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1. INTRODUCTION

One of the prime motivations for the construction of high energy hadron colliders
is to nnravel the mechanism of electroweak symmetry breaking. In the standard model
of electroweak interactions there exists a physical scalar boson, called the Higgs boson,
whose interactions generate the non-zero masses of the W and Z gauge hosons.! The
couplings of the Higgs boson are completely specified in the standard model; the only
unknown parameter 1s its mass. For a given mass, therefore, it is possible to predict
the properties and production mechanisms of the standard model Higgs boson unam-
biguously. In this paper, we discuss the two-loop QCD radiative corrections of O(a?3)

to the production of the Higgs boson in hadronic interactions.

A particularly interesting mass region in which to search for the Higgs hoson is the
intermediate mass region, 80 S My < 150 GeV. The dominant decay mode for the
intermediate mass Higgs boson is H — bb. However, the formidable QCD background
to this decay will probably necessitate using rare decay modes such as H — 5 to search
for the intermediate mass Higgs boson. Since the number of events remaining after
cuts to remove backgrounds is small, it is vital to understand the effects of radiative

corrections in this region in order to determine the viability of the signal.

In the intermediate mass region, the primary production mechanism is gluon fusion
through a top quark loop as shown in Fig. 1. For a heavy top quark. ms < 150 GeV,
and an intermediate-mass Higgs boson it makes sense to expand the results in powers
of r = M2 /m2. The zeroth-order result in this expansion, i.e., the my — oo limit, is
remarkably accurate, giving the amplitude in Fig. 1 to better than 10% even up to
r = 1. However, there is no guarantee that the radiative corrections will have as little

dependence on r.

The leading corrections for m¢ — oo have been computed previously and found to

increase the cross section by about a factor of two. Thus, it is critical to determine



the m; dependence of the radiativelv-corrected cross section. In this paper we take the
natural first step : we compute the first non-leading corrections of O({a3r) to Higgs
hoson production in hadronic collisions. In such a limit, the compntation of the two
loop )CD radiative corrections becomes greatly simplified and it is possible to ohtain
analytic results.®’®  Qur analytical results (for the region over which they are valid)

confirm the numerical results of Ref. 3, valid for arbitrary My/m;,.

If the top quark is very heavy it will show up indirectly via its contribution te
radiative corrections to various quantities such as the W and Z masses. Indeed, a
global fit to existing data from eleclroweak processes requires m, < 180 GeV for
the consistency of the standard model.* For the intermediate mass Higgs boson, say
My ~ 100 GeV, the m¢ > My limit may be a reasonable approximation. For a heavy
Higgs boson, such as My ~ 1 TeV, the my — oo limit clearly is net valid. In this
case, our results can be used to gauge the sensitivity of the Higgs boson production
rate to new physics, since any new heavy quarks will contribute to Higgs production
from gluon fusion. For example, a doublet of heavy quarks which is degenerate in mass
would not contribute to the p parameter, but would contribute to the gluon fusion

production of a Higgs boson.

The.organization of the paper is as follows. In Section 2, we review previous results
and describe how the low energy theorems are used to obtain the O(a?) corrections to
the process g¢g — H in the limit in which m; — oco. Section 3 contains a description
of the calculational techniques required to compute the two loop integrals occuring in
the evaluation of the virtual diagrams for gluon fusion when the non-leading terms in
My /m, are retained. In Section 4 we present our analytical results: partonic cross
sections for gg, qg and q¢g — H + X to O(a3r). Section 5 contains numerical results for
Higgs boson production in pp interactions at V'S = 15 TeV and v/5 = 40 TeV. Finally,
we present our conclusions in Section 6. The appendices contain details pertaining to

the evaluation of the two-loop integrals.



2. PREVIOUS RESULTS

The lowest order amplitude for the gluon fusion of a Higgs boson arises at one loop
from the toangle diagram of Fig.1. The amplitude is sensitive to all of the quarks
but since the coupling of quarks to the Higgs boson is proportional to their mass the
contribution from light quarks is suppressed. Assuming there are no heavier quarks,
the contribution from the top quark is dominant over the range in M;. currently allowed
by experiment (M > 60 GeV® ). The contribution to the amplitude from a single

heavy quark with mass m, has been available in the literature for some time, 8
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Neglecting contributions from light quarks, this gives the spin and color averaged cross
section,
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where we have computed the amplitude and cross section in n = 4 — 2¢ dimensions for

later use.

When the momentum transfer to the Higgs boson is small, or equivalently in the
limit m¢ > My, the cross section to O(a?) for g¢g — H can be obtained from the

effective Lagrangian, '

1 [1 2H B

Coge = —= _Jr
off - g(l 1 6)

; ]G“”GA , (2.6)

where G’A, is the gluon field strength tensor and Jg is the contribntion of the top

quark to the QCD beta function:

19

J1--a } . (2.7)
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The (1 4 §) term arises from a subtlety in the use of the low-energy theorem.® Since

the Higgs coupling to heavy fermions is m¢(1 + H/v)#t, the counterterm for the Higgs

Yukawa coupling is fixed in terms of the renormalization of the fermion mass and wave

8,9

function. In the MS scheme, § = 2a,/r. In the limit my > Ay, the effective

Lagrangian of Eq. (2.6) can be used to obtain the gluonic radiative corrections of

O(a?) from a one-loop calculation. *>®

This serves as a valuable check of the complete
two-loop calculation. An effective Lagrangian approach can also be used to obtain the

O(a?) radiative corrections to the gluon fusion of a pseudoscalar, gg — A°.°

We proceed to calculate the terms of O(a2r). Unfortunately, the O(r) corrections
to the effective Lagrangian are not known and to obtain them would require a two-loop
calculation. It is simpler to perform the direct calculation; the necessary techniques

are discussed 1n the next section.
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3. CALCULATIONAL TECHNIQUES

The evaluation of the t wo-loop diairams arising in the virtual corrections to g9 — H
is an extension of the techniques used in the case of H — vv.1* The hasic strategy is to
expand the loop integrals in powers of the external momenta over my ot every stage. 12
This technique has been successfully used to compute the 2—loop contribution to the p

parameter {rom a heavy top quark. 13 The complete set of two-loop diagrams 1s shown

in Fig. 2. Each graph gives a result ~f the form
ALY = C(a;g" k1 - ko + bikY kS + cikikS) (3.1)

where the incoming gluons have momenta, polarization indices and colors as in Eq.

(2.1)and
a2

2m2y

C= -AN?%6,4p (3.2)

Gauge invariance requires that

i

Y= -Yh (83

where the sum runs over all the diagrams. (The ¢; terms do not contribute for on-
shell gluons.) In order to reduce the number of tensor structures and deal with scalar

quantities only, we compute three contractions of each diagram : A¥"g,,,, A%" ky, k2,

1

and A"k, k2, . From the contracted amplitudes the values of a; and b; can easily

be found

ALY
* :C(n — 2)(k1 - k)2 {kl k2guy —kivkau — klukz,,},
AY

C(n — 2)(ky - k2)?

(3.4)

bi = {(n~1)k1,‘k2,,—-k1~kzguu+k1uk2u}-

The various two-loop diagrams have either one, two or three gluon propagators.

Diagrams with one gluon propagator (these are the ones previously calculated in Ref.

f



11) can be written such that the glion propagator contains no external momenta.
For these diagrams with mere than one gluon propagator we Feynman parametrize
to combine the massless gluon propagators (top quark propagators are left alone);
the leop mementa are then shifted to move the external momenta infe the top-anark

propagators. The gluon propagators for diagrams V-VIII become

1 1
V-VI:. —
r12(.‘1 _ k1)2 (q/2)2

1 1
I:
(0 +Fk1)*(g—k2)? (g2 + a(1 — 2)MZ)?
where ¢/ = ¢ + zk1 — (1 — z)k2,
1 1

VIII - d . where o = - rhe — ks
qZ(q+IK'] )“(q—kz)z (’1,2+$yM3)3 q q 1 Yy

where ¢ = g — zk;

VI

(3.5)
where the integrals over the Feyninan parameters z and y are implicit. For diagrams
V and VI all the external momentum can be shifted into the heavy-quark propagators.

For diagrams VII and VIII products of ky -k = M2 /2 and Feynman parameters remain

in the denominators.

The denominators arising from the heavy-quark propagators in Fig. 2 can be

expanded in powers of the external momentum, e.g.,

1 1 2q -k
= 5 (1 + 7 + > . (3.6)

(¢ —Fk1)2 —mi q—mj] q—m?

To obtain the terms of O(M2/m?) each denominator must be expanded up to terms
containing two powers each of ky and k2 (in diagram VIII the denominators must be
expanded to one further power because the momentum integrals bring in an inverse
power of M2). The Feynman integfals for diagrams V and VI can be performed at
this stage since the expansion brings the Feynman parameters into the numerator. The
Feynman integrals for VII and VIII must be performed after the momentum integration

but they involve only polynomials and logarithms and are easily done.

-1



After contracting the amplitudes from the graphs of Fig. 2 as in Eq. (3.4) and

expanding the denominators all the contributions have the form

d™p / d™gq (powers of p-k;,q- ki) x (powers of p?, ¢%. p-q) (3.7)
ok i Ll ¥} 7
Jo(2m) ) (2m)m [(p+ q)7 = m2l3(p? — m3)* (g —m7)! ’
where m? can be zero or a product of Feynman parameters times M2. Using symmnietry

arguments the powers of p - k; and ¢ - k; in the numerators can be written in termns of

powers of p?, ¢?, and p - ¢ times powers of ky - k3 = M2 /2. The integrals can then be

reduced to the symmetric form **

d"p [ d"q 1 |
/ (2m)m / (2m) [(p + q)2 — m2)7 (p2 — m2)k(q% — m3)l (3.8)

These integrals are well known in the literature and are discussed in Appendix A. The

techniques necessary to symmetrize the numerators are discussed in Appendix B.

4. RESULTS

To compute the radiative corrections for the inclusive production of the Higgs boson
from gluon fusion, we need both the real contribution from gg — ¢gH and the virtual

corrections to gg — H. We will also need the contributions for q¢ — qgH and q7 — gH.

(a) Virtual Corrections to gg — H

The results of the two-loop diagrams contributing to gg — H are detailed in Ap-
pendix C. The sum of the two-loop amplitudes can be written in terms of the Born
amplitude from Eq. (2.4), (neglecting the irrelevant imaginary part)

a rT¢ 5 27% 19r 3C @ 13r
Re(ABY) = ZARYN|C, | — = - — =34+ —- O(r?
e(AT) = 57 { "( 2 273 180> 2 \3*50e 1080/ | 7O

(4.1)
The color factors for SU(3) are given by C, = 3 and Cr = 4/3. The term proportional

to Cp contributes to H — 4 and was computed in Refs. 11, 15.



It is natural to gronp the mass conunterterms on the fermion propagator and those
at the Htt vertex with the virtual corrections. The inclusion of the mass counterterms
(which have no C, compeunent) renders the contribution proportional to Cr finite. We
use the on-mass shell rencrmalization scheme in which the physical miass is defined to
be the pole in the propagator. The renormalized fermion propagator is then:

I PR 11
3 o ]>1 4 R + } (4.2)

where '
Zr(p) = Z(p) — dmy — Z2(P — my) (4.3)
and
dmy as (3 .
=NC.—= | —+1 ) (4.4)
me T\ 4e ’

The sum of the mass counterterms is

Tr 49
A8V 3C, (1 SRLLE ——T> +0(r3) . (4.5)

(o2
27

APY = N
em 120e 360

Our result for the virtual amplitude plus mass counterterms, is then (r = M2 /m?):

rT¢ 5 272 19r> 3Cp< 307r‘)

(84
Re(A,) = ZagN|Cy [ -T p 2 - 2T 2N Lot (4
elAv) = 5 Ao [ ( 2 273 10 2 1080,,} () (46)

which gives the contribution to the spin and color averaged cross section:

a - 5 272 19
Tvirt :US-S {CA(“rez +"+L T)

T 2 3 ﬁ
2C: 1 307r
2 1080

4

>}5(1 —2)+0O(r%)

where z = M2 /s and of is defined in Eq. (2.5) and contains the overall factor [1 +

7r(1 + €)/60].

§1 The various factors of Z; on the fermion propagators and at the Htt vertex and the factors of Z;
at the git vertices combine to give the charge renormalization counterterm given in Section 4c.



There are various checks we can perform on the contributions to Eq. (4.1). The
diagrams VI and VIII have imaginary parts and teris proportional to logr and log? r.
The imaginary parts can be obtained via the Cutkosky rules and the log» terms can
e related to them since they both arse from terms containing low{ -7} The 1/¢
terms coming from diagrams VI and VIII are purely infrared and can computed by

appropriatelv contracting the legs of the gggH box diagram. These various checks are

described in Appendix D.

(b)Real Diagrams for g9 — gH

The matrix element squared for the process gg — gH can be found from the
diagrams of Fig. 3. '®  The result, with the appropriate spin and color sums and

averages, 1s

~ St gyt 4 ME O r M2 |
tA(gg—»anz:Scr;cAas{s tr et My I"}wwz) o (48)

stu 10

To make clear the structure of this result we write it terms of the » = 0 result from

Ref. 2:

€

L
A =S -0

|A(r = 0)]2 — %agcAaer,f +0O(r%) . (4.9)
We see that the bulk of the terms, and all those which yield infinities, have the same
structure as the » = 0 result and are scaled by the m, dependence of the Born cross
section. Clearly, the soft and collinear singularities will factor as they must. The form
of the extra O(r) term in Eq. (4.9) is determined by Bose symmetry: M2 is the only
term symmetric in s, ¢ and u with the proper dimension. No terms which grow with s

and would spoil the expansion are allowed.

Integrating over the phase space of the final state gluon, we find the contribution

g



to the cross section:

Catre , 1 72 1 ~ ;
Oreal =0g Al '—.\/1'_6{ (—2 — 3—)5(1 —z)— —z1+eng(z)
7 € €
log(l - = 11
42 {—O—g(——} 1+ (1= 4+ 24— =1 - =) (4.10)
-z |, 6 ' 2
rz(1 — z)
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where

ﬁgg(:):2{<lf_;>++1;z’ +z(1—z)} : (4.11)

The plus distribution functions are defined,

/( f(=) E/f(zl):f(l) | a2

1-z)y

(c) Counterterms for g¢g — HX

In addition to the mass counterterms included in the virtual diagrams, there are

also counterterms due to the gluon wavefunction and charge renormalization.

For the charge renormalization, we use a modification of the M S scheme in which

the top quark decouples as its mass goes to infinity. 17 1In this scheme, the renormalized

coupling is related to the bare coupling by,

vgh 2\ s
a?:ag{l—————n’ ON<m—-;> +a M}
W

€ 6me

= (1 + 2azg>a2

where bg is the QCD [ function:

1 /11C, 2
bop = — = . 4.14
o 47r( 3 3"”‘) (4.14)

The charge renormalization then gives a contribution to the cross section,

(4.13)

Teh = 462,055(1 —z) . (4.15)

There i1s also a counterterm due to the wavefunction renormalization on the external

11




gluon legs:

Tt = 46 Zwergd(1 - 2) (4.16)
where in the MS scheme,
ag 1
6 Z g = —N—— . 4.17
f T 12¢ ( )

Finally, there is the Altarelli-Parisi subtraction *® which factors out the soft singularity

and gives a contribution,

2\ ~
Tap = N(I—nzi) ?—sngg(z)a'é (4.18)

gy e

where Py, is the Altarelli-Parisi splitting function,

Pog(z) = CaPyglz) +2mbod(1 — 2) . (1.19)

The final result, the physical cross section for g¢ — HX at next-to-leading order

In ag, is then the sum

&TOT(gg - H‘Y) =00 + Ovict + Treal + Och + O wf + o.p ) (420)

where og = 0-5‘5—0 (with a, evaluated at p). It is convenient to write our result as

eontag = HX) =oo{ 801~ 2) + 2L h(a) + () og (22 )

T 2
34r 3r
—_— — - —z(1 == O 2
135001 = 2) ~ 55 )} } +00%)
(4.21)
the functions h(z) and ﬁ(z) are the same as those of Ref. 2:
= - 2 E _ 11, )3
h(z) =6(1 z)<7r + 2) 5 (1-2)
’ 1 -z - .
+ ZCA[l +(1 - ;)4 + 24] {1_(%_)} _ CAZng(z)log z (4.22)
_ 2 N

h(z) =CrzPg44(2).
It is clear that the dominant contributions to the result are just a rescaling of the r = 0

12



result by the ubiquitous factor 1 + 7r/60. Note the cancellation of rhe log(my/My)

terms.

(d) 99 — gH

The process q@ — g H proceeds by the diagram of Fig. 3c. The resulting spin and

color- averaged cross section is easily found:

o (1-2)° :

a(qyg — gH) = -

4.23
72n2 486 ( )

)

The integral I, which arises from the triangle diagram of Fig. 1 with one of the gluon

legs taken off-shell, has been computed by Bergstrom and Hulth 19

1 1—=
; 1 —4zy .
I{a,b) =3 [ d 4.24
(a.5) / ’ / 1-az(l —z—y)-—bay ( )
0 n

If we expand the result in powers of 1/m? as we did for the gluon gluon scattering,
we find a result which grows with s (as compared to the gg — gH case which did not
have any such terms):

(4.25)

11 TM?2
o(q) — gH) ~ (1 + —*——)

60m:t"

Since we intend to integrate over parton energies much larger than m, we must use the

exact result of Eq. (4.23) in order to have sensible high energy behavior.

(e) 39 — qH

The matrix-element squared for the subprocess gg — gH can be obtained by cross-
ing from qg — gH. The spin and color averaged cross section can then be found by

integrating over the n dimensional phase space. Factoring the soft singulanty, we find

13



the physical cross section o:

- X g 1) 1 s 1 Ty -
o(qg — gH) _2 U —{r_'gngq(‘z) [:]'_)g(—:;) + - +log(1 — z)} + (1= 2)(3:z - 7)
T 2 N5 2 2

1
2 { (Tr")€2“|f(('~") ‘2 2, N2 ]
+§Un|r20/dw(—— I —w 14wl - 2) f
0
(4.26)
where 7 = —s(1 — z)(1 — w)/m?, and
Ppg = o= |1+(1-2| . (4.27)

As was the case for the gq process, the expansion of this expression in inverse powers
of my leads to terms which grow with s. Instead, we integrate Eq. (4.26) numercally

and give our results in the next section.

5. NUMERICALU RESULTS

In this section we present numerical results for Higgs production in pp collisions at
the LHC (/S = 15 TeV) and the SSC (v/S = 40 TeV.) We use parton distribution
functions froni Morfin and Tung?® : the next-to-leading order set S1 translated into
the MS prescription and the lowest order set extracted from the same data. Unless

otherwise stated we will always use the renormalization scale u = Aly.

Figures 4 and 5 contain the radiatively corrected cross sections for Higgs boson
production at the LHC and SSC respectively for m; equals 150 GeV and 200 GeV.
Although these figures include the contribution from gg, qg, g¢, and gg initial states
the result is completely dominated by the gg initial state. To gauge the effect of the
radiative corrections we also plot two versions of the Born result : the first is a consistent
leading order result, using s, parton distributions and the hard cross section all at
leading order, the second is a hybrid result using a, and parton distributions at next-

to-leading order (NLO) convoluted with the hard cross section at Born Jevel. Both

11



versions are equally correct as thev differ at higher order. We see from Figures 4 and
5 that the consistent leading order result is almost 50% larger than the hybrid result.
Comparing the NLO result with the two leading order results we see that it is ahout a
factor of 1.5 ]arger thau the consistent leading order result and abont a4 factor of two
larger than the hybrid result. The comparison to the hybrid result implies tha! the

O(a:;) contribution 1s over half of the full NLO result.

To emphasize the significance of the radiative corrections we have plotted the ratio
of the radiatively-corrected cross section to the two different Born results in Fig. 6a.
This ratio is often called the K facto.. Our results are in complete agreement with
Ref. 3, where the A -factor is defined using the consistent leading order result, as in
the dotted curve in Fig. 6a. From this figure we see that using a next-to-leading
order a, and next-to-leading order parton distributions does not give av improved
approximation to the full NLO result but rather it is better to do a consistent leading
order calculation. Figure 6b shows the ratio of the gg cross sections te the hybrid Born

result. The ¢g contribution is everywhere negligible.

Numerically, the major contribution to the NLO cross section can be obtained by
taking the results of the low energy theorem (the O(a3) result with » = 0) and scaling
by the factor (1 + 77/60). To emphasize this we plot in Fig. 7 the ratio of the O(a?r)
result to the O(a?) result with » = 0 for each subprocess. (These curves all have the
2-loop a, and the non-leading parton distribution functions.) We see that for the gluon
fusion result, the answer is well approximated by the m; — oo results of Ref. 2 and
3. Furthermore, the deviation from the m{ — oo result is approximated to better that
1% accuracy by the m; dependence of the lowest order cross section. For the gg and
qg subprocesses, the m¢ — oo limit is a poor approximation over almost the entire
kinematic region. This is clearly due to the terms which grow like s/m?2 as discussed

in Section 4d.

Fig. 8 shows the dependence of the consistent leading order result and the next-to-



leading order result on the renormalization/factorization scale u for a range of Higgs
boson masses. We see that, contrary to naive expectations, the radiative corrections
do not generally reduce the dependence of the cross section on . Ope can only expect
the next-to-leading order result to have less 1 dependence if the radintive correctinns
are small. Since the radiative corrections are about 100% and. being higher order in
g, are more scale dependent, the dependence on p of the NLO result is more severe

than the leading order result.

6. CONCLUSIONS

We have computed the O(a2r) contributions to pp — gH. They are dominated by
the gluon fusion contribution and typically increase the lowest order cross section by a
factor of between 1.5 and 2. The lowest order cross section is sensitive to wwhether the

1-loop or 2-loop a, is used and which distribution functions are used.

The dominant numerical corrections to the gluon fusion contribution can be found
from the m; — oo O(a?) results of Refs. 2 and 3 by rescaling the cross section by
the factor (1 + 7r/60). The smallness of the O(a3r) terms demonstrates the valididty
of the m¢ — oo limit for the gluon fusion subprocess. Indeed, Ref. 3 found that the

my — oo results were good to within i5% even for My > my.

The determination of the transverse momentum distribution of the Higgs boson
requires summing the log(M2/p%) terms which are important at low pr.2'  The
O(a3r) terms which we have calculated can be used to extend this summation beyond

the leading order.
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APPENDIX A. Symmetrizations

The numerators of the integrals are of the form

p-kip k¥ g -k ¢ ki x (powers of p?, ¢2, and p - q)

where p and ¢ are the loop momenta. Hence all the numerators ¢can be written as
contractions of external momenta with products of up to six loop momenta. Since the

denominators contain no external momenta, structures such as

p*p"p°p?

must be symmetric in all their indices. Therefore, we make the substitution

ruvpoc

p*p pPp” — C VIV P7(p?)?

where
VEYPT = ghv P | gBPGYT | KT gy e
and
% T

where n = 4 — 2¢ 1s the number of dimensions.
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Similar arguments can be made for more complicated combinations. The remaining
permutations of four loop momenta are
4 et 13 ] 2
PP PPe7 = CaVIYE7p% p oy,
ot p o C {' 2 2.2 A2 1V PO
PP a"9% = Caz2qin + 2)[p%¢" — (p- ¢)*|g"*"g

+(n(p-q)® —pPg?)VEYPTY,

For products of six loop momenta we define

Vsﬂvmzﬁ'v — gnv1,.-49aﬁ'~r +gupx,-4vﬁﬁ:v + guav4"P5‘7 +guBV4VPOM + guvv‘;paﬂ

The svmmetrizations of six loop momenta are

pupvpppo'pﬁpv _,Csv}suvaHW(pz)a
pupupppapﬂqv N Cg‘*’s”w"aﬁ”(p:)zp g
P p?p74%q% = Caap?{(n+4) [p?0° — (p- )] g“P VLV P
+n(p-q)? - p??IVErPory |
P*p"p?9%9°q7 — Caa{(n+4) [p°0*p - g — (p- q)*] (g™PV#¥P 4+ govyfrve

+ gﬁ7V4au,up) + [(n + 2)(p . q)3 _ 3P2q2p- q”,rs;u"paﬁw}

The various coeflicients are

1
Cos =
22 n(n - 1)(n+2) ’
1
Cy =
3 n(n +2)(n+4) ’
1
Caq =

- n{n — 1)(n + 2)(n + 4)



APPENDIX B. Integrals

In this appendix we present the results necessary to obtain the 2-loop integrals used
in this paper. We use dimensional regularization with n = 4 — 2e. The integrals form
two basic classes: the first where all denominators are massive (arisug from diagrams
VII and VIII) and the second where tliere are massless denominators (arising from
diagrams I-VI).

The first class of integrals has the general form:

_ dnp an 1
N R e e e e e

We will need Bjx; with 7 = 1,2,2 and j + k + | < 10. Using integration by paris on

the Bz leads to the following recursion relation 2212

3 d 0
- . 2 .
Bl,j+1,l —W[<n“‘l—2]—m “’—_am2> Blele‘_a Bl]l—l aszlyJ"lyl :

The By and Bjp; can be obtained from the By by differentiation:

1 3

Biy1 kg = }En_?TB"”“”

Hence we need only calculate By;1. This integral has been given in a power series in

b=m2/M? in Ref. 12. However, we need to carry the expansion in b further than in

this reference. We find:

2
By =M? b+2+ 64 3b—2blogh ) —b 2+b+b—+— logh + blog? b
€2 ® 210, g

31 389
14+ b —bh4 ——b% L pB
it ( L+ b+450 * 14100 )}
(B3)

For most of the diagrams any infinities come from the loop momentum integrals and

so there is no need to keep terms which vanish as n — 4 in the integrals. The exception
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is diagram VIII which has infrared divergences arising in the Feynman integrals. These
divergences come from terms of O(1/m?) arising in the B3, integrals. Thus, the terms
of O(1/m?) in the Ba 1 need to be calculated to O(e?). Rather than rederive the entire
series of integrals keeping terms to O(<2) we notice that the O(1/m?*1 ferms come from
a particular part of the integralin Eq. (B1), that in which p = —g. Therefore, changing

variables to p — p — 4 and dropping j except in the denominator m? we find

(4t d™p 1 d™q 1
Bakl 2(4’ ) /(271.)71. (_p2 _ m2)3 / (27r)n (qz _ A:[Z)k-{-l : (B4)

where we have kept only the terms of O(1/m?). Eq. (B4) can also be verified by brute

force calculation.

The integrals which contain massless denominators are Bj; with -ne of the masses

taken to zero

Bjri = Bjiy - (B5)

m=0
We will need the result for j = 1,2. For the case of the Bljk one may simply take the-
limit m — 0 in the expressions for By, since the limit is well defined. However, the
By have infrared divergences and cannot be derived directly from the Bog;. Instead,

using integration by parts we derive another recursion relation
Boki =Bz kt1,1-1 +(n =2k~ 3)By x 41,0 —2(k +1)M?By 421 - (B6)

Since szo = 0, the Baok1 depend only on the Blkl and the rest of the integrals follow.

Alternatively, one may use the explicit formula of Ref. 23:

_ 1 ) a7 \ %€ )
Bt 25(_1),4—1@4—1(_]‘412) (MZ)d=7 k=t
(e +1+j = m)lk+j = n/2)T( +j —n/2)T(n/2 — )

L(k+1+2j —n)T(K)L())[(n/2)

We have checked that the two approaches give identical results.
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APPENDIX C. Virtual Diagrams for g9 — A

The results of the various diagrams can be separated into two-gauge invariaut sets:
contributions proportional to the group factors Cp and C',. The Cr terms are propor-
tional to the diagrams for H — ~7v computed in Ref 11. We present them here for

completeness, written in the form of Eq. (3.1).

2

v s (Ys TR% v
.»4;1 = —N227r21; (a;g’ ki ko +bik1k§)

In this appendix we present only 1he real part of each amplitude. Only diagrams
VII and VIII have imaginary parts: these are given in Appendix D. Our results for the

diagrams contributing to H — vy~ are :

Ce\ 1 [135 2 +1+37 177+" r (277 12821
ug=\—7F|=-"—=+-"+=]|-—4+7T—-—{| — +—
"T\16 /45| r e ¢ 18 € 14 \ ¢ 30
Cr\ 1 [123 r ('223 2924
by = — ) —|—=4+47+ - =+
: (16>45_e AR PR )]
C'F) 1270 /2 1 1> 6 872 r [17 6719)
a[[:_——"_ - - - - — —_ — — _+"“_ 3
16 /45 r \e2 e 18 € 3 7\ € 60
b= (Cr) 11 388+r/71+566‘
"\ 16 /45| « 3 7\« 5 ’ ,
\ (C1)
2C. —C,\1[ 36 4d,. 34 1151r
Ay = — |-+ - = s
32 3| r e 9 ' 2700
b (20— Ca\1[_4dr 2 109
e 32 3] € 9 1350] °
Ce\1[36 16d,. 226 6287r
ay =\ —< )| — -
v 16 /3| r € 9 2700 |
o _(Ce\1 16dr+194 361r
Y \16/3 € 9 135 |
where
dp =1+ — (C2)



The remaining, purely non-abelian, diagrams are

Ay = (&) } (9- 4+ E) + .% — g i L (@ + 2497):]
12/ ride 8 e 72 180 \ € 48
"C,\[ 3 10 T 29 6181
(B (22
12/ -9 180\ 120
i (Z)[ A (20 (2 2]
12/ r\2 4 36 8 e 2700
b (G)[ 2 g (22
12718 T8\ 1350
Ca\[9 3 11 1 43r 164 73r
i = (‘5) :(‘2*7) *3 (13*““5)1*)8"—“5"“@} !
S (C3)
by = <—CL'3) 1 (1 + _r_) log o LJ
12 /|3 15 18 30| °
P (\%) ]6 [% (% - g) (— 12; + s#) d, — (13 + 6—) log 7
L L (% %ﬁ”
e 3 20\3¢ 18
bvin = (%)%[ ‘ 12;, - 8w ) dr — <1 + 2—31:) logr
€ 6 15 \ € 12
We also include in our definition of the virtual diagrams the mass crunterterms:
Gmass = —Dmass = Cr [1 + —7—1 + T—TJ (C4)
120e 36

Multiplying by the appropriate number of each type of diagram, we find our result,

@ror =4a; + 2an + 4am + 2a1v + 4av + 2avr + vy + 28vir + Gmass

_C 7'—"_*_27r2 1+7r(1+) +5+29r C'Fl 61r
YA\ T3 T g 200 T T8 T 3160 T 2 270

= - bTOT

Combining with the Born amplitude of Eq. (2.4), this give the result of Eq. (4.4) to
O(r?). Note that there are only two topologically distict diagrams of type VI, whereas
there are four of type V; this is because reversing the quark line in diagram VI 1s
equivalent to exchanging the two virtual gluons. The terms of O(1/r) vanish in the

sum, as required by gauge invariance.

(o]
3%



APPENDIX D. Checks on Virtual Diagrams

There are several checks which can be performed on the diagrams shown in Figure
2, VIT and VIII. Both the coeflicients of the logarithins and the ! ~ terms can be
simply obtained. We begin by noting that these diagrams can be written in terins of
the triangle diagram of Fig. 1 with both gluons off-shell. Then, for example, diagram

VII can be written as,

Aﬁ;’f :47"aszcmeDE(29uugAa —uodv — guxguo)

d"g 1 1 o
: = T (g k1 + kg — ¢
/ (27)™ 2 (ka1 F ks — q)2 oo (¢, k1 + k2 — )

(D1)

where IT'Z2(q, k1 + k2 — ) is the triangle diagram of Fig. 1 with both glions evalnated

off-shell.

The coefficients of the logarithms can be obtained by using the Cutkosky cutting
rules to find the imaginary parts of the amplitudes, which amounts to replacing the

massless gluon propagators by —27i4(g%) and —2mi6((q — k1 — k2)?) and adding an

overall factor of 1/2. The ggH 3-point function is then given by:

- as 1, ™ [ MZ o TN o
8(¢1)8(a5)T%5 (a1, q2) = —ZM%DN{ S+ ﬁ)<—2’*—g A~ g3 qf) E %qz\ql }
(D2)

Substituting Eq. {D2) into Eq. (D1) and evaluating the d™g integral explicitly, we

find

2 2
woy— X g a2 Ca) | M B e o (
Im(ARY) = 87rv6ABN ( 3 ){ s 7 13 + w0 ) T 3k1 k5 11+ T . {D3)

The imaginary part of the box diagram, Figure 2, VIII can be found in an identical
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manner:

5 o S{C e 13

Il A) = Ty oo (??){“’fng“ [(;‘108’"E>
N r (7 1 71 \
(T LT
60\e 60 2 g7>

4 1 T 7 v 23
kE2 (-2 4 2logr—= )+ —{ =5+ Llogr - 22

The logarithms are then obtained by noting that they always enter =< log(—r) = m +

logr.

In order to extract the % singularities in diagram VII, we note that thev arise from
the region where ¢2 = () and hence may be obtained by setting ¢? = (! in the numerator
of Eq. (D1). In this region I' is easily evaluated analytically. The remaining rnomentum
integral over ¢ is straightforwardly performed and the correct 1/¢ terms obtained. The

singularities from diagram VIII can be found in an identical manner.

REFERENCES

1. For a review of Higgs boson phenomenology, see J. Gunion ef. al., The Higgs
Hunter’s Guide (Addison-Wesley, Menlo Park, 1991); M. Chanowitz, 4nn. Rev.
Nucl. Part. Phys. 38 (1988) 323.

2. S. Dawson, Nucl. Phys. B359 (1991) 283; A. Djouadi, M. Spira and P. Zerwas,

Phys. Lett. B264 (1991)441.

3. D. Graudenz, M. Spira, P. Zerwas, Phys. Rev. Lett. 70 (1993) 1372; M. Spira,

Ph.D Thesis, Aachen, 1993.
4. P. Langacker, M. Luo, and A. Mann, Rev. Mod. Phys. 64 (1992) 87 .

5. T. Mori, Proc. of the XXVI International Conference on High Enerqy Phuysics,

Dallas, Texas, (1992)1321.



~I

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. F. Wilczek, Phys. Rev. Lett. 39 (1977) 1304; J. Ellis, M. Gaillard. D. Nanopou-

los, and C. Sachrajda, Phy:. Leit. 83B (1979) 339; H. Georgi, S. Glashow,
M. Machacek. and D. Nanoponlos, Phys. Rev. Lett. 40 (197%) 692: T. Rizzo,

Phys. Rev. D22 (1980) 17¢.

. A. Vainshtein, M. Voloshin, V. Zakharov, and M. Shifman, Sev. J. Nucl. Phys.

30 (1979) 711; A. Vainshtein, V. Zakharov, and M. Shifman. Sov. Phys. Usp.

23 (1930) 429; M. Voloshin, Sor. J. Nucl. Phys. 44 (1986) 475.

E. Braaten and J. Leveille, Phys. Rev. D22 (1980) 715; M. Drees and K. Hikasa,
Phys. Lett. B240 (1990) 455.

S. Adler and W. Bardeen, Phys. Eev. D4 (1971) 3045.

R. Kauffman and W. Schaffer, BNL-49061, 1993, to be published in Phys. Reuv.
D; A. Djouadi. M. Spira, and P. Zerwas, Phys. Lett. B311 (1993) 255,

S. Dawson and R. Kauffman, Phys. Rev. D47 (1993), 1264.

F. Hoogeveen, Nucl. Phys. B259 (1935) 19.

J. van der Bij and M. Veltman, Nucl. Phys. B231 (1984) 205.

G. Passarino and M. Veltman, Nucl. Phys. B160 (1979) 151.

H. Zheng and D. Wu, Phys. Rev. D42 (1990) 3760; A. Djouadi. M. Spira. J. van
der Bij, and P.Zerwas, Phys. Lett. B257 (1991) 187; K. Melnikov and O.
Yakovlev, Phys. Lett. B312 (1993) 179; A. Djouadi, M. Spira, and P. Zerwas,
Phys. Lett. B311 (1993) 255.

R.Ellis, [. Hinchliffe, M. Soldate and J. Van der Bij, Nucl. Phys. B297 (1988)

221.

J. Collins, F. Wilczek, Phys. Rev. D18 (1978) 242; W. Marciano, Phys. Rev.

D29 (1984) 580.
G. Altarelli and G. Parisi, Nucl. Phys. B126 (1977) 298.

L.Bergstrom and G. Hulth, Nucl. Phys. B259 (1985) 137.

25



20

21

22.

23.

. J. Morfin and W. Tung, Z. Phus. C 52 (1991) 13.

. R.P.Kauffman, Phys. Rev. D44 (19911 1415; thid D45 (1992) 1512; I. Hinchlifffe
and S. Novaes. Phys. Rev. D38 (1988) 3475; C.-P. Yuan, Phys. Lett. 13283

(1992) 395,
G. t’Hooft and M. Veltman, Nucl. Phys. B44 (1972) 189.

A. Denner, W. Hollik, and B. Lampe, CERN-TH.6874/93, April 1993; R. Scharf,

Diploma Thesis, Wurzburg, 1991.

FIGURE CAPTIONS

. Top quark loop contributing to g¢g — H.
Two-loop diagrams contributing to gg — H.
. Real diagrams contributing to g9 — ¢gH and to gqg — gH.

Lowest order (dotted and dashed) and radiatively corrected (sclid) cross section
for pp — HX at the LHC, v/S = 15 TeV. The curves labelled LO pdf and NLO
pdf use the lowest order and next to leading order parton distribution functions

of Morfin and Tung, respectively.

. Lowest order (dotted and dashed) and radiatively corrected (solid) cross section

for pp — HX at the SSC, v/S = 40 TeV.

a: Ratio of the radiatively corrected cross section (Eq. (4.21)) to the Born cross
section of Eq. (2.5) at the LHC, V'S = 15 TeV and the SSC, V'S = 40 TeV,
with m¢ = 200 GeV. b: Ratio of the qg and gg cross sections to the Born cross
section (with NLO pdfs and 2 loop a,) of Eq. (2.5) at the LHC, v/S = 15 TeV
and the SSC,v/3 = 40 TeV, with m; = 200 GeV.

Ratio of the O(a3r) radiatively corrected cross sections to the O(a?) results with

r = 0 (labelled o(m¢ — o0) for each subprocess.
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8. Lowest order with LO pdfs and | loop a, (dotted) and radiativelv corrected
(solid) cross section as a function of 1 for My = 50, 100, 200 and 500 GeV at the

SSC, /S = 40 Te\.
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