dlifgliltlall

VAX-11 COBOL-74
User’s Guide
Order No. AA-C986A-TE

VAXII

January 1979

This document describes how to use the VAX-11 COBOL-74 compiler.

VAX-11 COBOL-74
User’s Guide
Order No. AA-C986A-TE

OPERATING SYSTEM AND VERSION: VAX/VMS V01.5
SOFTWARE VERSION: VAX-11 COBOL-74 V04

To order additional copies of this docunient, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation . mcghdrd, massachusetts

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a 1license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or

reliability of its software on equipment that is not supplied by
Digital.

Copyright ©) 1979 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the wuser's «critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI

DECnet IAS

5/79-14

PREFACE
ACKNOWLEDGMENTS
CHAPTER 1
CHAPTER 2
2.1
2.1.1
2.1.2
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.3
2.4
2.4.1
2.4.2
CHAPTER 3
3.1
3.2
3.2.1
3.2.2
3.3
3.4
3.4.1
3.4.1.1
3.4.1.2
3.4.2
3.5
3.6
3.6.1
3.6.2
3.6.2.1
3.6.2.2
3.6.3
3.6.4
3.6.5
3.6.6
3.7
3.7.1
3.7.2
3.7.3
3.7.4
3.7.5
3.7.6
3.8
3.8.1

CONTENTS

INTRODUCTION
USING THE VAX-11 COBOL-74 SYSTEM

CREATING A SOURCE FILE
Choosing a Reference Format
Entering a Source Program
USING THE COMPILER
The Command Line Format
Command Qualifiers
Error Message Summary
Common COBOL-74 Command Line Errors
LINKING COBOL-74 PROGRAMS
EXECUTING A COBOL IMAGE
Setting and Resetting Program Switches
The RUN Command

NON-NUMERIC DATA HANDLING

INTRODUCTION
DATA ORGANIZATION
Group Items
Elementary Items
SPECIAL CHARACTERS
TESTING NON-NUMERIC FIELDS
Relation Tests
Classes of Data
The Comparison Operation
Class Tests
DATA MOVEMENT
THE MOVE STATEMENT
Group Moves
Elementary Moves
Edited Moves
Justified Moves
Multiple Receiving Fields
Subscripted Moves
Common Errors, MOVE Statement
Format 2, MOVE CORRESPONDING
THE STRING STATEMENT
Multiple Sending Fields
The POINTER Phrase
The DELIMITED BY Phrase
The OVERFLOW Phrase
Subscripted Fields in STRING Statements
Common Errors, STRING Statement
THE UNSTRING STATEMENT
Multiple Receiving Fields

iii

Page
xiii

Xiv

N
I [}
[

LI I I R I |
wN N

DDNODNDNDODNDNDNDNDNDNDNDN
|
HHEFFOOOOWMNDNMDNDHE

WWWWWwuwwuwwuwuwwwwwww w
|
HHEOWOWOIIOOUIESE_WNDNDN - -

CHAPTER

CONTENTS (Continued)

The DELIMITED BY Phrase
Multiple Delimiters
The COUNT Phrase
The DELIMITER Phrase
The POINTER Phrase
The TALLYING Phrase
The OVERFLOW Phrase
Subscripted Fields in UNSTRING Statements
Common Errors, UNSTRING Statement
THE INSPECT STATEMENT
The BEFORE/AFTER Phrase
Implicit Redefinition
The INSPECT Operation
Setting the Scanner
Active/Inactive Arguments
Finding an Argument Match
Subscripted Fields in INSPECT Statements
The TALLYING Phrase
The Tally Counter
The Tally Argument
The Tally Argument List
Interference in Tally Argument Lists
The REPLACING Phrase
The Search Argument
The Replacement Value
The Replacement Argument
The Replacement Argument List
Interference in Replacement Argument Lists
Common Errors, INSPECT Statement

e & ¢ s e s o o 8 s e s e e o
WO WO WO WO W WO W WL WO WYL OO oo 0 ®©
. e c ¢ ¢ s e o o o &
CONOUTE WM N

. e .

w N+ (-

o o o o
LS SN

e o o o o o

(G200 NN S

WWWWWWWwWwwWwwuwwuwwwwuwuwuwuwuwuwwwwwwuww

NooooooutunnuunuewwwwN -

NUMERIC CHARACTER HANDLING
USAGES
DISPLAY
COMPUTATIONAL
COMPUTATIONAL-3
DECIMAL SCALING POSITION
SIGN CONVENTIONS
ILLEGAL VALUES IN NUMERIC FIELDS
TESTING NUMERIC FIELDS
Relation Tests
Sign Tests
Class Tests
THE MOVE STATEMENT
Group Moves
Elementary Numeric Moves
Elementary Numeric Edited Moves
Common Errors, Numeric MOVE Statements
THE ARITHMETIC STATEMENTS
Intermediate Results
The ROUNDED Phrase
The SIZE ERROR Phrase

¢« o o
w N -

o o o
w N =

= w N -

NN ooooonuunnunndd WNNHEFEHE

o N A A L I T Y S
o o
w N -

iv

Page

3-25
3-29
3-30
3-31
3-32
3-34
3-36
3-37
3-39
3-39
3-40
3-42
3-43
3-45
3-45
3-46
3-47
3-48
3-48
3-48

w
|
wm
o

3-51

www
[

(SO, NF,]
~Nowm

3-58

|
wm
[eo]

www
{ U N T N N I |
[e) <))
oo

e
o

|
HHEWOWOO IO UT® WN -

[(8]

[R S A A I I I T R
|

|
AP
> W W

4-15

CONTENTS (Continued)

Page
4.7.4 The GIVING Phrase 4-16
4.7.5 Multiple Operands in ADD and SUBTRACT
Statements 4-16
4.7.6 The ADD Statement 4-17
4.7.7 The SUBTRACT Statement 4-18
4.7.8 The MULTIPLY Statement 4-18
4.7.9 The DIVIDE Statement 4-19
4.7.10 The COMPUTE Statement 4-20
4.7.11 Common Errors, Arithmetic Statements 4-20
4.8 ARITHMETIC EXPRESSION PROCESSING 4-21
CHAPTER 5 TABLE HANDLING 5-1
5.1 INTRODUCTION 5-1
5.2 DEFINING TABLES 5-1
5.2.1 The OCCURS Phrase - Format 1 5-2
5.2.2 The OCCURS Phrase - Format 2 5-3
5.3 MAPPING TABLE ELEMENTS 5-3
5.3.1 Initializing Tables 5-7
5.4 SUBSCRIPTING AND INDEXING 5-9
5.4.1 Subscripting with Literals 5-10
5.4.2 Operations Performed by the Software 5-11
5.4.3 Subscripting with Data-Names 5-12
5.4.4 Operations Performed by the RTS 5-12
5.4.5 Subscripting with Indexes 5-13
5.4.6 Operations Performed by the RTS 5-14
5.4.7 Relative Indexing 5-14
5.4.8 Index Data Items 5-15
5.4.9 The SET Statement 5-16
5.4.10 Referencing a Variable-Length Table
Element at RTS Time 5-17
5.4.11 Referencing a Dynamic Group at RTS Time 5-17
5.4.12 The SEARCH Verb 5-17
5.4.13 The SEARCH Verb - Format 1 5-18
5.4.14 The SEARCH Verb - Format 2 5-19
CHAPTER 6 INPUT-OUTPUT PROCESSING 6-1
6.1 RECORD FORMAT 6-2
6.1.1 Fixed-length 6-2
6.1.2 Variable-length 6-3
6.1.3 Variable with Fixed-length Control 6-3
6.2 RECORD SIZE 6-4
6.3 RECORD BLOCKING 6-5
6.3.1 Sequential Files on Magnetic Tape 6-6
6.3.2 Sequential Files on Disk 6-7
6.3.3 Relative Files 6-8
6.3.4 Indexed Files 6-9
6.4 CURRENT RECORD AREA 6-10
6.4.1 Effects on Output Operations 6-10
6.4.2 Effects of Input Operations 6-11
6.4.3 Sharing Record Areas 6-11

CONTENTS (Continued)

Page
6.5 I/0 BUFFERS 6-13
6.5.1 RMS Buffer Defaults 6-13
6.5.2 Multiple Buffers (RESERVE Clause) 6-13
6.5.3 Sharing Buffers (SAME AREA Clause) 6-14
6.6 OPENING FILES 6-14
6.6.1 I/0 Operations 6-14
6.6.2 OPEN Statement Execution 6-16
6.7 NAMING FILES 6-17
6.7.1 File Specifications 6-17
6.7.2 Logical Names 6-19
6.7.3 ASSIGN and VALUE OF ID Clauses 6-20
6.7.4 File Switches (PDP-11 COBOL Compatibility) 6-22
6.8 FILE COMPATIBILITY 6-24
6.8.1 Data Type Differences 6-24
6.8.2 Data Record Formatting Differences 6-25
6.8.3 Special Control Characters 6-25
6.9 I/0 ERROR PROCESSING 6-25
6.10 LOW-VOLUME I/0 (ACCEPT AND DISPLAY) 6-26
6.10.1 Mnemonic-Names (SPECIAL-NAMES Paragraph) 6-27
6.10.2 Logical Name "Devices" 6-27
6.10.3 ACCEPT Statement 6-28
6.10.4 DISPLAY Statement 6-29
CHAPTER 7 GOOD PROGRAMMING PRACTICES 7-1
7.1 FORMATTING THE SOURCE PROGRAM 7-1
7.2 USE OF PUNCTUATION 7-5
7.3 USE OF THE ALTER STATEMENT 7-5
7.4 USE OF THE PERFORM STATEMENT 7-6
7.5 USE OF LEVEL-88 CONDITION NAMES 7-17
7.6 USE OF. QUALIFIED REFERENCES 7-9
7.6.1 Qualified Data References 7-9
7.6.2 Guideline 1 (Data Item Definition) 7-12
7.6.3 Guideline 2 (Reference Format) 7-12
7.6.4 Guideline 3 (Unique Referability) 7-13
7.6.5 Qualified Procedure References 7-13
7.6.6 Qualification and Compiler Performance 7-13
CHAPTER 8 REFORMAT UTILITY PROGRAM 8-1
CHAPTER 9 DEBUGGING COBOL PROGRAMS 9-1
9.1 DEBUG CONCEPTS 9-1
9.2 PREPARING TO DEBUG A PROGRAM 9-2
9.2.1 SET LANGUAGE COBOL Command 9-2
9.2.2 MODULE Commands: SET, SHOW, and CANCEL 9-2
9.2.3 SCOPE Commands: SET, SHOW, and CANCEL 9-3
9.3 SPECIFYING LOCATIONS 9-4
9.3.1 Location Types 9-4
9.3.2 Resolving Location Ambiguities 9-5

vi

CHAPTER

CHAPTER

CHAPTER

« o o
o o
NSOy Ww N

[\ S

WWOWWWYWWOWWOWWOWWOWYWOOUY
e o o o o o
(o NSRS BN I S

10

10.1
10.1.1
10.1.2
10.1.3
10.2
10.2.1
10.2.2
10.2.2.1
10.2.2.2

11

11.1
11.2
11.2.1
11.2.2
11.3
11.4
11.5
11.5.1
11.5.2
11.5.3
11.5.4
11.5.5
11.5.6
11.6

12

12.1
12.2
12.3
12.4
12.5

CONTENTS (Continued)

CONTROLLING PROGRAM EXECUTION
BREAK Commands: SET, SHOW, and CANCEL
TRACE Commands: SET, SHOW, and CANCEL
WATCH Commands: SET, SHOW, and CANCEL
GO and STEP Commands
CTRL/Y Command (Interrupting the Image)
EXIT Command
SHOW CALLS Command

EXAMINING AND CHANGING DATA
EXAMINE Command
DEPOSIT Command

SAMPLE DEBUG SESSION

ERROR MESSAGES

COMPILE-TIME ERROR MESSAGES

Severity Levels

Error Message Printing

Internal Compiler Errors -- System Errors
SYSTEM MESSAGES

Link-Time Error Messages

Run-Time Error Messages

Faulty Program Logic Error Procedures

File I/0 Error Procedures

SORTING IN A COBOL PROGRAM

VAX-11 SORT SUBROUTINE PACKAGE

I/0 INTERFACE METHODS
File I/0 Interface
Record I/0 Interface

KEY DATA AND RECORD AREAS

KEY BUFFER

SORT SUBROUTINES
SOR$PASS_FILES
SORSINIT_SORT
SOR$RELEASE_REC
SORSSORT MERGE
SOR$RETURN_REC
SOR$END_SORT

PROGRAMMING EXAMPLE

USING THE LIBRARY FACILITY

Creating a COBOL Library File

The COPY Statement

The COPY REPLACING Statement

The Source Listing

Common Errors in Using the Library Facility

vii

Page

|
—HFHEEFEFOUWOVOVWOIOULLL

_OOO

O WL WWYWWWWOWWOWWY WYY
|

-
o o)
| 1
-

10-2
10-3
10-3
10-4
10-5
10-5
10-5
10-7

11-1

11-1
11-2
11-2
11-2
11-3
11-4
11-6
11-6
11-7
11-8
11-9
11-10
11-11
11-12

12-1

12-2
12-2
12-4
12-6
12-7

CHAPTER

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

INDEX

FIGURES

FIGURE

13

13.1

13.1.1
13.1.2
13.1.3

B WWWNhNDNNEHEEE
. . . .
[N w N -

e e o o o o o o o
. “ . .
N

OO0 @
g

W W
1
N

CONTENTS (Continued)

OPTIMIZATION

OPTIMIZING FILE DESIGN

Sequential Files

Relative Files

Indexed Files

General Rules for Indexed Files

Bucket Size

Index Depth

Overhead Accumulation
OPTIMIZING PROGRAM ORGANIZATION

Sequential Reading of Indexed Files

Caching Index Roots

Multi-block Reading and Writing
OPTIMIZING COMPUTATION

THE COBOL FORMATS

COMPILER IMPLEMENTATION LIMITATIONS
SOURCE PROGRAM LISTINGS

DIAGNOSTIC ERROR MESSAGES

RUN-TIME ERROR MESSAGES

INTERNAL COMPILER ERRORS -- SYSTEM ERRORS
PROGRAMMING EXAMPLES

CALLING A FORTRAN SUBROUTINE
The COBOL Program, GETROOT
The FORTRAN Program, SQROOT
Sample Run of GETROOT

CALLING VAX-11 RUN-TIME PROCEDURES
The COBOL Program, RUNTIME
Sample Run of RUNTIME

USING TERMINAL ESCAPE SEQUENCES
The COBOL Program, ESCAPE
Sample Run of ESCAPE

CALLING VAX/VMS SYSTEM SERVICES
The COBOL Program, SYSTSVC
Sample Run of SYSTSVC

Building a COBOL Task Image
Field Sizes
Redefining Special Characters

viii

Page
13-1

13-2
13-2
13-2
13-3
13-5
13-6
13-7
13-7
13-8
13-8
13-8
13-9
13-9

|
[

| !
HFHEOOUILL & & WWH -

oo

OOOOOOOG})OOOOO @

|
=
w

Index-1

w W=
|
=W

FIGURE

3-37

3-43

3-44
3-45
3-46
3-47

CONTENTS (Continued)

Relation Condition

The Meanings of Relational Operators
Class Condition, General Format

Data Movement with Editing Symbols
Data Movement with No Editing
Subscripted MOVE Statements

Sample STRING Statement
Concatenation with the STRING Statement
Literals as Sending Fields

Indexed Sending Fields

Sample POINTER Phrase

Delimiting with the Word SIZE

SPACE as a Delimiter

Repeating the DELIMITED BY Phrase

Delimiting with More Than One Space Character

The ON OVERFLOW Phrase

Various STRING Statements Illustrating the
Overflow Condition

STRING Statement with Pointer
Subscripting with the Pointer
Subscripting with the Delimiter

Sample UNSTRING Statement

Multiple Receiving Fields

Delimiting with a Space Character
Delimiting with Multiple Receiving Fields
Delimiting with an Identifier

Multiple Delimiters

The COUNT Phrase

The DELIMITER Phrase

The POINTER Phrase

Examining the Next Character by Using the
Pointer Data Item as a Subscript
Examining the Next Character by Placing
It Into a One-Character Field

The TALLYING Phrase

The POINTER and TALLYING Phrases Used
Together

Subscripting the COUNT Phrase with the
TALLYING Data Item

Using the OVERFLOW Phrase

Sequence of Subscript Evaluation
Erroneously Repeating the Word INTO
Sample INSPECT...TALLYING Statement
Sample INSPECT...REPLACING Statement
Sample INSPECT...BEFORE Statement
Matching the Delimiter Characters to the
Characters in a Field

Sample INSPECT Statement

Sample REPLACING Argument

Sample AFTER Delimiter Phrase

Where Arguments Become Active in a Field

ix

CONTENTS (Continued)

Page
FIGURE 3-48 Sample Subscripted Argument 3-47
3-49 Format of the Tally Argument 3-48
3-50 CHARACTERS Form of the Tally Argument 3-48
3-51 Results of Counting with the LEADING
Condition 3-49
3-52 Argument List Adding into One Tally Counter 3-50
3-53 Argument List Adding into Separate Tally
Counters 3-50
3-54 Argument List (with Delimiters) Adding into
Separate Tally Counters 3-50
3-55 Results of the Scan in Figure 3-55 3-51
3-56 Two Tallying Arguments that Do Not Interfere
with Each Other 3-51
3-57 Two Tallying Arguments that Do Interfere
with Each Other 3-52
3-58 Two Tallying Arguments that, Because of
Their Positioning, Only Partially Interfere
with Each Other 3-52
3-59 An Attempt to Tally the Character B with
Two Arguments 3-52
3-60 Tallying Asterisk Groupings 3-53
3-61 Placing the LEADING Condition in the
Argument List 3-53
3-62 Reversing the Argument List in Figure 3-62 3-54
3-63 An Argument List that Counts Words in a
Statement 3-54
3-64 Counting Leading Tab or Space Characters 3-55
3-65 Counting the Remaining Characters with the
CHARACTERS Argument 3-55
3-66 Format of the Search Argument 3-56
3-67 Format of the Replacement Value 3-57
3-68 The Replacement Argument 3-58
3-69 Replacement Argument List that is Active
Over the Entire Field 3-58
3-70 Replacement Argument List that "Swaps"
Ones for Zeroes and Zeroes for Ones 3-58
3-71 Replacement Argument List that Becomes
Inactive with the Occurrence of a Space
Character 3-59
3-72 Argument List with Three Arguments that
Become Inactive with the Occurrence of a
Space 3-59
4-1 Memory Storage of COMP Data Items 4-2
4-2 Memory Storage of COMP-3 Data Items 4-3
4-3 Truncation Caused by Decimal Point Alignment 4-9
4-4 Zero Filling Caused by Decimal Point
Alignment 4-10
4-5 Numeric Editing 4-12
4-6 Rounding Truncated Decimal Point Positions 4-14
4-7 Rounding Truncated Decimal Scaling Positions 4-15

FIGURE

TABLES

TABLE

CONTENTS (Continued)

Explicit Programmer-Defined Temporary Work
Area

Arithmetic Statement Intermediate Result
Field Attributes Determined from Composite
of Operands

Arithmetic Expression Intermediate Result
Field Attributes Determined by Implementor-
Defined Rules

Defining a Table

Mapping a Table into Memory

Synchronized COMP Item in a Table

Adding a Field without Altering the Table
Size

Adding One Byte which Adds Two Bytes to
the Element Length

Forcing an 0dd Address by Adding a 1-Byte
FILLER Item to the Head of the Table

The Effect of a SYNCHRONIZED RIGHT Clause
Instead of a FILLER Item as Shown in
Figure 5-6

Initializing Tables

Initializing Mixed Usage Fields
Initializing Alphanumeric Fields

Literal Subscripting

Subscripting a Multi-Dimensional Table
Subscripting Rules for a Multi-Dimensional
Table

Subscripting with Data-Names

Index-Name Item

Subscripting with Index-Name Items
Relative Indexing

Index Data Item

Legal Data Movement with the SET Statement
Example of Using SEARCH to Search a Table
Unqualified Data Item Reference

Qualified Data Item Reference

General Format of a Qualified Data Reference
General Format of a Qualified Procedure
Reference

Merging Library Text

Three-Level Primary Key Index

Command Qualifiers

Legal Non-Numeric Elementary Moves

Results of the Preceding Sample Statements
Results of the Preceding Sample Statements
Values Moved into the Receiving Fields
Based on the Value in the Sending Field
Handling a Sending Field that is Too Short

X1

5-21
7-10
7-11
7-12

7-13

CONTENTS (Continued)

Page
TABLE 3-6 Results of Delimiting with an Asterisk 3-26
3-7 Results of Delimiting Multiple Receiving
Fields 3-27
3-8 Results of Delimiting with Two Asterisks 3-27
3-9 Results of Delimiting with ALL Asterisks 3-28
3-10 Results of Delimiting with ALL Double
Asterisks 3-28
3-11 Results of the Multiple Delimiters Shown
in Figure 3-29 3-30
3-12 Original, Altered, and Restored Values
Resulting from Implicit Redefinition 3-43
4-1 The Resulting ASCII Character from a Sign
and Digit Sharing the Same Byte 4-5
4-2 The Sign Tests 4-7
6-1 I/0 Statements Grouped by File Organization,
Access Mode, and Open Mode 6-15
6-2 File Specification Switches for PDP-11
Compatibility 6-22
12-1 COPY REPLACING Matches 12-6

Commercial Engineering Publications typeset this manual using DIGITAL’s
TMS-11 System.

956ALL

xii

PREFACE

MANUAL OBJECTIVES
This manual describes the VAX-11 COBOL-74 compiler. It discusses the
relationships between the COBOL-74 language, the compiler, object
modules and executable images, and VAX/VMS and its utilities. The
User's Guide supplements the description of the COBOL-74 programming
language in the VAX-1ll COBOL-74 Language Reference Manual.
INTENDED AUDIENCE
This manual is designed for programmers who have a working knowledge
of the COBOL-74 language and who are familiar with the basic concepts
of VAX/VMS.
STRUCTURE OF THIS DOCUMENT
The User's Guide 1is organized 1into chapters and appendixes that
describe functions, concepts, and features of the VAX-11 COBOL-74
language system.
ASSOCIATED DOCUMENTS
This manual refers to the following documents, which contain
supplemental information that is relevant to VAX-1l1] COBOL-74
programming:

e VAX-11l COBOL-74 Language Reference Manual

e VAX/VMS Command Language User's Guide

e VAX-11l Linker Reference Manual

e Introduction To VAX-11l Record Management Services

e VAX-11 Symbolic Debugger Reference Manual

e VAX-11l Sort Reference Manual

® VAX/VMS Operator's Guide

CONVENTIONS USED IN THIS DOCUMENT
The syntactic conventions used in general format examples are

discussed in Chapter 1 of the VAX-11l COBOL-74 Language Reference
Manual.

xiii

ACKNOWLEDGMENT

COBOL is an industry language and is not the property of any company
or group of companies, or of any organization or group of
organizations.

No warranty, expressed or implied, is made by any contributor or by
the CODASYL COBOL Committee as to the accuracy and functioning of the
programming system and language. Moreover, no responsibility is
assumed by any contributor, or by the committee, in connection
therewith.

The authors and copyright holders of the copyrighted material used
herein are: FLOW-MATIC (trademark of Sperry Rand Corporation),
Programming for the UNIVAC (R) I and 1II, Data Automation Systems
copyrighted 1958, 1959, by Sperry Rand Corporation; IBM Commercial
Translator Form No. F28-8013, copyrighted 1959 by 1IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell.

They have specifically authorized the use of this material, in whole
or in part, in the COBOL specifications. Such authorization extends
to the reproduction and use of COBOL specifications in programming
manuals or similar publications.

Procedures have been established for the maintenance of COBOL.
Inquiries concerning the procedures for proposing changes should be
directed to the Chairman of the CODASYL COBOL Committee, P.O. Box
1808, Washington, DC 20013.

Xiv

CHAPTER 1

INTRODUCTION

The VAX-11 COBOL-74 compiler translates ANS-74 COBOL source programs
into relocatable object modules; it runs under the supervision of
VAX/VMS.

To run a COBOL program, you follow a four-step process:
° Prepare a source program
) Compile a source program
) Link object modules into an executable image file

° Execute the image

The VAX-11 COBOL-74 compiler accepts COBOL source statements from
source input files. This means that you must manually enter your
source statements onto an acceptable medium prior to the compilation
process.

Once you have decided upon an input medium and format for your source
input files and have <created them, you compile the source program.
The VAX-11 COBOL-74 compiler reads source statements from the source
input file and translates them into an object module consisting of
program sections (PSECTs). It <can also produce a source program
listing with optional special-purpose 1listings, such as a map and
cross-reference. Chapter 2 describes the procedure for compiling
programs and specifying compiler options.

The compiler can compile only one source program or subprogram at a
time. Therefore, a program that consists of a main program and one or
more subprograms requires multiple executions of the compiler. Each
compilation generates a separate listing and object module.

The compiler produces an object module, which must be 1linked by the
VAX-11 Linker to produce an executable image file. The linker can
combine several independently compiled object modules into a single
executable image; the ability to compile COBOL subprograms to produce
linkable object modules enables you to create modular programs.

The image is an executable form of the declarations and instructions
in your COBOL source programs. It includes subprograms that were
included by the linker as a result of your commands. It also includes
routines from the COBOL run-time system (RTS), which is a library of

predefined generalized procedures that perform standard functions for
your program.

Figure 1-1 shows the process of preparing a COBOL program for
execution.

COBOL
SOURCE
PROGRAM

COBOL
SOURCE

LIBRARY

VAX-11
COBOL-74
COMPILER
OTHER VAX-11
OBJECT OBJECT %%BN?'ILI\;l7E4
MODULE
MODULES SYSTEM
VAX-11
LINKER

H-MK-00043-00

Figure 1-1
Building an Executable Image

1-2 INTRODUCTION

CHAPTER 2

USING THE VAX-11 COBOL-74 SYSTEM

This chapter discusses the procedures for creating, compiling,
linking, and executing COBOL programs.

2.1 CREATING A SOURCE PROGRAM

Before you can compile a COBOL program, you must decide on the source
reference format and prepare your source program for input to the
compiler.

2.1.1 Choosing a Reference Format

The VAX-11] COBOL-74 compiler can accept source programs in either
conventional or terminal reference format (both are described in the
VAX-11 COBOL-74 Reference Manual). However, you cannot mix reference
formats in the same source program (including text copied from a COBOL
library).

Terminal format was designed to be easily used by programmers at
interactive terminals; therefore, the compiler accepts terminal
reference format as a default and allows you to use a command
qualifier to specify conventional format. The terminal format can
reduce the amount of file space needed to store source programs. In
addition, it 1is usually easier to edit source programs written in
terminal format, because spacing requirements are more flexible.

You may want to select the conventional reference format, however, if
your COBOL program was originally written that way for another
compiler.

You can convert a terminal format program to conventional format by
using the REFORMAT utility, which is described in Chapter 8. You can
also use REFORMAT to match the formats of source files and COBOL
library files if they are not the same.

2.1.2 Entering a Source Program

You can create a source program file by wusing the VAX/VMS CREATE
command or a text editor. CREATE can be used only for a new file;
you must use a text editor to change existing source files. Most
users rely on text editors for both creating and updating source
files.

Unless you specify a file type for the source program file in the
command 1line, which is described in the next section, the compiler
assumes COB as a default; therefore, you can simplify compiling by
naming source files with the default file type.

The CREATE command is described in the VAX/VMS Command Language User's
Guide; the VAX/VMS Text Editing Reference Manual discusses the SOS
and SLP text editors.

2.2 USING THE COMPILER

The VAX-11] COBOL-74 compiler translates source statements into object
modules that contain relocatable code. It can also produce a listing
of source statements and other information if you use the appropriate
command qualifiers. This section describes the procedure for
compiling your source program; it discusses the COBOL command line
and the error message summary. Finally, it lists some common errors
to avoid in entering compiler command lines. Appendix C discusses the
components of the source program listing.

2.2.1 The Command Line Format
The VAX-11 COBOL-74 command line has the following format:
COBOL/C74 [/command-qualifiers] file-spec
where:
COBOL/C74 specifies the VAX-11 COBOL-74 compiler.
/command-qualifiers specify compiler options.
file-spec specifies the file that contains the COBOL
source program. If you do not supply a file
type in the file specification, the compiler

uses COB as the default.

Do not use wild cards in the file
specification.

2-2 USING THE VAX-11 COBOL-74 SYSTEM

2.2.2 Command Qualifiers

VAX-11 COBOL-74 provides a series of command qualifiers that you
use to select or suppress compiler options. Table 2-1 summarizes
qualifiers, which are then described in detail.

Table 2-1
Command Qualifiers

Qualifier Default

/ [NOJANSI_FORMAT /NOANSI_FORMAT
/[NO]JCOPY LIST /COPY_LIST

/ [NO]CROSS_REFERENCE /NOCROSS_REFERENCE
/ [NO]DEBUG /NODEBUG
/[NOJLIST[=file-spec]

/ [NO]MAP /NOMAP

/ [NO]JOBJECT [=file-spec]

/ [NO]VERB_LOCATION /NOVERB_LOCATION

/ [NO]WARNINGS /WARNINGS

/ANSI_FORMAT
/NOANSI_FORMAT

can
the

Indicates whether the source program is in ANSI (conventional)

format or in DIGITAL's terminal format.

For conventional format, the compiler expects 80-character images

with optional sequence numbers in character positions

indicators in position 7, Area A beginning in position 8, Area

beginning in position 12, and the identification area
positions 73-80.

By default, the compiler assumes that the source file 1is

terminal format; that is, Area A begins in record position 1.

/COPY_LIST

/NOCOPY_LIST
Controls whether statements included by COPY statements in
source program are printed in the listing file.

1-6,

B
in

in

the

/COPY_LIST is the default: the compiler includes all source

statements in the source listing.

/NOCOPY LIST suppresses the listing of text copied from 1library

files; only the COPY statement appears in the listing file.

/CROSS_REFERENCE

/NOCROSS_REFERENCE
Controls whether the source program listing includes
cross-reference listing.

USING THE VAX-1l1l COBOL-74 SYSTEM

a

2-3

/CROSS_REFERENCE produces a cross-reference listing as part of
the listing file. The compiler sorts data-names and
procedure-names into ascending order and 1lists them with the
source program line numbers on which they appear. On the
listing, the symbol # indicates the source line on which the name
is defined. Note that the use of /CROSS_REFERENCE significantly
slows down the compilation of large programs.

By default, the compiler does not <create a cross-reference
listing.

/DEBUG [=TRACEBACK]
/NODEBUG

Controls whether the compiler produces traceback information and
local symbol table information for the debugger.

/DEBUG allows you to refer to data items by data-name, and to
Procedure Division 1locations by line number; it generates both
traceback and symbol table information. /DEBUG=TRACEBACK
produces traceback information only; /NODEBUG generates neither.
The default is /NODEBUG.

Chapter 9 discusses COBOL program debugging wusing the VAX/VMS
Symbolic Debugger.

/LIST[=file-spec]
/NOLIST

Controls whether the compiler produces an output listing.

If you use the COBOL/C74 command in interactive mode, the
compiler, by default, does not create a listing file.

If the COBOL/C74 command is executed from a batch job, /LIST is
the default.

When you specify /LIST, you can control the defaults applied to
the output file specification by where you place the qualifier in
the command, as described in the VAX/VMS Command Language User's
Guide.

The output file type always defaults to LIS.

/MAP
/NOMAP
/MAP causes the compiler to produce the following reports in the
listing file:
e Data Division Map
® Procedure Map
® External Subprograms Referenced
e Data and Control PSECTs
® RTS Routines Referenced
® Segmentation Map
/NOMAP is the default.
2-4 USING THE VAX-11l COBOL-74 SYSTEM

/OBJECT [=file-spec]
/NOOBJECT
Controls whether the compiler produces an object file.

By default, the compiler produces an object file with the same
file name as the input file and a file type of OBJ. The compiler
also uses the default file type of OBJ when you include a file
specification with the /OBJECT qualifier that does not have a
file type.

/VERB_LOCATION

/NOVERB_LOCATION
Indicates whether the output listing produced by the compiler
shows the object location of each verb in the source program.

The location appears on the line before the source line in which
the verb is used.

The default is /NOVERB_LOCATION.

/WARNINGS

/NOWARNINGS
Controls whether the compiler prints informational diagnostic
messages as well as warning and fatal diagnostic messages. By

default, the compiler prints informational diagnostics; specify
/NOWARNINGS to suppress them.

Consider the following command line examples:

COBOL/C74/DEBUG PROGA

Produces an object module file PROGA.OBJ from the source
file PROGA.COB.

COBOL/C74/LIST/DEBUG/OBJECT=TESTB Al2

Uses the source file Al2.COB to produce object module
TESTB.OBJ and a source listing in file Al2.LIS.

COBOL/C74/LIST/CROSS_REFERENCE PAYROLL
Uses the source file PAYROLL.COB to produce object module
PAYROLL.OBJ and a source listing with cross reference in
file PAYROLL.LIS.

The debugger cannot reference data items by data-name 1in
this module because the /DEBUG qualifier is not specified.

COBOL/C74/LIST=RPTB.REP/DEBUG/MAP REPORTB.TXT

Uses the source file REPORTB.TXT to produce object module
REPORTB.OBJ and a source listing with map in file RPTB.REP.

USING THE VAX-11l COBOL-74 SYSTEM 2-5

2.2.3 Error Message Summary

If the compiler detects any errors during a compilation, it displays
an error message summary on the system output device. The error
message summary has the following format:

C74 -- nnnnn ERROR(S), nnnnn FATAL

NOTE

If any fatal errors occur, the compiler
does not generate an object file.

2.2.4 Common COBOL-74 Command Line Errors
Some common errors to avoid when entering COBOL-74 command lines are:

° Omitting the /ANSI FORMAT qualifier for source programs that
are in conventional format.

° Including contradictory qualifiers, such as /MAP without
/LIST.

° Omitting version numbers from file specifications when you
want to compile other than the latest version of a source
file.

° Forgetting to use a file type in the file specification when
you 1intend to wuse or create a file with other than the
default file type.

2.3 LINKING COBOL-74 PROGRAMS

After you have compiled one or more source programs to produce object
modules, you must link the object module(s) to create a program image
that can then be executed. Linking resolves symbolic references in
the object code and establishes absolute addresses for them. This
section describes the procedure for creating executable images from
object modules using the VAX/VMS LINK command. You will find further
information in the VAX/VMS Command Language User's Guide and the
VAX-11 Linker Reference Manual.

To link object modules, enter a LINK command in the following format:

LINK [/command-qualifiers] file-spec(s) [/file-qualifiers]

2-6 USING THE VAX-11 COBOL-74 SYSTEM

where:
/command-qualifiers specify output file options.
file-spec specifies the input file(s) to be linked.
/file-qualifiers specify input file options.

You can enter multiple file specifications separated from each other
by commas or plus signs (which are equivalent). Regardless of how
many file specifications you specify, the LINK command produces only
one executable image.

If you do not specify a file type in an input file specification, the
Linker assumes default file types, depending on the nature of the
file. For example, object files are assumed to have a file type of
OBJ. The VAX/VMS Command Language User's Guide discusses VAX-11
Linker default file types in detail.

Default file types for output files are discussed 1in the VAX/VMS
Command Language User's Guide. Consider the following command line:

LINK TESTA,TESTB,SYSSLIBRARY:C74LIB/LIB

This line causes the compiler to use two object modules (TESTA.OBJ and
TESTB.OBJ) to produce a single executable image (TESTA.EXE).

NOTE

The command line must specify the
library that contains the COBOL-74 RTS.
The examples in this chapter specify:

SYSSLIBRARY:C74LIB/LIB

You can also specify the optional
sharable RTS, which results in a smaller
image file and sharing of physical
memory when two or more COBOL images run
at the same time. Link with the
sharable RTS by specifying:

SYSSLIBRARY:C74LIB/OPT

Before you can use this option, your
system manager must install the sharable
image, SYSSSYSTEM:C74LIB.EXE, as SHARED.
The procedure is described 1in the
VAX/VMS Operator's Guide.

USING THE VAX-11 COBOL-74 SYSTEM 2-7

The following discussion describes the command qualifiers and file
qualifiers that you are most likely to use for linking COBOL modules.
However, you will find complete discussions of all LINK command
qualifiers in the references already mentioned. The following
qualifiers are discussed:

Command qualifiers Default

/BRIEF

/[NO]CROSS_REFERENCE /NOCROSS_REFERENCE
/[NOIDEBUG[=file-spec] /NODEBUG

/ [NO]EXECUTABLE [=file~spec] /EXECUTABLE

/FULL

/[NOJMAP[=file-spec] /NOMAP

/ [NO] TRACEBACK /TRACEBACK

File qualifiers

/INCLUDE=module-name([,...]
/LIBRARY
/OPTIONS

Command Qualifiers:
/BRIEF

Produces a brief memory allocation map file. Use /BRIEF only if
you also specify /MAP; /BRIEF must fellow /MAP on the command

line.
The brief form of the map contains:
1. A summary of the image characteristics.
2. A list of all object modules included in'the image.
3. A summary of link-time performance statistics.
Example

LINK/MAP/BRIEF PROGA,SYSSLIBRARY:C74LIB/LIB

:/CROSS_REFERENCE

/NOCROSS_REFERENCE
Controls whether the Linker produces a symbol cross-reference on
the memory allocation map.

Use /CROSS_REFERENCE only if you also specify /MAP;
/CROSS_REFERENCE must follow /MAP on the command line.

2-8 USING THE VAX-11l COBOL-74 SYSTEM

Example
LINK/MAP/CROSS_REFERENCE PROGA,SYSSLIBRARY:C74LIB/LIB

The symbol cross-reference lists each global symbol referenced in
the 1image, its value, and all modules in the image that refer to
it.

The default is /NOCROSS_REFERENCE.

/DEBUG[=file-spec]
/NODEBUG
Controls whether the Linker includes a debugger in the image.

If the object module contains local symbol table information for
the Debugger, specify /DEBUG to include the information in the
image as well.

You can include the optional file specification to specify a
user-defined debugger; the default file type is OBJ. 1If you
specify /DEBUG without a file specification, the default VAX/VMS
Debugger is linked with the image. You will find more
information on using /DEBUG in the VAX/VMS Symbolic Debugger
Reference Manual.

The default is /NODEBUG.
Chapter 9 discusses COBOL program debugging.

/EXECUTABLE [=file~spec]

/NOEXECUTABLE
Controls whether the Linker <creates an executable image and
optionally supplies a file specification for the output image
file.

By default, the Linker creates an executable image with the same
file name as the first input file and a file type of EXE.

Use /NOEXECUTABLE to see the results of linking in less time than
the Linker would need to create an image file.

Examples:
LINK/EXECUTABLE=NEWPROG.IMG/MAP PROGA,SYSSLIBRARY:C74LIB/LIB
LINK/NOEXECUTABLE/MAP PROGA,SYSSLIBRARY:C74LIB/LIB
/FULL
Produces a full memory allocation map listing. Use /FULL only if

you also specify /MAP; /FULL must follow /MAP on the command
line.

USING THE VAX-11 COBOL-74 SYSTEM 2-9

A full map listing contains:
1. All information contained in the brief listing.

2. Detailed descriptions of each program section and image
section in the image file.

3. Lists of global symbols by name and value.
Example

LINK/MAP/NOEXEC/FULL PROGA,SYSSLIBRARY:C74LIB/LIB

/MAP[=file-spec]

/NOMAP
Controls whether the Linker produces a memory allocation map
listing.

You can specify the file specification to name the map file;
otherwise, the name of the output file is the same as the name of
the first input file, with a file type of MAP.

When you specify /MAP, you can also specify /BRIEF, /FULL, or
/CROSS_REFERENCE to control the «contents of the map. If you
specify none of these qualifiers, the map contains:

1. All the information contained in the brief listing.
2. A list of user-defined global symbols sorted by name.
3. A list of user-defined program sections.

The default is /NOMAP.

/TRACEBACK

/NOTRACEBACK
Controls whether the Linker includes traceback information in the
image file.

By default, the Linker includes traceback information so the
system can trace the call stack when an error occurs. If you
specify /NOTRACEBACK, you will get no traceback reporting when
errors occur.

If you specify /DEBUG, the Linker also assumes /TRACEBACK.

File Qualifiers

/INCLUDE=module-name[, ...]
Indicates that the associated file specification refers to an
object module library (the default file type is OLB) ;
furthermore, it causes the Linker to unconditionally include only
the specified module(s).

2-10 USING THE VAX-11 COBOL-74 SYSTEM

You must specify at least one module-name. Specify more than one
by separating them with commas and enclosing the 1list in
parentheses.

You can also specify /LIBRARY when you specify /INCLUDE to cause
the Linker to search the library for unresolved references after
it unconditionally includes the specified module(s).

Examples:
LINK PROGA,LIBA/INCLUDE=MODA,SYSSLIBRARY:C74LIB/LIB

The Linker links PROGA.OBJ and the module
MODA from the 1library file LIBA.OLB to
produce PROGA.EXE.

LINK PROGA,LIBA/INC=(MODA,MODB)/LIB,SYSSLIBRARY:C74LIB/LIB

The Linker links PROGA.OBJ and the modules
MODA and MODB from the 1library file
LIBA.OLB. Because of the /LIBRARY file
qualifier, the Linker will also search
LIBA.OLB for any other unresolved references
in PROGA.OBJ, MODA, and MODB.

/LIBRARY
Indicates that the file specification refers to a library file to
be searched to resolve any undefined symbols in the input
file(s).

If the file specification does not include a file type, the
Linker assumes the default file type OLB. Do not specify a
library as the first input file wunless you also specify the
/INCLUDE qualifier to indicate which modules in the library are
to be unconditionally included in the image. You <can wuse both
/INCLUDE and /LIBRARY; this causes the Linker to include the
specified modules, then search the 1library for unresolved
references.

Examples
LINK PROGA,LIBA/LIBRARY,SYSSLIBRARY:C74LIB/LIB

The Linker searches LIBA.OLB for unresolved
references in PROGA.OBJ to create PROGA.EXE.

LINK LIBA/LIB/INCLUDE=MOD1/EXEC=PROG,SYSSLIBRARY:C74LIB/LIB
The Linker includes the module MODl1 from
LIBA.OLB, then searches LIBA.OLB for

unresolved references in MODl. The result
is an executable image PROG.EXE.

USING THE VAX-1l COBOL-74 SYSTEM 2-11

/OPTIONS
Indicates that the input file contains a 1list of options to
control 1linking. If the /OPTIONS file specification does not
include a file type, the Linker uses the default file type OPT.

The contents of the option file are described in the VAX-11
Linker Reference Manual.

2.4 EXECUTING A COBOL IMAGE

When the object modules have been 1linked to create an executable
image, you can use the RUN command to execute the image in the
process. If you specified SWITCH ON or OFF in the SPECIAL-NAMES
paragraph of the COBOL source program, you can specify the status of
switches before or during image execution.

2,4,1 Setting and Resetting Program Switches

COBOL program switches exist as the logical name COB$SWITCHES, which
can be defined for the process, group, or system. Use the DEFINE
command (you can also use the ASSIGN command) to change the status of
program switches:

DEFINE COB$SWITCHES "switch-list"
where switch-list is a list of one or more program switch numbers
(1-16) separated by commas. The entire 1list must be enclosed in
quotes. A switch is set ON if its number appears in the switch-list;
otherwise, it is set OFF.
Examples
DEFINE COBSSWITCHES "1,5"
Sets switches 1 and 5 ON; sets all others OFF.
DEFINE COB$SWITCHES "4,5,6,7,8,9,10,11,12,13,14,15,16"
Sets all switches ON except 1, 2, and 3.
DEFINE COB$SSWITCHES " "
Turns OFF all switches.
The order of evaluation of 1logical name assignments is: process,
group, system. System and group logical name assignments (including
COBOL program switch settings) continue until they are changed (or
deassigned). Process logical name assignments exist until either they
are changed (or deassigned) or until the process terminates.
Therefore, you should be aware of system and group assignments of

COBSSWITCHES before executing an image if you do not define it
yourself in your process.

2-12 USING THE VAX-11l COBOL-74 SYSTEM

You can guarantee the intended status of COBOL program switches by
setting switches just before executing an image that uses them. You
can confirm the switch settings by using the following command:

SHOW LOGICAL COBS$SWITCHES

You can use the DEASSIGN command to remove the switch-setting 1logical
name from your process; the group or system logical name (if any) is
then active:

DEASSIGN COBS$SWITCHES
You can also change the status of switches during execution:

1. Interrupt the image with CTRL/Y or a STOP 1literal COBOL
statement.

2. Use a DEFINE command to change switch settings.

3. Continue the image with a CONTINUE command. Be sure that you
do not force the interrupted image to exit by entering a
command that executes another image.

2.4.2 The RUN Command
Use the RUN command to execute an image:
RUN [/command-qualifier] file-spec

If you do not specify a file type in file specification, the RUN
command uses the default file type EXE.

The RUN command has two optional command qualifiers:

/DEBUG
Specify /DEBUG to request the debugger at execution time if the
image was not linked with the debugger. However, you cannot use
/DEBUG if /NOTRACEBACK was specified when the image was linked.

/NODEBUG
Specify /NODEBUG if you do not want the debugger at execution
time for an image that was linked with the /DEBUG qualifier.

Examples
RUN PROGA Executes PROGA.EXE.
RUN PROGB.ABC Executes the image named PROGB.ABC.
RUN/NODEBUG PROGA Executes PROGA.EXE without the debugger

that may have been linked with it.

You can also use the RUN (Process) command to execute the image as a
separate process. (See the VAX/VMS Command Language User's Guide.)

USING THE VAX-1l COBOL-74 SYSTEM 2-13

CHAPTER 3

NON-NUMERIC CHARACTER HANDLING

3.1 INTRODUCTION

COBOL programs hold their data in fields whose sizes are described

their source programs. These

compilation to remain the same size throughout

resulting object program.

The data descriptions of the fields in a COBOL program describe

in

fields are thus "fixed" during
the 1lifespan of the

them

as belonging to any of three data classes -- alphanumeric, alphabetic,

or numeric class. Numeric <class
values, alphabetic class

data items may contain values that

only A-

data items contain only numeric
Z and space, but alphanumeric class
are all alphabetic, all numeric, or

a mixture of alphabetic bytes, numeric bytes, or, in fact, any
character from the ASCII character set.

Further, these three classes are subdivided into five categories:
alphabetic, numeric, numeric edited, alphanumeric edited, and
alphanumeric. Every elementary item except for an index data item
belongs to one of the classes and further to one of the categories.

The class of a group item is

treated

regardless of the classes of subordinate elementary items.

For alphabetic and numeric

synonymous.

An alphabetic field is a field declared

(A-Z and space) characters.

An alphanumeric class field that is

(data

character is called an alphanumeric category field.

If the data description of an alphanumeric class field specifies

certain editing operations will

moved into it, that field is called an alphanumeric or numeric

category field.

When reading the following sections of this chapter, this

between the class or category of a
the item contains should always be

at run time as alphanumeric
items) class and category are
to contain only alphabetic
declared to <contain any ASCII
that

be performed on any value that is
edited

distinction

data item and the actual value that
kept in mind.

Sometimes the text refers to alphabetic, alphanumeric, and
alphanumeric edited data items as non-numeric data items. This is to
distinguish them from items that are specifically described as numeric
items.

Regardless of the class of an item, it is usually possible to store a
value in the item, at run time, that is "illegal". Thus, non-numeric
ASCII characters can be placed into a field described as numeric
class, and an alphabetic class field may be loaded with non-alphabetic
characters.

To increase readability, the following sections occasionally omit the
word "class" when describing an item; however, the reader should
regard the descriptive word, numeric, alphabetic, or alphanumeric, as
referring to the class of an item unless it applies specifically to
the value in the item.

This chapter discusses non-numeric class data and the non-arithmetic,
non-input-output operations that manipulate this type of data.

3.2 DATA ORGANIZATION

Usually, the data areas in a COBOL program are organized into group
items with subordinate elementary items. A group item is a data item
that is followed by one or more data items (elementary items) with
higher valued level numbers. An elementary item has no higher valued
subordinate level number.

All of the data areas used by COBOL programs (except for certain
registers and switches) must be described in the Data Division of the
source program. The compiler allocates memory space for these fields
and fixes them in size at compilation time.

The following sub-sections (3.2.1 and 3.2.2) discuss, on a general
level, how the compiler handles group and elementary data items.

3.2.1 Group Items

The size of a group item is the total size of the data area occupied
by 1its subordinate elementary items. The compiler considers group
items to be alphanumeric DISPLAY items. Thus, the software
manipulates group items as if they had been described as PIC X()
items, and ignores the structure of the data contained within them.

3.2.2 Elementary Items
The size of an elementary item 1is determined by the number of

allowable symbols it contains that represent character positions. For
example, consider figure 3-1.

3-2 NON-NUMERIC CHARACTER HANDLING

01 TRANREC.
03 FIELD-1 PIC X(7).
03 FIELD-2 PIC S9(5)V99.

Figure 3-1
Field Sizes

Both fields consume seven bytes of memory; however, FIELD-1 contains
seven alphanumeric bytes while FIELD-2 contains decimal digits and an
operational sign. Although certain verbs handle these two classes of
data differently, the data, in either case, occupies seven bytes of
VAX-11 memory. COBOL operations on such fields are independent of the
mapping of the field into VAX-11l memory words (l6-bit words that hold
two 8-bit bytes). Thus, a field may begin in the left or right-hand
byte of a word with no effect on the function of any operations that
may refer to that field.

In effect, the compiler sees memory as a continuous array of bytes,
not words. This becomes particularly important when declaring a table
with the OCCURS clause (see Chapter 5, Table Handling).

Records (a 01 level entry and all of its subordinate entries) and data
items that have a level number of 77 and all literal values given in
the Procedure Division automatically begin on even byte addresses.

I/0 verbs require that records be aligned on word boundaries because
the VAX-11 COBOL-74 file system reads and writes integral numbers of
words.

Non-input-output verbs do not require alignment of the data. However,
when two fields are aligned identically, the processing verb can
sometimes increase its efficiency by processing them a word at a time
rather that a byte at a time.

In all cases, automatic word alignment of literals, records, and/or 77
items increase the opportunity for more efficient processing.

3.3 SPECIAL CHARACTERS

COBOL allows the user to manipulate any of the 128 characters of the
ASCII character set as alphanumeric data even though many of the
characters are control characters, which usually control input/output
devices. Generally, alphanumeric data manipulations are performed in
a manner that attaches no "meaning" to an 8-bit byte. Thus, the user
can move and compare these control characters in the same manner as
alphabetic and numeric characters.

Although the object program can manipulate all ASCII characters,
certain control characters cannot appear in non-numeric literals since
the compiler uses them to delimit the source text. Further, the
keyboards of the console and keypunch devices have no convenient input
key for many of the special characters, thus making it difficult to
place them into non-numeric literals.

NON-NUMERIC CHARACTER HANDLING 3-3

Special characters may be placed into data fields of the object
program by placing the binary value of the special character into a
numeric COMP field and redefining that field as alphanumeric DISPLAY.
Consider the following example of redefinition. (Keep in mind that
the even byte of a word corresponds to the low-order bits of a binary
word.)

01 LF-COMP PIC 999 COMP VALUE 10.
01 LF REDEFINES LF-COMP PIC X.

01 HT-COMP PIC 999 COMP VALUE 9.
01 TAB REDEFINES HT-COMP PIC X.
01 CR-COMP PIC 999 COMP VALUE 13.
01 CR REDEFINES CR-COMP PIC X.

Figure 3-2
Redefining Special Characters

The sample coding in Figure 3-2 introduces each character as a 1l-word
COMP item with a decimal value, then redefines it as a single byte.
(The second byte of the redefinition need not be described at the 01
level, since redefinition at this level does not require identically
sized fields.)

Use the Character Set table in Appendix B of the VAX-11] COBOL-74
Language Reference Manual to determine the decimal value for any ASCII
character.

3.4 TESTING NON-NUMERIC FIELDS

3.4.1 Relation Tests

An IF statement that contains a relation condition (greater-than,
less-than, equal-to, etc.) can compare the value in a non-numeric data
item with another value and use the result to alter the flow of
control in the program.

An IF statement with a relation condition compares two operands,
either of which may be an identifier or a literal, except that both
cannot be literals. If the relation exists between the two operands,
the relation condition has a truth value of true.

Figure 3-3 illustrates the general format of a relation condition.
(The relational characters ">," "<," and "=," although required, are
not wunderlined to avoid confusion with other symbols such as
greater-than-or-equal-to.)

3-4 NON-NUMERIC CHARACTER HANDLING

IS [NOT] GREATER THAN
IS [NOT] LESS THAN

identifier-1 IS [NOT] EQUAL TO identifier-2
literal-1 IS [NOT] > literal-2
arithmetic-expression-1 IS [NOT] < arithmetic-expression-2
IS [NOT] =
Figure 3-3

Relation Condition

When coding a relational operator, leave a space before and after each
reserved word. When the reserved word NOT is present, the software
considers it and the next key word or relational character to be one
relational operator that defines the comparison. Figure 3-4 shows the
meanings of the relational operators.

OPERATOR ‘ MEANING
IS [NOT] GREATER THAN The first operand is greater than
IS [NOT] > (or not greater than) the second operand.
IS [NOT] LESS THAN The first operand is less than
IS [NOT] < (or not less than) the second operand.
IS [NOT] EQUAL TO The first operand is equal to
IS [NOT] = (or not equal to) the second operand.
Figure 3-4

The Meanings of the Relational Operators

3.4.1.1 C(Classes of Data - COBOL allows comparison of both numeric
class operands and non-numeric class operands; however, it handles
each class of data slightly differently. For example, it allows a
comparison of two numeric operands regardless of the formats specified
in their respective USAGE clauses, but requires that all other
comparisons (including comparisons of any group items) be between
operands with the same usage. It compares numeric class operands with
respect to their algebraic values and non-numeric (or a numeric and a
non-numeric) class operands with respect to a specified collating
sequence.

If only one of the operands is numeric, it must be an integer data
item or an integer literal and it must be DISPLAY usage; further, the
manner in which the software handles numeric operands depends on the
non-numeric operand. Consider the following two types of non-numeric
operands:

1. If the non-numeric operand 1is an elementary item or a
literal, the software treats the numeric operand as if it had
been moved into an alphanumeric data item (which is the same
size as the numeric operand) and then compared. This causes
any operational sign, whether carried as a separate character
or as an overpunch, to be stripped from the numeric item;

NON-NUMERIC CHARACTER HANDLING 3-5

thus, it appears to be an unsigned quantity. In addition, if
the picture-string of the numeric item contains trailing P
characters indicating that there are assumed integer
positions that are not actually present, these are filled
with zero digits during the operation of stripping any sign
that 1is present. Thus, an item with a picture-string of
S9999PPP is moved to a temporary location where it is
described with a picture-string of 9999999. 1If its value is
4323 (-4321), the value in the temporary location will be
4321000. The numeric digits, stored as ASCII bytes, take
part in the comparison.

2. If the non-numeric operand is a group item, the software
treats the numeric operand as if it had been moved into a
group item (which is the same size as the numeric operand)
and then compared. This is equivalent to a "group move".
The software ignores the description of the numeric field
(except for length) and, therefore, includes any operational
sign, whether carried as a separate character or as an
overpunch, in its length. (Overpunched characters are never
ASCII numeric digits, but characters in the range of from A
through R, , or .) Thus, the sign and the digits, stored as
ASCII bytes, take part in the comparison, and zeroes are not
supplied for P characters in the picture-string.

The compiler will not accept a comparison between a non-integer
numeric operand and a non-numeric operand, and any attempt to compare
these two items will cause a diagnostic message at compile time.

3.4.1.2 The Comparison Operation - If the two operands are
acceptable, the software compares them byte for byte starting at their
left-hand end. It proceeds from 1left to right, comparing the
characters in corresponding character positions until it either
encounters a pair of unequal characters or reaches the right-hand end
of the longer operand.

If the software encounters a pair of unequal characters, it considers
their relative position in the collating sequence. The operand with
the character that is positioned higher in the collating sequence is
the greater operand.

If the operands have different lengths, the comparison proceeds as
though the shorter operand were extended on the right by sufficient
ASCII spaces (hex 20) to make them both the same length.

If all of the pairs of characters compare equally, the operands are
equal.

3-6 NON-NUMERIC CHARACTER HANDLING

3.4.2 Class Tests

An IF statement that contains a <class condition (NUMERIC or
ALPHABETIC) can test the wvalue 1in a non-numeric data item (USAGE
DISPLAY only) to determine if it contains numeric or alphabetic data
and use the result to alter the flow of control in the program.

Figure 3-5 illustrates the general format of a class condition. If
the data item consists entirely of the ASCII characters 0123456789
with or without the operational sign, the <class condition would
determine that it is NUMERIC. If the item consists entirely of the
ASCII characters A through %z and space, the <class condition would
determine that it is ALPHABETIC.

NUMERIC
identifier IS [NOT]

ALPHABETIC

Figure 3-5
Class Condition, General Format

When the reserved word, NOT, is present, the software considers it and
the next key word as one class condition that defines the class test
to be executed; for example, NOT NUMERIC is a truth test for
determining if an operand contains at least one non-numeric byte.

If the item being tested was described as a numeric data item, it may
only be tested as NUMERIC or NOT NUMERIC. (For further information on
using class conditions with numeric items, see Chapter 4.) The NUMERIC
test cannot examine an item that was described either as alphabetic or
as a group item containing elementary items whose data descriptions
indicate the presence of operational signs.

3.5 DATA MOVEMENT

COBOL provides three statements (MOVE, STRING, and UNSTRING) that
perform most of the data movement operations required by
business-oriented programs. The MOVE statement simply moves data from
one field to another. The STRING statement concatenates a series of
sending fields into a single receiving field. The UNSTRING statement
disperses a single sending field into multiple receiving fields. Each
has its wuses and its limitations. This section discusses data
movement situations which take advantage of the versatility of these
statements.

The MOVE statement handles the majority of data movement operations on
character strings. However, the MOVE statement has limitations in its
ability to handle multiple fields; for example, it cannot, by itself,
concatenate a series of sending fields into a single receiving field
or disperse a single sending field into several receiving fields.

NON-NUMERIC CHARACTER HANDLING 3-7

Two MOVE statements will, however, bring the contents of two fields
together into a third (receiving) field if the receiving field has
been "subdivided” with subordinate elementary items that match the two
sending fields 1in size. 1If other fields are to be concatenated into
the third field and they differ in size from the first two fields,
then the receiving field will require additional subdivisions (through
redefinition).

Another method of concatenation with the MOVE statement 1is to
subdivide the receiving field into single character fields, creating a
"table" of a single character field that occurs as many times as there
are characters in the receiving field, and execute a data movement
loop which moves each sending field, a character at a time, using a
subscript that moves continuously across the receiving field.

Two MOVE statements can also be used to disperse the contents of one
sending field to several receiving fields. The first MOVE statement
can move the left-most end of the sending field to a receiving field;
then the second MOVE statement can move the right-most end of the
sending field to another receiving field. (The second receiving field
must first be described with the JUSTIFIED clause.) Characters from
the middle of the sending field cannot easily be moved to any
receiving field without extensive redefinitions of the sending field
or a character-by-character movement loop (as with concatenation).

The concatenation and dispersion limitations of the MOVE statement are
handled quite easily by the STRING and UNSTRING statements. The
following sections (3.6, 3.7, and 3.8) discuss these three statements
in detail.

3.6 THE MOVE STATEMENT

The MOVE statement moves the contents of one field into another. The
following illustration shows the two formats of the MOVE statement.

Format 1
MOVE FIELDl1 TO FIELD2
Format 2

MOVE CORRESPONDING FIELD1 TO FIELD2

NOTE

Format 2 is discussed in Section 3.6.6.

FIELDl is the name of the sending field and FIELD2 is the name of the
receiving field. The statement causes the software to move the
contents of FIELDl1 into FIELD2. The two fields need not be the same
size, class, or usage; and they may be either group or elementary
items.

3-8 NON-NUMERIC CHARACTER HANDLING

If the two fields are not the same length, the software will align
them on one end or the other -- and will truncate or pad (with spaces)
the other end. The movement of group items and non-numeric elementary
items is discussed below.

A point to remember when using the MOVE statement is that it will
alter the contents of every character position in the receiving field.

3.6.1 Group Moves

If either the sending or receiving field is a group item, the software
considers the move to be a group move. It treats both the sending and
receiving fields in a group move as if they were alphanumeric class
fields. If the sending field is a group item and the receiving field
is an elementary item, the software ignores the receiving field
description (except for the size description, in bytes, and any
JUSTIFIED clause); therefore, the software conducts no conversion or
editing on the receiving field.

3.6.2 Elementary Moves

If both fields of a MOVE statement are elementary items, their data
description clauses control their data movement. (If the receiving
field was described as numeric or numeric edited, the rules for
numeric moves -- see Chapter 4, Numeric Character Handling -- control
the data movement.)

The following table shows the 1legal (and 1illegal) non-numeric
elementary moves.

Table 3-1
Legal Non-Numeric Elementary Moves

SENDING FIELD CATEGORY RECEIVING FIELD CATEGORY
ALPHABETIC ALPHANUMERIC
ALPHANUMERIC EDITED
ALPHABETIC Legal Legal
ALPHANUMERIC Legal Legal
ALPHANUMERIC EDITED Legal Legal
NUMERIC INTEGER
(DISPLAY ONLY) Illegal Legal
NUMERIC EDITED Illegal Legal

NON-NUMERIC CHARACTER HANDLING 3-9

In all of the legal moves shown above, the software treats the sending
field as though it had been described as PIC X(). If the sending
field description contains a JUSTIFIED clause, the clause will have no
effect on the move. If the sending field picture-string contains
editing characters, the software uses them only to determine the
field's size.

Numeric class data must be in DISPLAY (byte) format and must be an
integer.

If the description of the numeric data item indicates the presence of
an operational sign (either as a character or an overpunch) or if
there are P characters in the picture-string of the numeric data item,
the software first moves the item to a temporary location. During
this move, it removes the sign and fills out any P character positions
with =zero digits. It then uses the temporary value (which may be
shorter than the original if a separate sign were removed, or longer
if P character positions were filled in with zeroes) as the sending
field as if it had been described as PIC X(), that is, as if its
category were alphanumeric.

If the sending item is an unsigned numeric class field with no P
characters in its picture-string, the software does not move the item
to a temporary location.

A numeric integer data item sending field has no effect on the
justification of the receiving field. 1If the numeric sending field is
shorter than the receiving field, the software fills the receiving
field with spaces.

In legal, non-numeric elementary moves, the receiving field actually
controls the movement of data. All of the following items, in the
receiving field, affect the move: (1) the size, (2) the presence of
editing characters in 1its description, and (3) the presence of the
JUSTIFIED RIGHT clause in its description. The JUSTIFIED clause and
editing characters are mutually exclusive; therefore, the two classes
are discussed separately below.

When a field that contains no editing characters or JUSTIFIED clause
in its description is wused as the receiving field of a non-numeric
elementary MOVE statement, the statement moves the characters by
starting at the 1left-hand end of the fields and scanning across,
character-by-character to the right. If the sending item is shorter
than the receiving item, the software fills the remaining character
positions with spaces.

3.6.2.1 Edited Moves - Alphabetic or alphanumeric fields may contain
editing characters. Consider the following insertion editing
characters. Alphabetic fields will accept only the B character;
however, alphanumeric fields will accept all three characters.

B -- blank insertion position
0 -- zero insertion position
/ —-—- slash insertion position.

3-10 NON-NUMERIC CHARACTER HANDLING

When a field that contains an insertion editing character in its
picture-string 1is used as the receiving field of a non-numeric
elementary MOVE statement, each receiving character position that
corresponds to an editing character receives the insertion byte value.
Figure 3-6 illustrates the use of such symbols with the statement,
MOVE FIELD1 TO FIELD2. (Assume that FIELD1l was described as PIC
X(7).)

FIELD2
FIELD1 PICTURE-STRING CONTENTS AFTER MOVE
_ —— —
070476 XX/99/XX 07/04/76
04JUL76 99BAAAB99 04 JUL 76
2351212 XXXBXXXX/XX/ 235 1212/ /
123456 0XBOXBOXBOX 01 02 03 04
Figure 3-6

Data Movement with Editing Symbols

Data movement always begins at the left end of the sending field, and
moves only to the byte positions described as A, 9, or X in the
receiving field picture-string. When the sending field is exhausted,
the software supplies space characters to fill any remaining character
positions (not insertion positions) in the receiving field. If the
receiving field becomes exhausted before the last character is moved
from the sending field, the software 1ignores the remaining sending
field characters.

3.6.2.2 Justified Moves - A JUSTIFIED RIGHT clause in the data
description of the receiving field causes the software to reverse its
usual data movement conventions. (It starts with the right-hand
characters of both fields and proceeds from right to left.) If the
sending field is shorter than the receiving field, the software fills
the remaining 1left-hand character positions with spaces. Figure 3-7
illustrates various data description situations for the statement,
MOVE FIELDl1 TO FIELD2, with no editing.

FIELD1 FIELD2
PICTURE-STRING CONTENTS PICTURE-STRING CONTENTS AFTER

' (AND JUST CLAUSE) MOVE

XX AB

XXXXX ABC

XXX ABC XX JUST BC
XXXXX JUST ABC

Figure 3-7

Data Movement with No Editing

NON-NUMERIC CHARACTER HANDLING 3-11

3.6.3 Multiple Receiving Fields

If a MOVE statement is written with more than one receiving field, it
moves the same sending field value to each of the receiving fields.
It has essentially the same effect as a series of separate MOVE
statements that all have the same sending field. (For information on
subscripted fields, see section 3.6.4.)

The receiving fields need have no relationship to each other. The
software <checks the legality of each one independently, and performs
an independent move operation on each one.

Multiple receiving fields on MOVE statements provide a convenient way
to set many fields equal to the same value, such as during
initialization code at the beginning of a section of processing. For
example:

MOVE SPACES TO LIST-LINE, EXCEPTION-LINE, NAME-FLD.
MOVE ZEROES TO EOL-FLAG, EXCEPT-FLAG, NAME-FLAG.

MOVE 1 TO COUNT-1, CHAR-PTR, CURSOR.

3.6.4 Subscripted Moves

Any field of a MOVE statement may be subscripted and the referenced
field may also be used to subscript another name in the same
statement.

When more than one receiving field is named in the same MOVE
statement, the order in which the software evaluates the subscripts
affects the results of the move. Consider the following two
situations:

Situation 1 MOVE FIELD1(FIELD2) TO FIELD2 FIELD3.

Situation 2 MOVE FIELDl TO FIELD2 FIELD3(FIELD2).

Figure 3-8
Subscripted MOVE Statements

In situation 1, the software evaluates FIELDl(FIELD2) only once,
before it moves any data to the receiving fields. 1In effect it is as
if the statement were replaced with the following statements:

MOVE FIELD1 (FIELD2) TO TEMP.

MOVE TEMP TO FIELD2.

MOVE TEMP TO FIELD3.

3-12 NON-NUMERIC CHARACTER HANDLING

In situation 2, the software evaluates FIELD3(FIELD2) immediately
before moving the data into it (but after moving the data from FIELD1
to FIELD2). Thus, it uses the newly stored value of FIELD2 as the
subscript wvalue. In effect, it is as if the statement were replaced
with the following statements:

MOVE FIELDl1 TO FIELD2.

MOVE FIELD1 TO FIELD3(FIELD2).

3.6.5 Common Errors, MOVE Statement

A most important thing to remember when writing MOVE statements is
that the compiler considers any MOVE statement that contains a group
item to be a group move. It is easy to forget this fact when moving a
group item to an elementary item, and the elementary item contains
editing characters, or a numeric integer. These attributes of the
receiving field (which would determine the action of an elementary
move) have no effect on the action of a group move.

3.6.6 Format 2 - MOVE CORRESPONDING

Format 2 of the MOVE statement allows the programmer to move multiple
elementary items from one group item to another, by using a single
MOVE statement. When the corresponding phrase 1is wused, selected
elementary items 1in the sending field are moved to those elementary
items in the receiving field whose data-names are identical. For
example:

01 A-GROUP. 01 B-GROUP.
02 FIELDI. 02 FIELD2.
03 A PIC X. 03 A PIC X.
03 B PIC 9. 03 C PIC XX.
03 C PIC XX. 03 E PIC XXX.

03 D PIC 99.
03 E PIC XXX.
MOVE CORRESPONDING A-GROUP TO B-GROUP
OR

MOVE CORRESPONDING FIELDl1 TO FIELD2

NON-NUMERIC CHARACTER HANDLING 3-13

The preceding examples are equivalent to the following series of MOVE
statements:

MOVE A OF FIELD1l TO A OF FIELD2
MOVE C OF FIELDl TO C OF FIELD2

MOVE E OF FIELDl TO E OF FIELD2

3.7 THE STRING STATEMENT

The STRING statement concatenates the contents of two or more sending
fields into a single field.

The statement has many forms; the simplest 1is equivalent, 1in
function, to a non-numeric MOVE statement. Consider the following
illustration; if the two fields are the same size, or if the sending
field (FIELD1l) 1is larger, the statement 1is equivalent to the
statement, MOVE FIELDl1 TO FIELD2.

STRING FIELD1l DELIMITED BY SIZE INTO FIELD2.

Figure 3-9
Sample STRING Statement

If the sending field is shorter than the receiving field, an important
difference between the STRING and MOVE statements emerges: the
software does not fill the receiving field with spaces. Thus, the
STRING statement may leave some portion of the receiving field
unchanged.

Additionally, the receiving field must be an elementary alphanumeric
field with no JUSTIFIED clause or editing characters in its
description. Thus, the data movement of the STRING statement always
fills the receiving field from left-to-right with no editing
insertions.

3.7.1 Multiple Sending Fields

An important characteristic of the STRING statement is its ability to
concatenate a series of sending fields into one receiving field.
Consider the following example of the STRING statement:

STRING FIELDl1A FIELD1B FIELD1C DELIMITED BY SIZE
INTO FIELDZ2.

Figure 3-10
Concatenation with the STRING Statement

3-14 NON-NUMERIC CHARACTER HANDLING

In this sample STRING statement, FIELD1A, FIELD1B, and FIELD1C are all
sending fields. The software moves them to the receiving field
(FIELD2) in the order in which they appear in the statement, from left
to right, resulting in the concatenation of their values.

If FIELD2 is not large enough to hold all three items, the operation
stops when it is full. 1If this occurs while moving one of the sending
fields, the software ignores the remaining characters of that field
and any other sending fields not yet processed. For example, if
FIELD2 became full while receiving FIELD1B, the software would ignore
the rest of FIELD1B and all of FIELDIC.

If the sending fields do not fill the receiving field, the operation
stops with the movement of the last character of the last sending item
(FIELD1C in Figure 3-10). The software does not alter the contents
nor space-fill the remaining character positions of the receiving
field.

The sending fields may be non-numeric literals and figurative
constants (except for ALL 1literal). For example, the following
statement sets up an address label with the literal period and space
between the STATE and ZIP fields:

STRING CITY SPACE STATE ". " ZIP

DELIMITED BY SIZE INTO ADDRESS-LINE.

Figure 3-11
Literals as Sending Fields

Sending fields may also be subscripted. For example, the following
statement uses subscripts to concatenate the elements of a table
(A-TABLE) into a single field (A-FOUR). (I, of course, must be a
subscript or an index-name.)

STRING A-TABLE(I) A-TABLE(I+1l) A-TABLE (I+2) A-TABLE (I+3)
DELIMITED BY SIZE INTO A-FOUR.

Figure 3-12
Indexed Sending Fields

3.7.2 The POINTER Phrase

Although the STRING statement normally starts at the left-hand end of
the receiving field, with the POINTER phrase it is possible to start
it scanning at another point within the field. (The scanning,
however, remains left-to-right.)

NON-NUMERIC CHARACTER HANDLING 3-15

MOVE 5 TO P.
STRING FIELD1A FIELD1B DELIMITED BY SIZE
INTO FIELD2 WITH POINTER P.

Figure 3-13
Sample POINTER Phrase

When the POINTER phrase 1is used, the value of P determines the
starting character position in the receiving field. 1In Figure 3-13,
the 5 in P causes the software to move the first character of FIELDI1A
into character position 5 of FIELD2 (the left-most character position
of the receiving field is character position 1) and leave positions 1
through 4 unchanged.

When the STRING operation is complete, the software leaves P pointing
to one character position beyond the last character replaced in the
receiving field. 1If FIELD1A and FIELDIB in Figure 3-13 are both four
characters 1long, P will contain a value of 13 (5+4+4) when the
operation is complete (assuming that FIELD2 is at least 12 characters
long).

3.7.3 The DELIMITED BY Phrase

Although the sending fields of the STRING statement are fixed in size
at compile time, they frequently contain variable-length items that
are padded with spaces. For example, a 20-character city field may
contain only the word MAYNARD and 13 spaces. A valuable feature of
the STRING statement is that it may be used to move only the wuseful
data from the left-hand end of the sending field. The DELIMITED BY
phrase, written with a data-name or literal, instead of the word SIZE,
performs this operation. (The delimiter may be a literal, a data
item, a figurative constant, or the word SIZE. It may not be ALL
literal since ALL literal has an indefinite length. When the phrase
contains the word SIZE, the software moves each sending field, in
total, until it either exhausts the sending field, or fills the
receiving field.)

Consider the following example:

STRING CITY SPACE STATE ". " ZIP
DELIMITED BY SIZE INTO ADDRESS-LINE.

Figure 3-14
Delimiting with the Word SIZE

If CITY is a 20-character field, the result of the STRING operation
shown in Figure 3-14 might look like the following:

AYER MA. 01432

______16 spaces

3-16 NON-NUMERIC CHARACTER HANDLING

A far more attractive printout can be produced by having the STRING
operation produce the following:

AYER, MA. 01432

To accomplish this, use the figurative constant SPACE as a delimiter
on the sending field; thus,

MOVE 1 TO P.
STRING CITY DELIMITED BY SPACE

INTO ADDRESS-LINE WITH POINTER P.
STRING ", " STATE ". " ZIP

DELIMITED BY SIZE

INTO ADDRESS-LINE WITH POINTER P.

Figure 3-15
SPACE as a Delimiter

This sample coding uses the pointer's characteristic of pointing to
one character position beyond the 1last character replaced in the
receiving field to enable the second STRING statement to begin at a
position one character past where the first STRING statement stopped.
(The first STRING statement moves data characters until it encounters
a space character -- a match of the delimiter SPACE. The second
STRING statement adds the 1literal, the 2-character STATE field,
another literal, and the 5-character ZIP field.)

The delimiter can be varied for each field within a single STRING
statement by repeating the DELIMITED BY phrase after the sending field
names to which it applies. Thus, the following shorter statement has
the same effect as the preceding example. (Placing the operands on
separate source lines, as shown in this example, has no effect on the
operation of the statement, but improves program readability and
simplifies debugging.)

STRING CITY DELIMITED BY SPACE
", " STATE ". "
ZIP DELIMITED BY SIZE
INTO ADDRESS-LINE.

Figure 3-16
Repeating the DELIMITED BY Phrase

The sample STRING statement in Figure 3-16 cannot handle 2-word city
names, such as New York, since the software would consider the space
between the two words as a match for the delimiter SPACE. A longer
delimiter, such as two or three spaces (non-numeric literal), can
solve this problem. Only when a sequence of characters matches the
delimiter will the movement stop for that data item.

NON-NUMERIC CHARACTER HANDLING 3-17

With a 2-byte delimiter, the same statement can be rewritten in a
simpler form:

STRING CITY ", " STATE ". " ZIP
DELIMITED BY " " INTO ADDRESS-LINE.

Figure 3-17
Delimiting with More Than One Space Character

Since only the CITY field may contain two consecutive spaces (the
entire STATE field is only two bytes long), the delimiter's search of
the other fields will always be unsuccessful and the effect 1is the
same as moving the full field (delimiting by SIZE).

Data movement under control of a data-name or 1literal 1is generally
slower in execution speed than movement delimited by SIZE.

The example in Figure 3-17 illustrates a frequent source of error in
the wuse of STRING statements to concatenate fields. The remainder of
the receiving field is not space-filled as with a MOVE statement. If
ADDRESS-LINE 1is to be printed on a mailing label, for example, the
STRING statement should be preceded by the statement, MOVE SPACES TO
ADDRESS-LINE. This gquarantees a space fill to the right of the
concatenated result. Alternatively, the last field concatenated by
the STRING statement can be a field previously set to SPACES. (This
sending field must be moved under control of a delimiter other than
SPACE, of course.)

3.7.4 The OVERFLOW Phrase

When the SIZE option of the DELIMITED BY phrase controls the STRING
operation and the pointer value is either known or the POINTER phrase
is not used, the programmer can tell, by simple addition, 1if the
receiving field is large enough to hold the sending fields. However,
if the DELIMITED BY phrase contains a literal or an identifier, or if
the pointer value 1is not predictable, it may be difficult to tell
whether the size of the receiving field is adequate, and an overflow
may occur.

The ON OVERFLOW phrase at the end of the STRING statement tests for an
overflow condition:

STRING FIELDl1A FIELD1B DELIMITED BY "C"
INTO FIELD2 WITH POINTER PNTR
ON OVERFLOW GO TO PN57.

Figure 3-18
The ON OVERFLOW Phrase

3-18 NON-NUMERIC CHARACTER HANDLING

Overflow occurs when the receiving field is full and the software is
either about to move a character from a sending field or is
considering a new sending field. Overflow may also occur if, during
the initialization of the statement, the pointer contains a value that
is either less than 1 or greater than the 1length of the receiving
field. In this case, the software moves no data to the receiving
field and terminates the operation immediately.

The ON OVERFLOW phrase cannot distinguish the overflow caused by a bad
initial wvalue in pointer PNTR from the overflow caused by a receiving
field that is too short. Only a separate test, preceding the STRING
statement, can distinguish between the two.

The following examples illustrate the overflow condition:

DATA DIVISION.
01 FIELD1A PIC XXX VALUE "ABC".
01 FIELD2 PIC XXXX.

PROCEDURE DIVISION.
1. STRING FIELD1A QUOTE DELIMITED BY SIZE INTO FIELD2.
2. STRING FIELD1A FIELD1A DELIMITED BY SIZE INTO FIELD2.
3. STRING FIELD1A FIELD1A DELIMITED BY "C" INTO FIELD2.
4. STRING FIELDl1A FIELDl1A FIELD1A FIELDI1A
DELIMITED BY "B" INTO FIELD2.
5. STRING FIELD1A FIELDl1A "C" DELIMITED BY "C"
INTO FIELD2.
6. MOVE 2 TO P.
STRING FIELD1A "AC" DELIMITED BY "C"
INTO FIELD2 WITH POINTER P.

Figure 3-19
Various STRING Statements
Illustrating the Overflow Condition

The results of executing the numbered statements follow:

Table 3-2
Results of the
Preceding Sample Statements

Value of FIELD2 after

the STRING operation Overflow?
gm——'

l. ABC" No

2. ABCA Yes

3. ABAB No

4, AAAA No

5. ABAB Yes

6. AABA No

NON-NUMERIC CHARACTER HANDLING 3-19

3.7.5 Subscripted Fields in STRING Statements

All data-names used in the STRING statement may be subscripted, and
the pointer value may be used as a subscript.

Since the pointer value might be used as a subscript on one or more of
the fields in the statement, it is important to understand the order
in which the software evaluates the subscripts and exactly when it
updates the pointer. (The use of the pointer as a subscript is not
specified by ANS-74 COBOL. Before using it, read the note at the end
of this subsection.)

The software updates the pointer after it moves the last character out
of each sending field. Consider the following sample coding:

MOVE 1 TO P.

STRING "ABC"
SPACE
"DEF" DELIMITED BY SIZE
INTO R WITH POINTER P.

Figure 3-20
STRING Statement with Pointer

During the movement of "ABC" into the receiving field (R), the pointer
value remains at 1. After the move, the software increases the
pointer value by 3 (the size of the sending field literal "ABC") and
it takes on the value 4. The software then moves the figurative
constant SPACE and increases the pointer value by 1 and it takes on
the value 5. "DEF" is then moved and, on completion of the move, the
software increases the pointer to its final value for this operation,
8.

Now, consider the updating characteristics of the pointer when applied
to subscripting:

MOVE 1 TO P.
STRING CHAR(P)
CHAR(P)
CHAR (P)
CHAR(P) DELIMITED BY SIZE
INTO R WITH POINTER P.

Figure 3-21
Subscripting with the Pointer

If CHAR is a l-character field in a table, the pointer increases by
one after each field has been moved and the software will move them
into R as if they had been subscripted as CHAR(l), CHAR(2), CHAR(3),
and CHAR(4). 1If CHAR is a 2-character field, the pointer increases by
two after each field has been moved and the fields will move into R as
if they had been subscripted as CHAR(1), CHAR(3), CHAR(5), and
CHAR(7) .

3-20 NON-NUMERIC CHARACTER HANDLING

Thus, the software evaluates the subscript of a sending item once,
immediately before it considers the item as a sending item.

The software evaluates the subscript of a receiving item only once, at
the start of the STRING operation. Therefore, if the pointer is used
as a subscript on the receiving field, changes occurring to the
pointer during the execution of the STRING statement will not alter
the choice of which receiving string is altered.

Even the delimiter field can be subscripted, and it too can be
subscripted with the pointer. The software re-evaluates the delimiter
subscript once for each sending field, immediately before it compares
the delimiter to the field. Thus, by subscripting it with the pointer
value, the delimiter can be changed for each sending field. This has
the peculiar effect of choosing the next sending field's delimiter
based on the position, in the receiving field, into which its first
character will fall. For example, consider the following sample
coding:

01 DTABLE.
03 D PIC X OCCURS 7 TIMES.

MOVE 1 TO P.

STRING "ABC"
" ABC "
"ABC" DELIMITED BY D(P)
INTO R WITH POINTER P.

Figure 3-22
Subscripting the Delimiter

The following table shows the value that will arrive in the receiving
field (R) from the three "ABC" literals if DTABLE contains the values
shown in the left-hand column:

Table 3-3
Results of the
Preceding Sample Statements

DTABLE Value R Value
ABCDEFG (Unchanged)
BCDEFGH AABABC
CDEFGHI ABABCABC
CCcCcCcccece ABABAB

NON-NUMERIC CHARACTER HANDLING 3-21

NOTE

The rules in this section, concerning
subscripts in the STRING statement, are
rules that are not specified by 1974
American National Standard COBOL.
Dependence on these rules, particularly
those 1involving the use of the pointer
field as a subscript, may produce
programs that will not perform the same
way on other COBOL compilers.

If the pointer field is not used as a
subscript on any of the fields in the
statement, the point at which the
software evaluates the subscripts is
immaterial to the execution of the
statement. Thus, by avoiding the use of
the pointer as a subscript, uniform
results can be expected from all COBOL
compilers that adhere to 1974 ANS COBOL.

3.7.6 Common Errors, STRING Statement
The most common errors made when writing STRING statements are:
) using the word "TO" instead of "INTO"
) forgetting to write "DELIMITED BY SIZE";
° forgetting to initialize the pointer;
° initializing the pointer to 0 instead of 1;

° forgetting to provide for space fill of the receiving field
when it is desirable.

3.8 THE UNSTRING STATEMENT

The UNSTRING statement disperses the contents of a single sending
field into multiple receiving fields.

The statement has many forms; the simplest is equivalent in function
to a non-numeric MOVE statement. Consider the following illustration;
the sample statement 1is equivalent to MOVE FIELDl TO FIELD2,
regardless of the relative sizes of the two fields.

UNSTRING FIELD1 INTO FIELDZ2.

Figure 3-23
Sample UNSTRING Statement

3-22 NON-NUMERIC CHARACTER HANDLING

The sending field (FIELDl1l) may be either a group item or an
alphanumeric, or alphanumeric edited elementary item. The receiving
field (FIELD2) may be alphabetic, alphanumeric, or numeric, but it
cannot specify any type of editing.

If the receiving field is numeric, it must be DISPLAY usage. The
picture-string of a numeric receiving field may contain any of the
legal numeric description characters except for P and, of course, the
editing characters. The UNSTRING statement moves the sending field to
numeric receiving fields as if the sending field had been described as
an unsigned integer; further, it automatically truncates or zero
fills as required.

If the receiving field is not numeric, the software follows the rules
for elementary non-numeric MOVE statements. It left-justifies the
data in the receiving field, truncating or space-filling as required.
(If the data-description of the receiving field contains a JUSTIFIED
clause, the software right-justifies the data, truncating or
space-filling to the left as required.)

3.8.1 Multiple Receiving Fields

An important characteristic of the UNSTRING statement is its ability
to disperse one sending field into several receiving fields. Consider
the following example of the UNSTRING statement written with multiple
receiving fields:

UNSTRING FIELD1 INTO
FIELD2A FIELD2B FIELD2C.

Figure 3-24
Multiple Receiving Fields

In this sample statement, FIELDl is the sending field. The software
performs the UNSTRING operation by scanning across FIELDl from left to
right. When the number of characters scanned is equal to the number
of characters in the receiving field, the software moves the scanned
characters into the receiving field and begins scanning the next group
of characters for the next receiving field.

Assume that each of the receiving fields in the preceding illustration
(FIELD2A, FIELD2B, and FIELD2C) 1is five characters long, and that
FIELDl is 15 characters long. The size of FIELD2A determines the
number of characters for the first move. The software scans across
FIELDl until the number of characters scanned equals the size of
FIELD2A (5). It then moves those first five characters to FIELD2A,
and sets the scanner to the next (sixth) character position in FIELDI.
The size of FIELD2B determines the size of the next move. The
software begins this move by scanning across FIELDl from character
position six, until the number of scanned characters equals the size
of FIELD2B (5).

NON-NUMERIC CHARACTER HANDLING 3-23

The software then moves the sixth through the tenth characters to
FIELD2B, and sets the scanner to the next (eleventh) character
position-in FIELDl. FIELD2C determines the size of the last move (for
this example) and causes characters 11 through 15 of FIELDl to be
moved into FIELD2C, thus terminating this UNSTRING operation.

Each data movement acts as an individual MOVE statement, the sending
field of which is an alphanumeric field equal in size to the receiving
field. 1If the receiving field is numeric, the move operation will
convert the data to the numeric form. For example, consider what
would happen if the fields under discussion had the data descriptions
and were manipulating the values shown in the following table:

Table 3-4
Values Moved Into the Receiving Fields
Based on the Value in the Sending Field

FIELD1 FIELD2A FIELD2B FIELD2C

PIC X(15). PIC X(5) PIC S9(5) PIC S999Vv99
VALUE 1IS: LEADING SEPARATE

ABCDE1234512345 ABCDE +12345 3450
XXXXX0000100123 XXXXX +00001 1230

FIELD2A is an alphanumeric field and, therefore, the software simply
conducts an elementary non-numeric move with the first five
characters.

FIELD2B, however, has a leading separate sign that is not included 1in
its size. Thus, the software moves only five numeric characters and
generates a positive sign in the separate sign position.

FIELD2C has an implied decimal point with two character positions to
the right of it, plus an overpunched sign on the low-order digit. The
sending field should supply five numeric digits; but, since the
sending field 1is alphanumeric, the software treats it as an unsigned
integer; it truncates the two high-order digits and supplies two zero
digits for the decimal positions. Further, it supplies a positive
overpunch sign, making the low-order digit a +0 (or the ASCII
character, {) . (There is no simple way to have UNSTRING recognize a
sign character or a decimal point in the sending field.)

If the sending field is shorter than the sum of the sizes of the
receiving fields, the software ignores the remaining receiving fields.
If it reaches the end of the sending field before it reaches the end
of ‘one of the receiving fields, the software moves the scanned
characters into that receiving field. It left-justifies and fills the
remaining character positions with spaces for alphanumeric data, or
decimal point aligns and zero fills the remaining character positions
for numeric data.

3-24 NON-NUMERIC CHARACTER HANDLING

Consider the following examples of a sending field that is too short.
(The statement is UNSTRING FIELDl INTO FIELD2A FIELD2B. FIELD2A is a
3-character alphanumeric field, and receives the first three
characters of FIELDl (ABC) in every operation. FIELD2B, however, runs
out of characters every time before filling. Since FIELD2A always
contains the characters ABC, it is not shown.)

Table 3-5
Handling a Sending Field that is Too Short
FIELD1 FIELD2B FIELD2B
PIC X(6) PICTURE 1IS: Value after UNSTRING Operation
VALUE IS:
—— : —_——

ABCDEF XXXXX DEF

599999 0024F
ABC246 S9V999 600

59999 +0246

LEADING SEPARATE

3.8.2 The DELIMITED BY Phrase

The size of the data to be moved can be controlled by a delimiter,
rather than by the size of the receiving field. The DELIMITED BY
phrase supplies the delimiter characters.

UNSTRING delimiters are quite flexible; they can be 1literals,
figurative constants (including ALL literal), or identifiers
(identifiers may even be subscripted data-names). This sub-section
discusses the use of these three types of delimiters. Subsequent
sections cover multiple delimiters, the COUNT phrase, and the
DELIMITER phrase. Subscripting delimiters is discussed at the end of
this section under Subscripted Fields in UNSTRING Statements.

Consider the following sample UNSTRING statement; it wuses the
figurative constant, SPACE, as a delimiter:

UNSTRING FIELD1 DELIMITED BY SPACE INTO FIELDZ2.

Figure 3-25
Delimiting with a Space Character

In this example, the software scans the sending field (FIELD1),
searching for a space character. 1If it encounters a space, it moves
all of the scanned (non-space) characters that precede that space to
the receiving field (FIELD2). If it finds no space character, it
moves the entire sending field. When it has determined the size of
the sending field, the software moves the contents of that field
following the rules for the MOVE Statement, truncating or zero filling
as required.

NON-NUMERIC CHARACTER HANDLING 3-25

The following table shows the results of an UNSTRING operation that
delimits with a 1literal asterisk (UNSTRING FIELDl DELIMITED BY "*"
INTO FIELD2).

Table 3-6
Results of Delimiting with an Asterisk
FIELD1 FIELD2 FIELD2
PIC X(6) PICTURE 1S: VALUE AFTER
VALUE IS: UNSTRING
XXX ABC
ABCDEF X(7) ABCDEF
XXX JUSTIFIED DEF
* ko kokok XXX
*ABCDE XXX
Ax*kk* XXX JUSTIFIED A
246*** 59999 024F
12345+%* S9999 SEPARATE 2345+
TRAILING
2468%* S999V9 SEPARATE +4680
LEADING
246% 9999 0000

If the delimiter matches the first character in the sending field, the
software considers the size of the sending field to be zero. The
movement operation still takes place, however, and fills the receiving
field with spaces or zeroes depending on its class.

A delimiter may also be applied to an UNSTRING statement that has
multiple receiving fields:

UNSTRING FIELD1l DELIMITED BY SPACE
INTO FIELD2A FIELD2B.

Figure 3-26
Delimiting with Multiple Receiving Fields

The sample instruction in Figure 3-26 causes the software to scan
FIELDl searching for a character that matches the delimiter. If it
finds a match, it moves the scanned characters to FIELD2A and sets the
scanner to the next character position to the right of the character
that matched. It then resumes scanning FIELDl1 for a character that
matches the delimiter.

3-26 NON-NUMERIC CHARACTER HANDLING

If the software finds a match, it moves all of the characters that lie
between the character that first matched the delimiter and the
character that matched on the second scan, and sets the scanner to the
next character position to the right of the character that matched.
(The DELIMITED BY phrase could handle additional receiving fields 1in
the same manner as it handled FIELD2B.)

The following table shows the results of an UNSTRING operation that
applies a delimiter to multiple receiving fields (UNSTRING FIELD1
DELIMITED BY "*" INTO FIELD2A FIELD2B).

Table 3-7
Results of Delimiting
Multiple Receiving Fields

FIELD1 VALUES AFTER UNSTRING OPERATION

PIC X(8) FIELD2A FIELD2B

VALUE 1IS: PIC X(3) PIC X (3)
—

ABC*DEF* DEF

ABCDE*FG ABC FG

A*B**k k% A B

*AB*CD** AB

**ABCDEF

A*BCDEFG A BCD

ABC**DEF ABC

A**kkkkp A

The last two examples illustrate the limitations of a single character

delimiter. Accordingly, the delimiter may be 1longer than one
character and it may be preceded by the word ALL.
The following table shows the results of an UNSTRING operation that

uses a 2-character delimiter (UNSTRING FIELD1 DELIMITED BY "**" INTO
FIELD2A FIELD2B) :

Table 3-8
Results of Delimiting
with Two Asterisks

FIELD1 " VALUES AFTER UNSTRING OPERATION
PIC X(8) FIELD2A FIELD2B
VALUE 1IS: PIC XXX PIC XXX
JUSTIFIED
ABC**DEF DEF
A*B*C*D*
AB***C*D C*D
AB*XC*D* *D*
AB**CD** CD
AB***CD* CD*
AB***Xx*CD

NON-NUMERIC CHARACTER HANDLING 3-27

Unlike the STRING statement, the UNSTRING statement accepts the ALL
literal as a delimiter. When the word ALL precedes the delimiter, the
action of the UNSTRING statement remains essentially the same as with
one delimiter until the scanning operation finds a match. At this
point, the software scans farther, looking for additional consecutive
strings of characters that also match the delimiter item. It
considers the "ALL delimiter" to be one, two, three, or more adjacent
repetitions of the delimiter item.

The following table illustrates the results of an UNSTRING operation
that wuses an ALL delimiter (UNSTRING FIELDl DELIMITED BY ALL "*" INTO
FIELD2A FIELD2B).

Table 3-9
Results of Delimiting
with ALL Asterisks

FIELD1 VALUES AFTER UNSTRING OPERATION
PIC X (8) FIELD2A FIELD2B

VALUE IS: PIC XXX PIC XXX

JUSTIFIED
_— — m—

ABC*DEF* ABC DEF

ABC**DEF ABC DEF

AXkkkkkE A F

AXFhxkkk A F

A*CDEFG A EFG

The next table illustrates the results of an UNSTRING operation that
combines ALL with a 2-character delimiter (UNSTRING FIELDl1 DELIMITED
BY ALL "*#*" INTO FIELD2A FIELD2B).

Table 3-10
Results of Delimiting with
ALL Double Asterisks

FIELD1 VALUES AFTER UNSTRING OPERATION
PIC X(8) PIC XXX PIC XXX
VALUE 1IS: JUSTIFIED
ABC**DEF ABC DEF
AB**DE** " AB DE
A**kDhkk A *D
Axkkkkkk A *

3-28 NON-NUMERIC CHARACTER HANDLING

In addition to unchangeable delimiters, such as literals and
figurative constants, delimiters may be designated by identifiers.
Identifiers (which may even be subscripted data-names) permit variable
delimiting. Consider the following sample statement:

UNSTRING FIELD1 DELIMITED BY DEL1
INTO FIELD2A FIELD2B.

Figure 3-27
Delimiting with an Identifier

The data-name, DEL1l, must be alphanumeric. It may be a group or
elementary item, and it may be edited. (Since the delimiter is not a
receiving field, any editing characters will not effect its use, other
than contributing to the size of the item.)

If the delimiter contains a subscript, the subscript may be varied as
a side effect of the UNSTRING operation. The evaluation of subscripts
is discussed later in this section.

3.8.2.1 Multiple Delimiters - The UNSTRING statement has the ability
to scan a sending field, searching for a match from a list of
delimiters. This list may contain ALL delimiters and delimiters of
various sizes. The only requirement of the list is that delimiters
must be connected by the word OR.

The following sample statement separates a sending field into three
receiving fields. The sending field consists of three strings
separated by the following: (1) any number of spaces, or (2) a comma
followed by a single space, or (3) a single comma, or (4) a tab
character, or (5) a carriage return character. (The ", " must precede
the "," in the list if it is ever to be recognized.)

UNSTRING FIELDl DELIMITED BY
ALL SPACE OR

" ’ " OR
" ’ " OR
TAB OR
CR

INTO FIELD2A FIELD2B FIELDZ2C.

Figure 3-28
Multiple Delimiters

Table 3-11 illustrates the potential of this statement. The tab
(represented by the letter t) and carriage return (represented by the
letter r) characters represent single character fields containing the
ASCII horizontal tab and carriage return characters.

NON-NUMERIC CHARACTER HANDLING 3-29

Table 3-11
Results of the Multiple Delimiters
Shown in Figure 3-28

FIELD1 " FIELD2A FIELD2B FIELD2C
PIC X(12) PIC XXX PIC 9999 PIC XXX
A,0,Cr A 0000 C
At456, E A 0456 E

A 3 9 A 0003 9

AttBr A 0000 B

aA,,C A 0000 c

ABCD, 4321,1% ABC 4321 Z
t--tab character, r--carriage return character

3.8.3 The COUNT Phrase

The COUNT phrase keeps track of the size of the sending string and
stores the length in a user-supplied data area.

The length of a delimited sending field may vary widely (from zero to
the full length of the field) and some programs may require knowledge
of this length. For example, if it exceeds the size of the receiving
field (which 1is fixed 1in size) some data may be truncated and. the
program's logic may require this information.

To use the phrase, simply follow the receiving field name with the
words COUNT IN and an identifier. Consider the following sample
statement:

UNSTRING FIELDl1 DELIMITED BY ALL "*"
INTO FIELD2A COUNT IN COUNT2A
FIELD2B COUNT IN COUNT2B
FIELD2C.

Figure 3-29
The COUNT Phrase

In this sample statement, the software will count the number of
characters between the left-hand end of FIELDl and the first asterisk
in FIELDl and place that value into COUNT2A; thus, COUNT2A contains
the size of the first sending string. The software does not include
the delimiter in the count (as it is not a part of the string).

3-30 NON-NUMERIC CHARACTER HANDLING

The software then counts the number of characters in the second
sending field and places that value into COUNT2B.

The phrase should be used only where needed; in this example the
length of the string moved to FIELD2C is not needed, so no COUNT
phrase follows it.

If the receiving field is shorter than the value placed in the count
field, the software truncates the sending string. (If the number of
integer positions in a numeric field is smaller than the value placed
into the count field, high-order numeric digits have been lost.) If
the software finds a delimiter match on the first character it
examines, it places a zero in the count field.

The count field must be described as a numeric integer, either COMP or
DISPLAY usage, with no editing symbols nor the character P in its
picture-string. The software moves the count value into the count
field according to the rules for an elementary numeric MOVE statement

The COUNT phrase may be used only in conjunction with the DELIMITED BY
phrase.

3.8.4 The DELIMITER Phrase

The DELIMITER phrase causes the actual character or characters that
delimited the sending field to be stored in a user-supplied data area.
This phrase is most useful when: (1) the statement contains a
delimiter 1list, (2) any one of the items in the list might have
delimited the field, and (3) program logic flow depends on which one
found a match. 1In fact, the DELIMITER and COUNT phrases could be used
together and program logic flow could depend on both the size of the
sending string and the delimiter character that terminated it.

To use the DELIMITER phrase, simply follow the receiving field name
with the words DELIMITER IN and an identifier. (The software places
the delimiter character in the area named by the identifier.) Consider
the following sample UNSTRING statement:

UNSTRING FIELDl1 DELIMITED BY "," OR TAB OR
ALL SPACE OR CR
INTO FIELD2A DELIMITER IN DELIMA
FIELD2B DELIMITER IN DELIMB
FIELD2C.

Figure 3-30
The DELIMITER Phrase

After moving the first sending string to FIELD2A, the software takes
the character (or characters) that delimited that string and places it
in DELIMA. DELIMA, then, contains a comma, or a tab, or a carriage
return, or any number of spaces. Since the delimiter string is moved
under the rules of the elementary non-numeric MOVE statement, the
software truncates or space fills with left or right justification
(depending on its data description).

NON-NUMERIC CHARACTER HANDLING 3-31

The software then moves the second sending string to FIELD2B and
places its delimiting character into DELIMB.

When a sending string is delimited by the end of the sending field
(rather than a match on a delimiter) the delimiter string is of zero
length. This causes the DELIMITER item to be space filled. The
phrase should be used only where needed; in this example, the
character that delimits the last sending string is not needed, so no
DELIMITER phrase follows FIELD2C.

The data item named in the DELIMITER phrase must be described as an
alphanumeric item. It may contain editing characters and it may even
be a group item.

When the DELIMITER and COUNT phrases are used together, they must
appear 1in the correct order (DELIMITER phrase preceding the COUNT
phrase). Both of the data items named in these phrases may be
subscripted or indexed. If they are subscripted, the subscript may be
varied as a side effect of the UNSTRING operation. (The evaluation of
subscripts is discussed in section 3.8.8.)

3.8.5 The POINTER Phrase

Although the UNSTRING statement normally starts at the left-hand end
of the sending field, the POINTER phrase permits the user to select a
character position in the sending field for the software to begin
scanning. (The scanning, however, remains left-to-right.)

When a sending field 1is to be dispersed into multiple receiving
fields, it often happens that the choice of delimiters, the size of
subsequent receiving fields, etc. depend on the value in the first
sending string or the character that delimited that string. Thus, the
program may need to move the first field, hold 1its place in the
sending field, and examine the results of the operation to determine
how to handle the sending items that follow. This is done by using an
UNSTRING statement with a POINTER phrase that fills only the first
receiving field. When the first string has been moved to a receiving
item, the software updates the pointer data item with a new position
(one character beyond the delimiter that caused the interruption) to
begin the next scanning operation. The program may then examine the
new position, the receiving field, the delimiter value, the sending
string size, and resume the scanning operation by executing another
UNSTRING statement with the same sending field and pointer data item.
Thus, the UNSTRING statement can move one sending string at a time,
with the form of each move being dependent on the context of the
preceding string of data. '

The POINTER phrase must follow the last receiving item in the

statement. Consider the following two UNSTRING statements with their
accompanying POINTER phrases and tests:

3-32 NON-NUMERIC CHARACTER HANDLING

MOVE 1 TO P.
UNSTRING FIELDl1 DELIMITED BY
":" OR TAB OR CR OR ALL SPACE
INTO FIELD2A
DELIMITER IN DELIMA
COUNT IN LSIZEA
WITH POINTER PNTR.
IF LSIZEA = 0 GO TO NO-LABEL-PROCESS.
IF DELIMA = ":"
IF PNTR > 8 GO TO BIG-LABEL-PROCESS
ELSE GO TO LABEL-PROCESS.
IF DELIMA = TAB GO TO BAD-LABEL PROCESS.

UNSTRING FIELDl1 DELIMITED BY ... WITH POINTER PNTR.

Figure 3-31
The POINTER Phrase

PNTR contains the current position of the scanner in the sending
field. The second UNSTRING statement uses PNTR to begin scanning the
additional sending strings in FIELDI1.

Since the software considers the left-most character to be character
position one, the value returned by PNTR may be used to examine the
next character. To do this, simply use PNTR as a subscript on the
sending field (providing that the sending field is also described as a
table of characters). For example, consider the following sample
coding:

01 FIELDI.
02 FIELD1-CHAR OCCURS 40 TIMES.

UNSTRING FIELD1
WITH POINTER PNTR.
IF FIELD1-CHAR(PNTR) = "X" ...

Figure 3-32
Examining the Next Character
By Using the Pointer Data
Item as a Subscript

Another way to examine the next character of the sending field 1is to
use the UNSTRING statement to move it to a l-character receiving
field. Consider the sample coding in figure 3-33.

NON-NUMERIC CHARACTER HANDLING 3-33

UNSTRING FIELD1
WITH POINTER PNTR.
UNSTRING FIELD1l INTO CHAR1 WITH POINTER PNTR.
SUBTRACT 1 FROM PNTR.
IF CHARLl = "X" ...

Figure 3-33
Examining the Next Character
By Placing It Into a l-Character Field

The program must decrement PNTR in order for this case to work 1like
the one illustrated in Figure 3-32, since the second UNSTRING
statement will increment the pointer value by 1.

The program must initialize the POINTER phrase data item before the
UNSTRING statement uses it. The software will terminate the UNSTRING
operation if the initial value of the pointer 1is 1less than one or
greater than the length of the sending field. (A pointer value that
is less than one or greater than the 1length of the sending field
causes an overflow condition. Overflow conditions are discussed in
section 3.8.7.)

The POINTER and TALLYING phrases may be used together in the same
UNSTRING statement; but, when both are used, the POINTER phrase must
precede the TALLYING phrase.

3.8.6 The TALLYING Phrase

The TALLYING phrase counts the number of receiving fields that
received data from the sending field.

When an UNSTRING statement contains several .receiving fields, the
possibility exists that there may not always be as many sending
strings as there are receiving fields. The TALLYING phrase provides a
convenient method for keeping a count of how many fields were acted
upon.

MOVE 0 TO RCOUNT.
UNSTRING FIELD1l DELIMITED BY "," OR ALL SPACE
INTO FIELD2A
FIELD2B
FIELD2C
FIELD2D
FIELD2E
TALLYING IN RCOUNT.

Figure 3-34
The TALLYING Phrase

3-34 NON-NUMERIC CHARACTER HANDLING

If the software has moved only three sending strings when it reaches
the end of FIELDl, it adds 3 to RCOUNT. The first three fields
(FIELD2A, FIELD2B, and FIELD2C) contain data from the operation, and
the last two (FIELD2D and FIELD2E) do not.

The TALLYING data item always contains the sum of its initial contents
plus the number of sending strings acted upon by the UNSTRING command
just executed. Thus, the programmer may want to initialize the tally
count before each use.

When used in the same statement with a POINTER phrase, the TALLYING
phrase must follow the POINTER phrase and both phrases must follow all
of the field names, the DELIMITER and COUNT phrases. The data items
for both phrases must contain numeric integers, that is, be without
editing characters or the letter P in their picture-strings; both
data items may be either COMP or DISPLAY usage. They may be signed or
unsigned and, if they are DISPLAY usage, they may contain any desired
sign option.

The data items for both phrases may be subscripted or indexed, or they
may be wused as subscripts on other fields in the statement. (The
evaluation of subscripts is discussed in section 3.8.8.) A convenient
use of the TALLYING phrase data item is as a subscript of a receiving
field. Consider the following sample coding, which causes program
control to execute the UNSTRING statement repeatedly until it exhausts
the sending field.

MOVE 1 TO PNTR, TLY.
PARl. UNSTRING FIELDl1 DELIMITED BY "," OR CR
INTO FIELD2(TLY)
DELIMITER IN DEL2
WITH POINTER PNTR
TALLYING IN TLY.
IF DEL2 = "," GO TO PARI.

Figure 3-35
The POINTER and TALLYING Phrases
Used Together

This sample coding causes program control to loop through the UNSTRING
statement, wusing the pointer, PNTR, to scan across FIELDl with
successive executions. Each comma isolates a sending string until
control reaches either a carriage return character or the end of
FIELDl. If it reaches the end of the field without encountering a
carriage return character, the software places a space into the
delimiter field, DEL2, and control falls through the IF statement and
out of the loop.

Since the TALLYING data item, TLY, is increased by 1 after each data
movement, it serves as a subscript on the receiving field. 1In effect
this causes the software to unpack the value in FIELDl into an array
of fixed-size fields. Further, an array of COUNT data items can be
supplied and loaded by the UNSTRING/TALLYING statement by adding the
COUNT IN phrase to the coding in Figure 3-35, as is shown in Figure
3-36.

NON-NUMERIC CHARACTER HANDLING 3-35

COUNT IN C(TLY)

Figure 3-36
Subscripting the COUNT Phrase
With the TALLYING Data Item

The TALLYING data item, in the above example, is one greater than the
number of receiving fields acted upon by the UNSTRING operation. This
is because the data item must be initialized to a value of one in
order to be used as a subscript for the first receiving item.

3.8.7 The OVERFLOW Phrase

The OVERFLOW phrase detects the overflow condition and provides an
imperative statement to be executed when it detects the condition. An
overflow condition exists when either of the following two situations
occurs:

1. The UNSTRING statement 1is about to be executed and its
pointer data item contains a value of 1less than one or
greater than the size of the sending field. When it detects
this situation, the software executes the OVERFLOW phrase
before it moves any data. Thus, the values of all of the
receiving fields remain unchanged.

2. The UNSTRING statement has filled all of the receiving fields
and data still remains in the sending field that has not been
matched as a delimiter or included in a sending string. When
it detects this situation, the software executes the OVERFLOW
phrase after it has executed the UNSTRING statement. Thus,
the values of all of the receiving fields are updated, but
some data has not been moved.

If the UNSTRING operation causes the scanner to move off the end of
the sending field (thus exhausting it), the software will not execute
the OVERFLOW phrase.

Consider the following set of instructions, which cause program
control to execute the UNSTRING statement repeatedly until it exhausts
the sending field. The TALLYING data item is a subscript indexing the
receiving field. (Compare this loop with the one in Figure 3-35,
which accomplishes the same thing.)

MOVE 1 TO TLY PNTR.
PARl. UNSTRING FIELD1 DELIMITED BY "," OR CR
INTO FIELD2(TLY)
WITH POINTER PNTR
TALLYING IN TLY
ON OVERFLOW GO TO PARI.

Figure 3-37
Using the OVERFLOW Phrase

3-36 NON-NUMERIC CHARACTER HANDLING

NOTE

The overflow condition also occurs if
the value of a pointer data item lies
outside the sending field at the start
of execution of the UNSTRING statement.
(The pointer value must not be less than
1, nor greater than the length of the
sending field.) This type of overflow is
not distinguishable from the overflow
condition described at the start of this
section, except that this condition
causes the UNSTRING statement to
terminate before any data movement takes
place. Then, the values of all
receiving fields remain unchanged.

3.8.8 Subscripted Fields in UNSTRING Statements

Since the flexibility of the UNSTRING statement is enhanced by
subscripting and indexing and particularly by subscripting with other
fields within the statement (such as subscripting the receiving field
with the TALLYING data item as discussed above), it is important to
understand how often and exactly when the software evaluates these
subscripts and indexes. This sub-section discusses the frequency and
times of subscript evaluation.

The software evaluates subscripts and indexes on the following items
only once, at the initiation of the UNSTRING statement; thus, any
change in subscript values during the execution of the statement has
no effect on these fields:

1. Sending field,

2. POINTER data item,

3. TALLYING data item.
The software evaluates subscripts and indexes on the following items
immediately before it moves data into the item. It moves the data to
these items in the order in which they are 1listed in the statement
(which is the same order as below):

1. Receiving field,

2. DELIMITER data item,

3. COUNT data item.
The software evaluates any subscripts and indexes on the data-names in
the DELIMITED BY phrase (delimiters) immediately before it scans each

sending string looking for a delimiter match. Thus, it re-evaluates
these data-names once for each receiving field in the statement.

NON-NUMERIC CHARACTER HANDLING 3-37

If any of the following items are used as subscripts on any receiving
fields, the programmer must be aware of the point at which these items
are updated:

° POINTER data-itenm,

) TALLYING data-item,

° COUNT data-item,

° Another receiving field.

Figure 3-38 illustrates, with a flow chart, the sequence of evaluation
operations:

‘ START ’

£
P
w
5 EVALUATE IF STORE
EVALUATE CONTINUE & DELIMITER POINTER SCANNER IN
ALL SCANNING FOR a RECEIVING PHRASE POINTER
DELIMITER REPETITIVE w FIELD PRESENT DATA ITEM
SUBSCRIPTS MATCHES é SUBSCRIPT
P
a
) :
e STORE IF
SCAN UPDATE 2 DELIMITER TALLYING ‘::DL:’IL%
SENDING i STRING IN PHRASE L
FIELD FOR SCANNER 8 RECEIVING PRESENT DATA ITEM
DELIMITER w L FIELD

r EVALUATE

EVALUATE
RECEIVING COUNT SENDING YES
O e FIELD FIELD FIELD EXHAUSTED
e SUBSCRIPT SUBSCRIPT ?

MOVE SENDING STORE COUNT

IF COUNT PHRASE PRESENT

STRING TO VALUE IN
ALL MORE
DELIMITER RE:::FEIL\.’:')NG COUNT FIELD RECEIVING
?

FIELDS
?

H-MK-00046-00

Figure 3-38
Sequence of Subscript Evaluation

3-38 NON-NUMERIC CHARACTER HANDLING

NOTE

The rules in this section concerning the
exact point at which the software
evaluates the identifiers in the
DELIMITED BY phrase and the point at
which it updates the POINTER and
TALLYING data items, are rules that are
specified by 1974 American National
Standard COBOL, as opposed to the STRING
statement where these are not so
specified.

3.8.9 Common Errors, UNSTRING Statement
The most common errors made when writing UNSTRING statements are:
° Leaving the OR connector out of a delimiter list;

° Misspelling or interchanging the words, DELIMITED and
DELIMITER;

) Writing the DELIMITER and COUNT phrases in the wrong order
when both are present (DELIMITER must precede COUNT);

° Leaving out the word INTO or writing it as TO;

° Repeating the word INTO where it is not needed; thus:

UNSTRING FIELD1 DELIMITED BY SPACE OR TAB
INTO FIELD2A DELIMITER IN DELIMA
INTO FIELD2B DELIMITER IN DELIMB
INTO FIELD2C DELIMITER IN DELIMC.

Figure 3-39
Erroneously Repeating the Word INTO

) Writing the POINTER and TALLYING phrases in the wrong order
(POINTER must precede TALLYING).

3.9 THE INSPECT STATEMENT

The INSPECT statement examines the character positions in a field and
counts or replaces certain characters (or groups of characters) in
that field.

Like the STRING and UNSTRING operations, INSPECT operations scan
across the field from 1left to right; further, 1like those two
statements, the INSPECT statement features a phrase which allows it to
begin or terminate the scanning operation with a delimiter match.
(Thus, the operation can begin within the field instead of at the
left-hand end, or it may begin at the left-hand end and terminate
within the field.)

NON-NUMERIC CHARACTER HANDLING 3-39

The TALLYING operation (which counts certain characters in the field)
and the REPLACING operation (which replaces certain characters in the
field) are quite versatile and may be applied to all of the characters
in the delimited area of the field being inspected, or they may be
applied only to those characters that match a given character string
under stated conditions. Consider the following sample statements,
which both cause a scan of the complete field:

INSPECT FIELD1l TALLYING TLY FOR ALL "B".

Figure 3-40
Sample INSPECT...TALLYING Statement

This statement scans FIELDl looking for the character B. Each time it
finds a B, it increments TLY by 1.

INSPECT FIELD1 REPLACING ALL SPACE BY ZERO.

Figure 3-41
Sample INSPECT...REPLACING Statement

This statement scans FIELDl1 looking for space characters. Wherever it
finds a space character, it replaces it with zero.

One INSPECT statement can contain both a TALLYING phrase and a
REPLACING phrase. However, when used together, the TALLYING phrase
must precede the REPLACING phrase. An INSPECT statement with both
phrases is equivalent to two separate INSPECT statements and, in fact,
the software compiles such a statement into two distinct INSPECT
statements. (To simplify debugging, therefore, it 1is best to
initially write the two phrases in separate INSPECT statements.)

3.9.1 The BEFORE/AFTER Phrase

The BEFORE/AFTER phrase acts as a delimiter and (possibly) restricts
the area of the field being inspected.

The following sample statement would count only the zeroes that
precede the percent sign (%) in FIELDl.

INSPECT FIELD1 TALLYING TLY
FOR ALL ZEROES BEFORE "g&".

Figure 3-42
Sample INSPECT...BEFORE Statement

3-40 NON-NUMERIC CHARACTER HANDLING

The delimiter (the percent sign in the preceding sample statement) can
be a single character, a string of characters, or any figurative
constant. Further, it can be either an identifier or a literal.

° If the delimiter is an identifier, it must be an elementary
data item of DISPLAY usage. It may be alphabetic,
alphanumeric, or numeric, and, it may contain editing
characters. The compiler always treats the item as if it had
been described as an alphanumeric string. (It does this by
implicit redefinition of the item, as described in Section
3.9.2.)

° If the delimiter is a literal, it must be non-numeric.

The software repeatedly compares the delimiter characters against an
equal number of characters in the field being inspected. If none of
the characters matches the delimiter, or if insufficient characters
remain in the field for a full comparison (at the right-hand end), the
software considers the comparison to be unequal.

The examples of the INSPECT statement in Figure 3-43, illustrate the
way the delimiter character finds a match in the field being
inspected. (The portion of the field the statement ignores as a
result of the BEFORE/AFTER phrase delimiters is crossed out with a
slash, and the portion it inspects is underlined.)

INSTRUCTION FIELD1 VALUE
INSPECT FIELDl...BEFORE "E". ABCDRPBHEY
INSPECT FIELDl...AFTER "E". ZBZPEFGHI
INSPECT FIELDl...BEFORE "K". ABCDEFGHI
INSPECT FIELDl...AFTER "K". RBZPEFBHA
INSPECT FIELDl...BEFORE "AB". hBCPEFZHZ
INSPECT FIELDl...AFTER "AB". KBCDEFGHI
INSPECT FIELDl...BEFORE "HI". ABCDEFGHZX
INSPECT FIELDl...AFTER "HI". KBCREFGHAY
INSPECT FIELDl...BEFORE "I ". ABCDEFGHI
INSPECT FIELDl...AFTER "I ". KBZPEFPRHZ

The ellipsis represents the position of the TALLYING or REPLACING
phrase.

Figure 3-43
Matching the Delimiter Characters
to the Characters in a Field

NON-NUMERIC CHARACTER HANDLING 3-41

The software scans the field for a delimiter match before it scans for
the inspection operation (TALLYING or REPLACING), thus establishing
the limits of the operation before beginning the actual inspection.
Section 3.9.3 further discusses the importance of the separate scan.

3.9.2 Implicit Redefinition

The software requires that certain fields referred to by the INSPECT
statement be alphanumeric fields. If one of these fields was
described as another data class, the compiler redefines that field so
the INSPECT statement can handle it as a simple alphanumeric string.
This implicit redefinition is conducted as follows:

° If the field was described as alphabetic, alphanumeric
edited, or unsigned numeric, the compiler simply redefines it
as alphanumeric. This is a compile-time operation; no data
movement occurs at run time.

° If the field was described as signed numeric, the compiler
first removes the sign and then redefines the field as
alphanumeric. If the sign 1is a separate character, the
compiler ignores that character, essentially shortening the
field, and that <character does not participate in the
implicit redefinition. 1If the sign is an "overpunch" on the
leading or trailing digit, the compiler actually removes the
sign value and 1leaves the character with only the numeric
value that was stored in it. The compiler alters the digit
position containing the sign before beginning the INSPECT
operation and restores it to its former value after the
operation. If the sign's digit position does not contain a
valid ASCII signed numeric digit, the action of the
redefinition causes the value to change. Table 3-12 shows
these original, altered, and restored values.

The compiler never moves an implicitly redefined item from its storage
position. All redefinition occurs in place.

The position of an implied decimal point on numeric quantities does
not affect implicit redefinition.

3-42 NON-NUMERIC CHARACTER HANDLING

Table 3-12
Original, Altered, and Restored Values Resulting
from Implicit Redefinition

ORIGINAL VALUE ALTERED VALUE RESTORED VALUE
P——
{ (78) 0 (30) { (7B)
A (41) 1 (31) A (41)
B (42) 2 (32) B (42)
C (43) 3 (33) C (43)
D (44) 4 (34) D (44)
E (45) 5 (35) E (45)
F (46) 6 (36) F (46)
G (47) 7 (37) G (47)
H (48) 8 (38) H (48)
I (49) 9 (39) I (49)
} (7D) 0 (30) } (7p)
J (4A) 1 (31) J (42)
K (4B) 2 (32) K (4B)
L (4C) 3 (33) L (4C)
M (4D) 4 (34) M (4D)
N (4E) 5 (35) N (4E)
O (4F) 6 (36) O (4F)
P (50) 7 (37) P (50)
Q (51) 8 (38) Q (51)
R (52) 9 (39)° R (52)
0 (30) 0 (30) { (7B)
1 (31) 1 (31) A (41)
2 (32) 2 (32) B (42)
3 (33) 3 (33) C (43)
4 (34) 4 (34) D (44)
5 (35) 5 (35) E (45)
6 (36) 6 (36) F (46)
7 (37) 7 (37) G (47)
8 (38) 8 (38) H (48)
9 (39) 9 (39) I (49)
All other values 0 (30) { (7B)

3.9.3 The INSPECT Operation
Regardless of the type of inspection (TALLYING or REPLACING), the

INSPECT statement has only one method for inspecting the characters in
the field. This section describes this method.

NON-NUMERIC CHARACTER HANDLING 3-43

However, before discussing how the inspection operation is conducted,
let's analyze the INSPECT statement itself:

INSPECT FIELDl TALLYING TLY FOR ALL "B" BEFORE "A",.

The field being——a// The afgﬁment
inspected

The operation The delimiter
phrase phrase
Figure 3-44

Sample INSPECT Statement

The format of the INSPECT statement requires that a field be named
which is to be inspected (FIELDl1 above); the field name must be
followed by an operation phrase (TALLYING TLY above); and, that
phrase must be followed by one or more identifiers or literals ("B"
above). These identifiers or literals comprise the "arguments" (items
to be compared to the field being inspected). More than one argument
makes up the "argument list".

° TALLYING Arguments

Each argument in an argument 1list can have other fields
associated with it. Thus, each argument that is used in a
TALLYING operation must have a tally counter (TLY above)
associated with it. The software increments the tally
counter each time it matches the argument with a character or
group of characters in the field being inspected.

) REPLACING Arguments

INSPECT FIELDl1 REPLACING ALL "0" BY "S$".

replacing argument

Figure 3-45
Sample REPLACING Argument

Each argument in an argument list that is used in a REPLACING
operation must have a replacement item ($ above) associated
with it. The software uses the replacement item to replace
each string of characters in the field that matches the
argument.

Each argument in an argument list (that is used with either a TALLYING
or REPLACING operation) may have a delimiter field (BEFORE/AFTER
phrase) associated with it. If the delimiter field 1is not present,
the software applies the argument to the entire field. If the
delimiter field is present, the software applies the argument only to
that portion of the field specified by the BEFORE/AFTER phrase.

3-44 NON-NUMERIC CHARACTER HANDLING

3.9.3.1 Setting the Scanner - The INSPECT operation begins by setting
the scanner to the 1leftmost character position of the field being
inspected. It remains on this character until an argument has been
matched with a character (or characters) or until all arguments have
failed to find a match at that position.

3.9.3.2 Active/Inactive Arguments - When an argument has a
BEFORE/AFTER phrase associated with it, that argument has a delimiter
and may not be eligible to participate in a comparison at every
position of the scanner. Thus, each argument in the argument list has
an active/inactive status at any given setting of the scanner.

For example, an argument that has an AFTER phrase associated with it
starts the INSPECT operation in an inactive state. The delimiter of
the AFTER phrase must find a match before the argument can participate
in the comparison. When the delimiter finds a match, the software
retains the character position beyond the matched character string;
then, when the scanner reaches or passes this position, the argument
becomes active.

INSPECT FIELDl1 TALLYING TLY
FOR ALL "B" AFTER "X".

Figure 3-46
Sample AFTER Delimiter Phrase

If FIELD]l in Figure 3-46 has a value of "ABABXZBA", the argument B
remains inactive until the scanner finds a match for the delimiter X.
Thus, argument B remains inactive while the software scans character
positions 1 through 5. At character position 5, the delimiter X finds
a match, and since the character position beyond the matched delimiter
character 1is the point at which the argument becomes active, argument
B is compared for the first time at character position 6. It finds a
successful match at character position 7 and this causes TLY to be
incremented by 1.

The examples in Figure 3-47 illustrate other situations where the
arguments and/or the delimiters are 1longer than one character.
(Consider the sample statement to be an INSPECT...TALLYING statement
that is scanning FIELDl, tallying in TLY, and 1looking for the
arguments and delimiters in the left-hand column. Assume that TLY is
initialized to 0.)

NON-NUMERIC CHARACTER HANDLING 3-45

ARGUMENT AND FIELD1 ARGUMENT CONTENTS OF
DELIMITER VALUE ACTIVE AT TLY AFTER SCAN
POSITION
BXBXXXXBB 6 2
"B" AFTER "XX" XXXXXXXX 3 0
BXBXBBBBXX never 0
BXBXXBXXB 6 2
"X" AFTER "XX" XXXXXXXX 3 6
BBBBBBXX never 0
BXYBXBXX 7 0
"B" AFTER "XB" XBXBXBXB 3 3
BBBBBBXB never 0
XXXXBXXXX 6 0
"BX" AFTER "XB" XXXXBBXXX 6 1
XXBXXXXBX 4 1
Figure 3-47

Where Arguments Become Active in a Field

When an argument has an associated BEFORE delimiter, the
inactive/active states reverse roles: the argument is in an active
state when the scanning begins, and becomes inactive at the character
position that matches the delimiter. Additionally, regardless of the
presence of the BEFORE delimiter, an argument becomes inactive when
the scanner approaches the right-hand end of the field and the
remaining characters are fewer in number than the characters in the
argument. (In such a case, the argument cannot possibly find a match
in the field so it becomes inactive.)

Since the BEFORE/AFTER delimiters are found on a separate scan of the
field, the software recognizes and sets up the delimiter boundaries
before it scans for an argument match; therefore, the same characters
can be used as arguments and delimiters in the same phrase.

3.9.3.3 Finding an Argument Match - The software selects arguments
from the argument list in the order in which they appear in the 1list.
If the first one it selects is an active argument and the conditions
stated in the INSPECT statement allow a comparison, the software
compares it to the character at the position of the scanner. If the
active argument does not find a match, the software takes the next
active argument from the list and compares that to the same character.
If none of the active arguments finds a match, the scanner moves one
position to the right and begins the inspection operation again with
the first active argument in the 1list. The inspection operation
terminates at the right-hand end of the field. .

3-46 NON-NUMERIC CHARACTER HANDLING

When an active argument does find a match, the software ignores any
remaining arguments in the list and conducts the TALLYING or REPLACING
operation on the character. The scanner moves to a new position and
the next inspection operation begins with the first argument in the
list. (The INSPECT statement may contain additional conditions, which
are described 1later in this section; this discussion, however,
assumes that the argument match is allowed to take place and that
inspection is allowed to continue following the match.)

The software updates the scanner by adding the size of the matching
argument to it. This moves the scanner to the next character beyond
the string of characters that matched the argument. Thus, once an
active argument matches a string of characters, the statement does not
inspect those character positions again wunless program control
executes the entire statement again.

3.9.4 Subscripted Fields in INSPECT Statements

Any identifier named in an INSPECT statement may be subscripted or
indexed.

The software evaluates all subscripts in an INSPECT statement once,
before the inspection begins; therefore, if the action of the INSPECT
statement alters one of the subscripts, the new subscript value has no
effect on the selection of operands during that inspection operation.
For example, consider the following illustration:

MOVE 1 TO TLY.
INSPECT FIELD1 TALLYING TLY
FOR ALL X (TLY).

Figure 3-48
Sample Subscripted Argument

In this sample statement, the software evaluates the address of X(TLY)
only once, before it begins inspecting the field; hence, it will
evaluate X(TLY) as X(1). The alteration of TLY by the action of
inspecting and tallying has no effect on the choice of the X operand.
(X(1) will be used throughout the operation.)

NOTE

When subscripting an INSPECT statement
that contains both a TALLYING and a
REPLACING phrase, keep in mind that the
statement will be compiled into two
separate INSPECT statements. Therefore,
any field that is altered by the action
of the INSPECT...TALLYING statement will
be in its altered state if used as a
subscript by the INSPECT. ..REPLACING
statement.

NON-NUMERIC CHARACTER HANDLING 3-47

3.9.5 The TALLYING Phrase

An INSPECT statement that contains a TALLYING phrase counts the
occurrence of various character strings under certain stated
conditions. It keeps the count in a wuser-designated field «called,
here, a tally counter.

3.9.5.1 The Tally Counter - The identifier that follows the word
TALLYING designates the tally counter. The identifier may be
subscripted or indexed. The data item must be a numeric integer with
no editing or P characters; it may be COMP or DISPLAY usage, and it
may be signed (separate or overpunched).

Each time the tally argument matches the delimited string being
inspected, the software adds 1 to the tally counter.

The programmer can initialize the tally counter to any numeric value.
(The INSPECT statement does not initialize it.)

3.9.5.2 The Tally Argument - The tally argument specifies a
character-string and a condition wunder which that string should be
compared to the delimited string being inspected. The following
figure shows the format of the tally argument:

ALL } identifier}
LEADING literal

CHARACTERS

Figure 3-49
Format of the Tally Argument

The CHARACTERS form of the tally argument specifies that every
character in the delimited string being inspected should be considered
to match an imaginary character that serves as the tally argument.
This increments the tally counter by a value that equals the size of
the delimited string. For example, the statement 1in the following
illustration causes TLY to be incremented by the number of characters
that precede the first comma, regardless of what those characters
might be.

INSPECT FIELD1l TALLYING TLY FOR
CHARACTERS BEFORE ",".

Figure 3-50
CHARACTERS Form of the Tally Argument

3-48 NON-NUMERIC CHARACTER HANDLING

When an active argument does find a match, the software ignores any
remaining arguments in the list and conducts the TALLYING or REPLACING
operation on the character. The scanner moves to a new position and
the next inspection operation begins with the first argument in the
list. (The INSPECT statement may contain additional conditions, which
are described 1later in this section; this discussion, however,
assumes that the argument match is allowed to take place and that
inspection is allowed to continue following the match.)

The software updates the scanner by adding the size of the matching
argument to it. This moves the scanner to the next character beyond
the string of characters that matched the argument. Thus, once an
active argument matches a string of characters, the statement does not
inspect those character positions again unless program control
executes the entire statement again.

3.9.4 Subscripted Fields in INSPECT Statements

Any identifier named in an INSPECT statement may be subscripted or
indexed.

The software evaluates all subscripts in an INSPECT statement once,
before the inspection begins; therefore, if the action of the INSPECT
statement alters one of the subscripts, the new subscript value has no
effect on the selection of operands during that inspection operation.
For example, consider the following illustration:

MOVE 1 TO TLY.
INSPECT FIELDl1 TALLYING TLY
FOR ALL X (TLY).

Figure 3-48
Sample Subscripted Argument

In this sample statement, the software evaluates the address of X(TLY)
only once, before it begins inspecting the field; hence, it will
evaluate X(TLY) as X(l1). The alteration of TLY by the action of
inspecting and tallying has no effect on the choice of the X operand.
(X(1) will be used throughout the operation.)

NOTE

When subscripting an INSPECT statement
that contains both a TALLYING and a
REPLACING phrase, keep in mind that the
statement will be compiled into two
separate INSPECT statements. Therefore,
any field that is altered by the action
of the INSPECT...TALLYING statement will
be in its altered state if used as a
subscript by the INSPECT...REPLACING
statement.

NON-NUMERIC CHARACTER HANDLING 3-47

3.9.5 The TALLYING Phrase

An INSPECT statement that contains a TALLYING phrase counts the
occurrence of various character strings wunder certain stated
conditions. It keeps the count in a wuser-designated field called,
here, a tally counter.

3.9.5.1 The Tally Counter - The identifier that follows the word
TALLYING designates the tally counter. The identifier may be
subscripted or indexed. The data item must be a numeric integer with
no editing or P characters; it may be COMP or DISPLAY usage, and it
may be signed (separate or overpunched).

Each time the tally argument matches the delimited string being
inspected, the software adds 1 to the tally counter.

The programmer can initialize the tally counter to any numeric value.
(The INSPECT statement does not initialize it.)

3.9.5.2 The Tally Argument - The tally argument specifies a
character-string and a condition under which that string should be
compared to the delimited string being inspected. The following
figure shows the format of the tally argument:

ALL } identifier}
LEADING literal

CHARACTERS

Figure 3-49
Format of the Tally Argument

The CHARACTERS form of the tally argument specifies that every
character in the delimited string being inspected should be considered
to match an imaginary character that serves as the tally argument.
This increments the tally counter by a value that equals the size of
the delimited string. For example, the statement in the following
illustration causes TLY to be incremented by the number of characters
that precede the first comma, regardless of what those characters
might be.

INSPECT FIELD1 TALLYING TLY FOR
CHARACTERS BEFORE ",".

Figure 3-50
CHARACTERS Form of the Tally Argument

3-48 NON-NUMERIC CHARACTER HANDLING

Thus, the first argument is initially inactive and becomes active only
after the scanner encounters an A; the second argument begins the
scan in the active state but becomes inactive after a B has been
encountered; and the third argument is active during the entire scan
of FIELDI.

Figure 3-55 shows various values of FIELDl and the contents of the
three tally counters after the scan. Assume that the counters are
initialized to 0 before the INSPECT statement.

CONTENTS OF TALLY COUNTERS AFTER SCAN
FIELD1
VALUE T1 T2 T3
m
A.C;D.E,F 1 2 1
A.B.C.D 0 1 0
A,B,C,D 3 0 0
A;B;C;D 0 0 3
*,B,C,D 0 0 0
Figure 3-55

Results of the Scan in Figure 3-54

The BEFORE/AFTER phrase applies only to the argument that precedes it,
and delimits the field for that argument only. Each BEFORE/AFTER
phrase causes a separate scan of the field to determine the limits of
the field for its corresponding argument.

3.9.5.4 Interference in Tally Argument Lists - When several tally
arguments contain one or more identical characters that are active at
the same time, they may interfere with each other (i.e., when one of
the arguments finds a match, the scanner is stepped past the matching
character (s) which prevents those character(s) from being considered
for any other match).

The example in Figure 3-56 illustrates two identical tally arguments
that do not interfere with each other since they are not active at the
same time. (The first A in FIELDl causes the first argument to become
inactive and the second argument to become active.)

MOVE 0 TO T1 T2.

INSPECT FIELD1 TALLYING
Tl FOR ALL "," BEFORE "A"
T2 FOR ALL "," AFTER "A".

Figure 3-56
Two Tallying Arguments that
Do Not Interfere with Each Other

The two identical tally arguments in Figure 3-57 will interfere with
each other since both are active at the same time. (For any given
position of the scanner, the arguments are applied to FIELDl1 in the
order in which they appear in the statement. When one of them finds a
match, the scanner moves to the next position and ignores the

NON-NUMERIC CHARACTER HANDLING 3-51

remaining arguments in the argument list.) Each comma in FIELD1l causes
Tl to be incremented by 1 and the second argument to be ignored.
Thus, Tl will always contain an accurate count of all of the commas in
FIELDl, and T2 will always be unchanged.

INSPECT FIELD1 TALLYING
Tl FOR ALL ","
T2 FOR ALL "," AFTER "A".

Figure 3-57
Two Tallying Arguments that
Do Interfere with Each Other

The following statement achieves the same results as the statement in
Figure 3-56. The first argument does not become active until the
scanner encounters an A. The second argument tallies all commas that
precede the A. After the A, the first argument counts all commas and
causes the second argument to be ignored. Thus, Tl contains the
number of commas that precede the first A and T2 contains the number
of commas that follow the first A. This statement works well as
written, but could be more confusing to debug than the one in Figure
3-56.

INSPECT FIELD1 TALLYING
T2 FOR ALL "," AFTER "A"
Tl FOR ALL ",".

Figure 3-58
Two Tallying Arguments that,
Because of their Positioning,
Only Partially Interfere with
Each Other

The preceding three examples show that one INSPECT statement cannot
count any character more than once. Thus, when using the same
character in more than one argument of an argument list, consider the
nature of the interference and choose the order of the arguments very
carefully. The solution to the problem may require two or more
INSPECT statements. Consider the following problem:

INSPECT FIELD1 TALLYING
Tl FOR ALL "AB"
T2 FOR ALL "BC".

Figure 3-59
An Attempt to Tally the Character B
with Two Arguments

If FIELDl contains "ABCABC", after the scan Tl will be incremented by
a 2 and T2 will be unaltered. The successful matching of the argument
includes each B in the field. Each match resets the scanner to the
character position to the right of the B, and causes the second

3-52 NON-NUMERIC CHARACTER HANDLING

argument to never be successfully matched. Reversing the order of the
arguments has no effect, the results remain the same. Only separate
INSPECT statements can develop the desired counts.

Sometimes the programmer can use the interference characteristics of
the INSPECT statement to good advantage. Consider the following
sample argument list:

MOVE 0 TO T4 T3 T2 Tl1.

INSPECT FIELD1 TALLYING
T4 FOR ALL "****"
T3 FOR ALL "***"
T2 FOR ALL "**"
Tl FOR ALL "*",

Figure 3-60
Tallying Asterisk Groupings

The argument list in Figure 3-60 counts all of the asterisks in FIELD1
but in four different tally counters. T4 counts the number of times
that four asterisks occur together; T3 counts the number of times
three asterisks appear together; T2 counts double asterisks; and Tl
counts singles.

If FIELD]l contains a string of more than four consecutive asterisks,
the argument 1list breaks the string into groups of four, and counts
them in T4. It then counts the less-than-four remainder in T3, T2, or
T1.

Reversing the order of the arguments in this list causes Tl to count
all of the asterisks and T2, T3, and T4 to remain unchanged.

When the LEADING condition is used with an argument in the argument
list, that argument becomes inactive as soon as it fails to be matched
in the field being inspected. Therefore, when two arguments in an
"argument list contain one or more identical characters and one of the
arguments has a LEADING condition, the argument with the LEADING
condition should appear first. Consider the following sample
statement:

MOVE 0 TO T1 T2.

INSPECT FIELD1 TALLYING
Tl FOR LEADING "*"
T2 FOR ALL "*",

Figure 3-61
Placing the LEADING Condition
in the Argument List

The placement of the LEADING condition in this sample statement causes
Tl to count only leading asterisks in FIELDl; the occurrence of any
other character stops this counting and causes the first tally
argument to become inactive. T2 keeps a count of any remaining
asterisks in FIELD1.

NON-NUMERIC CHARACTER HANDLING 3-53

Reversing the order of the arguments in this statement results in an
argument list that can never increment Tl.

INSPECT FIELDl1 TALLYING
T2 FOR ALL "*"
Tl FOR LEADING "*",

Figure 3-62
Reversing the Argument
List in Figure 3-61

If the first character in FIELDl is not an asterisk, neither argument
can match it and the second argument becomes inactive. If the first
character in FIELD1l is an asterisk, the first argument matches and
causes the second argument to be ignored. The first non-asterisk
character in FIELDl will fail to match the first argument and the
second argument will become inactive. (The second argument becomes
inactive because it has not found a match in all of the preceding
characters.)

An argument with both a LEADING condition and a BEFORE phrase can
sometimes sucessfully "delimit" the field being inspected:

MOVE 0 TO T1 T2.
INSPECT FIELDl1 TALLYING
Tl FOR LEADING SPACES

T2 FOR ALL " " BEFORE "."
T2 FOR ALL " " BEFORE "."
T2 FOR ALL " " BEFORE ".".

IF T2 > 0 ADD 1 TO T2.

Figure 3-63
An Argument List that Counts
Words in a Statement

The statements in Figure 3-63 count the number of "words" in the
English statement in FIELDl. (This assumes that no more than three
spaces separate the words in the sentence and that the sentence ends
with a period.) When FIELD1l has been scanned, T2 contains the number
of gaps between the words. Since a count of the gaps renders a number
that is one less than the number of words, the conditional statement
adds one to the count.

The first argument removes any leading spaces, counting them in a
different tally counter. This shortens FIELDl1 by preventing the
application of the second through the fourth arguments until the
scanner finds a non-space character. The BEFORE phrase on each of the
other arguments causes them to become inactive when the scanner
reaches the period at the end of the sentence. Thus, the BEFORE
phrases "shorten" FIELDl by making the second through the fourth
arguments inactive before the scanner reaches the right-hand end of
FIELDl. If the sentence in FIELDl is indented with tab characters
instead of spaces, a second LEADING argument can count the tab
characters. Figure 3-64 illustrates this technique:

3-54 NON-NUMERIC CHARACTER HANDLING

INSPECT FIELD1 TALLYING
Tl FOR LEADING SPACES
Tl FOR LEADING TAB
T2 FOR ALL " " etc.

Figure 3-64
Counting Leading Tab or Space Characters

When an argument list contains a CHARACTERS argument, it should be the
last argument in the 1list. Since the CHARACTERS argument always
matches the field, it prevents the application of any of the following
arguments in the list. However, as the last argument in an argument
list, it can count the remaining characters in the field being
inspected. Consider the following illustration.

MOVE 0 TO T1 T2 T3 T4 T5.
INSPECT FIELD1l TALLYING
Tl FOR LEADING SPACES
T2 FOR ALL "." BEFORE ","
T3 FOR ALL "+" BEFORE ","
T4 FOR ALL "-" BEFORE ","
T5 FOR CHARACTERS BEFORE ",".

Figure 3-65
Counting the Remaining Characters
With the CHARACTERS Argument

If FIELD]l is known to contain a number in the form frequently used to
input data, it may contain a plus or minus sign, and a decimal point;
further, the number may possibly be preceded by spaces and terminated
by a comma. If this statement were compiled and executed, it would
deliver the following results:

Tl would contain the number of leading spaces,

T2 would contain the number of periods,

T3 would contain the number of plus signs,

T4 would contain the number of minus signs,

T5 would contain the number of remaining characters (assumed to
be numeric), and

the sum of Tl through T5 (plus 1) gives the character position
occupied by the terminating comma.

3.9.6 The REPLACING Phrase

When an INSPECT statement contains a REPLACING phrase, that statement
selectively replaces characters or groups of characters in the
designated field.

NON-NUMERIC CHARACTER HANDLING 3-55

The REPLACING phrase names a search argument consisting of a character
string of one or more characters and a condition under which the
string may be applied to the field being inspected. Associated with
the search argument is the replacement value, which must be the same
length as the search argument. Each time the search argument finds a
match in the field being inspected, under the condition stated, the
replacement value replaces the matched characters.

A BEFORE/AFTER phrase may be used to delimit the area of the field
being inspected. A search argument applies only to the delimited area
of the field.

3.9.6.1 The Search Argument - The search argument of the REPLACING
phrase names a character string and a condition under which the
character string should be compared to the delimited string being
inspected. Figure 3-66 shows the format of the search argument:

ALL
LEADING
FIRST

identifier
literal

CHARACTERS

Figure 3-66
Format of the Search Argument

The CHARACTERS form of the search argument specifies that every
character in the delimited string being inspected should be considered
to match an imaginary character that serves as the search argument.
Thus, the replacement value replaces each character in the delimited
string. (The replacement value, in this case, must be one character
long.)

The ALL, LEADING, and FIRST forms of the search argument specify a
particular character string, which may be represented by a literal or
an identifier. The search argument character string may be any
length. However, each character of the argument must match a
character in the delimited string before the software considers the
argument matched.

° A literal character string must be either non-numeric or a
figurative constant (other than ALL literal). A figurative
constant, such as SPACE, ZERO, etc., represents a single
character and can be written as " ", "0", etc. with the same
effect. Since a figurative constant represents a single
character, the replacement value must be one character long.

o An identifier must represent an elementary item of DISPLAY
usage. It may be any class. However, if it is other than
alphabetic, the software performs an implicit redefinition of

the item. (This redefinition is identical to the
BEFORE/AFTER delimiter redefinition discussed in Section
3.9.1.)

3-56 NON-NUMERIC CHARACTER HANDLING

The words ALL, LEADING, and FIRST supply conditions which further
delimit the inspection operation:

) The word ALL specifies that each match that the search
argument finds in the delimited string is to be replaced by
the replacement value. When a literal follows the word ALL,
it does not have the same meaning as the figurative constant,
ALL literal. (The figurative constant meaning of ALL "," is
a string of consecutive commas, as many as the context of the
statement requires.) ALL "," as a search argument of the
REPLACING phrase means, "replace each comma without regard to
adjacent characters."

) The word LEADING specifies that only adjacent matches of the
search argument at the 1left-hand end of the delimited
character string be replaced. At the first failure to match
the search argument, the software terminates the replacement
operation and causes the argument to become inactive.

° The word FIRST specifies that only the 1leftmost character
string that matches the search argument is to be replaced.
After the replacement operation, the search argument
containing this condition becomes inactive.

3.9.6.2 The Replacement Value - Whenever the search argument finds a
match in the field being inspected, the matched characters are
replaced by the replacement value. The word BY followed by an
identifier or literal specifies the replacement value.

identifier

literal

Figure 3-67
Format of the Replacement Value

The replacement value must always be the same size as its associated
search argument.

If the replacement value is-a literal character string, it must be
either a non-numeric literal or a figurative constant (other than ALL
literal). A figurative constant represents as many characters as the
length that the search argument requires.

If the replacement value is an identifier, it must be an elementary
item of DISPLAY usage. It may be any class. However, if it is other
than alphanumeric, the software conducts an implicit redefinition of
the item. (This redefinition 1is the same as the BEFORE/AFTER
redefinition discussed in Section 3.9.1.)

NON-NUMERIC CHARACTER HANDLING 3-57

3.9.6.3 The Replacement Argument - The replacement argument consists
of the search argument (with its condition and character string), the
replacement value, and an optional BEFORE/AFTER phrase.

ALL ";" BY SPACE BEFORE "."
search BEFORE/AFTER
argument phrase (optional)
replacement
value
Figure 3-68

The Replacement Argument

3.9.6.4 The Replacement Argument List - One INSPECT...REPLACING
statement can contain more than one replacement argument. Several
replacement arguments form an argument list, and the manner in which
the 1list 1is processed affects the action of any given replacement

argument.

The following examples show INSPECT statements with replacement
argument lists. The text following each one tells how that list will
be processed.

INSPECT FIELDl1 REPLACING
ALL "," BY SPACE

ALL "." BY SPACE

' ALL ";" BY SPACE.

Figure 3-69
Replacement Argument List that is
Active Over the Entire Field

These three replacement arguments all have the same replacement value,
SPACE, and are active over the entire field being inspected.

Thus, this statement replaces all commas, periods, and semicolons with
space characters; and leaves all other characters unchanged.

INSPECT FIELD1 REPLACING
ALL " 0 n BY " 1 "
ALL " l " BY " 0 " .

Figure 3-70
Replacement Argument List that
"Swaps" Ones for Zeroes and Zeroes for Ones

Each of these two replacement arguments has its own replacement value,
and 1is active over the entire field being inspected. This statement
exchanges zeros for ones and ones for zeroes, and leaves all other
characters unchanged.

3-58 NON-NUMERIC CHARACTER HANDLING

NOTE

When a search argument finds a match in
the field being inspected, the software
replaces that character string and scans
to the next position beyond the replaced
characters. It ignores the remaining
arguments and applies the first argument
in the list to the character string in
the new position. Thus, it never
inspects the new value that was supplied
by the replacement operation. Because
of this, the search arquments may have
the same values as the replacement
arguments with no chance of
interference.

INSPECT FIELDl1 REPLACING
ALL "O" BY "1" BEFORE SPACE
ALL "1" BY "O" BEFORE SPACE.

Figure 3-71
Replacement Argument List that
Becomes Inactive with the
Occurrence of a Space Character

This sample statement is identical to the statement in Figure 3-70,
except that, here, the first occurrence of a space character in FIELD1
causes both arguments to become inactive.

INSPECT FIELD1 REPLACING
ALL "O" BY "1" BEFORE SPACE
ALL "1" BY "O" BEFORE SPACE
CHARACTERS BY "*" BEFORE SPACE.

Figure 3-72
Argument List with Three Arguments
That Become Inactive with the
Occurrence of a Space

Just as in the argument list in Figure 3-71, the first space character
causes all of these replacement arguments to become inactive. This
argument 1list exchanges =zeroes for ones, ones for zeroes, and
asterisks for all other characters that are in the delimited area.

If the BEFORE phrase is removed from the third argument, that argument
will remain active across all of FIELDl. Within the area delimited by
the first space character, the third argument replaces all characters
except ones and zeroes with asterisks. Beyond this area, it replaces
all characters (including the space that delimited FIELDl1 for the
first two arguments and any zeroes and ones) with asterisks.

NON-NUMERIC CHARACTER HANDLING 3-59

3.9.6.5 Interference in Replacement Argument Lists - When several
search arguments that are active at the same time contain one or more
identical characters, they may interfere with each other, and
consequently have an effect on the replacement operation. This
interference of one search argument with the matching of other search
arguments 1is similar to the interference that occurs between tally
arguments.

The action of a search argument is never affected by the BEFORE/AFTER
delimiters of other arguments, since the software scans for delimiter
matches before it scans for replacement operations.

The action of a search argument is never affected by the characters of
any replacement value, since the scanner does not inspect the replaced
characters again during execution of the INSPECT statement.
Interference between search arguments, therefore, depends on the order
of the arguments, the values of the arguments, and the active-inactive
status of the arguments. (The discussion in Section 3.9.5.4

Interference in Tally Argument Lists, applies, generally, to
replacement arguments as well.)

The following rules will help minimize interference in replacement
argument lists:

1. Place search arguments with LEADING or FIRST conditions at
the start of the list;

2. Place several arguments with the CHARACTERS condition at the
end of the list;

3. Consider, very carefully, the order of appearance of any

search arguments that contain one or more identical
characters.

3.9.7 Common Errors, INSPECT Statement
The most common errors made when writing INSPECT statements are:
o Leaving the FOR out of an INSPECT...TALLYING statement.

) Using the word "WITH" instead of "BY" in the REPLACING
phrase.

° Failing to initialize the tally counter.
° Omitting the word "ALL" e.g.:

INSPECT FIELD1 TALLYING TLY FOR SPACES.

3-60 NON-NUMERIC CHARACTER HANDLING

CHAPTER 4

NUMERIC CHARACTER HANDLING

This chapter discusses numeric class data and the COBOL operations
that can be performed on numeric data items. It is assumed that you
have read Chapter 3, and that you understand the concept of COBOL data
classes.

4.1 USAGES

The USAGE of a numeric class item specifies the form in which the data
is stored in memory. VAX-11 COBOL-74 has four formats for numeric
data storage: DISPLAY (which is equivalent to DISPLAY-6 and
DISPLAY-7), COMPUTATIONAL (abbreviated COMP), and COMPUTATIONAL-3
(abbreviated COMP-3).

4.1.1 DISPLAY

Items with DISPLAY usage are stored as strings of characters (bytes)
in decimal radix with an assumed decimal point and optional sign.

4.1.2 COMPUTATIONAL

COMPUTATIONAL usade is the standard VAX-1l1l binary format. A COMP item
is stored as a binary value with an assumed decimal scaling position;
it is automatically SYNCHRONIZED on a word boundary and stored in
memory (in one, two, or four words) as follows:

PICTURE RANGE STORAGE
S(9) to S9(4) 1 word (2 bytes)
S9(5) to Ss9(9) 1 longword (4 bytes)

S9(10) to S9(18) 1 quadword (8 bytes)

Figure 4-1 indicates the significance of each byte in a COMP data item
by the number in parentheses. For example, "(1)" indicates that the
byte contains the lowest-valued bits. Observe that the computer
address (the first-referenced byte) of each COBOL data item
corresponds to the low byte of the least significant word.

The number in parentheses also indicates the order of characters if
the data item is redefined as an alphanumeric item. Consider an
example of a two-word COMP item:

01 COMP-ITEM PIC 9(9) USAGE IS COMP.
01 GROUP-ITEM REDEFINES COMP-ITEM.
03 CHARACTER-ITEM PIC X OCCURS 4 TIMES.

The subscripts of CHARACTER-ITEM correspond to the numbers in
parentheses in Figure 4-1.

high | low high | low high | low
byte | byte byte | byte byte | byte
(2) (1) (2) (1) (2) (1) Addressed word
(4) (3) (4) (3) Next word

(6) (5) Next word

(8) (7) Next word
One-word Two-word Four-word
COMP item COMP item COMP item

Figure 4-1

Memory Storage of COMP Data Items

4.1.3 COMPUTATIONAL-3

COMP-3 specifies packed-decimal data items. They are stored as two
decimal digits per byte (byte-aligned) with an assumed decimal scaling
position. The sign is contained in the rightmost half (four bits) of
the rightmost byte.

The maximum size of a COMP-3 item is 18 decimal digits, regardless of
the decimal scaling position. 1In the following example, both NUM-1
and NUM-2 represent COMP-3 items of maximum size:

03 NUM-1 PIC S9(18) USAGE IS COMP-3.
03 NUM-2 PIC S9(6)V9(12) USAGE IS COMP-3.

The description of a COMP-3 data item must have a sign in its PICTURE
character-string.

4-2 NUMERIC CHARACTER HANDLING

When you specify an even number of digits, the value zero is stored in
the leftmost four bits of the leftmost byte.

Signs resulting from operations in which the receiving item is
specified as COMP-3 are:

"y binary 1100 hexadecimal C
"-u binary 1101 hexadecimal F

The following signs are also recognized as valid, but they are not
generated as a result of program operations:

Positive signs- binary 1010, hexadecimal
binary 1100, hexadecimal
binary 1110, hexadecimal
binary 1111, hexadecimal

mmO P

Negative signs- binary 1011, hexadecimal
binary 1101, hexadecimal

o w

Figure 4-2 represents the memory storage of COMP-3 data items of one,
two, and three digits:

1st byte .lst byte 2nd byte 1st byte 2nd byte
5 + 0 3 2 - 2 6 2 +
PICTURE S9 PICTURE S9(2) PICTURE S9(3)
value: +5 value: -32 value: +262
Figure 4-2

Memory Storage of COMP-3 Data Items

4.2 DECIMAL SCALING POSITION

The assumed decimal scaling position, or scaling factor, is not stored
as part of an actual numeric value. However, it is used by the RTS to
control operations on numeric data items. Consider the following
field description:

01 ORDER-PRICE PIC 99V99 COMP VALUE 12.34.

VAX-11 COBOL-74 stores this item as a l-word binary number. The word
contains the integer value 1234 and another location contains the
scaling factor. 1In this example, the scaling factor records the fact
that this integer has two decimal fractional positions. Thus, the
COBOL RTS knows that the stored binary integer is 100 times 1larger
than the programmer intends it to be.

NUMERIC CHARACTER HANDLING 4-3

If the compiler encounters the following statement:
ADD 1 TO ORDER-PRICE.

it generates instructions to add a 1 to the 1234 in ORDER-PRICE. The
RTS, however, scales the literal 1 up by two decimal places and adds
the resultant literal, 100, to the number in ORDER-PRICE. Thus, after
the ADD operation, ORDER-PRICE contains the new value 1334 (which is
actually 13.34 with the stored decimal scaling position).

Thus, the VAX-11 COBOL-74 compiler and RTS manipulate the data in
DISPLAY, COMP, and COMP-3 data items in much the same way. All four
usages have exactly the same accuracy and precision, and can be freely
mixed in a program. To illustrate, if a DISPLAY usage number and a
COMP usage number are both involved in the same arithmetic statement,
the RTS converts them to a common radix with no loss of information.
It also converts the result, if necessary, with no loss of
significance.

The only effect of specifying a binary or packed-decimal usage is that
it reduces the space required for most numbers and can speed up the
execution of arithmetic statements.

4.3 SIGN CONVENTIONS

COMP-3 data items must be signed; however, DISPLAY AND COMP numeric
items can be signed or unsigned. Unsigned numbers can contain values
that range from zero to the largest positive value allowed by their
declared precision. Negative values are not allowed. All VAX-11
COBOL-74 arithmetic operations yield signed results. When the RTS
must store such a result, whether positive or negative, in an unsigned
data item, it stores only the absolute value of the result. Thus,
unsigned items always contain zero or positive values.

This guide does not recommend unsigned numbers for general use. They
are wusually a source of programming errors, and are handled less
efficiently than signed quantities by the RTS.

Signed quantities always contain a numeric value and an operational
sign. The RTS stores the sign with the numeric value in a variety of
ways depending on the usage of the item and the presence of the SIGN
clause.

NOTE

If numeric data is read into a field
described using the picture character S,
then that data must include an
operational sign of the appropriate
format to pass the NUMERIC test.

4-4 NUMERIC CHARACTER HANDLING

VAX-11 COBOL-74 always stores signed COMP items in two's complement
binary form. Thus, the high-order bit indicates the sign of the item.
Sign representation for COMP-3 data items 1is described in Section
4.1.4.

VAX-11 COBOL-74 always stores signed DISPLAY items as a sequence of
byte positions containing numeric ASCII characters. It may include
the sign in the high-order byte, the low-order byte, or as a separate,
extra, byte on either the high-order or low-order end of the item.

When the RTS stores the sign as part of a byte that also contains a
numeric digit, the sign causes a value change in that byte and, hence,
changes the value of the numeric digit. Table 4-1 shows the actual
ASCII character that results when a numeric value and a sign share the
same byte.

Table 4-1
The Resulting ASCII Character From a
Sign and Digit Sharing the Same Byte

DIGIT VALUE

SIGN

A byte containing a +0 stores as hexadecimal 7B, which prints as
either a { or a [depending on the printing device.

A byte containing a -0 stores as hexadecimal 7D, which prints as
either a } or a] depending on the printing device.

When the RTS stores the sign as a separate distinct character, the
actual ASCII <character that it stores is the graphic plus sign (hex
2B) or the graphic minus sign (hex 2D).

4.4 ILLEGAL VALUES IN NUMERIC FIELDS

All VAX-11l COBOL-74 arithmetic operations store legal values in their
result fields. However, it is possible, by reading invalid data or
through redefinition and group moves, to store data in numeric fields
that do not obey the descriptions of those fields. (For example, it
is possible to place signed values into unsigned fields, and to place
non-numeric or improperly signed data into signed numeric DISPLAY
fields.)

The results of arithmetic operations that use invalid data in numeric
fields are unpredictable.

NUMERIC CHARACTER HANDLING 4-5

4.5 TESTING NUMERIC FIELDS

COBOL provides the following three kinds of tests for evaluating
numeric fields:

1. Relation tests, that compare the field's contents to another
numeric value;

2. Sign tests, that examine the field's sign to see 1if it is
positive or negative; and,

3. Class tests, that inspect the field's digit positions for
legal numeric values.

The following sub-sections explain these tests in detail.

4.5.1 Relation Tests

A relation test compares two numeric quantities and determines if the
specified relation between them is true. For example, the following
statement compares FIELDl to FIELD2 and determines if the numeric
value of FIELD1l is greater than the numeric value of FIELD2. If so,
the relation condition is true and program control takes the True path
of the statement.

IF FIELDl > FIELDZ2 ...

Either field in a relation test may be a numeric 1literal or the
figurative constant, ZERO. (The numeric literals 0, 00, 0.0, or ZERO
are all equivalent, both in meaning and in execution speed.)

The sizes of the fields in a numeric relation test do not have to be
the same (this includes the sizes of numeric 1literals). The
comparison operation aligns both fields on their assumed decimal
positions (through actual scaling operations in temporary locations or
by accessing the individual digits) and supplies leading or trailing
(as required) zeroes to either or both fields.

The comparison operation always compares the signs of non-zero fields
and considers positive fields to be greater than negative fields.
However, since it does not compare them, positive zeroes and negative
zeroes are equal. (A negative zero could arrive in a field through
redefinition of the field or a MOVE to a group item.) Further, the
operation considers unsigned numeric fields to be positive.

The form of representation of the number (COMP, COMP-3, or DISPLAY
usage) and the various methods of storing DISPLAY usage signs have no
effect on numeric relation tests.

For comparison purposes, the operation converts any illegal characters

stored in DISPLAY usage fields to zeroes. It does not, however, alter
the actual values in those fields.

4-6 NUMERIC CHARACTER HANDLING

4.5.2 Sign Tests

The sign test compares a numeric quantity to zero and determines if it
is greater (positive), less (negative), or equal (zero). Both the
relation test and the sign test can perform this function. For
example, consider the following relation test:

IF FIELDl > 0 ...
Now consider the following sign test:

IF FIELD1 POSITIVE ...
Both of these tests accomplish the same thing and would always arrive
at the same result. The sign test, however, shortens the statement

and shows, at a glance, that it is testing the sign.

Table 4-2 shows the sign tests and their equivalent relation tests as
applied to FIELD1. ’

Table 4-2
The Sign Tests
SIGN TEST EQUIVALENT RELATION TEST

P — — -

IF FIELD1 POSITIVE ... IF FIELD1l > 0 ...

IF FIELD1 NOT POSITIVE ... IF FIELDl1 NOT > 0 ...

IF FIELD1 NEGATIVE ... IF FIELDl1 < O ...

IF FIELD1l NOT NEGATIVE ... IF FIELD]l NOT < 0 ...

IF FIELDl1 ZERO ... IF FIELDl =0 ...

IF FIELD1 NOT ZERO ... IF FIELDl NOT =0 ...

Sign tests have no execution speed advantage over relation tests. The
compiler actually substitutes the equivalent relation test for every
correctly written sign test. (Sections 4.2.1 and 4.2.2 discuss the
acceptable sign values and the treatment of illegal sign values.)

4.5.3 Class Tests

The class test interrogates a numeric field to determine if it
contains numeric or alphabetic data, and uses the result to alter the
flow of control in a program. For example, the following statement
determines if FIELD1l contains numeric data. If so, the test condition
is true and program control takes the true path of the statement.

IF FIELD1 IS NUMERIC ...

When reading in newly prepared data, it is often desirable to check
certain fields for wvalid values. Relation tests and sign tests can
only determine if the field's contents are within a certain range, and
these tests both treat illegal characters in DISPLAY usade items as
zeroes. Thus, some data preparation errors could pass both of .these
tests.

NUMERIC CHARACTER HANDLING 4-7

The NUMERIC class test checks numeric (or alphanumeric) DISPLAY usage
fields for valid numeric digits.

If the field being tested contains a sign (whether carried as an
overpunch or as a separate character), the test checks it for a valid
sign value. 1If the character position carrying the sign contains an
illegal sign value, the NUMERIC class test rejects the item and
program control takes the false path of the IF statement. If the
character position contains a valid sign and all digit positions in
the field contain valid numeric digits, the NUMERIC class test passes
the item and program control takes the true path of the IF statement.

The ALPHABETIC class test checks alphabetic (or alphanumeric) fields
for wvalid alphabetic characters and the space character. If all of
the character positions of the field contain ASCII characters (A-Z or
space), the 1item passes the ALPHABETIC class test and causes program
control to take the true path of the 1IF statement. (For further
information concerning the ALPHABETIC class test, see Chapter 3,
Section 3.3.2.)

4.6 THE MOVE STATEMENT
The MOVE statement moves the contents of one field into another. The
following sample MOVE statement moves the contents of FIELDl into
FIELD2.
MOVE FIELD1 TO FIELD2.

Section 3.5 discusses the basic MOVE statement. This section
considers MOVE statements as applied to numeric fields. These MOVE
statements can be grouped into the following three categories:

1. Group moves,

2. Elementary moves with numeric receiving fields, and

3. Elementary moves with numeric edited receiving fields.

The following three sub-sections (4.4.1, 4.4.2, and 4.4.3) discuss
each of these categories separately.

4.6.1 Group Moves

The software considers a move to be a group move if either the sending
field or the receiving field is a group item. It treats both fields
in a group move as alphanumeric class fields and performs the move as
an alphanumeric to alphanumeric elementary move.

If either field in a group move is a numeric elementary item, the RTS
treats the storage area occupied by that item as a field of
alphanumeric bytes; thus, it ignores the USAGE, sign, and decimal
point location characteristics of the numeric item.

4-8 NUMERIC CHARACTER HANDLING

Only the item's allocated size, in bytes, affects the move operation.
The RTS considers a separate sign character to be part of the item and
moves it with the numeric digit positions.

4.6.2 Elementary Numeric Moves

If both fields of a MOVE statement are elementary items and the
receiving field is numeric, the RTS considers the move to be an
elementary numeric move. (The sending field may be either numeric or
alphanumeric.) The numeric receiving field may be DISPLAY, COMP, or
COMP-3 usage. The elementary numeric move converts the data format of
the sending field to the data format of the receiving field.

An alphanumeric sending field may be either an elementary data item or
any alphanumeric 1literal other than the figurative constants SPACE,
QUOTE, LOW-VALUE, HIGH-VALUE, or ALL "literal". The elementary
numeric move accepts the figurative constant ZERO and considers it to
be equivalent to the numeric 1literal 0. It treats alphanumeric
sending fields as unsigned integers of DISPLAY usage.

If necessary, the numeric move operation converts the sending field to
the data format of the receiving field and aligns the sending field's
decimal point on that of the receiving field. It then moves the
sending field digits to their corresponding receiving field digits.

If the sending field has more digit positions than the receiving
field, the decimal point alignment operation truncates the sending
field, with the resultant 1loss of digits. The end truncated
(high-order or low-order) depends upon the number of sending field
digit positions that find matches on each side of the receiving
field's decimal point. If the receiving field has fewer digit
positions on both sides of the decimal point, the operation truncates
both ends of the sending field. Thus, if a field described as PIC
999V999 is moved to a field described as PIC 99V99, it loses one digit
from the left end and one from the right end. Figure 4-3 illustrates
this alignment operation (the carat (") indicates the stored decimal
scaling position):

01 AMOUNT1 PIC 99V99.

MOVE 123.321 TO AMOUNTI1.

Before execution 00 00

After execution 23 32

Figure 4-3
Truncation Caused By Decimal Point Alignment

NUMERIC CHARACTER HANDLING 4-9

If the sending field has fewer digit positions than the receiving
field, the move operation supplies =zeroes for all unfilled digit
positions. Fiqgure 4-4 illustrates this alignment (the carat (»)
indicates the stored decimal scaling position):

01 TOTAL-AMT PIC 999V99.

MOVE 1 TO TOTAL-AMT.

Before execution 000 00

After execution 001 00

Figure 4-4
Zero Filling Caused By Decimal Point Alignment
The following statement produces the same results:
MOVE 001.00 TO TOTAL-AMT.

Consider the following two MOVE statements and their resultant
truncating and zero-filling effects:

STATEMENT TOTAL-AMT AFTER EXECUTION
MOVE 00100 TO TOTAL-AMT 100 00
MOVE "00100" TO TOTAL-AMT 100 00

Literals with leading or trailing zeroes have no significant advantage
in space or execution speed with VAX-11] COBOL-74, and the zeroes are
often lost by decimal point alignment.

The MOVE statement's receiving field dictates how the sign will be
moved. A signed DISPLAY usage receiving field causes the sign to be
moved as a separate quantity. An unsigned DISPLAY usage receiving
field causes no sign movement. A COMP usage receiving field, whether
signed or unsigned, causes the sign to be moved; however, if the
receiving field 1is unsigned, the RTS sets its value to absolute. A
COMP-3 receiving field always causes the sign to be moved.

4.6.3 Elementary Numeric Edited Moves

The VAX-11l COBOL-74 run-time system considers an elementary numeric
move to a receiving field of the numeric edited category to be an
elementary numeric edited move. The sending field of an elementary
numeric edited move may be either numeric or alphanumeric and, if
numeric, its usage can be DISPLAY, COMP, or COMP-3. The RTS treats
alphanumeric sending fields in numeric edited moves as unsigned
DISPLAY usage integers.

4-10 NUMERIC CHARACTER HANDLING

The RTS considers the receiving field to be numeric edited category if
it is described with a BLANK WHEN ZERO clause, or a combination of the
following symbols:

B Space insertion position;

P Decimal scaling position;

\Y/ Location of assumed decimal point;

Z Leading numeric character position to be replaced by a space

if the position contains a zero;

0 Zero insertion position;

9 Position contains a numeric character;

/ Slash insertion position;

’ Comma insertion position;

. Decimal point insertion position;

* Leading numeric character position to be replaced by an

asterisk if the position contains a zero;

+ Positive editing sign control symbol;

- Negative editing sign control symbol;

CR Credit editing sign control symbol;

DB Debit editing sign control symbol;

cs Currency symbol ($) insertion position.
A numeric edited field may contain 9, V, and P, but combinations of
those symbols without an editing character do not make the field
numeric edited.
The numeric edited move operation first converts the sending field to
DISPLAY usage and aligns both fields on their decimal point locations,
truncating or padding (with =zeroes) the sending field until it
contains the same number of digit positions on both sides of the
decimal point as the receiving field. It then moves the resulting
digit values to the receiving field digit positions following the
COBOL editing rules.

The COBOL editing rules allow the numeric edited move operation to
perform any of the following editing functions:

® Suppress leading zeroes with either spaces or asterisks;

NUMERIC CHARACTER HANDLING 4-11

e Float a currency sign and a plus or minus sign through
suppressed zeroes, inserting the sign at either end of the
field;

® Insert zeroes and spaces;
® Insert commas and a decimal point.
Figure 4-5 illustrates several of these functions with the statement,

MOVE FLD-B TO TOTAL-AMT. (Assume that FLD-B 1is described as
S9999v99.)

TOTAL-AMT
Sl | PICTURE STRING | CONTENTS AFTER MOVE |
| — —

0023 00 22272.99 23.00
0085 90 ++++.99 -85.96
1234 00 2,222.99 1,234.00
0012 34 $,$88.99 $12.34
0000 34 $,$$9.99 $0.34
1234 00 $$,$88.99 $1,234.00
0012 34 $$9,999.99 $0,012.34
0012 34 $$88,955.99 $12,.34
0000 00 $$$,555.88

0012 3M ++++.99 -12.34
0012 34 $h*xk kkx Qg Skkkkx] D 34

Figure 4-5

Numeric Editing

The currency symbol ($) and the editing sign control symbols (+ -) are
the only floating symbols. To float them, enter a string of two or
more occurrences of the symbol.

4.6.4 Common Errors, Numeric MOVE Statements
The most common errors made when writing numeric MOVE statements are:

e Placing an incorrect number of replacement characters in a
numeric edited item.

® Moving non-numeric data into numeric fields with group moves.

e Trying to float the § or + insertion characters past the
decimal point to force zero values to appear as .00 instead of
spaces. (Use $$.99 or ++.99.)

e Forgetting that the $ or + insertion characters require an
additional position on the 1leftmost end that cannot be
replaced by a digit (unlike the * insertion <character which
can be completely replaced).

4-12 NUMERIC CHARACTER HANDLING

4.7 THE ARITHMETIC STATEMENTS

The COBOL arithmetic statements, ADD, SUBTRACT, MULTIPLY, DIVIDE, and
COMPUTE allow COBOL programs to perform simple arithmetic operations
on numeric data.

This section covers the use of the COBOL arithmetic statements. The
first five sub-sections (4.7.1 through 4.7.5) discuss the common
features of the statements and the last five (4.7.6 through 4.7.10)
discuss the individual arithmetic statements themselves.

4.7.1 1Intermediate Results

Most forms of the arithmetic statements perform their operations in
temporary work locations, then move the results to the receiving
fields, aligning the decimal points and truncating or zero filling the
resultant values.

This temporary work field, called the intermediate result field, has a
max imum size of 18 numeric digits. The actual size of the
intermediate result field varies for each statement, and is determined
at compile time based on the sizes of the operands used by the
statement.

When the compiler determines that the size of the intermediate result
field exceeds 18 digits, it truncates the excess high-order digits.
Thus, a program that requests a multiplication operation between the
following two fields,

PIC 9(18) and PIC V99.

(which would otherwise cause the compiler to set up a 20-digit
intermediate result field -- 9(18)V99) actually causes the following
intermediate result field

PIC 9(16)V99.

VAX-11 COBOL-74 truncates high-order digits or low-order digits to the
right of the decimal point, based on the assumption that most large
data declarations are larger than ever need be, so zeroes occupy most
of their high-order digit positions. Numeric data may be declared as
PIC 9(12) or PIC 9(15) but the values that are placed in these fields
will probably not exceed nine digits of range (1 billion) in most
applications.

When using large numbers (or numbers with many decimal places) that

are close to 18 digits long, examine all of the arithmetic operations
that manipulate those numbers to determine if truncation will occur.

NUMERIC CHARACTER HANDLING 4-13

If truncation is a possibility, reduce the size of the number by
dividing it by a power of 10 prior to the arithmetic operation. (This
scaling down operation causes the low-order end to lose digits, but
these are probably 1less «critical.) Then, after the arithmetic
operation, multiply the result by the same power of 10.

To save the low-order digits in such an operation, move the field to a
temporary location before the scaling DIVIDE, perform separate,
identical arithmetic operations on both the original and the temporary
fields, then, after the scaling MULTIPLY, combine their results.

4.7.2 The ROUNDED Phrase

Rounding-off is an important tool with most arithmetic operations.
The ROUNDED phrase causes the RTS to round-off the results of COBOL
arithmetic operations.

The phrase may be wused on any COBOL arithmetic statement.
Rounding-off takes place only when the ROUNDED phrase requests it, and
then only if the intermediate result has more 1low-order digits than
the result field.

VAX-11] COBOL-74 rounds-off by adding a 5 to the 1leftmost truncated
digit of the absolute value of the intermediate result before it
stores that result.

Consider the following illustration and assume an intermediate result
of 54321.2468:

Coding:

01 FLD-A PIC S9(5)V9999.
01 FLD-B PIC S9(5)V99.

ADD FLD-A TO FLD-B ROUNDED.

Intermediate result field:

PIC S9(6)V9999.

The ROUNDED operation:

Truncated
digits
Intermediate result field: 054321.24 6&‘\
LEFT-MOST
ROUNDED: (ADD) .00 |50 truncated
FLD-B's ROUNDED result: 054321.25 |18 digit

Figure 4-6
Rounding Truncated Decimal Point Positions

4-14 NUMERIC CHARACTER HANDLING

The following ROUNDING example rounds-off to the decimal scaling
position (P). Assume an intermediate result of 24680. (Section 4.7.4
discusses the GIVING phrase in numeric operations.)

Coding:

01 AMOUNT1 PIC 9999.
01 AMOUNT2 PIC 9999PP.

MULTIPLY AMOUNT1 BY 10

GIVING AMOUNT2 ROUNDED.

Intermediate result field:

PIC 999999.

The ROUNDED operation:

,Truncated

Intermediate result field: 0246 |80. digits
ROUNDED (ADD) : 50.

AMOUNT2's ROUNDED result: 0247 |30.

Figure 4-7
Rounding Truncated Decimal Scaling Positions

4.7.3 The SIZE ERROR Phrase

The SIZE ERROR phrase detects the loss of high-order non-zero digits
in the results of COBOL arithmetic operations.

The phrase may be used on any COBOL arithmetic statement.

When the execution of a statement with no SIZE ERROR phrase results in
a size error, the RTS truncates the high-order digits and stores the
result without notifying the user. When the execution of a statement
with a SIZE ERROR phrase results in a size error, the RTS discards the
entire result (it does not alter the receiving fields in any way) and
executes the SIZE-ERROR imperative phrase.

If the statement contains both ROUNDED and SIZE ERROR phrases, the RTS
rounds the result before it checks for a size error.

NUMERIC CHARACTER HANDLING 4-15

The phrase cannot be used on numeric MOVE statements. Thus, if a
program moves a numeric quantity to a smaller numeric field, it may
inadvertently lose high-order digits. For example, consider the
following MOVE of a field to a smaller field:

01 AMOUNT-A PIC 9(8)V99.

01 AMOUNT-B PIC 9(4)V99.

MOVE AMOUNT-A TO AMOUNT-B.

This MOVE operation always loses four of AMOUNT-A's high-order digits.
Either of the following two statements could determine whether these
digits are zero or non-zero, and could be tailored to any size field:

1. 1IF AMOUNT-A NOT > 9999.99
MOVE AMOUNT-A TO AMOUNT-B
ELSE ...

2. ADD ZERO TO AMOUNT-A GIVING AMOUNT-B
ON SIZE ERROR ...

Both of these alternatives allow the MOVE operation to occur only if
AMOUNT-A loses no significant digits. If the value in AMOUNT-A is too
large, both alternatives avoid altering AMOUNT-B and take the
alternative execution path.

4.7.4 The GIVING Phrase

The GIVING phrase moves the intermediate result field of an arithmetic
operation to a receiving field. (The phrase acts exactly like a MOVE
statement with the intermediate result serving as a sending field and
the data item following the word GIVING (in the statement) serving as
a receiving field.)

The phrase may be used on the ADD, SUBTRACT, MULTIPLY, and DIVIDE
statements.

If the data item following the word GIVING is a numeric edited field,
the RTS performs the editing the same way it does for MOVE statements.

4.7.5 Multiple Operands in ADD and SUBTRACT Statements

Both the ADD and SUBTRACT statements may contain a string of more than
one operand preceding the word TO, FROM, or GIVING.

Multiple operands in either of these statements cause the RTS to add
the string of operands together and use the intermediate result of
that operation as a single operand to be added to or subtracted from,
the receiving field.

4-16 NUMERIC CHARACTER HANDLING

The following three equivalent coding groups illustrate how the
software executes the multiple operand statements:

1. Statement: ADD ABCDTOETF G H.

Equivalent coding: ADD A B, GIVING TEMP.
ADD TEMP, C, GIVING TEMP.
ADD TEMP, D, GIVING TEMP.
ADD TEMP, E, GIVING E.
ADD TEMP, F GIVING F.
ADD TEMP, G GIVING G.
ADD TEMP, H GIVING H.

2. Statement: SUBTRACT A, B, C, FROM D.
Equivalent coding: ADD A, B, GIVING TEMP.
ADD TEMP, C GIVING TEMP.
SUBTRACT TEMP FROM D GIVING D.
3. Statement: ADD A B C D GIVING E.
Equivalent coding: ADD A B GIVING TEMP.

ADD TEMP C GIVING TEMP.
ADD TEMP D GIVING E.

(Just as with all COBOL statements, any commas in these statements are
optional.)

Only statement 3 may have a numeric edited receiving field, since it
is the only statement containing a GIVING phrase.

4.7.6 The ADD Statement

The ADD statement adds two or more operands together and stores the
result.

The statement may contain multiple operands (with the exception of
Format 3) and the ROUNDED and SIZE ERROR phrases. It may be written
in one of the following formats:

Format 1. ADD FIELDl ...TO FIELD2 FIELD3
Format 2. ADD FIELD1l FIELD2 ...GIVING FIELD3 FIELD4
Format 3. ADD CORRESPONDING FIELD1 TO FIELD2.

In Format 1, the receiving fields (FIELD2, FIELD3) are one of the
addends. These must not be in the numeric edited category.

In Format 2, the receiving fields (FIELD3, FIELD4) are not one of the

addends. They may either be numeric or numeric edited. When using
this format, omit the word TO.

NUMERIC CHARACTER HANDLING 4-17

In Format 3, the receiving field (FIELD2) is one of the addends. Both
FIELDl and FIELD2 must be group items. The corresponding elements of
FIELDl are added to the corresponding elements of FIELD2.

4.7.7 The SUBTRACT Statement

The SUBTRACT statement subtracts one, or the sum of two or more,
operands from another operand and stores the result.

The statement may contain multiple operands (with the exception of
Format 3) and the ROUNDED and SIZE ERROR phrases. It may be written
in one of the following formats:

Format 1. SUBTRACT FIELDl ... FROM FIELD2 FIELD3

Format 2. SUBTRACT FIELDl ... FROM FIELD2
GIVING FIELD3 FIELD4

Format 3. SUBTRACT CORRESPONDING FIELD1 FROM FIELD2.
In Format 1, the receiving fields (FIELD2, FIELD3) are both the
subtrahend and the difference (the result). These must not be in the
numeric edited category.

In Format 2, the receiving fields (FIELD3, FIELD4) are used only to
store the result. They may be either numeric or numeric edited.

In Format 3, the receiving field (FIELD2) is both the subtrahend and

the difference (results). Both FIELD1l and FIELD2 must be group items.
The corresponding elements of FIELD2.

4.7.8 The MULTIPLY Statement

The MULTIPLY statement multiplies one operand by another and stores
the result.

The statement may contain the ROUNDED and SIZE ERROR phrases. It may
contain multiple receiving operands. It may be written in either of
the following formats:

Format 1. MULTIPLY FIELD1 BY FIELD2, FIELD3

Format 2. MULTIPLY FIELD1l BY FIELD2 GIVING FIELD3, FIELD4
In Format 1, the receiving fields (FIELD2, FIELD3) are also the
multipliers. These must not be in the numeric edited category.
In Format 2, the receiving fields (FIELD3, FIELD4) are neither

multiplier nor multiplicand. These may be either numeric or numeric
edited.

4-18 NUMERIC CHARACTER HANDLING

COBOL's "near English" format could cause a problem with the MULTIPLY
statement, since it is common to speak of multiplying a number
(multiplicand) by another number (multiplier) and to think of the
result as a new value for the multiplicand; thus:

MULTIPLY EARNINGS BY 0.24.
Multiplier
Multiplicand

This statement is incorrect since the RTS stores the result in the
multiplier field, and this multiplier 1is a literal. The compiler
could diagnose this error, but would not diagnose it if the multiplier
were a data item. Consider this multiplier written as a data item:

MULTIPLY EARNINGS BY TAX-RATE.

The compiler would not diagnose this statement's error, and would
store the result of the operation in TAX-RATE. A good practice when
using MULTIPLY statements is to always write them in Format 2. This
ensures that the result 1is properly stored. The following two
statements safely capture their results:

MULTIPLY EARNINGS BY 0.24 GIVING EARNINGS.
or

MULTIPLY EARNINGS BY TAX-RATE GIVING EARNINGS.

4.7.9 The DIVIDE Statement

The DIVIDE statement divides one operand into another and stores the
result.

The statement may contain the ROUNDED and SIZE ERROR phrases. With
the exception of Formats 4 and 5, it may not contain multiple
receiving operands. It may be written in any of the following
formats:

Format 1. DIVIDE FIELDl INTO FIELD2 FIELD3
Format 2. DIVIDE FIELDl1 INTO FIELD2 GIVING FIELD3 FIELD4 ...
Format 3. DIVIDE FIELD2 BY FIELDl1 GIVING FIELD3 FIELD4
Format 4. DIVIDE FIELD1 INTO FIELD2 GIVING FIELD3 REMAINDER
FIELD4.
Format 5. D%giDE FIELDl1 BY FIELD2 GIVING FIELD3 REMAINDER
F D4.

In Format 1, the receiving fields (FIELD2, FIELD3) are also the
dividends. These must not be in the numeric edited category.

NUMERIC CHARACTER HANDLING 4-19

In Formats 2 and 3, the receiving fields (FIELD3, FIELD4 ...) are
neither dividends nor divisor. These may be either numeric or numeric
edited.

In Formats 4 and 5, the receiving field (FIELD3) is neither a dividend
nor a divisor. FIELD4 is the remainder. The receiving field and the
remainder may be either numeric or numeric edited.

4.7.10 The COMPUTE Statement

The COMPUTE statement computes the value of an arithmetic expression
and stores the value in the result.

The statement may contain the ROUNDED and SIZE ERROR phrases. It may
contain multiple receiving operands. The COMPUTE statement has the
following format:

COMPUTE FIELDl FIELD2 ... = arithmetic-expression.

The receiving fields (FIELDl, FIELD2) may be either numeric or numeric
edited.

4.7.11 Common Errors, Arithmetic Statements

The most common errors made when using arithmetic statements are:

) Using an alphanumeric class field in an arithmetic statement.
The MOVE statement allows data movement between alphanumeric
class fields and certain numeric class fields, but arithmetic
statements require that all fields be numeric.

° Writing the ADD or SUBTRACT statements without the GIVING
phrase, but attempting to put the result into a numeric
edited field.

° Writing a Format 2 ADD statement with the word TO; For
example:

ADD A TO B GIVING C.

° Subtracting a 1 from a numeric counter that was described as
an unsigned quantity, and testing for a value of less than
zero.

° Forgetting that the MULTIPLY statement, without the GIVING

phrase, stores the result back into the second operand
(multiplier).

4-20 NUMERIC CHARACTER HANDLING

° Performing a series of calculations in such a way as to
generate an intermediate result that is larger than 18 digits
when the final result will be fewer digits. (The programmer
should be careful to intersperse divisions with
multiplications or to drop non-significant digits that result
from multiplying large numbers (or numbers with many decimal
places).

° Performing an operation on a field that contains a value
greater than the precision of its data description. This can
happen only if the field was disarranged by a group move oOr
redefinition.

) Forgetting that, in an arithmetic statment containing
multiple receiving fields, the ROUNDED phrase must be
specified for each receiving field that is to be rounded.

° Forgetting that, in an arithmetic statement containing
multiple receiving fields, the ON SIZE ERROR phrase, if
specified, applies to all receiving fields. Only those
receiving operands for which a size error condition is raised
are left unaltered. The ON SIZE ERROR statement is executed
after all the receiving fields are processed by the RTS.

4.8 ARITHMETIC EXPRESSION PROCESSING

COBOL provides language facilities for manipulating user-defined data
arithmetically. In particular, the language provides the arithmetic
statements ADD, SUBTRACT, MULTIPLY, and DIVIDE and the facilities of
arithmetic expressions wusing the +, -, *, /, and ** operators. 1In
simple terms, a given arithmetic functionality may be expressed in one
of several ways. For example, consider a COBOL application in which
the total yearly sales of a salesman are to be computed as the sum of
the four individual sales quarters. Figure 4-8 illustrates one method
of expressing a solution to this problem in COBOL:

MOVE 0 TO TEMP.

ADD 1ST-SALES TO TEMP.

ADD 2ND-SALES TO TEMP.

ADD 3RD-SALES TO TEMP.

ADD 4TH-SALES TO TEMP GIVING TOTAL-SALES.

Figure 4-8 Explicit Programmer-Defined Temporary Work Area

In figure 4-8, the COBOL programmer chooses to use a series of single
ADD statements to develop the final value for TOTAL-SALES. 1In the
process of computing TOTAL-SALES, a COBOL data-name, called TEMP, is
used to develop the partial sums (i.e., intermediate results). The
important point here is that the programmer explicitly defines and
declares the temporary work area TEMP in the data division of the
COBOL program. That is, the attributes (i.e., class, USAGE, number of
integer and decimal places to be maintained) are specified explicitly
by the COBOL programmer.

NUMERIC CHARACTER HANDLING 4-21

Figure 4-9 below illustrates another way of expressing a solution to
the problem:

ADD 1ST-SALES, 2ND-SALES, 3RD-SALES, 4TH-SALES
GIVING TOTAL-SALES.

FIGURE 4-9
ARITHMETIC STATEMENT INTERMEDIATE RESULT FIELD ATTRIBUTES
DETERMINED FROM COMPOSITE OF OPERANDS

IN THIS EXAMPLE, THE PROGRAMMER CHOOSES TO COMPUTE TOTAL-SALES with a
single ADD statement. Analogous to the previous example, an
intermediate result field is required to develop the partial sums of
the four quarterly sales quantities. 1In Figure 4-8, the programmer is
cognizant of this requirement, but chose to define the intermediate
result area TEMP explicitly in the data division of his COBOL program.
However, for the example in Figure 4-9, the compiler defines the
intermediate result field in a manner transparent to the COBOL source
program. That is, the compiler allocates storage for and assigns
various attributes to this "transparent" intermediate result field
according to a well-defined set of rules defined by the COBOL language
specification. In particular, the attributes of
number-of-integer-places, number-of-decimal-places, and USAGE assigned
by the software to the intermediate result field are a function of the
composite of source operands in the ADD statement. (The reader should
read the VAX-1ll COBOL-74 Reference Manual for details concerning the
composite of operands for the arithmetic statements.) The important
point here is that the ANS-74 COBOL language standard prescribes rules
for determining the attributes of intermediate result fields for the
arithmetic statements, and the language processor, the VAX-11 COBOL-74
compiler, must implement those rules.

As a final example, consider the following solution to our problem:

COMPUTE TOTAL-SALES = 1ST-SALES + 2ND-SALES + 3RD-SALES
+ 4TH-SALES.

Figure 4-10
Arithmetic Expression Intermediate Result Field
Attributes Determined by Implementor-Defined Rules

In Figure 4-10, the programmer solves the problem by using a single
COMPUTE statement with an embedded arithmetic expression. Again, an
intermediate result field is required and, as in Figure 4-9, is
defined by the software. However, in defining the attributes of
intermediate result fields for COBOL arithmetic expressions, the
ANS-74 COBOL language standard 1is not as helpful to the user as it
could be. 1In fact, the COBOL language standard gives almost complete
freedom to the implementor in defining the attributes of the
arithmetic expression intermediate result fields. The only rules
imposed by the ANS-74 COBOL language specifications are:

4-22 NUMERIC CHARACTER HANDLING

1. Arithmetic operations are to be combined without restrictions
on the composite of operands and/or receiving fields.

2, Each implementor will indicate techniques used in handling
arithmetic expressions.

Thus, the user can and should expect differences between various
implementations of ANS-74 COBOL. The rest of this section describes
how the VAX-11 COBOL-74 compiler computes the sizes of intermediate
result fields.

The compiler computes the size of an intermediate result field for
each component operation of an arithmetic expression. Each operation
can be stated as:

OP1 OPR OP2

where:
OP1l is the first operand
OPR is an arithmetic operator
op2 is the second operand

The size of an intermediate result is described in terms of the number
of integer places (IP) and the number of decimal places (DP). The
symbol DPEXP represents the maximum number of decimal places in the
entire arithmetic expression.

OPR
+ and - IP = max(IP(OP1l), IP(OP2)) + 1
DP = max (DP(OP1l), DP(OP2))
* IP = IP(OP1l) + IP(OP2)
DP = DP(OPl1l) + DP(OP2)
/ IP = IP(OPl) + DP(OP2)
DP = max (DPEXP, max (DP(OP1l), DP(OP2) + 1))
*x For exponents that convert to one-word values,
a = 0OP2
b = OP2 + DP(OP1)
Otherwise,
a=29, if 1P(OP2) =1,
otherwise, a = 19
b = DPEXP
and
IP = IP(OPl1l) * a
DP = max (DPEXP, DP(OPl) * Db)

NUMERIC CHARACTER HANDLING 4-23

CHAPTER 5

TABLE HANDLING

5.1 INTRODUCTION

With COBOL, as with any other language, any data item to which the

program refers must be uniquely identified. This unique
identification of data items is usually accomplished by assigning a
unique name to each item. However, 1in many applications this is

tedious and inconvenient; often programs require too many names for
items that have different names but contain the same type of
information. Tables provide a simple solution to this problem.
VAX-11 COBOL-74 includes full table handling capabilities as outlined
for standard COBOL in the 1974 ANSI Standards.

A table is a repetition of one item (element) in memory. This
repetition is accomplished by the use of the OCCURS clause in the data
description entry. The literal value in the OCCURS clause causes the
software to duplicate the data description entry as many times as
indicated by that value, thus creating a matrix or table.

The elements may be initialized with the VALUE clause or with a
procedural instruction. They may contain synchronized or
unsynchronized data. They may be accessed only with subscripted
procedural instructions. A subscript is a parenthesized integer or
data name (with an integer value). The integer value represents the
desired occurrence of the element.

This chapter discusses how to set up tables and access them accurately
and efficiently. It attempts to cover any problems that may be
encountered while handling tables. Read it through carefully before
setting up tables with VAX-11l COBOL-74.

5.2 DEFINING TABLES

To define a table with VAX-11 COBOL-74, simply complete a standard
data description for one element of the table and follow it with an
OCCURS clause. The OCCURS clause contains an integer which dictates
the number of times that element will be repeated in memory, thus
creating a table.

The OCCURS phrase has two formats:

Format 1
OCCURS integer-2 TIMES
ASCENDING
KEY IS data-name-2 [, data-name-3] e
DESCENDING

[INDEXED BY index-name-1 [, index-name-2]]

Format 2

OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-1

ASCENDING
KEY IS data-name-2 [, data-name-3] ...] cee

DESCENDING

[INDEXED BY index-name-1 [, index-name-2] ...]

In either format, the system generates a buffer 1large enough to
accommodate integer-2 occurrences of the data description. Therefore,
the amount of storage allocated in either case is equal to the amount
of storage required to repeat the data entry integer-2 times.

The software will automatically map the elements into memory. When
mapping a table into memory, the software follows the rules for
mapping which depend on whether the element contains synchronized
items or not. If they do not contain synchronized items, the software
maps them into adjacent memory locations and the size of the table can
be easily calculated by multiplying the size of the element times the
number of occurrences (5X10 for the table illustrated in Figure 5-1,
or 50 bytes of memory).

01 A-TABLE
03 A-GROUP PIC X(5) OCCURS 10 TIMES.

Figure 5-1
Defining a Table

5.2.1 The OCCURS Phrase - Format 1

When Format 1 is used, a fixed length table is generated, whose length
(number of occurrences) is equal to the value specified by integer-2.
This format is useful for storing large amounts of frequently used
reference data whose size never changes. Tax tables, used in payroll
deduction programs, are an excellent example of where a Format 1
(fixed length) table might be used.

5-2 TABLE HANDLING

5.2.2 The OCCURS Phrase - Format 2

Format 2 is used to generate variable length tables. When used, a
table whose 1length (number of occurrences) 1is equal to the value
specified by data-name-1 is generated.

NOTE

Data-name-1 must always be a positive
integer whose value is equal to or
greater than integer-1 but not greater
than integer-2.

Unlike format 1 tables, the number of occurrences of data items in
format 2 tables can be dynamically expanded or reduced to satisfy user
needs.

By generating a variable length table, the user is, in effect, saying;
"build me a table that can contain at least integer-1 occurrences, but
no more than integer-2 occurrences, and set its number of occurrences
equal to the value specified by data-name-1".

Data-name-1 always reflects the number of occurrences available for
user access. To expand the size (number of occurrences available for

use) of a table, the user need only increase the value of data-name-1
accordingly.

Likewise, reducing the value in data-name-1 will reduce the number of
occurrences available for user access.

5.3 MAPPING TABLE ELEMENTS

As mentioned in Section 5.2, when the software detects an OCCURS
clause in an unsynchronized item, it maps the table elements into
adjacent locations in memory. Consider the following data description
of a simple table and the way it is mapped into memory:

Table Description: 01 A-TABLE.
03 A-GROUP PIC X(5) OCCURS 10 TIMES.

Memory Map:

words Qi |1z rrz|av]v |vr {vizi]vizzfix|x ...
bytes [T T 11 1]
p— — —
A-GROUP A-GROUP A-GROUP A-GROUP cee
Figure 5-2

Mapping a Table into Memory

TABLE HANDLING 5-3

The data description in Figure 5-2 causes the software to set up ten
items of five bytes each (elements) and place them in adjacent
ascending memory locations for a total of 50 character positions, thus
creating a table. Since the length of each A-GROUP element is odd
(5), the memory addresses of each subsequent element will alternate
between odd and even locations.

The SYNCHRONIZED clause causes the software to add a fill byte to
items that contain an odd number of bytes, thereby making the number
of bytes in that item even. This ensures that each subsequent
occurrence of the element will not alternate between odd and even
addresses, but will map the same (odd or even) as the first repetition
of that element. If the data description of A-GROUP contained a
SYNCHRONIZED clause, the software would map it quite differently. If
A-GROUP were synchronized, it would expand its length to three words.
The item will, by default, be synchronized to the left occupying the
first five characters of the three words. The software supplies a
padding character to fill out the third word. This padding character
is not a part of the A-GROUP element and table instructions referring
to A-TABLE will not detect the presence or absence of the character.

The padding character does, however, affect the overall length of the
group item and, hence, the table. Without the SYNCHRONIZED clause,
A-TABLE required only 50 character positions; now, with the clause,
it requires 60 character positions. (This length includes the last
padding character -- following the tenth element in the table.)

Although the SYNCHRONIZED clause has 1little value when wused with
alphanumeric fields, an understanding of the concept is essential
before attempting to use COMP and INDEX data items in tables. The
software automatically synchronizes all COMP and INDEX usage data
items, and will most probably alter the size of any table (often
drastically) that contains these data types. Consider the following
illustration of a synchronized data item being mapped by the software:

Table Description: 01 A-TABLE.
03 A-GROUP OCCURS 20 TIMES.

05 ITEM1 PIC X. 1--ITEM1
05 ITEM2 PIC S999 COMP. 2--ITEM2
S--SLACK
BYTE
Memory Map:
words I II III] IV \'4 VI VII | VIII} ...
bytes 1] 212 J11 212 1] 21; 1] 2|2 .o

A-GROUP A-GROUP A-GROUP A-GROUP ...

Figure 5-3
Synchronized COMP Item in a Table

5-4 TABLE HANDLING

Since the software synchronizes the ITEM2 fields (COMP), these fields
each occupy a single word in memory; thus, a slack byte follows each
occurrence of ITEMl. Each repetition of A-GROUP consumes four bytes
of memory -- one byte for ITEM1l, one byte for the slack byte, and two
bytes for ITEM2. A-TABLE, then, requires 80 bytes of memory (20
elements of four bytes each).

Now, consider the effect of adding a l-byte field to A-TABLE. If we
place the field between ITEM1 and 1ITEM2, it will take the space
formerly occupied by the slack byte. This has the effect of adding a
data byte but leaving the size of the table unchanged. Consider the
following illustration:

Table Description: 01 A-TABLE.

03 A-GROUP OCCURS 20 TIMES.
05 ITEM1 PIC X.
05 ITEM3 PIC X.
05 ITEM2 PIC S999 COMP.

1--ITEM1
Memory Map: 2--ITEM2
- — 3--ITEM3
words I II III | IV \'A VI L ..
bytes 1|3 2]2 113 }12]2]1f3]2]7...
J

A-GROUP A-GROUP A-GROUP

Figure 5-4
Adding a Field without Altering the Table Size

If, however, we place the l-byte field after ITEM2, it has the effect
of adding 1its own length plus another slack byte. Now, each element
requires six full bytes and the complete table consumes 120 bytes of
memory (6X20)! This is due to the fact that the first repetition of
ITEM]1 falls on an even byte and, in order to keep the mapping of each
A-GROUP element the same, the software allocates each successive
repetition of ITEM1l to an even byte address. Thus, it assigns ITEM3
to the even byte of the third word and adds a slack byte to guarantee
that the next element begins on an even byte. Consider the following
illustration:

Table Description: 01 A-TABLE.

03 A-GROUP OCCURS 20 TIMES.
05 ITEM1 PIC X.
05 ITEM2 PIC S999 COMP.
05 ITEM3 PIC X.

Memory Map:

0dd or Even E O E O O E OE .o
words I II VI .o
bytes (1781 2] 2 2|3 ces

1

A
A-GROUP A-GROUP

Figure 5-5
Adding One Byte which Adds Two Bytes to the Element Length

TABLE HANDLING 5-5

NOTE

The illustrations in this section show
each byte with an even address (E) as
the leftmost byte, and each byte with an
odd address (0) as the rightmost byte.
(The two bytes, odd and even, are
reversed in actual memory.)

I1f, however, we use a FILLER byte to force the first allocation of
ITEM1 to occur on an odd byte, A-GROUP again requires only four bytes
and no slack bytes. Figure 5-6 illustrates this. Since the FILLER
item occupies the even byte of the first word, ITEM1 falls on an odd
byte. The software requires that each repetition of ITEM1 must be an
even number of bytes in 1length in order to guarantee that the
synchronized item(s) will map onto word boundaries. No slack bytes
are needed and A-GROUP elements are again only four bytes long, and
A-TABLE requires only 81 bytes.

Table Description: 01 A-TABLE.

03 FILLER PIC X.

03 A-GROUP OCCURS 20 TIMES.
05 ITEM1 PIC X.
05 ITEM2 PIC S999 COMP.
05 ITEM3 PIC X.

Memory Map:

odd or even EO EO EO EO EO EO EO oo

words I II III | IV \" VI VII .o

bytes Fl1] 2]2]3§1 [2]2]3fJ1] 2[2]3 .o
FILLER/ AA—éEbUP A-GROUP A;EROUP

Figure 5-6
Forcing an 0dd Address By Adding a 1-Byte FILLER
Item to the Head of the Table

If we try to force ITEM1l onto an odd byte with a SYNCHRONIZED RIGHT
clause, the software maps ITEM1l into the odd byte, but prohibits all
repetitions of the element from using the even byte. Thus, the first
repetition of A-GROUP has a slack byte at its beginning and, so that
the next element can begin (with a slack byte) at an even address,
another slack byte (odd) following ITEM3. This expands the element
length to six bytes and the table length to 120 bytes.

5-6 TABLE HANDLING

Table Description: 01 A-TABLE.

03 A-GROUP OCCURS 20 TIMES.
05 ITEM1 PIC X SYNCHRONIZED RIGHT.
05 ITEM2 PIC S999 COMP.
05 ITEM3 PIC X.

Memory Map:

Odd or Even EO EO EO EO EO EO EO EO EO .o
words T [IT JI1I]IV Vv | VI JVIiI]Vviiilix | ...
bytes 1] 2[2]3 T[2[2] 3 1]2]2 |3 ..
A-GROUP A-GROUP A-GROUP ...
Figure 5-7

The Effect of a SYNCHRONIZED RIGHT Clause Instead
of a FILLER Item as shown in Figure 5-6

To determine how the software will map a given table, apply the
following two rules:

1. The software maps all items in the first repetition of a
table element into memory words as with any item properly
defined with a data description, obeying any implicit or
explicit synchronization requirements.

2. If the first repetition contains any elementary items with
implicit or explicit synchronization, the software maps each
successive repetition of the element into memory words in the
same way as the first repetition. It does this by adding one
slack byte, if necessary, to make the size of the -element
even.

5.3.1 1Initializing Tables

If a table contains only DISPLAY items, it can be set to any desired
initial value (initialized). To initialize a table, simply specify a
VALUE phrase on the record level preceding the item containing the
OCCURS clause. The sample data definitions, below, will set up
initialized tables:

TABLE HANDLING 5-7

Table Description: 01 A-TABLE VALUE IS "JANFEBMARAPRMAY
- JUNJULAUGSEPOCTNOVDEC" ,
03 MONTH-GROUP PIC XXX USAGE DISPLAY
OCCURS 12 TIMES.

Memory Map:

words I fIT JIIIJIV | Vv |VI JVITI|VIITI|IX | X |XI |XII
byte contents |[J|A[N]JF|E[BIM[A[R]A[P|R]M]A[Y]J JUu|N|I]U]L]A|U[G
e p— N
MONTH-GROUP | MONTH-GROUP
MONTH-GROUP MONTH-GROUP
MONTH-GROUP MONTH-GROUP

MONTH-GROUP MONTH-GROUP

Figure 5-8
Initializing Tables

Often a table is too long to initialize with a single literal, or it
contains items that cannot be initialized (numeric, alphanumeric, or
COMP). These items can be individually initialized by redefining the
group level preceding the 1level that contains the OCCURS clause.
Consider the following sample table descriptions:

Table Description: 01 A-RECORD-ALT.
05 FILLER PIC XX VALUE "AX".
05 FILLER PIC 99 COMP VALUE 1.
05 FILLER PIC XX VALUE "BX".
05 FILLER PIC 99 COMP VALUE 2.

01 A-RECORD REDEFINES A-RECORD-ALT.
03 A-GROUP OCCURS 26 TIMES.
05 ITEM1 PIC X.
05 ITEM2 PIC S99 COMP.

Memory Map: Binary 1 Binary 2
words I JII JIII]IV .o
byte contents at AfX| | | BX ...
. . : 2 #]
initialization time A-GROUP A-GROUP
Figure 5-9

Initializing Mixed Usage Fields

In the preceding example, the slack bytes in the alphanumeric fields
(ITEM1l) are being initialized to X.

5-8 TABLE HANDLING

Table Description: 01 A-RECORD-ALT.

03 FILLER PIC X(30) VALUE IS
"AAAAAAAAAABBBBBBBBBBCCCCCCCCCC".

03 FILLER PIC X(30) VALUE IS
"DDDDDDDDDDEEEEEEEEEEFFFFFFFFFF".

(etc.)

01 A-RECORD REDEFINES A-RECORD-ALT.
03 ITEM1 PIX X(10) OCCURS 26 TIMES.

Memory Map:

word I |II |III|IV V |VI JVII|VIII|IX X |XI cee
byte A[A[A[A|[A]A|A[A[A]A[B][B|B[B[B[B [B[B[B[B[C[C| --..
contents at
initialization
time v —~
ITEM1 ITEM1 coe
Figure 5-10

Initializing Alphanumeric Fields

In the preceding example, each FILLER item initializes three 10-byte
table elements.

When redefining or initializing table elements, allow space for any
slack bytes that may be added due to synchronization (implicit or
explicit). The slack bytes do not have to be initialized; however,
they may be and, if initialized to an uncommon value, they may even
serve as a debugging aid for situations such as a statement referring
to the record 1level above the OCCURS clause or another record
redefining that level. Sometimes the length and format of table items
are such that they would best be initialized by statements in the
Procedure Division.

Once the OCCURS clauses have established the necessary tables, the
program must be able to access the elements of those tables
individually. Subscripting and indexing are the two methods provided
by COBOL for accessing individual elements.

5.4 SUBSCRIPTING AND INDEXING

To refer to a particular element within a table, simply follow the
name of the desired element with a parenthesized subscript or index.
A subscript is an integer or a data-name that has an integer value;
the integer value represents the desired occurrence of the element --
an integer value of 3, for example, refers to the third occurrence of
the element. An index 1is a data-name that has been named in an
INDEXED BY phrase in the OCCURS clause.

TABLE HANDLING 5-9

5.4.1 Subscripting with Literals

A literal subscript is simply a parenthesized integer whose value
represents the occurrence number of the desired element. 1In figure
5-11, the literal subscript in the MOVE instruction (2) causes the
software to move the contents of the second element of the table,
A-TABLE, to I-RECORD.

01 A-TABLE. .
Table Description 03 A-GROUP PIC X(5)
OCCURS 10 TIMES.

Procedural Instruction MOVE A-GROUP(2) TO I-RECORD.

Figure 5-11
Literal Subscripting

If the table has more than one level (or dimension), follow the name
of the desired item with a list of subscripts, one for each OCCURS
clause to which the item is subordinate. The first subscript in the
list applies to the first OCCURS clause to which the item is
subordinate. (This is the most encompassing level -- A-GROUP in the
following example.) The second subscript in the list applies to the
next most encompassing level, and the last subscript applies to the
lowest 1level OCCURS clause being accessed (or the desired occurrence
number of the item named in the procedural instruction -- ITEM5 in the
following example).

Consider Figure 5-12; the subscripts (2,11,3) in the MOVE instruction
cause the software to move the third repetition of ITEM5 in the
eleventh repetition of ITEM3 in the second repetition of A-GROUP to
I-FIELDS. (For illustration simplicity, I-FIELD5 is not defined.)
(ITEM5(1,1,1) would refer to the first occurrence of ITEM5 in the
table and ITEM5(5,20,4) would refer to the last occurrence of ITEM5.)

01 A-TABLE.
03 A-GROUP OCCURS 5 TIMES.
05 ITEM1 PIC X.
Table Description 05 ITEM2 PIC 99 COMP OCCURS 20
TIMES.
05 ITEM3 OCCURS 20 TIMES.
07 ITEM4 PIC X.
07 ITEMS5 PIC XX OCCURS 4 TIMES.

Procedural Instruction MOVE ITEM5(2, 11, 3) TO I-FIELDS.

Figure 5-12
Subscripting a Multi-Dimensional Table

5-10 TABLE HANDLING

NOTE

Since ITEM5 is not subordinate to ITEM2,
an occurrence number for ITEM2 is not
permitted in the subscript list.

Figure 5-13 summarizes the subscripting rules for each of the above
items and shows the size of each field in bytes.

NAME NUMBER OF SUBSCRIPTS SIZE
REQUIRED TO REFER TO OF

FIELD THE NAMED FIELD FIELD
A-TABLE NONE 1110
A-GROUP ONE 222
ITEM1 ONE 1*
ITEM2 TWO 2
ITEM3 TWO 9
ITEM4 TWO 1
ITEMS THREE 2
* Plus a slack byte

Figure 5-13
Subscripting Rules for a
Multi-Dimensional Table

5.4.2 Operations Performed by the Software

When a literal subscript is used to refer to an item in a table, the

software

performs the following steps to determine the exact address

of the item:

1.

2.

The compiler converts the literal to a l-word binary value.

The compiler range checks the subscript value (the value must
not be less than 1 nor greater than the number of repetitions
specified by the OCCURS clause) and prints a diagnostic
message if the value is out of range.

The compiler decrements the value of the subscript by 1 and
multiplies it by the size of the item that contains the
OCCURS clause corresponding to this subscript, thus forming
an index value; it then stores this value, plus the literal
subscript, in the object program.

At run time, for a fixed length table, the RTS adds the index
value (from 3 above) to a base address, thus determining the
address of the desired item. For a variable 1length table
reference, the procedure for fixed length tables is preceded
by the procedure described in Section 5.4.6.

TABLE HANDLING 5-11

5.4.3 Subscripting with Data-Names

As discussed earlier in this section, subscripts may also be specified
using data-names instead of 1literals. To use a data-name as a
subscript, simply define it as a numeric integer (COMP or DISPLAY).
It may be signed, but the sign must be positive at the time it is used
as a subscript.

The sample subscripts in figure 5-14 refer to the same element
accessed in Figure 5-12, (2, 11, 3).

Data Descriptions 01 KEY1 PIC 99 USAGE DISPLAY.
of Subscript data-names 01 KEY2 PIC 99 USAGE COMP.
01 KEY3 PIC S99.

MOVE 2 TO KEY1.
MOVE 11 TO KEY2.
MOVE 3 TO KEY3.
Procedural Instructions GO TO TABLERTN.
TABLERTN.
MOVE ITEMS5 (KEY1l KEY2 KEY3) TO
I-FIELDS.

Figure 5-14
Subscripting with Data-Names

5.4.4 Operations Performed by the RTS

When a data-name subscript is used to refer to an item in a table, the
RTS performs the following steps at run time:

1. If the data-name's data type 1is DISPLAY, the software
converts it to a l-word binary value.

2. For fixed 1length tables, the software range checks the
subscript value (the value must not be 1less than 1 nor
greater than the number of repetitions specified by the
OCCURS clause) and terminates the image (with a diagnostic
message) if it is out of range. For variable length tables,
the procedure described in Section 5.4.6 is followed.

3. The software decrements the value of the subscript by 1 and
multiplies it by the size of the item that contains the
OCCURS clause corresponding to this subscript, thus forming
an index value.

4., The software adds the index value (from 3 above) to a base
address, thus determining the address of the desired item.

5-12 TABLE HANDLING

5.4.5 Subscripting with Indexes

The same rules apply for the specification of indexes as apply to
subscripts except that the index must be named in the INDEXED BY
phrase of the OCCURS clause.

An index-name item (an item named in the INDEXED BY phrase of the
OCCURS <clause) has the ability to hold an index value. (The index
value is the product formed in step 3 of the operations performed by
the software for 1literal or data-name subscripts -- the relative
location, within the table, of the desired item.)

The compiler allocates a 2-part data item for each name that follows
an INDEXED BY phrase. These index-name items cannot be accessed as
normal data items; they cannot be moved about, redefined, written to
a file, etc. However, the SET verb can change their values and
relation tests can examine their values. One part of the 2-part
index-name item contains a subscript value and the other part contains
an index value. Consider the following illustration:

INDEX PART-———————ﬂ—F
SUBSCRIPT PART —————»{

Figure 5-15
Index-Name Item

Whenever a SET statement places a new value in the subscript part, the
software performs an index value computation and stores the result in
the index part. Only the subscript part of the item acts as a sending
or receiving field. The index part is never altered by any other
operation and is never moved to another item. It is wused only when
the index-name 1is used as an index referring to a table item. The
sample MOVE statement in Figure 5-16 would move the contents of the
third repetition of A-GROUP to I-FIELD. (For illustration simplicity,
once again, I-FIELD is not defined.)

01 A-TABLE.
Table Description 03 A-GROUP OCCURS 5 TIMES
INDEXED BY IND-NAME.
Procedural Instructions SET IND-NAME TO 3.
MOVE A-GROUP (IND-NAME) TO I-FIELD.

Figure 5-16
Subscripting With Index-name Items

TABLE HANDLING 5-13

5.4.6 Operations Performed by the RTS

The RTS performs the following steps when ..it executes the SET
statement: :

1. The RTS converts the contents of the sending field of the SET
statement to a l-word binary value.

2. The RTS range checks the value (the value must not be less
than 1 nor greater than the number of repetitions specified
in the OCCURS clause) and terminates the image with a
diagnostic message if it is out of range.

3. The RTS decrements the value by 1 and multiplies it by the
size of the item that contains the OCCURS clause, thus
forming an index value.

For fixed length tables, once the SET statement has been executed and
the software has encountered the index-name item as an index, it only
has to add the index value (from 3 above) to a base address to
determine the address of the desired item. Since this is the only
action performed, the execution speed of a procedural statement with
an indexed data-name 1is equivalent to a reference with a literal
subscript.

For a variable length table, when the index-name is encountered as an
index, the procedure described in Section 5.4.6 is invoked before
following the fixed length table logic. However, the SET statement
itself 1is not impacted by the fixed/variable characteristic of the
associated table.

VAX-11] COBOL-74 initializes the value of all index-name items to a
subscript value of 1 (index value of 0), hence an attempt to use an
index-name item as an index before it has been the receiving field of
a SET verb will not result in an out-of-range termination.

NOTE

Initialization of index-name items is an
extension to the ANSI COBOL standards.
Users concerned with writing COBOL
programs. that adhere to standard COBOL
should not rely on this feature.

5.4.7 Relative Indexing

To perform relative indexing, when referring to a table item, simply
follow the index-name with a plus or minus sign and an integer
literal. Relative indexing, albeit easy to wuse, causes additional
overhead to be generated each time a table item is referenced in this
fashion. At compile time, the compiler has to compute the index value
corresponding to the specified literal; and transfer this index value
to the object . file. At run time, the index value for the 1literal is
added to (+) or subtracted from (-) the index value of the index-name.

5-14 TABLE HANDLING

The resulting index value is stored in a temporary location. The RTS
adds this temporary index value to the base address of the table to
determine the address of the desired table item. At this point, a
range check 1is performed on the temporary index value to insure that
the resulting index is within the permissible range for the table.

For fixed 1length tables, this index manipulation 1is relatively
straightforward. The size of the table is known at compilation time,
and this size is passed along to the RTS in the object file. A simple
compare against this fixed value is all that is required to determine
if a given index value is within the permissable range for the table.

For a variable length table, however, the process 1is more involved.
The current number of occurrences (data-name-1) for the table must be
determined and range checked; the index value corresponding to the
current number of occurrences must be calculated; then the temporary
index value must be range checked using the current number of
occurrence's index value.

The run-time overhead required for the relative indexing of variable
length tables 1is significantly greater than that required for fixed
length tables. 1In either case, the index portion of the index-name is
not altered. If any of the range checks reveals an illegal (out of
range) value, execution is terminated with an apropriate error
message.

The sample MOVE instruction in Figure 5-17 moves the fourth repetition
of A-GROUP to I-FIELD if 1IND-NAME has not been altered with a SET
verb.

MOVE A-GROUP (IND-NAME + 3) TO I-FIELD.

Figure 5-17
Relative Indexing

The actual operation of accessing a table element is shorter at run
time since the compiler has calculated the index value of the literal
at compile time and has stored it in the object program ready for use.
Relative indexing, therefore, involves two additions and a range check
dat run time. It leaves the index-name item unaltered.

5.4.8 1Index Data Items

Often a program will require that the value of an index-name item be
stored outside of that item. It 1is for this purpose that VAX-11
COBOL-74 provides the index data item.

Index data items are l-word binary integers with implicit
synchronization. (The 1-word size corresponds to the subscript part
of the index-name item.) They must be declared with a USAGE IS INDEX
phrase and they may be modified (explicitly) only by the SET
statement.

TABLE HANDLING 5-15

Subscript Part ——————{

Figure 5-18
Index Data Item

Since index data items are considered to contain only the subscript
part of an index-name item, when a SET statement "moves" an index-name
item to an 1index data item, only the subscript part 1is moved.
Likewise, when a SET statement "moves" an index data item to an
index-name item, a new index value is computed by the software. This
is done to guarantee that an index-name item will always contain a
good index value.

The only advantage gained by using index data items over numeric, COMP
items 1is that the data description is shorter, easier to write, and
more self-documenting. Further, the restrictions placed on access to
index items may be useful™in debugging the program.

5.4.9 The SET Statement

The SET statement alters the value of index-name items and copies
their value into other items. When used without the UP BY/DOWN BY
clause, it functions like a MOVE statement. Figure 5-19 illustrates
the legal data movements that the SET statement can perform.

INDEX-NAME ITEM

NUMERIC LITERAL | _ (INDEX PART) _ _ INDEX DATA ITEM

| }—{ (SUBSCRIPT PART) [*—]]
NUMERIC DATA NAME INDEX-NAME ITEM
(COMP OR DISPLAY [__(INDEX PART) |

l] (SUBSCRIPT PART)

Figure 5-19
Legal Data Movement with the SET Statement

The SET statement may be used with the UP BY/DOWN BY clause to alter
the value of an index-name item arithmetically. The numeric literal
is added to (UP BY) or subtracted from (DOWN BY) the subscript part,
and the index part 1is .recalculated by the software after the
appropriate range check against the number of repetitions for the
table. The SET statement 1is not affected by whether the table is
fixed or variable length.

5-16 TABLE HANDLING

5.4.10 Referencing a Variable-Length Table Element at Run Time

At run time, when a procedural reference involves an element in a
variable length table, the following procedure is used:

1. Determine the number of occurrences in the table (the value
contained in data-name-1), and verify its legality.

(integer-1 <= data-name-l1l <= integer-2)
2. Verify that the subscript is within the legal range.
(subscript <= data-name-1)

If any of the above checks fails, execution is terminated with an
appropriate error message.

5.4.11 Referencing a Dynamic Group at Run Time

A dynamic group is defined as a group item that contains a subordinate
item that 1is a variable length table. At run time, when a dynamic
group is referenced, the following procedures are followed:

1. The number of occurrences of the subordinate variable 1length
table is determined, and checked for 1legality; i.e.,
integer-1<=data-name-1<=integer-2. If this check fails,
execution terminates and the appropriate error message is
issued.

2. The size of the dynamic group is calculated. The number of
occurrences of the variable 1length table (data-name-1l) is
multiplied by the size of one table entry. The resulting
number is then added to the fixed size of the dynamic group.

NOTE

The fixed size of a dynamic group is the
size of the group up to but not
including the variable length table.

5.4.12 The SEARCH Verb

The SEARCH verb has two formats: Format 1, which performs a
sequential search of the specified table beginning with the current
index setting; and Format 2 which performs a selective (binary)
search of the specified table, beginning with the middle of the table.

Both formats allow the programmer to specify imperative statements
within the SEARCH verb. At run time, an imperative statement
contained within a search verb is executed only when one of the exit
paths (success or failure) is taken.

TABLE HANDLING 5-17

The failure path is defined either explicitly by the AT END statement,
in which case the imperative statement which follows it is executed;
or by default, in which case control is passed to the next procedural
sentence. In either case (success or failure), after an imperative
statement is executed, control 1is passed to the next procedural
sentence.

5.4.13 The SEARCH Verb - Format 1

Format 1 directs the RTS to search the indicated table sequentially.
The OCCURS clause for the table being searched must contain the
INDEXED by phrase. Unless otherwise specified in the SEARCH
statement, the first index 1is the controlling index for the table
search. The search begins with the current index setting, and
progresses through the table, augmenting the index by one as each
occurrence is interrogated. If any of the specified conditions is
true (success), the associated imperative statement is executed; the
search exits; and the index remains at the current setting.

If the possible number of occurrences for the table 1is exhausted
before any of the specified conditions are met, the specified failure
exit path is taken. That 1is, either the AT END exit path (if
specified) 1is taken, or control 1is passed to the next procedural
sentence.

Figure 5-20 contains an example of using the SEARCH verb to search a
table in a serially.

Associated with Format 1 is the optional VARYING phrase. This phrase
can be specified by using any of the following methods:

1. default - phrase omitted
2. VARYING index-name-n
3. VARYING identifier-2

4. VARYING index-name-2

NOTE

The following is true regardless of which of the
above methods is used.

a. An index name associated with the table 1is methodically
augmented by one, by the RTS, for each cycle of the
serial search. This controlling index, when compared to
the allowable number of occurrences for the table,
dictates the permissible range of search cycles at run
time. When an exit occurs (success or failure), this
index remains at the current setting.

5-18 TABLE HANDLING

b. The RTS will not initialize the index when the search
begins. It 1is the programmers responsibility to insure
that the initial index setting is the appropriate one.
The RTS will begin processing the table with the setting
it finds when the search is initiated.

When method 1 is used, the first index name (index-name-1) associated
with the table is used as the controlling index. Only this index is
set to consecutive values by the RTS serial search processor. See
Figure 5-20, Example 2, for an example of using method 1.

When method 2 is used, index-name-n is any index that 1is associated
with the table being searched. It becomes the controlling index for
the table. It alone is set to consecutive values by the RTS search
processor. See Figure 5-20, Example 3, for an example of using method
2,

When method 3 is used, identifier-2 is augmented by one each time the
first index (controlling index) for the table is augmented by one.
Identifier-2 is not a substitute index. It merely allows the
programmer to maintain an additional pointer to elements within a
table. See Figure 5-20, Example 4, for an example of method 3.

When method 4 is used, index-name-2 is an index that 1is associated
with a table other than the one being searched. Each time the
controlling index (lst index for the table) of the searched table is
augmented, index-name-2 1is also augmented. See Figure 5-20, Example
5.

5.4.14 The SEARCH Verb - Format 2

Format 2 is used to direct the RTS to search the indicated table
selectively. The selective (binary) search is predicated upon the
ASCENDING/DESCENDING KEY attributes of the table being searched.
Therefore, an ASCENDING and/or DESCENDING KEY(s) must be specified in
the OCCURS clause that defines the table, to inform the RTS that the
keys are stored within the table in ascending or descending order.

The INDEXED BY phrase must also be specified. When the binary search
is executed, the RTS uses the first or only index associated with the
table as the controlling index for the search. The selective (binary)
search is implemented in the RTS as follows:

1. The RTS examines the range of permissible values for the
index of the table being searched; selects the median value;
and assigns this median value to the index.

2. The RTS then proceeds to process the sequence of simple tests
for equality, beginning with the first, with the index set to
the median value.

3. If all of the tests for equality are true (success), the
search is terminated; the associated imperative statement is
executed; the search exits; and the index retains its
current value.

TABLE HANDLING 5-19

4. If any of the tests for equality 1is false, the following
results occur.

a. The RTS determines if all of the possible occurrences for
the table have been tested. If the table has been
exhausted, the imperative statement which accompanies the
AT END statement (if specified) is executed. 1In either
case, control is passed to the next procedural statement.

b. The RTS will now determine which half of the table is to
be eliminated from further consideration. This
determination is predicated on whether the key being
tested is 1in ascending or descending order, and whether
the test failed because of a greater than or 1less than
comparison. For example, if the key values being tested
are stored in ascending order, and the median table
element being tested 1is greater than the value being
tested for equality, the RTS will assume that all key
elements following the one tested are also greater than
the value being tested for equality. Therefore, the
lower half of the table, those items which follow the
current index setting, are no longer in contention.

c. Once the direction of search is determined, half of the
table is eliminated from further consideration. A new
range of permissible index values is computed from the
remaining half of the table.

d. Processing begins all over again from step 1.

See Figure 5-20, Example 6, for an example of searching a table wusing
Format 2 of the SEARCH verb.

5-20 TABLE HANDLING

FED=TAX=TABLES,

22 ALLOWANCE=DATA,
A3 FILLER PIC X(70) VALUE
"Qgpoa1uue
"3202889
"a304320
"3405760
"REA7270
"AeQ86UD
"a710089
"pa11520
"2912960
"{ajrudpon,
B2 ALLOWANCE=TABLE REDEFINES ALLOWANCEeDATA,
A3 FED=ALLOWANCES OCCURS {@ TIMES
ASCENDING KEY I8 ALLOWANCE=NUMBER
INDEXED RY IND=y,
A4 ALLOWANCE=NUMBER PIC XX,
04 ALLOWANCE PIC 999V99,
@2 SINGLES=DEDUCTIONeDATA,
A3 FILLER PIC X(112) VALUE
"p2S9MR6eTNRRRARR16
"g6e720211500067229
"11500183002163223
"1830024000319621
"24000279080439326
"279P034600542730
"346PN99999TULTIAY,
02 SINGLES=DEDUCTION=TABRLE REDEFINES SINGLES=DEDUCTION=DATA, .
A3 SINGLES=TABLE OCCURS 7 TIMES
ASCENDING KEY I8 S=MIN=RANGE S=MAX®*RANGE
INDEXED BY IND=2, TEMP=]INDEX,
04 S=MINeRANGE PIC 999V99,
A4 SeMAX=RANGE PIC Q96VeS,
A4 SeTAX PIC 99Ve9,
@4 S=PERCENT PIC V99,
@2 MARRIED<DEDUCTION=DATA,
23 FILLER PIC X(119) VALUE
"A4820096070020017
"9960217300A0R816207
"17300264000235617
"2640234600239232S
"346P0433070595328
"433005000ANR3BG32
"SAPPR899991m53336",
P2 MARRIED=DEDUCTION=TABLE REDEFINES MARRIED=DEDUCTIONeDATA,
@3 MARRJED=TABLE OCCURS 7 TIMES
ASCENDING KEY I8 M=MINeRANGE MeMAXeRANGE
INDEXED RY IND=@, INDe3,
04 MeMINeRANGE PIC 999v9S9,
P4 M=MAX@RANGE PIC 999Va9,
P4 MeTAX PIC 999ve9,
A4 MePERCENT PIC Voo,
TEMP=INDEX USAGE INDEX,

Figure 5-20
Example of Using SEARCH
To Search a Table

TABLE HANDLING

Example 1

SINGLE,
IF TAXABLE=INCOME < p2499
GO TO END=FED=COMP,
SET IND=2 TO {,
SEARCH SINGLES=TABLE VARYING IND=2 AT END
GO TO TABLE=2=ERROR
WHEN TAXABLE=INCOME 3 S=MIN=RANGE(IND=2)
MOVE SeTAX(IND=2) TO FED=TAX=DEDUCTION OF
QUTPUT=MASTER
GO TO STORE=FED=TAX
WHEN TAXABLE=INCOME ¢ S=MAX=RANGE(IND=2)
SUBTRACT SwMIN=RANGE(IND=2) FROM TAXABLE=INCOME
MULTIPLY TAXABLE=INCOME BY S=PERCENT(IND=2) ROUNDED
ADD TAXABLE=INCOME TO FENwTAX=DEDUCTION OF
OUTPUT=MASTER,

Example 2

SINGLE,
IF TAXABLE=INCOME < 22499
GO TO ENDsFED=COMP,
SET IND=2 TO 1§,
SEARCH SINGLES=TABLE VARYING INDe2 AT END
GO TO TABLE=Q2«ERROR
WHEN TAXABLE=INCOME = S=MIN=RANGE(INDe2)
MOVE SeTAX(INDw2) TO FED=TAX=DEDUCTION OF
OUTPUT=MASTER
GO TO STORE=FED=TAX
WHEN TAXABLE=INCOME ¢ S«MAXwRANGE(INDe=2)
SUBTRACT SeMIN®RANGE(IND=2) FROM TAXABLE=INCOME
MULTIPLY TAXARLE=INCOME BY S=PERCENT(IND=2) ROUNDED
ADD TAXABLE=INCOME TO FEDeTAX«DEDUCTION OF
OQUTPUT=MASTER,
Example 3

MARRIED,
IF TAXABLE=INCOME <« 4799
MOVE ZEROS TO FEDeTAX=DEDUCTION OF QUTPUT=MASTER,
GO TO END=FED=COMP,
SET IND=3 TO i,
SEARCH MARRIED=TABLE VARYING INDe=3
AT END GO TO TABLE=3=ERROR
WHEN TAXABLE«INCOME & M=MIN«RANGE(IND=3)
MOVE M=TAX(IND=3) TO FED=TAX=DEDUCTION OF OUTPUTeMASTER,
GO TO STORE=FEN=TAX,
WHEN TAXABLE=INCOME ¢ MwMAX«RANGE(IND=3)
MOVE M=TAX(IND=3) TO FEDeTAX=DEDUCTION OF OUTPUT=MASTER,
SUBTRACT MeMINwRANGE(IND=3) FROM TAXABLE=INCOME ROUNDED,
MULTIPLY TAXABLE=INCOME BY MePERCENT(IND=3) ROUNDED,
ADD TAXABLE«INCOME TO FED=TAX=DEDUCTION
NF OUTPUT«MASTER ROUNDED,
GO TO STORE=~FED=TAX,

Figure 5-20 (Cont.)
Example of Using SEARCH,
To Search a Table

5-22 TABLE HANDLING

Example 4

SINGLE,
IF TAXABLE=INCOME < Q2499
GO TO END=FEDeCOMP,
SET IND=2 YO i,
SEARCH SINGLES=TABLE VARYING TEMPeINDEX AT END
GO TO TABLE=2«ERROR
WHEN TAXABLE=INCOME = S$=MINeRANGE(IND=2)
MOVE S=TAX(IND=2) TO FED=TAX=DEDUCTION OF
OUTPUT=MASTER
GO YO STNRE=FED=TAX
WHEN TAXABLE=INCOME ¢ S=MAX=RANGE(INDe2)
SUBTRACT S=MIN=RANGE(IND=2) FROM TAXABLE«INCOME
MULTIPLY TAXABLE=INCOME BY S=PERCENT(IND=2) ROUNDED
ADD TAXABLE=INCOME TO FED«TAX=DEDUCTION OF
OUTPUT=MASTER,

Example 5

SINGLE,
IF TAXARLE=INCOME < 02499
GO TO ENN=FED=COMP,
SET IND=2 TO 1{,
SEARCH SINGLES=TABLE VARYING IND=2 AT END
GO TO TABLE=2=ERROR
WHEN TAXABLE=INCOME = S=MINeRANGE(IND=2)
MOVE SeTAX(IND=2) TO FED=TAX=DEDUCTION OF
QUTPUT=MASTER
GO TO STORE=FED=TAX
WHEN TAXABLE=INCOME ¢ S=MAX®RANGE(IND=2)
SUBTRACT S«MINeRANGE(IND=2) FROM TAXABLE=INCOME
MULTIPLY TAXABLE=INCOME BY S=PERCENT(IND«2) ROUNDED
ADD TAXABLE=INCOME TO FEDeTAX«DEDUCTION OF
QUTPUT=MASTER,

Example 6

FED=DEDUCT=COMPUTATION,
SET IND=y TO ¢,
SEARCH ALL FED=ALLOWANCES AT END GO TO TABLEe{=ERROR
WHEN ALLOWANCE«NUMBER(IND={) = NR«DEPENDENTS OF
OUTPUT=MASTER,
SUBTRACT ALLOWANCE(IND»1) FROM GROSS=WAGE OF OUTPUTeMASTER
GIVING TAXARLFE=INCOME ROQUNDED,
IF MARRITAL=STATUS OF OUTPUT=MASTER 3 "M"
GO TO MARRIED,

Figure 5-20 (Cont.)
Example of Using SEARCH
To Search a Table

TABLE HANDLING 5-23

CHAPTER 6

INPUT-OUTPUT PROCESSING

This chapter relates COBOL-74 1I/0 concepts to the features and
requirements of VAX/VMS and Record Management Services (RMS), which is
the file and record access subsystem of the VAX/VMS operating system.
Rather than being a complete description of RMS and COBOL-74 I/0, this
chapter provides a bridge between the concepts and facilities of both.
For more detailed information:

1. The VAX-1ll COBOL-74 Language Reference Manual describes the
I/0 concepts and statements that are part of the COBOL
language.

2. The basic concepts of RMS, such as file organization, access
modes, and the physical attributes of file devices, are

discussed in the Introduction to VAX-1l1l Record Management
Services.

Most of the following discussion relates to file handling. However,
input-output 1is largely device-independent in the VAX-11l system; the
logical name translation facility of VAX/VMS allows you to specify I/O
in a generalized and flexible way. Therefore, sections of this
chapter describe file naming techniques and conventions, relating them
to both file-associated 1I/0 statements (like OPEN, READ, and WRITE)
and the low-volume I/O statements (ACCEPT and DISPLAY), which in many
systems apply only to terminal devices.

FILE ATTRIBUTES

A file is an organized <collection of records that 1is stored and
maintained on an accessible medium, such as disk or magnetic tape.
Both RMS and COBOL-74 support a variety of devices, file
organizations, access methods, and storage techniques. Programs
communicate with RMS by using a set of conventions and structures that
allow compatibility of file definitions and operations among all users
of RMS.

File attributes are characteristics that determine how a file's
records are organized and how they can be stored and accessed. The
attributes are specified when a file is created, either by a program
you write or by the RMS DEFINE Utility.

RMS stores the file attributes in the file 1itself, so they are
available whenever the file is accessed. When a program accesses a
file through RMS, it must use the attributes that were defined when
the file was created. For example, a program cannot read a sequential
file as an indexed file, since the indexes do not exist; it also
cannot correctly access a file if it specifies a different blocking
factor or record format (fixed-length instead of variable-length, for
instance) than was originally defined.

COBOL programs specify file attributes through a combination of
statements in the Environment and Data Divisions:

1. The SELECT statement specifies the file organization.

2. File-description-entries specify record blocking and record
format.

3. Record-description-entries specify record sizes and can
specify record format.

6.1 RECORD FORMAT

The RMS record format determines whether the size of a file's records
can vary; and if RMS stores control fields with records on the
storage medium.

The compiler determines the record format attribute from a combination

of record-description-entries, the RECORD CONTAINS clause, and clauses
that specify print-controlled files.

6.1.1 Fixed-length
Files with the fixed-length record format contain records that are all
the same size. The compiler generates the fixed-length record format
file attribute when:

The file has only one record description, or it has multiple
record descriptions, all of which are the same size;

AND

The file description does not contain a "“RECORD CONTAINS
integer-1 TO integer-2" phrase;

AND

6-2 INPUT-OUTPUT PROCESSING

The program does not specify a print-controlled file by using any
of the following to refer to the file:

e The ADVANCING phrase in a WRITE statement
e An APPLY PRINT-CONTROL clause in the Environment Division

® A LINAGE clause in the file description

6.1.2 Variable-length

Files with the variable-length record format can contain records that
vary 1in size. RMS stores a record length field before the beginning
of each data record.

e For disk files, the record length field is a 2-byte (l-word)
binary value that specifies the length of the record in bytes
(excluding the record length field).

e For tape files, the record length field is a 4-byte decimal
value that specifies the 1length of the record in bytes
(including the record length field).

The compiler generates the variable-length attribute for a file when:

The file has more than one record description, and not all
records described for the file are the same size;

OR

the file description contains a "RECORD CONTAINS integer-1
TO integer-2" phrase.

6.1.3 Variable With Fixed-Length Control

Variable with fixed-length control records are similar to
variable-length records; however, they contain a fixed-length control
field between the record length field and the variable-length data
record.

The compiler generates this attribute only for print-controlled files
and for files that are opened by a DISPLAY statement; the RTS stores
print-control values in the fixed-length control field, which 1is two
bytes 1long. Section 6.1.1 describes the COBOL language specification
of print-controlled files.

INPUT-OUTPUT PROCESSING 6-3

6.2 RECORD SIZE

The space needed for a record on a storage medium depends on the
record format, the file organization, and the size of the COBOL record
description that is used to write the record.

The maximum size of a record depends on record format:

® For fixed-length records, the maximum size is the record
size.

e For variable-length records, the maximum size is the size of
the file's 1largest record description in the COBOL program
that created the file, plus the number of overhead bytes
needed for the storage medium.

In relative files, all records are stored in fixed-length "cells".
Cell size is one byte larger than fixed-length record size; the extra
byte is a delete flag, which RMS uses to determine if a cell contains
a record. For variable-length records, cell size is three bytes
larger than the maximum record size; it includes the delete flag and
the 2-byte record length field.

In sequential and indexed files, however, variable-length records can
save space. RMS stores records contiguously whenever possible;
therefore, a variable-length record requires less space than a
fixed-length record of maximum size if its length differs from the
max imum record size by more than its variable-length overhead.

The size of a data record written by a COBOL program is determined
only by the effective size of the record description named in the
WRITE statement. In the following example, the first WRITE statement
causes 56 bytes to be written to the file specified by ACCOUNT-FILE;
the second WRITE statement transfers 42 bytes:

FD ACCOUNT-FILE

01 ACCT-FLAG-REC.

03 FILLER PIC X(40).
04 ACCT-FLAG PIC 9(2).
01 ACCT-REC.
03 ACCT-NUM PIC 9(10).
03 ACCT-NAME PIC X(30).
03 ACCT-LIMIT PIC 9(6).
03 ACCT-DISCOUNT PIC 99V99.
03 ACCT-DATE PIC 9(6).

WRITE ACCT-REC.

WRITE ACCT-FLAG-REC.

6-4 INPUT-OUTPUT PROCESSING

If the records are written to a relative file whose maximum record
size 1is 56 bytes, the RTS still transfers 56 bytes and 42 bytes;
however, the space needed for each record is 58 bytes, excluding the
delete flag. For the 42-byte record, RMS transfers the 2-byte record
length field and the 42-byte data record, leaving 14 unused (and
inaccessible) bytes, excluding the delete flag.

6.3 RECORD BLOCKING

Record blocking can increase the execution speed of programs that
perform many file 1I/0 operations. 1In general terms, a block is the
unit of data transfer between a program and a file storage device. A
block can contain one or more records; 1if it contains many records,
I/0 speed can increase -- the program requires only one transfer from
the device to memory in order to consecutively read records in the
same block.

The COBOL language expresses block size in terms of records or
characters. The actual size of the unit of data transfer is affected
by the storage medium, record format and file organization. Because
the term "block" can have several meanings, the rest of this chapter
uses terminology that is more specific:

Physical Block
A group of consecutive bytes of data treated as a unit by
the storage medium. On magnetic tape, a physical block can
vary in size; it is the number of bytes between two
interrecord gaps. On disk, a physical block is a 512-byte
unit.

A physical block can contain one or more records, or it can
contain part of a record; records can span physical block
boundaries.

Physical block is synonymous with the VAX-11 RMS term,
block.

Bucket
For relative and indexed files, the RMS unit of transfer
between storage devices and I/0O buffers in memory. A bucket
can contain one or more records; however, records cannot
span buckets.

Record Unit Size
The storage medium space (in bytes) needed to store a record
in a file.

For fixed-length records, record unit size 1is the record
length.

For variable-length records, record unit size is the maximum
record length plus the size of the count field.

INPUT-OUTPUT PROCESSING 6-5

For variable with fixed-length control records, record unit
size 1is the sum of the maximum record length, the count
field size, and the size of the print-control field (two
bytes) .

In COBOL, you can specify blocking in terms of records or characters,
or you can use the compiler's default. The following sections discuss
the three methods separately for each file organization. The examples
refer to the following samples of COBOL file and record descriptions:

Sample A

FD TEST-FILE

LABEL RECORDS ARE STANDARD.

01 REC-1 PIC X(100).
01 REC-2 PIC X(511).
Sample B

FD TEST-FILE

BLOCK CONTAINS 50 RECORDS
LABEL RECORDS ARE STANDARD.

01 REC-1 PIC X(20).

Sample C

6.3.1

Default

FD TEST-FILE

BLOCK CONTAINS 512 CHARACTERS
LABEL RECORDS ARE STANDARD.

01 REC-1 PIC X(494).

Sequential Files on Magnetic Tape

The physical block size is determined when the volume is mounted;

if

the /BLOCK=n qualifier is not used with the VAX/VMS MOUNT

command, the RMS default is 2048 characters.

BLOCK CONTAINS n RECORDS

The compiler computes the physical block size as n multiplied by
the record unit size.

Example:

Sample Physical block size

B 1000 bytes (50%*20)

6-6 INPUT-OUTPUT PROCESSING

BLOCK CONTAINS n CHARACTERS

If n is less than the record unit size, the compiler ignores n
and uses the record unit size as the physical block size.
Otherwise, the physical block size equals n. Records cannot span
physical blocks; therefore, a physical block can contain only
complete records (regardless of record format). A physical block
is transferred (written) to the magnetic tape device when the
program tries to add a record that cannot fit into the 1I/O
buffer; the unwritten record begins the next physical block.

Example:
Sample Physical block size
C 512 bytes (18 unused)

6.3.2 Sequential Files on Disk

Records are packed together in each physical block; there are no
unused bytes in any block, and the records can span block boundaries.

Default

The RMS default determines record blocking for sequential disk
files.

BLOCK CONTAINS n RECORDS

The compiler computes the unit of data transfer, in terms of
512-byte physical blocks, as follows:

Unit of data transfer =
(n*record unit size/512), rounded up

Example:
Sample Unit of data transfer
B 2 = (50*%20/512), rounded up

BLOCK CONTAINS n CHARACTERS

The compiler computes the unit of data transfer, in terms of
512-byte physical blocks, as follows:

Unit of data transfer = n/512, rounded up

Example:
Sample Unit of data transfer
C 1 = 512/512, rounded up

INPUT-OUTPUT PROCESSING 6-7

6.3.3 Relative Files

In each of the following methods for computing bucket size, one byte
is added to the record unit size. RMS adds one byte to each cell in a
relative file to indicate whether the cell contains a record or is
empty. Bucket size is expressed in terms of 512-byte physical blocks.

The bucket size is a file attribute; therefore, each time you access
the file, you must specify it the same way as when the file was
created.

The following examples refer to the COBOL samples presented in Section
6.30

Default

The compiler tries to make the bucket size as small as possible
by computing it as follows:

Bucket size ((l+record unit size)/512), rounded up

Example:
Sample Bucket size
A 2 = ((1+(2+511))/512), rounded up

BLOCK CONTAINS n RECORDS
The compiler computes the bucket size as follows:

Bucket size = (n*(l+record unit size)/512), rounded up

Example:
Sample Bucket size
B 3 = (50*%(1+20)/512), rounded up

BLOCK CONTAINS n CHARACTERS
The compiler computes the bucket size as follows:
Bucket size = n/512

Where:

® n must equal or exceed (l+record unit size). If it 1is less
than that quantity, the compiler issues a warning diagnostic
and uses the default method to compute the bucket size.

e n must be a multiple of 512. If not, the compiler issues a

warning diagnostic and rounds n up to the next multiple of
512.

6-8 INPUT-OUTPUT PROCESSING

Example:
Sample Bucket size

C 1

6.3.4 Indexed Files

Each of the methods for computing bucket size for indexed files
considers overhead bytes for each record and bucket:

Record overhead = 7 bytes
Bucket overhead = 15 bytes

The bucket size is a file attribute; therefore, each time you access
the file, you must specify it the same way as when the file was
created.

In each of the following methods, bucket size is expressed in terms of
512-byte physical blocks. Again, the examples refer to the COBOL
samples presented in Section 6.3.

Default

The compiler tries to make the bucket size as small as possible
by computing it as follows:

Bucket size = ((15+(7+record unit size))/512), rounded up

Example:
Sample Bucket size
A 2 = ((15+(7+(2+511)))/512), rounded up

BLOCK CONTAINS n RECORDS
The compiler computes the bucket size as follows:

Bucket size = ((15+(7+record unit size)*n)/512), rounded up

Example:
Sample Bucket size
B 4 = ((15+(7+4+20)*50)/512), rounded up

INPUT-OUTPUT PROCESSING 6-9

BLOCK CONTAINS n CHARACTERS
The compiler computes the bucket size as follows:
Bucket size = n/512
Where:
e n must equal or exceed (1l5+(7+record unit size)). If it |is
less than that quantity, the compiler issues a warning
diagnostic and uses the default method to compute the bucket

size.

e n must be a multiple of 512. If not, the compiler issues a
warning diagnostic and rounds n up to the next multiple of

512,
Example:
Sample Bucket size
C 2

n*(512) is 1less than +the minimum
required by the first rule; there-
fore, the compiler uses the default
method.

6.4 CURRENT RECORD AREA

A file's current record area is the 1location in which records are
available to a COBOL program; it 1is defined by the record
descriptions that follow the file description.

COBOL I/0 statements appear to transfer data directly between a file
and its current record area. Actually, I/0O statements transfer data
between the current record area and the file's I/O0O buffer. RMS
manages the I/O buffers and transfers data between them and files.

6.4.1 Effects on Output Operations

The current record area includes the total area described by all of a
file's record descriptions: it is as large as the largest record
described for the file.

The size of a record written by a COBOL program, however, is

determined by the record description named in the WRITE or REWRITE
statement.

6-10 INPUT-OUTPUT PROCESSING

6.4.2 Effects of Input Operations

The RTS does not clear the current record area before executing a READ
operation; therefore, the contents of the current record area after a
READ are determined by the length and contents of the record. For
example, when the program reads a record that is smaller than the
largest record described for a file, the operation does not change the
area beyond the end of the incoming record.

Consider an example in which the current record area contains 20
characters from the first record read from a file. If the next READ
returns a l2-character record, the remaining 8 character positions are
not changed:

Current record area after first READ: | 0239394CABINET, FILE

Contents of next record: 6627402CHAIR

Current record area after next READ: 6627402CHAIRET, FILE

It is not considered a good COBOL programming practice to depend on
this condition.

6.4.3 Sharing Record Areas

The compiler normally allocates storage space separately for each
file's current record area. This method of current record area
allocation has two potentially undesirable effects:

1. Each file's current record area requires storage in the
program's Data Division. If the number of files and the
sizes of their records are large, Data Division size could
approach COBOL-74's Data Division size limitation, which is
65,535 bytes.

2. Reading records from one file and writing them to another
requires an intermediate data transfer from one file's
current record area to the other. 1If the program processes a
large number of records this way, the data movement
operations could add significant processing overhead.

Files can share current record areas, thus reducing both address space
and processing overhead. You specify current record area sharing by
using the SAME RECORD AREA clause in the I-O-CONTROL paragraph of the
Environment Division. For all files named in a SAME RECORD AREA
clause, the compiler assigns the beginning of the current record areas
to a common location; the leftmost bytes of each current record area
coincide in the same way that the leftmost bytes of each record for a
file share one location. Records need not be the same size; nor must
the maximum sizes of each current record area be the same.

Figure 6-1 shows the effect of current record area sharing in a

program that reads records from one file and writes them to another.
However, it also shows a drawback: current record area sharing is

INPUT-OUTPUT PROCESSING 6-11

equivalent to implicit redefinition; the records do not exist
separately -- therefore, if the program changes the record defined for
the output file, the original input file record 1is no 1longer

available. Remember that you cannot access a file's I/0 buffer
directly.

Figure 6-1
Sharing Record Areas

Program Without Sharing Program With Sharing

I-O-CONTROL.
SAME RECORD AREA FOR
INP-FILE OUT-FILE.

PROCEDURE DIVISION. PROCEDURE DIVISION.

READ INP-FILE ... READ INP-FILE

MOVE INP-REC TO OUT-REC.
WRITE OUT-REC ... WRITE OUT-REC

Process Without Sharing Process With Sharing

L I I [|

INP-FILE buffer

READ READ
(move) (move)
INP-REC
MOVE INP-REC
OUT-REC
Y
OUT-REC | |
WRITE WRITE
(move) (move)

| |

OUT-FILE buffer

6-12 INPUT-OUTPUT PROCESSING

6.5 I/O BUFFERS

An I/0 buffer is an intermediate memory storage 1location for data
transfers between a program and its files. RMS assigns buffers
dynamically; that is, it does not allocate address space for a file's
buffers until your program opens the file. Furthermore, when your
program closes a file, RMS releases the I/0 buffer's address space.

Using buffers, RMS can perform I/O operations with 1little regard to
the program's description of records and files: it can read or write
more data (or less) in each operation than the program requests.

Buffer use is necessary for record blocking; for example, when your
program reads a record that 1is part of a logical block, only that
record is made available in the current record area. The rest of the
records in the 1logical block are still available in the file's I/O
buffer, and RMS can often make them available to your program without
accessing the file again.

Multi-buffering (allocating more than one buffer for file operations)
can increase the speed of I/0 operations. Using multi-buffering, RMS
can reduce your program's record access time by storing large amounts
of data in the program's address space between I/0 requests. If the
program tries to access a record that is already in the buffer, RMS
must only move the record to the current record area, regardless of
how the file is blocked. You can take advantage of multi-buffering by
using the RMS defaults or by specifying multiple buffers with the
RESERVE clause.

6.5.1 RMS Buffer Defaults

RMS uses default multi-buffer counts when they are not specified by
your program. Defaults for sequential, relative, and indexed files
can be set on a system-wide basis; however, you can also define RMS
defaults for your process by using the SET RMS_DEFAULT command. You
can display the defaults with the SHOW RMS DEFAULTS command. The
VAX/VMS Command Language User's Guide describes both commands.

6.5.2 Multiple Buffers (RESERVE Clause)

You can use the RESERVE clause in the SELECT statement to specify the
number of I/0 buffers that RMS will use for a file. The RESERVE
clause specification overrides the RMS default, allowing you to
reserve more buffers for programs in which I/O speed is important.

You can specify up to 127 areas in the RESERVE clause; however, if

record or block sizes are large, heavy multi-buffering could cause the
buffers to take a large proportion of the process address space.

INPUT-OUTPUT PROCESSING 6-13

6.5.3 Sharing Buffers (SAME AREA Clause)

The SAME AREA clause specifies that two or more files are to use the
same memory area (I/0O buffers) during processing. It is not valid to
have more than one of the files open at the same time; the RTS
reports a run-time error when it detects this condition.

RMS allocates I/0 buffers dynamically (when your program opens a
file), so buffer sharing would not save resources; therefore, since
more than one file specified in a SAME AREA clause cannot be open at
the same time, buffers are not actually shared. However, you can use
the SAME AREA clause to ensure that specific files are closed before
others are opened.

6.6 OPENING FILES

A COBOL program must explicitly open a file before it can perform any
I/0 operation on it. You can open files in four modes: INPUT,
OUTPUT, I-O, and EXTEND; the choice of open mode determines which I/O
statements you can wuse. This section summarizes the I/O statements
that can be used for each open mode; it also discusses the procedures
used by the RTS and RMS when you open files.

6.6.1 1I/0 Operations

Three conditions determine the I/0 operations that a program can
perform on a file:

1. File organization
2. Access mode

3. Open mode

The relationships among file organization, access mode, open mode, and
I/0 statements are hierarchical: file organization determines which
access modes are valid; the combination of organization and access
mode determines valid open modes; and the combination of all three
enables or disables I/0 statements. Table 6-1 shows these
relationships by indicating I/O statement availability for each valid
combination.

6-14 INPUT-OUTPUT PROCESSING

Access Mode,

Table 6-1
I/0 Statements Grouped by File Organization,
and Open Mode

File Access Open Mode
Organization Mode Statement INPUT| OUTPUT I-0 EXTEND
SEQUENTIAL SEQUENTIAL | READ Yes No Yes No

REWRITE No No Yes No
WRITE No Yes No Yes
RELATIVE SEQUENTIAL | DELETE No No Yes
READ Yes No Yes
REWRITE No No Yes
START Yes No Yes
WRITE INo Yes No
RANDOM DELETE No No Yes
READ Yes No Yes N/A
REWRITE No No Yes
WRITE No Yes Yes
DYNAMIC DELETE No No Yes
READ Yes No Yes
READ NEXT Yes No Yes
REWRITE No No Yes
START Yes No Yes
WRITE No Yes Yes
INDEXED SEQUENTIAL | DELETE No No Yes
READ Yes No Yes
REWRITE No No Yes
START Yes No Yes
WRITE No Yes No
RANDOM DELETE No No Yes
READ Yes No Yes
REWRITE No No Yes N/A
WRITE No Yes Yes
DYNAMIC DELETE No No Yes
READ Yes No Yes
READ NEXT Yes No Yes
REWRITE No No Yes
START Yes No Yes
WRITE No Yes Yes

INPUT-OUTPUT PROCESSING 6-15

6.6.2 OPEN Statement Execution

This section discusses the file open procedure and how it is affected
by the following conditions:

e File organization

® Access mode

e Open mode

® RTS error detection
® RMS error detection

® Existence of USE procedures

An OPEN statement causes the RTS to begin a series of procedures that
attempt to make the file available to the program. If an error is
detected, the OPEN fails: the RTS either performs the applicable USE
procedure (if the program has one) or issues an error message and
terminates the image.

The following procedure starts when a COBOL program reaches an OPEN
statement:

1. The RTS checks the current status of the file. If it |is
already open, the OPEN fails.

2. The RTS builds a file specification by using the contents of
the VALUE OF ID identifier, if any, to replace or add to the
components of the ASSIGN clause file specification default.

3. If the file was named in a SAME AREA clause, the RTS checks
the status of all other files named in the clause. If any
are open, the OPEN fails.

4. The RTS calls RMS, requesting that it open the file. 1If RMS
detects an error in its procedures, it reports the error
condition to the RTS and the OPEN fails.

5. RMS passes the file specification to a logical name
translation routine, which replaces the file specification
with the translation, if one exists.

6. If the file specification names an invalid device, or if RMS
detects any other error in the file specification, it reports
the error to the RTS.

7. If RMS cannot find the file, it notifies the RTS; then, if
the program specified the file as OPTIONAL (valid for
sequential files only) and the open mode is INPUT, the RTS
marks the file for an AT END condition, considers the OPEN
successful, and returns control to the program. Otherwise,
if RMS reports that it cannot find the file, the OPEN fails.

6-16 INPUT-OUTPUT PROCESSING

8. If the RTS detects a significant difference between an
existing file's attributes and those specified during an open
for input (such as different file organization), the OPEN
fails.

9. If the program is opening a sequential file for output, and
the program contained either the LINAGE or APPLY
PRINT-CONTROL clauses, the RTS initializes the LINAGE
counters.

10. Before returning control to the program after a successful
OPEN, the RTS marks as enabled or disabled all the program's
I/0 statements that refer to the file, depending on the file
organization, access mode, and open mode. (See Table 6-1.)

6.7 NAMING FILES

In a COBOL program, you refer to a file by its file-name: the name
you specify in the FD and use in the SELECT, OPEN, READ, START, and
CLOSE statements. However, you refer to the physical file, as it
exists outside the program, with a file specification. The ASSIGN
clause of the SELECT statement contains the default file
specification; the VALUE OF 1ID clause 1in the file description
particularizes the file specification.

This section discusses file specifications and 1logical names, which
are described in detail in the VAX/VMS Command Language User's Guide.
It relates the ASSIGN and VALUE OF ID clauses to the two file naming
techniques and recommends a convention that you can follow to make
your COBOL programs device-independent.
NOTE
The term "system" is used when it is not
important to differentiate between

VAX/VMS and its subsystems (RMS, for
example) .

6.7.1 File Specifications

File specifications provide the system with all the information it
needs to uniquely identify a file or device.

The general form of the file specification is:

node::device: [directory] filename. type;ver

INPUT-OUTPUT PROCESSING 6-17

The punctuation marks and brackets separate the fields of the file

specification.

node

device

directory

filename

type

ver

The fields are:

A network node name identifies a 1location on the
network, if your system is connected to one. Node
names are from one to six characters long.

Each hardware device in the system has a unique device
name specification in the format:

devcu:

where dev is a mnemonic for the device type; c is a
controller designation; and u is a unit number.

This field names a directory file, which contains the
identifications and 1locations of a user's files on a
disk device. Directory names must be enclosed in
either square brackets ([and 1) or angle brackets (<
and >).

This field, in combination with the file type and
version number, uniquely identifies files within
directories. The file name can be from one to nine
characters long.

The file type is often used to identify a file in terms
of its contents. It can be from one to three
characters 1long. For example, the file type of
executable images is usually EXE.

Version numbers are decimal numbers from 1 to 32767
that differentiate between versions of a file. For
example, if you create a file with the same file name
and type as one that already exists 1in the same
directory, the system assigns a version number that is
one greater than the highest existing version. You
must put a semicolon or a period before the version
number.

All fields are optional in a file specification. The system supplies
default values for all omitted fields, except file name and type. For
example, default device and directory names are established when you

log in;

you can change them with the SET DEFAULT command.

File Specification Examples:

Refers

DBAl: [SMITH]ACCOUNT.DAT

the latest version (default) of the file named

ACCOUNT.DAT in directory name [SMITH] on device DBAl: on the
local system (node name default).

6-18 INPUT-OUTPUT PROCESSING

PAYROL.NEW; 23

Refers to version number 23 of the file named PAYROL.NEW in the
default directory on the default device.

File Switches

File specifications in the ASSIGN or VALUE OF ID clause can be
followed by "file switches". These specifications are not
defined by VAX-11 RMS; however, the RTS accepts them and
translates them to VAX-11] RMS parameters. COBOL-74 accepts file
switches for compatibility with PDP-11 COBOL. (They are
discussed in Section 6.8.5).

6.7.2 Logical Names

Logical names allow you to write programs that are independent of
physical file specifications. They also provide a shorthand way to
specify files that you refer to frequently.

When the system gets a file specification, it tries to find an
equivalence name to replace the leftmost component. If the leftmost
file specification component is not a logical name -- it might be a
directory name, for example -- the system does not translate it.

You can assign 1logical names with the ASSIGN command, which |is
described in the VAX/VMS Command Language User's Guide. When a
logical name is assigned, it and its equivalence name are placed in
one of three 1logical name tables, depending on whether they are
assigned for the current process, on the group level, or on a
system-wide basis.

To translate a logical name, the system searches the three tables in
order (process, group, system); therefore, you can override a
system-wide logical name by defining it for your group or your
process.

Logical name translation is a recursive procedure; that is, when the
system translates a logical name, it uses the equivalence name as the
argument for another logical name translation. It continues in this
manner until it cannot translate the equivalence name.

For example, assume that the equivalence name of FILEA is ALPHA.DAT,
and you use the ASSIGN command:

ASSIGN FILEA MYFILE

If your program tries to open a file whose file specification is
"MYFILE", the system translates "MYFILE" to its equivalence name,
"FILEA", then uses "FILEA" as the argument for a second translation to
"ALPHA.DAT". If you had not established "MYFILE" as a logical name,
the system would use it as a file specification and look for a file
named "MYFILE.".

INPUT-OUTPUT PROCESSING 6-19

6.7.3 ASSIGN and VALUE OF ID Clauses

You can use the SELECT statement ASSIGN clause alone or in combination
with the VALUE OF ID clause to supply file specifications and logical
names for files. The ASSIGN clause literal can contain three types of
file names:

6-20

l.

Complete file specification

If you want the file specification to be the same whenever
you run the program, you can use a complete explicit file
specification in the ASSIGN clause. For example:

SELECT WORK-FILE
ASSIGN TO "DBAl: [WORKACCT]WORK1l.TMP".

You need not use the VALUE OF ID clause if you choose this
technique.

Partial file specification

If part of the file specification can change from one run to
another, you can use a partial file specification:

SELECT INPUT-FILE
ASSIGN TO "DBAl: .DAT".

If you do not use the VALUE OF ID clause, the system uses the
default directory and a null file name. However, if you use
the VALUE OF ID IS identifier clause and use the ACCEPT
statement to get the file name at run time, the contents of
the identifier "fill in" .or replace all or part of the
partial file specification:

identifier contents file specification
[JONES]A DBAl: [JONES]A.DAT
PERSONNEL DBAl: PERSONNEL. DAT
[WILLIAMS] DBAl: [WILLIAMS] .DAT
spaces DBAl: .DAT

DBAQ: [SMITH]WEEK.LIS DBAO: [SMITH]WEEK.LIS
. TMP DBAl: .TMP

Logical name

A logical name can look like a partial file specification
and, 1in fact, can be used in the same way. However, if the
name is not changed (by the contents of the VALUE OF 1ID) so
that the system recognizes it as a file specification, the
system tries to translate it.

INPUT-OUTPUT PROCESSING

For example, assume that the logical name "MYFILE" translates
to the equivalence name "PERSONNEL.DAT". If the SELECT
statement is:

SELECT INP-FILE
ASSIGN TO "MYFILE".

and the program accepts input at run time to fill the VALUE
OF 1ID identifier, 1logical name translation may or may not
take place, depending on the input:

identifier contents file specification
.DAT MYFILE.DAT

spaces PERSONNEL.DAT
[SMITH] [SMITH]MYFILE.

You can often increase program versatility and avoid "one-time"
recompilations by wusing 1logical names in the ASSIGN clause literal.
Consider an accounting system with 20 programs that access the same
ten master files. It could be necessary to use the same programs to
access another set of master files at the start of a new year, for
example, when two accounting years are active, or when another
organization's accounts must also be maintained. The amount of work
involved in converting the programs would depend on the programs' file
naming conventions:

e If complete file specifications are wused 1in the ASSIGN
clause, and the programs do not accept file specifications at
run time, all 20 programs need to be edited (ten file
specification changes in each), linked, and probably renamed
to avoid confusion with the originals. The obvious risk of
error requires that the programs be tested.

e If the programs accept file specifications at run time, they
would not need to be changed. However, assuming they run as
batch jobs, each command procedure needs to be changed, and
probably renamed. If the programs run interactively,
operators would need to be taught to use the correct file
specifications for each program, depending on which set of
files was to be used. 1In addition to being cumbersome, this
procedure would 1likely result in file specification errors,
and perhaps damage to data files.

e If logical names are used in the ASSIGN clause, the programs
would not need to be changed. If the programs run as batch
jobs, the command procedures are simpler than in the previous
case, since logical name assignments need be made only once
at the beginning of the procedure instead of for each
program; if multiple command procedures were used, they
could all execute a single command procedure that does
nothing but assign 1logical names. If the programs run
interactively, the operator needs only to execute one command
procedure to assign all logical names for the correct set of
files.

INPUT-OUTPUT PROCESSING 6-21

6.7.4 File Switches (PDP-11 COBOL Compatibility)

PDP-11 COBOL allows the use of switches (qualifiers) in file
specifications to communicate options to the file management system,
RMS-11. The RTS translates these switch specifications to make them
compatible with VAX-11 RMS; thus, you can recompile most PDP-11 COBOL
programs with VAX-11] COBOL-74 and execute them without change.

Table 6-2 describes the PDP-11 COBOL file specification switches.
Note that some of the terminology and concepts are not the same as
those in the VAX-11 system. Note also that numeric values are
specified as either decimal or octal, not hexadecimal.

Table 6-2
File Specification Switches
for Compatibility with PDP-11 COBOL

SWITCH MEANING

/AL:n Allocate n disk blocks to the file when it 1is <created.
This ensures that n blocks are available before
processing begins. You can also use the switch to
ensure that the the volume can hold the entire file. 1If
the rightmost character of n is a decimal point, the RTS
interprets the value as a decimal number; otherwise,
the RTS treats n as an octal value.

The blocks allocated need not be contiguous.

/CL:n The RTS treats this switch identically to the /WI
switch. The /CL switch is included for compatibility
with PDP-11 COBOL programs running under the RSTS/E
operating system.

/CO:n This switch complements /AL:n; it further specifies
that all blocks be contiguous. If the rightmost
character of n is a decimal point, the RTS interprets
the value as a decimal number; otherwise, the RTS
treats n as an octal value.

/DQ:n Specifies an extension quantity of n blocks when the
file is created. A large extension quantity minimizes
extend operations. If the rightmost character of n is a
decimal point, the RTS interprets the value as a decimal
number; otherwise, the RTS treats n as an octal value.

/DW Causes I/0 buffers to be written only when full, as
contrasted to the default case, in which every write
operation causes a physical 1/0 operation. This option
is available only for files that are not write-shared.

/LO Causes RMS to use the fill numbers specified when the

file was created. Fill numbers can cause the file to
contain free space to allow later record insertion.

6-22 INPUT-OUTPUT PROCESSING

/MI

/SH

/WI:z:n

Table 6-2 (Continued)

This switch optimizes the insertion (into an indexed
file) of records sorted in order of ascending prime key
values. Mass insertion eliminates the index search for
subsequent writes. This feature 1is implemented in
RMS-11.

Specifies sharing of the file, making it available for
writing by other processes running concurrently with the
COBOL program. This switch is not allowed for
sequential files. For other types of files, the
following rules apply:

1. If the /SH is specified for one process sharing
the file, it must be specified for all
processes sharing the file.

2. If a file is being opened for output or 1I/0
with the /SH switch specified, all other
processes currently using the file must also
have the /SH switch specified.

3. If a file is opened for input without the /SH
switch set, no other process can use the file
for output or I/0.

4. If a file is opened for input without the /SH
switch set, no other process currently using
the file can have the /SH switch set.

If access is denied because one of these rules has been
violated, the RTS stores a value of 91 in the
FILE-STATUS data-item associated with the file, assuming
that +the SELECT statement for the file contains a
FILE-STATUS clause.

Sets the number of retrieval pointers in the window used
to map virtual block numbers to logical block numbers.
The acceptable values range from 1 to 102 if you know
exactly how many pointers are present on disk for the
file, or 255, which requests assignment of pointers as
needed.

CAUTION
The /WI:n switch can cause loss of data and file

integrity if the system crashes while a buffer
is being filled.

INPUT-OUTPUT PROCESSING 6-23

6.8 FILE COMPATIBILITY

VAX-11 COBOL-74 programs use VAX-1l1l RMS to access all files. In most
cases, therefore, your COBOL programs can read records from any file
that was created through (or can be accessed by) RMS; and other
RMS-based programs can read records from files that your program
creates.

The ability to read records, however, does not imply a universal
ability to transfer data between programs written in different
languages -- at least not without some special processing. The most
common compatibility issues are differences in data types, data record
formats, and special control characters in records that are written to
record-oriented devices.

6.8.1 Data Type Differences

Not all data types are supported by all programming languages and all
utilities. For example:

e COBOL-74 does not support the floating point data type.
: Therefore, COBOL programs cannot easily process floating
point data (FORTRAN real variables) in files.

e VAX-11 SORT does not support quadword binary items.
Therefore, problems arise in sorting a file on a
COMPUTATIONAL key whose picture is in the range S9(10) to
S9(18).

® FORTRAN does not support the packed-decimal data type.
Therefore, COMPUTATIONAL-3 data in COBOL files cannot easily
be used by FORTRAN programs.

The fact that data types differ should not keep you from transferring
data between programs written in different languages. You can use two
techniques to overcome data type incompatibilities:

1. Use ASCII character representation, if possible, for all data
in files intended for use across languages: ASCII
representation (USAGE IS DISPLAY, in COBOL) is almost
universally recognized. All VAX-11l languages and utilities
support this data type.

2. Convert the data in your program to a data format you can
use. Even if you cannot use a data type directly, you can
convert it to a usable form if you know the specifications
for its internal representation.

Data conversion may be complex and may prevent your operating
on the <converted data as easily as on a "native" data type.
Nevertheless, conversion is always possible. For example, a
FORTRAN double-precision value may have too large a magnitude
for representation in any COBOL data type; however, the
fraction and exponent can be represented in COBOL by two
COMPUTATIONAL data items.

6-24 INPUT-OUTPUT PROCESSING

6.8.2 Data Record Formatting Differences

Programming languages may use different conventions to format their
data records, causing incompatibilities in otherwise transportable
files. For example, FORTRAN programs normally place a carriage
control character before the first data character in a formatted file
record. Similarly, other languages could format print-controlled (and
other) records differently than COBOL does.

You can avoid this incompatibility, in some cases, by not using
print-controlled files. 1In FORTRAN, for example, a file can be opened
with the "CARRIAGE CONTROL='NONE'" specification.

If you cannot "normalize" the format of a file's records, you can
still read it by defining record descriptions that match the actual
format. For example, you can read data from a FORTRAN file that uses
carriage control by defining a one-character data item before the
first "real" data item in each record description. When you read a
record, the one-character field will contain the carriage control
character, which your program can either interpret or ignore.

6.8.3 Special Control Characters

Some characters in the computer character set have special meaning;
the carriage return, form feed, and line feed characters are examples
of non-graphic control characters.

Control characters may be included in a file's records by convention;
for example, COBOL-74 print-controlled records have a carriage return
in the byte following the last data character. In other cases, a
program can inadvertently include control characters in a record by
using a data type other than ASCII (or DISPLAY). For example, if your
program writes COMPUTATIONAL data to a file, individual bytes of the
binary data could contain control characters. Consider a one-word
COMPUTATIONAL data item that contains the wvalue 3085, which is
equivalent to the hexadecimal value 0COD; taken as two bytes, 0COD
represents a form feed followed by a carriage return, which could be
interpreted as the end of a record.

6.9 I/O ERROR PROCESSING

When your program reaches a file I/0 statement, the RTS begins a
complex procedure that includes 1its own internal status checks and
interaction with RMS. 1I/0 exceptions can be detected by RMS or the
RTS. This section briefly describes how the RTS handles exception
conditions and the techniques you can use to handle I/O errors.

INPUT-OUTPUT PROCESSING 6-25

When your program reads a sequentially accessed file, RMS reports an
AT END condition to the RTS if there are no more records to return.
For a randomly accessed file, an INVALID KEY condition is reported
whenever RMS determines that the file does not contain the record
specified by the value of the key your program supplied. The AT END
and INVALID KEY conditions are not errors; you specify program action
on those conditions in the AT END and INVALID KEY clauses of 1I/0
statements.

An I/0 error is any other condition that causes an I/0O statement to
fail.

If your program contains a USE procedure that applies to the file for
which the I/O operation failed, the RTS performs the procedure, and it
does not display an RMS error message; otherwise, it displays the RMS
error message and terminates the image.

A USE procedure can sometimes avoid program termination. For example,
if the file status data item contains the value "91", which indicates
that the file is locked by another process, you might decide to try
opening the file again after performing other procedures.

In other cases, when program continuation is not desirable, the USE
procedure can perform "housekeeping" operations that conclude
processing in an orderly way, by saving data or informing the user,
for example.

Before the RTS performs a USE procedure, it places a value in the file
status data item, if you specified one in the file's SELECT statement.
Most file status values are defined by the 1974 ANSI COBOL Standard;
in most cases, they do not provide as much information as RMS error
messages. If you need to see the RMS error message for an error that
was handled by a USE procedure, you must recompile the program without
the USE procedure and run it again.

6.10 LOW-VOLUME I/O (ACCEPT AND DISPLAY)

The COBOL language provides two statements (ACCEPT and DISPLAY) for
low-volume I/0O operations. Usually, these statements transfer data to
and from a user's terminal device. In COBOL-74, however, the ACCEPT
and DISPLAY statements refer to VAX/VMS logical names.

This section discusses the association of your own mnemonic-names to
VAX/VMS 1logical names; it continues with discussions of the ACCEPT
and DISPLAY statements.

6-26 INPUT-OUTPUT PROCESSING

6.10.1 Mnemonic-Names (SPECIAL-NAMES Paragraph)

The ACCEPT and DISPLAY statements transfer data between your program
and the object of VAX/VMS 1logical names. If you do not use the
FROM/UPON clauses, the default 1logical names are COBSINPUT and
COBSOUTPUT.

The FROM/UPON clauses refer to mnemonic-names that you can define in

the SPECIAL-NAMES paragraph in the Environment Division. You define a

mnemonic-name by equating it to a "device"; for example, the

following clause equates STATUS-REPORT to the device LINE-PRINTER:
LINE-PRINTER IS STATUS-REPORT

You could then use the mnemonic-name in a DISPLAY statement:

DISPLAY "File contains " REC-COUNT
UPON STATUS-REPORT.

6.10.2 Logical Name "Devices"

The device names in the SPECIAL-NAMES paragraph represent VAX/VMS
logical names:

SPECIAL-NAMES Device Logical Name
CARD-READER COBSCARDREADER
PAPER-TAPE-READER COBSPAPERTAPEREADER
CONSOLE ' COBSCONSOLE
LINE-PRINTER COBSLINEPRINTER
PAPER-TAPE-PUNCH COBSPAPERTAPEPUNCH

The logical names do not necessarily represent devices. You could,
for example, assign a logical name to a file specification with a VMS
ASSIGN command:

ASSIGN [ALLSTATUS]STATUS.LIS COBSLINEPRINTER

Because a logical name does not imply a device, it carries no
implication of "open mode"; therefore, a program can display upon a
mnemonic-name that refers to CARD-READER or accept from a
mnemonic-name that refers to LINE-PRINTER.

In COBOL, the ACCEPT and DISPLAY statements do not refer to
file-names; therefore, the concepts of opening and closing files do
not apply. However, the RTS wuses RMS for all I/0 operations,
including ACCEPT and DISPLAY. The RTS therefore implicitly "opens" a
logical name when it is first used in an ACCEPT or DISPLAY statement
in any COBOL module in the image.

INPUT-OUTPUT PROCESSING 6-27

NOTE

When the RTS opens a logical name for a
DISPLAY statement, it specifies the
variable with fixed-length control (VFC)
format to allow carriage control; the
RTS does not wuse VFC format when it
opens a logical name for an ACCEPT
statement. The record format attribute
is wused for all operations until the
image terminates; therefore, if your
program contains both ACCEPT and DISPLAY
statements that refer to the same
logical name, it should execute a
DISPLAY before the first ACCEPT.
Otherwise, DISPLAY statement carriage
control will be 1lost; all DISPLAY
statements will execute as 1if they
contained the WITH NO ADVANCING phrase.

This condition does not occur when you
use ACCEPT and DISPLAY statements
without the FROM/UPON clause: the
statements refer to different logical
names (COBSINPUT and COBSOUTPUT) .

6.10.3 ACCEPT Statement

Format 1 of the ACCEPT statement transfers small amounts of data from
the object of a VAX/VMS logical name to a data item. If you do not
use the FROM clause, the RTS uses the 1logical name COBSINPUT;
otherwise, it uses the 1logical name implied by the key word in the
SPECIAL-NAMES paragraph that is referred to by the mnemonic-name in
the ACCEPT statement. In the following example, the RTS uses
COBS$CONSOLE:

SPECIAL-NAMES.
CONSOLE IS WHATS-HIS-NAME

PROCEDURE DIVISION.

ACCEPT PARAMETER-AREA FROM WHATS-HIS-NAME.

6-28 INPUT-OUTPUT PROCESSING

6.10.4 DISPLAY Statement

The DISPLAY statement transfers the contents of data items and
literals to the object of a VAX/VMS logical name. If you do not use
the UPON clause, the RTS uses the logical name COBSOUTPUT; otherwise,
it uses the logical name implied by the key word in the SPECIAL-NAMES
paragraph that is referred to by the mnemonic-name in the DISPLAY
statement. In the following example, the RTS uses COBSLINEPRINTER:

SPECIAL-NAMES.
LINE-PRINTER IS ERROR-LOG

PROCEDURE DIVISION.

DISPLAY ERROR-COUNT, " phase 2 errors, ",
ERROR-MSG UPON ERROR-LOG.

For the DISPLAY statement, the RTS uses the variable with fixed-length
control record format.

INPUT-OUTPUT PROCESSING 6-29

CHAPTER 7

GOOD PROGRAMMING PRACTICES

7.1 FORMATTING THE SOURCE PROGRAM

Since most COBOL programs are usually 1long, the programmer needs
techniques that will help him to simplify and improve the readability
of his COBOL programs. The guidelines in this chapter, if followed,
will help produce source programs that are easy to read and maintain.

Before considering these guidelines, consider the reference formats
that are available with VAX-11 COBOL-74:

1. The Conventional (ANS) format.
2. The Terminal format.

Although the Conventional format produces ANS compatible programs, it
also produces source printouts that are somewhat more cluttered than
those produced by the Terminal format. These guidelines, therefore,
recommend the use of Terminal format and all of the following
suggestions and examples assume the use of that format. Besides the
obvious advantage of an uncluttered printout, the Terminal format has
other programming advantages:

l. It requires less storage area.
2. It requires no line numbers.
3. Its statements may be aligned with tab characters.
Further, whenever required, the REFORMAT utility program will convert

Terminal format programs to the Conventional format. (The REFORMAT
utility program is discussed in Chapter 8).

The following suggestions should help to further simplify even the
most complicated source programs.

1. Begin division, section, and paragraph names in column 1.
Although these names may start anywhere in Area A, aligning
them in column 1 produces a much more readable listing. When
required, place the * and - in column 1. (Column 1 then
becomes column 0.)

2. Insert a blank line, or one or more comment lines (describing
the purpose of the file) before each SELECT statement in the
FILE-CONTROL paragraph. Place the phrases of the SELECT
statement on separate lines and begin each of them in column
5 (use the tab character to skip over Area A). Consider the
following illustration of a typical SELECT statement:

AREA A AREA B

1. .. 5 ¢ ¢ ¢ o o o
SELECT MASTER-FILE
ASSIGN TO "DBl:"
ORGANIZATION IS RELATIVE
ACCESS IS SEQUENTIAL.

3. Place the phrases of the file description statement on
separate lines and begin each of them in column 5. (Use the
tab to skip over Area A.) Consider the following illustration
of a typical file description entry:

AREA A AREA B
1 . . . 5 L] L] . L . . .
FD MASTER-FILE

LABEL RECORDS ARE STANDARD
VALUE OF ID IS MASTER-FILE-NAME
DATA RECORD IS MASTER-RECORD.

4. 1In both the File and Working-Storage sections, begin all 01
level items in column 1.

Indent, by four columns, all subordinate items with
higher-valued 1level numbers. (For example, if the item that
is subordinate to a 0l-level record description is 05, begin
the record description 1level number in column 1 and the 05
level number in column 5.) Use the tab <character for the
first indentation, a tab and four spaces for the second, two
tabs for the third, etc. When indented in this manner, the
listing will show, <clearly and neatly, the hierarchical
relationships of all of the data names in the program as well
as their level number values.

Increment level numbers by 5; then later, if it becomes
necessary to insert additional group items, they may be
inserted without having to change the level numbers of all
items that are subordinate to that group.

7-2 GOOD PROGRAMMING PRACTICES

If desired, write the level numbers as single digits (such as
1 instead of 01).

Use level number 01 instead of 77 in the Working-Storage
Section. (77, as a level number has the same meaning as 01,
and 77 may eventually be omitted from the COBOL standard.)

Since all elementary items, except for 1index data items,
require PICTURE clauses, these clauses fill a good part of
the source program 1listing. However, the PICTURE clause
itself may be simplified to enhance the listing's readability
as follows:

a. Use PIC as an abbreviation for PICTURE.
b. Omit the noiseword 1IS.

c. Align the PIC clauses on successive lines. (Use the tab
character to align the clauses.)

Put all paragraph name declarations in the Procedure Division
on lines separate from the statements in the paragraph. This
not only makes the program more readable, it also makes
modification of the first statement in the paragraph easier.

Follow all imperative statements with a period, making them
l-statement sentences. Place only one statement on a line.
In addition to making the lines shorter and more readable,
this will prove quite helpful when debugging the program.
For example, if the program contains a coding error, it will
be on one 1line and therefore easier to modify without
affecting the other portions of the sentence; further, the
diagnostic messages will refer to the correct line and their
meanings will be clearer.

Since left-aligned statements in any program enhance the
readability of that program, develop the habit of starting
all COBOL sentences in column 5. (Use the tab character to
skip over Area A.) Some statements, however, should be
further indented, as explained in the following paragraphs.

If the true path of a conditional statement contains another
conditional statement or more than one imperative statement,
place all statements in the true path on 1lines immediately
following the <conditional statement and indent them to show
their dependence upon that statement. Consider the following
illustration of an IF statement and its true path:

IF COMPUTED-TAX > TAX-LIMIT
SUBTRACT TAX-LIMIT FROM COMPUTED-TAX GIVING EXCESS-TAX
MOVE TAX-LIMIT TO COMPUTED-TAX
ADD EXCESS-TAX TO TOTAL-EXCESS-TAX.

If the statement has an ELSE (or false) path, align the word

ELSE under the preceding IF and indent all statements that
are dependent on the ELSE statement. '

GOOD PROGRAMMING PRACTICES 7-3

Thus:

IF condition
true path statement
true path statement
ELSE
false path statement
false path statement.

Be sure to place the period after the last statement only!

Another good method for simplifying conditionals is to write
only a single imperative statement in the true or false path.
If the path requires more statements, place them in a
separate paragraph and either PERFORM the paragraph from the
path or GO to it. This technique avoids the possibility of
inadvertently placing a period at the end of a statement
within the path, thereby terminating it prematurely.

When writing a GO TO ... DEPENDING statement, place each
procedure name on a separate 1line and indent them all.
Consider the readability of the following sample statement:

GO TO P35
P40
P45
P60
P65
DEPENDING ON P-SWITCH.

8. When grouping statements into paragraphs and sections, use
the following organizational ideas:

Group together logical units of processing into a section.
Select a section name that reflects the type of processing
being conducted within that section (such as TAX-COMPUTATION
SECTION, PRINT-LINE-FORMATTER SECTION, etc.). Follow the
section name with sufficient comment lines to explain the
processing that is carried out by the statements within that
section.

Make paragraph names as short and simple as possible. A
numbered abbreviation of the section name often suffices.
Thus the paragraph names in the TAX-COMPUTATION section might
be TC10, TC20, TC30, etc. Use paragraph names sparingly,
placing them only where the true and false paths of
conditional statements require branch points for GO TO
statements. If the temptation arises to give a paragraph a
longer name in an attempt to reflect the type of processing
in that paragraph, use comment lines instead. (Comment lines
usually convey more information, more clearly.)

When using simple numbered paragraph names, assign increasing
numeric characters to sequential paragraphs. If the numeric
portion of the names increases by 5 or 10, new ones may be
inserted later without disturbing the sequence of the names.

7-4 GOOD PROGRAMMING PRACTICES

Do not use the PERFORM verb in the form, PERFORM a THRU b.
If the paragraphs a thru b must be performed, place them in a

section by themselves and PERFORM the section, thus avoiding
the use of the THRU option.

Place single paragraphs that are to be performed into
sections and use the section name as the object of PERFORM
verbs. Then, if future design changes introduce complicated
conditional 1logic into the paragraph, requiring additional
paragraph names, the PERFORM statements need not be altered.

The preceding guidelines divide the Procedure Division into
modular blocks of coding. If these guidelines are used, the
following additional techniques may be applied.

a. Restrict entry to all sections through the first
statement of the section by use of a GO TO, a PERFORM, or
a "fall through" from the preceding section.

b. Ensure that all GO TO statements refer to only section
names or paragraph names that are internal to the section
containing the GO TO statement.

7.2 USE OF PUNCTUATION

Avoid using the COBOL punctuation characters, comma and semicolon.
They 1lend 1little to the readability of programs that have their
statements neatly aligned, as discussed earlier in this chapter.
Further, it is quite easy to misuse'these characters, which can cause
serious errors for many compilers. (Other compilers either ignore
incorrect punctuation characters or flag them with warning messages.)
At best, even when used correctly and in the proper places, they have
no effect on the meaning of the program.

7.3 USE OF THE ALTER STATEMENT

Avoid using the ALTER statement to change the flow of control in a
program. It 1is impossible to test the setting of an alterable GO
statement except by executing it. Also, wunless explicit comments
accompany an alterable GO statement, it is difficult to tell whether
or not it is referenced by ALTER statements or what the possible
destinations might be. All of this makes debugging programs that
contain these statements quite difficult. There are two other
techniques that may be used in their place:

1. 1If control branches one of two ways (i.e., a binary switch),

write the switch as a conditional variable. Consider the
following sample coding:

GOOD PROGRAMMING PRACTICES 7-5

01 P-SWITCH PIC S9 COMP VALUE O.
88 NO-PRINT VALUE 1.

MOVE 1 TO P-SWITCH

IF NO-PRINT GO TO P40.

P40.
MOVE 0 TO P-SWITCH.

If control branches more than two ways, use MOVE statements
to place integers into a data item, and a GO TO ...
DEPENDING ... statement to test the data item and branch
accordingly. Consider the following sample coding:

01 P-SWITCH PIC 59999 COMP VALUE 0.

MOVE 1 TO P-SWITCH

MOVE 3 TO P-SWITCH.

GO TO
PART-TIME
PIECE-WORK
HOURLY
SALARIED-WEEKLY
SALARIED-OTHER
DEPENDING ON P-SWITCH.
* FALLTHROUGH IS A BUG
DISPLAY "?217".
STOP RUN.

7.4 USE OF THE PERFORM STATEMENT

The general rules for the PERFORM statement are augmented with the
following rules:

1.

The endpoint of a section and the endpoint of the 1last
paragraph in the same section are two distinct points. This
means that it is possible to execute a PERFORM of the
section, then while that PERFORM is still active, to execute
a PERFORM of the last paragraph.

On the start of a PERFORM, if the end point of the new
PERFORM 1is the end point of an already active PERFORM, the
RTS aborts the task and issues an error message.

7-6 GOOD PROGRAMMING PRACTICES

3. At the end of any procedure, a check is made to see 1if the
procedure being ended is the end of the most recent PERFORM
range. If so, the most recent PERFORM range is exited. If
not, the end point of the most recent procedure is checked
against the end point of all currently active PERFORMs. If
the end point of the procedure 1is the end point of any
currently active PERFORM range, the RTS issues an error
message and aborts the task because the perform ranges are
not being exited in the reverse of the order in which they
were entered.

NOTE

The RTS error messages are discussed in
Chapter 10.

7.5 USE OF LEVEL-88 CONDITION-NAMES

Condition-names provide a convenient method for testing a value or
range of values in a field. The use of condition-names makes programs
easier to maintain, because it ensures a uniform method of testing
fields and helps to reduce recoding when the specifications of the
program change.

The following example illustrates the use of condition-names and shows
the advantages inherent in their use.

Suppose the records of a file each describe a student in an
educational institution (or an employee in a corporation). Some of
the records contain categories of information which are not present in
other records. A "code" field, which contains a digit or letter,
indicates the presence (or type) of some categories; while a special
value in the information itself (such as a numeric value being zero,
negative, or maximum) indicates the presence of other categories. The
processing of such a record may vary considerably depending on these
indicator fields. The fields may require interrogation at various
points in the program, and the interrogation may require more than a
simple relation test.

Consider a "code" field that holds one of seven values, coded as a
mnemonic character. For example, S,1,2,3,4,G,P might be seven values
that indicate student categories of Special, 1lst year, 2nd year, 3rd
year, 4th year, Graduate, and Postgraduate. The field is described as
follows:

05 STUDENT-CATEGORY PIC X.
Program logic requires certain processing for enrolled undergraduates,

different processing for special students, and still different
processing for all students except enrolled undergraduates.

GOOD PROGRAMMING PRACTICES 7-7

Without the aid of condition-names, statements might be written as
follows to resolve this problem:

IF STUDENT-CATEGORY = "S" ...

IF STUDENT-CATEGORY NOT LESS THAN "1"
IF STUDENT-CATEGORY NOT GREATER THAN "4" ...

IF STUDENT-CATEGORY EQUAL TO "G" NEXT SENTENCE
ELSE IF STUDENT-CATEGORY EQUAL TO "P"
NEXT SENTENCE ELSE GO TO ...

However, if various 1level 88 entries follow the STUDENT-CATEGORY
description, as shown below, condition-names can simplify this coding.

05 STUDENT-CATEGORY PIC X.
88 UNDERGRADUATE VALUE "1" THRU "4".
88 SPECIAL-STUDENT VALUE "S".
88 GRAD-STUDENT VALUE "G" "P".
88 SENIOR VALUE "4".
88 NON-DEGREE-STUDENT VALUE "S" "P".

Now, the following procedural statements can solve the problem:

IF SPECIAL-STUDENT ...
IF UNDERGRADUATE ...
IF GRAD-STUDENT ...

Procedural statements with condition-names are much easier to read and
debug than those containing the complete test. For example, the
procedural statements, IF UNDERGRADUATE ..., and IF STUDENT-CATEGORY
NOT LESS THAN "1" 1IF -‘STUDENT-CATEGORY NOT GREATER THAN "4" both

accomplish the same thing, but the first statement is simpler and less
confusing.

In addition, the statement, IF NOT UNDERGRADUATE ... can test the
category of not being an undergraduate, which is equivalent to any one
of the following statements:

IF NOT (STUDENT-CATEGORY NOT < "1" AND
STUDENT-CATEGORY NOT > "4") ...

or

IF STUDENT-CATEGORY < "1" OR
STUDENT-CATEGORY > "4" ...

or
IF STUDENT-CATEGORY < "1" NEXT SENTENCE

ELSE IF STUDENT-CATEGORY > "4" NEXT SENTENCE
ELSE GO TO ...

Statements such as these are tedious to write and a frequent source of
coding errors. Further, if a change creates a new student category,
the recoding takes more time and is even more error prone.

7-8 GOOD PROGRAMMING PRACTICES

A careful and controlled use of condition-names forces a higher degree
of programming control and checkout. If the program logic does
require the modification of the STUDENT-CATEGORY field, it can even be
named FILLER thus removing the opportunity to shortcut the use of
condition-names.

To apply condition-names, follow the description of the item to be
tested with a 1level 88 entry. The item being tested, known as the
conditional variable (STUDENT-CATEGORY in the preceding
illustrations), may be either DISPLAY or COMPUTATIONAL usage, but not
INDEX usage; it may also be a group item.

The compiler stores all of the values supplied by the level 88 entries
in the object program exactly as written. (They are pooled with all
of the literals from the Procedure Division.) A value supplied by a
level 88 entry for a conditional variable of COMPUTATIONAL usage is
stored in binary format to save conversion at run time. The compiler
stores all other values as byte strings with the proper attributes.
It does not make the level 88 entries equal to their
conditional-variables in size. This means that it neither truncates
nor pads (with spaces) non-numeric 1literals. Further, it neither
truncates nor pads (with zeros) numeric literals, but stores them as
written or, if converted to binary, in the minimum size COMP item that
will hold the converted value. It stores signs as trailing
overpunches on numeric DISPLAY literals, and removes and remembers
decimal points.

Do not enter level 88 items under group items that have subordinate
entries containing any of the following clauses: SYNCHRONIZED,
JUSTIFIED, COMPUTATIONAL, INDEX.

7.6 USE OF QUALIFIED REFERENCES

7.6.1 Qualified Data References

The COBOL 1language provides facilities to define and reference
user-defined data items. Data items are programmer-defined variables
declared in the Data Division of a COBOL program. Such variables
include, among others, file record descriptions and internal working
areas. These data items are processed by procedural statements such
as the WRITE, MOVE, and ADD statements. Procedural operations on
these data are facilitated through references to the data items by
name.

GOOD PROGRAMMING PRACTICES 7-9

For example, to update a variable, YTD-GROSS-PAY, by a weekly gross
pay amount WEEKLY-GROSS, write the program fragment shown in Figure
7-1.

WORKING-STORAGE SECTION.
01 YTD-GROSS-PAY PIC 9(5)V99.
01 WEEKLY-GROSS PIC 999Vv99.

ADD WEEKLY-GROSS TO YTD-GROSS-PAY.

Figure 7-1
Unqualified Data Item Reference

In this example, YTD-GROSS-PAY and WEEKLY-GROSS are -defined in the
Working Storage Section of the Data Division as COBOL variables with a
level number of 01. The variable representing the "year-to-date gross
pay (YTD-GROSS-PAY)" is computed by incrementing its present value by
the "weekly gross pay (WEEKLY-GROSS)" amount through reference to the
appropriate data items in the ADD statement. References are made to
the data items by the singular, unqualified names of YTD-GROSS-PAY and
WEEKLY-GROSS. Since YTD-GROSS-PAY and WEEKLY-GROSS are defined with
level numbers of 01 in the Working Storage Section, these variables
must be unique in their spelling and, hence, can only be referenced by
the spelling of each data item's name without any COBOL qualification.

The example in Figure 7-1 1is artificial because the data item
representing the "year-to-date gross pay" 1is defined as a level 1
variable in the Working Storage Section. More realistically,
YTD-GROSS-PAY 1is defined as a field within an employee payroll record
residing on an external master payroll file. The process of updating
the "year-to-date gross pay" by a "weekly gross pay" amount is shown
more appropriately in Figure 7-2.

FILE SECTION.
FD MASTER-IN
LABEL RECORD IS STANDARD
VALUE OF ID IS "MASTER.PAY".
01 PAY-RECORD.
03 NAME PIC X(30).
03 EMPLOYEE-NO PIC 9(9).
03 YTD-GROSS-PAY PIC 9(5)V99.

7-10 GOOD PROGRAMMING PRACTICES

FD MASTER-OUT
LABEL RECORD IS STANDARD
VALUE OF ID IS "MASTER.PAY".
01 PAY-RECORD.
03 NAME PIC X(30).
03 EMPLOYEE-NO PIC 9(9).
03 YTD-GROSS-PAY PIC 9(5)V99.

WORKING-STORAGE SECTION.
01 WEEKLY-GROSS PIC 999Vv99.

PROCEDURE DIVISION.

INIT.
OPEN INPUT MASTER-IN.
OPEN OUTPUT MASTER-OUT.

ADD WEEKLY-GROSS, YTD-GROSS-PAY OF MASTER-IN
GIVING YTD-GROSS-PAY OF MASTER-OUT.

Figure 7-2
Qualified Data Item Reference

In this example, YTD-GROSS-PAY is defined as a field in both the input
and output record descriptions. There are two separate data items
whose spellings are identical.

To reference each data item, it is necessary to qualify the name of
each data item with sufficient information to constitute a unique
reference. Thus, to reference the "year-to-date gross pay" amount in
the output record, we write "YTD-GROSS-PAY OF MASTER-OUT" where such a
reference is called a qualified reference. The filename MASTER-OUT is
functioning as a qualifier in the reference. The reserved word "OF"
is the qualification connector and may be used interchangeabely with
the reserved word "IN" in this context. Another way of referencing
the same data item 1is to write "YTD-GROSS-PAY OF PAY-RECORD 1IN
MASTER-OUT". This reference 1is called a completely qualified
reference because all possible qualifiers are specified 1in the
reference. A reference of the form "YTD-GROSS-PAY" or "YTD-GROSS-PAY
OF PAY-RECORD" is illegal since it does not uniquely identify which of
the two data items 1is desired. Such a reference 1is termed an
ambiguous reference.

In the area of data item definition and referencing, COBOL 1is unlike
other 1languages such as FORTRAN and ALGOL 60. While FORTRAN requires
each data item to have a unique name (i.e., no two data items may have
a name of identical spelling), COBOL relaxes this requirement to the

GOOD PROGRAMMING PRACTICES 7-11

extent that each data item must be uniquely referable. That 1is, two
or more data items may have their names spelled identically, but there
must exist a way to reference each distinct data item. Thus, there is
a distinction between a data item and its name. Central to
understanding this distinction is understanding the concept of unique
referability.

The functionalities of data item definition and referencing may be
understood by stating three guidelines which relate the concepts of
data item definition, reference format, and unique referability.

7.6.2 Guideline 1 (Data Item Definition)

Each data item has a name. Each name is immediately preceded by an
associated positive integer called its level number. A name either
refers to an elementary item or else it is the name of a group of one
or more items whose names follow. In the latter case, each item in
the group must have the same level number, which must be greater than
the level number of the group item.

7.6.3 Guideline 2 (Reference Format)

Data-name qualification is performed by following a data-name or
condition-name by one or more phrases of a qualifier preceded by IN or
OF. 1IN and OF are logically equivalent. The general format of a
qualified refierence to an elementary item or group of items named
"name-0" is given in Figure 7-3.

name-0 OF name-l...0F name-m

Figure 7-3
General Format of a Qualified Data Reference

where m >= 0 and where, for 0 <= j < m, name-j is the name of some
item contained directly or indirectly within a group item named
"name-j+1". A reference of the form given in Figure 7-3 is called a
(partially) qualified reference with name-1,name-2,...,name-m being
called qualifiers. Such a reference is termed a completely qualified
reference if "name-j+1" is the father of name-j for 0 <= j <= m-1.

In the hierarchy of qualification, names associated with an FD
indicator are the most significant, then the names associated with
level-number 01, then names associated with level-number 02,...,49.
The most significant name in the hierarchy must be unique and cannot
be qualified. Subscripted or indexed data-names, unsubscripted
data-names, and condition variables may be made unique by
qualification. The name of a condition variable can be used as a
qualifier for any of its condition-names.

7-12 GOOD PROGRAMMING PRACTICES

Enough qualification must be mentioned to make the reference unique;
however, it may not be necessary to mention all 1levels of the
hierarchy as the example in Figure 7-2 demonstrates.

7.6.4 Guideline 3 (Unique Referability)

If more than one data item is defined with the same name "name-0",
there must be a way to refer to each use of the name by using
qualification. That is, each definition of "name-0" must be uniquely
referable. A data item is uniquely referable if the complete set of
qualifiers for the data item are not identical to any partial
(including complete) set of qualifiers for another data item.

7.6.5 Qualified Procedure Statements

The facility of qualification may be applied to procedure references.
A procedure name 1is either a paragraph or section name. By
definition, a paragraph name 1is wunique only within a section
containing the paragraph while, on the other hand, section names must
be unique within a COBOL program. The general format of a qualified
procedure reference is shown in Figure 7-4.

paragraph-name OF section-name

Figure 7-4
General Format of a Qualified Procedure Reference

A paragraph name may be qualified by its containing section name; a
section name may never be qualified in a procedure reference. When a
paragraph name 1is referenced without an explicit section name
qualifier, the paragraph name is implicitly qualified by the
appropriate section name.

If a paragraph name is unique within a COBOL program it 1is not
necessary to qualify the paragraph name in the procedure reference.
Finally, if a paragraph name is not unique within a COBOL program, the
paragraph name must be qualified in a procedure reference when the
reference is made outside of the section which contains the paragraph.

7.6.6 Qualification and Compiler Performance

Qualification is a powerful language facility for the development of
COBOL programs. Used wisely, it increases the readability of COBOL
programs. However, the user pays a price for wutilization of this
facility in terms of a slower compilation rate (i.e., COBOL source
lines per unit of time).

GOOD PROGRAMMING PRACTICES 7-13

Qualification requires a tree-structured symbol table at compile-time.
The time required for building and looking up on a tree-structured
symbol table is considerably longer than for a non-tree-structured
symbol table. This translates into a general degradation of compiler
performance. If qualification is not employed in a program compiled
by the VAX-11 COBOL-74 compiler, compilation speed is not affected.
However, when qualification is used, the compilation rate slows down
due to the additional system overhead.

In general, if there are deeper levels of qualification, there will be
a slower compilation. This is especially so at the end of the Data
Division text where duplicate data-name declarations are detected by

the compiler. Run-time performance is not affected by usage of the
qualification facility.

7-14 GOOD PROGRAMMING PRACTICES

CHAPTER 8

REFORMAT UTILITY PROGRAM

VAX-11 COBOL-74 accepts source programs that were coded using either
the conventional 80-column card reference format or the shorter,
terminal-oriented VAX-11l cobol terminal format. The REFORMAT utility
program reads source programs that were coded in the terminal format
and converts them to 80-column conventional format source programs.
The VAX-1ll COBOL Language Reference Manual discusses both formats in
detail.

Consider the two formats:

® The terminal format is designed for ease of wuse with text
editors controlled from an on-line console keyboard and is
compatible for use with the VAX-1l1l system. It eliminates the
line-number and identification fields and allows horizontal
tab characters and short lines.

e The conventional format produces source programs that are
compatible with the reference format of other COBOL compilers
throughout the industry.

REFORMAT lets you write source programs in the terminal format; then,
if compatibility is ever required for any of those programs, it
provides a simple method for conversion to the conventional format.

REFORMAT follows the following steps to expand each line of terminal
format coding to the conventional format:

@ It generates a 6-character line number of 000010, places that
number in the first six character positions of the line, and
increases it by 000010 for each subsequent line.

@ It places any continuation or comment symbols (-,*, or /) into
character position 7.

@ It places the coding from the terminal format 1line into
character positions 8-72, thereby creating a 1line of
conventional format coding.

® It replaces any horizontal tabs with the appropriate number of
space characters to simulate tab stops at character positions
5, 13, 21, 29, 37, 45, 53, 61, and 66 of the terminal format
line.

@ It moves spaces into any character positions left between the
last character of coding and character position 73.

@ It places either identification characters (if they were
supplied at program initialization) or spaces into character
positions 73-80.

@ It right justifies (at position 72) the first 1line of a
continued non-numeric 1literal, thus gquaranteeing that the
literal will remain the same length as it was in the default
format.

@ It right justifies (at position 72) the first part of any
COBOL word that is split over two lines.

@ It creates a line containing a slash (/) in position 7 and
space characters in positions 8 through 72 for every form-feed
character that it encounters.

REFORMAT Command String

To run REFORMAT, enter the following command:
MCR RFM

This causes REFORMAT to begin execution. REFORMAT immediately
requests the file specifications for the two files (input and output)
to be processed. 1In response to its prompting messages, type in the
file specifications for your two files.

RFM-INPUT FILE SPEC:
RFM-OUTPUT FILE SPEC:

When the system has successfully opened both files, REFORMAT types the
following request for an identification entry in columns 73 through
80. If you desire an identification entry, type in from one to eight
characters. REFORMAT places these characters, 1left justified, in
columns 73 through 80 of each output line. If no entry 1is required,
type a carriage return.

RFM-COLS 73 TO 80:

Following this response, REFORMAT reads the input file and writes it
as 80-character records, in conventional reference format.

When it has processed the last record in the file, REFORMAT displays
the following messages; the first indicating the number (nnnnn) of
output records produced and the second requesting another input file.

RFM-nnnnn LINES PROCESSED.
RFM-INPUT FILE SPEC:

If there is another file to be reformatted, follow the same sequence

with the specifications for the next file. 1If not, type CTRL/Z to
terminate execution.

8-2 REFORMAT UTILITY PROGRAM

REFORMAT Error Messages

If any of the responses to the prompting messages contain detectable
errors, REFORMAT displays the following messages indicating the
problem.

RFM-ERROR IN OPENING INPUT FILE
RFM-TRY AGAIN
RFM-INPUT FILE SPEC:

The system could not open the input file. Either the file 1is not
present on the device specified (the default device is SYS$SDISK) or
the file name is typed incorrectly. The wusual I/0 error messages
precede this message.

To continue processing that file, examine the input file spec and type
in a corrected version. To process another file, type in a new input
file specification. To terminate execution, type CTRL/Z.

RFM-ERROR IN OPENING OUTPUT FILE
RFM-TRY AGAIN
RFM-OUTPUT FILE SPEC:

The system could not open the output file. An incorrectly typed file
specification usually causes this error. (The default device is
SYS$SDISK.) The usual I/0 error messages precede this message. To
continue, examine the output file specification and type 1in a
corrected version. To terminate execution, type CTRL/Z.

RFM-INPUT FILE IS EMPTY
RFM-INPUT FILE SPEC:

The system successfully opened the input file, but the first READ
statement encountered the AT END condition.

To continue, type in a new input file specification for another file.
To terminate execution, type CTRL/Z.

RFM-ERROR IN READING INPUT FILE
RFM-INPUT FILE SPEC:

The first attempt to read the input file was unsuccessful. This error
is usually caused by an input record length exceeding 86 characters.
(Although terminal format records should not exceed 66 characters in
length, REFORMAT provides a record area of 86 characters and ignores
the right-most 20 characters.)

To continue, type in a new input file specification for another file.
To terminate execution, type CTRL/Z.

RFM-ERROR IN READING INPUT FILE
RFM-REFORMATTING ABORTED
RFM-nnnnn LINES PROCESSED
RFM-INPUT FILE SPEC:

REFORMAT UTILITY PROGRAM 8-3

While reading input records (other than the first record), REFORMAT
was unsuccessful in an attempt to read a record. It terminates
execution and closes both files.

To process another file, type in a new input file specification and
continue with the prompting message sequence. To terminate execution,
type CTRL/Z.

RFM-ERROR IN WRITING OUTPUT FILE
RFM-REFORMATTING ABORTED
RFM-nnnnn LINES PROCESSED
RFM-INPUT FILE SPEC:

REFORMAT was unsuccessful in an attempt to write an output record. It
terminates execution and closes both files.

To process another file, type in a new input file specification and

continue with the prompting message sequence. To terminate execution,
type CTRL/Z.

8-4 REFORMAT UTILITY PROGRAM

CHAPTER 9

DEBUGGING COBOL PROGRAMS

Debugging is the process of finding and correcting errors in programs
that have been successfully compiled and linked. In some cases, you
need to debug a program because it produces incorrect results; other
programs may terminate abnormally as a result of attempting illegal
operations.

This chapter introduces the VAX-11 Symbolic Debugger (DEBUG) for
COBOL-74 programs. You will find a complete description of the DEBUG
facility in the VAX-1l1l Symbolic Debugger Reference Manual; enough
information is included here to get you started debugging a COBOL
program.

9.1 DEBUG CONCEPTS

DEBUG is a module that you can include in an executable image with the
LINK command. (See Chapter 2.) It allows you to examine and change
the contents of your program's data items; you can also control the
order of statement execution and regain control when execution errors
occur.

The VAX-11 Symbolic Debugger is called symbolic because it allows you
to refer to data items by the symbols you assigned, that is,
data-names. You can refer to Procedure Division locations by source
listing line numbers rather than VAX-11 memory addresses.

To use symbolic references, the compiler must store the symbols in the
object module. Although this adds no address space requirement to the
executable image, it does require space in the image file; that is
why symbol tables are not stored automatically -- you must cause them
to be stored by using the /DEBUG command qualifier when you compile a
program. If you do not specify /DEBUG at compile time, you can still
use the debugger, but you cannot refer to data items symbolically.

To summarize, use the /DEBUG command qualifier at both compile time
and 1link time. Then, when you execute the image, DEBUG takes control
and prompts you for a command with the prompt: DBG>.

9.2 PREPARING TO DEBUG A PROGRAM

The following sections describe the commands that establish the
environment for debugging COBOL programs. The commands are:

SET LANGUAGE COBOL

SET MODULE
SHOW MODULE
CANCEL MODULE

SET SCOPE
SHOW SCOPE
CANCEL SCOPE

9.2.1 SET LANGUAGE COBOL Command

This command tells DEBUG that the debugging dialog applies to a COBOL
program. It allows symbols that contain hyphens, for example. The
format of the command is:

SET LANGUAGE COBOL

You may want to debug an image that contains modules written in more
than one 1language; the SET LANGUAGE command allows you to change
language conventions during the debugging session.

DEBUG's default is the language of the main program.

9.2.2 MODULE Commands: SET, SHOW, and CANCEL

DEBUG maintains a table of symbols defined in the program with which
it 1is 1linked; the table contains the name of each data item defined
in the program, its data type, and its location. The table can hold
about 2000 symbols at a time. Therefore, if an image contains modules
that have a total of more than 2000 symbols, the table may not be able
to hold all of them at once. You cannot refer to a symbol unless it
is in the active symbol table.

Use the MODULE commands to control the contents of DEBUG's active
symbol table when the image you want to debug contains multiple
modules. The commands are:

SET MODULE Places the symbols defined in the specified module
(program) into the active symbol table.

The format of the SET MODULE command is:

SET MODULE module-name [,module-name] ...

9-2 DEBUGGING COBOL PROGRAMS

SHOW MODULE Displays the names of the modules whose symbols are
currently in the active symbol table.

The format of the SHOW MODULE command is:

SHOW MODULE
DEBUG responds by displaying the names of the modules
linked with 1it; it also indicates which modules'
symbols are in the active symbol table and how much
space they occupy.

CANCEL MODULE Removes a module's symbols from the active symbol
table.

The format of the CANCEL MODULE command is:

CANCEL MODULE module-name [,module-name] ...

9.2.3 SCOPE Commands: SET, SHOW, and CANCEL

The SCOPE commands control the default that DEBUG uses to resolve
references to symbols. When you use the EXAMINE command, for example,
you can either name the module in which the symbol is defined, or you
can omit the module name. If you omit the name, DEBUG uses a default;
if it can't find the symbol in the default scope, it attempts to find
an unambiguous symbol in the remaining modules. If DEBUG cannot
resolve the reference, it displays a message.

Until you use a SET SCOPE command, DEBUG uses as the default scope the
name of the first module with which it was linked.

The SCOPE commands are:
SET SCOPE Specifies the default module.
The format of the SET SCOPE command is:
SET SCOPE module-name
SHOW SCOPE Displays the current default module name.
The format of the SHOW SCOPE command is:
SHOW SCOPE
CANCEL SCOPE Cancels the current default module name. Until you
use another SET SCOPE command, DEBUG uses the name of
the first module with which it was 1linked as the
default.
The format of the CANCEL SCOPE command is:

CANCEL SCOPE

DEBUGGING COBOL PROGRAMS 9-3

9.3 SPECIFYING LOCATIONS

Several DEBUG commands use locations as parameters; locations allow
you to tell DEBUG what data you want to look at or where you want
control transferred, for example.

9.3.1 Location Types

For COBOL programs, you can use three types of location
specifications:

Data-name refers to a data item in the Data Division. This
type of location is often called a symbol.

For example:
EXAMINE INPCHAR

tells DEBUG that you want to see the contents of the
data item whose data-name is INPCHAR.

You cannot qualify data-names in DEBUG commands the
way you can in COBOL. 1If you refer to a data-name
that is defined more than once in the module, DEBUG
applies the reference to the definition that appeared
last in the source program.

You can use subscripts in DEBUG commands as in COBOL
statements, except for data-names appearing in the
Linkage Section; however, you can usually access
Linkage Section items by referring to the
corresponding non-Linkage Section data-name in the
calling program.

Line specifies the beginning of a source program line.
The format of a line location is:

$LINE n

The value of n corresponds to a compiler-assigned
line number on the program's source listing.

Absolute specifies a numeric memory address. Specify an
absolute location as an integer.

For example:
EXAMINE 1200

tells DEBUG to display the contents of the 1longword
located at address 1200.

9-4 DEBUGGING COBOL PROGRAMS

9.3.2 Resolving Location Ambiguities

Your program can consist of more than one module, as it would if a
main program called a subprogram. If the symbols from more than one
module are in DEBUG's symbol table, and if duplicates exist, then a
symbol reference could be ambiguous. Furthermore, if more than one
module were linked with DEBUG, then 1line numbers could also be
ambiguous.

DEBUG uses defaults to resolve ambiguous references. In some cases,
however, you may want to specify the scope in an location to refer to
other than the default module.

For example, your program might consist of a main program, TESTA, and

a subprogram, TESTB. If you wanted to transfer control to line 36 in
TESTB, you might use the command:

GO $LINE 36
Because you did not specify a module name, DEBUG uses the default
scope to resolve the ambiguity -- the default could be either TESTA or
TESTB, depending on whether you had previously used a SET SCOPE
command.

You can override the default and resolve the ambiguity yourself by
specifying the scope as part of the location:

GO SLINE TESTB\36
Similarly, you can specify the scope in symbolic data-name locations:

EXAMINE TESTB\ACCNT-NUM

9.4 CONTROLLING PROGRAM EXECUTION

This section describes DEBUG commands that allow you to suspend,
monitor, and resume program execution at specific points. The
commands are:

SET BREAK SET WATCH EXIT

SHOW BREAK SHOW WATCH SHOW CALLS
CANCEL BREAK CANCEL WATCH

SET TRACE GO

SHOW TRACE STEP

CANCEL TRACE CTRL/Y

9.4.1 BREAK Commands: SET, SHOW, and CANCEL

The BREAK commands control the location of breakpoints in the program.
A breakpoint is a 1location where you want a program to suspend
execution and return control to you; at a breakpoint, you can examine
or change data values, or you can change the program's execution path.

DEBUGGING COBOL PROGRAMS 9-5

The BREAK commands are:

SET BREAK Specifies a location at which to suspend execution.
The format of the SET BREAK command is:

SET BREAK location [DO (DEBUG commands)]

If the program reaches the specified location, it is
suspended before executing the instruction located
there. You can request that DEBUG perform commands
when the breakpoint 1is reached by using the DO
option. For example:

SET BREAK $LINE 210 DO (EXAMINE TOT-AMT)

causes DEBUG to display the contents of the data-name
TOT-AMT whenever it suspends the program at line 210.

SHOW BREAK Displays all breakpoints currently set in the
program.

The format of the SHOW BREAK command is:
SHOW BREAK
CANCEL BREAK Removes specified breakpoints.:
The format of the CANCEL BREAK command is:
CANCEL BREAK/ALL

or
CANCEL BREAK location [,location] ...

9.4.2 TRACE Commands: SET, SHOW, and CANCEL

The TRACE commands control the location of tracepoints in the program.
A tracepoint resembles a breakpoint, except that program execution
continues after DEBUG displays the current 1location. Tracepoints
allow you to monitor the sequential flow of a program.

Tracepoints and breakpoints supersede each other; , that is, if you set
a tracepoint at the same location as a breakpoint, the breakpoint is
cancelled.

The TRACE commands are:

SET TRACE Specifies a location at which to suspend execution,
display location information, and continue.

The format of the SET TRACE command is:

SET TRACE location

9-6 DEBUGGING COBOL PROGRAMS

SHOW TRACE Displays the program locations at which tracepoints
are currently set.

The format of the SHOW TRACE command is:
SHOW TRACE

DEBUG displays tracepoints in newest-to-oldest order
-- newest is the last tracepoint set.

CANCEL TRACE Removes specified tracepoints.
The format of the CANCEL TRACE command is:

CANCEL TRACE/ALL
or
CANCEL TRACE location [,location] ...

9.4.3 WATCH Commands: SET, SHOW, and CANCEL

The WATCH commands allow you to monitor program locations, called
watchpoints, for attempts to change their contents. 1If an instruction.
attempts to change the contents of a watchpoint, DEBUG suspends the
program, displays the location of the instruction, and prompts for a
command. Watchpoints are useful when you need to know if a data item
is being inadvertently changed.

The WATCH commands are:
SET WATCH Specifies locations to be monitored.
The format of the SET WATCH command is:
SET WATCH identifier

The 1identifier specifies the location to be
monitored.

NOTE

When a watchpoint is set, DEBUG protects the
entire memory page from write access. When
an instruction at wuser mode 1level (your
program) attempts to change the contents of
any location on the protected page, DEBUG
evaluates the access for watchpoint action;
however, if a system service tries to write
to a protected page, it returns an error.
Therefore, if watchpoints are set on the same
page as a File Section record description,
access errors can occur during RMS input
operations.

DEBUGGING COBOL PROGRAMS 9-7

SHOW WATCH

CANCEL WATCH

Displays current watchpoints.

The format of the SHOW WATCH command is:

SHOW WATCH
DEBUG displays the current watchpoints in
newest-to-oldest order - newest 1is the 1last

watchpoint set.

Removes specified watchpoints.

The format of the CANCEL WATCH command is:
CANCEL WATCH/ALL

or
CANCEL WATCH identifier

9.4.4 GO and STEP Commands

The GO and STEP commands initiate and continue program execution.

GO

Resumes program execution, either at the current
location or another location.

The format of the GO command is:
GO [location]

If you omit the location, execution starts at the
current location.

If you specify an location, DEBUG transfers control
to the new location.

You can specify the location as a source program line
number (GO %line 38, for example); however, you
cannot resume execution at a 1line boundary 1if the
current location 1is other than the beginning of a
line. 1If the current location is not a line boundary
-- a common occurrence when watchpoints are reached
-- use the STEP command to reach the next 1line
boundary before attempting a GO %line command.

NOTE

Exit from DEBUG before restarting a program
from the beginning. The results of using a
GO command to restart a program from the
beginning are undefined.

9-8 DEBUGGING COBOL PROGRAMS

STEP Continues execution at the current 1location for a
specified number of steps.

The format of the STEP command is:
STEP [n]

The value of n specifies the number of steps to
execute. If you do not specify n, or you specify O,
DEBUG assumes a value of 1 as a default.

DEBUG evaluates n for each step in the execution of a
STEP command. Therefore, if n has a large value,
your program runs slower because of DEBUG overhead.
You can reduce this overhead by using the SET BREAK
and GO commands (instead of STEP) when you want to
execute more than a few steps.

9.4.5 CTRL/Y Command (Interrupting the Image)

You can use the CTRL/Y command at any time to return to the VAX/VMS
system command level. Press the CTRL key and the Y key at the same
time; VAX/VMS displays the $ prompt at the terminal; a STOP 1literal
statement in your program produces the same result. You can then
return to DEBUG with the DEBUG command.

Use the CTRL/Y command when you believe your program is in an infinite
loop, or when you want immediate control. When you return to DEBUG,

you can use the SHOW CALLS command to see the program's location when
the CTRL/Y command interrupted execution.

9.4.6 EXIT Command
The EXIT command terminates the debugging session.
The format of the EXIT command is:

EXIT

DEBUG terminates the program and returns control to the VAX/VMS system
command level.

9.4.7 SHOW CALLS Command

The SHOW CALLS command displays information about the current level of
nested calls, including performs. The content and format of the
information are similar to the traceback display, which is described
in Chapter 10.

DEBUGGING COBOL PROGRAMS 9-9

The format of the SHOW CALLS command is:
SHOW CALLS [n]

If you do not specify n, DEBUG displays all call levels; otherwise, n
determines the number of levels that DEBUG reports.

9.5 EXAMINING AND CHANGING DATA
This section describes commands that allow you to see and to change
the contents of data items during program execution. You may want to
change values to correct errors or to test a hypothesis during a
debugging session. The commands are:

EXAMINE

DEPOSIT

9.5.1 EXAMINE Command
The EXAMINE command displays the contents of a specified location.
The format of the EXAMINE command is:
EXAMINE [location]
You will usually specify the location as a data-name (EXAMINE SUBI,

for example). However, you can display the contents of an absolute
address (such as EXAMINE 1000).

9.5.2 DEPOSIT Command
The DEPOSIT command changes the contents of a specified location.
The format of the DEPOSIT command is:
DEPOSIT location=value
Examples:
DEPOSIT ITEMA=12

Places the numeric value 12 into the data item named by
data-name ITEMA.

DEPOSIT WORDX="NOW IS THE TIME"

Places the characters in the alphanumeric literal into the
data item named by the data-name WORDX.

9-10 DEBUGGING COBOL PROGRAMS

DEPOSIT TOP="662K"

Places the value -6622 into the four-digit signed numeric
DISPLAY data item, TOP.

NOTE

The DEPOSIT command functions in the
same way as the COBOL ACCEPT statement
for DISPLAY data items. Therefore, you
must be aware of the internal
representation of your program's data
items when you use the DEPOSIT command.

9.6 SAMPLE DEBUG SESSION

This section contains an annotated debugging session that demonstrates
the use of many DEBUG features. Following it are sample listings of a
COBOL program (TESTA) and a subprogram (TESTB); the debugging session
refers to these listings.

Program TESTA accepts a character string from the terminal and passes
it to TESTB. TESTB reverses the character string and returns it (and
its length) to TESTA.

The following debugging session does not demonstrate the 1location of
actual program errors; it 1is designed to show the use of DEBUG
features.

Responses from DEBUG and VMS appear in red.

1) We use the RUN command to start the
session. Note that we do not need the
/DEBUG qualifier, since the programs
were compiled and 1linked with DEBUG.
DEBUG takes control; it displays its
standard header, showing wus that the
default language is COBOL and that the
default scope and module are TESTA.
DEBUG returns control by displaying its
prompt, DBG>.

s RUN TESTA

VAX/VMS DEBUG V1.5 04 January 1979

$DEBUG-I-INITIAL, language is COBOL, scope and module set to 'TESTA'
DBG>

DEBUGGING COBOL PROGRAMS 9-11

2) Using the SHOW MODULE command, we see
that DEBUG's active symbol table
contains symbols from only one module,

the main program. The last module is
part of the RTS; it was linked from
C74LIB.OLB.

DBG>SHOW MODULE

module name symbols language size

TESTA yes COBOL 164

TESTB no COBOL 316

CBFLSW no BLISS 128

total modules: 3
remaining size: 60948.

3) We try to set a breakpoint at line 26 of
TESTB. DEBUG cannot find 1line 26,
because TESTB's symbols are not in the
active symbol table.

DBG>SET BREAK $%$LINE TESTB\26
$DEBUG-W-NOLINE, routine 'TESTB' has no %line 26

4) We add TESTB's symbols with the SET
MODULE command.

DBG>SET MODULE TESTB

5) Then, we confirm that the symbols have
been added.

DBG>SHOW MODULE

module name symbols language size
TESTA yes COBOL 164
TESTB yes COBOL 316
CBFLSW no BLISS 128

total modules: 3.
remaining size: 60724.

6) Now, we can set the breakpoint with no
problem.

DBG>SET BREAK $LINE TESTB\26

7) We resume execution. DEBUG displays the
execution starting point. The image
continues until TESTA displays its
prompt and waits for a response.

DBG>GO

routine start at TESTA\TESTA
ENTER WORD

9-12 DEBUGGING COBOL PROGRAMS

8)

BACKWARD
break at TESTB\TESTB %line 26

9)

We enter the word to be reversed.
Execution continues wuntil the image
reaches the breakpoint at 1line 26 of

module TESTB.

We set two breakpoints. When line 40 of
TESTB is reached, DEBUG will execute the
commands in parentheses; it will
display two data items, then resume
execution.

DBG>SET BREAK 3LINE 40 DO(EX HOLD-WORD;EX SUB-1;GO)

DBG>SET BREAK SLINE 34
10)

DBG> SHOW BREAK

We display the active breakpoints.

breakpoint at TESTB\TESTB %line 34
breakpoint at TESTB\TESTB %line 40 DO (EX HOLD-WORD;EX SUB-1;GO)
breakpoint at TESTB\TESTB %line 26

11)
DBG>SET TRACE S$LINE 22

12)
DBG>SET WATCH DISP-COUNT

13)

DBG>GO

start at TESTB\TESTB %line 26
break at TESTB\TESTB %line 40
TESTB\TESTB\HOLD-WORD (1:20) :
TESTB\TESTB\SUB-1(1:2): 8
start at TESTB\TESTB %line 40
break at TESTB\TESTB %line 40
TESTB\TESTB\HOLD-WORD (1:20) : -
TESTB\TESTB\SUB-1(1:2): 7
start at TESTB\TESTB %line 40

We set a tracepoint at line 22 of TESTA.
TESTA is the default scope.

We set a watchpoint on the data-item
DISP-COUNT. When the an instruction
attempts to <change the contents of

DISP-COUNT, DEBUG will return control to
us.

We resume execution. Whenever 1line 40
in TESTB is about to be executed, DEBUG
executes the contents of the DO command
that we entered at step 9; it displays
the contents of HOLD-WORD and SUB-1,
then resumes execution.

DR

DEBUGGING COBOL PROGRAMS 9-13

break at TESTB\TESTB %line 40
TESTB\TESTB\HOLD-WORD(1:20) :
TESTB\TESTB\SUB-1(1:2): 6
start at TESTB\TESTB %line 40
break at TESTB\TESTB %line 40
TESTB\TESTB\HOLD-WORD (1:20) :
TESTB\TESTB\SUB-1(1:2): 5
start at TESTB\TESTB %line 40
break at TESTB\TESTB %line 40
TESTB\TESTB\HOLD-WORD (1:20) :
TESTB\TESTB\SUB-1(1:2): 4
start at TESTB\TESTB %line 40
break at TESTB\TESTB %line 40
TESTB\TESTB\HOLD-WORD (1:20) :
TESTB\TESTB\SUB-1(1:2): 3
start at TESTB\TESTB %line 40
break at TESTB\TESTB %line 40
TESTB\TESTB\HOLD-WORD (1:20) :
TESTB\TESTB\SUB-1(1:2): 2
start at TESTB\TESTB %line 40
break at TESTB\TESTB %line 40
TESTB\TESTB\HOLD-WORD (1:20) :
TESTB\TESTB\SUB-1(1:2): 1
start at TESTB\TESTB %line 40
break at TESTB\TESTB %line 34

14)
DBG>DEPOSIT SUB-1=10

15)
DBG>EXAMINE SUB-1
TESTB\TESTB\SUB-1(1:2): 10

16)
DBG>DEPOSIT SUB-1=" "

17)
DBG>EXAMINE SUB-1
TESTB\TESTB\SUB—l(l:Z): 32

9-14 DEBUGGING COBOL PROGRAMS

DRA

DRAW

DRAWK

DRAWKC

DRAWKCA

DRAWKCAB

into the data
Note that we do not need to

We deposit the value 10
item SUB-1.

enclose the value in quotes since SUB-1
is a COMP item.

We examine the contents of SUB-1. DEBUG
indicates that it 1is displaying the
value contained in bytes 1 through 2
(1:2) of the data item.

Here, we deposit another value into
SUB-1, wusing a quoted string. DEBUG

deposits the value in the same manner as
a COBOL ACCEPT statement: as a stream
of bytes. ‘

When we look at SUB-1, we see that it
now has 32 as its wvalue; 32 is the
decimal value of the ASCII space

character.

18) We deposit a value into data item SUB-2,
whose usage is COMP-3. The quoted
string is needed because usage is other
than COMP.

DBG>DEPOSIT SUB-2="-42"

19) We then examine SUB-2, and see that its
value is now -42.

DBG>EXAMINE SUB-2
TESTB\TESTB\SUB-2(1:2):

0000000000000000000000000000042

20) We look at CHARCT, whose picture is
99Vv99. DEBUG displays the contents as
0800; it is not aware of the implied
decimal point. DEBUG treats all DISPLAY
data items as alphanumeric.

DBG>EXAMINE CHARCT
TESTB\TESTB\CHARCT (1:4): 0800

21) We deposit four characters into CHARCT.
DBG>DEPOSIT CHARCT="1500" '
22) CHARCT now has the value "1500" (15.00).

DBG>EXAMINE CHARCT
TESTB\TESTB\CHARCT (1:4): 1500

23) Here, we deposit another value, omitting
the quotes.

DBG>DEPOSIT CHARCT=42

24) We examine CHARCT and see that it
contains an asterisk (decimal value 42)
followed by three spaces.

DBG>EXAMINE CHARCT
TESTB\TESTB\CHARCT (1:4): *

25) We deposit the quoted value "15" into
CHARCT.

DBG>DEPOSIT CHARCT="15"

DEBUGGING COBOL PROGRAMS 9-15

26)

DBG> EXAMINE CHARCT
TESTB\TESTB\CHARCT (1:4): 15

27)
DBG>DEPOSIT CHARCT="0800"

28)

DBG> GO

start at TESTB\TESTB %line 34
trace at TESTA\TESTA %line 22
DRAWKCAB

Since a quoted string is deposited
without conversion, we see that CHARCT
now contains "15 ". If we 1left this
value in CHARCT (invalid for a numeric
data item), an error would occur later
in the run.

So, we deposit a valid value.

We resume execution. The program TESTA
displays the reversed word. When the
image reaches line 22 in TESTA, DEBUG
detects that an instruction has changed
the contents of DISP-COUNT. Since we
set a watchpoint on DISP-COUNT, DEBUG
displays the o0ld and new values, then
returns control to us. Note that we
don't know the current location in terms
of 1line number; the displayed location
is in the RTS.

write to TESTA\TESTA\DISP-COUNT(1:2) at PC CVT_P_ANY+67

old value

won

new value 08
29)
DBG> SHOW CALLS
module name routine name
CVT_P_ANY
TESTA
30)

DBG>STEP

start at CVT_P_ANY+79
stepped to TESTA\TESTA %line 2

9-16 DEBUGGING COBOL PROGRAMS

To see the image's current location, we
try the SHOW CALLS command. DEBUG
displays the active call frames, but we
still don't know the line number in our
program.

line relative PC absolute PC

0000004F 00001414
22 0000007C 00004748

We use the STEP command until we reach a
line boundary. DEBUG indicates that the
image has reached line 28 of TESTA, the
line following the reference to
DISP-COUNT.

8

31) We resume execution. TESTA executes its
final DISPLAY. DEBUG regains control
when the STOP RUN is executed.

DBG>GO

start at TESTATESTA %$line 28

08 CHARACTERS

$DEBUG-I-EXITSTATUS, is '%SYSTEM-S-NORMAL, normal successful completion'

32) At this point, we <can continue the
session, by examining the contents of
data items, for example; or, we can
terminate the image with the EXIT

command.
DBG>EXIT
$
Program Listings:
00001 IDENTIFICATION DIVISION.
00002 PROGRAM-1ID. TESTA.
00003 DATE-WRITTEN. JANUARY 1979.
00004 DATE-COMPILED.
00005 15-Jan-1979 .
00006 ENVIRONMENT DIVISION.
00007 CONFIGURATION SECTION.
00008 SOURCE-COMPUTER. VAX-11.
00009 OBJECT-COMPUTER. VAX-11.
00010 DATA DIVISION.
00011 WORKING-STORAGE SECTION.
00012 01 LET-CNT PIC 9(2)V9(2).
00013 01 1IN-WORD PIC X(20).
00014 01 DISP-COUNT PIC 9(2).
00015 PROCEDURE DIVISION.
00016 GETIT SECTION.
00017 BEGINIT.
00018 DISPLAY "ENTER WORD".
00019 MOVE SPACES TO IN-WORD.
00020 ACCEPT IN-WORD.
00021 CALL "TESTB" USING IN-WORD LET-CNT.
00022 PERFORM DISPLAYIT.
00023 STOP RUN.
00024 DISPLAYIT SECTION.
00025 SHOW-IT.
00026 DISPLAY IN-WORD.
00027 MOVE LET-CNT TO DISP-COUNT.

I 00027 0372 POSSIBLE LOW ORDER RECEIVING FIELD TRUNCATION.

00028 DISPLAY DISP-COUNT " CHARACTERS".

DEBUGGING COBOL PROGRAMS 9-17

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042

IDENTIFICATION DIVISION.
PROGRAM-ID. TESTB.
DATE-WRITTEN. JANUARY 1979.
DATE-COMPILED.
15-Jan-1979 .
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 suB-1 PIC 9(2) COMP.
01 suB-2 PIC S9(2) COMP-3.
01 HOLD-WORD.
03 HOLD-CHAR PIC X OCCURS 20 TIMES.
LINKAGE SECTION.
01 TEMP-WORD.
03 TEMP-CHAR PIC X OCCURS 20 TIMES.
01 CHARCT PIC 99V99.
PROCEDURE DIVISION USING TEMP-WORD, CHARCT.
CONVERT-IT SECTION.
STARTUP.
IF TEMP-WORD = SPACES
MOVE 0 TO CHARCT
GO TO GET-OUT.
PERFORM LOOK-BACK
VARYING SUB-1 FROM 20 BY -1
UNTIL TEMP-CHAR (SUB-1) NOT = SPACE.
MOVE SUB-1 TO CHARCT.
MOVE SPACES TO HOLD-WORD.
PERFORM MOVE-IT
VARYING SUB-2 FROM 1 BY 1
UNTIL SUB-1 = 0.
MOVE HOLD-WORD TO TEMP-WORD.
GET-0OUT.
EXIT PROGRAM.
MOVE-IT.
MOVE TEMP-CHAR (SUB-1)
TO HOLD-CHAR (SUB-2).
SUBTRACT 1 FROM SUB-1.
LOOK-BACK.
EXIT.

9-18 DEBUGGING COBOL PROGRAMS

CHAPTER 10

ERROR MESSAGES

Errors can occur while compiling, 1linking, or running a VAX-11
COBOL-74 program. This chapter defines these different errors and
briefly discusses their associated diagnostic messages. Appendix D
lists compile-time diagnostics; Appendix E 1lists run-time error
messages.

»
10.1 COMPILE-TIME ERROR MESSAGES
If the VAX-11] COBOL-74 compiler detects an error, it will print a

diagnostic message either before or after the erroneous source program
line. Diagnostic messages look like this:

X LINE ERR X--—-—=--—- TEXT =—====—m—————mm X

error message

error message number

source program line number

severity level - informational (I), warning (W), fatal
(F)

The following example shows diagnostic messages in the source 1listing
of a program named "SAMPLE":

00001 IDENTIFICATION DIVISION.
00002 PROGRAM-ID. SAMPLE.
00003 ENVIRONMENT DIVISION.

00004 SOURCE-COMPUTER. VAX-11.

00005 OBJECT-COMPUTER. VAX-11.

00006 DATA DIVISION.

00007 WORKING-STORAGE SECTION.

00008 01 TABLE-VALUES.

00009 05 TAB-VAL OCCURS 9 TIMES PIC X.
00010 01 SAVE-VAL PIC X.

00011 PROCEDURE DIVISION.

00012 MAIN SECTION.

00013 PARA

I 00014 0622 TERMINATOR MISSING AFTER PROCEDURE NAME.

00014 IF SAVE-VAL = SPACE
000%3 ADD 1 TO SAVE-VAL.

F 00015 0714 MISSING OR INVALID OPERAND FOR ARITHMETIC VERB

I 00016 0616 PROCESSING RESTARTS AFTER TERMINATOR.

00016 MOVE TAB-VAL (9) TO SAVE-VAL.
00017 STOP RUN.
00018 EXIT.
W 00018 0103 .EXIT. WAS NOT THE ONLY VERB IN PARAGRAPH.

10.1.1 Severity Levels

Some errors do not affect program compilation, while others abort it.
The compiler therefore issues three types of diagnostic messages to
reflect varying severity levels: Informational (I), Warning (W), and
Fatal (F). Consider the following messages, taken from the SAMPLE
program in Section 10.1:

I 00014 0622 TERMINATOR MISSING AFTER PROCEDURE NAME

The compiler issues informational messages to pinpoint suspect
conditions in your source program. In program SAMPLE, the
paragraph name PARA does not end with a period. The compiler
displays the message: "TERMINATOR MISSING AFTER PROCEDURE NAME."
to describe the error. Because the compiler can recover from the
error in a manner consistent with your intentions, it issues an
informational message only.

NOTE

You can use the /NOWARNINGS command line qualifier to
suppress informational error messages.

10-2 ERROR MESSAGES

W 00018 0103 .EXIT. WAS NOT THE ONLY VERB IN PARAGRAPH.

Warnings, like informational errors, pinpoint source program
mistakes from which the compiler can recover. 1In program SAMPLE,
for instance, the warning indicates that EXIT must be the only
statement in the paragraph. The compiler can take corrective
action, however. But this action may not be consistent with your
intentions, even though the code produced will be executable.

The compiler therefore flags the object file to denote that
warnings occurred.

F 00015 450 REFERENCE TO UNDEFINED DATANAME. IGNORED.

The compiler cannot recover from fatal errors in a manner that
reflects your intentions. On line 15 of program SAMPLE, SAVE-VAL
is defined as alphanumeric; therefore, it cannot be used in an
arithmetic statement. The compiler cannot take corrective
action, so it issues a fatal error and does not create an object

file. However, it analyzes all remaining source program lines
and reports errors.

NOTE

You cannot use a command line qualifier to suppress
warning or fatal messages -- they are always printed.

10.1.2 Error Message Printing

The compiler displays the diagnostic error message either before or

after the erroneous source program line. There are two exceptions to
this rule:

1. Diagnostic messages can appear after the last entry in the
DATA DIVISION before the PROCEDURE DIVISION header. These
messages reflect errors the compiler cannot report until it
has processed the entire DATA DIVISION text.

2. Diagnostic messages can appear after the 1last 1line of the

PROCEDURE DIVISION. These are messades that the compiler

cannot issue until it has processed the entire PROCEDURE
DIVISION.

10.1.3 Internal Compiler Errors -- System Errors

The compiler performs consistency checks on program flow and the
contents of data fields.

ERROR MESSAGES 10-3

If the compiler detects an inconsistency, it prints a message and
terminates compilation. The system error message format is:

C74--<error message>
C74--SYSTEM ERROR NNNNNN

The six-digit system error code represents the probable cause of the
error. When a system error occurs, the compiler closes its input file
and does not generate an object file. Appendix F lists system error
codes and their meanings.

If an I/0 error occurs during compilation, and the compiler cannot
continue processing, an I/O system error message is displayed; the
compiler then terminates. The format of the I/O system error message
is:

C74--<error message>
C74--I0 ERROR -NN

The number (-NN) is an RSX-11M Application Migration Executive
(VAX/AME) code.

10.2 SYSTEM MESSAGES

VAX/VMS provides a centralized error message facility. When you type
a command at your teminal or execute an image, and an error results,
the system displays an error message. The general format for error
messages is:

$FACILITY-L-CODE, TEXT
[-FACILITY-L-CODE, TEXT]

where:
FACILITY is a VAX/VMS facility, or component name.
For example, %C74 represents COBOL-74.
L is a severity level indicator; it has one of
the following values:
Level Meaning
S Success
I Information
W Warning
E Error
F Fatal, or severe error
CODE is an abbreviation of the message text.
TEXT is a descriptive message.

If VAX/VMS displays more than one message for an error, the additional
message takes the form "-FACILITY-L-CODE, TEXT".

10-4 ERROR MESSAGES

You will find a full discussion of system messages 1in the VAX/VMS
System Messages and Recovery Procedures Manual. The following
sections discuss system messages issued for 1link-time or run-time
errors.

10.2.1 Link-time Error Messages

The object modules produced by the compiler are nonexecutable; they
must first be 1linked. Two kinds of link-time error messages occur:
(1) warning error messages, imbedded in the object module by the
compiler (see Section 10.1.1), and (2) errors detected by system
facilities invoked by the linker.

If the compiler flags an object file as having warnings, the linker
detects the flag and issues the following diagnostics:

$LINK-I-WRNERS, MODULE <name> has compilation warnings
$LINK-W-DIAGSISUED, Completed but with dianostics

If a system facility error occurs (for example, if an error occurs
when the 1linker invokes the RMS facility), it is put on a message
stack and the linker displays it. Consider the following example. If
you typed the command line:

LINK XXXX

and no object file existed with the name XXXX, the following messages
would appear at your terminal:

$ LINK XXXX

$LINK-W-OPIDERR, PASS 0 failed to open file "DBl: [ACCOUNT]XXXX.OBJ;"
$LINK-W-UNMCOD, Initial file name was "XXXX", RMS error code = <code>
$RMS-F-FNF, file not found

-SYSTEM-W-NOSUCHFILE, no such file

$LINK-E-FATALERROR, Fatal error message issued

"$RMS-F-FNF, file not found" is generated by the VAX-11 RMS system
facility.

10.2.2 Run-time Error Messages

When you execute a program, errors can occur as a result of faulty
program logic or file I/O problems.

10.2.2.1 Faulty Program Logic Error Procedures - If errors occur at
run-time, the COBOL-74 run-time system (RTS) displays a messadge on
your terminal. Additionally, the system TRACEBACK facility displays a
list of routines that were active when the error occurred.

ERROR MESSAGES 10-5

For example, if you create this program:

00001 IDENTIFICATION DIVISION.
00002 PROGRAM-ID. PERF.

00003 ENVIRONMENT DIVISION.
00004 DATA DIVISION.

00005 PROCEDURE DIVISION.
00006 ROUTINE-A.

00007 PERFORM ROUTINE-B.
00008 ROUTINE-B.

00009 PERFORM ROUTINE-C.
00010 ROUTINE-C.

00011 PERFORM ROUTINE-A.

it will compile without any detectable errors. However, if you run
it, the following will appear on your terminal:

$ RUN PERF
$C74-F-RECPERDET, recursive PERFORM detected
$TRACE-F-TRACEBACK, symbolic dump follows

module name routine line relative PC absolute PC
PERF PERF 7 0000002C 0000C678
PREF PERF 11 0000005C 0000C6A8
PERF PERF 9 00000044 0000C62F
PERF PERF 7 0000002C 0000C678

The RTS displays "C74-F-RECPERDET, recursive PERFORM detected" to show
that program PERF contains a statement (PERFORM ROUTINE-B) that, if
executed, will cause a PERFORM statement to try and perform itself.

If a fatal error occurs, and the program was linked with the
/TRACEBACK qualifier (linker default), TRACEBACK will produce a
symboli¢c dump of all call frames that were active when the error
occurred. A call frame represents one execution of a subroutine CALL
or a PERFORM statement. For each call frame, TRACEBACK displays: (1)
the module name (program-id), (2) the routine name (program-id), (3)
the source program line number where the error occurred, and (4)
program-counter information.

The initial line of the preceding TRACEBACK dump shows that the RTS
detected a fatal error on line 7 of program PERF. A loop has been
created that will cause the PERFORM on source program line 7 to be
executed twice without an intervening EXIT. The remaining lines of
the symbolic dump show the sequence 1in which the PERFORMs were
executed, starting with the most recently executed statement.

If program PERF were modified as follows, it would become a callable
subprogram:

00005 PROCEDURE DIVISION USING.

10-6 ERROR MESSAGES

A program could then be written to call PERF:

00001
00002
00003
00004
00005
00006
00007

IDENTIFICAION DIVISION.
PROGRAM-ID. DRIVER.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.
PARA.

CALL "PERF".

If you run DRIVER, the following would appear at your terminal:

$ RUN DRIVER
$C74-F-RECPERDET, recursive PERFORM detected
$TRACE-F-TRACEBACK, symbolic dump follows

module name routine line relative PC absolute PC
PERF PERF 7 0000002C 0000C678
PREF PERF 11 0000005C 0000C6A8
PERF PERF 9 00000044 0000C62F
PERF PERF 7 0000002C 0000C678
DRIVER DRIVER 7 0000002F 0000C62F

The symbolic dump now contains a fifth line, which shows the calling
program DRIVER as the initial entry on the nested PERFORM stack.

10.2.2.2 File I/0 Error Procedures - If an error occurs during I/0
operations, the following procedure is used:

1.

If the file status key for the file is present, the RTS sets
it to the code for the error condition. Appendix C of the
VAX-1l1 COBOL-74 Reference Manual 1lists file status key
values.

If an INVALID KEY imperative condition is specified for the
I/0 operation, the RTS performs the associated imperative
statement. The RTS performs no other processing in the file
for the current statement. The USE procedure 1is not
performed.

If no INVALID KEY imperative condition is specified for the
I/0 operation and a USE procedure is declared for the file,
the RTS performs the USE procedure and returns control to the
program. The RTS performs no further processing for the
file.

ERROR MESSAGES 10-7

4. If no AT END is specified for a sequential file, and a

procedure

returns control to the program.

5. If no AT END, and no INVALID KEY, and no
declared for the file, an error condition exists;

program terminates with a C74 error status.

messages will be displayed as a result.

The following example shows a program that does

procedure for a file that is opened for INPUT:

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017

IDENTIFICATION DIVISION.
PROGRAM-ID. TESTIO.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11l.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT NOFILE ASSIGN TO "NOFILE.

DATA DIVISION.
FILE SECTION.

FD NOFILE

LABEL RECORDS ARE STANDARD.
01 FILE-REC PIC X.
PROCEDURE DIVISION.
PARA.

OPEN INPUT NOFILE.

is present, the RTS performs the USE procedure

USE procedure

Both C74 and

not contain a

DAT".

USE
and

is
the
RMS

USE

If you execute the program and RMS does not find the file (NOFILE.DAT)
in the default directory on the default device, the following messages
will appear at your terminal:

$C74-F-OPNERRFIL, OPEN error on file: (NOFILE.DAT)

%¥RMS-E-FNF,

file not found

$TRACE-F-TRACEBACK, symbolic stack dump follows

module name

TESTIO

routine name line relative

TESTIO 17 00000030

10-8 ERROR MESSAGES

PC absolute PC

0000C630

The following example shows a program that does contain a USE
procedure for a file that is opened for INPUT:

00001 IDENTIFICATION DIVISION.

00002 PROGRAM-ID. TEST2IO.

00003 ENVIRONMENT DIVISION.

00004 CONFIGURATION SECTION.

00005 SOURCE-COMPUTER. VAX-11.

00006 OBJECT-COMPUTER. VAX-11.

00007 INPUT-OUTPUT SECTION.

00008 FILE-CONTROL.

00009 SELECT NOFILE ASSIGN TO "NOFILE.DAT".
00010 DATA DIVISION.

00011 FILE SECTION.

00012 FD NOFILE

00013 LABEL RECORDS ARE STANDARD.
00014 01 FILE-REC PIC X.
00015 PROCEDURE DIVISION.

00016 DECLARATIVES.

00017 USE-SECTION SECTION.

00018 USE AFTER STANDARD ERROR PROCEDURE ON INPUT.
00019 USE-IT.

00020 DISPLAY "INVALID FILE OPEN".
00021 STOP RUN.

00022 END DECLARATIVES.

00023 PARA.

00024 OPEN INPUT NOFILE.

If you execute this program and the file "NOFILE.DAT" does not exist,
the USE procedure will display the following message:

"INVALID FILE OPEN".

Thus, if you use a USE procedure, the VAX/VMS error facility will not
display error messages.

See Appendix E for a full list of RTS error messages.

ERROR MESSAGES 10-9

CHAPTER 11

SORTING IN A COBOL PROGRAM

VAX-11l SORT is a native-mode utility that provides a wide range of
sorting capabilities and options; it can be used as an independent
utility program or, through COBOL-74, as a set of callable
subroutines. VAX-11 SORT 1is described in detail in the VAX-11 SORT
User's Guide. ' :

This chapter introduces the VAX-1ll SORT callable subroutines and
describes how to use them to sort records in COBOL programs.

11.1 VAX-1l1l SORT SUBROUTINE PACKAGE

The SORT subroutines are part of the standard VAX/VMS library, and
they conform to the VAX/VMS calling standards. Therefore, any
native-mode VAX-11l program can call them. 1In COBOL, you communicate
with the subroutines through the CALL statement. The subroutines,
because they are in the VMS library, are 1linked automatically with
modules that call them.

VAX-11 SORT provides six subroutines to perform sorting functions:
SORSPASS_FILES opens an input file and creates an output

file. This routine is used only when files
are sorted.

SORSINIT_SORT initializes the SORT work areas and work
files, wusing the arguments you pass in the
CALL Statement. A program calls
SORSINIT_ SORT once at the beginning of each
sort.

SORSRELEASE_REC passes a record to the SORT after your

program has processed it. A program calls
this subroutine once for each record to be
included in the sort.

SOR$SORT_MERGE performs the sort-merge operation.

SORSRETURN_REC returns a record to your program after
sorting. A program calls this subroutine
once for each record to be returned from the

sort.

SORSEND_SORT performs housekeeping functions at the end
of a sort, such as <closing files and
releasing memory. A program calls

SORSEND_SORT once at the end of each sort.

11.2 I/0 INTERFACE METHODS

The VAX-11l SORT subroutine package allows you to specify sorts in
terms of an entire file or one record at a time; these techniques are
called I/0 interface methods. This section briefly describes the two
I/0 interface methods.

11.2.1 File I/O Interface

Using this method, you request VAX-11l SORT to sort all records in a
file to create a re-ordered output file. This technique is comparable
to the SORT...USING...GIVING syntax of the ANSI-74 COBOL SORT Module.

Call each of the following subroutines once in the order shown:

. SOR$PASS_FILES
. SORSINIT SORT
. SOR$SORT_MERGE
. SORSEND SORT

> wN -

The programming example in Section 11.6 uses the file 1I/O interface
method for the second sort operation.

11.2.2 Record I/0 Interface

Using this method, your program processes each record before releasing
it to the SORT. After all records have been released, they are sorted
into the specified order; SORT then returns one record at a time to
the program. This technique is functionally identical to the ANSI-74
COBOL SORT with input and output procedures.

Call each of the following routines in the order shown:

1. SOR$INIT_ SORT
2. SOR$RELEASE REC
3. SOR$SORT_MERGE
4. SOR$RETURN REC
5. SOR$END_SORT

11-2 SORTING IN A COBOL PROGRAM

Call SOR$SRELEASE REC and SORSRETURN_REC once for each record; call
the other subroutines only once in each sort.

The programming example in Section 11.6 uses the record I/0 interface
method for the first sort operation.

11.3 KEY DATA AND RECORD AREAS

For the record 1I/0 interface, the record that you pass to the
SORSRELEASE REC subroutine consists of the sort keys (key data)
followed by the record to be sorted (record area). The key data must
contain all the key fields specified in the key buffer, which is
described in the next section; furthermore, you should specify the
key fields in the same sequence and in the same way (for example, the
same size and data type) that they appear in the key buffer. Do not
leave space between the key fields.

The record area immediately follows the key data. It defines the
record that VAX-11 Sort returns -- the subroutine SORSRETURN_REC does
not return the key data.

You can specify from one to ten keys for each sort. If you need more
than ten keys 1in a single sort, you may be able to combine some key
fields to reduce the number of specifications. For example, 1if the
first three keys were all the same type, and if they all were to be
sorted in ascending order, you might be able to combine them this way:

Original keys:

01 SORT-RECORD.
03 SORT-KEYS.
05 SORT-KEY-1 PIC X(10).
05 SORT-KEY-2 PIC X(5).
05 SORT-KEY-3 PIC X(20).
05 SORT-KEY-4 PIC S9(5) COMP-3.

05 LAST-KEY PIC S9(6).
03 SORT-DATA.

Combined keys:

01 SORT-RECORD.
03 SORT-KEYS.
05 COMBINED-KEY-1.
07 SORT-KEY-1 PIC X(10).
07 SORT-KEY-2 PIC X(5).
07 SORT-KEY-3 PIC X(20).
05 SORT-KEY-4 PIC S9(5) COMP-3.

05 LAST-KEY PIC S9(6).
03 SORT-DATA.

SORTING IN A COBOL PROGRAM 11-3

The total size of the key area cannot exceed 255 character positions.
However, it 1is often possible to reduce the size of fields from the
record area by using a different data type to specify the key.
Compare the storage requirements of the following data descriptions:

03 ACCOUNT-NUM PIC 9(11). Requires 11 characters.
03 ACCOUNT-KEY PIC S9(11) COMP-3. Requires 6 characters.
03 cCosT PIC 9(7)V99. Requires 9 characters.
03 COST-KEY PIC 9(7)V99 COMP. Requires 4 characters.

The record I/0 interface subroutines allow only three key data types:
character, packed-decimal, and word or longword binary. They do not
allow other types, such as separate sign, overpunched sign, or
quadword binary. However, if you use the record I/0 interface, you
can define such keys in the key area with one of the allowable key
types. In the following examples, the data descriptions on the left
are not defined by a valid key type for the record I/0 interface
subroutines. The data descriptions on the right can be used in the
key area for those data items:

Description in record area Description in key data
PIC S9(5) SIGN LEADING SEPARATE PIC S9(5) COMP

PIC S9(5) SIGN TRAILING SEPARATE PIC S9(5) COMP-3

PIC S9(17) COMP PIC S9(17) COMP-3

PIC S9(5) PIC S9(5) COMP-3

11.4 KEY BUFFER

The key buffer describes each key to the SORSINIT SORT subroutine.
Define it as a record (0l-level) in the Working-Storage Section.

The first data item in the key buffer specifies the number of
individual keys; define it as a one-word COMP data item -- its
PICTURE must be in the range 9(1) to 9(4). The following example of
the beginning of a key buffer specifies that records will be sorted on
three keys: -

01 KEY-BUFFER.
03 NUMBER-OF-KEYS PIC 9(4) COMP VALUE IS 3.

Follow the number-of-keys specification with up to ten "blocks" of key
definitions. Each block specifies one key field that you defined as
key data preceding the record area. The block consists of four
one-word COMP data items -- PICTURE 9(1) to 9(4):

key type Specifies the data type of the key field.

The following data types are valid for the.record
I/0 interface:

character (alphanumeric)
binary (COMPUTATIONAL)

1
2
4 packed-decimal (COMPUTATIONAL-3)

oo

11-4 SORTING IN A COBOL PROGRAM

key order specifies the order for sorting this key field:

0 = ascending
1 = descending

start position character position in the record (not the Kkey
buffer) at which this key field begins. The
value of this data item can range from 1 to the
maximum record size.

length specifies the size of the key field in digits,
for packed-decimal (COMPUTATIONAL-3) items, or in
character positions for all other data items.

For COMPUTATIONAL items, the 1lengths associated
with PICTURE ranges are:

PICTURE key-length

9(1) to 9(4) 2

9(5) to 9(9) 4 .

9(10) to 9(18) cannot be sort key

In the following example, the key buffer specifies three sort keys.
The data items in each key definition block are assigned data-names
for clarity; however, you can specify them as FILLER if you do not
need to refer to them explicitly, since they are passed as a record to
SORSSORT_INIT.

WORKING-STORAGE SECTION.
01 KEY-BUFFER.

03 NUMBER-OF-KEYS PIC 9(4) COMP VALUE 3.
03 KEY-1-TYPE PIC 9(4) COMP VALUE 1.
03 KEY-1-ORDER PIC 9(4) COMP VALUE 0.
03 KEY-1-START PIC 9(4) COMP VALUE 10.
03 KEY-1-LENGTH PIC 9(4) COMP VALUE 25.
03 KEY-2-TYPE PIC 9(4) COMP VALUE 4.
03 KEY-2-ORDER PIC 9(4) COMP VALUE 1.
03 KEY-2-START PIC 9(4) COMP VALUE 1.
03 KEY-2-LENGTH PIC 9(4) COMP VALUE 5.
03 KEY-3-TYPE PIC 9(4) COMP VALUE 2.
03 KEY-3-ORDER PIC 9(4) COMP VALUE 0.
03 KEY-3-START PIC 9(4) COMP VALUE 35.
03 KEY-3-LENGTH PIC 9(4) COMP VALUE 2.

01 SORT-RECORD.
03 SORT-KEYS.

05 KEY-INDUSTRY PIC X(25).
05 KEY-NUMBER-OF-EMPLOYEES PIC S9(5) COMP-3.
05 KEY-DOLLAR-VOLUME PIC 9(4) COMP.
03 SORT-DATA.
05 NUMBER-OF-EMPLOYEES “PIC S9(5) COMP-3. CZ)
05 FILLER - PIC X(6).
05 INDUSTRY 10 PIC X (25).
05 DOLLAR-VOLUME PIC 9(4) COMP.

SORTING IN A COBOL PROGRAM 11-5

11.5 SORT SUBROUTINES

Each of the subroutines described in this section performs a separate
and necessary function.

The arguments for each subroutine are described as they occur.
However, each subroutine returns a longword COMPUTATIONAL result
value, which your program can test to detect success and failure
conditions. The result status codes are described for each
subroutine; however, to make them available to your program, you must
include the otherwise optional GIVING phrase in the CALL statements.

For example:
CALL "SORSEND_SORT" GIVING SORT-RESULT.

causes the result status for the clean-up routine to be available in
the COMPUTATIONAL data item, SORT-RESULT, which you have defined in
the Working-Storage Section with a PICTURE 9(9).

Sorting is a set of logically ordered procedures, each of which is
performed in VAX-1l1l SORT by a separate subroutine. Therefore, the
order in which you call the Sort subroutines is important.

Furthermore, because sorting is a set of procedures, you must complete
one sort before beginning another. You can have as many separate
sorts as you need in a single COBOL program; however, if you do not
complete a sequence of sort subroutine calls before starting another,
an error results.

The following Sort subroutines are discussed in the order that they
must be called.

11.5.1 SOR$PASS_FILES

For the file I/O interface, this subroutine passes the names of the
input and output files to VAX-1ll Sort.

The general form of the CALL is:

CALL "SOR$SPASS_FILES"

USING BY DESCRIPTOR
<input file>
<output file>

[GIVING <result status>]

Arguments
input file is the data-name of a data item that contains the
file specification (or logical name) of the input
file.
output file is the data-name of a data item that contains the

file specification (or 1logical name) of the
output file.

11-6 SORTING IN A COBOL PROGRAM

Result Status Values

Symbolic
NORMAL

SORT_ON

VAR_FIX

INCONSIS
OPENIN

OPENOUT

Hex
Value

1
1Cc802C

1C8064

1C805C
1C109C
1C10A4

Decimal
Value Meaning

1 Success.

1867820 A sort is already in progress or
this call is in the wrong sequence.

1867876 You cannot change variable-length
records to fixed-length records.

1867868 1Inconsistent data for file.
1839260 Cannot open input file.

1839268 Cannot open output file.

All RMS error codes.

11.5.2 SORSINI

T_SORT

This subroutine begins a sort. It initializes the Sort's work files
and areas, and it
passed by the program.

interprets the parameters (arguments) that are

The general form of the CALL is:

CALL "SORSINIT_ SORT"

USING

<key buffer>

<LRL>

[<file size>]

[<work files>]
[GIVING <result status>]

Arguments

key buffer

LRL

File size

is the data-name of the key buffer, which you
have defined in the Working-Storage Section. The
key buffer is discussed in Section 11.3.2.

is the longest record length - a one-word COMP
data item, which you have defined 1in the
Working-Storage Section, that specifies the
longest record 1length (in character positions).
Record length does not include the key area.

is the data-name of a one-word COMP data item
that specifies the size, in blocks, of the input
file. This argument is not required, but it can
increase Sort efficiency.

SORTING IN A COBOL PROGRAM 11-7

work files is the data-name of a one-word COMP data item.
that specifies the number of work files the Sort
should use. Valid values are 0 and 2 through 10;
the default is 2. The Sort expects this argument
as a one-byte binary item; however, define it in
COBOL as a one-word COMPUTATIONAL item - PICTURE
9(1) to 9(4).

Result Status Values

Hex Decimal
Symbolic Value Value Meaning

NORMAL 1 1 Success.

SORT_ON 1c802C 1867820 A sort is already in progress or this
call is in the wrong sequence.

MISS KEY 1C8004 1867780 No key definition specified.

BAD _TYPE 1C806C 1867884 An invalid sort process was
specified.

BAD_LRL 1C8084 1867908 An invalid LRL was specified.
LRL_MISS 1C8074 1867892 No LRL was specified.
BAD_FILE 1C808C 1867916 Invalid file size.

WORK_DEV 1C800C 1867788 Work file device not random
access or not local node.

VM_FAIL 1c801C 1867804 SORT failed to get needed virtual
memory.

WS_FAIL 1C8024 1867812 SORT failed to get needed working-
set size.

NUM_KEY 1C803C 1867836 Invalid number of keys specified.
Must be 1-10. :

KEY LEN 1C80AC 1867948 1Invalid key length specified.

All RMS error codes.

11.5.3 SORSRELEASE_REC

This subroutine passes, or releases, a record to VAX-1l1l Sort for the
record I/O interface. Before calling SORSRELEASE_REC, your program
must construct the sort keys in the key data area. Usually,
constructing the keys involves nothing more than moving their values
from the fields in the record area to the fields in the key area. An
exception might be when you construct keys by combining data items in
the record area, or if you compute key values in some other way.

11-8 SORTING IN A COBOL PROGRAM

Call this subroutine once for each record you want to be included in
the sort. This call is comparable to the ANSI COBOL RELEASE statement
in an Input Procedure.

The general form of the call is:

CALL "SOR$RELEASE_REC"
USING
BY DESCRIPTOR <key data>
[GIVING <result status>]

Argument

key data is the record-name of the key data area. The key
data record-name includes both the key data and
the record area; therefore, this argument gives
the subroutine all the information it needs to
access both the sort keys and the data.

Result Status Values

Hex Decimal
Symbolic Value Value Meaning

NORMAL 1 1 Success.

SORT_ON 1c802C 1867820 A sort is already in progess or this
call is in the wrong sequence.

BAD LRL 1C8084 1867908 Record length is longer than the LRL
that was specified to SORSINIT_SORT.

BAD_ADR 1C8094 1867924 1Invalid key area address.
KEY_LEN 1C80AC 1867948 1Invalid key length specified.
EXTEND 1Cc80Aa4 1867940 Failed to extend work file.
MAP 1C809C 1867932 1Internal Sort map error.

NO_WRK 1C8014 1867796 Cannot sort data in memory.
Need work files.

11.5.4 SOR$SORT MERGE

This subroutine performs the final phases of the sort-merge process.

For

the record I/0 interface, call it once, after the last record has

been released to the Sort, and before attempting to return the first

of

the sorted records. For the file I/0O interface, call

SOR$SSORT_MERGE once after calling SORSINIT_SORT.

The general form of the call is:

CALL "SORS$SSORT_MERGE"
[GIVING <result status>]

SORTING IN A COBOL PROGRAM 11-9

Arguments
None.
Result Status Values

Hex Decimal
Symbolic Value Value Meaning

NORMAL 1 1 Success.

SORT_ON 1c802C 1867820 A sort is already in progress, or
this call is in the wrong sequence.

EXTEND 1C80A4 1867940 Failed to extend work file.

NO_WRK 1C8014 1867796 Cannot sort data in memory.
Need work files.

MAP 1C809C 1867932 1Internal Sort map error.
READERR 1C10B4 1839284 Cannot read an input file record.
WRITEERR 1C10D4 1839316 Cannot write an output file record.

BADFIELD 1C1l01C 1839132 Bad data in key field.

11.5.5 SOR$RETURN_REC

This subroutine returns one record to your program from the Sort. It
places the record in the record area data item; it also returns the
record length.

You cannot <call this subroutine before calling the sort-merge
subroutine. Call SORSRETURN_REC once for each record to be returned
from the Sort.

The general form of the call is:

CALL "SOR$RETURN_REC"
USING BY DESCRIPTOR <record area>
BY REFERENCE <record length>
[GIVING <result status>]

Arguments

record area is the data-name of the area into which the
returned record should be placed. Usually, it is
the same area from which it was released;
however, 'you can specify another data-name.

record length is the data-name of a one-word COMPUTATIONAL data

item into which the subroutine will place the
actual size of the returned record.

11-10 SORTING IN A COBOL PROGRAM

Result Status Values

Hex Decimal
Symbolic Value Value Meaning
NORMAL 1 1 Success. A record has been returned.
ENDOFFILE 870 2160 No more records to return. -
MAP 1Cc809C 1867932 1Internal Sort map error.

EXTEND 1C8084 1867940 Failed to extend work file.

11.5.6 SORSEND_SORT
This subroutine deletes the Sort's work files and releases its :work
areas. You must call SORSEND _SORT before beginning another sort;
however, it is good programming practice to call this subroutine at
the end of any sort to release work file space and memory.
The general form of the call is:

CALL "SORSEND_ SORT"

[GIVING <result status>]

Arguments

None.

Result Status Values

Hex - Decimal
Symbolic Value Value Meaning

NORMAL 1 1 Success.

CLEAN_UP 1C80B4 1867956 Failed to delete work files
and reinitialize work areas.

11.6 PROGRAMMING EXAMPLE

The program in this section reads a sequential mailing 1list file,
attempts to detect duplicates, and writes a new filei It uses the
record I/0 interface Sort technique, after constructing an artificial
identification key, to return identically-keyed records together, so

they can be compared. After it writes the new: file, the program :uses’

the file I/0 interface to sort the file into its original order.
One of the sort keys (subscription start date) is specified as

descending order, because the designer assumes that the earliest
record is probably the most accurate.

SORTING IN A COBOL PROGRAM 11-11

-

The comparable ANSI-74 COBOL SORT module statements are included as
comments for comparison.

IDENTIFICATION DIVISION.
PROGRAM-ID.
MLIST.
DATE-WRITTEN.
DATE-COMPILED.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. vax-11.
OBJECT-COMPUTER. VAX-11.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT MAILING-FILE
ASSIGN TO "MAILLIST".
SELECT NEW-FILE
ASSIGN TO "NEWLIST".
* SELECT SORT-FILE
* ASSIGN TO "SORTF".
DATA DIVISION.
FILE SECTION.
*SD SORT-FILE
* LABEL RECORDS ARE OMITTED.

*01 SORT-REC.

* 03 S-zIP PIC 9(5).
* 03 S-LAST-NAME.

* 05 S-NAME-1 PIC X.

* 05 S-NAME-2 PIC X.

* 05 FILLER PIC X.

* 05 S-NAME-4 PIC X.

* 05 FILLER PIC X(12).
* 03 S-FIRST-NAME PIC X(12).
* 03 S-STREET.

* 05 S-STREET-KEY PIC X(4).
* 05 FILLER PIC X(16).
* 03 S-CITY. ‘
* 05 S-CITY-KEY PIC X(4).
* 05 FILLER PIC X(16).
* 03 FILLER PIC XX.

o 03 S-START PIC 9(6).

FD MAILING-FILE
LABEL RECORDS ARE STANDARD.
01 MAILING-REC.
03 MAILING-KEY.
05 ZIP-CODE PIC 9(5).
05 LAST-NAME.
07 LAST-NAME-CHAR
OCCURS 16 PIC X(1).

05 FIRST-NAME PIC X(16).
05 STREET PIC X(20).
05 CITY PIC X(20).
03 STATE PIC X(2).
03 SUBSCRIP-START PIC 9(6).

11-12 SORTING IN A COBOL PROGRAM

FD NEW-FILE
LABEL RECORDS ARE STANDARD.
01 NEW-REC PIC

WORKING-STORAGE SECTION.

01
01

01
01

0l

01

01

X(85).

MAILING-FILE-ID PIC X(8) VALUE "MAILLIST".
NEW-FILE-ID PIC X(8) VALUE "NEWLIST".
FIRST-IN PIC X(85) VALUE SPACES.
FIRST-KEY.
03 FIRST-COMPARE PIC X(14) VALUE SPACES.
03 FILLER PIC X(6) VALUE SPACES.
SORT-RECORD.
03 SORT-KEYS.
05 KEY-ZIP PIC S9(5) COMP-3.
05 NAME-ADDRESS-GROUP.
07 KEY-LAST.
09 KEY-LAST-CHAR
OCCURS 3 PIC X(1).
07 KEY-STREET PIC X(4).
07 KEY-CITY PIC X(4).
05 KEY-START PIC 9(6).
03 SORT-DATA.
05 LAST-IN PIC X(85).
05 LAST-KEY.
07 LAST-COMPARE PIC X(14).
07 FILLER PIC X(6).
KEY-BUFFER.
03 NUMBER-OF-KEYS PIC 9(4) COMP VALUE 3.
03 FILLER PIC 9(4) COMP VALUE 4.
03 FILLER PIC 9(4) COMP VALUE 0.
03 FILLER PIC 9(4) COMP VALUE 75.
03 FILLER _ PIC 9(4) COMP VALUE 5.
AN
.
03 FILLER PIC 9(4) COMP VALUE 1.
03 FILLER PIC 9 (4) COMP VALUE O.
03 FILLER PIC 9(4) COMP VALUE 1.
03 FILLER PIC 9(4)™COMP VALUE 11.
~
03 FILLER PIC 9(4) COMP VALUE 1.
03 FILLER PIC 9(4) COMP VALUE. 1.
03 FILLER PIC 9(4) COMP VALUE 80.
03 FILLER PIC 9(4) COMP VALUE 6. ™
ORIGINAL-KEY-BUFFER.
03 FILLER PIC 9(4) COMP VALUE 1.
03 FILLER PIC 9(4) COMP VALUE 1.
03 FILLER PIC 9(4) COMP VALUE 0.
03 FILLER PIC 9(4) COMP VALUE 1.
03 FILLER PIC 9(4) COMP VALUE 77.

SORTING IN A COBOL PROGRAM

11-13

* % ¥ % * ¥ ¥ * * ¥

11-14

01
01
01
01
01

01
01

RESULT-STAT PIC 9(8) COMP.
88 SUCCESSFUL VALUE 1.
88 END-SORT VALUE 2160.

LRL PIC 9(4) COMP VALUE 105.
REC-LENGTH PIC 9(4) COMP.
FILE-STAT PIC 9(1) VALUE 0.

88 ENDFILE VALUE 1.

DUPLICATES-DELETED PIC 9(6) COMP VALUE 0.
DISPLAY-DUPLICATES PIC Z2%ZZ2,%229.
DISPLAY-RESULT PIC 9(8).

PROCEDURE DIVISION.
MAINLINE SECTION.
SBEGIN.

OPEN INPUT MAILING-FILE.

SORT SORT-FILE
ASCENDING S-ZIP
S-NAME-1
S-NAME-2
S-NAME-4
S-STREET-KEY
S-CITY-KEY
DESCENDING S-START
INPUT PROCEDURE GET-AND-RELEASE
OUTPUT PROCEDURE RETURN-AND-WRITE.

CALL "SORSINIT_ SORT"
USING
KEY-BUFFER
LRL
GIVING RESULT-STAT.

IF NOT SUCCESSFUL
DISPLAY "INIT-SORT ERROR"
GO TO ABORT-RUN.

PERFORM GET-AND-RELEASE
UNTIL ENDFILE.,

CLOSE MAILING-FILE.

CALL "SOR$SORT_ MERGE"
GIVING RESULT-STAT.

IF NOT SUCCESSFUL
DISPLAY "SORT-MERGE ERROR"
GO TO ABORT-RUN.

OPEN OUTPUT NEW-FILE.

PERFORM RETURN-AND-WRITE
UNTIL END-SORT.

CALL "SORSEND_SORT"
GIVING RESULT-STAT.

SORTING IN A COBOL PROGRAM

* % % % ¥ % ¥ ¥

IF NOT SUCCESSFUL
DISPLAY "END-SORT ERROR"
GO TO ABORT-RUN.

MOVE DUPLICATES-DELETED TO DISPLAY-DUPLICATES.

DISPLAY DISPLAY-DUPLICATES " Duplicates deleted".

CLOSE NEW-FILE.

SORT SORT-FILE

ASCENDING S-ZIP
S-LAST-NAME
S-FIRST-NAME
S-STREET
S-CITY

USING NEW-FILE

GIVING MAILING-FILE.

CALL "SORSPASS_FILES"
USING
BY DESCRIPTOR
NEW-FILE-ID
MAILING-FILE-ID
GIVING RESULT-STAT.

IF NOT SUCCESSFUL
DISPLAY "PASS-FILES ERROR"
GO TO ABORT-RUN.

CALL "SORSINIT_ SORT"
USING
ORIGINAL-KEY-BUFFER
LRL
GIVING RESULT-STAT.

IF NOT SUCCESSFUL
DISPLAY "INIT-SORT ERROR"
GO TO ABORT-RUN.

CALL "SOR$SORT_ MERGE"
GIVING RESULT-STAT.

IF NOT SUCCESSFUL
DISPLAY "SORT-MERGE ERROR"
GO TO ABORT-RUN.

CALL "SORSEND_SORT"
GIVING RESULT-STAT.

IF NOT SUCCESSFUL
DISPLAY "END-SORT ERROR".

STOP RUN.

SORTING IN A COBOL

PROGRAM

11-15

GET-AND-RELEASE SECTION.
SBEGIN.
MOVE SPACES TO MAILING-REC.
READ MAILING-FILE
AT END
MOVE 1 TO FILE-STAT
GO TO SEXIT.

MOVE MAILING-REC TO SORT-DATA.

MOVE LAST-NAME-CHAR (1) TO KEY-LAST-CHAR (1).
MOVE LAST-NAME-CHAR (2) TO KEY-LAST-CHAR (2).
MOVE LAST-NAME-CHAR (4) TO KEY-LAST-CHAR (3).
MOVE STREET TO KEY-STREET.

MOVE CITY TO KEY-CITY.

MOVE ZIP-CODE TO KEY-ZIP.

MOVE SUBSCRIP-START TO KEY-START.

MOVE NAME-ADDRESS-GROUP TO LAST-KEY.

* RELEASE SORT-REC FROM MAILING-REC.

CALL "SORSRELEASE_REC"
USING
BY DESCRIPTOR SORT-RECORD
GIVING RESULT-STAT.

IF NOT SUCCESSFUL
DISPLAY "RELEASE-REC ERROR"
GO TO ABORT-RUN.

SEXIT.
EXIT.

RETURN-AND-WRITE SECTION.
SBEGIN.

RETURN SORT-FILE INTO SORT-DATA
AT END
MOVE SPACES TO LAST-KEY
GO TO COMPARE-KEYS.
MOVE (data to keys for comparison).

* % * % *

CALL "SORSRETURN_REC"
USING
BY DESCRIPTOR SORT-DATA
BY REFERENCE REC-LENGTH
GIVING RESULT-STAT.

IF END-SORT
MOVE SPACES TO LAST-KEY
GO TO COMPARE-KEYS.

IF NOT SUCCESSFUL

DISPLAY "RETURN-REC ERROR"
.GO TO ABORT-RUN.

11-16 SORTING IN A COBOL PROGRAM

COMPARE-KEYS.
IF LAST-COMPARE NOT = FIRST-COMPARE
AND FIRST-COMPARE NOT = SPACES
WRITE NEW-REC FROM FIRST-IN
ELSE
IF FIRST-KEY NOT = SPACES
ADD 1 TO DUPLICATES-DELETED.

MOVE LAST-KEY TO FIRST-KEY.
MOVE LAST-IN TO FIRST-IN.

SEXIT.
EXIT.
ABORT-RUN SECTION.
SBEGIN.
MOVE RESULT-STAT TO DISPLAY-RESULT.
DISPLAY DISPLAY-RESULT.
STOP RUN.

SORTING IN A COBOL PROGRAM 11-17

CHAPTER 12

USING THE LIBRARY FACILITY

The VAX-11 COBOL-74 library facility allows you to copy COBOL source
language text from a 1library file into your COBOL program during
compilation. One COPY statement can include large amounts of library
source text in a program, eliminating a great deal of repetitious
coding and the errors that often go along with it. The compiler
treats the copied text as if it were a part of the source program;
powever, the copied material does not change the source program file
in any way.

The COBOL library facility provides two important benefits:
1. standardization of File and Coding Conventions

A data file is usually processed by more than one program.
Each of those programs must describe the characteristics of
the file, such as file-name, blocking factor and record
descriptions. The programs are often written by one
programmer, then maintained and updated by another. Because
it 1is often difficult for a programmer to understand a
program written by someone else, many organizations design
and code standardized file descriptions, then keep them in
COBOL libraries; programmers then COPY the file descriptions
into their programs, frequently without having to understand
(or even know) their details.

This technique also applies to Procedure Division code that
is used in many different programs. For example, a library
could contain a standardized routine to convert calendar
dates to Julian dates, or to format standard report headings.

2. Saving Time and Reducing Errors

Defining and coding file and record descriptions are both
time-consuming and error-prone activities. When the
descriptions already exist in COBOL libraries, you can easily
COPY them into a source program; you save time because you
don't have to code them again, and you avoid potential errors
in re-entering complex code.

Changing the format of a file is another common
time-consuming chore. When a file format changes, you
usually must change and recompile all programs that use the
file. If the file description is in a COBOL library, only
the library must be changed; individual programs often then
need only recompilation, since the library coding changes are
included by the COPY.

Putting commonly used Procedure Division code in 1libraries
yields the same benefits.

12,1 Creating a COBOL Library File

Each line of a COBOL library file must form syntactically correct
COBOL text when it is merged into the source program. It can meet
this condition by being itself syntactically correct or by becoming
correct when it is merged with the source program.

Library text must conform to the rules for the COBOL source reference
format; for example, library text that will appear in Area A of the
source program must be in Area A in the library file. You can write
library text using either the conventional format or terminal format;
however, the library text format must be the same as the source
program into which it is merged.

12.2 The COPY Statement

COPY is a compiler-directing statement that merges a COBOL 1library
file 1into a COBOL source program. The simplest form of the statement
is:

COPY text-name.

Text-name must be either an alphanumeric 1literal or a file name.
. Remember that the COPY statement must end with a terminator period
regardless of where it appears in the source program.

If you specify a literal, the compiler wuses its value as a file
specification; therefore, you can include or omit all components of
the file specification that are allowed in the VAX/VMS command
language, such as device, directory, file type, and version number.
The only required component is the file name itself.
For example:

COPY "[ACCTLIB]ACCFIL.XYZ;3".

causes the compiler to access version number 3 of the file ACCFIL.XYZ
in directory [ACCTLIB] on the default device.

If you use a file name in the COPY statement, the compiler uses .LIB
as the default file type.

12-2 USING THE LIBRARY FACILITY

For example:
COPY ACCOUNT.
access

causes the compiler to

the latest

version of the file

ACCOUNT.LIB on the default device and directory.

Only four conditions require the use of the

alphanumeric 1literal to

indicate the full file specification for the copy statement:

1. When the file type is other than .LIB.

2. When the library file is not on the default device.

3. When the library file is not in the default directory.

4. When the default directory contains more than one version of

the 1library file
the latest.

Figure 12-1 demonstrates the use of
Note that the format of the library text is

Procedure Division code.

and you want to copy a version other than

the COPY statement to include

maintained when it is included in the source program.

COBOL Source Program

PROCEDURE DIVISION.
START-PROC SECTION.
BEGIN-PROC.

ACCEPT TO-DATE
FROM DATE.
OPEN-FILES. COPY OPENF.

OPEN I-O WORK-FILE.
INPUT-LOOP.
READ CUST-FILE ...

Resulting Source Program

PROCEDURE DIVISION.
START-PROC SECTION.
BEGIN-PROC.

ACCEPT TO-DATE

FROM DATE.

OPEN-FILES. COPY OPENF.
*

OPEN INPUT CUST-FILE.

OPEN I-O ORDERS.
GET-VERSION.

Library File (OPENF.LIB)

OPEN I-O ORDERS.
GET-VERSION.

DISPLAY "VERSION?2",

ACCEPT VER-NUM.

OPEN INPUT CUST-FILE.

DISPLAY "VERSION?".

ACCEPT VER-NUM.

IF VER-NUM NOT NUMERIC
GO TO GET-VERSION.

OPEN I-O WORK-FILE.
INPUT-LOOP.
READ CUST-FILE ...

IF VER-NUM NOT NUMERIC
GO TO GET-VERSION.

Figure 12-1 Merging Library Text

USING THE LIBRARY FACILITY 12-3

The COPY statement can appear anywhere that a COBOL word is allowed in
a source program; therefore, you can use it in many ways to solve
different problems. For example, 1if a 1library file called MTG
contains the single entry MORTGAGE-PAYMENT-AMOUNT, it could be copied
in the Data Division:

Source Statement: 03 COPY MTG. PIC 999V99.
Resulting
Source Statement: 03 MORTGAGE-PAYMENT-AMOUNT PIC 999V99.

or in the Procedure Division:

Source Statement: MULTIPLY COPY MTG. BY 12
GIVING ANNUAL-PAYMENT.
Resulting
Source Statement: MULTIPLY MORTGAGE-PAYMENT-AMOUNT BY 12

GIVING ANNUAL-PAYMENT.

The periods following the COPY statements in these examples do not
become part of the source text. If the 1library text requires
punctuation, it must be included in the library file.

NOTE

The two preceding examples are not
recommended uses of the COPY statement.
They are included only to illustrate the
mechanics of the COBOL library facility.

12.3 The COPY REPLACING Statement

It is sometimes necessary to tailor library file text for use 1in a
particular program. For example, if a record description in a library
file has level-numbers incremented by 1 (01, 02, 03, ...) and you want
them to be incremented by four (01, 05, 09, ...), you can change the
level-numbers as the library text is merged into the source program.
During the copying process, the COPY statement can replace all
occurrences of a literal or word with an alternate 1literal or word.
For example:

COPY ACCTREC REPLACING 02 BY 05,
03 BY 09, 04 BY 13.

This sample statement causes the compiler to scan the file ACCTREC
searching for the character-string 02. Wherever it finds a 02, the
compiler substitutes 05. A match occurs only if the compiler finds a
02; no match occurs for a 0 or a 2 alone. The compiler follows the
same procedure for occurrences of 03 and 04.

12-4 USING THE LIBRARY FACILITY

The following examples COPY the 1library file named NEWSBOY,
contains this text:

01 A.
02 B PIC 99.
02 C PIC 99 VALUE 2.
02 D PIC X(5) VALUE "ABCDE".
02 E PIC 99V99 VALUE 3.75.
02 F PIC 99 VALUE 02.
Example 1
Statement:

COPY NEWSBOY REPLACING B BY X.

Result:
01 A.
02 X PIC 99.
02 C PIC 99 VALUE 2.
02 D PIC X(5) VALUE "ABCDE".
02 E PIC 99V99 VALUE 3.75.
02 F PIC 99 VALUE 02.
Example 2
Statement:

COPY NEWSBOY REPLACING 2 BY 6.

Result:
01 A.
02 B PIC 99.
02 C PIC 99 VALUE 6.
02 D PIC X(5) VALUE "ABCDE".
02 E PIC 99Vv99 VALUE 3.75.
02 F PIC 99 VALUE 02.
Example 3
Statement:

COPY NEWSBOY REPLACING 02 BY 63.

Result:
01 A.
63 B PIC 99.
63 C PIC 99 VALUE 2.
63 D PIC X(5) VALUE "ABCDE".
63 E PIC 99V99 VALUE 3.75.
63 F PIC 99 VALUE 63.

USING THE LIBRARY FACILITY

which

12-5

In the last example, level-number 02 was changed to level-number 63,
which 1is not 1legal under COBOL rules; therefore, although both the
COPY statement and the library text are syntactically correct, the
merged text is incorrect and would generate syntax errors.

The REPLACING character-string can be a literal or a word; it must
compare equally, character for character, with the entire
character-string in the library text. Table 12-1 1illustrates the
results of some character-string comparisons.

REPLACING Literal

or Word Library Text Match?
"ABC" "ABCD" No
HRLY-RATE HRLY-RATE Yes
1 1 Yes
" 2 No
" 15" "1s5" No
"g12" "ia2" No
012 12 No
SUBTRACT SUBTRACT Yes
"g12" 012" Yes
ACCT ACCT1 No

Table 12-1 COPY REPLACING Matches

12.4 The Source Listing
Depending on how you write the COPY statement, library text can appear
either before or after the COPY statement. The compiler normally
prints a line of source text when it scans to the end of the line;
however, when the compiler recognizes a completed COPY statement
before the end of the line, it locates the library file, then:

1. Prints the library text.

2. Scans the rest of the source program line.

3. Prints the entire source line.

12-6 USING THE LIBRARY FACILITY

Thus, if the source line contains a COPY statement followed by other
text (including spaces), the compiler prints the library text before
the source line containing the COPY statement; this results in a
somewhat confusing 1listing. You can cause the compiler to produce a
more readable 1listing by making sure that you write each COPY
statement as the last entry on a source program line.

12,5 Common Errors in Using the Library Facility

Some of the more common errors to avoid when using the 1library
facility are:

° Failing to follow the rules for the COBOL reference format
when creating the library file.

) Merging a library file 1in one format (conventional or
terminal) with a source program written in the other.

° Forgetting to end the COPY statement with a terminator
period.

° Inadvertently defining data-names in the source program when
they are also defined in the 1library file, thus causing
duplicate names.

° Writing 1library file text that becomes syntactically
incorrect when it is merged with the source program.

° Merging the wrong 1library file, either because multiple
versions exist, or because of misspellings.

° Writing source text following the COPY statement on the same
line, thus causing confusion in the source program listing.

° Forgetting that numeric literals (such as 02, 77, ...) used
in the REPLACING option replace 1level-numbers, picture
descriptions, and paragraph or section names, when they find
matches in the library file.

° Forgetting that a period must appear in the library file if

it is to appear in the source program; the terminator period
that ends the COPY statement is replaced by library text.

USING THE LIBRARY FACILITY 12-7

CHAPTER 13

OPTIMIZATION

Optimization is the process of designing or altering a program to
minimize space allocation or execution time, or to achieve an
effective trade-off between the two.

This chapter provides guidelines for optimizing performance of COBOL
programs. It emphasizes techniques, controllable at the COBOL source
level, for optimizing file design, program organization, and
computation. Many COBOL programs make heavy use of file 1I/0.
Consequently, your methods of designing, populating, and handling
files can either enhance or undermine system performance.

When optimizing COBOL programs, aim to minimize I/0 activity. You can
accomplish this - by the way you design files and structure your
program. Your answers to the following questions should influence
your choice of file organization, record type, buffer size and number,
and your program organization:

1. What kinds of I/0 operations are necessary to process the
data?

2. How can you best place I/0 operations in the program?

3. How should you structure the file? Are multiple access keys
necessary or desirable?

4. For each file, are frequent record updates and insertions
likely, or will file contents remain relatively (or
absolutely) stable?

You can also influence computational performance, especially by
formatting data to avoid data conversions and utilize fast,
specialized computational routines of the compiler.

The following sections describe each of these optimization techniques.

NOTE

For more information on optimization
techniques you can use through Record
Management Services (RMS) facilities,
refer to appropriate RMS documentation.

13.1 OPTIMIZING FILE DESIGN

This section describes the effect of file design on performance. The
following suggestions apply to any type of file organization.

1. Preallocate the entire file, contiguously if possible, using
the /CO:n or /AL:n file switch (see Table 6-2) or the RMS
DEFINE utility.

2. Select a suitable default extend quantity when you create the
file, using the /EX:n file switch or the RMS DEFINE utility.
(Refer to RMS documentation for a description of default
extend quantities and the RMS DEFINE utility.)

3. Know the relationships between record size and file storage,
and try to define a record size suited for efficient storage
and retrieval.

4. Use the SAME RECORD AREA clause to save compute time and
conserve address space. If records are being copied from one
file to another, and both files share the same record area,
no MOVE statement is needed to move record images between two
record areas. The disadvantage is that records from both
files cannot be available simultaneously unless one is moved
to a work area. (Be careful not to confuse the SAME RECORD
AREA and SAME AREA clauses; they appear similar, but have
different effects.)

13.1.1 Sequential Files

Sequential files have the simplest structure and the fewest options
for definition, population, and handling. You can reduce the number
of disk accesses by keeping record length to a minimum.

With a sequential disk file, you can use the multi-block read and
write facility to create a larger buffer area. To use this facility,
specify the BLOCK CONTAINS n CHARACTERS clause in combination with

ORGANIZATION IS SEQUENTIAL. If you omit the BLOCK CONTAINS n
CHARACTERS clause, the RMS default applies.

13.1.2 Relative Files
For relative files:

1. Select a record format and size that minimizes the empty
space remaining in each record position and each bucket.

13-2 OPTIMIZATION

2, 1If you create the file by wusing the RMS DEFINE utility,
select a realistic maximum record number. An attempt to
insert a record with a number higher than the maximum will
fail. Before inserting such a record, you must redefine and
repopulate the file.

3. Be aware that, before writing a record into a relative file,
RMS must have formatted all buckets up to and including the
bucket into which the record insertion will occur. Thus,
write operations have variable response times, depending on
whether preliminary formatting is required, and how much.
You might consider writing the highest-numbered record first
to force formatting of the entire file only once.

13.1.3 1Indexed Files

Indexed files have the greatest potential for inefficient usage.
Therefore, carefully consider how well the design and use of the files
map into the application. To do this, you must first understand how
indexed files are organized and processed.

As the name suggests, an indexed file contains, besides data records,
pointer information to facilitate access to the records.

All data records and record pointers are maintained in storage units
called buckets. The bucket 1is the basic retrievable element of an
indexed file. It consists of an integral number of contiguous
512-byte physical blocks, and the number of physical blocks is known
as the bucket size.

Every indexed file must have a primary key: a field in the record
description that contains a unique value for each individual record.
When RMS writes records into the indexed file, it arranges them in
collated sequence, according to increasing primary key value, in a
series of chained buckets. Thus, you can access the records
sequentially, if you wish, by specifying ACCESS SEQUENTIAL.

As RMS writes the records, it constructs and maintains a tree-like
structure of key-value and location pointers. (See Figure 13-1.) Each
element of the index structure 1is a bucket, and the buckets are
structured into a hierarchy of levels. The highest level of the index
consists of a single bucket, called the root bucket. The root bucket
contains 1location pointers to buckets at the next lower level. Thus,
RMS scans one bucket at each level of the index for a pointer to a
bucket at the next level, until it reaches the bottom level of the
index; the bottom level is called the data level. In a primary Key
index, this 1level <contains the actual data records of the indexed
file. The buckets in each level above the data level are called index
buckets.

OPTIMIZATION 13-3

X9pul A9y Axewtag [9A9T-931Y]L T-€T 2anbig

- < «— — - (13A37 viva)
0 13ATxT
A SO * o (SN
SN ~ A\ \
S~ ~ (AN
- — — —| < L 13AT
N
4/4/4/ AN
NOONLN ~N 0N
NOONN NN
o« — — —| < Z 13A71
X X
AN
ANERN

(13»0N8 LOOH)
€ 13A3T

13-4 OPTIMIZATION

RMS also constructs an index for each alternate key that you define
for the file. Like the primary index, alternate key indexes are
contained in the file. However, alternate key indexes do not contain
actual data records at the data level; instead, they contain pointers
to data records in the data level of the primary index.

Successive levels of an index are numbered. The data level of the
index 1is level zero, and the number of levels above level zero is the
index depth. Thus, the level number of the root bucket equals the
depth of the index.

Each random access request begins by comparing a specific key value
against the entries in the root bucket, seeking the first entry in the
root bucket whose key value equals or exceeds the value of the access
request key. (This search 1is always successful, because the root
bucket's highest key value is the highest possible value that the key
field can contain.) Having located the proper key value, RMS uses the
bucket pointer associated with that value to bring the target bucket
on the next lower 1level into memory. This process is repeated for
each level of the index. RMS thus searches one bucket at each level
of the index until it reaches a target bucket at the data level. At
this point, the desired data record 1location 1is determined; an
existing data record can be retrieved or deleted, or a new record
written. Duplicate primary key values are not allowed; if a record
insertion would cause a duplicate primary key value, the attempted
write causes an exception condition.

There may be insufficient room in a data level bucket to accommodate a
new record. When this occurs, RMS inserts a new bucket in the chain,
moving enough records from the old bucket to preserve the key value
sequence, while making room to write the new record. This action is
known as a bucket split.

In summary, each index of an indexed file provides the mechanism for
random access to records. Sequential access to records is also
possible, because the records of the primary index, or pointers of an
alternate index, are collated in ascending key value order.

13.1.3.1 General Rules for 1Indexed Files - You can apply the
following general rules for indexed files at the COBOL source code
level.

1. While alternate keys are often wuseful, the more keys you
define for an indexed file, the longer each WRITE , REWRITE,
or DELETE operation takes. However, multiple keys have
little effect on READ timing and provide multiple access
paths. Thus, they are most useful for files that are not
subject to frequent additions and updates and are accessed in
many different programs.

2. Select bucket sizes that reflect anticipated file activity

and provide a suitable depth of index structure. (See
Section 13.1.3.3, Index Depth.)

OPTIMIZATION 13-5

3. Avoid excessive duplication of key values. COBOL does not
allow duplicates on the primary key, but permits them on
alternate keys.

The following subsections deal with the specifics of indexed file
design and creation.

13.1.3.2 Bucket Size - Bucket size selection can influence indexed
file performance markedly.

To RMS, bucket size is expressed as an integral number of physical
blocks, each 512 bytes 1long. Thus, a bucket size of 1 specifies a
512-byte bucket, while a bucket size of 2 specifies a 1024-byte
bucket, and so on.

The COBOL compiler passes bucket size values to RMS based on what you
specify in the BLOCK CONTAINS clause. There, you indicate bucket size
in terms of records or characters, not physical blocks. As a COBOL
user concerned with file optimization, you should be aware of the
mechanism by which COBOL record and file descriptions are wused to
derive bucket sizes, so that you can predict how RMS will treat your
file description.

If you express block size in records, the bucket can in some cases
contain more records than you specify, but never fewer. For example,
assume that your file contains fixed-length 100-byte records, and you
call for each bucket to contain five records, as follows:

BLOCK CONTAINS 5 RECORDS

This might seem to define a bucket as a 512-byte block containing five
records of 100 bytes each. However, the compiler adds RMS record and
bucket overhead to each bucket for control purposes, as follows:

Bucket Overhead 15 bytes per bucket

Record Overhead 7 bytes per record (fixed-length)
9 bytes per record (variable-length)

Thus, in the example, bucket size is calculated as follows:

Bucket Overhead 15 bytes
Record Size is 100 bytes
+ 7 bytes Record Overhead
for each of 5 records
Total Record Space is (100 + 7)*5, or 535 bytes

Total Block specified by user 550 bytes
Because physical blocks are 512 bytes long, and buckets are always

some integral number of physical blocks, the smallest buffer possible
(the RMS default) in this case is two physical blocks (1024 bytes).

13-6 OPTIMIZATION

RMS, however, is not keyed to the BLOCK CONTAINS clause from which
this bucket specification was derived, and puts as many records as
will fit into each bucket. The bucket actually will contain nine
records, not five.

The CHARACTERS option of the BLOCK CONTAINS clause allows you to
specify bucket size more directly. For example:

BLOCK CONTAINS 2048 CHARACTERS

This calls for a bucket size of four 512-byte physical blocks. The
number of characters in a bucket is always a multiple of 512. If you
specify a value that is not a multiple of 512, RMS rounds it to the
next higher multiple of 512.

13.1.3.3 Index Depth - The size of data records, key fields, and
buckets in the file determines the depth of the index. 1Index depth,
in turn, determines the number of disk accesses required to retrieve a
particular record.

In general, performance is best with an index depth of 3 or 4. A
shallower index will require fewer accesses, but will reduce available
address space because of the larger buffers required.

13.1.3.4 Overhead Accumulation - In selecting a bucket size, you
should consider the 1likely frequency of random insert and delete
operations.

When a record is inserted, there must be sufficient room in the bucket
to contain it. Otherwise, a bucket split occurs. Bucket splits can
cause accumulation of storage overhead, thereby reducing usable space.
The new bucket contains records moved from the original bucket (see
Section 13.1.3) to make room for the new record. For each record
moved out of the original bucket, a seven-byte pointer to the new
location for that record remains in the original bucket. Thus, a
bucket could accumulate overhead from bucket splits, possibly reducing
usable space so much that it can no longer receive record insertions.

Record deletions also can accumulate storage overhead. Under most
circumstances, however, most of the space that was occupied by the
original record becomes available for reuse. Because duplicate
primary keys are not allowed, RMS can reclaim all but two bytes of the
deleted record space. This two-byte field is a flag indicating that a
record has been deleted.

There are several ways to deal with the problem of overhead
accumulation. First, determine or estimate the frequency of certain
operations. If, for example, you expect only 100 records of a 100,000
record file to be added or deleted in an average month, your data base
is stable enough that you might decide to allow some wasted space from
record additions and deletions.

OPTIMIZATION 13-7

However, if you expect frequent additions and deletions, try the
following:

1. Choose a bucket size that allows for overhead accumulation,
if possible. Avoid bucket sizes that are an exact or near
multiple of your record size.

2. To optimize for record insertion performance (as opposed to
space optimization), first define the file with a fill number
(using the RMS DEFINE utility or a MACRO program). A fill
number specifies the number of bytes in the buckets of the
file that you want to contain record information when the
file 1is populated. Then, populate the file, specifying the
/LO switch (see Table 6-2 or RMS utilities documentation).
Thereafter, the unused space 1is available for record
insertions, with minimum bucket splitting. Make certain that
programs performing such record insertions do not specify the
/LO switch.

13.2 OPTIMIZING PROGRAM ORGANIZATION

Program organization can influence 1I/O performance greatly. This
section suggests guidelines toward an efficient pregram structure.

13.2.1 Sequential Reading of Indexed Files

If you access an indexed file sequentially, and the file is
write-shared (using the /SH switch), performance improves if you use
OPEN I-O instead of OPEN INPUT. Using OPEN I-O implies a possibility
that you will write to the file--even though you have no intention of
doing so.

Reading from a file that is open for input-output improves performance
by "locking the bucket, allowing you to obtain subsequent records from
the same bucket without rereading it.

13.2.2 Caching Index Roots

RMS requires at least two buffers to process an indexed file. Each
buffer 1is 1large enough to contain a single bucket. If your COBOL
program does not contain a RESERVE n AREAS clause, the compiler allows
RMS to set the default.

By including a RESERVE n AREAS clause in the SELECT statement for a
file, you can create additional (but not fewer) buffers for the
processing of an indexed file. At run time, RMS will retain (cache)
the roots of one or more indexes of the file in memory. The random
access of any record through that index will then require one less I/0
operation.

13-8 OPTIMIZATION

The following rules apply for caching index roots:
1. The file must not be shared at run time.

2. Allocate one buffer for each key that your program uses to
access file records, in addition to the two required buffers.
For example, if the file <contains a primary key and two
alternate keys, and you use all of these keys to access
records, allocate a total of five buffers. If you use only
one key to access this file in a program, you need only one
additional buffer area, or three in all.

3. Use the RESERVE n AREAS clause to obtain this allocation,
where n is two more than the number of distinct keys used for
access. For example, the clause RESERVE 5 AREAS causes
allocation of the two required buffers, plus three buffer
areas for caching the roots of three distinct file access
keys.

13.2.3 Multi-block Reading and Writing

The multi-block read and write facility applies only to sequential
files on disk devices. It allows reading or writing of more than one
512-byte block at a time during a single I/O operation, reducing the
number of 1I/0 operations needed to process a file. However, the
single buffer used to process the file must be correspondingly longer.

To use this facility, be sure the file has SEQUENTIAL organization and
resides on disk. Then, in the FD entry for the file, specify:

BLOCK CONTAINS n CHARACTERS
where n is a multiple of 512. Each multiple represents the number of
physical blocks to be read or written during each access of the file.

If n is not a multiple of 512, the compiler rounds the size to the
next multiple of 512.

13.3 OPTIMIZING COMPUTATION

On arithmetic (ADD, SUBTRACT, MULTIPLY, DIVIDE, and COMPUTE) and data
movement (MOVE) operations, the compiler generates more efficient,
specialized code if:

1. The data items involved in the computation (including the
receiving fields) have the same type and scaling.

2. You omit the ROUNDED and SIZE ERROR phrases.
3. LINKAGE SECTION data is not involved in the computation.
Also, in the case of COMPUTATIONAL data, the data items must be the

same size. Otherwise, the compiler uses slower, generalized code.

OPTIMIZATION 13-9

Certain data types allow faster computation than others. The data
types, in order of most efficient to least efficient, are:

Signed COMPUTATIONAL
Unsigned COMPUTATIONAL
COMPUTATIONAL-3
DISPLAY

COMPUTATIONAL data items can be one, two, or four words 1long (see
Chapter 4). To increase the efficiency of the generated code, define
COMPUTATIONAL items with the same size; if necessary, make some items
larger than you otherwise would. COMPUTATIONAL data items can have
different PICTURE specifications and still be the same size. Items
with PIC 9(1) to 9(4) are 1l-word binary; with PIC 9(5) to 9(9),
2-word binary; and with PIC 9(10) to 9(18), 4-word binary.

On COMPUTATIONAL-3 (packed decimal) or DISPLAY data, operations are
most efficient when performed on data items of minimal size.
Different data size does not force the use of generalized code with
these data types.

The following situations also force the use of generalized code, as
opposed to more efficient code:

1. Non-matching decimal point alignment among the operands and
receiving fields.

2. Use of the ROUNDED or SIZE ERROR options.

3. Data items defined in the LINKAGE SECTION of the source
program.

Generalized code is necessary on LINKAGE SECTION data items, because
their addresses are not known at compile time.

The following example illustrates the difference in execution time
between specialized ADD code and the generalized ADD code.

01 A PIC S9(4) USAGE COMP.
01 B PIC S9(4) USAGE COMP.
01 C PIC S9(4) USAGE COMP.
01 E PIC S9(4)V9 USAGE COMP.

Of the following two ADD statements, statement (1) typically executes
30 to 40 times faster than statement (2):

(1) ADD A B GIVING C.

(2) ADD A B GIVING E.
On MULTIPLY and DIVIDE operations, decimal point alignment has a
different meaning than for ADD and SUBTRACT operations. Assuming that

the data types are the same for all items involved, the compiler uses
the more efficient code if:

13-10 OPTIMIZATION

1. On a MULTIPLY, the product field scale factor equals the sum
of the scale factors of the multiplicand and multiplier. For
example:

01 X PIC S9(4)V9(2) USAGE COMP.
01 Y PIC S9(4)V9(3) USAGE COMP.
01 Z PIC S9(6)V9(5) USAGE COMP.

MULTIPLY X Y GIVING 2.

2. On a DIVIDE operation, the quotient scale factor equals the
dividend scale factor minus the divisor scale factor. For

example, wusing the data descriptions from the previous
example:

DIVIDE Z BY X GIVING Y.

When defining data to be wused as subscripts, l1-word signed
COMPUTATIONAL 1is the most efficient. Try to avoid referencing tables
by indexes unless you need to perform relative index references.

The use of arithmetic expressions increases use of temporary storage.
It also generates larger operands, and can cause the less-efficient
generalized code to be used unnecessarily. Avoid wusing the COMPUTE

verb, and avoid using arithmetic expressions when specifying
relational conditions.

OPTIMIZATION 13-11

APPENDIX A

THE COBOL FORMAT

COBOL NOTATION USED IN FORMATS
® Underlined upper-case words (key words) - required words;
® Upper-case words (not underlined) - optional words;
® Lower-case words - generic terms, must be supplied by the user;

® Brackets [] - enclosed portion is optional; if several enclosed words are
vertically stacked, only one of them may be used;

e Braces {} - a selection must be made from the vertical stack of enclosed words;
® Ellipsis ... - the position at which repetition may occur;

e Comma and semicolon - optional punctuation;

® Period - required where shown in the formats.

NOTE: Shaded items represent PDP-11 COBOL extensions to the ANS-74 list of
COBOL formats.

IDENTIFICATION DIVISION.

PROGRAM-ID., program-name.

[AUTHOR. [comment-entry]e..]
[INSTALLATION. [comment=-entry]...]
[DATE-WRITTEN. [comment=-entry]...]
[DATE-COMPILED. [comment-entry]...]
[SECURITY. [comment-entryl...]

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. VAX-11.

WORDS
OBJECT-COMPUTER. VAX-11 MEMORY SIZE integer CHARACTERS
MODULES

[PROGRAM COLLATING SEQUENCE IS alphabet-name]
[SEGMENT-LIMIT IS segment-number].

[SPECIAL-NAMES.

[CARD-READER IS mnemonic-name-1]
[CONSOLE IS mnemonic-name-2]
[LINE-PRINTER IS mnemonic-name-3]
[PAPER-TAPE-PUNCH IS mnemonic-name-4]
[PAPER-TAPE-READER IS mnemonic-name-5]

SWITCH integer-1 ON STATUS IS condition-name-1 [OFF STATUS IS condition-name-2]
OFF STATUS IS condition-name-2 [ON STATUS 1S condition-name-1]

NATIVE
[Alphabet-name Is [STANDARD-l}
[CURRENCY SIGN IS literal-1]
[DECIMAL-POINT IS COMMA].]

[INPUT-OUTPUT SECTION.

FILE-CONTROL. {file-control-entryl...

Format 1:

SELECT [OPTIONAL] file-name

ASSIGN TO literal-l

. AREA
[RESERVE integer-1 [AREAS]]

[; ORGANIZATION IS SEQUENTIAL]
[; ACCESS MODE IS SEQUENTIAL]
[; FILE STATUS IS data=-name-l] .

Format 2:
SELECT file-name

ASSIGN TO literal-l

. AREA
; RESERVE integer-1 [AREAS]]

; ORGANIZATION IS RELATIVE

-
SEQUENTIAL

[, RELATIVE KEY IS data-name-1l]

;7 ACCESS MODE IS RANDOM
DYNAMIC

[; FILE STATUS IS data-name-2] .

A-2 THE COBOL FORMATS

RELATIVE KEY IS data-name-1

]

Format 3:
SELECT file-name

ASSIGN TO literal-l

. AREA
; RESERVE -
[, S integer-1 [AREA s]]

3 ORGANIZATION IS INDEXED

SEQUENTIAL

; ACCESS MODE IS RANDOM
DYNAMIC

RECORD KEY IS data-name-1
ALTERNATE RECORD KEY IS data-name-=2 [WITH DUPLICATES]]...
; FILE STATUS IS data-name-3] .

——
~ we we

[I-O-CONTROL.
[SAME [RECORD] AREA FOR file-name-1 {file-name-2}...]...
[MULTIPLE FILE TAPE CONTAINS file-name-3 [POSITION integer-1]
[f11e-name-4 [POSITION integer=2]l.eelee.

[APPLY PRINT-CONTROL ON file-name-5 [file-name-6]...] ...]J

DATA DIVISION.

[FILE SECTION.
[FD file-name

-
. . RECORDS

K IN - -
‘?LOC CONTAINS [integer-1 TO] integer-2 CHARACTERS]
[RECORD CONTAINS [integer-3 29] integer-4 CHARACTERS]

RECORD IS STANDARD

EL RECORDS ARE IOMITTED
[data-name-1
wasws or 1 s {J3EaTnene |
[RECORD IS
-DATA RECORDS ARE data-name-3 [data=name=4] .ee | oo
LINAGE IS data-name-5| ;;ypq WITH FOOTING ar |data-name=6
| integer-5 S integer-6

LINES AT TOP data-name-7 LINES AT BOTTOM data-name-8
_— integer-7 — integer-8

[CODE-SET IS alphabet-name].
[record-description-entryleee]eeel
[WORKING-STORAGE SECTION.

'77-level-description-entry]
| record-description=-entry

ooo]

THE COBOL FORMATS A-3

[LINKAGE SECTION,
[77—1evel-description—entry]
record-description-entry eesl
Data description entry:
Format 1l:

data-name-1
level-number ‘FILLER ’

[REDEFINES data-name=~2]

b{%%gzgﬁg IS character-string]
—_ 4 N ™
COMPUTATIONAL
COMP
IONAL,-
[USAGE IS] J COMP-3 ¢
DISPLAY
DISPLAY=-6
DISPLAY=7
i L INDEX)
LEADING
I [SIGN 1S] -——-TRAILING} [SEPARATE CHARACTER]
[lSYNCHRONIZED LEFT
| |syne] RIGHT]
[(JUSTIFIED
_{JUST] RIGHT

[BLANK WHEN ZERO]
[VALUE IS literall

OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data—name-3|
—_— integer-2 TIMES
ASCENDING
[l mc' } KEY IS data-name-4 [data=name=5] ...] ses
[INDEXED BY index=-name-1 [index-name-2] ...]] .
Format 2:
66 data-name-1 RENAMES data-name-2
THROUGH
THRU data-name-3{,
Format 3:
s VALUE 1S . THROUGH
88 condit - —_— - —_— i -
ition-name l VALUES ARE literal-1 [lTHRU } literal 2]

. THROUGH
1 - —_— i -
[iteral-3 [‘THRU } literal 4]] cee o

PROCEDURE DIVISION [USING [data-name-1][,data-name-2] ...].

A-4 THE COBOL FORMATS

Format 1l:
[DECLARATIVES.
{section-name SECTION [segment-number] . declarative-sentence
[paragraph-name. [sentencel.eeleeetee.
END DECLARATIVES.]
{section-name SECTION [segment-number].
[paragraph-name. [sentenceleeeleeetoes
Format 2:
{paragraph-name. [sentencel...}...

STATEMENTS

ACCEPT identifier [FROM mnemonic-name]

DATE
ACCEPT identifier FROM | DAY
TIME
aop [identifierd) [idemtifier-2] mo jgencieier-m (RoNDED)
[identifier-n [ROUNDED]]... [ON SIZE ERROR imperative-statement]
ADD {identifier-l} identifier-Z, [identifier-3] ...
—_— literal-1l literal-2 literal=-3

GIVING identifier-m [ROUNDED] [identifier-n [ROUNDED]] ...
[ON SIZE ERROR imperative-statement]
ADD CORRESPONDING
— CORR identifier-1 TO identifier-2 [ROUNDED]
[ON SIZE ERROR imperative-statement]

ALTER procedure-name-1 TO [PROCEED TO] procedure-name-2
[procedure-name-3 TO [PROCEED TO] procedure-name-4]..e

CALL literal
[BY REFERENCE]

USING BY VALUE identifier-1 [identifier-2] ...
BY DESCRIPTOR

BY REFERENCE
BY VALUE identifier-3 [identifier—4J oes ..
BY DESCRIPTOR

[GIVING identifier-5]

REEL] [wrm NO REWIND] REEL [WI’I‘H NO REWIND]

: UNIT | | FOR REMOVAL . UNIT FOR REMOVAL

CLOSE file-name-1 — NO REWIND file-name-2 — NO REWIND ese
LOCK LOCK

THE COBOL FORMATS A-5

COMPUTE identifier-1l [ROUNDED] [identifier-2 [ROUNDED]] ...
= arithmetic-expression [ON SIZE ERROR imperative-statement]

DELETE file-name RECORD [INVALID KEY 1mperat1ve-statement]
identifier-1 identifier-2
DISPLAY |1literal-l ’ [llteral-] e

[UPON mnemonic-name] [WITH NO ADVANCING]

prvipe | identifier-1 INTO identifier-2 [ROUNDED]
—— literal-1l — —

[identifier~-3[ROUNDED]] ... [ON SIZE ERROR imperative-statement]

identifier-1 identifier-2
DIVIDE literal-l INTO lliteral-Z]

[identifier-4 [ROUNDED]]...[ON SIZE ERROR imperative-statement]

GIVING identifier-3[ROUNDED]

identifier-1 ‘identifier-Z}

DIVIDE literal-l BY literal-2 GIVING identifier-3[ROUNDED]

[identifier-4 [ROUNDED]]...[ON SIZE ERROR imperative-statement]

identifier-1 identifier-2 . s
DIVIDE literal-l INTO {literal-z l GIVING identifier-3[ROUNDED]
REMAINDER identifier-4[ON SIZE ERROR imperative-statement]
identifier-1 identifier-2 . e
Y -
DIVIDE literal-l B {literal-2 l GIVING identifier-3[ROUNDED]

REMAINDER identifier-4[ON SIZE ERROR imperative-statement]

EXIT [PROGRAM]

0 [procedure-name-1]

T
TO procedure-name-1 [procedure-name-2]...procedure-name-n DEPENDING ON identifier

|8I8

IE condition NEXT SENTENCE ELSE NEXT SENTENCE

Istatement-l l {ELSE statement-2]

INSPECT identifier-1 TALLYING

ALL
identifier-2 FOR LEADING

CHARACTERS

i?::i;ifir‘3] BEFORE| [\ om0 identifier-4
AFTER literal-2 o

INSPECT identifier-1 REPLACING

identifier-6 BEFORE identifier-7
cunmncTERs BY |jiencaire | [{AFTER] mrrman (RN }]
ALL - -
— identifier-5 identifier-6 BEFORE identifier=-7
LEADIN —
LEADING ‘[literal—3] BY lliteral—4 , AFTER INITIAL literal-5 l °t
FIRST L ——
INSPECT identifier-1 TALLYING
ALL identifier-3 _ -
identifier-2 FOR LEADING literal-1 BEFORE INITIAL identifier-4
CHARACTERS . AFTER literal-2 I
REPLACING
1dentifier-6 | BEFORE identifier-7
CHARACTERS BY literal-4 J [AFTER INITIAL ‘literal-S ”
ALL
identifier=-5 identifier-6 BEFORE . identifier-7
{{;?:g;NGJ {lllteral 3 ' BY llitera1-4 l [AFTER INITIAL |1iteral-5 ’}} "1

—

A-6 THE COBOL FORMATS

movg | idemtifier-11 ., . 4ontifier-2 [identifier-3] ...
—_— literal —_—
MOVE l g—gl;—";E—s-’M-lﬁl identifier-1 TO identifier-2

identifier-1

+MULTIPLY lliteral-l

I BY identifier-2 [ROUNDED]

[identifier-3 [ROUNDED]] ... [ON SIZE ERROR imperative-statement]
identifier-1 identifier=-2
MULTTPLY [literal-1 BL l literal-2

[identifier-4 [ROUNDED]] ... [ON SIZE ERROR imperative-statement]

l GIVING identifier-3 [ROUNDED]

INPUT file-name=1[WITH NO REWIND] [file-name-=2 [WITH NO REWIND] Jeoo

OUTPUT flle-name-3[WITH NO REWIND] [file-name-4 [WITH NO REWIND]]... oo
I-0 file-name-5 [flle-name-G]...

EXTEND file-name~7 [file-name-8]...

OPEN

IE: -name-2 |
PERFORM procedure-name-1 THROUGH | procedure-name
— THRU
[THROUGH procedure-name-Zq identifier-1
PERFORM procedure-name-1 THRU } integer-1 TIMES
T | Cus
PERFORM procedure-name=-1 F ;%%%ggﬁ} procedure-name-2 UNTIL condition-1
PERFORM procedure-name-1 %gg%ggﬂ} procedure~name-2
. s identifier-3
vARYING | ‘dentifier-2 FROM { index-name-2
—_— index-name-1 R
literal-1l
’ identifier-4 L.
BY literal-2 UNTIL condition-1
. e identifier-6
AFTER Identlfler 3 FROM index-name~4
—_— index-name-3 _— .
literal-3
BY identifier=7 UNTIL condition-2
— literal-4 ——
. e identifier-9
AFTER Identlfler 8 FROM index-name-6
—_— index-name=-5 —_— .
literal-5
BY identifier-10 UNTIL condition-3
— literal-6 ——

READ file-name [NEXT]RECORD[INTO identifier] (AT END imperative-statement]

READ file-name RECORD[INTO identifier] [INVALID KEY imperative-statement]

READ file-name RECORD [INTO identifier] [; KEY IS data-name] [;INVALID KEY imperative-statement]
REWRITE record-name [FROM identifier] [INVALID KEY imperative-statement]

/ THE COBOL FORMATS A-7

identifier-2

index—name-ll] [AT END imperative-statement-1]

SEARCH identifier-1 [VARYING ‘

[imperative-statement=2 l

WHEN ition-
WHEN condition-1 NEXT SENTENCE

[WHEN condition-2 { imperative-statement=~3 l] ..

NEXT SENTENCE

SEARCH ALL identifier-1[AT END imperative-statement-1]

data-name-1 identifier-3
{i: EQHQE TO, literal-l
WHEN condition-name-1 arithmetic-expression-1
identifier-4
data-name-2 r;: EQHEE TO' {1iteral-2
AND arithmetic-~expression-2 cee
condition-name-2
imperative-statement-2
NEXT SENTENCE
identifier-1 [identifier-2]... identifier-3
2ET | index-name-1 [index-name-2] I0 }lindex-name-3
. ot integer-1
. . UP BY identifier-4
SET index-name-4 index-name-5]... _— = .
B [] DOWN E!} llnteger—Z l
Is EQUAL TO
IS =
START file-name KEY ii ———EREATER THAN data-name
IS NOT LESS THAN
IS NOT <
[INVALID KEY imperative-statement]
RUN
STOP literal,

. e . o identifier=-3
string | tdentifier-l [lée“tlfler %] ... DELIMITED BY {literal-3
—_— literal-1l literal-2 —_—

S1ZE

. e . . e identifier-6

identifier-4 [1§e“tlf1er 5] ... DELIMITED BY {literal-6 ..o

literal-4 literal=-5 —_——

SIZE
INTO identifier-7 [WITH POINTER identifier-8]
[ON OVERFLOW imperative=-statement]
identifier-1 identifier=-2 . . o
cee FROM identifier-m[ROUNDED]

SUBTRACT ‘ literal-1l } [literal-z] _— am—

[identifier-n[ROUNDED]]...[ON SIZE ERROR imperative-statement]

A-8 THE COBOL FORMATS

SUBTRACT ‘1de“t1fler‘1} [1dent1f1er—2]

literal-l literal-2

GIVING identifier-n[ROUNDED] [identifier-o[ROUNDED]]...

[ON SIZE ERROR imperative-statement]
CORRESPONDING
SUBTRACT lCORR }
[ON SIZE ERROR imperative-statement]

identifier-m
literal-m

identifier-1 FROM identifier-2 [ROUNDED]

UNSTRING identifier-1l
identifier-2 identifier-3 cos
[EE.ILITEE BY [ALL] ‘literal-l l [O—R [ALL) {literal-Z l]]
INTO identifier-4 [DELIMITER IN identifier-5] [COUNT IN identifier-6]
[identifier-7 [DELIMITER IN identifier-8) [COUNT IN identifier-9]]...
[WITH POINTER identifier-10] [TALLYING IN identifier-11]
[ON OVERFLOW imperative-statement]

file-name-l[file-name=2]...
INPUT

USE AFTER STANDARD EXCEPTION PROCEDURE ON OUTPUT
JSE AFTER ERROR —ROCEDURE =
EXTEND

WRITE record-name [FROM identifier-1]

identifier-2 LINE
BEFORE {{ } []]
[AFTER ’ ADVANCING integer LINES
- [PAGE]
F - . .
[AT l%%g:g—-zéggl imperative-statement]

WRITE record-name [FROM identifier] [INVALID KEY imperative-statement]

text-name
Copx llitera1-3l
REPLACING literal-1l BY literal=-2 ..
——— word-1 —_— word=-2

NOTE: A COPY statement may appear anywhere that a word appears in the COBOL source program.

THE COBOL FORMATS A-9

APPENDIX B

COMPILER IMPLEMENTATION LIMITATIONS

This appendix describes the implementation limitations for the VAX-11
COBOL-74 compiler system (compiler and RTS). You should not confuse
the term "limitation" with "restriction". A restriction is a language
facility that is not implemented or should not be used due to known
errors in its implementation. An implementation limitation quantifies
the limits of a language facility that is supported by the system.

Practical implementation limitations exist in every compiler; They
result from the finite size of compiler tables, compiler data
structure representations, and so on. Since the VAX-11 COBOL-74
compiler employs a Virtual Memory System to support many compiler data
structures, the quantities specified for some implementation
limitations are approximations. However, as a deneral rule, the
following guidelines should not be exceeded in the development of a
COBOL program.

IMPLEMENTATION LIMITATIONS

1. The Data Division of a COBOL program cannot be larger than
65K bytes. A file description entry cannot be larger than
32K bytes.

2. A DISPLAY statement cannot contain more than 16 sending
operands.

3. The maximum number of data-name definitions in a COBOL
program is approximately 2000.

4. The maximum number of procedure-name definitions in a COBOL
program is approximately 2000.

5. Because file description level-numbers can range from 01 to
49, level 88 condition-names can have no more than 50
qualifiers (FD through 49). Data-names declared in the File
Section can have no more than 49 qualifiers (FD through 48).
Data-names declared in the Working-Storage and Linkage
Sections can have no more than 48 qualifers (01 - 48).

6. A GO TO DEPENDING statement can have no more than 16
operands.

APPENDIX C

SOURCE PROGRAM LISTINGS

This appendix contains compiler listings for two COBOL programs. The
first, STATB, calls three subprograms; the second, DOCATS, is one of
the subprograms.

The examples demonstrate some of the features of VAX-11 COBOL-74, such
as:

° The COPY statement
° The COPY REPLACING statement
° The CALL statement

° The results of using the /MAP and /VERB_LOCATION compiler
qualifiers

The circled numbers on the source listings indicate features that are
annotated in the text.

Source Listing Features

- The version of the VAX-11l COBOL-74 compiler.

number.
- Date and time when the compilation began.

- The compiler command line. The contents of the command line can
help to explain why the listing looks like it does and how the
program runs. For example, this command 1line shows that the
/VERB_LOCATION and /MAP qualifiers were used.

(:)- The source file, including file type, or extension, and version

@00 @ ©

® ©® 0 @

® ©

® ©® ©®

®

The IDENTification number assigned by the compiler. This number
identifies the specific compilation of the program and is used as
an additional identifier for the object module.

Source line number assigned by the compiler. This number is used
in RTS error message displays to indicate the location at which
the error was detected. It also appears in error message
displays that show nested PERFORMs.

Sequence number. If the source file used conventional format
(/ANSI_FORMAT), the sequence field (positions 1-6) appears here.

Source text. This area contains the text that was processed by
the compiler. 1If a line of text was too long, only the part that
appears here was processed. The compiler also prints a
diagnostic message when it truncates a line of source text.

Identification field. If the source file used conventional
format, this area would contain the identification field
(positions 73-80).

Identifies a source line that: a) contains a COPY statement, or
b) was copied from a library file.

COBOL verb (appears only when /VERB_LOCATION qualifier is used).
Identifies the COBOL verb that 1is referred to by the other
entries on the line.

Segment number (/VERB_LOCATION qualifier only). Identifies the
program segment, or PSECT. Notice that this is not the PSECT
name; it is a consecutive number assigned to all procedural
PSECTS during compilation and duplicates the segment numbers in
other programs.

Offset (/VERB_LOCATION qualifier only) . Specifies the
hexadecimal offset (distance) from the beginning of the segment
for the object code generated by the COBOL verb (number 11).

Offset (/VERB_LOCATION qualifier only). Specifies the
hexadecimal offset in hexidecimal bytes from the beginning of the
program entry-point (STATB).

Compiler diagnostic severity code. Describes the seriousness of
the compiler diagnostic. This diagnostic is "informational”,
which means that the compiler can take corrective action.

Diagnostic source line number. Identifies the source 1line to
which the diagnostic applies. In this case, OPTIONS-AREA is
defined as larger than CUSTOMER-FILE-ID; therefore, truncation
occurs.

Compiler diagnostic number. Identifies the specific diagnostic.
Use this number to £find a description of the diagnostic in
Appendix D.

Diagnostic message. A one-line description of the condition.

SOURCE PROGRAM LISTINGS

® ®

® ®®

®

®® ©

®

Data Map. Describes the data-names and file-names used in the
program. This section appears only if the /MAP qualifier is
used.

Level. Contains the level-indicator or level-number of the item.
An L preceding the 1level indicates that the data-name is a
Linkage Section item.

Name. The file-name or data-name.

Source line. The file-name or data-name is defined on this
source line in the Data Division.

Data Division location. 1Identifies the hexadecimal offset of the
file or data-name from the beginning of data PSECT. For Linkage
Section data-names, the offset is from the 0l-level.

Directory location. Identifies the hexadecimal offset of the
data item's descriptor. For Linkage Section data items, the
offset 'is from the 0l-level. The RTS wuses the descriptor to
operate on a data item.

A directory location that contains asterisks indicates that the
compiler did not generate a descriptor because the data-name was
not used in the Procedure Division.

USAGE. Corresponds to the USAGE clause or implicit usage of the
data item description. The following abbreviations are used:

DISP DISPLAY

CMP COMPUTATIONAL
CMP3 COMPUTATIONAL-3
INDX INDEX

Class. 1Identifies the COBOL <class of the data item. The
compiler determines class from the PICTURE or level associated
with the data-name. The following abbreviations are used:

ALPHA Alphabetic
NUM Numeric
AN Alphanumeric

ANEDIT Alphanumeric Edited
NMEDIT Numeric Edited

Occurrence level. Indicates the number of subscripts necessary
to refer to the data-name.

Length. Specifies the length of the data item in decimal bytes.
Procedure Name Map. Describes the procedure-names that appear in
the program. This section appears only if the /MAP qualifier is
used.

Procedure-name. This is the name as it appears in the Procedure
Division.

SOURCE PROGRAM LISTINGS C-3

©®®60 OO0 06 606

@O0 666

Source line. Identifies the source line in which the
procedure-name is defined.

PSECT. Identifies the name of the executable code PSECT (program
section) in which the procedure-name appears. PSECT name
consists of the first 11 characters of PROGRAM-ID (padded on the
right by "$" if less than 11), followed by a three-digit number.

Offset. Specifies the hexadecimal offset (distance) of the
location of the procedure-name from the beginning of the PSECT.

Segment-number. Corresponds to the segment-number in the header
for the section in which the procedure-name appears.

Section. An "S" indicates that the procedure-name is a
section-name.

Paragraph. A "P" indicates that the procedure-name is a
paragraph-name.

Segmentation Map. Describes the segmentation for each Procedure
Division section. This map appears only when the /MAP qualifier
is used.

Section Name. The name of the section as it appears in the
Procedure Division.

Segment-number. The segment-number specified in the section
header, or the implied segment-number 00.

PSECT Name. Indicates the name of the procedural PSECT generated
for the section. If the generated code exceeds the code segment
limit, the compiler generates additional PSECTs; their names are
displayed beneath the first.

The size of the procedural PSECT in hexadecimal bytes.

The size of the procedural PSECT in decimal bytes.
Compiler-Generated PSECTs. Describes the procedural PSECT's
generated by the compiler (/MAP qualifier) to provide run-time
execution initialization.

PSECT name.

The size of the PSECT in hexadecimal bytes.

The size of the PSECT in decimal bytes.

Referenced RTS Routines. Lists the names of all COBOL RTS
routines (/MAP qualifier) that are referenced by the

compiler-generated code. All RTS routines have the form:
C74$<name>.

SOURCE PROGRAM LISTINGS

® 0 060G ®

Data PSECT Map. Lists the nonexecutable PSECTs generated by the
compiler (/MAP qualifier).

PSECT name.
The size of the PSECT in hexadecimal bytes.
The size of the PSECT in decimal bytes.

External Subprogram References. Lists the names of all
subprograms (/MAP qualifier) referenced by CALL statements in the
program.

Error Severity Code. Describes the seriousness of errors.
Chapter 10 describes the severity codes and their meanings.

Error Count. The number of compilation errors detected for each
severity level.

SOURCE PROGRAM LISTINGS C-5

S1AT8
IDENT: 212086

/NOANST,FORMAT
/MR
/DEBUG=TRACEBACK

/COPY LIST
/VERB_LOCATION

r'r‘l’l‘rrv—rr—r'r—rrv-l'r—rre

[ONG

8ovee
20923
d0d04
oeees
eeeds
2nee?
293408
2nees
20010
oea1y
enol2
208013
Q09214
@215
ematie
w17
2ed18
20419
ee2e
'L T3¢
vAvee
20023
20024
¢aaes
Qeazes
erv2t
20228
20029
22030
20031
2032
209033
el
20235
¥003s
20037
200238
20039
ap04e
2eQdy
eed4de
37043
Aeouy
20245
2046
2e247
APDU8
am349
20450
20vS1
¥evse
209253
arasSy
202855
ar2Se
20457
20058
47959
v2ded
devel
20262
¥o4d63
¥ad6d
22465
Lor1.Y)
aede7
209068
¥R269
27079
22371
(L]
a7l
arATd
aeaTs
20276
00377
A¢v78
¥4Ra79
A 8e
An0ay
d0982

12~J.a-197; 08140115 VAX=1i COBOLe=74

STATB,COBy4
/NOCROSS, REFERENCE /LISTaSTATB (:) (i)
/WARNINGS /0BJECTESTATE

IDENTIFICATION DIVISION,

PROGRAM=ID, STATB,

AUTHOR, R FRIED,

INSTALLATION, JONES MAIL ORDER COMPANY,

DATE=wWRITTEN, 10 JANUARY 1979,

DATE=COMPILED,
Using called programss this program demonstrates
the effects and advantages of modular program
development, Depending on operator=specified
options and the contents of date records) the
program generates various outputs,

The called programs are!

EXCEPT Generates an exception report,
DOCATS Generates mailing labels,

-
2
*
L]
®
L]
]
*
* NAME FUNCTION
*
-
*
* CREDLM Generates “credit 1imit’ letters,
*
L]
*

AR R AR R R RN RN N AN R AR AR AR AR AR AN R R N AR RN RN A RRARARRNRARNARRAR

12=Jan=1979 ,
ENVIRONMENT DIVISION,

AR RN AR R R R AR AR AR AR R AN AR AR AR R RARRR AR RRRRRRRRA RN R
CONFIGURATION SECTION,

SOURCE=COMPUTER, VAXel],
0BJECT=COMPUTER, VAXell,

AR R AN R AR R A RN AR NN R R AR R RRANN N RN R ANRARRRANRA R R AN RA RO RS
INPUT=OUTPUT SECTION,
FILE=CONTROL,

SELECT CUSTOMER=FILE
ASSIGN TO "CUSTOM"
ORGANIZATION 1S INDEXED
ACCESS MODE IS DYNaAMIC
RECORD KEY IS CUST=CUST=NUMBER
ALTERNATE RECORD KEY IS CUST=CUSTOMER=NAME
FILE STATUS IS CUSTOMEReFILE=STATUS,

SELECT STATEMENT-REPORT
ASSIGN TO "STATEM"
FILE STATUS 1S STATEMENTeREPORT=STATUS,

AR R AR R AR R AR N R RN RN AN R AR R R RRN A RN ENAN IR RRNAR RN RARRAARRSY
DATA NDIVISION,
AR AR R AR AR R R AR R R R R R R A AR AR R A RN RS R AR ANARNA R AR RRRNRARNNARARY
FILE SECTION,
FD CUSTOMER=FILE
LABEL RECORDS ARE STANDARD
VALUE UF ID IS CUSTOMEReFILE=]D,

COPY CUSTRC.,

“] CUSTGMER«FILE=RECORD,

23 CUST=CUST=NUMBER PIC X(6),
23 CUSTeCiUSTOMEReNAME PIC X(32),
a3 CUST=ANDRESS=LINE=] PIC x(3e),
23 CUST=ADDRESS=LINE=2 PIC x(30),
°3 CUST=ADDRESS=LINE=3 PIC X(30),
@3 CUST=ADDRESS=21P=CODE PIC X(S),
23 CUST=PHONE,

2% CUST=PHONE~AREA=CODE PIC X(3),

25 CUST=PHONE=EXCHANGE PIC X(3),

2% CUST=PHONE=LAST=4 PIC 9c4),
3 CUST=PHONE=NUMBER

REDEFINES CUST-PHONE PIC 9(12),
23 CUST=ATTENTION=LINE PIC x(2e),
¢3 CUST=CREDIT=LIMIT PIC 9(18)Vv99,

C-6 SOURCE PROGRAM LISTINGS

Vaf;;zﬂl

20083 23 CUST=HEANDER=DATA REDEFINES CUST=CREDIT=LIMIT,
20084 as FILLER PIC X(6).
20085 85 NEXTeACCTeNUMBER PIC 9(6).
20086 83 CUSTeOWE=AMT

eee87 PIC 9(18)v99,
20088 03 CUSTeBOUGHT

20089 PIC 9(10)v99,
20990 e3 CUSTeNEXT=ORDER=SEQUENCE PIC 9(4),
200891 03 CUST=NEXT=PAYMENT=SEQUENCE PIC 9(4),
00092

209093 FD STATEMENT=REPORT

20094 LABEL RECORDS ARE STANDARD,

20095 @] STATEMENTREPORT=RECORD,

20096 83 FILLER PIC X(S5),

00097 23 ADDRESSewINDOW PIC X(32),

20098 83 FILLER PIC X(1).

80099 @3 ADDRESS=ZIP PIC X(5),

20100 23 FILLER PIC x(2s),

00101 A3 FORM=NAME,

20102 AS FILLER PIC x(6),

008103 95 FORMeDATE PIC x(8),

00104

20105 21 SeReRe2,

(LRI A3 FILLER PIC X(15),

o107 @3 REPORT=CREDIT PIC 2,222,222,229,99,
00108 83 FILLER PIC X(10),

20109 @3 REPORTeYTD PIC 20222,222,229,99,
00110

eet1t 8] SeReRe3,

velle ©3 STATEMENT=DATE PIC X(12),

29113 83 FILLER PIC X(19),

en114 @3 STATEMENT=CAPTION PIC X(32),

ee11s @3 STATEMENT=BALANCE PIC 2,222,222,229,99.
val1e

BG117 AR AR AR R R AR R AR AR R R AN AR AR AR R AR P AN VAN AR AR R RN IR R RR AR RNy
00118

eel19 WORKING=STORAGE SECTION,

eetae

Qo121 71 CUSTOMEReFILE=STATUS PIC X(2),

o122 01 STATEMENT=REPORT«STATUS PIC X(2),

ee123 81 CUSTOMER=FILE=ID PIC X(14)

eo124 VALUE "CUSTOM,DAT",

80125 @1 TODAYS=DATE PIC 9(6),

20126 81 TOR REOEFINES TODAYS=DATE,

ee127 33 TODAYeYEAR PIC 9(2),

eo128 83 TODAY=MONTH PIC 9(2),

80129 @3 TODAYeDAY PIC 9c2),

80130 A1 TODAYS=REPORT=DATE,

20131 @3 TODAYeMONTH PIC 29,

29132 @3 FILLER PIC X(1) VALUE "/",
ea133 @3 TODAY=DAY PIC 9(2).

00134 83 FILLER PIC X(1) VALUE "/*,
0013s 23 TODAY=YEAR PIC 9(2),

ea13e

08137 81 STANDARD«MESSAGE PIC X(5@) VALUE SPACES,
00138

00139 0] DISPeMESSAGE,

20140 @3 FILLER PIC X(3Q) VALUE SPACES,
ee14y 83 DISPeNUM PIC 2(5),

80142

20143 81 YTO=CATALOG=MINIMUM PIC 9(1@) VALUE 1eaew,
eadl4y

00145 @1 EXCEPTION=INDICATORS,

80146 #3 EXCEPTION=INDICATOR NCCURS 1@ PIC 9(1).
ee1u7

00148 21 OPTIONS=AREA,

02149 93 OPTIONS=AREACHAR OCCURS 32 PIC X(1),
20150

00151 @1 A=COUNT PIC 9c2),

e01se

22153 @1 OPTION=STORAGE,

@154 83 OPTION=ENTRY OCCURS 8 PIC (1),
00155 A1 OPTION=VALUES REDEFINES OPTION=STORAGE,

00156 @3 FILLER PIC 9C1),
ee1s7 88 WANT=STATEMENTS VALUE 1 THRU 9,

@158 23 FILLER PIC 9(1),
20159 B8 WANTeINVOICES VALUE | THRU 9,

80160 23 FILLER PIC 9(1),
ee161 88 WANT=ALL=CATALOGS VALUE 1 THRU 9,

20162 23 FILLER PIC 91,
¥0163 88 wANT=SOME=CATALOGS VALUE | THRU 9,

eeled 23 FILLER PIC 9(1).
00165 88 WANTeCREDIT=LIMIT=LETTERS VALUE 1 THRU 9,

20166 @3 FILLER PIC X(3),
o067

20168 @1 RECORD=COUNT PIC 9(S) VALUE @,
0n169 A1 STATEMENTCOUNT PIC 9(S) VALUE @,
o170 @1 INVOICE=COUNT PIC 9(S) VALUE @,
ee17y 81 CREDIT=LIMIT<COUNT PIC 9(S) VALUE @,

SOURCE PROGRAM LISTINGS

USt 1
DISPLAY t
STUP !
USE !
LISPLAY H
STOP :
ACCEPT '
MOVE H
MOVE '
DISPLAY 1
ACCEPT 3
1F !

.

® ®

1 v0217 w371

MOVEL '
DISPLAY H
DISPLAY H
DISPLAY !
DISPLAY ¢
DISPLAY H
DISPLAY t
ACCEPT H
MOVE 3
1F [
DISPLAY H

o1

[}

el

9w

e

92

o3
a3
03

e3
e3
o3
3

a3

Q3
23
a3
o3
a3
e3
23
23
o3
a3

©

2@veea

evgeon
ecovew

pR2dae

eoeeun

L4

evooey
nomvLE

evdveuddy

eepesa
220068
@078

e0R088

POSSIBLE

702094

02adAY
(221
pveona
BVQ0ES
eedten
peol1s
[LI2R T4
e0e14n
00014C

ena1sC

24172
an173
wel7de
0175
30176
wir?
det78
20179
er18¢
181
wxez
(PrRavRvay)
290183
AA1RY
(22300024)
wai8s
vei8e
en187
(220000d4)
0188
V2189
Jvi90
(n@200060)
ee191
20192
(P1000060)
20193
¥A194
00195
(nepeeusd)
wei9e
22197
0198
2¢199
eu2#e
weaey
ae2e2
40203
ve2ed
ve24s
202r6
(2000009C)
et
(PaedvdRy)
oee2s
(4veoAVEL)
20209
ve21e
ae211
ae212
20213
(@0edvvEC)
20214
(RerRE104)
ana1s
(22000114)
ve2ie
(npeedol2y)
ee217

#1 CATALUG=COUNT PIC 9(S) VALUE @,
AR R AR N R R R AN R R AR RN R RN A RN R AR R AR AN R AR IR AR R R AR RNRRRR AR RN
PROCEQURE OIVISION,

AR R AR R PR R R I AR RN R AN R AR RN R AR RN RAR IR CAR AR R A RN AN R AR
DECLAKATIVES,

CUSTOM®ERROR SECTION,

USE AFTER STANDARD ERROR PROCEDURE ON CUSTOMEReFILE,
SHEGIN.

DISPLAY "1=0 ERROR ON CUSTOMEReFILE, CODE ("
CUSTOMER=FILE=STATUS ~
"I
STOP RUN,
STATEMeERROK SECTION,

USE AFTER STANDARD ERROR PROCEODURE ON STATEMENT=REPORT,
SBEGIN,

DISPLAY "Je0 ERROR ON STATEMFNT-REPORT, CODE ("
STATEMENT=REPORT=STATUS
")t
STOP RUN,
END OECLARATIVES,
AN R ANA R RN AR RN AR AN RN RN AN IR TR AR N AR AN RN ARA KRR R AR R AR A NN
*

* This section perterms housekeeping
* functions only,

START=UP«HOUSEKEEPING SECTION 49,
SBEGIN.

ACCEPT TODAYSe=DATE FROM DATE,
MOVE CORRESPONDING TDR TO TODAYS=REPORT=DATE,

MOVE SPACES TO OPTIONS=AREA,

»

Get CUSTOMER«FILE name, Use default
- it none {s entered,

DISPLAY " ENTER CUSTOMER FILE NAME (OR CR)",
ACCEPT OPTIONSeAREA,

IF OPTIONS=AREA NOT = SPACES

MOVE OPTIONS=AREA TO CUSTOMEReFILE=ID

HIGH ORDER RECEIVING FIELD TRUNCATION,

(e200v130)
ve218
ene19
oe22e
one2y
w222
20223

(02vve13C)
¥R224

(¥0000154)
en22s

(20n2016C)
0226

(0anaa184)
ae227

(A2e0019C)
2022%

(902001R4)
2n229

(@eeveicC)
2n239

(eeeR010C)
aeasy

(Qu00RR1ES)
ovase

(o8eveiF8)
ve23s

MOVE SPACES TO OPTIONS=AREA,

»

Get options from the operator and
store results, Ignore mon=standard
" option {mput,

»

DISPLAY " ENTER OPTIONS:",

DISPLAY " S = Print statements”,
DISPLAY " 1 =z Print {nvoices",

DISPLAY " CA 3 Ma{l all catalogs”,
DISPLAY " CO 3 Mail gelective catalogs”,
DISPLAY ™ CL 3 Credit 1{mit letters",
ACCEPT OPTIONSeAREA,

MOVE ALL ZERD TO OPTION=STORAGE,

IF OPTIONS=AREA s SPACES

DISPLAY "Discrepancy Report Omiy"

C-8 SOURCE PROGRAM LISTINGS

Go
MOVE
INSPECT

14
DISPLAY
sTOP

DISPLAY
ir
DISPLAY
Ir
DISPLAY
IF
DISPLAY
1F
DISPLAY
IF
DISPLAY

DISPLAY
ACCEPT
IF

Go

1r
DISPLAY
$TO0P

IF
DISPLAY
MOVE

IF
DISPLAY
ACCEPY

OPEN
MOVE
START

OPEN

READ

1

'

3
o3
e3

e3
o3
o3

e3
o3
o3
3
23
o3
a3
o3
o3
e3
e3

o3
o3
o3
e3
o3
o3
o3

o3
e3
o3

03
o3
e3

03
o3
23

e3

04

200174
eo17C

200188

000248
000258
e0e27o

oevary
eeo2scC
QVd2AC
es02Cy
Q8¢2EY
000R2FC
000831C
200334
000354
©00036C
eeol3sc

8003AC
0093C4
000304
000414
["1-L'L3Y4
80843C

000454

000458
200478

e@g49a

@NRUAC
eea4cc
@BAUEY

90Q4uFy
(X LR L]
200850C

0002528

(X111}

(29v00219)
923y
(08Q00¥218)
22235
(e0020224)
08236
2m237
20238
va239
00240
222414
dvaue
(0400M2E4)
8A243
(Q20002F4)
20244
(PrOnGe3nC)
408245
P46
(poeda3y)
o024t
(eve00328)
20248
(200008348)
en2u9
(e2000360)
00250
(eaavo3se)
20251
(00000398)
2e252
(22000388)
4253
(200087300)
00254
(peevv3Fa)
20255
(20002428)
2e2se
(e0P20428)
20257
00258
20259
(Ad@004u3)
80260
(eve0eden)
08261
(eeeee472)
¥0262
(000004RY)
00263
(e20804B8)
00264
(20000408)
20265
(200004FQ)
008266
008267
(200024F4)
00268
(A2020514)
30269
(e0p0052C)
00270
00271
(@9020548)
I'rar]
(80000568)
20273
(p0000esse0)
20274
00275
(20000599)
e0a276
(2000059C)
ee277
(200005A8)
ega78
00279
(9000805C4)
er280
00281
Vo282
20283
00284
20285
(P200WSES)
00286
00287

GO TO CONFIRM=NPTIONS,

MOVE @ TO A=CUUNT,

INSPECT OPTIONS=AREA TAaLLYING
OPTION=ENTRY (1) FOR ALL "S"
OPTIONENTRY (2) FOR ALL "1
OPTION=ENTRY (3) FNR ALL "cA"
OPTIONENTRY (4) FOR aLL "cO"
OPTIONENTRY (S) FOR alLL "CL",

IF OPT]ON=STORAGE 3 ALL (ERO
DISPLAY "No options recoanizeo"

STOP RUN,

DISPLAY "Selected options:™,
IF WANTeSTATEMENTS
DISPLAY " Statements”,
IF WANT=INVOICES
DISPLAY " Invoices®,
IF AANT=ALL=CATALOGS
DISPLAY " A)1 cataloas",
IF 4ANT=SQME=CATALOGS
DISPLAY " Selected cateloos".
IF WANTeCREDIT=LIMIT=LETTERS

DISPLAY " Credit 14mit letters",

CONFIRM=QOPTIONS,

DISPLAY "CONFIRM OPTIQNS: (Y)es or (Mlo",
ACCEPT OPT]ONSeAREA,
IF OPTIONS=AREA=CHAR (1) NOT = "Y" AND "N"
GO TO CONFIRM=OPTIONS,
IF OPTIONSeAREA=CHAR (1) = "N"
DISPLAY "ABORTED BY OPERATOR"

STOP RUN,

IF WANT=INVOICES
CISPLAY " INVOICES not impjlemented"

MOVE @ TO OPTION=ENTRY (2),

IF WANT=STATEMENTS
DISPLAY "Enter statement message or CR"

ACCEPT STANDARD=MESSAGE,

OPEN INPUT CUSTOMER=FILE,
MOVE "00@000" TO CUST«CUST=NUMSER,

START CUSTOMER=FILE
KEY IS > CUST=CUSTeNUMBER,

OPEN OUTPUT STATEMENT=REPORT,

ARRRR RN NN AR AR R AR AR R ANAR AR AR AR AR N R A RAR AR AN AN RN AR AR AR RN

MAINLINE SECTION,
SBEGIN.

READ CUSTOMEReFILE NEXT
AT END

SOURCE PROGRAM LISTINGS

(14}
ADD

IF
PERFORM
ADD

IF

CALL
ADD

MOVE
1F
MOVE
IF

MOVE
IF
MOVE
1F
MOVE
1F
MOVE
ELSE
IF
MOVE
1F
CALL

IF

G0

G0

CALL

o4

04
L]

24

L]

(.1}

o4

04
24
24
24

o4
-1}
(L}
o4
(L]
(L}
o4
04
a4
[-.2]
a4
o4

a4

-L]

o4

-

24

eep014

2eaeiC

2008028
200038
200048

200054

00020A4

00898C

eg0ecs
290004
CTITI

200100

000120
00013C
eea14C
200168
2009178
200194
000144
0%01Ceo
oeeics
0MB1ES
oea2ed

[T r3Y]

eve234

029274

@eoe2rcC

00¢28C

20022A4

(e@p2asFC)
20288
(ae0006024)
2n289
ee29e
20291
ve292
(0v000610)
20293
(@0000620)
00294
(000230630)
0@295
¥e29e
008297
20298
20299
(2200063C)
ea3de
e0301
28302
on3a3
ve3aed
(o0@0068C)
ve3es
(200806A4)
90306
ea3a7
e030e8
20309
20318
(90000680)
29311
(Pe20068BC)
20312
(2000086CC)
ve313
(Q000dv6ES)
20314
2a31S
(noeee7e8)
20316
(20000724)
00317
(00008734)
20318
(e@0002750)
20319
(0e280769)
003290
(@000277C)
20321
(@200078C)
00322
(00000@7A8)
80323
(220007R89)
Q0324
(82002700)
ea3as
(P0¥RQQR7EC)
30326
(240@07FC)
30327
00328
20329
20332
28331
00332
ve33s
(0900081C)
28334
20335
20336
(29909285¢C)
20337
ve3ss
ee339
20340
(20r22864)
034y
[LEYTH]
B34l
(20n00874)
vn3uy
(nomee88C)
208345

» % W

* e

LR I

»

GO TO END=PROCESS,
ADD 1 TO RECORD=COUNT,

Print statement {f required,

IF CUST=OWE=AMT > 0@
PERFORM PRINTeSTATEMENT
ADD { TO STATEMENT=COUNT,
It we need & mailing labe! for
a catalog, orint ¢,
IF WANTeALL=CATALOGS
OR
WANTeSOME=CATALOGS
AND
CUST=BOUGHT NOT < YTD=CATALOGeMINIMUM
CALL "DOCATS"™ USING CUSTOMEReFILE«RECORD
ADD § TO CATALOG=COUNT,
Check for discrepancies {n the
customer’s records
MOVE ALL ZERO TO EXCEPTION=INDICATORS,
IF CUSTeCUSTOMEReNAME = SPACES
MOVE | TO EXCEPTION=INDICATOR (1),

IF CUST=ADDRESS=_INE=y = SPACES
OR CUST=ADORESS=ZIP=CODE NOT > "@2@ea"

MOVE 1 TO EXCEPTION=INDICATOR (2),

IF CUST=PHONE s SPACES

MOVE | TO EXCEPTION=INDICATOR (3),
IF CUSTeCREDITeLIMIT NOT > @

MOVE | TO EXCEPTION=INDICATOR (4),
IF CUST=0OWE=AMT > CUSTeCREDIT=LIMIT

MOVE | TO EXCEPTION=INDICATOR (S)
ELSE
IF CUSTeOWE=AMT > CUSTeCREDIT=LIMIT » @,8

MOVE | TO EXCEPTION=INDICATOR (&),
IF EXCEPTION=INDICATORS NOT = ALL ZERO

CALL "EXCEPT"™ USING CUSTOMER=FILE=RECORD
EXCEPTION=INDICATORS,

Generate a ‘credit 1imit letter’

{f the customer has exceeded or
i{s about to exceed his limite,

IF WANTeCREDIT«LIMIT=LETTERS
AND
CUST=0OwE=AMT NOT < CUST=CREDIT=LIMIT » a,8
GO TO NO=CR,

GO get the next record,

GO TO MAINLINE,
00=CR,
CALL "CREDLM" USING CUSTOMEReFILE=RECORD,

ADD | TO CREDITe_IMITeCOUNT,

C-10 SOURCE PROGRAM LISTINGS

60

CLOSE
CLOSE
MOVE
MOVE
DISPLAY
MOVE
MOVE
DISPLAY
MOVE
MOVE
DISPLAY
MOVE
MOVE
DISPLAY
MOVE
MOVE
DISPLAY
STOP

MOVE
MOVE
WRITE
MOVE
MOVE
MOVE
MOVE
WRITE
MOVE
MOVE
MOVE
WRITE
MOVE
MOVE
WRITE

MOVE

3

H

o

3

ed4

es
(]
s
es
[
25
s
oS
s
[}
oS
25
as
es
2s
(4]
s
es

a6
a6
@26
26
26
26
Q26
26
Q6
a6
06
06
26
a6
a6

26

209280

(L1 1dT]
eeeoeC
000018
(LY
[-IT31)
602059
22005C
000270
@oee8s
0Ve094
0000248
eeoecn
erveccC
0020EQ
@000FA
LY 2
840118

ecaliln

eQAoven
eevenc
eeae18
©00en3n
00003C
PAQOUR
veeesy
0Re060
Q0ve7C
0aavas
004094
2000AN
20008C
L.I'129.]
90020uU

QU0OF

(0ved0898)
V6346
00347
oo3us
ve349
203590
22351
ee3s2
2@353
2e3s4
28355

(avo02888)
en3sSe

(000a398CY)
00357

(00020800)
00358

(2000080C)
8n3s9

(200098F2)
vB3s60

(@r0000908)
@036}

(00008914)
00362

(92000928)
20363

(P@200940)
20364

(A2RRA94C)
20365

(20000960)
20366

(n00RRa978)
en3e67

(e0000984)
20368

(20002998)
8e3e69

(22000980)
en37¢

(2000098C)
003714

(e00@20e900)
00372

(0000209€8)
00373
00374
20375
0e37e
ee37?
08378
00379
en3ew
27381
on3s2
2n383

(P0@00AQRY)
20384

(AYvBeA10)
aps8s

(PeQanALIC)
20386

(eonvdeA3y)
1387

(R0AVAALD)
84388

(P9nB0BA4C)
¢p389

(@BraRASS)
¥a39a

(PAN30ALY)
40391

(PrePPRAB2)
0392

(PEHOAABC)
20393

(30PoVA98)
#4394

(A0e00AAL)
¥e395

(202V¥0ACH)
40396

(0@@@RAACC)
#A397

(P0eAOADS)
0398

(AJnB0OAFY)
28399

GO TO MAINLINE,
e e R T e]
*

* The CUSTOMER=FILE has been completely
* processed, Report significant counts,
L

END=PROCESS SECTION 47,
SBEGIN,

CLOSE CUSTOMER=FILE,
CLOSE STATEMENT=REPORT,
MOVE "RECORD COUNT" TO DISP=MESSAGE,
MOVE RECORD®COUNT TO DISP=NUM,
DISPLAY DISP=MESSAGE.
MOVE "STATEMENTS" TO DISPeMESSAGE,
MOVE STATEMENT=COUNT TO DISP=NUM,
DISPLAY DISP=MESSAGE,
MOVE "INVOICES" TO DISP=MESSAGE,
MOVE INVOICE=COUNT TO DISP=NUM,
ODISPLAY DISP=MESSAGE,
MOVE "CATALOGS"™ TO DISP=MESSAGE,
MOVE CATALOG=COUNT TO DISPeNUM,
DISPLAY DISPeMESSAGE,
MOVE “CREDIT LIMIT LETTERS™ TO DISPeMESSAGE,
MOVE CREDITeLIMIT=COUNT TO DISPeNUM,
OISPLAY DISP=MESSAGE,
STOP RUN,

AR R AR AR AR R AR R AR AR R R R R R AR R RN R R AN R AR RARR RN AR RRARNRRRARAAY

. This section generates a statement

for the current CUSTOMER=FILE
record,

»*» * % %

PRINT®STATEMENT SECTION 48,
SBEGIN,

MOVE SPACES TO STATEMENT=REPORT=RECORD,

MOVE “STATEMENT® TO FORMaNAME,

wWRITE STATEMENT=REPORT=RECORD AFTER ADVANCING PAGE,
MOVE SPACES TO STATEMENT=REPORT=RECORD,

MOVE CUST=CUSTOMER=NAME TO ADDRESS=WINDOW,

MOVE "DATE1"™ TQ FORM=NAME,

MOVE TODAYS=REPORT=DATE TO FORM=DATE,

WRITE STATEMENTeREPORT=RECORD AFTER ADVANCING 1 LINE,
MOVE CUST=ADDRESS=LINE=1 TO ADDRESS=wINDOW,

MOVE "ACCT3" TO FORM=NAME,

MOVE CUST=CUSTeNUMBER TO FORM=DATE,

wRITE STATEMENT~REPORT=RECORD AFTER ADVANCING 1 LINE,
MOVE SPACES TO STATEMENT=-REPORT=RECORD.

MOVE CUST=ADDRESSeLINE=2 TO ADDRESS=WINDOW,

WRITE STATEMENTeREPORTeRECORD AFTER ADVANCING 1 LINE,
MOVE CUST=ADDRESS=LINE=3 TO ADDRESS=WINDOW,

SOURCE PROGRAM LISTINGS

mMOvE
wRITE
MOVE
MOVE
MOVE
MRITE
MOVE
MOVF
MOVE
MOVE
wRITE
MOVE
1F
MOVE

ELSE
IF

MOVE

ELSE
MOVE

WRITE

ExIT

[
be
26
f6
26
we
we

26

26

1]

ne

a6

a6
26

he

a6
né

26

-1

2900FC
evnles
vty
vAA13e
ae3144d
Q@cv1SR
020174
0182
@eo18C
e2ntan
edeiac
[2]
ave104

QUALEd

[RY
2021F8

voo218

290224
ane22¢

Vo238

ora2sc

(eeev0bew)
epuea
(nenvenaC)
PLTTSY
(deenrp2d)
ELLY.F]
(p2edvBl4q)
en4el
(240dvBU8)
2nang
(Mg AABSC)
A4 as
(eve¢dnB78)
vaune
(reeYvBBY)
20427
(e2paes93)
PLITY)
(QveoeBay)
2049
(P¢nVRBRY)
oNuLY
(nn@avvBCC)
PTLR BN
(pdeveRLA)
[LLRY
(2ved28ES)
LLEP &1
ded14
(PoPYRBFY)
¢a41s
(@200@BFC)
o416
(weeovoCctiC)
a1y
20418
(eo0wnces)
20419
(avadeC3e)
wru2e
(aveaeC3c)
LLIT]]
(XL
#0423
(noeevdcCed)
ond424

MOVE CUST=ADORESS«ZIP=CUDE TO ADDRESS=Z]IP,

*RITE STATEMENT=REPORT=RECURD AFTER ADVANCING 1 LINE,
MQVE SPACES TO STATEMENT-REPORTeRECORD,

MOVE CUST=CREDITeLIMIT TO REPORT=CREDIT,

MOVE CUST=BOUGHT TN REPQORTeYTD,

ARITE STATEMENTeREPORT=RECORD AFTER ADVANCING 8 LINES,
MOVE SPACES TO STATEMENT=REPORT=RECORD,

MOVE TODAYS=REPORT=DATE TO STATEMENT=DATE,

MOVE CUSTeOWE=AMT TO STATEMENT.=BALANCE,

MOVE "BALANCE ODUE"™ TO STATEMENTCAPTIUN,

WRITE STATEMENTREPORTeRECORD AFTER ADVANCING 6 LINES,
MOVE SPACES TO STATEMENT=REPCRT=RECORD,

IF CUST=OWE=AMT > CUST=CREDIT=LIMIT

MOVE "## CREDIT LIMIT EXCEEDED #»"
TO STATEMENT=REPORT=RECORD

ELSE
IF CUST=OWE=AMT > CUST=CREDIT=LIMIT # @,8

MOVE "CONSIDER AN INCREASED CREDIT LIMIT, "
TO STATE4YENT=REPORT=RECORD

ELSE
MOVE STANDARDeMESSAGE TO STATEMENTeREPORT=RECORD,
WRITE STATEMENTeNREPORTRECORD AFTER ADVANCING 4 LINES,
SEXIT,
EXIT,

C-12 SOURCE PROGRAM LISTINGS

81478 12=Jan=1979 0B14411S VAX=11 COROL=T4 Vd,ni=@l
IDENT; @12086 STATR,COR14
DATA MAP
LEVEL NAME SCURCE DOIV DIR USAGE CLASS 0CC LENGTH

@ @Lms LocN/ Loc

o cusronza.rue: pene1 @@y . @ . @ .
FD STATEMENT=REPORT @Ce93 odpay @ @ @
AN ne

2} CUSTOMER=FILE=RECORD 20P68 BYOIFA apnaey DISP wa2es
@3 CUSTeCUSTeNUMBER Q0e69 AVALFA ©Y20¢C 0ISP AN @2 (aaes
©3 CUSTeCUSTOMER=NAME 0RA72 ©¥00229 v¥A2A18 DISP AN 20 Wenld
@3 CUST=ADDRESSeLINE=} 2071 YPR21E nege2d DISP AN 08 A3
@3 CUST=ADDRESSeLINE=2 0eQa72 99023C PRJIL3M DISP AN @R veuln
93 CUSTeADDRESSeLINE-3 APAT3 @08254 BVRQ3IC DISP AN 09 Ppels
83 CUST«ADDRESS<2IP=CODE 02074 @0N278 PVAAUS DISP AN a0 “a0eS
83 CUST=PHONE 3PB75 420270 ¥BABS4 DISP AN eR wenta
85 CUSTePHONE=AREA=COOE PURAT6 A0P2T0 wrawen OISP AN [T’})
@S CUSTePHONE=EXCHANGE BPA77 40287 sxwawnr DISP AN PN a3
@5 CUSTePHONE=LASTe=d4 ARAT8 QU283 wwawww DISP NUM W veowd
93 CUSTePHONE=NUMBER @079 202270 xxaren DISP NUM 22 0feny)
©3 CUSTeATTENTIONe|INE APA8] QOPRA7 wakaxax DISP AN e nen2e
93 (CUSTeCREDITeLIMIT 0AR82 0C¢029R ARAR6D DISP NUM "0 Meu12
@3 CUSTeHEADER=DATA PCRB83 QBY29Y wrawaw DISP AN 'TECTIEV]
@5 NEXTeACCTeNUMBER 20285 @A02A1 #wrawnr DISP NUM Y deens
93 CUSTeOWE=AMT 00086 PA02A7 PuAA6C DISP ~NuM a0 MBe12
83 CUSTeBOUGHT QP88 nvVY2B3 P2enT78 DISP NUM 0 ae,i2
@3 CUSTeNEXTeORDERSEWUENCE 20090 PYI28F awwwwnr DISP NUM "0 HereuY
@3 CUSTeNEXTePAYMENT=SEQUENCE 00091 @VY2C3 eeasan NDISP NUM #0 oveead

[]} STATEMENT=REPORT=RECORD 20@95 @202CA 202084 DISP AN we 20@esa
@3 ADDRESS=WINDOW 0¥e97 VON2CF 200R9B DISP AN 20 00034
@3 ADDRESS-Z1IP 00099 QVU2EE 2°@@9C DISP AN wo venas
83 FORMeNAME A2131 20230C 2020A8 DISP AN Pl r@e1d
@5 FORM=DATE 02123 pYu312 2004084 DISP AN 20 20008

o1 SeReRe? PP10S QBA2CA seaawnr DISP AN we vaes?
23 REPORTeCREDIT 20147 229209 2000CO DISP NMEDIT g@ wv0dis
23 REPORTeYTD 20129 pWY2F3 @A@ECC DISP NMEDIT ud wadle

et §=ReRe} @0111 @YB2CA sesanx DISP AN @2 00079
@3 STATEMENT=DATE 20112 0Y¥2CA ARPQAD8 DISP AN ae 0012
@3 STATEMENT=CAPTION 00114 QUQ2ED ©YUREY DISP AN 00 ¢@a32
©3 STATEMENT=BALANCE 00115 0003A PQQ@FY DISP NMEDIT @@ 4doels

et CUSTOMER=FILE=STATUS 20121 00031C a2veFC DISP AN (L. YT

o1 STATEMENTeREPORT=STATUS 00122 2Y031E 202128 DISP AN f0 Muwel

(3} CUSTOMER=FILE=ID 00123 40322 ¢0A114 DISP AN a0 vanm4

(1} TODAYS=DATE 82125 QVV32E v¥312¥ DISP NUM a0 4eude

(1} TOR AP126 ABR3I2E A@212C DISP AN @9 ¢anes
@3 TODAYeYEAR 2127 UYQA32E 224138 DISP NUM 0w danal
83 TODAYeMONTH 90128 200332 222144 DISP NUM ed oana
93 TODAYeDAY 004129 PP0332 ¥eAISV OISP NUM #0 vena2

(1} TODAYS=REPORT=DATE AV130 VL334 veaisC DISP AN a0 »ones
93 TODAYMONTH 28131 022334 @0a168 DISP NMEDIT @0 @@ne?
@3 TODAYe=DAY 22133 020337 00174 DISP NUM ae weaee
93 TODAYeYEAR 2¥135 Q00334 AUA188 DISP NUM ne @Qan2

[1} STANDARD=MESSAGE @137 23433C 22018C DISP AN @@ oeasa

[} DISPeMESSAGE 90139 PVB36E ¥WAA198 DISP AN ae A043S
83 DI8PeNUM 93141 90Q38C GPA1A4 DISP NMEDIT e@ ¢anusS

[]} YTD=CATALOG=MINIMUM P0143 20392 002184 DISP NUM 23 oepe1a

[1 EXCEPTION=INDICATORS 20145 @0V39C 008818C OISP AN ae eeaije
93 EXCEPTION=INDICATOR QA146 QAG39C 20LICO DISP NUM Pl Aeuoy

[1 OPTIONS=AREA 2¢148 0303A0 MCQALES DISP AN a0 20039
93 OPTIONS=AREA=CHAR BA149 P3B3A6 ¢VVLFU DISP AN 1 ¢oeel

21 A=COUNT 07151 0A43C4 QVA214 DISP NUM pd @peo2

[1 OPTION=STORAGE 20153 AY03C6 200220 DISP AN a0 20008
83 OPTIONeENTRY 00154 @AA3C6 @0@22C DISP NUM (ST}

[} OPTIONeVALUES 00155 U¥O3C6 *wanew DISP AN @@ oeres

91 RECORD=COUNT 20168 PBA3CE 00288 DISP NUM 20 @eaes

o1 STATEMENT=COUNT 90169 930304 4202CU4 OISP NUM a0 o@res

(1} INVOICE=COUNT 00170 2A03DA @2292DY DISP NUM 90 deues

[1} CREDITeLIMIT=COUNT Q0171 9@A3EG ¥A020C DISP NUM P@ 40R0S

[1} CATALOG=COUNT M0172 AYQ3ES AVOES DISP NUM *2 Poaes

SOURCE PROGRAM LISTINGS C-13

STATH 12=Jan=1979 Q83402115 VAX=11 COBOL=74 Va,00=81
IDENT; 412086 8TATB,CO8jy4

PROCEDURE NAME MAP

NAME SOURCE PSECT OFFSET SEG SECT PARA

WO 909

CUSTOM=ERROR @73152 STATBSSSSSSSVUAL 0000@A0 0U s

SBEGIN 20184 STATESS$3$$S8221 “2QA0Pa 0@ P

STATEMeERROR A2199 STATBSSSS$35002 wo0@0Q @2 S

SBEGIN 00192 STATBSS$S3$$5002 002000 00 P
START«UP=HOUSEKEEPING 00205 STATBSSS$885003 0000A0 49 S

SBEGIN Q0206 STATBSS3$$S$5003 0aa020 49 P

CONF IRM=0PTIONS Q@259 STATBS$SSS8%003 020a3AC 49 P

MAINLINE A@284 STATBSSSSSSS2UY Q2@mR2e 00 S

SBEGIN 20285 STATBSSSSS$S02U aveee0 00 P

00=CR P34y STATBSSSSSSS20U mA@28C @0 4

END=PROCESS 28354 STATBSSSSSS8020S Q@200 47 S

SBEGIN 00355 STATBSS$33$5005 0QcQ00 47 4

PRINTSTATEMENT 00382 STATBSSSSSSSPA6 o00@0@ 48 S

SBEGIN 022383 STATBSS$3$$S386 0QA0QN0 48 P

SEXIT 20423 STATB3S$SSSSQUe 00M2SC 48 P

STATS 12=Jan=1979 08340115 VAX=11 COBOL=74 V4&,00-81
IDENT: 012086 @ ¢ STATB,COBj4

SEGMENTATION MAP

SECTION NAME SEGMENT . NAME s1Ze

CUSTOMeERROR oe STATBSSSSSSSMAL 29003C [LI-LY)
STATEMeERROR L1 STATBSSSSSSS0A2 2mAR3C 2eae60
STARTeUP=HQUSEKEEP ING 49 STATBSSSS$350a3 202354C 21356
MAINLINE [STATBS$38855224 203200 ee72e
END=PRQCESS 47 STATBSSSS3$¢0aS 2vm14c @332
PRINTSTATEMENT 48 STATBSSSS83s80 %0 200270 na624
STATS 12=Jan=1979 28140115 VAXe=11 COBOL=74 V4,08=01

IDENTs p12086 8§TATB,COBs4

COMPILER GENERATED PSECTS

NAME SIZE

STATB338335%000 2o0024 20036

C-14 SOURCE PROGRAM LISTINGS

81AT8 12°Jen=1979 A814Q115 VAX=11 COBOL=74 Vd,00=01
IDENT; 12086 STATE,C0814

REFERENCED OTS ROUTINES

CT4SMGNE C74$XO0PEN C74SXREDN CTUSXWRIT CT4SXSTAR Cru48XCLOS
CT4sXxEACC CTuSXEDIS C743X60 C74SXENDP CT74S$XSTPR CTUSXINSH
CT4SXINTG C74SXINTD C748XACCS CTU4SXINIT cr4sczoLT Cr4sCG2ZLY
C748CGPLTY C748CZOLE C74SCGPLE C74SCSTEQ CT74SCFSEQ CT4SCSTNE

CT4SCFSNE C748CSTGT C748C206T C748CGPGT C748MCAD CT4SMJuSL

CTaSMCFST CT4SMGNG CT4SMGLA CT4SAAF2D CT4SAMG3P C748881X}

CT4SXPRF Y
STATB 12=Jan=1979 28140115 VAXe{1 COBOL=74 V4,0A=91
IDENT; @12086 §TATB,COBj U

DATA PSECT MAP
NAME SIZE @

STATB3ISSSSSSDAT 200406 e1e30
8TATBS333838D0D 2g03aC ea78e
STATBSSSSSSSARG 20n000 ©ee00
STATBSS3SISSWRK 200014 ege2e
STATBSSSSSSSLIT eopacoe 2e704
STATBSISSSSSSLTD oe0209 0p720
STATB3338583ADT 200009 eeee?
STATBSSSSSSSUSE 2ene2e epase

$CBXAY @o0000 [-I'I-1I}]

$CBFO1 eegeed 200024

sTATB 12=Jon=1979 8142115 VAXeiy COBOL=74 Vé.ga=1
IDENT; 12086 STATB,COBy4 '

EXTERNAL SUBPROGRAM REFERENCES
DOCATS EXCEPY CREDLM

STATB 12=Jane1979 28140115 VAX=1] COBOL=T74 V4,p¥=0}

@Ioenr: 212086 : STATB,COB14

SEVERITY ERROR COUNT
1 1

SOURCE PROGRAM LISTINGS C-15

DOCATS
IDENT: 12086

/NOANST FORMAT
/MAP
/DEBUGSTRACERACHK

USE $1 21 oeeven

/COPY_ LIST
/VERR LOCAT{ON

aa)2y
2312
20973
Jeary
LT
[Fd)
anpvnr7
dpdns
40029
weate
20211
vnate
WALl
LI ey
200215
42016
voo17
20218
22919
2n020
wauel
20422
30023
Lrrry
20225
w26
00227
22028
20229
97030
20431
¥0AA32
4eall
onaly
20335
20036
90437
30438
27939
0eduo
ara4y
Qeoue
20943
avauy
20245
¥0346
30247
00048
20049
07950
29051
a9@Se
@eas3
402854
¥eYssS
20056
0ees?
209258
00859
o060
0edest
00062
20063
00064
20065
aea66
aeade7
00068
20469
200879
vee71
eeer2
20873
eneTy
wears
@076
20877
@Qa78
oeere
(000¥0028)
veese
20081

CfrrrrcCcCCrrrCrCrrCcCrrCcCrrrCCcrrr e

* %

12=Jan=
/40CKOSS REFERENCE /LIST2D0CA
/RARNINGS /ORJECT=0O

IOENYIFICATIUN DIVISION,
PROGRAM=ID,
COCATS,
DATE=wRITTEN,
DATE=-COMPILEC,

1 JANUARY 1979

This suh=proaram pri
for each CUSTOMER=FILE r
the callina nrogram,

12=Jan=1979 ,
ENVIRONMENT DIVISION,

CONFIGURATION SECTION,
SOURCE=COMPUTER,
UBJECT=COMPUTER,

Vaxe11i,
Vaxely,

INPUT=QUTPUT SECTION
FILE=CONTROL, .
SELECT LABEL=REPORT
ASSIGN TO "LABEL"
FILE STATUS IS LABEL<REP

DATA DIVISION,
FILE StCTION,

FD LABEL=PEPURT
LABEL RECURDS ARE STANDARD,

2] LABEL=REPORT=RECNRD
w1 LeR=DETAIL,
23 FILLER PIC
83 LR=ACCOUNT PIC
@1 LeR=DETAIL=2,
33 FILLER PIC
¢3 LR=Z1P PIC
WORKING=STORAGE SECTION,
?1 LABEL=REPORT=STATUS
VALUE "Xxx",
LINKAGE SECTION,
COPY CUSTRC,
@1 CUSTOMER=FILE=RECORD,
a3 CUST=CUSTeNUMBER
3 CUST=CUSTOMER=NAME
a3 CUST=ADDRESS=LINE=1
e3 CUST=ADDRESS=LINE=2
83 CUSTeADDRESS=LINE=3
23 CUST=ADDRESS=21P=COD
@3 CUST=PHONE,
M) CUST=PHONE=A
s CUST=PHONE=E
as CUST=PHONE=L
23 CUST=PHONE=NUMBER
REDEFINES CUST<PHONE
a3 CUSTeATTENTION=LINE
a3 CUST=CREDIT=LIMIT
e3 CUST=HEANER=DATA RED
25 FILLER
2s NEXT=ACCT=NU
a3 CUSTeOWE=AMT
23 CUST=BOUGHT
23 CUST=NEXT=QRDER=SEQU
23 CUST=NEXTePAYMENTeSE

PROCEDURE DIVISION USING
CUSTOMER=FILE=RECORD,

DECLARATIVES,
REPORT=ERROR SECTION,

USE AFTER STANDARD ERROR PRO
SBEGIN,.

C-16 SOURCE PROGRAM LISTINGS

1979 88141322 VAX=11 COBOL=T74
DOCATS,.COB3 6

T8

CATS

nts & mailing label
ecord passed from

ORT=STATUS,

PIC X(u®),
X(34),
X(6),
X(32),
X(5),
PIC x(2)
PIC X(6),
pIC X(30),
PIC x(30),
PIC X(38),
PIC x¢3e),
E PIC X(S),
REA=CODE PIC X(3),
XCHANGE PIC X(3),
ASTed PIC 9(4),
PIC 9(19),
PIC X(29),
PIC 9(12)Vv99,
EFINES CUST=CREDIT=LIMIT,
PIC X(6),
MBER PIC 9(6).
PIC 9(10)Vv99,
PIC 9(10)Vv99,
ENCE PIC 9(4),
QUENCE PIC 9(4),

CEDURE ON LABELe=REPORT,

V4,00=81

DISPLAY 1 01 ¢20080 (0202v¥28)
00082
00083
LLLLY]
00985
00086
00287
LI.LLY)
2089
ir 1 02 070003 (28Q20v60)
20099
OPEN t 82 002010 (p3200079)
00091
MOVE t 82 00001C (MBRARRTC)
20992
MOVE 1 @2 000028 (MBQ40B88)
20093
WRITE t 82 000034 (20008¢Q94)
20994
, 00095
MOVE 1 22 000057 (200000883)
PLELTY
WRITE t @2 ©008S5C (udedeesC)
00097
0e098
MOVE t 22 0P2078 (@de2eaD8)
00999
WRITE t 92 000084 (00V0QREU)
00100
eo10y
MOVE 1 02 0000A2 (n@eQ20100)
en102
WRITE t @2 0000AC (@evedinl)
80103
80104
MOVE t 02 0000C8 (@2000128)
90105
MOVE 1 A2 000804 (000020134)
0@ine
WRITE t 92 @020En (20000140)
eeia7
00108
MOVE 1 02 Q@08@FC (0002015C)
0e109
WRITE t 92 000108 (N0n22168)
00110
1A B}
EX1T 1t 82 092124 (@00@0184)
24112

DOCATS
IDENT; 812086

LEVEL NAME

FO LABEL=REPORT
o1 LABEL=REPORTRECORD
o1 LeReDETAIL
@83 LReACCOUNT
o1 L=ReDETAILe2
83 LReZIP
et LABEL=REPORTSTATUS
8} CUSTOMER=FILE=RECORD
@3 CUST=CUSTeNUMBER
83 CUST=CUSTOMER=NAME
@3 CUST=ADDRESS=LINE=}
@3 CUST=ADDRESS=LINEe2
@3 CUST=ADDRESSeLINE=3
@3 CUST=ADDRESS=ZIP<CODE
@3 CUST=PHONE
05 CUST=PHONE=AREA=CODE
05 CUSTePHONE=EXCHANGE
CUST=PHONE=LAST=4
@3 CUST<PHONE=NUMBER
@3 CUSTeATTENTION=LINE
@3 CUSTeCREDIT=LIMIT
83 CUST=HEADER=DATA
@S NEXT=ACCT=NUMBER
83 CUSTeOWE=AMT
23 CUST=BOUGHT
@3 CUST=NEXT=ORDER=SEQUENCE
@3 CUSTeNEXTePAYMENTeSEQUENCE

frrrrrrrrerrCrrrrcrCe e e
«
V]

DISPLAY "]=0 ERROR ON [ABEL=REPUKT, CODE (*
LABEL=REPURT=STATUS

nyw,

END DECLARATIVES,

MATINLINE SECTION,

SBEGI

No

IF LABEL=REPORT=STATUS = "xx*

OPEN OQUTPUT LABEL=REPORT,

MOVE SPACES TO LABEL<RFPNORT=RECQRD,

MOVE CUST~CUSTeNUMHER TO Lke=ACCOUNT,

WRITE LABEL=REPQORT=RECNRD
AFTER ADVANCING § LINE,

MOVE CUST=CUSTOMER=NAME T0O LABEL=REPORT=RECORD,

ARITE LABEL-REPQRT=RECORD
AFTER ADVANCING 2 LINES,

MOVE CUSTeADORESS=_INEei TO LAREL=REPORT=RECORD,

WRITE LABEL-REPORT=RECORD
AFTER ADVANCING 1 LINE,

MOVE CUST®ADDRESSeLINE=2 TO LABEL=REPORT=RECORD,

WRITE LABEL=REPQRT=RECORD
AFTER ADVAWCING

1 LINE,

MOVE CUST~ADDRESS=LINE=3 TO LAREL=REPORT=RECORD,

MOVE CUST=ADDRESS<ZIP=CODE TO LR=Z1P,

WRITE LABEL=REPORT=RECNRD
AFTER ADVAMCING I LINE,

MOVE SPACES TO LABFL=REPORT=RECOKRD,

WRITE LABEL=REPORT=RECNRD
AFTER ADVANCING 2 LINES,

EXIT PROGRAM,

DATA MaAP

SOURCE
LINE

n2e29
20031
ovnl2
20834
eea3s
o@e37
20041
20049
-I-EET)
erest
@eese
200S3
20054
aeass
20056
00057
20058
20059
g6
LLLLY
22063
02064
20066
02067
20969
"L.L 22}
8r072

bDIV
LOCN

(21114
@2014C
@eo14C
24016E
82014C
aee16C
a0aL76
(LY
gdoaen
200ra6
avpaad
020042
2080260
Q9eaTE
0900083
Qvee83
230086
920089
000083
avees8d
[LI-LER}
8200A1L
0040A7
202040
gvae89
AveaCsS
a2e0C9

DIR
Loc

260089
RARRAR
angeac
ARARAN
20p018
A2av024
(2222
XLl
avneac
“oup18
ooee24
402834
arap3c
kAR RR
ARRAAR
AR AR
ARARRN
ARANRS
I3 2322
REARAN
RAARAD
ARk Rk
kRAAAR
LR E2 3R]
L2222 2]
ARk

USAGE

DISP
D1SP
0ISP
01ISP
D1ISP
D1SP
D1ISP
018P
DISP
D1ISP
DISP
o1se
DISP
018P
DISP
oIsP
018pP
D1SP
DISP
01§P
DISP
DISP
018P
DISP
o1sP
D1sP

12=Jan=1979 PR341122 VaX=11 COBOL=~74 V4,2n=0Q1
DNCATS.CORs6

CLASS 0CC LENGTH

AN Q¢ Nerup
AN e Qeedo
AN e veens
AN f6 00037
AN @ agaes
AN fn neege
AN av v@ees
AN vd ¢odes
AN a® ¢ea3a
AN e? wvaale
AN nd Poal3n
AN 70 Jeal3n
AN ¢ 29005
AN @@ 4e0ntQ
AN ?0 0e¢oeol
AN a2 oeeal

NUM @0 Qenud
NUM @e epoin

AN a2 ¢p@29
NUM Qv @2pni2
AN 20 @gai2
NUM 20 Qeo0aeé
NUM 28 ©2e12
NUM 20 eee12
NUM 70 dearpd
NUM 2@ 0eood

SOURCE PROGRAM LISTINGS C-17

DOCATS
IDENTs 812086

PROCEDURE NAME MAP

12=Jen=1979 08141322

OFFSET SEG SECT PARA
LI-LI.I.. T]]
2000800 @0 4
000000 00]
200000 @0 P

NAME SOURCE PSECT

LINE
REPORT=ERROR 23079 DOCATSSSSS$SSQQ)
SBEGIN 00081 DOCATSS$SS$$Ssa0y
MAINLINE 28988 DOCATS$$38$S8S002
SBEGIN 80089 DOCATSS3SSSS002
DOCATS

IDENT; 8120286
SEGMENTATION MAP

12=Jane1979 28141122

SECTION NAME SEGMENT NO, NAME (3343
REPORTERROR L) DOCATSSS$$88001 202038 80056
MAINLINE [T OOCATSSSSSS%002 00213C 00316

DOCATS 12=Jan=1979 0814it22
IDENT; @12086

COMPILER GENERATED PSECTS

NAME SIZE

DOCATSsSSS33000 000028 2094@

DOCATSSSSSSS003 200040 00064

0OCATS 12~Jen=1979 08141122
IDENT: 0912086

REFERENCED OTS ROUTINES

C74SXOPEN CT4SXWRIT CT4SXEDIS C748XG0O C74S$XENDP CT4SXEXIT

CT4sX8UBK CT4SXINIT C74SCSTNE CT48MJUSL CT4SMCFST CTUSMGLA

DOCATS 12eJane1979 B8141122
10ENT; @t20@86

DATA PSECT MAP

NAME SIZE

DOCATSSSSSSSDAT 200178 00376

DOCATS833$38300D 8pe030@ 20048

DOCATSSSSSSSARG 000048 eeav2

DOCATSSSSSSSWRK 200014 20026

DOCATSgSSSSSLIT 000082E LL.LIT)

DOCATSSSSSSSLTD egee3C 20060

DOCATS$S3SSSADT [.ILILL] [-LLIT]

DOCATSSSSSSSUSE 000020 200032

SCBXAY [LLLIL) 20000

$CBFD1 [LLLLLD) [-ILLL]
DOCATS 12«Joan=1979 @88141122

IDENT; @12086

EXTERNAL SUBPROGRAM REFERENCES
NO EXTERNAL SUBPROGRAM REFERENCES

NO ERRORS

C-18 SOURCE PROGRAM LISTINGS

VAX=11 COBOL=74 V4,00°81
DOCATS.COB)6

VAXe=1] COBOL=T74
DOCATS,C08)6

Va,00=01

VAXei1 COBOL=T4 V4,00-81
DOCATS,COBj6

VAX=1{ COBOL=74 V4,00°01
DOCATS,C08)y6

VAXe11 COBOL=T4 V4&,008-81
DOCATS,C083¢

VAX=11 COBOL=74 V4,00-01
DOCATS,COBj &

APPENDIX D

DIAGNOSTIC ERROR MESSAGES

This Appendix contains a numerical listing of the diagnostic messages
generated by the compiler. Following the text of most messages are
explanations of the diagnostics, including descriptions of the
compiler's recovery actions.

001 CONTINUE PUNCH WITH BLANK STATEMENT. IGNORED.

A blank line has a continue 1indicator.
The continue indicator is ignored.

002 QUOTE OR CONTINUE PUNCH MISSING. QUOTE ASSUMED.

A non-numeric literal has no quote and
the following 1line has no continuation
indicator. A terminal quote is assumed
at the end of the line.

003 VIOLATION OF AREA A. ASSUMED CORRECT.

The first non-blank character on a
continued 1line occurs in Area A. The
error is ignored.

004 LINE LENGTH EXCEEDS INPUT BUFFER. TRUNCATED.

Continuation lines cause a COBOL word to
exceed the capacity of the input buffer.
The word is truncated on the right; the
number of characters retained depends on
the type of word being processed.

005 .IO CONTROL. WITHOUT .FILE CONTROL. IGNORED.

An I-O-CONTROL paragraph appears when no
FILE-CONTROL paragraph was present. The
I-O-CONTROL paragraph is ignored.

006

007

010

011

012

013

014

015

016

D-2

.STRING. DATA ITEM MUST HAVE DISPLAY USAGE.

A data item in a STRING statement is not
defined with DISPLAY usage. Fatal.

NAME EXCEEDS 30 CHARACTERS. TRUNCATED TO 30.

A character-string that appears to be a
name exceeds 30 characters in length.
The string is truncated on the right to
30 characters.

NUMERIC LITERAL OVER 18 DIGITS. TRUNCATED TO 18.

A numeric literal exceeds 18 digits in
length. The literal is truncated on the
right, with any necessary adjustment to
scaling. The sign is retained.

NUMERIC LITERAL HAS MULTIPLE DECIMAL POINTS.

A numeric literal has more than one
decimal point.

PICTURE CLAUSE ILLEGAL ON GROUP LEVEL. IGNORED.

A group level item has a PICTURE clause.
The clause is ignored.

.SELECT. NOT FOUND. SENTENCE IGNORED.

A FILE-CONTROL statement should begin
with the word SELECT, but does not. All
words up to the next period are ignored.

JUST.SYNC.BLANK CLAUSES WRONG AT GROUP. IGNORED.

A group 1level item may not contain
JUSTIFIED, SYNCHRONIZED, or BLANK WHEN
ZERO clauses. The clause is ignored.

FILENAME MISSING OR INVALID. SELECT IGNORED.

A SELECT statement either contains no
user name or the the wuser name |is
invalid. The SELECT statement is
ignored.

USAGE CONFLICTS WITH GROUP USAGE. USES GROUP.

The usage specified for this item
differs from the usage stated at a
higher group 1level. The group level
usage is used.

DIAGNOSTIC ERROR MESSAGES

017

020

021

022

023

024

025

026

027

ILLEGAL NUMERIC DATANAME IN .STRING.

A numeric data item in a STRING
statement has an illegal description.
Fatal.

.ALL. ILLEGAL IN CONTEXT OF .STRING. STATEMENT.

An ALL literal has been used in a STRING
statement. Fatal.

SYNTAX ERROR OR NO TERMINATOR. CLAUSES SKIPPED.

A SELECT statement is missing its
terminating period, or an error causes
the statement to be processed before all
clauses were found. The SELECT
statement is ignored.

NUMERIC LITERAL ILLEGAL IN THIS STATEMENT.

A STRING, UNSTRING, or INSPECT statement
contains a numeric literal. Fatal.

SENDING LIST OMITTED IN .STRING. STATEMENT.

A STRING statement contains no sending
fields before a DELIMITED BY phrase.
Fatal.

MORE THAN ONE FILENAME IN .ASSIGN.

The non-numeric literal of an ASSIGN
clause contains more than one file
specification. Only the first
specification is used.

ILLEGAL DATANAME FOLLOWS .INTO. IN .STRING.

The receiving field of a STRING
statement is invalid. Fatal.

SUBSCRIPTING DEPTH EXCEEDS 3. OVER 3 IGNORED.

The OCCURS clause is nested more than
three deep. The clause is ignored.

VALUE ILLEGAL IN OCCURS ITEM. IGNORED.
A VALUE clause appears in an item with
an OCCURS clause or in an item

subordinate to an OCCURS clause. The
VALUE clause is ignored.

DIAGNOSTIC ERROR MESSAGES D-3

030

031

032

033

034

035

036

037

040

D-4

VALUE ILLEGAL IN REDEFINES ITEM. IGNORED.

A VALUE clause appears in an item that
either contains a REDEFINES clause or is
subordinate to an item with a REDEFINES
clause.

NO TERMINATOR FOR .IO CONTROL. PARAGRAPH.

The I-0-CONTROL paragraph is not
terminated by a period. The terminator
is assumed present.

.MAP. NO LONGER APPLICABLE. IGNORED.

An APPLY clause with the MAP. option is
not applicable for this version and
future versions of the compiler. The
APPLY clause is ignored.

AN IO CONTROL CLAUSE WITHOUT FILES.

A file-name is missing in a clause of
the I-O-CONTROL paragraph. The clause
is ignored.

SYNTAX ERROR IN .APPLY.

An APPLY clause has illegal syntax. The
clause is ignored.

INVALID ACCESS MODE. TREAT AS SEQUENTIAL.

The SELECT statement contains an invalid
ACCESS mode. SEQUENTIAL ACCESS mode is
assumed.

INVALID FILE ORGANIZATION. TREAT AS SEQUENTIAL.
The SELECT statement contains an invalid
ORGANIZATION specification. SEQUENTIAL
organization is assumed.

NO SELECT STATEMENTS.

A FILE-CONTROL paragraph either contains
no SELECT statements or none of those
present is wvalid. The FILE-CONTROL
paragraph is ignored.

.ASSIGN. OMITTED FROM SELECT. SELECT IGNORED
A SELECT statement contains no ASSIGN

clause. The SELECT statement is
ignored.

DIAGNOSTIC ERROR MESSAGES

041

042

043

044

045

046

047

050

051

DECIMAL PLACES TRUNCATED.

Decimal places have been truncated from
a numeric literal during conversion for
use as an integer. The integer
positions are used.

INTEGER EXPECTED, ZERO ASSUMED.

An integer 1literal was expected, but
fractional positions were found. The
literal is ignored and a value of =zero
is assumed.

INTEGER VALUE TOO BIG. LARGEST VALUE USED.

A numeric literal is too big for
conversion as an integer in the given
context. A value of 32,767 is used.

ERROR IN DATA RECORDS CLAUSE. CLAUSE SKIPPED.

The word DATA is not followed by RECORD
or RECORDS in the DATA RECORDS clause.
The DATA RECORDS clause is ignored.

ERROR IN LABEL RECORDS CLAUSE. CLAUSE SKIPPED.

The word LABEL is not followed by RECORD
or RECORDS in the LABEL RECORDS clause.
The LABEL RECORDS clause is ignored.

NO INTEGER IN BLOCK CLAUSE. CLAUSE SKIPPED.

The BLOCK clause does not contain a
numeric literal. The BLOCK clause is
ignored.

BAD VALUE IN BLOCK CLAUSE. CLAUSE SKIPPED.

The numeric literal in the BLOCK clause
causes an illegal block size. The block
size in bytes must be greater than 0 and
less than 32768. Clause ignored.

NO INTEGER IN RECORD CLAUSE. CLAUSE SKIPPED.
The RECORD CONTAINS clause does not
contain a numeric literal. The RECORD
CONTAINS clause is ignored.

INVALID VALUE IN RECORD CLAUSE. CLAgSE SKIPPED.

The numeric 1literal in the RECORD
CONTAINS clause is not greater than
zero. The RECORD CONTAINS clause is
ignored.

DIAGNOSTIC ERROR MESSAGES D-5

052

053

054

055

056

057

060

061

D-6

INVALID FILENAME. FD SKIPPED.

The word following FD is not valid as a
file-name. The FD entry is ignored.

FD TERMINATOR MISSING. ASSUMED PRESENT.

The file description entry contains no
period terminator. The error is
ignored.

KEY WORD EXPECTED. REMAINING CLAUSES SKIPPED.

A keyword that begins a clause, such as
BLOCK, LABEL, DATA, etc., is missing.
The remainder of the FD entry is
ignored.

NO LABEL CLAUSE IN FD. .STANDARD. ASSUMED.

The FD entry contains no LABEL RECORD
clause. LABEL RECORD IS STANDARD is
assumed.

NO SELECT. FILE DELETED.

The FD entry's file-name has no
corresponding SELECT statement. The FD
entry is ignored. All references to the
file-name will be diagnosed as
undefined.

ALLOCATED SPACE EXCEEDS LARGEST RECORD.

The maximum record size specified by the
RECORD CONTAINS clause exceeds the space
required for any 01 entry under the same
file. The value specified by the RECORD
CONTAINS clause is used.

RECORD AREA EXTENDED TO CONTAIN LARGEST RECORD.

The space required by the largest 01
record under a file description exceeds
the space required by the RECORD
CONTAINS clause in the FD entry. The
value derived from the 01 record
description is used.

NO RECORD AREA. FILE DELETED.
No record area is allocated for a file
description. The file description is

ignored. All references to the file
will be diagnosed as undefined.

DIAGNOSTIC ERROR MESSAGES

062

063

064

065

066

067

070

071

072

ILLEGAL DATANAME FOLLOWS .WITH POINTER. PHRASE.

The data item used as a pointer in a
STRING or UNSTRING statement is illegal.
Fatal.

ILLEGAL SYNTAX IN .STRING. STATEMENT.

A STRING statement contains illegal
syntax. Fatal.

77 ILLEGAL IN FILESECTION. CHANGED TO O0l.

A 77 level item description has been
found in the FILE SECTION. The 77 level
is treated as an 01 level.

ILLEGAL WORD FOLLOWS .DELIMITED BY. PHRASE.

A data-name or 1literal is expected
following a DELIMITED BY phrase in a
STRING or UNSTRING statement. Fatal.

ILLEGAL USE OF .ALL.. IGNORED.

In the VALUE <clause, an ALL numeric
literal 1is detected. ALL is ignored by
the compiler.

CONDITION NAME MISSING OR INVALID. 88 IGNORED.

The condition-name in an 88 level entry
is either missing or invalid. The
entire entry is ignored.

TWO INDEXED KEYS START AT SAME OFFSET IN RECORD.

The leftmost character position of the
RECORD KEY or ALTERNATE RECORD KEY
data-name corresponds to the leftmost
character position of some other RECORD
KEY or ALTERNATE RECORD KEY data-name.
The clause is ignored.

.REDEFINES. ON 01 LEVEL IN FILE SECTION INVALID.

The REDEFINES clause is present on the
01 1level in the FILE SECTION, where
redefinition 1is implicit. REDEFINES
clause is ignored.

PICTURE IGNORED FOR INDEX ITEM.
An item defined as USAGE INDEX has a

PICTURE clause. The PICTURE clause is
ignored.

DIAGNOSTIC ERROR MESSAGES D-7

073

074

075

076

077

100

101

102

103

NONNUMERIC PIC ON COMP ITEM. TREATED AS DISPLAY.

An item defined with non-DISPLAY usage
has a picture-string with non-numeric

characters. The stated usage is
ignored. The item is treated as USAGE
DISPLAY.

SUBSCRIPT OUT OF RANGE. ASSUME 1.

A literal subscript is either less than
1 or greater than the maximum allowable
value. A value of I is used.

.STATUS. OMITTED FROM .FILE STATUS.. ASSUMED.

The FILE STATUS clause has incorrect
syntax. The error is ignored.

SOME FILES WITHOUT POSIT. NO. IN MUL. FILE TAPE.
A MULTIPLE FILE TAPE clause contains

file-names with POSITION clauses. Not
all the file-names contain POSITION

clauses. The error is ignored. File
searching during OPEN will find the
file.

.MULTIPLE FILE TAPE. SYNTAX ERROR.

A MULTIPLE FILE TAPE clause contains a
syntax error. The clause is ignored.

OPERAND CLASSES IN CONFLICT.

One or more operands in a statement have
an invalid class. Fatal.
POSSIBLE RECEIVING FIELD TRUNCATION.

A MOVE statement results in right-hand
truncation of the receiving field value.
This is not an error and is ignored.

TOO FEW SOURCE FIELDS FOR ADD .GIVING..
At least two valid source operands must
appear in an ADD...GIVING statement.
Fatal.

.EXIT. WAS NOT THE ONLY VERB IN PARAGRAPH.
An EXIT statement is not the only

statement in a paragraph. The EXIT
statement is ignored.

DIAGNOSTIC ERROR MESSAGES

104

105

106

107

110

111

112

113

114

SENDING ITEM INVALID OR OMITTED.

A MOVE statement contains an invalid or
missing sending operand. Fatal.

SENDING ITEM NOT FOLLOWED BY .TO..

A MOVE statement does not have the
keyword TO following the sending
operand. Fatal.

RECEIVING ITEM INVALID OR OMITTED.

A MOVE statement has no valid receiving
operand. Fatal.

INVALID CLASS FOR DESTINATION FIELD.

The receiving operand of an ADD or
SUBTRACT statement 1is not numeric or
numeric edited. Fatal.

RELATIVE OR RECORD KEY OR STATUS NAME INVALID.
The name referenced in a RELATIVE KEY,
RECORD KEY, ALTERNATE RECORD KEY or FILE
STATUS clause is invalid. The clause is
ignored.

.STOP. SYNTAX ERROR.

The STOP statement is not followed by a
literal or the word RUN. Fatal.

.SIZE ERROR. STATEMENT INCORRECT.

The word ERROR is not found in the ON
SIZE clause. Fatal.

.PROCEDURE DIVISION. OMITTED.

The source program does not contain a
PROCEDURE DIVISION. Fatal.

INTERMEDIATE RESULT TOO LARGE. HIGH ORDER TRUNC.

An arithmetic statement <calls for an
intermediate result in excess of 18
digits. The intermediate result is
truncated on the left to 18 digits, with
a possible loss of high-order, non-zero
digits at execution time.

DIAGNOSTIC ERROR MESSAGES D-9

115

116

117

120

121

122

123

124

125

INTERMEDIATE RESULT TOO LARGE. LOW ORDER TRUNC.

An arithmetic expression calls for an
intermediate result in excess of 18
digits. The intermediate result is
truncated on the right to 18 digits,
with a possible 1loss of low-order,
non-zero digits at execution time.

.DIVISION. OMITTED AFTER .PROCEDURE..

The word DIVISION is missing in the
PROCEDURE DIVISION header. The error is
ignored.

TERMINATOR MISSING AFTER DIVISION HEADER.

The period terminator is missing from a
division header. The error is ignored.

LITERAL INCOMPATIBLE WITH ATTEMPTED USAGE.

Conversion of a literal from one form to
another has failed. Fatal.

DATANAME MUST FOLLOW .INTO. IN THIS STATEMENT.

A valid data-name is not present
following INTO in a STRING or UNSTRING
statement. Fatal.

NUMERIC SUBJECT OR OBJECT MUST BE INTEGER.
A numeric, non-integer subject or object
is invalid 1in the context of this
relation condition. Fatal.

OPERANDS CONFLICT IN .SET...TO. STATEMENT.

A SET...TO statement references invalid
operands. Fatal.

OPERANDS CONFLICT IN .SET ...BY. STATEMENT.

A SET...BY statement references invalid
operands. Fatal.

ILLEGAL FILENAME LITERAL OR FILENAME DATANAME.

An ASSIGN statement or a VALUE OF 1ID
statement contains an invalid file
specification or data-name. The
statement is ignored.

D-10 DIAGNOSTIC ERROR MESSAGES

126

127

130

131

132

133

134

135

136

INVALID SUBJECT OF SIGN CONDITION.

The subject of a sign condition is not a
valid arithmetic expression. Fatal.

ITEM IN TABLE MAY NOT BE USED AS A SUBSCRIPT.

A data item wused as a subscript is
itself a table element. Fatal.

.POINTER. MUST FOLLOW .WITH. IN THIS STATEMENT.

A STRING or UNSTRING statement has an
invalid WITH POINTER phrase. Fatal.

RELATIVE KEY INVALID FOR THIS FILE. IGNORED.

A RELATIVE KEY clause has been applied
to a file that does not have RELATIVE
organization. The RELATIVE KEY clause
is ignored.

SUBJECT OR OBJECT OMITTED IN RELATION CONDITION.

The subject or object is omitted in a
COBOL relation condition. Fatal.

UNIDENTIFIABLE WORD FOUND IN SUBSCRIPT.

A subscript list contains a word that is
neither a data-name nor a numeric
literal. The remainder of the 1list or
sentence is ignored. Fatal.

INVALID SUBJECT OR OBJECT IN RELATION CONDITION.

The subject or object of a relation
condition is an invalid operand. Fatal.

SUBSCRIPTS OMITTED. ASSUME VALUE OF 1.

A reference to a table item contains no
subscript list. Literal subscripts of 1
are supplied as defaults.

RELATIVE INDEX LITERAL OUT OF RANGE. INDEX USED.

The literal value of a relative index
causes an out-of-range reference to the
table. The literal value is 1ignored,
and only the index-name is used.

DIAGNOSTIC ERROR MESSAGES D-11

137

140

141

142

143

144

145

146

SUBSCRIPTS GIVEN WHERE NOT REQUIRED. IGNORED.

A reference is made to a non-table item,
and a subscript list follows the
reference. The subscript list is
ignored.

TOO FEW SUBSCRIPTS GIVEN. ASSUME 1 FOR REST.

A reference to a table item contains a
subscript 1list with too few subscripts.
Default 1literal subscripts of 1 are
supplied for missing subscripts.

TOO MANY SUBSCRIPTS GIVEN. IGNORE EXCESS.

A reference to a table item contains too
many subscripts in the subscript list.
Extra subscripts are ignored.

SUBJECT AND OBJECT USAGE MUST MATCH.

A relation condition between non-numeric
operands requires the same usage for
both operands. Fatal.

ARITHMETIC EXPRESSION REQUIRED IN THIS CONTEXT.

An arithmetic expression is required in
the context of the COBOL statement being
compiled. The compiler has failed to
recognize the arithmetic expression in
this context. Fatal.

CONDITION EXPRESSION REQUIRED IN THIS CONTEXT.

A condition expression 1is required in
the context of the COBOL statement being
compiled. The compiler has failed to
recognize the condition expression in
this context. Fatal.

ILLEGAL OPERAND FOUND IN COBOL EXPRESSION.

An invalid data-name or literal has been
found in the COBOL statement being
compiled. The class or USAGE of the
data item may be invalid here as a
reference in an expression. Fatal.

OPERATOR IS MISSING IN COBOL EXPRESSION.

An operator is omitted in the
specification of this COBOL expression.
The compiler cannot recognize this
expression as a syntactically valid
COBOL expression. Fatal.

D-12 DIAGNOSTIC ERROR MESSAGES

147

150

151

152

153

154

155

156

157

ABSOLUTE VALUE STORED.

A negative value has been supplied for
an unsigned numeric item. The absolute
value of the numeric literal 1is stored
in the item.

ILLEGAL WORD FOUND AFTER .NOT. IN EXPRESSION.

The compiler has detected an illegal
expression operator following a NOT
keyword in the COBOL expression being
compiled. Fatal.

VERB FOUND IN AREA A. ALLOWED.

A statement begins in Area A. The error
is ignored.

EXPECTED .RELATIVE KEY. DATANAME NOT DEFINED.

The data-name given in a RELATIVE KEY
clause has not been defined in the Data
Division.

.LINAGE. CLAUSE DATAITEM IS TOO LONG.

A data item named in a LINAGE clause is
declared in the Data Division with more
than four decimal integer positions of
precision.

PROCEDURE NAME DUPLICATES DATA NAME. ALLOWED.

A procedure name 1is identical to a
data-name. The error is ignored, since
there can be no ambiguity in 1legal
references.

STATEMENTS FOLLOWING .GO. CAN NEVER BE EXECUTED.

A statement follows an unconditional GO
statement. The statements following the
GO are compiled, but cannot be executed.

NONSEQUENTIAL FILE MAY NOT BE OPTIONAL.

The SELECT statement may specify
OPTIONAL only on fi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>