Viscon Multi Media Evaluation (Tier I)

Prepared for: Mr. Dean Bloudoff California Air Resources Board Research Division 1001 I Street Sacramento, CA 95814

Prepared by: Las Palmas Oil and Dehydration Company 3121 Standard Street Bakersfield, California 93308

October 24, 2008

Table of Contents

I. INTRODUCTION1 -
II. EXECUTIVE SUMMARY1 -
II-A. SUMMARY OF REGULATORY APPROVALS1 -
II-B. BACKGROUND INFORMATION ON VISCON1 -
II-C. MANUFACTURING, TRANSPORTATION AND STORAGE OF FUEL AND COMPONENTS2-
II-D. HISTORICAL USE OF VISCON'S ACTIVE COMPONENT2-
II-E. INFORMATION NECESSARY FOR RISK ASSESSMENT 2 -
III. RISK ASSESSMENT 3 -
III-A. CARB DIESEL CONTAINING 5 PPM VISCON
III-B. THE VISCON ADDITIVE4-
III-C. Release Scenarios4-
III-C.1 CARB diesel treated with Viscon 4 -
III-C.2 Viscon Additive
III-D. Exposure Pathways6-
III-D.1 CARB diesel treated with Viscon
III-D.2 Viscon Additive6-
III-E. Risk Determination6-
III-E.1 Waste Management6-
III-E.2 Risk/Benefit Assessment

Attachments

- 1 Food-Contact Applications
- 2 BASF's Oppanol Polyisobutylenes
- 3 Viscon Production Flow
- 4 Customer-Site Storage
- 5 Viscosity Measurements
- 6 Issuance of License for Oil Spill Clean-Up Agent
- 7 Extensional Viscosity
- 8 CARB-Protocol Emissions Test Results
- 9 Oil Spill Recovery Using Elastol, Report 1
- 10 Oil Spill Recovery Using Elastol, Report 2
- 11 Oil Spill Recovery Using Elastol, Report 3
- 12 Toxicity and Soil Penetration
- 13 Oil Dispersant Toxicity Test
- 14 Abalone Larval Development Test Memorandum
- 15-2003 & 2004 CARB Pre & Post Durability Results

Multi Media Evaluation

I. Introduction

Viscon is an additive for diesel fuel which is being proposed as a strategy for reducing PM and NOx emissions for diesel engines. The active component of Viscon is an ultra high molecular weight polyisobutylene (UHMWPIB) polymer. It is combined with CARB diesel at 1 part polymer to 99 parts diesel. Viscon is used at less than 5 ppm UHMWPIB to the end use CARB diesel. UHMWPIB is a non-toxic, colorless, tasteless, odorless food grade hydrocarbon polymer, which is insoluble in water. Lower molecular weight PIB is a component in PIB amine keep-clean additives for gasoline. UHMWPIB has been used as a method for controlling releases of diesel fuel, approved for use in California. The use of Viscon as an additive to CARB diesel creates no additional risks to the environmental or to human health when compared to unmodified CARB diesel. The use of Viscon as an additive to diesel fuel can result in a significant reduction in PM and NOx emissions from diesel engines with no significant risk to the air, water and soil environments.

Viscon should be considered by California regulatory authorities as posing no significant risk to human health or to the environment.

II. Executive Summary

II-A. Summary of regulatory approvals.

Viscon is exempt from the US EPA's requirement for registration of fuel additives under 49CFR Part 79 Subpart A Section 79.2 (e), since it is comprised of only hydrogen and carbon.

No other regulatory regimes under which Viscon may be required to be approved have been identified, either U.S. or international.

II-B. Background information on Viscon.

Viscon is an additive for diesel fuel. It is used at a dose level in diesel fuel of about 500 ppm. Viscon is comprised of 1 part UHMWPIB and 99 parts CARB diesel. UHMWPIB is the active component in Viscon. It has an average molecular weight of about 7 million Daltons. Its chemical formula is C4H8. UHMWPIB is a food grade material (see Attachment 1, Food-Contact Applications).

II-C. Manufacturing, Transportation and Storage of Fuel and Components

Viscon is manufactured in Bakersfield, California at Las Palmas Oil and Dehydration. The active component of Viscon, UHMWPIB (Attachment 2, BASF's Oppanol -Polyisobutylenes) is a tough rubber solid which is delivered to the site and stored in a clean dry enclosed room in 44 pound polyethylene bags.

The manufacturing process begins by granulating the UHMWPIB to a specific sizc. Refer to Attachment 3, Viscon Production Flow for a complete schematic of the production steps. CARB diesel fuel is used to dissolve the UHMWPIB. The CARB diesel fuel is pre-heated to 180-185° F using a low-emissions boiler and transferred to a specially designed insulated column holding 770 gallons of fuel. The granulated HHMWPIB is then combined with the diesel. The UHMWPIB is slowly added to the top of the column, dissolved and continually mixed for 12 hours. There is no reactive chemistry involved. The finished product is transferred via pipeline to bulk holding tanks for eventual transfer to shipment vessel(s). The type of shipment vessel varies depending on customer requirements. Tanker trucks, totes, and 55-gallon drums are typical containers that are transported to customers. All liquid production areas are diked in accordance with EPA/California regulations.

Viscon is added to diesel fuel at the customer's site using equipment customarily used in their business. It is stored on the customer's site in storage tanks customarily used for storage of diesel fuel additives and petroleum products. Attachment 4, Customer-Site Storage provides examples of storage containers. All precautions normally taken for storage of diesel fuel are followed for Viscon storage.

II-D. Historical Use of Viscon's Active Component

Lower molecular weight PIB is used in a large part of gasoline consumed in the United States. It is a component in one category of keep-clean additive, PIB amines, required by State and Federal regulations. Also refer to Attachment 2, BASF's Oppanol other uses of PIB.

II-E. Information Necessary for Risk Assessment

Viscon is 1 part UHMWPIB and 99 parts CARB diesel. The diesel fuel used in Viscon poses the same risk as diesel fuel used in other applications. UHMW PIB is a solid rubber before it is added to its diesel fuel carrier. UHMWPIB does not change the chemistry of CARB diesel and does not add to its toxicity. UHMWPIB is colorless, virtually tasteless and odor free. UHMWPIB is insoluble in water. UHMWPIB does change the physical properties of the CARB diesel in which it is blended. The Viscon additive is highly viscous. Refer to Attachment 5, Viscosity Measurements for Viscon viscosity test results. Viscon also has restricted mobility in soil and in water when compared to diesel fuel. A similar combination of UHMWPIB and hydrocarbon liquids

was used as a method for controlling and collecting oil spills. UHMWPIB inhibits dispersion of the base petroleum liquid in water and can be used to immobilize a spill on land. The environmental product was called Elastol and was licensed (see Attachment 6, Issuance of License for Oil Spill Clean-Up Agent) by the State Water Resources Control Board for use on oil spills in California.

The amount of UHMWPIB added to the final diesel product, less than 5 ppm, has only a minor effect on the physical properties of diesel fuel at rest. However, it does have a significant effect on the physical properties of diesel under dynamic conditions. One well known example is the use of this polymer at similar concentrations as a drag reduction additive in pipelines. This phenomenon is viscoelasticity, an immediate and temporary increase in viscosity when the fluid is put under shear stress (see Attachment 7, Extensional Viscosity)

The anticipated use of Viscon in California is in CARB diesel. There would be no significant change in the physical, chemical or toxic properties of CARB diesel in handling, transport and storage caused by addition of less than 5 ppm of UHMWPIB with the exception of changes to CARB diesel's physical properties under conditions of shear stress.

III. Risk Assessment

III-A. CARB Diesel Containing 5 ppm Viscon

A risk assessment of CARB diesel treated with Viscon at the effective dose level, about 5 ppm UHMWPIB, would be the same as for CARB diesel without the additive, with the exception of risks associated with diesel exhaust emissions. The purpose for adding Viscon to CARB diesel is to reduce emissions of PM, NOx, HC, and CO. The results of tests conducted under CARB protocols to assess the potential benefit of Viscon as a strategy for reducing harmful exhaust emissions from diesel engines is attached. This testing includes data related to the effect of Viscon treatment on toxic emissions (see Attachment 8, CARB-Protocol Emissions Test Results).

A risk analysis of CARB diesel treated with Viscon for potential environmental and resource impacts that may result from likely release scenarios would be the same as a risk analysis of untreated CARB diesel. There are no additional risks created by addition of about 5 ppm of UHMWPIB to CARB diesel. UHMWPIB is a non toxic polymer which is insoluble in water. It is dissolved at 1 part UHMWPIB to 99 parts CARB diesel to produce Viscon. UHMWPIB is a pure hydrocarbon, food grade substance.

UHMWPIB does not change the chemical properties of CARB diesel nor does the concentration of UHMWPIB used in treating CARB diesel change CARB diesel's physical properties at rest. It does change the physical properties of CARB diesel under conditions of shear stress, causing an immediate and temporary increase in CARB

diesel's viscosity. The increase in CARB diesel's viscosity could reduce vapor loss from a release under certain conditions and could restrict travel of the fuel in soil and dispersion in water. These conclusions are based upon work done with the same polymer as an environmental technology used to reduce the risk of spills of liquid hydrocarbons.

III-B. The Viscon Additive.

The Viscon fuel additive is comprised of 1 part UHWPIB and 99 parts CARB diesel. The risk of a potential environmental or resource impact resulting from a release of Viscon is significantly less than from a release of CARB diesel. Viscon is highly viscous.. The viscosity of Viscon increases further when put under conditions of shear stress. Penetration of Viscon in soil and transport in soil are minimal when compared to CARB diesel. Viscon does not disperse in water, and maintains its integrity on the surface of water.

UHMWPIB has been used as a method for reducing the hazard from releases of hydrocarbon liquids. The product was called Elastol Elastol was used as a fine powder which dissolved in a spill to form a substance similar to Viscon. Refer to Attachments 9, 10, & 11, Oil Spill Recovery Using Elastol, Reports1-3. A laboratory investigation of the properties of Elastol in solution was carried out at BASF (see Attachment 12, Toxicity and Soil Penetration). UHMWPIB was also used as a 1% solution in a hydrocarbon liquid to restrict the spread, dispersion and emulsion of heavy oil.

Toxicity tests on Elastol were carried out by U.S. Testing Labs in New Jersey (see Attachment 13, Oil Dispersant Toxicity Test). Abalone Larval Development Short Term Toxicity tests were carried out in California to support a request for a license to use Elastol in California. Data from the abalone test is missing from company files, however a memorandum explaining the results of the test is Attachment 14, Abalone Larval Development Test - Memorandum. The State Water Resources Control Board issued the license on May 1, 1992 (see Attachment 6, Issuance of License for Oil Spill Clean-Up Agent). The UHMWPIB used in the Elastol product is the same as the active component of Viscon.

III-C. Release Scenarios

III-C.1 CARB diesel treated with Viscon

The release scenarios for Viscon treated CARB diesel are the same as for CARB diesel. Viscon is added to CARB diesel at a fuel distributor's site or a user's site. Once added to CARB diesel the Viscon treated fuel follows the same pathway as the CARB diesel would normally follow. As noted above any release occurring during the storage, transportation and transfer of Viscon treated CARB diesel would have the same risk factors as for neat CARB diesel, except to the extent that added viscosity under conditions of shear stress may help mitigate the hazard from such a release.

III-C.2 Viscon Additive

Viscon is produced at GTAT California's facility in Bakersfield, California. The production facility has several dissolving units each with a capacity of 770 gallons. Dissolving units and storage tanks for Viscon are contained within diked areas in accordance with US EPA and California regulations for facilities storing quantities of diesel fuel. Any accident resulting in a tank rupture or valve failure would be limited to the diked area. Vapor release to the air would be somewhat less than from a release of an equal amount of CARB diesel. The addition of the UHMWPIB to diesel limits its ability to penetrate the ground and the walls of the dike. Recovery is enhanced by the viscoelastic properties of the liquid (see Attachment 12, Toxicity and Soil Penetration).

Viscon is transported to the customer via tanker trucks, totes, and 55-gallon drums. A release resulting from an accident during transportation would have limited mobility on the ground and could easily be controlled by standard spill containment equipment. Runoff of a spill of Viscon into an adjacent waterway would be inhibited by product viscosity, resulting in a significantly reduced hazard when compared to a spill of diesel fuel.

In the event that a Viscon release found its way into a creek or river the spill would have limited ability to spread on the surface and there would be no dispersion into the body of water. Standard oil spill booms could contain the spill and the effectiveness of recovery equipment would be significantly enhanced compared to its use with a diesel spill (see Attachments 9, 10, 11, Oil Spill Recovery Using Elastol, Reports1-3, and Attachment 12, Toxicity and Soil Penetration).

It is not anticipated that Viscon would be stored in underground storage tanks. However, if Viscon is stored underground and there is a breach in the tank due to a catastrophic event, or slow leakage or spillage around the fill port of the tank the spilled liquid would have minor mobility in the soil.

Potential air releases in manufacture of Viscon occur from the handling and storage of the CARB diesel which comprises 99% of the final product. The Viscon production facility is operated in accordance with all appropriate regulations governing the storage and handling of diesel fuel. The completed Viscon product has significantly less potential for release of vapor to the air than CARB diesel.

Air releases from Viscon during transfers and accidental releases would be reduced when compared to CARB diesel. (Attachment 9) In addition, any release in transfers or accidents is more easily contained and removed than would be the case of a similar size release of CARB diesel reducing the time the spill is open to the environment.

III-D. Exposure Pathways

III-D.1 CARB diesel treated with Viscon

The exposure pathways for CARB diesel treated with Viscon are the same as for CARB diesel, except to the extent that the addition of Viscon may reduce exposure as a result of increased viscosity under conditions of shear stress.

The polymer molecules in the Viscon treated CARB diesel are biodegradable like the fuel molecules. The pure hydrocarbon PIB molecules do not raise transformation issues when combined with CARB diesel. UHMWPIB is a non-toxic substance cleared for use in packaging exposed to food (see Attachment 1, Food-Contact Applications). Exposure to UHMWPIB does not raise chronic or acute exposure or other issues related to human exposure in any media (see Attachment 2, BASF's Oppanol - Polyisobutylenes).

III-D.2 Viscon Additive

The potential exposure pathways for Viscon in relation to both human and ecological receptors are reduced compared to those for CARB diesel. Viscon is used at a concentration of less than 500 ppm in CARB diesel. The volume of product which may be exposed to human or ecological receptors is 1/20th of 1% of CARB diesel volume, if it is assumed that all CARB diesel is treated with Viscon. The viscosity of Viscon is 57.97 Centipoise (cP) at 1,800 reciprocal seconds (D(1/s)) at 90° F compared to 2.33 Centipoise (cP) at 1,800 reciprocal seconds (D(1/s)) for CARB diesel. The higher viscosity of Viscon further limits the exposure pathways for human and ecological receptors when compared to neat CARB diesel because of reduced migration in soil, and reduced dispersion in water. Viscoelastic properties of Viscon, an immediate and temporary increase in viscosity under shear stress, further limit the spread of Viscon in an active water system such as a river or creek, where the action of the water causes the spill to consolidate and not break up and spread on the surface. The cohesiveness of Viscon also reduces potential pathways to human and ecological receptors because of the significantly increased capabilities of spill containment and recovery equipment to control and recover an accidental spill when compared to a spill of CARB diesel (see Attachment 9, Oil Spill Recovery Using Elastol, Reports1-3 and Attachment 12, Toxicity and Soil Penetration).

III-E. Risk Determination

III-E.1 Waste Management

A release of CARB diesel treated with Viscon would respond to standard petroleum cleanup strategies and technologies the same as untreated CARB diesel. A release of

CARB diesel treated with Viscon would be no harder or easier to cleanup than CARB diesel without Viscon.

The disposal of soils contaminated with CARB diesel treated with Viscon would be handled the same as soils contaminated with CARB diesel without Viscon.

The only potential waste associated with the production of Viscon is product which does not meet product specification. This waste would be 99% CARB diesel and 1% PIB and would be handled in the same manner as CARB diesel contaminated with pure hydrocarbon substance.

Discarded Viscon or CARB diesel treated with Viscon would be subject to the same disposal regulations as discarded CARB diesel.

III-E.2 Risk/Benefit Assessment

There is no significant risk to human health or to the environment caused by the production, transportation, handling, storage or use of Viscon as an additive to CARB diesel in addition to risk normally associated with the use of untreated CARB diesel. On the other hand, the use of Viscon as an additive to CARB diesel could significantly reduce the impact on human health and the environment associated with the combustion of CARB diesel in diesel engines due to demonstrated reductions in exhaust emissions of NOx, PM, CO and HC.

Attachment 1

Food-Contact Applications

BASF Corporation

October 27, 2000

GTA Technologies, Inc.. Attn. Jerry Trippe 7400 Gallerher Road Gainesville, VA 20155

Fax: 703 753 9476

RE: Oppanol Approvals for Food Contact

Dear Jerry,

As per your request, please find attached the requested information on Oppanol in contact with food.

This is for informational purposes only. In case you intend to use a specific Oppanol grade in an application with food contact, I will ask Product Stewardship to issue a statement covering that particular grade.

If you have any questions or comments, please do not hesitate to call me at 973 426 2531.

Best regards,

Ull Eichenauer Marketing Manager

Attachment

Ć

Food-Contact Applications

Oppanol fulfil the requirements of:

- US FDA 21 CFR 172.615 Chewing gum base
- American Food Chemical Codex of 1996 concerning chewing gum
- German legislation regarding chewing gum
- US FDA 21 CFR 175.105 Adhesives
- US FDA 21 CFR 175.125 Pressure-sensitives adhesives
- US FDA 21 CFR 175.300 Resinous and polym. Coatings
- US FDA 21 CFR 176.189 Component and paperboard in contact with dry food
- US FDA 21 CFR 177.1420 Polyisobutene polymers (Oppanol B 100 and higher molar mass products)
- US FDA 21 CFR 178.3570 Lubricants with incidental food contact
- US FDA 21 CFR 178.3910 Surface lubricant used in the manufacture of metallic articles
- German Health authorities recommendation on polyisobutene(Empfehlung XX, Polybuten, 167. Mitteilung Bundesgesundheitsblatt 27, 289, 1984)
- German regulation concerning use for toys or for consumer articles that come into contact with food (Lebensmittel-und Bedarfsgegenständegesetz, Paragraph 5, No.1 and No 5)

Attachment 2

BASF's Oppanol - Polyisobutylenes

HELPING MAKE PRODUCTS BETTER™

NOY TO HANDLE 194

BASF INVENTED PIB. NOW WE'VE MADE IT BETTER.

POLYISOBUTYLENES OPPANOI BASF's

Contents

Ì

I

|

1.	PortfolioPage 1
2.	Chemical nature
3.	General information
3.1.	PropertiesPage 1
3 <i>.</i> 2.	ProcessingPage 3
3.3.	Removing packagingPage 4
3.4.	Applications
4.	Other possible applicationsPage 6
5.	Specifications, technical literature, safety data sheets, product rangePage 6
6.	Markings
6.1.	Oppanol [®] B 10 SFN, B 12 SFN, B 13 SFN, B 15 SFN B 30 SF, B 50, B 50 SFPage 7
6.2.	Oppanol [®] B 80, B 100, B 150, B 200Page 8
7.	DispatchPage 8
8.	TraceabilityPage 8

.

1. Portfolio

Oppanol® products are classified into two groups according to molecular weight:

MM-Oppanol:Medium molecular weight(Mv 40,000 - 85,000)HM-Oppanol:High molecular weightHigh molecular weight(Mv 20,0000 - 4,000,000)

Products

states and the second

MM-Oppanol:

B 10 SFN, B 12 SFN, B 13 SFN, B 15 SFN **HM-Oppanol:** B 30 SF, B 50, B 50 SF, B 80, B 100, B 150, B 200

2. Chemical Nature

The Oppanol types consist of polyisobutylenes with different molar masses. They are mainly used in the production of adhesives, sealants, lubricants, coatings and chewing gum.

3. General Information

3.1. Properties

Purity

Oppanol is pure polyisobutylene with an ash content of less than 100 ppm and a heavy metal content of less than 3 mg/kg (except for iron < 10 mg/kg).

Food-Contact Applications

The Oppanol polymers fulfill the requirements of German legislation regarding chewing gum and the regulations concerning chewing gum contained in the American Food Chemical Codex of 1996 and FDA Paragraph 21 CFR 172.615 'Chewing gum base'.

In addition the use of Oppanol products is governed by the following FDA regulations:

21 CFR 175.105 Adhesives

21 CFR 175.125 Pressure-sensitive adhesives 21 CFR 175.300 Resinous and polymeric coatings

21 CFR 176,180 Components of paper and paperboard in contact with dry food

21 CFR 177.1420 Polyisobutylene polymers (Oppanol B 100 and products with a higher molar mass)

21 CFR 178.3570 Lubricants with incidental food contact

21 CFR 178.3910 Surface lubricants used in the manufacture of metallic articles

Appearance, Color, Odor

Oppanol is virtually colorless and very tacky. Its tack decreases substantially with increasing molar mass. Oppanol is virtually tasteless and odor-free.

Water Resistance

Oppanol is fully resistant to water, including boiling water. It is completely insoluble in water.

Permeability to Gases and Water Vapor

Oppanol has very low permeability to gases such as Argon, water or aqueous solutions. Oppanol is resistant to the following substances at room temperature:

- Diluted and concentrated acids (hydrochloric acid, sulfuric acid, phosphoric acid, chlorosulphonic acid, phenolsulphonic acid, formic acid, acetic acid)
- E Diluted and concentrated ammonia
- Diluted and concentrated solutions of sodium hydroxide and potassium hydroxide
- Aqueous quicklime, aqueous hydrogen sulfite, copper sulfate solution, hydrogen peroxide, potassium permanganate solution, chromic acid, potassium dichromate solution

Oppanol has adequate resistance to:

Concentrated nitric acid and mixed acid

Oppanol is not resistant to:

Chlorine and bromine in liquid, aqueous or gaseous form

Solvent Resistance

Oppanol is insoluble in:

Methanol, ethanol, ethylene glycol, glycerin

- 8 Acetone, cyclohexanone
- R Methyl acetate, ethyl acetate

• Out of the first we are stated in the second second state of the second state of

- Oppanol is solvated by:
- TEthyl ether
- E Butyl acetate
- Note: No

Oppanol is soluble in:

- Paraffin, mineral oil (gasoline, diesel oil, lubricating oil, bitumen)
- Benzene, toluene, xylene, cyclohexane, poly-α-olefins, oil soluble synthetic esters
- Methylene chloride, tetra chloromethane, chlorobenzene
- 🛚 Carbon disulfide

Resistance to Low Temperatures

Oppanol remains elastic at temperatures down to -50°C. It gradually becomes harder at lower temperatures and eventually becomes brittle.

Heat Resistance

- The mechanical properties of high molecular weight Oppanol remain virtually unchanged up to a temperature of about 100°C. It gradually becomes plastic at higher temperatures, and it starts to flow at 180 200°C (under nitrogen). The polymer starts to degrade rapidly at this temperature in the presence of air.
- Medium molecular weight Oppanol starts to flow at about 100°C. It starts to degrade at 160 - 180°C.

Resistance to Sunlight and Oxidation

Unstabilized Oppanol undergoes hardly any discoloration in diffuse light, and it does not undergo any other significant physical changes. It begins to degrade in direct sunlight, and especially when irradiated with UV light, which is indicated by a decrease in strength and elasticity and increased tackiness. The resistance of Oppanol to sunlight can be improved substantially by adding pigments and fillers such as carbon black or by adding antioxidants and UV stabilizers.

AND THE REAL PROPERTY OF

Affinity for Fillers

Oppanol has a high affinity for all types of fillers. There is no difficulty in preparing sheets consisting of 1 part of Oppanol and 10 parts of fillers such as china clay, chalk or talc, etc.

Compatibility with Rubber, Resins, Waxes, etc.

Oppanol can be mixed with rubber and rubber substitutes.

Dielectric Properties

Oppanol is a nonpolar, hydrocarbon polymer. It is an excellent insulator, and its dielectric properties are not affected by prolonged immersion in water.

Dimensional Stability

Oppanol displays cold flow, and undergoes permanent deformation under a permanent load.

Reactivity

Oppanol is an almost completely saturated paraffinic polymer, and therefore practically inert.

Cross-Linking

The methods that are usually used to cross-link saturated ethylene polymers, such as applying high-energy radiation or adding peroxide and allowing it to decompose, cause Oppanol to break down.


Because Oppanol is saturated, it cannot be vulcanized with sulfur. Peroxides need to be added to Oppanol before it can be vulcanized. Typical properties

NEW STREET, STREET, STREET, ST

Density at 20°C	0.92	g/cm ³
Glass transition temperature, T_g (DSC)	-62	°C
Specific heat, c	2.0	kJ*kg`'K ⁻ '
Thermal conductivity, λ	0.19	W*K [.] '*m [.] '
Refractive index, n ³⁰ D	1.51	
Dielectric constant, ε, (50 Hz, 23°C)	2.2	
Dissipation factor, tan δ (50 Hz, 23°C)	<=5*10⁴	
Specific resistance	1,016	Ω*cm
Coefficient of permeability to water vapor	2.5*107	g*m ⁻¹ h ⁻¹ *mbar ¹

Note:

The details presented here on the properties and processing of Oppanol[®] and its applications are for information purposes only. They do not constitute a specification or a guarantee of specific properties.

3.2. Processing

Oppanol is usually packaged in 20 kg cardboard boxes, 20 kg bags, and 100 lbs drums.

Oppanol is a thermoplastic and can be processed with conventional machinery used in the rubber industry, such as kneaders, roll mills, calendars, singleand twin-screw extruders, and extrusion presses. Recently, press mixers have also been used.

3.3. Removing Packaging

Cardboard box (Fig. 1 - Fig. 4)

BASF recommends opening the box on both sides longitudinally by hand (Fig. 2), pulling out the flaps (Fig. 3), and folding down the side walls (Fig. 4).

Figure 1

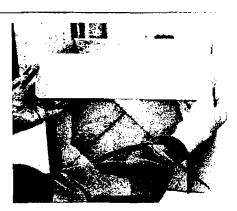


Figure 2

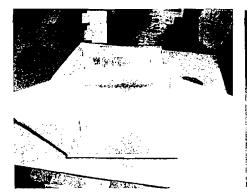


Figure 3

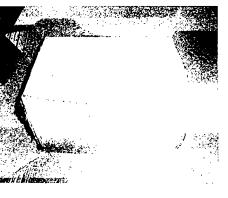


Figure 4

Figure 5

Drum (Fig. 5)

Remove lid from the top of the drum. Place drum upside down to remove the material.

Figure 6

Figure 7

Figure 8

Plastic bag (Fig. 6 - Fig. 8)

BASF recommends cutting open the liner at the front and the sides (Fig. 7). If the bag sticks to the contents and is difficult to remove, then the bag can be inflated with compressed air (Fig. 8) before it is cut open.

4

3.4. Applications

Formulations that Contain Fillers

Building industry:

For sealing membranes used to seal buildings from standing water; roofing membranes with or without standing water, waterproofing for tunnels and cellars in combination with bitumen

Corrosion protection:

Linings for chemical reactors, other vessels, and underbody sealants for automobiles

Electrical industry: Conductive films filled with graphite and magnetic films filled with barium ferrite

Electrical insulation: Extremely high flashover voltage

Inorganic fillers: Carbon black, graphite, chalk, shale, quartz, china clay and talc

Thermoplastic additives: Thermoplastics such as EVA copolymers, PP, HDPE, LDPE and LLDPE act as plasticizers at temperatures above their melting point. They reduce shear, resulting in less mechanical degradation when Oppanol is processed. At temperatures below their melting point, these thermoplastics act as fillers at low deformation, resulting in a higher modulus of elasticity and a higher elongation at break.

Rubber Industry

Coating compounds: Additive for compounds of natural and synthetic rubber

Regeneration: Used in the regeneration of waste vulcanized rubber

Cable sheathing: Good insulator with self sealing properties to prevent short circuits if sheathing is punctured

Ebonite compounds: Increases the impact resistance of ebonite

Mixtures with Waxes

Mixtures of this type are mainly used to coat, impregnate and laminate paper, plastic film, and metal foil. Advantages: High melt viscosity, low permeability to water vapor, very pliable film, better adhesion, improved sealability

Mixtures with Bitumen

Advantages: Increased melt viscosity, a more pliable bitumen film, improved resistance to changes in temperature (in bridge construction), higher weathering resistance, better adhesion, very high water resistance

Adhesives

Oppanol® is used on account of its resistance to aging and to attack by chemicals in pressure sensitive adhesives for technical and medical applications, such as surgical plasters, sealing tapes, insulating tapes, masking tapes and anticorrosion tapes.

Permanently Elastic Sealants

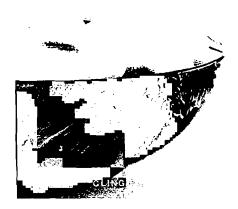
Permanently elastic sealants (mainly for double-glazed windows) can be manufactured by blending different Oppanol[®] types and using fillers such as chalk, zinc oxide, china clay or barites. Bitumen may also be included in the formulation.

Chewing Gum Base

Chewing gum base is manufactured by mixing Oppanol with chalk, corn oil, paraffin wax and other waxes and fats, etc. The chewing gum itself is made by adding icing sugar, dextrose, glycerin, citric acid and flavoring to the chewing gum base.

Mixtures with Mineral Oil and Lubricants

Oppanol can be used to increase the viscosity and adhesion of oils and chain lubricants, or as a thickener for lubricating grease, and a drag reducer in oil pipelines.



IC BI

4. Other Possible Applications

- Oppanol®

- Disposal of solid and liquid waste
- tt Disposal of metal dust, asbestos dust, and toxic sludge
- Removing oil pollution from water
- Cleaning up oil slicks after tanker accidents
- Recycling plastic waste (in the automotive sector)
- © Can be processed chemically into lubricant additives, copolymers, and sealants with enhanced adhesion
- Blends of Oppanol® and other polymers
- R Sterile tubes for medical suction equipment
- Infusion tubes
- Seals for disposable syringes
- Medical metering equipment
- @ Automotive films
- ile Decorative films, including films laminated with textile fibers
- C Household films
- N Cling film for food packaging
- 8 Peelable film for yogurt containers, etc.
- Cosmetic packaging
- E Sealants for bottle caps
- IS Non-slip tablemats
- Protective panels for vacuum cleaners

Note:

The details presented here on the properties and processing of Oppanol and its applications are for information purposes only. They do not constitute a specification or a guarantee of specific properties.

5. Specifications, Technical Literature, Safety Data Sheets, and Product Range

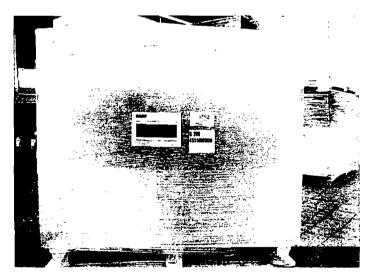
Product range:

The C of A lists Staudinger index (Jo)
measured by a BASF method.
Specifications, technical literature, and
safety data sheets are available from
your local BASF representatives.

Oppanol	Mole	Consistency	
	Mw (GPC)	M٧	
B 10 SFN	36,000	40,000	Soft, resinous
B 12 SFN	51,000	55,000	Soft, resinous
B 13 SFN	60,000	65,000	Soft, resinous
B 15 SFN	75,000	85,000	Soft, resinous
B 30 SF	200,000	200,000	Soft, resinous
B 50 / B 50 SF	340,000	400,000	Soft, resinous
B 80	750,000	800,000	Rubbery
B 100	1,100,000	1,110,000	Rubbery
B 150	2,500,000	2,600,000	Rubbery
B 200	4,100,000	4,000,000	Rubbery

6. Markings

6.1. Oppanol[®] B 10 SFN, B 12 SFN, B 13 SFN, B 15 SFN, B 30 SF, B 50, B 50 SF


These products are packed in 20 kg (44 lb) corrugated cardboard boxes with an inner silicone release coating and in 100 lb paper/fiber drums lined with a silicone coated nylon liner.

The lid is labeled as follows: BASF Oppanol B XX XXX 20 kg BASF Aktiengesellschaft D-67056 Ludwigshafen MADE IN GERMANY

The cardboard boxes are labeled on only one side of the box.

The symbols for "this side up" and "protect from moisture" also appear.

The pallet is covered with shrink wrap to protect it from moisture.

On one pallet there are 30 cardboard boxes or 9 drums.

A large, colored sticker is attached to one of the boxes on each pallet in order to draw attention to the designation of the product. Attached to the same box is a stamped label, which gives details of the total net weight of the pallet load and the number of the pallet. This serial number is important for tracing back the pallet and for processing shipment related requests.

6.2. Oppanol[®]B 80, B 100, B 150, B 200

These products are supplied in 20 kg LDPE bags.

Each bag is labeled as follows:

BASF Oppanol B XX XXX 20 kg BASF Aktiengesellschaft D-67056 Ludwigshafen Germany

The bags are also labeled with the code number of the packaging and a recycling symbol.

The grade of product is printed on the label.

The bags are supplied on pallets in units of 30 (Oppanol B 150 / B 200) or 40 (Oppanol B 80 / B 100). A large corrugated cardboard cover is placed over the bags on the pallet in order to ensure that the stack remains stable when the bags at the bottom are deformed under the weight of the bags on top as the result of cold flow.

A large sticker is attached to the cardboard cover of each pallet in order to draw attention to the designation of the product. A label is also attached which gives details of the total net weight of the pallet load and the number of the pallet. This pallet number is important for tracing back for processing complaints.

The cardboard cover is then shrink wrapped to protect it from moisture.

Oppanol MASE Dppanol BLASE BLASE Oppanol

7. Dispatch

When the product is ready to be shipped, labels are attached providing details of the internal work order number and customer specific information.

These labels appear on the outside of the shrink wrap.

8. Traceability

In case of questions about the shipped product, information can be retrieved from our system. It is important that all information printed on the packaging, on the pallet, and on paperwork associated with the shipment (including purchase order, internal work order numbers, etc.) should be kept for your records.

The pallet number helps us to identify the exact production time (within one hour) and therefore all of the quality information can be retrieved. Please, note that the pallet number is attached only once to the outside shrink wrap on the pallet.

Note:

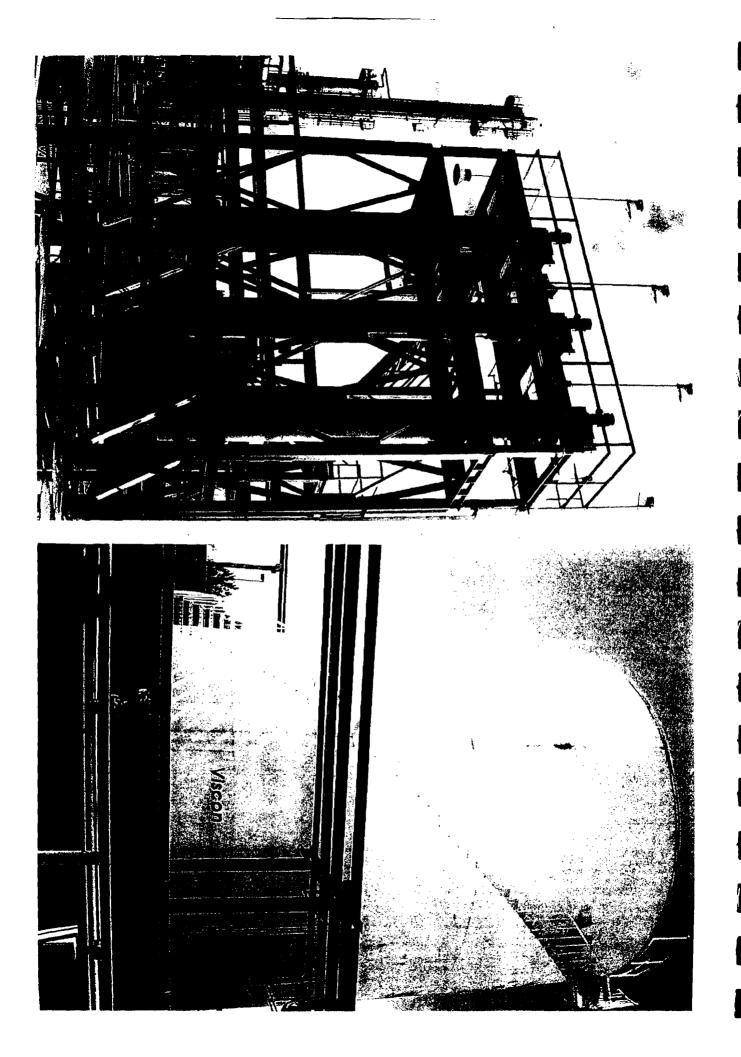
The details presented here on the properties and processing of Oppanol and its applications are for information purposes only. They do not constitute a specification or a guarantee of specific properties.

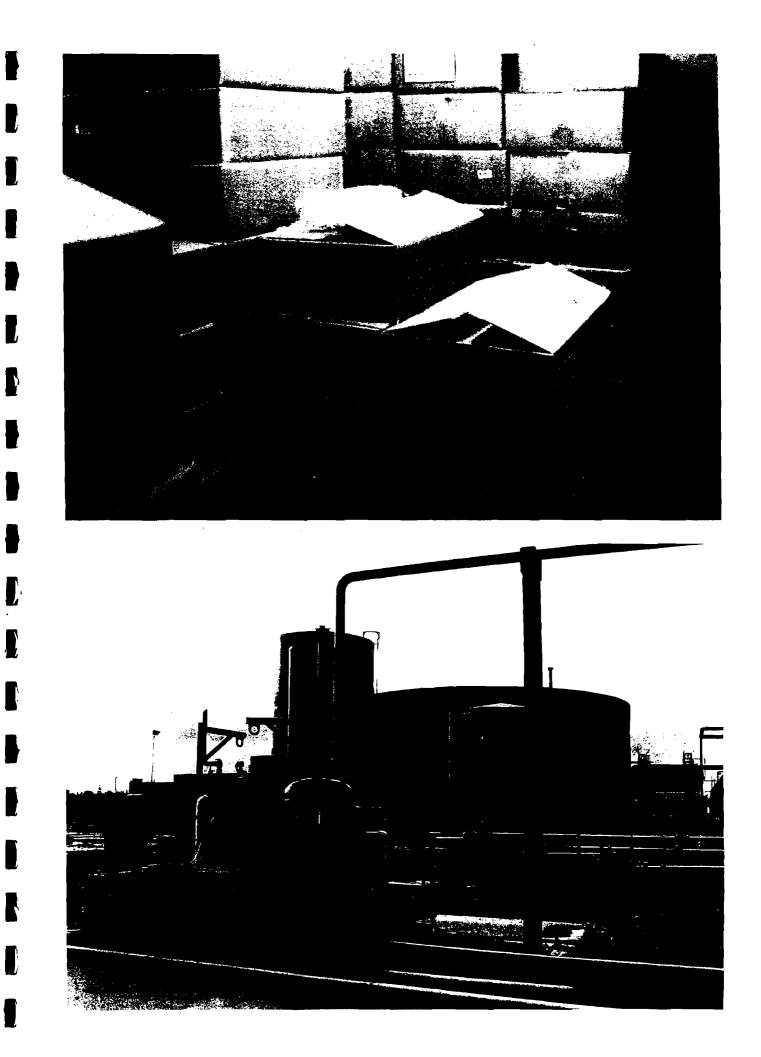
Attachment 3

ł

Ì

4

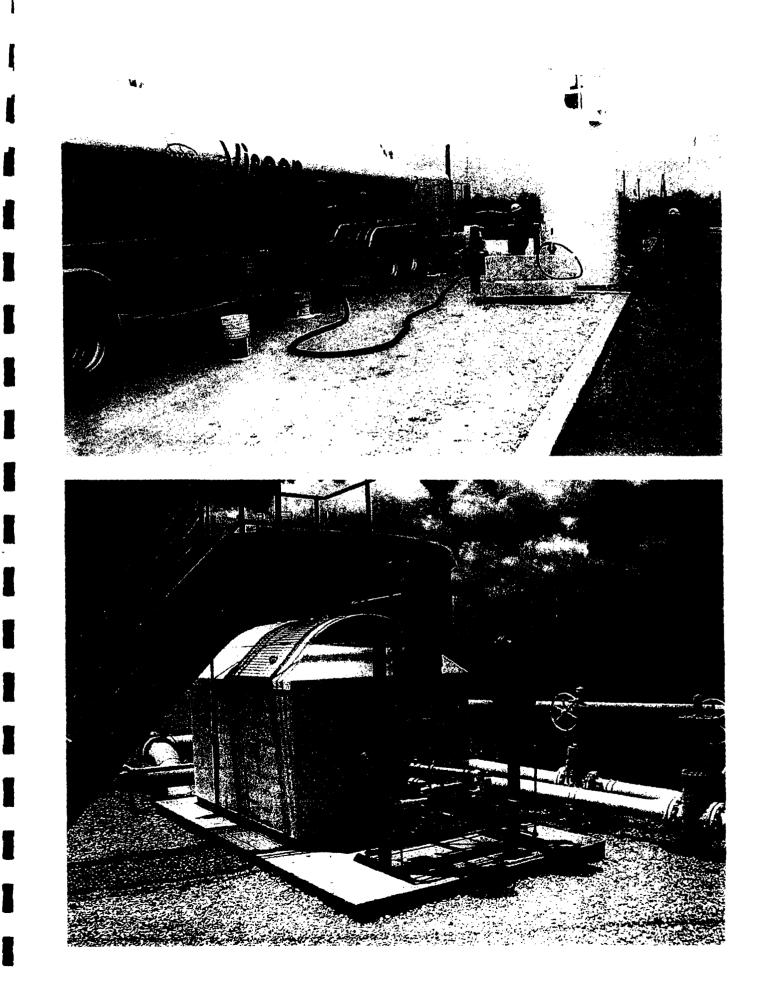

ŀ


.

₿

ľ

Viscon Production Flow



ļ


Attachment 4

Customer-Site Storage

.

I

Attachment 5

I

l

Viscosity Measurements (Quality Control)

Data-report: C:\RHEO28\DATA\Batch # 222.dat 09:03 03/01/07

Customer: Measuring-Ide Medium-Ident Operator: Comment:		
Program filena Prog.mode: Date: Block terminat Block 2 of 2: measuring-sys	sequence 06:58 10/10/06 on: Block end	
Rheometer:	R/S+ Rheometer Ver.:9.00 from 15.02.05, Serialnumber	r. #30311 7
filters active t[s]>=15 data-graph:		
47.0	7	⊺ 47.0
46.8		46.8
46.6		46.6
Eta[cP]		
46.2		46.2
46.0		46.0
45.8	15 20 25 30 35 40 45	45.8 50
	t[s]	
<u>~</u> 0	Eta[cP]=ft(i[s]);Batch # 222.dat, Block 2	

.

page 1

~		222.dat Blo	ck:2					
	er is active!		-10(4/-1	T. (D.)	TROP		<i></i>	
MP#	t[s]		is]D[1/s]	Tau[Pa]	T[°C]	M[%.]	n[rpm]	Step
15	15	45.94	250	11.484	32	60.44	48.62	1
16	16	46.32	250	11.581	32	60.95	48.62	1
17	17	46.28	250	11.569	32	60.89	48.62	1
18	18	46.15	250	11.538	32	60.72	48.62	1
19	19	46.18	250	11.545	32	60.76	48.62	1
20	20	46.19	250	11.547	32	60.77	48.62	1
21	21	46.24	250	11.56	32	60. 8 4	48.62	1
22	22	46.22	250	11.556	32	60.82	48.62	1
23	23	46.16	250	11.539	32	60.73	48.62	1
24	24	46.35	250	11.587	32	60.98	48.62	1
25	25	46.19	250	11.548	32	60.78	48.62	1
26	26	46.32	250	11.581	32	60.95	48.62	1
27	27	46.45	250	11.613	32	61.12	48.62	1
28	28	46.33	250	11.583	32	60.97	48.62	1
2 9	29	46.22	250	11.554	32	60.81	48.62	1
30	30	46.25	250	11.563	32	60.86	48.62	1
31	31	46.23	250	11.557	32	60.83	48.62	1
32	32	46.22	250	11.555	32	60.82	48.62	1
33	33	46.18	250	11.546	32	60.77	48.62	1
34	34	46.49	250	11.623	32	61.17	48.62	1
35	35	46.12	250	11.531	32	60.69	48.62	1
36	36	46.19	250	11.547	32	60.77	48.62	1
37	37	46.52	250	11.629	32	61.21	48.62	1
38	38	46.38	250	11.594	32	61.02	48.62	1
39	39	46.3	250	11.576	32	60.93	48.62	1
40	40	46.87	250	11.718	32	61.67	48.62	1
41	41	46.1	250	11.525	32	60.66	48.62	1
42	42	46.16	250	11.539	32	60.73	48.62	1
43	43	46.72	250	11.679	32	61.47	48.62	1
44	44	46.9	250	11.726	32	61.72	48.62	1
45	45	46.26	250	11.564	32	60.86	48.62	1
-					~~	00.00	TU.UL	•

Analysis-results: filter activated: t[s]>=15 step1: average/mean of Eta[Pas]=0.046, S=0.0002 End of report

•

08:51 03/01/07

Customer: Measuring-Ident: Medium-Ident: Operator. Comment:	Quality Control Batch # 329 Tower 2 Preston						
Commenc	Batch was made 12.8.06						
Program filename: Prog.mode: Date: Block termination:	C:\RHEO28\PROG\Viscon Sequence.seq sequence 06:44 11/12/06 Block end						
Block 2 of 2: measuring-system: Rheometer.	CC48 DIN R/S+ Rheometer Ver.:9.00 from 15.02.05, Serialnumber	CC48 DIN R/S+ Rheometer Ver.:9.00 from 15.02.05, Serialnumber: #303117					
filters active t[s]>=15 data-graph:							
45.40		45.40					
45.35	Å Å Å «	45.35					
45.30 g		45.30					
	the high has here here here here here here here her	45.25 C					
ш 45.20		45.20					
45.15		45.15					
45.10		45.10					
15 2	20 25 30 35 40 45 t[s]	50					

 O
 Bei(cP)=f(1(s)): Batch # 329.det, Block 2

 X
 Bie(cP)=f(1(s)): Batch # 329.det, Block 2

 O
 X

 X
 Co

.

- х—х
- ×—×

Data-report: C:\RHEO28\DATA\Batch # 329.dat

08:51 03/01/07

	rid: Batch # ter is active	# 329.dat Blo !!	ck:2					
MP#	ť[s]	Eta(mPa	is] D[1/s]	Tau[Pa]	T[°C]	M[%.]	n[rpm]	Step
15	15	45.26	250	11.314	31.4	59.55	48.62	1
16	16	45.26	250	11.316	31.4	59. 56	48.62	1
17	17	45.2	250	11.3	31.4	59.47	48.62	1
18	18	4 5.29	250	11.322	31.4	59.59	48.62	1
19	19	45.3	250	11.325	31.4	59.6	48.62	1
20	20	45.37	250	11.342	31.4	59.69	48.62	1
21	21	45.32	250	11.33	31.4	59.63	48.62	1
22	22	45.32	250	11.329	31.4	59.63	48.62	1
23	23	45.27	250	11.318	31.4	59.57	48.62	1
24	24	45.27	250	11.318	31.4	59.57	48.62	1
25	25	45.36	250	11.341	31.4	59.69	48.62	1
26	26	45.32	250	11.33	31.4	59.63	48.62	1
27	27	45.24	250	11.309	31.4	59.52	48.62	1
28	28	45.36	250	11.341	31.4	59.69	48.62	1
29	29	45.24	250	11.311	31.4	59.53	48.62	1
30	30	45.26	250	11.315	31.4	59.55	48.62	1
31	31	45.34	250	11.334	31.4	59.65	48.62	1
32	32	45.23	250	11.308	31.4	59.52	48.62	1
33	33	45.19	250	11.298	31.4	59.46	48.62	1
34	34	45.22	250	11.305	31.4	59.5	48.62	1
35	35	45.23	250	11.307	31.4	59.51	48.62	1
36	36	45.26	250	11.315	31.4	59.55	48.62	1
37	37	45.19	250	11.298	31.4	59.47	48.62	1
38	38	45.29	250	11.322	31.4	59.59	48.62	1
39	39	45 .15	250	11.287	31.4	59.41	48.62	1
40	40	45.2	250	11.3	31.4	59.48	48.62	1
41	41	45.24	250	11.311	31.4	59.53	48.62	1
42	42	45.21	250	11.303	31.4	59.49	48.62	1
43	43	45.12	250	11.279	31.4	59.36	48.62	1
44	44	45.16	250	11.289	31.4	59.42	48.62	1
45	45	45.12	250	11.28	31.4	59.37	48.62	1

Analysis-results: filter activated: t[s]>=15 step1: average/mean of Eta[Pas]=0.045, S=0.0001 End of report page 2

Data-report: C:\RHEO28\DATA\Batch # 313.dat

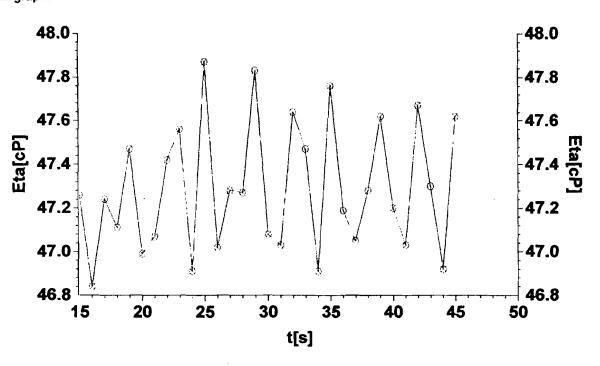
08:50 03/01/07

Customer: Measuring-Ident: Medium-Ident: Operator: Comment:

Quality Control Batch # 313 Tower 1 Misty

sequence

06:02 08/11/06


Batch was made 11.07.06

C:\RHEO28\PROG\Viscon Sequence.seq

Program filename: Prog.mode: Date: Block termination: Block 2 of 2: measuring-system: Rheometer:

Block end CC48 DIN R/S+ Rheometer Ver.:9.00 from 15.02.05, Serialnumber: #303117

filters active t[s]>=15 data-graph:

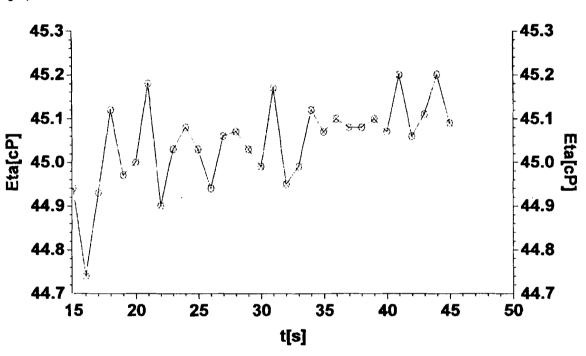
- 0-----(
- ×

Data a	rid: Dotob i	# 313.dat Blo	ak 0				
	er is active		UK.Z				
MP#	t[s]		is] D[1/s]	Tau[Pa]	ͲC	M[% .]	n[rpm]
15	15	47.26	250	11.816	31.9	62.19	48.62
16	16	46.84	250	11.71	31.9	61.63	48.62
17	17	47.24	250	11.81	31.9	62.16	48.62
18	18	47.11	250	11.778	31.9	61.99	48.62
19	19	47.47	250	11.868	31.9	62,47	48.62
20	20	46.99	250	11.747	31.9	61.82	48.62
21	21	47.07	250	11.768	31.9	61.94	48.62
2 2	22	47.42	250	11.856	31.9	62.4	48.62
23	23	47.56	250	11.891	31.9	62.59	48.62
24	24	46.91	250	11.728	31.9	61.73	48.62
25	25	47.87	250	11.968	31.9	62.99	48.62
26	26	47.02	250	11.754	31.9	61.86	48.62
27	27	47.28	250	11.819	31.9	62.2	48.62
28	28	47.27	250	11.817	31.9	62.2	48.62
29	29	47.83	250	11.958	31.9	62.94	48.62
30	30	47.08	250	11.769	31.9	61. 9 4	48.62
31	31	47.03	250	11.758	31.9	61.88	48.62
32	32	47.64	250	11.909	31.9	62.68	48.62
33	33	47.47	250	11.867	31.9	62.46	48.62
34	34	46.91	250	11.728	31.9	61.73	48.62
35	35	47.76	250	11.941	31.9	62.85	48.62
36	36	47.19	250	11.797	31.9	62.09	48.62
37	37	47.05	250	11.763	31.9	61.91	48.62
38	38	47.28	250	11.82	31.9	62.21	48.62
39	39	47.62	250	11.905	31.9	62.66	48.62
40	40	47.2	250	11.799	31.9	62.1	48.62
41	41	47.03	250	11.757	31.9	61. 8 8	48.62
42	42	47.67	250	11.918	31.9	62.73	48.62
43	43	47.3	250	11.824	31.9	62.23	48.6 2
44	44	46.92	250	11.731	31.9	61.74	48.62
45	45	47.62	250	11.905	31.9	62.66	48.62

Analysis-results: filter activated: t[s]>=15 step1: average/mean of Eta[Pas]=0.047, S=0.0003 End of report

.

Block end


CC48 DIN

Customer: Measuring-Ident: Medium-Ident: Operator: Comment: Quality Control 7,000 Gallons Tank 351 Misty 7,000 gallons going to Texas pulled from Tank 351 01.02.07 C:\RHEO28\PROG\Viscon Sequence.seq sequence 12:23 02/01/07

R/S+ Rheometer Ver.: 9.00 from 15.02.05, Serialnumber: #303117

Program filename: Prog.mode: Date: Block termination: Block 2 of 2: measuring-system: Rheometer:

filters active t[s]>=15 data-graph:

- o----o
- х х
- o----o
- o----o
- ж—ж

Data-grid: 7,000 Gal. 01.02.07.dat Block:2 Datafilter is active!

Datamiter i								
MP#	t[s]	Eta[mPas]		Tau[Pa]	T[°C]	M[%.]	n[rp m]	Step
15	15	44.94	250	11.234	32.2	59.13	48.62	1
16	16	44.74	250	11.186	32.2	58.88	48.62	1
17	17	44.93	250	11.232	32.2	59.12	48.62	1
18	18	45.12	250	11.281	32.2	59.38	48.62	1
19	19	44.97	250	11.243	32.2	59.18	48.62	1
20	20	45	250	11.25	32.2	59.21	48.62	1
21	21	45.18	250	11.294	32.2	59.44	48.62	1
22	22	44.9	250	11.225	32.2	59.08	48.62	1
23	23	45.03	250	11.257	32.2	59.25	48.62	1
24	24	45.08	250	11.269	32.2	59.31	48.62	1
25	25	45.03	250	11.258	32.2	59.26	48.62	1
26	26	44.94	250	11.234	32.2	59.13	48.62	1
27	27	45.06	250	11.265	32.2	59.29	48.62	1
28	28	45.07	250	11.267	32.2	59.3	48.62	1
29	29	45.03	250	11.257	32.2	59.25	48.62	1
30	30	44.99	250	11.247	32.2	59.2	48.62	1
31	31	45.17	250	11.293	32.2	59.44	48.62	1
32	32	44.95	250	11.237	32.2	59.14	48.62	1
33	33	44.99	250	11.248	32.2	59.2	48.62	1
34	34	45.12	250	11.279	32.2	59.36	48.62	1
35	35	45.07	250	11.268	32.2	59.3	48.62	1
36	36	45.1	250	11.274	32.2	59.34	48.62	1
37	37	45.08	250	11.269	32.2	59.31	48.62	1
38	38	45.08	250	11.271	32.2	59.32	48.62	1
39	39	45.1	250	11.275	32.2	59.34	48.62	1
40	40	45.07	250	11.268	32.2	59.31	48.62	1
41	41	45.2	250	11.299	32.2	59.47	48.62	1
42	42	45.06	250	11.265	32.2	59.29	48.62	1
43	43	45.11	250	11.277	32.2	59.36	48.62	1
44	44	45.2	250	11.301	32.2	59.48	48.62	1
45	45	45.09	250	11.272	32.2	59.32	48.62	1

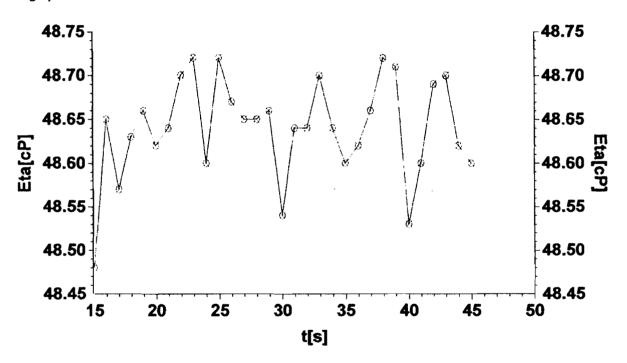
Analysis-results: filter activated: t[s]>=15 step1: average/mean of Eta[Pas]=0.045, S=0.0001 End of report

Customer: Measuring-Ident: Medium-Ident: Operator: Comment:

Qualtly Control Batch # 165 Tower # 2 Preston

Batch made 8.31.06

sequence


Block end

10:27 06/09/06

C:\RHEO28\PROG\Viscon Sequence.seq

Program filename: Prog.mode: Date: Block termination: Block 2 of 2: measuring-system: Rheometer:

filters active t[s]>=15 data-graph: CC48 DIN R/S+ Rheometer Ver.:9.00 from 15.02.05, Serialnumber: #303117

- --> Ete(cP)=1(1(s)):Betch # 165.det, Block 2 --> Ete(cP)=1(1(s)):Betch # 165.det, Block 2 -->
- ×---×
- o----0
- ×----×
- o-----c
- ×→

Data-report C:\RHEO28\DATA\Batch # 165.dat

08:47 03/01/07

Data-grid: Batch # 165.dat Block:2
Datafilter is active!

MP#	t(s)	EtaimPa	s] D[1/s]	Tau[Pa]	ͳ ··Ϲ]	M[%.]	n[rpm]	Step
15	15	48.48	250	12.12	31.8	63.79	48.62	1 ்
16	16	48.65	250	12.163	31.8	64.01	48.62	1
17	17	48.57	250	12.142	31.8	63.91	48.62	1
18	18	48.63	250	12.158	31.8	63.99	48.62	1
19	19	48.66	250	12.166	31.8	64.03	48.62	1
20	20	48.62	250	12.155	31.8	63.97	48.62	1
21	21	48.64	250	12.161	31.8	64	48.62	1
22	22	48.7	250	12.174	31.8	64.08	48.62	1
23	23	48.72	250	12.181	31.8	64 .11	48.62	1
24	24	48.6	250	12.15	31.8	63.95	48.62	1
25	25	48.72	250	12.179	31.8	64.1	48.62	1
26	26	48.67	250	12.168	31.8	64.04	48.62	1
27	27	48.65	250	12.163	31.8	64.02	48.62	1
28	28	48.65	250	12.162	31.8	64.01	48.62	1
29	29	48.66	250	12.166	31.8	64.03	48.62	1
30	30	48.54	250	12.134	31.8	63. 86	48.62	1
31	31	48.64	250	12.159	31.8	64	48.62	1
32	32	48.64	250	12.161	31.8	64.01	48.62	1
33	33	48.7	250	12.175	31.8	64.08	48.62	1
34	34	48.64	250	12.1 5 9	31.8	63.99	48.62	1
35	35	48.6	250	12.149	31.8	63.94	48.62	1
36	36	48.62	250	12.154	31.8	63.97	48.62	1
37	37	48.66	250	12.166	31.8	64.03	48.62	1
38	38	48.72	250	12.18	31.8	64.1	48.62	1
39	39	48.71	250	12.178	31.8	64.1	48.62	1
40	40	48.53	250	12.132	31.8	63.85	48.62	1
41	41	48.6	250	12.15	31.8	63.95	48.62	1
42	42	48.69	250	12.172	31.8	64.06	48.62	1
43	43	48.7	250	12.174	31.8	64.07	48.62	1 .
44	44	48.62	250	12.154	31.8	63.97	48.62	1
45	45	48.6	250	12.149	31.8	63. 94	48.62	1

Analysis-results: filter activated: t[s]>=15 step1: average/mean of Eta[Pas]=0.049, S=0.0001 End of report

Attachment 6

Issuance of License for Oil Spill Clean-Up Agent

STATE OF CALIFORNIA

State Water Resources Control Board

LICENSE for Oil Spill Cleanup Agent

Issued to: General technologies applications, inc.

PRODUCT NAME: "ELASTOL"

PRODUCT CLASSIFICATION: COLLECTING AGENT

DATE ISSUED:

MAY 1, 1992

EXPIRATION DATE: MAY 1, 1997

The applicant having followed the procedure as outlined in Title 23, Chapter 3, Subchapter 10, of the California Administrative Code, and having submitted proper applications which was reviewed by interested agencies and is found in order for approval, this license is hereby issued.

Use of the product must be in strict compliance with Section 2332 of referenced Administrative Code.

The term of this license shall be for a period of five (5) years unless revoked prior to that date for good cause.

This license does not denote endorsement of the product by the State Water Resources Control Board or any other State agency.

Jesse M. Diaz Chief, Division of Water Quality

CER0054

Attachment 7

J

Extensional Viscosity

~ -

Extensional Viscosity and a Single Phenomenological Basis for the GTA Fuel Additive

1. <u>Approach</u>

We begin with the equations for Newtonian viscosity as a function of concentration and molecular weight. Then we look at the parameters influencing the extensional viscosity. Finally, we look at the parameters governing the evaporation of a liquid from the surface of an evaporating drop. The extensional viscosity relationship is then overlaid on the equation for evaporation of a liquid drop. Calculated values will be given in the next discussion paper.

2. <u>Resting Viscosity of a Dilute Polymer Solution</u>

The Newtonian (resting) viscosity of a very dilute polymer solution is close to that of the solvent. This is a consequence of the following two equations:

- (I) $[\eta] = KM^{1/2}$ and
- (II) $\eta_{ep} = [\eta] c + k' [\eta]^2 c^2$

where $[\eta]$ is the intrinsic viscosity of the polymer - solvent system, M is molecular weight, and K is the constant of proportionality. Note that $[\eta]$ is weakly dependent on molecular weight, thus the specific viscosity of a given solution concentration is also little increased by M. This is especially the case when the polymer concentration, c, is also small as it is for fuel additive at 10 ppm, or 0.0010 grams per deciliter. c is 1×10^{-3} g/dl and c² is 1×10^{-6} g²/dl². Thus the treated fuel is not very different from untreated fuel at rest. References for this are 1) Billmeyer and 2) Flory.

3. Extensional Viscosity

The ratio of viscosity of stretched, elongated of extended polymer solution to the viscosity of the unperturbed solution is given by

(III)

 $\eta/\eta_{o} = 3 + \epsilon c \eta_{o} K^{2} M^{(1+2\alpha)}/RT$

The extensional viscosity, $\eta,$ is strongly dependent on the molecular weight. The term $M^{(1+2\alpha)}$ becomes M^2 for the case of

1

worst solvent for the polymer, and M^3 for the best possible solvent. Polyisobutylene and fuel are ideally compatible and the term more closely approaches M^3 than M^2 . Despite the strong dependencies of η/η_{\circ} on the molecular weight, η/η_{\circ} approaches the low limiting value of 3 when c approaches 0. This is why the ratio can be "tuned" to a particular type of engine or burning condition, (further discussions will be postponed to the next section). The rate of strain, ε is a measure of elongation per unit length per second, or $\Delta L/L\Delta t$. This parameter changes when the solution is sheared, stretched, or deformed. Physically the large polymer chains are deformed from a random coil conformation to a stretched chain conformation. In the absence of the strain, the chains thermally relax to the random coils. Often the strain induces a stress which breaks some of the extended molecules in the middle (mid-point break theory). However, in undergoing a break, the fluid is also most rigid. In other words $\Delta L/L\Delta t$ was very large and η/η_o was also maximized. Regions where $\Delta L/L\Delta t$ are large include turbulent liquid flow regions (drag reduction effect), injection from a nozzle (cohesive effect), the interaction of a liquid stream or droplets with high velocity air. These conditions exist in most modern engines, especially when conditions are changing in the millisecond to microsecond domain. K in this equation is obtained in the laboratory by plotting the log of the intrinsic viscosity against the log of the molecular weight and taking the slope of the line. K is constant for a particular polymer solvent system. The K for polyisobutylene in Benzene is 1.07x10⁻³ at 297°K. T enters the expression for η/η_{o} in the term 1/RT where R is the gas constant. T has little effect on η/η_{o} since there is usually little displacement from 298 degrees (25°C). T could be 273 (0°C) or perhaps 325 degrees, but the effect on η/η_{o} is very small.

4. <u>Effects on Fuel Properties</u>

Under some conditions η/η_{o} can approach 10,000. When this is too large for an optimal effect on combustion or volumetric efficiency, or delayed vaporization, or suppression of vapor-like particles, the concentration can be decreased toward zero. This it is always possible to tune the fuel for 2 cycle spark ignition, 4 cycle spark ignition, compression ignition, turbine or other combustion scenarios. c can also be changed for different carburetor or fuel injection systems. High molecular weight is an advantage because it generates large η/η_o values at low concentrations where "at rest" fuel properties are virtually There is no doubt that 5 to 10 ppm concentrations of unaffected. 7.2x10⁶ M PIB decreases energy loss in turbulently flowing fuels, resulting in flow rate increase of more than 20%. There is also no doubt that the formation of vapor-like particles is suppressed

2

at low concentrations of high molecular weight PIB. These two effects are related to η/η_{e} .

However, η/η_{\circ} is also related to transient increases in the "solidity" and surface tension of particles produced by shear at surfaces or in turbulent air. The following relationships have been derived in "Physical Chemistry", by Moelwyn - Hughes p. 1213. The derivation will not be repeated here. Consider a sphere of isolated liquid in an inert atmosphere at constant temperature and pressure. Let the radius be larger than 10⁻⁶ cm. The number of molecules vaporizing from the surface of the sphere per second is given by

(IV) $dN/dt = 4\pi rDn^{\circ}$

r is the radius of the droplet and D is the diffusion coefficient of molecules within the droplet. n° is the saturation vapor pressure at the interface of the drop with the gaseous atmosphere. r_m is the molecular radius. The link between D and η is via the Stokes relationship or

(V) $D = RT/n_0 6\pi nr_m$

accumulating the constants and the radius of a molecule equation V becomes

 $D = k/\eta$, or for extensional viscosity η

(VI) D= k/ η

Substitution of VI into V we get

 $dN/dt = 4\pi r kn^{\circ}/\eta$

Thus during periods close to those where $D\Delta L/L\Delta t$ is large, the rate of vaporization, dN/dt is very depressed. Simultaneously the droplet is very rigid and solid like, and the surface is equally tense or hardened. When η subsequently approaches $3\eta_{\circ}$ the rate of evaporation increases sharply. During the "hardened" phase both the surface tension and bulk viscosity of the droplet favor transport without coating or premature vaporization. This leads to improved performance in gasoline and diesel engines.

Another equation incorporates D and γ , or surface tension into the expression for the lifetime of a spherical droplet. This equation is,

(VII) $t = (r^2 n_L / 2Dn^\circ) (1 - 4\gamma / n_L r k_c T)$

where n_L is the number of molecules per cm³ in the liquid and r is the radius of the droplet.

again replacing D by k/η we get

(VIII)
$$t = (r^2 \eta n_L) / (2kn^\circ) (1 - 4\gamma / n_L r k_C T)$$

In equation (VIII) the surface tension approaches 0 when saturated vapor is present above the droplet interface and γ approaches 0. The droplet lifetime equation (VIII) then becomes proportional to η .

Relaxation of PIB and η

 η becomes larger as $\acute{\epsilon}$ increases. Similarly η decreases as $\acute{\epsilon}$ approaches zero. When the stretching force is released the extensional or elongational viscosity decreases. The increase or decrease in η depends on the product of the strain $\acute{\epsilon}$ and the reciprocal of the time it takes for the molecule to thermally relax to the unstretched conformation. The units of the stretching rate or elongation rate are reciprocal seconds and the units of polymer relaxation times are seconds. The product of the two factors is dimensionless. The following equation links η to $\acute{\epsilon}$ and θ .

 $\eta = 3\eta_{o} + (3cRT/M)\Sigma_{p} (\theta_{p}1((1-2\hat{\epsilon}\theta_{p}))(1+\hat{\epsilon}\theta_{p}))$

 θ_p is the relaxation time of the p th normal mode of chain response. Note that as $\dot{\epsilon} \rightarrow 1/2\theta_1$ where θ , is the longest relaxation time, the $(1-2\dot{\epsilon}\theta_1)$ term approaches zero. As the denominator approaches zero, η approaches infinite elongational viscosity. The relaxation time θ_1 is proportional to

 $[\eta] M\eta_{o}/RT$

where $[\eta]$ is itself equal to KM^{α} and α is between 0.5 (θ solvent = poor solvent) and 1.0 (perfect solvent). Thus the relaxation time is proportional to $M^2\eta_o/RT$ in a good solvent. Relaxation time increases with M^2 and therefore a state of high η will exist longer than it would for the case of a lower molecular weight. The mist particles would retain a high η for a desirable period during engine operation. Since η approaches ∞ when \acute{e} approaches $1/2\theta$ a high molecular weight polymer in a good solvent will develop an extensional viscosity that approaches infinity at lower extension rates than a low molecular weight polymer in a poor solvent. The former is the case for the GTA fuel additive in gasoline and diesel fuels. Concentration then provides the final tuning for the desired η at a particular $\dot{\varepsilon}$.

Summary

- 1. The large η/η_{\circ} possible using low concentrations of 7.2x10⁶ M PIB in gasoline and diesel fuels influences pre-combustion events and thus affects combustion.
- 2. Through c, η/η_o can be tuned to improve the operation of several types of engines.
- 3. η/η_o changes are linearly dependent on concentration and $\Delta L/L\Delta t$ and this provides another dimension for engine tuning.
- 4. Through c, η/η_{o} can be tuned to:
 - a) eliminate vapor-like burning
 - b) promote diffusive burning (diesel)
 - c) develop a uniform cloud mix for improved combustion (diesel)
 - d) improve volumetric efficiency by slightly delaying vaporization (2-stroke and 4-stroke spark ignition engines)
 - e) negate undesirable surface coating effects through momentary increases in surface and bulk rigidity
 - f) promote diesel fuel jet penetration prior to ignition and diffusive burning
 - g) decrease the extent of vapor explosion before TDC in a diesel
 - h) prevent droplet agglomeration and surface wetting after TDC in a diesel.

Attachment 8

•

CARB-Protocol Emissions Test Results

Olson-EcoLogic Engine Testing Laboratories, LLC

ISO 9001:2000 Registered

FINAL REPORT

Engine and Fuel Testing to Measure Exhaust Emissions from a Model 3306 Caterpillar Diesel Engine

When Operating Over the ISO 8178 8-Mode Off-Road Emission Test Cycle and When Operating With Viscon Treated Ultra Low Sulfur Diesel Fuel Meeting California ULSD Specifications

Prepared for Mr. Mike Porter Viscon California Formerly GTAT California Bakersfield, CA

December 1, 2006 Revised August 8, 2007 Revised October 22, 2008

Prepared by Olson-Ecologic Engine Testing Laboratories Fullerton, CA

1370 South Acacia Avenue, Fullerton, California 92831 Tel (714) 774-3385 Fax (714) 774-4036 www.ecologiclabs.com

Introduction and Background

This emission testing project is a follow-on project for Viscon California, formerly GTAT (Las Palmas Oil and Dehydration Company) using the same diesel engine that has already completed standard controlled substance emission testing in accordance with the CARB protocol entitled *Verification Procedure, Warranty and In-Use Strategies to Control Emissions from Diesel Engines as Described in the Final Regulation Order, Title 13, California Code of Regulations, Sections 2700 through 2710.*

Original emission testing and 1000 hours of durability operation with the same test engine was completed in 2004 with Viscon fuel treatment resulting in significant reductions of NOx and Particulates compared to original baseline emission measurements before fuel treatment with Viscon.

Subsequent to conclusion of the above testing project, CARB has specified that the Viscon treated diesel fuel must additionally be tested as an alternative fuel with detailed exhaust emission measurements of uncontrolled substances, including toxic hydrocarbons, PAH's and Carbonyls. This new emission report provides all of the CARB required data after operating the test engine and measuring emissions in exact accordance with CARB pre-approved testing and analysis protocols as described in this detailed report.

Since all of the previous emission and durability testing was conducted over two years ago the then available test fuel is no longer available. Accordingly, the same engine was operated and tested on commercially available ultra low sulfur diesel fuel that meets California ULSD specifications. Baseline emissions were again measured after 50 hours of stabilizing operation with the new ULSD test fuel. Subsequent stabilizing operation for 125 hours with the same fuel treated with Viscon was conducted and emissions were again measured for comparison to the new baseline data.

Test Engine

The test engine for this project was a Model 3306 six cylinder Caterpillar diesel engine rated at 265 HP. This is the same engine (without modification) used in the prior emission testing to measure changes in exhaust emissions with the Viscon polymer additive admixed to the baseline no. 2 diesel fuel. The previous engine testing is described in an ETS (Olson Engineering, Inc.) summary report dated August 19, 2003 providing the data comparisons before durability testing and a second summary report (Olson-EcoLogic) dated November 26, 2004 covering the emission/fuel economy measurements after 1000 hours of engine durability operation with the Viscon treated fuel. Both reports are available upon request.

Test Fuel

Previous testing with the specified test engine was done in 2003 and 2004 using commercially available no. 2 diesel fuel for the baseline and Viscon treated test fuel. This fuel met California fuel specifications that existed in the earlier time frame, but such fuel is no longer available in the California commercial market. Accordingly, all of the test work described in this report was done with one batch of commercially available no. 2 ultra low sulfur diesel fuel. This test fuel has a sulfur content of less than 15 ppm and other composition differences compared to the test fuel used in earlier years with this engine. Fuel specifications are provided in the Appendix.

Test Protocol

As in all previous testing with the specified test engine the official test protocol was the ISO 8178 8-mode steady-state test as required for certification of heavy-duty diesel engines in off-road applications. This operating test protocol involves the collection and analysis of emissions from a hot-start while operating the engine over 8-modes of warmed up operation at specific loads and speeds under stabilized conditions. The detailed testing cycle is as follows:

Maderia	Weighting Freder %	E) PILI	Telenne 2
1	15	Rated	100
2	15	Rated	75
3	15	Rated	50
4	10	Rated	10
5	10	Max torque, rpm	100
6	10	Max torque	75
7	10	Max torque	50
8	15	Idle	0

The engine was operated and emissions were recorded every second of each mode for five minutes to stabilize emissions. The last two minutes of each mode were recorded second-by-second and averaged to provide the stabilized steady-state emission/fuel economy results.

All engine exhaust for all modes passed through the Horiba Olson-Ecologic dilution tunnel. The dilution tunnel was fixed to operate at a total constant flow of 70 cubic meters per minute, providing variable exhaust dilution for each mode as a function of actual exhaust flow rates. Primary air was measured through the initial critical flow venturi (dilution air) and the total temperature corrected volume (Vmix) of dilutant air plus exhaust was measured continuously at the second critical flow venturi. The calculated dilution ratio mode-by-mode is simply the temperature corrected composite total (Vmix) divided by the exhaust flow (Vmix – dilution air). The measured dilution ratio is expected to be essentially a constant for the same mode for all tests, but the

Θ

actual dilution ratios were used as measured for each individual test to allow for test-to-test variance.

Gaseous emissions for each test mode were measured every tenth of a second for each five minutes of mode operation. Only the last two minutes of each mode were averaged to provide the stabilized diluted mode data. Dilute data from each mode was then multiplied by the specific mode dilution ratio to obtain the raw modal data and then multiplied by the appropriate mode weighting factor before adding all eight modes together. Finally, the total sum of the weighted modal data was divided by the weighted horsepower and by the test time to provide the weighted grams per bhp-hr for direct data comparisons to the official emission standards for controlled substances.

Particulate sampling involved initial calculation of exhaust mass flow per mode from an actual full 8-mode test. Secondary dilution ratios in the AVL Smart Sampler calculation were programmed for each mode and time of sampling was adjusted to properly compensate for specified modal weighting factors. Since the AVL PM Sampler draws its sample from the exhaust dilution tunnel for each mode the dilution ratio existing for each mode was included in the sample calculation to ultimately determine the total raw exhaust volume for proper calculation of the generated particulates in grams/bhp-hr. All particulate sampling resulted in the capture of measured and weighted particulates on a single filter media for each mode of each 8-mode test (eight complete particulate samples per test).

Exhaust sampling and subsequent gas chromatography analysis for uncontrolled toxic hydrocarbons (C2-C12) followed the detailed Standard Operating Procedure (S.O.P.) described in the Appendix. Modal sample collection was done for a total of 20 minutes. Modes 1, 2, 3 and 8 were collected for three minutes of the five minute mode, while modes 4, 5, 6 and 7 were collected for two minutes. Samples were drawn from each bag and analyzed by gas chromatography. The overall dilution ratio for the 8-modes (20 minutes of testing time) was used to correct and calculate the resulting G.C. data in grams/bhp-hr. ((CONC^{ppb}/10⁻⁹)(Vmix,ft³)(Density,g/ft³)/Work,bhp-hr). Simultaneously samples were drawn and captured for PAH and Carbonyl analysis at an off-site location (Desert Research Institute) as described in the Appended S.O.P. for this procedure.

Tasks Descriptions

The specific tasks and order of operation were as follows:

- 1. Modified engine/dyno coupling and adapted engine to dynamometer.
- 2. Instrumented and MAP engine, verified test cycle and all calibrations initiated engine testing.
- 3. Operated engine over a representative load cycle for 50 hours on the ULSD test fuel.

- 4. Conducted nine standard ISO 8178 8-mode baseline emission tests for PM and gaseous emissions simultaneously capturing dilute exhaust gas samples from three of the tests for in house measurement of toxic hydrocarbons by gas chromatography and for off-site (Desert Research Institute) analysis of PAH's and Carbonyls.
- 5. Added the Viscon product to the baseline ULS diesel fuel in the client specified concentrations and operated engine over the same load schedule as used in Task no. 3 for 125 hours to stabilize emissions.
- 6. Conducted several unofficial ISO 8178 8-mode tests during emission stabilizing operation to assure effectiveness and stabilization of the Viscon product. No samples were captured for toxic hydrocarbons, PAH's or Carbonyls during this task.
- 7. Conducted nine ISO 8178 8-mode standard emission tests with the Viscon treated fuel, again capturing triplicate samples for toxic hydrocarbons, PAH's and Carbonyls exactly as in Task no. 4.
- 8. Conducted quality audit functions for all data, calculated and reported changes in all measured emission caused by the Viscon treated fuel compared to the baseline fuel at a 95% confidence level. Prepared final report.

Test Facility, Equipment and Capability

All testing discussed in this report was conducted at the Olson-EcoLogic heavy-duty engine test facility located in Fullerton, California. All initial engine operation and emission testing was conducted in the Olson-EcoLogic test cell 1. The test cell is equipped with a 450 horsepower full electric dynamometer, air conditioning and conventional sensors for continuous measurement of pressures, temperatures and air mass. State-of-the-art Horiba analyzers were used for dilute gas measurement of THC, CO, CO₂, NOx and NO. An AVL Smart Particulate Sampler was used to capture particulates and fuel consumption was measured gravimetrically. The test cell operation is controlled by a fully integrated Labview based custom software program.

Heated sample lines were used to transport the exhaust gases to HC, NOx and NO analyzers. Calibrations with certified gases were routed to the analysers through the same sample lines used to sample the exhaust gases. In all cases the requirements of CFR 40 were followed. The particulate filters were conditioned for temperature and humidity before and after accumulation of particulates. Air mass to the engine was measured by a temperature corrected Sierra Air mass sensor as a secondary backup calibrated by the dilution tunnel venturi measurements of diluent air and total Vmix. Engine intake air was controlled between 68 and 86 degrees F and fuel temperature was controlled to 100 degrees F +/- 10 degrees F as specified in CFR 40. A schematic of the complete exhaust gas sampling system is shown in the following figure.

The quality management system of Olson-EcoLogic is ISO 9001:2000 registered. The Company is officially recognized by EPA and CARB as a capable emission test facility for the protocols used in this project. All test activity was under the direction and responsibility of Donel R. Olson. Mr. Olson is a registered professional mechanical engineer with 50 years of experience in the measurement and analysis of engine emissions. Over twenty engine emission test laboratories in the United States and Germany have been under his ownership and direction during the past 35 years. Details of the Olson-EcoLogic emission test facility capability can be viewed and obtained on the Olson-EcoLogic website (www.ecologiclabs.com).

<u>Other</u>

Olson-EcoLogic Engine Testing Laboratories, LLC was acting as an independent contractor and not as agents or employees of the client in the conduct of work related to this project.

The Company does not guarantee the results of any test protocol, however, if repeat tests are not within acceptable variances Olson-EcoLogic on their own decision repeats the tests at no additional cost to the client.

Test Results

All of the exhaust emission tests reported here are listed chronologically in Table 1.

After several preliminary tests to verify the engine emissions stability, "official" testing starting with test no. 8MLP14 using the reference fuel and finished with the ninth test, no. 8MLP22. This set of tests and the following sets are listed in Table1.

Viscon additive at the normal concentration of 1oz per 20 gallons was admixed in the same fuel used to measure baseline emissions and several additional (unofficial) 8-mode tests were conducted during a 125 hour period of typical engine operation. This was intended to provide stability of exhaust emissions with the Viscon treated reference fuel.

Beginning with Viscon treated test no. 8MLP35, nine official tests were completed to compare to the reference fuel baseline data.

The third test series, starting with test no. 8MLP46, was a set of three heavy dosage tests with Viscon additive admixed to the reference fuel at ten times the normal dosage (10oz. per 20 gallons).

The fourth and final set of five tests, with reference fuel only (no Viscon) started with test no. 8MLP49, immediately after the data set with 10 times dosage of Viscon. Other than engine warm-up and fuel flushing, there was no significant engine operation prior to start of this data set. The purpose was to see any residual effect of the Viscon additive.

Concurrently with the above tests, as shown in Tables 2 and 3, data were collected for toxic compounds analysis including VOC's, PAH's and Carbonyls. Triplicate sets of data were obtained with the baseline reference fuel (test nos. 17, 18, and 19) and for comparison, triplicate sets of data were obtained for the Viscon treated reference fuel (test nos. 39, 40, and 41). In addition, VOC analyses (only) were conducted for test nos. 46 and 47, which were tests conducted with 10 times the normal Viscon dosage.

Table 2 provides the results of all VOC, PAH and Carbonyl data for the triplicate baseline sets compared to the triplicate sets of data obtained with the Viscon treated reference fuel.

Table 3 only provides the VOC data for duplicates of the Viscon heavy dosage tests (test nos. 46 and 47). No analysis of these data have been made for PAH and Carbonyl results.

Discussion of Results

The measured effect of the Viscon additive on all controlled emissions can be seen in Tables 1 and 1A.

The product as demonstrated for the Caterpillar Model 3306 engine under steady-state operating conditions will reduce exhaust particulates to satisfy level 1 CARB criteria (25-50%). This result is consistent with earlier data accumulated on the same engine.

Additional data collection required by CARB involved two major expansions of the project.

1) Exhaust particulates were sampled for each mode of the 8-mode test protocol instead of composite sample collection of all 8 modes on one filter media and

2) Integrated samples over the 8-modes of testing were collected and analyzed for toxic hydrocarbons (VOC's), PAH's and Aldehydes . These specific testing protocols are described in the appendix.

Particulate Sampling and Analysis

The PM sampling for each mode resulted in measurement of PM for eight specific conditions for each 8-mode test. To be consistent with the ISO 8-mode test protocol, the specific sampling for each mode was weighted by dilution ratio selection and time of sampling capture to match the ISO specific weighting factors. Accordingly, modes 1, 2, 3 and 8 were weighted 15% each and modes 4, 5, 6 and 7 were weighted 10% each to total 100% for all eight modes.

The analysis of the PM data was accomplished by weighing the captured PM for each mode and dividing that weight by sampling time and the horsepower generated during the mode to provide the weighted PM result in grams/hp-hr. For the idle mode, (mode 8) this calculation was not possible because hp at idle is zero. Therefore, the idle PM data is reported in grams/hour only. However, the idle PM weight does go into the calculation of total weighted grams/bhp-hr. The PM values from all 7 of the other operating modes

have been summed and tabulated in Tables 1 and 1A to show the total PM generated in grams/bhp-hr.

The PM measurements illustrate some very interesting reductions in PM caused by the Viscon additive. At the rated speed of 2200 RPM and the intermediate speed of 1400 RPM there is a clear relationship with load as shown below:

Percent	PM Reduction	caused by
Engine Load	2200 RPM	1400 RPM
100%	15.3%	4.5%
75%	29.6%	17.3%
50%	28.0%	31.8%
10%	35.6%	

Simultaneously idle PM (mode 8) was reduced 56% with the Viscon additive. This discovery can have specific importance in vehicle and engine operations that involve a significant amount of idling operation such as school busses, delivery vehicles, etc. In addition to the PM reduction, idle NOx emissions were also reduced over 10% as can be seen in Table 1.

The VOC, PAH and Carbonyl comparisons shown in Tables 2 and 3 for the same tests are somewhat of a mixed bag. For example, 1,3-butadiene is beyond the measurable data in the exhaust by the Viscon additive. As expected by the technical theory, the PAH's also show significant reductions with the Viscon fuel treatment. However, some increases were demonstrated for some VOC's and some Carbonyls, which may also be expected.

<u>Table 1</u> Viscon California Data Summary Table Caterpillar 3306 Diesel Engine Testing Conducted by Olson-Ecologic Engine Testing Laboratories Testing Conducted October 2006

T ÎLÎ	ATTIME BUILD	النونية مقربة (1) والطقانية (1)	e pice	(a)0a	illes.	الملية في المنطقة الم [1] [4]	عدًا≓ (ملد . 1201 ,	((19))	µК.E.	12.11	606 f		tal direction	nest i stand 11 Mear 2	ing the state	ullan en a	Linita Er	saultan	A CONTRACTOR AND	CILLISTIL NGCAMO
ULSD	8MLP14 58.2 - 60.1	135.15	1.33	1.68	5.80	5.26	179.42	564.32	0.96	1 0	129	0,183	0.232	3.094	0.342	0.237	0.234	0.289	20.54	27.31
ULSD	8MLP15 50.8 - 56.1	138.21	1.41	1.72	5.88	5.20	178.66	561.61	0.70		122	0.145	0.251	2.108	0.373	0.281	0.248	0.250	2.06	28,49
ULSD	8MLP18 48.1 - 51.0	136.64	1.41	1,69	5.90	5.12	179.05	562.91	0.72		108	0.127	0.251	2.209	0.355	0.261	0.241	0.240	2.06	17.11
ULSD	8MLP17 54.7 - 58.4	138.55	1.34	1.71	5.28	4.82	178.53	561.42	0.48		122	0.143	0.263	2.221	0.427	0,318	0.292	0,284	14.39	18.36
ULSD	8MLP18 57.5 - 59.1	136.93	1.38	1.70	5,75	5.11	178.67	561.75	0.72		121	0.145	0.254	2.430	0.392	0.281	0.314	0.297	30.85	25.37
ULSD	8MLP19 52.7 - 55.3	136.62	1.40	1.71	5.76	5.05	178.71	561.78	0.72	0.	127	0.135	0.207	2.211	0.410	0.265	0.226	0.276	26.72	23.95
ULSD	8MLP20 51.4 - 53.3	136.77	1.38	1.63	5.85	5.11	178.17	560.36	0.71	0.	118	0.153	0.241	2.322	0.352	0.236	0.241	0.273	26.70	17.85
ULSD	8MLP21 55.8 - 58.4	135.71	1.36	1.73	5.93	5.27	177.44	557.85	0.71	0.	112	0.141	0.228	2.108	0.348	0.241	0.243	0.248	12.34	27.76
ULSD	8MLP22 60.9 - 64.5	138.68	1.42	1.68	5.98	5.36	177.92	559.30	0.79	0	102	0.161	0.210	1.917	0.312	0.208	0.124	0.231	18.51	26.47
A\	VERAGES (BASELINE)	136.362	1.379	1.695	5,790	5.144	178.507	561.255	0.722	0.	118	0.148	0.237	2.291	0.368	0.256	0.240	0.265	17.128	23.630
Viscon	8MLP35 33.9-38.7	134.86	1.52	1.81	5.79	4.94	176.69	554.88	0.74	1 0	111 T	0.097	0.141	1.444	0.332	0,179	0.146	0.190	6.16	18.35
Viscon	8MLP38 37.3 - 41.9	138.04	1.53	1.82	5.87	5,00	176.64	554.67	0,73		087	0.087	0,141	1,404	0.320	0,163	0,131	0,170	2.06	17,74
Viscon	8MLP37 34.0 - 36.6	136.67	1.51	1,87	6.05	5,14	177,54	557,48	0.74		090	0.107	0.188	1,478	0,366	0.241	0,139	0,200	2.06	19,91
Viscon	8MLP38 32.5 - 35.3	137.01	1,52	1.86	8.27	5,19	176.43	553,96	0.77		100	0,100	0,178	1.625	0.352	0.224	0,124	0.197	2,05	18.07
Viscon	8MLP39 31.0 - 41.9	136.03	1.53	1,82	8.05	5.09	178,53	580,65	0,74	0	103	0.115	0,182	1,247	0.328	0.200	0.168	0.208	16.45	23.96
Viscon	8MLP40 34.5 - 43.2	136,77	1.47	1.84	6.20	5,09	177,76	558.39	0,72	0.	097	0.102	0,175	1,439	0.382	0.228	0.182	0.211	10.28	27.18
Viscon	8MLP41 46.7 - 50.2	136,77	1.46	1.87	5.86	5.02	176.97	555.84	0.72	0.	109	0.120	0.204	1.805	0.389	0.257	0.256	0,246	18.43	18.48
Viscon	8MLP42 47.7 - 53.3	136,92	1.47	1.81	6.17	5,22	177.19	556.60	0.71	0.	.096	0.094	0,163	1.513	0,391	0.224	0.183	0.210	10.28	17,51
Viscon	8MLP43 56.2 - 58.9	135.92	1.53	1.74	6,06	5.07	176.20	553.38	0.76	0.	106	0,117	0.166	1.330	0.301	0.192	0,146	0.188	2.06	31,18
AVER	AGES (WITH VISCON)	136.332	1,504	1.827	6,036	5.084	177,106	556.208	0.737	0.	100	0.105	0.171	1 <u>.47</u> 6	0.351	0.212	0.164	0.202	7.534	21,153
			_					_								-				
				-																
10X Viscon		136.95	1.49	1,77	6.01	5.00	176.22	553.50	0.71		.104	0.122	0.181	1.656	0.373	0.269	0.197	0.238	18.48	22.64
10X Viscon		137.03	1.48	1.77	8.09	5.12	175.98	552.82	0.72		.093	0.127	0.213	1.809	0.349	0.281	0.168	0.232	14.39	26.29
10X Viscon		136,88	1.46	1,77	8.06	5.09	175.93	552.67	0.73		102	0.122	0.169	1.331	0.350	0.294	0.219	0.235	24.68	25.89
AVERAGE	ES (WITH 10X VISCON)	136.953	1.471	1.789	6.053	5.070	176.043	552.997	0.720	0.	.099	0.124	0.188	1.599	0.357	0.281	0,195	0.234	19.183	24.940
																•				
ULSD	8MLP49 54.4 - 60.1	136.99	1.44	1.66	6.06	5.09	176.99	558.30	0.75		.084	0.124	0.150	1.364	0.345	0.218	0.139	0.210	22.61	40.75
ULSD	8MLP50 60.8 - 68.4	138,49	1.49	1.72	6.03	5.04	178.64	554.95	0.68		124	0.183	0.232	3.098	0.343	0.237	0.234	0.289	20.54	25.22
ULSD	8MLP51 63.1 - 64.6	136.33	1.50	1.76	6.12	5.01	176.32	553.80	0.68		108	0,140	0.235	2.029	0.392	0.306	0.226	0.279	30.83	32.35
ULSD	8MLP52 63.5 - 64.9	135.64	1.47	1.78	5.65	4.95	177.10	556.37	0.64	_	109	0.117	0.222	2.138	0.402	0.294	0.438	0.282	22.61	19.81
ULSD	8MLP53 59.3 - 64.5	136.11	1.48	1.82	8.04	5.01	177.42	557.28	0.68		111	0.137	0.194	2.087	0.402	0.310	0.255	0.278	30.82	32.71
AVERAGE	S (BL AFTER VISCON)	136.312	1.478	1.748	5,980	5.020	176.894	555,740	0.686	0.	.107	0.140	0.207	2,139	0.376	0.272	0.258	0.288	25.483	30.168

Table 2 (cont.)

		ULSF			l	JLSF w/ Viscoi	7		
	8MLP17	8MLP18	8MLP19	Average	8MLP39	8MLP40	8MLP41	Average	Change
Carbonyls	(Analyzed via Hig	h Performance Liq	uid Chromatograph	ny by Desert Resea	arch Institute)				
formaldehyde	0.027876	0.026773	0.027121	0.027257	0.035915	0.032348	0.032137	0.033467	23%
acetaldehyde	0.007410	0.007211	0.007535	0.007385	0.009786	0.009169	0.008887	0.009281	26%
acetone	0.002020	0.001754	0.001827	0.001867	0.002895	0.002536	0.002490	0.002640	41%
acrolein	0.000813	0.001405	0.000857	0.001025	0.002133	0.001474	0.001846	0.001817	77%
propionaldehyde	0.001346	0.001304	0.001346	0.001332	0.001651	0.001444	0.001443	0.001512	14%
crotonaldehyde	0.000904	0.001060	0.001027	0.000997	0.001260	0.001122	0.001175	0.001186	19%
methyl ethyl ketone	0.000527	0.000410	0.000448	0.000462	0.000484	0.000437	0.000518	0.000480	4%
methacrolein	0.000474	0.000491	0.000377	0.000447	0.000635	0.000500	0.000552	0.000562	26%
butyraldehyde	0.004892	0.004370	0.005015	0.004759	0.004111	0.003893	0.004090	0.004031	-15%
benzaldehyde	0.000631	0.000617	0.000652	0.000633	0.001054	0.000536	0.000583	0.000724	14%
glyoxal	0.000404	0.000134	0.000429	0.000322	0.000644	0.000631	0.000731	0.000669	108%
valeraldehyde	0.000770	0.000515	0.000567	0.000617	0.000590	0.000424	0.000475	0.000497	-20%
m-tolualdehyde	0.000012	0.000025	0.000012	0.000016	0.000126	0.000101	0.000101	0.000110	570%
hexanaldehyde	0.000350	0.000292	0.000305	0.000316	0.000453	0.000382	0.000270	0.000368	17%

Table 3

Percent change of various emissions comparing ULSF to ULSF w/ 10x Viscon - Caterpillar 3306 Diesel Engine (Units in g/bhp-hr) Testing Conducted by Olson-Ecologic Engine Testing Laboratories for Viscon California October 2006

		ULSF			ULSF w/ :	10x Viscon		
	8MLP17	8MLP18	8MLP19	Average	8MLP46	8MLP47	Average	Change
VOC's	(Analyzed via Gas	s Chromatography	by Olson-EcoLogi	c Engine Testing La	aboratories)			
1,3-butadiene	0.000245	0.000212	0.000300	0.000252	<rl< td=""><td><rl< td=""><td><rl< td=""><td>-100%</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>-100%</td></rl<></td></rl<>	<rl< td=""><td>-100%</td></rl<>	-100%
benzene	0.008692	0.008825	0.009560	0.009026	0.011786	0.010998	0.011392	26%
toluene	0.004514	0.004058	0.004111	0.004228	0.005157	0.005194	0.005176	22%
ethylbenzene	0.002038	0.001774	0.001621	0.001811	0.001969	0.001515	0.001742	-4%
m&p-xylene	0.004081	0.003440	0.004175	0.003898	0.002573	0.002435	0.002504	-36%
o-xylene	0.002292	0.002320	0.002320	0.002311	0.001691	0.001706	0.001699	-26%

APPENDIX

Table of Contents

- 1. Test Summary Sheets
- 2. Sampling Protocol for Volatile Organic Compounds in Exhaust Emissions Olson-EcoLogic SOP Number: VOC Sampling Protocol Version 6
- Determination of C2-C5 hydrocarbons in Automotive Sources by Gas Chromatography. Method 1002 Olson-EcoLogic SOP Number: 1002 C2-C5 Hydrocarbons Version 2
- Determination of C6-C12 Hydrocarbons in Automotive Source Samples by Gas Chromatography. Method 1003 SOP Number: 1003 C5-C12 Hydrocarbons Version 2
- 5. Sampling Protocol for Polycyclic Aromatic Hydrocarbons (PAH) in Exhaust Ernissions. SOP Number: PAH Sampling Protocol Version 6
- 6. Sampling Protocol for Aldehyde and Ketone Compounds in Exhaust Emissions SOP Number: ALD Sampling Protocol Version 6
- 7. Analysis of Carbonyl Compounds by High Performance Liquid Chromatography DRI SOP Number: 2-710.4
- 8. Analysis of Semi-Volatile Organic Compounds by GC/MS. DRI SOP Number: 2-750

OLSON-ECOLOGIC ENGINE TESTING LABORATORY GTAT ISO-8178 8-MODE TESTING OF VISCON POLYMER

8MLP14 (MULTI-FILTER) BASELINE

	DAJELINC																						
	EngSpd	DynTrq	EngPwr	CO2	co	NOx	NO	HC FID	FUEL RT	AirMas	EngExh	ABSHUM	Aa In	Baro P	1/aCAL	KNOx	Fuelin	KNO	Methane	NMHC	Humidy	Oil P	nH/nC
Mode	RPM	lb-ft	Нр	*	ppm	ppm	ppm	ppm	GWMIN	scfm	deg/F	GR/LB	degF	inHga	FACTOR	PPM	degF	PPM	ppm	ppm	%	peig	RATIO
1	2200,1	581.8	243 7	5.65	158,41	636,55	572,96	338.4	726	493.8	880.7	59.7	74.7	30.00	0.027	612.27	99,9	551,1	70,9	267.5	46.9	57.6	1,8
2	2200.0	469.9	196.8	5.44	102.83	577.94	531.78	413.0	583.5	428.1	828.9	60.1	76.2	30.00	0.026	556.37	101.9	511,9	86.5	326.5	44,9	53.6	1.8
3	2200.0	314.9	131.9	4.91	112.43	460.59	417.22	532.7	411.5	348.2	731.5	59.3	76.5	30.00	0.023	442.54	103.2	400.9	111.5	421.2	43.9	53.1	1.8
4	2199,9	62,1	26.0	3.05	231.83	175.33	136.49	779.8	171.5	258.3	503.0	58.2	76.3	30.00	0.015	167.99	105.3	130.8	165.2	614.7	43,4	53,7	1,8
5	1399.8	790.4	210.7	7.53	890.10	759.78	694,32	199.0	568,5	273.4	1011.0	58.2	75.9	30.00	0.035	727.98	99.4	665.3	123.4	75,6	43,9	36.4	1.8
8	1399.9	578.1	154.1	7.37	636.14	756.13	699.55	316.8	414	218.1	944.1	58.6	76.4	30.00	0.035	725.17	98.6	670.9	187.5	149.3	43.6	37.2	1.8
7	1400.0	382.3	101.9	6.60	254.49	852.23	609.87	480.1	279.5	176.8	793.3	58.4	76.4	30,00	0.031	825.18	97.5	584.6	220.9	259.1	43.3	40.1	1.8
8	604.6	0,9	0,1	4,18	264.72	350,15	279.21	1051,4	17.5	54,4	341,6	59,4	76.6	30,00	0.020	336.52	91.8	268.4	837.8	213.5	43.9	20.3	1. 8

		GRAMS/HOUR													
WT. FAC %	Mode No	нс	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	NO2/NOX RATIO					
15,00	1	260.65	245.26	1557.35	1392.2983	43560	1698575	137464.8	206.3	0.10					
15.00	2	265.31	132.77	1180,21	1082.5905	35010	1413978	110407.9	210.1	0,08					
15.00	3	266.64	113.11	731.43	664.18616	24690	1096339	77580.8	211.3	0.09					
10.00	4	256.87	153.50	182.73	145.04685	10290	709466	31705.8	203.5	0.22					
10.00	5	89,57	805.45	1082.24	984.22309	34110	1008990	107040.8	34,1	0.09					
10.00	6	105.20	428.64	802.74	741.70849	24840	750301	76069.3	50.2	0.07					
10.00	7	121.57	129.55	522.84	490.35303	16770	562978	52799.8	65.8	0.06					
15 00	8	25.83	13.07	27.31	22.310359	1050	53735	3240.5	5.4	0.20					
	% 15.00 15.00 10.00 10.00 10.00 10.00	% No 15,00 1 15,00 2 15,00 3 10,00 4 10,00 5 10,00 6 10,00 7	% No HC 15.00 1 260.65 15.00 2 265.31 15.00 3 266.64 10.00 4 256.87 10.00 5 89.57 10.00 6 106.20 10.00 7 121.57	WT. FAC Mode % No HC CO 15.00 1 280.65 245.26 15.00 2 285.31 132.77 15.00 3 286.84 113.11 10.00 4 256.87 153.50 10.00 6 108.27 428.64 10.00 7 121.57 129.55	WT. FAC Mode % No HC CO KNOX 15.00 1 260.65 245.28 155.7.35 15.00 2 265.31 132.77 1180.21 15.00 3 266.64 113.11 731.43 10.00 4 256.87 153.50 182.73 10.00 5 89.57 805.45 1082.24 10.00 6 106.20 428.64 802.74 10.00 7 121.57 129.55 522.64	% No HC CO KNOX KNO 15.00 1 260.65 245.26 1557.35 1392.2983 15.00 2 265.31 132.77 1180.21 1082.5915 15.00 3 268.64 113.11 731.43 684.18616 10.00 4 258.87 153.50 182.73 145.04685 10.00 5 89.57 805.45 108.224 984.22309 10.00 6 108.20 428.64 902.74 741.70849 10.00 7 121.57 129.55 522.84 490.35303	WT. FAC Mode HC CO KNOX KNO FUEL 15.00 1 260.65 245.26 1557.35 1392.298.3 43560 15.00 2 265.31 132.77 1180.21 1082.590.5 35010 15.00 3 266.64 113.11 731.43 684.16816 24490 10.00 4 256.87 153.50 182.73 145.04655 10290 10.00 5 89.57 805.45 1082.24 984.22309 34110 10.00 6 106.20 428.64 802.74 741.70849 24640 10.00 7 121.57 129.55 522.64 490.3303 16770	WT. FAC Mode HC CO KNOX KNO FUEL EXHAUST 15.00 1 260.65 245.26 1557.35 1392.2883 43560 1698575 15.00 2 265.31 132.77 1180.21 1082.5905 35010 1413978 15.00 3 266.64 113.11 731.43 664.18616 24690 1098339 10.00 4 256.87 153.50 182.73 145.04685 10290 709466 10.00 5 89.57 805.45 1082.24 984.22309 34110 10089900 10.00 6 106.20 428.64 802.74 741.70489 24840 750301 10.00 7 121.57 129.55 522.64 490.35303 16770 562378	WT. FAC % Mode No HC CO KNOX KNO FUEL EXHAUST CO2 15.00 1 260.65 245.28 1557.35 1392.2983 43560 1698575 137464.8 15.00 2 265.31 132.77 1180.21 1082.5905 35010 1413978 110407.9 15.00 3 268.64 113.11 731.43 664.16616 24690 1098339 77560.8 10.00 4 256.87 155.20 182.73 145.04685 10290 709466 31705.8 10.00 5 89.57 805.45 1082.24 984.22309 34110 1008990 107040.8 10.00 6 106.20 428.64 802.74 741.70849 24640 750301 76069.3 10.00 7 121.57 129.55 522.64 490.35303 16770 5622878 5279.8	WT. FAC Mode HC CO KNOX KNO FUEL EXHAUST CO2 NMHC 15.00 1 260.65 245.26 1557.35 1392.2983 43560 1698755 137464.8 206.3 15.00 2 265.31 132.77 1180.21 1082.5905 35010 1413978 110407.9 210.1 15.00 3 286.64 113.11 731.43 664.16616 24690 1098339 77580.8 211.3 10.00 4 256.87 153.50 182.73 145.04685 10290 709466 31705.8 203.5 10.00 5 89.57 8052.45 102.24 984.22309 34110 1008900 107040.8 34.1 10.00 6 106.20 428.64 802.74 741.70849 24640 750301 76069.3 50.2 10.00 7 121.57 129.55 222.84 4935303 16770 562978 52799.8 65.8					

			KW = 100										W.F.	0.15	0,15	0.15	0.10	0.10	0.10	0,10	0.15
WTD AVG BHP =	135.15	1	KW =	100.78					MODE =	1	2	3	4	5	6	7	8				
									PARTIC. WT, MG =	1.22	1.11	0.74	0.84	1.47	0.58	0.32	0.10				
									Exh.Probe Mass Flow Rate (g/Sec.)=	1.087	0.868	0.682	0.441	0.859	0.671	0.567	0.137				
	HC	co	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	Sample Time (Sec.)=	180.0	180.0	180.0	120.0	120.0	120.0	120.0	180.0				
									Dil.Exh.Sample Mass-Part.Filter (kg) ≖	0.20	0.16	0.12	0.05	0,10	0.08	0,07	0.02				
WTD AVG GM/H =	180,19	227.35	783.50	710	24248	942568	78266	130.32	Dil.Tunnel Tot Flow Temp.Corr. (scmm)=		65.27	65.33	65.34	65,21	85.22	65.24	65.28				
									Dil.Tunnel Tot Mass Flow (kg/Hr.)=	5048.84	5063,39	5008.55	5068.82	5059,23	5059,70	5061.06	5064,61				
AVG GM/BHPH =	1.33	1.68	5.80	5.26	179.42		564.32	0.96	Partic.Mass Flow Rate (g/Hr.)≖	31.48	35.97	30.55	80.46	72.15	36.45	23.80	20.54				
AVG GM/KWH =	1.79	2 26	7.77	7.05	240.60		756.76	1.29	GM/BHPH=	0.129	0.183	0.232	3.094	0.342	0.237	0.234					
									WTD AVG GM/H =	39.07											
WT AVG NO2/NOX RATIO =	0.116224791								WEIGHTED AVG GWBHPH =	0.289											

WTD AVG GM/KWH = 0.388

.

Approved _____

OLSON-ECOLOGIC ENGINE TESTING LABORATORY GTAT ISO-8178 8-MODE TESTING OF VISCON POLYMER

8MLP15 (MULTI-FILTER) BASELINE

DAGELINE																								
	EngSpd	DynTrq	EngPwr	CO2	co	NOx	NO	HC FID	FUEL RT	ArMas	EngExh	ABSHUM	Aır I⊓	Baro P	∜aCAL	KNOx	Fuelin	KNO	Methane	NMHC	Humidy	Oil P	nH/nC	
Mode	RPM	lb-ft	Hp	%	ppm	ppm	ppm	ppm	GM/MIN	s cfm	deg/F	GR/LB	degF	InHga	FACTOR	PPM	degF	PPM	ppm	ppm	%	psig	RATIO	
1	2200.0	601,1	251.8	5.86	177.70	669,60	585,77	431.77	738	498.1	905.6	55.6	78.5	30.00	0.028	637.62	97.8	557,8	236.3	195.5	38.6	52.5	1,8	
2	2199.9	468.8	196,4	5.48	102.07	603.90	541.07	440.17	579.5	423.3	838.1	56.1	79.2	30.00	0.026	575.59	99.2	515.7	194.2	246.0	38.0	52.7	1.8	
3	2199.9	314.4	131.7	4.93	118.81	477,06	424.57	554.00	412.5	347.0	740.7	56.1	79.5	30.00	0.023	454.72	101.9	404.7	204.2	349.8	37.6	51.1	1.8	
4	2200,0	61,9	25.9	3,06	238,17	182.76	139,45	814.03	172	258,0	510,7	55,3	79.0	30,00	0.015	173.86	101.7	132.7	303.9	510.1	37,7	52,9	1.8	
5	1400.0	790.0	210.5	7.55	899.37	792.09	702.06	186,32	568	272,9	1028.5	54.6	79.1	30.00	0.035	752.19	97.8	666.7	184.2	4.2	37.1	36,2	1.8	
6	1399.9	578.2	154.1	7.36	643.55	779.49	704,54	306,17	414,5	220.3	954.0	52.2	78.2	30.00	0.034	735.86	99.5	665.1	237.2	71.0	36.6	37.6	1.8	
7	1400.2	382.2	101.9	6.66	258.38	882.16	626.74	440.37	281.25	178.2	801.0	51.3	77.7	30.00	0.031	642.49	99.0	590.3	267.4	172.9	36.6	40.1	1.8	
8	592.5	-1,4	0.1	3.73	295,83	348,30	268.87	853.89	18,75	52.8	285.8	50.8	78.0	30.00	0.018	327.64	91.4	252.9	831,5	22.4	35.8	21.5	1,8	

				GRAMS/HK	2UR					
WT, FAC	Mode									NO2/NOX
%	No	нс	co	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	RATIO
15.00	1	325,74	269,48	1588.52	1382.0788	44280	1665625	139513.28	148.1	0.13
15.00	2	278,67	129,89	1203.34	1075,4394	34770	1393244	109606.15	156.3	0,10
15.00	3	276.46	119.18	749.33	868.78109	24750	1092833	77731.28	175.3	0.11
10.00	4	267.96	157.59	188.99	147.19242	10320	708739	31759.86	169.5	0.24
10,00	5	84.51	811.28	1114.71	983,13518	34080	1005486	106952.12	1.9	0.11
10.00	6	103,59	434.81	816.80	737,20553	24870	751621	78163.35	23.9	0.10
10.00	7	111.37	131,34	536.55	494,12535	16875	561913	53183.50	43.9	0.08
15.00	8	22.48	15.66	28.49	22.479948	1005	57031	3103.81	0.6	0.23

WTD AVG BHP =	136.25	I	KW =	101.60					
	нс	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	
WTD AVG GM/H =	192.25	233,63	801,16	708	24335	934086	76497	95.96	
AVG GM/BHPH =	1.41	1.71	5.88	5.20	178.61		561.45	0.70	
AVG GM/KWH =	1.89	2.30	7 89	6.97	239.52		752.92	0.94	

•									
W.F.	0.15	0.15	0.15	0.10	0.10	0.10	0 10	0.15	
MODE =	1	2	3	4	5	6	7	8	
PARTIC. WT, MG =	1.19	0.88	0.80	0.57	1.60	0.64	0.34	0.01	
Exh.Probe Mass Flow Rate (g/Sec.)=	1.087	0.868	0.682	0.441	0.859	0.671	0.567	0.137	
Sample Time (Sec.)=	180	180	180	120	120	120	120	180	
Dil.Exh.Sample Mass-Part.Filter (kg) =	0.20	0.16	0.1228	0.05	0.10	0.08	0.07	0.02	
Dil.Tunnel Tot Flow Temp.Corr. (scmm)=	65.14	65.28	65.35	65.37	65.20	65.23	65.21	65.33	
Dil.Tunnel Tot Mass Flow (kg/Hr.)=	5053.70	5064.15	5069.57	5071.34	5057.89	5060.49	5058.80	5068.23	
Partic.Mass Flow Rate (g/Hr.)=	30.74	28.52	33.04	54.62	78.51	40.22	25.28	2.06	
GM/BHPH=	0.122	0.145	0.251	2.106	0.373	0.261	0.248		
WTD AVG GM/H =	34.02								
WEIGHTED AVG GM/BHPH =	0.250								
AVG GM/KWH =	0.335								

WT AVG NO2/NOX RATIO = 0.137938873

.

.

_

OLSON-ECOLOGIC ENGINE TESTING LABORATORY GTAT ISO-8178 8-MODE TESTING OF VISCON POLYMER

8MLP16 (MULTI-FILTER)

BASELINE

Mode	EngSpd RPM	DynTrq Ib-ft	EngPwr Hp	CO2 %	CO ppm	NOx ppm	NO ppm	HC FID ppm	FUEL RT GM/MIN	AirMas scfm	EngExh deg/F	ABSHUM GR/LB	Air In degF	Baro P InHga	VeCAL FACTOR	KNOx PPM	Fuelin degF	KNO PPM	Methane ppm	NMHC ppm	Humidy %	Oll P psig
1	2200.0	608.1	254.7	5.72	175.70	673.44	573.66	415.46	745.5	505.1	905,4	48.9	75.7	30,00	0.027	630.57	101.1	537.1	221.7	193.7	37.2	52.7
2	2200.0	468.5	196.3	5.39	102.82	606.15	531.46	453.87	582.5	428.8	840.2	48.7	78.6	30.00	0.025	567.30	103.4	497.4	193.4	260.5	36.0	49.5
3	2200.0	314.8	131,9	4,90	110.54	484,04	423,18	543.09	416	351.6	742.1	48.4	78,9	30.00	0.023	452.73	103,4	395,8	198.6	344.5	35.4	50.3
4	2200.0	62.1	26.0	3,09	228.24	184.87	141.20	791,01	173	259.8	514.1	48,1	78,6	30.00	0.015	172.79	103.2	132.0	296.7	492.3	35.5	52.9
5	1399,9	788,9	210.3	7,56	692.08	798.32	701.96	193.65	568	271.1	1028.3	48.4	78,7	30.00	0.035	746.70	100.4	856,6	189.9	3,9	35,7	36,0
6	1399,8	576.5	154.2	7.44	633.20	794,90	708,55	313.37	415.5	219.0	959.9	46.8	77.6	30.00	0.035	744,16	102,2	663,3	244.8	68.5	34,9	37.2
7	1399.9	382.0	101,9	6.76	260.09	689.37	625.21	468.30	280.75	177.1	805.6	49.0	78.0	30,00	0.032	645.66	101.7	585.6	277,8	190.5	34.5	39.1
8	587.4	-1.3	0.0	6.22	300.93	354.49	279.94	828.76	16.25	52.7	299.0	51.0	78.4	30.00	0.029	333.64	93.9	263.5	819.9	8.9	35.5	20.3

				GRAMS/H	JUR					
WT. FAC %	Mode No	нс	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	NO2/NOX RATIO
15.00	1	324.01	275.44	1623.97	1375.5022	44730	1718239	140941.9	151.7	0.15
15.00	2	293.81	133,69	1211.87	1060.05	34950	1421003	110126.0	169.1	0.12
15.00	3	275.42	112.68	758.17	664.5374	24960	1109042	78413.3	175.4	0.13
10.00	4	259.02	150.23	186.84	145.51735	10380	704589	31990.6	182.7	0.24
10.00	5	88.68	803.62	1105.07	966.99423	34080	1003352	106956.7	1.8	0.12
10.00	6	104.57	424.70	819,99	729.91488	24930	746258	76367,2	22.9	0.11
10.00	7	116.33	129.87	529.65	481.66002	18845	552294	53054.8	47.5	0.09
15.00	8	12.87	9,39	17.11	13.683966	975	34358	3048,5	0.1	0.21

WTD AVG BHP = .	136.67	I	KW =	101.92					W.F. MODE ⊐	0.15	0.15	0.15 3	0.10 4	0.10 5	0.10 6	0.10 7	0.15 8
									PARTIC. WT, MG = ∃xh.Probe Mass Flow Rate (g/Sec.)=	1.07 1.087	0.77 0.868	0.60 0.682	0.60 0.441	1.52 0.859	0.64 0.671	0,33 0,567	0.01 0.137
	нс	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	Sample Time (Sec.)≭		180	180	120	120	120	120	180
									I.Exh.Sample Mass-Part.Filter (kg) =	0.20	0.16	0.1228	0.05	0.10	0.08	0.07	0.02
WTD AVG GW/H =	192.57	230.52	805.62	699	24466	943045	76916	97.94	unnel Tot Flow Temp.Corr. (scmm)=	65.03	65.23	65.35	65.37	65.20	65.24	65.23	65.38
									Dil.Tunnel Tot Mass Flow (kg/Hr.)≖	5045.10	5060.48	5069.88	5071.17	5056.19	5061.01	5060.81	5072.11
AVG GM/BHPH ≠	1.41	1.69	5.90	5.12	179.01		562.78	0.72	Partic.Mass Flow Rate (g/Hr.)=	27.59	24.94	33.04	57.50	74.59	40.23	24.55	2.06
AVG GM/KWH =	1.89	2.26	7.91	8.66	240,06		754.71	0.96	GM/8HPH≄	0.108	0.127	0,251	2,209	0.355	0.261	0.241	
									WTD AVG GM/H =	32.829							
WT AVG NO2/NOX RATIO =	0.146974817								WEIGHTED AVG GM/BHPH ≖	0.240							
									WTD AVG GM/KWH =	0.322							

.

OLSON-ECOLOGIC ENGINE TESTING LABORATORY GTAT ISO-8178 8-MODE TESTING OF VISCON POLYMER

8MLP17 (MULTI-FILTER) BASELINE

									1	JAJEL													
	EngSpd	DynTrq	EngPwr	CO2	co	NOx	NO	HC FID	FUEL RT	AnMas	EngExh	ABSHUM	Air In	Baro P	VaCAL	KNOx	Fuelin	KNO	Methane	NMHC	Humidy	Oil P	nH/nC
Mode	RPM	lb-ft	Нр	*	ppm	ppm	pp in	ppm	GM/MIN	scfm	deg/F	GR/LB	degF	InHga	FACTOR	PPM	degF	PPM	ppm	ppm	%	psig	RATIO
1	2200.0	604.9	253,4	5.60	183.08	610.16	557,56	406,71	741	500.4	911.3	54,7	78.6	30.00	0.027	579 54	103.4	529 58	322.98	83.72	37.74	49 66	1.8
2 .	2200 0	469.6	196.7	5.49	109.75	550 34	513,57	442.73	583,5	426.0	650.1	56.0	79.8	30.00	0.026	524,46	106 0	489.41	282.88	159.85	37.26	48.55	1,8
3	2200 0	314.7	131.8	4 98	118,82	424.16	389 13	537.02	413.5	346.9	747.7	56.7	79.8	30 00	0.024	404.86	107.3	371.42	279.48	257.54	37 59	50.18	1.8
4	2200.0	618	25 9	3 16	228.07	161.15	112.34	792.98	170	258.2	516.7	56.7	79.7	30 00	0.015	153.85	107.7	107.24	415.55	377.42	37.78	52.67	1.8
5	1399.9	789.6	210.4	7,74	912.76	708.90	665,50	169,01	568 5	272.9	1033.4	56 9	79.5	30.00	0.038	677,05	104,8	635.60	169.01	95,85	36.18	36 02	1.5
6	1400.0	578.6	154,2	7.58	657,07	689.29	650.04	291.77	413 5	218.6	962.0	57.2	79.7	30,00	0.035	658.80	104,8	621.29	291.77	53,88	36 16	37.19	1.8
7	1400.0	382.2	101.9	6.86	262.26	594.44	536.12	434.65	279.5	177.2	806.2	57.4	79.7	30.00	0.032	568.36	104.9	512.60	388.81	45.84	38.19	40.04	1.8
8	590.5	07	0.0	5 12	287.57	307.97	290.65	706.42	16.25	54.3	338.1	58.4	79.8	30.00	0.024	295.19	98.8	278.60	706.42	535.76	38.70	20.11	1.8

				GRAMS/HO	DUR					
WT, FAC	Mode									NO2/NOX
*	No	HC	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	RATIO
15.00	1	311.05	281.45	1463.68	1329.9143	44460	1687536	140113.88	64.4	0.09
15.00	2	281,88	140.45	1102.66	1026,3731	35010	1401200	110343.47	102.3	0.07
15.00	3	266,25	118.21	662.83	609.5737	24810	1086266	77956.07	128.4	0.08
10.00	4	249.76	144,39	160.02	113,71427	10200	678946	31456.06	120.4	0.30
10 00	5	74.02	803.57	979.25	914.64182	34110	983296	107092.87	42.0	0.06
10.00	6	95.12	430.57	709.23	667,78798	24810	730829	78005.74	17.6	0.06
10 00	7	105.97	128,53	457.60	413.52956	16770	543164	52850,70	11.2	0.10
15.00	8	13.31	10.89	18.36	17.563971	975	41333	3044,77	10.1	0.06

WTD AVG BHP =	136.53	I	KW =	101.81				
	нс	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC
WTD AVG GWH =	183.36	233.36	717.74	658	24377	926074	76659	64.91
AVG GM/BHPH =	1.34	1.71	5.26	4.82	178.54		561.47	0.48
AVG GWKWH =	180	2.29	7.05	6,47	239.43		752 94	0.64

WF.	0.15	0.15	0.15	0 .10	0.10	0.10	0.10	0.15
MODE =	1	2	3	4	5	6	7	8
PARTIC. WT, MG =	1.20	0.87	0.84	0.60	1.83	0.78	0.40	0.07
Exh.Probe Mass Flow Rate (g/Sec.)=	1.087	0.868	0.682	0.441	0.859	0.671	0.567	0.137
Sample Time (Sec.)=	180	180	180	120	120	120	120	180
Dil, Exh, Sample Mans-Part, Filter (kg) =	0.196	0.156	0.123	0.053	0.103	0.081	0.068	0.025
Dil Tunnel Tot Flow Temp.Corr. (scmm)=	65.04	65.31	65.31	65.37	65.20	65.24	65.24	65.34
Dil Tunnel Tot Mass Flow (kg/Hr.)=	5045.96	5066.95	5067.04	5071.25	5058.16	5061.63	5061.23	5068.85
Partic Mass Flow Rate (g/Hr.)=	30.9473	28.2146	34.6718	57.4971	89.7985	49.0322	29.7544	14.3884
GM/BHPH=	0.122	0.143	0.263	2.221	0.427	0.318	0.292	
WTD AVG GM/H =	38.842							
WEIGHTED AVG GM/BHPH =	0.284							

WTD AVG GM/KWH = 0.381

8-Mode Test Result

WT AVG NO2/NOX RATIO = 64,90954311

OLSON-ECOLOGIC ENGINE TESTING LABORATORY GTAT ISO-8178 8-MODE TESTING OF VISCON POLYMER

8MLP18 (MULTI-FILTER) BASELINE

										JAJEL	-11116												
	EngSpd	DynTrq	EngPwr	CO2	co	NOx	NO	HC FID	FUEL RT	AirMas	EngExh	ABSHUM	Air In	Baro P	f/aCAL	KNOx	Fuelin	KNO	Methane	NMHC	Humidy	OIP	nH/nC
Mode	RPM	ib-n	Hp	*	ppm	ppm	ppm	ppm	GM/MIN	scfm	deg/F	GR/LB	degF	InHga	FACTOR	PPM	degF	PPM	ppm	ppm	%	peig	RATIO
1	2199.9	610,9	255.9	5,72	174.36	633,06	543,52	396.6	749	505,4	901.7	58.5	77.0	30,00	0.027	606,97	101.3	521.1	206.8	189.8	42.6	54,3	1.8
2	2200.0	469.2	196.6	5.40	103.52	580,13	519.98	439.5	581.5	428.2	842.6	59.3	78.1	30.00	0.025	557.38	104.1	499.6	184.1	255.4	41.6	50.3	1.8
3	2200 0	315.2	132.0	4.88	115.01	461.90	412.62	535.8	413.5	350.0	744.8	59.1	78.4	30.00	0.023	443.61	105.2	396.5	181.8	353.9	41.1	50,6	1.6
4	2200 0	62.2	26.0	3,03	230.02	170.75	135.06	767.2	171.5	259.0	510.9	58.4	78.0	30,00	0.015	163.69	105.2	129.5	277.2	490.0	41.2	52.6	1.6
5	1400 1	789.1	210.3	7,53	891.31	766.79	694.80	193.2	568	273.0	1028.7	58.0	77.7	30.00	0.035	736.33	104.7	665.5	189.8	3.4	41.2	36.1	1.8
6	1400.0	578.5	154.2	7.35	639.39	749.96	896.71	313.7	415	219,2	957.0	56.0	77,9	30.00	0.034	718.15	106.6	667.2	243.9	69.8	41.0	37.2	1.8
7	1399.8	382.2	101.6	6.58	250.66	639.72	616.59	458.7	261	178.2	602.8	57.5	77.8	30.00	0.031	611.92	104.0	589.8	268.2	190.5	40.8	40.1	1.8
8	581 3	0,8	0,1	4.39	284.86	345.90	284,87	874.1	17.25	53.0	385.7	58 4	78,1	30.00	0.021	331,57	99.5	273.1	842.9	31.2	41.0	18.7	1,8

				GRAMS/H	0UR					
WT. FAC 9		нс	co	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	NO2/NOX RATIO
15.00) 1	311.04	274.83	1571.80	1341.304	44940	1729985	141652.39	149.4	0.14
15.00	2	263.38	134,17	1166.82	1061.0038	34690	1418609	109966.59	165.3	0,10
15.00) 3	270.72	116.81	740.17	683.18177	24810	1106512	77944, 16	179 5	0.11
10 00) 4	254 46	153.38	179.30	144.57814	10290	714316	31713.55	164.0	0.21
10.00) 5	86.93	806.11	1094,05	963.9268	34080	1008399	108952,62	1,5	0.10
10,00) 6	105.75	433.30	799.54	741,75855	24900	754386	78254.40	23,6	0.07
10.00) 7	117.13	128.66	516.02	498.68402	16860	567536	53101.75	48.9	0.04
15.00) 8	20.25	13.27	25.37	21.298028	1035	50540	3210.11	0.7	0.18

WTD AVG BHP *	136.93	H	<w =<="" th=""><th>102.11</th><th></th><th></th><th></th><th></th><th></th></w>	102.11					
	нс	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	ixh.Probe Mass F Sa
WTD AVG GM/H ≖	169.24	233,00	787.51	700	24484	950311	76918	98.03	.Exh.Sample Ma unnel Tot Flow T Dil.Tunnel Tot M
AVG GM/BHPH =	1.38	1.70	5.75	5.11	178.67		561.75	0.72	Partic Mass
AVG GM/KWH ≈	1.85	2.26	7,71	6 85	239 60		753.32	0 96	

WT AVG NO2/NOX RATIO =	0.120413745

MODE =	1	2	3	4	5	6	7	8	
PARTIC. WT, MG =	1.20	0.88	0.81	0.66	1.68	0.69	0.43	0.15	
xh.Probe Mass Flow Rate (g/Sec.)=	1.087	0.868	0.682	0.441	0.859	0.671	0.567	0.137	
Sample Time (Sec.)=	160	180	160	120	120	120	120	180	
.Exh.Sample Mass-Part Filter (kg) =	0.20	0.16	0.1228	0 05	0 10	0.08	0.07	0.02	
unnel Tot Flow Temp.Corr. (scmm)=	65.02	65.16	65.38	65.37	65.18	65.23	65.24	65.37	
Dil.Tunnel Tot Mass Flow (kg/Hr.)=	5044.29	5054.77	5072.144	5071.70	5056.48	5060.61	5061.27	5071.44	
Partic.Mass Flow Rate (g/Hr.)=	30.937	28.470	33.467	63.253	82.411	43.366	31.986	30.848	
GM/BHPH=	0.121	0.145	0.254	2 430	0.392	0.281	0.314		
WTD AVG GM/H =	40.660								
WEIGHTED AVG GM/BHPH =	0.297								
WTD AVG GM/KWH =	0.398								

W.F. 0.15 0.15 0.15 0.10 0.10 0.10 0.10

.

0 15

OLSON-ECOLOGIC ENGINE TESTING LABORATORY GTAT ISO-8178 8-Mode Testing of Viscon Polymer

8MLP19 (MULTI-FILTER)

BASELINE

Mode	EngSpd RPM	DynTrq łb∽ft	EngPwr Hp	CO2 %	СО ррт	NOx ppm	NO ppm	HC FłD ppm	FUEL RT GM/MIN	AirMas scfm	EngExh deg/F	ABSHUM GR/LB	Air In degF	Baro P InHga	∜aCAL FACTOR	KNOX PPM	Fuelin degF	KNO PPM	Methane ppm	NMHC ррт	Humidy %	Oil P psig
1	2199.9	805.0	253.4	5.80	176.97	658,26	560.53	418,73	744.5	503.9	906.3	55.3	75.6	30.00	0.027	626.26	103.7	533,3	220.7	198.00	42.3	54.1
2	2200.0	469.6	196.8	5.50	110.60	590.32	531.19	463.90	583	430.2	841.6	54.4	76.8	30,00	0.026	560.31	106.4	504.2	194.9	269.02	39.9	49.7
3	2200.0	314.9	131.9	4,99	120.31	469.58	418.63	550.41	414.5	349.9	743.4	54.0	77.2	30.00	0.024	445.22	106.9	396.9	190.3	360.07	39.0	50,2
4	2200.0	82.1	26.0	3,19	238,73	180.74	140,12	811.99	172	259,9	514.2	53.7	77.1	30,00	0.018	171.24	106.0	132.8	294.4	517,59	38,9	52.8
5	1400.0	790.7	210.8	7.66	897,33	794.08	699.43	197.02	569	272.8	1026.9	53.2	78,8	30,00	0.036	751.43	101,8	661.9	193.0	3,99	39,0	35.8
8	1400.0	578.2	154.2	7.51	870,35	783,60	701.87	314,17	413	219.5	957.8	52.8	77.1	30,00	0.035	740.80	102.4	663.4	254.1	60.04	38.3	36.7
7 '	1400.0	382.4	101.9	6.80	261.22	679,78	615.36	445.34	276.5	176.8	804.7	52.7	77.3	30.00	0.032	642.48	102.3	581.6	277.7	167.60	38.1	39.7
8	586.2	0.8	0.1	4.81	338.67	367,30	304.00	949.07	17	53.1	383.4	54.4	77.9	30.00	0.023	348.67	99.3	288.6	835.4	113.65	38.6	18.8

				GRAMS/HO	OUR					
WT. FAC %	Mode No	нс	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	NO2/NOX RATIO
15.00	1	321.53	273.15	1567.99	1344,751	44670	1894480	140762.36	152.6	0.15
15.00	2	294.46	141.11	1174.46	1054.558	34980	1396737	110207.19	171.4	0.10
15.00	3	272.60	119.77	728.16	650.8972	24870	1064892	78124.55	179.0	0.11
10.00	4	256.11	151.36	178.36	141.0157	10320	679605	31807.06	164.7	0.22
10.00	5	87.28	798.97	1099.18	963,5473	34140	993294	107153.75	1.8	0.12
10,00	8	103.09	442,14	802.73	717,8688	24780	734755	77866.88	19,8	0.10
10.00	7	108,37	127,77	516,30	468,5155	16590	541494	52271.27	41.0	0.09
15.00	8	19.74	14.16	23.95	20,2007	1020	45588	3182.58	2.4	0.17

WTD AVG BHP =	136.62		KW =	101.87					W.F. MODE = PARTIC. WT. MG =	1	0,15 2 0.82	0.15 3 0.66	0.10 4 0.60	0.10 5 1.76	0.10 6 0.65	0.10 7 0.31	0.15 8 0.13
									Exh, Probe Mass Flow Rate (g/Sec.)=		0.868	0.682	0.441	0.859	0.671	0.567	0,137
	HC	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	Sample Time (Sec.)=		180	180	120	120	120	120	180
									I.Exh.Sample Mass-Part.Filter (kg) =	0.20	0.16	0.12	0.05	0.10	0.06	0.07	0.02
WTD AVG GM/H =	191.74	234.25	786.84	690	24414	928189	76748	98.53	unnel Tot Flow Temp.Corr. (scmm)=		65.28	65.34	65.37	65.20	65.23	65.26	65.34
				_					Dil.Tunnel Tot Mass Flow (kg/Hr.)≠		5064.62			5058.45			
AVG GM/BHPH =	1.40	1.71	5.76	5.05	1 78.71		561.78	0.72	Partic.Mass Flow Rate (g/Hr.)≈	32.271	26,581	27.255	57.502	86.368	40.654	23.069	26.723
AVG GM/KWH =	1.88	2.30	7,72	6.77	239.65		753.36	0.97	G M /BHPH≖	0.127	0,135	0.207	2.211	0.410	0.265	0.226	
									WTD AVG GM/H =	37.704							
WT AVG NO2/NOX RATIO =	0.133748634								WEIGHTED AVG GM/BHPH ≖	0.276							
									WTD AVG GM/KWH =	0,370							

Approved _____

-

OLSON-ECOLOGIC ENGINE TESTING LABORATORY GTAT ISO-8178 8-MODE TESTING OF VISCON POLYMER

8MLP20 (MULTI-FILTER)

BASELINE

Mode	EngSpd RPM	DynTrq lb-fi	EngPwr Hp	CO2 %	CO ppm	NOx ppm	NO ppm	HC FID ppm	FUEL RT GM/MIN	AirMas scîm	EngExh deg/F	ABSHUM GR/LB	Air In degF	Baro P InHga	f/aCAL FACTOR	KNOx PPM	Fuelin degF	KNO PPM	Methane ppm	NMHC ppm	Humldy %	Oil P psig
1	2200.0	607.7	254.6	5.80	170.27	674.00	581.66	399.96	744.5	504.8	906.8	52.1	73.8	30.00	0.027	636.12	101.5	549.0	208,5	191.4	42.3	52.4
2	2200.0	469.8	196.8	5.45	105.04	601.26	534.63	440.22	581.5	430.8	838.1	51.8	74.5	30.00	0.028	567.07	103.9	504.2	179.1	261.1	41.0	49.9
3	2200.1	314,9	132.0	4.93	119.05	460.74	422.35	534.65	413.5	352.0	741.3	51,4	74.8	30.00	0.023	452.94	105.4	397,9	182.9	351.8	40.3	50.2
4	2200.0	62.1	26.0	3.17	234.83	185.73	142,53	781,19	172	259.5	511.5	51.5	74.6	30.00	0.015	175.04	104,9	134.3	281.4	499.7	40.7	53.1
5	1400,0	789,4	210,4	7.59	867,19	800.42	701.27	198.73	565	273.9	1020.2	51,5	74.2	30,00	0.038	754.35	100.0	660.9	194,9	3,8	41.2	36.1
6	1399,9	578.7	154,2	7.47	599.19	798.58	708.81	305.83	412	218,9	953.8	51.4	74.5	30.00	0.035	752.33	101,2	667.8	247.2	58,7	40.7	37.2
7	1399.9	382.2	101.9	6.71	240.74	686.22	618.37	449,19	278	175.8	799.9	51.4	74.8	30.00	0.031	648.50	100.5	582.6	268.9	180.3	40.6	39.7
8	592.3	0.9	0.1	5.99	292.71	343.90	268.33	830,5	18.75	53.8	376.8	53.3	75.2	30.00	0.028	325.52	98.1	254.0	749.0187	81.4	41.2	19.2

				GRAMS/H	OUR					
WT. FAC %	Mode No	нс	со	KNOX	KNO	FUEL	EXHAUST	C O2	NMHC	NO2/NOX RATIO
15.00	1	307.59	263.21	1615.48	1365.9814	44870	1696251	140822.01	147.7	0.14
15.00	2	281.24	134.89	1196.35	1061.047	34890	1404738	109972.20	187.4	0.11
15.00	3	267.70	119.82	748.90	659.5425	24810	1095767	77948.96	176,8	0.12
10.00	4	248.77	150.31	184.07	143.93758	10320	685974	31831.90	160.5	0.23
10.00	5	68.23	773.85	1105,90	964.32358	33900	994629	106426,17	1.7	0.12
10.00	6	100.82	397.05	819,02	725.94047	24720	737748	77753.88	19.4	0.11
10.00	7	111.39	120,00	529,43	478,28989	16680	551283	52560,46	44,9	0,10
15.00	8	13.79	9,77	17.85	14.115439	1005	36735	3140.52	1.4	0.22

WTD AVG BHP =	136.77	1	KW =	101.99					W.F.	0.15	0.15	0.15	0.10	0.10	0.10	0.10	0.15
									MODE =	1	2	3	4	5	6	7	8
									PARTIC. WT, MG =	1.16	0.93	0.77	0.63	1.51	0.58	0.33	0.13
	HC	co	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	Exh.Probe Mass Flow Rate (g/Sec.)=	1.087	0.868	0.682	0.441	0.659	0.671	0.567	0.137
									Sample Time (Sec.)=	180	180	160	120	120	120	120	180
WTD AVG GM/H =	185.47	223,27	800,63	699	24368	931987	76640	96.64	Dil.Exh.Sample Mass-Part,Filter (kg) =		0,16	0.1228	0.05	0.10	0.08	0.07	0.02
									Dil.Tunnel Tot Flow Temp.Corr. (scmm)=	65.09	65.30	65.36	65,36	65.21	65.25	65.25	65.29
AVG GM/BHPH =	1.36	1.63	5.85	5.11	178.17		560.36	0.71	Dil.Tunnel Tot Mass Flow (kg/Hr.)=	5049.5	5066.3	5070.8	5070.7	5058.7	5062.4	5062.2	5065.2
									Partic.Mass Flow Rate (g/Hr.)=	29.937	30,156	31,806	60,366	74.103	36.466	24,552	26.702
AVG GM/KWH =	1.82	2,19	7.85	6.86	238,93		751.45	0.95									
									GM/BHPH=	0.118	0.153	0.241	2.322	0.352	0.236	0.241	
									1450 N/O 0141 -								
WT AVG NO2/NOX RATIO =	0.145129416								WTD AVG GM/H =	37,339							
	0.140120410								WEIGHTED AVG GM/BHPH =	0.273							
									WTD AVG GM/KWH ≠	D.366							

•

.

·

OLSON-ECOLOGIC ENGINE TESTING LABORATORY GTAT ISO-8178 8-MODE TESTING OF VISCON POLYMER

8MLP21 (MULTI-FILTER)

BASEL	INE
-------	-----

Mode	EngSpd RPM	DynTrq İb-ft	EngPwr Hp	CO2 %	CO ppm	NOx ppm	NO ppm	HC FID ppm	FUEL RT GW/MIN	AirMas scfm	EngExh deg/F	ABSHUM GR/LB	Air In degF	Baro P InHga	∜≇CAL FACTOR	KNOx PPM	Fuelin degF	KNO PPM	Methane ppm	NMHC ppm	Humidy %	Oil P psig	nH/nC RATIO
1	2200.0	614.0	257.2	5,85	184.35	665.84	589,93	396.29	746,5	499.2	914.2	56.6	80.8	29.90	0.028	638.27	97,1	563.0	214.0	182,3	36.2	56.2	1.8
2	2200.0	446.6	187.9	5.43	99,23	590.43	533.76	412.90	554.5	406.1	838.1	56.0	81.9	29.90	0.026	562.60	100.1	508.6	165.4	247.5	34.8	53.8	1.8
3	2200.0	314.6	131.9	4.85	113.98	469.25	418.51	540.52	410.5	343.7	746.5	55.8	81.5	29.90	0.023	446.99	101.8	398.7	178.0	364.5	35.0	51.2	1.8
4	2200.0	61.9	25.9	2.88	224.34	169.67	130,24	787.91	168	256.3	513.3	57.3	80.0	29.90	0.014	162.20	102,5	124,5	270.9	517.0	37.7	53.4	1.8
5	1400.0	789.6	210.4	7.35	886.26	790,87	708,99	176.90	567	270.6	1030,8	58,4	79.2	29.90	0,034	758,10	103.6	679.6	175.7	1.2	39.4	35.9	1.8
6	1400.0	576.2	154.0	7.06	631.99	786.63	715.10	297.50	412	217.8	961.6	57.5	79.2	29.90	0.033	752.48	103.4	684.1	234.2	63.3	36.9	36.8	1.8
7	1400.0	378.5	101.0	6.13	246.51	665.67	606.65	450.31	275	175.1	804.5	56.9	78.9	29.90	0.029	635.68	100.7	579.3	254.9	195.4	36.8	40.0	1.8
8	575.7	1.1	0.1	3.31	217.49	309,57	247,92	799,42	16	52.5	392.7	57,8	78,6	29,90	0,016	296.33	94.0	237.3	752 5	46,9	39.5	18.3	1.8

				GRAMS/HO	DUR					
WT. FAC %	Mode No	нс	со	KNOX	KNO	FUEL	EXHAUST	C02	NMHC	NO2/NOX RATIO
15.00	1	302,67	263.01	1609.76	1411.4876	44790	1686441	141188,45	139.7	0.12
15,00	2	252.60	122.03	1136.60	1024,8661	33270	1345745	104925.58	151.9	0.10
15.00	3	272.90	115.67	745.25	666.42384	24630	1104860	77366.01	184.7	0.11
10.00	4	268.40	153.61	182.48	143.01999	10080	732524	31000.66	177.7	0.23
10,00	5	61,40	819.73	1151,96	1027.3166	34020	1029734	106757.87	0.8	0.10
10,00	6	103.61	442,42	865.41	785.46522	24720	777313	77873.79	22.1	0.09
10.00	7	120.74	132.85	562.82	514.36763	16500	593483	51937,73	52.6	0.09
15.00	8	22.66	12.40	27.76	22.753645	960	61326	2965.05	1.4	0.20

									W.F.	0.15	0.15	0.15	0.10	0.10	0.10	0.10	0.15
WTD AVG BHP =	135.71	I	<₩ =	101.20					MODE =	1	2	3	4	5	6	7	8
									PARTIC. WT, MG =	1.12	0.82	0.73	0.57	1.49	0.59	0.33	0.06
									Exh.Probe Mass Flow Rate (g/Sec.)=	1.087	0.868	0.682	0.441	0.859	0.671	0.567	0.137
	HC	ca	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC .	Sample Time (Sec.)≃	180	180	180	120	120	120	120	180
									Dil.Exh.Sample Mass-Part.Filter (kg) =	0.20	0.16	0.1228	0.05	0.10	0.08	0.07	0.02
WTD AVG GM/H =	185.04	234.63	604.17	716	24080	943061	75704	96.95	Dil.Tunnel Tot Flow Temp.Corr. (scmm)≂	85.10	65.29	65.32	65.37	65.23	65.22	65.26	65.35
									Dil.Tunnel Tot Mass Flow (kg/Hr.)=	5050.1	5064.8	5067.4	5071.6	5060.2	5060.1	5062.9	5069.8
AVG GM/BHPH =	1.36	1.73	5.93	5.27	177.44		557.85	0.71	Partic.Mass Flow Rate (g/Hr.)=	28.908	28.582	30.134	54.626	73.144	37.078	24.555	12.335
AVG GM/KWH =	1.83	2.32	7.95	7.07	237.95		748.09	0.96	GM/BHPH=	0.112	0.141	0.228	2.108	0.348	0.241	0.243	
									WTD AVG GM/H =	33.634							
WT AVG NO2/NOX RATIO =	0,129745755								WEIGHTED AVG GM/BHPH =	0.248							

WTD AVG GM/KWH = 0.332

•

OLSON-ECOLOGIC ENGINE TESTING LABORATORY GTAT ISO-8178 8-MODE TESTING OF VISCON POLYMER

8MLP22 (MULTI-FILTER)

									B	ASEL	INE												
Mode	EngSpd RPM	Dyn⊺rq lb∽ft	EngPwr Hp	CO2 %	CO ppm	NOx ppm	NO pom	HC FID ppm	FUEL RT GM/MIN	AirMas scfm	EngExh deg/F	ABSHUM GR/LB	Air In degF	Baro P InHga	#aCAL FACTOR	KNOX PPM	Fuelin degF	KNO PP M	Methane ppm	NMHC ppm	Humidy %	Oil P psig	nH/nC RATIO
1	2200.0	613.4	256.9	5.83	175.86	671,79	590,74	410.45	749,5	507.9	906.9	64.5	74.8	29.90	0.027	653,98	98.0	575.1	202.4	208.0	50.3	58.8	1.8
2	2199.9	462.9	193.9	5.45	103.69	806.71	551.32	447.68	577.5	423.0	842.8	61.6	75.9	29.90	0.026	586.22	100.2	532.7	189.1	278.6	46.2	55.9	1.8
3	2199.9	314.9	131.9	4.68	114.78	469.83	423, 19	552.60	412	348.1	740.5	61,5	76.4	29.90	0.023	453,93	101.1	408.9	172.1	380.5	45.8	53.4	1.8
4	2200.0	62.0	26.0	2.98	233,05	168,73	131.46	808,75	169	260.3	510,7	62.0	75.9	29.90	0.015	163.21	101.3	127.2	265.2	543,8	46.8	53.2	1.8
5	1399.9	790.1	210.6	7.49	692,77	763.54	714,10	197.22	564	272.4	1023.8	61.4	75.6	29,90	0.035	756.85	102.6	889.8	179,2	18.1	46.7	37.1	1.8
6	1399.9	577.9	154.0	7.29	609.76	766.65	706.80	316.95	410.5	219.0	955.2	80.9	76.0	29.90	0.034	739.52	102.7	681.8	231.1	85.8	45.7	37.8	1.8
7	1399.9	382.2	101.8	B.45	232.93	655.31	611,93	477.10	277	178.5	800.6	81.0	75.9	29.90	0.030	632.26	100.8	590.4	249.7	227.4	45.8	40.5	1.8
8	567.4	1.3	0.1	3,91	303.17	344.97	298,71	990.20	· 16	51.9	392.0	62.7	76.2	29,90	0.019	334.25	93.8	289.4	959,0	31.2	46,7	17,9	1.8

				GRAMS/HO	0UR					
WT, FAC %	Mode No	нс	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	NO2/NOX RATIO
15.00	1	316.00	272,15	1662,68	1453.7156	44970	1792279	141736.45	160.7	0.12
15.00	2	263,95	132,21	1227.95	1113.2275	34650	1467868	109203.73	177.3	0.09
15.00	3	278.61	116.32	755.75	682.6725	24720	1160838	77633.47	192.5	0.10
10.00	4	267.76	155.09	178.44	141,96456	10140	750081	31191.37	181.5	0.22
10.00	5	88.57	805.92	1122.43	1018.043	33840	1057411	106183.69	8.1	0,09
10.00	6	106.59	412,18	821.28	756,2068	24630	790070	77425,37	28.9	0,08
10.00	7	122.63	120.34	536.86	502.66377	16620	599557	52333.40	58.7	0.07
15.00	8	23.75	14.62	26.47	23.489638	960	54804	2958.19	0.8	0.13

WTD AVG BHP =	136.68	1	<₩ =	101.92					
	нс	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	i ∃xh.Probe Mass F Sa
WTD AVG GWH =	193.91	229.65	816.81	733	24318	991080	76443	107 41	.Exh.Sample Ma unnel Tot Flow Ti Dil Tunnel Tot N
AVG GM/BHPH =	1.42	1.68	5.98	5.36	177.92		559.30	0.79	Partic Mass
AVG GM/KWH =	1.90	2.25	8.01	7.19	238 60		750.03	1.05	

WT AVG NO2/NOX RATIO = 0.112176474

.

W.F.	0.15	0.15	0.15	0.10	0.10	0,10	0.10	0.15
MODE =	1	2	3	4	5	6	7	8
PARTIC. WT, MG =	1.02	0.96	0.67	0.52	1.34	0.51	0,17	0.09
xh.Probe Mass Flow Rate (g/Sec.)=	1.087	0,868	0.682	0.441	0.859	0.671	0.567	0.137
Sample Time (Sec.)=	180	180	180	120	120	120	120	180
Exh.Sample Mass-Part Filter (kg) =	0.20	0.16	0.12	0.05	0.10	0.08	0.07	0.02
unnel Tot Flow Temp.Corr. (scmm)=	65.10	65.37	65.33	65.37	65.18	65.23	65.24	65.36
Dil Tunnel Tot Mass Flow (kg/Hr.)=	5050.7	5071.2	5068.7	5071.4	5056.8	5060.6	5061.6	5070.9
Partic.Mass Flow Rate (g/Hr.)=	26.330	31.159	27.664	49.832	65.737	32.053	12.647	18.507
GM/BHPH=	0.102	0.161	0.210	1.917	0.312	0.208	0.124	
WTD AVG GM/H =	31.576							
WEIGHTED AVG GM/BHPH =	0.231							
WTD AVG GM/KWH =	0.310							

.

_

-

OLSON-ECOLOGIC ENGINE TESTING LABORATORY GTAT ISO-8178 8-MODE TESTING OF VISCON POLYMER

8MLP35 (MULTI-FILTER)

									w	AISCO	n												
	EngSpd	DynTrq	EngPwr	CO2	co	NOx	NO	HC FID	FUEL RT	A#Mas	EngExh	ABSHUM	Air In	Baro P	#aCAL	KNOx	Fuelin	KNO	Methane	NMHC	Humidy	OILP	nH/nC
Mode	RPM	Ib-ft	Hp	%	ppm	ppm	ppm	ppm	GM/MIN	scim	deg/F	GR/LB	degF	inHga	FACTOR	PPM	degF	PPM	pp m	ppm	%	peig	RATIO
1	2200.0	577.4	241.9	5.84	201.33	720.69	599.91	486.14	703	470.1	910.8	33.9	79,9	30.10	0.0275077	651.12	97,2	542.0	257.6	228.5	22.7	49.3	1.8
2	2200.0	470.1	196.9	5.62	124.68	661.20	565.74	515.32	576.5	406.7	863.8	35.7	81,6	30.10	0.0264724	599.94	98.9	513.3	238.2	277.1	22.6	49.7	1.8
3	2200.0	315.3	132.1	5.05	134,82	515.14	445.53	613.67	406	333.2	761.2	35.9	81,4	30.10	0.0239173	467.59	100,1	404.4	226.9	386.8	22.8	51.3	1.8
4	2199.9	61.9	25.9	3,14	256.17	179,68	138.93	851,37	165,5	254.1	517.7	35.7	80.8	30.10	0.0153007	163.01	100.1	126.0	341.8	509.8	23.1	53.0	1.8
5	1400.0	788,7	210,2	7,67	912.62	809.01	691.29	184.23	568.5	262.6	1054,6	35.3	80.6	30,10	0.0358942	733.35	97.7	626,6	164.2	0.0	23.0	36.4	1,8
6	1400 0	578.3	154,1	7.49	694.23	803.87	705.26	337.22	411	208.8	982.2	35.9	81.6	30.10	0.0350741	729.71	99.5	640.2	303.7	33.5	22.7	38.9	1.8
7	1400.0	382.1	101.9	6.69	257.33	686,30	615.93	502.25	275.5	171,7	819.0	36.7	82.6	30.10	0.0313588	624.10	99.0	560.1	320.2	182.1	22.4	41.1	1,8
8	576.0	1.3	01	4,51	358,00	307.22	251.31	944, 13	15.25	51,9	397,3	36.7	82.4	30.10	0.0217134	279.36	92.3	226.5	944,1	0.0	22.5	17.6	1,8

			(GRAMS/HO	UR					
WT FAC %	Mode No	нс	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	NO2/NOX RATIO
15.00	1	349.66	291.07	1546.53	1282,6533	42180	1582999	132718.44	165.09	0.17
15.00	2	316,15	153,76	1215.44	1038,8483	34590	1347904	108877.27	170,70	0.14
15.00	3	294.23	129.93	740.34	642.89433	24360	1048089	76416.70	186.28	0.14
10.00	4	262.39	158.69	165.90	131.0522	9930	662232	30534.15	158.73	0.23
10.00	5	81,47	811,21	1070,91	910,58821	34110	989198	107057 35	0.00	0.15
10.00	6	110.42	456.93	789 05	691 58312	24660	731350	77436.48	11 01	0.12
10 00	7	123,73	127.42	507 71	457 18931	16530	546415	52032.30	45.06	0,10
15.00	8	18,78	14 32	18.35	15.319233	915	43275	2831.09	0.00	0.18

							N 		0.15	0.15	0,15	0,10	0.10	0,10	0,10	0.15	
WTD AVG BHP =	134.86	H	(W =	100.57					MODE =	1	2	3	4	5	6	7	8
									PARTIC. WT, MG =	1.04	0.59	0.45	0.39	1.42	0.44	0.20	0.03
	•								Exh. Probe Mass Flow Rate (g/Sec.)=	1.087	0.868	0.682	0.441	0.859	0.671	0.567	0.137
	нс	CO	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	Sample Time (Sec.)=	180	180	180	120	120	120	120	180
)il.Exh.Sample Mass-Part.Filter (kg) =	0.20	0.16	0.1228	0.05	0.10	0.06	0.07	0.02
WTO AVG GM/H =	204 63	243.79	781.45	666	23830	896260	74833	99 79	Tunnel Tot Flow Temp.Corr. (scmm)=	65.05	65.29	65.36	65.40	65.23	85.24	65.22	65.32
									Dil.Tunnel Tot Mass Flow (kg/Hr.)≍	5046.71	5064.89	5070.94	5073.57	5060.16	5061.52		5087.54
AVG GM/BHPH =	1.52	1.81	5,79	4.94	176.69		554.88	0.74	Partic.Mass Flow Rate (g/Hr.)≖	28.825	19.128	18.588	37.390	69.707	27.659	14.873	6,165
AVG GM/KWH =	2.03	2.42	7 77	6 62	236.95		744 10	0 99	GM/BHPH=	0.111	0.097	0.141	1.444	0.332	0.179	0.146	
									WTD AVG GM/H =	25. 56 9							
WT AVG NO2/NOX RATIO =	0.154101594								WEIGHTED AVG GM/BHPH =	0.190							

WTD AVG GM/KWH = 0.254

OLSON-ECOLOGIC ENGINE TESTING LABORATORY GTAT ISO-8178 8-MODE TESTING OF VISCON POLYMER

8MLP36 (MULTI-FILTER) w/Viscon

	WARSCON																							
	EngSpd	DynTrq	EngPwr	CO2	co	NOx	NO	HC FID	FUEL RT	ArMas	EngExth	ABSHUM	Air In	Baro P	1/aCAL	KNOx	Fuelin	KNO	Methane	NMHC	Humidy	OIP	nH/nC	
Mode	RPM	lb-ft	Нр	*	ppm	ppm	ppm	ppm	GM/MIN	scfm	deg/F	GR/LB	degF	InHga	FACTOR	PPM	degF	PPM	ppm	ppm	%	peig	RATIO	
1	2200.0	596.1	249.7	5.82	222.35	716.22	590.06	458.65	726	479.6	920.9	37,3	79.6	30,10	0.027	652.26	100.7	537.4	244.8	213.9	25.1	51,382828	1,8	
2	2200.0	470.3	197.0	5.49	117.80	648.66	551.86	503.34	577.5	408.9	863.0	41.9	81.6	30,10	0.026	597.24	102.7	508.0	237.8	265.5	26.4	50,175089	1.8	
3	2200.0	315.0	132.0	4.98	127.93	505.38	435,75	814.29	407	339.0	759.7	41.9	80.3	30.10	0.024	465.37	102.9	401.2	233.7	380.6	27.6	51,410597	1.8	
4	2200.0	61.9	25 9	3,14	251,14	178.33	136.11	876.48	164	255.5	516.0	40.6	77.0	30.10	0.015	163,70	102.5	124.9	348.8	527,7	29.8	53.166862	1.8	
5	1400,0	769.1	210.3	7.63	914.45	812,16	704,56	201,83	566	266.2	1048.3	41.4	75,9	30,10	0.036	746,86	99.8	647.9	201.8	0.0	31,4	36.870917	1,8	
6	1400.0	578.2	154.1	7.43	676.36	802.84	711.33	357.03	410.5	214.1	976.2	41.5	76.1	30.10	0.035	738.53	100.7	654.3	310.5	46.5	31.4	39.052405	1,8	
7	1400.0	382.2	101.9	5.68	251.37	683.22	618.13	516.76	275.5	172.9	814.0	41.1	76.1	30.10	0.031	627.86	99.5	568.0	330.1	186.6	31.1	41.102698	1.8	
8	583.0	1.4	0.2	4.51	353.68	269.30	235.47	976.85	15.5	53.8	369.5	41.5	76.3	30,10	0.022	266.11	92.0	216.6	976,9	0.0	31.1	18,148681	1,8	

				GRAMS/H	OUR		<u> </u>			
WT, FAC	Mode No	HC	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	NO2/NOX RATIO
15.00	1	342.21	333,47	1607.10	1318.0149	43560	1642557	137068,60	160.2	0,18
15.00	2	316.52	148,90	1240.24	1053.4205	34650	1381289	109074.72	167.7	0,15
15.00	3	299.24	125.26	748.61	648.11533	24420	1065102	76599.23	186,3	0.14
10,00	4	266.97	153.76	164.65	128.48007	9840	654976	30240.90	162.5	0.24
10.00	5	89.26	812,87	1090.70	941.76657	33960	989745	106552,61	0.0	0.13
10.00	6	117.60	449.11	803.27	711.2036	24630	735855	77332.60	15.4	0,11
10.00	7	127.52	124.69	511.86	464,57715	16530	547832	52024.61	46.3	0.10
15.00	8	19 7 3	14.36	17,74	14,748124	930	43957	2875.80	0.0	0.19

WTD AVG BHP =	136.04	I	KW =	101.45					
	нс	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	
WTD AVG GMH =	206 79	247.34	799.08	680	24030	912754	75458	99.54	
AVG GM/BHPH =	1.52	1.82	5.67	5.00	176.64		554.67	0.73	
AVG GWKWH =	2.04	2.44	7.86	6.70	236.87		743.82	0.98	

WT AVG NO2/NOX RATIO = 0.155277756

W.F.	0.15	0.15	0.15	0.10	0.10	0.10	0.10	0.15	
MODE =	1	2	3	4	5	6	7	8	
PARTIC. WT, MG =	0.64	0.53	0.45	0.38	1.37	0.40	0.18	0.01	
Exh.Probe Mass Flow Rate (g/Sec.)=	1.087	0.868	0.682	0.441	0.859	0.671	0.567	0.137	
Sample Time (Sec.)=	180	180	160	120	120	120	120	180	
Dil.Exh.Sample Mass-Part.Filter (kg) =	0.20	0.16	0.1228	0.05	0.10	0.08	0.07	0.02	
Dil.Tunnel Tot Flow Temp.Corr. (scmm)=	65.06	65.30	65.42	65.38	65.20	65.22	65.27	65.33	
Dil.Tunnel Tot Mass Flow (kg/Hr.)=	5047.24	5066.24	5075.64	5072.22	5058.56	5059.88	5063.42	5068.18	
Partic.Mass Flow Rate (g/Hr.)=	21.669	17.186	18.606	36.422	67.231	25.136	13.395	2 055	
GM/BHPH=	0.087	0.087	0.141	1.404	0.320	0.163	0.131		
WTD AVG GM/H =	23.146								
WEIGHTED AVG GM/BHPH =	0.170								
WTD AVG GM/KWH =	0.228								

OLSON-ECOLOGIC ENGINE TESTING LABORATORY GTAT ISO-8178 8-MODE TESTING OF VISCON POLYMER 8MLP37 (MULTI-FILTER)

w/Viscon co HC FID FUEL RT Air In Baro P Exh. P EngSpd DynTrg EngPwr CO2 NOx NO AirMas EngExh ABSHUM f/aCAL KNOx Fuelin KNO Methane NMHC Humidy Oil P nH/nC InHga FACTOR RATIO Mode RPM GM/MIN deg/F GRAB PPM PPM ID-R HD pom ppm pom scfm degF deaF * DBIG psig % pom 00m **ppm** 2200 0 606 6 254.1 5.82 219.44 735 47 608,13 440.35 744,5 482.7 923.3 36.6 77.2 30,10 0.027 668,74 96.6 553,0 240.0 200.3 26.7 53.1 1.8 0 2 2200 0 469 9 196.8 5.49 121.71 674 84 572.11 458.09 578 405.8 863.3 36.6 79.7 30.10 0.026 613.66 99.1 520.2 223.8 264 3 24.6 51.0 1.8 Ó 2200 0 314 8 131 9 4.93 132.16 516 12 449 27 607.41 406.5 334.1 760 7 36.6 80.6 30 10 0.023 469.24 99.6 408.5 226.1 381.3 23.9 51.1 1.8 Ó 3 3.06 527 364 4 2200.0 61 9 25 9 255 47 185,14 139 11 868.51 166,5 250 3 516 0 36.2 80.5 30,10 0.015 168.16 100.0 126.4 343.4 525.1 23.7 1.8 0 5 1400.0 789 5 210,4 900 41 824 72 710.87 228.23 568,5 2613 1056 5 36 3 80 7 30,10 0.035 749,31 97.6 645.9 192.6 35 7 23.6 1.8 0 6 1400.1 578.1 154.1 7.43 722 96 834.44 731.05 348.52 413.5 210.7 962.6 34,8 80 9 30,10 0.035 755.47 98.4 661.9 307.3 41.2 22.5 38.9 1.8 0 7 1400.0 382.0 101.8 6.66 272.33 714.93 653.33 505.30 275.5 172 2 8187 34.0 80.1 30,10 0.031 645.99 98.1 590.3 329.8 175.5 22.5 41.1 1.8 0 177 я 583 7 13 01 4.34 435 78 314 61 259.64 1122.590008 15 75 52 8 387,7 34,4 79,5 30 10 0 021 284.55 91,2 235.0 1045.3 77.3 23.2 1.8 0

					GRAMS/H	DUR-					
WT, F	AC %a	Mode No	нс	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	NO2/NOX RATIO
15.	.00	1	337.12	337.68	1690.66	1390,7494	44670	1736437	140611,74	154 0	0,17
15.	.00	2	307,14	153.94	1275,15	1079,2746	34680	1423277	109191.96	167.0	0,15
15	.00	3	299.93	131 17	765.16	668.71307	24510	1111259	76874.27	189.2	0.13
10	.00	4	275.46	163,50	176.12	135.32772	9990	701778	30676.32	168.4	0.25
10	.00	5	102.27	810.99	1106.77	951.48078	34110	1031981	106992.00	16.0	0.14
10	.00	6	115.68	482.34	828,05	724.83233	24810	762078	77859.47	13.7	0.12
10	.00	7	124.96	135.38	527.55	483.74381	16530	563588	52015.91	43.6	0.09
15	.00	8	23.79	18.56	19.91	16.862798	945	47421	2904.10	1.7	0.17

WTD AVG BHP =	136.67	I	KW ≖	101.92					W.F. MODE = PARTIC. WT. MG =	0.15 1 0.89	0.15 2 0.65	0.15 3 0.60	0.10 4 0.40	0.10 5 1.57	0.10 6 0.59	0.10 7 0.19	0.15 8 0.01
									Exh.Probe Mass Flow Rate (g/Sec.)=	1.087	0.868	0.682	0.441	0.859	0.671	0.567	0.137
	HC	co	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	Sample Time (Sec.)=	180	180	180	120	120	120	120	180
									Dil.Exh.Sample Mass-Part.Filter (kg) =	0.20	0.16	0.1228	0.05	0.10	0.08	0.07	0.02
WTD AVG GWH =	207.03	255.42	826,68	703	24265	953702	76192	100,94	Dil.Tunnel Tot Flow Temp.Corr. (scmm)=	65 06	65.32	65.35	65.36	65.18	65.23	65.24	65.34
									Dil.Tunnel Tot Mass Flow (kg/Hr.)=	5047.19	5067.19	5069.71	5070.63	5056.95	5060.45	5061.65	5069.22
AVG GM/BHPH =	1.51	1.87	6.05	5.14	177.54		557.48	0.74	Partic Mass Flow Rate (g/Hr.)=	22.958	21.081	24.779	38.327	77.022	37.080	14.135	2.056
AVG GWKWH =	2.03	2 51	8,11	6.90	238.09		747.60	0.99	GM/BHPH=	0.090	0.107	0.188	1.478	0.366	0.241	0 139	
									WTD AVG GM/H =	27.287							
WT AVG NO2/NOX RATIO ≍	0.154022224								WEIGHTED AVG GM/BHPH =	0.200							

WTD AVG GM/KWH = 0.268

OLSON-ECOLOGIC ENGINE TESTING LABORATORY GTAT ISO-8178 8-MODE TESTING OF VISCON POLYMER

8MLP38 (MULTI-FILTER)

•	
w/Viscon	

Mode	EngSpd RPM	DynTrq ib−ft	EngPwr Hp	CO2 %	CO ppm	NOx ppm	NO ppm	HC FID ppm	FUEL RT GM/MIN	AirMas scfm	EngExh deg/F	ABSHUM GR/LB	Air In degF	Baro P InHga	f/aCAL FACTOR	KNOX PP M	Fuelln degF	KNO P PM	Methane ppm	NMHC ppm	Humidy %	Oil P psig
1	2200.0	811.9	256.3	5.69	221.28	757.40	612.52	424.0	743	485.5	928.0	33.8	77.1	30.10 0	0.0268095	684.08	95.9	553.2	228.0	196.0	24.7	54.3
2	2200.0	469.7	196.8	5.35	118.28	689.46	573.16	491.8	574.5	405.6	862.5	33.9	79.6	30.10	0.025228	622.85	98.8	517.8	211.2	280.6	22.8	51.2
3	2200.0	314,9	131.9	4.83	128.75	540.81	451,67	604.4	408	330.6	758.2	33.4	80.0	30.10 0	0.0229023	488.08	99.5	407.8	211.2	393.2	22.2	51.5
4	2200.0	62.0	25.9	3.01	255.44	193.73	141.56	869.4	166	250.8	516,6	32.7	79,0	30,10	0.0147	174.55	99.4	127.5	331.4	538,0	22.5	53,4
5	1400.0	789.4	210.4	7.48	912.41	858.07	718.46	223.2	565.5	264.4	1048.5	32.5	78.9	30,10 0	0.0350607	772.77	96.8	847.0	199,9	23.3	22,4	36,9
6	1400,0	578.0	154.1	7,33	695.48	846.93	723.32	351.1	410	211.2	977.4	33.0	79,4	30,10 0	0.0343642	763.57	98.8	652,1	297.9	53.2	22,4	39.1
7	1400.0	382.2	101,9	6.58	256.96	738.88	646.84	510.1	275.5	172.5	815.0	33.6	79.2	30.10 0	0.0308787	667.10	97,9	583.8	321.4	188.7	23.0	41.4
8	592.2	1.4	0.2	5.94	361.02	342.87	265.73	1130.2	15.75	53.8	386.4	35.3	79.0	30.10 (0.0282793	310.76	91.3	240.8	1041.7	88.5	24.2	18.2

				GRAMS/H	OUR					
WT. FAC %	Mode No	нс	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	NO2/NOX RATIO
15.00	1	330.94	347.14	1763.03	1417.9437	44580	1715444	140329.90	153.6	0.19
15.00	2	315.88	152.70	1321.02	1096.5218	34470	1407420	108497.76	180.9	0.17
15.00	3	304.41	128.32	811.79	681.01062	24480	1098474	76769.10	198.9	0.16
10.00	4	279.69	185.30	185.58	138.72984	9960	690679	30563.98	175.1	0.27
10.00	5	100.59	826.36	1149.82	958.41777	33930	1006180	106400.13	10.5	0.16
10,00	6	117,14	466.41	841.27	717,92063	24600	743837	77211.33	17.8	0,15
10,00	7	127,68	129.28	551.39	484.26495	18530	554420	52016.91	47.5	0.12
15.00	8	17.69	11.36	16.07	12,882998	945	34530	2934.68	1.4	0.22

WTD AVG BHP =	137.01		KW =	102.17					₩.F. MODE = PARTIC. WT. MG =	0.15 1 0.99	0.15 2 0.61	0.15 3 0.57	0.1 4 0.44	0.1 5 1.51	0.1 6 0.55	0.1 7 0.17	0.15 8 0.01
	нс	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	Exh.Probe Mass Flow Rate (g/Sec.)= Sample Time (Sec.)=	1.087 180	0.868 180	0.682 180	0.441 120	0.859 120	0.671 120	0.567 120	0.137 180
WTD AVG GM/H =	207,87	254.66	859.59	711	24173	937892	75899	105.31	Dil.Exh.Sample Mass-Part.Filter (kg) = Dil.Tunnel Tot Flow Temp.Corr. (scmm)= Dil.Tunnel Tot Mass Flow (kg/Hr.)=	0.20 65.08 5048.64		0.1228 65.32 5067.82	0.05 65,39 5072.82	0.10 65.21 5058.93	0.08 65.20 5058.49	0.07 65.25 5062.38	0.02 65.33 5068.34
AVG GM/BHPH ≖	1.52	1.86	6.27	5.19	176.43		553.96	0.77	Partic.Mass Flow Rate (g/Hr.)≃	25.55	19.77	23.53	42.18	74.11	34.55	12.65	2.06
AVG GM/KWH =	2.03	2,49	8.41	6.96	236.60		742.87	1.03	GM/BHPH=	0.100	0.100	0.178	1,625	0.352	0.224	0.124	
									WTD AVG GM/H =	26.984							
WT AVG NO2/NOX RATIO =	0.16269108								WEIGHTED AVG GM/BHPH ≖	0.197							
									WTD AVG GM/KWH =	0.264							

•

•

Approved _____

.

OLSON-ECOLOGIC ENGINE TESTING LABORATORY GTAT ISO-8178 8-Mode Testing of Viscon Polymer 8MLP39 (MULTI-FILTER)

w/Viscon

Mode	EngSpd RPM	DynTrq lb-ft	EngPwr Hp	со2 %	CO ppm	NOx ppm	NO ppm	HC FID ppm	FUEL RT GM/MIN	Air Mas scfm	EngExh deg/F	ABSHUM GR/LB	Air In degF	Baro P InHga	f/aCAL FACTOR	KNOx PPM	Fueiln degF	KNO PPM	Methane ppm	NMHC ppm	Humidy %	Oil P psig
1	2200.0	595.7	249.5	5.81	214.72	737.61	601.25	443.98	737.5	477.1	923.8	31.0	80.1	30.10	0.0273528	662.09	90.8	539.5	257.4	186.82	20.8	48.8
2	2200.0	470.0	196.9	5.42	117.35	662.15	558.42	484.10	579.5	404.1	860.0	31.9	81.0	30.10	0.0255267	595.39	91.6	502.1	223.7	260.36	20.6	49.0
3	2200.1	314.9	131.9	4,80	121.93	509.20	436,76	593,14	411.5	335.1	755.5	34.5	79,9	30.10	0.0227888	460.65	97,4	395.1	219.7	373.39	23.0	50,4
4	2200.0	62,3	26,1	2.97	242.14	183.55	140,60	846,78	170.5	252.4	515,5	37.7	78,4	30,10	0.0145118	167,33	98,3	128.2	330,4	516.41	26.4	53,4
5	1400.0	790.0	210.6	7.47	904,79	813.02	691.21	231.1	569.5	262,6	1046.3	39.3	77.5	30,10	0.0350455	743.91	95,9	632.5	198.1	33.03	28.3	36.8
6	1400.0	577,7	154.0	7.23	626,87	603.55	700.81	348,74	412.25	211,3	973.2	39,1	77.9	30,10	0.0338996	734.87	97.4	640,9	309.7	39.03	27.8	39.2
7	1400.0	362.2	101.9	6,49	244.77	686.77	617.26	507.57	277.5	171.2	813.6	40.2	77.6	30.10	0.0304518	629.83	96.8	566.1	324.1	183.51	28.7	41.3
8	573.9	0.0	0.0	4.05	346.51	325.72	271.47	1063.7	16.75	51.3	391.6	41.9	78.2	30.10	0.0196272	299.91	91.9	250.0	1019.4	44.28	29.5	17.7

				GRAMS/HO	0UR					
WT. FAC %	Mode No	нс	со	кнох	KNO	FUEL	EXHAUST	CO2	NMHC	NO2/NOX RATIO
15.00	1	336.94	327.54	1859.25	1345.417	44250	1869185	139291.17	142,3	0.19
15.00	2	309.87	150.99	1258.49	1059.487	34770	1403076	109474.47	167.3	0.16
15.00	3	302.84	125.13	776.66	668.6548	24890	1113460	77447.62	191.5	0.14
10.00	4	283.68	163.05	185.12	144.9663	10230	718974	31415.09	174.9	0.23
10.00	5	104.91	825.51	1115.06	943.7639	34170	1014657	107151.88	15.0	0.15
10,00	6	118,64	426,67	825.57	719,3891	24735	758460	77695.69	13.3	0.13
10,00	7	129.81	125,63	531,93	479,7752	16650	566558	52397.61	47.2	0.10
15.00	8	25.74	16.65	23.96	20,48572	1005	52516	3091.65	1.1	0.17

WTD AVG BHP =	136.01		KW =	101.42					W.F. MODE =	0.15 1	0.15 2	0.15 3	0.1 4	0.1 5	0.1 6	0.1 7	0.15 8	
									PARTIC. WT, MG =	1.00	0.70	0.58	0.34	1.41	0.49	0.23	0.08	
									Exh.Probe Mass Flow Rate (g/Sec.)=	1.067	0.868	0.682	0.441	0.859	0.671	0.567	0.137	
	HC	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	Sample Time (Sec.)=	180	180	180	120	120	120	120	180	
									Dil.Exh.Sample Mass-Part.Filter (kg) =	0.20	0.16	0.1228	0.05	0.10	0.08	0.07	0.02	
WTD AVG GM/H =	210.01	247.38	823.52	693	24288	941598	76262	100.37	Dil.Tunnel Tot Flow Temp.Corr. (scmm)=		65.32	65.35	65.36	65.18		65.24	65.34	
									Oil.Tunnel Tot Mass Flow (kg/Hr.)=				5070.63	5056.95		5061.65	5069.22	
AVG GM/BHPH =	1.54	1.82	6.05	5.09	178.56		560.71	0.74	Partic.Mass Flow Rate (g/Hr.)=	25.80	22.70	23.95	32.58	69,17	30,80	17.11	16.45	
AVG GM/KWH =	2.07	2.44	8.12	6.83	239,45		751.92	0. 99	GM/BHPH≖	0.103	0.115	0.182	1.247	0.326	0.200	0.168		
									WTD AVG GM/H =	26.300								
WT AVG NO2/NOX RATIO =	0.15687757								WEIGHTED AVG GM/BHPH =	0.208								
									WTD AVG GM/KWH ≭	0.279								

.

.

OLSON-ECOLOGIC ENGINE TESTING LABORATORY GTAT ISO-8178 8-MODE TESTING OF VISCON POLYMER

8MLP40 (MULTI-FILTER)

								w/V	iscon								
EngSpd RPM	Dyn⊺rq lb-ft	EngPwr Hp	CO2 %	CO ppm	NOx ppm	NO ppm	HC FID ppm	FUEL RT GM/MIN	AirMas scfm	EngExh deg/F	ABSHUM GR/LB	Air In degF	Baro P InHga	VaCAL FACTOR	KNOx PPM	Fuelin degF	KNO PP M
2200.0	607.4	254.4	5.84	225.46	760.02	602.48	410.37	743	476.6	931,8	34.5	83.6	30.00	0.027	687.68	91.1	545,1
2200.0	470.0	196.9	5.50	114.22	668.85	569.13	482.18	577.5	399.9	867.1	35.2	85.4	30.00	0.026	624.11	92.9	515.6
2200,1	314.7	132.0	4,96	120,36	544.18	456,95	599,99	409	327.9	761,8	34.6	85.9	30.00	0.023	492.46	95.0	413.5
2199.9	62.0	26.0	3.05	236.27	193.28	145.54	851.69	168	248.6	516,8	36.3	86.1	30,00	0.015	175.61	98.5	132.2
1400.0	790.1	210.6	7.72	912.56	849.15	704.87	204.16	573	258.8	1057.7	36.5	85.6	30,00	0.036	771.95	92.8	640.6

208,4

167.5

51.2

413.5

279

16.25

985.1

822.6

386.8

37.3

37.9

43.2

30,00

30.00

30.00

86.4

85.4

84.6

0.035

0.031

0.016

772.16

657.03

278.17

94,6

97.8

93.3

VT. FAC				GRAMS/H	OUR	<u> </u>				
% %	Mode No	нс	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	NO2/NOX RATIO
15.00	1	312.11	344.66	1727.12	1361.4565	44580	1674114	140393.25	135.0	0.21
15.00	2	302.66	144.11	1293.63	1067.2833	34650	1377611	109126.03	170.8	0.17
15.00	3	295.11	116,99	799.87	674.21366	24540	1074144	77004.13	191.3	0.16
10.00	4	273.84	152.69	186.45	143.5034	10080	690391	30984.94	168.7	0.25
10.00	5	90.35	811.77	1128.13	931.79953	34380	990654	107887.97	10.1	0.17
10.00	6	112.82	481.08	636.14	709.04162	24810	732737	77870.48	12.7	0.15
10.00	7	123.53	129,50	550.57	483.67072	16740	562391	52698.21	45.5	0,12
15.00	8	27.68	17,70	27.18	23.026856	975	63670	2986.70	0.6	0,18

729,67

253.90

297,63

847.76

720.46

301.15

719.55

631.20

248,11

344,05

486.79

935.45

7.52

6.58

3.20

WTD AVG BHP =	136.77	I	KW ≖	101.99					W.F. MODE =	0.15 1	0.15 2	0.15 3	0.10 4	0.10 5	0.10 6	0.10 7	0.15 8
									PARTIC. WT, MG =	0.96	0,62	0,56	0.39	1.64	0.56	0.25	0.05
								•	Exh.Probe Mass Flow Rate (g/Sec.)≃	1.087	0.868	0.682	0.441	0.859	0.671	0.567	0.137
	HC	co	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	Sample Time (Sec.)=	180	180	180	120	120	120	120	180
									Dil.Exh.Sample Mass-Part.Filter (kg) =	0.20	0.16	0.1228	0.05	0.10	0.08	0.07	0.02
WTD AVG GM/H =	200.69	251,32	847.30	696	24313	926068	76371	98.37	Dil.Tunnel Tot Flow Temp.Corr. (scmm)=	65.12	65.32	65.39	65.40	65,18	65.20	65.21	65.25
									Dil.Tunnel Tot Mass Flow (kg/Hr.)=					5056.37	5058.28	5059.05	5082,48
AVG GM/BHPH =	1.47	1.84	6.20	5.09	177.76		558.39	0.72	Partic.Mass Flow Rate (g/Hr.)=	24.79	20.11	23.14	37.39	80.45	35.18	18.59	10.26
AVG GMKWH ≊	1.97	2.46	8.31	6.82	238.39		748.61	0.96	GM/BHPH≖	0.097	0.102	0.175	1.439	0.3 82	0.228	0.182	
									WTD AVG GM/H ≃	28,906							
WT AVG NO2/NOX RATIO =	0.17681689								WEIGHTED AVG GM/BHPH =	0.211							
									WTD AVG GM/KWH =	0.283							

Mode

1 2

3

4 5

8

7

8

1400.0

1400.0

574.9

577.7

382.5

1.3

154.0

102.0

0.1

Oil P

psig

54.1

51.4

52,1

53,4

37.1

39.0

41.3

17.7

655.4

575.6

229.2

Methane

ppm

233.6

211.1

212.6

332.4

161.4

305.5

308.4

914.3

NMHC

ppm

176.6

271.1

367,4

519.3

22.8

38.6

178.4

21.2

Humidy

%

20.4

19.6

18.9

19.7

20.2

20.1

21.1

OLSON-ECOLOGIC ENGINE TESTING LABORATORY GTAT ISO-8178 8-MODE TESTING OF VISCON POLYMER

8MLP41 (MULTI-FILTER)

									W/VIS	scon												
Mode	EngSpd RPM	DynTro Ib-ft	EngPwr Hp	CO2 %	CO ppm	NOx ppm	NO ppm	HC FID	FUEL RT GM/MIN	AirMas scfm	EngExh deg/F	ABSHUM GR/LB	Aır İn degF	Baro P InHga	f/sCAL FACTOR	KNOX PPM	Fuelin degF	KNO PPM	Methane ppm	NMHC ppm	Humidity %	Oil P paig
1	2200.0	607.6	254.6	5.91	231.06	693.13	570,90	409.77	741	479.2	936,3	48,1	82.2	30,00	0.028	647.85	92,8	533.6	234.5	175.3	29.6	54.4
2	2200.0	470.0	196.9	5.49	116.52	636.88	542.49	485.29	575.5	401.2	· 867.4	47.1	62.7	30.00	0.026	593.88	93.7	505.9	213.2	272.1	28.6	51.6
3	2200.1	315.0	132.0	4.88	121.39	493.36	432.01	584.58	407.5	328.3	761.3	46.8	82.6	30.00	0.023	459.69	93.5	402.5	204.3	380,3	28.4	51.9
4	2200.0	62 1	26.0	2.92	236,92	165.81	129.00	829.31	167	249.3	514,4	47.0	82.1	30.00	0.014	154.55	92.1	120.2	314.8	514.5	29.0	53.7
5	1400.0	789,6	210.5	7.45	912,02	776.59	683.00	205.45	567,5	260.2	1054.4	46.7	81.4	30.00	0.035	723.39	91.7	636.2	177.5	27.9	29.5	37.8
6	1400.0	576.0	154.1	7.22	713.13	768.04	691.31	321.69	413	208.9	980.2	47.2	81.7	30.00	0.034	716.25	92.5	644.7	276.3	43.3	29.5	39.9
7	1400.0	381.9	101.6	6.36	255.57	671.03	613.28	478.64	276.5	170.1	814.8	48.0	81.6	30.00	0.030	627.08	91.6	573.1	298.3	180.4	30.2	41.8
8	579.0	1.4	0.2	3.98	297.89	252 93	198 08	941 31	16	52.3	381.9	50.2	81.8	30.00	0.019	237 62	90.2	186 1	915.1	26.2	31.3	17.7

			(GRAMS/HO	JR					
WT FAC %	Mode No	нс	со	KNOX	KNO	FUEL	EXHAUST	C02	NMHC	NO2/NOX RATIO
15.00	1	307 65	348.70	1606,21	1315,6659	44460	1656611	140018 96	132.1	0,18
15,00	2	304.26	146.85	1229.65	1045,7178	34530	1378248	108734.57	171.3	0,15
15.00	з	291.13	121.51	756 00	664.36185	24450	1088690	76726.23	190.2	0.12
10.00	4	276.91	159.01	170.41	135.5431	10020	717189	30774.32	173.6	0.22
10.00	5	93.26	632,16	1084 38	949 14714	34050	1015489	106796.17	12.7	0,12
10.00	6	109,65	488 59	806.20	724.78773	24780	760741	77773.18	14.8	0.10
10.00	7	124.35	133.46	537,97	493.21993	16590	575509	52211.88	47.1	0.09
15.00	8	22.17	14 10	18.48	14.808985	960	51135	2963.97	0.6	0.22

WTD AVG BHP =	136.77		KW =	101.99					w.f. MODE =	0.15	0.15	0.15	0.10	0.10 5	0.10 6	0.10 7	0.15 8
									PARTIC, WT, MG =		0.73	0.65	0.49	1.67	0.63	0.35	0.08
									Exh.Probe Mass Flow Rate (g/Sec.)=	1.087	0.868	0.682	0.441	0.859	0.671	0.567	0.137
	HC	co	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	Sample Time (Sec.)=	180	180	180	120	120	120	120	180
									Dil.Exh.Sample Mass-Part.Filter (kg) =	0.20	0.16	0.1228	0.05	0.10	0.08	0.07	0.02
WTD AVG GM/H =	199,20	256.00	801 45	686	24204	933095	76022	98,95	Dil.Tunnel Tot Flow Temp.Corr. (scmm)≃	65.16	65.28	65.42	65.36	65.20	85.21	65.22	65.29
									Dil Tunnel Tot Mass Flow (kg/Hr.)=	5055.21	5064.57	5074.99	5071 01	5058.59	5058.86	5060.07	5065.15
AVG GM/BHPH =	1.46	1.87	5.86	5.02	176.97		555.84	0.72	Partic, Mass Flow Rate (g/Hr.)≖	27.645	23.663	26.871	46.954	81.954	39.581	26.029	16.432
AVG GM/K₩H ≈	1.95	2.51	7,86	6.73	237.32		745.40	0.97	GM/BHPH=	0.109	0.120	0.204	1.805	0.389	0.257	0.256	
									WTD AVG GM/H =	33.644							
WT AVG NO2/NOX RATIO =	0.152715249								WEIGHTED AVG GM/BHPH =	0.246							

.

WTD AVG GM/KWH = 0.330

OLSON-ECOLOGIC ENGINE TESTING LABORATORY GTAT ISO-8178 8-MODE TESTING OF VISCON POLYMER

8MLP42 (MULTI-FILTER)

w/Viscon

	EngSpd	DynTrq	EngPwr	CO2	co	NOx	NO	HC FID	FUEL RT	AirMas	EngExh	ABSHUM	Air In	Baro P	1/sCAL	KNOx	Fueltn	KNO	Methane	NMHC	Humidy	Oil P
Mode	RPM	lb-ft	Нр	%	ррт	ррт	ppm	ppm	GM/MIN	scfm	deg/F	GR/LB	degF	InHga	FACTOR	PPM	degF	PPM	ppm	ррт	%	psig
1	2200.0	610.3	255.7	5.75	211.29	723.57	594.72	409.48	742.5	466.6	925.1	53.3	77.0	30.00	0.027	654.86	93.5	562.9	236.7	172.7	38.6	54.5
2	2200.0	469.7	196.7	5.35	107.04	650.78	554.14	475.06	576	407.7	659.5	52.7	76.0	30.00	0.025	615.13	97.6	523.8	212.6	262.5	37.2	52.3
3	2200.0	315.0	131.9	4,79	116.47	498.97	429.42	567.62	413	332.7	752.2	52.4	76.2	30.00	0.023	471.27	92.0	405.6	206.2	361.4	36.7	52.5
4	2200.0	61.9	26.0	2.91	235,14	172.45	128.48	612.83	165.5	251.1	508.9	52.6	77.8	30.00	0.014	162.97	91,9	121.4	320.8	492.0	37.3	54.1
5	1400.0	790.1	210.6	7.43	895.13	785.19	677.61	221.74	569	262.9	1046.6	49,1	76.4	30.00	0.035	735.65	91.1	634.9	186.3	35.4	34.2	38,1
6	1400.0	577.9	154.0	7.27	690.63	783.11	686.28	331.51	412.5	209.5	974.7	48.0	79.1	30.00	0.034	731.86	92.6	641.2	295.2	36.3	32.6	40,0
7	1400,0	382,1	101.8	6.49	249.05	683,93	614.23	476,18	275.5	170,0	810.5	47.7	79.3	30,00	0.030	638,62	91.4	573,5	317.1	159.1	32.2	42.1
8	581.5	1,5	0.2	4,75	326,69	290.24	223.25	1047.01	15,75	52.0	377.9	49.4	79.8	30.00	0.023	272.11	90.3	209.3	962.3	64.7	32.9	17.8

				GRAMS/H	JUR					
WT. FAC %	Mode No	нс	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	NO2/NOX RATIO
15.00	1	318.42	328.16	1747.59	1428,206	44550	1703918	140310,03	134,0	0.18
15.00	2	306.13	138.64	1308,97	1112,515	34560	1415760	108837.16	169.8	0.15
15.00	3	291.59	122.33	799,45	690.21602	24780	1123010	77774.07	186.4	0.14
10.00	4	270.01	157.00	178.78	136.10434	9930	714005	30512.74	165.2	0.25
10.00	5	101.22	621.34	1108.94	952.61513	34140	1021428	107074.55	18.2	0.14
10.00	6	112.16	469,79	817.41	715.55558	24750	755461	77699.31	12.3	0.12
10.00	7	120.89	127.09	535.40	462.31265	16530	563006	52041,79	40.6	0,10
15.00	8	20.40	12.87	17.51	13.755073	945	42620	2923.77	1.7	0.23

WTD AVG BHP =	136.92		KW =	102.10					W.F. MODE =	0.15	0.15	0.15 3	0.10 4	0.10 5	0.10 6	0.10 7	0.15 8
	100.02	•		102.10					PARTIC, WT, MG =	0.95	0.57	0.52	0.41	1.68	0.55	0.25	0.05
									Exh.Probe Mass Flow Rate (g/Sec.)=	1.087	0.868	0.682	0.441	0.859	0.671	0.567	0.137
	HC	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	Sample Time (Sec.)=	180	180	180	120	120	120	120	180
									Dil.Exh.Sample Mass-Part.Filter (kg) =	0.20	0.16	0.12	0.05	0.10	0.08	0.07	0.02
WTD AVG GM/H =	200.61	247.83	845.08	715	24260	948186	76210	97.22	Dil.Tunnel Tot Flow Temp.Corr. (scmm)=	65.08	65.32	65.32	65.34	65.21	65.22	65.23	65.33
									Dil.Tunnel Tot Mass Flow (kg/Hr.)=	5049.03	5067.14	5067.73	5069.02	5058.80	5059.85	5060.89	5068.66
AVG GM/BHPH ≖	1.47	1.81	6.17	5.22	177.19		556.60	0.71	Partic.Mass Flow Rate (g/Hr.)≖	24.515	18,486	21.466	39.272	82.448	34.562	18,595	10.277
AVG GM/KWH ≖	1.96	2.43	8.28	7.01	237.61		746.41	0.95	GM/BHPH≠	0.096	0.094	0.163	1.513	0.391	0.224	0.183	
									WTD AVG GM/H =	28.699							
WT AVG NO2/NOX RATIO =	0.166268274								WEIGHTED AVG GM/BHPH =	0.210							
									WTD AVG GM/KWH =	0.281							

.

.

Approved _____

OLSON-ECOLOGIC ENGINE TESTING LABORATORY GTAT ISO-8178 8-MODE TESTING OF VISCON POLYMER

8MLP43 (MULTI-FILTER)

w/Viscon

Mode	EngSpd RPM	DynTrq Ib-ft	EngPwr Hp	CO2 %	СО ррт	NOx ppm	NO ppm	HC FID ppm	FUEL RT GM/MIN	AirMas scfm	EngExh deg/F	ABSHUM GR/LB	Air In degF	BaroP In∺Hga	##CAL FACTOR	KNOx PPM	Fuelin degF	KNO PPM	Methane ppm	NMHC ppm	Humidy %	Oil P psig
1	2200.0	594.1	248.9	5.73	196.11	703.75	575.50	460.29	725	484.3	910.2	56.2	71.6	30.00	0.027	670.88	92.8	548.8	236.3	224.0	49,1	50.2
2	2200.0	470.0	196.9	5.36	106.70	822.13	527.93	475.42	573	414.7	849.2	57.2	72.7	30.00	0.025	594.60	94.5	504.8	206.6	268.9	48.1	49.6
3	2200.0	315.0	132.0	4,76	121,11	479,29	404.02	573,60	405.5	338,0	746.3	56.3	72.4	30.00	0.023	457,11	95.3	385,3	204,8	368,8	47.9	50.9
4	2200.0	62.0	25.9	2.89	233.85	171.17	125.13	816.62	165.5	256.8	507,1	56.8	72.0	30,00	0.014	163.45	95.5	119.5	318.3	498.3	48,9	54.4
5	1400.0	790,1	210.6	7.35	880,13	781.02	659,60	206,93	564	266.0	1032,0	56.8	71.7	30.00	0.034	745,85	92.6	829.7	198.2	8.8	49,3	38.7
6	1399.8	577.7	154.0	7.06	592,55	752.44	646,28	349,61	409	215.7	959.6	56.3	72.1	30.00	0.033	717.53	93.7	616.3	291.3	58.3	48.3	40.4
7	1400.0	381.8	101.8	6.24	233.91	634.53	558.67	482.44	274.5	175.3	802.3	56.7	72.0	30.00	0.029	805.75	92.3	533.3	300.1	182.4	48.8	42.4
8	576.6	1.4	0.2	2.62	291.02	287.73	208.99	907.12	15.5	53.3	378.9	58.9	72.3	30.00	0.013	276.14	87.4	200.6	863.5	43.7	50.2	18.5

				GRAMS/HO	JUR					
WT, FAC %	Mode No	нс	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	NO2/NOX RATIO
15.00	1	348.51	296.46	1677.37	1365.4531	43500	1747465	136912.71	170.3	0.18
15.00	2	303.82	137.06	1254.80	1062.8951	34380	1471768	108273.90	172.5	0.15
15.00	3	289.83	123.01	762.73	645.17475	24330	1156901	76345.95	187.1	0.16
10.00	4	273.29	157.31	180.63	134.98705	9930	753696	30501.90	168.6	0.27
10.00	5	94.60	608.79	1125.72	946.18603	33840	1070618	106160.12	4.0	0.16
10.00	6	120.95	412.04	819.70	703.47755	24540	807700	77093.75	20,3	0.14
10.00	7 '	126.96	123,73	526.42	465.01948	16470	610361	51836,89	46.2	0.12
15.00	8	31.01	20.00	31,18	23.40723	930	76965	2831.28	1.5	0.27

	405.00								W.F.	0.15	0.15	0.15	0.10	0.10	0.10	0.10	0.15
WTD AVG BHP =	135.92		<w =<="" td=""><td>101.35</td><td></td><td></td><td></td><td></td><td>MODE =</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td></td><td>8</td></w>	101.35					MODE =	1	2	3	4	5	6		8
									PARTIC. WT, MG =	1.02	0.71	0.53	0.36	1.29	0,47	0.20	0.01
									Exh.Probe Mass Flow Rate (g/Sec.)=	1.087	0.868	0.682	0.441	0.859	0.671	0.567	0.137
	HC	co	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	Sample Time (Sec.)=	180	180	180	120	120	120	120	180
									Dil.Exh.Sample Mass-Part.Filter (kg) =	0.20	0.16	0.12	0.05	0.10	0.08	0,07	0.02
WTD AVG GM/H =	207.56	236.97	824.16	690	23949	992225	75214	103.82	Dil.Tunnel Tot Flow Temp.Corr. (scmm)=	85,10	65.35	65.36	65.37	65.20	65.24	65.23	65.35
									Dil.Tunnel Tot Mass Flow (kg/Hr.)=	5050.6	5069.6	5070.6	5071.6	5057.9	5061.5	5060.7	5069.8
AVG GM/BHPH =	1.53	1.74	6.06	5.07	176.20		553.38	0.76	Partic.Mass Flow Rate (g/Hr.)=	26.329	23.038	21.892	34.501	63.297	29.544	14.876	2.056
									·								
AVG GM/KWH =	2.05	2.34	8,13	6.80	236,29		742.09	1.02	GM/BHPH=	0.106	0.117	0.166	1.330	0.301	0.192	0.146	
									WTD AVG GM/H =	25.219							
WT AVG NO2/NOX RATIO =	0,183157386								WEIGHTED AVG GM/BHPH =	0.186							
									WTD AVG GM/KWH ≖	0.249							
									VVID AVG GM/KVVH =	0.249							

.

OLSON-ECOLOGIC ENGINE TESTING LABORATORY GTAT ISO-8178 8-MODE TESTING OF VISCON POLYMER

8MLP46 (MULTI-FILTER)

									- 40 (init													
•									W/ 10x	VISCO	N											
	EngSpd	DynTrq	EngPwr	CO2	со	NOx	NO	HC FID	FUEL RT	AirMas	EngExh	ABSHUM	Air In	Baro P	f/aCAL	KNOx	Fuelin	KNO	Methane	NMHC	Humidy	OII P
Mode	RPM	lb-ft	Нр	%	ppm	ppm	ррт	ppm	GM/MIN	scfm	deg/F	GR/LB	degF	InHga	FACTOR	PPM	degF	PPM	ppm	ppm	%	psig
1	2200.0	610.6	255.8	5.76	206.77	686.17	549,34	414.40	741	486.6	920.1	61.4	74.5	30.00	0.027	662.66	92.8	530.5	241.7	172.6	48.4	54.8
2	2200.0	469.9	196.8	5.35	103.77	612.39	512.46	469.11	576	408.6	858.3	61.2	76.2	30.00	0.025	591.20	98.2	494,7	214.1	255.0	45.8	51.8
3	2200.0	315.1	132.0	4.76	111.59	471.03	399.41	573.36	406	334,8	755,4	63.2	76.8	30,00	0.023	457.02	98.9	387.5	211.0	362.4	48.3	52.3
4	2200.0	62.1	26.0	2,61	229.26	152.71	118.75	827.89	186	254,2	514,3	63.2	76,5	30.00	0.014	148,16	98.7	115.2	334.7	493.0	46.8	53.6
5	1400.0	789,4	210.4	7.30	908.06	752.37	635.26	224.25	564	263.6	1044.8	62.2	75.9	30.00	0.034	728.16	96.1	814.8	187.8	36.4	46.9	37.7
6	1400.0	577.8	154.0	7.06	621.09	745,18	643.41	336.73	409.5	212.1	972.2	62.0	76.5	30,00	0.033	720.86	97.5	822.4	297.1	39.6	45.9	39.2
7	1400.0	381.9	101.8	6.19	225.94	636.25	562.93	490.91	274.5	172.8	811.7	62.3	76.6	30.00	0.029	615.97	96.8	545.0	318.2	172.7	48.0	41.6
8	580.8	1.6	0.2	3.60	237.24	276.80	217.96	1090.2	15.75	52.9	395.3	83.2	76.8	30.00	0.018	268.57	90.3	211.5	997.3	92.9	46.3	18.0

				GRAMS/H	OUR					
WT, FAC %	Mode No	нс	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	NO2/NOX RATIO
15.00	1	319.19	320.13	1885.49	1341.8458	44460	1700422	140027.42	133.5	0.20
15.00	2	302.01	134.28	1256.86	1049.6945	34560	1416160	108857.03	164.8	0,16
15.00	3	291,54	114.05	767.40	852.9657	24360	1112947	76450.13	185.1	0.15
10.00	4	284,54	158.42	168.20	133.82301	9960	739386	30560.14	171.4	0.22
10.00	5	103.14	839.51	1105.98	929.55528	33840	1029917	106084.89	16.8	0.16
10,00	6	116.80	432.30	824.29	710,99189	24570	773274	77171.14	13.8	0.14
10.00	7	130.09	120,35	539.04	478,57959	16470	567333	51832,31	46.0	0,12
15.00	8	27,83	12.17	22.64	18.354422	945	55420	2901.40	2.4	0.21

WTD AVG BHP =	136.95	1	KW =	102.12					W.F. MODE = PARTIC. WT. MG =	0.15 1 1.03	0.15 2 0.74	0.15 3 0.58	0.10 4 0.45	0.10 5 1.60	0.10 6 0.66	0.10 7 0.27	0.15 8 0.09
	нс	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	Exh.Probe Mass Flow Rate (g/Sec.)* Sample Time (Sec.)=	1,09 180 0,20	0,87 180 0,16	0.6820 180 0.1228	0.44 120 0.05	0.86 120 0.10	0.87 120 0.08	0.57 120 0.07	0.14 180 0.02
WTD AVG GM/H =	204.52	242.15	823.61	685	24133	955733	75800	97,68	Dil.Exh.Sampie Mass-Parl.Filter (kg) = Dil.Tunnet Tot Flow Temp.Corr. (scmm)≃ Dil.Tunnet Tot Mass Flow (kg/Hr.)≭	85.08	65.27 5063,39	65,33 5068,55	85,34 5088.82	85.21 5059.23	85.22 5059.70	85.24 5061.06	65.28 5084.61
AVG GM/BHPH =	1.49	1.77	6.01	5.00	176.22		553.50	0.71	Partic.Mass Flow Rate (g/Hr.)≠	26.578	23,982	23. 9 47	43,102	78.529	41.473	20.084	18.484
AVG GM/KWH =	2.00	2.37	8.06	6.70	236.31		742.25	0.96	GM/BHPH=	0.104	0.122	0.181	1.656	0.373	0.269	0.197	
									. WTD AVG GM/H =	32.267							
WT AVG NO2/NOX RATIO =	0.172085804								WEIGHTED AVG GM/BHPH =	0.236							

WTD AVG GM/KWH = 0.316

OLSON-ECOLOGIC ENGINE TESTING LABORATORY GTAT ISO-8178 8-MODE TESTING OF VISCON POLYMER

8MLP47 (MULTI-FILTER)

									W/1UX	VISCO	N												
	EngSpd	DynTrq	EngPwr	CO2	co	NOx	NO	HC FID	FUEL RT	AirMas	EngExh	ABSHUM	Air In	Baro P	∜aCAL	KNOx	Fuelin	KNO	Methane	NMHC	Humidy	Oil P	
Mode	RPM	lb-ft	Нр	*	ppm	ppm	ppm	ppm	GW/MIN	scfm	deg/F	GR/LB	degF	InHga	FACTOR	PPM	degF	PPM	ppm	ppm	%	psig	
1	2200.1	811.8	256.3	5.88	203.96	692.53	564.28	410.91	739.5	489.7	919.1	61.6	75,1	30.00	0.027	669.23	94.2 54	15.30043	225.8	185.07	47.8	54.3	
2	2200.0	469.8	196.8	5.29	103.56	619,97	526.51	456.83	573	409.1	853.1	59.5	76.2	30.00	0.025	596.00	96.6 50	06.15578	198.0	258.88	44.5	51.4	
3	2200,0	314.8	131.9	4,70	112.92	472.26	404.11	552.16	406,5	334.4	748.2	60.0	76.6	30,00	0.022	454.51	96,4 36	38.92635	194.1	358,10	44.2	52.3	
4	2200.0	62,0	26.0	2.84	226.57	163.15	118.88	796,99	164.5	252,4	510.1	58,2	75.5	30,00	0.014	156,33	97.5 1	13,90968	306,3	490.69	44.5	54.0	
5	1399,9	790,1	210,6	7.29	896,80	787.62	648,51	214.04	566	263.5	1043.7	59.7	74.8	30.00	0.034	738.18	95.0 82	23.64022	189,63	24,41	48.7	37.6	
6	1400.0	578,9	154.3	7.06	632,55	735.68	655,25	335,51	410.5	213.8	968.4	57,4	74,4	30,00	0.033	703.51	93,8 82	26.59944	282.0	53.47	45.6	38.2	
7	1399.9	382.1	101.8	6,19	225.37	642.77	566.57	459,16	275.5	173.8	803.7	56.7	74.1	30.00	0.029	613.52	92.9 54	40.77898	287.8	171.33	45.4	40,5	
8	587.4	1.7	0.2	2.78	223.05	248.78	185.93	905.21	16	53.8	383.5	58.0	74.2	30.00	0.014	238.23	89.8 17	78.04195	861.89	43.32	48.3	16.5	

				GRAMS/H	OUR					
WT. FAC %	Mode No	нс	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	NO2/NOX RATIO
15.00	1	320.09	319.36	1721.48	1394.7146	44370	1718595	139739.27	144.7	0.19
15.00	2	296.06	134,90	1275.51	1080.8801	34380	1424497	108301.80	188.4	0.15
15.00	3	284.82	117,08	774.22	664.53038	24390	1127928	76562.11	185.5	0.14
10,00	4	269.05	153.74	174.27	129.7882	9870	725772	30329.89	167,4	0.27
10.00	5	98.95	833.38	1126.97	947.59939	33960	1034826	106489.77	11.3	0.16
10.00	6	116,35	440.92	805.64	716.81111	24630	773967	77349.40	18.6	0,11
10.00	7	122.23	120,59	539,31	476,76652	18530	589512	52047,79	45.8	0,12
15.00	8	30.25	14,98	26.29	20,27187	960	71915	2937.07	1.5	0.25

									W.F.	0,15	0,15	0,15	0,10	0.10	0.10	0,10	0.15
WTD AVG BHP =	137.03	I	KW =	102.18					MODE =	1	2	3	4	5	6	7	8
									PARTIC. WT, MG =	0.92	0,77	0.68	0.49	1.50	0.69	0.23	0.07
									Exh.Probe Mass Flow Rate (g/Sec.)=	1.087	0.868	0.682	0.441	0.859	0.671	0.567	0.137
	нс	co	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	Sample Time (Sec.)≖	180	180	180	120	120	120	120	180
									Dil.Exh.Sample Mass-Part.Filter (kg) =	0.20	0.16	0.1228	0.05	0.10	0.08	0.07	0.02
WTD AVG GM/H =	200.34	242.81	834.25	701	24114	963828	75753	99.33	Dil.Tunnel Tot Flow Temp.Corr. (scmm)=	65.08	65,34	65.36	65,37	65.19	65.22	65.23	65.33
									Dil.Tunnel Tot Mass Flow (kg/Hr.)=	5049,10	5069.02	5070,58	5071,52	5057.57	5060.00	5060.39	5068.18
AVG GM/BHPH =	1.46	1.77	6.09	5.12	175.98		552.82	0.72	Partic.Mass Flow Rate (g/Hr.)=	23.741	24.982	28.087	46.958	73.597	43.361	17.106	14.387
AVG GM/KWH =	1.96	2,38	8.16	6.86	235.99		741.34	0.97	GM/BHPH≂	0.093	0.127	0.213	1.809	0.349	0.281	0.168	
									WTD AVG GM/H =	31.782							
WT AVG NO2/NOX RATIO =	0.175372224								WEIGHTED AVG GM/BHPH =	0.232							
									WTD AVG GM/KWH =	0.311							

.

-

-

OLSON-ECOLOGIC ENGINE TESTING LABORATORY GTAT ISO-8178 8-MODE TESTING OF VISCON POLYMER

8MLP48 (MULTI-FILTER)

									W/10x '	visco	N											
Mode	EngSpd RPM	DynTrq ∦b⊢ft	EngPwr Hp	CO2 %	CO ppm	NOx ppm	NO ppm	HC FID ppm	FUEL RT GM/MIN	AirMas scfm	EngExh deg/F	ABSHUM GR/LB	Air Iπ degF	Baro P In Hga	f/aCAL FACTOR	KNOX PPM	Fuelin degF	KNO PPM	Methane ppm	NMHC ppm	Humidy %	Oll P psig
1	2200.0	609.9	255.5	5.63	202.28	686.81	559.63	407.52	739.5	494.2	912.5	59.7	70.7	30.00	0.027	660.53	93.2	538.2	224.0	183.5	53.8	53.0
2	2200.0	469.8	196.8	5.27	103.23	617.99	524,83	455.37	571	413.9	843.6	56.7	71.7	30.00	0.025	589.86	91.5	500.9	197.3	258.0	49.3	50.4
3	2200.0	314.7	131,9	4.76	114,41	478.51	409,46	559,47	406.5	336,6	739.7	58.2	72.2	30.00	0.023	458.46	93,3	392.3	196.6	362.8	49.8	51,0
4	2200.0	61.9	25.9	2.92	232.93	167,73	122.22	819.37	166	254.2	502.7	58,8	72.0	30.00	0.014	160,94	91,6	117.3	314,9	504.5	50,5	54.5
5	1400,1	790.0	210.6	7.34	902,65	772.84	852,75	215.44	563	265.1	1031.8	57.7	71.5	30.00	0.034	739.47	92.6	624,7	190,9	24.8	50,6	36.6
8	1400.1	577.7	154.1	7.03	629,49	732.11	852,07	333.88	410	212,1	961.1	56.4	71.6	30.00	0.033	698,35	94.2	622.0	280.7	53,2	49.3	38.3
7	1400.0	381.6	101.7	6.19	225.39	642.85	566.63	459.22	275.5	173.6	801.3	56.2	71.8	30.00	0.029	612.84	94.0	540.2	287.9	171.4	48.8	40.5
8	584.5	1.7	0.2	2.91	232.94	259.80	194,17	945.33	15.75	53.4	380.0	58.2	72.3	30.00	0.014	248.90	91.5	186.0	900.1	45.2	49.6	18.2

		-			GRAMS/HO	OUR														
WT. FAC %		No No	нс	co	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	NO2/NOX RATIO									
15.00		1	320.09	319.38	1713.22	1387.8754	44370	1731718	139739.27	144.7	0,19									
15.00		2	295.03	134.43		1069.4197	34260	1423284	107923.78	167.8	0.15									
15.00		3	284.82	117.08		661.63126	24390	1113534	76562.11	185.5	0.14									
10.00		4	271,50	155.14		131.14381	9980	712942	30606.45	168,9	0.27									
10.00		5	98.43	828.95	1115.65	938.16982	33780	1022605	105925.36	11.3	0.16									
10,00		6	116,21	440.39	802.84	714,1266	24600	776454	77255.18	18.6	0.11									
10.00		7	122,23	120,59	538.65	478.18757	16530	589408	52047.79	45.8	0.12									
15.00		8	29.78	14,75	25,89	19,965221	945	87863	2891,18	1.5	0.25									
												W.F.	0.15	0.15	0.15	0.10	0.10	0.10	0.10	0.15
												MODE =	1	2	3	4	5	6	7	8
WTD AVG BH	P =		136.88		KW ≖	102.07						PARTIC. WT, MG =	1.01	0.74	0.54	0.36	1.50	0.72	0.30	0.12
											Exh	Probe Mass Flow Rate (g/Sec.)=	1.09	0.87	0.68	0.44	0.86	0.67	0.57	0,14
											CAIL	Sample Time (Sec.)=	180	180	180	120	120	120	120	180
			нс	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC		h.Sample Mass-Part.Filter (kg) =	0.20	0.16	0,12	0.05	0.10	0.08	0.07	0.02
				00	NIUA		7 OEC	EXTROST	002	NAME		el Tot Flow Temp.Corr. (scmm)=	65.04	65.24	65.36	65.37	65.22	65,25	65.25	65.37
WTD AVG GM/H =			200.29	242,35	829.08	697	24082		75651	~ ~ ~			5046.05	5061.70		5071.14		5061.78	5062.22	5071.56
WID AVG GWH =			200.29	242.35	829,08	09/	24002	960601	/ 363 1	99,38	Dit.							45.26		
												Partic.Mass Flow Rate (g/Hr.)=	26.05	23.97	22.3051	34.50	73.63	43.20	22.32	24.68
AVG GM/BHP	H =		1.46	1.77	6.06	5.09	175.93		552.67	0.73										
												GM/BHPH=	0,102	0.122	0.169	1.331	0.350	0.294	0.219	
AVG GM/KWH ≖			1.96	2.37	8.12	6.83	235.92		741.14	0.97										
												WTD AVG GM/H =	32.12							
												WEIGHTED AVG GM/BHPH =	0.235							
WT AVG NO2/NOX I	RATIO	•	0.175372224																	
												WTD AVG GM/KWH =	0.315							

Approved _____

OLSON-ECOLOGIC ENGINE TESTING LABORATORY GTAT ISO-8178 8-MODE TESTING OF VISCON POLYMER 8MLP49 (MULTI-FILTER)

Mode	EngSpd RPM	DynTrq Ib-ft	EngPwr Hp	CO2 %	CO ppm	NOx ppm	NO ppm	HC FID ppm	FUEL RT GM/MIN	AirMas scfm	EngExh deg/F	ABSHUM GR/LB	Air In degF	Baro P InHga	f/aCAL FACTOR	KNOx PPM	Fuelin degF	KNÖ PPM	Methane ppm	NMHC ppm	Humidy %	Oil P psig
1	2200.0	611.3	256.1	5.69	182.24	693.46	569.50	410.00	744.5	496.3	908.2	54,4	68.7	30.00	0.027	658.23	93.4	540,57	212.8	197.2	52.5	55.1
2	2200.0	469.9	196.8	5.33	98.51	612.57	519.79	452.86	576.5	415.1	840.0	58.9	70.5	30,00	0.025	585.09	97.5	496.47	183.4	269.4	51.6	52.1
3	2200.0	315.0	131.9	4.75	107.93	471.80	399,33	552.61	410	338.7	739,7	57.3	71.2	30,00	0.023	451.09	98.1	381.81	188,9	383.7	50.7	52.8
4	2200.1	62.0	28.0	2.91	224.23	168.09	121.80	799.65	170	255.4	505.3	57.1	71.3	30,00	0.014	160.62	98.2	116.39	300.1	499.5	50.4	54.7
5	1400.0	789.8	210.5	7.36	874.84	780.84	663,13	211.41	564.5	266.5	1027,4	57,3	70,9	30,00	0.035	746.57	93,1	634.03	202.4	9.1	51.2	38,4
8	1399.9	578.0	154.1	7,14	590.51	736,93	661,49	342.37	409	214.5	957.9	56.0	71.6	30,00	0.033	702.33	95.0	630.42	273,3	69.0	49.0	40.3
7	1400.0	382.1	101.8	6.40	221.12	679.58	595.42	469.39	278	172.7	801.9	58.0	71.8	30,00	0.030	650.83	93.7	570.23	286.2	183.2	50.3	42.6
8	588.1	1.8	0.2	6.05	127.42	773.91	433.29	561.38	16.75	53.0	341.2	60.1	72.2	30.00	0.028	744.96	90.9	417,09	421.6	139.7	51.4	19.0

			(GRAMS/H	00 R ——					
WT. FAC %	Mode No	нс	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	NO2/NOX RATIO
15.00	1	320.83	286.65	1700.93	1388.7995	44670	1724954	140743.38	154,9	0.18
15.00	2	293.43	128.31	1251.89	1059.8368	34590	1424129	108989.01	175.2	0.15
15.00	3	284.57	111.72	767.09	651.20011	24600	1126106	77239.85	188.0	0.15
10.00	4	272.49	153.59	180.74	133.75861	10200	732954	31369.82	171.9	0.28
10.00	5	96.64	603.79	1126.89	952.52013	33870	1022985	106257.07	4.1	0.15
10.00	8	117.15	406.15	793.60	711.69639	24540	764025	77114.98	23.7	0.10
10.00	7	121,11	114,88	554,54	487.32259	16580	572557	52158.09	47.5	0.12
15.00	8	9.30	4.24	40.75	23.02278	1005	36657	3163.38	2.3	0.44

WTD AVG BHP =	136.99	I	KW =	102.16						0.15 1 0.83	0.15 2 0.75	0.15 3 0.48	0.10 4 0.37	0.10 5 1.48	0.10 6 0.53	0.10 7 0.19	0.15 8 0,11
									Exh.Probe Mass Flow Rate (g/Sec.)=	1.09		0.48	0.44	0.86	0.33	0.15	0.14
	нс	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	Sample Time (Sec.)=		180	180	120	120		120	180
									Dil.Exh.Sample Mass-Part.Filter (kg) =	0.20	0,16	0.1228	0.05	0.10	0.08	0.07	0.02
WTD AVG GM/H =	196.96	227.48	829.68	697	24247	956029	76210	102,79	Dil.Tunnel Tot Flow Temp.Corr. (scmm)≃	65.04	65.32	65.32	65.34	65.19	65.23	65.23	65.32
									Dil.Tunnel Tot Mass Flow (kg/Hr.)≍	5045.76	5067.78	5067.81	5069,31	5057.05	5060.65	5060.61	5067.85
AVG GM/BHPH =	1.44	1.66	6.06	5.09	176.99		556.30	0.75	Partic.Mass Flow Rate (g/Hr.)=	21.40	24.33	19.82	35.44	72.61	33.31	14.13	22.61
	1.93	2.23	8.12	6.82	237.35		746.01	1.01	GM/BHPH=	0.084	0.124	0.150	1.364	0.345	0.216	0.139	
									WTD AVG GM/H =	28.772							
WT AVG NO2/NOX RATIO =	0.203824786								WEIGHTED AVG GM/BHPH =	0.210							
									WTD AVG GM/KWH =	0.282							

.

Approved _____

OLSON-ECOLOGIC ENGINE TESTING LABORATORY GTAT ISO-8178 8-MODE TESTING OF VISCON POLYMER 8MLP50 (MULTI-FILTER)

	EngSpd	DynTrq	EngPwr	CO2	co	NOx	NO	HC FID	FUEL RT	AirMas	EngExh	ABSHUM	Air In	Baro P	t/aCAL	KNOx	Fuelin	KNO	Methane	NMHC	Humidy	Oil P
Mode	RPM	lb-ft	Нр	%	ppm	ppm	ppm	ppm	GM/MIN	scfm	deg/F	GR/LB	degF	InHga	FACTOR	PPM	degF	PPM	ppm	ppm	%	psig
1	2200.0	604.0	253.0	5.78	196.94	694.88	572.07	431,53	734.5	489.7	916.7	66.4	73,4	30.20	0.027	679.71	93.4 55	59,57747	263.4	168.1	54.8	51.8
2	2200.0	469.8	196.8	5.35	101.70	606.35	512.20	467.35	574.5	414.2	848.0	60.6	74,1	30.20	0.025	584.50	96.1 49	3.73734	221.4	246.0	48.9	51.2
3	2200.0	314.8	131.8	4,79	114.09	468.26	394.01	571.51	407	337.6	748.1	63.6	74.7	30.20	0.023	454,74	96,3 38	32.83554	222.3	349.2	50,2	52.2
4	2200.0	62.1	26.0	2.97	222.14	172,33	124.77	824.28	167,5	254.7	509.3	65.0	74.8	30,20	0.015	167,95	96.6 12	21.60066	348.1	478.2	51.2	54.0
5	1399,9	789.6	210.5	7,43	902.43	760.49	641.15	235,94	566.5	268.0	1035.4	62.5	74.2	30.20	0.035	736.47	93,6 62	20.90079	195.2	40.7	50.3	38,8
6	1400.0	577.9	154.1	7.15	612.86	735.33	628,75	340.85	410.5	216.4	957.0	64.7	74.6	30.20	0.034	718.24	94,4 61	12.41848	305.1	35.5	51.4	40.4
7	1400.0	382.0	101.8	6.36	216.00	641.24	557.16	441.93	276	174.4	800.7	64.9	75.1	30.20	0.030	824.86	95.2 54	12.92494	312.7	129.2	50.6	42.8
8	567.6	1.0	0.1	3.55	233.99	300.09	213.51	1033.52	16	51.3	382.7	62.1	75.6	30.20	0.017	290.33	66.7 20	06.56721	862.9	170.8	47.7	18.3

				GRAMS/H	OUR					
WT. FAC %	Mode No	нс	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	NO2/NOX RATIO
15.00	1	328.21	301.09	1707.16	1398.1787	44070	1680546	138787.28	128.4	0.18
15.00	2	300.17	131.30	1239.70	1045.1359	34470	1412731	106580.98	158.6	0.18
15.00	3	289.61	116.21	760.96	642.47587	24420	1109471	76643.86	177.8	0.16
10.00	4	271.25	146.94	162.52	135.02506	10050	708981	30906.63	158.5	0.28
10.00	5	107.22	824.33	1105.21	927.70829	33990	1018765	106573.39	· 18.5	0.16
10.00	6	116,71	422.05	810.32	892.19714	24630	765989	77377.92	12.2	0.14
10.00	7	114.78	112,76	535.92	466.8578	16560	576695	52179.11	33,7	0,13
15.00	8	27.19	12.37	25,22	18,456877	960	57216	2950,84	4.6	0.29

WTD AVG BHP =	136.49	I	KW =	101.78					W.F. MODE = PARTIC, WT, MG =	0.15 1 0.9 6	0.15 2 0.71	0,15 3 0,62	0.10 4 0.45	0.10 5 1.53	0.10 6 0.62	0.10 7 0.26	0.15 8 0.11	
									Exh.Probe Mass Flow Rate (g/Sec.)=	1.09	0.87	0.6820	0.44	0.66	0.87	0.57	0.14	
	HC	co	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	Sample Time (Sec.)=	180	180	180	120	1 20	120	120	180	
									Dil.Exh.Sample Mass-Part.Filter (kg) ≈	0.20	0.16	0.1226	0.05	0.10	0.08	0.07	0.02	
WTD AVG GM/H =	202.77	234.75	823,35	688	24111	946038	75748	92.71	Dil.Tunnel Tot Flow Temp.Corr. (scmm)=	65,14	65.33	65.37	65.37	65.20	65.23	65.23	65.38	
									Dil.Tunnel Tot Mass Flow (kg/Hr.)=	5048.84	5063.39	5066.55	5068.62	5059.23	5059.70	5061.08	5064.61	
AVG GM/BHPH =	1.49	1.72	6.03	5.04	176.64		554.95	0.68	Partic.Mass Flow Rate (g/Hr.)≖	31.481	35.973	30.553	80.458	72.149	36.446	23.803	20.538	
AVG GM/KWH =	1.99	2.31	8.09	6.76	236.88		744.21	0.91	GM/BHPH≖	0.124	0,183	0.232	3.098	0.343	0.237	0.234		
									WTD AVG GM/H =	39.087								
WT AVG NO2/NOX RATIO =	0.167763995								WEIGHTED AVG GM/BHPH =	0.289								
AVG GM/KWH =	1.99								Partic.Mass Flow Rate (g/Hr.)= GM/BHPH= WTD AVG GM/H =	31.481 0.124 39.087	35.973	30.553	80.458	72.149	36.446	23.803		

WTD AVG GM/KWH = 0.384

.

·

OLSON-ECOLOGIC ENGINE TESTING LABORATORY GTAT ISO-8178 8-MODE TESTING OF VISCON POLYMER 8MLP51 (MULTI-FILTER)

Mode	EngSpd RPM	DynTrq lb-ft	EngPwr Hp	CO2 %	CO ppm	NOx ppm	NO ppm	HC FID ppm	FUEL RT GM/MIN	AirMas scfm	EngExh deg/F	ABSHUM GR/LB	Air In degF	Baro P InHga	f/aCAL FACTOR	KNOx PPM	Fuelin degF	KNO PPM	Methane ppm	NMHC ppm	Humidy %	Oil P psig
1	2200.0	601.4	251.9	5.61	189.00	679.15	539.90	418.00	725	489.4	906.7	63.5	74.5	30.20	0.026	859.44	95.4	524.24	246.9	169,1	50.6	52.9
2	2200.0	470.0	196.9	5.27	104.41	622.08	509.48	457.53	576.5	413.4	851.6	64.6	76.1	30.20	0.025	605.75	97.6	496,10	220.8	236.7	48.7	50.5
3	2200.0	314.4	131.7	4,71	114.20	476,77	391.61	562.81	406	337.8	748.0	63.9	78,4	30,20	0.022	463,41	98.4	360,64	224.2	336.6	47.7	51.5
4	2200.0	62,1	26.0	2.83	225.99	175.24	125,14	805,65	167	254,9	509.0	63.5	76,4	30,20	0.014	170.17	96.7	121.52	346.4	457.2	47.4	54.1
5	1400,1	789,1	210.4	7.35	911.36	731.41	629.62	241.34	566.5	266,7	1036,4	63,1	76.2	30,20	0,034	709.50	95,9	610.76	200.6	40.6	47.4	38.4
8	1399,9	578.3	154.1	7.08	626.44	742.21	620.91	339,94	411.5	214.0	963.0	83.6	76.8	30,20	0.033	720.80	96.3	603.00	311.7	28.2	46.8	40,1
7	1400.0	382.3	101.9	6.29	225.08	635.84	545.28	456.98	276	173.6	802.2	63.2	77.0	30,20	0.030	616.92	96.1	529.06	319.7	137.3	46.2	42,8
6	576.3	1.2	0.1	3.07	267.56	334.14	247.38	1147.15	16	52.3	365,3	64.0	77.4	30.20	0.015	324.87	91.2	240.51	982.9	164.3	46.3	18.6

				GRAMS/H	0UR								
WT. FAC %	Mode No	нс	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	NO2/NOX RATIO			
15.00	1	323.43	293.94	1684.94	1332.2618	43500	1706412	136999.00	131.4	0.21			
15.00	2	299.28	137.27	1306.36	1069.1714	34590	1438496	108956.51	155.5	0.18			
15.00	3	289.43	118.05	788.96	648.52335	24360	1125152	76450.55	175.0	0.18			
10.00	4	277.64	156.65	193.78	141,46758	10020	741836	30775.08	159.6	0.29			
10.00	5	110.80	841.02	1075.65	921.93577	33990	1028610	106535.88	18.8	0.14			
10.00	6	117.92	436,81	825.71	690.07195	24690	774978	77541.90	9.8	0,16			
10.00	7	119,93	116.73	534,64	459,80621	16560	582225	52153.47	36.2	0.14			
15.00	8	34.59	16.22	32,35	24,621474	960	65333	2921,45	5.1	0.26			
											W.F.	0.15	0.15
WTD AVG BHP	=	136.33		KW =	101.66						MODE =	1	2
											PARTIC. WT, MG =	1.06	0.85

									PARTIC. WT, MG =	1.06	0.85	0.75	0.55	1.68	0.75	0.31	0.15	
									Exh.Probe Mass Flow Rate (g/Sec.)=	1.09	0.87	0.6820	0.44	0.86	0.67	0.57	0.14	
	HC	co	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	Sample Time (Sec.)=	180	180	180	120	120	120	120	180	
									Dil.Exh.Sample Mass-Part.Filter (kg) =	0.20	0.16	0.1228	0.05	0.10	0.08	0.07	0.02	
WTD AVG GM/H =	204.65	240.14	834.87	683	24038	963074	75500	92.48	Dil.Tunnel Tot Flow Temp.Corr. (scmm)=	65.04	65.24	65.39	65.37	65.17	65.22	65.21	65.34	
									Dil.Tunnel Tot Mass Flow (kg/Hr.)≖	5045.73	5061.35	5072.67	5071.58	5055.83	5060.13	5059.29	5069.18	
AVG GM/BHPH =	1.50	1.76	6.12	5.01	176.32		553.80	0.68	Partic.Mass Flow Rate (g/Hr.)=	27.34	27.54	30.99	52.71	82.40	47.13	23.05	30.83	
AVG GM/KWH =	2.01	2.38	8.21	6.71	238,45		742.66	0,91	GM/BHPH=	0.106	0.140	0.235	2.029	0.392	0.306	0.226		
									WTD AVG GM/H =	38.034								
WT AVG NO2/NOX RATIO =	0.196737998								WEIGHTED AVG GM/BHPH =	0.279								

WTD AVG GM/KWH = 0.374

Approved _____

0.15 0.10 0.10 0.10 0.10

6

5

3

4

0.15

8

.

7

OLSON-ECOLOGIC ENGINE TESTING LABORATORY GTAT ISO-8178 8-MODE TESTING OF VISCON POLYMER 8MLP52 (MULTI-FILTER)

Mode	EngSpd RPM	Dyn Troj lib-ft	EngPwr Hp	CO2 %	CO ppm	NOx ppm	NO ppm	HC FID ppm	FUEL RT GM/MIN	AirMas scfm	EngExh deg/F	ABSHUM GR/LB	Air In degF	Baro P InHga	f/aCAL FACTOR	KNOX PPM	Fuelin degF	KNO PPM	Methane ppm	NMHC ppm	Humidy %	Oil P psig
1	2200.0	590.0	247.2	5.64	186.42	643.11	537.92	423.07	720	479.4	905.7	64.2	77.7	30.20	0.027	625.61	99.4	523.27	259.5	163.6	45.9	53.6
2	2200.0	469.8	196.8	5.37	109.45	573.52	507,17	461.02	576	409.3	857.2	64.2	78.8	30.20	0.025	557.91	101.8	493.37	233.5	227.5	44.3	51.3
3	2200.0	315.3	132.1	4.87	129,14	444.01	396.67	572.82	409	333,3	754.9	64.9	79,9	30,20	0.023	432.60	102.2	386,68	240.2	332.6	43,1	51.9
4	2200.0	62.0	26.0	3.02	244.49	155.37	124.79	826.89	187	252.7	512.8	64 ,1	79,9	30,20	0.015	151.10	102.1	121.36	361.5	467,2	42,7	53.4
5	1400.0	789.0	210.3	7.55	914,79	708,34	636.93	239.95	567.5	264.6	1045.4	63.6	79.5	30.20	0.035	687,92	99.2	816,57	183,8	56,1	42,8	38,1
8	1400.0	577.7	154.0	7,34	668,85	700,70	840,72	326,97	413	212.3	972.8	63,7	80,1	30.20	0.034	680,63	99.8	822.36	318,8	8.1	42.0	39.8
7	1400.0	382.2	101.9	6.54	234,50	604.31	563,76	467.79	275.5	170.4	809.2	83.5	80,4	30.20	0.031	586.82	100.5	547.44	333.6	134.1	41.6	42.1
8	574.8	1.2	0.1	3.96	291.81	268.59	236.68	946.53	15.5	50.5	387.7	84.0	80.6	30.20	0.019	261.10	95.2	230.09	946.5	0.0	41.5	18.3

				GRAMS/H	DUR					
WT. FAC %	Mode No	нс	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	NO2/NOX RATIO
15.00	۰ ۱	323.26	286.31	1578.52	1313.4707	43200	1685740	136056.48	125.8	0.16
15.00	2	295.69	141.10	1181.64	1042.7405	34560	1411710	108866.26	146.5	0.12
15.00	3	286.60	129.87	714.74	640.99105	24540	1096429	77013.94	167.2	0.11
10.00	4	267.28	158.51	180.94	132.0557	10020	695116	30805.49	152.5	0.20
10.00	5	107,48	823.68	1017.60	911.11791	34050	1005615	106764.56	25.2	0.10
10.00	8	109,78	451.17	754.50	889.12641	24780	751660	77831.83	2.7	0.09
10.00	7	117.86	118,78	488.24	456.80825	16530	560215	52064.45	34.0	0.07
15.00	8	21,74	13.46	19,81	17,860183	930	49914	2870.64	0	0.12

WTD AVG BHP =	135.64		(W =	101.15					W.F. MODE =	0.15	0.15	0.15	0.10	0.10	0.10 B	0.10	0.15
WID AVG BHP -	133.04		\VV	101.15					PARTIC, WT, MG =	1.04	0,71	3 0.71	4 0.58	5 1.72	0.72	0.60	0.11
									Exh.Probe Mass Flow Rate (g/Sec.)=	1.09	0.87	0.6820	0.44	0.86	0.67	0.57	0.14
	HC	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	Sample Time (Sec.)=	180	180	180	120	120	120	120	180
									Dil.Exh.Sample Mass-Part.Filter (kg) =	0.20	0.16	0.12	0.05	0,10	0.08	0,07	0.02
WTD AVG GM/H =	199.33	240.82	766.34	671	24023	937830	75468	87.34	Dil.Tunnel Tot Flow Temp.Corr. (scmm)≠	65.07	65.23	65.35	65.34	65.23	65.21	65.25	65.35
									Dil.Tunnel Tot Mass Flow (kg/Hr.)=	5048,02	5060.38	5069.91	5069,41	5060,63	5058.61	5062.34	5069.51
AVG GM/BHPH =	1.47	1.78	5.65	4.95	177.10		556.37	0.64	Partic.Mass Flow Rate (g/Hr.)≐	26.83	23.00	29.32	55,56	84.44	45.23	44.64	22.61
AVG GM/KWH ■	1.97	2.38	7.58	6.64	237,50		746.10	0.86	GM/BHPH≖	0,109	0.117	0.222	2.138	0.402	0.294	0.438	
									WTD AVG GM/H =	38.252							
WT AVG NO2/NOX RATIO =	0.120660396								WEIGHTED AVG GM/BHPH =	0.282							
									WTD AVG GM/KWH =	0.378							

Approved _____

OLSON-ECOLOGIC ENGINE TESTING LABORATORY GTAT ISO-8178 8-MODE TESTING OF VISCON POLYMER 8MLP53 (MULTI-FILTER)

Mode	EngSpd RPM	DynTrq lb-ft	EngPwr Hp	CO2	CO ppm	NOx ppm	NO ppm	HC FID	FUEL RT GM/MIN	ArrMas scfm	EngExh deg/F	ABSHUM GR/LB	Air In degF	Baro P InHga	#eCAL FACTOR	KNOx PPM	Fuelin degF	KNO PPM	Methane ppm	NMHC ppm	Humidy %	Oil P psig	nH/nC RATIO
1	2200.0	598.1	250,6	5.71	206,90	664.74	538.36	405.81	734	479,4	922.7	64.5	80,4	30,20	0.027	647.00	100,4	524.00	246,5	159,3	42.2	53.4	1.8
2	2200.0	469.9	196.8	5.38	113.12	611.36	512.42	489.03 •	578.5	408.9	864.6	81.9	81.9	30,20	0.025	591.17	103.0	495.49	226.3	242.7	38.8	51.1	1.8
3	2200.1	314.6	131.8	4.82	119.44	478.56	400.73	572.66	407	331.7	759.7	81.8	81.7	30.20	0.023	462.66	103.3	387.42	224.4	348.2	38.7	51.7	1.8
4	2200.0	62.0	26.0	2.92	227,00	177.40	131,79	831,10	166	253.2	516,3	59.3	81,0	30,20	0.014	170,43	103,4	126.62	337.9	493,2	38.1	53.2	1.8
5	1400.0	788.5	210.2	7.41	910.86	781.73	637,99	227.06	568	268,3	1050.6	59,8	79.5	30,20	0.035	732.69	101.1	813.87	177.4	49,7	40.3	37.3	1.8
6	1400.0	578.0	154.1	7,15	661.36	761.36	648.33	328.07	412	213.4	974,7	59.2	79.0	30.20	0.034	731.36	101,9	622.78	303.9	24.2	40.5	39.5	1.8
7	1400.1	382.1	101.9	6,36	233.08	661.18	579.43	472.10	278.5	173.3	811.2	59.5	78.8	30.20	0.030	835.53	101,3	556.98	320.9	151.2	41.3	41.6	1.8
8	569.3	1.2	0.1	3.17	304,73	368,19	262,60	1100,47	15.25	51,4	387.0	61,1	78.5	30.20	0.018	355,31	96,3	253.42	923.8	176.9	42.5	18,0	1.8

.

				GRAMS/H	JUR					
WT, FAC	Mode No	нс	со	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	NO2/NOX RATIO
15.00	1	312.19	319.95	1643.89	1323.6835	44040	1698405	138712.72	123.1	0.19
15.00	2	301,59	148,20	1255.28	1050.0132	34710	1414955	109317,13	156.7	0.16
15.00	3	288.50	120.95	769.71	646.71566	24420	1103004	76639.92	176.3	0.16
10.00	4	275.85	151.45	186,80	141.8949	9960	714145	30598.53	165.5	0.26
10.00	5	103.89	836,13	1104,95	921,27801	34080	1023386	106852.51	22.7	0.18
10.00	6	112,75	456.89	830.04	705,99786	24720	767834	77622.18	8.4	D, 15
10.00	7	122.83	121.89	546.02	479,98817	16590	577230	52234.85	39.5	0,12
15.00	8	30.68	17.08	32.71	24.121784	915	60455	2789.18	5.1	0.29

									W.F.	0.15	0.15	0.15	0.10	0.10	0.10	0.10	0.15
WTD AVG BHP =	136.11		KW =	101.50					MODE =	1	2	3	4	5	6	7	8
									PARTIC. WT, MG =	1.08	0.83	0.62	0.56	1.72	0.76	0.35	0.15
									Exh.Probe Mass Flow Rate (g/Sec.)=	1.09	0.87	0.68	0.44	0.86	0.67	0.57	0.14
	нс	co	KNOX	KNO	FUEL	EXHAUST	CO2	NMHC	Sample Time (Sec.)=	180	180	180	120	120	120	120	180
									Dil.Exh.Sample Mass-Part.Filter (kg) =		0.16	0.12	0.05	0.10	0.08	0.07	
WTD AVG GM/H =	201.46	247.26	821 99	682	24148	949782	75850	92 78	Dil.Tunnel Tot Flow Temp.Corr. (scmm)=		65.29	65.38	65.35	65.20	65.25	65.22	65.32
									Dil. Tunnel Tot Mass Flow (kg/Hr.)=	5045.83	5064.86	5072.26	5070.10	5058.18	5061.98	5059.60	5067.37
AVG GM/BHPH =	1.48	1.82	6.04	5.01	177.42		557.28	0.68	Partic.Mass Flow Rate (g/Hr.)=	27.85	26.91	25.62	53.65	84.40	47.78	26.03	30.82
AVG GW/KWH =	1 98	2.44	8 10	6.72	237.92		747.32	091	GM/BHPH≃	0.111	0.137	0.194	2.067	0,402	0.310	0.255	
									WTD AVG GM/H =	37.866							

WT AVG NO2/NOX RATIO = 0.189363726

.

.

WTD AVG GM/KWH = 0.373

WEIGHTED AVG GM/BHPH = 0.278

SOP No.: VOC Sampling Protocol Version 6 Date Issued: October 6, 2006 Page 1 of 5

TITLE: Sampling Protocol for Volatile Organic Compounds in Exhaust Emissions

SOP NUMBER: VOC Sampling Protocol VERSION 6

WRITTEN BY:

Technical Specialist: Nathan Imus

Date

APPROVED BY:_

President: Don Olson

Date

SOP MANUAL CONTROL NO. ____:

This document has been prepared by Olson-EcoLogic and is to be considered the sole property of Olson-EcoLogic. This document is provided to organizations outside of The Olson-EcoLogic Group for the sole purpose of determining the fitness of Olson-EcoLogic for a specific project. The document remains the property of The Olson-EcoLogic Group and the recipient agrees to keep confidential the contents of this document. If the document is provided as a controlled document, the user agrees to surrender the document upon request of Olson-EcoLogic. If the document is provided as an uncontrolled document, the user understands that subsequent revisions will not be provided.

The document may not be provided to a third party, such as consultants or other governmental agencies, unless said third party agrees to the terms stated above.

SOP No.: VOC Sampling Protocol Version 6 Date Issued: October 6, 2006 Page 2 of 5

1.0 Scope and Application

- 1.1 This exhaust gas sampling protocol is specifically designed for sampling dilute exhaust generated from heavy-duty diesel engines being operated over the EPA transient cycle or steady state emission test as described in 40 CFR Part 86.
- 1.2 For transient cycle operation, this official testing protocol involves continual sample integration of all gaseous emissions along with pertinent engine and ambient variables for 1200 seconds (20 minutes). For eight-mode steady state operation, this official testing protocol involves modal sample collection for a total of 20 minutes. Modes 1, 2, 3 and 8 are collected for 3 minutes of the 5 minute mode, while modes 4, 5, 6 and 7 are collected for 2 minutes.
- 1.3 The constant volume sampling system (CVS) continually dilutes the exhaust gas with finely filtered room air to maintain a constant volume of exhaust gas plus dilute air over the test interval. Coincidentally a second bag is being filled continuously with the same air used to dilute the exhaust gas. Therefore at the end of each test there are bag samples of the proportional and integrated dilute exhaust and the filtered air that was used to dilute the exhaust.

2.0 Method Summary

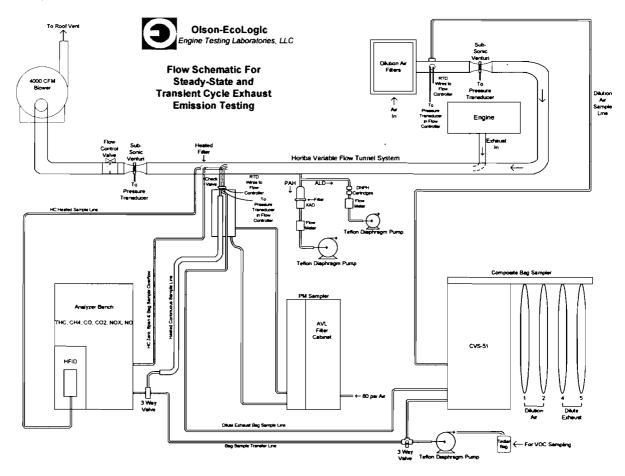
2.1 Samples analyzed for Volatile Organic Compounds (VOC's) are collected from the integrated bag samples that have been continuously filled during the test cycle. One bag is filled with dilution air, while the other is filled with dilute exhaust. A Teflon diaphragm pump is T-connected through a valve to the constant volume sampling system to fill a Tedlar bag with either dilution air or dilute exhaust. For every emission sample and tunnel blank sampled, a dilution air sample must be co-sampled for background correction. Tedlar bag samples are analyzed by gas chromatography (GC).

3.0 Health and Safety

- 3.1 The toxicity or carcinogenicity of chemicals used in this procedure has not been precisely defined. Each chemical should be treated as a potential health hazard, and exposure to these chemicals should be minimized.
- 3.2 All sampling should be done while using proper protective equipment to minimize exposure to vapor. Minimum personal protection includes the use of laboratory safety glasses, a lab coat or apron, and protective gloves.

4.0 Sample Preservation, Containers, Handling, and Storage

- 4.1 Samples are collected and stored in 1 L Tedlar bags.
- 4.2 Tedlar bags may not be exposed to heat or excessive light. Black Tedlar bags may be used to eliminate photochemically induced reactions.
- 4.3 Samples must be analyzed within 24 hours of collection.
- 4.4 To prevent sample contamination, Tedlar bags are used only once.


SOP No.: VOC Sampling Protocol Version 6 Date Issued: October 6, 2006 Page 3 of 5

5.0 Interferences and Potential Problems

- 5.1 To maximize sample integrity, Tedlar bags should not leak or be exposed to excessive light or heat. Tedlar bags must be shielded from direct sunlight to avoid photochemically induced reactions of any reactive hydrocarbons.
 - 5.1.1 The compound 1,3-butadiene, resulting mostly during cold-start testing by the combustion of olefins, is extremely unstable as it easily polymerizes in the presence of oxygen. Therefore all samples analyzed for 1,3-butadiene must be run within 1 hour of collection.

6.0 Equipment/Apparatus

- 6.1 Tedlar bags: SKC, Inc., 1 L in capacity, or equivalent
- 6.2 Super Syringe: Fisher Scientific, 1 L
- 6.3 Teflon diaphragm vacuum-pressure pump: Barnant Co., or equivalent
- 6.4 Sampling Train Schematic

SOP No.: VOC Sampling Protocol Version 6 Date Issued: October 6, 2006 Page 4 of 5

7.0 Procedure

- 7.1 Sample collection
 - 7.1.1 After the analysis of the bag samples collected from the emission test, a T-connected valve is turned enabling the sample to flow through the Teflon diaphragm pump to the Tedlar bag.
 - 7.1.2 A dilution air sample is collected first by setting the CVS to "read bag 1 or 2". Before connecting the Tedlar bag to the pump, the pump should be run for about 30 seconds to flush any contaminants from previous samples. The Tedlar bag is then attached to the pump and powered on to collect the sample.
 - 7.1.3 A tunnel blank or dilute exhaust sample is collected next by setting the CVS to "read bag 4 or 5". Before connecting the Tedlar bag to the pump, the pump should be run for about 30 seconds to flush any contaminants from previous samples. The Tedlar bag is then attached to the pump and powered on to collect the sample.
 - 7.1.4 The dilution and work is noted for each dilute exhaust sample taken for final calculations.
 - 7.1.5 The Tedlar bag samples are quickly taken into the laboratory and shaded from direct light for analysis by GC.

8.0 Quality Control/Quality Assurance

- 8.1 Dilution Air Sample
 - 8.1.1 A dilution air sample is collected for every emission sample and tunnel blank to correct for background levels in the ambient dilution air.
- 8.2 Tunnel Blank Sample
 - 8.2.1 A tunnel blank sample is collected each analysis day to note any hydrocarbon contamination that may be in the tunnel.
- 8.3 Duplicate Sample
 - 8.3.1 A duplicate emission sample is collected each analysis day for quality purposes.
- 8.4 Data Comparisons
 - 8.4.1 The VOC sampling protocol provides the same gas sample used in the official calculation of results from the emission test. The hydrocarbon (HC) data can be compared to the GC data.
 - 8.4.2 The primary bag gas data are printed out on every test report automatically along with other engine operating data. The dilution ratio and work for the entire test is also printed out on each report from the precise CVS flow data. Accordingly, there is generally no need to dilute the Tedlar bag samples before GC analysis.

SOP No.: VOC Sampling Protocol Version 6 Date Issued: October 6, 2006 Page 5 of 5

8.5 Leak Checks

8.5.1 Sampling Train

- 8.5.1.1 To leak check any part of the sampling train, the suspected leak area should be isolated and pressurized or put under vacuum. A gauge may then be used to check if a leak exists.
- 8.5.2 Tedlar Bags
 - 8.5.2.1 Tedlar bags may be leak checked by filling the bag and leaving it under pressure overnight. If the bag deflates, it should not be used for sample collection.

8.6 Flow Rates

8.6.1 The flow rate into the CVS bags is controlled by the Horiba CVS with needle valves. The flow rate over the 20 minute transient test cycle is 5 L/min, while the flow rate over the 40 minute steady state test cycle is 2.5 L/min.

SOP No.: $1002 C_2-C_5$ Hydrocarbons Version 2 Date Issued: June 22, 2006 Page 1 of 9

TITLE: Determination Of C₂-C₅ Hydrocarbons In Automotive Source Samples By Gas Chromatography

Method 1002

SOP NUMBER: 1002 C₂-C₅ Hydrocarbons VERSION 2

WRITTEN BY:

Technical Specialist: Nathan Imus

Date

APPROVED BY:

President: Don Olson

Date

SOP MANUAL CONTROL NO. :

This document has been prepared by Olson-EcoLogic and is to be considered the sole property of Olson-EcoLogic. This document is provided to organizations outside of The Olson-EcoLogic Group for the sole purpose of determining the fitness of Olson-EcoLogic for a specific project. The document remains the property of The Olson-EcoLogic Group and the recipient agrees to keep confidential the contents of this document. If the document is provided as a controlled document, the user agrees to surrender the document upon request of Olson-EcoLogic. If the document is provided as an uncontrolled document, the user understands that subsequent revisions will not be provided.

The document may not be provided to a third party, such as consultants or other governmental agencies, unless said third party agrees to the terms stated above.

SOP No.: $1002 C_2 \cdot C_5$ Hydrocarbons Version 2 Date Issued: June 22, 2006 Page 2 of 9

1.0 Scope and Application

1.1 This SOP is based on CARB Method 1002 and describes the use of gas chromatography (GC) coupled with flame ionization detection (FID) for the determination of C_2 - C_5 hydrocarbons (light-end hydrocarbons) in the ppbC range from automotive source samples. The compounds listed below may be determined by this method:

Compound	CAS Registry No.
	00074.05
ethene	00074-85-1
ethyne	00074-86-2
ethane	00074-84-0
propene	00115-07-1
propane	00074-98-6
1,2-propadiene	00463-49-0
1-propyne	00074-99-7
2-methylpropane	00075-28-5
2-methylpropene (isobutene)	00115-11-7
1-butene	00106-98-9
1,3-butadiene	00106-99-0
n-butane	00106-97-8
trans-2-butene	00624-64-6
2,2-dimethylpropane	00463-82-1
1-butyne	00107-00-6
cis-2-butene	00590-18-1
3-methyl-1-butene	00563-45-1
2-methylbutane	00078-78-4
2-butyne	00503-17-3
1-pentene	00109-67-1
2-methyl-1-butene	00563-46-2
n-pentane	00109-66-0
2-methyl-1,3-butadiene	00078-79-5
trans-2-pentene	00646-04-8
3,3-dimethyl-1-butene	00558-37-2
cis-2-pentene	00627-20-3
1-buten-3-yne	00689-97-4
2-methyl-2-butene	00513-35-9
1,3-cyclopentadiene	00542-92-7
2,2-dimethylbutane	00075-83-2
cyclopentene	00142-29-0
4-methyl-1-pentene	00142-29-0
3-methyl-1-pentene	00760-20-3
cyclopentane	00287-92-3
2,3-dimethylbutane	00079-29-8
1-methyl-tert-butyl-ether	01634-04-4
4-methyl-cis-2-pentene	00691-38-3
2-methylpentane	00107-83-5
4-methyl-trans-2-pentene	00674-76-0
3-methylpentane	00096-14-0

	SOP No.: 1002 C ₂ -C ₅ Hydrocarbons
	Version 2
	Date Issued: June 22, 2006
	Page 3 of 9
2-methyl-1-pentene	00763-29-1
1-hexene	00592-41-6
n-hexane	00110-54-3

1.2 This method is restricted to use by, or under the supervision of, analysts experienced in the use of gas chromatographs. Analysts should also be skilled in the interpretation of gas chromatograms. Each analyst must demonstrate the ability to generate acceptable results with this method.

2.0 Method Summary

- 2.1 This method provides GC/FID conditions for the detection of the target analytes. Exhaust samples are introduced to the GC from Tedlar bags by means of gas sampling valves. Separation of the sample hydrocarbons takes place in a 50 m 0.32 mm ID PLOT fused silica column. Quantitative analysis is performed by the FID using an external standard approach. The computerized GC data acquisition system identifies the hydrocarbons and concentrations are determined by peak area response factors.
- 2.2 Prior to the use of this method, appropriate sample collection techniques must be used.
 - 2.2.1 Samples are collected from the exhaust in Tedlar bags. Dilutions may apply and must be accounted for in final calculations.

3.0 Health and Safety

- 3.1 The toxicity or carcinogenicity of chemicals used in this procedure has not been precisely defined. Each chemical should be treated as a potential health hazard, and exposure to these chemicals should be minimized.
- 3.2 All sampling should be done while using proper protective equipment to minimize exposure to vapor. Minimum personal protection includes the use of laboratory safety glasses, a lab coat or apron, and protective gloves.

4.0 Sample Preservation, Containers, Handling, and Storage

- 4.1 Samples are collected and stored in 1 L Tedlar bags.
- 4.2 Tedlar bags may not be exposed to heat or excessive light. Black Tedlar bags may be used to eliminate photochemically induced reactions.
- 4.3 Samples must be analyzed within 24 hours of collection.

5.0 Interferences and Potential Problems

SOP No.: $1002 C_2 - C_5$ Hydrocarbons Version 2 Date Issued: June 22, 2006 Page 4 of 9

- 5.1 To maximize sample integrity, Tedlar bags should not leak or be exposed to excessive light or heat. Tedlar bags must be shielded from direct sunlight to avoid photochemically induced reactions of any reactive hydrocarbons.
 - 5.1.1 The compound 1,3-butadiene, resulting mostly during cold-start testing by the combustion of olefins, is extremely unstable as it easily polymerizes in the presence of oxygen. Therefore all samples analyzed for 1,3-butadiene must be run within 1 hour of collection.
- 5.2 Any component present in the sample with a retention time very similar to that of a target hydrocarbon would interfere or coelute. If separation cannot be achieved, confirmation of identification should be done using a different column for separation, or an alternate detector, e.g., mass spectrometer (MS), photoionization detector (PID), etc.

6.0 Equipment/Apparatus

- 6.1 GC/FID
 - 6.1.1 Gas Chromatograph (GC) Varian CP-3800 with programmable oven temperatures, 10 mL fixed volume injection loop for automated transfer of gaseous samples from the Tedlar bag to the GC, and analytical column interfaced with a flame ionization detector (FID).
 - 6.1.1.1 GC Column Varian CP 7515 PLOT fused silica, 50 m x 0.32 mm ID, or equivalent.
 - 6.1.2 Data System Dell-PC computer with Varian Star software capable of continuous acquisition and storage of all data obtained throughout the duration of the chromatographic program.
- 6.2 Nitrogen, compressed and liquid. Minimum purity of 99.998 %.
- 6.3 Helium, compressed. Minimum purity of 99.995 %.
- 6.4 Hydrogen, compressed. Minimum purity of 99.995 %.
- 6.5 Air, compressed. "Zero" grade (<1 ppmC total hydrocarbon contamination), or better.
- 6.6 Tedlar bags: SKC, Inc., 5 to 10 L in capacity, or equivalent.
- 6.7 Super Syringe: Fisher Scientific, 1 L.

7.0 Reagents

- 7.1 NIST-certified SRM or secondary NIST-traceable standards shall be used in all tests. A secondary standard is obtained by a comparison between a SRM and a candidate standard.
- 7.2 Calibration Standard
 - 7.2.1 The quantitative calibration standard for all target hydrocarbons is propane. Lehner/Martin, Inc. Propane Std. in zero air – 2955 ppbC, or equivalent

SOP No.: $1002 C_2 - C_5$ Hydrocarbons Version 2 Date Issued: June 22, 2006 Page 5 of 9

7.3 Control Standard

7.3.1 Quality control standard, containing at least ethane, propane, n-butane, 2-methylpropene and 1,3butadiene at concentrations between 200 and 3000 ppbC based on a propane standard. This standard is used as a daily update of control charts and a daily determination of marker retention time windows.

Scott-Marrin, Inc. 23 Component custom blend in nitrogen, or equivalent

- 7.4 A high concentration standard (higher than the calibration standard), containing the target hydrocarbons listed in Section 7.3.1, is used for linearity determinations. The high concentration standard must have concentrations verified against a NIST-traceable propane standard.
- 7.5 A low concentration standard (5 to 10 times the estimated MDL), containing the target hydrocarbons listed in Section 7.3.1, is used for MDL determinations. The low concentration standard must have concentrations verified against a NIST-traceable propane standard.
 - 7.5.1 In lieu of a low concentration standard, a higher concentration standard may be diluted.

8.0 Procedure

- 8.1 Sample collection
 - 8.1.1 Specific sample collection procedures can be found in the VOC Sampling Protocol.
 - 8.1.2 In general, samples are collected from the integrated bag samples that have been continuously filled during the 1200 second transient test cycle. One bag is filled with dilution air, while the other is filled with dilute exhaust. A Teflon diaphragm pump is T-connected through a valve to the constant volume sampling system to fill a Tedlar bag with either dilution air or dilute exhaust.
- 8.2 GC chromatographic conditions:

Injection volume:	10 mL fixed loop
Injector temperature:	-180 C (hold 7.10 min) to 250 C (hold 61.25 min) @ 200 C/min
Helium carrier flow:	3 mL/min
Nitrogen aux. flow:	27 mL/min
Hydrogen flow:	30 mL/min
Air flow:	300 mL/min
Column temperature:	0 C (hold 10 min) to 200 C (hold 20 min) @ 5 C/min
Detector temperature:	250 C

- 8.3 Samples in Tedlar bags are connected to one of sixteen ports on the autosampler and the analytical process then begins.
- 8.4 The sample is introduced into the carrier gas stream through the injection valve.
- 8.5 Each separated analyte exits the column into the FID where a response is generated.
- 8.6 Hydrocarbon concentrations are calculated in parts per billion of carbon (ppbC) by Varian's Star software from the NIST-traceable propane calibration standard.

SOP No.: 1002 C₂-C₅ Hydrocarbons Version 2 Date Issued: June 22, 2006 Page 6 of 9

- 8.7 Analytes with concentrations higher than demonstrated in the instruments range of linearity must be diluted and rerun.
- 8.8 Peak identification and integration are checked and corrected if necessary by the analyst.
- 8.9 Target compounds that coelute are reported as the major component.
- 8.10 The PLOT fused silica analytical column is heated to 200 C to prevent carry over and assure all compounds are eluted before the next run.

9.0 Calculations

9.1 The target hydrocarbon concentrations, in ppbC, are calculated by the data system using propane as an external standard.

Concentration_{sample} (ppbC) = Peak Area_{sample} \times Response Factor

where the response factor (RF) is calculated during daily calibration by:

$$RF = \frac{Concentration of propane standard (ppbC)}{area of propane peak}$$

10.0 Quality Control/Quality Assurance

- 10.1 Instrument Blank Run
 - 10.1.1 An instrument blank of pure nitrogen is run each analysis day. All target hydrocarbon concentrations from the blank analysis must be below the method detection limit (MDL) before the analysis may proceed.
 - 10.1.1.1 If the blank shows a peak greater than the MDL in the region of interest, the source of contamination must be investigated and remedied.
- 10.2 Calibration Run
 - 10.2.1 The calibration standard is analyzed each analysis day to generate the response factor used to quantify the sample concentrations.
- 10.3 Control Standard Run
 - 10.3.1 The quality control standard is analyzed at least once each analysis day. Measurements of all compounds specified in Section 7.3.1 must fall within the control limits to ensure the validity of the sample analyses that day. To meet this requirement, it may be necessary to inspect and repair the GC, and rerun the calibration and/or control standards.

SOP No.: $1002 C_2 - C_5$ Hydrocarbons Version 2 Date Issued: June 22, 2006 Page 7 of 9

10.4 Control Charts

- 10.4.1 A quality control chart is maintained for each component of the control standard listed in Section 7.3.1, and is performed for new instruments, after making instrument modifications that can affect recovery, and at least once every year. The control charts, used on a daily basis, establish that the method is "in control." The following describes how to construct a typical control chart:
 - 1. Obtain at least 20 daily control standard results;
 - 2. Calculate the control standard mean concentration and standard deviation for the target hydrocarbon; and
 - 3. Create a control chart for the target hydrocarbon by placing the concentration on the Yaxis and the date on the X-axis. Establish upper and lower warning limits at either two standard deviations (2s) or 5 percent, whichever is greater, above and below the average concentration.
 - 4. A control standard measurement is considered to be out-of-control when the analyzed value exceeds the control limit or two successive control standard measurements of the same analyte exceed the warning limit.
 - 5. If 20 control standard measurements are not yet available to create a control chart (e.g., the control standard was expended and replaced prior to obtaining 20 points with the new standard), measurements must be within 15% relative standard deviation (RSD) of the certified concentration. If the control standard is not a NIST standard, the cylinder should be certified by the laboratory against a NIST standard.

The measured concentrations of all target hydrocarbons contained in the control standard must be within the control limits (in control) for the sample results to be considered acceptable.

10.5 Duplicates

10.5.1 A duplicate analysis of one sample is performed at least once per analysis day. The relative percent difference (RPD) is calculated for each duplicate run:

$$RPD(\%) = \frac{Difference between duplicate and original measurement}{A verage of duplicate and original measurement} \times 100$$

For each compound specified in Section 7.3.1, the allowable RPD depends on the average concentration level for the duplicate runs, as shown in the following table:

Average Measurement for the	he Duplicate Runs	<u>Allowable RPD (%)</u>
1 to 10	times MDL	100
10 to 20		30
20 to 50		20
Greater than 50		15

If the results of the duplicate analyses do not meet these criteria for all compounds specified in Section 7.3.1, the sample may be reanalyzed. If reanalysis is not feasible or if the criteria are still not met on reanalysis, all sample results for that analysis day are invalid.

10.6 Linearity

SOP No.: 1002 C₂-C₅ Hydrocarbons Version 2 Date Issued: June 22, 2006 Page 8 of 9

10.6.1 A multipoint calibration to confirm instrument linearity is performed for the target hydrocarbons in the control standard for new instruments, after making instrument modifications that can affect linearity, and at least once every year. The multipoint calibration consists of at least five concentration or mass loading levels (using smaller or larger volume sample sizes of existing standards is acceptable), each above the MDL, distributed over the range of expected sample concentration. A linear regression analysis is performed using concentration and average area counts to determine the regression correlation coefficient (r). The r must be greater than 0.995 to be considered sufficiently linear for one-point calibrations.

10.7 MDL

10.7.1 The MDL for the target hydrocarbons in the control standard must be determined for new instruments, after making instrument modifications that can affect linearity and/or sensitivity, and at least once every year. To make the calculations, it is necessary to run at least seven replicate determinations at a concentration of 5 to 10 times the estimated MDL. The MDL is calculated using the following equation:

 $MDL = t \times s$

where s is the standard deviation of the replicates and t is the t-factor for 99 percent confidence for a one-sided normal (Gaussian) distribution. The number of degrees of freedom is equal to the number of replicates, minus one. An abbreviated t-table is:

Degrees of Freedom	<u>t-value</u>
4	3.7
5	3.4
6	3.1
7	3.0

- 10.7.1.1 The maximum allowable MDL for each compound is 1 ppbC. The calculated laboratory MDL must be equal to or lower than the maximum allowable MDL. All peaks identified as target compounds that are equal to or exceed the maximum allowable MDL must be reported. If the calculated laboratory MDL is less than the maximum allowable MDL, the laboratory may choose to set its reporting limit at the maximum allowable MDL, the calculated laboratory MDL, or any level in between.
- 10.7.1.2 For the purpose of calculating the total mass of all species, the concentrations of all compounds below the MDL are considered to be zero.

10.8 Method 1002/1003 Crossover Check

10.8.1 A crossover check is analyzed at least once each analysis day, and is performed by choosing a compound from a sample to be measured and compared by both Method 1002 and 1003. The crossover compound shall be a compound that can reasonably be expected to be found and measured by both methods in the laboratory performing the analysis. The maximum relative percent difference (RPD) allowed from the results obtained by the two methods is 15%.

SOP No.: $1002 C_2 - C_5$ Hydrocarbons Version 2 Date Issued: June 22, 2006 Page 9 of 9

11.0 References

.

11.1 California Environmental Protection Agency, Air Resources Board, Method 1002, Revision IV, July 2002

SOP No.: $1003 C_6-C_{12}$ Hydrocarbons Version 2 Date Issued: June 22, 2006 Page 1 of 11

TITLE: Determination Of C_6 - C_{12} Hydrocarbons In Automotive Source Samples By Gas Chromatography

Method 1003

SOP NUMBER: 1003 C6-C12 Hydrocarbons VERSION 2

WRITTEN BY:

Technical Specialist: Nathan Imus

Date

APPROVED BY:

President: Don Olson

Date

SOP MANUAL CONTROL NO. :

This document has been prepared by Olson-EcoLogic and is to be considered the sole property of Olson-EcoLogic. This document is provided to organizations outside of The Olson-EcoLogic Group for the sole purpose of determining the fitness of Olson-EcoLogic for a specific project. The document remains the property of The Olson-EcoLogic Group and the recipient agrees to keep confidential the contents of this document. If the document is provided as a controlled document, the user agrees to surrender the document upon request of Olson-EcoLogic. If the document is provided as an uncontrolled document, the user understands that subsequent revisions will not be provided.

The document may not be provided to a third party, such as consultants or other governmental agencies, unless said third party agrees to the terms stated above.

SOP No.: $1003 C_6-C_{12}$ Hydrocarbons Version 2 Date Issued: June 22, 2006 Page 2 of 11

1.0 Scope and Application

•

-

1.1 This SOP is based on CARB Method 1003 and describes the use of gas chromatography (GC) coupled with flame ionization detection (FID) for the determination of C_6-C_{12} hydrocarbons (mid-range hydrocarbons) in the ppbC range from automotive source samples. The compounds listed below may be determined by this method:

Compound	CAS Registry No.
n-hexane	00110-54-3
trans-3-hexene	13269-52-8
cis-3-hexene	07642-09-3
trans-2-hexene	04050-45-7
3-methyl-trans-2-pentene	00616-12-6
2-methyl-2-pentene	00625-27-4
3-methylcyclopentene	01120-62-3
cis-2-hexene	07688-21-3
1-ethyl-tert-butyl-ether	00637-92-3
3-methyl-cis-2-pentene	00922-62-3
2,2-dimethylpentane	00590-35-2
methylcyclopentane	00096-37-7
2,4-dimethylpentane	00108-08-7
2,2,3-trimethylbutane	00464-06-2
3,4-dimethyl-1-pentene	07385-78-6
1-methylcyclopentene	00693-89-0
benzene	00071-43-2
3-methyl-1-hexene	03404-61-3
3,3-dimethylpentane	00562-49-2
cyclohexane	00110-82-7
2-methylhexane	00591-76-4
2,3-dimethylpentane	00565-59-3
cyclohexene	00110-83-8
3-methylhexane	00589-34-4
trans-1,3-dimethylcyclopentane	01759-58-6
cis-1,3-dimethylcyclopentane	02532-58-3
3-ethylpentane	00617-78-7
trans-1,2-dimethylcyclopentane	00822-50-4
1-heptene	00592-76-7
2,2,4-trimethylpentane	00540-84-1
trans-3-heptene	14686-14-7
n-heptane	00142-82-5
2-methyl-2-hexene	02738-19-4
3-methyl-trans-3-hexene	03899-36-3
trans-2-heptene	14686-13-6
3-ethyl-2-pentene	00816-79-5
2,4,4-trimethyl-1-pentene	00107-39-1
2,3-dimethyl-2-pentene	10574-37-5
cis-2-heptene	06443-92-1
methylcyclohexane	00108-87-2

Version 2 Date Issued: June 22, 2006 Page 3 of 11 2.2.dimethylhexane 00590-73-8 2.4.4.trimethyl-2-pentere 00107-40-4 ethylcyclopentane 01640-89-7 2.5.dimethylhexane 00582-13-2 2.4-dimethylpexane 00583-16-6 2.3.4.trimethylcyclopentane 02815-58-9 3.3-dimethylhexane 00560-21-4 toluene 00108-86-3 2.3.4.trimethylcyclopentane 00580-81-6 2.3.4.trimethylcyclopentane 00589-81-1 1.3.4.trimethylcyclopentane 00589-81-1 1.3.2.3.bj-1.2.3.trimethylcyclopentane 00589-81-1 1.3.2.3.bj-1.2.3.trimethylcyclopentane 00580-40-1 trans-1.4.dimethylcyclopentane 00580-40-1 trans-1.4.dimethylcyclopentane 02812-84-94-1 z.2.5.trimethylcyclopentane 02822-94-9 trans-1.4.dimethyl-3.ethylcyclopentane 02812-82-2 cis-1.3dimethyl-3.ethylcyclopentane 02812-82-2 cis-1.4.methyl-3.ethylcyclopentane 02812-82-2 cis-1.4.dimethylcyclopentane 02812-82-2 cis-1.4.dimethyl-3.ethylcyclopentane 02827-01-4		SOP No.: 1003 C ₆ -C ₁₂ Hydrocarbons
Page 3 of 11 2.2-dimethylhexane 00590-73-8 2.4.4-trimethyl-2-pentene 0016740-4 ethylcyclopentane 00592-13-2 2.5-dimethylhexane 00592-13-2 2.4-dimethylpextane 00592-13-2 2.4-dimethylpextane 00592-13-2 3.3-dimethylpextane 00563-16-6 2.3.4-trimethylpentane 00560-21-4 toluene 00108-86-3 2.3-dimethylpextane 00589-75-3 2.3.3-trimethylpextane 00589-77-8 2.3-dimethylpextane 00589-77-8 4.methylneptane 00589-77-8 4.methylneptane 00589-77-8 4.methylneptane 00589-81-1 11.2.2.3.5/:nimethylocolopentane 15890-40-1 cis-1.3-dimethylcyclohexane 00207-04-7 2.2.5-trimethylhexane 00322-94-9 trans-1.4-methyl-3-ethylcyclopentane 16747-50-5 1-octene 00111-66-0 trans-2-octene 10480-23-8 n-octane 00111-66-0 trans-2-octene 07642-04-8 2.3.5-timethylheptane 002207-03-6<		
2.2-dimethylhezane 00590-73-8 2.4.4-trimethyl-2-pentene 00107-40-4 ethylycyclopentane 01640-89-7 2.5-dimethylhexane 00592-13-2 2.4-dimethylpextopentane 005943-5 1.2.4-trimethylogolopentane 002615-55-9 3.3-dimethylpentane 00560-214 toluene 00108-88-3 2.3-dimethylpexane 00589-27-8 4-artimethylpentane 00589-27-8 4-methylheptane 00589-27-8 4-methylheptane 00589-37-1 3-methylheptane 00589-38-1 (1a.2a.3b)-12.3-trimethylcyclopentane 15890-40-1 (is:1.3-dimethylcyclopexane 002207-04-7 2.2.5-trimethylheptane 00352-294-9 trans-1.4-dimethylcyclopexane 02207-04-7 2.2.5-trimethyl-3-ethylcyclopentane 16747-50-5 1-octene 00111-66-0 trans-1.4-dimethylcyclohexane 02207-04-7 2.5-trimethyl-3-ethylcyclopentane 16747-50-5 1-octene 0111-66-0 trans-1.4-dimethylcyclohexane 02017-03-6 cis-2-octene 1338		
2.4.4-trimethyl-2-pentene 00107-40-4 ethylcyclopentane 01640-88-7 2.5-dimethylhexane 00589-43-5 2.4-dimethylpextane 00589-43-5 3.4-dimethylpextane 00563-16-6 2.3.4-trimethylpentane 00565-75-3 2.3.3-trimethylpentane 00565-75-3 2.3.3-trimethylpentane 00569-21-4 toluene 00108-88-3 2.3-dimethylhexane 00589-43-1 2-methylheptane 00589-43-1 2-methylheptane 00589-43-1 3-methylheptane 00589-43-1 3-methylheptane 00589-43-1 3-methylheptane 00589-43-1 3-methylhoptane 02207-04-7 2.2.5-trimethylhexane 02613-65-2 cis-1-methyl-3-ethylcyclopentane 16747-50-5 1-octerne 00111-65-9 trans-1-3-dimethylcyclopentane 02207-03-6 cis-2-octene 07642-04-8 2.3.5-trimethylhexane 01069-53-0 2.4-dimethylcyclohexane 02207-03-6 cis-2-octene 07642-04-8 2.3.5-trimethylheptane </td <td>0.0 dimethyllhourse</td> <td></td>	0.0 dimethyllhourse	
ethylcyclopentane 01640-89-7 2,5-dimethylhexane 00582-13-2 2,4-dimethylhexane 00583-43-5 1,2,4-rimethylcyclopentane 02815-58-9 3,3-dimethylpentane 00563-16-6 2,3,4-timethylpentane 00565-75-3 2,3,3-timethylpentane 00560-21-4 toleven 00108-88-3 2,3-dimethylpentane 00589-43-7 2,3-dimethylpentane 00589-53-7 3-methylheptane 00589-53-7 3-methylheptane 00589-53-7 3-methylheptane 00589-63-1 (1a,2a,3b)-1,2,3-trimethylcyclopentane 15890-40-1 cis-1,3-dimethylcyclohexane 002207-04-7 2,2,5-trimethyllexane 03522-94-9 trans-1,4-dimethylcyclopentane 16747-50-5 1-octene 10111-66-0 trans-2-octene 00111-65-9 trans-2-octene 10389-42-9 trans-3-d-dimethylcyclohexane 02207-03-6 cis-2-octene 07642-04-8 2,3-trimethylhexane 01069-53.0 2,4-dimethylheptane 010213-23-2		
2.5-dimethylhexane 00592-13-2 2.4-dimethylhexane 00583-16-6 3.2-dimethylhexane 00563-16-6 2.3.4-trimethylopentane 00565-75-3 2.3.3-trimethylpentane 00566-21-4 toluene 00108-88-3 2.3-dimethylhexane 00568-75-3 2.3.4-trimethylpentane 00569-53-7 2.3-dimethylheptane 00589-53-7 3-methylheptane 00589-53-7 3-methylheptane 00589-53-7 3-methyloptane 00589-53-7 3-dimethylopclohexane 002207-04-7 2.2.5-trimethyloptane 02217-04-7 2.5.5-trimethyloptane 0217-05-5 1-actene 00111-65-9 trans-2-octene 14850-23-8		
2.4-dimethylhexane 00589-43-5 1.2.4-trimethylpextane 00563-16-6 2.3.4-trimethylpentane 00565-75-3 2.3.3-trimethylpentane 00566-21-4 toluene 00108-88-3 2.3-dimethylhexane 00584-94-1 2-methylheptane 00589-81-1 1(a.2a.3b)-1.2.3-trimethylcyclopentane 15890-40-1 cis-1.3-dimethylcyclohexane 00638-04-0 trans-1.4-dimethylcyclohexane 002207-04-7 2.2.5-trimethyl-sethylcyclopentane 16890-40-1 cis-1.3-dimethylcyclohexane 002207-04-7 2.2.5-trimethyl-sethylcyclopentane 00513-65-2 cis-1-methyl-3-ethylcyclopentane 16747-50-5 1-octene 00111-66-0 trans-2-octene 13389-42-9 trans-1.3-dimethylcyclohexane 02207-03-6 cis-2-octene 07642-04-8 2.3.5-trimethylhexane 02207-03-6 cis-2-octene 07642-04-8 2.3.5-trimethylhexane 01069-53-0 2.4-dimethylcyclohexane 0213-23-2 cis-1.2-dimethylcyclohexane 02207-01-4 2.6-dimethylhep		
1.2,4-trimethylicyclopentane 02815-58-9 3.3-drimethylipentane 00563-75-3 2.3-trimethylipentane 00560-21-4 toluene 00108-88-3 2.3-drimethylipentane 00589-49-1 2-methylipeptane 00589-53-7 3-methylipeptane 00589-53-7 3-dimethylicyclohexane 02207-04-7 2.2.5-trimethylicyclohexane 02207-04-7 2.2.5-trimethylicyclopentane 01638-65-2 cis-1-methyl-3-ethylicyclopentane 02613-65-2 cis-1-methyl-3-ethylicyclopentane 16747-50-5 1-octene 00111-65-9 trans-4-octene 13389-42-9 trans-1,3-dimethylicyclohexane 02207-03-6 cis-2-octene 07642-04-8 2.3,5-trimethylihexane 01069-53-0		
3.3-dimethylhexane 00563-16-6 2.3.4-trimethylpentane 00565-75-3 2.3.3-trimethylpentane 00108-88-3 2.3-dimethylhexane 00108-88-3 2.3-dimethylheptane 00584-94-1 2-methylheptane 00589-53-7 3-methylheptane 00589-53-7 3-methylheptane 00589-61-1 (1a, 2a, 3b)-1, 2, 3-trimethylcyclopentane 15890-40-1 cis-1, 3-dimethylcyclohexane 00638-04-0 trans-1, 4-dimethylcyclohexane 02207-04-7 2,2,5-trimethylhexane 03522-94-9 trans-1-methyl-3-ethylcyclopentane 02613-65-2 cis-1-methyl-3-ethylcyclopentane 02613-65-2 cis-1-methyl-3-ethylcyclopentane 00111-66-0 trans-4-octene 10111-66-0 trans-4-octene 10111-65-9 trans-5-octene 10389-42-9 trans-5-octene 10389-42-9 trans-5-octene 00111-66-0 cis-2-octene 07642-04-8 2,3-timethylheptane 01022-03-6 cis-2-octene 07642-04-8 2,3-timethylcyclohexane 02207-014 </td <td></td> <td></td>		
2.3.4-trimethylpentane 00565-75-3 2.3.3-trimethylpentane 00580-21-4 toluene 00108-88-3 2.3-dimethylhexane 00584-94-1 2-methylheptane 00589-27-8 4-methylheptane 00589-53-7 3-methylheptane 00589-53-7 3-methylheptane 00589-61-1 1(a,2a,3b)-1,2,3-trimethylcyclopentane 15890-40-1 cis-1,3-dimethylcyclohexane 00532-24-9 trans-1,4-dimethylcyclopentane 02207-04-7 2,2,5-trimethylhexane 03522-94-9 trans-1-methyl-3-ethylcyclopentane 16747-50-5 1-octene 10111-66-0 trans-4-octene 14850-23-8 n-octane 00111-65-9 trans-2-octene 1389-42-9 trans-1,3-dimethylcyclohexane 02207-03-6 cis-2-octene 07642-04-8 2,3-strimethylhexane 01069-53-0 2,4-dimethylcyclohexane 01072-05-5 ethylcyclohexane 01072-05-5 ethylcyclohexane 01072-05-5 ethylcyclohexane 01072-05-5 ethylkpet		
2,3,3-trimethylpentane 00560-21-4 toluene 00108-88-3 2,3-dimethylhextane 00584-94-1 2-methylheptane 00592-27-8 4-methylheptane 00592-27-8 4-methylheptane 00592-27-8 4-methylheptane 00589-81-1 (1a,2a,3b)-1,2,3-trimethylcyclopentane 15890-40-1 cis-1,3-dimethylcyclohexane 00207-04-7 2,2,5-trimethyll-3-ethylcyclopentane 00513-65-2 cis-1-methyl-3-ethylcyclopentane 00513-65-2 cis-1-methyl-3-ethylcyclopentane 16747-50-5 1-octene 00111-66-0 trans-4-octene 14850-23-8 n-octane 10011-65-9 trans-2-octene 0207-03-6 cis-2-octene 0207-03-6 cis-2-octene 07642-04-8 2,3,5-trimethylheptane 01069-53-0 2,4-dimethylheptane 01021-20-5 ethylcyclohexane 0207-01-4 2,6-dimethylheptane 00102-32-2 ethylcyclohexane 0213-23-2 cis-1,2-dimethylcyclohexane 0210-24-8 3,5-dime		
toluene 00108-88-3 2.3-dimethylhexane 00584-94-1 2-methylheptane 00592-27-8 4-methylheptane 00589-53-7 3-methylheptane 00589-53-7 3-methylheptane 00589-53-7 3-methylheptane 00589-63-7 1(1a,2a,3b)-1,2,3-trimethylcyclopentane 15890-40-1 cis-1,3-dimethylcyclohexane 00638-04-0 trans-1,4-dimethylcyclopentane 002207-04-7 2,2,5-trimethylhexane 03522-94-9 trans-1-methyl-3-ethylcyclopentane 16747-50-5 1-octene 100111-66-0 trans-4-octene 14850-23-8 n-octane 00111-65-9 trans-2-octene 13389-42-9 trans-1,3-dimethylcyclohexane 02207-03-6 cis-2-octene 07642-04-8 2,3,5-trimethylhexane 01069-53-0 2,4-dimethylheptane 01072-05-5 ethylcyclohexane 01072-05-5 ethylcyclohexane 00100-42-5 0.3-dimethylheptane 00100-42-5 0.3-dimethylheptane 002216-33-3 4-methyloctane		
2.3-dimethylheptane 00584-94-1 2-methylheptane 00589-27-8 4-methylheptane 00589-53-7 3-methylheptane 00589-81-1 (1a,2a,3b)-1,2,3-trimethylcyclopentane 15890-40-1 cis-1,3-dimethylcyclohexane 00207-04-7 2,2,5-trimethylcyclopentane 03522-94-9 trans-1,4-dimethylcyclopentane 02613-65-2 cis-1-methyl-3-ethylcyclopentane 16747-50-5 1-octene 00111-66-0 trans-4-octene 14850-23-8 n-octane 00111-65-9 trans-4-octene 13389-42-9 trans-1,3-dimethylcyclohexane 02207-03-6 cis-2-octene 07642-04-8 2,3,5-trimethylhexane 01069-53-0 2,4-dimethylheptane 0207-01-4 2,6-dimethylheptane 01072-05-5 ethylcyclohexane 01678-91-7 3,5-dimethylheptane 03074-71-3 m-&p-xylene 00108-38-3 4-methyloctane 03221-61-2 3-methyloctane 02216-33-3 4-methyloctane 03221-61-2 3-methyloctane		
2-methylheptane 00592-27-8 4-methylheptane 00589-53-7 3-methylheptane 00589-81-1 (1a,2a,3b)-1,2,3-trimethylcyclopentane 15890-40-1 cis-1,3-dimethylcyclohexane 002207-04-7 2,2,5-trimethylcyclopentane 03222-94-9 trans-1,4-dimethylcyclopentane 01213-65-2 cis-1-methyl-3-ethylcyclopentane 016747-50-5 1-octene 00111-66-0 trans-4-octene 14850-23-8 n-octane 00111-65-9 trans-2-octene 13389-42-9 trans-1,3-dimethylcyclohexane 02207-03-6 cis-2-octene 07642-04-8 2,3-5-trimethylhexane 01059-53-0 2,4-dimethyleyclohexane 01072-05-5 ethylcyclohexane 01072-05-5 ethylcyclohexane 00100-41-4 2,3-dimethylheptane 03074-71-3 m-&p-xylene 00100-83-8-3 4-methyloctane 03221-61-2 3-methyloctane 03221-61-2 3-methyloctane 03221-61-2 3-methyloctane 00226-33-3 styrene (ethe		
4-methylheptane 00589-53-7 3-methylheptane 00589-81-1 (1a,2a,3b)-1,2,3-trimethylcyclopentane 15890-40-1 cis-1,3-dimethylcyclohexane 00638-04-0 trans-1,4-dimethylcyclohexane 002207-04-7 2,2,5-trimethyl-3-ethylcyclopentane 02207-04-7 2,2,5-trimethyl-3-ethylcyclopentane 02613-65-2 cis-1-methyl-3-ethylcyclopentane 16747-50-5 1-octene 00111-66-0 trans-4-octene 14850-23-8 n-octane 00111-65-9 trans-4-octene 13389-42-9 trans-4-octene 0169-53-0 2,3-5-trimethylcyclohexane 02207-03-6 cis-2-octene 07642-04-8 2,3-5-trimethylcyclohexane 02207-01-4 2,5-dimethylheptane 01069-53-0 2,4-dimethylcyclohexane 02207-01-4 2,6-dimethylleptane 00372-05-5 ethylcyclohexane 01072-05-5 ethylcyclohexane 01072-05-5 ethylcyclohexane 00100-41-4 2,3-dimethylheptane 00374-71-3 m-&p-xylene 00100-42-5 <td></td> <td></td>		
3-methylheptane 00589-81-1 (1a,2a,3b)-1,2,3-trimethylcyclopentane 15890-40-1 cis-1,3-dimethylcyclohexane 002207-04-7 2,2,5-trimethylhexane 03522-94-9 trans-1-methyl-3-ethylcyclopentane 02613-65-2 cis-1-methyl-3-ethylcyclopentane 16747-50-5 1-octene 00111-66-0 trans-4-octene 14850-23-8 n-octane 00111-65-9 trans-1,3-dimethylcyclohexane 02207-03-6 cis-2-octene 07642-04-8 2,3,5-trimethylhexane 01069-53-0 2,4-dimethylheptane 01072-05-5 ethylcyclohexane 02207-01-4 2,6-dimethylheptane 01072-05-5 ethylcyclohexane 02207-01-4 2,6-dimethylheptane 0100-41-4 2,3-dimethylheptane 00100-41-4 2,3-dimethylheptane 00100-38-3 4-methyloctane 02216-33-3 4-methyloctane 02216-33-3 4-methyloctane 002216-33-3 4-methyloctane 001024-16 2-wilene 000100-42-5 0-xylene <td></td> <td></td>		
(1a,2a,3b)-1,2,3-trimethylcyclopentane 15890-40-1 cis-1,3-dimethylcyclohexane 00638-04-0 trans-1,4-dimethylcyclohexane 02207-04-7 2,2,5-trimethylhexane 03522-94-9 trans-1-methyl-3-ethylcyclopentane 02613-65-2 cis-1-methyl-3-ethylcyclopentane 02613-65-2 cis-1-methyl-3-ethylcyclopentane 16747-50-5 1-octene 00111-66-0 trans-4-octene 14850-23-8 n-octane 00111-65-9 trans-2-octene 13389-42-9 trans-1,3-dimethylcyclohexane 02207-03-6 cis-2-octene 07642-04-8 2,3,5-trimethylhexane 01069-53-0 2,4-dimethylheptane 0207-01-4 2,6-dimethylheytane 01072-05-5 ethylcyclohexane 02207-01-4 2,6-dimethylheptane 00100-41-4 2,3-dimethylheptane 00100-41-4 2,3-dimethylheptane 00100-88-3 4-methyloctane 02216-33-3 styrene (ethenylbenzene) 00100-42-5 0-xylene 00095-47-6 1-nonene 00102-45-6		
cis-1,3-dimethylcyclohexane 00638-04-0 trans-1,4-dimethylcyclohexane 02207-04-7 2,2,5-trimethylhexane 03522-94-9 trans-1-methyl-3-ethylcyclopentane 02613-65-2 cis-1-methyl-3-ethylcyclopentane 16747-50-5 1-octene 00111-66-0 trans-4-octene 14850-23-8 n-octane 00111-65-9 trans-2-octene 13389-42-9 trans-1,3-dimethylcyclohexane 02207-03-6 cis-2-octene 07642-04-8 2,3,5-trimethylhexane 01069-53-0 2,4-dimethylcyclohexane 02207-01-4 2,6-dimethylheptane 01072-05-5 ethylcyclohexane 01072-05-5 ethylcyclohexane 00100-41-4 2,6-dimethylheptane 00100-41-4 2,3-dimethylheptane 00100-41-4 2,3-dimethylheptane 00100-41-4 2,6-dimethyloctane 02216-33-3 styrene 00108-38-3 4-methyloctane 02216-33-3 styrene (ethenylbenzene) 00102-42-5 o-xylene 000124-11-8 n-nonane <td></td> <td></td>		
trans-1,4-dimethylcyclohexane 02207-04-7 2,2,5-trimethylhexane 03522-94-9 trans-1-methyl-3-ethylcyclopentane 02613-65-2 cis-1-methyl-3-ethylcyclopentane 16747-50-5 1-octene 00111-66-0 trans-4-octene 14850-23-8 n-octane 00111-65-9 trans-1,3-dimethylcyclohexane 02207-03-6 cis-2-octene 07642-04-8 2,3,5-trimethylhexane 01069-53-0 2,4-dimethylheptane 02207-01-4 2,6-dimethylheptane 02207-01-4 2,6-dimethylheptane 01072-05-5 ethylcyclohexane 01072-05-5 ethylbeptane 00100-41-4 2,3-dimethylheptane 00100-41-4 2,3-dimethylheptane 00100-41-4 2,6-dimethylheptane 00100-41-4 2,3-dimethylheptane 00100-41-4 2,3-dimethylheptane 00100-41-4 2,3-dimethylheptane 00100-41-4 2,3-dimethylheptane 00216-33-3 styrene 00216-33-3 styrene 00100-42-5 0-xylene <		<u></u>
2,2,5-trimethylhexane 03522-94-9 trans-1-methyl-3-ethylcyclopentane 02613-65-2 cis-1-methyl-3-ethylcyclopentane 16747-50-5 1-octene 00111-66-0 trans-4-octene 14850-23-8 n-octane 00111-65-9 trans-2-octene 13389-42-9 trans-1,3-dimethylcyclohexane 02207-03-6 cis-2-octene 07642-04-8 2,3,5-trimethylhexane 01069-53-0 2,4-dimethylheptane 02207-01-4 2,6-dimethylcyclohexane 02207-01-4 2,6-dimethylheptane 01072-05-5 ethylcyclohexane 01072-05-5 ethylcyclohexane 03074-71-3 m-8p-xylene 00100-41-4 2,3-dimethylheptane 03074-71-3 m-8p-xylene 00108-38-3 4-methyloctane 03221-61-2 3-methyloctane 03221-61-2 3-methyloctane 02216-33-3 styrene (ethenylbenzene) 00100-42-5 o-xylene 00095-47-6 1-nonene 00124-11-8 n-nonane 000142-5		
trans-1-methyl-3-ethylcyclopentane 02613-65-2 cis-1-methyl-3-ethylcyclopentane 16747-50-5 1-octene 00111-66-0 trans-4-octene 14850-23.8 n-octane 00111-65-9 trans-2-octene 13389-42-9 trans-1,3-dimethylcyclohexane 02207-03-6 cis-2-octene 07642-04-8 2,3,5-trimethylhexane 01069-53-0 2,4-dimethylheptane 02207-01-4 2,6-dimethylheptane 01072-05-5 ethylcyclohexane 01072-05-5 ethylcyclohexane 01072-05-5 ethylcyclohexane 00100-41-4 2,3-dimethylheptane 003074-71-3 m-&p-xylene 00100-41-4 2,3-dimethylheptane 03074-71-3 m-&p-xylene 00100-41-4 2,3-dimethylheptane 03221-61-2 3-methyloctane 02216-33-3 styrene (ethenylbenzene) 00100-42-5 o-xylene 00010-42-5 o-xylene 00010-42-5 o-xylene 00010-42-5 o-xylene 00102-43-8 2,2-dimethyloctane 00010-42-5 o-x		
cis-1-methyl-3-ethylcyclopentane 16747-50-5 1-octene 00111-66-0 trans-4-octene 14850-23-8 n-octane 00111-65-9 trans-2-octene 13389-42-9 trans-1,3-dimethylcyclohexane 02207-03-6 cis-2-octene 0169-53-0 2,4-dimethylhexane 01072-05-5 ethylcyclohexane 01072-05-5 ethylcyclohexane 00100-41-4 2,6-dimethylheptane 00100-41-4 2,3-dimethylheptane 00216-53-3 = thyloctane 02216-33-3 styrene (ethenylbenzene) 00100-42-5 o-xylene 000109-		
1-octene 00111-66-0 trans-4-octene 14850-23-8 n-octane 00111-65-9 trans-2-octene 13389-42-9 trans-1,3-dimethylcyclohexane 02207-03-6 cis-2-octene 07642-04-8 2,3,5-trimethylhexane 01069-53-0 2,4-dimethylhexane 02207-01-4 2,6-dimethylheptane 02207-01-4 2,6-dimethylheptane 01072-05-5 ethylbeptane 00100-41-4 2,3-dimethylheptane 00100-83-83 4-methyloctane 02216-33-4 2-methyloctane 002216-33-3 styrene (ethenylbenzene) 00100-42-5 0-xylene 000102-42-5 0-xylene 000102-42-5 0-xylene 000102-42-5		02613-65-2
trans-4-octene 14850-23-8 n-octane 00111-65-9 trans-2-octene 13389-42-9 trans-1,3-dimethylcyclohexane 02207-03-6 cis-2-octene 07642-04-8 2,3,5-trimethylhexane 01069-53-0 2,4-dimethylcyclohexane 02213-23-2 cis-1,2-dimethylcyclohexane 0207-01-4 2,6-dimethylheptane 01072-05-5 ethylcyclohexane 01678-91-7 3,5-dimethylheptane 00926-82-9 ethylbenzene 00100-41-4 2,3-dimethylheptane 003074-71-3 m-&p-xylene 00108-38-3 4-methyloctane 03221-61-2 3-methyloctane 02216-33-3 styrene (ethenylbenzene) 00100-42-5 o-xylene 00095-47-6 1-nonene 00124-11-8 n-nonane 00124-11-8 1-nonene 00098-82-8 2,2-dimethylbenzene 00098-82-8 2,2-dimethylbenzene 00098-82-8 2,2-dimethylbenzene 00098-82-8 2,2-dimethylbenzene 000098-82-8 2,2-dimethylbenzene 000092-94-4 2,6-	cis-1-methyl-3-ethylcyclopentane	
n-octane 00111-65-9 trans-2-octene 13389-42-9 trans-1,3-dimethylcyclohexane 02207-03-6 cis-2-octene 07642-04-8 2,3,5-trimethylhexane 01069-53-0 2,4-dimethylcyclohexane 02207-01-4 2,6-dimethylcyclohexane 02007-01-4 2,6-dimethylcyclohexane 01072-05-5 ethylcyclohexane 01678-91-7 3,5-dimethylheptane 00926-82-9 ethylbenzene 00100-41-4 2,3-dimethylheptane 03074-71-3 m-&p-xylene 00108-38-3 4-methyloctane 03221-61-2 3-methyloctane 02216-33-3 styrene (ethenylbenzene) 00100-42-5 o-xylene 00095-47-6 1-nonene 00124-11-8 n-nonane 00124-11-8 2,2-dimethylbenzene 00098-82-8 2,2-dimethylbenzene 00098-82-8 2,2-dimethylbenzene 00098-82-8 2,2-dimethylbenzene 00098-82-8 2,2-dimethylbenzene 000098-82-8 2,4-dimethyloctane 02051-30-1	1-octene	00111-66-0
trans-2-octene 13389-42-9 trans-1,3-dimethylcyclohexane 02207-03-6 cis-2-octene 07642-04-8 2,3,5-trimethylhexane 01069-53-0 2,4-dimethylheptane 02213-23-2 cis-1,2-dimethylcyclohexane 02207-01-4 2,6-dimethylheptane 01072-05-5 ethylcyclohexane 01072-05-5 ethylcyclohexane 00926-82-9 ethylbenzene 00100-41-4 2,3-dimethylheptane 003074-71-3 m-&p-xylene 00100-838-3 4-methyloctane 03221-61-2 3-methyloctane 03221-61-2 3-methyloctane 02216-33-3 styrene (ethenylbenzene) 00100-42-5 0-xylene 00095-47-6 1-nonene 00124-11-8 n-nonane 00111-84-2 (1-methylethyl)benzene 00098-82-8 2,2-dimethyloctane 15869-87-1 2,4-dimethyloctane 0251-30-1 n-propylbenzene 00103-65-1 1-methyl-3-ethylbenzene 00103-65-1	trans-4-octene	14850-23-8
trans-1,3-dimethylcyclohexane 02207-03-6 cis-2-octene 07642-04-8 2,3,5-trimethylhexane 01069-53-0 2,4-dimethylheptane 02213-23-2 cis-1,2-dimethylcyclohexane 02207-01-4 2,6-dimethylheptane 01072-05-5 ethylcyclohexane 01678-91-7 3,5-dimethylheptane 00926-82-9 ethylbenzene 00100-41-4 2,3-dimethylheptane 03074-71-3 m-&p-xylene 00108-38-3 4-methyloctane 03221-61-2 3-methyloctane 02216-33-3 styrene (ethenylbenzene) 00100-42-5 o-xylene 00095-47-6 1-nonene 00124-11-8 n-nonane 00111-84-2 (1-methylethyl)benzene 00098-82-8 2,2-dimethyloctane 15869-87-1 2,4-dimethyloctane 04032-94-4 2,6-dimethyloctane 02051-30-1 n-propylbenzene 00103-65-1 1-methyl-3-ethylbenzene 00103-65-1		00111-65-9
cis-2-octene 07642-04-8 2,3,5-trimethylhexane 01069-53-0 2,4-dimethylheptane 02213-23-2 cis-1,2-dimethylcyclohexane 02207-01-4 2,6-dimethylheptane 01072-05-5 ethylcyclohexane 01678-91-7 3,5-dimethylheptane 00926-82-9 ethylbenzene 00100-41-4 2,3-dimethylheptane 03074-71-3 m-&p-xylene 00108-38-3 4-methyloctane 02216-34-4 2-methyloctane 03221-61-2 3-methyloctane 02216-33-3 styrene (ethenylbenzene) 00100-42-5 o-xylene 000100-42-5 o-xylene 000100-42-5 o-xylene 00102-41-6 1-nonene 00111-84-2 (1-methylethyl)benzene 00098-82-8 2,2-dimethyloctane 15869-87-1 2,4-dimethyloctane 02051-30-1 n-propylbenzene 00103-65-1 1-methyl-3-ethylbenzene 00103-65-1	trans-2-octene	13389-42-9
2,3,5-trimethylhexane 01069-53-0 2,4-dimethylheptane 02213-23-2 cis-1,2-dimethylcyclohexane 02207-01-4 2,6-dimethylheptane 01072-05-5 ethylcyclohexane 01678-91-7 3,5-dimethylheptane 003026-82-9 ethylbenzene 00100-41-4 2,3-dimethylheptane 03074-71-3 m-&p-xylene 00108-38-3 4-methyloctane 02216-33-4 2-methyloctane 02216-33-3 styrene (ethenylbenzene) 00100-42-5 o-xylene 00095-47-6 1-nonene 00124-11-8 n-nonane 00111-84-2 (1-methylethyl)benzene 00098-82-8 2,2-dimethyloctane 15869-87-1 2,4-dimethyloctane 02051-30-1 n-propylbenzene 00103-65-1 1-methyl-3-ethylbenzene 00103-65-1	trans-1,3-dimethylcyclohexane	02207-03-6
2,4-dimethylheptane 02213-23-2 cis-1,2-dimethylcyclohexane 02207-01-4 2,6-dimethylheptane 01072-05-5 ethylcyclohexane 01678-91-7 3,5-dimethylheptane 00926-82-9 ethylbenzene 00100-41-4 2,3-dimethylheptane 03074-71-3 m-&p-xylene 00108-38-3 4-methyloctane 02216-34-4 2-methyloctane 02216-33-3 styrene (ethenylbenzene) 00100-42-5 o-xylene 00095-47-6 1-nonene 00111-84-2 (1-methylethyl)benzene 00098-82-8 2,2-dimethyloctane 15869-87-1 2,4-dimethyloctane 02051-30-1 n-propylbenzene 00103-65-1 1-methyl-3-ethylbenzene 00103-65-1	cis-2-octene	07642-04-8
cis-1,2-dimethylcyclohexane 02207-01-4 2,6-dimethylheptane 01072-05-5 ethylcyclohexane 01678-91-7 3,5-dimethylheptane 00926-82-9 ethylbenzene 00100-41-4 2,3-dimethylheptane 03074-71-3 m-&p-xylene 00108-38-3 4-methyloctane 02216-34-4 2-methyloctane 02216-33-3 styrene (ethenylbenzene) 00100-42-5 o-xylene 00095-47-6 1-nonene 00111-84-2 (1-methylethyl)benzene 00098-82-8 2,2-dimethyloctane 15869-87-1 2,4-dimethyloctane 02051-30-1 n-propylbenzene 00103-65-1 1-methyloctane 02051-30-1	2,3,5-trimethylhexane	01069-53-0
2,6-dimethylheptane 01072-05-5 ethylcyclohexane 01678-91-7 3,5-dimethylheptane 00926-82-9 ethylbenzene 00100-41-4 2,3-dimethylheptane 03074-71-3 m-&p-xylene 00108-38-3 4-methyloctane 02216-34-4 2-methyloctane 03221-61-2 3-methyloctane 02216-33-3 styrene (ethenylbenzene) 00100-42-5 o-xylene 00095-47-6 1-nonene 00124-11-8 n-nonane 00111-84-2 (1-methylethyl)benzene 00098-82-8 2,2-dimethyloctane 15869-87-1 2,4-dimethyloctane 02051-30-1 n-propylbenzene 00103-65-1 1-methyl-3-ethylbenzene 00620-14-4		02213-23-2
ethylcyclohexane 01678-91-7 3,5-dimethylheptane 00926-82-9 ethylbenzene 00100-41-4 2,3-dimethylheptane 03074-71-3 m-&p-xylene 00108-38-3 4-methyloctane 02216-34-4 2-methyloctane 03221-61-2 3-methyloctane 02216-33-3 styrene (ethenylbenzene) 00100-42-5 o-xylene 00095-47-6 1-nonene 00124-11-8 n-nonane 001111-84-2 (1-methylethyl)benzene 00098-82-8 2,2-dimethyloctane 15869-87-1 2,4-dimethyloctane 02051-30-1 n-propylbenzene 00103-65-1 1-methyl-3-ethylbenzene 00103-65-1	cis-1,2-dimethylcyclohexane	02207-01-4
3,5-dimethylheptane 00926-82-9 ethylbenzene 00100-41-4 2,3-dimethylheptane 03074-71-3 m-&p-xylene 00108-38-3 4-methyloctane 02216-34-4 2-methyloctane 03221-61-2 3-methyloctane 02216-33-3 styrene (ethenylbenzene) 00100-42-5 o-xylene 00095-47-6 1-nonene 00111-84-2 (1-methylethyl)benzene 00098-82-8 2,2-dimethyloctane 15869-87-1 2,4-dimethyloctane 02051-30-1 n-propylbenzene 00103-65-1 1-methyl-3-ethylbenzene 00103-65-1	2,6-dimethylheptane	01072-05-5
ethylbenzene 00100-41-4 2,3-dimethylheptane 03074-71-3 m-&p-xylene 00108-38-3 4-methyloctane 02216-34-4 2-methyloctane 03221-61-2 3-methyloctane 02216-33-3 styrene (ethenylbenzene) 00100-42-5 o-xylene 00095-47-6 1-nonene 001111-84-2 (1-methylethyl)benzene 00098-82-8 2,2-dimethyloctane 15869-87-1 2,4-dimethyloctane 04032-94-4 2,6-dimethyloctane 02051-30-1 n-propylbenzene 00103-65-1 1-methyl-3-ethylbenzene 00620-14-4	ethylcyclohexane	01678-91-7
2,3-dimethylheptane 03074-71-3 m-&p-xylene 00108-38-3 4-methyloctane 02216-34-4 2-methyloctane 03221-61-2 3-methyloctane 02216-33-3 styrene (ethenylbenzene) 00100-42-5 o-xylene 00095-47-6 1-nonene 00111-84-2 (1-methylethyl)benzene 00098-82-8 2,2-dimethyloctane 15869-87-1 2,4-dimethyloctane 02051-30-1 n-propylbenzene 00103-65-1 1-methyl-3-ethylbenzene 00620-14-4	3,5-dimethylheptane	00926-82-9
m-&p-xylene 00108-38-3 4-methyloctane 02216-34-4 2-methyloctane 03221-61-2 3-methyloctane 02216-33-3 styrene (ethenylbenzene) 00100-42-5 o-xylene 00095-47-6 1-nonene 00124-11-8 n-nonane 001111-84-2 (1-methylethyl)benzene 00098-82-8 2,2-dimethyloctane 15869-87-1 2,4-dimethyloctane 04032-94-4 2,6-dimethyloctane 02051-30-1 n-propylbenzene 00103-65-1 1-methyl-3-ethylbenzene 00620-14-4	ethylbenzene	00100-41-4
4-methyloctane 02216-34-4 2-methyloctane 03221-61-2 3-methyloctane 02216-33-3 styrene (ethenylbenzene) 00100-42-5 o-xylene 00095-47-6 1-nonene 00124-11-8 n-nonane 001111-84-2 (1-methylethyl)benzene 00098-82-8 2,2-dimethyloctane 15869-87-1 2,4-dimethyloctane 04032-94-4 2,6-dimethyloctane 02051-30-1 n-propylbenzene 00103-65-1 1-methyl-3-ethylbenzene 00620-14-4	2,3-dimethylheptane	03074-71-3
2-methyloctane 03221-61-2 3-methyloctane 02216-33-3 styrene (ethenylbenzene) 00100-42-5 o-xylene 00095-47-6 1-nonene 00124-11-8 n-nonane 001111-84-2 (1-methylethyl)benzene 00098-82-8 2,2-dimethyloctane 15869-87-1 2,4-dimethyloctane 04032-94-4 2,6-dimethyloctane 02051-30-1 n-propylbenzene 00103-65-1 1-methyl-3-ethylbenzene 00620-14-4	m-&p-xylene	00108-38-3
3-methyloctane 02216-33-3 styrene (ethenylbenzene) 00100-42-5 o-xylene 00095-47-6 1-nonene 00124-11-8 n-nonane 00111-84-2 (1-methylethyl)benzene 00098-82-8 2,2-dimethyloctane 15869-87-1 2,4-dimethyloctane 04032-94-4 2,6-dimethyloctane 02051-30-1 n-propylbenzene 00103-65-1 1-methyl-3-ethylbenzene 00620-14-4	4-methyloctane	02216-34-4
styrene (ethenylbenzene) 00100-42-5 o-xylene 00095-47-6 1-nonene 00124-11-8 n-nonane 00111-84-2 (1-methylethyl)benzene 00098-82-8 2,2-dimethyloctane 15869-87-1 2,4-dimethyloctane 04032-94-4 2,6-dimethyloctane 02051-30-1 n-propylbenzene 00103-65-1 1-methyl-3-ethylbenzene 00620-14-4	2-methyloctane	03221-61-2
o-xylene 00095-47-6 1-nonene 00124-11-8 n-nonane 00111-84-2 (1-methylethyl)benzene 00098-82-8 2,2-dimethyloctane 15869-87-1 2,4-dimethyloctane 04032-94-4 2,6-dimethyloctane 02051-30-1 n-propylbenzene 00103-65-1 1-methyl-3-ethylbenzene 00620-14-4	3-methyloctane	02216-33-3
1-nonene 00124-11-8 n-nonane 00111-84-2 (1-methylethyl)benzene 00098-82-8 2,2-dimethyloctane 15869-87-1 2,4-dimethyloctane 04032-94-4 2,6-dimethyloctane 02051-30-1 n-propylbenzene 00103-65-1 1-methyl-3-ethylbenzene 00620-14-4	styrene (ethenylbenzene)	00100-42-5
n-nonane 00111-84-2 (1-methylethyl)benzene 00098-82-8 2,2-dimethyloctane 15869-87-1 2,4-dimethyloctane 04032-94-4 2,6-dimethyloctane 02051-30-1 n-propylbenzene 00103-65-1 1-methyl-3-ethylbenzene 00620-14-4	o-xylene	00095-47-6
(1-methylethyl)benzene 00098-82-8 2,2-dimethyloctane 15869-87-1 2,4-dimethyloctane 04032-94-4 2,6-dimethyloctane 02051-30-1 n-propylbenzene 00103-65-1 1-methyl-3-ethylbenzene 00620-14-4	1-nonene	00124-11-8
2,2-dimethyloctane 15869-87-1 2,4-dimethyloctane 04032-94-4 2,6-dimethyloctane 02051-30-1 n-propylbenzene 00103-65-1 1-methyl-3-ethylbenzene 00620-14-4	n-nonane	00111-84-2
2,4-dimethyloctane 04032-94-4 2,6-dimethyloctane 02051-30-1 n-propylbenzene 00103-65-1 1-methyl-3-ethylbenzene 00620-14-4	(1-methylethyl)benzene	00098-82-8
2,6-dimethyloctane 02051-30-1 n-propylbenzene 00103-65-1 1-methyl-3-ethylbenzene 00620-14-4	2,2-dimethyloctane	15869-87-1
n-propylbenzene 00103-65-1 1-methyl-3-ethylbenzene 00620-14-4	2,4-dimethyloctane	04032-94-4
1-methyl-3-ethylbenzene 00620-14-4	2,6-dimethyloctane	02051-30-1
	n-propylbenzene	0103-65-1
1-methyl-4-ethylbenzene 00622-96-8	1-methyl-3-ethylbenzene	00620-14-4
	1-methyl-4-ethylbenzene	00622-96-8

.

	SOP No.: 1003 C ₆ -C ₁₂ Hydrocarbons
	Version 2 Date Issued: June 22, 2006
	Page 4 of 11
1,3,5-trimethylbenzene	00108-67-8
1-methyl-2-ethylbenzene	00611-14-3
1,2,4-trimethylbenzene	00095-63-6
n-decane	00124-18-5
(2-methylpropyl)benzene	00538-93-2
(1-methylpropyl)benzene	00135-98-8
1-methyl-3-(1-methylethyl)benzene	00535-77-3
1,2,3-trimethylbenzene	00526-73-8
1-methyl-4-(1-methylethyl)benzene	00099-87-6
2,3-dihydroindene (indan)	00496-11-7
1-methyl-2-(1-methylethyl)benzene	00527-84-4
1,3-diethylbenzene	00141-93-5
1,4-diethylbenzene	00105-05-5
1-methyl-3-n-propylbenzene	01074-43-7
1-methyl-4-n-propylbenzene	01074-55-1
1,2-diethylbenzene	00135-01-3
1-methyl-2-n-propylbenzene	01074-17-5
1,4-dimethyl-2-ethylbenzene	01758-88-9
1,3-dimethyl-4-ethylbenzene	00874-41-9
1,2-dimethyl-4-ethylbenzene	00934-80-5
1,3-dimethyl-2-ethylbenzene	02870-04-4
n-undecane (hendecane)	01120-21-4
1,2-dimethyl-3-ethylbenzene	00933-98-2
1,2,4,5-tetramethylbenzene	00095-93-2
1-methyl-2-n-butylbenzene	01595-11-5
1,2,3,5-tetramethylbenzene	00527-53-7
1-(1,1-dimethylethyl)-2-methylbenzene	01074-92-6
1,2,3,4-tetramethylbenzene	00488-23-3
n-pentylbenzene	00538-68-1
1-(1,1-dimethylethyl)-3,5-dimethylbenzene	00098-19-1
naphthalene	00091-20-3
n-dodecane	00112-40-3
n-tridecane	00629-50-5

1.2 This method is restricted to use by, or under the supervision of, analysts experienced in the use of gas chromatographs. Analysts should also be skilled in the interpretation of gas chromatograms. Each analyst must demonstrate the ability to generate acceptable results with this method.

2.0 Method Summary

2.1 This method provides GC/FID conditions for the detection of the target analytes. Exhaust samples are introduced to the GC from Tedlar bags by means of gas sampling valves. Separation of the sample hydrocarbons takes place in a 60 m 0.32 mm ID WCOT fused silica column. Quantitative analysis is

SOP No.: 1003 C₆-C₁₂ Hydrocarbons Version 2 Date Issued: June 22, 2006 Page 5 of 11

performed by the FID using an external standard approach. The computerized GC data acquisition system identifies the hydrocarbons and concentrations are determined by peak area response factors.

- 2.2 Prior to the use of this method, appropriate sample collection techniques must be used.
 - 2.2.1 Samples are collected from the exhaust in Tedlar bags. Dilutions may apply and must be accounted for in final calculations.

3.0 Health and Safety

- 3.1 The toxicity or carcinogenicity of chemicals used in this procedure has not been precisely defined. Each chemical should be treated as a potential health hazard, and exposure to these chemicals should be minimized.
- 3.2 All sampling should be done while using proper protective equipment to minimize exposure to vapor. Minimum personal protection includes the use of laboratory safety glasses, a lab coat or apron, and protective gloves.

4.0 Sample Preservation, Containers, Handling, and Storage

- 4.1 Samples are collected and stored in 1 L Tedlar bags.
- 4.2 Tedlar bags may not be exposed to heat or excessive light. Black Tedlar bags may be used to eliminate photochemically induced reactions.
- 4.3 Samples must be analyzed within 24 hours of collection.

5.0 Interferences and Potential Problems

- 5.1 To maximize sample integrity, Tedlar bags should not leak or be exposed to excessive light or heat. Tedlar bags must be shielded from direct sunlight to avoid photochemically induced reactions of any reactive hydrocarbons.
- 5.2 Any component present in the sample with a retention time very similar to that of a target hydrocarbon would interfere or coelute. If separation cannot be achieved, confirmation of identification should be done using a different column for separation, or an alternate detector, e.g., mass spectrometer (MS), photoionization detector (PID), etc.

6.0 Equipment/Apparatus

- 6.1 GC/FID
 - 6.1.1 Gas Chromatograph (GC) Varian CP-3800 with programmable oven temperatures, 30 mL fixed volume injection loop for automated transfer of gaseous samples from the Tedlar bag to the GC, and analytical column interfaced with a flame ionization detector (FID).
 - 6.1.1.1 GC Column Varian CP 8870 WCOT fused silica, 60 m x 0.32 mm ID, or equivalent.

SOP No.: 1003 C₆-C₁₂ Hydrocarbons Version 2 Date Issued: June 22, 2006 Page 6 of 11

- 6.1.2 Data System Dell-PC computer with Varian Star software capable of continuous acquisition and storage of all data obtained throughout the duration of the chromatographic program.
- 6.2 Nitrogen, compressed and liquid. Minimum purity of 99.998 %.
- 6.3 Helium, compressed. Minimum purity of 99.995 %.
- 6.4 Hydrogen, compressed. Minimum purity of 99.995 %.
- 6.5 Air, compressed. "Zero" grade (<1 ppmC total hydrocarbon contamination), or better.
- 6.6 Tedlar bags: SKC, Inc., 5 to 10 L in capacity, or equivalent.
- 6.7 Super Syringe: Fisher Scientific, 1 L

7.0 Reagents

- 7.1 NIST-certified SRM or secondary NIST-traceable standards shall be used in all tests. A secondary standard is obtained by a comparison between a SRM and a candidate standard.
- 7.2 Calibration Standard
 - 7.2.1 The quantitative calibration standard for all target hydrocarbons is propane.

Lehner/Martin, Inc. Propane Std. in zero air - 2955 ppbC, or equivalent

7.3 Control Standard

7.3.1 Quality control standard, containing at least n-hexane, benzene, toluene, n-octane, ethylbenzene, m&p-xylene, o-xylene and n-decane at concentrations between 200 and 2000 ppbC based on a propane standard. This standard is used as a daily update of control charts and a daily determination of marker retention time windows.

Scott-Marrin, Inc. 23 Component custom blend in nitrogen, or equivalent

- 7.4 A high concentration standard (higher than the calibration standard), containing the target hydrocarbons listed in Section 7.3.1, is used for linearity determinations. The high concentration standard must have concentrations verified against a NIST-traceable propane standard.
- 7.5 A low concentration standard (5 to 10 times the estimated MDL), containing the target hydrocarbons listed in Section 7.3.1, is used for MDL determinations. The low concentration standard must have concentrations verified against a NIST-traceable propane standard.
 - 7.5.1 In lieu of a low concentration standard, a higher concentration standard may be diluted.

8.0 Procedure

SOP No.: 1003 C₆-C₁₂ Hydrocarbons Version 2 Date Issued: June 22, 2006 Page 7 of 11

8.1 Sample collection

- 8.1.1 Specific sample collection procedures can be found in the VOC Sampling Protocol.
- 8.1.2 In general, samples are collected from the integrated bag samples that have been continuously filled during the 1200 second transient test cycle. One bag is filled with dilution air, while the other is filled with dilute exhaust. A Teflon diaphragm pump is T-connected through a valve to the constant volume sampling system to fill a Tedlar bag with either dilution air or dilute exhaust.
- 8.2 GC chromatographic conditions:

Injection volume: 30 mL fixed loop Injector temperature: -180 C (hold 7.10 min) to 250 C (hold 61.25 min) @ 200 C/min Helium carrier flow: 3 mL/min Nitrogen aux. flow: 27 mL/min Hydrogen flow: 30 mL/min Air flow: 300 mL/min Column temperature: 10 C (hold 9 min) to 250 C (hold 13 min) @ 5 C/min Detector temperature: 300 C

- 8.3 Samples in Tedlar bags are connected to one of sixteen ports on the autosampler and the analytical process then begins.
- 8.4 The sample is introduced into the carrier gas stream through the injection valve.
- 8.5 Each separated analyte exits the column into the FID where a response is generated.
- 8.6 Hydrocarbon concentrations are calculated in parts per billion of carbon (ppbC) by Varian's Star software from the NIST-traceable propane calibration standard.
- 8.7 Analytes with concentrations higher than demonstrated in the instruments range of linearity must be diluted and rerun.
- 8.8 Peak identification and integration are checked and corrected if necessary by the analyst using the following procedure and criteria:
 - 1. The primary peak identification is done by the computer using the relative retention times based on reference calibration runs.
 - 2. Confirm that the relative peak heights of the sample run ("fingerprint") match the typical fingerprint seen in past sample runs.
 - 3. Compare the relative retention times of the sample peaks with those of reference runs.
 - 4. Any peak with a reasonable doubt is labeled 'Unidentified'.
- 8.9 Target compounds that coelute, with the exception of m&p-xylene, are reported as the major component. Due to the difficulty in separation of m-xylene and p-xylene, they are reported together as m&p-xylene.
- 8.10 The WCOT fused silica analytical column is heated to 250 C to prevent carry over and assure all compounds are eluted before the next run.
 - 8.10.1 After running a particularly "dirty" sample, the analyst should run a blank before proceeding to the next sample as there may be sample carry over, or flush the sampling system with air.

SOP No.: 1003 C₆-C₁₂ Hydrocarbons Version 2 Date Issued: June 22, 2006 Page 8 of 11

9.0 Calculations

9.1 The target hydrocarbon concentrations, in ppbC, are calculated by the data system using propane as an external standard.

 $Concentration_{sample}$ (ppbC) = Peak Area_{sample} × Response Factor

where the response factor (RF) is calculated during daily calibration by:

 $RF = \frac{Concentration of propane standard (ppbC)}{area of propane peak}$

10.0 Quality Control/Quality Assurance

- 10.1 Instrument Blank Run
 - 10.1.1 An instrument blank of pure nitrogen is run each analysis day. All target hydrocarbon concentrations from the blank analysis must be below the method detection limit (MDL) before the analysis may proceed.
 - 10.1.1.1 If the blank shows a peak greater than the MDL in the region of interest, the source of contamination must be investigated and remedied.

10.2 Calibration Run

- 10.2.1 The calibration standard is analyzed each analysis day to generate the response factor used to quantify the sample concentrations.
- 10.3 Control Standard Run
 - 10.3.1 The quality control standard is analyzed at least once each analysis day. Measurements of all compounds specified in Section 7.3.1 must fall within the control limits to ensure the validity of the sample analyses that day. To meet this requirement, it may be necessary to inspect and repair the GC, and rerun the calibration and/or control standards.
- 10.4 Control Charts
 - 10.4.1 A quality control chart is maintained for each component of the control standard listed in Section 7.3.1, and is performed for new instruments, after making instrument modifications that can affect recovery, and at least once every year. The control charts, used on a daily basis, establish that the method is "in control." The following describes how to construct a typical control chart:
 - 1. Obtain at least 20 daily control standard results;
 - 2. Calculate the control standard mean concentration and standard deviation for the target hydrocarbon; and

SOP No.: $1003 C_6-C_{12}$ Hydrocarbons Version 2 Date Issued: June 22, 2006 Page 9 of 11

- 3. Create a control chart for the target hydrocarbon by placing the concentration on the Yaxis and the date on the X-axis. Establish upper and lower warning limits at either two standard deviations (2s) or 5 percent, whichever is greater, above and below the average concentration.
- 4. A control standard measurement is considered to be out-of-control when the analyzed value exceeds the control limit or two successive control standard measurements of the same analyte exceed the warning limit.
- 5. If 20 control standard measurements are not yet available to create a control chart (e.g., the control standard was expended and replaced prior to obtaining 20 points with the new standard), measurements must be within 15% relative standard deviation (RSD) of the certified concentration. If the control standard is not a NIST standard, the cylinder should be certified by the laboratory against a NIST standard.

The measured concentrations of all target hydrocarbons contained in the control standard must be within the control limits (in control) for the sample results to be considered acceptable.

10.5 Duplicates

10.5.1 A duplicate analysis of one sample is performed at least once per analysis day. The relative percent difference (RPD) is calculated for each duplicate run:

 $RPD(\%) = \frac{Difference between duplicate and original measurement}{A verage of duplicate and original measurement} \times 100$

For each compound specified in Section 7.3.1, the allowable RPD depends on the average concentration level for the duplicate runs, as shown in the following table:

Average Measurement for the Duplicate Runs			<u>Allowable RPD (%)</u>
1 to 10	time	s MDL	100
10 to 20	"	"	30
20 to 50	"	"	20
Greater than 50	"	"	15

If the results of the duplicate analyses do not meet these criteria for all compounds specified in Section 7.3.1, the sample may be reanalyzed. If reanalysis is not feasible or if the criteria are still not met on reanalysis, all sample results for that analysis day are invalid.

10.6 Linearity

10.6.1 A multipoint calibration to confirm instrument linearity is performed for the target hydrocarbons in the control standard for new instruments, after making instrument modifications that can affect linearity, and at least once every year. The multipoint calibration consists of at least five concentration or mass loading levels (using smaller or larger volume sample sizes of existing standards is acceptable), each above the MDL, distributed over the range of expected sample concentration. A linear regression analysis is performed using concentration and average area counts to determine the regression correlation coefficient (r). The r must be greater than 0.995 to be considered sufficiently linear for one-point calibrations.

SOP No.: $1003 C_6-C_{12}$ Hydrocarbons Version 2 Date Issued: June 22, 2006 Page 10 of 11

10.7.1 The MDL for the target hydrocarbons in the control standard must be determined for new instruments, after making instrument modifications that can affect linearity and/or sensitivity, and at least once every year. To make the calculations, it is necessary to run at least seven replicate determinations at a concentration of 5 to 10 times the estimated MDL. The MDL is calculated using the following equation:

 $MDL = t \times s$

where s is the standard deviation of the replicates and t is the t-factor for 99 percent confidence for a one-sided normal (Gaussian) distribution. The number of degrees of freedom is equal to the number of replicates, minus one. An abbreviated t-table is:

Degrees of Freedom	<u>t-value</u>
4	3.7
5	3.4
6	3.1
7	3.0

- 10.7.1.1 The maximum allowable MDL for each compound is 1 ppbC. The calculated laboratory MDL must be equal to or lower than the maximum allowable MDL. All peaks identified as target compounds that are equal to or exceed the maximum allowable MDL must be reported. If the calculated laboratory MDL is less than the maximum allowable MDL, the laboratory may choose to set its reporting limit at the maximum allowable MDL, the calculated laboratory MDL, or any level in between.
- 10.7.1.2 For the purpose of calculating the total mass of all species, the concentrations of all compounds below the MDL are considered to be zero.
- 10.8 Method 1002/1003 Crossover Check
 - 10.8.1 A crossover check is analyzed at least once each analysis day, and is performed by choosing a compound from a sample to be measured and compared by both Method 1002 and 1003. The crossover compound shall be a compound that can reasonably be expected to be found and measured by both methods in the laboratory performing the analysis. The maximum relative percent difference (RPD) allowed from the results obtained by the two methods is 15%.

11.0 References

11.1 California Environmental Protection Agency, Air Resources Board, Method 1003, Revision IV, July 2002

SOP No.: PAH Sampling Protocol Version 6 Date Issued: October 6, 2006 Page 1 of 5

TITLE: Sampling Protocol for Polycyclic Aromatic Hydrocarbons (PAH) in Exhaust Emissions

SOP NUMBER: PAH Sampling Protocol VERSION 6

WRITTEN BY:

Technical Specialist: Nathan Imus

Date

Date

APPROVED BY:_

President: Don Olson

SOP MANUAL CONTROL NO. ____:

This document has been prepared by Olson-EcoLogic and is to be considered the sole property of Olson-EcoLogic. This document is provided to organizations outside of The Olson-EcoLogic Group for the sole purpose of determining the fitness of Olson-EcoLogic for a specific project. The document remains the property of The Olson-EcoLogic Group and the recipient agrees to keep confidential the contents of this document. If the document is provided as a controlled document, the user agrees to surrender the document upon request of Olson-EcoLogic. If the document is provided as an uncontrolled document, the user understands that subsequent revisions will not be provided.

The document may not be provided to a third party, such as consultants or other governmental agencies, unless said third party agrees to the terms stated above.

SOP No.: PAH Sampling Protocol Version 6 Date Issued: October 6, 2006 Page 2 of 5

1.0 Scope and Application

- 1.1 This exhaust gas sampling protocol is specifically designed for sampling dilute exhaust generated from heavy-duty diesel engines being operated over the EPA transient cycle or steady state emission test as described in 40 CFR Part 86.
- 1.2 For transient cycle operation, this official testing protocol involves continual sample integration of all gaseous emissions along with pertinent engine and ambient variables for 1200 seconds (20 minutes). For eight-mode steady state operation, this official testing protocol involves modal sample collection for a total of 20 minutes. Modes 1, 2, 3 and 8 are collected for 3 minutes of the 5 minute mode, while modes 4, 5, 6 and 7 are collected for 2 minutes.
- 1.3 Dilute exhaust samples are collected from the dilution tunnel.

2.0 Method Summary

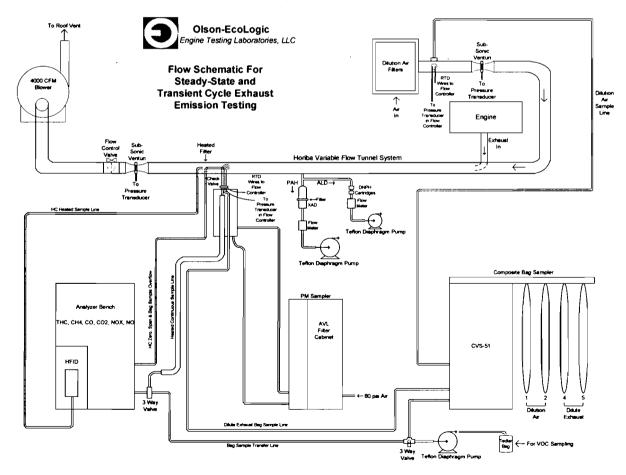
- 2.1 Samples analyzed for particulate and gaseous phase polycyclic aromatic hydrocarbons (PAH) are collected continuously by pulling the dilute exhaust from the dilution tunnel, using a Teflon diaphragm pump, through a particulate filter and XAD cartridge.
- 2.2 Once received by the laboratory, samples are taken through a concentration extraction and analyzed via gas chromatography/mass spectrometry (GC/MS).

3.0 Health and Safety

- 3.1 The toxicity or carcinogenicity of chemicals used in this procedure has not been precisely defined. Each chemical should be treated as a potential health hazard, and exposure to these chemicals should be minimized.
- 3.2 The following method analytes have been classified as known or suspected human or mammalian carcinogens: benzo(a)anthracene and dibenzo(a,h)anthracene. A guideline for the safe handling of carcinogens can be found in Section 5209 of Title 8 of the California Administrative Code.
- 3.3 All sampling should be done while using proper protective equipment to minimize exposure to vapor. Minimum personal protection includes the use of laboratory safety glasses, a lab coat or apron, and protective gloves.

4.0 Sample Preservation, Containers, Handling, and Storage

- 4.1 Particulate samples are collected and stored on particulate filers, while gaseous samples are collected and stored on XAD cartridges.
- 4.2 Sealed XAD cartridges must be stored away from light and refrigerated, at a temperature less than 4 C, upon receipt from manufacturer, until ready for use.
- 4.3 From the time of collection to extraction, maintain all samples at 4 C or lower and protect from light. All samples must be extracted within 21 days of collection, and all extracts must be analyzed within 40 days of extraction.


SOP No.: PAH Sampling Protocol Version 6 Date Issued: October 6, 2006 Page 3 of 5

5.0 Interferences and Potential Problems

5.1 Transformation of PAH and the formation of artifacts can occur in the sampling train. PAH degradation and transformation on the sampling train filters have been demonstrated. Certain reactive PAH such as benzo(a)pyrene, benzo(a)anthracene, and fluoranthene when trapped on filters can readily react with stack gases. These PAH are transformed by reaction with low levels of nitric acid and higher levels of nitrogen oxides, ozone, and sulfur oxides.

6.0 Equipment/Apparatus

- 6.1 Sampling Train Schematic
 - 6.1.1 8' Gas line from the tunnel to the PAH/ALD sampling system is as follows:
 - 6.1.1.1 Siltek®/Sulfinert® treated ½" 316L grade stainless steel tubing: Restek, or equivalent.
 - 6.1.2 After the "T" connection, all PAH sampling line is 1/4" Teflon tubing.

SOP No.: PAH Sampling Protocol Version 6 Date Issued: October 6, 2006 Page 4 of 5

- 6.2 Amberlite XAD cartridges: Acros, or equivalent
- 6.3 PALLFLEX Fiberfilm T60A20 90 mm particulate filter: Pall Life Sciences, or equivalent.
- 6.4 Digital flow meter: TSI, Inc., or equivalent.
- 6.5 Teflon diaphragm vacuum-pressure pump: MFG Corp., or equivalent.

7.0 Procedure

- 7.1 Sample collection
 - 7.1.1 A particulate filter and XAD cartridge is connected into the sample flow path.
 - 7.1.2 Particulate and gaseous phase dilute exhaust samples are collected onto the particulate filter and XAD cartridges by turning on the power to the Teflon diaphragm pump.
 - 7.1.2.1 For transient test cycle sample collection, the Teflon diaphragm pump is turned on for the duration of the 1200 second emission test.
 - 7.1.2.2 For steady state cycle sample collection, the Teflon diaphragm pump is turned on for 3 minutes at the end of modes 1, 2, 3 and 8; and 2 minutes at the end of modes 4, 5, 6 and 7.
 - 7.1.3 The flow rate through the particulate filter and XAD cartridge should be 100 L/min.

7.1.3.1 Flow rate should be continuously monitored and adjusted if necessary during sampling.

- 7.1.4 The dilution and work is noted for each dilute exhaust sample taken for final calculations.
- 7.1.5 Particulate filters and XAD cartridges are refrigerated immediately after sample collection and extraction, below a temperature of 4 C, until analyzed by GC/MS.

8.0 Calculations

8.1 Volumetric flow conversions are as follows:

 $1 \text{ SCFM} = 0.0283 \text{ m}^3/\text{min} = 28.317 \text{ L/min}$

9.0 Quality Control/Quality Assurance

- 9.1 Tunnel Blank Sample
 - 9.1.1 A tunnel blank sample must be collected each analysis day. The levels of any unlabelled analyte quantified in the tunnel blank must not exceed 20 % of the level of that analyte in the dilute exhaust sample. If this criterion cannot be met, calculate a reporting limit that is five times the blank value. Do not subtract the blank value from the sample value.

SOP No.: PAH Sampling Protocol Version 6 Date Issued: October 6, 2006 Page 5 of 5

9.2 Field Blank Sample

•

9.2.1 At least one XAD and particulate filter per batch is analyzed as a field blank. The levels of any unlabelled analyte quantified in the tunnel blank must not exceed 20 % of the level of that analyte in the dilute exhaust sample. If this criterion cannot be met, calculate a reporting limit that is five times the blank value.

9.3 Leak Checks

- 9.3.1 Sampling Train
 - 9.3.1.1 A leak check must be performed each analysis day to ensure correct sampling system flow rates.
 - 9.3.1.2 To leak check any part of the sampling train, the suspected leak area should be isolated and pressurized or put under vacuum. A gauge may then be used to check if a leak exists.
 - 9.3.1.3 Flow rate must be kept within 2 L/min of the set sampling flow rate of 100 L/min.

9.4 Flow Rates

9.4.1 The flow rate into the particulate filter and XAD cartridge is controlled with a digital flow meter. The flow rate over the transient or steady state emission test cycle is 100 L/min.

10.0 References

10.1 Desert Research Institute, 4 Channel Sequential FP/SVOC Sampler, 1-750.4, Revision 05, July 2002.

SOP No.: ALD Sampling Protocol Version 6 Date Issued: October 6, 2006 Page 1 of 5

TITLE: Sampling Protocol for Aldehyde and Ketone Compounds in Exhaust Emissions

SOP NUMBER: ALD Sampling Protocol VERSION 6

WRITTEN BY:_

Technical Specialist: Nathan Imus

APPROVED BY:_

President: Don Olson

SOP MANUAL CONTROL NO. ____:

This document has been prepared by Olson-EcoLogic and is to be considered the sole property of Olson-EcoLogic. This document is provided to organizations outside of The Olson-EcoLogic Group for the sole purpose of determining the fitness of Olson-EcoLogic for a specific project. The document remains the property of The Olson-EcoLogic Group and the recipient agrees to keep confidential the contents of this document. If the document is provided as a controlled document, the user agrees to surrender the document upon request of Olson-EcoLogic. If the document is provided as an uncontrolled document, the user understands that subsequent revisions will not be provided.

The document may not be provided to a third party, such as consultants or other governmental agencies, unless said third party agrees to the terms stated above.

Date

Date

SOP No.: ALD Sampling Protocol Version 6 Date Issued: October 6, 2006 Page 2 of 5

1.0 Scope and Application

- 1.1 This exhaust gas sampling protocol is specifically designed for sampling dilute exhaust generated from heavy-duty diesel engines being operated over the EPA transient cycle or steady state emission test as described in 40 CFR Part 86.
- 1.2 For transient cycle operation, this official testing protocol involves continual sample integration of all gaseous emissions along with pertinent engine and ambient variables for 1200 seconds (20 minutes). For eight-mode steady state operation, this official testing protocol involves modal sample collection for a total of 20 minutes. Modes 1, 2, 3 and 8 are collected for 3 minutes of the 5 minute mode, while modes 4, 5, 6 and 7 are collected for 2 minutes.
- 1.3 Dilute exhaust samples are collected from the dilution tunnel.

2.0 Method Summary

- 2.1 Samples analyzed for aldehyde and ketone compounds (carbonyls) are collected continuously by pulling the dilute exhaust from the dilution tunnel, using a Teflon diaphragm pump, through a series of two DNPH cartridges.
- 2.2 The absorbing solution (2,4-DNPH) complexes the carbonyl compounds into their diphenylhydrazone derivatives.
- 2.3 Once received by the laboratory, cartridges are eluted with 5 mL acetonitrile and analyzed via high performance liquid chromatography (HPLC).

3.0 Health and Safety

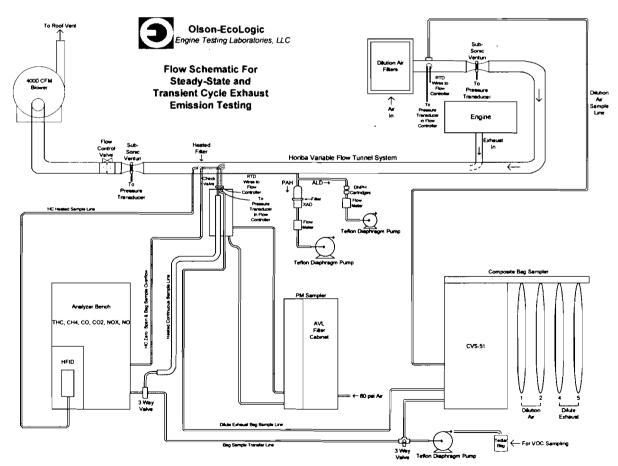
- 3.1 The toxicity or carcinogenicity of chemicals used in this procedure has not been precisely defined. Each chemical should be treated as a potential health hazard, and exposure to these chemicals should be minimized.
- 3.2 All sampling should be done while using proper protective equipment to minimize exposure to vapor. Minimum personal protection includes the use of laboratory safety glasses, a lab coat or apron, and protective gloves.

4.0 Sample Preservation, Containers, Handling, and Storage

- 4.1 Samples are collected and stored in DNPH-impregnated cartridges.
- 4.2 DNPH cartridges must be sealed and refrigerated, at a temperature less than 40° F, upon receipt from manufacturer, until ready for use.
- 4.3 If samples are not analyzed the same day as collected, they must be refrigerated at a temperature below 40° F.
- 4.4 Refrigerated samples are stable for up to 30 days.

SOP No.: ALD Sampling Protocol Version 6 Date Issued: October 6, 2006 Page 3 of 5

5.0 Interferences and Potential Problems


5.1 To decrease the chance of background contamination variables and oxygenated impurities, DNPHimpregnated cartridges are used rather than impingers.

6.0 Equipment/Apparatus

- 6.1 Sep-Pak[®] DNPH-impregnated cartridges: Waters Corporation, or equivalent
- 6.2 Digital flow meter: Dwyer Instruments, Inc., or equivalent.
- 6.3 Teflon diaphragm vacuum-pressure pump: MFG Corp., or equivalent.
- 6.4 Sampling Train Schematic
 - 6.4.1 8' Gas line from the tunnel to the PAH/ALD sampling system is as follows:

6.4.1.1 Siltek@/Sulfinert® treated 1/2" 316L grade stainless steel tubing: Restek, or equivalent.

6.4.2 After the "T" connection, all ALD sampling line is ¹/₄" Teflon tubing.

SOP No.: ALD Sampling Protocol Version 6 Date Issued: October 6, 2006 Page 4 of 5

7.0 Procedure

- 7.1 Sample collection
 - 7.1.1 Two DNPH cartridges connected into the sample flow path.
 - 7.1.2 Dilute exhaust samples are collected onto the DNPH cartridges by turning on the power to the Teflon diaphragm pump.
 - 7.1.2.1 For transient test cycle sample collection, the Teflon diaphragm pump is turned on for the duration of the 1200 second emission test.
 - 7.1.2.2 For steady state cycle sample collection, the Teflon diaphragm pump is turned on for 3 minutes at the end of modes 1, 2, 3 and 8; and 2 minutes at the end of modes 4, 5, 6 and 7.
 - 7.1.3 The flow rate through the DNPH cartridges should be 1 L/min.

7.1.3.1 Flow rate should be continuously monitored and adjusted if necessary during sampling.

- 7.1.4 The dilution and work is noted for each dilute exhaust sample taken for final calculations.
- 7.1.5 DNPH cartridges are refrigerated immediately after sample collection, below a temperature of 40° F, until analyzed by HPLC.

8.0 Calculations

8.1 Volumetric flow conversions are as follows:

1 SCFM = 0.0283 m³/min = 28.317 L/min

9.0 Quality Control/Quality Assurance

- 9.1 Tunnel Blank Sample
 - 9.1.1 A tunnel blank sample must be collected each analysis day. If the tunnel blank shows a peak greater than the method detection limit (MDL) in the region of interest, the source of the contamination must be investigated and remedied. Do not subtract the blank value from the sample value.
- 9.2 Field Blank Sample
 - 9.2.1 At least one cartridge per batch is analyzed as a field blank. If the cartridge blank shows a peak greater than the method detection limit in the region of interest, the source of the contamination must be investigated and remedied.

SOP No.: ALD Sampling Protocol Version 6 Date Issued: October 6, 2006 Page 5 of 5 .

•

9.3 Leak Checks

- 9.3.1 Sampling Train
 - 9.3.1.1 A leak check must be performed each analysis day to ensure correct sampling system flow rates.
 - 9.3.1.2 To leak check any part of the sampling train, the suspected leak area should be isolated and pressurized or put under vacuum. A gauge may then be used to check if a leak exists.
 - 9.3.1.3 Flow rate must be kept within 0.2 L/min of the set sampling flow rate of 1 L/min.

9.4 Flow Rates

9.4.1 The flow rate into the DNPH cartridge is controlled with a digital flow meter. The flow rate over the transient or steady state emission test cycle is 1 L/min.

10.0 References

.

10.1 Desert Research Institute, DRI Carbonyl Sampler, 1-710.3, Revision 03, June 1997.

DRI STANDARD OPERATING PROCEDURE	Page: 1 of 9
	Date: 4/11/2005
Title: Analysis of Carbonyl Compounds	Number: 2-710.4
by High Performance Liquid Chromatography	Revision: 04

1.0 PURPOSE/APPLICABILITY

This analytical method applies to dinitrophenylhydrazine-impregnated cartridges through which air samples have been passed for the collection of carbonyl compounds. Carbonyl compounds react rapidly with 2,4-dinitrophenylhydrazine (DNPH) in acidic media to form yellow to orange-colored hydrazones. The color depends on the type of carbonyl compound, and the amount of the product formed is dependent on the quantity of carbonyl compound provided to the reagent.

Samples are collected by drawing a known volume of air through the DNPH-impregnated cartridges. These exposed cartridges are then returned to the laboratory for isolation, separation, and quantification of the hydrazone products by high-performance liquid chromatography (HPLC). The ambient air concentration of various carbonyl compounds is determined from the quantity of the associated hydrazones found in the exposed cartridges and the volume of air samples. Typically C_1 - C_6 carbonyl compounds, including benzaldehyde, are measured effectively by this technique, with a detection limit of ~ 0.1 ppbv.

This method follows the procedure described in EPA Method TO-11A (January 1997, EPA/625/R-96/010b).

2.0 MATERIALS/APPARATUS

2.1 DNPH Cartridges

Waters Sep-Pak XPoSure Aldehyde Samplers are purchased from Waters (WAT047205) and sampled directly from the manufacturer without need for laboratory preparation.

3.0 SAMPLE ANALYSIS

Aldehydes collected in the cartridge (as the hydrazones) are eluted with acetonitrile and the eluent is analyzed using reverse phase high performance liquid chromatograph (HPLC) (Fung and Grosjean, 1981). Gradient elution is used with a sufficiently polar mobile phase for the separation of acetone, acrolein, and propanal. The mobile phase polarity is then decreased steadily to allow the elution of the higher aldehydes.

DRI STANDARD OPERATING PROCEDURE	Page:	2 of 9
	Date:	4/11/2005
Title: Analysis of Carbonyl Compounds	Number:	2-710.4
by High Performance Liquid Chromatography	Revision:	04

3.1 Sample Shipping/Storage

The cartridges are returned to the laboratory in secondary aluminum envelopes provided by the manufacturing, labeled with unique Project Media Identification (PMI) numbers, in a cooler at 4°C. In the laboratory, they are stored in a refrigerator until analysis. The time between sampling and extraction should not exceed two weeks. Sample elutes are stable at 4 $^{\circ}$ C for up to one month.

3.2 Sample Preparation

Uncap the cartridge and place it in a small test tube holder. Elute the cartridges with 2 ml of acetonitrile into a volumetric flask and transfer into a septum vial. Cap the vial and write the cartridge number on the side using a permanent marker. If not analyzed the same day, place the extracts in a clean refrigerator.

3.3 Standard Solutions

Prepare stock solutions of the hydrazone standards provided by AccuStandard in acetonitrile at carbonyl concentration of 5 μ g/mL.

Dilute the stock standards to obtain working solutions in the range of 0.1 to 10 μ g/mL concentrations for most applications. Higher concentrations may be needed occasionally if the air carbonyl concentrations exceed ~20 ppb during sampling. At least three concentrations of working standards bracketing the sample concentrations should be prepared for the calibration.

A secondary standard from Restek is used to verity the calibration.

3.5 Instrument Conditions

The HPLC instrument is a Waters 2695 Alliance Separation Module with a photo diode array (PDA) detector with Empower software. Data are collected between a wavelength range of 190-450 nm.

DRI STANDARD OPERATING PROCEDURE	Page:	3 of 9
	Date:	4/11/2005
Title: Analysis of Carbonyl Compounds	Number:	2-710.4
by High Performance Liquid Chromatography	Revision:	04

Water Alliance 2695 Gradient Acquisition Method for Carbonyls

Solvent A:	100% HPLC Water
Solvent B:	100% Optima Acetonitrile
Solvent C:	100% Optima Methanol
Column:	Polaris C18-A, 4.6x15, 3um
Detector:	PDA, 360 nm

Time (min)	Flow (mL)	%A	%B
0.01	1.50	70.0	30.0
1.00	1.50	70.0	30.0
20.00	1.50	60.0	40.0
32.00	1.50	55.0	45.0
41.00	1.50	37.0	63.0
45.00	1.50	37.0	63.0
50.00	1.50	30.0	70.0
55.00	1.50	70.0	30.0

Table 1. Gradient elution solvent conditions.

The column is conditioned with 50:50 water/methanol for 10 minutes at the end of each sequence.

3.6 Calibrations

Following the Millennium³² 3.20 PDA document, five calibration standards are analyzed using concentrations in Table 2 (see Figures 2 for example of calibration curve). The curve is forced through zero and is acceptable with a $R^2 \ge 0.95$. A secondary standard from Restek is used to verify the calibration.

Once the linear response factor has been documented, an intermediate concentration standard near the anticipated level of each component (but at least ten times the detection limit) is used for a daily calibration check standard. A sample chromatogram is shown in Figure 1.

3.7 Data Acquisition and Processing

The calibration equation below is used to determine the amount of carbonyls in the samples (this step is performed by the HPLC baseline data system).

DRI STANDARD OPERATING PROCEDURE		4 of 9
	Date:	4/11/2005
Title: Analysis of Carbonyl Compounds	Number:	2-710.4
by High Performance Liquid Chromatography	Revision:	04

Table 2. Calibration Levels

.

	Level 1	Level 2	Level 3	Level 4	Level 5
Conc. (ug/mL)	1	0.5	0.25	0.1	0.025
Formaldehyde	7.036	3.518	1.759	0.703	0.351
Acetaldehyde	5.13	2.565	1.282	0.513	0.256
Acetone	4.1	2.05	1.025	0.41	0.205
Acrolein	4.366	2.183	1.091	0.436	0.218
Propionaldehyde	4.113	2.056	1.028	0.411	0.2055
Crotonaldehyde	3.57	1.785	0.892	0.357	0.178
2-Butanone (MEK)	3.5	1.75	0.875	0.35	0.175
Methacrolein	3.57	1.785	0.892	0.357	0.178
n-Butyraldehyde	3.51	1.755	0.877	0.351	0.1755
Benzaldehyde	2.7	1.35	0.675	0.27	0.135
Valeraldehyde	3.122	1.561	0.78	0.312	0.156
Glyoxal	0.92	0.46	0.23	0.046	0.023
m-Tolualdehyde	2.506	1.253	0.626	0.25	0.125
Hexaldehyde	3.116	1.558	0.779	0.311	0.155

3.8 Calculations

$$C_{A} = \frac{W_{d}}{V_{m} (or V_{s})} \times 1000$$

where:

$C_A =$	concentration of analyte (ng/L) in the original sample
$W_d =$	total quantity of analyte (μg) in sample, blank corrected

$$W_d = W \times V_E$$

where:

W	=	Concentration of analyte in the cartridge (μ g)
VE	=	final volume (ml) of sample extract
Vm	=	total sample volume (L) under ambient conditions
Vs	=	total sample volume (L) at 25 °C and 760 mm Hg

DRI STANDARD OPERATING PROCEDURE	Page:	5 of 9
	Date:	4/11/2005
Title: Analysis of Carbonyl Compounds	Number:	2-710.4
by High Performance Liquid Chromatography	Revision:	04

The analyte concentrations can be converted to ppbv using the following equation:

 MW_A = molecular weight of analyte.

3.9 Quality Control

After calibration, an intermediate concentration calibration check standard is analyzed every 10 samples with a $\pm 10\%$ recovery.

3.9.1 Blanks

At least one field blank or 10% of the field samples, whichever is larger, should be shipped and analyzed with each group of samples. The field blank is treated identically to the samples except that no air is drawn through the cartridge.

Instrument blanks are analyzed after high concentrations.

3.9.2 Method Precision and Accuracy

10% of the samples are analyzed twice for replicate precision which typically falls within $\pm 10\%$.

4.0 REFERENCES

- Fung, K., and D. Grosjean (1981). "Determination of Nanogram Amounts of Carbonyls as 2,4, dinitrophenylhydrazones by High Performance Liquid Chromatography." *Analy. Chem.*, 53, 168.
- U.S. EPA, "Method TO-11A: Determination of Formaldehyde in Ambient Air Using Adsorbent Cartridge Followed by High Performance Liquid Chromatography (HPLC) [Active Sampling Methodology]," EPA/625/R-96/010b, in Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air.

DRI S'	TANDARD OPERATING PROCEDURE	Page:	6 of 9
		Date:	4/11/2005
Title:	Analysis of Carbonyl Compounds	Number:	2-710.4
	by High Performance Liquid Chromatography	Revision:	04

.

Winberry, W.T., Jr., N.T. Murphy, and R.M. Riggan (1988). Method TO11 in Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. EPA/600/4-89/017, U.S. Environmental Protection Agency, Research Triangle Park, NC.

.

DRI STANDARD OPERATING PROCEDURE

Title: Analysis of Carbonyl Compounds by High Performance Liquid Chromatography

Reported by User: Katarzyna Rempala Project Name: API_Winter2004

Revision: Sample Report

Page:

Number:

7 of 9

2-710.4

04

Date: 4/11/2005

of Results: 5

		SAMP	LE	IN	FORMATIC	N			
Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time: Sample Set Name	0404lev el2 Standard 3 1 20.00 ul 55.0 Minutes AP1_040505				Acquired By: Date Acquired: Acq. Method Set: Date Processed: Processing Methoc Channel Name: Proc. Chnl. Descr.	Polaris_3 4/7/2005 Polaris04 Extract 3	11:09:16 105PM 160.0		
0.014 0.012 0.010 0.008 0.006 0.006 0.004 0.002	Formaldehyde -10.003	15.137	Activation - 21.825	Prepionaldehyde - 25.096	Crobnaldehyde - 31.133 Methacone (MEK) - 32.631 Methacolein - 33.490 Butyraldehyde - 34.352	V <mark>tatarationyotar - 40.925</mark> Vitatationyotar - 40.925 Intitiotaationhide - 41.885	Héxaidehyde 13.660		
5.00	10.00	15.00 20.0	x0	25.00	30.00 35.00 Anutes	40.00	45.00	50.00	55.00

	Peak Name	RT	Area	Amount	Units	PDA Match1 Spect. Name	Match1	PDA Match2 Spect. Name	Match2
1	Formaldehy de	10.993	233572	3.518	ug/ml	Formaldehy de	0.851		
2	Acetaidehy de	15.985	176681	2.565	ug/ml	Acetaidehy de	5.705	n-Buty raidehy de	5.709
3	Acetone	21.825	137633	2.050	ug/mi	Acetone	1.322	2-Butanone (MEK)	1.870
4	Acrolein	23.077	167748	2.183	ug/ml	Acrolein	1.085	Methacrolein	3.072
5	Propionaldehy de	25.096	129540	2.056	ug/ml	n-Buty raidehy de	1.448	Acetaldehy de	1.653
6	Crotonaldehy de	31.133	114907	1.785	ug/ml	Crotonaldehy de	1.065	Methacrolein	6.077
7	2-Butanone (MEK)	32.531	102244	1.750	ug/ml	2-Butanone (MEK)	1.621	Acetone	2.927
8	Methacrolein	33.490	122150	1.785	ug/mi	Methacrolein	3.741	Acrolein	5.489
9	n-Buty raidehy de	34.352	112621	1.755	ug/ml	n-Buty raidehy de	3.275	Valeraldehy de	3.330
10	Benzaldehy de	38.329	82427	1.350	ug/ml	Benzaidehy de	1.003	m-Tolualdehy de	3.987

Report Method: Multi Sample Summary fo: Printed 11:25:44 AN/7/2005

Page: 3 of 10

Figure 1a. Chromatograph of Level 2 standard.

DRI STANDARD OPERATING PROCEDURE

Page: 8 of 9 Date: 4/11/2005 Title: Analysis of Carbonyl Compounds Number: 2-710.4 by High Performance Liquid Chromatography **Revision**: 04

5	¥	1						Sa	imple Re	port
4		Reported by	User: Ka	tarzy na l	Rempala	Projec	t Name: API_Wir	nter2004	#_of Res	ults: 5
		Peak Name	RT	Area	Amount	Units	PDA Match1 Spect. Name	Match1	PDA Match2 Spect. Name	Match2
	11	Valeraldehy de	40.097	97770	1.561	ug/ml	Valeraldehy de	5.956	n-Buty raidehy de	6.388
	12	Gly oxal	40.469	21352	0.460	ug/ml	<u> </u>			1
	13	m-Tolualdehy de	41.865	70294	1.253	ug/ml	m-Tolualdehy de	0.975	Benzaldehy de	3.809
	14	Hexaldehy de	43.659	84775	1.558	ug/mi	Hexaldehy de	1.304	Valeraldehy de	1.531

Figure 1b. Chromatograph of Level 2 standard.

DRI STANDARD OPERATING PROCEDURE

Title: Analysis of Carbonyl Compounds by High Performance Liquid Chromatography
 Page:
 9 of 9

 Date:
 4/11/2005

 Number:
 2-710.4

 Revision:
 04

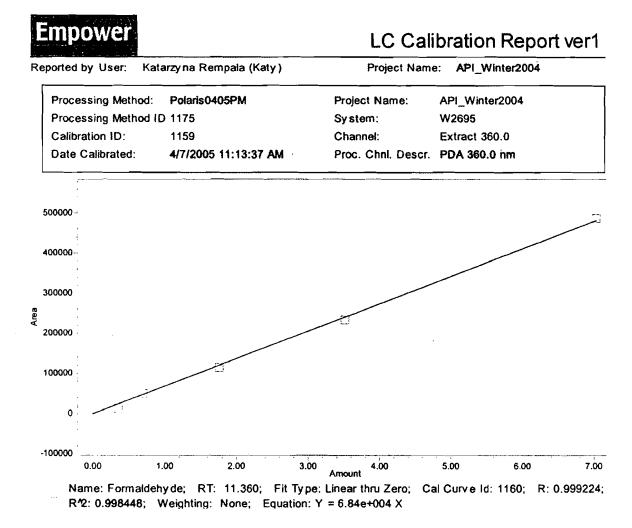


Figure 2. Calibration curve for formaldehyde.

DRI STANDARD OPERATING PROCEDURE	Page:	1 of 27
	Date:	2/20/04
Title: Analysis of Semi-Volatile Organic	Number:	2-750.5
Compound by GC/MS	Revision:	05

1.0 PURPOSE/APPLICABILITY

This method describes the analysis of semi-volatile organic compounds (SVOC) in air. The SVOCs include non-polar analysis of Polycyclic Aromatic Hydrocarbons (PAH), Aliphatic Hydrocarbon Analysis (Alkanes), Hopanes and Steranes, and Polar analysis. The method uses a sampling train consisting of a Teflon-impregnated glass fiber (TIGF) filter backed up by a PUF/XAD/PUF sandwich solid adsorbent. The separate portions of the sampling train are extracted and combined dependent on analyses. The analysis method is gas chromatography/mass spectrometry (GC/MS). Mass spectrometry provides definitive identification of SVOCs.

This method follows the procedure described in EPA Method TO-13 (June 1988, EPA/600-4-89/017). The exceptions are that 1) the DRI procedure uses a XAD-4 sandwich adsorbent trap where TO-13 recommends either PUF or XAD-2, and 2) the DRI procedure calls for more rigorous cleaning than the EPA method.

2.0 MATERIALS/APPARATUS

2.1 Sampling Substrates

100 mm TIGF filters (Pall Gellman, ultrapure quality), PUF, and XAD-4 (Fisher Scientific) are obtained. Cleaning is as per Section 4 below. All solvents are Fisher Scientific Opitma or HPLC grade.

2.2 GC/MS

The chromatographic system consists of a Varian CP-3800 gas chromatograph equipped with an 8200 CX Autosampler and interfaced to a Vairan Saturn 2000 Ion Trap Mass Spectrometer. The alternative system consists of a Varian CP-3800 gas chromatograph with a model CP-8400 Autosampler and interfaced to a Saturn 2000 Ion Trap Mass Spectrometer. Column is a CP-Sil8 30mx0.25 mmX025XX (Chrompack).

3.0 PERSONNEL QUALIFICATION

This SOP assumes that personnel performing the procedures are familiar with basic laboratory practice and operation of Dionex Accelerated Solvent Extractor (ASE), rotary evaporators, and the Varian GC/MS system and Saturn Workstation 5.2 computer software. Specific requirements for these instruments are found in the appropriate manuals.

DRI STANDARD OPERATING PROCEDURE	Page:	2 of 25
	Date:	2/20/04
Title: Analysis of Semi-Volatile Organic	Number:	2-750.5
Compound by GC/MS	Revision:	05

4.0 SUBSTRATE CLEANING PROCEDURE

4.1. Filters

Teflon-impregnated glass fiber (TIGF) filters (Pall Life Sciences, Type T60A20) are cleaned by sonication for 10 minutes in dichloromethane (CH_2Cl_2) twice, with the solvent replaced and drained, and sonicated for 10 minutes in methanol twice with the solvent replaced. Filters are then dried in a vacuum oven at -15 to -20 in Hg, 50° C for minimum of 24 hours, weighed (if necessary), placed in foil packages that have been fired at 500° C for 4 hours, placed in Uline metallic ZipTop static shielding bags, and stored at room temperature.

If quartz filters (Pall Gellman, ultrapure quality), are used, they are baked at 900 °C for 4 hr before use.

4.2 PUF Plugs

PUF plugs are cleaned by first washing with distilled water, followed by Dionex ASE extraction for 15min/cell with ~170 mL acetone at 1500 psi and 80°C, followed by Dionex ASE extraction for 15min/cell with ~170 mL of 10% diethyl ether in hexane under the same conditions. The extracted PUF plugs are dried in a vacuum oven at -15 to -20 in Hg, 50° C for approximately 3 days or until no solvent odor is detected. If storage is necessary, PUF plugs are stored in clean 1L glass jars with Teflon lined lids wrapped in aluminum foil. Powder-free nitrile gloves are worn at all times when handling PUF plugs.

4.3 XAD-4

New XAD-4 is washed with LiquinoxTM soap and hot water, followed by DI water. It is then placed in a Buchner funnel under vacuum, then transferred to the Dionex ASE and extracted for 15min/cell with ~170 mL of methanol at 1500 psi and 80°C, followed by dichloromethane (CH2Cl2), then acetone under the same instrument conditions. The XAD-4 is then dried in a vacuum oven at -15 to -20 in Hg and 50°C. The cleaned XAD-4 is then transferred to a clean 1L glass jars with an air tight teflon-lined lid. The jar is wrapped with aluminum foil to protect the XAD-4 from light, and stored in a clean room at room temperature.

4.4 Certification of Substrate

An aliquot of each batch of cleaned XAD-4 (20g) and TIGF filters are extracted same as samples. Deuterated standards are added to the sample prior to extraction in the Dionex

DRI S	TANDARD OPERATING P	PROCEDURE	Page:	3 of 25
			Date:	2/20/04
Title:	Analysis of Semi-Volatile C	Organic	Number:	2-750.5
	Compound by GC/MS		Revision:	05

ASE with ~170 mL dichloromethane (CH2Cl2) for 15 min/cell at 1500 psi and 80°C, followed by ~170 mL acetone extraction under the same conditions. The extract is then concentrated to 1ml and analyzed by GC/MS. Any batch determined to have excessive impurities (more than 10 ng/ul of naphthalene and other compounds in method) will be re-cleaned and checked again for purity.

4.5 Assembly of XAD and PUF/XAD/PUF Cartridge

The glass cartridges and screen assemblies are washed with LiquinoxTM soap and hot water followed by DI water and oven dried. Powder-free nitrile gloves are worn at all times during the cartridge assembly. For XAD-4 cartridges, one assembly of spring, oring and screen is placed at the bottom of a clean glass cartridge followed by 20g of XAD-4 and another assembly of screen, o-ring and spring. The XAD cartridge is then placed in Uline ZipTop metallic static shielding bags and stored in ca clean room at room temperature.

For PUF/XAD-4/PUF cartridges, one PUF plug is put at the bottom of a clean glass cartridge followed by 10 g of XAD-4 and a second PUF plug. The PUF/XAD/PUF cartridge is then placed in Uline ZipTop metallic static shielding bags and stored at room temperature.

5.0 SAMPLE SHIPPING, RECEIPT, AND STORAGE

XAD-4 cartridge and filter sets are assigned a unique Project Media Identification (PMI) number and logged (date stamped) into the Laboratory Information Management System (LIMS) when assembled and shipped. Cartridges are packed in a tin can with field data sheets with the same unique PMI number and shipped in coolers on blue ice prior overnight.

In the field, exposed samples are stored at $0-4^{\circ}$ C in a refrigerator or freezer and shipped to DRI priority overnight in ice chest (DRI's original shipping containers) with blue ice. Upon receipt by the laboratory, the samples are logged into the LIMS by PMI number, and field data is recorded (sampling location, date, and start and stop time, elapse timer, and flow rate). If the time span between sample login and extraction is greater than 24 hours, the samples must be kept cold at 0-4°C in a freezer or refrigerator. The exposure of the sample media to ultraviolet light emitted by fluorescent lights must be minimized.

6.0 EXTRACTION OF SUBSTRATE

6.1 Addition of Internal Standards

DRI ST	FANDARD OPERATING PROCEDURE	Page:	4 of 25
		Date:	2/20/04
Title:	Analysis of Semi-Volatile Organic	Number:	2-750.5
	Compound by GC/MS	Revision :	05

6.1.1 Polycyclic Aromatic Hydrocarbon (PAH), non-polar

Prior to extraction, the following deuterated internal standards are added to each sample (filter, PUF/XAD/PUF):

naphthalene-d ₈	9.486	ng/µl
biphenyl-d ₁₀	7.008	ng/µl
acenaphthene-d ₁₀	5.997	ng/µl
phenanthrene-d ₁₀	5.991	ng/µl
anthracene-d ₁₀	5.000	ng/µl
pyrene-d ₁₂	4.993	ng/µl
benz(a)anthracene-d ₁₂	2.004	ng/µl
chrysene-d ₁₂	1.997	ng/µl
benzo[k]fluoranthene-d ₁₂	1.000	ng/µl
benzo[e]pyrene-d ₁₂	0.700	ng/µl
benzo[a]pyrene-d ₁₂	0.703	ng/µl
benzo[g,h,i]perylene-d ₁₂	0.600	ng/µl
coronene-d ₁₂	0.500	ng/µl

The amount of internal standards added should correspond to the expected range of concentrations found in real samples and the final volume of extracts during analysis.

6.1.2 Hopane and Sterane, non-polar

Prior to extraction, the following deuterated internal standards are added to each sample (filter, PUF/XAD/PUF):

cholestane- d_6 0.375 ng/µl

The amount of internal standards added should correspond to the expected range of concentrations found in real samples.

6.1.3 Aliphatic Hydrocarbon Analysis (Alkanes), non-polar

Prior to extraction, the following deuterated internal standards are added to each sample (filter, PUF/XAD/PUF):

dodecane-d ₂₆	10.9	ng/µl
hexadecane-d ₃₄	2.36	ng/µl
eicosane-d ₄₂	1.88	ng/µl
octacosane-d ₅₈	4.9	ng/µl
tetracosane-d ₅₀	1.89	ng/µl

DRI STANDARD OPERATING PROCEDURE	Page:	5 of 25
	Date:	2/20/04
Title: Analysis of Semi-Volatile Organic	Number:	2-750.5
Compound by GC/MS	Revision:	05

hexatriacontane-d₇₄ 10.2 ng/µl

The amount of internal standards added should correspond to the expected range of concentrations found in real samples.

6.1.4 Polar Organic Compounds, polar

Prior to extraction, the following deuterated internal standards are added to each sample (filter-sorbent pair):

cholesterol-2,2,3,4,4,6-d ₆	9.85	ng/µl
levoglucosan-u-13C ₆	31.25	ng/µl
hexanoic-d ₁₁ acid	4.5	ng/µl
benzoic-d ₃ acid	4.5	ng/µl
decanoic-d ₁₉ acid-	4.5	ng/µl
palmitic-d ₃₁ acid	4.5	ng/µl
heptadecanoic-d ₃₃ acid	4.4	ng/µl
myristic-d ₂₇ acid	3.3	ng/µl
succinic-d ₄ acid	2.55	ng/µl
phthalic 3,4,5,6-d4 acid	4.6	ng/µl

The amount of internal standards added should correspond to the expected range of concentrations found in real samples and the final volume of extracts during analysis.

6.2 Extraction of PUF, XAD-4, and Filter

Depending on analyses, PUF, XAD-4 and Filter will be extracted in the following combinations. Solvents are selected to optimize the polarity range desired for analyses.

6.2.1 Non-Polar Analysis Only

Filters and XAD-4 are extracted twice with approximately ~ 170 mL of dichloromethane (CH₂Cl₂) using the Dionex ASE for 15 min/cell at 1500 psi and 80°C.

Since PUF media degrades when extracted with dichloromethane, the PUFs are extracted twice with \sim 170 mL of acetone using the Dionex ASE for 15 min/cell at 1500 psi and 80°C. This method gives good recovery for PAH, aliphatic hydrocarbons (alkanes), and hopanes and steranes.

6.2.2 Polar and Non-Polar Analyses

DRI STANDAR	RD OPERATING PROCEDURE	Page:	6 of 25
		Date:	2/20/04
Title: Analysis	s of Semi-Volatile Organic	Number:	2-750.5
Compou	ind by GC/MS	Revision:	05

Filters and XAD-4 are extracted with ~ 170 mL dichloromethane (CH₂Cl₂) using the Dionex ASE for 15 min/cell at 1500 psi and 80°C followed by ~ 170 mL acetone extraction under the same conditions.

Since PUF media degrades when extracted with dichloromethane, the PUFs are extracted twice with ~170 mL of acetone using the Dionex ASE for 15 min/cell at 1500 psi and 80°C. This method gives good recovery for PAH, aliphatic hydrocarbons (alkanes), hopanes and steranes, and polar organic compounds.

6.3 Treatment of Extracts

6.3.1 Non-Polar Analysis Only

Extracts are concentrated to ~1ml by rotary evaporation at 35 °C under gentle vacuum, and filtered through a 0.2 μ m AnotopTM 10 Whatman leur-lock filter on 4 mL glass syringe), rinsing the flask 3 times with 1 ml dichloromethane and acetone (50/50 by volume) each time. Filtrate is collected in a 4 mL amber glass vial for a total volume of ~4 mL.

Approximately 200 μ l of acetonitrile is added at this time and the extract is split into two fractions. Each fraction is then concentrated using a Pierce Reacti-Therm under a gentle stream of ultra-high purity (UHP) nitrogen with a water trap (Chrompack CP-Gas-Clean moisture filter 17971) to 100-200 μ L. The final extract volume is adjusted to 100 μ L with acetonitrile.

6.3.2 Polar and Non-Polar Analyses

Extracts are concentrated to ~1ml by rotary evaporation at 35 °C under gentle vacuum, and filtered through a 0.2 μ m PTFE disposable filter device (Whatman Pura discTM 25TF), rinsing the flask 3 times with 1 ml dichloromethane and acetone (50/50 by volume) each time. Filtrate is collected in a 4 mL amber glass vial for a total volume of ~4 mL.

Approximately 200 μ l of acetonitrile is added at this time and the extract is split into two fractions. Each fraction is then concentrated under a gentle stream of ultra-high purity (UHP) nitrogen with hydrocarbon and water traps to 100-200 μ L. The final extract volume is adjusted to 100 μ L with acetonitrile.

6.4 Cleanup of Samples (non-polar analysis)

For complex samples that contain analytical interference, the following method is used to

DRI STANDARD	OPERATING PROCEDURE	Page:	7 of 25
		Date:	2/20/04
Title: Analysis of	Semi-Volatile Organic	Number:	2-750.5
Compound	by GC/MS	Revision:	05

clean up the sample using silica gel semi-prep Solid Phase Extraction (SPE 6-mL 0.5-g LC-SI, Supelco Silica).

- 1. Assuming SVOC in 100 μ L acetonitrile, concentrate to 25 μ L and add 25 μ L dichloromethane and 150 μ L hexane.
- 2. Condition SPE-Silica cartridge with 1.5 mL hexane/benzene (1:1), followed by 1.5 mL hexane.
- 3. Transfer sample into the SPE-Silica cartridge.
- 4. Elute sample with 1.5 mL hexane, followed by 3 mL hexane/benzene (1:1) in separate 4 mL vials.
- 5. Concentrate to 100 μ L (only hexane should remain) and transfer to GC vial insert and concentrate to 20 μ L.
- 6. Rinse original vial with 100 μ L dichloromethane and concentrate to 40 μ L (hexane/DCM (1:1)) and dilute to total volume of 100 μ L with acetonitrile.

The hexane fraction contains the non-polar aliphatic hydrocarbons (alkanes), and hopanes and steranes, and the hexane/benzene fraction contains the PAH and N-PAH.

6.5 Silylation of Polar Organic Compounds (polar analysis)

If extracts have been split for polar and non-polar analysis, the fraction for the polar analysis is derivatized using a mixture of bis(trimethylsilyl)trifluoroacetamide and pyridine to convert the polar compounds into their trimethylsilyl derivatives for analysis of organic acids, cholesterol, sitosterol, and levoglucosan. Depending upon the expected range of analytes, it is recommended to split the second fraction into two equal fractions, thus providing a second opportunity for a clean silylation reaction.

- 1. The extract is reduced to a volume of 50 μL using a Pierce Reacti-Therm under a gentle stream of ultra-high purity (UHP) nitrogen with a water trap (Chrompack CP-Gas-Clean moisture filter 17971.
- 2. $50 \,\mu\text{L}$ of silvlation grade pyridine is added to vial.
- 3. 150 µL of bis(trimethylsilyl)trifluoroacetamide is added slowly to each vial and immediately capped.
- 4. The sample is then placed into thermal plates (custom) containing individual vial wells with the temperature maintained at 70°C for 3 hours.
- 5. The samples are then analyzed by GC/MS within 18 hours.

7.0 ANALYSIS

7.1 Instrument Method

DRI S	TANDARD OPERATING PROCEDURE	Page:	8 of 25
		Date:	2/20/04
Title:	Analysis of Semi-Volatile Organic	Number:	2-750.5
	Compound by GC/MS	Revision:	05

The samples are analyzed by the electron impact (EI) GC/MS technique, using a Varian CP-3800 gas chromatograph equipped with a 8200 CX Autosampler and interfaced to a Vairan Saturn 2000 Ion Trap Mass Spectrometer or Varian CP-3400 gas chromatograph with a model CP-8400 Autosampler and interfaced to a Saturn 2000 Ion Trap Mass Spectrometer

Injections are 1 μ l in size in the splitless mode onto a 30m long 5% phenylmethylsilicone fused silica capillary column (J&W Scientific type DB-5ms): CP-Sil8 Chrompack (30m x 0.25mm x 0.25 mm) for PAH, hopanes and steranes, alkanes and polars; and CP-Sil24 Chrompack (30m x 0.25mm x 0.25 mm) for N-PAH.

Identification and quantification of the analytes are made by Selected Ion Storage (SIS), by monitoring the molecular ions of each analyte and each deuterated analyte.

7.2 Preparation Stage

- A. The instrument (GC/MS) preparation steps are as follows:
- 1) Check for air and water in the system (Ion Time = 100, a total ion current (TIC) below 700 is preferred).
- 2) Adjust calibration gas pressure for Ion Trap instrument (75% preferred).
- 3) Check calibration gas pressure $\sim 75\%$.
- 4) Perform autotune for electron multiplier setting, mass calibration, and RF ramp.

Identification and quantification of the analytes are made by Selected Ion Storage (SIS), by monitoring the molecular ions of each analyte and each deuterated analyte.

7.3 Calibration

Calibration curves are made by the molecular ion peaks of the analytes using the corresponding deuterated species as internal standards. If there is no corresponding deuterated species, the one most closely matching in volatility and retention characteristics is used.

National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 1647 (certified PAH), with the addition of the internal standards listed in Section 6.1.1-6.1.4 and the targeted PAH not present in this mixture, is used to make calibration solutions. Six concentration levels for each analyte of interest are employed. Table 1 lists the concentration levels of standard compounds in calibration solutions. The calibration curve for each calibrated compound is constructed; Figures 1 through 6 show examples of acceptable calibration curves. After the calibration is completed, a standard

DRI STANDARD OPERATING PROCEDURE	Page:	9 of 25
	Date:	2/20/04
Title: Analysis of Semi-Volatile Organic	Number:	2-750.5
Compound by GC/MS	Revision:	05

solution is injected to perform calibration checks. If deviations from the true values exceed $\pm 20\%$, the calibration procedure is repeated or new calibration levels must be prepared. One replicate analysis and one calibration chick is performed for every 10 injections of samples. If difference between true and measured concentrations exceeds $\pm 20\%$, the system is recalibrated. During batch processing, calibration is performed before each batch.

8.0 **REPORTING**

Each sample is reported initially in terms of mass per sample (μ g/sample). Ambient concentrations in terms of mass per volume (i.e., ng/m³ or other units if requested) are reported based upon the sample volume adjusted for ambient temperature and pressure, or reported as "standard" volume.

All information for the sample is recorded and combined into both a printed report and an Excel file for inclusion in the database (see Appendix).

DRI STANDARD OPERATING PROCEDURE	Page:	10 of 25
	Date:	2/20/04
Title: Analysis of Semi-Volatile Organic	Number:	2-750.5
Compound by GC/MS	Revision:	05

8.1 Method Detection Limits (MDLs)

Method detection limits are 0.01-0.03 ng/ μ l for PAH, hopane and sterane, and alkane compounds, and 0.03-0.04 ng/ μ l for polar compounds.

8.2 Measurement Uncertainty

Measurement uncertainty is reported as one-sigma standard deviation between replicate tests (when 3 tests conducted under same conditions) or the combined root mean square of the analytical measurement uncertainty, which is defined by the following equation:

 $\sqrt{(\text{replicate precision * analyte concentration})^2 + (\text{analyte detection limit})^2}$

This equation incorporates the analyte detection limit for each compound so when concentrations approach zero the error is reported as the analyte detection limit. When multiple samples are pooled the difference between samples is typically greater than the precision of any of the analytical techniques employed. Most data has relatively small reported measurement uncertainty's which shows the reproducibility of the samples. When larger errors (>30% of reported concentration) are observed, it is typically because the concentrations of the analyte were close to the detection limit of the measurements.

DRI STANDARD OPERATING PROCEDURE	Page:	11 of 25
	Date:	2/20/04
Title: Analysis of Semi-Volatile Organic	Number:	2-750.5
Compound by GC/MS	Revision:	05

Table 1. Calibration Levels for PAH analysis (bold compounds co-elute and are quantified together)

dammine (oBerner)	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6							
Compound	(ng/uL)							
1-ethylnaphthalene	0.359	0.718	1.436		11.491			
1,2-dimethylnaphthalene	0.361	0.722	1.444		11.548			
1,4-chrysenequinone	0.240	0.479	0.958	1.917	7.667	30.667		
1,6 + 1,3 dimethylnaphthalene	0.719	1.438	2.876			90.007 92.047		
1,8-dimethylnaphthalene	0.240	0.481	0.962	1.924	7.695	30.781		
1-methylfluorene	0.240	0.596	1.192	2.383	9.533	38.133		
1-methylphenanthrene	0.200	0.370	0.799	1.598		25.568		
1-methylpyrene	0.200	0.400	0.961	1.922	7.688	30.752		
1-phenylnaphthalene	0.199	0.398	0.796	1.591		25.461		
2-ethylnaphthalene	0.357	0.714	1.428		11.424			
1,4+1,5+2,3-dimenaphlene	1.078	2.156	4.313		34.501			
2,6-dimethylnaphthalene	0.352	0.704	1.408		11.267			
2-methylbiphenyl	0.360	0.720	1.441		11.525	46.102		
2-methylphenanthrene	0.246	0.492	0.983	1.967	7.867	31.467		
2-phenylnaphthalene	0.358	0.716	1.433		11.463	45.853		
3,6-dimethylphenanthrene	0.203	0.406	0.813	1.625	6.500	26.000		
3-methylbiphenyl	0.361	0.721	1.442		11.537			
4H-cyclopenta(def)phenanthrene	0.000	0.000	0.000	0.000	0.000	0.000		
4-methylbiphenyl	0.369	0.738	1.475	2.950	11.800	47.200		
4-methylpyrene	0.240	0.479	0.958	1.917	7.667	30.667		
5+6 methylchrysene	0.559	1.119	2.237	4.475	17.899	71.595		
7-methylbenz(a)anthracene	0.279	0.558	1.117	2.233	8.933	35.733		
7-methylbenzo(a)pyrene	0.290	0.579	1.158	2.317	9.267	37.067		
9,10-dihydrobenzo(a)pyren-7(8H)-								
one	0.281	0.561	1.122	2.244	8.976	35.904		
9-anthraldehyde	0.371	0.742	1.483	2.967	11.867	47.467		
9-fluorenone	0.280	0.560	1.120	2.240	8.961	35.845		
9-methylanthracene	0.239	0.479	0.958	1.916	7.663	30.653		
acenaphthene*	0.201	0.402	0.804	1.609	6.435	25.739		
acenaphthenequinone	0.202	0.404	0.808	1.617	6.467	25.867		
acenaphthylene	0.200	0.400	0.800	1.600	6.400	25.600		
anthrone	0.277	0.554	1.108	2.217	8.867	35.467		
BaP*	0.160	0.321	0.642	1.283	5.133	20.533		
benz(a)anthracene*	0.200	0.400	0.799	1.599	6.395	25.579		

.

	ROCEDURE					Page:	12 of 25
						Date:	2/20/04
Title: Analysis of Semi-Volatile Or	rganic					umber:	2-750.5
Compound by GC/MS					Re	evision:	05
benz(a)anthracene-7,12-dione	0.279	0.558	1.117	2.233	8.933	35.733	
	Level 1 I	Level 2 I	Level 31	Level 4	Level 5	Level 6	
Compound	(ng/uL)(ng/uL)((ng/uL)	ng/uL)	(ng/uL)	(ng/uL)	
benzanthrone	0.360	0.720	1.440	2.880	11.518	46.073	
anthracene*	0.159	0.319	0.638	1.276	5.103	20.411	
anthraquinone	0.280	0.559	1.119	2.237	8.949	35.795	
benzo(k*+b+j)fluoranthene	0.397	0.794	1.587	3.174	12.697	50.789	
benzo(g,h,i)perylene*	0.200	0.400	0.800	1.600	6.401	25.602	
benzo(c)phenanthrene	0.200	0.400	0.800	1.601	6.403	25.613	
benzonaphthothiophene	0.240	0.479	0.958	1.917	7.667	30.667	
BeP*	0.202	0.403	0.807	1.613	6.453	25.813	
chrysene*	0.190	0.379	0.758	1.517	6.067	24.267	
coronene*	0.160	0.320	0.640	1.280	5.118	20.474	
dibenz(ah+ac)anthracene	0.323	0.645	1.291	2.582	10.327	41.307	
dibenzofuran	0.278	0.556	1.111	2.223	8.890	35.560	
fluorene	0.241	0.481	0.963	1.925	7.700	30.800	
fluoranthene	0.252	0.503	1.006	2.013	8.050	32.200	
indeno(1,2,3-cd)pyrene	0.161	0.321	0.642	1.284	5.136	20.544	
perinaphthenone	0.279	0.558	1.116	2.232	8.928	35.712	
perylene	0.200	0.400	0.800	1.600	6.400	25.600	
phenanthrene*	0.201	0.401	0.802	1.604	6.417	25.667	
pyrene*	0.196	0.392	0.783	1.567	6.267	25.067	
retene	0.277	0.555	1.109	2.219	8.875	35.499	
2,3,5-trimethylnaphthalene	0.199	0.399	0.797	1.594	6.378	25.511	
2,4,5-trimethylnaphthalene	0.277	0.554	1.108	2.217	8.867	35.467	
1,4,5-trimethyInaphthalene	0.239	0.478	0.957	1.914	7.654	30.616	
xanthone	0.240	0.481	0.961	1.923	7.691	30.763	
1-methylnaphthalene	0.361	0.723	1.446	4.338	17.351	69.403	
2,7-dimethylnaphthalene	0.300	0.599	1.198	3.594	14.377	57.507	
bphenyl*	0.360	0.720	1.440	4.319	21.597	107.983	
bibenzyl	0.362	0.724	1.448	4.345	21.723	108.617	
2-methylnaphthalene	0.430	0.860	1.720	5.160	25.800	129.000	
nphthalene*	0.359	0.717	1.435	5.739	34.4322	206.592	

.

*deuterated forms of these compounds are added to samples prior to extraction as surrogate for quantitation

DRI STANDARD OPERATING PROCEDURE	Page:	13 of 25
	Date:	2/20/04
Title: Analysis of Semi-Volatile Organic	Number:	2-750.5
Compound by GC/MS	Revision:	05

,

Table 2. Calibration Levels for Hopanes and Steranes Analysis

	Level 1	Level 2	Level 3	Level 4	
Compound	ng/uL	ng/uL	ng/uL	ng/uL	ng/uL
cholestane-d6*	0.750	0.750	0.750	0.750	0.750
cholestane	0.250	0.500	1.000	2.000	4.000
17α-21β(H) Hopane (19)	0.250	0.500	1.000	2.000	4.000
17β(H)-30-Norhopane (17a)	0.250	0.500	1.000	2.000	4.000
17β(H)-21β(H) Hopane (23)	0.250	0.500	1.000	2.000	4.000

*deuterated forms of these compounds are added to samples prior to extraction as surrogate for quantitation

.

Table 3. Calibration Levels for Aliphatic Hydrocarbon Analysis (Alkanes), bold
compounds co-elute and are quantified together

	Level 1 I	Level 2 I	Level 3 Level 4	Level 5	Level 6 I	Level 7 Level 8
Compound	ug/uL ı	ıg/uL ι	ig/uL ug/uL	ug/uL	ug/uL ι	ug/uL_ug/uL_
2,6,10-						
trimethylundecane_(norfarnesane)	0.050	0.500	1.000 100.00	0 200.000	2.500	5.000 10.000
n-heptylcyclohexane	0.050	0.500	1.000 100.00	0 200.000	2.500	5.000 10.000
2,6,10-						
trimethyldodecane_(farnesane)	0.050	0.500	1.000 100.00	0 200.000	2.500	5.000 10.000
n-tetradecane	0.050	0.500	1.000 100.00	0 200.000	2.500	5.000 10.000
n-pentadecane	0.050	0.500	1.000 100.00	0 200.000	2.500	5.000 10.000
n-octylcyclohexane	0.050	0.500	1.000 100.00	0 200.000	2.500	5.000 10.000
n-nonylcyclohexane	0.050	0.500	1.000 100.00	0 200.000	2.500	5.000 10.000
n-heptadecane + 2,6,10,14-						
tetramethylpentadecane_						
pristane	0.050	0.500	1.000 100.00	0 200.000	2.500	5.000 10.000
n-hexadecane	0.050	0.500	1.000 100.00	0 200.000	2.500	5.000 10.000
2,6,10-						
trimethylpentadecane_norpristane	0.050	0.500	1.000 100.00	0 200.000	2.500	5.000 10.000
n-decylcyclohexane	0.050	0.500	1.000 100.00	0 200.000	2.500	5.000 10.000
n-undecylcyclohexane	0.050	0.500	1.000 100.00	0 200.000	2.500	5.000 10.000
n-nonadecane	0.050	0.500	1.000 100.00	0 200.000	2.500	5.000 10.000
n-octadecane	0.050	0.500	1.000 100.00	0 200.000	2.500	5.000 10.000
2,6,10,14-	0.050	0.500	1.000 100.00	0 200.000	2.500	5.000 10.000

DRI STANDARD OPERATING PROCEDURE	Page:	14 of 25
	Date:	2/20/04
Title: Analysis of Semi-Volatile Organic	Number:	2-750.5
Compound by GC/MS	Revision:	05

tetramethylhexadecane_phytane

	Level 1 I	Level 2 I	Level 3 Leve	14 Level 5	Level 6 I	Level 7 Level 8	
Compound	ug/uL u	ıg∕uL_ı	ıg/uL_ug/ul	ug/uL	ug/uL ι	ig/uL_ug/uL_	
n-dodecylcyclohexane	0.050	0.500	1.000 100.	000 200.000	2.500	5.000 10.000	
n-tridecylcyclohexane	0.050	0.500	1.000 100.	000 200.000	2.500	5.000 10.000	
n-tetradecylcyclohexane	0.050	0.500	1.000 100.	000 200.000	2.500	5.000 10.000	
n-heneicosane	0.050	0.500	1.000 100.	000 200.000	2.500	5.000 10.000	
n-eicosane	0.050	0.500	1.000 100.	000 200.000	2.500	5.000 10.000	
n-pentadecylcyclohexane	0.050	0.500	1.000 100.	000 200.000	2.500	5.000 10.000	
n-docosane	0.050	0.500	1.000 100.	000 200.000	2.500	5.000 10.000	
n-tricosane	0.050	0.500	1.000 100.	000 200.000	2.500	5.000 10.000	
n-tetracosane-d50*	0.050	0.500	1.000 100.	000 200.000	2.500	5.000 10.000	
n-heptadecylcyclohexane	0.050	0.500	1.000 100.	000 200.000	2.500	5.000 10.000	
n-octadecylcyclohexane	0.050	0.500	1.000 100.	000 200.000	2.500	5.000 10.000	
n-tetracosane* + n-							
hexadecylcyclohexane	0.050	0.500	1.000 100.	000 200.000	2.500	5.000 10.000	
n-pentacosane	0.050	0.500	1.000 100.	000 200.000	2.500	5.000 10.000	
n-nonadecylcyclohexane	0.050	0.500	1.000 100.	000 200.000	2.500	5.000 10.000	
n-heptacosane	0.050	0.500	1.000 100.	000 200.000	2.500	5.000 10.000	
n-eicosylcyclohexane	0.050	0.500	1.000 100.	000 200.000	2.500	5.000 10.000	
n-hexacosane	0.050	0.500	1.000 100.	000 200.000	2.500	5.000 10.000	
n-octacosane	0.050	0.500	1.000 100.	000 200.000	2.500	5.000 10.000	
*deuterated forms of these compounds are added to samples prior to extraction as surrogate for quantitation							

Table 4. Calibration Levels for Polar Organic Compounds Analysis

	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6						
Compound	ng/uL ng/	/uL ng/uL	ng/uL ng/uL n	g/uL			
4-pentenoic	0.323 2	2.155 6.464	10.773 15.083	18.315			
hexanoic acid	0.300 2	2.400 7.199	12.960 18.144 2	21.384			
heptanoic	0.334 2	2.228 6.685	11.142 15.598	18.941			
me-malonic	0.321 2	2.570 7.710	12.850 17.990 2	21.203			
guaiacol	0.268 2	2.680 7.370	15.075 20.100 2	25.125			
benzoic acid	0.300 2	2.400 7.199	12.960 18.144 2	21.384			

DRI STANDARD OPEI Title: Analysis of Semi Compound by G	-Volatile O		JRE	Page: Date: Number: Revision:	15 of 2. 2/20/0- 2-750.
octanoic	0.314	2.091			
glycerol	0.348	2.320	6.960 11.600 16.240 19.72	0	
	Level 11	Level 2	Level 3 Level 4 Level 5 Level	6	
Compound	ng/uL r	ו <u>ng/uL</u>	ng/uL_ng/uL_ng/uL_ng/uL_	_	
maleic	0.328	2.620	7.860 13.100 18.340 21.61	5	
succinic acid	0.300	2.400	7.199 12.960 17.820 21.06	0	
4-methylguaiacol	0.385	3.851	10.591 21.664 28.885 36.10	6	
methylsuccinic acid	0.300	2.400	7.199 12.960 17.820 21.06	C	
o-toluic	0.313	2.500	7.500 12.500 17.500 20.62	5	
picolinic acid	0.300	2.400	7.199 12.960 18.144 21.384	4	
m-tolic	0.327	2.613	7.840 13.067 18.293 21.56	0	
1,2,4-butanetriol	0.300	2.400	7.199 12.960 18.144 21.38	4	
nonanoic	0.318	2.120	6.360 10.600 14.840 18.020	C	
p-toluic	0.169	1.128	3.384 5.640 7.896 9.58	8	
3-methylpicolinic	0.321	2.568	7.704 12.840 17.976 21.18	6	
6-methylpicolinic	0.319	2.550	7.650 12.750 17.850 21.03	8	
2,6-dimethylbenzoic	0.269	2.150	6.450 10.750 15.050 17.73	8	
4-ethylguaiacol	0.260	2.598	7.146 14.616 19.488 24.36	0	
syringol	0.266	2.655	7.301 14.934 19.913 24.89	1	
glutaric acid	0.300	2.400	7.199 12.960 17.820 21.06	0	
2-methylglutaric	0.319	2.550	7.650 12.750 17.850 21.03	8	
2,5-dimethylbenzoic	0.260	2.080	6.240 10.400 14.560 17.16	0	
3-methylglutaric	0.261	2.085	6.256 10.427 14.597 17.204	4	
2,4-dimethylbenzoic	0.263	2.100	6.300 10.500 14.700 17.32	5	
3,5-dimethylbenzoic	0.256	2.050	6.150 10.250 14.350 16.91	3	
2,3-dimethylbenzoic	0.272	2.172	6.516 10.860 15.204 17.91	9	
n-decanoic acid	0.300	2.400	7.199 12.960 17.820 21.06	0	
4-allylguaiacol	0.284	2.843	7.817 15.990 21.320 26.65	0	
4-methylsyringol	0.283	2.832	7.788 15.930 21.240 26.55	0	
3,4-dimethylbenzoic	0.269	2.153	6.460 10.767 15.073 17.76	5	
adipic acid	0.300	2.400	7.199 12.960 17.820 21.06	C	
t-2-decenoic	0.318	2.123	6.368 10.613 14.859 18.043	3	
cis-pinoic acid	0.300	2.400	7.199 12.960 17.820 21.06	0	
3-methyladipic	0.328	2.623	7.868 13.113 18.359 21.63	7	
4-formylguaiacol	0.283	2.832	7.788 15.930 21.240 26.55	0	
undecanoic	0.315	2.523	7.570 12.617 17.663 20.81	8	
isoeugenol	0.300	3.000	8.250 16.875 22.500 28.12	5	
pimelic acid	0.300	2.400	7.199 12.960 17.820 21.06	0	

.

`

-

DRI STANDARD OPEF Title: Analysis of Semi Compound by G	-Volatile Oi		URE				Page: Date: Number: Revision:	16 of 25 2/20/04 2-750.5 05
acetovanillone	0.266	2.655			19.913			
lauric acid	0.300	2.400	7.199	12.960	17.820	21.060		
	Level 11	Level 21	Level 3	Level 4	Level 5	Level 6		
Compound	ng/uL r							
phthalic acid	0.300	2.400			17.820			
levoglucosan	0.300	2.400	7.199	12.960	18.144	21.384		
syringaldehyde	0.266	2.655	7.301	14.934	19.913	24.891		
tridecanoic acid	0.300	2.400	7.199	12.960	17.820	21.060		
suberic acid	0.300	2.400	7.199	12.960	17.820	21.060		
isophthalic acid	0.300	2.400	7.199	12.960	17.820	21.060		
azelaic acid	0.300	2.400	7.199	12.960	17.820	21.060		
myristoleic	0.307	2.046	6.138	10.230	14.322	17.391		
myristic acid	0.300	2.400	7.199	12.960	17.820	21.060		
sebacic	0.165	1.098	3.294	5.489	7.685	9.332		
pentadecanoic acid	0.300	2.400	7.199	12.960	17.820	21.060		
undecanedioic	0.165	1.099	3.296	5.493	7.691	9.339		
palmitoleic	0.318	2.120	6.360	10.600	14.840	18.020		
palmitic acid	0.300	2.400	7.199	12.960	18.144	21.384		
isostearic	0.312	2.080	6.240	10.400	14.560	17.680		
dodecanedioic acid	0.165	1.099	3.296	5.493	7.691	9.339		
heptadecanoic	0.323	2.585	7.756	12.927	18.097	21.329		
1,11-								
undecanedicarboxilic	0.171	1.141	3.424	5.707	7.989	9.701		
oleic acid	0.300	2.400	7.199	12.960	18.144	21.384		
elaidic acid	0.300	2.400	7.199	12.960	17.820	21.060		
stearic acid	0.300	2.400	7.199	12.960	18.144	21.384		
1,12-dodecanedioic	0.166	1.105	3.315	5.525	7.735	9.393		
nonadecanoic acid	0.300	2.400			17.820			
dehydroabietic acid	0.300	2.400	7.199	12.960	17.820	21.060		
eicosanoic acid	0.300	2.400	7.199	12.960	17.820	21.060		
pentadecanedioic acid	0.166	1.105	3.315	5.525	7.735	9.393		
abietic acid	0.300	2.400	7.199	12.960	18.144	21.384		
heneicosanoic acid	0.300	2.400			17.820			
docosanoic acid	0.300	2.400			17.820			
tricosanoic acid	0.300	2.400			17.820			
tetracosanoic acid	0.300	2.400	7.199	12.960	17.820	21.060		
cholesterol	0.750				44.550			
b-sitosterol	0.750	5.999	17.998	32.400	44.550	52.650		

.

DRI STANDARD OPERATING PROCEDURE	Page:	17 of 25
	Date:	2/20/04
Title: Analysis of Semi-Volatile Organic	Number:	2-750.5
Compound by GC/MS	Revision:	05

.

`

.

DRI STANDARD OPERATING PROCEDURE	Page:	18 of 25
	Date:	2/20/04
Title: Analysis of Semi-Volatile Organic	Number:	2-750.5
Compound by GC/MS	Revision:	05

APPENDIX

SVOC Program Information

I. Before Running

A. Each project must be listed in the database "H:\db_prg\oalproj.dbf.". Fill in the following columns:

Column	Value
NUM	Use the next number in sequence
PROJ_NAME	A short description you will recognize
PROJ_CODE	The two-digit project code MUST be unique
ROOT_DIR	The directory where the project data are stored
STATUS	"c" for current, or "o" for old
SVOC	enter 1 to run the SVOC programs, 0 otherwise.

B. For each project, there is a list of target compounds for analysis. This list is in the directory "H:\db_calib\svoc\" and it is called AAcmpd.dbf, where AA is the project code in the oalproj.dbf database. In this same directory is a database called "Template.dbf" which is a template you can copy to make the new ones. The fields you must fill in are:

Column	Description
Field Name	The mnemonic for the PAH or PAH uncert.
Field_Type	ignore this
Field_Len	ignore this
Field_Dec	ignore this
Compound	The long name for the compounds only, enter
	nothing for uncert. This MUST exactly match the
	way it is in the mass spec calibration file.
Туре	Enter "c" for a compound, nothing for uncert.

C. If you intend to import GCMS data, you must use Lantastic to attach the GC/MS computer's c: (hard) drive to a drive on the local machine.

II. Running

A. Run the genbatch program and follow inputs.

B. IF this is the first time you have worked on this project, you must first run the option "N" which creates a new set of files. This will make the files you will need.

DRI STANDARD OPERATING PROCEDURE		Page:	19 of 25
		Date:	2/20/04
Title:	Analysis of Semi-Volatile Organic	Number:	2-750.5
	Compound by GC/MS	Revision:	05

C. You now can quit the programs and enter samples into the 'lab' database. This is the database the import program uses to determine what to import.

D. If the sample is run diluted, that file name and process status are also noted. When there is no diluted sample, just leave the name blank and set the dil_f_proc bit to zero. After the samples are imported, the program automatically enters a 2 for the proc bit.

Column	Description
PID	Standard ID
XMSFLAG	Mass Spec flag
F_NAME	Mass Spec file name for main analysis
F_PROC	Process bit for main (0=do nothing, 1= import
	normally, 2=import done).
DIL_F_NAME	Mass Spec file name for diluted analysis (if done)
DIL_F_PROC	Process bit for diluted (0=do nothing, 1= import normally, 2=import done).
SAMPLNO	Sample number
LOT	Lot numbers
ANALDATE	Date of analysis
COMMENTS	Notes

E. Once the import is done, AND the field data have been entered, you may continue with the rest of the processing, simply by following the sequence.

F. For the first batch of any project, the menu looks like:

- ** FILE CREATING FOR BATH 1 ONLY **
 - N FOR Creating New Project Files
 - 6 FOR Importing XMS data.
- ** Copying files from current Batch \data to \report
 - **3** FOR Copying Field data.
 - 4 FOR Copying analysis (xms) data.
- ****** Continue Processing Field
 - 5 FOR Processing Field data file.
- ****** Continue Processing Analysis (xms) file.
 - 7 FOR Running REP.
 - 8 FOR Merge FLD and XMS files to CHM file.
 - 9 FOR Calculate blank values and blank uncertainty.
 - 10 FOR Convert chm file to con file (ug/m^3) .

Simply follow the sequence through. Note, before going to Step 3 and beyond, you must first make sure the field and xms data are all input.

DRI STANDARD OPERATING PRO	DCEDURE Page:	20 of 25
	Date:	2/20/04
Title: Analysis of Semi-Volatile Orga	anic Number:	2-750.5
Compound by GC/MS	Revision:	05

III. Continuing a Project: Batch 2 and Following.

A. The menu for batch 2 and following looks like:

** Copying files from previous Batch \report to current \data directories

- 1 FOR Copying Field data from Batch (prev) to (current).
- 2 FOR Copying analysis (xms) and LAB data from Batch (prev) to (current).
- 6 FOR Importing XMS data.
- ** Copying files from current Batch \data to \report
 - **3** FOR Copying Field data.
 - 4 FOR Copying analysis (xms) data.
- ****** Continue Processing Field
 - 5 FOR Processing Field data file.
- ** Continue Processing Analysis (xms) file.
 - 7 FOR Running REP.
 - 8 FOR Merge FLD and XMS files to CHM file.
 - 9 FOR Calculate blank values and blank uncertainty.
 - 10 FOR Convert chm file to con file (ug/m³).

This is basically the same as before, except you simply want to copy the previous Field, lab and xms files.

SVOC2 - The Sequel

Background

We have to analyze for more than just the PAH species, so a second processing program has been written. This program follows the PAH analysis program sequence with a number of exceptions.

Exceptions

The second SVOC program uses the same lab and field files as the regular program and thus these need to be finished at the same time.

The option exists in this program to define which compounds will be imported from the regular samples and which from diluted ones. This must be the same for all compounds in a project, although some adjustments can be made if necessary. In any case, all compounds must be imported the first pass through and then a sub-group can be imported from a second (called diluted) on file.

Everything is case sensitive, especially the compound names.

Steps

1. Tell the Data Processing Manager which projects need this so the OALProj database

DRI STANDARD OPERATING PROCEDURE	Page:	21 of 25
	Date:	2/20/04
Title: Analysis of Semi-Volatile Organic	Number:	2-750.5
Compound by GC/MS	Revision:	05

and the other necessary files can be updated.

 Update the compound list file. This file is project-specific and it is located in the H:\db_calib\svoc\ directory in the general form xx2cmpd.dbf, where xx is the project code. The template is nf2cmpd.dbf. This needs to be filled out in the following format:

Field_name This is the mnemonic that will become the field name. Each compound must be followed by its associated uncertainty, just as in the example.

Field_type	Leave alone

- Field_lenLeave alone
- Field_dec Leave alone

Compound For the compound only (not the uncert.), insert the compound name EXACTLY as it is in the HP GC/MS calibration file. If this is not spelled EXACTLY as it is in the calibration file on the HP GC/MS nothing will work. Do not put in anything for the uncertainties.

Type Put in "c" for compounds, nothing for uncertainties. EVERY compound in the list MUST have a "c" in this field.

- Dil Put in "d" for compounds that will be imported from diluted files, nothing otherwise.
 - 3. Update the Lab database. There are five new fields in the lab database for the second SVOC files. These are:

F2 name	Mass spec	file name fo	or primary	analysis

F2_proc Process status for above (1= ready to import, 2= done)

Dil_f2_nam MS file name for diluted run

Dil_f2_pro Process status for above (1= ready to import, 2= done)

Date2 Analysis date for second compound list.

This should follow the conventions used in the normal data processing for PAH species.

4. Do genbatch and follow the instructions. When you select a project you will be prompted to select either SVOC or Additional SVOC compounds. Selecting the latter (option 7) will take you to the SVOC2 programs. First use the "N" option to build new files and then continue by importing the mass spec data and continuing the processing. This will create XM2 (the raw mass spec data), the CH2 file, and the CN2 (ng/m3) file.

DRI STANDARD OPERATING PROCEDURE	Page:	22 of 25
	Date:	2/20/04
Title: Analysis of Semi-Volatile Organic	Number:	2-750.5
Compound by GC/MS	Revision :	05

,

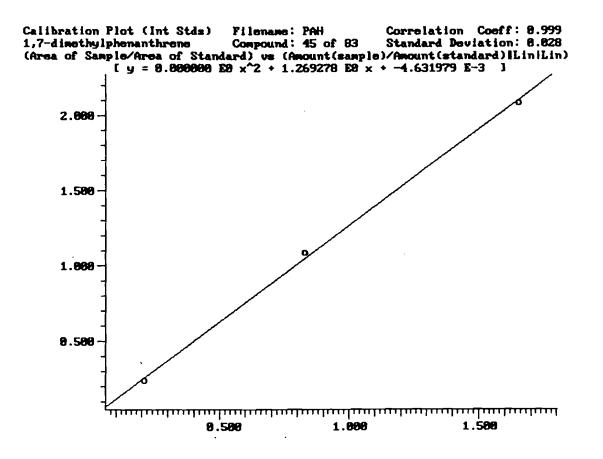


Figure 1

DRI STANDARD OPERATING PROCEDURE Page:					
		Date:	2/20/04		
Title:	Analysis of Semi-Volatile Organic	Number:	2-750.5		
	Compound by GC/MS	Revision:	05		

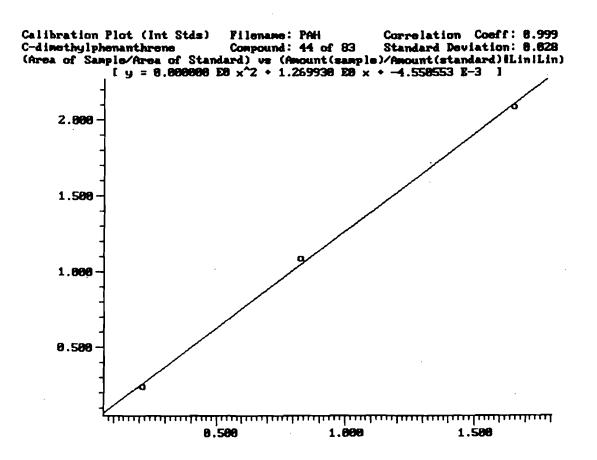


Figure 2

DRI STANDARD OPERATING PROCEDURE Page				
	Date:	2/20/04		
Title: Analysis of Semi-Volatile Organic	Number:	2-750.5		
Compound by GC/MS	Revision:	05		

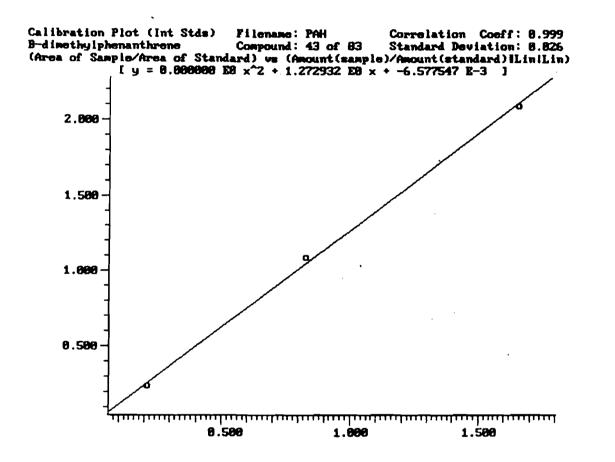


Figure 3

DRI STANDARD OPERATING PROCEDURE Page:				
		Date:	2/20/04	
Title:	Analysis of Semi-Volatile Organic	Number:	2-750.5	
	Compound by GC/MS	Revision:	05	

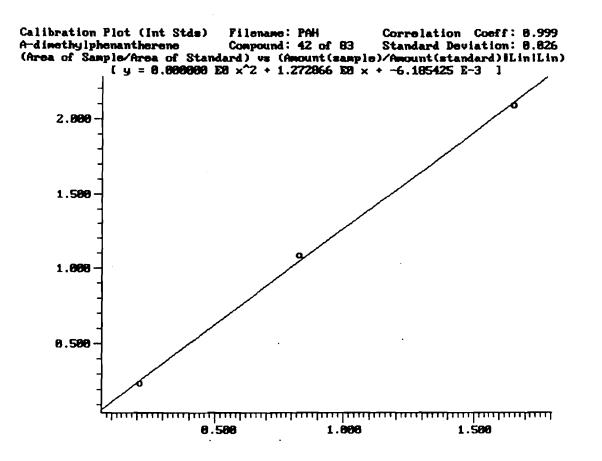


Figure 4

DRI STANDARD OPERATING PROCEDURE	Page:	26 of 25
	Date:	2/20/04
Title: Analysis of Semi-Volatile Organic	Number:	2-750.5
Compound by GC/MS	Revision:	05

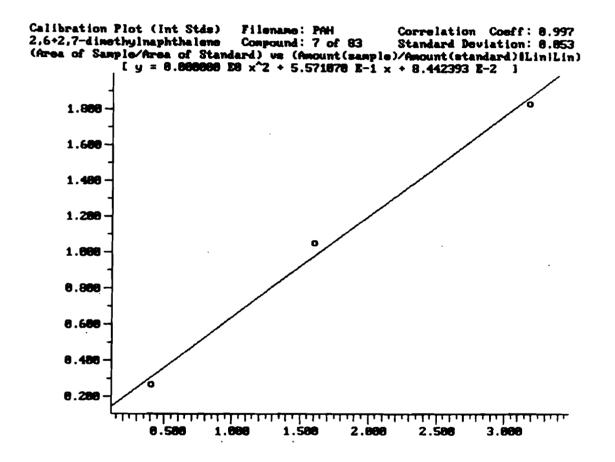


Figure 5

DRI STANDARD OPERATING PROCEDURE Page:				
		Date:	2/20/04	
Title:	Analysis of Semi-Volatile Organic	Number:	2-750.5	
	Compound by GC/MS	Revision:	05	

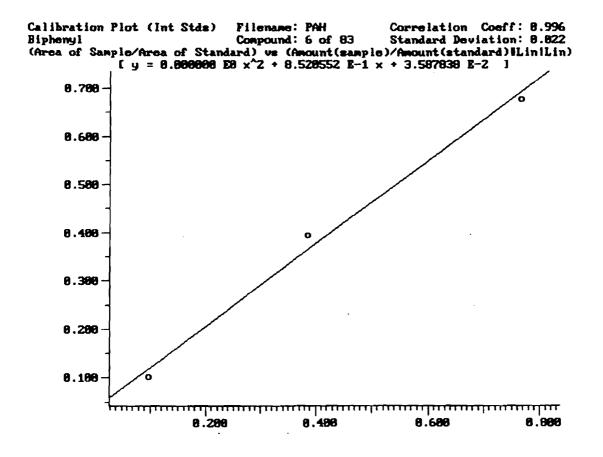
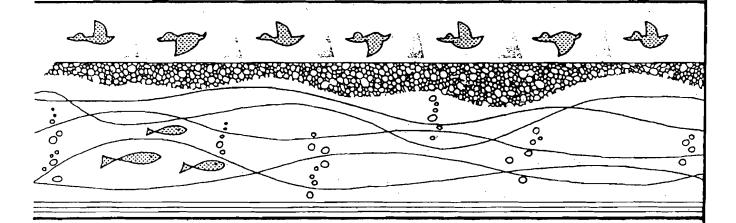


Figure 6

K


ł

Oil Spill Recovery Using Elastol, Report 1

+

Environment -Canada Environnement Canada

SPILL TECHNOLOGY NEWSLETTER

An informal quarterly newsletter published by the Technology Development and Technical Services Branch Conservation and Protection, Environment Canada, Ottawa, Canada

INTRODUCTION27UPCOMING CONFERENCES28INEXPENSIVE, PORTABLE EQUIPMENT TO AID IN
CLEANING OILED BIRDS29SPILL TRENDS - AN ATLANTIC REGION PERSPECTIVE34EVALUATION OF TWO NEW OIL SPILL CHEMICAL
ADDITIVES: ELASTOL AND DEMOUSSIFIER40

Canadä

VOLUME 13 (2) June 1988

Table of Contents

ISSN 0381-4459

1.10

Mr. M.F. Fingas and Mr. K.M. Meikle Technical Editors Environmental Emergencies Technology Division Technology Development and Technical Services Branch Environment Canada - C&P River Road Labs Ottawa, Ottawa K1A 0H3

Phone (613) 998-9622

Stella Wheatley Publisher and Coordinator Technology Development and Technical Services Branch Environment Canada - C&P Ottawa, Ontario KIA 0H3

Phone (819) 953-1193

The Spill Technology Newsletter was started with modest intentions in 1976 to provide a forum for the exchange of information on spill countermeasures and other related matters. We now have over 2000 subscribers in over 40 countries.

To broaden the scope of this newsletter, and to provide more information on industry and foreign activities in the field of spill control and prevention, readers are encouraged to submit articles on their work and views in this area.

April-June, 1988

INTRODUCTION

The first article of this issue is by Rick McKelvey of the Canadian Wildlife Service. Rick summarizes the oiled-bird problem and gives details on how to build a portable hot-water system for cleaning birds. The second article summarizes spill statistics for Atlantic Canada over the past fourteen years. The trends and significant occurrences are reviewed.

The third article is by Merv Fingas and Ed Tennyson who review their joint U.S. and Canadian project to evaluate Elastol and Demoussifier, two new spill treating agents. Both agents functioned well over a series of tests ranging from laboratory to large field scale.

27

EVALUATION OF TWO NEW OIL SPILL CHEMICAL ADDITIVES: ELASTOL AND DEMOUSSIFIER

Submitted by: Merv Fingas Environment Canada Ottawa, Ontario

> Ed Tennyson U.S. Minerals Management Service Reston, Virginia

Introduction

A new oil spill treating agent, Elastol, has been developed for enhancing the recovery potential of oil. When added to oil, the powder renders oil visco-elastic making it adhesive to oil spill recovery equipment. Elastol is composed of a non-toxic polymer, polyisobutylene and is hydrophobic and not water soluble. A major study was undertaken jointly by the U.S. Minerals Management Service and Environment Canada to evaluate this new spill additive. Laboratory testing was done and studies were conducted in large-scale test tanks and in a major field exercise off Canada's east coast.

At the same time, another new spill treating agent, demoussifier, was tested in large outdoor tanks and at sea. This product, which also consists of a mixture of longchain polymers which have no measurable toxicity to humans or to aquatic life, was developed at Environment Canada's River Road Labs. The product breaks up water-in-oil emulsions and prevents their formation.

Laboratory Testing of Elastol

The laboratory work on Elastol involved several different tests. The effect on a suite of different oils was determined by measuring the time to initiate change and the degree of elasticity formed. These oils included: Prudhoe Bay, Alberta Sweet Mix Blend, Norman Wells, Bent Horn, Hibernia, Tarsiut, Atkinson, Amauligak crudes, diesel fuel and a Bunker C mix. All oils displayed viscoeleastic properties when treated with doses of 600 to 6000 ppm Elastol. In general, more viscous oils tended to attain a higher degree of elasticity than non-viscous oils, but did so over a longer period of time. No simple correlation could be established between an oil property and Elastol effectiveness. Elastol effectiveness is enhanced by mixing and by higher temperatures, although the latter may be the effect of decreasing oil viscosity.

Under low mixing energy conditions, oils exhibited some degree of elasticity within 15 minutes of Elastol application. A high degree of elasticity was not observed until after one hour. Less viscous oils took less time to reach maximum elasticity and viscous oils more time. If left to weather, Elastol-treated oil became more elastic with the increasing viscosity of the oil. In fact, some samples left for 30-day periods became elastic as rubber bands sold for stationery purposes. This effect has been ascribed to the effect of the increasing viscosity of the oil with weathering (evaporation) and not the progressive reaction of the Elastol.

SPILL TECHNOLOGY NEWSLETTER

April-June, 1988

Elastol causes a minor reduction in the rate of oil evaporation, but not significant enough to reduce its flash point. Elastol reduces slick spreading to a limited degree, especially at high concentrations. This effect, about 20%, is not believed to have a significant useful benefit by itself in real applications. When Elastol is applied in very large doses, >1%, the slick would actually contract somewhat, but again, the effect would not be beneficial in a field situation.

The addition of Elastol either had no effect or an inhibiting effect on the formation of water-in-oil emulsions, except in the case of the Amauligak and Tarsiut oils from the Beaufort Sea region. In two cases, the application of Elastol to emulsified oil actually led to measurable de-emulsification. Application of Elastol to stable water-in-oil emulsions sometimes had little effect. Testing with commercial de-emulsifiers and the Environment Canada "demoussifier", showed that Elastol had no effect on the operation of these chemicals and that they could be used together.

Elastol reduces chemical dispersant effectiveness by as much as one order of magnitude. Elastol also reduces natural dispersion of oil into water by as much as three orders of magnitude. This property, while superficially appearing negative, is actually quite useful. If Elastol was used in situations where the aquatic life is very sensitive and important, it could reduce water concentrations of the oil in the water to threshold levels.

Elasticity was measured using a die swell apparatus in which oil is pushed through a small opening and the fluid responds by swelling to a size corresponding to its elasticity. This is measured by photographing the swell, measuring it with a vernier caliper and comparing untreated versus treated oil to yield a ratio which is described as "elasticity" in this paper. The instrument displayed good sensitivity to polymer concentration and to the degree of observed elasticity. This instrument could also be used in field conditions and is relatively insensitive to debris and water in the oil.

Tank Scale Testing of Elastol and Demoussifier

An application device was developed for each of the two products, as commercial devices do not exist for delivering treatments at the low ratios required. Elastol would be tested at 500 to 5000 ppm and demoussifier would be tested at 150 to 2000 ppm. A search of commercial devices revealed that nothing suitable was available off-the-shelf but that sandblaster-type equipment could be satisfactorily modified. A commercial blaster (Sears) was modified so that it could spray low quantities. One modification was necessary for the solid Elastol, and another for the liquid demoussifier. The modified applicator was tested on each product to ensure that uniform spacial distribution was achieved and that application rates could be controlled over the necessary range by adjusting the air pressure when applying the product from a boat travelling at approximately 3 knots. A series of test tank runs were performed to ensure that results obtained previously with hand distribution techniques and with pre-mixing were duplicated with the new applicators. Success was achieved in all cases, and no detrimental effects were observed during application of either product, such as herding and other phenomena that have decreased the field effectiveness of dispersants so dramatically (Bobra et al., 1988).

41

Part of this study involved large-scale tank testing of both products using the Esso tank in Calgary, Alberta. The tank measures 15×19 m with a depth of 0.8 to 2 m. Two test days were devoted to demoussifier and two to Elastol. Testing was performed in two boomed areas inside the tank. This permitted the simultaneous testing of a control and a treated slick under identical conditions. The demoussifier prevented the formation of water-in-oil emulsions on both test days and did so at ratios as low as 1:2000 (500 ppm).

Elastol was added to a test crude oil at 4000 ppm and the test slick was released several hours later when the oil was highly elastic. Despite this high elasticity, the oil was not thick enough to burn. The oil was recovered by a rotating disk skimmer and the effect of Elastol was to increase the recovery rate of this unit significantly. In fact, the pump could not keep pace with all the oil being recovered. On the fourth day of testing, crude oil was treated with 2000 ppm of Elastol and recovered with a skimmer. The recovery rate was again high and exceeded the capacity of the pump to remove it. On this particular day, the oil in the untreated boom had formed an emulsion. This was treated with demoussifier as was the Elastol-treated slick. The demoussifier broke the emulsion in the untreated slick and no emulsion formed in the treated slick, nor were any other effects noted. During the first two trial days, the use of demoussifier reduced the effectiveness of the recovery operation significantly. It was concluded, therefore, that on a preliminary basis, demoussifier and Elastol could be used together to enhance recovery and eliminate emulsion.

The tank scale tests showed that there were no scaling effects for either the Elastol or the demoussifier. Both products worked well for the intended purpose. Elastol increased the visco-elasticity of the oil and greatly increased the recovery by the oil skimmer. Elastol, however, did not reduce the spreading or increase the thickness of the slick sufficiently to allow <u>in-situ</u> burning. Demoussifier prevented the formation of water-in-oil emulsion and also broke emulsion already formed. Although demoussifier causes the oil to be less adhesive and lowers the recovery rate of skimmers, the two products can be applied together to achieve positive results.

Large-scale Field Testing

The tests conducted in the tank were repeated on five-barrel slicks during a field trial 50 miles offshore of Nova Scotia (Seakem, 1988). Five slicks were laid for each of the products and each product was tested both premixed and by application-at-sea, to confirm that application effects were not a factor. The treatments and results of the trial are summarized in Table 1.

The demoussifier trials were performed by laying down a five-barrel oil slick, treating it with the product at the specified ratio, taking samples at subsequent intervals and measuring the water content and the viscosity. One slick was left untreated throughout as a control and another slick was left to form mousse (water-in-oil emulsion) and then treated at the 240-minute interval to test the demoussifier's ability to break emulsion at sea. As can be seen by dramatic reduction in viscosity (105 000 to 22 600 cSt; 1050 to 226 cm²/s) over the 30-minute period between samples, the product worked well in breaking up the emulsion.

The product also worked well over the five-hour test period to prevent the formation of emulsions. This is illustrated in Figure 1 which also shows that there is a

SPILL TECHNOLOGY NEWSLETTER

April-June, 1988

	Slick		Sample I				Sample 2					
Trials		Treatment (ppm)	Time (min.)	Viscosity (cSt)*	Water Content	Elasticity	Comments	Time (min.)	Viscosity (cSt)*	Water Content	Elasticity	Comments
Demoussifler	1	1000	60	10 000	84%		No mousse formed	300	84 250	90%		No mousse noted
	2	250	60	2 700	5496		No mousse formed	300	62 250	93%		No mousse noted
	3	control	60	6 3 50	88%		Heavy mousse	270	320 000	95%		Heavy mousse
	4	post-4000	60	2 200	72%		Moderate mousse	pre-240	105 000	90%		Heavy mousse
		•						post-270	22 600	78%		Treatment brok
	5	pre-1000	15	970	32%		No mousse formed	280	38 500	80%		No mousse formed
Elastol	6	3000	130	29 300		1.33	Moderately	280	300 000		1.35	Highly elastic
	7	1000	145	32 250		1.28	Low elasticity	280	228 000		1.33	Moderately elastic
	8	control	135	187 000		0.99	No elasticity, widespread	290	247 000		0.99	No elasticity, widespread
	9	9000	120	93 000		1.99	High elasticity	330	696 000		2.63	Super elastic
	10	pre-3000	115	170 500		ļ.35	Moderate elasticity	315	156 000		1.57	Highly elastic

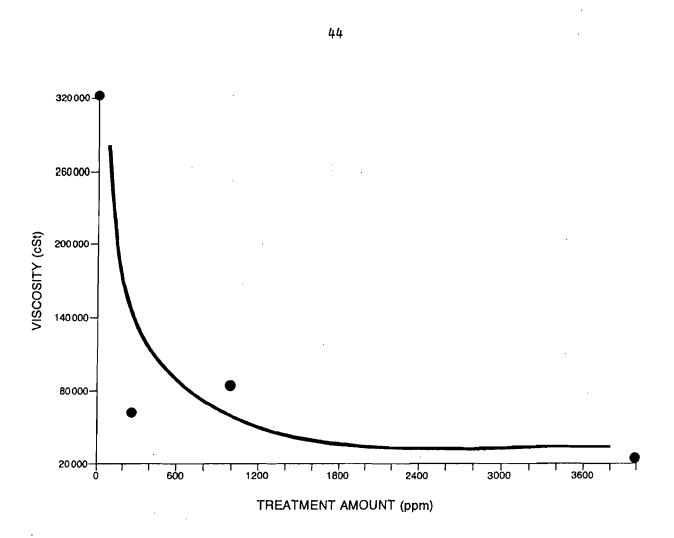
TABLE I TREATMENTS AND RESULTS OF TRIALS

• 1 c5t = 1 x 10⁻² cm²/s

strong correlation between the viscosity and the amount of treatment. The greater the treatment, the less the viscosity, because of the lesser water content. The water content was universally high, even in those slicks that visibly did not form water-in-oil emulsions. Although water content is indicative of the formation of water-in-oil emulsification, the stability of the emulsion would have to be determined because the unstable emulsions lost water slowly. The water content of the slicks is interesting in that all the slicks laid over the two day test period rapidly took up water, including those slicks that were treated with Elastol. This was noted despite the fact that the oil viscosity was higher, although not as high as that expected from an emulsion, and the oil did not have the appearance of an emulsion. The appearance of the unemulsified oil is also significant, the water droplets were often of sufficient size to be seen. An emulsion is reddish-brown in colour, has a high viscosity and the water droplets are too small to be seen.

The Elastol tests were performed in an analogous manner, with one control slick laid and one slick being pretreated to test the effect of at-sea treatment. The slicks were sampled periodically, and both viscosity and elasticity were measured immediately on board the ship.

The high elasticity of the treated slicks was significantly higher than that of the untreated slicks and corresponded to that experienced in the laboratory, in fact, as shown in Figure 2, it actually exceeded laboratory results at the higher doses. This unexpected result is probably due to the better mixing achieved in the field situation. Interestingly, the dose and elasticity in the field appear to be linear, a phenomenon that had not been noted previously.


The elasticity of the oil was sufficient to cause stringing of the product when samples were recovered. This is indicative of a very high state of elasticity and would result in high oil recovery rates if a skimmer was used. The elasticity appeared to be uniform throughout the slicks despite the typical uneven distribution of treating agent at sea.

SPILL TECHNOLOGY NEWSLETTER

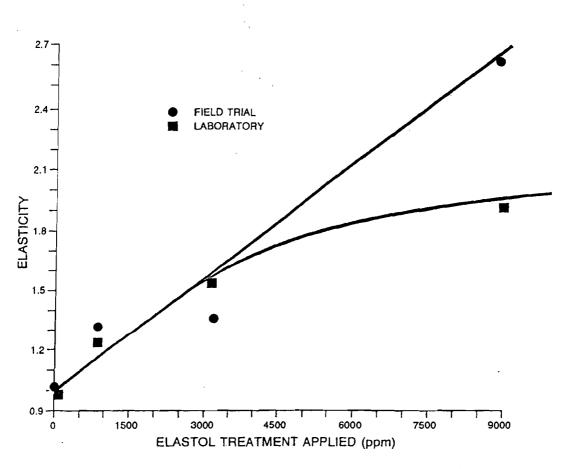
April-June, 1988

اليان المراجع التي توجيع المراجع ا مراجع المراجع ال

	·	

THE EFFECT OF DEMOUSSIFIER APPLICATION ON VISCOSITY

The slicks were monitored by a remote sensing aircraft, but the analysis of slick areas was not complete at the time of writing. Slicks treated with Elastol, however, appeared to be smaller to shipboard observers and the size of the slick appeared to correlate well with the amount of Elastol. In fact, one was able to distinguish slicks by their size, with the 9 000-ppm-treated slick being the smallest.


Summary and Conclusions

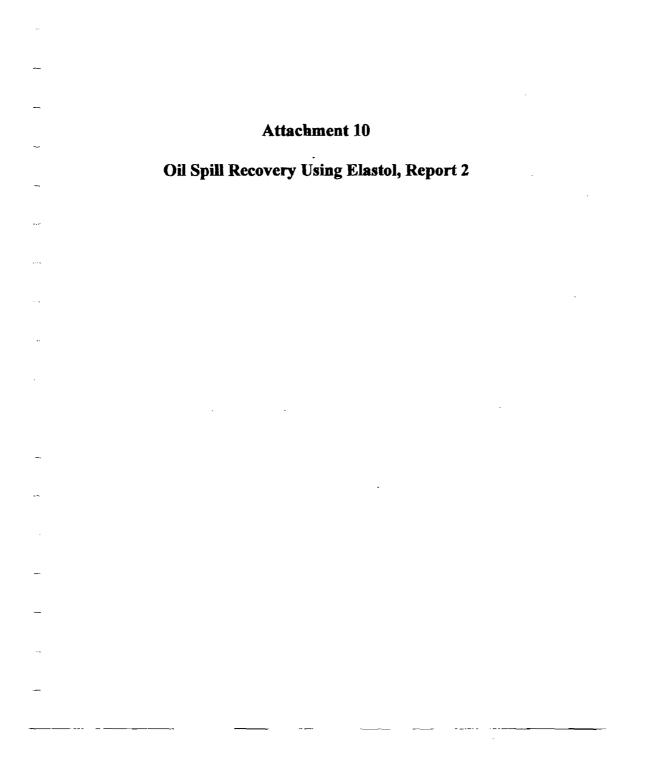
- 1. Elastol functioned well in the laboratory, test tank and in field situations; it caused oil to become viscoelastic in all applications.
- 2. Elastol is able to float with and mix with oil so that application is not critical as it is with dispersants.
- 3. Demoussifier has the same application insensitivity as Elastol.

SPILL TECHNOLOGY NEWSLETTER

April-June, 1988

- 4. The effects of Elastol improves oil skimmer recovery.
- 5. Elastol retards slick spreading; however, this effect, for physical reasons, is not sufficient for countermeasures purposes such as in-situ burning of oil on water.
- 6. The demoussifier prevented emulsion in the test slicks over the five-hour test period.
- 7. The demoussifier broke water-in-oil emulsions in 10 to 15 seconds after application.
- 8. Results of field application such as herding and loss of effectiveness, seen with dispersants, were not noted at all with either product.
- 9. Water content is not a good indicator of mousse formation as all slicks at the offshore trial accumulated a large amount of water. Stable mousse formation is indicated by a stable water content, small water droplet size, red colouring and a very high viscosity.

SPILL TECHNOLOGY NEWSLETTER


References

- Bobra, M.A., P.I. Kawamura, M. Fingas and D. Velicogna, <u>Laboratory and Tank Test</u> <u>Evaluation of Elastol</u>, Environment Canada Manuscript Report Number EE-94, Ottawa, Ontario (1987).
- Bobra, M.A., P.I. Kawamura, M. Fingas and D. Velicogna, <u>Mesoscale Application and</u> <u>Testing of and Oil Spill Demulsifying Agent and Elastol</u>, Environment Canada Manuscript Report Number EE-104, Ottawa, Ontario (1988).
- Seakem Oceanography, Field Test of Two Spill Treating Agents, Environment Canada, Manuscript Report Number EE-XX, in press (1988).

SPILL TECHNOLOGY NEWSLETTER

and a second second second second second second second second second second second second second second second

April-June, 1988

MEMORANDUM

TO: All

FROM: AI Hadermann

DATE: July 7, 1992

SUBJECT:

Elastol and Corals and Seagrasses (with footnote)

Anitra Thorhaug* has tested Elastol powder and various weathered oils for toxicity to seagrasses and corals. Tests were conducted on species in 50 gallon glass tanks containing 100,000 ml of seawater. Tests were run at 0.00125%, 0.0075% and 0.01235% oil, i.e., approximately 1.25 ml, 7.5 ml and 12.5 ml. When Elastol was added it was used at 10 mg, or 0.010 g. This corresponds to treatment concentrations of approximately 8,000, 1,333 and 800 ppm for 1.25 ml, 7.5 ml, and 12.5 ml of oil, respectively. Although the Elastol was not used as a slurry, and overtreatment obviously occurred at the 12.5 ppm oil level, the results showed that Elastol treatment reduced the toxicity of the oil.

The exposure times to oil and oil and Elastol were 6 and 10 hours for coral and seagrasses, and 10 hours for mangroves. Agitation was provided by air bubbling. The seawater was replaced after the incubation (exposure) time.

Dr. Thorhaug reported that:

"The corals continued with their polyp feeding patterns with the Elastol-oil mixture in the tank. This was an extraordinary result compared to the other compounds used in the test which were a variety of dispersed-oil products."

"The quantitative data for the various concentrations and various oils show that the oil plus the Elastol at concentrations at 125 ppm were appreciably less toxic than oil alone for corals and seagrasses."

Since oil alone at 125 ppm did not affect mangroves, no basis for improvement with Elastol was seen.

In Summary, Dr. Thorhaug states:

"The toxicity of oil alone was definitely greater than the Elastol treatments in almost all the concentrations tested."

*Anitra Thorhaug is a researcher at Florida International University, P.O. Box 490559, Miami, FL 33149.

ELASTOSOL, an oil spill control agent: Toxicity effects on tropical and subtropical seagrass, corals, fish and mangroves.

nitra Thornaug Plorida International Univ 359 SN 22 Terrace liami, FL 33145

.

-tarcel Anderson latural Resource Conservation Department 59 1/2 Nolynes Road (ingston 10, Jamaica

Dr. Howard Teas -Siology Departmet Iniv of Miani Coral Gables, FL 33124 Barbara Carby/Richard Reese Offc of Disaster Prepared. 12 Old Camp Road Kingston, Jamaica

· ·

Karl Aiken/Wendy Walker Soology Department Univ Nest Indies Kingston, Jamaica

Beverly Hiller Valerie Gordon INERU Kingston, Jamaica

John McFarlane Jamaican Defense Dept Kingston, Jamaica

George Sidrak Botany Department Univ West Indies Kingston, Jamaica

.

Nike Rodriques Coast Guard Jamaican Defense Dept Kingston, Jamaica

Franklin McDonald UNDRO, Antigua

1

The toxicity of other than dispersant cil spill control agents (solidifiers, gels, sorbent and bioremediation agents) for cleaning cil spills has received very little attention (NRC, 1989; Thorhaug, 1991; INO, 1991). This is the beginning of an attempt to give the same attention to the toxicity of these products to critical tropical/subtropical matrix organisms and fisheries species.

The product elastosol contains polyisobuylene and an oleophilic surfactant. Although it is proprietary, it has undergone chemical analysis and field testing (Fingas, 1989; Bobras, 1987a&b, 1988a&b; Fingas and Tennyson, 1988). A wide variety of crude oils became elasticized within 15 minutes more-or-less after elastosol treatment. These were retained in solidified condition up to 30 days with viscoelastic properties maintained over this time period. The properties more to be that solids are prevented from spreading and can be nicked appear to be that slicks are prevented from spreading and can be picked up by skimmers efficiently. With sensitive ecosystems, the major use of elastosol clearly will be relatively small confined spills probably at ports, marinas, oil refineries or in bays or estuaries. Thus, the tolerance of critical habitat organisms to elastosol is important.

METHODS:

Toxicity studies Laboratory investigations. Standardized procedures used by the U.S. Environmental Protection Agency (EPA) and various agencies (FAO, UNESCO, UNEP) for testing tropical matrix organisms were employed so that standardized test results could be produced. The hope was to compare results with temperate results, along with UNEP European dispersed-oil toxicity data.

1. ł i 1 1 1 ł ٩ Table 1. Elastosol concentrations versus toxicity of seagrasses, corals and mangroves. 7 to 12 specimen at each concentration per treatment. . . . ٠, N NORTHE Arrist Land TINE CONC A WORTHL. 4 HOWERS. OIL OUL 4 MONTREE. A HOMESL. COME: . A MORT. -S PERSON . . Thal. they bl. wrb. Syr. fil. 135 125 129 15 44 12 11 78 78 75 10 10 14 14 12.9 12.6 12.6 30 54 34 1. 20 7 8 1 ¥ 18 62 15 100 129 18 73 77 77 12 12.5 13.5 13.5 YOUCHO MLLAS. AVICON Long. 10 10 10 125 125 125 4 0 0 78 78 78 12.5 12.5 12.5 Thal. test. = Thalassia testudium; Hal. wri = Halodule vrightii; Syr. fil. = Syringodium filiforme; Por. por. = Poriates poriates: Mont. ann. = Montastres annularis: Acrop. = Acropora palmata: Rhizi. = Rhizophora mangle ; Avicen. = Avicennio; Lang. = Languncularia

Selection of critical matrix organisms for tropical shorelines was a choice based on (1) importance to the food web, (2) rate and difficulty of replacement once decimated, (3) shoreline stabilization characteristics, and (4) usefulness to the nation (fisheries, tourism). Local experts such as Jeremy Woodley, director of the Discovery Bay Marine Laboratory and pressiment Jamaican coral reef expert, were asked to choose indicator species for the project.

Standardization among techniques for various groups was attempted so that the results of each group could be compared. Thus, the standardized portion will be explained first.

Laboratory conditions. The procedure was described in detail by Thorhaug and Marcus (1985). Fifty-gallon glass aquaria were used in out-of-door conditions (such as fluctuating light, temperatures, and running water) and, except for the mangroves and seagrasses, were protected from rain and wind. Temperatures ranged from 26° to 30°C, with fluctuation of 1°C $\pm 0.5°$ C. Seawater ranged from 30% to 33% (except for the mangroves). In seagrasses, three inches of beach sand was at the bottom. Corals tanks were bare. For seagrasses, a minimum of 15 blade groups of each species was placed in each tank (1 tank per treatment). Great care was taken in transport and holding conditions for the coral and mangrove specimens. Time for equilibration of specimens was allowed. 100,000 cc of seawater was placed in each treatment.

Laboratory procedures. Oil-only was a treatment in each set. Time for weathering of oil was 24 hours at 28°C in shallow plastic pans. The control tank was handled exactly the same as treatments. The dispersant was applied to oil floating on the tank surface with 1 minute of vigorous stirring. The dispersed oil formed a brown cloud of freefloating material, visually homogeneous throughout the tank (depended somewhat on concentration and dispersant). The Goral and seagrasses were not touching the oil floating on the top; the mangroves were in contact on the bark. All specimens were in contact with the dispersant mousse.

The application of elastosol was 12.5 ppm oil, 75 ppm oil and 125 ppm oil with 10 mg (1 package) of elastosol. The exposure times were 6 and 10 hours for corals and seagrasses, 10 hours for mangroves. The treatment was immediately removed, and the water cleaned and changed in all treatments.

The specimens were incubated up to 14 days (Coral, seagrass) and 9 months (mangroves). The observation period included daily or bi-weekly readings of health. Seagrasses had young green blades tagged and other morbidly symptoms. Corals were graded by bleaching, wilting and browning, wilted polyps, corals were graded by bleaching, spotting, Mangroves were graded by leaf drop, twig drop, root death and discoloration, leaf coloration, leaf spots, and leaf wilt. These organisms were graded. The tables showing the results are not of hearth

.

. . .

and the second second second second second second second second second second second second second second second

Morphologically, the results of elastosol included the observation that the dil flowing on the surface of the tanks within a few minutes of treatment with elastosol congealed into long lines. There appeared to be no film on the glass sides of the aquaria or on the water. The mixture of elastosol and oil was complete.

.

There were a series of biological and morphological observations.

1) The corals continued with their polyp feeding patterne with the elastosol-oil mixture in the tank. This was an extraordinary result compared to the other compounds used in the test which were a variety of dispersed-oil products. Color and vigor of the polyps of all species was retained.

2) The elastosol had no apparent effect on seagrass or mangrove vigor or color.

The quantitative data for the various concentrations and various oils show that the oil plus the elastosol at concentrations of 125 ppm were appreciably less toxic than oil alone for corals and seagrasses. Mangroves had no effect from elastosol. Oil alone did not affect mangroves at these concentrations. Corals were the most sensitive to oil. The response of decreased toxicity by application of elastosol is seen dramatically at 125 ppm oil in corals where the control had a higher mortality than the oil plus the elastosol. The mangroves were far more tolerant of cil, plus oil and clean-up product of any kind than were seagrasses or corals.

CONCLUSIONS:

54

The herder or solidifier Elastosol does not appear to have marked toxic effects on the tropical/subtropical matrix organisms studied, even at high concentrations. Oil alone at the higher concentrations does have a toxic effect on seagrasses and corals. The results of dispersants at these same concentrations were highly toxic on the seagrasses, corals and mangroves for many of the products tested.

The elastosol in all tests was the least toxic of a series of oil spill clean-up formulations. The toxicity of oil alone was definitely greater than the elastosol treatments in almost all the concentrations tested.

The difficulty of application of elastosol would indicate use for a smaller spill such as a harbor or estuarine spills. The fact of very low toxicity corals would make this extremely well-adapted to spills near or over coral research. It may also be very helpful to control oil when spills are within mangrove swamps. Certainly, spills which cannot be mechanically handled or chemically dispersed may warrant the expense and application methods for elastosol.

Literature cited .

•

·* •

Bobra, M.A., P.I. Kawamura, M. Fingas and D. Velicogna. 1987a. Laboratory and Tank Test Evaluation of Elastosol. Environment Canada Report EE 94, Ottawa

ميري يهورهم ومنافرة المتحجا المراجع

Bohra, st al. 1987b. 10th AMOP pp 223-241

and Bell and Antice and Antice and Antice and Antice and Antice and Antice and Antice and Antice and Antice and

- Bobra, N., P. Kawamura, M. Fingas, and D. Velicogna. 1988a. Laboratory and mesoscale testing of Elastosol and Brand M Demoussifier. 11th AMOP pp 391-453
 - Bobra, M.A., P.I. Kawamura, M. Fingas, and D. Velicogna. 1988b. Mesoscale application and testing of an oil spill demulsifying agent and Elastosol. Environment Canada Report EE-104, Ottawa
 - Fingas, H. 1988. Dispersant effectiveness at sea: A hypothesis to explain current problems with effectiveness. Proc. 11th Arotic Marine Oil Spill Program Tech. Seminar, Vancouver, B.C. pp 455-479
 - Fingas, M. and F. Tennyson. 1988. Evaluation of two new oil spill chemical additives: Elastosol and Demoussifier. Spill Technology Newsletter Vol 13, No 2, pp 40-46. See also Seakem Oceanography Ltd (1990). Field test of two spill treating agents. Environment Canada Report EE-124.
 - National Research Council, Committee on Effectiveness of Oil Spill Dispersants, 1989. Using Oil Spill Dispersant on the Sea. National Acedemy Press, Washington, D.C., p 310.
 - Thorhaug, Anitra and Jeffrey Marcus, 1985. Effects of dispersant and oil on subtropical and tropical seagrasses. Proceedings of the 1985 Oil Spill Conference, American Petroleum Institute, Washington, D.C. pp 497-501.

Attachment 11

_ .

_

....

Oil Spill Recovery Using Elastol, Report 3

......

. . .

.

The 1987 Newfoundland Oil Spill Experiment

An Overview

E. J. Tennyson Minerals Management Service Reston, Virginia

H. Whittaker Environment Canada Ottawa, Ontario

Abstract

A joint Canadian-United States exercise involving the intentional spilling of approximately 20,000 gallons of specially-treated crude oil was conducted off Newfoundland in September 1987 to evaluate the containment and recovery capabilities of three state-of-the-art booms and skinners. As part of the exercise, data were collected on a specially-instrumented oil spill boom in an attempt to verify a proposed performance test procedure for open-ocean oil spill booms. A visco-elastic chemical additive was used, after the equipment evaluation was completed to enhance recovery operations. Additional observations were made on the persistence of spilled oil slicks in advanced sea states. The containment and recovery effort was one of the most successful on record and was conducted in winds and sea states commonly thought to be beyond existing capabilities.

Introduction.

An intentional oil spill of 18,000 U.S. gallons was conducted on September 24, 1987, offshore of St. John's Newfoundland to evaluate the containment and recovery capability of three booms and skimmers. The spill also provided an opportunity to verify a nonpolluting performance evaluation procedure for offshore oil containment booms. The spill was conducted approximately 25 nautical miles east of St. John's. Ocean dumping permit requirements included SSW currents and westerly winds to minimize chance of shoreline contact; water depths of at least 100 meters; the site had to be at least 25 nautical miles from shore, and the area had to be within 2 to 3 hours steaming from St. John's. The center of the area selected was 47 degrees, 40 minutes North and 52 degrees, 03 minutes West.

A crude similar to the typical high wax Grand Banks crude was unavailable. Brent crude from the North Sea was alledgely treated by adding 1 percent slack wax by volume to yield an oil of similar physical properties to the Grand Banks crudes. The modified oil was to have a density of 839.8 kg/m^3 and a viscosity of 20 m Pas at 12 degrees C (Ross, 1987a). Recent information indicates that insufficient slack wax was added to reach the 1 percent by volume target level.

Meteorological conditions were recorded on the Canadian Coast Guard (COG) Outter "Grenfell" at 15 minute intervals. These include corrected wind velocities and air and water temperatures.

221

A wave rider was deployed at the test site but failed to function during the exercise. Consequently, sea conditions were estimated, with reasonable agreement, by various trained observers.

The test plan called for the deployment of three booms as follows: A 250 meter length of the specially instrumented Oil and Hazardous Material Simulated Environmental Test Tank (CHMSEIT) boom would be deployed in normal catenary. Approximately 20,000 gallons of treated Brent Crude would be spilled by the command/recovery ship Tearra Nova Sea into the catenary. The oil would be held in the boom for approximately 1 hour while freeboard and draft data and visual observations of oil retention were recorded. During this period, 200 meters of the Canadian Coast Guard's RO-BOOM would be deployed behind the CHMSEIT boom. The tow speed would be increased to significant loss speed (0.5-1.0 knot). One end of the boom would then be released and the oil discharged into the RO-BOOM. Oil would be held in the RO-BOOM for approximately 1 hour while the oil retention capabilities were observed. The St. John's Coast Guard Vikoma Ocean Pack boom (400 meters) would be deployed behind the RO-BOOM, and the oil would be repeated with the RO-BOOM, and the oil would be released into the RO-BOOM during the observation period.

Oil would be retained in the Vikoma for approximately 1 hour. The Terra Nova Sea would then commence skimmer evaluations. Two skimmers, the Framo ACW400, and an innovative Coast Guard Heavy Oil Skimmer (HOS) would be evaluated for 20 minutes each and the remaining contained oil would be recovered by the skimmer with the better performance (Ross, 1987b).

The intent of the OHMSETT boom deployment would be to verify the hypothesis that a boom's ability to contain oil is correlated with its ability to sea keep or comply with wave-induced surface motion. If this hypothesis could be verified and quantified, future performance evaluations of offshore containment booms could be restricted to measuring seakeeping capabilities in a range of sea states. No further spills of the 20,000 gallon size of light and heavy oils would be required, in a range sea states, to evaluate each type of boom. Ocean dumping permits are difficult to obtain and intentional oil spill exercises of this magnitude approach the million dollar funding level. Intentional spills also constitute a risk of potential damage to the immediate environment. Clearly a costeffective and nonpolluting evaluation procedure for offshore equipment is necessary to develop a predictive capability for the performance of offshore response equipment. Wind conditions desired were sea state 2 to 4, and winds from 10 to 20 knots.

Practice Run - September 21, 1987

The ships and smaller vessels sailed at 6:00 a.m. and proceeded to a location 5.5 miles off Torbay point. The CCG Grenfell then deployed the OHMSETT boom and passed one end to the CCG cutter 212 which took the boom in tow. The CCC cutter 206 then attempted to pick up the trailing end of the boom, a job which took 45 minutes. As soon as the 206 had the end of the boom secured, the two cutters attempted to tow the boom, in a "U" configuration, into a position astern of the Terra

222

Nova Sea. This resulted in the CHMSETT boom immediately beginning to twist on itself, and 1 hour was lost in straightening the boom. Eventually the boom was positioned relative to the Terra Nova Sea and simulated discharge of the oil was carried out. Data collection, without oil, for almost 1 hour followed.

While the OHNSETT boom was being deployed and positioned, the RO-BOOM was deployed from the COG Sir Humphrey Gilbert and passed to COG cutter 214. This procedure took almost 2 hours and, the RO-BOOM was rapidly positioned with respect to the OHNSETT boom because both the Cutter 214 and a Boston Whaler were able to tow the boom at speeds of 5 knots. With the RO-BOOM in position, the COG cutters 212 and 206 commenced to maneuver, presumably to form a "J." The COG cutter 206 then snagged the CHMSETT cable in her screws and cut it, disabling herself. This resulted in delay in the exercise while the cable was freed and, because COG cutter 214 and the Boston Whaler were now approaching closely, the Cutter 212 took the boom and Cutter 206 in tow and cleared the area so as not to impede the exercise.

During the period in which the RO-BOOM was being deployed, the COG Grenfell deployed the Vikoma boom. Once the simulated oil release was over, the Terra Nova Sea took the other end of the boom and the vessels formed a Catenary. After holding position relative to the RO-BOOM for a period, the ships formed a "J" with the boom and practiced deploying the skimmers.

All ships returned to harbour by 5:00 p.m.

Period Between the Dry Run and the Trial

Several meetings of the senior people involved in the exercise occurred between September 21 and September 23, 1987. It was decided to remove COG cutter 206 from the exercise. The Boston Whaler was able to tow and hold the boom in sea state 1, but it was recognized that this would be difficult, with oil, in the desired weather. The Newfoundland Fisheries department had provided a vessel, the Bernier, and it was decided to use her and a second chartered CSV to tow the RO-BOCM.

Concern was registered that the weather might, surprisingly, be too calm on September 24, the day which looked best for the actual trail. It was, therefore, decided to interchange the OHMSETT and RO-BOOMS to take advantage of the higher winds and waves expected later in the day.

The long time required to deploy the RO-BOOM from the Sir Humphrey Gilbert led to the decision to deploy that boom from the second OSV, the Triumph Sea. Repairs were carried out on the OHMSETT boom cabling and the boom with Instrumentation, was functional by 5:00 p.m. on September 23.

Since the Terra Nova Sea had oil recovery tanks on board, it was decided to dispense with the dumb barge and to release the oil directly from that OSV.

Trial with Oil on September 24, 1987

The Triumph Sea and the Bernier sailed at 3:00 a.m. All other vessels sailed at 4:00 a.m., and everyone was on station by 6:45 a.m.. The Triumph Sea commenced deployment of the RO-BOOM enroute and by 7:30 a.m., the boom was ready to receive oil. Once the OHMSETT boom was deployed, at 8:15 a.m., the oil was pumped into the RO BOOM with supervision from the helicopter and a small boat.

All oil was in the boom by 9:00 a.m.

It was decided to give the news media a chance to view the test from the air and this was done from 9:00 a.m. to 10:00 a.m. During this period, the CCG cutters 212 and 214 attempted to pull the OHMSETT boom into proper position astern of the RO-BOOM and keep it there. Every attempt to move the boom, in a catenary, in the 15 knot winds blowing at the time resulted in the boom twisting. As a result the OHMSETT boom fell progressively further astern of the RO-BOOM.

At 10:30 a.m. the oil in the end of the pocket of the RO-BOOM was 30 cm thick, the wind was 15 knots, and some splash-over and significant drainage under the boom were occurring. The vessels, therefore, formed a "J" and released one end of the boom to allow the pil to flow into the OHMSETT boom. The OHMSETT boom was approximately 1 km astern, and the vessels were having trouble towing the boom in a catenary without the boom twisting. It was, therefore, decided to direct the cutters with the OHMSETT boom, to the oil, by helicopter, keeping the boom in a straight tow. After 20 minutes, the cutters were adjacent to the thick oil and, after a further 20 minutes approximately 80 percent of the thick oil was in the OHMSETT boom. The remaining 20 percent was contained in the Vikoma boom. Data collection on the OHMSETT boom started as soon as the oil was captured and continued for 56 minutes. The CCG cutters then stopped across the path of the vessels towing the Vikoma boom catenary, and one CCG cutter trailed the OHMSETT boom at the throat of the catenary allowing the waves to wash the oil into the Vikoma boom.

The CCG Grenfell and Terra Nova Sea towed the oil filled Vikoma boom for approximately 1 hour. During this time, the wind had freshened to 15 knots to 20 knots. The boom was moving at over 1.1 knots relative to the sea, and some oil was being lost (approximately 3 mm thick). The CCG Grenfell then attempted to move ahead to form the "J" for the skimmers. Not being very maneuverable, she quickly reached 3.4 knots and the oil was lost.

With the oil now lost, the weather abated slightly. The RO boom was still streaming astern of the Triumph Sea so it was decided that she and the Bernier would form the boom into a catenary and attempt to recover the oil downwind. The helicopter had been lost to the exercise for approximately 1 hour at this time. As soon as it returned, it was refueled and sent up to assist. In the interim a small boat was used to guide the tow vessels into the heaviest portions of the slick. When the helicopter was over the thick oil, it was apparent that the vessels with the RO-BOOM were adjacent to some of the oil and unable to see it. They were, therefore, directed from the air and small boat, and managed to collect 80 to 90 percent of the thick oil which was on the surface at the time.

Oil was successfully contained and recovery was attempted using the three skimmers on board the recovery-command vessel. The first skimmer, the Heavy Oil Skimmer (HOS), was deployed and no measurable recovery was observed. The oil used was modified by adding petroleum wax so that it would resemble a typical Grand Banks crude oil. This type of oil is uncharacteristic of most crudes in that it possesses low adhesive properties. Therefore, oleophilic skimmers, which depend upon the adhesive nature of the recovered oil, do not perform well with high parafin-based oils. This was again proven with the oleophilic HOS skimmer. The skimmer was recovered after several trained observers were satisfied that the HOS skimmer had had sufficient evaluation time in the contained slick. Problems with the ability of the support arms, used to suspend both the HOS and Framo skimmers, to adjust to the roll of the vessel and short period wave action resulted in both skimmers being frequently submerged so that oil and water were washed into the sump of the skimmer.

The second skinner the "Framo ACM-400" was deployed. The overall rate of oil recovery of the Framo was 60 gallons per minute with unknown amounts of the recovery resulting from frequent partial submergence.

At this point, it was decided by the On-scene Commander that the skimmer evaluation was complete. Additional measures were needed to ensure recovery of the remaining contained oil because the weather was deteriorating and night was falling. Accordingly, approximately 7 pounds of the visco-elastic agent "Elastol" were spread from an 8-ounce styrofoam coffee cup into the estimated 7,400 gallons of oil and oil water emulsion in the containment boom. Elastol was added because previous research funded by the Minerals Management Service and Environment Canada had shown that the elastic and adhesive properties of the oil could be increased by addition of the agent, thus making the oil more readily capturable with these types of skimmers. The Franc ACW-400 was retrieved from the slick as the "Elastol" was added and because of the operational constraints on the recovery operation, due to the weather and lateness of the day, the skimmer was not redeployed.

The weir-type skimmer, Pharos Marine GT-185, was deployed into the treated slick and recovered near capacity rates of 85 gallons per minute of oil and oil emulsion with no free water. This recovery rate was higher than anticipated and may have been even higher if the oil had been untreated. Treatment significantly increased the viscosity of the oil. The skimmer was removed from the slick, cleaned, and stored on board.

The HOS skimmer was redeployed and failed to function because of a piece of steel in the return pump. The skimmer was recovered, the steel piece removed, and then the skimmer was redeployed.

The HOS skimmer yielded a recovery rate of 50 gallons per minute with a portion of the oleophilic fabric on one of its two drums damaged. Debris was collected at this time in the ventury system used to measure recovery fluid flow rates. The debris may have contributed to the subsequent failure of the HOS skimmer return hose. No flow-rate measurements were taken before the failure. Visual observations on the amount of oil adhering to the oleophilic fabric of the HOS skimmer indicated that recovery rates were significantly increased by the addition of "Elastol."

Operations were suspended because of the advancing sea states and increasing darkness.

An overflight of the area, by helicopter, was carried out during the skimming operation. This revealed a sheen approximately 2.5 by 0.5 neutical miles with 3 patches of brown oil. It is estimated that no more than 260 gallons of oil remained in the thick patches. 'A further flight 18 hours later showed that only small brown patches and sheen remained, and this was rapidly dispersing.

Lessons Learned or Relearned

- o Thorough proficiency with the recovery equipment to be used is essential.
 - Routine practice is required.
- Large volumes of oil are necessary to realistically evaluate performance of offshore response equipment.
- The use of helicopters to direct the placement of tow vessels and the use of small vessels to monitor and advice on boom conditions are essential to maximize the efficiency of conventional recovery operations.
- o Accurate measurements of the meteorological and sea conditions are necessary for accurate analysis of the evaluations.
- The requirements for slow-speed towing and manuevering of large containment*booms necessitate the use of vessels with variable pitched propellers, thrusters, and good seamen in control.
- o. It was not possible to form a recovery configuration with two vessels while towing upwind. The third vessel was necessary for recovery in normal catenary.
- o The upper meteorological and sea state limits for downwind containment and recovery were not reached during this test.
- o Upwind collection proved impossible when winds approached 15 knots. This is consistent with many past observations for containment operations conducted upwind.
- o Steps should be taken to avoid loss of contained oil by shipboard discharges such as cooling water impinging upon the slick.
- o Tankage should be available for recovery of several times as much fluid as discharged to account for the oil and water emulsions and free water recovered.
- o Analysis of the correlation of the ability of a boom to seakeep with its ability to contain oil is continuing.

226 -

o Recovery of high wax oils similar to Newfoundland crudes in 10 degrees C water is significantly enhanced by the use of "Elastol."

<u>Disclaimer</u>

. -

Mention of specific products in this paper does not constitute or infer endorsement or acceptance by the Minerals Management Service, the Conservation and Protection, or the authors.

References

Ross, S. L., 1987a <u>Offshore Testing of Booms and Skinners</u>, S. L. Ross, Environmental Research Limited, Ottawa, Ontario.

Ross, S. L., 1987b-Test Protocol for <u>Offshore Boom Trials</u>, 3rd Draft, S. L. Ross, Environmental Research Limited, Ottawa, Ontario.

Attachment 12

....

.

. .

_

- ~

_

Toxicity and Soil Penetration

.

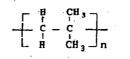
.

Polymer Research Laboratory, BASF Aktiengesellschaft, Ludwigshafen/Rhein, Federal Republic of Germany

Laboratory tests of ELASTOL^{T.M.} (Oil Spill Combat Agent)

H.M. Laun and R. Hingmann

I. Introduction


Fig.1: The powder

form of ELASTOLT.M. simplifies application.

ELASTOL^{T.M.*} was developed by GTA with the assistance of BASF. It is manufactured in the form of a white powder with particle sizes between 100 μ m and 1000 μ m (Fig.1).

in USA registered trademark of General Technology Applications (GTA) Inc., Manassas, Virginia; in other countries of Elastogram Polyurethane GmbH, a company of BASF group The powder contains about 50% by weight of Polyisobutylene (PIB) of extremely high molar mass ($M_W = 6 \cdot 10^6$ g/mol). PIB is a non-toxic polymer that only consists of carbon and hydrogen atoms. The chemical composition is

Fully extended the polymer chain would reach a length of about 17 μ m, Granules of polymeric material are coated with water-insoluble Ca₅(PO₄)₃OH salt in order to obtain an easily spreadable, nonagglomerating powder. Only the PIB-component is soluble in oil. When dissolved the macromolecules give rise to a distinct viscoelasticity as well as a drastic increase in the elongational viscosity of the solution even at PIB concentrations of only a few hundred ppm.

These properties make ELASTOL^{T.M.} a very interesting oil spill treating agent $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$. The performance of skimmers is improved, the resistance to spreading and break-up is greater, and the speed of collecting barriers can be increased.

In this work we report laboratory tests with $ELASTOL^{T.M.}$ applied to different oils at various concentrations. The intention is on one hand to give quantitative data on both the rheological properties of the $ELASTOL^{T.M.}$ treated oils and on the dissolving kinetics of the powder. On the other hand we try to illustrate the basic mechanisms that are responsible for the observed properties of the solution. These properties are mainly due to the stretching and orientation of the dissolved polymer chain. These are purely physical effects which work independently of possibly present chemically active additives.

In Table 1 the fractionated oils and crude oils used in this investigation are listed. n_0 is the zero shear rate viscosity of the oils at 25 °C.

<u>Table 1:</u> List of oils used in this investigation and their zero shear rate viscosities n_0 at 25 °C.

fractionated oils	n₀ [mÞá+s]
petroleum	1.42
fuel oil diesel oil (Columbia diesel)	3.65
spindle oil	7.0
transmission lubricant/petroleum 1/1 (mixture)	10.5
transformer oil	13.0
MARCOLT.M. 82 (Bxxon)	21.6
fine mechanics lubricant	34.3
vacuum pump oil	190
transmission lubricant	713

crude oils	n ₀ [mPa·s]
Quaibo	4.5
Arabmed	18.0
Venezolana/Quaibo 61/39 (mixture)	70.0

II. Rheological properties of ELASTOLT.M. oil solutions

÷

1. Dependence of the solution viscosity on the type of oil

The oils listed in Table 1 were treated with both 2 000 ppm and 10 000 ppm (0.2 and 1% by weight) $ELASTOL^{T.M.}$. The solutions were produced by rolling the powder-oil mixtures in closed glass bottles at about 120 rpm and 23 °C for a time period of 30 to 70 hours.

The viscosity of the resulting solutions was determined by means of a high precision Couette Rheometer (Contraves LS 30). This instrument can measure shear stresses ranging from about $3 \cdot 10^{-4}$ Pa to 4 Pa in a shear rate range between $3 \cdot 10^{-3}$ s⁻¹ and 100 s⁻¹.

In general the PIB solutions are non-Newtonian, viz. the viscosity of the fluid is dependent on the shear rate. In our measurements, therefore, shear rates small enough to get the constant viscosity n_s at the limit of small shear rates (zero shear rate viscosity) were used. The data are listed in Table 2.

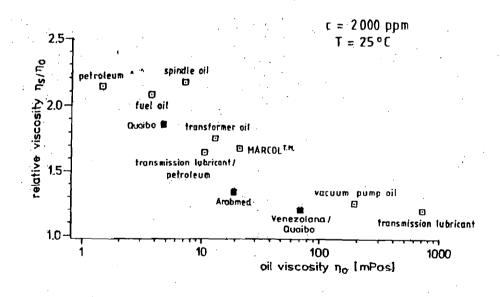
•		c = 2 00	00 ppm	c = 10 (c = 10 000 ppm	
oil	n ₀ [mPa•s]	ns [mPa∙s]	٩r	ns [mPa•s]	٩r	
petroleum	1.42	3.02	2.13	23.3	16.3	
fuel oil	3.65	7.54	2.07	52.3	14.3	
spindle oil	7.0	15.1	2.16	97.1	13.9	
transmission lubricant/				(I		
petroleum 1/1	10.45	17.1	1.64	83.4	7.9	
transformer oil	13.0	22.7	1.75	122.6	9.4	
MARCOLT.M. 82	21.6	36.1	1.67	178	8.2	
vacuum pump oil *	190	238.4	1.25	908	4.8	
transmission lubricant	713	845.6	1.19	1656	2.3	
Quaibo	4.6	8.5	1.85	46.2	10.0	
Arabmed Venezolana/	18.0	24.0	1.33	74.6	4.1	
Quaibo 61/39	70	83.7	1.20	241	3.4	

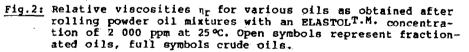
Table 2: Viscosity increase due to BLASTOL^{T.M.} (dissolved by rolling) in various oils for powder concentrations of 2 000 and 10 000 ppm. Viscosities were measured at 25 °C.

In the case of the most viscous oils (vacuum pump oil, transmission lubricant) and a powder concentration of 10 000 ppm the PIB could not entirely be dissolved even after a rolling time of > 70 h. For these two samples the n_S -values only represent lower limits of the viscosity of a homogeneous solution.

_

~


The relative viscosities nr


٦r

ns/ no

also listed in Table 2 are the ratios of solution viscosity and oil viscosity. $n_{\rm T}$ increases with increasing powder concentration. It is also seen that the relative viscosity increase due to BLASTOL^{T.M.} becomes smaller with increasing viscosity of the oil. For 1% concentration we get a relative viscosity of 16.3 for petroleum, compared to 4.8 for vacuum pump oil.

In Figure 2 and Figure 3 the relative viscosities are plotted versus the logarithm of the oil viscosity for 2 000 ppm and 10 000 ppm powder, respectively. It is interesting to note that for the

(1)

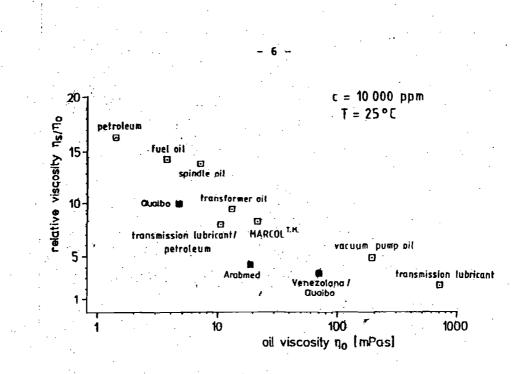
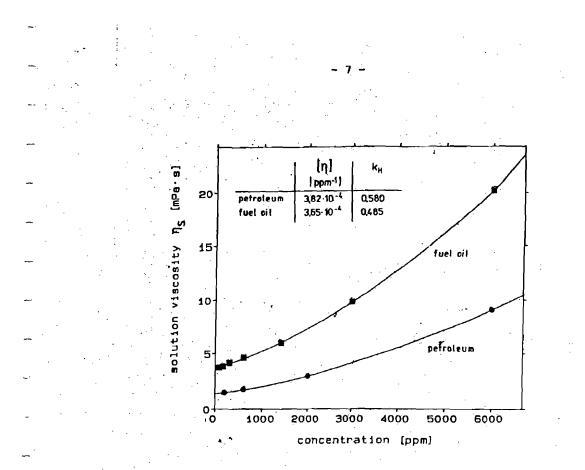
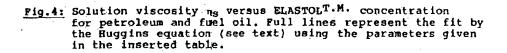


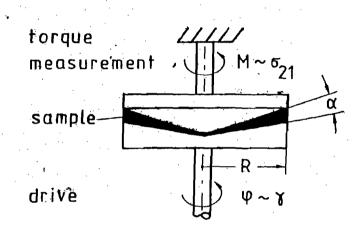
Fig.3: Same as Fig.1 for an ELASTOLT.M. concentration of 10 000 ppm.

1/1 mixture of petroleum and transmission lubricant as well as for the trude oils, the relative viscosities are significantly smaller compared to fractionated oils of similar viscosity. A possible explanation for the observed effect might be the reduction of the coil extension in the oil mixtures due to changes in the average polymer-solvent interaction.


2. Dependence of solution viscosity on powder concentration


Zero shear rate viscosities n_B were measured on solutions in petroleum and fuel oil at various concentrations. For this purpose base solutions having 6 000 ppm ELASTOL^{T.M.} were prepared and subsequently diluted by adding solvent. The resulting data are shown in Figure 4.

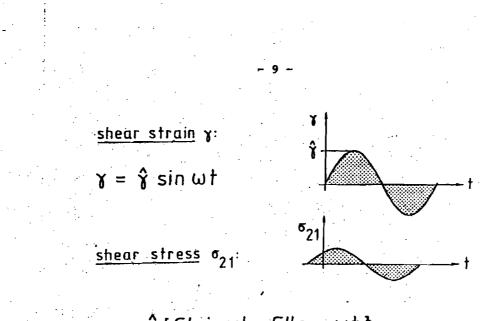
.

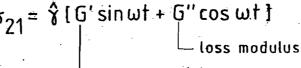

The viscosity of the solutions increases stronger than proportional to the powder concentration in the range tested. The experimental results are nicely described by a polynomial of order 2 (full lines) as proposed by Huggins [2]:

$$n_{\rm s} = n_0 \left(1 + [n]c + k_{\rm H} [n]^2 c^2\right)$$
, (2)

[n] being the intrinsic viscosity and $k_{\rm H}$ the Huggins constant. The values determined by a best fit to the data points are given in the diagram.

3. Viscoelasticity of ELASTOL^{T.M.} solutions


The solutions were submitted to small amplitude oscillatory shear in a rotational rheometer using bi-cone geometry. The apparatus is schematically depicted in Figure 5. A gap angle of $\alpha = 3.8 \circ$ and angular frequencies $\omega = 2\pi f$ (f frequency of the oscillation) in the range of 0.2 to 18 s⁻¹ were used. The shear amplitude was $\hat{\gamma} = 0.5$.



 $\frac{\texttt{fig.5:}}{\texttt{amplitude oscillatory shear.}} Schematic drawing of the bi-cone geometry used for small}$

The resulting shear stress σ_{21} is oscillating at the same frequency but is phase shifted compared to the shear strain γ [3] (see Fig.6). It can be decomposed into Sine and Cosine components by means of a frequency response analyzer.

The direct output of the measurements are the storage modulus G' and the loss modulus G" as functions of the angular frequency ω . In our experiments the contribution of inertia forces to G' has been corrected for analytically.

--storage modulus

Fig.6: Decomposition of the phase shifted oscillating shear stress into two components yields the storage modulus G' and the loss modulus G".

In general the response of solutions to oscillatory shear can be described by an elastic spring G' and a dashpot $n = G'/\omega$ arranged in parallel [3] (Fig.7). A purely viscous fluid of viscosity n can be represented by the dashpot alone and the shear stress is proportional to the shear rate $\dot{\gamma}$ which yields a phase shift of 90 degrees between stress and strain. The dissipated energy per cycle is proportional to the loss modulus G". An elastic material (e.g. ideal rubber) can be represented by the spring. Here the stress is proportional to the strain (no phase shift). The storage modulus G' represents the spring constant and is proportional to the stored energy per cycle. A viscoelastic material has both components. The quantity G'/G" is equal to the ratio of stored and dissipated energy.

-

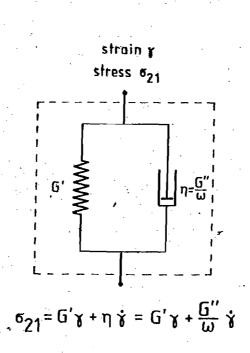
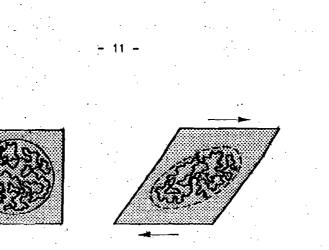



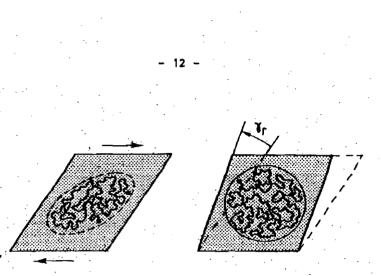
Fig.7: Representation of the response a viscoelastic fluid to oscillatory shear by a spring and dashpot arranged in parallel (G' and G" are frequency dependent).

The behaviour of long polymer chains dissolved in a viscous fluid (PIB macromolecules dissolved in oil in our case) can be understood as follows: at rest the molecules have a random coil like equilibrium conformation (left side of fig.8). In a flow field the random coils immobilize part of the solvent giving rise to the observed viscosity increase with increasing polymer concentration.

If the equilibrium coil conformation remains undisturbed the solution would behave in a purely viscous manner.

at rest

during shear flow


<u>Fig.8:</u> Equilibrium conformation (random coil) at rest and deformed state during flow of a macromolecule in solution (schematic).

In reality, during flow the molecule attains an ellipsoidal conformation (right side of Fig.8) and will partially be oriented parallel to the direction of flow. This deformation of the coil, however, is reversible. When the flow is stopped the molecule will re-establish its equilibrium conformation. This process takes some time and is governed by a characteristic retardation time τ . An estimate for the characteristic time is possible based on the moduli G⁴ and G⁴:

$$\tau = G'/\omega G''$$

(3)

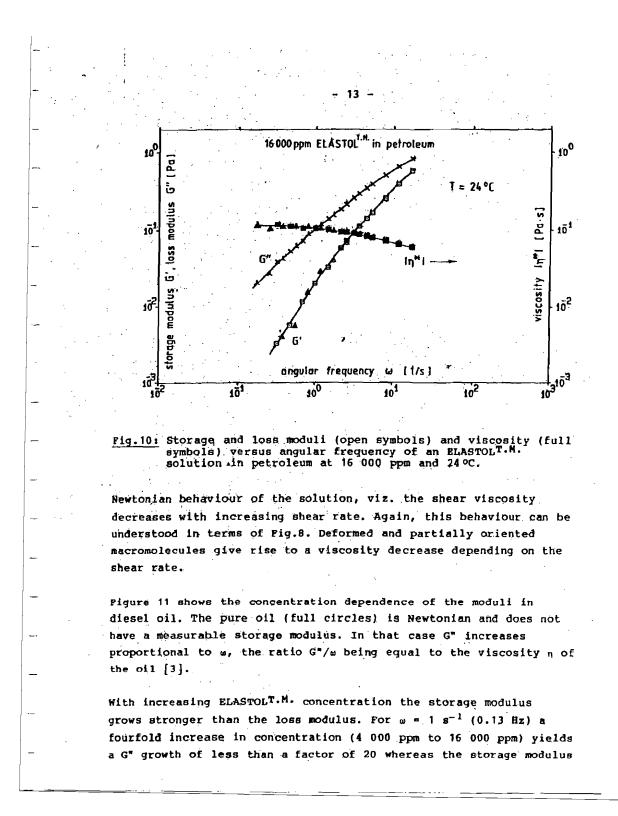
It must also be mentioned that, if the solution is not kept under shape constraint after removal of the shear deformation, the re-attainment of the equilibrium random coil conformation will result in a reversed shear of the sample (Fig.9). The total recoverable strain $\gamma_{\rm T}$, although difficult to measure on dilute solutions, may also be used as a direct measure of the elasticity of the sample besides the ratio G'/G".

during shear flow

after unloading

Fig.9: Recoverable shear strain of a viscoelastic solution after unloading due to the desorientation of deformed molecules.

Coming back to our measurements of the moduli G' and G" it is important to note that small amplitude oscillatory shear measures the viscoelasticity of the solution at small deviations from the equilibrium (coil-like) conformation of the dissolved PIB molecules.

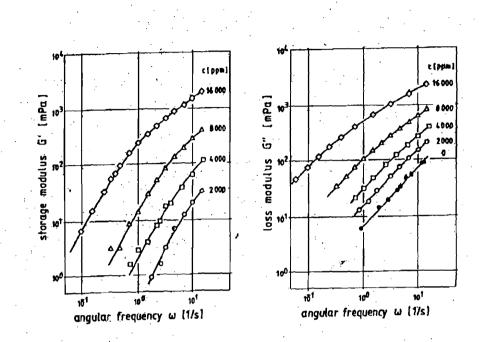

As an example Figure 10 shows the measured dynamic moduli of a 16 000 ppm solution of ELASTOL^{T.M.} in petroleum. The pronounced viscoelasticity of the solution is evident from the fact that besides the loss modulus a distinct storage modulus can be measured. The ratio G^{*}/G^{*} increases with growing angular frequency.

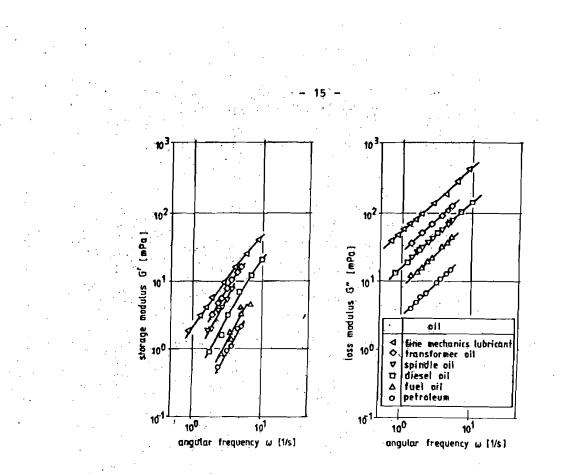
the viscosity $|n^*|$ represented by the full symbols is calculated from the moduli according to

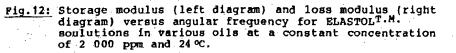
 $|n^{\star}| = \frac{1}{m} \sqrt{G^{*2} + G^{*2'}}$

(4)

This quantity is very close to the value of the viscosity in steady shear flow if ω is equal to the shear rate [4]. Thus, the decrease of $|n^{*}(\omega)|$ with increasing angular frequency reflects the non-




Fig.11: Storage modulus (left diagram) and loss modulus (right diagram) versus angular frequency of ELASTOLT.H. solutions in diesel oil at various concentrations and 24 °C. The pure oil does not have a measurable storage modulus.


increases approximately 100-fold. As a result, the ratio G^{\dagger}/G^{\ast} at a given frequency (cf. Table 3), taken as a quantitative measure of the viscoelasticity, increases considerably. It is also seen that in the same sequence the increase of G^{*} is less than proportional to ω .

A comparison of the dynamic moduli for a constant ELASTOLT.M. concentration of 2 000 ppm in various oils of different viscosities is shown in Figure 12.

Table 3 gives a compilation of the moduli measured on various solutions. Here, the G' and G" are compared at a constant angular frequency of $\omega = 1.26 \text{ s}^{-1}$ (f = 0.2 Hz) and 24 °C. Besides the

viscosity $|n^{*}|$ (Equ. (4)) and the ratio G'/G" this table also gives the characteristic relaxation time τ (Equ. (3)). For each oil both G'/G" and τ increase with growing concentration. The most pronounced changes are observed in the characteristic time.

	c [ppm]	G" [mPa]	G' [mPa]	[n*] [mPa·s]	G'/G*	t [ms]
petroleum ./. ./.	8 00 16 00		1.6 25.6	1.3 18 102	0,07 0.21	- 55 140
fuel oil ./. ./.	4 000		- 0.35 1.1	3.8 8.8 19	0.03 0.05	/23 36
diesel oil ./. ./. ./. ./.	2 000 4 000 8 000 16 000	20 39 125	- 0.4 3.2 21.6 290	16 31 105 523	- 0,02 0.08 0.17 0.49	~ 16 65 137 390
<pre>spindle oil ./. ./. ./. ./.</pre>	2 000 4 000 8 000	18 33	- 0.65 2.1 12.6	7.1 14 26 68	- 9.04 0.06 0.15	- 29 51 118
transformer oli . ./.	2 000	1	- 2.3	13 27	0.07	- 54
fine mechanics lubricant ./.	2 000		3.0	33 53	0.04	35

.

<u>Table 3:</u> Dynamic moduli and viscoelastic properties of various solutions measured at $w = 1.26 \text{ s}^{-1}$ by means of small amplitude oscillatory shear.

.

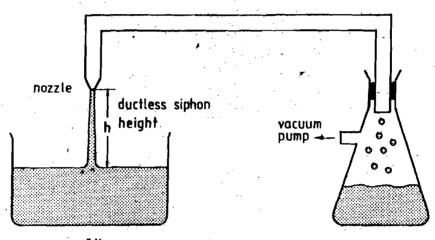
16 -

:

. .

.

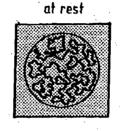
....


•

-

4. Drawability (elongational viscosity) of ELASTOL^{T.M.} solutions One of the most striking effects of ELASTOL^{T.M.} dissolved in oil is the dramatic increase in resistance to elongational flows. When the solution is stretched the PIB molecules are oriented which yields an elongational viscosity greater than three times the shear viscosity [5]. This behaviour is best demonstrated in the ductless siphon test [6] (Fig.13).

ELAS TOL^{T.M.} solution


<u>Fig.13:</u> Schematic drawing of the ductless siphon test method. The ductless siphon height is gradually increased until break of the filament at h_{max} .

A pipe being connected to a vacuum pump carries a nozzle at its other end. The solution is contained in a beaker. When the nozzle is brought into contact with the meniscus of the solution the latter is sucked out of the beaker. The distance h between nozzle and solution meniscus is increased either by slowly lowering the container position or just due to the decreasing meniscus height for a fixed beaker position. The solution will still flow upward until at a maximum ductless siphon height h_{max} the filament breaks. For an untreated oil, in general, the maximum ductless siphon height will be in the order of 1 mm. With BLASTOL^{T.M.} h_{max} is much greater and may reach values of half a meter or more. This behaviour is of tremendous importance for the performance of collecting devices used for oil spill combat.

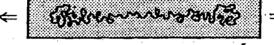

A photograph of the spinline in the ductless siphon test is shown in Fig.14 for a 4 000 ppm solution in fine mechanics lubricant (with red dye) and a nozzle diameter of 1 mm. The distance between the nozzle and the solution meniscus was 20 cm.

Fig.14: Ductless siphon test on a 4 000 ppm solution in fine mechanics lubricant. Nozzle diameter 1 mm.

during elongational flow

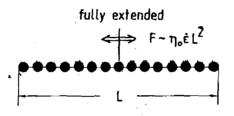


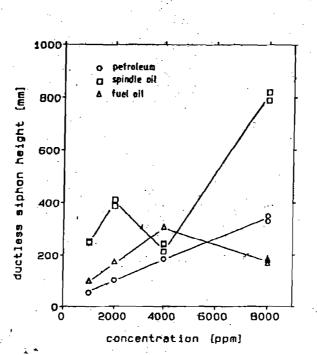
Fig.15: Stretching of the polymer chain when the solution is subjected to an elongational flow field (schematic).

The physical reason for the high elongational viscosity is schematically depicted in Fig.15. At rest the molecule has a coil like conformation, but in an extensional flow field, the molecule is stretched. The degree of stretching is dependent on the rate of strain of the solution and the duration of extensional flow. The sum of friction forces due to the surrounding solvent molecules has an opposite sign on both sides of the center of mass. Therefore, the extensional forces acting on the molecule are maximal in the middle of the chain and the orientation of chain segments parallel to the direction of strain is most pronounced in that region.

For the extreme case of a fully extended chain (bottom diagram in Fig.15) it is easy to show that the force F acting in the center of the molecule is proportional to the chain length L, the solvent viscosity n_{0} , and the strain rate i [7]. The force F may even become higher than the chemical bond of the backbone. Under that condition the molecule will break [7].

20 -

It is obvious that in the case of long molecules the resistance to elongational flow is mainly governed by the force F that can be transmitted by each single molecule from one volume element to another and the concentration of dissolved macromolecules. In summary, we expect the elongational viscosity μ [5] of the solution


(5)

elongational viscosity $\mu = \frac{\text{tensile force/cross section}}{\text{extension rate}}$

to increase with strain rate, solvent viscosity, and polymer concentration.,

It should also be noted here that the stretched molecules store energy since the orientation process is fully reversible (chain rupture excluded). When the strain rate is set to zero the deformation of the molecule will decay with time until the coil conformation is re-established. Without shape constraint this process will cause a shrinkage (recoverable strain) of an elongated solution filament.

The measured ductless siphon heights h_{max} of petroleum, fuel oil, and spindle oil versus ELASTOL^{T.N.} concentration are plotted in Figure 16. We observe a monotone increase of h_{max} with increasing powder concentration in petroleum. For fuel oil and spindle oil, however, h_{max} goes through a reproducible minimum. It appears that the concentration corresponding to the filament length minimum is shifted to smaller values when the oil viscosity is increased. Most probably this effect is not caused by a minimum in the true resistance of the filament to stretching but by problems in the nozzle flow due to the shear viscosity which increases with concentration.

Fig.16: Maximum ductless siphon heights at room temperature for three oils versus ELASTOL^T.^H. concentration (nozzle diameter 1 mm).

Thus, for a direct comparison of the effect of $ELASTOL^{T.M}$. on the drawability in various oil solutions one should restrict the measurements to concentrations below the minimum. In that range the behaviour may be approximated by the power law

$h_{max} = K_{DS} c^{\alpha}$,

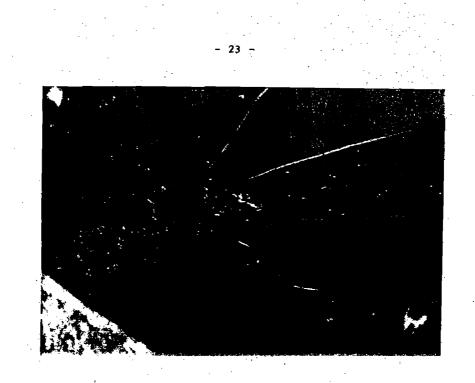
(6)

the exponent α having values in the range of 0.75 to 0.95.

- 21 -

oil	۳ ₀ [mPa•s]	h _{max} [mm]
petroleum	1.42	109
fuel oil	3.8	1.87
spindle oil	7.0	380
transformer oil	13.0	471
fine mechanics lubricant	34.3	805
petroleum + SEPAROLT.N. AP 27		99

<u>Table 4:</u> Ductless siphon heights h_{max} at filament break for various oils and at an BLASTOL^{T.M.} concentration of 2 000 ppm.


Table 4 gives a compilation of the measured h_{max} values in various oils for a constant ELASTOL^{T.H.} concentration of 2 000 ppm. The maximum ductless siphon height strongly increases with increasing oil viscosity. Therefore, the higher the oil viscosity, the lower the concentration of ELASTOL^{T.M.} required to obtain a given value of h_{max} .

As already mentioned, the drawability of ELASTOL^{T.M.} solutions is an exclusively physical phenomenon. The application of chemical additives (for instance emulsion breakers) should have no influence on the ductless siphon heights. This was experimentally verified for petro-leum treated with 2 000 ppm ELASTOL^{T.M.} and 100 ppm SEPAROL^{T.M.*} AF 27 (emulsion breaker). The same value of h_{max} as given in Table 4 for the pure petroleum was observed.

The drawability increase due to ELASTOL^{T.M.} is of great advantage in collecting oil floating on a water surface by means of a vacuum skimmer. A field test with crude oil from ERM (= refinery Mannheim) spread on water in a training basin gave the following results: In the case of untreated oil 90% water and only 10% oil were collected. After the application of 6 000 ppm ELASTOL^{T.M.} powder 95% oil and only 5% water were collected [8]. Fig.17 shows that the oil film is pulled from the water surface without rupture and can easily be sucked by the vacuum skimmer over a distance of about 15 cm.

* registered trademark of BASF Aktiengesellschaft

- 22 -

<u>Fig.17:</u> Example of the improved performance of a vacuum skimmer in collecting crude oil (ERM) from a water surface [B].

5. Consequences of $ELASTOL^{T.M.}$ on droplet formation

Fig.18 shows schematically the break up of an oil droplet into two smaller droplets due to an elongational flow field. Once a neck is formed the neck is elongated until break of the strap. The formation of smaller droplets continues until the rheological forces can no longer overcome the stabilizing effect of the interfacional tension.

With dissolved macromolecules, however, it is possible to prevent the formation of very small droplets [6]. Here, the limiting drop size is governed by the resistance of the strap to stretching. When the elongational viscosity in the neck is increased the break up process will come to an end at a bigger droplet size.

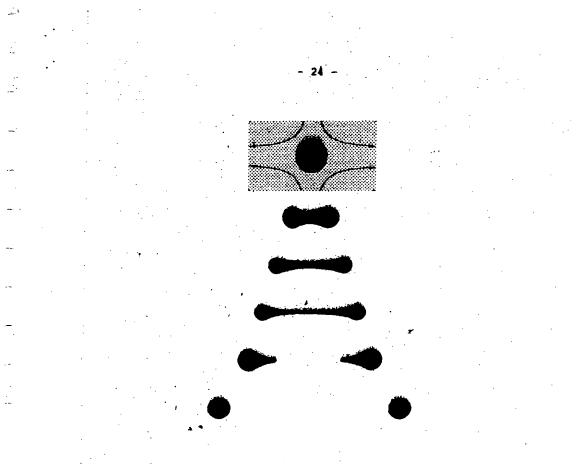


Fig.18: Pormation of smaller droplets in an elongational flow field (schematic).

...

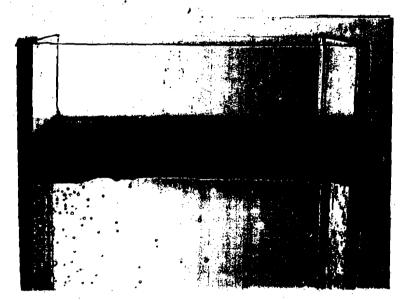
1.

•---

The consequence for oil/water mixtures is demonstrated by Fig.19. Two glass bottles were partially filled with water. In the right bottle pure Heizől was used whereas in the left bottle the oil was treated with 10 000 ppm ELASTOL^{T.M.}. The closed bottles were shaked by hand for a given time period. After a settling time of about 10 seconds we observe in the right bottle a milky emulsion of very small oil droplets in water. The water and oil phases are hardly separated. In the case of the ELASTOL^{T.M.} treated oil (right) we get a coarse emulsion by shaking. The separation of water and oil is nearly complete after 10 seconds. - 25 -

Fig.19: Diesel oil/water mixtures after shaking and a settling time of 10 seconds. Pure oil (right), oil treated with 10 000 ppm ELASTOL^{T.M.} (left).

,

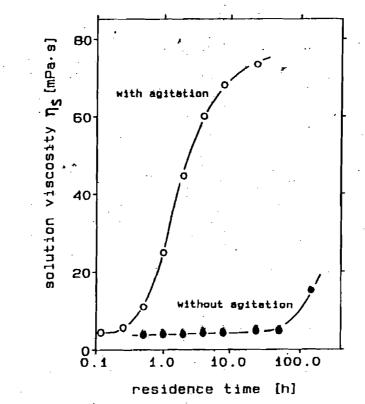

.

_

III, Dissolving behaviour of ELASTOLT.M. powder

a) General behaviour

The efficiency of ELASTOL^{T.M.} in treating oil spills is strongly dependent on the dissolving speed of the powder after being spread onto oil layers floating on water. To simulate this situation of a laboratory scale a beaker of 150 mm diameter was partially filled with water. Oil was layered onto the water surface to a thickness of 5 mm. ELASTOL^{T.M.} powder corresponding to 10 000 ppm of the weight of oil was "homogeneously" spread on the oil layer.



<u>Fig.20:</u> Side view of an oil layer floating on water. ELASTOL^{T.M.} was spread on top of the oil and sedimented to the oil/water interface from where it dissolves.

After application, the powder rapidly sedimented to the water/oil interface (Fig.20). From there, the PIB component gradually dissolved in the oil phase, whereas the water-insoluble salt remained in particulate form at the interface. As a measure of the effective solution concentration we determined the oil solution viscosity as a function of time. For this purpose small samples were withdrawn at different time intervals using a syringe. Precautions were taken not to collect undissolved PIB.

b) Solution viscosity with and without agitation

Figure 21 shows the solution viscosity versus logarithmic time as measured for fuel oil at a powder concentration of 10 000 ppm. In a first test series depicted by full circles the dissolving of ELASTOL^{T.44}.

<u>Fig.21:</u> Relative solution viscosities of fuel oil layers (5 mm thickness) floating on top of water versus time elapsed after application of ELASTOLT.M. by spraying (concentration 10 000 ppm related to the total weight of oil) with (open circles) and without (full circles) gentle stirring.

· 27 ·

took place without any agitation. Obviously, in that case a significant increase of the solution viscosity is only observed at times greater than 100 hours.

In a second series of tests a gentle agitation was attained by stirring. A schematic drawing of the arrangement is shown in Figure 22. The rotary speed of the stirrer was 0.5 revolutions per second. As can be seen from Fig.21 the gentle agitation drastically increases the speed of dissolving (open circles). A significant increase in the oil solution viscosity was observed after only 0.5 hours.

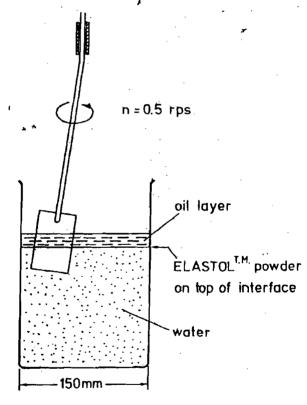


Fig.22: Experimental arrangement for the dissolving tests with stirring.

- 28 -

Similar dissolving tests with stirring were performed with various oils. The relative solution viscosities $n_{\rm T}$ (solution viscosity related to the oil viscosity) versus the oil viscosity $n_{\rm B}$ are plotted in Figure 23. The data obtained by this method are more complex to interpret than those obtained by rolling (cf. Figs. 2 and 3). This is because partial evaporation of the oil has to be taken into account which is different for the various solvents. This explains why viscosities from the stirring experiment may be higher than those for solutions prepared by rolling in closed glass bottles.

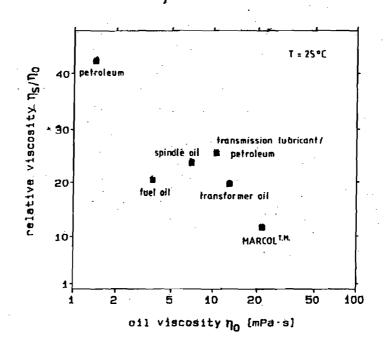
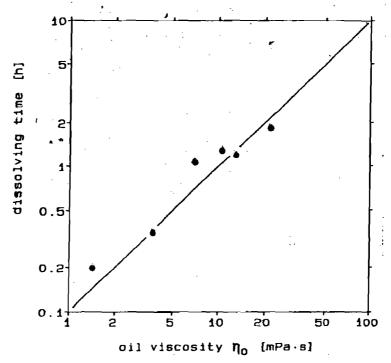



Fig.23: Relative viscosities of the various oil layers measured at the end of a 24 h stirring period. The initial powder concentration was 10 000 ppm related to the total weight of the oil on water.

- 29 -

c) Comparison of dissolving speeds

By comparing the viscosities determined for solutions prepared by rolling and the results obtained in the dissolving tests with gentle stirring (neglecting the influence of partial evaporation) we can evaluate the time necessary to dissolve an effective concentration of 2 000 ppm BLASTOL^{T.M.} out of a total powder concentration of 10 000 ppm. The necessary times are plotted in Figure 24 as a function of the oil viscosities n_0 (double-log representation). The increasing dissolving time is approximately proportional to the oil viscosity.

<u>Fig.24:</u> Dissolving time for 2 000 ppm ELASTOL^{T.M.} out of an initial powder concentration of 10 000 ppm versus oil viscosity. The effect of partial evaporation during stirring is neglected here.

30

The data in Fig.24 can at least approximately be generalized to estimate the effect of temperature on the dissolving time. For instance, if the viscosity of the oil increases by a factor x when the temperature is lowered by ΔT compared to room temperature, the necessary dissolving time of the powder will be longer by the same factor x.

d) Dissolving speeds at various concentrations

The effect of powder concentration on the speed of dissolving is demonstrated in Table 5 for petroleum. ELASTOL^{T.M.}-concentrations of 10 000 ppm (as in Fig.24) and of 4 000 ppm were used. It is clearly seen that the necessary time to dissolve 20% of the initial powder is significantly shorter for the smaller-concentration (11.8 and 8.4 min, respectively). This means that the dissolving times given in Fig.24 for 10 000 ppm powder cannot be generalized for other concentrations. However, since for practical applications the ELASTOL^{T.M.} concentrations will presumably be lower, we can regard the data of Fig.24 to represent an upper limit of dissolving times for the relatively weak kind of agitation used in our tests.

<u>Table 5:</u> Comparison of dissolving times for two different ELASTOL^{T.M.} concentrations in petroleum (evaporation neglected) with stirring as in Fig.22.

powder concentration [ppm]	dissolved fraction [ppm]	necessäry dissolving time [min]	solution viscosity [mPa+s]
4 000	800	8.4*	1.93
4 000	4 000	39	5.51
10 000	800	6.0	1.93
10 000	2 000	11.8*	2.99
10 000	10 000	78	18.9

* 20%-values

. 11 ...

Another result that can be deduced from Table 5 concernes the dissolving time for a given absolute concentration of the solution, e.g. 800 ppm. Whereas for 4 000 ppm applied powder a dissolving time of 8.4 min is necessary the same concentration will be achieved within only 6.0 min if 10 000 ppm of powder are spread onto the oil layer. This result is not at all surprising but has to be kept in mind for practical applications.

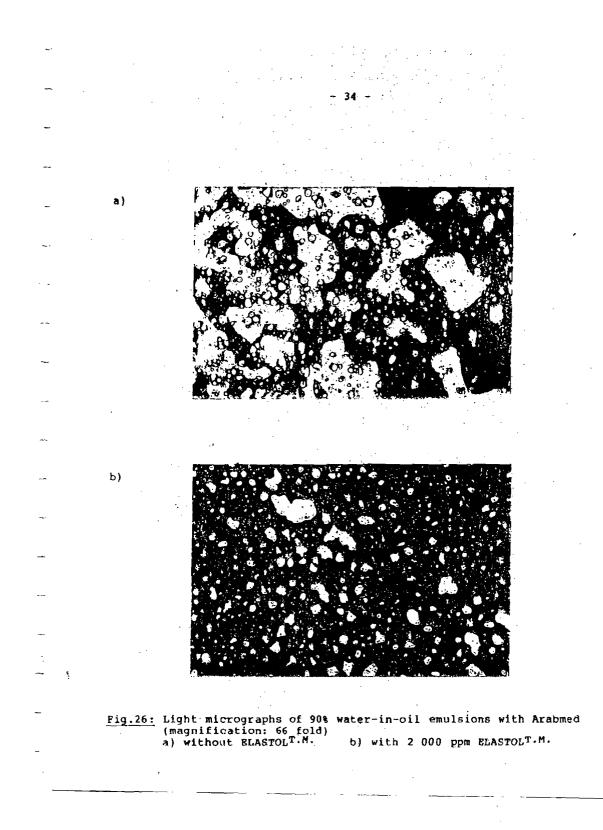
IV. Water/crude oil emulsions

The formation of extremely stable water-in-crude oil emulsions, often called "chocolate mousse", is a major problem in combatting oil spills at sea. These emulsions are highly viscous and their water content can be as high as 90%. They are difficult to collect and even more difficult to dispose of. According to Bredie et al. [9] the formation of these mousses depends on the presence of both wax and espalthenes in the crude oil. These authors suggest that wax/asphaltene crystals may stabilize small water droplets in the oil, leading to a dramatic increase in viscosity.

In order to produce "chocolate mousse" on a laboratory scale we performed experiments with various water-in-oil mixtures. In one series of tests different oil-water mixtures were treated with a shaker ("red devil") in closed bottles for 15 min. As expected the formation of a stable emulsion could not be observed for dewaxed and deasphaltenized oils like transformer oil or MARCOL^{T.M.} 82. After a settling time of several minutes the water and oil phases separated. For the crude oils listed in Table 2, however, stable water-in-oil emulsions were easily produced by shaking. Even after a settling period of 24 hours no phase separation was observed.

_

32


The most stable "mousse" could be produced with Arabmed ($\eta_0 =$ 18 mPa·s) for which a sudden rise in viscosity of the emulaion was observed with increasing water content. For a 70% water-in-oil emul-sion a viscosity of 20 mPa·s was measured, whereas for 80% (90%) water content 6.1 (8.1) Pa·s were observed.

33 -

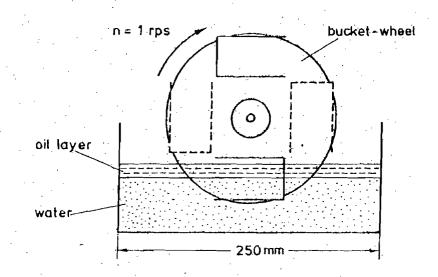
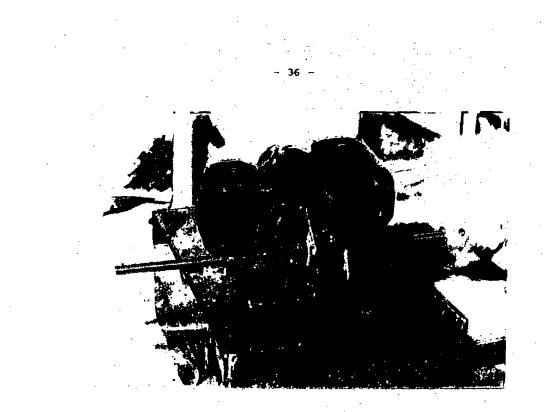

When the same experiments were repeated on Arabmed treated with 2 000 ppm ELASTOL^{T.M.} the sudden rise in viscosity in going from 70% to 80% water content was reduced by at least a factor of 4. For both 80% and 90% water content viscosities of about 1.5 Pa·s were measured indicating that ELASTOL^{T.M.} improves the pumpability of "chocolate mousse".

Fig.25: Stiff "chocolate mousse" obtained by shaking Arabmed with 90% water for 15 min in the red devil (right). Crude oil treated with 2 000 ppm $\text{BLASTOL}^{T_*M_*}$ (left).

Pig.25 demonstrates that without ELASTOL^{T.M.} a stiff and stable emulsion with yield stress forms. When treated with ELASTOL^{T.M.}, however, the Arabmed/water mixture was fluid even at very low shear stresses and had to be kept in a container. Also a tendency to phase



Microscopic analysis of emulsions produced from Arabmed and 90% water was carried out (Fig.26). Panel (a) shows the "chocolate mousse" formed with untreated Arabmed whereas Panel (b) demonstrates the effect of inclusion of 2 000 ppm ELASTOL^{T.M.}. Both pictures illustrate the water-in-oil character of this emulsion, but for ELASTOL^{T.M.} treated Arabmed the size of the water droplets is significantly smaller.

<u>Fig.27:</u> Experimental arrangement for the formation of "chocolate mousses" from crude oil layers floating on water.

In order to simulate the formation of "chocolate mousse" from crude oil layers floating on water more realistically, the apparatus schematically depicted in Fig.27 was used. Here the fluid was repeatedly picked up by a bucket-wheel and subsequently poured out onto the surface. In this arrangement the formation of stable emulsions was observed after stirring for less than 4 hours. After 4 hours the "chocolate mousse" formed with untreated Arabmed had a viscosity of 2 Pa.s.

Fig.28: "Chocolate mousse" obtained with Arabmed in the bucket-wheel arrangement.

In addition, the bucket-wheel arrangement clearly shows the influence of evaporation. In Table 6 the emulsion viscosities measured after various stirring and evaporation periods are listed.

<u>Table 6:</u> Viscosities for "chocolate mousse" formed with Arabmed in the bucket-wheel arrangement (shear rate 2 s^{-1}).

stirring time [h]	residence time [h]	n ₀ [Pa·s] untreated crude oil	$\begin{array}{c} n_{\theta} [Pa \cdot s] \\ \text{with 2 000 ppm} \\ \text{ELASTOLT.M.} \end{array}$
4	4	2.0	1.4
8	32	7.8	2.0
12	100	12.2	2.7
16	104	5.4*	

* Addition of 2 000 ppm ELASTOLT.M. to the "chocolate mousse" obtained from untreated Arabmed after 100 hours .

~ -- .- .

Stirring intervals of 4 hours and various rest periods have been applied. The first column gives the total stirring time and the second column the total residence time of Arabmed in the bucketwheel test. For the untreated crude oil the first stirring interval yields a "chocolate mousse" of 2 Pa·s. With increasing residence time due to evaporation the "mousse" viscosity increased up to 12.2 Pa·s (100 h).

When 2 000 ppm ELASTOL^{T.M.} powder were spread on the mousse a drop in the emulsion viscosity to 5.4 Pa·s was observed after another stirring period of 4 hours (last line in Table 6). This means that the pumpability of the emulsion is improved and the advantage of elasticity is obtained by application of ELASTOL^{T.M.} even after the formation of a stiff "mousse". When ELASTOL^{T.M.} was spread on the oil layer at the beginning of the test, viz. before the formation of a "chocolate mousse", the effect of viscosity reduction was even more pronounced (fourth column).

Acknowledgement

The authors are indepted to W. Reuther, J. Steidel and Ch. Kaduk for performing the measurements and to M. Reuther for the support in preparing the diagrams.

November 1987

Appenaix

Results on BLASTOLT.M. treated oils abtained by other authors

a) Environmental Emergencies Technology Division, Ottawa

In an extensive study Bobra and Pingas et al. [10] investigated the effect of $ELASTOL^{T.N.}$ on eight different crude oils as well as diesel in both small scale laboratory experiments and large tank tests with and without waves.

In order to measure the elastic properties of ELASTOL^{T.M.}/oil solutions these investigators made use of the die swell phenomenon: The diameter of a viscoelastic fluid extruded through a small capillary is greater than the die diameter, depending on the degree of elasticity of the solution. A distinct die swell was observed for ELASTOL^{T.M.}/oil solutions. The effect increased with increasing mixing energy, powder concentration, and tempgrature.

BLASTOL^{T.M.} had no effect on flash point and evaporation data.

It could be shown that the spreading of oil slicks on calm water is reduced by addition of larger amounts of ELASTOL^{T.M.} (> 5 000 ppm). The reduction depends on the quantity of ELASTOL^{T.M.} actually dissolved in the oil. In the case of Alberta Sweet Mixed Blend (ASMB) crude oil with $n_0 = 9.2$ mPa·s and a powder concentration of 6 000 ppm the spreading was reduced to 1/3 of the value without ELASTOL^{T.M.}

Concerning the formation of water-in-crude oil emulsions it is reported that ELASTOL^{T.M.} has only a weak influence on the emulsion formation tendency, but the water content of the "chocolate mousse" is reduced considerably. For instance, 1 litre "Emulsifying Mix" (= ASMB/Bunker C 1:1) forms 10 litres of stable emulsion; after addition of 6 000 ppm ELASTOL^{T.M.} only 4.3 litres are produced. This behaviour is to some extent still valid when ELASTOL^{T.M.} is added after the emulsification process. In small scale wave generating tank tests (35 litres content) it was found that $ELASTOL^{T.H.}$ treated oils have a lower fraction dispersed in the water phase than untreated oils. Furthermore, for most of the oils the water content of $ELASTOL^{T.H.}$ treated emulsions was significantly reduced (on average 65% less for 6 000 ppm). At the same time the increase in viscosity due to emulsification was strongly suppressed by $ELASTOL^{T.H.}$.

The authors report that the effect of $ELASTOL^{T \cdot M}$. on viscoelasticity in the presence of salt water was only slightly smaller than with fresh water.

The application of a dispersant and ELASTOLT.M. at the same time reduced the dispersant effectivity by 70%, however, the amount of dissolved oil was still by a factor of 1 000 higher than without dispersant.

 $ELASTOL^{T,M}$. did not negatively affect the efficiency of an emulsion inhibitor applied at the same time.

Large scale thank tests with waves (75 1 Norman Wells crude oil) showed that the dissolving speed of the ELASTOL^{T.M.} powder is increased with growing wave height (mixing energy). Furthermore, is was observed that in the case of waves the powder may be spread in a random manner without disadvantages for the dissolving speed and the homogenity of the final solution.

An oil spill of 75 1 kept in booms (waves height 10 cm) could nearly completely (70 1) be recovered by a Morris MI-2C skimmer after the addition of 6 700 ppm ELASTOL^{T.M.}.

The positive results of further tests with ELASTOL^{T.M.} performed off-shore by M. Fingas (Environment Canada) will be published in the near future.

b) Berlin Model Basin, VWS Berlin

At the Versuchsanstalt für Wasserbau und Schiffbau (VWS) H.O. Oebius [11] performed containment tests in a 60 m long and 2.5 m wide basin. An amount of 5 l of oil was placed on one side of a boom which could be moved by a towing carriage at variable speeds. The quantity of interest was the boom velocity at which the first droplets appear on the backside of the boom (drainage failure).

In the case of calm water a concentration of only 1 000 ppm $ELASTOL^{T,N}$ was sufficient to increase the critical velocity from 0.24 m/s to 0.48 m/s for an oil of $n_0 = 22$ mPa-s viscosity (MACROL^{T-N} 82). For an oil of higher viscosity (PRIMOL^{T-N}, 352, $n_0 = 713$ mPa-s) the increase was not so pronounced, an effect which most probably is due to incomplete dissolving of the ELASTOL^{T.M.} powder at the applied mixing time of 1 h.

With waves of wave length 1.5 m and 0.13 m wave height a critical boom velocity of about 0.30 m/s was measured on MARCOL^{T.M.} 82. The application of 1 000 ppm and 3 000 ppm ELASTOL^{T.M.} increased the critical velocity up to 0.36 and 0.42 m/s, respectively.

Acknowledgement

The authors are grateful to Dr. M. Fingas, Environment Canada, for making test results available prior to publication.

- Bobra, M.A. and Kawamura, P.I. (Consultchem, Ottawa), Pingas,
 M. and Velicogna D. (Environment Canada): LABORATORY AND TANK TEST EVALUATION OF ELASTOL^{T.M.}, Proceedings of the 10th artic and marine oilspill program technical seminar, June 9-11, 1987, Edmonton, P. 223-241
- [2] Huggins, M.L., J. Am. Chem. Soc. 64 (1942) 2716
- [3] Ferry, J.D., VISCOBLASTIC PROPERTIES OF POLYMERS, 2nd Ed., John Wiley, New York (1980)
- [4] Cox, W.P. and Merz, B.H., J. Polym. Sci. 28 (1958) 619
- [5] Jones, D.M., Walters, K. and Williams, P.R., Rheol. Acta 26 (1987) 20
- [6] Chao, K.C., Child, C.A., Grens II, B.A., and Williams, M.C.: ANTI-MISTING ACTION OF POLYMERIC ADDITIVES IN JET FUELS, AICh. J. 30 (1984) 111
- [7] Keller, A., J.A. Odell, Colloid & Polym. Sci 263 (1985) 189
- [8] BASF film "Viscoelasticity the new force in spill control and spill collection" (1986)
- [9] Bridie, A.L. et. al., Wanders, Th.H., Zegfeld, W., van der Heijde, H.B., Marine Pollution Bulletin, Vol. 11, 1980, p. 343-348
- [10] Bobra, M.A., P.O. Kuwamura, M. Fingas, D. Velicogne: LABORATORY AND TANK TEST EVALUATION OF ELASTOL^{T.M.}, Environmental Emergency Technology Division Publication, Environment Canada, May 1987 (to appear)
- [11] H.U. Oebius, Versuchsanstalt für Wasserbau und Schiffbau, Berlin, Report No. 1097/87

Attachment 13

_

_

- .

--

•

Oil Dispersant Toxicity Test

.

03-18-92 12:40 PM FROM ERR, Inc. TO 7033352954 SENT BY: XEROX Telecopier 7017; 3-17-92 ; 17:45 ; 2017920105→

1415 Park Avenue

United States Testing Company, Inc. Biological Bervices

-

Hoboken, New Jersey 07030 Tel: 201-792-2400 Fax: 201-656-0636 Jack Scambos Environmental Recovery Resources 35 Smith Ridge Road South Salem, New York 10590

March 17, 1992

Dear Mr. Scambos:

This letter is with regard to our conversation earlier today. You were interested in further interpretation of testing performed by USTC versus your product "Elastol". The study you were concerned with was performed for General Technology Applications, Inc. in March and April of 1987 (USTC Report #06589). You wanted an interpretive summary, since none was given with the report. The numerical summary follows:

Toxicant	Artemia 48hr LC50	Fundulus 96hr LC50
Elastol	>18,000 ppm	>18,000 ppm
Elastol + Oil	>3,200 ppm	>18,000 ppm
#2 Fuel Oil	600 ppm	J,200 ppm
D\$S (ref tox)	12 ppm	18 ppm

Review of the report indicates that the product demonstrated no acute toxicity to either <u>Artemia</u> <u>salina</u> (brine shrimp), or <u>Fundulus</u> <u>heteroclitus</u> (killi fish), at exposure levels up to 18,000 ppm (the highest product concentration tested).

When mixed with \$2 Fuel Oil (1:10 ratio of product to oil), the product demonstrated no toxicity to <u>A. salina</u> at an exposure level of 3200 ppm. At 3200 ppm, the product/oil mixture contained 320 ppm Elastol and 2,880 ppm \$2 Fuel Oil. Since the toxicity of \$2 Fuel Oil was determined to be 600 ppm, Elastol caused an apparent toxicity reduction.

When mixed with #2 Fuel Oil, the product demonstrated no toxicity to <u>F. heteroclitus</u> at an exposure level of 18,000 ppm. At 18,000 ppm, the product/oil mixture contained 1,800 ppm Elastol and 16,200 ppm $\ddagger2$ Fuel Oil. Since the toxicity of $\ddagger2$ Fuel Oil was determined to be 3,200 ppm, Elastol caused an apparent toxicity reduction.

Bear in mind that I was not involved in the above mentioned testing, and can only interpret what was reported. If you have any questions, or if I can be of further service, do not hesitate to call me.

Ű N Daniel Cooke

Mgr, Ecotoxicology

..... Horeno (1007)

United States Testing Company, Inc.

Biological Services Division 1415 PARK AVENUE . HOBOKEN, NEW JERSEY 07030 . 201-792-2400

REPORT OF TEST

EPA Standard Dispersant Toxicity Tests of BLASTOL

Conducted for:

General Technology Applications Inc. 7720 Mason King Court Manassas, Virginia 22110 -

April 14, 1987

Prepared by: Λ Ð Robert Lippencott V.P., Mgr, Biological Services Division

Biologist

SIGNED FOR THE COMPANY

TEST REPORT NO. 06589

Daniel Drozdowski

Laboratories in:

New York • Chicago • Los Angeles • Houston • Tulsa • Memphis • Reading • Richland

THIS REPORT APPLIES ONLY TO THE STANDARDS OR PROCEDURES IDENTIFIED AND TO THE EAMPLE(S) TESTED. THE TEST RESULTS ARE NOT HECESSARILY INDICATIVE OR REPRESENTATIVE OF THE QUALITIES OF THE LOT FROM WHICH THE SAMPLE WAS TAKEN OF OF APARENTLY IDENTICAL OR SIMILAR PRODUCTS. NOTHING CONTAINED IN THIS REPORT SMALL REAL WAS UNTITED STATES TESTING COMPANY. INC. ON DIDUCTS ANY QUALITY CONTROL PROSAN FOR THE CLIENT TO WHON THIS TEST RE-PORT IS ISSUED, UNLERS SPECIFICALLY SPECIFIED. QUE REPORTS AND LETTERS ARE POR YNE EKCLUSIVE USE OF THE CLIENT TO WHON THEY ARE ADDRESSED. AND THY ARE DE RAME OF THE UNITED STATES TESTING COMPANY. INC. OR THE SEALS ON INSECTION TO A BUDGE ANY CURENTS AND THY AND THE RAME OF THE UNITED STATES TESTING COMPANY. INC. OR THE SEALS ON INSECTION. AND THE CLIENT TO WHON THEY ARE ADDRESSED. AND THY ARE DE RAME OF THE UNITED STATES TESTING COMPANY. INC. OR THE SEALS ON INSECTION. AND FOR THE CLIENT TO WHON THEY ARE ADDRESSED. AND THY ARE DE RAME OF THE UNITED STATES TESTING COMPANY. INC. OR THE SEALS ON INSECTION. AND FOR THE CLIENT TO WHON THEY ARE ADDRESSED. ARE BETAINED TO EXCENT ON AND THAT NOT BE USED IN ANY OTHER NAMER WITHOUT OW PRIOR WRITTEN APPROVAL. SAMPLES NOT DESTROYED IN TESTING ARE RETAINED A BARLINGH OF THE WITHOUT AND ANY OTHER NAMER WITHOUT OW PRIOR WRITTEN APPROVAL. SAMPLES NOT DESTROYED IN TESTING AND THEY ARE ADDRESSED.

A Member of the SGS Group (Societe Generale de Surveillance)

	United States Te	esting Compa	ny, Inc.		
	<u>Client</u> : General Te	chnology Applic	ations Inc	5.	06589 4/14/87
-	<u>Project</u> : EPA Revise (July 1984		Dispersant	Toxicity Test	
-	<u>Sample</u> : An oil coa	gulant submitte	d and iden	tified by the Clier	nt as:
		Blastol (find	e white po	wder)	
-				e BPA "Revised Star al Register, 49:135	
	specified by	the EPA method,	, Elastol	water test medium, remained largely un a sticky, rubbery s	dissolved.
-	Summary of Results:				
-		Artemia salina hour LD ₅₀ (ppm)	95% CI	Fundulus heterocli 96 hour LD ₅₀ (ppm	
	Elastol	>18,000	N/A	>18,000	N/A
-	<pre>#2 fuel oil</pre>	600		3200	
-	i:10 mixture, Elasto and #2 fuel oil	ol >3200	N/A	>18,000	N/A

18

DSS (reference toxicant) 12

....

_

• --

-1-

	<u>Client</u> : Ge	neral	Technology	Applicatio	ons In	с.		4/
~	Toxicity Te	sting	Results					
~	Sample: Bla	stol						
-	Test Dates:	3/26	- 3/30/87					
	Organism:	Fundu	lus heterocl	itus				
	Test Conc. (ppm)	24	<pre>% Mortality 48</pre>	(hours) 72	96	Ini D.O.	tial pH	F D.0
	Control	0	0	0	0	7.0	7.8	7.0
	10,000	0	0	0	0	7.0	7.8	4.0
	18,000	0	0	0	0	7.0	7.8	4.0
	Dilution wat Salinity: 2		Artificial S	Sea Water				
		20 ppt <u>im: S</u> <u>x</u>		entific Su 1.5 g	pplier	8		
	<u>Salinity</u> : 2 Test organis Summary:	20 ppt im: S x x n	ource: Scie weight: 1 - length: 40 o./conc: 10	entific Su 1.5 g	pplier	8		
	<u>Salinity</u> : 2 <u>Test organis</u>	20 ppt im: S x x n	ource: Scie weight: 1 - length: 40 o./conc: 10	entific Su 1.5 g	pplier	8		
	<u>Salinity</u> : 2 Test organis Summary:	20 ppt im: S x x n	ource: Scie weight: 1 - length: 40 o./conc: 10	entific Su 1.5 g	pplier	8		
	<u>Salinity</u> : 2 Test organis Summary:	20 ppt im: S x x n	ource: Scie weight: 1 - length: 40 o./conc: 10	entific Su 1.5 g	pplier	8		
	<u>Salinity</u> : 2 Test organis Summary:	20 ppt im: S x x n	ource: Scie weight: 1 - length: 40 o./conc: 10	entific Su 1.5 g	pplier	8		
	<u>Salinity</u> : 2 Test organis Summary:	20 ppt im: S x x n	ource: Scie weight: 1 - length: 40 o./conc: 10	entific Su 1.5 g	pplier	8		
-	<u>Salinity</u> : 2 Test organis Summary:	20 ppt im: S x x n	ource: Scie weight: 1 - length: 40 o./conc: 10	entific Su 1.5 g	pplier	8		
	<u>Salinity</u> : 2 Test organis Summary:	20 ppt im: S x x n	ource: Scie weight: 1 - length: 40 o./conc: 10	entific Su 1.5 g	pplier	8		

.

•

·-----

United States Testing Company, Inc.

Client: General Technology Applications Inc. 06589 4/14/87

Toxicity Testing Results

Sample: Blastol #2 Fuel Oil (10:1)

Test Dates: 3/26 - 3/30/87

Organism: Fundulus heteroclitus

	Test Conc.		% Mortality	(hours)		Init	ial	Fi	nal
	(ppm)	24	48	72	96	<u>D.O.</u>	рШ	D.O.	рН
-	Control	0	0	0	0	7.0	7.8	7.0	7.9
	10,000	10	10	10	10	7.0	7.8	4.0	7.9
	18,000	10	10	10	10	7.0	7.8	4.0	7.9

- Temperature: 22°C
 - Dilution water: Artificial Sea Water
 - Salinity: 20 ppt
- Test organism: Source: Scientific Suppliers $\frac{x}{x}$ weight: 1 - 1.5 g $\frac{x}{x}$ length: 40 - 50 mm no./conc: 10
 - LC₅₀: >18,000 ppm

٠

-3-

<u>Client</u> : Genera	al Technology	Applicatio	ons Inc.		0 4/1	6589 4/87
Toxicity Testi	ing Results					
Sample: Elasto	1					
Test Dates: 3/						
Organism: Art						
Test Conc. (ppm)	<pre>% Mortality 24</pre>	(hours) 48		tial <u>pH</u>		nal <u>pH</u>
Control	0	0	7.0	7.8	7.0	8.0
10,000	0	0.	7.0	7.8	7.0	8.0
18,000	0	0	7.0	7.8	7.0	8.0
<u>Temperature</u> : Dilution water		Sea Water				
Salinity: 20						
<u>Test</u> organism:	Source: In-h age : 24 - no./conc: 10	48 hrs	ure			
Summary:						
LC ₅₀ : >18,000 g	o pm				*	
		-4-				

.

`

•

<u>Client</u> : Gener	al Technolog	y Applicatio	ns Inc.			6589 4/87
Toxicity Test	ing Results					
Sample: Elast	ol 1:18 with	#2 Fuel Oil				
Test Dates: 4	/3 - 4/5/87					
<u>Organism</u> : <u>Ar</u>	temia <u>salina</u>					
Test Conc. (ppm)	<pre>% Mortalit _24</pre>	y (hours) 48	Ini <u>D.</u> 0.	tial <u>pH</u>	Fin D.O.	pal pE
Control	0	0	8.0	7.8	6.5	7.9
32	3	3	8.0	7.8	6.5	7.9
100	0	. 0	8.0	7.8	6.5	7.9
320	0	0	8.0	7.8	6.5	7.9
1000	· 0	0	8.0	7.8	6.5	7.9
3200	0	3	8.0	7.8	6.5	7.9
Temperature: Dilution water		l Sea Water				
Salinity: 22	-					
Test organism:	Source: In-	-house cultu - 48 hrs 100*	re			
*Note: n=60 or	ganisms/conc.	were used	for conf	irmation	tests.	
Summary:						
LC ₅₀ : >3,200 p	pm					
		~5-				
		~2-				

. |

	Client: Genera	al Techn	ology	Appli	cations	Inc.			6589 4/87
	Toxicity Testi	ing Resu	lts						
[·]	Sample: No. 2	Fuel Oi	l alor	he		·			
	Organism: Fund	lulus he	terocl	itus					
~	Test Dates: 3/	/5/87 -	3/9/87	,					
~	Test Conc. (ppm)	Ре (24)	rcent (ho <u>(48)</u>	urs)	ity (96)	Ini D.O.	tial pH	Fi D.O.	nal pH
	Control (0)	0	0	0	0	9.0	7.7	8.0	7.6
	100	0	0	0	0	8.8	7.6	8.0	7.6
	1000	0	·. 0	0	0	8.6	7.6	8.0	7.6
	10000	0	0	70	100	8.0	7.6	7.0	7.6
-	- Temperature: 1	9+1°C							
_	Dilution water	. —	Icial :	Sea Wa	ter				•
	Salinity: 20 0								
•	Test organism:		Scie	atific	Supplie	ers (Mas	sachus	etts &	N.K.)
-		x weigh x lengt no./con	h: 45	ma -					
	Summary:								
	LC ₅₀ : 3,200 ppm	n							
	Laboratory Note only. In five	separat	e test 86, th	s cond	lucted p city of	revious #2 fue:	to thi 1 oil t	s proje o Funda	ect, ulus
	dating from 198 has been report (1% in water) t adhere to and i	ed as > here is	a sig	nifica	nt oil	slick w	nich ca	n direc	n ctly
	has been report (1% in water) t	ed as > here is	a sig	nifica	nt oil	slick w	nich ca	n direc	n ctly
	has been report (1% in water) t	ed as > here is	a sig	nifica	nt oil	slick w	aich ca	n direc	n ctly
	has been report (1% in water) t	ed as > here is	a sig	nifica	nt oil	slick w	nich ca	n direc	n ctly
	has been report (1% in water) t	ed as > here is	a sig	nifica	nt oil ganisms	slick w	hich ca	n direc	n ctly
	has been report (1% in water) t	ed as > here is	a sig	nifica ing or	nt oil ganisms	slick w	hich ca	n direc	n ctly
	has been report (1% in water) t	ed as > here is	a sig	nifica ing or	nt oil ganisms	slick w	aich ca	n direc	n ctly

`

		•	
Client: Genera	ll Technology Applicati	ions inc.	06589 4/14/87
Toxicity Testi	ng Results		
	Fuel Oil only		
<u>Organism: Arte</u>	mia <u>salina</u>		
Test Dates: 3/	6/87 - 3/8/87		
	Percent Mortality		_/ .
Test Conc. (ppm)	(hours) (24) (48)	Initial D.O. pH	Final D.O. pi
_ Control (0)	0 0	7.0 7.6	7.0 7.0
100	0 20	7.0 7.6	7.0 7.
- 1000	0 70	7.0 7.6	7.0 7.9
10000	0 100	7.0 7.6	7.0 7.4
	hysical entrapment of ontributed to mortalit		face oil
Temperature: 2	1 <u>+</u> 1*C		
Dilution water:	: Artificial Sea Water		
Salinity: 20 0,	/00		
Test organism:	Source: San Fransisco age : newly hatched no./conc.: 100		
Summary:			
LC ₅₀ : Approxima	tely 600 ppm (range 10	000 - 10,000)	
only. In five dating from 198	The above test was r separate tests conduct 3 to 1986, the toxicit	ted previous to t by of #2 fuel oil	his project to Artemia
org anism is ver scavenging by o	ed in the range of 600 y small (less than 1mm il droplets or slicks. chemical toxicity.) ppm to >3200 pp a) and thereby su Mortality is n	m. The sceptible to ot always
	-		
-			

.

`

.

_	Client: Gener	al Techn	ology i	Applic	ations	Inc.			6589 4/87
	T oxicity Test	ing Resu	lts						
-	Sample: Dodec	yl sodiu	m sulfa	ate (re	ferenc	e mater	ial)		
	<u>Organism: Fun</u>	dulus he	terocl	tus					
-	Test Dates: 3	/5/87 -	3/9/87						
-	Test Conc. (ppm)	Pe (2 <u>4</u>)	rcent N (hou (48)	irs)	ty (96)	Ini D.O.	tial pH	Fi D.O.	nal _E
-	1	0	0	0	0	9.0	7.1	7.8	7.
	3.2	0	0	0	0	8.8	7.2	7.8	7.
-	10*	0	0	0	0	8.8	7.2	7.6	7.
	32	100	-	-	- ·	9.0	7.1	7.8	7.
-	100	100	-	-	-	9.0	7.2	8.6	7.
-	*10 ppm exhibi	ited stre	ess, bu	t no d	eath				
_	Temperature:	20 <u>+</u> 1°C							
	Dilution water	: Artifi	icial S	e a Wat	er				
-	Salinity: 20 0	00/00							
	<u>Test organism</u> :	Source: x weigh x lengt no./con	t: 1.0 h: 45 1	-1.5g	5 uppl ie	ers (Mas	sachus	etts &	N.H
	Summary:								
	LC ₅₀ : 18 ppm								
	LC ₅₀ : 18 ppm Laboratory Not only. In five 1983 to 1986, as 2.7 ppm <u>+</u> 1	separat	e tests	condu	icted p	revious.	ly, dat	ing fr	om
	Laboratory Not only. In five 1983 to 1986,	separat	e tests	condu	icted p	revious.	ly, dat	ing fr	om
-	Laboratory Not only. In five 1983 to 1986,	separat	e tests	condu	icted p	revious.	ly, dat	ing fr	om

.

`

United States Testing Company, Inc.

- Client: Gamlen Chemical (Division of Sybron) 06589 4/14/87
- Toxicity Testing Results

-

- Sample: Dodecyl sodium sulfate (reference material)
- <u>Organism: Artemia salina</u>

<u>Test Dates</u>: 3/11/87 - 3/13/87

-	Test Conc. (ppm)	Percent Mo (hour (24)	ortality s) <u>(48)</u>	Initial <u>D.O. p</u>		nal <u>pH</u>
	1	0	15	7.0 7.	8 7.0	7.8
	3.2	0	25	7.0 7.	8 7.0	7.8
	10	0	45	7.0 7.	8 7.0	7.8
	32	15	60	7.0 7.9	9 7.0	7.9

- Temperature: 21+1°C
- Dilution water: Artificial Sea Water

<u>Salinity</u>: 20 0/00

Test organism: Source: San Fransisco Bay Type (cysts) age : newly hatched lab culture no./conc.: 100

Summary:

LC₅₀ (and 95% confidence limits): 12 ppm (4.8 - 30 ppm)

Laboratory Note: The above test was run for reference purposes only. In five separate tests conducted previously, dating from 1983 to 1986, the toxicity of DSS to Artemia has been reported as 4.5 ppm + 2.7 ppm.

-9-

	United States Testing Company, Inc.	
~	Client: General Technology Applications Inc.	06589 1/14/8
	Project: EPA Revised Standard Oil Dispersant Toxicity Test (July 1984)	
~	Sample: An oil coagulant submitted and identified by the Client a	15 :
	Elastol (fine white powder)	
-	Procedure: Tests were in accordance with the EPA "Revised Standar Dispersant Toxicity Test", Pederal Register, 49:139, p 29207.	
• •. •	Note: When blended and mixed with the salt water test medium, as specified by the EPA method, Elastol remained largely undis Elastol-oil combinations formed into a sticky, rubbery subs	
	Summary of Results:	
	Artemia salina Fundulus heteroclitus	
-	48 hour LD ₅₀ (ppm) 95% CI 96 hour LD ₅₀ (ppm) Toxicant	<u>95% (</u>
	Elastol >18,000 N/A >18,000	N/1
-	#2 fuel oil 600 3200	
	1:10 mixture, Elastol >3200 N/A >18,000 and #2 fuel oil	N/.

DSS (reference toxicant) 12

••

_

÷.

-1-

18

United S	States Testing Company, Inc.	
Client:	General Technology Applications Inc.	06589 4/14/8
Project:	EPA Revised Standard Oil Dispersant Toxicity Test (July 1984)	
Sample:	An oil coagulant submitted and identified by the Client	as:
	Elastol (fine white powder)	

<u>Procedure</u>: Tests were in accordance with the EPA "Revised Standard Dispersant Toxicity Test", Federal Register, 49:139, p. 292 29207.

Note: When blended and mixed with the salt water test medium, as specified by the EPA method, Elastol remained largely undissolv Elastol-oil combinations formed into a sticky, rubbery substance to the stick of the set o

•

.

Summary of Results:

_ .

_

	Artemia salina hour LD50_(pp		Fundulus heteroclit 96 hour LD ₅₀ (ppm)	
Toxicant		<u>,</u>	<u>50 1001 10</u> 50 (ppm)	<u> </u>
Blastol	>18,000	N/A	>18,000	N/i
#2 fuel oil	600	•	3200	
1:10 mixture, Elasto and #2 fuel oil	>3200	N/A	>18,000	N/;
DSS (reference toxic	cant) 12		18	

-1-

Attachment 14

Abalone Larval Development Test Memorandum

.

. _____

NENORANDUM

TO: A11

FROM: Al Hadermann

DATE: June 29, 1992

SUBJECT: Abalone Larval Development Test

I read "Abalone Larval Development Short-Term Toxicity Test Protocol," which I received from the California State Water Resources Control Board. This information can be used to better understand the significance of the results on Elastol.

The Organism

Male and female abalone (7-10 cm length) are used to provide fertilized eggs under controlled conditions. Eggs are placed in saline solutions, containing potential toxicants, before the first division occurs. Thus, all division and growth of the single cell embryo to a trochophore larva, which hatches and develops into a veliger larva, occurs in the presence of the potential toxicant. This all occurs in 48 hours. At the end of 48 hours, formalin is used to fix the larvae. The larvae are then individually inspected for evidence of normal and abnormal development. Although not inclusive, abnormal development involves shell development defects.

Toxicity Determination

Toxicity is expressed as % of larvae with normal development. A control laboratory sample, with no added toxicant, typically can show 83.4% normally developed larvae. A reference toxicant containing 18 micrograms/liter of zinc ion could show 77.6% normally developed larvae, which is not statistically significant. On the other hand, at 32 micrograms of zinc ion/liter, only 6.6% of normally developed larvae were seen. The no effect concentration (NOEC) in this case is 18 micrograms/liter of zinc ion, while the low effect concentration (LOEC) concentration is 32.

All of the following Elastol extract concentrations showed fewer abnormally developed abalone larvae than either the control-lab or blank samples run at the same time: 0.1, 1.0, 3.2, 5.6, 10.0, 18.0, 32.0 and 56.0%. None of these Elastol samples differed significantly from the percent of larvae with normal development in the reference samples. Actually, however, all Elastol results were slightly less toxic than the "non-toxic" references. No other Elastol extract tests were run between 56.0% and 100.0%. Since the 100.0% test suggests that there was no "saline habitat" for the larvae, the number of abnormal larvae may be an artifact of the test.

<u>Conclusion</u>

Elastol did not interfere with the normal development of abalone larvae. The test at 100.0% was forced beyond the characteristics of the medium to support the organisms. Therefore, the NOEC of 56.0% and the LOEC of 100.0% are conservative.

Attachment 15

2003 & 2004 CARB

Pre & Post Durability Results

.

.

A division of Olson Engineering, Inc.

SUMMARY REPORT

Emission and Fuel Consumption Data Obtained in Accordance with CARB Verification Protocol

For Verification of Particulate and NOx Reductions When Operating with Viscon Polymer Treated Diesel Fuel

August 19, 2003

Conducted for Las Palmas Oil and Dehydration, Inc. 3121 Standard St. Bakersfield, CA 93308

By

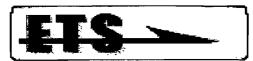
Emission Testing Services A division of Olson Engineering, Inc. At their CARB and EPA Recognized ECOlogic Engine Testing Laboratories Fullerton, California

Note: This report may only be copied and distributed in its entirety.

1370 South Acacia Avenue, Fullerton, California 92831 714-774-3385 • Fax 714-774-4036 Email: <u>dro3409@aol.com</u> <u>www.etsusa.net</u> <u>www.ecologiclabs.com</u>

Executive Summary

This report provides a summary of the data used to verify PM and NOx reduction effectiveness of Viscon, a polymer additive, when mixed with No. 2 California specification diesel fuel for operation of heavy-duty off-road diesel engines.


Particulate emissions were reduced 37% and NOx was reduced 21% with the Viscon treated fuel at standard concentrations when compared to baseline data operating on diesel fuel alone without the additive. These results are based on steady-state 8-mode engine dynamometer testing of a Caterpillar Model 3306 diesel engine. The 8-mode emission/fuel consumption testing was done in exact accordance with CARB, California Code of Regulations, Title 13, Chapter 14 and EPA regulations as defined in the applicable sections of 40 CFR, Part 89. This emission testing protocol is designated for heavy-duty diesel engines in off-road applications.

All emission and fuel consumption testing was accomplished by Emission Testing Services, a division of Olson Engineering, Inc. at their ISO 9000-2001 registered ECOlogic Engine Testing Lab (EETL) in Fullerton, California. The companies are CARB/EPA recognized and listed as qualified emission testing facilities for the work reported here. The particular test cell where all the work was done consists of a full electric 450 horsepower engine dynamometer for precise control of speed and load. All fuel consumption was measured gravimetrically and exhaust emissions of HC, CO, CO2, NOx and NO were sampled and measured as raw emissions with conventional Horiba and Rosemont analyzers. Particulates were sampled and properly diluted with a Sierra state-of-the-art Model BG-2 particulate sampler and captured on pre-weighed filter All raw data measurements were corrected with the applicable factors for media. humidity, temperature and pressure and both raw and corrected emissions are tabulated in the Results section. Baseline test protocols and test protocols with the Viscon treated fuel were conducted in exactly the same manner in the same test cell with the same instrument complement.

Average differences between the five baseline tests and the five tests with the Viscon treated fuel for NOx and PM are as shown below:

	Gi	rams per bhp-hi		
	NOx	PM	Fuel	Avg. HP
Baseline – diesel fuel	7.09	0.308	178.10	137.7
With Viscon treated fuel	5.57	0.194	177.30	137.5
% Improvement	21.4	37.0	0.4	

1370 South Acacia Avenue, Fullerton, California 92831 714-774-3385 • Fax 714-774-4036 Email: <u>dro3409@aol.com</u> <u>www.etsusa.net</u> <u>www.ecologiclabs.com</u>

These results satisfy the CARB requirements for 20% NOx reduction and Level 1 PM reduction (25-50% reduction). Summary Report Page one

Introduction

This report summarizes the emission data and describes the testing protocol for satisfaction of the California Air Resources Board (CARB) Verification Protocol for additive fuel solutions to reduce particulates (PM) and oxides of nitrogen (NOx).

The test protocol is designed to verify the emissions for off-road engine applications in accordance with 40 CFR, Part 89.

Test Engine

A six cylinder Caterpillar Model 3306 diesel engine rated at 265 horsepower was used in this project. This manually controlled engine was rebuilt by the Caterpillar Corporation and preliminary testing started with only a few hours of previous operation.

Test Fuel

A California specification commercial No. 2 diesel fuel was used for all the testing (See Table 1). The additive was mixed into the baseline fuel in standard concentrations, by the client, for testing emission reduction effectiveness.

Test Protocol and Procedures

All emission testing was done by use of the EPA/CARB specified 8-mode steady-state test protocols defined in the applicable Federal Register (40 CFR Part 89) for off-road heavy-duty engine applications. Raw emissions were sampled and measured under each of eight operating modes, corrected for temperature, humidity and barometric pressure and finally weighted to reach the final emission result stated in grams per brake horsepower hour (gm/bhp-hr). Particulates were simultaneously sampled, captured on a pre-weighed filter media for all eight modes, weighed and also reported in grams per brake horsepower hour (gm/bhp-hr).

The test procedure involves engine warm-up under prescribed conditions with instrument zero and span checks immediately followed by engine operation for five minutes at each of the eight test modes. Emissions are averaged from second-by-second recordings for the last two minutes of each mode, corrected, weighted for the individual modes and displayed. PM filters are stored in a humidity and temperature controlled environment and weighed within one day of collection.

> 1370 South Acacia Avenue, Fullerton, California 92831 714-774-3385 • Fax 714-774-4036 Email: dro3409@aol.com www.ecologiclabs.com www.etsusa.net

Summary Report

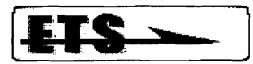
Page two

Project Objective

The objective of this work was to collect the initial emission data required to initiate the CARB procedure for verification of a proprietary diesel fuel additive to reduce exhaust PM and NOx when compared to the baseline emission levels. CARB requires a minimum of 25% reduction in PM and as an option, at least 15% reduction in NOx emissions, to obtain official verification.

Test Additive

The diesel fuel additive used in this project is named "Viscon". It is a high-molecular weight, pure hydrocarbon polymer. The base chemical component for Viscon is polyisobutylene (PIB) polymer. This additive was mixed with the diesel fuel by the client in a concentration of 1 ounce to 20 gallons of diesel fuel for all official testing.


Test Equipment and Instrumentation

The engine dynamometer test cell is equipped with a 450 HP full electric dynamometer capable of holding the engine to speeds and loads within the required $\pm 2\%$ variation. Engine air flow is measured and recorded continuously with a calibrated Sierra mass flow sensor. Inlet air temperature is measured within 20 cm. of the turbocharger inlet and relative humidity is measured continuously at the engine air inlet. Fuel flow is measured gravimetrically using a calibrated scale with measurements recorded during the last two operating minutes of each mode.

Exhaust gas is sampled through a heated probe and pre-filter at the exhaust stack. It then passes through a heated sample line (350°F) to the Horiba flame ionization detector hydrocarbon analyzer. Another sample line routes raw exhaust gas through a refrigerated condensate trap/filter to the Horiba conventional CO and CO2 NDIR analyzers. This same exhaust stream is also routed simultaneously to the parallel connected and heated Rosemont NOx and NO chemiluminescent analyzers. Another sample probe as part of the Sierra PM sampler system in the exhaust stack routes the exhaust gas into a dilution chamber (with programmed air dilution ratios for the different operating modes) for ultimate capture on pre-weighed filter media. The Sierra BG-2 Particulate Sampler is a state-of-the-art sampling system that has been accepted by EPA as an appropriate instrument for the proper capture of exhaust gas particulates. It is calibrated prior to every test.

The dynamometer operation, all calibration functions and collection of data is controlled and performed through a proprietary Windows based Wonderware program. This

> 1370 South Acacia Avenue, Fullerton, California 92831 714-774-3385 • Fax 714-774-4036 Email: <u>dro3409@aol.com</u> <u>www.etsusa.net</u> <u>www.ecologiclabs.com</u>

program stores all the raw data and conducts preliminary calculations on the raw data. The final calculations are performed separately using a proprietary computer template <u>Summary Report</u> Page three

encompassing all the CFR corrections and related formulas. The raw and corrected data are then printed out in the format shown in this report. All test numbers are consecutive and if a test is aborted or discontinued the next test will automatically record the subsequent test number.

The NO2/NOx Issue

The CARB protocol stipulates simultaneous measurement of NOx and NO to calculate the NO2 (NOx-NO = NO2). This CARB requirement is based on data that demonstrates NO2 is formed to some extent in particulate traps without an apparent overall NOx increase. This is not generally an issue with additive treated fuels and simultaneous measurement of NOx and NO in this project showed that both NOx and NO measurements were always the same within normal test variance (see Results table).

Special Sampling for Exhaust Gas Analysis at Disparate Locations

Analysis of some exhaust gas constituents had to be done at an outside laboratory (Truesdail Laboratories). The test engine was operated at equilibrium steady-state conditions with plastic bag or steel vessel containers being used to capture representative samples. The analyses of these emissions by Truesdail Laboratories is the subject of a separate report.

Emission Testing Services (ETS)

ETS is a wholly owned division of Olson Engineering, Inc. The company conducted all of the dynamometer work reported here at their ISO 9000-2001 registered ECOlogic Engine Testing Lab in Fullerton, California. Both ETS and ECOlogic are CARB and EPA recognized and listed as facilities capable of conducting emission testing in accordance with CARB/EPA protocols and requirements as defined in the applicable Federal Register and in the California Code of Regulations – Title 13. All of the work reported here has been conducted by qualified and experienced technicians under the direct supervision and responsibility of Donel R. Olson, a registered professional engineer in the State of California

Test Data Accumulation

Prior to accumulation of official 8-mode test data the engine was operated over a repetitive load cycle for approximately 100 hours on the engine dynamometer while operating with the baseline diesel fuel. This preliminary operation was to stabilize the engine and reach equilibrium baseline emission levels. Five official baseline tests were

1370 South Acacia Avenue, Fullerton, California 92831 714-774-3385 • Fax 714-774-4036 Email: <u>dro3409@aol.com</u> <u>www.etsusa.net</u> <u>www.ecologiclabs.com</u>

then conducted (test nos. 8MBL024-8MBL028) and the averages were used for subsequent comparison to the additive treated fuel.

 Summary Report
 Page four

Upon completion of baseline emission testing the engine was operated over the same repetitive cycle for an additional 100 hours with the additive treated baseline fuel. Finally, a set of official 8-mode tests were conducted using the Viscon additive treated baseline fuel (test nos. 8MLPF 12-8MLPF 16).

All five sets of data for each emission and fuel consumption average have been used to calculate the standard deviation of the data and the corresponding 95% confidence limits. All data are within a typical range with normal variances.


Prior to starting the official baseline emission tests and again prior to starting tests with the additive treated fuel the engine oil and oil filters and fuel filters were changed to provide the same start-up conditions for baseline and additive treated fuel operation. All test conditions, calibrations and operating protocols were within CARB specified limits and the same from test-to-test.

Test Results

The emission and fuel consumption results of this comparative testing are summarized in the following Table 2. The raw data for each mode and individual calculations for each test are provided in the Appendix for the five baseline and five additive treated test sets.

<u>Table 1</u>

Test Fuel Analysis

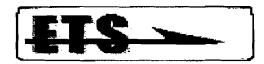
Table 2 Summary of Results

Effect of Viscon Polmyer Additive on Exhaust Emissions and Fuel Consumption

Las Palmas Oil and Dehydration Company Caterpillar Model 3306 Diesel Engine

8-Mode Engine Dynamometer Data

Baseline Data (No Additive)


.....Grams per bhphr.....

Weighted

ТН	с	со	KNO x	PM	Fuel	HP
Test						
No.						
8MBL02						
4	1.35	2.75	6.73	0.31	181.03	137.71
8MBL02						
5	1.26	2.47	6.75	0.33	176.68	137.46
8MBL02						
6	1.24	2.56	7.46	0.32	176.24	137.63
8MBL02						
7	1.30	2.52	7.14	0.29	178.18	137.77
8MBL02						
8	1.30	2.51	7.38	0.29	178.35	137.75
5-Test Averages	1.29	2.562	7.092	0.308	178.096	137.664
Std.						
Dev.	0.0424	0.1099	0.3423	0.0179	1.8795	0.1260
95%						
C.L.	0.0372	0.0963	0.3000	0.0157	1.6474	0.1105

With Viscon Polymer Additive at 1 ounce to 20 gallons

1370 South Acacia Avenue, Fullerton, California 92831 714-774-3385 • Fax 714-774-4036 Email: <u>dro3409@aol.com</u> <u>www.etsusa.net</u> <u>www.ecologiclabs.com</u>

8MLPF1 2	1.51	1.83	5.59	0.20	177.55	137.55
8MLPF1 3 8MLPF1	1.50	1.78	5.51	0.20	177.18	137.58
4 8MLPF1	1.56	1.73	5.79	0.17	176.79	137.55
5 8MLPF1	1.51	2.28	5.48	0.21	177.39	137.54
6	1.54	2.28	5.50	0.19	177.61	137.29
5-Test Averages Std.	1.524	1.98	5.574	0.194	177.304	137.502
Std. Dev.	1.524 0.0251	1.98 0.2761	5.574 0.1278	0.194 0.0152	177.304 0.3321	137.502 0.1195
Std.						
Std. Dev. 95%	0.0251	0.2761	0.1278	0.0152	0.3321	0.1195

Note: 95% Confidence Limits define the plus/minus range within which the true average is expected to fall with 95% confidence

1370 South Acacia Avenue, Fullerton, California 92831 714-774-3385 • Fax 714-774-4036 Email: <u>dro3409@aol.com</u> <u>www.etsusa.net</u> <u>www.ecologiclabs.com</u> Olson-EcoLogic Engine Testing Laboratories, LLC

ISO 9001:2000 Registered

Preliminary

SUMMARY REPORT

Emission and Fuel Consumption Data

Obtained in Accordance with CARB Retrofit Verification Protocol.

For Verification of Particulate and NOx Reductions When Operating with Viscon Polymer Treated Diesel Fuel

November 26, 2004

Conducted for Las Palmas Oil and Dehydration Company 3121 Standard Street Bakersfield, California 93308

By

Olson-EcoLogic Engine Testing Laboratory ISO 9001-2000 Registered

Note: This summary report provides all of the corrected data for the tests listed in each table, but the individual emission test data sheets showing measured and corrected data for all gaseous and particulate data plus the measured operating and ambient variables for each test have not been included in this summary report. Those data will all be included in the complete and final emission test report.

1370 South Acacia Avenue, Fullerton, California 92831 Tel (714) 774-3385 • Fax (714) 774-4036 www.ecologiclabs.com

Θ

Executive Summary:

This summary report contains a compilation and listing of all emission data accumulated during the Las Palmas project to measure effectiveness of the Viscon Polymer additive when mixed with California specification No. 2 diesel fuel and used in the operation of a Model 3306 Caterpillar heavy-duty diesel engine for off-road applications.

A previous summary report dated August 19, 2003 provided the data comparisons for baseline testing with diesel fuel only and with the same fuel containing the nominal concentration of the Viscon Polymer additive. This summary report provides the average data from that previous testing for reference purposes. Subsequently the test engine was relocated at the client's facility and operated by the client 1000 hours over a repetitive cycle for durability testing using the same diesel fuel treated with the Viscon Polymer additive. The engine was then returned to the Olson-Ecologic Engine Testing Lab in Fullerton, California to obtain the additional emission test data reported here.

After 1000 hours of durability testing particulates (PM) were reduced by 48.4% and NOx by 25.4% when operated on the Viscon treated fuel as compared to the baseline emission measurements with diesel fuel only at the beginning of the project. These results were based on steady-state 8-mode engine dynamometer testing of a Model 3306 Caterpillar diesel engine. The 8-mode emission/fuel consumption testing was done in exact accordance with CARB, California Code of Federal Regulations, Title 13, Chapter 14 and EPA regulations as defined in the applicable sections of 40 CFR, Part 89. This emission testing protocol is designated for heavy-duty diesel engines in offroad applications.

A complementary emission comparison after the 1000 hours of durability testing was also accomplished with a 5% blend of biodiesel fuel in the Viscon treated diesel fuel. This fuel mixture consisted of 5% biodiesel fuel and 1 ounce/20 gallons of Viscon mixed into the same baseline diesel fuel as was used in all of the other testing. The mixture is labeled Super B5 Biodiesel Fuel. With this fuel the PM emissions were reduced 45.4% and the NOx emissions were reduced 24.3% compared to the original baseline data.

Emission data with the Viscon additive mixed into the diesel fuel at 10 times the normal concentration were also required by CARB. Triplicate tests showed that there was no adverse effects on emissions when compared to the baseline data or to the Viscon data admixed with normal concentrations. With this heavy dose concentration of Viscon the PM emissions were reduced 50.5% and the NOx emissions were reduced 26.4%.

All emission and fuel consumption testing was accomplished by Olson-EcoLogic Engine Testing Laboratories in Fullerton, California at their ISO 9001-2000 registered facility. The company is CARB/EPA recognized and listed as a qualified emission testing facility for the work reported here. The particular emission test cell where all the work was done consists of a full electric 450 horsepower engine dynamometer for precise control of speed and load. All fuel consumption was measured gravimetrically. Raw gaseous emissions of THC, CO and CO₂ were measured with Horiba analyzers. NOx and NO measurements wire made with heated Beckman/Rosemont chemiluminscent analyzers. PM was sampled and properly diluted with a Sierra state-of-the-art Model BG-2 particulate sampler and captured on pre-weighed filter media. All raw data measurements were corrected with the applicable factors for humidity, temperature and pressure and both raw and corrected emissions are tabulated in the individual test data sheets. Baseline test protocols and test protocols with the Viscon and Biodiesel treated fuels were conducted in exactly the same manner in the same test cell with the same instrument complement.

The average PM and NOx differences between the five baseline tests at the project beginning, the five tests with only Viscon treated fuel after 1000 durability miles, the five tests with the Super B5 Biodiesel Fuel after 1000 hours of durability testing and the final testing with a heavy dose of Viscon are provided in attached Tables 1 and 2 and are summarized below.

	<u>Grams per</u>	Grams per bhp-hour		
	PM	NOx		
Original baseline testing with diesel fuel only	0.308	7.09		
1. With Viscon treated fuel after 1000 hours of durability	0.159	5.29		
Percent improvement with Viscon treated fuel				
Compared to the baseline data	48.4%	25.4%		
2. With Super B5 Biodiesel Fuel	0.167	5.36		
Percent improvement with Super B5 Biodiesel Fuel				
Compared to the baseline data	45.8%	24.3%		
3. With heavy dose (10X) of Viscon treated fuel	0.152	5.22		
Percent improvement with heavy dose of Viscon				
Compared to the baseline data	50.5%	26.4%		

These data demonstrate that for the engine tested in this project admixture of the Viscon Polymer additive reduces PM in the range of 45-50% and NOx on the order of 25% for both diesel fuel only and for diesel fuel with 5% biodiesel fuel admixed.

Θ

Introduction:

This report summarizes the emission data and describes the testing protocol for satisfaction of the California Air Resources Board (CARB) Verification Protocol for additive fuel solutions to reduce particulates (PM) and optionally oxides of nitrogen (NOx)

The test protocol is designed to verify the emissions for off-road engine applications in accordance with 40 CFR, Part 89

Test Engine:

A six-cylinder Model 3306 Caterpillar diesel engine rated at 265 horsepower was used in this project. The Caterpillar Corporation prior to beginning of the project rebuilt this manually controlled diesel engine and preliminary testing started with only a few hours of previous operation.

Test Fuel:

A California specification commercial No. 2 diesel fuel was used for all of the testing before, during and after durability testing (see fuel inspection data in the Appendix). The Viscon additive was mixed into the baseline fuel in standard concentrations by the client, and biodiesel fuel was added to the baseline fuel to provide a 5% biodiesel concentration in the Viscon treated diesel fuel.

Test Protocol and Procedures:

All emission testing was done by use of the EPA/CARB specified 8-mode steady-state test protocols defined in the applicable Federal Register (40 CFR Part 89) for off-road heavy-duty engine applications. Raw emissions were sampled and measured under each of eight operating modes, corrected for temperature, humidity and barometric pressure and finally weighted to reach the final emission result stated in grams per brake horsepower hour (gm/bhp-hr). Particulates were simultaneously sampled, captured on a pre-weighed filter media for all eight modes, weighed and also reported in grams per brake horsepower hour (gm/bhp-hr).

The test procedure involves engine warm-up under prescribed conditions with instrument zero and span checks immediately followed by engine operation for five minutes at each of the test modes. Emissions are averaged from second-by-second recordings for the last two minutes of each mode, corrected, weighted for the individual modes and displayed. PM filters are stored in humidity and temperature controlled environment and weighed within one day of collection.

Θ

Project Objective:

The objective of this work was to collect the emission data required by CARB to satisfy the CARB Verification protocol for retrofit applications with a proprietary diesel fuel additive and to quantify the magnitude of reductions obtained when operating a typical diesel heavy-duty engine for off-road applications. CARB requires a minimum 25% reduction in PM and as an option, at least 15% reduction in NOx emissions to obtain official recognition of verification.

Test Additive:

The diesel fuel additive used in this project is named "Viscon". It is a high-molecular weight, pure hydrocarbon polymer. The base chemical component for Viscon is polyisobutylene (PIB) polymer. This additive was mixed with the diesel fuel by the client in a concentration of 1 ounce to 20 gallons of diesel fuel for all official testing.

Test Equipment and Instrumentation:

The engine dynamometer test cell is equipped with a 450 Hp full electric dynamometer capable of holding the engine to speeds and loads within the required +/- 2% variation. Engine airflow is measured and recorded continuously with a calibrated Sierra mass flow sensor. Inlet air temperature is measured within 20 cm. of the turbocharger inlet and relative humidity is measured continuously at the engine air inlet. Fuel consumption is measured gravimetrically using a calibrated scale with measurements recorded during the last two operating minutes of each mode.

Exhaust gas is sampled through a heated probe and pre-filter at the exhaust stack. It then passes through a heated sample line (350 degrees F) to the Horiba flame ionization detector hydrocarbon analyzer. Another sample line routes raw exhaust gas through a refrigerated condensate trap/filter to the Horiba conventional CO and CO2 NDIR analyzers. This same exhaust stream is also routed simultaneously to the parallel connected and heated Rosemont NOx and NO chemiluminescent analyzers. Another sample probe as part of the Sierra PM sampler system in the exhaust stack routes the exhaust gas into a dilution chamber (with programmed air dilution ratios for the different operating modes) for ultimate capture on pre-weighed filter media. The Sierra BG-2 Particulate Sampler is a state-of-the-art sampling system that has been accepted by EPA and CARB as an appropriate instrument for the proper capture of exhaust gas particulates. It is calibrated prior to every test.

The dynamometer operation, all calibration functions and collection of raw data are controlled and performed through a proprietary Windows based and modified Wonderware program. This program stores all the raw data and conducts preliminary calculations on the raw data. The final calculations are performed separately using a proprietary computer template encompassing all the CFR corrections and related

Finally, triplicate emission tests were conducted with the same baseline test fuel treated with a ten times (10X) dosage of Viscon (10 ounces/20 gallons of diesel fuel). This heavy dosage operation is a required task of the CARB retrofit verification protocol. The tests are numbered 8MLPH01-8MLPH03.

All sets of data for emission and fuel consumption averages have been used to calculate the standard deviation of the data and the corresponding 95% confidence limits of the mean values. All data are within a typical range with normal variances.

Prior to starting the official baseline emission tests and again prior to starting tests with the Viscon treated fuel the engine oil and oil filters and fuel filters were changed to provide the same start-up conditions for baseline and additive treated fuel operation. All test conditions, calibrations and operating protocols were within CARB specified limits and the same from test-to-test.

Test Results:

The exhaust emission and fuel consumption results of this comparative testing are summarized in the following Tables 1 and 2 (and in the Executive Summary) for the testing conducted after the 1000 hours of durability operation was completed. The original data obtained before the 1000 hour durability operation are provided and described in an earlier report dated August 19, 2003, but the baseline emissions (without Viscon treatment) are referenced here and the averages are listed in this report for defining effectiveness of the Viscon additive treatment as compared to the original baseline data at the beginning of the testing project.

The raw data for each mode and individual calculations for each test are provided in the Appendix for all the tests along with the fuel inspections.

.

Table 1 Summary of Results Effect of Las Palmas Viscon Polymer Additive on Exhaust Emissions and Fuel Consumption After 1000 Hours of Durability Testing Caterpillar Model 3306 Diesel Engine

Hot Start ISO-8178 8-Mode Engine Dynamometer Data

			Grams per		
Avg. HP	THC	со	NOX	NO	PM
137.3	0.93	1.60	5.43	4.96	0.163
136.8	0.94	1.60	5.37	4.98	0.165
136.6	0.92	1.54	5.06	4.58	0.155
136.6	0.98	1.60	5.30	4.80	0.156
136.5	0.95	1.61	5.27	4.77	0.156
0.321	0.023	0.028	0,141	0.163	0.005
0 281	0.020	0.025	0.123	0.142	0.004
136.76	0.94	1.59	5.29	4.82	0.159
137.66	1.29	2.56	7.09		0.308
-0.7	26.8	37.9	25.4		48.4
	137.3 136.8 136.6 136.5 0.321 0.281 136.76 137.66	137.3 0.93 136.8 0.94 136.6 0.92 136.6 0.95 136.5 0.95 0.321 0.023 0 281 0.020 136.76 0.94 137.66 1.29	Avg. HP THC CO 137.3 0.93 1.60 136.8 0.94 1.60 136.6 0.92 1.54 136.6 0.95 1.61 0.321 0.023 0.028 0.281 0.020 0.025 136.76 0.94 1.59 137.66 1.29 2.56	Avg. HP THC CO NOX 137.3 0.93 1.60 5.43 136.8 0.94 1.60 5.37 136.6 0.92 1.54 5.06 136.6 0.98 1.60 5.30 136.5 0.95 1.61 5.27 0.321 0.023 0.028 0.141 0.281 0.020 0.025 0.123 136.76 0.94 1.59 5.29 137.66 1.29 2.56 7.09	137.3 0.93 1.60 5.43 4.96 136.8 0.94 1.60 5.37 4.98 136.6 0.92 1.54 5.06 4.58 136.6 0.92 1.54 5.06 4.58 136.6 0.98 1.60 5.30 4.80 136.5 0.95 1.61 5.27 4.77 0.321 0.023 0.028 0.141 0.163 0.281 0.020 0.025 0.123 0.142 136.76 0.94 1.59 5.29 4.82 137.66 1.29 2.56 7.09

Heavy Viscon Dosage at 10 Times Normal Concentrations 10 oz/20 gallons of fuel

		Grams per bhp-hour								
Test No. /	Avg. HP	THC	со	NOX	NO	PM+H7				
8MLPHD01	136.4	0.92	1.52	5.28	4.80	0.154				
8MLPHD02	136.5	0.88	1.49	5.12	4,60	0.147				
8MLPHD03	136.6	0.88	1.57	5.25	4.72	0.156				
Viscon H	eavy Dose A	fter								
1000 ho	136.5	0.89	1.53	5.22	4.71	0.152				
Std Deviation	0.10	0.02	0.04	0.09	0.10	0.00				
95% C.L.	0.11	0.03	0.05	0.10	0.11	0.01				
% Improvement										
Compared to Baseline	-0.8	30.7	40.4	26.4		50.5				

 Provides the +/- confidence interval of the average values. The average or mean value is expected to be within this +/- range with 95% confidence.

All data were obtained at the ISO 9000-2001 Registered Olson-EcoLogic Engine Testing Laboratory in Fullerton, California

.

Table 2

Las Palmas Super Biodiesel Caterpillar Model 3306 Diesel Engine All Data Obtained at Olson-EcoLogic Independent Engine Testing Laboratory ISO 8178 8-Mode Steady-State Test Protocol

		Gram	s per BHP-ł	łr	
	HP	THC	· co	NOx	PM
5 test Baseline average					
before durability testing	137.7	1.29	2.56	7.09	0.308
	Biodiesel B hours of du			n	
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	un	**************************************	Grams per		DM
Test No.	HP	THC	ĊO	NOx	PM
8MBIOC01	135.9	0.93	1.57	5.41	0.174
8MBIOC02	137.1	0.92	1.47	5.40	0.181
8MBIOC03	135.4	0.93	1,43	5.30	0.170
8MBIOC04	136.6	0.94	1.50	5.37	0.167
8MBIOC05	136.4	0.95	1.46	5.34	0.149
Average of 5 tests	136.28	0.934	1.486	5.364	0.168
Std. Dev.	0.653	0.011	0.053	0.045	0.012
95% C.L.	0.573	0.010	0.047	0.039	0.010
% Improvement	• •••••		y w arys a mi		
Compared to Baseline	-1.0%	27.6%	42.0%	24.3%	45.4%

Table 3 (preliminary) Las Palmas Oil and Dehydration Company Caterpillar Model 3306 Diesel Engine ISO 8178 8-Mode Steady-State Emission Testing All Testing was Accomplished at Olson-Ecoleogic Engine Testing Laboratory

> Super Biodiesel B20 in No. 2 diesel fuel after 1000 hours of durability engine operation

	Grams per BHP-Hr					
Test No. 🖌 H	р тнс	СО	NOx	NO	PM	
8MBIOC06 136.	.9 0.80	1.29	5.89	4.92	0.150	
8MBIOC07 135.	1 0.75	1.29	5.93	4.91	0.169	
8MBIOC08 136.	.7 0.76	<u></u> 1.31	6.00	4.80	0.169	
Average of 3 tests 136.2	1 0.770	1.297	5,940	4.877	0,163	
Std. Dev. • 10.96		0.012	0.056	0.067	0.011	
95% Ct. 1.09	5	0.013	0.063	0.075	0.012	
% Improvement		•				

40 39

1%

1

16.2%

49.3%

% improvement	
Compared to Baseline	5

47.2%