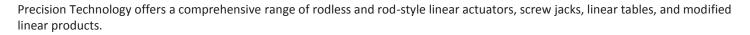


ENGINEERED ACTUATORS



A member of the

GROUP

THE POWER BEHIND PERFORMANCE

www.pt-usa.net

Precision Techn

ENGINEERED ACTUATORS

Based in a 50,000 square-foot-facility in Roanoke, Virginia, Precision Technology prides itself on being an innovative, responsive, solution-based manufacturer and supplier of industrial linear motion actuators for an extensive range of automation, machinery, material handling and positioning applications. At the core of our product range is the renowned and patent protected WIESEL™ linear actuators which are making a difference in automation environments across the continent with faster speeds at longer strokes.

No matter what your problem may be, our sales applications engineers, certified technicians and master assemblers are available to assist in integrating our products into your system. All of our engineers have technical degrees and are experts in our industry. Precision Technology offers expertise in engineering complete mechanical linear systems packages.

Precision Technology is part of a worldwide group of businesses involved in marine machinery and general automation with facilities in North America, Britain, and Australia.

Other businesses within the group include:

Hypac, a manufacturer of unique lightweight deck machinery for fast vessels, both commercial and military. Hypac also produces basket presses used in making the highest quality wines, together with a growing range of other premium wine making equipment.

Seaway Powell Marine, a designer and manufacturer of sophisticated deck equipment for super yachts and other vessels, both commercial and military.

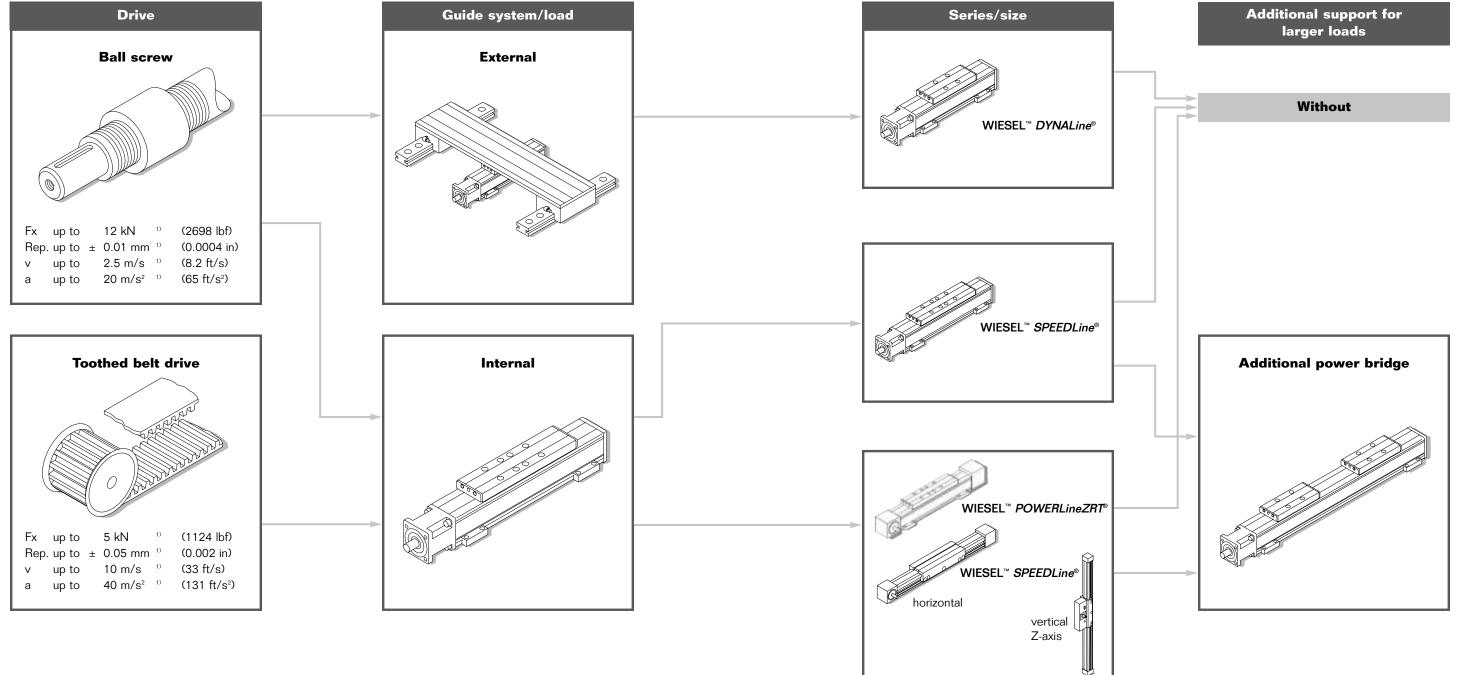

American Actuators, a business focused on developing new innovative automation products and solutions for original equipment manufacturers.

Table of Contents

Selection of linear drive units	
Linear drive units WIESEL [™] SPEEDLine® General technical data WH40 WH50 WH50 WH80 WH120 WH Guide Tubes WH Guide Tubes WHZ50 WHZ80 Accessories WIESEL [™] SPEEDLine®	
Linear drive units WIESEL™ POWERLine®, WIESEL ™ DYNALine® , VARIOLine ™	21
General technical data	
WIESEL™ VARIOLine™	
WZ60	. 24
WZ80	
WIESEL [™] POWERLine® with toothed belt drive	
WM60-370 ZRT WM80-370 ZRT	
WM80-370 ZICT	-
WIESEL™ POWERLine® with ball screw drive	
WIESEL [®] POWERLINE® with ban screw drive . WM40 .	
WM40.370	
WM60	34
WM60-500	
WM80-370 . WM80	
WM80 WM120	
WM Guide Tubes	
WIESEL™ DYNALine® with ball screw drive	
WV60	
WV80	
WV120 .	
Accessories WIESEL™ POWERLine®, WIESEL™ DYNALine®	44
Precision Technology USA, Inc. WIESEL™ modular system Dynamic load rating	50 51
Drive selection for linear drive units with toothed belt drive .	
Drive selection for linear drive units with ball screw drive .	
WIESEL Ordering Information	54
VERSARam Ram-Style Actuators	57
Series overview and ordering	
General technical data	59
M100 basic model	62
M205 model with inline gear reducer	
M501 model with parallel belt motor drive.	
M505 model with integral right-angle bevel gears M601 model with right-angle worm drive	65
M605 model with inline drive arrangement	67
Accessories	
Screw Jacks	
Cubic screw jack designs	
Technical data Application considerations	.74 77
Selection and calculations	
Dimensions, versions N and V	84
Dimensions, version R	
Accessories	
Application checklist Ordering information	
	50

Selection of linear drive units

The best solution for every application

Notes: Fx -Feed force

- Rep.-Repeatability
- -Linear speed V
- -Acceleration а

- respective sizes can be found on page 4.

Summary of performance data, additional options and accessories

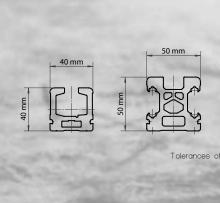
Summary of performance data

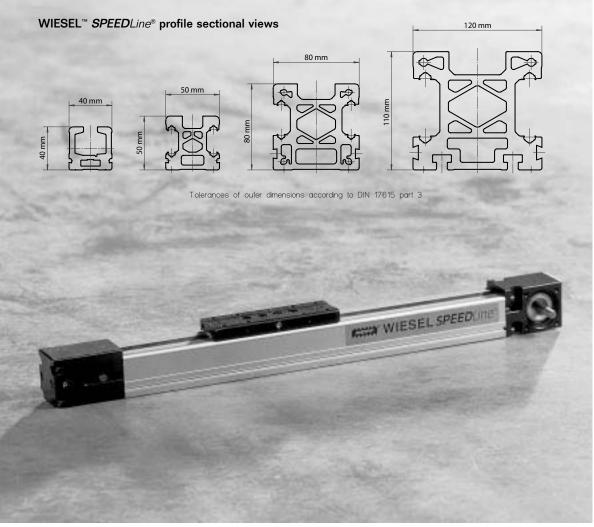
Туре	Profile-	Drive	Lead [mm]	Feed	Repea-	Linear	Load ²⁾	Other	loads ai	nd mome	ents
	cross- section [mm]	element ¹⁾	Stroke per revolution [mm/rev.]	force Fx [N]	tability4) [mm]	speed [m/s]	Fz [N]	Fy [N]	Mx [Nm]	My³) [Nm]	Mz ³⁾ [Nm]
WH40	40x40	ZRT ¹⁾ 10 AT5	100	315	± 0.05	3.0	600	450	10	30	30
WH50	50x50	ZRT ¹⁾ 16 ATL5	120	670	± 0.05	6.5	730	415	16	87	50
WH80	80x80	ZRT ¹⁾ 32 ATL10	200	2700	± 0.05	10	2100	882	75	230	100
WH120	120x110	ZRT ¹⁾ 50 ATL10	260	5000	± 0.05	10	9300	4980	500	930	500
WHZ50	50x50	ZRT ¹⁾ 16 ATL5	120	670	± 0.05	6.5	730	415	16	87	50
WHZ80	80x80	ZRT ¹⁾ 32 ATL5	200	1480	± 0.05	10	2100	882	75	230	100
WM40	40x40	KGT ¹⁾ ø 12 mm	5	1000	± 0.01	0.25	600	450	10	30	30
WM60-370 ZRT	60x60	ZRT ¹⁾ 20 ATL5	120	850	± 0.05	2.5	1400	1400	50	100	100
WM60-370	60x60	KGT ¹⁾ ø 20 mm	5/20/50	2800	± 0.02	2.5	1400	1400	50	100	100
WM60	60x60	KGT ¹⁾ ø 20 mm	5/20/50	4000	± 0.01	2.5	2000	2000	100	200	200
WM60-500	60x60	KGT ¹⁾ ø 20 mm	5/20/50	4000	± 0.01	2.5	2000	2000	100	200	200
WM80-370 ZRT	80x80	ZRT ¹⁾ 25 AT10	170	1470	± 0.05	2.5	2100	2100	150	180	180
WM80 ZRT	80x80	ZRT ¹⁾ 25 AT10	170	1470	± 0.05	2.5	3000	3000	300	300	300
WM80-370	80x80	KGT ¹⁾ ø 25 mm	5/10/20/50	3500	± 0.02	2.5	2100	2100	150	180	180
WM80	80x80	KGT ¹⁾ ø 25 mm	5/10/20/50	5000	± 0.01	2.5	3000	3000	350	300	300
WM120	120x120	KGT ¹⁾ ø 32 mm	5/10/20/40	12000 ⁵⁾	± 0.01	2.0	6000	6000	500	600	600
WV60	60x60	KGT ¹⁾ ø 20 mm	5/20/50	4000	± 0.01	2.5	_	_	_	-	_
WV80	80x80	KGT ¹⁾ ø 25 mm	5/10/20/50	5000	± 0.01	2.5	_	_	_	-	-
WV120	120x120	KGT ¹⁾ ø 32 mm	5/10/20/40	12000 ⁵⁾	± 0.01	2.0	-	-	-	-	-

1) KGT = Ball screw

- ZRT = Toothed belt drive
- All maximum forces and moments given refer to the center/top of the power bridge.
- Increase of admissible values possible by long or additional power bridge.
- 4) Refers to the average positioning variation according to VDI/DGQ 3441.
- 5) At 40 mm lead max 8000 N.

Unit conversions


Length:	1 m=1000 mm=39.37 inches 1 inch=25.4 mm	Geometrical moment of inertia:	1 m ⁴ =10 ¹² mm ⁴ =2.4025 x 10 ⁶ in ⁴
Force:	1 N=0.225 lbf 1 lbf=4.45 N	Mass moment of inertia:	1 kg • m²=10 ⁴ kg • cm²=0.738 lb • ft • s²
Moment of Force:	1 Nm=0.738 lb • ft=8.85 lb • inches 1 lb • ft=1.36 Nm	Mass:	1 kg=2.2 lb


Mechanical linear drive units WIESEL[™] SPEEDLine[®]

WIESEL[™] SPEEDLine[®] WH40

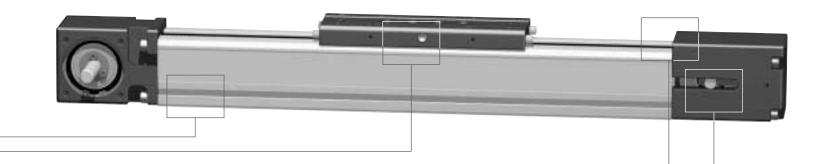
• Completely integrated miniaturized drive unit with linear guide and toothed belt drive.

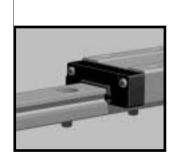
Precision Technology

WIESEL[™] SPEEDLine[®] WH50/80/120

• Completely integrated linear axis with roller guideway and toothed

WIESEL[™] SPEEDLine[®] Z-axis


- Especially developed for vertical movements.
- Reduction in dead weight together with the short design allows high dynamics.

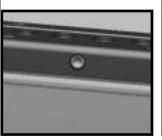

WIESEL[™] SPEEDLine[®]

New technology right to the center.

WIESEL[™] SPEEDLine[®] WH40

A linear drive unit for dynamic miniaturized applications. High performance with extremely small dimensions.

Linear guides Precise positioning is made possible by a polished linear guide with a high degree of guide accuracy. A smaller motor can be added thanks to maintenance is now a the low coefficient of friction. Rubber wipers protect the mechanism from dirt, thus increasing service life.


WIESEL[™] SPEEDLine[®] WH50, WH80, WH120, WHZ50, WHZ80 With the WIESEL[™] SPEEDLine[®] single-axle solutions can be realized as well as two-

and three-dimensional handling systems.

The reduced mass to be moved together

The WIESEL[™] **SPEED**Line[®] Z-axis is especially suitable for vertical movements.

with the short design allow higher

Central lubrication The linear guide system is

conveniently relubricated from a central point. Whether by hand or automatically, simple matter.

AT toothed belt A proven drive element:

- high loading
- wear resistance high efficiency
- exact spacing
- low mass

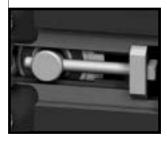
Completely new arrangement of the roller guideway The H-Type arrangement of

guidance allows high forces and moments and thereby the choice of a smaller size. Your benefit: lighter and more economical constructions.

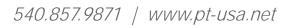
ATL belt

ATL toothed belt • with steel reinforcement especially suitable for linear drive units

• higher performance • repeatability of ± 0.05 mm even at high feed forces


Tension and exchange of toothed belt The toothed belt can be retensioned and exchanged comfortably without dismounting the load (only WH50/80/120), thus reducing your service costs.


8 0


dynamics and loads.

FEA optimized design FEA analysis helps model and optimize the profile and the whole linear axis. The result: highest performance and reliability.

General technical data WIESEL[™] SPEED ine[®]

Speeds

The linear speed achieved by a linear drive unit depends on the lead of the mechanical drive element and on the input rotational speed. The various linear speeds which can be achieved by the individual sizes are listed in the following table:

Size	Lead [mm/rev.]	n _{max} [rpm]	v _{max} [m/s]
WH40	100	1800	3
WH50/WHZ50	120	3250	6.5
WH80/WHZ80	200	3000	10
WH120	260	2308	10

Installed position

The linear drive units can basically be installed in any position, provided that all the forces and moments occurring remain below the maximum values for the axis concerned.

Security advice

All sizes are generally not self-locking. It is therefore advisable to install suitable motors with holding brakes, particularly if the linear drive unit is installed vertically.

In case of a break of the toothed belt the load is released by toothed belt driven linear units. Therefore safety precautions have to be taken for applications which are critical with regard to security.

Loading

All specified maximum forces and moments refer to the center/top of the power bridge. Load overlay at several coordinates: If compound loads occur, with force and moment components in more than one direction, the maximum permissible loads must be reduced to 60% of the specified maximum values. When forces and moments are overlaid in two or three coordinates, it is necessary to reduce the maximum permissible load to 60% of the maximum value.

Load ratings See page 96

Operating hours

The toothed belt as well as the roller guideway allow continuous operation up to 100%. Extremely high loads, combined with long operating hours, may reduce the lifetime.

Temperatures

All series are designed for continuous operation at ambient temperatures up to 80°C (176°F). Temperatures up to 100°C (212°F) are also permitted for brief periods. The linear drive units are not suitable for operation at subzero temperatures.

Idle torque

The indicated values for the idle torgue are mean values determined in a rank. In individual cases these values can deviate.

Straightness/torsion

The aluminum profiles are extruded sections which may display deviations in straightness and torsion due to their manufacturing process. The tolerance of these deviations is defined in DIN 17615. The deviations found in Precision Technology USA, Inc. linear drive units correspond to these limits at least, but are normally well below. In order to obtain the required guide accuracy, the linear drive unit must be aligned with the aid of levelling plates or clamped from a mounting surface machined with sufficient accuracy. This ensures that tolerances of at least 0.1 mm/1000 mm are achieved.

Guide tube

A guide tube contains all elements of a linear drive unit except the mechanical drive element. It serves mainly as a support and holding device for higher loads and moments. For this purpose it is either mounted on the backside of a driven WIESEL[™] or installed parallel to it. All WIESEL[™] models are also available as guide tubes with guide.

Stroke lengths

The stroke length specified in the order code represents the maximum possible linear displacement. Acceleration and deceleration paths must be taken into account when designing the system, as well as any required over-run.

Repeatability

The repeatability is definded as the capability of a linear drive to get back to an actual position which was reached under the same conditions within the given tolerances. It refers to the average position variation

according to VDI/DGQ 3441. The repeatability among others is influenced by:

- Load
- Speed
- Deceleration/acceleration
- Direction of travel • Temperature

Aggressive working conditions

Because of their tough design WIESEL™ SPEEDLine[®] units can be used even in rough surroundings without additional covering. As a protection against coarse dirt optional wipers can be used. In case of extreme dirt, or fine dust/filings, a protective bellow is recommended and provided on request.

Maintenance

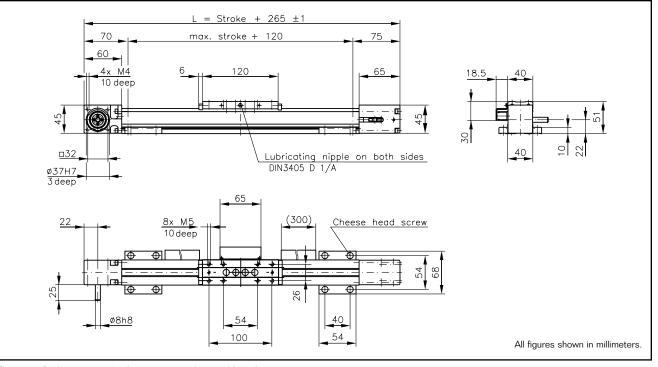
Lubrication WH40

The linear guide must be lubricated via the grease nipple on the power bridge with the aid of a grease gun after 400 hours of operation or at least every 3 months. Grease: rolling bearing grease (original grease: Fuchs Lubritech URETHYN E/M2).

Lubrication WH50/80/120

To maximize the life of the guide system, the two guides should be permanently covered with a thin oil film. The two lubrication points which are arranged at the sides of the power bridge serve for lubrication.

Tensioning of toothed belt

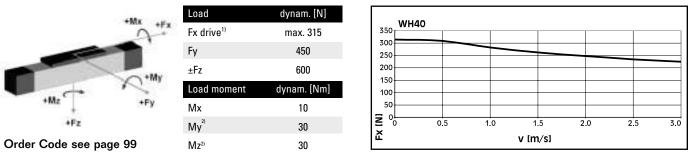

The tension of the toothed belt can be adjusted with the aid of the tensioning screws on the guide casing which are intended for this. The linear units are delivered with optimal tension values in order to guarantee security in function. Changes in this adjustment must only be carried out in service cases and by Precision Technology USA, Inc. service engineers.

Pretensioning of the guide system

The WIESEL[™] units leave the factory with optimal preloading values which guarantee optimum traveling characteristics as well as the necessary capacity in forces and moments. Changes in the preloading of the rollers must only be carried out after prior consultation with Precision Technology USA, Inc. service engineers.

WIESEL[™] SPEEDLine[®] WH40

with linear guide and AT toothed belt



Note: The use of a long power bridge increases the total length.

Technical data

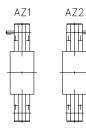
Linear speed:
Repeatability:
Acceleration:
Drive element:
Diameter:
Stroke per revolution:
Stroke length:up to 2000 mm
Length of power bridge:
see page 28
Geometrical moment of inertia:ly 12.6 x 10 ⁴ mm ⁴
lz 15.3 x 10⁴ mm⁴
Weights
Basic unit with zero stroke:1.19 kg
100 mm stroke:
Power bridge with rollers:0.28 kg
Provided:

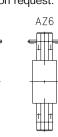
Loads and load moments

¹⁾ Depending on the speed, see respective chart. ²⁾ Increase of the admissible values by the use of a long power bridge or additional free-sliding power bridge (pages 28 and 29).

Precision Technology

8


Precision Technology


Idle torques [Nm]

Rotational speed [rpm]	M _{idle} [Nm]
150	0.1
900	0.3
1800	0.6

Execution of drive shafts

(Detailed description see pg 55) Other executions on request.

Unit conversions

Length:

1 m=1000 mm=39.37 inches 1 inch=25 4 mm

Force:

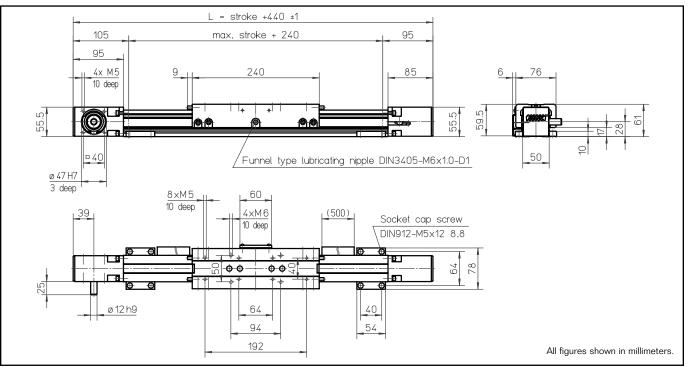
1 N=0.225 lbf 1 lbf=4.45 N

Moment of Force:

1 Nm=0.738 lb • ft=8.85 lb • inches 1 lb • ft=1.36 Nm

Geometrical moment of inertia: $1 \text{ m}^4 - 10^{12} \text{ mm}^4 - 24025 \text{ x} 10^6 \text{ in}^4$

Mass moment of inertia: 1 kg • m²=10⁴ kg • cm²=0.738 lb • ft • s²


Mass: 1 kg=2.2 lb

Fx depending on the linear speed

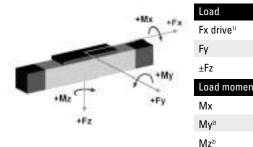
9

WIESEL[™] SPEEDLine[®] WH50

with roller guideway and AT toothed belt

Note: In the section of the rail for the initiators the WIESEL[™] cannot be fixed by means of KAO mounting brackets. Mounting kit for the lateral assembly of the initiators at the sides of the axis on request. Mounted wipers on request. The use of a long power bridge increases the total length.

Idle torques [Nm]


Rotational speed

Technical data

SPEEDLine

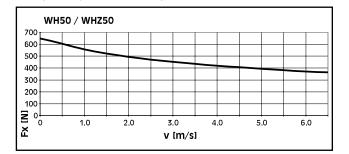
Linear speed:
Repeatability:
Acceleration:
Drive element:
Diameter:
Stroke per revolution:
Stroke length:up to 3000 mm
Length of power bridge:
see page 28
Geometrical moment of inertia:ly 3.30 x 10⁵ mm⁴
lz 2.65 x 10⁵ mm⁴
Weights
Basic unit with zero stroke:3.50 kg
100 mm stroke:
Power bridge with rollers:0.90 kg
Provided:
brackets
Bidenete

Loads and load moments

[rpm]		[INM]
150		1.7
1500		2.4
3250		3.8
(Detailed o	of drive sh description s cutions on	see pg 55)
AZ1	AZ2	AZ6

Unit conversions

Moment of Force: 1 Nm=0.738 lb • ft=8.85 lb • inches 1 lb • ft=1.36 Nm


Geometrical moment of inertia: 1 m⁴=10¹² mm⁴=2.4025 x 10⁶ in⁴

Mass moment of inertia: $1 \text{ kg} \cdot \text{m}^2 = 10^4 \text{ kg} \cdot \text{cm}^2 = 0.738 \text{ lb} \cdot \text{ft} \cdot \text{s}^2$

Mass:

1 kg=2.2 lb

Fx depending on the linear speed

1) Depending on the speed, see respective chart.

2) Increase of the admissible values by the use of a long power bridge or additional free-sliding power bridge (pages 28 and 29).

dynam. [N]

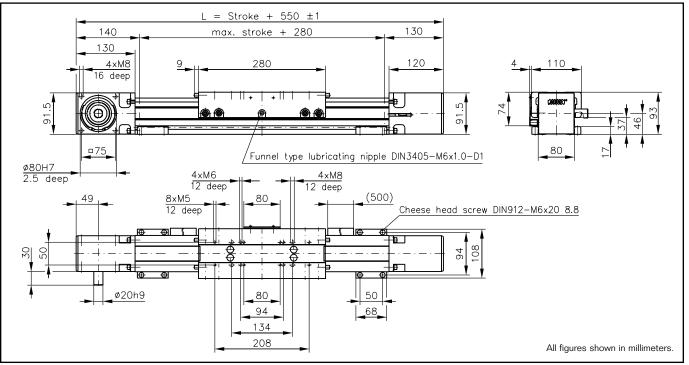
max. 670

415

730

dvnam. [Nm]

16

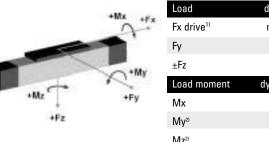

87

50

540.857.9871 | www.pt-usa.net

WIESEL[™] SPEEDLine[®] WH80

with roller guideway and AT toothed belt



Note: Mounted wipers on request. The use of a long power bridge increases the total length

Technical data

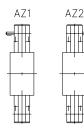
Linear speed:
Repeatability:
Acceleration:
Drive element:
Diameter:
Stroke per revolution:
Stroke length:
Length of power bridge:
see page 28
Geometrical moment of inertia:ly 1.93 x 10 ⁶ mm⁴
lz 1.80 x 10 ⁶ mm⁴
Weights
Basic unit with zero stroke:8.63 kg
100 mm stroke:
Power bridge with carriage:2.75 kg
Provided:
brackets

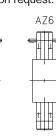
Loads and load moments

1) Depending on the speed, see respective chart.

2) Increase of the admissible values by the use of a long power bridge

or additional free-sliding power bridge (pages 28 and 29).




Idle torques [Nm]

•	
Rotational speed [rpm]	M _{idle} [Nm]
150	2.4
1500	3.5
3000	5.0

Execution of drive shafts

(Detailed description see pg 55) Other executions on request.

Unit conversions

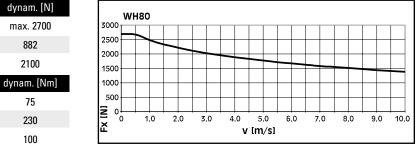
Length:

1 m=1000 mm=39.37 inches 1 inch=25.4 mm

Force:

1 N=0.225 lbf 1 lbf=4.45 N

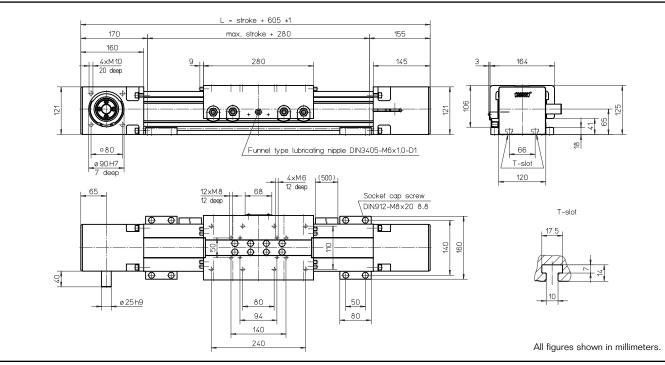
Moment of Force:


1 Nm=0.738 lb • ft=8.85 lb • inches 1 lb • ft=1.36 Nm

Geometrical moment of inertia: 1 m⁴=10¹² mm⁴=2.4025 x 10⁶ in⁴

Mass moment of inertia: $1 \text{ kg} \cdot \text{m}^2 = 10^4 \text{ kg} \cdot \text{cm}^2 = 0.738 \text{ lb} \cdot \text{ft} \cdot \text{s}^2$

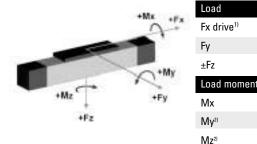
Mass 1 kg=2.2 lb


Fx depending on the linear speed

Note: For tube lengths of 5400 mm and over, the tubular profile is composed of two parts. The joint must be adequately supported. It may be possible to position the joint according to customer's wishes.

WIESEL[™] SPEEDLine[®] WH120

with roller guideway and AT toothed belt


Note: Mounted wipers on request. The use of a long power bridge increases the total length.

Technical data

SPEEDLine

Linear speed:	max. 10 m/s
Repeatability:	.± 0.05 mm
Acceleration:	
Drive element:	.Toothed belt 50ATL10
Diameter:	.82.76 mm
Stroke per revolution:	
Stroke length:	.up to 11000 mm
Length of power bridge:	-
	see page 28
Geometrical moment of inertia:	ly 6.69 x 10⁰ mm⁴
	lz 6.88 x 10 ⁶ mm⁴
Weights	
Basic unit with zero stroke:	17.00 kg
100 mm stroke:	1.64 kg
Power bridge with carriage:	.5.50 kg
Provided:	.4 pieces KAO mounting
	brackets

Loads and load moments

1) Depending on the speed, see respective chart.

2) Increase of the admissible values by the use of a long power bridge or additional free-sliding power bridge (pages 28 and 29).

Rotational speed [rpm]	M _{idle} [Nm]
150	4.8
1500	7.0
3250	10.0

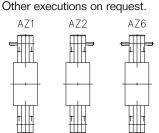
Execution of drive shafts (Detailed description see pg 55)

Idle torgues [Nm]

dynam. [N]

max. 5000

4980


9300

dynam. [Nm]

500

930

500

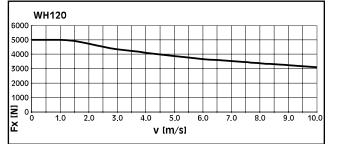
1 inch=25.4 mm Force: 1 N=0.225 lbf 1 lbf=4.45 N

1 m=1000 mm=39.37 inches

Unit conversions

Length:

Moment of Force: 1 Nm=0.738 lb • ft=8.85 lb • inches 1 lb • ft=1.36 Nm

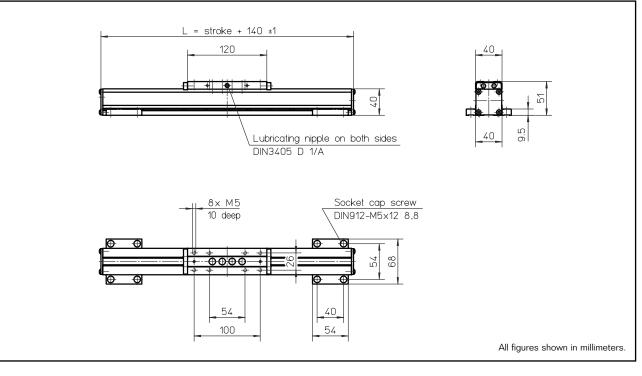

Geometrical moment of inertia: 1 m⁴=10¹² mm⁴=2.4025 x 10⁶ in⁴

Mass moment of inertia: 1 kg • m²=10⁴ kg • cm²=0.738 lb • ft • s²

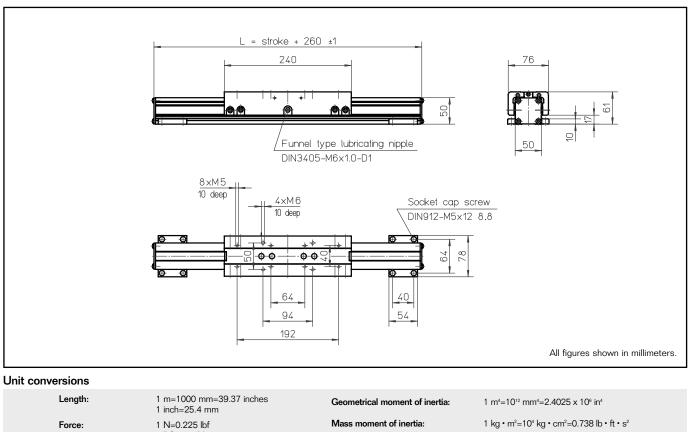
Mass:

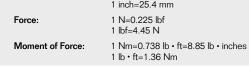
1 kg=2.2 lb

Fx depending on the linear speed



Note: For tube lengths of 5400 mm and over, the tubular profile is composed of two parts. The joint must be adequately supported. It may be possible to position the joint according to customer's wishes.


WIESEL[™] SPEEDLine[®]


Guide tube

WH40-190

WH50-190

Precision Technology

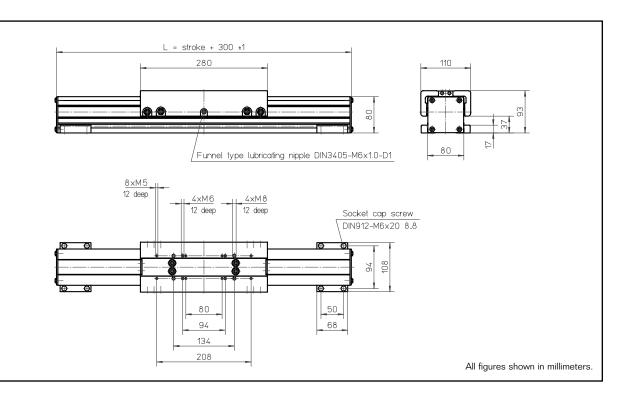
12

540.857.9871 | www.pt-usa.net

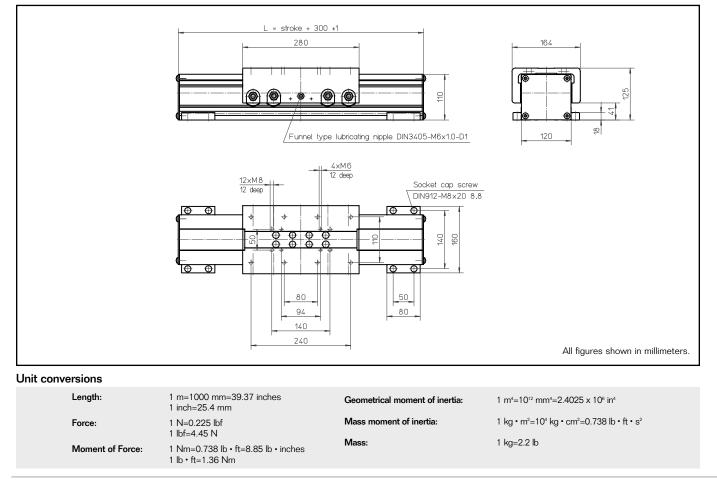
T. †

Mass

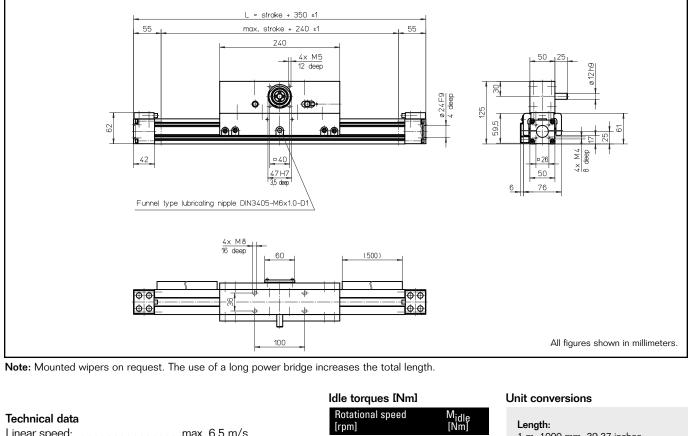
540.857.9871 | www.pt-usa.net


1 kg=2.2 lb

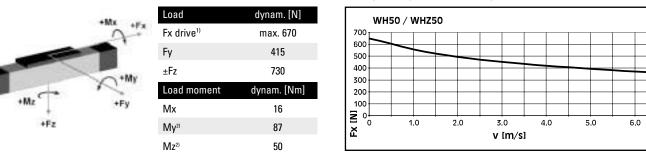
SPEEDLine


WIESEL[™] SPEEDLine[®]

Guide tube


WH80-190

WH120-190



WIESEL[™] SPEEDLine[®] WHZ50 with roller guideway and AT toothed belt

lechnical data	
Linear speed:	.max. 6.5 m/s
Repeatability:	.± 0.05 mm
Acceleration:	.max. 40 m/s ²
Drive element:	.Toothed belt 16ATL5
Diameter:	.38.20 mm
Stroke per revolution:	.120 mm
Stroke length:	.up to 1500 mm
Length of power bridge:	.240 or 400 mm
	see page 28
Geometrical moment of inertia:	.ly 3.30 x 10⁵ mm⁴
	lz 2.65 x 10⁵ mm⁴
Weights	
Basic unit with zero stroke:	.4.50 kg
100 mm stroke:	.0.42 kg
Power bridge with carriage:	.2.90 kg

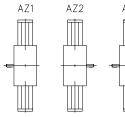
Loads and load moments

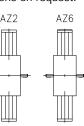
1) Depending on the speed, see respective chart.

2) Increase of the admissible values by the use of a long power bridge or additional free-sliding power bridge (pages 28 and 29).

Precision Technology

14


540.857.9871 | www.pt-usa.net


Precision Technology

Rotational speed [rpm]	M _{idle} [Nm]
150	1.7
1500	2.4
3250	3.8

Execution of drive shafts

(Detailed description see pg 99) Other executions on request.

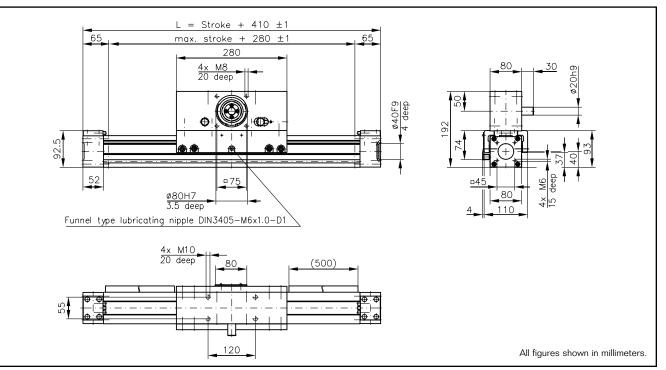
1 m=1000 mm=39.37 inches 1 inch=25.4 mm

Force: 1 N=0.225 lbf 1 lbf=4.45 N

Moment of Force:

1 Nm=0.738 lb • ft=8.85 lb • inches 1 lb • ft=1.36 Nm

Geometrical moment of inertia: 1 m⁴=10¹² mm⁴=2.4025 x 10⁶ in⁴


Mass moment of inertia: 1 kg • m²=10⁴ kg • cm²=0.738 lb • ft • s²

Mass: 1 kg=2.2 lb

Fx depending on the linear speed

WIESEL[™] SPEEDLine[®] WHZ80

with roller guideway and AT toothed belt

Idle torques [Nm]

Note: Mounted wipers on request. The use of a long power bridge increases the total length.

Technical data
Linear speed:
Repeatability: ± 0.05 mm
Acceleration:
Drive element:
Diameter:
Stroke per revolution:
Stroke length:
Length of power bridge:
see page 28
Geometrical moment of inertia:ly 1.93 x 10 ⁶ mm⁴
lz 1.80 x 10 ⁶ mm⁴
Weights
Basic unit with zero stroke:11.20 kg
100 mm stroke:
Power bridge with carriage:6.65 kg

Loads and load moments

SPEEDLine

197	Load
	Fx driv
	Fy
C +My	±Fz
	Load m
+Mz +Fy	Mx
+Fz	My ²⁾
	Mz ²⁾

1) Depending on the speed, see respective chart.

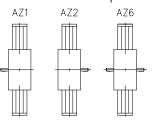
dynam. [N]

max. 1480

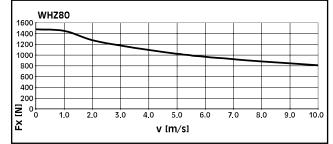
882

2100

dynam. [Nm]


75

230


100

Rotational speed [rpm]	M _{idle} [Nm]			
150	2.4			
1500	3.5			
3000	5.0			
Execution of drive shafts				
(Detailed description see pg 99				

(De pg Other executions on request.

Fx depending on the linear speed

Mass: 1 kg=2.2 lb

Unit conversions

1 inch=25.4 mm

Force: 1 N=0.225 lbf

1 lbf=4.45 N

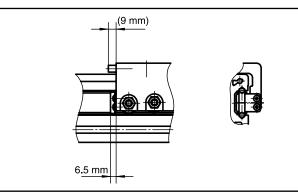
Moment of Force:

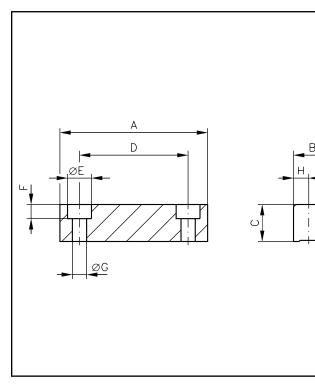
1 lb • ft=1.36 Nm

1 m=1000 mm=39.37 inches

1 Nm=0.738 lb • ft=8.85 lb • inches

 $1 \text{ kg} \cdot \text{m}^2=10^4 \text{ kg} \cdot \text{cm}^2=0.738 \text{ lb} \cdot \text{ft} \cdot \text{s}^2$


Geometrical moment of inertia: 1 m⁴=10¹² mm⁴=2.4025 x 10⁶ in⁴


Mass moment of inertia:

Length:

Accessories for WIESEL[™] SPEEDLine[®]

Felt wipers/Mounting brackets

Size	А	В	С
WH40	54	16	10
WH50	54	16	10
WH80	68	17.5	17
WH120	80	25	18
WH40 System KAO	40	16	10

Unit conversions 1 m=1000 mm=39.37 inches Length: 1 inch=25.4 mm Force: 1 N=0.225 lbf 1 lbf=4.45 N 1 Nm=0.738 lb • ft=8.85 lb • inches Moment of Force: 1 lb • ft=1 36 Nm

Precision Technology

16

Felt wipers FA for WH50/80/120

The felt wipers are positioned directly in front of each of the rollers at the front next to the power bridge, so that they wipe coarse dirt off the guide shaft. This prevents dirt from being trapped between the roller and the guide rail. This means that the WIESEL™ SPEEDLine® units can also be used in environments in which the guide shafts are exposed to excessive dirt. Installing the felt wipers may increase the driving torque slightly. There is no loss of stroke length and no additional external interference contour. As a result, the felt wipers can also be fitted to existing systems as an optional extra.

Mounting brackets KAO

The mounting brackets KAO secure the $\mathsf{WIESEL}^{\scriptscriptstyle \mathrm{M}}$ unit to a mounting surface. They are inserted in the grooves provided in the sides of the tubular aluminum profile and screwed onto the mounting surface with the aid of cheese head screws. The number of mounting brackets required depends on the load and overall length of the WIESEL™ unit. Increasing side forces reduces the admissible distance between the brackets.

4 pieces of mounting brackets are delivered with each unit.

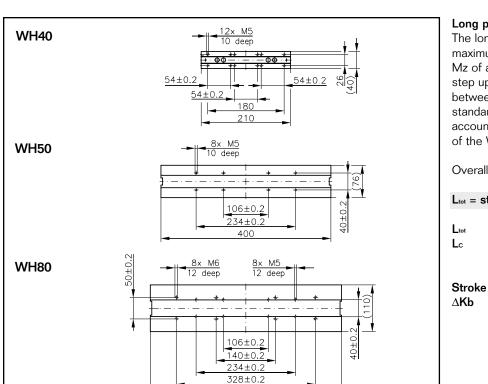
System brackets KAO

Only needed for WH40. With multi-coordinate arrangements of several WIESEL ${}^{\scriptscriptstyle \rm M}$ units, this can be used to screw a WIESEL ${}^{\scriptscriptstyle \rm M}$ unit directly to the power bridge of a unit positioned immediately below it.

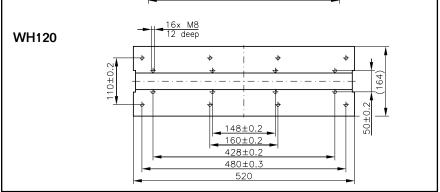
Moment of tightening screws

	-	-
Size		Moment [Nm]
WH40		7.3–12
WH50		7.3–12
WH80		7.3–12
WH120		17–30

Note: It is advisable to secure the linear drive unit at intervals of at least 750 mm. This ensures that all the permissible loads can be absorbed without significantly deforming the tubular aluminum profile.


Dimension [mm]				
D	øΕ	F	øG	Н
40	10	5.7	5.5	7
40	10	5.7	5.5	7
50	11	6.5	6.6	7
50	15	8.5	9	10
26	10	5.7	5.5	7

Geometrical moment of inertia:	1 m ⁴ =10 ¹² mm ⁴ =2.4025 x 10 ⁶ in ⁴
Mass moment of inertia:	1 kg • m²=104 kg • cm²=0.738 lb • ft • s²
Mass:	1 kg=2.2 lb


SPEEDLine

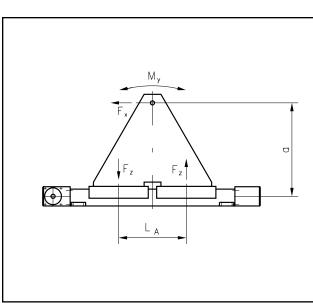
Accessories for WIESEL[™] SPEEDLine[®]

Long power bridge

450

Long power bridge LKB

The long power bridge increases the maximum permissible load moments My and Mz of a WIESEL[™] unit without requiring a step up in size. The difference in length between the long power bridge and the standard power bridge must be taken into account when calculating the overall length of the WIESEL[™] unit.


Overall length of the WIESEL[™] unit:

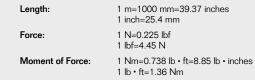
$L_{tot} = stroke + L_c + \Delta Kb$

- = Overall length WIESEL[™] [mm]
- = Specific additional length [mm] (see technical data of the respective WIESEL™)
- **Stroke** = Required stroke [mm]
- = Difference in length between long and standard power bridge

Accessories for WIESEL[™] SPEEDLine[®]

Additional free-sliding power bridge

711	figures	shown	in	millimeters
NII	nguies	3110 0011		minineters


Size	Length of power bridge	My	Mz
	[mm]	[Nm]	[Nm]
WH40	210	50	50
WH50	400	130	75
WH80	450	345	150
WH120	520	1395	750
WHZ50	400	130	75
WHZ80	450	345	150

Note: All other limit values are comparable to those of versions with standard power bridge. High load moments lead to major deformation of the tubular aluminum profile. The distance between supports should be reduced in order to minimize this deformation.

Unit conversions

Length:	1 m=1000 mm=39.37 inches 1 inch=25.4 mm	Geometrical moment of inertia:	1 m ⁴ =10 ¹² mm ⁴ =2.4025 x 10 ⁶ in ⁴
Force:	1 N=0.225 lbf 1 lbf=4.45 N	Mass moment of inertia:	1 kg • m²=10 ⁴ kg • cm²=0.738 lb • ft • s²
Moment of Force:	1 Nm=0.738 lb • ft=8.85 lb • inches 1 lb • ft=1.36 Nm	Mass:	1 kg=2.2 lb

Unit conversions

Precision Technology

18

540.857.9871 | www.pt-usa.net

Precision Technology

Additional free-sliding power bridge OKB

The additional free-sliding power bridge provides:

- Individual increase of the load moments My and Mz of a WIESEL[™] unit. Load moment My is limited by force ± Fz, Mz is limited by force \pm Fy.
- Longer and therefore improved guidance.
- Particularly suitable as a vertical guide and lifting module. The required center distance between the driven and the free-sliding power bridge is calculated as follows:

$$L_A = \frac{M}{F_{max}}$$

= Center distance between driven and free-sliding LA power bridge [mm]

- Μ = Load moment My or Mz [Nm]
- Fmax = Maximum force Fz or Fy of the WIESEL[™] unit concerned [N]

The center distance between the two power bridges must be taken into account when calculating the overall length of the WIESEL[™] unit.

Overall length of WIESEL[™] unit

Ltot = Stroke + Lc + LA

Lc = Specific additional length between long and standard power bridge [mm]. (see technical data of the respective WIESEL*)

Minimum center distance LA between driven and free-sliding power bridge (given for standard power bridge).

Size	L _A [mm]
WH40	130
WH50/WHZ50	250
WH80/WHZ80	290
WH120	290

The force required for moving the additional free-sliding power bridge must be taken into account when selecting the drive.

Size	F [N]
WH40	2
WH50/WHZ50	16
WH80/WHZ80	20
WH120	30

Note: High load moments lead to major deformation of the tubular aluminum profile. The distance between supports should be reduced in order to minimize this deformation.

Geometrical moment of inertia:	1 m ⁴ =10 ¹² mm ⁴ =2.4025 x 10 ⁶ in ⁴
Mass moment of inertia:	$1 \text{ kg} \cdot \text{m}^2 = 10^4 \text{ kg} \cdot \text{cm}^2 = 0.738 \text{ lb} \cdot \text{ft} \cdot \text{s}^2$
Mass:	1 kg=2.2 lb

Accessories for WIESEL[™] SPEEDLine[®]

Mechanical limit switches

Mechanical limit switches ES Mechanical limit switches must be used wherever people may be jeopardized if the electric drive does not cut out. They are fitted in the groove which also accommodates the KAO mounting brackets in the aluminum profile.

Technical data

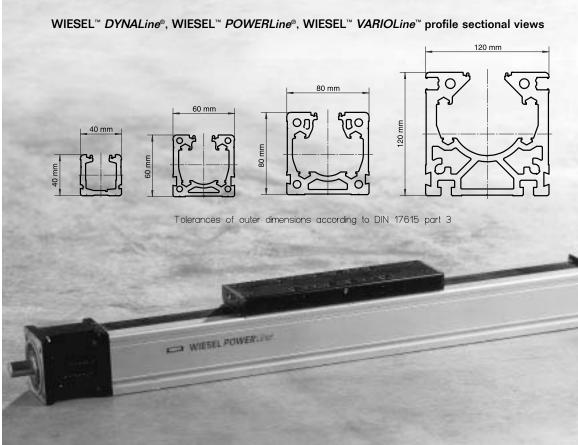
Cam-actuated mechanical limit switch XCM-B516 with roller lever

Dual-circuit NC + NO

NC contact forcibly opened in accordance with DIN EN 60 204 Type of protection: IP67 Max. perm. starting speed: 1.5 m/s

Mechanical linear drive units WIESEL[™] *POWERLine*[®], WIESEL[™] *DYNALine*[®], WIESEL[™] *VARIOLine*[™]

WIESEL[™] POWERLine[®] WM40


• Fully integrated miniaturized linear drive unit with lin ball guide, ball screw drive and sealing strip.

WIESEL[™] POWERLine[®] WM60/80 ZRT

- Fully integrated drive unit with tooth belt drive and linear bearing guide.
- Transmission of the feed force and handling of load and load moments.

WIESEL[™] VARIOLine[™]

- Fully integrated linear drive unit with ball screw and linear ball bearing guide and sealing strip.
- Transmission of the feed force and handling of loads through ram type piston.

Size	Dimensions [mm]					
	А	В	С	D	E	F
WH50	34	61	10	26	49	83
WH80	31	76	10	39	49	103
WH120	34	88	10	51	49	103
WHZ50	47	125	23	90	49	83
WHZ80	46	175	25	138	49	103

All figures shown in millimeters.

Note: The linear unit cannot be fixed by means of the mounting brackets KAO in the range of the fixing plates for the mechanical limit switches. Security limit switches ensure energy is cutoff from the drive. Whenever they are run against at high speeds, they cannot avoid driving over the admissible drive section. It is necessary to ensure by means of other drive and control measures that the limit areas are only approached with low speeds.

Unit conversions				
Length: 1 m=1000 mm=39.37 inches 1 inch=25.4 mm		Geometrical moment of inertia:	1 m ⁴ =10 ¹² mm ⁴ =2.4025 x 10 ⁶ in ⁴	
Force:	Force: 1 N=0.225 lbf 1 lbf=4.45 N	Mass moment of inertia:	1 kg • m²=104 kg • cm²=0.738 lb • ft • s²	
Moment of Force:	1 Nm=0.738 lb • ft=8.85 lb • inches 1 lb • ft=1.36 Nm	Mass:	1 kg=2.2 lb	

Precision Technology

20

540.857.9871 | www.pt-usa.net

Precision Technology

	WIESEL [™] <i>POWERLine</i> [®] WM60/80/120
near	 Fully integrated linear drive unit with ball screw and linear ball bearing guide and sealing strip. Transmission of the feed force and handling of loads and load moments. Size WM60/80-370 with short guide system.
ds I	 WIESEL[™] DYNALine[®] WV60/80/120 Fully integrated feed axis with ball screw. Transmission of the feed force. Used in combination with external linear guides.

POWERLine

General technical data WIESEL[™] *POWERLine*[®], *DYNALine*[®], *VARIOLine*[™]

Drive element:

reduce the life.

Guidance element:

Linear speeds

Drive

TGT¹⁾

KGT²⁾

VARIOLine™

ZRT³⁾20ATL5

ZRT³⁾25ATL10

1) TGT: Trapezoidal screw drive

2) KGT: Ball screw drive

Installed position

elemen

The linear speed achieved by a linear drive unit depends on the lead of the mechanical drive element and on the input rotational speed. The various linear speeds which can be achieved by the individual sizes are listed in the following table:

[mm]

4

8

12

16

4

5

10

20

40

50

120

170

For a sliding guide the upper limit should be [rpm] [m/s] \leq 30% per hour, linear ball guides allow duty 1500 0.1 cycles up to 100%. 1500 0.2 Temperature 1500 0.3 1500 0.4

0.2

0.5

1

2

2.5

1.5

2.5

2.5

3000

3000

3000

3000

3000

3000

3000

1250

882

All series are designed for continuous operation at ambient temperatures up to 80° C (176° F). Temperatures up to 100° C (212° F) are also permitted for brief periods. The linear drive 0.25 units are not suitable for operation at subzero temperatures.

Idle torques

The given values are means from a series of measurements. The effective values may differ in individual cases

For a trapezoidal screw the upper limit should

duty cycles up to 100%. Extremely high loads

be $\leq 30\%$ per hour, linear ball guides allow

in combination with high duty cycles can

Straightness/torsion

The aluminum profiles are extruded sections which may display deviations in straightness and torsion due to their manufacturing process. The tolerance of these deviations is defined in DIN 17 615. The deviations found in Precision Technology USA, Inc. linear drive units corresponding to these limits are worst case, but are normally well below. In order to obtain the required guide accuracy, the linear drive unit must be aligned with the aid of leveling plates or clamped from a mounting

surface machined with sufficient accuracy. This ensures that tolerances of at least 0.1 mm/1000 mm are achieved.

Cover strip

for WIESEL[™] POWERLine[®] WIESEL[™] DYNALine[®] WIESEL[™] VARIOLine[™]

Material: Polyamide 12

- Characteristics:
- Resistant to alkaline solutions
- Conditionally resistant to acids
- Tough/rigid
- Abrasion-proof
- Little absorption of humidity
- Light resistant

Guide tube

All the components of a linear drive unit except the mechanical drive element are accommodated in a guide tube which is mounted either to the bottom of a driven WIESEL[™] or is installed parallel to a driven WIESEL[™]. It takes higher loads and load

```
moments. All WIESEL<sup>™</sup> models are also
available as guide tube (except WIESEL™
DYNALine<sup>®</sup>, VARIOLine<sup>™</sup>).
```

Stroke length

The stroke length specified in the order code represents the maximum possible linear displacement. Acceleration and deceleration paths must be taken into account when designing the system, together with any overrun required. Entering the safety zone leads to mechanical collisions and must be prevented with suitable safety measures (safety limit switch, software queries, etc.)

Repeatability

The repeatability is defined as the capability of a linear drive unit to repeatedly reach an actual position it has reached before under the same conditions. It refers to the average position variation according to VDI/DGQ 3441. The repeatability is influenced, among other things, by:

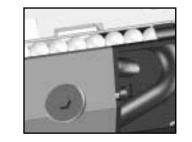
- Load
- Speed
- Deceleration/acceleration
- Direction of travel
- Temperature

Aggressive working environments

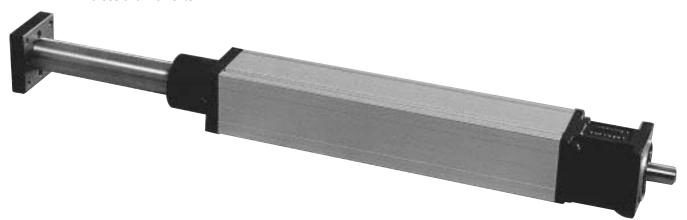
The mechanical drive and the guidance of the WIESEL[™] are well protected against dirt by means of the patented cover strip. In cases of heavy dirt and dust particles, an additional bellow is recommended. Available upon request.

Maintenance

The mechanical components (ball screw drive and linear ball bearing guide) must be lubricated via the grease nipple on the power bridge with the aid of a grease gun after 400 hours of operation or at least every three months. On the WM40, one lubrication nipple is used to lubricate the linear guideway, while the second lubrication point supplies the ball screw drive with grease. The cover strip should also be lubricated at the same time in order to prevent premature wear. Grease: rolling bearing grease (original grease Fuchs Lubritec URETHYN E/M1).


Tensioning of the toothed belt

The tensioning of the toothed belt can be adjusted with the aid of the tensioning screws on the guide casing which are intended for this. The linear units are delivered with optimal tension values in order to guarantee security and functionality. Changes in this adjustment must be carried out in service cases and by Precision Technology USA, Inc. service engineers


New: WIESEL[™] VARIOLine[™]

Here's how to get to grips with things

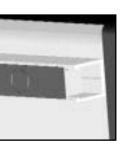
The new WIESEL[™] VARIOLine[™] really makes your decision for a handling unit with increased lateral forces easy. Precision Technology USA, Inc. has already integrated many functions perfectly in this ready-to-install solution. Ideal for changing workpieces, gripping or inserting - for all of these uses, the high screw leads now make it possible to combine high speed and high precision. This not only saves you in-house design effort, it also saves valuable space. So if you are looking for a particularly efficient way of feeding workpieces into a workspace, here is your chance.

Integrated guidance system The integrated Precision Technology USA, Inc. linear ball bearing guidance system in the tubular section and the robust ball sleeve on the piston rod absorb high forces and moments.

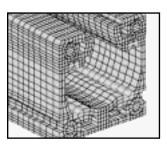
Precision Technology

3) ZRT: Toothed belt drive The linear drive units can be installed in almost any position, provided that all the forces and moments occurring remain below

Security advice

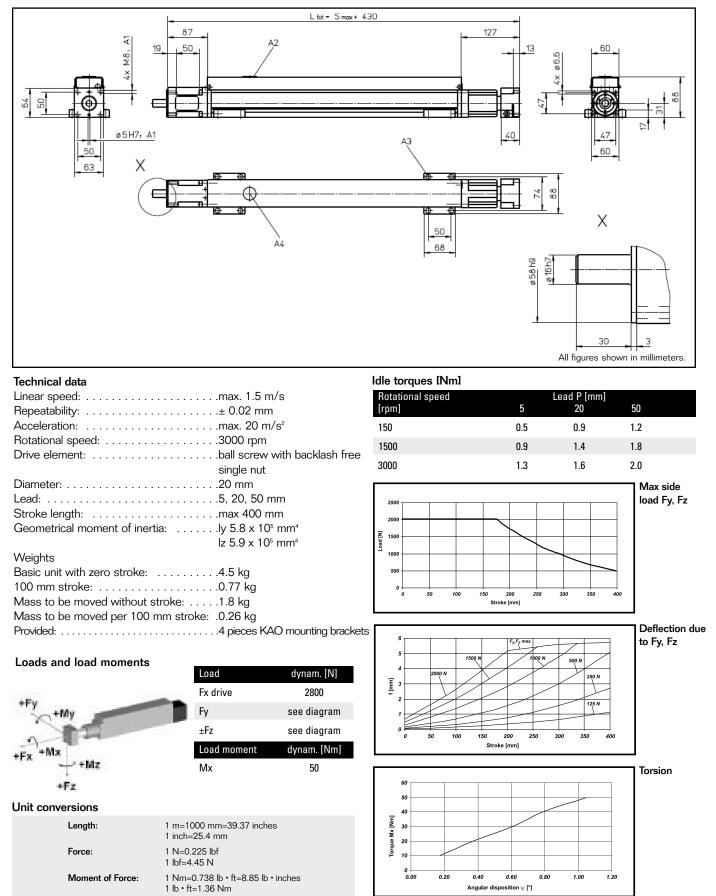

The ball screw drives in all three sizes are generally not self-locking. It is therefore advisable to install suitable motors with holding brake, particularly if the linear drive unit is installed vertically. If the toothed belt breaks, the load is released. Therefore safety precautions have to be taken for applications which are critical with regard to security.

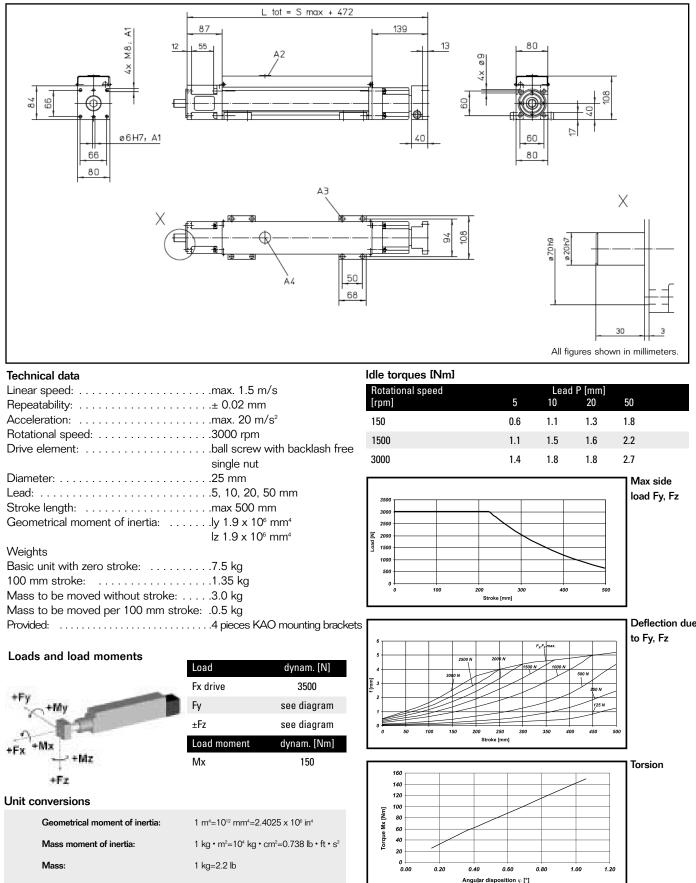
the maximum values for the axis concerned.


Maximum forces

All maximum forces and moments provided refer to the center/top of the power bridge. Load overlay at several coordinates: If compound loads occur, with force and moment components in more than one direction, the maximum permissible loads must be reduced to 60% of the specified maximum values. When forces and moments are overlaid in two or three coordinates, it is necessary to reduce the maximum permissible load to 60% of the maximum value.

Duty cycle In practice, the following values have been proven.


Integrated design Adjustable limit switches are already installed.


FEM optimized design Maximum power density through FEM optimized design.

WIESEL[™] VARIOLine[™] WZ60

with ball screw drive and integrated linear ball bearing drive

WIESEL[™] VARIOLine[™] WZ80 with ball screw drive and integrated linear ball bearing drive

Precision Technology

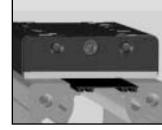
24

540.857.9871 | www.pt-usa.net

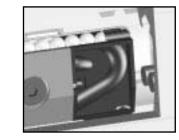
Precision Technology

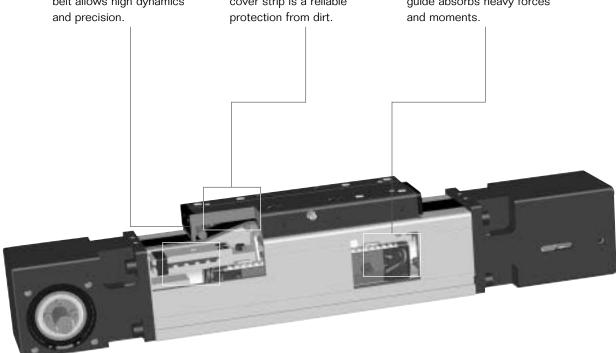
POWERLine

25


WIESEL[™] POWERLine[®] with toothed belt drive

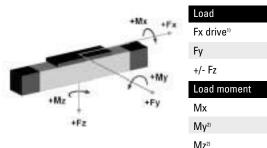
The best ideas make it simple for you.


The new WIESEL[™] POWERLine[®] ZRT combines the high dynamics of the toothed belt drive with the powerful, fully integrated ball bearing guide of the POWERLine® system. The patented cover strip protects the guide system safely against dirt. The version 370 offers an attractive price reduction with its shorter guide system and the reduced length of the power bridge. So the POWERLine® ZRT brings higher dynamics to the tasks of engineering and handling.


Toothed belt The integrated toothed belt allows high dynamics

Patented cover strip The patented, self-adjusting cover strip is a reliable protection from dirt.

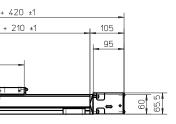
Integrated guide system The integrated ball-bearing guide absorbs heavy forces

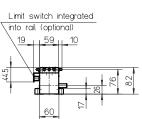

WIESEL[™] POWERLine[®] WM60 – 370 ZRT with toothed belt drive and integrated linear short ball-bearing guide system

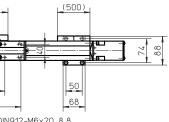
L = stroke + 420 ±1 max. stroke + 210 ±1 105 105 95 95 /. v M I 200 ø47H7 4 deer 8×M6; 10 deep 100 (500) ø 12 h§ 68 181 Socket cap screw DIN912-M6x20 8.8 O Tapered lubricating nipple to DIN71412 AM6 on fixed-bearing side as standard feature O Can be changed over to one of the three alternative lubricating points by the customer

Technical data

Linear speed:max. 2.5 m/s
Repeatability:
Acceleration:
Drive element:
Diameter:
Stroke per revolution:
Stroke length:
Length of power bridge:
Geometrical moment of inertia:ly 5.62 x 10⁵ mm⁴
lz 5.94 x 10⁵ mm⁴
Weights
Basic unit with zero stroke:4.30 kg
100 mm stroke:
Power bridge with carriage:1.25 kg
Provided:
brackets

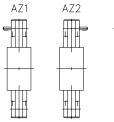

Loads and load moments

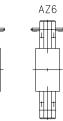



1) Depending on the speed, see respective chart.

2) Increase of the admissible values by the use of a long power bridge or ad free-sliding power bridge (pages 62 and 63).

Precision Technology





dle torques [Nm]	
Rotational speed [rpm]	M _{idle} [Nm]
150	1.6
600	2.5
1250	3.0

Execution of drive shafts

(Detailed description see pg 100) Other executions on request.

F_x over the linear speed

All figures shown in millimeters.

Unit conversions

Length:

1 m=1000 mm=39.37 inches 1 inch=25.4 mm

Force:

- 1 N=0.225 lbf
- 1 lbf=4.45 N

Moment of Force:

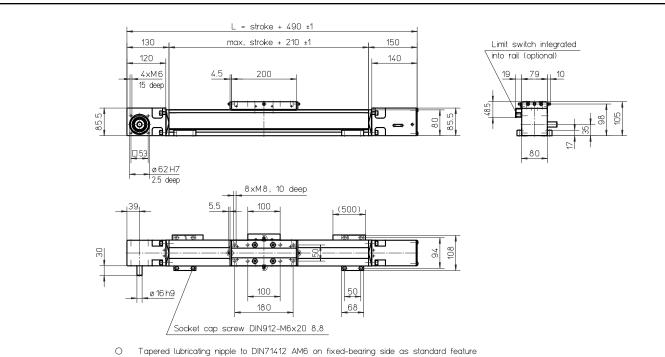
1 Nm=0.738 lb • ft=8.85 lb • inches 1 lb • ft=1.36 Nm

Geometrical moment of inertia: 1 m⁴=10¹² mm⁴=2.4025 x 10⁶ in⁴

Mass moment of inertia:

 $1 \text{ kg} \cdot \text{m}^2 = 10^4 \text{ kg} \cdot \text{cm}^2 = 0.738 \text{ lb} \cdot \text{ft} \cdot \text{s}^2$

Mass: 1 kg=2.2 lb


	X	 	-						
/nam. [N]	900 -								
850	800 - - 700 -	/							
1400	600								
1400	500								
nam. [Nm]	Z . ¥ 400								
25	300 -								
50	200 -								
50	100 -								
	0- 0-			1/	10		2,	00	
or additional					v [n	n/s]			

dynam

dynam.

WIESEL[™] POWERLine[®] WM80 – 370 ZRT

with toothed belt drive and integrated linear short ball-bearing guide system

O Can be changed over to one of the three alternative lubricating points by the customer

dynam. [N]

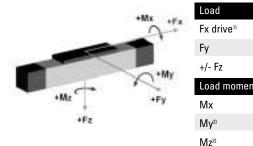
1470

2100

2100

dynam. [Nm]

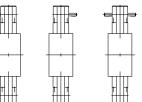
68

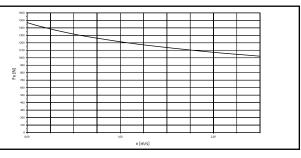

135

135

Tec	hnical	data

lechnical data
Linear speed:
Repeatability: ± 0.05 mm
Acceleration:
Drive element:
Diameter:
Stroke per revolution:
Stroke length:
Length of power bridge:
Geometrical moment of inertia:ly 1.89 x 10 ⁶ mm ^₄
lz 1.97 x 10 ⁶ mm⁴
Weights
Basic unit with zero stroke:9.20 kg
100 mm stroke:
Power bridge with carriage:2.10 kg
Provided:
brackets


Loads and load moments


[rpm]	[Nm]	
150	4.0	
450	5.4	
885	6.2	
Execution	of drive shafts	
(Detailed c	escription see pg 100)
Other exe	utions on request.	
AZ1	AZ2 AZ6	

Idle torques [Nm]

Rotational speed

F_x over the linear speed

Mass:

1 kg=2.2 lb

1) Depending on the speed, see respective chart.

2) Increase of the admissible values by the use of a long power bridge or additional free-sliding power bridge (pages 62 and 63).

All figures shown in millimeters.

Unit conversions

1 inch=25.4 mm

1 N=0.225 lbf

1 lbf=4.45 N

Moment of Force:

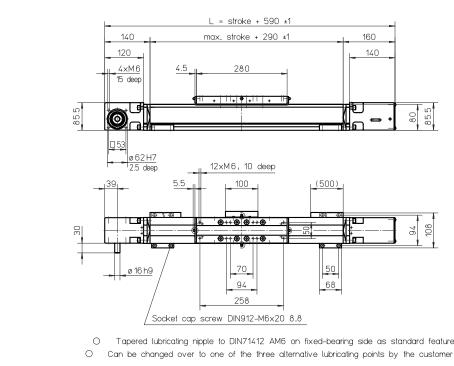
1 lb • ft=1.36 Nm

1 m=1000 mm=39.37 inches

1 Nm=0.738 lb • ft=8.85 lb • inches

Geometrical moment of inertia:

Mass moment of inertia:

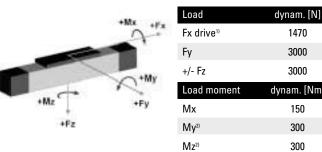

1 m⁴=10¹² mm⁴=2.4025 x 10⁶ in⁴

1 kg • m²=10⁴ kg • cm²=0.738 lb • ft • s²

Length:

Force:

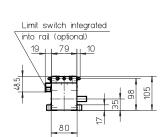
WIESEL[™] POWERLine[®] WM80 ZRT with toothed belt drive and integrated linear ball-bearing guide



Technical data

Linear speed:
Repeatability:
Acceleration:
Drive element:
Diameter:
Stroke per revolution:
Stroke length:
Length of power bridge:
Geometrical moment of inertia:ly 1.89 x 10 ⁶ mm ⁴
lz 1.97 x 10 ⁶ mm ⁴
Weights
Basic unit with zero stroke:11.20 kg
100 mm stroke:0.80 kg
Power bridge with carriage:3.40 kg
Provided:

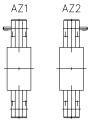
Loads and load moments

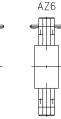

Precision Technology

1) Depending on the speed, see respective chart.

2) Increase of the admissible values by the use of a long power bridge or additional

free-sliding power bridge (pages 62 and 63).




Idle torques [Nm]	
Rotational speed [rpm]	M _{idle} [Nm]
150	*)
450	*)
885	*)

* values in determination

Execution of drive shafts

(Detailed description see pg 100) Other executions on request.

F_v over the linear speed

All figures shown in millimeters.

Unit conversions

Lenath

1 m=1000 mm=39.37 inches 1 inch=25.4 mm

Force:

- 1 N=0.225 lbf
- 1 lbf=4.45 N

Moment of Force:

1 Nm=0.738 lb • ft=8.85 lb • inches 1 lb • ft=1.36 Nm

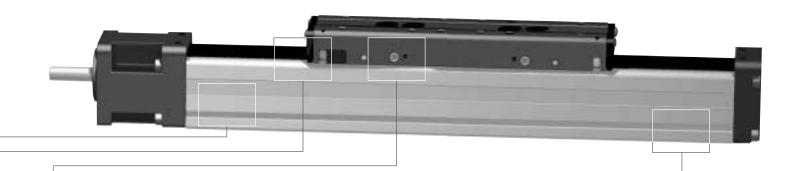
Geometrical moment of inertia:

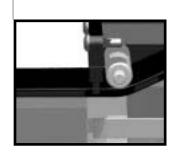
1 m⁴=10¹² mm⁴=2.4025 x 10⁶ in⁴

Mass moment of inertia:

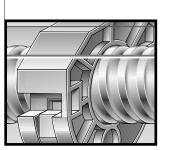
 $1 \text{ kg} \cdot \text{m}^2 = 10^4 \text{ kg} \cdot \text{cm}^2 = 0.738 \text{ lb} \cdot \text{ft} \cdot \text{s}^2$

Mass: 1 kg=2.2 lb

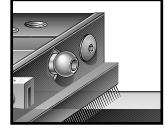

v [m/s]

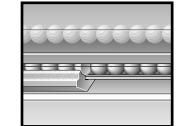

WIESELTM POWERLine[®] and WIESELTM DYNALine[®] with ball screw drive

Innovative solutions, down to the very last detail.

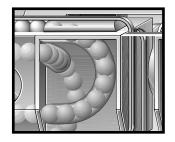

WIESEL[™] POWERLine[®] WM40

The linear drive unit for miniaturized applications. High performance with extremely small dimensions. The Precision Technology USA, Inc. ball screw drive in combination with the high precision linear guide allows precise positioning

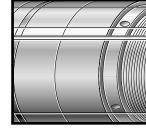



Patented sealing strip The patented sealing strip protects the mechanism effectively from dirt. The friction for the deviation of the sealing strip is reduced to a minimum

Screw support The patented screw support system permits high speeds (max. input speed) at long strokes.



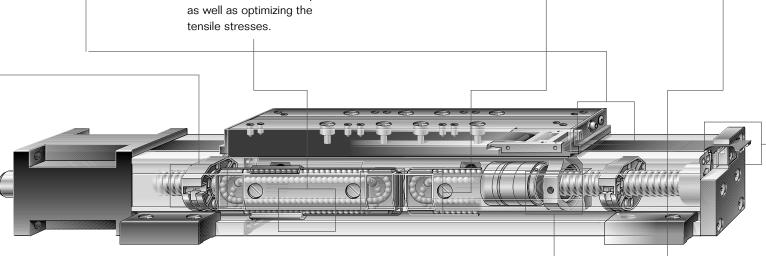
Central lubrication A standard feature. The drive and guide systems are conveniently relubricated from a central point on the power bridge. Whether by hand or automatically, maintenance is now a simple matter.



Well proven and patented guide system

The high-performance linear ball-bearing guide with hardened steel running tracks has been integrated into the aluminum profile. Optimum introduction of forces permits maximum force and torque, as well as optimizing the

Ball cage The ball bearings of the linear guides are protected by a ball cage. They can be replaced quickly and safely.



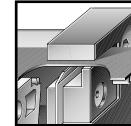
Optimized ball screw The pre-tensioning of the nut unit can be adjusted by the Precision Technology USA, Inc. service team. This increases

the lifetime of the axis.

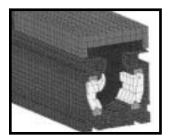
WIESEL[™] POWERLine[®] WM60, WM80, WM120

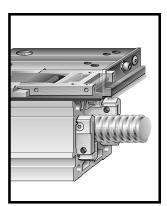
The WIESEL[™] *POWERLine*[®] is an extremely powerful linear drive unit with ball screw drive and integrated ballbearing guide. It allows high feed forces and load moments in all directions.

WIESEL[™] POWERLine[®] detail


Precision Technology

Linear guides

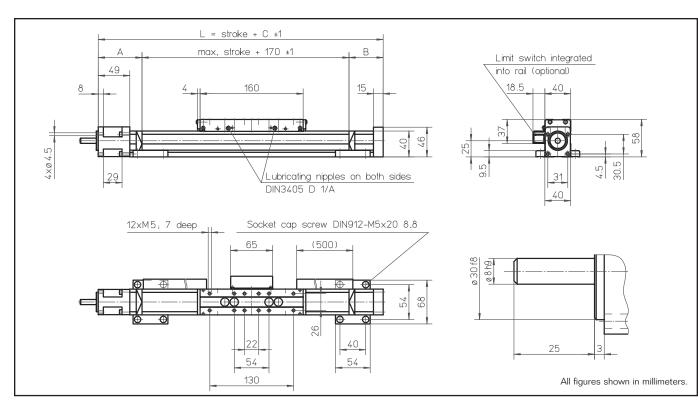

Precise positioning is made possible by a polished linear quide with a high degree of guide accuracy. A small motor can be added thanks to the low coefficient of friction. Rubber wipers protect the mechanism from dirt, thus increasing service life.



Self-adjusting thirdgeneration cover strip The patented sealing strip reliably protects the mechanical parts against excessive dirt and is retensioned automatically. Result: the maintenance effort

is reduced to virtually zero.

FEA optimized design Both the profile and the entire linear drive unit have been modeled and optimized by finite element analysis (FEA). Result: maximum performance density and reliability.

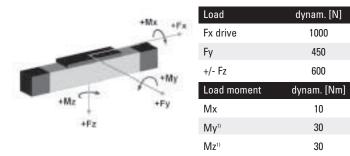

WIESEL[™] DYNALine[®] detail *only applies to WIESEL[™] POWERLine[®] series

WIESEL[™] DYNALine[®] WV60, WV80, WV120

WIESEL[™] DYNALine[®] permits high feed forces, even in combination with long stroke lengths and high speeds. The supported, covered ball screw must be used in combination with external linear guides.

WIESEL[™] POWERLine[®] WM40

with ball screw drive and integrated linear guide



Technical data

POWERLine

Linear speed:
Repeatability:
Acceleration:
Rotational speed:
Drive element:
Diameter:
Lead:
Stroke length:
Power bridge:
see page 62
Geometrical moment of inertia: ly 10.8 x 10 ⁴ mm ⁴
$17 134 \times 10^4 \text{ mm}^4$
Weights
Basic unit with zero stroke:1.5 kg
100 mm stroke:
Power bridge with carriage:0.36 kg
Provided:
brackets

Loads and load moments

1) Increase of the admissible values by the use of a long power bridge or additional free-sliding power bridge (pages 62 and 63).

Precision Technology

32

Idle torques [Nm]	
Rotational speed [rpm]	Lead P [mm] 5
150	0.3
1500	0.5
3000	0.8

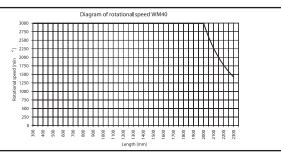
Additional lengt	hs as a	functior	n of the stroke
Stroke length [mm]	A [mm]	B [mm]	Additional length [mm]
0-500	65	35	270
501-1100	65	45	280
1101-2000	70	60	300

Unit conversions

Length: 1 m=1000 mm=39.37 inches	
1 inch=25.4 mm	
Force:	

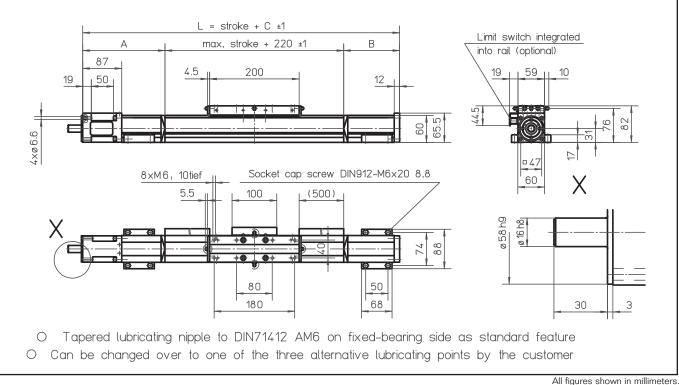
1 N=0.225 lbf 1 lbf=4.45 N

Moment of Force: 1 Nm=0.738 lb • ft=8.85 lb • inches 1 lb • ft=1.36 Nm


Geometrical moment of inertia: 1 m⁴=10¹² mm⁴=2.4025 x 10⁶ in⁴

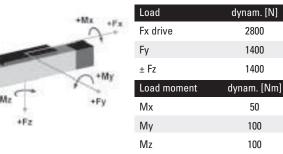
Mass moment of inertia: $1 \text{ kg} \cdot \text{m}^2 = 10^4 \text{ kg} \cdot \text{cm}^2 = 0.738 \text{ lb} \cdot \text{ft} \cdot \text{s}^2$

Mass:


1 kg=2.2 lb

Rotational speed of the screw as a function of the total length

WIESEL[™] POWERLine[®] WM60 – 370


with ball screw drive and integrated linear ball-bearing guide

Technical data

lechnical data
Linear speed:
Repeatability: ± 0.03 mm
Acceleration:
Rotational speed:
Drive element:
with single nut, no backlash
Diameter:
Lead:
Stroke length:
Power bridge:
Geometrical moment of inertia:ly 5.8 x 10⁵ mm⁴
lz 5.9 x 10⁵ mm⁴
Weights
Basic unit with zero stroke:3.8 kg
100 mm stroke:
Power bridge with carriage:1.00 kg
Provided:
brackets

Loads and load moments

Unit conversions

Length:

1 m=1000 mm=39.37 inches 1 inch=25.4 mm

Force:

- 1 N=0.225 lbf
- 1 lbf=4.45 N

Moment of Force:

- 1 Nm=0.738 lb ft=8.85 lb inches
- 1 lb ft=1.36 Nm

Idle torques [Nm]

Rotational speed [rpm]	5	Lead P [mm] 20	50
150	0.5	0.9	1.2
1500	0.9	1.4	1.8
3000	1.3	1.6	2

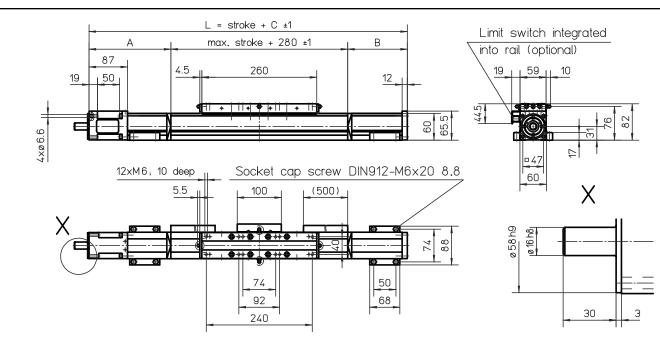
Mass:

1 kg=2.2 lb

Geometrical moment of inertia:

1 m⁴=10¹² mm⁴=2.4025 x 10⁶ in⁴

 $1 \text{ kg} \cdot \text{m}^2 = 10^4 \text{ kg} \cdot \text{cm}^2 = 0.738 \text{ lb} \cdot \text{ft} \cdot \text{s}^2$


Mass moment of inertia:

Additional lengths as a function of the stroke

Stroke length [mm]	A [mm]	B [mm]	Additional length C [mm]
0–580	95	20	335
581-1140	110	60	390
1141-1805	130	80	430
1806-2460	155	105	480
2461-3125	175	125	520
3126-3780	200	150	570
3781-4445	220	170	610
4446-5000	240	190	650

WIESEL[™] POWERLine[®] WM60

with ball screw drive and integrated linear ball-bearing guide

O Tapered lubricating nipple to DIN71412 AM6 on fixed-bearing side as standard feature

Unit conversions

1 inch=25.4 mm

1 N=0.225 lbf

1 lbf=4.45 N

Moment of Force:

1 lb • ft=1.36 Nm

otational speed

Stroke length [mm]

Idle torques [Nm]

[rpm]

150

1500

3000

0-695

696-1335

1336-2075

2076-2780

2781-3545

3546-4285

4286-5015

1 m=1000 mm=39.37 inches

1 Nm=0.738 lb • ft=8.85 lb • inches

Additional lengths as a function of the stroke

A [mm

115

165

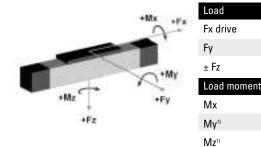
185

210

230

250

275


Length:

Force:

O Can be changed over to one of the three alternative lubricating points by the customer

Technical data

Linear speed:m	ax. 2.5 m/s
Repeatability:	0.01 mm
Acceleration:	ax. 20 m/s²
Rotational speed:m	ax. 3000 rpm
Drive element:	retensioned ball screw drive
Diameter:) mm
Lead:	20, 50 mm
Stroke length:up	o to 11.000 mm
w	ith lead 50 mm
m	ax. 5000 mm
Power bridge:	60 or 450 mm long
Se	ee page 62
Geometrical moment of inertia:ly	5.8 x 10⁵ mm⁴
lz	5.9 x 10⁵ mm⁴
Weights	
Basic unit with zero stroke:6.	16 kg
100 mm stroke:0.	64 kg
Power bridge with carriage:1.	99 kg
Provided:	pieces KAO mounting
Loads and load moments bi	rackets

1) Increase of the admissible values by the use of a long power bridge or additional free-sliding power bridge (pages 62 and 63).

dynam. [N]

4000

2000

2000

dvnam. [Nm

100

200

200

540.857.9871 | www.pt-usa.net

All figures shown in millimeters

50

1.5

2.3

2.5

Additional length C [mm]

460

560

600

650

690

730

780

Geometrical moment of inertia:

1 m⁴=10¹² mm⁴=2.4025 x 10⁶ in⁴

1 kg • m²=10⁴ kg • cm²=0.738 lb • ft • s²

Mass moment of inertia:

Lead P [mm]

20

1.1

1.8

2.0

Mass:

5

0.6

1.1

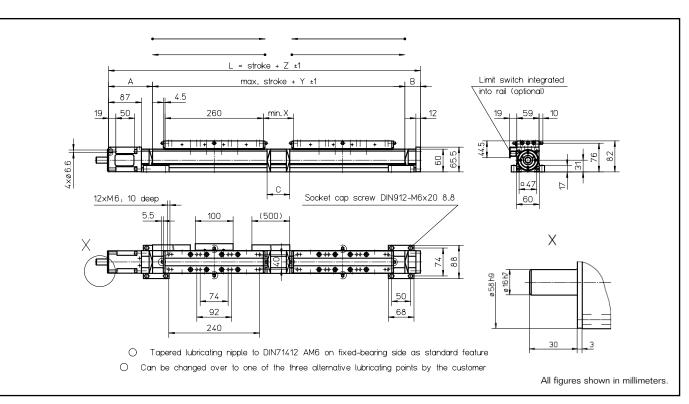
1.6

65

115

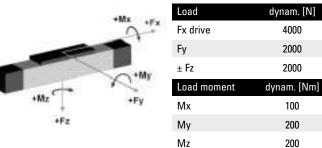
135

160


180

200

225


1 kg=2.2 lb

WIESEL[™] POWERLine[®] WM60 – 500

Technical data

lechnical data	
Linear speed:	.max. 2.5 m/s
Repeatability:	.± 0.01 mm
Acceleration:	.max. 20 m/s ²
Rotational speed:	.max. 3000 rpm
Drive element:	.Pretensioned ball screw drive
Diameter:	.20 mm
Lead:	.5 mm
Stroke length:	.up to 10340 mm referred to both power bridges. max. 5000 r
Power bridge:	.260 or 450 mm long see page 62
Geometrical moment of inertia:	10
	lz 5.9 x 10⁵ mm⁴
Weights	
Basic unit with zero stroke:	.10.33 kg
100 mm stroke:	.0.64 kg
Power bridge with carriage:	.1.99 kg
Provided:	.4 pieces KAO mounting
Loads and load moments	brackets

with ball screw drive and integrated linear ball-bearing guide in right/left execution

Unit conversions

Length:

1 m=1000 mm=39.37 inches 1 inch=25.4 mm

Force: 1 N=0.225 lbf

- 1 lbf=4.45 N

Moment of Force:

1 Nm=0.738 lb • ft=8.85 lb • inches 1 lb • ft=1.36 Nm

mm

Idle torques [Nm]

Rotational speed [rpm]	Lead P [mm] 5	
150	1.2	
1500	2.2	
3000	3.2	

Mass:

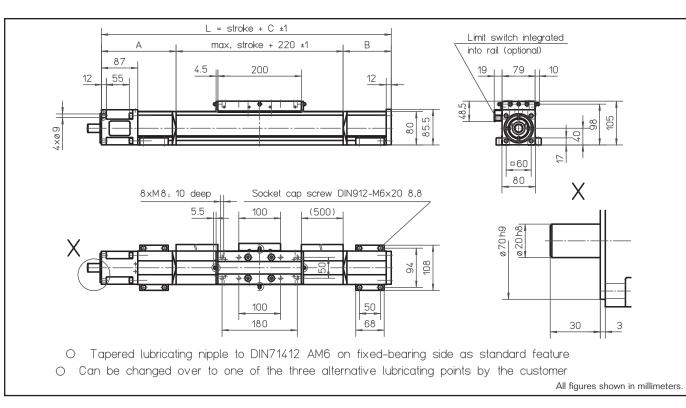
1 kg=2.2 lb

Geometrical moment of inertia:

1 m⁴=10¹² mm⁴=2.4025 x 10⁶ in⁴

1 kg • m²=10⁴ kg • cm²=0.738 lb • ft • s²

Mass moment of inertia:


Note: For tube lengths of 5400 mm and over, the tubular profile is composed of two parts. The joint must be adequately supported. It may be possible to position the joint according to customer's wishes. For screw leads > 20 mm, excess lengths cannot be implemented.

Additional lengths as a function of the stroke

Stroke length [mm]	A [mm]	B [mm]	C [mm]	Х	Y	Ζ
0–1390	115	65	60	80	600	800
1391-2670	165	115	210	230	750	1050
2671-4150	185	135	250	270	790	1130
4151-5560	210	160	300	320	840	1230

WIESEL[™] POWERLine[®] WM80 – 370

with ball screw drive and integrated linear ball-bearing guide and short guide system

Technical data

Linear speed:
Repeatability: ± 0.03 mm
Acceleration:
Rotational speed:
Drive element: Pretensioned ball screw with
single nut, no backlash
Diameter:
Lead:
Stroke length:
Power bridge:
Geometrical moment of inertia:ly 1.9 x 10 ⁶ mm ^₄
lz 1.9 x 10 ⁶ mm⁴
Weights
Basic unit with zero stroke:7.00 kg
100 mm stroke:
Power bridge with carriage:1.60 kg
Provided:
brackets

Loads and lo	ad moments
--------------	------------

+Mx	Load	dynam. [N]
A the	Fx drive	3500
	Fy	2100
O +My	± Fz	2100
A AN	Load moment	dynam. [Nm]
+Mz +Fy	Mx	150
+Fz	My	180
	Mz	180

Unit conversions Length:

1 N=0.225 lbf

1 lbf=4.45 N

1 m=1000 mm=39.37 inches 1 inch=25.4 mm Force:

1 m⁴=10¹² mm⁴=2.4025 x 10⁶ in⁴

Mass moment of inertia: 1 kg • m²=10⁴ kg • cm²=0.738 lb • ft • s² Mass:

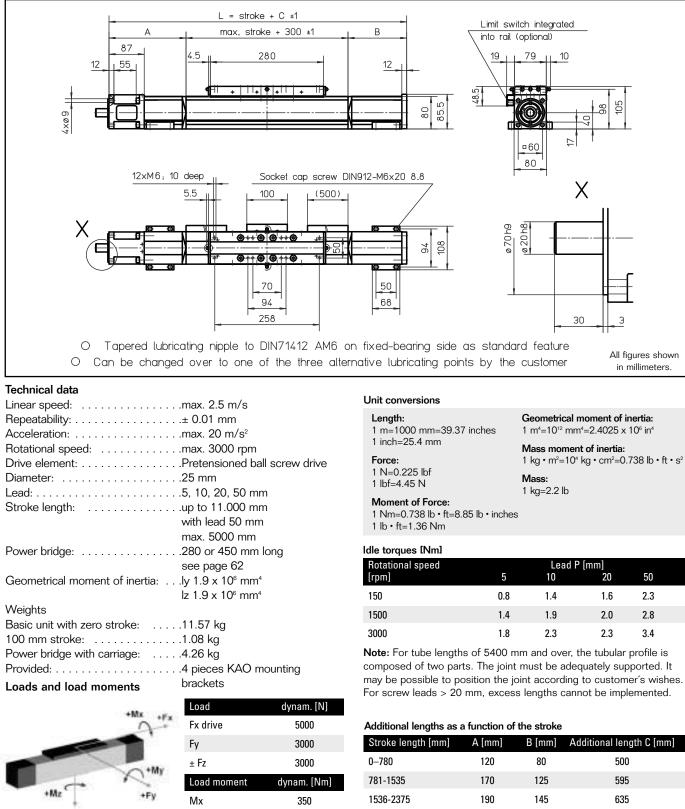
Geometrical moment of inertia:

1 kg=2.2 lb

Moment of Force: 1 Nm=0.738 lb • ft=8.85 lb • inches

1 lb • ft=1.36 Nm

Idle torques [Nm]


Rotational speed	Lead P [mm]				
[rpm]	5	10	20	50	
150	0.6	1.1	1.3	2.8	
1500	1.1	1.5	1.6	2.2	
3000	1.4	1.8	1.8	2.7	

Additional lengths as a function of the stroke

Stroke length [mm]	A [mm]	B [mm]	Additional length C [mm]
0–680	95	35	350
681-1310	125	80	425
1311-2065	150	105	475
2066-2830	170	125	515
2831-3590	195	150	565
3591-4355	215	170	605
4356-5000	235	190	645

WIESEL[™] POWERLine[®] WM80

with ball screw drive and integrated linear ball-bearing guide

1) Increase of the admissible values by the use of a long power bridge or additional free-sliding power bridge (pages 62 and 63).

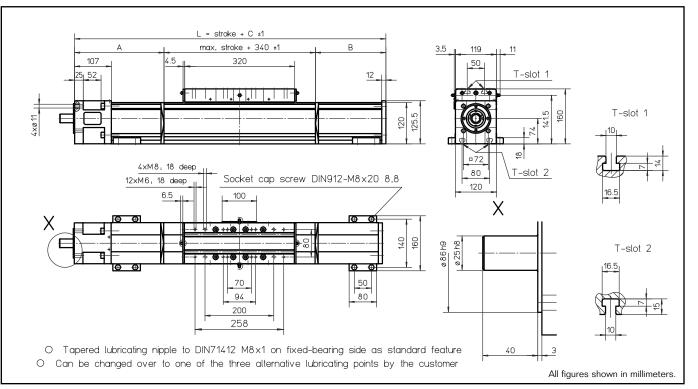
My

Mz¹⁾

Precision Technology

Rotational speed	Lead P (mm)				
[rpm]	5	10	20	50	
150	0.8	1.4	1.6	2.3	
1500	1.4	1.9	2.0	2.8	
3000	1.8	2.3	2.3	3.4	

Stroke length [mm]	A [mm]	B [mm]	Additional length C [mm]
0–780	120	80	500
781-1535	170	125	595
1536-2375	190	145	635
2376-3205	215	170	685
3206-4045	235	190	725
4046-4885	255	210	765
4886-5000	280	235	815


540.857.9871 | www.pt-usa.net

300

300

WIESEL[™] POWERLine[®] WM120

with ball screw drive and integrated linear ball-bearing guide

Technical data

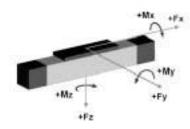
Linear speed:	max. 2.0 m/s
Repeatability:	± 0.01 mm
Acceleration:	max. 20 m/s²
Rotational speed:	max. 3000 rpm
Drive element:	Pretensioned ball screw drive
Diameter:	32 mm
Lead:	5, 10, 20, 40 mm
Stroke length:	up to 11.000 mm
	with lead 40 mm
	max. 5000 mm
Power bridge:	320 or 500 mm long
	see page 62
Geometrical moment of inertia: .	ly 7.7 x 10 ⁶ mm⁴
	lz 9.4 x 10 ⁶ mm⁴
Weights	
Basic unit with zero stroke:	25.91 kg
100 mm stroke:	1.93 kg
Power bridge with carriage:	9.25 kg
Provided:	. 4 pieces KAO mounting
Loads and load moments	brackets

Load

Fv

± Fz

Мx


My

Mz

Fx drive

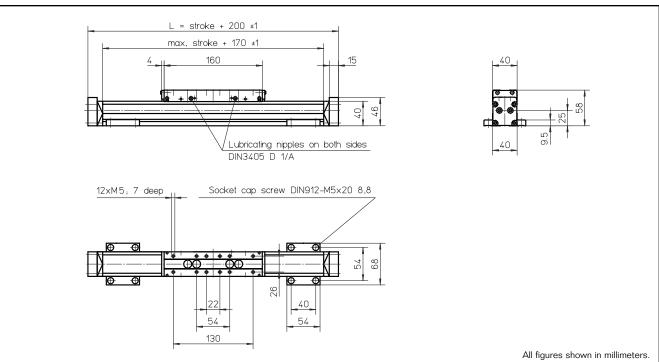
Fx drive 3240

Load moment

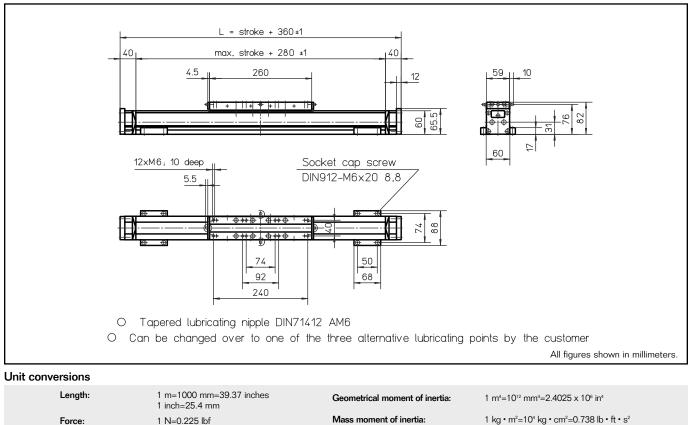
Linit conversion

Unit conversions	
Length: 1 m=1000 mm=39.37 inches	Geometrical moment of inertia: 1 m ⁴ =10 ¹² mm ⁴ =2.4025 x 10 ⁶ in ⁴
1 inch=25.4 mm Force: 1 N=0.225 lbf 1 lbf=4.45 N	Mass moment of inertia: $1 \text{ kg} \cdot \text{m}^2=10^4 \text{ kg} \cdot \text{cm}^2=0.738 \text{ lb} \cdot \text{ft} \cdot \text{s}^2$ Mass: $4 \text{ kg} \cdot \text{cm}^2=0.0 \text{ lb}$
Moment of Force: 1 Nm=0.738 lb ∙ ft=8.85 lb • inches 1 lb • ft=1.36 Nm	1 kg=2.2 lb
Idle torques [Nm]	
Potational anoad	

Rotational speed		Lead F	? [mm]		
[rpm]	5	10	20	40	
150	1.2	2.1	1.8	2.4	
1500	2.3	3.0	2.8	3.6	
3000	2.8	3.8	3.5	4.0	


Additional lengths as a function of the stroke

Stroke length [mm]	A [mm]	B [mm]	Additional length C [mm]
0–890	155	100	595
891-1695	225	170	735
1696-2625	260	205	805
2626-3555	295	240	875
3556-4485	330	275	945
4486-5000	365	310	1015


WIESEL[™] POWERLine[®]

Guide tube

WM40-190

WM60-190

Force: 1 N=0.225 lbf 1 lbf=4.45 N Mass Moment of Force: 1 Nm=0.738 lb • ft=8.85 lb • inches 1 lb • ft=1.36 Nm

Precision Technology

dynam. [N]

12000

8000

6000

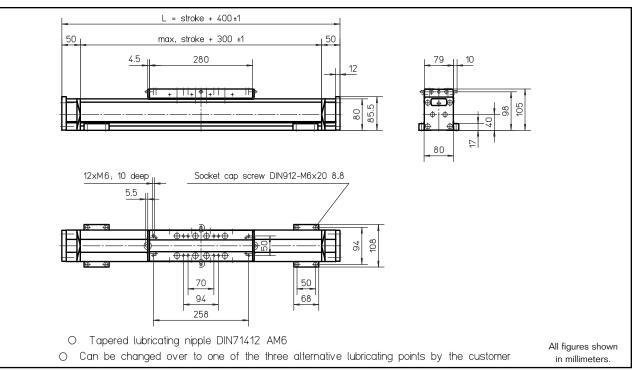
6000

dynam. [Nm]

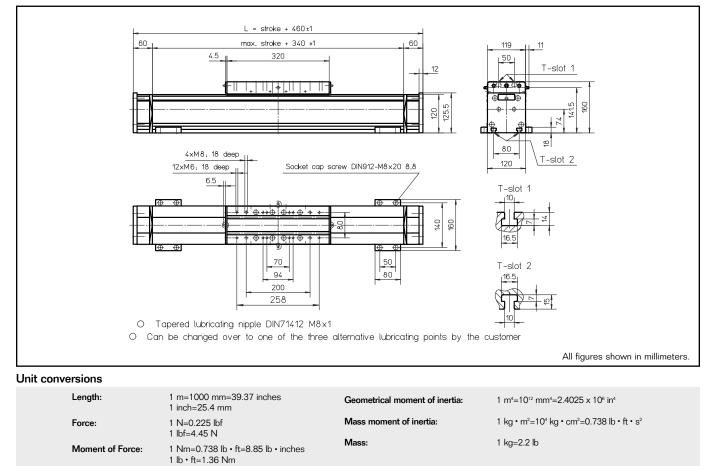
500

600

600

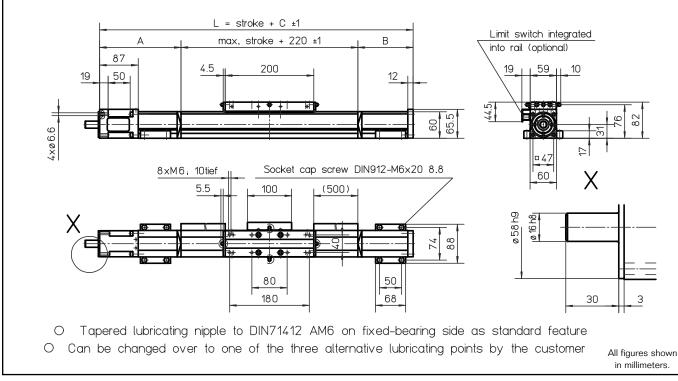

1 kg=2.2 lb

39


WIESEL[™] POWERLine[®]

Guide tube

WM80-190



WM120-190

WIESEL[™] DYNALine[®] WV60

with ball screw drive

Technical data

rechnical data	
Linear speed:	5 m/s
Repeatability:	nm
Acceleration:	m/s²
Rotational speed:	00 rpm
Drive element:Pretensi	oned ball screw drive
Diameter:	
Lead:) mm
Stroke length:	.000 mm
with lead	d 50 mm
max. 50	00 mm
Power bridge:	long
Geometrical moment of inertia: ly 5.8 x	10⁵ mm⁴
lz 5.9 x	10⁵ mm⁴
Weights	
Basic unit with zero stroke:4.72 kg	
100 mm stroke:	
Power bridge with carriage:1.42 kg	
Provided:	KAO mounting
brackets	3
Feed force	

#Fx

Feed force

Maximum feed force Fx: 4000 N

Note: All loads and load moments must be absorbed by external guides

Precision Technology

40

540.857.9871 | www.pt-usa.net

Precision Technology

Unit conversions

Length: 1 m=1000 mm=39.37 inches 1 inch=25.4 mm

Geometrical moment of inertia: 1 m⁴=10¹² mm⁴=2.4025 x 10⁶ in⁴ Mass moment of inertia: $1 \text{ kg} \cdot \text{m}^2 = 10^4 \text{ kg} \cdot \text{cm}^2 = 0.738 \text{ lb} \cdot \text{ft} \cdot \text{s}^2$

Force: 1 N=0.225 lbf

1 lbf=4.45 N

Moment of Force:

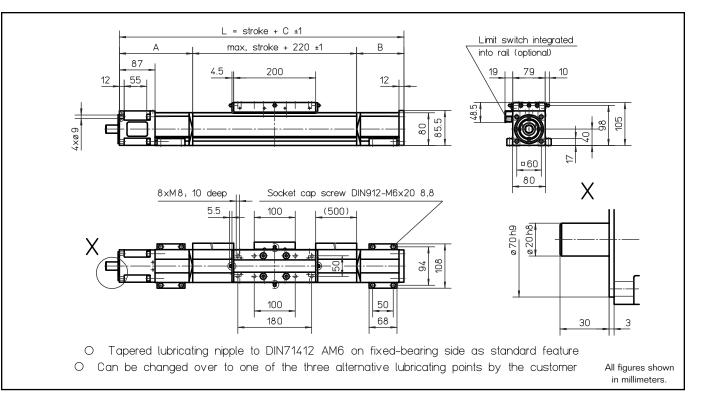
1 Nm=0.738 lb • ft=8.85 lb • inches 1 lb • ft=1.36 Nm

Idle torgues [Nm]

Rotational speed Lead P [mm] 5 50 [rpm] 20 0.6 0.7 0.8 150 1500 1.1 1.3 1.2 3000 1.5 1.7 1.9

Mass:

1 kg=2.2 lb


Additional lengths as a function of the stroke

Stroke length [mm]	A [mm]	B [mm]	Additional length C [mm]
0–690	130	80	430
691-1415	155	105	480
1416-2155	175	125	520
2156-2885	200	150	570
2886-3625	220	170	610
3626-4355	245	195	660
4356-5095	265	215	700

Note: For tube lengths of 5400 mm and over, the tubular profile is composed of two parts. The joint must be adequately supported. It may be possible to position the joint according to customer's wishes. For screw leads > 20 mm, excess lengths cannot be implemented.

WIESEL[™] DYNALine[®] WV80

with ball screw drive

Technical data

Linear speed:	.± 0.01 mm .max. 20 m/s ² .max. 3000 rpm .Pretensioned ball screw drive .25 mm .5, 10, 20, 50 mm
Power bridge:	.200 mm long
Weights	
Basic unit with zero stroke: 100 mm stroke: Power bridge with carriage: Provided:	.0.99 kg .2.25 kg
Feed force	

Feed force

Maximum feed force Fx:

5000 N

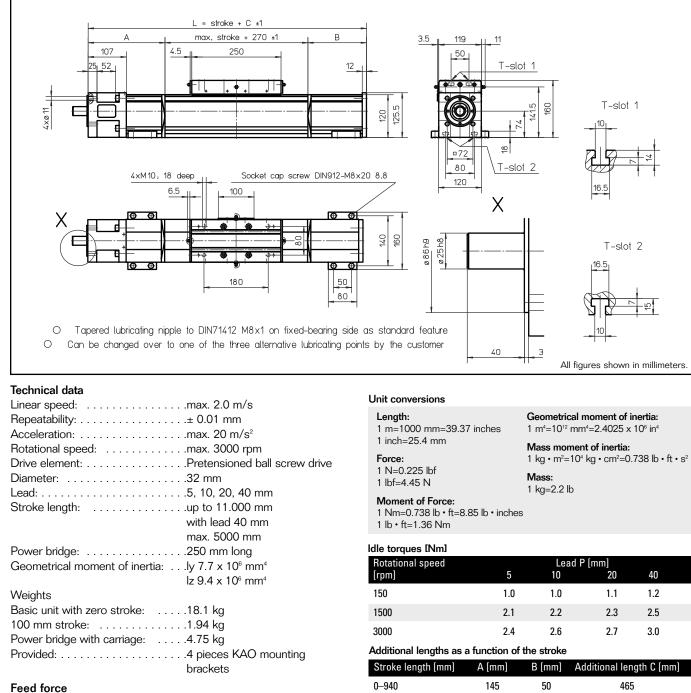
Unit conversions

Length:	Geometrical moment of inertia:
1 m=1000 mm=39.37 inches	1 m ⁴ =10 ¹² mm ⁴ =2.4025 x 10 ⁶ in ⁴
1 inch=25.4 mm	Mass moment of inertia:
Force:	1 kg • m²=10⁴ kg • cm²=0.738 lb • ft • s²
1 N=0.225 lbf	Mass:
1 lbf=4.45 N	1 kg=2.2 lb
Moment of Ferrer	

Moment of Force 1 Nm=0.738 lb • ft=8.85 lb • inches 1 lb • ft=1.36 Nm

Idle torques [Nm]

Rotational speed	Lead P [mm]				
[rpm]	5	10	20	50	
150	1.0	1.0	1.1	1.2	
1500	1.7	1.8	1.9	2.0	
3000	2.2	2.3	2.4	2.6	


Additional lengths as a function of the stroke

Stroke length [mm]	A [mm]	B [mm]	Additional length C [mm]
0–775	125	50	395
776-1670	145	95	460
1671-2505	170	115	505
2506-3340	190	140	550
3341-4175	210	160	590
4176-5015	235	180	635

Note: For tube lengths of 5400 mm and over, the tubular profile is composed of two parts. The joint must be adequately supported. It may be possible to position the joint according to customer's wishes. For screw leads > 20 mm, excess lengths cannot be implemented.

WIESELTM DYNALine[®] WV120

with ball screw drive

Maximum feed force Fx: 12000 N

8000 N with ball screw drive 3240 +Fy

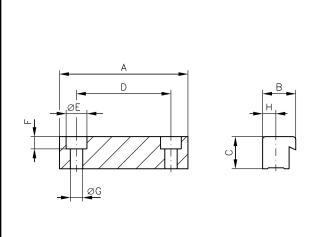
Note: All loads and load moments must be absorbed by external guides

42

Note: All loads and load

by external guides

moments must be absorbed


Idle torques [Nm]						
Rotational speed		Lead P	? [mm]			
[rpm]	5	10	20	40		
150	1.0	1.0	1.1	1.2		
1500	2.1	2.2	2.3	2.5		
3000	2.4	2.6	2.7	3.0		

Stroke length [mm]	A [mm]	B [mm]	Additional length C [mm]
0–940	145	50	465
941-1860	180	120	570
1861-2790	215	155	640
2791-3720	250	190	710
3721-4650	285	225	780
4651-5000	320	255	845

Note: For tube lengths of 5400 mm and over, the tubular profile is composed of two parts. The joint must be adequately supported. It may be possible to position the joint according to customer's wishes. For screw leads > 20 mm, excess lengths cannot be implemented.

Accessories for WIESEL[™] POWERLine[®]

Mounting brackets

KAO Mounting brackets

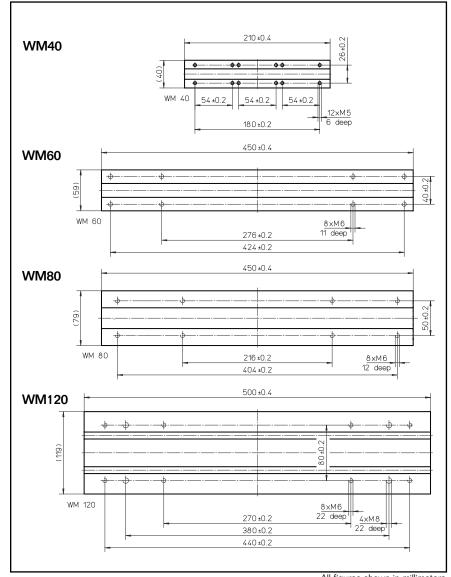
The WIESEL[™] unit is secured to mounting surface by means of the KAO mounting brackets which are inserted in the grooves provided in the sides of the tubular aluminum profile and screwed onto the mounting surface with the aid of socket head cap screws. The number of mounting brackets required depends on the load and overall length of the WIESEL[™] unit. This is shown in the diagrams. Increasing side forces reduces the distance between supports. Each unit is provided with 4 pieces KAO Mounting brackets.

Maximum torque of mounting screws

Size	Moment [Nm]
WM40	7.3–12
WM/WV60	7.3–12
WM/WV80	7.3–12
WM/WV120	17–30

KAO System brackets

Only needed for WH40. With multi-coordinate arrangements of several WIESEL[™] units, this can be used to mount a WIESEL[™] directly to the power bridge of a unit positioned immediately below.


	Dimension [mm]							
Size	А	В	С	D	øΕ	F	øG	Н
WM40	54	16	10	40	10	5.7	5.5	7
WM/WV60	54	17.5	17	50	11	6.5	6.6	7
WM/WV80	68	17.5	17	50	11	6.5	6.6	7
WM/WV120	80	25	18	50	15	8.5	9	10
WM40 System KA0	40	16	10	26	10	5.7	5.5	7
WM60 System KA0	58	17.5	17	40	11	6.5	6.6	7

Note: It is advisable to secure the linear drive unit at intervals of at least 750 mm.

This ensures that all the permissible loads can be absorbed without significantly deforming the tubular aluminum profile.

Accessories for WIESEL[™] POWERLine[®]

Long power bridge

Size	Length of power bridge [mm]	My [Nm]	Mz [Nm]
WM40-000	210	50	50
WM60-000	450	500	500
WM80-000	450	750	750
WM120-000	500	1500	1500

Note: All other limit values are comparable to those of versions with standard power bridge. High load moments lead to major deformation of the tubular aluminum profile. The distance between supports should be reduced on order to minimize this deformation.

Note: All other limit values according to executions with standard power bridge

Unit conversions

Length:	1 m=1000 mm=39.37 inches 1 inch=25.4 mm	Geo
Force:	1 N=0.225 lbf 1 lbf=4.45 N	Mas
Moment of Force:	1 Nm=0.738 lb • ft=8.85 lb • inches 1 lb • ft=1.36 Nm	Mas

Precision Technology

LKB Long power bridge

The long power bridge increases the maximum permissible load moments My and Mz of a WIESEL[™] unit without requiring to step up a size. The difference in length between the long power bridge and the standard power bridge must be taken into account when calculating the overall length of the WIESEL[™] unit.

Overall length of the WIESEL[™] unit:

$L_{tot} = Stroke + C + \Delta Kb$

- C* = Specific additional length = Overall length WIESEL[™] unit Ltot **Stroke** = Required stroke length
- = Difference in length between long $\Delta \mathbf{Kb}$ and standard power bridge
 - * Calculation in depency of stroke and Δ Kb. The dimension C is shown in the charts of technical data of the corresponding actuator.

All figures shown in millimeters

eometrical moment of inertia:	1 m^4 =10 ¹² mm ⁴ =2.4025 x 10 ⁸ in ⁴
lass moment of inertia:	1 kg • m ² =10 ⁴ kg • cm ² =0.738 lb • ft • s ²
lass:	1 kg=2.2 lb

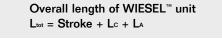
Accessories for WIESEL[™] POWERLine[®]

Additional free-sliding power bridge

Μv O

OKB Additional free-sliding power bridge

The additional free-sliding power bridge provides: • Individual increase of the load moments My and Mz of a


- WIESEL[™] unit. Load moment My is limited by force ± Fz;
- Mz is limited by force ±Fy. • Longer and therefore improved guidance.
- Particularly suitable as a vertical guide and lifting module.

The required center distance between the driven and the free-sliding power bridge is calculated as follows:

$$L_A = \frac{M}{F_{max}}$$

- = Distance between center of driven power bridge and LA center of free-sliding power bridge [mm] Μ
 - = Load moment My or Mz [mm]
- = Maximum force Fz or Fy of the WIESEL[™] unit Fmax concerned [N]

The center distance between the two power bridges must be taken into account when calculating the overall length of the WIESEL[™] unit.

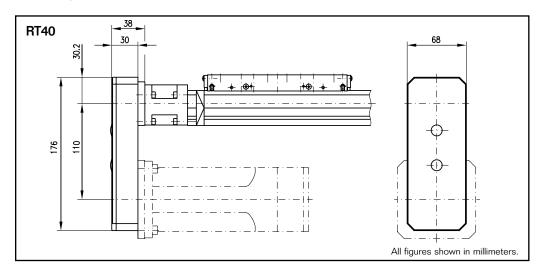
Lc = Specific additional length [mm] between long and standard power bridge. (see technical data of the respective WIESEL™)

Minimum center distance between driven and free-sliding power bridge (given for standard power bridge).

Size	L _A [mm]
WM40*	min 175 max 600
WM60	335
WM80	360
WM120	450

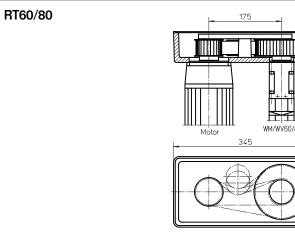
*For stroke lengths of more than 1700 mm please contact our product specialists for the maximum screw rotational speed.

The required force to move the additional free sliding power bridge must be taken into account when selecting the drive.


Size	F [N]
WM40	40
WM60	200
WM80	250
WM120	300

Note: High load moments lead to major deformation of the tubular aluminum profile. In order to minimize this deformation, the distance between the fixing points should be reduced.

Length:	1 m=1000 mm=39.37 inches 1 inch=25.4 mm	Geometrical moment of inertia:	1 m ⁴ =10 ¹² mm ⁴ =2.4025 x 10 ⁶ in ⁴
Force:	1 N=0.225 lbf 1 lbf=4.45 N	Mass moment of inertia:	1 kg • m²=10 ⁴ kg • cm²=0.738 lb • ft • s²
Moment of Force:	1 Nm=0.738 lb • ft=8.85 lb • inches 1 lb • ft=1.36 Nm	Mass:	1 kg=2.2 lb


DYNALine[®]

Timing belt drive

Technical data

recrimical data			
Size	Mmax	N max ^{input}	
	[Nm]	[rpm]	
RT40	1.75	3000	

Technical data

Size	Mmax	n_{max} input	Midle	Efficiency η	Mass inertia J [kgcm ²]		Weight [kg]	
	[Nm]	[rpm]	[Nm]		1:1	2:1	1:1	2:1
RT60	15	3000	app. 0.7	0.85	4.38	10.11	5.6	7.1
RT80	30	3000	app. 0.7	0.85	4.65	10.38	5.5	7.0

= Maximum torque at the output shaft [Nm] Mmax

= Maximum input speed [rpm] nmax

Midle = Idle torque [Nm] J

= Mass inertia referred to input shaft [kgcm²]

Unit conversions

Length:	1 m=1000 mm=39.37 inches 1 inch=25.4 mm
Force:	1 N=0.225 lbf 1 lbf=4.45 N
Moment of Force:	1 Nm=0.738 lb • ft=8.85 lb • inches 1 lb • ft=1.36 Nm

Precision Technology

Unit conversions

46

540.857.9871 | www.pt-usa.net

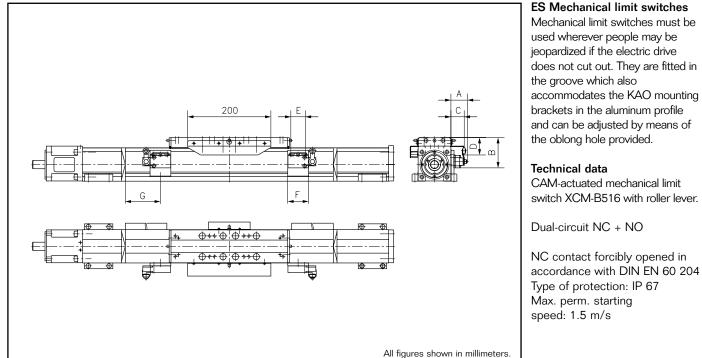
Precision Technology

RT Belt drive

The RT 40/60/80 belt drive is a transmission designed to minimize the overall length. The RT housing (which is both belt guard and motor support) can be mounted in positions offset by 90°. The drive is provided via standard tooth belt drives.

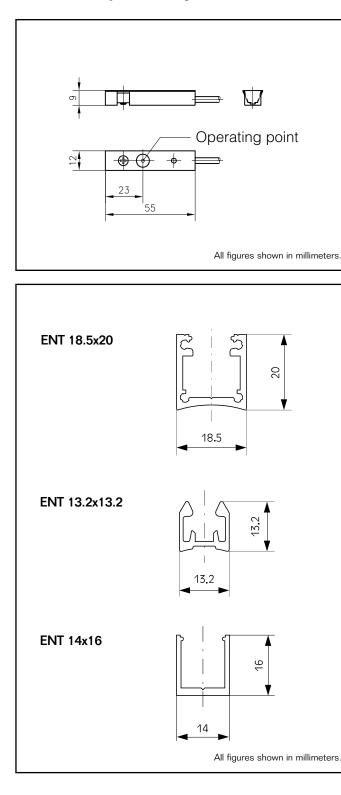
Transmission ratios of i = 1 : 1and i = 2 : 1 are possible. (RT 40 only i = 1:1)

Midle	Efficiency η	Mass inertia J [kgcm ²]	Weight [kg]
[Nm]		1:1	1:1
app. 0.3 0.8		0.25	0.62
74			


0	
-)	
	All figures shown in millimeters.

Geometrical moment of inertia:	1 m ⁴ =10 ¹² mm ⁴ =2.4025 x 10 ⁶ in ⁴
Mass moment of inertia:	$1 \text{ kg} \cdot \text{m}^2 = 10^4 \text{ kg} \cdot \text{cm}^2 = 0.738 \text{ lb} \cdot \text{ft} \cdot \text{s}^2$
Mass:	1 kg=2.2 lb

Accessories for WIESEL[™] *POWERLine*[®], **DYNA**Line[®]


Mechanical limit switches

Precision Technology

General accessories

Inductive proximity switch

t conversions			
Length:	1 m=1000 mm=39.37 inches 1 inch=25.4 mm	Geometrical moment of inertia:	1 m ⁴ =10 ¹² mm ⁴ =2.4025 x 10 ⁶ in ⁴
Force:	1 N=0.225 lbf 1 lbf=4.45 N	Mass moment of inertia:	1 kg • m²=104 kg • cm²=0.738 lb • ft • s²
Moment of Force:	1 Nm=0.738 lb • ft=8.85 lb • inches 1 lb • ft=1.36 Nm	Mass:	1 kg=2.2 lb

540.857.9871 | www.pt-usa.net

Size		Dimensions [mm]						
	А	В	С	D		F	G for WM	G for WV
WM/WV60	40	70	32	38	35	50	94	64
WM/WV80	40	73	32	42	35	50	104	64
WM/WV120	40	90	32	58	35	50	119	84

Note: Fixing of the linear unit by means of the KAO mounting brackets is not possible in the area of the base plates of the mechanical limit switches.

nit conversions	
Length:	1 m=1000 mm=39.37 inches 1 inch=25.4 mm
Force:	1 N=0.225 lbf 1 lbf=4.45 N
Moment of Force:	1 Nm=0.738 lb • ft=8.85 lb • inches 1 lb • ft=1.36 Nm

Precision Technology

48

EN inductive proximity switch

Inductive proximity switches are used to shut down the electric drive before the mechanical limit position has been reached.

The braking path depends on the linear speed and time-lag. This path must at least be allowed between the operating point of the proximity switch and the actual mechanical limit position. Inductive proximity switches are also used to identify reference points or to signal operating points to the control system. Normally-closed versions are used for limit positions and normally-open versions for operating points.

The proximity switches can be infinitely adjusted in the guide rails.

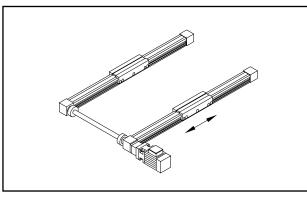
Technical data

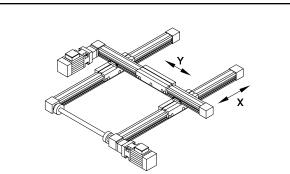
Contactless inductive proximity switch with LED display in plastic housing. Operating distance: 2 mm Type of protection: IP 67 Power supply: 10-30 V DC Max. load current: 200 mA

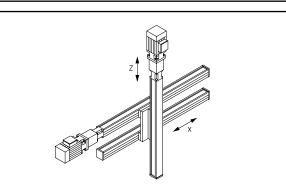
Screened connection cable, length 2 m or 10 m.

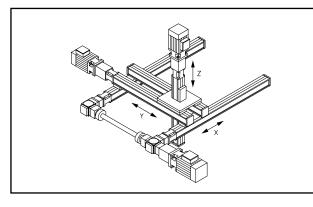
Size	Туре	Cable length	Weight
		[m]	[kg]
EN2	O-normally closed	2	0.04
EN2	S-normally open	2	0.04
EN2	O-normally closed	10	0.19
EN2	S-normally open	10	0.19

ENT limit switch bracket


A support profile for mounting and adjusting inductive proximity switch EN. The hollow provides space to route cables for the cable harness of a proximity switch and can be concealed with cover tape.


Size	Туре
WH40/50/80/120	ENT 14x16
WHZ50/80	ENT 14x16
WM40/60/80/120	ENT 14x16
WV60/80	ENT 14x16


Geometrical moment of inertia:	1 m ⁴ =10 ¹² mm ⁴ =2.4025 x 10 ⁶ in ⁴
Mass moment of inertia:	1 kg • m ² =10 ⁴ kg • cm ² =0.738 lb • ft • s ²
Mass:	1 kg=2.2 lb


Precision Technology USA, Inc. WIESEL™ modular system

Examples

Parallel arrangement:

- 2 WIESEL[™] *SPEEDLine*[®] 1 Universal joint shaft
- 1 Drive package

2-axis arrangement:

- X-axis: 2 WIESEL[™] *SPEEDLine*[®] 1 Universal joint shaft
- 1 Drive package
- Y-axis:
- 1 WIESEL[™] *SPEEDLine*[®] 1 Drive package

2-axis arrangement:

- X-axis: 1 WIESEL[™] *POWERLine*[®] 1 WIESEL[™] *POWERLine*[®] as guide tube 1 Drive package
- Z-axis:
- 1 WIESEL[™] POWERLine[®]
- 1 Drive package

3-axis arrangement:

- X-axis:
- 2 WIESEL[™] *POWERLine*[®] with bevel gearbox
- 1 Universal joint shaft
- 1 Drive package

Y-axis:

- 1 WIESEL[™] *POWERLine*[®]
- 1 WIESEL[™] *POWERLine*[®] as
- guide tube
- 1 Drive package

Dynamic load ratings With the help of dynar

With the help of dynamic load ratings, it is possible to calculate the approximate lifetime, dependent on load. The figures shown are for the KGT, according to DIN 69051, Part 4, Draft 1989, and for the guide, according to DIN 636.

Туре	Скам Р=4	Скем Р=5	Скам Р=10	Скам Р=20	Скам Р=40	Скам Р=50	CFS Y	CFS Z	Les X	Lfs Y
	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[N]	[mm]	[mm]
WH40	-	-	-	-	-	-	(2x) 2786	(2x) 3397	72	-
WH50	-	-	-	-	-	-	-	(4x) 1270	198	39
WH80	-	-	-	_	-	_	-	(4x) 3670	220	65
WH120	-	-	-	-	-	-	-	(4x) 16200	180	97
WHZ50	-	-	-	-	-	_	-	(4x) 1270	198	39
WHZ80	-	-	-	-	-	-	-	(4x) 3670	220	65
WM40	-	2393	-	-	-	_	(2x) 2786	(2x) 3397	87	-
WM60-370 ZRT	-	-	-	-	-	_	(2x) 12964	(2x) 11934	-	35
WM60-370	-	7552	-	8312	-	4677	(2x) 12964	(2x) 11934	-	35
WM60	-	7552	-	8312	-	4677	(4x) 11495	(4x) 10581	141.7	35
WM60-500	-	7552	-	8312	-	4677	(4x) 11495	(4x) 10581	141.7	35
WM80-370 ZRT	-	-	-	-	-	-	(2x) 18723	(2x) 17919	-	49.75
WM80 ZRT	-	-	-	-	-	_	(4x) 14356	(4x) 13739	153	49.75
WM80-370	-	8804	9311	9365	-	8572	(2x) 18723	(2x) 17919	-	49.75
WM80	-	8804	9311	9365	-	8572	(4x) 14356	(4x) 13739	154	49.75
WM120	-	15429	24049	20667	8341	-	(4x) 18723	(4x) 17919	186	80.75
WV60	-	7552	-	8312	-	4677	-	-	-	-
WV80	-	8804	9311	9365	-	8572	-	-	-	-
WV120	-	15429	24049	20667	8341	_	_	_	-	-

Important note: The permissible force and moment threshold values for the respective linear unit must not be exceeded at any time.

Length:	1 m=1000 mm=39.37 inches 1 inch=25.4 mm	Ge
Force:	1 N=0.225 lbf 1 lbf=4.45 N	Ma
Moment of Force:	1 Nm=0.738 lb • ft=8.85 lb • inches 1 lb • ft=1.36 Nm	Ma

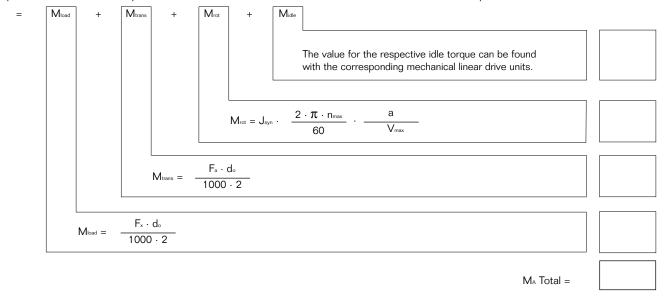
Precision Technology

1 WIESEL[™] POWERLine[®]

1 Drive package

Z-axis:

Precision Technology


eometrical moment of inertia:	1 m ⁴ =10 ¹² mm ⁴ =2.4025 x 10 ⁶ in ⁴
lass moment of inertia:	1 kg • m ² =10 ⁴ kg • cm ² =0.738 lb • ft • s ²
ass:	1 kg=2.2 lb

Drive selection

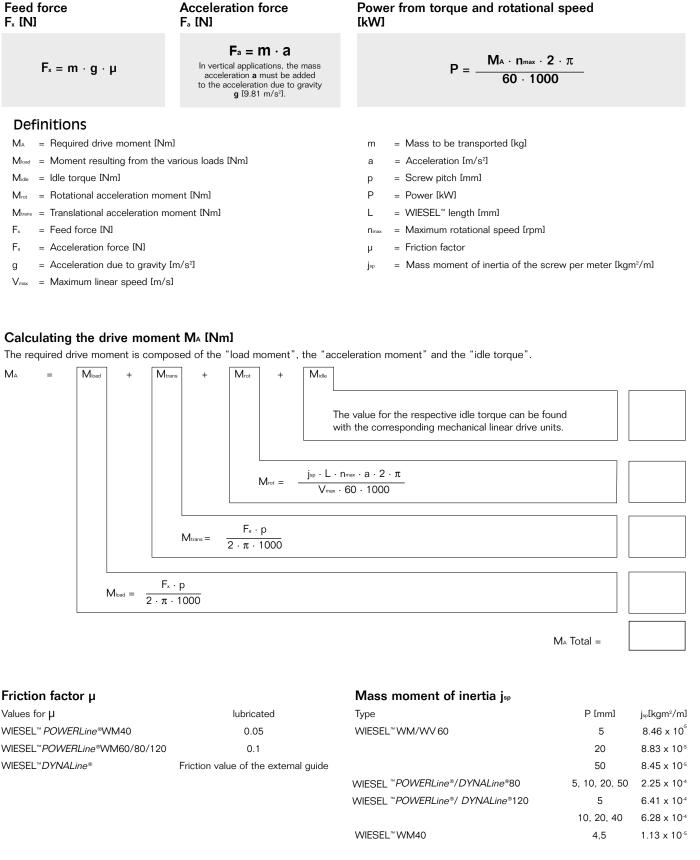
for linear drive units with toothed belt drive

Feed force F₄ [N]	Acceleration force F _a INI	Power from torque and rotational speed [kW]	Feed force F∗ [N]
$F_x = m \cdot g \cdot \mu$	$\label{eq:Fa} \begin{split} F_a &= m \cdot a \\ & \text{In vertical applications, the mass} \\ & \text{acceleration } a \text{ must be added} \\ & \text{to the acceleration due to gravity} \\ & g \text{ [9.81 m/s^2].} \end{split}$	$P = \frac{M_{A} \cdot n_{max} \cdot 2 \cdot \pi}{60 \cdot 1000}$	$F_x = m \cdot g$
Definitions			Definitions
M_A = Required drive mom	ent [Nm]	m = Mass to be transported $[kg]^{1}$	M _A = Required dri
M _{load} = Moment resulting from	om the various loads [Nm]	a = Acceleration $[m/s^2]$	M _{load} = Moment res
M _{idle} = Idle torque [Nm]		d _o = Effective diam. of pulley [mm] ²⁰	M _{idle} = Idle torque [
M _{rot} = Rotational accelerati	on moment [Nm]	P = Power [kW]	M _{rot} = Rotational a
M _{trans} = Translational acceler	ation moment [Nm]	L = WIESEL™ length [mm]	M _{trans} = Translational
F _x = Feed force [N]		J _{syn} = Idle torque of pulley [kgm²]	F _* = Feed force [
F _a = Acceleration force []	N]	n _{max} = Maximum rotational speed [rpm]	F _a = Acceleration
g = Acceleration due to	gravity [m/s²]	μ = Friction factor	g = Acceleration
V _{max} = Maximum linear spe	ed [m/s]		V _{max} = Maximum lir

The required drive moment is composed of the "load moment", the "acceleration moment" and the "idle torque".

J_{syn} [kgm²] Туре Spec. weight μ tooth belt [kg/m] 8.800 E-06 WH40 0.05 0.032 WH50 0.1 1.928 E-05 0.055 WH80 0.1 2.473 E-04 0.210 0.1 1.004 E-03 0.340

Spec. weight tooth belt [kg/m
0.055
0.114


Drive selections

for linear drive units with ball screw drive

Feed force F _* [N]		Acceleration force F _a [N]
F _x = m	·g·μ	$F_a = m \cdot a$ In vertical applications, the mass acceleration a must be added to the acceleration due to gravity g [9.81 m/s ²].
Definition	5	
M _A = Require	d drive moment [Nm]	
M _{load} = Momer	t resulting from the va	arious loads [Nm]
M _{idle} = Idle tor	jue [Nm]	
M _{rot} = Rotatio	nal acceleration mome	ent [Nm]
M _{trans} = Transla	ional acceleration mo	ment [Nm]
F_{*} = Feed for	rce [N]	
۲. A	-+: (N 11	

- linear speed [m/s]

Calculating the drive moment M_A [Nm]

Friction factor µ	
Values for μ	lubricated
WIESEL [™] <i>POWERLine</i> [®] WM40	0.05
WIESEL [™] <i>POWERLine</i> [®] WM60/80/120	0.1
WIESEL™DYNALine®	Friction value of the external gu

¹⁾ Total weight m = weight to be moved + weight of power bridge $^{3)}$ + weight of toothed belt Weight of toothed belt = spec. weight of tooth belt [kg/m] · 2 ^₄) · WIESEL[™]- length [mm] 1000

²⁾ Values for the respective effective diameters, see at corresponding mechanical linear units.

 $^{(3)}\ensuremath{\mathsf{For}}\xspace Z\xspace$ A set $^{(3)}\ensuremath{\mathsf{For}}\xspace Z\xspace$ and $^{(3)}\ensuremath{\mathsf{For}}\xspace$ a

⁴⁾ To replace by 1 at Z-Axis

WH120

WIESEL Ordering

MA

53

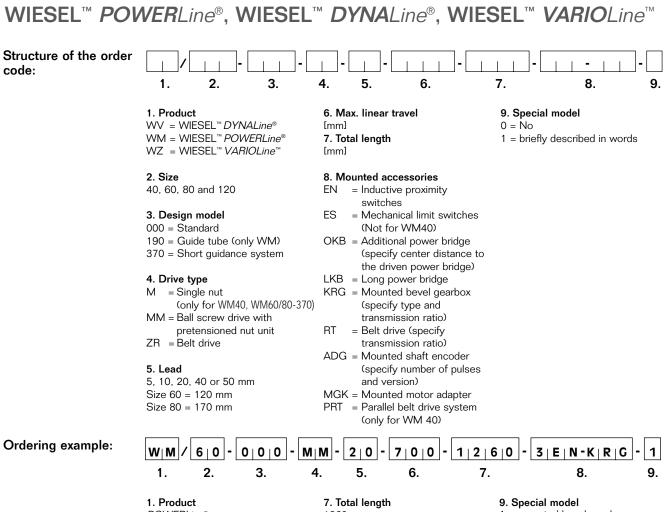
Order information

WIESEL[™] SPEEDLine[®]

Structure of the order code:	1. 2. 3. 4.		- <u> / </u> - <u> / </u> - <u> </u> 8. 9. 10.
	1. Product WH = Standard axis WHZ= Z-axis	7. Total length [mm]	10. Special execution 0 = No 1 = Yes, description in words
	2. Size 40, 50, 80 and 120 ¹⁰	8. Execution of drive shaft Standard: AZ1, AZ2 and AZ6 (varieties see below)	
	3. Design model 000 = Standard 190 = Guide tube	 9. Mounted accessories EN = Inductive proximity switches²⁰ ES = Mechanical limit switches³⁰ 	 Size 40 and 120 not available as Z-axis Size 50 EN/A = Limit switches mounted
	4. Drive type ZR = toothed belt drive	OKB= Additional free-sliding power bridge LKB = Long power bridge	on axis EN/L = Loose kit, enclosed to delivery
	5. Lead Size 40 = 100 mm Size 50 = 120 mm Size 80 = 200 mm Size 120= 260 mm	ADG= Mounted shaft encoder (specify number of pulses and version) MGK= Mounted motor adapter flange and coupling	³⁾ Not possible for WIESEL [™] WH40
	6. Maximum stroke	FA = Felt wipers ³⁰ RT = Belt drive	
Ordering example:	W H] - 5 0] - 0 0 0 - Z R		- <mark> 0 - 3 N A - 0</mark>
	1. 2. 3. 4. 1. Product WIESEL [™] SPEEDLine [®] Standard	5. 6. 7. 5. Lead 120 mm/revolution	8.9.109. Mounted Accessories3 pieces inductive proximity switches (normally 2 NC and 1
	1. Product	5. Lead	9. Mounted Accessories 3 pieces inductive proximity switches (normally 2 NC and 1 NO) mounted on WIESEL™
	1. Product WIESEL™ <i>SPEEDLine®</i> Standard 2. Size	5. Lead 120 mm/revolution 6. Max. stroke	9. Mounted Accessories 3 pieces inductive proximity switches (normally 2 NC and 1
	 Product WIESEL[™] SPEEDLine[®] Standard Size 50 Design model standard 	 5. Lead 120 mm/revolution 6. Max. stroke 1500 mm 7. Total length 	 9. Mounted Accessories 3 pieces inductive proximity switches (normally 2 NC and 1 NO) mounted on WIESEL[™] 10. Special execution
Definition of the drive shaft within the order code Drive shaft execution	 1. Product WIESEL[™] SPEEDLine[®] Standard 2. Size 50 3. Design model standard Standard 4. Drive type 	 5. Lead 120 mm/revolution 6. Max. stroke 1500 mm 7. Total length 1940 mm 8. Execution of drive shaft 	 9. Mounted Accessories 3 pieces inductive proximity switches (normally 2 NC and 1 NO) mounted on WIESEL[™] 10. Special execution

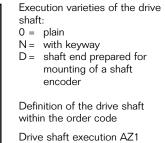
Order information

1. 2. 3. 4.		- <u> / </u> - <u> / </u> - <u> </u> 8. 9. 10.	Structure of the order code:	1. 2. 3.	4. 5. 6.
Product H = Standard axis HZ= Z-axis ✿	 7. Total length [mm] 8. Execution of drive shaft 	 10. Special execution 0 = No 1 = Yes, description in words 		1. Product WV = WIESEL [™] <i>DYNALine</i> [®] WM = WIESEL [™] <i>POWERLine</i> [®] WZ = WIESEL [™] <i>VARIOLine</i> [™]	6. Max. linear travel [mm] 7. Total length [mm]
Size , 50, 80 and 120" Design model 0 = Standard 0 = Guide tube Drive type a = toothed belt drive Lead te 40 = 100 mm te 50 = 120 mm te 80 = 200 mm te 120= 260 mm Maximum stroke m]	Standard: AZ1, AZ2 and AZ6 (varieties see below) 9. Mounted accessories EN = Inductive proximity switches ²⁰ ES = Mechanical limit switches ³⁰ OKB= Additional free-sliding power bridge LKB = Long power bridge ADG= Mounted shaft encoder (specify number of pulses and version) MGK= Mounted motor adapter flange and coupling FA = Felt wipers ³⁰ RT = Belt drive	 ¹⁾ Size 40 and 120 not available as Z-axis ²⁾ Size 50 EN/A = Limit switches mounted on axis EN/L = Loose kit, enclosed to delivery ³⁾ Not possible for WIESEL[™] WH40 		 2. Size 40, 60, 80 and 120 3. Design model 000 = Standard 190 = Guide tube (only WM) 370 = Short guidance system 4. Drive type M = Single nut (only for WM40, WM60/80-370) MM = Ball screw drive with pretensioned nut unit ZR = Belt drive 5. Lead 5, 10, 20, 40 or 50 mm Size 60 = 120 mm Size 80 = 170 mm 	 8. Mounted accessories EN = Inductive proximity switches ES = Mechanical limit switches (Not for WM40) OKB = Additional power bridge (specify center distance the driven power bridge) LKB = Long power bridge KRG = Mounted bevel gearbox (specify type and transmission ratio) RT = Belt drive (specify transmission ratio) ADG = Mounted shaft encoder (specify number of pulse and version) MGK = Mounted motor adapter PRT = Parallel belt drive system (anth for WM40)
$\begin{array}{c c} H & -5 0 & -0 0 0 - Z R \\ 1. & 2. & 3. & 4. \end{array}$	- 1 2 0 - 1 5 0 0 - 1 9 4 0 5. 6. 7.	$ \begin{bmatrix} A Z 1 / 0 \\ 8. 9. 10. \end{bmatrix} $	Ordering example:	$ \boxed{W M} / \boxed{6 0} - \boxed{0 0 0} - \boxed{M} $ 1. 2. 3. 4	
Product IESEL [™] <i>SPEEDLine®</i> Standard Size Design model standard andard Drive type othed belt drive	 5. Lead 120 mm/revolution 6. Max. stroke 1500 mm 7. Total length 1940 mm 8. Execution of drive shaft AZ1/plain 	 9. Mounted Accessories 3 pieces inductive proximity switches (normally 2 NC and 1 NO) mounted on WIESEL™ 10. Special execution No special execution 		 Product POWERLine® Size 60 Design model Standard Drive type Pretensioned nut unit MM Lead 20 mm Max. linear travel 700 mm 	 7. Total length 1260 mm 8. Mounted accessories 3 inductive proximity switches (normally 2 NC and 1 NO), mounted bevel gearbox
AZ1 AZ2 AZ6	Execution varieties of the drive shaft: 0 = plain N = with keyway D = shaft end prepared for mounting of a shaft encoder Definition of the drive shaft within the order code Drive shaft execution AZ1 Drive shaft execution AZ2		Definition of the drive shaft within the order code Drive shaft execution	AZ1 AZ2 AZ6	Execution varieties of the driv shaft: 0 = plain N = with keyway D = shaft end prepared for mounting of a shaft encoder Definition of the drive shaft within the order code Drive shaft execution AZ1 Drive shaft execution AZ2
AZ6/D/N Drive shaft execution AZ6, side	AZ1 prepared for mounting of a sha	ft encoder, side AZ2 with keyway.	Example: Drive shaft execution	AZ6/D/N on AZ6, side AZ1 prepared for mountin	g of a shaft encoder, side AZ2 wit


Precision Technology

Example:

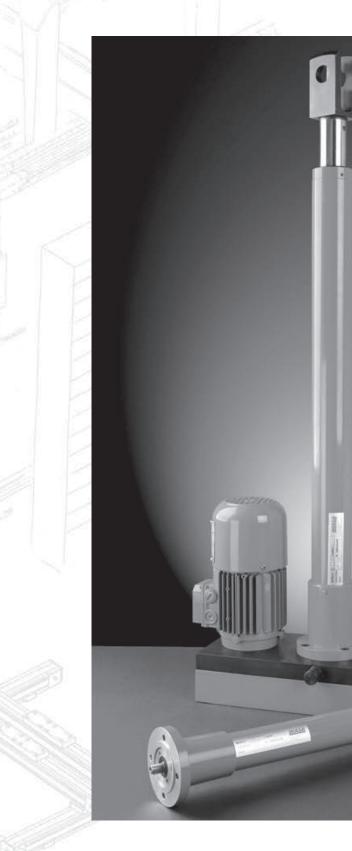
54


540.857.9871 | www.pt-usa.net

ounted accessories

1 = mounted bevel gearbox VL1Ba40, transmission i = 1 : 1

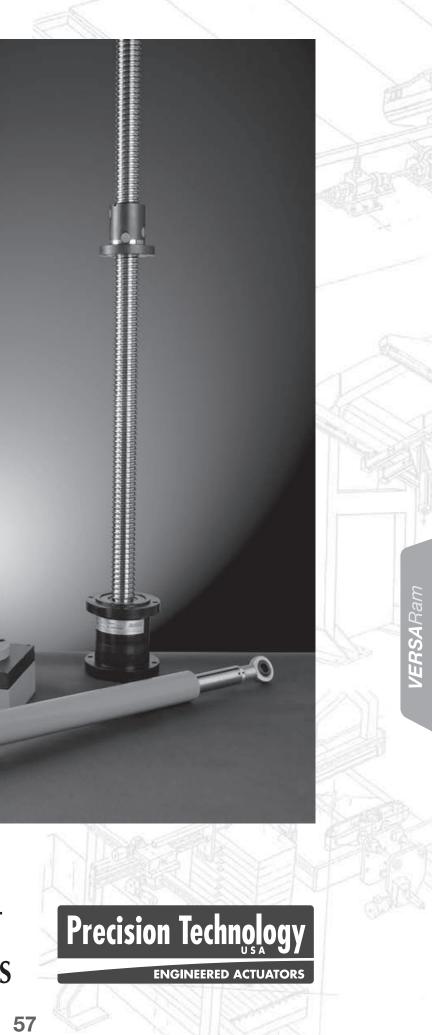
shaft encoder, side AZ2 with keyway.

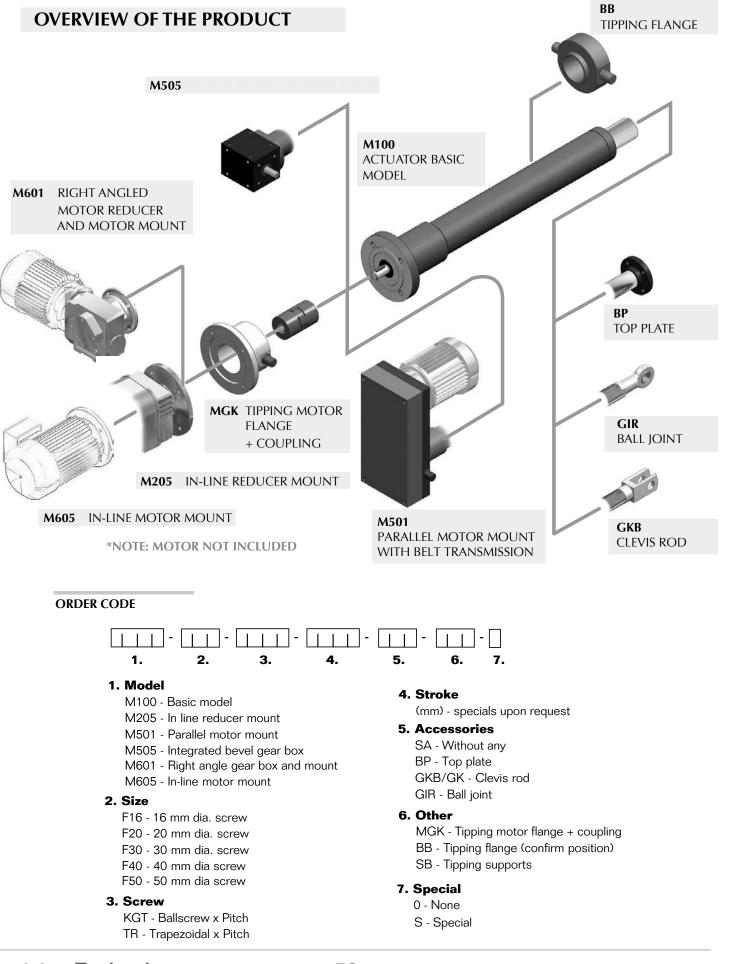

WIESEL Ordering

Inquiry data

Precision Technology

ENGINEERED ACTUATORS

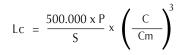

Date:		_	
Company:		Contact:	
Street:		Department:	
City/State:	Zip code:	Telephone:	Fax:
Your requirements			
Path		Forces and moments	
Linear displacement [mm]:		_ Position of power bridge	
		Top Bottom	At side
Kinematics		Center of gravitiy:	
		Lx [mm]:Ly [mm]:	Lz lmmJ:
	Acceleration [m/s²]:		
		-	
Accuracy		Ambient conditions	
Required repeatability [± mm]:		– 🔲 Dust 🔲 Chips	Humidity [%]:
		Temperature [degrees]:	-
Loads		- F	
a) Load		Drive systems	
Mass [m] to be transported [k	gl:	– 🔲 AC Servo 🔲 DC Serve	o 🔲 Step motor
		Three-phase synchronous moto	or and converter
b) Additional load			
[N]:		_ Control system	
Notice and the second second		Requirements:	
c) Installed position			
Horizontal Vertion or angle of installation [degrees]			
	51	 Additional information on application 	tion
d) Design model (only for WIESE	I™ SPFEDLine®)		
□ Standard axis			
e) External guide			
□ No □ Yes			
Friction value of the guide μ : _			
Accessories (please mark)			
□ FA Felt wipers	OKB Additional free-sliding	MGK Motor adapter flange	PRT Parallel belt drive system
(only for WH50/80/120)	power bridge	and coupling	RT Belt drive
ABS Wipers	KRG Bevel gearbox	EN Inductive limit switch	(Specify transmission ratio)
(only for WH40)	(Specify type and	(specify number and version)	ES Mechanical limit switch
 KAO Mounting brackets LKB Long power bridge 	transmission ratio)		ADG Shaft encode attachment (anosify number)
	GX Universal joint shaft (specify center distance)		attachment (specify number of pulses and version)


VERSARAM ELECTROMECHANICAL LINEAR ACTUATORS AND SCREW SUPPORTS

Precision Technology

56

ELECTROMECHANICAL LINEAR ACTUATORS OVERVIEW OF THE PRODUCT



ELECTROMECHANICAL LINEAR ACTUATORS

GENERAL TECHNICAL DATA

LIFE DEFINITION	The life of an actuator is that an actuator can per	
DEFINITION OF THE AVERAGE LOAD	It is the load that corres by Cm.	ponds to the
AVERAGE LOAD ESTIMATE	The load C can vary In order to calculate the	
	$Cm = \sqrt{\frac{3}{C1^3 \times S1}}$	$+ C2^{3} \times S2 +$ + S2 +
LIFE ESTIMATES	The life of a screw in co pitch, the travel, the dyr	
	The life of a ball-screw	can be calcul
$c = \frac{500.000 \text{ x P}}{\text{S}} \text{ x } \left(\frac{\text{C}}{\text{Cm}}\right)$	-) ³ Where:	Lc = Life in c P = Screw p S = Travel in C = Dynami (Actuator siz F-30 = 24.00 Cm = Const
EXAMPLES OF LIFE CALCULATION	An M501 F-20 with a st 2.000N in the other.	roke of 300 r
	We calculate the average cycles.	ge load that v
	These calculations use t	he following
	$Cm = \sqrt{\frac{3}{C1^3 \times S}}$	$51 + C2^3 \times S2$
	\backslash	51 + 52 +

Knowing the average load the life can be calculated, using the following formula:

LUBRICATION OF THE The electromechanical linear actuators require a similar lubrication to that used for ball bearings. In normal working conditions, the actuators should be greased between 800 and 2.000 operating hours (factors such as the load, the number of cycles and the screws revolutions must be taken into account).

> The unit is delivered lubricated with KLUBER ISOFLEX TOPAS NLGI grease type 2, (DIN 51818). When using the unit at high speeds choose type 1, and for heavy loads type 3.

in temperature.

Precision Technology

Precision Technology

VERSARam

58

540.857.9871 | www.pt-usa.net

ACTUATORS

on the life of the screw. It is the number of complete cycles in time presented by Lc.

e average of the different loads during one cycle. It is represented

cycle and the distance the load is applied for varies (S). d the following formula is used:

Where: C1, C2, ... = Constant load in N, fortravel S1, S2, ... S = Travel in mm.

es, i.e. both directions, will be primarily determined by the screw's nd the average load.

lated from the dynamic load and the travel.

complete cycles (one cycle is defined as movement in both directions) oitch in mm.

n mm.

nic load of the screw in N.

ize: F-15 = 3.000N; F-20 = 14.000N;

000N; F-40 = 42.000N; F-50 = 78.000N)

tant average load in N.

mm a pitch of 5 mm and a load of 3.000N in one direction and of

will be applied during one cycle and then the life of the screw in

average load formula:

$$\frac{S2 + ...}{..} \qquad Cm = \sqrt{\frac{2.000^3 \times 300 + 3.000^3 \times 300}{300 + 300}} = 2.597N$$

Lc =
$$\frac{500.000 \times 5}{3.000} \times \left(\frac{14.000}{2.597}\right)^3 = 1.300.000$$
 cycles

Continuous lubrication is not advised because the alternating motion deposits too much grease on the screw filling the spindle tube and reducing the available stroke together. There will also be an increase

ELECTROMECHANICAL LINEAR ACTUATORS

GENERAL TECHNICAL DATA

EXAMPLE

GENERAL TECHNICAL DATA

COMMENTS

DUTY

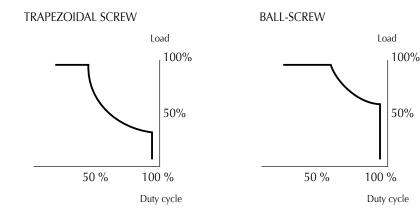
CYCLE

This general data is applicable to all the electromechanical actuators, specific technical data is shown for each model.

The duty cycle can be defined as the relation between the running time, under load, and the total cycle time.

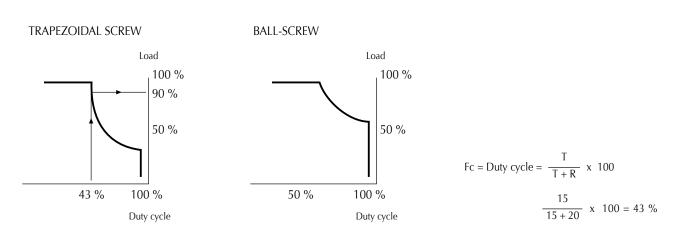
Fc = Duty cycle = $\frac{T}{T+R} \times 100$

Where: T = On-time with load. R = Idle time.T + R = Total cycle time.


MAXIMUN LOAD ALLOWABLE

The maximun load allowable is defined as the load advised by the manufacturer. It should not be exceeded as the life of the units will be adversly effected.

BASIC ELEMENT **OF MODEL**


The screw is the basic drive element and can be either ball-screw or trapezoidal. Depending on the load applied the following graphs show the maximum duty cycle.

DUTY CYCLE DIAGRAM

RELATIONSHIP **BETWEEN LOAD** AND DUTY CYCLE

The maximum allowable load depends on the duty cycle. The load should be reduced when the duty cycles increases. If the advised duty is exceeded the actuator can be damaged.

If we enter a duty cycle of 43% on the trapezoidal screw graph we obtain a maximum allowable load of 90%. For this load we apply the appropriate percentage to the maximum dynamic load. If we utilise the basic actuator F-30, we have a maximum dynamic load of 10.000N.

Maximum load = 10.000N, (each basic model has a specific maximum load see page 11)

Therefore the maximum allowable load is $0.9 \times 10.000 \text{N} = 9.000 \text{N}$

DEFINITION OF THE The required torque is defined as the force required in order to move actuator under load. **REQUIRED TORQUE**

THE REQUIRED TORQUE CALCULATIO	In order to calculate	the requir	red to
Torqu	$ue = \frac{P \times F}{2.000 \times \pi \times C}$	P = F = C =	The For The for

EXAMPLE OF A TORQUE An electromechanical actuator F-30 with a ball screw having a pitch of 5 has to move a load of 250 Kg. CALCULATION in a vertical plane. What would be the required torque?.

Force = $M \times g = 250 \times 9.81 = 2.500N$

We must take into account the fact ø 32, several different speeds can b of 5, 10 or 40 mm/revolution). Equally the gear ratio of the gear be
Equally the gear ratio of the gear of

An M205 actuator with a trapezoidal screw moves for 15 seconds stops for 20 seconds then repeats this cycle.

torque the following formula will be used:

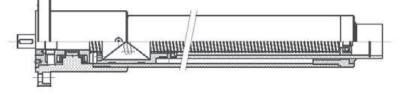
he screw's pitch in mm.

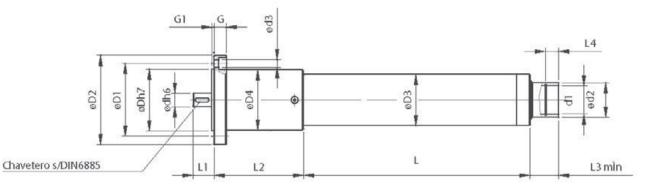
- orce required in N.
- he efficiency constant; 0.8 for the ball-screw and 0.2
- the trapezoidal screw.

Torque = $\frac{2.500 \times 5}{2.000 \times \pi \times 0.8}$ = 2.486 Nm (C = 0.8 because it is a ball screw)

ct that with the same actuator, for example with a screw actuator of be achieved dependant on the screw's pitch (in this case it could be

pox affects the achievable travel speed.


SPECIFIC MODELS


M100 BASIC MODEL ACTUATOR

The basic model actuator has been designed to easily attach several types of drive i.e. manual, electrical, mechanical, etc.

The linear speed is determined by the RPM of the motor and the pitch of the screw.

The thrust depends on the screw pitch and motor power.

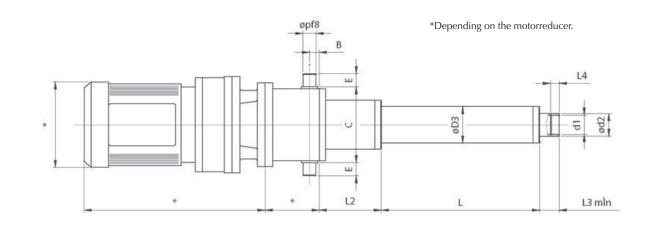
	l features Screw-pitch	ø	Load kN	Model	Screw-pitch	ø	Load kN	Model	Screw-pitch	ø	Load kN	Model	Screw-pitch	ø	Load kN
M100-F16	KGT 5	16	2,5		KGT 5	32	10		KGT 10	40	25		KGT 10	50	65
1100-110	Tr 4	16	2,5	M100-F30	KGT 10	32	15	M100-F40	KGT 20	40	25	M100-F50	KGT 20	50	70
				MI100-F30	KGT 40	32	10	MI00-F40	KGT 40	40	20		Tr 9	60	70
	KGT 5	20	5		Tr 6	36	10		Tr 7	44	25				
M100-F20	KGT 20	20	5												
	Tr 5	24	5												

Dimensio	ons																
Model	d	d ₁	\mathbf{d}_2	d_3	D	D_1	D_2	D_3	D_4	G	G_1	L*	Standard strokes	L ₁	L_2	L_3	L_4
M100-F16	11	M26 x 1,5	32	7(4x)	48	56	75	40	45	12	2	79 + Stroke	100, 200, 300, 400	15	61	41	20
M100-F20	14	M27 x 2	35	9(4x)	72	84	110	55	66	15	2	108 + Stroke	100, 200, 300, 500	30	100	36	26
M100-F30	19	M42 x 2	50	11(4x)	90	106	130	75	88	18	3	124 + Stroke	200, 400, 600, 1000	35	130	37	30
M100-F40	24	M60 x 2	70	11(6x)	110	130	150	90	110	20	4	155 + Stroke	250, 500, 750, 1000	40	150	67	35
M100-F50	35	M80 x 2	90	13(6x)	200	225	250	150	200	30	5	185 + Stroke	300, 600, 1000, 1500	70	300	95	40

NOTE: Effective November 2010, VERSARam Actuators have 40mm extra length, to provide a default over-travel safety of 20mm at each end of travel. Please consult the factory if you require a substitute or duplicate actuator to one purchased prior to that date.

Precision Technology

ELECTROMECHANICAL LINEAR ACTUATORS


SPECIFIC MODELS

M205 ACTUATOR WITH IN LINE GEARBOX AND A.C. MOTOR DRIVE

The M205 actuator has been designed for handling high loads with low to medium speeds.

Components of the actuator

- Actuator: Basic model.
- Fixing: Trunnion mount.
- Drive: Geared motor with a wide range of gear ratios.
- Supply voltage 220/380 V A.C.
- Braked motor (optional).

	l features Screw-pitch		Load kN	Model	Screw-pitch	ø	Load kN	Model	Screw-pitch	ø	Load kN	Model	Screw-pitch	ø	Load kN
	KGT 5	20	5		KGT 5	32	10		KGT 10	40	25		KGT 10	50	65
M205-F20	KGT 20	20	5	M205-F30	KGT 10	32	15	M205-F40	KGT 20	40	25	M205-F50	KGT 20	50	70
	Tr 5	24	5		KGT 40	32	10		KGT 40	40	20		Tr 9	60	70
					Tr 6	36	10		Tr 7	44	25				

Dimension Model	IS d1	d_2	D_3	L*	Standard strokes	L_2	L ₃	L_4	В	С	E	р
M205-F20	M27 x 2	35	55	108 + Stroke	100, 200, 300, 500	100	36	25	15	116	20	20
M205-F30	M42 x 2	50	75	124 + Stroke	200, 400, 600, 1000	130	37	30	20	138	25	25
M205-F40	M60 x 2	70	90	155 + Stroke	250, 500, 750, 1000	150	67	35	30	160	35	35
M205-F50	M80 x 2	90	150	185 + Stroke	300, 600, 1000, 1500	300	95	40	40	260	45	45

NOTE: Effective November 2010, VERSARam Actuators have 40mm extra length, to provide a default over-travel safety of 20mm at each end of travel. Please consult the factory if you require a substitute or duplicate actuator to one purchased prior to that date.

Precision Technology

SPECIFIC MODELS

M501 ACTUATOR WITH RIGHT ANGLED BELT DRIVE AND PARALLEL MOTORS

This actuator has been designed for medium loads and a wide range of speeds.

It needs to be mounted with a motor or motor gearbox combination and a toothed belt drive. A braked motor can be supplied if needed.

Components of the actuator

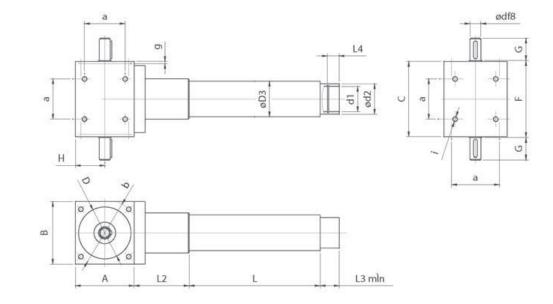
- Actuator: Basic model.
- Fixing: Trunnion / clevis mount.
- Driving: Any kind of motor and toothed belt drive.
- Braked motor (optional).

*Depending on the motor and reducer. A2 **B1** \mathbf{C} 32 A3 L3 mln L2

Model	Screw-pitch	ø	Load kN	Model	Screw-pitch	ø	Load kN	Model	S	crew-pitcl	Ø	Load	l kN	Mo	del	Screw-pi	tch ø	Loa	id kN
M501-F16	KGT 5	16	1,8		KGT 5	32	9			KGT 10	40	2	25			KGT 1	0 5	C	30
MJ01-110	Tr 4	16	1	M501-F30	KGT 10	32	4,5	M501-F4	0	KGT 20	40	1	15	M501-F50		KGT 2	0 5	C	15
				MJ01-1 JU	KGT 40	32	1,2	MJ01-14	U	KGT 40	40		7			Tr 9	6	D	8
	KGT 5	20	5		Tr 6	36	2			Tr 7	44	1	10						
M501-F20	KGT 20	20	1,3																
	Tr 5	24	1,2																
Dimensi	ons																		
Dimensi Model	ons d1	(\mathbf{d}_2 \mathbf{D}_3	L*	Sta	ındar	d strokes	L_2	L ₃	L ₄ A	1	A_2	A_3	A_4	B ₁	B ₂	С	E	р
	d ₁		\mathbf{H}_2 \mathbf{D}_3 32 40				d strokes , 300, 400		L ₃ 41	-		A ₂ 130	A ₃ 70	A ₄ 20	B ₁ 10	B ₂ 50	С 138	E 18	р 12
Model	d ₁ M26 x 1,5	5 3		79 + St	roke 100,	, 200		61	9	20 24	15	-	3		•	-			
Model M501-F16	d ₁ M26 x 1,5 M27 x 2	5 3	2 40	79 + St	roke 100, roke 100,	, 200 , 200	, 300, 400) 61) 100	41	20 24 25 30	15 00	130	70	20	10	50	138	18	12
Model M501-F16 M501-F20	d ₁ M26 x 1,5 M27 x 2 M42 x 2	5 3 3 5	32 40 35 55	79 + St 108 + St 124 + St	rroke 100, rroke 100, rroke 200,	, 200 , 200 400,	, 300, 400 , 300, 500	61 100 130	41 36	20 24 25 30 30 32	45 00 20	130 150	70 85	20 25	10 12,5	50 65	138 160	18 20	12 20

NOTE: Effective November 2010, VERSARam Actuators have 40mm extra length, to provide a default over-travel safety of 20mm at each end of travel. Please consult the factory if you require a substitute or duplicate actuator to one purchased prior to that date.

M501-F50 M80 x 2 90 150 185 + Stroke 300, 600, 1000, 1500 300 95 40 600 300 182 50 25 135 320 45 45


ELECTROMECHANICAL LINEAR ACTUATORS

SPECIFIC MODELS

M505 ACTUATOR WITH INTEGRATED RIGHT ANGLED BEVEL GEAR BOX

The M505 actuator has been designed for mounting several units in parallel and the drive to be at 90°.

*For sizes F40 & F50 get in touch with Precision Technology.

Technica Model	l features Screw-pitch	ø	Load kN	Model	Screw-pitch	ø	Load kN	Model	Screw-pitch	ø	Load kN
M505-F16	KGT 5	16	2,5		KGT 5	20	5		KGT 5	32	10
M303-F10	Tr 4	16	2,5	M505-F20	KGT 20	20	5		KGT 10	32	15
				•	Tr 5	24	5	M505-F30	KGT 40	32	10
					· · · · ·				Tr 6	36	10

Dimensio			J.	D		Ctore dowed a two loss						~		-	~					
Model	a	a ₁	\mathbf{d}_2	D_3	L	Standard strokes	L_2	L ₃	L ₄	А	В	C	D	ŀ	G	Н	а	b	g	I
M505-F16	14	M26 x 1,5	32	40	79 + Stroke	100, 200, 300, 400	61	41	20	65	70	84	58	86	25	32,5	45	75	2	M6 x 10
M505-F20	16	M27 x 2	35	55	108 + Stroke	100, 200, 300, 500	100	36	26	90	90	110	62	112	34	45	70	75	3	M10 x 18
M505-F30	19	M42 x 2	50	75	124 + Stroke	200, 400, 600, 1000	130	37	30	120	120	154	75	158	40	60	100	100	5	M10 x 18

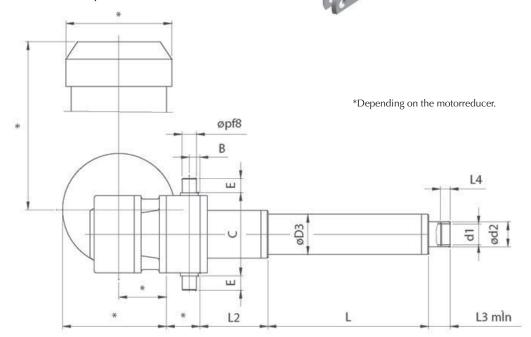
NOTE: Effective November 2010, VERSARam Actuators have 40mm extra length, to provide a default over-travel safety of 20mm at each end of travel. Please consult the factory if you require a substitute or duplicate actuator to one purchased prior to that date.

Precision Technology

Technical features

64

Precision Technology


SPECIFIC MODELS

M601 ACTUATOR WITH A.C. MOTOR AND RIGHT ANGLED GEAR DRIVE

The M601 actuator has been designed for loads up to 750.000N and speeds ranging from 1 and 200 mm/sec.

Components of the actuator

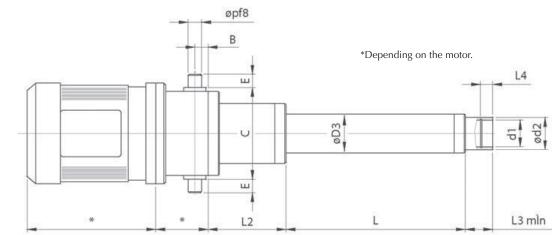
- Actuator: Basic model.
- Fixing: Via motor housing.
- Driving: Low profile gearbox. Wide range of gear ratios.
- Brake-motor (optional).

	al features Screw-pitch		Load kN	Model	Screw-pitch	ø	Load kN	Model	Screw-pitch	ø	Load kN	Model	Screw-pitch	ø	Load kN
	KGT 5	20	5		KGT 5	32	10	M601-F40	KGT 10	40	25	M601-F50	KGT 10	50	65
M601-F20	KGT 20	20	5	M601-F30	KGT 10	32	15		KGT 20	40	25		KGT 20	50	70
	Tr 5	24	5		KGT 40	32	10		KGT 40	40	20		Tr 9	60	70
					Tr 6	36	10		Tr 7	44	25				

Dimension	IS											
Model	d1	d_2	D_3	L	Standard strokes	L_2	L_3	L_4	В	С	E	р
M601-F20	M27 x 2	35	55	108 + Stroke	100, 200, 300, 500	100	36	26	15	116	20	20
M601-F30	M42 x 2	50	75	124 + Stroke	200, 400, 600, 1000	130	37	30	20	138	25	25
M601-F40	M60 x 2	70	90	155 + Stroke	250, 500, 750, 1000	150	67	35	30	160	35	35
M601-F50	M80 x 2	90	150	185 + Stroke	300, 600, 1000, 1500	300	95	40	40	260	45	45

NOTE: Effective November 2010, VERSARam Actuators have 40mm extra length, to provide a default over-travel safety of 20mm at each end of travel. Please consult the factory if you require a substitute or duplicate actuator to one purchased prior to that date.

ELECTROMECHANICAL LINEAR ACTUATORS


SPECIFIC MODELS

M605 ACTUATOR WITH A.C. MOTOR DRIVE AND IN-LINE ARRANGEMENT

The M605 actuator has been designed to work at high travel speed with low-medium loads.

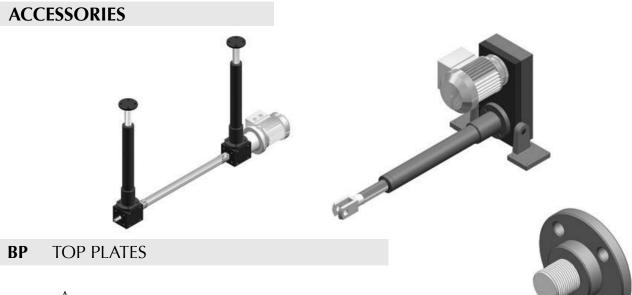
Components of the actuator

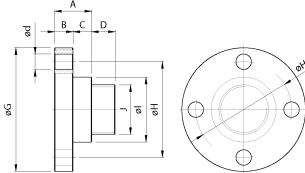
- Actuator: Basic model.
- Fixing: Trunnion mount.
- Drive: A.C. motor.
- Brake motor (optional).

	l features Screw-pitch	ø	Load kN	Model	Screw-pitch	ø	Load kN	Model	Screw-pitch	ø	Load kN	Model	Screw-pitch	ø	Load kN
M605-F16	KGT 5	16	2,5	M605-F30	KGT 5	32	10	M605-F40	KGT 10	40	25	M605-F50	KGT 10	50	65
M002-F10	Tr 4	16	2,5		KGT 10	32	15		KGT 20	40	25		KGT 20	50	70
					KGT 40	32	10		KGT 40	40	20		Tr 9	60	70
	KGT 5	20	5		Tr 6	36	10		Tr 7	44	25				
M605-F20	KGT 20	20	5												
	Tr 5	24	5												

Dimension Model	ns d1	d_2	D_3	L	Standard strokes	L_2	L ₃	L_4	В	С	E	р
M605-F16	M26 x 1,5	32	40	79 + Stroke	100, 200, 300, 400	61	41	20	12	82	18	12
M605-F20	M27 x 2	35	55	108 + Stroke	100, 200, 300, 500	100	36	26	15	116	20	20
M605-F30	M42 x 2	50	75	124 + Stroke	200, 400, 600, 1000	130	37	30	20	138	25	25
M605-F40	M60 x 2	70	90	155 + Stroke	250, 500, 750, 1000	150	67	35	30	160	35	35
M605-F50	M80 x 2	90	150	185 + Stroke	300, 600, 1000, 1500	300	95	40	40	260	45	45

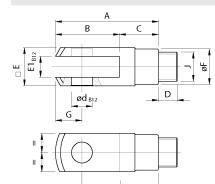
NOTE: Effective November 2010, VERSARam Actuators have 40mm extra length, to provide a default over-travel safety of 20mm at each end of travel. Please consult the factory if you require a substitute or duplicate actuator to one purchased prior to that date.

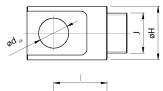

Precision Technology

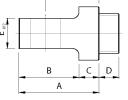

66

ELECTROMECHANICAL LINEAR ACTUATORS

ACCESSORIES



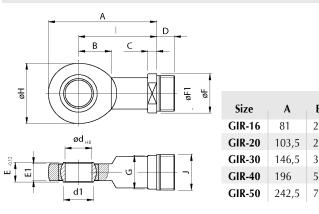

Dimen	Dimensions in mm.									
Size	Α	В	С	D	d	G	Н	I	J	
BP-16	21	8	13	18	11	80	60	38,7	M26 x 1,5	
BP-20	23	10	13	23	11	90	67	46	M27 x 2	
BP-30	30	15	15	27	13	110	85	60	M42 x 2	
BP-40	50	20	30	33	17	150	117	85	M60 x 2	
BP-50	60	30	30	38	25	200	155	105	M80 x 2	


GKB CLEVIS ROD

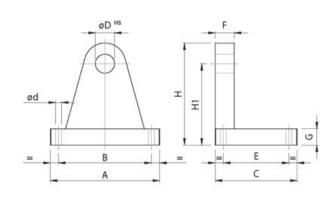
BP

GK CLEVIS ROD

Dimensions in mm. Size A B C D E E₁ F d G **GKB-16** 83 51 32 18 32 16 30 16 19 64 M26x1,5 **GKB-20** 105 65 40 23 40 20 37 20 25 80 M27x2 **GKB-30** 148 92 56 27 55 30 51 30 38 110 M42x2



1 I.


J

	Dimensions in mm.											
Size	Α	В	С	D	E	н	d	I	J			
GK-40	120	90	30	33	60	80	45	80	M60 x 2			
GK-50	150	110	40	38	70	100	60	100	M80 x 2			

GIR BALL JOINTS

BB TRUNNION MOUNT **SB** TIP SUPPORT

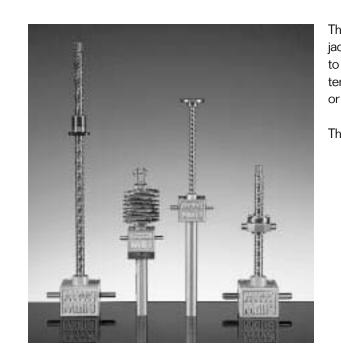
Precision Technology

Precision Technology

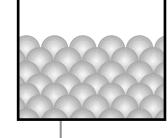
B	С	D	E	E ₁	F	F ₁	G	Н	d	d ₁	Т	J
20	8	18	12	10	26	21	22	40	15	18,4	61	M26 x 1,5
27	10	23	16	13	35	27,5	32	53	20	24,1	77	M27 x 2
37	15	27	22	19	50	40	41	73	30	34,2	110	M42 x 2
52	20	33	32	27	70	58	60	102	45	50,7	145	M60 x 2
75	20	38	44	38	88	70	75	135	60	66,8	175	M80 x 2

Size	Α	В	С	d	D	D_1	D_2	E	F	F ₁	р
BB-16	30	15	82	40	48	48	75	18	10	2	12
BB-20	35	17,5	116	55	63	72	110	20	10	2	20
BB-30	40	20	138	75	85	90	130	25	12	3	25
BB-40	50	25	160	90	102	110	150	35	14	4	35
BB-50	60	30	260	150	170	200	250	45	20	5	45

Size	Α	В	С	D	E	F	G	Н	H ₁	d
SB-16	80	60	65	12	45	18	12	80	65	7
SB-20	100	80	80	20	60	20	15	107	85	9
SB-30	130	110	100	25	80	25	20	137	110	9
SB-40	200	170	150	35	120	35	30	188	150	11
SB-50	240	210	180	45	150	45	35	222	175	13


Precision Technology USA Screw Jacks

Superior performance. Superior design.

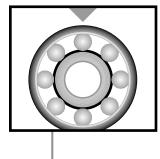

Precision Technology

ENGINEERED ACTUATORS

Redefining the performance limits with a new class of screw jacks

The design

The cubic shape with integrated cooling fins permits a longer duty cycle, as the heat is dissipated more effectively, thus extending the service life of the lubricant. The surface coating also protects the jack against corrosion.


The housing material

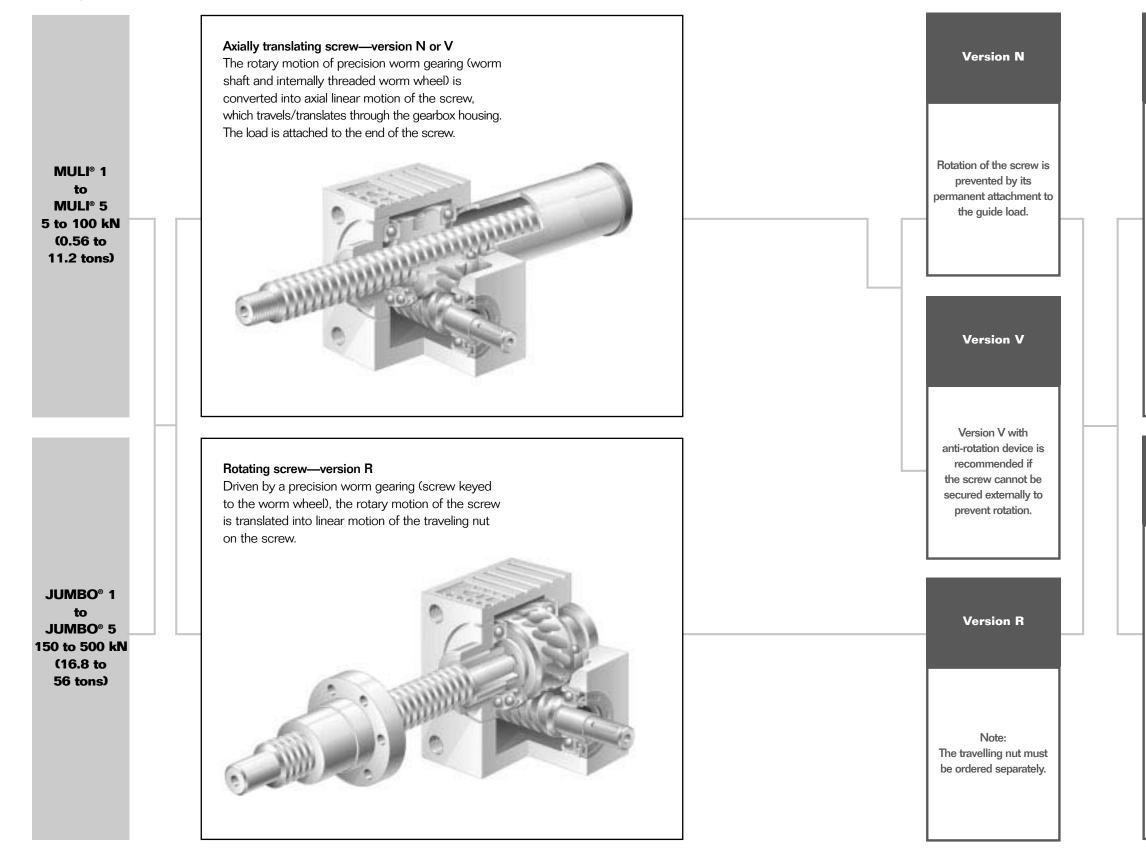
The mechanical strength of the housing has been improved, particularly at high temperature, through the use of spheroidal graphite iron instead of the former cast iron. This ensures greater reliability, even in tough service conditions.

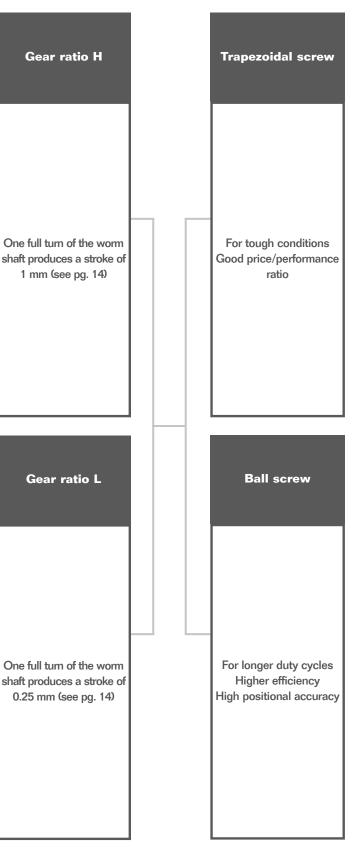
Precision Technology

The range of Precision Technology USA, Inc. worm gear screw jacks is comprised of ten models with lifting capacities from 5 kN to 500 kN (5.6 to 56 tons). All versions are designed for both tensile and compressive loads and will operate in any orientation or mounting position.

- They meet the most demanding technical standards:
- Wide range of load capacities
- High and low speeds
- Cubic shape of the housing with predrilled flange bores allows ideal attachment of a motor, gearbox or rotary encoder
- Standard mounting parts and end fittings
- Easy synchronization of several worm gear screw jack unitsBall screw or trapezoidal screw, as required for the
- application concerned
- Extensive variations can accommodate special requirements (e.g. safety nut)
- Complete range of accessories

The bearings


Taper roller bearings on the worm shaft and heavyduty ball bearings as the main thrust bearings make it possible to move higher loads, increase the safety reserve and extend the service life.


The lubrication

The trapezoidal screw (version N) is greased by radial lubrication holes on the worm wheel. This lowers friction and temperature and extends the service life, particularly when operating with longer stroke lengths.

Cubic face screw jacks

Design versions

Technical data Cubic face screw jacks

The range includes a total of ten worm gear screw jack models in two series: MULI® 1 to MULI® 5 with lifting capacities up to 100 kN (11 tons) and JUMBO® 1 to JUMBO® 5 with lifting capacities from 150 kN (16 tons) to 500 kN (56 tons) statically.

Speed of travel

Gear ratio H (high speed)

For worm gear screw jacks fitted with standard trapezoidal screws, one full turn of the worm shaft produces a stroke of 1 mm and a linear speed of 1500 mm/minute at 1500 rpm. The figures for units fitted with ball screws range from 1071 mm/minute to 2142 mm/minute depending on size and pitch.

Gear ratio L (low speed)

For worm gear screw jacks fitted with standard trapezoidal screws, one full turn of the worm shaft produces a stroke of 0.25 mm and a linear speed of 375 mm/minute at 1500 rpm. The figures for units fitted with ball screws range from 312 mm/minute to 535 mm/minute depending on size and pitch.

Please note that higher speeds of travel can be achieved with larger screw pitches or multiple start screws.

Tolerances and backlash

- The gearbox housings are machined on the four mounting sides. The tolerances conform to DIN ISO 2768-mH. The sides that are not machined (the cooling ribs) conform to DIN 1685, GTB 18.
- The axial backlash of the jack screw under alternating load is as follows:
 Trapezoidal screws: up to 0.4 mm
 Ball screws: 0.08 mm
- The lateral play between the outside diameter of the screw and the guide diameter is 0.2 mm.
- The backlash in the worm gears is ±4° of the input shaft. A predetermined axial float is built into the input shaft bearing assembly of all models from MULI[®] 4 upwards to accommodate thermal expansion during operation.
- Trapezoidal screws are manufactured to a straightness of 0.3-1.5 mm/meter, ball screws to a straightness of 0.08 mm/meter over a length of 1000 mm and to the following pitch accuracies: MULI® 1–MULI® 5: 0.05 mm/300 mm length JUMBO® 1–JUMBO® 5: 0.2 mm/300 mm length
- Lateral forces on the jack screw Any lateral forces that may occur should be taken by an external guide rail.

Stop collar A

Prevents the screw from being removed from the jack gearbox. Fitted as standard on ball screw versions N and V. Optionally available for screw jacks with trapezoidal screws. The stop collar cannot be used as a fixed stop.

Self-locking

The self-locking function depends on a variety of parameters:

- Large pitches
- Different gear ratios
- Lubrication
- Friction parameters
- Ambient influences, such as high or low temperatures, vibrations, etc.
- The mounting position

Versions with ball screw and large pitches are consequently not selflocking. Suitable brakes or braking motors must therefore be considered in such cases. Limited self-locking is available for smaller pitches (single-start).

Special versions

In addition to the extensive standard range, Precision Technology USA, Inc. can also supply anti-clockwise, multi-start and special material worm gear screw jacks on request.

Technical data

Trapezoidal screws and ball screws

Trapezoidal screws

		MULI 1	MULI 2	MULI 3	MULI 4	MULI 5	JUMB0 1	JUMB0 2	JUMB0 3	JUMB0 4	JUMB0 5
Maximum lifting capac	ity [kN] ²⁾	5	10	25	50	100	150	200	250	350	500
Maximum lifting capac	ity [tons]	0.6	1.1	2.8	5.6	11.2	16.8	22.4	28.0	39.2	56.0
Screw diameter and pit	tch [mm]	18 x 4	20 x 4	30 x 6	40 x 7	55 x 9	60 x 9	70 x 10	80 x 10	100 x 10	120 x 14
Stroke in mm per full tu	rn Ratio H ¹⁾	1	1	1	1	1	1	1	1	1	1
of the worm shaft	Ratio L ¹⁾	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Gear ratio	Ratio H ¹⁾	4:1	4:1	6:1	7:1	9:1	9:1	10:1	10:1	10:1	14:1
	Ratio L ¹⁾	16:1	16:1	24:1	28:1	36:1	36:1	40:1	40:1	40:1	56:1
Efficiency [%] ³⁾	Ratio H ¹⁾	31	29	29	26	24	23	22	20	19	19
	Ratio L ¹⁾	25	23	23	21	19	18	17	15	15	15
Weight [kg] (zero stroke	e)	1.2	2.1	6.0	17.0	32.0	41.0	57.0	57.0	85.0	160.0
Weight [kg per 100 mm stroke]		0.26	0.42	1.14	1.67	3.04	3.1	4.45	6.13	7.9	11.5
Idling torque [Nm]	Н	0.04	0.11	0.15	0.35	0.84	0.88	1.28	1.32	1.62	1.98
	L	0.03	0.10	0.12	0.25	0.51	0.57	0.92	0.97	1.10	1.42

Ball screws

		MULI 1	MULI 2	MULI 3		MULI 4		MULI 5	JUMB0 3
Maximum lifting capacity	[kN] ²⁾	5	10	12.5	22		42	65	78
Maximum lifting capacity	[tons]	0.6	1.1	1.4	2.5		4.7	7.3	8.7
Screw diameter and pitch	[mm]	1605	2005	2505	4005		4010	5010	8010
Stroke in mm per full turn	Ratio H ¹⁾	1.25	1.25	0.83	0.71		1.43	1.1	1
of the worm shaft	Ratio $L^{1)}$	0.31	0.31	0.21	0.18		0.36	0.28	0.25
Gear ratio	Ratio H ¹⁾	4:1	4:1	6:1		7:1		9:1	10:1
	Ratio $L^{1)}$	16:1	16:1	24:1		28:1		36:1	40:1
Efficiency [%] ³⁾	Ratio H ¹⁾	57	56	55	53		56	47	45
	Ratio $L^{1)}$	46	44	43	43		45	37	34
Weight [kg] (zero stroke)		1.3	2.3	7.0		19.0		35.0	63.0
Weight [kg per 100 mm str	oke]	0.26	0.42	1.14		1.67		3.04	6.13
Idling torque [Nm]	Н	0.04	0.11	0.15		0.35		0.84	1.32
	L	0.03	0.10	0.12		0.25		0.51	0.97

H = High speed, L = Low speed
 Depending on speed of travel, operating hours, etc.
 The specified efficiencies are average values

I Init	conversior	14
	00114013101	

,0110	61310113			
	Length:	1 m=1000 mm=39.37 inches 1 inch=25.4 mm	Geometrical moment of inertia:	1 m ⁴ =10 ¹² mm ⁴ =2.4025 x 10 ⁶ in ⁴
	Force:	1 N=0.225 lbf 1 lbf=4.45 N	Mass moment of inertia:	1 kg • m²=104 kg • cm²=0.738 lb • ft • s²
	Moment of Force:	1 Nm=0.738 lb • ft=8.85 lb • inches 1 lb • ft=1.36 Nm	Mass:	1 kg=2.2 lb

Precision Technology

Screw Jacks

Technical data Assembly and maintenance

Assembly of worm gear screw jack systems

Direction of rotation: Before starting assembly work, the direction of rotation of all worm gear screw jacks, bevel gearboxes and the drive motor must be checked with regard to the feed direction of each individual worm gear screw jack.

Alignment errors: All components must be carefully aligned during assembly. Alignment errors and stresses increase power consumption and lead to overheating and premature wear. Before a drive unit is attached, each worm gear screw jack should be turned through its entire length by hand without load. Variations in the amount of force required and/or axial marks on the outside diameter of the screw indicate alignment errors between the worm gear screw jack and its additional guides. In this case, the relevant mounting bolts must be loosened and the worm gear screw jack turned through by hand again. If the amount of force required is now constant throughout, the appropriate components are aligned

If not, the alignment error must be localized by loosening additional mounting bolts.

Test run: The direction of rotation of the complete system and correct operation of the limit switches must be checked again before attaching the drive motor. In the case of version N (translating screw jack), check that the screw is lubricated with grease from the interior of the gearbox and lubricate if necessary. In the case of version R (rotating screw jack), the jack screw should be coated with suitable grease to

provide lubrication for lifting operation. The first test runs can then be carried out without load. A maximum operating time of 30% must not be exceeded at trial runs under weight

for worm gear screw jacks with trapezoidal screws.

Operation: The loads, speeds and operating conditions specified for the worm gear screw jacks and transmission components must not be exceeded even briefly. Failure to observe this condition will invalidate all claims under guarantee.

Maintenance of worm gear screw jacks

Safety: All mounting bolts must be tightened after a short period of operation. The wear of the screw nut (worm gear) must be checked by measuring the thread backlash after approximately 200 hours of operation or sooner if operating conditions are harsh. The screw nut (worm gear) must be replaced if the axial backlash with a single-start thread is more than one-quarter of the thread pitch.

Lubrication: The worm gear screw jacks are lubricated by the manufacturer and are ready for operation on delivery. The versions N and V must be lubricated via their grease nipples with one of the greases specified below at intervals of 30 - 50 operating hours. The screw should be cleaned and greased at the same time. The service life of screw and screw nut can be extended by applying screw spray, particularly before being greased for the first time. We recommend that the gearbox be cleaned to remove old grease and refilled with fresh grease after approximately 700 operating hours

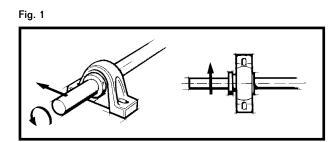
or 18 months. The worm gear screw jacks can be dismantled relatively easily:

- Unscrew the two threaded pins securing the bearing cover.
- Unscrew the screw and remove the screw protection if necessary.
- Unscrew the bearing cover with the aid of an open-ended spanner.

Proceed as follows to refit the bearing cover: fit the bearing cover firmly (using approximately ten times the force shown in the table "Guideline values for fitting bearing cover"). Then release it and refit it with the guideline value from the table, checking the axial backlash and smoothness.

Standard grease:

Lithogrease G 421


Recommended or equivalent greases: Castrol Spheerol BM2 Mobil Mobilgrease XHP Shell retinax HD2

Guideline values for fitting bearing cover

Size	Torque [Nm]
MULI [®] 1	5
MULI [®] 2	9
MULI [®] 3	13
MULI [®] 4	32
MULI [®] 5	60
JUMB0 [®] 1	70
JUMB0 [®] 2	150
JUMB0® 3	150
JUMB0 [®] 4	220
JUMB0 [®] 5	300

Application design considerations

Examples: direction of rotation

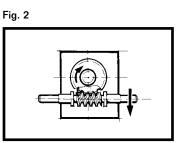


Fig. 3

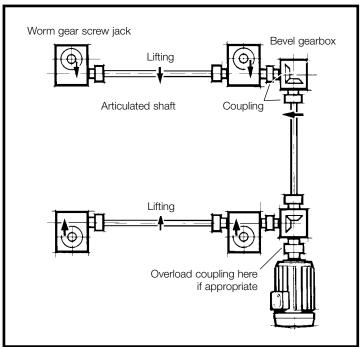


Fig. 4 (left) Fig. 5 (right)

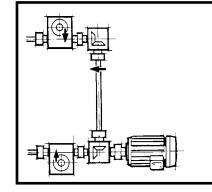
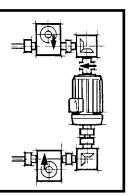
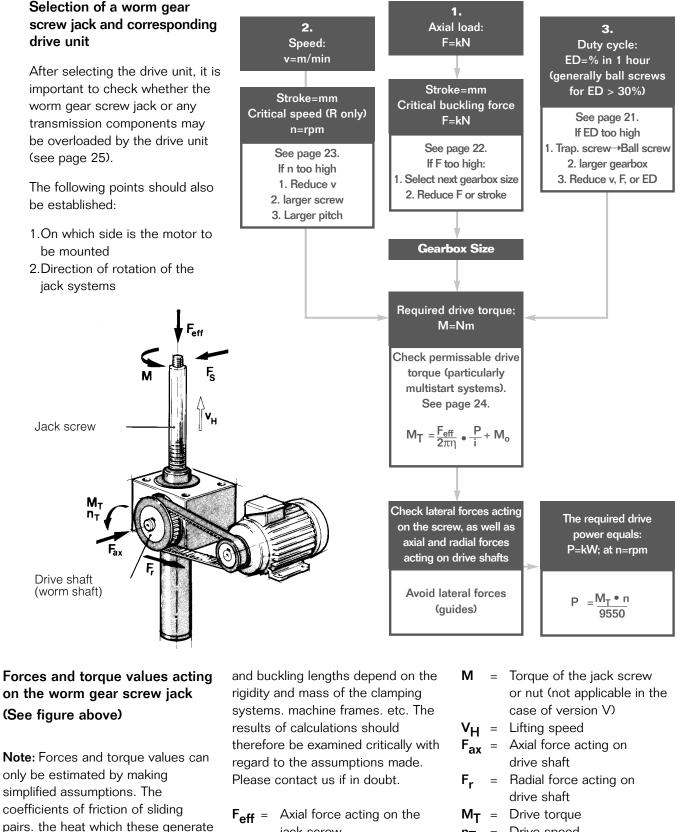


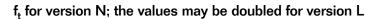
Fig. 1: Illustration of direction of rotation

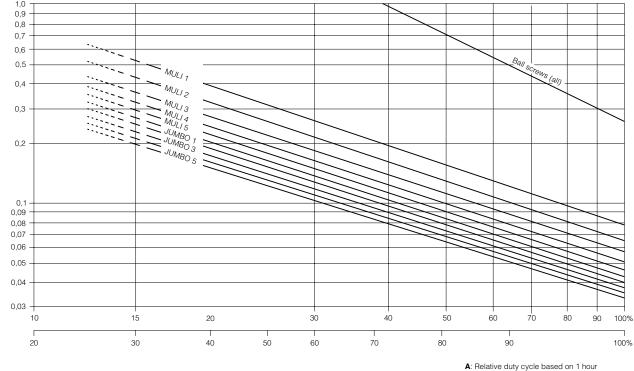
Fig. 2: Direction of rotation of a worm gear screw jack for lifting motion, top view.

Fig. 3:

Jack system with four worm gear screw jacks and two bevel gearboxes


Fig. 4: Jack system, variant 1: Different position of drive motor, but only ratio 1:1 possible. Overload coupling also possible.


Fig. 5: Jack system, variant 2: Very economical, but overload coupling not possible.

Selection and calculation

Selection and calculation

Duty cycle and drive power

Feff

VH

F_{stroke max}

In order to limit the heat generated by friction within a worm gear screw jack, the lifting force and lifting speed are limited as a function of the relative duty cycle. The maximum permissible lifting force and lifting speed can be estimated with the aid of the following method.

		$F_{eff} \cdot$	V _H ≤ F
Actual axial force acting on the jack screw in kN.	v	H max	Maxi lifting
Lifting speed in mm/min.			is cal maxii
Maximum permissible lifting force in kN (see table			spee 1500 on re

	sp
Maximum permissible	15
lifting force in kN (see table	or
on page 14).	tra

The values determined here do not apply for very short reciprocating strokes. Please consult us in such cases. f_t can be extrapolated to the left-hand edge of the graph in the case of very low relative duty cycles (less than 10 minutes - for occasional positioning operations, adjustments of levels, etc.). This yields the following approximate drive power values in kW with allowance for the efficiency in each case.

	MULI 1	MULI 2	MULI 3	MULI 4	MULI 5	JUMB0 1	JUMB0 2	JUMB0 3	JUMB0 4	JUMB0 5
Ratio H (Trapezoidal)	0.3	0.55	1.18	2.3	4.7	6.5	8.4	10.9	14.7	19
Ratio L (Trapezoidal)	0.19	0.35	0.75	1.4	3	4.2	5.4	7.3	9.3	12
Ball screws	0.3	0.56	0.95	1.7/3.2	5.9	-	-	13.9	-	-

These values are not a criterion for selecting the drive motor; it should be selected on the basis of torque, speed and operating conditions.

only be estimated by making simplified assumptions. The

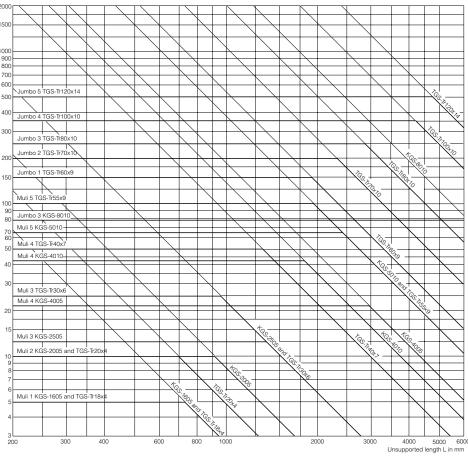
and the resultant service life depend
on load. speed. temperature and
lubrication conditions. Critical speeds

- jack screw
- **F**_S = Result of all lateral forces acting on the jack screw
- **n**_T = Drive speed

Precision Technology

$$\leq \mathbf{F}_{stroke max} \cdot \mathbf{V}_{H max} \cdot \mathbf{f}_{t}$$

kimum permissible g speed in mm/min. It alculated from the imum permissible ed of the worm shaft of 0 rpm (higher speeds equest) and the ransmission ratio of the worm gear screw jack


Temperature factor which is dependent on the relative duty factor based on a period of 10 or 60 minutes at 20 °C.

f,

B: Relative duty cycle based on 10 minutes

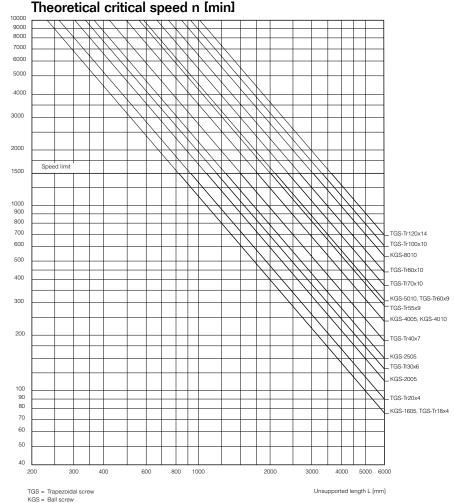
Selection and calculation

Critical buckling force F_{crit} in kN

TGS = Trapezoidal screw KGS = Ball screw

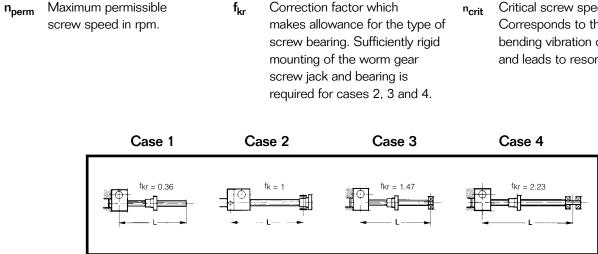
Critical buckling force of a screw jack under compressive loads

f


Thin lifting screws may buckle sideways when subjected to compressive loads. Before the permissible compressive force is defined for the screw, allowances must be made for safety factors as appropriate to the installation.

$F_{eff} \leq f_k \cdot F_{crit} \cdot 1/S_k$

Correction factor which


makes allowance for the type of function of the unsupported (compressive force) acting on the jack screw in kN. screw bearing. Sufficiently rigid length L. mounting of the worm gear screw jack is required for cases S_{k} Safety factor that depends on 2, 3 and 4. the application in question. Values between 3 and 6 are customary in general mechanical engineering. Case 1 Case 4 Case 2 Case 3 fk = 4-L -----For small L: $f_k \rightarrow 2$

Selection and calculation

Critical speed of jack screws (version R only)

Resonant bending vibration may develop with thin screws rotating at high speed. Assuming a sufficiently rigid assembly, the resonant frequency can be estimated with the aid of the following method.

Worm gear screw jacks with multi-start screws are also available for applications with high lifting speeds. These versions run at a considerably lower screw speed with better efficiency for the same lifting speed. They are generally not self-locking.

 F_{eff}

Actual axial force

Precision Technology

80

540.857.9871 | www.pt-usa.net

Critical buckling force as a

F_{crit}

Precision Technology

$$n_{perm} = f_{kr} \cdot n_{crit} \cdot 0.8$$

Correction factor which

Critical screw speed. Corresponds to the basic bending vibration of the screw and leads to resonance effects.

Selection and calculation

n

Required drive torgue for a worm gear screw jack

The required drive torque for a worm gear screw jack is governed by the axial load acting on the jack screw, the transmission ratio and the efficiency. It should be noted that the breakaway torgue may be considerably higher than the torgue required for continuous running. This applies in particular to worm gear screw jacks with low efficiency after a long standstill period. The acceleration torgue should be checked if necessary in cases with large screw pitches and very short run-up times.

$$M_{T} = \frac{F_{eff}}{2 \cdot \pi \cdot \eta} \cdot \frac{P}{i} + M_{o}$$

Mт Required drive torque of the worm gear screw drive at the worm shaft in Nm.

- Actual force acting on the jack F_ff screw in kN.
- Ρ Transmission ratio of the worm i gear screw drive in mm stroke length per revolution of the worm shaft.
- Efficiency of the worm gear screw jack in decimal notation. e.g. 0.32 instead of 32% (for values, see table on page 75).

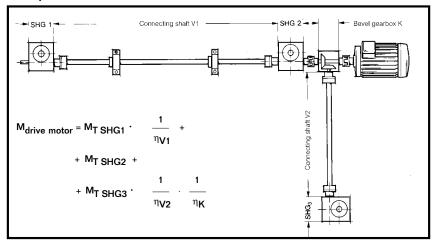
grease lubrication at room η is an average value determined by measurement.

- temperature. It represents an average value which may vary to a greater or lesser extent, depending on the running-in state, lubricant and temperature. For values, see table on page 75.
- M Idle torgue of the worm gear screw drive in Nm. M_o is determined by measurements undertaken after a brief running-in period with liquid

Required drive torque for a worm gear screw jack system

The required drive torque for a worm gear screw jack system is governed by the drive torque values for the individual jacks, with allowance for the static and dynamic frictional losses in transmission components (coupling, connecting shafts, pedestal bearings, angle gearboxes, etc.). It is useful to draw a diagram illustrating the flow of forces.

- $M_{T\,SHG1}$ The required drive torque for the worm gear screw jack SHG 1. It should be noted that the start-up torque (breakaway torque and possibly acceleration torque) may be considerably higher than the torque required for continuous running. This applies in particular to worm gear screw jacks with low efficiency after a long standstill period.
- The efficiency of connecting η_{v1} shaft V1. (V2) includes the static and η_{v2} dynamic frictional losses in


the pedestal bearings

and couplings.

- The efficiency of the bevel ηĸ gearbox (only for the force flow via the toothing, i.e. between connecting shaft V2 and the drive motor). $\eta_{\mathbf{K}} = 0.90$
- 0.75...0.95 depending on the length of the shaft and number of pedestal bearings.

Example

ην

Selection and calculation

Maximum drive torque

If the worm gear screw jack jams as a result of the screw coming into contact with an obstacle, the teeth can still absorb the following maximum torque values M_T at the drive shaft.

In the case of screw jacks connected in series, the screw jack closest to the drive can absorb this torque at its drive shaft.

Size	M _T max [Nm]
MULI [®] 1	3.4
MULI [®] 2	7.1
MULI® 3	18
MULI [®] 4	38
MULI [®] 5	93
JUMB0 [®] 1	148
JUMB0® 2	178
JUMB0® 3	240
JUMB0® 4	340
JUMB0 [®] 5	570

Forces and torque values acting on the drive shaft

If worm gear screw jacks are not driven free of lateral forces by means of a coupling connected to the motor shaft, but are instead driven by chains or belts, care must be taken to ensure that the radial force acting on the drive shaft does not become excessive. The values are specified in the following table.

In the worst case, the worm shaft will bend under radial force F_B and lift off the worm gear. This must be avoided, since it impairs the engagement between worm shaft and worm gear and leads to higher wear.

•	
Size	F _R max [kN]
MULI [®] 1	0.1
MULI [®] 2	0.2
MULI [®] 3	0.3
MULI [®] 4	0.5
MULI [®] 5	0.8
JUMB0 [®] 1	0.8
JUMB0 [®] 2	1.3
JUMB0® 3	1.3
JUMB0 [®] 4	2.1
JUMB0 [®] 5	3.1

Required drive speed The required drive speed is governed by the desired lifting speed, the transmission ratio of the jack and the transmission ratio of the other transmission components. A particular lifting speed can normally be achieved in several ways. Correct selection depends on the following criteria:

• Favorable efficiency

tables)

Precision Technology

82

540.857.9871 | www.pt-usa.net

Precision Technology

Selection of drive motor

A suitable drive motor can be selected when the required drive torque and drive speed are known. After selecting a drive motor, check that it will not overload any of the worm gear screw jacks or transmission components. This risk may occur, in particular, in installations with several screw

jacks if they are loaded unevenly. It will generally be necessary to install limit switches or torque-limiting couplings to protect the installation against impacting against end positions and obstacles.

Forces and torque values on the motor shaft

Toothed-belt or chain drives may exert considerable radial forces on the motor shaft if a very small sprocket is used. Please consult the motor manufacturer in cases of doubt.

Selection of a bevel gearbox

Selection of a bevel gearbox is governed by the following factors:

• Drive torque • Drive speed (see dimensional

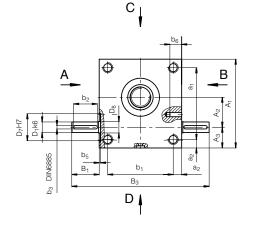
• Duty cycle and drive power Forces and torque values acting on the ends of the shaft (please consult us in cases of doubt)

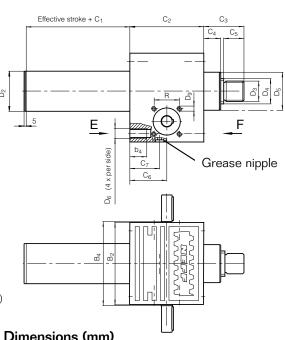
 Minimum load on transmission components in order to achieve compact, low-cost design Avoiding critical speeds for jack screws and connecting shafts

Jack screw nut torques

The nut torque (M) of the jack screw is the torque that the jack screw exerts on the mounting plate (all N versions except V), or the torque that the screw applies to the travelling nut (R version). It is not to be confused with the dirve torque (M_T) of the screw jack gears on the worm shaft.

$M [Nm] = F_{eff} [kN] \cdot f_{M}$


(applicable in the areas of moderate and high loads)


- **M** The jack screw nut torque in Nm for the "lift under load" movement.
- F_{eff} The actual supported axial force in kN.
- f_M A conversion factor that accounts for screw geometry and friction. The value is applicable under normal lubrication conditions. The higher value should be applied in the case of dry and static friction. In the case of ball screw drives, f_M is practically constant.

Size	f _M [Nm] Trapezoidal	f _M [Nm] Ball Screw
MULI [®] 1	1.6	1.6
MULI [®] 2	1.8	1.6
MULI® 3	2.7	1.6
MULI [®] 4	3.4	1.6/3.2
MULI [®] 5	4.6	3.2
JUMB0® 1	5.5	-
JUMB0 [®] 2	6.4	-
JUMB0 [®] 3	7.2	3.2
JUMB0 [®] 4	8	-
JUMB0 [®] 5	10.6	-

Outline drawing and table of dimensions

Versions N, V

If attachments are to be fitted, please specify on which side (A/B)

Size								Dime	ensior	ns (mr	n)	Ľ	ال				
	A1 ⁵⁾ Metric	A ₂ Metric	A ₃ Metric	^a 1 Metric	^a 2 Metric	B ₁ Metric	B ₂ Metric	B ₃ Metric	B ₄ Metric	^b 1 Metric	b ₂ Metric	b ₃ Metric	b ₄ Metric	b ₅ Metric	C ₁ Metric	C ₂ Metric	C ₃ 1) Metric
MULI [®] 1	80	25	24	60	10	24	72	120	77	52	18	3	13	1.5	20	62	35(46)
MULI® 2	100	32	28	78	11	27.5	85	140	90	63	20	5	15	1.5	30	75	45(48.5)
MULI® 3	130	45	31	106	12	45	105	195	110	81	36	5	15	2	30	82	50
MULI® 4	180	63	39	150	15	47.5	145	240	150	115	36	6	16	2	45	117	65
MULI® 5	200	71	46	166	17	67.5	165	300	170	131	56	8	30	2.5	55	160	95
JUMB0® 1	210	71	49	170	20	65	195	325	200	155	56	8	40	8	55	175	95
JUMB0® 2	240	80	60	190	25	67.5	220	355	225	170	56	8	45	8	55	165	110
JUMB0® 3	240	80	60	190	25	67.5	220	355	225	170	56	8	45	8	55	165	110
JUMB0 [®] 4	290	100	65	230	30	65	250	380	255	190	56	10	54	8	65	220	140
JUMB0 [®] 5	360	135	75	290	35	100	300	500	305	230	90	14	80	8	90	266	200

Size								Dimen	sions (mm)						
	C ₄ 2) Metric	C ₅ Metric	C ₆ Metric	C ₇ Metric	D _{1k6} 4) Metric	D2 ³⁾ Metric	D3 ⁶⁾ Metric	D ₄ Tr Metric	D ₄ KGT Metric	D5 ²⁾ Metric	D ₆ Metric	D _{7H7} Metric	D ₈ Metric	D9Xb6 ⁷⁾ Metric	R(TK) ⁷⁾ Metric	V-KGT Metric
MULI® 1	12(23)	19	31	22	10 X 21.5	33	M12 X 1.75	Tr18 x 4	1605	29.6(48)	M8	28	12	M5 x 10	32(45.25)	30 x 30
MULI® 2	18(21.5)	20	37.5	27	14 X 25	40	M14 X 2.0	Tr20 x 4	2005	38.7(61)	M8	35	15	M6 x 12	35(49.5)	40 x 40
MULI® 3	23	22	41	29	16 X 42.5	50	M20 X 2.5	Tr30 x 6	2505	46	M10	35	17	M8 x 12	44(62.2)	50 x 50
MULI [®] 4	32	29	58.5	42.5	20 X 45	60	M30 X 3.5	Tr40 x 7	4005/4010	60	M12	52	25	M10 x 15	55(77.8)	60 x 60
MULI® 5	40	48	80	53	25 X 65	82	M36 X 4	Tr55 x 9	5010	85	M20	52	28	M12 x 18	60(84.85)	80 x 80
JUMB0® 1	40	48	87.5	60	25 X 62.5	90	M48 X 2	Tr60 x 9	-	90	M24	52	28	M12 x 18	60(84.85)	-
JUMB0® 2	40	58	82.5	60	30 X 65	115	M56 X 2	Tr70 x 10	-	105	M30	58	32	M12 x 18	(80)	-
JUMB0® 3	40	58	82.5	60	30 X 65	115	M64 X 3	Tr80 x 10	8010	120	M30	58	32	M12 x 18	(80)	120 x 120
JUMB0® 4	50	78	110	86	35 X 62.5	133	M72 X 3	Tr100 x 10	- 1	145	M36	72	40	M16 x 30	(100)	-
JUMB0 [®] 5	60	118	133	109	48 X 97.5	153	M100 X 3	Tr120 x 14	-	170	M42	80	50	M16 x 40	(115)	-

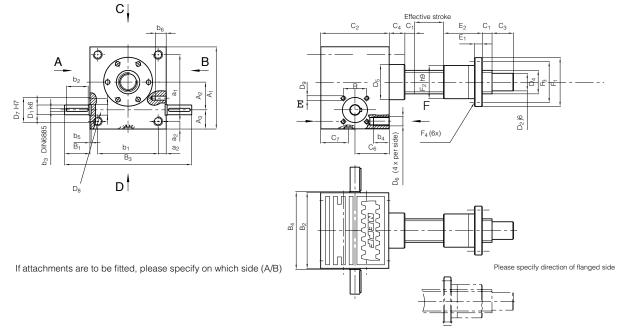
1) This dimension refers to the closed height and represents a minimum. It must be increased if bellows are used (see page 34).

2) The values in brackets refer to version with ball screw.

3) Square tube for version with ball screw and anti-rotation device.

4) Diameter and length to shoulder.

5) Dimension A₁ in accordance to DIN 1685 GTB 18.


6) In accordance to DIN 13 screw thread: MULI®. In accordance to DIN 13 fine pitch thread: JUMBO®.

7) JUMBO[®] 2 – JUMBO[®] 5, only 3 holes are present.

84

Outline drawing and table of dimensions

Version R

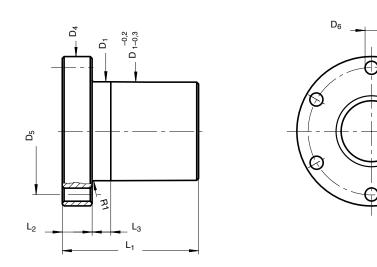
													<u> </u>	2						
Size										Dim	ensio	ns (n	nm)							
	A ₁ Metric	A ₂ Metric	A ₃ Metric	^a 1 Metric	^a 2 Metric	B ₁ Metric	B ₂ Metric	B ₃ Metric	B ₄ Metric	b ₁ Metric	b ₂ Metric	b ₃ Metric	b ₄ Metric	b ₅ Metric	C ₁ Metric	C ₂ Metric	C ₃ Metric	C ₄ Metric	C ₆ Metric	C ₇ Metric
MULI® 1	80	25	24	60	10	24	72	120	77	52	18	3	13	1.5	12	62	15	12	31	22
MULI®2	100	32	28	78	11	27.5	85	140	90	63	20	5	15	1.5	15	75	20	18	37.5	27
MULI® 3	130	45	31	106	12	45	105	195	110	81	36	5	15	2	20	82	25	23	41	29
MULI® 4	180	63	39	150	15	47.5	145	240	150	115	36	6	16	2	25	117	30	32	58.5	42.5
MULI® 5	200	71	46	166	17	67.5	165	300	170	131	56	8	30	2.5	25	160	45	40	80	53
JUMB0® 1	210	71	49	170	20	65	195	325	200	155	56	8	40	8	25	175	55	40	87.5	60
JUMB0® 2	240	80	60	190	25	67.5	220	355	225	170	56	8	45	8	25	165	70	40	82.5	60
JUMB0® 3	240	80	60	190	25	67.5	220	355	225	170	56	8	45	8	25	165	75	40	82.5	60
JUMB0® 4	290	100	65	230	30	65	250	380	255	190	56	10	54	8	25	220	100	50	110	86
JUMB0® 5	360	135	75	290	35	100	300	500	305	230	90	14	80	8	30	266	120	60	133	109

Size

	D _{1k6} ³⁾ Metric	D ₂ Metric	D ₄ TR Metric	D _{4KGT} Metric	D ₅ 2) Metric	D ₆ Metric	D _{7H7} Metric	D ₈ Metric	D _{9xb6} Metric	R(TK) Metric	E ₁ 1) Metric	E ₂ 1) Metric	F ₁ 1)2) Metric	F ₂ 1)2) Metric	F ₃ 1)2) Metric	F ₄ 1)2) Metric
MULI® 1	10 x 21.5	12	Tr18 x 4	1605	29.6/48	M8	28	12	M5x10	32(45.25)	12/12	44/44	48/48	28/28	38/38	6/5.5
MULI® 2	14 x 25	15	Tr20 x 4	2005	38.7/61	M8	35	15	M6x12	35(49.5)	12/12	44/44	55/55	32/32	45/45	7/7
MULI® 3	16 x 42.5	20	Tr30 x 6	2505	46	M10	35	17	M8x12	44(62.2)	14/14	46/46	62/62	38/38	50/50	7/7
MULI® 4	20 x 45	25	Tr40 x 7 4	4005/4010) 60	M12	52	25	M10x15	55(77.8)	16/16	73/59	95/80	63/53	78/68	7/9
MULI® 5	25 x 65	40	Tr55 x 9	5010	85	M20	52	28	M12x18	60(84.85)	18/18	97/97	110/110	72/72	90/90	11/11
JUMB0® 1	25 x 62.5	45	Tr60 x 9		90	M24	52	28	M12x18	60(84.85)	20	99	125	85	105	11
JUMB0® 2	30 x 65	55	Tr70 x 10		105	M30	58	32	M12x18	(80)	30	100	180	95	140	17
JUMBO® 3	30 x 65	60	Tr80 x 10	8010	120	M30	58	32	M12x18	(80)	30/22	110/101	190/145	105/105	150/125	17/14
JUMB0® 4	35 x 62.5	80	Tr100 x 10		145	M36	72	40	M16x30	(100)	35	130	240	130	185	25
JUMBO® 5	48 x 97.5	95	Tr120 x 14		170	M42	80	50	M16x40	(115)	40	160	300	160	230	28

1) The first values in the table apply to the trapezoidal screw nut EFM. For dimension 4010 the first values in the table are valid. 2) The second values in the table apply to the ball screw nut KGF. 3) Diameter and length to shoulder.

4) Dimension A1 in accordance with DIN 1685 GTB 18.

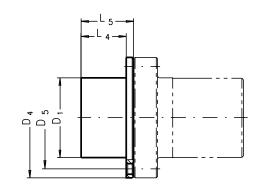

Dimensions (mm)

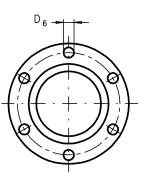
Accessories

Trapezoidal screw nuts

Preassembled bronze nut EFM

For drive units in continuous operation with particularly good wear properties. Can be used as safety nut and are sea water resistant in combination with stainless screws. EFM nuts have the same dimensions as ball screw nuts KGF-N and can be fitted together with the nut mountings KON-N and KAR-N (see accessories).


Size	Product / Size				Dime	nsions (n	nm)			
		D ₁ Metric	D ₄ Metric	D ₅ Metric	6xD ₆ Metric	L ₁ Metric	L ₂ Metric	L ₃ Metric	L ₄ Metric	L ₅ Metric
MULI® 1	EFM Tr 18 x 4	28	48	38	6	44	12	8	15	22
MULI® 2	EFM Tr 20 x 4	32	55	45	7	44	12	8	15	25
MULI® 3	EFM Tr 30 x 6	38	62	50	7	46	14	8	20	25
MULI® 4	EFM Tr 40 x 7	63	95	78	9	73	16	10	20	35
MULI® 5	EFM Tr 55 x 9	72	110	90	11	97	18	10	20	40
JUMB0® 1	EFM Tr 60 x 9	85	125	105	11	99	20	10	20	40
JUMB0® 2	EFM Tr 70 x 10	95	180	140	17	100	30	16	20	40
JUMB0® 3	EFM Tr 80 x 10	105	190	150	17	110	30	16	20	40
JUMB0◎ 4	EFM Tr 100 x 10	130	240	185	25	130	35	16	20	50
JUMB0® 5	EFM Tr 120 x 14	160	300	230	28	160	40	20	20	55


Adapter for attachment of the second bellows

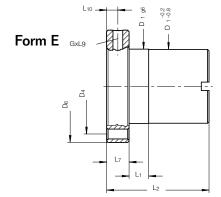
. .

Version R only

Screw

Accessories

Ball screw nuts

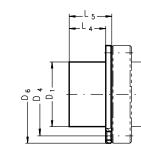

Flanged ball screw nut KGF

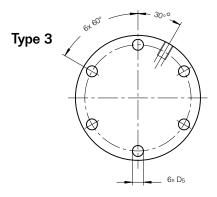
Flanged ball screw nut with mounting and lubrication holes and with profiled gaskets (reduces lubricant leakage and prevents ingress of dirt particles) for ball screw KGS.

Zero-backlash units KGT-FF/KGT-MM/KGT-FM

Factory adjusted and assembled combinations of two cylindrical nuts (MM), two flanged nuts (FF) or one flanged and one cylindrical nut (FM).

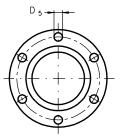
Only available as screw mechanism, i.e. nut preassembled on the corresponding ball screw.


Product / Size Size


		D ₁ Metric	D ₄ Metric	D ₅ Metric	D ₆ Metric	L ₁ Metric	L ₂ Metric	L ₄ Metric	L ₅ Metric	L ₇ Metric	Lg Metric	L ₁₀ Metric	G Metric	Max. Axial Backlash	Number of Reversals	C ²⁾ kN		$C_0 = C_{0a}$ kN
MULI® 1	KGF 1605 RH-EE(4)	28	38	5.5	48	8	44	15	22	12	8	6	M6	0.08	3	12.0	7.0	12.7
MULI [®] 2	KGF 2005 RH-EE(4)	32	45	7	55	8	44	15	25	12	8	6	M6	0.08	3	14.0	8.0	17.0
MULI® 3	KGF 2505 RH-EE(4)	38	50	7	62	8	46	20	25	14	8	7	M6	0.08	3	15.0	9.5	22.4
MULI® 4	KGF 4005 RH-EE(4)	53	68	7	80	10	59	20	35	16	8	8	M6	0.08	5	26.0	19.0	63.5
MULI [®] 4	KGF 4010 RH-EE(4)	63	78	9	95	10	73	20	35	16	8	8	M8x1	0.08	3	50.0	30.0	70.0
MULI® 5	KGF 5010 RH-EE(4)	72	90	11	110	10	97	20	40	18	8	9	M8x1	0.08	5	78.0	55.0	153.0
JUMB0® 3	KGF 8010 RH-EE(4)	105	125	14	145	10	101	20	40	22	8	11	M8x1	0.08	5	93.0	69.0	260.0

1) Only 75% of the specified values are permitted for a pitch accuracy of 200 µm/300 mm screw length. 2) Dynamic load rating to DIN 69051 Part 4, draft version 1978. 3) Dynamic load rating to DIN 69051 Part 4, draft version 1989. 4) EE = rubber wiper

Adapter for attachment of the second bellows


Version R only

Dimensions (mm)

Accessories

Trunnion nut mountings KAR

Туре for KGF

KAR 2005

KAR 2505

KAR 4005

KAR 4010

KAR MULI® 1 KAR 1605

KAR MULI® 5 KAR 5010

KAR JUMBO® 1 KAR 6310

KAR JUMBO® 3 KAR 8010

KAR MULI® 2

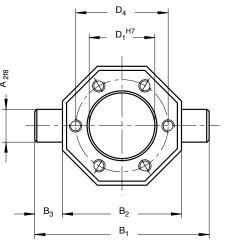
KAR MULI® 3

KAR MULI® 4

for EFM

Tr 30x6

Tr 40x7


Tr 55x9

Tr 60x9

Tr 16x4/Tr 18x4

Tr 20x4/Tr 24x4

Trunnion nut mounting for trunnion mounting of the flanged ball screw nut KGF and flanged trapezoidal screw nut EFM.

B₂

50

58

65

85

100

115

130

150

B₁

70

85

95

125

140

165

180

200

A₂

12

16

18

25

30

40

40

50

Вз

10

13.5

15

20

20

25

25

25

30

40

50

50

60

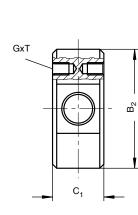
53

63

72

85

105


68

78

90

105

125

Dimensions (mm) Weight GхT C₁ D_4 D_1 [kg] 20 28 38 M 5x10 0.2 25 32 45 M 6x12 0.3 25 38 50 M 6x12 0.5

M 6x12

M 8x14

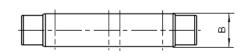
M10x16

M10x16

M12x18

1.2

2.5

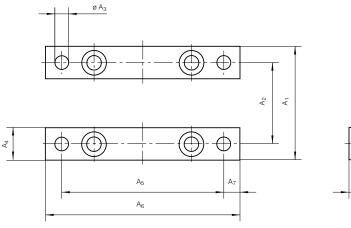

2.8

3.3

4.8

Trunnion mountings K

Supplied loose with mounting bolts for jack.



Size Dimer	nsions (mn	n)				-		L1	-		
	L ₁	L ₂	L3	L ₄	L ₅	L ₆	D _{f8}	D ₁	D ₂	В	Weight [kg]
K MULI® 1	110	80	49	9	72	13	15	44	18	20	0.76
K MULI® 2	140	100	60	10	85	18	20	58	23	25	1.44
K MULI® 3	170	130	76	11	105	18	25	72	28	30	2.8
K MULI® 4	240	180	102	12	145	28	35	86	38	40	7.4
K MULI® 5	270	200	117	17	165	33	45	115	48	50	10.72
K JUMB0® 1	290	210	120	15	195	38	50	130	56	60	11.8
K JUMB0® 2	330	240	140	20	220	43	70	170	76	80	26.1
K JUMB0® 3	330	240	140	20	220	43	70	170	76	80	26.1
K JUMB0® 4	410	290	165	20	250	58	80	160	88	90	40.2
K JUMB0® 5	520	360	210	30	300	78	90	175	96	100	67.7

Mounting feet L

Size

Supplied loose with mounting bolts for jack.

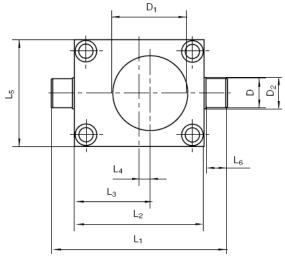
Top plate BP

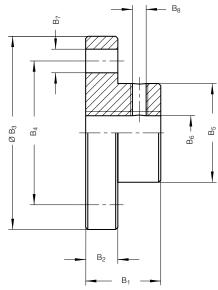
Screwed onto the mounting thread of the jack screw and protected against rotation.

S
0
3
D
2
C
9
0

Dimensions	(mm)

Size				Dimensio	ons (mm)				
	A ₁	A ₂	A ₃	A ₄	A_5	A ₆	A ₇	A ₈	Weight [kg]
L MULI◎ 1	72	52	8.5	20	100	120	10	10	0.3
L MULI◎ 2	85	63	8.5	20	120	140	10	10	0.4
L MULI® 3	105	81	11	24	150	170	10	12	0.8
L MULI◎ 4	145	115	13.5	30	204	230	13	16	1.7
L MULI® 5	171	131	22	40	236	270	17	25	3.9
L JUMB0® 1	205	155	26	50	250	290	20	30	5.8
L JUMB0◎ 2	230	170	32	65	290	340	25	40	10
L JUMB0® 3	230	170	32	65	290	340	25	40	10
L JUMB0® 4	270	190	39	80	350	410	30	50	20.8
L JUMB0◎ 5	330	230	45	100	430	500	35	60	34.4


Size **Dimensions (mm)**


	B ₁	B ₂	ØB ₃	B ₄	В ₅	B ₆	B _{7x4}	B ₈	Weight [kg]
BP MULI® 1	20	7	65	48	29.3	M12	9	M5	0.2
BP MULI [®] 2	21	8	80	60	38.7	M14	11	M6	0.3
BP MULI® 3	23	10	90	67	46	M20	11	M8	0.6
BP MULI [®] 4	30	15	110	85	60	M30	13	M8	1.2
BP MULI® 5	50	20	150	117	85	M36	17	M10	4.8
BP JUMB0® 1	50	25	170	130	90	M48x2	21	M10	5
BP JUMB0◎ 2	60	30	200	155	105	M56x2	25	M12	7.7
BP JUMB0® 3	60	30	220	170	120	M64x3	25	M12	9.8
BP JUMB0◎ 4	80	40	260	205	145	M72x3	32	M12	18.4
BP JUMB0® 5	120	40	310	240	170	M100x3	38	M12	29.6

Precision Technology

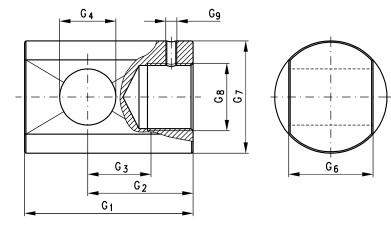
88

Precision Technology

Fork end GA

Screwed onto the mounting thread of the jack screw and protected against rotation. Supplied with split pins and collar pins. Galvanized.

Size


Dimensions (mm)

	G ₂	G3	G ₄ (h9 tolerance)	G ₅	G ₆ (h12 tolerance)	G ₇	G ₈	Gg	G ₁₀	G ₁₁	Weight [kg]
GA MULI® 1	48	24	12	24	12	115	M12	18	62	20	0.15
GA MULI® 2	56	28	14	28	14	116	M14	22	72	24.5	0.2
GA MULI® 3	80	40	20	40	20	118	M20	30	105	34	0.8
GA MULI® 4	120	60	30	60	30	118	M30	43	160	52	2.5
GA MULI® 5	144	72	35	70	35	1110	M36	40	188	60	3.8

Clevis end GK

Size

Screwed onto the mounting thread of the jack screw and protected against rotation.

Dimensions (mm)

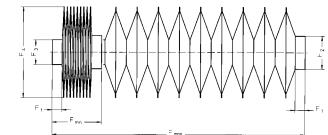
	G ₁	G ₂	G3	G ₄ (h8 tolerance)	G ₆ (h10 tolerance)	G ₇	G ₈	Gg	Weight [kg]
GK MULI® 1	55	40	15	10	15	30	M12	115	0.2
GK MULI® 2	63	45	18	12	20	39	M14	116	0.3
GK MULI® 3	78	53	20	16	30	45	M20	118	0.6
GK MULI® 4	100	70	30	20	35	60	M30	118	1.2
GK MULI® 5	130	97	33	22	40	85	M36	1110	2.5
GK JUMB0® 1	120	75	45	40	60	90	M48x2	1110	4.8
GK JUMB0® 2	130	90	50	50	70	105	M56x2	1112	4.8
GK JUMB0® 3	155	105	60	60	80	120	M64x3	1112	8
GK JUMB0® 4	220	135	85	80	110	145	M72x3	1112	22.5
GK JUMB0® 5	300	200	100	90	120	170	M100x3	1112	31.5

Accessories

Attachments

Bellows F

Length: For each 150 mm of open length up to 1.80 m, allow 8 mm when calculating the closed length. Allow 10 mm for each 150 mm over 1.80 m. The calculated length is added to value C3 (see page 26) as screw extension.


Diameter F2 may differ on the opposite side, depending on the attachment fitted. Important: The installation position must be specified, as internal support rings must be fitted when the jack is operated in a horizontal position. When installed vertically, bellows over 2 meters have textile tapes.

The same information is also required for the second bellows when ordering version R (rotating screw).

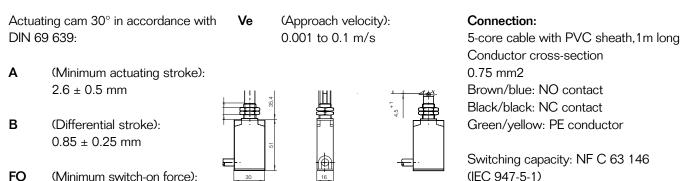
Material: PVC-coated polyester, stitched construction. Temperature range -30 °C to 70 °C. Secured in position by clamping rings. Special versions on request.

Flat spiral spring covers SF

Available on request (refer also to the catalog: Screw drives GT, KOKON®).

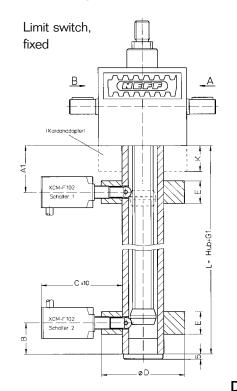
Size					
	Jack Type	F ₁	F ₂	F ₃	F ₄
F MULI® 1	N/V TGS(1)	12	30	30	101
	N/V KGS(1)	12	48	30	101
	R	12	30	28	101
F MULI® 2	N/V TGS(1)	12	39	39	113
	N/V KGS(1)	12	61	39	113
	R	12	39	32	113
F MULI® 3	N/V	20	46	46	127
	R	20	46	38	127
F MULI◎ 4	N/V	20	60	60	140
	R TGS/KGS-4010(1)	20	60	63	140
	R KGS-4005(1)	20	60	53	140
F MULI® 5	N/V	20	85	85	152
	R	20	85	72	152
F JUMB0® 1	N/V	20	90	90	165
	R	20	90	85	165
F JUMB0◎ 2	N/V	20	105	105	175
	R	20	105	95	175
F JUMB0® 3	N/V	20	120	120	191
	R	20	120	105	191
F JUMB0◎ 4	N/V	20	145	145	201
	R	20	145	130	201
F JUMB0◎ 5	N/V	20	170	170	245
	R	20	170	160	245
) TGS = Trapezoida	l screw				
KGS = Ball screw	,				

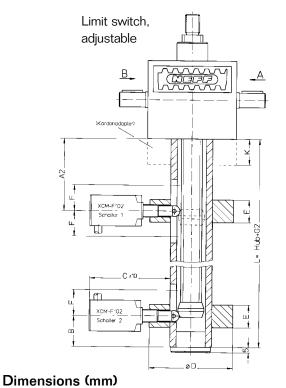
Precision Technology


Precision Technology

Accessories

Protection


Limit switches with roller lever


Particularly suitable for end-position shutoff (also available in explosion-proof design).

FO (Minimum switch-on force): 1 N

(IEC 947-5-1)

Ident No. 92203259

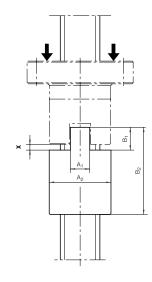
Size

	A ₁	A ₂	В	С	ØD	E	F	G ₁	G ₂	K
MULI [®] 1	40	65	30	80	80	20	25	82	107	20
MULI [®] 2	45	70	30	80	80	20	25	87	112	25
MULI [®] 3	50	75	30	80	90	20	25	92	117	30
MULI [®] 4	60	85	30	80	100	20	25	102	127	40
MULI [®] 5	70	95	30	80	120	20	25	112	137	50
JUMBO® 1	80	105	30	80	140	20	25	122	147	60
JUMB0 [®] 2	100	125	30	80	160	20	25	142	167	80
JUMB0® 3	100	125	30	80	160	20	25	142	167	80
JUMB0 [®] 4	110	135	30	80	170	20	25	152	177	90
JUMB0 [®] 5	120	145	30	80	190	20	25	162	187	100

Accessories

Safety nuts

Safety nuts SFM-TGS/KGS⁽¹⁾


For version R: The safety nut is positioned below the travelling nut without axial load and is therefore not subjected to wear. The functioning of the safety nuts is guaranteed only when installation and applied forces are as shown in the illustration (see below). As the travelling nut wears, the distance "x" between the two nuts decreases, which provides a visual check of wear without the need for dismantling.

The travelling nut must be replaced when the axial play on a single-thread screw is more than 25% of the lead of the thread (dimension X). Otherwise, safety cannot be guaranteed.

Wear greater than 25% of the lead of the thread can endanger persons and property. Dimension X must be checked regularly.

The safety nut supports the load if the thread form of the travelling nut fails as a result of excessive wear (dirt, lubrication starvation, overheating, etc.). The safety nut can only be ordered together with the flanged nut (we reserve the right to make design changes).

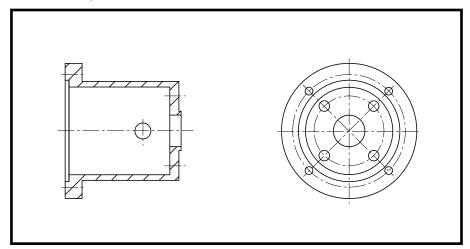
For version N: The design is similar to that for version R. A visual check for wear is also possible in this case. Please specify the load direction when ordering.

Size

	A ₁	A ₂ (-0.5)	B ₁	B ₂	Х	Weight [kg]
SFM MULI® 1	10	28	10	44	1	0.45
SFM MULI [®] 2	10	32	10	44	1	0.55
SFM MULI® 3	12	38	10	46	1.5	0.7
SFM MULI® 4	16	63	15	73	1.75	3.1
SFM MULI [®] 5	20	72	16	97	2.25	4.3
SFM JUMB0 [®] 1	20	85	16	99	2.25	5.7
SFM JUMB0 [®] 2	25	95	20	100	2.5	11.3
SFM JUMB0 [®] 3	25	105	20	110	2.5	13.7
SFM JUMB0 [®] 4	30	130	25	130	2.5	23.3
SFM JUMB0 [®] 5	40	160	25	160	3.5	45.7

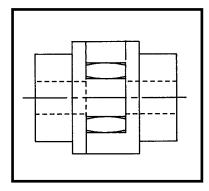
1) KGS on request.

ensions (mm)

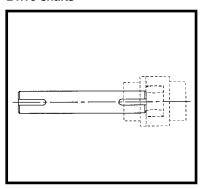

Cubic face screw jacks

Screw jack accessories

These and other accessories are available upon request. Please ask any of our technical sales representatives.

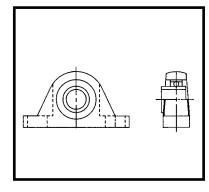

Motor adaptor flanges MG

Motor adapter flanges are used to mount motors to worm gear screw jacks and house the coupling for connecting the motor to the drive shaft.

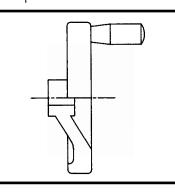


Flexible couplings

Flexible couplings provide impact proof transmission of torque and compensate for axial offset and displacements and for angular alignment errors.



Drive shafts



Pillow blocks

Pillow blocks are used to support drive shafts, where required.

Handwheels Handwheels allow manual screw jack operation.

Application checklist

MULI®, JUMBO® cubic screw jacks

Contact		Job Title		Date	
Company				Ref.	
Address				Tel.	
				Fax.	
Company sector	of activity			1	
Details of applic	ation				
	auon				
PERFORMAN	ICE REQUIREME	NTS			
Load :	-		Jack duty :		
	Dynamic (kN)(ton) S	tatic (kN)(ton)	Jack operating time	(mins)	
Compression			Elapsed cycle time	(mins)	
Tension					
Load (kN)(ton) on :	Jack Jack	Jack Jack	No. of cycles per day		
Load type : Cons	tant Oscillating	Reversing	No. of working days per	year	
Sh	ock Vibration		No. of years		
Other :			Operating environmer	nt :	
Linear speed	(mm/min)(in/min)		Ambient temperature (°C	C)(°F)	
			Check if applicable :	High Humidity	
Stroke length	(mm)(in)			Dusty	
				Wet	
Positional accurac	cy (mm)(in)			Corrosive	
				Radioactive	
Mounting :	Vertical H	lorizontal	Other please specify		
BASIC JACK	VERSION				
BADIO SACIN	Upright	Translating		Keyed feature	
	Inverted	Rotating		backlash feature	
		notating			
JACK ACCES	SSORIES				
	Гор plate	Trunnion mounting	J Fixe	d limit switches	
С	levis end	Bellow (PVC)	Adjustab	le limit switches	
	Fork end	Bellow (heat resistant			
	DRIVE COMPO	NENTS			
	AC motor	Motor adaptor flange	•	Drive shaft	
	DC motor	Bevel gearbox		Pillow block	
SpecifyV/F		coupling		Handwheel	
Other motor type]	-		
	<u>L</u>	-			

Please complete and fax, along with a sketch of the installation, to Precision Technology USA, Inc. at (540) 857-9876

94

Precision Technology

95

How to order MULI®/JUMBO®

Configuration of the order code:

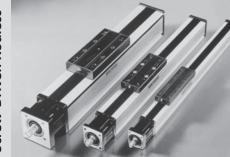
1. Size	7. End fit	tting	11. Speci	al features
M1 – M5	0 =	Without	0 =	Without
J1 – J5	BP =	Top plate	Z =	Standard acces
2. Version	GA =	Fork end		as per catalog,
Ν	GK =	Clevis end		direct mounting
R	8. Bellow	vs		the gears (attac strips, motor,
V	0 =	Without		motor adapter
3. Gear ratio	F =	With bellows		flange with cou
Н	9. Nut		S =	Special access
L	0 =	Without		or accessories
4. Screw type	1 =	EFM (trapezoidal)		constructional
TGS (trapezoidal screw)	2 =	KGF (flanged ball		alterations to the standard version
KGS (ball screw)		screw nut)		(special screw,
5. Stroke	3 =	KGM (cylindrical ball		special screw e
[mm]		screw nut)		alignment GK/0
6. Stroke end	10. Stop			V Version
G = Standard screw D3	0 =	Without	12. Screv	v dimensions
Z = With cylindrical end	A =	With	MULI	[®] 4-KGS
D _{2j6}			0 =	for all sizes ex
0 = No end machining			_	MULI® 4-KGS
S = Special end			1 =	4005
(as specified by customer)			2 =	4010

Example order code:

<u>МЗ-N-H-KGS-0425-G-ВР-F-0-А-00-0</u> 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.		
1. Size MULI® 3	6. Screw end Standard thread D3	11. Special fea Without
2. Version	7. End fitting BP = Top plate	12. Screw dim MULI® 4-K(
3. Gear ratio H	8. Bellows With bellows	0 = for ML
4. Screw type KGS	9. Nut Without	
5. Stroke 425 mm	10. Stop collar With	

atures

nensions GS


r all sizes except ULI® 4-KGS

Precision Technology

Precision Technology

ENGINEERED ACTUATORS

Screw-Driven Rodless

The superior design of our screw-driven Rodless Actuators is highlighted by three results:

- Our capability and willingness to do long stroke lengths (36 feet!).
- No reduction in ballscrew speeds as actuators grow longer, due to the unique screw support system.
- Better sealing than most competing products.

Our belt-driven Rodless Actuators have

- Our capability and willingness to do long stroke lengths (36 feet!)
- Belts are replaceable without removing payload & carriage
- Easily reversible drive shaft
- Maximum guide bearing spacing for higher moment loads

- Lengths to 36 ft , no screw whip
- Speeds to 8.2 ft/s (7.6 ft/s over 16 ft) •
- Feed forces to 2,700 lb
- Accelerations to 2g
- Repeatability ±0.0004 in
- Leads 5 to 50 mm/rev. (0.2 to 1.97 in/rev)
- Supports moments to 443 lb-ft
- Supports pay loads to 1,350 lb
- Standard dual carriage LH/RH screw models
- Easily configured into cartesian systems

Belt-Driven Rodless

the following distinguishing features:

Ram-Style

We have the widest force range of any ram style actuator manufacturer. This is also our largest area of product development to serve industrial, commercial, and defense applications. We can address most harsh environments and airborne particulates.

Screw Jacks

Custom Actuators

Our worm gear Screw Jacks offer an unparalleled thrust-per-dollar solution wherever powerful lifting, lowering, tilting and feed movements are required. The cubic design provides two standard mounting surfaces. Multiple units are easily synchronized with drive shafts.

Lengths to 36 ft

- Speeds to 32.8 ft/s
- Feed forces up to 1124 lbs
- Repeatability ±0.002 in.
- Central lubrication point
- Easy tension adjustment
- Easily configured into cartesian systems

Standard Product Range:

- Ballscrew or trapezoidal screw driven
- Stroke lengths up to 6 ft.
- Dynamic load capacity up to 8.4 tons
- Inline, parallel belt, and right-angle gear motor mounting options
- Flexible mounting and rod end options **Capabilities:**
- To 250 tons of force
- Axially translating Screw
- Rotating Screw / Translating Nut
- Upright/Inverted
- Trap. Screw range: to 56 tons (500 kN)
- Ball Screw range: to 8.7 tons lb (78 kN)
 - Slow to medium speeds
- Ideal for positioning
- A cost effective work horse
- Motor direct mount to all sizes
- We recognize that each application is unique, and welcome opportunities that require modifications to our standard products, or in some cases complete custom designs. Whether your application requires special environmental considerations, or there is just no standard product that adequately suits your needs, we look forward to reviewing the details.

From clean rooms to oil rigs, from packaging machines to steel mills, we have optimized actuator solutions for the most demanding challenges.

- Fast Engineering Support
- Superior Performance, Quality, and Durability
- Fast Ouotes
- Fast Turnaround
- **Exactly What You Need**

RODLESS RAM-STYLE SCREW JACKS CUSTOM

For additional information about how Precision Technology USA, Inc. can help you with innovative engineering solutions, please contact us at:

> Precision Technology USA, Inc. 225 Glade View Drive Roanoke, VA 24012

Phone: (540) 857-9871

Email: sales@pt-usa.net

www.pt-usa.net

ISO 9001:2008

