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Abstract 

The development of an energy and environmentally friendly driving strategy for the next generation automobile 

has been the focus of academia and industry. The design concept of the strategy is to adapt the velocity of the 

vehicles into the dynamic driving surroundings considering the factors such as real-time energy consumption, 

traffic flow, road infrastructure, speed limitations, trip time, etc., which entails multiple objectives optimization. 

Most current research, however, focuses only on the limited driving scenarios, e.g., car following scenario, 

velocity regulation according to “Green Wave” theory based on traffic lights information, or road curvature and 

road gradient, etc. To handle the eco-driving problem in daily synthetic traffic situations under mixed driving 

scenarios, a Predictive Cruise Control (PCC) system is firstly proposed and developed in this master research. 

After defining its control objectives, the thesis presented the PCC system architecture based on the Instantaneous 

Energy Consumption Model (IECM) and Model Predictive Control (MPC) algorithm. 

To avoid solving complex optimization problems taking into account various objectives and system constraints, 

the PCC system is designed hierarchically into three typical driving scenarios, including car following scenario, 

signal anticipation scenario, and free driving scenario. A detailed Driving Scenario Switching Logic (DSSL) 

under the support of ITS is simultaneously formulated so that the PCC system can be automatically selected 

and triggered by different driving scenarios. As the foundation of developing the eco-driving algorithm, electric 

vehicle longitudinal dynamics model and inter-vehicle longitudinal dynamics model are proposed firstly. 

Taking the minimization of energy consumption of the electric vehicle during traveling as the main optimization 

objective, the artificial neural network-based instantaneous energy consumption model is then developed to 

evaluate the transient energy consumption level under different typical driving scenarios. For the car following 

scenario, a multi-objective optimization, including energy economy, driving safety and comfortability, 

considering the preceding vehicle is proposed based on a linear model predictive controller, which is converted 

into a quadratic programming problem and numerically solved. For the signal anticipation scenario, by tracking 

a reference velocity optimized by the Reference Velocity Planning (RPV) algorithm based on SPaT information, 

a nonlinear MPC problem is formulated with the objective of both following the optimal reference velocity and 

minimizing the energy consumption during traveling. For the free driving scenario, the energy consumption 

minimization considering road gradient information based on nonlinear MPC is presented. To reduce the error 

of model mismatch and external disturbance, the feedback correction method is introduced into the predictive 

inter-vehicle longitudinal dynamics model to enhance the system robustness of the closed-loop system to the 

model uncertainties. 

The performances of the EV’s PCC system are investigated by simulation experiments under three typical 

driving scenarios and a synthetic driving scenario. It is concluded that compared with conventional human 

driver’s maneuver, the proposed PCC system can not only realize the driving safety and comfortability, but also 

harvest considerable energy saving rates in either car following scenario, signal anticipation scenario, or free 

driving scenario or the synthetic driving scenarios, which substantiates the robustness and system robustness of 

the developed PCC system for EV. For the car following scenario, signal anticipation scenario, and free driving 

scenario, the energy saving rates were realized by 16.7%, 15.6%, and 30.3%, respectively. Under the synthetic 

traffic situation under mixed driving scenarios, 19.97% cumulative energy savings was achieved by proposed 

PCC system. 

Keywords: 

Predictive cruise control; Economic (eco) driving; Model Predictive Control; Instantaneous energy consumption 

model; Driving assistance system 
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Chapter 1. Introduction 

1.1. Research Background and Significance 

Worldwide concerns about climate breakdown, global heating and fossil fuel excessive consumption have 

prompted all walks of life to take the initiative in energy conservation and CO2 emission reduction actions. The 

reach of the Paris Agreement, as a milestone breakthrough, has been intensifying the development of a 

sustainable low-carbon society. The public road transport sector consumes about 20% of global energy and is 

spearheaded nearly 25% of energy-related CO2  emissions, 75% of which are discharged by public road 

transportation [1]. Moreover, according to the preliminary estimates, the energy consumption and CO2 

emissions of worldwide public transport in 2030 will be raised by more than 50% due to the requirement of 

population and economic growth [2]. Accordingly, the related policies and low emission strategies and 

technologies on the road transport system are imperatively needed to moderate the energy and environmental 

burden, ameliorate the tense energy demand prospect, and achieve the UN’s Sustainable Development Goals 

(SDGs) in the transport sector [3]. 

Energy consumption during vehicle operation is not only pertinent to the status of the vehicle itself, but also 

subject to the road condition and traffic situation. Moreover, it largely depends on the motion or driving behavior 

of the vehicle in a complex road traffic environment. According to current research status, there are several 

directions to enhance the fuel economy and diminish the fuel or energy consumption during traveling, including 

advanced motor and engine technologies, the latest vehicle bodywork design and techniques, new energy, as 

well as advanced control and driving assistance systems, as indicated in Figure 1.1, and their respective 

potentiality of energy conservation shown in Table 1.1. Among these strategies and technologies, eco-driving, 

as one of the conceptual control technologies, has been considerably noted due to its capability of reducing 

energy consumption in whatever the local microscopic or global macroscopic level [4]~[13]. 

TABLE 1.1 Main Vehicle Energy Saving Technologies and their Potentiality  

Technologies 
Potentiality of Energy 

Saving (%) 

Engine & Vehicle 

Design 

Engine Technologies 

Turbocharging 

Technology 
1.8 ~ 4.8 

Direct Injection 

Technology 
10 ~ 20 

Idling Start-Stop 5 ~ 8 

Cylinder Deactivation 3.9 ~ 5.5 

Transmission 

Technologies 

Multiple Gears 1.4 ~ 3.4 

Double Clutch 2.7 ~ 7.5 

Continuously Variable 

Transmission 
2 ~ 8 

Lightweight 

- 

2 ~ 8 

Small-Displacement 20 

Diesel Vehicle 20 

Others Aerodynamic Resistance 2 ~ 3 
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Reduction 

Rolling Resistance 

Reduction 
1 ~ 2 

Eco-Driving 15 ~ 35 

Intelligent Traffic Management (ETC, Actuated Signalization, etc.) 15 

Vehicle Electrification 10 ~ 40 

 

The core concept of eco-driving is to improve vehicle energy economy on the premise of meeting the basic 

requirements of travel, such as time or speed limits. The main objective of eco-driving is to attain the best match 

between the host vehicle speed and the vehicle surroundings, including road environment and traffic flow, 

through the appropriate operation controlled by a driver or an autonomous driving system. Thus far, eco-driving 

has led a new way for energy saving and emission reduction in road transport and has always been the focus of 

research in academia and industry. Government departments, research institutes and automobile manufacturers 

in many developed countries have committed a great deal of human and financial resources in the research and 

development of eco-driving technology, such as the Intelligent Transportation Systems Joint Program in the 

US [14], Energy-Saving Intelligent Transportation Systems Project in Japan [15], and Eco-Will Project in 

Europe [16].  

 

 

Fig. 1.1 Advanced Technologies for Ameliorating Energy Economy 

A systematic classification of the current eco-driving system can be summarized as preplanning systems, real-

time dynamic systems, and experience-based systems [17]. In comparison with others, the real-time dynamic 

optimization system, also called Eco-Driving Assistance System (EDAS), as the extension of advanced driver 

assistance systems (ADASs), presents transcendent energy economy improvement potential due to higher levels 

of engagement with the driving surroundings. The real-time dynamic system can be further categorized as online 

driving behavior evaluation systems (offering feedback guidance based on historical energy consumption versus 

driving pattern), online phonetic and haptic systems (providing a predictive, feedforward suggestion according 

to upcoming driving information), and predictive cruise control (involving autonomous driving features). 

Among these systems, predictive cruise control (PCC) is the ideal system to take full advantage of energy saving 
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of eco-driving because of two reasons: (1) Equipped with the intelligent hardware system including controllers, 

sensors and actuators, cruise control system can partially or entirely replace the human driver to realize the 

energy saving objective automatically, which promotes the development of Eco-Driving Assistance System 

(EDAS) for the future mobility; (2) Cruise control technology, as an embedded system into the vehicle, does 

not influence the energy-saving technologies of the vehicle itself, which means that the predictive cruise control 

system manipulates the vehicle to execute the eco-driving strategy, which can be combined with the energy-

saving technologies of the vehicle itself to maximize the energy-saving potential simultaneously. 

1.2. Literature Review 

1.2.1. Research Status of Safety Distance Car-following Strategies 

Car following, as the most primary microscopic traffic behavior, demonstrates the interaction of two vehicles 

next to each other restricted to a single lane. Car-following models utilize the inter-vehicle dynamics to reflect 

the corresponding driving behavior of a host vehicle with the change of state of motion of a preceding vehicle. 

Under the driving scenario of car following, the priority of the cruise system of a vehicle is to guarantee driving 

safety. Therefore, the establishment of a safety distance model between the preceding and host vehicle is the 

fundamental of developing the cruise system [18]. On the one hand, overlength inter-vehicle spacing may cause 

the cut-in of other vehicles from adjacent lanes, which will not only compromise the driving safety of car 

following but also get the host vehicle into a frequent acceleration or deceleration, or even stop-and-go situation 

lowering the fuel economy. On the other hand, too short an inter-vehicle spacing may increase the risk of traffic 

collision during car following, and force drivers to take over or interfere in the driving task [19]. Hence, selecting 

an appropriate inter-vehicle strategy can not only improve the efficiency of road resource utilization but also 

the performance of car following and driving safety. 

Basically, the safety distance model can be classified into three classic categories: (1) Car-following safety 

distance model based on the braking maneuver of the preceding vehicle, (2) Safety distance model based on 

driver characteristics, and (3) safety distance model based on time headway. Most of the subsequent safety 

distance models are improved and developed based on the above three classic models.  

i. Car-following safety distance model based on braking maneuver of the preceding vehicle [20]~[21] 

Through the analysis of the vehicle kinematics, when the preceding vehicle suddenly brakes into stop, the safety 

distance model of the host vehicle to maintain a safe stop from cruise should be as follow: 

𝐷𝑠 = 𝑣ℎ𝑡𝑑 +
𝑣ℎ
2

2𝑎ℎ
+ 𝑑𝑠𝑡𝑜𝑝 −

𝑣𝑝
2

2𝑎𝑝
(1.1)  

where, 𝐷𝑠 refers to the safe distance, 𝑣ℎ is the velocity of the host cruise vehicle, 𝑣𝑝 is the velocity of  the 

preceding vehicle, 𝑡𝑑 represents total time delay from driver reaction time and braking system response time, 

𝑎ℎ is the maximum deceleration of the host vehicle, 𝑎𝑝 is the maximum deceleration of the preceding vehicle, 

and 𝑑𝑠𝑡𝑜𝑝 is the relative distance between preceding and host vehicle when after the stop. 

It is intuitive to understand that 𝑣ℎ𝑡𝑑 calculates the coverage during the total time delay of the host vehicle, 
𝑣ℎ
2

2𝑎ℎ
 

calculates the required distance of host vehicle under maximum deceleration, 𝑑𝑠𝑡𝑜𝑝 is the expected inter-vehicle 

distance when both vehicles are motionless, and 
𝑣𝑝
2

2𝑎𝑝
 stands for the driving distance during deceleration of the 

preceding vehicle. It is noted that this model fully takes into account the driving safety of the following vehicle 

under the circumstance of the emergency stop of preceding vehicle. It is however relatively conservative in 

applying this model to the typical driving scenario because it tends to cause the waste of road resource, 
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decrement of traffic efficiency, and cut-in of vehicles from adjacent lanes. 

In the follow-up study, several upgraded minimum safety distance models consider the braking process of the 

preceding vehicle and motion of the host vehicle separately to further subdivide the original safety distance 

model into different portions [22]. Although the exact precision is improved when calculating the required safe 

distance, it does greatly increase the complexity of the safety distance model. 

ii. Car-following safety distance model based on driver characteristics 

The influence of the subjective intention of drivers on the modeling of the safety distance is rarely considered 

among most of the safety distance models of the cruise system. Drivers with different driving habits have 

different subjective feelings about the safe distance. Driver preview safety distance model [23] is established 

based on the intention prediction of driving process in the actual traffic situation and the model parameters can 

be identified by the statistical process of many skilled drivers’ operation. Once the driver predicts that after 𝑡𝑔 

seconds, the inter-distance between host and preceding vehicle is less than the critical value 𝑋𝑙𝑖𝑚, the brake 

should be applied immediately for driving safety. The minimum safety distance required to be kept between 

host and preceding vehicle is defined by the relative distance at this moment. The mathematical expression of 

this model is shown as follow: 

𝐷𝑠 = −𝑣𝑟𝑒𝑙𝑡𝑔 −
𝑎𝑝𝑡𝑔

2

2
+ 𝑋𝑙𝑖𝑚 (1.2) 

where, 𝐷𝑠 is the safety distance between host and preceding vehicle, 𝑋𝑙𝑖𝑚 represents the subjective critical value 

of drivers, 𝑣𝑟𝑒𝑙  represents the relative velocity between the host and preceding vehicle, and 𝑎𝑝  is the 

acceleration (deceleration) of the preceding vehicle. 

It is clear that subjective prediction of drivers is fully considered in this preview safety distance model, which 

is in line with the subjective judgment of drivers. However, the subjective prediction with a lot of uncertainty 

is hard to be quantified during modeling. Take the preceding vehicle’s emergency braking as a typical example. 

As the driver preview model always takes a constant such as 1.5m/𝑠2  as the braking deceleration of the 

preceding vehicle, the calculated safety distance value by the model will be relatively small in the case of 

emergency braking of the preceding vehicle, which does not accord with the actual. 

iii. Car-following safety distance model based on time headway [24]~[25] 

Time headway between preceding and host vehicle, defined as the time intervals between the passage of 

successive vehicles past the same point, is categorized as constant time headway (CTH) and variable time 

headway (VTH). The constant time headway strategy was firstly proposed by Loannou [26] in 1993 in 

developing an autonomous intelligent cruise control system. 

𝐷𝑠 = CTH ∙ 𝑣ℎ + 𝑑𝑚𝑖𝑛 (1.3) 

where, 𝐷𝑠 is the safe distance between preceding and host vehicle, CTH represents the constant time headway 

(generally 1.2 ~ 2.0s), 𝑣ℎ is the velocity of the host vehicle, and 𝑑𝑚𝑖𝑛 is the spacing when two vehicles are 

motionless (generally 2 ~ 5m). 

It is obvious that the expected spacing is correlated directly with the velocity of the host cruise vehicle. The 

faster the host cruise vehicle, the larger the required braking distance. However, the constant value of time 

headway makes it difficult to work efficiently under complex traffic condition. Lin et al analyzed the influence 

on the traffic flow using different CTH  under five different typical driving scenarios [27]. Simulation 

experiments show that it fails to meet the demand for different traffic flow using a fixed constant time headway, 

proving the limitation of the CTH strategy.  

Broqua et al put forward that time headway should be proportional to the velocity of the host vehicle during the 

driving process [28], from which the significance of the velocity of host cruise vehicle was firstly emphasized 
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for time headway design. 

{
𝐷𝑠 = 𝑇𝐻 ∙ 𝑣ℎ + 𝑑0
𝑇𝐻 = 𝜆1 ∙ 𝑣ℎ + 𝜆2

(1.4) 

where, 𝐷𝑠 is the safe distance between preceding and host vehicle, TH refers to the time headway, 𝑣ℎ is the 

velocity of the host cruise vehicle, 𝑑0 is the spacing between two vehicles after pulling up, and λ1, λ2 are the 

constant coefficient. On top of this, Yanakiev and Kanellakopoulos added that time headway should be 

correlated with not only the velocity of the host vehicle but also the relative velocity between preceding and 

host vehicle [29]. When the velocity of preceding vehicle is slower than the host vehicle, it is necessary to 

increase the time headway between two vehicles to ensure the driving safety, while if the velocity of the 

preceding vehicle is greater than host vehicle, the time headway can be appropriately decreased to improve the 

traffic flow capacity. A saturation function with an upper limit of 1 and a lower limit of 0 is used to describe the 

improved time headway. 

𝑇𝐻 = sat(𝜆1 − 𝜆2 ∙ 𝑣𝑟) = {
1 𝜆1 − 𝜆2 ∙ 𝑣𝑟 ≥ 1

𝜆1 − 𝜆2 ∙ 𝑣𝑟 0 < 𝜆1 − 𝜆2 ∙ 𝑣𝑟 < 1
2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1.5)  

where, sat[ ] is the saturation function, 𝜆1and 𝜆2 are constants greater than 0, and 𝑣𝑟𝑒𝑙  refers to the relative 

velocity difference between preceding and host vehicles. 

All the parameters of above time headway models reflect the characteristics of microscopic traffic, such as the 

velocity of host cruise vehicle and the relative velocity between two vehicles, while Swaroop et al. [30] and 

Rajamani et al. [31] holds the belief that the characteristic of macroscopic traffic flow should be considered as 

well in time headway. The correlation between time headway and macroscopic traffic flow speed and traffic 

jam density is proposed based on the theory of Greenshields [32]: 

𝑇𝐻 =
1

𝜌𝑗𝑎𝑚(𝑣𝑓𝑟𝑒𝑒 − 𝑣)
(1.6) 

where, 𝜌𝑗𝑎𝑚 is the density of traffic jam, and 𝑣𝑓𝑟𝑒𝑒 is the velocity of free traffic flow. 

Besides, based on a correlation between the velocity of host vehicle and drivers expected spacing, Seungwuk 

Moon and Kyongsu Yi proposed a Quadratic Desired Clearance (QDC) model [33]. The nonlinearity can more 

precisely describe the car-following behavior of the host vehicle compared with the linearized desired spacing 

model in [34]. 

𝐷𝑑𝑒𝑠 = 𝑐0 + 𝜏𝑣ℎ + 𝑟𝑣ℎ
2 (1.7) 

where, 𝐷𝑑𝑒𝑠 refers to the desired inter-distance between preceding and host vehicle, 𝑣ℎ is the velocity of host 

vehicle, and 𝑐0, 𝜏, and 𝑟 are all coefficients to be calibrated.  

Shengbo Li et al. hold that the coefficients in the above model are not labeled with a physical explanation 

although it can accurately describe the car-following characteristics, which makes it difficult for drivers to adjust 

these parameters according to their own driving behavior if the cruise control system is designed based on it 

[35]. Taking the Taylor Expansion of the quadratic term of the above model at the average speed and 

transforming it into a QDC model with clear physical significance for each parameter, the improved model is 

shown as follow: 

𝐷𝑑𝑒𝑠 = 𝑟𝑣ℎ(𝑣ℎ − 𝑣ℎ𝑚𝑒𝑎𝑛) + 𝜏ℎ𝑣ℎ + 𝑑0 (1.8) 

where, 𝐷𝑑𝑒𝑠  refers to the desired inter-distance between preceding and host vehicle, 𝑟 is the coefficient of 

quadratic term, 𝑣ℎ is the velocity of host vehicle, 𝑣ℎ𝑚𝑒𝑎𝑛 is the average vehicle velocity under the car-following 

scenario, 𝜏ℎ is the time headway, and 𝑑0 denotes the spacing at motionlessness. 
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1.2.2. Research Status of Vehicular Energy Consumption Model 

Numerous variables influence vehicular energy consumption and emission rates. These variables can be 

classified into six broad categories: travel-related, weather-related, vehicle-related, roadway-related, traffic-

related, and driver-related factors, as suggested by Ahn et al in [36]. The primary elements of each subcategory 

are shown in Figure 1.2. The effects of the six influencing factors on fuel consumption are summarized in Table 

1.2. As shown in Table 1.2, only some factors, such as road conditions, traffic-related factors and driver-related 

factors, significantly impact fuel consumption. It is important to note that the effects of these factors on fuel 

consumption are not cumulative but mutually reinforcing. When developing the fuel consumption model, the 

factors related to the state of the vehicle and driver are especially ought to be considered. However, the factors 

related to road conditions and traffic information, although having a great impact, are challenging to be reflected 

in the fuel consumption model and can be considered by optimizing the control algorithm. Environment-related 

factors contribute an insignificant share of fuel consumption and can be ignored during modeling [37].  

 

 

Fig. 1.2 Factors affecting vehicle energy consumption 

 

Multifactorial influence on the vehicular energy consumption cannot be described by simple mathematical 

models. However, due to the real-time performance of eco-driving assistance system, the energy consumption 

model is required to be as simple as possible. Therefore, the main research objective is to simplify the model 

structure under the premise of adequate model accuracy. The current existing fuel consumption models can be 

roughly classified into three categories: microscopic fuel consumption models, mesoscopic fuel consumption 

models, and macroscopic fuel consumption models. 

 

TABLE 1.2 Quantitatively Influence on Fuel Consumption from Primary Factors 

Factors Travel Weather Vehicle Roadway Traffic Driver 

Energy Saving 

(%) 

8.74 ~ 

42.15 

[38]~[41] 

1 [42] 
Core 

Factors 

3 ~ 20 

[43]~[45] 

22 ~ 50 

[46]~[48] 

4.35 ~ 40 

[49]~[55] 

i. Microscopic fuel consumption models:  

Microscopic fuel consumption models, also called instantaneous fuel consumption models, basically estimate 
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the vehicle instantaneous fuel consumption by utilizing vehicle instantaneous state parameters. The inputs to 

this kind of models include engine rotation speed (rpm), torque, power, and vehicle instantaneous speed and 

acceleration. The models with engine power as input are the earliest ones, in which the most representative one 

was proposed by Post in 1984 [56], shown as follow: 

𝑚𝑓𝑚̇ = 𝑓(𝑥) = {
𝛾 + 𝛽𝑃 𝑃 ≥ 0
𝛾 𝑃 < 0

(1.9) 

where, 𝑚𝑓𝑚̇  (𝑚𝑙/𝑚𝑖𝑛) is the vehicular fuel consumption rate, 𝛾(𝑚𝑙/𝑚𝑖𝑛) and 𝛽(𝑚𝑙/(𝑚𝑖𝑛 ∙ 𝑘𝑊)) are the 

vehicle-related parameters, and 𝑃 (𝑘𝑊) is the vehicular instantaneous power. In 1989, Akcelik ameliorated this 

model and further enhanced its estimation precision [57]. This model takes the instantaneous power of the 

vehicle as the input, and models the positive and negative parts of the power respectively so that to guarantee 

the accuracy. When applied to the individual vehicle, the error between the total fuel consumption estimation 

given by the model and the actual values is 2%. Due to its simple model structure and adequate estimation 

accuracy, this model is still used by some scholars up to now [58]~[59]. After Post’s model, fuel consumption 

models based on engine power and torque spring up, shown in Table 1.3. 

 

TABLE 1.3 Microscopic Fuel Consumption Model Based on Power and Torque 

Model sources Model structure 

Chang and Morlok [60] 𝑚𝑓̇ = 𝛾0 ∙ 𝑃 

Ahn [61] 𝑚𝑓̇ = 𝛾0𝑛𝑒 + 𝛾1𝑃 

Rakha, H.A et al [62] 

𝑚𝑓̇ = {
𝛾0 + 𝛾1𝑃 + 𝛾2𝑃

2 𝑃 ≥ 0
𝛾0 𝑃 < 0

 

𝑚𝑓̇ = {
𝛾0 + 𝛾1𝑃 + 𝛾2𝑃

2 𝑃 ≥ 0
𝛾0𝑛𝑖𝑑𝑙𝑒 𝑃 < 0

 

𝑃 = (
𝑅(𝑡) + 1.04𝑚𝑎(𝑡)

3600𝜂
∙ 𝑣(𝑡)) 

Bart Saerens et al [63] 

𝑚𝑓̇ = 𝛾0 + 𝛾1𝑛𝑒 + 𝛾2𝑛𝑒
2 + 𝛾3𝑃 + 𝛾4𝑃

2 

𝑚𝑓̇ = 𝛾0𝑛𝑒 + 𝛾1𝑃 + 𝛾2𝑃
2 

𝑚𝑓̇ = 𝛾0𝑛𝑒 + 𝛾1𝑛𝑒
2 + 𝛾2𝑛𝑒

3 + 𝛾3𝑛3𝑇𝑒 + 𝛾4𝑛𝑒
2𝑇𝑒 + 𝛾5𝑛𝑒𝑇𝑒

2 

𝑚𝑓̇ = (𝛾0 + 𝛾1𝑛𝑒
2)(𝛾0 + 𝛾1𝑇𝑒 + 𝛾2𝑇

2) 

Passenberg et al [64]  𝑚𝑓 = 𝛾0 + 𝛾1𝑛𝑒 + 𝛾2𝑛𝑒
2 + 𝛾3𝑛𝑒𝑇𝑒 + 𝛾4𝑇𝑒 + 𝛾5𝑇𝑒

2 

where, 𝑚𝑓̇ (𝑚𝑔/𝑠)is the vehicular fuel consumption rate, 𝑃 (𝑘𝑊) is the instantaneous power demand of the 

vehicle, 𝑛𝑒(𝑟𝑝𝑚) is the engine rotation speed, 𝑛𝑖𝑑𝑙𝑒(𝑟𝑝𝑚) is the engine idling rotation speed, 𝑇𝑒  (𝑁𝑚) is the 

engine torque, 𝑟𝑖  is the model coefficient, 𝑅(𝑡) is the total resistance during driving, 𝜂𝑑  is the transmission 

efficiency. 

Ahn and Rakha proposed the VT-Micro model in 2002 with vehicular instantaneous velocity and acceleration 

as inputs to estimate the instantaneous fuel consumption [65]. The VT-Micro model uses different product 

combination of different powers of vehicle velocity and acceleration to fit the instantaneous fuel consumption, 

and its basic model description is shown as follow: 
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ln𝑀𝑂𝐸𝑒 =

{
 
 

 
 ∑∑(𝐿𝑖,𝑗

𝑒 𝑣𝑖𝑎𝑗)

3

𝑗=0

3

𝑖=0

𝑎 ≥ 0

∑∑(𝑀𝑖,𝑗
𝑒 𝑣𝑖𝑎𝑗)

3

𝑗=0

3

𝑖=0

𝑎 < 0

(1.10) 

where, 𝑀𝑂𝐸𝑒 is the vehicle transient fuel consumption rate, 𝐿𝑖,𝑗
𝑒  is the model regression coefficient of velocity 

to the power 𝑖 and acceleration to the power 𝑗 when the vehicle moves at a constant velocity or acceleration 

state; 𝑀𝑖,𝑗
𝑒  is the model regression coefficient of velocity to the power 𝑖 and acceleration to the power 𝑗 when 

vehicle moves at a deceleration state; 𝑣(𝑘𝑚/ℎ)is the vehicle instantaneous velocity and 𝑎 (𝑚/𝑠^2 )is the 

vehicle instantaneous acceleration. 

There are two major characteristics of the VT-Micro model. Firstly, the positive and negative acceleration 

ranges are modeled respectively, which makes it take into account the different fuel consumption characteristics 

during acceleration and deceleration. Secondly, the logarithmic transformation is used to fit the logarithm of 

fuel consumption into the function of velocity and acceleration, which ensures that the output of the model is 

always non-negative. These two characteristics enable the VT-Micro model to possess high estimation accuracy 

(𝑅2 ≥ 90%). Wei Lei et al replaced the acceleration in the VT-Micro model with the composite acceleration 

within 9 seconds and thereby obtained the MEF model [66]. The composite acceleration is expressed as follow: 

𝑎̅(𝑡) = 𝜑𝑎(𝑡) + (1 − 𝜑)∑
𝑡 − 𝑖

9

9

𝑖=1

(1.11) 

where, 𝑎̅(𝑡) (𝑚/𝑠^2 )is the composite acceleration at 𝑡, 𝑎(𝑡) (𝑚/𝑠^2 ) is the instantaneous acceleration at 𝑡, 

𝜑 (0 < 𝜑 < 1) is the weight coefficient. 

ii. Mesoscopic fuel consumption models: 

The input of the mesoscopic fuel consumption models is the different driving modes experienced by a vehicle 

during the driving process, such as acceleration mode, deceleration mode, constant speed mode and idling mode. 

Such models assume that the fuel consumption of each driving mode is independent and that the total fuel 

consumption of the vehicle is equal to the sum of the fuel consumption of all driving modes. 

Akcelik proposed the Elemental model in 1982 based on driving modes [67]. The structure of this model is 

shown as follow: 

𝑚𝑓𝑚̇ =
𝑓1𝐿𝑐 + 𝑓2𝑡𝑠 + 𝑓3𝑛𝑠

𝑇𝑚
(1.12) 

where, 𝑚𝑓𝑚̇  is the instantaneous fuel consumption rate, 𝑓1(𝑚𝑙/𝑚𝑖𝑛)the fuel consumption rate during constant 

speed driving mode, 𝑓2(𝑚𝑙/𝑚𝑖𝑛) the fuel consumption rate during idling driving mode, 𝑓3(𝑚𝑙/𝑚𝑖𝑛)the fuel 

consumption rate at a full stop, 𝐿𝑐(𝑚) is the distance covered during constant speed driving, 𝑡𝑠(𝑚𝑖𝑛) the idling 

time, 𝑛𝑠 is the number of stops, and 𝑇𝑚(𝑚𝑖𝑛) is the total driving time. 

The elemental model only considers two of the four driving modes, not including acceleration and deceleration 

modes. Hung et al developed a mesoscopic fuel consumption model including four driving modes taking 

vehicular instantaneous velocity and driving modes as inputs [68]. The idle mode and non-idle mode are 

modeled by piecewise interpolation function and negative exponential function respectively, and a high model 

accuracy (average absolute error ≤ 15%) is guaranteed. The model structure is shown as follow: 
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𝑖𝑑𝑙𝑖𝑛𝑔 𝑚𝑜𝑑𝑒: 𝐹𝐼(𝑡𝐼) = {
𝑎𝑒−𝑏𝑡𝐼 𝑡𝐼 < 𝑇𝑠
𝑐 𝑡𝐼 ≥ 𝑇𝑠

𝑛𝑜𝑛 − 𝑖𝑑𝑙𝑖𝑛𝑔 𝑚𝑜𝑑𝑒: 𝑓(𝑥) = (∑𝑤(𝑥𝑗)𝑒𝑗)/(∑𝑤(𝑥𝑗))

𝑁

𝑗=1

𝑁

𝑗=1

(1.13) 

where, 𝐹𝐼(𝑡𝐼) (𝑔/𝑠)  is the fuel consumption rate during idling time 𝑡𝐼 , 𝑎, 𝑏, 𝑎𝑛𝑑 𝑐  are model regression 

coefficient, 𝑇𝑠(𝑠) is the threshold of the idling time, 𝑥 is the distance from data point to the central data point, 

𝑤(𝑥𝑗) = 1 − 𝑥𝑗 is the weight function, and 𝑒𝑗(𝑔/𝑠)is the fuel consumption rate at 𝑥𝑗. 

M.A.S. Kamal utilized a modal-based fuel consumption model in the development of an eco-driving assistance 

system [69], in which M.A.S. Kamal held that the fuel consumption rates of idling mode and deceleration mode 

are constant, and the fuel consumption rate of acceleration and cruise mode are shown as follow: 

𝑚𝑓̇ 𝑖𝑑𝑙𝑖𝑛𝑔
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑚𝑓̇ 𝑑𝑒𝑐𝑒𝑙
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑚𝑓̇ 𝑎𝑐𝑐𝑒𝑙 =
(𝑐1 + 𝑐2𝑎𝑣)

𝑚𝑓̇ = (𝑘1 (1 +
1

2
(
𝑣

𝑣𝑚
)
3

) + 𝑘2𝑣)

(1.14) 

iii. Macroscopic fuel consumption models: 

The inputs to the macroscopic fuel consumption models are ordinarily the driving time, distance and average 

driving velocity. The average-velocity fuel consumption model, as one representative one of macroscopic fuel 

consumption models, is to estimate the fuel consumption of the whole region by establishing the relationship 

between the average velocity of vehicles in a particular region and the total fuel consumption. The 

Environmental Protection Agency (EPA) utilizes MOBILE series fuel consumption models to estimate the 

vehicles fuel consumption while conducting transportation planning [70]. As a typical average-velocity 

macroscopic model, it takes average velocity of all the vehicle in certain region, different vehicle technologies, 

year of use, ambient temperature, fuel parameters and driving modes as model inputs. The average-velocity fuel 

consumption model is seldom used in practice, and is not applicable to this research, so it will not be expounded 

too much here. 

1.2.3. Research Status of Vehicular Eco-Driving 

The integration of eco-driving and intelligent driving originated from fuel-efficient cruise control, called 

predictive cruise control (PCC) in 2004 [71]. A representative research work done by Hellström E et al. is the 

transportation task of a given route, in which the optimal control algorithm is applied to obtain the economic 

velocity [72]. Generally, eco-driving research combined with intelligent driving can be categorized as highway-

based and urban-roadway-based strategies. 

i. Freeway-based eco-driving considering the road terrain to minimize the fuel consumption 

For freeway-based eco-driving, it mainly considers the influence of road terrain (road grade) on the vehicular 

fuel economy, planning the economic (or ecological) velocity of a single vehicle in freeway driving situation, 

without considering the influence from surrounding vehicles on the cruise vehicle. In 1977, Schwarzkopf and 

Leipnik carried out the eco-speed optimization considering the road slope [73]. Based on a nonlinear vehicle 

dynamics model, the eco-speed passing through a constant slope road was obtained by solving an optimal fuel 

economy problem. In 2005, Chang and Morlok also the influence of road slope on fuel economy [74]. The 

author assumed that there was a linear relationship between vehicle fuel consumption and work done. Under 
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this premise, when the road slope was constant within a certain range, driving with a constant velocity entailed 

an optimal fuel economy. Erik Hellström. et al [75]~[78] conducted a series of studies on the fuel economy 

problem of heavy trucks driving on the sloped road from 2005 to 2010, and developed a fuel-optimal look-

ahead controller utilizing road topography information. This look-ahead controller took the weighted functions 

of fuel consumption, velocity variation, gear shifting, braking times into the optimization objective function, 

transforming it as a dynamic programming (DP) problem. This research achieved higher fuel economy by 

generating smooth speed profiles with the result of fuel consumption reduction by 2.5%. However, this look-

ahead controller needs to constantly search for the optimal control signal, which is computationally burdensome. 

Obtaining the optimal velocity trajectory once for the whole driving route using the dynamic programming 

algorithm instead of multiple optimizations, Fredrik Söderstedt alleviated the computation inefficiency [79]. 

The eco-velocity trajectory obtained by the proposed algorithm was used as the reference velocity of the 

conventional cruise controller. The proposed method was fast, and fuel-saving effect was similar to the 

performance of the look-ahead controller designed by Erik Hellström et al. 

In 2009, Nicholas [80] proposed a method to improve the fuel economy utilizing traffic data and model 

predictive control (MPC). The author held that vehicles could respond in advance according to the traffic 

conditions ahead, which significantly improved the travel efficiency and provided driving information to the 

driver. In addition, simulation results showed that the proposed method requires less hardware modification, so 

it is highly feasible for passenger vehicles.  

In 2010, Tu Luu et al. [81] designed a driver assistance system for light vehicles to improve the vehicular fuel 

economy. Based on the vehicle longitudinal dynamics model, the objective function, consisting of the weighted 

functions of fuel consumption rate, driving time, and driving comfortability, was solved by dynamic 

programming to obtain the fuel-efficient optimized speed profile. In 2011, Kamal et al. [82] utilized the model 

predictive control algorithm, combined with the information of road gradient, vehicle dynamics model and fuel 

consumption model, to plan the vehicular speed passing up and down the hilly road. The results demonstrated 

that the fuel consumption could be effectively reduced by accelerating avant climbing the uphill in a preplanned 

manner so as to avoid hard acceleration. In downslope, it took advantage of downhill gradient, and without any 

braking, the velocity is allowed to increase to some extent and finally settled at a specified speed. 

In 2014, Yu [83] designed a hierarchical eco-driving system with two layers. For the first layer, it applied the 

Dijkstra algorithm to optimize the average eco-speed at multiple signalized intersections considering the traffic 

lights information, traffic flow and speed constraints at certain road sections. For the second layer, it considered 

the road slope information and calculated the real-time eco-speed. 

In 2015, Themann et al. [84] proposed an energy efficiency optimization strategy for autonomous driving based 

on average driving behavior and driver preferences. This model firstly obtained the predicted speed vector 

through map data, such as road slope, curvature, speed limitation, distance to traffic signal light and other 

information. Then the driver’s expectation on travel time and fuel consumption was directly considered to 

ensure that the optimization results meet the driver’s demand. The ACC InnoDrive system of Porsche adopted 

a similar method and achieved fuel consumption reduction by about 10% [85]. The InnoDrive integrated 

adaptive cruise control (ACC) system, GPS, and GIS to analyze driving intention based on real-time road traffic 

information. Then, the optimal velocity profile can be obtained based on the above information. Finally, it 

cooperatively controlled the engine, transmission, and braking system to follow the obtained optimal velocity 

profile to minimize the fuel consumption. 

ii. Urban roadway eco-driving considering the traffic signal lights information 

In urban driving conditions, optimization of speed trajectory is performed to minimize the fuel consumption by 
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using the upcoming traffic signal phase and timing (SPaT) information with the advancement of V2X 

technology, including Vehicle-to-Vehicle (V2V) communication and Vehicle-to-Infrastructure (V2I) 

interaction. Furthermore, the intelligent transport system (ITS) makes it possible to engage higher levels of real-

time dynamic monitoring of the vehicle performance, enabling the eco-driving system to perform more 

efficiently. 

In 2011, Asadi and Vahidi [86] proposed a vehicle-centered predictive cruise control system that controlled the 

vehicle based on traffic signal lights information through the ITS to reduce the waiting time at the red interval 

of traffic signal lights and avoid unnecessarily frequent acceleration or deceleration. The simulation results 

showed that 47% fuel consumption and 56% CO2 emissions can be reduced by the predictive use of signal 

timing. And this research offered the possibility of applying model predictive control (MPC) framework to 

formulate the travel optimization considering traffic signal lights information. 

In 2013, Kamal et al. [87] developed a comprehensive and innovative eco-driving model based on MPC, 

predicting the velocity of preceding vehicle, taking into account the changing traffic signals at intersections to 

compute the optimal vehicle control input. The breakthrough of this research is that the MPC vehicle uses the 

upcoming signal status to choose its acceleration/deceleration behind a preceding vehicle so that it can stop at 

a red signal by smooth deceleration instead of use of hard braking. The simulation results showed that up to 

13.21% fuel savings could be achieved. 

In 2014, Mahler and Vahidi [88] proposed a predictive optimal velocity-planning algorithm that uses 

probabilistic traffic SPaT information to increase a vehicle’s energy efficiency. The best velocity trajectory that 

maximizes the chance of passing through green lights can be calculated based on a signal-phase prediction 

model. Through multi-signal simulation, the fuel economy improvement can be realized by 16% and 6%, 

respectively, by fixed-time and actuated signals. 

In 2015, De Nunzio et al. [89] further improved the energy efficiency for vehicles going through many 

successive signalized intersections. The presented pruning algorithm is capable of finding the energy-efficient 

path and returning the speed advisory to the drivers in a sub-optimal way. Although the simulated vehicles are 

independently equipped with the proposed algorithm and do not share information among vehicles, the 

noticeable traffic energy consumption reduction can be achieved without affecting travel time. 

In 2019, an optimal parametric approach [90] was proposed to analytically solve an eco-driving problem for 

autonomous vehicles crossing multi-intersections without stopping. The traffic light information was described 

as spatial equality and temporal inequality constraints. The simulation results showed the advantages of 

considering multiple intersections jointly rather than dealing with them individually. An ecological Adaptive 

Cruise Control (Eco-ACC) was proposed [91] to minimize energy consumption while avoiding collisions and 

complying with traffic signals, which was the extension of the conventional ACC system. In the higher-level 

controller, Eco-ACC computes the energy-optimal velocity reference incorporating red light duration. In the 

lower level, the ACC controller ensures safety against a collision with the preceding vehicle. 

iii. Urban roadway eco-driving under car-following driving scenario 

The development of optimal fuel economy under the circumstance of car following requires considering the 

car-following safety. Due to the high unpredictability of driver behavior, the eco-driving cruise control under 

the mode of car following is a more challenging task. In 2006, Zhang and Ioannou [92] designed a PID controller 

for the truck following system. This paper proposed that fuel consumption could be reduced by avoiding 

unnecessary acceleration and braking, and the goal of the controller was set to track the speed of the preceding 

vehicle while maintaining the specified inter-distance. In 2008, Li et al. [93] took vehicle tracking and fuel 

efficiency into consideration in the study of adaptive cruise control. The research group used the inverse model 
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to compensate for the nonlinearity of vehicle longitudinal dynamics. Given the tradeoff between fuel economy 

and vehicle tracking capability, the MPC framework was used to manage the optimization problem. The 

experimental results showed that the fuel-saving rate of the model is 8.8% and 2% on city roads and expressways, 

respectively. In 2011, Wu et al. [94] developed a new fuel economy optimization system (FEOS). This system 

received the information from the vehicle and its surroundings to calculate the optimal acceleration/deceleration 

with the Lagrange multiplier method. The optimal control command can be sent to the driver through an 

interactive interface or automatic control system of the autonomous vehicle. This FEOS can be used in both the 

free driving situation and car-following driving scenario. The experimental results showed that, without 

sacrificing traffic safety, the vehicles equipped with the FEOS system could save 22% ~ 31% fuel during 

acceleration and 12% ~ 26% fuel during deceleration compared with those without FEOS. Therefore, as opposed 

to the relatively costly design and improvement of vehicle technology, FEOS provides a straightforward and 

feasible way to minimize fuel consumption. Moreover, the system can be applied in both driver assistance 

systems (ADS) and human-machine interactive interfaces of autonomous driving vehicles. In 2013, Kamal et 

al. [95] developed a new control system aiming at controlling the vehicle to improve its fuel economy in the 

changing urban transport system. By measuring the current road and traffic-related information, the system 

predicted the future traffic state of the preceding vehicle and calculated the optimal input signal into the vehicle. 

The experimental simulation results showed that the controller saved 13% fuel consumption in the urban traffic 

environment. 

In 2015, Luo et al. [96] proposed a controller based on nonlinear predictive control in order to improve the 

energy efficiency and integration of the control system for hybrid electric vehicles. With stable tracking 

constraints, the coordinated optimal control problem of safe tracking and fuel consumption minimization was 

established, which was solved by multi-step offline dynamic programming and an online look-up table for 

practical implementation of the algorithm. The experimental results indicated that the proposed i-HEV ACC 

enhanced the driving safety, fuel efficiency as well as driving comfortability. There are similar methods in 

subsequent research. For instance, Zhao et al. [97], in 2017, proposed a new spacing control technique based on 

model predictive control for the ACC system, which considered both the fuel economy and driving 

comfortability simultaneously. 

Another approach for fuel efficiency is based on the utilization of new technologies. In 2007, Manzie et al. [98] 

proposed to remotely acquire the vehicle surrounding traffic information through an intelligent transportation 

system, and thereby adjust driving strategy according to such required information. Experiments showed that 

the acquisition of remote traffic information enabled the vehicle with 7 seconds ahead preview capability, 

resulting in the improvement of fuel economy. In 2012, Li et al. [99] proposed a servo-loop control design of a 

Pulse-and-Gliding (PnG) strategy to minimize the fuel consumption in the automated car following scenario. 

Simulation experimental results show that compared with the linear-quadratic (LQ) -based benchmark controller, 

the PnG controller improved the fuel economy up to 20%. 

The recent representative research works are reviewed and listed in Table 1.4. 

 

TABLE 1.4 A Review of Recent Studies on Eco-Driving 

Research Purpose Modeling Approach Achievements Ref. 

 To improve fuel 

economy while 

maintaining a safe 

following distance 

Car-following-oriented 

MPC  

 

Maintaining a safe 

distance between leading 

vehicle while obtaining 

fuel economy 

[100] 

 To reduce fuel  Model predictive multi-  Fuel consumption can [101] 
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consumption and 

emissions, considering 

the car-following 

scenario 

objective control 

framework 

be reduced by 10.49% 

with the proposed 

controller compared with 

conventional controllers 

in Advanced Vehicle 

Simulator (ADVISOR) 

 To improve fuel 

economy under the 

vehicle-to-vehicle 

communication structure 

 Ecological cooperative 

adaptive cruise control 

(eCACC) strategy  

 Better car-following 

performance results in 

significant energy 

savings in different 

driving cycles  

[102] 

To improve fuel 

economy of the vehicle 

driving by incorporating 

traffic information into 

the energy management 

strategies  

Deep deterministic 

policy gradients 

approach 

Fuel economy 

improvement, by taking 

traffic information into 

account 

[103] 

To realize better power 

allocation of hybrid EV 

and optimize the fuel 

economy 

Fuzzy adaptive PMP 

optimization  

Fuel economy 

improvement and 

maintaining the state of 

charge of battery 

[104] 

To enhance eco-driving 

in the urban traffic 

system, considering 

multiple signalized 

intersections 

Open-loop optimal 

control problem (OCP) 

combined with three-

stage operation rules and 

Dijkstra algorithm 

About 10.14% and 

5.04% fuel consumption 

reduction can be 

achieved for the urban 

and suburban area, 

respectively 

[105] 

Eco-speed trajectory 

planning in real-time 

considering upcoming 

traffic and road 

constraints 

Energy Adaptive Cruise 

Control (EACC) based 

on MPC in the space 

domain 

The proposed MPC 

achieves 2.5% more 

energy savings than 

linear MPC in the time 

domain 

[106] 

To improve fuel 

economy and air quality 

in a traffic system with 

signalized intersections 

in the city of Riverside, 

CA, USA 

Cooperative eco-driving 

(CED) system with a 

role transition protocol 

About 7% reduction in 

energy consumption and 

59% reduction in 

pollution emission can 

be achieved, using full 

utilization of the 

connected and 

autonomous vehicles 

(CAVs) 

[107] 

To improve fuel 

economy for CAV 

platoon driving through 

successive signalized 

intersections 

Ecological cooperative 

adaptive cruise control 

(Eco-ACC) based on the 

combination of DP and  

OCP approaches 

About 8.02% 

improvement in fuel 

economy and 2.92% 

reduction in trip time can 

be achieved 

[108] 

To enhance CAVs eco-

driving control on 

signalized roadways 

MPC algorithm with 

traffic management 

strategies and road 

geometry constraints, 

using DRCC 

About 23.6% energy 

savings through Smooth 

trajectories generation 

with shorter idling time 

at the intersection 

[109] 
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1.2.4. Research Status of Eco-Driving Control Strategies 

According to above review about research status of eco-driving, the working mechanism of the eco-driving 

cruise control system consists of three categories, including eco-cruise considering the road slope information, 

the minimization of the fuel consumption considering the constraints of upcoming traffic signal lights 

information in the urban transport system, and fuel economy optimization during the car-following mode. The 

proportional-integrative-derivative (PID) algorithm can be widely employed when only the speed control is 

considered [110]. However, in real process control, taking the minimization of fuel consumption as the 

optimization objective, various soft and hard constraints in the actual driving process are required to be 

considered. Classic PID controller is hard to handle such complex systems. Consequently, many advanced 

control algorithms have been developed and applied to the development of eco-driving cruise control systems, 

such as sliding mode control for fixed Vehicle-to-Vehicle spacing [111], linear quadratic control for adaptive 

time headway [112], nonlinear decoupled control [113], and model predictive control, etc.. Several commonly 

used control algorithms are systematically listed as follow: 

(1) PID Control: 

PID control algorithm, as one of the most classic control algorithms in industrial control field, is widely utilized 

in various industries. PID control has been widely used in the development of vehicle cruise control systems 

but taking into account the spacing control under the car following model is the difficulty of PID control 

algorithm. In 2001, Yi et al. [114] designed a vehicle stop-and-go cruise control algorithm combining PI control 

and feedforward strategy, which includes upper-level speed and spacing control algorithm and lower-level 

throttle and braking actuator control. In 2006, Zhang and Ioannou [115] designed a truck following controller 

using the PID control algorithm. The author selected PID control parameters through the zero-pole placement 

theory, adjusted inter-vehicle spacing error and relative speed to obtain the smooth speed trajectory, and 

improved fuel economy of the truck driving. PID control algorithm is characterized by fast response but poor 

robustness, so it is not suitable for multi-objective control. 

(2) Optimal Control: 

Optimal control, as an important branch of modern control theory, searches for the optimal control signal to 

obtain the maximum or minimum value of the objective function under certain constraints. In 2003, Möbus et 

al [116] calculated optimal acceleration according to traffic rules, safe distance, and driver intention in the multi-

objective traffic scenario. The objective function was formulated as the quadratic cost function of discretized 

piecewise affine system and solved by dynamic programming. Yi et al. [117] proposed a vehicle spacing control 

algorithm for the stop-and-go driving situation. The acceleration of the control algorithm was regulated by 

spacing and throttle/brake control, and the expected acceleration was obtained by using linear quadratic control 

theory. 

(3) Sliding Mode Control: 

The difference of sliding mode control from other controllers involves in so-called variable structures systems, 

which consists of a set of continuous subsystems with a proper switching logic and, as a result, control actions 

are discontinuous functions of the system state, disturbances and reference inputs. The sliding mode surface is 

designed according to the desired dynamic characteristics of the system, and the control law makes the system 

arrive at the origin along the sliding mode surface from any initial position. In 2002, Lu et al. [118] designed a 

cooperative adaptive cruise control (CACC) system combining the variable time headway (VTH) and sliding 

mode control, analyzed the robustness of the closed-loop system, and established the clear relationship between 

spacing, control variables and preceding vehicle’s speed and acceleration. In 2005, Bin et al. [119] designed a 

sliding mode controller based on the study of nonlinear characteristics of acceleration dynamic response for 
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vehicle stop-and-go cruise control system. Simulation experimental results indicated the enhanced system 

robustness using proposed sliding mode controller. In 2014, Ganji et al. [120] developed an adaptive cruise 

control system based on sliding mode control for hybrid electric vehicles and compared its performance with 

the PID controller. In 2015, Li et al. [121] presented a sliding mode controller for an automatic car following 

system and validated its effectiveness through simulation and experimental bench. Therefore, through the above 

analysis, sliding mode control features fast dynamic response, better system robustness, and easier real 

implementation. The disadvantages of this controller involve chattering problem for utilization in real control 

systems. 

(4) Fuzzy Logic and Neural Network Control: 

Fuzzy logic imitates uncertainty, the reasoning process, and working mechanism of the human brain to make 

the fuzzy judgment on problems with unclear boundaries. The neural network simulates structural and 

functional characteristics of biological neural network to realize self-learning, enabling the system to realize 

self-improvement by adjusting weights according to the variation of environment. With the advantages of self-

learning and self-adaptation, both fuzzy logic and neural network are capable of solving nonlinear problem so 

that they are widely used in vehicular adaptive cruise control system.  

In 2002, Ohno [122] proposed a neural-network-based adaptive cruise control system to predict the optimal 

driving behavior, which was a kind of application of digital twin using the neural network to simulate an 

experienced driver. In 2006, Naranjo et al. [123] conducted experimental analysis on a stop-and-go adaptive 

cruise control system. Based on fuzzy logic control, the input variables were velocity error, acceleration, time 

headway and its derivative, and the output variables were throttle and brake pedal manipulation. The real test 

bench results showed that the control algorithm had a wide range of adaptive control and improved the driving 

safety. In 2010, Alonso et al. [124] used the genetic algorithm to optimize the adaptive cruise control system 

based on ultrasonic sensors, which overcame the shortcoming that ACC can only be applied at expressway with 

large spacing. In 2012, Khayyam et al. [125] held that although the conventional analytical adaptive cruise 

control system could perform well, it was difficult to design and handle the burdensome computation problem. 

To reduce the computational costs, an ACC-based adaptive neuro-fuzzy inference system (ANFIS) was 

proposed to calculate fuel consumption under integrated dynamic loads such as wind resistance, road slope, 

rolling friction. The Look-ahead strategy with ANFIS could predict upcoming road slope. The experimental 

results indicated that 3% averaged fuel consumption reduction can be achieved. 

(5) Model Predictive Control: 

Model predictive control (MPC) is a closed-loop optimal control strategy based on system model. In 1978, 

Richalet et al [126] proposed “three principles” for MPC: predictive model, receding horizon optimization, and 

feedback control. MPC can effectively handle multi-objective optimization problems within multiple hard or 

soft system constraints. Meanwhile, the MPC algorithm is characterized by solid robustness by timely 

compensating for the uncertainties caused by model mismatch and disturbance. 

In 2008, Corona and De Schutter [127] proposed an adaptive cruise control system based on MPC for nonlinear 

system dynamics. In 2012, Shakouri et al. [128] integrated the conventional upper controller and lower 

controller into a single control loop, and extended the linearized vehicle dynamics LTI model based on relative 

distance and speed between the host and preceding vehicles. The objective of maintaining constant spacing was 

introduced into the single nonlinear MPC, and pedal position control of throttle/brake was realized by using the 

state-dependent method. 

Especially, the research group at Tsinghua University has conducted a lot of research on the application of the 

MPC algorithm to vehicle cruise control. In 2010, Shengbo Eben Li [129] solved and optimized the problems 
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in MPC practical application. In 2011, Shengbo Eben Li et al. [130] conducted a comprehensive design of the 

upper-level controller of the ACC system under the framework of MPC. Considering the minimization of fuel 

consumption and car following performance, the quadratic cost function was established. The optimal control 

problem was numerically solved by quadratic programming. Subsequently, in 2013 and 2015, Shengbo Eben 

Li et al. [131]~[132] extended their study on the application of MPC in the ACC system. A fuel-economy-

oriented inter-distance control algorithm was developed based on the MPC framework. Multiple objectives, 

such as fuel economy, car following, and driver expected response, were transformed into cost function and 

constraints. Compared with the linear quadratic algorithm, the proposed strategy improved the car-following 

performance as well as fuel economy. Then, Shengbo Eben Li focused on the computational efficiency of the 

MPC algorithm for real-time application. By combining the “move blocking” strategy with a “constraint-set 

compression” strategy, a lower-dimensional MPC algorithm was formulated using partially relaxing inequality 

constraints in the prediction horizon.  

1.2.5. Summary of Research Status 

Through the above analysis and review of current research status on safety distance model, energy consumption 

model, ecological cruise control system and related control algorithm, it can be concluded respectively as follow: 

(1) For the aspect of safety distance model: the safety distance model directly influences the driving safety, 

traffic flow and platoon stability, road utilization efficiency and the driver’s acceptance to of car-

following system. Specifically, if the safety distance is too small, such as the model based on time 

headway, although it can increase the traffic flow and road utilization rate, the actuation time of braking 

system or response time for drivers is insufficient, which makes drivers feel uneasy and prone to traffic 

accidents. If the safety distance is too large, such as the model based on braking process, although the 

driving safety can be guaranteed, the road utilization rate is hard to be fully exploited. There may be 

vehicles from adjacent lanes cutting into the lane of the host vehicle so that the stability of the vehicle 

platoon cannot be ensured. Therefore, research emphasis should be placed on developing a safety 

distance model which can not only ensure driving safety but also improve the road utilization rate. 

(2) For the aspect of the fuel/energy consumption model: it is found that most of the modeling data for 

existing microscopic fuel consumption is fed and collected during engine’s stable conditions. In most 

real driving scenarios, vehicles operate in a transient condition, which causes the noticeable estimation 

error and is hard to satisfy the fuel consumption prediction accuracy in developing eco-driving system. 

On the other hand, the existing instantaneous fuel consumption model is blamed for too many model 

parameters. Consequently, it is necessary to develop an instantaneous fuel/energy consumption model 

with a simple and clear model structure as well as adequate estimation accuracy for eco-driving system. 

(3) For the aspect of the eco-driving system: considering different traffic scenarios, eco-driving system is 

generally classified into two categories. The first research direction does not consider extra complexity 

from the interaction between vehicles, and only takes into account the information of road terrain to 

optimize the fuel economy. The second direction focuses on fuel economy optimization during car-

following situation or considers the information upcoming traffic signal lights to get the optimal 

velocity trajectory, during which the interactions between vehicle to vehicle and vehicle to 

infrastructure, as the determinant of driving behavior, are integrated into the control objective. 

Moreover, the nonlinearity of energy consumption and motion of the preceding vehicle will aggravate 

the computational complexity. Therefore, in order to realize efficient online system optimization, 

problem formulation needs to be ingeniously designed. 
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(4) For the aspect of control algorithm: There exists a lot of uncertainties and constraints for a 

comprehensive multi-objective eco-driving system that considers the influences from either preceding 

vehicle, or upcoming traffic signal lights timing and phase information, or the road terrain ahead. Hence, 

an advanced control algorithm is required to optimize dynamic control objectives according to real-

time driving condition. Model predictive control is capable of handle multi-objective optimization 

problem with various system constraints. What’s more, MPC’s superior robustness can timely make up 

for the uncertainty caused by model mismatch and disturbance, which is suitable for the control strategy 

design of complex systems.  

1.3. What will be elucidated in this research 

As reviewed, current research are mostly focused on the specific driving scenario eco-driving strategy 

development, either car-following scenario, or speed regulation based on traffic signal lights, or simply speed 

optimization considering road grade information. However, a vehicle may experience an integrated traffic 

system with synthetic driving scenarios in an actual day-to-day trip. For example, a host vehicle may start up 

from a complete stop and accelerate until its velocity reaches the road speed limitations during which road 

gradient variation will influence the fuel/energy consumption. When the host vehicle approaches the signalized 

intersection, the SPaT information can be anticipated and influences the energy consumption. At any time 

instant, a host vehicle may encounter following a preceding vehicle which may disappear after the host vehicle 

implements lane-changing maneuver. 

To fill the research gap in previous studies, a comprehensive predictive cruise control for electric vehicles (EVs) 

eco-driving is developed in this research to handle the mixed and integrated driving scenarios in both urban and 

suburban areas. According to the relevance and difference of the overall research contents, this thesis is divided 

into six chapters and the main research works of each chapter are expounded as follow: 

⚫ Chapter 1, introduction. The research background and the significance of this research are introduced 

in detail. Then, according to the main technologies covered in this research, the relevant literature is 

sorted out and analyzed from four aspects: car-following strategies, vehicular energy consumption 

model, eco-driving system, and eco-driving control algorithms. It follows that the research idea is 

determined. 

⚫ Chapter 2, eco-driving system architecture design and dynamics modeling. According to the detection 

of the surrounding driving environment, the proposed predictive cruise control system is designed with 

three driving scenarios (free driving scenario, car following scenario, and signal anticipation scenario) 

and an instantaneous driving scenario switch logic. The overall scheme for each driving scenario is 

designed with the explanation of critical technologies. The vehicle longitudinal model and inter-vehicle 

longitudinal dynamics model are established, respectively, laying the model basis for the development 

of the predictive cruise control system in the following chapters. The reference velocity planning model 

is presented based on traffic signal phase and timing (SPaT) information. 

⚫ Chapter 3, artificial-neural-network-based instantaneous energy consumption model (ANN-IECM). 

The analysis of similarities and differences between energy consumption model for EVs and the fuel 

consumption model for ICEVs is conducted, which presents the necessity and feasibility of the 

development of energy consumption model. The dataset for neural network training is prepared and 

neural network structure and training algorithm are determined. Finally, the model effectiveness is 

validated. 

⚫ Chapter 4, predictive cruise control system for eco-driving based on MPC algorithm is presented. 
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Optimization problems for three driving states are formulated respectively under the framework of MPC. 

Then, detailed mathematical derivations of the predictive optimization problem are presented. For the 

real application of the proposed predictive cruise control system, the system robustness, feasible region 

expansion, and computation efficiency are further discussed in detail.  

⚫ Chapter 5, simulation experiments of predictive cruise control for eco-driving. The simulation platform 

is firstly established based on CarSim and MATLAB/Simulink. Typical case studies for different 

driving modes are conducted to verify the effectiveness of proposed predictive cruise control system. 

The comparative simulation results are analyzed and discussed. 

⚫ Chapter 6, conclusion, and prospects. Summarize the research contents and results of the overall thesis 

and elaborate on the originality of the research. Finally, future work is proposed in view of the defects 

in this study. 
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1.4. Technical Route 

 

Fig. 1.3 Technical Route of overall research 

1.5. Summary of Chapter 1 

This chapter elaborates on the relevant research background and significance of vehicle eco-driving cruise 

control system. It systematically summarizes the research status of the key technologies of the eco-driving cruise 

control system involved in this research. Based on this, the research content of this thesis is determined, followed 

by the overall technical route. 
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Chapter 2. Eco-Driving Predictive Cruise Control 

System Architecture and Dynamics Modeling 

2.1. Eco-Driving Predictive Cruise Control System Architecture 

During the automatic cruise, for a given driving task with enough driving range, it may cover multiple complex 

driving scenarios, including driving on the straight road, curved road, hilly road, free driving, car-following 

driving, acceleration, deceleration, or emergent braking, etc. Simultaneously, vehicles driving is highly 

constrained by traffic signal lights and speed limitations in the certain road section. Different road conditions, 

driving conditions and traffic constraints are coupled with each other, making the driving task too complex and 

difficult to obtain an optimal solution. Even if the solution is obtained, the obtained economic speed profile only 

reflects a specific driving task under specific working conditions. The influence of various factors is difficult to 

be decoupled and quantitatively analyzed, making it difficult to get the practical eco-driving control law. 

Consequently, it is insignificant to optimize a specific driving task with the fact that there exist infinite types of 

driving tasks in reality.  

Based on the fact stated above that a comprehensive eco-driving system is required to develop so that it can 

both handle the mixed and integrated driving scenarios with multiple constraints and realize the decoupled 

optimization for the different driving scenario for the significance of practical implementation. For this purpose, 

instead of deriving the global optimal control for the whole driving task, the mixed and coupled driving 

scenarios are divided into three categories, including the free driving scenario and car following scenario and 

signal anticipation scenario. The decoupling of each single driving scenario makes it possible to explore its 

internal mechanism and obtain the universal control strategy. Therefore, the proposed predictive cruise control 

system for eco-driving in this research will be designed scenario by scenario and combined through an 

instantaneous driving scenario switch logic. 

 

2.1.1. Predefined Assumption on ITS and CAVs 

In this research, the overall predictive cruise control system for electric economic driving is developed based 

on the ITS and technology background of connected and automated vehicles (CAVs). The ITS enables Vehicle-

to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication for the host vehicle to access real-time 

information in making optimal driving decisions.  

Vehicle-to-Vehicle (V2V) 

The V2V data interaction provides the real-time driving state information of the surrounding vehicles so that, 

e.g., in the car following driving situation, the velocity of the preceding vehicle is crucial to the maintenance of 

safety distance. The data exchange used in this research includes real-time inter-vehicle distance or relative 

spacing between host and preceding, 𝑑𝑟𝑒𝑙, and the real-time velocity of the preceding vehicle 𝑣𝑝𝑟𝑒, as explained 

in the following Table 2.1. 

TABLE 2.1 Vehicle-to-Vehicle Communication data in the research 

Parameter Explanation Unit 

𝑑𝑟𝑒𝑙 
The relative distance between 

host and preceding vehicle in 
𝑚 
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the same lane 

𝑣𝑝𝑟𝑒 
The real-time driving speed of 

the preceding vehicle 
𝑚/𝑠 

 

Vehicle-to-Infrastructure Communication  

The real-time traffic and road condition are important in working out an operative and eco-cruise strategy. The 

V2I communication realizes the data real-time transmission from the roadside to vehicle side, such as driving 

speed limitation on certain road sections, the traffic signal phase and timing (SPaT) information, the distance to 

the upcoming signalized intersection, road altitude information according to the driving position, etc. In this 

research, the V2I interaction contains the dynamic distance to the upcoming signalized intersection 𝑑𝑇𝑆𝐿, the 

speed limitation [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥], the road altitude for certain driving position ℎ, the traffic signal lights state 𝑆𝑇𝑆𝐿, 

and the remaining time for the current traffic signal light 𝑡𝑟𝑒𝑚𝑎𝑖𝑛, as explained in the following Table 2.2. 

TABLE 2.2 V2I data interaction in this research 

Data Variable Definition Unit 

𝑑𝑇𝑆𝐿 
The distance to the upcoming 

signalized intersection 
𝑚 

[𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥] 
Allowable speed limitation on 

a certain road section 
𝑚/𝑠 

ℎ 
Road altitude at a certain 

position 
𝑚 

𝑆𝑇𝑆𝐿 
The traffic signal lights state, 

including Green, Red, Yellow 
- 

𝑡𝑟𝑒𝑚𝑎𝑖𝑛 

The time left for the traffic 

light of the upcoming 

intersection 

𝑠 

 

Connected and automated vehicles 

With the coordination of automated vehicle connection, the advancement of connected and automated vehicles 

(CAVs) enables the information interaction through ITS. Besides, the AV is capable of realizing more accurate 

and consistent vehicular control compared to the human driver, which makes it an ideal platform for developing 

the predictive cruise control system for eco-driving. 

 

The V2I and V2V data are visualized in the following Figure 2.1. 
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Fig. 2.1 Visualization of parameters in ITS 

2.1.2. Predictive Cruise Control System Overall Scheme 

Before developing the predictive cruise control system for eco-driving, it is indispensable to declare the research 

object and its position in the whole vehicular control. As illustrated in Figure 2.2, the overall cruise control 

system is distributed hierarchically. The perception of the driving environment for the host vehicle is supported 

by assumed ITS and CAVs and these data streams are fed into the upper-level controller. The upper-level 

controller calculates the desired acceleration utilizing the  optimization algorithm according to multiple control 

objectives based on the vehicle longitudinal dynamics model. The lower-level controller takes the desired 

acceleration obtained from the upper-level controller as input to adjust the throttle and brake pedal pressure and 

control the vehicle to track the desired acceleration. The main research content in this thesis is the upper-level 

controller design of the economic predictive cruise control system. 

The control objectives of the proposed predictive cruise control system for eco-driving are different according 

to different traffic road condition. Without considering the constraints from surrounding traffic conditions, the 

vehicle is operating freely, during which the energy consumption is optimized only considering the road gradient 

information; while driving under daily urban transport situation, the motion of the preceding vehicle has to be 

considered as constraints of energy consumption optimization; besides, the  traffic signal lights information, as 

an influential factor to traffic flow, is considered additionally as a constraint to optimize the vehicular energy 

consumption. Therefore, because of the difference of control objectives and system complexity and to make the 

proposed predictive cruise control (PCC) system adapting to the comprehensive traffic system with synthetic 

driving scenarios, three typical driving scenarios, including road gradient information access-based free driving, 

the motion of preceding vehicle based-car following, and upcoming SPaT information-based signal anticipation 

scenario, are discussed separately. In actual daily travel, however, the proposed PCC system for eco-driving is 

required to be able to automatically switch catering to different driving scenarios with different optimization 

objectives. Hence, a driving scenario switching logic (DSSL) is required to be designed precisely. 

To formulate the DSSL of the host vehicle, a general vehicular braking distance model is firstly introduced 

[133], as follow: 
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𝑑𝑏𝑟𝑘 = 𝑑𝑚𝑖𝑛 + 𝑣ℎ𝑜𝑠𝑡(𝑘) ∙ 𝑡𝑏𝑟𝑘 +
𝑣ℎ𝑜𝑠𝑡
2 (𝑘)

2 ∙ 𝑎𝑏𝑟𝑘
(2.1) 

where 𝑑𝑏𝑟𝑘 (𝑚) refers to the braking distance, 𝑑𝑚𝑖𝑛 (𝑚) denotes the minimum critical distance, 𝑣ℎ𝑜𝑠𝑡(𝑘) (𝑚/𝑠) 

represents the host vehicle velocity at instant 𝑘, 𝑡𝑏𝑟𝑘 (𝑠) is the reaction time before braking, 𝑎𝑏𝑟𝑘 (𝑚/𝑠2) is the 

deceleration during braking. 

The thresholds value for the distance to an upcoming signalized intersection 𝑑𝑇𝑆𝐿  and the relative distance 

between the host and preceding vehicles in the same lane 𝑑𝑟𝑒𝑙  are defined as 𝑑𝑇𝑆𝐿,𝑙𝑖𝑚𝑖𝑡  and 𝑑𝑟𝑒𝑙,𝑙𝑖𝑚𝑖𝑡 , 

respectively. They are numerically equal to the maximum braking distance based on equation 2.1 using the 

parameters from [133], shown as follow: 

𝑑𝑇𝑆𝐿,𝑙𝑖𝑚𝑖𝑡 = 𝑑𝑟𝑒𝑙,𝑙𝑖𝑚𝑖𝑡 = 10 + 𝑣ℎ𝑜𝑠𝑡(𝑘) + 0.0825 ∙ 𝑣ℎ𝑜𝑠𝑡
2 (𝑘) (2.2) 

Once the actual distance to the upcoming signalized intersection, 𝑑𝑇𝑆𝐿, is smaller than the threshold value, 

𝑑𝑇𝑆𝐿,𝑙𝑖𝑚𝑖𝑡, the DSSL switches into the signal anticipation scenario. Once the actual relative distance between 

host and preceding vehicle, 𝑑𝑟𝑒𝑙, is smaller than the threshold value, 𝑑𝑟𝑒𝑙,𝑙𝑖𝑚𝑖𝑡, the DSSL switches into the car 

following scenario. Otherwise, the free driving scenario considering the road gradient information will be 

triggered by the DSSL. 

The real-time estimated time length to pass the upcoming signalized intersection is defined as follow: 

𝑡𝑙𝑖𝑚𝑖𝑡 =

{
 

 
𝑑𝑇𝑆𝐿

𝑣ℎ𝑜𝑠𝑡(𝑘)
𝑣ℎ𝑜𝑠𝑡(𝑘) > 0

𝑑𝑇𝑆𝐿
𝑎𝑚𝑎𝑥

𝑣ℎ𝑜𝑠𝑡(𝑘) = 0

(2.3) 

where 𝑎𝑚𝑎𝑥 denotes the maximum physical allowable acceleration of the vehicle. 

Thus, the detailed driving scenario switching logic (DSSL), shown in Figure 2.3, can be designed, and used to 

switch into one of three studied typical driving scenarios. In order to mathematically describe the real-time 

driving scenario of the vehicle, a vector [

𝒹1
𝒹2
𝒹3

] is defined. The [
1
0
0
] stands for the free driving scenario, [

0
1
0
] means 

that the vehicle is under signal anticipation driving scenario, and [
0
0
1
] denotes the vehicle is under the car 

following driving scenario. 
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Fig. 2.2 Schematic of Predictive Cruise Control System for Eco-Driving 
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Fig. 2.3 Flow Chart for Driving Scenario Switching Logic (DSSL) 
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For free driving scenario [1,0,0]𝑇, the PCC system executes the eco-driving algorithm under the framework of 

MPC based on vehicle longitudinal dynamics model and instantaneous energy consumption model with access 

to real-time road gradient information to minimize the energy consumption. For signal anticipation scenario 

[0,1,0]𝑇, the PCC system executes the eco-driving algorithm under the framework of MPC based on vehicle 

longitudinal dynamics model and instantaneous energy consumption model with access to upcoming real-time 

traffic SPaT information to optimize the energy consumption. For car following scenario [0,0,1]𝑇, the PCC 

system executes the eco-driving algorithm under the framework of MPC based on vehicle longitudinal dynamics 

model, inter-vehicle dynamics model and instantaneous energy consumption model with access to the motion 

states of preceding vehicle to realize both driving safety and energy economy. The eco-driving system 

architecture based on the MPC algorithm for three typical driving scenarios is shown as follow in Figure 2.4: 

 

Fig. 2.4 Three Typical Driving Scenarios of PCC System Architecture based on MPC algorithm 

The proposed predictive cruise control (PCC) system for eco-driving is based on the model predictive control 

algorithm. For each sampling time step, the MPC takes the state of the system at the current moment, solves a 

finite time-domain open-loop online optimization problem to obtain a sequence of desired acceleration within 

certain system constraints, and inputs the first element of the derived control sequence into the system to realize 

the closed-loop control, which inherently ensures the robustness of the control system. In the next time step, the 

rolling optimization problem is solved in real-time with the prediction horizon moving forward. Thus, 

repeatedly, the overall driving task with certain control and optimization objectives can be completed. 

The general vehicular longitudinal dynamics system includes inter-vehicle longitudinal dynamics model and 

vehicle dynamics model. The inter-vehicle longitudinal dynamics model describes the car-following behavior 

using a safety distance strategy and transfers the desired acceleration output by the MPC to the host vehicle. 

2.2. System Dynamics Modeling 

According to the specific requirements for different driving scenarios proposed above, the corresponding system 

dynamics modeling is the prerequisite of developing the PCC system for eco-driving. For free driving scenario 

and signal anticipation scenario, the vehicle longitudinal dynamics model is required to reflect the real-time 

vehicle driving condition. For car following driving scenario, the inter-vehicle longitudinal dynamics model is 
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necessary to represent the coupling between inter-vehicle and vehicle dynamics. Once the DSSL switches into 

the signal anticipation scenario, the driving objective at this specific moment is to find the optimal reference 

velocity that reduces the idling at red lights given the upcoming state of traffic signal lights. Therefore, a rule-

based reference velocity planning model that calculates an instantaneous optimal vehicle velocity trying to avoid 

stopping at the red light is proposed. 

2.2.1. Vehicle Longitudinal Dynamics Modeling 

The vehicle longitudinal dynamics is modeled based on the sum of all forces acting in the longitudinal direction 

illustrated in Figure 2.5. During the motion of the vehicle, the longitudinal acceleration 𝑎ℎ𝑜𝑠𝑡 is calculated as 

follow: 

𝑎ℎ𝑜𝑠𝑡(𝑡) =
d𝑣ℎ𝑜𝑠𝑡(𝑡)

d𝑡
=

1

𝑚𝑒𝑞

[𝐹𝑡𝑟𝑎𝑐(𝑡) − 𝐹𝑟𝑒𝑠(𝑡)] (2.4) 

where 𝑚𝑒𝑞  denotes the equivalent vehicle mass which is the sum of vehicle weight, driver, and rotational 

equivalent masses, 𝐹𝑡𝑟𝑎𝑐 is the traction force, and 𝐹𝑟𝑒𝑠 is the collectively resistance forces from different aspects 

as follows: 

𝐹𝑟𝑒𝑠(𝑡) = 𝐹𝑟𝑜𝑙𝑙(𝑡) + 𝐹𝑎𝑒𝑟𝑜(𝑡) + 𝐹𝑔(𝑡) (2.5) 

 

𝐹𝑟𝑜𝑙𝑙(𝑡) = 𝑐𝑟 ∙ 𝑚𝑒𝑞𝑔 cos(𝜃(𝑡)) (2.6) 

 

𝐹𝑔(𝑡) = 𝑚𝑒𝑞𝑔 sin(𝜃(𝑡)) (2.7) 

 

𝐹𝑎𝑒𝑟𝑜(𝑡) =
1

2
𝜌𝑎𝐴𝑓𝐶𝐷𝑣ℎ𝑜𝑠𝑡

2 (𝑡) ≈
1

2
𝜌𝑎𝐴𝑓𝐶𝐷(𝜅1𝑣ℎ𝑜𝑠𝑡(𝑡) + 𝜅2) (2.8) 

where 𝐹𝑟𝑜𝑙𝑙 is the rolling resistance correlated with rolling resistance coefficient 𝑐𝑟, 𝐹𝑔 is the gradient resistance 

due to the gravity when driving on an uphill road, 𝐹𝑎𝑒𝑟𝑜 is the aerodynamics drag force correlated with air 

density 𝜌𝑎, the frontal area of the vehicle 𝐴𝑓, and aerodynamic drag coefficient 𝐶𝐷. The aerodynamics drag 

force 𝐹𝑎𝑒𝑟𝑜 can be approximated through linear fitting, i.e., 𝑣ℎ𝑜𝑠𝑡
2 (𝑡) = 𝜅𝑣ℎ𝑜𝑠𝑡(𝑡) + 𝜅2. 

The powertrain of the electric vehicle consists of the battery pack, a DC-AC converter, an electric motor, and a 

single ratio transmission. The electrical energy is converted into mechanical energy delivered to the wheels 

through a single gear ratio gearbox. Hence, the traction force 𝐹𝑡𝑟𝑎𝑐 can be calculated according to the motor 

output torque as follow: 

𝐹𝑡𝑟𝑎𝑐 =
𝑇𝑚(𝑡)𝑖𝑔𝜂𝑒

𝑟𝑤
(2.9) 

where 𝑇𝑚 is the electric motor output torque, 𝑖𝑔 is the single gear ratio of the gearbox, 𝜂𝑒 is the transmission 

efficiency, and 𝑟𝑤 is the radius of the vehicle wheel. 

The electric motor utilizes energy from the onboard battery to generate torque. Reversely, during vehicles’ 

braking, it works as a generator using regenerative braking power to recharge the battery. As the mapping of 

motor torque and rotation speed, electric motor efficiency can be expressed using following formula [134]: 

𝜂𝑚(𝑡) = 𝑓(𝑇𝑚(𝑡), 𝜔𝑚(𝑡)) (2.10) 

Then the motor power 𝑃𝑚 can be calculated using defined motor efficiency 𝜂𝑚, as follow: 

𝑃𝑚(𝑡) = 𝑇𝑚(𝑡) ∙ 𝜔𝑚(𝑡) ∙ 𝜂𝑚
𝛼 (2.11) 
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where 𝛼 = {
1 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑎𝑠 𝑎 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟
−1 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑎𝑠 𝑎 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑚𝑜𝑡𝑜𝑟

. 

The battery model can be simplified as an internal resistance model [135] shown as Figure 2.6, wherein 𝑅𝑏𝑎𝑡𝑡 

is the internal resistance, 𝐼𝑏𝑎𝑡𝑡 is the equivalent current in the circuit, and 𝑈𝑏𝑎𝑡𝑡 is the open-circuit voltage. Thus, 

the battery power providing energy to electric motor can be obtained as following [136]: 

𝑃𝑏𝑎𝑡𝑡 = 𝑈𝑏𝑎𝑡𝑡𝐼𝑏𝑎𝑡𝑡 − 𝐼𝑏𝑎𝑡𝑡
2 𝑅𝑏𝑎𝑡𝑡 (2.12) 

The variation rate of the state of charge (SOC), as an indicator of the remaining battery energy, is expressed as 

follow: 

𝑆𝑂𝐶̇ = −
𝐼𝑏𝑎𝑡𝑡
𝑄𝑏𝑎𝑡𝑡

(2.13) 

where 𝑄𝑏𝑎𝑡𝑡 denotes maximum battery capacity. 

Substituting equation 2.12 into equation 2.13, the following equation can be obtained: 

𝑆𝑂𝐶̇ = −
𝑈𝑏𝑎𝑡𝑡 −√𝑈𝑏𝑎𝑡𝑡

2 − 4𝑃𝑏𝑎𝑡𝑡𝑅𝑏𝑎𝑡𝑡

2𝑄𝑏𝑎𝑡𝑡𝑅𝑏𝑎𝑡𝑡
(2.14)

 

Consequently, the electric motor output torque can be calculated using power transition from the onboard battery 

and the electric motor showing below: 

𝑇𝑚(𝑡) =
𝑃𝑏𝑎𝑡𝑡
𝜔𝑚

(2.15) 

When the motor output power 𝑇𝑚 is a positive value, the battery works as discharging process. While 𝑇𝑚 is 

negative, the battery works in the charging procedure. 

 

Fig. 2.5 Longitudinal Forces Acting on the Vehicle Driving on Slope Road 
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Fig. 2.6 Equivalent Internal Resistance Model for Battery 

Accordingly, based on the above derivation, the vehicle longitudinal dynamics model can be obtained explicitly 

as follow: 

d𝑥ℎ𝑜𝑠𝑡
d𝑡

= 𝑣ℎ𝑜𝑠𝑡

d𝑣ℎ𝑜𝑠𝑡
d𝑡

=
1

𝑚𝑒𝑞
[
𝑇𝑚(𝑡)𝑖𝑔𝜂𝑒

𝑟𝑤
− 𝑐𝑟 ∙ 𝑚𝑒𝑞𝑔 𝑐𝑜𝑠(𝜃(𝑡)) − 𝑚𝑒𝑞𝑔 𝑠𝑖𝑛(𝜃(𝑡)) −

1

2
𝜌𝑎𝐴𝑓𝐶𝐷(𝜅1𝑣ℎ𝑜𝑠𝑡(𝑡) + 𝜅2)]

(2.16) 

The related parameters used to model the electric vehicle are listed in Table 2.3. 

TABLE 2.3 Specification of Vehicle Longitudinal Dynamics Model 

Specification Values 

Equivalent total mass of the electric vehicle, 

𝑚𝑒𝑞 
1260𝑘𝑔 

Gear ratio, 𝑖𝑔 3.905 

Total mechanical efficiency of the driveline, 𝜂𝑒 0.95 

Effective radius of the vehicle wheel, 𝑟𝑤 287𝑚𝑚 

Frontal area of the vehicle, 𝐴𝑓 2.22𝑚2 

Rolling resistance coefficient, 𝑐𝑟 0.028 

Aerodynamic drag coefficient, 𝐶𝐷 0.316 

Air density, 𝜌𝑎 1.206𝑘𝑔/𝑚3 

Motor 
Maximum available power: 𝑃𝑚_𝑚𝑎𝑥 = 55𝑘𝑊; 

Maximum output torque: 305𝑁𝑚; 

Battery 

Battery voltage: 6~9𝑉; 

Packs: 40; 

Initial charge level: 0.8; 

𝑄𝑏𝑎𝑡𝑡: 93𝐴ℎ 

2.2.2. Validation of Dynamic and Stability Performance 

The part of an actual vehicle trip is measured as the test velocity profile to validate the accuracy of the vehicle 

longitudinal dynamics model. The model dynamics responses of longitudinal velocity, acceleration, motor 
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torque, battery output power, and battery state-of-charge is shown in Figure 2.7. 

 

 

Figure 2.7 Model dynamics response of the real drive cycle 

 

From the model output speed response, the model can track the actual speed curve well. Therefore, the 

established vehicle longitudinal dynamics model can accurately reflect the stability and dynamic characteristics 

of the vehicle longitudinal dynamics system. 

2.2.3. Safety Distance Modeling Based on Variable Time Headway Strategy 

During the car following driving scenario, the inter-vehicle longitudinal dynamics model describes the car-

following characteristics. Among all the parameters of modeling the inter-vehicle longitudinal dynamics, the 
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most critical one is the desired safety distance, which calculates the spacing between host and preceding vehicles. 

According to the review of existing safety distance models, this research will combine both the strategy of 

constant time headway (CTH) and variable time headway (VTH) to design a novel safety distance model, which 

will consider not only the velocity of the host vehicle but also the relative velocity between host and preceding 

vehicles. 

For conventional CTH strategy, it adopts the constant headway, which can be manually set by the driver. The 

mathematical expression is shown as follow: 

𝐷𝑠𝑎𝑓𝑒 = 𝐶𝑇𝐻 ∙ 𝑣ℎ𝑜𝑠𝑡 + 𝑑𝑚𝑖𝑛 (2.17) 

where 𝐷𝑠𝑎𝑓𝑒 denotes the safety distance, 𝐶𝑇𝐻 is the constant time headway, 𝑣ℎ𝑜𝑠𝑡 is the velocity of the host 

vehicle, and 𝑑𝑚𝑖𝑛 is the minimal critical spacing when two vehicles pull on. 

Now instead of using a constant time headway 𝐶𝑇𝐻, a customized variable time headway 𝑉𝑇𝐻 is designed, 

taking into account both the velocity of host vehicle 𝑣ℎ𝑜𝑠𝑡 and relative velocity 𝑣𝑟𝑒𝑙 (𝑣𝑟𝑒𝑙 = 𝑣𝑝𝑟𝑒 − 𝑣ℎ𝑜𝑠𝑡), and 

also the maximum allowable velocity 𝑣𝑚𝑎𝑥. The explicit mathematical equation is shown as follow: 

𝑉𝑇𝐻 = {
𝜏1 + 𝜏2𝑣ℎ𝑜𝑠𝑡 − 𝜏3𝑣𝑟𝑒𝑙 𝑣ℎ𝑜𝑠𝑡 < 𝑣𝑚𝑎𝑥
𝜏1 + 𝜏2𝑣𝑚𝑎𝑥 − 𝜏3𝑣𝑟𝑒𝑙 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.18) 

where 𝜏1,𝜏2, and 𝜏3 are constant coefficients greater than 0. 

Replacing the 𝐶𝑇𝐻  in equation 2.17 with the customized 𝑉𝑇𝐻 , an adaptive safety distance model can be 

obtained as follow: 

𝐷𝑠𝑎𝑓𝑒 = 𝑉𝑇𝐻 ∙ 𝑣ℎ𝑜𝑠𝑡 + 𝑑𝑚𝑖𝑛 = {
𝜏1𝑣ℎ𝑜𝑠𝑡 + 𝜏2𝑣ℎ𝑜𝑠𝑡

2 − 𝜏3𝑣𝑟𝑒𝑙𝑣ℎ𝑜𝑠𝑡 + 𝑑𝑚𝑖𝑛 𝑣ℎ𝑜𝑠𝑡 < 𝑣𝑚𝑎𝑥
𝜏1𝑣𝑚𝑎𝑥 + 𝜏2𝑣𝑚𝑎𝑥

2 − 𝜏3𝑣𝑟𝑒𝑙𝑣𝑚𝑎𝑥 + 𝑑𝑚𝑖𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(2.19) 

 

2.2.4. Stability Analysis of Safety Distance Model 

As the basis of the inter-vehicle longitudinal dynamics model, it is indispensable to check whether the proposed 

safety distance model is reasonable and can adapt to the complex traffic situation. The prerequisite of system 

stability is that the inter-distance of the safety distance model converges when the preceding is operating under 

stable condition without any acceleration. 

Assume the error between actual inter-distance 𝐷𝑎𝑐𝑡𝑢𝑎𝑙 and safety distance 𝐷𝑠𝑎𝑓𝑒 is ∆𝑑, then: 

∆𝑑 = 𝐷𝑎𝑐𝑡𝑢𝑎𝑙 − 𝐷𝑠𝑎𝑓𝑒 (2.20) 

Taking “𝑣𝑟𝑒𝑙 → 0 ⇒ ∆𝑑 → 0” as the condition of system stability, substitute 𝐷𝑠𝑎𝑓𝑒  in equation 2.20 with 

equation 2.19 to obtain the following equation: 

∆𝑑 = 𝐷𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑉𝑇𝐻 ∙ 𝑣ℎ𝑜𝑠𝑡 − 𝑑𝑚𝑖𝑛 (2.21) 

Take the derivative with respect to time simultaneously for both sides of the equation 2.21: 

∆𝑑̇ = 𝑣𝑟𝑒𝑙 − 𝑉𝑇𝐻̇ ∙ 𝑣ℎ𝑜𝑠𝑡 − 𝑉𝑇𝐻 ∙ 𝑣ℎ𝑜𝑠𝑡̇ (2.22) 

Rewrite stability condition “𝑣𝑟𝑒𝑙 → 0 ⇒ ∆𝑑 → 0” as: 

𝑣𝑟𝑒𝑙 + 𝜅∆𝑑 = 0 (2.23) 

Plug equation 2.23 into equation 2.22: 

∆𝑑̇ = −𝜅∆𝑑 − 𝑉𝑇𝐻̇ ∙ 𝑣ℎ𝑜𝑠𝑡 − 𝑉𝑇𝐻 ∙ 𝑣ℎ𝑜𝑠𝑡̇ (2.24) 

Take the derivative for both sides of equation 2.19 when 𝑣ℎ𝑜𝑠𝑡 < 𝑣𝑚𝑎𝑥, and plug it into equation 2.24: 

∆𝑑̇ = −𝜅∆𝑑 − (𝜏2 ∙ 𝑣ℎ𝑜𝑠𝑡̇ − 𝜏3 ∙ 𝑣𝑟𝑒𝑙̇ )𝑣ℎ𝑜𝑠𝑡 − 𝑉𝑇𝐻 ∙ 𝑣ℎ𝑜𝑠𝑡̇ (2.25) 

Take the derivative for equation 𝑣𝑟𝑒𝑙 = 𝑣𝑝𝑟𝑒 − 𝑣ℎ𝑜𝑠𝑡 and equation 2.23, and with the condition of stability of 

preceding vehicle: 
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𝑣𝑟𝑒𝑙̇ = −𝑣ℎ𝑜𝑠𝑡̇ = −𝜅 ∙ ∆𝑑̇ (2.26) 

 

Plug equation 2.26 into equation 2.25: 

𝜅 ∙ ∆𝑑 + [1 + 𝑉𝑇𝐻 ∙ 𝜅 + (𝜏2 + 𝜏3) ∙ 𝜅 ∙ 𝑣ℎ𝑜𝑠𝑡] ∙ ∆𝑑̇ = 0 (2.27) 

 

Since 𝑉𝑇𝐻, 𝜏2, 𝜏3, 𝑣ℎ𝑜𝑠𝑡 and 𝜅 are all greater than 0, then [1 + 𝑉𝑇𝐻 ∙ 𝜅 + (𝜏2 + 𝜏3) ∙ 𝜅 ∙ 𝑣ℎ𝑜𝑠𝑡] > 1 and let it 

to be 𝜅∆𝑑, the equation 2.27 is rewritten as: 

∆𝑑̇ = −
𝜅

𝜅∆𝑑
∆𝑑 (2.28) 

 

According to equation 2.28, when ∆𝑑 > 0, ∆𝑑̇ < 0, equivalent to the decrease of the inter-distance error; 

conversely, when ∆𝑑 < 0, ∆𝑑̇ > 0, equivalent to the increase of the inter-distance error. But for both conditions, 

the error tends to be 0. From equation 2.23, the 𝑣𝑟𝑒𝑙 converges to 0 as well. Thus, it can be concluded that the 

proposed safety distance model satisfies the condition of system stability: “𝑣𝑟𝑒𝑙 → 0 ⇒ ∆𝑑 → 0”. 

2.2.5. Inter-Vehicle Longitudinal Dynamics Modeling and Discretization 

For the car following driving scenario, since the controlled plant is the inter-vehicle longitudinal dynamics, the 

prerequisite of developing the controller is to model the controlled plant. In this research, the inter-vehicle 

longitudinal dynamics model is designed taking the inter-vehicle distance error, relative velocity, and 

acceleration of host vehicle as state variables, desired acceleration of host vehicle as a control input, acceleration 

of preceding vehicle as system disturbance. To calculate the desired acceleration, the state-space model between 

host and preceding vehicle is firstly established. 

Take the derivative of equation ∆𝑑 = 𝐷𝑎𝑐𝑡𝑢𝑎𝑙 − 𝐷𝑠𝑎𝑓𝑒 and equation 𝑣𝑟𝑒𝑙 = 𝑣𝑝𝑟𝑒 − 𝑣ℎ𝑜𝑠𝑡: 

∆𝑑̇ = 𝑣𝑟𝑒𝑙 − [2𝜏1𝑣ℎ𝑜𝑠𝑡 + 3𝜏2𝑣ℎ𝑜𝑠𝑡
2 − 2𝜏3𝑣𝑟𝑒𝑙𝑣ℎ𝑜𝑠𝑡 + 𝜏3𝑣ℎ𝑜𝑠𝑡

2 − 𝑑𝑚𝑖𝑛]𝑎ℎ𝑜𝑠𝑡 + 𝜏3𝑣ℎ𝑜𝑠𝑡
2 𝑎𝑝𝑟𝑒

𝑣𝑟𝑒𝑙̇ = 𝑎𝑝𝑟𝑒 − 𝑎ℎ𝑜𝑠𝑡
(2.29) 

where 𝑎𝑝𝑟𝑒 denotes the acceleration of the preceding vehicle, and 𝑎ℎ𝑜𝑠𝑡 is the acceleration of host vehicle. 

When applying the optimal desired acceleration obtained by the upper-level controller to the lower-level PI 

controller, there exists the time delay corresponding to the finite bandwidth of the vehicle’s dynamic response. 

To eliminate the time delay and process the obtained desired acceleration signal in time, the first-order lag 

model is used to model the inter-vehicle longitudinal dynamics. 

𝑎ℎ𝑜𝑠𝑡,𝑎𝑐𝑡𝑢𝑎𝑙 =
𝐾𝑔

𝑇𝑔 + 1
∙ 𝑎ℎ𝑜𝑠𝑡,𝑑𝑒𝑠𝑖𝑟𝑒𝑑 (2.30) 

where 𝐾𝑔 is the system gain, 𝑇𝑔 is the time constant, 𝑎ℎ𝑜𝑠𝑡,𝑎𝑐𝑡𝑢𝑎𝑙 is the actual acceleration of host vehicle, and 

𝑎ℎ𝑜𝑠𝑡,𝑑𝑒𝑠𝑖𝑟𝑒𝑑 is the optimal desired acceleration of the host vehicle. 

Accordingly, the differential equation about desired and actual acceleration can be modeled as: 

𝑎ℎ𝑜𝑠𝑡,𝑎𝑐𝑡𝑢𝑎𝑙̇ =
𝐾𝑔

𝑇𝑔
𝑎ℎ𝑜𝑠𝑡,𝑑𝑒𝑠𝑖𝑟𝑒𝑑 −

1

𝑇𝑔
𝑎ℎ𝑜𝑠𝑡,𝑎𝑐𝑡𝑢𝑎𝑙 (2.31) 

Take the inter-vehicle distance error ∆𝑑 , relative velocity 𝑣𝑟𝑒𝑙 , and actual host vehicle acceleration 

𝑎ℎ𝑜𝑠𝑡,𝑎𝑐𝑡𝑢𝑎𝑙 ≍ 𝑎ℎ𝑜𝑠𝑡, as system state variables: 

𝒙 = [
∆𝑑
𝑣𝑟𝑒𝑙
𝑎ℎ𝑜𝑠𝑡

] (2.32) 
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Take the calculated desired acceleration as the control input, acceleration of the preceding vehicle as system 

disturbance, the system state-space equation can be obtained as follow: 

𝒙̇ = 𝑨𝒙 + 𝑩𝑢 + 𝑮𝑤 (2.33) 

 

where system matrices 𝑨,𝑩,𝑮 are derived as: 

(let ℋ = 2𝜏1𝑣ℎ𝑜𝑠𝑡 + 3𝜏2𝑣ℎ𝑜𝑠𝑡
2 − 2𝜏3𝑣𝑟𝑒𝑙𝑣ℎ𝑜𝑠𝑡 + 𝜏3𝑣ℎ𝑜𝑠𝑡

2 − 𝑑𝑚𝑖𝑛) 

𝑨 = [

0 1 −ℋ
0 0 −1

0 0 −
1

𝑇𝑔

], 𝑩 = [

0
0
𝐾𝑔

𝑇𝑔

], 𝑮 = [
𝜏3𝑣ℎ𝑜𝑠𝑡

2

1
0

], 

𝑢 = 𝑎ℎ𝑜𝑠𝑡,𝑑𝑒𝑠𝑖𝑟𝑒𝑑 ≍ 𝑎𝑑𝑒𝑠𝑖𝑟𝑒𝑑, 𝑤 = 𝑎𝑝𝑟𝑒. 

i.e. 

[
∆𝑑̇ 
𝑣𝑟𝑒𝑙̇
𝑎ℎ𝑜𝑠𝑡̇

] = [

0 1 −ℋ
0 0 −1

0 0 −
1

𝑇𝑔

] [
∆𝑑
𝑣𝑟𝑒𝑙
𝑎ℎ𝑜𝑠𝑡

] + [

0
0
𝐾𝑔

𝑇𝑔

] 𝑎𝑑𝑒𝑠𝑖𝑟𝑒𝑑 + [
𝜏3𝑣ℎ𝑜𝑠𝑡

2

1
0

] 𝑎𝑝𝑟𝑒 (2.34) 

 

In the real control system, the inter-vehicle longitudinal dynamics model is usually applied in the discrete 

domain, so the system state-space equation is discretized. However, due to the quadratic terms in the safety 

distance model proposed in this research, the continuous inter-vehicle longitudinal dynamics model is nonlinear. 

According to the modern control theory, the integration of a matrix polynomial needs to be found for the 

discretization of a continuous state-space equation. For the  nonlinear model, however, taking the integration of 

a matrix polynomial is complex. According to the real experimental test in research [137], the coefficient of 

quadratic terms in the safety distance model is small enough to be negligible within a unit control step. 

Consequently, under the premise of not affecting the accuracy of the system, the quadratic terms in the safety 

distance model can be temporarily ignored to simplify the overly calculation. The discretized inter-vehicle 

longitudinal dynamics model can be expressed as follow: 

𝒙(𝑘 + 1) = 𝑨̅𝒙(𝑘) + 𝑩̅𝑢(𝑘) + 𝑮̅𝑤(𝑘)

𝒚(𝑘) = 𝑪𝒙(𝑘)
(2.35) 

 

where 𝑘  refers to the 𝑘 th sampling time step, 𝑨̅ , 𝑩̅ , and 𝑮̅  are discretized system coefficient matrices, 𝒚 

represents the system output, 𝑪 is an identity matrix. 

Assume 𝑇𝑠 as the sampling period, 𝑨̅, 𝑩̅, and 𝑮̅ can be obtained as follow: 

𝑨̅ = ∑
𝑨𝑘𝑇𝑠

𝑘

𝑘!
,

∞

𝑘=0

𝑩̅ = ∑
𝑨𝑘−1𝑇𝑠

𝑘

𝑘!
𝑩

∞

𝑘=0

, 𝑮̅ = ∑
𝑨𝑘−1𝑇𝑠

𝑘

𝑘!
𝑮

∞

𝑘=0

(2.36) 

 

2.2.6. Reference Velocity Planning Modeling Based on SPaT Information 

When DSSL switches into signal anticipation scenario, a reference velocity 𝑣𝑟𝑒𝑓 is required to be calculated 

based on the real-time driving state and upcoming traffic signal phase and timing information. The basic idea 

of calculating the 𝑣𝑟𝑒𝑓 is to accelerate when the time of green signal light is enough and decelerate until the 

start of next green signal light so that the host vehicle can pass through the signalized intersection without any 

stop. According to research work [86], a non-empty intersection checking algorithm based on a set of logical 

rules is proposed. 
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Once entering signal anticipation scenario, a vehicle plans cross the first green interval of the upcoming traffic 

signal at the current time step with the velocity range: 

[
𝑑𝑇𝑆𝐿
𝓇1

,
𝑑𝑇𝑆𝐿
ℊ1

] (2.37) 

 

where 𝓇1 and ℊ1 denote the start time of the first red and green interval of the upcoming traffic signal light, 

respectively. 

Then, the feasibility of crossing the signalized intersection using current velocity depends on if the above 

velocity range has the intersection with the allowable speed limits on a certain road section [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥]. If the 

set intersection is empty, the following green interval will be checked until a non-empty set intersection can be 

found. The mathematical expression of the “non-empty set intersection checking algorithm” is represented by: 

[
𝑑𝑇𝑆𝐿
𝓇𝑖

,
𝑑𝑇𝑆𝐿
ℊ1

] ∩ [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥] (2.38) 

 

Finally, the reference velocity 𝑣𝑟𝑒𝑓 at each time step can be obtained by the following rule: 

𝑣𝑟𝑒𝑓 = 𝑚𝑎𝑥 ⟦[
𝑑𝑇𝑆𝐿
𝓇𝑖

,
𝑑𝑇𝑆𝐿
ℊ1

] ∩ [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥]⟧ (2.39) 

 

2.3. Summary of Chapter 2 

This chapter starts with the three typical driving scenarios classified by a DSSL, including free driving scenario 

considering road gradient information, signal anticipation scenario considering upcoming traffic SPaT 

information, and car following driving scenario considering the constraints from preceding vehicle. And then 

propose the overall system design architecture. The predictive cruise control system dynamics models including 

vehicle longitudinal dynamics model, safety distance model, inter-vehicle longitudinal dynamics model and 

reference velocity planning model are developed and analyzed, respectively.  
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Chapter 3. Instantaneous Energy Consumption Model 

(IECM) 

As the foundation of the design of the predictive cruise controller for eco-driving, it is crucial to develop a 

vehicular energy consumption model which is not only capable of accurately estimating the energy consumption 

during driving, but also characterized by a simple model structure and suitable for transient state energy 

consumption estimation. Moreover, there are currently few researches on the estimation of electric vehicles 

(EVs) energy consumption, which limits the further exploration of EVs’ driving range potential. Considering 

that electric vehicles share the same longitudinal dynamics characteristics as internal combustion engine 

vehicles (ICEVs), and the conversion efficiency from battery electrical energy to motor output power is higher 

and more direct. Given the strong mapping relations between the energy consumption of battery and motor 

output power, vehicle driving condition, etc., a new instantaneous energy consumption for electric vehicle is 

proposed based on the idea of machine learning and data mining, which lays the foundation for the following 

development of predictive cruise control system for eco-driving.  

3.1. Analysis of IECM 

The current existing energy consumption model can be classified into two categories. The first type is steady-

state models taking engine torque, engine rotational speed and power as inputs to fit the fuel consumption rate. 

These type of models is characterized by high estimation accuracy when the vehicle operates under steady state 

and by large estimation error when the vehicle operates under unsteady state. The second type is transient state 

models based on the “steady-state preliminary estimation + transient correction” method or “direct dynamics 

variable”. The transient state models give dual attention to both steady-state and transient-state driving 

conditions so that the fuel consumption estimation can be ensured.  

Table 3.1 shows several typical transient state models with their corresponding dynamic variables, where 𝑚𝑎𝑖𝑟̇  

(𝑔/𝑠) refers to the transient air mass flow rate, ∆𝑇 (𝑁𝑚/𝑠) and ∆𝜔 (𝑟𝑎𝑑/𝑠2) are the transient engine torque 

and speed, respectively, 𝑣 (𝑘𝑚/ℎ) and 𝑎 (𝑚/𝑠2) are the vehicle instantaneous velocity and acceleration, 𝑎̅(𝑡) 

(𝑚/𝑠2) is the composite acceleration at time 𝑡, 𝑃𝑀𝑂𝐸𝑒 is the instantaneous fuel consumption rate (𝑚𝑔/𝑠), 𝐿𝑖,𝑗 

and 𝑀𝑖,𝑗 are the model regression coefficients, 𝛼 is the acceleration impact factor. 

 

TABLE 3.1 Typical Transient Fuel Consumption Models 

Modeling 

Methodology 
Mathematical expression of models 

Dynamic 

variables 

Steady-state 

estimation + 

transient 

correction 

Engine fuel map + fuel-to-air ratio 

limitation correction [138] 
𝑚𝑎𝑖𝑟̇  

Engine fuel map + engine speed and 

torque variation correction [139] 
∆𝑇, ∆𝜔 

Engine fuel map + torque variation 

correction [140] 
∆𝑇 

Direct 

dynamics 

𝑙𝑛 𝑃𝑀𝑂𝐸𝑒 = ∑ ∑ (𝐿𝑖,𝑗𝑣
𝑖𝑎𝑗), 𝑎 ≥ 03

𝑗=0
3
𝑖=0

𝑙𝑛 𝑃𝑀𝑂𝐸𝑒 = ∑ ∑ (𝑀𝑖,𝑗𝑣
𝑖𝑎𝑗), 𝑎 > 03

𝑗=0
3
𝑖=0

 𝑎 
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variable [141] 

𝑙𝑛 𝑃𝑀𝑂𝐸𝑒 = ∑ ∑ (𝐿𝑖,𝑗𝑣
𝑖𝑎̅𝑗), 𝑎̅ ≥ 03

𝑗=0
3
𝑖=0

𝑙𝑛 𝑃𝑀𝑂𝐸𝑒 = ∑ ∑ (𝑀𝑖,𝑗𝑣
𝑖𝑎̅𝑗), 𝑎̅ ≥ 03

𝑗=0
3
𝑖=0

𝑎̅(𝑡) = 𝛼𝑎(𝑡) + (1 − 𝛼)∑
𝑎(𝑡−𝑖)

9
9
𝑖=1

 

[142] 

𝑎̅ 

 

Min. Z and Hui. J [143] pointed out that vehicular transient-state fuel consumption is higher than steady-state 

fuel consumption by about 6%~30%. Therefore, the transient correction considering the features of vehicle 

velocity and acceleration is indispensable for precisely estimating the actual fuel consumption. However, if only 

transient vehicle velocity and acceleration are used to estimate the fuel consumption, the models using the direct-

dynamics-variable-based method do not contain the engine torque and speed which can reflect the influence 

from the variation of road gradient on fuel consumption [144]. The transient fuel consumption models based on 

the ”steady-state estimation + transient correction” method include the engine map, which enables it to reflect 

the influence on the fuel consumption from road terrain variation. But compared with the direct-dynamic-

variable-based method, modeling using the steady-state estimation + transient correction” method tends to be 

complicated. More importantly, the variables used for correction, such as 𝑚𝑎𝑖𝑟̇ , is not accessible during real 

driving process. 

Accordingly, based on the analysis above, to fill the research gaps and adapt to the objective of developing a 

predictive cruise control system for electric vehicle eco-driving, the following key points in terms of the energy 

consumption estimation model is summarized: 

i. Instead of using 𝑚𝑎𝑖𝑟̇ , ∆𝑇, or ∆𝜔, instantaneous driving velocity 𝑣(𝑡) and acceleration 𝑎(𝑡) is required as input 

features due to their readily accessibility. 

ii. As shown in Figure 3.1, the rotational speed and output torque of the electric vehicle motor is concerned with 

motor efficiency, which directly relates to the energy consumption. And in analogy with the engine torque and 

engine speed, motor output torque and speed can reflect the impact of the road slope variation on energy 

consumption. 

iii. Catering to the nonlinearity and time-varying property of vehicular longitudinal energy consumption and for 

simplifying the modeling process, machine learning based on the artificial neural network (ANN) is applied to 

conduct the nonlinear fitting for the development of the instantaneous energy consumption model (IECM). 
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Fig. 3.1 EV Electric Motor Efficiency as a Function of Rotational Speed and Output Torque 

As shown in Figure 3.2, using the artificial neural network as the fitting tool, the IECM takes motor torque 

𝑇𝑚(𝑁 ∙ 𝑚) , motor speed 𝜔𝑚(𝑟𝑝𝑚) , transient vehicle velocity 𝑣(𝑚/𝑠) , and transient vehicle acceleration 

𝑎(𝑚/𝑠2) as input features to calculate the mapping 0.1𝑠 output instantaneous energy consumption 𝐸𝑖𝑛𝑠(𝑊 ∙

0.1𝑠). 

 

Fig. 3.2 Diagram of Inputs and Output for ANN-Based IECM 

3.2. Modeling Data Collection and Process 

The energy consumption data that were used to develop the ANN-based IECM were derived from the 

Downloadable Dynamometer Databased and were generated at the Advanced Mobility Technology Laboratory 
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(AMTL) at Argonne National Laboratory under the funding and guidance of U.S. Department of Energy (DOE) 

[145]. Argonne’s Downloadable Dynamometer Database (𝐷3) offers publicly available testing data regarding 

advanced vehicle technologies. The electric vehicle database under AMTL includes 10 different types of EVs. 

The experimental driving cycles comprise Steady-state Drive Cycle, US06 Drive Cycle, UDDS Drive Cycle 

and Highway Drive Cycle. The sampling time of experimental data collection is 0.1𝑠, with total sampling period 

varying from 900𝑠 ~ 1500𝑠 according to different drive cycles. The database obtained by dynamometer test 

bench includes dynamometer speed (𝑚𝑝ℎ), dynamometer tractive effort (𝑁), battery current (𝐴), battery 

voltage (𝑉), battery SOC (%), motor speed (𝑟𝑝𝑚), integrated power reported by power analyzer (𝑘𝑊), etc. 

The driving pattern is determined by different drive cycle. Steady-state Drive Cycle refers to the driving pattern 

of the vehicle at various steady velocities, under which the electric motor works steadily. US06 Drive Cycle is 

the driving pattern with high velocity and acceleration. UDDS Drive Cycle refers to the driving condition on 

the city road with frequent braking action under low speed and acceleration. Highway Drive Cycle situates 

between US06 and UDDS. Since the objective of this research is to develop an instantaneous energy 

consumption used for general driving task, the driving pattern is required to be within a wide velocity range and 

suitable for both steady-state and transient-state driving. Accordingly, a B-class electric vehicle with an 

asynchronous motor (132𝑘𝑊/340𝑁𝑚) is selected from 𝐷3, its Steady-state Drive Cycle dataset and US06 

Drive Cycle dataset are used to train the neural network, and its Highway Drive Cycle dataset is used to verify 

the proposed ANN-Based IECM. 

The accuracy of the IECM is determined by the validity of the data used for modeling. The raw data collected 

through CAN bus from chassis dynamometer experiments are mixed with noise, which is undesirable for the 

identification of model parameters. Besides, there exists some abnormal values during the measurement by 

sensor due to the experimental facilities. To keep the accuracy of the model from the impact of the noise and 

abnormal values, the raw data are filtered to improve the quality before being applied to train the neural network. 

In this research, the raw data are processed using moving average filtering. A moving average filter smooths 

data by replacing each data point with the average of the neighboring data points defined within the span, which 

is equivalent to lowpass filtering with the response of the smoothing given by the difference equation: 

𝑦𝑠𝑚𝑜𝑜𝑡ℎ(𝑖) =
1

2𝑁 + 1
[𝑦𝑟𝑎𝑤(𝑖 + 𝑁) + 𝑦𝑟𝑎𝑤(𝑖 + 𝑁 − 1) +⋯+ 𝑦𝑟𝑎𝑤(𝑖 − 𝑁)] (3.1) 

 

where 𝑦𝑠𝑚𝑜𝑜𝑡ℎ(𝑖) is the smoothed value for the 𝑖th data point, 𝑁 is the number of neighboring data points on 

either side of 𝑦𝑠𝑚𝑜𝑜𝑡ℎ(𝑖), and 2𝑁 + 1 is the span. 

For example, suppose smooth data using a moving average filter with a span of 5. Using the rules above, the 

first four elements of 𝑦𝑠𝑚𝑜𝑜𝑡ℎ are given by: 

𝑦𝑠𝑚𝑜𝑜𝑡ℎ(1) = 𝑦𝑟𝑎𝑤(1), 

𝑦𝑠𝑚𝑜𝑜𝑡ℎ(2) =
[𝑦𝑟𝑎𝑤(1)+𝑦𝑟𝑎𝑤(2)+𝑦𝑟𝑎𝑤(3)]

3
, 

𝑦𝑠𝑚𝑜𝑜𝑡ℎ(3) =
[𝑦𝑟𝑎𝑤(1)+𝑦𝑟𝑎𝑤(2)+𝑦𝑟𝑎𝑤(3)+𝑦𝑟𝑎𝑤(4)+𝑦𝑟𝑎𝑤(5)]

5
, 

𝑦𝑠𝑚𝑜𝑜𝑡ℎ(4) =
[𝑦𝑟𝑎𝑤(2)+𝑦𝑟𝑎𝑤(3)+𝑦𝑟𝑎𝑤(4)+𝑦𝑟𝑎𝑤(5)+𝑦𝑟𝑎𝑤(6)]

5
. 

Note that 𝑦𝑠𝑚𝑜𝑜𝑡ℎ(𝑖) refers to the order of the data after sorting, and not necessarily the original order. 

The required modeling data, such as vehicle velocity, acceleration, motor speed and instantaneous energy 

consumption, can be directly accessed from 𝐷3, but the indirect information like motor torque is required to be 

calculated based on vehicle dynamics theory in equation 2.15. The data processing including original data sheet 

importing and reading, unit conversion, dynamics derivation, smoothing, logging and visualization, are 
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completed automatically through the 𝐶𝑎𝑟𝑆𝑖𝑚/𝑆𝑖𝑚𝑢𝑙𝑖𝑛𝑘 co-simulation platform, shown as Figure 3.3. 

 

 

Fig. 3.3 Modeling Data Processing Using CarSim/Simulink 

 

The original raw data with noise and filtered datasets used for actually training the neural network, including 

the input features vehicle velocity 𝑣(𝑡) (𝑚/𝑠), acceleration 𝑎(𝑡) (𝑚/𝑠2), motor speed 𝜔𝑚(𝑡) (𝑟𝑝𝑚), motor 

torque 𝑇𝑚(𝑡)  (𝑁 ∙ 𝑚)  and output feature instantaneous energy consumption 𝐸𝑖𝑛𝑠  (𝑊 ∙ 0.1𝑠)  are shown in 

Figure 3.4. 
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Fig. 3.4 Smoothing Data for neural network training 

 

3.3. Artificial-Neural-Network-Based IECM 

By analyzing the physical mechanism of EV’s energy consumption, it is manifest that there exists strong 

mapping between energy consumption and vehicle motion characteristics (velocity and acceleration) and 

electric motor operation characteristics (torque and speed). Such a nonlinearity can be precisely approximated 

by the advantages of neural network fitting. In 1990, Hornik. K et al proposed the universal approximation of 

an unknown mapping and its derivatives using multilayer feedforward networks [146], in which it pointed out 

that, for any continuous system, a neural network with two layers and a sigmoid activation function can be a 

universal approximator. Therefore, in this research, instead of using common statistical polynomial regression, 

a computational-based artificial neural network is used to develop the IECM. 

3.3.1. Establishment of Neural Network Structure 

The fitting accuracy of a backpropagation neural network is highly related to the network structure, determined 

by the number of hidden layers and the number of neurons in each layer. Goodfellow. I et al. [147] generalized 

how to determine the number of hidden layers, shown in Table 3.2. 

TABLE 3.2 Determination the number of Hidden Layers 

Num. of 

Hidden 

Layers 

Result 

0 
Only capable of representing linear separable functions or 

decisions 

1 
Can approximate any function that contains a continuous 

mapping from one finite space to another 

2 Can represent an arbitrary decision boundary to arbitrary 
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accuracy with rational activation functions and can approximate 

any smooth mapping to any accuracy 

> 2 Additional layers can learn complex representations 

Theoretically, the deeper the layers are, the better the function fitting ability will be. In fact, however, deeper 

layers may bring about the problem of overfitting, and at the same time increase the network training difficulty, 

making it difficult for the model to converge.  

The second step to construct the neural network is to determine the number of neurons for each layer. Too few 

neurons in the hidden layer will result in underfitting. Conversely, using too many neurons may also cause 

problems, such as overfitting. More neuron nodes mean greater information processing capability. Since the 

limited information contained in the training dataset is not enough to train all the neurons in the hidden layer, it 

will lead to overfitting. Even if the training data contains enough features, too many neurons will increase the 

training time, difficult to achieve the desired modeling effect. Therefore, in this research, the structure 

construction starts with 1 hidden layer and 1 neurons for each layer (5 neurons for the first hidden layer), 

increasing or decreasing the number of hidden layers and neurons according to the approximation of underfitting 

or overfitting. 

Part of the network structure with its corresponding mean squared error are shown in Table 3.3. According to 

the results, the structure of ANN-Based IECM in this research is determined as “4 ∽ 10 ∽ 1 ∽ 1”, seen in 

Figure 3.5. 

TABLE 3.3 Approximation of Different Network Structure 

Network 

Structure 
MSE 

Network 

Structure 
MSE 

⋮ ⋮ 
4 ∽ 10 ∽ 1

∽ 1 
1.062𝑒-5 

4 ∽ 5 ∽ 1 2.168𝑒-5 
4 ∽ 10 ∽ 5

∽ 1 
1.335𝑒-5 

4 ∽ 10 ∽ 1 1.453𝑒-5 
4 ∽ 15 ∽ 1

∽ 1 
1.426𝑒-5 

4 ∽ 15 ∽ 1 1.218𝑒-5 ⋮ ⋮ 
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Fig. 3.5 Detailed Structure of Proposed Neural Network 

The overall training proceeds as follows: first, the training dataset is fed into the neural network allocated with 

different weights and biases; second, the estimation of the instantaneous energy consumption is carried out; 

third, given a performance function correlated with real instantaneous energy consumption and estimation value 

from ANN model, the Levenberg-Marquardt Backpropagation algorithm is implemented so that the weight and 

bias variables are updated along with the calculation of a Jacobian matrix of the performance function. 

Iteratively, then the ANN estimates the instantaneous energy consumption based on updated weights and biases 

at the next time step until the sum of squares reduces to some target error or the norm of the gradient becomes 

less than some predefined value, during which the ANN-Based IECM is well-trained. The system architecture 

with the proposed methodology is shown in Figure 3.6. 

 

Fig. 3.6 Architecture of Proposed Feedforward Neural Network Training Algorithm 

As the basic element of the network, the neuron is the functional unit that conducts the mathematical calculation. 

A neuron accepts more than one input, which constitutes the input vector 𝒑 = [𝑣𝑘 , 𝑎𝑘 , 𝑇𝑚,𝑘 , 𝜔𝑚,𝑘]
𝑇
. Multiplied 
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by a weight matrix 𝑾 and summed with a bias 𝑏, the net input 𝑛 to the neuron is expressed as: 

𝑛 =∑𝑤𝑖𝑝𝑖 + 𝑏 = 𝑾 ∙ 𝒑 + 𝑏

𝑘

𝑖=1

(3.2) 

Next, through the activation function 𝒻, the neuron output 𝑎 is obtained by: 

𝑎 = 𝒻(𝑛) (3.3) 

In this research, the logistic sigmoid activation function is applied, which is expressed as: 

𝒻(𝑥) =
1

1 + 𝑒−𝑥
(3.4) 

The neuron with vector input, as the fundamental building block, is illustrated in Figure 3.7. 

 

Fig. 3.7 Diagram of Neuron with Vector Input 

 

3.3.2. Feedback Training Algorithm 

As an approximation to Newton’s method, the Levenberg-Marquardt Backpropagation [148] training algorithm 

is demonstrated in Figure 3.8. Total layer ℒ is 3, 𝒂𝑞
ℒ, namely 𝐸𝑞, is the estimated energy consumption output of 

the network given the 𝑞th input 𝒑𝑞 = [𝑣𝑘 , 𝑎𝑘 , 𝑇𝑚,𝑘, 𝜔𝑚,𝑘]
𝑇
, 𝒓𝑞 is the actual energy consumption, 𝑒𝑞 denotes the 

error for the 𝑞th input, ∆𝜔ℓ and ∆𝑏ℓ are the steepest descent algorithm parameters, 𝜅 refers to the learning rate, 

𝛿ℓ refers to the sensitivity of the performance index 𝒫 to changes in the 𝑖th element of the net input in layer ℓ, 

𝒫(𝑥) denotes a function intended to be minimized with respect to the parameter vector 𝑥, 𝒥(𝑥) is the Jacobian 

matrix. 

After training the neural network using the above Levenberg-Marquardt algorithm, the relationships between 

the outputs of the neural network and the targets are shown in Figure 3.9. The regression values for training, 

testing, validation, and all dataset reach to 0.99, which indicates that the network outputs and the targets are 

precisely matched, and the neural network model is well-trained. 
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Fig. 3.8 Flow Diagram of Levenberg-Marquardt Feedforward Neural Network Training Algorithm 
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Fig. 3.9 Regression Plots of Training, Testing, Validation and ALL Dataset 

3.3.3. ANN-Based IECM Application Deployment 

Once the proposed network is well-trained, it is required to explicitly define it as a deployable IECM. Note that 

the IECM is proposed mainly for the development of the predictive cruise control system for eco-driving to 

evaluate the instantaneous energy economy for specific driving conditions. Therefore, to ensure the interactivity 

between each part of the PCC system, the well-trained ANN-Based IECM is deployed in the MATLAB 

environment as a callable function, shown in Figure 3.10. 
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Fig. 3.10 Deployable Function of ANN-Based IECM 

 

where 𝑌 = 𝐸𝑖𝑛𝑠(𝑡), 𝑋 = [𝑣(𝑡), 𝑎(𝑡), 𝑇𝑚(𝑡), 𝜔𝑚(𝑡)]
𝑇, 𝑖. 𝑒. 

𝐸𝑖𝑛𝑠(𝑡) = 𝐼𝐸𝐶𝑀(𝑣(𝑡), 𝑎(𝑡), 𝑇𝑚(𝑡), 𝜔𝑚(𝑡)) (3.5) 

 

3.4. Validation of ANN-Based IECM 

Before applying the proposed instantaneous energy consumption estimation model into the development of the 

PCC system, a standard Highway Drive Cycle, seen in Figure 3.11, is adopted to validate the IECM. For an 

assessment to be effective, the Mean Absolute Percentage Error (𝑀𝐴𝑃𝐸) and the Mean Square Error (𝑀𝑆𝐸) 

are used as model evaluation indexes. 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑|

𝐸𝑎𝑐𝑡𝑢𝑎𝑙(𝑖) − 𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑖)

𝐸𝑎𝑐𝑡𝑢𝑎𝑙(𝑖)
|

𝑛

𝑖=0

× 100% (3.6) 

 

𝑀𝑆𝐸 =
1

𝑛
∑[𝐸𝑎𝑐𝑡𝑢𝑎𝑙(𝑖) − 𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑖)]

2

𝑛

𝑖=0

(3.7) 

 

where 𝑛 is the number of sample data, 𝐸𝑎𝑐𝑡𝑢𝑎𝑙 is the actual measurement of instantaneous energy consumption, 

𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 is the model estimation value. 

To better validate the accuracy of the proposed ANN-Based IECM, a multivariate fitting energy consumption 

model for electric vehicle (EV-MFECM) from reference [149] is compared to show the estimation improvement 

of ANN-Based IECM. EV-MFECM, based on the method of “steady-state estimation + transient correction”, 

consists of two modules. It took vehicle velocity and acceleration as steady-state module inputs, motor speed 

and torque as transient correction inputs to estimate the instantaneous energy consumption for the electric 
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vehicle. The mathematical expression is shown as follow: 

{

𝒲𝑏𝑐 = 𝛼0 + 𝛼1𝑇𝑚𝜔𝑚 + 𝛼2𝑇𝑚
2 + 𝛼3𝜔𝑚

𝒲𝑏𝑠 = 𝛽0 + 𝛽1𝑣𝑎 + 𝛽2𝑣
2𝑎 + 𝛽3𝑣𝑎

3 + 𝛽4𝑣
2𝑎2

𝒲𝑏𝑓𝑖𝑡 = 𝒲𝑏𝑐 +𝒲𝑏𝑠

(3.8) 

 

where 𝒲𝑏𝑐 , 𝒲𝑏𝑠 , and 𝒲𝑏𝑓𝑖𝑡  are steady-state module energy consumption estimation, transient correction 

module energy consumption estimation, and total estimation, respectively. 𝛼0~𝛼3 are regression coefficients 

for the steady-state module, 𝛽0~𝛽4 are regressions coefficients for the transient correction module. 

Using the previous dataset for training the neural network, Steady-state Drive Cycle and US06 Drive Cycle, the 

coefficients can be calibrated so as to conduct the comparative validation with the ANN-Based IECM. 

 

Fig. 3.11 Highway Drive Cycle Pattern 

TABLE 3.4 The Comparative Validation Result of ANN-Based IECM 

 𝑀𝐴𝑃𝐸(%) 𝑀𝑆𝐸(𝑊 ∙ 0.1𝑠) 

ANN-Based IECM 1.25 1.4231𝑒 + 6 

EV-MFECM 3.20 1.6850𝑒 + 6 
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Fig. 3.12 Comparison of Estimation of Models with Actual Value and Estimation Error of Different Models 

From Table 3.4, the comparative result shows that, under the Highway Drive Cycle, both the 𝑀𝑆𝐸 and 𝑀𝐴𝑃𝐼 

values of proposed ANN-Based IECM are lower than the corresponding values of baseline EV-MFECM, which 

indicates that estimation performance of ANN-Based IECM is superior to the one based on statistical 

multivariate regression method. From Figure 3.12, it is easy to see that both ANN-Based IECM and EV-

MFECM are capable of reflecting the trend of energy consumption under the Highway Drive Cycle. However, 

it is evident that the proposed ANN-Based IECM fits better and is more accurate than the baseline. The error of 

ANN-Based IECM is closer to zero without any spikes. Besides, the EV-MFECM contains the polynomial 

combination, which makes it too complicated to be deployed in real applications. On the contrary, ANN-Based 

IECM features an explicit model structure and is easy to be encoded into the hardware, which makes it more 

suitable for vehicle eco-driving optimization system. 

3.5. Summary of Chapter 3 

By analyzing the existing vehicle energy consumption models, an instantaneous energy consumption based on 
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machine learning – data mining is proposed catering to the driving characteristics of electric vehicle. After 

smoothing the real chassis dynamometer experimental Drive Cycle data and determining the network structure, 

the Levenberg-Marquardt training algorithm is applied to train the neural network and encapsulates it as a 

callable function. Model validation is then performed to illustrate its estimation performance. 
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Chapter 4. Predictive Cruise Control System for Eco-

Driving Based on MPC 

This chapter presents the core methodology used to develop the predictive cruise control system for eco-driving. 

To begin with, the basics of model predictive control (MPC) algorithm is introduced. Then, the optimization 

problems are formulated separately for each driving scenario: free driving scenario, car following scenario, and 

signal anticipation scenario. For each optimization problem, detailed controller structure, control objectives, 

cost function, and constraints are precisely designed. The mathematical derivations of prediction form 

transformation for system dynamics model, cost function and constraints are included. Finally, in response to 

the practical implementation of MPC, low robustness of model mismatch, the infeasibility of the optimal control 

law, and online computing complexity are discussed, and corresponding solutions are proposed, respectively.  

 

4.1. Eco-Driving System Based on MPC 

4.1.1. MPC Theory 

The idea of predictive control can be traced back to the rolling optimization control strategy proposed by Propoi 

et al in 1963 [150]. After more than 50 years, many branches have been developed, such as model algorithm 

control (MAC), dynamic matrix control (DMC), generalized predictive control (GPC), predictive function 

control (PFC), etc. As the combination of control theory and optimization, model predictive control, also known 

as receding horizon control (RHC), is one of the branches and has been of high interest in academic and 

industrial research in recent years. As the extension of the linear quadratic regulator (LQR) and linear quadratic 

gaussian (LQG) control, MPC adopts modern control theory to analyze its internal mechanism, for example, 

taking state-space equation as its model. Proposed by Mayne. D. Q et al in 1988 [151], the essence of the MPC 

is using optimization to solve a control problem or obtaining the controller’s command by solving an 

optimization problem. Therefore, the external of MPC is the control concept, and the internal layer contains the 

idea of optimization. MPC can handle multi-input multi-output (MIMO) system that have interactions between 

their inputs and outputs. Most importantly, MPC is capable of explicitly handling constraints of input and output, 

which enables it to satisfy the industrial development requirements of economic, safe, environmental-friendly. 

During each control interval, MPC utilizes the controlled plant model to predict the system states or output 

within a prediction horizon. By optimizing the performance index of the prediction horizon, it uses system real-

time output to realize the feedback correction to the prediction model, making the overall control strategy to be 

a closed-loop online optimization. By solving this optimization problem, an optimal control sequence is 

obtained, and the first element of the control sequence is applied to the system. Repeatedly, the next optimization 

is solved with the prediction horizon moving forward. Three representative characteristics of MPC thereby can 

be summarized as: prediction model, rolling-horizon optimization, feedback correction: 

i. Prediction model: as the basics of the MPC, the prediction model is capable of predicting the future output 

based on the past information and control input. Note that what really matters is the function to predict rather 

than the concrete form of the model. Convolution model, (such as step response model, pulse response model), 

state-space model (mechanism model), transfer function model, neural network model, etc. all can be used 

as a prediction model. 

ii.Rolling-horizon optimization: MPC obtains the optimal control signal by optimizing a certain performance 
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assessment index. This optimization process is not carried out offline, but rolling online, which is the 

fundamental difference between MPC and conventional optimal control.  

iii. Feedback correction: to diminish the control error caused by the model mismatch or environmental 

disturbance, the plant actual output is first checked at the next sampling time, and use the actual output to 

correct the prediction based on the model. 

Based on these three features, the fundamental principle of MPC is shown in Figure 4.1. Shown as curve - 1, 

there always exists a reference trajectory. Taking time instant 𝑘 as current time instant (the position of the 

vertical axis of the coordinate frame), the controller predicts the system output (seen as curve - 2) for a period 

of prediction horizon based on the system current state and control signal. By solving an optimization problem 

under the objective function and various constraints, a series of control sequences (shown as a rectangular wave 

- 4) can be obtained within the control horizon [𝑘, 𝑘 + 𝑁𝑐]. The first element of this control sequence is input 

into the controlled plant. When it comes to the next time step 𝑘 + 1, the above process is repeated to complete 

the optimization problem with constraints in a rolling horizon way so as to realize the continuous control of the 

controlled plant. 

 

Fig. 4.1 Schematic Diagram of Model Predictive Control 

The block diagram of MPC is shown in Figure 4.2, which consists of the controller, controlled plant and state 

estimator. The MPC controller calculates the optimal control sequence 𝑢∗  based on the prediction model, 

objective function, and constraints. The plant is controlled based on current control signal and output the state 

signal 𝑥(𝑡) into the state estimator. The state estimator, e.g., Kalman filter, is used to estimate the state signal, 

which cannot be obtained by sensor observation or the observation cost is too high.  

MPC is commonly categorized into linear MPC and nonlinear MPC, which is usually transformed into quadratic 

programming (QP) problem. As a classic mathematical optimization problem, the objective function of QP is a 

quadratic function with linear or nonlinear constraints, which is commonly solved using the active-set or 

interior-point method. However, due to the defects of the MPC algorithm itself, there are three aspects of 

practical problems, namely, low robustness for model mismatch, insolvability of the optimal control, the high 

computational complexity of online optimization. 
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Fig. 4.2 Block Diagram of Model Predictive Control 

The first kind of problem is mainly caused by the modeling error of the controlled plant. There are inevitable 

uncertainties such as parameter measurement error, unmodeled dynamic and external disturbance, etc. 

Therefore, there is always a mismatch between the established mathematical model and the controlled plant. 

When the model mismatch is serious, the conventional MPC is unable to compensate for the prediction error 

caused by the model mismatch, which tends to bring about the decline of optimal control performance, 

especially for the rapid-changing plants. 

The second kind of problem is closely related to the feasible region of the predictive optimization problem. The 

reasons are as follows: (1) Restricted by the constraints of the controlled plants, the free space of the system 

state is limited; (2) When the external disturbance or model mismatch is too large,  the mechanical inertia of the 

controlled plant causes the system state to run beyond the feasible region of the predictive optimization problem; 

(3) In order to ensure the stability of the closed-loop system, the stability constraint conditions are added, which 

inversely reduces the feasible region of the predictive optimization problem. Whatever the feasible region is 

reduced, or the state runs out of the feasible region, the direct result is the insolvability of the predictive 

optimization problem. When the predictive optimization problem is insolvable, the optimal control signal does 

not exist, and the control process is interrupted. 

The third kind of problems is related to the scale of the predictive optimization problem, the efficiency of the 

numerical optimization algorithm and the real-time requirement of the controlled plant. During a single control 

period, MPC uses numerical optimization algorithm to solve the predictive optimization problem and obtain the 

optimal control signal. For rapid-changing plants such as vehicles, the control period is usually at the level of 

the seconds or milliseconds, which requires the high performance of real-time solving capability. When the 

prediction horizon is too long, or there are many system states and control inputs, the predictive optimization 

problem is computationally burdensome and difficult to solve within a single control period due to the limitation 

of the efficiency of the numerical optimization algorithm. This problem is especially serious when the predictive 

optimization problem is nonlinear. Therefore, even if each step of the predictive optimization problem has a 

feasible solution, the control process will be interrupted if the problem cannot be solved within a single control 

period. 
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4.1.2. A Complete Example – Using MPC to Realize Velocity Tracking 

To articulate the basic concept of designing a practical MPC algorithm, this section is particularly introduced 

to explain a complete algorithm design process, laying an epitome and directive groundwork for the following 

sections.  

 

Problem description: 

Vehicle speed tracking system for eco-driving can be hierarchically divided into upper level and lower level 

controller. The upper-level controller calculates the desired acceleration to track the reference speed trajectory 

quickly and smoothly, while the lower-level controller realizes the desired acceleration by coordinating the 

acceleration and braking mechanism. 

The block diagram of the speed tracking control system is shown in Figure 4.3. The upper-level controller using 

MPC to calculate the desired acceleration 𝑎𝑑𝑒𝑠 according to current vehicle velocity 𝑣, current acceleration 𝑎, 

and reference velocity 𝑣𝑟𝑒𝑓. The lower-level controller firstly determines the braking or acceleration based on 

a switch logic, and then transforms the desired acceleration into control input to the executor based on a PI 

controller. For a simulated vehicle, the control input is either throttle opening 𝛼𝑡ℎ𝑑𝑒𝑠 or braking pressure 𝑝𝑏𝑑𝑒𝑠. 

 

Fig. 4.3 Block Diagram of Speed Tracking Control System 

 

MPC problem modeling for vehicle speed tracking: 

Similar to the previous discussion, the vehicle longitudinal control can be expressed as a first-order inertial 

system: 

𝑎̇ =
𝐾

𝜏𝑑
(𝑎𝑑𝑒𝑠 − 𝑎) (4.1) 

where 𝐾 = 1.05 is the system gain, 𝜏𝑑 is the time constant. 

The continuous system state equation of the vehicle longitudinal dynamics can be expressed as: 
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𝒙̇ = 𝑨𝒙 + 𝑩𝒖

𝑨 = [
0 1

0 −
1

𝜏𝑑

] , 𝑩 = [
0
𝐾

𝜏𝑑

]
(4.2)  

where 𝒙 = [𝑣 𝑎]𝑇 is the system state vector, 𝒖 = 𝑎𝑑𝑒𝑠 is the system control input. 

By applying the Forward Euler (FE) method, the system state equation can be discretized as: 

𝒙(𝑘 + 1) = 𝑨𝑘𝒙(𝑘) + 𝑩𝑘𝒖(𝑘)

𝑨𝑘 = [

1 𝑇𝑠

0 1 −
𝑇𝑠
𝜏𝑑

] 𝑩𝑘 = [

0
𝑘𝑇𝑠
𝜏𝑑

]
(4.3) 

where 𝑘 is the current sampling time instant, 𝑘 + 1 is the next sampling time instant, 𝑇𝑠 is the sampling period. 

Since the velocity 𝑣 is the system output, the output equation can be expressed as: 

𝒚(𝑘) = 𝑪𝒙(𝑘)

𝑪 = [1 0]
(4.4) 

In order to ensure the system control objective – velocity tracking accuracy and to avoid excessive acceleration 

and jerk, the cost function is defined as [152]: 

𝓙(𝒙(𝑡), 𝒖(𝑡 − 1), ∆𝒖(𝑘)) =∑‖𝒚𝑝(𝑘 + 𝑖|𝑘) − 𝒚𝑟𝑒𝑓(𝑘 + 𝑖|𝑘)‖𝑸
2

𝑁𝑝

𝑖=1

+∑‖∆𝒖(𝑘 + 𝑖)‖𝑹
2

𝑁𝑐

𝑖=1

(4.5) 

where 𝑡 − 1 is the sampling time instant at last step, 𝑁𝑝 is the predictive horizon, 𝑁𝑐 is the control horizon, 

𝒚𝑝(𝑘 + 𝑖|𝑘) is the control output prediction value, 𝒚𝑟𝑒𝑓(𝑘 + 𝑖|𝑘) is the reference control output, (𝑘 + 𝑖|𝑘) 

represents predicting the value at 𝑘 + 𝑖 time instant at 𝑘 sampling time instant, where 𝑖 = 0, 1,⋯ ,𝑁𝑐 − 1. 𝑸 

and 𝑹 are the system weight matrix of the system output and control increment. The first term on the right side 

of the equation reflects the capability of the system to follow the reference trajectory. The second term reflects 

the requirement for the steady variation of the control signal. The significance of the entire cost function enables 

the system to follow the desired trajectory as quickly and steadily as possible. 

System constraints are applied to the acceleration and its changing rate – jerk, expressed as follow: 

𝒖𝑚𝑖𝑛 ≤ 𝒖(𝑘 + 𝑖) ≤ 𝒖𝑚𝑎𝑥 , 𝑖 = 0,1,⋯ ,𝑁𝑒 − 1 (4.6) 

∆𝒖𝑚𝑖𝑛 ≤ ∆𝒖(𝑘 + 𝑖) ≤ ∆𝒖𝑚𝑎𝑥 , 𝑖 = 0,1,⋯ ,𝑁𝑒 − 1 (4.7) 

where 𝒖𝑚𝑖𝑛 and 𝒖𝑚𝑎𝑥 are the thresholds of acceleration, ∆𝒖𝑚𝑖𝑛 and ∆𝒖𝑚𝑎𝑥 are the thresholds of jerk. 

The basic concept of MPC is to minimize the cost function 4.5 under the control constraints 4.6 and 4.7, solving 

the following optimization problem during each control period: 

min𝓙(𝒙(𝑘), 𝒖(𝑘 − 1), ∆𝒖(𝑘)) (4.8) 

𝑠. 𝑡.  

𝒙(𝑘 + 1) = 𝑨𝑘𝒙(𝑘) + 𝑩𝑘𝒖(𝑘)

𝑨𝑘 = [
1 𝑇𝑠
0 1 − 𝑇𝑠/𝜏𝑑

] 𝑩𝑘 = [
0

𝑘𝑇𝑠/𝜏𝑑
]
 

𝒖𝑚𝑖𝑛 ≤ 𝒖(𝑘 + 𝑖) ≤ 𝒖𝑚𝑎𝑥 , 𝑖 = 0,1,⋯ ,𝑁𝑒 − 1 
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∆𝒖𝑚𝑖𝑛 ≤ ∆𝒖(𝑘 + 𝑖) ≤ ∆𝒖𝑚𝑎𝑥 , 𝑖 = 0,1,⋯ ,𝑁𝑒 − 1 

The above optimization problem is solved by transforming it into a standard quadratic programing (QP) problem. 

 

The transformation from MPC problem to QP problem: 

For the discrete vehicle longitudinal dynamics state equation 4.3, a new state vector 𝝃(𝑘|𝑡) =

[𝒙(𝑘) 𝒖(𝑘 − 1)]𝑇 can be formulated to obtain a new state-space equation [152]~[155]: 

𝝃(𝑘 + 1) = 𝑨̃𝑘𝝃(𝑘) + 𝑩̃𝑘∆𝒖(𝑘)

𝜼(𝑘) = 𝑪̃𝑘𝝃(𝑘)
(4.9) 

where 𝑨̃𝑘 = [
𝑨𝑘 𝑩𝑘
𝟎𝑚×𝑛 𝑰𝑚

], 𝑩̃𝑘 = [
𝑩𝑘
𝑰𝑚
], 𝑪̃𝑘 = [𝑪𝑘 𝟎], 𝑰𝑚  are 1-D identity matrix and 2-D identity matrix, 

respectively, with 𝑚 = 1, 𝑛 = 2. According to equation 4.9, the state prediction can be obtained as [156]: 

𝝃(𝑘 + 1) = 𝑨̃𝑘𝝃(𝑘) + 𝑩̃𝑘∆𝒖(𝑘)

𝝃(𝑘 + 2) = 𝑨̃𝑘𝝃(𝑘 + 1) + 𝑩̃𝑘∆𝒖(𝑘 + 1) = 𝑨̃𝑘
2𝝃(𝑘) + 𝑨̃𝑘𝑩̃𝑘∆𝒖(𝑘) + 𝑩̃𝑘∆𝒖(𝑘 + 1)

𝝃(𝑘 + 3) = 𝑨̃𝑘𝝃(𝑘 + 2) + 𝑩̃𝐾∆𝒖(𝑘 + 2) = 𝑨̃𝑘
3𝝃(𝑘) + 𝑨̃𝑘

2𝑩̃𝑘∆𝒖(𝑘) + 𝑨̃𝑘𝑩̃𝑘∆𝒖(𝑘 + 1) + 𝑩̃𝑘∆𝒖(𝑘 + 2)
⋮

𝝃(𝑘 + 𝑁𝑝) = 𝑨̃𝑘𝝃(𝑘 + 𝑁𝑝 − 1) + 𝑩̃𝑘∆𝒖(𝑘 + 𝑁𝑝 − 1) = 𝑨̃𝑘
𝑁𝑝𝝃(𝑘) + 𝑨̃

𝑘

𝑁𝑝−1𝑩̃𝑘∆𝒖(𝑘) + 𝑨̃𝑘
𝑁𝑝−2𝑩̃𝑘∆𝒖(𝑘 + 1) +⋯+ 𝑩̃𝑘∆𝒖(𝑘 + 𝑁𝑝 − 1)

(4.10) 

According to equation 4.11, the system output of the new state-space equation is thereby can be calculated as 

follow [156]: 

𝜼(𝑘 + 1) = 𝑪̃𝑘𝝃(𝑘 + 1) = 𝑪̃𝑘𝑨̃𝑘𝝃(𝑘) + 𝑪̃𝑘𝑩̃𝑘∆𝒖(𝑘)

𝜼(𝑘 + 2) = 𝑪̃𝑘𝑨̃𝑘𝝃(𝑘 + 1) + 𝑪̃𝑘𝑩̃𝑘∆𝒖(𝑘 + 1) = 𝑪̃𝑘𝑨̃𝑘
𝟐𝝃(𝑘) + 𝑪̃𝑘𝑨̃𝑘𝑩̃𝑘∆𝒖(𝑘) + 𝑪̃𝑘𝑩̃𝑘∆𝒖(𝑘 + 1)

𝜼(𝑘 + 3) = 𝑪̃𝑘𝑨̃𝑘𝝃(𝑘 + 2) + 𝑪̃𝑘𝑩̃𝑘∆𝒖(𝑘 + 2) = 𝑪̃𝑘𝑨̃𝑘
3𝝃(𝑘) + 𝑪̃𝑘𝑨̃𝑘

2𝑩̃𝑘∆𝒖(𝑘) + 𝑪̃𝑘𝑨̃𝑘𝑩̃𝑘∆𝒖(𝑘 + 1) + 𝑪̃𝑘𝑩̃𝒌∆𝒖(𝑘 + 2)
⋮

𝜼(𝑘 + 𝑁𝑝) = 𝑪̃𝑘𝑨̃𝑘𝝃(𝑘 + 𝑁𝑝 − 1) + 𝑪̃𝑘𝑩̃𝑘∆𝒖(𝑘 + 𝑁𝑝 − 1) = 𝑪̃𝑘𝑨̃𝑘
𝑁𝑝𝝃(𝑘) + 𝑪̃𝑘𝑨̃𝑘

𝑁𝑝−1𝑩̃𝑘∆𝒖(𝑘) +⋯+ 𝑪̃𝑘𝑩̃𝑘∆𝒖(𝑘 + 𝑁𝑝 − 1)

(4.11) 

To make the overall relation to be clearer, the output of the system in the prediction horizon can be expressed 

in matrix form as follow [156]: 

𝒀 = 𝜳𝝃(𝑘) + 𝜣∆𝑼 (4.12) 

where, 

𝒀 =

[
 
 
 
 
 
𝜼(𝑘 + 1)

𝜼(𝑘 + 2)
⋯

𝜼(𝑘 + 𝑁𝑒)
⋯

𝜼(𝑘 + 𝑁𝑝)]
 
 
 
 
 

,𝜳 =

[
 
 
 
 
 
 
𝑪̃𝒌𝑨̃𝑘
𝑪̃𝑘𝑨̃𝑘

2

⋯

𝑪̃𝑘𝑨̃𝑘
𝑁𝑒

⋯

𝑪̃𝑘𝑨̃𝑘
𝑁𝑝
]
 
 
 
 
 
 

, 𝜣 =

[
 
 
 
 
 
 
 
 

𝑪̃𝒌𝑩̃𝒌 𝟎 𝟎 𝟎

𝑪̃𝑘𝑨̃𝑘𝑩̃𝑘 𝑪̃𝑘𝑩̃𝑘 𝟎 𝟎
⋯ ⋯ ⋱ ⋯

𝑪̃𝑘𝑨̃𝑘
𝑁𝑒−1𝑩̃𝑘 𝑪̃𝑘𝑨̃𝑘

𝑁𝑒−2𝑩̃𝑘 ⋯ 𝑪̃𝒌𝑩̃𝒌

𝑪̃𝒌𝑨̃𝒌
𝑁𝑒𝑩̃𝒌 𝑪̃𝑘𝑨̃𝑘

𝑁𝑒−1𝑩̃𝑘 ⋯ 𝑪̃𝒌𝑨̃𝒌𝑩̃𝒌
⋮ ⋮ ⋱ ⋮

𝑪̃𝑘𝑨̃𝑘
𝑁𝑝−1𝑩̃𝑘 𝑪̃𝑘𝑨̃𝑘

𝑁𝑝−2𝑩̃𝑘 ⋯ 𝑪̃𝒌𝑨̃𝒌
𝑵𝒑−𝑵𝒆−𝟏𝑩̃𝒌]

 
 
 
 
 
 
 
 

, 

∆𝑼 = [∆𝒖(𝑘) ∆𝒖(𝑘 + 1) ⋯ ∆𝒖(𝑘 + 𝑁𝑒)]
𝑇. 

From equation 4.12, it is intuitive that both the system state and output value within the prediction horizon can 

be obtained using current system state 𝝃(𝑘) and control increment ∆𝑼 within the control horizon, which is the 

realization of “prediction” of model predictive control. 

Now the reference output vector is defined as 𝒀𝑟𝑒𝑓(𝑘) = [𝜼𝑟𝑒𝑓(𝑘 + 1) ⋯ 𝜼𝑟𝑒𝑓(𝑘 + 𝑁𝑝)]𝑇, let 𝑬 = 𝜳𝝃(𝑘), 

and substitute equation 4.12 into equation 4.5. The following equation can be obtained [155]: 
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𝓙 = (𝒀 − 𝒀𝑟𝑒𝑓)
𝑇
𝑸𝑄(𝒀 − 𝒀𝑟𝑒𝑓) + ∆𝑼

𝑇𝑹𝑅∆𝑼 

= [𝜳𝝃(𝑘) + 𝜣𝑡∆𝑼(𝑡) − 𝒀𝑟𝑒𝑓]
𝑇
𝑸𝑄[𝜳𝝃(𝑘) + 𝜣𝑡∆𝑼(𝑡) − 𝒀𝑟𝑒𝑓] + ∆𝑼

𝑇𝑹𝑅∆𝑼 

= ∆𝑼𝑇(𝜣𝑇𝑸𝑄𝜣+𝑹𝑅)∆𝑼 + 2(𝑬
𝑇𝑸𝑄𝜣− 𝒀𝑟𝑒𝑓

𝑇 𝑸𝑄𝜣)∆𝑼+ 𝑬𝑇𝑸𝑄𝑬+ 𝒀𝑟𝑒𝑓
𝑇 𝑸𝑄𝒀𝑟𝑒𝑓 − 𝟐𝒀𝑟𝑒𝑓

𝑇 𝑸𝑬 (4.13) 

where 𝑸𝑄 = 𝑰𝑁𝑃 ⊗𝑸, 𝑹𝑅 = 𝑰𝑁𝑝 ⊗𝑹, ⊗ denotes the Kroneck product.  

The terms within 𝐸  are constants, which can be ignored during optimization. Thus, the cost function can be 

rewritten as [155]~[156]: 

𝓙 = 2(
1

2
∆𝑼𝑇𝑯∆𝑼+ 𝒈𝑇∆𝑼) (4.14) 

During the process of optimization, the equation 4.14 is equivalent to: 

𝓙 =
1

2
∆𝑼𝑇𝑯∆𝑼+ 𝒈𝑇∆𝑼 (4.15) 

Considering there exists the following relation between control value and control increment value: 

𝒖(𝑘 + 𝑖) = 𝒖(𝑘 + 𝑖 − 1) + ∆𝒖(𝑘) (4.16) 

Note that the system constraints in equation 4.6 and 4.7 are about control value and control increment value, 

respectively. Therefore, the variables within constraints needs to be unified before optimization. Thus, the 

constraints 4.6 and 4.7 can be rewritten as: 

𝑼𝑚𝑖𝑛 ≤ 𝑨𝑘∆𝑼+ 𝑼𝑡 ≤ 𝑼𝑚𝑎𝑥 (4.17) 

∆𝑼𝑚𝑖𝑛 ≤ ∆𝑼𝑡 ≤ ∆𝑼𝑚𝑎𝑥 (4.18) 

where 𝑼𝑡 = 𝟏𝑁𝑒 ⊗𝒖(𝑘 − 1), 𝟏𝑁𝑒 is a column vector with the 𝑁𝑒 rows, 𝒖(𝑘 − 1) is the actual control value of 

last time instant, 𝑼𝑚𝑖𝑛 and 𝑼𝑚𝑎𝑥 are the sets of minimum and maximum control value within control horizon, 

∆𝑼𝑚𝑖𝑛 and ∆𝑼𝑚𝑎𝑥 are the sets of minimum and maximum control increment values respectively within the 

control horizon. 

𝑨𝑘 =

[
 
 
 
 
1 0 ⋯ ⋯ 0
1 1 0 ⋯ 0
1 1 1 ⋱ 0
⋮ ⋮ ⋱ ⋱ 0
1 1 ⋯ 1 1]

 
 
 
 

𝑁𝑒×𝑁𝑒

 

At this point, the MPC problem in equation 4.8 is transformed into a standard quadratic QP problem: 

min
∆𝑼

1

2
∆𝑼𝑇𝑯∆𝑼+ 𝒈𝑇∆𝑼 (4.19) 

𝑠. 𝑡.  

∆𝑼𝑚𝑖𝑛 ≤ ∆𝑼 ≤ ∆𝑼𝑚𝑎𝑥
𝑼𝑚𝑖𝑛 ≤ 𝑨𝑘∆𝑼+ 𝑼𝑡 ≤ 𝑼𝑚𝑎𝑥

 

The problem described by equation 4.19 can be solved by the QP solver “quadprog” within MATLAB. And a 

sequence of control increment values can be obtained: 

∆𝑼∗ = [∆𝒖∗(𝑘), ∆𝒖∗(𝑘 + 1),⋯ , ∆𝒖∗(𝑁𝑐 − 1)]
𝑇 (4.20) 
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According to the principle of MPC, the first element of the above control sequence will be applied to the system: 

𝒖(𝑘) = 𝒖(𝑘 − 1) + ∆𝒖∗(𝑘) (4.21) 

Taking as the input to the system, it will be executed until the next time instant. At the next new instant, the 

system will re-predict the output in the next prediction horizon based on the system state. A new sequence of 

control value will be obtained by solving an optimization problem. With such an iteratively process, the system 

completes the control process. 

Simulation realization: 

Based on the above theoretical analysis and derivation, the co-simulation built based on Simulink/CarSim in 

this section realizes the vehicle speed tracking based on MPC. The overall MPC algorithm will be achieved 

within the Simulink environment, while an integrated vehicle dynamics model is provided by CarSim. The co-

simulation environment is shown in Figure 4.4 

 

Fig. 4.4 Co-simulation Platform for Vehicle Speed Tracking Based on MPC Algorithm 

The MPC-based vehicle speed tracking controller is designed through an S-Function block within Simulink. 

The main function of the MPC algorithm is shown in Figure 4.5. 

Given a step-signal as the reference speed trajectory, the speed tracking performance of the proposed MPC 

controller is shown in Figure 4.6. The proposed MPC-based vehicle longitudinal speed tracking system shows 

good performance. It can rapidly respond to the step-signal and track without any overshooting.  

This complete example shows how to design a model predictive controller from mathematical derivation to 

code implementation. The concept of mathematical derivation is similar for the following section of this 

research. The most critical part is the optimization problem formulation. Different from a conventional control 

law, MPC is more of an idea that determine the control input to the system by solving an optimization problem 
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at each sampling time. Because of this, online computation complexity becomes the major disadvantage of MPC 

algorithm. Therefore, it is worthwhile to discuss about the problem of practical application of MPC in the 

following sections. 

 

Fig. 4.5 Main Function of MPC Algorithm 
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Fig. 4.6 Result of Vehicle Speed Tracking based on MPC Algorithm 

 

4.1.3. Multi-Objective Optimization Considering Preceding Vehicle Based on LMPC 

As the key component of the entire predictive cruise control system, car following driving scenario is the most 

frequent and typical driving condition. During following the preceding vehicle, driving comfortability and 

energy economy are also required to be considered. Hence, in this section, the predictive cruise control system 

for EV’s eco-driving is designed based on MPC, taking the inter-vehicle longitudinal dynamics model as the 

control plant. By integrating the driving state of preceding vehicle and the safety distance model, the motion of 

the host and preceding vehicle can be predicted within the prediction horizon. Based on ensuring the car-

following safety, the energy economy is maximized. The cost function is established considering both driving 

safety and comfortability. By means of using rolling horizon optimization algorithm, the optimal control value, 

i.e. the desired longitudinal acceleration, can be obtained, which is further fed into the vehicle longitudinal 

dynamics model. The controller structure of car following scenario is shown in Figure 4.7. 
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Fig. 4.7 Controller Structure of Car Following Scenario 

Taking the inter-vehicle longitudinal dynamics model proposed in Chapter 2 as the controller plant of MPC, the 

state variables of the system are inter-vehicle distance error ∆𝑑, the relative velocity between the host and 

preceding vehicle 𝑣𝑟𝑒𝑙, and acceleration of host vehicle 𝑎ℎ𝑜𝑠𝑡: 

𝒙 = [∆𝑑, 𝑣𝑟𝑒𝑙 , 𝑎ℎ𝑜𝑠𝑡]
𝑇 (4.22) 

According to the derivation in Chapter 2 – 2.2.5, the system state-space equation is expressed as follow: 

𝒙̇ = 𝑨𝑥 + 𝑩𝑢 + 𝑮𝑤 (4.23) 

where desired acceleration is the control input 𝑢, the acceleration of preceding is regarded as system disturbance 

𝑤. 

With ℋ = 2𝜏1𝑣ℎ𝑜𝑠𝑡 + 3𝜏2𝑣ℎ𝑜𝑠𝑡
2 − 2𝜏3𝑣𝑟𝑒𝑙𝑣ℎ𝑜𝑠𝑡 + 𝜏3𝑣ℎ𝑜𝑠𝑡

2 − 𝑑𝑚𝑖𝑛, then the system matrices are derived as: 

𝑨 = [

0 1 −ℋ
0 0 −1

0 0 −
1

𝑇𝑔

], 𝑩 = [

0
0
𝐾𝑔

𝑇𝑔

], 𝑮 = [
𝜏3𝑣ℎ𝑜𝑠𝑡

2

1
0

], 𝑢 = 𝑎𝑑𝑒𝑠𝑖𝑟𝑒𝑑, 𝑤 = 𝑎𝑝𝑟𝑒. 

i.e. 

[
∆𝑑̇ 
𝑣𝑟𝑒𝑙̇
𝑎ℎ𝑜𝑠𝑡̇

] = [

0 1 −ℋ
0 0 −1

0 0 −
1

𝑇𝑔

] [
∆𝑑
𝑣𝑟𝑒𝑙
𝑎ℎ𝑜𝑠𝑡

] + [

0
0
𝐾𝑔

𝑇𝑔

] 𝑎𝑑𝑒𝑠𝑖𝑟𝑒𝑑 + [
𝜏3𝑣ℎ𝑜𝑠𝑡

2

1
0

] 𝑎𝑝𝑟𝑒 (4.24) 

where 𝑇𝑔 is the time constant, 𝐾𝑔 is the system gain. 

The discrete inter-vehicle longitudinal dynamics model can be derived as follow: 

𝒙(𝑘 + 1) = 𝑨̅𝒙(𝑘) + 𝑩̅𝑢(𝑘) + 𝑮̅𝑤(𝑘)

𝒚(𝑘) = 𝑪𝒙(𝑘)
(4.25) 

where 𝑘  refers to the 𝑘 th sampling time step, 𝑨̅ , 𝑩̅ , and 𝑮̅  are discretized system coefficient matrices, 𝒚 

represents the system output, 𝑪 is an identity matrix. The detailed derivation is referred to the Chapter 2-2.2.5. 

As the bond between control objectives and control algorithm, control performance index in the car following 

scenario is important in that, firstly, it is the foundation of coordinated control for energy economy, driving 

safety and driving comfortability; secondly, its cost function and constraints together constitute the predictive 
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optimization problem, which is the core of the MPC algorithm. Accordingly, the design of the performance 

index should follow the rules: (1) accurately quantify the multiple control objectives, including energy economy, 

driving safety and comfortability; (2) the cost function and constraints should be as simple as possible so as to 

ensure the real-time solving capability of the MPC algorithm. 

 

Energy economy: 

During the car following process, energy consumption is closely related to the longitudinal acceleration. Hence, 

by smoothing the acceleration and jerk to reduce the hard acceleration and deceleration, the energy economy 

can be efficiently improved. The derivative of vehicle acceleration can be defined as jerk: 

𝑗(𝑡) =
𝑎(𝑡) − 𝑎(𝑡 − 1)

𝑇𝑠
(4.26) 

The control objective can be mathematically expressed as: 

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 {
min|𝑎ℎ𝑜𝑠𝑡(𝑘)|

min|𝑗ℎ𝑜𝑠𝑡(𝑘)|
(4.27) 

where 𝑎ℎ𝑜𝑠𝑡(𝑘) is the transient acceleration of the host vehicle, 𝑗ℎ𝑜𝑠𝑡(𝑘) is the transient jerk of the host vehicle. 

According to the analysis by Li [133], an approximate linear relation between energy consumption and vehicle 

acceleration can be found. So, here the energy economy can be quantified using Euclidean norm of desired 

acceleration and desired jerk of the host vehicle: 

𝒥𝐸 = 𝑤𝑢𝑎𝑑𝑒𝑠𝑖𝑟𝑒𝑑
2 +𝑤𝑑𝑢𝑗𝑑𝑒𝑠𝑖𝑟𝑒𝑑

2 (4.28) 

where 𝒥𝐸 is the performance index of the energy economy, 𝑤𝑢 is the weight coefficient of desired acceleration, 

and 𝑤𝑑𝑢 is the weight coefficient of the desired jerk. For the former term, by minimizing the 𝒥𝐸, the acceleration 

amplitude can be lowered so that the energy economy can be improved. For latter term, it limits the frequent 

acceleration or deceleration of the electric motor so as to further improve the energy economy. Besides, lowering 

the jerk can efficiently reduce the longitudinal driving impact so that the driving comfortability can be improved. 

 

Driving safety: 

During the car following process, driving safety is always the top priority. In the previous chapter, the desired 

car following model has been proposed based on a customized safety distance model. The control system 

regulates the vehicle to reach the desired car-following distance by manipulating its acceleration based on the 

V2V state information. Apart from the desired car-following distance calculated by the safety distance model 

as the ultimate control objective, another real-time safe distance 𝑑𝑠𝑎𝑓𝑒 before reaching the final desired value 

is required to constrain the actual inter-vehicle distance.  To ensure the driving safety and keep the host vehicle 

from a collision with the preceding vehicle, the actual car-following distance should be always greater than 

safety distance 𝑑𝑠𝑎𝑓𝑒. This real-time safe distance 𝑑𝑠𝑎𝑓𝑒 can be defined by a Time-to-Collision (TTC) Strategy, 

which is used to describe the car-following safety during braking, e.g., when the host vehicle velocity is much 

greater than the preceding vehicle, it is still risky to collide with the preceding vehicle even there’s a long inter-

vehicle distance. Therefore, the safety constraints can be defined as follow: 
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𝐷𝑎𝑐𝑡𝑢𝑎𝑙(𝑘) ≥ 𝑑𝑠𝑎𝑓𝑒(𝑘)

𝑑𝑠𝑎𝑓𝑒(𝑘) = max(𝑡𝑇𝑇𝐶 ∙ 𝑣𝑟𝑒𝑙(𝑘) + 𝑑𝑚𝑖𝑛)
(4.29) 

Where 𝐷𝑎𝑐𝑡𝑢𝑎𝑙 is the actual real-time inter-vehicle distance, 𝑡𝑇𝑇𝐶 is the time to collision. 

When preceding vehicle running at a steady state, the control objective is forcing the actual inter-vehicle 

distance approaching the desired safety distance calculated by the safety distance model, i.e., the error ∆𝑑 

between 𝐷𝑎𝑐𝑡𝑢𝑎𝑙 and 𝐷𝑠𝑎𝑓𝑒 approaching zero. Simultaneously, to keep the traffic flow to be as stable as possible, 

another control objective is to let the host vehicle velocity approaching the preceding vehicle velocity by 

adjusting the acceleration of the host vehicle, i.e., 𝑣𝑟𝑒𝑙 approaching zero. 

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 {
∆𝑑(𝑘) → 0
𝑣𝑟𝑒𝑙(𝑘) → 0

, 𝑘 → ∞ (4.30) 

To quantitatively describe the car-following capability, the Euclidean norm of ∆𝑑 and 𝑣𝑟𝑒𝑙 is used to define the 

cost function of driving safety: 

𝒥𝑆 = 𝑤∆𝑑∆𝑑
2 +𝑤𝑣𝑟𝑒𝑙𝑣𝑟𝑒𝑙

2 (4.31) 

Where 𝒥𝑆 is the performance index of driving safety, 𝑤∆𝑑 is the weight coefficient of the tracking distance error, 

𝑤𝑣𝑟𝑒𝑙 is the weight coefficient of the relative velocity. 

However, corresponding to the unstable driving condition of the preceding vehicle, the host vehicle tends to 

reflect as hard acceleration or deceleration, which is against the energy economy. If the weight of fuel economy 

is greater than driving safety in the final cost function, there’s possible to compromise the vehicle dynamics in 

the pursuit of the energy economy. Therefore, the variable ∆𝑑  and 𝑣𝑟𝑒𝑙  are constrained by the following 

boundary conditions: 

∆𝑑𝑚𝑖𝑛 ∙ 𝑆𝐷𝐸
−1 ≤ ∆𝑑(𝑘) ≤ ∆𝑑𝑚𝑎𝑥 ∙ 𝑆𝐷𝐸

−1 

𝑣𝑟𝑒𝑙,𝑚𝑖𝑛 ∙ 𝑆𝑉𝐸
−1 ≤ 𝑣𝑟𝑒𝑙(𝑘) ≤ 𝑣𝑟𝑒𝑙,𝑚𝑎𝑥 ∙ 𝑆𝑉𝐸

−1 
(4.32) 

where ∆𝑑𝑚𝑖𝑛 and ∆𝑑𝑚𝑎𝑥 are the lower and upper boundary of inter-distance error, 𝑣𝑟𝑒𝑙,𝑚𝑖𝑛 and 𝑣𝑟𝑒𝑙,𝑚𝑎𝑥 are the 

extreme value of relative velocity, 𝑆𝐷𝐸 and 𝑆𝑉𝐸 are the driver’s sensitivity to the ∆𝑑 and 𝑣𝑟𝑒𝑙, which can be 

calculated by [137]: 

𝑆𝐷𝐸
−1 = 𝑘𝑆𝐷𝐸 ∙ 𝑣ℎ𝑜𝑠𝑡 + 𝑑𝑆𝐷𝐸
𝑆𝑉𝐸
−1 = 𝑘𝑆𝑉𝐸 ∙ 𝑣ℎ𝑜𝑠𝑡 + 𝑑𝑆𝑉𝐸

(4.33) 

where 𝑘𝑆𝐷𝐸 and 𝑘𝑆𝑉𝐸 are the coefficients of first-order terms, 𝑑𝑆𝐷𝐸 and 𝑑𝑆𝑉𝐸 are the constant terms. 

Driving Comfortability: 

Driving comfortability is presented in two aspects: (1) desired acceleration calculated by the upper-level 

controller should be align with the driver’s expectation; (2) try to drive at a constant speed and avoid frequent 

acceleration or deceleration. Therefore, the following control objective can be defined: 

𝑎𝑑𝑒𝑠𝑖𝑟𝑒𝑑,𝑚𝑖𝑛 ≤ 𝑎𝑑𝑒𝑠𝑖𝑟𝑒𝑑(𝑘) ≤ 𝑎𝑑𝑒𝑠𝑖𝑟𝑒𝑑,𝑚𝑎𝑥
𝑗𝑑𝑒𝑠𝑖𝑟𝑒𝑑,𝑚𝑖𝑛 ≤ 𝑗𝑑𝑒𝑠𝑖𝑟𝑒𝑑(𝑘) ≤ 𝑗𝑑𝑒𝑠𝑖𝑟𝑒𝑑,𝑚𝑎𝑥

(4.34) 

where 𝑎𝑑𝑒𝑠𝑖𝑟𝑒𝑑,𝑚𝑖𝑛  and 𝑎𝑑𝑒𝑠𝑖𝑟𝑒𝑑,𝑚𝑎𝑥  are the desired acceleration boundary condition, 𝑗𝑑𝑒𝑠𝑖𝑟𝑒,𝑚𝑖𝑛  and 

𝑗𝑑𝑒𝑠𝑖𝑟𝑒,𝑚𝑎𝑥 are the desired jerk boundary condition, respectively. 
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Moreover, considering the physical limitation of vehicle velocity and acceleration, the control inputs into the 

host vehicle should be constrained by: 

𝑣𝑚𝑖𝑛 ≤ 𝑣ℎ𝑜𝑠𝑡(𝑘) ≤ 𝑣𝑚𝑎𝑥
𝑎𝑚𝑖𝑛 ≤ 𝑎ℎ𝑜𝑠𝑡(𝑘) ≤ 𝑎𝑚𝑎𝑥

(4.35) 

where 𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥, 𝑎𝑚𝑖𝑛, and 𝑎𝑚𝑎𝑥 are all decided by the braking and acceleration capability of the vehicle 

itself. 

Consequently, in this research, driving comfortability is realized by constraining the host vehicle acceleration 

as follow: 

𝒥𝐶 = 𝑤𝑎𝑎ℎ𝑜𝑠𝑡
2 (4.36) 

where 𝒥𝐶 is the performance index of driving comfortability, 𝑤𝑎 is the weight coefficient of the host vehicle 

longitudinal acceleration. 

 

In the car following scenario, the energy economy, driving safety and comfortability are mutually restricted and 

affected. To obtain the optimal control value, each performance index is required to be considered cooperatively. 

Therefore, under the car following scenario, the optimization problem of MPC in each sampling period can be 

integrated as: 

𝒥𝑐𝑎𝑟−𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 = 𝒥𝐸 + 𝒥𝑆 + 𝒥𝐶 = 𝑤𝑢𝑎𝑑𝑒𝑠𝑖𝑟𝑒𝑑
2 +𝑤𝑑𝑢𝑗𝑑𝑒𝑠𝑖𝑟𝑒𝑑

2 +𝑤∆𝑑∆𝑑
2 +𝑤𝑣𝑟𝑒𝑙𝑣𝑟𝑒𝑙

2 +𝑤𝑎𝑎ℎ𝑜𝑠𝑡
2 (4.37) 

where 𝒥𝑐𝑎𝑟−𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 is the system cost function under car following scenario. 

Replacing the [∆𝑑, 𝑣𝑟𝑒𝑙 , 𝑎ℎ𝑜𝑠𝑡]
𝑇  and 𝑎𝑑𝑒𝑠𝑖𝑟𝑒𝑑  with 𝒚  and 𝑢 , respectively, the following equation can be 

obtained: 

𝒥𝑐𝑎𝑟−𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 = 𝒚
𝑇𝒘𝑦𝒚 + 𝑤𝑢𝑢

2 +𝑤𝑑𝑢𝑢̇
2 (4.38) 

where 𝒘𝑦 is the weight matrix of the output vector: 

𝒘𝑦 = [

𝑤∆𝑑 0 0
0 𝑤𝑣𝑟𝑒𝑙 0

0 0 𝑤𝑎

]. 

The next step is to transform the constraints of the performance indexes above into system input-and-output 

constraints.  

As the input to the inter-vehicle longitudinal dynamics model, the comfortability constraints can be directly 

transformed into constraints of system inputs, as follow: 

𝑎ℎ𝑜𝑠𝑡,𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑎ℎ𝑜𝑠𝑡,𝑚𝑎𝑥
𝑗ℎ𝑜𝑠𝑡,𝑚𝑖𝑛 = 𝑎ℎ𝑜𝑠𝑡,𝑚𝑖𝑛̇ ≤ 𝑢̇ ≤ 𝑎ℎ𝑜𝑠𝑡,𝑚𝑎𝑥̇ = 𝑗ℎ𝑜𝑠𝑡,𝑚𝑎𝑥

(4.39) 

Transform the driving safety constraints into system output constraints: 

∆𝑑 + 𝐷𝑠𝑎𝑓𝑒 ≥ 𝑡𝑇𝑇𝐶 ∙ 𝑣𝑟𝑒𝑙
∆𝑑 + 𝐷𝑠𝑎𝑓𝑒 ≥ 𝑑𝑚𝑖𝑛

(4.40) 

Substitute 𝐷𝑠𝑎𝑓𝑒, and rewrite it as: 
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[
1 −𝑡𝑇𝐶𝐶 − 𝑉𝑇𝐻
1 −𝑉𝑇𝐻

] [
∆𝑑
𝑣𝑟𝑒𝑙

] ≥ [
𝑉𝑇𝐻 ∙ 𝑣𝑝𝑟𝑒 − 𝑑𝑚𝑖𝑛
−𝑉𝑇𝐻 ∙ 𝑣𝑝𝑟𝑒

] (4.41) 

For boundary condition 4.32, it can be transformed into system output constraints: 

[

∆𝑑𝑚𝑖𝑛 ∙ 𝑆𝐷𝐸
−1

𝑣𝑟𝑒𝑙,𝑚𝑖𝑛 ∙ 𝑆𝑉𝐸
−1

𝑎ℎ𝑜𝑠𝑡,𝑚𝑖𝑛

] ≤ 𝒚 ≤ [

∆𝑑𝑚𝑎𝑥 ∙ 𝑆𝐷𝐸
−1

𝑣𝑟𝑒𝑙,𝑚𝑎𝑥 ∙ 𝑆𝑉𝐸
−1

𝑎ℎ𝑜𝑠𝑡,𝑚𝑎𝑥

] (4.42) 

Until here, the multi-objective optimization for the car following scenario is well-designed. The next step is to 

merge the overall optimization problem, including cost function and various constraints, into the framework of 

the MPC algorithm to realize closed-loop control. 

4.1.4. Energy Consumption Minimization Considering SPaT Information and Preceding 

Vehicle Based on NLMPC 

 

Fig. 4.8 Fundamental Concept of Signal Anticipation Scenario 

When the host vehicle is driving in the signal anticipation scenario based on the driving scenario switching logic 

(DSSL) defined in Chapter 2 – 2.1.2, the predictive cruise control system enters the optimization problem 

defined in equation 4.54. within the nonlinear equality constrains 4.56-4.57, linear inequality constraints 4.58 – 

4.62. At each sampling time 𝑡 , a reference velocity is obtained based on the reference velocity planning 

algorithm using real-time SPaT information, which is a velocity that can pass the upcoming signalized 

intersection without any stop, i.e., always capture the green timing of traffic lights crossing the intersection. The 

cost function in equation 4.54 takes the obtained reference velocity to execute the optimization. The first term 

of equation 4.54 is to minimize the energy consumption of the vehicle during the signal anticipation. If the first 

term is only existing, the vehicle would have no moving motivation because the first term forces the vehicle to 

consume as little energy as possible. Therefore, the second term is required to penalize the error between actual 

driving velocity and reference velocity so that the host vehicle can track the reference velocity at each moment 

in the signal anticipation scenario to realize passing signalized intersection without any stop and further 

minimize the energy consumption. The third term is introduced with the slack factor 𝜀 to minimize the variation 



65 
 

 

rate of acceleration – jerk, so that the driving comfortability during signal anticipation scenario is guaranteed. 

The velocity is bounded with the road section speed limitation in equation 4.58. The vehicle acceleration, motor 

torque, and motor speed are all limited by the technical characteristics of the vehicle itself in equations 4.59, 

4.61, and 4.62, respectively. After solving the nonlinear optimization problem with nonlinear constraints in each 

time step, an optimal control sequence can be obtained, and use the first control in the sequence as the vehicle’s 

input. Such an nonlinear online optimization is rolling forward with the moving of the prediction horizon to 

achieve real-time reference velocity tracking to minimize energy consumption. The Controller Structure of the 

signal anticipation scenario is shown as Figure 4.8. 

 

Fig. 4.9 Workflow of The MPC Problem for Signal Anticipation Scenario 

Rewrite the vehicle longitudinal dynamics model in Chapter 2 – 2.2.1 into a state equation: 
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𝑓(𝑣ℎ𝑜𝑠𝑡 , 𝑢) = [

𝑣ℎ𝑜𝑠𝑡

(−
1

2𝑚𝑒𝑞
𝜌𝑎𝐴𝑓𝐶𝐷𝑣ℎ𝑜𝑠𝑡

2 − 𝑐𝑟𝑔 𝑐𝑜𝑠 𝜃 − 𝑔 𝑠𝑖𝑛 𝜃) + 𝑢
] (4.43) 

ℒ = 𝑤𝐸𝑖𝑛𝑠[𝐸𝑖𝑛𝑠(𝑣ℎ𝑜𝑠𝑡 , 𝑎ℎ𝑜𝑠𝑡 , 𝑇𝑚, 𝜔𝑚)] + 𝑤𝑣𝑒(𝑣ℎ𝑜𝑠𝑡 − 𝑣𝑟𝑒𝑓)
2
+𝑤𝜀𝜀

2 (4.44) 

 

Min
𝑢
𝒥𝑠𝑖𝑔𝑛𝑎𝑙 𝑎𝑛𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛 = ∫ ℒ[𝑣ℎ𝑜𝑠𝑡(𝑡

′), 𝑢(𝑡′)]
𝑡+𝑇

𝑡
𝑑𝑡′ (4.45) 

𝑠. 𝑡.  

𝑎ℎ𝑜𝑠𝑡 =
1

𝑚𝑒𝑞
[−𝑐𝑟𝑚𝑒𝑞𝑔 cos 𝜃 −𝑚𝑒𝑞𝑔 sin𝜃 −

1

2
𝜌𝑎𝐴𝑓𝐶𝐷𝑣ℎ𝑜𝑠𝑡

2 ] + 𝑢 (4.46) 

𝐸𝑖𝑛𝑠 = 𝐼𝐸𝐶𝑀(𝑣ℎ𝑜𝑠𝑡 , 𝑎ℎ𝑜𝑠𝑡 , 𝑇𝑚,ℎ𝑜𝑠𝑡 , 𝜔𝑚,ℎ𝑜𝑠𝑡) (4.47) 

𝑣𝑚𝑖𝑛 ≤ 𝑣ℎ𝑜𝑠𝑡 ≤ 𝑣𝑚𝑎𝑥 (4.48) 

𝑎𝑚𝑖𝑛 ≤ 𝑎ℎ𝑜𝑠𝑡 ≤ 𝑎𝑚𝑎𝑥 (4.49) 

𝑎𝑚𝑖𝑛̇ − 𝜀 ≤ 𝑎ℎ𝑜𝑠𝑡̇ ≤ 𝑎𝑚𝑎𝑥̇ + 𝜀 (4.50) 

0 ≤ 𝑇𝑚 ≤ 𝑇𝑚,𝑚𝑎𝑥 (4.51) 

0 ≤ 𝜔𝑚 ≤ 𝜔𝑚,𝑚𝑎𝑥 (4.52) 

During the prediction horizon 𝑇, the weights here 𝑤𝐸𝑖𝑛𝑠, 𝑤𝑣𝑒, and 𝑤𝜀 are chosen with the criterion that normal 

magnitudes of cost terms are balanced. Finally, the weights can be tuned through the observation of simulation 

results to maximize the energy economy. To solve the above nonlinear optimization problem and derive the 

optimal control sequence, the encapsulated function “𝒻𝑚𝑖𝑛𝑐𝑜𝑛” with sequential quadratic programming (SQP) 

algorithm from MATLAB is called. The workflow of the MPC problem for the signal anticipation scenario is 

shown in Figure 4.9. 

4.1.5. Energy Consumption Minimization Considering Road Grade Based on NLMPC 

When the driving scenario switching logic (DSSL) selects the free driving mode, the vehicle starts eco-driving 

in scenario accessing the upcoming road gradients information. The basic concept is that predictive cruise 

control system utilizes the vehicle longitudinal dynamics model combined with ANN-IECM to calculate the 

optimal control input based on the information of specific road altitude of the driving position to improve the 

energy economy over free travel distance. In the real implementation, the information of real-time road altitude 

is provided by ITS. The basic concept of the free driving scenario is demonstrated in Figure 4.10. 
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Fig. 4.10 Basic Concept of Free Driving Scenario 

Based on the vehicle longitudinal dynamics model proposed in Chapter 2 – 2.2.1, the state-space equation of 

the vehicle in the free driving scenario can be expressed as: 

𝑓(𝑣ℎ𝑜𝑠𝑡 , 𝑢) = [

𝑣

(−
1

2𝑚𝑒𝑞
𝜌𝑎𝐴𝑓𝐶𝐷𝑣ℎ𝑜𝑠𝑡

2 − 𝑐𝑟𝑔 𝑐𝑜𝑠 𝜃(𝑥) − 𝑔 𝑠𝑖𝑛 𝜃(𝑥)) + 𝑢
] (4.53) 

The road gradient 𝜃(𝑥) can be calculated using the real-time road altitude information 𝒽(𝑥) as [87]: 

𝜃(𝑥) = tan−1 [
𝒽(𝑥 + ∆𝑥) − 𝒽(𝑥 − ∆𝑥)

2∆𝑥
] (4.54) 

The cost function in the free driving scenario is defined as: 

ℒ(𝑢) = 𝑤𝐸𝑖𝑛𝑠𝐸𝑖𝑛𝑠(𝑣ℎ𝑜𝑠𝑡 , 𝑎ℎ𝑜𝑠𝑡 , 𝑇𝑚, 𝜔𝑚) + 𝑤𝑣(𝑣ℎ𝑜𝑠𝑡 − 𝑣𝑑𝑒𝑠𝑖𝑟𝑒𝑑)
2 + 𝑤𝑢𝑢

2 (4.55) 

The performance index thereby can be written as: 

min
𝑢
𝒥𝑓𝑟𝑒𝑒 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 = ∫ ℒ(𝑢)𝑑𝑡

𝑡+𝑇

𝑡

(4.56) 

𝑠. 𝑡. 
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 𝑎ℎ𝑜𝑠𝑡 = (−
1

2𝑚𝑒𝑞
𝜌𝑎𝐴𝑓𝐶𝐷𝑣ℎ𝑜𝑠𝑡

2 − 𝑐𝑟𝑔 𝑐𝑜𝑠 𝜃(𝑥) − 𝑔 𝑠𝑖𝑛 𝜃(𝑥)) + 𝑢 (4.57) 

𝐸𝑖𝑛𝑠 = 𝐼𝐸𝐶𝑀(𝑣ℎ𝑜𝑠𝑡 , 𝑎ℎ𝑜𝑠𝑡 , 𝑇𝑚,ℎ𝑜𝑠𝑡 , 𝜔𝑚,ℎ𝑜𝑠𝑡) (4.58) 

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑡) ≤ 𝑢𝑚𝑎𝑥 (4.59) 

𝑣𝑚𝑖𝑛 ≤ 𝑣(𝑡) ≤ 𝑣𝑚𝑎𝑥 (4.60) 

where, the most important parameter is the 𝑣𝑑𝑒𝑠𝑖𝑟𝑒𝑑. Basically, the efficiency of the electric motor is relatively 

stable, which features the broad high efficiency range and energy conversion efficiency. However, the power in 

the high rotation speed will decline; and the aerodynamics resistance will be the main source of energy 

consumption when the vehicle velocity is faster than 60𝑘𝑚/ℎ. Therefore, the most energy-efficient driving 

velocity for electric vehicle will be 50~60𝑘𝑚/𝑠. Hence, the 𝑣𝑑𝑒𝑑𝑖𝑟𝑒𝑑 for the free driving scenario is set by 

15.28𝑚/𝑠 (55𝑘𝑚/ℎ). 

𝑇 is the prediction horizon of the MPC algorithm, during which the optimal control inputs are calculated, 𝑢 is 

the optimal acceleration command. Given the performance index 4.66, 𝑇 is discretized into 𝑁 steps with size ℎ. 

For each prediction horizon, the future vehicle control sequence {𝑢𝑛ℎ(𝑡)}𝑡=𝑛ℎ
𝑡=𝑛ℎ+𝑇 are obtained. Then, the first 

element of the sequence is input into the vehicle plant. The first term in the cost function is to minimize the 

overall energy consumption during the prediction horizon 𝑇. The second term is to penalize the deviation of the 

actual vehicle velocity 𝑣ℎ𝑜𝑠𝑡 from the desired energy-efficient velocity 𝑣𝑑𝑒𝑠𝑖𝑟𝑒𝑑. The third term is the cost for 

acceleration command to avoid hard input because of tracking the desired velocity. 𝑤𝐸𝑖𝑛𝑠, 𝑤𝑣 and 𝑤𝑢 are the 

weight factors for each term, respectively. 

Similarly, the encapsulated function “𝒻𝑚𝑖𝑛𝑐𝑜𝑛” with sequential quadratic programming (SQP) algorithm from 

MATLAB is called, to solve this nonlinear optimization problem. The workflow of the MPC problem for the 

free driving scenario is demonstrated in Figure 4.11. 
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Fig. 4.11 Workflow of MPC Problem for Free Driving Scenario 

4.2. Derivation of Predictive Optimization Problem 

The basic principle of MPC is to predict the system future state variable based on the current system state. Then, 

based on the predicted state and control input, an optimization problem is presented and solved using the 

numerical method during the prediction horizon. For the linear MPC problem for the car following scenario, 

the mathematical derivations of the predictive optimization problem are discussed in this section based on the 

system state equation, cost function and corresponding constraints proposed in the previous section. 

4.2.1. Predictive Model Transformation of Inter-Vehicle Longitudinal Dynamics Model 

The discrete inter-vehicle longitudinal dynamics model was derived previously as follow: 

𝒙(𝑘 + 1) = 𝑨̅𝒙(𝑘) + 𝑩̅𝑢(𝑘) + 𝑮̅𝑤(𝑘)

𝒚(𝑘) = 𝑪𝒙(𝑘)
(4.61) 
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Assume current time instant is 𝑘, prediction horizon is 𝑝, then inter-vehicle longitudinal dynamics model during 

the prediction horizon 𝑝 can be written as: 

𝑿(𝑘 + 𝑝|𝑘) = 𝑨𝑥𝒙(𝑘) + 𝑩𝑥𝑼(𝑘 +𝑚) + 𝑮𝑥𝑾(𝑘 + 𝑝) (4.62) 

where 𝑝 and 𝑚 are the prediction horizon and control horizon of MPC, respectively, and 𝑚 ≤ 𝑝. 

The coefficient matrices can be derived as: 

𝑿(𝑘 + 𝑝|𝑘) = [

𝑥(𝑘 + 1|𝑘)
𝑥(𝑘 + 2|𝑘)

⋮
𝑥(𝑘 + 𝑝|𝑘)

], 𝑨𝑥 = [

𝑨̅
𝑨̅2

⋮
𝑨̅𝑝

], 𝑼(𝑘 +𝑚) = [

𝑢(𝑘)
𝑢(𝑘 + 1)

⋮
𝑢(𝑘 + 𝑚 − 1)

], 𝑾(𝑘 + 𝑝) = [

𝒘(𝑘)
𝒘(𝑘 + 1)

⋮
𝒘(𝑘 + 𝑝 − 1)

], 

𝑩𝑥 =

[
 
 
 

𝑩̅ 𝟎 ⋯ 𝟎
𝑨̅𝑩̅ 𝑩̅ ⋯ 𝟎
⋮ ⋮ ⋱ ⋮

𝑨̅𝑝−1𝑩̅ 𝑨̅𝑝−2𝑩̅ ⋯ ∑ 𝑨̅𝓏
𝑝−𝑚
𝓏=0 𝑩̅]

 
 
 
, 𝑮𝑥 =

[
 
 
 

𝑮̅ 𝟎 ⋯ 𝟎
𝑨̅𝑮̅ 𝑮̅ ⋯ 𝟎
⋮ ⋮ ⋱ ⋮

𝑨̅𝑝−1𝑮̅ 𝑨̅𝑝−2𝑮̅ ⋯ ∑ 𝑨̅𝓏
𝑝−𝑚
𝓏=0 𝑮̅]

 
 
 
. 

Correspondingly, the system output for the future 𝑘 + 1, ⋯, 𝑘 + 𝑝 time instant can be predicted as: 

𝒀(𝑘 + 𝑝|𝑘) = 𝑨𝑦𝒙(𝑘) + 𝑩𝑦𝑼(𝑘 +𝑚) + 𝑮𝑦𝑾(𝑘 + 𝑝) (4.63) 

where, 

𝒀(𝑘 + 𝑝|𝑘) = [

𝒚(𝑘 + 1|𝑘)
𝒚(𝑘 + 2|𝑘)

⋮
𝒚(𝑘 + 𝑝|𝑘)

], 𝑨𝑥 = [

𝑪𝑨̅
𝑪𝑨̅2

⋮
𝑪𝑨̅𝑝

], 

𝑩𝑦 =

[
 
 
 

𝑪𝑩̅ 𝟎 ⋯ 𝟎
𝑪𝑨̅𝑩̅ 𝑪𝑩̅ ⋯ 𝟎
⋮ ⋮ ⋱ ⋮

𝑪𝑨̅𝑝−1𝑩̅ 𝑪𝑨̅𝑝−2𝑩̅ ⋯ ∑ 𝑪𝑨̅𝓏
𝑝−𝑚
𝓏=0 𝑩̅]

 
 
 
, 𝑮𝑥 =

[
 
 
 

𝑪𝑮̅ 𝟎 ⋯ 𝟎
𝑪𝑨̅𝑮̅ 𝑪𝑮̅ ⋯ 𝟎
⋮ ⋮ ⋱ ⋮

𝑪𝑨̅𝑝−1𝑮̅ 𝑪𝑨̅𝑝−2𝑮̅ ⋯ ∑ 𝑪𝑨̅𝓏
𝑝−𝑚
𝓏=0 𝑮̅]

 
 
 
. 

4.2.2. Predictive Model Transformation of Constraints and Cost Function 

The cost function for car following scenario was defined as follow: 

𝒥𝑐𝑎𝑟−𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 = 𝒚
𝑇𝒘𝑦𝒚 + 𝑤𝑢𝑢

2 +𝑤𝑑𝑢𝑢̇
2 (4.64) 

where, 

𝒘𝑦 = [

𝑤∆𝑑 0 0
0 𝑤𝑣𝑟𝑒𝑙 0

0 0 𝑤𝑎

]. 

The predictive form transformation can be written as follow [152]~[156]: 

𝓙𝑐𝑎𝑟−𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 =∑‖𝒚(𝑘 + 𝑖|𝑘)‖
𝑤𝑦(𝑘 + 𝑖|𝑘)
2 + ‖𝒖(𝑘 + 𝑖|𝑘)‖𝑤𝑢

2

𝑝

𝑖=1

+ ‖∆𝒖(𝑘 + 𝑖|𝑘)‖𝑤∆𝑢
2 (4.65) 

where,  

𝑤𝑦(𝑘 + 𝑖|𝑘) = [

𝑤∆𝑑(𝑘 + 𝑖|𝑘) 0 0
0 𝑤𝑣𝑟𝑒𝑙(𝑘 + 𝑖|𝑘) 0

0 0 𝑤𝑎(𝑘 + 𝑖|𝑘)
] 

where, 𝓙𝑐𝑎𝑟−𝑓𝑜𝑙𝑙𝑤𝑖𝑛𝑔 is the cost function in the prediction horizon, (𝑘 + 𝑖|𝑘) means that the system predicts 

the state information of 𝑘 + 𝑖 time instant at 𝑘 instant. ∆𝒖, the control increment, is written as follow: 

∆𝒖(𝑘 + 𝑖|𝑘) = 𝒖(𝑘 + 𝑖|𝑘) − 𝒖(𝑘 + 𝑖 − 1|𝑘) (4.66) 

Note that the ∆𝑢 is the discretized difference, which is correlated with 𝑢̇ by following relation: 

𝑢̇ =
∆𝑢

𝑇𝑠
(4.67) 
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where 𝑇𝑠 is the sampling period. 

Hence, the 𝑤∆𝑢 of the ∆𝑢 is different from 𝑤𝑑𝑢 of 𝑢̇ as: 

𝑤∆𝑢 =
𝑤𝑑𝑢

𝑇𝑠
2

(4.68) 

The constraint for driving safety was proposed previously as follow: 

[
1 −𝑡𝑇𝐶𝐶 − 𝑉𝑇𝐻
1 −𝑉𝑇𝐻

] [
∆𝑑
𝑣𝑟𝑒𝑙

] ≥ [
𝑉𝑇𝐻 ∙ 𝑣𝑝𝑟𝑒 − 𝑑𝑚𝑖𝑛
−𝑉𝑇𝐻 ∙ 𝑣𝑝𝑟𝑒

] (4.69) 

The prediction form of it can be written as: 

[
1 −𝑡𝑇𝐶𝐶 − 𝑉𝑇𝐻 0
1 −𝑉𝑇𝐻 0
0 0 0

] 𝒚(𝑘 + 𝑖|𝑘) ≥ [

𝑇𝐻 ∙ 𝑣𝑝𝑟𝑒
−𝑉𝑇𝐻 ∙ 𝑣𝑝𝑟𝑒

0

] 𝑣𝑝𝑟𝑒(𝑘 + 𝑖|𝑘) + [
−𝑑𝑚𝑖𝑛
0
0

] (4.70) 

The car following constraints can be written into prediction form as: 

𝒚𝑚𝑖𝑛 ≤ 𝒚(𝑘 + 𝑖|𝑘) ≤ 𝒚𝑚𝑎𝑥 (4.71) 

𝒚𝑚𝑖𝑛 = [

∆𝑑𝑚𝑖𝑛 ∙ 𝑆𝐷𝐸
−1

𝑣𝑟𝑒𝑙,𝑚𝑖𝑛 ∙ 𝑆𝑉𝐸
−1

𝑎ℎ𝑜𝑠𝑡,𝑚𝑖𝑛

], 𝒚𝑚𝑎𝑥 = [

∆𝑑𝑚𝑎𝑥 ∙ 𝑆𝐷𝐸
−1

𝑣𝑟𝑒𝑙,𝑚𝑎𝑥 ∙ 𝑆𝑉𝐸
−1

𝑎ℎ𝑜𝑠𝑡,𝑚𝑎𝑥

] 

where 𝒚𝑚𝑖𝑛 and 𝒚𝑚𝑎𝑥 are the system output lower and lower boundary, respectively. 

The constraints of driving comfortability can be rewritten in predictive form as: 

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘 + 𝑖|𝑘) ≤ 𝑢𝑚𝑎𝑥
∆𝑢𝑚𝑖𝑛 ≤ ∆𝑢(𝑘 + 𝑖|𝑘) ≤ ∆𝑢𝑚𝑎𝑥

(4.72) 

4.2.3. Predictive Optimization Problem Construction 

To sum up, the predictive optimization problem of MPC for car following scenario can be integrated as follow: 

min𝓙(𝒚, 𝑢, ∆𝑢) (4.73) 

𝑠. 𝑡.  

discretized inter-vehicle longitudinal dynamics state-space equation (4.62, 4.63) 

driving safety constraints (4.69) 

car following constraints (4.71) 

driving comfortability (4.72) 

4.3. System Robustness Enhancement Based on Feedback Correction 

Despite the superiority of MPC that can handle the optimization with multiple objectives, it still has its 

limitations that can be concluded as follow: 

Due to the modeling error, uncertainty and time-variability of modeling parameters, and external disturbance, 

there are some errors between the inter-vehicle longitudinal dynamics prediction model and real states, which 

make the model cannot accurately reflect the characteristics of car following. The poor robustness of the system 

will not only lower the capability of car following but also has an impact on the energy economy of the vehicle 

cruise. Garcia [157] once also pointed out that linear MPC does not have good robustness under the 

circumstance of without constraints. Therefore, in order to improve the robustness of the proposed predictive 

cruise control system based on the MPC algorithm, it is indispensable to find a solution to make up this 

shortcoming. 

Basically, there are three methods to overcome the low robustness of MPC, including feedback correction 

method[158], hybrid control method[159], Min-Max method [160]. The principle of feedback correction is to 
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take the error between prediction value from the model and actual measurement as the feedback correction term 

to improve the prediction accuracy. The concept of the hybrid control method is to control the certainty using 

MPC and uncertainty using other control method, dealing with them separately. The principle of the third 

method is to transform the prediction problem in the infinite time domain of MPC into a Min-Max Value 

problem. Although the hybrid control method is capable of improving the robustness of system, it may also 

compromise the optimality of the control algorithm. The issue of the Min-Max method is that it may cause low 

computation efficiency and decrease the feasible region range. Therefore, in this research, the feedback 

correction method is used to improve the system robustness. The block diagram of MPC with feedback 

correction is shown in Figure 4.12. 

 

 

Fig. 4.12 Block Diagram of MPC with Feedback Correction 

Now define the error at time instant 𝑘 between prediction state from inter-vehicle dynamics model and actual 

state from state observer is 𝜉𝑒, which can be expressed as follow: 

𝝃𝑒 = 𝒙(𝑘) − 𝒙(𝑘|𝑘 − 1) (4.74) 

where 𝑥(𝑘) is the actual state between host and preceding vehicle at time instant 𝑘, 𝑥(𝑘|𝑘 − 1) is the state at 𝑘 

being predicted at 𝑘 − 1. 

According to the prediction form of the inter-vehicle longitudinal dynamics model, the following equation can 

be obtained: 

𝒙(𝑘|𝑘 − 1) = 𝑨̅𝒙(𝑘 − 1) + 𝑩̅𝑢(𝑘 − 1) + 𝑮̅𝑤(𝑘 − 1) (4.75) 

where 𝒙(𝑘|𝑘 − 1) is the system state at time instant 𝑘 − 1, 𝑢(𝑘 − 1) is the control input at the 𝑘 − 1 time 

instant, 𝑤(𝑘 − 1) is the external disturbance at time instant 𝑘 − 1. 

To improve the prediction accuracy at instant 𝑘, the following equation can be obtained using error 𝝃𝑒(𝑘) and 

actual measurement 𝒙(𝑘 + 1|𝑘): 

𝒙(𝑘 + 1|𝑘) = 𝑨̅𝒙(𝑘) + 𝑩̅𝑢(𝑘 − 1) + 𝑩̅∆𝑢(𝑘 + 0|𝑘) + 𝑮̅𝑤(𝑘) +𝑯𝝃𝑒(𝑘) (4.76) 

where ∆𝑢(𝑘 + 0|𝑘) is the control increment at time instant 𝑘 + 0|𝑘, 𝑯 is the correction matrix as follow: 
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𝑯 = [
ℎ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ℎ𝑛

] , ℎ𝑖 ∈ (0,1) (4.77)  

According to the equation 7.83 and 7.84, it is known that 𝜉𝑒(𝑘) describes the error between prediction and 

actual measurement value at time instant 𝑘. Thus, the 𝜉𝑒(𝑘) can be used at instant 𝑘 + 1 to compensate the error 

of prediction, so as to improve the prediction accuracy. 

The prediction form of robust inter-vehicle longitudinal dynamics model can thereby be derived as follow [155]: 

𝒀 = [𝑹𝑥 + 𝑹𝑒𝑯]𝑥(𝑘) + 𝑹𝑢𝒖(𝑘 − 1) + 𝑹∆𝑢∆𝑼−𝑹𝑒𝑯𝒙(𝑘|𝑘 − 1) + 𝑯𝑤𝑾 (4.78) 

where system output within prediction horizon 𝒀, system control input 𝑼, control increment ∆𝑼, and system 

disturbance 𝑾 is derived as [155]: 

𝒀 = [

𝒚(𝑘 + 1|𝑘)
𝒚(𝑘 + 2|𝑘)

⋮
𝒚(𝑘 + 𝑝|𝑘)

], 𝑼 = [

𝑢(𝑘 + 0|𝑘)
𝑢(𝑘 + 1|𝑘

⋮
𝑢(𝑘 + 𝑝 − 1|𝑘

], ∆𝑼 = [

∆𝑢(𝑘 + 0|𝑘)
∆𝑢(𝑘 + 1|𝑘)

⋮
∆𝑢(𝑘 + 𝑝 − 1|𝑘)

], 𝑾 = [

𝑤(𝑘 + 0|𝑘)
𝑤(𝑘 + 1|𝑘

⋮
𝑤(𝑘 + 𝑝 − 1|𝑘

] 

𝑹𝑥 = [

𝑪𝑨̅
𝑪𝑨̅2

⋮
𝑪𝑨̅𝑝

], 𝑹𝑒 = [

𝑪𝑨̅
𝑪𝑨̅2

⋮
𝑪𝑨̅𝑝−1

], 𝑹𝑢 =

[
 
 
 

𝑪𝑩̅
𝑪(𝑨̅𝑩̅ + 𝑩̅)

⋮

𝑪∑ 𝐶𝑨̅𝑚𝑩̅
𝑝−1
𝑚=0 ]

 
 
 
, 

𝑹∆𝑢 =

[
 
 
 

𝑪𝑩̅ 0 ⋯ 0
𝑪(𝑨̅𝑩̅ + 𝑩̅) 𝑪𝑩̅ ⋯ 0

⋮ ⋮ ⋮ ⋮

𝑪∑ 𝐶𝑨̅𝑚𝑩̅
𝑝−1
𝑚=0 𝑪∑ 𝐶𝑨̅𝑚𝑩̅

𝑝−2
𝑚=0 ⋯ 𝑪𝑩̅]

 
 
 
, 𝑯𝑤 = [

𝑪𝑮̅ 0 ⋯ 0
𝑪𝑨̅𝑮̅ 𝑪𝑮̅ ⋯ 0
⋮ ⋮ ⋮ ⋮

𝑪𝑨̅𝑝−1𝑮̅ 𝑪𝑨̅𝑝−2𝑮̅ ⋯ 𝑪𝑮̅

]. 

4.4. Summary of Chapter 4 

This chapter presented the core methodology used to develop the predictive cruise control system for eco-

driving ---- model predictive control (MPC) algorithm. The basic concept of MPC theory the essential 

understanding to the MPC was introduced. What follows was a complete demonstration using MPC to realize 

vehicle velocity tracking, from mathematical derivation to simulation realization. After that, three representative 

predictive optimization problems for driving scenarios, including car following scenario, signal anticipation 

scenario, and free driving scenario, were discussed in detail based on rigorous mathematical derivation. For 

signal anticipation scenario and free driving scenario, nonlinear MPC problems were formulated with 

corresponding algorithm workflows. For the car following scenario, the derivations of predictive model 

transformation were presented for linear MPC, which can be transformed into a quadratic programming (QP) 

problem. Finally, the MPC-based system robustness was especially proposed and solved using the feedback 

correction method. 
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Chapter 5. Simulation Experiments of Predictive Cruise 

Control for Eco-Driving 

According to the artificial neural network-based instantaneous energy consumption model (ANN-IECM) 

developed in Chapter 3, and the model predictive control (MPC) algorithm based predictive cruise control 

system for eco-driving proposed in Chapter 4, this chapter is intended to conduct the simulation experiments to 

validate the concept and models based on the idea of comparative analysis. At first, the co-simulation platform 

is established based on the CarSim and MATLAB/Simulink, laying the foundation for the subsequent case 

studies. Then, respective case study for each typical driving scenario is conducted to test the effectiveness of 

energy-saving. Finally, a comprehensive simulation test is designed for a mixed driving scenario to verify the 

capability of handling the integrated day-to-day traffic situation and energy economy improvement of the 

proposed PCC system. 

5.1. Establishment of Simulation Platform Based on CarSim and MATLAB/Simulink 

CarSim® is a software that precisely predicts the performance of the vehicle in response to driver controls in a 

user-defined environment. It provides integrated vehicle dynamics simulation for conventional ICE vehicles, 

hybrid vehicles, and electric vehicles. MATLAB/Simulink is more focused on the development of the control 

system. The connection port provided within CarSim makes it possible to link with MATLAB/Simulink. 

Therefore, the co-simulation based on these two platforms realizes the integrated analysis of mechatronics. 

To begin with, the simulation platforms for three representative driving scenarios (car following scenario, signal 

anticipation scenario, free driving scenario) are established, respectively. The first step is conducting parametric 

modeling within CarSim according to the configuration Table 5.1, and set the inputs and outputs of the vehicle 

dynamics model, shown in Figure 5.1. 

 

Fig. 5.1 Parametric Modeling of Vehicle Dynamics within CarSim 
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Once completing the settings within CarSim, “Send to Simulink” button can connect the CarSim with the 

MATLAB/Simulink. Then, the detailed predictive cruise control system can be developed within the Simulink 

environment. The respective simulation environments are shown in Figure 5.2. 

 

 

Fig. 5.2.1 Simulation Platform of Car Following Scenario 

 

Fig. 5.2.2 Simulation Platform of Signal Anticipation Scenario 
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Fig. 5.2.3 Simulation Platform of Free Driving Scenario 

 

The core MPC algorithms were written as S-Functions, so that the required optimization problem solver 

“quadprog” and “fmincon” can be successfully called. The lower level controllers which accepts the optimal 

acceleration command are designed using a PID controller. The ANN-IECM are both embedded in the MPC 

algorithm as a callable function and also deployed as a portable Simulink block to explicitly show the 

instantaneous energy consumption. The external data, such as the SPaT information and the road altitude 

information can be imported using Signal Builder Block. 

Another advantage of the Co-simulation based on CarSim and MATLAB/Simulink is that the CarSim is capable 

of visualizing the simulation scenario so that the developer can intuitively check the performance of the overall 

system. The visualization of mentioned three typical driving scenarios is shown in Figure 5.3. 

 

 

Fig. 5.3 Visualization of Free Driving Scenario (Left), Car Following Scenario (Middle),  

Signal Anticipation Scenario (Right) 

 

The simulated parameters are shown in Table 5.1. 
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TABLE 5.1 Simulation Parameters 

Parameter Symbol Values & Unit 

System gain 𝐾𝑔 1.05 

Time constant 𝜏𝑑 0.40s 

Minimal stop distance 𝑑𝑚𝑖𝑛 5m 

Sampling period 𝑇𝑠 0.1s 

Prediction horizon 𝑇 30 

Time-to-Collision 𝑇𝑇𝐶 -2.5s 

Sensitivity first-order term 

coefficient 
𝑘𝑆𝐷𝐸 0.06 

Sensitivity first-order term 

coefficient 
𝑘𝑆𝑉𝐸 0.005 

Constant term of Sensitivity 𝑑𝑆𝐷𝐸 -0.13 

Constant term of Sensitivity 𝑑𝑆𝑉𝐸 0.92 

Upper bound of acceleration  𝑎ℎ𝑜𝑠𝑡,𝑚𝑎𝑥 1.5𝑚/𝑠2 

Lower bound of acceleration 𝑎ℎ𝑜𝑠𝑡,𝑚𝑖𝑛 -2𝑚/𝑠2 

Upper bound of jerk 𝑎ℎ𝑜𝑠𝑡,𝑚𝑎𝑥̇ (𝑗𝑒𝑟𝑘) 1.5𝑚/𝑠3 

Lower bound of jerk 𝑎ℎ𝑜𝑠𝑡,𝑚𝑖𝑛̇ (𝑗𝑒𝑟𝑘) 2𝑚/𝑠3 

 

5.2. Typical Case Study for Car-following Driving Scenario 

For car-following driving scenario, two sub-scenarios are specially discussed, including steady following scene 

and lane-changing cut-in scene. 

Steady following scene: 

During the driving of host vehicle, if the preceding vehicle is within the radar detection range, then the PCC 

system will automatically control the velocity of host vehicle to follow the preceding vehicle. The real-time 

driving scenario is visualized in Figure 5.4. The initial velocity of preceding and host vehicles are 25.7 𝑚/𝑠 

and 26.4 𝑚/𝑠, respectively. The initial inter-vehicle distance is 43 𝑚, which is larger than the desired inter-

vehicle distance. The corresponding velocity comparison, relative position, battery state-of-charge (SOC), 

instantaneous energy consumption, and preceding vehicle detection state are shown in Figure 5.5. 
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Fig. 5.4 Simulation Visualization of Steady Following Scene 

From the first plot of figure 5.5, with the velocity decrease of preceding vehicle from 2s to 7s, the host vehicle 

reacted by slowing down the velocity as well. As shown in the fifth plot, from 11s to 39s, the preceding vehicle 

was not detected by the host vehicle PCC system. Therefore, the host vehicle cruised with the driver set velocity 

25.8 𝑚/𝑠. Starting from 39s, with the braking of the preceding vehicle, the preceding vehicle was again detected 

by the host vehicle, which triggered the car following function of PCC system. Therefore, the host vehicle also 

decreased its velocity. From the third plot, the battery state of the preceding vehicle finally settled at 78.4%, 

while the SOC of host vehicle finalized at 78.8%. Therefore, it can be concluded that during this specific driving 

scenario, the energy consumption reduction was realized by 16.7% from the cumulative energy consumption. 
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Fig. 5.5 Simulation Results of Steady Following Scene 

 

lane-changing cut-in scene: 

For the car-following scenario, the host vehicle is required to determine which vehicle is the “preceding vehicle” 

in front of the host vehicle in the same lane. A typical scenario from the viewpoint of the host vehicle can be 

illustrated in Figure 5.6. 
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Fig. 5.6 Lane-Changing Cut-in Scene 

The host vehicle (blue) drives on the right lane. In the beginning, the preceding vehicle is the pink one. Then 

the purple vehicle cuts into the lane of the host vehicle and becomes the preceding vehicle. After a while, the 

purple changes to another lane, and the pink vehicle becomes the preceding vehicle again. The PCC system 

must react to the change in the preceding vehicle on the road. The real-time vehicle coordinates view and world 

coordinates view are shown in Figure 5.7. 

 

Fig. 5.7 Coordinates View of Lane-changing Cut-in Scene 
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Fig. 5.8 Simulation Results of Lane-changing Cut-in Scene 

The simulation results of the lane-changing cut-in scene are shown in Figure 5.8. As shown in the first plot, 

although the detected preceding vehicle was changing, a speed curve of “preceding vehicle” can still be 

calculated as the black line based on the relative velocity. When the calculated preceding vehicle velocity slowed 

down from 12s, the velocity of host vehicle also started to decrease the velocity from 14s, responding and 

following the motion of the preceding vehicle. The battery state-of-charge of preceding vehicle and host vehicle 

were 79.11% and 79.02%, respectively. From the cumulative energy consumption results, 6.3% energy-savings 

was realized by the PCC system. 

5.3. Typical Case Study for Signal Anticipation Driving Scenario 

The case study for the signal anticipation scenario was conducted for the real road sections in the area located 

in the core commercial district, which is shown in Figure 5.9.The selected location is characterized by an 

average traffic flow movement of 30 to 50𝑘𝑚/ℎ, during off-peak hours, here called Daytime, and 35𝑘𝑚/ℎ  
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rush hour. The situation of different times directly influences the running condition of the preceding vehicle. 

Seven traffic signal lights were considered in the SPaT data collection process. Assuming that only the host and 

preceding vehicles were operating during simulation, without considering the constraints of other vehicles, the 

host vehicle maintained a safe distance from the preceding vehicle using the function of car following of the 

PCC system. 

 

 

Fig. 5.9 Map of The Road Section for Signal Anticipation Scenario 

 

Fig. 5.10 Results of Signal Anticipation Scenario During Both Daytime (Left) and Rush Hours (Right) 
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Fig. 5.11 Space-time Diagram with SPaT Information Comparing Preceding and Host Vehicle with PCC 

system During Both Daytime (Left) and Rush Hours (Right) 

During the daytime, the host vehicle maintained a safe distance from the preceding vehicle by 60s. After that, 

the preceding vehicle kept accelerating, which entailed an increase of inter-distance between two vehicles. It 

follows that the PCC system switched to the signal anticipation scenario to track the reference velocity 

optimized by upcoming traffic SPaT information to avoid coming to a red interval. After 320s, the preceding 

vehicle implemented a sharp deceleration. However, by managing the velocity of the host vehicle by the 

proposed PCC system, it avoided the arrival at the signalized intersection during the red interval. Figure 5.11 

left diagram demonstrates the space-time diagram comparing preceding and PCC-equipped host vehicles. The 

solid blue line represented the optimized trajectory passing each traffic signal light sequence through green 

intervals. By contrast, the preceding vehicle trajectory illustrated by the dotted pink line encountered two stops 

during red intervals. The amount of energy savings by the proposed PCC system is estimated at9.7%. 

During rush hours, at the very beginning, the car-following scenario lasted for 60s. Afterwards, relative distance 

kept increasing due to the acceleration of the preceding vehicle, during which the host vehicle tracked the 

reference velocity optimized by upcoming traffic SPaT information. After a stop in front of the red interval from 

140 to 155s, the preceding vehicle started to accelerate. However, the host vehicle deployed by the proposed 

PCC system crossed the signalized intersection without any stop through managing the driving velocity. A sharp 

deceleration was implemented by the preceding vehicle because of the upcoming red interval from 290 to 310s, 

during which the host vehicle was controlled by the PCC system to avoid encountering the red interval. Starting 

from 420s, the signal anticipation scenario began again to track the reference speed and successfully past the 

signalized intersection without any stop. However, the preceding vehicle without any velocity optimization had 

to experience a stop at around 510s. Figure 5.11 right diagram visualized the behavior of both host and preceding 

vehicles in a space-time schematic. The energy savings during rush hour reached a remarkable value of 15.6% 

based on the cumulative energy consumption. 

5.4. Typical Case Study for Free Driving Scenario 

The test for free driving scenario is conducted on a simulated hilly road section covered 2900𝑚 in total. The 

simulated scenario is visualized in Figure 5.12. The global coordinate of this simulated hilly road section is 

shown as Figure 5.13. The comparative analysis was conducted between the driving pattern controlled by the 

proposed PCC system and the automatic speed control drive (ASCD). The initial velocity was same for both 



84 
 

 

driving patterns set as 22.1𝑚/𝑠. The altitude, gradient of the road section, velocity comparison of both driving 

patterns, acceleration comparison, instantaneous motor speed and motor torque comparison, battery SOC, and 

instantaneous energy consumption are shown in Figure 5.14. 

 

 

Fig. 5.12 Simulation Visualization for Case Study of Free Driving Scenario 

 

 

 

Fig. 5.13 Global Coordinate of Simulated Hilly Road Section 

The overall simulation results are shown in Figure 5.14. From the first plot, it is known that the overall elevation 

exhibited an upward trend. The corresponding road gradient information can be obtained as the second plot, 

with the gradient range of −26°~23°. Because of the PCC system, the velocity of the PCC-vehicle varied 

around desired velocity 15𝑚/𝑠. The optimized acceleration of PCC-vehicle presented smoother variation trend. 

The basic rules can be concluded based on the gradient plot and acceleration plot that the PCC-vehicle always 
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accelerated just before the upslope, instead of accelerating during climbing the slope. When driving on the 

downslope section, the PCC-vehicle tends to rely on the inertia of the vehicle to drive, which was in line with 

the principle of eco-driving behavior. From the results of battery state-of-charge, it can be calculated that the 

baseline ASCD vehicle finalized at 77.2%, while the PCC-vehicle settled at 78.3%. The cumulative energy 

consumption for the baseline ASCD vehicle can be obtained as 94593009 𝑊 ∙ 0.1𝑠, while the PCC-vehicle 

consumed 65918481.56 𝑊 ∙ 0.1𝑠 in total. The energy savings was realized by 30.3%. Here in this case study, 

both the base line ASCD vehicle and PCC-vehicle are electric vehicles with the regenerative braking system, 

which means that during the braking process, the vehicles can be charged instantaneous. The instantaneous 

energy consumption plot 8 also shows the negative values. Therefore, the 30.3% energy-savings rate was 

already considered into the charging process. 

 

Fig. 5.14 Simulation Results of Free Driving Scenario 
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5.5. A Comprehensive Simulation Test of PCC system in Synthetic Driving Scenario 

To test the capability of handling the synthetic daily driving scenarios which includes all the above three typical 

driving scenarios, a specific area near Kyushu University Chikushi Campus was selected to conduct the 

comprehensive simulation. The concerned traffic signal lights SPaT information were recorded for each 

involved signalized intersection. The road gradient information was collected using the built-in GPS sensors on 

MATLAB Mobile Version. The initial velocity of the PCC-vehicle was set as 8.9 𝑚/𝑠. The baseline vehicle 

was simulated by the automatic speed control drive (ASCD) with Gipps model for car following. Except for 

initial velocity, other initial conditions for baseline vehicle are the same with PCC-vehicle. Given different 

control style, the PCC-vehicle and ASCD-Gipps vehicle faced different traffic situations. The proposed PCC 

system controlled the vehicle based on the designed eco-driving algorithm, which leads to a relatively 

conservative driving style while dealing with the car following scenario, signal anticipation scenario and free 

driving scenario. However, the ASCD-Gipps vehicle was controlled by aggressive control actions, imitating the 

style of a human driver. The detailed description of the Gipps model can be referred to book Traffic Flow 

Dynamics – Data, Models, and Simulation by Martin Treiber and Arne Kesting [161]. The roadmap for the 

selected area and the simulated synthetic driving scenario is shown in Figure 5.15. 

 

Fig. 5.15 Roadmap for Selected Area and Simulated Synthetic Driving Scenario 

As shown in Figure 5.16, the first plot shows the velocity comparison between PCC-vehicle and baseline 
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ASCD+Gipps-vehicle. The region with different color represents that the PCC system dynamically switched 

into driving scenarios, red for signal anticipation scenario, green for the free driving scenario, and blue for the 

car following scenario. Within the beginning 50s, the baseline vehicle first accelerated under the control of 

ASCD. Then, under the manipulation of Gipps model, it sharply decelerated to follow the preceding vehicle. 

While, the PCC-vehicle can steadily follow the preceding vehicle without aggressive maneuvers. In the first 

free driving period, the PCC-vehicle was capable of adjust its velocity to the desired velocity 15𝑚/𝑠 based on 

the road slope information. In the first signal anticipation period, the PCC-vehicle started automatically 

following the optimal reference velocity with the purpose of avoiding stop in the upcoming traffic signalized 

intersection. By contrast, the baseline vehicle was still under acceleration. It turned out that during 260 to 310s, 

the PCC-vehicle can pass the intersection without any stop, but the baseline vehicle implemented a stop during 

the red interval. The same results happened during 406s to 430s. The battery SOC percentages for baseline and 

PCC vehicle are 77.4% and 78.0%, respective. The cumulative 19.97% energy-savings can be achieved. 

 

Fig. 5.16 Simulation Results of Synthetic Driving Scenario 
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5.6. Summary of Chapter 5 

This chapter presented the simulated case studies to test the proposed dynamic predictive cruise control system 

in the previous chapters. At first, the simulation platform based on the CarSim and MATLAB/Simulink was 

established. Then, three case studies were conducted respectively for the car-following driving scenario, signal 

anticipation scenario, and free driving scenario. The respective simulated results showed that the three MPC 

algorithm worked well and showed the effects of energy saving. Finally, a synthetic driving scenario was 

designed to verify the entire PCC system handling the integrated day-to-day traffic situation, with the results 

that the proposed PCC system enabled the vehicle to realize the eco-driving by significant energy savings rate. 
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Chapter 6. Conclusion and Prospects 

6.1. Conclusion 

To improve the energy economy of the electric vehicle and alleviate the energy and environmental burden from 

the road transportation system, and to extend the driving range of the current electric vehicle, a comprehensive 

predictive cruise control system for eco-driving based on the electric vehicle has been designed for three 

representative driving scenarios, including car following scenario, signal anticipation scenario, and free driving 

scenario. With the premise of driving safety and comfortability, the energy economy of the electric vehicle was 

maximized by the proposed PCC system in daily synthetic traffic situation. The main research works, and 

corresponding conclusions can be summarized as follow: 

(1). Architecture design of a comprehensive predictive cruise control system and system dynamics modeling: 

Most of the current research are focused on eco-driving in limited driving scenarios. With the purpose of 

filling the existing research gap, a comprehensive predictive cruise control system was designed using a 

real-time dynamic driving scenario switching logic (DSSL) to handle the synthetic driving scenarios, 

including car following scenario, signal anticipation scenario, and free driving scenario. An electric vehicle 

longitudinal dynamics model and an inter-vehicle longitudinal dynamics model based on a customized 

VTH strategy were proposed. Through the theoretical analysis, the model convergence was verified. In 

order to obtain an optimal velocity for the signal anticipation scenario, a reference velocity planning model 

was studied based on the upcoming traffic signal phase and timing (SPaT) information. 

(2). Modeling of an instantaneous energy consumption calculation based on the artificial neural network: 

After summarizing the existing vehicle fuel/energy consumption model, the idea of developing an artificial 

neural network-based instantaneous energy consumption model for the electric vehicle was proposed. By 

processing and analyzing the real measurements dataset of electric vehicle dynamometer chassis 

experiments, the neural network model structure was designed. Using the Levenberg-Marquardt algorithm, 

a feedforward neural network training algorithm, the neural network was well trained. Model validation 

results showed that the proposed ANN-based instantaneous energy consumption model has more accurate 

estimation precision than existing EV-MFECM, more suitable for the application of developing eco-driving 

system for EV. 

(3). Development of predictive cruise control system based on model predictive control algorithm: 

Based on the model predictive control algorithm, taking the vehicle dynamics model and inter-vehicle 

dynamics model, different cruise objectives were analyzed and quantified for each typical driving scenario. 

Taking the minimization of energy consumption as the main optimization objective, three different MPC 

problems, including the linear and nonlinear MPC, were formulated. For linear MPC, detailed mathematical 

derivation and transformation from MPC problem to QP problem were conducted. For nonlinear MPCs, a 

suitable solver was found and utilized to solve the optimization problem online. In order to make up for the 

predictive error caused by model mismatch, and improve the system robustness, the feedback correction 

was introduced.  

(4). Establishment of a simulation test bench for the validation of the PCC system: 

In order to testify the effectiveness of the proposed PCC system, a co-simulation platform based on 

MATLAB/Simulink and CarSim was established. Through the comparative simulation experiments, for 

the car following scenario, the proposed PCC system not only ensured the driving safety and comfortability 

but also realized 6.3% ~ 16.7% energy saving rates. Under the signal anticipation scenario, the proposed 
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PCC system achieved 9.7% ~ 15.6% energy savings rates compared with the preceding vehicle without a 

PCC system. For the free driving scenario, by utilizing the road gradient information to optimize the 

velocity, 30.3% energy consumption reduction was accomplished by PCC-vehicle compared with ASCD-

vehicle. Finally, a synthetic driving scenario was simulated to test the comprehensive performance of 

handling the mixed driving scenarios of the proposed PCC system, the simulation results  indicated that 

19.97% cumulative energy savings was obtained by using the proposed PCC system compared with the 

conventional human-driver-like Gipps model. 

 

Mainly originality can be listed as follow: 

(1). Based on the analysis of existing safety distance model, a customized variable time headway strategy was 

designed considering the relative velocity and the velocity trend of the preceding vehicle. Through the 

stability analysis of the designed safety distance model based on the customized VTH strategy, not only the 

driving safety can be ensured but also the road utilization can be improved. 

(2). According to the problem of estimation error for the existing fuel consumption model and the lack of energy 

consumption model for electric vehicles, an instantaneous energy consumption model for EV was developed 

and well trained by an artificial neural network training algorithm. The model validation results showed an 

unprecedented instantaneous energy consumption estimation precision. 

(3). An integrated predictive cruise control system was innovatively proposed based on the model predictive 

control algorithm, which is capable of handling daily typical driving scenarios automatically by a designed 

Driving Scenario Switching Logic (DSSL). The respective eco-driving problem taking into account either 

preceding vehicle, traffic signal lights, or road terrain information can be considered simultaneously by 

proposed PCC system so that the higher energy economy can be realized. Besides, to implement the 

proposed PCC system in a real application, the system robustness was discussed and enhanced by using the 

feedback correction method. 

6.2. Research Prospects 

For this research, three prospects of future research can be pointed out: 

(1). The model predictive control algorithm, as an advanced optimization-based control method, is hard to 

implement into the fast system in the real application, e.g., automobile or robotics, due to its real-time 

computational complexity. MPC utilizes a numerical optimization algorithm to solve a predictive optimization 

problem to obtain the optimal control value. For vehicles, the control period is usually set as seconds-level or 

milliseconds-level, which highly requires the real-time performance of the control law. Therefore, the online 

optimization problem-solving algorithm is required to be studied further. 

(2). The proposed predictive cruise control system currently was just tested based on the co-simulation platform 

using MATLAB/Simulink and CarSim. Next step, a hardware-in-loop test can be implemented to further test 

the feasibility of the proposed algorithm and models. 

(3). The driving scenarios covered by the proposed PCC system are limited. The corner cases during real driving 

process is more difficult to handle by solely using model-based methodology due to the limitation of 

mathematical modeling in terms of various driving situations. Therefore, the learning-based method such as 

reinforcement learning or imitating learning can be introduced and combined with optimal control, so that the 

eco-driving problem for much more complex traffic systems can be extensively handled.
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