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Although relationships among the major groups of living gnathostomes are

well established, the relatedness of early jawed vertebrates to modern clades

is intensely debated. Here, we provide a new description of Gladbachus, a

Middle Devonian (Givetian approx. 385-million-year-old) stem chondrichth-

yan from Germany, and one of the very few early chondrichthyans in which

substantial portions of the endoskeleton are preserved. Tomographic and

histological techniques reveal new details of the gill skeleton, hyoid arch

and jaws, neurocranium, cartilage, scales and teeth. Despite many features

resembling placoderm or osteichthyan conditions, phylogenetic analysis

confirms Gladbachus as a stem chondrichthyan and corroborates hypotheses

that all acanthodians are stem chondrichthyans. The unfamiliar character

combination displayed by Gladbachus, alongside conditions observed in

acanthodians, implies that pre-Devonian stem chondrichthyans are severely

under-sampled and strongly supports indications from isolated scales that

the gnathostome crown group originated at the latest by the early Silurian

(approx. 440 Ma). Moreover, phylogenetic results highlight the likely conver-

gent evolution of conventional chondrichthyan conditions among earliest

members of this primary gnathostome division, while skeletal morphology

points towards the likely suspension feeding habits of Gladbachus, suggesting

a functional origin of the gill slit condition characteristic of the vast majority of

living and fossil chondrichthyans.
1. Introduction
The early evolution of the Chondrichthyes (cartilaginous fishes) has long been

obscured by an impoverished fossil record [1–3]. This has only recently been

improved through discoveries of partly articulated bodies [4–7] and braincases

from the Lower and Middle Devonian [8–10], coupled with computed tomogra-

phy (CT) [11–16]. The Lower and Middle Devonian record of chondrichthyans

remains sparse, but the influx of high-quality data from slightly younger material,

especially from the Upper Devonian and Carboniferous [14–17], combined with

insights from earlier studies [18–21] has transformed our understanding of the

early evolution of the crown group (Holocephali and Elasmobranchii). In a comp-

lementary manner, the origin of total-group Chondrichthyes has been amended

by serial large-scale analyses of early gnathostome phylogeny [22–27], which

consistently recover acanthodians [28] as stem chondrichthyans. However,

because the acanthodian and chondrichthyan taxa included in these data matrices

are largely unaltered from Brazeau [29] and Davis et al. [30], these results are not

truly independent.
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Here, we present a CT analysis and redescription of

Gladbachus adentatus [31] from the Middle Devonian (Givetian

approx. 385-million-year-old) of Germany, one of the earliest

chondrichthyans known from articulated remains. Unlike

Doliodus [1,4–7], the earliest and most completely described

‘unambiguous’ stem chondrichthyan [32], Gladbachus has

never been included among acanthodians, but, like Doliodus,
recent analyses and discussion [16,32] suggest that it might illu-

minate conditions bridging the acanthodian–chondrichthyan

transition. Thus, a primary aim of the present work is to test

the assumed chondrichthyan affinity of Gladbachus in light of

the current acanthodians-as-stem-chondrichthyans hypothesis.

Here, we have constructed a new early gnathostome database,

with an augmented chondrichthyan component with taxa and

characters from analyses by Pradel et al. [14], Coates et al. [16]

and Coates & Tietjen [17]. This analysis presents the most

detailed context, thus far, to reconstruct the evolutionary assem-

bly of the chondrichthyan morphotype: a body plan that has

persisted, more or less conservatively, for at least 370 Myr.
418
2. Material and methods
(a) Specimens
The subject of this study, Gladbachus adentatus [31] is known from a

single, dorsoventrally compressed individual, UMZC (University

Museum of Zoology, Cambridge, UK) 2000.32 [31,33], collected

from the Lower Plattenkalk, Upper Givetian, Upper Middle Devo-

nian, of Unterthal, Bergisch Gladbach (Germany). The specimen

(electronic supplementary material, figure S1) consists of three

pieces embedded within a rectangular slab of resin, with only

the dorsal surface visible for direct inspection.

(b) Computed tomography, anatomical reconstruction
and histological thin sections

Whole specimen scans: large-scale scans were completed by

the high-resolution X-ray CT facility at the University of Texas

at Austin (UTCT, www.digimorph.org).

Scales, denticles, teeth and calcified cartilage were examined

using synchrotron mCT: all data were collected at beamline

13-BM-D at the Advanced Photon Source at Argonne National

Laboratory. Image reconstruction used the GSECARS tomography

processing software (http://cars9.uchicago.edu/software/idl/

tomography.html), which dark-current corrects and white-field

normalizes acquired data prior to performing gridding-based

image reconstruction. Further details are provided in the electronic

supplementary material.

Histological thin sections: doubly polished thin sections were

studied using a Zeiss Axioskop Pol microscope equipped with

Nomarski DIC optics.

Anatomical reconstruction: Mimics v. 17 (biomedical.materiali-

se.com/mimics; Materialise, Leuven, Belgium) was used for the

three-dimensional modelling, including segmentation, three-

dimensional object rendering, STL polygon creation and kinematics.

3D Studio Max (Autodesk.com/products/3ds-max; Autodesk,

San Rafael, USA) was used for further editing of the STLs (colour,

texture, lighting), kinematics and mirroring for the final restoration.

(c) Phylogenetic and phenetic analysis
The phylogenetic data matrix are developed from sources includ-

ing iterations of the early gnathostome data matrix by Brazeau

[29], Davis et al. [30] and Zhu et al. [22]; most recently updated

by Lu et al. [23], Qiao et al. [26], Zhu et al. [27] and Burrow

et al. [34]. Chondrichthyan content includes substantial additions
of new data drawn from Pradel et al. [14,15], Coates et al. [16] and

Coates & Tietjen [17], and observation of original specimens

(electronic supplementary material).

Phylogenetic methods: the primary character matrix consists

of 84 in-group taxa and two out-group taxa (Galeaspida and

Osteostraci) coded for 262 characters. Character and taxon

sampling sources and discussion are provided in the electronic

supplementary material. Phylogenetic analyses used maximum-

parsimony implemented in PAUP* 4.0.152 [35]. Nodal support

was assessed via bootstrapping [36] and Bremer Decay Indices

[37], carried out using AutoDecay [38] and PAUP*. Details of phy-

logenetic methods are provided in the electronic supplementary

material. Character state transitions by node for the strict consen-

sus cladogram of the MPTs were reconstructed in PAUP*

assuming hard polytomies with DELTRAN [39] optimization

(see Davis et al. [30], Coates et al. [16]).

A principal coordinate (PCO) analysis [40,41] was performed

on the Hamming distance matrix [42] of the character data. Com-

puted dissimilarity was restricted to characters coded for both

taxa, and distances were normalized to the number of characters

coded for both members in each taxon pair. For the PCO, all

characters were treated as equally weighted and unordered.
3. Results
(a) Specimen description, including (b) results of

computed tomography, anatomical reconstruction
and thin section histology

Head length including the gill skeleton (figure 1a,b) is approxi-

mately 21 cm, and head plus trunk length as preserved with

the caudal region mostly absent is approximately 60 cm (elec-

tronic supplementary material, figure S1), implying a total

body length of approximately 80 cm.

Although considered one of the few ‘unambiguous sharks’

of the Lower and Middle Devonian [32], details of Gladbachus
anatomy do not conform in a straightforward manner with

contemporary models of early chondrichthyan anatomy. The

internal skeleton consists of calcified cartilage with no peri-

chondral bone, yet the cartilage surface lacks the tightly

connected tesserae that is a hallmark of chondrichthyan skel-

etal anatomy [15,43]. Rather, most cartilage surfaces bear a

mesh of continuously calcified ridges (electronic supplemen-

tary material, figure S2), broadly resembling the ‘wood-like’

[44] texture observed in some Mesozoic elasmobranchs. Dis-

crete tesserae are visible only in the walls of the semicircular

canals, but these are irregularly sized and shaped, with

broad inter-tesseral spaces. Thin section histology and synchro-

tron microtomography show that poorly delineated tesserae

are distributed elsewhere in the skeleton, but concealed

beneath the continuously mineralized cartilage surface.

The dermal skeleton includes no large plates. Head scales

(figure 1d) are mostly larger than trunk scales (figure 1f), and

the lateral line runs between scales. However, scale shape,

composition and histology are remarkable, as they resemble

conditions observed in ‘placoderms’ [33,45], and differ mark-

edly from polyodontode scales like those of Doliodus [4,46]

and mongolepids [47,48]. In Gladbachus, scale and branchial

denticle crowns consist of overlapping, mono-layered, cellular

dentine tubercles (electronic supplementary material, figure

S3), lacking neck and basal canals. The standard, total-group

chondrichthyan scale growth pattern of areally apposed odon-

todes [32] is absent, as are growing monodontode scales [49],

http://www.digimorph.org
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Figure 1. Gladbachus adentatus Heidtke & Krätschmer [31]. (a) Rendering of cranial and pectoral girdle remains in dorsal view and (b) ventral view; (c) mandibular
tooth; (d ) cranial roof scale; (e) branchial denticle; ( f ) trunk scale. All denticles and scales are rendered semi-transparent from micro-computed tomography
scans. bhy, basihyal; chy, ceratohyal; hb, hypobranchial; mc, Meckel’s cartilage; na, neural arches; nc, neurocranium; or, orbital ring; pop, postorbital process;
pq, palatoquadrate; sco, scapulocoracoid.
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and the non-growing placoid scales characteristic of modern

chondrichthyans. Instead, the reconstructed growth pattern of

Gladbachus scales is linear and bidirectional. Most unusually

for a chondrichthyan, the cranial scales are asymmetric, with

irregular and inconsistent shapes. Fin spines, and spines associ-

ated with girdles and the flank region, are completely absent.

The anterior section of the braincase is not preserved

(figure 1a,b), thus evidence of a precerebral fontanelle

is unknown, contra Heidtke & Kratschmer [31]. The right postor-

bital process includes traces of a jugular canal, and a groove on

the posterior surface, probably for articulation with the upper

jaw (electronic supplementary material, figure S4). The basi-

cranium is compressed against the subjacent visceral arches,

and too poorly preserved to demonstrate the presence or

absence of a ventral cranial fissure, or canals for all or part of

the dorsal aorta network. Reconstructions of the vestibular,

semicircular canals and ampullary spaces (electronic sup-

plementary material, figure S4c) demonstrate that the otic

capsules were large and widely separated across the midline.

In extant gnathostomes, this degree of lateral separation is mani-

fest only in embryonic forms, and resemble adult conditions

observed in ‘placoderms’ [50–53]. A pair of ring-shaped struc-

tures flanking the dorsal ridge, next to the anterior lip of the

persistent otico-occipital fissure probably represents endo-

lymphatic duct openings. This location for the endolymphatic

ducts is consistent with the absence of an endolymphatic fossa

or single, median endolymphatic foramen, which characterizes

all Recent and fossil conventional chondrichthyans.

The jaws, hyoid arch and gill skeleton are exceptionally com-

plete (figures 1a,b and 2; electronic supplementary material,
figure S5), providing ready comparison with recently described

in-group [15,54] and out-group [55] examples. The mandibular

arch morphology (electronic supplementary material, figure S6)

is more conventional than previously understood. In contrast

with previous descriptions [31,56], there is no palatal symphy-

sis. The difference in length between the upper and lower jaws

is considerable (figure 2e), and comparable to conditions in

Acanthodes [30,57], implying that a significant portion of the

upper dentition was borne on the underside of the neuro-

cranium; presumably on the internasal plate (cf. Ptomacanthus
[29]; Doliodus [5]). Notably, the scales and teeth (mixed) border-

ing the gape are preserved as continuous, subparallel bands

spanning the inter-orbital space (figure 1a,b). The palato-

quadrate is generally comparable to that of an early,

conventional chondrichthyan (e.g. Orthacanthus [58]). The

well-developed otic process bears a broad posterodorsal rim;

the palatine process is broad and short, but there is no evidence

of a flange or process contributing to a palatobasal articulation

(figure 2a). Preserved most completely on the left side of the

specimen, the anterior of the palate is thrust beneath the postor-

bital process (figure 1a). The section of jaw visible in front of the

preserved portion of the braincase is the anterior extremity of

Meckel’s cartilage. The posterior portion of Meckel’s cartilage

is also exposed on the dorsal surface of the specimen, but rotated

through 908, such that the dorsal surface is compressed against

the mesial surface of the palatoquadrate.

The hyoid arch (figures 1a,b and 2c,d) is morphologically

distinct from the gill arches. There is no interhyal, and both

the large and well-mineralized ceratohyal and slender first

ceratobranchial articulate with a broad basihyal. The five gill
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Figure 2. Gladbachus adentatus Heidtke & Krätschmer [31]. (a) Palatoquadrate; (b) Meckel’s cartilage; (c) jaws, hyoid arch and gill arches restored, dorsal view;
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arches (electronic supplementary material, figure S7) are posi-

tioned caudal to the braincase, as in non-

holocephalan chondrichthyans. Epibranchials are present on

the first four arches, with anteriorly directed simple pharyngo-

branchials (with no suprapharyngobranchials) present in the

first three gill arches (figures 1a and 2c) as in osteichthyans

and Ozarcus [15]. A pair of short, laterally directed cartilages

medial to the base of the second gill provide the only evidence

of hypobranchials. The fifth arch ceratobranchials are unusually

broad, nearly rectangular and keeled along the anterior margin.

Remarkably, and uniquely, these resemble the posteriormost

ceratobranchials of Paraplesiobatis, a Lower Devonian ‘placo-

derm’ [55] (electronic supplementary material, figure S8). The

ceratobranchials of Gladbachus’ fourth and fifth gill arches

articulate with a large basibranchial copula, which is separated

from the basihyal process by a large gap. This revised descrip-

tion provides the first accurate association of dorsal to ventral

parts of each arch.

Although reported and named as toothless, Gladbachus pos-

sesses a dentition of small, mono-, bi- and tri-cuspid teeth lining

the jaws, with branchial denticles lining gill arches I–IV

(figure 1a–c; electronic supplementary material, figure S3). The

teeth are individually separate, and despite a suggestion of lin-

gual to labial alignment, there is no trace of whorl-like families

as in conventional, non-holocephalan, chondrichthyans.
(c) Phylogenetic analysis and principal coordinates
analysis

Phylogenetic analysis of the dataset returned 249 600 most

parsimonious trees (TL¼ 691, CI¼ 0.396, RI¼ 0.785, RCI ¼

0.311). The strict consensus cladogram of MPTs (figure 3a;

electronic supplementary material, figure S11) strongly

corroborates recent phylogenetic hypotheses of early gnathos-

tomes [23–27], reconstructing all taxa usually referred to as

acanthodians in a paraphyletic assemblage branching from

the chondrichthyan stem. Here, Gladbachus is also recovered as

a stem chondrichthyan, as the sister taxon to a poorly resolved

set of climatiid acanthodians and conventional chondrichthyans

(including crown clade Chondrichthyes). A monophyletic

group uniting diplacanthid, ischnacanthid and acanthodid

acanthodians forms a clade that is the sister group of all other

total-group chondrichthyans, including Gladbachus.
The widely discussed Lower and Middle Devonian sharks

Doliodus and Pucapampella branch from close to the apex of the

chondrichthyan stem. Pucapampella is recovered in an uncertain

position relative to several ‘acanthodian’ genera and the clade

of conventional chondrichthyans. Doliodus is recovered as a

sister taxon to conventional chondrichthyans.

Contra Qiao et al. [26] and Zhu et al. [27], Ramirosuarezia is

not recovered among ‘acanthodian’ stem chondrichthyans,
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but rather, is nested among stem gnathostomes, with other

taxa, such as Qilinyu, Entelognathus and Janusiscus branching

crownward of the paraphyletic placoderms.
Within the chondrichthyan crown group, xenacanths and

ctenacanths (sensu lato) form a clade branching from the

elasmobranch stem. A further, poorly resolved cluster,
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including Homalodontus, Tristychius, Acronemus and hybodon-

tids, branches from more crownward nodes, suggesting

successive sister groups to the elasmobranch crown and close

relatives. Holocephalans include the symmoriids, corroborat-

ing the arrangement found in Coates et al. [16].

A phylogenetic analysis on a reduced sample of chon-

drichthyans, focusing on the relationships among stem

members (figure 3b), recovered 24 MPTS, with a mostly

resolved set of relationships among acanthodians along the

chondrichthyan stem. In this reduced analysis, Gladbachus
again branches from within the ‘acanthodians’, suggesting

that the position of Gladbachus within this paraphyletic assem-

blage is not the result of noise introduced into the dataset by

the large chondrichthyan sample.

PCO analysis of the character data recovers all four of the

traditional gnathostome divisions (‘placoderms’, ‘acantho-

dians’, osteichthyans and chondrichthyans) as discrete

clusters in the space defined by the first three PCO axes

(figure 3c,d). Notably, Gladbachus clusters with chondrichth-

yans in the PCO, despite its phylogenetic position among

‘acanthodians’. Gladbachus, Doliodus and Pucapampella each

occupy positions in PCO space between conventionally

defined chondrichthyans and ‘acanthodians’; however, these

three genera are all significantly closer in PCO space to chon-

drichthyan taxa than to ‘acanthodians’ (t-tests of the inter-

taxon distances in PCO space for Gladbachus, Doliodus and

Pucapampella yield p-values of 1.39 � 1026, 0.01 and 8.65 �
1028, respectively).
4. Discussion
(a) Tree shapes and implications for evolutionary

timescale
Owing principally to its plesiomorphic scale conditions and the

absence of a dentition consisting of toothwhorls, Gladbachus is

reconstructed close to the base of chondrichthyan total-group

(figure 3a,b), removed from Doliodus and Pucapampella, which

have traditionally been ascribed to the Chondrichthyes, but

interleaved among taxa normally referred to as ‘acanthodians’.

Accordingly, despite a phenetic similarity to conventionally

defined chondrichthyans, phylogenetically, Gladbachus is an

acanthodian-grade stem chondrichthyan.

Support for the acanthodian branching pattern is weak

(electronic supplementary material, figure S11), but consistent

with recent analyses [23–27]. Recent reconstructions have

recovered traditional acanthodian family-level sets: acantho-

dids, ischnacanthids, diplacanthids and climatiids (electronic

supplementary material, figure S9). In all of these trees, the cli-

matiids group with conventional chondrichthyans, echoing

results of Brazeau [29] and Davis et al. [30]. Diplacanthids, isch-

nacanthids and acanthodids fall into one of two arrangements:

(i) as successive sister groups to more crownward taxa [25,27],

or (ii) as in the present analysis, a monophyletic clade [23,24].

Here, we propose resurrecting the term Acanthodii to define

the diplacanthid–ischnacanthid–acanthodid clade.

Support for the chondrichthyan crown clade is strong

(figure 3a), introducing new data for the elasmobranch branch

and corroborating the topology found in Coates et al. [16].

A time-calibrated phylogeny using the strict consensus tree

(figure 4) places the origin of the crown group at least as early

as the end-Middle Devonian. The initial evolutionary radiation
of crown chondrichthyans is primarily post-Devonian, forming

a significant component of the vertebrate recovery after the

end-Devonian Hangenberg extinction [60,61], which is evident

from faunas recorded at Lower Carboniferous localities such as

Glencartholm [62], Bearsden [62] and Bear Gulch [63,64].

Conventional chondrichthyan conditions, exemplified

by Doliodus [4], are present by the middle-Lower Devonian

(Pragian: approx. 410 Ma), and a minimum date for the origin

of the chondrichthyan total-group is currently tethered to the

late Silurian (Ludlow: approx. 423 Ma) by the earliest well-

preserved osteichthyan (Guiyu) [65]. However, the earliest

‘acanthodian’ stem-chondrichthyan body fossils (Nerepisa-
canthus) are only slightly younger (Pridoli: approx. 419 Ma)

[66], and a wide variety of ‘acanthodians’ are known from the

Lower Devonian (e.g. Ptomacanthus, Brochoadmones, Cassidiceps
and Promesacanthus [29,67–70]). Such diversity, first apparent

in the Lochkovian (figure 4) supported by a taphonomically

biased record of articulated specimens, implies either a sudden

radiation in the early Lower Devonian or a severely under-

sampled history of Silurian stem sharks. The latter hypothesis

is supported by isolated scales scattered through the Middle

Ordovician to Silurian [48,49], including strikingly characteristic,

classically defined ‘acanthodian’ scales from the Rhuddanian

(Llandovery approx. 440 Ma) of the Siberian Platform [71].

In the present phylogenetic context, we prefer to combine the

micro- and macro-/articulated fossil records, which strongly

suggest that the chondrichthyan total-group, and, therefore, the

gnathostome crown node, dates to at least the earliest Silurian,

approximately 440 Ma. Thus, the early history of chondrichth-

yans consists of two phases (figure 4): a Silurian–Devonian

evolutionary radiation of micromeric, acanthodian-like taxa,

and a subsequent Carboniferous radiation of the crown clade,

initially dominated by holocephalans [16,64].
(b) Palaeobiological inferences
Gladbachus adds to an increasingly populated chondrichthyan

stem lineage that also includes Acanthodes [24,30], Ptomacanthus
[29,67], Pucapampella [8–10] and Doliodus [4–7]. The resultant

data on early chondrichthyan morphological diversity captures

endoskeletal details comparable to the content of early

osteichthyans, contributing to a more balanced interpretation

of the initial gnathostome radiation. However, there is no

straightforward emerging sequence of character acquisition

for the chondrichthyan crown group (crown clade apomorphies

are listed in electronic supplementary material, figure S10). The

current analysis highlights conflicting patterns of character-

state distributions, implying repeated and convergent evolution

of chondrichthyan-like specializations among the earliest total-

group members. For Gladbachus, PCO analysis clearly identifies

the chondrichthyan-like nature of its body plan (figure 3c), but

this stands in marked contrast to its reconstruction as represen-

tative of a previously unrecognized ‘acanthodian’ lineage

(figures 3a,b and 4). Gladbachus approaches a quantifiably

defined shark space, but does so from a phylogenetically dis-

tinct origin (electronic supplementary material, figure S10).

The character combination observed in Gladbachus, along-

side the array of contrasting conditions observed in Early

Devonian acanthodians (figure 4), defies conventional hypo-

theses of morphologically segregated acanthodian and

chondrichthyan morphotypes, reinforcing the hypothesis that

pre-Devonian stem-chondrichthyan diversity is fundamentally

under-sampled. Reasons for the absence of substantial Silurian
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Figure 4. Early chondrichthyan phylogeny: simplified strict consensus of phylogenetic analysis results calibrated against Ordovician – Carboniferous chronostrati-
graphic chart. Consensus computed from matrix with 86 taxa and 262 characters. Taxon bar colour: black, non-chondrichthyan; magenta, acanthodid stem
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Complete cladogram shown in figure 3a.
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remains of crown gnathostomes are unclear, although restricted

environmental specificity has been conjectured [72]. Gladbachus
is a morphotypic outlier, in the sense that although phylogeneti-

cally placed within the acanthodian grade, it lacks fin spines, its
scales lack synapomorphies shared with any acanthodian

subgroup and its estimated body length (electronic supple-

mentary material, figure S1) is two to three times greater than

contemporary or earlier ‘acanthodians’, with the notable
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exception of gyracanthids [61]. Furthermore, several features of

the skeletal morphology suggest that Gladbachus was a continu-

ous ram suspension feeder [73], somewhat like modern basking

sharks (Cetorhinus). The head, including the gill skeleton,

accounts for approximately 25% of estimated total body

length, the reconstructed oral aperture is likely to have been in

a near-perpendicular plane to the direction of forward move-

ment, the dentition is minimal, and the lower jaw is long and

slender (figure 2b,c). To the best of our knowledge, this is the ear-

liest combination of such features known in any jawed

vertebrate, adding to an emerging picture of total-group chon-

drichthyans as early, nektonic specialists, in contrast with the

reconstructed demersal habits of their heavily skeletonized

osteichthyan and ‘placoderm’ contemporaries [74]. Aspects of

this character suite occur repeatedly among stem chondrichth-

yans, suggesting that the familiar gill slit condition of sharks

might originate from such early, and apparently multiple,

natural experiments in suspension feeding.
172418
5. Conclusion
Gladbachus offers a glimpse of early chondrichthyan diversity

yet to be discovered. Significantly, Gladbachus scales, if dis-

covered as isolated specimens, would be unrecognizable as

chondrichthyan in the new, total-group sense, unlike an

increasing variety of Silurian and Ordovician [47–49,75]

scale-based taxa assigned with increasing confidence to the

chondrichthyan total-group. Insights offered by Gladbachus
and other early chondrichthyans suggest that the morphologi-

cal disparity in the early members of the chondrichthyan total-

group was probably substantially greater than that which is
observed in the more-or-less stable shark morphotype which

has persisted from the Middle Devonian through to the pre-

sent. Accordingly, the importance of Gladbachus lies in its

apparent morphological incongruence with its phylogenetic

position, hinting at multiple paths leading to the modern

shark-like body plan.
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