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earlier numerical results showing that the dominant corrections have the same mass
given and numerical results presented for both LHC and SSC energies. We confirm
heavier than the Higgs boson. The first non—leading corrections of C7(c>/Zlllg/nig) are
via gluon fusion in hadronic collisions in the limit in which the top quark is much
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increase the cross section by about a factor of two. Thus, it is critical to determine OCR Output

The leading corrections for mt —~ oo have been computed previously and found to

dependence on r.

1- = 1. However, there is no guarantee that the radiative corrections will have as little

remarkably accurate, giving the amplitude in Fig. 1 to better than 10% even up to

of r -2 M3 The zeroth-order result in this expansion, i.e., the mt -—+ oo limit, is

and an intermediate—mass Higgs boson it makes sense to expand the results in powers

through a top quark loop as shown in Fig. 1. For a heavy top quark, mt E 150 GeV,

In the intermediate mass region, the primary production mechanism is gluon fusion

corrections in this region in order to determine the viability of the signal.

cuts to remove backgrounds is small, it is vital to understand the effects of radiative

for the intermediate mass Higgs boson. Since the number of events remaining after

to this decay will probably necessitate using rare decay modes such as H —> yy to search

intermediate mass Higgs boson is H —> bb. However, the formidable QCD background

intermediate mass region, 80 ii ]\[H $ 150 GeV. The dominant decay mode for the

A particularly interesting mass region in which to search for the Higgs boson is the

to the production ofthe Higgs boson in hadronic interactions.

biguously. In this paper, we discuss the two-loop QCD radiative corrections of C'}(o4§)

the properties and production mechanisms of the standard model Higgs boson unam

unknown parameter is its mass. For a given mass, therefore, it is possible to predict

couplings of the Higgs boson are completely specified in the standard model; the only

whose interactions generate the non-zero masses of the TV and Z gauge bosons. L The

of electroweak interactions there exists a physical scalar boson, called the Higgs boson,

is to unravel the mechanism of electroweak symmetry breaking. In the standard model

One of the prime motivations for the construction of high energy hadron colliders



the evaluation of the two-loop integrals. OCR Output

we present our conclusions in Section 6. The appendices contain details pertaining to

Higgs boson production in pp interactions at \/H : 15 TeV and x/H : 40 ’I`eV. Finally,

sections for _gg, gg and qg —-> H +X to (’)(<1gr). Section 5 contains numerical results for

AIU/mt are retained. In Section 4 we present our analytical results: partonic cross

the evaluation of the virtual diagrams for gluon fusion when the non-leading terms in

of the calculational techniques required to compute the two loop integrals occuring in

the process gg —+ H in the limit in which mt -—> oo. Section 3 contains a description

and describe how the low energy theorems are used to obtain the Ohxg) corrections to

Theorganization of the paper is as follows. In Section 2, we review previous results

production of a Higgs boson.

would not contribute to the p parameter, but would contribute to the gluon fusion

from gluon fusion. For example, a doublet of heavy quarks which is degenerate in mass

rate to new physics, since any new heavy quarks will contribute to Higgs production

case, our results can be used to gauge the sensitivity of the Higgs boson production

Higgs boson, such as NIH ~ 1 TeV, the mt —+ oo limit clearly is not valid. In this

AIH ~ 100 GeV, the mt > BIH limit may be a reasonable approximation. For a heavy

the consistency of the standard model.4 For the intermediate mass Higgs boson, say

global fit to existing data from electroweak processes requires my- $ 180 GeV for

radiative corrections to various quantities such as the VV and Z masses. Indeed, a

If the top quark is very heavy it will show up indirectly via its contribution to

confirm the numerical results of Ref. 3, valid for arbitrary MH/mt.

analytic results.’Our analytical results (for the region over which they are ralid)
23

loop QCD radiative corrections beconies greatly simplified and it is possible to obtain

boson production in hadronic collisions. In such a lirnit, the computation of the two

natural first step : we compute the first non—leading corrections of Otcxgr) to Higgs

the mu, dependence of the radiativcly-corrected cross section. In this paper we take the



E agM§6(.+ - M3) ,
(2,,5) OCR Output

—-} —) jjj "' ** * ’ ( H) A/2 1+ (1+.+) 6(5 M2) °° gg 2 - “gi Mg 1 7"'W 576111 E 60
section,

Neglecting contributions from light quarks, this gives the spin and color averaged cross

pv s up u 1+ A0 —7 ···N6AB (kl —k1k2)aYr 3§

Taking the limit r : M3 < 1,

ni -21i+/1—·rq (2.3)

with

—i|log·— in, if Tq < l,f ( ]
. flTq) = (2-2)

» 2 ltsin"1(,/§—)] , ifrqgl, q

Where 112 :(\//iGp)`1 = (246 GeV)2, rq E 4mg/Zlfg, and

(2.1)

,, V s . U . . Ag lgg(k1lg¤(]"’-’l " HI `6·~¤l"’1"°29“”· ki kéilrq ll +l1 ·· Tq>f(rq)la) §,§

heavy quark with mass mq has been available in the literature for some time,

by experiment (Alu > 60 GeV° S). The contribution to the amplitude from a single

the contribution from the top quark is dominant over the range in Zllp currently allowed

contribution from light quarks is suppressed. Assuming there are no heavier quarks,

but since the coupling of quarks to the Higgs boson is proportional to their mass the

from the triangle diagram of Fig.1. The amplitude is sensitive to all of the quarks

The lowest order amplitude for ther gluon fusion of a Higgs boson arises at one loop



are discussed in the next section. OCR Output

calculation. It is simpler to perform the direct calculation; the necessary techniques

to the effective Lagrangian are not known and to obtain them would require a two—»loop

We proceed to calculate the terms of @(<;zg'·r). Unfortunately, the @(7*) corrections

@(043) radiative corrections to the gluon fusion of a pseudoscalar, gg -4 AO
10

two—loop calculation. An effective Lagrangian approach can also be used to obtain the

@(042) from a one·loop calculation. ’This serves as a valuable check of the complete
23

Lagrangian of Eq. (2.6) can be used to obtain the gluonic radiative corrections of

function. In the MS scheme, 6 : Zo,/1r.’In the limit mt > BIH, the effective
89

Yukawa coupling is Hxed in terms of the renormalization of the fermion mass and wave

the Higgs coupling to heavy fermions is mt(l + H/·v)ft, the counterterm for the Higgs

The (1 + 6) term arises from a subtlety in the use of the low-energy theorem. U Since

as
Hzzefitasl g 6vr\( vr 4

quark to the QCD beta function:

Where Gfl, is the gluon field strength tensor and QF is` the contribution of the top

w
(2.6)Leg : —1 — Gf"G;‘§ (

effective Lagrangian, '

limit mt > BIH, the cross section to @(042) for gg —> H can be obtained from the

'When the momentum transfer to the Higgs boson is small, or equivalently in the

later use.

Where we have computed the amplitude and cross section in n : 4 — Ze dimensions for

/\/: I`(1 + e)| ,2)¢_ my

with



Diagrams with one gluon propagator (these are the ones previously calculated in Ref. OCR Output

The various two-loop diagrams have either one, two or three gluon propagators.

{ =b ——··;··——··· Tb ——·· 9 + V ( 1)k k k k k lc C(n_2)(k1_k2)2i 1,2 2u 1 2 Mu 1 2
Aim!

ai: —;—4——;-— k —kg,,—/c k —k k C(n_2)(k1·k2)2i 1 2 y. lu 2;; lp. 2v
AFV

be found

and A?”k1,,k2,, From the contracted amplitudes the values of ai and bi can easily

quantities only, we compute three contractions of each diagram : Af"'_gM,,, A$”k1uk2,,

shell gluons.) ln order to reduce the number of tensor structures and deal with scalar

where the sum runs over all the diagrams. (The ci terms do not contribute for on

(3.3)Za, Z-Ebi,

Gauge invariance requires that

3.2 ( ‘)C E -xV6 AB 271*211
2 2i

(2.1)and

where the incoming gluons have momenta, polarization indices and colors as in Eq.

(3.1)AQW : C(a,g*"’k¤_ ·/cz —{—bik{’k§ +c;/cfkg) ,

in Fig. 2. Each graph gives a result of the form

parameter from a heavy top quark. The complete set of two-loop diagrams is shown
13

This technique has been successfully used to compute the 2—loop contribution to the p

expand the loop integrals in powers of the external rnomenta over m,· at every stage.
12

is an extension of the techniques used in the case of H —>·y·y. The basic strategy is to
11

The evaluation ull the two-loop diagrams arising in the virtual corrections to gg —> H

3. CALCUL1-\Tl()NAL TECHNlQUES



but they involve only polynomials and logarithms and are easily done. OCR Output

Feynman integrals for VII and VIII must be performed after the momentum integration

this stage since the expansion brings the Feynman parameters into the numerator. The

power of The Feynman integrals for diagrams V and VI can be performed at

expanded to one further power beca.use the momentum integrals bring in an inverse

conta.ining two powers each of kl and kg (in diagram VIII the denominators must be

To obtain the terms of each denominator must be expanded up to terms

(3.6)·—-$—— I J— (1 + @2 + (q-kilz-mf <1—m¥ q-mf

expanded in powers of the external momentum, e.g.,

The denominators arising from the heavy—quarl·: propagators in Fig. 2 can be

in the denominators.

For diagrams VII and VIII products of kl ·k2 = M3/2 and Feynman parameters remain

V and VI all the external momentum can be shifted into the heavy—quark propaga.tors.

where the integrals over the Feynman parameters J3 and y are implicit. For diagrams

(3.5)

I ——·> WlTl€1'C ql I q d· iT7}<Z]_ —

where qi : q + :2:/cl — (1 — xlkz,

<q + kiwi — km ’ me + mu — x>M2.>¤
VH ‘

V——VI : —+ Gi where q' : q — mk;

propagators. The gluon propagators for diagrams V-VIII become

the loop momenta are then shifted to move the external momenta iv¤l·~ the topwauarlr

to combine the massless gluon propagators (top quark propagators are left alone);

For those diagrams with more than one gluon propagator we Feynman pararnetrize

11) ca.n be written such that the gluon propagator contains no external momenta.



to CF contributes to H —> 77 and was computed in Refs. 11, 15. OCR Output

The color factors for SU(3) are given by CA : 3 and C', = 4/3. The term proportional

(4.1)

zw E22 180 606 10802
cr 1-2 AW : iA’*"A/ 0 L- - --— --*2 z —-—- 0 2 c( V ) °‘ 2 ++ ++ (T)

" 5 2rr" 19·r 3C Yr 13r

amplitude from Eq. (2.4), (neglecting the irrelevant imaginary part)

pendix C. The sum of the two-loop amplitudes can be written in terms of the Born

The results of the two-loop diagrams contributing to gg —+ H are detailed in Ap

(a) Virtual Corrections to gg -—+ H

corrections to gg —+ H. We will also need the contributions for qg —> qgH and gg —> gH.

from gluon fusion, we need both the real contribution from gg —> gH and the virtual

To compute the radiative corrections for the inclusive production ofthe Higgs boson

4. RESULTS

techniques necessary to symmetrize the numerators are discussed in Appendix B.

These integrals are well known in the literature and are discussed in Appendix A. The

. @-8)d" d" 1 / **2 / . (ZW) . (27*) l(p+ ql - m l’(P — nu) (q -mi >’

reduced to the symmetric form
14

powers of pz, q2, and p - q times powers of ky - kg :.· M3 /2. The integrals can then be

arguments the powers of p · ki and q - lc; in the numerators can be written in terms of

where mz can be zero or a product of Feynman parameters times Using symmetry

)Url" l(p + ·1)·°— m2l’(1>2 — m€)’°(q2 — m$)’
(3 __)/` /. (2r" .d"p ` d"q (powers of p- lchq · lc;) >< (powers of pz, q2. jr · q)

expanding the denominators all the <··>ntributions have the form

After contracting the amplitudes from the graphs of Fig. 2 as in Eq. (3.4) and



at the gtt vertices combine to give the charge renormalization counterterm given in Section 4c. OCR Output
lil The various factors of Z2 on the fermion propagators and at the Hit vertex and the factors of Z1

71*(l + 6)/60].

where z = AI;/s and 0*5 is defined in Eq. (2.5) and contains the overall factor [1 +

3Cp 3071*( -— 1 - - 6 1 - + 0 4} 2 105< Z> lt)}
.1

5. . Z fijgf C -1_+_ ;n__
-6 5 2712 mr

which gives the contribution to the spin and color averaged cross section:

R Av zat ) . +<9 · (4.6 (T l ` l`G 5 27TA 191* 3C 3071 gi N C —L+—+——-— -—$ 1--5) Zvr/40 A ez 2 3 180 2 1080,

Our result for the virtual amplitude plus mass counterterms, is then (1· E ll-{5 jimi}:

im mg
4.5 ( lu. A”":A/-iA*"zG. 1+l-Y-+-— +0 2 im m rl l l"l

I- 4:9T

The sum of the mass counterterms is

mt

(4.4):.»\/C¤i-+1
6 mt 3 i<) rr 46

and

ER(1>)= $(1)) · 61*11 — Z2(1t · M) (4-3l

where

(42)’ \" ;._.[1i_ fig?). .1. pf — vat p - mt

be the pole in the propagator. The renormalized fermion propagator is then:

use tlie on-iiiass shell 1‘e11<.—rmalizalio11 sclienie in which the physical r·¤=¤·=s is rleiinerl to

(which have no CA component) renders the contribution proportional to CF finite. Wie

at the Htt vertex wi1 li the virtual corrections. The inclusion of the mass c<.—·1nt<~rlerms

is HZ‘1.l]L1I.`E],.l to Q,`I`Ol1{) tll€ IHRSS C(.‘l1I1t€I`lZ€I`I1'1S OH t·h€ ](.`CI`I].'l`.l.OH pI`OD8H,8.tOl` 3,HCl l'l.10$€
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Integrating over the phase space of the final state gluon, we find the contribution

and would spoil the expansion are allowed.

term symmetric in s, 15 and u with the proper dimension. No terms which grow with s

of the extra O(r) term in Eq. (4.9) is determined by Bose symmetry: 1%,3 is the only

section. Clearly, the soft and collinear singularities will factor as they must. The form

structure as the r : 0 result and are scaled by the mt dependence of the Born cross

We see that the bulk of the terms, and all those which yield infinities, have the same

(4.9)Z|2 : ——--—|Z(r : O)l——a°C or rM2 -l— @(1*2)i2 §

Ref. 2:

To make clear the structure of this result we write it terms of the r : 0 result from

stu.
(48); IO . ‘l` Ol"2~ + ¢ + + M ·M Afgg " gH)l2 : 8°'5CAO‘—·¤{i`_"`i“"i ”‘ ;“

4 4 4 8 2

averages, is

diagrams of Fig. 3. W The result, with the appropriate spin and color sums and

The matrix element squared for the process gg —+ gH can be found from the

(b)Real Diagrams for gg —> gH

described in Appendix D.

appropriately contracting the legs of the gggH box diagram. These various checks are

terms coming from diagrams VI and VIII are purely infrared and can computed by

be related fo them since they both arise from terms containing l--rz(l—rl The T,/ie

The imaginary parts can be obtained via the Cutkosky rules and the log r terms can

diagrams Vll and VIII have imaginary parts a11d terms proportional to log r and logz 1-.

There are various checks we can perform on the contributions to Eq. (4.1). The



There is also a counterterm due to the wavefunction renormalization on the external OCR Output

(4.15)och : 46Zgcr(‘§6(1 — z)

The charge renormalization then gives a contribution to the cross section,

b Z 0 4.14 <>
1 11CA 2——- ———— _M( 3 3m,·)

where bg is the QCD H function:

2 ( 1 + 26Zg )a‘_j

(4.13)
e [.1 67rc

Q?

coupling is related to the bare coupling by,

the top quark decouples as its mass goes to infinity. In this sclieme, the rcnormalized
17

For the charge renormalization, we use a modification of the A/IS scheme in which

a.lso counterterms due to the gluon wavefunction and charge renormalization.

In addition to the mass counterterms included in the virtual diagrams, there are

(c) Countertcrms for gg ·-+ HX

(4.12). f - / f("¤) E / .. (=¤) f( , (1 — I)4. . 1 — 1*

The plus distribution functions are defined,

‘ . (411)· 2: Z 1-- -—— Z — Z F 2 +~+(1 ) ggZ 1_1 ·—- z _(_ z

where

() 7 201 @,.2

1 2 . (1 + (1 - Z)+ Z] - —(1 - ;)(.1,10) D · r .
11 4 43l 1 — slXg; 1 _ Z Ib

€._E . Uma :¤0{~--VP - 6(1- Z) · 7Pgg(Z)
1 e~ 1+J<~,/1 T2 r;)

to the cross section;
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It is clear that the dominant contributions to the result are just a rescaling of the v· : 0

h,(z) =C'AzPgg(z).

· gg()g , (*22). l 1 - z ~ + 2C,,_[1 + (1 — z)4 + z4] — CAzPzloz

1 h(z) :6(1 — 2) 7l’+ —-———(1 — z)`
1 311 12 2 2

the functions h(z) and h(z) are the same as those of Ref. 2:

(4.21)

1,5
. -61- -— 1-; +o ’ + 1 z> 21 (T)3r ,0

341*

&TOT(gg —» HX) :cr0( 6(1 — z) + gg lh(z) + h(z)log- M2

where 0*0 : 0·§(€=0 (With as evaluated at ,11). It is convenient to Write our result as

<?TOT(yy —+ HX) = vo + mat + U`re¤.1'l“ Ugh + vwf + mp , (420)

in as, is then the sum

The final result, the physical cross section for gg —» HX at next—to-leading order

(4.19)P_qg(z) : C,,Pgg('z) + 2v1·b06(1 — z)

where Pgg is the Altarelli-Parisi splitting function,

(4-18)8 E mp = N ; ZPgg(z)<n»mg 6 04`/Z;

and gives a contribution,

Finally, there is the Altarel1i—Parisi subtraction which {actors out the soft singularity
18

(417) Iaz — A/wf — rr 126
°”’ 1

where in the MS scheme.

(1.16)0,,4 : 46Zw{cr56(1 · z)

gluon legs:
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integrating over the n dimensional phase space. Factoring the soft singularity, we find

ing from qg —> gH. The spin and color averaged cross section can then be found by

The matrix—element squared for the subprocess qg ——> gH can be obtained by cross

(€) qy —><1H

exact result of Eq. (4.23) in order to have sensible high energy behavior.

Since we intend to integrate over parton energies much larger than mt we must use the

(4-25)ii 7M¤'(qE) ··* QH) N I + liv`Z ; 60m;

have any such terms):

we find a result which grows with s (as compared to the gg ——> gH case which did not

lf we expand the result in powers of 1/mf as we did for the gluon gluon scattering,

0 0

. 1(ab) :3 1 — 4 /(ze / __.;__2’__.._ . . 1-a:c(1~a;—y)—-bxy
]_ 1 —— rc

legs taken oif—shell, has been computed by Bergstrom and Hulth
19

The integral-], which arises from the triangle diagram of Fig. 1 with one of the gluon

4.23 ( l03 (1 —— :):3 r — H : --5-——·—-—— [ -. U(‘1Q`*9 ) 72772 486 { (jr)

color- averaged cross section is easily found:

The process q§—» gH proceeds by the diagram of Fig. 3c. The resulting spin and

(dl QE —* af!

terrns.

result by the ubiquitous factor 1 + Tr/60. Note the cancellation of the log(mty/JUH)



to-leading order (NLO) convoluted with the hard cross section at Born level. Both OCR Output

leading order, the second is a hybrid result using cz, and parton distributions at next

leading order result, using as, parton distributions and the hard cross section all at

radiative corrections we also plot two versions of the Born result : the first is a consistent

the result is completely dominated bv the gg initial state. To gauge the effect of the

Although these figures include the contribution from gg, qg, `ejg, and qg initial states

production at the LHC and SSC respectively formt equals 150 GeV and 200 GeV.

Figures 4 and 5 contain the radiatively corrected cross sections for Higgs boson

otherwise stated we will always use t11e renormalization scale p. = BIH.

the MS prescription and the lowest order set extracted from the same data. Unless

functions from Morhn and Tung2 the next—to-leading order set S1 translated into
zo

the LHC : 15 Te`V`) and the SSC (K/S : 40 TeV.) We use parton distribution

In this section we present numerical results for Higgs production in pp collisions at

5. NUMERICAL RESULTS

and give our results in the next section.

of mf leads to terms which grow with s. Instead, we integrate Eq. (4.26) numerically

As was the case for the q§ process, the expansion of this expression in inverse powers

Pgq :1+(1—z) . (4.27)4 3;

where T E —.s(1 — z)(1 — tu)/mg, and

(4.26)

gzo }2 I tl`} __‘ ` 2 -7 ~'7 igm/dw(;4;LT%L_LL l i-.,,~._;_ - Z)~

’*n. _, ;A · _ g(qg —» gH) :-9% m);Pgq(z) l·.»g-+ + log(1 — z)| -§——T(1 — z)(3: — t)l i 1 (§(i;E) E

the physical cross section oz
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Fig. 8 shows the dependence ofthe consistent leading order result and the next—to

in Section 4d.

kinematic region. This is clearly due to the terms which grow like s/mi as discussed

qg subprocesses, the mt -—> oo limit is a poor approximation over almost the entire

1% accuracy by the mt dependence of the lowest order cross section. For the q§ and

3. Furthermore, the deviation from the mt —> oo result is approximated to better that

fusion result, the answer is well approximated by the mt ——+ oo results of Ref. 2 and

2—loop cx, and the non-leading parton distribution functions.) We see that for the gluon

result to the @(0:2) result with r : 0 for each subprocess. (These curves all have the

by the factor (1 -%— 7r/60). To emphasize this we plot in Fig. 7 the ratio of the O(,o4:;r)

taking the results of the low energy theorem (the O(0z§) result with r := 0) and scaling

Numerically, the major contribution to the NLO cross section can be obtained by

result. The q§ contribution is everywhere negligible.

order calculation. Figure 6b shows the ratio of the qg cross sections to the hybrid Born

approximation to the full NLO result but rather it is better to do a consistent leading

order as and next—to—leadir1g order parton distributions does not give an improved

the dotted curve in Fig. Ga. From this figure we see that using a next—to-leading

Ref. 3, where the K-factor is defined using the consistent leading order result, as in

This ratio is often called the K factor. Our results are in complete agreement with

of the radiatively-corrected cross section to the two different Born results in Fig. 6a,.

To emphasize the significance of the radiative corrections we have plotted the ratio

O(or:;) contribution is over half of the full NLO result.

larger than the hybrid result. The comparison to the hybrid result implies that the

factor of 1.5 larger than the consistent leading order result and a.b<·»·»4 w. factor of two

Comparing the NLO result with the tivo leading order results we see that it is about a

5 that the consistent loading order result is almost 50% larger than the hybrid result.

versions are equally correct as they differ at higher order. We see from Figures 4 and
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the leading order.

O(orgr) terms which we have calculated can be used to extend this summation beyond

requires summing the log(M§ terms which are important at low pT.The
21

The determination of the transverse momentum distribution of the Higgs boson

mt —> oo results were good to within l5% even for BIH > mt.

of the mt —> oo limit for the gluon fusion subprocess. Indeed, Ref. 3 found that the

the factor (1 + Tr/60). The smallness of the @(0421*) terms demonstrates the valididty

from the mt —> oo @(:1;) results of Refs. 2 and 3 by rescaling the cross section by

The dominant numerical corrections to the gluon fusion contribution can be found

1-1oop or 2-loop oz, is used and which distribution functions are used.

factor of between 1.5 and 2. The lowest order cross section is sensitive to whether the

the gluon fusion contribution and typically increase the lowest order cross section by a

We have computed the O(o4gr) contributions to pp —> gH. They are dominated by

6. CONCLUSIONS

than the leading order result.

cxs, are more scale dependent, the dependence on pt of the NLO result is more severe

are small. Since the radiative corrections are about 100% and, being higher order in

the next—to-leading order result to have less it dependence if the railintive corrections

do not generally reduce the dependence of the cross section on ,u.. One can only expect

boson masses. X/Ve see that, contrary to naive expectations, the radiative corrections

leading order result on the renormalization,/factorization scale n for a range of Higgs



where n : 4 — 26 is the number of dimensions. OCR Output

n(n + 2)
C : 2

and

V-4/JVPU Z gpuqpa _}_gp.pgva _*_gp.¢7gup

Where

1>"1>"1¤"p"' —* CzVZr""""(1>2)2

must be symmetric in all their indices. Therefore, We make the substitution

p“v”p”p”

denominators contain no external momenta, structures such as

contractions of external momenta with products of up to six loop momenta. Since the

where p and q are the loop momenta. Hence all the numerators can be written as

p·k{P·’¤§°<1·k{”<1·k§>< (1><>W¢rS<>fp, q, ==»¤d1>·q)22

The numerators of the integrals are of the form

APPENDIX A. Symmetrizations

also thank M. Spira for providing us with a copy of his thesis.

'We are grateful to VV. Schaffer and A. Stange for many valuable discussions. `We
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so there is no need to keep terms which vanish as n —+ 4 in the integrals. The exception

For most of the diagrams any infinities come from the loop momentum integrals and

(B3)

14 1 + 8 31 q 389 b -1 —b —-—b· -—b3 ( +9 +450 +44100 )}
B :M—— -6 3b—2b1 b —b2 ———1 b+bl.’b m 2 ++ °g+++Og Og

b + 2 1 2{E€( b 112 113 y > (330210;

this reference. We find:

b E mz / M 2 in Ref. 12. However, we need to carry the expansion in b further than in

Hence we need only calculate B11;. This integral has been given in a power series in

Bj+1,k,/ Z }r5EBj,1a,z
1 3

The 132;,; and Bgk; can be obtained from the Blk; by differentiation:

(B2)

, A - - "1·j+1»* I " “ I ‘ ZJ ‘ "L B1·~+mB1»~-1 s mB1»j~1~1
1 8 ar?

the Blk; leads to the following recursion rela.tion
22`12

We will need Bjk; with j : 1,2,3 and j + kx +I < 10. Using integration by parts on

lW ( W) dup dnq I (2¤)" (2M" l(P`l" q)2 -m2l’(1¤* · M2)’°(<12 - MW

The first class of integrals has the general form:

diagrams I—'\7l;).

VII and VIII`) and the second where there are massless denominators (arising from

two basic classes: the first where all denominators are massive (arising from diagrams

in this paper. VVe use dimensional regularization with n : 4 — 2e. The integrals form

OCR OutputIn this appendix we present the results necessary to obtain the 2-1oop integrals used
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We have checked that the two approaches give identical results.

I`(k + Z + 2j — n)I`(k)I`(l)I`(n/2)

l—`(k+l+i~¤)I`l’¤ +1—¤/2)1`(l+J-TL/2)I`(¤/2-j)
B7) ( B OCR Output

n =§<—><>— 1 · 41r "° __ -_ _ a1¤+’°+' M2‘* J '° '

Alternatively, one may use the explicit formula of Ref. 23:

Since Bzko : 0, the Bgkl depend only on the Blk; and the rest of the integrals follow.

Bzkz = B2,k+1,l—1 + (*1 · 2k · 3)B1,k-{-1,1 · 2(k + 1)M2B1,k+2,l - (B6)

using integration by parts we derive another recursion relation

Bzkl have infrared divergences and cannot be derived directly from the Bzkl. Instead,

limit m ——> U in the expressions for BU;. since the limit is well defined. However, the

We will need the result for = 1,2. For the case of the Bljk one may simply take the

m:0
Bjkz =Bjx¤z (B5)

taken to zero

The integrals which contain massless denominators are Bjk; with *’Il€ ofthe masses

force calculation.

where we have kept only the terms of O(1/mz). Eq. (B4) can also be verified by brute

<zo~<p2 —m2>3 J <2~>~ (gz —M2v=+·
B4 ( ’d"p 1 B -2 4/ 4 +——-— 3’°' ” ll) / d"q 1

variables to p —+ p - q and dropping p except in the denominator mz we find

a particular part of the integral in Eq. (B1), that in which p = —q. Therefore, changing

series of integrals keeping terms to UUE) we notice that the O(1/mz l terms come from

of O(l/mz) in the Baja need to be calculated to (’)(e2 l. Rather than rederive the entire

divergences come from tvrms of O(l/mz) arising in the 53,;, integrals Thus. the terms

is diagram `VIII which has infra.red divergences arising in the Feynman integrals. These
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d,. E 1 + C2 ( l

"

where

+16 3 6 9 135b W
C, 1 16:1,.194 3617

: G-
C',136 16d,. 226 62871\I_ _ ————————;-—·-—·}——-—; <16)3l1-+ 6 9 2700l

b I “‘
2CF - CA1 4d,. 2 1097\ I —·* * —;>——-*-;-*1 < 32 jsl E 9 issol

dri!

C—C·*<2F.A>1{-ZE+iE;i.§i+1@] 32 3 T 6 9 2700
C ( 1)

bi!
C; 1 114 388 T/71 566tralelitratvlsitrll

e 18/ e 3 7\e l 60
dri

CF 1 270 2 1 1\ 6 872 1-/17_6719

+
E3(§;)Ll16 45 e 47+1(@.r. 7 2e 15

<§`;)L[&(_i+l+?f€)_EZ+;·_;(H+l2§?i)l 16 45 r ez e 18 e 14 e 30

diagrams contributing to H -—>·y·y are :

VH and VIH have imaginary parts: these are given in Appendix D. Our results for the

In this appendix we present only the real part of each amplitude. Only diagrams

1, vV J.U Ai} 2 ‘N;3·(¤i9' ki ·k;> +b;/cfk§)
' 2

completeness, written in the form of Eq. (3.1).

tional. to the diagrams lor H ——> Wy coiuputed in Ref 11. We presrnt them here for

contributions proportional to the group factors C', and CA. The CF forms nre propor

The results of the various diagranns can be separated into two-gauge invn,ri:1.ut sets:
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sum, as required by gauge invariance.

equivalent to exchanging the two virtual gluons. The terms of O(1/1-) vanish in the

there are four of type V; this is because reversing the quark line in diagram VI is

O(1·2). Note that there are only two topologically distict diagrams of type VI, Whereas

Combining with the Born amplitude of Eq. (2.4), this give the result of Eq. (4.4) to

= ~ bror

§

I

1a,1g4-%) {1 1 %(1+6)‘ 1 g 1 1l(
*6 2 ·

0.,.01- :4a, + Zan -4- 4am + 20.11, + 40.1, + 2av, + G/vu + Zavm + amass

Multiplying by the appropriate number of each type of diagram, we find our result,

amnss Z "{’mass Z CF 1 + ‘l' (C4)[120 6 36

We also include in our definition of the virtual diagrams the mass counterterms:

..._....+.. _+__ 6 6 15 6 12
30 125 r 23 547

bvui [CA` 1 121** 2 23r ·———·····8: dr- 1. —· 1 T+ Og?< ) 20<12)6M 62

30 257 1- 92 239) ..+.__.. ._.1..._ 6 3 20 36 18

avui . 7"' 2 r · + "—T+8" r- 13+)1O¤’“w(5J135 1 Y 12zIT(i2) (i(CA 4f'4n»- /1 »-•\ / ·.¤ \12 UL: \c uj \_ 6

bvu 1 (1 + r )1 19 z- —»— T .. Y— ; .; 2 15 Og 18 30($3)
(C3)

9 120
iivu + +13 + 1 Og

164 73r(%) 9 < 3 11 1 43r r 6 2 3 60 `

bv! 59 r 1 197A .... .1. - - .. ..?.) 18 8 6 13¤0_

avi 1 9+15 +113+r 1+517 _ r 26 4 36 8 6 2700<%)
Q * 10 r (29 + 6181 f 9 180 6 120<%>
z· .46 8 6 72 180\ c y 48
_4+_

19]5 3 85r/29 2497

Qi?) ( '1
The rcma i11ing, purely n0n—ab¤Iia.n, <lia,gra.ms are



The imaginary part of the box diagram, Figure 2, VIII can be found in an identical OCR Output

(D3) `:1 (A) m : V"
WQ2 C* MW 43" 1·## T ’i 6 N3 13 + kk1 + ——— ; ——— -— 8vrv AB s 6 9 60 T 3 1 2 15

find

Substituting Eq. (D2) into Eq. (D1) and evaluating the d"q integral explicitly, we

(D2)

u, 6262Fa·}\ , :___{_6 A/‘i_1_,__;<_L_>___cr (@1) 012) GD(q1 qz) ZM CD 3( ,20) 2 9 qz q1 360% glT , 7T` IMA T' I—a}\a,XA

overall factor of l/2. The ggH 3-point function is then given by:

massless gluon propagators by —2vri6(q2) and —2vri6((q — kl -— kgilz) and adding an

rules to find the imaginary parts of the amplitudes, which amounts to replacing the

The coefficients of the logarithms can be obtained by using the Cutkosky cutting

UE-Shell.

Where l`g,;\(q, kt; -4- kg — q) is the triangle diagram of Fig. 1 with both gluons evaluated

_____________·p¤»\ k +k _, (zion Q2 ta t ke —- q>2“ CD (q’ 1 2 N
[ 11~q 1 1 V (D1)

:47"€Ys.fAcmfBn¤(2.quv9Aa " guvgvk " gu>·g*/0)

VII can be written as.

the triangle diagram of Fig. 1 with both gluons off-shell. Then, for example, diagram

simply obtained. VVe begin by noting that these diagrams can be written in terms of

2, Vll and Vlll. Both the coefficients of the logarithms and the l c terms can be

There are several. checks which can be performed on the diagrams shown in Figure
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r :: 0 (labelled 0(mt —> oo) for each subprocess.

Ratio ofthe O(a§T) rediezive1y corrected cross sections to the Omg) results with

and the ssc,\/E : 40 TeV, with mt : 200 GeV.

section (with NLO pdfs and 2 loop cx.,) of Eq. (2.5) at the LHC, = 15 TeV

with mt = 200 GeV. bz Ratio of the qg and gg cross sections to the Born cross

section of Eq. (2.5) at the LHC, x/S : 15 TeV and the SSC, x/S : 40 TeV,

a: Ratio of the radiatively corrected cross section (Eq. (4.21)) to the Born cross

for pp —> HX at the SSC, x/5 : 40 TeV.

Lowest order (dotted and dashed) and radjatively corrected (solid) cross section

of Moriin and Tung, respectively.

pdf use the lowest order and next to leading order parton distribution functions

for pp —> HX at the LHC, \/S : 15 TeV. The curves labelled LO pdf and NLO

Lowest order (dotted and dashed) and radiatively corrected (solid) cross section

Real diagrams contributing to gg —> gH and to qg —> gH.

Two—loop diagrams contributing to gg —> H.

Top quark loop contributing to gg —> H.
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ssc, M? : 4<¤ rw

(solid`) cross se<·f.i0u as a. {um·ti<»u of H for ZLIH ; 50, 100, 200 and 500 GeV nr. thp
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