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Abstract

Atomistic modeling of electrocatalytic reactions is most naturally conducted
within the grand canonical ensemble (GCE) which enables fixed chemical
potential calculations. While GCE has been widely adopted for modeling
electrochemical and electrocatalytic thermodynamics, the electrochemical re-
action rate theory within GCE is lacking. Molecular and condensed phase
rate theories are formulated within microcanonical and canonical ensembles,
respectively, but electrocatalytic systems described within the GCE require
extension of the conventionally used rate theories for computation reaction
rates at fixed electrode potentials. In this work, rate theories from (mi-
cro)canonical ensemble are generalized to the GCE providing the theoretical
basis for the computation reaction rates in electrochemical and electrocat-
alytic systems. It is shown that all canonical rate theories can be extended
to the GCE. From the generalized grand canonical rate theory developed
herein, fixed electrode potential rate equations are derived for i) general re-
actions within the GCE transition state theory (GCE-TST), ii) adiabatic
curve-crossing rate theory within the empirical valence bond theory (GCE-
EVB), and iii) (non-)adiabatic electron and proton-coupled electron transfer
reactions. The rate expressions can be readily combined with ab initio meth-
ods to study reaction kinetics reactions at complex electrochemical interfaces
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as a function of the electrode potential. The theoretical work herein provides
a single, unified approach for electrochemical and electrocatalytic kinetics
and the inclusion of non-adiabatic and tunneling effects in electrochemical
environments widening the scope of reactions amenable to computational
studies.

Keywords: charge transfer, Tafel slope, electrochemical kinetics, Marcus
theory, grand canonical

1. Introduction1

Electrochemical reactions and especially electrocatalysis are at the fore-2

front of current green technologies. To realize and utilize the full potential of3

electrocatalysis, selective and active catalysts are needed for various applica-4

tions and reactions including e.g. oxygen and hydrogen reduction/evolution5

reactions, nitrogen reduction to ammonia and CO2 reduction.[1] Electro-6

chemical conversion of small molecules is most often based on successive7

proton-coupled electron transfer (PCET), electron transfer (ET), and pro-8

ton transfer (PT) reactions; the unique aspect of electrocatalysis is the ability9

to control PCET, ET, and PT kinetics and thermodynamics by the electrode10

potential.11

Design of electrocatalysts working under complex electrochemical envi-12

ronments needs insight from experiments, computational methods as well13

as theoretical approaches.[1] Experimental techniques have reached certain14

maturity and tools such as potential sweep and step methods, spectroelec-15

trochemistry, and impedance spectroscopy are standard tools for studying16

electrocatalytic reactions.[2] However, a similar level of maturity has not17

yet been reached within the computational and theoretical electrochemistry18

communities. Currently, there are several competing but often overlapping19

computational approaches available for studying reactions at electrochemical20

interfaces.21

In experiments, the electrocatalysis is controlled by the electrolyte and22

electrode potential. To translate these to computationally treatable quan-23

tities, it is the combination of the electrolyte and electron electrochemical24

potentials which determine and control the (thermodynamic) state of elec-25

trochemical systems. Therefore, an atomic-level computational model needs26

to provide an explicit control and description of these chemical potentials as27

depicted in Figure 1. In statistical thermodynamics fixing the chemical po-28
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tentials is achieved via a Legendre transformation from a canonical ensemble29

to a grand-canonical ensemble (GCE) for both electrons and nuclei.[3] This30

calls for theoretical and computational methods for treating systems in which31

particle numbers are allowed to fluctuate .32

In electronic structure calculations as applied to electrochemical systems33

one of the largest difficulties is indeed modelling systems at constant electrode34

potentials rather than constant charges. This is a rather drastic difference35

and almost all electronic structure codes work exclusively for fixed charge36

calculations. Another difficulty faced in simulating electrochemistry is the37

presence of several time- and length-scales taking part in the processes. Very38

short time and small length-scales are needed when modelling charge transfer39

and chemical reactions which call for a quantum mechanical treatment of the40

electrode and reactants. On the other hand, the liquid electrolyte and forma-41

tion of the electrochemical double-layer need a statistical treatment within42

GCE over a long time to properly represent the electrified solid-liquid inter-43

face. The charge distribution at the interface is controlled by the electrode44

potential which also directly changes both reaction kinetics and thermody-45

namics.46

The theoretical basis for fixed potential electronic structure calculations47

was developed by Mermin who formulated electronic density functional the-48

ory (DFT) within GCE.[4, 5]. Later, GCE-DFT has been generalized for49

treating nuclear species either classically or quantum mechanically [3, 6–9].50

The GCE-DFT provides a fully DFT, atomistic approach for computing free51

energies of electrochemical and electrocatalytic systems at fixed electrode52

and ionic/nuclear chemical potentials.[3] Importantly, the free energy from53

a GCE-DFT calculation is in theory exact and unique to a given external54

potential. In practice, the (exchange-)correlation effects in both quantum55

and classical systems need to be approximated.56

Atom-scale modeling of electrocatalytic reactions at fixed electrode[3, 10–57

20] and ion potentials[3, 12, 14] at electrochemical interfaces has been greatly58

advanced during the last 10-15 years and utilized in large scale studies of re-59

actions at electrode surfaces. The work in the field of atomistic modelling60

of electrocatalytic reactions has been on almost exclusively focused on elec-61

trocatalytic thermodynamics. Based on the large number of theoretical and62

computational works utilizing GCE-DFT, the computational framework for63

thermodynamics within GCE seems generally accepted.64

However, computation of electrochemical kinetics from atomistic simula-65

tions has remained more elusive. Like the electrochemical thermodynamics,66
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Figure 1: Pictorial model of a proper electrochemical interface at fixed electron µ̃e and
solvent/electrolyte µ̃S chemical potentials the atomic level.

also the kinetics should be computed at fixed electrochemical potentials. This67

calls for generalization of fixed particle number canonical rate theories to the68

fixed potential GCE. Surprisingly, a general GCE rate theory has not yet been69

established; mending this deficiency is the central goal of the present work.70

As discussed in detail below, the GCE rate theory must facilitate computa-71

tion of rate constants for general chemical reactions and especially PCET,72

ET, and PT at fixed chemical potentials. Furthermore, the theory must be73

applicable to both inner-sphere and adiabatic as well as outer-sphere, non-74

adiabatic and tunneling reactions at constant potentials. In fact, the lack of75

generally applicable kinetic models to treat non-adiabaticity and tunneling in76

electrocatalytic ET, PT, and PCET under fixed potential situations limits77

the scope computational and theoretical investigations of reactions to adi-78

abatic inner-sphere reactions - a very limited subset of electrochemical and79

electrocatalytic reactions. This current restriction is caused by the absence of80

theoretical and computational methodologies[21]; while thermodynamics and81

kinetics of simultaneous PCET reactions are easy to evaluate for fully adi-82

abatic inner-sphere reactions using (grand) canonical DFT and (harmonic)83

transition state theory (TST) vide infra, decoupled PCET reactions, outer-84

sphere ET/PT and non-adiabatic PCET reactions require more specialized85

approaches.86

In general, ET, PT, and PCET reactions may exhibit both vibronic and87

electronic non-adiabaticity as well as hydrogen tunneling. The importance88

and contribution of non-adiabaticity and tunneling may also depend on the89
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the electrode potential.[22, 23] There are several reactions where decou-90

pled PCET i.e. separate ET and PT steps, hydrogen tunneling and non-91

adiabaticity have been observed. For example, in alkaline ORR pure ET92

has been proposed as the rate determining step[21, 24–26]. Furthermore, re-93

cent experiments of ORR on carbon-based materials show conclusively that94

ET is the rate- and potential-determining step.[27, 28]. On the other hand,95

solution pH can alter the reaction mechanism and ,e.g., CO2 reduction can96

proceed through simultaneous PCET in acidic and through decoupled PCET97

(ET-PT) in alkaline solutions[29, 30]. It has also been shown that only the98

inclusion of vibronic non-adiabaticity in electrochemical hydrogen evolution99

reaction can explain experimentally observed Tafel slopes and kinetic iso-100

tope effects.[22] There is also experimental evidence that room-temperature101

hydrogen tunneling takes place during ORR Pt and at low over-potentials102

tunneling is the prevalent reaction pathway.[23] Kinetics of ET are needed103

to describe both pure ET and decoupled PCET and in general it is expected104

that these pathways may prevail on weakly bonding electrode surfaces in105

oxygen, CO2, CO, alcohol etc. reduction reactions.[31] In fact, PCET re-106

actions are often vibronically and/or electronically non-adiabatic[32], even107

under electrocatalytic conditions[22].108

Even though a general GCE rate theory is missing, schemes for computing109

rates or energy barriers of adiabatic reactions at constant electrode poten-110

tials have started to emerge. In some cases reaction barriers have been cal-111

culated explicitly at a given electrode potentials using GCE-DFT[12, 20, 33–112

35]. However, more often various correction schemes to (Legendre) trans-113

form constant charge calculations to GCE are used for studying reaction114

kinetics.[11, 19, 36–39]. From both approaches the grand energy potentials115

as a function of the electrode potential or along the reaction coordinate are116

often found to exhibit quadratic dependence. This quadratic dependence117

of the grand energy as a function of the electrode potential has been used118

to transform canonical DFT barriers and reaction energies to grand ener-119

gies. Recently, it has been noticed that reaction barriers as a function of120

the potential follow a ”Marcus-like” [20] or Brønsted-Evans-Polanyi (non)-121

linear[38] free energy relations. Other approaches for computing electrode122

potential-dependent barrier have relied on Butler-Volmer -type (BV) expres-123

sions where the barrier has a simple form G(η) = G(η = 0) + αη where η124

is the over-potential and α ∈ [0, 1] is the BV symmetry factor.[38, 40, 41].125

Independent of the scheme used for obtaining a constant potential reaction126

barrier, TST-like expressions has been used to compute rate without a sound127
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theoretical basis for the validity of GCE-TST.128

Even if GCE-TST proved to be valid (as it does based on the work129

herein), non-adiabatic and tunneling effects in ET, PT, and PCET effects130

would be omitted in the fully adiabatic and classical treatments. While ne-131

glecting these effects may be reasonable for many electrocatalytic reactions,132

all electrocatalytic reactions are certainly not inner-sphere nor adiabatic as133

was discussed. A handful computational and theoretical studies[22, 24, 42–134

48] at the electronic structure level have studied non-adiabaticity or tun-135

neling effects in electrocatalytic ET/PCET. These pioneering studies uti-136

lized simplified model Hamiltonians and wave functions and computation of137

non-adiabatic/tunneling effects in electrocatalytic reactions. However, us-138

ing general first principles methods for addressing ET/PCET kinetics have139

remained elusive thus far. Past theoretical and computational work on non-140

adiabatic electrochemical ET and PCET rates at a given electrode potentials141

have been accomplished using either Dogonadze-Kutzetnotsov-Levich[49, 50],142

Schmickler-Newns-Anderson[51, 52], or Soudackov-Hammes-Schiffer[22, 32,143

45, 53–55] methods. In these treatments the electrode potential is treated as144

an external parameter modifying the reaction energy or barrier. These mod-145

els can also incorporate electrostatic interactions between the electrode and146

the reactant in the double-layer. In more advanced approaches work terms147

and solvent reorganization energies are obtained using fixed charge molecular148

dynamics[43, 56].149

When model Hamiltonian approach is combined with first principles sim-150

ulations, the electronic structure, orbitals, or density of states (DOS) are151

computed once for a fixed number of electrons. Then, the electrode potential152

serves to role of changing the Fermi-level of this static electronic structure. In153

such calculations the electronic structure itself is considered unaltered when154

the potential is changed. While this might be valid in some cases, in general155

the electrode potential changes the solvent structure, bonding of reactants,156

double-layer, electronic DOS, overlap integrals etc. limiting the applicability157

of the static picture. Instead, modern fixed potential first-principles methods158

explicitly incorporate the effect of electrode potentials on the interfacial prop-159

erties and bonding. Another inherent limitation occurring in previous work160

addressing non-adiabaticity in ET is the limitation to a single orbital pic-161

ture. The traditional models assume transitions between different electrode162

single electron states and redox-levels of the molecule to be independent.163

Technically, achieving this requires separating the total wave function to164

filled/empty and localized orbitals. An inherent problem encountered is that165
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this wave function separation cannot be achieved without additional assump-166

tions as shown in Section 1 of the Supporting Information. In practice this167

hampers the computation of ET rates from DFT or wave function methods168

because an additional (and rather) arbitrary orbital separation/localization169

step is required. A general electrocatalytic rate theory should not be re-170

stricted to model (single-orbital) wave functions or Hamiltonians. Instead,171

a many-electron wave function obtained using ab initio methods at a fixed172

potential should be used to capture the inherent complexity reactions at elec-173

trochemical interfaces. In the canonical ensemble, ET, PT, and PCET rates174

of electronically and vibronically (non-)adiabatic reactions can be studied175

using either model or general Hamiltonians[32, 54, 55, 57–61]. Extending176

these canonical rate theories to fixed potential GCE is the direction pursued177

herein. This is important from both practical and conceptual point of views178

that electronic and vibronic non-adiabaticity and tunneling can be included179

in electrochemical, fixed potential ET, PT and PCET rates using generalized180

Hamiltonians, many-electron wave functions, and rate theory.181

The above discussion highlights that electrochemical (outer-sphere) and182

electrocatalytic (inner-sphere) reactions have treated using different approaches.183

Commonly, electrocatalytic reactions have been studied using adiabatic TST184

theory while electrochemical reactions have relied on perturbative non-adiabatic185

theories. However, in the canonical ensemble, all rate theories equally appli-186

cable to inner- or outer-sphere reactions can be derived using a single general187

framework provided by Miller[62–64]. To enable an equally well-defined and188

generally valid rate theory in an electrochemical setting, in this work I have189

extended Miller’s (micro)canonical rate theories to electrochemical systems190

at fixed chemical potentials described within the GCE. The formulation pre-191

sented herein is equally applicable to electrocatalytic and electrochemical192

reactions and, hence, presents a general unified approach. This includes193

the possibility to account for tunneling as well as vibronic and electronic194

non-adiabaticity, for example. While methods for treating thermodynamics,195

locating transition states and energy barriers within GCE have been devised,196

a general method for computation reaction rates – not just barriers – has not197

yet available. The GCE rate theory enables the use of all canonical rate198

theories in constant potential simulations.199

In this work, the general framework is developed and utilized to derive200

rate constants for adiabatic ET, PT and PCET reactions using a general-201

ized GCE Marcus-like [65] empirical valence bond theory (GCE-EVB). The202

non-adiabatic ET and PCET rate constants are derived using a golden-rule203
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formalism within GCE. The theoretical work results in ET and PCET rate204

constants valid for both adiabatic and non-adiabatic (proton-coupled) elec-205

tron transfer rates and the inclusion of proton tunneling in PCET. The de-206

veloped rate theories can readily be combined with modern computational207

methods based on (GCE-)DFT. The fixed potential rate theory will expand208

the type of systems, conditions, and phenomena in electrocatalysis amenable209

for first principles modelling.210

The paper is organized as follows. In Section 2 a general rate theory211

and TST within GCE are developed. Rest of the paper focuses on ET and212

PCET kinetics using GCE-TST. Section 3 shows how the adiabatic barrier213

and rate of ET and PCET reactions are computed using GCE-EVB and free214

energy perturbation theory within GCE leading to a fixed potential version215

of Marcus theory. Tafel slopes and other use quantities as extracted from216

GCE-EVB are analyzed. In section 4 non-adiabatic rate constants for ET and217

PCET reactions with generalized first-principles Hamiltonians and many-218

electron wave functions. In section 5 computational aspects for evaluating219

the rate constants are discussed.220

2. Rate theory in the grand canonical ensemble221

As highlighted in the preceding discussion, the electrode potential is ex-222

pected to affect the energetics and kinetics in complex ways. Thus, the poten-223

tial should be treated explicitly rather than as a simple corrective parameter224

as often done in theoretical and computational models used in electrocatal-225

ysis. Formulating all expectation values within GCE naturally includes the226

electrode potential from the start and this forms the basis for the methods de-227

veloped here and building on our previous grand canonical multi-component228

DFT[3]. The key is that the electrode potential is included in the ab initio229

Hamiltonian within the GCE and as results all observables and quantities230

depend explicitly on the potential. For details on GCE, see Section 2 of the231

Supporting Information and previous work in Ref.3.232

To extend (micro)canonical rate theory to the GCE, only particle con-233

serving reactions are considered. Thus, only a state with N particles can234

be converted to state with N particles but the population and probability235

of N particle states is determined by the GCE density operator. Hence,236

all equilibrium quantities are always well-defined but jumps between states237

with unequal number of particles are suppressed. In general this is not ex-238

pected to limit the applicability of the rate expressions derived in this work;239
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if a quantum system is characterized by particle conserving operators (Ĥ240

Hamiltonian, Ŝ entropy, andN̂ particle number), even time-dependent ob-241

servables are obtained as ensemble weighted expectation values from O(t) =242

Tr
[
ρ̂Û(t0, t)Ô(t)Û(t, t0)

]
=
∑

n pn 〈ψn|Û(t0, t)Ô(t)Û(t, t0)|ψn〉 which do not243

include changes between states with different number of particles.[66] Hence,244

even explicit propagation of the wave function does not allow sudden jumps245

in particle numbers or jumps between states between different number of246

particles.247

In a similar way, particle fluxes needed for the flux formulation of rate248

theory (see below) can be applied within the GCE as long as (local) equilib-249

rium is maintained. This implies that the Hamiltonian is time-independent250

and that only particle conserving reactions contribute to the rate constant251

according to the grand canonical distribution[67]. Furthermore, computation252

of correlation functions and hence fluxes poses both theoretical and computa-253

tional difficulties. While both may in principle be directly computed within254

GCE[67], the computation includes the coupling of the system to the particle255

reservoir and introduces the reservoir time scales. Also, the sampling should256

only include trajectories for which the particle number is equal at times t257

and t + τ . This is because in GCE the phase space volume is not globally258

conserved and Liouville theorem does not hold. As a result, the computed259

ensemble properties will depend on time if the system is not in equilibrium260

i.e. the phase space distribution function ρ(q,p, N, t) is not stationary[67–69]261

( dtρ(q,p, N, t) 6= 0 and p and q are momentum and position, respectively).262

In the context of the present work it is important to notice that both equilib-263

rium (dtρ(q,p, N, t) = 0 at t → ∞) and instantaneous (limt→0+) properties264

are uniquely defined by the GCE[67, 69]; both qualities are absolutely es-265

sential in order to formulate the rate and transition state theories within266

GCE.267

Herein only equilibrium and instantaneous quantities are used. Interme-268

diate times would require running GCE-dynamics or making assumptions on269

the reservoir-system couplings. Hence, non-equilibrium processes cannot be270

treated using the approaches presented in this paper. Another limitation271

of the current approach is that kinetics of electron transfer from the elec-272

tron ”bath” degrees of freedom are not included and are therefore assumed273

sufficiently fast. Neither of these limitations are should greatly limit the ap-274

plicability of the approach for electrocatalytic or electrochemical reactions.275

In these reactions the electron bath is provided by a conducting electrode and276
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equilibrium conditions are controlled by constant temperature and potential277

which also provide the natural control parameters in the GCE utilized in278

this work. It is noted that mass transfer in electrochemical systems is not in279

equilibrium or even steady-state. However, the reaction rate coefficients are280

independent of particle fluxes and concentrations and therefore the elemen-281

tary rate constants can be characterized by their equilibrium values as long282

as the Hamiltonian of the quantum part is time-independent and particle283

conserving.284

After establishing the particle conserving and equilibrium nature of the285

rate constants, the GCE rate constants can be formulated. To allow vari-286

ous types of reactions to be described, the canonical rate expression due to287

Miller[62–64, 70] is adopted:288

k(T, V,N)QI =

∫
dEP (E) exp[−βE] = lim

t→∞
Cfs(t) (1)

where QI is the canonical partition function of the initial state, and289

β = (kBT )−1. The first expression is written in terms of transition probabil-290

ity at a given energy P (E). Second expression utilizes the canonical flux-side291

correlation function Cfs(t) =
1

(2π~)f
∫
dpfdqf exp(−βH)δ[f(q)]q̇h[f(qt) for292

f degrees of freedom. δ[f(q)] constrains the trajectories to start from the di-293

viding surface, q̇ is the initial flux along the reaction coordinate, and h[f(qt)]294

is the side function which includes the dynamic information whether a tra-295

jectory is reactive or not. Based on the discussion above, only the t → 0+
296

and t→∞ should be considered for the flux-side correlation function in the297

rate expressions. The rate from either the transition probability and flux-298

side formulations are equivalent. Depending on the choice of P (E) or H and299

h[f ] non-adiabatic and adiabatic (nuclear) quantum effects are included in300

the rate.[71, 71–74]301

To compute reaction rates at fixed potentials a straight-forward, yet novel,302

extension of the canonical rate theory to the GCE is made:303

k(T, V, µ)ΞI =
∞∑
N=0

exp[βµN ]Q0(T, V,N)k(T, V,N) (2)

where ΞI = exp[βµN ]QI is the initial state grand partition function and304

k(T, V,N) was introduced in Eq. (1). Above N is the number of species305

(nuclear or electronic) in the system.306
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While the above equations are completely general and various flavors of307

rate theories can be extracted by invoking different Hamiltonians and transi-308

tion probabilities, they are somewhat cumbersome to treat. Indeed, it would309

be convenient if the GCE could be used directly to evaluate the rate with-310

out explicitly sum over different particle numbers. This can be achieved by311

introducing the transition state theory (TST) assumption[62–64] but gener-312

alized to GCE herein. In canonical TST, the instantaneous limt→0+ Cfs(t) is313

considered corresponding to the assumption that there are no-recrossings of314

the dividing surface. Both quantum/classical and adiabatic/non-adiabatic315

TSTs are written as [75–78]316

kTST (T, V,N)Q0(T, V,N) = lim
t→0+

Cfs(t) (3)

and the exact rate is recovered by introducing a correction317

k(T, V,N) = lim
t→∞

κ(t)kTST (T, V,N)

with κ(t) =
Cfs(t)

Cfs(t→ 0+)

(4)

where κ(t) is the time-dependent transmission coefficient. For long-times318

it can also be written as κ = k(T, V,N)/kTST (T, V,N).[79] Inserting this319

equation in Eq.(2) can be used to compute the most general grand canonical320

rate constant. To further simplify the treatment, below I will focus on classi-321

cal nuclei unless explicitly stated. As shown in the SI section 3, for classical322

nuclei the TST results is [63, 64]:323

k(T, V, µ)ΞI =
∞∑
N=0

exp[βµN ]

∫
dEPcl(E) exp[−βE]

≈
∑
N

exp[βµN ]
kBT

h
Q† ≡ kBT

h
Ξ†

(5)

Above, Pcl(E) denotes transition probability for classical nuclei but the324

electrons are of course quantum mechanical[60, 80]and the details can be325

found in Ref. 64 and the SI. The result of the previous equation shows that326

the structure of GCE-TST and canonical TST are similar. This is true for327

open system in general if memory effects are neglected[81]. To obtain the328
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GCE rate constant without invoking the TST approximation one can use the329

transmission coefficient to write330

k(T, V, µ)ΞI =
∞∑
N=0

exp[βµN ]κ(T, V,N)
kBT

h
Q‡ ≈ 〈κµ〉

kBT

h
Ξ‡ (6)

where it is assumed that the transmission coefficient is insensitive to331

changes in the particle number and 〈κµ〉 is the effective transition proba-332

bility. To complete the derivation for the classical GCE rate constant, the333

rate is expressed in terms of grand energies334

k(T, V, µ) = 〈κµ〉
kBT

h
exp
[
−β∆Ω‡

]
(7)

where the definition Ωi = − ln(Ξi)/β has been used and ∆Ω‡ = Ω‡ − ΩI335

is the GCE barrier. Above the only new assumption besides grand canonical336

equilibrium distribution and the TST, is that the flux out of the transition337

state does not depend on the number of particles in the system, i.e. the κ338

can be treated as a constant. For large enough systems and small variations339

in the particle this a well justified assumption.340

The above development establishes a general fixed chemical potential rate341

theory. Within the TST approximation the rate is determined by the grand342

free energy barrier. The transmission coefficient needs to be approximated343

but this depends on the case at hand. The adiabatic and non-adiabatic344

harmonic GCE-TSTs expression for the fully open system are derived in345

Supporting Information section 3.346

2.1. Explicit dependence only on electron chemical potential347

The development above is valid when both nuclear and electronic subsys-348

tems are open. A significant simplification results if one assumes that the349

reaction rate is does not explicitly depend on the number of some nuclei in350

the system. In a typical first principles calculation this simplification can be351

exploited if one assumes that the system can be divided to two subsystem: 1)352

classical electrolyte species consisting of nuclei and electrons and 2) electrode353

+ reactants treated either classically or quantum mechanically. Typically the354

number of nuclei constituting the electrode and reactant are fixed while the355

electrolyte chemical potential needs to be fixed. The electrolyte charge den-356

sity also adjusted to maintain charge neutrality of the system.357
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Fixing only the electron and electrolyte chemical potentials gives a semi-358

grand canonical ensemble used for deriving the thermodynamics of electro-359

catalytic systems in Ref. 3. Within the semi-grand canonical ensemble, the360

electrode+reactants set the external potential at a fixed electrode potential361

while the electrolyte adapts to changes the thermodynamics and to main-362

tain charge neutrality; the electrolyte is at a fixed chemical potential but the363

energetics to do not explicitly depend on the number of electrolyte species.364

In this case, summation over the number of electrode/reactant nuclei or the365

electrolyte species is not needed. This is also the typical scheme used in366

first principles modelling within GCE and Poisson-Boltzmann models, for367

example.368

Herein the semi-GCE is applied to derive rate equations as a function369

of electrode potential. From now on, I assume that reaction rates depend370

explicitly only on the number and/or chemical potential of electrons in the371

system. Then, the state of the system is determined by T , V , number of372

nuclei of the electrode+reactant NN , chemical potential of the electrolyte,373

chemical potential of the electrons µn, and number of electrons in the sys-374

tem N unless explicitly specified otherwise. Electroneutrality is maintained375

by the electrolyte. Harmonic TST rates for constant number of nuclei and376

constant electrochemical potentials are derived in section 3 of the Supporting377

Information.378

3. Adiabatic barriers and rates from GC-EVB379

To compute the GCE-TST rate at a given electrode potential, the grand380

energy barrier of Eq. (7) needs to be obtained. For electronically adiabatic381

reactions methods like the constant-potential[20] nudged elastic band[82] can382

be used. However, usually one is interested in rates as a function of the383

electrode potential and, hence, the barrier needs to be obtained for a range384

of electrode potentials which is computationally expensive.385

As shown below, an alternative method for computing the grand en-386

ergy barrier is to formulate a Marcus-like[65] approach within GCE. Marcus387

theory can be viewed as special case of the empirical valence bond (EVB)388

theory[83] commonly utilized in electron[65] and proton transfer theories.[53,389

83–86] Using a novel extension of thermodynamic perturbation theory to the390

GCE setting, a GCE-EVB has been derived in this work (see SI sections391

4 and 5). The GCE-EVB theory developed herein provides a theoretically392

well-justified and computationally affordable way for computing fixed poten-393
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tial barriers at various electrode potentials; the adiabatic barrier needs to394

be explicitly computed only at a single electrode potential while barriers at395

other potentials can be obtained using well-defined interpolation of Eq.(16).396

In these EVB and Marcus theories the initial and final states are pre-397

sented using diabatic states, effective wave functions and free energies[65].398

This can be extended to GCE by using two effective, fixed potential surfaces399

which can be understood as a statistical mixture of states with probabilities400

given by the density operator in GCE (see Section of 2 the Supporting Infor-401

mation and our previous work in 3). Importantly, the diabatic ground states402

obtained using the GCE density operator naturally include many-body ef-403

fects of the coupled electrode-reactant-solvent system and the complexity of404

the electrochemical interface is explicitly included in the model. Also, there405

is no need to decompose the rate constants to orbital dependent quantities;406

in the current GCE formulation, the redox-molecule and the electrode are407

fully coupled and the total wave function |r, e〉 is treated as a single entity408

in (see Section 1 in the Supporting Information for additional discussion).409

Then, two grand canonical diabatic all-electron wave functions are used to410

form an effective diabatic GCE Hamiltonian. This is analogous to molecular411

Marcus theory in which the canonical diabatic Hamiltonian comprises of an412

initial (oxidized) I and final(reduced) molecule F .413

Following the treatment in the Supporting Information Section 4, an ef-414

fective 2 × 2 grand canonical Hamiltonian in Eq. (8) can be formed. The415

resulting form is analogous to the canonical empirical valence bond[83] (EVB)416

used in electron[65], proton[85, 86] and proton-coupled electron[53] theories.417

The present form is, however, crucially different from its predecessors; based418

on the approach developed in this work, in all quantities are defined and419

computed at fixed electrode potential using the GCE.420

HGCE−dia =

[
ΩII ΩIF

ΩFI ΩFF

]
(8)

where the diagonal elements are the grand energies of the oxidized (II)421

and reduced (FF) systems. The off-diagonal elements account for the inter-422

action and mixing of the initial and final states. In this, way the off-diagonal423

elements can be fitted so that diagonalization of Eq.(8) produces the adia-424

batic grand canonical potential energy surface.425

Finally, note that the (diabatic) grand canonical states correspond to a426

single electron density which is guaranteed by the Hohenberg-Kohn-Mermin[3,427
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4] to be unique for a given electrode potential. If a general quantum me-428

chanical Hamiltonian is used, bond breaking is naturally included in the429

GCE-EVB model. The only disambiguity is the definition of these diabatic430

states. In principle it is also possible to add other, possibly excited states as431

basis states. In practice the GCE diabatic energies,( ΩII and ΩFF ), can be432

computed directly by applying using e.g. constrained DFT[87–89] with fixed433

potential DFT as discussed in Section 5. Below it is shown how the grand434

canonical free energies can be obtained from atomistic simulations.435

3.1. Computation of diabatic GCE surfaces and barriers436

An approach often used in molecular simulations for constructing the437

diabatic free energy curves is to sample the diabatic potentials along a suit-438

able reaction coordinate. For ET, PT, and PCET reactions in the canon-439

ical ensemble this coordinate is the energy gap between the two diabatic440

states as shown by Zusman[90] and Warshel[91]: ∆Egap(R) = EF (R) −441

EI(R).[68, 92] From the sampled energy gap the free energy curves are ob-442

tained as A(R) = −kBT ln(p(Egap(R))) + c. If the distribution is Gaus-443

sian (p(Egap(R)) = c exp[−(∆Egap − 〈∆Egap〉)2/2σ2]) and the resulting free444

energy curves a parabolic. The barrier in EVB or Marcus theory is then445

obtained from the intersection of the initial and final diabatic curves[92–95].446

Within GCE, the energy gap is simply Egap(R;µ) =
∑

N,i pN,iEgap(Ri, N).447

As shown in the SI section 5, the gap distributions can be formulated and448

computed by generalizing Zwanzig’s[96] canonical free energy perturbation449

theory to the GCE. This route provides a rigorous way to derive the reaction450

barrier in terms of diabatic states and energies as presented in the Supporting451

Information Section 5. The reaction energy barrier can be computed from452

the initial-final state energy gap distribution functions using[91, 97–102]453

kIF = κ
exp
[
−βgI(∆E‡)

]∫
d∆E exp[−βgI(∆E)]

= κpI(∆E
‡) (9)

where gi(∆E) is the free energy curve in state i as a function of the energy454

gap, pI(∆E
‡) is the gap distribution at the transitions state, and κ denotes455

an effective pre-factor. The above shows that the reaction rate is determined456

by the energy gap distribution function pI(∆E) = 〈δ(∆E(R)−∆E)〉I from457

Eq. (30) of the Supporting information.458

When assuming that Egap(R;µ) is Gaussian, the GC-diabatic states are459

parabolic and the Marcus barrier in GCE is given by Eq. (12). As shown460
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in the Sections 5 of the SI, the (Gaussian) gap distribution may be derived461

using a (second order) cumulant expansion. This results in gap distribution462

of the following form463

pI(∆E) =
1√

2πσI
exp

[
−(∆E − 〈∆E〉I)2

2σ2
I

]
(10)

where 〈∆E〉I is the energy gap expectation value in the initial state ob-464

tained from Eq.(S31) in the Supporting Information and σI = 〈(∆E)2〉I −465

(〈∆E〉I)2 is the gap variance. The Marcus relation is then obtain after stan-466

dard manipulations[92, 98] yielding467

pI(∆E
‡) =

1√
4kBTΛ

exp

[
−β (∆ΩFI + Λ)2

4Λ

]
(11)

where σ2
I = σ2

F = 2kBTΛ = kBT (〈∆E〉I − 〈∆E〉F ) , Λ is the reorganiza-468

tion grand energy and and ∆ΩFI =
1

2
(〈∆E〉I + 〈∆E〉F ) is the reaction grand469

energy as depicted in Figure3.1. Finally, the Marcus expression within GCE470

is471

k =
κ√

4kBTΛ
exp

[
−β (∆ΩFI + Λ)2

4Λ

]
(12)

The energy barrier of Eq. (12) is the diabatic energy barrier. The adi-472

abatic barrier can the be computed using Eq. (8) as discussed in Section.473

3.2 below. One caveat to keep in mind is more involved computation of κ474

within the GCE as shown in Section 4. The above result may safely be used475

when κ ≈ 1 for all particle numbers meaning that the reaction is always fully476

adiabatic.477

3.2. Implications of the canonical GCE-EVB rate theory478

For symmetric grand energy surfaces the diabatic grand energy barrier479

can be is estimated from the crossing point of the two quadratic grand energy480

surfaces with equal curvatures is given in Eq. (12). Adopting the work481

Mattiat and Richardson[103] on the canonical ensemble, the assumption on482

equal curvature can be relaxed by specifying an asymmetry parameter αas483

as484

αas =
ΛI − ΛF

ΛI + ΛF

(13)
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Figure 2: Schematic depiction of the important GCE-EVB quantities. The blue (orange)
dashed lines is initial (final) diabatic surface while the black solid line is the adiabatic
surface.

in terms of the reorganization energies for both the initial and final states485

ΛI and ΛF , respectively. The transition state is located at the crossing point486

x‡/ξ = − 1

αas
+

1

αas

√
1− αas

(
αas +

4∆Ω

ΛI + ΛF

)
(14)

Using these definitions the asymmetric diabatic Marcus barrier and rate487

are obtained as488

∆Ω‡ =
1

4
ΛI

(
x‡/ξ − 1

)2
(15a)

k ≈ κ√
4kBTΛI

1 + αas
1 + αasx‡/ξ

exp
[
−β∆Ω‡

]
(15b)

If αas → 0, the regular Marcus rate and barrier are obtained. In Fig.3.2489

the effect of asymmetry and reaction energy to the reaction barrier and lo-490

cation of the transition state are compared. It can be seen that both the491
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barrier heights and its location are affected by the asymmetry and reaction492

energy.493

Figure 3: Left: EVB curves at different different asymmetries αas. The initial state
reorganization energy is ΛI = 40 while the final state reorganization energy ΛF ∈ [20, 60].
The reaction energy is ∆Ω = 0 for all curves. Right: EVB curves as a function of the
reaction energy: ∆Ω ∈ [−15, 15]. For all curves ΛI = ΛF . Both: The dashed line at
x = 0 indicates the position of the transition state when ΛI = ΛF and ∆Ω = 0. The curve
crossing point equals ∆Ω‡

dia

While the Marcus-like equation results in a diabatic barrier, the adiabatic494

reaction barrier can be extracted from the diabatic barrier obtained by di-495

agonalizing Eq.(8) or from .(12) by introducing an adiabaticity correction.496

For the canonical ensemble, this correction is known as the Hwang-Åqvist-497

Warshel equation[104]. If the GCE-diabatic states are quadratic along the498

reaction coordinate and share the same curvature along the reaction coordi-499

nate, the adiabatic barrier can be written as [104, 105]500

∆Ω‡ad,EV B =
(∆Ω + Λ)2

4Λ
− ΩIF (x‡) +

(ΩIF (xI))2

∆Ω + Λ

= ∆Ω‡dia − ΩIF (x‡) +
(ΩIF (xI))2

∆Ω + Λ

(16)

where ΩIF is the off-diagonal matrix of the GCE-EVB Hamiltonian in501

Eq. (8). If the Condon approximation is used, the above equation is greatly502
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simplified as ΩIF ≈ ΩIF (x‡) ≈ ΩIF (xI). From a practical perspective it is503

interesting to observe how the adiabatic GCE-EVB barrier changes when the504

parameters a changed. From the schematics shown in Figures 3.1 and 3.2,505

one can observe that changes of the minima along the reaction coordinate506

correspond to horizontal displacements of the diabatic states and and changes507

in Λ. Vertical changes correspond to changes in the reaction grand energy508

∆Ω. Usually one concentrates only on changes in the free energy as reor-509

ganization coordinate not expected change for similar reactions or different510

electrode potentials (this assumptions is also made in Section 4.) Focusing on511

the reaction grand energy, it is easy show that under equilibrium conditions,512

∆Ω = 0, the barrier is given by513

∆Ω0,‡
ad,EV B =

Λ

4
− ΩIF +

(ΩIF )2

Λ
≈ Λ

4
− ΩIF (17)

which leads to Λ = 4(∆Ω0,‡
ad,EV B + ΩIF ) ≈ 4∆Ω0,‡

dia assuming that ΩIF <<514

Λ. The equilibrium point is characterized by zero over-potential η = ∆Ω = 0.515

Replacing the solution for Λ in Eq. (16) gives the diabatic barrier as516

∆Ω‡dia = Ω0,‡
dia

(
1 +

∆Ω

4Ω0,‡
dia

)2

= ∆Ω0,‡
dia +

∆Ω

2
+

(∆Ω)2

16∆Ω0,‡
dia

(18)

Inserting (18) in (16) results in the adiabatic reaction barrier as517

∆Ω‡ad,EV B = ∆Ω0,‡
ad,EV B +

∆Ω

2
+

(∆Ω)2

16∆Ω0,‡
dia

(19)

This result has several interesting implications and connections to previ-518

ous work. The most immediate is that at small changes in the driving force519

∆Ω, a linear dependence between the barrier and reaction energy is estab-520

lished. However, at larger driving forces, a non-linear dependence appears.521

This can be directly translated to the language of electrochemistry by522

considering the changes in driving force as a function of the electrode po-523

tential or over-potential. As discussed by Trasatti[106, 107] and in our re-524

cent work[3], the absolute electrochemical potential and chemical potential525

are related by EM(abs) ∼ −µ̃n independent of the reference scheme. It is526

important to notice that for microscopic systems usually considered within527

GCE-DFT keeping µ̃n fixed leads to changes in the number of electrons in528

the initial and final states. As a result the canonical free energies A(N) do529
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not remain constant when change when µ̃n is changed. Therefore, changes530

in the grand energy is in general δΩ = A(NF ; µ̃)−A(NI ; µ̃)− µ̃n(NI −NF ).531

δΩ may be extracted from constant potential calculations enabling the532

study of electrochemical kinetics as a function of the electrode potential:533

−∂r(T, V, µ̃n)/∂µ̃n as done in a Tafel analysis, for example. The traditional534

measure in electrochemistry for reaction kinetics is the Tafel slope measuring535

how current is affected by changes in the over-potential. In heterogeneous and536

homogeneous catalysis the corresponding quantity is the Brønsted-Evans-537

Polanyi (BEP) coefficient or more generally (linear free) energy relations538

measuring the change of reaction rate when the reaction energy is changed.539

However, the work of Fletcher[108, 109] and Parsons[110] show that Tafel and540

BEP type analyses actually measure the same quantities; both measure the541

reaction rate as a function of the changes in the reaction driving force. For542

macroscopic electrochemical reactions the driving force is measured in terms543

of the over-potential while in microscopic calculations the driving force is the544

free energy. These two quantities are linked by |∆η| = |∆µ̃n| = |∆∂Ω/∂n|.545

Both the BEP and Tafel coefficients maybe computed from a single ex-546

pression. The Tafel coefficient is defined as[2, 108, 109]547

α ∝ ∂ ln k

∂E
= −∂ ln k

∂∆Ω

∂∆Ω

∂µ̃n

∂µ̃n
∂E

= −γ∆Ω′ (20)

where γ is BEP relationship and ∆Ω′ denotes the grand energy change548

as a function of the over-potential. Also E ∼ µ̃n has been used.549

Let us focus first on the ∆Ω′ term which depends on the reaction and550

needs to be approximated. To facilitate this analysis, one recognizes that551

∆Ω = (AF (〈NF 〉)− AI(〈NI〉)− µ̃n(〈NF 〉 − 〈NI〉). For macroscopic systems,552

i) chemical reactions have NF = NI while ii) simple electrochemical steps553

have NF = NI ± 1. Then for chemical reactions ∆Ω = ∆A and the variation554

∆Ω′ is expected to be small. For electrochemical reactions at the macro-555

scopic limit, a particularly straightforward estimate is obtained from the556

computational hydrogen electrode (CHE) concept.[111] In the CHE model,557

the reaction energy ∆Ω ≈ ∆A0 ∓ η for PCET steps with ∆A0 computed558

without any bias potential. Hence, within CHE, α = γ for PCET steps and559

zero otherwise. Similar reasoning holds also for simple (outer-sphere) ET560

reactions in macroscopic systems as shown in Section 6 of the SI. For these561

reactions ∆Ω ≈ ∆A0 ∓ constant× η and ∆Ω′ = ∓constant.562

For microscopic systems, however, such a simple relationship does not563

hold in general and models such as GCE-DFT can be used for computing564
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∆Ω′ explicitly. Thus far, ∆Ω′ has been reported in only few studies[20,565

112]. In both works, ∆Ω exhibits a roughly linear dependence on the applied566

potential. To conclude, ∆Ω′ is expected to be a constant close to unity for567

electrochemical reactions and close to zero for chemical reactions.568

Next, the BEP γ of Eq (20) is analyzed. Using the diabatic barriers, one569

obtains570

γ =
∂ ln k(T, V, µ̃n)

∂∆Ω

∣∣∣∣
T,V

=

[
1

2
+

∆Ω

8∆Ω0,‡
dia

]
=

1

2

[
1 +

∆Ω

Λ

]
(21)

From the above equation, it is seen that γ is not a simple constant but571

depends linearly on the reaction driving force. If the reorganization energy572

is small the dependence on the reaction grand energy becomes more pro-573

nounced. Based on the generalized BEP-Tafel energy identities the following574

relationships can be observed:575

• If the quadratic part in Eq.(18) is neglected, one obtains the Butler-576

Volmer (BV) barrier. In this case the barrier depends linearly on577

the applied potential as ∆∆Ω‡dia,EV B ≈ 0.5(AF (〈NF 〉) − AI(〈NI〉) −578

µel(〈NF 〉 − 〈NI〉). µel is implicitly referenced against µeqel = 0 and can579

easily be converted to the over-potential µel − µeqel = ∆η. Note that580

∆∆Ω‡dia,EV B is not expected to be linear for finite-sized systems.581

Again, for macroscopic systems 〈NF 〉 = 〈NI〉 and ∆∆Ω‡dia,EV B = ∆∆A‡dia,EV B =582

0.5(AF − AI) which is the Brønsted-Evans-Polanyi result. The BV583

relationship is obtained by treating a specific reaction type. For ex-584

ample, in a typical ET, PT, or PCET the potential-dependent reac-585

tion free energy is given by ∆A = ∆A(η = 0) ± (nη). Using this for586

∆∆A = ±0.5nη.587

• Non-linearity of the grand energy barrier was already established above.588

For macroscopic systems non-linearity is established by including the589

quadratic part of the diabatic barrier in model. Lately[20, 36, 38] this590

has been observed computationally and it is pleasing that the GCE-591

EVB picture seems qualitatively correct.592

A spectacular feature of canonical Marcus and EVB theory is the observa-593

tion of an inverted region i.e. the rate constant starts to decline as the reac-594

tion becomes more exothermic. However, the inverted region has not been ob-595

served for electrochemical reactions even at large over-potentials. The grand596
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canonical Marcus rate of Eq. (12) seems to predict an inverted region for597

highly exothermic conditions. However, as written in the Tafel equation (20)598

the rate as a function of the over-potential depends on both the change in A)599

barrier as a function of the reaction energy and B) change reaction energy as a600

function of the over-potential. A) would indeed predict an inverted region but601

B) suppress this if ∆Ω ≈ 0. Then the Tafel slope would approach zero as pre-602

dicted by the Marcus-Hush-Chidsey[113], Dogonadze-Levich-Kuztnetsov[49,603

50], Newns-Anderson-Schmickler, Soudackov-Hammes-Schiffer[45] models of604

ET and PCET [51] (see also Supporting Information Section 1). At the605

moment, there is not enough computational nor theoretical evidence on the606

behaviour of ∆Ω as a function of the over-potential to predict or to analyze607

the Tafel slope any further. Also for very small barriers, reorganizational608

dynamics of the surroundings may start to limit the reaction and dynamical609

properties of the surroundings need to addressed as discussed in Section 5.610

To summarize, the generalized BEP-Tafel relationships has been derived611

from a microscopic perspective starting from a grand canonical rate theory.612

Both variation in the reaction energy barrier and the transition state location613

as a function of the potential can be predicted using just a few parameters.614

The general form of the BEP-Tafel relation is given in Eq. (20). For small615

over-potentials, the rate is expected to depend linearly on the applied poten-616

tial. For larger over-potentials non-linear dependence is predicted, especially617

reactions for which the reorganization energy is small.618

4. Non-adiabatic ET and PCET reaction rates within GCE619

As shown above, computation of electronically adiabatic reaction rates620

from either GCE-HTST, GCE-EVB or GCE-perturbation theory do not yield621

any fundamental difficulties as compared to the canonical case; after finding622

the barrier, one can simply use a simple TST-like expression to compute the623

reaction rate using grand free energies. However, for a non-adiabatic process,624

using the grand free energy is not as straightforward.625

The main difficulty becomes from computation of the electronic transi-626

tion matrix element which is not defined for states with different number627

of electrons. Hence, one cannot directly use the effective GCE-EVB states628

developed in Section 3 and use them to compute the electronically non-629

adiabatic rate. Instead, in rigorous setting, the electronic transition ma-630

trix element needs to be computed separately for each canonical transition.631

Afterwards, a summation over the canonical rates is performed to express632
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the non-adiabatic ET/PCET rate as a expectation value. To obtain the633

non-adiabatic TST rate, the Golden-rule approach is used herein. In the634

canonical ensemble, the Golden-rule formulation of the rate is equivalent635

to Dogonadze’s treatment.[49, 50, 93] Below theory for the computation of636

non-adiabatic ET and PCET rates within GCE is developed.637

4.1. Non-adiabatic ET rate638

To start with, the electronic states |iN〉 are specified and they are eigen-639

states to the electronic Hamiltonian Ĥel
N . Electronic states are defined for640

initial (i) and final (f) states with a fixed number of particles (N). Then the641

electronic energies for the initial and final states at fixed particle number at642

nuclear geometry Q are643

〈iN |Ĥel
N |iN〉 = εiN(Q) and 〈fN |Ĥel

N |fN〉 = εfN(Q) (22)

Within the Born-Oppenheimer approximation (BOA), the nuclear wave644

functions and their energies ε in the initial (|mN〉) and final (|nN〉) electronic645

states are obtained from646

[T̂Q + εiN(Q)] |mN〉 = εmN |mN〉 and

[T̂Q + εfN(Q)] |nN〉 = εnN |nN〉
(23)

where T̂Q is the nuclear kinetic energy. Within BOA, the total vibronic647

wave function and the corresponding energy factorize as648

|imN〉 = |iN〉 |mN〉 and EimN = εiN + εmN (24a)

|fnN〉 = |fN〉 |nN〉 and EfnN = εfN + εnN (24b)

As the different energy contributions are additive, the canonical partition649

functions can be factorized:650

QN
i = exp[−βεiN ]

∑
m

exp[−βεmN ] and

QN
f = exp[−βεfN ]

∑
n

exp[−βεnN ]
(25)
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At this point all relevant canonical quantities have been defined and the651

focus turns to the GCE formulation of the Golden-rule rate. The GCE652

partition function for the initial state is653

Ξi =
∑
N

exp[βµN ]QN
i (26)

This equation is inserted in the general GCE rate expression. For the654

non-adiabatic limit, the Golden rule rate is used. As shown in Supporting655

Information Sections 1 and 3, using the Golden rule expression is consistent656

with the general rate theory based on the flux approach if the non-adiabatic657

Hamiltonian and suitable flux operator are utilized. The GCE-NATST rate658

constant is then659

kGCE−NATST =
2π

~Ξi

∑
N

e−β(εiN−µN)
∑
m,n

e−βεmN

∣∣∣ 〈Nnf |V̂N |imN〉∣∣∣2δ(EimN − EfnN)

=
2π

~
∑
N

∑
m,n

pimN

∣∣∣ 〈Nnf |V̂N |imN〉∣∣∣2δ(EimN − EfnN)

(27)

where pimN is the population of the vibronic state |imN〉. Next, a660

significant simplification is made; it is assumed that the vibrational part661

of the canonical function does not depend on the number of electrons in662

the systems. This assumption gives QN
i = exp[−βεiN ]

∑
m exp[−βεmN ] ≈663

exp[−βεiN ]
∑

m exp[−βεm] = exp[−βεiN ]Qm and the GCE partition func-664

tion becomes665

Ξi ≈ Qm

∑
N

exp[−β(εiN − µN ] = QmΞi (28)

Inserting this approximation in the GCE-NATST rate expression gives666

kGCE−NATST ≈
2π

~Ξi

∑
N

e−β(εiN−µN)
∑
m,n

e−βεmN

Qm

∣∣∣ 〈Nnf |V̂N |imN〉∣∣∣2δ(EimN − EfnN)

=
2π

~
∑
N

piN
∑
m,n

pmN

∣∣∣ 〈Nnf |V̂ |imN〉∣∣∣2δ(EimN − EfnN)

(29)
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where piN,el = exp[−β(εiN − µN)]/Ξi,el and pmN = exp[−βεmN ]/Qm.667

This equation has the structure of the canonical Golden rule rate weighted668

by the probability of being in the initial electronic state iN . To simplify the669

notation, one can momentarily concentrate only on the canonical part of the670

above rate expression. As shown in the Supporting Information Section 7,671

using the Fourier transform presentation of the delta function, gives672

kGCE−NATST ≈
∑
N

V 2
N,fi

2~2
piN

∫
dtC(t) (30)

where C(t) is an energy autocorrelation function (see Supporting Informa-673

tion Section 7). The autocorrelation function maybe extracted from time-674

depenendent quantum or classical dynamics. However, to obtain a closed675

form for the rate equation, herein the autocorrelation function is expressed676

using a cumulant expansion[114]. Using the second order cumulant expan-677

sion, assuming that all solvent degrees of freedom are classical and taking678

the short time approximation [115] to the correlation function results in (see679

Supporting Information Section 7):680

kGCE−NATST ≈
∑
N

piN
V 2
N,if

~
√

4πkBTλ
exp

[
−

(∆EN
fi + λ)2

4kBTλ

]
(31)

The reorganization and reaction energies are defined as λ = Eim(QF ) −681

Efn(QF ) and EN
fi = EN

fn(QF )−EN
im(QI) (see Figure 3.2.) The reorganization682

energy can be further separated to inner and outer sphere components as683

discussed in Section 10 of the Supporting Information. If this separation684

is invoked, one can alleviate the assumption that the total reorganization685

is independent of the particle number and instead assume that only bulk686

solvent (outer sphere) reorganization is a constant while the inner-sphere687

reorganization energy depends on the particle number.688

4.2. PCET kinetics within GCE689

The PCET kinetics is based on the PCET rate theory of Soudackov and690

Hammes-Schiffer. Within the canonical ensemble the relevant rate expres-691

sions were derived in Refs. 45, 53–55 and here this treatment is extended692

to the GCE yielding PCET rate constants at fixed electrode potentials. The693

PCET rate constant derivation follows a similar procedure as the one used694
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above for the ET rates. In the case of PCET, an additional geometric vari-695

able q to denote the position of the transferring proton is introduced. Within696

BOA, the total vibronic wave function is then697

|iumN〉 = |iN(q,Q)〉 |uN(Q)〉 |mN〉 (32)

where it is explicitly written that the electronic wave function |iN〉 de-698

pends explicitly on the proton q and system coordinate Q while the proton699

wave function |uN(Q)〉 depends on the system coordinate Q. The wave func-700

tions and corresponding energies are solved using equations similar to the ET701

case702

〈iN |Ĥel
N |iN〉 = εiN(q,Q) and

〈fN |Ĥel
N |fN〉 = εfN(q,Q)

(33a)

[T̂q + εiN(q,Q)] |iuN〉 = εiuN |iuN〉 and

[T̂q + εfN(q,Q)] |fvN〉 = εivN |fvN〉
(33b)

[T̂Q + εiuN ] |mN〉 = EmN |mN〉 and

[T̂Q + εfvN ] |nN〉 = EnN |nN〉
(33c)

where T̂q and T̂Q are the kinetic energy operators for the proton and703

other nuclei, respectively. Within BOA, the total energy of the at fixed N is704

written as a simple sum of the three contributions:705

EiumN = εiN + εiuN + EmN (34)

and similarly for the final diabatic state. Furthermore, coupling constant
is given as

〈Nnvf |V̂ (R)N |iumN〉 ≈ 〈Nvf |V̂ (R)N |iuN〉q 〈Nn|mN〉Q = V (R)NuvS
N
nm

(35)
The SHS treatment of PCET rates is valid for reactions ranging from706

vibronically non-adiabatic to vibronically adiabatic scenarios[116] and rate707

expressions for various well-defined limits have been achieved. The SHS708

PCET rate theories are derived following a path analogous to the derivation709

of ET rates and extension to the GCE is rather straightforward. As done710

by SHS, the Golden rule formulation is used. The details of this derivation711
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are presented in the SI Section 11. The simplest GCE-PCET rate is given712

for the short time approximation of the energy gap correlation is valid in the713

high-temperature limit and static proton donor-acceptor R distance as714

k =
∑
N,u

piu
∑
v

∣∣V (R)Nuv
∣∣2

~
√

4πkBTλuv
exp

[
−
(
∆EN

uv + λuv
)2

4kBTλuv

]
(36)

where the reaction energy between vibrational states iuN and fvN is715

EN
uv = EfvnN(qF , QF ) − EiumN(qI , QI). The state-dependent reorganization716

energy λuv = Eium(qF , QF ) − Efvn(qF , QF ) is assumed independent of the717

particle number. If some vibrational modes (besides the R mode) are sen-718

sitive to changes in the particle number, they can be separated from the719

total reorganization energy by decomposing the total reorganization energy720

to inner- and outer-sphere components as shown in Section 10 of the Support-721

ing Information. Depending on the form of the prefactor, both electronically722

and vibronically adiabatic and non-adiabatic limits of PCET can be reached723

within the semiclassical treatment[22, 117, 118] of the prefactor.724

4.3. Analysis of the non-adiabatic GCE rates725

The main difficulty observed in the GCE non-adiabatic rate theory is the726

treatment of the electronic/vibronic coupling constant; this term is defined727

only for particle conserving transitions. This precludes the straightforward728

use of GCE diabatic states which have different number of electrons at the729

same geometry. Only at the thermodynamic limit when the particle number730

fluctuation is zero can the GCE diabatic states be used for computing the731

coupling constant. However, at this limit the GCE-NATST is equal to the732

canonical NATST as only a single particle number state is populated i.e.733

pi becomes a delta function around some particle number. At thermody-734

namic limit either using fixed potential GCE states or fixed particle number735

canonical states will give equivalent results, as they should.736

Even at the thermodynamic limit the present treatment differs from the737

traditional Dogonadze-Kutzetnotsov-Levich[50], Schmikler-Newns-Anderson[51,738

52], and SHS approaches. A detailed discussion is given in Section 1 of the739

Supporting Information and here only the main differences are high-lighted.740

The crucial difference is that the present formulation does not rely on the741

separation of the total interacting wave function to non-interacting or weakly742

interacting fragments. Also, in the present approach, the applied electrode743
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potential does not only affect the electrode alone but rather modifies the en-744

tire systems affecting all electrode, reagent, and solvent species. Hence, the745

inherent complexity of the electrochemical interface is naturally included in746

the Hamiltonian and the wave function from the start. For instance, the work747

terms entering Marcus[65] or other electrochemical rate theories[56, 119] do748

not need to be computed when using the present formalism. Another cru-749

cial difference is that the charge transfer kinetics are not decomposed into750

single electron orbital contributions. Instead, the work herein formulates the751

kinetics in terms of many-body diabatic wave functions. In the canonical752

ensemble, such an approach has been shown[120] to provide accurate barri-753

ers, prefactors, and overall kinetics for electron transfer reaction in battery754

materials.755

For small systems where particle number fluctuations are pronounced the756

summation over particle numbers need to be performed. While straightfor-757

ward in principle, the amount of calculations can seem daunting at first.758

However, as the populations depend exponentially on the energy and tar-759

get chemical potential, piN ∼ exp[−β(EiN − µN)], only a limited number760

of states will contribute to the summation. In Section 8 of the Supporting761

Information, it is shown that for graphene, the electrode potential around762

the PZC±0.5V is accurately captured using seven different charge states. It763

is expected that the infinite summation can be safely reduced to summation764

over a small number (5–10) of different charge states covering the electrode765

potential range of interest. Again, at the thermodynamic limit only a single766

calculation per potential is needed.767

5. Discussion768

The fixed potential rate theory developed herein does not utilize model769

Hamiltonians. Instead, all the above rate equations can be parametrized770

and evaluated directly using first principles atomic simulations with general771

Hamiltonians. As there is no need to parametrize the model Hamiltonians,772

adoption and evaluation of the rates is straight-forward (but potentially la-773

borious).774

There are a few special requirements for the software used for parametriz-775

ing the rate equations. First, simulation of charged systems is needed to776

sample the electrode potential. Electroneutrality can be enforced using some777

variant of the Poisson-Boltzmann models, for details see Ref. 3. Fixed po-778

tential calculations can be accomplished within a single SCF cycle[10], or779
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iteratively [20, 121]. Second, the solvent effects should be included in the780

model. While adiabatic reactions can in principle be modeled without sol-781

vent contributions, the solvent is known to greatly affect the stability of782

reaction intermediates and should therefore be included for qualitatively and783

quantitatively accurate calculations. Computation of non-adiabatic reaction784

rates should always be performed in the presence of a solvent; the reaction785

barrier is directly related to the solvent/environment reorganization energy786

and neglecting the solvent contributions will most likely lead to incorrect787

results.788

Given a software capable of handling charged systems and performing789

constant potential calculations, adiabatic rate constants can be readily eval-790

uated. One only needs to compute the adiabatic constant potential reaction791

barrier using e.g. the NEB[82] method. Evaluating non-adiabatic and GCE-792

EVB rate constants requires additional software capabilities for constructing793

charge/spin localized diabatic states and to evaluate the electronic coupling794

between these states. Also the reorganization energy, which is an excited795

state quantity, needs to be computed. One widely implemented and avail-796

able tool for evaluating the additional parameters is the constrained DFT797

methodology[87–89] which is implemented in several DFT codes[122–132].798

Evaluation of the vibronic/vibrational matrix elements is accomplished us-799

ing e.g. a Fourier grid Hamiltonian[133] method which is easy to implement.800

GCE-EVB simulations should be accompanied with a constant potential sim-801

ulation to compute fixed potential reaction and reorganization energies. Non-802

adiabatic rate constants need sampling at different charge states to evaluate803

the summation over the number of electrons. While this summation is in804

principle infinite, in practice only 5-10 charge states suffice because GCE805

weight is non-zero only for a few states as discussed in Section 4.3.806

The presented formalism is highly appealing as it enables treating of807

electrochemical and electrocatalytic kinetics and thermodynamics[3] within808

a single formalism – the GCE. Therefore, the same code and set of DFT-809

based tools can be used to address inner-sphere and outer-sphere kinetics810

and thermodynamics instead of modifying or changing the theoretical and811

computational framework for different reaction steps is done in e.g Ref. 24.812

Also, the derived rate equations can be self-consistently parametrized us-813

ing e.g. DFT calculations directly at the electrochemical interface. For in-814

stance, evaluation of the coupling matrix elements does not rely on orbital-815

to-orbital transitions and integration over the DOS as done in traditional816

non-adiabatic perturbation theory -based approaches[52] (see Supporting In-817
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formation Section 1). Also the evaluation of chemisorption functions used818

for computing interaction strengths and energies in the adiabatic Newns-819

Anderson-based models[52, 119] is avoided in the current approach. There-820

fore, the current models are free of approximate treatment of the DOS using821

semi-elliptic bands[119, 134] or fitting the chemisorption functions to a com-822

puted DOS[134].823

As the presented approach does not rely on any specific Hamiltonian, the824

computed energies can capture the interplay between the electronic structure,825

solvent, electrode potential etc. The electrode potential is self-consistently826

treated and all free energies depend explicitly on the potential. This is in827

contrast with traditional treatments where the electrode potential rigidly828

shifts the Fermi-level without modifying any interactions[52, 56] or mod-829

ifying only electrostatic interactions[22, 119]. Also, a separate computa-830

tion of work terms[56, 119] is not needed because all relevant interaction831

can be directly included in the general Hamiltonian. Furthermore, unlike832

Newns-Anderson[135] or perturbation theories[136], the current rate theory833

nor a general Hamiltonian need to be modified to account for bond mak-834

ing/breaking events as these are implicitly described through the general835

quantum mechanical Hamiltonian. Studying adiabatic reactions involving836

ET, PT, or PCET and bond rupture/formation using GCE-DFT is straight-837

forward. Bond formation in non-adiabatic reactions is also captured by dia-838

batic models using DFT as demonstrated for ET[120], PCET[137] and gen-839

eral chemical reactions[138, 139].840

A final computational aspect in applying the current approach is the inter-841

polation between the different rate equations. Such an interpolation is needed842

to bridge the adiabatic and non-adiabatic rate constants because the divi-843

sion between inner-sphere/electrocatalytic/adiabatic and outer-sphere/non-844

adiabatic/electrochemical is not always straightforward. Also such a divi-845

sion depends on the reaction, reaction conditions as well as e.g. distance846

between the reactant and the electrode. Such an interpolation is also needed847

for describing the kinetics of activationless reactions in which the rate and848

degree of solvent/surrounding reorganization energy determine the reaction849

rate[140]. Currently, a generally valid interpolation for fixed potentials has850

not yet been developed. In the canonical ensemble interpolation between851

electronically/vibrationally adiabatic and non-adiabatic reactions can be ac-852

complished using the Landau-Zener formula.[58, 92]. In PCET, a universally853

valid interpolation from a fully non-adiabatic to fully adiabatic reaction is854

accomplished using a semiclassical PCET prefactor[117].855
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Besides interpolating between the adiabatic and non-adiabatic limits, the856

interpolation to reactions where solvent dynamics set the time-scale relevant857

should be considered. The solvent dynamics are likely to be increasingly858

important when the reaction becomes adiabatic and the reaction barrier be-859

comes very small or vanishes. In these limits the solvent reorganization860

will be the slowest process and the reaction prefactor should reflect this.861

Within the canonical ensemble and in the electronically non-adiabatic limit862

interpolation to solvent controlled reactions is usually based on the works of863

Zusman[90] or Rips and Jortner[140]. In the electronically adiabatic limit the864

solvent dynamics are often described in terms of the Kramers-Grote-Hynes865

theory[141]. While numerous attempts have been taken[142–144] to obtain866

a universally valid interpolation between adiabatic – solvent dynamic –non-867

adiabatic, the author is not aware a generally accepted construction for this868

interpolation. Also adapting the interpolation schemes to the fixed-potential869

rate theory needs requires care. More work is obviously needed to obtain a870

robust interpolation between well-defined limits in an electrochemical setting.871

6. Conclusions872

In this work a new theoretical formulation is developed for computation873

electrochemical and electrocatalytic rate constants at a fixed potential. Also874

computational aspects for evaluating the newly developed rate equations875

are thoroughly discussed. Ways to address e.g. adiabatic, non-adiabatic,876

and tunnelling reactions can be formulated within GCE and are discussed877

through-out the work. Specifically, the grand canonical rate formulation is878

applied to derive rate constants for i) general electrocatalytic reactions with879

(Eq. (7)) and without (Eq. (2)) the TST approximation, ii) electronically880

adiabatic ET, PT and PCET reactions using a grand canonical Marcus-like881

GCE-EVB theory in Eq. (12) , and iii) non-adiabatic ET in Eq. (31) and882

PCET in Eq. (36). Future work will provide interpolation between the883

derived adiabatic, non-adiabatic, and solvent-controlled rate equations.884

The fixed-potential rate constants are based on a novel formulation ob-885

tained by extending the universally valid canonical rate theory[62–64] to the886

grand canonical, fixed potential ensemble. Section 2 derives the general con-887

ditions and limitations for the fixed potential rate theory. It is then shown888

that all rate theories developed within the canonical ensemble can be ex-889

tended to GCE. This is conceptually important because the fixed-potential890

rate theory enables treating all potential-driven reactions within a single891
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formalism instead of relying on separate theories for electrocatalysis (Butler-892

Volmer or adiabatic Marcus theories) and electrochemistry (Dogonadze-Kutzentsov,893

Schmikler, Gerischer, non-adiabatic Marcus theories). The theoretical work894

presented herein provides a unified framework for computing and understand-895

ing both inner-sphere and outer-sphere reaction kinetics as a function of the896

electrode potential.897

In addition to the conceptual appeal, the present approach has also sev-898

eral practical advantages. First, the theoretical framework enables the use899

of general Hamiltonians to compute the reaction rates at fixed potentials.900

Notably, the developed theory can be directly combined with modern, solid-901

state ab initio methods to capture the complexity of the electrochemical902

interface. In this sense, the model is fully ab initio and all parameters can be903

directly computed without resorting to fitting. A set of widely implemented904

DFT-based tools suffices to compute all the needed parameters in a self-905

consistent manner. This enables the computational community to progress906

from a thermodynamics-based description of electrocatalysis to addressing907

also electrocatalytic kinetics in experimentally realistic conditions.908

In its most general form, the fixed potential rate theory requires com-909

putation of canonical rates for a set of systems with a varying number of910

electrons (and/or nuclei). Summing and weighting the different canonical911

ensemble rates can be relaxed if one assumes that the prefactor or trans-912

mission coefficient is independent on the number of particles in the system.913

Assuming a constant transmission coefficient directly leads to TST like equa-914

tions (Eqs. (6) and (7)) where the reaction rate depends exponentially on915

the grand energy barrier ∆Ω‡. This is most useful and provides the theoret-916

ical basis for computing adiabatic reaction rates within GCE-TST as done917

in several recent publications[12, 19, 20, 35, 36, 145, 146] in which the rate918

expression was used without a priori justifying the use of such rate equations.919

Further insight in the (electronically adiabatic) reaction rates and energy920

barriers is obtained from a Marcus-like, grand canonical ensemble empirical921

valence bond (GCE-EVB) theory developed in the present work. As shown in922

Section 3, the GCE-EVB formulation enables writing the grand energy bar-923

rier in terms of fixed potential reorganization energy and the reaction grand924

energy in analogy with the canonical EVB or Marcus theory. As discussed in925

Section 3.2, this formulation enables computation and rationalization of both926

non-linear grand energy relationships and Tafel slopes. Together these may927

called BEP-Tafel relations. Both can be derived, analyzed and computed us-928

ing just a few parameters which can be obtained using e.g. a combination of929
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fixed potential and constrained DFTs. Based on the BEP-Tafel relationships930

one determine how the reaction barrier changes as a function of the reaction931

energy as shown in Figure 3.2. The derived adiabatic GCE-EVB rate, barrier932

and generalized BEP-Tafel energy relation predict and explain the ”Marcus-933

like” behavior in energy barriers as a function of the thermodynamic driving934

force observed in recent computational work[20, 36, 38].935

To go beyond TST, fixed potential rate constants are derived also for elec-936

tronically (and vibronically) non-adiabatic ET and PCET reactions. Thus937

far, computational work on non-adiabatic effects and pure ET have remained938

scarce due to methodological difficulties despite their practical importance in939

providing new reaction pathways to avoid constraining scaling relations[147–940

149] encountered for adiabatic PCET reactions while predicting catalytic ac-941

tivity as well as in understanding fundamental phenomena in electrocatalysis.942

The NA-ET rate constants derived herein will especially useful for studying943

NA effects in outer-sphere ET and PCET in electrocatalytic systems. This944

provides means to obtain atomic-level insight on pure ET reactions which945

have remained elusive and neglected in computational studies but have often946

been observed experimentally, especially on weakly-binding catalysts, as dis-947

cussed in Section 1. The fixed potential PCET rate equations facilitate the948

study of kinetics of ubiquitous proton-coupled electron transer reactions. As949

formulated herein, the PCET rate constant naturally includes both electronic950

and vibronic non-adiabaticity as well as hydrogen tunneling. This again en-951

ables detailed theoretical and computational studies of these experimentally952

observed, but thus far computationally largely neglected, electrocatalytic re-953

actions.954

Combining the presented rate theory with currently existing GCE-DFT955

methods and various solvation models is straight-forward and enables the956

study of electrochemical and electrocatalytic kinetics at realistic electrochem-957

ical interfaces. This will greatly improve our microscopic understanding by958

enabling computation of electrocatalytic kinetics as a function of the elec-959

trode potential and addressing tunneling and non-adiabaticity in electro-960

catalysis. Hence, a wide variety of mechanistic, kinetic and thermodynamic961

aspects of electrocatalytic reactions can be addressed on equal footing within962

GCE and the complex interplay between the electrode potential, solvation,963

double-layer and electrocatalysis can be studied from first principles. Besides964

providing a rigorous and general theoretical framework for fixed potential ki-965

netics, the advances herein enable computational studies on pure ET and966

PCET with hydrogen tunnelling pathways to circumvent scaling relations967
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often encountered in electrocatalysis.968

7. Acknowledgements969

I acknowledge support by the Alfred Kordelin Foundation and the Academy970

of Finland (Project No. 307853). I also thank Professor Sharon Hammes-971

Schiffer, Dr. Alexander Soudackov, Dr. Yan Choi Lam, and Mr. Zachary972

Goldsmith for hosting my visit to the Hammes-Schiffer group at Yale, for the973

useful discussions and help on formulating the ET and PCET rates within974

the grand canonical ensemble. Computational resources were provided by975

CSC IT CENTER FOR SCIENCE LTD.976

8. Declaration of interest977

Declarations of interest: none978

9. References979

[1] Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov,980

T. F. Jaramillo, Combining theory and experiment in electrocatalysis:981

Insights into materials design, Science 355 (2017).982

[2] L. R. F. Allen J. Bard, Electrochemical Methods: Fundamentals and983

Applications, 2nd Edition, John Wiley & Sons, 2001.984

[3] M. M. Melander, M. J. Kuisma, T. E. K. Christensen, K. Honkala,985

Grand-canonical approach to density functional theory of electrocat-986

alytic systems: Thermodynamics of solid-liquid interfaces at constant987

ion and electrode potentials, The Journal of Chemical Physics 150988

(2019) 041706.989

[4] N. D. Mermin, Thermal properties of the inhomogeneous electron gas,990

Phys. Rev. 137 (1965) A1441–A1443.991

[5] A. Pribram-Jones, S. Pittalis, E. K. U. Gross, K. Burke, Thermal992

density functional theory in context, in: F. Graziani, M. P. Desjarlais,993

R. Redmer, S. B. Trickey (Eds.), Frontiers and Challenges in Warm994

Dense Matter, Springer International Publishing, 2014, pp. 25–60.995

34



[6] R. Evans, The nature of the liquid-vapour interface and other topics996

in the statistical mechanics of non-uniform, classical fluids, Advances997

in Physics 28 (1979) 143–200.998

[7] T. Kreibich, R. van Leeuwen, E. K. U. Gross, Multicomponent density-999

functional theory for electrons and nuclei, Phys. Rev. A 78 (2008)1000

022501.1001

[8] J. F. Capitani, R. F. Nalewajski, R. G. Parr, Non-oppenheimer den-1002

sity functional theory of molecular systems, The Journal of Chemical1003

Physics 76 (1982) 568–573.1004

[9] J.-P. H. J.-P. Hansen, Theory of Simple Liquids, 3rd Edition, Academic1005

Press, 2006.1006

[10] R. Sundararaman, W. A. GoddardIII, T. A. Arias, Grand canonical1007

electronic density-functional theory: Algorithms and applications to1008

electrochemistry, The Journal of Chemical Physics 146 (2017) 114104.1009

[11] C. D. Taylor, S. A. Wasileski, J.-S. Filhol, M. Neurock, First principles1010

reaction modeling of the electrochemical interface: Consideration and1011

calculation of a tunable surface potential from atomic and electronic1012

structure, Phys. Rev. B 73 (2006) 165402.1013

[12] J. D. Goodpaster, A. T. Bell, M. Head-Gordon, Identification of pos-1014

sible pathways for c–c bond formation during electrochemical reduc-1015

tion of co2: New theoretical insights from an improved electrochemical1016

model, The Journal of Physical Chemistry Letters 7 (2016) 1471–1477.1017

PMID: 27045040.1018

[13] M. Otani, O. Sugino, First-principles calculations of charged surfaces1019

and interfaces: A plane-wave nonrepeated slab approach, Phys. Rev.1020

B 73 (2006) 115407.1021

[14] R. Jinnouchi, A. B. Anderson, Electronic structure calculations of1022

liquid-solid interfaces: Combination of density functional theory and1023

modified poisson-boltzmann theory, Phys. Rev. B 77 (2008) 245417.1024

[15] E. Skulason, V. Tripkovic, M. E. Bjørketun, S. Gudmundsdóttir,1025
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[124] J. Řezáč, B. Lévy, I. Demachy, A. de la Lande, Robust and efficient1382

constrained dft molecular dynamics approach for biochemical model-1383

ing, J. Chem. Theory Comput. 8 (2012) 418–427.1384

[125] P. Ramos, M. Pavanello, Constrained subsystem density functional1385

theory, Phys. Chem. Chem. Phys. 18 (2016) 21172–21178.1386

[126] H. Oberhofer, J. Blumberger, Charge constrained density functional1387

molecular dynamics for simulation of condensed phase electron transfer1388

reactions, J. Chem. Phys. 131 (2009) 064101.1389

[127] H. Oberhofer, J. Blumberger, Electronic coupling matrix elements from1390

charge constrained density functional theory calculations using a plane1391

wave basis set, J. Chem. Phys. 133 (2010) 244105.1392

[128] P. Ghosh, R. Gebauer, Computational approaches to charge transfer1393

excitations in a zinc tetraphenylporphyrin and c70 complex, J. Chem.1394

Phys. 132 (2010) 104102.1395

[129] A. M. P. Sena, T. Miyazaki, D. R. Bowler, Linear scaling constrained1396

density functional theory in conquest, J. Chem. Theory Comput. 71397

(2011) 884–889.1398

[130] L. E. Ratcliff, L. Grisanti, L. Genovese, T. Deutsch, T. Neumann,1399

D. Danilov, W. Wenzel, D. Beljonne, J. Cornil, Toward fast and1400

accurate evaluation of charge on-site energies and transfer integrals1401

in supramolecular architectures using linear constrained density func-1402

tional theory (cdft)-based methods, J. Chem. Theory Comput. 111403

(2015) 2077–2086.1404

[131] M. Melander, E. O. Jónsson, J. J. Mortensen, T. Vegge, J. M.1405
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