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Abstract

In three dimensions, the gluon condensate of pure SU(3) gauge theory has ultraviolet diver-

gences up to 4-loop level only. By subtracting the corresponding terms from lattice mea-

surements of the plaquette expectation value and extrapolating to the continuum limit, we

extract the finite part of the gluon condensate in lattice regularization. Through a change of

regularization scheme to MS and (inverse) dimensional reduction, this result would determine

the first non-perturbative coefficient in the weak-coupling expansion of hot QCD pressure.
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1. Introduction

As non-Abelian gauge theories in three and four dimensions are confining, their proper-

ties need, in general, to be studied non-perturbatively. If the observables considered in-

volve momenta or masses (M) large compared with the confinement scale, however, then the

conceptual framework of the operator product expansion [1] may allow to isolate the non-

perturbative dynamics into only a few (gluon) condensates, while the rest of the answer can be

computed by perturbative means. A classic example is the mass of a heavy quark–anti-quark

bound state [2]. The task faced by numerical lattice simulations might then get significantly

simplified, as local condensates are simpler to measure with controlled systematic errors than

correlation functions of heavy states.

On the other hand, the physical interpretation of a “bare” lattice measurement of a gluon

condensate is non-trivial. The reason is that the condensate is represented by the expectation

value of a dimensionful singlet operator and, in general, contains ultraviolet divergences of the

same degree as its dimension. Operator product expansion type relations are often derived

employing dimensional regularization, since the system then only contains one large param-

eter (M) rather than two (M and the momentum cutoff), which simplifies the derivation

considerably. Making use of lattice results in such a context requires then a transformation

from lattice to continuum regularization. While in principle a well-defined perturbative prob-

lem (see, e.g., Refs. [3]), this is in practice somewhat problematic in four dimensions, given

that there are contributions from all orders in the loop expansion.

The observable we consider in this paper is the (lowest-dimensional) singlet gluon conden-

sate in three dimensions (3d), measured with pure SU(3) gauge theory. As 3d pure Yang-Mills

theory is super-renormalisable, the problem of changing the regularization scheme becomes

solvable: there are ultraviolet divergences up to 4-loop level only [4]. Furthermore, as we will

elaborate in the following, all the divergences have been determined recently. These advances

allow us to obtain a finite “subtracted” continuum value for the gluon condensate in lattice

regularization. A conversion to the MS scheme, amounting to the (perturbative) computation

of the constant c′4 in Eq. (2.12) below, remains however a future challenge.

There might be various physics settings where the 3d gluon condensate finds practical

applications. The one that motivated us, is that this condensate appears in high-temperature

physics, where the temperature T plays the role of the mass scale M mentioned above. Indeed

3d pure Yang-Mills theory determines the leading non-perturbative contribution to the weak-

coupling expansion of the pressure (and a number of other quantities) of physical QCD [5, 6],

through a conceptual counterpart of the operator product expansion, called finite-temperature

dimensional reduction [7, 8, 9]. Other applications might exist as well.

The plan of this paper is the following. In Sec. 2, we specify the observables considered

and discuss the theoretical setting of our study. Numerical results from lattice Monte Carlo

simulations are reported in Sec. 3, and we conclude in Sec. 4.
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2. Theoretical setting

We start this Section by formulating the observables that we are interested in, in the formal

continuum limit of the theory. The ultraviolet (UV) divergences appearing in loop contribu-

tions are at this stage regulated through the use of dimensional regularization. Later on we

go over to lattice regularization, in order to give a precise non-perturbative meaning to the

observables introduced, allowing for their numerical determination.

The Euclidean continuum action of pure SU(Nc) Yang-Mills theory can be written as

SE =

∫

ddxLE , LE =
1

2g2
3

Tr [F 2
kl] . (2.1)

Here d = 3 − 2ǫ, g2
3 is the gauge coupling, k, l = 1, ..., d, Fkl = i[Dk,Dl], Dk = ∂k − iAk,

Ak = Aa
kT

a, T a are the Hermitean generators of SU(Nc), normalised as Tr [T aT b] = δab/2,

and repeated indices are assumed to be summed over. Leaving out for brevity gauge fixing

and Faddeev-Popov terms, the “vacuum energy density” reads

fMS ≡ − lim
V →∞

1

V
ln

[
∫

DAk exp
(

−SE

)

]

MS

, (2.2)

where V is the d-dimensional volume, DAk a suitable (gauge-invariant) functional integration

measure, and we have assumed the use of the MS dimensional regularization scheme to remove

any 1/ǫ poles from the expression. We note that fMS has the dimensionality [GeV]d.

In strict dimensional regularization, fMS of course vanishes order by order in the loop expan-

sion, due to the absence of any mass scales in the propagators. This behaviour is unphysical,

however, and due to an exact cancellation between UV and infrared (IR) divergences; for

an explicit discussion at 3-loop level in a related case, see Appendix B of Ref. [10]. In fact

non-perturbatively the structure of fMS is rather

fMS = −g6
3

dAN3
c

(4π)4

[(

43

12
−

157

768
π2

)

ln
µ̄

2Ncg2
3

+ BG + O(ǫ)

]

, (2.3)

where dA ≡ N2
c −1, and we have introduced an MS scheme scale parameter µ̄. The coefficient

of the logarithm in Eq. (2.3) has been determined in Ref. [11] with a perturbative 4-loop

computation, by regulating all the propagators by a small mass scale mG, and sending mG →

0 only after the computation (see also Ref. [12]). The non-perturbative constant part BG,1

which actually is a function of Nc, is what we would ultimately like to determine.

One direct physical application of BG is that it determines the first non-perturbative contri-

bution to the weak-coupling expansion of the pressure p of QCD at high temperatures [5, 6].

To be precise, this contribution is of the form δp = dAN3
c g6T 4BG/(4π)4, where g2 is the renor-

malised QCD gauge coupling. Terms up to order O(g6 ln(1/g)) are, in contrast, perturbative,

and all known by now [12].
1In Ref. [12], BG was denoted by βG, but we prefer to introduce a new notation here, in order to avoid

confusion with the coupling constant β appearing in Eq. (2.6). The subscript G might refer to gluons.
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For future reference, we note that given fMS, we immediately obtain the gluon condensate:

1

2g2
3

〈

Tr [F 2
kl]

〉

MS

≡ −g2
3

∂

∂g2
3

fMS (2.4)

= 3g6
3

dAN3
c

(4π)4

[(

43

12
−

157

768
π2

)(

ln
µ̄

2Ncg2
3

−
1

3

)

+ BG + O(ǫ)

]

. (2.5)

We now go to the lattice. In the standard Wilson discretization, the lattice action, Sa,

corresponding to Eq. (2.1), reads

Sa = β
∑

x

∑

k<l

(

1 −
1

Nc

ReTr [Pkl(x)]
)

, (2.6)

where Pkl(x) = Uk(x)Ul(x + k)U−1

k (x + l)U−1

l (x) is the plaquette, Uk(x) is a link matrix,

x + k ≡ x + aǫ̂k, where a is the lattice spacing and ǫ̂k is a unit vector, and

β ≡
2Nc

g2
3
a

. (2.7)

Note that the gauge coupling does not get renormalised in 3d, and the parameters g2
3 ap-

pearing in Eqs. (2.1), (2.7) can hence be assumed finite and equivalent. The observable we

consider is still the vacuum energy density, Eq. (2.2), which in lattice regularization reads

fa ≡ − lim
V →∞

1

V
ln

[
∫

DUk exp
(

−Sa

)

]

, (2.8)

where DUk denotes integration over link matrices with the gauge-invariant Haar measure.

Now, being in principle physical quantities, the values of fMS and fa must agree, provided

that suitable vacuum counterterms are added to the theory. Due to super-renormalizability,

there can be such counterterms up to 4-loop level only [4], and correspondingly

∆f ≡ fa − fMS (2.9)

= C1

1

a3

(

ln
1

ag2
3

+ C ′

1

)

+ C2

g2
3

a2
+ C3

g4
3

a
+ C4 g6

3

(

ln
1

aµ̄
+ C ′

4

)

+ O(g8
3a) , (2.10)

where the Ci are dimensionless functions of Nc. The values of C1, C2, C3, C4 are known, as

we will recall presently; C ′

1 is related to the precise normalisation of the Haar integration

measure and void of physical significance; and C ′

4 is unknown as of today.

Correspondingly, the gluon condensates, i.e. the logarithmic derivatives of fMS, fa with

respect to g2
3 , can also be related by a perturbative 4-loop computation. Noting that three-

dimensional rotational and translational symmetries and the reality of Sa allow us to write

− g2
3

∂

∂g2
3

fa =
3β

a3

〈

1 −
1

Nc

Tr [P12]
〉

a
, (2.11)
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and employing Eqs. (2.5), (2.10), we obtain finally the master relation

8
dAN6

c

(4π)4
BG = lim

β→∞

β4

{

〈

1 −
1

Nc

Tr [P12]
〉

a
−

[

c1

β
+

c2

β2
+

c3

β3
+

c4

β4

(

ln β + c′4

)

]}

. (2.12)

The values of the constants c1, ..., c
′

4 are trivially related to those of C1, ..., C
′

4 in Eq. (2.10).

Now, a straightforward 1-loop computation yields

c1 =
dA

3
≈ 2.66666667 , (2.13)

where the numerical value applies for Nc = 3.

The 2-loop term is already non-trivial: it was first computed in four dimensions in Ref. [13],

and in three dimensions in Ref. [14]. The 3d result can be written in the form

c2 = −
2

3

dAN2
c

(4π)2

(

4π2

3N2
c

+
Σ2

4
− πΣ −

π2

2
+ 4κ1 +

2

3
κ5

)

= 1.951315(2) , (2.14)

where the coefficients Σ, κ1 can be found in Refs. [4, 15], and we have defined

κ5 =
1

π4

∫ π/2

−π/2

d3xd3y

∑

i sin
2xisin

2(xi + yi)sin
2yi

∑

i sin
2xi

∑

i sin2(xi + yi)
∑

i sin2yi
= 1.013041(1) . (2.15)

The numbers in parentheses in Eqs. (2.14), (2.15) indicate the uncertainties of the last digits.

The 3-loop term is well known in four dimensions since a long time ago [16], but the same

computation has been carried out in three dimensions only very recently [17]:

c3 = 6.8612(2) . (2.16)

This value improves on a previous estimate c3 = 6.90+0.02
−0.12 [18], obtained through the evaluation

of the 3-loop graphs with the method of stochastic perturbation theory [19].

The value of c4 follows by a comparison of Eqs. (2.3) and (2.10): there is no µ̄-dependence

in fa, so that the one in fMS determines the coefficient of the logarithm in ∆f . Consequently,

c4 = 8
dAN6

c

(4π)4

(

43

12
−

157

768
π2

)

≈ 2.92942132 . (2.17)

The knowledge of c1, c2, c3, c4 allows us to subtract all the divergent contributions from

the gluon condensate. A finite 4-loop term, parametrised by c′4 in Eq. (2.12), however still

remains. It could in principle be determined by extending either the method of Ref. [17] or

of Ref. [18] to 4-loop level. There is the additional complication, though, that intermediate

steps of the computation require the use of an IR cutoff, which then cancels once the lattice

and MS results are subtracted, in Eq. (2.10). This computation has not been carried out yet,

and therefore we will not be able to determine BG in this paper. We can determine, how-

ever, the non-perturbative input needed for it (cf. Eq. (3.1) below), the purely perturbative

determination of c′4 then remaining a future challenge.
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β volumes

12 243, 323, 483

16 243, 323, 483, 643

20 243, 323, 483

24 {123, 143, 163, 203, 243}, 323, 483, 643

32 {143, 163, 203, 243, 323}, 483, 643, 963

40 {323}, 483, 643, 963

50 {203, 243, 263, 283, 323, 483}, 643, 963, 1283, 3203

64 {483, 643}, 963, 1283, 3203

80 {643}, 1283, 3203

[100 1283, 1923, 3203]

[140 {1283}, 1923, 3203]

[180 {1923}, 3203]

Table 1: The lattice spacings (parametrised by β, cf. Eq. (2.7)) and the volumes (in lattice

units, N3, so that V = N3a3) studied. On each lattice we have collected ∼ 104...106 indepen-

dent measurements. The lattices in curly brackets have been left out from the infinite-volume

extrapolations, while for the lattices in square brackets the significance loss due to the ul-

traviolet subtractions in Eq. (2.12) is so large (six orders of magnitude or more) that the

subtracted values have little effect on our final fit (see below).

3. Lattice measurements

The goal of the numerical study is to measure the plaquette expectation value, 〈1− 1

3
Tr [P12]〉a,

as a function of β, such that the extrapolation in Eq. (2.12) can be carried out. For each

β, the infinite-volume limit needs to be taken. Given that the theory has a mass gap, we

expect that finite-volume effects are exponentially small, if the length of the box L is large

compared with the confinement scale, ∼ 1/g2
3 . Writing L = Na, where N is the number of

lattice sites, the requirement L ≫ 1/g2
3 converts to β/N ≪ 6 (cf. Eq. (2.17)). Detailed studies

with other observables show that in practice the finite-volume effects are invisible as soon as

β/N < 1 [20]. The values of β and N that we have employed are shown in Table 1. Earlier

lattice measurements of the same observable were carried out with a volume N3 = 323, with

values of β up to β = 30 [21].

It is important to stress that the subtractions in Eq. (2.12) lead to a major significance

loss. Essentially, we need to evaluate numerically the fourth derivative with respect to β−1

of the function 〈1− 1

3
Tr [P12]〉a, at the point β−1 = 0. Another way to express the problem is

that as the numbers c1, ..., c4 are of order unity (cf. Eqs. (2.13)–(2.17)), the dominant term,

c1/β, is about six orders of magnitude larger than the effect we are interested in, ∼ 1/β4, if

β ∼ 100. Therefore the relative error of our lattice measurements should be smaller than one

5
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Figure 1: The plaquette expectation value, “plaq” ≡ 〈1 − 1

3
Tr [P12]〉a, as a function of 1/β.

Statistical errors are (much) smaller than the symbol sizes. The dotted curve contains the

four known terms c1/β + c2/β
2 + c3/β

3 + c4 ln β/β4 from Eq. (2.12), together with terms of

the type 1/β4, 1/β5 and 1/β6 with fitted coefficients.

part in a million. We also need to know the coefficients ci with good precision.

Lattice-measured values of 〈1 − 1

3
Tr [P12]〉a are shown in Fig. 1, as a function of 1/β. In

order to demonstrate the accuracy requirements we are faced with, Fig. 2 shows β4〈1 −
1

3
Tr [P12]〉a, before and after the various subtractions. It is observed from Fig. 2 that after all

the subtractions, this function indeed appears to have a finite limit for β → ∞, or 1/β → 0.

For each β, we have carried out simulations at a number of different lattice extents N ;

examples are shown in Fig. 3. No significant volume dependence is observed for β/N < 1,

and we thus estimate the infinite-volume limit by fitting a constant to data in this range.

Given the infinite-volume estimates, we extrapolate the data to the continuum limit, β →

∞. In Fig. 4 we show the functions β4{〈1 − 1

3
Tr [P12]〉a − [c1/β + c2/β

2 + c3/β
3]} and

β4{〈1− 1

3
Tr [P12]〉a − [c1/β + c2/β

2 + c3/β
3 + c4 lnβ/β4]}. It is observed how even the 4-loop

logarithmic divergence is visible in the data, as some upwards curvature for 1/β <∼ 0.06. On

the other hand, for 1/β ≤ 0.01 the significance loss due to the subtractions grows rapidly and

the error bars become quite large, so that these data points have little effect on the fit.

The continuum extrapolation is carried out by fitting a function d1 + d2/β + d3/β
2 to the

infinite-volume extrapolated data for β4{〈1− 1

3
Tr [P12]〉a−[c1/β+c2/β

2+c3/β
3+c4 ln β/β4]},

in the range 0.01 < 1/β < 0.10. We find that this functional form describes the data very well.

The fitted values are d1 = 19.4...20.7, d2 = 110...63, d3 = 717...1101, with χ2/dof = 5.8/6,

where the intervals indicate the projections of the 68% confidence level contour (i.e. the

6
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Figure 2: The significance loss due to the subtractions of the various ultraviolet divergent

contributions in the gluon condensate. Here again “plaq” ≡ 〈1− 1

3
Tr [P12]〉a, and the symbols

ci in the curly brackets indicate which subtractions of Eq. (2.12) have been taken into account.

surface where χ2 = χ2
min

+ 3.53) onto the various axes, from one end of the elongated ellipse

to the other.2 We have also estimated the systematic errors from the effect of higher order

terms in the fit ansatz, and found that they are of the same order as these intervals, which

we thus consider as our combined error estimates. Returning back to Eq. (2.12), we then

obtain our final result,

BG +

(

43

12
−

157

768
π2

)

c′4 =

(

2π2

27

)2

× (20.0 ± 0.7) = 10.7 ± 0.4 , (3.1)

where we have inserted Nc = 3.

4. Conclusions

The purpose of this paper has been to study the expectation value of the elementary plaquette

in pure SU(3) lattice gauge theory in three dimensions, as well as to outline how the MS

scheme gluon condensate of the continuum theory can be extracted from it. To achieve

this goal, we have carried out high precision numerical Monte Carlo simulations close to the

continuum limit, corresponding to lattice spacings 0.05<∼ ag2
3
<∼ 0.5, where g2

3 is the gauge

coupling.

2If the three largest β’s are included in the fit, the parameters remain essentially the same, d1 = 19.4...20.8,

d2 = 107...62, d3 = 733...1117, while χ2/dof = 7.0/9 has decreased due to the large error bars at these β’s.
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Figure 3: Finite-volume values for β4{〈1− 1

3
Tr [P12]〉a − [c1/β + c2/β

2 + c3/β
3 + c4 ln β/β4]},

as a function of the physical extent β/N = 6/g2
3L of the box. The solid symbols indicate the

infinite-volume estimates, obtained by fitting a constant to data in the range β/N < 1.

When the leading perturbative terms, up to 4-loop level, are subtracted from the plaquette

expectation value, and the result is divided by (ag2
3)

4, a finite quantity remains (the right-hand

side of Eq. (2.12), without c′4) which can be taken as the definition of a renormalised gluon

condensate in lattice regularization (in certain units). We have carried out the subtractions

and the extrapolation ag2
3 → 0, and shown that our data appear to be precise enough to

determine the remainder with less than 5% errors, cf. Fig. 4 and Eq. (3.1).

To relate this number to the gluon condensate in some continuum scheme, say MS, a further

perturbative 4-loop matching computation remains to be completed, fixing the constant c′4 in

Eqs. (2.12), (3.1). Our study should provide a strong incentive for finalising this challenging

but feasible task, and there indeed is work in progress with this goal. The MS scheme

conversion is also needed in order to apply our result in the context of finite temperature

physics, particularly for determining the O(g6T 4) contribution to the pressure of hot QCD,

since the other parts of that computation have been formulated in the MS scheme [12].
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Figure 4: The infinite-volume extrapolated data, plotted as in Fig. 2. The effect of the 4-loop

logarithmic divergence is to cause additional upwards “curvature” in the upper data set. The

lower set includes all the subtractions, and should thus have a finite continuum limit. The

continuum extrapolation (as described in the text) is indicated with the dashed line. The

gray points have error bars so large that they are insignificant as far as the fit is concerned.
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