
PS/CO/Note 92-21
25.09.1992

CONTROL SYSTEM SOFTWARE
FOR THE

VACUUM SYSTEM

Date : July 1992
Author : Anker Rosenstedt

1Contents

2. Control software for the vacuum system 3
2. 1 Specifications 3
2. 1. 1 Types Of equipment and Equipment Modules 3
2. 1.2 The datatable 4
2. 1. 3 The messages 5
2. 1.4 Meaning of message fields 10
2. 1. 5 Property functions 15
2.2 Implementation 19
2. 2. 1 The message system 19
2. 2.2 Identification of messages 23
2. 2.3 The datatable 26
2. 2.4 Principles in writing property functions 30
2. 2. 5 Property functions 32
2.3 Testing 41
2. 3. 1 The real time process for testing 41
2. 3.2 Testing with NODAL 42

3. Appendix 43
3. 1 Program listings 43
3. 1. 1 mqlib.c 43
3. 1.2 queue. c 46
3. 1. 3 message. h 48
3. 1.4 vac _proco.c 51
3. 1. 5 rt.c 68
3. 1. 6 msg_print.h 73
3. 1. 7 Testl program with printout & messages 77
3. 1. 8 Test2 program with printout 84
3. 1. 9 Test3 program with printout 86
3. 1. 10 Makenodal 87

Contents - 2

2 Control software for the vacuum system

2.1 Specifications

2.1.1 Types of equipment and Equipment Modules
The different types of equipment that it is necessary to control explic

itly from the application programs are Hsted below. Some equipment is indi
rectly controlled within a pumping group/station, and are not directly controlla
ble.

To make the ’image’ seen from the control room more clear, all the
vacuum equipment is divided in three logical groups, which contains : pumps,
gauges and valves. There is an Equipment Module for each group of equipment,
meaning that all pumps are controlled from the υpuτnp Equipment Module etc.
In this way, the very identical (both name and function) property functions for
the three different groups of equipment are separated. There is absolutely no
technical reason for making this separation, it’s entirely a matter of logic and
convenience as seen from the operator.

Equipment Module Type of equipment Abbreviation

VPUMP: PUMPING GROUPS
ION PUMPS
SUBLIMATION PUMPS
PUMPING STATIONS

(P_GROUP)
(P_ION)
(P-SUBL)
(P_STAT)

VGAUG :

WALV:

PIRANI/PENNING GAUGES (G-PIRAN)
ION GAUGES (GJON)

VALVES (V_VALVE)

There has previously in the definition process been a suggestion of
having a sector Equipment Module. This, however, due to problems of how ex
actly to define a sector and questions about if it’s at all necessary, is therefore
not part of the present specification.

Control software for the vacuum system - 3

2.1.2 The datatable

Although the datatable is logically located inside the Equipment
Modules, it has some specifications connected with it which are not only imple
mentation dependent. Apart from the control and acquisition data, the DT also
contains some read only information for each single piece of equipment. These
columns must be initialized by the operator for each new peace of equipment
that is defined. The list of the columns that the DT contains is general for all
the vacuum Equipment Modules :

1. Control data containing the up to date settings.
2. Acquisition data containing last received acquisition values.
3. Treatment (TRM), which is a read only int[2] containing the Equipment

Type:
1. TRM[0] : Equipment Type.
2. TRM[1] : Equipment Subtype.

4. Serial Number (SNE) or Physical Equipment Number, which is a read only
integer.

The exact structure of the first two items on the list is implementa
tion dependent.

The Treatment column is an array of two integers which holds the
Equipment Type and the Equipment Subtype. The Equipment Type numbers
are defined as follows :

P_GROUP 1
P_ION 2
P_SUBL 3
P_STAT 4

G_PIRAN 5
G_ION 6
V_VALVE 7

The Equipment Subtype is used to identify f. ex. different manufacturers of the
same type of equipment. The Equipment Module is not dependent on this num
ber.

The Serial Number or Physical Equipment Number is a single inte
ger which identifies the vacuum equipment with local numbers. The Eqmpment
Module is not dependent on this number either.

Control software for the vacuum system - 4

2.1.3 The messages
All messages are made up of a few general parts, which should hope

fully also become general in use for other types of equipment. For vacuum there
are four different messages, which are composed as shown below :

CONTROL MSG. ACQUISITION MSG.

General
Header

General
Header

Status

Data

y Test

Data

' Test

REQUEST MSG. STATUS MSG.

General
Header

General
Header

Data

Control software for the vacuum system - 5

The general header block contains information on which number
(equipment number) and type of equipment is to be accessed, what the rest of
the message contains, the time the message was sent, and also a field for spe
cialist action. AU messages have a general header as the first part, and since it
is from here that the type of message is determined (the meaning of the mes
sage is contained in the message itself), the general header must be identical for
all messages. That is, the fields must be in the same order, have the same
length etc., so that the receiver of the message is always able to read it, no mat
ter what the rest of the message contains. The general header should be so gen
eral that, in the future, it can be used for all types of messages controlling aU
types of equipment.

The status block is simply some general status information regarding
the equipment that is controUed. The format/meaning of the status information
is specific to the vacuum equipment, and not necessarily general for several
types of equipment.

The data /test block holds either the data that is to be send/received,
or the space can be used for test. When used for test there is no defined mean
ing of the contents, it’s entirely up to the specific process. The test part is only
used by the special test property functions. The following pages will therefore
only concern the messages with the data /test block used for data.

To simplify the code and make it easier to read (more general), the
same normal control and acquisition message are used for all the different
Equipment Types and all the Equipment Modules. I.e. the messages contain ex
actly the same fields no matter what type of equipment they are used for. From
a programmers point of view this is a major shortcut from the alternative : Hav
ing a separate message structure for each of the equipment types. This would
result in an enormous amount of code just for declaring the message structures
(20 pages or so), and the program code gets comparable complicated and tedious
to read because everything is a special case, and nothing is in any way general.

The drawback is of course that for some of the types of equipment,
the messages will contain some information not needed, or certain fields in the
message will be undefined. This could eventually be a little confusing and not so
ideal. However, it is such a great advantage only having to deal with one type of
message that this has been decided.

On the following pages is an outline of all the messages used for vac
uum, with the fields they contain, the type of the field and in some cases an al
lowed value range. These are the specifications agreed on with the vacuum
group. A short description of the meaning and use of the different fields in the
messages follows in the next chapter.

Control software for the vacuum system - 6

The following types are used in the messages :

byte : 8 bit unsigned integer.
byte_s : 8 bit signed integer.
intl6 : 16 bit unsigned integer.
int32 : 32 bit unsigned integer.
real : Float.
time A structure containing time in seconds since bootup (1970) and use.
event : A structure containing puls id. Not in use for vacuum since no PPM.

Because the ccu and aqn fields have different types depending on the
type of equipment that is controlled, they are given a union type (rnul_type), i.e.
a type which at any time can hold any one of the above types : byte, intl6, int32
or real. This makes coding very simple and efficient.

The normal CONTROL and ACQUISITION messages :

CONTROL
MESSAGE

NAME TYPEIinl int16lin2 intl6lin3 int 16amm int 16pulsid eventdate timespecialist int 16ccsact_chng byte_sccsact byteccv_chng byte_sccv mul_typeccv1_Chng byte_sccv1 real

H
E
A
D
E
R

D
A
T
A

ACQUISITION
MESSAGENAME TYPElinl intl6lin2 intl6lin3 intl6amm intl6pulsid eventdate timespecialist intl6phyS_Status bytesaqn byteaspect bytequalif bytebusy_time int32aqn mul_typeaqnl realaqn2 real

H
E
A
D
E
R

S
T
A
T

D
A
T
A

Control software for the vacuum system - 7

There is no need to show the REQUEST control message, as it is
just the header part of the normal control message.

The special STATUS acquisition message exists for warning and
fault reporting. First an exception is defined as (structure in C) :

e×ceptionlist int32date_last timedate_imp time
list contains a bit for each waming/rfault/ufault/interl.,

date_last is the time of the last warn∕rfault∕..., and

date_imp is the time of the most important warn∕rfault∕...

The STATUS acquisition message now looks as below :

STATUS
MESSAGENAME TYPElinl intl6lin2 intl6lin3 intl6amm intl6pulsid eventdate timespecialist intl6warnings exceptionrfaults exceptionufaults exceptioninterlocks exception

H
E
A
D
E
R

D
A
T
A

Control software for the vacuum system - 8

Valid values of the different fields depending on equipment :

Equipment
Field

P_GROUP PJON P_SUBL P_STAT G_PIRAN GJON V_VALVE

CONTROL MESSAGE :linl-3 - - - - - - -amm 0..5 0..5 0..5 0..5 0..5 0..5 0..5pulsid not used not used not used not used not used not used not useddate - - - - - - -specialist - - - - - - -ccsact_chng <0,0, >0 <0,0, >0 <0,0, >0 <0,0, >0 <0,0, >0 <0,0, >0 <0,0, >0
ccsact 1,2 1,2 1,2 1,2,3 1,2 1,2,3 1,2ccv_ chng not used <0,0, >0 <0,0, >0 not used not used <0, 0, >0 not used
CCV not used byte : 1, 2 int32 not used not used int32 not usedccv 1_ chng not used <0, 0, >0 <0,0, >0 not used not used <0, 0, >0 not used
ccv 1 not used - - not used not used - not used
ACQUISITION MESSAGE :linl-3 - - - - - - -amm 0..5 0..5 0..5 0..5 0..5 0..5 0..5pulsid not used not used not used not used not used not used not useddate - - - - - - -specialist - - - - - - -phys_ status 1..4 1..4 L.4 1..4 1..4 1..4 1..4
saqn 1..5 1,2,3 1,2,3 1..6 1,2 1.2,3 1..5aspect bit 1..3 bit 1..3 bit 1..3 bit 1..3 bit 1..3 bit 1..3 bit 1..3qualif bit 1..5 bit 1..5 bit 1..5 bit 1..5 bit 1..5 bit 1..5 bit 1..5busy_time - - - - - - -
aqn not used byte : 1, 2 int32 real real int32 not usedaqnl not used - - not used not used - not usedaqn2 not used - - not used not used - not used

Control software for the vacuum system - 9

Meaning of symbols in the table :

: No restrictions on value (type permitting), for meaning see below.

not used : The field is not in use, meaning it contains an undefined value.

For the ccυ and aqn fields, where only the type is stated, the value can be any
one the type permits (or the specific process itself must check the ccu value).

2.1.4 Meaning of message fields

CONTROL MESSAGE :

lin1, lin2 and lin3 :

Iinl contains the Equipment Module Number.

lin2 is composed of two numbers : The upper 8 bits are the Equip
ment Type, and the lower 8 bits are the Equipment Subtype, both taken directly
from the datatable (TRM) and put into the Control message before it is send.

lin3 is the Serial Number (or Physical Equipment Number), read
from the corresponding (SNE) datatable column.

amm :

following :
Acquisition Message Meaning, in the control message it means the

0 (RET_ACQ) : Ask specific process to return a normal acquisition mes
sage for the equipment number given in Iinl and lin2. \

1 (RET_CTRL) : Specific process must return the most recently received
control message.

2 (RET_ACQ-TEST) : Return acquisition message for test.

3 (RET_CYCLE) : Return Control message (cycle no). Used for vacuum ?

4 (RET_STAT) : Return status acquisition message.

5 (NO_RET) : Do not return any message (asynchronous).

Note that the meaning of amm is extended rather than completely
changed from previous definitions.

Control software for the vacuum system - 10

pulsid :

Puls identifier. Not used for vacuum because no PPM operation.

date :

The time when the message is send.

specialist :

Specialist action. The Equipment Modules are not dependent on the
defined values and the corresponding actions taken in the specific process.

ccsact chug, ccv chng and ccvl_chng :

Flags if ccsact/ccv/ccvl has been changed or is valid/unvalid :

< 0 (NO_CHANGE) : Valid value, no change.

> 0 (CHANGED) : Changed.

0 (NOT_VALID) : Not valid value.

The _chng fields in the DT can only be changed by the ccsact/ccv/ccvl
property to CHANGED or NO_CHANGE .

Since the only property function that (currently, see next chapter) sends a nor
mal control message is the ccsact, the ccsact_chng field will always be
CHANGED.

ccsact:

The Current Control Set ACTuation value, the parameter that actu
ally controls the equipment (on/off/...).

ccv and ccv1 :

Current Control Values.

Control software for the vacuum system - 11

ACQUISITION MESSAGE :

Iinl, lin2 and lin3 :

lin1, lin2 and lin3 in the acquisition message are just copied from the
corresponding control message.

amm :

In the acquisition message, the amm field is just a copy of the corre
sponding field in the control message received.

pulsid :

Not used for vacuum.

date :

The time when the ACQUISITION VALUES WERE MEASURED.

specialist :

See Control message.

phys status :

The physical status of the equipment. The Equipment Modules don’t
depend or test the values defined below :

1 : Operational.

2 : Partly operational.

3 : Not operational.

4 : Needs commissioning.

Control software for the vacuum system - 12

saqn :

Read back actuation value (running/stopped/runup/...). This value is
not checked for size or anything else by any of the Equipment Modules.

aspect :

The single bits have the meanings listed below. The Equipment Mod
ules don’t depend on these values.

bit 1 : Not connected.

bit 2 : LocaL

bit 3 : Remote.

qualif :

Status qualifier, the single bits have the following meaning :

bit 1 : Warning.

bit 2 : Busy.

bit 3 : Resetable fault.

bit 4 : Unresetable fault.

bit 5 : Interlock.

If qualif contains a 0, everything is OK As it appears, the most im
portant condition is assigned the most significant bit.

busy time :

The time in seconds in which the specific process will be busy

aqn, aqnl and aqn2 :

Acquisition values.

Control software for the vacuum system - 13

STATUS MESSAGE :

lin1, lin2. lin3. amm, pulsid, specialist :

The same as for a normal acquisition message.

date :

The time when the message was sent.

wamings.list ;

A list of warnings : Each bit corresponds to a specific warning. The
specific meaning is of no concern to the Equipment Modules.

warnings.date last :

Time of the last warning.

warnings.date_imp :

Time of the most important warning.

The above meaning of the warnings fields apply in the same way to
rfaults, ufaults and interlocks.

Control software for the vacuum system - 14

2.1.5 Property functions

Except for single data types and a few value ranges, most of the prop
erties in the three different Equipment Modules for vacuum are general in be
havior. This general behavior is described below in a few coarse steps :

ccsact (write, 1 EqmInt) :

• Check that the equipment accessed belongs to the Equipment Module.

• Check that the parameter passed from the application program is within al
lowed range. This check should be based on the Equipment Type read from
the DT (TRM).

• Put the parameter in the ccsact field in the control msg. and set ccsac_chng.

• Get TRM and SNE from the DT (for lin2∕3) and compose the rest of the con
trol message. Set amm = NO_RET.

• Store all the control values that have been changed in the DT.

• Send the normal control message. The property will not wait to receive an
acquisition message.

• After the message is send, update the _chng fields in the DT.

• Return. If anything has gone wrong, a coco error code is returned.

ccv, ccv 1 (write, 1 EqmFloat) :

• Check that the equipment accessed belongs to the Equipment Module.

• Check that the type of equipment accessed has a ccυ∕ccυl parameter. If not,
return coco error.

• Check that the parameter passed is within allowed range (ccv only).

• Store the parameter (control value) at the appropriate (ccv ∕ccv 1 field) place
in the DT.

• Set corresponding_chng field in the control message in the DT.

• Note that no message is send.

Control software for the vacuum system - 15

stag (read, 1 EqmInt), aqn, aqnl. aqn2 (read, 1 EqmFloat) :

• Check that the equipment accessed belongs to the Equipment Module.

• Set amm = RET_ACQ. Compose the rest of the request message.

• Send the request control message and wait to receive a normal acquisition
message.

• Upon receipt, all the fields in the acquisition message is put into the DT, and
only the value asked for (saqn, aqn,...) is passed back to the calling program

• If anything goes wrong with the system (most important errors), a return is
made with the coco parameter set to appropriate value.

• If the system is working correctly, the qualif field in the received acquisition
message is examined, and a corresponding coco error is returned for the
most important equipment error. In this way, error conditions on the equip
ment will only be communicated if the control system is functioning cor
rectly.

A group of properties gets the warning, rfault, ufault or interlock
status from the specific process :

warn, rfault, ufault, intlk (read, 1 EqmInt) :

• Check that the equipment accessed belongs to the Equipment Module.

• Get TRM and SNE from DT and set lin2∕3. Set amm = RET_STAT.

• Send the request control message and wait to receive a status acquisition
message.

• Upon receipt, no new values are stored in the DT.

• The wamings.list, rfaults.list, ufaults.list or interlocks.list respectively (de
pending on which property) is returned to the calling progr.

• Appropriate coco is returned.

Control software for the vacuum system - 16

warnm, rfaιιlm, ufaulm, intlkm (read, EqmInt[4]) :

• Exactly the same as above, except that the warnings. date_Jast and warn
ings. date_imp is returned together in an array. The same with the dates for
rfaults, ufaults and interlocks. The exact format is :
int[l] : xxxx.datejast seconds
int[2] : xxxx.datejast microseconds
int[3] : xxxx.date Jmp seconds
int[4] : xxxx.date Jmp microseconds

A range of rather simple properties are exactly identical in all the
Equipment Modules. All they do is to return certain fields in the DT which have
been received from the specific process. Note that if no acquisition message has
ever been received for a given equipment number, the value returned by these
properties will be the initiaHzation value, that is, not really valid.

phstat (read, 1 EqmInt) :

• Read the phys_status acquisition value from the DT, and return it to the
ca∏ing program.

aspect (read, 1 EqmInt) :

• Read the aspect acquisition value from the DT, and return it to the calling
program.

date (read, EqmInt[2]) :

• Read the date of the last received acquisition message from the DT, and re
turn it to the calling progr. The format is :
int[l] contains seconds and
int[2] microseconds.

busy (read, 1 EqmInt) :

• Return the busy_Jime acquisition value from the DT.

Control software for the vacuum system - 17

For test of the specific process, two special properties exists :

tbit (read/write, 1 EqmInt) :

• If the property is invoked as a read function, the specialist field from the ac
quisition message last received is returned.

• If the property is invoked as a write function, the parameter passed is writ
ten to the specialist (control) field in the DT. No message is send, but the
specialist value will be copied into all subsequent control messages that are
send.

test1 (read, EqmInt[40]) :

• Check that the equipment accessed belongs to the Equipment Module.

• Compose request message with amm = RET__TEST. Nothing is written to the
DT.

• Send message and wait to receive acquisition message with test field instead
of normal acquisition data.

• Nothing from the received acquisition message is stored in the DT.

• The test field from the received message is returned in array to the calling
program.

testl (write, EqmInt[40]) :

• Check that the equipment accessed belongs to the Equipment Module.

• Check the range of the values in the array passed from the calling program.

• Compose control message (general header), with amm = NO_RET (!), noth
ing is written to the DT.

• Store the array from the calling program in the message instead of the nor
mal control parameters, and send the message.

• Note that it is not possible for the specific process to distinguish between a
normal control message and a control message with test data, because amm
for some reason must not be used to indicate this (a new amm value could be
invented, as for the acquisition : RET_TEST). Now, the only way to indicate
it’s a test control message is to use the specialist property/field, but it’s the
specific process programmer’s problem.

Control software for the vacuum system - 18

2.2 Implementation

2.2.1 The message system

The message system is the part of the Equipment Module that via the
message queues takes care of the communication with the specific process.
Similarly, there is a message system in the specific process, making it able to
communicate with the Equipment Modules. The code for the message system is
described below.

Controlling the message queues, and sending and receiving messages
of course makes use of a range of operating system calls. To avoid having to deal
with the business of the operating system calls when writing the ’real' code, i.e.
the property functions and the specific process, an interface has been developed
which makes the access to the message queues very straightforward. This inter
face to the message system is in the mqlib.c file, listed in appendix (chapter
3.1.1).

The developed message system interface is very general. The mqlib.c
file can be used in both the property functions and the specific process, and in
deed every other application that uses messages. It can be used in any system,
with any number of queues, and thus the mqlib.c code contains nothing at all
that is specific to vacuum or to the Equipment Module control system.

The message system interface provides the user with only four func
tions, which are all that is necessary to easily communicate via messages :
setup_recv, setup_send, msg_recυ and msg_send. Furthermore, the user is pro
vided with two kinds of structures, one that holds all parameters necessary
when receiving messages (setting_recv) and a similar for sending messages
(setting_send). The meaning of the fields in the structures is commented in the
code. The functions are used as follows :

setup recu : Opens the specified queue for receiving, and initializes the specified
receiving attributes (setting _recυ) with appropriate default values. Also sets up
two signal handlers, see msg_recv for description. This function must be called
before receiving any message.

setup send : Opens the specified queue for sending, and initializes the specified
sending attributes (setting_send) with appropriate default values. This function
must be called before sending any message.

msg recu : Waits, according to the attributes (setting) to receive a message on
the specified queue. When the message is received without problems, the data
will be stored in memory at the place of the data_p.

msg send : Sends a message on the specified queue, and according to the attrib
utes (setting), containing the data pointed to by data__p.

Control software for the vacuum system - 19

Before using the send and receive functions above, some message
queues must of course first be created. This is done via the queue, c program
listed in appendix (chapter 3.1.2), which creates two queues.

The msg_recv function has shown to be the far most Compficated
and problematic of the four, not the least because the mqreceive system call can
be used in a great variety of ways.

The flags (msgcb.flags) for the mqreceive system call decides some of
the characteristics of the receiving procedure. In the present implementation,
only the MSG_TRUNC flag is set, resulting in the following : The mqreceive call
will wait forever for a message to be received, the only thing able to interrupt it
being an ALRM signal (see later) or one of the KILL signals. It also means that,
if the message received is too large for the receive buffer (specified in set-
ing_recv.size), the message will be truncated.

More important however, is that the value in msgcb.msg_data de
cides how the message is actually copied from the message queue. There are
two different possibilities :

Either the message received is put in a system memory buffer, and the mqre-
ceiυe call returns a pointer to that buffer. The message can then be copied
’manually’ to user data space. When finished, the buffer must be released via
another system call. If the whole message is to be used, this approach will re
sult in the message being copied twice (when receiving, but it is of course also
copied when sent).

Another way is to let the message be copied into user data space automatically.
This is how it works in the present implementation, thus avoiding to copy the
message ’manually’. For further details one should refer to the reference man
ual regarding the mqreceive system call, which is however hardly understand
able.

The operating system sends a message type along with all messages,
the type being a positive number. In the message system interface (mqlib.c), the
message type to be send along with the message is put in the type field of the
Setting_send structure. On the receiving side, the type field in the setting_recv
structure can be used to control which types to receive :

Zero : The oldest message on the queue will be received, no matter the type.

A positive number : The first message with that number will be received.

A negative number : Indicates that the oldest message having the lowest type
less than or equal to the absolute value of the negative number is to be received.

Note that, as default, the type to be send and received is set to the
current process ID (PID). If this is not appropriate in the application, the fields
can of course easily be given new values after the call to setup_recv ∕setup_send.

Control software for the vacuum system - 20

There has been a great many problems with the mqreceive system
call, due to the fact that there are still some bugs in the LYNX-OS (ver. 2.0.0)
operating system. Since the mqreceive system call can be used in a great many
ways, and because many of the errors often first show up when a number of
messages have been send, a lot of time have been used to find a way to avoid
these problems and develop a functioning message system anyway. The pro
grams (prop. c and mqrec_test.c) used for testing the mqreceive system call can
be found in the /u/rosenstldsclvac directory, and are not listed in this report.

Because of the use in the property functions (and the handler, which
is not used for vacuum), it is quite important to have a time-out when waiting to
receive a message. This has been tried implemented in several ways :

A previous version used the mqreceive call for setting up a pending
asynchronous receive, and would then receive the message with an evtpoll,
which can be used with time-out. This procedure is extremely complicated and
not very elegant, using signals and signal handlers etc., and it doesn’t really
work. Only a few messages can be received and then the whole thing crashes,
requiring a reb∞t.

Another way is to have a not blocking (waiting) mqreceive call in a
loop, but this method is not that elegant because it waists system resources.
This version also crashes now and then.

The new way it is implemented in the present version of the message
system is very elegant and it works perfectly well. The system alarm timer is
set before the (blocking) mqreceive call, and when the timer expires it will inter
rupt the waiting mqreceive call. When the mqreceive call returns, the errno is
examined. If the ermo indicates no error, a message was received normally. If
the ermo indicates an interrupt, it means that there has been a time-out (inter
rupt from timer). All the other errno’s of course indicate normal receive faults as
usual. Note that although the mqreceive system call is interrupted by the sig
nal, it returns in a perfectly controlled non hazardous manner, with errno set to
EINTR.

The only little problem with the present implementation is, that
when a process waiting for a message is killed, the virtual terminal window
must sometimes be reset. This is the reason that the setup_recv function sets up
the SIGINT handler, catching the normal kill signals. It was thought that if the
mqreceive call could handle a SIGALRM signal when there was a handler, it
would also be able to cope with a SIGINT signal without problems, if there was
just a handler for the signal. Unfortunately it is not. However, since the final
application runs as a background process, it is no problem in this case..

A little thought has also been given to the fact that the signal han
dlers will be set up a great many times (in the setup_recv function) if the func
tion is called many times. This could eventually, although not likely, result in
some kind of overflow. However, during test of the message system, the function

Control software for the vacuum system - 21

has been called repeatedly for more than two million times, without any prob
lems showing.

At the end a remark regarding the way the mqlib.c file is linked to
the main programs, which is done in a quite unusual but smart way (see also
chapter 2.2.5.2). The usual problem when having a set of functions that are
shared by several programs, is that the corresponding data types (structures
etc.), which the functions operate on, must often be known in the main pro
grams when compiling. This is also the case for mqlib.c, where the two struc
tures setting_recv and setting_send must be known in vac_proco.c, rt.c and
queue.c when compiling The normal way to solve the problem is to put the
structures in a header file (f. ex. mqlib.h), and include this in all the programs.
Together the mqlib.c and the mqlib.h files would then form what could be called
a module.

In the current implementation, to avoid having to deal with an extra
file only containing two small structures, the mqlib.c file is divided in two : A
header part and a code (implementation) part. The latter part is switched out
via a compiler directive when the mqlib.c file is included in another program
That is, when the mqlib.c file is included in some other code, only the header
part will be effective. When the mqlib.c file is compiled itself, the compiler must
be given a directive (MQLIB.CODE) on the command line, and all the code in
the file will then be effective. That is, the mqlib.c file is both linked to and in
cluded in the final program This method also ensures consistency, because the
extern declarations in the header will be compiled together with the definitions,
and any disagreement between the two will thus lead to compilation error (In
old C it is in fact not necessary with extern declarations of fiιnctions). In this
way, a module can be contained in a single file ! In a project with a lot of differ
ent modules, this method would effectively clean up the mess of files. In this ap
plication however, it is just an idea, and the major problem will probably be
that nobody is used to this practice. So, if someone don’t like it, it’s easy to put
the header part in a separate file and do things the 1950 way.

Control software for the vacuum system - 22

2.2.2 Identification of messages

The control system for vacuum has a special characteristic, which is
not known from other applications : Having several, and not just one Equip
ment Module, communicating via the same queues with a single specific proc
ess. Because of this, some complications that (might) arise regarding the identi
fication of the messages must be investigated.

As illustrated in the figure, there is basically two ways to use an
Equipment Module. Either it is called from application programs in other work
stations across the network, via a Remote Procedure Call (as process 1 and 2 in
the figure). This is the normal way of operation, and in this case the Equipment
Module is activated through the server. The other way is to access the Equip
ment Module directly from the local DSC, via a local running version of NODAL
(as process 3 in the figure).

LOCAL DSC
RT process

Process 3...

As there are several different application programs that can activate
an Equipment Module at the same time, and thus ask for an acquisition mes
sage to be returned, attention must be given to the question of how to make
sure that the different Equipment Modules receive the correct acquisition mes
sages.

In the DSC there is only one DT, shared by all the Equipment Mod
ules installed in the DSC. The server is linked to the three different vacuum
Equipment Modules : vpump, vgaug and vυalv. These three EM’s are thus a sin
gle one threaded process. As program execution can only be one place at a time,
it means that only one external process (application progr.) can be served at a
time. This again means that in these three EM’s only one acquisition message
can be send and waited for at a time, and the acquisition messages will there
fore always be received by the correct EM.

Control software for the vacuum system - 23

The problems can arise when a local running NODAL (or several) is
introduced. As they are separate processes, they will indeed be able to send con
trol messages at the same time (and at the same time as the server process). If
two such separate processes ask for an acquisition message to be returned, then
there will also be two processes at the same time waiting to receive an acquisi
tion message. There is no guarantee for, which one will receive the first of the
acquisition messages send from the RT process, and thus it might be the wrong
one. A way to identify the messages is needed.

There is, however, a little point that makes the mixing up of the mes
sages quite unlikely to happen. Because the RT process runs with a higher pri
ority than the other processes, when it receives the first of the two (or more)
control messages, it will occupy the CPU totally. The second process will thus
not get time to send any control message, and will therefore not be waiting for
any. This is unfortunately not any solution to the problem that can be totally
relied on, since there might be some time gabs at different places etc., and
maybe the RT process relinquishes the CPU while waiting for, say, an external
bus.

It is of course obvious to use the (operating system) message type to
make the identification, especially as the processes can be set up to receive only
certain types of messages (numbers). The only question left is, which number ?

It will not work using the EM number, as different processes might
access the same EM at the same time. Instead the number must distinguish not
between EM’s, but between processes. It is therefore likely to use the PID num
ber (Process ID). This has some very great advantages : There is no need for
some global definitions of which processes have which numbers etc., a thing
that would be very tedious to manage as the number of processes are not
known. Any number of processes accessing the queues can be installed. Fur
thermore, the allowed range of PID numbers matches the valid range of mes
sage type numbers : The message type must be between 1 (not zero) and the
maximum of a long int. A PID number for a normal process can not be 0 (nor
negative), and the type of the value returned from the getpid system call is ex
actly an (long) int. The PID number is assigned to both the setting~recυ.type and
setting_send.type fields (in the setup_recv∕setup_send functions) in the mqlib.c
file (appendix, chapter 3.1.1).

There is only two small disadvantages using the PID number. The
first is not at all any problem in the final installation, but should be noted while
testing : If a (EM) processes is killed while waiting for an acquisition message,
the message in the queue will (probably) be left forever, until the queues are re
started. The reason is of course that the message has a type that doesn’t match
any of the process’s PID. Even if the process that was killed is restarted, it
might get another PID number than it had before. However, in the final instal
lation this might in fact be an advantage, except that the message takes up
some space in the queue buffer.

The other disadvantage is that it will be quite difficult to install a
handler process, should it be needed in the future (or in applications for other

Controlsoftwareforthevacuumsystem - 24

types of equipment). The reason is of course that all the message types are sort
of occupied. The only possibility is that the message type for an asynchronous
acquisition message is the PID number of the handler process, but it will be dif
ficult for the specific process to get that number (except if the handler is a child
of the specific process, although it would not be very elegant). Otherwise a
(high) number can eventually be chosen, which will (probably) never be a PID
number.

Note that the specific process receives all types of messages, but the
acquisition message ’answer’ to a specific control message must have the same
type as the one received. This means, the only thing the specific process has to
do, is simply to copy the type from the Ctrl msg. to the acq. msg., and not think
about which type it is.

In previous applications where a message system has been used (with
only one Equipment Module), the message type was used to distinguish be
tween synchronous and asynchronous messages. Now, this is not the case for
the vacuum system, where the message type has become a sort of re
turn/destination address. AU information about what a message contains and
what to do with it (and therefore also the synchronous/asynchronous informa
tion), is now put in one single place : the amm field inside the message itself (see
definition of amm values in chapter 2.1.4). This is of course only possible be
cause the different messages a∏ have the same header part. The only thing the
specific process has to do upon receipt of a message is to read the amm field,
and from this decide what to do next.

This chapter has mainly concerned the problems when accessing an
Equipment Module from different places (processes) at the same time. However,
in normal operation, access to the specific process will only go through the
server. There will normally not be any local NODAL insta∏ed. The problems
discovered above are thus quite theoretic (see also end of chapter 2.2.3.1), and
they will probably never happen in practice.

At the end of this chapter, a little remark that corresponds to the dis
cussion in the beginning, and which has not really anything to do with the mes
sage types. : The at any time maximal number of control messages on the con
trol queue is equal to the max. number of acquisition messages on the
acquisition queue, which is the same as the number of (EM) processes accessing
the queues. The number of such processes will probably never exceed 2, the
server and a local NODAL process. This is quite important, because from this,
when knowing the size of the messages, the necessary size of the message
queues can be found. In the queue.c program (appendix, chapter 3.1.2), the size
of the two message queues is set to default, which is 3968 bytes (max number of
messages is 55). The size of the messages is found in chapter 2.2.5.1, and one
can see that the queues are far big enough.

Control software for the vacuum system - 25

2.2.3 The datatable

2.2.3.1 Definition of the data columns in the DT

From the specifications in chapter 2.1.2, it appears that the DT must
contain a TRM and a SNE column, plus columns for all the control and acquisi
tion values.

The control values that must be stored in the DT are :

• All the fields named in the data part of the control message.

• A specialist parameter (also in the header of the control message).

and the acquisition values :

• AU the fields named in the status part of the acquisition message.

• AU the fields named in the data part of the acquisition message.

• A specialist parameter (also in the header of the acquisition message).

• A date parameter (also in the header of the acquisition message).

Having a separate column for each of the above fields would result in
a total of 19 columns in the DT, which for practical reasons is very much. The
list of the parameters (columns) accessed by each of the properties will be very
long, and copying ten or more parameters from f. ex. an acquisition message
and into separate columns in the DT will be veιy cumbersome, although it is of
course possible. Furthermore, because the DT columns can only hold values of
type EqmTnt (integer) or EqmFloat (double), it is necessary to check the range
and cast the values to/from the messages.

An easy solution to this, resulting in very simple code, is to store the
whole message(s) directly as a structure in the DT. As it appears from above,
nearly all the fields in the messages are to be stored in the DT anyway, so this
approach only results in linl-3 and amm (plus date for the ctrl. msg.) being
stored also. This really doesn’t matter, it could be used for a property reading
which equipment had been accessed last.

Because the message system is able to store/receive the message
to/from anywhere in the programs memory (via a pointer), and therefore also di
rectly in the DT, the only thing to do is to define columns in the DT which are
large enough to contain a whole message. This can be done by declaring a col
umn as an array of Eqmint’s, so that the size becomes larger than the message
size.

Control software for the vacuum system - 26

By storing the whole control message and the whole acquisition mes
sage in the DT as single items, the number of columns in the DT is greatly re
duced to only four :

• Control message column (BUFl). Defined as array of EqmInt.

• Acquisition message column (BUF2). Defined as array of EqmInt.

• Treatment column (TRM).

• Serial Number (SNE).

Looking forward to chapter 2.2.5.1, we see that BUFl and BUF2
must be able to contain at least 62 and 70 bytes respectively. With the size of
BUFl = BUF2 = 25 EqmInfs = 100 byte there are r∞m for a little future expan
sion, without having to redefine the datatable !

To access the specific control or acquisition values in the DT, it is of
course necessary to know the starting address of the array, and then via the
message structures access the correct field. The program code will be just as
clear as with the ’normal’ way to use the DT. The only really disadvantage is,
that it was probably not originally the intention with the DT to do it this way,
but anyway it works perfect.

Below is a printout from the DT, showing the general definition of the
Equipment Module υpump, and the definition of the four data columns. The
definitions for the Equipment Modules υgaug and υυalυ are similar, only the
Equipment Module Number (Classno) differing (υpump = 230, υgaug = 231,
υυalv = 232) :

AND INSTANCE VARIABLES

Classname VPUMP Classno 230 Category EM PPM 0

Superclass EMCLASS CMCLASS Alarms N

Created 03-APR-92
Updated 03-JXJN-92

by Rosenstedt
by Rosenstedt

Short Description : Vacuum pumps

Proco Source File : vac_proco

DEFINITION OF CLASS

CI RW Varname Typ/Dim Description

I RO SNE I 1 Serial Number
I RO TRM I 2 Treatment
I RW BUFl I 25 Control message
I RW BUF 2 I 25 Acquisition message

Control software for the vacuum system - 27

Although not important, attention should be given to a minor disad
vantage by storing the whole control message as one piece in the DT. Problems
arise because it is not possible only to access the values in the DT which are
affected by a given property. To alter a few values, the whole message is copied
from the DT, and when the property is finished, it is copied back (when declared
as RW). Fields not affected by the property will thus remain unchanged.

From the discussion in the previous chapter, a piece of equipment can
be accessed from both the control room and from the local DSC at the same
time (although it must be highly confusing for the operators). This can in fact
lead to a malfunction : Consider a situation where one process calls the ccsact
property, and another process then slightly afterwards calls f. ex. the ccv prop
erty (before the ccsact property exits, and for the same equipment number).
The ccsact takes a copy of the control message in the DT, and so does the ccv. It
is now in fact quite likely that the ccv will exit as the first, because it won’t have
to send a message (ccv and ccvl sends no messages). Therefore ccv will put the
control values (the whole message) back into the DT as the first, and afterwards
the ccsact will do the same, overriding the changes made by ccv. That is, in this
example the ccv call didn’t achieve anything. For a property to fail, it is in fact
enough that one property is activated before another is finished! It might be
very unlikely to happen, but it’s possible. The solution would of course be to
have a lock on the access to the datatable.

Note that even if the values were put into the DT in the normal way,
the same problem would of course appear if two properties had to access the
same field in the DT. This is however not necessarily the case for vacuum, but it
could be, if f. ex. all the xxxx_chng flags were concentrated in one field.

For completeness, and for the sake of the test programs in later chap
ters, the few equipments and the corresponding RO columns (the same for all
three EM’s) until now defined in the datatable is Hsted below. The values in the
TRM[1] and SNE columns are chosen so that they are easily recognizable when
testing.

Eq, nς>, TRMFOl TRMJll SNE

20001 1 10 11
20002 2 20 22
20003 3 30 33
20004 4 40 44
20005 5 50 55
20006 6 60 66
20007 7 70 77
20008 8 80 88

Control software for the vacuum system - 28

2.2.3.2 Definition of the property functions in the DT

The property functions are those called from the application program
When a property function call is received by the Equipment Module, program
execution is transferred on to the corresponding proco function, which is a nor
mal function in C. The relationship between the property and the proco function
is determined in a special part of the datatable.

The definition of the property/proco functions in the DT is very
straightforward. In fact, the definitions closely follows the specifications given
in chapter 2.1.5. Below is a printout from the DT, showing all the newly defined
property functions for the Equipment Module υpump. Note that the EM number
by convention is included in the proconame.

Property Baseclas RW Proco C/I Parameter-list

AQN VPUMP R R230AQN I BUFlr BUF2r TRMr SNE
AQNl VPUMP R R23OAQNl I BUFlr BUF2r TRMr SNE
AQN2 VPUMP R R230AQN2 I BUFlr BUF2r TRMr SNE
ASPECT VPUMP R R23OASPE I BUF 2 r TRM
BUSY VPUMP R R23OBUSY I BUF2r TRM
CCSACT VPUMP W W23OCCSA I BUFlr TRMr SNE
CCV VPUMP W W230CCV I BUFlr TRM
CCVl VPUMP W W23OCCVl I BUFlr TRM
DATE VPUMP R R23ODATE I BUF2r TRM
INTLK VPUMP R R23OINTL I BUFlr TRMr SNE
INTLKM VPUMP R R23OINTM I BUFlr TRMr SNE
PHSTAT VPUMP R R230PHST I BUF2r TRM
RFAULM VPUMP R R230RFAM I BUFlr TRMr SNE
RFAULT VPUMP R R23ORFAU I BUFlr TRMr SNE
STAQ VPUMP R R23OSTAQ I BUFlr BUF2r TRMr SNE
TBIT VPUMP R R230TBIT I BUFlr BUF2r TRMr SNE
TBIT VPUMP W W230TBIT I BUFlr BUF2r TRMr SNE
TESTl VPUMP R R23OTST1 I BUFlr BUF2r TRMr SNE
TESTl VPUMP W W23OTST1 I BUFlr BUF2r TRMr SNE
UFAULM VPUMP R R23OUFAM I BUFlr TRMr SNE
UFAULT VPUMP R R23OUFAU I BUFlr TRMr SNE
WARN VPUMP R R23OWARN I BUFlr TRMr SNE
WARNM VPUMP R R23OWARM I BUFlr TRMr SNE

The parameter-lists expresses which parameters are used by the
proco function (see chapter 2.2.4). Unfortimately the Ust generated from the DT
above does not indicate the R0∕RW∕W0 status of the parameters in the
parameter-list. This information is therefore written as comments in the proco
source code (vac_proco.c).

The property functions defined in the other Equipment Modules
υgaug and vvalv are exactly the same as for vpump, except that the number in
the names are 231 for vgaug and 232 for vvalv.

Control software for the vacuum system - 29

2.2.4 Principles in writing property functions

In order to develop a full functioning Equipment Module, a huge
amount of existing code is loaded upon. Because of the complication of this gen
eral software, it is impossible to give a full description here, which is indeed not
even needed. However, in order to make it possible for the reader to understand
the property code presented in the following chapters, a brief description of the
’external· code referred to is given below.

The property functions are actually in connection with three distinct
’worlds’. One is in the function call itself, in the (standard) way the property
functions are invoked from the application program via the frame. Then there is
the access to the datatable, and the interface to the equipment, in this applica
tion via a message system. The latter is part of the present development, and is
described in the previous chapter.

First of all, the property code must be linked to the frame, that is, the
general software that receives the standard property function call from the ap
plication program, checks various parameters, and after a look in the datatable
passes the program execution on to the correct piece of proco code. The compila
tion and linking is accomplished via a makefile (makenodal), listed in appendix,
chapter 3.1.10.

There is no need to understand the internal workings of the frame in
order to understand the property code, only the standard calling sequence of the
property functions (which at the same time is the interface to the variables in
the DT) must be known. This interface is accomplished via a macro included
from the file proco-header.h :

#define sproco(name,record,value_type) ∖
name(dtr,value,size,membno,plsline,coco) ∖
record *dtr; ∖
value_type *value; ∖
int size; ∖
int membno ; ∖
int plsline; ∖
int *coco;

name : The name of the proco (property function), as defined in the DT. The
name is not the same as the property function name seen from the application
program.

record : A structure containing the fields in the DT accessed by the proco. Each
property has a structure associated to it describing the fields of the tables being
accessed. Before accessing the proco by the frame, this structure is filled with
the values of the fields marked RW or RO. No initialization is done for WO pa
rameters. When the property returns, those fields marked RW or WO are writ
ten into the DT, i.e. the DT is updated. Note that the proco function works on a
copy of the datatable.

Control software for the vacuum system - 30

value type : The type of the values contained in the array, pointed to by value,
that is passed to or from the application program.

dtr : Pointer to the structure containing the fields accessed by the proco. The
pointer is of course already initialized by the frame when the proco is invoked.

value : A pointer to the array passed to or from the application program. This
pointer is also already initialized by the frame when the proco is invoked.

size : Number of elements in the *value array.

membno : The equipment number being accessed.

plsline : The pls being accessed, not in use for vacuum.

*coco : The completion code returned by the proco. Several standard coco errors
are defined in the file gm-Constants.h.

The gm-Constants.h file also contains the Equipment Module num
bers, defined as constants (vpump = 230, vgaug = 231 and vvalv = 232). Another
file which is included from the property code is the gmjypes.h. This file con
tains among other things the definition of an EqmInt (long int) and an Eqm-
Float (double).

To compile and install three full functioning Equipment Modules for
local access (via NODAL), the following procedure must be followed :

• Create the files gm ~pbt.c and gm_dt.c from ORACLE (DSC : dtest2).

• Copy the files created by the ORACLE database (dir. : ∕ tmp) to the working
directory, which in the development phase is ∕u∣rosenst∣dsc∕vac.

• Use the makenodal and makecreat makefiles to compile and create the
nodal* and creadt* programs.

• Use makequeue and makert makefiles to create the queue* and rt* programs.

• Logged in on the local DSC, start the programs creadt* and queue*, which
creates the datatable and the two queues. If a datatable is already installed
it can be removed with ipcrm -M [key], where key is found with ipcs.

• Run the nodal* and rt* (test) programs in separate windows on the local
DSC, or run the rt* as a background process.

Control software for the vacuum system - 31

2.2.5 Property functions

2.2.5.1 The message structures

The message structures, which are common to all the Equipment
Modules, are defined in the message.h file, listed in appendix, chapter 3.1.3. The
file contains the four message structures : reqjnsg, ctrljnsg, acqjnsg and
statusjnsg. To make changes easier, all types in the messages are defined via
the intermediate types υacjcxxx, which are derived from basic C types. Note the
use of a union to switch between the data or test field.

It might have been a good idea to define separate types for every sin
gle field in the messages, i.e. a UnlJype, ammJype etc. It would add a little to
the complexity of the message structure definitions, but in case of changes it
would only be necessary to change the type definition at one place, and not as it
is now, at many places throughout the proco code.

The message.h file is of course to be included by both the property
code and the specific process, since the message structures are to be known in
both the sending and the receiving part. Hence, this file is a g∞d place to define
other constants which are common to the two processes, rather than defining
them twice, separately in each process. Therefore the last part of the file con
tains definitions regarding the types used, and especially the meaning of some
of the fields in the message structures. Values for fields, which are defined in
the specifications, but which the properties do not depend on, are not defined in
this file, as they are only of interest to the specific process.

The message.h file mostly contain type definitions and preprocessor
directives (true header file), and therefore there is no reason to apply the
method used for mqlib.c, as most of message.h can be included in vac_proco.c
without problems (see chapter 2.2.5.2). However, two variables are defined :
Ctrlqjiame and acqqjιame. To overcome the problem of including defined vari
ables, they are defined static, meaning there will be a copy for each EM in the
final nodal* code. This is better than using a ^define, which would result in the
string being placed many times in the code.

Controlsoftwareforthevacuumsystem - 32

To make the BUFl and BUF2 columns in the datatable large enough,
it is necessary to know the size of the Ctrljnsg and the acqjnsg. Finding the
size manually from the structures in the message.h file gives the following re
sults :

reqjnsg : 22 bytes

Ctrljnsg : 62 bytes

acqjnsg : 70 bytes

Statusjnsg : 102 bytes

Exactly the same results are obtained from the sizeof operator, which
indicates that the compiler doesn’t add any alignment bytes. However, if the
test field in the Ctrljnsg does not contain an even number of bytes, the compiler
adds one alignment byte. This doesn’t matter in the present application, be
cause both the sender and the receiver of the messages are programmed in C
code and compiled with the same compiler. But in other applications it could
cause some problems if the sender and receiver process are programmed in dif
ferent languages, and thus perhaps implements alignment in another way or
not at all.

2.2.5.2 The property code

As stated in the specifications, all the equipment is divided in three
groups, and there is therefore three different Equipment Modules. Having three
different Equipment Modules is the same as three different sets of property
functions. However, since the division of the equipment in Equipment Modules
is only made for convenience reasons, the property functions in the different
Equipment Modules for vacuum are in fact almost identical. This is why the
property specifications in chapter 2.1.5 do not distinguish between different
Equipment Modules.

This leads to the discussion of, if and how the property functions can
be implemented in the same sourcecode file. This would be very advantageous
when correcting and testing the code. There are several ways to do it :

Control software for the vacuum system - 33

One is to write all the property functions so that they are exactly
identical in all Equipment Modules. A disadvantage is that there will be some
code in all of the EM’s which will never be used (f. ex. code for valves in the
υpump EM etc., how little it may be), and that it will be possible to access f. ex.
a pump from the υgaug EM, which can certainly not be allowed. The latter
could be avoided by checking that the accessed Equipment Type belongs to the
correct EM number, but this would make a not desired connection in the code
between these two numbers, in case the numbers should change (although, why
should they change ? The EM Number is already found in the name of all the
proco functions !).

Another way, and the one which has been chosen, is to use #IFDEF
and #ENDIF compiler directives to switch in/out the (small) parts of the code
specific to certain Equipment Modules, and leave the general parts. This
method has the extremely great advantage, that changes which are made im
mediately applies to all of the Equipment Modules. There are not the problems
and dangers in having three nearly identical versions of code, that must all be
updated simultaneously. The disadvantages are that the code might get a little
confused, and that there are some problems by having some (not proco) func
tions and variables in the same file. This is discussed in greater detail in the
following.

Thus, the complete source code for all the properties in all the Equip
ment Modules are located in the vac~proco.c file, listed in appendix, chapter
3.1.4. To switch between which Equipment Module the code is compiled for, one
of the following preprocessor variables must be set (-Dxxxx compiler option)
when compiling : vpump~proco, vgaug~proco or vυalυ_proco.

The property code is not very complicated, and as many of the proper
ties are more or less identical, only the general outline of a few of the property
functions will be described below.

Controlsoftwareforthevacuumsystem - 34

First a few comments to the global definitions in the beginning of the file :

Via conditional compilation the EQ_MOD_NO is assigned the correct
EM number. The EM numbers are written directly in the code, as it is more
likely that the EM name changes than that the numbers do. However, this
could also have been done by reading a (new) MO_.NO column in the DT. At the
same time a macro is defined, which includes the EM number in the proco func
tion names.

Some other macro definitions follow : check _size, check jnt and
setj,in. The reason they are defined as macros rather than functions is that
some of the types they operate on are not the same in the different proco func
tions. F. ex. in the setj,in macro, the dtr pointer has different types in the dif
ferent proco functions.

Next follows the definitions that have a connection with the defini
tions in the DT, and which must therefore always correspond exactly to the DT.
The xxxx-dtr structures contain the list of parameters in the DT (order is sig
nificant) which are accessed by the procos. These structures must correspond to
the DT definitions (parameter list) listed in chapter 2.2.3.2.

Some coco error constants are defined, which links the coco names
used in the proco code with some of the coco error numbers defined in the
gm-Constaτιts.h file. This makes it easy to change the codes, which is important
because some of the coco numbers are not finally defined yet.

The seven normal functions are used by most of the proco functions. Note
that there are a total of four global variables : Ctrlqsettingf acqq_setting,
Ctrlqjiame and acqqjιame, the last two coming from the message.h file. The
reason for using global variables is that it would simply be too tedious to pass
them the normal way as parameters.

check eq type : Checks if the Equipment Type passed to the function belongs to
the Equipment Module.

set time : Sets the vac Jime structure pointed to by time j) to the actual time.

Control software for the vacuum system - 35

check qualif : The parameter passed to the function (the qualif field) is exam
ined and, according to the bit definitions, a coco error code is returned for the
most significant bit that is set, i.e. the most significant condition.

open queues : Simply opens the control queue and the acquisition queue for
writing and reading respectively, and sets up the setting structures. Since there
is no general initialization routine available when writing proco functions, the
queues must be opened and closed for every access. This does not cause any
problems, see chapter 2.2.1.

close queues : Closes the control and the acquisition queues.

send async : Opens the queues, sends a message on the control queue and closes
the queues again.

send sync : Opens the queues, sends a message on the control queue, waits to

receive a message on the acquisition queue and then closes the queues again.

If a function is present in the normal way in the vac~proco.c code, it
will be defined in all of the object files created from the single source code file. It
is of course not possible to link such object files containing duplicate function
definitions. Therefore a method must be found to ensure that normal non proco
functions are only present in the created object files once.

The function check_eq_type has the same name in all EM’s, but as the
content is different, it is necessary to make sure that one version of the function
can not be seen from the other EM’s when they have been linked. This is of
course easily done by defining it static.

The other functions (and the two global variables) however, have the
same contents in all EM’s, and although they could also be defined static (would
solve the problem with duplicate names), it is more elegant to have only one
copy in the final code. This can be achieved by having an extra file with the
functions, plus a header file to be included, or use the same method as for
mqlib.c. However, a more elegant method is found, using the conditional com-

Controlsoftwareforthevacuumsystem - 36

piler directive already used in the code, so that the functions are only effective
with the υpump EM. The extern declaration of the functions ensure a compile
error if anything is typed wrong. The extern declaration of the two global vari
ables are necessary to be able to compile.

The same problem as above appears when including files with de
fined functions or variables. This is the reason that the full mqlib.c and mes-
sage.h can not be included directly.

At last to the proco functions themselves :

In the w230ccsa proco (ccsact property) the type of the equipment

accessed is first checked, and at the same time the size of the parameter passed

via the property function is checked (see table with allowed values in chapter

2.1.3). The size limits could have been defined in a separate column in the DT,

and then received from there, which would have been a more ideal solution.

However, since it is said that the limits will never be changed, they have been

put directly into the code. Next, all the fields in the general header of the con

trol message are given new values. Again, because no initialization routine ex

ists, the Iin values f. ex. must be computed and stored in the message each time

the proco is called. It is easier to compute them each time than to have a kind of

flag indicating if the values are already OK

Note that all the new values assigned are in fact written directly into

the control message in the DT !, i.e. the DT is updated. When the message is

send, the message data from the DT is read via the pointer. That is, no copying

of the DT into an external buffer is necessary.

Before the message is send, the ccsact_chng field is set to CHANGED.

After the message have been sent, the ccsact _chng field is set back to

Control software for the vacuum system - 37

NO-CHANGE, and the other _chng fields is set to NO_CHANGE (if valid). In

this way, even if the sending of the message somehow fails, the xxxx~chng fields

will contain correct values.

The w230ccυ and ιv230ccυl procos (ccv and ccvl properties) are a

little simpler than the w230ccsa proco, because they do not send any messages.

The parameter passed via the property is just copied into the DT and the _chng

field is set to CHANGED. For the w230ccv, the storing of the ccv value in the

message is dependent on the Equipment Type, because the ccv field has differ

ent types (union).

The procos which receives acquisition values : r230staq, r230aqn,

r230aqnl and r230aqn2 (staq, aqn, aqnl and aqn2 properties), are in fact

very similar. As always, it is first checked that the equipment accessed belongs

to the correct Equipment Module, and that the parameter (aqn, aqnl and aqn2)

really exists for that equipment. Then new values are put into the header of the

control message in the DT, and a request message is send. Note that the size of

the acquisition message that is expected to be received must be set first.

When an acquisition message is received, it is put directly into the

datatable, thus avoiding any copying. The value asked for is taken from the DT,

and returned to the calling program. This is a bit complicated for aqn, because

this field has different types (union) depending on the Equipment Type.

If there was no problems in the sending and receiving of the mes

sages, the qualif field in the received acquisition message is examined. In this

way, important errors from the message system itself is not overwritten by the

less important error conditions from the message system.

Control software for the vacuum system - 38

The r230phst, r230aspe, r230date and r230busy procos (phstat,

aspect, date and busy properties) are all very simple. First the usual check is

made, that the equipment accessed belongs to the Equipment Module, and then

the field in the acquisition message in the DT is returned. Note in the r230busy

proco, if the busy time is too large to be returned to the calling program (be

cause of the type of the parameter), a coco error will be returned. A bit strange,

but necessary.

The r230wamf r230rfau, r230ufau and r230intl procos (warn,

rfault, ufault and intlk properties) are in fact identical. There are only two

small differences from the previously described procos : The acquisition mes

sage to be received is now a status message. Upon receipt the message is not

stored directly in the datatable, but instead the message is put into the status

msg variable, so that the acquisition values in the datatable are not overwrit

ten. The appropriate field from the message is returned.

Very similar to the four procos above are the r230warm, r230rfam,

r230ufam and r230intm procos (warnm, rfaulm, ufaulm and intlkm proper

ties), which receives the corresponding dates. It can be seen from the code how

an array of values are returned to the calling program

The tbit test property is very simple, but unlike the properties

above, there are both a read and a write version of the proco. The r230tbit proco

simply returns the specialist field from the acquisition message in the datat

able. The w230tbit proco writes the parameter into the specialist field in the

control message in the datatable.

The other test property, testl, has also a read and a write version of

the proco : r230tstl and w230tstl, which are a bit more complicated. Nothing

Control software for the vacuum system - 39

is changed in the datatable by these two procos, so the header of the message is

computed and put in the ctrlmsg variable. As the specialist field to be send is in

the datatable, it is copied into the ctrlmsg variable from the control message in

the DT.

In the w230tstl proco, the array of test values is copied into the test

field of the ctrlmsg variable and at the same time each value is checked for size.

Finally the message is send, but as there is no amm value defined as ’this is a

test acquisition message’ (why can’t there be such an amm value ?), the amm is

set to NO-RET. This means that the specific process can not distinguish be

tween a test message and a normal control message. Therefore, before calling

the testl (write) property, the tbit (write) property must be called by the user,

and the specialist field set to something the specific process can recognize, thus

indicating that it is a test message. As the property functions are not dependent

on this, the specification and implementation have only to do with the specific

process.

There are no such problems with the r230tstl proco, because an

amm value (RET-TEST) has been defined, indicating that a test message is to

be returned. After the proco has send the request control message, it waits to

receive a test acquisition message. Because the DT must not be affected by this

proco, the received message is put in the variable acqmsg, and the array of test

values are returned to the calling program. It might have been logical at least to

update the DT with the specialist field and the status part of the acquisition

message, but this is not so in the present specification.

Control software for the vacuum system - 40

2.3 Testing

2.3.1 The real time process for testing

To be able to test the property functions, a test real time program
(rt.c) has been developed, which is listed in appendix, chapter 3.1.5. The test RT
program receives and sends messages exactly as the final specific process will
do, but it is of course not connected to any equipment, and is therefore neither
assigned a higher priority.

The following functions are present in the rt.c file :

set time : Stores the current time in the vacjime structure pointed to by
time _p.

set acq vais : This function stores some test values in the acquisition message.
To make testing easier, most of the values are taken from the control message :

All the fields in the header is copied from the control message, except the date
field, which is assigned the actual time. The aqn fields are assigned some of the
values from the corresponding ccv fields in the control message, and the fields
in the status part of the message is assigned the ccsact value plus some con
stants, for checking that the values are really transferred. See the code for fur
ther details.

set stat vais : Some test values are stored in the status message. See the code
for further details.

send norm acq, send stat acq and send test acq : First the new values are
stored in the messages, and then the contents of the message is printed. The
printing is accomplished via the functions included from the msg~print.h file
(appendix, chapter 3.1.6). Afterwards the message is send. Note that the mes
sage type is set explicitly (acqqsetting.type = ctrlq setting. type_recv), so that
the message type send is the same as the one received.

In the main part of the program, the two queues are first opened
and the setting structures initialized. Note that the buffer for receiving the con

Control software for the vacuum system - 41

trol message is set to the size of the largest message that can be received, here
of course the normal control message. Time-out is set to 0 sec., meaning there
will never be a time-out, and the type to be received is set to 0, resulting in all
messages being received no matter the type.

Upon receipt of a control message, the contents are first printed and
the control fields in the message are stored. If the specialist field is zero, the
message is treated as a normal control message and the control values are
stored. If the specialist field is non zero, the message is treated as a test mes
sage, and the test field is stored. Depending on the amm field in the message
received, either a normal acquisition, test acquisition or status message is send
on the acquisition queue.

2.3.2 Testing with NODAL

Three very simple NODAL test programs have been written, which
tests all of the property functions :

test 1.nod : Used for testing the ccsact, ccv, ccvl, staq, aqn, aqnl, aqn2, phstat,
aspect, date and busy properties, quite a number. However, since the procedure
of testing is merely a matter of calling a property and examining the resulting
printout of the messages and the coco error, it is quite simple. A listing of the
testLnod file, the printout when the program is run, together with a printout of
the contents of the messages, are to be found in appendix, chapter 3.1.7.

test2.nod : Testing of the warn, rfault, ufault, intlk, warnm, ufaulm, rfaulm and
intlkm properties. A listing of the test2.nod file and the printout from the pro
gram are shown in appendix, chapter 3.1.8. The quite comprehensive message
contents are not shown.

test3.nod : Testing of the tbit(r∕w) and testl(r∕w) properties. A listing of the
test3.nod file plus the printout from the program, is in appendix, chapter 3.1.9.
The message contents are not shown.

The property functions have of course also been tested with other val
ues and EM’s than those shown in the test programs. According to the printout
from the test programs and the printout of the message contents, everything
seems to work as expected.

Control software for the vacuum system - 42

3 Appendix

3.1 Program listings

3.1.1 mqlib.c

/***i
∕* CERN/PS/CO */
∕* Date : 8/7 1992 */
∕* By : Ankar Rosenstedt */
∕* File : mqlib.c */
∕* Uses : */
∕* Status : Final */
∕* Timeout functions perfect. */
∕* Program sometimes crash when killed in waiting mqreceive */
∕* system call, but reboot NOT nescesarry. */
∕* Descr. : Routines for message queue Conmunication */
∕* */
∕* */
Z***i

∕* HEADER */

typedef struct {
int type_recv; ∕* Type of message that WAS received */
int size; ∕* Max size of message to be received */
int fd; ∕* Queue file descriptor */
int tyP^- ∕* Type msg TO BE recv., see man mqreceive */
unsigned timeout; ∕* Timeout in seconds. O -> never timeout */

} setting_recv;

typedef struct {
int type; ∕* Type of message to be send, see manual */

∕* for mqaend */
int size; ∕* Size of message to be send */
int fd; ∕* Queue file descriptor */

} setting~send;

extern int setup_recv(sotting_recv*, char*);
extern int setupsend(setting_send*, char*);
extern int msg_recv(setting_recv*, void*);
extern int msg_send(setting_send*, void*);

∕* IMPLEMENTATION */

♦ifdef MQLIB CODE

#include
♦include
♦include
♦include
♦include

<mqueue.h>
<errno.h>
<file.h>
<signal.h>
<βtdio.h>

∕* Function quit ***∕
void quit()
{ ∕* Catch kill signals, to make controlled exit */

∕* Not used for anything. When process is killed mqreceive */
∕* still crashes now and then, though reboot NOT nescessary */

Program listings : mqlib.c - 43

printf("∖nFrocess killed∖n");
exit(O);

∕* Function : catch **∕
void catch ()
{

return;
∕* Catch timeout (alarm) signal, do nothing */
∕* (interrupts mqreceive system call) */

)

/h Function setup r∙cv ***∕
int setup~recv(setting, queue_name)
setting_recv *setting;
char *queue_name ;
{
int qfd;

settIng->timeout ≡ 10; ∕* 10 seconda timeout (default) */
≡etting->type ≡ getpid(); ∕* Only mag's of this type are received */

∕* by default. Should be set to 0 to */
∕* receive oldest message on queue */

if ((qfd - open(queue_name, O_RDONLY, 0)) < 0)
return(errno);

setting->fd ≡ qfd;

signal (SIGAI1RM, catch); ∕* Avoid process termination when timeout */
signal(SIGINT, quit); ∕* Catch kill signals and exit */

return(0);

∕* Function setup send ***∕
int setup_send(setting, queue_name)
sβtting~sβnd *setting;
char *queue_name;
{
int qfd;

setting->type ■ getpid(); ∕* Type message that are send (defit.) *∕
if ((qfd - open(queue_name, O_WRONLY, 0)) < 0)

return (ermo) ;
setting->fd ≡ qfd;
return(0);

∕* Function msg recv ***∕
int mscf_recv (setting, data_p)
setting_recv *setting;
void *data~p;
{
static struct msgcb msg;

msg.msg_type ■ (long) setting->type;
msg.msg_flags - MSG_TRÜNC; ∕* Wait in system call */
msg.msg_bufsize ≡ setting->size; ∕* Max length of recv msg's */
msg.msg_data ■ data_p; ∕* Msg is copied to point Ioc. */

alarm (setting->timeout) ; ∕* Set timeout clock */
if (mqreceive(aetting->fd, &msg) < 0) {

alarm(0); ∕* Timeout clock off, *∕

Program listings : mqlib.c - 44

return(errno); ∕* in ca∙e other receive fault */
)
alaπn(0); ∕* Mag recv, timeout clock off */
aetting->type_recv - mag.msg_type; ∕* Mag_type received */
return(0);

/★ Function τn⅜<j s∙ncl ***∕
int mag_8end(aetting, data_p)
aotting_aend *aetting;
void *data_p;
{
atatic atruct magch mag;

mag.mag_ fIaga
msg. mag_type
mag.mag_length
mag.mag_bufaize
mag.mag_data

if (mqaend(aetting->fd, &mag) < 0)
return (ermo) ;

return(0);
}

Iendif ∕* MQLIB CODE */

- MSG_NOWAIT I MSG_COPY;
- aetting->type;
- aetting->aize;
- aetting->aize;
- data_p;

Program listings : mqlib.c - 45

3.1.2 queue.c

y**********⅛***t*******W**********WWt*******t******tt*tt******t****t*t** I
∕* CERN/PS/CO */
∕* Date : 8/7 1992 */
∕* By : Ankar Roaenatedt *∕
∕* File : queue.c *∕
∕* Uaea : To be linked with mqlib.c *∕
∕* Statua : Final */
∕* Deacr. : Xnatalla two message queue filea *∕
∕* If atarted with a command line parameter 'a', no queues *∕
∕* are installed, only the attributes are printed *∕
∕* If started with a command line parameter 'c', no queue *∕
∕* are installed, but the attributes are printed continuously */
∕***∕
!include <mqueue.h>
!include "message.h"
!include "mqlib.c"
!include <ermo.h>
!include <stdio.h>

∕* Fiinrt⅜ on print q_attr ***∕
int print_q_attr(q~name)
char *q~name;
{
setting_recv setting;
struct mqstatus mqstat;
int err;

if ((err ≡ setup_recv((setting, q_name)) l≡ O) {
printf("Error opening '%s' queue : %d∖n", q~name, err);
return(1);

}

if (mqgetattr(setting.fd, (mqstat) < O) {
printf("Error getting '%s' queue attributes : %d∖n"

, q_name, errno);
return(1);

}
printf("∖nCurrent attributes for ,%s' queue : ∖n", q_name);

∕* Note that in the manual (mqgetattr), the text for *∕
∕* the two first and the two next fields in the */
∕* mqstatus structure have been reversed (ver. 2.0.0) *∕

printf("mqmaxmsg (number of messages currently free) : %d∖n"
, mqstat.mqmaxmsg);

printf("mqrsvmsg (max number of messages) : %d∖n"
, mqstat.mqrsvmsg);

printf("mqmaxbytes (bytes currently free) : %d∖n"
, mqstat.mqmaxbytes);

printf("mqrsvbytes (max number of bytes) : %d∖n"
, mqstat.mqrsvbytes);

printf("mqwrap : %d∖n", mqstat.mqwrap);
printf("mqmaxarcv : %d∖n", mqstat.mqmaxarcv);
printf("mqcurmsgs : %d (number of messages currently on queue)∖n"

, mqstat.mqcurmsgs);
printf("mqsendwait : %d∖n", mqstat.mqsendwait) ;
printf("mqrcvwait : %d∖n", mqstat.mqrcvwait);

close(setting.fd);
return(0);

}

Program listings : queue.c - 46

∕* Main **∕
main(argc, argv)
int argc;
char *argv[];
{
int err;

if (argc — 1) { ∕* Create queue· */

∕* Create control queue */
unlink(ctrlq~name); ∕* If file exista, delete it */
if (mkmq(ctrlq_name, MQPERSIST) < 0) {

printf("∖nError creating control queue : %d∖n", ermo) ;
exit(l);

}
chmod(ctrlq_name, 0777); ∕* Set permission to rwx for all users */
printf("∖nControl queue created∖n∖n");

∕* Create acquisition queue */
unlink(acqq_name) ;
if (mkmq (acqq_name, MQ_PERSIST) < 0) {

printf("Error creating acquisition queue : %d∖n", erroo);
exit(1);

}
chmod(acqq~name, 0777);
printf("Acquisition queue created∖n∖n") ;

)

if ((argc — 1) ∣∣ (*argv[l] — ,a')) { ∕* Print attributes */

if (print_q_attr(ctrlq_name) 1-0) {
print_q_attr(acqq_name) ;
exit(l); ∕* Error in reading ctrlq attr */

)
if (print_q_attr(acqq_naroe) I- 0)

exit(l); ∕* Error in reading acqq attr */
printf("∖n");
exit (0);

if ((argc — 1) ∣∣ (*argv[l] — 'c')) { ∕* Print attributes */
∕* continuously */

for(;;) {
if (print_q_attr(ctrlq_name) 1-0) {

print_q_attr(acqq_name) ;
∙xit(1);

}
if (print_q_attr(acqq~name) I- 0)

exit(1);
sleep(3);

)

Program listings : queue.c - 47

attr

attr

3.1.3 message.h

∕***i
∕* CERN/PS/CO */
∕* Date : 8/7 1992 */
∕* By : Anker Rosenstedt */
∕* File : message.h */
∕* Uses : */
∕* Status : Final */
∕* Descr. : Message structures for VACUUM (used for all EM's) */
∕* */
∕* */
/*’ ******/

∕***∕
∕* Common definitions */
∕***∕
typedef unsigned char vac_byte; ∕* 8 bit unsigned integer */
typedef signed char vac_byte_s; ∕* 8 bit signed integer */
typedef unsigned short int vac_intl6; ∕* 16 bit unsigned integer */
typedef unsigned long int vac_int32; ∕* 32 bit unsigned integer *∕
typedef float vac_real; ∕* 32 bit real *∕

typedef struct { ∕* Format of dates */
long int sec;
long int usee;

} vac_time;

typedef union { ∕* Union used for ccv and aqn */
vac_byte byte;
vac_intl6 inti6;
vac_int32 int32;
vaC—real real;

} mul_type;

typedef struct {
vac_intl6 class_ev; ∕* Class of events *∕
vac_intl6 spec_ev; ∕* Specific event */

} event;

/***∕
∕* Define REQUEST (CONTROL) message structure */
∕***∕
typedef struct {

) req_msg;

vac_intl6 linl; ∕* Logical Identification Numbers */
vac_intl6 lin2;
vac_intl6 lin3;
vac_intl6 amm; ∕* Acquisition Message Meaning */
event pulsid; ∕* Puls identifier */
vac_time date; ∕* Time when this message was send */
vac_intl6 specialist; ∕* Specialist action , */

/***/
∕* Define CONTROL message structure *∕
I ***∕
typedef struct {

vac_byte_s ccsact_chng; ∕* Flags ccsact value is changed/valid *∕
vac_byte ccsact; ∕* Current Control Set ACTuation */
vac_byte_s ccv_chng; ∕* Flags ccv value is changed/valid *∕
mul_type ccv; ∕* Current Control Value */

Program listings : message.h - 48

vac_byte_s
vac_real

} ctrl_data;

ccvl_chng;
ccvl ;

∕*
∕*

Flags ccvl value changed/valid
Current Control Value 1

*/
*/

♦define TEST_LENGTH_CTRL 40

typedef union {
ctrl_data data;
vac_byte test[TEST_LENGTI

} ctrl—U;

∕* Length of
∕* MUST agree

!-CTRL] ;

test field
with def. in DT

∕* Data field
∕* Test field

*/
*/

*/
*/

typedef struct
vac_intlβ
vac_intlβ
vac_intlβ
vac_intlβ
event
vac_time
vac_intlβ

{
linl;
lin2;
lin3;

pulsid;
date;
specialist;

∕* Time when this message was send */

ctrl_u
} ctrl_msg;

u; ∕* Data or test field */

∕*** I
∕* Define ACQUISITION message structure */
/★*★***★**★★*★** ∕
typedef struct {

mul_type
vac_real
vac_real

} acq_data;

aqn;
aqnl;
aqn2;

∕* Acquisition value
∕* Acquisition value 1
∕* Acquisition value 2

*/
*/
*/

♦define TEST_LENGTH—ACQ 40 ∕* Length of test field */
∕* MUST agree with def. in DT */

typedef union {
acq_data data; ∕* Data field */
vac_byte test[TEST—LENGTH—ACQ]; ∕* Test field */

} acq_u;

typedef struct (
vac_intl€ linl;
vac_intl6 lin2;
vaC-intlβ lin3;
vac_intl6 amm;

event pulsid;
vac_time date; ∕* Time of ACQUISITIONS */
vac_intl6 specialist;

vaC—byte phyS—status ; ∕* Physical status */
vac_byte saqn; ∕* Read back actuation value */
vac_byte aspect; ∕* Not connected/local/remote */
vaC—byte qualif; ∕* Warn/busy/rfault/ufault/interlock */
vac_int32 busy_time; ∕* Busy time in seconds */

acq_u u; ∕* Data or test field */
} acq_msg;

∕***∕
∕* Define STATUS (ACQUISITION) message structure */
/***/
typedef struct {

vac_int32 list; ∕* A bit for each warn/fault∕interl */
vaC—time date_last; ∕* Time of last waro∕rfault∕ufaul∕intl */
vaC—time date_imp; ∕* Time of most important - - - */

} exception;

Program listings : message.h - 49

typedef struct {
vac_intl6 linl;
vac_intlβ lin2;
vac_intl6 IinS ;
vac_intl6 amm;
event pulaid;
vac_time date; ∕* Time when this message was send */
vac_intl6 specialist;

exception warnings; ∕* Warnings */
exception rfaults; ∕* Resetable faults */
exception ufault∙; ∕* Onresetable faults */
exception interlocks; ∕* Interlocks */

} 8tatus_msg;

∕***I
∕* Other definition· (common to properties and specific process) */
∕WWW f
∕* Queue names */
static char ctrlq_name[] ■ "∕∙em∕ Ctlmsgqueue"; ∕* Ctrl queue path + name*∕
static char acqq_name[] ≡ "∕∙em∕acqmsgqueue"; ∕* Acq queue path + name */

∕* Range of vacuum types *∕
♦define BYTE-MIN 0 ∕* From file limit∙.h : */
♦define BYTE-MAX Oxff
♦define BYTE-S-MIN -128
♦define BYTE-S-MAX 127
♦define INTl6_MIN 0
♦define INTl6_MAX Oxffff
♦define INT32—MIN 0
♦define INT32—MAX Oxffffffff
♦define REAL-MIN 1.17549436e-38 ∕* From file float.h : */
♦define REAL-MAX 3.40282346∙38
♦define EqmInt-MIN -2147483848 ∕* From file limit∙.h : */
♦define EqmInt-MAX 2147483647

∕* Meaning af amm */
♦define RET-ACQ 0 ∕* Return normal acquisition (request) */
♦define RET-CTRL 1 ∕* Return control message (read back) */
♦define RET-TEST 2 ∕* Return acq. msg. for test */
♦define RET-CYCLE 3 ∕* Return Ctrl. msg. cycle no. */
♦define RET-STAT 4 ∕* Return status (acq) msg. */
♦define NO-RET 5 ∕* NO ret.. message (asynchronous) */

∕* Meaning of cc∙act~chng, ccv_chng and ccvl_chng */
♦define N0_CHANGE -1 ∕* Must be negative */
♦define CHANGED 1 ∕* Must be positive *∕
♦define NOT_VALID 0

∕* Meaning of qualif (bits) *∕
♦define QUALIF~ILOCK OxlO
♦define QOALIF_UFAOLT 0x08
♦define QUALIF~RFAULT 0x04
♦define QUALIF_BUSY 0x02
♦define QUALIF_WARN 0x01

∕* Definition of equipment type numbers *∕
♦define P_GROUP 1
♦define P_ION 2
♦define P~SUBL 3
♦define P_STAT 4
♦define G_PIRAN 5
♦define G~ION 6
♦define V~VALVE 7

Program listings : message.h - 50

3.1.4 vac-proco.c

y***I
!* CERN/PS/CO */
∕* Date : 8/7 1992 */
∕* By : Ankar Roaenatedt *∕
∕* File : vac_proco.c *∕
∕* Uaea : To be linked with mqlib.c and frame etc. */
∕* Statua : Final *∕
∕* Deacr. : Property functione for ALL VACUUM EM : VPUMP, VGAUG, WALV */
∕* */
∕* Compiler option must include flags -DVPUMP_PROCO, *∕
∕* -DVGAUG_PROCO or -DWALV_PROCO */
∕* */
∕*** ∕
♦include <gm_conatanta.h>
♦include <gm_typea.h>
♦include "mesaage.h"
♦include n mqlib.c n
♦include <proco~header.h>
♦include <errno.h>
♦include <time.h>

∕* CONDITIONAL INCLUSION OF EQUIPMENT MODULE NO */

♦ifdef VPUMP_PROCO

♦define EQ_MOD_NO 230 ∕* Eq. Mod. No. ahould fit with gm_conatanta.h */
∕* Macro for proco headera *∕
♦define proco_head(p_rw, p_name, p_record, p_value_type) ∖

aproco(p_rwf#230|fp_name, p_record, p_value_type)

♦endif
♦ifdef VGAUG_PR0C0

♦define EQ_MOD_NO 231
♦define proco_head(p_rw, p_name, p_record, p_value_type) ∖

aproco (p_rw##231Mp_name, p_rocord, p_value_type)

♦endif
♦ ifdef WALV_P ROCO

♦define EQ_MOD_NO 232
♦define proco_head(p_rw, p_name, p_record, p_value_type) ∖

sproco (p_rwW232Mp_name, p_record, p_value_type)

♦endif

∕* MACRO DEFINITIONS */

♦define check_size(v,1,h) if((v<l)∣∣(v>h)) {*coco ≡ LIMERR; return; }

∕* Check if integral number, return usual coco error if not *∕
∕* (value must be within INT32_MIN...INT32_MAX) *∕
♦define check_int(v) if (v !≡ (vac_int32) v) { check_size(1, O, O); }

∕* Set linl, lin2 and lin3 in ctrlmsg *∕
♦define aet_lin ctrl_p->linl ≡ (vac_intl6) EQ_MOD_NO; ∖

ctrl-p->lin2 - (vac_intl6) ((dtr->trm[EQJΓYPE] « 8) ∖
I (dtr->trm[EQ_STYPE] & 255)); ∖

ctrl_p->lin3 ≡ (vac_intl6) dtr->ane;

Programlistings : vac-proco.c - 51

∕* DATATABLE FORMATS, must fit with datatable definition· *∕

∕* Meaning of TRM array *∕
♦define EQ_TYPE 0
♦define EQ STYBE 1

∕* Length of acq and Ctrl message fields defined in DT *∕
∕* MUST be >— the size of the corresponding struct., MUST fit with DT *∕

♦define CTRL_DT_LENGTH 25 ∕* 100 byte */
♦define ACQ_DT_LENGTH 25 ∕* 100 byte */
typedef EqmInt Ctrl_dt_type[CTRL_DT_LENGTH] ;
typedef EqmInt acq_dt_type[ACQ_DT_LENGTH];

typedef struct {
ct r l_dt_t ype
EqmInt
EqmInt

} ccsact_dtr;

ctrlmsg;
trm[2] ;
sne;

/*RW*/
/*RO*/
/*RO*/

∕* Used for ccsact */

typedef struct {
ct r l_dt_t ype
EqmInt

} ccv_dtr;

ctrlmsg;
trm[2];

/*RW*/
/*RO*/

∕* Used for both ccv and ccvl */

typedef struct {
ct r l—dt—t ype
acq_dt_type
EqmInt
EqmInt

} aqn_dtr;

ctrlmsg;
acqmsg;
trm[2] ;
sne;

/*RW*/
/*WO*/
/*RO*/
/*RO*/

∕* Used for both staq, aqn, aqnl-2 */

typedef struct {
acq_dt—type
EqmInt

} read_acq_dtr;

acqmsg;
trm[2];

/*RO*/
/*RO*/

∕* Used for phstat, aspect, date £ busy*/

typedef struct {
ct r l_dt_t ype ctrlmsg; /*RW*/
EqmInt trm[2] ; /*RO*/
EqmInt sne; /*RO*/

} except—dtr; ∕* Used for warn, rfault, ufault, intlk, */
∕* warnm, rfaulm, ufaulm and Intlkm */

typedef struct {
ct rl_dt_type ctrlmsg; /*RW*/
acq_dt_type acqmsg; /*RO*/
EqmXnt trm[2] ; /*RO*/
EqmInt sne; /*RO*/

) test—dtr; ∕* Used for tbit(r∕w) and testl(r∕w)

/★ COCO ERROR CODES, (re)defined here because nobody knows the values */

♦define ENILL_COCO ENILL ∕* Equipment Number ILL */
♦define TIMOUT_COCO TIMOUT ∕* Timeout */
♦define NOQ-COCO NOQ ∕* Queue error */
♦define ILCK-COCO 1016 ∕* Interlock (from qualif) */
♦define UFAUL-COCO 1008 ∕* Unresetable fault (from qualif) */
♦define RFAUL_COCO 1004 ∕* Resetable fault (from qualif) */
♦define BUSY—COCO 1002 ∕* Busy (from qualif) */
♦define WARN-COCO 1001 ∕* Warning (from qualif) */

Program listings : vacjproco.c - 52

∕* FUNCTIONS */

/★ Fu∏c⅜ ⅜,or⅝ ch⅜ck βc[^txypβ ***************************t⅜⅛wtttt⅜twt⅜ttwt^
static int check_eq_type(eq_type) ∕* MUST be static because function */
int eq_type; ∕* has the same name in all 3 EM's,*/
{ ∕* but the content is different *∕
♦ifdef VPUMP-PROCO

switch(eq_type) {
case P-GROUP ;
case P_ION :
case P-SUBL :
case P-STAT :

break;
default :

return (ENII.L—COCO) ; ∕* Not pump equipment *∕
break;

}

♦endif
♦ifdef VGAUG-PROCO

switch(eq_type) {
case G-PIRAN :
case G-ION :

break;
default :

return (ENIi1L-COCO) ; ∕* Not gauge equipm. */
break;

)

♦endif
♦ ifdef WALV-PROCO

switch(eq_type) {
case V-VALVE :

break;
default :

return(ENILL—COCO); ∕* Not valve equipm. *∕
break;

)

♦endif

return (NOERR) ;
)

∕* FUNCTIONS and GLOBAL VARIABLES which should only be present in the */
∕* final code once (here with VPUMP). It thus makes the final code */
∕* more compact. It would be possible to declare all the functions */
∕* static as the one above, but the functions would then be included */
∕* several times, one time for each EM (≡ 3 times in present version). */
∕* If someone do not like it this way, they can of course put the */
∕* functions in a separate file, and link it to the rest. */

extern setting~send ctrlq_setting;
extern setting_recv acqq_setting;

extern void set_time(vac_time*);
extern int check~qualif(int);
extern int open_queues();
extern void close_queues();
extern int send_async(void*);
extern int send_sync(void*, void*);

♦ifdef VPUMP PROCO

Program listings : vac_proco.c - 53

setting_send ctrlq_setting;
setting~recv acqq—setting;

∕* Function : set time ***/
void set_time(time_p)
vac_time *time_p;
{
struct time V al timev, *time ■ £timev;
struct timezone timez, *zon∙ ≡ £timez; ∕* Not us∙d */

g∙ttImeofday(time, zone);
time_p->sec ≡ timev.tv_sec;
time_p->usec - timev.tv_usee;
return;

∕* Funfft ⅜ on check qualif ***/
int check_qualif(qualif) ∕* Returns appropriate coco error for */
int qualif; ∕* most important qualif condition */
{

if (qualif £ QUALIF~ILOCK) return(ILCK_COCO);
if (qualif £ QUALIF_UFAULT) return(UFAUL_COCO);
if (qualif £ QUALIF_RFAULT) return(RFAUL_COCO);
if (qualif £ QUALIF_BUSY) return(BUSY_COCO);
if (qualif £ QUALIF~WARN) return(WARN_COCO);
return (NOERR) ;

∕* Function open queues **/
int open_queues()
{
int err;

if ((err ■ setup_send(£ctrlq_setting, ctrlq_name)) l≡ O) {
return(err);

}
if ((err - setup~recv(£acqq_setting, acqq_name)) !≡ O) {

return(err);
)

return(O);
)

∕* Function : close queues ***/
void Closejjueues ()
{

close(ctrlq_setting.fd);
close(acqq_setting.fd) ;
return;

)

∕* Function send async ***∕
int send_async(send_p)
void *send-p;
{

if (open_queues() !≡ O) {
close_queues() ;
return (NOQ-COCO) ; ∕* Queue error */

)

Programlistiiigs : vac_proco.c - 54

if (msg_send(4ctrlq_setting, ≡∙nd~jp) 1« O) {
close_queues();
r∙tum (NOQ_COCO) ;

}
close_queues () ;
return (NOERR) ;

∕* Fnnnti nn send sync **∕
int send_sync(send_p, recv_p)
void *≡end-p;
void *recv_p;
{
int err;

if (open_queues() ! — O) (
close_queues();
return(NOQ_COCO);

if (msg_send(fictrlq_setting, send_p) l≡ O) {
close~queues();
return(NOQ_COCO);

err - msg_recv (Sacqq-setting, recv~p) ;
switch(err) {
case O : ∕* Reception OK */

close_queues();
return (NOERR) ;
break;

case EINTR : ∕* Timeout */
close_queues();
return(TIMOUT~COCO);
break;

default : ∕* Receive fault */
break;

)
close_queues() ;
return(NOQ_COCO);

)

♦endif ∕* VPUMP PROCO */

∕* PROPERTY FUNCTIONS **∕

∕* Function : w ccsa ***/
proco_head(w, ccsa, ccsact_dtr, EqmInt)
(
Ctrl-Hisg *ctrl_p;
Ctrl—data *data~p;

ctrl—P - (Ctrl—msg *) &(dtr->ctrlmsg);
data_p - (Ctrl—data *) &(ctrl~p->u.data);

♦ifdef VPUMP-PROCO

switch(dtr->trm[EQ-TYPE]) {
case P-GROUP :
case P-ION :
case P-SUBL :

check—size(*value, 1, 2);
break;

Program listings : vac_proco.c - 55

case P-STAT :
check—∙iz∙(*valu∙, 1, 3);
break;

default :
coco « ENILL—COCO;∕ Bad equipment no. Not pump equipm. */
return;
break;

}

♦endif
♦ifdef VGAUG~PROCO

switch(dtr->trm[EQ_TYPE]) {
case G-PIRAN :

check—size(*value, 1, 2) ;
break;

case G-ION :
check—size(*value, 1, 3);
break;

default :
coco - ENILL-COCO;∕ Bad equipment no. Not gauge equipm.*/
return;
break;

}

♦endif
♦ ifdef WALV-PROCO

switch(dtr->trm[EQ_TYPE]) {
case V-VALVE :

check—size(*value, 1, 2);
break;

default :
coco ≡ ENILL—COCO;∕ Bad eq. no. Not valve equipm. *∕
return;
break;

}

♦endif

set—lin;
Ctrl-p->aππn ■ NO_RET; ∕* Don't send acq. msg. back *∕
data_p->ccsact-chng ≡ CHANGED;
data_p->ccsact ≡ (vac_byte) *value;
ctrlq_setting.8ize ■ sizeof(ctrl_mag); ∕* Normal control mag. *∕
set—time(fi(Ctrl—p->date)); ∕* Time right before message is send */

if ((*coco ≡ Send-Saync(Ctrl-P)) l≡ NOERR) return; ∕* Send msg. */

∕* Update _chng fields in DT *∕
data_p->ccsact_chng ≡ N0_CHANGE;
if (data_p->ccV-chng !“ NOT_VALID) data_p->ccv_chng « N0_CHANGE;
if (data_p->ccvl-chng !≡ NOT_VALID) data_p->ccvl_chng ≡ N0_CHANGE;

return;
)

∕* Function w ccv W***∕
proc©—head(w, ccv, ccv_dtr, EqmFloat)
{
Ctrl—msg *ctrl_p;
Ctrl—data *data_p;

ctrl—P ≡ (Ctrl—msg *) &(dtr->ctrlmsg);
data_p ≡ (Ctrl—data *) ⅛(Ctrl—p->u.data);

Program listings : vac_proco.c - 56

♦ifdef VPUMP PROCO

switch (dtr->trm[EQ_TYPE]) {
cas· P-ION s

check—siz∙(*valu∙, 1, 2);
check—int(*value) ;
data_p->ccv.byte - (vac_byte) *valu∙;
break;

case P-SUBL :
Check-Size(*valu∙, INT32~MIN, INT32_MAX);
check—int(*value) ;
data_p->ccv.int32 ■ (vac_int32) «value;
break;

default : /« No ccv parameter for that equipment */
«coco ≡ ENILL-COCO; ∕* or not pump equipment «∕
return;
break;

)

♦endif
♦ifdef VGAUG_PROCO

switch(dtr->trm[EQ-TYPE]) {
case G-ION :

Check-Size(«value, INT32~MIN, INT32~MAX);
check—int(«value);
data_p->ccv.int32 “ (vac_int32) «value;
break;

default : ∕* No ccv parameter for that equipment «/
«coco ≡ ENILL-COCO; ∕* or not gauge equipment *∕
return;
break;

♦endif
♦ ifdef WALV_PROCO

♦coco ■ ENILL-COCO; ∕* No ccv parameter for valves «∕
return;

♦endif

data_p->ccv_chng - CHANGED;
return;

/« Function : w ccvl ***∕
proc©—head(w, ccvl, ccv_dtr, EqmFloat)
{
Ctrl—msg *ctrl_p;
Ctrl—data *data_p;

ctrl—P ≡ (ctrl—msg *) &(dtr->ctrlmsg);
data_p ≡ (Ctrl—data *) &(ctrl_p->u.data);

♦ifdef VPUMP-PROCO

switch(dtr->trm[EQ-TYPE]) {
case P-ION :
case P-SUBL :

break;
default :

«coco ≡ ENILL-COCO; ∕* No ccvl parameter for that equipm.*/
return; ∕* or not pump equipment */

Program listings : vac_jjroco.c - 57

break;
}

♦endif
♦ifdef VGAUG_PROCO

•witch(dtr->trm[EQ_TYPE]) {
caae G_ ION :

break;
default :

«coco ■ ENII<L-COCO; ∕* No ccvl param, for that equipm. «∕
return; ∕* or not gauge equipm. */
break;

}

♦endif
♦ ifdef WALV-PROCO

«coco “ ENILL-COCO; ∕* No ccvl parameter for valves */
return;

♦endif

∕* Check ∙ize of parameter *∕
if («value > 0) (check_aize(«value, 0, REAL_MAX) }
el∙e { check—∙ize(-(«value), 0, REAL_MAX); }

data~p->ccvl ∙ (vaC—real) «value;
data_p->ccvl-chng ≡ CHANGED;

return;

∕* Function r stag ***∕
procθ-head(r, stag, aqn_dtr, EqmInt)
{
Ctrl—mag *ctrl_p;
acq_mag «acq—p;

if ((«coco ≡ check—eq_type(dtr->trm[EQ-TYPE])) !≡ NOERR) return;

ctrl-P ∙ (Ctrl—mag *) £(dtr->ctrlmsg);
acqp ≡ (acq_mag «) £(dtr->acqmag);

aet-lin;
Ctrl—p->a≡n - RET_ACQ; ∕* Get acq mag. back from RT «/
ctrlq~setting.size ≡ sizeof(req_msg) ; ∕* Send only request msg., */
acqq_setting,∙ize ≡ aizeof(acq_msg);∕* receive normal acq. msg. *∕
•et—time(£(ctrl_p->date));

∕* Send message and put recv. msg. direct in DT */
if ((«coco ≡ send—sync(Ctrl—p, acq_p)) !≡ NOERR) return;
«value — (EqmInt) acqp->saqn;

«coco ≡ check—qualif(acq_p->qualif);/« coco from send function is */
/« the moat important, will *∕

return; ∕* not be overwritten «/
)

∕* Function : r aqn **∕
procθ-head(r, aqn, aqn_dtr, EqmFloat)
<
Ctrl-Hiag «Ctrl—p;
acq_msg *acqp;

Program listings : vac~proco.c - 58

Ctrljp ≡ (ctrl_msg *) « (dtr->ctrlmsg) ;
acq_p ≡ (aCCjmag *) &(dtr->acqmsg);

♦ifdef VPUMP-PROCo

switch (dtr->trm[EQ_TYPE]) {
case P-ION :
case P-SUBL :
case P-STAT :

break;
default : ∕* No aqn parameter for that equipm. */

♦coco ≡ ENILL—COCO; ∕* or not pump equipment */
return;
break;

}

♦endif
♦ifdef VGAUG-PROCO

switch(dtr->trm[EQ-TYPE]) {
case G-PIRAN :
case G-ION :

break;
default :

♦coco ∙ ENILL—COCO; /♦ Not gauge equipment *∕
return;
break;

♦endif
♦ ifdef WALV_PROCO

♦coco - ENILL—COCO; ∕* No aqn parameter for valves *∕
return;

♦endif

set—lin;
Ctrl—p->amm - RET_ACQ;
ctrlq_setting.size ∙ sizeof(reqjnsg);
acqq_setting.size ■ sizeof(acq_msg);
set—time (&(ctrl_p->date)) ;

if ((*coco ≡ send—sync(ctrl-P, acqp)) l≡ NOERR) return;

♦ifdef VPUMP-PROCO

switch(dtr->trm[EQ-TYPE]) { ∕* EQ-TYPE could also be taken from */
case P-ION :

♦value ≡ (EqmFloat)
break;

case P-SUBL :
♦value ≡ (EqmFloat)
break;

case P-STAT :
♦value “ (EqmFloat)
break;

/♦ the received acq. message
acq__p->u.data. aqn.byte;

acq_p->u.data.aqn.int32;

acq—p->u. data.aqn.real;

♦/

default :
♦coco - ENILL—COCO;
return;
break;

}

♦endif
♦ifdef VGAUG-PROCO

/♦ This will never happen */

Program Estings : vac_proco.c - 59

switch(dtr->trm[EQ-TYPE]) { ∕* EQ_TYPE could also be taken from */
case G-PIRAN : ∕* the received acq. message */

♦value - (EqmFloat) acq~p->u.data.aqn.real;
break;

case G-ION :
♦value - (EqmFloat) acq_p->u.data.aqn.int32;
break;

default : /♦ This will never happen ♦/
♦coco ■ ENILL—COCO;
return;
break;

}

♦endif
♦ ifdef WALV-PROCO

♦coco ≡ ENIIjL-COCO; ∕* This will never happen I */
return;

♦endif

♦coco - check—qualif(acq_p->qualif);
return;

/♦ Function r aqnl *** ∕
proc©—head(r, aqnl, aqn_dtr, EqmFloat)
{
Ctrl—msg *ctrl_p;
acq—msg *acq_p;

ctrl—P - (Ctrl—msg *) &(dtr->ctrlmsg) ;
acq_p " (acq_msg ♦) &(dtr->acqmsg);

♦ifdef VPUMP-PROCO

switch(dtr->trm[EQ—TYPE]) {
case P-ION :
case P-SUBL :

break;
default :

♦coco - ENILL-COCO;
return;
break;

}

♦endif
♦ifdef VGAUG-PROCO

switch(dtr->trm[EQ-TYPE]) {
case G-ION :

break;
default :

♦coco ≡ ENILL—COCO;
return;
break;

}

♦endif
♦ ifdef WALV-PROCO

♦coco “ ENILL—COCO;
return;

♦endif

Programlistiiigs : vac_proco.c - 60

set_lin;
ctrl_p->aππn — RET_ACQ;
Ctrlcjeetting.∙iz∙ ≡ sizeof(req_msg);
Acqcjsetting.size ≡ sizeof(acq_msg);
set-time (&(ctrl_p->date));

if ((*coco - send—sync(Ctrl—p, acq_p)) I- NOKRR) return;

♦value ■ (EqmFloat) acqp->u.data.aqnl;
♦coco - check—qualif(acq_p->qualif);

return;

∕* Function : r___ aqn2 ***∕
proc©—head(r, aqn2, aqn_dtr, EqmFloat)
{
Ctrl—msg *ctrl_p;
acq_msg *acq_p;

ctrl_p - (Ctrl—msg *) £(dtr->ctrlmsg) ;
acq_p - (acq_msg *) £(dtr->acqmsg);

♦ifdef VPUMP_PROCO

switch(dtr->trm[EQ_TYPE]) {
case P-ION :
case P-SUBL :

break;
default :

♦coco - ENILL-COCO;
return;
break;

♦endif
♦ifdef VGAUG-PROCO

switch(dtr->trm[EQ—TYPE]) {
case G-ION :

break;
default :

♦coco ≡ ENILL—COCO;
return;
break;

}

♦endif
♦ ifdef WALV-PROCO

♦coco - ENILL-COCO;
return;

♦endif

set—lin;
Ctrl—p->amm ≡ RET_ACQ;
ctrlq~setting.size ≡ sizeof(req_msg);
acqq_setting.size ≡ sizeof(acq_msg);
set—time(&(ctrl_p->date));

if ((*coco ≡ send—sync(ctrI-P, acq_p)) !■ NOERR) return;

Program listings : vac_proco.c - 61

«valu·.- (EqmFloat) acqj>->u.data.aqn2;
«coco - check_qualif (acq__p->qualif) ;

return;
}

∕* Function : r___ phst ***/
proco_head (r, phat, read_acq_dtr, EcpnInt)
{
acq_mag «acqp;

if ((«coco - ch∙ck~eq_type(dtr->trm[EQ_TYPE])) I- NOERR) return;

acqp - (acq~mag «) £(dtr->acqmag);
«valu· - (EqmInt) acqjp->phya statua;

return;
}

∕* Function r aape ***/
proco~head(r, aape, read_acq_dtr, EqrnInt)
(
acq_mag *acq_p;

if ((«coco - check_eq_type(dtr->trm[EQ_TYPE])) I- NOERR) return;

acq p - (acq_mag *) £(dtr->acqmsg);
«value - (EqmInt) acq_p->aspect;

return;
)

∕* Fyinct 1 on χ, date ★**♦*★★★★★*★★★**★**★*★**★★*♦★**♦★★♦★**★*★**♦★*★♦*/
proco_head(r, date, read_acq_dtr, EqmInt)
{
acq_mag «acq_p;

if ((«coco - check_eq_type(dtr->trm[EQ_TYPE])) I- NOERR) return;

acqp - (acq_mag *) £(dtr->acqmag);
«value - (EqmInt) acqjp->dat∙.sec;
*(valu∙+l) - (EqmInt) acqjp->dat∙.ua∙c;

return;
)

∕* Function r busy ***∕
proco_head(r, busy, read_acq_dtr, EqmInt)
{
acq_msg *acq_p;

if ((«coco - check_eq_type(dtr->trm[EQ~TYPE])) I- NOERR) return;

acqjp - (acq_msg *) £(dtr->acqmsg);
check_aize(acq_p->buay_time, O, Eqmlnt_MAX);
«value - (EqmInt) acq_p->busy_time;

return;
}

Program listings : vac_proco.c - 62

∕* Funct ⅜ on r warn ***∕
proco_head(r, warn, except_dtr, EqmInt)
{
statua_mag statuamag;
ctrl_msg *ctrl_p;
Statuajnsg *stat__p ≡ (statusmag;

if ((*coco - check_eq_type(dtr->trm[EQ_TYPE])) I· NOERR) return;

ctrl_p ≡ (ctrljnsg ♦) £(dtr->ctrlmsg);
set_lin;
Ctrl—p->aππn - RET_STAT;
ctrlq_setting.size ≡ sizeof(reqjnsg);
acqq_setting.size ≡ sizeof(Btatusjnsg) ;
set—time(£(ctrl_p->date));

if ((*coco ≡ send—sync(ctrl_p, stat_p)) I· NOERR) return;

check—size (stat-p->wamings.list, 0, EqmInt-MAX);
♦value ≡ (EqmInt) stat_p->wamings. list;

return;
)

/♦ Function : r rfau ***∕
procθ-head(r, rfau, except—dtr, EqmInt)
(
status—mag statusmsg;
Ctrl—msg *ctrl_p;
status—msg *stat_p ■ £statusmsg;

if ((*coco ≡ check—eq—type(dtr->trm[EQ-TYPE])) !■ NOERR) return;

ctrl_p ■ (Ctrl—msg *) £(dtr->ctrlmsg);
set—lin;
Ctrl—p->amm - RET_STAT;
ctrlq_setting.size ≡ sizeof(reqjnsg);
acqq_setting.size “ sizeof(Statusjnsg) ;
set—time(£(ctrl_p->date));

if ((*coco ≡ send—sync(ctrl_p, stat_p)) 1≡ NOERR) return;

check—size(stat-p->rfaults.list, 0, Eqmlnt_MAX);
♦value ■ (EqmInt) stat_p->rfaults.list;

return;
}

∕* Function : r ufau ***∕
proc©—head(r, ufau, except—dtr, EqmInt)
<
status—msg statusmsg;
Ctrl—msg *ctrl_p;
status—msg *stat_p ≡ £statusmsg;

if ((*coco - chβck~eq_type(dtr->trm[EQ_TYPE])) !≡ NOERR) return;

ctrl_p ≡ (ctrl—msg *) £(dtr->ctrlmsg);
set—lin;
Ctrl—p->amm ■ RET_STAT;
ctrlq_setting.size ≡ sizeof(reqjnsg) ;
acqq_setting.size - sizeof(Btatusjnsg) ;
set—time(£(ctrl_p->date));

Program listings : vac^proco.c - 63

if ((*coco - aond_aync(ctrl-p, atat~p)) 1« NOERR) return;

ch∙ck-≡iz∙(atat_p->ufaulta.liât, 0, Eqmlnt_MAX);
♦value ≡ (EqnInt) stat_p->ufaults.liat;

return;

∕* Fnnct⅜ r>n ; r inti ***/
proco~head(r, inti, except—dtr, EqmInt)
{
atatua_mag Statuamag;
ctrl_mag *ctrl_p;
status-mag «stat—p - Astatuamag;

if ((*coco — check_eq_type(dtr->trm[EQ_TYPE])) I- NOERR) return;

ctrl—p - (ctrl_mag *) A(dtr->ctrlmag);
aet-lin;
ctrl-p->aιnm - RET_STAT;
ctrlq_setting,size - sizeof(req_mag) ;
acqq_setting.aize - sizeof(status_mag) ;
set—time(A(ctrl_p->date));

if ((*coco - send—sync(Ctrl—p, stat_p)) I- NOERR) return;

check—size(stat—p->interlocks.list, 0, Eqmlnt~MAX);
«value - (EqmInt) stat_p->interlocks.list;

return;
)

/★ Function r warm ***/
proc©—head(r, warm, except—dtr, EqmInt)
{
status—msg statusmsg;
Ctrl—mag *ctrl_p;
statu≡-msg *atat_p - Astatusmsg;

if ((«coco - check—eq_type(dtr->trm[EQ-TYPE])) I- NOERR) return;

ctrl—p - (ctrl—mag «) A(dtr->ctrlmag);
aet—lin;
Ctrl—p->amm - RET_STAT;
ctrlq_setting.size - sizeof(req_msg);
acqq_setting.size - aizeof(atatus_mag);
aet—time(A(ctrl~p->date));

if ((«coco - send—sync(ctrl—p, stat_p)) I- NOERR) return;

♦value - stat-P~>warnings.date_last.sec;
*(value+l) - stat_p->warnings.date~last.usec;
*(value+2) - stat_p->warnings.date_imp.sec;
*(value+3) - atat_p->warnings.date_imp.usee;

return;
)

∕* Function r rfam ***/
procθ-head(r, rfam, except—dtr, EqmInt) /« Who decided there can be *∕
{ ∕* only 4 describing letters ? */
status^ mag statusmsg;
ctrl-∏u∣g *ctrl_p;

Program listings : vac_proco.c - 64

8tatus_msg *stat_p ≡ fistatusmsg;

if ((*coco - check~eq_type(dtr->trm[EQ~TYPE])) !∙ NOERR) return;

ctrl_p ■ (ctrl-in∙g *) L (dtr->ctrlmsg) ;
set—lin;
Ctrl—p->a≡B∏ “ RET_STAT;
ctrlq_setting.size ≡ sizeof(req_mag);
acqq—setting.size ∙ sizeof(Btatus_mag);
set—time(£(ctrl_p->date));

if ((*coco ≡ send—sync(Ctrl—p, stat_p)) !■ NOERR) return;

♦value ≡ stat_p->rfaults.date_last.sec;
*(value+l) ≡ stat_p->rfaults.date_last.usec;
♦(value+2) ≡ stat_p->rfaults.date_imp.sec;
♦(value+3) - stat_p->rfaults.date_imp.usee;

return;

/★ Fiincf ⅜ nn χ, Xlfam *** ∕

procθ-head(r, ufam, except—dtr, EqmInt)
{
StatUB-Bisg statuamag;
ctrl—Bisg *ctrl~p;
status—msg *stat_p ■ Satatusmag;

if ((*coco - check—eq—type(dtr->trm[EQ—TYPE])) 1- NOERR) return;

ctrl_p ≡ (Ctrl—Bisg *) C (dtr->ctrlmag) ;
set—lin;
Ctrl—p->amm ■ RET_STAT;
ctrlq_setting.size ≡ aizeof(req_mag);
acqq_setting, size ≡ sizeof (status_stag) ;
set—time (β (ctrl_p->date)) ;

if ((*coco - send—sync(ctrl-P, stat_p)) l≡ NOERR) return;

♦value ≡ stat-p->ufaults.datθ-last.sec;
♦(value+1) ≡ stat~p->ufaults.date_last.usee;
♦(value+2) ≡ stat_p->ufaults.date_imp.sec;
♦(value+3) “ stat_p->ufaults.date_imp.usee;

return;
}

∕* Function : r___ intm ***********************♦****♦*********♦***♦♦*****/
proc©—head(r, intm, except—dtr, EqmInt)
(
status—msg statusmsg;
Ctrl—msg *ctrl_p;
status—msg *stat_p ≡ Sstatusmsg;

if ((*coco - check—eq~type(dtr->trm[EQ~TYPE])) !≡ NOERR) return;

ctrl—P ≡ (Ctrl—msg *) &(dtr->ctrlmsg) ;
set—lin;
Ctrl—p->amm ≡ RET_STAT;
ctrlq_setting.size ≡ sizeof(req_msg);
acqq_setting. size ≡ sizeof (status_Bisg) ;
set—time(&(ctrl_p->date));

if ((*coco ≡ send—sync(ctrl-p, stat_p)) l≡ NOERR) return;

Program listings : vac_proco.c - 65

«valu· - atat_p->interlocka.date_laat.a∙c;
*(value+l) — atat_p->interlocka.date_last.u∙∙c;
*(value+2) - ≡tat-p->int∙rlock≡.dat∙-i≡p.≡∙c;
*(valu∙+3) ■ atat_p->interlock8.dato_imp.ua∙c;

return;

/« Fnnct⅜ nn r tbit W**/
proco_head(r, tbit, test_dtr, EqmInt)
{
acq_mag «acqp;

if ((«coco - check_eq_type(dtr->trm[EQ_TYPE])) I- NOERR) return;

acq_p - (acq_mag *) &(dtr->acqmag);
«value - (EqmInt) acq_p->apecialiat;
return;

}

∕* Fiinrti nn w tbit ***/
proco_head(w, tbit, teat_dtr, EqmInt)
(
ctrl_mag «ctrl_p;

if ((«coco - check_eq_type(dtr->trm[EQ_TYPE))) I- NOERR) return;

ctrl_p - (ctrl_mag «) A(dtr->ctrlmsg) ;
Check-Bize(«value, INT16_MIN, INT16_MAX);
Ctrl—p->apecialiat - (vac_intl6) «value;
return;

/★ Function x tβtl. ****★***★*★★★*★***★★*****★****★★****★*★*★★★***★★*/
procθ-hβad(r, tatl, teat_dtr, EqmInt)
{
Ctrl—mag etrImag;
acq—mag acqmag;
int n;
ctrl—mag «ctrl_p;
ctrl—iMig «dt_ctrl_p;
acq_mag «acq_p;
vac_byte «teat_p;

if ((«coco - check—eq_type(dtr->trm[EQ_TYPE])) 1- NOERR) return;

/« NO new values are written into the DT */
ctrl—p - Actrlmag;
acq__p — Aacqmsg;
test—p — (vaC—byte «) A(acq_p->u.test);

set lin;
ctrl—p->amm - RET_TEST;

/« The specialist field must be copied from the DT *∕
dt_Ctrl—p - (ctrl—mag *) A(dtr->ctrlmsg);
Ctrl—p->apecialiat - dt_ctrl_p->specialiat;

Ctrlq-Betting.aize - aizeof(req~mag); ∕* Request control msg and */
acqq_setting.aize - aizeof(acq_mag); ∕* normal acq msg. length */

set—time(A(ctrl_p->date));
if ((«coco - send—sync(ctrl—p, acqp)) 1- NOERR) return;

Program listings : vac_proco.c - 66

∕* Nothing from th· message received ia put into the DT 7 */
∕* If lin, amm, specialist and date should be stored in DT, *∕
∕* it must be done here *∕

∕* Take test array from received mag and return it to call, progr. */
for (n - O; n < TEST_LENGTH—ACQ; n++) {

*(valu∙+n) - (EqmInt) * (test_p+n) ;
}

return;

∕* Function : w tstl ***∕
proco~head(w, tstl, test_dtr, EqmInt)
(
ctrl_msg ctrlmsg;
int n;
ctrl_msg *ctrl_p;
ctrl_msg *dt_ctrl_p;
vaC—byte *t∙st~p;

if ((*coco - check_eq_type(dtr->trm[EQ_TYPE])) !- NOERR) return;

ctrl-p - Sctrlmsg; ∕* NO new values are written into the DT ! */
t∙st-P ≡ (vac—byte *) S(ctrl_p->u.test);

∕* Put test array in message *∕
for(n - 0; n < TEST_LENGTH_CTRL; n++) {

Check-Size(*(value+n), BYTE_MIN, BYTE_MAX);
*(t∙st-p+n) « (vaC—byte) *(valu∙+n);

}

set—lin;
Ctrl—p->amm ≡ NO_RET; ∕* Don't send acq. msg. back */

∕* Note : Specialist field must be set before this */
∕* property is called, to indicate test msg. *∕
∕* Why can't the amm field be used for that ? *∕

∕* The specialist field from DT must be send with message *∕
dt_ctrl-p - (Ctrl—msg *) S(dtr->ctrlmsg);
ctrl-p->specialist - dt_ctrl_p->spocialist;

ctrlq_setting.size ≡ sizeof(ctrl_msg);∕* Normal Ctrl msg. length */

set—time(&(ctrl_p->date));
if ((*coco ≡ send—async(Ctrl—p)) 1≡ NOERR) return; ∕* Send msg. *∕

return;
}

Program listings : vacjjroco.c - 67

3.1.5 rt.c

∕***∕
/« CERN/PS/CO */
/« Date : 8/7 1992 */
/« By : Ankar Roaenstedt */
∕* File : rt.c */
∕* Uses : To be linked with mqlib.c */
∕* Status : Final */
∕* Descr. : The real time (specific) process for testing */
∕* Receives msg's from ctrlq and passing msg's on acqq */
∕* Only used for testing queues and property functions */
∕***∕
♦include <gm_constants.h>
♦include <gm_types.h>
♦include "message.h"
♦include "mqlib.c"
♦include <time.h>
♦ include <ermo.h>
♦include <stdio.h>

Bettingsend acqq_setting;
setting_recv ctrlq_setting;

ctrl_msg
acq_msg
status_msg
vaC—byte

ctrl_msg_buf, *ctrl_msg_p - Actrl~msg_buf;
acq_msg_buf, *acq_msg_p ≡ Aacq_msg_buf;
stat_msg_buf, *stat_msg_p ≡ Astat~msg_buf;
test[TEST_LENGTH—CTRL]; ∕* TEST_LENGTH—CTRL/ACQ, what- */

∕* ever is the longest */

∕* Variables for passing the last received control values */
∕* into aqn values in acq msg. (for test) «/
vaC—byte ccsact ■ O;
mul—type ccv;
vac_real ccvl ≡ O;

♦define NO_SPEC O
♦include "msg_print.h"

∕* No special action (specialist field)

/♦ Function : set time ***********************★******************★★★★***∕
void set—time(time_p)
vac_time *time_p;
(
struct timeval timev, «time ≡ Atimev;
struct timezone timez, «zone ≡ Atimez; /« Not used «/

gettimeofday(time, zone);
time_p->sec - timev.tv_sec;
time_p->usec ≡ timev.tv_us∙c;
return;

/★ Function set ¾cg vais ***∕
void set—acq_vals(ctrl_p, acq_p) ∕* Read status from hardw. and «/
Ctrl—msg *ctrl_p; /« put now data in acq msg. */
acq_msg
{

/« The beader of the Ctrl msg. is copied to the acq msg. (not date)*/
acq_p->linl - ctrl~p->linl;

Program listings : rt.c - 68

acq_p->lin2 ■ ctrl_p->lin2;
acq_p->lin3 - ctrl_p->lin3;
acq p->a∏gn ≡ ctrl_p->aπβn;
acq_p->specialist ■ ctrl_p->specialist;

∕* Th· acq valu·· are also just copies of th· Ctrl valu·· *∕
∕* r∙c∙iv∙d with th· last control message (test) */
acqp->saqn ≡ ccsact;
acqp->u.data.aqnl - ccvl;
acq_p->u.data.aqn2 ≡ ccvl; ∕* Also set to ccvl because no ccv2 */

∕* Special case for ccv to be copied into aqn */
switch (Ctrl_p->lin2 » 8) { ∕* Switch on EQ_TYPE */
case P-ION :

acq_p ->u.data.aqn.byte ≡ ccv.byte;
break;

case P-SUBL :
case G-ION :

acq p->u.data.aqn.int32 ≡ ccv.int32;
break;

case G-PIRAN :
case P-STAT :

∕* No valid ccv value -> a random (real) number is used */
acq_p->u.data.aqn.real ■ 99.99;
break;

default : ∕* ccv and aqn fields not used */
break;

acqp->phys_status ≡ ccsact + 10; ∕* In lack of better teat values */
acq_p->aspect - ccsact + 100;
acqp->qualif - (vac_byte) ccvl;
acq_p->busy_time ≡ (vac_int32) ccsact + 200;

∕* Set date NOW, right before message is send (should be mea∙ time)*/
set—time(&(acqjo->dat∙));

return;

∕* Function : set stat vais **∕
void set—stat—vais(ctrl-p, stat_p) ∕* Read status from hardware *∕
Ctrl—msg *ctrl_p; ∕* and put data in status msg. */
status—msg *stat_p;
{

∕* The header of the Ctrl msg. is copied to the acq msg. (not date)*/
stat-p->linl ≡ ctrl~p->linl;
stat—p->lin2 ≡ ctrl_p->lin2;
stat-p->lin3 ■ ctrl_p->lin3;
stat—p->amm ≡ ctrl_p->amm;
stat—p->sp∙ciali∙t ≡ ctrl_p->specialist;

∕* The lists is assigned some accidental test data */
stat—p->warnings.list ≡ 10;
stat—p->rfaults.list ≡ 20;
stat—p->ufaults.list ≡ 30;
stat—p->int∙rlocks.list ≡ 40;

∕* The dates are all assigned the time now (or now) *∕
set—time(&(stat_p->warnings.date_last)) ;
set-time(&(stat_p->warnings.date_imp));

set—time (&(stat_p->rfaults.date_last)) ;
••t_tim· (£(stat_p->rfaults.date_imp)) ;

■et—time (&(stat_p->ufaults.date_last));

Program listings : rt.c - 69

set-time (&(stat~p->ufaults.date_iwp));

set_time(&(∙tat-p->int∙rlock∙.dat∙-laβt));
time(«(∙tat j>->int∙rlock∙.dat∙-l≡p)) ;

set_time (& (∙tat-p->dat∙)) ;

★***∕Function : send_norm_acq
void aend_norm_acq()
{
int err;

aet_acq_vala(ctrl_mag_p, acq_mag_p);
printf("XnSending meaaage∖n");
∕* Sand same type as ju≡t r∙c∙iv∙d */
acqq~setting.type ■ Ctrlcjaetting.type_recv;
print_acq_mag(acqq~setting.type, acq_mag_p);

∕* Normal acq mag. to be send */
acqq~aetting.size ■ sizeof(acq_msg);
if ((err ≡ mag_aend(&acqq_setting, acq_mag_p)) l≡ 0) {

printf(nBrror in aending message : %d∖n", err);
exit(1);

}

return;

∕* Function : send stat acq **∕
void aend_atat_acq()
{
int err;

aet—Stat—Vala(ctrl_msg_p, atat_mag_p);
printfCXnSending message∖n");
∕* Send same type as just received */
acqq_aetting.type ■ ctrlq_setting.type_recrv;
print_stat_mag(acqq_aetting.type, atat_mag_p);

∕* Status msg. to be send */
acqq_setting.size ≡ sizeof(status_msg) ;
if ((err ≡ msg_aend(£acqq_sotting, stat_msg_p)) I- 0) {

printf("Brror in sending message : %d∖n", err);
∙xit(l);

}

return;
}

/★ Function β⅜nd test &CQ ★★★★★**★**★*****★♦***★★★★**★★★★★*★★*★★★★*★★★∕
void aend_test_acq()
{
int err;
vac_byte *test_p;
int n;

∕* The header of the Ctrl msg. is copied to the acq msg. (not date)*/
acq_msg_p->linl ≡ ctrl_mag_p->linl;
acq_mag_p->lin2 ≡ ctrl_mag_p->lin2;
acq_mag_p->lin3 ≡ ctrl_msg_p->lin3;

Program listings : rt.c - 70

acq_msg_p->amm - ctrl_msg_p->amni;
acq_msg_p->specialist - ctrl_msg_p->8peciali8t;

∕* Put last received test data in message to be sand *∕
test_p ■ (vac_byte *) &(acq_msg_p->u·test);
for(η - 0; η < TEST_LENGTH—ACQ; η++) {

*(test_p+n) - test[η];
}

set_time(A(acq_msgjp->date));

printf(”XnSending mossage∖n");
∕* Send same type as just received */
acqq_setting.type - ctrlq_setting.type_recv;
print_acq_msg(acqq_sotting.type, acq_msg_p);

∕* Normal (test) acq msg. to be send */
acqq_setting.size — sizeof(acq_mag);
if ((err - msg_send(Aacqq~setting, acq_msg_p)) 1-0) (

printf("Error in sending message : %d∖n", err);
exit(1);

}

return;
)

∕* Main **∕
main ()
{
unsigned long int msg_no - 1;
vaC—byte *test_p;
int err;
int n;

printf("Setting up∖n");
if ((err - setup_send(Aacqq_setting, acqq_name)) !- 0) {

printf("Error in opening '%s' queue : %d∖n", acqq_name, err);
exit(1);

)

if ((err - aetup_recv(Actrlq_setting, ctrlq~name)) l≡ 0) (
printf("Error in opening '%s' queue : %d∖n", ctrlq~name, err);
exit(1);

)
ctrlq_setting.size - sizeof(ctrl_msg);∕* Largest msg to be received*/

∕* (request msg. is smaller) */
ctrlq_setting.timeout - 0; ∕* No timeout in RT process *∕
ctrlq_setting.type - 0; ∕* Receive all types of msg's, */

∕* oldest first */

for(;; msg_no++) {
printf("XnWaiting to receive a message∖n");
err - msg_recv(Actrlq_setting, ctrl_msg_p);

switch (err) {

case 0 : ∕* Reception OK */
printf("(%d) Message received∖n", msg_no);
print—ctrl—msg(ctrlq_setting.type_recv, ctrl_msgjp);

∕* STORE VALUES FROM CONTROL MESSAGE */

if (ctrl—msg_p->amm — N0_RET) { ∕* Async Ctrl msg. */

if (ctrl—msg_p->specialist — NO_SPEC) {
∕* NOT TEST */

Program listings : rt.c - 71

∕* Normal Ctrl mag. : Stor· control valu·· *∕
ccsact ■ ctrl_msg_p->u.data,cc∙act;
ccvl ■ Ctrl—meg_p->u.data.ccvl;

•witch (Ctrl—msg_p->lin2 » 8) {
ca∙∙ P-ION :

ccv.byte ~ Ctrl—msg_p->u.data.ccv.byte;
br∙ak;

ca∙∙ P-SUBL :
ca∙∙ G-ION :

ccv.int32 — Ctrl—msg_p->u.data.ccv.int32;
br∙ak;

d∙fault :
br∙ak;

}
}
∙1∙∙ { ∕* TEST MSG */

∕* T∙βt mag. : Stor∙ t∙∙t array *∕
t«et_p ≡ (vaC—byt∙ *) &(ctrl_msg_p->u.t∙∙t);
for (n - 0; n < TEST_LENGTH—CTRL; n++) {

t∙∙t[n] ■ *(t∙∙t-p+n);
}

}

∕* SEND MESSAGE (normal, status, t∙∙t or nothing) */

•witch(ctrl—mag_p->amm) {
ca∙∙ RET-ACQ :

•end_norm_acq() ;
br∙ak;

ca∙∙ RET-STAT :
••nd—∙tat-acq();
br∙ak;

ca∙∙ RET-TEST :
••nd—t∙∙t-acq();
break;

default :
break;

}
break;

ca∙e EINTR : ∕* Timeout *∕
printf("Timeout∖n");
br∙ak;

default :
printf("Error in receiving message : %d∖n", err);
exit(1);
break;

}
)

)

Program listings : rt.c - 72

3.1.6 msg_print.h

∕***∕
∕* CERN/PS/CO */
∕* Date : 8/7 1992 */
∕* By : Anker Roaenatedt */
∕* File : msg~print.h *∕
∕* Uaea : */
∕* Statua : Updated along with meaaage.h (and rt.c) *∕
∕* Deacr. : 3 functione that print the contenta of a control meaaage, *∕
∕* acquisition meaaage or atatua meaaage. */
∕* */
∕***∕

/★ Function print Ctrl meg ***∕
void print_ctrl_msg(meg_type, ctrl~p)
int msg_type;
Ctrl-Inag *ctrl_p;
{
char *timβ-p;
vaC—byte *teat_p;
int n;

if (ctrl—p->amm ≡≡ NO_RET) printf("CONTROL meaaage :\n");
elae printf("REQUEST meaaage : ∖n");

printf("Type of meaaage : %d∖n", mag_type);
printf("(Size of a normal Ctrl meaaage : %d)∖n", aizeof(ctrl_mag));
printf("(Size of a requeat ctrl mag. : %d)∖n", sizeof(req_mag));

printf("linl (Eq mod no) : %d∖n", ctrl_p->linl);
printf("lin2 : %d∖n", ctrl_p->lin2);
printf("Extracted from lin2 :\n");
printf(" EQ-TYPE : %d∖n", ctrl_p->lin2 » 8);
printf(" EQ-STYPE : %d∖n", ctrl_p->lin2 A 255);
printf("lin3 (Phya Eq No) : %d∖n", ctrl_p->lin3);
printf("amm : %d∖n", ctrl_p->amm);

∕* Convert date to printable format */
time—p ≡ ctime (A (ctrl__p->date. aec)) ;
printf("date : (%d) %a", ctrl_p->date.aec, time_p);
printf(" uaec : %d∖n", ctrl_p->date.uaec);

printf("apecialiat : %d∖n", ctrl_p->apeciali8t);

if (Ctrl—p->amm !≡ N0_RET) return; ∕* Req msg, do not print rest *∕
if (ctrl-p->specialist !- NO_SPEC) { ∕* Test msg *∕

printf("Test data : ∖n");
test-p ■ (vaC—byte *) A(ctrl_p->u.test);
for(n - O; n < TEST_LENGTH_CTRL; n++) printf("%d ", *(test~p+n));
printf("∖n");
return;

}

printf("ccsact—Chng : %d∖n", ctrl_p->u.data.ccsact_chng);
printf("ccsact : %d∖n", ctrl_p->u.data.ccsact);

∕* Print ccv ... ccvl depending on EQ_TYPE *∕
switch (ctrl-p->lin2 » 8) { ∕* Switch on EQ_TYPE */

case P-ION :
printf("ccV—chng : %d∖n", ctrl—p->u.data.ccv~chng);
printf("ccv (byte) : %d∖n", ctrl_p->u.data.ccv.byte);
printf("ccvl—chng : %d∖n", ctrl_p->u.data.ccvl_chng);
printf("ccvl : %f∖n", ctrl_p->u.data.ccvl);
break;

Program listings : msg_print.h - 73

case P_SUBL :
case G-ION :

printf("CCV—chng : %d∖n", ctrl~p->u.data.ccv_chng);
printf("ccv (int32) : %d∖n", ctrl_p->u.data.ccv.int32);
printf("ccvl—chng : %d∖n", ctrl_p->u.data.ccvl_chng);
printf("ccvl : %f∖n", ctrl_p->u.data.ccvl);
break;

default :
printf("no ccv∕ccvl∖n");
break;

}

return;
)

∕* Function print acg∣**g *******************************t************^
void print—acq_msg(msg_type, acq p)
int msg_type;
acq_mag *acq p;
(
char *tiπ⅛e~p;
vaC—byte "test—p;
int n;

printf("ACQUISITION message :\n");
printf("Type of message : %d∖n", msg_type);
printf("(Size of normal acq message : %d)∖n", sizeof(acq_msg));

printf("linl (Eq mod no) : %d∖n", acqp->linl);
printf("lin2 : %d∖n", acqp->lin2);
printf("Extracted from lin2 :\n");
printf(" EQ-TYPE : %d∖n", acq_p->lin2 » 8);
printf(" EQ-STYPE : %d∖n", acq~p->lin2 £ 255);
printf("lin3 (Phys Eq No) : %d∖n", acq_p->lin3);
printf("amm : %d∖n", acq_p->amm);

∕" Convert date to printable format "/
time_p ■ ctime (£(acq_p->date.sec));
printf("date : (%d) %s", acq~p->date.∙ec, time_p);
printf(" usee : %d∖n", acq_p->date.usec);

printf("specialist : %d∖n", acq~p->∙pecialist);

printf("phys status : %d∖n", acq_p->phys_status);
printf("saqn : %d∖n", acqp->saqn);
printf("aspect : %d∖n", acq_p->aspect);
printf("qualif : %d∖n", acq_p->qualif);
printf("busy_time : %d∖n", acqp->busytime);

if (acq_p->βpecialist ∣∙ N0_SPEC) { ∕* Test msg. "/
printf("Test data : ∖n");
test-P ≡ (vaC-byte *) £(acqp->u.test);
for(n - O; n < TEST_LENGTH—ACQ; n++) printf("%d ", *(test_p+n));
printf("∖n");
return;

)

∕" Print aqn, aqnl £ aqn2 depending on EQ_TYPE */
switch (acq_p->lin2 » 8) {
case P-ION :

printf("aqn (byte) : %d∖n", acqjp->u.data.aqn.byte);
printf("aqnl : %f∖n", acq_p->u.data.aqnl) ;
printf("aqn2 : %f∖n", acq_p->u.data.aqn2);
break;

case P-SUBL :
case G-ION :

printf("aqn (int32) : %d∖n", accjp->u.data.aqn.int32);

Programlistings : msgjprint.h - 74

printf("aqnl : %f∖n", acqp->u.data.aqnl);
printf("aqn2 : %f∖n", acq_p->u.data.aqn2);
break;

caa∙ G-PIRAN :
case P-STAT :

printf("aqn (real) : %f∖n", acqjp->u■data.aqn.real);
printf("no aqnl∕aqn2∖n");
break;

default :
printf("no aqn∕aqnl∕aqn2∖n");
break;

}

return;
}

∕* Function : print atat mag ***∕
void print—stat_msg(msg_type, atat_p)
i nt msg_type;
Btatufl-mag *atat_p;
{
char *timβ-p;

printf("STATUS mesaage :\n");
printf("Type of message : %d∖n", msg_type);
printf("(Size of status message : %d)∖n", sizeof(atatua_mag));

printf("linl (Eq mod no) : %d∖n", stat_p->linl);
printf("lin2 : %d∖n", atat~p->lin2);
printf("Extracted from lin2 :\n");
printf(" EQ-TYPE : %d∖n", atat_p->lin2 » 8);
printf(" EQ-STYPE : %d∖n", atat-p->lin2 C 255);
printf("lin3 (Phya Eq No) : %d∖n", atat_p->lin3);
printf("amm : %d∖n", stat_p->amm);

∕* Convert date to printable format ♦/
time_p ≡ ctime (C(atat-p->date.aec));
printf("date : (%d) %a", stat_p->date.sec, time_p);
printf(" usee : %d∖n", stat_p->date.usec);

printf("specialist : %d∖n", stat—p->specialiflt);

printf ("'Warnings :\n");
printf(" list %d∖n", stat-p->warnings.list) ;
printf(" date_last : %d∖n", stat—p->waroinga.date_last.sec) ;
printf(" usee %d∖n", stat—p->warningβ.date_last.uιec);
printf(" date_imp : %d∖n", 8tat_p->warning8.date_imp.aec);
printf(" usee %d∖n", stat—p->warninga.date_imp.usee);

printf("Rfaults :\n") ;
printf(" list : %d∖n", stat-p->rfaults.list);
printf(" date_last : %d∖n", stat-p->rfaults.date_last.sec) ;
printf(" usee : %d∖n", stat-p->rfaults.date_last.usee);
printf(" date_imp : %d∖n", βtat-P~>rfaults.date_imp.sec);
printf(" usee %d∖n", stat—p->rfaults.date_imp.usee);

printf("Ufaults ι∖n");
printf(" list : %d∖n", stat—p->ufaults.list);
printf(" date_last : %d∖n", stat—p->ufaults.date_last.sec);
printf(" usee : %d∖n", stat—p->ufaults.date_last.usee) ;
printf(" date_imp : %d∖n", stat—p->ufaults.date_imp.sec);
printf(" usee : %d∖n", stat—p->ufaults.date_imp.usee);

printf (":Interlocks : ∖n") ;
printf(" list : %d∖n", stat-p->interlocks.list) ;
printf(" date_last : %d∖n", stat-p->interlocks.date_last.sec);
printf(" usee : %d∖n", stat—p->interlocks.dat∙-last.usee)

Programlistings : msg_print.h - 75

printf (" date_imp : %d∖n", stat-p->int∙rloαk≡.d*t∙-iιπp.∙∙c) ;
printf (" u∙∙c : %d∖n", atat~p->interlocka .date_iinp.uaec) ;

return;
}

Program listings : msg_print.h - 76

3.1.7 Testl program with printout & messages

3.1.7.1 TestLnodprogram

1.10 % File : TESTI.NOD
1.20 % Teat of CCSACT, CCV, CCVl, SAQN, AQN, AQNl, AQN2,
1.30 % PHSTAT, ASPECT, DATE & BUSY property function·
1.40 SEEQ- 20003
1.50 TY "EQUIPMENT NO : " EQ I I

2.10 SE C - 0
2.20 TY "SET CCVl - 32" I
2.30 SE VPUMP(EQ,CCVl,0,C) - 32
2.40 TY "COCO - " C ! !

3.10 SE C - 0
3.20 TY "SET CCSACT - 1" I
3.30 SE VPUMP(EQ,CCSACT,0,C) - 1
3.40 TY "COCO -"Cll

4.10 SE C - 0
4.20 TY "SET CCV - 2" I
4.30 SE VPUMP(EQ,CCV,0,C) - 2
4.40 TY "COCO -"Cll

5.10 SE C - 0
5.20 TY "READ STAQ"
5.30 TY VPUMP(EQ,STAQ,0,C) I
5.40 TY "COCO -"Cll

6.10 SE C - 0
6.20 TY "SET CCSACT - 2" I
6.30 SE VPUMP(EQ,CCSACT,0,C) - 2
6.40 TY "COCO - " C I I

7.10 SE C - 0
7.20 TY "READ STAQ"
7.30 TY VPUMP(EQ,STAQ,0,C) I
7.40 TY "COCO - " C Il

8.10 SE C - 0
8.20 TY "SET CCSACT - 3" I
8.30 SE VPUMP(EQ,CCSACT,0,C) - 3
8.40 TY "COCO -"Cll

9.10 SE C - 0
9.20 TY "SET CCSACT - 4" !
9.30 SE VPUMP(EQ,CCSACT,0,C) - 4
9.40 TY "COCO - " C ! !

10.10 SE C - 0
10.20 TY "SET CCSACT - 0" !
10.30 SE VPUMP(EQ,CCSACT,0,C) - 0
10.40 TY "COCO -"Cll

11.10 SE C - 0
11.20 TY "READ AQN"
11.30 TY VPUMP(EQ,AQN,0,C) !
11.40 TY "COCO -"Cll

12.10 SE C - 0
12.20 TY "READ AQNl"
12.30 TY VPUMP(EQ,AQNl,0,C) I
12.40 TY "COCO -"CM

Program listings : TestLnod program - 77

13.10 SE C - 0
13.20 TY "READ AQN2"
13.30 TY VPUMP(EQ,AQN2,0,C) !
13.40 TY "COCO - " C 1 !

14.10 SE C - 0
14.20 TY "SET CCV - 1.5" !
14.30 SE VPUMP(EQ,CCV,0,C) - 1.5
14.40 TY "COCO -"Cll

15.10 SE C - 0
15.20 TY "READ PHSTAT"
15.30 TY VPUMP(EQ,PHSTAT,0,C) I
15.40 TY "COCO -"Cll

16.10 SE C - 0
16.20 TY "READ ASPECT"
16.30 TY VPUMP(EQ,ASPECT,0,C) ∣
16.40 TY "COCO -"Cll

17.10 SE C - 0
17.20 DIM-L D(2)
17.30 TY "READ DATE" I
17.40 VPUMP(EQ,DATE,0,C,D)
17.50 TY "∙∙c. : " D(I) I
17.60 TY "u∙∙c. : " D(2) I
17.70 TY "COCO -"Cll

18.10 SE C - 0
18.20 TY "READ BUSY"
18.30 TY VPUMP(EQ,BUSY,0,C) I
18.40 TY "COCO -"CH

% program fil∙ name : t∙∙tl.nod

3.1.7.2 Printout from testl.nod

EQUIPMENT NO : 20003

SET CCVl - 32
COCO - 0

SET CCSACT - 1
COCO - 0

SET CCV - 2
COCO - 0

READ STAQ 1
COCO - 0

SET CCSACT - 2
COCO - 0

READ STAQ 2
COCO - 0

SET CCSACT - 3
COCO - 180

SET CCSACT - 4
COCO - 180

Program listings : Printout from testl.nod - 78

SET CCSACT - 0
COCO - 180

READ AQN 2
COCO - 0

READ AQNl 32
COCO - 0

READ AQN2 32
COCO - 0

SET CCV - 1.5
COCO - 180

READ PHSTAT 12
COCO - 0

READ ASPECT 102
COCO - 0

READ DATE
sec. : 708874974
usee. : 960000
COCO ≡ 0

READ BUSY 202
COCO - 0

3.1.7.3 Message contents from testl.nod

Setting up

Waiting to receive a message
(1) Message received
CONTROL message :
Type of message : 17
(Size of a normal Ctrl message : 62)
(Size of a request Ctrl msg. : 22)
linl (Eq mod no) : 230
lin2 : 798
Extracted from lin2 :
EQ_TYPE : 3
EQ-STYPE : 30

lin3 (Phys Eq No) : 33
amm : 5
date : (708874972) Thu Jun 18 14:42:52 1992
usee : 460000

specialist : 0
ccsact—chng : 1
ccsact : 1
CCV-Chng : -1
ccv (int32) : 2
ccvl—chng : 1
ccvl : 32.000000

Waiting to receive a message
(2) Message received
REQUEST message :
Type of message : 17
(Size of a normal Ctrl message : 62)
(Size of a request Ctrl msg. : 22)
linl (Bq mod no) : 230
lin2 : 798

Program listings : Message contents from testl.nod - 79

Extracted from lin2 :
EQ-TYPE : 3
EQ-STYPE : 30

lin3 (Phys Eq No) : 33
amm : 0
date : (708874972) Thu Jun 18 14:42:52 1992
usee : 480000

specialist : 0

Sendinq message
ACQUISITION message :
Type of message : 17
(Size of normal acq message : 70)
Iinl (Eq mod no) : 230
lin2 : 798
Extracted from lin2 :
EQ-TYPE : 3
EQ-STYPE : 30

lin3 (Phys Eq No) : 33
amm : 0
date : (708874974) Thu JUn 18 14:42:54 1992
usee : 690000

specialist : 0
phys status : 11
saqn : 1
aspect : 101
qualif : 32
busy_time : 201
aqn (int32) : 2
aqnl : 32.000000
aqn2 : 32.000000

Waiting to receive a message
(3) Message received
CONTROL message :
Type of message : 17
(Size of a normal Ctrl message : 62)
(Size of a request Ctrl msg. : 22)
Iinl (Eq mod no) : 230
lin2 : 798
Extracted from lin2 :

EQ-TYPE : 3
EQ-STYPE : 30

lin3 (Phys Eq No) : 33
amm : 5
date : (708874974) Thu JUn 18 14:42:54 1992

usee : 710000
specialist : 0
ccsact—chng : 1
ccsact : 2
CCV-chng : 1
ccv (int32) : 2
ccvl—chng : -1
ccvl”: 32.000000

Waiting to receive a message
(4) Message received
REQUEST message :
Type of message : 17
(Size of a normal Ctrl message : 62)
(Size of a request Ctrl msg. : 22)
Iinl (Eq mod no) : 230
lin2 : 798
Extracted from lin2 :
EQ-TYPB ≡ 3
EQ-STYPE : 30

lin3 (Phys Eq No) : 33
amm : 0
date : (708874974) Thu JUn 18 14:42:54 1992

Program listings : Message contents from testl.nod - 80

usee : 720000
specialist : 0

Sending message
ACQUISITION message :
Type of message : 17
(Size of normal acq message : 70)
linl (Eq mod no) : 230
lin2 : 798
Extracted from lin2 :
EQ-TYPE : 3
EQ-STYPE : 30

lin3 (Phys Eq No) : 33
amm : 0
date : (708874974) Thu Jun 18 14:42:54 1992
usee : 750000

specialist : 0
phys status : 12
saqn : 2
aspect : 102
qualif : 32
busy_time : 202
aqn (int32) : 2
aqnl : 32.000000
aqn2 : 32.000000

Waiting to receive a message
(5) Message received
REQUEST message :
Type of message : 17
(Size of a normal Ctrl message : 62)
(Size of a request Ctrl msg. : 22)
linl (Eq mod no) : 230
lin2 : 798
Extracted from lin2 :

EQ-TYPE : 3
EQ-STYPE : 30

lin3 (Phys Eq No) : 33
amm : 0
date : (708874974) Thu Jun 18 14:42:54 1992

usee : 800000
specialist : 0

Sending message
ACQUISITION message :
Type of message : 17
(Size of normal acq message : 70)
linl (Eq mod no) : 230
lin2 : 798
Extracted from lin2 :

EQ-TYPE : 3
EQ-STYPE : 30

lin3 (Phys Eq No) : 33
amm : 0
date : (708874974) Thu Jun 18 14:42:54 1992
usee : 860000

specialist : 0
phys status : 12
saqn : 2
aspect : 102
qualif : 32
busy_time : 202
aqn (int32) : 2
aqnl : 32.000000
aqn2 : 32.000000

Waiting to receive a message
(6) Message received
REQUEST message :

Program listings : Message contents from testl.nod - 81

Type of M∙aag∙ : 17
(Size of a normal Ctrl mesaage : 62)
(Siz∙ of a request ctrl mag. : 22)
Iinl (Eq mod no) : 230
lin2 : 798
Extracted from lin2 :
EQ-TYPE : 3
EQ-STYPE : 30

lin3 (Phya Eq No) : 33
amm : 0
date : (708874974) Thu JUn 18 14:42:54 1992
uaec : 890000

apecialiat : 0

Sending meaaage
ACQUISITION meaaage :
Type of meaaage : 17
(Size of normal acq meaaage : 70)
Iinl (Eq mod no) : 230
lin2 : 798
Extracted from lin2 :

EQ-TYPE : 3
EQ-STYPE : 30

lin3 (Phya Eq No) : 33
amm : 0
date : (708874974) Thu JUn 18 14:42:54 1992
uaec : 900000

apecialiat : 0
phya status : 12
saqn : 2
aspect : 102
qualif : 32
buay_time : 202
aqn (int32) : 2
aqnl : 32.000000
aqn2 : 32.000000

Waiting to receive a meaaage
(7) Message received
REQUEST message :
Type of message : 17
(Size of a normal Ctrl message : 62)
(Size of a request Ctrl msg. : 22)
Iinl (Eq mod no) : 230
lin2 : 798
Extracted from lin2 :

EQ-TYPE : 3
EQ-STYPE : 30

lin3 (Phya Eq No) : 33
amm : 0
date : (708874974) Thu Jun 18 14:42:54 1992
uaec : 940000

specialist : 0

Sending message
ACQUISITION message :
Type of message 17
(Size of normal acq message : 70)
Iinl (Eq mod no) : 230
lin2 : 798
Extracted from lin2 :

EQ-TYPE : 3
EQ-STYPE : 30

lin3 (Phys Eq No) : 33
amm : 0
date : (708874974) Thu Jun 18 14:42:54 1992
usee : 960000

specialist : 0
phya status : 12

Program listings : Message contents from testl.nod - 82

saqn : 2
aspect : 102
qualif : 32
busy_time : 202
aqn (int32) : 2
aqnl : 32.000000
aqn2 : 32.000000

Waiting to receive a message

Process killed

Program listings : Message contents from testl.nod - 83

3.1.8 Test2 program with printout

3.1.8.1 Test2.nod program

1.10 % Fil· : TEST2.NOD
1.20 % Test of WARN, RFAULT, UFAULT, INTLK,
1.30 % WARNM, UFAULM, RFAULM & INTLKM property function·
1.40 SE EQ - 20003
1.50 TY "EQUIPMENT NO ι " EQ ! I
1.60 DIM-L D(4)

2.10 SE C - 0
2.20 TY "READ WARN li∙t" I
2.30 TY VPUMP(EQ,WARN,0,C) !
2.40 TY "COCO -"Clt

3.10 SE C - 0
3.20 TY "READ WARN date·” 1
3.30 VPUMP (EQ,WARNM,0,C,D)
3.40 TY "la∙t : ∙ec : "D(I) I
3.50 TY " u∙ec : " D(2) I
3.60 TY "inport : aec s " D(3) I
3.70 TY " u∙ec : " D(4) I
3.80 TY "COCO -"Cll

4.10 SE C-O
4.20 TY "READ RFAULT li∙t" I
4.30 TY VPUMP(EQ,RFAULT,0,C) I
4.40 TY "COCO -"Cll

5.10 SE C - 0
5.20 TY "READ RFAULT date·" I
5.30 VPUMP(EQ,RFAULM,0,C,D)
5.40 TY "last : ∙ec : " D(I) I
5.50 TY " u∙ec : " D(2) I
5.60 TY "import : ∙ec : " D(3) I
5.70 TY " u∙ec : " D(4) I
5.80 TY "COCO -"Cll

6.10 SE C - 0
6.20 TY "READ UFAULT li∙t" I
6.30 TY VPUMP (EQ,UFAULT,0,C) I
6.40 TY "COCO -"Cll

7.10 SE C - 0
7.20 TY "READ UFAULT date·" !
7.30 VPUMP(EQ,UFAULM,0,C,D)
7.40 TY "last : sec : " D(I) I
7.50 TY " u∙ec : " D(2) !
7.60 TY "import : sec : " D(3) I
7.70 TY " uβec : " D(4) !
7.80 TY "COCO -"Ctt

8.10 SE C - 0
8.20 TY "READ INTLK list" !
8.30 TY VPUMP(EQ,INTLK,0,C) !
8.40 TY "COCO -"Cll

9.10 SE C - 0
9.20 TY "READ INTLK dates" !
9.30 VPUMP(EQ,INTLKM,0,C, D)
9.40 TY "last : sec : "D(I) I
9.50 TY " usee : " D(2) I
9.60 TY "inport : sec : " D(3) 1
9.70 TY " usee : " D(4) !
9.80 TY "COCO -"Clt

% program file name : te∙t2.nod

Program listings : Test2.nod program - 84

3.1.8.2 Printout from test 2. nod

EQUIPMENT NO : 20003

READ WARN Iiat
10

COCO - 0

READ WARN date*
last : sac : 708875406

usee : 720000
import : sec : 708875406

usee : 720000
COCO - 0

READ RFAULT list
20

COCO - 0

READ RFAULT dates
last : sec : 708875406

uaec : 960000
import : aec : 708875406

usee : 960000
COCO - 0

READ UFAULT list
30

COCO - 0

READ UFAULT dates
last : sec : 708875407

usee : 230000
inport : sec : 708875407

usee : 230000
COCO - 0

READ INTLK list
40

COCO - 0

READ INTLK dates
last : sec : 708875407

usee : 480000
import : sec : 708875407

usee : 480000
COCO - 0

Program listings : Printout from test2.nod - 85

3.1.9 Test3 program with printout

3.1.9.1 Test3,nod program

1.10 % Fil· : TEST3.NOD
1.20 % Teat of TBIT(r∕w) and TBSTl (r∕w) property functions
1.30 SE EQ - 20003
1.40 TY "EQUIPMENT NO : " EQ I !
1.50 DIM-L T(40)

2.10 SE C - 0
2.20 TY "SET TBIT - 111" I
2.30 SE VPUMP(EQ,TBIT,0,C) - 111
2.40 TY "COCO -"Cll

3.10 SE C - 0
3.20 TY "READ STAQ"
3.30 TY VPUMP(EQ,STAQ,0, C) I
3.40 TY "COCO -"CM

4.10 SE C - 0
4.20 TY "READ TBIT" I
4.30 TY VPUMP(EQ,TBIT,0,C) I
4.40 TY "COCO -"Cll

5.10 SE C - 0
5.20 TY "SEND TESTl DATA" I
5.30 FOR N-l, 40; SE T(N) - N*6
5.40 VPUMP(EQ,TESTI,0,C,T,-l)
5.50 TY "COCO -"Cll

6.10 SE C - 0
6.20 TY "RECEIVE TESTl DATA" I
6.30 WUMP (EQ, TESTI, 0, C, T)
6.40 FOR N-l, 40; TY T(N)
6.50 TY ! "COCO -"Cll

% program file name : test3.nod

3.1.9.2 Printout from test3.nod

EQUIPMENT NO : 20003

SET TBIT - 111
COCO - 0

READ STAQ 0
COCO - 0

READ TBIT
111

COCO - 0

SEND TESTl DATA
COCO - 0

RECEIVE TESTl DATA
6 12 18 24 30 36 42

48 54 60 66 72 78 84
90 96 102 108 114 120 126

132 138 144 150 156 162 168
174 180 186 192 198 204 210
216 222 228 234 240

COCO - 0

Program listings : Printout from test3.nod - 86

3.1.10 Makenodal

♦ 8/7 1992
♦ Make file to build Nodal with local eqm on MVME147 LynxOS
SUFFIXES : .o .c

CC- gcc
PROJECT- nodal
SHELL- ∕bin∕ah
E2-∕u∕dacpa∕icvl96fclty
E3-∕u∕d∙cp∙∕fpipl∙fclty
VAR - ∕u∕roaenat∕dac∕vac

CINCLUDE - -I/uar/local/include/tgm -I∕u∙r∕local∕include∕err ∖
-I∕u∕app∕d∙c∕include -1$(VAR)

♦ C compiler flaga:
CCFLAGS - -o $*.o -c -g -DLYNX $(CINCLUDE)

I How to compile a .c program to produce a .o:
.c. o:

βecho —∖> Compile c program $*.c
8$(CC) $(CCFLAGS) $*.c

LKFIΛGS - -g

♦ GM host library directory
GMLIB - ∕u∕app∕d∙c

♦ Property-code library directory
Procolib - ∕u∕paco∕dac

PSLIB - ∕usr∕local∕lib

ODIR - ∕u∕perrioll∕dac∕nodal

LIBS - $ (PSLIB)/Iibfltcvt.a -Inetinet -Im ∖
-Ibad /uar/local/lib/liberr_dummy.a

TLGFIL - $ (PSLIB)∕libtgm. a ∖
$ (PSLIB)∕liberr.a

CONNCT - $ (PSLIB)/gpaynchrolib.o

OBJECTS- $ (ODIR)/nodal.o ∖
$(PROCOLIB)/emmeaa.o ∖
$ (PSLIB)∕vmebualib.o ∖
$(E2)∕icvl961ib.o ∖
$(E3)/fpiplalib.o ∖
$ (PSLIB)/camaclib.o ∖
$ (PSLIB)/ioconfig.o ∖
$ (CONNCT) ∖
$ (PSLIB) Znodusejvinebase. o ∖
$ (PSLIB)∕nodlist-Vmebase.o

$(PROJECT) : $ (VAR)∕gmjpbt.o $(PROCOLIB)/procolib.a ∖
vaC—Vpump vac_vgaug vac_walv mqlib

$(CC) $(LKFLAGS) $(OBJECTS) ∖
$ (VAR)∕gπjpbt.o $ (GMLIB)∕gmlib.a $(PROCOLIB)/procolib.a ∖
$ (VAR) ∕vac-vpump. o $ (VAR) /vac_vgaug. o $ (VAR) /vac_walv. o ∖
$ (VAR) ∕mqlib. o ∖
$ (TLGFIL) $(LIBS) -o $(PROJECT)

Program listings : Makenodal - 87

vac_vpuntp : $ (VAR) /vac_proco. c
$(CC) -c -g -DLYNX -DVPUMP_PROCO \
$(CINCLUDE) vac_proco.c -o vac_vpunp.o

vac_vgaug : $ (VAR) /vac_jproco. c
$ (CC) -c -g -DLYNX -DVGAUG_PROCO \
$(CINCLUDE) vaC-proco.c -o vac_vgaug.o

vacjrvalv : $ (VAR) /vac_proco. c
9 (CC) -c -g -DLYNX -DWλLVJROCO \
$(CINCLUDE) vaC—proco.c -o vac_walv.o

mqlib: $ (VAR)/mqlib. c
$ (CC) -C -g -DLYNX -DMQLIB-CODE \
$(CINCLUDE) mqlib.c -o mqlib.o

Programlistings : Makenodal - 88

Distribution (of abstract)

G.P. Benincasa
F. Perriollat
C. Serre
SLM

AT/Vacuum Section

