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Lay summary

The atomic elements found in the Universe have been produced in two stages.

Hydrogen and Helium were produced in the immediate aftermath of the Big

Bang. And, for billions and billions of years stars have been cooking up the rest,

including carbon, nitrogen, oxygen or the calcium of our bones.

Some of these elements have radioactive isotopes. For example, everybody

knows aluminium. But what we call aluminium is the stable version, which

contains 13 protons and 14 neutrons or 27Al, and it is indeed produced by stars.

But 27Al does not decay, hence it does not send “signals” of its existence; unlike

aluminium-26. This radio-isotope is not stable. When it is formed in a star it

decays into 26Mg that is stable just like 27Al and has one less proton. However it

does not decay to the stable form of 26Mg. If it did, the only emitted “signals”

would be electrons, which would never reach us even if the next star was just

next to the Moon, and anti-neutrinos, but we would not be able to tag those

either. No, 26Al decays to an excited form of 26Mg which needs to release the

energy excess to re-arrange itself in a stable structure. The release of this energy

is made via the emission of a gamma-ray, an electromagnetic relaxation that

carries the energy excess (1.809 MeV). In the Universe’s vacuum this γ-ray will

fly unstopped such that we can collect it in satellite based γ-ray observatories.

And the quantity we measure tells us about the ability of the observed star to

create 26Al, from which some of its characteristics can be derived. Similarly,

titanium-44 is produced when the most massive of stars collapse to such density

that a cataclysmic (outward) explosion is generated, called a supernova event.

The masses involved are so huge that what is left, from the explosion, may be

a neutron star or even a black hole. So when we measure the flux of 44Ti from

the remnant of a core collapse supernova we can derive information about the

strength of the explosion.

Nuclear physics slots in as it provides key ingredients: the reaction rates

between nuclei involved in producing/destroying 26Al and 44Ti. These rates allow

to precisely define how much of one or the other is produced as a function of the

star’s temperature. Without those reaction rates the information extracted from
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the in-space observations cannot yield meaningful results.

In this work, we first investigate what stellar environments are responsible for

the production and destruction of 26Al and 44Ti, and focus on the reactions that

control their production rate. We then turn to pioneering experimental methods

that we can use, here on Earth, to reproduce these stellar reactions. From the

analysis of these experiments we will draw conclusions on the information gained

on the relevant star formation.
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Abstract

Progress in the description of stellar evolution is driven by the collaborative effort

of nuclear physics, astrophysics and astronomy. Using those developments, the

theory of the origin of elements in the Universe is challenged. This thesis addresses

the problem behind the abundance of 44Ti and the origin of 26Al.

The mismatch between the predicted abundance of 44Ti as produced by the

only sites known to be able to create 44Ti, core collapse supernovae (CCSNe),

and the observations, highlight the current uncertainty that exists in the physics

of these stars. Several satellite based γ-ray observations of the isotope 44Ti have

been reported in recent times and confirm the disagreement. As the amount

of this isotope in stellar ejecta is thought to critically depend on the explosion

mechanism, the ability to accurately model the observed abundance would be

a pivotal step towards validating that theory. The most influential reaction to

the amount of 44Ti in supernovae is 44Ti(α, p)47V. Here we report on a direct

study of this reaction conducted at the REX-ISOLDE facility, CERN. The ex-

periment was performed at a centre of mass energy 4.15˘0.23 MeV, which is,

for the first time, well within the Gamow window for core collapse supernovae.

The experiment employed a beam of 44Ti extracted from highly irradiated com-

ponents of the SINQ spallation neutron source of the Paul Scherrer Institute.

No yield above background was observed, enabling an upper limit for the rate

of this reaction to be determined. This result is below expectation, suggesting

that the 44Ti(α, p)47V reaction proceeds more slowly than previously thought.

Implications for astrophysical events, and remnant age, are discussed.

In Wolf-Rayet and asymptotic giant branch (AGB) stars, the 26gAl(p, γ)27Si

reaction is expected to govern the destruction of the cosmic γ-ray emitting nucleus
26Al. The rate of this reaction, however, is highly uncertain due to the unknown

properties of several resonances in the temperature regime of hydrogen burning.

We present a high-resolution inverse kinematic study of the 26gAl(d, p)27Al reac-

tion as a method for constraining the strengths of key astrophysical resonances in

the 26gAl(p, γ)27Si reaction. In particular, the results indicate that the resonance

at Er “ 127 keV in 27Si determines the entire 26gAl(p, γ)27Si reaction rate over
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almost the complete temperature range of Wolf-Rayet stars and AGB stars. The

measurements of spectroscopic factors for many states in 27Al and a shell model

calculation of nuclear properties of rp-resonant states in 27Si also allow for testing

the structure model.
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Preface

This work describes a study of the 26Al(d, p)27Al and 44Ti(α, p)47V nuclear reac-

tions. The investigation of the former reaction was proposed by Professor Philip

Woods and Dr Gavin Lotay. The experiment was conducted in several phases

at the TRIUMF facility in Vancouver, Canada. The campaign spanned a pe-

riod from 2010 to 2012, time at which I was not part of the Edinburgh group.

Consequently I did not take part in the experiments, however the entirety of the

analysis work is mine. A sort code existed that I adapted, and largely modi-

fied it to meet the needs of the experiment. I developed all subsequent codes,

apart from the penetrability factor calculation that helps to calculate reaction

rates at energies corresponding to star temperatures. The later was generated

using an existing code. The study of the 44Ti(α, p)47V reaction was proposed by

Professor Alex Murphy after the ERAWAST project, which he helped kick off,

become able to deliver a 44Ti sample from beam dumps of the PSI facility near

Zurich, Switzerland. The experiment was done at CERN, Geneva, Switzerland in

November 2012. Having formally started in September 2012 I was able to spend

time on the choice of windows but the design of the gas cell itself was anterior to

the experiment proposal. Here, too, the rest of the work, including the suite of

codes needed, was entirely mine unless duly referenced, such as the Monte Carlo

simulation of Professor Alex Murphy (but, for example, the 2D plotting code is

my work), a code used already in several works from the Edinburgh group and

prior to my arrival, as well as other studies from other nuclear groups in the UK.

Part of this thesis has been published in:

Study of the 44Ti(α, p)47V Reaction and Implications for Core Collapse

Supernovae

V. Margerin, A.St.J. Murphy, T. Davinson, R. Dressler, J. Fallis, A. Kankainen,

A.M. Laird, G. Lotay, D.J. Mountford, C.D. Murphy, C. Seiffert, D. Schumann,

T. Stowasser, T. Stora, C.H.-T. Wang, P.J. Woods

Physics Letter B 731 (2014) 358-361.

vii



Inverse Kinematic Study of the 26gAl(d, p)27Al Reaction and Impli-

cations for Destruction of 26Al in Wolf-Rayet and Asymptotic Giant

Branch Stars

V. Margerin, G. Lotay, P.J. Woods, M. Aliotta, G. Christian, B. Davids, T.

Davinson, D.T. Doherty, J. Fallis, D. Howell, O.S. Kirsebom, D.J. Mountford, A.

Rojas, C. Ruiz, and J.A. Tostevin

Physical Review Letters 115 (2015) 062701

The following oral presentations were also given about this PhD work:

• Measurement of neutron spectroscopic factors in 27Al from the 26Al(d, p)27Al

reaction and implications for the destruction of 26Al in AGB and WR stars,

Heavy-Ion Accelerator Symposium 2015, Canberra, Australia, September

2015.

• Measurement of neutron spectroscopic factors in 27Al from the 26Al(d, p)27Al

reaction and implications for the destruction of 26Al in AGB and WR stars,

Nucleus-Nucleus 2015, Catania, Italy, 2015.

• Titanium-44 yield in stellar ejecta, Nuclear Physics Seminar, University of

Surrey, United Kingdom, May 2014 (invited)

• 44Ti(α, p)47V at REX-ISOLDE. Implications for Core Collapse Supernovae,

Workshop on Nucleosynthesis: Origins and Impacts at the Royal Astronom-

ical Society, London, February 2014 (invited)

• Towards a Nuclear Explanation for the Obsrvation of 44Ti Isotopic Excesses

in Core Collapse Supernovae, ATHENA Workshop on Astrophysics, Brus-

sels, Belgium, January 2014

• Measurement of the 44Ti(α, p)47V reaction rate at energies within the Gamow

window for interpretation of satellite based γ-ray observations, Institute of

Physics Nuclear Physics Conference, York, United Kingdom, April 2013

• Measurement of the 44Ti(α, p)47V reaction rate at energies within the Gamow

window for interpretation of satellite based γ-ray observations, Institute

of Physics Workshop on Radioactivity in Physics, York, United Kingdom,

April 2013 (invited)
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Chapter 1

Introduction

The origin of elements in the Universe is still not clearly understood. Following

the Big Bang, the elemental composition of the Universe was simply helium and

hydrogen with some residual lithium. This would not explain what is observed on

Earth, in the Solar system or what makes the human body. The question of where

heavier elements such as carbon and oxygen are produced was highly debated until

1957 when Burbridge, Burbridge, Hoyle and Fowler [B2HF 1957], the famous

B2HF, presented a clear explanation for stellar nucleosynthesis demonstrating

that stars are responsible for the production of those elements. The article also

describes different paths for such production in different ratios or via different

parts of the chart of the nuclides. The theory developed therein comprehensively

described the known atomic abundances observed from the Earth at the time.

Since then, tremendous development in the field of astronomy, nuclear physics

and astrophysics has allowed to challenge the extent to which the theory satisfies

what Nature has produced.

1.1 Observing stars

1.1.1 Nuclear reactions and emission of γ-rays

Even before the B2HF paper, it was known that nuclear reactions occur in stars.

A nuclear reaction occurs when a nuclear system A, evolves into a different sys-

tem A’, or when several species become spatially close enough that there is an

interaction between them that at least changes their outgoing trajectory from

what it would have been without the reaction. In most cases though one can

simply write a nuclear reaction as:

A` aÑ B` b` ..., (1.1)

1



Chapter 1. Introduction

where, again in general, A and B are heavy nuclei and a and b are lighter nuclei,

e.g. α-particles, protons or neutrons, or a γ-ray or an electron. If the combined

mass of A and a is greater than that of B and b, then the excess energy will be

spread amongst the outgoing species. If the heavy nucleus B is excited (but still

bound) then it will de-excite into its more (structurally) stable ground state by

emission of one or several γ-rays. In this internal decay it can also decay to a

lighter nucleus via α or β-decay. The γ-rays may be observed outside the star

as its material is mostly transparent to them, such that they are not trapped

into the star. The other types of particles produced, however, are stopped by

the star’s material regardless of their kinetic energy, which they get from the

mass gap that may exist between the two sides of Equation 1.1, otherwise called

the nuclear Q-value. In the case that this quantity is positive, i.e. the (B, b)

system is heavier than (A, a), the reaction can only proceed if there is an input

of an energy. This happens, for example, if the particle a comes from a previous

energetically favoured reaction.

Figure 1.1: Artist impression of the
HEAO satellite that orbited the Earth
in 1979. The first signal from a cos-
mic γ-rays was recorded by the on-
board instrumentation and reported in
Ref. [Mahoney 1982]. The image is from
www.nasa.org.

Consequently, the occurrence of

nuclear reactions in a star will lead to

observational features to be emitted,

namely γ-rays, and when their energy

may be uniquely matched to a nuclear

process, their observations can deliver

information needed to test the theory

of the origin of the elements.

1.1.2 Looking for γ-rays

in-space

The observational evidence for the oc-

currence of nuclear phenomenon in

stars came after the theory was intro-

duced. In fact, the first observation

of a flux of γ-ray, from the stars was

reported in 1982 from a mapping of

the sky by the HEAO 1 satellite, see

Figure 1.1 that happened in 1979 [Ma-

honey 1982]. The γ-rays in question

were measured at an energy of 1.809 MeV, corresponding to the de-excitation of

the 1.809 MeV state in 26Mg, which may be populated in the β-decay of 26Al.

2
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Due to the lifetime of the 26Al β-decay, τ «105 yrs, insignificantly short com-

pared to the age of the Universe, this was also a proof of ongoing nucleosynthesis

in the cosmos. Ever since this discovery, there has been tremendous develop-

ment in the field of observational γ-ray astronomy. Perhaps one of the most

complete results from this development was the mapping of the galactic prove-

nance of the 1.809 MeV γ-ray by Diehl et al., see, e.g., Refs. [Diehl 2006, Diehl

website] and Figure 1.2. These combined data from both the spectrometer on-

board the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL)

satellite mission, see Figure 1.3, and the COMPton TELescope instrumentation

(COMPTEL) on the Compton Gamma-Ray Observatory (CGRO), which pro-

vided the map. Recently an astonishing insight into the asymmetry of a star’s

explosion was obtained thanks to the greater precision brought about by the Nu-

clear Spectroscopic Telescope Array (NuSTAR), see Ref. [Grefenstette 2014] and

Figures 1.4 & 1.5. The most recent satellites embark observatory equipped with

the latest generation of high purity Germanium detectors providing a 1 keV full-

width at half maximum resolution accross the «30 keV to «2 MeV range. This

is very competitive against the usual values that nuclear physicists enjoy from,

for example, the use of arrays of many high purity Germanium detectors for the

measurement of γ-rays (e.g. AGATA, CAESAR or Gammasphere), around half

to a tenth of 1 keV depending on the energy of the signal.

Figure 1.2: All-sky mapping and spectroscopy of the 1.809 MeV γ-ray, see
Refs. [Diehl 2006, Diehl website] and references therein. This line can be linked
to the decay of 26Al after it has been produced in stars. This figure shows that
the object producing 26Al are concentrated on the galactic plane.
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Figure 1.3: The instrument on-board INTEGRAL, the Germanium spectrometer
crystals can be seen in yellow at the bottom of the equipment.

1.2 Structure of this work

In this study, the tools presented above are further described and, in the context

of nuclear physics, developed for the specific case of the galactic abundance of

the 26Al and 44Ti radionuclides. In Chapter 2, a high level description of stellar

evolution is delivered and leads to the motivation for this thesis work. In Chap-

ter 3, the theory of nuclear reactions, and, in particular, nuclear astrophysics, is

developed with the main aim being to introduce the stellar reaction rate, and the

concept of proton and neutron spectroscopic factors. In Chapter 4, the focus is

on the development of the experimental work of this study. Since there is some

overlap between the two experiments, this chapter is held as one consistent piece

that still distinguishes between the two different experimental approaches used

in this work. In comparison, the analysis of the experimental data is split into

two chapters to accurately present the data analysis corresponding to the inde-

pendent experiments for 26Al, Chapter 5, and 44Ti, Chapter 6. The experimental

results presented in these two chapters are discussed in Chapter 7, which also

presents a separated discussion of both set of results, depending on whether they

correspond to the stellar environments in which 26Al or 44Ti are synthesised, re-

spectively. Chapter 8 discusses the conclusions of the two experiments, bringing

a final review of the results.
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Figure 1.4: Artist impression of the NuSTAR space mission, from
www.nustar.caltech.edu.

Figure 1.5: Observation of the ashes of a core collapse supernovae, Cassiopeia-A,
by NuSTAR, see Ref. [Grefenstette 2014] and the www.nustar.caltech.edu website.
The bright blue maps the signal from γ-rays emitted in the decay of 44Ti after it
is produced during the star’s explosion
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Chapter 2

Stellar evolution and motivation

for the study of the cosmic γ-ray

emitters 26Al and 44Ti

This chapter presents some background in the physics of the stars relevant to

this thesis. Studied here are three different stellar situations: Core Collapse

Supernovae (CCSNe), Wolf-Rayet (WR) and Asymptotic Giant Branch (AGB)

stars. The first two are very similar, in that they both have enough mass to

achieve the full stellar evolution cycle, but neither is a subset of the other, and

they are classified as Type Ib, Ic and Type II which is specific to CCSNe. An

AGB star is a much lighter star that has failed to evolve towards the CCSN event

due to its lack of gravitational energy, hence temperature.

This chapter will first establish the astronomical classification, via a presenta-

tion of the evolution of stars on the main sequence including specific discussions

of the three type of stars aforementioned. As said in the Introduction, this thesis

work has been focussed on the production/destruction of two nuclei: 44Ti and
26Al. The former is created at the explosion stage of a CCSN, the later in the

evolution stage of AGB and WR stars. This means that the information that

will be extracted from the experiments will lead to conclusions of different types.

While the destruction of 26Al in AGB and WR stars will tell about the sites cre-

ating this nucleus, that of 44Ti will help to understand the explosion mechanism

of a CCSN, which is still debated.
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emitters 26Al and 44Ti

Table 2.1: Big Bang (primordial) nucleosynthesis abundances, table made from
data from Ref. [Serpico 2004].

Nuclei Abundance Yi
p 0.75
d 2.44ˆ10´5
3He 1.0ˆ10´5
4He 0.062
6Li 1.1ˆ10´14
7Li 4.9ˆ10´10

2.1 The evolution and hydrodynamics overview

of stars

This section presents a simplified overview of the different evolutionary stages of

the life of stars.

2.1.1 Birth and sequences up to the CNO cycle

Primordial nucleosynthesis

Nucleosynthesis in the Universe commenced a couple of seconds after the Big

Bang, the time needed for the thermal energy to descend below the minimum

required to convert protons into neutrons, and conversely, E “ pmn ´ mpq ˆ

c2 “ 1.24 MeV. At lower energy it is possible to start forming light nuclei. Any

combination of exclusively many protons or many neutrons being unbound, the

first product of primordial nucleosynthesis (PN) is the deuteron, d, formed from

the fusion of a proton and a neutron. At that stage it may be produced via the

highly exothermic reaction:

p` nÑ d` γ , Eγ “ 2.2 MeV. (2.1)

Further reactions between the available species, p, n and d, take place leading

to the final PN abundances shown in Table 2.1, made from data taken from

Ref. [Serpico 2004]. Note the absence of A “ 5 nuclei (mass gap), as no nuclei

with A=5 are stable, similarly no A “ 8 nuclei are produced. As expansion of

the Universe goes on, the temperature cools down until it reaches a point below

that that nuclear fusion may occur. In self gravitated masses the temperature,

however, may rise above this threshold.
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2.1. The evolution and hydrodynamics overview of stars

Proton-proton chain

After this period, certain clouds, formed from the PN ashes, became more struc-

tured spherical self gravitated masses consisting of H gas, with some He too. If

the mass was such that the temperature could rise above 107 K and the den-

sity above 100 g/cm3 then a nuclear reaction network can be triggered. It starts

through the so called proton-proton mechanism which has the overall result of

converting four protons into an α-particle (4He). The three different reaction

mechanisms performing this conversion are shown in more details in Figure 2.1.

They are all initiated by:

p` pÑ d` e` ` νe, (2.2)

operating via the weak interaction process which is extremely slow, explaining

the millions of year long first stage of the life of a star. It has in fact such a low

cross section that it has never been measured directly. Observations of neutrino

oscillations from the Sun’s emissions, however, demonstrated its occurrence, mea-

surements of the cross section led to the resolution of the so-called solar neutrino

problem [SNO 2001].

Chains I and II release «26 MeV and chain II releases «19 MeV. This drives

the luminosity of the star during this evolutionary phase and until the star has

accumulated enough helium (therefore mass) to ignite the next stage as He nuclei

will have enough energy to overcome the Coulomb barrier between them and fuse.

Yet stars with an initial mass smaller than ∼1.5 Md will diverge from the main

sequence at the end of the pp mechanism. As the pp H-burning ceases the star

contracts and the temperature does rise within the star. However, with such an

initial mass, the collapsing star does not have enough gravitation potential energy

(GPE) for its conversion to heat to be sufficient for ignition of He burning, while

the electron degeneracy pressure, due to particle densities forcing electrons to

higher and higher energy levels, and to not being able to move to lower level

to release the energy gained from GPE, cannot combat the collapse. This mass

threshold is called the Chandrasekhar limit. Below this, stars eventually contract

to a sphere of electron degenerate matter.

A competing scenario for hydrogen burning are the CNO cycles, for carbon,

nitrogen and oxygen. This will be shown in the next section. However the

occurrence of the CNO cycle owes to the presence in the progenitor star of those

three elements. The early Universe being of low metallicity, i.e. did not contain

much elements above 4He, the CNO cycle only appeared in later generation of

stars which are born from a mix of PN H and ashes from supernovae of this first

era of stars. Observations of such phenomena have been reported in Refs. [Keller
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+ → d + e+ + ν
+ d → 3He + γ

3He + 3He →  + p + p 3He + α → 7Be + γ

7Be + e- → 7Li + ν
7Li + → 2 7Be + → 8B + γ

8B → 8Be + e++ν

2

CHAIN I
(needs 6 protons but gives 2 back)

CHAIN II

CHAIN III

(chains II & III need 1 α-particle but gives back 2)

pp
p

p
p

α

α

α

Overall result:
4p → α+2e++2ν

Figure 2.1: The different proton-proton chains and how they perform the con-
version of four protons into one α-particle. Note that each chain has a different
energy positive output that powers the luminosity of the star while it is accret-
ing enough α-particles to gain mass and ignite the next stages. Re-edited from
Ref. [Thompson & Nunes 2009].

2014, Fisher 2014]. Because of the virtually zero metallicity in the immediate post

PN Universe, the first massive stars would go on from the end of the pp-chains to

helium-burning. These stars are categorised as Population II & III stars. Their

explosion led up to a metallicity enrichment of the interstellar medium, which

is why for example our Sun, not massive enough to ignite fusion other than the

helium conversion mechanisms has a high surface metallicity.

The CNO cycles

As newer stars contain carbon, nitrogen and oxygen, the CNO cycles become

available for the creation of an α-particle from four protons. For such cycles

to be ignited a star must have a progenitor mass Á 1.5 Md, corresponding to a

temperature T9 Á 0.03 GK. Here it is via a series of reactions between protons and

the CNO species that a 4He nuclei is obtained, see Figure 2.2. These temperatures

are much more suited to the optimal cross sections of the CNO reactions, and

indeed at that stage they are much higher than the cross sections of the pp-chain

reactions. These cycles become much faster to produce helium. Another main

consequence of the CNO cycles is the high population of neon in the star. None

of the reaction of interests in this thesis occur within any of the CNO cycles.

The enrichment of the interstellar medium in heavy nuclei allows for other
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12C

start

13N

14O

13C

14N

15O

15N

end

16O

1.
(p,γ)

2.
(e+,ν)

3.
(p,γ)

4.
(p,γ)

5.
(e+,ν)

6.
(p,α)

6bis.
(p,γ)

7.
(e+,ν)

restart

by-pass
kick-off

end and production of one α

Figure 2.2: Production of an α-particle in the CNO cycle, other cycles can occur
in a similar manner if heavier seeds are present in the star, e.g. 16O. Consequently
the by-passing of this CNO cycle may still lead to the production of an α-particle.
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channels for the conversion of four protons into an α-particle in population I

stars, for example, the NeNa and MgAl cycles. These require larger initial masses

as more energy is required to ignite the first heavy nucleus plus proton fusion,

typical sites for such cycles include Wolf-Rayet stars.

2.1.2 Later evolutionary stage of stars

After hydrogen has been consumed, a star contracts further due to gravita-

tion energy and if its mass is such that MÁ 0.4 Md, the core’s temperature

reaches 0.1 GK and helium burning ignites. An hydrodynamic equilibrium is re-

established. In this burning phase the first main product is 12C, principally via

the triple-α reaction. This topic brought much interest in the history of nuclear

astrophysics. Beryllium-8 is unbound, however by a mere 92 keV and, with a

ground state width of 5 eV, this transcripts to a lifetime of the order of 10´16 s

before it decays back to two α-particles. This is long enough such that a there is

a possibility for two α-particles to fuse into 8Be and for a third α-particle to fuse

with this ensemble to create 12C:

3αÑ8 Be` αÑ12 C˚ Ñ12 C` pγγ or e`e´q. (2.3)

This process is only possible thanks to a resonant 0` state in 12C at 7.7 MeV,

called the Hoyle state. It has a large enough width to decay to the ground state

before the three α-particles separate, see Figure 2.3. Note the possible E0 decay

from the Hoyle state to the ground state leading to electron-positron pair creation,

while the other decay proceeds through two E2 decays, i.e. the emission of two

γ-rays. As the star is now formed of a C/O core with two outer layers of H and

He, the later being the deeper, it evolves towards a Red Giant. Burning of the

core material occurs if the progenitor mass is higher than ∼2.5 Md.
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α

α

τ = 6.7 x 10−17 s
Γ = 8.04 eV

8Be

α

12C

0.04 % 0+ 7.65

0+

2+ 4.44

12C

Hoyle state
Γ = 12.1 eV

E (MeV)

0

E2

E2 E0

Figure 2.3: Fusion of two α-particle into 8Be, and subsequent fusion of a third
α-particle to produce 12C in the Hoyle state.

What happens to stars with MÀ2.5 Md?

Stars with original masses below the ∼2.5 Md threshold cannot gain enough tem-

perature via GPE to trigger fusion reactions in the C/O core. However, H and

He keep burning in the outer layers. At this stage the stars are called asymptotic

giant branch stars as they depart the main sequence from the Red Giant evolution

phase. The hydrogen burning provides large amount of energy to the inner helium

layer to the point that it cannot synthesise carbon fast enough to sustain that in-

put of energy. As a result the star suffer a thermonuclear runaway of its outer

hydrogen layer powered by that energy surplus. The temperature in the left-over

outer layers progressively cools to the point where hydrogen nuclei do not have the

required minimum energy to fuse. Consequently the energy contribution to these

stars can only come from a new stage of helium burning which provokes a new

stage of radial expansion. However, the temperature of those stars drops again

and helium burning ceases. This leads to a new gravitational contraction and hy-

drogen burning reignites. Such a cycle repeats until a pressure excess applied on

the outer layers generates a stellar wind sufficiently strong to totally sweep these

out of the atmosphere of the stars. This process exposes the hotter deeper layers

whose thermal energy powers the stars’ luminosity. The low amounts of H and He

that remain burn to depletion and the stars are left only with their inert C/O core.

It slowly cools down and the luminosity decreases, turning the stars from bright

(white dwarves) to dark (black dwarves).

For stars with MÁ 2.5 Md, reaching the Super Giant stage, the gravitational
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contraction of the core raises the temperature to ignition of carbon burning. (Note

that the 16O(α, γ)20Ne is so slow that it will be bypassed.) It occurs mainly via
12C(α, γ)16O. The final (mass) frontier is 8 Md from which stars will complete

all the following element burnings. However stars with a mass between 2.5 and

8 times the solar masses will evolve towards AGB stars similarly to the previous

case. The difference is the content of the core since the products of carbon burning

will also populate the inert core.

Is it all doom for white dwarves?

No. White dwarves can still accrete matter from a companion star which may be a

main sequence star and eventually generate a nova event. This happens if both are

close enough to form a binary system, and starts when the evolving star’s radial

expansion overpasses what is called the Roche lobe point (which, fundamentally,

describes the mutual gravity field cancellation point). Then it is possible for the

white star to capture its companion’s outer layer material as its gravity field is

stronger in this layer. The accreted matter mainly consists of hydrogen, but also

contains He, CNO grains or even Al and Mg for more evolved, or younger, main

sequence stars. It first forms an accretion disk around the star which eventually

falls onto it, at which point it becomes degenerate. The newly formed layer on

the white dwarf gets quickly heated up as the material does not expand due to

its degeneracy. The temperature then becomes high enough that the cold (very

slow) and the hot (very fast) CNO cycles are triggered successively. The hot CNO

cycles powers an outward explosion in the outer layer releasing material into the

interstellar medium while, at these temperatures, electrons are ejected out of their

orbitals resulting in a UV flash (X-rays from lighter nuclei). The matter loses its

degeneracy allowing the star to expand. Reactions in this work, at the energy they

are studied, will only shed a feeble light on these phenomena.

Progenitor Mass Á 8 Md: Lead-up to Core Collapse Supernova

The star’s next deepest layer burns the neon content, which was the main heavy

product of the CNO cycle:

20Ne` γ Ñ16 O` α (2.4)

20Ne` αÑ24 Mg` γ. (2.5)

The core is now formed of oxygen and magnesium whose burning forms silicon

and a large quantity of alpha-particles and γ-rays. Incidentally, the final burning

stage, silicon burning, consists mainly of an interplay of photodissociation and
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α-capture that feed each other:

28Sipγ, αq24Mgpγ, αq20Nepγ, αq16Opγ, αq12Cpγ, 3αq (2.6)

28Sipα, γq32Spα, γq36Arpα, γq40Capα, γq44Tipα, γq48Crpα, γq52Fepα, γq56Ni.

(2.7)

Fe

Hyd rogen

bu r n i n g

He l ium
burn i ng

Ca rbon burni ng

Neon
Ox ygenSi

Figure 2.4: The onion-like structure of
red giants before collapse of the core.

This leads to the well known onion-

like structure shown in Figure 2.4. The

nuclear binding energy per nucleon

maximises for 56Ni, further fusion reac-

tions are henceforth endothermic and

the gravitational collapse of the star’s

material cannot be prevented by the

release of nuclear fusion energy.

As such a star collapses, and the

density grows in the core, elements in

and around the iron core are rapidly

photo-dissociated back to free protons,

neutrons and α-particles. A significant

number of protons convert to neutrons

inside the core, resulting in a burst of

electron neutrinos. Thermal produc-

tion, and emission, of all neutrino flavours follows over the next few seconds (see,

e.g., Refs. [Janka 2007, Magkotsios 2010]). This sequence of events, which had

met much agreement within the astrophysics community, was further confirmed

by observations of SN1987A (see Refs. [Bionta 1987, Chevalier 1992, Arnett

1989]).

2.1.3 Supernova explosion, synthesis of 44Ti and relevance

to the study of CCSNe

Modelling the physics of the supernova explosion is a task that has proven hard

to realise, such that unravelling the underlying explosion mechanism of CCSNe

has become a highly topical quest in modern astrophysics. The development of

a neutrino wind appears as the most compelling theory [Janka 2007]. This wind

would be strong enough that sufficient neutrino-nucleon interactions occur [Bethe

1985], powering the nuclear reaction network in the outer layer of the core.

The current situation is that models do not produce a robust explosion, and

more problematic, models that produce an explosion in 1D or 2D, do not when
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Figure 2.5: Light curves for SN 1987A.
The triangles show the observed luminosity.
Dashed lines represent the contribution from
the decay of nuclei using model-based esti-
mation of the ejecta content in 56,57Co and
44Ti, i.e. M44Ti «5ˆ10´5Md. The dotted
line denotes the calculated luminosity emit-
ted by accretion on a putative black hole
in SN 1987A. The arrow marks the time
of the black hole emergence. Taken from
Ref. [Zampieri 1998].

more realistic 3D calculations are performed along the same considerations made

in 1D and 2D. However, there are still many avenues to explore that could in

time help 3D models to produce robust explosions. For example, the breaking of

the star’s symmetry following the Si burning in the region just outside the iron

core leads to better treatment of the titanic convection occurring in the star, and

can greatly enhance the possibility of an explosion from neutrino heating, see

Ref. [Couch 2015].

Validating any model for the CCSN explosion will however come from ob-

servations. Signatures such as light curves and (near)optical spectra show little

sensitivity to the detail of the explosion mechanism. In contrast, γ-rays from the

decay of 44Ti have been observed from known CCSNe. Indeed the radionuclide
44Ti is one of the very few cosmogenic nuclei to be observed in our Galaxy, and

in particular from remnants of CCSNe. The γ-rays associated with the decay of
44Ti have been observed from the type-II supernova SN1987A by the INTEGRAL

IBIB/ISGRI instrument [Grebenev 2012]. This instrument previously detected

this isotope from the type-IIb supernova Cassiopeia-A [Renaud 2006]. Traces of
44Ti from Cassiopeia-A were further observed by the COMPTEL satellite [Iyudin

1994] and by BeppoSAX [Vink 2001]. As a result observations of γ-rays from the

long lived isotope 44Ti, τ=85.3(4) years [Ahmad 2006], ejected into the interstellar

medium, might provide such sensitivity.

The 44Ti nucleus is produced in α-rich regions. These regions are generated

near the iron core when the quasi-static equilibrium between nuclear reactions

and their inverse ceases [Magkotsios 2010] after the explosion, at a time where the

star cools down. The deep, thermalised, core is doomed to evolve to a neutron

star or a black hole, but how much of the newly produced 44Ti would be caught in

this fate is linked to the hydrodynamics of the star. As a result, the production
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site of 44Ti is very sensitive to the prediction of where the boundary between

the material falling into the newly formed structure at the core and the material

ejected into the interstellar medium is, this is known as the mass cut. The 44Ti

material that is expelled powers the luminosity of the remnant from about 2000

days after the explosion, and until accretion around the newly formed black hole

takes over much later. In the case of SN 1987A, see Figure 2.5 and Ref. [Zampieri

1998], this means that since 2011 the luminosity has been driven by the β-decay

of 44Ti while it is expected that accretion around a (predicted but unconfirmed)

black hole from the supernova’s remnant will be the main source of luminosity

around 300 years after the explosion, i.e., near 2300 AD.

About X-ray bursts

A binary system such as that described earlier for novae may occur with neutron

stars. The higher density of the neutron star makes it possible to quickly produce

heavier nuclei resulting in higher energy X-rays than that generated in novae. Con-

sequently they are called X-ray bursts, note that the neutron star’s gravity is strong

enough that no material is thought to be expelled in a X-ray burst [Schatz & Rehm

2006].

Existing CCSNe models predict that the maximal ejecta content in 44Ti does

not exceed 1ˆ10´4Md, even assuming a wide range of progenitor models and

masses [Timmes 1996, Magkotsios 2010, Tur 2010]. Observations, however, con-

ducted by satellite-based γ-ray observatories, report significantly larger values. In

the sequence of β-decays from 44Ti to 44Ca several γ-rays are emitted, at 68, 78

and 1157 keV, and are detectable in space. Combining the different observations

of Cassiopeia-A, the estimated mass of 44Ti ejected is 1.6`0.6´0.3ˆ10´4 Md [Renaud

2006] while observations of SN1987A indicate the presence of (3.1˘0.8) ˆ10´4 Md

of 44Ti in the ejecta. Note that recent observations from Cas-A with the NuSTAR

space-based telescope reports an 44Ti ejecta content of 1.25˘0.3 ˆ10´4 Md, with

the difference with the previous observation due to the asymmetry of the explo-

sion, see Ref. [Grefenstette 2014]. The re-orientation of the telescope to SN1987A

hinted at an even larger asymmetry in the explosion while the 44Ti ejecta’s con-

tent is measured at 1.5(3) ˆ10´4 Md [Boggs 2015], bringing the observations

from Cas-A and SN1987A into agreement. Yet the latter amounts of 44Ti are

still higher than any theoretical model predictions. Age and/or distance deter-

mination for supernova remnants (SNRs) also critically depend on the amount

of 44Ti observed in the ejecta. An intriguing example lies in the observation of a

previously unknown SNR located in the Vela region from the COMPTEL γ-ray

data [Iyudin 1998]. Given the distance to this object, 200 pc, and a ‘standard’
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44Ti yield of 5ˆ10´5 Md, the suggested age for the remnant was „700 years.

For the relative proximity, and the period in history, it has been noted that it

is somewhat surprising that no record of a corresponding supernova explosion

observation exists.

It has been shown, in detailed studies by The et al. [The 1998] and Magkot-

sios et al. [Magkotsios 2010], that the nucleosynthesis of 44Ti hinges upon a few

reactions, the triple-α reaction, 40Ca(α, γ)44Ti (producing 44Ti) and 44Ti(α, p)47V

(consuming 44Ti). Critically the final amount of 44Ti depends most sensitively,

by a significant margin, on the reaction rate for 44Ti(α, p)47V. The later fact

motivates the investigation of the cross section for this reaction and will be the

subject of later Chapters.

Wolf-Rayet stars

Wolf-Rayet stars are extremely massive stars, Minitial Á25 Md, that feature ex-

tremely violent environments. In particular mass loss due to convection and

stellar wind leads to the ejection of the entire hydrogen envelope such that an

observational specificity is the lack of hydrogen lines in the emission spectrum.

However deeper layers containing He, C, Ne, or O may be exposed such that

associated lines are also observed. However, the mass is so extreme that there

is a high radiation pressure even in those deeper layers, sufficient for high stellar

winds to expel all surface material (and some of the outmost layers) into the

surrounding interstellar medium.

2.1.4 Overview: Figure 2.6

The final result of stellar evolution is presented in Figure 2.6 on which the pictures

of the Horsehead nebula and the Crab nebula (with the Crab pulsar/neutron star

at the centre) have been taken by NASA’s Hubble Space Telescope; the picture of

the Sun displays a solar eruption and was combined by NASA’s Solar Terrestrial

Relations Observatory and ESA/NASA’s Solar and Heliospheric Observatory.

The picture of Vega comes from NASA’s Spitzer Space Telescope and is a mid-

infrared spectroscopy therefore showing light from the debris around the star.

Observations yielding the values for Vega’s radius, mass and luminosity can be

found in Ref. [Yoon 2010]. The image of Betelgeuse is from ESOs Very Large

Telescope, the value for its radius comes from observations reported in Ref. [Bester

1996], its mass and luminosity have been taken from Ref. [Smith 2009]. The

representation of SN1987A is an artist impression made from observations by

ESO’s Very Large Telescope which does show the structure of the two rings with
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the remnant at the centre. Finally both the black hole and binary star images

are made by NASA. NASA’s images and pictures can be found on their website,

www.nasa.org, ESO’s images on www.eso.org. Wolf-Rayet stars have different

possible fates (hence the dashed lines).

In Figure 2.6, the left to right horizontal axis can, for the main sequence, be

seen as a proxy for the evolution of the surface temperature while the bottom/up

axis would represent luminosity. This is better seen in a Hertzsprung-Russell

diagram such as that of Figure 2.7.

How are supernovae classified?

An implicit feature of the above explanation is that the elements populating the

surface of a star varies depending on which evolutionary path it follows. For ex-

ample, a red giant’s surface will mainly contain hydrogen and the light spectra of

this star will exhibit lines at the corresponding absorption wavelength. But if the

star is heavy enough that it evolves to a Wolf-Rayet star then the outer layer will

be ejected into space by the strong stellar wind, and, as said earlier, a main feature

of these stars would be an absence of the H absorption lines the light spectra. A

natural classification of supernovae is then to separate those with hydrogen line

in their spectrum (Type II) and those without (Type I). Similarly in thermonu-

clear runaways, such as those produced in binary systems, there will not be any H

absorption lines, seeing as the white dwarf would have lost its hydrogen envelope

due to stellar winds. However unlike Wolf-Rayet stars (Type Ib/c), novae (Type

Ia) may exhibit a silicon absorption line as this element may be produced by the

explosive nuclear fusion reaction.

2.1.5 Production sites of 26Al, motivation for studying the

(p, γ) destructive reaction

The low energy level structure of 26Al is presented in Figure 2.8. It can be

seen that the ground state is Jπ “ 5`, its β-decay to the stable ground state

of 26Mg, Jπ “ 0`, is therefore highly hindered and τ “106 years. However,

there is an isomer at 228.2 keV, with spin and parity 0` which can decay to

the ground state of 26Mg much more effectively τ= 9 s. As a result, production

of 26Al is constrained to astronomical environments colder than T9 “0.1 [Arnett

1996] where the temperature is low enough that most of 26Al is in its ground state

configuration. In terms of astronomical age the lifetime for 26gAl is relatively short

(about a tenth of hydrostatic H-burning time), such that the next constraint on

which environment will be responsible for 26Al production is how fast stellar winds

appear in the star, in order to expel 26Al from the star before the temperature is
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2.1. The evolution and hydrodynamics overview of stars

Figure 2.7: Hertzsprung-Russell diagram plotting data from the Hipparcos Cat-
alogue and the Gliese Catalogue. It represents observational data as a spectrum
colour (or surface temperature) against the apparent luminosity (or magnitude).
The Sun is still on the main sequence however it will diverge from it as shown
in Figure 2.6 in around 4 billion years. The diagram, arguably the best available
online, is from wikipedia.
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too high and the decay to 26Mg can proceed via excitation to the isomer state and

further rapid β-decay. Taking these considerations, explosive hydrogen burning

that can occur at high temperature (T9 ą0.06) and density 103g/cm3 is the main

candidate for production of 26Al, if the star contains seed nuclei with AÁ20. The

reaction network of explosive hydrogen burning responsible for 26Al production

in such condition is shown in Figure 2.8 and highlights the pivotal role of the

destructive radiative proton capture reaction on 26Al.

Observations support this hypothesis. Indeed, emissions of cosmic γ-rays

throughout the interstellar medium (ISM) have been tracked and mapped by the

latest generation of space-based telescopes, providing new insights into astrophys-

ical processes occurring during the life cycles of stars [Grebenev 2012, Churazov

2014, Diehl 2014]. A first milestone was the detection by the HEAO-3 satellite of

a diffuse γ-ray line in the equatorial plane of the Galaxy at 1.809 MeV, associated

with the ground-state decay of 26gAl into the 1.809 MeV 2` state in 26Mg. This

showed nucleosynthesis is an ongoing process in the Milky Way. However, be-

cause of the poor angular resolution and sensitivity of the instrument, no spatial

information on the source of the 1.809 MeV emission line could be obtained [Ma-

honey 1982]. More recently, the COMPTEL and INTEGRAL satellite missions

have been able to measure the distribution of the 26gAl cosmic γ-ray line across

the Milky Way [Diehl 2006, Diehl 1995, Wang 2009]. These studies measured

overall abundances of 26Al and reported that emission across the Galactic plane

were irregular, indicating that 26Al source regions corotate with the Galaxy. In

turn this points to high-mass progenitors as the favoured production sites. In

particular, galactic 26Al is expected, as shown before, to be predominantly pro-

duced during the hydrogen burning phase of massive Wolf-Rayet (WR) stars,

which pollute the ISM with the products of hydrogen burning via a strong stellar

wind, or during the cataclysmic core collapse supernova phase [Diehl 2006]. Ad-

ditional contributions to the observed Galactic abundance have been suggested

to come from asymptotic giant branch (AGB) stars and classical novae [Siess &

Arnould 2008, Jose 1997]. The existence of radioactive 26Al in the Galaxy may

also be traced through excesses of its daughter nucleus 26Mg in meteoritic mate-

rial. Excesses of 26gMg were found in calcium and aluminium inclusions of the

Allende meteorite, inferring a relatively large 26Al/27Al ratio present in the Solar

System at the time of its formation [Lee 1977]. A much-debated question relates

to the origin of 26Al in the early Solar System [Wasserburg 2006]. It has been

suggested that energy released by in situ decay of 26Al in protoplanetary disks

orbiting young stars may cause melting of icy planetesimals, thereby influencing

the conditions required of planetary systems to support life [Srinivasan 1999].
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The elaboration of a clear scenario is currently hampered by the absence of

critical nuclear reaction rates for the production and destruction of 26Al in stel-

lar environments [vanRaai 2008, Iliadis 2011]. In the case of hydrogen burning

scenarios such as Wolf-Rayet stars and AGB stars, it is the uncertainties in the
26gAl(p, γ)27Si destruction reaction that dominate. A recent sensitivity study by

Parikh et al. [Parikh 2014] has considered the importance of these uncertainties

and has drawn attention to the need for experimental constraints on the rate of

the 26gAl(p, γ)27Si reaction. However, difficulty primarily arises in this regard be-

cause 26Al is radioactive. Direct (p, γ) measurements of a resonance at 189 keV

have been made using both a radioactive target of 26Al [Vogelaar 1989] and a

radioactive ion beam of 26Al [Ruiz 2006], reporting resonance strengths of 55(9)

and 35(7) µeV, respectively. More recent spectroscopic studies of 27Si indicate

that a lower-energy resonance at 127 keV could play the dominant role in the

destruction of 26Al in Wolf-Rayet stars and AGB stars, where burning occurs at

relatively low temperatures in the Gamow peak (T9 «0.03–0.10) [Lotay 2009].

However, direct measurements of the reaction at this lower energy are not prac-

ticable with presently available 26Al beam intensities, due to the rapid reduction

in the cross section with beam energy below the Coulomb barrier, and an indi-

rect approach is mandated to estimate the resonance strength. In earlier work,

Vogelaar et al. [Vogelaar 1996] used a radioactive target of 26Al to perform a
26Al(3He, d)27Si transfer reaction study. However, there were large impurities of
27Al (ą 90%) in the target, and only upper limits could be placed on the strength

of the relevant resonances [Vogelaar 1996].

In a recent paper by Parikh et al. [Parikh 2014], the effect of a range of possi-

ble strengths from 0 to 1 µeV (which would correspond to an almost pure single

particle state) for the 127 keV resonance on 26Al nucleosynthesis was considered.

By using the complete range of values for the 127 keV 26gAl(p, γ)27Si destruction

resonance, Parikh et al. found variations in the synthesised abundance of 26Al in

AGB stars by up to a factor of 6, as well as even up to 40% in novae, which are

relatively high-temperature astrophysical environments (T9 “ 0.1–0.4). Further-

more, an additional sensitivity study of the effect of the 26gAl(p,γ)27Si reaction

rate variations for T9 ă 0.05 by Iliadis et al. [Iliadis 2011] found that an increase

in the rate by a factor of 100, corresponding to a 127 keV resonance strength of

«1 µeV, would result in a reduction in the amount of 26Al synthesised by a factor

of «300. This highlights the need for tightening the experimental investigation

of the (p, γ) destructive radiative proton capture reaction on 26Al. In this work,

using theoretical models for mirror nuclei (here 27
13Al14 and 27

14Si13), these will be

developed in the following chapter, understanding of this reaction is obtained
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Figure 2.8: (right) Reaction network, in explosive and hydrostatic H-burning
phases, responsible for the production and destruction of 26Al; (right) and low
energy level structure and β-decay of 26Al.

using the 26Al(d, p)27Al neutron capture.

Consequently, in this thesis, the stellar sites of interest are found in differ-

ent places of the summary diagram shown in Figure 2.6, namely AGB and WR

stars and the experimental investigation will be conducted in an energy region

that will allow conclusions to be drawn for the destruction rate of 26Al in these

environments.
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Chapter 3

Theoretical models for the study

of nuclear reactions in

astrophysical environments

This chapter first presents the theoretical background for the study of nuclear

reactions in stars. This is relevant for both reactions studied in this thesis,
26Al(p, γ)27Si via 26Al(d, p)27Al, and 44Ti(α, p)47V. The second part of this chap-

ter, however, focuses on the theory of transfer reactions and leads to the definition

of nucleon spectroscopic factors and, to a lesser degree, asymptotic normalisation

coefficients. This later part also contains a description of the numerical approach

used to calculate the wave function of the outgoing proton in the 26Al(d, p)27Al

reaction.

3.1 Nuclear physics in violent hydrodynamic sce-

narios

3.1.1 Introduction to stellar cross section rates

In stellar evolution, the star proceeds, as seen in the previous chapter, through

different stages of non-degenerate thermodynamic equilibrium in which the (fully

ionised) plasma of nuclei and electrons can be considered as a perfect gas following

the Maxwell Boltzmann’s distribution, which can be expressed at temperature of

the star T :

φpvq “ 4πv2
ˆ

m

2πkBT

˙3{2

exp

ˆ

´
mv2

2kBT

˙

, (3.1)
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Energy (E)

φ(
E)

kBT

E/e

φ(E) ∝ E x exp(-E/kBT)

Figure 3.1: Representation of the Maxwell-Boltzmann distribution that depicts
the cross section behaviour with energy.

where φ represents the particles velocity distribution given v, the relative ve-

locity of the particles, µ, the reduced mass, NA, Avogadro’s mass, and kB, the

Boltzmann’s constant. Using the kinetic energy, E, of the particle:

E “
mv2

2
, (3.2)

Equation 3.1 can also be written as:

φpEq “

c

m

kBT
ˆ

c

2

π
ˆ E exp

ˆ

´
E

kBT

˙

. (3.3)

A standard Maxwell-Boltzmann’s distribution is shown in Figure 3.1 where it

can be seen that the distribution of energies peaks for E “ kBT . Now consider

the reaction of two particles such that:

a` AÑ b`B. (3.4)

The reaction rate between a and A is, the the product of the relative velocity

distribution and the cross section at the corresponding energy. The rate of the
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3.1. Nuclear physics in violent hydrodynamic scenarios

two particles reacting at that energy is then:

xσvy “ NaNA ˆ

ż 8

0

vφpvqσpvqdv, (3.5)

which becomes, following the above discussion:

NAxσvy “ NA

ˆ

8

πµmNpkBT q3

˙1{2 ż

σpEqE exp p´E{kBT q dE. (3.6)

In stars, particles fuse at velocities below those necessary to overcome the electro-

magnetic repulsion that exist between them. They fuse at sub Coulomb energies

(below the “barrier”), via quantum tunnelling, where the cross section may be

approximated as follows:

σpEq ∝ expp´2πηq{E, (3.7)

where η is the Sommerfield parameter:

η “
ZaZAe

2

~v
, (3.8)

and Z1 and Z2 the atomic number of a and A. Consequently the combination of

the cross section behaviour, vanishing at high energies, and the velocity distribu-

tion of the particles in the star at temperature T, very low at low energies, creates

what is called the Gamow window, shown in Figure 3.2. Note that the Gamow

window peaks at energy E0 that can be determined using the dependency of the

cross section given in Equation 3.7 into the reaction rate of Equation 3.6:

E0 “

"

π
ZaZAe

2

~c
kBT

a

pµmNc2{2q

*2{3

(3.9)

« 0.122µ1{3
pZaZAT9q

2{3 MeV. (3.10)

The window’s width is obtained by taking the difference of the energy values at

which the distribution is 1{ expp1q:

∆E0 « 0.237pZaZAµT
5
9 q

1{6 (3.11)
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Figure 3.2: Combination of the Maxwell-Boltzmann distribution for the cross
section and of the probability to penetrate through the Coulomb barrier with
energy resulting in the so-called Gamow window.

3.1.2 The effect of resonances in stellar reaction rates

Resonances occur when the compound nucleus, C, in the fusion of a and A sur-

vives in an excited state, above the threshold for spontaneous emission of a which

is the separation energy Sa, before decaying to two species b and B:

a` AÑ C˚pEx ą Saq Ñ b`B. (3.12)

Energy (E)

R
ea

ct
io

n 
ra

te

ER

Figure 3.3: Effect of a narrow resonance on
a reaction rate. The lighter blue curve shows
the effect at a lower star temperature than
the darker blue curve.

Assuming, for simplicity, that the

heavy nucleus B is formed in its

ground state, the difference with

a direct reaction is the energy

and the width of particle b, those

are linked to the resonance energy

and width in C. Competitive de-

cay paths from C˚ must exist, al-

beit possibly at an extremely low

branching ratio, unsuited for mea-

surements, such as γ-ray decay to

the ground state if allowed. In
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a first order approach, taking the

general case where the resonance energy ER is higher than E0 (the Gamow win-

dow maximum),1 see Figure 3.3, but that ER " Γ, the cross section can be

described by the Breit-Wigner formula:

σRpEq “
π

?
2µE

ˆ
2J ` 1

p2ja ` 1qp2jb ` 1q
ˆ

Γa ˆ Γb
pE ´ ERq2 ` Γ2{4

, (3.13)

where Γa and Γb are the width of the entrance and exit channel, respectively, ja

and jb the spin of the entrance and exit channel, respectively, J the spin of the

resonance which by angular momentum conservation obeys:

ÝÑ
J “

ÝÑ
ja `

ÝÑ
jb `

ÝÝÝÑ
`aØA, (3.14)

where the
ÝÝÝÑ
`aØA is the orbital angular momentum between the reacting species a

and A. Equation 3.13 can be inserted into Equation 3.6 as follow:

NAxσvyR “ NA

ˆ

8

πµmNpkBT q3

˙1{2 ż 8

0

σRpEqE exp p´E{kBT q dE (3.15)

“ NA

ˆ

2π

µmNkBT

˙2{3

~2 ˆ
2J ` 1

p2ja ` 1qp2jb ` 1q
(3.16)

ˆ

ż 8

0

ΓaΓb
pE ´ ERq2 ` Γ2{4

exp

ˆ

´
E

kBT

˙

dE, (3.17)

if the resonance is narrow enough, ER Ï Γ, this further reduces to:

NAxσvyR “ NA

ˆ

2π

µmNkBT

˙2{3

~2ωγ exp

ˆ

´
ER
kBT

˙

. (3.18)

The factor ωγ is the resonance strength:

ωγ “
2J ` 1

p2ja ` 1qp2jb ` 1q
ˆ

Γa ˆ Γb
Γa ` Γb

, (3.19)

The dependency of Equation 3.18 on the star’s temperature T is shown in Fig-

ure 3.3. Usually one reaction has several resonances that are narrow and isolated

then their contribution to the reaction rate is simply summed:

NAxσvyR “ NA

ˆ

2π

µmNkBT

˙2{3

~2
ÿ

i

pωγqi ˆ exp

ˆ

´
ERi
kBT

˙

. (3.20)

In this work, two types of reactions are investigated: (α, p) and (d, p), the latter

1Note that the case ER « E0 will not be discussed here.
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one being used as an indirect method for studying a (p, γ) reaction, this will

be explained in more detail below. However, only the (d, p) reaction is aimed

at studying individual resonances. The 44Ti(α, p)47V reaction has too low a

yield to allow for the study of potential resonances and, as will be shown in

later sections, establishing experimental procedures for investigating potential

resonances in 48Cr, is delicate. In the following the focus is therefore on (p, γ)

and (d, p) reactions.

Going back to Equation 3.19 for the resonance strength, it is obvious that

if one of the decays, e.g. the decay to the b channel (which is the exit channel)

highly dominates, Γb " Γa, the width factor in Equation 3.19 is reduced to Γa. For

example for a γ-ray decay, the standard mean time of «10´15 s, corresponding

to the unhindered electromagnetic period, results in a γ-ray partial width of

Γγ “ ~{τ « 1 eV. Note that hindrance results in longer lifetimes and will lower

the width.

In the (p, γ) reactions that occur in stars, resonances lie above the particle

emission threshold which means that the γ-ray branching ratio is extremely low

as the proton decay is evidently favoured, the resonance width provides a window

for γ-ray decay to “go” and thus for creation of the nucleus in its ground state.

The resonance strength is therefore controlled by the proton width:

ωγ “
Γp ˆ Γγ
Γp ` Γγ

“ ωΓp. (3.21)

In the case of an odd-Z nucleus, such as 27
13Al, it is considered that the decay is

due to the behaviour of the single odd-proton in a spherical field generated by the

A´1 nucleons. Then consider a nucleus with A nucleons and angular momentum

(IAMA) where MA is the z-projection of IA. To describe this system as a sum of

a nucleus with A´ 1 “ A´ particles and an orbiting valence nucleon x (p or n),

the angular momentum of A´ (iA´mA´) and x (ixmx) must be such that:

mA´`mx “MA (3.22)

and |iA´ ´ ix| ď IA ď iA´ ` ix. (3.23)

Consequently the wave function for A, in this model and using the isospin formal-

ism of indistinguishable nucleons, may be represented by the sum of all possible

combinations of mA´1 and mx that respect those requirements:

ψIMpA´, xq “
ÿ

mA´
mx

 

jA´jxmA´mx|IM
(

”

φjA´mA´
pA´q b φjxmxpxq

ı

, (3.24)

30



3.1. Nuclear physics in violent hydrodynamic scenarios

where the coefficients
 

jA´jxmA´mx|IM
(

are the so-called Clebsch-Gordan coef-

ficients that represent the overlap between A and (A´ ` x) (φpA´q and φpxq are

orthonormal):

A”

φjA´mA´
pA´q b φjxmxpxq

ı

|ψIMpA´, xq
E

“
 

jA´jxmA´mx|IM
(

. (3.25)

It is now obvious that
 

jA´jxmA´mx|IM
(2

is the associated probability of the

overlap. For simplicity Clebsch-Gordan coefficients will be written as CA´x in

the following.2 The application of this picture to the case of the (p, γ) reaction

results in that the width Γp can be rewritten:

Γp “ C2
pγS ˆ Γs.p., (3.26)

where Γs.p. represent the width of the single-particle decay in a shell model picture.

S is the single-particle spectroscopic factor which arises in the normalisation of

the one-nucleon wave function: for a given N -body system, the normalised wave

function rφpNq can be written:

rφmn`jpNq “

c

S

N
φmn`jpNq. (3.27)

The normalisation factor reduces to
?
S in the case of a one-nucleon wave func-

tion. The factor C2
pγS is called proton spectroscopic factor. It is sometimes

abbreviated to Sp`j as it depends on the momentum transfer ` and the spin of the

proton
ÝÑ
j “

ÝÑ
` `ÝÑs . The single-particle width Γs.p. can be written [Lane 1960]:

Γs.p. “ 2
~2

µa2c
Pcθ

2
s.p., (3.28)

where µ is the system reduced mass, ac the interaction radius, Pc the penetrability

factor and θs.p. is the (dimensionless) single-particle reduced width:

θ2s.p. “
ac
2

`

φmn`jpacq
˘2
. (3.29)

2In case of non-isospin formalism the Clebsch-Gordan coefficients are replaced by coefficient
of fractional parentage, see, for example, Ref. [Lawson 1980]
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3.2 Mirror nuclei: the isospin quantum number

and introduction of the (d, p) reaction

The idea that the behaviour of nuclei is governed by a charge independent strong

interaction leads to the concept that the proton and the neutron may be seen

as two different states of the same particle, the nucleon. Experimental evidence

have long supported this concept, to a certain level this concept, with, for exam-

ple [Henley 1969]:
Vnn ´ Vpp

1
2
pVnn ` Vppq

“ 0˘ 0.8%, (3.30)

where Vnn represents the strong interaction potential between two neutrons and

Vpp that is formed in the exclusive presence of two protons. Consequently a

fifth coordinate, the isospin, tz, taking the value `1{2 for a neutron and ´1{2

for a proton is introduced. Then one can derive the isospin quantum number

Tz “ pN ´ Zq{2. A classic use of the isospin is for the consideration of so-called

“mirror nuclei”, which have the same mass A (they are isobars) but exchanged

numbers of protons and neutrons. Isospin symmetry is mainly broken by the

electromagnetic interaction, since one nucleus in the pair of mirrors will have

more protons resulting in a lowering of the energy of its level structure compared

to the neutron rich mirror. Typical examples are the mirror nuclei 27Al (Z “ 13)

and 27Si (Z “ 14) in which most of the states with a given Jπ in one nucleus are

observed in the other, with a very similar level structure, with similar branching

ratios measured. For the present case it was shown in detail by Lotay et al. [Lotay

2011], see Figure 3.4. The later study was critical for the investigation of the

properties of nuclear states in 27Si in astrophysical environment. Indeed the study

of the resonances driving the reaction of interest, the proton radiative capture
26Al(p, γ)27Si, is massively hampered by the dramatic lowering of the cross section

for beam energies well below the electromagnetic repulsion (the Coulomb barrier)

between the two reacting species. This is where the mirror nuclei approach,

coupling to the findings of Lotay et al., proves powerful, as it provides a means

to obtain the nuclear properties, in particular the spectroscopic factors, of the

(proton unbound) resonances in the 26Al`p system by studying those values for

neutron bound mirror states of 27Al“26Al`n. It has been shown indeed that the

C2S for mirror analog states are expected to agree to within 20% [Timofeyuk

2003, Timofeyuk 2006]. This, thanks to experimental developments that will

be explained in Chapter 4, can be performed using the 26Al(d, p)27Al transfer

reaction.
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Figure 3.4: Level structures of 27Si and 27Al, mirror nuclei with 14 and 13 protons,
respectively. The assignment of mirror states above 5 MeV, symbolised by the
arrows, is from Ref. [Lotay 2011].
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3.3 Transfer reactions

The spectroscopic factor, C2S, may be extracted from a transfer reaction exper-

iment and theory as follows:

dσ

dΩ

ˇ

ˇ

ˇ

ˇ

exp.

“ C2S ˆ
dσ

dΩ

ˇ

ˇ

ˇ

ˇ

th.

. (3.31)

In this section, the theory of the transfer cross section is presented first. There-

after, different approaches for the calculation of the theoretical differential cross

section are discussed with the use of the code TWOFNR. Finally the latter code will

be used to discuss previously published data from (d, p) and (p, d) reactions and

guidance for analysing the 26Al(d, p)27Al experiment.

3.3.1 Theory of the (d, p) transfer reactions

Theoretical description of the transfer cross section

d
p

n

B = A+1

A

rnA

rpA

rpB
R

Figure 3.5: Representation
of the vectors used in the
present section. Note that
the origin centre of has
been shifted for clarity as
it would nearly overlap.

In order to describe the reaction process, consider

the reaction A(d, p)B. The deuteron wave function

in the entrance channel may be written as:

ψ
p`q

d,
ÝÑ
k d

“ exppı
ÝÑ
k
p`q

d .ÝÑr q, (3.32)

where k
p`q

d is the deuteron wave number. After the

reaction has occurred at long distance ρ, using the

fact that the interaction potential is short range, the

deuteron wave function may be written as:

ψ
p´q

d,
ÝÑ
k
p´q

d

9 exppı
ÝÑ
k
p`q

d .ÝÑρ q ´ ϑ`pθq ˆ
exppı

ÝÑ
k
p´q

d .ÝÑρ q

ρ
,

(3.33)

where θ is the scattering angle. Consequently the

`-integrated cross section may be written as:

1

N
σpθq9

ÿ

`

p2``1qp1´|ϑ`pθq|
2
q “

ÿ

`

p2``1q |T`pθq|
2 ,

(3.34)

whereN is the number of neutrons of the target A. It

is indeed assumed here that all neutrons contribute

equally to the final cross section. The transmission coefficient T`pθq can also be
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expressed by considering the overlap between the entrance and exit channel:

T` “
A

χp´qp ΦB

ˇ

ˇ

ˇ
Vpd, pq

ˇ

ˇ

ˇ
ψ
p`q

d ΦA

E

, (3.35)

where χ
p´q
p represents the exit channel proton wave function, and Vpd, pq the trans-

fer operator. It can be noted here that since B has one less neutron compared to

A (ΦA “ ΦB b φn), the overlap between entrance and exit channel in the devel-

opment of Equation 3.35 contains implicit structure information, the (neutron)

spectroscopic factor. Consequently the transmission coefficient can be rewritten:

T` “
a

Sn` ˆ
A

χp´qp

ˇ

ˇ

ˇ
Vpd, pq

ˇ

ˇ

ˇ
ψ
p`q

d

E

“
a

Sn` ˆ
rT`. (3.36)

This input may be deduced experimentally as shown in Equation 3.31. Vpd, pq
can be expressed prior to the reaction as VppÝÑrpAq ` VnpÝÑrnAq ´ Uprior and in the

aftermath of the reaction (post) as VppÝÑrpBq ` VnpÝÑrnAq ´ Upost, where Uprior and

Upost are optical potentials that are used to generate χ
p´q
p and ψ

p`q

d . The vector

parametrisation is represented in Figure 3.5.

Representing potential Vpd, pq and the entrance and exit wave functions

To calculate the transfer amplitude of Equation 3.35, the potential Vpd, pq repre-

senting the interactions that takes place in the reaction must be expressed. In

the entrance channel, there are 2p`1q entities to consider. The target A, and

the deuteron d, which is made of one proton and one neutron. Consequently the

representation requires, at least, a potential for the target VA, for the deuteron

Vd, and for the the interaction d Ø A, VdA. There are two different approaches

to the problem of representing the deuteron and its interaction with the target.

Historically, the distorted wave - Born approximation (DWBA) method was used,

however, more recently, the adiabatic wave approximation (ADWA) has been de-

veloped and is now the preferred method. Schematically the difference between

those two approaches of the entrance channel is shown in Figure 3.6. In the

DWBA method the scattering is only between the target A and deuteron d such

that there is only one coordinate
ÝÑ
R corresponding to the interaction distance (in

the centre of mass) between the deuteron and A. Consequently there is no more

VppÝÑrpAq and VnpÝÑrnAq. The entrance channel wave function is written:

ψ
p`q

d pÝÑr ,
ÝÑ
Rq “ χ

p`q

d p
ÝÑ
RqφdpÝÑr q, (3.37)

35



Chapter 3. Theoretical models for the study of nuclear reactions in
astrophysical environments

such that the the action of the deuteron Hamiltonian Hd are on the unique

deuteron wave function φd is:

Hd|φdy “ ´εd|φdy, (3.38)

where εd is the bounding energy of the deuteron. The DWBA transfer amplitude

becomes:
rT`
DWBA

“

A

χp´qp

ˇ

ˇ

ˇ
Vpd, pq

ˇ

ˇ

ˇ
χ
p`q

d p
ÝÑ
RqφdpÝÑr q

E

. (3.39)

What is needed to express the Vprior is:

• a distorted potential to describe the dØ A interaction: VdAp
ÝÑ
Rq, and,

• a binding potential for the deuteron pp` nq.

In the exit channel Vpost requires

• a distorted potential to describe the pØ B interaction: VppÝÑrpBq,

• a nucleus nucleus interaction for pØ A, and,

• a binding potential for the newly formed pn`Bq.

In the ADWA approach, the break up of the deuteron is considered, therefore

the two scattering centres are considered and the incoming wave function may be

approximated as:

ψ
p`q

d pÝÑr ,
ÝÑ
Rq “ χ

p`q

d p
ÝÑ
RqφdpÝÑr q `

ÿ

i“pp, nq

χ
p`q

i p
ÝÑ
RqpφipÝÑri q, (3.40)

since p and n must stay within the deuteron boundary (that is even if the energy

of the transferred neutron, n˚, is such that the constructed deuteron from d˚ “

p ` n˚ is unbound, it must still be in a continuum coupled to the ground state

of the deuteron) the pφi are constrained to |ÝÑri | ď
ˇ

ˇ

ˇ

ÝÑ
R
ˇ

ˇ

ˇ
. This means that the wave

functions vanish at the point of examination of the entrance channel (prior) and

exit channel (post), because those methods look for overlap of the tail of the wave

functions at large radii. Nevertheless, considering the break up of the deuteron

into a proton and a neutron, means that the action of the deuteron Hamiltonian

Hd on the deuteron wave function φd is decomposed into a global action on the

pp` nq system:

Hd|φdy “ ´ε0|φdy, (3.41)

and secondary actions on the individual constituents:

Hd|
pφiy “ ´pεi|pφiy, (3.42)
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where the ε̂i are the energies of p and n. In the adiabatic approach, the pεi are

ignored and Hd is replaced by εd, such that there is no method-inherent gain of

energy in the deuteron system by considering the break up (hence the method is

“adiabatic”). Consequently building Vprior requires:

• a distorted potential to describe the pØ A interaction: VpAp
ÝÑ
Rq,

• a distorted potential to describe the nØ A interaction: VnAp
ÝÑ
Rq, and,

• a method to construct the adiabatic deuteron potential from the two above

distorted potentials.

(Note that Vpost remains the same as in the DWBA method). The adiabatic

deuteron potential is written:

Vadiab.d “

ż
"

VnpÝÑrnAq ` VppÝÑrpAq
*

δpÝÑr q.dÝÑr , (3.43)

where δpÝÑr q is the Kronecker symbol. Thus for a zero range approximation the

adiabatic potential is just VpAp
ÝÑ
Rq`VnAp

ÝÑ
Rq, i.e., the proton and neutron optical

potentials are evaluated at the same point. In this work finite range ADWA

calculation will be used for description of the experimental data, the description

of this method is not developed here in the interest of space but one is invited to

read the description of such method by Johnson and Tandy [Johnson & Tandy

1974], which is subsequently the method used for all calculations in analysing the
26Al(d, p)27Al data, see Section 5. Finally note that, as depicted in Figure 3.6, the

DWBA and ADWA methods do not include an intermediary step, e.g. a resonance

in the compound system. Instead it is assumed that the transfer reaction is a

direct process:

A` dÑ B ` n, (3.44)

which is to be compared with Equation 3.12. In this work this is not an issue.

However, it must be noted that it is assumed that in the exit channel, B and

the transferred neutron n are bound. This is the case for the excited states in
27Al. The mirror states in 27Si from, for example, the 26Al(3He, d)27Si reaction are

unbound and therefore these two methods cannot be used to calculate differential

cross section for those states. Incidentally, in this work, there will not be an

attempt at fitting the results of Vogelaar et al. [Vogelaar 1996] anew, although

they have been put into questions by Parikh et al. [Parikh 2014] and will be in

tension with the results presented in Section 5.
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Eπ, π, kπ
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Figure 3.6: Schematic representation of the adiabatic (bottom) and distorted
wave (top) approximations for the description of the deuteron projectile and 26Al
nucleus target in the entrance channel and of the exit channel.

3.4 The TWOFNR code

In this section, a shortened version of the TWOFNR code developed by Jeff Tostevin

from the Surrey group [Tostevin], for calculating cross section of a large array of

reactions (in particular when the populated states are bound), is used to explore

the effects of parameter changes in the theory. The description of the code itself

is beyond the aim of this thesis work, however a comprehensive report by the

developers of the full TWOFNR, M. Toyama and M. Igarashi, code is available

online [TWOFNR]. Also, upon these choices of parameters, testings of the code

and theory against existing data for the 26Mg(d, p)27Mg and the 27Al(p, d)26Al

reactions will be presented. Finally some recommendations, elements to keep in

mind when analysing angular distribution, are discussed.

3.4.1 Effects of parameter changes in the theory

ADWA vs. DWBA

As said in the previous section, in this thesis deuteron break up is considered

through the use of the finite range ADWA method. Here, a comparison is made

between ADWA and DWBA calculations for a (fictive) 3 MeV state in 27Al that

would be populated in the 26Al(d, p)27Al reaction and for different angular mo-

mentum transfer: ` “ 0 (Jπ “ 9{2`), ` “ 1 (Jπ “ 9{2´), and ` “ 2 (Jπ “ 5{2`).
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Figure 3.7: Comparison between ADWA and DWBA calculations, for a (fictive)
state with Eexc “ 3 MeV in 27Al and different spin and parity, corresponding to
` “ 0 (Jπ “ 9{2`), ` “ 1 (Jπ “ 9{2´), and ` “ 2 (Jπ “ 5{2`). The exit channel
is set identically in both calculations, the deuteron potential for the DWBA
calculation is from Ref. [Daehnick 1980] while the p{n Ø26Al potentials and
the method to build the deuteron potential uses the Koning-Delaroche potential
[Koning & Delaroche 2003], see Section 3.4.1.

In the DWBA calculation, in order to represent the d Ø26Al interaction, the

Daehnick global potential [Daehnick 1980] is used. It is derived from fitting

many existing experimental data with a set of parameters, obeying predefined

functions given the studied system; this will be discussed later. The differences

between the two methodologies are presented in Figure 3.7

“Elastic” potential

The most effective way to explore the interaction between two nuclei is to measure

the elastic cross section, ideally at the same energy as that of the transfer reaction

that will be studied. A fit of the cross section will then allow derivation of a

(experimental) real potential in the form of a Woods-Saxon shape:

V pRq “
Vr

1` exp
´

R´rr
ar

¯ , (3.45)

where rr is the distance of closest approach, i.e the sum of the two nucleus’

radii, rr “ rf ˆ pA
1{3
1 ` A

1{3
2 q, for two nuclei with a number of nucleons, A1

and A2 respectively, here rf is the Fermi radius, usually taken as 1.2 fm. In
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the case of (d, p) transfer reaction, the experimental study of the elastic (d, d)

reaction allows for a determination of such potential. If such data are available

one must use the DWBA method as in the ADWA method the consideration for

independent potentials for the p Ø A and n Ø A interactions cannot represent

the elastic reaction. In the case of the 26Mg(d, p)27Mg study by Meurders and

van der Steld [Meurders & van der Steld 1974] elastic deuteron scattering data

was taken and therefore a specific potential for the dØ26Mg interaction could be

developed. If such data are not available, as is the case in the present study of

the 26Al(d, p)27Al reaction, then optical model potentials must be used.

Optical model potentials

The effective interaction between a nucleus, A, and a nucleon, p or n, can be

represented by complex mean-field potentials. These potentials have a real part,

often denoted V , and an imaginary part, often denoted W , such that the potential

is V “ V ` iW . These allow for separating the elastic part and the non-elastic

channels. The optical name comes from the similarity with how a light wave

passing through a medium is treated. Both V and W are mostly described in

the shape of a Woods-Saxon potential, similar to that of Equation 3.45. (In the

DWBA case, the potential must describe the interaction dØ A, and is therefore

expressed as shown in the previous point.) Additionally, both real and imaginary

potentials are divided into volume potentials, their first derivatives the surface

potentials, and the spin-orbit potentials. In the case of charged particles there

is also the addition of a Coulomb potential. These potentials are derived from

fitting large sets of experimental data for different masses of the target and energy

of the beam, with parameters that only evolve with Ebeam, the target mass A and

charge ZA, and the excitation energy Ex of the populated state in B “ A ` 1.

Writing the form factor as a Woods-Saxon shape depending on the interaction

distance r, the radius and diffuseness of the nuclei, r0 and a0:

fpr, r0, a0q “
1

1` exp
´

r´r0
a0

¯ , (3.46)
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the optical potentials are, for a given beam energy E [Koning & Delaroche 2003]:

Vpr, Eq “ ´ pVV pEq ` ıWV pEqq ˆ fpr, RV , aV q (3.47)

` ıˆ 4aDWDpEq
d

dr
fpr, RD, aDq (3.48)

` tVSOpEq ` ı.WSOu ˆ

„

~
mpc

2
1

r

d

dr
fpr, RSO, aSOq ˆ I.σ (3.49)

` VCprq, (3.50)

where mp is the mass of the proton, I is the matrix of inertia, σ is the spin

operator and VC is the Coulomb potential:

VCprq “
ZAze

2

2RC

ˆ

3´
r2

R2
C

˙

, for r ď RC , (3.51)

“
ZAze

2

r
, for r ą RC , (3.52)

where the Coulomb radius is RC “ rf ˆ A1{3, ZA the charge of A, and z the

charge of the beam (here the deuteron and/or the proton)3. From global fits of

existing data several phenomenological optical parameters are available for the

representation of the interaction dØ26Al, pØ26Al, nØ26Al and pØ27Al. Here

two will be investigated, the Koning-Delaroche (KD02) potential [Koning & De-

laroche 2003], which spans a mass region 24 ď A ď 209 and a beam energy range

1 keV ď Ebeam ď 200 MeV, and the Chapel-Hill 89 (CH89) potential [Varner

1991], which covers a mass range from A “ 40 to A “ 209 and a beam energy

region from 10 to 65 MeV/u. Note that 26Al is slightly outside the suggested

range of applicability of the CH89 potential in addition the deuteron beam en-

ergy is 6 MeV/A which is also below the indications. Yet, it is widely accepted

that this potential should perform still respectably well in the aluminium region

and at such energies, and, at the very least, it shall be used for informative

comparisons [Tostevin communic.]. Both those potentials are included in the

front head code for TWOFNR [Tostevin] which builds the input file for TWOFNR. It

is shown in Figure 3.8 the effects of only changing the global potentials in an

ADWA calculation for a (fictive) 3 MeV state in 27Al that would be populated in

the 26Al(d, p)27Al reaction and for different angular momentum transfer: ` “ 0

(Jπ “ 9{2`), ` “ 1 (Jπ “ 9{2´), and ` “ 2 (Jπ “ 5{2`). The calculation

shows little changes to the final angular distributions, with the ` “ 0 distribu-

tions virtually identical up to «30 degrees. This demonstrates the effectiveness

of global potentials, as for example CH89 is not designed to work in the present

3In the exit channel the projectile is the outgoing proton.
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Figure 3.8: Comparison between the uses of the CH89 and KD02 potentials (all
other parameters are kept identical), for a (fictive) state with Eexc “ 3 MeV in
27Al and different spin and parity, corresponding to ` “ 0 (Jπ “ 9{2`), ` “ 1
(Jπ “ 9{2´), and ` “ 2 (Jπ “ 5{2`).

case. Indeed it is advised to use global optical potentials where no experimen-

tal data is known rather than an experimentally derived potential from even the

neighbouring nucleus. In the following of this thesis, the KD02 potential will be

consistently used.

Folding the deuteron adiabatic potential

In order to build the deuteron potential from the consideration presented above,

a folding potential is needed that reconstruct the np system. In this work the

Argonne v18 potential [Wiringa 1995] has been used.

The neutron geometry

Modelling the neutron potential is a complex part of building a theory of transfer

reaction and is one of the main source uncertainties. This is because, being

charge-less, the neutron radius and diffuseness (or the root mean square radius,

see Figure 3.10.a)) are not well known, furthermore they vary depending on the

quantum numbers (n, `) [Gade 2008]. There are several ways to set r0 and a0.

The first is to use the present work on the 26Al(d, p)27Al reaction. The available

shells near N “ 13 and Z “ 13 are shown in Figure 3.9, and, as shown in

Chapter 2 the ground state spin and parity of 26Al is 5`. Now considering the

42



3.4. The TWOFNR code

Table 3.1: KD02 optical potential parameters for the adiabatic wave approxi-
mation representation of the 26Al(d, p)27Al reaction. Values obtained from the
parametrisation given in Ref. [Koning & Delaroche 2003].

Channel VV WV rV aV WS rwS

(MeV) (MeV) (fm) (fm) (MeV) (fm)
26Al`d: proton (39%) 55.194 0.498 1.167 0.674 7.053 1.295
26Al`d: neutron (61%) 51.988 0.580 1.167 0.674 7.528 1.295
27Al`p 50.485a 1.763 1.169 0.674 7.737 1.295
26Al`n variedb 1.275c 0.675c

Channel awS VSO WSO rSO aSO rC
(fm) (MeV) (MeV) (fm) (fm) (fm)

26Al`d: proton (39%) 0.532 5.672 -0.024 0.967 0.590 1.33
26Al`d: neutron (61%) 0.540 5.615 -0.033 0.967 0.590 1.33
27Al`p 0.533 5.373 -0.090 0.970 0.590 1.33
26Al`n `.σ “ 6

a Value corresponding to the 3.004 MeV state, i.e. proton energy 19.67 MeV,
otherwise varied to match the state energy.
b

c For the neutron geometry the radius and diffuseness were set as shown in
Table 3.2.
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Figure 3.9: Shell model picture of 26
13Al13, 27Al is made with the inclusion of

an extra neutron (in red in the picture). Particles unfilled represent holes and
are available for the odd-neutrons upon non-resonant excitations below Sn, the
neutron separation energy.

target mass dependency, the rms radius can be set using the best available angular

distribution, i.e. that with the largest angular coverage and the better statistics,

and a χ2 fit of its distribution. In this study, the level with the best angular

distribution is the 3.004 MeV, 9/2` state, for which an ` “ 0 transfer means

that the neutron transferred is on the 2s1{2 orbital, and an ` “ 2 transfer means

that the neutron transferred is on the 1d5{2 orbital. The angular distribution may

therefore be fitted as follows:

dσ

dΩ

ˇ

ˇ

ˇ

ˇ

exp.

“ C2Sp` “ 0q ˆ
dσ

dΩ

ˇ

ˇ

ˇ

ˇ

`“0

` C2Sp` “ 2q ˆ
dσ

dΩ

ˇ

ˇ

ˇ

ˇ

`“2

, (3.53)

Table 3.2: Neutron radius and diffuse-
ness parameters for different ` transfers,
from HF calculation [Gade 2008].

` orbital r0 [fm] a0 [fm]

0 2s1{2 1.159 0.70

2 1d3{2 1.279 0.70

2 1d5{2 1.263 0.70

3 1f7{2 1.180 0.70

where in each of the two theoretical

cross sections the rms radii are inde-

pendent of each other. Considering the

complexity of the theory one must gen-

erate the output files from TWOFNR for a

range of rms radii and then apply a χ2

fit for several independent parameters.

The results for the fit of the 3.004 MeV

state are shown in Figure 3.11. From

this method the rms radius are 3.64 fm (2s1{2, which corresponds to, e.g.,

r0 “ 1.25 fm and a0 =0.70 fm) and 3.42 fm (1d5{2, which corresponds to, e.g.,

r0 “ 1.25 fm and a0 =0.57 fm). However the results greatly vary with the dis-

tributions used for the optimisation. Furthermore the generation of the different

calculation files and then the individual χ2 fits make this method computationally
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time consuming, for results that may not bring much accuracy. Another method

is to use a Hartree-Fock (HF) calculation. Such a calculation was performed in

Ref. [Gade 2008] for the one-neutron removal from the ground states of 23Si and
23Al. Consequently, in this work, the results of Gade et al. are adopted, see

Table 3.2. (Note that because the 1p1{2 is unbound in 27Al the HF calculation

cannot estimate the rms radius and the general prescription r0 “ 1.25 fm and

a0 “ 0.65 fm is adopted here.) A consequence of this choice of parametrisation

for the neutron geometry is that no systematic uncertainty from that parameter

will be carried to the final spectroscopic factors given in the analysis chapter.

The impact of such a choice on the ` “ 0 and ` “ 2 transfer to the 3.004 MeV

state in 27Al is shown in Figure 3.12.

3.4.2 Testings and recommendations

Before this work, there had been no reported data on the 26Al(d, p)27Al reaction.

Consequently the model and its parametrisation discussed above cannot be tested

against existing data. The model performance against existing data is briefly

investigated in the following. In particular, this is done with the data available

on the 26Mg(d, p)27Mg and the 27Al(p, d)26Al reactions. (Note that the ground

state of 27Al has Jπ “ 5{2`, 26Mg is even-even).

Study of the 26Mg(d, p)27Mg and the 27Al(p, d)26Al reactions.

Figure 3.13 shows a comparison between the distribution obtained with TWOFNR

for the 985, 1699, 3476, 3562, 3761, 3787, 4150 keV states in 27Mg populated in

the 26Mg(d, p)27Mg reaction at Ebeam “ 12 MeV. The experimental data comes

from the study of Meurders and van der Steld [Meurders & van der Steld 1974].

In the later experimental study the distributions were fitted with a DWBA calcu-

lation, using recommended neutron parameters at r0 “ 1.25 fm and a0 “ 0.65 fm

and an experimental deuteron potential due to the availability of a data set

for the elastic 26Mg(d, d)26Mg reaction [Meurders & van der Steld 1974]. Here

the ADWA calculation performed uses all the parameters chosen in the previous

section, with the exception of the neutron parameters since they are the main

source of uncertainty in the neutron spectroscopic factors. What can be observed

is the similarity between the experimental results and the ADWA calculation,

see Table 3.3. Furthermore the ADWA calculation seems very efficient at repro-

ducing the angular distribution in the centre of mass region 0 to 30 degrees. At

Ebeam “ 12 MeV, the angular coverage of the experimental set up presented in

this thesis will not exceed 30 degrees, see Chapter 4. Consequently the vaguest
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agreement obtained at larger angles is not relevant to the present work.

Table 3.3: Comparisons of the neutron spectroscopic factors in 27Mg, obtained
from the ADWA calculation with TWOFNR and from the work of Meurders and van
der Steld [Meurders & van der Steld 1974].

Estate Jπ ` C2S C2S
Meurders et al. TWOFNR

2s1{2 or 1p1{2 1d5{2 or 1f7{2 2s1{2 or 1p1{2 1d5{2 or 1f7{2
985 3/2` 2 0.6 0.55
1699 5/2` 2 0.13 0.11
3476 1/2` 0 0.29 0.25
3562 3/2´ 1 0.40 0.65
3761 7/2´ 3 0.51 0.48
3787 3/2` 2 0.15 0.1
4150 5/2` 2 0.033 0.025

Figure 3.14 presents the distributions obtained with TWOFNR for the ground

state and the 228, 417 and 2545 keV states in 26Al populated in the 26Mg(d, p)27Mg

reaction at Ebeam “ 12 MeV, alongside the experimental data from the study of

Show et al. [Show 1976]. In Table 3.4 the spectroscopic factor obtained using

TWOFNR are compared to the results of Show et al.. Similarly to the previous ob-

servation in the case of neutron spectroscopic factors in 27Mg, it can be seen here

that the calculated neutron spectroscopic factors in 26Al using an ADWA calcu-

lation (with standard parameters for the neutron geometry) agree well with the

DWBA calculation of Show et al.. There too elastic scattering data was collected

to build the deuteron potential from experimental distribution. At low angles,

again, the calculation performs very well with the exception of the 2545 keV

state. So consequently, the model chosen to theoretically represent the different

interactions occurring in the 26Al(d, p)27Al reaction seems to be validated when

transposing it to existing data set.

Evolution of the angular cross section with excitation energy

In the previous subsection, it was shown that by comparing the angular distri-

bution obtained using the chosen theoretical model with existing data for neigh-

bouring exciting states, not only was the calculation able to reproduce the low
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the 27Al(p, d)26Al reaction at Ebeam “ 35 MeV.

Table 3.4: Comparisons of the neutron spectroscopic factors in 26Al, obtained
from the ADWA calculation with TWOFNR and from the work of Show et al. [Show
1976].

Estate Jπ ` C2S C2S C2S
Show et al. TWOFNR TWOFNR norm.
2s1{2 1d5{2 2s1{2 1d5{2 2s1{2 1d5{2

0 5` 2 / 1.0a / 1.55 / 1.0
228 0` 2 / 0.14 / 0.21 / 0.14
417 3` 0 0.21b 0.05 0.20 0.07 0.20 0.05
2545 3` 2c / 0.30 / 0.20 / 0.13

a Show et al. normalise their 1d5{2 C
2S such that C2Sg.s.=1.0.

b The 2s1{2 C
2S are not normalised.

c Shown et al. found no experimental evidence of a ` “ 0 component.

angle behaviour of the cross section convincingly, but the extracted neutron spec-

troscopic factors were also in good agreement with the published values where a

different model was used. Since the values are nevertheless somewhat different,

it is possible that the more accurate description of the deuteron potential results
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in more accurate neutron spectroscopic factors. This is however impossible to

demonstrate. Here, before analysing at the present data, the evolution of the

(theoretical) angular distribution is studied. For `-transfer 0, 1 and 2, the evolu-

tion of the cross section as a function of the excitation energy of states in 27Al is

shown in Figure 3.15. A striking fact is that as the excited energy approaches Sn,

the neutron separation energy, the angular distribution for ` “ 1 and ` “2 trans-

fers become very similar at low angles, with a value at 0 degrees different by only

a factor of 3. Consequently the standard behaviour of ` “ 1 (“the cross section

increases with the scattering angle at low angles”) and ` “ 2 (“the cross section

is relatively flat at low angles”) found up to around 9 MeV excitation energy, is

not true closer to Sn. This is somewhat expected as ` “ 1 and ` “ 2 transfers

are more peripheral than ` “ 0 transfer and consequently are more sensitive to

the low energy tail of the spontaneous neutron emission at EÁ Sn. However it

will prove to be a massive obstacle for assigning the `-values of transfers to a

high excitation energy states, where furthermore spin/parities are not known,

and, even more, when the angular coverage will not be sufficient to distinguish

between ` “ 1 and ` “ 2 transfers.
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Chapter 4

Experimental approach

This chapter discusses the experimental methods adopted to perform the study

of the two reactions: 26Al(d, p)27Al and 44Ti(α, p)47V. Both experiments used

the same type of detector to measure the energy of the ejectile protons, and

this is presented in the first section. The remainder of the chapter focus on

the particularities of each experiment starting with their respective acceleration

facilities, TRIUMF, in Vancouver, Canada and ISOLDE, in Geneva, Switzerland.

For the 26Al(d, p)27Al, there is the measurement of the (solid) target thickness as

well as the setting of experimental parameters as the data contained evidence that

the experiment logbook appears was incoherent. The section on the 44Ti(α, p)47V

experimental method focuses of the setting of the reaction energy and on the

sourcing of a 44Ti beam material from radioactive waste. This was made via a

pioneering method used here for the first time.

4.1 Double sided silicon detectors

Figure 4.1: MSL type S2 detector.

In this thesis work, the particle detec-

tion was made via the use of double

sided silicon detectors (DSSD). This

is the go-to choice for detection of

charged particles in the TUDA array

at TRIUMF, Vancouver and for the

custom set up that was implemented

on the REX-ISOLDE line for the study

relevant to 44Ti.

A fundamental difference between

the two set of experiments presented is that one study, that of the 26Al(d, p)27Al
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Table 4.1: MSL type S2 detector main geometry.

Active inner diameter 2.300 cm Pitch 491 µm
Active outer diameter 6.984 cm Distances between strips 0.1 mm

reaction, focusses on measuring differential cross section (i.e. angular distribu-

tion), while at CERN the objective was to obtain an integrated cross section of

the 44Ti(α, p)47V reaction. However, in both cases, the detection of few MeV pro-

tons and/or α-particles was required, for which the established silicon detector

technology is well suited. Considering that the energy deposited by a particle as

it travels through a material is proportional to the square of the atomic number of

the element Z2, the additional presence of a thin layer at the front allows to map

the particle species via its energy deposited in this layer, E, and the difference

with the energy deposited in the back layer, ∆E, hence the denomination ∆E-E

telescope. Here each telescope consists of two Micron Semiconductor Ltd S2-type

silicon detectors [MSL S2] of 65 µm and 1000 µm thickness. The two components

of the telescope each provided 48 circular strips and 16 azimuthal sectors. The

geometric characteristics of the MSL S2 detector can be found in Table 4.1 and it

is shown in Figure 4.1. For the data acquisition, RAL108 preamplifiers are fitted

to each strips and sectors (i.e. 48+16 RAL108 per detector), such that the signals

are amplified and shaped to 86 ns to match the beam RF signal frequency. A

logical AND in a 100 ns time window is then used for the trigger of the ADCs.

Note that the trigger of the TDCs, which were used in this experiment to clean

the data, is based on the ADCs trigger although, as the TDCs are used in stop

mode, to ensure that the chronology of events is respected the beam RF is first

delayed and then re-timed to the RF when the trigger signal of the ADCs is

logically added to the beam RF, see Figure 4.2.

4.2 Experimental details on the 26Al(d, p)27Al

reaction

The proton spectroscopy study of the 26Al(d, p)27Al reaction reaction was per-

formed at TRIUMF using the TUDA (TRIUMF UK Data Array) array installed

on the ISAC-II (Isotope Separator and Accelerator) line. The experiment was

performed in June 2012 after a two year period of set up and tests. As such there

is here only a modest introduction to this facility, aiming at presenting the main

equipment used for the experiment. More profound details can be found in the
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Figure 4.2: Basics of the trigger logics for the data acquisition from the TUDA
array detectors.

thesis work of Chris Ruiz [Ruiz 2003], which is more focussed on the development

of the facility.

4.2.1 TUDA at ISAC

Radioactive Ion Beams and ISAC-II

The Isotope Separator and ACcelerator (ISAC) facility at TRIUMF is used for

post-acceleration of radioactive and stable beams produced using the ISOL tech-

nique. Production of online radioactive beams requires first to use a “classic”

linear accelerator to impinge a stable beam, in general protons, onto a primary

target chosen in oder to create sufficient amount of a desirable isotope, for ex-

ample 26Al. The spallation reaction fragments are then caught into an ioniser,

and extracted into a mass separator, which selects the species according to the

sought mass to charge ratio, or A/q. This can be done via a quadrupole by care-

fully choosing the Bρ which links the A/q ratio to the curvature of the magnet

and consequently over or under bent the contaminants while sending the correct

isotope into the beam line. The species is subsequently (post-)accelerated by,
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usually, another LINAC.

To produce 26Al beams, a primary beam of 70 µA, 500 MeV H´ ions was

produced by the TRIUMF cyclotron and bombarded on a Silicon Carbide, SiC,

target (Tantalum or Niobium would also be available for higher mass fragments).

After the reaction, the 26Al isotopes are locked in the target cell through which

a 55 kV voltage is applied and further laser ionisation (to charge 1`), which is

one of the choices at ISAC-II for low ionisation energy atoms (aluminium has an

ionisation potential at 6 eV), is used to extract the 26Al ions at keV/u. Mass

separation ensures that only the 26Al ions are extracted. The feeble beam is

pre-bunched and transported by the Low Energy Beam Transport towards the

RFQ (Radio Frequency Quadrupole) which accelerates the ions up to 150 keV/u.

The beam is now said of medium energy, it is chopped, stripped to A/q P r3, 6s

(26/6 in the present work experiment), rebunched and transported to the linear

accelerator (Drif-Tube LINAC) that provides the acceleration to the final energy,

6 MeV/u in the present case. The beam intensity delivered by TRIUMF and

ISAC-II was found to be 1 pnA.

In this process, two main contaminants can slip through. The isomeric,

τ “ 9 s, 0` state in 26Al, however it was found that it would be produced in

a 1:17000 ratio compared to the ground state of 26Al. The second one is 22Na

which, in particular, contaminate the ground state line of 27Al as observed in the

spectra shown in the next chapter.

TUDA

The array is composed of two parts. Looking up to down the beam stream, the

first is the scattering chamber, positioned just after an collimator assembly that,

after the last quadrupole, focuses the beam onto the target in the chamber. The

collimator can be varied to match the mass and energy of the target to the position

of the target. A secondary 10 mm collimator, itself part of the TUDA apparatus,

is placed before the beam passes into the detector area, whatever their position

with regards to the target, to provide extra protection for the equipment against

scattering of the beam. The detector assemblies, perpendicular to the beam axis,

are adjustable so they can be mounted upstream or downstream against the tar-

get position. And since the most meaningful measurement of (d, p) reactions

are upstream compared to the target position and in the laboratory frame, three

detectors were positioned at nominal positions of -5.3 (-2.5), -20.3 and -75 cm,

fixing the 0 distance at the target position. (Note that positioning the detector

upstream means that the clarity of the data prevents the need of particle identi-

fication.) There are additional collimators in the scattering chamber positioned
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behind the detectors, used as dumps to prevent the primary and scattered beam

from hitting the detectors or target assembly. Finally turbo vacuum pumps are

used to bring the operating pressure to around 10´6 Torr (or mbar). At the back

of the scattering chamber, a Faraday cup is installed to allow for beam intensity

measurement. In this experiment, where polyethylene (i.e. CHy compound) tar-

gets were used, another mean of measuring beam intensity was provided by two

photodiodes detectors positioned far downstream and at 30 to the target (in the

laboratory), which measured elastic 12C from the impingement of the beam onto

the target. However, as it was found that the beam was not perfectly aligned and

that it was spatially oscillating, this was only used as a check and the Faraday

cup values were those conserved for beam intensity measurements.

4.2.2 Target thickness

As said earlier in this section, during the experiment, solid (CH2)n and (CD2)n

polyethylene targets were used. For the particular study of the 26Al(d, p)27Al

reaction, the deuterium came from (CD2)n targets made by the Daresbury labo-

ratory near Liverpool. The measurement of the thickness of those targets, from

which the deuteron content at origination is derived, was made by measuring

the α-particle spectrum from a 239Pu, 241Am, 244Cm triple source with and with-

out the targets between the source and the detector. Knowing the energy loss

dE/dx, the thickness can be derived. The measurement, which yielded a thickness

of 57(9) µg/cm2 (the nominal thickness as stated by the Daresbury laboratory

is 50 µg/cm2), is presented in Figure 4.3, the corresponding number of deuteron

scattering centres is 4.3(7)ˆ1018. This number will decrease as the experiment

proceeds, mostly because the impinging 26Al particles from the beam will knock

the deuterons out of the target, depleting it of its deuterium content. Tracking

this feature involves the analysis of the time dependency of a clean line in the

measured spectra against the recorded current on the Faraday cup placed at the

back of the TUDA array (to obtain an effective unbiased measured of the beam

intensity on target). Since a constant value should be measured with no loss of

deuteron, the ratio decay will be used as a proxy for the tracking of the deuteron

content of the target. This will be shown in Chapter 5.

4.2.3 Determination of experimental parameters
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Figure 4.3: Measurement of the energy lost by α-particles from the decay of
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as they travel through target number 4 of the bunch of CD2 targets provided by
Daresbury laboratory.

Table 4.2: Detector distances.

detector Logbook Displayed

distances [cm] distances [cm]

s2-1 75.0 75.2(2)

s2-2 20.3 20.5(2)

s2-3 5.3 5.5(2)

s2-4 2.5 3.1(3)

During the analysis stage of the ex-

periment, it became apparent that

the detector distances recorded in

the logbook could not represent the

actual physical distances. This was

especially obvious for the two clos-

est detectors for which measure-

ment of the distance is harder, but

also for which a variation in the distance has the biggest impact on the laboratory

scattering angle. Demonstration and correction of the detector distances is made

using the most prominent line in the spectra, that corresponding to the 3004 keV,

9/2` state in 27Al. This is one of the very few lines that can be studied at the full

angular coverage provided by the detectors, and for which the statistics are high

enough for meaningful conclusions to be drawn. Raw output angular distribution

from the nominal (logbook) detector distances displays a step between each set

of angles corresponding to the different detectors. This is obviously wrong for a

derivable physical quantity. In particular from one detector to another there is a

step in the y-axis and a change of shape, see Figure 4.4. In the centre of mass, a

detector distance change impacts the angle of each strip to the reaction locus as

well as the cross section as it changes the Jacobian. The choice of distances used

for displaying the distribution was made by investigating the effect of changing

them by ˘1 cm and adopting those for which a shape and amplitude agreement

could be reached. Those distances are shown in Table 4.2. Uncertainties were
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Figure 4.4: Impact of a change in detector distance to the final distribution,
in this example, of the 3004 keV state in 27Al. The blue tainted bigger points
represent the accepted values (distances s2-1, -2, -3, -4: 75.2, 20.5, 5.5, 3.1 cm),
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Note the logbook s2-1, -2, -3 and -4 distances are 75.0, 20.3, 5.3 and 2.5 cm,
respectively.

also introduced at 2 mm for detector s2-1, -2 and -3, while due to the extra com-

plexity of putting a detector very close to the target an uncertainty of 3 mm is

introduced for s2-4. Note that the logbook distances for the case of s2-1, -2 and

-3 are correct within uncertainties with this choice. Such a reconciliation was not

possible with s2-4.

4.3 Experimental details of the 44Ti(α, p)47V re-

action measurement

4.3.1 From radioactive waste to beam source: an alpine

journey

In the present study, a 44Ti beam was produced in a novel way. As part of the ER-

AWAST initiative [Dressler 2012] highly irradiated components from accelerator

devices at the Paul Scherrer Institute (PSI) were exploited as a source of exotic ra-
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dio isotopes. Radiochemical separations, combining liquid-liquid extraction and

ion-exchange chromotography, were used to extract 44Ti from martensitic steel

specimens. A sample of around 50 MBq of 44Ti was obtained and dissolved in

diluted HF solution (see Ref. [Dressler 2012]). This sample was then evaporated

on a molybdenum foil, and transported from PSI to CERN, in order to provide

a beam source.

4.3.2 REX-ISOLDE

At CERN the sample was inserted into a standard target container in the ISOLDE

Class A target laboratory, connected to a VADIS FEBIAD ion source in the VD5

configuration, and equipped with a large CF4 gas leak to allow for the production

of Ti beams as TiFx molecular ions [Stora 2013]. The unit was then installed on

the General Purpose (mass) Separator Front End and a TiF3` molecular beam

extracted, before being bunched and cooled in the REX-TRAP Penning trap, see

Figure 4.5. (REX-ISOLDE is more frequently used to post-accelerate low energy

radioactive beams created by the in-flight method.) This was then dissociated

during charge breeding in the Electron Beam Ion Source (EBIS) which is done

by electron impact ionisation before acceleration in the LINAC. The LINAC

part of REX-ISOLDE [Habs 2000] consists, first, of a radio-frequency quadrupole

(RFQ) accelerator which accepts the bunched beams from EBIS/GPS at a very

low (hence cooled) energy of 5 keV/u, and brings them to 0.3 MeV/u. The

following part contains an interdigital H-type (IH) structure and three seven-

gap resonators, which delivers a beam energy selected by the user between 0.8

and 2.2 MeV/u. The IH accelerates the beams to 1.2 MeV/u, so the seven-gap

resonators may effectively de-accelerate the beams, if required.

Here, 44Ti13` beams of 5ˆ105 to 2ˆ106 pps, with no apparent isobaric con-

tamination, were provided to the experimental apparatus for 4 days. The beam

was accelerated to « 2.1 MeV/u and impacted upon on a aluminum windowed

gas cell containing «67 mbar of helium gas.

Finally a High Purity Germanium detector (HPGe) was positioned next to

the chamber to monitor γ-ray activity coming off the target.

4.3.3 Gas cell and detector set up

The design of the gas cell must tackle several requirements. In coordination

with the available beam energy the gas cell window has to degrade the energy

of the beam to the Gamow window, while avoiding such degradation that its

energy width in the gas cell would become too big. In this case, the beam energy
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Figure 4.5: Schematic of the REX-ISOLDE experiment at CERN. In the present
work the 44Ti ions were fed to EBIS and the detector set up was positioned on
the user dedicated second beam line, this figure is taken from Ref. [Habs 2000].

would cover too large an energy region within which the cross section might vary

by one or two order of magnitudes. The requirement is therefore to use a thin

entrance window. On the other hand, to maximise the number of events at any

given energy, a higher gas pressure, and by way of consequence the number of

(α-particle) scattering centres, is beneficial. The latter requirement is relatively

opposed to the former, to increase the mechanical resistance of the window, a

thicker layer of material is required, however to keep the beam width reasonable

a thiner layer of material is necessary. The material itself has to be of relatively

high Z in order to maximise the Coulomb barrier between the 44Ti beam and the

material components, but not so high as for it to increase the energy loss per unit

thickness too much. It was decided that aluminium would be the best material

to meet most of the requirements. It is also important to note that the use of

a windowed gas cell means that water and oil will condensate on the windows

during the experiment.

The energy choice is therefore still complex. The energy loss of titanium

ions in an aluminium layer rapidly increases with thickness (see Figure 4.6).

Consequently, the larger the thickness the higher the initial required beam energy.

In fact, if the thickness exceeds 8 µm then fusion between 44Ti particles and both
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Figure 4.6: Range, in µm, of 44Ti ions penetrating through an aluminium foil as
a function of the 44Ti beam energy.

12C and 16O from water and oil condensation will occur. This is due to the rather

low Coulomb barrier for the fusion of 44Ti and 27Al (107 MeV), 16O (99 MeV)

or 12C (95 MeV). Either of those will principally lead to many protons being

produced by fusion evaporation. Channels with the higher cross sections from

the fusion of 44Ti and 12C, 44Ti and 16O, and 44Ti and 27Al are shown in Figure 4.7,

this is obtained from statistical model calculations performed with the program

PPACE, Table 4.3 describe the main channel and the particles emitted.

Window thicknesses of 4 and 6 µm were pressure tested at Edinburgh before

the experiment, and it was found that only 6 µm layer could be reliably used

after pin hole checks were carefully made. None of the 4 µm windows resisted

tests with a gas pressure as low as 15 mbar.

The exit window presents a lesser challenge as the energy loss of light particles,

i.e. protons and alpha-particles, is negligible for a thin layer of aluminium, such

that a thickness of 15 µm was used as it gave a great rigidity and ease of use.

For the detection of light particles a ∆E-E telescope, consisting of two Micron

Semiconductor Ltd S2-type silicon detectors as described above, was positioned

12.7 cm downstream with respect to the exit window of the gas cell, providing an

angular coverage θlab “ 5.3–15.30. A quenching factor of 0.986 was then applied

to protons [Reichard 2012].
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Figure 4.7: Calculated cross sections for the reaction of 44Ti on 27Al (71Br),
the windows material, and on 16O (60Zn) and 12C (56Ni) from oil and water
condensation on the windows.
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Table 4.3: List of fusion reaction and associated prominent evaporation channels
potentially occurring when impinging a 44Ti beam on a 27Al window subject to
oil and water condensation. The Coulomb barrier energies for those reactions are
given in the text.

Reaction Compound Nucleus Formed nucleus Evaporation channel

44Ti`12C 56Ni

53Mn
54Fe
53Fe
54Co
51Mn
50Cr

3p
2p

2p1n
1p1n

3p2n/α1p
4p2n/α2p

44Ti`16O 60Zn

54Fe
57Ni
57Co
55Co
58Ni

4p2n/α2p
2p1n
3p

3p2n/α1p
2p

44Ti`27Al 71Br

64Zn
65Ga
61Cu
64Ga
67Ge
68As
67Ga

5p2n/α3p
4p2n/α2p
6p4n/2α2p

4p3n/α2p1n
3p1n
2p1n
4p
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Chapter 5

Experimental results for the
26Al(d, p)27Al reaction

In this chapter, the results from the experiment on the 26Al(d, p)27Al reaction

conducted at the ISAC-II facility in TRIUMF are shown. Some experimental set

up features meant that part of these results had to be used to reconstruct the

exact geometry of the set up in Chapter 4. However other experimental details

could only be unveiled by a thorough investigation of the experimental data. The

chapter starts with such a case as it presents the actual, i.e. measurement based,

deuteron content of the target that provides the number of scattering centres

available during the experiment. Further aspect of the detection set up are then

explained. The longest part of this chapter however first discussed assignments

of observed lines to known states in 27Al via measurement of their energy and

the selectivity of the reaction. Then using theoretical calculations of the an-

gular distribution for observed states, assignments are made using spin/parity

consideration. From these assignments, spectroscopic factors are finally deduced.

5.1 Deuteron content of experimental targets

To extract the cross section, both the incident number of particles on target and

the number of scattering centres contained in the target must be known. Here to

track the deuteron content of the target, the intensity of the most intense line in

the observed spectra (that corresponding to the 3004 keV state) was measured in

each run, while the beam intensity was taken from integrating faraday cup mea-

surements of the beam current downstream of the target in those same runs. The

ratio provides a proxy for the evolution of the deuteron content and can be seen

in Figure 5.1. The systematic uncertainty for deuteron content is «8%. With a
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Figure 5.1: Time dependence of the deuteron content of the target during the
experiment, obtained by tracking the time evolution of the ratio between the
intensity of the 3004 keV line and the faraday cup beam intensity measurement.
The dotted lines are exponential decays with a flat background assuming an initial
thickness of 57 µg/cm2, they are drawn to guide the eye.

5% systematics uncertainties on the faraday cup measurements, a 16% systematic

uncertainties from the original target thickness measurement (at 57(9) µg/cm2,

see Section 4.2.2) the overall experiment systematics uncertainty is estimated to

be 19%.

5.2 Detector shadowing

As can be seen on Figure 5.2 the number of counts in the 3004 keV line steadily

evolves. But especially for detector s2-2 (but also s2-1) the outermost annuli are

counting too low resulting in a sharp drop of the the line’s intensity that would

not be explained by solid angle considerations. This is due to detector shadowing.

66



5.2. Detector shadowing
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Figure 5.2: Number of counts in the 3004 keV peak per strip for detector a) s2-1,
b) s2-2 and c) s2-3. In s2-1 the shadowing is obvious from strip number 37 while
the first 4 strips (0 to 3) are not working; in s2-2 the shadowing impacts strip
above number 32 while strip number 0 seems to be counting low and is ejected
from further analysis; in s2-3 there is, as expected from Figure 5.3, no sign of
shadowing but strips 0 and 47 behave sensibly differently from the rest of the
detector and are ejected from further analysis.

The shadowing of certain annuli can be explained by two experimental factors.

The most prominent effect is due to the use of collimators in order to avoid the

detectors being hit by the beam, which incidentally shadows a section of the

otherwise available solid angle. Consequently the closest detector to the target

– remembering that the detectors were placed upstream – is the most impacted

as it is positioned at very low angle from the position of the beam production.

This effect is shown schematically on Figure 5.3. The second explanation is a

slight non-concentricity of the three detectors. Though this is hard to verify

as experimentally it would have similar effect to a non-perfect beam alignment,

whose effects will also be discussed in a later section.

In addition to this phenomena, several strips in each detectors (or their associ-

ated ADC) are clearly misbehaving, appearing almost dead. Combining this with

detector shadowing leads to a selection for the strips that would be considered

for further analysis: strips 4 to 36 in s2-1, strips 1 to 31 in s2-2 and strips 1 to

46 in s2-3/4.

Similar shadowing is observed by exposing the detectors to the triple-α source.

Due to the lifetime of the species in presence, hyperfine interaction damages
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Figure 5.3: Schematic representation of strip shadowing by beam collimators.

the alignment of the emission and the number of counts for α-particles in each

strip should only follow the solid angle distribution. It does only vaguely, as

can be seen in Figure 5.4, where strips have been grouped together following

the acceptance/rejection requirement presented above. Indeed slight but not

insignificant differences between the expected solid angles and the α-particles

distribution can be seen. Following the lack of explanation on the procedure used

to measure the α spectra in the experiment (source position etc.) it was decided

to only used solid angles calculated from the geometry of the experiment rather

than scaling the distribution of the peaks on that of the α-particles.

5.3 Calibration & gain matching

5.3.1 Gain matching

The amplifier outputs revealed what seems like a functional behaviour for the

amplifier offsets, while one expects a random distribution. This could indicate

an underlying physical effects. Several options have been considered. It was first

thought that this would be the consequence of a non centred beam. A schematic

of such an effect is shown in Figure 5.5. The following angle correction was

introduced to account for this possibility, using the notation of Figure 5.5:

θ “ arctan

¨

˝

b

d2 ` r2 ` 2d` cos
`

sr ˆ
2π
16

˘

`

˛

‚, (5.1)
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where ` represents the distance from the centre of a collimator to the centre of a

detector, d the possible displacement, sr the sector’s number and r the distance

to the centre of the detector. Displacements of the beam spot, d, from 0 to 3.2

mm were considered for each sector, but none gave satisfactory reproduction of

the observed behaviour. A rough alignment was obtained summing the outputs,

but it resulted in measurably broader peaks than obtained in a single annulus.

Consequently the annuli were adjusted such that the 3004 and 6512 keV peak

would align. Each ADC (amplitude to digital converter) has a zero offset (i.e.

the 0 energy would not be on 0 channel) and a gain, the number of channels that

represent one unit of energy (in keV). By fixing the position of two known and

isolated peak to the same channel number in all ADC outputs, a linear correction

is obtained for each. This is the gain matching procedure routinely used in γ-ray

spectroscopy. When using an array of several detectors, such as CAESAR at

the Australian National University (see, for example, Ref. [Margerin 2012]) or

GAMMASPHERE at the Argonne National Laboratory, it is critical to perform

such alignment since the width of the peaks are often smaller than the maximal

difference of the lines’ position between two detectors. Here the amplitudes of the

variations for the two peaks at 3004 and 6512 keV, were observed to be only 2 to

3 channels, but this corresponds to nearly 30 keV (see the following paragraph on

calibration), for detector s2-2 (at 20.5 cm). This is only slightly smaller than the

width of the 3004 keV peak, 33 keV, highlighting the need to use of this method.

5.3.2 Calibration

The goal of energy calibration is to translate the signal output of the amplitude

to digital converter (ADC), a channel number, into energy. Typically a linear

calibration is often sufficient, and, although second degree effects can also arise,

the energy calibration was first made using a linear equation:

Energy [keV] “ ADC gain [keV/channel]ˆ channel` ADC offset [keV] (5.2)

As the annuli were gain matched on the 3004 and 6512 keV peaks, calibration is

expected to be quite accurate between those energies. This can be seen on Fig-

ures 5.6.a) & b), with the residuals amplitude below 0.5 and 2 keV, respectively.

However, because higher energy peaks are wider and are more weakly populated,

their inclusion increases the uncertainty in the calibration. Yet there is no sign

of distortion in the residuals when several extra peaks are taken into account, see

Figure 5.6.c), although the residuals amplitude reaches 5 keV. For energies below
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presence of collimators is limited to the corresponding solid angle represented by
Ω and the dark blue area on this diagram.

8 MeV, the calibration of Figure 5.6.a) is therefore adopted. Above 8 MeV, and

even more above 10 MeV, the situation is more complex, ideally further lines

could be included in the calibration. The selectivity of (d, p) reaction, favouring

s1{2 and to a lesser extent d5{2 and p1{2 transfers, reduces the number of observed

high energy states to around thirty (see next section), but it is of no help here as

no spin and/or parity assignments for any states above 10 MeV in 27Al is known

whatsoever. Consequently it is not possible to match observed to known states,

this will be seen again below, even when the latter are determined to better en-

ergy precision. Another effect is that the uncertainty on the excitation energy

of states beyond the region of calibration will gradually increase. Adopting the

low energy calibration at higher energies further assumes that no distortion in

the calibration would be present at low proton energies (high excitation ener-

gies). Although there is no sign of such effects, this assumption is not necessarily

accurate and many factors could explain a non-linear behaviour of the energy

calibration at low proton energies (high excitation energies).
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Figure 5.6: Calibration of s2-2 using peaks from 0 MeV (ground state) to (a)
5.500 MeV, (b) 5.667 MeV and (c) 6.948 MeV. The lower part of each plot shows
the residuals.

5.4 Proton spectra, identification of observed

lines and angular distribution

5.4.1 Eexc “ 0 to Sp “ 8.271 MeV

The typical proton spectra for each detectors is presented in Figure 5.7, each

figures is made by grouping together the 24 innermost strips of each detectors.

As can be seen thereon detectors s2-2 and s2-3 provides the best energy coverage,

this is because the energy resolution, the background level and the solid angle are

ideal for extracting independent states up to around 8 to 10 MeV. The very low

geometric efficiency for detector s2-1 (at «75 cm) means that only the strongest

lines are observed. The positioning of detector s2-4, at «3 cm from the reaction

locus, results in a broader width for the detected protons (since the solid angle of

each annuli is much larger). Therefore only the two states at 3004 and 4510 keV

could be accurately studied in s2-4. Lines at 5500 and 5667 keV states can also

be investigated for smaller grouping of the most innermost strips. Nevertheless

angular coverage from 0 to 15 degrees in the c.o.m. is achieved for most states

from 0 to 8.1 MeV.

Angular distributions for all states in this energy region will be shown in

Section 5.5. In the immediate following, only several examples are extracted. A
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Figure 5.7: Typical excitation spectrum for the energy region 0ÀEexc À8.1 MeV,
for each of the 3(+1) detectors. Note that the axes are discontinuous in order to
gain clarity in the 6 to 8.2 MeV region.

full list of observed states from 0 to 8.1 MeV is presented in Table 5.1.

The states at 3004 and 4510 keV

The two lines at 3004 and 4510 keV are the only lines seen isolated from other

peaks in every spectrum that can be made from the four detectors. Consequently

they are very good examples of the effectiveness of the experimental set up. The

angular distributions for both states are presented in Figure 5.8. In the plot of

the angular distribution for the 3004 keV state, a comprehensive depiction of the

effect of the different sources of uncertainty is presented. It can, in particular, be

seen that the amplitude of the distribution at low angles («0 degree) is mostly

unaffected by the detector distance uncertainty while the impact is larger at
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Figure 5.8: Angular distribution for excited stated in 27Al at a) 3004 and b)
4510 keV. In a) both statistical and systematics uncertainties are displayed.

higher angles (Á18 degree).

Main states involved in the destruction of 26Al in AGB and WR stars

In Section 2.1.5, the main (mirror) states involved in the amount of 26Al generated

by AGB and WR stars were presented. They are the 7790 keV, 5/2` [Lotay

2011], the 7798 keV, 3/2` [Basunia 2011], the 7806 keV, 9/2`, the 7948 keV,

11/2` and the 7997 keV, (9/2, 11/2)´ states. In Figure 5.9, a closer look at

the proton spectrum as measured by s2-2, at 1750 in the laboratory frame and

«20 (this depends on the line’s energy) in the centre of mass frame, is shown

with a fit of the observed lines and the associated residuals. Inspection of these
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Table 5.1: List of states observed in the energy region 0ÀEexc À8.1 MeV.

Estate [keV] Jπ Estate [keV] Jπ

0 5/2` 7289 (13/2`)
2212 7/2` 7400 11/2`

3004 9/2` 7444 (13/2)`

4510 11/2` 7664 (7/2)`

5500 11/2` 7806 9/2`

5667 9/2` 7948 11/2´

6514 9/2` 7997 11/2´

6948 11/2` 8043 9/2`

7174 9/2`

residuals shows little, if no, signs of any line contaminating the 7806 keV peak.

There is a potential 90(60) excess counts at 7773 keV (assuming the excess in

residuals represents the peak’s height and modelling a peak with such a height

given the width of surrounding observed peaks), but this excess is only seen in

this spectrum. Nevertheless it illustrates the detection limit of the experiment.

The angular distribution obtained from fits of the proton spectra in which the

7806 keV line could be resolved is presented in Figure 5.10.

5.4.2 Sp “ 8.271 MeV À Eexc À 11 MeV

For higher energy lines the situation gets more complex as the energy calibration

deteriorates with energy. Many peaks can yet be fitted using parameters from

well known lines at lower energy, such as the energy dependent width, resulting in

the general fit of Figure 5.11. To help assigning observed lines to known states,

a sorting of states to consider can be made by taking into account the energy

accuracy (here from calibration b) of Figure 5.6), and the validity of suggested

assignment in known work (see Section and the case of the 7948 keV, 11/2´

state):

• the 8403 keV line is likely the 8396(1) keV, (11/2) state [Lickert 1988];

• the 8422 keV line, the 8421(1) keV, (3/2, 5/2)` [Champagne 1990] which,

given the firm parity assignment, would de facto suggest (5/2)` due to the

amount of spin transfer (` “ 4) needed to make 3/2`;

• the 8490 keV state convincingly agrees with the known 8490(1) keV, 5/2`

state [Iliadis 1990, Buchmann 1980, Champagne 1990] and the relative

weakness of the peak is not inconsistent with a d5{2, ` “ 2 transfer;
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• a 8521 keV line is observed that could be the 8521(2) keV, (1/2, 3/2, 5/2,

7/2) state [Moss & Sherman 1976];

• a state at 8598(3) keV with a suggested spin (3/2) is known but the parity

is firmly assigned as negative [Iliadis 1990, Champagne 1990] and it seems

unlikely that such a transfer could be observed with the present (d, p)

reaction especially seeing that, at low energy where the spectra are not too

busy, known low spin, negative parity states are not observed;

• the line at 8696 keV which sits relatively alone could correspond to the

known 8693(3) keV, (9/2, 11/2, 13/2) state [Lickert 1988];

• the line at 9305(10) keV, could be the known 9299(3) keV state [Moss &

Sherman 1976] or the 9308(1) keV, (5/2`) state [Smit 1982];

• there is a known state at 9883(3) keV which would agree with the observed

9881 keV line;

• a very intense line at 10340 keV is observed, states at 10338(2) keV with a

suggested Jπ “ (1/2`) and 10348(2) keV with a tentative assignment of

J “ (3/2) have previously been observed [Smit 1982] but they are unlikely

to actually match the state of the present work, due to the required amount

of angular momentum to be transferred;

• a state at 10459(2) keV is known [Moss & Sherman 1976] but, due to the

spin assignment of Jπ “ (1/2´), it is certainly not corresponding to the

state observed here at 10464 keV;

• the doublet of lines at 10788 and 10830 keV have possible correspondents in

the known (or at least reported, see Table 5.2) 10791(3) and 10833(2) keV

states, see Ref. [Audi 2003].

Further possible assignments for states below Eexc “ 11 MeV are shown in Ta-

ble 5.2. This table include a fit rating which is derived from the stability of the

centroid position in the different spectra. For example the line at 9503 keV seems

quite strong. However while it is seen as one peak in s2-3, the line is undeniably

made of at least two peaks in s2-2. This can visually be inferred by the broader

width of the line at 9503 keV compared to neighbouring peaks such as, for ex-

ample, the line at 9881 keV, see Figure 5.11. Consequently this fit would not

be assessed as good, hence rated “red”, and is excluded from further discussions.

Similarly all red and orange rated peaks will not be subject of further analysis.
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5.4. Proton spectra, identification of observed lines and angular distribution

Table 5.2: List of states whose energy match that of lines required in the general
fit of Figure 5.11. The 5th column represents the fit quality. Only fit rated
green will be later discussed. The quoted references are only those where the
most elaborated assignment is attempted. Note that known energies refer to the
energies in the ENSDF database [Basunia 2011] and not necessarily that of the
quoted references.

E [keV] E [keV] Jπ Reference(s) Fit rating
this work known (apart from A)
8403 8396(1) (11/2) B.a) & B.b) (J)
8422 8420.7(10) (3/2, 5/2)` C ((J)π)
8490 8490.3(12) 5/2` D (J), E (J pπq), C (π)
8521 8521(2) (1/2` to 7/2`)a B, F
8598 8598(3) (3/2)´ D ((J)π), C ((J)π)
8696 8693(3) (9/2 to 13/2) B.a) (J)
8850

9305
9299(3)

9308.2(9) (5/2`)
F

G ((Jπ))
9415
9503
9598
9620
9700
9760
9881 9883(3) F
9980

10020
10080
10160

10340
10338(2)
10348(2)

(1/2`)
(3/2)

G ((Jπ))
G ((J))

10464 10459(2) F
10788 10791(3) Ab

10830

10833(2)
10835(2)
10836(2)
10838(2)

(3/2`, 5/2`)
(3/2`, 5/2`)
(5/2´, 7/2´)

(3/2´)

Ab

a This is given in ENSDF [Basunia 2011] and referenced in [Lickert 1988], yet no
source for the tentative assignment has been found in the therein references.
b No article listed in ENSDF [Basunia 2011] does present any of those energies
and Jπ assignments...
D. [Iliadis 1990], 26Mg(p, γ)27Al. E. [Buchmann 1980], 26Mg(p, γ)27Al.
C. [Champagne 1990], 26Mg(3He, d)27Al. A. ENSDF [Basunia 2011].
F. [Moss & Sherman 1976], 27Al(p, p1)27Al. G. [Smit 1982], 26Mg(p, γ)27Al.
B. [Lickert 1988], a) 24Mg(α, pγ)27Al, b) 26Mg(p, γ)27Al.
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Chapter 5. Experimental results for the 26Al(d, p)27Al reaction

5.4.3 Eexc Á 11 MeV

Above 11 MeV, there is no states listed in ENSDF. Several experiments have

unveiled states in this energy region, for example the recent 27Al(p, p1)27Al exper-

iment reported in Ref. [Benamara 2014], or the older studies of the 26Mg(p, γ)27Al

[Westerfeldt & Mitchell 1978] and the 23Na(α, γ)27Al [deVoigt 1971a, deVoigt

1971b] reactions. This energy region will be discussed in more details below with

the presentation of angular distributions.

5.5 Transfer assignments and spectroscopic fac-

tor measurements

In this Section, angular distributions obtained from analysis of the proton spec-

tra discussed above are compared to the results of a finite range adiabatic wave

calculation conducted with the code TWOFNR. The details of the calculation, in-

cluding the choice of parameters, were developed in Section 3.3, and methods for

obtaining spectroscopic factors from such calculation were presented therein as

well. In summary, the scaling factor that exists between the calculated and the

experimental differential cross sections equates the C2S coefficient. In most cases,

the experimental cross sections have pronounced behaviour making the transfer

assignment – pure ` “ 0, ` “ 1, ` “ 2, etc. – obvious. In order to extract

the spectroscopic factor a χ2 fit was conducted where deemed reasonable. For

high excitation energy states, it becomes increasingly complicated to distinguish

between ` “ 1 and ` “ 2 distribution over the range of angles experimentally

covered, see Section 3.4.2 of Chapter 3. Indeed a χ2 optimisation would not yield

any clear direction towards which angular momentum transfer is observed. Con-

sequently fits are just given as an indication and it is not possible to deduced

any spin or parity for distribution where ` “ 1 and ` “ 2 is possible, often the

only suitable statement is that the transfer must have ` ă 3. The cases for ` “ 0

are more stringent. Angular distributions are presented in Figures 5.12 to 5.19

alongside the calculations with the optimised scaling factors, with the list of these

presented in Table 5.4.

5.5.1 The 3004 keV state

Figure 5.12 shows the angular distribution for the most strongly populated 9/2`

state at 3004(2) keV in 27Al which is predicted to be a relatively pure shell

model configuration dominated by ` “ 0 transfer, this will be shown later in
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5.5. Transfer assignments and spectroscopic factor measurements

Table 5.3: Tentative energy assignments for lines required in the general fit of
Figure 5.11. The 5th column represents the fit quality. Only fit rated green or
orange will be later discussed. The quoted references are only those where the
most elaborated assignment is attempted, in the column the letters refer to the
same letters as in ENSDF, while the detail of the reference are given under the
table.

E [keV] E [keV] Jπ Reference Fit rating
this work known

11005
11000(4)
11010(4)

11010.7(30) 1/2´

H
H
I

11111

11106.7(30)
11108(4)
11112(4)

11115.8(30)

(5/2, 7/2)´

(3/2`, 5/2`)

I
H
H
I

11198 11195(4) H
11285 11273(4) H
11408 11406(4) H
11464 11456(4) H
11592 11595(4) H
11956 11957(4) H
12036 12024(4) H
12260 12260(4) H

12384
12384.0(15)

12392(4)
11/2p`q J

H

12512

12504(4)
12505(2)
12514(4)
12518(2)

Á7/2

Á7/2

H
J
H
J

12599
12591(4)
12596(3)
12603(4)

(7/2`)
H
J
H

References:
H. [Benamara 2014], 27Al(p, p1)27Al
I. [Westerfeldt & Mitchell 1978], 26Mg(p, γ)27Al
J. [deVoigt 1971a] & [deVoigt 1971b], 23Na(α, γ)27Al

81



Chapter 5. Experimental results for the 26Al(d, p)27Al reaction

Chapter 7. This low angles distribution is, indeed, well reproduced by the ADWA

calculation with pure ` “ 0 transfer and a high spectroscopic factor, C2S“ 0.49.

The distribution at higher angles can be fitted with the inclusion of a ` “ 2

component for the transferred proton. This would be from the 1d5{2 orbitals and

the corresponding C2S from the fit presented in Figure 5.12 is 0.18.

5.5.2 The 7806, 7948, 7997 and 8043 keV state

Figure 5.14 presents the angular distribution for the 9/2` 7806(3) keV state,

which corresponds to the mirror analog of the 127 keV resonance at an excitation

energy of 7590 keV in 27Si [Lotay 2009]. From comparison with TWOFNR calcula-

tions, it is evident that the most forward angle component is predominantly ` “ 0

transfer, while an additional ` “ 2 component is required in order to accurately

reproduce the full distribution at less forward angles. A best fit is obtained com-

bining ` “ 0 and 2 transfers with C2S (` “ 0) of 9.3(19)ˆ10´3 and C2S (` “ 2)

of 6.8(14)ˆ10´2 for the 7806 keV state. This is significantly higher than the up-

per limit of 2.2ˆ10´3 for ` “ 0 proton capture to the 7590 keV resonant state

in 27Si obtained in the 26Al(3He, d)27Si study of Vogelaar et al. [Vogelaar 1996].

However, Parikh et al. [Parikh 2014] have suggested that the experimental limit

of C2S (` “ 0) may be compatible with values up to a maximum of ∼11ˆ10´3

for the 7590 keV state in 27Si when the smallest scattering angle is discarded

from the Vogelaar et al. data. The present result is, therefore, within the up-

per range of the value suggested by Parikh et al., and using a C2S (` “ 0) of

9.3(19)ˆ10´3 implies a strength of 0.025(5) eV for the 127 keV resonance in the
26gAl(p, γ)27Si reaction (the error quoted for the strength represents a statistical

error; there is also an uncertainty of ∼20% associated with possible differences

between spectroscopic factors of analog states).

A detailed fit analysis of the 7806 keV peak was further performed to investi-

gate potential excess counts contributing to the differential cross section around

the energy region 7790 and 7798 keV, this was reported earlier, noticeably via

the residuals in Figure 5.9. The analysis shown that the peak was entirely con-

sistent with a single-state structure at an energy of 7806(3) keV, in agreement

with the value of 7807.2(10) keV reported in the γ-ray spectroscopy study of 27Al

by Lotay et al. [Lotay 2011]. In the energy region of interest for the 7806 keV

level in 27Al, there are two potential excited states at 7790.4(7) [Lotay 2011] and

7798(2) keV [Basunia 2011], which have been previously assigned as 5/2` and

3/2`, respectively [Lotay 2011]. This detailed analysis indicates there is no sig-

nificant contribution to the observed differential cross section for the 7806 keV

state from these two neighbouring excited levels. The 7790 keV state in 27Al has
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5.5. Transfer assignments and spectroscopic factor measurements

been assigned to a mirror analog in 27Si, corresponding to a 5/2` resonance at

68 keV in the 26gAl(p, γ)27Si reaction [Lotay 2011]. Based on the analysis above,

an upper limit for C2S (` “ 2) of 1.6ˆ10´2 is set, corresponding to a resonance

strength of ωγ ă 8ˆ10´10 eV.

The angular distribution and ADWA calculation for the 7948(3) keV excited

state in 27Al is shown in Figure 5.14. As can be seen, the angular distribution is

well fitted by a pure ` “ 1 transfer with C2S (` “ 1) of 0.14(3) and is inconsistent

with ` “ 0, 2 transfer. Such high values for C2S for negative parity states at high

excitation energies in sd-shell nuclei have been associated with relatively pure

single particle configurations [Brown 2014]. Consequently the distribution and

the associated calculation is supportive of an 11/2´ assignment.

Figure 5.15 shows the angular distribution together with a fit of the TWOFNR

calculation to the experimental data for the 7997 and 8043 keV states. In both

cases, the situation is relatively straightforward with an apparent ` “ 1 transfer

for the 7997 keV state with an associated C2S of 0.12 and ` “ 0 & 2 transfers for

the 8043 keV state, with proton spectroscopic factor of 0.03 for the 2s1{2 wave

and 0.13 for the 1d5{2 wave.

5.5.3 States above Eexc “ 8043 keV and below the neutron

threshold

The distributions for states above Eexc “ 8043 keV are shown in Figures 5.15,

5.16, 5.18, 5.19 & 5.20. Amongst the lines selected for analysis in Tables 5.2 &

5.3 some have angular distribution clearer than others, allowing for a more com-

prehensive study than the energy matching assignment presented in the afore-

mentioned tables.

The angular distribution for the transfer to the 8403 keV state is not very

precise. Statistically, it could be either ` “ 1 or ` “ 2, even though one would

still expect distinct behaviours at this energy, see Figure 3.15. Either of those

assignments do not discard the correspondence to the 8396(1) keV state observed

by Lickert et al [Lickert 1988]. However, seeing that this γ-ray study yielded

a (11/2) suggested spin assignment for this state, ` “ 1 is more likely. (Note

that to conserve the ` “ 2 possibility, it shall be mixed with an ` “ 0, this is

possible, as it is possible that every ` “ 2 contains a very low, unmeasurable at

the sensibility of this work, ratio of ` “ 0, although enough to change the final

state’s spin assignment.) This would imply that the spin and parity of the state

is Jπ “ (11/2´).

A 8420.7(10) keV, (3/2, 5/2)` state was reported in the (3He, d) study of
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Champagne et al. [Champagne 1990]. Here, a state at 8422 keV is observed,

see Figure 5.15. The angular distribution of the proton transfer to this line

is consistent with an ` “ 2 transition. An ` “ 4 transition would not be

strong enough to be observed in (d, p) study, hence the suggested Jπ “ (5/2)`

assignment. Similarly the angular distribution for the transfer to the 8490 keV,

see Figure 5.15, does not disagree with the ` “ 2 assignment that should be

observed if this line were the 8490.3(12) keV, (firm) 5/2` state from Refs. [Iliadis

1990, Buchmann 1980, Champagne 1990].

While quite clearly measured in the proton spectra shown in Figure 5.11

(it skews the low energy side of the proton peak, i.e. the high energy side in

the excitation energy of 27Al scale), the 8521 keV was not enough populated to

provide for a measurement of an angular distribution.

The angular distribution for the proton transfer feeding into the 8696 keV

state in 27Al suggests that it is ` “ 1, see Figure 5.15. This reinforces the

correspondence to the 8693(3) keV state observed by Lickert et al [Lickert 1988], in

their γ-ray spectroscopy study of 27Al. Here the angular momentum of the state,

J P (9/2, 11/2, 13/2) cannot be strictly narrowed by the transfer assignment,

however, the parity π is very likely negative, although as it is often the case

here a larger angular coverage would be required for a firm assignment. The

8693(3) keV state decays into the 8396 keV, (11/2) (and as just presented possibly

(11/2´)) and the 6948 keV, 11/2`, states, also observed here. The decay to

the lower of these two states has a large enough energy, Eγ “ 1745 keV, that

many multipolarities could be justified without measurable lifetimes, but the γ-

ray decay to the 8396 keV state requires a (non-forbidden) E1 or M1. If the

spin were to be 11/2, then the 297 keV γ-ray from the 8693 to the 8396 keV

would be a J Ñ J transition, the A2 and A4 Legendre polynomials extracted

from the angular distribution of the γ-rays emitted from the initial state would

therefore be characteristics of ∆J “ 0, see, for example, Ref. [Margerin 2012].

Unfortunately if angular anisotropies were recorded by Lickert et al [Lickert 1988]

none are reported for the decays of the 8693(3) keV state.

Two states are known with energies within the energy uncertainty of the

observed 9305 keV state, they are at 9299(3) keV [Moss & Sherman 1976] and

9308.2(9) keV [Smit 1982]. The latter state was assigned with Jπ “ (5/2`).

Here ` “ 2 cannot be strictly rejected but an ` “ 1 assignment for the transfer

is more plausible, see Figure 5.16. Consequently it could be the 9299 keV state

rather than the 9308.2 keV state. Note that the Moss & Sherman study is that

of a (p, p1) reaction, which is often used for its lack of selectivity, i.e it populates

all spin regardless.
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In Figure 5.16, the angular distribution for the 9881 keV line is presented

alongside the fits for the ` “ 1 and 2 transfer calculations. It can be seen

that discrimination between the two possibilities is not significant. And, when

the potential match in the literature only has an energy assignment, here at

9883(3) keV [Moss & Sherman 1976], but no spin/parity information is provided,

then drawing a tangible assignment is not plausible. This will be the case for all

further lines even when only ` “ 2 or ` “ 1 is drawn in the corresponding figure.

The angular distributions for the 10340 and 10788 keV states observed in

this work are extremely similar, with in both cases a mixed ` “ 0 & 2 trans-

fer suggested in similar ratio of the C2S(` “ 0) to C2S(` “ 2), 0.04/0.08=0.5

and 0.06/0.1=0.6, respectively. For such mixed transfers the states must have

Jπ P (9/2, 11/2)` (the parity is firm). There is no known states with this spin/-

parity suggestion in the vicinity of 10340 keV, see Table 5.2. Potentially it is

a new previously unknown state. A state at 10791(3) keV is reported in the

ENSDF database [Basunia 2011] but no other information is known. Perhaps

the 10788 keV state reported here, and that 10791(3) keV state are the same,

perhaps they are not.

Observed between the two previously discussed states is the 10464 keV line.

The angular distribution presented in Figure 5.16 for this state, tends to indicate

it might be a mixed ` “ 0 & 2 transfer, although the ratio would be lower than

for the 10340 and 10788 keV states. This can be seen visually as the drop in

cross section, as the reaction becomes more peripheral, appears smoother for

the 10340 keV than for the 10340 and 10788 keV lines. Here again a state is

reported in the ENSDF database [Basunia 2011], Ex “ 10459(2) keV, but no

other information has yet been obtained, such that it is not possible to assess

whether this would be the same state as the one observed here at 10464 keV.

Between 11 MeV and the neutron separation energy

Most of the states above 11 MeV are known from the 27Al(p, p1)27Al study of

Benamara et al. [Benamara 2014]. The level of non-selectivity of the (p, p1) can

be appreciated to its true value on Figure 5.17 which presents the levels reported

in the work of Benamara et al. and those observed in this thesis work. And

only when the ` “ 0 behaviour is strong enough can distributions be separated

between the possible transfers, ` “ 0, 1, 2 or mixed 0 & 2. Keeping this is mind,

the most stringent cases are 11198, 11285, 11408 and 11464 keV, see Figure 5.18,

11956 and 12512 keV, see Figure 5.19. For each the angular distribution is clearly

enough dominated by an ` “ 0 behaviour, which is obvious from the sharp drop

in cross section as the centre of mass angle increases. Consequently for each of
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Figure 5.16: Angular distributions of excited states between 9.305 and
10.830 MeV. The spin and parity assignments presented in each figure is based
on literature and transfer assignment from this work, and are those used for the
TWOFNR calculation that resulted in the solid line in each panel. Note that in the
case of poor quality distribution no theoretical cross section is presented.
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those six states the suggested assignment is Jπ P (9/2, 11/2)` where the parity

assignment is firm. All of the states identified within the energy uncertainty of the

11198, 11285, 11408, 11464, 11956 and 12512 keV lines are from the (p, p1) study

where angular distributions cannot be measured. So the spin/parity information

provided in this work cannot be strictly assigned to the corresponding states in

Table 5.3.

In Figure 5.18, the angular distribution for the 11005 keV line is highly tenta-

tive, and the ` “ 0 & 2 suggestion has the odds that bookmakers gave to Leicester

winning the British Premier League 2015/16 at the start of that season.

The angular distribution for the lines at 11384 and 11592 keV can be fitted

by ` “ 2 transfers, although ` “1 would be as convincing, as explained when

analysing the 9881 keV distribution.

The three 12036, 12260 and 12512 keV lines have an angular distribution that

can be fitted by a mixed ` “ 0 & 2. However as shown in Figure 5.20 with the

angular distribution of the 12599 keV line, at those energies any of the ` “ 0, 1, 2

or 0 & 2 is as good as the other one. Though often the presence of a ` “ 0 means

that the measured C2S will be lower, this is because of the factor of around 100

between the cross section for ` “ 0 and ` “ 2 with C2S factors of 1 at the same

energy. So very little ` “ 0 and very little ` “ 2 may be required to fit a given

line around 12 MeV when too high a ` “ 1 C2S would be implied by such an

assignment. This is hand-wavy but should be kept in mind when assessing the

suggestion made throughout this section.
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Figure 5.17: Superposition of a spectrum from this work, obtained at θlab “ 1750

in s2-2 and of the lines observed in Ref. [Benamara 2014] (in light grey). The red
line represents a fit to the experimental data.
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Figure 5.18: Angular distributions of excited states between 11.005 and
11.464 MeV. The spin and parity assignments presented in each figure is based
on literature and transfer assignment from this work, and are those used for the
TWOFNR calculation that resulted in the solid line in each panel.
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Figure 5.19: Angular distributions of excited states between 11.592 and
12.512 MeV. The spin and parity assignments presented in each figure is based
on literature and transfer assignment from this work, and are those used for the
TWOFNR calculation that resulted in the solid line in each panel.

93



Chapter 5. Experimental results for the 26Al(d, p)27Al reaction

centre of mass scattering angle [degrees]

cr
os

s 
se

ct
io

n 
[m

b/
sr

]

0 5 10 15

1

3

ℓ  = 1

12599 keV, ⎛
⎝
⎜
7
2
⎞

⎠
⎟
−

Figure 5.20: Angular distributions of the state at 12.599 MeV. The spin and parity
assignment presented in the figure is based on literature and transfer assignment
from this work, and are those used for the TWOFNR calculation that resulted in
the solid line.
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Table 5.4: List of experimental spectroscopic factors obtained from fitting the
ADWA transfer calculations to the measured angular distributions.

Estate Jπ ` C2S χ2

2s1{2 1d5{2 2p1{2 total /ndf
2212 7/2` 2 0.23 36 1.6
3004 9/2` 0 & 2 0.49 0.18 440 12
4510 11/2` 0 & 2 0.11 0.33 165 4.5
5500 0 & 2 0.37 0.53 229 10
5667 0 & 2 0.053 0.76 59 2.7
6514 0 & 2 0.040 0.23 18 0.9
6948 0 & 2 0.17 0.61 89 4.2
7174 0 & 2 0.022 0.11 13 1.3
7289 2 0.450 76 7.6
7400 0.0083 18 1.8
7664 0.091 64 5.8
7806 9/2` 0 & 2 0.0093 0.068 18 1.8
7948 11/2´ 1 0.14 5 0.42
7997 1 0.117 8 0.8
8043 0.0272 0.130 26 2.6
8396
8422
8490 5/2`

8696 (9/2)´ 1 0.33 4 0.6
(11/2)´ 1 0.28 4 0.6

9305 (9/2)´ 1 0.79 16 2.3
9305 (11/2)´ 1 0.66 16 2.3
9881 (5/2`) 2 0.82 6 1

(9/2´) 1 0.27 5 0.8
10340 (9/2`) 0 & 2 0.04 0.08
10464
10788 (9/2`) 0 & 2 0.06 0.1
10830 (5/2)` 2 0.60 5 0.7
11005 (9/2`) 0 0.004
11111 (9/2`) 0 & 2 0.02 0.1
11198 (9/2`) 0 & 2 0.03 0.1
11285 (9/2`) 0 0.019
11408 (9/2`) 0 & 2 0.04 0.08
11464 (9/2`) 0 & 2 0.07 0.01
11592 (7/2`) 2 0.04 1 0.4
11956 (9/2`) 0 & 2 0.09
12036 (9/2`) 0 & 2 0.09
12260 (9/2`) 0 & 2 0.06 0.08
12384 (11/2´) 1 0.05 8 1.1
12512 (9/2`) 0 & 2 0.45 0.004
12599
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Chapter 6

Experimental results for the
44Ti(α, p)47V reaction

This Chapter presents the results from the measurement of the cross section of

the 44Ti(α, p)47V reaction. The associated experiment was performed, as shown

before, at the REX-ISOLDE facility at CERN. The detector set up utilises one

S2 detector placed at 12.7 cm downstream of a helium gas filled cell. The first

sections of this chapter focus on the calibration of the detector and the particle

identification before a measurement of the cross section for the reaction can be

conducted in the later sections.

6.1 Energy calibration

The principles of energy calibration were explained in Section 5.3. Note that here

gain matching was not required.

Energy calibration is made strip by strip within the only S2 detector used. In

order to perform such calibration, a quadruple-α source was positioned on the tar-

get holder, it contains samples of 239Pu (Eα “5.1566 MeV), 241Am (Eα “5.4856

MeV), 244Cm (Eα “5.8048 MeV) and 148Gd (Eα “3.1827 MeV). The zero off-

set and the linearity of the ADCs can also be determined with a pulser walk-

through, as shown in Figure 6.1, a faked series of energy signal equally spaced

generated by a BNC PB-4 module plugged in at the input of the preamplifier

unit. The amplitude of the pulse generator was set such that a sufficient number

of pulses would be observed in each strips, e.g. 9 in strip number 10 showed in

Figure 6.1. Verifying the effective spacing between each pulse from the output of

the ADCs therefore provide an indication of the linearity (are the output pulses

equally spaced?) and of the zero position (what is the non-locality in channels?).
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Figure 6.1: Spectrum of the pulser walkthrough for strip number 10.

However, provided that the ADCs behave linearly, the offset is better determined

using the quadruple α-source and a full energy calibration.

6.2 Event identification

6.2.1 Event selection

The first step in identifying the observed features on a raw E-∆E plot is to check

that all events are true events resulting from the impingement of 44Ti particles

onto the 4He gas, and the hydrogen contained on the window, and a subsequent

reaction. Electric noises can generate undesired events which tends to mainly

populate the region near 0 in the ∆E and/or E but can also create fake signal

elsewhere in the E-∆E plan, see Figure 6.4. Elimination of those events could

be achieved by requiring that events were two folded with specifically one hit in

the ∆E side and one in the E side, and that those hits would be geographically

localised within a physical geometry. In other words putting a requirement that

the dispersion between the two hits respected a physical straggling of protons and

α-particles. This is shown in Figure 6.5 and the hit pattern in the E detector for

selected hit-sectors and hit-strips in the ∆E detector is shown in Figure 6.6. This

has proved to be extremely powerful, with a clean up of the data apparent from

comparison of Figures 6.4 & 6.7 very effective yet not destructive of true physical

events, as the number of counts in the α locus is unaffected by the process.
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Figure 6.2: Uncalibrated spectrum of the emission lines from the α-decay of
239Pu (Eα “5.1566 MeV), 241Am (Eα “5.4856 MeV), 244Cm (Eα “5.8048 MeV)
and 148Gd (Eα “3.1827 MeV).
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Figure 6.4: Gas-in (left) and gas out (right) E-∆E plot before multiplicity and
E/∆E coincidence requirements. The A, B and C labels have the same meanings
throughout this chapter.
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Figure 6.5: Schematic for event selection/rejection based on particle trajectory
between the ∆E and E sides of the detector.
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Figure 6.6: Coincident hit patterns in the E detector with selected hits in the
∆E detector. The coincidence conditions extracted from these plots are shown
in grey (top) and yellow (bottom). Note that 4 sectors were given no response.
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6.3 Assessing the number of 44Ti(α, p)47V events

Since the energy loss of a particle through material is proportional to Z2 parti-

cle identification is relatively straightforward. While only α-particles elastically

scattered are to be measured, therefore generating only one α locus, two different

reaction types for the protons are expected. One is the elastic scatter of protons

from condensation of water and oil on the cell windows (happening on all material

within the chamber) while the other is from the sought for (α, p) events.

6.3.1 Gas-in and background data

The experimental results in the E-∆E plane are presented in Figure 6.7, where

elastically scattered α-particles from the gas are labelled A, elastically scattered

protons from condensation on the front side of the entrance window of the gas

cell are labelled B, and elastically scattered protons from condensation on the in

side of the entrance and exit windows of the gas cell are labelled C. The identi-

fication of these loci is developed in details in the following sections. The beam

intensity ratio between the gas in and the gas out (background) measurements

is of importance for subtracting the background from the gas in data. In order

to measure this ratio several approaches have been taken. The first is to use the

recorded beam intensity from online readings of the Faraday Cup, integrating

them assuming a linear behaviour between two readings. Another method con-

sists in using the measurements of the 1157 keV line in the HPGe detector in each

recorded runs and inferring a beam intensity from the time dependence of the

line’s intensity. The γ-rays are produced as 44Sc, itself product of the β-decay of
44Ti, β-decays into the 1157 keV state of 44Ca and eventually to the stable ground

state of 44Ca by emitting a γ-ray of the same energy. Finally the ratio between

elastically scattered protons from condensation on the sides of the window be-

tween runs with a filled gas cell and runs with an empty gas cell can be used. The

later solution is only viable if there is the same amount of condensation across all

runs, while this is not directly measurable, an indirect assessment can be carried

by comparing the results of each solution. This is shown in Figure 6.8. While

in appearance the most dangerous solution for beam intensity measurement it

was concluded that due to the perfect agreement of all three solution and the

better precision obtained, the elastically scattered protons would be the best for

determining the ratio gas-in exposition to gas-out exposition. The gas in and gas

out proton spectra are shown in Figure 6.9.
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Figure 6.7: Gas in (top), gas out (bottom) data observed by a S2 detector posi-
tioned at 12.7 cm downstream from the gas cell, obtained by impinging a nominal
2.10 MeV/u 44Ti beam on a gas cell containing ∼50 mbar of 4He gas. The gas
cell is closed by an entrance window made of Aluminium with nominal thickness
of 6 µm, the exit window has an Aluminium thickness of 15 µm. The exposition
ratio between gas-in and gas-out data is ∼4:1 (see text). Elastically scattered
α-particles from the gas are labelled A, elastically scattered protons from con-
densation on the gas cell are labelled B and C (see text).
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Figure 6.8: (Real-)Time dependence of different experimental features, for the
first continuous set of measurements. In black the online readings of the Faraday
cup amperage are shown. The other measurements are all off-line and therefore
only one data point per run can be presented. The elastically scattered α-particles
are plotted in green, the elastically scattered protons (regardless of their origin)
are shown in blue with a scale similar to that of the α-particles (not shown for
visibility purposes). Finally the activity of the 1157 keV γ-ray as measured by
the HPGe detector (and corrected for efficiency) is shown in red.
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Figure 6.9: Comparison between the gas in and gas out total energy projection
zooming on the elastically scattered protons energy region. The yellow area
represents the region labelled B in previous figures (elastically scattered protons
from the front side of the entrance window). In this region the ratio between the
integrated number of counts (554 vs 151) represents the beam exposure difference
between the two set of measurements.

6.3.2 Monte-Carlo simulation as an event identification

tool

In order to identify the observed features, the Monte-Carlo simulation code of

Professor Alex Murphy, used in, for example, Ref. [Salter 2012] was solicited. It

incorporates energy losses from the evaluation tables of SRIM [SRIM], energy

straggling from the Bohr formula (scaled to experimental calibration data), an-

gular dispersion of the beam determined by the beam focussing geometry, with

application of Gaussian smearing to relevant parameters. Scattering was as-

sumed to be isotropic in the centre of mass, detector dead-layers set at 0.8 µm

and intrinsic energy resolutions of 15 keV for protons and 25 keV for α-particles

assumed. Typical results from this simulation are presented in Figure 6.10, where

the parameters used are Ebeam=1.95 MeV/u, a S2 distance of 12.7 cm and en-

trance window thickness of 5.75 µm. Considering the energy loss in a material is

proportional to Z, the beam energy could first be found by reproducing the high

energy peak from elastically scattered protons from the front of the entrance win-

dow. As the incoming 44Ti particles have not been slowed through the aluminium,

this peak only depends on the beam energy.

Consequently this parameter was set to 2.16 MeV/u, somewhat different from
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Figure 6.10: Results of a Monte-Carlo simulation of the E-∆E plot for the
44Ti(α, p)47V reaction. A total number of 10’000 events are simulated. Cross
sections are set arbitrarily for plotting purposes. The parameters used are
Ebeam=1.95 MeV/u, a S2 distance of 12.7 cm and entrance window thickness
of 5.75 µm.

what the CERN Isolde operators suggested (2.10 MeV/u) but within an accept-

able margin. The second parameter, the entrance window thickness, was then

varied, with the beam energy fixed to 2.16 MeV/u, until reproduction of the low

energy peak, from elastically scattered protons from the inside of the gas cell,

i.e. back of the entrance window and front of the exit window. The most accu-

rate reproduction of the experimental features was obtained with a thickness of

6.62 µm. Comparison between the simulation output for those parameters and

the experimental results are presented in Figure 6.11. As can be seen, the main

features, peak centroids and widths are well reproduced, but smaller features are

not. In particular a constant background between the two elastically scattered

proton peaks. This can be explained by a “filling” of the Aluminium entrance

window with water from which protons would be elastically scattered as the beam

travel through the window and explaining the constant background. Similarly the

low energy tail could be explained by a “filling” of the Aluminium exit window,

the difference being that low energy protons would not be able to exit the window

and/or to travel through the ∆E side of the S2 telescope (therefore not producing

a 2-fold event).
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Figure 6.11: 2D (top) comparisons between a Monte-Carlo simulation of the E-
∆E plot for the 44Ti(α, p)47V reaction and the experimental results. The 1D
(bottom) comparison is for a projection on the E+∆E plan in order to separate
proton and α events. The parameters used are Ebeam=2.16 MeV/u, a S2 distance
of 12.7 cm and entrance window thickness of 6.62 µm.
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6.3.3 Absence of clear 44Ti(α, p)47V events

In Figure 6.12, feature D shows the simulated distribution for events from 44Ti(α, p)47V

reactions, under the same parameter set as used to accurately reproduce features

A, B and C. Ejectile protons are expected to be detected with a broadly Gaussian

distribution of energies centred at Elab “ 8.09 MeV with a 1σ width of 0.50 MeV.

The corresponding centre of mass energy distribution for the reacting α-particles,

within the gas cell, is centred at Ecm “ 4.15 MeV and has a 1σ width of 0.23 MeV.

A fit of the peak resulting from elastic scattering of protons on the outside of the

entrance window (feature B) suggests that the protons from this source contribute

less than one count to the data above an energy of 8.09 MeV. The region bounded

from the peak energy for the 44Ti(α, p)47V reaction to the peak plus the 3σ width

energy is taken as a region where 44Ti(α, p)47V reaction events would be expected,

while contamination from elastically scattered protons would not be present. In

this energy region, the numbers of events in the gas-in (12 counts) to the gas-out

(3 counts) data sets is consistent with the numbers of elastically scattered protons

seen in the gas-in and gas-out data in feature B (ratio of 3.7(2)), and corresponds

to the respective beam exposures for the gas-in and gas-out runs.

6.3.4 Evaluating of the cross section

Rutherford scattering

Use of Feldman-Cousin statistics

Potential 44Ti(α, p)47V events can therefore only be within the background signal

uncertainty, and applying the Feldman-Cousins statistical approach [Feldman &

Cousins 1998] this represents a maximum of 5.3 counts (8.0 counts), or 10.6 in the

whole peak (16), at a 68% (90%) confidence limit. The resulting upper limit on

the 44Ti(α, p)47V reaction cross section is 40 µbarn (60 µbarn), see Figure 6.13.

The upper limit is shown considering a flat behaviour of the cross section across

the energy spanned by the reacting particles (α-particles as shown in Figure 6.13).

A single data point would have no physical meaning. The previous measurements

by Sonzogni et al. are also presented in Figure 6.13 alongside the cross-section

energy dependence obtained from the NON-SMOKER Hauser-Feshbach statistical

model code (used with standard parameters) [Rauscher 1998, Rauscher 2001].

Note that the Sonzogni’s results will be developed in the next chapter.
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Figure 6.12: Comparison between the total (E+∆E) energy projection of the ex-
perimental data (black) and the results from the simulation using the parameters
discussed in the text (red). Figure a) shows the entire energy range; Figure b)
zooms on the region where (α, p) events are expected. The blue line represents
the simulated (α, p) energy peak and the darker blue line with the shaded blue
area represents the region from the centroid position, µ, to µ+3σ.
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Figure 6.13: Comparison of the measured cross section and the NON-SMOKER pre-
diction, black line, for the 44Ti(α, p)47V reaction. The red points are taken from
Sonzogni et al. [Sonzogni 2000] while the shaded area represents the constrained
region for the cross-section from our measurement. Note that the Gaussian rep-
resents the energy spanned by the beam when it passes through the gas cell, see
text.
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Chapter 7

Discussion

7.1 Implications for the 26Al(d, p)27Al reaction

rate

7.1.1 In Asymptotic giant branch and Wolf-Rayet stars

Figure 7.1 shows the contributions of individual resonances to the 26gAl(p, γ)27Si

stellar reaction rate, incorporating the results derived in the previous chapter, an

average value of 4519
´16 eV for the strength of the 188.9(6) keV resonance [Vogelaar

1996] and strong resonances at 276.3(4) and 368.5(4) keV in 27Si [Buchmann

1984] (resonance energies are taken from Ref. [Lotay 2011]). It is clear from

Figure 7.1 that the 127 keV resonance now dominates the reaction over almost

the entire temperature range of WR stars and AGB stars (T P [0.04, 0.10] GK).

Furthermore, by significantly constraining the proton spectroscopic factor for the

127 keV resonance compared to the full range considered in Parikh et al. [Parikh

2014], its contribution in novae environments is likely to be negligible.

7.1.2 In Novae

It can be seen from Figure 7.1 that for the region immediately above ∼ 0.1 GK,

corresponding to the lower temperature range for hydrogen burning in novae, the

189 keV resonance (7652 keV excitation energy in 27Si), is the strongest single

contributing state to 26Al destruction. Lotay et al. [Lotay 2011] paired this state

with a mirror analog level at 7948 keV in 27Al [Basunia 2011], with angular

distribution measurements of γ-decays giving a clear J “ 11/2 assignment for

the 7652 keV level in 27Si but with no robust conclusion with regards to the

parity of the state. As shown in Section 5.5 from Chapter 5, the present work
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Figure 7.1: Contribution of individual resonances to the 26gAl(p, γ)27Si stellar
reaction rate. Resonance energies in keV are given on the right-hand side of the
figure. The errors on the energies and strengths of resonances used to derive the
reaction rates are given in the text. The contribution of the 68 keV resonance
represents an upper limit.

strongly support a ` “ 1 assignment for the transfer which indicates a Jπ “ 11/2´

assignment for the the state. The current assignment from the Nuclear Data

Sheets is 11/2` [Basunia 2011]. This seems unlikely now. Using the measured

C2S value, 0.14(3), an implied strength for the 189 keV resonance at 52(11) µeV

is obtained. This is in excellent agreement with the two direct measurements of

55(9) [Vogelaar 1989] and 35(7) µeV [Ruiz 2006].

7.2 Comparison with recent studies

7.2.1 The competing study of the 26Al(d, p)27Al reaction

An investigation, in inverse kinematics, of the 26Al(d, p)27Al reaction was per-

formed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge

National Laboratory which comprises a 25 MV tandem [Pain 2015]. The 26Al

beam was accelerated to 117 MeV or 4.5 MeV/u, 75% of the beam energy used

for this thesis work (6 MeV/u), and impinged on a 150(14) µg/cm2 CD2 tar-

get. Silicon detectors were used for measuring the protons and they covered a

centre of mass region from ∼6 to ∼550, and ∼400 for the 7806 keV line. The
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spectrum collected at 6.50 is shown in Figure 7.2 taken from Ref. [Pain 2015], the

full width at half maximum claimed by Pain et al. is 72 keV, against 60 keV in

the present study. An insert shows the 7806 keV line which, unlike the spectra

presented in Figure 5.9, is not clean. Unfortunately, no fit is presented. The an-

gular distribution reported in Ref. [Pain 2015] is shown in Figure 7.3. Theoretical

angular distributions for ` “ 0 and ` “ 2 obtained by performing an adiabatic

wave approximation calculation with the code FRESCO [Thompson 1988]. The

light particle interactions with 26Al and 27Al were constructed using the Chapel-

Hill global optical parametrisation (CH89) [Varner 1991], which is not ideal for

the mass region of aluminium as the CH89 potential covers the mass range from

A “ 40 to A “ 209 and a beam energy region from 10 to 65 MeV/u, as pre-

sented in Section 3.4, although it is believed to function well outside these ranges

of applicability. (For completeness the neutron potential was built with using a

Woods-Saxon shape with parameters r0 “ 1.25 fm and a0 “ 0.65 fm.) Neverthe-

less the measured ` “ 0 C2S is 10(3)ˆ10´2. This is in remarkably good agreement

with the results presented in Section 5.5, C2S (` “ 0)“ 9.3(19)ˆ10´3. An ` “ 2

contribution seems very likely from the extra angular coverage compared to the

present study, even though it could be from the 7790 keV line (the spin/parity

of the corresponding state is 5/2` which would be populated via a pure ` “ 2

transfer), a possibility that was not found to be material in the analysis presented

in Chapter 5. In any case, the contribution yields a C2S of 2.9(16)ˆ10´2. In Sec-

tion 5.5 this contribution was measured at 6.8(14)ˆ10´2. The results disagree

but it should be noted that considering the difficulty in measuring the ` “ 2

contribution the similar order of magnitude found is already a small success.

Consequently the reaction rate found by Pain et al. agrees with that presented

earlier in this chapter.

7.2.2 The 26Al(d, n)27Si reaction

A recent experiment conducted at Michigan State University by Kankainen et

al. [Kankainen 2016] aimed at measuring the 26Al(d, n)27Si reaction. The beam

at an energy of 30 MeV/u was produced using the in-flight methodology and

it was bombarded onto a thick (CD2)n target, 10.7(8) mg/cm2. At the back of

the target location, the Gamma-Ray Energy Tracking In-beam Nuclear Array

(GRETINA) was positioned to measure the γ-rays coming off the excited states

of 27Si populated in the experiment. Collection of data was (principally) triggered

by the coincident hit of a γ-ray in GRETINA and of a 27Si recoil in a particle

detector (S800 spectrograph [Bazin 2003]). This set up provides a mean for angle

integrated cross section to be derived. Here too, the transfer calculations were
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Figure 7.2: Excitation energy spectrum from 26Al(d, p)27Al in the region 2 to
12 MeV, with Ebeam “ 4.5 MeV/u and θc.m. “ 6.50. The inset shows a zoom up
on the 7–9 MeV energy range exhibit a peak at 7806 keV, red line. The nearby
peaks at 7664 and 7950 keV are indicated by dashed blue lines. The figure is
taken from Ref. [Pain 2015].

Figure 7.3: Angular distributions and fit of a ADWA calculation for the 7806 keV
state in 27Al from Ref. [Pain 2015].
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7.3. Shell model calculation for 27Al

made using FRESCO [Thompson 1988], and the nucleon-26Al potential was also

built with the CH89 potential [Varner 1991]. Several C2S were measured for states

also investigated in the work presented in this thesis, they are for the resonances

at 126.9(9) keV (Eexc. “ 7590.1(9) keV), at 188.7(6) keV (Eexc. “ 7651.9(6) keV)

and at 276.1(4) keV (Eexc. “ 7739.3(4) keV). In particular the measurement of the

spectroscopic factor of the 188.7(6) keV resonance, 0.22(5), whose mirror state in
27Al is at 7948 keV is in acceptable agreement with the measurement presented

in the previous chapter, 0.14(3). This seems to confirm the negative parity of the

state.

7.3 Shell model calculation for 27Al

Theoretical spectroscopic factors can be obtained by performing shell model cal-

culations. One of the features of the shell model is to consider that the core

of the nucleus made of magic numbers of protons and neutrons is mostly inert.

For 27Al the core is 16O, such that the first three orbitals 1s1{2, 1p3{2 and 1p1{2

are primarily ignored. The “active” nucleons are on the 1d5{2 orbitals, hence the

5/2` ground state of 27Al. The odd proton space, available upon excitation of

the valence nucleon, is [1d5{2, 2s1{2, 1d3{2], known as the sd-shell space, which

produce positive parity states. When the excitation energy becomes high enough

negative parity states can be populated in the fp-space, [1f7{2, 1p3{2], or by core

excitation with for example the odd protons transitioning from the sd-shells to

the 1p1{2 shell. The shell picture for 27Al was presented in Figure 3.9.

Calculations whose results are shown here in Table 7.1 were provided by B.

Alex Brown and are further reported in Ref. [Margerin 2016b]. For the sd-shell

space it utilises the USDA-cdpn and USDB-cdpn Hamiltonians, which are in-

teractions built in a isospin formalism [Bown & Richter 2006] and taking into

account the charge-dependent (cd...) and charge-asymmetric nuclear Hamilto-

nian obtained by Ormand and Brown in a proton-neutron basis (...pn) [Ormand

& Brown 1989].

Such calculations are semi-empirical. They heavily hinged upon experimen-

tal two-body matrix elements (NNN effects are only considered inherently and

when they affect the two-body matrix elements), for example x1d5{2|2s1{2y3` , and

single-particle energies, namely ε1d5{2, ε2s1{2 and ε1d3{2. This is similar to the use of

semi-empirical shell model calculation near 208Pb, see Refs. [Margerin 2012, Marg-

erin 2016a], that uses the formalism of, for example, Ref. [Lawson 1980]. Here,

two “universal” sd (USD) Hamiltonians are derived from fitting experimental re-

sults, this is explained in details in Ref. [Bown & Richter 2006]. In short, one,
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USDA, is highly constrained by requirements in data quality and in the distance

from the Hamiltonian results to the data, that further helps convergence of the

fit. Theoretical models for the two-body interactions are used when the semi-

empirical values may risk the fit to diverge (as per the requirements). The other

one, USDB, can be seen as a best fit to most fits. The derivation of USDA high-

lights a minimum number, NT , of data to consider to obtain converge. Truncation

of the full data, Nd to NT is done, but the data making up NT are varied (it is

not said if this is
`

Nd

NT

˘

, however, seeing as using the values of [Bown & Richter

2006] this number would be ∼1013, it is highly unlikely). The USDB Hamiltonian

is therefore determined when a convergence to the all the combinations used to

build NT is obtained. In the sd region the rms obtained when fitting existed data

with USDA and/or USDB in ∼150 keV [Bown & Richter 2006]. Consideration

of charge-dependency and charge-asymmetry leads to a breaking of the isospin

quantum number. This is not a “good” quantum number, as highlighted by the

mirror energy difference that exists between states of the same isospin T and

angular momentum `. These differences were shown in Figure 3.4 from the study

of the mirror analogues between 27Al and 27Si by Lotay et al. [Lotay 2011]. In

considering isobaric (same A) multiplets, an isobaric-mass (difference) multiplet

equation can be parametrised. Ensuring these are respected by the shell model

Hamiltonians, the model is charge-dependent and charge-asymmetric.

Decomposition of a state on the sd basis uses the coefficient of fractional

parentages, see Refs. [Lawson 1980, Margerin 2012], which are linked to the C2S

coefficients as shown in Chapter 3. Consequently performing shell model cal-

culations of states in 27Al yields the corresponding semi-empirical spectroscopic

factors. Typically the closest to 1 a spectroscopic factor is, the better the calcu-

lation should perform. Indeed a high C2S means a strong overlap between the

(26Al`p) and 27Al systems, and consequently signifies a single-particle driven ex-

citation, which is very well captured by the shell model. Weaker factors should

not be so well reproduced because they are synonym of higher modes of excitation,

collectiveness, which is not taken into account in the shell model. A comparison

of the theoretical and experimental spectroscopic factors is shown in Table 7.1.

Considering the relatively small angular coverage of the experimental distribu-

tion that does not allow for firm determination of ` “ 2 components of mixed

` “ 0 & 2 transfers, it is better to compare the ` “ 0 C2S for mixed transitions

or the single ` “ 1 or ` “ 2 transfers. It is worth noting that constraining the

comparison as just described, and only considering the main states for which it is

easier to match experimental and theoretical states, then the shell model results

are very consistent with the measurements.
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Table 7.1: Comparison between the spectroscopic factors obtained by shell model
calculation described in the text and experimental results for selected states.

n Jπ Eexc C2S C2S
(MeV) ` “ 0(1) ` “ 2(3)

1 5/2` 0.000 1.1
exp. ` “ 2 0.000 3

4 7/2` 2.313 1.0ˆ10´1

exp. ` “ 2 2.212 2.3ˆ10´1

7 9/2` 2.949 5.0ˆ10´1 4.0ˆ10´2

exp. ` “ 0 & 2 3.004 4.9ˆ10´1 1.8ˆ10´1

11 11/2` 4.437 1.3ˆ10´1 2.6ˆ10´1

exp. ` “ 0 & 2 4.510 1.1ˆ10´1 3.3ˆ10´1

17 11/2` 5.382 3.4ˆ10´1 1.3ˆ10´1

exp. ` “ 0 & 2 5.500 3.7ˆ10´1 5.3ˆ10´1

20 9/2` 5.726 9.5ˆ10´2 4.2ˆ10´1

exp. ` “ 0 & 2 5.667 5.3ˆ10´2 6.1ˆ10´1

27 9/2` 6.492 2.2ˆ10´2 3.1ˆ10´1

exp. ` “ 0 & 2 6.514 4.1ˆ10´2 2.3ˆ10´1

39 11/2` 7.118 1.6ˆ10´1 5.0ˆ10´1

exp. ` “ 0 & 2 6.948 1.7ˆ10´1 6.1ˆ10´1

40 13/2` 7.201 1.3ˆ10´1

exp. ` “ 2 7.289 0.45

49 9/2` 7.737 1.1ˆ10´2 1.1ˆ10´2

exp. ` “ 0 & 2 7.806 9.3ˆ10´3 6.8ˆ10´2

7.4 Core collapse supernovae and 44Ti

The upper limit cross section presented in the preceding chapter helps to detach

CCSNe calculation from statistical models. However, covering only a small region

of the Gamow window, furthermore with an upper limit, is clearly not sufficient

for definitive statements and a full calculation of the 44Ti ejecta content still

require statistical models. There is nonetheless several factors to learn.

The first observation is that the upper limit is lower than the mean statistical
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model prediction, which a 4σ assertion, see Table 7.2. Yet an evaluation of the

reaction rates implied by the previous data and by the statistical model [Hoffman

2010] concluded that a factor of three uncertainty remained, and that additional

data at lower energy were needed. The new upper limit, at significant lower

energy, is presented as the horizontal bar in Figure 6.13 (this was explained in

the previous chapter). Folding the distribution of ion energies and an energy

dependent cross section provided by the NON-SMOKER calculation, the predicted

cross section would have been 88 µbarn. Therefore the present result indicates

a cross section smaller by, at a 68% (90%) confidence level, at least a factor of

2.2 (1.3) compared to the NON-SMOKER expectation, see Table 7.2, considering

our reaction distribution, incidentally near the lower limit for NON-SMOKER. (At

a 99% confidence level, the measured upper limit, 85 µbarn, is still below the

NON-SMOKER prediction.)

7.4.1 Implications for CCSNe

The dependency of the final 44Ti abundance produced in core collapse supernovae

was studied in detail by The et al. [The 1998]. The study showed that lowering

the 44Ti(α, p)47V reaction rate by a factor of 10 lead to a doubling of the 44Ti

abundance in the ejecta. Under the assumption that the present upper limit

implies a minimum reduction in the cross section at all energies (within the

Gamow window), then the consequent increase in the amount of 44Ti ejected is

Á30%, i.e., for the highest model predictions, Á1.3 Md. This rate increase would

bring the observation of 44Ti produced in SN1987A, 1.5(3) ˆ10´4 Md [Boggs

2015], and Cassiopeia A, 1.25˘0.3 ˆ10´4 Md [Grefenstette 2014], into closer

agreement with the amount predicted by core collapse supernovae models.

Perego et al. [Perego 2015] have recently used the new upper limit of this

work into a CCSNe model (PUSH). This is still a semi-empirical approach as

parameters have to be fit to several observables from SN1987A (crucially not the
44Ti yield). The 44Ti ejecta yield derived is 1.49ˆ10´5 Md (or 5.65ˆ10´5 Md

ignoring the quantity that would fall back into the newly formed proto-neutron

star). The PUSH method allows the authors to consider mixing and convective

overturn of material, whereby material destined to be ejected into interstellar

medium or trapped into the PN star might have a different outcome due to the

enormous convective forces in play. In doing so, Perego et al. concludes that “the

amount of 44Ti in the ejecta is 3.99ˆ10´5 Md”.

Finally it is also worth noting that, by applying this factor to the highest

model prediction for the CCSNe 44Ti yield, the age of the recently discovered

Vela SNR may rather be Á800 years.
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7.4. Core collapse supernovae and 44Ti

Table 7.2: Impact of the measured upper limit for the cross section of the
44Ti(α, p)47V reactions depending on the confidence level.

Confidence Upper limit for the Reduction factor in CCSNe ejecta
level cross section (µbarn) σ from NON-SMOKER 44Ti contenta

68% 39.6 2.22 1.30
90% 59.9 1.47 1.15
95% 69.9 1.26 1.09
99% 84.5 1.04 1.04

a Based on the maximal amount in ejecta from standard calculations at 1 Md.

7.4.2 Measuring (α, p) reactions on heavy ions

Previous measurement of the 44Ti(α, p)47V reaction

A previous measurement, which was also the first of the 44Ti(α, p)47V reaction,

was conducted at Argonne by Sonzogni et al. [Sonzogni 2000]. This measurement

was made in two parts. The first consisted in forming 44Ti on a scandium disc

via the 45Sc(p, 2n)44Ti reaction. The material was left to irradiate away for long

enough, two weeks, until it could be manipulated and the 44Ti separated and

adjoin to a natTiO2 solution. This is indeed similar to the extraction of 44Ti from

the PSI beam dumps as presented in Chapter 4. However, while there was no

traces of contaminants in the extraction performed at PSI, the target derived

from chemical separation contained other species, in particular 44Ca. (The (α, n)

reaction on 44Ca produces 47Ti, while the (α, n) reaction produces 47Ti.) In a

second part, the 44Ti ions were accelerated to 133.5 MeV and impinged on a

gas cell filled with helium-4 (or not for background measurement). The time

of flight of particles trough Argonne’s fragment mass analyser was measured to

separate the mass 44 species (in particular the beam) from the A “ 47 species,

containing 47V. Upon careful subtraction of the other mass 47 contaminants from

the results, the yield of the 44Ti(α, p)47V reaction could be obtained at 5.7, 6.8,

9.0 and 9.0 MeV in the centre of mass. The corresponding results were shown on

Figure 6.13, in Chapter 6.
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Systematics of HI(α, p)

In order to compare different heavy-ion`α reactions, P. Mohr et al. [Mohr 2014]

have used a re-scaling of the energy and cross section of a reaction [Gomes 2005]:

Ered. “
pA

1{3
P ` A

1{3
T qEc.m.

ZP .ZT
, and

σred. “
σr

pA
1{3
P ` A

1{3
T q

2
,

where P denotes the projectile and T the target, A and Z are the usual mass

and proton numbers of the nucleus. In Figure 7.51 many heavy-ion`α reactions

are plotted showing that they mostly fall on the same pattern apart from four

outliers. Although 44Ti(α, p)47V does not exactly fall on the systematics trend,

it can be seen on both Figure 7.5 and Figure 6.13, that the reaction does seem to

behave as expected from a statistical model such as NON-SMOKER (note Ref. [Mohr

2015] uses a slightly different statistical model). It reinforces the conclusion made

in the previous section further showing that if the cross section is to behave near

the statistical model predictions, then the upper limit must be close to the actual

data point. Also if one extrapolates the Sonzogni et al. data, showed in various

figures, it seems to overshoot the calculation. It could be due to the presence of

more contaminant than measured for in the last mentioned experimental work.

This could warrant a short re-run of the reaction cross section measurement at

the lowest energies investigated by Sonzogni et al. [Sonzogni 2000] for which the

cross section is still in the tens of millibarn.

1This figure is courtesy of P. Mohr
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Figure 7.4: courtesy of P. Mohr, a similar
figure can be found in Ref. [Mohr 2014].

Figure 7.5: From [Mohr 2015].
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Chapter 8

Conclusive comments

In conclusion, the work of this thesis has already had a clear impact on the field

of nuclear astrophysics. The 44Ti and 26Al nuclei are some of the few astrophysics

observables whose provenance and production mechanisms still ask for complete

understanding. Here two reactions commanding the reaction rate behaviour have

been tackled using new and state-of-the-art methods.

Regarding the 26Al(p, γ)27Si, the mirror study is now complete, although

scientific completeness may only be achieved with a direct study and this will be

discussed below.

The first study of the 44Ti(α, p)47V reaction at energies of interest for core

collapse supernovae was presented in length. Achievement of this pioneering

measurement was made through the development of a novel beam production

technique. At PSI, Switzerland, the ERAWAST initiative made a TiF sample

containing 44Ti in sufficient quantity that it could be accelerated (at the low

energies available) at ISOLDE. This allowed a study at a centre of mass energy

of 4.15 MeV, below the lowest energy of the previous study and, for the first time,

well within the relevant Gamow window. A detailed analysis found no evidence

for the presence of 44Ti(α, p)47V reactions in the data, leading to an upper limit

of 40 µbarn, at a 68 % confidence limit. This is about half the NON SMOKER

prediction, and constitutes a step towards explaining the 44Ti excesses already

observed in CCSNe. Future experimental studies utilising this and other isotopes

reclaimed from accelerator waste have been developed and accepted, they are

awaiting scheduling at ISOLDE, with improved beam intensities expected.

123



Chapter 8. Conclusive comments

8.1 Closing the 26Al(p, γ)27Si reaction study

In recent years, several pieces of work have tackled the issues of the 26Al(p, γ)27Si

reaction, which is a pivotal reaction in the production rate of 26Al in most stars.

Due to the low cross-sections the direct measurement of proton spectroscopic

factors has to be done with the (3He, d) reaction. It has proven to be a very

complicated experimental effort, and the study of Vogelaar et al. [Vogelaar 1996],

which investigated this reaction, has not resolved all the questions. Consequently

indirect measurements have been attended, all by the way of inverse kinematics

reactions.

In this thesis, a high-resolution study of the 26Al(d, p)27Al transfer reaction

in inverse kinematics was indeed presented. It was performed using the most

intense radioactive 26Al available in the world, delivered by the ISAC-II facility

at TRIUMF, allied with state-of-the-art detection apparatus, the TUDA array.

A comprehensive study of many states, principally populated via ` “ 0, ` “ 2

and ` “ 0 & 2, was conducted. It allowed to place experimental constraints

on the proton spectroscopic factor C2S of the key 127 keV resonance in the
26gAl(p, γ)27Si reaction. This has resulted in stringent restrictions on the rate at

which this reaction occurs and clearly points to the dominant role of the 127 keV

resonance in the destruction of the cosmic γ-ray emitting isotope 26Al in Wolf-

Rayet and AGB stars. This result was reported in Ref. [Margerin 2015]. A

competitive and completely independent study by Pain et al. [Pain 2015], came

with the same results (see Table 8.1), although with less precise measurements

due to a lower beam intensity and broader full width at half maximum for the

observed peaks in the proton spectra.

Also from the analysis of Chapter ?? it was shown that the spin/parity of the

7948 keV state in 27Al which Lotay et al. have assigned as the analogue state

to the 189 keV resonance (Eexc “ 7652 keV) of the 26Al(p, γ)27Si may rather be

Jπ “ 11/2´ instead of the positive parity previously assigned. A (d, n) study

conducted by Kankainen et al. at NSCL at Michigan State University [Kankainen

2016] could also study the 189 keV state. This resulted in similar conclusions to

those present in this work, at the very least in agreements once uncertainties are

considered (see Table 8.1).

Although, those studies do not preclude the need to perform a direct mea-

surement via the 26Al(3He, d)27Si reaction, the coherent picture provided by all

the very recent results brings the question of the destruction of the cosmic γ-ray

emitting isotope 26Al in Wolf-Rayet and AGB stars, and to a lesser extent in

Novae, closer to a definite solution.
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8.2. Further exploration of the 44Ti(α, p)47V cross section

Table 8.1: Comparison between recent works on the destruction of 26Al in stars.

Eexc Eres Jπ ` C2S (d, p)a C2S (d, p)b C2S (d, n)c

(keV) (keV)

7806 127 9/2`
0
2

9.3(19)ˆ10´3

6.8(14)ˆ10´2
10(3)ˆ10´2

2.9(16)ˆ10´2

7948 189 11/2´ 1 0.14(3) 0.22(5)

a From this work and Ref. [Margerin 2015].
b From Ref. [Pain 2015].
c From Ref. [Kankainen 2016].

8.2 Further exploration of the 44Ti(α, p)47V cross

section

Measuring the 44Ti(α, p)47V cross section could ideally be done by obtaining a
44Ti target and impinging an α-particle beam on it. However production of a

solid target continues to prove unsuccessful due to still insurmountable chemical

obstacles. Measurement of the recoil would be an option. For example in the

work of this thesis all 47V recoils produced by the reaction would be collected on

the exit window. Extracting and post accelerating them to perform an Acceler-

ator Mass Spectrometry (AMS) analysis could yield an extremely precise count

of the number of recoils generated, for an example of how precise such measure-

ments can be, see Ref. [Wallner 2015]. But 47V decays to 47Ti with a lifetime

τ “ 47 min. Effectively all the 47V recoils would be 47Ti nuclei by the time

extraction takes place. Unfortunately 47Ti is naturally occurring, and with the

handling of the window and the chemical procedure to extract the radioisotopes

from the aluminium foil, it is almost certain that enough 47Ti would be added

to the sample to make the measurement statistically insignificant (remembering

that the reaction would only produce up to 1000 47V nuclei depending on the

beam intensity). And this is not mentioning the very plausible presence of 47Ti

nuclei in the aluminium window. This means that, currently, the only possible

way forward is enhancing the set up used in this work.

Consequently, in order to provide measurement of the 44Ti(α, p)47V at dif-

ferent energies, several changes in light of the successes and downsides of the

experiment presented in the previous sections have been developed. While the

detection technique is not to be profoundly modified, apart from the likely addi-

tion of a second S2-telescope, a new gas cell entrance window using thin (2–4 µm)
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Mylar foil will be used. It is expected that elastically scattered protons from the

scattering centres of the Mylar molecule (a CxHyOz composite), and the oil/water

condensation on the window will generate, considering a 60 MeV beam, a 5 kHz

count rate, below the detectors limit of 10 kHz. Due to the 1/E2 dependance

of the Rutherford cross section, a higher beam energy will only lower this back-

ground rate. The exit window would not be changed (a 15 µm thick aluminium

foil) as this effectively stops the recoil and only generates background counts from

water/oil condensation on the inner side of the window.

Previous work from the Edinburgh group has used thin Mylar foils with

300 mBar pressure which is ∼5 times higher than was used in the first phase

of IS543, the code name of the experiment at REX-ISOLDE. Our preliminary

tests indicate that the gas cell with its new entrance window can handle this

pressure and it is anticipated that the forthcoming gas-in data will be taken with

150-200 mBar of 4He. For the experiment, a 30 MBq sample of 44Ti, similar to

what provided for the first experiment, will be available but it is thought that

little of the source material was successfully extracted and delivered to the gas

cell. With better efficiency, a significantly stronger beam intensity is expected.

The use of Mylar foils leads to a lower energy beam being required to deliver

the the same reaction energy, as compared to aluminium foils. The reaction en-

ergy dependency to the beam energy and the foil thickness is shown in Figure 8.1.

This is due to different energy loss in the respective materials. Aluminium en-

trance window, with 6 µm thickness (as given by the manufacturer), the smaller

thickness that resisted a range of pressure tests that we conducted before IS543-I,

will still be used in case the required beam energy is below the limit achievable

by ISOLDE, given its development status. However this would constrain the new

experiment to high energies, with regards to the Gamow window, which would

not necessarily fulfil the scientific case.

In the ideal case, the cross section for the 44Ti(α, p)47V reaction shall be stud-

ied at 4 energies, given here in the centre of mass frame for the α-particle: 6 MeV,

5.5 MeV, 5 MeV, and 4 MeV. The motivation for this choice is to 1) corroborate

the results from Sonzogni et al. [Sonzogni 2000] at 6 MeV, the high energy end

of the Gamow window, 2) map out the cross section behaviour in the 5-6 MeV

region of the Gamow window, where the cross section is high, 3) confirm and

obtain a cross section value at the 4 MeV, the energy used in the first phase

of IS543. Upon obtaining of meaningful measurements, lower reaction energies

could potentially be investigated.

The progress made by the CERN beam development team in understanding

the 44Ti source means that it is not foolish to seek for an increase of a factor
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Figure 8.1: Dependence of the final energy of the 44Ti particles upon the delivered
beam energy for Mylar window thicknesses of 2 and 4 µm.

of 10 to 100 in beam intensity. For an increase of a factor of 50, the beam

intensity would be in the range 25 to 100ˆ106 pps, the expected count rate for

the 44Ti(α, p)47V is presented in Table 8.2. (The figures shown there are drawn

considering a similar increase of the cross section at 6 MeV to that measured by

Sonzogni et al. value at 5.8 MeV, the NON-SMOKER prediction at 5.5 and 5 MeV,

and our upper limit from the previous measurement at 4.15 MeV.)
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Table 8.2: Expected event rate, in the S2-telescope, for the 44Ti(α, p)47V reaction
at 4, 5, 5.5 and 6 MeV in the centre of mass of the reacting α-particle, for a beam
intensity of 50ˆ106 pps. The rates are given following two possible entrance foil
materials. It is assumed that the detector is at 12 cm downstream and that its
efficiency is 100%

Entrance 4He gas Reaction Ebeam σ Event rate
window foil pressure [mBar] energy [MeV] [MeV/u] [mbarn] [counts/s]

Mylar (3 µm)
200 4 1.32 ă0.05 ∼0.003
200 5 1.57 0.7 ∼0.04
200 5.5 1.68 3.5 ∼0.2
200 6 1.81 15 ∼1

Al (6 µm)
70 4 2.08 ă0.05 ∼0.001
70 5 2.60 0.7 ∼0.02
70 5.5 2.86 3.5 ∼0.08
70 6 3.12 15 ∼0.3
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