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Abstract

Atomistic modeling of electrocatalytic reactions is most naturally conducted
within the grand canonical ensemble (GCE) which enables fixed chemical
potential calculations. While GCE has been widely adopted for modeling
electrochemical and electrocatalytic thermodynamics, the electrochemical re-
action rate theory within GCE is lacking. Molecular and condensed phase
rate theories are formulated within microcanonical and canonical ensembles,
respectively, but electrocatalytic systems described within the GCE require
extension of the conventionally used rate theories for computation reaction
rates at fixed electrode potentials. In this work, rate theories from (mi-
cro)canonical ensemble are generalized to the GCE providing the theoretical
basis for the computation reaction rates in electrochemical and electrocat-
alytic systems. It is shown that all canonical rate theories can be extended
to the GCE. From the generalized grand canonical rate theory developed
herein, fixed electrode potential rate equations are derived for i) general re-
actions within the GCE transition state theory (GCE-TST), ii) adiabatic
curve-crossing rate theory within the empirical valence bond theory (GCE-
EVB), and iii) (non-)adiabatic electron and proton-coupled electron transfer
reactions. The rate expressions can be readily combined with ab initio meth-
ods to study reaction kinetics reactions at complex electrochemical interfaces
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as a function of the electrode potential. The theoretical work herein provides
a single, unified approach for electrochemical and electrocatalytic kinetics
and the inclusion of non-adiabatic and tunneling effects in electrochemical
environments widening the scope of reactions amenable to computational
studies.

Keywords: charge transfer, Tafel slope, electrochemical kinetics, Marcus
theory, grand canonical

1. Introduction1

Electrochemical reactions and especially electrocatalysis are at the fore-2

front of current green technologies. Electrocatalytic conversion of small3

molecules to fuels, energy and useful chemicals are key components of a4

sustainable future. To realize and utilize the full potential of electrocatal-5

ysis, selective and active catalysts are needed for various applications and6

reactions including e.g. oxygen and hydrogen reduction/evolution reactions,7

nitrogen reduction to ammonia and CO2 reduction.[1] Electrochemical con-8

version of small molecules is most often based on successive proton-coupled9

electron transfer (PCET), electron transfer (ET), and proton transfer (PT)10

reactions; the unique aspect of electrocatalysis is the ability to control PCET,11

ET, and PT kinetics and thermodynamics by the electrode potential.12

Tational design of better electrocatalysts working under complex elec-13

trochemical environments needs insight from experiments, computational14

methods as well as theoretical approaches.[1] Experimental techniques have15

reached certain maturity and tools such as potential sweep and step methods,16

spectroelectrochemistry, and impedance spectroscopy are standard tools for17

understanding electrocatalytic reactions.[2] However, a similar level of ma-18

turity has not yet been reached within the computational and theoretical19

electrochemistry communities. Currently, there are several competing but20

often overlapping computational approaches available for studying reactions21

at electrochemical interfaces.22

Experimentally electrocatalysis is controlled by the electrolyte and elec-23

trode potential. To translate these to computationally treatable quantities, it24

is the combination of the electrolyte and electron electrochemical potentials25

which determine and control the (thermodynamic) state of electrochemical26

systems. Therefore, an atomic-level computational model needs to provide27

an explicit control and description of these chemical potentials as depicted28
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in Figure 1. In statistical thermodynamics fixing the chemical potentials is29

achieved via a Legendre transformation from a canonical ensemble to a grand-30

canonical ensemble (GCE) for both electrons and nuclei[3] Then, chemical31

potentials are fixed while particle numbers are allowed to fluctuate.32

This calls for theoretical and computational approaches within the grand-33

canonical ensemble (GCE) in which chemical potentials are fixed while par-34

ticle numbers are allowed to fluctuate. In electronic structure calculations35

as applied to electrochemical systems one of the largest difficulties is in-36

deed modelling systems at constant electrode potentials rather than con-37

stant charges; this corresponds to a change from a fixed particle canonical38

ensemble to an open, fixed (electro)chemical potential ensemble. This is a39

rather drastic difference and almost all electronic structure codes work ex-40

clusively for fixed charge calculations. Another difficulty faced in simulating41

electrochemistry is the presence of several time- and length-scales taking part42

in the processes. Very short time and small length-scales are needed when43

modelling charge transfer and chemical reactions which call for a quantum44

mechanical treatment of the electrode and reactants. On the other hand,45

the liquid electrolyte and formation of the electrochemical double-layer need46

a statistical treatment over a long time to properly represent the electrified47

solid-liquid interface. The charge distribution at the interface is controlled48

by the electrode potential which also directly changes both reaction kinetics49

and thermodynamics.50

The theoretical basis for fixed potential electronic structure calculations51

was developed by Mermin who formulated electronic density functional the-52

ory (DFT) within GCE.[4, 5]. Later, the GCE-DFT has been generalized53

to treat nuclear species both classically or quantum mechanically [3, 6–9].54

The GCE-DFT provides a fully DFT, atomistic approach for computing free55

energies of electrochemical and electrocatalytic systems at fixed electrode56

and ionic/nuclear chemical potentials.[3] Importantly, the free energy from57

a GCE-DFT calculation is in theory exact and unique to a given external58

potential. In practice, the (exchange-)correlation effects in both quantum59

and classical systems need to be approximated.60

Atom-scale modeling of electrocatalytic reactions at fixed electrode[3, 10–61

20] and ion potentials[3, 12, 14] at electrochemical interfaces has been greatly62

advanced during the last 10-15 years and utilized in large scale studies of re-63

actions at electrode surfaces. The work in the field of atomistic modelling64

of electrocatalytic reactions has been on almost exclusively focused on elec-65

trocatalytic thermodynamics. Based on the large number of theoretical and66
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Figure 1: Pictorial model of a proper electrochemical interface at fixed electron µ̃e and
solvent/electrolyte µ̃S chemical potentials the atomic level.

computational works utilizing GCE-DFT, the framework for thermodynam-67

ics within GCE seems generally accepted.68

However, computation of electrochemical kinetics from atomistic simula-69

tions has remained more elusive. Like the electrochemical thermodynamics,70

also the kinetics should be computed at fixed electrochemical potentials. This71

calls for generalization of fixed particle number canonical rate theories to the72

fixed potential GCE. Surprisingly, a general GCE rate theory has not yet been73

established; mending this deficiency is the central goal of the present work.74

As discussed in detail below, the GCE rate theory must facilitate computa-75

tion of rate constants for general chemical reactions and especially PCET,76

ET, and PT at fixed chemical potentials. Furthermore, the theory must be77

applicable to both inner-sphere and adiabatic as well as outer-sphere, non-78

adiabatic and tunneling reactions at constant potentials. In fact, the lack79

of generally applicable kinetic models to treat non-adiabaticity and tunnel-80

ing in electrocatalytic ET, PT, and PCET under fixed potential situations81

limits the scope computational and theoretical investigations of reactions82

to adiabatic inner-sphere reactions - a very limited subset of electrochemi-83

cal and electrocatalytic reactions. This current restriction is caused by the84

absence of theoretical and computational methodologies[21]; while thermo-85

dynamics and kinetics of simultaneous PCET reactions are easy to evaluate86

for fully adiabatic inner-sphere reactions using (grand) canonical DFT and87

(harmonic) transition state theory (TST) vide infra, decoupled PCET reac-88

tions, outer-sphere ET/PT and non-adiabatic PCET reactions require more89
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advanced methods.90

In general, ET, PT, and PCET reactions may exhibit both vibronic and91

electronic non-adiabaticity as well as hydrogen tunneling. The importance92

and contribution of non-adiabaticity and tunneling may also depend on the93

the electrode potential.[22, 23] There are several reactions where decou-94

pled PCET i.e. separate ET and PT steps, hydrogen tunneling and non-95

adiabaticity have been observed. For example, in alkaline ORR pure ET96

has been proposed as the rate determining step[21, 24–26]. Furthermore, re-97

cent experiments of ORR on carbon-based materials show conclusively that98

ET is the rate- and potential-determining step.[27, 28]. On the other hand,99

solution pH can alter the reaction mechanism and ,e.g., CO2 reduction can100

proceed through simultaneous PCET in acidic and through decoupled PCET101

(ET-PT) in alkaline solutions[29, 30]. It has also been shown that only the102

inclusion of vibronic non-adiabaticity in electrochemical hydrogen evolution103

reaction can explain experimentally observed Tafel slopes and kinetic iso-104

tope effects.[22] There is also experimental evidence that room-temperature105

hydrogen tunneling takes place during ORR Pt and at low over-potentials106

tunneling is the prevalent reaction pathway.[23] Kinetics of ET are needed107

to describe both pure ET and decoupled PCET and in general it is expected108

that these pathways may prevail on weakly bonding electrode surfaces in109

oxygen, CO2, CO, alcohol etc. reduction reactions.[31] In fact, PCET re-110

actions are often vibronically and/or electronically non-adiabatic[32], even111

under electrocatalytic conditions[22].112

Even though a general GCE rate theory is missing, schemes for computing113

rates or energy barriers of adiabatic reactions at constant electrode poten-114

tials have started to emerge. In some cases reaction barriers have been cal-115

culated explicitly at a given electrode potentials using GCE-DFT[12, 20, 33–116

35]. However, more often various correction schemes to (Legendre) trans-117

form constant charge calculations to GCE are used for studying reaction118

kinetics.[11, 19, 36–39]. From both approaches the grand energy potentials119

as a function of the electrode potential or along the reaction coordinate are120

often found to exhibit quadratic dependence. This quadratic dependence of121

the grand energy as a function of the potential has been used to transform122

canonical DFT barriers and reaction energies to grand energies. Recently, it123

has been noticed that reaction barriers as a function of the potential follow124

a ”Marcus-like” [20] or Brønsted-Evans-Polanyi (non)-linear[38] free energy125

relations. Other approaches for computing electrode potential-dependent126

barrier have relied on Butler-Volmer -type (BV) expressions where the bar-127
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rier has a simple form G(η) = G(η = 0) + αη where η is the over-potential128

and α ∈ [0, 1] is the BV symmetry factor.[38, 40, 41]. Independent of the129

scheme used for obtaining a constant potential reaction barrier, TST-like ex-130

pressions has been used to compute rate without a sound theoretical basis131

for the validity of GCE-TST.132

Even if GCE-TST proved to be valid (as it does based on the work herein),133

non-adiabatic and tunneling effects in ET, PT, and PCET effects would134

be omitted in the fully adiabatic treatments with classical nuclei described135

above. While neglecting these effects may be reasonable for many elec-136

trocatalytic reactions, all electrocatalytic reactions are certainly not inner-137

sphere nor adiabatic as was discussed. A handful computational and the-138

oretical studies[22, 24, 42–48] at the electronic structure level have studied139

non-adiabaticity or tunneling effects in electrocatalytic ET/PCET. These140

pioneering studies utilized simplified model Hamiltonians and wave func-141

tions and computation of non-adiabatic/tunneling effects in electrocatalytic142

reactions. However, using general first principles methods for addressing143

ET/PCET kinetics have remained elusive thus far. Past theoretical and com-144

putational work on non-adiabatic electrochemical ET and PCET rates at a145

given electrode potentials have been accomplished using either Dogonadze-146

Kutzetnotsov-Levich[49, 50], Schmickler-Newns-Anderson[51, 52], or Soudackov-147

Hammes-Schiffer[22, 32, 45, 53–55] methods. In these treatments the elec-148

trode potential is treated as an external parameter modifying the reaction149

energy or barrier. These models can also incorporate electrostatic interac-150

tions between the electrode and the reactant in the double-layer. When151

combined with first principles simulations, the electronic structure, orbitals,152

or density of states are computed once for a fixed number of electrons. Then,153

the electrode potential serves to role of changing the Fermi-level of this static154

electronic structure. In such calculations the electronic structure itself is con-155

sidered unaltered when the potential is changed. While this might be valid156

in some cases, in general the electrode potential changes the solvent struc-157

ture, bonding of reactants, double-layer, electronic density of states, overlap158

integrals etc. limiting the applicability of the static picture. Instead, mod-159

ern fixed potential first-principles methods explicitly incorporate the effect160

of electrode potentials on the interfacial properties and bonding. Another161

inherent limitation occurring in previous work addressing non-adiabaticity162

in ET is the limitation to a single orbital picture. The traditional mod-163

els assume transitions between different electrode single electron states and164

redox-levels of the molecule to be independent. Technically, achieving this165
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requires separating the total wave function to filled/empty and localized or-166

bitals. An inherent problem encountered is that this wave function separation167

cannot be achieved without additional assumptions as shown in Appendix168

A. In practice this hampers the computation of ET rates from DFT or169

wave function methods because an additional (and rather) arbitrary orbital170

separation/localization step is required.171

A general electrocatalytic rate theory should not be restricted to model172

(single-orbital) wave functions or Hamiltonians. Instead, a many-electron173

wave function obtained using ab initio methods at a fixed potential should174

be used to capture the inherent complexity reactions at electrochemical in-175

terfaces. In the canonical ensemble, ET and PCET rates of electronically176

and vibronically (non-)adiabatic reactions can be studied using either model177

or general Hamiltonians[32, 54–60]. Extending these canonical rate theories178

to fixed potential GCE is the direction pursued herein. This is important179

from both practical and conceptual point of views that electronic and vi-180

bronic non-adiabaticity and tunneling can be included in electrochemical,181

fixed potential ET, PT and PCET rates using generalized Hamiltonians,182

many-electron wave functions, and rate theory.183

The above discussion highlights that electrochemical (outer-sphere) and184

electrocatalytic (inner-sphere) reactions have treated using different approaches.185

Commonly, electrocatalytic reactions have been studied using adiabatic TST186

theory while electrochemical reactions have relied on perturbative non-adiabatic187

theories. However, in the canonical ensemble, all rate theories equally appli-188

cable to inner- or outer-sphere reactions can be derived using a single general189

framework provided by Miller[61–63]. This general theory forms the basis of190

the extension to grand canonical rate theories of the current work.191

The importance and impact of the of the general framework in the electro-192

catalytic context is best appreciated by considering how different rate theories193

enable description of (electro)catalytic reactions and phenomena. Of course,194

archetypal adiabatic reactions, including simultaneous adiabatic PCET re-195

actions, can be studied using the common (harmonic) TST with classical196

nuclei.[61] The real power of the general rate theories is the ability to ex-197

tend them to treat reactions where tunneling or non-adiabaticity are impor-198

tant. Such methods include ring-polymer TST[64–67], path-integral TST[68],199

semi-classical instanton methods[67, 69], or semi-classical TST[70, 71], for ex-200

ample. Also non-adiabatic ET and PCET reactions can be modelled within201

the general framework by using non-adiabatic TST[54, 55, 72–74] which at202

the classical limit gives a Marcus-type equation[75] for the barrier and a203
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non-adiabatic correction for the transmission coefficient can be included.204

The goal of the present work is to formulate a general rate theory for205

reactions taking place at fixed (electro)chemical potentials. The formula-206

tion is equally applicable to electrocatalytic and electrochemical reactions207

and, hence, presents a general unified approach. This includes the possibility208

to account for tunneling as well as vibronic and electronic non-adiabaticity.209

While methods for treating thermodynamics, locating transition states and210

energy barriers within GCE have been devised, a general method for com-211

putation reaction rates – not just barriers – is not yet available. Here this212

is obtained by extending general (micro)canonical rate theories to electro-213

chemical systems using a GCE formulation developed herein. The GCE rate214

theory enables the use of all canonical rate theories in constant potential215

simulations.216

In this work, the general framework is developed and utilized to derive217

rate constants for adiabatic ET and PCET reactions using a generalized218

GCE Marcus-like [75] empirical valence bond theory (GCE-EVB). The non-219

adiabatic ET and PCET rate constants are derived using a golden-rule for-220

malism within GCE. The theoretical work results in ET and PCET rate con-221

stants valid for both adiabatic and non-adiabatic (proton-coupled) electron222

transfer rates and the inclusion of proton tunneling in PCET. The developed223

rate theories can readily be combined with modern computational methods224

based on (GCE-)DFT. The derived rate equations form the basis for treat-225

ing electrocatalytic kinetics and combining them with (GCE-)DFT methods226

expands the type of systems, conditions, and phenomena in electrocatalysis227

amenable for first principles modelling.228

The paper is organized as follows. In Section 2 a general rate theory229

and TST within GCE are developed. Rest of the paper focuses on ET and230

PCET kinetics using GCE-TST. Section 3 shows how the adiabatic barrier231

and rate of ET and PCET reactions are computed using GCE-EVB and free232

energy perturbation theory within GCE leading to a fixed potential version233

of Marcus theory. Tafel slopes and other use quantities as extracted from234

GCE-EVB are analyzed. Finally, in section 4 non-adiabatic rate constants235

for ET and PCET reactions with generalized first-principles Hamiltonians236

and many-electron wave functions.237
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2. Rate theory in the grand canonical ensemble238

As highlighted in the preceding discussion, the electrode potential is ex-239

pected to affect the energetics and kinetics in complex ways. Thus, the poten-240

tial should be treated explicitly rather than as a simple corrective parameter241

as often done in theoretical and computational models used in electrocatal-242

ysis. Formulating all expectation values within GCE naturally includes the243

electrode potential from the start and this forms the basis for the methods de-244

veloped here and building on our previous grand canonical multi-component245

DFT[3]. The key is that the electrode potential is included in the ab initio246

Hamiltonian within the GCE and as results all observables and quantities247

depend explicitly on the potential. For details on GCE, see Appendix B and248

previous work in Ref.3.249

To extend (micro)canonical rate theory to the GCE, only particle con-250

serving reactions are considered. Thus, only a state with N particles can251

be converted to state with N particles but the population and probability252

of N particle states is determined by the GCE density operator. Hence,253

all equilibrium quantities are always well-defined but jumps between states254

with unequal number of particles are suppressed. In general this is not ex-255

pected to limit the applicability of the rate expressions derived in this work;256

if a quantum system is characterized by particle conserving operators (Ĥ257

Hamiltonian, Ŝ entropy, andN̂ particle number), even time-dependent ob-258

servables are obtained as ensemble weighted expectation values from O(t) =259

Tr
[
ρ̂Û(t0, t)Ô(t)Û(t, t0)

]
=
∑

n pn 〈ψn|Û(t0, t)Ô(t)Û(t, t0)|ψn〉 which do not260

include changes between states with different number of particles.[76] Hence,261

even explicit propagation of the wave function does not allow sudden jumps262

in particle numbers or jumps between states between different number of263

particles.264

In a similar way, particle fluxes needed for the flux formulation of rate265

theory (see below) can be applied within the GCE as long as (local) equilib-266

rium is maintained. This implies that the Hamiltonian is time-independent267

and that only particle conserving reactions contribute to the rate constant268

according to the grand canonical distribution[77]. Furthermore, computation269

of correlation functions and hence fluxes poses both theoretical and computa-270

tional difficulties. While both may in principle be directly computed within271

GCE[77], the computation includes the coupling of the system to the par-272

ticle reservoir and introduces the reservoir time scales. Also, the sampling273

needs to account for trajectories for which the particle number is equal at274
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times t and t + τ . This is because in GCE the phase space volume is not275

globally conserved and Liouville theorem does not hold. As a result, the276

computed ensemble properties will depend on time if the system is not in277

equilibrium i.e. the phase distribution function ρ(q,p, N, t) is not stationary278

i.e. if dtρ(q,p, N, t) 6= 0[77–79] (p and q are momentum and position, re-279

spectively). In the context of the present work it is important to notice that280

both equilibrium (dtρ(q,p, N, t) = 0 at t→∞) and instantaneous (limt→0+)281

properties are uniquely defined by the GCE[77, 79]; both qualities are abso-282

lutely essential in order to formulate the rate and transition state theories283

within GCE.284

Herein only equilibrium and instantaneous quantities are used. Interme-285

diate times would require running GCE-dynamics or making assumptions on286

the reservoir-system couplings. Hence, non-equilibrium processes cannot be287

treated using the approaches presented in this paper. Another limitation of288

the current approach is that kinetics of electron transfer from the electron289

”bath” degrees of freedom are not included and are therefore assumed suffi-290

ciently fast. Neither of these limitations are not expected greatly limit the291

applicability of the approach for electrocatalytic or electrochemical reactions.292

In these reactions the electron bath is provided by a conducting electrode and293

equilibrium conditions are controlled by constant temperature and potential294

which also provide the natural control parameters in the GCE utilized in295

this work. It is noted that mass transfer in electrochemical systems is not in296

equilibrium or even steady-state. However, the reaction rate coefficients are297

independent of particle fluxes and concentrations and therefore the elemen-298

tary rate constants can be characterized by their equilibrium values as long299

as the Hamiltonian of the quantum part is time-independent and particle300

conserving.301

After establishing the particle conserving and equilibrium nature of the302

rate constants, the GCE rate constants can be formulated. To allow vari-303

ous types of reactions to be described, the canonical rate expression due to304

Miller[61–63, 69] is used:305

k(T, V,N)QI =

∫
dEP (E) exp[−βE] (1)

where P (E) is the transition probability at a given energy, QI is the306

canonical partition function of the initial state, and β = (kBT )−1. This307

formulation can be expressed in several equivalent forms and below these308

different flavors are referred to as the flux correlation formulation.[62]. Im-309
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posing the particle conservation of wave functions and equilibrium lead to310

grand canonical reaction rate of the form[62, 72]311

k(T, V, µ)ΞI =
∞∑
N=0

exp[βµN ]Q0(T, V,N)k(T, V,N)

=
∑
N

exp[βµN ]

∫
dEP (E) exp[−βE]

=
∞∑
N=0

exp[βµN ] lim
t→∞

Cfs(t)

(2)

where ΞI = exp[βµN ]QI is the initial state grand partition function and312

where Cfs(t) is either the quantum or classical flux-side correlation function313

in the canonical ensemble, see below. Above N is the number of species314

(nuclear or electronic) in the system. Based on the discussion above, only315

the t → 0+) and t → ∞ should be considered for the flux-side correlation316

function in the rate expressions.317

While the above equations are completely general and various flavors of318

rate theories can be extracted by invoking different Hamiltonians and transi-319

tion probabilities, they are somewhat cumbersome to treat. Indeed, it would320

be convenient if the GCE could be used directly to evaluate the rate without321

explicitly sum over different particle numbers. Moving towards but still re-322

taining maximum generality, it is assumed that the nuclei follow classical tra-323

jectories. While this might seem like a drastic assumption, Feynman[80] has324

shown that quantum mechanics can be formulated using classical trajectories325

as long all possible paths are included. Indeed, the use of Feynman’s path326

integral methodology is behind several quantum mechanical rate theories[81].327

Using a classical Hamiltonian and suppressing non-adiabatic effects by using328

a a single potential energy surface (PES), the flux-side correlation can be329

written in the ring-polymer form as[81]330

Cfs(t) =
1

(2π~)f

∫
dpfdqf exp(−βnHn)δ[f(q)]q̇h[f(qt)] (3)

where n is the number of beads, βn = β/n, f = Nn, Hn =
∑N

i=1

∑n
j=1

|pi,j|2

2mi

+331

1

2
|qi,j − qi,j−1|2 +

∑n
i=1 V (q1,i...N, i). Above, δ[f(q)] constrains the trajecto-332
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ries to start from the dividing surface, q̇ is the initial flux along the reaction333

coordinate, and h[f(qt)] is the side function which includes the dynamic in-334

formation whether a trajectory is reactive or not. Also, the non-adiabatic335

reactions can be described using a Hamiltonian with several coupled PESs336

and by using side function h which projects the state on different PESs.337

[82, 83]. At the classical limit T → ∞ and βn → 0 leads to the shrinkage338

of the ring-polymer to a single bead. At this limit Cfs(t) obtains its cor-339

rect classic limit. In principle, Cfs(t) within GCE can be directly computed340

with nuclear quantum and non-adiabatic effects using ring polymer molecular341

dynamics[84] but this is not within the scope of the present work.342

Next transition state theory (TST) assumption is made[61–63]. In TST,343

the instantaneous limt→0+ Cfs(t) is considered corresponding to the assump-344

tion that there are no-recrossings of the dividing surface. Note that TST345

in this form is valid for non-adiabatic reactions as well if several PESs are346

used for computing Cfs. While a general, rigorous quantum TST has proven347

difficult to obtain due to the non-commuting nature of the flux and Hamilto-348

nian operators, recent work has shown that the zero-time dynamics lead to349

ring-polymer TST which can be considered as a quantum TST.[65, 66] Fur-350

thermore, the path integral QTST[68] and its harmonic approximation (the351

popular semi-classical instanton rate theory in its ring polymer form[67, 85])352

also arise from the path integral presentation of quantum mechanics. Both353

quantum/classical and adiabatic/non-adiabatic TSTs are written as354

kTST (T, V,N)Q0(T, V,N) = lim
t→0+

Cfs(t) (4)

and the exact rate is recovered by introducing a correction355

k(T, V,N) = lim
t→∞

κ(t)kTST (T, V,N)

with κ(t) =
Cfs(t)

Cfs(t→ 0+)

(5)

where κ(t) is the time-dependent transmission coefficient. For long-times,356

it can also be written as κ = k(T, V,N)/kTST (T, V,N).[86] Inserting this357

equation in Eq.(2) can be used to compute the most general grand canonical358

rate constant.359

The above treatment is very general and needs further simplification to360

enable facile computation of reaction rates within the GCE. Here I will con-361
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centrate only on classical nuclei and then instead of working with the flux-362

side correlation function it is easier to write the rate in terms of the cu-363

mulative reaction probability of Eq. (2). For classical nuclei, the general364

rate equation in the GCE is written in terms of the time-integral of the365

flux correlation function was contains all the dynamic information[62, 63]:366

Pr(p,q) = limt→∞ h[f(qt)] =
∫∞

0
dt
d

dt
h[f(qt)] =

∫∞
0
dtCff (qt,pt).367

k(T, V, µ)ΞI =
∞∑
N=0

exp[βµN ]

∫
dEPcl(E) exp[−βE]

=
∞∑
N=0

exp[βµN ]

∫
dpdq exp[−βH(p,q)]F (p,q)Pr(p,q)

(2π~)N

=
∞∑
N=0

exp[βµN ]

∫
dpdq exp[−βH(p,q)]F (p,q)

∫∞
0
dtCff (t)

(2π~)N

≈
∞∑
N=0

exp[βµN ]
kBT

h
Q‡
∫
dtδ(t) =

∑
N

exp[βµN ]
kBT

h
Q†

≡ kBT

h
Ξ†

(6)

where on the second last line making the short time approximation[63]368

to Cff (t→ 0) =
kBT

h
Q‡δ(t) leads to the TST expression. Above, Pcl(E) de-369

notes transition probability for classical nuclei but the electrons are of course370

quantum mechanical[59, 72]. The result on the last line of the previous equa-371

tion, shows that the structure of GCE-TST and canonical TST have similar372

structures. A similar conclusion was also derived by Chandler in Ref.87 if373

memory effects are neglected. To obtain the GCE rate constant without in-374

voking the TST approximation one can use the transmission coefficient to375

write376

k(T, V, µ)ΞI =
∞∑
N=0

exp[βµN ]κ(T, V,N)
kBT

h
Q‡ ≈ 〈κµ〉

kBT

h
Ξ‡ (7)

where it is assumed that the transmission coefficient is insensitive to377

changes in the particle number and 〈κµ〉 is the effective transition proba-378

bility. To complete the derivation for the classical GCE rate constant, the379

rate is expressed in terms of grand energies380
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k(T, V, µ) = 〈κµ〉
kBT

h
exp
[
−β(Ω‡ − ΩI)

]
= 〈κµ〉

kBT

h
exp
[
−β∆Ω‡

] (8)

where the definition Ωi = − ln(Ξi)/β has been used. Above the only new381

assumption besides grand canonical equilibrium distribution and the TST,382

is that the flux out of the transition state does not depend on the number383

of particles in the system. For large enough systems and small variations384

in the particle this a well justified assumption. What is achieved is a fixed385

chemical potential rate equation where the rate is determined by the grand386

free energy barrier. The transmission coefficient needs to be approximated387

but this depends on the case at hand. The harmonic GCE-TST expression388

for the fully open system is derived in Appendix C resulting in Eq (C.4).389

2.1. Allowing only the electron number to fluctuate390

The general development above is valid when both nuclear and electronic391

subsystems are open. A significant simplification results if the number of nu-392

clei is not allowed to fluctuate and the system is open only for electrons. This393

is also the typical scheme used in first principles modelling within GCE. Har-394

monic TST rates for constant number of nuclei and constant electrochemical395

potentials are derived in Appendix C.396

Fixing only the electron chemical potential gives a semi-grand canonical397

ensemble used for deriving the thermodynamics of electrocatalytic system in398

Ref. 3. Using the same semi-GCE to kinetics, is used herein to derive rate399

equations as a function of electrode potential. From now on, only the numbers400

of electrons is allowed to fluctuate and the state of the system is determined401

by T , V , number of nuclei NN , chemical potential of the electrons µn, and402

number of electrons in the system N unless explicitly specified otherwise.403

3. Adiabatic barriers and rates from GC-EVB404

To compute the GCE-TST rate at some electrode potential, the grand405

energy barrier of Eq. (8) needs to be obtained. For adiabatic reactions406

methods like the constant-potential[20] nudged elastic band[88] can be used.407

However, usually one is interested in rates as a function of the electrode408

potential and, hence, the barriers needs to be obtained for a range of electrode409
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potentials which is computationally expensive. Another possibility is for410

computation of the grand energy barrier, is to extend the adiabatic Marcus411

theory[75] to the GCE. Marcus theory can be viewed as special case of the412

empirical valence bond (EVB) theory[89] commonly utilized in electron[75]413

and proton transfer theories.[53, 89–92]. As shown below, the GCE-EVB414

theory has the advantage, that the adiabatic barrier needs to be explicitly415

computed only for at a single electrode potential. Barriers at other potentials416

can be obtained using well-defined interpolation of Eq.(22).417

In these EVB and Marcus theories the initial and final states are pre-418

sented using diabatic states, effective wave functions and free energies[75].419

This can be extended to GCE by using two effective, fixed potential surfaces420

which can be understood as a statistical mixture of states with probabilities421

given by the density operator in GCE (see Appendix B and our previous422

work in 3). Importantly, the diabatic ground states obtained using the GCE423

density operator naturally include many-body states of coupled electrode-424

reactant-solvent system and the complexity of the electrochemical interface425

is implicitly included in the model. Also, there is no need to decompose the426

rate constants to orbital dependent quantities; in the current GCE formu-427

lation, the redox-molecule and the electrode are fully coupled and the total428

wave function |r, e〉 is treated as a single entity in (see Appendix A for ad-429

ditional discussion). Then, two grand canonical diabatic all-electron wave430

functions are used to form an effective diabatic GCE Hamiltonian. This is431

analogous to molecular Marcus theory in which the canonical diabatic Hamil-432

tonian comprises of an initial (oxidized) I and final(reduced) molecule F .433

To form the GCE diabatic states, the work of Reimers[93, 94] on canonical434

ensembles is followed. As noted by Reimers, the density matrix ˆ̄ρ can be435

written using either adiabatic or non-adiabatic states. Especially, when only436

two electronic states are used, the connection of the Born-Huang expansion437

bears striking resemble to the commonly used 2 × 2 diabatic Hamiltonians438

used for deriving electron transfer rate theory. In the canonical ensemble,439

the diabatic states are φI and φF corresponding to the electron localized440

on the initial (I) or final (F) state while the molecular electronic-vibrational441

Hamiltonian is442

Hdia(N, V, T ) =

[
HII HIF

HFI HFF

]
(9)

with443
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HII(R) = 〈φI |Ĥel(R)|φI〉+ T̂nuc = EI + T̂nuc (10a)

H∗FI = HIF = 〈φI |Ĥtot(R)|φF 〉 (10b)

HFF = 〈φF |Ĥel(R)|φF 〉+ T̂nuc = EF + T̂nuc (10c)

where T̂nuc is the nuclear kinetic energy operator, Ĥ = Ĥel+T̂nuc, and Hel444

includes electron kinetic energy and Coulomb energies of the electron-nucleus445

system. The Born-Huang, or vibronic, states are446

Ψi(R) =
∑
j

[CI
ij |ψI〉 |χj〉+ CF

ij |ψF 〉 |χj〉]

=
∑
k=I,F

|ψk〉
∑
j

CI
ki,j |χj〉

(11)

where Ψ, ψ, and χ are the vibronic, electronic, and nuclear wave functions,
respectively. C is the weight of each state. Using these definitions the, density
matrix for a canonical ensemble is

ρ(N, V, T ) =

[
ρII ρIF
ρFI ρFF

]
(12)

with ρAB =
∑

j C
A
jiC

B
ji and the total density matrix has dimension (2 ×447

Ni)× (2×Ni).448

Next the diabatic canonical Hamiltonian is generalized to the grand canon-449

ical ensemble. To simplify the notation, it is assumed that the initial and450

final can approximated as a single electronic state and a single vibrational451

state - extension to include more vibrational state is straight-forward. Then,452

the total vibronic state is written as Ψ(R) ≈ cI |ψI〉 |χI〉 + cF |ψF 〉 |χF 〉. In453

electron transfer theory the vibronic states are often assumed to be harmonic454

but here such an assumption is not needed. Next, the total number of elec-455

trons is allowed to fluctuate while the electron Fermi-level is fixed. These456

are effectively introduced by using the equilibrium reduced density operator457

within the GCE [3] (see also Appendix B)458

ˆ̄ρred =
∑
N

pN
∑
ij

|ΨNi〉 〈ΨNj|

with |Ψi〉 = cI |ψI〉 |χI〉+ cF |ψF 〉 |χF 〉
(13)
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where pN is the GCE weight for a state with N electrons. The result-459

ing density matrix will have N -dimensional block-diagonal form with 2 × 2460

blocks. Similarly the Hamiltonian matrix is made of Eq.(9) HN
dia blocks. Di-461

agonalizing each block separately will give canonical adiabatic states whereas462

Tr
[

ˆ̄ρredĤ
]

gives the adiabatic grand canonical free energy. Because the trace463

is cyclic, both ˆ̄ρred and Ĥ can be reorganized which keeps the (diabatic) free464

energy unchanged as long as diagonal elements remain at the diagonal. This465

freedom is utilized to reorganize the matrix so that the upper part of ˆ̄ρred466

and Ĥ correspond to the initial state and the lower part to the final diabatic467

states. Tracing the upper and lower parts separately, diabatic GC free en-468

ergies of initial and final states (ΩII and ΩFF ) are obtained. The adiabatic469

energy is computed by diagonalizing a 2× 2 GCE Hamiltonian.470

HGCE−dia =

[
ΩII ΩIF

ΩFI ΩFF

]
(14)

where the diagonal elements are the grand energies of the oxidized (II) and471

reduced (FF) systems. The off-diagonal elements account for the interaction472

and mixing of the initial and final states. As written here, they can be473

understood in the framework of empirical valence bond (EVB) theory[89]474

commonly utilized in electron[75] and proton transfer theories.[53, 89–92]475

In this, way the off-diagonal elements can be fitted so that diagonalization476

of Eq.(14) produces the adiabatic grand canonical potential energy surface.477

Hence, the above methodology might be called GCE-EVB approach.478

Finally, note that the (diabatic) grand canonical states correspond to479

a single electron density which are guaranteed theory to be unique for a480

given electrode potential by the Hohenberg-Kohn-Mermin[3, 4]. The only481

disambiguity is the definition of these diabatic states. In principle it is also482

possible to add other, possibly excited states as basis states. In practice the483

GCE diabatic energies,( ΩII and ΩFF ), can be computed directly by applying484

using e.g. constrained DFT[95–97] with fixed potential DFT. Below it is485

shown how the grand canonical free energies can be obtained from atomistic486

simulations.487

3.1. Computation of diabatic GCE surfaces and barriers488

An approach often used in molecular simulations for constructing the489

diabatic free energy curves is to sample the diabatic potentials along a suit-490

able reaction coordinate. For ET, PT, and PCET reactions in the canon-491
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ical ensemble this coordinate is the energy gap between the two diabatic492

states as shown by Zusman[98] and Warshel[99]: ∆Egap(R) = EF (R) −493

EI(R).[78, 100] From the sampled energy gap the free energy curves are494

obtained as A(R) = −kBT ln(p(Egap(R))) + c. If the distribution is Gaus-495

sian (p(Egap(R)) = c exp[−(∆Egap − 〈∆Egap〉)2/2σ2]) and the resulting free496

energy curves a parabolic. The barrier in EVB or Marcus theory is then ob-497

tained from the intersection of the initial and final diabatic curves[100–103].498

Within GCE, the energy cap is simply Egap(R;µ) =
∑

N,i pN,iEgap(Ri, N).499

The gap distributions can be formulated and computed by generalizing Zwanzig’s[104]500

the canonical free energy perturbation theory to the GCE. This route pro-501

vides a rigorous way to derive the reaction barrier in terms of diabatic states502

and energies as presented in Appendix D.503

The reaction energy barrier can be computed from the initial-final state504

energy gap distribution functions using[99, 105–110]505

kIF = κ
exp
[
−βgI(∆E‡)

]∫
d∆E exp[−βgI(∆E)]

= κpI(∆E
‡) (15)

where gi(∆E) is the free energy curve in state i as a function of the energy506

gap, pI(∆E
‡) is the gap distribution at the transitions state, and κ denotes507

an effective pre-factor. The above shows that the reaction rate is determined508

by the energy gap distribution function pI(∆E) = 〈δ(∆E(R)−∆E)〉I from509

Eq. (D.6).510

When assuming that Egap(R;µ) is Gaussian, the GC-diabatic states are511

parabolic and the Marcus barrier in GCE is given by Eq. (18). As shown512

in the Appendix C and Section 4 for the GCE-NATST, the (Gaussian) gap513

distribution may be derived using a (second order) cumulant expansion. This514

results in gap distribution of the following form515

pI(∆E) =
1√

2πσI
exp

[
−(∆E − 〈∆E〉I)2

2σ2
I

]
(16)

where 〈∆E〉I is the energy gap expectation value in the initial state ob-516

tained from Eq. (D.6) and σI = 〈(∆E)2〉I − (〈∆E〉I)2 is the gap variance.517

The Marcus relation is then obtain after standard manipulations[100, 106]518

by inserting these relations in Eq. (D.8) to give519

pI(∆E
‡) =

1√
4kBTΛ

exp

[
−β (∆ΩFI + Λ)2

4Λ

]
(17)
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where σ2
I = σ2

F = 2kBTΛ = kBT (〈∆E〉I − 〈∆E〉F ) , Λ is the reorganiza-520

tion grand energy and and ∆ΩFI =
1

2
(〈∆E〉I + 〈∆E〉F ) is the reaction grand521

energy as depicted in Figure3.1. Finally, the Marcus expression within GCE522

is523

k =
κ√

4kBTΛ
exp

[
−β (∆ΩFI + Λ)2

4Λ

]
(18)

Figure 2: Schematic depiction of the important GCE-EVB quantities. The blue (orange)
dashed lines is initial (final) diabatic surface while the black solid line is the adiabatic
surface.

The energy barrier of Eq. (18) is the diabatic energy barrier. The adi-524

abatic barrier can the be computed using Eq. (14) as discussed in Section.525

3.2 below. One caveat the keep in mind is more involved within the GCE526

than the canonical ensemble as shown in Section 4. The above result may527

safely be used when κ ≈ 1 for all particle numbers meaning that the reaction528

is always fully adiabatic.529
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3.2. Implications of the canonical GCE-EVB rate theory530

For symmetric grand energy surfaces the diabatic grand energy barrier531

can be is estimated from the crossing point of the two quadratic grand energy532

surfaces with equal curvatures is given in Eq. (18). The requirement of equal533

curvature can be relaxed following Mattiat and Richardson[74], who compute534

the reorganization energies for both the initial and final states ΛI and ΛF ,535

respectively. Then the asymmetry parameter may be defined as536

αas =
ΛI − ΛF

ΛI + ΛF

(19)

and the transition state is located at the crossing point537

x‡/ξ = − 1

αas
+

1

αas

√
1− αas

(
αas +

4∆Ω

ΛI + ΛF

)
(20)

Using these definitions the asymmetric diabatic Marcus barrier and rate538

are obtained as539

∆Ω‡ =
1

4
ΛI

(
x‡/ξ − 1

)2
(21a)

k ≈ κ√
4kBTΛI

1 + αas
1 + αasx‡/ξ

exp
[
−β∆Ω‡

]
(21b)

If αas → 0, the regular Marcus rate and barrier are obtained. In Fig.3.2540

the effect of asymmetry and reaction energy to the reaction barrier and lo-541

cation of the transition state are compared. It can be seen that both the542

barrier heights and its location are affected by the asymmetry and reaction543

energy.544

The above equations enable a theoretically justified way to compute or545

predict the reaction barrier at a given electron chemical potential using just546

few parameters: Λ and ∆Ω. Both the barrier height and shifts in its location547

can be determined. Furthermore, it is not necessary to find the transition548

state geometry as long as all the parameters can be computed. The practical549

computations can be made using e.g. fixed potential implementations dia-550

batic electronic structure methods such as the constrained DFT[95–97] The551

grand energy curves in Figure 3.2 qualitatively reproduce the DFT computed552

reaction free energy barriers for HER[20] and CO2 reduction[38].553

The adiabatic reaction barrier can be extracted from the non-adiabatic554

barrier obtained by diagonalizing Eq.(14) or from .(18) by introducing an555
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Figure 3: Left: EVB curves at different different asymmetries αas. The initial state
reorganization energy is ΛI = 40 while the final state reorganization energy ΛF ∈ [20, 60].
The reaction energy is ∆Ω = 0 for all curves. Right: EVB curves as a function of the
reaction energy: ∆Ω ∈ [−15, 15]. For all curves ΛI = ΛF . Both: The dashed line at
x = 0 indicates the position of the transition state when ΛI = ΛF and ∆Ω = 0. The curve
crossing point equals ∆Ω‡

dia

adiabaticity correction. For the canonical ensemble, this correction is known556

as the Hwang-Åqvist-Warshel equation[111]. If the GCE-diabatic states are557

quadratic along the reaction coordinate and share the same curvature along558

the reaction coordinate, the adiabatic barrier can be written as [111, 112]559

∆Ω‡ad,EV B =
(∆Ω + Λ)2

4Λ
− ΩIF (x‡) +

(ΩIF (xI))2

∆Ω + Λ

= ∆Ω‡dia − ΩIF (x‡) +
(ΩIF (xI))2

∆Ω + Λ

(22)

where ΩIF is the off-diagonal matrix of the GCE-EVB Hamiltonian in560

Eq. (14). If the Condon approximation is used, the above equation is greatly561

simplified as ΩIF ≈ ΩIF (x‡) ≈ ΩIF (xI). From a practical perspective it is562

interesting to observe how the adiabatic GCE-EVB barrier changes when the563

parameters a changed. From the schematics shown in Figures 3.1 and 3.2,564

one can observe that changes of the minima along the reaction coordinate565

21



correspond to horizontal displacements of the diabatic states and and changes566

in Λ. Vertical changes correspond to changes in the reaction grand energy567

∆Ω. Usually one concentrates only on changes in the free energy as reor-568

ganization coordinate not expected change for similar reactions or different569

electrode potentials (this assumptions is also made in Section 4.) Focusing on570

the reaction grand energy, it is easy show that under equilibrium conditions,571

∆Ω = 0, the barrier is given by572

∆Ω0,‡
ad,EV B =

Λ

4
− ΩIF +

(ΩIF )2

Λ
≈ Λ

4
− ΩIF (23)

which leads to Λ = 4(∆Ω0,‡
ad,EV B + ΩIF ) ≈ 4∆Ω0,‡

dia assuming that ΩIF <<573

Λ. The equilibrium point is characterized by zero over-potential η = ∆Ω = 0.574

Replacing the solution for Λ in Eq. (22) gives the diabatic barrier as575

∆Ω‡dia = Ω0,‡
dia

(
1 +

∆Ω

4Ω0,‡
dia

)2

= ∆Ω0,‡
dia +

∆Ω

2
+

(∆Ω)2

16∆Ω0,‡
dia

(24)

Inserting (24) in (22) results in the adiabatic reaction barrier as576

∆Ω‡ad,EV B = ∆Ω0,‡
ad,EV B +

∆Ω

2
+

(∆Ω)2

16∆Ω0,‡
dia

(25)

This result has several interesting implications and connections to previ-577

ous work. The most immediate is that at small changes in the driving force578

∆Ω, a linear dependence between the barrier and reaction energy is estab-579

lished. However, at larger driving forces, a non-linear dependence appears.580

This can be directly translated to the language of electrochemistry by581

considering the changes in driving force as a function of the electrode poten-582

tial or over-potential. As discussed by Trasatti[113, 114] and in our recent583

work[3], the absolute electrochemical potential and chemical potential are584

related by EM(abs) = EM(red) + K with EM(red) = ∆φMS − µMn where585

EM(red) is the reduced absolute potential, K is used to convert between586

different reference choices, ∆φMS is the Galvani potential difference between587

the metal M and solution S, and µMn is the chemical potential of the elec-588

trode. Independent of the reference scheme, the changes in the electrode589

potential are directly related to the changes in the electrochemical potential590

of the electrons: EM(abs) ∼ −µ̃n. It is important to notice that for micro-591

scopic systems usually considered within GCE-DFT keeping µ̃n fixed leads592
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to changes in the number of electrons in the initial and final states. As a593

result the canonical free energies A(N) do not remain constant when change594

when µ̃n is changed. Therefore, changes in the grand energy is in general595

δΩ = A(NF ; µ̃)− A(NI ; µ̃)− µ̃n(NI −NF ).596

δΩ may be extracted from constant potential calculations enabling the597

study of electrochemical kinetics as a function of the electrode potential:598

−∂r(T, V, µ̃n)/∂µ̃n as done in a Tafel analysis, for example. The traditional599

measure in electrochemistry for reaction kinetics is the Tafel slope measuring600

how current is affected by changes in the over-potential. In heterogeneous and601

homogeneous catalysis the corresponding quantity is the Brønsted-Evans-602

Polanyi (BEP) coefficient or more generally (linear free) energy relations603

measuring the change of reaction rate when the reaction energy is changed.604

However, the work of Fletcher[115, 116] and Parsons[117] show that Tafel and605

BEP type analyses actually measure the same quantities; both measure the606

reaction rate as a function of the changes in the reaction driving force. For607

macroscopic electrochemical reactions the driving force is measured in terms608

of the over-potential while in microscopic calculations the driving force is the609

free energy. These two quantities are linked by |∆η| = |∆µ̃n| = |∆∂Ω/∂n|.610

Both the BEP and Tafel coefficients maybe computed from a single ex-611

pression. The Tafel coefficient is defined as[2, 115, 116]612

α ∝ ∂ ln k

∂E
= −∂ ln k

∂∆Ω

∂∆Ω

∂µ̃n

∂µ̃n
∂E

= −γ∆Ω′ (26)

where γ is BEP relationship and ∆Ω′ denotes the grand energy change613

as a function of the over-potential. Also E ∼ µ̃n has been used.614

Let us focus first on the ∆Ω′ term which depends on the reaction and615

needs to be approximated. To facilitate this analysis, one recognizes that616

∆Ω = (AF (〈NF 〉)− AI(〈NI〉)− µ̃n(〈NF 〉 − 〈NI〉). For macroscopic systems,617

i) chemical reactions have NF = NI while ii) simple electrochemical steps618

have NF = NI ± 1. Then for chemical reactions ∆Ω = ∆A and the variation619

∆Ω′ is expected to be small. For electrochemical reactions at the macro-620

scopic limit, a particularly straightforward estimate is obtained from the621

computational hydrogen electrode (CHE) concept.[118] In the CHE model,622

the reaction energy ∆Ω ≈ ∆A0 ∓ η for PCET steps with ∆A0 computed623

without any bias potential. Hence, within CHE, α = γ for PCET steps and624

zero otherwise. Similar reasoning holds also for simple (outer-sphere) ET re-625

actions in macroscopic systems as shown in Appendix E. For these reactions626

∆Ω ≈ ∆A0 ∓ constant× η and ∆Ω′ = ∓constant.627
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For microscopic systems, however, such a simple relationship does not628

hold in general and models such as GCE-DFT can be used for computing629

∆Ω′ explicitly. Thus far, ∆Ω′ has been reported in only few studies[20,630

119]. In both works, ∆Ω exhibits a roughly linear dependence on the applied631

potential. To conclude, ∆Ω′ is expected to be a constant close to unity for632

electrochemical reactions and close to zero for chemical reactions.633

Next, the BEP γ of Eq (26) is analyzed. Using the diabatic barriers, one
obtains

γ =
∂ ln k(T, V, µ̃n)

∂∆Ω

∣∣∣∣
T,V

=
∂ ln exp

[
−βΩ‡

]
∂∆Ω

=

[
1

2
+

∆Ω

8∆Ω0,‡
dia

]
=

1

2

[
1 +

∆Ω

Λ

] (27)

From the above equation, it is seen that γ is not a simple constant but634

depends linearly on the reaction driving force. If the reorganization energy635

is small the dependence on the reaction grand energy becomes more pro-636

nounced. Based on the generalized BEP-Tafel energy identities the following637

relationships can be observed:638

• If the quadratic part in Eq.(24) is neglected, one obtains the Butler-639

Volmer (BV) barrier. In this case the barrier depends linearly on640

the applied potential as ∆∆Ω‡dia,EV B ≈ 0.5(AF (〈NF 〉) − AI(〈NI〉) −641

µel(〈NF 〉 − 〈NI〉). µel is implicitly referenced against µeqel = 0 and can642

easily be converted to the over-potential µel − µeqel = ∆η. Note that643

∆∆Ω‡dia,EV B is not expected to be linear for finite-sized systems.644

Again, for macroscopic systems 〈NF 〉 = 〈NI〉 and ∆∆Ω‡dia,EV B = ∆∆A‡dia,EV B =645

0.5(AF − AI) which is the Brønsted-Evans-Polanyi result. The BV646

relationship is obtained by treating a specific reaction type. For ex-647

ample, in a typical ET, PT, or PCET the potential-dependent reac-648

tion free energy is given by ∆A = ∆A(η = 0) ± (nη). Using this for649

∆∆A = ±0.5nη.650

• Non-linearity of the grand energy barrier was already established above.651

For macroscopic systems non-linearity is established by including the652

quadratic part of the diabatic barrier in model. Lately[20, 36, 38] this653

has been observed computationally and it is pleasing that the GCE-654

EVB picture seems qualitatively correct.655
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A spectacular feature of canonical Marcus and EVB theory is the observa-656

tion of an inverted region i.e. the rate constant starts to decline as the reac-657

tion becomes more exothermic. However, the inverted region has not been ob-658

served for electrochemical reactions even at large over-potentials. The grand659

canonical Marcus rate of Eq. (18) seems to predict an inverted region for660

highly exothermic conditions. However, as written in the Tafel equation (26)661

the rate as a function of the over-potential depends on both the change in A)662

barrier as a function of the reaction energy and B) change reaction energy as a663

function of the over-potential. A) would indeed predict an inverted region but664

B) suppress this if ∆Ω ≈ 0. Then the Tafel slope would approach zero as pre-665

dicted by the Marcus-Hush-Chidsey[120], Dogonadze-Levich-Kuztnetsov[49,666

50], Newns-Anderson-Schmickler, Soudackov-Hammes-Schiffer[45] models of667

ET and PCET [51] (see also Appendix A). At the moment, there is not668

enough computational nor theoretical evidence on the behaviour of ∆Ω as669

a function of the over-potential to predict or to analyze the Tafel slope any670

further.671

To summarize, the generalized BEP-Tafel relationships has been derived672

from a microscopic perspective starting from a grand canonical rate theory.673

Both variation in the reaction energy barrier and the transition state location674

as a function of the potential can be predicted using just a few parameters.675

The general form of the BEP-Tafel relation is given in Eq. (26). For small676

over-potentials, the rate is expected to depend linearly on the applied poten-677

tial. For larger over-potentials non-linear dependence is predicted, especially678

reactions for which the reorganization energy is small.679

4. Non-adiabatic ET and PCET reaction rates within GCE680

4.1. Non-adiabatic ET rate681

As shown above, computation of adiabatic reaction rates from either682

GCE-HTST, GCE-EVB or GCE-perturbation theory do not yield any fun-683

damental difficulties as compared to the canonical case; after finding the684

barrier, one can simply use a simple TST-like expression to compute the re-685

action rate using grand free energies. However, for a non-adiabatic process,686

using the grand free energy is not as straightforward. The main difficulty687

becomes from computation of the electronic transition matrix element which688

is not defined for states with different number of electrons. Hence, one can-689

not directly use the effective GCE-EVB states developed in Section 3 and690
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use them to compute the non-adiabatic rate. Instead, the electronic tran-691

sition matrix element needs to be computed separately for each canonical692

transition. Afterwards, a summation over the canonical rates is performed693

to express the non-adiabatic ET/PCET rate as a expectation value. To ob-694

tain the non-adiabatic TST rate, the Golden-rule approach is used herein. In695

the canonical ensemble, the Golden-rule formulation of the rate is equivalent696

to Dogonadze’s treatment.[49, 50, 101] Below theory for the computation of697

non-adiabatic ET and PCET rates within GCE is developed.698

To start with, the electronic states |iN〉 are specified and they are eigen-699

states to the electronic Hamiltonian Ĥel
N . Electronic states are defined for700

initial (i) and final (f) states with a fixed number of particles (N). Then the701

electronic energies for the initial and final states at fixed particle number at702

nuclear geometry Q are703

〈iN |Ĥel
N |iN〉 = εiN(Q) and 〈fN |Ĥel

N |fN〉 = εfN(Q) (28)

Within the Born-Oppenheimer approximation (BOA), the nuclear wave704

functions and their energies ε in the initial (|mN〉) and final (|nN〉) electronic705

states are obtained from706

[T̂Q + εiN(Q)] |mN〉 = εmN |mN〉 and

[T̂Q + εfN(Q)] |nN〉 = εnN |nN〉
(29)

where T̂Q is the nuclear kinetic energy. Within BOA, the total vibronic707

wave function and the corresponding energy factorize as708

|imN〉 = |iN〉 |mN〉 and EimN = εiN + εmN (30a)

|fnN〉 = |fN〉 |nN〉 and EfnN = εfN + εnN (30b)

As the different energy contributions are additive, the canonical partition709

functions can be factorized:710

QN
i = exp[−βεiN ]

∑
m

exp[−βεmN ] and

QN
f = exp[−βεfN ]

∑
n

exp[−βεnN ]
(31)
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At this point all relevant canonical quantities have been defined and the711

focus turns to the GCE formulation of the Golden-rule rate. The GCE712

partition function for the initial state is713

Ξi =
∑
N

exp[βµN ]QN
i (32)

This equation is inserted in the general GCE rate expression. For the non-714

adiabatic limit, the Golden rule rate is used. As shown in Appendix C and715

Appendix A, use of the Golden rule expression is consistent with the general716

rate theory based on the flux approach if the non-adiabatic Hamiltonian and717

suitable flux operator are utilized. The GCE-NATST rate constant is then718

kGCE−NATST =
2π

~Ξi

∑
N

e−β(εiN−µN)
∑
m,n

e−βεmN

∣∣∣ 〈Nnf |V̂N |imN〉∣∣∣2δ(EimN − EfnN)

=
2π

~
∑
N

∑
m,n

pimN

∣∣∣ 〈Nnf |V̂N |imN〉∣∣∣2δ(EimN − EfnN)

(33)

where pimN is the population of the vibronic state |imN〉. Next, a719

significant simplification is made; it is assumed that the vibrational part720

of the canonical function does not depend on the number of electrons in721

the systems. This assumption gives QN
i = exp[−βεiN ]

∑
m exp[−βεmN ] ≈722

exp[−βεiN ]
∑

m exp[−βεm] = exp[−βεiN ]Qm and the GCE partition func-723

tion becomes724

Ξi ≈ Qm

∑
N

exp[−β(εiN − µN ] = QmΞi (34)

Inserting this approximation in the GCE-NATST rate expression gives725

kGCE−NATST ≈
2π

~Ξi

∑
N

e−β(εiN−µN)
∑
m,n

e−βεmN

Qm

∣∣∣ 〈Nnf |V̂N |imN〉∣∣∣2δ(EimN − EfnN)

=
2π

~
∑
N

piN
∑
m,n

pmN

∣∣∣ 〈Nnf |V̂ |imN〉∣∣∣2δ(EimN − EfnN)

(35)

where piN,el = exp[−β(εiN − µN)]/Ξi,el and pmN = exp[−βεmN ]/Qm.726
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This equation has the structure of the canonical Golden rule rate weighted727

by the probability of being in the initial electronic state iN . To simplify the728

notation, one can momentarily concentrate only on the canonical part of the729

above rate expression. Using the Fourier transform presentation of the delta730

function, gives731

∑
m,n

pimN

∣∣∣ 〈Nnf |V̂N |imN〉∣∣∣2δ(EimN − EfnN)

=
1

2π~
∑
m,n

pimN

∣∣∣ 〈Nnf |V̂N |imN〉∣∣∣2 ∫ dteit(EimN−EfnN )/~

=
1

2π~
∑
m,n

pimN 〈fmN |V̂N |inN〉 〈inN |V̂N |fmN〉
∫
dteit(EimN−EfnN )/~

≈ 1

2π~
∑
m,n

pimN

∣∣∣ 〈fN |V̂N |iN〉∣∣∣2 ∫ dt 〈mN |nN〉 〈nN |mN〉 eit(EimN−EfnN )/~

=
1

2π~
∑
m,n

pimNV
2
N,if

∫
dt
∣∣∣〈nN |mN〉q∣∣∣2eit(EimN−EfnN )/~

=
V 2
N,if

2π~

∫
dt
〈
eit(EimN/~e−it(EfnN )/~〉

q
=
V 2
N,if

2π~

∫
dtC(t)

(36)

where C(t) is an energy autocorrelation function. The last two equations732

are amenable to two different ways of computing the rate constant. The last733

can be used with a cumulant expansion approach, while the second last has734

the form of a thermally averaged Franck-Condon treatment. The cumulant735

expansion is presented in the main text while the Franck-Condon treatment736

is presented in Appendix G for completeness.737

In the present work, nuclear degrees of freedom are treated classically.738

Following either Geva[121] or Marcus[122], the autocorrelation function can739

be expressed using a cumulant expansion[123]. Using the second order cu-740

mulant expansion results in741

〈exp[iEfnN t/~] exp[iEimN t/~]〉i ≈

exp

[
−it
~
〈
∆EN

fi

〉
− 1

~2

∫ t

0

dτ1

∫ τ1

0

dτ2C(τ1 − τ2)

]
(37)
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where
〈
∆EN

fi

〉
is the average free energy gap between the final and ini-742

tial electronic diabatic states. Also C(τ1− τ2) =
〈
δ∆EN

fi(τ)δ∆Efi(0)
〉

where743

δ∆EN
fi = ∆EN

fi−
〈
∆EN

fi

〉
. C(τ1−τ2) is directly linked to the vibrational spec-744

tral density of the system[55, 101, 122, 124]. To obtain a manageable expres-745

sion for the rate, the short time approximation or slow fluctuation limit[125]746

to the correlation function is used: C(τ1− τ2) ≈ C(0) =
〈
δ(∆EN

fi)
2
〉
. Insert-747

ing this in Eq. (37) yields748

exp

[
− 1

~2

∫ t

0

dτ1

∫ τ1

0

dτ2C(τ1 − τ2)

]
≈ exp

[
− t

2

~2
(
〈
δ(∆EN

fi)
2
〉]

(38)

This is inserted in Eq. (36) to give749

∑
m,n

pimN

∣∣∣ 〈Nnf |V̂N |imN〉∣∣∣2δ(EimN − EfnN)

≈
V 2
N,if

2π~

∫ ∞
−∞

dt exp

[
it

~
〈
∆EN

fi

〉
− t2

~2
(
〈
δ(∆EN

fi))
2
〉]

=
V 2
N,if

2π~

√
2π~2〈

δ(∆EN
fi)

2
〉 exp

[
−
〈
∆EN

fi

〉2

2
〈
δ(∆EN

fi)
2
〉]

≈
V 2
N,if

2π

√
π

kBTλ
exp

[
−

(∆EN
fi + λ)2

4kBTλ

]
(39)

where on the last line it has been assumed that the free energy surfaces are750

quadratic along the energy gap coordinate. The reorganization and reaction751

energies are defined as λ = Eim(QF ) − Efn(QF ) and EN
fi = EN

fn(QF ) −752

EN
im(QI) (see Fig. 3.1). A generalization to asymmetric GCE-diabatic energy753

curves can be made following Mattiat and Richardson[74]. Furthermore, it754

is assumed that the curvature of the quadratic surfaces is the same for all755

particle numbers N in which case the reorganization energy does not depend756

on N . This should be to a rather good approximation as the reorganization757

is related to the reorientation of the surrounding medium which is expected758

be rather insensitive to the number of electrons in the system. For example,759

in the spin-boson model, which in the canonical ensemble yields the Marcus760

rate, the reorganization energy is only related to the bath frequencies in761

thermal equilibrium.[101] If the spin-boson model is applied to the present762

29



GCE case, the vibrational, bosonic Hamiltonian would be assumed to be763

independent of the number of electrons and yield directly the reorganization764

energy which is indepenedent of the number of particle for the GCE. The765

assumption that the reorganization energy is independent on the particle766

number can also be reinforced by doing a re-derivation of the rate using the767

thermalized Franck-Condon approach as shown in the Appendix G.768

Finally, the final GCE-NATST result is obtained by combining Eq. (35)769

with either Eq. (37) or (G.2) to give770

kMarcus
GCE−NATST =

∑
N

piN
V 2
N,if

~
√

4πkBTλ
exp

[
−

(∆EN
fi + λ)2

4kBTλ

]
(40)

The reorganization energy can also be separated to inner and outer sphere771

components as discussed in Section Appendix H. If this separation is invoked,772

one can alleviate the assumption that the total reorganization is independent773

of the particle number and instead assume that only bulk solvent (outer774

sphere) reorganization is a constant while the inner-sphere reorganization775

energy depends on the particle number.776

4.2. PCET kinetics within GCE777

The PCET kinetics is based on the PCET rate theory of Soudackov and778

Hammes-Schiffer. Within the canonical ensemble the relevant rate expres-779

sions were derived in Refs. 45, 53–55 and here this treatment is extended780

to the GCE yielding PCET rate constants at fixed electrode potentials. The781

PCET rate constant derivation follows a similar procedure as the one used782

above for the ET rates. In the case of PCET, an additional geometric vari-783

able q to denote the position of the transferring proton is introduced. Within784

BOA, the total vibronic wave function is then785

|iumN〉 = |iN(q,Q)〉 |uN(Q)〉 |mN〉 (41)

where it is explicitly written that the electronic wave function |iN〉 de-786

pends explicitly on the proton q and system coordinate Q while the proton787

wave function |uN(Q)〉 depends on the system coordinate Q. The wave func-788

tions and corresponding energies are solved using equations similar to the ET789

case790

〈iN |Ĥel
N |iN〉 = εiN(q,Q) and

〈fN |Ĥel
N |fN〉 = εfN(q,Q)

(42a)
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[T̂q + εiN(q,Q)] |iuN〉 = εiuN |iuN〉 and

[T̂q + εfN(q,Q)] |fvN〉 = εivN |fvN〉
(42b)

[T̂Q + εiuN ] |mN〉 = EmN |mN〉 and

[T̂Q + εfvN ] |nN〉 = EnN |nN〉
(42c)

where T̂q and T̂Q are the kinetic energy operators for the proton and791

other nuclei, respectively. Within BOA, the total energy of the at fixed N is792

written as a simple sum of the three contributions:793

EiumN = εiN + εiuN + EmN (43)

and similarly for the final diabatic state.794

The SHS treatment of PCET rates is valid for reactions ranging from795

vibronically non-adiabatic to vibronically adiabatic scenarios[126] and rate796

expressions for various well-defined limits have been achieved. The SHS797

PCET rate theories are derived following a path analogous to the derivation798

of ET rates and extension to the GCE is rather straightforward. As done by799

SHS, the Golden rule formulation is used. Then, the PCET rate constant is800

written as801

kGCE−PCET =
2π

~Ξi

∑
N,u,v,m,n

e−β(EiumN−µN)
∣∣∣ 〈Nnvf |V̂N |iumN〉∣∣∣2δ(EiumN − EfvnN)

=
2π

~
∑
N

∑
u,v

∑
m,n

piumN

∣∣∣ 〈Nnvf |V̂N |iumN〉∣∣∣2δ(EiumN − EfvnN)

(44)

The obtained form is analogous to the GCE-ET theory developed herein802

and shares the structure of the canonical PCET rate of SHS. As assumed803

for ET part, it is expected that the vibrational part of the system does not804

depend on the number of particles. However, no such assumption is made805

for the transferring proton i.e. the proton potential depends on the charge806

state. This is written as807

Ξi =
∑
N,u,m

e−β(EiumN−µN) ≈ Qm

∑
N,u

e−β(εiN+εiuN−µN) = QmΞiu (45)
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At this point it is important to stress that the vibronic coupling depends808

sensitively on the proton donor-acceptor distance R which is included in the809

rate expression. It is assumed that the coupling can be decomposed as810

〈Nnvf |V̂ (R)N |iumN〉 ≈ 〈Nvf |V̂ (R)N |iuN〉q 〈Nn|mN〉Q = V (R)NuvS
N
nm

(46)
Inserting these two approximations result in PCET rate constant of the811

form812

kGCE−PCET ≈
2π

~
∑
N,u,v

e−β(εiN+εiuN−µN)

Ξiu

∑
m,n

e−βEmN

Qm

∣∣V (R)Nuv
∣∣2∣∣SNmn∣∣2δ(EiumN − EfvnN)

=
2π

~
∑
N,u,v

piuN
∑
m,n

pm
∣∣V (R)Nuv

∣∣2∣∣SNmn∣∣2δ(EiumN − EfvnN)

(47)

This form is amenable to the direct treatment as performed by SHS. De-813

pending on the treatment of the R coordinate, several appropriate limits may814

be considered each yielding a different canonical rate constant. The deriva-815

tions for the R-dependent PCET rates follow a similar (but more complex816

[55]) cumulant expansion as performed above for ET. Hence, the GCE-PCET817

rate can be obtained by extending the approach presented above for the ET.818

The extension of PCET in GCE is straight-forward and here I present only819

the most simple result valid under the same conditions as the Marcus-like820

expression derived above for ET. Specifically, one assumes that[127] i)the821

short time approximation of the energy gap correlation is valid, ii) high-822

temperature limit is taken, and iii) that the R coordinate is static giving823

k =
∑
N,u

piu
∑
v

∣∣V (R)Nuv
∣∣2

~
√

4πkBTλuv
exp

[
−
(
∆EN

uv + λuv
)2

4kBTλuv

]
(48)

where the reaction energy between vibrational states iuN and fvN is824

EN
uv = EfvnN(qF , QF ) − EiumN(qI , QI). The state-dependent reorganization825

energy λuv = Eium(qF , QF ) − Efvn(qF , QF ) is assumed independent of the826

particle number. If some vibrational modes (besides the R mode) are sen-827

sitive to changes in the particle number, they can be separated from the828

total reorganization energy by decomposing the total reorganization energy829
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to inner- and outer-sphere components as shown in Appendix H. Depending830

on the form of the prefactor, both electronically and vibronically adiabatic831

and non-adiabatic limits of PCET can be reached within the semiclassical832

treatment[22, 128, 129] of the prefactor.833

4.3. Analysis of the non-adiabatic GCE rates834

The main difficulty observed in the GCE non-adiabatic rate theory is the835

treatment of the electronic/vibronic coupling constant; this term is defined836

only for particle conserving transitions. This precludes the straightforward837

use of GCE diabatic states which have different number of electrons at the838

same geometry. Only at the thermodynamic limit when the particle number839

fluctuation is zero can the GCE diabatic states be used for computing the840

coupling constant. However, at this limit the GCE-NATST is equal to the841

canonical NATST as only a single particle number state is populated i.e.842

pi becomes a delta function around some particle number. At thermody-843

namic limit either using fixed potential GCE states or fixed particle number844

canonical states will give equivalent results as they should.845

Even at the thermodynamic limit the present treatment differs from the846

traditional Dogonadze-Kutzetnotsov-Levich[50]. Schmikler-Newns-Anderson[51,847

52], and SHS approaches. A detailed discussion is given in the Appendix A848

and here only the main differences are high-lighted. The crucial difference is849

that the present formulation does not rely on the separation of the total inter-850

acting wave function to non-interacting or weakly interacting fragments. In851

the present approach, the applied electrode potential does not only affect the852

electrode alone but rather modifies the entire systems affecting all electrode,853

reagent, and solvent species. Hence, the inherent complexity of the elec-854

trochemical interface is naturally included in the Hamiltonian and the wave855

function from the start. Another crucial difference is that the charge trans-856

fer kinetics are not decomposed into single electron orbital contributions.857

Instead, the work herein formulates the kinetics in terms of many-body dia-858

batic wave functions. In the canonical ensemble, such an approach has been859

shown[130] to provide accurate barriers, prefactors, and overall kinetics for860

electron transfer reaction in battery materials.861

For small systems where particle number fluctuations are pronounced the862

summation over particle numbers need to be performed. While straightfor-863

ward in principle, the amount of calculations can seem daunting at first.864

However, as the populations depend exponentially on the energy and tar-865

get chemical potential, piN ∼ exp[−β(EiN − µN)], only a limited number of866
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states will contribute to the summation. In the Appendix F, it is shown that867

for graphene, the electrode potential around the PZC±0.5V is accurately868

captured using seven different charge states. It is expected that the infinite869

summation can be safely reduced to summation over a small number (5–10)870

of different charge states covering the electrode potential range of interest.871

Again, at the thermodynamic limit only a single calculation per potential is872

needed.873

For practical applications interpolation between adiabatic and non-adiabatic874

regions is often needed. The most commonly utilized way to achieve this in875

the canonical ensemble is to use the Landau-Zener interpolation formula (see876

e.g. Ref. 100). A similar interpolation can performed also within the GCE877

in two ways – for the fixed number states or the effective fixed potential.878

In the former, the Landau-Zener prefactor is computed for each charge state879

and utilized in the summation. In the latter one replaces the particle number880

dependent prefactor with an effective or averaged prefactor as in Eqs.(7) or881

(C.6). At the thermodynamic limit both will be equivalent. Investigating882

this interpolation for smaller systems is not within the scope of the present883

work and is left for future studies.884

5. Conclusions885

This work presents a general rate theory for open systems. If only the886

electronic subsystem is open, the formulation yields electrochemical and elec-887

trocatalytic rates at fixed electrode potentials. The rate equations are derived888

by extending the canonical rate theory[61–63] to the grand canonical, fixed889

potential ensemble. It is shown that all rate theories developed within the890

canonical ensemble can be extended to GCE. Specifically, ways to address891

e.g. adiabatic, non-adiabatic, and tunnelling reactions can be formulated892

within GCE. In this work, the grand canonical formulation is applied to de-893

rive rate constants for i) general electrocatalytic reactions with (Eq. (8))894

and without (Eq. (2)) the TST approximation, ii) adiabatic ET and PCET895

reactions using a grand canonical Marcus-like EVB theory in Eq. (18) , and896

iii) non-adiabatic ET in Eq. (40) and PCET in Eq. (48). Future work will897

provide interpolation between the derived adiabatic and non-adiabatic rate898

equations. To summarize, the theoretical work presented herein provides a899

unified framework for computing and understanding both inner-sphere (elec-900

trocatalytic) and outer-sphere (electrochemical) reaction kinetics as a func-901

tion of the electrode potential.902
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In its most general form, the fixed potential rate theory requires com-903

putation of canonical rates for a set of systems with a varying number of904

electrons (and/or nuclei). Summing and weighting the different canonical905

ensemble rates can be relaxed if one assumes that the prefactor or trans-906

mission coefficient is independent on the number of particles in the system.907

Assuming a constant transmission coefficient directly leads to TST like equa-908

tions (Eqs. (7) and (8)) where the reaction rate depends exponentially on909

the grand energy barrier ∆Ω‡. This is most useful and provides the theoret-910

ical basis for computing adiabatic reaction rates within GCE-TST as done911

in several recent publications[12, 19, 20, 35, 36, 131, 132] in which the rate912

expression was used without a priori justifying the use of such rate equations.913

Further insight in the (adiabatic) reaction rates and energy barriers is914

obtained from a Marcus-like, grand canonical ensemble empirical valence915

bond (GCE-EVB) theory developed in the present work. As shown in Section916

3, the GCE-EVB formulation enables writing the grand energy barrier in917

terms of fixed potential reorganization energy and the reaction grand energy918

in analogy with the canonical EVB or Marcus theory. As discussed in Section919

3.2, this formulation enables computation and rationalization of both non-920

linear grand energy relationships and Tafel slopes. Together these may called921

BEP-Tafel relations. Both can be derived, analyzed and computed using922

just a few parameters which can be obtained using e.g. a combination of923

fixed potential and constrained DFTs. Based on the BEP-Tafel relationships924

one determine how the reaction barrier changes as a function of the reaction925

energy as shown in Figure 3.2. The derived adiabatic GCE-EVB rate, barrier926

and generalized BEP-Tafel energy relation predict and explain the ”Marcus-927

like” behavior in energy barriers as a function of the thermodynamic driving928

force observed in recent computational work[20, 36, 38].929

To go beyond TST, fixed potential rate constants are derived also for elec-930

tronically (and vibronically) non-adiabatic ET and PCET reactions. Thus931

far computational work on non-adiabatic effects and pure ET have remained932

scarce despite their practical importance in providing new reaction pathways933

to avoid constraining scaling relations[133–135] encountered for adiabatic934

PCET reactions while predicting catalytic activity as well as in understand-935

ing fundamental phenomena in electrocatalysis. As discussed by Schmickler936

et.al in Ref. [136], the absence of computational studies on pure ET in937

electrocatalytic systems is due to insufficient theoretical and computational938

methods. The NA-ET rate constants derived herein will especially useful for939

studying NA effects in outer-sphere ET of electrocatalytic systems. This pro-940
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vides means to obtain atomic-level insight on pure ET reactions which have941

remained elusive and neglected in computational studies but have often been942

observed experimentally, especially on weakly-binding catalysts, as discussed943

in Section 1. The fixed potential PCET rate equations facilitate the study944

of kinetics of ubiquitous proton-coupled electron transer reactions. As for-945

mulated herein, the PCET rate constant naturally includes both electronic946

and vibronic non-adiabaticity as well as hydrogen tunneling. This again en-947

ables detailed theoretical and computational studies of these experimentally948

observed, but thus far computationally largely neglected, electrocatalytic re-949

actions.950

All the rate equations derived in this work can be directly utilized and951

combined with general Hamiltonians used in e.g. electronic DFT. For non-952

adiabatic kinetics and GCE-EVB, methodology for computing diabatic curves953

is needed; constrained DFT[95–97] implemented in various DFT codes[137–954

147] is ideally suited for this and facilitates adopting the rate equations de-955

rived herein. TST-like rate equations can be computed using energies from956

grand canonical DFT which is also currently available in several codes in957

various forms[3, 10–20].958

Combining the presented rate theory with currently existing DFT meth-959

ods and various solvation models is straight-forward and enables the study960

of electrochemical and electrocatalytic kinetics at realistic electrochemical961

interfaces. This will greatly improve our microscopic understanding by en-962

abling computation of electrocatalytic kinetics as a function of the electrode963

potential and addressing tunneling and non-adiabaticity in electrocatalysis.964

Hence, a wide variety of mechanistic, kinetic and thermodynamic aspects of965

electrocatalytic reactions can be addressed on equal footing within GCE and966

the complex interplay between the electrode potential, solvation, double-layer967

and electrocatalysis can be studied from first principles. Besides providing968

a rigorous and general theoretical framework for fixed potential kinetics, the969

advances herein enable computational studies on pure ET and PCET with970

hydrogen tunnelling pathways to circumvent scaling relations often encoun-971

tered in electrocatalysis.972
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Appendix A. Problem for choosing filled and empty orbitals in983

”orbital-based” rate theories984

Appendix A.1. Orbital based electron transfer rate theories985

There are two commonly used orbital based approaches for writing the986

charge transfer rate at an electrode surface. The first one was developed987

by Dogonadze, Levich, and Kutznetsov (DLK)[49], who assumed a weak988

interaction between the donor and acceptor. Their treatment yields an ex-989

pression similar to Marcus theory and the model is often called Marcus-Hush-990

Chidsey[120], Gerischer[148], Marcus-DOS[148] or just the density-of-states991

(DOS) model. In the case of a metallic electrode, the molecular orbital will992

interact with a continuum of electronic states from the metal and therefore993

one needs to integrate over all the metallic bands. An implicit assumption in994

the DOS model is that charge transfer takes place between two one-electron995

orbitals rather than two many-electron wave functions. Also, the effect of996

the electrode potential E is assumed to linearly shift the energy of the initial997

state without changing the one-electron levels. For electrochemical charge998

transfer reactions the DOS equation written in terms of a molecular orbital999

ε0 and its DOS ρ0(ε0) and (quasi-continuum) of electrode bands ε with DOS1000

ρ(ε). In this case the charge transfer is [49, 50] (see also Appendix A)1001

kDOS(E) =

∫
dεW (ε, ε0)f(ε− E)ρ(ε)ρ0(ε0) (A.1)

where W is the transition probability and f is the Fermi-Dirac distribu-1002

tion. Originally, the DLK model was derived for the weak interaction limit1003

and harmonic energy surfaces results in the well-known equation [49, 50]1004
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kDOS(E) ≈
√

β

4πλ

∫ ∞
−∞

dε|Hab(ε, ε0)|2f(ε− E)

exp

[
−β (λ+ e0(E0 − E)− ε0)2

4λ

] (A.2)

Hab(ε, ε0) = 〈ψε0a |Ĥ|ψεb〉 denoting the Hamiltonian matrix element be-1005

tween the molecule and electrode orbitals corresponding to energy levels ε01006

and ε, respectively, in the initial a and final b diabatic states. E is the elec-1007

trode potential and E0 is the formal equilibrium potential. Depending on the1008

model used for the reactant DOS, the weakly interacting limit by Dogonadze,1009

Gerischer’s model with a Gaussian dependency or Schmickler’s model (see1010

below) maybe obtained as shown in Ref. 1491011

Figure A.4: Conventional (left) and GCE Marcus theory (right). The conventional theory
is based on transitions between single-electron orbitals while the current GCE framework
utilized general many-electron wave functions.

The other approach is due to Schmickler[51, 52] and has been dubbed1012

as the potential energy curve (PEC) method. The PEC method applies a1013

modified Newns-Anderson (N-A) Hamiltonian for building potential energy1014

surface (pes)1015
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HN−A = ε0n0 +
∑
k

εknk +
∑
k

(vk0c
†
kcr + vrkc

†
0ck)

+
1

2

∑
i

~ωi(p2
i + q2

i ) + (n0 − z)
∑
i

(~ωigiqi)
(A.3)

where the terms describe reactant orbital, orbitals of the electrode, elec-1016

tron exchange terms using coupling matrix elements v, harmonic bath at1017

frequencies ωi, momenta pi and coordinate qi while the last term couples the1018

reactant at charge state z to the harmonic bath. Connecting the initial and1019

final states of the redox reaction along a charge transfer coordinate rq and1020

using N-A Hamiltonian, the PES is1021

u(rq, εF ) =
r2
q

4λ
+ (ε0 + rq − εF )〈n(rq)〉

+
∆

2π
ln[(εF − rq − ε0) + ∆2]

(A.4)

where 〈n(rq)〉 = 1/2 + 1/π tan−1((εF − rq− ε0)/∆) is the charge at rq and1022

∆(ε′) = π
∑

k|v0,k|2δ(ε′ − εk) is the effective coupling constant. Then, the1023

charge transfer barrier is u‡ = u(rq = rmax, εF ) − u(rq = 0, εF ) and the rate1024

is1025

kPEC = κ exp
[
−βu‡

]
(A.5)

At the weak interaction limit, both the DOS and PEC models are in1026

their essence formulations of Fermi’s Golden rule describing electron transfer1027

between single electron orbitals.1028

Appendix A.2. Orbital based Fermi Golden rule formulation1029

If initial (final) state at the initial (final) geometry can be approximated1030

by a single diabatic electronic state Ψ(Rinitial) ≈ |ψI〉 |χj〉, the Hamiltonian1031

in Eq.(A.6) leading to Fermi’s golden rule as follows. A similar equation can1032

also be written for adiabatic states as shown in Ref. 93, 94. In the diabatic1033

Fermi Golden rule formulation the Hamiltonian is [62, 72]1034
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Ĥel =
∑
i

EI
i

∣∣I i〉 〈I i∣∣+
∑
f

EF
f

∣∣F f
〉 〈
F f
∣∣

+
∑
if

∆if (
∣∣I i〉 〈F f

∣∣+
∣∣F f
〉 〈
If
∣∣) (A.6)

where
∣∣Kk

〉
= |ψk〉 |χk〉 is a vibronic wave function consisting of |ψk〉,1035

a one electron orbital and |χj〉 a nuclear wave function. Reaction rates1036

using this diabatic Hamiltonian is achieved using the general flux formu-1037

lation presented in the main article with the following transition proba-1038

bility and flux[62, 72]: P (E) =
1

2
(2π~)2 Tr

[
F̂ δ(E − ĤN)F̂ δ(E − ĤN)

]
and1039

F̂ = 1/~∆[|0〉 〈1| + |1〉 〈0|], respectively. ∆if is a general diabatic coupling1040

term, which in the Franck-Condon approximation is1041

∆if =
∣∣∣ 〈ψf |V̂ |ψi〉∣∣∣2∑

kl

|〈χk|χl〉|2

= |Vif |2
∑
kl

|〈χk|χl〉|2
(A.7)

Following standard thermalized Fermi-golden rule derivation[62, 72, 101]1042

for a transition between two electronic states gives1043

kI→F =
2π

~
∑

i∈I,f∈F

ki→f (A.8a)

ki→f =
|Vif |2∑

l exp[−Ei,l]
∑
lk

exp[−Ei,l]|〈χk|χl〉|2 × δ(Ei − Ef + El − Ek)

= |Vif |2F (Ei − Ef )
(A.8b)

where F (Ei−Ef ) is the thermally averaged Franck-Condon factor. If the1044

nuclear wave functions are taken to be those of a harmonic oscillator, the1045

Marcus barrier and the rate constant can be obtained from the derivation1046

in Appendix C. Note that transition between all one electron orbitals are1047

considered here.1048
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To obtain the DOS-model for electron transfer, only a subset of the transi-1049

tion rates is considered. Intuitively, for an reduction of a molecule, transitions1050

from the localized occupied metal orbitals to empty orbitals localized at the1051

molecule should be considered. This leads to1052

kred =
2π

~
∑
i∈filled

∑
f∈empty

ki→f

=
2π

~
∑

f∈empty

∫
dεiρ(ε)f(ε− εF )ki→f

(A.9)

where the second equation highlights the close correspondence with the1053

DOS method (Eq. (A.1)), ρ(ε) is the DOS and f the Fermi-Dirac distribu-1054

tion. Note also that the PEC method uses a Hamiltonian similar diabatic1055

Hamiltonian here. In PEC the total transition probabilities from initial to1056

final state are also computed using orbital-to-orbital formulation described1057

above.1058

Appendix A.3. Choosing the orbitals1059

Both DOS and PEC share a fundamental open question: how does one1060

choose the localized and empty/filled orbitals? This situation is faced in a1061

typical first-principles calculations, where (canonical) one electron orbitals1062

are highly delocalized even when charge-localized diabatic states are used,1063

making the choice of active orbitals difficult. An important result learned1064

from orbital localization methods[150–153] is that the energy from a sin-1065

gle determinant method such as DFT or Hartree-Fock methods is invariant1066

to orbital rotation within the occupied molecular orbitals. Thus, occupied1067

orbitals can be localized using a unitary rotation which leaves the energy,1068

and the total wave function unchanged ; during this process the spatial shape1069

and spread of filled one electron orbitals are drastically changed. Also, the1070

empty, virtual orbitals can be localized separately. However, the filled and1071

empty are not allowed to mix during the localization to avoid changes in1072

occupation of numbers[154]. As mixing is forbidden, orbital localization is1073

performed separately for the empty and filled orbitals and consequently two1074

different unitary transforms are required.1075

A concrete example helps to understand why the orbital localization cause1076

practical difficulties. Consider for example an outer-sphere ET from an elec-1077

trode to O2 forming a superoxide species. Here the initial state wave functions1078
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{|I〉} would be occupied orbitals localized on the metal and the final state1079

orbitals {|F 〉} would be empty states localized on O2. After a normal DFT1080

calculation, one performs a unitary transform on both the initial and final1081

states separately such that the the orbitals are well localized to the molecule1082

and metal for both states: |I〉 = Û
∣∣∣IfilledDFT

〉
and |F 〉 = V̂

∣∣F empty
DFT

〉
, with1083

Û Û † = 1 and V̂ V̂ † = 1. Note that nuclear wave function remain unchanged1084

as the electronic energy is unaffected by the transformation. Thus, the uni-1085

tary transformation leaves the thermally averaged Franck-Condon weight1086

unchanged.1087

However, the electronic coupling elements for a given Vif = 〈i|Ĥ|f〉1088

change drastically as the electronic orbitals are rotated. This is easily seen1089

from the close correspondence[155] between the coupling and overlap ele-1090

ments 〈i|V |f〉 ≈ v 〈i|f〉, where v is a constant. Changing from the localized1091

to delocalized states is written as 〈i|f〉 = 〈idft|Û †V̂ |fdft〉 6= 〈idft|fdft〉 when1092

final (empty) and initial (filled) canonical DFT orbitals are localized sepa-1093

rately. Only when Û = V̂ is the overlap between the localized and canon-1094

ical orbitals the same; this would require of mixing of the filled and empty1095

canonical orbitals resulting in changes in the total energy and the total wave1096

function and is therefore discouraged.1097

As a concrete example consider Eq. (A.9) where only states below the1098

Fermi-level contribute to the reduction rate. As potential is changed, some1099

orbitals become empty or occupied changing the driving force of the reac-1100

tion which remains unchanged under the orbital localization. The rate is1101

dictated by transition probability directly related to the matrix elements in1102

non-adiabatic reactions. Thus, the rate of non-adiabatic electron transfer re-1103

action depends on how the orbitals are chosen and localized. This can lead1104

to inconsistent and incorrect interpretation of the electrochemical rate as a1105

function of the potential if basic single determinant methods are used to1106

parametrize the DOS or PEC models. Great care is needed when the meth-1107

ods and as emphisized in Ref. 82 ”this is not a failure of the computational1108

methods used but is a consequence of how the rate constant is defined by1109

the phenomenological equations. It is therefore important to choose the ap-1110

proach which is equivalent to the experiment or thought experiment that the1111

theory is attempting to reproduce”.1112

Based on the above discussion, a very important conclusion is reached:1113

the rate obtained from the Fermi golden rule, DOS or PEC using only the1114

”active orbitals” depend on the way the orbitals are localized. Therefore,1115
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one needs to acknowledge that orbital localization needed when the orbital-1116

based models are parametrized using canonical DFT methods, leads to arbi-1117

trary changes in the rate constant depending on the localization or rotation1118

used scheme. Hence, while the energy, density, and the total wave func-1119

tion remain unchanged after a unitary transformation of the orbitals, single1120

orbitals and single orbital overlaps will necessarily be affected. Therefore, a1121

unitary transformation such as orbital localization will unphysically affect the1122

rate obtained from methods using one-electron orbitals and orbital-to-orbital1123

transitions to compute the transition probability. If one electron-based the1124

DOS or PEC methods are parametrized using first-principles approaches,1125

methods such as fragment orbital DFT[156] methods might be applicable.1126

Care is also required when using many-body wave functions for comput-1127

ing the rates. While unitary transform does not change any observables of1128

a single diabatic wave function, the off-diagonal matrix elements might be1129

sensitive to orbital rotations. However, in approaches such constrained DFT1130

employed in this work, the coupling elements are functionals of the electron1131

densities of the initial and final state[96] and as such in principle unaffected1132

by orbital localization.1133

Appendix B. Grand canonical formulation for electrochemical sys-1134

tems1135

Below the necessary details for grand canonical formalism are presented.1136

A more complete treatment is given in Ref. 3.1137

Within GCE all expectation values are computed using

〈O〉 = Tr
[
ρ̂Ô
]

(B.1)

with the grand canonical density operator

ρ̂ =
exp
[
−β(Ĥtot −

∑
i µ̃iN̂i)

]
Tr
[
exp
[
−β(Ĥtot −

∑
i µ̃iN̂i)

]] (B.2)

where Ĥtot is the Hamiltonian, µ̃i is the electrochemical potential of1138

species i, and N̂ is the number operator. The partition function is defined1139

as Ξ = Tr
[
exp
[
−β(Ĥtot −

∑
i µiN̂i)

]]
from which the grand free energy is1140
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Ω[T, V, µ] = −kBT ln Ξ = E − TS −
∑

i µiNi. The probability of being in1141

microstate i is1142

pGCi =
exp

[
−β 〈Ψi|Ĥtot −

∑
j µ̃jN̂j|Ψi〉

]
Ξ

(B.3)

In the above equation, |Ψi〉 is the total wave function of both the electrons1143

and nuclei so that the particle number operators N̂i corresponds to electrons1144

or the nuclear identities as specified below. With these definitions fixed1145

potential, grand canonical can be computed. For example, the grand energy1146

for electrons n and electrolyte ± with fixed chemical potential is is given by1147

Ω(T, V, µ̃±, µ̃n) ≡
∑
i

pi

[
β ln pi + 〈Ψi|Ĥtot − µ±(N̂+ + N̂−)− µ̃nN̂n|Ψi〉

]
= Tr

[
ρ̂Ω̂
]
≡ Ω[ρ̂]

(B.4)

Appendix C. Adiabatic and non-adiabatic harmonic TST rates1148

Here classical harmonic TST (HTST) for adiabatic and non-adiabatic1149

reactions within GCE are derived.1150

Appendix C.1. Adiabatic HTST1151

The general TST rate equation is shown in Eq. (7). First, consider1152

a general case where potential the number of both nuclei and electrons is1153

allowed to fluctuate. Usually, forNN classical nuclei the Hamiltonian in mass-1154

weighted coordinates (xi) and momenta Pi is written as Hcl =
∑

i∈NN
P 2
i +1155

V (xi). V (xi) defines the (Born-Oppenheimer) potential energy surface.1156

Then consider a system is open to electrons at a fixed electron chemi-1157

cal potential while number of nuclei is fixed. Also, the system is assumed1158

adiabatic meaning that the number and distribution of electrons adjusts in-1159

stantaneously to the nuclear configuration. This is the common situation1160

considered in first principles calculations at fixed electrode potential cal-1161

culations. For this case, the Kohn-Sham-Mermin theorem guarantees that1162

electronic energy and distribution are unique to a given electron chemical1163

potential and external potential (here provided by the nuclei). Hence, the1164

potential energy V is not only a parametric function of the nuclear positions1165
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but also the chemical potential of the electrons. Furthermore, as shown in1166

Ref. 3, the grand free energy of the electrons is given by Ωn(T, V,NN , µn; xi).1167

As the nuclei move the on the effective potential energy surface provided by1168

the electrons, one recognizes that V (xi, µn) = Ωn(T, V,NN , µn; xi) (see Ref.1169

3 and Appendix B). Then, for the open electronic system, the classical1170

Hamiltonian for the nuclei is1171

H(NN)cl =
∑
i∈NN

P 2
i + V (xi, µn) ≡ Hcl (C.1)

where I and ‡ denote the initial and transition states. The TST rate is1172

written as [101]1173

kTST (NN , V, T )QI =

∫
N

dP

∫
N

dx exp
[
−H‡clβ

]
δ(f(x))(∇f · PN)h(∇f · PN)

(C.2)
where f is the N − 1 dimensional dividing surface between the reactants1174

and products, ∇f · PN = Pn‡ is the momentum normal to f identified as1175

the reaction coordinate, h(∇f · PN) = h(Pn‡) is a step function separating1176

the reactant ad product basins, and δ(f(xN)) restricts the geometries to lie1177

on the dividing surface. With these definitions the canonical HTST at fixed1178

electron chemical potentials follows from:1179

kHTST (T, V,NN) =

∫
N

dP

∫
N−1

dxPn‡
exp
[
−H‡clβ

]
ZI

=

∫
N
dP
∫
N−1

dxPn‡ exp
[
−β(

∑N
i=0 1/2P 2

i + V (xi, µn)‡)
]

∫
N
dP
∫
N
dx exp

[
−β(

∑N
i=0 1/2P 2

i + V (xi, µn)I)
]

=
1√
2πβ

∫
N−1

dx exp
[
−βV (xi, µn)‡

]∫
N
dx exp[−βV (xi, µn)I ]

≈ vN√
2π

∏N−1
i vi∏N−1
i v‡i

exp
[
−β(Ω‡n − ΩI

n)
]

=
vN
2π

exp
[
−β(Ω‡N − ΩI

N)
]

=
vN
2π

exp
[
−∆Ω‡Nβ

]

(C.3)

where at the second last row the effective potentials are Taylor expanded1180

in terms of normal mode coordinates with corresponding frequencies vi and1181
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vN is the frequency along the reaction coordinate:V ‡/I = Ω
‡/I
N + 1/2

∑
i viq

2
i .1182

The last equality follows from setting the nuclear vibrational entropy SN =1183

kB ln
(∏N−1

i vi/
∏N−1

i v‡i

)
and setting the total grand free energy to ΩN =1184

Ωn−TSN . Here the subscript N reminds that the number of nuclei was kept1185

fixed above. Note that Eq. (C.3) would be used in typical first prin-1186

ciples calculations at fixed electrode potentials where the electron1187

chemical potential and number of nuclei are fixed.1188

The above treatment can also be extended to treat situations in which1189

both the number of electrons and nuclei are allowed to fluctuate. This is1190

straight-forward and can be obtained by. Inserting Eq. (C.3) in (7) and1191

applying Eq. (8) leads to1192

kHTST (T, V, µ) =
〈vN〉µ

2π
exp
[
−∆Ω‡β

]
(C.4)

where 〈vN〉µ is the effective frequency along the reaction coordinate com-1193

puted using effective fixed potential PESs.1194

Appendix C.2. Non-adiabatic HTST1195

Next, non-adiabatic harmonic transition state theory (NA-HTST) ap-1196

proximation to the rate is developed. Unlike for the canonical case, only a1197

fixed number of nuclei is treated. NA-HTST also requires the calculation1198

of matrix elements HAB = 〈ΨA|Ĥ|ΨB〉. These HABs are defined only when1199

|ΨA〉 and |ΨB〉 have the same number of both electron and nuclei. Also,1200

the adiabatic approximation cannot be used and the electrons do not in-1201

stantaneously adapt to nuclear positions. Hence, unlike for the adiabatic1202

case, constant electron number V (x, n) rather that constant electron poten-1203

tial V (x, µn) is used. The appropriate Hamiltonian is given by Eq. (A.6), in1204

which Hcl =
∑

i∈NN
P 2
i /2mi + Vi(xi).1205

Using this Hamiltonian, assuming a quadratic potential V and applying1206

the Golden rule form the basis for NA-HTST. This derivation can be found in1207

e.g. Ref 74. Another path, presented below, is to use the classical transitions1208

state theory using the Landau-Zener transition Pr probability[100, 101] and1209

assuming that the potential energies are quadratic. Then, the following iden-1210

tities are used: The reorganization energy and vibrational frequency along1211

the reaction coordinate are related as λ = 2v2
N∆q2 = 2mv2

N∆x2, where ∆q1212

and ∆x are the geometric differences of the initial and final states in mass1213

weighted and cartesian coordinates states, respectively. The differences of1214
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forces can written as gradient of the two parabolas at the transition state1215

as shown in Ref. 74 to yield |∆F |‡ = λ/∆x. With these definitions, fixed1216

number (canonical) electronic/nuclear NA-HTST can be derived:1217

knaHTST (T, V,NN , Nn) =

∫
N

dP

∫
N−1

dxPrPn‡
exp
[
−H‡clβ

]
ZI

=

∫
N

dP

∫
N−1

dx

(
1− exp

[
− 2π|HIF |2

~|Pn‡∇n‡(VI − VF )|

])
Pn‡

exp
[
−H‡clβ

]
ZI

linearize exp
≈

∫
N

dP

∫
N−1

dx
2π|HIF |2

~|Pn‡∇n‡(VI − VF )|
Pn‡

exp
[
−H‡clβ

]
ZI

forces
=

∫
N

dP

∫
N−1

dx
2π|HIF |2

~Pn‡|∆F |
Pn‡

exp
[
−H‡clβ

]
ZI

integrate P
=

2π|HIF |2

~|∆F |

∫
N−1

dx exp
[
−V ‡β

]∫
N
dx exp[−VIβ]

harmonic TST
≈

√
2πβ
|HIF |2

~|∆F |
vN

∏N−1
i vi∏N−1
i v‡i

exp
[
−(E‡ − EI)β

]
vib. entropy

=
√

2πβ
|HIF |2

~|∆F |
vN exp

[
−∆A‡β

]
|∆F |‡=λ/∆x
≈

√
2πβ

√
mvN∆x|HIF |2

~λ
exp
[
−∆A‡β

]
λ=2mv2N∆x2

=

√
πβ

~2λ
|HIF |2 exp

[
−∆A‡β

]
Marcus barrier
≈

√
πβ

~2λ
|HIF |2 exp

[
−β (∆A0 + λ)2

4λ

]
(C.5)

The above rate is derived for fixed number of electrons and nuclei. As1218

done for the adiabatic case, this fixed particle rate needs to be turned to1219

a fixed potential rate. In particular, the electronic subsystem needs to be1220

open in order to study kinetics at a fixed electrode potential. However, gen-1221

eralization of the NA-HTST to GCE is significantly more difficult compared1222

the the adiabatic as discussed. The electronically GCE NA-HTST can be1223

accomplished the approach in Section 4 resulting in Eqs. (40) and (48).1224
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To gain more insight, it is useful to compare the above derivation to the1225

GCE-EVB picture used for deriving the GCE equivalent of Marcus barriers1226

i.e. Eq. (18). Using Eq. (8) with the GCE Marcus barrier of Eq. (18) with1227

an effective non-adiabaticity correction gives1228

knaHTST (T, V,NN , µn) ≈

〈√
πβ

~2λ
|HIF |2

〉
µn

exp

[
−β (∆ΩFI + Λ)2

4Λ

]
(C.6)

where the prefactor is computed for either i) some particle number and1229

assumed to independent of the electrode potential or ii) various particle num-1230

bers and weighted according to the grand canonical distribution.1231

Appendix D. Grand canonical perturbation theory1232

If only the electronic subsystem is open, the easiest approach is to use1233

an effective fixed electrode potential Hamiltonian like the one introduced in1234

Eq. (C.1). Then, one solves equations similar to (10) using this effective1235

constant potential Hamiltonian to obtain fixed (electrode) potential diabatic1236

states. Then, the diabatic states and grand energy curves are computed1237

along the reaction coordinate. From the curve crossing point an estimate for1238

the constant (electrode) potential grand energy barrier is obtained.1239

To keep the present work as general as possible i.e. allowing both the1240

number of electron and nuclear species to fluctuate, a simple effective Hamil-1241

tonian cannot be specified. Instead, explicitly sampling the GCE and number1242

of electrons and nuclei is needed. In this case, one can follow and extend the1243

general thermodynamic perturbation theory of Zwanzig[104] to GCE. Along1244

these lines, the canonical energy operator H = H0 + V is defined and par-1245

titioned to contributions from the unperturbed H0 part and a perturbation1246

V . The total GC partition function Ξ and grand energy Ω are given by (see1247

Appendix B)1248

Ξ = Tr[H − TS − µN ] and exp[−βΩ] = Ξ (D.1)

Then, the total grand energy can be multiplied and divided by the un-1249

perturbed grand energy1250

exp[−βΩ] =
exp[−β(Ω− Ω0)]

exp[−βΩ0]
=

exp[−β(ΩV )]

exp[−βΩ0]
= 〈exp[−βV ]〉0 (D.2)
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where the last identity means that the perturbation part of the grand1251

energy is obtained by performing an GCE sampling of the perturbation part.1252

For electron transfer reactions, the total Hamiltonian can be written as[157]1253

H = K + U + Vx (D.3)

where K is the kinetic energy, U is the interaction energy and Vx is the1254

pertubation which depends on extent of the reaction: x = 0 and x = 11255

correspond to initial and final states, respectively. A linear switch from the1256

initial to the final state is obtained by Vx = VI − x(VF − VI). This potential1257

defines the initial and final diabatic states and based on the energies of the1258

initial and final states EI and EF , one defines the instantaneous energy gap1259

∆E(R) = EF (R)−EI(R) = X at geometry R. As noted by Zusman[98] and1260

Warshel[99] (see also Ref. 158 for a combined discussion), the energy gap1261

coordinate is directly related to the (solvent/bath) reorganization coordinate1262

and both are often used in deriving electron transfer rates. It was recently1263

shown by Jeanmairet et.al.[157] that the energy gap coordinate is a valid1264

reaction coordinate also within GCE.1265

Combining the two state GCE diabatic model for the initial I and final
F states with the general perturbation result, one obtains,

exp[−β∆Ω] =
〈exp[−βVF ]〉F
〈exp[−βVI ]〉I

=

∑
N e

βµN
∫
dPNdRNe−βVF∑

N e
βµN

∫
dPNdRNe−βVI

=
ΞV
F

ΞV
I

(D.4)

which gives ∆Ω = −β−1 ln
(
ΞV
F /Ξ

V
I

)
. Next, the sampling is constrained to1266

a specific region of the energy gap. As recently shown in Ref. 157, a one-to-1267

one mapping exists between the vertical energy gap 〈∆E〉x, x, the potential1268

Vx, and the probability (px) of being in microstate sampled from the GCE:1269

x ↔ 〈∆E〉x ↔ Vx ↔ px. Introducing the energy gap coordinate and noting1270

that the energies of I and F are computed from the same Hamiltonians1271

except for the ”perturbation” part, allows writing1272

∆Ω = −β−1 ln

(∑
N e

βµN
∫
dPNdRNe−β(∆E+V I)∑

N e
βµN

∫
dPNdRNe−βV I

)
=

− β−1 ln
〈
e−β∆E

〉
I

= β−1 ln
〈
eβ∆E

〉
F

(D.5)
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where ∆E = VF −VI is used. One can also obtain a probability distribu-1273

tion for the energy gap by performing constrained sampling[101] of the grand1274

energy curves1275

Ξ̄i(X) =
∑
N

eβµN
∫
dPNdRNe−βEiδ(∆E(R)−X) (D.6a)

pi(X) =
Ξ̄i(X(R))

Ξi
= 〈δ(∆E(R)−X)〉i =∑

N e
βµN

∫
dRNdPNδ(∆E(R)−X)e−βEi∑

N e
βµN

∫
dRNdPNe−βEi

(D.6b)

so that Ξi =
∫
dXΞ̄i(X) ≡ e−βΩi and Ωi(X) = −β−1 ln(pi(X)) + Ωi. Above1276

Ωi is the diabatic grand energy and i = I or F . Using the last identity and1277

observing that integration over the probability is unity, leads to1278

Ωi = −β−1 ln

∫
dXe−βΩi(X) (D.7)

To arrive at an important identity linking the diabatic grand energies to1279

the energy gap is obtained by using the energy gap as the reaction coordinate1280

X after writing1281

Ω̄I(∆E) = −β−1 ln
(
Ξ̄I(∆E)

)
=

− β−1 ln

(∑
N

eβµN
∫
dPNdRNe−βEI(RN )δ(∆E(RN)−∆E)

)

= −β−1 ln

(∑
N

eβµN
∫
dPNdRNe−β(EF (RN )−∆E(R))δ(∆E(RN)−∆E)

)

= −β−1 ln

(
eβ∆E

∑
N

eβµN
∫
dPNdRNe−β(EF (RN ))δ(∆E(RN)−∆E)

)

= −∆E − β−1 ln

(∑
N

eβµN
∫
dPNdRNe−βEF (RN )δ(∆E(RN)−∆E)

)
= −∆E + Ω̄F (∆E)

(D.8)

At this point all relevant free energy identities within the GCE corre-1282

sponding to the commonly used identities used for deriving the canonical1283
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Marcus theory have been derived.[99, 105–110] Refs. 99, 105–110 show var-1284

ious ways to obtain the iconic canonical Marcus rate constant. To arrive at1285

the corresponding rate constant in the GCE, it is shown that detailed bal-1286

ance is satisfied. At the transition state the initial and final diabatic grand1287

energies are equal giving1288

ΩI(∆E
‡) = ΩF (∆E‡)

→ −β−1 ln
(
pI(∆E

‡)
)

+ ΩI = −β−1 ln
(
pF (∆E‡)

)
+ ΩF

→ pI(∆E
‡)

pF (∆E‡)
= exp[−β(ΩF − ΩI)] = exp[−β∆ΩFI ]

(D.9)

which shows that detailed balance is satisfied. The diabatic grand energy1289

surfaces are computed from the energy gap distribution[109]1290

gI(∆E) = −β−1 ln(pI(∆E)) and

gF (∆E) = −β−1 ln(pF (∆E)) + ∆ΩFI

(D.10)

The transition state can then be identified from the intersection of the1291

relatice grand energy curcves: gI(∆E
‡) = gF (∆E‡). Computing the reaction1292

rate using the standard transition state theory expression gives1293

kIF = κ
exp
[
−βgI(∆E‡)

]∫
d∆E exp[−βgI(∆E)]

= κpI(∆E
‡) (D.11)

showing that the reaction rate is determined by the energy gap distribu-1294

tion function pI(∆E) = 〈δ(∆E(R)−∆E)〉I from Eq. (D.6). Note, that mi-1295

croscopic reversibility is satisfied by construction. To obtain the iconic Mar-1296

cus rate within GCE, one may follow the perturbation theory route[104, 109]1297

and perform a cumulant expansion on the energy gap distribution as was1298

done also when deriving the GCE-NATST in this work in section 4. It has1299

been shown in several previous studies[106, 109, 121] that the second order1300

cumulant expansion results a Gaussian form for the energy gap distribution1301

pI(∆E) =
1√

2πσI
exp

[
−(∆E − 〈∆E〉I)2

2σ2
I

]
(D.12)

where 〈∆E〉I is the energy gap expectation value in the initial state ob-1302

tained from Eq. (D.6) and σI = 〈(∆E)2〉I − (〈∆E〉I)2 is the gap variance.1303
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The Marcus relation is then obtain after standard manipulations[100, 106]1304

by inserting these relations in Eq. (D.8) result in the GCE Marcus rate of1305

Eq. (18)1306

Appendix E. Thermodynamic analysis of outer-sphere ET in macro-1307

scopic systems1308

Consider a general outer-sphere ET reaction e−(M) +B(sol) � B−(sol)1309

where an electron is transferred from the metal (M) to molecule B in the1310

solution phase (sol). The equilibrium potential is Eeq. Changing the po-1311

tential from Eeq to E i.e. introducing the over-potential η = E − Eeq
1312

changes the electron energy by ∆µe = −η for the initial state. The en-1313

ergy of the final state changes as ∆µsolB− = −F∆φsol(η) where φsol is the1314

electrostatic potential in the solution phase. The reaction energy is changed1315

by ∆A = −[∆φsol(η) − η]. ∆φsol(η) depends roughly linearly on η. Hence,1316

∆A ≈ a× η1317

Appendix F. Grand canonical weights as a function of particle1318

number1319

As shown in e.g. Eq. (2) or (40), computation of GCE rates involves1320

a summation over states with different number of particles. To avoid the1321

infinite summation, the crucial question is how many different states are in1322

fact needed. This depends on the population probability or weight of different1323

particle number states.1324

Here the weights as a function of µ are studied for a graphene sheet. The1325

graphene is modelled using small 4 atom unit cell repeated in the x and y1326

directions. The vacuum along the z-directions is 15Å. The GPAW[159–161]1327

software is used for the DFT calculations. The grid spacing is set to 0.18Å,1328

16 × 16 × 1 k-point is applied, and exchange-correlation effects are treated1329

using the PBE[162] functional. The system is immersed in a continuum1330

water solvent using the SCMVD model[163] using the standard parameters1331

given in Ref.163. The charged systems are modelled using the homogeneous1332

Poisson-Boltzmann model[3, 20] The weights are computed using the usual1333

definition:1334

pN =
exp[−β(EN − µN)]∑
N exp[−β(EN − µN)]

(F.1)
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Charge µ = Ef E p(µ = −4.03 eV) p(µ = −3.06 eV)
-0.1 -2.46 -37.17 0.0096 0.0536

-0.075 -2.83 -37.11 0.0349 0.1203
-0.05 -3.06 -37.03 0.0988 0.2102
-0.025 -3.53 -36.95 0.2148 0.2825

0 -4.03 -36.86 0.2973 0.2417
0.025 -4.53 -36.75 0.2144 0.1077
0.05 -5.02 -36.63 0.0971 0.0301
0.075 -5.26 -36.50 0.0335 0.0064
0.1 -5.64 -36.36 0.0089 0.0010

Table F.1: Weights for different charge states of graphene as function of µ, the electron
chemical potential in eV. Ef is the Fermi-level in eV, E is the total energy, and p are the
weights

The results are show in Table F.1. As can be seen the relevant weights1335

for both µ0 = −4.03 and µ = µ0 ± 0.5eV are captured by using 9 charge1336

states. By carefully choosing the different charge states will reduce the num-1337

ber needed charge states. Furthermore, larger systems should require less1338

states as these are ”closer” to the thermodynamic limit and the probabilities1339

approach a Delta function as system size is increased.1340

Appendix G. Franck-Condon derivation of the non-adiabatic rate1341

The Franck-Condon treatment starts from the second-last line of Eq. (36)1342

by noticing that1343

1

2π~
∑
m,n

pimNV
2
N,if

∫
dt|〈nN |mN〉|2eit(EimN−EfnN )/~ =

V 2
N,if

2π
FC(∆E)i

(G.1)

where FC(∆E)i is the thermalized Franck-Condon factor. In general1344

case, the thermalized Franck-Condon factor can be computed by Fourier1345

transforming it and using generating functions.[164] As shown in Ref. 1251346

chapter 6,the FC-factor can be written using the spectral density function1347

Jfi(ω) to give1348
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FC(∆E)i =
1

2π~
exp[G(0)]

∫ ∞
−∞

dt exp
[
it∆EN

fi/~ +G(t)
]

≈
∫ ∞
−∞

dt

2π~
exp

[
it

∆EN
fi − λ
~

]
exp

[
− λt

2

β~2

]

=

√
1

4πkBTλ
exp

[
−

(∆EN
fi + λ)2

4kBTλ

]

where G(t) =

∫ ∞
0

dω cos(ωt)(1 + 2n(ω))JIF (ω)− sin(ωt)JIF (ω)

≈
∫ ∞

0

dω
(ωt)2

β~ω
JIF (ω)− i

∫ ∞
0

dωtωJIF (ω)

(G.2)

using the high-temperature approximation (1 + 2n(ω) ≈ 2kBT >> 1)1349

and slow-fluctuating Debye solvent assumptions and
∫∞

0
dωωJIF (ω) = λ/21350

has been used. Hence, if the spectral density not sensitive to the number of1351

electrons, the reorganization energy is independent on the number of elec-1352

trons in the systems. For practical purposes this is expected to be a good1353

approximation. When the approximate FC factor is introduced, Eq. (G.1)1354

gives the Marcus rate in the GCE.1355

Appendix H. Decomposition of the reorganization energy to inner-1356

and outer-sphere contributions1357

The total reorganization energy is often[54, 75, 103, 165] modified dif-1358

ferentiate between inner- and outer-sphere contributions. This is achieved1359

by partitioning the surrounding molecules to tightly bound ligands or inner-1360

solvent solvent molecules and the bulk solvent. While this is not necessary1361

in the approach taken in this work, separating the effect the nearby atoms1362

or molecules and the solvent might be useful for a understanding the role1363

of different constituents on the overall reaction. In both computational and1364

theoretical studies this separation occurs naturally if the bulk solvent is pre-1365

sented as a continuum as in the work of Dogonadze et.al.[49, 50] for ET and1366

SHS[54] for PCET.1367

To single out the solvent reorganization energy, a solvent polarization co-1368

ordinate Q is introduced. As detailed in Ref. 54 this coordinate introduces a1369
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new parametric dependence to the electron, proton, and vibrational Hamil-1370

tonians, wave functions and energies. Here it is shown how an additional1371

solvent coordinate modifies the ET reactions and the PCET kinetics can be1372

treated analogously.1373

First, a solvent coordinate Q is introduced. The solvent coordinate is1374

orthogonal to other coordinates which allows writing the wave function as1375

|imaN〉 = |iN(q,Q)〉 |mN(Q)〉 |aN〉 where |aN〉 is the wave function re-1376

lated to solvent polarization. Similarly the energies from Eqs. (42) obtain1377

a parametric dependence on Q. The initial state solvent wave functions are1378

eigenfunctions obtained from1379

[T̂Q + εmN ] |aN〉 = EaN |aN〉 (H.1)

and similarly for the final state. Above, T̂Q is the kinetic energy operator1380

for the outer-sphere species. Then the total energy is given by1381

EimaN = εiN + εimN + EaN (H.2)

and the total coupling between the initial and final states is1382

VimaN,fnbN = 〈fmbN |V̂N |imaN〉
≈ 〈fN |V̂N |iN〉 〈nN |mN〉q 〈bN |aN〉Q
= Vif,NSnm,NSab,N

(H.3)

Assuming that the outer-sphere free energy related to the solvent reorga-1383

nization is independent of the particle number allows separating its contri-1384

bution from the total grand partition function1385

Ξi =
∑
m,a,N

exp[−β(EimaN − µN)]

≈ Qa

∑
m,N

exp[−β(EimN − µN)] = QaΞim

(H.4)

Note that inner-sphere energies and partition function explicitly depend1386

on the particle number. Inserting the last two equations in the golden rule1387

expression yields1388
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k =
2π

~Ξi

∑
Nabmn

e−β(εiN−µN+βEi
aN+εmN )

∣∣∣ 〈Nnvf |V̂N |iumN〉∣∣∣2δ(EimaN − EfnbN)

≈ 2π

~
∑
N

∑
m,n

pimN
∑
a,b

paNV
2
if,NS

2
nm,NS2

ab,Nδ(EimaN − EfnbN)

(H.5)

where pimN = exp[−β(εiN + εmN − µN)]/Ξim and paN = exp[−βEaN/Qa].1389

As done above, representing the delta function as a Fourier transform allows1390

writing1391

k =
∑
N

V 2
if,N

~2

∫
dt
〈
eit(εmN/~e−it(εnN )/~〉

q
×
〈
eit(EaN/~e−it(EbN )/~〉

Q

=
∑
N

V 2
if,N

~2

∫
dtGmn,N(t)gab,N(t)

(H.6)

where auxiliary correlation functions Gmn,N(t) and gab,N(t) are introduced1392

providing a connection to the work of SHS[54, 55]. To be specific, Gmn,N(t)1393

characterizes the inner-sphere contributions while gab,N(t) is related to the1394

outer-sphere solvent polarization. Different approximations for the correla-1395

tion functions presented by SHS in Ref. 54, 55 can be readily used here1396

as well to derive various well-defined limits of the rate equation. For ex-1397

ample, assuming that the intra-molecular modes can be neglected leads to1398

Eq.(36) with a/b replacing the m/n indices. Within this assumption and1399

repeating the steps leading to Eq. (40) shows that resulting reorganization1400

energy is the solvent reorganization energy and the inner-sphere interactions1401

contribute only to the reaction energy.1402

If the intra-sphere contributions cannot be neglected, the rate equations1403

become rather cumbersome in general. However, the case Gab,N(t) ≈ Gab(t)1404

i.e. that the outer-sphere contribution to rate is independent of the parti-1405

cle number, deserves some attention. For this, the inner- and outer-sphere1406

components are separated by rewriting Eq.(H.5) using a convolution[165]1407

k =
∑
N

piN
2πV 2

if,N

~

∫
dEf(x)F (∆EN

fi − x) (H.7)

56



with f(x) =
∑

mn pmNS
2
nm,Nδ(ε

i
mN−εinN+E) and F (EN

fi−x) =
∑

ab paNS2
ab,Nδ(EaN−1408

EbN + ∆EN
fi −x) as shown for single N in Ref.165. f(x) and F (EN

fi −x) rep-1409

resent inner- and outer-sphere contributions to transition probability. Again1410

various forms for both terms can be derived[165]. To retain consistency, a1411

high-temperature approximation for quadratic solvent modes is used. This1412

gives[54, 55, 165]1413

F (EN
fi − x) =

1

~
√

4πkBTλNo
exp

[
−

(∆EN
fi + λNo )2

4kBTλNo

]
(H.8a)

f(x) = FC(∆E − x)i (H.8b)

where FC(∆E − x)i is a modified Franck-Condon factor given in (G.2)1414

and λNo is recognized as the outer-sphere reorganization energy. Making the1415

high-temperature and slow-fluctuating Debye solvent approximations as done1416

in Eq (G.2) allows performing the convolution integral. This yields [165]1417

k =
∑
N

piN
2πV 2

if,N

~
1

~
√

4πkBT (λNo + λNi )
exp

[
−

(∆EN
fi + λNo + λNi )2

4kBT (λNo + λNi )

]
(H.9)

Finally the assumption that the outer-sphere contributions do not depend1418

on the particle number can be applied to give1419

k =
∑
N

piN
2πV 2

if,N

~
1

~
√

4πkBT (λo + λNi )
exp

[
−

(∆EN
fi + λo + λNi )2

4kBT (λo + λNi )

]
(H.10)

From this form it can be seen that the total reorganization energy can1420

be separated to a particle number independent solvent contribution λo and1421

a reorganization energy of the inner sphere component λNi which depends1422

explicitly on the particle number.1423
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[139] J. Řezáč, B. Lévy, I. Demachy, A. de la Lande, Robust and efficient1876

constrained dft molecular dynamics approach for biochemical model-1877

ing, J. Chem. Theory Comput. 8 (2012) 418–427.1878

[140] P. Ramos, M. Pavanello, Constrained subsystem density functional1879

theory, Phys. Chem. Chem. Phys. 18 (2016) 21172–21178.1880

[141] H. Oberhofer, J. Blumberger, Charge constrained density functional1881

molecular dynamics for simulation of condensed phase electron transfer1882

reactions, J. Chem. Phys. 131 (2009) 064101.1883

[142] H. Oberhofer, J. Blumberger, Electronic coupling matrix elements from1884

charge constrained density functional theory calculations using a plane1885

wave basis set, J. Chem. Phys. 133 (2010) 244105.1886

[143] P. Ghosh, R. Gebauer, Computational approaches to charge transfer1887

excitations in a zinc tetraphenylporphyrin and c70 complex, J. Chem.1888

Phys. 132 (2010) 104102.1889

[144] A. M. P. Sena, T. Miyazaki, D. R. Bowler, Linear scaling constrained1890

density functional theory in conquest, J. Chem. Theory Comput. 71891

(2011) 884–889.1892

[145] L. E. Ratcliff, L. Grisanti, L. Genovese, T. Deutsch, T. Neumann,1893

D. Danilov, W. Wenzel, D. Beljonne, J. Cornil, Toward fast and1894

72



accurate evaluation of charge on-site energies and transfer integrals1895

in supramolecular architectures using linear constrained density func-1896

tional theory (cdft)-based methods, J. Chem. Theory Comput. 111897

(2015) 2077–2086.1898

[146] M. Melander, E. O. Jónsson, J. J. Mortensen, T. Vegge, J. M.1899
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