac{H}{D}$

Tomando para cada relación paso / diámetro el punto de rendimiento máximo se puede construir la curva del propulsor.

Buque l	de	Crucero
---------	----	---------

H	A_E				
\overline{D}	A_0	$D(\mathbf{m})$	n (rpm)	n (rps)	η_t
0,500	0,395	3,537	286,1	4,769	0,278
0,590	0,430	3,537	252,1	4,202	0,369
0,680	0,482	3,537	225,8	3,763	0,415
0,770	0,526	3,537	204,6	3,410	0,483
0,860	0,581	3,537	187,5	3,124	0,517
0,950	0,618	3,537	173,1	2,885	0,581
1,040	0,657	3,537	161,2	2,686	0,616
1,130	0,703	3,537	151,0	2,516	0,633
1,220	0,763	3,537	142,1	2,368	0,640
1,310	0,815	3,537	134,3	2,238	0,642
1,400	0,871	3,537	127,6	2,127	0,639

5.9 LAS CONCLUSIONES SOBRE EL PROPULSOR ÓPTIMO

El propulsor óptimo calculado para trabajar en las condiciones de pruebas especificadas tiene las siguientes características:

Característica	Valor	Unidad
Número de palas, z	5	
Diámetro óptimo, D	3,537	m
Revoluciones óptimas, n	134,3	rpm
$\left(rac{H}{D} ight)_{\acute{o}ptimo}$	1,310	
$\left(rac{A_E}{A_0} ight)_{\acute{optima}}$	0,815	
Coeficiente de estela, w	0,115	
Coeficiente de succión, t	0,124	
Rendimiento rotativo-relativo, η_{rr}	0,960	
Coeficiente de empuje, K_T	0,149	
Coeficiente de par, K_Q	0,037	
Empuje, T	244012,3	N
Potencia, EHP	6679,6	CV
Rendimiento del propulsor aislado, η_0	0,693	
Rendimiento total, η_t	0,642	
Potencia, BHP	10399,6	CV
Potencia, MCR	12234,8	CV
Cuerda (estación 0,75), c	1,195	m
Espesor-cuerda (estación 0,75), e	0,036	m
Holgura superior	0,774	m
Holgura inferior	0,248	m

Buque de Crucero

PREDICCIÓN DE POTENCIA. DISEÑO DE PROPULSORES Y TIMONES.

Característica	Valor	Unidad
 Altura de la línea de ejes	2,016	m

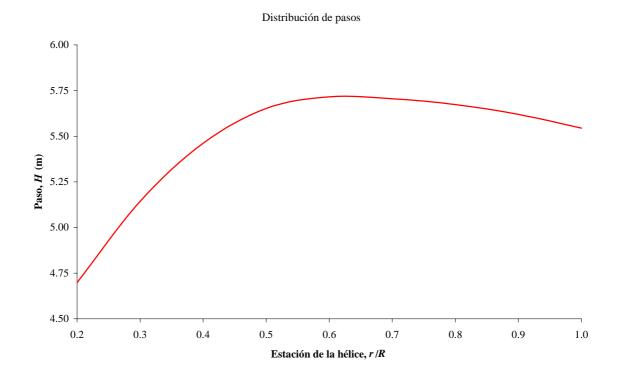
6 EL DISEÑO DEL PROPULSOR

Una vez obtenidas las características del propulsor óptimo para las condiciones de proyecto, se calcularán el resto de parámetros necesarios para el diseño del propulsor.

6.1 LA DISTRIBUCIÓN DEL PASO EN LAS SECCIONES RADIALES DE LA HÉLICE

La ley de distribución de paso del propulsor depende mucho de su comportamiento en cavitación. De una manera generalizada se ha estado utilizando la ley de distribución siguiente:

$\frac{r}{R}$	h (% H)
0,2	82,2
0,3	88,7
0,4	95,0
0,5	99,2
0,6	100,0
0,7	100,0
0,8	100,0
0,9	99,0
1,0	97,0


Sin embargo también son posibles otras consideraciones:

- Es preferible realizar una distribución del paso a lo largo del radio de tipo parabólico, en el que los pasos mínimos se encuentren en los extremos y el máximo en la zona central.
- Las ventajas de esta distribución son el mejor comportamiento en cavitación del propulsor y la mayor facilidad de inserción de las palas en el núcleo.

El cálculo de esta distribución se realiza ajustando la curva de distribución de forma que cumpliéndose unos valores fijos en los extremos y, obligando a que el máximo se encuentre en la zona central, el paso medio obtenido por integración, sea el paso requerido, *H*.

$\frac{r}{R}$	h (% H)	h (m)
0,2	82,2	4,698
0,3	_	5,143
0,4	_	5,461
0,5	-	5,652
0,6	100,0	5,716
0,7	-	5,705
0,8	_	5,673
0,9	_	5,619
1,0	97	5,544

La distribución de pasos queda gráficamente:

6.2 LA DISTRIBUCIÓN DE ESPESORES

Los valores de los espesores de las palas de la hélice vienen determinados por las condiciones de resistencia mecánica del material. El reglamento de Det Norske Veritas determina el cumplimiento de una serie de espesores mínimos en determinadas secciones.

DNV (Volumen 2, Parte 4, Capítulo 2, Sección 7, Apartado D, Subapartado D100, Regla 101) determina los espesores mínimos para las secciones r = 0.35 R y r = 0.60 R de la siguiente forma:

$$t_r = C_1 \sqrt{\frac{D(U_2 K_3 + m_t K_1)}{Zc_r(U_1 - U_2 S_R)}}$$
 (mm)

en donde:

- U_1 , esfuerzos inversos.
- U_2 , influencia del esfuerzo principal en la fatiga.
- $m_t K_1$, carga cíclica.
- K_3 , carga principal. $K_3 = (K_1 + K_2)C_4$
- S_R , carga principal. $S_R = \left(\frac{n_0 D}{100}\right)^2 \left(C_2 \theta + C_3\right)$

•
$$m_t = \begin{cases} 0.033 v_S, v_S \ge 17 \text{kn} \\ 0.56 v_S, v_S < 19 \text{kn} \end{cases}$$

$$\bullet \quad K_1 = A_1 dT h_0 + A_2 \frac{T_0}{R}$$

•
$$K_2 = T_w (A_1 d + 0.16 A_2)$$

•
$$T_w = 455D^3 (1,00 + \log n_0)$$

$$\bullet \quad A = q_0 + q_1 d + q_2 d^2 + q_3 d^3$$

$$\bullet \quad d = 3,14 \frac{D}{H_R}$$

- D=2R
- c_r , espesor de la sección cilíndrica expandida.

- Z, número de palas.
- θ , lanzamiento de la hélice.
- H_R , paso de la hélice.
- *P*, potencia máxima continua.
- n_0 , revoluciones por minuto del propulsor.
- Th_0 , empuje medio del propulsor.
- T_O , par medio del propulsor.
- v_S , velocidad del buque.

6.2.1 Los datos iniciales

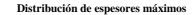
$\frac{r}{R}$	0,25	0,60
U_1	64,000	64,000
U_2	0,185	0,185
A_1	7,646	10,165
A_2	50,500	32,043
K_1	3753107,01	3935206,19
K_2	63005,6853	63008,7688
K_3	5266235,52	6756983,28
S_R	4,76167305	3,47534431
θ	6	6
d	2,396	2,396
m_t	0,033	0,033

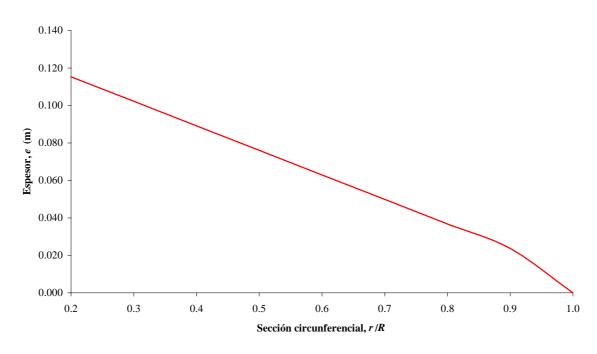
6.2.2 El espesor requerido

Los espesores requeridos por la Sociedad de Clasificación son:

• Sección r = 0.25 R: $e_{0.25} = 28.2 \text{ mm}$.

• Sección r = 0.60 R: $e_{0.60} = 17.0 \text{ mm}$.


• Sección r = R: $e_1 = 1,24 \text{ mm}$.


El espesor requerido para la punta de la pala se ha tomado el 0,35 % del diámetro del propulsor.

6.2.3 El espesor utilizado

A tenor de los resultados obtenidos y los que se deducen de las series sistemáticas de la serie B del Canal de Wageningen, se puede comprobar como estos últimos son mayores en cada una de las secciones circunferenciales, por lo que se pueden usar, cumpliendo así todos los requisitos exigidos por la Sociedad de Clasificación.

$\frac{r}{R}$	$h_{\mathit{Wageningen}}$	h_{DNV}
0,2	0,115	0,0282
0,3	0,102	_
0,4	0,089	_
0,5	0,076	_
0,6	0,063	0,017
0,7	0,050	_
0,8	0,037	_
0,9	0,024	_
1,0	0,000	0,0012

6.3 LOS PARÁMETROS DE LAS SECCIONES CIRCUNFERENCIALES

r					$\frac{c_r}{D} \frac{z}{A_E}$	$\underline{a_r}$	$\underline{b_r}$	
\overline{R}	<i>r</i> (m)	h_{Real} (m)	t_{le} (m)	t_{te} (m)	A_0	\boldsymbol{c}_r	\boldsymbol{c}_r	A_r
0,200	0,354	0,000	0,012	0,012	1,662	0,617	0,350	0,053
0,300	0,531	3,801	0,012	0,012	1,882	0,613	0,350	0,046
0,400	0,707	6,516	0,013	0,013	2,050	0,601	0,351	0,040
0,500	0,884	8,145	0,013	0,013	2,152	0,586	0,355	0,034
0,600	1,061	8,688	0,013	0,013	2,187	0,561	0,389	0,028
0,700	1,238	8,145	0,011	0,011	2,144	0,524	0,443	0,022
0,800	1,415	6,516	0,010	0,010	1,970	0,463	0,479	0,015
0,900	1,592	3,801	0,008	0,008	1,582	0,351	0,500	0,009
1,000	1,768	0,000	0,006	0,006	0,000	0,000	0,000	0,000

0,200 0,354

0,000

0,012 0,012 1,662 0,617 0,350 0,053

Buque de Crucero

$$\frac{r}{R}$$
 r (m) h_{Real} (m) t_{le} (m) t_{te} (m) $\frac{\frac{c_r}{D}}{A_0} \frac{z}{A_0}$ $\frac{a_r}{c_r}$ $\frac{b_r}{c_r}$ A_r

D	$\frac{s_r}{D} = \frac{t_{\text{max}}}{D}$	•	4()			4		1.
B_r	D D	δ	$tag(\gamma_r)$	$\gamma_{ m r}$	c_r	t_{max}	a_r	b_r
0,004	0,033	0,037	2,085	64,376	0,958	0,115	0,591	0,335
0,004	0,029	0,056	1,390	54,267	1,085	0,102	0,665	0,380
0,003	0,025	0,074	1,042	46,191	1,182	0,089	0,710	0,415
0,003	0,022	0,093	0,834	39,827	1,241	0,076	0,727	0,441
0,002	0,018	0,112	0,695	34,798	1,261	0,063	0,708	0,491
0,002	0,014	0,130	0,596	30,782	1,236	0,050	0,648	0,548
0,001	0,010	0,149	0,521	27,530	1,136	0,037	0,526	0,544
0,001	0,007	0,167	0,463	24,859	0,912	0,024	0,320	0,456
0,000	0,000	0,186	0,417	22,635	0,000	0,000	0,000	0,000
0,004	0,033	0,037	2,085	64,376	0,958	0,115	0,591	0,335

7 EL CÁLCULO Y DISEÑO DEL TIMÓN

El cálculo y diseño del timón debe realizarse de forma que se cumplan unos requisitos mínimos de maniobrabilidad del buque. No resulta fácil dar unas definiciones completas de cuales deben ser las cualidades de maniobrabilidad que debe reunir un buque en general, dados los diferentes tipos de buques existentes y los distintos usuarios que se hacen cargo de ellos.

En este apartado se seguirá la tesis doctoral desarrollada por D. Antonio Baquero sobre los parámetros que determinan la maniobrabilidad del barco y la forma de realizar el proyecto del timón para asegurar que se cumplan los requisitos mínimos.

7.1 LAS CARACTERÍSTICAS DE MANIOBRABILIDAD

La tesis anteriormente citada propone las siguientes características de maniobrabilidad:

- Facilidad de evolución. Está relacionada con el aspecto físico que necesita el buque para realizar un fuerte cambio de trayectoria y de rumbo (al menos 180°).
 La facilidad de evolución es importante en aquellos buques que, por sus características, o por las rutas de navegación que frecuentan, se pueden ver obligados a realizar maniobras en el menor espacio posible.
- Facilidad de gobierno. Es la capacidad de mantener el buque en ruta. Esta cualidad se ocupa de los movimientos en régimen transitorio y dentro de ella se pueden englobar los siguientes conceptos:
 - Estabilidad dinámica. Cuando el buque es separado de una trayectoria en régimen permanente por una perturbación instantánea, puede ocurrir que la posición final de equilibrio, sin accionar el timón sea otra línea recta (estabilidad dinámica positiva, estable) o circular (estabilidad dinámica negativa, inestable).
 - Rapidez de recuperación. Independientemente de la estabilidad dinámica, es importante la rapidez con que se alcanza el nuevo régimen permanente de movimiento.
 - Estabilidad de ruta. Es la capacidad para mantener al buque en una ruta determinada, accionando el timón como elemento corrector. Esta cualidad es tanto mayor cuanta menor actividad se requiera del timón, tanto en amplitud como en frecuencia.

Estos tres últimos conceptos están íntimamente ligados entre sí. La estabilidad de ruta es consecuencia de la estabilidad dinámica y de la rapidez de recuperación. En cualquier caso la facilidad de gobierno es importante para cualquier tipo de buque, pero sobre todo, para

aquellos destinados a realizar largas travesías, por la influencia que tienen en la resistencia al avance y, en definitiva, en el consumo de combustible.

 Facilidad de cambio de rumbo. Esta cualidad participa en las dos anteriormente citadas. Es la capacidad del buque para cambiar de ruta o trayectoria en el menor espacio posible (facilidad de evolución) y con la mayor rapidez posible (facilidad de gobierno). La aplicación más interesante de esta característica esta en las maniobras anticolisión y es importante en cualquier tipo de buque.

7.2 LAS MAGNITUDES E ÍNDICES REPRESENTATIVOS DE LAS CARACTERÍSTICAS DE MANIOBRABILIDAD

7.2.1 Las magnitudes representativas

Pueden establecerse las siguientes relaciones entre las cualidades o características de maniobrabilidad y las magnitudes que representan:

Característica de maniobrabilidad	Magnitud representativa			
Facilidad de evolución	Diámetro de giro			
Facilidad de gobierno	Ancho del ciclo de histéresis			
Facilidad de cambio de rumbo	Avance y número P de Norbin			

7.2.2 Los índices cualitativos

7.2.2.1 Para la facilidad de evolución

$$DG = \frac{D}{2L_{pp}} \cdot \operatorname{sen}(\alpha)$$

En donde:

- *D* Diámetro de giro.
- L_{pp} Eslora entre perpendiculares.
- α Ángulo del timón.
- *DG* Índice representativo del diámetro de giro.

7.2.2.2 Para la facilidad de gobierno

T' Medida de la rapidez de respuesta que interviene en la estabilidad de ruta, estando además relacionada con la estabilidad dinámica del sistema.

7.2.2.3 Para la facilidad de cambio de rumbo

7.2.2.3.1 El avance:

El avance mide la respuesta en longitud del giro del buque. Cuanto menor sea el avance mejor comportamiento tendrá el timón. Se define el índice representativo del avance como:

$$AVC = \frac{AV}{L_{pp}} \cdot \sqrt{0, 1 \cdot \alpha}$$

Donde:

- AV Avance.
- *AVC* Índice representativo del avance.
- α ángulo de metida del timón.

Más adelante se da una relación experimental que permite calcular el índice de avance AVC.

7.2.2.3.2 <u>El número *P*:</u>

Mide el ángulo girado por unidad de ángulo de timón. Se calcula mediante la expresión:

$$P = K' \cdot \left(1 - T' + T' \cdot e^{\left(-\frac{1}{T'}\right)}\right)$$

Siendo
$$K' = K \cdot \frac{L_{pp}}{V}$$

7.3 LAS RELACIONES ENTRE LOS PARÁMETROS GEOMÉTRICOS DE LA CARENA, LA FUERZA EN EL TIMÓN Y LOS ÍNDICES DE MANIOBRABILIDAD

Si se desea que el buque tenga unos niveles determinados de maniobrabilidad, exigidos por el proyecto, se podrá determinar que fuerza en el timón es necesaria y con ello proyectar el timón necesario para suministrar esa fuerza. Se llega a las siguientes expresiones.

7.3.1 La facilidad de evolución: Índice DG.

$$DG = 0,02386 \cdot \frac{L_{pp}}{B} \cdot \frac{1}{CB^2} \cdot \frac{M \cdot V^2}{\frac{dF_N}{d\alpha} \cdot L_{pp}}$$

En donde:

- *M* masa del buque.
- F_N componente normal a la pala de la fuerza en el timón.
- V velocidad de avance del buque.
- α ángulo de metida del timón.

7.3.2 La facilidad de gobierno

7.3.2.1 El índice T'_m

Es el índice representativo de la rapidez de respuesta del buque.

$$\frac{1}{T'_{m}} = d \frac{1}{K_{i}^{2} + K_{j}^{2}} (1 + G)$$

donde:

•
$$G = 0.0193 \frac{L_{pp}}{B} \frac{1}{CB^2}$$

$$\bullet \quad d_1 = \frac{l_1}{L_{pp}} - \left(0.5 - \frac{x_C}{L_{pp}}\right)$$

• l_1 , distancia del centro de presiones de las fuerzas hidrodinámicas sobre el casco, a la perpendicular de proa.

$$\frac{l_1}{L_{pp}} = 0.27 + 0.258 (F + 0.38)^{0.39}$$

•
$$F = \frac{CF_t}{\alpha} (1 - w)^2 \frac{A_R}{L_{pp}T} \frac{\frac{L_{pp}}{B}}{CB^2}$$

$$\bullet \quad \frac{CF_t}{\alpha} = \frac{6,28a}{a+2,55} (1-0,35E) \left(1 + \frac{8K_T D}{\pi J^2 h}\right) \frac{CB+0,3}{1+1,214 \left(1 - e^{0.3\frac{K_T}{J^2}}\right)}$$

- A_R , área del timón.
- K_i , K_j , radios de inercia del buque (propia y añadida) expresados en función de la eslora. Se recomienda $K_i = 0.24$, $K_j = K_j(L_{pp}, B, T, CB)$, normalmente se puede tomar $K_i = K_j = 0.24$.
- a, relación de alargamiento.
- h, altura del timón.
- E, espesor máximo.
- C, cuerda del timón.

7.3.2.2 El ancho del ciclo de histéresis, a_h

$$a_h = 18,12 - \frac{46,43}{T'_{\text{m}}}$$

7.3.3 La facilidad de cambio de rumbo

7.3.3.1 El número P de Norbin

Se define el número *P* de Norbin como el ángulo de rumbo girado por unidad de ángulo de timón empleado cuando el buque ha navegado una longitud igual a su eslora.

$$P = K' \left(1 - T' + T' \cdot e^{-\frac{1}{T}} \right) = \frac{1}{2} \frac{K'}{T'}$$

donde:
$$K^2 = K_i^2 + \frac{K'}{T'} = 0.5 \frac{\frac{F_t}{\alpha} L_{pp}}{M \cdot V^2} \frac{1}{2} K_j^2$$

7.3.3.2 *El avance*

Experimentalmente se obtiene:

$$AVC = 1{,}17t'_{1} + 2{,}33s + 3{,}1e^{-1{,}11s}$$

siendo:

•
$$s = \frac{1}{P} \frac{V_f}{V}$$

• V_f , velocidad final después de meter el timón.

La pérdida de velocidad se puede evaluar como:

$$\frac{V_j^3}{V^3} = \frac{1}{1 + U\alpha^2}$$

siendo:

•
$$U = \frac{1}{C_{ts} \cdot S} \left(m \frac{D}{L_{nn}} \frac{a}{DG2} + \frac{CF_t}{\alpha} A_R (1 - w)^2 \right)$$

- m = 0.14.
- C_{ts} , coeficiente de resistencia total del buque.
- S, superficie mojada de la carena.
- w, coeficiente de estela.

7.4 LAS CONDICIONES DE MANIOBRABILIDAD DEL BUQUE. LOS CRITERIOS MÍNIMOS ACEPTABLES.

Al realizar el proyecto del timón han de tenerse unas referencias concretas en que apoyarse para determinar si las características de maniobrabilidad son adecuadas o no. Los criterios más normales para las distintas características son los siguientes:

7.4.1 Para la facilidad de evolución

Para buques de:

•
$$CB = 0.8$$
 $D < 3.2 L_{pp}$

•
$$CB = 0.6$$
 $D < 4.2 L_{pp}$

siendo D el diámetro de giro, e interpolando para valores intermedios del coeficiente de bloque.

7.4.2 Para la facilidad de cambio de rumbo

Para buques de:

•
$$CB = 0.8$$
 $AV < 3.9 L_{pp}$

$$\bullet \quad CB = 0.6 \qquad \qquad AV < 0.4 \ L_{pp}$$

e interpolando para valores intermedios del coeficiente de bloque.

7.5 EL PROYECTO DEL TIMÓN. EL PROCESO SEGUIDO. LOS RESULTADOS OBTENIDOS.

Para intentar conseguir que el buque reúna unas cualidades de maniobrabilidad aceptables, el proyectista no actúa sobre las dimensiones del buque ni sobre sus formas, ya que éstas vienen condicionadas por otros requerimientos más importantes (capacidad de carga, resistencia al avance, construcción, ...)

Para el proyecto, normalmente la única variable que el proyectista fija de acuerdo con métodos o recomendaciones es el área del timón mientras que el resto de dimensiones, alargamiento, relación de espesor, etc. Son elegidas por comparación con otros buques.

El buque ha de poseer unos valores aceptables de capacidad de evolución, estabilidad en ruta y facilidad de cambio de rumbo. Normalmente:

- Buques de bajo coeficiente de bloque presentan problemas de capacidad de evolución.
- Buques de alto coeficiente de bloque presentan problemas de estabilidad en ruta.

Por ello y dado que en este caso se dispone de un coeficiente de bloque bajo, (0,569 < 0,75), el criterio que primará para el diseño del timón será el de capacidad de evolución; en cualquier caso, una vez proyectado el timón, será necesario comprobar que se cumple el criterio de estabilidad en ruta.

Además será necesario comprobar que se cumple el criterio de facilidad de cambio de rumbo.

7.5.1 El criterio seguido para fijar el número de timones

Debido a las características del buque, dos líneas de ejes, se presentan las siguientes alternativas en cuanto al número de timones:

- Dos timones, cada uno detrás de una hélice: Esta alternativa tiene indudables ventajas en cuanto a maniobrabilidad. Esto es debido a que por estar situados detrás de las hélices, los timones trabajan en una zona de altas velocidades inducidas por cada propulsor y por tanto su rendimiento será más elevado.
- Un solo timón situado en crujía: El timón trabaja en una zona de bajas velocidades, por lo que su rendimiento no será satisfactorio, siendo necesario recurrir a un área de timón mayor para obtener las características de maniobrabilidad deseadas. Sin embargo, tiene como contrapartida la disminución de la resistencia total debida a apéndices (aproximadamente entre el 1 % y el 1,5 % de la resistencia total) y que disminuye la complejidad de la planta del servomotor.

En cualquier caso, es el armador el que en definitiva, decide el número de timones a instalar y es muy frecuente que en este tipo de buques los armadores se decidan por la primera alternativa.

En este caso, suponiendo que la opinión del armador es lo que prevalece, se ha optado por la alternativa de dos timones situados detrás de las respectivas hélices.

7.5.2 El proceso seguido para el cálculo del timón

La formulación desarrollada anteriormente y los criterios mínimos exigibles de las Sociedades de Clasificación permitirán seguir un proceso iterativo de prueba-error que se resume en el siguiente diagrama de flujo.

El proceso seguido obliga a resolver un sistema de dos ecuaciones con dos incógnitas que son h y a.

Además será necesario tener en cuenta las siguientes expresiones:

$$\frac{K_T}{J^2} = \frac{T}{\rho V^2 \left(1 - w\right)^2 D^2}$$

siendo:

- D, diámetro del propulsor.
- *h*, altura del timón.
- c, cuerda del timón.
- *e*, espesor máximo.
- $E = \frac{e}{c}$, relación de espesor.
- $a = \frac{h}{c}$, relación de alargamiento.
- $A_R = h \cdot c$, área del timón.
- $A_d = L_{pp} \cdot T$, área de deriva.
- α_s , ángulo de desprendimiento. $\alpha_s = 7.11(1+7E)\left(1+\frac{1.25}{a}\right)\frac{h}{D}$

Criterio de aceptación del ángulo de desprendimiento: $\alpha_s > 35$ °

Límites adecuados del alargamiento 1,4 < a < 2,0

Valor normalmente tomado para el área del timón: $A_R = 2,1$ a 2,8 % del A_d .

7.5.2.1 El esquema del proceso

- Estimación de los valores y cálculos iniciales.
 - 1. Estimación de los valores de *a*, *h* y *E*.
 - 2. Cálculo del área A_R y cuerda del timón c.
 - 3. Si A_R no pertenece al intervalo de criterio repetir el proceso.
- Proyecto según la facilidad de evolución.
 - 1. Cálculo de $\frac{K_T}{I^2}$.

- 2. Cálculo de $\frac{CF_t}{\alpha}$.
- 3. Cálculo de $\frac{dF_N}{da}$.
- 4. Cálculo de DG.
- 5. Si *DG* no cumple el criterio volver al comienzo.
- 6. Cálculo a α_s.
- 7. Si α_s no cumple con el criterio de desprendimiento se repite el proceso.
- Comprobación de la estabilidad de ruta.
 - 1. Cálculo de F, $\frac{l_1}{L_{pp}}$, d_1 , G, $\frac{1}{T'_m}$, a_h , K'_m .
 - 2. Cálculo del número P.
 - 3. Si *P* no cumple el criterio de cambio de rumbo volver a repetir el proceso.
 - 4. Cálculo de $\frac{V_f}{V_0}$, C_{ts} , m, U, s, t_1 ', AVC, AVL, AV.
 - 5. Si AV no cumple el criterio de cambio de rumbo volver al comienzo.
- Aceptación de resultados.

7.5.3 Los resultados obtenidos. Los otros cálculos.

Los valores obtenidos en el proceso anterior conducen a los siguientes resultados:

- a = 1,28
- h = 4.2 m
- E = 0.15
- c = 4.2 / 1.28 = 3.28 m
- $e = 0.15 \cdot 3.28 = 0.492 \text{ m}$
- $A_R = 4.2 \cdot 3.28 = 13.78 \text{ m}^2$

•
$$\frac{A_R}{A_d} = 13,78 / (116,532 \cdot 5,4) 2,19 \%$$

$$\bullet \quad \frac{K_T}{J^2} = 0,127$$

- DG = 1.060
- $\bullet \quad \frac{D}{L} = 3,697$
- $\alpha_s = 35,1$ °
- P = 0.230
- AVL = 4.37

Una vez conocidos los valores anteriores habrá que tener en cuenta la forma de colocar estos parámetros respecto de la mecha del timón y con ello el par necesario en la mecha.

Para este cálculo habrá que hacer diversas consideraciones sobre la superficie de compensación.

La superficie de compensación del timón tiene evidente importancia en el valor del par en la mecha, ya que éste será más pequeño cuanto más cercano se encuentre el centro de presiones al eje de giro del timón. Si el eje de la mecha se sitúa más a proa que la distancia mínima del centro de presión el timón estará compensado.

La fuerza normal máxima en el timón viene dada por:

$$F = \frac{dF_N}{da} \cdot a$$

con lo que se obtiene F = 782 kN.

El par vendrá dado por $Q = F \cdot (x - x_0)$, donde:

- x es la posición del centro de presiones respecto al borde de proa del timón.
- x_0 es la posición del eje de la mecha del timón respecto al borde de proa del timón.

El valor de x se puede calcular como: $x = (1 - 0,00428 \cdot a) \cdot (B + C \cdot a) \cdot c$

Siendo:

$$B = \frac{2,166 \cdot E \cdot a}{(2,25+a) \cdot \left(1+0,664 \cdot \left(1-\exp\left(-0,375 \cdot \frac{K_T}{J^2}\right)\right)\right)}$$

$$C = \left(1,268-3,6 \cdot E - 0,0083 \cdot \frac{K_T}{J^2}\right) \cdot 0,01$$

Con lo que para
$$\alpha = 35$$
°, $E = 0.15$, $a = 1.28$, $\frac{K_T}{J^2} = 0.127$, $x = 1.163$ m.

Tomando como relación de compensación el 25 % de la cuerda del timón se obtiene que: $\frac{x_0}{c} = 0.25 \Rightarrow x_0 = 0.820$ m.

Con este valor se puede calcular ya el par necesario en la mecha:

$$Q = 268 \text{ kN} \cdot \text{m}$$

La potencia del servomotor la calcularemos a partir del par calculado y la condición impuesta por el SOLAS con respecto a la movilidad del timón. El servomotor ha de ser capaz de mover el timón de 35° a una banda a 30° a la otra en 28 segundos, la potencia a la mecha del timón, será por tanto:

$$P = Q \cdot \omega = 11 \text{ kW}$$

Teniendo en cuenta el rozamiento en los cojinetes, que supondremos que supone unas perdidas del 60%, un rendimiento de la maquinaria hidráulica de 60% y un rendimiento eléctrico de 90%, la potencia eléctrica del molinete será de aproximadamente 34 kW en cada timón.

$$P_{servomotor} = 34 \text{ kW}$$

7.5.4 El diseño del timón. Las distribuciones de áreas y espesores.

Para el cálculo de la distribución del área del timón y de los espesores necesarios se seguirán los reglamentos del Det Norske Veritas y del Lloyd's Register of Shipping.

El reglamento propone que se tome como área del timón la siguiente:

$$A_R = \frac{T \cdot L_{pp}}{100} \left(1 + 25 \frac{B^2}{L_{pp}^2} \right)$$

realizando este cálculo se obtiene: $A_R = 12,080 \text{ m}^2$

Se propone asimismo el cumplimiento de los siguientes criterios:

Criterio	Valor adoptado
$\frac{h}{D} \ge 1,15$	$\frac{h}{D} = 1,18$
$1,35 < \frac{h}{c} < 1,9$	$\frac{h}{c} = 1,28$
$\frac{A_R}{A_d} < 35 \%$	$\frac{A_R}{A_d} = 2,19 \%$
$\frac{x_0}{c} < 25 \%$	$\frac{x_0}{c} = 25 \%$

El área total del timón se divide en las siguientes zonas:

- A_1 área de la zona desde la mecha hasta el borde de salida.
- A_2 parte inferior del área desde la mecha al borde de entrada.
- A_3 parte superior del área desde la mecha al borde de entrada.

Se propone que estos parámetros cumplan la siguiente expresión: $A_2 < 23 \% (A_1 + A_2)$

$$A_{1} = 10,25 \,\mathrm{m}^{2} \quad 74,4 \,\% \,A_{R}$$
 Tomando los siguientes valores: $A_{2} = 1,87 \,\mathrm{m}^{2} \quad 13,6 \,\% \,A_{R}$
$$A_{3} = 1,65 \,\mathrm{m}^{2} \quad 12,0 \,\% \,A_{R}$$

se cumple con la condición anterior: 1,87 < 23 % (10,25 + 1,65) = 2,79

La distribución de espesores será la siguiente: (e = 0.492 m)

Estación (positivo a proa de la mecha)	Coeficiente (referido al <i>e</i>)	Abscisa (m)	Espesor (mm)
$-7 \cdot x_0 \cdot 2/7$	0,00	-3,114	0
$-6.x_0.2/7$	0,24	-2,669	118
$-5 \cdot x_0 \cdot 2/7$	0,44	-2,224	216
$-4 \cdot x_0 \cdot 2/7$	0,61	-1,779	300
$-3 \cdot x_0 \cdot 2/7$	0,76	-1,335	374
$-2\cdot x_0\cdot 2/7$	0,88	-0,890	433

Estación (positivo a proa de la mecha)	Coeficiente (referido al <i>e</i>)	Abscisa (m)	Espesor (mm)
$-1 \cdot x_0 \cdot 2/7$	0,97	-0,445	477
$0 \cdot x_0 \cdot 2/7$	1,00	0,000	492
$1 \cdot x_0 \cdot 2/7$	0,95	0,445	467
$2 \cdot x_0 \cdot 2/7$	0,75	0,890	280
$3 \cdot x_0 \cdot 2/7$	0,00	1,335	0

En cuanto a las distancias de los timones a la línea base y a la bovedilla del codaste la tesis de D. Antonio Baquero propone los siguientes valores:

- Distancia del canto alto del timón a la bovedilla: 6 % del vano total del codaste medido a la altura de la mecha (0,294 m).
- Distancia del canto bajo del timón a la línea de base: 8 % del vano total del codaste medido a la altura de la mecha, en nuestro caso 0,392 m.
- Distancia de la hélice al timón: 25 % D (0,884 m).

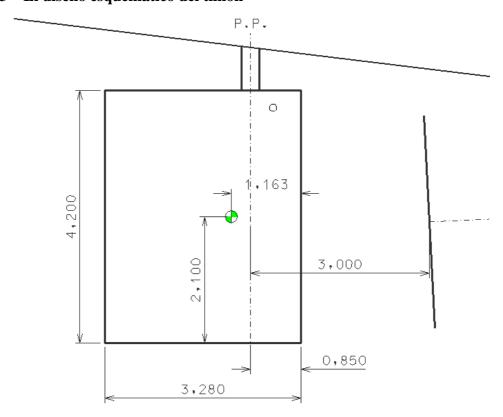
A continuación se muestra un diseño esquemático del timón y la curva de distribución de espesores.

7.6 LA GEOMETRÍA DEL TIMÓN

7.6.1 La cartilla de trazado del timón

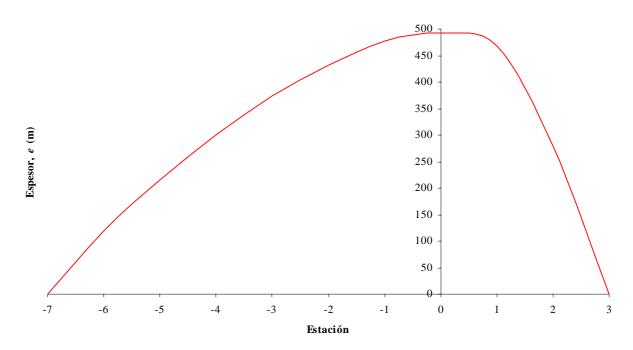
L (mm)	B (mm)
0,000	0,000
1,641	17,276
3,281	24,098
4,922	29,275
8,203	37,382
16,406	51,950

L (mm)	B (mm)
24,609	62,838
41,016	79,587
82,031	108,705
164,063	146,199
246,094	172,010
328,125	191,564
410,156	206,891
492,188	219,033
574,219	228,626
656,250	236,073
738,281	241,635
820,313	245,424
902,344	247,565
984,375	248,240
1066,406	247,659
1148,438	246,015
1230,469	243,475
1312,500	240,178
1394,531	236,250
1476,563	231,786
1558,594	226,800
1640,625	221,194
1722,656	214,924
1804,688	207,979
1886,719	200,370

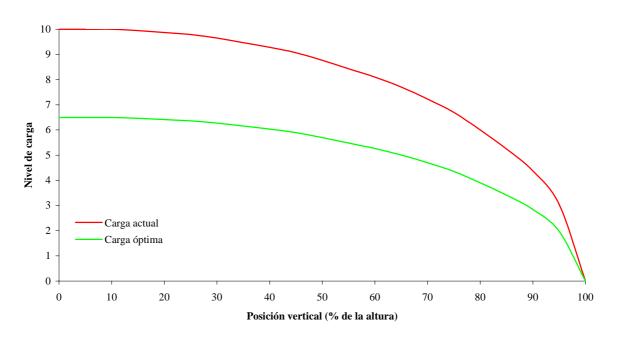

L (mm)	B (mm)
1968,750	192,120
2050,781	183,271
2132,813	173,860
2214,844	163,918
2296,875	153,484
2378,906	142,592
2460,938	131,276
2542,969	119,562
2625,000	107,479
2707,031	95,046
2789,063	82,294
2871,094	69,236
2953,125	55,893
3035,156	42,284
3117,188	28,424
3199,219	14,323
3281,250	0,000

7.6.2 La sección del timón

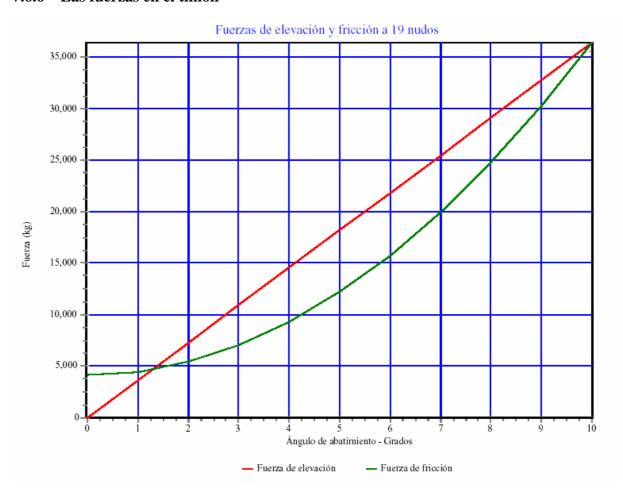
Perfil del timón

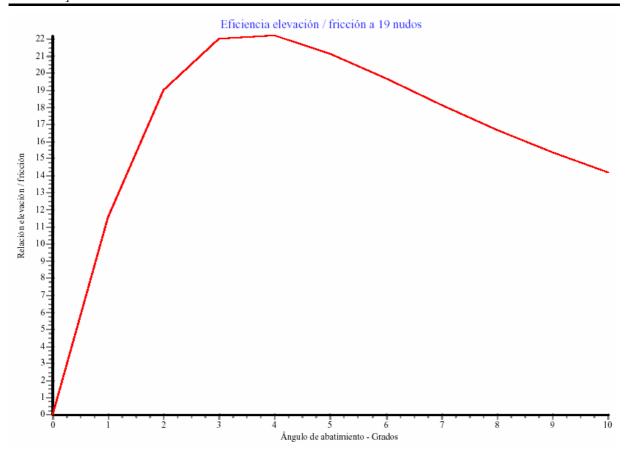


7.6.3 El diseño esquemático del timón


7.6.4 La distribución de espesores del timón

Distribución de espesores del timón




7.6.5 La distribución de carga en el timón

Distribución de carga en el timón

7.6.6 Las fuerzas en el timón

8 LA BIBLIOGRAFÍA

- G. Perez Gomez, J. Gonzalez-Adalid "Detailed design of ship propellers". F.E.I.N. C.O.I.N. 1998.
- Antonio Baquero «Proyecto de timones marinos : informe final director de la investigación». Asociación de Investigación de la Construcción Naval. 1979.
- Norske Veritas «Rules for classification of ships». Hovik. Det Norske Veritas. 1999.
- Organización Marítima Internacional «SOLAS: Convenio internacional para la seguridad de la vida humana en el mar, 1974, y su protocolo de 1988 : enmiendas de 2000, en vigor en enero y julio de 2002» Londres: Organización Marítima Internacional. 2002.

9 Los anexos

9.1 LAS VARIACIONES DE $\frac{H}{D}$

9.1.1
$$\frac{H}{D} = 0.50$$

J	K_T	K_Q	$\frac{K_T}{J^2}$	η_0	η_t	$\frac{H}{D}$	D (m)
0,326	0,117	0,014	1,097	0,431	0,401	0,500	3,537
0,334	0,114	0,014	1,022	0,435	0,405	0,500	3,537
0,341	0,110	0,014	0,948	0,439	0,409	0,500	3,537
0,349	0,107	0,013	0,877	0,444	0,413	0,500	3,537
0,358	0,103	0,013	0,807	0,447	0,416	0,500	3,537
0,367	0,099	0,013	0,738	0,450	0,419	0,500	3,537
0,376	0,095	0,013	0,672	0,453	0,422	0,500	3,537
0,386	0,091	0,012	0,607	0,455	0,423	0,500	3,537
0,397	0,086	0,012	0,545	0,455	0,424	0,500	3,537
0,408	0,081	0,012	0,486	0,454	0,423	0,500	3,537
0,419	0,076	0,011	0,431	0,451	0,420	0,500	3,537
0,432	0,070	0,011	0,378	0,446	0,415	0,500	3,537
0,445	0,065	0,010	0,327	0,437	0,407	0,500	3,537
0,459	0,058	0,010	0,278	0,425	0,396	0,500	3,537
0,473	0,052	0,010	0,231	0,408	0,380	0,500	3,537
0,489	0,044	0,009	0,186	0,383	0,357	0,500	3,537
0,506	0,037	0,008	0,143	0,348	0,324	0,500	3,537
0,524	0,028	0,008	0,102	0,298	0,278	0,500	3,537
0,544	0,019	0,007	0,063	0,226	0,211	0,500	3,537

J	K_T	K_Q	$\frac{K_T}{J^2}$	η_0	η_t	$\frac{H}{D}$	D (m)
0,564	0,008	0,006	0,026	0,119	0,111	0,500	3,537
0,587	0,000	_	0,000	0,000	0,000	0,500	3,537
0,611	0,000	_	0,000	0,000	0,000	0,500	3,537
0,638	0,000	_	0,000	0,000	0,000	0,500	3,537
0,667	0,000	_	0,000	0,000	0,000	0,500	3,537
0,699	0,000	_	0,000	0,000	0,000	0,500	3,537
0,734	0,000	_	0,000	0,000	0,000	0,500	3,537
0,772	0,000	_	0,000	0,000	0,000	0,500	3,537
0,815	0,000	_	0,000	0,000	0,000	0,500	3,537
0,863	0,000	_	0,000	0,000	0,000	0,500	3,537
0,917	0,000	_	0,000	0,000	0,000	0,500	3,537
0,978	0,000	_	0,000	0,000	0,000	0,500	3,537
1,048	0,000	_	0,000	0,000	0,000	0,500	3,537
1,129	0,000	_	0,000	0,000	0,000	0,500	3,537
1,223	0,000	_	0,000	0,000	0,000	0,500	3,537
1,334	0,000	_	0,000	0,000	0,000	0,500	3,537
1,468	0,000	_	0,000	0,000	0,000	0,500	3,537
1,631	0,000	_	0,000	0,000	0,000	0,500	3,537

$rac{m{A_E}}{m{A_0}}$	n (rps)	n (rpm)	T(N)	R(N)	Q (N·m)	EHP (CV)	BHP (CV)
0,323	7,50	450,0	1052642,3	922071,4	448794,6	13854,1	34555,6
0,340	7,33	440,0	980497,0	858875,1	423090,6	12904,5	31852,5
0,348	7,17	430,0	910038,9	797156,7	397851,1	11977,2	29271,6

$rac{m{A_E}}{m{A_0}}$	n (rps)	n (rpm)	T(N)	R(N)	Q (N·m)	EHP (CV)	BHP (CV)
0,354	7,00	420,0	841267,3	736915,5	373080,0	11072,1	26810,8
0,359	6,83	410,0	774180,7	678150,5	348782,1	10189,2	24467,9
0,365	6,67	400,0	708780,6	620862,7	324964,2	9328,4	22240,9
0,370	6,50	390,0	645069,1	565054,0	301635,3	8489,9	20128,2
0,376	6,33	380,0	583049,7	510727,6	278807,5	7673,7	18127,8
0,381	6,17	370,0	522729,3	457889,4	256496,3	6879,8	16238,3
0,388	6,00	360,0	466850,8	408942,1	236071,4	6144,3	14541,3
0,395	5,83	350,0	413743,3	362422,1	216625,5	5445,4	12972,9
0,403	5,67	340,0	362622,5	317642,4	197756,9	4772,6	11504,5
0,410	5,50	330,0	313498,6	274611,9	179466,1	4126,0	10133,4
0,420	5,33	320,0	266380,0	233337,9	161753,2	3505,9	8856,5
0,434	5,17	310,0	221276,3	193828,9	144617,8	2912,3	7670,8
0,447	5,00	300,0	178197,7	156093,8	128059,1	2345,3	6573,4
0,461	4,83	290,0	136860,6	119884,2	111944,2	1801,3	5554,7
0,475	4,67	280,0	97500,9	85406,8	96380,6	1283,2	4617,5
0,492	4,50	270,0	60222,0	52752,0	81409,1	792,6	3760,9
0,511	4,33	260,0	25040,0	21934,0	67029,0	329,6	2981,9
0,531	4,17	250,0	0,0	0,0	_	0,0	_
0,551	4,00	240,0	0,0	0,0		0,0	_
0,572	3,83	230,0	0,0	0,0		0,0	_
0,597	3,67	220,0	0,0	0,0		0,0	_
0,631	3,50	210,0	0,0	0,0	_	0,0	_
0,656	3,33	200,0	0,0	0,0		0,0	_
0,683	3,17	190,0	0,0	0,0	_	0,0	_

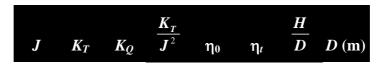
Buque d	'e Crucero
---------	------------

$rac{oldsymbol{A_E}}{oldsymbol{A}_0}$	n (rps)	n (rpm)	T(N)	R (N)	O (N·m)	EHP (CV)	BHP (CV)
0,720	3,00	180,0	0,0	0,0		0,0	
0,764	2,83	170,0	0,0	0,0	_	0,0	_
0,815	2,67	160,0	0,0	0,0	_	0,0	_
0,323	2,50	150,0	0,0	0,0	_	0,0	
0,340	2,33	140,0	0,0	0,0	_	0,0	
0,348	2,17	130,0	0,0	0,0	_	0,0	_
0,354	2,00	120,0	0,0	0,0	_	0,0	_
0,359	1,83	110,0	0,0	0,0	_	0,0	_
0,365	1,67	100,0	0,0	0,0	_	0,0	_
0,370	1,50	90,0	0,0	0,0	_	0,0	_

9.1.2
$$\frac{H}{D} = 0.59$$

J	K_T	K_O	$\frac{K_T}{J^2}$	η_0	η_t	$\frac{H}{D}$	D (m)
0,326	0,154	~	1,449			0,590	3,537
0,334	0,151	0,018	1,361	0,445	0,414	0,590	3,537
0,341	0,149	0,018	1,276	0,451	0,420	0,590	3,537
0,349	0,146	0,018	1,192	0,457	0,426	0,590	3,537
0,358	0,142	0,017	1,110	0,464	0,432	0,590	3,537
0,367	0,139	0,017	1,030	0,471	0,438	0,590	3,537
0,376	0,135	0,017	0,952	0,477	0,444	0,590	3,537
0,386	0,131	0,017	0,876	0,483	0,450	0,590	3,537
0,397	0,126	0,016	0,802	0,490	0,456	0,590	3,537
0,408	0,122	0,016	0,731	0,495	0,461	0,590	3,537

J	K_T	K_Q	$\frac{\boldsymbol{K_T}}{\boldsymbol{J}^2}$	η_0	η_t	$\frac{H}{D}$	D (m)
0,419	0,117	0,016	0,664	0,500	0,465	0,590	3,537
0,432	0,112	0,015	0,599	0,504	0,469	0,590	3,537
0,445	0,106	0,015	0,536	0,507	0,472	0,590	3,537
0,459	0,100	0,014	0,476	0,508	0,473	0,590	3,537
0,473	0,094	0,014	0,418	0,508	0,473	0,590	3,537
0,489	0,087	0,013	0,362	0,505	0,470	0,590	3,537
0,506	0,079	0,013	0,308	0,499	0,465	0,590	3,537
0,524	0,071	0,012	0,257	0,488	0,454	0,590	3,537
0,544	0,062	0,011	0,208	0,470	0,438	0,590	3,537
0,564	0,052	0,010	0,162	0,442	0,411	0,590	3,537
0,587	0,040	0,010	0,117	0,397	0,369	0,590	3,537
0,611	0,028	0,008	0,075	0,324	0,302	0,590	3,537
0,638	0,014	0,007	0,035	0,203	0,189	0,590	3,537
0,667	0,000	_	0,000	0,000	0,000	0,590	3,537
0,699	0,000	_	0,000	0,000	0,000	0,590	3,537
0,734	0,000	_	0,000	0,000	0,000	0,590	3,537
0,772	0,000	_	0,000	0,000	0,000	0,590	3,537
0,815	0,000	_	0,000	0,000	0,000	0,590	3,537
0,863	0,000	_	0,000	0,000	0,000	0,590	3,537
0,917	0,000	_	0,000	0,000	0,000	0,590	3,537
0,978	0,000	_	0,000	0,000	0,000	0,590	3,537
1,048	0,000	_	0,000	0,000	0,000	0,590	3,537
1,129	0,000	_	0,000	0,000	0,000	0,590	3,537
1,223	0,000	_	0,000	0,000	0,000	0,590	3,537


J	K_T	K_Q	$\frac{\boldsymbol{K_T}}{\boldsymbol{J}^2}$	η_0	η_t	$\frac{H}{D}$	D (m)
1,334	0,000	_	0,000	0,000	0,000	0,590	3,537
1,468	0,000	_	0,000	0,000	0,000	0,590	3,537
1,631	0,000	_	0,000	0,000	0,000	0,590	3,537

$rac{oldsymbol{A}_E}{oldsymbol{A}_0}$	n (rps)	n (rpm)	T(N)	R(N)	Q (N·m)	EHP (CV)	BHP (CV)
0,237	7,50	450,0	1390844,4	1218322,6	582573,6	18305,2	44856,1
0,248	7,33	440,0	1306731,9	1144643,4	551846,7	17198,2	41546,0
0,259	7,17	430,0	1224468,2	1072583,8	521621,2	16115,5	38377,9
0,272	7,00	420,0	1144050,7	1002141,4	491897,6	15057,1	35349,4
0,285	6,83	410,0	1065474,3	933311,7	462676,7	14023,0	32457,8
0,299	6,67	400,0	988737,1	866093,0	433961,7	13013,0	29700,9
0,314	6,50	390,0	913838,2	800484,7	405757,4	12027,2	27076,3
0,330	6,33	380,0	840776,8	736485,9	378071,4	11065,7	24581,9
0,347	6,17	370,0	769555,6	674099,0	350914,3	10128,3	22215,7
0,356	6,00	360,0	702080,3	614993,5	325478,1	9240,2	20048,5
0,362	5,83	350,0	637346,4	558289,3	301060,9	8388,3	18029,4
0,367	5,67	340,0	574835,7	503532,4	277326,6	7565,5	16133,5
0,373	5,50	330,0	514562,6	450735,7	254278,9	6772,3	14357,6
0,378	5,33	320,0	456540,5	399910,7	231920,7	6008,6	12698,4
0,384	5,17	310,0	400783,8	351070,1	210255,0	5274,8	11152,3
0,390	5,00	300,0	347307,5	304227,1	189284,1	4571,0	9716,1
0,397	4,83	290,0	295881,5	259180,1	168868,0	3894,2	8379,2
0,404	4,67	280,0	246697,7	216097,1	149115,9	3246,8	7144,0

Buque i	de	Crucero
---------	----	---------

$rac{A_E}{A_0}$	n (rps)	n (rpm)	T(N)	R(N)	Q (N·m)	EHP (CV)	BHP (CV)
0,411	4,50	270,0	199849,6	175060,0	130074,5	2630,3	6009,2
0,419	4,33	260,0	155359,5	136088,6	111747,8	2044,7	4971,3
0,430	4,17	250,0	112711,5	98730,6	93860,9	1483,4	4015,0
0,443	4,00	240,0	72080,8	63139,8	76532,5	948,7	3142,8
0,457	3,83	230,0	33930,3	29721,6	60007,3	446,6	2361,5
0,471	3,67	220,0	0,0	0,0	_	0,0	
0,485	3,50	210,0	0,0	0,0		0,0	
0,502	3,33	200,0	0,0	0,0	_	0,0	
0,522	3,17	190,0	0,0	0,0	_	0,0	
0,543	3,00	180,0	0,0	0,0	_	0,0	
0,563	2,83	170,0	0,0	0,0	_	0,0	
0,584	2,67	160,0	0,0	0,0	_	0,0	
0,610	2,50	150,0	0,0	0,0	_	0,0	
0,645	2,33	140,0	0,0	0,0	_	0,0	
0,671	2,17	130,0	0,0	0,0	_	0,0	
0,698	2,00	120,0	0,0	0,0	_	0,0	
0,736	1,83	110,0	0,0	0,0	_	0,0	_
0,781	1,67	100,0	0,0	0,0	_	0,0	_
0,833	1,50	90,0	0,0	0,0	_	0,0	

9.1.3
$$\frac{H}{D} = 0.68$$

0,326 0,191 0,023 1,798 0,432 0,402 0,680 3,537

J	K_T	K_Q	$\frac{K_T}{J^2}$	η_0	η_t	$\frac{H}{D}$	D (m)
0,334	0,189	0,023	1,698	0,439	0,409	0,680	3,537
0,341	0,186	0,023	1,601	0,446	0,415	0,680	3,537
0,349	0,184	0,023	1,506	0,453	0,422	0,680	3,537
0,358	0,181	0,022	1,413	0,461	0,429	0,680	3,537
0,367	0,178	0,022	1,321	0,468	0,436	0,680	3,537
0,376	0,175	0,022	1,232	0,476	0,443	0,680	3,537
0,386	0,171	0,022	1,145	0,484	0,451	0,680	3,537
0,397	0,167	0,021	1,060	0,493	0,459	0,680	3,537
0,408	0,163	0,021	0,978	0,501	0,466	0,680	3,537
0,419	0,158	0,021	0,899	0,509	0,474	0,680	3,537
0,432	0,153	0,020	0,822	0,517	0,481	0,680	3,537
0,445	0,148	0,020	0,748	0,525	0,488	0,680	3,537
0,459	0,142	0,020	0,676	0,532	0,495	0,680	3,537
0,473	0,136	0,019	0,607	0,539	0,502	0,680	3,537
0,489	0,129	0,018	0,540	0,545	0,508	0,680	3,537
0,506	0,122	0,018	0,476	0,550	0,512	0,680	3,537
0,524	0,114	0,017	0,415	0,554	0,516	0,680	3,537
0,544	0,105	0,016	0,356	0,555	0,517	0,680	3,537
0,564	0,096	0,016	0,300	0,552	0,514	0,680	3,537
0,587	0,085	0,015	0,246	0,545	0,507	0,680	3,537
0,611	0,073	0,013	0,195	0,529	0,492	0,680	3,537
0,638	0,059	0,012	0,146	0,499	0,465	0,680	3,537
0,667	0,045	0,011	0,100	0,446	0,415	0,680	3,537
0,699	0,028	0,009	0,058	0,349	0,325	0,680	3,537

J	K_T	K_O	$\frac{K_T}{J^2}$	η_0	η_t	$\frac{H}{D}$	<i>D</i> (m)
V		~					
0,734	0,009	0,007	0,018	0,157	0,146	0,680	3,537
0,772	0,000	_	0,000	0,000	0,000	0,680	3,537
0,815	0,000	_	0,000	0,000	0,000	0,680	3,537
0,863	0,000		0,000	0,000	0,000	0,680	3,537
0,917	0,000		0,000	0,000	0,000	0,680	3,537
0,978	0,000		0,000	0,000	0,000	0,680	3,537
1,048	0,000		0,000	0,000	0,000	0,680	3,537
1,129	0,000	_	0,000	0,000	0,000	0,680	3,537
1,223	0,000	_	0,000	0,000	0,000	0,680	3,537
1,334	0,000	_	0,000	0,000	0,000	0,680	3,537
1,468	0,000		0,000	0,000	0,000	0,680	3,537
1,631	0,000		0,000	0,000	0,000	0,680	3,537

A_E							
A_0	n (rps)	n (rpm)	T(N)	R(N)	$Q(\mathbf{N}\cdot\mathbf{m})$	EHP (CV)	BHP (CV)
0,243	7,50	450,0	1725372,4	1511355,3	733442,9	22708,0	56472,5
0,254	7,33	440,0	1630012,8	1427824,3	697550,4	21453,0	52515,3
0,265	7,17	430,0	1536639,4	1346032,9	662192,5	20224,1	48720,4
0,278	7,00	420,0	1445245,3	1265975,5	627365,7	19021,2	45084,6
0,291	6,83	410,0	1355822,7	1187645,0	593067,1	17844,3	41605,0
0,305	6,67	400,0	1268365,2	1111035,8	559295,8	16693,2	38278,9
0,321	6,50	390,0	1182869,0	1036144,6	526052,1	15568,0	35103,6
0,337	6,33	380,0	1099328,0	962966,2	493337,9	14468,5	32076,4
0,355	6,17	370,0	1017739,7	891498,2	461158,3	13394,7	29195,1

$rac{A_E}{A_0}$	n (rps)	<i>n</i> (rpm)	T(N)	R(N)	<i>Q</i> (N·m)	EHP (CV)	BHP (CV)
0,364	6,00	360,0	938884,3	822424,1	430158,9	12356,9	26496,5
0,370	5,83	350,0	862634,0	755631,9	400108,4	11353,3	23960,9
0,376	5,67	340,0	788824,6	690978,0	370849,3	10381,9	21574,2
0,381	5,50	330,0	717475,5	628479,1	342388,9	9442,9	19332,7
0,387	5,33	320,0	648606,5	568152,7	314734,5	8536,5	17232,7
0,393	5,17	310,0	582236,6	510015,4	287893,1	7663,0	15270,4
0,399	5,00	300,0	518387,0	454085,7	261871,3	6822,6	13442,1
0,406	4,83	290,0	456905,2	400230,1	236553,4	6013,4	11737,8
0,413	4,67	280,0	397919,8	348561,4	212025,5	5237,1	10157,9
0,421	4,50	270,0	341507,8	299146,8	188332,2	4494,7	8700,5
0,428	4,33	260,0	287699,3	252012,8	165483,0	3786,5	7361,8
0,439	4,17	250,0	236078,9	206795,4	143202,8	3107,1	6125,6
0,453	4,00	240,0	186764,8	163598,3	121583,9	2458,1	4992,8
0,467	3,83	230,0	140147,3	122763,3	100874,1	1844,5	3969,8
0,482	3,67	220,0	96290,8	84346,8	81105,6	1267,3	3053,0
0,496	3,50	210,0	55264,7	48409,6	62312,8	727,4	2239,0
0,514	3,33	200,0	16861,5	14770,0	44409,0	221,9	1519,7
0,534	3,17	190,0	0,0	0,0	_	0,0	_
0,555	3,00	180,0	0,0	0,0	_	0,0	_
0,576	2,83	170,0	0,0	0,0	_	0,0	_
0,598	2,67	160,0	0,0	0,0	_	0,0	_
0,624	2,50	150,0	0,0	0,0	_	0,0	_
0,659	2,33	140,0	0,0	0,0	_	0,0	_
0,686	2,17	130,0	0,0	0,0	_	0,0	_

Buque	de	Crucero
-------	----	---------

$rac{oldsymbol{A}_{E}}{oldsymbol{A}_{0}}$	n (rps)	n (rpm)	T(N)	R(N)	Q (N·m)	EHP (CV)	BHP (CV)
0,714	2,00	120,0	0,0	0,0	_	0,0	_
0,753	1,83	110,0	0,0	0,0	_	0,0	
0,798	1,67	100,0	0,0	0,0	_	0,0	_
0,852	1,50	90,0	0,0	0,0		0,0	

9.1.4
$$\frac{H}{D} = 0,77$$

			K_T			\underline{H}	
\boldsymbol{J}	K_T	K_Q	$oldsymbol{J}^2$	η_0	η_t	D	<i>D</i> (m)
0,326	0,227	0,028	2,137	0,418	0,389	0,770	3,537
0,334	0,226	0,028	2,027	0,424	0,395	0,770	3,537
0,341	0,224	0,028	1,919	0,432	0,402	0,770	3,537
0,349	0,221	0,028	1,814	0,439	0,409	0,770	3,537
0,358	0,219	0,028	1,710	0,447	0,416	0,770	3,537
0,367	0,217	0,028	1,609	0,455	0,423	0,770	3,537
0,376	0,214	0,028	1,509	0,463	0,431	0,770	3,537
0,386	0,211	0,027	1,412	0,471	0,439	0,770	3,537
0,397	0,207	0,027	1,317	0,480	0,447	0,770	3,537
0,408	0,203	0,027	1,223	0,489	0,456	0,770	3,537
0,419	0,199	0,027	1,132	0,499	0,464	0,770	3,537
0,432	0,194	0,026	1,044	0,508	0,473	0,770	3,537
0,445	0,190	0,026	0,958	0,518	0,482	0,770	3,537
0,459	0,184	0,025	0,875	0,528	0,492	0,770	3,537
0,473	0,178	0,025	0,795	0,538	0,501	0,770	3,537
0,489	0,172	0,024	0,718	0,548	0,510	0,770	3,537

J	K_T	K_Q	$\frac{\boldsymbol{K_T}}{\boldsymbol{J}^2}$	η_0	η_t	$\frac{H}{D}$	D (m)
0,506	0,165	0,024	0,644	0,558	0,520	0,770	3,537
0,524	0,157	0,023	0,572	0,568	0,529	0,770	3,537
0,544	0,149	0,022	0,504	0,577	0,537	0,770	3,537
0,564	0,140	0,021	0,438	0,585	0,544	0,770	3,537
0,587	0,129	0,020	0,375	0,591	0,550	0,770	3,537
0,611	0,118	0,019	0,315	0,595	0,554	0,770	3,537
0,638	0,105	0,018	0,258	0,594	0,553	0,770	3,537
0,667	0,091	0,016	0,203	0,585	0,545	0,770	3,537
0,699	0,074	0,015	0,152	0,564	0,525	0,770	3,537
0,734	0,056	0,013	0,104	0,519	0,483	0,770	3,537
0,772	0,036	0,010	0,060	0,423	0,394	0,770	3,537
0,815	0,012	0,008	0,018	0,205	0,191	0,770	3,537
0,863	0,000	_	0,000	0,000	0,000	0,770	3,537
0,917	0,000	_	0,000	0,000	0,000	0,770	3,537
0,978	0,000	_	0,000	0,000	0,000	0,770	3,537
1,048	0,000	_	0,000	0,000	0,000	0,770	3,537
1,129	0,000	_	0,000	0,000	0,000	0,770	3,537
1,223	0,000	_	0,000	0,000	0,000	0,770	3,537
1,334	0,000	_	0,000	0,000	0,000	0,770	3,537
1,468	0,000	_	0,000	0,000	0,000	0,770	3,537
1,631	0,000		0,000	0,000	0,000	0,770	3,537

```
rac{A_E}{A_0}  n (rps) n (rpm)  T (N)  R (N)  Q (N·m)  EHP (CV) BHP (CV)
```

$rac{oldsymbol{A_E}}{oldsymbol{A}_0}$	n (rps)	<i>n</i> (rpm)	T(N)	R(N)	Q (N·m)	EHP (CV)	BHP (CV)
0,248	7,50	450,0	2051395,1	1796937,8	901916,7	26998,9	69444,3
0,259	7,33	440,0	1945735,3	1704384,2	860739,1	25608,3	64801,1
0,271	7,17	430,0	1842166,9	1613662,5	820122,7	24245,2	60340,0
0,284	7,00	420,0	1740678,7	1524763,1	780060,6	22909,5	56057,7
0,298	6,83	410,0	1641261,2	1437677,4	740545,1	21601,0	51950,9
0,312	6,67	400,0	1543901,6	1352394,4	701570,2	20319,6	48016,3
0,328	6,50	390,0	1448591,9	1268907,0	663131,1	19065,3	44250,9
0,345	6,33	380,0	1355321,4	1187205,8	625223,7	17837,7	40651,5
0,364	6,17	370,0	1264082,4	1107284,3	587847,7	16636,9	37215,5
0,372	6,00	360,0	1174243,3	1028588,9	550714,2	15454,5	33922,4
0,378	5,83	350,0	1086761,4	951958,3	514343,4	14303,1	30802,0
0,384	5,67	340,0	1001914,1	877635,6	478874,9	13186,4	27858,6
0,390	5,50	330,0	919727,6	805643,6	444321,3	12104,7	25088,2
0,396	5,33	320,0	840227,0	736004,4	410694,4	11058,4	22486,7
0,402	5,17	310,0	763438,0	668740,3	378006,3	10047,8	20050,2
0,408	5,00	300,0	689388,5	603876,0	346269,4	9073,2	17774,3
0,415	4,83	290,0	618027,0	541366,2	315424,7	8134,0	15651,3
0,423	4,67	280,0	549400,6	481252,3	285509,8	7230,8	13678,5
0,431	4,50	270,0	483563,0	423581,4	256558,4	6364,3	11852,4
0,438	4,33	260,0	420553,4	368387,5	228586,9	5535,0	10169,1
0,449	4,17	250,0	360097,3	315430,4	201376,9	4739,3	8614,1
0,464	4,00	240,0	302240,1	264749,9	174972,5	3977,9	7185,2
0,478	3,83	230,0	247267,8	216596,4	149581,0	3254,3	5886,6
0,493	3,67	220,0	195257,2	171037,3	125245,1	2569,8	4714,6

Buque	de	Crucero
-------	----	---------

$rac{oldsymbol{A_E}}{oldsymbol{A}_0}$	n (rps)	n (rpm)	T(N)	R (N)	Q (N·m)	EHP (CV)	BHP (CV)
0,508		210,0	146291,1	128145,0	102010,3	1925,4	3665,4
0,526	3,33	200,0	100205,5	87775,9	79783,9	1318,8	2730,3
0,546	3,17	190,0	57113,2	50028,9	58669,7	751,7	1907,3
0,568	3,00	180,0	17384,4	15228,0	38899,0	228,8	1198,0
0,589	2,83	170,0	0,0	0,0	_	0,0	_
0,611	2,67	160,0	0,0	0,0	_	0,0	_
0,638	2,50	150,0	0,0	0,0	_	0,0	_
0,675	2,33	140,0	0,0	0,0	_	0,0	_
0,702	2,17	130,0	0,0	0,0	_	0,0	_
0,730	2,00	120,0	0,0	0,0	_	0,0	_
0,770	1,83	110,0	0,0	0,0	_	0,0	_
0,817	1,67	100,0	0,0	0,0	_	0,0	_
0,872	1,50	90,0	0,0	0,0	_	0,0	

9.1.5
$$\frac{H}{D} = 0.86$$

J	K_T	K_Q	$\frac{\boldsymbol{K_T}}{\boldsymbol{J}^2}$	η_0	η_t	$\frac{H}{D}$	D (m)
0,326	0,262	0,034	2,464	0,399	0,371	0,860	3,537
0,334	0,261	0,034	2,344	0,406	0,378	0,860	3,537
0,341	0,259	0,034	2,227	0,412	0,384	0,860	3,537
0,349	0,258	0,034	2,111	0,419	0,391	0,860	3,537
0,358	0,256	0,034	1,998	0,427	0,397	0,860	3,537
0,367	0,254	0,034	1,888	0,435	0,405	0,860	3,537
0,376	0,252	0,034	1,779	0,443	0,412	0,860	3,537

J	K_T	K_Q	$\frac{K_T}{J^2}$	η_0	η_t	$\frac{H}{D}$	D (m)
0,386	0,250	0,034	1,673	0,451	0,420	0,860	3,537
0,397	0,247	0,034	1,569	0,460	0,428	0,860	3,537
0,408	0,243	0,034	1,464	0,469	0,437	0,860	3,537
0,419	0,239	0,033	1,362	0,479	0,446	0,860	3,537
0,432	0,235	0,033	1,262	0,489	0,456	0,860	3,537
0,445	0,231	0,033	1,166	0,500	0,465	0,860	3,537
0,459	0,226	0,032	1,072	0,511	0,476	0,860	3,537
0,473	0,220	0,032	0,982	0,522	0,486	0,860	3,537
0,489	0,214	0,031	0,894	0,534	0,497	0,860	3,537
0,506	0,207	0,031	0,810	0,546	0,508	0,860	3,537
0,524	0,200	0,030	0,729	0,558	0,520	0,860	3,537
0,544	0,192	0,029	0,651	0,570	0,531	0,860	3,537
0,564	0,183	0,028	0,576	0,583	0,542	0,860	3,537
0,587	0,174	0,027	0,504	0,595	0,554	0,860	3,537
0,611	0,163	0,026	0,435	0,606	0,565	0,860	3,537
0,638	0,150	0,025	0,369	0,617	0,574	0,860	3,537
0,667	0,136	0,023	0,307	0,624	0,581	0,860	3,537
0,699	0,121	0,021	0,247	0,628	0,585	0,860	3,537
0,734	0,103	0,019	0,192	0,624	0,581	0,860	3,537
0,772	0,083	0,017	0,139	0,605	0,563	0,860	3,537
0,815	0,060	0,014	0,090	0,555	0,517	0,860	3,537
0,863	0,034	0,011	0,045	0,432	0,403	0,860	3,537
0,917	0,004	0,007	0,004	0,079	0,074	0,860	3,537
0,978	0,000	_	0,000	0,000	0,000	0,860	3,537

J	K_T	K_Q	$\frac{\boldsymbol{K_T}}{\boldsymbol{J}^2}$	η_0	η_t	$\frac{H}{D}$	<i>D</i> (m)
1.040							
1,048	0,000	_	0,000	0,000	0,000	0,860	3,537
1,129	0,000	_	0,000	0,000	0,000	0,860	3,537
1,223	0,000		0,000	0,000	0,000	0,860	3,537
1,334	0,000		0,000	0,000	0,000	0,860	3,537
1,468	0,000		0,000	0,000	0,000	0,860	3,537
1,631	0,000	_	0,000	0,000	0,000	0,860	3,537

$rac{oldsymbol{A_E}}{oldsymbol{A}_0}$	n (rps)	n (rpm)	T(N)	R(N)	<i>Q</i> (N·m)	EHP (CV)	BHP (CV)
0,254	7,50	450,0	2364497,0	2071202,2	1088148,7	31119,7	83783,5
0,266	7,33	440,0	2249686,8	1970633,2	1041611,3	29608,7	78418,1
0,278	7,17	430,0	2137035,2	1871955,0	995653,2	28126,0	73254,5
0,291	7,00	420,0	2026529,8	1775156,8	950261,4	26671,6	68288,9
0,305	6,83	410,0	1918154,6	1680224,6	905424,4	25245,3	63517,6
0,320	6,67	400,0	1811892,5	1587143,4	861130,0	23846,7	58936,8
0,336	6,50	390,0	1707729,6	1495901,0	817367,7	22475,8	54543,1
0,353	6,33	380,0	1605651,5	1406484,7	774125,7	21132,4	50333,0
0,372	6,17	370,0	1505642,1	1318880,6	731397,4	19816,1	46303,4
0,381	6,00	360,0	1405376,8	1231052,3	687553,0	18496,5	42351,3
0,387	5,83	350,0	1307105,8	1144971,0	644161,7	17203,1	38576,3
0,393	5,67	340,0	1211635,6	1061343,0	601785,9	15946,6	35008,9
0,399	5,50	330,0	1118998,0	980196,3	560443,3	14727,4	31644,9
0,405	5,33	320,0	1029226,0	901559,6	520152,4	13545,9	28479,9
0,411	5,17	310,0	942351,6	825461,3	480930,6	12402,5	25509,5

A_E							
A_0	n (rps)	n (rpm)	T(N)	R(N)	$Q(\mathbf{N}\cdot\mathbf{m})$	EHP (CV)	BHP (CV)
0,41	7 5,00	300,0	858410,6	751932,4	442797,8	11297,7	22729,2
0,42	5 4,83	290,0	777476,4	681037,4	405786,3	10232,5	20135,1
0,43	3 4,67	280,0	699494,9	612728,8	369857,4	9206,2	17719,5
0,44	1 4,50	270,0	624491,2	547028,7	335025,6	8219,1	15477,5
0,44	9 4,33	260,0	552514,7	483980,1	301315,3	7271,8	13404,6
0,46	0 4,17	250,0	483470,7	423500,4	268624,0	6363,1	11490,6
0,47	5 4,00	240,0	417316,6	365552,2	236924,8	5492,4	9729,3
0,48	9 3,83	230,0	354203,3	310267,5	206339,1	4661,8	8120,2
0,50	5 3,67	220,0	294221,5	257726,0	176922,4	3872,3	6659,8
0,52	0 3,50	210,0	237468,7	208012,8	148733,1	3125,4	5344,2
0,53	8 3,33	200,0	183841,7	161037,8	121699,3	2419,6	4164,6
0,55	9 3,17	190,0	133434,3	116883,0	95906,0	1756,2	3117,9
0,58	1 3,00	180,0	86583,5	75843,6	71585,7	1139,5	2204,7
0,60	3 2,83	170,0	43465,4	38073,9	48859,7	572,1	1421,2
0,62	6 2,67	160,0	4275,9	3745,5	27862,7	56,3	762,8
0,65	3 2,50	150,0	0,0	0,0	_	0,0	
0,69	1 2,33	140,0	0,0	0,0	_	0,0	
0,71	9 2,17	130,0	0,0	0,0	_	0,0	
0,74	8 2,00	120,0	0,0	0,0	_	0,0	
0,78	8 1,83	110,0	0,0	0,0	_	0,0	_
0,83	6 1,67	100,0	0,0	0,0	_	0,0	_
0,89	3 1,50	90,0	0,0	0,0	_	0,0	

9.1.6
$$\frac{H}{D} = 0.95$$

J	K_T	K_Q	$\frac{\boldsymbol{K_T}}{\boldsymbol{J}^2}$	η_0	η_t	$\frac{H}{D}$	<i>D</i> (m)
0,326	0,295	0,040	2,772	0,378	0,352	0,950	3,537
0,334	0,294	0,041	2,644	0,384	0,358	0,950	3,537
0,341	0,293	0,041	2,519	0,391	0,364	0,950	3,537
0,349	0,293	0,041	2,396	0,398	0,370	0,950	3,537
0,358	0,291	0,041	2,275	0,404	0,377	0,950	3,537
0,367	0,290	0,041	2,156	0,412	0,383	0,950	3,537
0,376	0,289	0,041	2,039	0,419	0,390	0,950	3,537
0,386	0,287	0,041	1,925	0,427	0,398	0,950	3,537
0,397	0,285	0,041	1,813	0,436	0,406	0,950	3,537
0,408	0,282	0,041	1,698	0,445	0,414	0,950	3,537
0,419	0,279	0,041	1,585	0,455	0,423	0,950	3,537
0,432	0,275	0,041	1,475	0,465	0,433	0,950	3,537
0,445	0,271	0,040	1,368	0,476	0,443	0,950	3,537
0,459	0,266	0,040	1,264	0,487	0,454	0,950	3,537
0,473	0,261	0,039	1,164	0,499	0,464	0,950	3,537
0,489	0,255	0,039	1,067	0,511	0,476	0,950	3,537
0,506	0,249	0,038	0,973	0,524	0,488	0,950	3,537
0,524	0,242	0,038	0,882	0,537	0,500	0,950	3,537
0,544	0,235	0,037	0,795	0,551	0,513	0,950	3,537
0,564	0,226	0,036	0,711	0,565	0,526	0,950	3,537
0,587	0,217	0,035	0,630	0,579	0,539	0,950	3,537
0,611	0,207	0,034	0,553	0,594	0,553	0,950	3,537
0,638	0,195	0,033	0,479	0,609	0,567	0,950	3,537

J	K_T	K_Q	$\frac{K_T}{J^2}$	η_0	η_t	$\frac{H}{D}$	<i>D</i> (m)
0,667	0,182	0,031	0,409	0,624	0,581	0,950	3,537
0,699	0,167	0,029	0,342	0,637	0,593	0,950	3,537
0,734	0,150	0,027	0,278	0,648	0,603	0,950	3,537
0,772	0,130	0,024	0,218	0,654	0,609	0,950	3,537
0,815	0,108	0,022	0,162	0,650	0,605	0,950	3,537
0,863	0,082	0,018	0,110	0,624	0,581	0,950	3,537
0,917	0,053	0,014	0,063	0,547	0,509	0,950	3,537
0,978	0,018	0,009	0,019	0,308	0,286	0,950	3,537
1,048	0,000	_	0,000	0,000	0,000	0,950	3,537
1,129	0,000	_	0,000	0,000	0,000	0,950	3,537
1,223	0,000	_	0,000	0,000	0,000	0,950	3,537
1,334	0,000	_	0,000	0,000	0,000	0,950	3,537
1,468	0,000	_	0,000	0,000	0,000	0,950	3,537
1,631	0,000		0,000	0,000	0,000	0,950	3,537

$rac{\pmb{A_E}}{\pmb{A_0}}$	n (rps)	n (rpm)	T(N)	R(N)	<i>Q</i> (N·m)	EHP (CV)	BHP (CV)
0,260	7,50	450.0		2330744,0	~ ` '	35019,3	99464,9
0,200	7,50	450,0	2000/91,4	2330744,0	1291012,0	33019,3	77 4 0 4 ,7
0,272	7,33	440,0	2538154,6	2223319,2	1239916,7	33405,2	93347,6
0,285	7,17	430,0	2417706,2	2117811,3	1188604,7	31820,0	87450,8
0,298	7,00	420,0	2299425,5	2014202,2	1137856,6	30263,3	81770,1
0,312	6,83	410,0	2183291,9	1912474,0	1087656,0	28734,8	76301,5
0,328	6,67	400,0	2069284,5	1812608,2	1037983,2	27234,3	71040,8
0,344	6,50	390,0	1957383,0	1714587,0	988822,2	25761,6	65984,3

$rac{oldsymbol{A_E}}{oldsymbol{A}_0}$	n (rps)	n (rpm)	$T(\mathbf{N})$	R(N)	Q (N·m)	EHP (CV)	BHP (CV)
0,362	6,33	380,0	1847564,9	1618390,9	940152,7	24316,2	61128,0
0,381	6,17	370,0	1739810,0	1524002,1	891958,9	22898,0	56468,3
0,391	6,00	360,0	1629816,2	1427652,0	840837,9	21450,4	51793,2
0,397	5,83	350,0	1521334,7	1332626,7	789729,3	20022,6	47293,8
0,403	5,67	340,0	1415788,8	1240172,8	739748,7	18633,5	43034,9
0,409	5,50	330,0	1313216,6	1150323,8	690921,2	17283,5	39012,2
0,415	5,33	320,0	1213657,6	1063114,2	643272,0	15973,2	35221,1
0,421	5,17	310,0	1117153,1	978580,2	596827,5	14703,1	31656,9
0,428	5,00	300,0	1023746,9	896760,2	551613,5	13473,8	28314,8
0,435	4,83	290,0	933659,5	817847,4	507791,6	12288,1	25196,6
0,443	4,67	280,0	846718,7	741690,8	465217,8	11143,9	22288,1
0,451	4,50	270,0	762915,1	668282,3	423877,8	10040,9	19582,2
0,459	4,33	260,0	682307,3	597673,2	383805,9	8980,0	17074,3
0,471	4,17	250,0	605022,0	529974,4	345076,8	7962,8	14760,9
0,486	4,00	240,0	530910,5	465055,8	307568,7	6987,4	12630,2
0,501	3,83	230,0	459960,6	402906,6	271270,4	6053,6	10675,5
0,517	3,67	220,0	392277,0	343618,5	236251,3	5162,8	8893,1
0,533	3,50	210,0	327973,3	287291,2	202585,3	4316,5	7279,2
0,551	3,33	200,0	267024,6	233902,5	170249,6	3514,4	5826,0
0,573	3,17	190,0	209501,2	183514,4	139304,5	2757,3	4528,7
0,595	3,00	180,0	155693,1	136380,7	109960,6	2049,1	3386,6
0,618	2,83	170,0	105800,2	92676,6	82362,5	1392,5	2395,7
0,641	2,67	160,0	60044,8	52596,8	56670,8	790,3	1551,4
0,669	2,50	150,0	18417,5	16133,0	32979,4	242,4	846,4

$rac{oldsymbol{A}_E}{oldsymbol{A}_0}$	n (rps)	n (rpm)	T(N)	R(N)	Q (N·m)	EHP (CV)	BHP (CV)
0,707	2,33	140,0	0,0	0,0	_	0,0	
0,736	2,17	130,0	0,0	0,0	_	0,0	_
0,766	2,00	120,0	0,0	0,0	_	0,0	
0,807	1,83	110,0	0,0	0,0	_	0,0	_
0,856	1,67	100,0	0,0	0,0	_	0,0	_
0,914	1,50	90,0	0,0	0,0	_	0,0	_

9.1.7
$$\frac{H}{D}$$
 = **1,04**

			K_T			$\underline{\underline{H}}$	
\boldsymbol{J}	K_T	K_Q	$oldsymbol{J}^2$	η_0	η_t	D	$D(\mathbf{m})$
0,326	0,325	0,047	3,060	0,357	0,332	1,040	3,537
0,334	0,325	0,048	2,926	0,362	0,337	1,040	3,537
0,341	0,325	0,048	2,794	0,368	0,343	1,040	3,537
0,349	0,325	0,048	2,664	0,375	0,349	1,040	3,537
0,358	0,325	0,049	2,536	0,381	0,355	1,040	3,537
0,367	0,324	0,049	2,410	0,388	0,361	1,040	3,537
0,376	0,324	0,049	2,287	0,395	0,368	1,040	3,537
0,386	0,323	0,049	2,166	0,402	0,375	1,040	3,537
0,397	0,322	0,050	2,047	0,410	0,382	1,040	3,537
0,408	0,320	0,049	1,923	0,419	0,390	1,040	3,537
0,419	0,316	0,049	1,800	0,429	0,399	1,040	3,537
0,432	0,313	0,049	1,680	0,439	0,409	1,040	3,537
0,445	0,309	0,049	1,563	0,450	0,419	1,040	3,537
0,459	0,305	0,048	1,450	0,461	0,429	1,040	3,537

J	K_T	K_Q	$\frac{\boldsymbol{K_T}}{\boldsymbol{J}^2}$	η_0	η_t	$\frac{H}{D}$	D (m)
0,473	0,300	0,048	1,340	0,472	0,440	1,040	3,537
0,489	0,295	0,047	1,234	0,485	0,451	1,040	3,537
0,506	0,290	0,047	1,131	0,498	0,463	1,040	3,537
0,524	0,283	0,046	1,031	0,511	0,476	1,040	3,537
0,544	0,276	0,046	0,935	0,525	0,489	1,040	3,537
0,564	0,268	0,045	0,843	0,540	0,503	1,040	3,537
0,587	0,260	0,044	0,754	0,555	0,517	1,040	3,537
0,611	0,250	0,043	0,669	0,571	0,532	1,040	3,537
0,638	0,239	0,041	0,587	0,588	0,547	1,040	3,537
0,667	0,227	0,040	0,509	0,605	0,563	1,040	3,537
0,699	0,212	0,038	0,435	0,622	0,580	1,040	3,537
0,734	0,196	0,036	0,364	0,640	0,596	1,040	3,537
0,772	0,177	0,033	0,297	0,655	0,610	1,040	3,537
0,815	0,155	0,030	0,234	0,668	0,622	1,040	3,537
0,863	0,130	0,027	0,175	0,673	0,627	1,040	3,537
0,917	0,101	0,022	0,120	0,661	0,616	1,040	3,537
0,978	0,068	0,017	0,071	0,606	0,564	1,040	3,537
1,048	0,028	0,011	0,025	0,406	0,378	1,040	3,537
1,129	0,000	—	0,000	0,000	0,000	1,040	3,537
1,223	0,000	_	0,000	0,000	0,000	1,040	3,537
1,334	0,000	_	0,000	0,000	0,000	1,040	3,537
1,468	0,000	_	0,000	0,000	0,000	1,040	3,537
1,631	0,000		0,000	0,000	0,000	1,040	3,537

$rac{oldsymbol{A_E}}{oldsymbol{A}_0}$	n (rps)	n (rpm)	T(N)	R(N)	Q (N·m)	EHP (CV)	BHP (CV)
0,267	7,50	450,0	2937056,9	2572741,2	1511976,3	38655,3	116416,7
0,279	7,33	440,0	2808064,1	2459748,7	1454837,7	36957,6	109528,0
0,292	7,17	430,0	2681240,5	2348656,5	1398266,7	35288,4	102876,5
0,305	7,00	420,0	2556561,1	2239442,5	1342239,9	33647,5	96457,8
0,320	6,83	410,0	2434001,7	2132085,5	1286731,5	32034,5	90267,1
0,336	6,67	400,0	2313533,1	2026559,9	1231715,8	30448,9	84300,1
0,353	6,50	390,0	2195129,7	1922843,5	1177167,4	28890,6	78552,6
0,371	6,33	380,0	2078762,1	1820910,2	1123057,4	27359,1	73020,3
0,391	6,17	370,0	1964399,5	1720733,2	1069359,7	25853,9	67699,2
0,400	6,00	360,0	1845489,1	1616572,7	1010434,2	24288,9	62239,8
0,407	5,83	350,0	1727487,9	1513208,5	950932,3	22735,9	56947,6
0,413	5,67	340,0	1612520,0	1412501,2	892669,2	21222,8	51931,1
0,419	5,50	330,0	1500632,0	1314491,9	835678,5	19750,2	47185,8
0,426	5,33	320,0	1391873,0	1219223,6	779993,2	18318,8	42707,0
0,432	5,17	310,0	1286291,8	1126738,8	725648,9	16929,2	38489,8
0,438	5,00	300,0	1183941,5	1037084,1	672680,5	15582,1	34529,3
0,446	4,83	290,0	1085214,1	950603,0	621416,0	14282,8	30834,6
0,454	4,67	280,0	989800,2	867024,3	571577,0	13027,0	27383,6
0,463	4,50	270,0	897649,0	786303,6	523109,0	11814,2	24166,5
0,471	4,33	260,0	808830,4	708502,2	476058,6	10645,2	21178,3
0,483	4,17	250,0	723731,1	633958,7	430744,0	9525,2	18425,4
0,498	4,00	240,0	642081,4	562437,0	386921,5	8450,6	15888,8
0,514	3,83	230,0	563675,0	493756,1	344397,3	7418,7	13553,3
0,530	3,67	220,0	488631,8	428021,4	303256,9	6431,0	11415,4

A_E							
A_0	n (rps)	n (rpm)	T(N)	R(N)	$Q(N\cdot m)$	EHP (CV)	BHP (CV)
0,546	3,50	210,0	417082,9	365347,5	263593,0	5489,3	9471,3
0,565	3,33	200,0	349098,6	305796,1	225460,0	4594,6	7715,4
0,587	3,17	190,0	284722,5	249405,2	188887,9	3747,3	6140,7
0,610	3,00	180,0	224182,6	196374,7	154041,6	2950,5	4744,3
0,633	2,83	170,0	167704,3	146902,1	121092,6	2207,2	3522,3
0,657	2,67	160,0	115538,2	101206,7	90230,7	1520,6	2470,2
0,686	2,50	150,0	67715,9	59316,4	61554,2	891,2	1579,8
0,725	2,33	140,0	24292,7	21279,4	35328,5	319,7	846,3
0,754	2,17	130,0	0,0	0,0	_	0,0	_
0,785	2,00	120,0	0,0	0,0	_	0,0	_
0,827	1,83	110,0	0,0	0,0	_	0,0	_
0,878	1,67	100,0	0,0	0,0	_	0,0	_
0,937	1,50	90,0	0,0	0,0	_	0,0	_

9.1.8
$$\frac{H}{D}$$
 = **1,13**

			$\frac{K_T}{r^2}$			$\frac{H}{-}$	
J	K_T	K_Q	J^z	η_0	η_t	D	$D(\mathbf{m})$
0,326	0,354	0,055	3,325	0,335	0,312	1,130	3,537
0,334	0,354	0,055	3,185	0,341	0,317	1,130	3,537
0,341	0,355	0,056	3,048	0,346	0,322	1,130	3,537
0,349	0,356	0,056	2,913	0,352	0,328	1,130	3,537
0,358	0,356	0,057	2,780	0,358	0,333	1,130	3,537
0,367	0,357	0,057	2,649	0,364	0,339	1,130	3,537
0,376	0,357	0,058	2,520	0,371	0,345	1,130	3,537

J	K_T	K_Q	$\frac{\boldsymbol{K_T}}{\boldsymbol{J}^2}$	η_0	η_t	$\frac{H}{D}$	D (m)
0,386	0,357	0,058	2,394	0,378	0,352	1,130	3,537
0,397	0,357	0,059	2,269	0,385	0,358	1,130	3,537
0,408	0,355	0,059	2,137	0,394	0,366	1,130	3,537
0,419	0,352	0,058	2,005	0,403	0,375	1,130	3,537
0,432	0,349	0,058	1,876	0,413	0,384	1,130	3,537
0,445	0,346	0,058	1,750	0,423	0,394	1,130	3,537
0,459	0,342	0,058	1,628	0,434	0,404	1,130	3,537
0,473	0,338	0,057	1,509	0,445	0,415	1,130	3,537
0,489	0,334	0,057	1,394	0,457	0,426	1,130	3,537
0,506	0,328	0,056	1,283	0,470	0,437	1,130	3,537
0,524	0,323	0,056	1,175	0,483	0,450	1,130	3,537
0,544	0,316	0,055	1,071	0,497	0,463	1,130	3,537
0,564	0,309	0,054	0,970	0,512	0,477	1,130	3,537
0,587	0,301	0,053	0,874	0,527	0,491	1,130	3,537
0,611	0,292	0,052	0,781	0,544	0,506	1,130	3,537
0,638	0,282	0,051	0,692	0,561	0,522	1,130	3,537
0,667	0,270	0,050	0,607	0,579	0,539	1,130	3,537
0,699	0,257	0,048	0,525	0,598	0,557	1,130	3,537
0,734	0,241	0,046	0,448	0,618	0,575	1,130	3,537
0,772	0,223	0,043	0,374	0,637	0,593	1,130	3,537
0,815	0,202	0,040	0,304	0,657	0,611	1,130	3,537
0,863	0,178	0,036	0,238	0,674	0,627	1,130	3,537
0,917	0,149	0,032	0,178	0,685	0,637	1,130	3,537
0,978	0,116	0,027	0,121	0,680	0,633	1,130	3,537

			K_T			H	
\boldsymbol{J}	K_T	K_Q	$\overline{{m J}^{2}}$	η_0	η_t	\overline{D}	D(m)
1,048	0,077	0,020	0,070	0,632	0,588	1,130	3,537
1,129	0,032	0,013	0,025	0,440	0,409	1,130	3,537
1,223	0,000	_	0,000	0,000	0,000	1,130	3,537
1,334	0,000	_	0,000	0,000	0,000	1,130	3,537
1,468	0,000	_	0,000	0,000	0,000	1,130	3,537
1,631	0,000	_	0,000	0,000	0,000	1,130	3,537

$rac{m{A_E}}{m{A_0}}$	n (rps)	n (rpm)	T(N)	R(N)	<i>Q</i> (N·m)	EHP (CV)	BHP (CV)
0,274	7,50	450,0	3190894,9	2795092,8	1746962,4	41996,1	134509,8
0,286	7,33	440,0	3057111,8	2677904,3	1684859,3	40235,4	126845,2
0,299	7,17	430,0	2925433,5	2562559,6	1623283,8	38502,3	119432,0
0,313	7,00	420,0	2795830,6	2449032,7	1562205,5	36796,6	112265,2
0,328	6,83	410,0	2668270,9	2337295,7	1501590,7	35117,7	105340,0
0,344	6,67	400,0	2542718,5	2227316,9	1441404,7	33465,3	98651,5
0,362	6,50	390,0	2419141,0	2119068,1	1381611,6	31838,9	92195,2
0,380	6,33	380,0	2297500,5	2012516,1	1322173,1	30237,9	85966,6
0,401	6,17	370,0	2177759,9	1907628,2	1263050,4	28662,0	79961,4
0,410	6,00	360,0	2050823,3	1796436,9	1195854,6	26991,4	73661,2
0,417	5,83	350,0	1924068,1	1685404,6	1127332,3	25323,1	67511,5
0,423	5,67	340,0	1800407,0	1577082,5	1060153,2	23695,6	61674,5
0,430	5,50	330,0	1679898,1	1471521,7	994360,5	22109,5	56145,6
0,436	5,33	320,0	1562596,6	1368770,4	929998,1	20565,7	50920,2
0,443	5,17	310,0	1448562,7	1268881,4	867110,1	19064,9	45993,2

$rac{m{A_E}}{m{A}_0}$	n (rps)	<i>n</i> (rpm)	T(N)	R (N)	<i>Q</i> (N⋅m)	EHP (CV)	BHP (CV)
0,449	5,00	300,0		1171909,2	805744,1	17607,9	41359,6
0,457	4,83	290,0	1231072,0	,	746435,8	16202,4	37038,1
		ŕ	,	•	,		
0,466	4,67	280,0	1127736,2	987850,6	688738,8	14842,4	32996,7
0,474	4,50	270,0	1027753,8	900270,1	632548,0	13526,5	29222,3
0,483	4,33	260,0	931207,1	815699,1	577923,8	12255,8	25710,0
0,495	4,17	250,0	838782,7	734739,2	525500,0	11039,4	22478,7
0,511	4,00	240,0	750074,8	657034,7	474883,2	9871,9	19501,0
0,527	3,83	230,0	664649,5	582205,6	425640,6	8747,6	16750,5
0,543	3,67	220,0	582645,4	510373,4	377877,0	7668,3	14224,3
0,560	3,50	210,0	504211,4	441668,5	331705,3	6636,0	11918,7
0,579	3,33	200,0	429531,3	376251,8	287290,9	5653,2	9831,3
0,602	3,17	190,0	358617,1	314133,9	244626,1	4719,8	7952,7
0,626	3,00	180,0	291619,5	255446,7	203803,2	3838,1	6276,8
0,650	2,83	170,0	228791,3	200411,8	165024,6	3011,2	4800,2
0,674	2,67	160,0	170413,1	149274,9	128513,5	2242,8	3518,2
0,703	2,50	150,0	116570,1	102110,6	94397,4	1534,2	2422,8
0,743	2,33	140,0	67305,2	58956,6	62879,4	885,8	1506,2
0,774	2,17	130,0	24103,2	21113,4	34845,2	317,2	775,1
0,805	2,00	120,0	0,0	0,0	_	0,0	
0,849	1,83	110,0	0,0	0,0	_	0,0	
0,900	1,67	100,0	0,0	0,0	_	0,0	_
0,961	1,50	90,0	0,0	0,0		0,0	_

9.1.9
$$\frac{H}{D} = 1,22$$

J	K_T	K_Q	$\frac{K_T}{J^2}$	η_0	η_t	$\frac{H}{D}$	<i>D</i> (m)
0,326	0,379	0,062	3,564	0,315	0,293	1,220	3,537
0,334	0,381	0,063	3,421	0,320	0,298	1,220	3,537
0,341	0,382	0,064	3,281	0,325	0,303	1,220	3,537
0,349	0,384	0,065	3,142	0,330	0,308	1,220	3,537
0,358	0,385	0,065	3,006	0,336	0,313	1,220	3,537
0,367	0,386	0,066	2,871	0,342	0,318	1,220	3,537
0,376	0,388	0,067	2,738	0,348	0,324	1,220	3,537
0,386	0,389	0,068	2,608	0,354	0,330	1,220	3,537
0,397	0,390	0,068	2,479	0,361	0,336	1,220	3,537
0,408	0,389	0,068	2,339	0,369	0,344	1,220	3,537
0,419	0,387	0,068	2,199	0,378	0,352	1,220	3,537
0,432	0,384	0,068	2,061	0,387	0,361	1,220	3,537
0,445	0,381	0,068	1,928	0,397	0,370	1,220	3,537
0,459	0,378	0,068	1,797	0,408	0,379	1,220	3,537
0,473	0,374	0,067	1,670	0,419	0,390	1,220	3,537
0,489	0,370	0,067	1,547	0,430	0,401	1,220	3,537
0,506	0,366	0,067	1,428	0,442	0,412	1,220	3,537
0,524	0,361	0,066	1,313	0,455	0,424	1,220	3,537
0,544	0,355	0,065	1,201	0,469	0,437	1,220	3,537
0,564	0,348	0,065	1,093	0,484	0,450	1,220	3,537
0,587	0,341	0,064	0,989	0,499	0,464	1,220	3,537
0,611	0,333	0,063	0,890	0,515	0,479	1,220	3,537
0,638	0,323	0,062	0,794	0,532	0,495	1,220	3,537

J	K_T	K_Q	$\frac{K_T}{J^2}$	η_0	η_t	$\frac{H}{D}$	<i>D</i> (m)
0,667	0,312	0,060	0,702	0,550	0,512	1,220	3,537
0,699	0,300	0,059	0,614	0,570	0,530	1,220	3,537
0,734	0,285	0,056	0,529	0,590	0,549	1,220	3,537
0,772	0,268	0,054	0,449	0,611	0,569	1,220	3,537
0,815	0,248	0,051	0,373	0,633	0,590	1,220	3,537
0,863	0,224	0,047	0,301	0,655	0,610	1,220	3,537
0,917	0,197	0,042	0,234	0,676	0,629	1,220	3,537
0,978	0,164	0,037	0,172	0,690	0,643	1,220	3,537
1,048	0,126	0,031	0,114	0,688	0,640	1,220	3,537
1,129	0,081	0,023	0,064	0,639	0,595	1,220	3,537
1,223	0,029	0,014	0,019	0,411	0,382	1,220	3,537
1,334	0,000	_	0,000	0,000	0,000	1,220	3,537
1,468	0,000	_	0,000	0,000	0,000	1,220	3,537
1,631	0,000	_	0,000	0,000	0,000	1,220	3,537

$rac{\pmb{A_E}}{\pmb{A_0}}$	n (rps)	n (rpm)	T(N)	R (N)	Q (N·m)	EHP (CV)	BHP (CV)
0,281	7,50	450,0	3420886,7	2996556,2	1994206,9	45023,1	153546,7
0,293	7,33	440,0	3283935,2	2876592,3	1927642,5	43220,6	145123,3
0,307	7,17	430,0	3148975,7	2758373,3	1861534,1	41444,4	136961,1
0,321	7,00	420,0	3015972,5	2641868,0	1795843,4	39693,9	129055,2
0,337	6,83	410,0	2884888,5	2527043,8	1730525,4	37968,7	121400,3
0,353	6,67	400,0	2755680,9	2413863,3	1665536,7	36268,2	113991,4
0,371	6,50	390,0	2628308,4	2302290,2	1600829,2	34591,8	106823,7

$rac{\pmb{A_E}}{\pmb{A_0}}$	n (rps)	n (rpm)	T(N)	R(N)	Q (N·m)	EHP (CV)	BHP (CV)
0,390	6,33	380,0	2502725,8	2192285,0	1536353,3	32939,0	99892,4
0,411	6,17	370,0	2378884,0	2083804,7	1472055,1	31309,0	93193,1
0,421	6,00	360,0	2244852,7	1966398,7	1396226,3	29545,0	86003,5
0,428	5,83	350,0	2110148,1	1848403,0	1318130,9	27772,1	78937,7
0,434	5,67	340,0	1978563,2	1733140,0	1241473,8	26040,3	72222,8
0,441	5,50	330,0	1850163,4	1620667,1	1166307,1	24350,4	65854,4
0,448	5,33	320,0	1725016,2	1511043,3	1092687,9	22703,3	59827,9
0,454	5,17	310,0	1603189,6	1404328,2	1020670,5	21100,0	54138,4
0,461	5,00	300,0	1484759,3	1300588,2	950315,0	19541,3	48780,5
0,469	4,83	290,0	1370530,4	1200528,3	882415,0	18037,9	43785,3
0,478	4,67	280,0	1259860,9	1103586,4	816317,1	16581,3	39108,8
0,487	4,50	270,0	1152600,4	1009630,6	751853,2	15169,6	34734,0
0,496	4,33	260,0	1048843,8	918744,1	689099,6	13804,1	30655,8
0,508	4,17	250,0	949620,8	831828,8	629087,3	12498,2	26909,7
0,524	4,00	240,0	854372,2	748394,9	571241,0	11244,6	23457,9
0,541	3,83	230,0	762404,7	667835,2	514826,3	10034,2	20260,3
0,557	3,67	220,0	673875,2	590287,0	459970,4	8869,0	17314,5
0,574	3,50	210,0	588952,0	515897,8	406808,7	7751,3	14617,3
0,594	3,33	200,0	507951,8	444944,9	355654,0	6685,3	12170,7
0,618	3,17	190,0	430850,2	377407,1	306453,2	5670,5	9962,7
0,642	3,00	180,0	357703,5	313333,6	259195,9	4707,8	7982,9
0,667	2,83	170,0	288793,4	252971,1	214118,7	3800,9	6228,2
0,691	2,67	160,0	224431,1	196592,4	171482,1	2953,8	4694,6
0,721	2,50	150,0	164770,8	144332,4	131472,7	2168,6	3374,3

$rac{m{A_E}}{m{A}_0}$	n (rps)	n (rpm)	T(N)	R (N)	Q (N·m)	EHP (CV)	BHP (CV)
0,763	2,33	140,0	109849,2	96223,4	94250,0	1445,8	2257,7
0,794	2,17	130,0	61093,6	53515,5	60736,9	804,1	1351,0
0,826	2,00	120,0	18600,3	16293,1	31187,0	244,8	640,3
0,871	1,83	110,0	0,0	0,0	_	0,0	
0,924	1,67	100,0	0,0	0,0	_	0,0	
0,986	1,50	90,0	0,0	0,0	_	0,0	_

9.1.10
$$\frac{H}{D}$$
 = **1,31**

			K_T			\underline{H}	
\boldsymbol{J}	K_T	K_Q	J^2	η_0	η_t	D	$D(\mathbf{m})$
0,326	0,402	0,070	3,779	0,296	0,276	1,310	3,537
0,334	0,404	0,071	3,634	0,300	0,280	1,310	3,537
0,341	0,407	0,072	3,492	0,305	0,284	1,310	3,537
0,349	0,409	0,073	3,351	0,310	0,289	1,310	3,537
0,358	0,412	0,074	3,213	0,315	0,293	1,310	3,537
0,367	0,414	0,075	3,076	0,321	0,298	1,310	3,537
0,376	0,416	0,076	2,941	0,326	0,304	1,310	3,537
0,386	0,419	0,078	2,807	0,332	0,309	1,310	3,537
0,397	0,421	0,079	2,675	0,338	0,315	1,310	3,537
0,408	0,420	0,079	2,529	0,346	0,322	1,310	3,537
0,419	0,419	0,079	2,381	0,354	0,330	1,310	3,537
0,432	0,417	0,079	2,237	0,363	0,338	1,310	3,537
0,445	0,414	0,079	2,095	0,373	0,347	1,310	3,537
0,459	0,412	0,079	1,958	0,383	0,356	1,310	3,537

	J	K_T	K_Q	$\frac{K_T}{J^2}$	η_0	η_t	$\frac{H}{D}$	<i>D</i> (m)
0,4	473	0,409	0,078	1,823	0,393	0,366	1,310	3,537
0,4	489	0,405	0,078	1,692	0,405	0,377	1,310	3,537
0,:	506	0,401	0,078	1,566	0,416	0,388	1,310	3,537
0,:	524	0,397	0,077	1,444	0,429	0,399	1,310	3,537
0,:	544	0,392	0,077	1,325	0,442	0,412	1,310	3,537
0,:	564	0,386	0,076	1,210	0,456	0,425	1,310	3,537
0,:	587	0,379	0,075	1,100	0,471	0,438	1,310	3,537
0,0	611	0,372	0,074	0,995	0,486	0,453	1,310	3,537
0,0	638	0,363	0,073	0,893	0,503	0,468	1,310	3,537
0,0	667	0,353	0,072	0,794	0,521	0,485	1,310	3,537
0,0	699	0,342	0,070	0,699	0,540	0,503	1,310	3,537
0,	734	0,328	0,068	0,609	0,561	0,522	1,310	3,537
0,	772	0,312	0,066	0,522	0,582	0,542	1,310	3,537
0,8	815	0,292	0,063	0,440	0,605	0,564	1,310	3,537
0,8	863	0,270	0,059	0,362	0,629	0,586	1,310	3,537
0,9	917	0,243	0,054	0,289	0,654	0,609	1,310	3,537
0,9	978	0,212	0,049	0,221	0,677	0,630	1,310	3,537
1,0	048	0,174	0,042	0,158	0,692	0,645	1,310	3,537
1,	129	0,130	0,034	0,102	0,690	0,642	1,310	3,537
1,2	223	0,078	0,024	0,052	0,628	0,584	1,310	3,537
1,3	334	0,016	0,013	0,009	0,273	0,254	1,310	3,537
1,4	468	0,000	_	0,000	0,000	0,000	1,310	3,537
1,0	631	0,000		0,000	0,000	0,000	1,310	3,537

$rac{oldsymbol{A_E}}{oldsymbol{A}_0}$	n (rps)	n (rpm)	T(N)	R(N)	Q (N·m)	EHP (CV)	BHP (CV)
0,288	7,50	450,0	3626794,2	3176922,7	2250116,0	47733,1	173250,8
0,301	7,33	440,0	3488290,0	3055598,7	2179894,6	45910,2	164114,1
0,315	7,17	430,0	3351620,2	2935881,6	2110018,6	44111,5	155243,2
0,330	7,00	420,0	3216742,8	2817734,6	2040435,5	42336,3	146632,4
0,346	6,83	410,0	3083613,3	2701118,6	1971094,1	40584,2	138276,7
0,363	6,67	400,0	2952182,2	2585990,3	1901935,1	38854,4	130170,8
0,381	6,50	390,0	2822398,9	2472305,5	1832899,9	37146,2	122309,8
0,401	6,33	380,0	2694210,6	2360017,8	1763923,7	35459,1	114688,9
0,422	6,17	370,0	2567556,2	2249073,7	1694938,6	33792,2	107303,4
0,433	6,00	360,0	2427360,0	2126267,6	1610258,0	31947,0	99187,2
0,439	5,83	350,0	2285504,6	2002008,1	1522151,8	30080,1	91155,7
0,446	5,67	340,0	2146754,4	1880468,7	1435558,5	28253,9	83513,7
0,453	5,50	330,0	2011191,9	1761721,5	1350545,1	26469,8	76257,2
0,460	5,33	320,0	1878889,2	1645829,7	1267178,6	24728,5	69381,8
0,467	5,17	310,0	1749928,3	1532865,3	1185530,5	23031,2	62882,9
0,474	5,00	300,0	1624395,0	1422903,2	1105672,1	21379,0	56755,2
0,482	4,83	290,0	1503342,7	1316866,5	1028711,0	19785,8	51044,5
0,491	4,67	280,0	1385930,8	1214018,4	953743,5	18240,6	45692,8
0,500	4,50	270,0	1271948,2	1114174,3	880523,6	16740,4	40678,3
0,509	4,33	260,0	1161503,4	1017429,3	809145,1	15286,8	35996,3
0,522	4,17	250,0	1056017,7	925028,2	741132,0	13898,5	31702,5
0,538	4,00	240,0	954759,3	836329,9	675690,6	12565,8	27747,1
0,555	3,83	230,0	856739,4	750468,5	611711,5	11275,7	24073,1
0,572	3,67	220,0	762133,4	667597,6	549345,2	10030,6	20678,8

A_E							
A_0	n (rps)	n (rpm)	T(N)	R(N)	Q (N·m)	EHP (CV)	BHP (CV)
0,590	3,50	210,0	671130,9	587883,1	488754,8	8832,9	17561,8
0,610	3,33	200,0	584201,9	511736,9	430442,8	7688,8	14730,0
0,635	3,17	190,0	501281,3	439101,8	374302,2	6597,5	12168,4
0,659	3,00	180,0	422311,0	369927,1	320182,3	5558,1	9861,2
0,684	2,83	170,0	347602,0	304485,1	268357,6	4574,9	7805,9
0,710	2,67	160,0	277497,8	243076,6	219130,2	3652,2	5999,0
0,741	2,50	150,0	212236,9	185910,8	172781,4	2793,3	4434,5
0,783	2,33	140,0	151859,4	133022,6	129452,7	1998,7	3101,0
0,815	2,17	130,0	97673,4	85557,9	89978,5	1285,5	2001,4
0,848	2,00	120,0	49928,5	43735,4	54772,3	657,1	1124,6
0,894	1,83	110,0	8863,1	7763,7	24406,9	116,6	459,4
0,948	1,67	100,0	0,0	0,0	_	0,0	
1,013	1,50	90,0	0,0	0,0	_	0,0	_

9.1.11
$$\frac{H}{D}$$
 = **1.40**

J	K_T	K_Q	$\frac{K_T}{J^2}$	η_0	η_t	$\frac{H}{D}$	<i>D</i> (m)
0,326	0,422	0,079	3,969	0,279	0,259	1,400	3,537
0,334	0,426	0,080	3,825	0,283	0,263	1,400	3,537
0,341	0,429	0,081	3,682	0,287	0,267	1,400	3,537
0,349	0,432	0,082	3,541	0,292	0,272	1,400	3,537
0,358	0,436	0,084	3,402	0,296	0,276	1,400	3,537
0,367	0,439	0,085	3,264	0,301	0,281	1,400	3,537
0,376	0,443	0,087	3,128	0,306	0,285	1,400	3,537

J	K_T	K_Q	$\frac{\boldsymbol{K_T}}{\boldsymbol{J}^2}$	η_0	η_t	$\frac{H}{D}$	D (m)
0,386	0,446	0,088	2,993	0,312	0,290	1,400	3,537
0,397	0,450	0,089	2,859	0,318	0,296	1,400	3,537
0,408	0,450	0,090	2,708	0,325	0,302	1,400	3,537
0,419	0,449	0,090	2,553	0,333	0,310	1,400	3,537
0,432	0,448	0,090	2,402	0,341	0,318	1,400	3,537
0,445	0,446	0,090	2,254	0,350	0,326	1,400	3,537
0,459	0,444	0,090	2,109	0,360	0,335	1,400	3,537
0,473	0,441	0,090	1,968	0,370	0,345	1,400	3,537
0,489	0,438	0,090	1,831	0,381	0,354	1,400	3,537
0,506	0,435	0,089	1,698	0,392	0,365	1,400	3,537
0,524	0,431	0,089	1,569	0,404	0,376	1,400	3,537
0,544	0,427	0,089	1,444	0,417	0,388	1,400	3,537
0,564	0,421	0,088	1,323	0,430	0,401	1,400	3,537
0,587	0,416	0,087	1,207	0,444	0,414	1,400	3,537
0,611	0,410	0,087	1,095	0,459	0,428	1,400	3,537
0,638	0,402	0,086	0,988	0,475	0,443	1,400	3,537
0,667	0,393	0,085	0,883	0,493	0,459	1,400	3,537
0,699	0,382	0,083	0,782	0,512	0,476	1,400	3,537
0,734	0,369	0,081	0,686	0,532	0,495	1,400	3,537
0,772	0,354	0,079	0,594	0,553	0,515	1,400	3,537
0,815	0,336	0,076	0,506	0,576	0,536	1,400	3,537
0,863	0,315	0,072	0,422	0,601	0,559	1,400	3,537
0,917	0,289	0,067	0,344	0,627	0,584	1,400	3,537
0,978	0,258	0,062	0,270	0,653	0,608	1,400	3,537

				H				
	\boldsymbol{J}	K_T	K_Q	$\overline{{m J}^{2}}$	η_0	η_t	\overline{D}	D(m)
•	1,048	0,221	0,055	0,202	0,677	0,630	1,400	3,537
	1,129	0,178	0,046	0,140	0,694	0,646	1,400	3,537
	1,223	0,126	0,036	0,084	0,686	0,639	1,400	3,537
	1,334	0,065	0,024	0,036	0,581	0,541	1,400	3,537
	1,468	0,000	_	0,000	0,000	0,000	1,400	3,537
	1,631	0,000		0,000	0,000	0,000	1,400	3,537

$\frac{A_E}{A}$, -						
A_0	\overline{n} (rps)	n (rpm)	T(N)	R(N)	Q (N·m)	EHP (CV)	BHP (CV)
0,296	7,50	450,0	3809766,5	3337198,9	2509928,1	50141,2	193255,4
0,310	7,33	440,0	3671257,3	3215870,6	2437248,6	48318,3	183489,1
0,324	7,17	430,0	3534384,5	3095975,6	2364748,6	46516,9	173984,8
0,339	7,00	420,0	3399097,3	2977469,6	2292369,0	44736,3	164737,2
0,355	6,83	410,0	3265347,2	2860310,0	2220043,5	42976,0	155741,1
0,373	6,67	400,0	3133075,4	2744445,3	2147701,7	41235,1	146991,3
0,392	6,50	390,0	3002221,8	2629823,0	2075268,5	39512,9	138483,1
0,412	6,33	380,0	2872723,9	2516388,1	2002664,1	37808,6	130211,6
0,434	6,17	370,0	2744513,8	2404081,4	1929803,2	36121,2	122172,3
0,444	6,00	360,0	2599026,8	2276640,7	1836247,7	34206,4	113107,6
0,451	5,83	350,0	2450753,5	2146759,4	1737842,7	32254,9	104072,6
0,458	5,67	340,0	2305544,0	2019561,9	1640999,3	30343,8	95465,2
0,466	5,50	330,0	2163486,8	1895125,5	1545797,0	28474,2	87281,9
0,473	5,33	320,0	2024667,8	1773525,8	1452320,6	26647,1	79518,9
0,480	5,17	310,0	1889181,2	1654845,1	1360653,5	24864,0	72171,7

A_E							
A_0	n (rps)	n (rpm)	T(N)	R(N)	$Q(N\cdot m)$	EHP (CV)	BHP (CV)
0,487	5,00	300,0	1757122,0	1539166,6	1270886,1	23125,9	65235,8
0,495	4,83	290,0	1629822,3	1427657,4	1184503,2	21450,5	58774,9
0,504	4,67	280,0	1506220,4	1319387,2	1100298,4	19823,7	52714,0
0,514	4,50	270,0	1386035,8	1214110,4	1017930,7	18241,9	47026,2
0,523	4,33	260,0	1269392,1	1111935,3	937514,2	16706,8	41707,0
0,536	4,17	250,0	1158154,5	1014495,8	861183,1	15242,7	36837,8
0,553	4,00	240,0	1051401,1	920984,2	787878,9	13837,7	32354,0
0,571	3,83	230,0	947803,6	830237,0	716028,4	12474,3	28178,4
0,588	3,67	220,0	847556,9	742425,0	645809,3	11154,9	24310,0
0,606	3,50	210,0	750871,1	657732,2	577413,3	9882,4	20747,4
0,627	3,33	200,0	658397,7	576729,3	511588,2	8665,3	17506,9
0,652	3,17	190,0	570023,8	499317,5	448162,5	7502,2	14569,6
0,677	3,00	180,0	485551,7	425323,4	386797,1	6390,5	11912,8
0,703	2,83	170,0	405321,8	355045,3	327807,7	5334,5	9535,1
0,730	2,67	160,0	329710,0	288812,4	271542,1	4339,4	7433,9
0,761	2,50	150,0	259060,4	226926,3	218422,8	3409,6	5605,9
0,805	2,33	140,0	193428,7	169435,6	168609,4	2545,8	4038,9
0,838	2,17	130,0	133918,8	117307,4	122673,6	1762,5	2728,7
0,871	2,00	120,0	80982,7	70937,5	81291,9	1065,8	1669,1
0,919	1,83	110,0	34844,3	30522,2	45009,0	458,6	847,1
0,975	1,67	100,0	0,0	0,0	_	0,0	_
1,041	1,50	90,0	0,0	0,0	_	0,0	_

9.2 LA CARTILLA DE TRAZADO DEL PROPULSOR

9.2.1 $\frac{r}{R} = 0.2$

K							
p	l	V_I	v_2	Yback	Y face	x_{Hface}	УHface
-1	0,671	0,283	0,000	0,041	0,029	0,232	-0,139
-0,95	0,654	0,263	0,064	0,046	0,027	0,214	-0,136
-0,9	0,637	0,240	0,146	0,052	0,025	0,197	-0,134
-0,8	0,604	0,197	0,306	0,064	0,020	0,161	-0,131
-0,7	0,570	0,157	0,454	0,075	0,016	0,126	-0,126
-0,6	0,537	0,121	0,584	0,085	0,012	0,092	-0,120
-0,5	0,503	0,088	0,700	0,093	0,009	0,058	-0,113
-0,4	0,470	0,059	0,798	0,101	0,006	0,024	-0,106
-0,2	0,403	0,017	0,945	0,111	0,002	-0,041	-0,086
0	0,335	0,000	1,000	0,115	0,000	-0,103	-0,061
0,2	1,411	0,005	0,975	0,113	0,001	0,868	-0,524
0,4	1,059	0,030	0,888	0,107	0,003	0,553	-0,366
0,5	0,883	0,052	0,817	0,102	0,005	0,396	-0,285
0,6	0,706	0,080	0,728	0,096	0,008	0,240	-0,203
0,7	0,530	0,118	0,619	0,088	0,012	0,084	-0,120
0,8	0,354	0,169	0,478	0,079	0,017	-0,071	-0,036
0,85	0,265	0,200	0,391	0,073	0,021	-0,148	0,008
0,9	0,177	0,235	0,284	0,066	0,024	-0,224	0,053
0,95	0,088	0,282	0,156	0,057	0,029	-0,301	0,098
1	0,000	0,356	0,000	0,049	0,037	-0,377	0,144
X_{Hface}	Y_{Hface}	Z_{Hface}	x_{Hback}	<i>y</i> _{Hback}	X_{Hback}	Y_{Hback}	Z_{Hback}

PREDICCIÓN DE POTENCIA. DISEÑO DE PROPULSORES Y TIMONES.

X_{Hface}	Y_{Hface}	Z_{Hface}	x_{Hback}	УHback	X_{Hback}	Y_{Hback}	Z_{Hback}
0,232	-0,139	1,763	0,237	-0,128	0,237	-0,128	1,764
0,214	-0,136	1,763	0,223	-0,119	0,223	-0,119	1,764
0,197	-0,134	1,763	0,209	-0,110	0,209	-0,110	1,765
0,161	-0,130	1,764	0,180	-0,091	0,180	-0,091	1,766
0,126	-0,126	1,764	0,152	-0,073	0,152	-0,073	1,767
0,092	-0,120	1,764	0,123	-0,055	0,123	-0,055	1,768
0,058	-0,113	1,765	0,094	-0,037	0,094	-0,037	1,768
0,024	-0,105	1,765	0,065	-0,020	0,065	-0,020	1,768
-0,041	-0,086	1,766	0,007	0,013	0,007	0,013	1,768
-0,103	-0,061	1,767	-0,053	0,043	-0,053	0,043	1,768
0,868	-0,516	1,691	0,917	-0,422	0,917	-0,418	1,718
0,553	-0,363	1,731	0,598	-0,272	0,598	-0,271	1,748
0,396	-0,284	1,746	0,438	-0,198	0,438	-0,198	1,757
0,240	-0,203	1,757	0,278	-0,125	0,278	-0,125	1,764
0,084	-0,120	1,764	0,117	-0,052	0,117	-0,052	1,768
-0,071	-0,036	1,768	-0,044	0,020	-0,044	0,020	1,768
-0,148	0,008	1,768	-0,125	0,055	-0,125	0,055	1,768
-0,224	0,053	1,768	-0,206	0,090	-0,206	0,090	1,766
-0,301	0,098	1,766	-0,288	0,124	-0,288	0,124	1,764
-0,377	0,144	1,763	-0,371	0,155	-0,371	0,155	1,762

9.2.2 $\frac{r}{R} = 0.3$

p	l	V_I	v_2	Yback	Y face	x_{Hface}	Y Hface
-1	0,760	0,231	0,000	0,033	0,021	0,264	-0,190

Виаие	de	Crucero
Dugue	uv	CINCOLO

p	l	V_{I}	v_2	Yback	Yface	x_{Hface}	УHface
-0,95	0,741	0,204	0,080	0,038	0,018	0,245	-0,183
-0,9	0,722	0,179	0,167	0,043	0,016	0,227	-0,177
-0,8	0,684	0,133	0,336	0,055	0,012	0,189	-0,163
-0,7	0,646	0,094	0,489	0,065	0,008	0,153	-0,149
-0,6	0,608	0,062	0,620	0,074	0,006	0,117	-0,134
-0,5	0,570	0,038	0,734	0,082	0,003	0,081	-0,119
-0,4	0,532	0,020	0,827	0,088	0,002	0,046	-0,102
-0,2	0,456	0,003	0,958	0,099	0,000	-0,021	-0,066
0	0,380	0,000	1,000	0,102	0,000	-0,085	-0,025
0,2	1,407	0,003	0,975	0,100	0,000	0,750	-0,623
0,4	1,056	0,015	0,892	0,094	0,001	0,469	-0,413
0,5	0,881	0,030	0,832	0,090	0,003	0,329	-0,307
0,6	0,706	0,050	0,752	0,084	0,005	0,190	-0,200
0,7	0,530	0,079	0,651	0,078	0,007	0,051	-0,092
0,8	0,353	0,119	0,513	0,069	0,011	-0,087	0,018
0,85	0,265	0,145	0,427	0,064	0,013	-0,156	0,074
0,9	0,177	0,176	0,320	0,057	0,016	-0,223	0,131
0,95	0,088	0,219	0,189	0,049	0,020	-0,291	0,189
1	0,000	0,292	0,000	0,039	0,026	-0,356	0,249

X_{Hface}	Y_{Hface}	Z_{Hface}	x_{Hback}	<i>YHback</i>	X_{Hback}	Y_{Hback}	Z_{Hback}
0,264	-0,190	1,758	0,271	-0,180	0,271	-0,180	1,759
0,245	-0,183	1,759	0,257	-0,167	0,257	-0,167	1,761
0,227	-0,176	1,760	0,243	-0,154	0,243	-0,154	1,762
0,189	-0,163	1,761	0,214	-0,129	0,214	-0,129	1,764

X_{Hface}	Y_{Hface}	Z_{Hface}	x_{Hback}	<i>y</i> _{Hback}	X_{Hback}	Y_{Hback}	Z_{Hback}
0,153	-0,149	1,762	0,185	-0,104	0,185	-0,104	1,765
0,117	-0,134	1,763	0,156	-0,079	0,156	-0,079	1,767
0,081	-0,119	1,765	0,127	-0,055	0,127	-0,055	1,768
0,046	-0,102	1,766	0,097	-0,032	0,097	-0,032	1,768
-0,021	-0,066	1,767	0,036	0,014	0,036	0,014	1,768
-0,085	-0,025	1,768	-0,025	0,058	-0,025	0,058	1,768
0,750	-0,610	1,660	0,809	-0,542	0,809	-0,533	1,686
0,469	-0,409	1,721	0,523	-0,338	0,523	-0,336	1,736
0,329	-0,306	1,742	0,380	-0,236	0,380	-0,236	1,753
0,190	-0,200	1,757	0,236	-0,135	0,236	-0,135	1,763
0,051	-0,092	1,766	0,092	-0,035	0,092	-0,035	1,768
-0,087	0,018	1,768	-0,053	0,065	-0,053	0,065	1,767
-0,156	0,074	1,767	-0,126	0,115	-0,126	0,115	1,765
-0,223	0,131	1,764	-0,199	0,164	-0,199	0,164	1,761
-0,291	0,188	1,758	-0,273	0,213	-0,273	0,212	1,756
-0,356	0,248	1,751	-0,349	0,259	-0,349	0,258	1,750

9.2.3
$$\frac{r}{R} = 0.4$$

p	l	V_I	v_2	Yback	Y face	x_{Hface}	УНface
-1	0,830	0,147	0,000	0,024	0,011	0,285	-0,235
-0,95	0,809	0,120	0,091	0,029	0,009	0,267	-0,224
-0,9	0,788	0,972	0,181	0,101	0,074	0,202	-0,262
-0,8	0,747	0,063	0,350	0,044	0,005	0,211	-0,192
-0,7	0,705	0,040	0,504	0,054	0,003	0,174	-0,171

Buque	de	Crucero
-------	----	---------

p	l	V_I	v_2	Yback	Y face	x_{Hface}	УHface
-0,6	0,664	0,021	0,635	0,063	0,002	0,138	-0,148
-0,5	0,622	0,012	0,753	0,071	0,001	0,103	-0,126
-0,4	0,581	0,004	0,842	0,077	0,000	0,068	-0,101
-0,2	0,498	0,000	0,965	0,086	0,000	0,002	-0,051
0	0,415	0,000	1,000	0,089	0,000	-0,060	0,005
0,2	1,403	0,000	0,973	0,087	0,000	0,655	-0,678
0,4	1,054	0,003	0,893	0,081	0,000	0,407	-0,431
0,5	0,876	0,009	0,835	0,077	0,001	0,281	-0,306
0,6	0,704	0,019	0,759	0,072	0,001	0,161	-0,183
0,7	0,529	0,036	0,659	0,066	0,003	0,039	-0,057
0,8	0,353	0,064	0,522	0,057	0,005	-0,082	0,071
0,85	0,265	0,083	0,434	0,052	0,006	-0,142	0,135
0,9	0,177	0,104	0,324	0,045	0,008	-0,201	0,201
0,95	0,088	0,147	0,194	0,039	0,011	-0,260	0,267
1	0,000	0,218	0,000	0,029	0,017	-0,318	0,335
X_{Hface}	Y_{Hface}	Z_{Hface}	x_{Hback}	<i>y</i> _{Hback}	X_{Hback}	Y_{Hback}	Z_{Hback}
0,285	-0,235	1,753	0,294	-0,226	0,294	-0,226	1,754
0,267	-0,224	1,754	0,280	-0,210	0,280	-0,210	1,756
0,202	-0,261	1,749	0,220	-0,243	0,220	-0,242	1,752
0,211	-0,192	1,758	0,238	-0,164	0,238	-0,164	1,761
0,174	-0,171	1,760	0,210	-0,134	0,210	-0,134	1,763
0,138	-0,148	1,762	0,181	-0,104	0,181	-0,104	1,765
0,103	-0,126	1,764	0,151	-0,075	0,151	-0,075	1,767
0,068	-0,101	1,766	0,122	-0,046	0,122	-0,046	1,768

PREDICCIÓN DE POTENCIA. DISEÑO DE PROPULSORES Y TIMONES.

X_{Hface}	Y_{Hface}	Z_{Hface}	x_{Hback}	y Hback	X_{Hback}	Y_{Hback}	Z_{Hback}
0,002	-0,051	1,768	0,062	0,012	0,062	0,012	1,768
-0,060	0,005	1,768	0,002	0,069	0,002	0,069	1,767
0,655	-0,661	1,640	0,715	-0,615	0,715	-0,603	1,663
0,407	-0,427	1,716	0,463	-0,373	0,463	-0,370	1,729
0,281	-0,304	1,742	0,334	-0,250	0,334	-0,250	1,751
0,161	-0,183	1,759	0,210	-0,132	0,210	-0,132	1,764
0,039	-0,057	1,768	0,083	-0,012	0,083	-0,012	1,768
-0,082	0,071	1,767	-0,046	0,109	-0,046	0,108	1,765
-0,142	0,135	1,763	-0,110	0,168	-0,110	0,168	1,760
-0,201	0,201	1,757	-0,175	0,228	-0,175	0,228	1,754
-0,260	0,266	1,748	-0,241	0,287	-0,241	0,286	1,745
-0,318	0,333	1,737	-0,309	0,344	-0,309	0,342	1,735

9.2.4
$$\frac{r}{R} = 0.5$$

p	l	V_{I}	v_2	y_{back}	Y face	x_{Hface}	УHface
-1	0,881	0,052	0,000	0,016	0,003	0,299	-0,272
-0,95	0,859	0,042	0,095	0,021	0,003	0,280	-0,258
-0,9	0,859	0,042	0,095	0,021	0,003	0,280	-0,258
-0,8	0,837	0,033	0,187	0,027	0,002	0,262	-0,245
-0,7	0,793	0,019	0,357	0,037	0,001	0,227	-0,217
-0,6	0,749	0,010	0,514	0,046	0,001	0,191	-0,189
-0,5	0,705	0,004	0,644	0,054	0,000	0,157	-0,161
-0,4	0,661	0,001	0,758	0,061	0,000	0,123	-0,131
-0,2	0,617	0,000	0,846	0,066	0,000	0,091	-0,101

Buque	de	Crucero
-------	----	---------

p	l	V_{I}	v_2	Yback	Y face	x_{Hface}	УHface
0	0,529	0,000	0,964	0,074	0,000	0,029	-0,038
0,2	0,441	0,000	1,000	0,076	0,000	-0,030	0,028
0,4	1,399	0,000	0,971	0,074	0,000	0,586	-0,707
0,5	1,051	0,000	0,888	0,069	0,000	0,367	-0,436
0,6	0,877	0,001	0,828	0,065	0,000	0,258	-0,300
0,7	0,703	0,003	0,748	0,060	0,000	0,151	-0,163
0,8	0,528	0,009	0,643	0,054	0,001	0,044	-0,025
0,85	0,353	0,021	0,504	0,046	0,001	-0,063	0,115
0,9	0,265	0,033	0,414	0,041	0,002	-0,115	0,185
0,95	0,177	0,050	0,306	0,035	0,003	-0,167	0,257
1	0,088	0,078	0,175	0,029	0,005	-0,219	0,329
X_{Hface}	Y_{Hface}	Z_{Hface}	x_{Hback}	<i>y</i> Hback	X_{Hback}	Y_{Hback}	Z_{Hback}
0,299	-0,271	1,748	0,309	-0,264	0,309	-0,263	1,749
0,280	-0,257	1,750	0,295	-0,246	0,295	-0,246	1,751
0,262	-0,244	1,752	0,281	-0,229	0,281	-0,228	1,754
0,227	-0,217	1,755	0,254	-0,195	0,254	-0,194	1,758
0,191	-0,189	1,758	0,226	-0,160	0,226	-0,160	1,761
0,157	-0,160	1,761	0,198	-0,126	0,198	-0,126	1,764
0,123	-0,131	1,764	0,170	-0,092	0,170	-0,092	1,766
0,091	-0,101	1,766	0,142	-0,059	0,142	-0,059	1,768
0,029	-0,038	1,768	0,085	0,009	0,085	0,009	1,768
0,029	-0,038 0,028	1,768 1,768	0,085 0,029	0,009 0,077	0,085 0,029	0,009 0,077	1,768 1,767
	•						•

PREDICCIÓN DE POTENCIA. DISEÑO DE PROPULSORES Y TIMONES.

X_{Hface}	Y_{Hface}	Z_{Hface}	x_{Hback}	y Hback	X_{Hback}	Y_{Hback}	Z_{Hback}
0,258	-0,299	1,743	0,308	-0,258	0,308	-0,257	1,750
0,151	-0,163	1,761	0,197	-0,125	0,197	-0,125	1,764
0,044	-0,025	1,768	0,085	0,009	0,085	0,009	1,768
-0,063	0,115	1,765	-0,028	0,143	-0,028	0,143	1,763
-0,115	0,185	1,759	-0,085	0,210	-0,085	0,210	1,756
-0,167	0,256	1,750	-0,142	0,277	-0,142	0,276	1,747
-0,219	0,327	1,738	-0,200	0,344	-0,200	0,342	1,735
-0,269	0,398	1,723	-0,259	0,410	-0,259	0,406	1,721

9.2.5
$$\frac{r}{R} = 0.6$$

p	l	V_I	v_2	y_{back}	y_{face}	x_{Hface}	y Hface
-1	0,981	0,000	0,000	0,013	0,000	0,324	-0,328
-0,95	0,957	0,000	0,097	0,018	0,000	0,306	-0,311
-0,9	0,932	0,000	0,189	0,022	0,000	0,288	-0,293
-0,8	0,883	0,000	0,359	0,031	0,000	0,253	-0,258
-0,7	0,834	0,000	0,511	0,039	0,000	0,219	-0,222
-0,6	0,785	0,000	0,642	0,045	0,000	0,185	-0,185
-0,5	0,736	0,000	0,753	0,051	0,000	0,153	-0,148
-0,4	0,687	0,000	0,843	0,055	0,000	0,121	-0,110
-0,2	0,589	0,000	0,961	0,061	0,000	0,060	-0,033
0	0,491	0,000	1,000	0,063	0,000	0,003	0,046
0,2	1,392	0,000	0,969	0,061	0,000	0,518	-0,693
0,4	1,046	0,000	0,879	0,057	0,000	0,325	-0,406
0,5	0,873	0,000	0,809	0,053	0,000	0,229	-0,263

Buque	de	Crucero
-------	----	---------

p	l	V_I	v_2	Yback	Y face	x_{Hface}	УHface
0,6	0,701	0,000	0,720	0,049	0,000	0,134	-0,119
0,7	0,527	0,000	0,606	0,043	0,000	0,040	0,027
0,8	0,352	0,001	0,462	0,036	0,000	-0,054	0,175
0,85	0,265	0,002	0,378	0,032	0,000	-0,101	0,249
0,9	0,177	0,007	0,272	0,027	0,000	-0,147	0,325
0,95	0,088	0,017	0,149	0,021	0,001	-0,193	0,400
1	0,000	0,038	0,000	0,015	0,002	-0,238	0,476
X_{Hface}	Y_{Hface}	Z_{Hface}	x_{Hback}	Y Hback	X_{Hback}	Y_{Hback}	Z_{Hback}
0,324	-0,326	1,738	0,334	-0,321	0,334	-0,319	1,739
0,306	-0,309	1,741	0,320	-0,301	0,320	-0,299	1,743
0,288	-0,292	1,744	0,306	-0,280	0,306	-0,279	1,746
0,253	-0,257	1,750	0,278	-0,240	0,278	-0,239	1,752
0,219	-0,221	1,755	0,250	-0,200	0,250	-0,199	1,757
0,185	-0,185	1,759	0,222	-0,160	0,222	-0,159	1,761
0,153	-0,148	1,762	0,194	-0,119	0,194	-0,119	1,764
0,121	-0,110	1,765	0,166	-0,079	0,166	-0,079	1,767
0,060	-0,033	1,768	0,110	0,002	0,110	0,002	1,768
0,003	0,046	1,768	0,054	0,082	0,054	0,082	1,767
0,518	-0,675	1,635	0,569	-0,658	0,569	-0,643	1,648
0,325	-0,403	1,722	0,371	-0,374	0,371	-0,371	1,729
0,229	-0,262	1,749	0,273	-0,232	0,273	-0,231	1,753
0,134	-0,118	1,765	0,174	-0,091	0,174	-0,091	1,766
0,040	0,027	1,768	0,075	0,052	0,075	0,052	1,768
-0,054	0,175	1,760	-0,025	0,196	-0,025	0,195	1,758

PREDICCIÓN DE POTENCIA. DISEÑO DE PROPULSORES Y TIMONES.

X_{Hface}	Y_{Hface}	Z_{Hface}	x_{Hback}	Y Hback	X_{Hback}	Y_{Hback}	Z_{Hback}
-0,101	0,249	1,751	-0,075	0,268	-0,075	0,267	1,748
-0,147	0,323	1,739	-0,125	0,340	-0,125	0,338	1,736
-0,193	0,397	1,723	-0,176	0,412	-0,176	0,408	1,721
-0,238	0,471	1,705	-0,227	0,484	-0,227	0,478	1,703

9.2.6
$$\frac{r}{R} = 0.7$$

p	l	V_{I}	v_2	Yback	Y face	x_{Hface}	УНface
-1	1,095	0,000	0,000	0,011	0,000	0,350	-0,390
-0,95	1,068	0,000	0,098	0,015	0,000	0,332	-0,369
-0,9	1,041	0,000	0,190	0,019	0,000	0,315	-0,347
-0,8	0,986	0,000	0,360	0,025	0,000	0,282	-0,303
-0,7	0,931	0,000	0,510	0,031	0,000	0,249	-0,259
-0,6	0,876	0,000	0,640	0,036	0,000	0,216	-0,215
-0,5	0,822	0,000	0,750	0,040	0,000	0,185	-0,170
-0,4	0,767	0,000	0,840	0,044	0,000	0,154	-0,125
-0,2	0,657	0,000	0,960	0,048	0,000	0,093	-0,033
0	0,548	0,000	1,000	0,050	0,000	0,036	0,060
0,2	1,381	0,000	0,968	0,049	0,000	0,464	-0,655
0,4	1,039	0,000	0,566	0,033	0,000	0,302	-0,353
0,5	0,868	0,000	0,785	0,042	0,000	0,207	-0,211
0,6	0,698	0,000	0,654	0,037	0,000	0,124	-0,062
0,7	0,526	0,000	0,562	0,033	0,000	0,039	0,088
0,8	0,352	0,000	0,414	0,027	0,000	-0,045	0,241
0,85	0,264	0,000	0,330	0,024	0,000	-0,087	0,317

Buque	de	Crucero
-------	----	---------

p	l	V_I	v_2	y_{back}	Y face	x_{Hface}	<i>y</i> Hface
0,9	0,177	0,000	0,234	0,020	0,000	-0,128	0,394
0,95	0,088	0,000	0,124	0,016	0,000	-0,170	0,472
1	0,000	0,000	0,000	0,011	0,000	-0,211	0,551
X_{Hface}	Y_{Hface}	Z_{Hface}	x_{Hback}	Y Hback	X_{Hback}	Y_{Hback}	Z_{Hback}
0,350	-0,387	1,726	0,359	-0,385	0,359	-0,382	1,727
0,332	-0,366	1,730	0,345	-0,361	0,345	-0,359	1,732
0,315	-0,345	1,735	0,331	-0,338	0,331	-0,336	1,736
0,282	-0,302	1,743	0,303	-0,291	0,303	-0,289	1,745
0,249	-0,258	1,750	0,275	-0,243	0,275	-0,243	1,752
0,216	-0,214	1,755	0,247	-0,196	0,247	-0,196	1,758
0,185	-0,170	1,760	0,219	-0,149	0,219	-0,149	1,762
0,154	-0,125	1,764	0,191	-0,102	0,191	-0,102	1,766
0,093	-0,033	1,768	0,135	-0,008	0,135	-0,008	1,768
0,036	0,060	1,767	0,079	0,086	0,079	0,086	1,766
0,464	-0,640	1,648	0,506	-0,630	0,506	-0,617	1,657
0,302	-0,351	1,733	0,330	-0,336	0,330	-0,334	1,737
0,207	-0,210	1,756	0,243	-0,189	0,243	-0,189	1,758
0,124	-0,062	1,767	0,156	-0,043	0,156	-0,043	1,768
0,039	0,088	1,766	0,068	0,105	0,068	0,105	1,765
-0,045	0,240	1,752	-0,021	0,254	-0,021	0,254	1,750
-0,087	0,315	1,740	-0,066	0,329	-0,066	0,327	1,738
-0,128	0,391	1,725	-0,111	0,405	-0,111	0,401	1,722
-0,170	0,467	1,706	-0,156	0,480	-0,156	0,475	1,704
-0,211	0,542	1,683	-0,201	0,556	-0,201	0,547	1,682

9.2.7 $\frac{r}{R} = 0.8$

p	l	V_I	v_2	Yback	Y face	x_{Hface}	УHface
-1	1,088	0,000	0,000	0,010	0,000	0,346	-0,398
-0,95	1,061	0,000	0,098	0,012	0,000	0,331	-0,375
-0,9	1,034	0,000	0,190	0,015	0,000	0,316	-0,352
-0,8	0,979	0,000	0,360	0,019	0,000	0,287	-0,306
-0,7	0,925	0,000	0,510	0,023	0,000	0,258	-0,260
-0,6	0,871	0,000	0,640	0,027	0,000	0,229	-0,213
-0,5	0,816	0,000	0,750	0,030	0,000	0,202	-0,166
-0,4	0,762	0,000	0,840	0,032	0,000	0,174	-0,119
-0,2	0,653	0,000	0,960	0,036	0,000	0,121	-0,024
0	0,544	0,000	1,000	0,037	0,000	0,070	0,072
0,2	1,380	0,000	0,964	0,036	0,000	0,457	-0,669
0,4	1,038	0,000	0,852	0,033	0,000	0,302	-0,364
0,5	0,867	0,000	0,764	0,030	0,000	0,225	-0,212
0,6	0,697	0,000	0,655	0,027	0,000	0,149	-0,060
0,7	0,525	0,000	0,527	0,024	0,000	0,073	0,094
0,8	0,351	0,000	0,377	0,020	0,000	-0,004	0,250
0,85	0,264	0,000	0,293	0,017	0,000	-0,042	0,329
0,9	0,177	0,000	0,203	0,015	0,000	-0,081	0,408
0,95	0,088	0,000	0,105	0,012	0,000	-0,119	0,487
1	0,000	0,000	0,000	0,010	0,000	-0,157	0,567
X_{Hface}	Y_{Hface}	Z_{Hface}	x_{Hback}	<i>YHback</i>	X_{Hback}	Y_{Hback}	Z_{Hback}

PREDICCIÓN DE POTENCIA. DISEÑO DE PROPULSORES Y TIMONES.

X_{Hface}	Y_{Hface}	Z_{Hface}	XHback	<i>y</i> _{Hback}	X_{Hback}	Y_{Hback}	Z_{Hback}
0,346	-0,395	1,724	0,354	-0,394	0,354	-0,391	1,725
0,331	-0,373	1,729	0,341	-0,370	0,341	-0,367	1,730
0,316	-0,350	1,734	0,329	-0,346	0,329	-0,343	1,735
0,287	-0,305	1,742	0,304	-0,297	0,304	-0,296	1,744
0,258	-0,259	1,749	0,279	-0,249	0,279	-0,248	1,751
0,229	-0,213	1,756	0,253	-0,201	0,253	-0,200	1,757
0,202	-0,166	1,761	0,228	-0,153	0,228	-0,152	1,762
0,174	-0,119	1,764	0,203	-0,104	0,203	-0,104	1,765
0,121	-0,024	1,768	0,153	-0,008	0,153	-0,008	1,768
0,070	0,072	1,767	0,102	0,089	0,102	0,089	1,766
0,457	-0,653	1,643	0,489	-0,652	0,489	-0,638	1,650
0,302	-0,362	1,731	0,331	-0,349	0,331	-0,347	1,734
0,225	-0,211	1,756	0,252	-0,198	0,252	-0,198	1,757
0,149	-0,060	1,767	0,173	-0,047	0,173	-0,047	1,768
0,073	0,094	1,766	0,094	0,105	0,094	0,105	1,765
-0,004	0,250	1,751	0,013	0,260	0,013	0,259	1,749
-0,042	0,327	1,738	-0,027	0,337	-0,027	0,335	1,737
-0,081	0,404	1,722	-0,067	0,415	-0,067	0,411	1,720
-0,119	0,481	1,702	-0,108	0,493	-0,108	0,486	1,700
-0,157	0,557	1,678	-0,149	0,571	-0,149	0,561	1,677

9.2.8
$$\frac{r}{R} = 0.9$$

p	l	V_I	v_2	Yback	Y face	x_{Hface}	УHface
-1	0,912	0,000	0,000	0,008	0,000	0,310	-0,326

Виаие	de	Crucero
Dugue	uv	CINCOLO

p	l	V_I	v_2	Yback	Y face	x_{Hface}	УНface
-0,95	0,889	0,000	0,098	0,009	0,000	0,299	-0,306
-0,9	0,867	0,000	0,190	0,011	0,000	0,288	-0,286
-0,8	0,821	0,000	0,360	0,014	0,000	0,266	-0,246
-0,7	0,775	0,000	0,510	0,016	0,000	0,245	-0,206
-0,6	0,730	0,000	0,640	0,018	0,000	0,224	-0,165
-0,5	0,684	0,000	0,750	0,020	0,000	0,203	-0,124
-0,4	0,639	0,000	0,840	0,021	0,000	0,183	-0,084
-0,2	0,547	0,000	0,960	0,023	0,000	0,143	-0,002
0	0,456	0,000	1,000	0,024	0,000	0,104	0,081
0,2	1,391	0,000	0,962	0,023	0,000	0,497	-0,767
0,4	1,046	0,000	0,845	0,021	0,000	0,354	-0,453
0,5	0,873	0,000	0,755	0,020	0,000	0,283	-0,296
0,6	0,701	0,000	0,646	0,018	0,000	0,212	-0,139
0,7	0,527	0,000	0,516	0,016	0,000	0,141	0,020
0,8	0,352	0,000	0,366	0,014	0,000	0,069	0,179
0,85	0,265	0,000	0,283	0,012	0,000	0,034	0,259
0,9	0,177	0,000	0,195	0,011	0,000	-0,002	0,340
0,95	0,088	0,000	0,100	0,009	0,000	-0,038	0,420
1	0,000	0,000	0,000	0,008	0,000	-0,074	0,501

X_{Hface}	Y_{Hface}	Z_{Hface}	x_{Hback}	<i>YHback</i>	X_{Hback}	Y_{Hback}	Z_{Hback}
0,310	-0,325	1,738	0,317	-0,323	0,317	-0,321	1,739
0,299	-0,305	1,742	0,307	-0,302	0,307	-0,301	1,743
0,288	-0,285	1,745	0,298	-0,282	0,298	-0,281	1,746
0,266	-0,245	1,751	0,279	-0,240	0,279	-0,240	1,752

Buque i	de	Crucero
---------	----	---------

X_{Hface}	Y_{Hface}	Z_{Hface}	x_{Hback}	<i>y</i> _{Hback}	X_{Hback}	Y_{Hback}	Z_{Hback}
0,245	-0,205	1,757	0,259	-0,199	0,259	-0,199	1,757
0,224	-0,165	1,761	0,240	-0,158	0,240	-0,157	1,761
0,203	-0,124	1,764	0,221	-0,116	0,221	-0,116	1,765
0,183	-0,084	1,767	0,202	-0,075	0,202	-0,075	1,767
0,143	-0,002	1,768	0,164	0,008	0,164	0,008	1,768
0,104	0,081	1,767	0,125	0,091	0,125	0,091	1,766
0,497	-0,744	1,605	0,518	-0,758	0,518	-0,735	1,609
0,354	-0,448	1,711	0,373	-0,444	0,373	-0,439	1,713
0,283	-0,294	1,744	0,301	-0,288	0,301	-0,286	1,745
0,212	-0,139	1,763	0,228	-0,131	0,228	-0,131	1,764
0,141	0,020	1,768	0,155	0,026	0,155	0,026	1,768
0,069	0,179	1,759	0,082	0,185	0,082	0,185	1,759
0,034	0,258	1,750	0,045	0,264	0,045	0,263	1,749
-0,002	0,338	1,736	0,008	0,344	0,008	0,342	1,735
-0,038	0,416	1,719	-0,029	0,424	-0,029	0,420	1,718
-0,074	0,495	1,698	-0,067	0,505	-0,067	0,498	1,697

9.2.9
$$\frac{r}{R} = 1.0$$

p	l	V_I	v_2	Yback	Y face	x_{Hface}	УНface
-1	0,000	0,000	0,000	0,006	0,000	0,142	0,090
-0,95	0,000	0,000	0,098	0,005	0,000	0,142	0,090
-0,9	0,000	0,000	0,190	0,005	0,000	0,143	0,090
-0,8	0,000	0,000	0,360	0,004	0,000	0,144	0,091
-0,7	0,000	0,000	0,510	0,003	0,000	0,145	0,091

Buque	de	Crucero
-------	----	---------

-0.6 0,000 0,000 0,640 0,002 0,000 0,145 0,091 -0,5 0,000 0,000 0,750 0,002 0,000 0,146 0,092 -0,4 0,000 0,000 0,840 0,001 0,000 0,147 0,092 -0,2 0,000 0,000 0,960 0,000 0,000 0,147 0,092 0 0,000 0,000 1,000 0,000 0,000 0,147 0,092 0,2 1,413 0,000 0,960 0,000 0,000 0,691 -1,212 0,4 1,060 0,000 0,840 0,001 0,000 0,554 -0,886 0,5 0,883 0,000 0,750 0,002 0,000 0,486 -0,723 0,6 0,706 0,000 0,510 0,003 0,000 0,417 -0,561 0,7 0,530 0,000 0,360 0,004 0,000 0,280 -0,235 0,85 </th <th>p</th> <th>l</th> <th>V_I</th> <th>v_2</th> <th>Yback</th> <th>Y face</th> <th>x_{Hface}</th> <th>УHface</th>	p	l	V_I	v_2	Yback	Y face	x_{Hface}	УHface
-0,4 0,000 0,000 0,840 0,001 0,000 0,147 0,092 -0,2 0,000 0,000 0,960 0,000 0,000 0,147 0,092 0 0,000 0,000 1,000 0,000 0,000 0,147 0,092 0,2 1,413 0,000 0,960 0,000 0,000 0,691 -1,212 0,4 1,060 0,000 0,840 0,001 0,000 0,554 -0,886 0,5 0,883 0,000 0,750 0,002 0,000 0,486 -0,723 0,6 0,706 0,000 0,640 0,002 0,000 0,417 -0,561 0,7 0,530 0,000 0,510 0,003 0,000 0,349 -0,398 0,8 0,353 0,000 0,360 0,004 0,000 0,280 -0,235 0,85 0,265 0,000 0,278 0,004 0,000 0,245 -0,154 0,95<	-0,6	0,000	0,000	0,640	0,002	0,000	0,145	0,091
-0,2 0,000 0,000 0,960 0,000 0,000 0,147 0,092 0 0,000 0,000 1,000 0,000 0,000 0,147 0,092 0,2 1,413 0,000 0,960 0,000 0,000 0,691 -1,212 0,4 1,060 0,000 0,840 0,001 0,000 0,554 -0,886 0,5 0,883 0,000 0,750 0,002 0,000 0,486 -0,723 0,6 0,706 0,000 0,640 0,002 0,000 0,417 -0,561 0,7 0,530 0,000 0,510 0,003 0,000 0,349 -0,398 0,8 0,353 0,000 0,360 0,004 0,000 0,280 -0,235 0,85 0,265 0,000 0,278 0,004 0,000 0,245 -0,154 0,9 0,177 0,000 0,190 0,005 0,000 0,176 0,009 1	-0,5	0,000	0,000	0,750	0,002	0,000	0,146	0,092
0 0,000 0,000 1,000 0,000 0,000 0,147 0,092 0,2 1,413 0,000 0,960 0,000 0,000 0,691 -1,212 0,4 1,060 0,000 0,840 0,001 0,000 0,486 -0,886 0,5 0,883 0,000 0,750 0,002 0,000 0,417 -0,561 0,6 0,706 0,000 0,640 0,002 0,000 0,417 -0,561 0,7 0,530 0,000 0,510 0,003 0,000 0,349 -0,398 0,8 0,353 0,000 0,360 0,004 0,000 0,280 -0,235 0,85 0,265 0,000 0,278 0,004 0,000 0,245 -0,154 0,9 0,177 0,000 0,190 0,005 0,000 0,211 -0,073 0,95 0,088 0,000 0,098 0,005 0,000 0,142 0,090 1 <th>-0,4</th> <th>0,000</th> <th>0,000</th> <th>0,840</th> <th>0,001</th> <th>0,000</th> <th>0,147</th> <th>0,092</th>	-0,4	0,000	0,000	0,840	0,001	0,000	0,147	0,092
0.2 $1,413$ $0,000$ $0,960$ $0,000$ $0,000$ $0,691$ $-1,212$ 0.4 $1,060$ $0,000$ $0,840$ $0,001$ $0,000$ $0,554$ $-0,886$ 0.5 $0,883$ $0,000$ $0,750$ $0,002$ $0,000$ $0,486$ $-0,723$ 0.6 $0,706$ $0,000$ $0,640$ $0,002$ $0,000$ $0,417$ $-0,561$ $0,7$ $0,530$ $0,000$ $0,510$ $0,003$ $0,000$ $0,349$ $-0,398$ $0,8$ $0,353$ $0,000$ $0,360$ $0,004$ $0,000$ $0,280$ $-0,235$ $0,85$ $0,265$ $0,000$ $0,278$ $0,004$ $0,000$ $0,245$ $-0,154$ $0,9$ $0,177$ $0,000$ $0,190$ $0,005$ $0,000$ $0,176$ $0,009$ 1 $0,000$ $0,000$ $0,000$ $0,000$ $0,000$ $0,147$ $0,092$ $1,766$ $0,142$ $0,090$	-0,2	0,000	0,000	0,960	0,000	0,000	0,147	0,092
0,4 1,060 0,000 0,840 0,001 0,000 0,554 -0,886 0,5 0,883 0,000 0,750 0,002 0,000 0,486 -0,723 0,6 0,706 0,000 0,640 0,002 0,000 0,417 -0,561 0,7 0,530 0,000 0,510 0,003 0,000 0,349 -0,398 0,8 0,353 0,000 0,360 0,004 0,000 0,280 -0,235 0,85 0,265 0,000 0,278 0,004 0,000 0,245 -0,154 0,9 0,177 0,000 0,190 0,005 0,000 0,211 -0,073 0,95 0,088 0,000 0,098 0,005 0,000 0,176 0,009 1 0,000 1,766 0,147 0,092 0,147 0,092 1,766 0,142 0,090 1,766 0,147 0,092 0,147 0,092 1,766 0,14	0	0,000	0,000	1,000	0,000	0,000	0,147	0,092
0,5 0,883 0,000 0,750 0,002 0,000 0,486 -0,723 0,6 0,706 0,000 0,640 0,002 0,000 0,417 -0,561 0,7 0,530 0,000 0,510 0,003 0,000 0,349 -0,398 0,8 0,353 0,000 0,360 0,004 0,000 0,280 -0,235 0,85 0,265 0,000 0,278 0,004 0,000 0,245 -0,154 0,9 0,177 0,000 0,190 0,005 0,000 0,211 -0,073 0,95 0,088 0,000 0,098 0,005 0,000 0,176 0,009 1 0,000 0,000 0,000 0,000 0,142 0,090 0,142 0,090 1,766 0,147 0,092 0,147 0,092 1,766 0,143 0,090 1,766 0,147 0,092 0,147 0,092 1,766 0,144 0,0	0,2	1,413	0,000	0,960	0,000	0,000	0,691	-1,212
0,6 0,706 0,000 0,640 0,002 0,000 0,417 -0,561 0,7 0,530 0,000 0,510 0,003 0,000 0,349 -0,398 0,8 0,353 0,000 0,360 0,004 0,000 0,280 -0,235 0,85 0,265 0,000 0,278 0,004 0,000 0,245 -0,154 0,9 0,177 0,000 0,190 0,005 0,000 0,211 -0,073 0,95 0,088 0,000 0,098 0,005 0,000 0,176 0,009 1 0,000 0,000 0,006 0,000 0,142 0,090 1,766 0,147 0,092 0,147 0,092 1,766 0,142 0,090 1,766 0,147 0,092 0,147 0,092 1,766 0,143 0,090 1,766 0,147 0,092 0,147 0,092 1,766 0,145 0,091 1,766 0,	0,4	1,060	0,000	0,840	0,001	0,000	0,554	-0,886
0,7 0,530 0,000 0,510 0,003 0,000 0,349 -0,398 0,8 0,353 0,000 0,360 0,004 0,000 0,280 -0,235 0,85 0,265 0,000 0,278 0,004 0,000 0,245 -0,154 0,9 0,177 0,000 0,190 0,005 0,000 0,211 -0,073 0,95 0,088 0,000 0,098 0,005 0,000 0,176 0,009 1 0,000 0,000 0,006 0,000 0,142 0,090 1 0,000 1,766 0,147 0,092 0,147 0,092 1,766 0,142 0,090 1,766 0,147 0,092 0,147 0,092 1,766 0,143 0,090 1,766 0,147 0,092 0,147 0,092 1,766 0,144 0,091 1,766 0,147 0,092 0,147 0,092 1,766 0,145 0,091	0,5	0,883	0,000	0,750	0,002	0,000	0,486	-0,723
0,8 0,353 0,000 0,360 0,004 0,000 0,280 -0,235 0,85 0,265 0,000 0,278 0,004 0,000 0,245 -0,154 0,9 0,177 0,000 0,190 0,005 0,000 0,211 -0,073 0,95 0,088 0,000 0,098 0,005 0,000 0,176 0,009 1 0,000 0,000 0,006 0,000 0,142 0,090 1 0,090 1,766 0,147 0,092 0,147 0,092 1,766 0,142 0,090 1,766 0,147 0,092 0,147 0,092 1,766 0,143 0,090 1,766 0,147 0,092 0,147 0,092 1,766 0,144 0,091 1,766 0,147 0,092 0,147 0,092 1,766 0,145 0,091 1,766 0,147 0,092 0,147 0,092 1,766 0,145 0,09	0,6	0,706	0,000	0,640	0,002	0,000	0,417	-0,561
0,85 $0,265$ $0,000$ $0,278$ $0,004$ $0,000$ $0,245$ $-0,154$ $0,9$ $0,177$ $0,000$ $0,190$ $0,005$ $0,000$ $0,211$ $-0,073$ $0,95$ $0,088$ $0,000$ $0,098$ $0,005$ $0,000$ $0,176$ $0,009$ 1 $0,000$ $0,000$ $0,006$ $0,000$ $0,142$ $0,090$ 1 $0,090$ $1,766$ $0,147$ $0,092$ $0,147$ $0,092$ $1,766$ $0,142$ $0,090$ $1,766$ $0,147$ $0,092$ $0,147$ $0,092$ $1,766$ $0,143$ $0,090$ $1,766$ $0,147$ $0,092$ $0,147$ $0,092$ $1,766$ $0,144$ $0,091$ $1,766$ $0,147$ $0,092$ $0,147$ $0,092$ $1,766$ $0,145$ $0,091$ $1,766$ $0,147$ $0,092$ $0,147$ $0,092$ $1,766$ $0,146$ $0,092$ $1,766$ $0,147$ $0,092$ $0,147$ $0,092$ $1,766$ $0,146$	0,7	0,530	0,000	0,510	0,003	0,000	0,349	-0,398
0.9 0.177 0.000 0.190 0.005 0.000 0.211 -0.073 0.95 0.088 0.000 0.098 0.005 0.000 0.176 0.009 1 0.000 0.000 0.006 0.000 0.142 0.090 X_{Hface} Y_{Hface} Z_{Hface} X_{Hback} Y_{Hback} Y_{Hback} Z_{Hback} 0.142 0.090 1.766 0.147 0.092 0.147 0.092 1.766 0.143 0.090 1.766 0.147 0.092 0.147 0.092 1.766 0.144 0.091 1.766 0.147 0.092 0.147 0.092 1.766 0.145 0.091 1.766 0.147 0.092 0.147 0.092 1.766 0.145 0.091 1.766 0.147 0.092 0.147 0.092 1.766 0.146 0.092 1.766 0.147 0.092 0.147 0.092 1.766 0.146 <	0,8	0,353	0,000	0,360	0,004	0,000	0,280	-0,235
0.95 0.088 0.000 0.098 0.005 0.000 0.176 0.009 I 0.000 0.000 0.006 0.000 0.142 0.090 X_{Hface} Y_{Hface} Z_{Hface} X_{Hback} X_{Hback} Y_{Hback} Z_{Hback} 0.142 0.090 1.766 0.147 0.092 0.147 0.092 1.766 0.142 0.090 1.766 0.147 0.092 0.147 0.092 1.766 0.143 0.090 1.766 0.147 0.092 0.147 0.092 1.766 0.144 0.091 1.766 0.147 0.092 0.147 0.092 1.766 0.145 0.091 1.766 0.147 0.092 0.147 0.092 1.766 0.145 0.091 1.766 0.147 0.092 0.147 0.092 1.766 0.146 0.092 1.766 0.147 0.092 0.147 0.092 1.766 0.146	0,85	0,265	0,000	0,278	0,004	0,000	0,245	-0,154
I I	0,9	0,177	0,000	0,190	0,005	0,000	0,211	-0,073
X_{Hface} Y_{Hface} Z_{Hface} X_{Hback} Y_{Hback} Y_{Hback} Y_{Hback} Z_{Hback} 0.142 0.090 1.766 0.147 0.092 0.147 0.092 1.766 0.142 0.090 1.766 0.147 0.092 0.147 0.092 1.766 0.143 0.090 1.766 0.147 0.092 0.147 0.092 1.766 0.144 0.091 1.766 0.147 0.092 0.147 0.092 1.766 0.145 0.091 1.766 0.147 0.092 0.147 0.092 1.766 0.145 0.091 1.766 0.147 0.092 0.147 0.092 1.766 0.145 0.091 1.766 0.147 0.092 0.147 0.092 1.766 0.145 0.091 1.766 0.147 0.092 0.147 0.092 1.766	0,95	0,088	0,000	0,098	0,005	0,000	0,176	0,009
0,142 0,090 1,766 0,147 0,092 0,147 0,092 1,766 0,142 0,090 1,766 0,147 0,092 0,147 0,092 1,766 0,143 0,090 1,766 0,147 0,092 0,147 0,092 1,766 0,144 0,091 1,766 0,147 0,092 0,147 0,092 1,766 0,145 0,091 1,766 0,147 0,092 0,147 0,092 1,766 0,145 0,091 1,766 0,147 0,092 0,147 0,092 1,766 0,146 0,092 1,766 0,147 0,092 0,147 0,092 1,766	1	0,000	0,000	0,000	0,006	0,000	0,142	0,090
0,142 0,090 1,766 0,147 0,092 0,147 0,092 1,766 0,142 0,090 1,766 0,147 0,092 0,147 0,092 1,766 0,143 0,090 1,766 0,147 0,092 0,147 0,092 1,766 0,144 0,091 1,766 0,147 0,092 0,147 0,092 1,766 0,145 0,091 1,766 0,147 0,092 0,147 0,092 1,766 0,145 0,091 1,766 0,147 0,092 0,147 0,092 1,766 0,146 0,092 1,766 0,147 0,092 0,147 0,092 1,766 0,146 0,092 1,766 0,147 0,092 0,147 0,092 1,766								
0,142 0,090 1,766 0,147 0,092 0,147 0,092 1,766 0,143 0,090 1,766 0,147 0,092 0,147 0,092 1,766 0,144 0,091 1,766 0,147 0,092 0,147 0,092 1,766 0,145 0,091 1,766 0,147 0,092 0,147 0,092 1,766 0,145 0,091 1,766 0,147 0,092 0,147 0,092 1,766 0,146 0,092 1,766 0,147 0,092 0,147 0,092 1,766	X_{Hface}	Y_{Hface}	Z_{Hface}	x_{Hback}	<i>y</i> _{Hback}	X_{Hback}	Y_{Hback}	Z_{Hback}
0,143 0,090 1,766 0,147 0,092 0,147 0,092 1,766 0,144 0,091 1,766 0,147 0,092 0,147 0,092 1,766 0,145 0,091 1,766 0,147 0,092 0,147 0,092 1,766 0,145 0,091 1,766 0,147 0,092 0,147 0,092 1,766 0,146 0,092 1,766 0,147 0,092 0,147 0,092 1,766	0,142	0,090	1,766	0,147	0,092	0,147	0,092	1,766
0,144 0,091 1,766 0,147 0,092 0,147 0,092 1,766 0,145 0,091 1,766 0,147 0,092 0,147 0,092 1,766 0,145 0,091 1,766 0,147 0,092 0,147 0,092 1,766 0,146 0,092 1,766 0,147 0,092 0,147 0,092 1,766	0,142	0,090	1,766	0,147	0,092	0,147	0,092	1,766
0,145 0,091 1,766 0,147 0,092 0,147 0,092 1,766 0,145 0,091 1,766 0,147 0,092 0,147 0,092 1,766 0,146 0,092 1,766 0,147 0,092 0,147 0,092 1,766	0,143	0,090	1,766	0,147	0,092	0,147	0,092	1,766
0,145 0,091 1,766 0,147 0,092 0,147 0,092 1,766 0,146 0,092 1,766 0,147 0,092 0,147 0,092 1,766	0,144	0,091	1,766	0,147	0,092	0,147	0,092	1,766
0,146 0,092 1,766 0,147 0,092 0,147 0,092 1,766	0,145	0,091	1,766	0,147	0,092	0,147	0,092	1,766
	0,145	0,091	1,766	0,147	0,092	0,147	0,092	1,766
0,147 0,092 1,766 0,147 0,092 0,147 0,092 1,766	0,146	0,092	1,766	0,147	0,092	0,147	0,092	1,766
	0,147	0,092	1,766	0,147	0,092	0,147	0,092	1,766

Buque de Crucero

PREDICCIÓN DE POTENCIA. DISEÑO DE PROPULSORES Y TIMONES.

X_{Hface}	Y_{Hface}	Z_{Hface}	x_{Hback}	УHback	X_{Hback}	Y_{Hback}	Z_{Hback}
0,147	0,092	1,766	0,147	0,092	0,147	0,092	1,766
0,147	0,092	1,766	0,147	0,092	0,147	0,092	1,766
0,691	-1,119	1,369	0,691	-1,212	0,691	-1,119	1,369
0,554	-0,849	1,551	0,555	-0,886	0,555	-0,849	1,551
0,486	-0,703	1,623	0,487	-0,723	0,487	-0,703	1,623
0,417	-0,551	1,680	0,419	-0,560	0,419	-0,550	1,681
0,349	-0,395	1,724	0,351	-0,397	0,351	-0,393	1,724
0,280	-0,235	1,753	0,283	-0,234	0,283	-0,233	1,753
0,245	-0,154	1,762	0,249	-0,152	0,249	-0,152	1,762
0,211	-0,073	1,767	0,215	-0,071	0,215	-0,071	1,767
0,176	0,009	1,768	0,181	0,011	0,181	0,011	1,768
0,142	0,090	1,766	0,147	0,092	0,147	0,092	1,766

PROYECTO NÚMERO 1491

Buque de Crucero

Cuaderna Maestra

Tutor: Arias Rodrigo, Carlos

Autores: Urrutia Nebreda, Juan

Vicario González, Jorge

1 EL ÍNDICE

1	El i	índice		3
2	La	introduc	ción	6
3	La	disposici	ión estructural del barco	7
	3.1	El fond	lo y el doble fondo	7
	3.2	Los co	stados	7
	3.3	Las cu	biertas	7
	3.4	El cua	dro resumen	8
4	El	escantillo	onado de los elementos estructurales	9
	4.1	La intr	oducción	9
	4.2	La defi	inición de variables	9
	4.3	El esca	ntillonado del doble fondo	0
	4.3	3.1 L	as cargas de diseño1	0
		4.3.1.1	La presión del mar	0
		4.3.1.2	La presión sobre planchas del doble fondo	1
		4.3.1.3	La presión sobre los elementos que limitan tanques del doble fondo 1	1
		4.3.1.4	La presión mínima en los elementos de doble fondo	12
	4	3.2 E	l cálculo de escantillones	12
		4.3.2.1	La plancha de quilla	12
		4.3.2.2	Las planchas de fondo y pantoque	12
		4.3.2.3	Las planchas del doble fondo	13
		4.3.2.4	Las vagras y varengas	4
		4.3.2.5	Los rigidizadores de vagras y varengas estancas	15
		4.3.2.6	Los longitudinales de fondo	16
		4.3.2.7	Los longitudinales del doble fondo	16

4.3.3 L	a disposición del doble fondo	17
4.3.4 E	l resumen del escantillonado de los elementos de fondo y doble fondo	17
4.4 El esca	antillonado del costado	18
4.4.1 L	as cargas de diseño	19
4.4.1.1	La presión externa	19
4.4.1.	1.1 Por debajo de la línea de flotación al calado de proyecto:	19
4.4.1.	1.2 Por encima de la línea de flotación al calado de proyecto:	19
4.4.1.2	La tabla de presiones	19
4.4.2 E	l cálculo de escantillones	20
4.4.2.1	Las planchas del costado	20
4.4.2.2	La traca de cinta	22
4.4.2.3	Las cuadernas principales	23
4.4.2.4	Las cuadernas entre cubiertas	24
4.4.2.	$4.1 Z_1 = \frac{0.55 \cdot l^2 \cdot s \cdot p \cdot w_k}{f_1} \dots$	24
4.4.2.	$4.2 Z_2 = k\sqrt{\frac{L}{f_1}} $	25
4.4.2.5	Las bulárcamas	25
4.5 El esca	antillonado de cubierta	27
4.5.1 L	as cargas de diseño	27
4.5.1.1	La presión del mar en la cubierta de intemperie	27
4.5.1.2	La presión del mar en cubiertas de acomodación	27
4.5.1.3	La presión del mar en cubiertas estancas sumergidas en avería	28
4.5.2 L	as planchas y refuerzos secundarios	28
4.5.2.1	Las planchas de la cubierta resistente	28
4.5.2.2	Las planchas de cubierta por encima y por debajo de la resistente	29

4.5.2.3 Los refuerzos longitudinales	29
4.5.3 La estructura primaria: baos y esloras	30
4.5.3.1 Los baos	31
4.5.3.2 Las esloras	32
4.6 Los puntales	34
5 La resistencia longitudinal	36
5.1 Las definiciones	36
5.2 Los momentos flectores y esfuerzos cortantes en aguas tranquilas 3	36
5.2.1 El momento flector	37
5.2.2 Las fuerzas cortantes	37
5.3 Las condiciones de carga con el buque en ola	38
5.3.1 En arrufo	88
5.3.2 En quebranto	38
5.4 El módulo resistente y el momento de inercia mínimo para la cuaderna maestr 39	ra
6 La bibliografía4	Ю
7 Los anexos	1
7.1 El cálculo del eje neutro, del módulo resistente y del momento de inercia 4	1

2 LA INTRODUCCIÓN

Llegados a este punto nos proponemos realizar un estudio de la cuaderna maestra, calculando los escantillones mínimos necesarios que exige la sociedad de clasificación Det Norske Veritas.

Como sabemos la estructura del buque es la que tiene que soportar todas las cargas a que está sometido el buque durante su vida y la que proporciona la resistencia y rigidez necesarias.

A lo largo de los años se ha venido estudiando el buque mediante la analogía del buqueviga. Este buque-viga estará formado por las planchas del casco, las cubiertas, las cuadernas, los mamparos y los puntales.

Con esta estructura definida sabemos que el buque deberá resistir el empuje en aguas tranquilas y las cargas dinámicas en mar agitada. Además de las consideraciones básicas de resistencia y rigidez, se deben tener en cuenta otras consideraciones como son los factores de seguridad, el coste, el peso, las vibraciones, la fatiga, la corrosión, la fabricación y mantenimiento, etc.; primando en cada caso unos factores más que otros.

3 LA DISPOSICIÓN ESTRUCTURAL DEL BARCO

A continuación se detalla el tipo de estructura elegido para cada zona del barco, así como las razones que llevan a la elección del susodicho tipo.

3.1 EL FONDO Y EL DOBLE FONDO

Las reglamentaciones (SOLAS) obligan a que los buques de pasaje dispongan de doble fondo. En nuestro caso se ha adoptado un doble fondo de 1,5 m de altura que recorre toda la base del buque.

En el fondo y el doble fondo se ha adoptado una estructura longitudinal para que estas zonas contribuyan activamente a la resistencia longitudinal, ya que formarán el ala inferior de la viga - buque.

Los refuerzos primarios del fondo y el doble fondo serán varengas, que tendrán la misma separación que las bulárcamas. Estas varengas serán estancas cuando coincidan con un mamparo estanco y aligeradas en los demás casos.

Los refuerzos secundarios serán las vagras y los longitudinales de fondo y doble fondo.

3.2 Los costados

En este tipo de buques se suele adoptar una estructura longitudinal en los costados para permitir un mayor tamaño de las ventanas de los camarotes. En nuestro caso, hemos optado, al contrario, por una estructura transversal en los costados, ya que la clara de cuadernas adoptada, 825 mm, permite disponer de suficiente espacio para ventanas. De este modo se aprovechan las claras de cuadernas para llevar las conducciones necesarias (eléctricas, ventilación, agua, etc.)

La estructura adoptada esta formada por cuadernas, con una clara de 825 mm, y bulárcamas situadas cada cuatro cuadernas, es decir, cada 3300 mm. Así se consigue una distribución adecuada de los camarotes.

3.3 LAS CUBIERTAS

En las cubiertas se ha optado también por una estructura longitudinal que contribuya a la resistencia longitudinal del buque.

Los refuerzos longitudinales serán esloras y longitudinales de cubierta. Los refuerzos transversales de las cubiertas serán baos que se harán coincidir con las bulárcamas. Para completar la estructura y reducir los voladizos de baos y esloras se instalarán puntales. Éstos irán dispuestos cada dos baos (dos bulárcamas), transversalmente se situarán a 3,467 m de crujía.

La cubierta más alta, cubierta 6, se toma como cubierta resistente y será la encargada de completar el buque - viga por la parte superior.

3.4 EL CUADRO RESUMEN

De manera resumida el esquema de la estructura del buque es:

Zona del buque	Tipo de estructura
Fondo	Longitudinal
Doble fondo	Longitudinal
Costado	Transversal
Cubiertas	Longitudinal

4 EL ESCANTILLONADO DE LOS ELEMENTOS ESTRUCTURALES

4.1 LA INTRODUCCIÓN

Se van a realizar los cálculos para obtener los escantillones de los elementos estructurales siguiendo las fórmulas del reglamento de DNV, desarrolladas en el capítulo 1 de la parte 3.

4.2 LA DEFINICIÓN DE VARIABLES

- L, eslora entre perpendiculares. L = 116,532 m.
- *F.P.*, perpendicular de proa.
- A.P., perpendicular de popa.
- L_F , eslora de francobordo. $L_F = 121,690$ m.
- B, manga de trazado. B = 22,350 m.
- D, puntal a la cubierta continua más alta, en la sección media (la cubierta continua más alta se suele tomar la cubierta resistente, cubierta 7). D = 21,900 m.
- D_F , puntal a la cubierta de francobordo, cubierta 2. $D_F = 8,000 \text{ m}$.
- T, calado de proyecto. T = 5,400 m.
- T_{esc} , calado de escantillonado. $T_{esc} = 5,700 \text{ m}$.
- Δ , desplazamiento de proyecto $\Delta = 8615$ T.
- C_B , coeficiente de bloque. $C_B = 0.579$.
- V, velocidad máxima de servicio. V = 19 kn.
- f_I , factor dependiente de la resistencia del material. $f_I = 1$ (para acero).

• t_k , espesor adicional por corrosión (tabulado en Pt. 3, Ch. 1, Sec. 2, Tabla D1) diferente para cada zona del buque.

- C_w , coeficiente de carga debida a la ola, (100 < L < 300; $C_w = 10,75 \left(\frac{300 L}{100}\right)^{\frac{3}{2}}$). $C_w = 8,265$
- p, presión (carga) de diseño, tiene una expresión diferente según la zona del buque del elemento que se está escantillonado.

4.3 EL ESCANTILLONADO DEL DOBLE FONDO

4.3.1 Las cargas de diseño

La sección 4 del capítulo 1 es la dedicada exclusivamente a las cargas de diseño y dentro de ésta, el apartado C es el dedicado a presiones y fuerzas.

4.3.1.1 La presión del mar

Para un punto por debajo de la flotación:

- $p_1 = 10h_0 + p_{dp} \text{ [kN·m}^{-2}\text{]}$
- h_0 , distancia vertical desde la flotación hasta el punto de estudio.

•
$$p_{dp} = p_l + 1,35 \frac{y}{B+75} - 1,2(T-z)$$

•
$$p_l = \begin{cases} k_s C_W + k_f \\ (k_s C_W + k_f) \left(0.8 + 0.15 \frac{V}{\sqrt{L}} \right), & \frac{V}{\sqrt{L}} < 0.15 \end{cases}$$

$$3C_B + \frac{2.5}{\sqrt{C_B}}$$
, a popa de A.P.

• $k_s = \begin{cases} 2, \text{ entre } 0.2 \text{ L y } 0.7 \text{ L, respecto a A.P., con variación lineal en el resto de} \\ 3C_B + \frac{4.0}{C_B}, \text{ a proa de F.P.} \end{cases}$

puntos.

- y, distancia desde crujía hasta el punto de estudio, como mínimo $\frac{B}{4}$
- *z*, distancia vertical desde la línea de base hasta el punto de estudio, como máximo *T*.
- k_f , el menor entre T y f.
- f, distancia vertical desde la flotación hasta el borde superior del costado en la cuaderna considerada, como máximo $0.8 \cdot C_W$.
- *L*, eslora.

4.3.1.2 La presión sobre planchas del doble fondo

Por no existir bodegas de carga ni tanques de carga sobre el doble fondo, se toma como presión de diseño la presión mínima de la tabla B1 de la sección sexta (dentro de Pt. 3, Ch. 1), la que se nota en el reglamento como p₁₃.

$$p_{13} = 10 \cdot T = 57 \text{ kN} \cdot \text{m}^{-2}$$
.

4.3.1.3 La presión sobre los elementos que limitan tanques del doble fondo

- $p_{14} = 0.67 \cdot (10 h_p + \Delta p_{dyn}).$
- h_p , distancia vertical en metros desde el punto de estudio hasta el punto al punto más alto de la aireación.
- Δp_{dyn}
- $p_{15} = 10 h_s + p_0$.
- h_s , distancia desde el punto de estudio hasta el techo del tanque.
- $p_0 = 25 \text{ kN} \cdot \text{m}^{-2}$.

4.3.1.4 La presión mínima en los elementos de doble fondo

$$P_{16} = 10 \cdot T_{esc} \text{ kN} \cdot \text{m}^{-2}$$

4.3.2 El cálculo de escantillones

Se aplican las fórmulas y requerimientos de la sección 6 (dentro de Pt. 3, Ch. 1)

4.3.2.1 La plancha de quilla

Se extenderá a lo largo de toda la eslora del buque. La manga de dicha plancha no será menor que:

$$b = 800 + 5 L = 1382,66 \text{ mm}.$$

Se toma una manga para esta plancha de 1400 mm

El espesor no será menor de:

$$t = \frac{(7,0+0,05L)}{\sqrt{f_1}} + t_k = 14,3 \text{ mm}.$$

• $t_k = 1,5$. Adición por corrosión.

Se toma un espesor para esta plancha de 16 mm.¹

4.3.2.2 Las planchas de fondo y pantoque

Su manga será mayor de:

$$b = 800 + 5 L = 1382,66 \text{ mm}.$$

Será de un grado de calidad de acero mayor que A de acuerdo con el apartado B de la sección 2 (dentro de Pt. 3, Ch. 1).

El espesor de estas planchas debe ser mayor que:

$$t = \frac{15.8 \cdot k_a \cdot s \cdot \sqrt{p}}{\sqrt{\sigma}} + t_k = 8.4 \text{ mm}$$

Donde:

-

¹ En ningún caso puede el espesor de esta plancha ser menor que el de la plancha adyacente.

- s, separación entre longitudinales.
- $k_a = 1$.
- $p = p_1 = 10T + p_{dp}$.
- $t_k = 1,5$.
- $\sigma = 120 f_1^2$

Debe ser mayor de:

$$t = 5,0 + \frac{0,04 \cdot L_1}{\sqrt{f_1}} + t_k = 11,2 \text{ mm}$$

Donde

• $L_1 = L = 116,532 \text{ m}.$

En vista de estos requerimientos se toman para fondo y pantoque planchas de:

- Manga: b = 1400 mm
- Espesor: t = 13 mm

4.3.2.3 Las planchas del doble fondo

Debido a la presión lateral el espesor de estas planchas debe ser mayor que:

$$t = \frac{15.8 \cdot k_a \cdot s \cdot \sqrt{p}}{\sqrt{\sigma}} + t_k = 7.3 \text{ mm}$$

Donde:

- s, separación de los refuerzos, de las vagras y de las varengas. Las varengas estancas estarán situadas cada 3300 mm y las vagras estancas lo estarán del mismo modo cada 3467 mm.
- $k_a = 1$.
- $p = p_{13} = 57 \text{ kN} \cdot \text{m}^{-2}$.
- $t_k = 1,5$.

² Por tratarse de un fondo con estructura longitudinal.

• $\sigma = 140 f_1$.

Además debe ser mayor de:

$$t = t_0 + \frac{0.03 \cdot L_1}{\sqrt{f_1}} + t_k = 10.0 \text{ mm}$$

Donde:

- $L_1 = L = 116,532 \text{ m}.$
- $t_0 = 5$, en espacios vacíos, espacios de maquinaría y tanques.

En vista de estos requerimientos se toman para el doble fondo planchas de:

• Espesor: t = 11,0 mm

4.3.2.4 Las vagras y varengas

El espesor requerido para vagras y varengas que sean límites de tanques de doble fondo³ será al menos de:

$$t = \frac{15.8 \cdot k_a \cdot \sqrt{p}}{\sqrt{\sigma}} + t_k$$

Así:

- $t_{varengas} = 10.9 \text{ mm}$
- $t_{vagras} = 12,0 \text{ mm}$

Donde:

- p, se toma el máximo entre p_{14} , p_{15} y p_{16} que son las presiones en límites de los tanques del doble fondo, según se explica anteriormente en los punto 4.3.1.1 y siguientes, a partir de la página 10. En este caso $p = p_{16} = 57$ kN·m⁻².
- $\sigma = 130 f_1$.
- $f_1 = 1$.
- $t_k = 1.5 \text{ mm}.$

³ En el buque de proyecto todo el doble fondo está ocupado por tanques.

Además el espesor de varengas y vagras que soporten chapas y cartabones no debe ser menor de:

$$t = t_0 + \frac{k \cdot L_1}{\sqrt{f_1}} + t_k = 9.8 \text{ mm}$$

Donde:

- k = 0.02.
- $t_0 = 5 \text{ mm}.$
- $t_k = 1,5 \text{ mm}$.
- $L_1 = L = 116,532 \text{ m}.$

Para la quilla vertical se aplica el mismo criterio, siendo k = 0.02 al no extenderse más allá de 2 metros sobre la quilla horizontal. De aquí que su espesor no debe ser menor de 12,1 mm. Se toma por ello un espesor de 14 mm.

En vista de los escantillones requeridos calculados, se toma para todas las vagras un espesor de 13,0 mm y para las varengas un espesor de 12,0 mm.

4.3.2.5 Los rigidizadores de vagras y varengas estancas

El módulo resistente debe ser de al menos:

$$Z = \frac{100 \cdot l^2 \cdot s \cdot p \cdot w_k}{\sigma}$$

p, se toma el máximo entre p_{14} , p_{15} y p_{16} que son las presiones en límites de los tanques del doble fondo. En este caso $p = p_{16} = 57 \text{ kN} \cdot \text{m}^{-2}$.

- s, separación de los refuerzos, de las vagras y de las varengas. Las varengas estancas estarán situadas cada 3300 mm y las vagras estancas lo estarán del mismo modo cada 3467 mm.
- $w_k = 1 + 0.05 (t_{kw} + t_{kf}) = 1.09$. Factor de corrosión del módulo de la sección.
- $\sigma = 225 f_1 \cdot -110 \cdot f_{2b}$.

Los módulos resistentes mínimos quedan por lo tanto:

- Vagra estanca: $Z \ge 1271 \text{ cm}^3$.
- Varenga estanca: $Z \ge 1210 \text{ cm}^3$.

(Se tomarán los mismos elementos rigidizadores para las vagras y varengas estancas y para las aligeradas)

El espesor de las almas y alas de estos elementos no debe ser menor de:

$$t = 5 + \frac{0.02 \cdot L_1}{\sqrt{f_1}} + t_k = 8.8 \text{ mm}.$$

Se toma por tanto de t = 10,0 mm

4.3.2.6 Los longitudinales de fondo

El módulo resistente debe ser de al menos:

$$Z = \frac{83 \cdot l^2 \cdot s \cdot p \cdot w_k}{\sigma} = 459 \text{ cm}^3$$

Donde:

- $p = p_1$.
- $\sigma = 225 f_1 100 \cdot f_{2b} 0.7 \cdot \sigma_{db}$
- l = 3.3 m.
- s = 0.578 m.
- $w_k = 1 + 0.05 (t_{kw} + t_{kf}).$

El espesor mínimo de ala y alma del refuerzo no será menor de:

$$t = 5 + \frac{0.02 \cdot L_1}{\sqrt{f_1}} + t_k = 8.8 \text{ mm}.$$

Se toma por tanto de t = 10 mm.

4.3.2.7 Los longitudinales del doble fondo

El módulo resistente debe ser de al menos:

$$Z = \frac{83 \cdot l^2 \cdot s \cdot p \cdot w_k}{\sigma} = 224 \text{ cm}^3$$

Donde:

- $p = p_{13} = 57 \text{ kN} \cdot \text{m}^{-2}$.
- $\sigma = 225 f_1 100 \cdot f_{2b} 0.7 \cdot \sigma_{db}$.
- l = 3.3 m.
- s = 0.578 m
- $w_k = 1 + 0.05 (t_{kw} + t_{kf})$

El espesor mínimo de ala y alma del refuerzo no será menor de:

$$t = 5 + \frac{0.02 \cdot L_1}{\sqrt{f_1}} + t_k = 8.8 \text{ mm}.$$

Se toma por tanto de t = 10 mm

4.3.3 La disposición del doble fondo

En el reglamento se especifica que la altura del doble fondo debe ser de al menos:

$$h = 250 + 20 B + 50 T = 982 \text{ mm}$$

En este caso se cumple dicho requerimiento sobradamente por ser la altura del doble fondo de 1,5 metros.

Para dobles fondos con estructura longitudinal se debe cumplir además:

- La distancia entre vagra y quilla vertical no debe ser mayor de 5 m.
- El espaciado de vagras no debe ser mayor de 3,6 m.

En el plano de disposición de la cuaderna maestra se aprecia que se cumplen todos los criterios.

4.3.4 El resumen del escantillonado de los elementos de fondo y doble fondo

A continuación aparece un resumen de los elementos del fondo y doble fondo. Como se puede ver los espesores están sobredimensionados, esto se hace para compensar en parte los problemas que puede causar la clara de bulárcamas adoptada, como se puede ver en el cuaderno 8 este sobredimensionamiento no repercute excesivamente en el cálculo del peso en rosca.

Plancha	Espesor requerido (mm)	Espesor tomado (mm)		
Quilla horizontal	14,6	16		
Quilla vertical	12,2	14		
Fondo y pantoque	11,2	13		
Doble fondo	10,0	11		
Varengas	10,9	12		
Vagras	12,0	13		

Refuerzo	Espesor mínimo (mm)	Módulo resistente mínimo (cm³)	Perfil utilizado
Refuerzos de vagras	10,0	1271	
Refuerzos de varengas	10,0	1210	
Longitudinales de doble fondo	10,0	224	HP 300×12
Longitudinales de fondo	10	459	HP 370×16

4.4 EL ESCANTILLONADO DEL COSTADO

Se aplican las fórmulas y requerimientos de la sección 7 (dentro de Pt. 3, Ch. 1) de las reglas del DNV.

Antes de realizar los cálculos, se deben especificar cuales son los puntos de carga tal y como vienen definidos en el punto 202 de la sección 7 (dentro de Pt. 3, Ch. 1) del reglamento del DNV.

Para las planchas, el punto de carga es el punto medio del espaciado entre refuerzos. Si la presión no varía linealmente sobre dicho elemento se tomará el valor más alto entre p_M (en el punto medio) y $\frac{p_A + p_B}{2}$ (media de los valores extremos).

4.4.1 Las cargas de diseño

Las cargas de diseño para los elementos estructurales del costado vienen dadas en la tabla B1 de la sección 7 (dentro de Pt. 3, Ch. 1).

4.4.1.1 La presión externa

4.4.1.1.1 Por debajo de la línea de flotación al calado de proyecto:

$$p_1 = 10 h_0 + p_{dp}$$

Donde:

- h_0 , distancia vertical desde la flotación al punto de carga.
- $p_{dp} = 43,95 1,2 h_0$

4.4.1.1.2 Por encima de la línea de flotación al calado de proyecto:

$$p_2 = \left\lceil p_{dp} - \left(4 + 0, 2k_s\right) h_0 \right\rceil$$

Con un mínimo de:

$$6,25 + 0,025 L_1 = 9,2 \text{ kN} \cdot \text{m}^{-2}$$

Donde:

- h_0 , distancia vertical desde la flotación al punto de carga.
- $p_{dp} = 43,95 1,2 h_0$.
- $k_s = 2$.

4.4.1.2 La tabla de presiones

No se calculan los valores de p_3 a p_8 de la tabla B1 de la sección 7 (dentro de Pt. 3, Ch. 1) ya que para el buque de proyecto no hay tanques de lastre, carga o combustible directamente en contacto con el costado.

Se presentan en la siguiente tabla las presiones de diseño para las diferentes zonas del costado, separando en las zonas entre las diferentes cubiertas.

Zona del buque (entre cubiertas) h_0 Carga de diseño, p Valor

Zona del buque (entre cubiertas)	h_0		Carga de diseño, p	Valor	
0 - 1	0,750	m	p_1	50,6	kN⋅m ⁻²
1 - 2	3,400	m	p_1	73,9	$kN \cdot m^{-2}$
2 – flotación	5,500	m	p_2	92,4	$kN \cdot m^{-2}$
flotación – 3	6,850	m	p_2	9,2	$kN \cdot m^{-2}$
3 - 4	5,350	m	p_2	9,2	$kN \cdot m^{-2}$
4 - 5	12,250	m	p_2	9,2	$kN \cdot m^{-2}$
5 – 6	15,150	m	p_2	9,2	$kN \cdot m^{-2}$
6 – 7	17,850	m	p_2	9,2	$kN \cdot m^{-2}$
7 – 8	20,750	m	p_2	9,2	$kN \cdot m^{-2}$

4.4.2 El cálculo de escantillones

4.4.2.1 Las planchas del costado

El espesor mínimo requerido debido a la presión lateral es:

$$t = \frac{15.8 \cdot s \cdot \sqrt{p}}{\sqrt{\sigma}}$$

Donde:

- *s*, clara de cuadernas.
- p, presión sobre el punto de carga. p_1 ó p_2 dependiendo de la zona del buque. Se toman los valores de la tabla de presiones (4.4.1.2 de este cuaderno).
- $\sigma = 120 f_1$.

Para estas planchas no se incluye espesor adicional por corrosión t_k , ya que no existen tanques de lastre, carga o combustible en contacto directo con los costados del buque.

Zona del buque (entre cubiertas)	Carga de diseño (kN·m ⁻²)	Espesor (mm)
0 – 1	50,6	8,5

URRUTIA NEBREDA, Juan

Zona del buque (entre cubiertas)	Carga de diseño (kN·m ⁻²)	Espesor (mm)
1 – 2	73,9	10,2
2 – flotación	92,4	11,4
flotación – 3	9,2	3,6
3 – 4	9,2	3,6
4 - 5	9,2	3,6
5 – 6	9,2	3,6
6 – 7	9,2	3,6
7 – 8	9,2	3,6

Además, el espesor de las planchas de costado no debe ser menor de:

$$t = 5 + \frac{k \cdot L_1}{\sqrt{f_1}}$$

Donde:

• k = 0.04, hasta 4,6 m sobre la flotación de proyecto por encima se reduce en 0,01 cada 2,3 metros hasta un mínimo de 0,01.

Se presenta a continuación una tabla con los valores de k y del espesor mínimo:

Zona del buque (entre cubiertas)	\boldsymbol{k}	Espesor (mm)
0 - 1	0,04	9,7
1 - 2	0,04	9,7
2 – flotación	0,04	9,7
flotación – 3	0,04	9,7
3 - 4	0,04	9,7
4 – 5	0,03	8,7
5 – 6	0,02	7,2
6 – 7	0,01	6,2

Zona del buque (entre cubiertas)	\boldsymbol{k}	Espesor (mm)
7 – 8	0,01	6,2

Se observa que para todas las zonas en las que se ha dividido el buque, éste último criterio es más estricto que el referente a la presión lateral, por lo que para el escantillonado se tienen que considerar estos últimos valores de espesores hallados.

Se presentan en la siguiente tabla los espesores adoptados para las diferentes zonas del buque.

Zona del buque (entre cubiertas)	Espesor (mm)
0 – 1	11
1 - 2	11
2 – flotación	11
flotación – 3	11
3 – 4	11
4 - 5	10
5 – 6	9
6 – 7	8
7 – 8	8

4.4.2.2 La traca de cinta

La altura de esta plancha debe ser mayor de:

$$b = 800 + 5 \cdot L = 1382,66 \text{ mm}$$

Se toma de 1600 mm

El espesor de esta plancha ha de ser por lo menos de:

$$t = \frac{t_1 + t_2}{2} = 7.5 \text{ mm}$$

Donde:

• t_1 , espesor requerido para la plancha del costado.

• t_2 , espesor requerido para la plancha de cubierta.

Se toma como espesor de la traca de cinta: t = 8 mm.

4.4.2.3 Las cuadernas principales

En el buque de proyecto son las que van desde la cubierta 0 a la cubierta 3. Se requiere para éstas un módulo resistente mayor de:

$$Z = C \cdot l^2 \cdot s \cdot p \frac{w_k}{f_1}$$

Donde:

• $p = p_1 = 85.8 \text{ kN} \cdot \text{m}^{-2}$.

• $w_k = 1 + 0.05 t_{kw}$.

• $t_{kw} = 0$.

• *l* longitud de la cuaderna entre cubiertas (3,8 o 2,7 m)

• s = 0.825 m.

• C = 0.37.

En los extremos de las cuadernas el módulo, incluidas las cartelas, no será menor del hallado tomando:

• l longitud total de la cuaderna: l = 3.8 o 2.7 m.

• C = 0.56 para la extremo superior.

• C = 0.74 para la extremo inferior.

Con lo que resulta:

• Extremo superior: $Z > 1674 \text{ cm}^3$

• Extremo inferior: $Z > 2212 \text{ cm}^3$

El espesor de alma y ala será mayor de:

$$t = 5 + \frac{k}{\sqrt{f_1}} = 6.2 \text{ mm}$$

• $k = 0.01 L_1 = 1.17$.

4.4.2.4 Las cuadernas entre cubiertas

Son las cuadernas que van desde la cubierta 3 hasta la cubierta resistente a efectos de resistencia estructural (cub. 5) y a lo largo de la eslora del buque, desde el pique de popa hasta el de proa.

El espesor del alma y del ala no debe ser menor de:

$$t = 5, 0 + 0, 01 \cdot \frac{L_1}{\sqrt{f_1}}$$

El módulo de estas cuadernas no debe ser menor del mayor valor entre Z_1 y Z_2 :

4.4.2.4.1
$$Z_{1} = \frac{0.55 \cdot l^{2} \cdot s \cdot p \cdot w_{k}}{f_{1}}$$

donde:

- $w_k = 1$.
- s = 0.825 m.
- l = 2,700 m (entre las todas las cubiertas, salvo entre la 4 y la 5)
- l = 3,100 m (entre la cub. 4 y la cub. 5)
- $p = p_1$ ó p_2 dependiendo de las cubiertas entre las que se encuentra cada cuaderna.

Zona del buque (entre cubiertas)	Carga de diseño (kN·m ⁻²)	$l\left(\mathbf{m}\right)$	Z_1 (cm ³)
3 – 4	9,2	2,7	40
4 – 5	9,2	3,1	30
5 – 6	9,2	2,7	30
6 – 7	9,2	2,7	30
7 – 8	9,2	3,1	40

4.4.2.4.2
$$Z_2 = k\sqrt{\frac{L}{f_1}}$$

Donde:

• k = 4 (para todas las cubiertas)

Cumpliendo con los espesores y módulos calculados, se toman las cuadernas entre cubiertas de las siguientes dimensiones y módulo:

Zona del buque (entre cubiertas)	Carga de diseño (kN·m ⁻²)	t (mm)	Z (cm ³)
3 – 4	9,2	6,2	43
4 – 5	9,2	6,2	43
5 – 6	9,2	6,2	43
6 – 7	9,2	6,2	43
7 – 8	9,2	6,2	43

4.4.2.5 Las bulárcamas

Los espesores del alma, del ala, de los cartabones y de los rigidizadores del refuerzo debe ser mayor de:

$$t = 0.01 \frac{L_1}{\sqrt{f_1}} = 6.2 \text{ mm}.$$

El módulo resistente de la bulárcama debe de ser mayor de:

$$Z = 100 \frac{S^2 \cdot b \cdot p \cdot wk}{\sigma}$$

Donde:

- $w_k = 1$.
- S = 2,7 m (entre las todas las cubiertas, salvo entre las 3 y 4 y las 1 y 2)
 S = 3,8 m (entre la cub. 1 y la cub. 2)
 S = 3,1 m (entre la cub. 3 y la cub. 4)
- b, distancia entre bulárcamas, b = 3,300 m

• $p = p_1$ ó p_2 , dependiendo de las cubiertas entre las que se encuentra cada bulárcama.

•	$\sigma =$	160	f_1
•	$\sigma =$	160	į

Zona del buque (entre cubiertas)	Carga de diseño (kN·m ⁻²)	s (m)	Z (cm ³)	Perfil utilizado		Anchura de la platabanda (mm)	Espesor (mm)
1 – 2	50,6	3,8	2200	PN 41	400	134	10
2 – 3	73,9	2,7	1389	PN 34	330	110	10
3 – 4	92,4	3,7	259	PN 15	140	47	10
4 – 5	9,2	2,7	138	PN 15	140	47	10
5 – 6	9,2	2,7	138	PN 15	140	47	10
6 – 7	9,2	2,7	138	PN 15	140	47	10
7 - 8	9,2	3,1	182	PN 15	140	47	10

Cumpliendo con los espesores y módulos calculados, se toman las cuadernas entre cubiertas de las siguientes dimensiones y módulo:

Zona del buque (entre cubiertas)	Z (cm ³)	Perfil utilizado	Altura de la llanta (mm)	Anchura de la platabanda (mm)	Espesor (mm)
1 – 2	43	PN 17	164	57	6,2
2 - 3	43	PN 14	134	47	6,2
3 – 4	43	PN 7	64	24	6,2
4 – 5	43	PN 7	64	24	6,2
5 – 6	43	PN 7	64	24	6,2
6 – 7	43	PN 7	64	24	6,2
7 – 8	43	PN 7	64	24	6,2

4.5 EL ESCANTILLONADO DE CUBIERTA

Las cubiertas van a tener una estructura con refuerzos longitudinales con el fin de que contribuyan a la resistencia longitudinal.

4.5.1 Las cargas de diseño

Las presiones que se deben aplicar para las estructuras de cubierta se encuentran definidas en la tabla B1 de la Sección 8, referidas a su vez a las presiones generales de la Sección 4. Las presiones aplicables serán aquellas correspondientes a buques de pasaje.

Las diferentes presiones de diseño vienen dadas por:

4.5.1.1 La presión del mar en la cubierta de intemperie

$$p_1 = a \left(p_l + \frac{135y}{B+75} - (4+0, 2k_s) h_0 \right)$$

Donde:

- a = 0.8, para cubiertas a la intemperie.
- $p_l = (2C_w + f) \left(0.8 + 0.15 \frac{V}{\sqrt{L}}\right)$
- y, distancia desde crujía hasta el punto considerado, con un mínimo de $\frac{B}{4}$.
- h_0 , la distancia vertical desde la línea de agua al calado T, a la cubierta considerada.

Con un mínimo de 5 kN·m⁻².

4.5.1.2 La presión del mar en cubiertas de acomodación

$$p_5 = 0.35(g_0 + 0.5a_v)$$

4.5.1.3 La presión del mar en cubiertas estancas sumergidas en avería

$$p_{13} = 10\tilde{h}_b$$

Donde:

- $\bullet \quad a_{v} = \frac{k_{v} g_{0} a_{0}}{C_{R}}.$
- $k_v = 0.7$.
- $a_0 = 0,512.$
- h_b , distancia vertical desde el punto de carga a la línea de margen.

4.5.2 Las planchas y refuerzos secundarios

4.5.2.1 Las planchas de la cubierta resistente

La anchura de la plancha situada junto al costado de la cubierta a de ser mayor de:

$$b = 800 + 5 L = 1382,66 \text{ mm}$$

con un máximo de 1800 mm.

El espesor será el correspondiente a la presión lateral:

$$t = 15,8s \frac{\sqrt{p}}{\sqrt{\sigma}} = 2,3 \text{ mm}$$

con un mínimo de:

$$t = t_0 + \frac{kL_1}{\sqrt{f_1}} + t_k = 5.8 \text{ mm}.$$

Siendo:

- $t_k = 0$, según indica el reglamento de la sociedad de clasificación.
- $t_0 = 5$, para las cubiertas de pasaje.
- *k* es 0,01 para buques con dos cubiertas continuas sobre 0,7 *D* desde la línea base, y 0 en buques con más de dos.

Tomamos t = 6 mm para la cubierta resistente.

4.5.2.2 Las planchas de cubierta por encima y por debajo de la resistente

El espesor será el requerido por la presión lateral:

$$t = 15.8s \frac{\sqrt{p}}{\sqrt{G}} = 1.6 \text{ mm}$$

con un mínimo de:

$$t = t_0 + \frac{kL_1}{\sqrt{f_1}} = 5.0 \text{ mm}.$$

Siendo:

- $t_0 = 5$.
- *k* es 0,01 para cubiertas en buques con dos cubiertas continuas sobre 0,7 *D* desde la línea base y para el primer piso de la superestructura o puente en buques con una cubierta continua cuando esta cubra al menos el 50 % de 0,4 *L* de la semieslora, y 0 en el resto de casos.

Tomamos t = 6 mm para las cubiertas.

4.5.2.3 Los refuerzos longitudinales

El módulo resistente de la sección requerido viene dado por:

$$Z = \frac{83 \cdot l^2 \cdot s \cdot p \cdot w_k}{\sigma}$$

Donde:

- s es el espaciado entre refuerzos longitudinales, s = 0.693 m
- $\sigma = 225 f_1 130 f_{2b}$, para la cubierta resistente o superestructura sobre ella.
- $\sigma = 225 f_1 130 f_{2b} \frac{z_n z_a}{z_n}$, para cubiertas continuas bajo la resistente.
- $\sigma = 160 \cdot f_1$, como máximo y para otras cubiertas en general.

Zona del buque (cubiertas)	Carga de diseño, p (kN·m ⁻²)	$l\left(\mathbf{m}\right)$	Módulo mínimo, Z (cm³)	Perfil utilizado
2	4,6	3,300	15	HP 100×8
3	4,6	3,300	15	HP 100×8
4	4,6	3,300	15	HP 100×8
5	4,6	3,300	15	HP 100×8
6	5,0	3,300	27	HP 140×7
7	5,0	3,300	16	HP 100×8
8	5,0	3,300	16	HP 100×8

El espesor del alma y ala será mayor de:

$$t = 5,0 + \frac{k}{\sqrt{f_1}} + t_k = 6,2 \text{ mm}$$
$$t = \frac{h}{g} + t_k$$

Donde

- k = 0.02 L en lo alto de un tanque, y 0.01 L en general.
- h, altura del perfil.
- g = 70 para perfiles en T, 20 para perfiles en []

4.5.3 La estructura primaria: baos y esloras

El espesor de las alas y almas, cartabones y refuerzos de los elementos primarios requeridos es normalmente:

$$t = 5,0 + \frac{k}{\sqrt{f_1}} + t_k = 6,2 \text{ mm}$$

Siendo:

• $k = 0.02 L_1$ para vigas de techos de tanques y $0.01 L_1$ para otras vigas en general.

Además del criterio anterior, el reglamente indica que el espesor del alma no debe ser menor de:

$$t = 12 s + t_k = 9.9 \text{ mm}$$
, para los baos,

$$t = 12 s + t_k = 6.9$$
 mm, para las esloras.

Siendo:

• s, el espacio entre los refuerzos del alma. s = 0.825 m para los baos y s = 0.578 m para las esloras.

4.5.3.1 Los baos

El módulo resistente viene dado por:

$$Z = \frac{100 \cdot S^2 \cdot b \cdot p \cdot w_k}{\sigma}$$

Siendo:

- S, la longitud de carga, S = 6,934 m.
- b, la manga de carga, b = 3,300 m.
- $\sigma = 190 f_1 130 f_{2b} \frac{z_n z_a}{z_n}$, para la cubierta resistente reforzada longitudinalmente, o bien $\sigma = 160 f_1$ para otros baos en general.

Zona del buque (cubiertas)	Carga de diseño, p (kN·m ⁻²)	S (m)	<i>b</i> (m)	Módulo mínimo, Z (cm³)	Perfil utilizado		Anchura de la platabanda (mm)	Espesor (mm)
2	27,0	6,934	3,3	2677	PN 60	590	200	10
3	4,6	6,934	3,3	456	PN 25	240	80	10
4	4,6	6,934	3,3	456	PN 25	240	80	10
5	4,6	6,934	3,3	456	PN 25	240	80	10
6	5,0	6,934	3,3	495	PN 25	240	80	10
7	5,0	6,934	3,3	495	PN 25	240	80	10
8	5,0	6,934	3,3	495	PN 25	240	80	10

URRUTIA NEBREDA, Juan

Para el área del alma se debe verificar que al menos:

$$A = 0.07 \frac{Sbp}{f_1} + 10ht_k$$

Siendo:

• *h*, la altura de la viga.

Zona del buque (cubiertas)	Carga de diseño, p (kN·m ⁻²)	S (m)	<i>b</i> (m)	Área mínima, A (cm²)
2	27,0	6,934	3,3	31,4
3	4,6	6,934	3,3	5,4
4	4,6	6,934	3,3	5,4
5	4,6	6,934	3,3	5,4
6	5,0	6,934	3,3	5,8
7	5,0	6,934	3,3	5,8
8	5,0	6,934	3,3	5,8

4.5.3.2 Las esloras

Al igual que los baos, el módulo resistente mínimo viene dado por:

$$Z = \frac{100 \cdot S^2 \cdot b \cdot p \cdot w_k}{\sigma}$$

Siendo:

- S, la longitud de carga.
- b, la manga de carga.
- $\sigma = 190 f_1 130 f_{2b} \frac{z_n z_a}{z_n}$, para la cubierta resistente reforzada longitudinalmente, o bien $\sigma = 160 f_1$ para otras esloras en general.

Zona del buque (cubiertas)	Carga de diseño, p (kN·m ⁻²)	S (m)	<i>b</i> (m)	Módulo mínimo, Z (cm³)	Perfil utilizado		Anchura de la platabanda (mm)	Espesor (mm)
2	27,0	3,300	6,934	5097	PN 60	590	395	10
3	4,6	3,300	6,934	868	PN 25	240	160	10
4	4,6	3,300	6,934	868	PN 25	240	160	10
5	4,6	3,300	6,934	868	PN 25	240	160	10
6	5,0	3,300	6,934	944	PN 25	240	160	10
7	5,0	3,300	6,934	944	PN 25	240	160	10
8	5,0	3,300	6,934	944	PN 25	240	160	10

El área del alma también viene regulada y debe ser mayor de:

$$A = 0.07 \frac{S b p}{f_1} + 10h t_k$$

Siendo:

• *h*, la altura de la viga.

Zona del buque (cubiertas)	Carga de diseño, p (kN·m ⁻²)	S (m)	<i>b</i> (m)	Área mínima, A (cm²)
2	27,0	3,300	6,934	30
3	4,6	3,300	6,934	5
4	4,6	3,300	6,934	5
5	4,6	3,300	6,934	5
6	5,0	3,300	6,934	5
7	5,0	3,300	6,934	5
8	5,0	3,300	6,934	5

4.6 Los puntales

Los requerimientos de resistencia a pandeo por compresión están relacionados con las fuerzas de tipo axial en los pilares, tal y como se indica en la sección 14 del Capítulo 1 de la Parte 3 del Reglamento de Det Norske Veritas. PAra determinar el tipo de puntal a emplear en cada cubierta se debe halar previamente la tensión crítica que puede aguantar y realizar un proceso iterativo como en que se indica a continuación.

Los datos que se emplean son los que se detallan a continuación:

- *l*, longitud del pilar.
- E, módulo de elasticidad del material, en este caso acero. E = 206 GPa.
- σ_{el} , tensión elástica ideal (Euler) a pandeo por compresión.
- σ_f , límite elástico para acero de resistencia normal. $\sigma_f = 235$ MPa.
- σ_c , tensión crítica a pandeo por compresión.
- i, radio de giro, $i = \sqrt{\frac{I_A}{A}}$.
- I_A , momento de inercia sobre un eje perpendicular a la dirección de pandeo esperada.
- A, área de la sección del puntal.
- $\eta = \frac{k}{1 + \frac{l}{i}}$, con un valor mínimo de 0,3.
- k = 0.7.
- P, carga axial calculada mediante $P = n \cdot F$, o por cálculo de resistencia directo.
- *n*, número de cubiertas sobre el puntal.
- F, peso de cada cubierta soportado por el puntal. $F = p \cdot A_D$.

La tensión crítica a pandeo σ_c se calcula de la forma definida en C101:

$$\sigma_c = \begin{cases} \sigma_{el}, & \sigma_{el} < \frac{\sigma_f}{2} \\ \sigma_f \left(1 - \frac{\sigma_f}{4\sigma_{el}} \right), & \sigma_{el} > \frac{\sigma_f}{2} \end{cases}$$

Donde, para el modo de pandeo lateral, la tensión elástica ideal según C201 viene dada por:

$$\sigma_{el} = 0,001E \frac{I_A}{AI^2}$$

Si se verifica que ambos extremos del puntal están fijos, el valor de σ_{el} puede multiplicarse por 4. Este caso lo supondremos y así se hará.

Para los pilares, según C203, la tensión crítica no debe ser nunca menor de:

$$\sigma_c = \frac{10P}{A\eta}$$

En consecuencia, mediante un proceso iterativo seleccionando el radio y el espesor del puntal, se llega a unos valores que cumplen los requerimientos a pandeo:

Zona del buque (cubiertas)	Carga de diseño, p (kN·m ⁻²)	Radio (mm)	Espesor (mm)	Longitud (m)	Área, A (cm²)	IA (cm ⁴)	η	σ _{el} (GPa)	σ_c (GPa)	$\sigma_{c\ obt} \ (\mathrm{GPa})$	Perfil
1 - 2	25,75	164	16	3,8	156,8	38266	0,53	7436	231	233	E328×16
2 - 3	4,39	50	10	2,7	28,3	580	0,44	2317	224	229	E100×10
3 - 4	4,39	45	10	2,7	25,1	408	0,42	1837	220	228	E90×10
4 - 5	4,39	41	9	3,1	20,6	279	0,40	1529	223	226	E82×9
5 - 6	5	37	9	2,7	17,2	164	0,37	1074	216	222	E74×9
6 - 7	4,39	32	9	2,7	15,6	121	0,31	494	195	207	E64×9
7 - 8	4,39	30	5	3,1	8,6	66	0,30	485	201	213	E60×5

5 LA RESISTENCIA LONGITUDINAL

5.1 LAS DEFINICIONES

Durante el resto del capítulo de usarán una serie de términos que por su profusión es conveniente reseñar en este momento.

- I_n , momento de inercia sobre el eje neutro transversal.
- I_c , momento de inercia sobre el eje neutro vertical.
- C_W , coeficiente de ola. Sobre éste se basan los cálculos de las aceleraciones, presión de mar y cargas sobre los refuerzos. Su valor para una eslora entre 100 m

y 300 m viene dado por la expresión:
$$C_W = 10,75 - \left(\frac{300 - L}{100}\right)^{\frac{3}{2}}$$
.

- S_n , primer momento de área del material longitudinal sobre y bajo el eje neutro horizontal tomado sobre este eje.
- z_n , distancia vertical desde la línea base o línea de cubierta al eje neutro del casco viga.
- z_a , distancia vertical desde la línea base o línea de cubierta al punto en cuestión bajo o sobre el eje neutro.
- M_s , momento flector en aguas tranquilas.
- Q_s , fuerza cortante en aguas tranquilas.
- M_w , momento flector sobre la ola.
- Q_w , fuerza cortante sobre la ola.

5.2 Los momentos flectores y esfuerzos cortantes En aguas tranquilas

Los momentos flectores y esfuerzos cortantes son consecuencia de la diferente distribución de los pesos en el buque y del empuje que recibe el casco de éste por el agua del mar cuando el buque se encuentra en equilibrio y sobre aguas tranquilas. Actualmente,

cualquier sencillo programa de arquitectura naval es capaz de calcular dichos valores para cada sección del buque, así como los valores máximos y mínimos.

La sociedad de clasificación define unos valores máximos que no deben ser sobrepasados en ninguna condición de carga estudiada. Las condiciones de carga a estudiar son las que se detallan en el cuaderno 9.

Los valores máximos a que hace referencia el reglamento se calculan con la ayuda de las siguientes fórmulas:

5.2.1 El momento flector

El momento flector en aguas tranquilas en la sección media del buque no debe tomarse menor a:

$$M_s = M_{s0}$$

Siendo:

- $M_{s0} = -0.065C_{wu}L^2B(CB+0.7) = -191.4 \cdot 10^3 \text{ kN} \cdot \text{m}$, en arrufo.
- $M_{s0} = C_{Wu} L^2 B(0.1225'0.015 CB) = 265.1 \cdot 10^3 \text{ kN} \cdot \text{m}$, en quebranto.

A lo largo de la eslora, la distribución del mismo no debe ser menor que:

$$M_s = k_{sm} \cdot M_{s0}$$

Siendo:

•
$$k_{sm} = \begin{cases} 1,0, & \text{dentro de } 0,4L \text{ en la sección media} \\ 0,15, & \text{en } 0,1L \text{ desde A.P. o F.P.} \\ 0,0, & \text{en A.P. y F.P.} \end{cases}$$

5.2.2 Las fuerzas cortantes

El valor de diseño de las fuerzas cortantes, se tomará de las siguientes expresiones como valor mínimo:

$$Q_s = k_{sq} \cdot Q_{s0}$$

Donde:

•
$$Q_{s0} = 5 \frac{M_{s0}}{L} = \begin{cases} -8,2 \text{ kN en arrufo} \\ 11,4 \text{ kN en quebranto} \end{cases}$$

•
$$k_{sq} = \begin{cases} 1,0, & \text{entre } 0,7L \text{ y } 0,85L \text{ desde A.P.} \\ 0,8, & \text{entre } 0,4L \text{ y } 0,6L \text{ desde A.P.} \\ 1,0, & \text{entre } 0,15L \text{ y } 0,3L \text{ desde A.P.} \\ 0,0, & \text{en A.P. y F.P.} \end{cases}$$

5.3 LAS CONDICIONES DE CARGA CON EL BUQUE EN OLA

Con el fin de obtener una distribución más real del empuje que va a sufrir el buque en el mar, a los momentos flectores y esfuerzos cortantes obtenidos en el apartado anterior para el buque el aguas tranquilas se le debe añadir otro sumando que tiene en cuenta la diferente distribución del empuje sobre el casco debido a la ola.

El momento flector y esfuerzo cortante por la ola en el centro del buque por reglas viene dado por la fórmula:

5.3.1 En arrufo

$$M_W = -0.11C_W L^2 B (CB + 0.7) = -323.9 \cdot 10^3 \text{ kN} \cdot \text{m}$$

 $Q_W = -0.3k_{wan} C_W LB (CB + 0.7) = -5.3 \cdot 10^3 \text{ kN}$

5.3.2 En quebranto

$$M_W = 0.19C_W L^2 B \cdot CB = 394.9 \cdot 10^3 \text{ kN} \cdot \text{m}$$

 $Q_W = 0.3k_{wqp}C_W LB(CB + 0.7) = 5.3 \cdot 10^3 \text{ kN}$

Para la sección de la cuaderna maestra el valor de k_{wqn} y k_{wqp} es 0,7.

5.4 EL MÓDULO RESISTENTE Y EL MOMENTO DE INERCIA MÍNIMO PARA LA CUADERNA MAESTRA

La Sociedad de Clasificación exige un módulo mínimo de los elementos longitudinales continuos, en cada sección transversal, con el fin de que pueda hacer frente, en todas las situaciones posibles, a las flexiones que provocan los momentos flectores anteriormente calculados. Este módulo, como se despende de la fórmula, es el cociente entre el momento flector máximo y la tensión del material que da la Sociedad de Clasificación.

Se exige, además, un momento de inercia mínimo para los mismos elementos longitudinales continuos respecto al eje neutro transversal.

Ambos valores se calculan según las siguientes fórmulas:

Para el momento de inercia respecto al eje neutro transversal:

$$I = 3C_W L^3 B \left(CB + 0, 7 \right)$$

Para el módulo resistente mínimo respecto al eje neutro transversal:

$$Z = \left(\frac{C_{W0}}{f}\right) L^2 B \left(CB + 0, 7\right)$$

En conclusión:

	Real	Límite inferior
I _{eje neutro} (cm ⁴)	6,86·10 ⁹	1,02·109
$Z (cm^3)$	$23,38 \cdot 10^6$	$2,94 \cdot 10^6$
Eje neutro (m)	5,778	_

6 LA BIBLIOGRAFÍA

- Det Norske Veritas «Reglamento de Det Norske Veritas ». DNV. 2002.
- Martín Domínguez, R. «Cálculo de estructuras de buques». ETSIN

7 Los anexos

7.1 EL CÁLCULO DEL EJE NEUTRO, DEL MÓDULO RESISTENTE Y DEL MOMENTO DE INERCIA

Definición	Ancho	Alto	\boldsymbol{A}	e_x	W_x	I_x	P	ZPerfil	A ·Z $_{Perfil}$	$A\cdot z^2_{Perfil}$
	(m)	(m)	(m^2)	(m)	(m^3)	(m ⁴)	(kg·m ⁻¹)	(m)	(m^3)	(m ⁴)
Plancha de quilla horizontal	1,400	0,016	0,022	0,008	0,000	0,000	175,414	0,008	0,000	0,746
Plancha de fondo	20,950	0,013	0,272	0,007	0,002	0,000	2132,773	0,007	0,002	9,071
Longitudinal de fondo 1	0,016	0,370	0,008	0,228	0,000	0,000	63,400	0,228	0,002	0,249
Longitudinal de fondo 2	0,016	0,370	0,008	0,228	0,000	0,000	63,400	0,228	0,002	0,249
Longitudinal de fondo 3	0,016	0,370	0,008	0,228	0,000	0,000	63,400	0,228	0,002	0,249
Longitudinal de fondo 4	0,016	0,370	0,008	0,228	0,000	0,000	63,400	0,228	0,002	0,249
Longitudinal de fondo 5	0,016	0,370	0,008	0,228	0,000	0,000	63,400	0,228	0,002	0,249
Longitudinal de fondo 6	0,016	0,370	0,008	0,228	0,000	0,000	63,400	0,228	0,002	0,249
Longitudinal de fondo 7	0,016	0,370	0,008	0,228	0,000	0,000	63,400	0,228	0,002	0,249
Longitudinal de fondo 8	0,016	0,370	0,008	0,228	0,000	0,000	63,400	0,228	0,002	0,249
Longitudinal de fondo 9	0,016	0,370	0,008	0,228	0,000	0,000	63,400	0,228	0,002	0,249
Longitudinal de fondo 10	0,016	0,370	0,008	0,228	0,000	0,000	63,400	0,228	0,002	0,249

Definición	Ancho	Alto	\boldsymbol{A}	e_x	W_x	I_x	P	Z Perfil	A ·Z $_{Perfil}$	$A\cdot z^2_{Perfil}$
	(m)	(m)	(m^2)	(m)	(m^3)	(m ⁴)	(kg·m ⁻¹)	(m)	(m^3)	(m^4)
Longitudinal de fondo 11	0,016	0,370	0,008	0,228	0,000	0,000	63,400	0,228	0,002	0,249
Longitudinal de fondo 12	0,016	0,370	0,008	0,228	0,000	0,000	63,400	0,228	0,002	0,249
Longitudinal de fondo 13	0,016	0,370	0,008	0,228	0,000	0,000	63,400	0,228	0,002	0,249
Longitudinal de fondo 14	0,016	0,370	0,008	0,228	0,000	0,000	63,400	0,228	0,002	0,249
Longitudinal de fondo 15	0,016	0,370	0,008	0,228	0,000	0,000	63,400	0,228	0,002	0,249
Longitudinal de fondo 16	0,016	0,370	0,008	0,228	0,000	0,000	63,400	0,228	0,002	0,249
Longitudinal de fondo 17	0,016	0,370	0,008	0,228	0,000	0,000	63,400	0,228	0,002	0,249
Longitudinal de fondo 18	0,016	0,370	0,008	0,228	0,000	0,000	63,400	0,228	0,002	0,249
Longitudinal de fondo 19	0,016	0,370	0,008	0,228	0,000	0,000	63,400	0,228	0,002	0,249
Longitudinal de fondo 20	0,016	0,370	0,008	0,228	0,000	0,000	63,400	0,228	0,002	0,249
Longitudinal de fondo 21	0,016	0,370	0,008	0,228	0,000	0,000	63,400	0,228	0,002	0,249
Longitudinal de fondo 22	0,016	0,370	0,008	0,228	0,000	0,000	63,400	0,228	0,002	0,249
Longitudinal de fondo 23	0,016	0,370	0,008	0,228	0,000	0,000	63,400	0,228	0,002	0,249
Longitudinal de fondo 24	0,016	0,370	0,008	0,228	0,000	0,000	63,400	0,228	0,002	0,249
Plancha de quilla vertical	0,014	1,500	0,021	0,750	0,016	0,004	164,451	0,750	0,016	0,531
Vagra 1	0,013	1,500	0,020	0,750	0,015	0,004	152,705	0,750	0,015	0,493

URRUTIA NEBREDA, Juan

1										_
Definición	Ancho	Alto	\boldsymbol{A}	e_x	W_x	I_x	P	Z Perfil	A ·Z $_{Perfil}$	$A\cdot z^2_{Perfil}$
	(m)	(m)	(m^2)	(m)	(m^3)	(m ⁴)	(kg·m ⁻¹)	(m)	(m^3)	(m ⁴)
Vagra 2	0,013	1,500	0,020	0,750	0,015	0,004	152,705	0,750	0,015	0,493
Vagra 3	0,013	1,500	0,020	0,750	0,015	0,004	152,705	0,750	0,015	0,493
Vagra 4	0,013	1,500	0,020	0,750	0,015	0,004	152,705	0,750	0,015	0,493
Vagra 5	0,013	1,500	0,020	0,750	0,015	0,004	152,705	0,750	0,015	0,493
Vagra 6	0,013	1,500	0,020	0,750	0,015	0,004	152,705	0,750	0,015	0,493
Longitudinales de doble fondo 1	0,012	0,300	0,005	0,187	0,000	0,000	39,000	1,313	0,007	0,099
Longitudinales de doble fondo 2	0,012	0,300	0,005	0,187	0,000	0,000	39,000	1,313	0,007	0,099
Longitudinales de doble fondo 3	0,012	0,300	0,005	0,187	0,000	0,000	39,000	1,313	0,007	0,099
Longitudinales de doble fondo 4	0,012	0,300	0,005	0,187	0,000	0,000	39,000	1,313	0,007	0,099
Longitudinales de doble fondo 5	0,012	0,300	0,005	0,187	0,000	0,000	39,000	1,313	0,007	0,099
Longitudinales de doble fondo 6	0,012	0,300	0,005	0,187	0,000	0,000	39,000	1,313	0,007	0,099
Longitudinales de doble fondo 7	0,012	0,300	0,005	0,187	0,000	0,000	39,000	1,313	0,007	0,099
Longitudinales de doble fondo 8	0,012	0,300	0,005	0,187	0,000	0,000	39,000	1,313	0,007	0,099
Longitudinales de doble fondo 9	0,012	0,300	0,005	0,187	0,000	0,000	39,000	1,313	0,007	0,099
Longitudinales de doble fondo 10	0,012	0,300	0,005	0,187	0,000	0,000	39,000	1,313	0,007	0,099
Longitudinales de doble fondo 11	0,012	0,300	0,005	0,187	0,000	0,000	39,000	1,313	0,007	0,099
Longitudinales de doble fondo 12	0,012	0,300	0,005	0,187	0,000	0,000	39,000	1,313	0,007	0,099

Definición	Ancho	Alto	A	e_x	W_x	I_x	P	Z Perfil	A ·z $_{Perfil}$	$A\cdot z^2_{Perfil}$
	(m)	(m)	(m^2)	(m)	(m^3)	(m ⁴)	(kg·m ⁻¹)	(m)	(m^3)	(m ⁴)
Longitudinales de doble fondo 13	0,012	0,300	0,005	0,187	0,000	0,000	39,000	1,313	0,007	0,099
Longitudinales de doble fondo 14	0,012	0,300	0,005	0,187	0,000	0,000	39,000	1,313	0,007	0,099
Longitudinales de doble fondo 15	0,012	0,300	0,005	0,187	0,000	0,000	39,000	1,313	0,007	0,099
Longitudinales de doble fondo 16	0,012	0,300	0,005	0,187	0,000	0,000	39,000	1,313	0,007	0,099
Longitudinales de doble fondo 17	0,012	0,300	0,005	0,187	0,000	0,000	39,000	1,313	0,007	0,099
Longitudinales de doble fondo 18	0,012	0,300	0,005	0,187	0,000	0,000	39,000	1,313	0,007	0,099
Longitudinales de doble fondo 19	0,012	0,300	0,005	0,187	0,000	0,000	39,000	1,313	0,007	0,099
Longitudinales de doble fondo 20	0,012	0,300	0,005	0,187	0,000	0,000	39,000	1,313	0,007	0,099
Longitudinales de doble fondo 21	0,012	0,300	0,005	0,187	0,000	0,000	39,000	1,313	0,007	0,099
Longitudinales de doble fondo 22	0,012	0,300	0,005	0,187	0,000	0,000	39,000	1,313	0,007	0,099
Longitudinales de doble fondo 23	0,012	0,300	0,005	0,187	0,000	0,000	39,000	1,313	0,007	0,099
Longitudinales de doble fondo 24	0,012	0,300	0,005	0,187	0,000	0,000	39,000	1,313	0,007	0,099
Plancha de doble fondo	22,350	0,011	0,246	0,006	0,001	0,000	1925,251	1,495	0,367	4,510
Esloras de cubierta 2 1	0,010	0,300	0,004	0,183	0,001	0,000	30,280	5,118	0,020	0,002
Esloras de cubierta 2 2	0,010	0,300	0,004	0,183	0,001	0,000	30,280	5,118	0,020	0,002
Longitudinales de	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000

URRUTIA NEBREDA, Juan

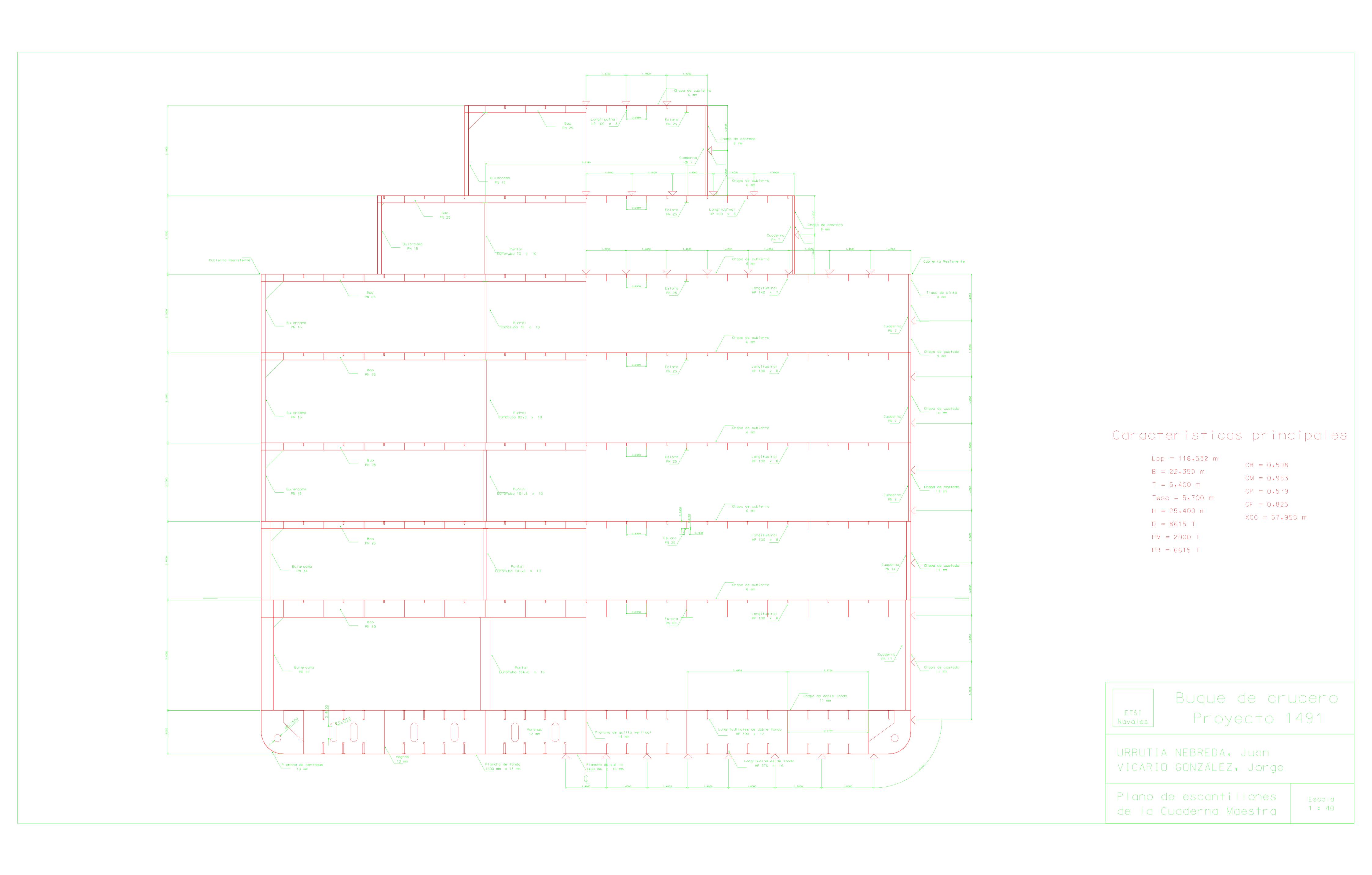
Duque de Chicero					G07 1D 1314 V 1 1717 1125 11V 1					
Definición	Ancho	Alto	\boldsymbol{A}	e_x	W_x	I_x	P	ZPerfil	A ·z $_{Perfil}$	$A\cdot z^2_{Perfil}$
	(m)	(m)	(m^2)	(m)	(m^3)	(m^4)	(kg·m ⁻¹)	(m)	(m^3)	(m^4)
cubierta 2 1										
Longitudinales de cubierta 2 2	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000
Longitudinales de cubierta 2 3	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000
Longitudinales de cubierta 2 4	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000
Longitudinales de cubierta 2 5	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000
Longitudinales de cubierta 2 6	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000
Longitudinales de cubierta 2 7	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000
Longitudinales de cubierta 2 8	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000
Longitudinales de cubierta 2 9	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000
Longitudinales de cubierta 2 10	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000
Longitudinales de cubierta 2 11	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000
Longitudinales de cubierta 2 12	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000
Longitudinales de cubierta 2 13	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000
Longitudinales de cubierta 2 14	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000
Longitudinales de cubierta 2 15	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000
Longitudinales de cubierta 2 16	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000

										_
Definición	Ancho	Alto	\boldsymbol{A}	e_x	W_x	I_x	P	Z Perfil	A · z_{Perfil}	$A\cdot z^2_{Perfil}$
	(m)	(m)	(m^2)	(m)	(m^3)	(m ⁴)	$(kg \cdot m^{-1})$	(m)	(m^3)	(m ⁴)
Longitudinales de cubierta 2 17	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000
Longitudinales de cubierta 2 18	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000
Longitudinales de cubierta 2 19	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000
Longitudinales de cubierta 2 20	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000
Longitudinales de cubierta 2 21	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000
Longitudinales de cubierta 2 22	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000
Longitudinales de cubierta 2 23	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000
Longitudinales de cubierta 2 24	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000
Longitudinales de cubierta 2 25	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000
Longitudinales de cubierta 2 26	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000
Longitudinales de cubierta 2 27	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000
Longitudinales de cubierta 2 28	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000
Longitudinales de cubierta 2 29	0,008	0,100	0,001	0,058	0,000	0,000	7,650	5,242	0,005	0,000
Plancha de cubierta 2	22,350	0,006	0,134	0,003	0,000	0,000	1050,137	5,299	0,711	0,031
Esloras de cubierta 3 1	0,010	0,150	0,002	0,089	0,000	0,000	14,618	7,911	0,015	0,008
Esloras de	0,010	0,150	0,002	0,089	0,000	0,000	14,618	7,911	0,015	0,008

Бидие	e de Cracero)					CUAI	JEKNA IV.	LAESTKA	_
Definición	Ancho	Alto	\boldsymbol{A}	e_x	W_x	I_x	P	ZPerfil	A ·Z $_{Perfil}$	$A\cdot z^2_{Perfil}$
	(m)	(m)	(m^2)	(m)	(m^3)	(m^4)	(kg·m ⁻¹)	(m)	(m^3)	(m^4)
cubierta 3 2										
Longitudinales de cubierta 3 1	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005
Longitudinales de cubierta 3 2	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005
Longitudinales de cubierta 3 3	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005
Longitudinales de cubierta 3 4	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005
Longitudinales de cubierta 3 5	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005
Longitudinales de cubierta 3 6	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005
Longitudinales de cubierta 3 7	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005
Longitudinales de cubierta 3 8	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005
Longitudinales de cubierta 3 9	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005
Longitudinales de cubierta 3 10	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005
Longitudinales de cubierta 3 11	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005
Longitudinales de cubierta 3 12	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005
Longitudinales de cubierta 3 13	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005
Longitudinales de cubierta 3 14	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005
Longitudinales de cubierta 3 15	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005

Definición	Ancho	Alto	\boldsymbol{A}	e_x	W_x	I_x	P	ZPerfil	A · z_{Perfil}	$A\cdot z^2_{Perfil}$
	(m)	(m)	(m^2)	(m)	(m^3)	(m^4)	$(kg \cdot m^{-1})$	(m)	(m^3)	(m ⁴)
Longitudinales de cubierta 3 16	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005
Longitudinales de cubierta 3 17	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005
Longitudinales de cubierta 3 18	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005
Longitudinales de cubierta 3 19	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005
Longitudinales de cubierta 3 20	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005
Longitudinales de cubierta 3 21	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005
Longitudinales de cubierta 3 22	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005
Longitudinales de cubierta 3 23	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005
Longitudinales de cubierta 3 24	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005
Longitudinales de cubierta 3 25	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005
Longitudinales de cubierta 3 26	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005
Longitudinales de cubierta 3 27	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005
Longitudinales de cubierta 3 28	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005
Longitudinales de cubierta 3 29	0,008	0,100	0,001	0,058	0,000	0,000	7,650	7,942	0,008	0,005
Plancha de cubierta 3	22,350	0,006	0,134	0,003	0,000	0,000	1050,137	7,997	1,072	0,661
Esloras de	0,010	0,150	0,002	0,089	0,000	0,000	14,618	10,611	0,020	0,044

Бидие		CUAI	JEMNA IVI	IAESTKA	_					
Definición	Ancho	Alto	\boldsymbol{A}	e_x	W_x	I_x	P	ZPerfil	A ·Z $_{Perfil}$	$A\cdot z^2_{Perfil}$
	(m)	(m)	(m^2)	(m)	(m^3)	(m^4)	(kg·m ⁻¹)	(m)	(m^3)	(m^4)
cubierta 4 1										
Esloras de cubierta 4 2	0,010	0,150	0,002	0,089	0,000	0,000	14,618	10,611	0,020	0,044
Longitudinales de cubierta 4 1	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023
Longitudinales de cubierta 4 2	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023
Longitudinales de cubierta 4 3	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023
Longitudinales de cubierta 4 4	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023
Longitudinales de cubierta 4 5	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023
Longitudinales de cubierta 4 6	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023
Longitudinales de cubierta 4 7	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023
Longitudinales de cubierta 4 8	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023
Longitudinales de cubierta 4 9	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023
Longitudinales de cubierta 4 10	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023
Longitudinales de cubierta 4 11	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023
Longitudinales de cubierta 4 12	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023
Longitudinales de cubierta 4 13	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023
Longitudinales de cubierta 4 14	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023


Definición	Ancho	Alto	\boldsymbol{A}	e_x	W_x	I_x	P	Z Perfil	A · z_{Perfil}	$A\cdot z^2_{Perfil}$
	(m)	(m)	(\mathbf{m}^2)	(m)	(m^3)	(m ⁴)	(kg·m ⁻¹)	(m)	(m^3)	(m ⁴)
Longitudinales de cubierta 4 15	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023
Longitudinales de cubierta 4 16	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023
Longitudinales de cubierta 4 17	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023
Longitudinales de cubierta 4 18	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023
Longitudinales de cubierta 4 19	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023
Longitudinales de cubierta 4 20	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023
Longitudinales de cubierta 4 21	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023
Longitudinales de cubierta 4 22	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023
Longitudinales de cubierta 4 23	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023
Longitudinales de cubierta 4 24	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023
Longitudinales de cubierta 4 25	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023
Longitudinales de cubierta 4 26	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023
Longitudinales de cubierta 4 27	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023
Longitudinales de cubierta 4 28	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023
Longitudinales de cubierta 4 29	0,008	0,100	0,001	0,058	0,000	0,000	7,650	10,642	0,010	0,023
Plancha de	22,350	0,006	0,134	0,003	0,000	0,000	1050,137	10,697	1,434	3,245

Buque	in Critici	,					C 02 11	302102102111121231121				
Definición	Ancho	Alto	\boldsymbol{A}	e_x	W_x	I_x	P	ZPerfil	A · z_{Perfil}	$A\cdot z^2_{Perfil}$		
	(m)	(m)	(\mathbf{m}^2)	(m)	(m^3)	(m^4)	$(kg \cdot m^{-1})$	(m)	(m^3)	(m^4)		
cubierta 4												
Esloras de cubierta 5 1	0,010	0,150	0,002	0,089	0,000	0,000	14,618	13,711	0,026	0,117		
Esloras de cubierta 5 2	0,010	0,150	0,002	0,089	0,000	0,000	14,618	13,711	0,026	0,117		
Longitudinales de cubierta 5 1	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062		
Longitudinales de cubierta 5 2	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062		
Longitudinales de cubierta 5 3	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062		
Longitudinales de cubierta 5 4	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062		
Longitudinales de cubierta 5 5	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062		
Longitudinales de cubierta 5 6	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062		
Longitudinales de cubierta 5 7	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062		
Longitudinales de cubierta 5 8	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062		
Longitudinales de cubierta 5 9	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062		
Longitudinales de cubierta 5 10	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062		
Longitudinales de cubierta 5 11	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062		
Longitudinales de cubierta 5 12	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062		
Longitudinales de cubierta 5 13	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062		

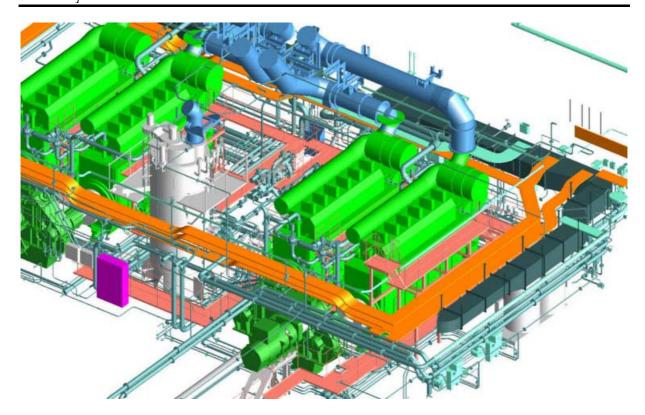
										_
Definición	Ancho	Alto	\boldsymbol{A}	e_x	W_x	I_x	P	ZPerfil	A · z_{Perfil}	$A\cdot z^2_{Perfil}$
	(m)	(m)	(m^2)	(m)	(m^3)	(m ⁴)	$(kg \cdot m^{-1})$	(m)	(m^3)	(m ⁴)
Longitudinales de cubierta 5 14	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062
Longitudinales de cubierta 5 15	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062
Longitudinales de cubierta 5 16	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062
Longitudinales de cubierta 5 17	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062
Longitudinales de cubierta 5 18	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062
Longitudinales de cubierta 5 19	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062
Longitudinales de cubierta 5 20	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062
Longitudinales de cubierta 5 21	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062
Longitudinales de cubierta 5 22	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062
Longitudinales de cubierta 5 23	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062
Longitudinales de cubierta 5 24	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062
Longitudinales de cubierta 5 25	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062
Longitudinales de cubierta 5 26	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062
Longitudinales de cubierta 5 27	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062
Longitudinales de cubierta 5 28	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062
Longitudinales de	0,008	0,100	0,001	0,058	0,000	0,000	7,650	13,742	0,013	0,062

										_
Definición	Ancho	Alto	\boldsymbol{A}	e_x	W_x	I_x	P	Z_{Perfil}	A · z_{Perfil}	$A\cdot z^2_{Perfil}$
	(m)	(m)	(m^2)	(m)	(m^3)	(m^4)	(kg·m ⁻¹)	(m)	(m^3)	(m^4)
cubierta 5 29										
Plancha de cubierta 5	22,350	0,006	0,134	0,003	0,000	0,000	1050,137	13,797	1,850	8,624
Esloras de cubierta 6 1	0,010	0,170	0,002	0,101	0,000	0,000	16,706	16,399	0,035	0,241
Esloras de cubierta 6 2	0,010	0,170	0,002	0,101	0,000	0,000	16,706	16,399	0,035	0,241
Longitudinales de cubierta 6 1	0,007	0,140	0,001	0,083	0,000	0,000	9,740	16,417	0,021	0,143
Longitudinales de cubierta 6 2	0,007	0,140	0,001	0,083	0,000	0,000	9,740	16,417	0,021	0,143
Longitudinales de cubierta 6 3	0,007	0,140	0,001	0,083	0,000	0,000	9,740	16,417	0,021	0,143
Longitudinales de cubierta 6 4	0,007	0,140	0,001	0,083	0,000	0,000	9,740	16,417	0,021	0,143
Longitudinales de cubierta 6 5	0,007	0,140	0,001	0,083	0,000	0,000	9,740	16,417	0,021	0,143
Longitudinales de cubierta 6 6	0,007	0,140	0,001	0,083	0,000	0,000	9,740	16,417	0,021	0,143
Longitudinales de cubierta 6 7	0,007	0,140	0,001	0,083	0,000	0,000	9,740	16,417	0,021	0,143
Longitudinales de cubierta 6 8	0,007	0,140	0,001	0,083	0,000	0,000	9,740	16,417	0,021	0,143
Longitudinales de cubierta 6 9	0,007	0,140	0,001	0,083	0,000	0,000	9,740	16,417	0,021	0,143
Longitudinales de cubierta 6 10	0,007	0,140	0,001	0,083	0,000	0,000	9,740	16,417	0,021	0,143
Longitudinales de cubierta 6 11	0,007	0,140	0,001	0,083	0,000	0,000	9,740	16,417	0,021	0,143
Longitudinales de cubierta 6 12	0,007	0,140	0,001	0,083	0,000	0,000	9,740	16,417	0,021	0,143

Definición	Ancho	Alto	\boldsymbol{A}	e_x	W_x	I_x	P	Z.Perfil	A · z_{Perfil}	$A\cdot z^2_{Perfil}$
	(m)	(m)	(m^2)	(m)	(m^3)	(m ⁴)	$(kg \cdot m^{-1})$	(m)	(m^3)	(m ⁴)
Longitudinales de cubierta 6 13	0,007	0,140	0,001	0,083	0,000	0,000	9,740	16,417	0,021	0,143
Longitudinales de cubierta 6 14	0,007	0,140	0,001	0,083	0,000	0,000	9,740	16,417	0,021	0,143
Longitudinales de cubierta 6 15	0,007	0,140	0,001	0,083	0,000	0,000	9,740	16,417	0,021	0,143
Longitudinales de cubierta 6 16	0,007	0,140	0,001	0,083	0,000	0,000	9,740	16,417	0,021	0,143
Longitudinales de cubierta 6 17	0,007	0,140	0,001	0,083	0,000	0,000	9,740	16,417	0,021	0,143
Longitudinales de cubierta 6 18	0,007	0,140	0,001	0,083	0,000	0,000	9,740	16,417	0,021	0,143

PROYECTO NÚMERO 1491

Buque de Crucero


Planta Propulsora

Tutor: Arias Rodrigo, Carlos

Autores: Urrutia Nebreda, Juan

Vicario González, Jorge

Buque de Crucero Planta Propulsora

1 EL ÍNDICE

1	El índ	ice	3
2	La int	roducción	7
3	La dis	sposición de las cámaras de máquinas	8
	3.1 I	La cámara de máquinas desatendida	8
	3.1.1	El mando de las máquinas propulsoras	8
	3.1.2	Las comunicaciones	9
	3.1.3	La protección contra la inundación	9
	3.1.4	La protección contra incendios	9
	3.1.5	El sistema de seguridad	9
	3.1.6	El sistema de alarma	10
4	Las ca	aracterísticas de la planta propulsora	13
5	La ca _l	pacidad de los tanques	16
	5.1 E	El cálculo de los días de navegación	16
	5.2 H	El consumo de los motores principales	16
	5.3 I	El consumo de los motores auxiliares	17
	5.4 H	El consumo de calderas	17
	5.5 I	Las capacidades de tanques de combustible	18
	5.5.1	Los tanques de servicio diario de los motores principales	18
	5.5.2	El tanque de servicio diario de motores auxiliares	18
	5.5.3	El tanque de servicio diario de calderas	19
	5.5.4	Los tanques de sedimentación de los motores principales	19
	5.5.5	Los tanques de sedimentación de los motores auxiliares	19
	5.5.6	Los tanques de sedimentación de las calderas	19
	5.5.7	El tanque de servicio diario de D.O	19

	5.5.8 El	l volumen de los tanques almacén de fuel – oil	20
6	El sistema d	le combustible	21
	6.1 El subs	sistema de combustible interno	21
	6.2 El subs	sistema de combustible externo	21
	6.2.1 El	l sistema de trasiego y purificación	21
	6.2.1.1	Los tanques de sedimentación	21
	6.2.1.2	La bomba de trasiego	22
	6.2.1.3	El tanque de lodos	22
	6.2.1.4	El filtro de aspiración	23
	6.2.1.5	Las purificadoras	23
	6.2.1.6	Las bombas de alimentación de fuel a las depuradoras	23
	6.2.1.7	El precalentador de fuel	24
	6.2.1.8	El esquema del sistema de purificación de H.F.O.	24
	6.2.2 El	l sistema de alimentación de combustible	25
	6.2.2.1	El tanque de servicio diario	25
	6.2.2.2	El filtro de aspiración	25
	6.2.2.3	El tanque de servicio diario de D.O.	25
	6.2.2.4	La válvula de tres vías	26
	6.2.2.5	La bomba de presión	26
	6.2.2.6	La válvula de control de la presión	26
	6.2.2.7	El filtro automático	26
	6.2.2.8	El tanque de desaireación	26
	6.2.2.9	La bomba de circulación	27
	6.2.2.10	El precalentador final	27
	6.2.2.11	El medidor de la viscosidad y el aparato de control	27
	6.2.2.12	El filtro duplex	27

	6.2.2.13 La válvula de compensación de la presión	27
	6.2.2.14 El tanque de fugas de combustible limpio	28
	6.2.2.15 El tanque de fugas de combustible sucio	28
	6.2.2.16 Los puntos de purga	28
	6.2.2.17 El esquema del sistema de alimentación de combustible	28
7 El	sistema de aceite	30
7.1	El tanque de almacenamiento de aceite	30
7.2	El calentador	30
7.3	El filtro de succión	30
7.4	La bomba de aceite	30
7.5	El enfriador de aceite	31
7.6	La válvula de control de la temperatura	31
7.7	La purificadora	31
7.	7.1 El precalentador de aceite	31
7.	7.2 La bomba de la purificadora	32
7.8	El filtro automático	32
7.9	El filtro indicador	32
7.10	El tanque de fugas	33
7.11	La bomba de trasiego	33
7.12	Los tanques de servicio de aceite	33
7.13	El esquema del servicio de aceite	34
8 El	sistema externo de agua de refrigeración	35
8.1	Las características del sistema de alta temperatura	35
8.2	Las características del sistema de baja temperatura	36
8.3	El esquema del circuito de refrigeración	37
9 Lo	s sistemas de aire	38

9.1 E	El sistema de aire de arranque	38
9.2 H	El sistema de aire para la combustión del motor	40
9.3 E	El sistema de gases de escape	40
10 El t	palance de vapor	41
10.1	La calefacción de tanques	41
10.1.	1 El calor aportado para elevar la temperatura de los tanques	41
10.1.	2 La compensación de las pérdidas de calor	43
10.2	Las necesidades de calor para la depuración	45
10.3	Los precalentadores de agua dulce de los cilindros	46
10.4	Los calentadores de combustible de los motores	46
10.5	La potencia calorífica consumida por la climatización	46
10.6	La producción de agua dulce	47
10.7	La generación de agua caliente	48
10.8	El resumen	48
10.9	La producción de vapor en la caldereta	49
10.10	Las calderas auxiliares	50
11 La	planta séptica	51
12 La	planta sanitaria	52
12.1	El tanque hidróforo y la bomba de agua dulce fría sanitaria	52
12.2	El tanque hidróforo y la bomba de agua dulce caliente sanitaria	52
12.3	El tanque a presión y la bomba de agua potable	52
13 La	bibliografía	53

2 LA INTRODUCCIÓN

En este cuaderno se van a detallar los distintos elementos de la cámara de máquinas, tanto los motores principales, que se eligieron ya en el cuaderno 5, y sus sistemas auxiliares como los motores auxiliares, que más adelante, en el cuaderno 11, se especificará el método seguido para su elección.

La disposición del sistema propulsivo se eligió anteriormente, en el cuaderno 5, pero no está de más que se repitan otra vez en este cuaderno los criterios seguidos.

3 LA DISPOSICIÓN DE LAS CÁMARAS DE MÁQUINAS

Los buques de cruceros se distinguen por que los espacios destinados a máquinas ocupan un alto porcentaje de la eslora. Normalmente se distinguen tres espacios bien diferenciados. Por un lado tenemos el espacio dedicado a los motores principales, por otro la cámara de auxiliares, que en buques de este tipo, con un gran consumo eléctrico debido principalmente al alumbrado, debe tener un tamaño cercano al de la cámara de motores principales. En tercer lugar tenemos un espacio dedicado a las depuradoras de aceite y combustible y a los tanques de sedimentación y servicio diario.

Como se puede ver en el plano de disposición general del buque los espacios de máquinas se han dispuesto, de popa a proa:

- Espacio de motores principales: se dispondrá de un espacio de 13,2 m de eslora donde se situarán los 4 motores principales, así como las dos reductoras. Este espacio ocupará dos cubiertas, para dar suficiente altura, de tal modo, que se puedan situar las calderetas de gases de escape correspondientes.
- Cámara de motores auxiliares: en el espacio contiguo al anterior hacia proa se situarán los motores auxiliares y sus correspondientes equipos. Este espacio también dispondrá de la altura de dos cubiertas para poder situar las calderetas de gases.
- Espacio para tanques y depuradoras de aceite y combustible.

3.1 LA CÁMARA DE MÁQUINAS DESATENDIDA

Al requerirse en las especificaciones del proyecto que el buque tenga la cota de cámara de máquinas desatendida deben cumplirse las exigencias de la sociedad de clasificación al respecto. Las principales exigencias son:

3.1.1 El mando de las máquinas propulsoras

El mando de las máquinas propulsoras debe poder llevarse a cabo desde el puente de navegación, para ello debe ser posible controlar la velocidad y el paso de las hélices. El control se realizará mediante un solo dispositivo de mando para cada una de las hélices, de modo que también se pongan en funcionamiento todos los medios conectados. Si el sistema de

control falla es necesario que se active una alarma y se mantengan constantes la velocidad y el paso que había antes del fallo.

3.1.2 Las comunicaciones

Se proveerá de medios seguros de comunicación oral entre la cámara de mando de los motores propulsores y el puente de navegación y los alojamientos de los maquinistas.

3.1.3 La protección contra la inundación

Los pozos de sentinas estarán monitorizados para poder detectar la acumulación de líquidos. Si las bombas de sentinas empiezan a funcionar de manera automática, se instalarán medios que indiquen si la entrada de líquido a las mismas se realiza de manera correcta.

Los mandos de toda válvula que dé servicio a una toma de mar o descarga por debajo de la flotación estarán emplazados en zonas en las que sea posible accionarlos en caso de inundación.

3.1.4 La protección contra incendios

Más adelante, en el cuaderno 10, se hablará del servicio contraincendios de todo el buque. Ahora, únicamente se mencionan los elementos que debe llevar el buque para disponer de cámara de máquinas desatendida.

Se instalarán medios de detección de incendios en los revestimientos de los conductos de aire, incluyendo los colectores de barrido, de las máquinas propulsoras. En caso de detectar un incendio se deberá activar una alarma.

Tanto los motores principales como los auxiliares llevarán detectores de niebla en el cárter y sensores de temperatura en los cojinetes del cigüeñal.

3.1.5 El sistema de seguridad

Se instalará un sistema que dé lugar a la parada de la parte de la instalación afectada en caso de producirse un fallo importante. Este sistema además activará las alarmas correspondientes.

3.1.6 El sistema de alarma

Todo sistema susceptible de fallo deberá estar conectado a una alarma óptica y acústica, que sonará en la cámara de control de máquinas. La alarma dispondrá de repetidores en el puente de navegación, en las salas de reunión de los maquinistas y en sus respectivos camarotes.

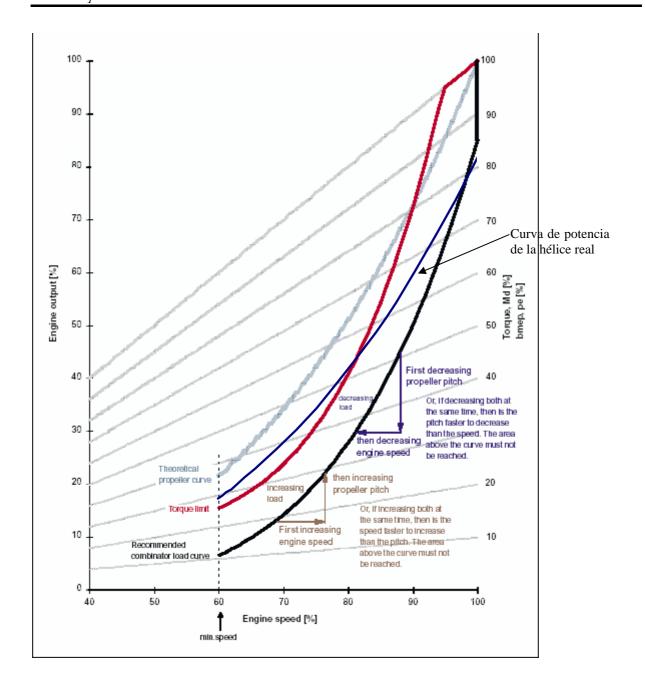
El sistema de alarma estará conectado de manera continua y se conectará automáticamente a la fuente de energía de reserva en caso de fallo de la fuente de energía principal; si esta conexión automática falla dará lugar a la activación de otra alarma.

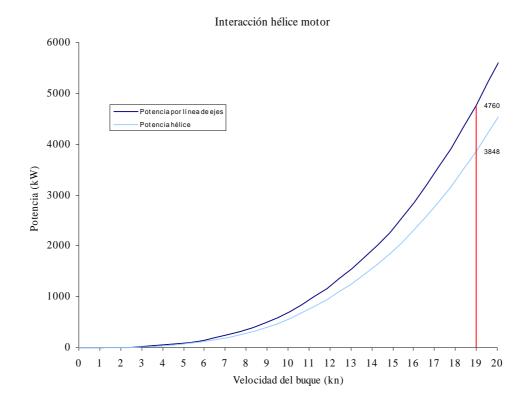
Las alarmas acústicas se mantendrán hasta que se produzca su aceptación de manera manual y las ópticas hasta que se subsane el fallo.

Las alarmas obligatorias del sistema enumeradas por el reglamento de la sociedad de clasificación son:

Apartado		se	s y acciones de guridad Arranque	Comentarios
		Alarma	automático de	
	Alta temperatura	×		
Entrada de aceite	Baja presión	×		Independiente del sistema de seguridad
lubricante en los motores	Baja presión		×	
principales	Baja presión	×		
	Alta diferencia de presión en el filtro	×		
Lubricación de los cilindros	Bajo caudal	×		
Refrigeración de cilindros	Baja presión	×		
de ciindros	Baja presión		×	No se requiere si la bomba principal es accionada con el motor
	Baja presión	×		

Apartado		Alarmas y acciones de seguridad Alarma Arranque automático de	Comentarios
	Alta temperatura	×	Si se disponen válvulas de parada en las camisas, una alarma por cilindro
	Bajo caudal en cada pistón	×	
	Baja presión	×	
Refrigeración	Baja presión	×	
de pistones	Alta temperatura	×	No se requiere si la bomba principal es accionada con el motor
	Baja presión	×	
Refrigeración de las válvulas de combustible	Baja presión	×	No se requiere si la bomba principal es accionada con el motor
	Alta temperatura	×	
Refrigeración con agua de mar	Baja presión	×	
	Alta temperatura o viscosidad del fuel	×	
	Baja temperatura o viscosidad del fuel	×	
Entrada de combustible en el motor	Baja presión	×	Entrada de la bomba de alta presión
	Baja presión	×	No se requiere si la bomba es accionada con el motor


	Apartado		s y acciones de guridad Arranque automático de	Comentarios
Colector de aire de barrido	Alta temperatura	×		
Gases de exhaustación	Alta temperatura	×		Para motores con
de cada cilindro	Alta desviación de la temperatura estándar	×		potencias superiores a 130 kW
Gases de exhaustación de la turbina	Alta temperatura	×		Para motores sin monitorización de cada cilindro
Entrada de aire de arranque	Baja presión	×		
Protección del cárter	Alta temperatura de los cojinetes	×		


4 LAS CARACTERÍSTICAS DE LA PLANTA PROPULSORA

Como se dijo en el cuaderno 5 la planta propulsora está formada por 4 motores diesel semirrápidos MAN B&W 7L27/38. Las características de este motor son:

Característica	Valor	Unidad
Diámetro	27	cm
Carrera	38	cm
Cilindrada	21,75	1
Velocidad	800	rpm
Potencia (7L27/38)	2380	kW
Consumo específico (100% MCR)	182	$g{\cdot}kW^{-1}{\cdot}h^{-1}$
Consumo específico (85% MCR)	182	$g{\cdot}kW^{-1}{\cdot}h^{-1}$
Consumo de aceite	0,8	$g \cdot kW^{-1} \cdot h^{-1}$
Pme	23,5	10 ⁵ Pa

A continuación aparece la curva de interacción de cada hélice con los motores de su línea de ejes. Como puede observarse se da consigue la velocidad de pruebas, 19 kn, dando un 81 % de la potencia nominal.

5 LA CAPACIDAD DE LOS TANQUES

La capacidad de los tanques de fuel – oil, diesel – oil y aceite están determinados por la autonomía en millas que tiene el buque por especificación y por la velocidad de servicio. El criterio a emplear es que el volumen total de fuel necesario para el funcionamiento de los motores principales, motores auxiliares y calderas para cumplir con la autonomía requerida se va a repartir entre los tanques de servicio diario, sedimentación y almacén del modo que se detalla más adelante.

5.1 EL CÁLCULO DE LOS DÍAS DE NAVEGACIÓN

La especificación del proyecto impone una autonomía de 4000 millas náuticas al 85 % de la M.C.R. y con un margen de servicio del 20%. Con este margen de servicio la velocidad de servicio del buque es de 18,1 kn, como ya se calculó anteriormente en el cuaderno 1.

En consecuencia, la autonomía será de 222 horas de funcionamiento, que equivalen a 9,25 días de autonomía.

5.2 EL CONSUMO DE LOS MOTORES PRINCIPALES

El motor 7L27/38 tiene un consumo específico nominal de 180 g/kW·h al 85 % de la M.C.R. Este consumo hay que corregirlo por diversos motivos:

- Margen del fabricante: debido a los márgenes que toma el fabricante y según sus datos el consumo habrá que aumentarlo en un 5 %.
- Corrección por temperatura: como las medidas de los consumos específicos se realizan en condiciones ISO (20 °C) habrá que corregir el consumo por la diferencia de temperaturas entre la de pruebas y la de servicio. Esta corrección se puede tomar como un 3 %.
- Corrección por fuel pesado: el poder calorífico del fuel pesado es menor que el del combustible con el que se realizan las pruebas, por lo tanto, el consumo específico deberá corregirse multiplicando por el cociente de poderes caloríficos 10200

9800

• También habrá que tener en cuenta el margen del 10 % de consumos en la llegada a puerto, por lo que la cantidad de combustible obtenida deberá ser multiplicada por 1,1.

El consumo específico total queda, por tanto, 202,6 g/(kW·h)

La potencia de los motores principales al 85 % de la M.C.R. es de 2023 kW. Por lo que el consumo total de combustible en los motores principales queda:

$$C = 364 \text{ T}$$

Considerando una densidad del combustible de 0,942, obtenemos un volumen de combustible para los motores principales de:

$$V = 386 \text{ m}^3$$

5.3 EL CONSUMO DE LOS MOTORES AUXILIARES

Del cálculo del balance eléctrico se desprende que durante la condición de navegación el consumo eléctrico medio es de 4243 kW (este consumo es la media entre el consumo diurno y nocturno). Considerando un rendimiento de los alternadores (incluyendo el rendimiento de la transmisión mecánica) de 0,97 la potencia media durante la navegación de los motores auxiliares será 4374 kW. Esta potencia será la que se considere en el cálculo del consumo de los motores auxiliares, pues si bien es cierto que durante las maniobras nocturnas el consumo eléctrico es mayor, éstas se producen durante periodos relativamente cortos. Además los tiempos de maniobra se compensan con los de estancia en puerto, en los que el consumo eléctrico es significativamente más bajo.

Finalmente, como los motores elegidos para los grupos electrógenos son también MAN B&W, como los motores principales su consumo específico será de 202,6 g/kW·h. Con todos estos datos, y teniendo en cuenta la autonomía del barco el consumo de los motores auxiliares es:

$$C = 198 \text{ T}$$

Considerando la misma densidad de combustible que para los motores principales obtenemos un volumen de combustible de:

$$V = 210 \text{ m}^3$$

5.4 EL CONSUMO DE CALDERAS

Se va a disponer de dos calderetas de gases de escape y otras dos de mecheros de H.F.O. Para calcular el consumo de estas últimas experimentalmente se demuestra que la relación

 $\frac{kg_{combustible}}{kg_{vapor}}$ = 0,079 es bastante precisa. Como la producción total de vapor en las calderas de

mecheros se ha calculado en 3761 kg/h, el consumo de H.F.O. será de 297 kg/h. Por tanto el volumen total de combustible para la caldera será de:

$$V = 80,2 \text{ m}^3$$

5.5 LAS CAPACIDADES DE TANQUES DE COMBUSTIBLE

Los criterios para el dimensionamiento de cada tanque se exponen en los correspondientes apartados. Además se debe recordar que en la llegada a puerto el barco debe tener unos consumos del 10 %, por lo que el volumen total de combustible calculado habrá que multiplicarlo por 1,1, junto con esto se deberán hacer las correcciones por hierros y por llenado, un 98 % cada una, para obtener el volumen final del tanque.

5.5.1 Los tanques de servicio diario de los motores principales

Se va a disponer de un tanque de servicio diario por cada línea de ejes. El tanque debe ser capaz de abastecer los motores de la línea de ejes, funcionando a plena carga durante un periodo de 24 h, aumentándolo en un 10 % para tener un margen. De tal modo el volumen de los tanques de servicio diario es de:

$$V_{sd} = 26.4 \text{ m}^3$$
 (cada tanque).

5.5.2 El tanque de servicio diario de motores auxiliares

El fabricante de los motores recomienda no agrupar más de tres motores con un mismo sistema de combustible, pero como en el funcionamiento normal en ningún caso habrá cuatro motores funcionando es posible disponer de un único tanque de servicio diario para todos los motores auxiliares. El tanque de servicio diario dispondrá de capacidad para abastecer los 2 motores de 7 cilindros y 1 de 6 cilindros durante 24h, con margen de seguridad del 10 %. El volumen del tanque de servicio diario es:

$$V_{sd} = 33.8 \text{ m}^3$$

5.5.3 El tanque de servicio diario de calderas

El volumen de combustible consumido por las calderas durante un día es:

$$V_{sd} = 8.7 \text{ m}^3$$

5.5.4 Los tanques de sedimentación de los motores principales

Se van a disponer de dos tanques de sedimentación, cada uno de los tanques abasteciendo un tanque de servicio diario, su volumen será el mismo que el de los tanques de servicio diario:

$$V_{sed} = 26.4 \text{ m}^3$$

5.5.5 Los tanques de sedimentación de los motores auxiliares

Se dispondrá de un tanque de sedimentación para abastecer al tanque de servicio diario de los motores auxiliares, su volumen será el mismo que el del tanque de servicio diario:

$$V_{sed} = 33.8 \text{ m}^3$$

5.5.6 Los tanques de sedimentación de las calderas

Se dispondrá de un tanque de sedimentación para abastecer al tanque de servicio diario de las calderas, su volumen será el mismo que el del tanque de servicio diario:

$$V_{sd} = 8.7 \text{ m}^3$$

5.5.7 El tanque de servicio diario de D.O.

La sociedad de clasificación (DNV) especifica que se deben instalar al menos dos tanques de servicio diario de D.O. a bordo. En este caso se instalarán tres, y cada uno de ellos suministrará combustible a los motores conectados a una línea de ejes y el tercero a los motores auxiliares. El volumen de ellos será suficiente para abastecer durante 8 h a los motores principales y a los motores auxiliares.

El volumen de estos tanques será:

Tanque	Volumen (m ³)
Motores principales	$2 \times 9,2$
Motores auxiliares	10,8

5.5.8 El volumen de los tanques almacén de fuel – oil

El volumen total necesario de fuel – oil es la suma de los consumos de motores principales, auxiliares y calderas.

$$V_{Tmin} = (386 + 210 + 80) = 676 \text{ m}^3$$

A este volumen mínimo necesario se le añaden 141 m³ de reserva, con lo que el volumen total de tanques de fuel – oil que lleva el buque es:

$$V_T = 676 + 141 = 817 \text{ m}^3$$

El volumen de los tanques almacén será igual al volumen total de tanques menos los volúmenes de los tanques de servicio diario y sedimentación:

$$V_{almac\acute{e}n} = 597.2 \text{ m}^3$$

6 EL SISTEMA DE COMBUSTIBLE

El motor MAN B&W 7L27/38 está preparado para consumir combustible pesado H.F.O. El sistema total de combustible consta de dos subsistemas, uno interno y otro externo.

6.1 EL SUBSISTEMA DE COMBUSTIBLE INTERNO

Los elementos de este subsistema van montados sobre el propio motor y están suministrados por el fabricante del mismo:

- Bomba de inyección de combustible pesado.
- Inyectores.
- Bombas de alimentación de combustible.
- Válvula de control de la presión en la tubería de retorno.

6.2 EL SUBSISTEMA DE COMBUSTIBLE EXTERNO

Se van a disponer tres circuitos externos distintos. Uno para cada línea de ejes y el tercero para los motores auxiliares. Cada uno de ellos se subdivide a su vez en otros dos: uno de trasiego y purificación y el otro de alimentación al motor (caldera, en el cuarto caso).

6.2.1 El sistema de trasiego y purificación

Es el encargado de tratar el combustible que sale de los tanques de sedimentación, antes de llevarlo a los tanques de servicio diario. Se compone de los siguientes elementos.

6.2.1.1 Los tanques de sedimentación

El volumen de los tanques de sedimentación ya se ha calculado anteriormente, quedando:

Tanque	Volumen (m ³)
Motores principales	$2 \times 26,4$
Motores auxiliares	33,8

Los tanques de sedimentación dispondrán de serpentines de calefacción por vapor, capaces de subir la temperatura del fuel a 75 °C en un tiempo de entre 6 y 8 h. El suministro de calor se debe controlar automáticamente para evitar:

- Una excesiva agitación del combustible.
- Que se superen los 75 °C.
- Que se formen depósitos de carbón en los serpentines.

El diseño de los tanques debe cumplir los siguientes requisitos:

- El fondo tendrá una inclinación mínima de 10°.
- Se dispondrán purgas de lodos en la zona más baja.
- La tubería de alimentación que va a la separadora no debe llegar a la zona de lodos.

6.2.1.2 La bomba de trasiego

Se encarga de conducir el fuel de los tanques almacén a los tanques de sedimentación. Su caudal ha de ser tal que permita llenar el tanque de sedimentación en un periodo máximo de 2 h.

Como resumen:

Servicio	caudal (m³/h)	Potencia (kW)
Motores principales	2×30	5
Motores auxiliares	35	7

6.2.1.3 El tanque de lodos

El tanque se dimensionará para absorber todos los residuos que se puedan generar durante los 9,25 días de navegación. Debe tener un sistema de calefacción que permita elevar la temperatura de los residuos hasta los 60 °C.

6.2.1.4 El filtro de aspiración

Su cometido es proteger la bomba de alimentación. Será de tipo dúplex con válvula de cambio y estará diseñado de forma que no pueda producirse succión de aire. Su fineza será de 0,5 mm.

6.2.1.5 Las purificadoras

Se instalarán siempre dos separadoras del mismo tipo, una para el servicio de purificación y la otra de respeto. Las purificadoras irán equipadas con un sistema de control automático con el fin de realizar el proceso de separación de manera continua y monitorizada.

El sistema de tuberías se dispondrá de tal manera que se pueda realizar el proceso de purificación conectando las purificadoras, tanto en serie como en paralelo.

Se considera un tiempo dedicado a la purificación de combustible de 4 h al día, de tal modo que las purificadoras instaladas tendrán un caudal total de:

Servicio	caudal (m³/h)
Motores principales	2 × 5,5
Motores auxiliares	7,0

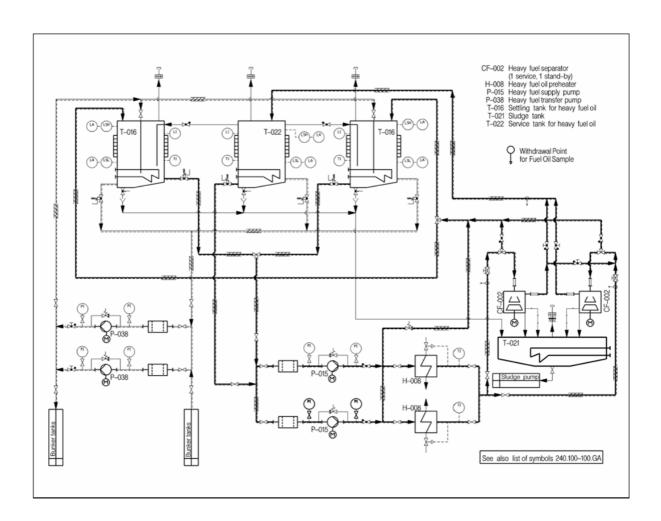
Ya que los motores principales y auxiliares son del mismo modelo se puede pensar en una optimización de las depuradoras. Se pueden montar únicamente dos grupos de depuración con un caudal de 7,0 m³/h. Estos grupos estarían trabajando, uno de ellos 4 h diarias y el otro 8 h. Cada uno de estos grupos estará formado por dos depuradoras Alfa Laval, modelo FOPX 609 de 3,6 m³/h de caudal. Además se montará otra depuradora del mismo tipo que sirva como reserva, tanto para los motores principales como para los auxiliares.

6.2.1.6 Las bombas de alimentación de fuel a las depuradoras

Serán de husillos, resistentes a altas temperaturas. Deberán estar separadas de las centrifugadoras y accionadas eléctricamente.

Como conocemos el caudal, 7,0 m³/h podemos estimar la presión en 500 kPa y el rendimiento de la bomba en 0,3 se puede calcular la potencia de las bombas. Se instalarán, por tanto, 3 bombas, una de reserva, de:

$$P_{bomba} = 3.5 \text{ kW}$$


6.2.1.7 El precalentador de fuel

Su cometido es calentar el fuel que llega a las purificadoras hasta una temperatura que haga posible la purificación (98 °C). El caudal que debe calentar es suministrado por la bomba de alimentación. Se instalarán tres unidades, dos para servir a un grupo de purificadoras y uno de reserva. Por tanto la potencia del precalentador será:

$$P_{precalentador} = 14.5 \text{ kW}$$

Se deberá disponer de un regulador termostático para que la temperatura no tenga variaciones de $\pm\,2$ °C.

6.2.1.8 El esquema del sistema de purificación de H.F.O.

6.2.2 El sistema de alimentación de combustible

Debido a la calidad del combustible a utilizar se emplea un sistema de alimentación presurizado, con el fin de minimizar la cantidad de combustible a alta temperatura en el circuito.

Los principales componentes del sistema son:

6.2.2.1 El tanque de servicio diario

La capacidad mínima de este tanque especificada por el fabricante del motor es tal que permita alimentar los motores durante 8 h. Para no someter a las purificadoras a un ciclo de trabajo excesivo y disponer de tiempo suficiente para el mantenimiento de las mismas se decide dar a los tanques de servicio diario una capacidad suficiente para alimentar los motores durante 24 horas; el cálculo de estas capacidades ya se ha realizado anteriormente al hablar de todos los tanques del servicio de combustible.

El fondo del tanque tendrá una inclinación de unos 10° e irá provisto de válvulas de drenado de lodos, que se situarán en el punto más bajo del tanque.

Con el fin de mantener caliente el fuel – oil se dispondrán serpentines de calefacción por vapor, además el tanque irá adecuadamente aislado.

6.2.2.2 El filtro de aspiración

Al igual que el anterior tendrá una finura de 0,5 mm y se instalará en la zona de succión de la bomba.

6.2.2.3 El tanque de servicio diario de D.O.

Anteriormente ya se ha hablado de estos tanques, se disponen 3 de los siguientes volúmenes.

Tanque	Volumen (m ³)
Motores principales	$2 \times 9,2$
Motores auxiliares	10,8

6.2.2.4 La válvula de tres vías

Se utiliza para cambiar el suministro de HFO a MDO y viceversa. Se operará de manera manual y estará equipada con dos conmutadores para la indicación remota y supresión de alarmas de la medida de viscosidad y el sistema de control durante la operación con HFO.

6.2.2.5 La bomba de presión

Se instalarán tres, una por cada línea de ejes y otra para los motores auxiliares. Su misión es mantener la presión en el circuito de alimentación de combustible.

Su caudal será de tres veces el consumo de los motores de una línea de ejes. Tendrá una presión de funcionamiento, que debe ser capaz de vencer la contrapresión del filtro automático, de 700 kPa.

Servicio	caudal (m³/h)	Potencia (W)
Motores principales	2 × 1,0	2 × 200
Motores auxiliares	1,5	300

6.2.2.6 La válvula de control de la presión

Es una válvula de by – pass que mantiene la presión constante en el tanque de desaireación.

6.2.2.7 El filtro automático

Es un filtro fino de limpieza automática. Se montará un filtro de espesor de malla de $25~\mu m$. El filtro montado no deberá causar una caída de presión durante las operaciones de limpieza.

6.2.2.8 El tanque de desaireación

Tiene como misión compensar las diferencias de presión que ocurren en la parte presurizada del sistema de combustible. Posee para ello una válvula de ventilación. El tanque estará preparado para una presión de trabajo de 700 kPa y tendrá un volumen 0,1 m³.

6.2.2.9 La bomba de circulación

Es del mismo tipo que la bomba de presión y funciona como reserva de las bombas de alimentación de combustible incorporadas al motor.

6.2.2.10 El precalentador final

Se dimensiona en función de la temperatura de inyección en la tobera, a la que se deben añadir 4 °C para compensar las pérdidas en la tubería. Se debe mantener una viscosidad de inyección de 14 cSt. La temperatura de entrada al motor debe estar cercana a los 135 °C pero no sobrepasarla.

6.2.2.11 El medidor de la viscosidad y el aparato de control

Este aparato regula automáticamente la temperatura de salida del precalentador final en función de la viscosidad requerida para la inyección del combustible.

6.2.2.12 El filtro duplex

Este filtro se instalará antes de llegar al motor, y tan cerca de él como sea posible. La malla será de 34 µm. La cámara del filtro estará equipada con una válvula y una tubería que vaya al tanque de lodos. Para dimensionar el filtro se debe tener en cuenta que el caudal no debe exceder de 10⁻³ m³ por cm² y por hora. De este modo tendremos:

Servicio	Superficie del filtro (cm²)
Motores principales	2×950
Motores auxiliares	1550

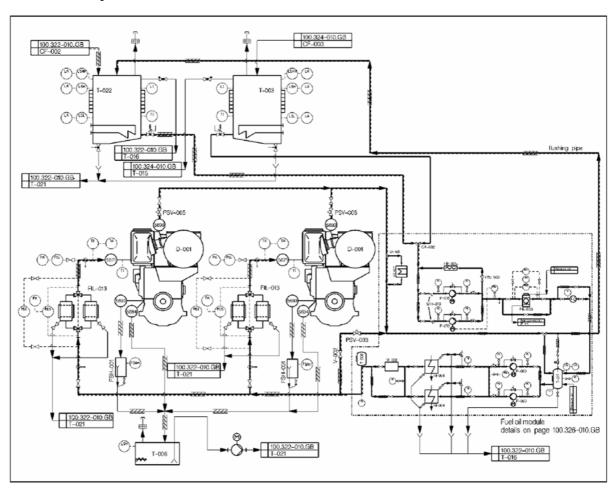
6.2.2.13 La válvula de compensación de la presión

Su misión es conseguir que las bombas de inyección de todos los motores que compartan el mismo sistema de alimentación de combustible reciban el mismo a la misma presión.

Se evitará su uso en los motores principales, haciendo que las tuberías de alimentación tengan la misma longitud para los motores conectados a una misma línea de ejes. Será necesaria su instalación para los motores auxiliares.

6.2.2.14 El tanque de fugas de combustible limpio

Si una tubería de inyección se rompe, el fuel que escape se llevará a este tanque para ser introducido de nuevo en el tanque de servicio diario. Debe llevar un medidor de nivel conectado a un sistema de alarma.


6.2.2.15 El tanque de fugas de combustible sucio

Los escapes del sistema de fuel y aceite se dirigen a este tanque para descargarse posteriormente al tanque de lodos.

6.2.2.16 Los puntos de purga

Se deben instalar purgas antes y después de cada filtro con el fin de poder comprobar la eficacia de estos.

6.2.2.17 El esquema del sistema de alimentación de combustible

URRUTIA NEBREDA, Juan

CK-002	Three way valve for switching to HFO and MDO service tank	
CK-003	Three way valve for switching to MDO-cooler	5671 HFO inlet 5693 leakage fuel pipe from supervising
D-001	Diesel engine	5693 leakage fuel pipe from supervising 5694 leakage fuel drain
FIL-003	Automatic filter	5699 HFO outlet
FIL-013	Double filter	5055 THO bullet
FSH-001	Leakage fuel oil monitoring tank	
H-004	Final heater	
HE-007	MDO-cooler	
HE-025	Finned tube cooler	•
P-003	Booster pumps	→ Withdrawal Point
P-018	Supply pumps	for Fuel Oil Sample
PSV-001	Pressure retaining valve for	·
	MDO-operation	
PSV-002	Pressure limiting valve for	See also list of symbols 240.100-100.GA
5011.000	the feederpart of the module	
PSV-003	Pressure limiting valve	
PSV-005 STR-010	Pressure retaining valve	
T-003	Strainer MDO service tank	
T-003	Leakage fuel collecting tank	
T-008	Pressure peak compensating tank	
T-011	Mixing tank	
T-022	Service tank for heavy fuel oil	
V-002	Shut-off cock	
VI-001	Viscosity control device	
	,	

leak fuel and drain pipes shall have continuous slope!

7 EL SISTEMA DE ACEITE

Debido a que tanto los motores principales y auxiliares funcionan con combustible pesado, éstos tendrán un sistema de centrifugado continuo de aceite. El aceite usado se trasvasará a un tanque de almacenamiento de aceite, de los que habrá uno por cada banda. También debido al consumo de combustibles pesados el aceite utilizado deberá tener una viscosidad del tipo SAE 40 y un TBN de hasta 40 mg KOH/g.

Los elementos que forman el sistema de aceite son:

7.1 EL TANQUE DE ALMACENAMIENTO DE ACEITE

Dispondrá de la capacidad que se le dio durante el predimensionamiento: 60 T.

7.2 EL CALENTADOR

El aceite deberá ser calentado en el tanque almacén y en el sistema hasta una temperatura de 40 °C antes de proceder al arranque de los motores. No se requiere circulación continua de la bomba de reserva. Para arrancar el motor es suficiente arrancar dicha bomba 15 minutos antes del arrançado del motor

7.3 EL FILTRO DE SUCCIÓN

Protege a la bomba de las partículas que pueda haber en el tanque. Debe tener una fineza de 0,5 mm y debe estar provisto de un sensor de presión para indicar cuando debe ser limpiado.

7.4 LA BOMBA DE ACEITE

Se llevará una bomba de servicio montada en el motor. La ventaja de este método es que se garantiza el suministro de aceite en caso de caída del motor. La capacidad será de 100 m³/h y la presión de funcionamiento de 800 kPa.

7.5 EL ENFRIADOR DE ACEITE

La capacidad de este debe ser de 100 m³/h, las temperaturas de entrada y salida son 76 °C y 65 °C respectivamente, el flujo de agua de 42 m³/h y las temperaturas de entrada y salida del agua de 45 y 57 °C respectivamente. Un lateral del enfriador estará provisto de medios de ventilación y drenado.

7.6 LA VÁLVULA DE CONTROL DE LA TEMPERATURA

Es una válvula de by – pass que controla la temperatura del aceite para que se mantenga a 65 °C.

7.7 LA PURIFICADORA

Se emplea para separar los residuos de la combustión que porta el aceite. Está diseñada para el centrifugado continuo de un volumen de aceite que se estima en 10^{-3} m³/kW, la cantidad total de aceite que habrá en los circuitos diariamente será, por tanto:

$$V_{aceite} = 15.3 \text{ m}^3$$

Al consumir combustible pesado el fabricante del motor recomienda que se realicen de 6 a 7 purificaciones cada día, por lo que el caudal adecuado se puede estimar en:

$$Q_{aceite} = 4.5 \text{ m}^3/\text{h}$$

Se instalarán dos purificadoras Alfa Laval LOPX 707 de 2,5 m³/h de caudal. Las purificadoras de aceite se instalarán en el mismo local que las purificadoras de combustible. Como reserva de la purificadora de aceite se podrá utilizar la purificadora de DO.

Además la purificadora debe llevar una serie de equipos auxiliares:

7.7.1 El precalentador de aceite

El aceite debe ser calentado antes de proceder a su purificación. La temperatura de entrada a la purificadora será de 95 °C. El control de temperatura del precalentador debe mantener la temperatura anterior con un margen de \pm 1 °C.

URRUTIA NEBREDA, Juan

7.7.2 La bomba de la purificadora

Se instalará cerca del tanque almacén de aceite para evitar que se produzca cavitación en la bomba.

7.8 EL FILTRO AUTOMÁTICO

El porcentaje de retención debe ser el máximo posible. Tendrá una finura de 34 mm y un caudal superficial de 8 l/h · cm2, con lo que la superficie total de los filtros será:

Servicio	Superficie del filtro (cm2)
Motores principales	2 × 175
Motores auxiliares	300

7.9 EL FILTRO INDICADOR

Es un filtro duplex de limpieza manual, se instalará aguas abajo del filtro automático e inmediatamente por encima del motor. Previene al motor de un fallo de funcionamiento del filtro principal.

Deberá tener instaladas alarmas de presión diferencial para avisar de un ensuciamiento excesivo.

Tendrá una finura de 60 μ m y un caudal superficial de 8 l/h \cdot cm², con lo que la superficie total de los filtros será:

Servicio	Superficie del filtro (cm2)
Motores principales	2 × 175
Motores auxiliares	300

7.10 EL TANQUE DE FUGAS

Se recogen en este tanque tanto el aceite sucio en los filtros así como las fugas de fuel. De aquí van al tanque de lodos.

7.11 LA BOMBA DE TRASIEGO

Se encarga de rellenar el tanque de servicio de aceite desde el tanque almacén. Esto se realiza de forma automática mediante un sistema de sensores de nivel.

La bomba principal y la de reserva tienen un caudal de 1 m³/h a una presión de 250 kPa, con lo que la potencia de las mismas será:

$$P = 70 \text{ W}$$


7.12 LOS TANQUES DE SERVICIO DE ACEITE

Se dispondrán a lo largo de todo el área por debajo de los motores, con el fin de asegurar una expansión térmica vertical uniforme. La cantidad mínima de aceite que pueden tener los tanques es de 1 l/kW, es decir, se dispondrán los siguientes tanques de servicio de aceite:

Servicio	Volumen del tanque (m³)
Motores principales	$2 \times 2,4$
Matana avviliana	$2 \times 2,2$
Motores auxiliares	3 × 1,9

Los tanques tendrán una alarma de aviso de nivel bajo, con el fin de que a las bombas no les pueda llegar aire con ningún ángulo de balance.

7.13 EL ESQUEMA DEL SERVICIO DE ACEITE

8 EL SISTEMA EXTERNO DE AGUA DE REFRIGERACIÓN

Se emplea un sistema de refrigeración centralizado con un único intercambiador para los dos circuitos, tanto el de baja como el de alta temperatura. La refrigeración de cilindros, turbosoplante, aire de carga y aceite se realiza con agua dulce, a la que se añade una sustancia anticorrosiva para proteger la instalación.

El control de la temperatura, tanto en los motores principales como en los auxiliares, se realiza mediante una válvula termostática y es variable en función de la carga. En la salida del circuito de alta temperatura se ha instalado un generador de agua dulce, con el fin de reducir el tamaño del intercambiador y lograr un mayor aprovechamiento térmico de la instalación.

Se va a emplear un tanque de expansión para la alta temperatura y otro para la baja, que tienen como misión compensar los cambios de volumen y las pérdidas de líquido refrigerante que se produzcan en los circuitos. El tanque de expansión del circuito de alta temperatura se colocará de tal manera que su fondo esté, como mínimo a la misma altura que el resto del circuito. El tanque del circuito de baja temperatura se situará adyacente al anterior para facilitar la instalación; su volumen será aproximadamente el mismo que el del tanque de baja temperatura. Los tanques deberán disponer de una parte transparente, así como una alarma de nivel bajo y conexiones para reboses y llenados.

8.1 LAS CARACTERÍSTICAS DEL SISTEMA DE ALTA TEMPERATURA

El agua en este circuito pasará a través de:

- Precalentador
- Primera etapa del enfriador del aire de carga
- Generador de agua dulce
- Enfriador del circuito

La temperatura de salida del agua que refrigera los cilindros se regulará a 90 °C. El sistema estará preparado para que el generador de agua dulce se desconecte automáticamente cuando la temperatura sea inferior a 88 °C. La regulación de la temperatura se consigue con un regulador electrónico de regulación proporcional – integral, una válvula de activación electrónica con curva de característica lineal, un sensor de temperatura en la salida de esta válvula y otro en la salida del motor.

Los valores que recomienda el fabricante para el sistema de alta temperatura son:

Característica	Valor	Unidad
Presión antes del motor	430	kPa
Temperatura antes/después del motor	80/90	°C
Caudal del sistema de alta temperatura (cada motor)	42	m ³ /h
Volumen de agua en el motor	0,24	m^3

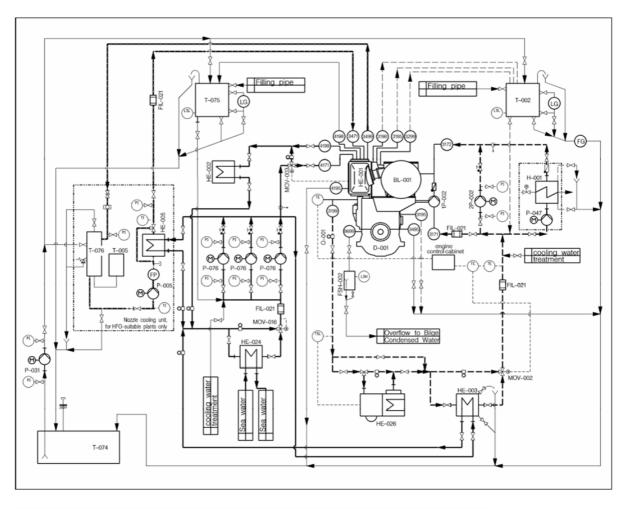
Para el sistema de alta temperatura cada motor llevará instaladas 3 electrobombas con un caudal unitario de 21 m³/h, encontrándose una de ellas en reserva. Además se instalará una bomba para el precalentador con un caudal de 42 m³/h.

8.2 LAS CARACTERÍSTICAS DEL SISTEMA DE BAJA TEMPERATURA

Los valores que recomienda el fabricante para el sistema de alta temperatura son:

Característica	Valor	Unidad
Presión antes del motor	300	kPa
Temperatura antes/después del motor	38/45	°C
Caudal del sistema de baja temperatura	203	m ³ /h

Con el sistema de baja temperatura se refrigeran los siguientes equipos:


- Enfriador de aire de carga
- Enfriador de aceite lubricante.
- Enfriadores de inyectoras de combustible.

Además, con este sistema se refrigera el sistema de alta temperatura y el sistema de baja temperatura se refrigera mediante el circuito de agua salada.

Buque de Crucero

Planta Propulsora

8.3 EL ESQUEMA DEL CIRCUITO DE REFRIGERACIÓN

URRUTIA NEBREDA, Juan

9 LOS SISTEMAS DE AIRE

9.1 EL SISTEMA DE AIRE DE ARRANQUE

Para este sistema se empleará aire comprimido a una presión de 3 MPa para arrancar los motores principales y auxiliares. El arranque se realiza por inyección directa del aire en los cilindros a través de las válvulas de arranque, que van situadas en las culatas.

Las características del sistema son:

Característica	Valor	Unidad
Presión de aire máxima	3	MPa
Presión de aire mínima	1	MPa
Consumo de aire por arrancada (20°)	1,225	m^3

El aire se va a obtener de botellas a presión. Para calcular el volumen que deben tener se debe tener en cuenta el reglamento de la sociedad de clasificación (DNV), que exige que se puedan realizar al menos 6 arrancadas de los motores principales con el aire contenido en las botellas, de modo que la presión final, según los datos del fabricante del motor , sea de 1 MPa. En este caso se van a tomar 6 arrancadas para los motores principales y otras 6 para los motores auxiliares.

El volumen necesario para los principales, según la fórmula dada por el fabricante:

$$V = F \cdot \frac{\left(V_{st} \cdot f_d \cdot \left(Z_{st} + Z_{safe}\right) + V_{jetAssist} \cdot Z_{jet} + V_{si} \cdot Z_{si}\right)}{p_{\max} - p_{\min}}$$

Siendo:

- F: Factor de propulsión F = 8 (número de motores a arrancar)
- V_{st} : consumo de aire en una arrancada $V_{st} = 1,225 \text{ m}^3$
- f_d : para motores $f_d = 1$
- Z_{st} : número de arrancadas exigidas por la sociedad de clasificación
- Z_{safe} : número de arrancadas como margen de seguridad
- Z_{iet} : número de procesos
- V_{si} : consumo de aire para maniobras de giro lento $V_{si} = 2,450 \text{ m}^3$

- Z_{si} : número de maniobras de giro corto: $Z_{si} = 1$
- $V_{jetAssist}$: volumen para servicios de seguridad: $V_{jetAssist} = 1,850 \text{ m}^3$
- p_{max} : presión máxima de arrancada $p_{max} = 3$ MPa
- p_{min} : presión mínima de arrancada $p_{min} = 1$ MPa

En consecuencia, el volumen de las botellas de aire de arranque de los motores principales es:

$$V = 4,66 \text{ m}^3$$

Se dispondrán 10 botellas de 0,5 m³. Existirán tres líneas conectadas en paralelo: una para el servicio de motores auxiliares, otra para la alimentación de los motores principales y una última para el servicio de control y seguridad de los motores auxiliares.

Se colocará, además, otra botella a 700 kPa que alimentará los siguientes servicios:

- Toma de conexión de manguera para cámara de máquinas.
- Filtro de aceite de motores.
- Toma de aire local de depuradoras.
- Aire de limpieza de tomas de mar.

Para cargar las botellas se van a disponer dos compresores en paralelo, de los que el de servicio será movido independientemente de los motores principales, en este caso, con un motor eléctrico y suministrará el 50 % de la capacidad total necesaria. Los compresores deben ser capaces de cargar las botellas de aire desde la presión atmosférica hasta la presión máxima en un tiempo máximo de 1 hora. Con ello los compresores tendrán:

Característica	Valor	Unidad
Presión de aire	3	MPa
Caudal	140	m ³ /h
Potencia	116,5	kW

Es necesario instalar también un separador de agua – aceite en la tubería entre los compresores y las botellas; y es conveniente instalar otro separador en la tubería entre las botellas y los motores.

Las tuberías de aire de arranque se situarán en posición descendente con purgas en los puntos más bajos.

9.2 EL SISTEMA DE AIRE PARA LA COMBUSTIÓN DEL MOTOR

El aire empleado para la combustión se toma de la cámara de máquinas a través de la turbosoplante. Debe estar libre de polvo, agua y partículas de suciedad, por lo que se hace pasar por un filtro que retendrá el 95 % de las partículas mayores de 10 µm. Además se deben observar otras medidas, como es colocar el punto de entrada de aire lejos de conductos de escape o de tubos de ventilación de tanques de fuel o aceite. La cantidad de aire requerido es de 15250 m³/h con los motores funcionando al 100 %.

Este aire se introduce en la cámara de máquinas mediante ventiladores, cuyo diseño se detalla en el cuaderno 10.

9.3 EL SISTEMA DE GASES DE ESCAPE

Cada motor va a disponer de su propia tubería de escape. Estas tuberías estarán aisladas en todo su recorrido y el aislamiento se protegerá mediante una chapa de recubrimiento.

Las características de los gases son:

Carga (%)	Cantidad (kg/kW·h)	Temperatura (°C)
100	7,3	350
85	7,5	345
75	7,6	355
50	8,0	385

Máxima contrapresión en la tubería de escape: 30 mbar.

10 EL BALANCE DE VAPOR

Existen dos grupos principales consumidores de vapor:

- Tanques de combustible pesado
- Servicios de la propulsión principal y otros servicios como climatización

Se va a realizar un cálculo del calor necesario para todos estos servicios y posteriormente se calculará el caudal de vapor saturado seco a una presión de 700 kPa que deberá emplearse para alimentarlos, así como las dimensiones de las calderetas de gases de escape y calderas auxiliares necesarias.

10.1 LA CALEFACCIÓN DE TANQUES

El calor que se suministre a los tanques de combustible tendrá dos destinos, uno será compensar las perdidas de calor que se producen, y el otro elevar la temperatura del combustible.

El vapor circulará por serpentines colocados en el interior de los tanques de manera que la superficie de éstos sea la adecuada para que la transferencia de calor no sea superior a 1,1 W/m².

10.1.1 El calor aportado para elevar la temperatura de los tanques

Se calculará mediante la fórmula:

$$q = V \cdot \rho \cdot c_e \cdot (T_f - T_i)$$

Donde:

- V volumen del tanque (m³)
- ρ densidad del combustible (kg/m³)
- c_e capacidad térmica específica del combustible (kJ/(kg °C))
- T_f , T_i temperaturas final e inicial del tanque.

El calor aportado para elevar la temperatura en los tanques aparece resumido en la siguiente tabla:

URRUTIA NEBREDA, Juan

Tanque	Masa del tanque (T)	Temperatura inicial (°C)	Temperatura final (°C)		Calor necesario para subir la temperatura (kW)
Almacén FO Babor 1	111.14	5	45	12	197.866
Almacén FO Estribor 1	111.14	5	45	12	197.866
Almacén FO Babor 2	195.52	5	45	12	348.103
Almacén FO Estribor 2	195.52	5	45	12	348.103
Sedimentación MMPP 1	21.49	45	75	10	34.427
Sedimentación MMPP 2	21.49	45	75	10	34.427
Servicio diario MMPP 1	21.68	75	75	6	0.000
Servicio diario MMPP 2	21.68	75	75	6	0.000
Sedimentación MMAA	27.26	45	75	10	43.680
Servicio diario MMAA	27.26	75	75	6	0.000
Sedimentación Calderas	6.85	45	75	10	10.976
Servicio diario Calderas	6.85	75	75	6	0.000
Tanque de aceite Estribor	30.00	5	40	4	140.226
Tanque de aceite Babor	30.00	5	40	4	140.226

10.1.2 La compensación de las pérdidas de calor

En este caso se deben compensar las pérdidas de calor que se producen por radiación, de manera que la temperatura del tanque se mantenga constante.

El calor necesario se calcula mediante la fórmula:

$$q_p = \sum k_j \cdot S_j \cdot (T_m - T_j) \text{ (kW)}$$

El sumatorio se extiende a las diferentes caras que forman el tanque. La notación de la fórmula es:

- k_i coeficiente de transmisión de la cara j (kW/(m²·°C)
- S_i superficie de la cara j
- T_m temperatura media del combustible en el tanque.
- T_i temperatura en el exterior de la cara j

El valor de los coeficientes de transmisión k_j en función de lo que haya en el exterior de las caras es:

Superficie límite	Factor k
Fondo plano y parte inferior del pantoque	0,0087
Costado bajo la flotación	0,0180
Costado sobre la flotación (mojado)	0,0163
Cubierta seca todo el tiempo	0,0052
Mamparo con espacio vacío o cámara de máquinas	0,0056
Mamparo con tanque frío	0,0081
Cubierta inferior	0,0052
Cubierta superior	0,0064
Mamparos recubiertos de aislamiento térmico	0,0012

Las temperaturas en las caras exteriores se toman de la siguiente tabla:

Medio exterior	T_{ext} (°C)
Agua de mar	0
Aire ambiente	-5
Espacio vacío o similar	15
Tanque frío	15

Medio exterior	T _{ext} (°C)
Cámara de máquinas	20
Habilitación	20
Tanque almacén de HFO	45
Tanque de sedimentación de HFO	75
Tanque de servicio diario de HFO	75
Tanque de combustible de calderas	40
Tanque de aguas aceitosas	40
Tanque de lodos	70
Tanque de aceite lubricante	40

Realizando estos cálculos se obtienen las siguientes pérdidas de calor para cada tanque:

Tanque	Pérdidas de calor del tanque (kW)
Almacén FO Babor 1	8,324
Almacén FO Estribor 1	8,324
Almacén FO Babor 2	14,527
Almacén FO Estribor 2	14,527
Sedimentación MMPP 1	9,358
Sedimentación MMPP 2	9,558
Servicio diario MMPP 1	11,626
Servicio diario MMPP 2	11,626
Sedimentación MMAA	7,613
Servicio diario MMAA	11,822
Sedimentación Calderas	4,653
Servicio diario Calderas	6,549
Tanque de aceite Estribor	4,743

Tanque	Pérdidas de calor
	del tanque (kW)

Tanque de aceite Babor

4,743

Como resultado final obtenemos que la potencia calorífica total necesaria para los distintos tanques del buque es:

$$Q_{tanques} = 1624 \text{ kW}$$

10.2 LAS NECESIDADES DE CALOR PARA LA DEPURACIÓN

El cálculo de las necesidades de potencia calorífica para las depuradoras se realiza mediante la expresión:

$$Q = p \cdot C \cdot \rho \cdot c_e \cdot (T_{salida} - T_{entrada})$$

- p factor de perdidas de calor (1,05)
- C caudal de la depuradora
- ρ densidad del fluido
- c_e capacidad térmica del fluido
- T_{salida} , $T_{entrada}$ temperaturas finales e iniciales del proceso.

El resultado de estos cálculos aparece en la siguiente tabla:

	Caudal (m ³ /h)	$T_{entrada}$	T_{salida}	Q (kW)
Purificadoras MMPP 1	5,5	75	90	43
Purificadoras MMPP 2	5,5	75	90	43
Purificadoras de MMAA	7,0	75	90	55
Purificadoras de aceite	4,5	40	95	130

La potencia calorífica necesaria para la depuración es de:

$$Q_{depuración} = 273 \text{ kW}$$

10.3 Los precalentadores de agua dulce de los cilindros

La potencia calorífica se puede estimar mediante la expresión:

 $Q_{precalentadores} = BHP/0.485 = 50 \text{ kW}$

10.4 LOS CALENTADORES DE COMBUSTIBLE DE LOS MOTORES

Una vez salido del tanque de servicio diario el combustible debe calentarse hasta una temperatura adecuada para la inyección en los cilindros, de manera que la viscosidad sea la adecuada. Esta temperatura será como máximo 135 °C, debido a las pérdidas de calor en las tuberías se supondrá una temperatura final en los calentadores de 139 °C.

El caudal de combustible que se envía a la bomba de inyección es de 3 veces el caudal inyectado. El combustible que no se inyecta se reenvía por la tubería de retorno, este combustible se añade al que sale del tanque de servicio diario antes del calentador. Se supondrá que en la tubería de retorno el combustible tiene una pérdida de temperatura de 5 °C. Haciendo un balance de entalpías obtenemos que la temperatura de entrada del combustible al calentador será de 112 °C.

Con estos datos obtenemos unas potencias caloríficas para los calentadores de:

	Caudal (m³/h)	Tentrada	T_{salida}	Q(kW)
Purificadoras MMPP 1	1,0	112	139	14
Purificadoras MMPP 2	1,0	112	139	14
Purificadoras de MMAA	1,5	112	139	22

La potencia calorífica total de los calentadores de combustible es:

 $Q_{calentadores} = 50 \text{ kW}$

10.5 LA POTENCIA CALORÍFICA CONSUMIDA POR LA CLIMATIZACIÓN

En el cuaderno de equipos y servicios se calculan las necesidades de ventilación de los todos los espacios climatizados del buque. El caudal total de aire a climatizar es de

380589 m³/h. Este aire habrá que calentarlo desde la temperatura exterior (-5 °C) hasta 30 °C (Se toma esta temperatura final para obtener una temperatura de rejilla de 25 °C y con ello una temperatura de acondicionamiento de 21 o 22 °C).

La potencia necesaria para calentar este aire se calcula mediante la expresión:

$$Q_{climatización} = C_{aire} \cdot \rho \cdot c_{e} \cdot (T_{salida} - T_{entrada})$$

Finalmente la potencia calorífica de climatización es:

$$Q_{climatización} = 4089 \text{ kW}$$

10.6 LA PRODUCCIÓN DE AGUA DULCE

En el cuaderno 1 se consideró un consumo por persona y día de 500 l. En los tanques se lleva el consumo correspondiente a dos días de navegación más una reserva de 244,37 T. El resto del agua habrá que producirlo durante la travesía, es decir, habrá que producir 1226,5 T. Esta producción se repartirá entre todo el tiempo que dure la travesía, con lo que se obtiene el caudal de agua.

La potencia calorífica necesaria para la producción de agua dulce viene dada por la expresión:

$$Q_{aquadulce} = k \cdot C_{aqua} \cdot \rho \cdot c_{e} \cdot \Delta T + C_{aqua} \cdot \rho \cdot h_{lv}$$

Donde:

- k factor de relación masa de vapor a masa de agua del evaporador, dependiendo del evaporador varía entre 3,5 y 4,5 en nuestro caso se toma k=4
- C_{agua} caudal de agua.
- p densidad del agua.
- c_e capacidad térmica del agua.
- ΔT salto térmico. El evaporado se realiza en presencia de un vacío del 90 % (presión de trabajo de 10 kPa), por lo que la temperatura de ebullición del agua es de 45,6 °C.
- h_{lv} entalpía de cambio de fase del agua a la presión utilizada.

Así resulta:

$$Q_{agua\ dulce} = 3918 \text{ kW}$$

Durante la navegación la mayor parte de la energía necesaria para la producción de agua dulce se obtendrá del sistema de alta temperatura de refrigeración de los motores, tanto principales como auxiliares; de ellos podemos obtener una potencia calorífica de 3430 kW, por lo tanto, la potencia calorífica necesaria para la producción de agua dulce será:

$$Q_{agua\ dulce} = 488 \text{ kW}$$

10.7 LA GENERACIÓN DE AGUA CALIENTE

Se supone un consumo que el consumo medio de agua caliente es de 200 l/(pers·día), como media, en los momentos de máximo consumo éste se multiplicará por 4. La temperatura de calentamiento del agua será de 60 °C, para permitir que el agua llegue a los camarotes a una temperatura adecuada. La potencia calorífica será la necesaria para subir la temperatura del agua desde la de almacenamiento (15 °) hasta la de consumo, es decir:

$$Q_{agua\ caliente} = C_{agua} \cdot \rho \cdot c_e \cdot (T_{salida} - T_{entrada})$$

En donde C_{agua} vale 0,87 l/s en régimen normal y 3,47 l/s en los picos de consumo.

De este modo la potencia calorífica para calentar el agua es:

• En régimen normal: $Q_{agua\ caliente} = 163\ kW$

• En picos de consumo: $Q_{agua\ caliente} = 652\ kW$

10.8 EL RESUMEN

Como resumen tenemos que las potencias caloríficas necesarias durante la navegación son:

Consumidor	Consumo (kW)
Calefacción de tanques	612
Depuración	273
Precalentadores de agua dulce	50
Calentadores de combustible	50
Climatización	4089
Producción de agua dulce	488

Consumidor	Consumo (kW)		
Generación de agua caliente	163		

Esto nos da una potencia calorífica total de $Q_{total} = 5725 \text{ kW}$

Las necesidades de vapor a 700 kPa se obtienen dividiendo la potencia calorífica por la entalpía de cambio de fase:

$$C_{vapor} = 9960 \text{ kg/h}$$

10.9 LA PRODUCCIÓN DE VAPOR EN LA CALDERETA

Según el constructor el motor produce una cantidad de gases de escape de 7,5 kg/(kW·h) a una temperatura de 345 °C, al 85 % de la carga. La producción total de gases de escape durante la navegación, teniendo en cuenta los motores principales y los auxiliares es de:

$$C_{gases\ MMPP} = 71400\ kg/h$$

$$C_{gases\ MMAA} = 43350\ kg/h$$

La potencia calorífica de la caldereta de escape será:

$$Q_{caldereta} = f \cdot C_{gases} \cdot c_e \cdot \left(T_{entrada} - T_{salida}\right)$$

Tomando como temperatura de salida de los gases de escape tras la caldereta de 185 °C, para evitar la condensación de ácido sulfúrico, tenemos una potencia de la caldereta de (*f* es un factor que engloba las pérdidas de calor por radiación):

$$Q_{calderetaMMPP} = 2865 \text{ kW}$$

$$Q_{calderetaMMAA} = 1740 \text{ kW}$$

Esto nos da una producción de vapor a 7,0 kg/cm² de:

$$C_{calderetaMMPP} = 3857 \text{ kg/h}$$

$$C_{calderetaMMAA} = 2342 \text{ kg/h}$$

Se instalarán, por tanto, dos calderetas de escape, una que toma los gases de los motores auxiliares y otra que los toma de los principales. Las potencias caloríficas y las producciones de vapor de las calderetas son las calculadas anteriormente.

La producción total de ambas calderetas será de 6199 kg/h de vapor saturado seco a 7 kg/cm^2 .

10.10 LAS CALDERAS AUXILIARES

Se deberán montar unas calderas auxiliares con mecheros con una producción de vapor conjunta de 3761 kg/h de vapor saturado seco a 700 kPa. Por lo tanto se montarán **dos calderas 2000 kg/h**.

11 LA PLANTA SÉPTICA

Se debe hacer una estimación inicial de la producción de aguas negras por parte de la tripulación el pasaje. Para el pasaje se pueden estimar en 30 litros por persona y día, y para la tripulación de 15 litros por persona y día. En total la producción por día es de 10125 litros. Para esta cantidad se van a instalar dos tanques sépticos con una capacidad cada uno de 6000 litros. Para su descarga se van a emplear dos bombas por tanque, una de servicio y otra de respeto, de manera que se pueda descargar cada tanque es menos de 10 minutos. En consecuencia la potencia exigida es de 10 kW para cada bomba.

12 LA PLANTA SANITARIA

12.1 EL TANQUE HIDRÓFORO Y LA BOMBA DE AGUA DULCE FRÍA SANITARIA

Para dimensionar el tanque suponemos que, en un momento de consumo punta, la mitad del pasaje consume 60 litros en duchas, lavabos e inodoros y la mitad de la tripulación consume 30 litros en los mismos servicios, de manera que el consumo total es esa punta sea de 19125 litros. Se pueden disponer, para este propósito, dos tanque hidróforos de 10 m³ cada uno con sus respectivas bombas de agua dulce sanitaria, una de servicio y otra de respeto para cada tanque.

12.2 EL TANQUE HIDRÓFORO Y LA BOMBA DE AGUA DULCE CALIENTE SANITARIA

Las necesidades, en este caso, se suponen la tercera parte de las de agua dulce fría sanitaria. Por ello, se instalan dos tanques de 3,5 m³ calentados por resistencias eléctricas.

12.3 EL TANQUE A PRESIÓN Y LA BOMBA DE AGUA POTABLE

Se supone una punta de consumo en la que el 75 % del pasaje consume 20 litros de agua en bares y restaurantes y la mitad de la tripulación otros 20 litros en los mismos servicios durante una hora. El consumo total será de 5000 litros y el caudal a suministrar de 5 m³/h. Se instalan cuatro tanques 1,4 m³ y cada uno dispone de dos bombas, una de respeto y otra de servicio.

13 LA BIBLIOGRAFÍA

- Zurita Sáenz de Navarrete, Álvaro «Motores de combustión interna». ETSIN 2001.
- Zurita Sáenz de Navarrete, Álvaro «Diseño de cámara de máquinas». ETSIN 2002.
- MAN B&W «Manuales».

PROYECTO NÚMERO 1491

Buque de Crucero

Cálculo de pesos y centros de gravedad del buque en rosca

Tutor: Arias Rodrigo, Carlos

Autores: Urrutia Nebreda, Juan

Vicario González, Jorge

1 EL ÍNDICE

1	El ír	ndice		. 3						
2	La i	ntrod	lucción	. 4						
2.1 La etapa primera										
	2.2	La e	etapa segunda	. 5						
	2.3	La e	etapa tercera	. 6						
3	El d	esglo	ose del peso del acero	. 7						
	3.1	El p	eso de los elementos continuos longitudinales	. 7						
	3.2	El p	eso de los elementos transversales	. 9						
	3.3	El p	eso de los mamparos estancos	10						
	3.4	El p	eso de los elementos localizados	11						
	3.4	.1	El peso de la amurada de proa	12						
	3.4	.2	El peso de las superestructuras	12						
	3.4	.3	Las chimeneas	12						
	3.4	.4	Los arbotantes	12						
	3.4	.5	Los palos	12						
	3.4	.6	Las piezas fundidas y forjadas de la zona del codaste	13						
	3.4	.7	El galvanizado y cementado	13						
	3.4	.8	Los errores de laminación, soldadura y margen	13						
4	El d	esglo	ose del peso del equipo	15						
5	El d	esglo	ose del peso de la maquinaria	18						
_	E1	El mass en masses								

2 LA INTRODUCCIÓN

El propósito de este cuaderno es el de calcular el peso en rosca del buque y la posición de su centro de gravead; esto nos permitirá, conocido el peso muerto, determinar el valor del desplazamiento total y la posición, tanto vertical como longitudinal, del centro de gravedad del barco.

Todos los procedimientos de proyecto, cualquiera que sea el tipo de buque precisan conocer el desplazamiento, por lo que una de las primeras tareas del proyecto es conocer el peso del barco.

Para calcular este valor existen dos caminos principales, según se disponga o no de buques similares:

- Empleando un método directo, por suma de pesos que componen el barco.
- Caso de no disponer de información, utilizando alguna de las alternativas que resuelvan la ecuación del desplazamiento.

La segunda forma se emplea en las primeras etapas de proyecto, donde lo que se persigue es una estimación des desplazamiento que permita la elección de alternativas dimensionales.

En este caso, superada ya esta primera fase de dimensionamiento, se hace necesario aquilatar más el peso ya obtenido, desglosando el peso en sus partidas integrantes.

El desplazamiento del buque Δ se descompone en dos partidas principales, peso en rosca, PR y peso muerto, PM, de forma que:

$$\Delta = PM + PR$$

Desde un punto de vista conceptual, el peso enrosca es la suma del peso del buque preparado para navegar, excluyendo la carga, pasaje, tripulación, pertrechos y consumos, pero incluyendo los fluidos presentes en aparatos y tuberías realmente necesarios para el funcionamiento del buque. El conjunto de los conceptos excluidos antes, que forman el resto del peso del barco, constituye el peso muerto.

El peso muerto es normalmente, y en este caso, un dato de proyecto derivado de los requerimientos del armador para el barco, por lo que su cálculo y desglose no tiene dificultades especiales.

Sin embargo, el cálculo del peso en rosca es siempre una de las dificultades con que se encuentra el proyectista de buques. Su estimación supone un riesgo desde el punto de vista técnico pero además implica un riesgo económico ya que:

• Un exceso de peso en rosca al final de la construcción implica una disminución en el peso muerto que se puede transportar. Esto trae consigo fuerte penalizaciones desde el punto de vista contractual.

• Por otro lado, falsea los presupuestos obtenidos para diversas partidas del buque que hemos estimado en función del peso.

Es importante destacar que el peso en rosca del barco no se conoce hasta que el buque está construido y se lleva a cabo la experiencia de estabilidad. Por ello, es necesario tener en cuenta los siguientes puntos:

- Durante los cálculos de proyecto hay que establecer un margen apropiado sobre el valor calculado, para prever posibles variaciones futuras o partidas que no se tuvieron en cuenta. Además, deberán revisarse los cálculos realizados, según se van teniendo más datos sobre el barco.
- Durante la construcción es necesario llevar un control de pesos a fin de verificar que el peso en rosca se mantiene dentro de los márgenes previstos.

Dentro del primer punto, que es el que nos interesa ahora, se establecen las siguientes etapas en la definición del buque:

2.1 LA ETAPA PRIMERA

En la etapa inicial se proyecto solamente se conocen los requisitos de partida, normalmente definidos por el armador después de un estudio de explotación. El peso en rosca en esta etapa se suele considerar globalmente, sin ningún desglose, únicamente con fines de acotar las diversas variantes dimensionales.

2.2 LA ETAPA SEGUNDA

En esta etapa se conocen las dimensiones principales y la potencia propulsora estimada. Es entonces cuando se desglosa el peso en rosca en tres partidas:

- *PS*: Peso del acero o peso estructural.
- *PE*: Peso de equipo y habilitación.
- *PQ*: Peso de la maquinaria.

De forma que:

$$PR = PS + PE + PQ$$

Una vez considerado el desglose, es importante delimitar claramente los elementos que integran cada una de las partidas anteriores, pues no existe una frontera clara entre ellas.

2.3 LA ETAPA TERCERA

En estas etapas se va avanzando en la definición del buque. Se dispone de los planos de la maestra y de disposición general, lista de equipos y, más adelante, de planos constructivos, ..., lo que permite un cálculo más aproximado de pesos.

Los resultados que presentamos a continuación se pueden dividir en dos partes, teniendo en cuenta la fase de proyecto en que fueron obtenidos:

- En la primera parte se presentan los cálculos realizados en la fase inmediatamente posterior al dimensionamiento, cuando únicamente se disponía de las dimensiones del barco y un cálculo estimado de potencia. A pesar de la escasez de datos, el desglose realizado del rosca en acero, equipo y maquinaria, el margen y posición del centro de gravedad (tanto vertical como longitudinal), fue bastante contratado con los de un buque base y por tanto se considerará válido para el resultado final. No se puede decir lo mismo de la distribución longitudinal del peso en rosca, debido a la falta de datos que teníamos en ese momento.
- En la segunda parte se presentan los resultados finales; éstos fueron obtenidos en una etapa del proyecto en que ya se había realizado la disposición general, la cuaderna maestra, los cálculos de propulsión y se tenía bastante definida la planta propulsora del buque. Este desglose permitiría abordar con mayor exactitud, los cálculos de resistencia longitudinal.

Se ha considerado oportuno incluir en este cuaderno los resultados de ambas fases del proyecto, aún a fuerza de una mayor longitud, por el interés que tiene siempre en el proyecto de un buque el control de pesos en todas las etapas y, en especial en buques de pasaje, donde los requerimientos son todavía más importantes.

3 EL DESGLOSE DEL PESO DEL ACERO

El peso de la estructura del buque es la partida más importante dentro del peso en rosca, constituyendo en este caso algo más del 55 % del total. Para el desglose de dicho peso, se considerarán los siguientes conceptos:

- Peso de acero continuo, dividido en:
 - Peso de elementos continuos longitudinales.
 - Peso de elementos transversales.
- Peso de acero localizado, dividido en:
 - Peso de mamparos estancos.
 - Peso de otros elementos localizados.

3.1 EL PESO DE LOS ELEMENTOS CONTINUOS LONGITUDINALES

Como acero continuo longitudinal se considerarán todos aquellos elementos que contribuyen a la resistencia longitudinal del buque tal y como estos fueron definidos en los cálculos de escantillonado de la cuaderna maestra, es decir:

- Planchas de forro.
- Planchas de cubierta.
- Vagras centrales y laterales.
- Esloras y longitudinales.
- Palmejares.

Para el cálculo del peso debido a estos elementos, se sigue un método que basa los cálculos es la determinación del peso por unidad de longitud de elementos longitudinales de la maestra, extrapolando al resto de las secciones del buque, afectándolas de un coeficiente que valore las formas del casco.

La formulación empleada se puede resumir en el siguiente cuadro:

$$W_i = a_i \cdot W_m$$

donde:

• W_i , peso por unidad de longitud de la sección i, $(T \cdot m^{-1})$.

- W_m , peso de la maestra por unidad de longitud, (T·m⁻¹).
- a_i , coeficiente corrector para la sección i, definido como:

$$a_i = (P_i / P_m) \wedge m_i$$

- P_i , perímetro de a sección i, medido hasta la cubierta superior, (m).
- P_m , perímetro de la sección maestra, medido hasta la cubierta superior, (m).
- m_i , coeficiente para la sección i, que depende del tipo de buque.

El cuadro siguiente resume los cálculos realizados para obtener las ordenadas del peso por unidad de longitud de acero continuo.

Los datos del peso de la sección maestra se obtuvieron al realizar el escantillonado, en el cuaderno 6.

• Peso de la sección maestra por unidad de longitud:

 $W_m = 20,346 \text{ T} \cdot \text{m}^{-1}$.

• Perímetro de la maestra:

 $P_m = 60,036 \text{ m}.$

Sección	x_i (m)	$P_i(\mathbf{m})$	P_i/P_m	m_i	a_i	$W_i(\mathbf{T})$	$peso_i(T) x$	$c_i \cdot peso_i (T \cdot m)$
0	0,000	3,853	0,064	3,450	0,000	0,002	0,009	0,000
1	5,827	10,504	0,175	5,390	0,000	0,002	0,010	0,057
2	11,653	19,368	0,323	4,880	0,004	0,081	0,474	5,529
3	17,480	29,631	0,494	3,680	0,074	1,514	8,819	154,148
4	23,306	39,978	0,666	2,480	0,365	7,423	43,248	1007,964
5	29,133	49,261	0,821	2,005	0,673	13,685	79,734	2322,898
6	34,960	55,891	0,931	1,610	0,891	18,132	105,650	3693,491
7	40,786	58,814	0,980	1,000	0,980	19,932	116,136	4736,738
8	46,613	60,015	1,000	1,000	1,000	20,339	118,507	5523,932
9	52,439	60,036	1,000	1,000	1,000	20,346	118,548	6216,586
10	58,266	60,036	1,000	1,000	1,000	20,346	118,548	6907,318
11	64,093	58,887	0,981	1,000	0,981	19,957	116,280	7452,696

Sección	x_i (m)	$P_i(\mathbf{m})$	P_i/P_m	m_i	a_i	$W_i(T)$	$peso_i(T)$ x	$c_i \cdot peso_i (\mathbf{T} \cdot \mathbf{m})$
12	69,919	55,891	0,931	1,000	0,931	18,941	110,363	7716,495
13	75,746	51,380	0,856	1,910	0,743	15,112	88,054	6669,744
14	81,572	45,262	0,754	2,220	0,534	10,868	63,321	5165,242
15	87,399	38,026	0,633	2,800	0,278	5,664	33,005	2884,580
16	93,226	30,268	0,504	3,390	0,098	1,996	11,632	1084,368
17	99,052	22,646	0,377	3,330	0,039	0,792	4,613	456,887
18	104,879	15,943	0,266	3,270	0,013	0,266	1,552	162,788
19	110,705	10,566	0,176	3,440	0,003	0,052	0,301	33,314
20	116,532	6,087	0,101	2,610	0,003	0,052	0,302	35,156
TOTAL	54,631						1139,106	62229,932

3.2 EL PESO DE LOS ELEMENTOS TRANSVERSALES

Como acero continuo transversal se considerarán todos aquellos elementos de la estructura transversal del casco, tal y como estos fueron definidos al realizar los cálculos de escantillonado.

- Varengas.
- Cuadernas y bulárcamas.
- Baos.
- Cartelas.
- Puntales.

Estos elementos se han pesado, para cada cuaderna y para cada bulárcama por separado, obteniéndose el siguiente cuadro de resultados:

- Peso de elementos transversales por cuaderna: 2,82 T.
- Peso de elementos transversales por bulárcama sin puntal: 10,71 T.
- Peso de elementos transversales por bulárcama con puntal: 11,39 T.

Buque de Crucero	CALCULO DE PESOS
Clara de cuadernas:	0,825 m.
Clara de bulárcamas:	3,300 m.
• Eslora:	116,532 m.
• Número de bulárcamas sin puntal en la eslora:	21
• Número de bulárcamas con puntal en la eslora:	20
Número de cuadernas en la eslora	156
• Peso total de elementos transversales:	892,06 T.

La distribución del peso lo suponemos uniforme a lo largo de toda la eslora y la altura del centro de gravedad se calculó para una sección tipo.

- Abscisa del centro de gravedad de elementos transversales: 58,107 m.
- Altura del centro de gravedad de elementos transversales: 6,500 m.

3.3 EL PESO DE LOS MAMPAROS ESTANCOS

El peso de cada mamparo estanco se ha calculado utilizando la formulación siguiente:

$$W_i = a \cdot B^b \cdot H^c \cdot R_i^d$$

donde:

- W_i , peso del mamparo estanco nº i (T)
- B, manga de trazado del buque, (m)
- *H*, puntal de trazado del buque, (m)
- R_i , relación de áreas de mamparo nº i.
- A_i , área del mamparo i (m²)
- A_m , área de la sección maestra (m²)
- a, b, c, d, coeficientes cuyo valor para mamparos estancos es:

Coeficiente	Valor
a	0,0141

Coeficiente	Valor
b	1,00
c	1,00
d	1,00

Teniendo en cuenta que el área de la sección maestra es 187,16 m², se obtuvieron los pesos de los mamparos estancos de la siguiente forma:

Sección	x_i (m)	A_i (m ²)	A_i / A_m	$W_i\left(\mathbf{T}\right)$	$W_i \cdot x_i \text{ (T·m)}$
1	4,950	21,426	0,120	1,961	9,707
2	14,850	110,697	0,620	10,132	150,459
3	24,750	130,339	0,730	11,930	295,260
4	34,650	178,543	1,000	16,342	566,238
5	47,850	178,543	1,000	16,342	781,948
6	61,050	178,543	1,000	16,342	997,658
7	70,950	166,208	0,931	15,213	928,735
8	80,850	143,723	0,805	13,155	933,326
9	87,450	114,265	0,640	10,458	845,566
10	97,350	83,920	0,470	7,681	671,703
11	107,250	15,177	0,085	1,389	135,235
TOTAL	52,221			120,944	6315,836

3.4 EL PESO DE LOS ELEMENTOS LOCALIZADOS

Dentro de este concepto se incluye:

3.4.1 El peso de la amurada de proa

Este valor se ha calculado en función de la siguiente tabla, obtenida del libro «Método iterativo para cálculo del peso del equipo», en función de la eslora del buque:

$L\left(\mathbf{m}\right)$	Peso (kg·m ⁻¹)
90	82,4
120	111,6
140	130,0

Interpolando se obtiene que para L = 116,532 m el peso es de 108,225 kg·m⁻¹

Siendo la longitud total de la amurada de 60 m, se obtiene un peso total de 6,494 T.

3.4.2 El peso de las superestructuras

El peso por unidad de longitud de las superestructuras que no fueron consideradas dentro del peso de acero longitudinal continuo, se ha obtenido a partir de los escantillones calculados en el cuaderno 9 para estas zonas. Se calculó un valor de 20,346 T·m⁻¹ con lo que para una longitud de superestructuras de 120 m se obtiene un peso total de 294,16 T.

3.4.3 Las chimeneas

El peso de las chimeneas se ha obtenido en función de la superficie y espesor de chapa, afectado por un coeficiente que tenga en cuenta los refuerzos y otros elementos.

Peso =
$$18.4 \text{ T}$$

3.4.4 Los arbotantes

Al igual que en caso anterior, el peso ha sido estimado en un total de 3 T.

3.4.5 Los palos

De igual modo, en función de las dimensiones principales, se obtiene:

URRUTIA NEBREDA, Juan

Peso = 1,00 T

3.4.6 Las piezas fundidas y forjadas de la zona del codaste

Se puede estimar el peso de este concepto en 12 T, por referencia con otros buques análogos.

3.4.7 El galvanizado y cementado

PROYECTO 1491

Se ha estimado el valor de este concepto en un total de 5 T.

3.4.8 Los errores de laminación, soldadura y margen

Se suele tomar como valor conjunto de los tres conceptos anteriores un 7 % del peso total de acero del buque. La distribución suele ser la siguiente:

• Errores de laminación: $2,5 \% \Rightarrow 62,3 \text{ T}.$

• Soldadura: $2,5 \% \Rightarrow 62,3 \text{ T}.$

• Margen: $2.0 \% \Rightarrow 49.8 \text{ T}.$

Núm	Concepto	Peso (T)	x_G (m)	$z_G(\mathbf{m})$	Peso · x_G (T·m)	Peso $\cdot z_G$ (T·m)
1	Acero longitudinal continuo	1139,106	54,631	8,700	62229,932	9910,220
2	Acero transversal continuo	892,060	53,924	6,500	48103,131	5798,390
3	Mamparos estancos	120,944	52,221	5,500	6315,836	665,190
4	Acero localizado	884,504	52,730	10,116	46639,535	8947,407
4.1	Amurada en proa	6,494	91,018	14,000	591,023	90,909

Núm	Concepto	Peso (T)	x_G (m)	$z_G(\mathbf{m})$	Peso $\cdot x_G$ (T·m)	Peso $\cdot z_G$ (T·m)
4.2	Superestructuras	294,159	54,267	17,700	15963,161	5206,615
4.3	Chimenea	18,400	17,311	24,000	318,514	441,600
4.4	Arbotantes	3,000	13,739	1,900	41,216	5,700
4.5	Palos	1,000	76,592	25,000	76,592	25,000
4.6	Piezas fundidas y forjadas	12,000	1,717	3,000	20,608	36,000
4.7	Galvanizado y cementado	5,000	53,924	4,000	269,618	20,000
4.8	Errores de laminación	62,304	53,924	7,000	3359,662	436,128
4.9	Soldadura	62,304	53,924	7,000	3359,662	436,128
4,10	Margen	49,843	53,924	4,300	2687,729	214,326
4.11	Mamparos de tanques	370,000	53,924	5,500	19951,750	2035,000
5	Peso del acero restante	772,000	53,973	6,500	41666,937	5018,000
	TOTAL	3808,613	53,814	7,966	204955,370	30339,206

4 EL DESGLOSE DEL PESO DEL EQUIPO

El peso del equipo se desglosa según las siguientes partidas:

Núm	Concepto	Peso (T)	x_G (m)	$z_G(\mathbf{m})$	Peso $\cdot x_G$ (T·m)	Peso $\cdot z_G$ (T·m)
1	Pintura y protección catódica	29,500	53,973	9,250	1592,195	272,875
2	Equipo de fondeo	78,500	107,847	11,200	9173,491	952,672
2.1	Anclas	13,770	107,847	11,200	1485,057	154,224
2.2	Cadenas	42,790	107,847	11,200	4614,786	479,248
2.3	Molinetes	20,000	107,847	11,200	2156,946	224,000
2.4	Polines y varios	2,500	107,847	11,200	269,618	28,000
2.5	Estopores	1,300	107,847	11,200	140,201	14,560
2.6	Escobenes	3,500	107,847	11,200	377,466	39,200
2.7	Bombas	1,200	107,847	11,200	129,417	13,440
3	Equipo de amarre	16,300	71,664	11,200	1168,117	182,560
3.1	Equipo de amarre en proa	11,000	107,847	11,200	1186,320	123,200
3.2	Equipo de amarre en popa	5,300	-3,435	11,200	-18,204	59,360
4	Equipo de navegación	2,000	90,674	19,000	181,348	38,000
5	Equipo de gobierno	33,000	-2,748	5,000	-90,674	165,000
6	Hélice transversal y maquinaria	10,000	105,787	2,000	1057,865	20,000

Núm	Concepto	Peso (T)	x_G (m)	z_G (m)	Peso · x_G (T·m)	Peso $\cdot z_G$ (T·m)
7	Aletas estabilizadoras y maquinaria	7,000	64,571	2,000	451,997	14,000
8	Equipo de salvamento	31,000	33,324	20,000	1487,328	892,640
8.1	Aros y chalecos salvavidas	2,000	45,730	20,000	91,459	40,000
8.2	Botes salvavidas y pescantes	21,000	32,678	20,000	1277,972	782,160
8.3	Balsas salvavidas y pescantes	8,000	30,912	20,000	44,513	28,800
8.4	Botes de rescate	2,084	35,213	20,000	73,384	41,680
9	Habilitación	541,500	47,776	12,411	25870,742	6720,550
9.1	Portillos	1,000	50,538	9,600	50,538	9,600
9.2	Ventanas	6,000	50,538	20,000	303,229	120,000
9.3	Escaleras exteriores	2,500	50,538	16,000	126,345	40,000
9.4	Escaleras interiores	45,000	50,538	12,000	2274,214	540,000
9.5	Barandillado	8,000	48,772	20,000	390,174	160,000
9.6	Camarotes	75,000	46,711	16,500	3503,320	1237,500
9.7	Comedor, salón y pasillos	320,000	52,206	12,250	16706,028	3920,000
9.8	Cocina	40,000	16,486	9,350	659,448	374,000
9.9	Oficios	2,000	92,048	11,000	184,096	22,000
9.10	Gambuza seca y pañoles	15,000	15,112	9,350	226,685	140,250
9.11	Gambuza frigorífica	12,000	5,495	9,350	65,945	112,200
9.12	Lavaderos y basuras	15,000	92,048	3,000	1380,720	45,000

Núm	Concepto	Peso (T)	x_G (m)	$z_G(\mathbf{m})$	Peso · x_G (T·m)	Peso $\cdot z_G$ (T·m)
10	Ventilación y aire acondicionado	40,000	55,641	16,000	2225,639	640,000
11	Ascensores	41,000	59,076	16,000	2422,099	656,000
12	Montacargas	28,000	59,076	16,000	1654,117	448,000
13	Equipos incineradores	7,000	16,486	6,000	115,403	42,000
14	Peso del equipo restante	407,000	53,973	12,000	21966,895	4884,000
	TOTAL	1291,992	53,620	12,328	69276,563	15928,297

5 EL DESGLOSE DEL PESO DE LA MAQUINARIA

El peso de la maquinaria se desglosa según las siguientes partidas:

Núm	Concepto	Peso (T)	$x_G(\mathbf{m})$	$z_G(\mathbf{m})$	Peso · x_G (T·m)	Peso $\cdot z_G$ (T·m)
1	Motores propulsores	134,000	26,648	6,000	6129,033	1380,000
2	Grupos auxiliares motor- alternador	97,000	41,452	6,000	1409,382	204,000
3	Reductoras	20,000	51,075	6,000	1021,506	120,000
4	Propulsores de paso variable	6,000	3,701	2,000	22,207	12,000
5	Líneas de ejes	85,000	20,356	2,000	1709,911	168,000
5.1	Ejes	60,000	20,356	2,000	1221,365	120,000
5.2	Chumaceras	12,000	20,356	2,000	223,917	22,000
5.3	Platos de acoplamiento	2,000	20,356	2,000	40,712	4,000
5.4	Prensaestopas mamparo-eje	1,000	20,356	2,000	20,356	2,000
5.5	Cajas de distribución hélices	3,000	20,356	2,000	61,068	6,000
5.6	Bocinas y cierres de bocinas	3,000	20,356	2,000	61,068	6,000
5.7	Acoplamientos flexibles	2,000	20,356	2,000	40,712	4,000
5.8	Frenos de cinta	2,000	24,729	6,000	3313,728	804,000

Núm	Concepto	Peso (T)	x_G (m)	$z_G(\mathbf{m})$	Peso · x_G (T·m)	Peso $\cdot z_G$ (T·m)
6	Maquinaria auxiliar	82,000	53,597	5,268	4394,949	432,000
6.1	Calderas auxiliares	15,000	38,468	6,000	577,017	90,000
6.2	Separadoras centrífugas	4,000	54,954	6,000	219,816	24,000
6.3	Separadores de sentinas	1,000	58,389	6,000	58,389	6,000
6.4	Enfriadores centrales de agua dulce	15,000	50,832	6,000	762,487	90,000
6.5	Compresores de aire de arranque	3,000	50,832	4,000	152,497	12,000
6.6	Otros intercambiadores	10,000	41,216	6,000	412,155	60,000
6.7	Generadores de agua dulce	5,000	77,623	6,000	388,113	30,000
6.8	Planta de tratamiento de aguas residuales	2,000	77,623	6,000	155,245	12,000
6.9	Bombas	27,000	61,823	4,000	1669,229	108,000
7	Tuberías y electricidad	415,000	58,045	3,600	24088,759	1494,000
8	Grúas	3,000	52,206	5,000	156,619	15,000
9	Talleres y maquinaria	10,000	16,830	3,500	168,297	35,000
10	Resto de polines	99,000	58,045	2,000	5746,475	198,000
11	Ventilación en cámara de máquinas	25,000	58,045	4,000	1451,130	100,000
12	Peso de maquinaria restante	313,500	58,045	3,500	18197,171	1097,250

Núm	Concepto	Peso (T)	x_G (m)	$z_G(\mathbf{m})$	Peso $\cdot x_G$ (T·m)	Peso $\cdot z_G$ (T·m)
	TOTAL	1289,500	49,494	3.923	63822.761	5059,250

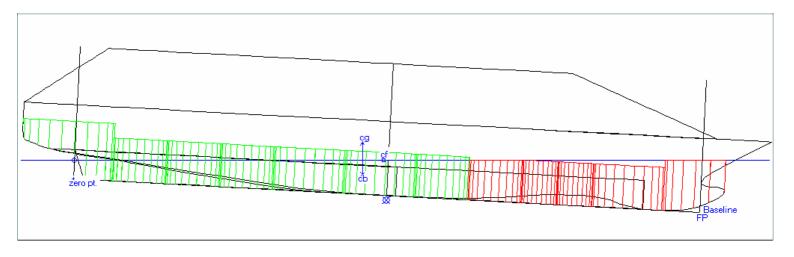
6 EL PESO EN ROSCA

A continuación se presenta el resumen de pesos agrupados por conceptos tal y como han sido vistos anteriormente, incluyendo la posición de su centro de gravedad.

Concepto	Peso (T)	$x_G(\mathbf{m})$	$z_G(\mathbf{m})$
Peso del acero	3808,613	53,814	7,966
Peso del equipo	1291,992	53,620	12,328
Peso de la maquinaria	1289,500	49,494	3,923
Margen	191,703	52,903	8,032
Peso en rosca	6581,808	52,903	8,032

Como se puede ver la diferencia con el peso en rosca calculado durante el dimensionamiento es de 32 T, lo que supone un error del 0,5%, al ser ambos métodos aproximados esta diferencia resulta aceptable.

PROYECTO NÚMERO 1491


Buque de Crucero

Situaciones de carga y resistencia longitudinal

Tutor: Arias Rodrigo, Carlos

Autores: Urrutia Nebreda, Juan

Vicario González, Jorge

1 EL ÍNDICE

1	El índice	2	3
2	La intro	ducción	5
3	Las situa	aciones de carga elegidas. La justificación	6
	3.1 Lo	general	6
	3.2 La	descripción de las situaciones de carga	6
	3.2.1	La salida de puerto a plena carga	6
	3.2.2	La navegación a plena carga	7
	3.2.3	La llegada a puerto a plena carga	8
	3.2.4	La salida de puerto en lastre	9
	3.2.5	La navegación en lastre	9
	3.2.6	La llegada a puerto en lastre	9
4	El anális	sis de las situaciones de carga	10
	4.1 Los	s criterios de estabilidad generales	10
	4.1.1	El Criterio de Estabilidad de la OMI	10
	4.1.2	El Criterio de Estabilidad por pasajeros a una banda	10
	4.1.3	El Criterio de Estabilidad por viento y olas	10
	4.1.4	El Criterio de Estabilidad por timón a una banda	11
	4.2 Los	s resultados de las situaciones de carga	11
	4.2.1	La situación de salida de puerto	11
	4.2.2	La situación de 50 % de consumos	13
	4.2.3	La situación de llegada a puerto	15
	4.2.4	Cuadro resumen de los criterios de estabilidad intacta	17
5	La estab	ilidad intacta con viento y balance intensos	19
	5.1 El p	punto de inundación progresiva	20

	5.2 El	criterio	20
	5.2.1	Los brazos escorantes provocados por el viento $(l_{w1} \ y \ l_{w2})$	20
	5.2.2	El ángulo de balance (θ_1)	21
	5.2.3	El ángulo de escora provocado por un viento constante (θ_0)	22
	5.2.4	El ángulo de inclinación (θ_2)	22
	5.3 La	aplicación del criterio	22
	5.3.1	La aplicación del criterio a la condición de carga definida en 3.2.1	22
	5.3.2	La aplicación del criterio a la condición de carga definida en 3.2.2	23
	5.3.3	La aplicación del criterio a la condición de carga definida en 3.2.3	24
6	5 La estal	pilidad después de averías	25
	6.1 El	índice de subdivisión requerido, R	25
	6.2 El	índice de subdivisión obtenido, A	26
	6.2.1	Los cálculos preliminares	26
	6.2.2	La inundación de un compartimento	26
	6.2.3	La inundación de dos compartimentos	30
	6.2.4	Las conclusiones del método probabilístico	33
7	7 La resis	tencia longitudinal	34
8	3 Los ane	xos	35
	8.1 La	s situaciones de carga	35
	8.1.1	La definición de las situaciones	35
	8.1.2	El resultado de las situaciones de carga	40
9	La bibli	ografía	55

2 LA INTRODUCCIÓN

En el presente cuadernillo se definen las situaciones de carga que se van a considerar para el cálculo de la estabilidad y de la resistencia longitudinal del buque. Para cada una de estas situaciones de carga se trazarán las curvas de estabilidad, comprobando que se cumplen cada una de las normas de estabilidad dictadas por la Administración.

Como se puede comprobar durante el cuaderno la estabilidad del buque llega a resultar excesiva, ya que durante el desarrollo de las formas se obtuvo un *KM* excesivamente elevado. Para evitar que esta excesiva estabilidad repercuta en el confort del pasaje se han dispuesto dos elementos diferentes para reducir los balances del buque, por un lado se disponen aletas estabilizadoras y por otro de tanques estabilizadores pasivos.

Asimismo se comprobará si el buque cumple con las recomendaciones de la resolución A.562(14) de la Organización Marítima Internacional (OMI), en la que se explicita un criterio de viento y balance intensos para determinar la estabilidad al estado intacto de buques de pasaje de eslora igual o superior a 24 metros.

También se comprueba como el buque cumple con las reglas de estabilidad después de averías de SOLAS, para buques de pasaje.

Finalmente se calcula la resistencia longitudinal, observando como en ningún caso se supera el momento flector máximo exigido por Det Norske Veritas.

3 LAS SITUACIONES DE CARGA ELEGIDAS. LA JUSTIFICACIÓN.

3.1 LO GENERAL

Para el estudio de las situaciones de carga se seguirán las normas de la Inspección General de Buques. Consideraremos las siguientes condiciones de carga, y se tratará de llegar con alguna de ellas y con estabilidad suficiente al calado de proyecto para colocar ahí el disco de francobordo.

- Salida de puerto a plena carga.
- Navegación a plena carga.
- Llegada a puerto a plena carga.
- Salida de puerto en lastre.
- Navegación en lastre.
- Llegada a puerto en lastre.

3.2 LA DESCRIPCIÓN DE LAS SITUACIONES DE CARGA

Si en la condición de llegada a puerto se hace necesario lastrar el buque, la Administración exige que se comprueben todas las posibles situaciones de carga intermedias. Por simplificar se considerará únicamente una situación de carga intermedia, al 50 % de consumos.

3.2.1 La salida de puerto a plena carga

100 % carga, 100 % pasaje y 100 % consumos.

La distribución del peso en el barco es:

Concepto	Cantidad	Peso (T)	Posición longitudinal (m)	Posición vertical (m)
Rosca	1	6615,0	52,439	9,345
Pasaje	1	62,5	58,266	16,900

URRUTIA NEBREDA, Juan

Concepto	Cantidad	Peso (T)	Posición longitudinal (m)	Posición vertical (m)
Tripulación	1	18,8	58,266	12,500
Víveres	1	112,5	83,018	9,350
Cargos y Pertrechos	1	49,0	58,266	12,500
Piscina	1	79,0	70,125	17,700
Varios	1	70,0	58,266	12,500
Combustible	100%	786,8	72,140	3,400
Aceite Lubricante	100%	60,8	53,212	1,000
Anti-escora	50%	197,7	33,114	3,563
Lastre	0%	0,0	0,000	0,000
Agua dulce	100%	606,5	85,439	3,732
	$\Delta =$	8640,6	$L_{CG} = 56,684 \text{ m}$	$V_{CG} = 8,421 \text{ m}$

3.2.2 La navegación a plena carga

100 % carga, 100 % pasaje y 50 % consumos.

Concepto	Cantidad	Peso (T)	Posición longitudinal (m)	Posición vertical (m)
Rosca	1	6615,0	52,439	9,345
Pasaje	1	62,5	58,266	16,900
Tripulación	1	18,8	58,266	12,500
Víveres	1	112,5	83,018	9,350
Cargos y Pertrechos	1	51,5	58,266	12,500
Piscina	1	79,0	70,125	17,700
Varios	1	70,0	58,266	12,500
Combustible	50%	395,65	75,319	3,353
Aceite Lubricante	100%	60,8	53,212	1,000

Concepto	Cantidad	Peso (T)	Posición longitudinal (m)	Posición vertical (m)
Anti-escora	50%	197,7	33,114	3,563
Lastre	-%	407,6	96,385	2,995
Agua dulce	50%	283,8	87,43	3,477
	$\Delta =$	8354,7	$L_{CG} = 57,125 \text{ m}$	$V_{CG} = 8,522 \text{ m}$

3.2.3 La llegada a puerto a plena carga

100 % carga, 100 % pasaje y 10 % consumos.

La distribución de pesos en esta situación es la siguiente:

Concepto	Cantidad	Peso (T)	Posición longitudinal (m)	Posición vertical (m)
Rosca	1	6615,0	52,439	9,345
Pasaje	1	62,5	58,266	16,900
Tripulación	1	18,8	58,266	12,500
Víveres	1	112,5	83,018	9,350
Cargos y Pertrechos	1	51,5	58,266	12,500
Piscina	1	79,0	70,125	17,700
Varios	1	70,0	58,266	12,500
Combustible	10%	94,55	65,587	3,400
Aceite Lubricante	100%	60,8	53,212	1,000
Anti-escora	50%	197,7	33,114	3,563
Lastre	-%	819,7	80,262	1,908
Agua dulce	10%	58,27	99,769	3,447
	$\Delta =$	8240,3	$L_{CG} = 55,967 \text{ m}$	$V_{CG} = 8,464 \text{ m}$

3.2.4 La salida de puerto en lastre

0 % carga, 100 % pasaje y 100 % consumos.

Esta situación de carga es idéntica a la mencionada en el punto 3.2.1, ya que este buque no transporta carga.

3.2.5 La navegación en lastre

0% carga, 100 % pasaje y 50 % consumos.

Esta situación de carga es idéntica a la mencionada en el punto 3.2.2, ya que este buque no transporta carga.

3.2.6 La llegada a puerto en lastre

0 % carga, 100 % pasaje y 10 % consumos.

Esta situación de carga es idéntica a la mencionada en el punto 3.2.3, ya que este buque no transporta carga.

4 EL ANÁLISIS DE LAS SITUACIONES DE CARGA

Las normas de seguridad para buques fijadas por la Administración Española exigen el cumplimiento de las siguientes reglas:

4.1 LOS CRITERIOS DE ESTABILIDAD GENERALES

4.1.1 El Criterio de Estabilidad de la OMI

- El área bajo la curva de brazos adrizantes hasta un ángulo de escora de 30 ° no debe ser menor de 0,055 m·rad.
- El área bajo la curva de brazos adrizantes hasta un ángulo de escora de 40 °, o hasta el ángulo de inundación si fuere menor, no debe ser menor de 0,09 m·rad.
- El área bajo la curva de brazos adrizantes entre 30 ° y 40 °, o el ángulo de inundación si fuere menor, no debe ser menor de 0,03 m·rad.
- El brazo adrizante será como mínimo de 0,20 m para un ángulo de escora igual o mayor de 30°.
- El máximo brazo adrizante corresponderá a un ángulo de escora que es preferible que exceda de 30 °, pero que nunca debe ser menor de 25 °.
- La altura metacéntrica inicial no debe ser menor de 0.15 m.

4.1.2 El Criterio de Estabilidad por pasajeros a una banda

El ángulo de escora producido por la posición más desfavorable de los pasajeros no debe exceder de 10 °.

Se considera la posición de 250 pasajeros, con un peso medio de 75 kg, a una misma banda, que dista 11,175 m de crujía. Esta situación es más desfavorable que la exigida por la regla, que hace una distribución de pasajeros a razón de 4 personas por metro cuadrado. Al cumplir con el criterio adoptado se cumplirá sin problemas con el exigido por la norma.

4.1.3 El Criterio de Estabilidad por viento y olas

El ángulo de escora producido por el efecto del viento no debe ser superior a 10°.

Se considera un sobrepresión del viento de 120 Pa, sobre una superficie de 2000 m², y una sobre la línea de base de 15 metros, según la resolución A.562(14).

4.1.4 El Criterio de Estabilidad por timón a una banda

El ángulo de escora por efecto de una virada no debe ser superior a 10 ° cuando se emplea la fórmula que se refiere en la reglamentación para el momento escorante producido por la misma.

Se considera una velocidad de proyecto, v_0 , de 19 nudos.

El ángulo de escora debido a una maniobra de giro no excederá de 10° si se calcula utilizando la fórmula siguiente:

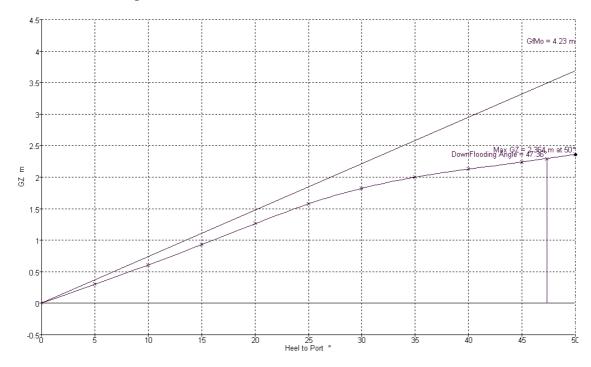
$$M_R = 0.02 \frac{v_0^2}{L} \Delta \left(KG - \frac{T}{2} \right)$$

4.2 LOS RESULTADOS DE LAS SITUACIONES DE CARGA

A continuación se presentan los resultados de la condición de equilibrio y las gráficas de brazos adrizantes para cada una de las condiciones de carga estudiadas.

En aquellas situaciones en que se ha hecho necesario llevar tanques a medio llenar, se ha contemplado la pérdida de estabilidad por la existencia de superficies libres como una reducción del brazo adrizante correspondiente, en esta corrección por superficies libres se tiene en cuenta el efecto de las superficies libres de los tanques estabilizadores (anti-escora).

4.2.1 La situación de salida de puerto


4.2.1.1 La condición de equilibrio para la situación de salida de puerto

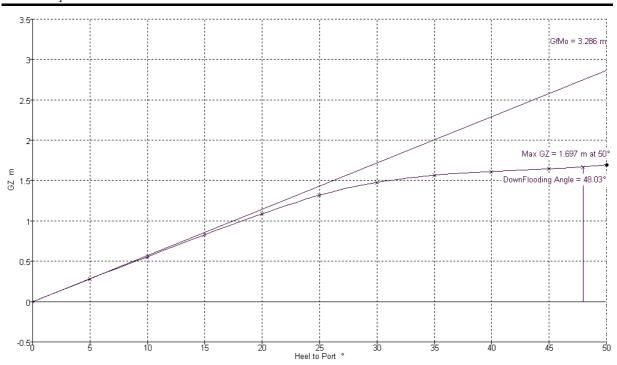
Parámetro	Valor	
$T_{maestra}$	5,400	M
Δ	8640	T
θ	0	o
T_{proa}	5,358	M
T_{popa}	5,442	M

Parámetro	Valor	
Ψ	0,084 (popa)	M
L_{flot}	121,658	M
B_{flot}	22,35	M
S_{mojada}	3036,004	m^2
S_{flot}	2256,672	m^2
CP	0,583	
CB	0,569	
CM	0,98	
CF	0,83	
x_C	1,013 (popa)	M
χ_F	6,761 (popa)	M
z_C	3,147	M
Z_G	8,127	M
BM_T	9,443	M
BM_L	249,745	M
GM_T	4,463	M
Corrección por sup. libre	0,922	M
GM_{Tcorr}	3,541	M
GM_L	244,765	M
KM_T	12,59	M
KM_L	252,892	M
TCI	23,135	T·cm ⁻¹
MTc	180,927	T·m

4.2.1.2 La curva de brazos adrizantes para la situación de salida de puerto

A continuación aparece la curva de brazos adrizantes (GZ) correspondientes a la situación de salida de puerto descrita anteriormente.

4.2.2 La situación de 50 % de consumos


4.2.2.1 La condición de equilibrio para la situación de 50 % de consumos

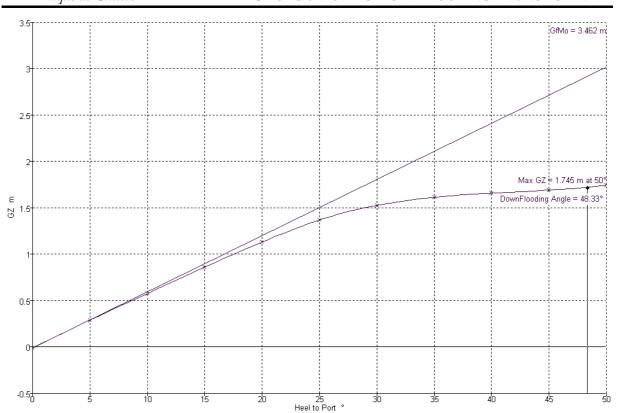
Parámetro	Valor	
$T_{maestra}$	5,281	m
Δ	8354	T
θ	0°	o
T_{proa}	5,165	m
T_{popa}	5,396	m
Ψ	0,231 Aft	m
L_{flot}	121,648	m
B_{flot}	22,35	m
S_{mojada}	2998,999	m^2

Parámetro	Valor			
S_{flot}	2239,615	m^2		
CP	0,579			
CB	0,557			
CM	0,98			
CF	0,824			
x_C	1,155 Aft	m		
χ_F	6,869 Aft	m		
z_C	3,078	m		
\mathcal{Z}_G	9,402	m		
BM_T	9,609	m		
BM_L	252,974	m		
GM_T	3,286	m		
Corrección por sup. libre	0,944	m		
GM_{Tcorr}	2,342	m		
GM_L	246,651	m		
KM_T	12,688	m		
KM_L	256,053	m		
TCI	22,961	T·cm ⁻¹		
MTc	176,824	T⋅m		

4.2.2.2 La curva de brazos adrizantes para la situación de 50 % de consumos

A continuación aparece la curva de brazos adrizantes (GZ) correspondientes a la situación de plena carga descrita anteriormente.

4.2.3 La situación de llegada a puerto


4.2.3.1 La condición de equilibrio para la situación de llegada a puerto

Parámetro	Valor			
$T_{maestra}$	5,195	m		
Δ	8240	T		
θ	0°	o		
T_{proa}	4,792	m		
T_{popa}	5,598	m		
Ψ	0,807 Aft	m		
L_{flot}	125,629	m		
B_{flot}	22,35	m		
S_{mojada}	2988,599	m^2		
S_{flot}	2249,146	m^2		
CP	0,56			

Parámetro	Valor	
СВ	0,514	
CM	0,98	
CF	0,801	
x_C	2,346 Aft	m
\mathcal{X}_F	7,699 Aft	m
z_C	3,054	m
\mathcal{Z}_G	9,356	m
BM_T	9,764	m
BM_L	261,109	m
GM_T	3,462	m
Corrección por sup. libre	0,904	m
GM_{Tcorr}	2,558	m
GM_L	254,807	m
KM_T	12,818	m
KM_L	264,163	m
TCI	23,058	T·cm ⁻¹
MTc	180,165	T⋅m

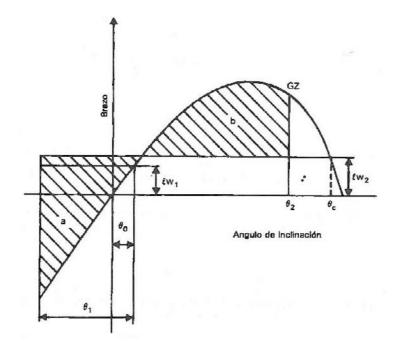
4.2.3.2 La curva de brazos de adrizamiento para la situación de llegada a puerto

A continuación aparece la curva de brazos de adrizamiento para la situación de llegada a puerto (10 % de consumos).

4.2.4 Cuadro resumen de los criterios de estabilidad intacta

Para las situaciones de carga anteriormente mencionadas se obtienen los siguientes resultados para cada uno de los criterios de estabilidad.

Situación de carga	Estab. Dinam. 30 (m·rad)	Estab. ODinam. 40 O(m·rad)	Estab. Dinam. 30 – 40 ° (m·rad)	GZ 30 ° (m)	GZ máximo (°)	GM inicial (m)	Escora pasaje una banda (°)	Escora viento y olas (°)	Escora timón una banda (°)
1	0,492	0,841	0,349	1,823	50	3,541	0,387	2,958	1,543
2	0,476	0,810	0,334	1,477	50	2,342	0,516	3,278	1,727
3	0,499	0,845	0,346	1,528	50	2,558	0,419	3,105	1,498
4	0,492	0,841	0,349	1,823	50	3,541	0,387	2,958	1,543
5	0,476	0,810	0,334	1,477	50	2,342	0,516	3,278	1,727
6	0,499	0,845	0,346	1,528	50	2,558	0,419	3,105	1,498
Valores límite:	0,055	0,09	0,030	0,20	25	0,15	10	10	10


Como se observa el buque cumple sobradamente, en todas las situaciones de carga, los criterios de estabilidad exigidos por la Administración.

5 LA ESTABILIDAD INTACTA CON VIENTO Y BALANCE INTENSOS

Se comprobará a continuación que el buque cumple con las recomendaciones de la resolución A.749 (18) de la OMI. Esta resolución da un criterio de viento y balance intensos (criterio meteorológico) para determinar la estabilidad al estado intacto de buques de pasaje de eslora igual o mayor de 24 metros.

Habrá que demostrar la aptitud del buque para resistir los efectos combinados del viento de través y del balance respecto de cada condición normal de carga, con referencia a la figura, del modo siguiente:

- Se someterá el buque a la presión de un viento constante que actúe perpendicularmente al plano de crujía, lo que dará como resultado el correspondiente brazo escorante (l_{w1}) .
- Se supondrá que a partir del ángulo de equilibrio resultante (θ₀) el buque se balancea por la acción de las olas hasta alcanzar un ángulo de balance (θ₁) a barlovento. Se prestará atención al efecto de un viento constante de forma que se eviten ángulos de escora excesivos (como orientación se sugiere 16 ° o el 80 % del ángulo de inmersión del borde de la cubierta, si este ángulo es menor).
- A continuación se someterá al buque a la presión de una ráfaga de viento que dará como resultado el correspondiente brazo escorante (l_{w2}) .
- En estas circunstancias, el área "b" debe ser superior o igual al área "a".
- En las condiciones normales de carga se deberá tener en cuenta el efecto de las superficies libres.

Para cada situación de carga han de calcularse los siguientes valores:

5.1 EL PUNTO DE INUNDACIÓN PROGRESIVA

Consideraremos el punto de inundación progresiva como el punto más bajo a partir del cual se produce la inundación del espacio interior del buque. El buque es estanco hasta la cubierta de francobordo, pero por encima de ésta, la superestructura aún es capaz de resistir la entrada de agua.

El primer punto en el que se produce la inundación se corresponde con el borde inferior de las ventanas situadas en la cubierta número 5. Estas ventanas de las cubiertas ya han dejado de ser estancas a la intemperie y por tanto son un punto para la posible entrada de agua al interior.

El punto considerado como de inundación progresiva se encuentra a 14,8 m sobre la línea de base. Dicho punto se mantiene sobre la superficie del agua hasta que se alcanza una escora de 47,38°.

5.2 EL CRITERIO

5.2.1 Los brazos escorantes provocados por el viento $(l_{w1} y l_{w2})$

$$l_{w1} = \frac{PAZ}{1000 g \Delta}$$

$$l_{w2} = 1.5 l_{w1}$$

En donde:

- $P = 504 \text{ N} \cdot \text{m}^{-2}$.
- $A = \text{Área lateral proyectada de la parte del buque y de la cubertada que queden por encima de la flotación (m²).$
- Z = Distancia vertical del centro de A al centro del área lateral de la obra viva o aproximadamente hasta un punto correspondiente a la mitad del calado (m).
- $\Delta = \text{desplazamiento (T)}$.
- $g = 9.81 \text{ m} \cdot \text{s}^{-2}$.

5.2.2 El ángulo de balance (θ_1)

$$\theta_1 = 109 k x_1 x_2 \sqrt{r s}$$

En donde:

- k = 1, para este tipo de buque, ya que es de pantoque redondo y no dispone ni de quillas de balance ni de quillas de barra.
- $x_1 = 0.80$, para este tipo de buque, obtenido de tablas (tabla 3.2.2.3-1 de la resolución A.749 de la 18^a Asamblea de la OMI) en función de la relación manga/calado.
- $x_2 = 0.94$, para este tipo de buque, obtenido de tablas (tabla 3.2.2.3-2 de la resolución A.749 de la 18^a Asamblea de la OMI) en función del coeficiente de bloque.
- $r = 0.73 \pm \frac{0.60G}{d}$, con:
 - *OG* = distancia entre el centro de gravedad y la flotación, medido en metros (positivo si el centro de gravedad queda por encima de la flotación y negativo en caso contrario).
 - d = calado medio de trazado del buque (m).
- s = valor obtenido de tablas (tabla 3.2.2.3-4 de la resolución A.749 de la 18^{a} Asamblea de la OMI) en función del periodo de balance, T, calculado de la siguiente manera: $T = \frac{2CB}{\sqrt{GM}}$, con:

$$C = 0.373 + 0.023 \frac{B}{d} - 0.043 \frac{L}{100}$$
, donde:

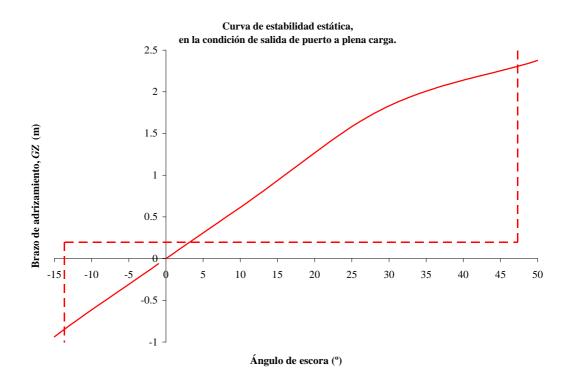
- L =eslora en la flotación del buque, en metros.
- B = manga del buque, en metros.
- GM = altura metacéntrica corregida por el efecto de las superficies libres (m).

5.2.3 El ángulo de escora provocado por un viento constante (θ_0)

Es la intersección de la curva de brazos de palanca con la línea correspondiente al brazo de palanca l_{w1} .

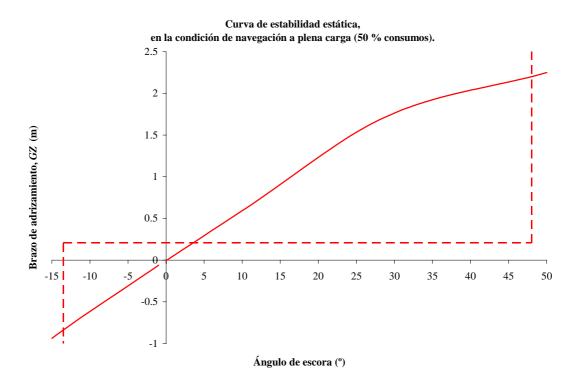
5.2.4 El ángulo de inclinación (θ_2)

Se tomará el menor de los siguientes valores:

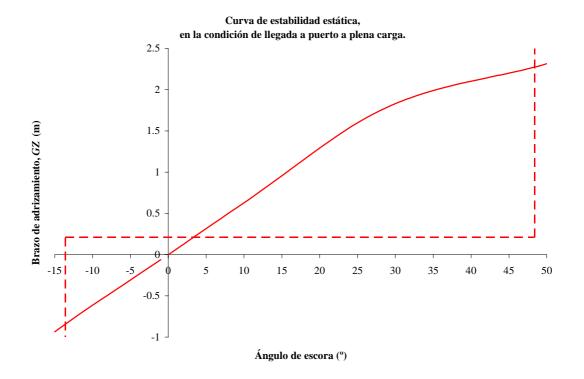

- Ángulo de inundación progresiva.
- Ángulo de la segunda intersección entre el brazo escorante l_{w2} y la curva de brazos de palanca.
- Cincuenta grados (50°).

5.3 LA APLICACIÓN DEL CRITERIO

Dispuestos los valores anteriores tal como se muestra en la figura, se debe cumplir que el área "b", definida por los puntos C, D y E, sea igual o superior al área "a" definida por los puntos A, B y C.


5.3.1 La aplicación del criterio a la condición de carga definida en 3.2.1

El área de la región "b" es superior al de la región "a", por un exceso de 46,44 m.º.


5.3.2 La aplicación del criterio a la condición de carga definida en 3.2.2

El área de la región "b" es superior al de la región "a", por un exceso de 47,71 m.º.

5.3.3 La aplicación del criterio a la condición de carga definida en 3.2.3

El área de la región "b" es superior al de la región "a", por un exceso de 49,94 m.º.

6 LA ESTABILIDAD DESPUÉS DE AVERÍAS

Se comprobará que el buque cumple las reglas de compartimentado y estabilidad para buques de pasaje de IMO, por ser esta una condición del proyecto. Los cálculos relativos a estos apartados los basaremos en la resolución A.265(VIII) de la IMO, que es equivalente a la parte B del Capítulo II del Convenio Internacional para la Seguridad de la Vida Humana en la Mar (SOLAS) de 1960.

El método usado es un método probabilístico, que a diferencia de los métodos determinísticos, pondera la probabilidad de un determinado daño en una determinada posición en el barco y adopta una aproximación más racional a la subdivisión longitudinal considerando la posibilidad de una avería de la que resulte la inundación de un compartimento, o de un número de compartimentos adyacentes, ya sea longitudinal, transversal o verticalmente.

Se estima la probabilidad de que el buque tenga suficiente empuje y estabilidad residual para sobrevivir en cada caso de avería, y con esta probabilidad ponderamos la avería de dichos espacios.

Según el SOLAS debemos calcular dos valores, el índice de subdivisión requerido (R) y el índice de subdivisión obtenido (A). Para que el buque cumpla con los condicionantes de estabilidad después de averías se debe cumplir que A > R.

6.1 EL ÍNDICE DE SUBDIVISIÓN REQUERIDO, R

El índice de subdivisión requerido se calcula como:

$$R = 1 - \frac{1000}{4L_{\rm S} + N + 1500}$$
, (m)

En donde:

- $\bullet \quad N = N_1 + 2 \cdot N_2$
- N_1 = número de personas para las que hay botes salvavidas.
- N_2 = número de personas (incluidos Oficiales y Dotación) que tienen autorización para ir a bordo además de N_1 .

6.2 EL ÍNDICE DE SUBDIVISIÓN OBTENIDO, A

6.2.1 Los cálculos preliminares

Para calcular el índice de subdivisión obtenido se necesita conocer el valor de los calados de compartimentado y mínimo de servicio; así como unos calados intermedios definidos como:

$$d_1 = d_s - \frac{2}{3}(d_s - d_0)$$

$$d_2 = d_s - \frac{1}{3}(d_s - d_0)$$

$$d_3 = d_s - \frac{1}{6}(d_s - d_0)$$

También se calculan los desplazamientos correspondientes a los calados intermedios.

Magnitud	Valor	Unidad
d_s	5,400	m
d_0	5,198	m
B_2	22,350	m
Δ	8614	T
d_1	5,265	m
d_2	5,333	m
d_3	5,366	m
Δ_1	8305,9	T
Δ_2	8460,1	T
Δ_3	8537,7	T

6.2.2 La inundación de un compartimento

El índice de subdivisión obtenido se calcula como:

$$A = \sum a \cdot p \cdot s$$

6.2.2.1 El cálculo del valor del factor de probabilidad de avería, a

El factor se determina como:

$$a = 0.4[1 + \xi_1 + \xi_2 + \xi_{12}]$$

$$\xi_1 = \frac{\chi_1}{L_s}, \quad \xi_2 = \frac{\chi_2}{L_s}, \quad \xi_{12} = \frac{\chi_1 + \chi_2}{L_s}$$

Siendo:

- χ_1 , la distancia desde el límite popel de L_s al límite popel del compartimento considerado.
- χ_2 , la distancia desde el límite popel de L_s al límite proel del compartimento considerado.

Compartimento	χ1	ξ_1	χ2	ξ_2	ξ_{12}	a
1	-9,763	-0,076	7,425	0,058	-0,018	0,385
2	7,425	0,058	17,325	0,134	0,192	0,554
3	17,325	0,134	27,225	0,211	0,346	0,676
4	27,225	0,211	37,125	0,288	0,499	0,799
5	37,125	0,288	50,325	0,390	0,678	0,943
6	50,325	0,390	63,525	0,493	0,883	1,107
7	63,525	0,493	73,425	0,500	1,000	1,197
8	73,425	0,500	83,325	0,500	1,000	1,200
9	83,325	0,500	89,925	0,500	1,000	1,200
10	89,925	0,500	96,525	0,500	1,000	1,200
11	96,525	0,500	109,725	0,500	1,000	1,200
12	109,725	0,500	119,204	0,500	1,000	1,200

6.2.2.2 El cálculo del valor del efecto de la variación en la extensión longitudinal de la avería sobre la probabilidad de que se inunde el compartimento, p

El factor *p* se calcula como:

$$p = W \left[4,46 \left(\frac{\ell}{\lambda} \right)^2 - 6,20 \left(\frac{\ell}{\lambda} \right)^3 \right]$$

Siendo:

- ℓ , la longitud del compartimento.
- W = 1,0.
- $\lambda = L_s$.

Compartimento	W	λ	ℓ	p
1	1	128,907	17,188	0,065
2	1	128,907	9,900	0,023
3	1	128,907	9,900	0,023
4	1	128,907	9,900	0,023
5	1	128,907	13,200	0,040
6	1	128,907	13,200	0,040
7	1	128,907	9,900	0,023
8	1	128,907	9,900	0,023
9	1	128,907	6,600	0,011
10	1	128,907	6,600	0,011
11	1	128,907	13,200	0,040
12	1	128,907	9,479	0,022

6.2.2.3 El cálculo del valor del efecto de francobordo, estabilidad y escora en el estado final de inundación, s

Para cada compartimento se toma $s = 0.45 s_1 + 0.33 s_2 + 0.22 s_3$.

$$s_i = 4.9 \left[\left(\frac{F_1}{B_2} - \frac{\tan(\theta)}{2} \right) \left(GM_R - MM_S \right) \right]^{\frac{1}{2}}$$

Siendo:

- F_1 es el francobordo de avería medio efectivo, que es igual a la proyección de la parte del buque comprendida entre la cubierta de cierre y la flotación después de la avería y entre 1/3 de L_s a proa y popa de la maestra y divida por 2/3 L_s .
- θ el ángulo de escora debido a la inundación asimétrica en el estado final después del equilibrado.
- GM_R la mayor altura metacéntrica requerida en estado intacto a ese calado.
- *MM*_S la reducción en altura metacéntrica como resultado de inundación calculada para el buque adrizado en la etapa final de inundación.
- Se toman los $GM_R MM_s$ obtenidos mediante ensayos en el programa Hidromax.

Compartimento	$T_{flot\ popa}$	$T_{flot\ proa}$	F_1	θ_1	GM_{R1}	MM_{S1}	s_1
1	5,977	4,955	2,534	0,000	2,825	1,275	2,054
2	6,152	4,926	2,461	0,000	1,550	0,000	2,024
3	6,260	5,000	2,370	0,000	1,550	0,000	1,987
4	6,289	5,174	2,269	0,000	2,535	0,985	1,944
5	6,360	5,552	2,044	0,000	2,779	1,229	1,845
6	6,126	6,012	1,931	0,000	2,749	1,199	1,793
7	5,813	6,139	2,024	0,000	2,552	1,002	1,836
8	5,621	6,268	2,056	0,000	2,537	0,987	1,850
9	5,552	5,832	2,308	0,000	2,196	0,646	1,960
10	5,524	5,728	2,374	0,000	2,155	0,605	1,988
11	5,423	5,965	2,306	0,000	2,181	0,631	1,960
12	5,580	5,344	2,538	0,000	1,550	0,000	2,056

θ_2	GM_{R2}	MM_{S2} s_2 θ_3	GM_{R3}	MM_{S3} s_3 s $a \cdot p \cdot s$
0,000	2,821	1,271 2,054 0,000	2,819	1,269 2,054 2,054 0,051

Buaue	de	Crucero
-------	----	---------

$ heta_2$	GM_{R2}	MM_{S2}	S 2	θ_3	GM_{R3}	MM_{S3}	S 3	S	a•p•s
0,000	2,597	1,047 2	,024	0,000	2,596	1,046	2,024	2,024	0,026
0,000	2,633	1,083 1	,987	0,000	2,632	1,082	1,987	1,987	0,032
0,000	2,533	0,983 1	,944	0,000	2,532	0,982	1,944	1,944	0,037
0,000	2,776	1,226 1	,845	0,000	2,774	1,224	1,845	1,845	0,070
0,000	2,746	1,196 1	,793	0,000	2,744	1,194	1,793	1,793	0,080
0,000	2,550	1,000 1	,836	0,000	2,549	0,999	1,836	1,836	0,052
0,000	2,535	0,985 1	,850	0,000	2,534	0,984	1,850	1,850	0,052
0,000	2,195	0,645 1	,960	0,000	2,195	0,645	1,960	1,960	0,026
0,000	2,154	0,604 1	,988	0,000	2,153	0,603	1,988	1,988	0,026
0,000	2,180	0,630 1	,960	0,000	2,179	0,629	1,960	1,960	0,094
0,000	1,550	0,000 2	,056	0,000	1,550	0,000	2,056	2,056	0,053

6.2.3 La inundación de dos compartimentos

6.2.3.1 El cálculo del valor del factor de avería, a

Compartimento	χ1	ξ1	χ_2	ξ_2	ξ ₁₂	a
1 + 2	-9,763	-0,076	17,325	0,134	0,059	0,447
2 + 3	7,425	0,058	27,225	0,211	0,269	0,615
3 + 4	17,325	0,134	37,125	0,288	0,422	0,738
4 + 5	27,225	0,211	50,325	0,390	0,602	0,881
5 + 6	37,125	0,288	63,525	0,493	0,781	1,025
6 + 7	50,325	0,390	73,425	0,500	0,960	1,140
7 + 8	63,525	0,493	83,325	0,500	1,000	1,197
8 + 9	73,425	0,500	89,925	0,500	1,000	1,200

Buque de Crucero

Compartimento	χ1	ξ_1	χ2	ξ_2	ξ_{12}	a
9 + 10	83,325	0,500	96,525	0,500	1,000	1,200
10 + 11	89,925	0,500	109,725	0,500	1,000	1,200
11 + 12	96,525	0,500	119,204	0,500	1,000	1,200

6.2.3.2 El cálculo del valor del efecto de la variación en la extensión longitudinal de la avería sobre la probabilidad de que se inunde el compartimento, p

Compartimento	W	λ	1	p
1 + 2	1	128,907	27,088	0,051
2 + 3	1	128,907	19,800	0,036
3 + 4	1	128,907	19,800	0,036
4 + 5	1	128,907	23,100	0,044
5 + 6	1	128,907	26,400	0,054
6 + 7	1	128,907	23,100	0,044
7 + 8	1	128,907	19,800	0,036
8 + 9	1	128,907	16,500	0,026
9 + 10	1	128,907	13,200	0,018
10 + 11	1	128,907	19,800	0,032
11 + 12	1	128,907	22,679	0,043

6.2.3.3 El cálculo del valor del efecto de francobordo, estabilidad y escora en el estado final de inundación, s

Compartimento	$T_{flot\ popa}$	$T_{flot\ proa}$	F_1	θ_1	GM_{R1}	MM_{S1}	s_1
1 + 2	7,415	3,968	2,309	0,000	2,220	1,275	1,814

D	7	
Виаие	ae	Crucero

Compartimento	$T_{flot\ popa}$	$T_{flot\ proa}$	F_1	θ_1	GM_{R1}	MM_{S1}	s_1
2 + 3	7,346	4,294	2,180	0,000	0,095	-0,850	1,777
3 + 4	7,371	4,654	1,988	0,000	1,930	0,985	1,722
4 + 5	7,353	5,359	1,644	0,000	3,005	2,060	1,617
5 + 6	7,011	6,427	1,281	0,000	3,146	2,201	1,499
6 + 7	6,251	7,217	1,266	0,000	2,993	2,048	1,494
7 + 8	5,559	7,667	1,387	0,000	2,844	1,899	1,534
8 + 9	5,225	7,387	1,694	0,000	2,513	1,568	1,633
9 + 10	5,184	6,734	2,041	0,000	2,155	1,210	1,737
10 + 11	4,889	7,131	1,990	0,000	2,137	1,192	1,722
11 + 12	5,113	6,388	2,250	0,000	1,576	0,631	1,797

θ_2	$\overline{GM_{R2}}$	MM_{S2}	<i>S</i> ₂	θ_3	GM_{R3}	MM_{S3}	<i>S</i> ₃	S	a•p•s
0,000	3,177	2,232	1,649	0,000	3,172	2,227	1,467	1,683	0,039
0,000	3,075	2,130	1,609	0,000	3,070	2,125	1,422	1,644	0,036
0,000	2,950	2,005	1,547	0,000	2,946	2,001	1,352	1,583	0,042
0,000	2,997	2,052	1,430	0,000	2,994	2,049	1,216	1,467	0,057
0,000	3,137	2,192	1,295	0,000	3,132	2,187	1,053	1,334	0,073
0,000	2,986	2,041	1,289	0,000	2,983	2,038	1,046	1,328	0,067
0,000	2,838	1,893	1,336	0,000	2,836	1,891	1,103	1,374	0,059
0,000	2,509	1,564	1,448	0,000	2,507	1,562	1,237	1,485	0,046
0,000	2,153	1,208	1,565	0,000	2,152	1,207	1,372	1,600	0,035
0,000	2,135	1,190	1,548	0,000	2,134	1,189	1,353	1,583	0,060
0,000	1,575	0,630	1,631	0,000	1,574	0,629	1,447	1,665	0,085

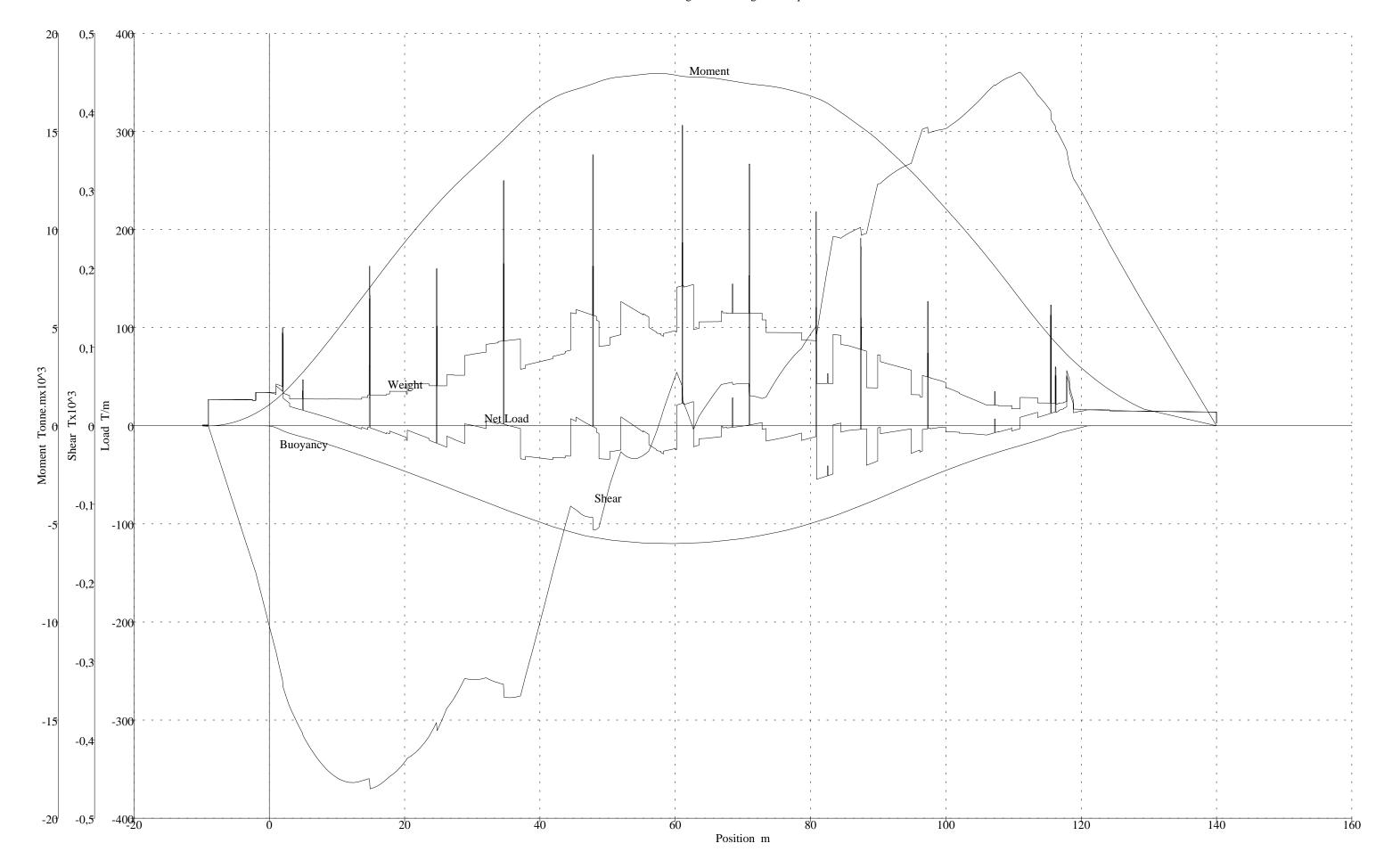
6.2.4 Las conclusiones del método probabilístico

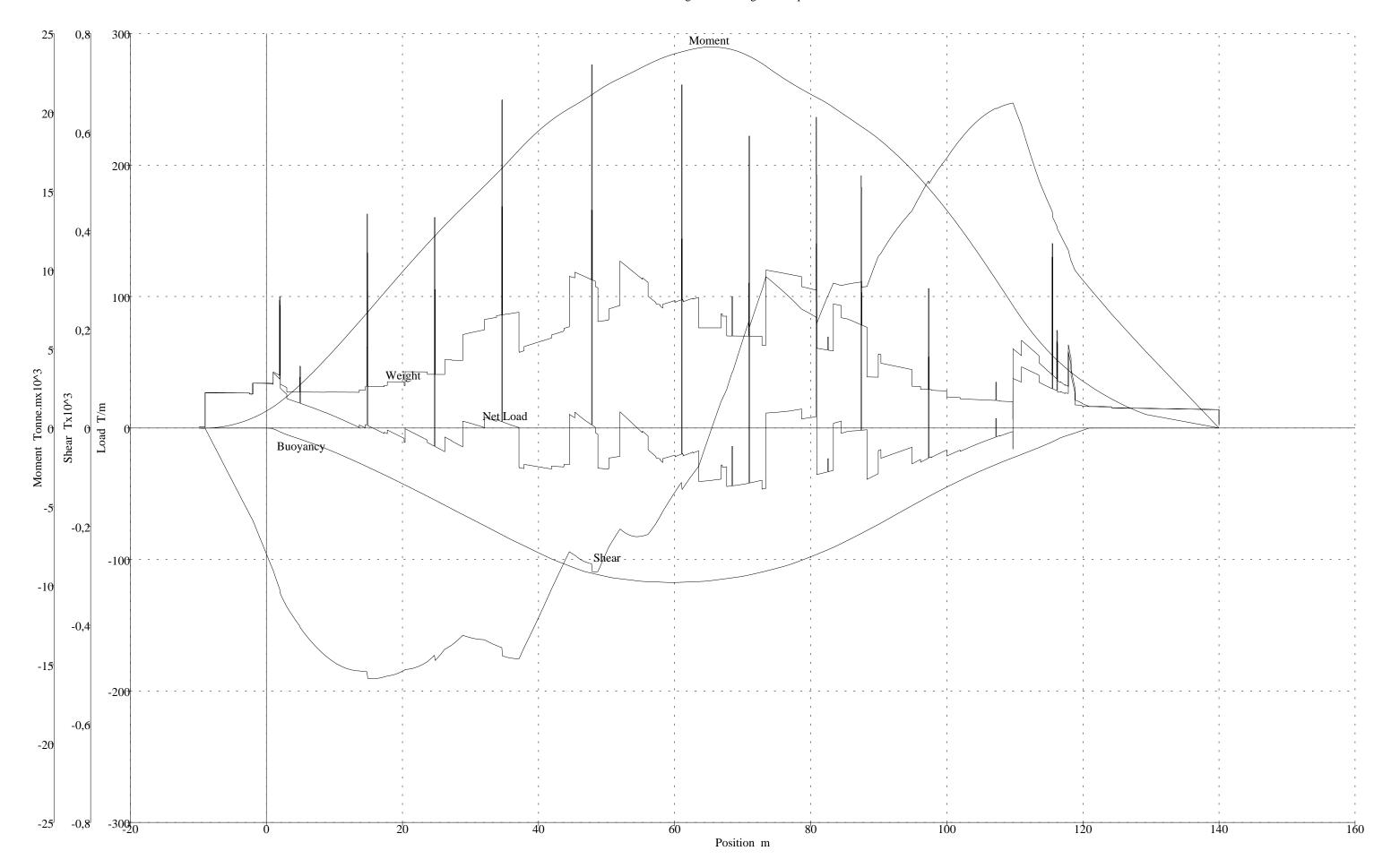
Obligando a que el índice de subdivisión obtenido A, tanto para un compartimento como para dos sea igual al índice de subdivisión requerido obtenemos los valores mínimos de GM que debe tener el barco para que la estabilidad tras averías sea aceptable. Para cada desplazamiento, o lo que es lo mismo, para cada calado tomaremos el mayor de los GM obtenidos como GM mínimo.

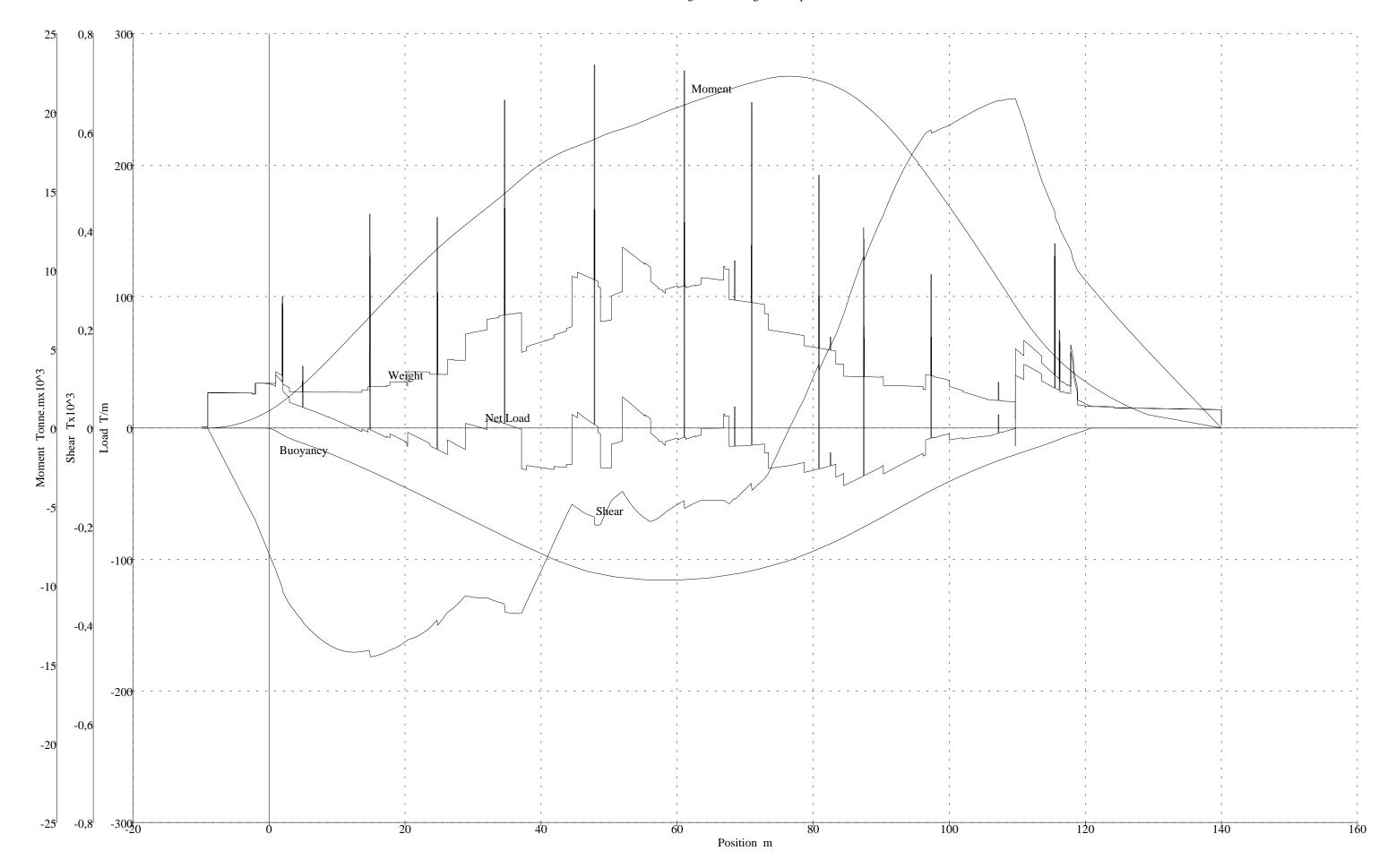
Así, repitiendo el proceso y obteniendo el GM_{minimo} para cada desplazamiento podríamos trazar la curva de requerimientos de estabilidad en función del desplazamiento. Con esta curva, una vez que el buque esté en servicio, es inmediato ver si se cumplen los requerimientos de estabilidad tras averías.

Como se puede ver en la siguiente tabla el GM_{minimo} más alto obtenido en los cálculos anteriores es siempre inferior a los GM obtenidos para cada situación de carga, con lo que podemos concluir que el barco cumple con las condiciones de estabilidad después de averías.

Situación de carga	GM _{mínimo} (m)	GM _{obtenido} (m)
Salida de puerto		4,230
50% de consumos	s 3,177	3,286
Llegada a puerto		3,462


7 LA RESISTENCIA LONGITUDINAL


En toda condición de carga existe una distribución de pesos y empujes a lo largo de todo el buque que da lugar a que cada sección deba soportar una serie de momentos flectores y esfuerzos cortantes. La sociedad de clasificación exige que los momentos flectores y los esfuerzos cortantes presentes en el barco no superen en ningún caso uno valores máximos. Estos valores máximos se calcularon al hacer el escantillonado de la cuaderna maestra, en el cuaderno 6.


A continuación aparecen las curvas de momentos flectores y esfuerzos cortantes en aguas tranquilas para las diferentes condiciones de carga. La distribución del peso en rosca utilizada es la calculada en el cuaderno 8.

Como se puede apreciar en la siguiente tabla y en la gráfica los valores máximos obtenidos para aguas tranquilas están dentro de los valores límite establecidos por la sociedad de clasificación.

		Valo			
Posición		100 % Consumos	50 % Consumos	10 % Consumos	Valor límite
	dentro de 0,4L	176·10³ kN⋅m	238·10 ³ kN·m	220·10 ³ kN·m	265·10 ³ kN·m
Momento flector	en 0,1 <i>L</i> desde los extremos	30·10 ³ kN·m	23·10 ³ kN·m	$23 \cdot 10^3 \text{ kN} \cdot \text{m}$	$40 \cdot 10^3 \text{ kN} \cdot \text{m}$
	En los extremos	0.10^3 kN·m	$0.10^3 \text{ kN} \cdot \text{m}$	0.10^3 kN·m	0.10^3 kN·m
	Entre 0,7 <i>L</i> y 0,85 <i>L</i> desde popa	4.10^3 kN	6.10^3 kN	7·10³ kN	11·10 ³ kN
Esfuerzos cortantes	entre 0,4 <i>L</i> y 0,6 <i>L</i> desde popa	$2 \cdot 10^3 \text{ kN}$	3.10^3 kN	$2 \cdot 10^3 \text{ kN}$	9.10^3 kN
	entre $0.15L$ y 0.3 L desde popa	$4\cdot10^3$ kN	5.10^3 kN	5.10^3 kN	$11\cdot10^3 \text{ kN}$
	En los extremos	0.10^3 kN	0.10^3 kN	0.10^3 kN	0.10^3 kN

8 LOS ANEXOS

8.1 LAS SITUACIONES DE CARGA

8.1.1 La definición de las situaciones

8.1.1.1 La salida de puerto a plena carga

100 % carga, 100 % pasaje y 100 % consumos.

La distribución del peso en el barco es:

Concepto	Cantidad	Peso (T)	Posición longitudinal (m)	Posición vertical (m)
Rosca	1	6615,0	52,439	9,345
Pasaje	1	62,5	58,266	16,900
Tripulación	1	18,8	58,266	12,500
Víveres	1	112,5	83,018	9,350
Cargos y Pertrechos	1	49,0	58,266	12,500
Piscina	1	79,0	70,125	17,700
Varios	1	70,0	58,266	12,500
Combustible 1 (Babor)	98%	129,3	70,536	3,369
Combustible 2 (Babor)	98%	163,6	77,122	3,369
Aceite Lubricante (Babor)	100%	30,4	53,212	1,000
Anti-escora	50%	197,7	33,114	3,563
Lastre 1	0%	0,0	4,397	4,321
Lastre 2	0%	0,0	12,899	4,090
Lastre 3	0%	0,0	22,610	3,753
Lastre 4 babor	0%	0,0	44,533	0,884
Lastre 4 estribor	0%	0,0	44,533	0,884
Lastre 5 babor	0%	0,0	56,907	0,859

Concepto	Cantidad	Peso (T)	Posición longitudinal (m)	Posición vertical (m)
Lastre 5 estribor	0%	0,0	56,907	0,859
Lastre 6 babor	0%	0,0	68,277	0,821
Lastre 6 estribor	0%	0,0	68,277	0,821
Lastre 7 babor	0%	0,0	78,028	0,848
Lastre 7 estribor	0%	0,0	78,028	0,848
Lastre 8	0%	0,0	113,083	4,948
Tk sedimentación (Babor)	98%	46,8	65,587	3,367
Tk sedimentación (Estribor)	98%	46,8	65,588	3,367
Tk SD 1 (Babor)	98%	45,9	65,589	3,367
Tk SD 2 (Estribor)	98%	45,9	65,589	3,367
Agua dulce 2 (Babor)	98%	102,8	85,721	3,407
Agua dulce 3 (Babor)	98%	72,5	92,272	3,560
Agua dulce 4 (Babor)	98%	58,3	99,769	3,447
Agua dulce 1 (Babor)	98%	56,0	61,463	4,691
Combustible 1 (Estribor)	98%	129,3	70,537	3,369
Combustible 2 (Estribor)	98%	163,6	77,127	3,369
Agua dulce 1 (Estribor)	98%	56,0	61,463	4,691
Agua dulce 2 (Estribor)	98%	102,8	85,734	3,407
Agua dulce 3 (Estribor)	98%	72,5	92,296	3,561
Agua dulce 4 (Estribor)	98%	58,3	99,769	3,447
Aceite Lubricante (Estribor)	98%	30,4	53,212	1,000
	$\Delta =$	8640,6	$L_{CG} = 56,684 \text{ m}$	$V_{CG} = 8,421 \text{ m}$

8.1.1.2 La navegación a plena carga

100 % carga, 100 % pasaje y 50 % consumos.

Concepto	Cantidad	Peso (T)	Posición longitudinal (m)	Posición vertical (m)
Rosca	1	6615,0	52,439	9,345
Pasaje	1	62,5	58,266	16,900
Tripulación	1	18,8	58,266	12,500
Víveres	1	112,5	83,018	9,350
Cargos y Pertrechos	1	51,5	58,266	12,500
Piscina	1	79,0	70,125	17,700
Varios	1	70,0	58,266	12,500
Combustible 1 (Babor)	0%	0,0	70,535	3,400
Combustible 2 (Babor)	0%	0,0	70,535	3,400
Aceite Lubricante (Babor)	98%	166,9	77,120	3,400
Anti-escora	98%	166,9	77,120	3,400
Lastre 1	98%	47,7	65,586	3,400
Lastre 2	0%	0,0	65,586	3,400
Lastre 3	0%	0,0	65,588	3,400
Lastre 4 babor	30%	14,1	65,588	2,070
Lastre 4 estribor	98%	30,4	53,212	1,000
Lastre 5 babor	98%	30,4	53,212	1,000
Lastre 5 estribor	98%	104,9	85,722	3,438
Lastre 6 babor	98%	104,9	85,722	3,438
Lastre 6 estribor	0%	0,0	92,273	3,588
Lastre 7 babor	98%	74,0	92,273	3,588
Lastre 7 estribor	0%	0,0	99,769	3,447
Lastre 8	0%	0,0	99,769	3,447

D	7	
Виаие	ae	Crucero

Concepto	Cantidad	Peso (T)	Posición longitudinal (m)	Posición vertical (m)
Tk sedimentación (Babor)	0%	0,0	61,462	4,750
Tk sedimentación (Estribor)	0%	0,0	61,462	4,750
Tk SD 1 (Babor)	50%	197,7	33,189	2,654
Tk SD 2 (Estribor)	0%	0,0	4,397	4,321
Agua dulce 2 (Babor)	0%	0,0	12,899	4,090
Agua dulce 3 (Babor)	0%	0,0	22,610	3,753
Agua dulce 4 (Babor)	0%	0,0	44,533	0,884
Agua dulce 1 (Babor)	0%	0,0	44,533	0,884
Combustible 1 (Estribor)	0%	0,0	56,907	0,859
Combustible 2 (Estribor)	0%	0,0	56,907	0,859
Agua dulce 1 (Estribor)	0%	0,0	68,277	0,821
Agua dulce 2 (Estribor)	0%	0,0	68,277	0,821
Agua dulce 3 (Estribor)	98%	97,1	78,028	0,848
Agua dulce 4 (Estribor)	98%	97,1	78,028	0,848
Aceite Lubricante (Estribor)	98%	213,4	113,083	4,948
	$\Delta =$	8354,7	$L_{CG} = 57,125 \text{ m}$	$V_{CG} = 8,522 \text{ m}$

8.1.1.3 La llegada a puerto a plena carga

100 % carga, 100 % pasaje y 10 % consumos.

La distribución de pesos en esta situación es la siguiente:

Concepto	Cantidad	Peso (T)	Posición longitudinal (m)	Posición vertical (m)
Rosca	1	6615,0	52,439	9,345
Pasaje	1	62,5	58,266	16,900
Tripulación	1	18,8	58,266	12,500

Concepto	Cantidad	Peso (T)	Posición longitudinal (m)	Posición vertical (m)
Víveres	1	112,5	83,018	9,350
Cargos y Pertrechos	1	51,5	58,266	12,500
Piscina	1	79,0	70,125	17,700
Varios	1	70,0	58,266	12,500
Combustible 1 (Babor)	0%	0,0	70,535	3,400
Combustible 2 (Babor)	0%	0,0	70,535	3,400
Aceite Lubricante (Babor)	0%	0,0	77,120	3,400
Anti-escora	0%	0,0	77,120	3,400
Lastre 1	98%	47,7	65,586	3,400
Lastre 2	0%	0,0	65,586	3,400
Lastre 3	0%	0,0	65,588	3,400
Lastre 4 babor	98%	46,8	65,588	3,400
Lastre 4 estribor	98%	30,4	53,212	1,000
Lastre 5 babor	0%	0,0	85,722	3,438
Lastre 5 estribor	0%	0,0	92,273	3,588
Lastre 6 babor	0%	0,0	99,769	3,447
Lastre 6 estribor	0%	0,0	61,462	4,750
Lastre 7 babor	50%	197,7	33,189	2,654
Lastre 7 estribor	0%	0,0	4,397	4,321
Lastre 8	0%	0,0	12,899	4,090
Tk sedimentación (Babor)	0%	0,0	22,610	3,753
Tk sedimentación (Estribor)	0%	0,0	44,533	0,884
Tk SD 1 (Babor)	0%	0,0	44,533	0,884
Tk SD 2 (Estribor)	98%	71,7	56,907	0,859

Concepto	Cantidad	Peso (T)	Posición longitudinal (m)	Posición vertical (m)
Agua dulce 2 (Babor)	98%	71,7	56,907	0,859
Agua dulce 3 (Babor)	98%	134,4	68,277	0,821
Agua dulce 4 (Babor)	98%	134,4	68,277	0,821
Agua dulce 1 (Babor)	98%	97,1	78,028	0,848
Combustible 1 (Estribor)	98%	97,1	78,028	0,848
Combustible 2 (Estribor)	98%	213,4	113,083	4,948
Agua dulce 1 (Estribor)	0%	0,0	61,462	4,750
Agua dulce 2 (Estribor)	0%	0,0	85,722	3,438
Agua dulce 3 (Estribor)	0%	0,0	92,273	3,588
Agua dulce 4 (Estribor)	98%	58,3	99,769	3,447
Aceite Lubricante (Estribor)	98%	30,4	53,212	1,000
	$\Delta =$	8240,3	$L_{CG} = 55,967 \text{ m}$	$V_{CG} = 8,464 \text{ m}$

8.1.2 El resultado de las situaciones de carga

8.1.2.1 La salida de puerto a plena carga

Escora (°)	Desplaza miento (T)	Calado a proa (m)	Calado a popa (m)	Eslora en la flotación (m)		Manga en la flotación (m)	Área mojada (m²)
0	8640	5,245	5,555	122,343	5,539	22,350	3046,129
1	8641	5,245	5,554	122,343	5,540	22,353	3045,889
2	8641	5,246	5,549	122,325	5,603	22,364	3044,821
3	8641	5,246	5,543	122,306	5,743	22,381	3043,168
4	8641	5,245	5,535	122,450	5,887	22,405	3040,879
5	8641	5,245	5,524	122,615	6,033	22,435	3039,497
6	8641	5,244	5,511	122,778	6,176	22,473	3037,819

Escora (°)	Desplaza miento (T)	Calado a proa (m)	Calado a popa (m)	Eslora en la flotación (m)		Manga en la flotación (m)	Área mojada (m²)
7	8641	5,243	5,495	122,940	6,315	22,518	3035,760
8	8641	5,241	5,477	123,106	6,459	22,569	3033,073
9	8641	5,240	5,456	123,273	6,602	22,628	3031,576
10	8641	5,238	5,433	123,445	6,741	22,695	3029,623
11	8641	5,235	5,407	123,625	6,877	22,768	3027,631
12	8641	5,232	5,378	123,813	7,009	22,849	3024,927
13	8641	5,229	5,348	123,979	7,141	22,938	3023,485
14	8641	5,225	5,314	124,135	7,274	23,034	3021,757
15	8641	5,220	5,278	124,285	7,404	23,133	3020,109
16	8641	5,215	5,239	124,418	7,529	23,232	3018,529
17	8641	5,209	5,198	124,535	7,651	23,332	3016,184
18	8641	5,201	5,154	124,651	7,769	23,435	3014,984
19	8641	5,192	5,107	124,762	7,883	23,539	3013,726
20	8641	5,182	5,058	124,864	7,993	23,643	3012,491
21	8641	5,171	5,005	124,957	8,103	23,727	3011,155
22	8641	5,158	4,949	125,044	8,211	23,741	3009,592
23	8640	5,142	4,890	125,129	8,315	23,673	3007,395
24	8640	5,124	4,827	125,218	8,413	23,536	3004,423
25	8640	5,104	4,760	125,303	8,507	23,344	3000,738
26	8640	5,081	4,689	125,410	8,595	23,113	2996,386
27	8640	5,054	4,614	125,705	8,679	22,853	2990,741
28	8640	5,024	4,535	126,093	8,757	22,583	2985,491
29	8640	4,991	4,451	127,081	8,829	22,318	2980,166
30	8640	4,954	4,362	127,693	8,897	22,063	2975,023

Escora (°)	mianta	Calado a proa (m)	Calado a popa (m)	Eslora en la flotación (m)		Manga en la flotación (m)	Área mojada (m²)
31	8640	4,913	4,268	128,023	8,959	21,825	2970,009
32	8640	4,868	4,169	128,377	9,017	21,603	2965,057
33	8640	4,820	4,065	128,620	9,073	21,399	2960,664
34	8640	4,767	3,955	128,781	9,125	21,215	2956,397
35	8640	4,709	3,839	128,937	9,171	21,047	2952,244
36	8640	4,647	3,718	129,086	9,211	20,901	2948,314
37	8640	4,580	3,590	129,220	9,247	20,776	2945,439
38	8640	4,509	3,456	129,353	9,277	20,671	2941,394
39	8640	4,432	3,315	129,492	9,302	20,584	2941,419
40	8640	4,349	3,167	129,641	9,322	20,514	2937,651
41	8640	4,261	3,012	129,678	9,336	20,461	2935,240
42	8640	4,167	2,849	129,700	9,346	20,425	2932,454
43	8640	4,067	2,678	129,721	9,350	20,404	2930,054
44	8640	3,960	2,498	129,742	9,349	20,397	2927,158
45	8640	3,847	2,309	129,685	9,343	20,407	2923,965
46	8640	3,727	2,109	129,601	9,332	20,432	2921,420
47	8640	3,599	1,900	129,510	9,316	20,473	2916,854
48	8640	3,463	1,679	129,413	9,296	20,529	2912,313
49	8640	3,319	1,446	129,293	9,270	20,593	2908,126
50	8640	3,165	1,201	129,165	9,244	20,668	2902,983
Área de la flotación (m²)	Coef, prismático	Coef, de bloque	LCB (m)	VCB desde flotación (m)	GZ (m)	LCF (m)	TCF (m)
2266,879	0,581	0,556	56,749	2,250	0,000	51,049	0,000

Buque de Crucero	Buaue	de	Crucero
------------------	-------	----	---------

Área de la flotación (m²)	Coef, prismático	Coef, de bloque	LCB (m)	VCB desde flotación (m)	GZ (m)	LCF (m)	TCF (m)
2266,542	0,581	0,556	56,746	2,250	0,062	51,059	-0,176
2265,250	0,582	0,550	56,752	2,252	0,124	51,097	-0,352
2263,300	0,582	0,536	56,752	2,254	0,185	51,153	-0,527
2260,648	0,582	0,522	56,753	2,257	0,247	51,230	-0,702
2258,870	0,582	0,508	56,753	2,261	0,308	51,291	-0,878
2256,798	0,582	0,495	56,753	2,266	0,370	51,365	-1,054
2254,373	0,582	0,482	56,754	2,272	0,431	51,455	-1,229
2251,368	0,583	0,470	56,755	2,278	0,492	51,569	-1,403
2249,639	0,583	0,458	56,755	2,285	0,553	51,659	-1,578
2247,531	0,584	0,446	56,756	2,293	0,614	51,768	-1,753
2245,473	0,584	0,435	56,757	2,302	0,677	51,886	-1,927
2242,783	0,585	0,425	56,758	2,312	0,741	52,030	-2,099
2241,428	0,587	0,415	56,759	2,322	0,805	52,150	-2,274
2239,809	0,588	0,405	56,760	2,333	0,870	52,285	-2,447
2238,204	0,590	0,396	56,762	2,345	0,936	52,426	-2,621
2236,530	0,592	0,387	56,763	2,357	1,003	52,573	-2,796
2233,935	0,594	0,379	56,765	2,370	1,069	52,748	-2,970
2232,292	0,597	0,371	56,766	2,384	1,136	52,900	-3,148
2230,390	0,599	0,364	56,768	2,398	1,202	53,059	-3,328
2228,267	0,602	0,357	56,770	2,413	1,269	53,224	-3,510
2225,588	0,606	0,351	56,771	2,427	1,334	53,393	-3,696
2221,985	0,609	0,346	56,773	2,443	1,399	53,565	-3,889
2217,153	0,613	0,342	56,775	2,458	1,462	53,739	-4,091
2211,218	0,617	0,340	56,777	2,472	1,523	53,914	-4,300

Área de la	Coef,	Coef, de		VCB desde			
flotación (m²)	prismático	bloque	LCB (m)	flotación (m)	GZ (m)	LCF (m)	TCF (m)
2204,401	0,620	0,339	56,779	2,487	1,582	54,088	-4,516
2197,254	0,623	0,338	56,781	2,501	1,638	54,263	-4,737
2189,206	0,625	0,338	56,783	2,514	1,691	54,461	-4,958
2183,275	0,627	0,338	56,785	2,526	1,741	54,652	-5,180
2177,264	0,625	0,337	56,787	2,538	1,787	54,833	-5,402
2171,802	0,626	0,336	56,789	2,549	1,831	55,005	-5,622
2165,877	0,627	0,337	56,791	2,558	1,871	55,141	-5,842
2161,989	0,628	0,337	56,793	2,567	1,909	55,305	-6,055
2157,586	0,630	0,337	56,796	2,575	1,944	55,423	-6,268
2153,574	0,631	0,338	56,798	2,581	1,977	55,524	-6,478
2152,722	0,633	0,339	56,800	2,587	2,008	55,686	-6,681
2150,882	0,634	0,339	56,802	2,592	2,037	55,787	-6,882
2151,324	0,636	0,339	56,805	2,595	2,065	55,914	-7,079
2151,350	0,637	0,340	56,807	2,598	2,090	55,999	-7,270
2156,467	0,639	0,340	56,809	2,600	2,115	56,184	-7,462
2158,752	0,640	0,340	56,811	2,601	2,139	56,260	-7,646
2163,301	0,641	0,340	56,814	2,601	2,162	56,358	-7,828
2168,106	0,643	0,340	56,816	2,600	2,185	56,433	-8,003
2174,712	0,644	0,341	56,818	2,599	2,207	56,518	-8,176
2181,802	0,645	0,341	56,820	2,596	2,229	56,580	-8,342
2189,681	0,647	0,341	56,823	2,593	2,252	56,624	-8,504
2199,736	0,648	0,341	56,825	2,590	2,275	56,689	-8,662
2209,084	0,650	0,341	56,827	2,585	2,299	56,710	-8,817
2219,891	0,651	0,341	56,830	2,581	2,323	56,733	-8,966

Área de la flotación (m²)	Coef, prismático	Coef, de bloque	LCB (m)	VCB desde flotación (m)		LCF (m)	TCF (m)
2232,746	0,653	0,341	56,832	2,575	2,349	56,768	-9,111
2246,392	0,654	0,342	56,834	2,570	2,377	56,783	-9,251

8.1.2.2 La navegación a plena carga

Escora (°)	Desplaza miento (T)	Calado a proa (m)	Calado a popa (m)	Eslora en la flotación (m)		Manga en la flotación (m)	Área mojada (m²)
0	8354	5,184	5,381	121,519	5,368	22,350	2997,982
1	8355	5,184	5,381	121,517	5,369	22,353	2997,674
2	8355	5,185	5,376	121,526	5,482	22,363	2996,418
3	8355	5,185	5,369	121,715	5,623	22,381	2995,117
4	8355	5,185	5,360	121,912	5,767	22,404	2993,251
5	8355	5,184	5,348	122,103	5,912	22,435	2991,526
6	8355	5,184	5,334	122,290	6,055	22,473	2989,538
7	8355	5,184	5,317	122,479	6,194	22,518	2987,080
8	8355	5,183	5,297	122,667	6,338	22,569	2985,456
9	8355	5,182	5,274	122,855	6,480	22,628	2983,436
10	8355	5,181	5,250	123,047	6,619	22,695	2981,440
11	8355	5,179	5,222	123,246	6,755	22,768	2979,242
12	8355	5,177	5,192	123,454	6,887	22,849	2977,629
13	8355	5,174	5,159	123,640	7,019	22,938	2976,002
14	8355	5,171	5,124	123,816	7,152	23,032	2974,429
15	8355	5,167	5,085	123,985	7,281	23,129	2972,535
16	8355	5,162	5,044	124,133	7,407	23,222	2971,191
17	8355	5,157	5,001	124,265	7,528	23,319	2969,890

Escora (°)	Desplaza miento (T)	Calado a proa (m)	Calado a popa (m)	Eslora en la flotación (m)		Manga en la flotación (m)	Área mojada (m²)
18	8355	5,150	4,954	124,398	7,646	23,418	2968,644
19	8355	5,142	4,905	124,521	7,759	23,518	2967,396
20	8355	5,133	4,852	124,633	7,869	23,611	2965,336
21	8354	5,122	4,796	124,736	7,979	23,663	2964,288
22	8354	5,109	4,737	124,831	8,087	23,630	2962,486
23	8354	5,094	4,675	124,930	8,190	23,522	2960,021
24	8354	5,077	4,609	125,027	8,288	23,351	2956,753
25	8354	5,056	4,538	125,236	8,381	23,120	2952,800
26	8354	5,033	4,464	125,514	8,468	22,858	2948,083
27	8354	5,007	4,385	125,813	8,551	22,596	2942,637
28	8354	4,977	4,302	126,805	8,629	22,316	2937,113
29	8354	4,944	4,214	127,423	8,701	22,050	2931,621
30	8354	4,906	4,121	127,733	8,767	21,794	2926,207
31	8354	4,865	4,023	128,066	8,829	21,558	2920,789
32	8354	4,820	3,920	128,351	8,886	21,338	2915,767
33	8354	4,771	3,812	128,518	8,942	21,138	2911,208
34	8354	4,718	3,698	128,680	8,993	20,958	2906,392
35	8354	4,660	3,579	128,834	9,039	20,803	2901,497
36	8354	4,598	3,453	128,978	9,080	20,669	2897,124
37	8354	4,530	3,322	129,108	9,115	20,554	2894,482
38	8354	4,458	3,184	129,245	9,145	20,458	2889,868
39	8354	4,381	3,039	129,389	9,170	20,378	2886,515
40	8354	4,298	2,887	129,491	9,190	20,315	2884,372
41	8354	4,209	2,727	129,517	9,204	20,268	2881,521

Escora (°)	Desplaza miento (T)	Calado a proa (m)	Calado a popa (m)	Eslora en la flotación (m)		Manga en la flotación (m)	Área mojada (m²)
42	8354	4,115	2,560	129,543	9,214	20,236	2878,703
43	8354	4,014	2,385	129,568	9,219	20,220	2875,504
44	8354	3,906	2,201	129,574	9,218	20,217	2871,826
45	8354	3,792	2,008	129,499	9,213	20,231	2867,584
46	8354	3,671	1,804	129,417	9,202	20,260	2863,876
47	8354	3,542	1,590	129,329	9,187	20,305	2859,641
48	8354	3,405	1,365	129,233	9,168	20,362	2854,724
49	8354	3,260	1,128	129,109	9,146	20,428	2849,521
50	8354	3,105	0,879	128,984	9,120	20,506	2843,764

Área de la flotación (m²)	Coef, prismático	Coef, de bloque	LCB (m)	VCB desde flotación (m)	GZ (m)	LCF (m)	TCF (m)
2238,211	0,579	0,559	57,184	2,206	-0,006	51,465	0,000
2237,803	0,579	0,559	57,181	2,207	0,054	51,475	0,178
2236,328	0,579	0,547	57,185	2,208	0,114	51,518	0,356
2234,728	0,579	0,532	57,185	2,211	0,174	51,564	0,534
2232,494	0,578	0,517	57,186	2,214	0,234	51,631	0,711
2230,352	0,578	0,503	57,186	2,218	0,294	51,700	0,887
2227,938	0,578	0,490	57,186	2,222	0,354	51,782	1,063
2225,084	0,578	0,477	57,187	2,228	0,414	51,883	1,238
2223,115	0,579	0,464	57,188	2,235	0,473	51,970	1,413
2220,801	0,579	0,452	57,189	2,242	0,533	52,074	1,588
2218,579	0,580	0,441	57,190	2,250	0,593	52,184	1,762
2216,243	0,581	0,430	57,191	2,259	0,654	52,308	1,935

Buque de Crucero

Área de la flotación (m²)	Coef, prismático	Coef, de bloque	LCB (m)	VCB desde flotación (m)	GZ (m)	LCF (m)	TCF (m)
2214,563	0,582	0,420	57,192	2,269	0,716	52,424	2,109
2212,923	0,583	0,409	57,193	2,280	0,779	52,548	2,282
2211,312	0,584	0,400	57,195	2,291	0,843	52,679	2,456
2209,297	0,586	0,390	57,196	2,303	0,908	52,826	2,629
2207,677	0,588	0,382	57,197	2,315	0,973	52,965	2,805
2205,926	0,591	0,374	57,199	2,329	1,038	53,111	2,981
2204,070	0,593	0,366	57,201	2,343	1,103	53,263	3,160
2201,965	0,596	0,359	57,203	2,357	1,168	53,420	3,340
2198,737	0,599	0,352	57,205	2,372	1,233	53,606	3,522
2195,989	0,602	0,346	57,207	2,387	1,297	53,762	3,712
2191,749	0,606	0,342	57,209	2,402	1,359	53,929	3,909
2186,359	0,609	0,339	57,211	2,417	1,420	54,093	4,115
2180,086	0,613	0,337	57,213	2,432	1,479	54,256	4,328
2173,312	0,616	0,336	57,215	2,446	1,534	54,417	4,546
2166,128	0,618	0,335	57,218	2,460	1,587	54,582	4,767
2159,871	0,620	0,335	57,220	2,473	1,636	54,770	4,989
2153,564	0,619	0,334	57,222	2,485	1,682	54,951	5,211
2147,272	0,619	0,333	57,224	2,496	1,725	55,114	5,432
2141,057	0,621	0,334	57,226	2,507	1,765	55,257	5,651
2136,476	0,622	0,334	57,229	2,516	1,802	55,424	5,865
2131,285	0,623	0,335	57,231	2,525	1,836	55,542	6,078
2126,728	0,625	0,335	57,234	2,532	1,868	55,652	6,289
2124,546	0,627	0,336	57,236	2,539	1,897	55,806	6,492
2121,726	0,628	0,336	57,238	2,545	1,924	55,955	6,692

Buque de Cruc	ero
---------------	-----

Área de la flotación (m²)	Coef, prismático	Coef, de bloque	LCB (m)	VCB desde flotación (m)	GZ (m)	LCF (m)	TCF (m)
2120,441	0,630	0,337	57,241	2,549	1,950	56,058	6,888
2121,590	0,631	0,337	57,243	2,553	1,973	56,198	7,083
2121,698	0,633	0,337	57,245	2,556	1,996	56,279	7,270
2123,995	0,634	0,337	57,248	2,558	2,017	56,382	7,455
2128,544	0,635	0,337	57,250	2,559	2,038	56,513	7,637
2133,315	0,636	0,337	57,252	2,559	2,058	56,614	7,814
2138,968	0,638	0,337	57,255	2,558	2,077	56,704	7,986
2145,422	0,639	0,337	57,257	2,557	2,097	56,782	8,154
2152,532	0,640	0,337	57,259	2,555	2,116	56,841	8,317
2160,249	0,642	0,338	57,262	2,552	2,136	56,880	8,475
2169,833	0,644	0,338	57,264	2,549	2,157	56,934	8,629
2180,320	0,645	0,338	57,266	2,545	2,178	56,962	8,779
2191,862	0,646	0,338	57,269	2,541	2,200	56,984	8,924
2204,762	0,648	0,338	57,271	2,536	2,224	57,008	9,065
2218,757	0,649	0,338	57,273	2,531	2,250	57,022	9,203

8.1.2.3 La llegada a puerto a plena carga

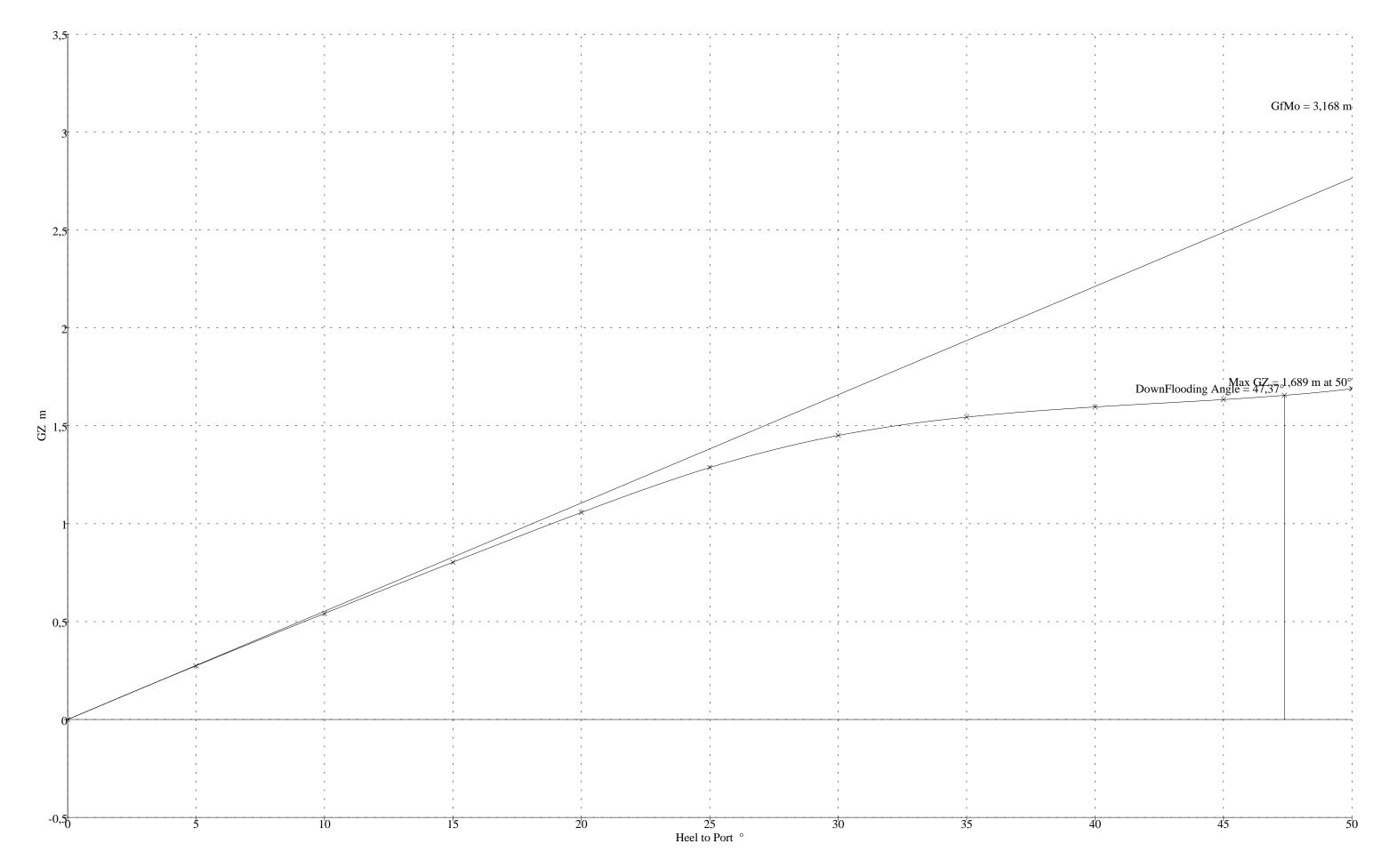
Escora (°)	Desplaza miento (T)	Calado a proa (m)	Calado a popa (m)	Eslora en la flotación (m)		Manga en la flotación (m)	Área mojada (m²)
0	8240	4,815	5,581	125,414	5,557	22,350	2988,610
1	8240	4,814	5,580	125,416	5,557	22,353	2988,191
2	8240	4,816	5,575	125,389	5,552	22,364	2986,852
3	8240	4,815	5,569	125,378	5,553	22,381	2986,457
4	8241	4,815	5,561	125,535	5,697	22,405	2985,076

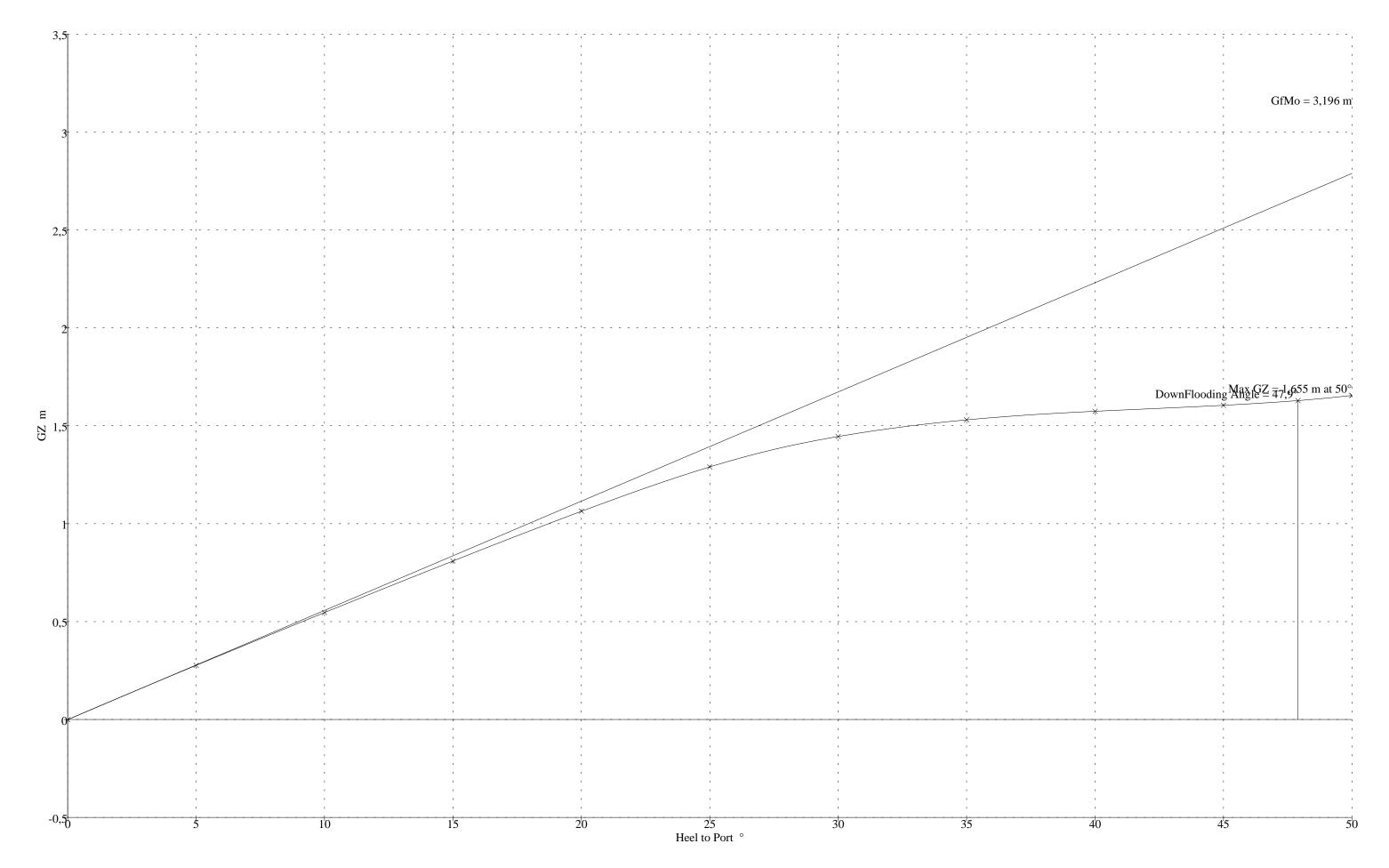
Escora (°)	Desplaza miento (T)	Calado a proa (m)	Calado a popa (m)	Eslora en la flotación (m)		Manga en la flotación (m)	Área mojada (m²)
5	8241	4,814	5,549	125,693	5,843	22,435	2983,574
6	8241	4,814	5,536	125,848	5,986	22,473	2981,382
7	8241	4,813	5,519	126,004	6,126	22,518	2978,185
8	8241	4,812	5,501	126,165	6,271	22,569	2976,457
9	8241	4,810	5,479	126,328	6,413	22,628	2974,358
10	8241	4,809	5,455	126,496	6,553	22,695	2972,109
11	8241	4,807	5,429	126,673	6,689	22,768	2969,947
12	8241	4,804	5,400	126,862	6,821	22,849	2967,283
13	8241	4,801	5,368	127,028	6,954	22,938	2965,137
14	8241	4,798	5,334	127,187	7,088	23,029	2962,989
15	8241	4,793	5,296	127,344	7,218	23,122	2960,871
16	8241	4,789	5,257	127,485	7,344	23,215	2957,712
17	8241	4,783	5,214	127,617	7,466	23,312	2956,146
18	8241	4,776	5,169	127,751	7,585	23,409	2954,324
19	8241	4,767	5,120	127,887	7,699	23,507	2952,548
20	8241	4,758	5,069	128,024	7,809	23,591	2950,739
21	8241	4,746	5,014	128,198	7,921	23,619	2948,695
22	8241	4,733	4,957	128,356	8,029	23,565	2946,098
23	8241	4,718	4,895	128,504	8,132	23,437	2942,684
24	8241	4,700	4,830	128,651	8,231	23,250	2938,314
25	8241	4,679	4,761	128,789	8,325	23,020	2933,389
26	8240	4,655	4,687	128,919	8,413	22,746	2927,074
27	8240	4,628	4,609	129,002	8,497	22,456	2921,669
28	8240	4,597	4,527	129,087	8,575	22,171	2916,052

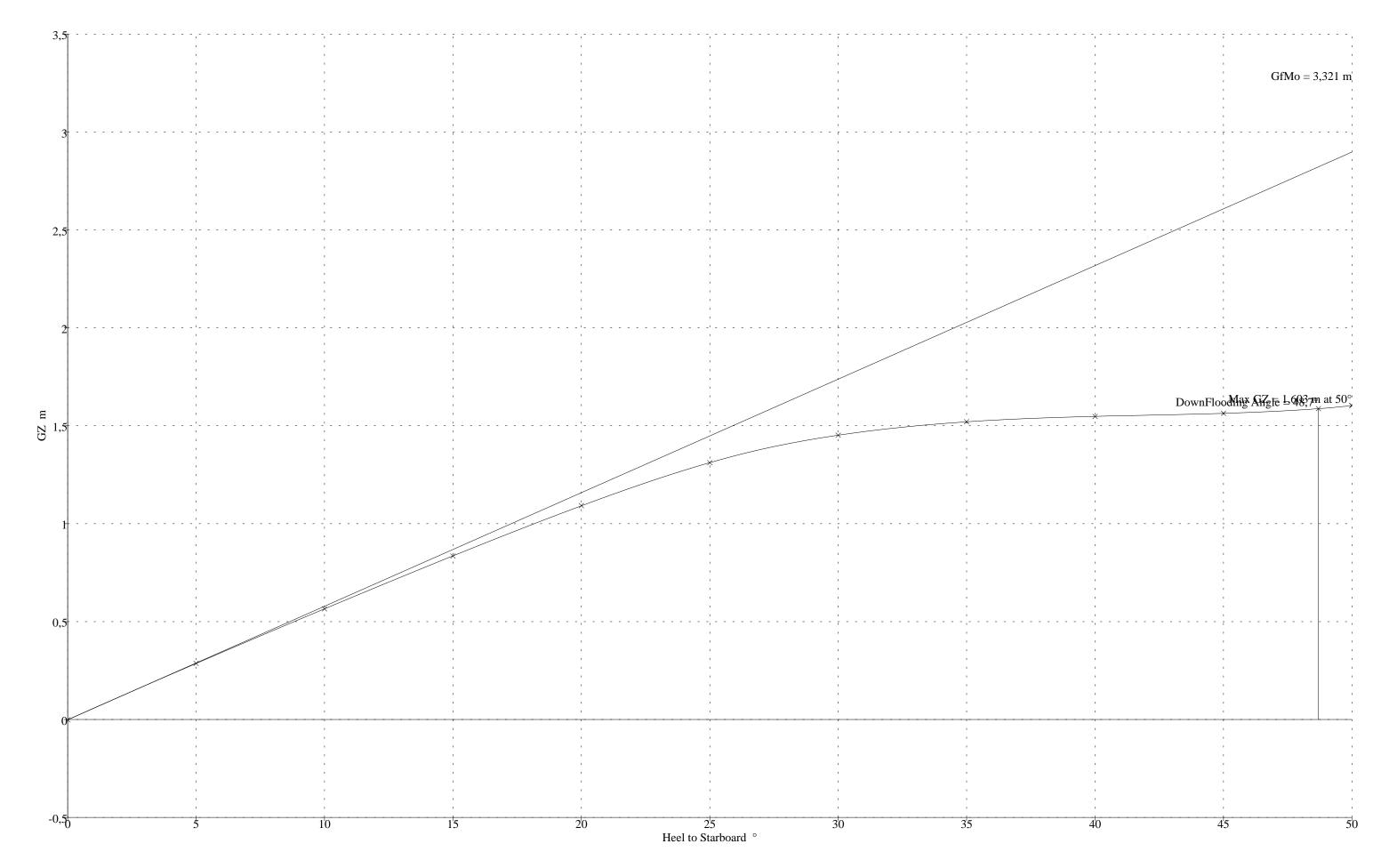
Escora (°)	Desplaza miento (T)	Calado a proa (m)	Calado a popa (m)	Eslora en la flotación (m)		Manga en la flotación (m)	Área mojada (m²)
29	8240	4,563	4,440	129,173	8,647	21,893	2910,500
30	8240	4,524	4,349	129,262	8,715	21,638	2905,148
31	8240	4,482	4,252	129,361	8,776	21,402	2900,088
32	8240	4,436	4,150	129,464	8,834	21,185	2895,310
33	8240	4,385	4,043	129,571	8,891	20,987	2890,556
34	8240	4,330	3,930	129,621	8,943	20,804	2886,330
35	8240	4,271	3,812	129,644	8,989	20,637	2882,035
36	8240	4,207	3,688	129,665	9,030	20,489	2878,538
37	8240	4,138	3,557	129,685	9,066	20,358	2874,422
38	8240	4,063	3,420	129,704	9,096	20,247	2872,385
39	8240	3,984	3,277	129,721	9,121	20,156	2868,080
40	8240	3,899	3,126	129,681	9,142	20,084	2865,361
41	8240	3,808	2,969	129,623	9,157	20,028	2862,702
42	8240	3,711	2,803	129,560	9,167	19,989	2861,068
43	8240	3,607	2,629	129,491	9,172	19,966	2858,005
44	8240	3,497	2,447	129,416	9,172	19,959	2855,287
45	8240	3,379	2,256	129,318	9,167	19,966	2851,935
46	8240	3,254	2,054	129,203	9,157	19,989	2848,638
47	8240	3,121	1,843	129,087	9,142	20,026	2844,542
48	8240	2,980	1,620	128,969	9,122	20,077	2840,012
49	8240	2,829	1,386	128,851	9,098	20,140	2835,553
50	8240	2,669	1,140	128,712	9,073	20,216	2830,124

Buque de Crucero

Área de la flotación (m²)	Coef, prismático	Coef, de bloque	LCB (m)	VCB desde flotación (m)	GZ (m)	LCF (m)	TCF (m)
2247,584	0,561	0,516	56,010	2,160	-0,001	50,618	0,000
2247,129	0,561	0,516	56,007	2,160	0,062	50,631	-0,175
2245,471	0,561	0,516	56,014	2,162	0,125	50,678	-0,349
2244,801	0,562	0,516	56,014	2,164	0,189	50,704	-0,524
2243,108	0,562	0,502	56,015	2,167	0,252	50,762	-0,699
2241,310	0,562	0,488	56,015	2,172	0,315	50,829	-0,874
2238,767	0,562	0,475	56,016	2,177	0,378	50,921	-1,048
2235,255	0,562	0,462	56,016	2,183	0,440	51,046	-1,220
2233,341	0,562	0,450	56,017	2,190	0,503	51,139	-1,395
2231,120	0,563	0,438	56,018	2,198	0,565	51,250	-1,568
2228,841	0,564	0,427	56,019	2,207	0,628	51,372	-1,741
2226,737	0,565	0,417	56,020	2,217	0,692	51,499	-1,914
2224,263	0,566	0,407	56,021	2,227	0,757	51,645	-2,085
2222,327	0,567	0,397	56,022	2,239	0,823	51,787	-2,257
2220,355	0,569	0,387	56,023	2,251	0,889	51,935	-2,430
2218,341	0,570	0,378	56,025	2,264	0,956	52,090	-2,603
2215,096	0,572	0,370	56,026	2,277	1,024	52,281	-2,775
2213,237	0,575	0,362	56,028	2,292	1,091	52,434	-2,951
2210,904	0,577	0,354	56,030	2,306	1,158	52,601	-3,129
2208,371	0,580	0,347	56,032	2,322	1,226	52,773	-3,309
2205,370	0,583	0,341	56,034	2,337	1,292	52,948	-3,492
2201,442	0,586	0,335	56,036	2,354	1,357	53,127	-3,682
2196,148	0,589	0,331	56,038	2,370	1,421	53,305	-3,881
2189,609	0,593	0,328	56,040	2,386	1,483	53,484	-4,089


Buque de Crucero


Área de la flotación (m²)	Coef, prismático	Coef, de bloque	LCB (m)	VCB desde flotación (m)	GZ (m)	LCF (m)	TCF (m)
2182,341	0,596	0,326	56,042	2,401	1,543	53,668	-4,303
2174,239	0,599	0,326	56,044	2,417	1,599	53,848	-4,522
2164,880	0,602	0,326	56,046	2,431	1,652	54,054	-4,743
2156,814	0,606	0,327	56,049	2,445	1,702	54,219	-4,967
2148,892	0,609	0,328	56,051	2,458	1,748	54,382	-5,191
2141,537	0,611	0,329	56,053	2,470	1,791	54,540	-5,413
2134,837	0,614	0,330	56,055	2,482	1,831	54,691	-5,633
2129,021	0,617	0,331	56,058	2,492	1,868	54,837	-5,849
2124,099	0,619	0,332	56,060	2,501	1,902	54,978	-6,061
2119,927	0,621	0,332	56,063	2,509	1,934	55,111	-6,269
2116,949	0,623	0,333	56,065	2,516	1,963	55,246	-6,474
2114,583	0,625	0,334	56,067	2,523	1,990	55,368	-6,674
2113,703	0,627	0,335	56,070	2,528	2,016	55,499	-6,871
2112,947	0,629	0,336	56,072	2,532	2,039	55,598	-7,062
2115,137	0,630	0,336	56,075	2,536	2,062	55,743	-7,254
2115,941	0,632	0,337	56,077	2,538	2,083	55,814	-7,436
2119,298	0,634	0,338	56,080	2,540	2,103	55,919	-7,618
2123,698	0,636	0,338	56,082	2,540	2,123	56,015	-7,795
2130,185	0,638	0,339	56,085	2,540	2,142	56,132	-7,969
2136,333	0,639	0,339	56,087	2,539	2,162	56,202	-8,138
2143,804	0,641	0,339	56,089	2,538	2,181	56,273	-8,301
2152,113	0,643	0,340	56,092	2,535	2,201	56,327	-8,461
2161,798	0,644	0,340	56,094	2,532	2,221	56,379	-8,617
2171,956	0,646	0,340	56,097	2,529	2,243	56,419	-8,767


Área de la flotación (m²)	Coef, prismático	Coef, de bloque	LCB (m)	VCB desde flotación (m)	GZ (m)	LCF (m)	TCF (m)
2183,006	0,647	0,340	56,099	2,525	2,265	56,441	-8,913
2195,444	0,649	0,340	56,101	2,520	2,289	56,462	-9,056
2208,827	0,650	0,340	56,104	2,516	2,315	56,466	-9,195

9 LA BIBLIOGRAFÍA

- Organización Consultiva Marítima Intergubernamental «Asamblea, 8º periodo de sesiones RESOLUCIONES Y OTRAS DECISIONES». O.C.M.I. 1974.
- Organización Consultiva Marítima Intergubernamental «Asamblea, 14º periodo de sesiones RESOLUCIONES Y OTRAS DECISIONES». O.C.M.I. 1981.
- Organización Marítima Internacional «Convenio internacional para la seguridad de la vida humana en el mar, 1974, y su Protocolo de 1988:artículos, anexos y certificados SOLAS». O.M.I. 2001.

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALF

CUADERNILLO

PROYECTO NÚMERO 1491

Buque de Crucero

Equipo y servicios

Tutor: Arias Rodrigo, Carlos

Autores: Urrutia Nebreda, Juan

Vicario González, Jorge

1 ÍNDICE

1	Indi	ice		3
2	El e	quip	o de fondeo, amarre y remolque	7
	2.1	El n	umeral de equipo	7
	2.1	.1	Cálculo del numeral de equipo	7
	2.1	.2	La letra de equipo	8
	2.2	Las	anclas	8
	2.3	Las	cadenas	9
	2.4	Los	cables de remolque	9
	2.5	Los	cabos de amarre	10
	2.6	El d	limensionamiento de la caja de cadenas	10
	2.7	Los	molinetes	11
	2.7	'.1	La potencia requerida para levar la cadena y el ancla	11
	2.7	.2	La potencia requerida para vencer el poder de agarre del ancla	11
	2.7	'.3	La relación de velocidades	12
	2.7	'.4	La comprobación de la velocidad corta	12
	2.8	El e	scobén	13
	2.8	3.1	El arganeo	13
	2.9	Los	cabrestantes	14
	2.10	L	as bitas, los alavantes y las gateras	14
3	El e	quip	o de salvamento	16
	3.1	Los	dispositivos radioeléctricos de salvamento	16
	3.1	.1	El aparato radioeléctrico portátil para embarcaciones de supervivencia	16
suj	3.1 perviv		La radiobaliza para localización de siniestros para embarcaciones	

	3.1.3	Los aparatos radiotelefónicos bidireccionales	. 17
	3.1.4	Las bengalas para señales de socorro	. 17
	3.1.5	El sistema de comunicaciones a bordo y el sistema de alarma	. 17
	3.2 Los	s dispositivos individuales de salvamento	. 17
	3.2.1	Los aros salvavidas	. 17
	3.2.2	Los chalecos salvavidas	. 18
	3.2.3	Los trajes de inmersión y las ayudas térmicas	. 18
	3.3 Las	s embarcaciones de supervivencia y los botes de rescate	. 18
4	El equip	oo de navegación y comunicaciones	. 21
	4.1 La	estación radiotelegráfica	. 21
	4.2 La	estación radiotelefónica de ondas métricas	. 21
	4.3 Los	s servicios de escucha radiotelegráfica y radiotelefónica en ondas métrica	s22
	4.4 La	navegación y las ayudas a la navegación	. 22
	4.5 Los	s timbres, altavoces y teléfonos	. 23
5	El equip	oo de gobierno	. 24
	5.1 El	servomotor	. 24
	5.2 La	hélice transversal de maniobra	. 25
6	Los esta	bilizadores	. 27
7	El equip	oo de ventilación, calefacción y aire acondicionado	. 28
	7.1 La	ventilación	. 28
	7.1.1	Los locales	. 28
	7.1.2	La cámara de máquinas	. 30
	7.2 La	calefacción y el aire acondicionado	. 31
	7.2.1	Las condiciones de funcionamiento	. 31
	7.2.2	Las renovaciones de aire	. 32
8	El servi	cio de achique de sentinas	. 33

8.1	Los pozos de sentinas	. 33
8.2	El colector principal	. 33
8.3	Los ramales de otros espacios	34
8.4	Las bombas de achique	. 34
8.5	Las aspiraciones	. 35
8.6	El equipo separador	. 35
8.7	El esquema del servicio de sentinas	36
9 El se	rvicio de lastre	. 37
10 El	servicio de aireación de tanques	. 38
11 El	servicio de rebose de tanques	. 39
12 El	servicio de sonda	40
13 El	servicio de baldeo y contraincendios	41
13.1	La introducción	41
13.1	.1 Los principios	41
13.2	La prevención	41
13.3	La detección	42
13.4	La extinción	. 42
13.4	.1 La descripción del sistema	. 43
13.4	.2 La reglamentación	. 44
13.4	.3 La extinción en los espacios de máquinas	46
13.4	.4 La protección de los espacios de habilitación	46
14 La	habilitación	48
14.1	Los aislamientos	48
14.1	.1 El aislamiento térmico	48
14.1	.2 El aislamiento acústico	48
14.1	.3 El aislamiento contra el fuego	. 48

14.2	El suelo y las paredes	48
14.2.	.1 Los mamparos de subdivisión	48
14.2.	.2 Los suelos	49
14.2	.3 El mobiliario y materiales decorativos	49
15 El :	servicio sanitario	50
15.1	El sistema de agua dulce sanitaria	50
15.2	El sistema de agua dulce sanitaria caliente	50
15.3	El sistema de agua dulce refrigerada	50
15.4	La planta potabilizadora	50
15.5	El tratamiento de agua residuales	50
16 El :	armamento, las instalaciones y la habiliatación	51
16.1	La cocina y los oficios	51
16.2	La lavandería	51
16.3	Las gambuzas	51
16.3	.1 Las gambuzas frigoríficas	51
16.3	.2 Las gambuzas secas	52
16.4	Los pañoles	52
16.5	La pintura	52
16.5	.1 La pintura exterior	53
16.5	.2 La pintura de interiores	53
16.5	.3 La pintura interior de tanques	54
16.6	La protección catódica	54

2 EL EQUIPO DE FONDEO, AMARRE Y REMOLQUE

2.1 EL NUMERAL DE EQUIPO

Los medios de fondeo, amarre y remolque se calculan partiendo del numeral de equipo, que Det Norske Veritas define como:

$$EN = \Delta^{\frac{2}{3}} + 2BH + 0.1A$$

siendo:

- Δ , desplazamiento correspondiente a la flotación en carga de verano, (T).
- *B*, manga máxima de trazado, (m).
- H, altura efectiva entre la flotación en carga de verano y el techo de la caseta más elevada. Para este cálculo se desprecian el arrufo y la brusca. Debe ser medida según la expresión: $H = a + \sum h_i$.
- *a*, distancia, en metros, entre la cubierta más alta en el costado y la flotación en carga de verano, medida en la perpendicular central.
- h_i , altura, en metros, en crujía de cada piso de superestructura o de caseta de anchura superior a $\frac{B}{4}$.
- A, superficie lateral del casco, de las superestructuras y de las casetas de anchura superior a $\frac{B}{4}$, por encima de la flotación en carga de verano, comprendida en la eslora entre perpendiculares, (m²).

Las pantallas o amuradas de altura igual o superior a 1,5 m se considerarán como casetas para determinar H y A.

2.1.1 Cálculo del numeral de equipo

Los valores que se van a utilizar para calcular el numeral de equipo son los siguientes

Superestructura	Altura	
Cubierta de salones	3,1	m
Cubierta de camarotes	2,7	m
Cubierta de botes	2,7	m
Cubierta de paseo	2,7	m
Cubierta puente	3,1	m

Magnitud	Valor	Unidad
Δ	8615,0	T
B	22,350	m
H	19,600	m
A	2056,4	m^2

El numeral de equipo así calculado con estos datos es:

$$EN = 1502,0$$

2.1.2 La letra de equipo

Con el numeral de equipo obtenido y siguiendo el reglamento Det Norske Veritas, según la Parte3, Capítulo 3, Sección 3, Apartado C, Tabla C1, se obtiene la letra de equipo, que resulta ser:

Letra de equipo: C (ce mayúscula).

2.2 LAS ANCLAS

Según Det Norske Veritas el buque debe llevar tres anclas. Se llevarán tres anclas de leva sin cepo, dos de ellas en servicio y una de respeto.

Las características de estas anclas son:

• Peso de cada ancla: 4590 kg.

• Peso total de las anclas: 13770 kg.

2.3 LAS CADENAS

La longitud total de cadenas es de 550 metros, que irán repartidos en 20 largos de cadena, cada uno de ellos de 27,5 m de longitud.

• Longitud total de cadenas: 550 m.

• Longitud de un largo de cadena: 27,5 m.

Número de largos de cadena: 20 largos.

Distribución de cadenas:
 10 largos a babor y 10 largos estribor.

Para una cadena de tipo medio o calidad especial (Grado K2), se obtienen las siguientes características para eslabones con contrete y eslabón de unión de tipo Kenter:

• Diámetro del eslabón, d = 60 mm.

• Longitud del eslabón: l = 360 mm.

• Anchura del eslabón: a = 216 mm.

• Peso de un metro de cadena: $m_1 = 77.8 \text{ kg} \cdot \text{m}^{-1}$.

• Peso de un largo de cadena: $m_l = 2139,5 \text{ kg}.$

• Peso total de la cadena: m = 42790 kg.

• Carga máxima de prueba: $T_{pr} = 1380 \text{ kN}.$

• Carga mínima de rotura: $T_{rot} = 1940 \text{ kN}.$

2.4 Los cables de remolque

Se utilizará un cable remolque de acero flexible.

• Longitud del cable de remolque: L = 220 m.

• Carga mínima de rotura: $T_{rot} = 888 \text{ kN}.$

URRUTIA NEBREDA, Juan

2.5 LOS CABOS DE AMARRE

Se utilizarán cinco cabos de amarre de acero flexible.

• Longitud del cabo de amarre: L = 190 m.

• Carga mínima de rotura: $T_{rot} = 324 \text{ kN}.$

• Diámetro: d = 56 mm.

2.6 EL DIMENSIONAMIENTO DE LA CAJA DE CADENAS

El volumen aparente que ocupa la cadena puede calcularse por medio de la siguiente fórmula empírica:

$$V = 0.0082 d^2 L 10^{-4}$$

donde:

- *V*, volumen total de la cadena, (m3).
- d, diámetro del redondo del que se ha partido para la fabricación del eslabón, (mm).
- *L*, longitud de la cadena, (m).

Aplicando esta formulación a nuestro caso se obtiene un volumen de cadenas de 16,236 m³. Este volumen de cadenas se tiene que repartir entre las dos cajas de cadenas, situadas simétricamente respecto a crujía.

En este volumen no se ha considerado el espacio necesario para el drenado de la caja, ni el de caída de cadena o acceso. Una vez dimensionada la caja de cadenas en base y altura, será necesario incrementar esta última en 1,2 metros por caída de cadena y en 0,4 metros para drenado, es decir, 1,6 metros en total.

Las cajas de cadenas se dispondrán entre las cubiertas 2 y 4. La base de la caja de cadenas es cuadrada, dentro de las formas de proa donde van situadas. Cada lado de la base mide 1,5 metros, y la altura necesaria es de 5,208 m (incrementos incluidos).

2.7 LOS MOLINETES

La elección del tipo de molinete (dos molinetes monoancla o uno biancla), y el tipo de accionamiento, normalmente forma parte de la especificación obligada por el armador. La elección, por tanto, se llevará a cabo teniendo en cuenta los tipos más usuales encontrados en buques análogos al de proyecto.

Respecto a la primera de las consideraciones, es usual emplear dos molinetes monoancla, puesto que elegir un molinete biancla aumenta mucho el tamaño de éste y pueden producirse problemas de colocación en la zona de proa debido a la escasa manga de que se dispone en cubierta.

En cuanto a la segunda consideración, el accionamiento puede ser eléctrico o hidráulico, y dentro de los hidráulicos de alta o de baja presión.

La potencia de cada molinete de puede calcular según las siguientes ideas:

2.7.1 La potencia requerida para levar la cadena y el ancla

$$P_{1} = \frac{0.87(P_{c} + P_{a})v_{1}}{60.75 \cdot \rho} f$$

en donde:

- P_c , peso de la cadena fuera del ancla, (kg). En la práctica se suelen tomar tres o cuatro largos de cadena.
- P_a , peso del ancla fuera del agua, (kg).
- v_1 , velocidad de izado, (m·min-1).
- p, rendimiento mecánico del molinete.
- f, coeficiente de rozamiento en estopor y escobén.

2.7.2 La potencia requerida para vencer el poder de agarre del ancla

$$P_2 = \frac{0.87(P_c + P_a) + eP_a}{60.75 \,\text{o}} v_2 f$$

en donde:

- e, poder de agarre del ancla.
- v_2 , velocidad para zarpar el ancla del fondo, (m·min-1).

2.7.3 La relación de velocidades

Puesto que la potencia del molinete ha de ser la misma, igualando ambas potencias, se obtiene la relación entre las velocidades v_1 y v_2 .

$$\frac{v_1}{v_2} = 1 + \frac{e P_a}{0.87 (P_c + P_a)}$$

Los valores que se toman son los siguientes:

Magnitud	Valor	Unidad
P_c	6418,5	kg
P_a	4590	kg
e	2	
f	2	
ρ	0,6	
v_1	10	$m \cdot s^{-1}$

Con estos valores se obtiene que la relación de velocidades es de 1,95. Asímismo la potencia del molinete se calcula que es de 51 kW.

Con esta relación de velocidades se obtiene: $v_2 = 5,11 \text{ m} \cdot \text{s}^{-1}$.

2.7.4 La comprobación de la velocidad corta

En el caso de que por cualquier causa se suelte toda la cadena, el molinete puede no tener suficiente potencia para levantar todos los largos de cadena y al ancla. Para evitar esto es recomendable comprobar si el molinete, trabajando con la velocidad más corta, es capaz de poder levantar el ancla y todos los largos de cadena.

Para cumplir esta condición, puede ser necesario aumentar la potencia del molinete, o bien reducir la velocidad corta de izado del ancla y la cadena:

$$v_{2} = \frac{Pot_{molinete}}{F_{izado}} = \frac{P}{\frac{0.87(nP_{c} + P_{a})}{60.75 \cdot \rho}f}$$

en donde n representa el número de largos de cadena que hay que levantar en cada banda.

De esta forma la velocidad que se obtiene es de $v_2 = 4,14 \text{ m} \cdot \text{s}^{-1}$. Dado que esta velocidad es menor, se tomará ésta como velocidad corta de izado de la cadena y el ancla.

2.8 EL ESCOBÉN

Para determinar el diámetro mínimo del interior de la bocina del escobén se emplea la siguiente fórmula empírica:

$$D = d \cdot k$$

Siendo:

- D, diámetro de la bocina del escobén, (mm)
- *d*, diámetro de la cadena, (mm).

$$k, \text{ coeficiente que vale:} \begin{cases} 10.4 & d = 25 \text{mm} \\ 7.5 & d = 100 \text{mm} \end{cases}$$

Interpolando para valores intermedios se obtiene k = 9,05, y con este valor el diámetro mínimo del escobén:

$$D = 542,8 \text{ mm}$$

2.8.1 El arganeo

El diámetro del escobén obtenido con la formulación anterior deberá ser comprobado para que la parte más saliente del grillete del ancla o arganeo sea como mínimo 1,4 veces inferior a dicho diámetro. Caso de que esta consideración no se cumpla deberá aumentarse el diámetro del tubo del escobén.

Eligiendo un ancla de tipo Hall se tiene un diámetro de 90 mm para el arganeo, y una anchura del arganeo de 5,2 veces este diámetro. Así el valor máximo necesario es de 655,2 mm.

Al ser este último mayor se tomará como diámetro del interior de la bocina del escobén. En la práctica es normal redondear estos valores por lo alto por lo que obtendríamos un diámetro de:

D = 675 mm.

2.9 LOS CABRESTANTES

A popa se instalarán, para maniobras de amarre, dos cabrestantes verticales de accionamiento hidráulico.

En la zona de proa también se instalarán dos cabrestantes para realizar las maniobras de amarre.

Para calcular la potencia se tiene en cuenta el par y la velocidad de giro. Este resultado habrá que multiplicarlo por el coeficiente de rendimiento de la máquina.

Tiene importancia fijar la velocidad de recogida de las amarras, cuando éstas han sido soltadas de los norays del muelle, al finalizar la maniobra de desatraque para evitar que se enreden en la hélice. Esta velocidad suele ser del orden de 30 m·min⁻¹ y la velocidad con tensión del orden de 15 m·min⁻¹.

La tensión de trabajo para el dimensionamiento de los cabrestantes es de 15 T.

Debe prestarse atención a las tensiones máximas que pueden admitirse pues de ser superiores a la de rotura de las amarras se corre el riesgo de romperlas.

La potencia resultante de cada uno de estos cabrestantes es de 50 kW.

2.10 LAS BITAS, LOS ALAVANTES Y LAS GATERAS

A continuación se darán unas consideraciones generales sobre el número y disposición de bitas, alavantes y gateras.

El número y situación de las bitas que deben colocarse, se eligen entre el armador y el astillero en función de las necesidades de maniobra del buque. Como norma general, se puede indicar que para amarre se suelen colocar cuatro bitas en proa y otras tantas en popa. Independientemente de las bitas de amarre se colocan dos o tres bitas de remolque en proa y dos en popa.

Para evitar que las amarras rocen sobre las cubiertas cuando son operadas desde los capirones o tambores de los molinetes o cabrestantes, se colocan alavantes que. Además,

sirven para guiarlas en la dirección adecuada hacia éstos. Normalmente se montan cuatro juegos de alavantes en la zona de proa y otros cuatro juegos en popa.

Las gateras tienen la finalidad de guiar las amarras desde los puntos donde se han hehco firmes, fuera del buque, hasta las bitas colocadas sobre la cubierta. Así pues, normalmente el número de gateras coincidirá aproximadamente con el de bitas, salvo el caso de las gateras de remolque que se sitúan en los extremos de la línea de crujía y que se emplean también para amarre, pudiendo trabajar con bitas situadas a babor o a estribor.

Utilizando la norma 62.201 de AESA se calculan unas bitas de amarre con un diámetro nominal de DN = 250 mm, y un peso de 185 kg cada una.

3 EL EQUIPO DE SALVAMENTO

Para la definición de los dispositivos y medios de salvamento a bordo se seguirán las reglamentaciones del SOLAS dadas en el capítulo III, partes A, B y C.

3.1 LOS DISPOSITIVOS RADIOELÉCTRICOS DE SALVAMENTO

3.1.1 El aparato radioeléctrico portátil para embarcaciones de supervivencia

Estará compuesto por:

- Un transmisor, que tendrá un dispositivo de manipulación automática para la transmisión de las señales radiotelegráficas de alarma y socorro.
- Un receptor, capaz de recibir en la frecuencia de socorro utilizada en radiotelegrafía y en las clases de emisión asignadas por el Reglamento de Radiocomunicaciones a dicha frecuencia.
- Una antena, con medios propios de sustentación o susceptibles de ir suspendida del palo de un bote salvavidas.
- Una fuente de energía, preferentemente un generador movido a mano.

El aparato prescrito será fácil de transportar, estando, capaz de flotar en la mar y susceptible de ser lanzado al mismo sin sufrir desperfectos. Estará en las proximidades de los botes salvavidas más alejados del transmisor principal del buque.

3.1.2 La radiobaliza para localización de siniestros para embarcaciones de supervivencia

En cada banda del buque se llevará una radiobaliza de localización de siniestros de accionamiento manual. Emitirá señales que permita a las aeronaves localizar a la embarcación de supervivencia y podrán tener también aptitud para emitirlas a fines de alerta.

3.1.3 Los aparatos radiotelefónicos bidireccionales

Se emplean para comunicaciones entre embarcaciones de supervivencia; entre embarcaciones de supervivencia y buque; y entre buque y bote de rescate. Se llevarán por lo menos tres.

Por estar destinado el buque a viajes internacionales cortos no llevará instalación radiotelegráfica para botes salvavidas.

3.1.4 Las bengalas para señales de socorro

Se llevarán al menos doce cohetes lanzabengalas con paracaídas estibados en el puente de navegación o cerca del mismo.

3.1.5 El sistema de comunicaciones a bordo y el sistema de alarma

Se proveerá un sistema de emergencia constituido por un equipo fijo o portátil o por ambos, para comunicaciones bidireccionales entre puestos de control de emergencia, puestos de reunión y de embarco y puntos estratégicos, a bordo.

Se proveerá un sistema de alarma general de emergencia para convocar a pasajeros y tripulantes a los puntos de reunión.

3.2 LOS DISPOSITIVOS INDIVIDUALES DE SALVAMENTO

3.2.1 Los aros salvavidas

Los aros salvavidas se distribuirán de modo que estén fácilmente disponibles a ambas bandas y estibados de modo que sea posible soltarlos rápidamente y no sujetos por elementos de fijación permanente.

De acuerdo con las reglas III.7.1 y III.21.1 del SOLAS el buque llevará doce aros salvavidas. A cada banda habrá como mínimo un aro salvavidas provisto de rabiza flotante. La mitad al menos del número total de aros irá provista de artefactos luminosos de encendido automático, y al menos dos de ellos llevarán también señales fumígenas de funcionamiento automático. Los aros provistos de artefactos luminosos, y los que además tengan señales fumígenas irán distribuidos por igual a ambas bandas, y no serán los aros provistos de rabiza flotante. Habrá un aro salvavidas en las proximidades e popa.

La distribución de aros salvavidas, a cada banda, es la siguiente:

- 1 aro con rabiza flotante.
- 3 aros con señales luminosas.
- 1 aro con señales luminosas y fumígenas.
- 1 aro en las proximidades de popa.

3.2.2 Los chalecos salvavidas

Se proveerá un chaleco salvavidas para cada una de las personas que pueda haber a bordo.

Se llevarán un número de chalecos apropiados para niños igual por lo menos al diez por ciento del total del número de pasajeros que pueda haber a bordo, o el número mayor que ése para contar con un chaleco por niño.

Se llevarán chalecos suficientes para las personas que hayan de realizar la guardia. Además se llevarán chalecos para el cinco por ciento al menos del número de personas que pueda haber a bordo. Estos chalecos irán estibados en cubierta o en los puestos de reunión, en lugares bien visibles.

3.2.3 Los trajes de inmersión y las ayudas térmicas

Para cada una de las personas designadas como tripulantes del bote de rescate se proveerá un traje de inmersión. No será necesario llevar trajes ni ayudas térmicas para las personas que vayan en los botes salvavidas, por ser éstos cerrados.

3.3 LAS EMBARCACIONES DE SUPERVIVENCIA Y LOS BOTES DE RESCATE

Nuestro buque está destinado a viajes internacionales cortos, y cumple con las normas especiales de compartimentado establecidas en la regla II.1.6.5 de SOLAS. Por ello estará provisto de:

 Botes salvavidas distribuidos por igual, en la medida de lo posible, a cada banda del buque y cuya capacidad conjunta baste para dar cabida al 75 % al menos del

número total de personas que pueda haber a bordo.

El número de plazas mínimas en botes será de 282 personas, para lo que se han dispuesto dos botes a cada banda, cada uno de ellos con una capacidad para 75 personas.

Se dispondrán botes del modelo JY-BF-8.50A de la casa Norwegian Maritime Equipment A.S.

Dimensiones (m)			Peso rosca (kg)	Desplazamiento (kg)	Distancia entre ganchos (m)
$10,05 \times 3,45 \times 1,40$	3,10	75	4152	9777	8,14

La potencia del pescante necesaria para descargar las balsas es de 8 kW.

 Balsas salvavidas cuya capacidad conjunta sea tal que, unida a la de los botes salvavidas, haga que la capacidad total de las embarcaciones de supervivencia baste para dar cabida al número total de personas que pueda haber a bordo. Además habrá de disponerse balsas cuya capacidad conjunta baste para dar cabida al 25 por ciento cuando menos del número total de personas que pueda haber a bordo.

Se han dispuesto dos balsas a cada banda, con capacidad cada una de ellas para 50 personas. Las balsas que se colocarán serán del modelo DK50 de la casa Viking. En cada banda se situará un pescante capaz de bajar a ambas balsas salvavidas hasta la superficie del mar.

El peso de cada una de estas balsas es de 360 kg. El pescante bajará el peso correspondiente a la balsa y a los 50 pasajeros que irán montados en ella. La potencia necesaria del pescante será de 2,1 kW.

• Por ser un buque con arqueo bruto superior a 500 toneladas llevará a cada banda al menos un bote de rescate. Además, dichos botes cumplen las normas dadas en la regla III.47.1.1. sobre sus dimensiones. Los botes serán del modelo 470 GRP 1, de Viking.

	B			Desplazamiento	
(m)	(m)	(kg)	(kg)	(kg)	
4,75	1,90	592	450	1042	

Para uso como botes de recreo se utilizarán dos de los botes salvavidas.

En resumen las embarcaciones de supervivencia cuentan con las siguientes capacidades:

Embarcación	Capacidad requerida	Capacidad real
Botes salvavidas	282 (75 %)	300 (4 × 75)
Balsas salvavidas	94 (25 %)	100 (2 × 50)
Balsas salvavidas	94 (25 %)	100 (2 × 50)

Embarcación	Capacidad requerida	Capacidad real
Botes de rescate		12 (2 × 6)

Buque de Crucero Equipo y SERVICIOS

4 EL EQUIPO DE NAVEGACIÓN Y COMUNICACIONES

Para la definición de los equipos de navegación y comunicaciones a bordo seguiremos las reglamentaciones del SOLAS dadas en los capítulos IV y V.

4.1 LA ESTACIÓN RADIOTELEGRÁFICA

El buque irá equipado con una estación radiotelegráfica que comprenderá una instalación principal y otra de reserva, eléctricamente separadas y eléctricamente independientes la una de la otra.

La instalación principal comprenderá un transmisor principal, un receptor principal, un receptor de escucha en la frecuencia de socorro utilizada en radiotelefonía, una fuente de energía principal, y una antena principal. El alcance normal mínimo será de 150 millas marinas.

La instalación de reserva comprenderá un transmisor, un receptor, una fuente de energía y una antena. El alcance normal mínimo del transmisor será de 100 millas marinas.

4.2 LA ESTACIÓN RADIOTELEFÓNICA DE ONDAS MÉTRICAS

El buque irá equipado con una radiotelefónica de ondas métricas. Dicha instalación estará situada en la parte superior del buque, y comprenderá un transmisor y un receptor, una fuente de energía que pueda hacer funcionar éstos a su potencia nominal, y una antena para emitir y recibir señales en todas las frecuencias que se utilicen.

La estación deberá poder ser alimentada por una fuente de energía situada en la parte superior del buque, y cuya capacidad sea suficiente para hacerla funcionar durante seis horas por lo menos.

La potencia de la onda portadora del transmisor no ha de ser superior a diez vatios.

El mando de control de los canales destinados a la seguridad de la navegación estará en el puente de navegación y al alcance inmediato del puesto de derrota.

4.3 LOS SERVICIOS DE ESCUCHA RADIOTELEGRÁFICA Y RADIOTELEFÓNICA EN ONDAS MÉTRICAS

Por estar el buque equipado con estación radiotelegráfica, deberá, mientras esté en la mar, mantener un servicio de escucha en la frecuencia de socorro utilizada en radiotelegrafía.

Asimismo, mantendrá, mientras está en la mar, un servicio de escucha continua en el puente de navegación.

4.4 LA NAVEGACIÓN Y LAS AYUDAS A LA NAVEGACIÓN

El buque contara con los siguientes equipos de ayuda a la navegación:

- Una lámpara de señales diurnas que no depende exclusivamente de la fuente de energía eléctrica principal del buque.
- Un compás magnético magistral. Cuando, por naturaleza del viaje o la proximidad del buque a tierra no se justifique la utilización de ese compás, la Administración podrá eximir al buque de estas prescripciones, a condición de que se lleve siempre un compás de gobierno adecuado.
- Un compás magnético de gobierno.
- Un girocompás.
- Una instalación radar.
- Una ecosonda.
- Un dispositivo indicador de velocidad y distancia.
- Indicadores de ángulo de metida del timón, de la velocidad rotacional de cada hélice y del paso y de la modalidad de funcionamiento de las hélices de paso variable y de la hélice transversal.
- Un radiogoniómetro.
- Un equipo de radio.

Además, se podrán instalar los siguientes equipos no obligados por la Administración:

- Receptor de cartas meteorológicas.
- Equipo de télex.

Receptor de navegación vía satélite.

4.5 LOS TIMBRES, ALTAVOCES Y TELÉFONOS

Se instalarán los siguientes elementos:

- Central telefónica automática para comunicación entre los siguientes lugares: Puente, camarote del capitán y camarote de jefe de máquinas.
- Equipo de altavoces para órdenes y música.
- Timbre de llamada en el puente y cámara de máquinas.
- Sistema de timbres para llamada a la tripulación.
- Sistema de timbres de llamada en salones y cocina.
- Sistema de timbres generales de alarma, activado desde el puente.
- Public Address System.

5 EL EQUIPO DE GOBIERNO

El equipo de gobierno del buque consta fundamentalmente de los siguientes componentes:

- Propulsores.
- Timones.
- Servomotores.
- Hélice de maniobra de proa.
- Aletas estabilizadoras.

5.1 EL SERVOMOTOR

Se instalará un servomotor hidráulico que actúe sobre el timón, accionado por dos grupos de electrobombas, uno en servicio y otro de respeto. Según Det Norske Veritas, no será necesaria la instalación de un grupo de emergencia si los dos grupos anteriores son iguales, y cualquiera de ellos puede mover independientemente el servomotor. El equipo estará formado por los siguientes elementos:

- Un motor hidráulico montado sobre la mecha del timón. El sistema será capaz de hacer girar el timón 35 grados a una banda y otros 35 grados a la banda contraria.
- Dos grupos de electrobombas.

Para el cálculo de la potencia del servomotor, partimos del par necesario en la mecha, calculado en el cuaderno número cinco, $Q=913~\rm kN\cdot m$. Habrá que tener en cuenta, además, que el servomotor ha de ser capaz de girar el timón 35 grados a una banda y 30 grados a la contraria en un tiempo máximo de 28 segundos. Por tanto la velocidad angular puede como:

$$\omega = \frac{65^{\circ}}{28 \text{ s}} = 2,32^{\circ} \cdot \text{s}^{-1} = 0,04 \text{ rad} \cdot \text{s}^{-1}$$

La potencia teórica vendrá dada por:

$$P_t = Q \cdot \omega = 37 \text{ kW}$$

Si el rendimiento del servicio hidráulico le suponemos del 65 %, la potencia necesaria del servomotor será:

URRUTIA NEBREDA, Juan

$$P = \frac{P_t}{0.65} = 57 \text{ kW}$$

5.2 LA HÉLICE TRANSVERSAL DE MANIOBRA

Dada la necesidad de maniobrabilidad de este tipo de buques se ha optado por equipar al buque con una hélice de maniobra de proa como opción más económica que la del uso del servicio del remolcadores de puerto para conseguir la maniobrabilidad necesaria. En el dimensionamiento de la misma se tendrá en cuenta que el hecho de llevar dos timones y dos hélices propulsoras nos garantiza un grado de maniobrabilidad ya de por sí muy elevado.

El tamaño de la hélice depende del área proyectada del buque, tanto por encima como por debajo de la línea de flotación. Basándose en la experiencia acumulada por diferentes marcas comerciales se propone el siguiente criterio de selección de potencia:

• Para la obra muerta del buque que se toman 8 kg·m^{-2} de empuje y para la obra viva 15 kg·m^{-2} . Llamando A_{ov} al área proyectada de la obra viva y A_{om} al de la obra muerta, la potencia requerida se obtiene a partir de la expresión:

$$P = \frac{8 \text{ kg} \cdot \text{m}^{-2} \cdot A_{om} + 15 \text{ kg} \cdot \text{m}^{-2} \cdot A_{ov}}{3.15 \text{ kg} \cdot \text{m}^{-2}}$$

En esta fórmula se ha considerado que un 1 kW equivale aproximadamente 15 kg·m⁻² de empuje y que durante la maniobra la hélice propulsora y el timón proporcionan dos tercios del empuje total requerido.

Para el buque en estudio el valor de la potencia necesaria es de alrededor de 595 kW por unidad. Para este rango de potencias la casa Conave aconseja que el accionamiento de la hélice de empuje transversal sea de tipo eléctrico. Es por ello que se ha instalado este tipo de accionamiento que por otro lado tiene un menor coste de instalación que los accionados por motores diesel o hidráulicos. Para esta potencia las hélices adoptadas tienen un diámetro de 1,500 metros.

Las hélices serán de paso variable, con lo que se conseguirá variaciones en la velocidad transversal sin cambiar las revoluciones del motor.

El motor eléctrico que acciona la hélice es de corriente alterna y va acoplado a la red alterna trifásica del buque por lo que el dimensionamiento de la planta generadora se ha realizado teniendo en cuenta este gran consumo en la situación de maniobra.

Asimismo el motor posee aislamiento para uso marino, resistencias de calefacción para impedir condensanciones, relés térmicos que paran el motor por sobrecarga y sonda pirométrica que indica sobrecarga por alta temperatura. En caso de fallo de la servobomba se produce la parada del motor al caer la presión del circuito hidráulico. Los arrancadores son

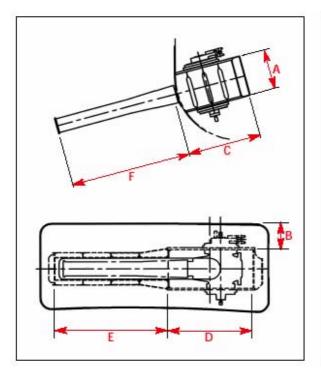
estándar del tipo estrella-triángulo. El motor eléctrico y todos los componentes deberán someterse a la aprobación de Det Norske Veritas.

El conjunto de la hélice está formado por el túnel de servicio, la carcasa de reducción y la hélice de accionamiento. Generalmente este conjunto se suministra en una sola unidad compacta. El túnel de servicios es de acero con rigidizadores re refuerzo en la zona de la hélice. La carcasa del reductor es de hierro fundido de alta calidad. El piñón y las ruedas de engrase cónico-espiral son de acero especial antidesgaste y diseñadas para un funcionamiento silencioso. El eje de la hélice y el eje motriz van montados sobre rodamientos de rodillos. La carcasa lleva un sistema de doble sellado para asegurar su impermeabilización. Las palas de la hélice así como el capacete son una aleación de bronce, níquel y aluminio.

En resumen las características principales de este equipo son:

• Número de unidades: 2.

• Potencia de cada unidad: 600 kW.


• Diámetro: 1,500 m.


6 LOS ESTABILIZADORES

Para reducir los balances del barco y así mejorar el confort del pasaje se montan dos sistemas antibalance.

Se montarán tanques pasivos antiescora, que tendrán una masa de agua de 100 T.

Como complemento se instalará una pareja de estabilizadores de aleta retráctiles. Los estabilizadores serán unos Rolls Royce Neptune 300. El esquema de los mismos es:

Medida	Valor	Unidad
A	1,28	m
В	0,60	m
C	2,02	m
D	2,02	m
E	5,30	m
F	5,14	m
Peso	76,5	T

7 EL EQUIPO DE VENTILACIÓN, CALEFACCIÓN Y AIRE ACONDICIONADO

7.1 LA VENTILACIÓN

A continuación se calculan los caudales de aire de los ventiladores que se dispondrán en cada espacio.

7.1.1 Los locales

La distribución de ventiladores debe ser adecuada para conseguir la ventilación del aire de los distintos espacios.

Para calcular el caudal de aire necesario de ventilación se usa la siguiente formulación:

$$Q = A \cdot V_e$$

En donde:

- Q, caudal de aire necesario, (m³·h⁻¹).
- A, número de renovaciones por hora.
- V_e , volumen del espacio (m³).

7.1.1.1 El número de renovaciones

El número de renovaciones por hora necesarias en función del tipo de espacio, y del uso que se le dé a éste.

Local	Renovaciones por hora
Camarote	15
Aseos	20
Sala común	15
Comedor	18

URRUTIA NEBREDA, Juan

Local	Renovaciones por hora
Gambuza	25
Cocina	45
Sala de baterías	10
Sala de servos	10
Pañoles	10
Cámara de máquinas	35

7.1.1.2 La forma de ventilación

La ventilación de los locales puede ser natural o forzada según las necesidades en cada caso. En general se usarán los siguientes criterios:

Local	Ventilación		
Camarote	Forzada (extracción)		
Aseos	Forzada (extracción)		
Sala común	Forzada (extracción)		
Comedor	Forzada (extracción)		
Gambuza	Forzada (extracción)		
Cocina	Forzada (extracción)		
Sala de baterías	Forzada (introducción)		
Sala de servos	Forzada (introducción)		
Pañoles	Forzada (extracción)		
Cámara de máquinas	Forzada (extracción e introducción de aire)		

7.1.1.3 Las necesidades de aire en los locales

Teniendo en cuenta los datos anteriores las necesidades de aire de ventilación son las siguientes:

Local	$V_e (\mathrm{m}^3)$	\boldsymbol{A}	$Q (m^3 \cdot h^{-1})$
Camarote	5918,1	15	88772,2
Aseos	450,0	20	9000,0
Sala común	5958,2	15	89373,4
Comedor	2138,6	18	38493,9
Gambuza	1134,2	25	28354,7
Cocina	657,4	45	29584,2
Sala de baterías	98,1	10	981,2
Sala de servos	150,0	10	1500,0
Pañoles	460,3	10	4602,9
Escaleras	5995,1	15	89926,5
TOTAL LOCALES	22960		380589

7.1.2 La cámara de máquinas

En cámara de máquinas además d las necesarias renovaciones de aire es necesario evacuar el calor que se produce en los focos principales, como son los motores principales, el silencioso del motor, la tubería de escape a exhaustación, los motores auxiliares, las calderas, los intercambiadores de aceite y aire, ...

El aire que se debe introducir en la cámara de máquinas es tal que sea capaz de alimentar los distintos motores y proporcionar una ventilación suficiente a los espacios. Se seguirá el criterio de suministrar el doble del aire necesario para los motores más un número de renovaciones adecuado, es decir:

$$Q = 2$$
 Consumo motores $+ A \cdot V_e$

Siendo A en número de renovaciones por hora del local y V_e su volumen.

A continuación aparecen las necesidades de ventilación de los diferentes espacios de máquinas (en donde hay motores de combustión interna se ha tenido en cuenta el consumo de éstos)

Espacio	$V_e~({ m m}^3)$	\boldsymbol{A}	$Q (m^3 \cdot h^{-1})$
Túnel línea de ejes	40	10	400

Espacio	$V_e~({ m m}^3)$	\boldsymbol{A}	$Q (m^3 \cdot h^{-1})$
Local motores principales	1431	30	114330
Local motores auxiliares	1007	30	73560
Local purificadoras	353	30	10602
Locales de aire acondicionado	1541	30	46236
Local hélice transversal	68	10	675
TOTAL LOCALES	4440	_	131053

7.2 LA CALEFACCIÓN Y EL AIRE ACONDICIONADO

El sistema de aire acondicionado consistirá en varias unidades de ventilación situadas en diferentes partes del buque. Esta disposición obedece a la división en diferentes zonas contraincendios que se ha hecho en el buque, y se trata de que los mamparos que delimitan estas zonas no sean atravesados por los conductos de ventilación. El precalentado del aire, y su enfriado será realizado mediante agua caliente y fría, la cual es circulada por las unidades centrales de enfriamiento y calentamiento que se encuentran en cámara de máquinas. El aire fresco a tratar será preenfriado y secado por medio del aire exhaustado a través de filtros regenerativos.

7.2.1 Las condiciones de funcionamiento

Partiremos en invierno de unas condiciones con temperatura mínima de -5 °C y 70 % de humedad relativa, y el sistema de calefacción mantendrá la temperatura interior en 22 °C a una humedad relativa del 50 %. Este sistema de calefacción consistirá en calentar agua con el vapor generado en la caldera, y hacerla pasar por los serpentines de las unidades de aire acondicionado de cada cubierta.

En verano partiremos de una temperatura exterior de 35 °C con una humedad relativa del 80 % y el sistema de aire acondicionado mantendrá la temperatura interior en 25 °C con una humedad del 50 %.

En resumen las condiciones de climatización del buque son:

	Condiciones exteriores		Condiciones interiores	
Estación	Temperatura (°C)	Humedad relativa (%)	Temperatura (°C)	Humedad relativa (%)
Invierno	-5	70	22	50
Verano	35	80	25	50

7.2.2 Las renovaciones de aire

Se realizarán 6 renovaciones por hora y por persona en los camarotes, mientras que en los salones el aire renovado será de 25 m³ por persona y hora.

En los salones se renovará el 50 % del aire, recirculando el 50 % restante, mientras que en los camarotes se renovará el total del aire por introducción de aire fresco.

Como resumen:

Espacio	Aire introducido		Porcentaje de renovación (%)
Camarotes	6	Renov/h	100
Espacios públicos	25	m ³ /(pers·h)	50

8 EL SERVICIO DE ACHIQUE DE SENTINAS

8.1 LOS POZOS DE SENTINAS

Se instalarán puntos de aspiración en todos los espacios estancos, de forma que se pueda conseguir el achique de cualquier espacio, cualquiera que sea la condición de escora y trimado que se pueda producir. Además la cámara de máquinas dispondrá de una aspiración por cada nicho existente.

Los pozos de sentina serán de chapa de acero y su volumen de 150 litros. Por ser un buque de pasaje, la altura de los pozos en el doble fondo, deberá ser menor que la altura de éste (1,5 m) disminuida en 0,457 m.

8.2 EL COLECTOR PRINCIPAL

El diámetro del colector principal se sentinas del que aspiran las bombas de achique y al que se unen la red de tuberías de bodegas, máquinas y de otros posibles espacios queda definido por el SEVIMAR y Det Norske Veritas mediante la siguiente fórmula:

$$d = 1.68\sqrt{L(B+D)} + 25$$

Donde:

- *L*, eslora entre perpendiculares, (m).
- *B*, manga de trazado, (m).
- D, puntal del buque a la cubierta de francobordo, (m)
- d, diámetro interior de la tubería del colector de sentinas, (mm).

Aplicando la expresión anterior a nuestro caso se obtiene un diámetro para el colector principal de:

$$d = 124,9 \text{ mm}$$

Según el reglamento, el espesor mínimo será de 4,5 mm, por lo que se obtiene un diámetro exterior, según los diámetros de tubos comerciales, de 137,5 (133 + 4,5) mm.

8.3 LOS RAMALES DE OTROS ESPACIOS

El diámetro interior de la tubería de cada ramal está reglamentado por el SEVIMAR y Det Norske Veritas mediante la expresión:

$$d_b = 2.15\sqrt{l(B+D)} + 25$$

Donde:

- *l*, eslora de compartimentado, (m).
- d_b , diámetro interior del ramal de aspiración de sentinas, (mm).

Como la longitud de los compartimentos es de 6,6 m, 9,9 m y 13,2 m, el diámetro interior que se obtiene para cada ramal es de 55,4 mm, 62,3 mm y 68,0 mm respectivamente. El espesor de estos ramales también viene determinado por la Sociedad de Clasificación, en función del diámetro, por lo que estos espesores son de 4 mm, 4 mm y 4 mm.

El diámetro exterior de los ramales de acuerdo con la tabla de diámetros comerciales será de 61 (57 + 4) mm, 67,5 (63,5 + 4) mm y 74 (70 + 4) mm.

8.4 LAS BOMBAS DE ACHIQUE

Según la reglamentación del SEVIMAR, en el caso de buques de pasaje, se instalarán como mínimo tres bombas motorizadas conectadas al colector de achique; una de ellas podrá ir accionada por las máquinas propulsoras. Además, cuando el coeficiente de criterio sea igual o superior a 30, como en este caso, se instalará una bomba motorizada independiente.

En cuanto a su situación, las bombas de sentina irán, siempre que sea posible, en distintos compartimentos estancos.

Por tanto, se instalarán cuatro electrobombas centrífugas autocebantes situadas de la forma siguiente:

- Una bomba en el compartimento de compresores.
- Una bomba en el compartimento de tratamiento de combustible.
- Una bomba en el compartimento de motores auxiliares.
- Una bomba en el compartimento de motores principales.

Esta disposición tiene como finalidad, que en ninguna situación de inundación, queden inutilizadas las cuatro bombas a la vez.

El caudal de las bombas se calcula según el reglamento:

$$Q = \frac{5,75 d^2}{1000} = 89,7 \text{ m}^3 \cdot \text{h}^{-1}$$

Por tanto las características de las bombas serán las siguientes:

• Caudal: $89, 7 \text{ m}^3 \cdot \text{h}^{-1}$.

• Presión: 250 kPa.

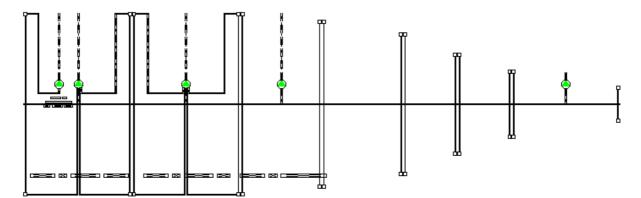
• Potencia: 6,2 kW.

8.5 LAS ASPIRACIONES

La aspiración de los diferentes espacios estancos, exceptuando la cámara de máquinas será mediante los ramales definidos hasta el colector principal.

La aspiración en cámara de máquinas será directa, sin pasar por el colector principal, para que en el caso de que éste quede fuera de servicio, no se inutilice la aspiración de agua en este espacio. El diámetro de la aspiración directa será igual que el del colector principal. Se dispondrá, en cámara de máquinas, de un sistema de aspiración de emergencia, mediante la bomba de refrigeración principal, cuyo diámetro debe coincidir con el del orificio de aspiración de la bomba.

En los espacios a popa del mamparo del pique de popa, la aspiración se realizará por medio de bombas independientes accionadas manual o mecánicamente. En los túneles de ejes se dispondrá de una tubería unida al colector principal.


En los espacios de caja de cadenas y de la hélice transversal de maniobra se dispondrá de bombas de accionamiento manual.

8.6 EL EQUIPO SEPARADOR

La descarga de agua procedente del achique de los espacios de máquinas lleva incorporada combustibles y aceites, por lo que antes de su descarga al exterior, deberá pasar por un equipo separador de sentinas, que deberá contar con una capacidad adecuada.

8.7 EL ESQUEMA DEL SERVICIO DE SENTINAS

A continuación aparece el esquema del servicio de sentinas. Ver también el plano adjunto.

9 EL SERVICIO DE LASTRE

Las tuberías que forman la red de servicio de los tanques de lastre deben disponerse de tal forma, que todos los tanques a los que den servicio puedan ser completamente llenados o achicados, para lo cual será necesario instalar dos sistemas de tuberías independientes, uno para llenar y achicar el tanque de agua de lastre y otro segundo para dar salida o entrada al aire.

Las tuberías de relleno y achique de cada tanque se dispondrán de manera que terminen en la parte inferior de éste y lo más a popa posible, dado que el buque tendrá siempre un ligero trimado a popa.

El servicio de lastre es bastante similar al de sentinas, desde el punto de vista de las condiciones que deben reunir las bombas, puesto que éstas deben ser autocebadas y necesitan poca presión diferencial, únicamente la necesaria para elevar el agua desde los tanques de doble fondo y sentinas hasta poder expulsarla al exterior. Debido a esto, se emplearán las mismas bombas para el servicio de sentinas que para el lastre.

Para la distribución del lastre a los diferentes tanques, se instalará una caja de válvulas, a cada banda del buque. Cada caja de válvulas dará servicio a los tanques de lastre de su banda, y cualquiera de ellas a los piques de proa y popa.

Con las bombas de lastre consideradas se consigue un tiempo de deslastrado en puerto de:

• Caudal total: $358.8 \text{ m}^3 \cdot \text{h}^{-1} (4 \times 89.7)$

• Volumen de lastre: 820 m³.

• Tiempo de deslastrado: 2,3 h.

Valor adecuado teniendo en cuenta las condiciones de operación de este tipo de buques.

Se dispondrá de un sistema de control de escora y trimado que accionará el sistema de lastre durante los periodos de carga y descarga.

Buque de Crucero Equipo y SERVICIOS

10 EL SERVICIO DE AIREACIÓN DE TANQUES

Se instalarán tubos de respiro en todos los tanques, túneles y otros compartimentos que no dispongan de otros sistemas de ventilación.

Los tubos de respiro de cada uno de los tanques de combustible se agruparán en un colector común vertical principal que desemboque en la chimenea del buque. Este colector principal comunicará hacia abajo con el tanque de reboses de combustible, para prever el caso de que se colase combustible por los tubos de aireación al cargar un tanque.

La situación de los tubos en los tanques, será en la zona delantera y superior de éstos, al contrario de lo que ocurre con el de relleno o aspiración, para favorecer el desplazamiento del aire contenido en dichos tanques.

Los tubos de aspiro del resto de los espacios se agruparán en otro colector principal vertical que desemboque en la chimenea y cuyo tramo inferior baje hasta conectar con el colector de rebose de tanques de lastre, el cual tendrá salida al exterior.

En cuanto al diámetro de los tubos, está reglamentado que el área interior de la tubería sea un 25 % mayor que el área efectiva de la tubería de llenado, admitiéndose como mínimo un diámetro interior de 50 mm.

11 EL SERVICIO DE REBOSE DE TANQUES

Se instalarán tubos de rebose en cada tanque de combustible que desembocarán en un colector único de rebose que descargue sobre el tanque de reboses de combustible.

Se dispondrá, también de un tanque de rebose para el aceite lubricante.

Los tanques de lastre y agua dulce llevarán un sistema de tuberías de rebose unidos a un colector principal que descargue al mar. Se dispondrá de los medios necesarios para que no sea posible que el agua de lastre pueda entrar en los tanques de agua dulce.

12 EL SERVICIO DE SONDA

Se instalarán medios para sondar todos los tanques y las sentinas de aquellos compartimentos que no sean fácilmente accesibles y estarán situados tan cerca como sea posible de las tuberías de aspiración.

13 EL SERVICIO DE BALDEO Y CONTRAINCENDIOS

13.1 LA INTRODUCCIÓN

El sistema contraincendios viene regulado en el capítulo II-2 de SOLAS. En él se especifican las premisas en que se tiene que fundar dicho sistema con el fin de minimizar el riesgo de incendio o, en el caso de que se produzca, atajarlo de la manera más rápida y fiable posible. Estas premisas fundamentales son:

- Prevención.
- Detección.
- Extinción.

13.1.1 Los principios

Para cumplir las premisas antes expuestas el sistema contraincendios cumplirá con los siguientes principios:

- División del buque en zonas principales verticales mediante mamparos límite que ofrezcan una resistencia estructural y térmica.
- Detección de cualquier incendio en la zona en que se origine.
- Uso restringido de materiales combustibles.
- Contención y extinción de cualquier incendio en el espacio en que se origine.
- Protección de los medios de evacuación y los de acceso a posiciones para combatir el incendio.
- Pronta disponibilidad de los dispositivos extintores y fijación de la clase de equipo necesaria en cada zona.

13.2 LA PREVENCIÓN

Los principios ha aplicar son los siguientes:

• El buque se dividirá en zonas verticales principales divididas por mamparos de clase A-60 y zonas horizontales. Estos mamparos se extenderán de cubierta a cubierta y hasta el forro u otras partes constitutivas de límites.

- Todos los mamparos que no hayan de ser necesariamente divisiones de clase A serán de clase B o C.
- Salvo los espacios de carga y los destinados a correos y equipaje y en los compartimentos refrigerados de los espacios de servicio, todos los revestimientos, pantallas supresoras de corrientes de aire, cielos rasos y aislamientos serán de materiales incombustibles.
- En los espacios de alojamiento y de servicio, puestos de control, pasillos y escaleras, las cámaras de aire que haya detrás de los cielos rasos, empanelados o revestimientos estarán adecuadamente divididas en pantallas supresoras de corrientes de aire dispuestas con espaciamiento intermedio de no más de catorce metros. En sentido vertical esas cámaras de aire, con inclusión de las que se encuentran detrás de los revestimientos de escaleras, troncos, etc., estarán cerradas en cada una de las cubiertas.

13.3 LA DETECCIÓN

En cada una de las zonas verticales del buque, en todos los espacios de alojamiento y de servicio, y en los puestos de control se proveerá de un sistema fijo de detección de incendios, instalado y dispuesto de modo que señale la presencia de fuego en dichos espacios. Además se instalará un sistema fijo que detecte la presencia de humo en pasillos, escaleras y vías de evacuación.

En los espacios de máquinas se instalará un sistema fijo de detección de incendios y de alarma contraincendios mediante un sistema detector de humo por extracción de muestras. El sistema detector originará señales de alarma acústicas y ópticas, distintas ambas de las de cualquier otro sistema no indicador de incendios, en tantos lugares como sea necesario para asegurar que sean oídas y vistas en el puente de navegación y por un oficial de máquinas responsable.

13.4 LA EXTINCIÓN

En cada zona principal contraincendios se instalará un sistema fijo de rociadores para la extinción de incendios de tal modo que proteja todos los espacios de alojamiento y de servicio, este sistema se describe con más profundidad más adelante en este mismo cuaderno.

Además en la cámara de máquinas se dispondrá de un sistema fijo de extinción de incendios.

13.4.1 La descripción del sistema

En el esquema de tuberías de baldeo y contraincendios en cámara de máquinas tendremos:

- Tomas de mar.
- Colector principal.
- Válvulas:
 - De compuerta.
 - De cierre con conexión tipo Barcelona.
 - o De cierre no retorno.
 - o De seguridad.
- Aparatos de medida y control:
 - o Manómetro de glicerina.
 - o Manovacúmetro de glicerina.
 - o Presostatos.
 - o Indicador de nivel.
- Bombas.

13.4.1.1 Las tomas de mar

La toma de mar es una abertura en la obra viva del casco que permite la entrada de agua de mar. En el barco se dispone de cuatro tomas de mar, distribuidas convenientemente de manera que se permita que el agua de mar inunde el colector principal.

13.4.1.2 El colector principal

Del colector principal se alimentan las combas que van a dar servicio contraincendios en los diferentes compartimentos del buque, y en particular, en los que queda dividida la cámara de máquinas.

Se dispondrá de tres bombas contraincendios, una de ellas de emergencia, a las que hay que añadir una cuarta que forma parte del equipo hidróforo contraincendios. Todas ellas son bombas cebadas, pues, debido a su situación por debajo del nivel de flotación, trabajan siempre con presión positiva.

Del colector saldrán ramales que recorrerán todo el buque finalizando en una válvula de cierre tipo Barcelona en cada una de las estaciones contraincendios de las que disponga el buque. Este tipo esencial de válvula permite el acoplamiento de las mangueras contraincendios en caso de necesidad.

13.4.1.3 El equipo hidróforo

El equipo hidróforo tiene la misión de mantener constante la presión de salida del sistema. Dicho equipo estará formado principalmente por un tanque hidróforo, al que llega una tubería con aire comprimido, dos presostatos, una pequeña bomba y diferentes válvulas. Los presostatos miden la presión a la salida y entrada del tanque hidróforo. Cuando la presión a la salida en inferior de 650 kPa se activará la bomba del equipo alimentada de uno de los colectores principales. Esta bomba tiene la particularidad de dar una caudal muy pequeño, aunque normalmente suficiente para una situación normal del buque. En caso de que se requiera un caudal mayor que el que pueda suministrar dicha bomba, se activará inmediatamente la bomba de emergencia proporcionando el caudal necesario.

El equipo hidróforo también protege contra subidas de presión en las tuberías. Para ello dispone de una válvula reguladora, tarada en 900 kPa, de modo que cuando la presión en el sistema se eleva de esa cantidad, se vence el muelle, permitiendo el escape a sentinas.

13.4.2 La reglamentación

De la regla 4 del capitulo II de SOLAS se obtienen algunos condicionantes que deben cumplirse en todo esquema contraincendios.

13.4.2.1 Las bombas

Se instalarán tres bombas contraincendios de accionamiento independiente, como corresponde a buques de pasaje de arqueo bruto igual o superior a 4000 toneladas. Las bombas contraincendios en los buques de pasaje deben proporcionar un caudal no menor de $\frac{2}{3}$ del caudal que deben evacuar las bombas de sentina, y su presión será tal que asegure en todas las bocas una presión no inferior a 310 kPa. Las características de las bombas son:

• Caudal: 60 m³·h⁻¹.

Presión: 400 kPa.

• Potencia: 11 kW.

La distribución de estas bombas se realizará de forma que si se declara un incendio en cualquiera de los compartimentos no queden inutilizadas todas las bombas. Esta distribución será de la forma siguiente:

- Una bomba en el local de motores auxiliares.
- Una bomba en el local de tratamiento de combustible.
- Una bomba en el local de motores principales.

13.4.2.2 Las bocas contraincendios

El número y la distribución de las bocas contraincendios serán tales que por lo menos dos chorros de agua no procedentes de la misma boca contraincendios puedan alcanzar cualquier parte del buque accesible a los pasajeros o a la tripulación. Bastará con que uno de los dos chorros anteriores sea lanzado por una manguera de una sola pieza.

Las tuberías y bocas contraincendios estarán situadas de modo que se les puedan acoplar fácilmente las mangueras.

Su número y distribución será tal que se cumpla con lo anterior cuando estén cerradas todas las puertas estancas y todas las puertas situadas en los mamparos de las zonas verticales principales.

La presión en las bocas contraincendios no será inferior de 250 kPa.

13.4.2.3 Las mangueras contraincendios

Habrá al menos una manguera por cada una de las bocas contraincendios. Se instalará una válvula por cada manguera contraincendios y cada manguera estará provista de una lanza y de los acoplamientos necesarios.

Las mangueras tendrán una longitud suficiente para que su chorro alcance cualquier punto que pueda necesitarlo, y siempre menores de 18 m.

13.4.2.4 Las lanzas contraincendios

Los diámetros normales de las lanzas serán, según el Reglamento, de 12 mm en espacios de alojamiento y servicios y de 19 mm en espacios de máquinas.

Buque de Crucero Equipo y SERVICIOS

13.4.2.5 Los extintores

Se colocarán extintores portátiles (aquellos que cargados no pesan más de 25 kg) en todos los espacios de alojamientos, servicio y puesto de control, existiendo a bordo una carga de respeto, como mínimo, por cada extintor portátil. En los mencionados espacios habrá dos extintores portátiles por cada espacio, así como en cada cubierta y entre cada dos mamparos estancos o resistentes al fuego de tipo A.

13.4.3 La extinción en los espacios de máquinas

Se dispondrá de un sistema fijo de extinción de incendios por medio de anhídrido carbónico (CO₂). La capacidad de las botellas de este gas en términos de peso será tal que en las condiciones de presión y temperatura que reinan en la cámara de máquinas el gas que contiene ocupe el 40 % del volumen de este espacio. Estas botellas contendrán por lo tanto 1950 kg de CO₂ a una presión que no sea peligrosa, esté dentro del uso común y suponga poco empacho.

Estas botellas han de emplazarse fuera de la cámara de máquinas, y por encima de la cubierta de francobordo.

El sistema de tuberías será tal que permita la descarga del 85 % del gas dentro del espacio considerado en no más de dos minutos, y su diámetro mínimo será de 13 mm.

Existirán dos equipos extintores lanzaespuma portátiles de 20 l como mínimo cada uno, y susceptibles se ser conectado al colector contraincendios por una manguera.

13.4.4 La protección de los espacios de habilitación

Se dispondrá un sistema automático de rociadores fuera de cámara de máquinas para toda la habilitación.

Los rociadores estarán agrupados en secciones separadas (con un máximo de 200 rociadores por sección). Ninguna sección de rociadores servirá a más de dos cubiertas, ni estará situada en más de una zona vertical principal. En los espacios de alojamiento y servicio empezarán a funcionar cuando se alcance una temperatura comprendida entre 68 °C y 79 °C, pero en espacios donde se prevea una temperatura alta de trabajo, la temperatura de funcionamiento de los rociadores se podrá aumentar hasta en 30 °C por encima de la máxima prevista para la parte superior del local que se trate.

Los rociadores irán colocados bajo los techos, y espaciados según una disposición apropiada para mantener un régimen de aplicación de por lo menos 5 l·m⁻²·min⁻¹ sobre el área nominal de la zona que van a proteger.

Se instalará en el pañol de proa sobre la cubierta inferior un tanque de presión que contendrá 2,8 m³ de agua dulce, y la instalación será tal que en el tanque se mantenga una presión de aire suficiente para asegurar que cuando se haya utilizado el agua dulce almacenada en él, la presión no será menor en el sistema que la presión de trabajo del rociador más la presión ejercida por una columna de agua medida desde el fondo del tanque hasta el rociador más alto del sistema.

Existirán medios adecuados para reponer el aire a presión y la carga de agua dulce del tanque. Se instalará en el mismo emplazamiento, una bomba motorizada independiente, sólo destinada a mantener automáticamente la descarga continua del agua de los rociadores, y que comenzará a funcionar automáticamente ante un descenso de la presión en el sistema antes de que la carga permanente del agua a presión se haya agotado completamente. La bomba tendrá una capacidad de 1,4 m³·min⁻¹ a una presión de 3 MPa con un consumo eléctrico de 10 kW. La bomba estará conectada al cuadro de distribución principal y al cuadro de emergencia. El sistema, en la parte que concierne a los rociadores, estará conectado al colector principal por medio de una válvula de retención con cierre de rosca, colocado en la conexión, que impida el retorno del agua desde el sistema hacia el colector.

14 LA HABILITACIÓN

14.1 LOS AISLAMIENTOS

14.1.1 El aislamiento térmico

Las paredes de las cabinas o espacios públicos expuestas a la intemperie serán aisladas con lanas de vidrio o paneles de 50 mm de espesor.

14.1.2 El aislamiento acústico

Las paredes contiguas a espacios ruidosos (cámara de máquinas o de auxiliares, salones, retretes, ...) dispondrán de aislamiento acústico.

14.1.3 El aislamiento contra el fuego

El barco está dividido en tres zonas verticales. Se aislarán las cubiertas y los mamparos de acuerdo con los requerimientos de los reglamentos correspondientes, con los materiales y sistema en ellos descritos.

14.2 EL SUELO Y LAS PAREDES

14.2.1 Los mamparos de subdivisión

Se recubrirán los mamparos y techos de la habilitación excepto en los almacenes, y las zonas de maquinaria. Estos recubrimientos serán no combustibles, de tipo sándwich, de 50 mm de espesor. Los pasillos tendrán una división tipo B. En las cocinas se utilizará un recubrimiento a base de acero inoxidable.

14.2.2 Los suelos

Todos los suelos en general serán cubiertos con un recubrimiento incombustible de 8 mm de espesor de material ligero. En las cocinas y otras zonas húmedas se utilizará un revestimiento a base de cemento con un espesor adecuado.

14.2.2.1 Los suelos sintéticos

Las cabinas de la tripulación, así como los pasillos en las zonas de la tripulación, en el puente, en la emisora de radio y en el hospital, tendrán un acabado a base de baldosas decorativas de tipo vinilíco.

Los espacios públicos, las cabinas de pasajeros y de oficiales y los pasillos estarán recubiertos por alfombras compuestas en un 80 % de lana.

14.2.2.2 Los suelos de cerámica

Todos los baños, gambuzas, cocinas, cámaras refrigeradas, almacenes y las zonas interiores de los bares estarán recubiertas con baldosines de cerámica.

14.2.3 El mobiliario y materiales decorativos

Todo el mobiliario estará hecho con madera y acero, de acuerdo con las categorías de espacios siete y ocho de SOLAS. Las partes externas serán de buena calidad y decorativas. Todo el mobiliario será de calidad marina.

Se tendrán cortinas en todas las ventanas y portillos, en las cabinas, comedores, salones, sala de derrota, emisora y hospital.

Las superficies y las mesas estarán cubiertas con plástico laminado. Todo el mobiliario de madera estará barnizado. Todo el mobiliario pesado estará sujeto. Los elementos móviles estarán equipados con las sujeciones correspondientes.

Se dispondrán sillas y sofás en los espacios públicos, a disposición del pasaje.

15 EL SERVICIO SANITARIO

15.1 EL SISTEMA DE AGUA DULCE SANITARIA

Se instalarán cuatro tanques hidróforos para agua dulce sanitaria con dos bombas centrífugas de 20 m³·h⁻¹ a 400 kPa, y con una capacidad para 1,5 m³.

Se instalará también otro tanque hidróforo para agua dulce de lavandería.

15.2 EL SISTEMA DE AGUA DULCE SANITARIA CALIENTE

Se tendrán dos calentadores de agua dulce sanitaria, dos bombas de circulación de 16 m³·h¹ a 200 kPa para el circuito cerrado, y se instalará también un calentador de vapor y un tanque para el agua de la lavandería.

15.3 EL SISTEMA DE AGUA DULCE REFRIGERADA

La refrigeración se consigue mediante intercambio de calor en las unidades de ventilación del servicio de aire acondicionado.

15.4 LA PLANTA POTABILIZADORA

Se instalarán dos sistemas potabilizadores y esterilizadores mediante adición de cloro, provistos de un medidor de cloro.

15.5 EL TRATAMIENTO DE AGUA RESIDUALES

Se instalará un sistema de vacío para aguas negras con dos unidades colectoras, para una capacidad total de 400 personas, equipado con extractores y dos bombas extractoras de vacío. Los conductos de descarga para este sistema de vacío se harán con PEH. Se tendrán dos plantas de tratamiento de aguas residuales, una para cada colector, de tamaño suficiente para permanecer en puerto 12 horas.

16 EL ARMAMENTO, LAS INSTALACIONES Y LA HABILIATACIÓN

16.1 LA COCINA Y LOS OFICIOS

Las cocinas principales y la de la tripulación estarán equipadas con el mobiliario y los enseres necesarios.

En cuanto a los oficios, éstos estarán distribuidos en varias cubiertas, de acuerdo a los especificado en la disposición general, para el servicio de las cabinas, de las cafeterías, etc.

16.2 LA LAVANDERÍA

La lavandería constará del siguiente equipo:

- 10 lavadoras de 25 kg.
- 10 secadoras de 25 kg.

16.3 LAS GAMBUZAS

16.3.1 Las gambuzas frigoríficas

Se tendrá una cámara de provisiones con los siguientes espacios y condiciones térmicas:

Espacio	Temperatura
Sala de congelados	−25 °C
Sala de carnes	−20 °C
Sala de pescados	−20 °C
Sala de verduras	−2 °C
Vestíbulo	Ambiente

URRUTIA NEBREDA, Juan

Se instalará una planta frigorífica para estas salas refrigeradas. Será completamente automática, funcionando con freón (R-22) como refrigerante, y tendrá capacidad suficiente como para refrigerar todas las cámaras con una temperatura ambiente de 35 °C y con los compresores funcionando no más de 18 horas al día.

Esta función será realizada por dos unidades refrigeradoras cada una con un compresor y un condensador.

El aislamiento de estas cámaras se realizará mediante poliuretano recubierto por chapas de acero inoxidable de 1 mm o por chapas de aluminio.

16.3.2 Las gambuzas secas

Las salas de provisiones secas y los almacenes se dispondrán como se especifica en los planos de disposición general.

16.4 LOS PAÑOLES

Se dispondrán los necesarios pañoles de máquinas, estachas y cables, contramaestre, luces, pintura, electricista, carpintería, ropa blanca, ropa sucia, pañoles de tiendas, etc., tal como es práctica en este tipo de buques. Los mamparos divisionales de estos pañoles serán metálicos.

Los pañoles se equiparán con fuertes baldas para la estiba provistas de gualderas y construidas por perfiles soldados a puntales y elementos estructurales. Sobre estos perfiles se dispondrán rastreles de madera.

Igualmente se dispondrán pañoles provistos de estantes, baldas, cajones, etc., dedicados a vajilla, ropas de cama, etc., así como taquillas o colgadores en zonas de trabajo para ropas de trabajo de todo el personal.

El pañol de máquinas estará situado en cámara de máquinas como se indica en los planos de disposición general.

16.5 LA PINTURA

Para la estructura y superestructura del buque se empleará material previamente tratado (chorreado por sistema automático de acuerdo por las normas SIS-055900). Este tratamiento alcanzará la totalidad del acero del buque, tanto chapas como perfiles. Las zonas descubiertas

por soldadura, corte, etc., durante la elaboración y montaje recibirán una mano de imprimación.

Los tipos de pinturas a utilizar y el número de manos a emplear serán los que a continuación se detallan:

16.5.1 La pintura exterior

16.5.1.1 Los fondos y costados

- Dos capas de brea epoxi vinílico.
- Dos capa de antiincrustante vinílico.

16.5.1.2 Las cubiertas a la intemperie

- Dos capas de pintura anticorrosivo.
- Una capa de pintura para cubiertas.

16.5.1.3 La superestructura exterior y chimenea

- Dos capas de imprimación clorocaucho puro.
- Una capa de clorocaucho puro de acabado.

16.5.2 La pintura de interiores

16.5.2.1 La cámara de máquinas

- Dos capas de imprimación anticorrosivo.
- Una capa intermedia.
- Una capa de acabado.

16.5.2.2 Las cubiertas y cuadernas estructurales

- Dos capas de imprimación anticorrosivo.
- Una capa de acabado.

16.5.2.3 Los cofferdams

• Una capa de pintura bituminosa.

16.5.3 La pintura interior de tanques

16.5.3.1 Los tanques de lastre

• Dos capas de brea epoxi.

16.5.3.2 Los tanques de combustible

• Sin tratamiento.

16.5.3.3 Los tanques de agua dulce técnica

• Dos capas de epoxi sin olor

16.6 LA PROTECCIÓN CATÓDICA

A fin de proteger la estructura sumergida de las posible corrosiones provocadas por la acción galvánica se usará un sistema de corrientes impresas de cuatro ánodos y dos electrodos de referencia, mediante dispositivos eléctricos con control automático dimensionados para una densidad de corriente de 40 mA·m⁻².

Se dispondrán además ánodos de sacrificio a base de zinc en diferentes puntos de la obra viva como por ejemplo en los túneles de la hélice de proa.

17 LA BIBLIOGRAFÍA

- Det Norske Veritas Reglamento de "Det Norske Veritas". DNV. 2002.
- Comas Turnes, Eduardo "Equipo y servicios". ETSIN. 1998.

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALF

CUADERNILLO

PROYECTO NÚMERO 1491

Buque de Crucero

Planta eléctrica

Tutor: Arias Rodrigo, Carlos

Autores: Urrutia Nebreda, Juan

Vicario González, Jorge

1 EL ÍNDICE

1	El í	índice	3
2	La i	introducción	5
3	La e	elección de las tensiones y frecuencias a utilizar	6
	3.1	Las instalaciones de fuerza	6
	3.2	Las instalaciones de alumbrado	7
	3.3	Las instalaciones especiales	7
4	La j	justificación del balance eléctrico	8
5	La f	fuente de energía eléctrica de emergencia	10
6	El c	cuadro resumen del balance eléctrico	11
	6.1	El balance de día	11
	6.2	El balance de noche	11
	6.3	Las conclusiones del balance eléctrico	12
7	El e	esquema de la instalación	14
8	La ł	bibliografía	15
9	Los	s anexos	16
	9.1	La condición de funcionamiento normal	16
	9.1	1.1 Los servicios auxiliares de maquinaria y propulsión	16
	9.1	1.2 Los servicios de maquinaria auxiliar para calderas	19
	9.1	1.3 Los servicios sanitarios, sépticos y otros diversos	20
	9.1	1.4 La maniobra	22
	9.1	1.5 Los auxiliares de cubierta, carga y elevación	23
	9.1	1.6 El alumbrado	24
	9.1	1.7 La navegación, radio y automación	25
	9.1	1.8 La calefacción y ventilación	28

9.1.9	Los servicios de habilitación, cocina, lavandería y taller	30
9.1.10	El aire acondicionado	32
9.2 La	condición de emergencia	33
9.2.1	Los servicios auxiliares de maquinaria y propulsión	33
9.2.2	Los servicios sanitarios, sépticos y otros auxiliares diversos	34
9.2.3	La maniobra	35
9.2.4	Los auxiliares de cubierta, carga y elevación	36
9.2.5	La navegación, radio y automación	37
9.2.6	La calefacción y ventilación	40

2 LA INTRODUCCIÓN

Se va a realizar en este cuaderno el balance eléctrico del buque para poder seleccionar el número y tipo de generadores necesarios para el suministro de la energía eléctrica.

Para ello, el primer paso a realizar consiste en seleccionar el tipo de corriente más idónea en función de las características de los elementos receptores, zona de navegación habitual del buque, obtención más barata de dicha energía, etc. En segundo lugar se identifican los consumidores principales y las distintas instalaciones en función de su servicio y se realiza el balance eléctrico teniendo en cuenta los coeficientes de simultaneidad y las distintas condiciones de servicio que se pueden dar durante la navegación o en puerto. Por último, se elegirán los generadores que mejor se adapten a los requerimientos de potencia en función de los resultados del balance eléctrico.

3 LA ELECCIÓN DE LAS TENSIONES Y FRECUENCIAS A UTILIZAR

Es comúnmente aceptado en la actualidad el uso de la corriente trifásica en detrimento de la corriente continua. Entre las ventajas que se obtienen con el empleo de este tipo de corriente se pueden destacar las siguientes:

- Posibilidad de conectarse a la red de puerto.
- Mayor robustez, menor coste, mantenimiento más sencillo y menor peso y empacho de los motores y generadores.
- Permiten el uso de tensión más elevada, por lo que se puede ahorrar en cobre a ser la sección de los conductores menor.
- En general, la tripulación conoce con más profundidad estos equipos por lo que la fiabilidad en el mantenimiento que realizan es mayor.
- No exigen un control tan elevado de la velocidad de régimen.

Por estas razones de elige la instalación de corriente eléctrica alterna trifásica.

La elección de la tensión y la frecuencia está condicionada principalmente por la corriente empleada en los puertos en los que el buque va a atracar en su recorrido más frecuente. En este caso suponemos que el buque realizará recorridos por Europa, en donde la tensión empleada es de 380 V a 50 Hz. En consecuencia ésas serán las características de la corriente que se obtendrá en los generadores instalados, en contraposición a la empleada en EE.UU. que es de 440 V a 60 Hz.

De cualquier manera, se debe particularizar el tipo de corriente a emplear en los distintos tipos de instalaciones.

3.1 LAS INSTALACIONES DE FUERZA

Se va a emplear la corriente que se obtiene directamente de los generadores, es decir, 380 V a 50 Hz.

3.2 LAS INSTALACIONES DE ALUMBRADO

Para el alumbrado se emplea una tensión de 220 V a 50 Hz al igual que la empleada en las estaciones terrestres en Europa. Para ello la distribución será monofásica en paralelo obtenida de la conexión entre una cualquiera de las fases y el neutro de manera que el reparto sea equilibrado entre las tres fases.

3.3 LAS INSTALACIONES ESPECIALES

Existe una serie de consumidores que necesita de un tipo de corriente continua a 24 V. Para ellos se emplean baterías de acumuladores que se cargan de la red trifásica o de la monofásica mediante grupos transformadores-rectificadores. Estos consumidores son:

- Luces de navegación.
- Luces de señales.
- Luces de Morse.
- Aparatos de navegación.
- Aparatos de comunicaciones.
- Motor de arranque del generador de emergencia.

4 LA JUSTIFICACIÓN DEL BALANCE ELÉCTRICO

Según el reglamento SOLAS, en su parte D, capítulo II-1, regla 40, define que la instalación eléctrica será tal que garantice el funcionamiento de los servicios eléctricos auxiliares que sean necesarios para mantener el buque en condiciones de funcionamiento y habitabilidad sin necesidad de recurrir a la fuente de energía de emergencia.

Además según la regla 41 de dicho capítulo, la capacidad de la fuente de energía principal será suficiente para alimentar todos los servicios antes mencionados. Esta fuente de energía estará constituida por, al menos, dos grupos electrógenos y su capacidad individual será tal que aunque uno de ellos se pare, el resto pueda alimentar los servicios necesarios para lograr las condiciones de operación normales de propulsión y seguridad.

Como consecuencia de todo lo anterior, el cálculo del balance eléctrico se va a realizar para una serie de condiciones operativas que se supone que van a cubrir casi completamente el rango de operación del buque. Estas son:

- Buque navegando en condiciones normales.
- Buque maniobrando para atracar.
- Buque en puerto con tripulación únicamente.
- Buque en puerto en condiciones de hotel con todo el pasaje.

Todas ellas se deben calcular, además, para operación durante el día y durante la noche, por lo que se obtienen, en total ocho condiciones a estudiar.

En cada una de estas ocho condiciones, la potencia de los equipos está multiplicada por el coeficiente de utilización k_u , producto a su vez de otros dos coeficientes, k_n y k_{sr} , de simultaneidad de marcha y de servicio y de régimen respectivamente, donde:

- El coeficiente de simultaneidad de marcha, k_n , refleja la relación entre el número de aparatos de un mismo tipo instalados y el número de estos que se utilizan de manera simultánea.
- El coeficiente de servicio y régimen, k_{sr} , tiene en cuenta el hecho de que el equipo esté funcionando de manera continua o no, y si lo hace a pleno régimen o no.

Por último se han clasificado los consumidores en los siguientes grupos:

- Servicios generales de máquinas y propulsión.
- Servicios de maquinaria auxiliar para calderas.

URRUTIA NEBREDA, Juan

- Servicios sanitarios, sépticos y otros diversos.
- Maniobra.
- Auxiliares de cubierta, carga y elevación.
- Alumbrado.
- Navegación, radio y automación
- Calefacción y ventilación.
- Servicios de habilitación, cocina, lavandería y taller.
- Aire acondicionado.

5 LA FUENTE DE ENERGÍA ELÉCTRICA DE EMERGENCIA

Dada la importancia que tiene este consumidor, se va a estudiar con detalle en este apartado. El detalle del resto de grupos estudiados se detalla en los anexos.

La regla 42 del citado capítulo de SOLAS, dispone que se proveerá una fuente eléctrica de emergencia autónoma que junto con el equipo transformador, la fuente transitoria de energía de emergencia, el cuadro de distribución de emergencia y el cuadro de distribución de alumbrado de emergencia estén situados por encima de la cubierta corrida más alta y no estarán situados a proa del mamparo de colisión.

La energía eléctrica disponible obtenida del generador de emergencia será suficiente para alimentar todos los servicios que sean esenciales para la seguridad en caso de emergencia, dando la consideración debida a los servicios que puedan funcionar simultáneamente.

El balance eléctrico para el generador de emergencia también se adjunta en los anexos.

Se supone un factor de potencia de 0,8, por lo que la potencia del generador será de:

$$R = 1021 \text{ kVA}$$

SOLAS establece que si la fuente de emergencia es un generador, deberá estar accionado por un motor primario con alimentación independiente de combustible cuyo punto de inflamación no sea inferior a 43 °C.

Como motor primario se elige un Volvo Penta AB D49A MS de 880 kW a 1600 rpm, a 50 Hz, el alternador será el suministrado por el mismo fabricante, modelo HMC 734 E. Se debe instalar, además, un transformador a 220 V y 50 Hz para el alumbrado de emergencia y un rectificador a 24 V para las luces y aparatos de navegación.

6 EL CUADRO RESUMEN DEL BALANCE ELÉCTRICO

6.1 EL BALANCE DE DÍA

Cuuna aanaumidan	Condición								
Grupo consumidor	Navegación	Hotel							
Servicios auxiliares de maquinaria y propulsión	1294,1	1365,9	94,9	94,9					
Servicios de maquinaria auxiliar para calderas	2,1	2,1	2,1	2,1					
Servicios sanitarios, sépticos y otros diversos	114,4	112,0	67,2	85,9					
Maniobra	22,8	1190,1	0,0	0					
Auxiliares de cubierta, carga y elevación	203,1	424,0	162,7	262,7					
Alumbrado	628,2	628,2	628,2	628,2					
Navegación, radio y automación	26,7	26,7	26,7	26,69					
Calefacción y ventilación	169,7	164,2	95,3	169,7					
Servicios de habilitación, cocina, lavandería y taller	424,6	432,0	176,5	489,25					
Aire acondicionado	1210,8	1210,8	691,9	1210,8					
TOTAL	4096	5556	1945	2970					

6.2 EL BALANCE DE NOCHE

Cuma concumidar	Condición						
Grupo consumidor	Navegación Maniobrando Puerto	Hotel					

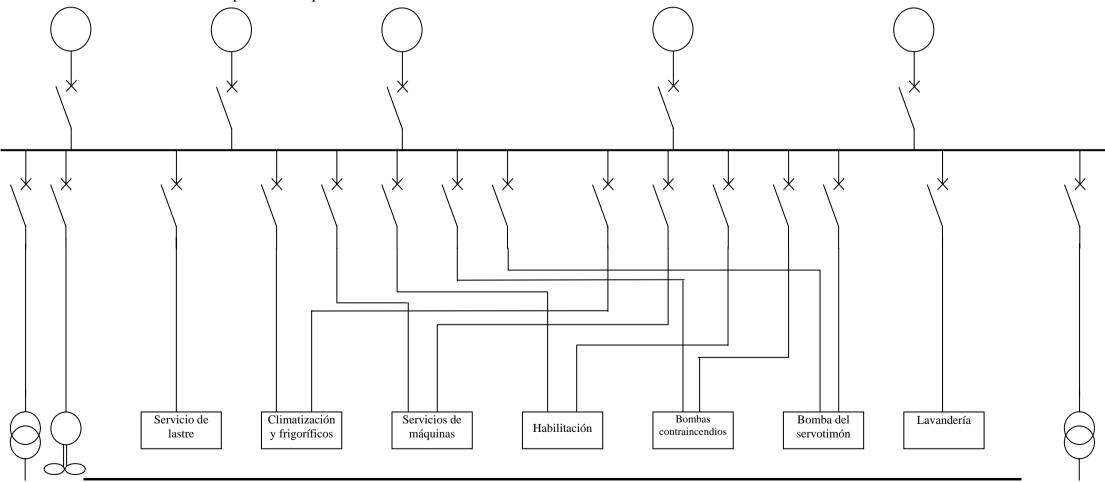
URRUTIA NEBREDA, Juan

Comma academidae	Condición								
Grupo consumidor	Navegación	Maniobrando	Puerto	Puerto Hotel					
Servicios auxiliares de maquinaria y propulsión	1294,1	1365,9	94,9	94,9					
Servicios de maquinaria auxiliar para calderas	2,1	2,1	2,1	2,1					
Servicios sanitarios, sépticos y otros diversos	114,4	112,0	67,2	85,9					
Maniobra	22,8	1190,1	0,0	0					
Auxiliares de cubierta, carga y elevación	203,1	424,0	162,7	262,7					
Alumbrado	2512,7	2512,7	2512,7	2512,7					
Navegación, radio y automación	26,7	26,7	26,7	26,69					
Calefacción y ventilación	169,7	164,2	95,3	169,7					
Servicios de habilitación, cocina, lavandería y taller	424,6	432,0	176,5	489,25					
Aire acondicionado	1210,8	1210,8	691,9	1210,8					
TOTAL	5981	7440	3830	4855					

6.3 LAS CONCLUSIONES DEL BALANCE ELÉCTRICO

A la vista de estos resultados, se debe realizar la elección y número de los grupos a instalar, de manera que el régimen de trabajo de los grupos se encuentre en todo momento entre el 70 % y el 90-95 %, con tendencia hacia el límite superior. Además tendremos que instalar un generador de respeto.

Se instalan, en consecuencia, 3 generadores movidos por motores MAN B&W 6L27/38 de 1825 kW y 2 generadores movidos por motores MAN B&W 7L27/38 de 2130 kW, ambos a 50 Hz y 750 rpm. Para cada condición de las ya estudiadas el número de generadores en funcionamiento y el factor de carga es el que se indica en el siguiente cuadro.


Condición	
Navegación Maniobrando Puerto	Hotel

	Condición								
		Nave	egación	Mani	obrando	P	uerto	H	otel
Operación diurna	Número de motores 7L27/38 en funcionamiento	2	050/	2	91%	1	0		910/
	Número de motores 6L27/38 en funcionamiento	95%	93%	1		0	91%	2	81%
Operación nocturna	Número de motores 7L27/38 en funcionamiento	2	2		94%	2	000/	1	9.40/.
	Número de motores 6L27/38 en funcionamiento	2	75%	2	94%	0	90%	2	84%

Como se puede apreciar, en todas las condiciones el factor de carga está dentro del rango que se considera satisfactorio.

7 EL ESQUEMA DE LA INSTALACIÓN

A continuación aparece el esquema unifilar de la instalación eléctrica del barco:

URRUTIA NEBREDA, Juan

8 LA BIBLIOGRAFÍA

- Det Norske Veritas «Reglamento de Det Norske Veritas ». DNV. 2002.
- López Piñeiro, Amable «Electricidad aplicada al buque: diseño general de la planta eléctrica». ETSIN 2000.

9 Los anexos

9.1 LA CONDICIÓN DE FUNCIONAMIENTO NORMAL

9.1.1 Los servicios auxiliares de maquinaria y propulsión

	Condición													
						Navegación		Maniobrando		Pu	Puerto		Hotel	
Grupo consumidor	Potencia unitaria (kW)	Número de unidades instaladas	Potencia total instalada (kW)	Número de unidades en servicio	Potencia de servicio (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)							
Bomba refrigeración A.S. MM.PP.	101,6	3,0	304,7	2,0	203,1	0,5	91,4	0,5	91,4	0,0	0,0	0,0	0,0	
Bomba refrigeración A.S. MM.AA.	80,0	2,0	160,0	1,0	80,0	0,5	36,0	0,7	56,0	0,0	0,0	0,0	0,0	
Bomba refrigeración A.D. M.P.(A.T.)	110,0	4,0	440,0	3,0	330,0	0,6	198,0	0,6	198,0	0,0	0,0	0,0	0,0	
Bomba refrigeración A.D. M.A. (A.T.)	60,0	2,0	120,0	1,0	60,0	0,5	27,0	0,5	27,0	0,0	0,0	0,0	0,0	
Bomba refrigeración A.D. M.P. (B.T.)	300,0	4,0	1200,0	3,0	900,0	0,6	540,0	0,6	540,0	0,0	0,0	0,0	0,0	
Bomba refrigeración A.D. M.A. (B.T.)	175,0	2,0	350,0	1,0	175,0	0,5	78,8	0,5	78,8	0,0	0,0	0,0	0,0	
Bombas precalentado MM.PP.	1,2	2,0	2,4	2,0	2,4	0,0	0,0	0,2	0,5	0,0	0,0	0,0	0,0	

Buque ue													
		Iı	nstalado						Condici	ón			
		70		0		Nave	gación	Manio	brando	Pu	erto	Ho	otel
Grupo consumidor	Potencia unitaria (kW)	Número de unidades instaladas	Potencia total instalada (kW)	Número de unidades en servicio	Potencia de servicio (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)	Coeficiente de utilización (k_{xr})	Potencia (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)
Bombas precalentado MM.AA.	0,4	1,0	0,4	2,0	0,8	0,0	0,0	0,2	0,2	0,0	0,0	0,0	0,0
Bomba lubricación aceite M.P.	75,0	4,0	300,0	4,0	300,0	0,3	90,0	0,3	90,0	0,1	30,0	0,1	30,0
Bomba lubricación aceite M.A.	75,0	5,0	375,0	5,0	375,0	0,3	112,5	0,3	112,5	0,1	37,5	0,1	37,5
Bomba refrigeración aceite M.P.	3,9	3,0	11,7	2,0	7,8	0,9	7,0	0,9	7,0	0,0	0,0	0,0	0,0
Bomba refrigeración aceite M.A.	5,0	3,0	15,0	2,0	10,0	0,9	9,0	0,9	9,0	0,0	0,0	0,0	0,0
Depuradora aceite M.P.	9,8	4,0	39,1	4,0	39,1	0,9	35,2	0,9	35,2	0,2	7,8	0,2	7,8
Depuradora aceite M.A.	6,3	1,0	6,3	1,0	6,3	0,9	5,6	0,1	0,6	0,2	1,3	0,2	1,3
Bomba trasiego aceite	0,3	2,0	0,5	1,0	0,3	0,8	0,2	0,2	0,1	0,1	0,0	0,1	0,0
Depuradora FO	3,0	2,0	6,0	2,0	6,0	0,9	5,4	0,9	5,4	0,2	1,2	0,2	1,2
Depuradora DO	7,0	1,0	7,0	1,0	7,0	0,1	0,7	0,1	0,7	0,1	0,7	0,1	0,7
Bomba alimentación FO M.P.	1,0	6,0	6,0	4,0	4,0	0,9	3,6	0,9	3,6	0,0	0,0	0,0	0,0
Bomba trasiego FO M.P.	5,5	4,0	22,0	2,0	11,0	0,8	8,8	0,8	8,8	0,1	1,1	0,1	1,1

Duque de	Crucio								T L/HN1/		J114C/1		
		I	nstalado						Condici	ón			
		7.0		0		Nave	gación	Manio	brando	Pu	erto	Н	otel
Grupo consumidor	Potencia unitaria (kW)	Número de unidades instaladas	Potencia total instalada (kW)	Número de unidades en servicio	Potencia de servicio (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)						
Bomba trasiego DO M.P.	5,5	3,0	16,5	2,0	11,0	0,1	1,1	0,1	1,1	0,1	1,1	0,1	1,1
Bomba alimentación FO M.A.	1,5	5,0	7,5	3,0	4,5	0,9	4,1	0,9	4,1	0,0	0,0	0,0	0,0
Bomba trasiego FO M.A.	9,0	2,0	18,0	1,0	9,0	0,8	7,2	0,8	7,2	0,1	0,9	0,1	0,9
Bomba trasiego DO M.A.	9,0	2,0	18,0	1,0	9,0	0,1	0,9	0,1	0,9	0,1	0,9	0,1	0,9
Bomba de lodos	0,0	2,0	0,0	1,0	0,0	0,1	0,0	0,1	0,0	0,0	0,0	0,0	0,0
Compresor aire de arranque M.P.	15,0	2,0	30,0	2,0	30,0	0,1	3,0	0,1	3,0	0,2	6,0	0,2	6,0
Compresor aire de arranque M.A.	15,0	2,0	30,0	2,0	30,0	0,1	3,0	0,1	3,0	0,2	6,0	0,2	6,0
Bomba refrigeración tobera	2,0	2,0	4,0	2,0	4,0	1,0	4,0	1,0	4,0	0,1	0,4	0,1	0,4
Bomba aceite bocina	2,0	1,0	2,0	1,0	2,0	1,0	2,0	1,0	2,0	0,0	0,0	0,0	0,0
Bomba lubricación reductora	6,3	2,0	12,5	1,0	6,3	0,9	5,6	0,9	5,6	0,0	0,0	0,0	0,0
HPP hélice de paso controlable	35,2	2,0	70,3	2,0	70,3	0,2	14,1	1,0	70,3	0,0	0,0	0,0	0,0
TOTAL			3574,9		2693,9		1294,1		1365,9		94,9		94,9

9.1.2 Los servicios de maquinaria auxiliar para calderas

		In	stalado						Condic	ión			
						Naveg	gación	Maniob	orando	Pu	erto	Ho	tel
Grupo consumidor	Potencia unitaria (kW)	Número de unidades instaladas	Potencia total instalada (kW)	Número de unidades en servicio	Potencia de servicio (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)	Coeficiente de utilización (ksr)	Potencia (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)
Unidad de alimentación HFO quemador caldera	2,1	2,0	4,1	1,0	2,1	0,2	0,4	0,2	0,4	0,2	0,4	0,2	0,4
Bomba agua alimentación calderas	0,9	4,0	3,8	2,0	1,9	0,2	0,4	0,2	0,4	0,2	0,4	0,2	0,4
Bomba agua circulación calderas	0,9	4,0	3,8	2,0	1,9	0,7	1,3	0,7	1,3	0,7	1,3	0,7	1,3
TOTAL			11,7		5,8		2,1		2,1		2,1		2,1

9.1.3 Los servicios sanitarios, sépticos y otros diversos

		Iı	ıstalado						Condic	ión			
				•		Naveg	gación	Maniob	rando	Pu	erto	Ho	tel
Grupo consumidor	Potencia unitaria (kW)	Número de unidades instaladas	Potencia total instalada (kW)	Número de unidades en servicio	Potencia de servicio (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)	Coeficiente de utilización (ksr)	Potencia (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)
Bombas lastre	25,0	3,0	75,0	2,0	50,0	0,1	5,0	0,0	0,0	0,2	10,0	0,2	10,0
Bomba sentinas	25,0	2,0	50,0	1,0	25,0	0,2	5,0	0,2	5,0	0,1	2,5	0,1	2,5
Bomba sentinas emergencia	25,0	1,0	25,0	1,0	25,0	0,2	5,0	0,2	5,0	0,2	5,0	0,1	2,5
Separador de sentinas	1,3	2,0	2,6	1,0	1,3	0,2	0,3	0,2	0,3	0,2	0,3	0,1	0,1
Bomba contraincendios emergencia	34,6	1,0	34,6	1,0	34,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Bomba baldeo y CI	22,0	3,0	66,0	3,0	66,0	0,1	6,6	0,1	6,6	0,1	6,6	0,1	6,6
Bomba servicios generales	54,5	2,0	108,9	1,0	54,5	0,1	5,4	0,1	5,4	0,1	5,4	0,1	5,4
Bomba sprinkler	3,8	4,0	15,4	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Bomba aceite hélices de paso controlable	7,8	3,0	23,4	2,0	15,6	0,5	7,8	0,6	9,4	0,0	0,0	0,0	0,0
Detección de incendios	1,3	1,0	1,3	1,0	1,3	1,0	1,3	1,0	1,3	1,0	1,3	1,0	1,3
Bomba achique caja de cadenas	0,8	1,0	0,8	1,0	0,8	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
Bomba agua dulce sanitaria	13,5	2,0	26,9	1,0	13,5	0,4	5,4	0,4	5,4	0,3	4,0	0,4	5,4

		In	stalado						Condic	ión			
						Nave	gación	Maniol	orando	Pu	erto	Н	otel
Grupo consumidor	Potencia unitaria (kW)	Número de unidades instaladas	Potencia total instalada (kW)	Número de unidades en servicio	Potencia de servicio (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)						
Calentador agua dulce sanitaria	11,5	5,0	57,7	4,0	46,1	0,4	18,5	0,4	18,5	0,3	13,8	0,6	27,7
Bomba agua caliente sanitaria	5,8	2,0	11,5	1,0	5,8	0,8	4,6	0,8	4,6	0,8	4,6	0,8	4,6
Generadores agua dulce	12,8	3,0	38,4	3,0	38,4	0,8	30,8	0,8	30,8	0,0	0,0	0,0	0,0
Planta tratamiento aguas negras	7,9	4,0	31,5	2,0	15,8	0,4	6,3	0,4	6,3	0,2	3,2	0,4	6,3
Planta vaciado inodoros	2,3	4,0	9,0	3,0	6,8	0,4	2,7	0,4	2,7	0,2	1,4	0,4	2,7
Protección catódica	3,2	1,0	3,2	1,0	3,2	1,0	3,2	1,0	3,2	1,0	3,2	1,0	3,2
Planta tratamiento aguas grises	3,0	3,0	9,0	2,0	6,0	0,4	2,4	0,4	2,4	0,2	1,2	0,4	2,4
Incinerador	5,3	1,0	5,3	1,0	5,3	0,7	3,7	0,9	4,7	0,8	4,2	0,9	4,7
Bomba llenado piscina	4,5	2,0	9,0	1,0	4,5	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Unidad clorinadora	1,0	2,0	2,1	1,0	1,0	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
TOTAL			606,5		420,3		114,4		112,0		67,2		85,9

9.1.4 La maniobra

		1	nstalado						Condici	ón			
						Nave	gación	Manio	brando	Pue	erto	Ho	tel
Grupo consumidor	Potencia unitaria (kW)	Número de unidades instaladas	Potencia total instalada (kW)	Número de unidades en servicio	Potencia de servicio (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)	Coeficiente de utilización (k_{cr})	Potencia (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)
Hélice de proa	600,0	2,0	1200,0	2,0	1200,0	0,0	0,0	0,9	1080,0	0,0	0,0	0,0	0,0
HPP para hélice de proa	3,8	2,0	7,5	2,0	7,5	0,0	0,0	1,0	7,5	0,0	0,0	0,0	0,0
Servomotor	57,0	2,0	114,0	2,0	114,0	0,2	22,8	0,9	102,6	0,0	0,0	0,0	0,0
TOTAL			1321,5		1321,5		22,8		1190,1		0,0		0,0

9.1.5 Los auxiliares de cubierta, carga y elevación

		I	nstalado						Condic	ión			
]	Nave	gación 🛚	Manio	brando	Pu	erto	H	otel
Grupo consumidor	Potencia unitaria (kW)	Número de unidades instaladas	Potencia total instalada (kW)	Número de unidades en servicio	Potencia de servicio (kW)	Coeficiente de utilización (ksr)	Potencia (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)	Coeficiente de utilización (ksr)	Potencia (kW)
Molinete	43,7	2,0	87,3	2,0	87,3	0,1	8,7	0,9	78,6	0,0	0,0	0,0	0,0
Cabrestantes	43,7	2,0	87,3	2,0	87,3	0,1	8,7	0,9	78,6	0,0	0,0	0,0	0,0
Pescantes salvavidas	7,0	8,0	56,0	8,0	56,0	0,1	5,6	0,1	5,6	0,0	0,0	0,0	0,0
Pescantes grúa de gambuza	3,0	2,0	6,0	2,0	6,0	0,0	0,0	0,0	0,0	0,2	1,2	0,2	1,2
Chigre pescante escala real	2,0	2,0	4,0	2,0	4,0	0,0	0,0	0,3	1,2	0,0	0,0	0,0	0,0
Polipasto	15,0	1,0	15,0	1,0	15,0	0,0	0,0	0,0	0,0	0,1	1,5	0,1	1,5
Montacargas	50,0	3,0	150,0	2,0	100,0	0,2	20,0	0,2	20,0	0,0	0,0	0,2	20,0
Ascensores	100,0	8,0	800,0	8,0	800,0	0,2	160,0	0,3	240,0	0,2	160,0	0,3	240,0
TOTAL			1205,7		1155,7		203,1		424,0		162,7		262,7

9.1.6 El alumbrado

C	Número	Superficie (m²)	Potencia unitaria (kW)	Potencia total (kW)	Coeficiente de utilización (K _u)	Potencia (kW)
Pasaje						
Camarotes 14 m ²	95,0	1330,0	0,6	798,0	0,7	558,6
Camarotes 25 m ²	30,0	750,0	1,5	1125,0	0,7	787,5
Tripulación						
Camarotes 14 m ²	35,0	490,0	0,6	294,0	0,7	205,8
Camarotes 28 m ²	23,0	644,0	1,5	966,0	0,7	676,2
Resto de espacios						
Espacios de maquinaria	-	590,0	0,0	23,6	0,8	18,9
Salones y comedores	-	2452,8	0,1	147,2	0,5	73,6
Discotecas, casino	-	661,7	0,1	39,7	0,5	19,9
Pasillos y escaleras	-	5995,1	0,0	179,9	0,7	125,9
Pañoles, gambuzas, oficios,	-	715,2	0,0	14,3	0,4	5,7
Cocinas, lavanderías,	-	1453,0	0,0	58,1	0,7	40,7
TOTAL						2512,7

9.1.7 La navegación, radio y automación

		In	stalado)					Condic	ión			
						Naveg	ación	Maniob	orando	Pu	erto	Ho	tel
Grupo consumidor	Potencia unitaria (kW)	Número de unidades instaladas	Potencia total instalada (kW)	Número de unidades en servicio	Potencia de servicio (kW)	Coeficiente de utilización (ksr)	Potencia (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)	Coeficiente de utilización (ksr)	Potencia (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)
Girocompás (24 V DC)	1,2	2,0	2,4	2,0	2,4	1,0	2,4	1,0	2,4	1,0	2,4	1,0	2,4
Sensores radar (230/440 V AC 3 Ph)	0,4	2,0	0,8	2,0	0,8	1,0	0,8	1,0	0,8	1,0	0,8	1,0	0,8
Pantalla y unidad de control de radar, ARPA, ECS y piloto automático (110/220 V AC)	1,1	2,0	2,2	2,0	2,2	1,0	2,2	1,0	2,2	1,0	2,2	1,0	2,2
Planeador de rutas (220 V AC)	0,2	1,0	0,2	1,0	0,2	1,0	0,2	1,0	0,2	1,0	0,2	1,0	0,2
Conning pilot	1,0	1,0	1,0	1,0			1,0	1,0	1,0	1,0	1,0	1,0	1,0
Piloto automático	0,1	1,0	0,1	1,0	0,1	1,0	0,1	1,0	0,1	1,0	0,1	1,0	0,1
Ecosonda (220 V AC o 24 V DC)	0,1	1,0	0,1	1,0	0,1	1,0	0,1	1,0	0,1	1,0	0,1	1,0	0,1
Corredera (220 V AC)	0,3	1,0	0,3	1,0	0,3	1,0	0,3	1,0	0,3	1,0	0,3	1,0	0,3
Sistema de muelle	0,2	1,0	0,2	1,0	0,2	1,0	0,2	1,0	0,2	1,0	0,2	1,0	0,2
Radio dirección- buscador	0,1	1,0	0,1	1,0	0,1	1,0	0,1	1,0	0,1	1,0	0,1	1,0	0,1

Buque in C													
		In	stalado)					Condic	ión			
				0		Naveg	gación	Maniob	rando	Pu	erto	Ho	tel
Grupo consumidor	Potencia unitaria (kW)	Número de unidades instaladas	Potencia total instalada (kW)	Número de unidades en servicio	Potencia de servicio (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)	Coeficiente de utilización $(k_{\rm sr})$	Potencia (kW)
Receptor facsímil	0,1	1,0	0,1	1,0	0,1	1,0	0,1	1,0	0,1	1,0	0,1	1,0	0,1
GPS (12 V DC)	0,1	2,0	0,2	2,0	0,2	1,0	0,2	1,0	0,2	1,0	0,2	1,0	0,2
Loran-C (12 V DC)	0,1	1,0	0,1	1,0	0,1	0,5	0,1	0,5	0,1	0,5	0,1	0,5	0,1
ECDIS ()	2,0	1,0	2,0	1,0	2,0	0,5	1,0	0,5	1,0	0,5	1,0	0,5	1,0
Sensor de viento	0,5	1,0	0,5	1,0	0,5	0,5	0,3	0,5	0,3	0,5	0,3	0,5	0,3
Estación GMDSS (24 V DC)	5,0	1,0	5,0	1,0	5,0	0,5	2,5	0,5	2,5	0,5	2,5	0,5	2,5
Inmarsat B (110/220 V AC o 28 V DC)	1,0	2,0	2,0	2,0	2,0	1,0	2,0	1,0	2,0	1,0	2,0	1,0	2,0
Sistema de detección de incendios	3,0	1,0	3,0	1,0	3,0	0,5	1,5	0,5	1,5	0,5	1,5	0,5	1,5
sistema de automación y alarma	5,0	1,0	5,0	1,0	5,0	0,8	3,8	0,8	3,8	0,8	3,8	0,8	3,8
Limpiaparabrisas	1,0	1,0	1,0	1,0	1,0	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Sistema de alarma general	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Sistema de reloj	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Sistema director de público	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0

		In	stalado						Condic	ión			
						Naveg	gación	Maniol	orando	Pu	erto	Но	otel
Grupo consumidor	Potencia unitaria (kW)	Número de unidades instaladas	Potencia total instalada (kW)	Número de unidades en servicio	Potencia de servicio (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)						
Sistema de llamada	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
TV	3,0	1,0	3,0	1,0	3,0	0,5	1,5	0,5	1,5	0,5	1,5	0,5	1,5
Sistema de telefonía (PABX) (24 V DC)	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Sound powered telephone system)	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Girocompás (24 V DC)	1,2	2,0	2,4	2,0	2,4	1,0	2,4	1,0	2,4	1,0	2,4	1,0	2,4
TOTAL			35,2		35,2		26,7		26,7		26,7		26,7

9.1.8 La calefacción y ventilación

		Ir	stalado						Condic	ión			
						Nave	gación	Maniol	orando	Pu	erto	Н	otel
Grupo consumidor	Potencia unitaria (kW)	Número de unidades instaladas	Potencia total instalada (kW)	Número de unidades en servicio	Potencia de servicio (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)						
Ventilación de lavandería	5,1	1,0	5,1	1,0	5,1	1,0	5,1	0,8	4,1	0,8	3,8	1,0	5,1
Ventilación del hospital	5,1	1,0	5,1	1,0	5,1	1,0	5,1	0,8	4,1	0,8	3,8	1,0	5,1
Ventilación de lavabos	5,1	1,0	5,1	1,0	5,1	1,0	5,1	0,8	4,1	0,8	3,8	1,0	5,1
Ventilación de espacios comunes	5,1	2,0	10,3	1,0	5,1	1,0	5,1	0,8	4,1	0,8	3,8	1,0	5,1
Ventilación de cocinas	5,1	1,0	5,1	1,0	5,1	1,0	5,1	0,8	4,1	0,8	3,8	1,0	5,1
Ventilación de escaleras	2,2	1,0	2,2	1,0	2,2	1,0	2,2	0,8	1,8	0,8	1,7	1,0	2,2
Local A/C para ECR	7,7	1,0	7,7	1,0	7,7	0,9	6,9	0,9	6,9	0,9	6,9	0,9	6,9
Ventiladores de cámara motores principales	48,1	2,0	96,1	2,0	96,1	0,9	86,5	0,9	86,5	0,5	43,3	0,9	86,5
Ventiladores de cámara motores auxiliares	16,0	2,0	32,0	2,0	32,0	0,9	28,8	0,9	28,8	0,5	14,4	0,9	28,8
Ventiladores de taller de maquinaria	1,3	1,0	1,3	1,0	1,3	0,9	1,2	0,9	1,2	0,5	0,6	0,9	1,2
Ventiladores de taller de electrónica	1,3	1,0	1,3	1,0	1,3	0,9	1,2	0,9	1,2	0,5	0,6	0,9	1,2

		Condición											
						Nave	gación	Maniol	brando	Pu	erto	Н	otel
Grupo consumidor	Potencia unitaria (kW)	Número de unidades instaladas	Potencia total instalada (kW)	Número de unidades en servicio	Potencia de servicio (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)						
Ventilación del local de purificadoras	10,9	1,0	10,9	1,0	10,9	0,9	9,8	0,9	9,8	0,5	4,9	0,9	9,8
Ventiladores del local de gobierno	1,9	1,0	1,9	1,0	1,9	0,9	1,7	0,9	1,7	0,5	0,9	0,9	1,7
Ventiladores del local de hélices de proa	2,6	1,0	2,6	1,0	2,6	0,9	2,3	0,9	2,3	0,5	1,2	0,9	2,3
Ventiladores del generador de emergencia	2,6	1,0	2,6	1,0	2,6	0,9	2,3	0,9	2,3	0,5	1,2	0,9	2,3
Ventiladores del local de CO ₂	0,6	1,0	0,6	1,0	0,6	0,9	0,6	0,9	0,6	0,5	0,3	0,9	0,6
Ventiladores del local de baterías	0,6	1,0	0,6	1,0	0,6	0,9	0,6	0,9	0,6	0,5	0,3	0,9	0,6
TOTAL			190,6		185,5		169,7		164,2		95,3		169,7

9.1.9 Los servicios de habilitación, cocina, lavandería y taller

					Condic	ión							
				•		Nave	gación	Manio	brando	Pu	erto	H	otel
Grupo consumidor	Potencia unitaria (kW)	Número de unidades instaladas	Potencia total instalada (kW)	Número de unidades en servicio	Potencia de servicio (kW)	Coeficiente de utilización (ksr)	Potencia (kW)	Coeficiente de utilización (ksr)	Potencia (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)
Torno	4,5	1,0	4,5	1,0	4,5	0,1	0,5	0,0	0,0	0,1	0,5	0,1	0,5
Barrenadora	3,0	1,0	3,0	1,0	3,0	0,1	0,3	0,0	0,0	0,1	0,3	0,1	0,3
Esmeriladora	3,0	1,0	3,0	1,0	3,0	0,1	0,3	0,0	0,0	0,1	0,3	0,1	0,3
Equipo de soldadura	20,0	1,0	20,0	1,0	20,0	0,1	2,0	0,0	0,0	0,1	2,0	0,1	2,0
Equipos de test eléctricos	2,0	2,0	4,0	1,0	2,0	0,1	0,2	0,0	0,0	0,1	0,2	0,1	0,2
Lavadoras	1,1	20,0	22,5	20,0	22,5	0,2	4,5	0,2	4,5	0,2	4,5	0,2	4,5
Secadoras	2,3	20,0	45,0	20,0	45,0	0,2	9,0	0,2	9,0	0,2	9,0	0,2	9,0
Cocina	318,8	1,0	318,8	1,0	318,8	0,7	207,2	0,8	255,0	0,2	63,8	0,8	255,0
Hornos	112,5	1,0	112,5	1,0	112,5	0,7	73,1	0,8	90,0	0,2	22,5	0,8	90,0
Compresores de gambuza frigorífica	11,3	9,0	101,3	8,0	90,0	0,5	45,0	0,5	45,0	0,5	45,0	0,5	45,0
Bombas de refrigeración de gambuza frigorífica	2,6	9,0	23,6	8,0	21,0	0,5	10,5	0,5	10,5	0,5	10,5	0,5	10,5
Bares	45,0	1,0	45,0	1,0	45,0	0,8	36,0	0,2	9,0	0,2	9,0	0,8	36,0
Oficios	45,0	1,0	45,0	1,0	45,0	0,8	36,0	0,2	9,0	0,2	9,0	0,8	36,0

	I		Condición								
				Nave	gación ː	Manio	brando	Pu	erto	Н	otel
Grupo consumidor	Número de unidades instaladas	Potencia total instalada (kW)	Número de unidades en servicio Potencia de servicio (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)						
TOTAL		748,1	732,3		424,6		432,0		176,5		489,3

9.1.10 El aire acondicionado

	Instalado					Condición							
						Nave	egación	Manio	brando	Pu	ierto	Hotel	
Grupo consumidor	Potencia unitaria (kW)	Número de unidades instaladas	Potencia total instalada (kW)	Número de unidades en servicio	Potencia de servicio (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)	Coeficiente de utilización (k_{sr})	Potencia (kW)	Coeficiente de utilización (ksr)	Potencia (kW)	Coeficiente de utilización (ksr)	Potencia (kW)
Compresores	1081,1	1,0	1081,1	1,0	1081,1	0,7	756,8	0,7	756,8	0,4	432,5	0,7	756,8
Auxiliares	648,7	1,0	648,7	1,0	648,7	0,7	454,1	0,7	454,1	0,4	259,5	0,7	454,1
TOTAL			1729,8		1729,8		1210,9		1210,9		691,9		1210,9

9.2 LA CONDICIÓN DE EMERGENCIA

9.2.1 Los servicios auxiliares de maquinaria y propulsión

	Instalado							
		7.0			70	Eme	rgencia	
Grupo consumidor	Potencia unitaria (kW)	Número de unidades instaladas	Potencia total instalada (kW)	Potencia unitaria (kW)	Número de unidades instaladas	Coeficiente de utilización (k_{sr})	Potencia (kW)	
Bombas precalentado MM.AA.	0,4	1,0	0,4	2,0	0,8	1,0	0,8	
Bomba lubricación aceite M.A.	75,0	4,0	300,0	3,0	225,0	1,0	225,0	
Bomba refrigeración aceite M.A.	5,0	3,0	15,0	2,0	10,0	1,0	10,0	
Bomba alimentación FO M.A.	1,5	5,0	7,5	3,0	4,5	1,0	4,5	
Bomba trasiego DO M.A.	9,0	2,0	18,0	1,0	9,0	1,0	9,0	
Compresor aire de arranque M.A.	15,0	2,0	30,0	1,0	15,0	1,0	15,0	
TOTAL			370,9		264,3		264,3	

9.2.2 Los servicios sanitarios, sépticos y otros auxiliares diversos

]		Condición				
					7.0	Emer	rgencia	
Grupo consumidor	Potencia unitaria (kW)	Número de unidades instaladas	Potencia total instalada (kW)	Potencia unitaria (kW)	Número de unidades instaladas	Coeficiente de utilización (k_{sr})	Potencia (kW)	
Bomba sentinas emergencia	25,0	2,0	50,0	1,0	25,0	1,0	25,0	
Bomba contraincendios emergencia	34,6	1,0	34,6	1,0	34,6	1,0	34,6	
Bomba baldeo y CI	22,0	4,0	88,0	4,0	88,0	1,0	88,0	
Detección de incendios	1,3	1,0	1,3	1,0	1,3	1,0	1,3	
Bomba sprinkler	3,8	4,0	15,4	4,0	15,4	1,0	15,4	
TOTAL			189,3		164,3		164,3	

9.2.3 La maniobra

				Con	dición		
						Eme	rgencia
Grupo consumidor	Potencia unitaria (kW)	Número de unidades instaladas	Potencia total instalada (kW)	Potencia unitaria (kW)	Número de unidades instaladas	Coeficiente de utilización (ksr)	Potencia (kW)
Servomotor	57,0	2,0	114,0	2,0	114,0	1,0	114,0
TOTAL			114,0		114,0		114,0

9.2.4 Los auxiliares de cubierta, carga y elevación

]	Instalado)		Condición			
					7.0	Emer	gencia		
Grupo consumidor	Potencia unitaria (kW)	Número de unidades instaladas	Potencia total instalada (kW)	Potencia unitaria (kW)	Número de unidades instaladas	Coeficiente de utilización (k_{sr})	Potencia (kW)		
Pescantes salvavidas	7,0	8,0	56,0	8,0	56,0	1,0	56,0		
TOTAL			56,0		56,0		56,0		

9.2.5 La navegación, radio y automación

		I	Conc	dición			
		70			70	Emer	gencia
Grupo consumidor	Potencia unitaria (kW)	Número de unidades instaladas	Potencia total instalada (kW)	Potencia unitaria (kW)	Número de unidades instaladas	Coeficiente de utilización (k_{sr})	Potencia (kW)
Girocompás (24 V DC)	1,2	2,0	2,4	2,0	2,4	1,0	2,4
Sensores radar (230/440 V AC 3 Ph)	0,4	2,0	0,8	2,0	0,8	1,0	0,8
Pantalla y unidad de control de radar, ARPA, ECS y piloto automático (110/220 V AC)	1,1	2,0	2,2	2,0	2,2	1,0	2,2
Planeador de rutas (220 V AC)	0,2	1,0	0,2	1,0	0,2	1,0	0,2
Conning pilot	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Piloto automático	0,1	1,0	0,1	1,0	0,1	1,0	0,1
Ecosonda (220 V AC o 24 V DC)	0,1	1,0	0,1	1,0	0,1	1,0	0,1
Corredera (220 V AC)	0,3	1,0	0,3	1,0	0,3	1,0	0,3
Sistema de muelle	0,2	1,0	0,2	1,0	0,2	1,0	0,2
Radio dirección- buscador	0,1	1,0	0,1	1,0	0,1	1,0	0,1
Receptor facsímil	0,1	1,0	0,1	1,0	0,1	1,0	0,1

		Ι		Conc	lición		
Grupo consumidor	Potencia unitaria (kW)	Número de unidades instaladas	su Potencia total instalada (kW) g	e Potencia unitaria (kW)	Número de unidades instaladas		Potencia (kW)
	Ь	Z	P	Ь	Z	C	P
GPS (12 V DC)	0,1	2,0	0,2	2,0	0,2	1,0	0,2
Loran-C (12 V DC)	0,1	1,0	0,1	1,0	0,1	1,0	0,1
ECDIS ()	2,0	1,0	2,0	1,0	2,0	1,0	2,0
Sensor de viento	0,5	1,0	0,5	1,0	0,5	1,0	0,5
Estación GMDSS (24 V DC)	5,0	1,0	5,0	1,0	5,0	1,0	5,0
Inmarsat B (110/220 V AC o 28 V DC)	1,0	2,0	2,0	2,0	2,0	1,0	2,0
Sistema de detección de incendios	3,0	1,0	3,0	1,0	3,0	1,0	3,0
sistema de automación y alarma	5,0	1,0	5,0	1,0	5,0	1,0	5,0
Sistema de alarma general	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Sistema de reloj	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Sistema director de público	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Sistema de llamada	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Sistema de telefonía (PABX) (24 V DC)	1,0	1,0	1,0	1,0	1,0	1,0	1,0

				Condición				
Grupo consumidor	Potencia unitaria (kW)	Número de unidades instaladas	Potencia total instalada (kW)	Potencia unitaria (kW)	Número de unidades instaladas	Coeficiente de utilización (k_{sr}) $f m$	Potencia (kW)	
Sound powered telephone system)	1,0	1,0	1,0	1,0	1,0	1,0	1,0	
TOTAL			31,2		31,2		31,2	

9.2.6 La calefacción y ventilación

			Cone	dición			
						Emer	gencia
Grupo consumidor	Potencia unitaria (kW)	Número de unidades instaladas	Potencia total instalada (kW)	Potencia unitaria (kW)	Número de unidades instaladas	Coeficiente de utilización (k_{sr})	Potencia (kW)
Ventiladores de cámara motores auxiliares	16,0	2,0	32,0	2,0	32,0	1,0	32,0
Ventiladores del local de gobierno	1,9	1,0	1,9	1,0	1,9	1,0	1,9
Ventiladores del generador de emergencia	2,6	1,0	2,6	1,0	2,6	1,0	2,6
Ventiladores del local de CO ₂	0,6	1,0	0,6	1,0	0,6	1,0	0,6
TOTAL			37,8		37,8		37,8

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALF

Cuadernillo

PROYECTO NÚMERO 1491

Buque de Crucero

Presupuesto

Tutor: Arias Rodrigo, Carlos

Autores: Urrutia Nebreda, Juan

Vicario González, Jorge

1 EL ÍNDICE

1	El í	ndice	3
2	La i	ntroducción	4
3	Laı	nano de obra	5
4	El a	cero	6
5	Laı	naquinaria	7
	5.1	La maquinaria propulsora y auxiliar	7
	5.2	Las líneas de ejes y hélices	7
	5.3	Los equipos y servicios en cámara de máquinas	8
	5.4	Los otros elementos	9
6	El e	quipo y servicios	10
	6.1	El equipo de fondeo, amarre y maniobra	10
	6.2	El equipo de salvamento	11
	6.3	Las instalaciones de baldeo y contraincendios	11
	6.4	Las aberturas y accesos	11
	6.5	El equipo de fonda y sanitario	12
	6.6	Los otros	12
7	Las	instalaciones de habilitación	13
	7.1	La habilitación	13
	7.2	Las otras instalaciones	13
8	Los	gastos no productivos	15
9	El c	oste de construcción	16
10) E	d presupuesto	17
11	l F	l esquema de financiación. El capital propio y el capital ajeno	18

2 LA INTRODUCCIÓN

En este cuadernillo se va a desarrollar el presupuesto del buque. La información necesaria para realizar este presupuesto proviene de presupuestos realizados a buques similares, así como datos de suministradores, empresas diversas y catálogos.

Para realizar los cálculos, el presupuesto se dividirá en las siguientes partidas:

- Mano de obra.
- Acero.
- Maquinaria
- Equipo y servicio de casco.
- Habilitación.
- Gastos no productivos.

3 LA MANO DE OBRA

Para estimar el coste de la mano de obra se considera un precio de mano de obra de 40 €h⁻¹ y aproximadamente 70 h·T⁻¹ de acero elaborada. Para el armamento se estima en alrededor de 1125000 h de mano de obra. En consecuencia:

Concepto	Peso (T)	Trabajo (h·T ⁻¹)	Tiempo (h)	Precio unitario (€h ⁻¹)	Precio (€)
Acero	3808	70	266560	40	10.662.240,00
Armamento)		1125000	40	45.000.000,00
TOTAL					55.662.400,00

4 EL ACERO

Para esta partida s estima un precio de 500 €T⁻¹ de acero que incluye chapas, perfiles y otros elementos auxiliares.

Concepto	Peso (T)	Precio unitario $(\mathbf{\in }\mathbf{h}^{\text{-}1})$	Precio (€)
Acero	3808,125	500	1.904.000,00
Piezas de forja y fundición			48.832,50
Polines y soportes			35.496,88
TOTAL			1.988.329,38

Buque de Crucero PRESUPUESTO

5 LA MAQUINARIA

Para el cálculo del coste de la maquinaria, ésta se dividirá en cuatro subpartidas más detalladas:

Concepto	Precio (€)
Maquinaria propulsora y auxiliar	5.686.418,75
Líneas de ejes y hélices	2.747.450,00
Equipo y servicios en cámara de máquinas	472.468,75
Otros elementos	703.746,88
TOTAL	9.610.084,38

5.1 LA MAQUINARIA PROPULSORA Y AUXILIAR

Concepto	Precio (€)
Motores propulsores	3.437.500,00
Reductoras	892.875,00
Anclaje y taqueado	56.356,25
Motores auxiliares	1.017.937,50
Grupo de emergencia	281.750,00
TOTAL	5.686.418,75

5.2 LAS LÍNEAS DE EJES Y HÉLICES

Concepto	Precio (€)
Líneas de ejes, bocinas y chumaceras	2.300.000,00
Hélices	447.450,00

Concepto	Precio (€)
TOTAL	2.747.450,00

5.3 LOS EQUIPOS Y SERVICIOS EN CÁMARA DE MÁQUINAS

Concepto	Precio (€)
Bombas de trasiego de HFO	843,75
Bombas de trasiego de MDO	843,75
Depuradoras de fuel de motores principales	61.975,00
Depuradoras de fuel de motores auxiliares	31.937,50
Bombas agua dulce refrigeración	16.000,00
Bombas agua salada refrigeración	77.593,75
Bombas refrigeración aire acondicionado	8.450,00
Bombas refrigeración gambuzas	2.812,50
Bombas trasiego de combustible	1.125,00
Bombas de reserva de aceite	13.187,50
Depuradoras de aceite motores principales	56.362,50
Depuradoras de aceite motores auxiliares	33.812,50
Compresores de aire	9.762,50
Planta generadora de vapor	150.250,00
Bomba condensador de vapor	7.512,50
TOTAL	472.468,75

5.4 Los otros elementos

Concepto	Precio (€)
Silenciadores y tubos de escape	27.796,88
Tuberías de máquinas	169.981,25
Válvulas, filtros, pocetes,	60.550,00
Tanques no estructurales	21.937,50
Escalas y otros accesos en cámara de máquinas	18.593,75
Caldereta de gases de escape	150.312,50
Aislamientos	206.625,00
Botellas de arranque	11.643,75
Máquinas de taller (torno, limadora,)	8.250,00
Plantas de vacío y tratamiento de aguas	23.400,00
Equipo de desmontaje de máquinas	4.656,25
TOTAL	703.746,88

6 EL EQUIPO Y SERVICIOS

Concepto	Precio (€)
Equipo de fondeo, amarre y maniobra	1.169.517,50
Equipo de salvamento	563.446,88
Instalaciones de baldeo y contraincendios	466.368,75
Aberturas y accesos	328.687,50
Equipo de fonda y sanitario	395.168,75
Otros	9.635.362,50
TOTAL	12.558.551,88

6.1 EL EQUIPO DE FONDEO, AMARRE Y MANIOBRA

Concepto	Precio (€)
Molinetes y cabrestantes	8.264,38
Anclas	35.687,50
Cadenas	48.831,25
Bitas y guías	17.468,75
Timones y mechas	56.343,75
Servomotores	93.906,25
Hélices transversales de proa	157.765,63
Aletas estabilizadoras	751.250,00
TOTAL	1.169.517,50

6.2 EL EQUIPO DE SALVAMENTO

Concepto	Precio (€)
Botes salvavidas y pescantes	469.540,63
Balsas salvavidas	93.906,25
TOTAL	563.446,88

6.3 LAS INSTALACIONES DE BALDEO Y CONTRAINCENDIOS

Concepto	Precio (€)
Bombas de baldeo y contraincendios	13.712,50
Rociadores	394.437,50
Instalaciones detectoras de contraincendios	53.343,75
Tanques contraincendios de habilitación	4.875,00
TOTAL	466.368,75

6.4 LAS ABERTURAS Y ACCESOS

Concepto	Precio (€)
Registros de tanques	31.937,50
Portillos y ventanas	169.031,25
Escalas, barandillas,	33.812,50
Puertas de corredera	93.906,25
TOTAL	328.687,50

6.5 EL EQUIPO DE FONDA Y SANITARIO

Concepto	Precio (€)
Tanques sépticos	123.937,50
Incineradoras, trituradoras	33.812,50
Bares	93.918,75
Cocinas y lavanderías	105.175,00
Equipo de piscina	22.531,25
Equipos hidróforos	14.650,00
Equipo de esterilización	1.143,75
TOTAL	395.168,75

6.6 Los otros

Concepto	Precio (€)
Ventiladores	2.817.287,50
Ánodos	56.350,00
Equipo de navegación y comunicaciones	845.500,00
Aislamientos de habilitación	225.375,00
Electricidad (cableado)	1.389.843,75
Pintura	601.012,50
Instalación de aire acondicionado	2.159.887,50
Equipo de TV, radio, música	1.408.625,00
Instalaciones de CO ₂	131.481,25
TOTAL	9.635.362,50

7 LAS INSTALACIONES DE HABILITACIÓN

Concepto	Precio (€)
Habilitación	7.549.141,43
Otras instalaciones	125.836,88
TOTAL	7.674.978,30

7.1 LA HABILITACIÓN

Concepto	Precio (€)
Habilitación camarotes de pasaje	1.395.206,79
Habilitación suites	128.788,21
Habilitación tripulación	601.012,14
Habilitación puente, camarotes oficiales	53.661,79
Habilitación pañoles, almacenes, cuartos de trabajo	36.490,00
Habilitación salones, comedores	3.541.678,57
Saunas, gimnasios	12.878,93
Aeróbic, pista jogging	8.585,71
Resto de habilitación (discotecas, tiendas, salas recreativas,)	1.770.839,29
TOTAL	7.549.141,43

7.2 LAS OTRAS INSTALACIONES

Concepto Precio (€)

Planta gambuza frigorífica 67.613,75

Concepto	Precio (€)
Gambuza seca	24.416,25
Cámara de control	33.806,88
TOTAL	125.836,88

8 Los gastos no productivos

Concepto	Precio (€)
Proyecto	450.759,38
Gerencia y visados	56.345,00
Clasificación, certificados y reglamentos	131.471,25
Ensayos de modelo en canal de experiencias	69.491,88
Pruebas de mar	22.538,13
Traslados, estancia en dique	45.075,63
Consumos	30.050,63
Seguro de construcción	57.198,75
TOTAL	862.930,63

9 EL COSTE DE CONSTRUCCIÓN

Concepto	Precio (€)
Mano de obra	55.662.400,00
Acero	1.988.329,38
Maquinaria	9.610.084,38
Equipo y servicios	12.558.551,88
Habilitación	7.674.978,30
Gastos no productivos	862.930,63
TOTAL	88.357.274,57

10 EL PRESUPUESTO

El valor del beneficio industrial, expresado como porcentaje del coste total, varía según la situación del mercado, siendo orientativa la cifra del 10 % del coste de construcción.

Concepto	Precio (€)
Coste de construcción	88.357.274,57
Beneficio industrial	8.835.727,46
TOTAL	97.193.002,03 €

El coste total del buque es de:

97.193 k€(16172 Mpta)

11 EL ESQUEMA DE FINANCIACIÓN. EL CAPITAL PROPIO Y EL CAPITAL AJENO.

El capital ajeno es la parte del valor total del buque que cubre el armador con recursos ajenos a través de un crédito.

Cuando se trata de buques construidos en España, con crédito naval, el capital ajeno puede llegar a ser del 85 % del valor total siempre que el armador pueda ofrecer garantías adicionales, además de la primera hipoteca sobre el buque.

En este caso se tomará el capital ajeno igual al 80 % del valor total del buque.

Concepto	Porcentaje	Precio (€)
Valor total del buque	100%	97193002,03
Capital propio	20%	19438600,40
Capital ajeno (importe del crédito)) 80%	775925852,80

A continuación se presenta el cuadro de amortización del préstamo:

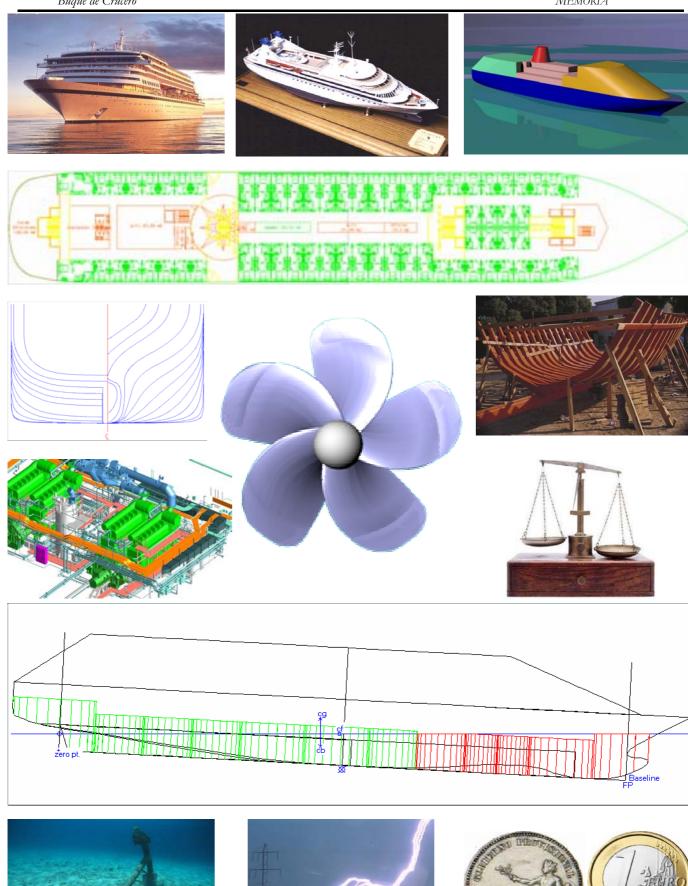
Tipo de interés anual	8%	
Periodo de devolución	12	años
Importe del crédito	77.754.402,01	€
Anualidad	10.317.621	€
Intereses	46.057.058	€
Importe total	123.811.460	€

Año	Capital pendiente antes del pago (€)	Pago (€)	Interés (€)	Devolución del principal (€)	Capital pendiente después del pago (€)
0					77.754.402
1	77755354,1	10.317.621	6220428,73	4097319,2	73658033,9
2	73658033,9	10.317.621	5892643,19	4425105,73	69232929,1

URRUTIA NEBREDA, Juan

Año	Capital pendiente antes del pago (€)	Pago (€)	Interés (€)	Devolución del principal (€)	Capital pendiente después del pago (€)
3	69232929,1	10.317.621	5538634,01	4779113,91	64453815,2
4	64453815,2	10.317.621	5156305,66	5161443,27	59292372
5	59292372	10.317.621	4743390,04	5574357,89	53718014,1
6	53718014,1	10.317.621	4297441,53	6020306,4	47697707,7
7	47697707,7	10.317.621	3815817,01	6501930,91	41195775,8
8	41195775,8	10.317.621	3295661,94	7022085,98	34173689,8
9	34173689,8	10.317.621	2733895,34	7583852,58	26589837,2
10	26589837,2	10.317.621	2127186,9	8190561,03	18399276,2
11	18399276,2	10.317.621	1471941,97	8845805,95	9553470,23
12	9553470,23	10.317.621	764277,698	9553470,23	0

PROYECTO NÚMERO 1491


Buque de Crucero

Memoria

Tutor: Arias Rodrigo, Carlos

Autores: Urrutia Nebreda, Juan

Vicario González, Jorge

URRUTIA NEBREDA, Juan VICARIO GONZÁLEZ, Jorge

1 EL ÍNDICE

1	El ín	dice	.3
2	El di	mensionamiento	.4
	2.1	La manga	.4
	2.2	La eslora	.4
	2.3	La distribución de superficies	.4
	2.4	El puntal	.4
	2.5	El peso en rosca	.4
3	La di	sposición general	.4
	3.1	La compartimentación contra incendios	.4
	3.2	El estudio de los flujos	.5
	3.2.1	La evacuación. El escape a botes.	.5
	3.2.2	Los embarques de pasaje	5
4	Las f	ormas	.5
5	Los	álculos de arquitectura naval	.6
6	Las s	ituaciones de carga	.6
7	La pl	anta propulsora	.6
	7.1	La fijación del número de ejes	.7
	7.2	La fijación del número de motores por línea de ejes	.7
8	La cı	aderna maestra	.7
	8.1	El fondo y el doble fondo	.7
	8.2	Los costados	.7
	8.3	Las cubiertas	.7
9	El eq	uipo y los servicios	.8
10) La	ı planta eléctrica	.8
11	E1	presupuesto	8

2 EL DIMENSIONAMIENTO

2.1 LA MANGA

La manga será tal que admita en su interior un determinado número de cabinas, sus pasillos correspondientes y los refuerzos exteriores. Vamos a trabajar con espacios para cabinas de 3,3 m de eslora, ocupada como sigue:

Los camarotes han de tener un espacio útil de 14 m^2 . De esta forma los camarotes tienen una manga interior de 4,374 m., cumpliéndose los requisitos de espacio $(3,200 \text{ m} \times 4,374 \text{ m} = 14,00 \text{ m}^2)$.

Con estos datos ya podemos hacer un cálculo más aproximado de la verdadera dimensión de la manga del buque, sabiendo que lleva cuatro camarotes en la manga, y dos pasillos intermedios para dar acceso.

La manga total será el resultado de sumar el espesor de los refuerzos en las dos bandas $(2 \times 0,300 \text{ m})$, la manga exterior de los cuatro camarotes $(4 \times 4,425 \text{ m})$ y el ancho de cada uno de los dos pasillos $(2 \times 2,000 \text{ m})$. Así: B = 22,350 m.

Los camarotes grandes, con un espacio útil de 25 m², se disponen de forma que su anchura (en la dirección de la eslora del buque) ocupe también una única clara de bulárcama. Así su longitud interior útil será de 7,814 m. En este caso la disposición será tal que la manga estará ocupada por dos camarotes con un único pasillo central de acceso.

2.2 LA ESLORA

Si se observa una muestra de buques de crucero, y para cada uno de ellos se calcula su relación eslora / manga podemos ver como este valor está fuertemente centrada en el rango de 5 < L/B < 8.

En nuestro caso hemos elegido una alternativa en la que esta relación vale L/B = 5,2. La eslora que calculamos en primera aproximación es de: 22,35 m \times 5,2 = 116,220 m.

Para conseguir que tanto la perpendicular de popa como la perpendicular de proa coincidan sobre una cuaderna del buque, la verdadera eslora entre perpendiculares aceptada es de $L_{pp} = 116,532$ m.

2.3 LA DISTRIBUCIÓN DE SUPERFICIES

Tanto las especificaciones del proyecto, en cuanto a zonas públicas para la acomodación del pasaje y la tripulación, como los reglamentos internacionales, en lo relativo a mínimos necesarios para permitir una seguridad adecuada, nos dan un primer punto de partida a la hora de calcular la superficie de cada espacio dentro de la disposición general.

La superficie total de salones asciende a 2920,84 m² y la superficie total habilitada a 12736,42 m².

2.4 EL PUNTAL

Dividiendo la superficie total calculada entre la manga y la eslora se obtiene el número de cubiertas necesarias.

Con la configuración adoptada anteriormente hemos optado por tener dos cubiertas para alojar al pasaje y otras dos cubiertas de salones. La configuración del puntal de nuestro buque será la siguiente:

• Cubiertas de camarotes: H = 2.7 m.

• Cubierta de cámara de máquinas: H = 3.8 m.

• Cubiertas de salones: H = 3,1 m.

• Doble fondo: H = 1,5 m.

El puntal a la cubierta techo del buque será de H = 25,00 m, si bien es cierto que las dos cubiertas superiores no están completas y podemos calcular un puntal equivalente, H = 22,41 m. El puntal a la cubierta principal es de H = 8 m.

2.5 EL PESO EN ROSCA

En la primera etapa del proyecto se estima el peso en rosca por el método de la silueta. Para ello nos basaremos en el buque "Seabourn Pride", cuyo peso en rosca es conocido (5840 T) y sus dimensiones sólo difiere en 4,132 m en eslora y 3,350 m en manga.

Con este método se obtiene un peso en rosca de 6614 T. Con este valor el desplazamiento del buque será: $\Delta = 8614T$

3 LA DISPOSICIÓN GENERAL

3.1 LA COMPARTIMENTACIÓN CONTRA INCENDIOS

Por ser un buque que transporta más de 36 pasajeros, se deberán cumplir los requerimientos del SOLAS referentes a división del buque en zonas contraincendios (capítulo II-2). El casco y superestructuras están divididas en zonas verticales principales separadas entre sí por mamparos de clase A. La longitud en eslora de estas zonas no excede de 48 m. (máximo permitido en el caso de existir continuidad vertical con los mamparos estancos) y los mamparos que limitan estas zonas por encima de la cubierta de cierre, están en la misma vertical que los mamparos estancos de compartimentado, extendiéndose de cubierta a cubierta y hasta el forro exterior.

Para delimitar las zonas verticales se dispondrá de los siguientes mamparos contraincendios:

- MAMPARO C.I. nº 1: cuaderna nº 48.
- MAMPARO C.I. nº 2: cuaderna nº 104.

3.2 EL ESTUDIO DE LOS FLUJOS

El estudio de los flujos es uno de los más importantes a la hora de definir la disposición general del buque. Este estudio debe realizarse tanto para las personas a bordo y sus equipajes como para las distintas mercancías que se llevan a bordo.

3.2.1 La evacuación. El escape a botes.

El gran numero de pasajeros que transportan este tipo de barcos, obliga a tener en cuenta la facilidad de acceso a las cubiertas de embarque en botes de todas las personas, cualquiera que sea el espacio donde se encuentren. Esto implicará estudiar la distribución de medios de escape y acceso a dichas cubiertas.

Desde el punto de vista de la evacuación podemos dividir el barco en dos zonas claramente diferenciadas, una que cubre las primeras cubiertas, hasta la cubierta principal, donde hay que dar salida a los compartimentos estancos, y otra que comprende las cubiertas situadas por encima de la principal, donde la evacuación se realiza por los troncos principales.

En las cubiertas 1 y 2, que se encuentran divididas por mamparos estancos, cada compartimento estanco debe tener un mínimo de dos salidas, siendo una de ellas una escalera. La otra vía de escape se dispondrá en horizontal, dando paso a otro compartimento. El conjunto de los escapes de las cubiertas bajas desemboca en un pasillo de servicios, protegido, en la cubierta 3. Este pasillo de servicios comunica los escapes de las cubiertas bajas con los troncos principales de evacuación.

A partir de la cubierta 3, la cubierta principal, la evacuación se realiza mediante cuatro troncos de escape. Como más adelante se explica, el buque se encuentra divido en tres zonas verticales principales por dos mamparos contraincendios. Cada una de estas zonas verticales deberá disponer de dos vías de evacuación protegidas que conduzcan, bien a la zona de embarque de botes, bien a la cubierta expuesta. A continuación se explican estos escapes:

- Zona vertical principal de popa: Se dispone de dos rutas de escape, una principal y otra auxiliar. La vía de escape secundaria la constituye una escalera situada en el extremo de popa del buque, esta escalera, durante el servicio normal del buque será utilizada por la tripulación. En la cubierta 6 esta escalera comunica con el siguiente tronco de escaleras más proa mediante un pasillo protegido, a través de este tronco de escaleras se accede a la zona de embarque de botes. La ruta de escape principal de este tronco se realiza mediante unas escaleras situadas junto al mamparo contraincendios que limita por proa la zona vertical principal de popa. Esta escalera da servicio a los pasajeros, permitiéndoles el movimiento desde la cubierta 4 hasta la 7. En la cubierta 6 se puede acceder desde estas escaleras a la zona de embarque de botes.
- Zona vertical principal central: La vía de escape principal es el tronco de escaleras situado junto al mamparo que delimita por proa la zona vertical. Esta escalera sube hasta la cubierta 7, desde aquí sale a la cubierta expuesta y mediante unas escaleras exteriores se accede a la zona de embarque de botes. La ruta de evacuación secundaria es la escalera situada junto al mamparo de popa de la zona vertical (que a su vez es la ruta de escape principal de la zona vertical de popa).
- Zona vertical principal de proa: Su vía de escape principal es la escalera situada más a proa del barco, que sube hasta la cubierta expuesta (cubierta 7) y desde aquí mediante una escalera exterior se accede a la zona de embarque de botes. La vía de escape auxiliar es la escalera situada junto al mamparo que delimita por popa la zona vertical (que a su vez es la ruta de escape principal de la zona vertical central).

3.2.2 Los embarques de pasaje

El embarque de los pasajeros al barco se realiza a través de sendas puertas en los costados situadas en la cubierta 5. Por estas puertas se accede al vestíbulo principal del buque. Desde este vestíbulo los pasajeros se distribuyen por las dos cubiertas de camarotes, cubiertas 5 y 6.

Para el movimiento entre las distintas cubiertas los pasajeros disponen de tres troncos de escaleras principales, cada tronco a su vez dispone de 2 ascensores de gran capacidad.

4 LAS FORMAS

La obra viva del buque se ha diseñado de forma que cumpla con todos los condicionantes geométricos calculados en el dimensionamiento, así como tratando de obtener unas formas los más hidrodinámicas posibles a fin de disminuir la resistencia al avance.

La obra muerta se ha considerado como una extensión de las formas de la obra viva, hasta la cubierta 5, manteniéndose asimismo estanca a la intemperie. Por encima de ésta, la obra muerta está formada por una superestructura

que se extiende de banda a banda, y cuya eslora disminuye en las cubiertas más altas. De esta forma se han compatibilizado los condicionantes estéticos de la obra muerta con unas formas que no presenten una excesiva superficie de resistencia al viento.

Además de los condicionantes anteriores las formas de la obra viva y la obra muerta deben ser tales que se puedan acomodar en ella todos los espacios definidos durante el predimensionamiento. Estos espacios suman una superficie total de: 12736 m². La suma de la superficie total de las cubiertas 1 a 7 es de: 15515 m². Por lo tanto se comprueba que en las formas adoptadas se puede dar cabida a todos los espacios necesarios.

Es también necesario comprobar dos puntos importantes, la posibilidad de instalar las maquinas principales y auxiliares del barco en los espacios destinados para ellas y la altura libre en la zona de la maquinaria del aparato de gobierno. Ambas comprobaciones se realizan a continuación.

En este punto es necesario hacer una consideración de hasta qué cubierta va a ser el buque capaz de ofrecer empuje. Para ello definiremos el punto de inundación progresiva como el punto más bajo a partir del cual se produce la inundación del espacio interior del buque. Con esta definición el buque es estanco hasta la cubierta de francobordo, pero por encima de ésta, la superestructura aún es capaz de resistir la entrada de agua.

5 LOS CÁLCULOS DE ARQUITECTURA NAVAL

Los cálculos de arquitectura naval persiguen comprobar la adecuación de las formas desarrolladas anteriormente. Los principales cálculos que se realizan son:

- Curvas hidrostáticas
- Carenas inclinadas
- Curvas de Bonjean

- Curva de esloras inundables
- Calibración de tanques
- Cálculo del francobordo y el arqueo.

6 LAS SITUACIONES DE CARGA

Se definen las situaciones de carga que se van a considerar para el cálculo de la estabilidad y de la resistencia longitudinal del buque. Para cada una de estas situaciones de carga se trazarán las curvas de estabilidad, comprobando que se cumplen cada una de las normas de estabilidad dictadas por la Administración. Para el estudio de las situaciones de carga se seguirán las normas de la Inspección General de Buques que obligan a que si en la condición de llegada a puerto se hace necesario lastrar el buque se deben comprobar todas las posibles situaciones de carga intermedias. Por simplificar se considerará únicamente una situación de carga intermedia, al 50 % de consumos. Por lo que las situaciones de carga que se consideran son:

- Salida de puerto a plena carga.
- Navegación a plena carga.
- Llegada a puerto a plena carga.

- Salida de puerto en lastre.
- Navegación en lastre.
- Llegada a puerto en lastre.

En el caso que nos ocupa el buque no lleva carga, por lo que las tres últimas condiciones coinciden con las tres primeras y no será necesario repetir su estudio.

También se comprueba como el buque cumple con las reglas de estabilidad después de averías de SOLAS, para buques de pasaje.

Como se puede comprobar en el cuaderno, la estabilidad del buque llega a resultar excesiva, ya que durante el desarrollo de las formas se obtuvo un *KM* excesivamente elevado. Para evitar que esta excesiva estabilidad repercuta en el confort del pasaje se han dispuesto dos elementos diferentes para reducir los balances del buque, por un lado se disponen aletas estabilizadoras y por otro de tanques estabilizadores pasivos.

Finalmente se calcula la resistencia longitudinal, observando como en ningún caso se supera el momento flector máximo exigido por Det Norske Veritas.

7 LA PLANTA PROPULSORA

Las condiciones del proyecto no indican nada en lo que respecta al tipo de propulsión, por lo que la elección del tipo de propulsión a utilizar es una cuestión a estudiar.

Las opciones más comúnmente utilizadas en buques de crucero son:

- Propulsión mecánica, con motores semirrápidos conectados a una hélice de paso variable por medio de una reductora.
- Propulsión eléctrica, con un grupo motor-generador que alimenta a un motor eléctrico acoplado al propulsor.

- o Hélice de paso fijo.
- Hélice de paso variable.
- o Propulsor POD.

Para elegir entre un tipo de propulsión u otra debemos atender a los siguientes criterios que aconsejan el uso de propulsión eléctrica:

- Por su situación en los finos de proa o en los de popa en general no hay espacio para instalar un motor diesel alineado con las líneas de ejes, y que además impediría el flujo de entrada o salida de agua a la hélice.
- La demanda eléctrica del buque como factoría es muy elevada en momentos donde la demanda de propulsión es muy reducida, lo que permite una mejor utilización de la planta de potencia con dos usos complementarios.

En nuestro caso no se cumple ninguno de los criterios anteriores por lo que se opta por una propulsión mecánica.

7.1 LA FIJACIÓN DEL NÚMERO DE EJES

Debido al alto grado de seguridad que se exige a este tipo de barcos los sistemas principales del buque se duplican para evitar que un único fallo deje el barco a la deriva. Siguiendo estos principios se montan dos líneas de ejes.

7.2 LA FIJACIÓN DEL NÚMERO DE MOTORES POR LÍNEA DE EJES

El número de motores que se elija por línea de ejes debe estar en consonancia con la disposición geométrica de la cámara de máquinas. En los buques de crucero la altura de la cámara de máquinas se encuentra limitada, ya que ésta resta espacio útil.

Un motor con una potencia adecuada para mover una de las hélices (4500 kW) o bien necesita una altura de cámara de máquinas excesiva, que impediría instalar el resto de equipos que van montados en los conductos de escape, o bien tiene un número de cilindros excesivo, lo que aumenta innecesariamente el mantenimiento del motor.

Teniendo en cuenta todo lo anterior se ha decidido montar dos motores por cada línea de ejes.

Al instalar dos motores por línea de ejes la elección de propulsores de paso variable viene obligada, para evitar sobrecargas en los motores en el caso de un fallo en el otro motor acoplado al mismo eje.

8 LA CUADERNA MAESTRA

A continuación se detalla el tipo de estructura elegido para cada zona del barco, así como las razones que llevan a la elección del susodicho tipo.

8.1 EL FONDO Y EL DOBLE FONDO

Las reglamentaciones (SOLAS) obligan a que los buques de pasaje dispongan de doble fondo. En nuestro caso se ha adoptado un doble fondo de 1,5 m de altura que recorre toda la base del buque.

En el fondo y el doble fondo se ha adoptado una estructura longitudinal para que estas zonas contribuyan activamente a la resistencia longitudinal, ya que formarán el ala inferior de la viga - buque.

Los refuerzos primarios del fondo y el doble fondo serán varengas, que tendrán la misma separación que las bulárcamas. Estas varengas serán estancas cuando coincidan con un mamparo estanco y aligeradas en los demás casos.

Los refuerzos secundarios serán las vagras y los longitudinales de fondo y doble fondo.

8.2 Los costados

En este tipo de buques se suele adoptar una estructura longitudinal en los costados para permitir un mayor tamaño de las ventanas de los camarotes. En nuestro caso, hemos optado, al contrario, por una estructura transversal en los costados, ya que la clara de cuadernas adoptada, 825 mm, permite disponer de suficiente espacio para ventanas. De este modo se aprovechan las claras de cuadernas para llevar las conducciones necesarias (eléctricas, ventilación, agua, etc.)

La estructura adoptada esta formada por cuadernas, con una clara de 825 mm, y bulárcamas situadas cada cuatro cuadernas, es decir, cada 3300 mm. Así se consigue una distribución adecuada de los camarotes.

8.3 LAS CUBIERTAS

En las cubiertas se ha optado también por una estructura longitudinal que contribuya a la resistencia longitudinal del buque.

Los refuerzos longitudinales serán esloras y longitudinales de cubierta. Los refuerzos transversales de las cubiertas serán baos que se harán coincidir con las bulárcamas. Para completar la estructura y reducir los voladizos de baos y esloras

se instalarán puntales. Éstos irán dispuestos cada dos baos (dos bulárcamas), transversalmente se situarán a 3,467 m de crujía.

La cubierta más alta, cubierta 6, se toma como cubierta resistente y será la encargada de completar el buque - viga por la parte superior.

9 EL EQUIPO Y LOS SERVICIOS

Se han dimensionado los siguientes equipos y servicios:

- Fondeo, amarre y remolque
- Salvamento
- Navegación y comunicaciones
- Gobierno y maniobra

- Calefacción, ventilación y aire acondicionado
- Achique de sentinas
- Lastre
- Baldeo y contraincendios

10 LA PLANTA ELÉCTRICA

Es comúnmente aceptado en la actualidad el uso de la corriente trifásica en detrimento de la corriente continua. Entre las ventajas que se obtienen con el empleo de este tipo de corriente se pueden destacar las siguientes:

- Posibilidad de conectarse a la red de puerto.
- Mayor robustez, menor coste, mantenimiento más sencillo y menor peso y empacho de los motores y generadores.
- Permiten el uso de tensión más elevada, por lo que se puede ahorrar en cobre a ser la sección de los conductores menor
- En general, la tripulación conoce con más profundidad estos equipos por lo que la fiabilidad en el mantenimiento que realizan es mayor.
- No exigen un control tan elevado de la velocidad de régimen.

Por estas razones de elige la instalación de corriente eléctrica alterna trifásica.

La elección de la tensión y la frecuencia está condicionada principalmente por la corriente empleada en los puertos en los que el buque va a atracar en su recorrido más frecuente. En este caso suponemos que el buque realizará recorridos por Europa, en donde la tensión empleada es de 380 V a 50 Hz. En consecuencia ésas serán las características de la corriente que se obtendrá en los generadores instalados, en contraposición a la empleada en EE.UU. que es de 440 V a 60 Hz.

La planta eléctrica instalada tiene los siguientes grupos generadores:

- Generadores auxiliares:
 - 3 Generadores de 1825 kW 380 V 50 Hz movidos por motores MAN B&W 6L 27/38 a 750 rpm.
 - o 2 Generadores de 2130 kW 380 V 50 Hz movidos por motores MAN B&W 7L 27/38 a 750 rpm.
- Planta de emergencia:
 - o Planta generadora Volvo Penta AB D49A MS de 880 kW a 1600 rpm.

11 EL PRESUPUESTO

La información necesaria para realizar el presupuesto proviene de presupuestos realizados a buques similares, así como datos de suministradores, empresas diversas y catálogos. Para realizar los cálculos, el presupuesto se dividirá en las siguientes partidas:

- Mano de obra.
- Acero.
- Maquinaria

El precio final del buque es:

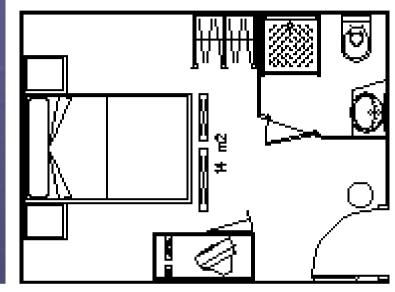
- Equipo y servicio de casco.
- Habilitación.
- Gastos no productivos.

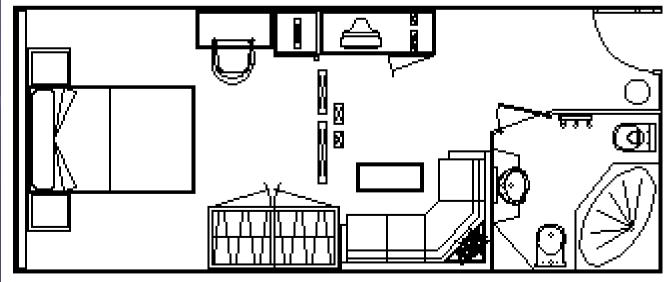
Concepto	Precio (€)
Coste de construcción	88.588.687,05
Beneficio industrial	8.858.868,71
TOTAL	97.447.555,76 €

E.T.S.I.N. Proyecto n° 1491 Buque de crucero

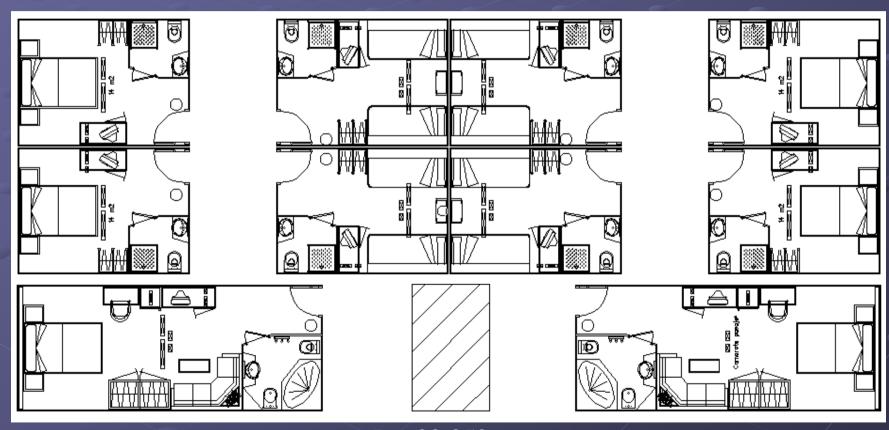
Tutor: Carlos Arias Rodrigo Autores: Juan Urrutia Nebreda Jorge Vicario González

El índice


- Dimensionamiento
- Disposición general
- Formas
- Arquitectura naval y situaciones de carga
- Planta propulsora
- Cuaderna maestra
- Equipo y servicios
- Planta eléctrica
- Presupuesto

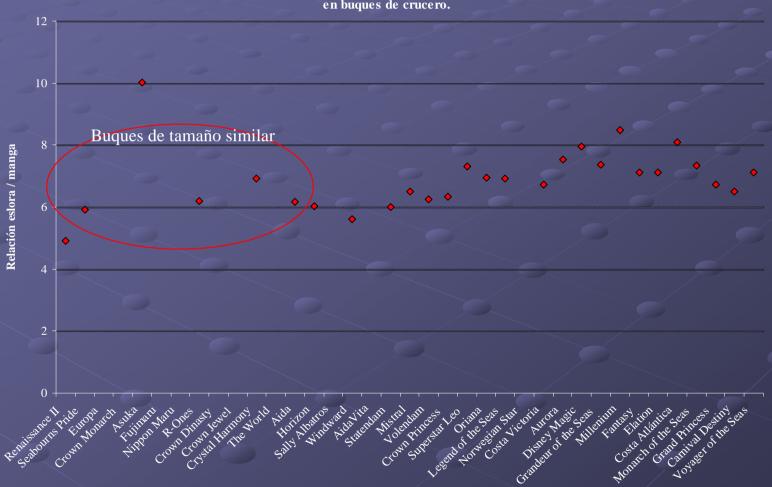


- Tamaño de camarotes:
 - \blacksquare 14 m² (3,300 m x 4,425 m)
 - 25 m² (3,300 m x 7,863 m)



Disposición transversal y cálculo de la manga

B = 22,350 m



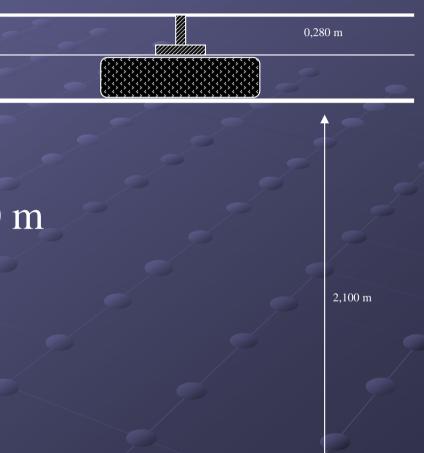
Cálculo de la eslora mediante regresiones

Comparativa de la relación eslora / manga, en buques de crucero.

L/B = 5,2

L = 116,532 m

• Distribución de superficies


Espacio	Superficie (m ²)			
Camarotes pasaje	2280			
Salones	2920			
Zona de paseo	2380			
Espacios tripulación	1700			
Servicios	1970			
Máquinas y otros	6050			
TOTAL	12740			

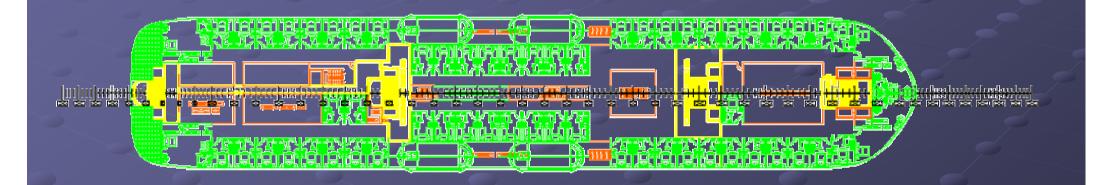
- Número de cubiertas: 8
- Puntal por cubierta:
 - Doble fondo: 1,500 m
 - Cámara de máquinas: 3,800 m
 - Salones: 3,100 m
 - Camarotes: 2,700 m
- Puntal total: 25,000 m
- Puntal equivalente: 22,410 m

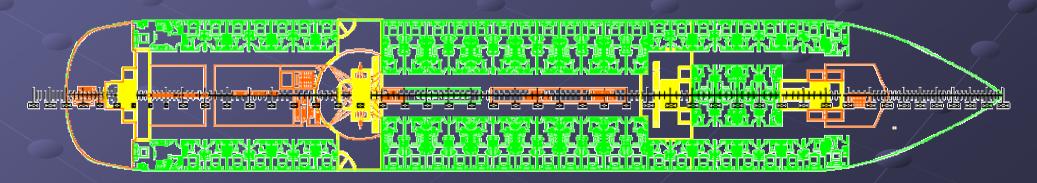
Peso en rosca

- Regresiones
- Método de la silueta
- *PR* = 6614 T
- $x_G = 52,439 \text{ m}$
- $z_G = 9,636 \text{ m}$
- Peso muerto

Concepto	Peso (T)	z_G (m)	x_G (m)
Peso pasaje	62,50	15,950	58,266
Peso tripulación	18,75	12,205	58,266
Combustible	767,88	3,400	68,475
Aceite	60,00	0,750	52,800
Agua dulce	619,37	3,400	79,200
Víveres	112,50	9,350	95,000
Cargos y pertrechos	40,00	11,205	58,266
Sistemas antiescora	200,00	3,400	34,687
Piscina	69,00	18,450	70,125
Varios	50,00	11,205	58,266
TOTAL	2000,00	5,000	68,622

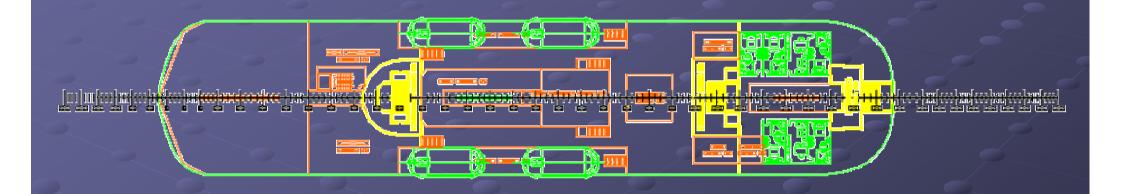
Magnitud	Valor	Unidades
L_{pp}	116,532	m
B	22,350	m
T	5,400	m
H_{cp}	8,000	m
H_{equiv}	22,410	m
PR	6614	T
Δ	8614	T
СВ	0,598	
CM	0,983	
CF	0,800	
CP	0,606	
$V_{\it pruebas}$	19	kn
Potencia	8995	kW

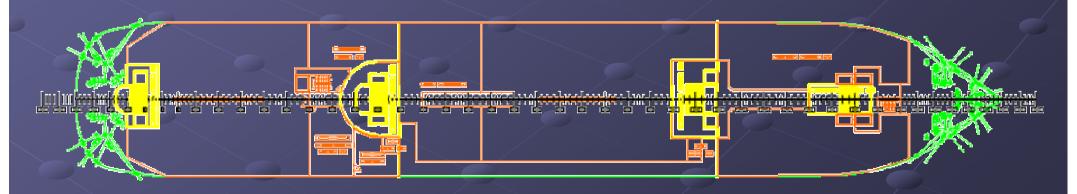




La disposición general

Las cubiertas de camarotes

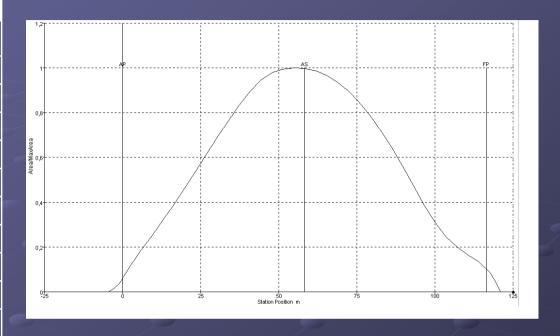




La disposición general

La distribución de salones

La disposición general

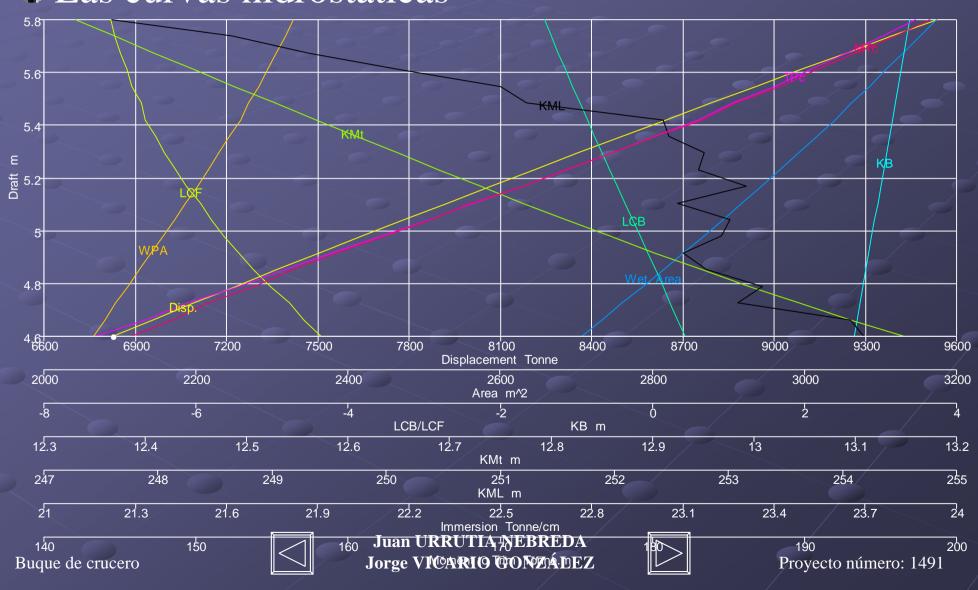

Las zonas de paseo



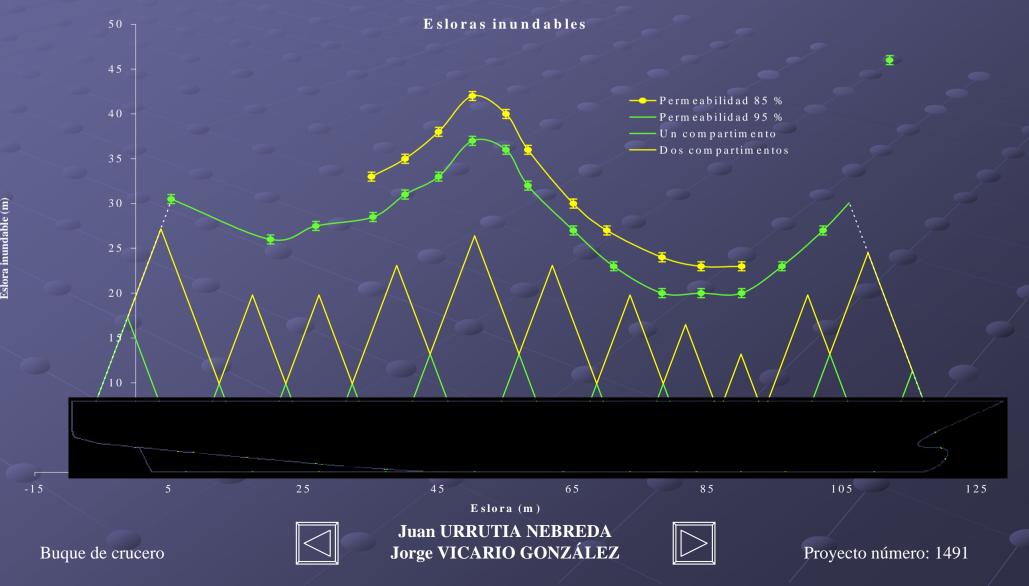
Las formas

Magnitud	Valor real		Valor es	timado
L_{pp}	116,532	m	116,532	m
В	22,350	m	22,350	m
T	5,400	m	5,400	m
H_{cp}	8,000	m	8,000	m
H_{equiv}	22,410	m	22,410	m
PR	6614	T	6614	T
Δ	8614	T	8614	T
CB	0,598		0,598	
СМ	0,981		0,983	
∠ CF	0,825		0,800	
CP	0,610		0,606	
XC	57,955	m	57,766	m

Juan URRUTIA NEBREDA


Jorge VICARIO GONZÁLEZ

Proyecto número: 1491


Los cálculos de arquitectura naval

Las curvas hidrostáticas

Los cálculos de arquitectura naval

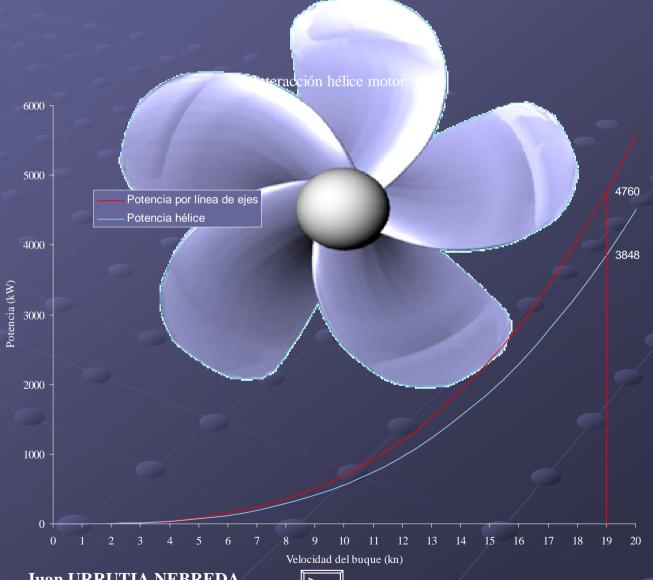
La curva de esloras inundables

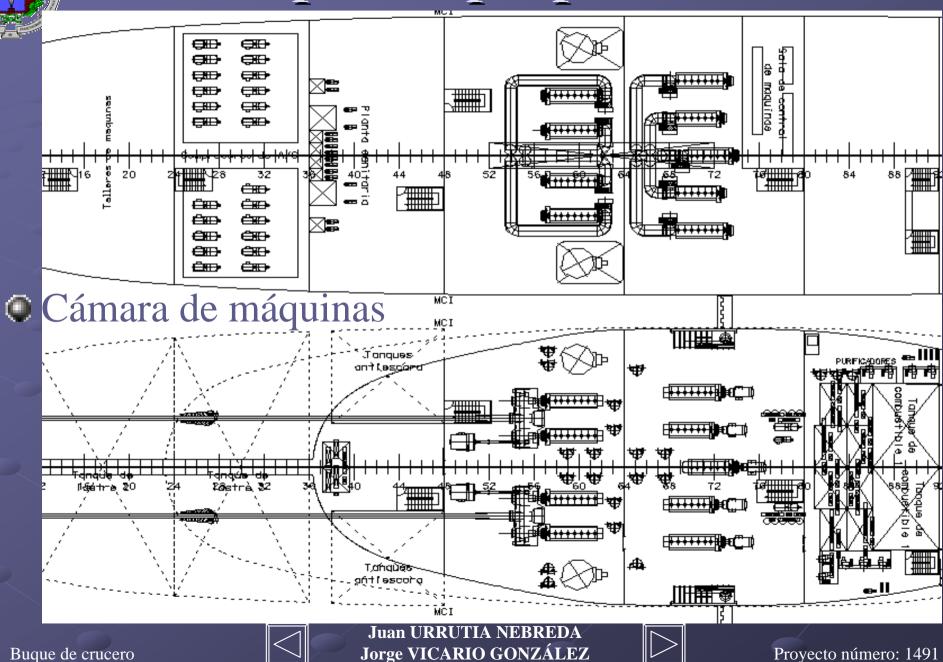
Las situaciones de carga

- Definición de las situaciones de carga:
 - Plena carga, salida de puerto
 - Plena carga, llegada a puerto
 - Plena carga, 50% de consumos

Las situaciones de carga

- Estabilidad intacta
 - Criterio IMO
 - Pasajeros a una banda
 - Viento y olas
 - Timón a una banda
- Estabilidad después de averías
 - Método probabilístico




La planta propulsora

- Sistema propulsivo
 - Líneas de ejes
 - Hélices
 - Motores
- Curvas de potencia

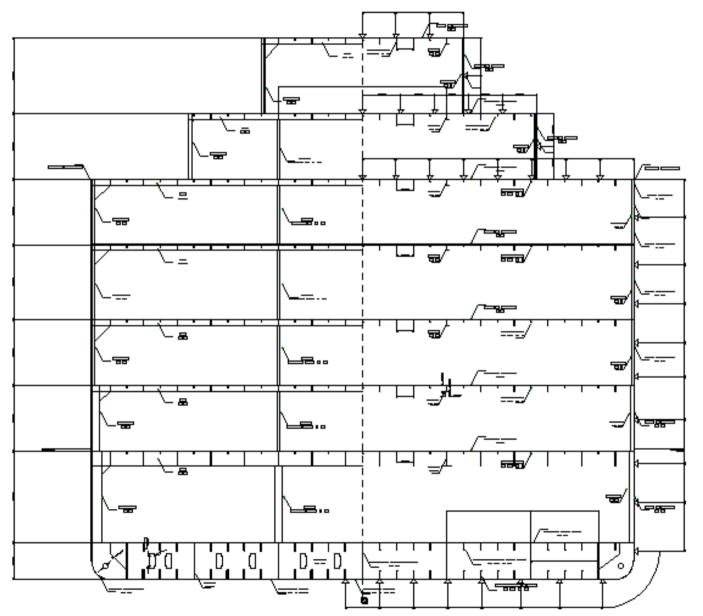
La planta propulsora

Buque de crucero

Proyecto número: 1491

La cuaderna maestra

• Tipo de estructura


Zona del buque	Tipo de estructura
Fondo	Longitudinal
Doble fondo	Longitudinal
Costado	Transversal
Cubiertas	Longitudinal

La cuaderna maestra

El equipo y los servicios

- Fondeo, amarre y remolque
- Salvamento
- Navegación y comunicaciones
- Gobierno y maniobra
- Calefacción, ventilación y aire acondicionado
- Achique de sentinas
- Lastre
- Baldeo y contraincendios

La planta eléctrica

• Tipo de corriente:

- Instalaciones de fuerza: Trifásica 380 V 50 Hz
- Instalaciones de alumbrado: Monofásica 220 V 50 Hz
- Instalaciones especiales: Continua 24 V.

La planta eléctrica

- Generadores instalados:
 - 3 Generadores de 1825 kW 380 V 50 Hz movidos por motores MAN B&W 6L 27/38 a 750 rpm.
 - 2 Generadores de 2130 kW 380 V 50 Hz movidos por motores MAN B&W 7L 27/38 a 750 rpm.
- Planta de emergencia:
 - Planta generadora Volvo Penta AB D49A MS de 880 kW a 1600 rpm.

La planta eléctrica

					Condición				
		N	avegación	M	aniobrando	Pu	uerto	H	lotel
Operación	Número de motores 7L27/38	2	95%	2	91%	1	91%	0	81%
diurna	Número de motores 6L27/38	0	93%		91%	0	91%	2	81%
Operación	Número de motores 7L27/38	2	750/	2	94%	2	000/	1	940/
nocturna	Número de motores 6L27/38	2	75%	2	94%	0	90%	2	84%

El presupuesto

Concepto	Precio (€)
Mano de obra	55.858.750,00
Acero	2.023.391,88
Maquinaria	9.610.084,38
Equipo y servicios	12.558.551,88
Habilitación	7.674.978,30
Gastos no productivos	862.930,63
TOTAL	88.588.687,05

Concepto	Precio (€)
Coste de construcción	88.588.687,05
Beneficio industrial	8.858.868,71
TOTAL	97.447.555,76 €

E.T.S.I.N. Proyecto N° 1491 Buque de crucero

Fin