The Utility of the CHC Taxonomy and Cross-Battery Assessment for SLD Identification

Presented by Vincent C. Alfonso, Ph.D.
Montclair State University
alfonsov@montclair.edu
and

COMPREHENSIVE ASSESSMENT FOR INTERVENTION (CAI)
INNOVATIONS IN PSYCHOLOGICAL EVALUATION FOR INTERVENTION

Conflict of Interest Disclosure

I am a co-founder of the Comprehensive Assessment for Intervention (CAI) website, which operates under CrossBattery Assessment LLC, a for-profit company.

Objectives-Part 1

To describe 2-3
important
developments in the evolution of CHC theory

To describe at least one debate issue among scholars in the field who have published on CHC theories

Content-Part 1

Progress in psychometric theories of intelligence

- From g to CHC
- Definitions of key broad and narrow abilities that make up CHC theory and that are measured most frequently on ability tests

Progress in the development and structure of cognitive tests

- Evolution of the Wechsler Scales
- Summary of other comprehensive cognitive batteries

Progress in approaches to cognitive test interpretation

- Overall g
- Clinical profile analysis
- Psychometric profile analysis (shared abilities; intelligent testing)
- Application of theory ($g \mathrm{v}$. specific abilities)
- Application of and refinements to theory and CHC-based research and interpretation

Evolution and Impact of Psychometric Theories on the Structure of Cognitive Tests and Cognitive Test Interpretation

Several Decades of Revisions and Refinements to Gf-Gc/CHC Theory

Raymond Cattell Introduced Gf-Gc Theory in 1941

John Horn and colleagues' work (1960s - 1990s) led to expanded 10-factor Gf-Gc theory

John Carroll reanalyzed the world's literature of human cognitive abilities - Proposed Three-Stratum Theory (1993)

1997

Chapter by McGrew: First attempt at Integrating CattellHorn Gf-Gc Theory and John Carroll's Three-Stratum Theory

2005

Chapter by McGrew: Documentation of how the integrated model presented in 1997 and again in 2000 became known as CHC theory

2012

Chapter by

Schneider and McGrew: Careful
review of the literature led to
some substantial modifications

2018

Chapter by
Schneider and McGrew: Most
significant revisions to CHC
theory to date and criteria for revisions to the CHC taxonomy

Cattell-Horn Gf-Gc Theory

Gf-Gc theory

originally proposed
by Raymond Cattell

in 1941

Broad Abilities

Gf-Gc theory expanded through Horn and colleagues' systematic research

Progress in Psychometric Theories of Intelligence: From \mathbf{g} to CHC

Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. New York: Cambridge University Press

A Landmark Event in Understanding the Structure of Intelligence

Carroll's (1993) Three-Stratum Theory of Cognitive Abilities

General (Stratum III) Ability

Broad (Stratum II) Abilities

Narrow
(Stratum I) Abilities

About 70 narrow abilities found in data sets analyzed by Carroll

A Comparison of Cattell-Horn Gf-Gc Theory and Carroll's Three-Stratum Theory

Four Structural Differences Between the Cattell-Horn and Carroll Models

1. Carroll's theory includes a general ability factor (stratum III) whereas the Cattell-Horn theory does not, as Horn and Carroll differed in their beliefs about the existence of this elusive construct
2. The Cattell-Horn theory includes quantitative reasoning as a distinct broad ability (i.e., Gq) whereas Carroll's theory includes quantitative reasoning as a narrow ability subsumed by Gf.
3. The Cattell-Horn theory includes a distinct broad reading and writing (Grw) factor. Carroll's theory includes reading and writing as narrow abilities subsumed by Gc.
4. Carroll's theory includes short-term memory with other memory abilities, such as associative memory, meaningful memory, and free-recall memory, under Gy whereas the Cattell-Horn theory separates shortterm memory (Gsm) from associative memory, meaningful memory, and free-recall memory, because the latter abilities are purported to measure long-term retrieval.

Despite these differences, Carroll (1993) concluded that the Cattell-Horn Gf-Gc theory represented the most comprehensive and reasonable approach to understanding the structure of cognitive abilities.

Progress in Psychometric Theories of Intelligence: From g to CHC

An Integration of the Gf-Gc and Three-Stratum Theories of Cognitive Abilities

Based largely on McGrew's analyses in 1997-1999

1997

Chapter by McGrew: First attempt at Integrating Cattell-Horn Gf-Gc Theory and John Carroll's Three-
Stratum Theory

Chapter by McGrew: Documentation of how the integrated model presented in 1997 and again in 2000 became known as CHC theory

> Abstract
> During the past decade the Cattell-Horn Gf-Gc and Carroll Three-Stratum models have emerged as the consensus psychometric-based models for understanding the structure of human intelligence. Although the two models differ in a number of ways, the strong correspondence between the two models has resulted in the increased use of a broad umbrella term for a synthesis of the two models (Cattell-Horn-Carroll theory of cognitive abilities-CHC theory).

> The purpose of this editorial is three-fold. First, I will describe the CHC framework and recommend that intelligence researchers begin using the CHC taxonomy as a common nomenclature for describing research findings and a theoretical framework from which to test hypotheses regarding various aspects of human cognitive abilities. Second, I argue that the emergence of the CHC framework should not be viewed as the capstone to the psychometric era of factor analytic research. Rather, I recommend the CHC framework serve as the stepping stone to reinvigorate the investigation of the structure of human intelligence.

> Finally, the Woodcock-Muñoz Foundation Human Cognitive Abilities (HCA) project, which is an evolving, free, on-line electronic archive of the majority of datasets analyzed in Carroll's (1993) seminal treatise on factor analysis of human cognitive abilities, is introduced and described. Intelligence scholars are urged to access the Carroll HCA datasets to test and evaluate structural models of human intelligence with contemporary methods (confirmatory factor analysis). In addition, suggestions are offered for linking the analysis of contemporary data sets with the seminal work of Carroll. The emergence of a consensus CHC taxonomy and access to the original datasets analyzed by Carroll provides an unprecedented opportunity to extend and refine our understanding of human intelligence.

Refinements and Extensions to CHC Theory

Schneider and McGrew's 2018 Revision of CHC Theory

```
FOURTH EDITION
```

CONTEMPORARY I NTELLECTUAL ASSESSMENT

THEORIES, TESTS, AND ISSUES
edited by
Dawn P. Flanagan Erin M. McDonough

Chapter by
Schneider and McGrew: Most significant revisions to CHC theory to date, including criteria for revisions to the CHC taxonomy

- Intermediate factors were added
- Facets were added
- New broad and narrow ability codes were introduced
- New narrow abilities were added

2012-2018 Expanded Cattell-Horn-Carroll (CHC) Model of Cognitive Abilities

Sixteen broad and approximately 80 narrow abilities; approximately 9 broad and 35 narrow abilities represented on current batteries

Research on CHC Theory

Findings:

CHC-based test classifications from theory and prior research were accurate thus supporting CHC theory and its use as a taxonomy for test development, assessment, and interpretation

The factorial composition of almost all subtests was described successfully by the CHC taxonomy, regardless of whether they were designed to tap into CHC abilities

The invariant CHC broad ability factors provide additional support for the CHCbased cross-battery assessment approach, particularly with regard to its guidelines for combining subtests from different batteries to create CHC composites

A cross-battery, reference variable, confirmatory factor analytic investigation of the CHC taxonomy ${ }^{\text {T/ }}$

Matthew R. Reynolds ${ }^{\text {a,* }}$, Timothy Z. Keith ${ }^{\text {b }}$, Dawn P. Flanagan ${ }^{\text {c }}$, Vincent C. Alfonso ${ }^{\text {d }}$

${ }^{\text {a }}$ University of Kansas, USA
${ }^{\text {b }}$ The University of Texas at Austin, USA
c St. John's University, USA
${ }^{\text {d }}$ Fordham University, USA

ARticle info

Article history:

Received 4 November 2011
Received in revised form 25 February 2013
Accepted 27 February 2013
Available online $x x x x$

Keywords:
Cattell-Horn-Carroll taxonomy
KABC-II
Planned missingness
Fluid intelligence
General intelligence
Flynn effect

ABSTRACT
The Cattell-Horn-Carroll (CHC) taxonomy has been used to classify and describe human cognitive abilities. The ability factors derived from the CHC taxonomy are often assumed to be invariant across multiple populations and intelligence batteries, which is an important assumption for research and assessment. In this study, data from five different test batteries that were collected during separate Kaufman Assessment Battery for Children-Second Edition (KABC-II; Kaufman \& Kaufman, 2004) concurrent validity studies were factor-analyzed jointly. Because the KABC-II was administered to everyone in the validity studies, it was used as a reference battery to link the separate test batteries in a "cross-battery" confirmatory factor analysis. Some findings from this analysis were that CHC-based test classifications based on theory and prior research were straightforward and accurate, a first-order Fluid/Novel Reasoning (Gf) factor was equivalent to a second-order g factor, and sample heterogeneity related to SES and sex influenced factor loadings. It was also shown that a reference variable approach, used in studies that incorporate planned missingness into data collection, may be used successfully to analyze data from several test batteries and studies. One implication from these findings is that CHC theory should continue to serve as a useful guide that can be used for intelligence research, assessment, and test development.
© 2013 Socicty for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

The Largest and Most Comprehensive CHC Investigation to Date

10. Summary

An adequately fitting cross-battery CHC cognitive model that combines six tests consisting of 66 subtests and seven samples of nearly 4000 youth aged 6 to 18 provides validity evidence for CHC theory. The findings applied to tests and subtests developed from a variety of theoretical orientations, not just those derived from CHC theory. These findings support the applicability of CHC theory to the development and interpretation of modern intelligence tests. Results suggest the CHC classification system is useful even if there are other possible theories that may explain intelligence as well or better. Thus, across applied and theoretical fields CHC terminology can be used as a common language to classify these different cognitive tasks according to overarching broad cognitive abilities.

Support for CHC theory, CHC test classifications, and the Cross-battery assessment (XBA) approach

The Largest and Most Comprehensive CHC Investigation to Date

Contents lists available at ScienceDirect Intelligence journal homepage: www.elsevier.com/locate/intell	
Beyond individual intelligence tests: Application of Cattell-Horn-Carroll Theory Jacqueline M. Caemmerer ${ }^{\text {a,* }}$, Timothy Z. Keith ${ }^{\text {b }}$, Matthew R. Reynolds ${ }^{\text {c }}$ ${ }^{a}$ Howard University, United States of America ${ }^{\mathrm{b}}$ University of Texas at Austin, United States of America ${ }^{\text {c }}$ University of Kansas, United States of America	\square

Article

Carroll's Three-Stratum (3S) Cognitive Ability Theory at 30 Years: Impact, 3S-CHC Theory Clarification, Structural Replication, and Cognitive-Achievement Psychometric Network Analysis Extension

Kevin S. McGrew

Abstract: Carroll's treatise on the structure of human cognitive abilities is a milestone in psychometric intelligence research. Thirty years later, Carroll's work continues to influence research on intelligence theories and the development and interpretation of intelligence tests. A historical review of the relations between the 3 S and CHC theories necessitates the recommendation that the theories of Cattell, Horn, and Carroll be reframed as a family of obliquely correlated CHC theories not a single CHC theory. Next, a previously unpublished Carroll exploratory factor analysis of 46 cognitive and achievement tests is presented. A complimentary bifactor analysis is presented that reinforces Carroll's conclusion that his $3 S$ model more accurately represents the structure of human intelligence than two prominent alternative models. Finally, a Carroll-recommended higher-stratum psychometric network analysis (PNA) of CHC cognitive, reading, and math variables is presented. The PNA results demonstrate how PNA can complement factor analysis and serve as a framework for identifying and empirically evaluating cognitive-achievement causal relations and mechanisms (e.g., developmental cascade and investment theories), with an eye toward improved cognitive-achievement intervention research. It is believed that Carroll, given his long-standing interest in school learning, would welcome the integration of theory-driven factor and PNA research.

Article
A Psychometric Network Analysis of CHC Intelligence Measures: Implications for Research, Theory, and Interpretation of Broad CHC Scores "Beyond $g^{\prime \prime}$

Kevin S. McGrew ${ }^{1, *}$, W. Joel Schneider ${ }^{2}{ }^{(1)}$, Scott L. Decker ${ }^{3}$ and Okan Bulut ${ }^{4}{ }^{(\mathbb{D}}$

1 Institute for Applied Psychometrics, 1313 Pondview Lane E, St. Joseph, MN 56374, USA
2 College of Education and Human Development, Temple University, Ritter Hall 358, Philadelphia, PA 19122, USA
3 Applied Cognitive Neuropsychology Lab, Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
4 Centre for Research in Applied Measurement and Evaluation, University of Alberta, Edmonton, AB T6G 2G5, Canada

* Correspondence: iqmcgrew@gmail.com

Abstract: For over a century, the structure of intelligence has been dominated by factor analytic methods that presume tests are indicators of latent entities (e.g., general intelligence or g). Recently, psychometric network methods and theories (e.g., process overlap theory; dynamic mutualism) have provided alternatives to g-centric factor models. However, few studies have investigated contemporary cognitive measures using network methods. We apply a Gaussian graphical network model to the age 9-19 standardization sample of the Woodcock-Johnson Tests of Cognitive Ability-Fourth Edition. Results support the primary broad abilities from the Cattell-Horn-Carroll (CHC) theory and suggest that the working memory-attentional control complex may be central to understanding a CHC network model of intelligence. Supplementary multidimensional scaling analyses indicate the existence of possible higher-order dimensions (PPIK; triadic theory; System I-II cognitive process-) ing) as well as separate learning and retrieval aspects of long-term memory. Overall, the network approach offers a viable alternative to factor models with a g-centric bias (i.e., bifactor models) that have led to erroneous conclusions regarding the utility of broad CHC scores in test interpretation

Beyond individual tests: Youth's cognitive abilities on their math and writing skills is

Jacqueline M. Caemmerer ${ }^{\text {a }} \circ$, (Matthew R. Reynolds ${ }^{b}$, Timothy Z. Keith ${ }^{\text {c }}$
Show more
+ Add to Mendeley oo Share gy Cite

https://doi.org/10.1016/j.lindif.2023.102271 才
Get rights and content ,

Abstract

A cross-battery study of cognitive-achievement relations, which simultaneously analyzes several intelligence and achievement test scores, allows for the analysis of more broadly defined constructs that transcend test batteries. That was the approach taken in this study. Six intelligence tests, represented by 66 subtests, and three achievement tests, represented by 10 subtests, were analyzed. Our sample included 3927 youth aged 6 to 18 . Youth's general intelligence (g), verbal comprehension-knowledge, and working memory significantly explained their broad math and broad writing skills. Other broad cognitive abilities influenced only one of the academic skills. Learning efficiency and processing influenced youth's broad writing and visual processing and fluid reasoning influenced their broad math skills. The influence of g and fluid reasoning were difficult to separate statistically. Most of the cognitive-achievement relations were consistent across age.

Effects of cognitive abilities on child and youth academic achievement: Evidence from the WISC-V and WIAT-III.
\checkmark EXPORT

Citation

Caemmerer, J. M., Maddocks, D. L. S., Keith, T. Z., \& Reynolds, M. R. (2018). Effects of cognitive abilities on child and youth academic achievement: Evidence from the WISC-V and WIAT-III. Intelligence, 68, 6-20.
https://doi.org/10.1016/j.intell.2018.02.005

Abstract

The relations between children and adolescents' cognitive abilities and their reading, writing, and math achievement were examined using the Wechsler Intelligence Scale for Children, Fifth Edition and Wechsler Individual Achievement Test, Third Edition co-norming sample. We tested and compared models that included effects from the Cattell-Horn-Carroll broad cognitive abilities and models that focused on the effects of g only. Developmental differences in the patterns of cognitive-achievement effects were tested for statistical significance using interaction terms. Comprehension-knowledge exerted direct effects on all reading and most writing skills, fluid reasoning exerted direct effects on essay writing and math skills, and processing speed exerted direct effects on reading fluency, math fluency, and math calculation skills. Working memory significantly influenced most of the achievement skills and was particularly important for younger children. The effect of g on all achievement skills was strong, but indirect through the broad abilities and often overlapped with the effect of fluid reasoning. Results from this study suggest that children and adolescent's reading, math, and writing are differentially influenced by their cognitive abilities, and some of these effects vary by age. (PsycInfo Database Record (c) 2020 APA, all rights reserved)

A meta-analysis of mathematics and working memory: Moderating effects of working memory
domain, type of mathematics skill, and sample characteristics.
P Peng, J Namkung, M Barnes, C Sun
Journal of Educational Psychology
A meta-analysis on the relation between reading and working memory
P Peng, M Barnes, CC Wang, W Wang, S Li, L Swanson, W Dardick
Psychological Bulletin
The relation between mathematics anxiety and mathematics performance among school-aged
students: A meta-analysis
J Namkung, P Peng, X Lin
Review of Educational Research

A meta-analysis of working memory deficits in children with learning difficulties: Is there a difference between verbal domain and numerical domain?
P Peng, D Fuchs
Journal of Learning Disabilities, 0022219414521667
The development of academic achievement and cognitive abilities: A bidirectional perspective P Peng, R Kievit
Child Development Perspectives
A meta-analysis on the relation between fluid intelligence and reading/mathematics: Effects of tasks, age, and social economics status
P Peng, T Wang, C Wang, X Lin
Psychological Bulletin
A meta-analytic review of the relations between motivation and reading achievement for K -12 students
J Toste, L Didion, P Peng, M Filderman, A McClelland
Review of Educational Research
The relation between family socioeconomic status and academic achievement in China: A meta-analysis
J Liu, P Peng, L Luo
Educational Psychology Review 32, 49-76
Examining the mutual relations between language and mathematics: A meta-analysis P Peng, X Lin, ZE Ünal, K Lee, J Namkung, J Chow, A Sales
Psychological Bulletin 146 (7), 595-643
Phonological storage and executive function deficits in children with mathematics difficulties
P Peng, C Sun, B Li, S Tao
Journal of Experimental Child Psychology
A randomized control trial of working memory training with and without strategy instruction: Effects on young children's working memory and comprehension
P Peng, D Fuchs
Journal of Learning Disabilities

- The Cattell-Horn and Carroll models should not have been integrated
- Practical application of CHC theory is not recommended
- Little, if any, support for the interpretation of CHC broad abilities
- Note: Entirely different conclusions are reached depending on the type of factor analysis used

Abstract

The Cattell-Horn-Carroll (CHC) taxonomy of cognitive abilities married John Horn and Raymond Cattell's Extended Gf-Gc theory with John Carroll's Three-Stratum Theory. While there are some similarities in arrangements or classifications of tasks (observed variables) within similar broad or narrow dimensions, other salient theoretical features and statistical methods used for examining and supporting them are in direct opposition. In this article, the theoretical disagreements between Carroll and Cattell-Horn and theoretical incongruencies between their models are delineated, which raises substantive challenges to CHC. Additionally, there are practical and substantial measurement obstacles that further threaten practical application of CHC . We conclude that the problems are due to some fundamental differences that likely will not change, so call for an annulment of this arranged but unhappy marriage.

Challenges to the Cattell-Horn-Carroll Theory: Empirical, Clinical, and Policy Implications

Gary L. Canivez (1) ${ }^{\text {a }}$ and Eric A. Youngstrom ${ }^{\text {b }}$

Critically Reflecting on the Origins, Evolution, and Impact of the Cattell-Horn-Carroll (CHC) Model

Ryan J. McGill © (© \& Stefan C. Dombrowski (D)

Abstract

The Cattell-Horn-Carroll (CHC) model presently serves as a blueprint for both test development and a taxonomy for clinical interpretation of modern tests of cognitive ability. Accordingly, the trend among test publishers has been toward creating tests that provide users with an ever-increasing array of scores that comport with CHC. However, an accumulating body of independent research on modern intelligence tests has questioned many instruments' alignment with the CHC model. To shed potential insight on these discrepancies, we review the developmental history of CHC and its numerous modifications from 1997 to the present. Next, we identify and discuss several potential limitations in the CHC literature that may be responsible for this discrepancy. Finally, we encourage clinicians to consider the extant evidence currently available for engaging in CHC-inspired assessment applications (e.g., XBA, PSW).

Broad Ability	Definition

Reasoning

 fFluid Reasoning (Gf)
The use of deliberate and controlled procedures (often requiring focused attention) to solve novel, "on-the-spot" problems that cannot be solved by using previously learned habits, schemas, and scripts.

Comprehension-Knowledge (Gc)	The ability to comprehend and communicate culturally valued knowledge.
Domain-Specific Knowledge (Gkn) *	The depth, breadth and mastery of specialized declarative and procedural knowledge (knowledge not all members of society are expected to have).
Quantitative Knowledge (Gq)	The depth and breadth of declarative and procedural knowledge related to mathematics.
Reading and Writing (Grw)	The depth and breadth of declarative and procedural knowledge and skills related to written language.
Working Memory Capacity (Gwm)	The ability to maintain and manipulate information in active attention.
Learning Efficiency (GI)	The ability to learn, store, and consolidate new information over periods of time measured in minutes, hours, days, and years.

Memory

Sensory

Motor

Speed and Efficiency

Raymond Cattell Introduced Gf-Gc Theory in 1941

John Horn and colleagues' work (1960s - 1990s) led to expanded 10-factor Gf-Gc theory

John Carroll reanalyzed the world's literature of human cognitive abilities - Proposed Three-Stratum Theory (1993)

Fluid Reasoning (Gf). Gf refers to a type of thinking or reasoning that individuals use when faced with a relatively new or novel task that cannot be performed automatically.

- Gf - Induction

Task Example: An examinee is presented with a certain pattern of related stimuli and must select one of several stimuli that would complete or continue the pattern.

- Gf - General Sequential (Deductive) Reasoning
Task Example: An examinee is presented with an incomplete logic puzzle and must deduce the missing components following careful analysis of the presented stimuli.

- Gf - Quantitative Reasoning

Task Example: An examinee is presented with an incomplete series of related numbers and must select the number(s) that best complete the series.
$2,4,12,48,240,1440$,
Describe the Pattern:
$2,6,12,20,30,42,56$,
Describe the Pattern:
$1,8,27,64,125,216,343$,
Describe the Pattern:
$0,3,8,15,24,35,48$,
Describe the Pattern:

Revised CHC Theory Introduced

Intermediate Factors

Comprehension-Knowledge (Gc). Gc is the breadth and depth of knowledge and skills (e.g., words, general information) that are acquired as a result of exposure to language, culture, general life experiences, and formal schooling. The ability to comprehend and communicate culturally-valued knowledge.

*** Omitted from this figure are Communication Abilities (CM), and Grammatical Sensitivity (MY)

WISC-V Gc Subtests

Gc - General Information
Task Example: An examinee must provide specific responses to questions of general information.

$\$ 200$	$\$ 200$	$\$ 200$	$\$ 200$	$\$ 200$	$\$ 200$
$\$ 400$	$\$ 400$	$\$ 400$	$\$ 400$	$\$ 400$	$\$ 400$
$\$ 600$	$\$ 600$	$\$ 600$	$\$ 600$	$\$ 600$	$\$ 600$
$\$ 800$	$\$ 800$	$\$ 800$	$\$ 800$	$\$ 800$	$\$ 800$
$\$ 1000$	$\$ 1000$	$\$ 1000$	$\$ 1000$	$\$ 1000$	$\$ 1000$

Gc - Lexical Knowledge

Task Example: An examinee must provide oral definitions for words of increasing difficulty.

500 English Vocabulary Words

Words	Synonyms	Words	Synonyms
superb	magnificent	impetuous	reckless
sunrise	dawn	imperfect	faulty
sundown	sunset	imperative	vital
suggest	propose	imperative	crucial
sufficient	ample	impediment	obstacle
successful	prosperous	impatient	eager
substantially	considerably	impassive	emotionless
stupid	silly	impasse	deadlock
stupid	dense	impartial	neutral

Gc - Listening Ability

Task Example: The examinee is presented with a picture and a set of instructions.

Look at this picture and tell me what you see.

Gc - Grammatical Sensitivity

Task Example: An examinee must correctly label the parts of speech contained in a sentence and/or correct those parts of speech that are used incorrectly.

The narrow Gc abilities of Listening Ability (LS), Communication Ability (CM), and Grammatical Sensitivity (MY) are measured primarily by speechlanguage batteries (and to a lesser extent, achievement batteries)

KßLearrithg
Noun or verb?
Grade 1 Gramme Worksheet
Is it a noun or a verb?

1) The cat eats his treat.
\qquad
2) The children were listening to the story. \qquad
3) Dad climbed the stairs quickly.
4) The tree has many lights in it.
5) Together, we can finish this task \qquad

6) Mark and Erik walk to the park.
7) Fiona wants a new doll.
8) The box is empty!
9) We run back home for dinner

Long-term Storage and Retrieval Has Been Separated Because it has been Shown that it Encompasses Two Relatively Distinct Abilities

Learning efficiency

The ability to learn, store, and consolidate new information over periods of time measured in minutes, hours, days, and years.

Learning efficiency

Associative memory (MA): The ability to form a link between two previously unrelated stimuli such that the subsequent presentation of one of the stimuli serves to activate the recall of the other stimuli.

Meaningful memory (MM): The ability to remember narratives and other forms of semantically related information.

*Free Recall Memory (M6) is a third GI narrow ability that is not measured by the WISC-V or WJ IV

GI - Associative Memory - Task Example: An examinee is presented with a set of visual stimuli paired with nonsense words and must correctly identify the nonsense word that had been presented with a certain visual stimulus.

You will see pictures of fish, plants, and shells, Each one has a name.

This is KOH .
Point to KOH .

The Lion And The Boar

GI - Meaningful Memory

 Task Example: An examinee is presented with a short story and must retell the story as accurately as possible immediately following a single presentation.It was a hot summer day. A lion and a boar reach a small water body for a drink. They begin arguing and fighting about who should drink first. After a while, they are tired and stop for breath, when they notice vultures above. Soon they realize that the vultures are waiting for one or both of them to fall, to feast on them. The lion and the boar then decide that it was best to make up and be friends than fight and become food for vultures. They drink the water together and go their ways after.

GI - Free Recall Memory

 Task Example: An examinee is presented with a series of words and, after they are removed, must recall as many of the words as possible in any order.
Free Recall Test

cos		
Brick	lamp	Truck
goat	Stove	cabbage
Apple baseball	Door	
tree	Book	window
Ladder	Rifle	pencil

Retrieval fluency

The rate and fluency at which individuals can

 access information stored in long-term memory.
© Institute for Applied Psychometrics (IAP), 05-16-18

Revised CHC Theory Introduced Facets

Speed of lexical access (LA): The ability to rapidly retrieve words from an individual's lexicon. Verbal efficiency or automaticity of lexical access. An intermediate stratum level ability.

Naming facility (NA): The ability to rapidly call objects by their names.
Word fluency (FW): The ability to rapidly produce words that share a phonological (e.g., fluency of retrieval of words via a phonological cue) or semantic feature (e.g., fluency of retrieval of words via a meaning-based representation).

Ideational fluency (FI): The ability to rapidly produce a series of ideas, words, or phrases related to a specific condition or object.

Expressional fluency (FE): The ability to rapidly think of different ways of expressing an idea.

Gr (Words Facet) - Naming Facility - Task Examples: Rapid Naming of Letters; Rapid Naming of Colors

Gr (Ideas Facet) - Ideational Fluency

 Task Examples: An examinee must rapidly name as many kitchen utensils/appliances as they can think of within a specified time limit.

Gr (Figures Facet) - Figure

 FluencyTask Example: The examinee is required to quickly connect dots to make as many different designs as possible.

Revised CHC Theory Introduced

New Narrow Ability Codes

Working Memory Capacity (Gwm). The ability to encode and maintain verbal or visual information in immediate awareness and then manipulate or transform it in some way within a few seconds, which is dependent in part on focus of attention. It also includes the ability to focus attention on task-relevant stimuli and ignore task irrelevant stimuli.

Working memory capacity

Auditory short-term storage (Wa): The ability to encode and maintain verbal information in primary memory.

Visual-spatial short-term storage (Wv): The ability to encode and maintain visual information in primary memory.

> Working Memory Capacity (Wc) The ability to MANIPULATE information in primary memory

Attentional Control (AC): The ability to manipulate the spotlight of attention flexibly to focus on task-relevant stimuli and ignore task irrelevant stimuli. Sometimes referred to as spotlight or focal attention, focus, control of attention, executive controlled attention, or executive attention.

Gwm Narrow Abilities

Auditory short-term storage (Wa)	the ability to encode and maintain verbal information in primary memory Visual-spatial short-term storage (Wv) Attentional control (AC) the ability to encode and maintain visual information in primary memory
the ability to manipulate the spotlight of attention flexibly to focus on task- relevant stimuli and ignore task- irrelevant stimuli (sometimes referred to as spotlight or focal attention, focus, control of attention, executive controlled attention, or executive attention)	
Working memory capacity (Wc)	the ability to manipulate information in primary memory

Previously "Memory Span" (MS) high demand on storage/maintenance

Previously inherent in the broad Gwm definition - high demand on deliberate processing

Previously "Working Memory" (MW) moderate demands on maintenance and deliberate processing

Slight Variation in Gwm for Clarity

- Change name of Broad Ability from "Working Memory Capacity" to "Short-term Storage and Working Memory" to avoid redundancy in terms and to capture maintenance and deliberate processing
- Four Narrow Abilities
- Short-term Auditory Storage (Wa)
- Short-term Visual Spatial Storage (Wv)
- Working Memory Capacity (Wc)
- Attentional Control (AC)

- All tests previously classified as Memory Span (MS) will be reclassified as either:
- Auditory Short-term Storage (Wa) - for example, Memory for Words; or
- Visual-spatial Short-term Storage (Wv) - for example, Picture Span

How Will

Gwm Tests Be Reclassified?

All tests previously classified as Working Memory (WM) will be reclassified as:

- Working Memory Capacity (Wc) (regardless of whether the task stimuli are visual or auditory)
- Example: Letter-Number Sequencing will be coded as Wc
- Note that Attentional Control (AC) is inherent in the definition of Wc and therefore Wc does not require a secondary code of AC
- Note that when a subtest has subcomponents, such as Digit Span - which has three subcomponents: Forward, Backward, and Sequencing - and one component is a short-term storage task and another is a working memory task, then two narrow ability codes will be used to classify the subtest.
- Digit Span Forward = Wa
- Digit Span Backward and Sequencing = Wc
- Digit Span will be coded as "Gwm: Wa, Wc"

Is Attentional Control Constrained to Gwm?

- Attentional Control (AC) is related primarily to Gwm and Gs tasks; however, AC is also involved in tasks in other domains (e.g., Gf, Gv), but to a lesser extent
- Proposed AC "classification rules"

1. Working Memory Capacity (Wc) subtests are classified as Gwm:Wc. AC is inherent in the definition of Wc.
2. $A C$ is a secondary classification for Gwm subtests that have subcomponents where either Wa or Wv is involved but a distinct subcomponent involves Wc. These subtests may be classified as "Gwm:Wa, AC" or "Gwm:Wv, AC".

Example: The blue browned the red. Who browned the red? Answer: the blue. This task does not require manipulating information, but it requires more deliberate processing than a typical Wa task and therefore has a secondary code of AC (i.e., Gwm:Wa, AC)
3. If $A C$ is an appropriate classification for a task outside of the Gwm domain (e.g., Gf, Gv, Gs), then "Gwm" should be dropped, and "AC" should be used as the sole classification or as a classification that is secondary to the primary narrow ability classification.

Gwm - Auditory Short-term

 Storage (Wa)Task Example: An examinee is presented with a series of numbers orally and must repeat the numbers verbatim.

- Gwm - Visual Short-term

 Storage (Wv)Task Example: An examinee is presented with a series of pictures for 5 seconds and then must point to the pictures in order when they are displayed on a page with several other pictures.

- Gwm - Visual Short-term Storage (Wv)
Task Example: An examinee is presented with a series of pictures for 5 seconds and then must point to the pictures in order when they are displayed on a page with several other pictures.
- (2) 40

Gwm - Working Memory Capacity (Wc)

Task Example: An examinee is presented with a series of letters and numbers in a mixed-up order and is required to reorder them by stating the numbers in ascending order followed by the letters in alphabetical order.

Item

$$
9-L-7-C-2-R
$$

Response

$$
2-7-9-C-L-R
$$

AC is required on many tests commonly thought of as tests of Executive Functions (e.g., tests that involve cognitive flexibility, inhibition, switching, set shifting)

- Example of proposed AC rule \#3:

The examinee is required to draw a line connecting, in alternating sequence, the numbers 1 through 13 and the letters A through L, starting with 1 and drawing a line to A, then 2 , then B, and so on until he or she has connected all numbers and letters.

Classification: Gs:Ps; AC
 Trails (Gs:Ps; AC)

AC is required on many tests commonly thought of as tests of Executive Functions (e.g., tests that involve cognitive flexibility, inhibition, switching, set shifting)

- Another example of AC rule \#3: An examinee is required to quickly say the color a word is printed in rather than read the word.

Classification: AC
Stroop (AC)

Stoop Test B

Read out loud the colors of the words - disregard the words themselves:
green blue
yellow blue
blue red
yellow red
yellow yellow
green red
yellow green l
greenredbluegreen

The degree of Attentional
Control needed increases as reasoning tasks become more complex and when time constraints are imposed
important; a high level may be needed to perform speeded tasks that require inhibition, switching, and cognitive set shifting

Attentional Control is important; a high level may be needed to perform more complex working memory tests, particularly those involving resequencing or transforming information in some way

[^0]

Speed and Efficiency

The Current CHC Taxonomy Incudes 17 Broad Abilities and 80 Narrow Abilities (Schneider \& McGrew, 2018)

Auditory Processing (Ga)

The ability to analyze, manipulate, discriminate, comprehend, and synthesize sounds (e.g., speech units). It involves the ability to hear phonemes distinctly, blend and segment words, and retain speech sounds on a short-term basis

Supplement WISC-V with Ga tests from another battery (e.g., CTOPP-2; FAR; WJ IV OL)

- Ga - Phonetic Coding

Task Example: An examinee blends sounds together fluently to form words.

Phonemic Awareness tests are found on cognitive, achievement, speech-language, and special purpose tests

WhOOOO WHOWS HOW tO JIERD CVC WORDS?

Visual Processing (Gv)

- Visual processing (Gv) is an individual's ability to think about visual patterns (e.g., what is the shortest route from your house to school?) and visual images (e.g., what would this shape look like if I turned it upside down?).

Visual Processing (Gv)

- This type of ability also involves generating, perceiving, and analyzing visual patterns and visual information.
- putting puzzles together
- completing a maze
- Interpreting charts, graphs, and figures
- Important when doing advanced math (e.g., geometry and calculus).

Visual Processing (Gv). The ability to generate visual images and perceive and analyze visual patterns and visual information. It also involves the ability to mentally simulate how complex visual patterns might look when transformed in some way (e.g., rotated).

> IM

Imagery (IM): The ability to voluntarily mentally produce very vivid images
Visualization (Vz): The ability to perceive complex visual patterns and mentally simulate how they might look when transformed (e.g., rotated, changed in size, partially obscured, and so forth).

Visual processing

> ***Eight Gv abilities are not listed in this figure: Speeded Rotation (SR), Closure Speed (CS), Serial Perceptual Integration (PI), Length Estimation (LE), Perceptual IIIusions (IL), Perceptual Alternations (PN), and Perceptual Speed (P)

Visual memory (MV): The ability to remember complex visual images over
short periods of time (less than 30 seconds).
Spatial scanning (SS): The ability to quickly and accurately survey (visually explore) a wide or complicated spatial field or pattern with multiple obstacles and identify a target configuration or identify a path through the field to a target end point.
(Domain includes more narrow abilities not listed here)
© Institute for Applied Psychometrics (IAP), 05-16-18

- Gv - Visualization

Task Example: An examinee is required to assemble blocks to match a picture or standing model.

- Gv - Visual Memory

Task Example: After being exposed to an image for five seconds, the examinee must identify the image when it is part of a larger and more complex
 image.

- Gv - Visual Memory

Task Example: After being exposed to an image for five seconds, the examinee must identify the image when it is part of a larger and more complex image.

D

Answer: C

Processing Speed (Gs)

- The ability to control attention to automatically perform simple and repetitive clerical-type tasks quickly. It may be thought of as mental speed or the fluency with which simple, over-learned tasks are performed.

> New to Gs Intermediate Factor, Narrow Ability Codes, Facets

> Rate of Test Taking (R9) was dropped

Perceptual speed (P): An intermediate stratum level ability that can be defined as the speed and fluency with which similarities or differences in visual stimuli (e.g., letters, numbers, patterns, etc.) can be searched and compared in an extended visual field.

Perceptual speed-search (Ps): seeed and fluency of searching or scanning an extended visual field to locate one or more simple visual paterns.

Perceptual speed-compare (Pc): the speed and fluency of looking up and comparing visual stimuli that are side-by-site or more widery separated in an extended visual field.

Number facility (\mathbf{N}) : The speed, fluency and accuracy in manipulating numbers

> comparing number patterns, or completing basic arithmetic.

Reading speed (fluency) (RS): The speed and fluency of reading text with full comprehension. Also listed under Grw.

Writing speed (fluency) (WS): The speed and fluency of generating or copying words or sentences. Also listed under Grw and Gps.

Cognitive Facet

- Gs - Perceptual Speed Search (Ps)

Task Example: The examinee must identify from a series of pictures the one that matches the target picture as quickly as possible.

Cognitive Facet

- Gs - Perceptual Speed Compare (Pc)

Task Example: The examinee is required to circle the pairs of letters with the same name as quickly as $\left.\begin{array}{lllll}A \\ a & m & p & g \\ G & i & b & j \\ i & p & k\end{array}\right]$ possible.

Academic Facet (Cross Listed in Grw)

- Gs:RS - Reading Speed (Fluency)

Task Example: The examinee is required to read simple sentences and determine whether they are accurate

Shoes are for walking	Yes	No
Bananas are blue	Yes	No
Fish swim in water	Yes	No
Fire is cold	Yes	No

Proposal: RS should be restricted to reading connected text fluently and accurately, separate from comprehension. This suggested change would mean that reading speed tests would parallel writing speed and math speed tests. RS, WS, and MS tasks should answer the question: Has the individual developed automaticity in reading/writing/math?
\qquad
"Look at my hair," the yak said. 7
His hair was a mess. He did not 15
like it this long. The yak could 22
barely see because of his long $\quad 28$
hair. He needed to find someone 34
that would cut it. He walked 40
through the plains looking. He 45
found a monkey pal. The monkey 51
said he could help him out. 57

Academic Facet (Cross Listed in Grw)

- Gs:WS - Writing Speed (Fluency)

Task Example: The examinee is required to complete sentences using picture prompts as quickly as possible.

Academic Facet (Cross Listed in Gq)

- Gs:MS - Proposed Math Speed
(Fluency): The examinee is required to solve simple addition problems as quickly as possible
$\left.\left.\begin{array}{|l|l|}\hline \text { Perceptual speed-search (Ps) } & \begin{array}{l}\text { the speed and fluency of searching or } \\ \text { scanning an extended visual field to located } \\ \text { one or more simple visual patterns }\end{array} \\ \hline \text { Perceptual speed-compare (PC) } & \begin{array}{l}\text { the speed and fluency of looking up and } \\ \text { comparing visual stimuli that are side by side } \\ \text { or more widely separated in an extended } \\ \text { visual field }\end{array} \\ \hline \text { Number facility (N) } & \begin{array}{l}\text { the speed, fluency, and accuracy in } \\ \text { manipulating numbers, comparing number } \\ \text { patterns, or completing basic arithmetic } \\ \text { operations }\end{array} \\ \hline \text { Reading speed (fluency) (RS) } & \begin{array}{l}\text { the speed and fluency of reading text with } \\ \text { full comprehension }\end{array} \\ \hline \text { Writing speed (fluency) (WS) } & \begin{array}{l}\text { the speed and fluency of generating or } \\ \text { copying words or sentences }\end{array} \\ \hline \text { Math speed (MS) } & \begin{array}{l}\text { the speed and fluency of completing basic } \\ \text { arithmetic operations }\end{array} \\ \hline \text { Reading speed (fluency) (RS) } & \begin{array}{l}\text { the speed of reading connected text fluently } \\ \text { and accurately }\end{array} \\ \hline \text { Writing speed (fluency) (WS) } & \begin{array}{l}\text { the speed and fluency of generating or } \\ \text { copying words or sentences }\end{array} \\ \hline \text { Quantitative knowledge (Gq) } & \begin{array}{l}\text { the depth and breadth of declarative and } \\ \text { procedural knowledge related to } \\ \text { mathematics }\end{array} \\ \hline \text { Mathematical knowledge (KM) } & \begin{array}{l}\text { range of general knowledge about } \\ \text { mathematics, not the performance of } \\ \text { mathematical operations or the solving of } \\ \text { math problems }\end{array} \\ \hline \text { Mathematical achievement (A3) } & \text { measured (tested) mathematics achievement }\end{array} \right\rvert\, \begin{array}{l}\text { the basic processing of numerical } \\ \text { information, including number representation } \\ \text { (quantifying sets without counting) and } \\ \text { number comparison (estimating the relative } \\ \text { magnitude of sets) }\end{array}\right\}$

Gs Cognitive Facet

Gs Achievement Facet

Gs Achievement Facet Modified

Gq Modified

Gs:MS (Math Speed) Gq:N (Number Sense)

- Recommendation: Use " N " for tests of number sense or basic processing of numerical information (e.g., estimating the relative magnitude of sets, estimating quantity, number comparisons, number representation), which is not currently its own narrow ability.
- Number Sense is nonsymbolic and intuitive (distinct from A3 and KM)
- Math Speed parallels RS and WS in the Gs domain (each of these narrow abilities is consistent with fluency or automaticity in basic skills that have been taught via formal instruction).
- Like RS and WS, MS should be cross listed under Gq
- Gq: N (Number Sense), A3 (Mathematical Achievement), MS (Math Speed), and KM (Math Knowledge)
- Recommendations: Since reading, writing, and math fluency are in the achievement facet of Gs and these tasks are intended to measure fluency in skills that have been taught, which is why they are mostly found on achievement tests, the classifications should reflect the broad achievement domain as primary
- Grw:RS, Grw:WS, Gq:MS
- Also, cross listed in Gs
- Math Knowledge (KM)

Task Example: The examinee is required to select the fraction that goes with the picture

Quantitative Knowledge (Gq)

$$
1 / 2 \quad 2 / 3 \quad 1 / 5 \quad 2 / 5
$$

- Math Achievement (A3)

Task Example: The examinee is required to complete as many problems as possible in a specified time frame.

Quantitative Knowledge (Gq)

Broad Reading and Writing (Grw)

- Grw - R (Reading)

Reading comprehension (RC)	the ability to understand written discourse
Reading decoding (RD)	the ability to identify words from text
Reading speed (RS)	the rate at which a person can read connected discourse with full comprehension

Broad Reading and Writing (Grw)

- Grw - W (Writing)

Writing Speed (WS)	the ability to copy or generate text quickly
English Usage (EU)	knowledge of the mechanics of writing (e.g., capitalization, punctuation, and word usage)
Spelling (SG)	the ability to spell words the ability to use text to communicate ideas clearly
Writing Ability (WA)	

CHC Abilities Measured by Cognitive, Academic, and Special Purpose Tests

BROAD ABILITIES	2022 (pre Re-classification)	2015	2014	Change 2015	Change 2014
TOTALS					
Gc	303	242	185	61	118
Grw	216	154	109	62	107
Gv	140	108	89	32	51
GIr	138	98	81	40	57
Gsm	123	89	64	34	59
Gq	92	59	35	31	55
Ga	87	67	55	20	32
Gs	70	58	36	12	34
Gf	69	61	43	8	26
Gkn	9	7	3	2	6
Gp	4	-----	14	-----	-10
Gh	-----	-----	4	0	----
Gps	1	-----	1	-----	0

Zinkiewicz, C., Alfonso, V. C., \& Flanagan, D. P. (2022, May). CHC broad \& narrow abilities measured: 20142022. Poster presented at the annual meeting of the Association for Psychological Science, Chicago, II.

Cognitive-Achievement Relations

Research Underlying DD/C (consistency component)

A Consensus Model of CognitiveAchievement Relations Using Meta-SEM

- Daniel Hajovsky, Ph.D. - Texas A\&M University
- Chis Niileksela, Ph.D. - University of Kansas
- Dawn Flanagan, Ph.D. - St. John's University
- Vincent C. Alfonso, Ph.D. - Gonzaga University
- Joel Schneider, Ph.D. - Temple University
- Craig Zinkiewicz, Ph.D. - Scottsdale Unified School District

See also: Hajovsky, D. B., Villeneuve, E. F., Schneider, W. J., \& Caemmerer, J. M. (2020). An alternative approach to cognitive and achievement relations research: An introduction to quantile regression. Journal of Pediatric Neuropsychology, 6, 83-95.

A Consensus Model of Cognitive-Achievement Relations Using Meta-SEM

 Hajovsky, Niileksela, et al.The aim of this study is to add empirical evidence to the literature on Cattell-Horn-Carroll (CHC) cognitive-achievement relations by analyzing multiple tests simultaneously using meta-structural equation modeling (meta-SEM; Jak et al., 2021). Meta-SEM is a useful method for analyzing correlation matrices across specific test batteries. This method results in an increased sampling of cognitive and academic skills measured by various batteries to better inform the validity of construct relations. We will use the normative and special validity samples of multiple standardized cognitive and achievement tests. Our primary results will demonstrate the construct relations between general intelligence (g), broad abilities, and academic skills across batteries and whether results are moderated by test battery, type of sample (e.g., standardization vs. validity), and age.

Toward a Consensus Model of Cognitive-Achievement Relations Using Meta-Sem

Daniel B. Hajovsky, Christopher R. Nifleksela, Dawn P. Flanagan, Vincent C. Alfonso, W. Joel Schneider, \& Craig J. Zinkiewicz

METHOD

The subtest correlations from the technical manuals of the WJ77, WJ-R, WJ III, WJ IV, WISC-III, WISC-IV, WISC-V, WAIS-III, WAIS-IV, WPPSI-III, WPPSI-IV, KABC-II, KABC-II NU, DAS-II, SB5, WIAT-II, WIAT-III, WIAT-4, OWLS-II, CASL-2, CELF-4, PPV4, KTEA-II, and KTEA-III along with the cross-battery correlations from all validity studies listed in the manuals were included in the data set. Where possible, correlations and sample sizes were listed separately by age. At the time of writing, 45,597 correlation coefficients were analyzed with a combined sample size of over 33,000 participants.
There were 219 unique subtests across the 23 test batteries/editions. For each subtest, the primary Cattell-Horn-Carroll (Schneider \& McGrew, 2018) ability constructs were assigned according to their classifications in the X-BASS software (Flanagan, Ortiz, \& Alfonzo, 2017). For this study, secondary classifications were ignored. For academic abilities, we distinguished between basic skills (reading decoding, spelling, grammar/punctuation, and calculation), skill fluency (reading fluency, writing fluency, and calculation fluency), and higher-level applied skills (reading comprehension, written expression, and math applied problem solving).

The exploratory analyses we conducted were guided and inspired by Fry and Hale's Developmental Cascade Hypothesis (Fry \& Hale, 1996; Kail, 2007), Cattell's Investment Theory (Cattell, 1987, p. 139), Ackerman's PPIK Theory (2018), Juel's expansion of Gough and Tunmer's Simple View of Reading, and Berninger's Simple View of Writing theories. That is, some basic abilities are assumed to be fundamental precursors to more complex abilities and learned abilities. Processing speed is assumed to underly working memory, which is a primary ingredient of fluid reasoning, which facilitates verbal comprehension, which is the foundation of academic skill acquisition, which is essential for applied academic work.

Key Findings

1. Ability constructs can be viewed as densely interconnected network of skills
2. It is theoretically and empirically plausible that simple skills underlie more
complex ones
3. Ability associations are likely more complex than what is displayed here

Progress in the Development and Structure of Cognitive Tests

Evolution of the

Wechsler Scales

Summary of Other
Comprehensive
Cognitive Batteries

WISC, WPPSI, and WAIS roots can all be traced to The 1939 WechslerBellevue

Traditional Wechsler Structure

Traditional Cognitive Assessment

1939-1991

THE 1974 WISC-R Factor Structure

WISC-III Factor Structure (1991): 17 YEARS LATER

Gs

17 years

- What happened in Medicine during that time period?

- 1974: Liposuction
- 1976: First commercial PET scanner (picture to left)
- 1980: First commercial MRI scanner (picture above)
- 1981: First human heart-lung combined transplant
- 1985: Automated DNA sequencer; DNA Fingerprinting; Surgical Robot
- 1987: Tissue engineering
- 1988: Intravascular stent; Laser cataract surgery
- 1990: Gamow bag
(used to treat extreme altitude sickness)

- 20th Century Innovations
- 1974: Post-it Notes; Rubik's Cube
- 1976: Personal Computer
- 1978: Dyson Vacuum Cleaner
- 1979: Trivial Pursuit
- 1983: Mobile Phone
- 1986: The Club
- 1991: World Wide Web (first web page was created)

1974 WISC-R Was Used Until 1992

From g to CHC: Confirmatory Cross-Battery (or Joint) Factor Analysis of WISC-III and WJ-R

Note: WJ-R tests are indicated by bold rectangles

Freedom From Distractibility Factor

"Kaufman's "freedom from distractibility" factor is....an artifact of the factor analysis of a severely limited battery of tests, and is not to be considered as a basic primary factor in mental organization"

Carroll (1993)

The WISC had the same 12 subtests for 42 years

1.	General Information	1.	General Information	1.	General Information 2. General Comprehension
3.	2.	General			
Genmetic		2.	Comprehension Comprehension		
4.	Similarities	3.	Arithmetic	3.	Arithmetic
5.	Vocabulary	5.	Similarities	Vocabulary	4.
6.	Digit Span	6.	Digit Span	Vocabulary	
7.	Picture Completion	7.	Picture Completion	7.	Picture Completion
8.	Picture Arrangement	8.	Picture Arrangement	8.	Picture Arrangement
9.	Block Design	9.	Block Design	9.	Block Design
10. Object Assembly	10.	Object Assembly	10.	Object Assembly	
11. Coding	11.	Coding	11.	Coding	
12. Mazes	12.	Mazes	12.	Mazes	

The WISC-III was Published 10 Years After David Wechsler Died

The Wechsler scales introduced many novel concepts and breakthroughs to the intelligence testing movement.

From g to CHC: Structure of the WISC-IV (Wechsler, 2003)

No obvious Impact of CHC theory on the WISC-IV

Keith, T. Z., Fine, J. G., Reynolds, M. R., Taub, G. E., \& Kranzler, J. H. (2006). Hierarchical, multi-sample, confirmatory factor analysis of the Wechsler Intelligence Scale for Children-Fourth edition: What does it measure? School Psychology Review. 35, 108-127.

From g to CHC: Theory-based Structure of the WISC-IV (Keith et al., 2006)

WISC-IV Indexes did not correspond to results of CHCdriven hierarchical CFA

Figure 5.1. Five-Factor Hierarchical Model for the Primary and Secondary Subtests, Ages 6-16 (p. 83 of WISC-V Technical and Interpretive Manual)

Obvious Impact of CHC theory on the WISC-V

of WISC ${ }^{\circ}$-V
Assessment

- Complete coverape of odministration, sooriga, and maibobe online - Une imscrinsor
- Une of WSCV in SLO Leentifcetion novioponctolopka Comperamensive case reports, gvisance oa interpore-

Dawn P. Flanagan
Vincent C. Alfonso
Alm S. Koutman a Nadeen L. Koutman. Series Ecritors
Wiley

Figure 1.2. WISC-V Primary Index Scales

No Substitutions are Permitted
Primary abilities measured by subtests based on construct validation literature; Extant factor analyses; CHC classifications (see Rapid Reference 1.2 for a more comprehensive list of CHC classifications)

Figure 1.3. WISC-V Ancillary and Complementary Index Scales

WISC-V Ancillary Index Scales

Ancillary and
Complementary Index Scales are based on logical classifications as guided by research

NEW WISC-V Complementary Index Scales

Research Shows that the WISC-V May be Interpreted in the Manner in Which it was Intended

Intelligence
Volume 62, May 2017, Pages 31-47

Multi-group and hierarchical confirmatory factor analysis of the Wechsler Intelligence Scale for Children-Fifth Edition: What does it measure? \quad is

Matthew R. Reynolds ${ }^{\text {a }} \stackrel{\circ}{\bullet}$, Timothy Z. Keith ${ }^{\text {b }}$
田 Show more
https://doi.org/10.1016/j.intell.2017.02.005

Highlights

- WISC-V constructs are measured similarly across the 6-16-year age range
- $\quad g$ and five broad ability factors account for subtest covariances.
- Our CFA findings diverged from EFA research.
- $\quad g$ is measured strongly in the new 7 subtest FSIQ

Enduring the tests of age and time: Wechsler constructs across versions and revisions

Christopher R. Niileksela*, Matthew R. Reynolds
University of Kansas, Joseph R. Pearson Hall, School of Education, Department of Educational Psychology, 1122 West Campus Road, Room 640, Lawrence, Kansas 66045, United States of America

ARTICLE INFO

Keywords

Wechsler
Factorial invariance
WPPSI
WISC
WAIS

ABSTRACT
The Wechsler scales are some of the most commonly used intelligence tests in research and practice. It is unknown whether different versions (i.e., WPPSI, WISC, and WAIS) or revisions (e.g., WISC-IV and WISC-V) of the Wechsler scales measure the same constructs. We tested the factorial invariance across six Wechsler scales (WPPSI-III, WPPSI-IV, WISC-IV, WISC-V, WAIS-III, and WAIS-IV) to investigate whether the constructs measured across these scales are the same. Factorial invariance was tested using four- and five-factor measurement and higher-order models. Results suggested that the constructs measured by the Wechsler scales are generally the same and remarkably consistent across different versions and revisions. Most instances of non-invariance were due to subtest unique variances. The constructs measured by different Wechsler batteries can likely be interpreted similarly.

The WJ III

(Woodcock, McGrew, \& Mather, 2001)

The first in a flurry of test revisions that represented advances unprecedented in assessment fields (e.g., based on CHC)

CHC Factors on the WJ IV COG

Narrow Ability an Other Clinical Clusters on the WJ IV COG

Number Facility (Gs:N) - The speed at which basic arithmetic operations are performed accurately

CHC Extended Factors on the WJ IV COG

CHC, Neuropsych, and Integrated Batteries

$>$ SB5 (2003) - Based on CHC theory
$>$ KABC-II (2004) - Based on CHC theory and Luria
$>$ NEPSY-II (2007) - Based on Neuropsych theory
$>$ DAS-II (2007) - Based on CHC theory

> CAS2 (2014) - Based on PASS theory

Batteries not based on a particular theoretical model

$>$ WISC-IV (2003) - Some CHC terminology (e.g., Fluid Reasoning, Working Memory) and independent CHC approach to interpretation (Flanagan \& Kaufman, 2004, 2009)
> WAIS-IV (2008) - Some CHC terminology and independent interpretive approach with reference to CHC constructs measured by the battery (Kaufman \& Lichtenberger, 2009)

Progress in Approaches to Cognitive Test Interpretation

- Overall g
- Clinical profile analysis
- Psychometric profile analysis (shared abilities; intelligent testing)
- Application of and refinements to theory and CHC-based research and interpretation
- Application of theory (g v. specific abilities)

Progress in Approaches to
 Interpreting Cognitive Test Performance

- First wave of interpretation - Overall g

Spearman's general factor model; T\# = different tests Figure from: Institute of Applied Psychometrics (IAP) Dr. Kevin McGrew © 4-11-14

Progress in Approaches to Interpreting Cognitive Test Performance

Psychometric Profile Analysis (Third Wave)

Application of Theory to Interpretation (Fourth Wave)

Application of Refinements to Theory and CHC-based Research to Psychological Test Interpretation (Fifth Wave)

TABLE 2.4. Wechsler's Case Example for "Adolescent Psychopaths"

Subtest	Standard score
Comprehension	11
Arithmetic	6
Information	10
Digits	6
Similarities	5
Picture Arrangement	12
Picture Completion	10
Block Design	15
Object Assembly	16
Digit Symbol	12
Verbal IQ (VIQ)	90
Performance IQ (PIQ)	123

Table from Kamphaus et al. (2012). A History of Intelligence Test Interpretation. In D.P. Flanagan and P.L. Harrison (Eds.), Contemporary Intellectual Assessment: Theories, Tests and Issues, $3^{\text {rd }}$ edition. New York: Guilford.

Progress in Approaches to Interpreting Cognitive Test Performance

Clinical Profile Analysis (Second Wave)

Application of Theory to Interpretation (Fourth Wave)

Application of Refinements to Theory and CHC-based Research to Psychological Test Interpretation (Fifth Wave)

Factor Analysis - Cohen's Threefactor solution of the WISC

Kaufman's Psychometric Approach Profile analysis; shared abilities, and intelligent testing

Kaufman’s Intelligent Testing Philosophy

A WISC-III detective strives to use ingenuity, clinical sense, a thorough grounding in psychological theory and research, and a willingness to administer supplementary cognitive tests to reveal the dynamics of a child's scaled-score profile

(Kaufman, 1994)

Kaufman's Intelligent Testing Philosophy

- Clinical tests of intelligence are administered individuallythey must also be interpreted individually
- Cognitive, developmental, and neuropsychological theories are invaluable for interpreting test profiles, identifying processing disorders, and informing interventions

Progress in Approaches to Interpreting Cognitive Test Performance - Mainly Gf-Gc and CHC-based

Clinical Profile Analysis (Second Wave)

Psychometric Profile Analysis (Third Wave)

Application of Theory to
Interpretation
(Fourth Wave)

Application of Refinements to Theory and CHC-based Research to Psychological Test Interpretation (Fifth Wave)

1989-1994

Over Two Decades of Revisions and Refinements to Gf-Gc/CHC Theory

1997

Chapter by McGrew: First attempt at Integrating Cattell-Horn Gf-Gc Theory and John Carroll's Three-Stratum Theory

THEORIES, TESTS, and ISSUES
-dited by
DAWN P. FLANAGAN
PATTIL, HARRISON

2005

Chapter by McGrew: Documentation of how the integrated model presented in 1997 and again in 2000 became known as CHC theory

2012

Chapter by

Schneider and McGrew: Careful review of the literature led to some substantial modifications

2018

Chapter by
Schneider and McGrew: Most significant revisions to CHC theory to date and criteria for revisions to the CHC taxonomy

Progress in Approaches to Interpreting Cognitive Test Performance from a School Neuropsychological Perspective

Clinical Profile Analysis (Second Wave)

Psychometric Profile Analysis (Third Wave)

Application of Theory to
Interpretation
(Fourth Wave)

Application of Refinements to Theory and CHC-based Research to Psychological Test Interpretation (Fifth Wave)

Progress in Approaches to
 Interpreting Cognitive Test Performance

Clinical Profile Analysis Psychometric Profile Analysis (Second Wave) (Third Wave)

Application of Theory to Interpretation (Fourth Wave)

Application of Refinements to Theory and CHC-based Research to Psychological Test Interpretation (Fifth Wave)

Refinements and Extensions to the CrossBattery Approach

Significantly improved evidence base

Significantly improved and expanded software programs

Progress in Approaches to Interpreting Cognitive Test Performance - Integrated Models

Clinical Profile Analysis (Second Wave)

Psychometric Profile Analysis (Third Wave)

Application of Theory to Interpretation (Fourth Wave)

Application of Refinements to Theory and CHC-based Research to Psychological Test Interpretation (Fifth Wave)

Integration of CHC and neuropsychological theory for cognitive test interpretation and identification/diagnosis of SLD

Progress in Approaches to Interpreting Cognitive Test Performance from a School Neuropsychological Perspective

Clinical Profile Analysis (Second Wave)

Psychometric Profile Analysis (Third Wave)

Application of Theory to Interpretation (Fourth Wave)

Application of Refinements to Theory and CHC-based Research to Psychological Test Interpretation (Fifth Wave)

Woodcock et al., 2017

Miller et al., 2022

Current Cognitive Assessment

- Tests based on theory (a narrowing of the theory-practice gap)
- Integration of CHC and neuropsychological theories provide greater flexibility for interpretation
- Tests measure a wider range of cognitive abilities and processes than their predecessors

Summary

 and
Conclusions

-Part 1

Several salient revisions and refinements to CHC theories were highlighted

Broad CHC cognitive abilities and processes were defined and there is a large research base supporting their importance for academic success

Additional large-scale research on the relations between cognitive abilities and processes and academic functioning is underway

CHC theories continue to evolve and inform assessment, test score interpretation, and intervention

Objectives-Part 2

- To understand when and how to use X-BASS to support assessment and interpretation
- To understand the purpose of the individual test tabs available in XBASS
- To be able to use X-BASS features appropriately when given a set of data to enter
- To be able to interpret X-BASS output and make decisions regarding next steps in assessment and interpretation based on the output
- To be able to understand and use the XBA and Test Composite Analyzer tab

Content-Part 2

- Introduction to and use of the individual test tabs available in X-BASS
- Cohesion of test composites
- Need for follow-up assessment
- Data transfer to XBA Analyzer and Data Organizer
- Graphing
- Examples of entering scores and interpreting
- Examples of WJ IV and WISC-V data analysis
- Examples of XBA data analysis using the XBA Analyzer Tab
- How XBA composites are calculated on the XBA Analyzer tab
- Interpretation of XBA composites
- Evaluation of cohesion for composites from batteries that do not have their own test tab in X-BASS (e.g., CTOPP2)
- Introduction to and use of the Data Organizer
i. Data transfer from cognitive and achievement test tabs
ii. Principles for selecting best composites or subtests for transfer
iii. Principles for selecting composites for later use in PSW-A

Cross-Battery Assessment Software System (X-BASS ${ }^{\circledR}$ v2.4)
 Conceptualization by D.P. Flanagan, S.O. Ortiz, V.C. Alfonso; Programming by S.O. Ortiz and A.M. Dynda

of Cross-Battery Assessment

- Thiry IL: FIRST ${ }^{\oplus}$
-

-am Library
Dav Finding Interventions and Resources
San
San
Vin for Students and Teachers
Alan S. Kaut
Essentials of Cross-Battery Assessment, 3rd Edition remains the reference document necessary for understanding Cross-Battery Assessment (XBA) and the principles upon which the X-BASS is based.

NEW: We are proud to announce the release of an independent, companion program to X BASS called "Intervention Library: Finding Interventions and Resources for Students and Teachers (IL:FIRST v1.0)." IL:FIRST is a stand alone program designed to assist practitioners in being able to find, evaluate, and explore a variety of interventions that can be tailored to specific cognitive and academic strengths and weaknesses commonly found in students with learning difficulties as may be informed via use of X-BASS. For more information, go to Wiley.com and search for "Ir tervention Library."

New Users:
If you are new to XBA or X-BASS, click the "Start Here" button and follow the prompts for step-by-step guidance. This option is strongly recommended for first time and inexperienced users of X-BASS. New users should also read and review the User Guide for basic info.

Experienced Users:
Experienced users can just set the User Mode and navigate directly to one of the main tabs from here.

```
User Mode
Beginner
Intermediate
© Advanced
```


PSW-Quick Analysis:
If you have a set of scores for which you would like to conduct a quick PSW analysis for SLD evlauation, click here for guidance on using the PSW-QA.

Scroll down page to see all notes

What's New in X-BASS v2.4?

This version is primarily a maintenance release that includes the new WIAT-IV along with some small fixes as well as a revision to the structure that reduces the size significantly and improves performance notably.

Release Notes History - Version 2.4

1. Added the WIAT-4 to the test database and constructed a core test tab that replaces the older WIAT-III. However, all WIAT-III classifications remain in the test database and the WIAT-III core test tab is still available for use.
2. Fixed a minor error that was preventing some subtests from appearing in the Culture-Language Test Reference.
3. Fixed the missing subtest highlighting that designates the appropriate subtests for a particular cluster for a given age/grade on the WJ IV, KABC-II, and other tabs.
4. Streamlined the code to increase overall speed and performance while decreasing file size by $1 / 3$.
5. Modified the import-export feature to function more easily by requiring use of the same folder in which the program is being used for the PCWindows version. The Mac version will be updated to use a special folder that is necessary due to the MacOs sandbox security requirements.
6. Changed the way information regarding update notifications are handled so that only a link to information on the web is provided rather than downloading a file to check, which could trigger warnings from security and antivirus programs.
7. Added values to the bars to the graphs on the C-LIM to assist with interpretation of the impact of cultural/linguistic variables on test performance.
8. Modified interpretive wording for follow up rules on the core test tabs so that any combination of two or three scores that all fall within the average range or higher will no longer result in a recommendation to follow up on the lowest score.

Beginners Start Here

Cross-Battery Assessment Software System (X-BASS ${ }^{\circledR}$ v2.4)

Conceptualization by D.P. Flanagan, S.O. Ortiz, V.C. Alfonso; Programming by S.O. Ortiz and A.M. Dynda

Essentials of Cross-Battery Assessment, 3rd Edition remains the reference document necessary for understanding Cross-Battery Assessment (XBA) and the principles upon which the X-BASS is based.
of Cross-Battery Assessment

- Thiro IL: FIRST ${ }^{\text {© }}$
- Eme Intervention
-am Library
Dav Finding Interventions and Resources
San
Vin for Students and Teachers
Alan S. Kaut

NEW: We are proud to announce the release of an independent, companion program to X BASS called "Intervention Library: Finding Interventions and Resources for Students and Teachers (IL:FIRST v1.0)." IL:FIRST is a stand alone program designed to assist practitioners in being able to find, evaluate, and explore a variety of interventions that can be tailored to specific cognitive and academic strengths and weaknesses commonly found in students with learning difficulties as may be informed via use of X-BASS. For more information, go to Wiley.com and search for "Intervention Library."

New Users:

If you are new to XBA or X-BASS, click the "Start Here" button and follow the prompts for step-by-step guidance. This option is strongly
recommended for first time and inexperienced users of X-BASS. New users stuld also read and review the User Guide for basic info.

Experienced Users:
Experienced users can just set the User Mode and navigate directly to one of the main tabs from here.
$\left[\begin{array}{l}\text { User Mode } \\ \bigcirc \text { Beginner } \\ \bigcirc \text { Intermediate } \\ \bigcirc \text { Advanced } \\ \hline\end{array}\right.$

PSW-Quick Analysis:

If you have a set of scores for which you would like to conduct a quick PSW analysis for SLD evlauation, click here for guidance on using the PSW-QA.

More Experienced Users Go to Intermediate or Advanced

Cross-Battery Assessment Software System (X-BASS ${ }^{\circledR}$ v2.4)

Conceptualization by D.P. Flanagan, S.O. Ortiz, V.C. Alfonso; Programming by S.O. Ortiz and A.M. Dynda Copyright © 2019 Samuel O. Ortiz, Dawn P. Flanagan \& Vincent C. Alfonso. All Rights Reserved

Essentials of Cross-Battery Assessment, 3rd Edition remains the reference document necessary for understanding Cross-Battery Assessment (XBA) and the principles upon which the X-BASS is based.

Thirc - clear : FIRST® ${ }^{\text {(1) }} \quad \begin{aligned} & \text { Subscription-based } \\ & \text { Software }\end{aligned}$

- Sme Intervention
-am Library
Dav Finding Interventions and Resources
San
Vin for Students and Teachers

NEW: We are proud to announce the release of an independent, companion program to X BASS called "Intervention Library: Finding Interventions and Resources for Students and Teachers (IL:FIRST v1.0). "IL:FIRST is a stand alone program designed to assist practitioners in being able to find, evaluate, and explore a variety of interventions that can be tailored to specific cognitive and academic strengths and weaknesses commonly found in students with learning difficulties as may be informed via use of X-BASS. For more information, go to Wiley.com and search for "Intervention Library."

New Users:

If you are new to XBA or X-BASS, click the "Start Here" button and follow the prompts for step-by-step guidance. This option is strongly recommended for first time and inexperienced users of X-BASS. New users should also read and review the User Guide for basic info.

Experienced Users:
Experienced users can just set the User Mode and navigate directly to one of the main tabs from here.

PSW-Quick Analysis:

If you have a set of scores for which you would like to conduct a quick PSW analysis for SLD evlauation, click here for guidance on using the PSW-QA.

Click "Start"

Cross-Battery Assessment Software System (X-BASS ${ }^{\circledR}$ v2.4)

Conceptualization by D.P. Flanagan, S.O. Ortiz, V.C. Alfonso; Programming by S.O. Ortiz and A.M. Dynda

NEW: We are proud to announce the release of an independent, companion program to X BASS called "Intervention Library: Finding Interventions and Resources for Students and Teachers (IL:FIRST v1.0)." IL:FIRST is a stand alone program designed to assist practitioners in being able to find, evaluate, and explore a variety of interventions that can be tailored to specific cognitive and academic strengths and weaknesses commonly found in students with learning difficulties as may be informed via use of X-BASS. For more information, go to Wiley.com and search for "Intervention Library."

New Users:

If you are new to XBA or X-BASS, click the "Start Here" button and follow the prompts for step-by-step guidance. This option is strongly recommended for first time and inexperienced users of X-BASS. New users should also read and review the User Guide for basic info.

Experienced Users:
Experienced users can just set the Use, Mode and navigate directly to one of the main tabs from here.

Start

PSW-Quick Analysis:
If you have a set of scores for which you would like to conduct a quick PSW analysis for SLD evlauation, click here for guidance on using the PSW-QA.

Enter Student/Client Name, DOE, DOB, and Grade

X-BASS Has 13 Individual Test Tabs

X-BASS Has 152 Tests/Batteries and Over 1250 Subtests

After Entering Student/Client Identifying Information, Select Core Battery Used in Assessment

Begin Data Entry

- X-BASS Answers these Questions:
- Is the Composite Cohesive?
- Is there a Need for Follow-up Assessment?

For All Composites Entered Into X-BASS Individual Test Tabs

- Examples of Composites:
- WISC-V
- Verbal Comprehension Index
- Visual Spatial Index
- Fluid Reasoning Index
- WJ IV
- Gc Factor
- Gf Factor
- Glr Factor
- KABC-II
- Sequential/Gsm Scale
- Simultaneous/Gv Scale

What is Cohesion?

- Cohesion is related to how well the scores in a composite "hang" together
- Construct validation research indicates that individuals who score in the Average range on one aspect of a construct ought to score within the Average range on all aspects of the construct. For example, if an individual does well on tests of inductive reasoning, then they ought to do well on tests of deductive reasoning because both are related to the same construct - Fluid Reasoning (Gf)
- When the composite is cohesive, it is a good summary of the theoretically related abilities it is intended to represent

Rules for Cohesion for Two-Subtest Composites on Individual Test Tabs in X-BASS (Determined Based on the Psychometric Properties of the Test)

| Finding | Table from Essentials of Cross-Battery Assessment 3e |
| :---: | :--- | :--- |
| The difference between scores is not significant or uncommon | Interpretation |
| Outcome 1 | The difference between the scores that comprise the composite is not significant and occurs in more than 10\% of the
 general population and, therefore, is common. The composite is cohesive and, therefore, provides a good summary of
 the theoretically related abilities it was intended to represent. |
| The difference between scores is significant but not uncommon | Although the difference between the scores that comprise the composite is significant, the magnitude of the
 difference occurs in at least 10\% of the general population and, therefore, is common. Clinical judgment is needed to
 determine whether the composite is cohesive and, therefore considered an adequate summary of the theoretically
 related abilities it was intended to represent. |
| The difference between scores is significant and uncommon | The difference between the scores that comprise the composite is significant and occurs in $\leq 10 \%$ of the general
 population and, therefore, is uncommon. The composite is not cohesive, meaning that it likely is not a good summary
 of the theoretically related abilities it was intended to represent. Clinical judgement should be used to determine the
 extent to which interpretation should be tempered or whether follow up assessment is warranted. Although the
 meaning of a noncohesive composite may be difficult to determine, it is reliable and valid. Nevertheless, noncohesive
 composites often obscure important information about an individual's strengths and weaknesses. |

Follow up Recommendatons

fund of information/ that develops as a result of exposure tol anguage, culture,
comprise the WJIVCOG Comprehension-Knowledge (Gc) is not statistically significan
and a difference of this size occurs in at least 103 of the general population which and a difference of this size occurs in at least 10% of the general population w
means the difference is relatively common. This means that the WJ IV COG Comprehension-Knowledge (Gc) is a good psychometric summary of Comprehension

Outcome 1

Cohesion
 Analysis Outcomes

Fluid Reasoning (Gf)	Γ	87
Number Series (RQ)	Γ	100
Concept Formation (I)	Γ	80

information above and beyond the WIIV COG Comprehension-Knowled
($G C$) although information above and beyond the WJ IV COG Comprehension-Knowledge (GC), althoug
clinical judgement is always necessary when making this determination. The individual's score on the WJ IV COG Comprehension-Knowledge ($6 \subset$) of 101 (96 - 106) classified as Average/Within Normal Limits and is ranked at the 53rd percentile, indicating performance as good as or better than 53% of same age peers from the general population.

Yes No
No
Yes, recommended for lowest score
The wJIvCOG Fluid keasoning (GT) IS Primarily a measure orfluid keasoning. Gr refers to Because the difference between the scores that comprise the composite is at least - task that cannot be performed automatically, Althoush the difference between the score is considered necessary to determine if it is an accurate and valid representation scores that comprise the WJ IV COG Fluid Reasoning (Gf) is statistically significant, a difference of this size occurs in at least 10 sof the general population which means the difference is relatively common. This means that although the composite is likely psychometrically sound estimate of Fluid Reasoning, it may not be a good clinical
summary because it may obscure an important and meaninguld difference within this domain, which often occurs when one score is below average, and the other score is at least average relative to most people. The individual's score on the WJ IV COG Fluid Reasoning (Gf) of 87 (82 - 92) is classified as Low Average/Within Normal Limits and is me areers from the seneral population: same age peers from the general population.

Short-Term Working Memory (Gsm:MW)	Γ	83
Verbal Attention (MW)	-	70
Numbers Reversed (MW)	Г	109
Object-Number Sequencing (MW)	Γ	

13th
2nd

73rd - Yes	NOT COHESIVE
Nes	
Term Memory. Gsm refers to the ability to hold information in immediate awareness	Term Memory. Gsm refers to the ability to hold information in immediate awareness between the scores that comprise the WJ IV COG Shor-Term Working Memory (Gsm:MW) is statistically significant and a difference of this size occurs in less than of the general population which means the difference is relatively uncommon. This means that although the composite is likely a psychometrically sound estimate of Shor Term Memory, it may not be a good clinical summary because it may obscure an score is below average and the other score is at least average relative to most people.

v2.2-2.4 include expanded interpretive statements

X-B ASS
Cross-Battery Assessment Software System 2.0
Access CARD
Dawn P. Flanagan Samuel O. Ortiz Vincent C. Alfonso
v2.4 is current download
WILEY

Composite Analysis

- Composite Analysis involves consideration of three factors

1. What the composite measures from a theoretical standpoint (Gf, Gc, Gv, Gl, etc.)
2. Whether the composite is cohesive or otherwise considered a good summary of the theoretically related abilities it was intended to represent
3. Whether follow up is necessary (irrespective of cohesion)

What is Meant by Follow Up?

X-BASS provides guidance on whether follow up may be warranted based on the configuration of scores in a composite, specifically

How far apart the scores are from one another
Where the scores fall relative to most people (e.g., Average range, Below Average range, etc.)

Most of the time, when a composite is cohesive there is not a need for follow up

Examples of what is Meant by Follow-up in the XBA Approach

Additional Data Collection

 Investigation of narrow ability performance via administration of standardized, normreferenced testsInformal assessment of the manifestations of an ability weakness or deficit (e.g., curriculum-based measures, state/local exams)

Formal and informal testing of hypotheses
regarding variation in task characteristics and task demands

Outside evaluation of disorder or condition that may adversely affect test performance (e.g., neuropsychological evaluation of ADHD; psychological evaluation of emotional or personality functioning; functional behavioral assessment)
Consultation with parents, teachers or other professionals

Classroom observations in areas of concerns

Review of Existing Data

Evaluation of existing data to determine if it corroborates current test performance (e.g., classroom work samples reveal manifestations of current cognitive ability weakness or deficit)
Outside evaluation corroborates current findings

Professional, teacher, parent, and/or student report corroborates current findings

Error analysis explains inconsistencies in current data or reasons for weak or deficient performance

Demand analysis explains inconsistencies in current data or reasons for weak or deficient performance
Review attempted interventions

There is Not a One-to-One Correspondence Between
"Cohesion" and "Follow Up"

- When a composite is cohesive, X-BASS has three possible follow up outcomes:

1. Both scores are at least Average (≥ 90): No, follow up not considered necessary
2. One score is at least Average, and the other score is Below Average or lower and the difference between them is at least $2 / 3^{\text {rd }}$ of a standard deviation: Maybe follow up on lower score
3. One score is at least Average, and the other score is in the deficient range (<80): Yes, follow up on lower score

There is Not a One-to-One Correspondence Between
"Cohesion" and "Follow Up"

- When determination of cohesion requires clinical judgment, X-BASS has two possible follow up outcomes:

1. Both scores are at least Average ($\geq 90 ; \geq 8$): No, follow up not considered necessary
2. One score is Average, and the other score is Below Average or lower (<80; <6): Yes, follow up on lower score

There is Not a One-to-One Correspondence Between
"Cohesion" and "Follow Up"

- When a composite is not cohesive, X-BASS has three possible follow up outcomes:

1. Both scores are at least Average ($\geq 90 ; \geq 8$): No, follow up not considered necessary
2. Both scores are Below Average or lower (<80; <6) and differ by at least 1SD: Maybe, follow up on lower score
3. One score is at least Average, and the other score is Below Average or lower: Yes, follow up on lower score

WISC-V Tab

- Expanded Follow Up Statements
- Guidance offered

X-BASS Individual Test Tabs: Follow Up

How are the test tabs programmed to determine follow up?

		Subtest A Score								
		SS ≤ 79			SS ≥ 80 and ≤ 89			SS ≥ 90		
Subtest B Score	SS ≤ 79	$\begin{gathered} \text { MAX-MIN }> \\ 14 \\ \text { YES (1A) } \end{gathered}$	MAX- MIN < 10 NO (1B)	MAX- MIN > 9 and < 15 MAYBE (1C)	$\begin{array}{c\|c\|c} \text { MAX -MIN } \\ > & 4 \\ \text { YES } & (2 A) \end{array}$	$\begin{gathered} \text { MAX-MIN } \\ <10 \\ \text { NO (2B) } \end{gathered}$	$\begin{gathered} \text { MAX-MIN > } 9 \\ \text { and }<15 \\ \underline{\text { MAYBE (2C) }} \end{gathered}$	YES (3A)		
	$\begin{gathered} \mathrm{SS} \geq 80 \\ \text { and }<89 \end{gathered}$	$\begin{gathered} \text { MAX-MIN > } \\ 14 \\ \text { YES (4A) } \end{gathered}$	MAX- MIN < 10 NO (4B)	MAX- MIN > 9 and < 15 MAYBE (4C)	MAX-MIN always < 10, NO (5B)			$\begin{aligned} & \text { MAX-MIN } \\ & >14 \\ & \text { YES (6A) } \end{aligned}$	$\begin{gathered} \text { MAX-MIN }< \\ 10 \\ \text { NO (6B) } \end{gathered}$	$\begin{aligned} & \text { MAX-MIN > } 9 \\ & \text { and < } 15 \\ & \text { MAYBE (6C) } \end{aligned}$
	SS ≥ 90		S(7A)		$\begin{gathered} \text { MAX-MIN } \\ >14 \\ \text { YES (} 8 \mathrm{~A}) \end{gathered}$	$\begin{aligned} & \text { MAX-MIN } \\ & <10 \\ & \text { NO (8B) } \end{aligned}$	$\begin{aligned} & \text { MAX-MIN > } 9 \\ & \text { and }<15 \\ & \text { MAYBE (8C) } \end{aligned}$	$\begin{gathered} \text { MAX-MIN } \\ >14 \\ \text { YES (9A) } \end{gathered}$	$\begin{gathered} \text { MAX-MIN }< \\ 10 \\ \text { NO (9B) } \end{gathered}$	$\begin{aligned} & \text { MAX-MIN }>9 \\ & \text { and }<15 \\ & \text { MAYBE (9C) } \end{aligned}$

WJ IV Fluid Reasoning = 99
Subtest A: Number Series $=84$
Sulbtest B: Concept Formation $=113$

Criteria Used in X-BASS for Follow-up on Lower Score in a Two-Subtest Composite when Subtest scores are on a Scale Having a Mean of 100 and Standard Deviation of 15

Number-Letter Codes (e.g., 1A, 1B, 1C) are linked to Interpretive Statements in Chapter 3 of Essentials of Cross-Battery Assessment, 3e (see Rapid Reference 3.5)

How are the test tabs programmed to determine follow up?

Note: MIN = lowest score in the composite; MAX = highest score in the composite. Number and letter combinations in parentheses within each cell correspond to the interpretive statements listed in Rapid Reference 3.5.

KABC-II Planning/Gf Scale $=85$
Story Completion $=8$
Pattern Reasoning $=7$

Criteria Used in X-BASS for Follow-up on Lower Score in a Two-Subtest Composite when Subtest scores are on a Scale Having a Mean of 10 and Standard Deviation of 3

Number-Letter Codes (e.g., 1A, 1B, 1C) are linked to Interpretive Statements in Chapter 3 of Essentials of Cross-Battery Assessment, 3e (see Rapid Reference 3.5)

MAX - MIN <2
(see Ropid Reference 3.5)

X-BASS Follow up Statement: Because the difference between the scores that comprise the composite is not substantial (i.e., less than ${ }^{2} / 3$, indicating similar subtest performances, follow-up is not considered necessary.

```
KABC-II Planning/Gf Scale = 85
Story Completion = 8
Pattern Reasoning = 7
```

RR 3.5. Following the recommendation of X-BASS, the practitioner did not follow up. Practitioner's general conclusion:

Sian's performance on tasks that measured Fluid Reasoning (Gf) was Below Average but within the normal limits of functioning relative to same-age peers. The difference between her performance on a task that required her to reason inductively (Pattern Reasoning) and her performance on a task that required her to reason deductively (Story Completion) was not statistically significant, indicating that she performed about the same on both tasks. Overall, this finding indicates that, compared to her peers, Sian may have difficulty solving novel problems that cannot be performed automatically. It is likely that explicit strategy instruction will be necessary to assist Sian in solving problems, drawing inferences, extrapolating, and reorganizing or transferring information.

MAX - MIN < 2

For Every Possible Outcome There is an Example of How Practitioners' Followed Up and What Their Conclusions Were After Following Up (Chapter 3, Rapid Reference 3.5)

RR 3.5. Following the recommendation of X-BASS, the practitioner did not follow up. Practitioner's general conclusion:

Sian's performance on tasks that measured Fluid Reasoning (Gf) was Below Average but within the normal limits of functioning relative to same-age peers. The difference between her performance on a task that required her to reason inductively (Pattern Reasoning) and her performance on a task that required her to reason deductively (Story Completion) was not statistically significant, indicating that she performed about the same on both tasks. Overall, this finding indicates that, compared to her peers, Sian may have difficulty solving novel problems that cannot be performed automatically. It is likely that explicit strategy instruction will be necessary to assist Sian in solving problems, drawing inferences, extrapolating, and reorganizing or transferring information.

Different Cohesion and Follow Up Examples - Practitioner May Disagree with X-BASS Output Given Myriad Variables Involved in Each Case

Scores and Results of COHESION ANALYSIS FOR WISC-V FRI	SIAN	MARIE	ANTONIO	ALEX
Matrix Reasoning (MR)	10	11	8	5
Figure Weights (FW)	9	16	6	2
FRI	97	121	82	64
Results of Cohesion ANALYSIS	DIFFERENCE IS NOT SIGNIFICANT; COHESIVE	DIFFERENCE IS SIGNIFICANT AND RARE; Not Cohesive	DIFFERENCE IS NOT SIGNIFICANT; COHESIVE	DIFFERENCE IS SIGNIFICANT BUT NOT RARE; CLINICAL JUDGMENT NEEDED
RESULTS OF FOLLOW UP	No, NOT CONSIDERED NECESSARY	MAYBE FOLLOW UP ON LOWER SCORE	MAYBE FOLLOW UP ON LOWER SCORE	YES, RECOMMENDED FOR LOWER SCORE
Agree with X-BASS RECOMMENDATION?	Yes	GIVEN THAT BOTH SCORES ARE AT LEAST AVERAGE, IN MOST CASES FOLLOW UP WOULD NOT BE NECESSARY	Yes, woULD FOLLOW UP AND WOULD CONSIDER TASK DEMANDS AND TASK CHARACTERISTICS	UNLESS MORE INFORMATION ABOUT WHAT THIS INDIVIDUAL CAN DO IS NEEDED, WOULD NOT FOLLOW UP (B/C IT IS CLEAR THAT GF IS A DEFICIT)

Sidebar: There is No Need to Memorize All of the Ways in Which X-BASS Analyzes Data

The purpose here is to explain how X-BASS
works (i.e., what's under the hood) so that you are well informed

If questions arise about the XBA Analyzer tab, then you can return to these slides for the
answers

Although you can use XBASS without knowing anything about what is under the hood, having these details available may be useful from time to time (e.g., due process hearing)

Cohesion

- Three (or more)-subtest composites on individual test tabs
- Base rate data used to determine whether the size of the difference between highest and lowest scores is infrequent or uncommon in the general population (i.e., about 10% or less).

Interpreting Three (or more)-Subtest Composites on the Individual Test Tabs of X-BASS

The magnitude of the difference between the
highest and lowest score in the composite is
uncommon in the general population

The difference between the scores that comprise the composite occurs in $\leq 10 \%$ of the general population and, therefore, is uncommon. The composite is not cohesive, meaning that it may not be a good summary of the theoretically related abilities it was intended to represent. Clinical judgement should be used to determine whether interpretation should be tempered or whether follow up assessment is warranted. Although the meaning of a noncohesive composite may be difficult to determine, it is reliable and valid. Nevertheless, noncohesive composites often obscure important information about an individual's strengths and weaknesses.
The difference between the scores that comprise the composite occurs in more than 10% of the general population and, therefore, is common. The composite is cohesive and, therefore, likely provides a good summary of the theoretically related abilities it was intended to represent. Keep in mind that more scores that comprise a composite, the larger the difference needed for the composite to be uncommon. Therefore, a composite can be cohesive but obscure important information about the individual's performance in the domain.

Cohesion Analysis for Three-Subtest Composites KTEA-3 Example

How to Follow Up on Lower Score Using (Sub)Tests

Additional Data Collection

 Investigation of narrow ability performance via administration of standardized, normreferenced testsInformal assessment of the manifestations of an ability weakness or deficit (e.g., curriculum-based measures, state/local exams)
Formal and informal testing of hypotheses
regarding variation in task characteristics and task demands
Outside evaluation of disorder or condition that may adversely affect test performance (e.g., neuropsychological evaluation of

ADHD; psychological evaluation of emotional or personality functioning; functional behavioral assessment)
Consultation with parents, teachers or other professionals

Classroom observations in areas of concerns

Review of Existing Data

Evaluation of existing data to determine if it corroborates current test performance (e.g., classroom work samples reveal manifestations of current cognitive ability weakness or deficit)
Outside evaluation corroborates current findings

Professional, teacher, parent, and/or student report corroborates current findings

Error analysis explains inconsistencies in current data or reasons for weak or deficient performance

Demand analysis explains inconsistencies in current data or reasons for weak or deficient performance

Review attempted interventions

- When Following Up Using Standardized Tests
- Select a subtest with the same CHC narrow ability classification

How Do I Select a
Subtest with the Same Narrow Ability Classification?

- X-BASS Output: Not Cohesive; Follow Up on Lower Score
- Lower Score measures Quantitative Reasoning

How do I find a (sub)test that measures the same narrow ability as the test I am following up on? On Index Tab Click "XBA-CHC Classifications" Button

For direct navigation to any of the core test tabs, use the quick navigation menu button bar above. This menu bar appears on all tabs and are color coded for easy reference. Otherwise, select an option below from the drop down menus provided to begin performing the desired action.

ANALYSES: Click to navigate directly to the major analyses tabs.

GRAPHS: To view any of the data graphs that are available in X-
REFERENCE \& HELP: Click to navigate directly to the desired tab BASS, select the name of the graph from the menu below:

You Will Automatically Be Brought to This "Test List" Tab

Click on the Broad Ability (Gf in this example)

Quick-Navigation Menu Bar

Induction (I)

Bateria III COG Comprension Verbal (Gc:VL;Gf-I) Bateria III COG Formacion de Conceptos (Gf:I) Bateria IV COG Formacion de Conceptos (Gf:I) BVAT-NU Verbal Analogies (Gc:VL;Gf:I) CAS2 Matrices (Gf:I)
CELF-4 Semantic Relationships (Gc:LS;Gf:I;LC) CELF-4 Understanding Spoken Paragraphs (Gc:LS;Gf:I;LC)
(

Age Range
2-90+
4-90+
4-90+
4-90+
5-18
9-21
5-21
5-21
5-21
4-6
6-89
6-89
6-89
6-89
3:6-17
2:6-6
7-17
8-89

General Sequential Reasoning (RG)

Bateria III COG Analisis-Sintesis (Gf:RG)
Bateria III COG Planeamiento (Gv:SS;Gf:RG)
CTONI-2 Geometric Sequences (Gf:RG)
CTONI-2 Pictorial Sequences (Gf:RG)
D-KEFS Tower (Gv:Vz;Gf:RG
D-KEFS Word Context Test (Gf:RG;Gc:LD)
KABC-II Riddles (Gc:VL;Gf:RG)
KABC-II Rover (Gv:SS;Gf:RG)
KABC-II Story Completion (7-18 years) (Gf:RG;Gc:KO)
KBIT-II Riddles (Gc:VL;Gf:RG)
KBNA Conceptual Shifting (Gf:RG)
LCT-2 Reasoning (Gc:LS;Gf:RG;LC)
Leiter-3 Visual Patterns (Gf:RG)
LPT3 Differences (Gc:VL,LD;Gf:RG)
PLAI 2 Expressive (Gc:CM,VL;Gf:RG;OE)

PLAI 2 Reasoning (Gf:RG) 3-5

PLAI 2	Receptive (Gc:LS,VL;Gf:RG;LC)

PTONI Primary Test of Nonverbal Intelligence (Gv:Vz;Gf:RG) $\quad 3-9$

RAIT Nonverbal Analogies (Gf:RG,I;Gc:KO)	10-75

RAIT Sequences (Gf:RG,I)10-75
(
SB5 Nonverbal Knowledge (Gc:K0,LS;Gf:RG) \quad 2-85

WAIS-IV Figure Weights (Gf:RG)

WISC-V Spanish Figure Weights (Gf:RG)
WISC-V Figure Weights (Gf:RG)
.
WISC-V Integrated Figure Weights Process Approach (Gf:RG)
6-16
WJ III NU COG Analysis-Synthesis (Gf:RG)
WJ III NU COG Planning (Gv:SS;Gf:RG) 6-90+

WJ IV COG Analysis-Synthesis (Gf:RG)
Age Range
4-90+
6-90+
6-89
6-89
8-89
8-89
3-18
5-18
7-18

3-18
20-89
6-11
3-75 1

-

DTLA-5 Geometric Matrices (Gf:I)

8-97

- We are following up on the WJ IV Number Series test
- Number Series is a measure of Quantitative Reasoning (Gf:RQ)
- Scroll through the tests of Quantitative Reasoning and find a battery that is available to you
- Best option is to find a battery with a subtest that is classified as Gf:RQ only (i.e., no secondary classification)
- Let's suppose you have the UNIT2
- Administer UNIT2 Numerical Series (Gf:RQ)

AAB Mathematics Reasoning (MC;Gq:A3,KM;Gf:RQ)	4-85
AAB Mathematics Reasoning (MPS;Gq:A3,KM;Gf:RQ)	4-85
Bateria III ACH Conceptos Cuantitativos (MPS;Gq:A3,KM;Gf:RQ)	2-90+
Bateria III ACH Problemas Aplicados (MPS;Gq:A3;Gf:RQ)	2-80+
Bateria IV ACH Numeros Matrices (MPS;Gq:A3;Gf:RQ)	5-80+
Bateria IV ACH Problemas Aplicados (MPs;Gq:A3;Gf:RQ)	2-80+
Bateria IV COG Series Numericas (Gf:RQ)	5-80+
CMAT Algebra (MC;Gq;A3;Gf:RQ)	7-18
CMAT Problem Solving (MPS;Gq;A3;Gf:RQ)	7-18
DAB-3 Math Reasoning (MPS;Gq:A3;Gf:RQ)	6-13
DAB-I Math Reasoning (MPS;Gq:A3;Gf:RQ)	13-17
DAS-II Sequential \& Quantitative Reasoning (Gf:RQ)	7-17
FAM Equation Building (MPS;Gq:A3;Gf:RQ)	4-21
FAM Sequences (MPS;Gq:A3;Gf:RQ)	4-21
KM3 Applied Problem Solving (MPS;Gq:A3;Gf:RQ)	5-21
KM3 Foundations of Problem Solving (MPS;Gq:A3;Gf:RQ)	5-21
KTEA-3 Math Concepts and Application (MPS;Gq:A3,KM;Gf:RQ)	4-25
KTEA-II Math Concepts and Application (MPs;Gq:A3;Gf:RQ)	4-25
RAIT Quantitative Reasoning (Gf:RQ)	10-75
SB5 Nonverbal Quantitative Reasoning (Gf:RQ;Gq:A3)	2-85+
SB5 Verbal Quantitative Reasoning (Gf:RQ;Gq:A3)	2-85+
TOMA-3 Word Prohlems (MPS.GO-A3.GFRO)	8-18
UNIT2 Nonsymbolic Quantity (Gf:RQ;Gq:A3)	5-21
UNIT2 Numerical Series (Gf:RQ)	5-21
WAlS-IV Arithmetic (Gsm:MW;Gt:RQ)	16-90
WIAT-4 Math Problem Solving (MPS;Gq:A3;Gf:RQ)	4-50
WJ III NU ACH Applied Problems (MPS;Gq:A3;Gf:RQ)	2-90+
WJ III NU ACH Form C Applied Problems (MPs;Gq:A3;Gf:RQ)	2-90+
WJ III NU ACH Quantitative Concepts (MPs;Gq:KM,A3;Gf:RQ)	2-90+
WJ III NU DS Number Matrices (Gf:RQ)	4-90+
WJ III NU DS Number Series (Gf:RQ)	4-90+
WJ IV ACH Applied Problems (MPS;Gq:A3;Gf:RQ)	2-80+
WJ IV ACH Number Matrices (MPS;Gq:A3;Gf:RQ)	5-80+
WJ IV COG Number Series (Gf:RQ)	5-80+
WRAT-Expanded Mathematics (MPs;Gq:A3;Gf:RQ)	5-24

How do I find a (sub)test that measures the same narrow ability as the test I am following up on?
On Index Tab Click "Test List - Quick Ref" Button

For direct navigation to any of the core test tabs, use the quick navigation menu button bar above. This menu bar appears on all tabs and are color coded for easy reference. Otherwise, select an option below from the drop down menus provided to begin performing the desired action.

ANALYSES: Click to navigate directly to the major analyses tabs.

GRAPHS: To view any of the data graphs that are available in X BASS, select the name of the graph from the menu below:
 contained in any particular test/battery, use the drop down menu over the left column. After the test/battery name has been Battery Selection selected, the list of subtests from in that battery will appear in the right column automatically. In addition, the subtests from the selected battery can be entered into the XBA Analyzer by clicking on the black button to the right.

The subtests from the selected test/battery will appear below automatically.
Subtests on Universal Nonverbal Intelligence Test-2 (UNIT2)

Transfer scores from individual test tabs to XBA Analyzer when

- you need to follow up on a low score (by administering a subtest from another battery)
- you want to create a composite for which the publisher does not provide norms

WJ IV ${ }^{\circledR}$ Cognitive Data Analysis

Transfer Scores to XBA Analyzer

Cognitive subtests transferred to the XBA Analyzer are automatically placed in the domain corresponding to their CHC Broad Ability classifications.

XBA Analyzer Tab

- From the Drop-Down Menu, Select the Test You Administered During Your Follow Up Assessment (e.g., UNIT2 Numerical Series)

- Note that tests are listed in alphabetical order in the Drop-Down Menu

Score configuration and interpretation:

The two scores differ from one another by at least 1SD and may fall in different ability ranges. Therefore, the aggregate of these scores may not provide a good summary of the theoretically related abilities they are intended to represent and, therefore, no composite is calculated. However, In some cases, depending on the configuration of the entered scores, an alternative composite based on clinical judgment may be formed by clicking the "Evaluate Score Configuration" button.

NOT COHESIVE: Follow up recommended

Reset Score Configuration	Evaluate Score Configuration
Go to Gf Test List Classifications	Transfer Comp(s) to Data Organizer

Score configuration and interpretation:

The two scores differ from one another by at least 1SD and may fall in different ability ranges. Therefore, the aggregate of these scores may not provide a good summary of the theoretically related abilities they are intended to represent and, therefore, no composite is calculated. However, in some cases, depending on the configuration of the entered scores, an alternative composite based on clinical judgment may be formed by clicking the "Evaluate Score Configuration" button.

WJ IV Fluid Reasoning = 99

Number Series $=84$

Follow up necessary

Followed up with UNIT2

Number Series $=6$

Score configuration and interpretation:

Because the difference between the highest and lowest scores entered is greater than or equal to $1 S D$, this set of scores is not cohesive, indicating that a composite based on all three scores is unlikely to provide a good summary of the ability it is intended to represent. Instead the two lowest scores form a cohesive composite that may be interpreted meaningfully and the highest value is a divergent score.

Purpose of the XBA Analyzer Tab

- Evaluate a set of scores to determine the best way to organize, report, and interpret them
- Scores may come from different batteries, allowing for cross-battery composites to be calculated
- Scores may come from the same battery, allowing for within-battery composites to be calculated (when actual norms from the test publisher are not available)
- Evaluate Whether Composites From Other Batteries Are Cohesive
- Batteries other than the cognitive and achievement
 batteries that have their own tabs in X-BASS

Purpose of the XBA Analyzer Tab

Note that cohesion and follow up are derived differently for "cross-battery" data as compared to "within-battery" data (found on the individual test tabs)

There are several possible outcomes of two-, three-, and four-subtest score configurations because the XBA Analyzer tab is designed to balance the "art" and the science of test interpretation

Examples of TWO Scores Entered in the XBA Analyzer Tab

Interpretation of Composites Based on Two Subtests Entered or Transferred to the XBA Analyzer Tab of X-BASS (Chapter 3; Flanagan et al., 2013)

Rule for Calculating a Composite
If difference between scores is <15, then composite is calculated, OR
Rule 1 Interpretation of Two-Subtest Configuration
The difference between the scores that comprise the composite is < 1SD and, therefore, the composite is considered cohesive. The composite is likely a good summary of the set of theoretically related abilities that comprise it. Interpret the composite as an adequate estimate of the ability that it is intended to represent.

If both scores are <80 and the difference between them is >
14, then composite is calculated, OR

If both scores are >120 and the difference between them is
>14, then composite is calculated, OR

If both scores are >79 and <121 and the difference between
them is >14; then no composite is calculated.

Although the difference between the scores is greater than or equa to 1SD, both scores are less than 80 and represent normative weaknesses or deficits. Therefore, the composite is still considered cohesive and may be interpreted as an adequate estimate of the ability that it is intended to represent. Although the difference between the scores is greater than or equal to 1SD, both scores are greater than 120 and represent normative strengths. Therefore, the composite is still considered cohesive and may be interpreted as an adequate estimate of the ability that it is intended to represent.

The scores comprising the composite fall in different ability ranges and differ from one another by at least 1SD. Therefore, the composite is not considered cohesive. As such, the composite is not likely to be a good summary of the theoretically related abilities it is intended to represent. (Note: ability ranges are Below Average: 8089; Average: 90-109; Above Average: 110-119).

Two-Subtest XBA Composites: Rules for Cohesion

Rule 1: Difference between both scores is < 15

Interpretation of Composites Based on Two Subtests Entered or Transferred to the XBA Analyzer Tab of X-BASS (Chapter 3; Flanagan et al., 2013)

Rule for Calculating a Composite	Interpretation of Two-Subtest Configuration
If difference between scores is $<\mathbf{1 5}$, then composite is calculated, OR	The difference between the scores that comprise the composite is < 1SD and, therefore, the composite is considered cohesive. The composite is likely a good summary of the set of theoretically related abilities that comprise it. Interpret the composite as an adequate estimate of the ability that it is intended to measure.
If both scores are <80 and the difference between them is > 14, then composite is calculated, OR	Although the difference between the scores is greater than or equal to 1SD, both scores are less than 80 and represent normative weaknesses or deficits. Therefore, the composite is still considered cohesive and may be interpreted as an adequate estimate of the ability that it is intended to measure.
If both scores are >120 and the difference between them is >14, then composite is calculated, OR	Although the difference between the scores is greater than or equal to 1SD, both scores are greater than 120 and represent normative strengths. Therefore, the composite is still considered cohesive and may be interpreted as an adequate estimate of the ability that it is intended to measure.
If both scores are >79 and <121 and the difference between them is >14; then no composite is calculated.	The scores comprising the composite fall in different ability ranges and differ from one another by at least 1SD. Therefore, the composite is not considered cohesive. As such, the composite is not likely to be a good summary of the theoretically related abilities it is intended to represent. (Note: ability ranges are Below Average: 8089; Average: 90-109; Above Average: 110-119).

Two-Subtest XBA Composites: Rules for Cohesion
Rule 2: Scores < 80, composite is calculated regardless of the difference between the scores

Interpretation: Although the difference between the scores is at least 1SD, both scores are less than 80 and represent normative weaknesses or deficits. Therefore, the composite is considered meaningful and may be interpreted as an adequate estimate of the ability that it was intended to represent unless clinical judgment suggests otherwise.

Interpretation of Composites Based on Two Subtests Entered or Transferred to the XBA Analyzer Tab of X-BASS (Chapter 3; Flanagan et al., 2013)

	Rule for Calculating a Composite	Interpretation of Two-Subtest Configuration
	If difference between scores is <15, then composite is calculated, OR	The difference between the scores that comprise the composite is < 1SD and, therefore, the composite is considered cohesive. The composite is likely a good summary of the set of theoretically related abilities that comprise it. Interpret the composite as an adequate estimate of the ability that it is intended to measure.
	If both scores are <80 and the difference between them is > 14 , then composite is calculated, OR	Although the difference between the scores is greater than or equal to 1 SD, both scores are less than 80 and represent normative weaknesses or deficits. Therefore, the composite is still considered cohesive and may be interpreted as an adequate estimate of the ability that it is intended to measure.
Rule 3	If both scores are >120 and the difference between them is >14, then composite is calculated, OR	Although the difference between the scores is greater than or equal to 1SD, both scores are greater than 120 and represent normative strengths. Therefore, the composite is still considered cohesive and may be interpreted as an adequate estimate of the ability that it is intended to measure.
	If both scores are >79 and <121 and the difference between them is >14; then no composite is calculated.	The scores comprising the composite fall in different ability ranges and differ from one another by at least 1SD. Therefore, the composite is not considered cohesive. As such, the composite is not likely to be a good summary of the theoretically related abilities it is intended to represent. (Note: ability ranges are Below Average: 8089; Average: 90-109; Above Average: 110-119).

Two-Subtest XBA Composites: Rules for Cohesion
Rule 3: Both scores $\mathbf{>} \mathbf{1 2 0}$, composite is calculated regardless of the difference between the scores

Interpretation of Composites Based on Two Subtests Entered or Transferred to the XBA Analyzer Tab of X-BASS (Chapter 3; Flanagan et al., 2013)

| Rule for Calculating a Composite | Interpretation of Two-Subtest Configuration |
| :--- | :--- | :--- |
| If difference between scores is <15, then composite is | |
| calculated, OR | The difference between the scores that comprise the composite is < |
| 1SD and, therefore, the composite is considered cohesive. The | |
| composite is likely a good summary of the set of theoretically related | |
| abilities that comprise it. Interpret the composite as an adequate | |
| estimate of the ability that it is intended to measure. | |$\}$

Two-Subtest XBA Composites: Rules for Cohesion
Rule 4: Both scores are between 80 and 120 (inclusive) - no composite calculated because difference is > 1SD

Example of Rule 4

Enter Score(s) From Follow Up Testing

WJ IV Fluid Reasoning $=99$
Number Series $=84$

Follow up necessary

Followed up with UNIT2
Number Series $=6$

Purpose of the XBA Analyzer Tab

When the UNIT2 Numerical Series subtest scaled score is entered into the XBA Analyzer tab in the Gf domain, three scores are analyzed to determine the best way to understand Gf performance

Scaled scores (having a mean of 10 and a standard deviation of 3) are automatically converted to standard scores (having a mean of 100 and a standard deviation of 15).

After all scores are on the same metric, they are analyzed

Examples of THREE Scores Entered in the XBA Analyzer Tab

Interpretation of Composites Based on Three Subtests Entered or Transferred to the XBA Analyzer Tab of X-BASS (Chapter 3; Flanagan et al., 2013)

Rule 1

Rule for Calculating a Composite
Interpretation of Three-Subtest Configuration

If the difference between MIN and MAX is < 15, then composite is calculated based on	The difference between the highest and lowest scores that comprise the composite is < 1 SD and,
all scores, OR therefore, the composite is considered cohesive. The composite is likely a good summary of the set of theoretically related abilities that comprise it. Interpret the composite as an adequate estimate of the ability that it is intended to measure.	

If all three scores are <80 and the difference between any two of them is >14, then
composite is calculated, OR

If all three scores are >119 and the difference between any two of them is >14, then
omposite is calculated, OR

If the difference between MAX and MID is > 14 and the difference between MIN and MID is > 14, then no composite is calculated, OR
f the difference between MIN and MAX is > 14, and the difference between MAX-MID and MID-MIN is equal (and < 15), then calculate composite for MID+MAX and report MIN as divergent (Chaplin Rule), OR
f the difference between MIN and MAX is > 14, and MID-MIN > 14 and MAX-MID is <
15, then calculate composite for MID+MAX and report MIN as divergent OR
If the difference between MIN and MAX is > 14, and MID-MIN is < 15, and MAX-MID is <15, and MID-MIN > MAX-MID, then calculate composite for MID+MAX and report MIN as divergent (Cheramie Rule A), OR
If the difference between MIN and MAX is > 14, and MID-MIN is < 15 and MAX-MID >
14, then calculate composite for MIN+MID and report MAX as divergent, OR
If the difference between MIN and MAX is >14, and MID-MIN is $<\mathbf{1 5}$, and MAX-MID is
<15, and MID-MIN < MAX-MID, then calculate composite for MID+MIN and report
MAX as divergent (Cheramie Rule B),

A the abilty that it is intended to measure Although the difference between the scores is greater than or equal to 1SD, all three scores are less than 80 and represent normative weaknesses or deficits. Therefore, the composite is stil considered cohesive and may be interpreted as an adequate estimate of the ability that it is intended to measure

Although the difference between the scores is greater than or equal to 1SD, all scores are greater than 119 and represent normative strengths. Therefore, the composite is still considered cohesive and may be interpreted as an adequate estimate of the ability that it is intended to measure. All scores that comprise the composite differ from one another by at least 1SD. Therefore, the composite is not considered cohesive. As such, the composite is not likely to be a good summary of the theoretically related abilities it is intended to represent.
Because the difference between the highest and lowest scores entered is greater than or equal to 1SD, this set of scores is not considered cohesive, indicating that a composite based on all three scores is unlikely to provide a good summary of the ability it is intended to represent. Instead the two highest scores form a cohesive composite that may be interpreted meaningfully and the lowest value is a divergent score. 1SD, this set of scores is not considered cohesive, indicating that a composite based on all three scores is unlikely to provide a good summary of the ability it is intended to represent. Instead the two lowest scores form a cohesive composite that may be interpreted meaningfully and the highest value is a divergent score.

Three-Subtest XBA Composites: Rules for Cohesion

Difference between Highest and Lowest scores is less than 1SD, composite is calculated on the XBA Tab

Interpretation of Composites Based on Three Subtests Entered or Transferred to the XBA Analyzer Tab of X-BASS (Chapter 3; Flanagan et al., 2013)
Rule for Calculating a Composite
If the difference between MIN and MAX is < 15, then composite is calculated based on
all scores, OR

The difference between the highest and lowest scores that comprise the composite is < 1SD and, therefore, the composite is considered cohesive. The composite is likely a good summary of the set of theoretically related abilities that comprise it. Interpret the composite as an adequate estimate of the abilitv that it is intended to measure

If all three scores are <80 and the difference between any two of them is >14, then composite is calculated, OR

Rule 2

If all three scores are >120 and the difference between any two of them is >14, then composite is calculated, OR

If the difference between MAX and MID is > $\mathbf{1 4}$ and the difference between MIN and MID is >14, then no composite is calculated, OR
f the difference between MIN and MAX is > 14, and the difference between MAX-MID and MID-MIN is equal (and < 15), then calculate composite for MID+MAX and report MIN as divergent (Chaplin Rule), OR
f the difference between MIN and MAX is > 14, and MID-MIN > 14 and MAX-MID is <
15, then calculate composite for MID+MAX and report MIN as divergent OR
If the difference between MIN and MAX is > 14, and MID-MIN is < 15, and MAX-MID is <15, and MID-MIN > MAX-MID, then calculate composite for MID+MAX and report MIN as divergent (Cheramie Rule A), OR
If the difference between MIN and MAX is > 14, and MID-MIN is < 15 and MAX-MID >
14, then calculate composite for MIN+MID and report MAX as divergent, OR
If the difference between MIN and MAX is >14, and MID-MIN is $<\mathbf{1 5}$, and MAX-MID is <15, and MID-MIN < MAX-MID, then calculate composite for MID+MIN and report

MAX as divergent (Cheramie Rule B).

Although the difference between the scores is greater than or equal to 1SD, all three scores are less than 80 and represent normative weaknesses or deficits. Therefore, the composite is still considered cohesive and may be interpreted as an adequate estimate of the ability that it is intended to measure

Although the difference between the scores is greater than or equal to 1SD, all scores are greater than 119 and represent normative strengths. Therefore, the composite is still considered cohesive and may be interpreted as an adequate estimate of the ability that it is intended to measure. All scores that comprise the composite differ from one another by at least 1SD. Therefore, the composite is not considered cohesive. As such, the composite is not likely to be a good summary of the theoretically related abilities it is intended to represent.
Because the difference between the highest and lowest scores entered is greater than or equal to 1SD, this set of scores is not considered cohesive, indicating that a composite based on all three scores is unlikely to provide a good summary of the ability it is intended to represent. Instead the two highest scores form a cohesive composite that may be interpreted meaningfully and the lowest value is a divergent score.

Because the difference between the highest and lowest scores entered was greater than or equal to 1SD, this set of scores is not considered cohesive, indicating that a composite based on all three scores is unlikely to provide a good summary of the ability it is intended to represent. Instead the two lowest scores form a cohesive composite that may be interpreted meaningfully and the highest value is a divergent score.

Three-Subtest XBA Composites: Rules for Cohesion

Interpretation of Composites Based on Three Subtests Entered or Transferred to the XBA Analyzer Tab of X-BASS (Chapter 3; Flanagan et al., 2013)

Rule for Calculating a composite	Interpretation of Three-Subtest Configuration
If the difference between MIN and MAX is $<\mathbf{1 5}$, then composite is calculated based on all scores, OR	The difference between the highest and lowest scores that comprise the composite is < 1SD and, therefore, the composite is considered cohesive. The composite is likely a good summary of the set of theoretically related abilities that comprise it. Interpret the composite as an adequate estimate of the ability that it is intended to measure.
If all three scores are <80 and the difference between any two of them is >14, then composite is calculated, OR	Although the difference between the scores is greater than or equal to 1SD, all three scores are less than 80 and represent normative weaknesses or deficits. Therefore, the composite is still considered cohesive and may be interpreted as an adequate estimate of the ability that it is intended to measure.
If all three scores are >119 and the difference between any two of them is >14, then composite is calculated, OR	Although the difference between the scores is greater than or equal to 1SD, all scores are greater than 119 and represent normative strengths. Therefore, the composite is still considered cohesive and may be interpreted as an adequate estimate of the ability that it is intended to measure.
If the difference between MAX and MID is > 14 and the difference between MIN and MID is >14, then no composite is calculated, OR	All scores that comprise the composite differ from one another by at least 1SD. Therefore, the composite is not considered cohesive. As such, the composite is not likely to be a good summary of the theoretically related abilities it is intended to represent.
If the difference between MIN and MAX is > 14, and the difference between MAX-MID and MID-MIN is equal (and < 15), then calculate composite for MID+MAX and report MIN as divergent (Chaplin Rule), OR If the difference between MIN and MAX is > 14, and MID-MIN > 14 and MAX-MID is < 15, then calculate composite for MID+MAX and report MIN as divergent OR If the difference between MIN and MAX is > 14, and MID-MIN is < 15, and MAX-MID is <15, and MID-MIN > MAX-MID, then calculate composite for MID+MAX and report MIN as divergent (Cheramie Rule A), OR	Because the difference between the highest and lowest scores entered is greater than or equal to 1 SD , this set of scores is not considered cohesive, indicating that a composite based on all three scores is unlikely to provide a good summary of the ability it is intended to represent. Instead the two highest scores form a cohesive composite that may be interpreted meaningfully and the lowest value is a divergent score.
If the difference between MIN and MAX is > 14, and MID-MIN is < 15 and MAX-MID > 14, then calculate composite for MIN+MID and report MAX as divergent, OR If the difference between MIN and MAX is >14, and MID-MIN is < 15, and MAX-MID is <15, and MID-MIN < MAX-MID, then calculate composite for MID+MIN and report MAX as divergent (Cheramie Rule B).	Because the difference between the highest and lowest scores entered was greater than or equal to 1SD, this set of scores is not considered cohesive, indicating that a composite based on all three scores is unlikely to provide a good summary of the ability it is intended to represent. Instead the two lowest scores form a cohesive composite that may be interpreted meaningfully and the highest value is a divergent score.

Three-Subtest XBA Composites: Rules for Cohesion

No Composite is Calculated

Interpretation of Composites Based on Three Subtests Entered or Transferred to the XBA Analyzer Tab of X-BASS (Chapter 3; Flanagan et al., 2013)

Rule for Calculating a Composite

Interpretation of Three-Subtest Configuration
If the difference between MIN and MAX is $<\mathbf{1 5}$, then composite is calculated based on The difference between the highest and lowest scores that comprise the composite is < 1SD and,
all scores, OR therefore, the composite is considered cohesive. The composite is likely a good summary of the set of theoretically related abilities that comprise it. Interpret the composite as an adequate estimate
of the ability that it is intended to measure

If all three scores are <80 and the difference between any two of them is >14, then composite is calculated, OR

Although the difference between the scores is greater than or equal to 1SD, all three scores are less than 80 and represent normative weaknesses or deficits. Therefore, the composite is still considered cohesive and may be interpreted as an adequate estimate of the ability that it is intended to measure.

Although the difference between the scores is greater than or equal to 1SD, all scores are greater than 119 and represent normative strengths. Therefore, the composite is still considered cohesive and may be interpreted as an adequate estimate of the ability that it is intended to measure. All scores that comprise the composite differ from one another by at least 1SD. Therefore, the composite is not considered cohesive. As such, the composite is not likely to be a good summary of the theoretically related abilities it is intended to represent.
If the difference between MIN and MAX is > 14, and the difference between MAX-MID and MID-MIN is equal (and < 15), then calculate composite for MID+MAX and report MIN as divergent (Chaplin Rule), OR
If the difference between MIN and MAX is > 14, and MID-MIN > 14 and MAX-MID is < 15, then calculate composite for MID+MAX and report MIN as divergent OR If the difference between MIN and MAX is > 14, and MID-MIN is < 15, and MAX-MID is <15, and MID-MIN > MAX-MID, then calculate composite for MID+MAX and report MIN as divergent (Cheramie Rule A), OR If the difference between MIN and MAX is > 14, and MID-MIN is < 15 and MAX-MID >

14, then calculate composite for MIN+MID and report MAX as divergent, OR
If the difference between MIN and MAX is > 14, and MID-MIN is < 15, and MAX-MID is
<15, and MID-MIN < MAX-MID, then calculate composite for MID+MIN and report
MAX as divergent (Cheramie Rule B).

Because the difference between the highest and lowest scores entered is greater than or equal to 1SD, this set of scores is not considered cohesive, indicating that a composite based on all three scores is unlikely to provide a good summary of the ability it is intended to represent. Instead the two highest scores form a cohesive composite that may be interpreted meaningfully and the lowest value is a divergent score.

Because the difference between the highest and lowest scores entered was greater than or equal to 1SD, this set of scores is not considered cohesive, indicating that a composite based on all three scores is unlikely to provide a good summary of the ability it is intended to represent. Instead the two lowest scores form a cohesive composite that may be interpreted meaningfully and the highest value is a divergent score.

Three-Subtest XBA Composites: Rules for Cohesion

Composite based on two highest scores; Lowest score is divergent

Three-Subtest XBA Composites: Rules for Cohesion

Composite based on two highest scores; Lowest score is divergent

Three-Subtest XBA Composites: Rules for Cohesion

Composite based on two highest scores; Lowest score is divergent

Interpretation of Composites Based on Three Subtests Entered or Transferred to the XBA Analyzer Tab of X-BASS (Chapter 3; Flanagan et al., 2013)

Rule for Calculating a Composite

If the difference between MIN and MAX is <15, then composite is calculated based on The difference between the highest and lowest scores that comprise the composite is < 1SD and,
all scores, OR therefore, the composite is considered cohesive. The composite is likely a good summary of the set of theoretically related abilities that comprise it. Interpret the composite as an adequate estimate
of the ability that it is intended to measure

If all three scores are <80 and the difference between any two of them is >14, then composite is calculated, OR

If all three scores are >119 and the difference between any two of them is >14, then
composite is calculated, OR

If the difference between MAX and MID is > 14 and the difference between MIN and MID is $\mathbf{> 1 4}$, then no composite is calculated, OR

If the difference between MIN and MAX is > 14, and the difference between MAX-MID and MID-MIN is equal (and < 15), then calculate composite for MID+MAX and report MIN as divergent (Chaplin Rule), OR
If the difference between MIN and MAX is > 14, and MID-MIN > 14 and MAX-MID is <
15, then calculate composite for MID+MAX and report MIN as divergent OR
If the difference between MIN and MAX is >14, and MID-MIN is < 15, and MAX-MID is <15, and MID-MIN > MAX-MID, then calculate composite for MID+MAX and report MIN as divergent (Cheramie Rule A), OR
If the difference between MIN and MAX is > 14, and MID-MIN is < 15 and MAX-MID > 14, then calculate composite for MIN+MID and report MAX as divergent, OR If the difference between MIN and MAX is > 14, and MID-MIN is <15, and MAX-MID is <15, and MID-MIN < MAX-MID, then calculate composite for MID+MIN and report MAX as divergent (Cheramie Rule B).

Although the difference between the scores is greater than or equal to 1SD, all three scores are less than 80 and represent normative weaknesses or deficits. Therefore, the composite is still considered cohesive and may be interpreted as an adequate estimate of the ability that it is intended to measure.
Although the difference between the scores is greater than or equal to 1SD, all scores are greater than 119 and represent normative strengths. Therefore, the composite is still considered cohesive and may be interpreted as an adequate estimate of the ability that it is intended to measure All scores that comprise the composite differ from one another by at least 1SD. Therefore, the composite is not considered cohesive. As such, the composite is not likely to be a good summary of the theoretically related abilities it is intended to represent.
Because the difference between the highest and lowest scores entered is greater than or equal to 1SD, this set of scores is not considered cohesive, indicating that a composite based on all three scores is unlikely to provide a good summary of the ability it is intended to represent. Instead the
two highest scores form a cohesive composite that may be interpreted meaningfully and the
lowest value is a divergent score.

Because the difference between the highest and lowest scores entered was greater than or equal tc 1SD, this set of scores is not considered cohesive, indicating that a composite based on all three scores is unlikely to provide a good summary of the ability it is intended to represent. Instead the two lowest scores form a cohesive composite that may be interpreted meaningfully and the highest value is a divergent score.

Three-Subtest XBA Composites: Rules for Cohesion

Composite based on two lowest scores; Highest score is divergent

Three-Subtest XBA Composites: Rules for Cohesion

Composite based on two lowest scores; Highest score is divergent

Our WJ IV and UNIT 2 Example Corresponds to Rule 5a

REMINDER: There is No Need to
 Memorize All of the Ways in Which X-BASS Analyzes Data

The purpose here is to explain how X-BASS
works (i.e., what's under the hood) so that you are well informed

If questions arise about the XBA Analyzer tab, then you can return to these slides for the
answers

In general, X -BASS is easy to use; the explanation of how XBASS works is, at times,
complex

Examples of FOUR Scores Entered in Analyzer Tab

=-Rapid Reference 3.7

Calculation and Interpretation of Composites When Four Subtests Are Entered or Transferred to the XBA Analyzer Tab in X-BASS

Rule for Calculating a Composite
 If the difference between MAX and MIN is <21, composite is calculated based on all scores (4 subtest composite), OR

Interpretation of Four-Subtest Configuration

The difference between the highest and lowest scores that comprise the composite is less than or equal to $1 / 3$ SD, therefore, the composite is cohesive. The composite is likely a good summary of the set of theoretically related abilities that comprise it. Interpret the composite as an adequate estimate of the ability that it is intended to measure.

If all four scores are $<\mathbf{8 0}$ and the difference between MAX and MIN is >20, composite is calculated for all four scores (4 subtest composite). OR

Although the difference between the highest and lowest scores is greater than or equal tol $1 / 3$ SD, all four scores are less than 80 and represent normative weaknesses or deficits.

When Four Scores Are Entered into a Domain in the XBA Analyzer Tab

- There are six possible outcomes
- Composite based on all four scores
- Two, two-subtest composites
- One, two-subtest composite and two divergent scores
- One, three-subtest composite and highest score divergent
- One, three-subtest composite and lowest score divergent
- No composite is calculated

Purpose of the XBA Analyzer Tab

- Evaluate a set of scores to determine the best way to organize, report, and interpret them
- Scores may come from different batteries, allowing for cross-battery composites to be calculated
- Scores may come from the same battery,
allowing for within-battery composites to be calculated (when actual norms from the

WISC-V

test publisher are not available)

- A WISC-V Example
- Evaluate Whether Composites From Other Batteries Are Cohesive
- Batteries other than the cognitive and achievement batteries that have their own tabs in X-BASS

Transfer scores from individual test tabs to XBA Analyzer when

- you need to follow up on a low score (by administering a subtest from another battery)
- you want to create a composite for which the publisher does not provide norms

Create Within-Battery Test Composite on XBA Analyzer Tab

- Most WISC-V users will administer Similarities and Vocabulary to obtain the Verbal Comprehension Index (VCI)
- The VCI provides an estimate of mainly Vocabulary Knowledge (VL)

Create Within-Battery Test Composite on XBA Analyzer Tab

- To broaden the estimate of Comprehension Knowledge (Gc)
- Either the Information or Comprehension subtest can be administered
- In this example, the Information subtest was administered
- Neither the WISC-V manual nor external resources provide a norm-based composite for these three subtest scores

Create Within-Battery Test Composite on XBA Analyzer Tab

- To create a three-subtest Comprehension Knowledge (Gc) Composite, comprised of at least two-qualitatively different indicators of Gc (i.e., VL and KO):
- Check boxes to the right of the subtest scores
- Transfer the scores to the XBA Analyzer tab
- Best estimate of Gc is 104

What if I Wanted A Four-Subtest Gc Composite?

I could check the four boxes next to the four Gc subtests and transfer them to the XBA Analyzer Tab

XBA Analyzer Tab Automatically Calculated a FourSubtest Gc Composite

Score configuration and interpretation:

The difference between the highest and lowest scores is less than or equal to 1 and $1 / 3$ SD and, therefore, they form a composite that is considered cohesive and likely a good summary of the set of theoretically related abilities that comprise it. Interpret the composite as an adequate estimate of the ability that it is intended to measure. If, however, there are reasons to consider an alternative configuration based on additional data, clinical significance, narrow abilities measured, etc., click the "Evaluate Score Configuration" button.

Summary of Clinical Composites on WISC-V Tab

Clinical Composite	Subtest Composition	Brief Description
Gc (Verbal Expression - Low) Gc-VE/L	Vocabulary + Information	These two subtests form a broad Gc ability and require less verbal expression compared to the other Gc subtests (e.g., one or two word responses as compared to multi-word responses or sentences). An alternative label for this composite is Retrieval from Remote Long-term Storage (RFLT-Remote), which provides an estimate of an individual's ability to retrieve information from long-term storage that was encoded weeks, months, or years ago.
Gc (Verbal Expression - High) Gc-VE/H	Similarities + Comprehension	These two subtests require greater verbal expression to earn maximum credit compared to the other Gc subtests and typically involve some degree of reasoning ability.
Fluid-Crystallized Gf-Gc	Vocabulary + Information + Matrix Reasoning + Figure Weights	Provides an alternative to the FSIQ and GAI. Balances Gf and Gc about equally. Contains only subtests with high g loadings. Because Gf and Gc are highly correlated with g and are considered to be the cornerstones of general intelligence, research supports use of a Gf-Gc composite as an estimate of general ability (e.g., McGrew, LaForte, \& Schrank, 2014).
Working Memory (Alternative) Gsm-MW (Alt)	Digit Span Backwards + Digit Span Sequencing + Letter-Number Sequencing	Provides an alternative to the Auditory Working Memory Index (AWMI) by eliminating Digit Span Forward (a test of memory span).
Memory SpanWorking Memory Gsm-MS,MW	Digit Span Forward + Digit Span Backward	Provides a balance of Memory Span and Working Memory and is consistent with the composition of the Digit Span subtest on the WISC-IV.
Working Memory (Cognitive Complexity - High)	Arithmetic + Picture Span	Provides an estimate of working memory with tests that are more cognitively complex than Digit Span. Arithmetic involves Gf (i.e., Quantitative Reasoning), Gc, and Gsm (Working Memory Capacity). Picture Span

Summary of Clinical Composites on WISC-V Tab

WM-CC/H		involves Gy (Visual Memory), Memory Span, and Working Memory due to proactive interference.
Verbal (Expanded Crystallized) Index	Similarities + Vocabulary + Information + Comprehensio	Provides a robust estimate of Gc as compared to the Verbal Comprehension Index (VCI), spanning two narrow ability domains (VL - Lexical Knowledge and K 0 - General Information). Requires reasoning with verbal information. Involves tests that have low to high demands for verbal expression.
Expanded Fluid Index EFI**	Matrix Reasoning + Figure Weights + Picture Concepts + Arithmetic	Provides a more robust estimate of Gf as compared to the Fluid Reasoning Index (FRI), spanning three narrow ability domains, including Induction (I), General Sequential Reasoning (RG), and Quantitative Reasoning (RQ). Places more emphasis on quantitative reasoning as compared to FRI.
$\begin{aligned} & \text { Perceptual Speed } \\ & \text { Gs } \mathrm{P}^{* * *} \end{aligned}$	Symbol Search + Cancellation	Provides an alternative to the PSI, eliminating the memory and motor dexterity demands inherent mainly in the Coding subtest.
Retrieval From Recent Long-Term Storage RFLT-Recent	Delayed Symbol Translation + Recognition Symbol Translation	Provides an estimate of an individual's ability to retrieve recently encoded information from long-term storage.

Actual Norms Available Here

XBA Analyzer
C-LIM Summary

Index Name box for integrated graph)	(check	Enter scores
Subtest Name	\dagger	
Verbal Comprehension Index (VCl/Gc)	\square	94
Similarities (Gc:VL;Gf.l)	\square	8
Vocabulary (VL)	\square	10
Information (K0)	\square	9
Comprehension (K0)	\square	7

Comprehension (K0) \square

When Scores are Entered in the VCI Section, They automatically populate in the Clinical Composites Section

COHESIVE

 calculate the value for statistical significance of the difference. However, base rate be fully or properly evaluated for follow up via this tab. If the composite has been data are available to evaluate whether the difference between the highest and determined to be cohesive, it is very likely that no follow up is necessary. If it waslowest subtests is unusually large and uncommon. The analysis indicates that the determined not to be cohesive or if cohesion could not be evaluated, the scores difference in this case, if any, occurs in more than 10% of the general population from the subtests that form the composite may be transferred over to the XBA which makes it relatively common. This means that the composite is most likely Analyzer for additional analysis regarding the configuration and interpretation of cohesive and should be interpreted as a good summary of the theoretically related the obtained scores
abilities it was intended to represent.

Note that the XBA Analyzer Tab Produced the Exact Same Composite as Actual Norms

Purpose of the XBA Analyzer Tab

- Evaluate a set of scores to determine the best way to organize, report, and interpret them
- Scores may come from different batteries, allowing for cross-battery composites to be calculated
- Scores may come from the same battery, allowing for within-battery composites to be calculated (when actual norms from the test publisher are not available)
- Evaluate Whether Composites From Other Batteries Are Cohesive
- Batteries other than the cognitive and achievement batteries that have their own tabs in X-BASS
- A CTOPP2 Example

Example: CTOPP2 is often used to supplement cognitive batteries, such as WISC-V

- Top Row for all areas in XBA Analyzer Tab includes the names of Tests and Batteries that do not have their own individual tab in X-BASS. Use the drop-down menu in the top row in the Ga domain to find the CTOPP2.

Supplement the WISC-V with tests from CTOPP-2 for

 Ga: Phonetic Coding
Subtests

Composite

Phonological Awareness

CTOPP2 Manual does not include critical values for determining cohesion of composites

CTOPP2

Supplement the WISC-V with tests from CTOPP-2 for Ga: Phonetic Coding

Subtests

Composite

Elision (ss = 8)
Blending Words (ss = 9)
Phonological Awareness (SS = 91)

CTOPP2 Manual does not include critical values for determining cohesion of composites

Supplement the WISC-V with tests from CTOPP2 for Ga: Phonetic Coding

- CTOPP2 Manual does not include critical values for determining cohesion of composites.
- Choose CTOPP2 from top row drop-down menu on XBA Analyzer tab; Enter the composite in the top row

CTOPP2

Supplement the WISC-V with tests from CTOPP2 for Ga: Phonetic Coding

- CTOPP2 Manual does not include critical values for determining cohesion of composites.
- Select the subtests that make up the composite; and enter the scaled scores for each subtest; X-BASS will evaluate cohesion

X-BASS Builds in the Guiding Principle: Use Actual Norms Whenever they are Available

- How Cohesion and Follow up analyses are conducted on individual test tabs and the XBA Analyzer tab
- How and when to transfer data from individual test tabs to XBA Analyzer tab
- Purposes of the XBA Analyzer tab

Summary:

 We Talked About

Now Let's Talk About How

Composites on the

 XBA Analyzer Tab Are Calculated- Median Reliabilities
- Median Inter-correlations
- Standard Formula
- Based on over 2,000 Coefficients from Technical Manuals
- XBA Composites Are Psychometrically Sound

Broad Ability Pair	Number of Coefficients	Median Inter-correlation
Gc-Gf	36	. 62
Gc-Glr	5	. 60
Gc-Gsm	26	. 49
Gc-Gv	31	. 50
Gc-Ga	11	. 49
Gc-Gs	11	. 43
Gf-Glr	5	. 62
Gf-Gsm	17	. 52
Gf-Gv	15	. 56
Gf-Ga	5	. 44
Gf-Gs	11	. 40
GIr-Gsm	5	. 48
GIr-Gv	5	. 45
GIr-Ga	5	. 42
GIr-Gs	5	. 43
Gsm-Gv	17	. 41
Gsm-Ga	5	. 46
Gsm-Gs	8	. 38
Gv-Ga	5	. 30
Gv-Gs	9	. 46
Ga-Gs	5	. 33
TOTAL	242	

Table 4. Median of Narrow Ability Reliability Coefficients within Broad CHC Ability Domains

Broad Ability Domain	Number of Coefficients	Number of Narrow Abilities Represented	Median Reliability
Gc	49	6	.88
Gf	29	3	.89
Glr	32	8	.81
Gsm	34	2	.87
Gv	21	5	.82
Ga	10	4	.89
Gs	20	3	.84
Gq	4	2	.93
Grw-R	10	3	.94
Grw-W	12	4	.87
Gp	36	4	.87
Gh	12	1	.84
Gkn	4	1	.80
EF	-	-	.80
AT	-	-	.80
CF	-	-	.80
TOTAL	273	46	

X-BASS

Cross-Battery Assessment Software System 2.0

How Are Composites on the XBA Analyzer Tab Calculated?

- XBA composites are calculated with a standard formula using median reliabilities and median intercorrelations

The Accuracy of Cross-Battery Assessment (XBA) Composites Generated by X-BASS

- A total of 185 comparisons were made between XBA composites generated in X-BASS and the WISC-V Primary Index Scales. All XBA composites were within one SEM of their corresponding WISC-V Index. For example, the SEM for the WISC-V Verbal Comprehension Index (VCI) is 4.22. The average difference between the XBA Comprehension Knowledge (Gc) composite and the VCl was 1.14 points (range $=0.00-4.05$). Thus, 100% of XBA Gc composites were within one SEM of the VCI. Similar results were found with all XBA and WISC-V Index comparisons (i.e., Gf/FRI, Gv/VSI, Gwm/WMI, and Gs/PSI). Similar data are provided for the DAS-II, KABC-II, SB5, and CAS2.
- Proposal submitted for presentation at NASP 2023 in collaboration with
- Kyle MacDonald
- Brooke Koeppel
- Etty Wajsfeld

Composite Standard Scores

Transferring Scores in X-BASS

Scores can be transferred from individual test tabs to either the XBA Analyzer tab or to the "Data Organizer" tab

Composites can be transferred to the Data Organizer
tab (when follow up is not considered necessary)

Subtest scores can be transferred to the XBA
Analyzer tab when follow up is necessary

Composites are transferred to the Data Organizer tab for the purpose of conducting a PSW analysis

Start
WISC-V ${ }^{\circledR}$ Data Analysis
(age range $=6.0-16: 11$) Release: 2.4
wISC-V Graph

Tab Help

Next Step

\section*{| Name: Tucker |
| :--- |
| wISc-v WAIS-IV |}

Index Name box for integrated graph)	(check	Enter scores	PR	Transfer scores
Subtest Name	\dagger			
Verbal Comprehension Index (VCI/Gc)	\square	106	66th	
Similarities (Gc:VL;Gf.l)	\square	10	50th	\square
Vocabulary (VL)	\square	12	75th	\square
Information (K0)	\square			\square
Comprehension (K0)	\square			\square

Criteria for Cohesion: Is variability...
significant or substantial?
infrequent or uncommon?

No

The VCI provides an estimate of Crystallized Intelligence (Gc). Gc refers to an individual's knowledge base (or general fund of information) that develops as result of exposure to language, culture, general life experiences, and formal schooling. Word knowledge as measured by the Vocabulary subtest was High
Average, and the ability to reason with words as measured by the Simil Average, and the ability to reason with words as measured by the sim
subtest was Average relative to same age peers. The differenco that comprise the VCI is not significant and a difference this size is considered that comprise the VCl is not significant and a difference this size is considered
common in the general population. This means virt the VCl is a good summary of
Composites are cohesive; no need to follow up.
Transfer scores to Data Organizer Tab
igence. The individual'
nked at the 66 th percentile, indicating performance as good as or
f same 20 -peers from the general population.
\square

Name: Tucker				Grade:		
wISC-v	WAIS-IV	WPPSI-IV		WIAT-4		WIAT-II
Index Name box for integrated graph)		(check	Enter scores	PR	Transfer scores	
Subtest Name		\dagger				
Verbal Comprehension Index (VCI/Gc)		\square	97	42		
Similarities (Gc:VL;Gf.l)		\square	7	$6 \text { th }$	\square	
Vocabulary (VL)		\square	12		■	
Information (K0)		\square			\square	res
Comprehension (K0)		\square			\square	

Criteria for Cohesion: Is variability...
significant or substantial?
infrequent or uncommon?

NOT COHESIVE
Cl provides an estimate of Crystallized Intelligence (Gc). Gc refers to an indi) Th's knowledge base (or general fund of information) that develops as a resy tomexpowe to language, culture, general life experiences, and formal
scr boling. Word kno A erage, and the ability to eason with words as measured by the Similarities
scorest was Low Average relativto same age peers. The difference between the of the general population. This means that ln - VCl is not necessarily a good summary of Crystallized Intelligence. Individual arn lysis of word knowledge (Vocabulary) and the ability to reason with words (Similaities) may be more informative than the VCI. The individual's VCI of 97 (93 -101) is C asified as Average and is ranked at the 42 nd percentile, indicating performance as gooun or better than 42% of same age peers from the general population.

Follow up Recommendatons
Do the results suggest a need for follow up?
Yes, recommended for lowest score

Gc:VL $=97$ Transer to Data Organizer

Because the difference between the scores that comprise the VCI is at least 1SD, and the lower score is indicative of a weakness or deficit, follow up on the lower score is considered necessary to determine if it is an accurate and valid representation of ability and:

Consider whether IN or CO would provide useful additional information If N and CO are administered, consider the new clinical composite, Verba (Expanded Crystallized) Index (VECI)
erbal Expressior the Gc clinical composites (e.g., Gc-Verbal Expression Low; Gc

These composites are not cohesive and follow up is recommended. Transfer the subtest scaled scores to the XBA Analyzer.

 Matrix Reasoning (l) \squareFigure Weights (RG,RQ)
\square
Picture Concepts (I)
Arithmetic (Gsm:MW;Gq:A3)

CLINICAL JUDGMENT NEEDED
The Rovides an estimate of Fluid Reasoning (Gf). Gf refers to a type of thinking that in individual may use when faced with a relatively new or novel task that $\square \quad$ that in individual may use when faced with a relatively new or novel task th
$\square \quad$ cany ot be performed automatically. Inductive reasoning as measuared by the
$\square \quad$ asoning and quantitative reasoning as measured by the Figure Weights subtest
was Low Average relative to same age peers. The difference between the scores
that comprise the FRI is significant, however a difference of this size is considered
common in the general population. This means that clinical judgment is necessary to determine whether the FRI is a good summary of Fluid Reasoning. The FRI of 97

(93-101) is classified as Average and is ranked at the 42nd percentile, indicating ($93-101$) is classified as Average and is ranked at the 42 nd percentile, indicating population
 \section*{\section*{Yes, recommended for lowest score
 \section*{\section*{Yes, recommended for lowest score

 \begin{tabular}{l}
Yes, recommended for lowest score

\qquad Gf $=97 \quad$ Transfer to Data Organizer

\hline

}

Yes, recommended for lowest score

\qquad Gf $=97 \quad$ Transfer to Data Organizer

\hline
\end{tabular}}

Because the difference between the scores that comprise the FRI is at least 1SD, and the lower score is indicative of a weakness or deficit, follow up on the lower score is considered necessary to determine if it is an accurate and valid representation of ability and:

If $M R<F W$ and $M R$ is suggestive of a weakness or deficit, consider obtaining more information about the individual's ability to reason inductively (e.g., Picture , subtest from another cognitive battery
(M R and FW is suggestive of a weakness or deficit, consider a) obtaining more information about the individual's ability to reason deductively (e.g., subtest to reason quantitatively (eg b) Arithmetici quantitative about the individual's ability to reason quantitatively (e.g., Arithmetic; quantitative reasoning subtest from another battery; Applied Math Problems or Math Problem Solving subtests from an achievement battery)

Cond RI is cohesive

XBA rules also indicate that follow

up is recommended.

Gc Section of XBA Analyzer Tab

- Based on the XBA rules, one composite is calculated based on Similarities and Analogic Reasoning
- Vocabulary is divergent, meaning it is substantially higher than the verbal reasoning subtest scores
- Transfer the verbal reasoning composite to the Data Organizer tab

Gc Section of XBA Analyzer Tab

- What if I wanted to know the composite based on all three scores?
- A composite can be "forced" (meaning you can override the XBA rules) by clicking on "Evaluate Score Configuration" button)

Score configuration and interpretz on:
Because the difference between the hic est and lowest scores entered is greater than or equal to 1SD, this set of scores is not cohesive, indicating that a com osite based on all three scores is unlikely to provide a good summary of the ability it is intended to represent in ead the two lowest scores form a cohesive composite that may be interpreted meaningfully and the highest valu is a divergent score.

Gc Section of XBA Analyzer Tab

- The three-subtest Gc composite is the best estimate of the latent Gc construct
- But is it a good representation of this student's overall Gc ability?
- The Gc composite of 90 falls at the lower end of the Average range and is within normal limits relative to same age peers
- Suppose you were doing a PSW analysis and had to indicate if Gc was a strength or a weakness for the student
- If you say strength, then you miss the fact that the student has difficulty reasoning with verbal information
- If you say weakness, then you miss the student's relative strength in vocabulary
- This is why X-BASS, via the XBA Analyzer tab, balances the art and science of test interpretation
- Both aspects of Gc should be represented in a PSW analysis

Score configuration and interpretation:
Despite being in different classification ranges or being different from each other by at least 1SD, an alternative composite has been formed using all three scores. Although this composite may be necessary for the purposes of SLD identification, particularly within a PSW framework, it may be clinically important to investigate the difference in performance relative to the narrow abilities being measured, particularly for any score less than 80 .

The Origin of the "Evaluate Score Configuration" Button

Fine-Tuning Cross-Battery Assessment Procedures: After Follow-Up Testing, Use All Valid Scores, Cohesive or Not
W. Joel Schneider

Illinois State University

Zachary Roman

 University of KansasWe used data simulations to test whether composites consisting of cohesive subtest scores are more accurate than composites consisting of divergent subtest scores. We demonstrate that when multivariate normality holds, divergent and cohesive scores are equally accurate. Furthermore, excluding divergent scores results in biased estimates of construct scores. We show that divergent scores should prompt additional testing under some conditions. Although there are many valid reasons to exclude scores from consideration (e.g., malingering, fatigue, and misunderstood directions), no score should be discarded simply because it is different from other scores in the composite.

- The Scientist: The best estimate of the latent construct is the aggregate of all scores, regardless of cohesion
- The Clinician: The composite may obscure important information about the student's strengths and weaknesses

- The Scientist: The best estimate of the latent construct (in this example, Gf) is the aggregate of all scores, regardless of cohesion (Schneider \& Roman, 2017)

FLUID REASONING (Gf) (check these boxes to select score for integrated graph)		Clear Data	Enter scores	Converted Standard Score	Composite Score Analyses		
		\square					
WISC-V Matrix Reasoning (Gf:I)		\square	7	85	A		
WISC-V Figure Weights (Gf:RG)		\square	10	100	A		
CTONI-2 Geometric Analogies (Gf:l)		\square	5	75	A		
CTONI-2 Geometric Sequences (Gf:RG)		\square	11	105	A		
				Alt. Comp \square	\square		
Use the 4-subtest alternative composite							
Reset Score Configuration	Evaluate Score Configuration						
Go to Gf Test List Classifications	Transfer Comp(s) to Data Organizer						

- The Clinician: The composite obscures important information about the student's strengths and weaknesses
- Very high probability of making an error in PSW analysis by classifying this composite as either a strength or as a weakness
- "Evaluate Score Configuration" provides the flexibility necessary to balance the art and science of test interpretation

The Art

Evaluate Score Configuration Button Balances Art and Science While Maintaining Psychometric Defensibility

The Science

The clinician transfers composites to Data Organizer tab for use in PSW analysis

Clinician should include the overall broad Gf ability composite in report AND the separate composites may be used to explain variability in Gf performance

You Might Consider Writing a Paragraph in Your Report that Corresponds to this Gf Scenario

- Using X-BASS, the WISC-V and CTONI-2 reasoning subtests were combined to form an overall Fluid Reasoning composite of 89, which is ranked at the $23^{\text {rd }}$ percentile and falls in the Low Average range. However, because this overall composite does not reflect the substantial variability that Holly demonstrated in this domain, separate Inductive and Deductive Reasoning composites were generated using X-BASS. Specifically, Holly's ability to reason deductively is at a level expected for children her age (Deductive Reasoning composite of $103 ; 58^{\text {th }}$ percentile) whereas her ability to reason inductively is Well Below Average (Inductive Reasoning composite of 77; $6^{\text {th }}$ percentile). Difficulties with reasoning inductively may manifest for Holly in various ways, including difficulties with higher level academic tasks such as reading comprehension (e.g., drawing inferences from text) and math problem solving (e.g., apprehending relationships between numbers).

Table 1. Diagnostic Assessment of Reading skills, cognitive correlates, with WISC-V/WIAT-4 as Core Batteries via XBA and with Supplemental CTOPP-2 FAR, and KTEA-3 tests (20 tests; Approximate Administration time - 1.5 hours)

Academic Subskill	Cognitive Correlates	Broad Ability	Narrow Ability	Core Battery Subtest	Supplemental (and Optional) Test
Word Reading Accuracy	Phonological Awareness	Ga	PC	Phonemic Proficiency	
	Phonological Memory		UM		Nonword Repetition (may be consistent with Gwm:Wa)
Word Reading Accuracy and Reading Rate and Fluency	Rapid Naming	Gr	NA	Naming Speed Literacy	Rapid Automatic Naming
	Orthographic Processing/ Orthographic Mapping	Gs	Pc (with orthographic units)	Coding	
Reading Rate and Fluency			RS	Orthographical Processing (Pc; may involve orthographic memory or Gwm:Wv)	Orthographic Choice Orthographic Fluency
Reading Comprehension	Oral Language	Gc	VL	Vocabulary	Similarities (VL; Gf:I) Print Knowledge (PK-1) Oral Expression (VL; Gr:FI; Gwm:Wa)
			MY		Morphological Processing (MY; grade 2+)
			CM		KTEA-3 Oral Expression (CM)
	Listening Comprehension	Gc	LS	Oral Discourse Comprehension	
	Working Memory	Gwm	Wa	Digit Span	Orthographical Processing

					(Possibly involves Wv; orthographic memory; may also involve Gs:Pc)
	Executing Functioning and Reasoning	Gf		I	Matrix Reasoning
Other		RG	Figure Weights	EF rating scale; observations during testing	
		GI	MA	Immediate Symbol Delayed Symbol Translation	Translation Recognition Symbol Translation
		Gv	MV	Visual Puzzles	Block Design

Note: The Following reading WIAT-4 subtests can be administered to gain general information about how specific cognitive processing weaknesses may manifest in the classroom - Word Reading, Oral Reading Fluency, Decoding Fluency, Reading Comprehension. This table includes "cognitive" subtests from four "achievement" batteries, demonstrating that an increasing number of tests of cognitive processes are being included on achievement batteries. Results from cognitive and academic tests can be used in a PSW analysis and considered along with data from other sources (e.g., educational, medical, familial background; work samples; parent, teacher, and student interviews; behavioral observations; rating scales; exclusionary factors; input from other school personnel familiar with the student) to determine whether an SLD is present and subsequently whether the student is eligible for special education services.

It is important to understand that the information in this table provides an example of an initial comprehensive and in-depth evaluation of suspected READING disability only. It will be most appropriate when reading is the only academic area of concern in the referral. Evaluations that have academic concerns spanning more areas will necessarily be less comprehensive to accommodate measurement of the other skill areas. In addition, any form of reevaluation is typically much shorter and can be tailored even more specifically depending on what data are already available.
${ }^{1}$ Assessment of Learning Efficiency (GI) is important in all evaluations of suspected learning disability. Gv is important in determining overall ability to think and reason and is a necessary part of PSW analysis.

Table 2. Writing Achievement Subskills, Cognitive Correlates, and WISC-V/WIAT-4 as Core Batteries in XBA with Supplemental FAW and tests (21 tests; Approximate Administration time -1.5 hours)

Academic Subskill	Cognitive Correlates	Broad Ability	Narrow Ability	Core Battery Subtest	Optional/Supplemental Test
Spelling Accuracy	Phonological Processing	Ga	PC	Phonemic Proficiency	Isolated Spelling
	Orthographic Processing/ Orthographic Coding			Orthographic Choice*; Orthographic Fluency	Homophone Spelling
	Graphomotor Skills	Gp	P1, P2	Alphabet Writing Fluency; Sentence Writing Fluency	Alphabet Tracing Fluency Motor Sequencing
Grammar and Punctuation	Retrieval Fluency	Gr	FI	Oral Word Fluency	Retrieval Fluency
	English Usage	Grw-W	EU		Copy Editing
Clarity of Written Expression	Attention and Working Memory	Gwm	Wa	Digit Span	
			Wa, AC	Letter Number Sequencing	
	Attention and Executive Functioning	Gf	I	Matrix Reasoning	EF rating scale; observations during testing
		Gs	Ps	Cancellation	
	Language	Gc	VL	Vocabulary	Receptive Vocabulary
			K0	Information	
Other	Learning Efficiency	GI	MA	Immediate Symbol Translation	Delayed Symbol Translation; Recognition Symbol Translation
	Visual-Spatial Ability	Gv	V_{2}	Block Design	Motor Planning

*Available via Q-interactive only

Note: The Following writing WIAT-4 and FAW subtests can be administered to gain general information about how specific cognitive processing weaknesses may manifest in the classroom- Decoding Fluency, Spelling, Writing Fluency, Sentence Composition, Essay Composition, and Executive Working Memory. Results from cognitive and academic tests can be used in a PSW analysis and considered along with data from other sources (e.g., educational, medical, familial background; work samples; parent, teacher, and student interviews; behavioral observations; rating scales; exclusionary factors; input from other school personnel familiar with the student) to determine whether an SLD is present and subsequently whether the student is eligible for special education services.

It is important to understand that the information in this table provides an example of an initial comprehensive and in-depth evaluation of suspected disability in WRITTEN EXPRESSION only. It will be most appropriate when Writing is the only academic area of concern in the referral. Evaluations that have academic concerns spanning more areas will necessarily be less comprehensive to accommodate measurement of the other skill areas. In addition, any form of re-evaluation is typically much shorter and can be tailored even more specifically depending on what data are already available.

Diagnostic Assessment of Math skills, cognitive correlates, with WISC-V/WIAT-4 as Core Batteries via XBA and with Supplemental FAM subtests (24-26 tests; Approximate Administration time -1.3 hours)

Academic Subskill	Cognitive Correlates	Broad Ability	Narrow Ability	Core Battery Subtest	Optional/Supplemental Test
Number Sense	Number Representation				Forward Number Count Backward Number Count Object Counting
	Number Comparison				Number Comparison (Gs:Pc)
	Quantifying Sets without Counting			Naming Speed Quantity (Gs:N; Gr:NA)	
	Estimating Relative Magnitude of Sets				Perceptual Estimation (Gs:N)
Memorization of Arithmetic Facts	Long-term Retrieval	Gl	MA	Immediate Symbol Translation	Delayed Symbol Translation; Recognition Symbol Translation
Accurate or Fluent Calculation	Rapid Naming	Gr	NA	Naming Speed Literacy	Rapid Number Naming
	Processing Speed	Gs	Pc	Coding	Number Comparison
			N	Math Fluency: Addition, Subtraction, Multiplication	Addition, Subtraction, Multiplication, and Division Fluency (tasks require verbal response)
Accurate Math Reasoning	Working Memory	Gwm	Wa	Digit Span	
	Fluid Reasoning	Gf	RQ		Sequences (RG)
			1	Matrix Reasoning	
	Visual-Spatial Ability	Gv	V	Block Design	
			MV		Spatial Memory

	Attention and Executive Functioning		AC	Letter-Number Sequencing	Cancellation
Verbal Ability	Math Knowledge	Gc	K0		Addition, Subtraction, Multiplication, Division Knowledge (Gq:KM; Gs:N)
Other ${ }^{1}$		VL	Vocabulary	Linguistic Math Concepts	

Note: The Following math WIAT-4 subtests can be administered to gain general information about how specific cognitive processing weaknesses may manifest in the classroom - Math Problem Solving and Numerical Operations. The Equation Building subtest from the FAM may also be used for this purpose. Results from cognitive and academic tests can be used in a PSW analysis and considered along with data from other sources (e.g., educational, medical, familial background; work samples; parent, teacher, and student interviews; behavioral observations; rating scales; exclusionary factors; input from other school personnel familiar with the student) to determine whether an SLD is present and subsequently whether the student is eligible for special education services.

It is important to understand that the information in this table provides an example of an initial comprehensive and in-depth evaluation of suspected disability in MATH only. It will be most appropriate when Math is the only academic area of concern in the referral. Evaluations that have academic concerns spanning more areas will necessarily be less comprehensive to accommodate measurement of the other skill areas. In addition, any form of reevaluation is typically much shorter and can be tailored even more specifically depending on what data are already available.
${ }^{1}$ If the student is reading at grade level and reading difficulties are not part of referral concerns, then a single phonetic coding test is sufficient for the purposes of a PSW analysis.

Special Thanks to Dr. Dawn Flanagan for Creating the Slides!

Thank you!

COMPREHENSIVE ASSESSMENT FOR INTERVENTION (CAI)

INNOVATIONS IN PSYCHOLOGICAL EVALUATION FOR INTERVENTION

For additional professional development training, resources, and related publications visit us at: www.caipsychs.com

[^0]:

