
VAX-11 COBOL-74

User's Guide

Order No. AA-C986A-TE

I I I I 5555555Y.J I I I
I I

I

January 1979

This document describes how to use the VAX-ll COBOL-74 compiler.

VAX-11 COBOL-74

User's Guide

Order No. AA-C986A-TE

OPERATING SYSTEM AND VERSION: VAXIVMS V01.S

SOFTWARE VERSION: VAX-ll COBOL-74 V04

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, ~assachusetts 01754

digital equipment corporation · maynard, massachusetts

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
Dig ital.

Copyright © 1979 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last
document requests the user's critical evaluation
preparing future documentation.

page of this
to assist us in

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-II
VAX
DECnet

DECsystem-lO
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20
RTS-8
VMS
lAS

5/79-14

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-II
TMS-ll
ITPS-IO
SBI

PREFACE

ACKNOWLEDGMENTS

CHAPTER 1

CHAPTER 2

2.1
2.1.1
2.1. 2
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.3
2.4
2.4.1
2.4.2

CHAPTER 3

3.1
3.2
3.2.1
3.2.2
3.3
3.4
3.4.1
3.4.1.1
3.4.1.2
3.4.2
3.5
3.6
3.6.1
3.6.2
3.6.2.1
3.6.2.2
3.6.3
3.6.4
3.6.5
3.6.6
3.7
3.7.1
3.7.2
3.7.3
3.7.4
3.7.5
3.7.6
3.8
3.8.1

CONTENTS

INTRODUCTION

USING THE VAX-II COBOL-74 SYSTEM

CREATING A SOURCE FILE
Choosing a Reference Format
Entering a Source Program

USING THE COMPILER
The Command Line Format
Command Qualifiers
Error Message Summary
Common COBOL-74 Command Line Errors

LINKING COBOL-74 PROGRAMS
EXECUTING A COBOL IMAGE

Setting and Resetting Program Switches
The RUN Command

NON-NUMERIC DATA HANDLING

INTRODUCTION
DATA ORGANIZATION

Group Items
Elementary Items

SPECIAL CHARACTERS
TESTING NON-NUMERIC FIELDS

Relation Tests
Classes of Data
The Comparison Operation
Class Tests

DATA MOVEMENT
THE MOVE STATEMENT

Group Moves
Elementary Moves
Edited Moves
Justified Moves
Multiple Receiving Fields
Subscripted Moves
Common Errors, MOVE Statement
Format 2, MOVE CORRESPONDING

THE STRING STATEMENT
Multiple Sending Fields
The POINTER'Phrase
The DELIMITED BY Phrase
The OVERFLOW Phrase
Subscripted Fields in STRING Statements
Common Errors, STRING Statement

THE UNSTRING STATEMENT
Multiple Receiving Fields

iii

Page

xiii

xiV

1-1

2-1

2-1
2-1
2-2
2-2
2-2
2-3
2-6
2-6
2-6
2-12
2-12
2-13

3-1

3-1
3-2
3-2
3-2
3-3
3-4
3-4
3-5
3-6
3-7
3-7
3-8
3-9
3-9
3-10
3-11
3-12
3-12
3-13
3-13
3-14
3-14
3-15
3-16
~-18
3-20
3-22
3-22
3-23

3.8.2
3.8.2.1
3.8.3
3.8.4
3.8.5
3.8.6
3.8.7
3.8.8
3.8.9
3.9
3.9.1
3.9.2
3.9.3
3.9.3.1
3.9.3.2
3.9.3.3
3.9.4
3.9.5
3.9.5.1
3.9.5.2
3.9.5.3
3.9.5.4
3.9.6
3.9.6.1
3.9.6.2
3.9.6.3
3.9.6.4
3.9.6.5
3.9.7

CHAPTER 4
4.1
4.1.1
4.1. 2
4.1. 3
4.2
4.3
4.4
4.5
4.5.1
4.5.2
4.5.3
4.6
4.6.1
4.6.2
4.6.3
4.6.4
4.7
4.7.1
4.7.2
4.7.3

CONTENTS (Continued)

The DELIMITED BY Phrase
Multiple Delimiters
The COUNT Phrase
The DELIMITER Phrase
The POINTER Phrase
The TALLYING Phrase
The OVERFLOW Phrase
Subscripted Fields in UNSTRING Statements
Common Errors, UNSTRING Statement

THE INSPECT STATEMENT
The BEFORE/AFTER Phrase
Implicit Redefinition
The INSPECT Operation
Setting the Scanner
Active/Inactive Arguments
Finding an Argument Match
Subscripted Fields in INSPECT Statements
The TALLYING Phrase
The Tally Counter
The Tally Argument
The Tally Argument List
Interference in Tally Argument Lists
The REPLACING Phrase
The Search Argument
The Replacement Value
The Replacement Argument
The Replacement Argument List
Interference in Replacement Argument Lists
Common Errors, INSPECT Statement

NUMERIC CHARACTER HANDLING
USAGES

DISPLAY
COMPUTATIONAL
COMPUTATIONAL-3

DECIMAL SCALING POSITION
SIGN CONVENTIONS
ILLEGAL VALUES IN NUMERIC FIELDS
TESTING NUMERIC FIELDS

Relation Tests
Sign Tests
Class Tests

THE MOVE STATEMENT
Group Moves
Elementary Numeric Moves
Elementary Numeric Edited Moves
Common Errors, Numeric MOVE Statements

THE ARITHMETIC STATEMENTS
Intermediate Results
The ROUNDED Phrase
The SIZE ERROR Phrase

iv

Page

3-25
3-29
3-30
3-31
3-32
3-34
3-36
3-37
3-39
3-39
3-40
3-42
3-43
3-45
3-45
3-46
3-47
3-48
3-48
3-48
3-50
3-51
3-55
3-56
3-57
3-58
3-58
3-60
3-60

4-1
4-1
4-1
4-1
4-2
4-3
4-4
4-5
4-6
4-6
4-7
4-7
4-8
4-8
4-9
4-10
4-12
4-13
4-13
4-14
4-15

4.7.4
4.7.5

4.7.6
4.7.7
4.7.8
4.7.9
4.7.10
4.7.11
4.8

CHAPTER 5

5.1
5.2
5.2.1
5.2.2
5.3
5.3.1
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.4.7
5.4.8
5.4.9
5.4.10

5.4.11
5.4.12
5.4.13
5.4.14

CHAPTER 6

6.1
6.1.1
6.1. 2
6.1. 3
6.2
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.4
6.4.1
6.4.2
6.4.3

CONTENTS (Continued)

The GIVING Phrase
Multiple Operands in ADD and SUBTRACT
Statements
The ADD Statement
The SUBTRACT Statement
The MULTIPLY Statement
The DIVIDE Statement
The COMPUTE Statement
Common Errors, Arithmetic Statements

ARITHMETIC EXPRESSION PROCESSING

TABLE HANDLING

INTRODUCTION
DEFINING TABLES

The OCCURS Phrase - Format 1
The OCCURS Phrase - Format 2

MAPPING TABLE ELEMENTS
Initializing Tables

SUBSCRIPTING AND INDEXING
Subscripting with Literals
Operations Performed by the Software
Subscripting with Data-Names
Operations Performed by the RTS
Subscripting with Indexes
Operations Performed by the RTS
Relative Indexing
Index Data Items
The SET Statement
Referencing a Variable-Length Table
Element at RTS Time
Referencing a Dynamic Group at RTS Time
The SEARCH Verb
The SEARCH Verb - Format 1
The SEARCH Verb - Format 2

INPUT-OUTPUT PROCESSING

RECORD FORMAT
Fixed-length
Variable-length
Variable with Fixed-length Control

RECORD SIZE
RECORD BLOCKING

Sequential Files on Magnetic Tape
Sequential Files on Disk
Relative Files
Indexed Files

CURRENT RECORD AREA
Effects on Output Operations
Effects of Input Operations
Sharing Record Areas

v

Page

4-16

4-16
4-17
4-18
4-18
4-19
4-20
4-20
4-21

5-1

5-1
5-1
5-2
5-3
5-3
5-7
5-9
5-10
5-11
5-12
5-12
5-13
5-14
5-14
5-15
5-16

5-17
5-17
5-17
5-18
5-19

6-1

6-2
6-2
6-3
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-10
6-11
6-11

6.5
6.5.1
6.5.2
6.5.3
6.6
6.6.1
6.6.2
6.7
6.7.1
6.7.2
6.7.3
6.7.4
6.8
6.8.1
6.8.2
6.8.3
6.9
6.10
6.10.1
6.10.2
6.10.3
6.10.4

CHAPTER 7

7.1
7.2
7.3
7.4
7.5
7.6
7.6.1
7.6.2
7.6.3
7.6.4
7.6.5
7.6.6

CHAPTER 8

CHAPTER 9

9.1
9.2
9.2.1
9.2.2
9.2.3
9.3
9.3.1
9.3.2

CONTENTS (Continued)

I/O BUFFERS
RMS Buffer Defaults
Multiple Buffers (RESERVE Clause)
Sharing Buffers (SAME AREA Clause)

OPENING FILES
I/O Operations
OPEN Statement Execution

NAMING FILES
File Specifications
Logical Names
ASSIGN and VALUE OF ID Clauses
File Switches (PDP-II COBOL Compatibility)

FILE COMPATIBILITY
Data Type Differences
Data Record Formatting Differences
Special Control Characters

I/O ERROR PROCESSING
LOW-VOLUME I/O (ACCEPT AND DISPLAY)

Mnemonic-Names (SPECIAL-NAMES Paragraph)
Logical Name "Devices"
ACCEPT Statement
DISPLAY Statement

GOOD PROGRAMMING PRACTICES

FORMATTING THE SOURCE PROGRAM
USE OF PUNCTUATION
USE OF THE ALTER STATEMENT
USE OF THE PERFORM STATEMENT
USE OF LEVEL-88 CONDITION NAMES
USE OF_QUALIFIED REFERENCES

Qualified Data References
Guideline 1 (Data Item Definition)
Guideline 2 (Reference Format)
Guideline 3 (Unique Referability)
Qualified Procedure References
Qualification and Compiler Performance

REFORMAT UTILITY PROGRAM

DEBUGGING COBOL PROGRAMS

DEBUG CONCEPTS
PREPARING TO DEBUG A PROGRAM

SET LANGUAGE COBOL Command
MODULE Commands: SET, SHOW, and CANCEL
SCOPE Commands: SET, SHOW, and CANCEL

SPECIFYING LOCATIONS
Location Types
Resolving Location Ambiguities

vi

Page

6-13
6-13
6-13
6-14
6-14
6-14
6-16
6-17
6-17
6-19
6-20
6-22
6-24
6-24
6-25
6-25
6-25
6-26
6-27
6-27
6-28
6-29

7-1

7-1
7-5
7-5
7-6
7-7
7-9
7-9
7-12
7-12
7-13
7-13
7-13

8-1

9-1

9-1
9-2
9-2
9-2
9-3
9-4
9-4
9-5

9.4
9.4.1
9.4.2
9.4.3
9.4.4
9.4.5
9.4.6
9.4.7
9.5
9.5.1
9.5.2
9.6

CHAPTER 10

10.1
10.1.1
10.1.2
10.1.3
10.2
10.2.1
10.2.2
10.2.2.1
10.2.2.2

CHAPTER 11

11.1
11. 2
11.2.1
11.2.2
11. 3
11. 4
11. 5
11.5.1
11.5.2
11. 5.3
11. 5.4
11. 5.5
11.5.6
11. 6

CHAPTER 12

12.1
12.2
12.3
12.4
12.5

CONTENTS (Continued)

CONTROLLING PROGRAM EXECUTION
BREAK Commands: SET, SHOW, and CANCEL
TRACE Commands: SET, SHOW, and CANCEL
WATCH Commands: SET, SHOW, and CANCEL
GO and STEP Commands
CTRL/Y Command (Interrupting the Image)
EXIT Command
SHOW CALLS Command

EXAMINING AND CHANGING DATA
EXAMINE Command
DEPOSIT Command

SAMPLE DEBUG SESSION

ERROR MESSAGES

COMPILE-TIME ERROR MESSAGES
Severity Levels
Error Message Printing
Internal Compiler Errors -- System Errors

SYSTEM MESSAGES
Link-Time Error Messages
Run-Time Error Messages
Faulty Program Logic Error Procedures
File I/O Error Procedures

SORTING IN A COBOL PROGRAM

VAX-II SORT SUBROUTINE PACKAGE
I/O INTERFACE METHODS

File I/O Interface
Record I/O Interface

KEY DATA AND RECORD AREAS
KEY BUFFER
SORT SUBROUTINES

SOR$PASS FILES
SOR$INIT-SORT
SOR$RELEASE REC
SOR$SORT MERGE
SOR$RETURN REC
SOR$END_SORT

PROGRAMMING EXAMPLE

USING THE LIBRARY FACILITY

Creating a COBOL Library File
The COPY Statement
The COPY REPLACING Statement
The Source Listing
Common Errors in Using the Library Facility

vii

Page

9-5
9-5
9-6
9-7
9-8
9-9
9-9
9-9
9-10
9-10
9-10
9-11

10-1

10-1
10-2
10-3
10-3
10-4
10-5
10-5
10-5
10-7

11-1

11-1
11-2
11-2
11-2
11-3
11-4
11-6
11-6
11-7
11-8
11-9
11-10
11-11
11-12

12-1

12-2
12-2
12-4
12-6
12-7

CHAPTER 13

13.1
13.1.1
13.1.2
13.1. 3
13.1.3.1
13.1.3.2
13.1.3.3
13.1.3.4
13.2
13.2.1
13.2.2
13.2.3
13.3

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

INDEX

FIGURES

FIGURE

G.l
G.1.1
G.1. 2
G.1. 3
G.2
G.2.1
G.2.2
G.3
G.3.1
G.3.2
G.4
G.4.1
G.4.2

1-1
3-1
3-2

CONTENTS (Continued)

OPTIMIZATION

OPTIMIZING FILE DESIGN
Sequential Files
Relative Files
Indexed Files
General Rules for Indexed Files
Bucket Size
Index Depth
Overhead Accumulation

OPTIMIZING PROGRAM ORGANIZATION
Sequential Reading of Indexed Files
Caching Index Roots
Multi-block Reading and Writing

OPTIMIZING COMPUTATION

THE COBOL FORMATS

COMPILER IMPLEMENTATION LIMITATIONS

SOURCE PROGRAM LISTINGS

DIAGNOSTIC ERROR MESSAGES

RUN-TIME ERROR MESSAGES

INTERNAL COMPILER ERRORS -- SYSTEM ERRORS

PROGRAMMING EXAMPLES

CALLING A FORTRAN SUBROUTINE
The COBOL Program, GETROOT
The FORTRAN Program, SQROOT
Sample Run of GETROOT

CALLING VAX-II RUN-TIME PROCEDURES
The COBOL Program, RUNTIME
Sample Run of RUNTIME

USING TERMINAL ESCAPE SEQUENCES
The COBOL Program, ESCAPE
Sample Run of ESCAPE

CALLING VAX/VMS SYSTEM SERVICES
The COBOL Program, SYSTSVC
Sample Run of SYSTSVC

Building a COBOL Task Image
Field Sizes
Redefining Special Characters

viii

Page

13-1

13-2
13-2
13-2
13-3
13-5
13-6
13-7
13-7
13-8
13-8
13-8
13-9
13-9

A-I

B-1

C-l

D-l

E-l

F-l

G-l

G-l
G-l
G-3
G-3
G-4
G-4
G-5
G-5
G-6
G-9
G-I0
G-I0
G-13

Index-l

1-2
3-3
3-4

FIGURE 3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19

3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-31
3-32

3-33

3-34
3-35

3-36

3-37
3-38
3-39
3-40
3-41
3-42
3-43

3-44
3-45
3-46
3-47

CONTENTS (Continued)

Relation Condition
The Meanings of Relational Operators
Class Condition, General Format
Data Movement with Editing Symbols
Data Movement with No Editing
Subscripted MOVE Statements
Sample STRING Statement
Concatenation with the STRING Statement
Literals as Sending Fields
Indexed Sending Fields
Sample POINTER Phrase
Delimiting with the Word SIZE
SPACE as a Delimiter
Repeating the DELIMITED BY Phrase
Delimiting with More Than One Space Character
The ON OVERFLOW Phrase
Various STRING Statements Illustrating the
Overflow Condition
STRING Statement with Pointer
Subscripting with the Pointer
Subscripting with the Delimiter
Sample UNSTRING Statement
Multiple Receiving Fields
Delimiting with a Space Character
Delimiting with Multiple Receiving Fields
Delimiting with an Identifier
Multiple Delimiters
The COUNT Phrase
The DELIMITER Phrase
The POINTER Phrase
Examining the Next Character by Using the
Pointer Data Item as a Subscript
Examining the Next Character by Placing
It Into a One-Character Field
The TALLYING Phrase
The POINTER and TALLYING Phrases Used
Together
Subscripting the COUNT Phrase with the
TALLYING Data Item
Using the OVERFLOW Phrase
Sequence of Subscript Evaluation
Erroneously Repeating the Word INTO
Sample INSPECT •.• TALLYING Statement
Sample INSPECT ... REPLACING Statement
Sample INSPECT ... BEFORE Statement
Matching the Delimiter Characters to the
Characters in a Field
Sample INSPECT Statement
Sample REPLACING Argument
Sample AFTER Delimiter Phrase
Where Arguments Become Active in a Field

ix

Page

3-5
3-5
3-7
3-11
3-11
3-12
3-14
3-14
3-15
3-15
3-16
3-16
3-17
3-17
3-18
3-18

3-19
3-20
3-20
3-21
3-22
3-23
3-25
3-26
3-29
3-29
3-30
3-31
3-33

3-33

3-34
3-34

3-35

3-36
3-36
3-38
3-39
3-40
3-40
3-40

3-41
3-44
3-44
3-45
3-46

FIGURE 3-48
3-49
3-50
3-51

3-52
3-53

3-54

3-55
3-56

3-57

3-58

3-59

3-60
3-61

3-62
3-63

3-64
3-65

3-66
3-67
3-68
3-69

3-70

3-71

3-72

4-1
4-2
4-3
4-4

4-5
4-6
4-7

CONTENTS (Continued)

Sample Subscripted Argument
Format of the Tally Argument
CHARACTERS Form of the Tally Argument
Results of Counting with the LEADING
Condition
Argument List Adding into One Tally Counter
Argument List Adding into Separate Tally
Counters
Argument List (with Delimiters) Adding into
Separate Tally Counters
Results of the Scan in Figure 3-55
Two Tallying Arguments that Do Not Interfere
with Each Other
Two Tallying Arguments that Do Interfere
with Each Other
Two Tallying Arguments that, Because of
Their Positioning, Only Partially Interfere
with Each Other
An Attempt to Tally the Character B with
Two Arguments
Tallying Asterisk Groupings
Placing the LEADING Condition in the
Argument List
Reversing the Argument List in Figure 3-62
An Argument List that Counts Words in a
Statement
Counting Leading Tab or Space Characters
Counting the Remaining Characters with the
CHARACTERS Argument
Format of the Search Argument
Format of the Replacement Value
The Replacement Argument
Replacement Argument List that is Active
Over the Entire Field
Replacement Argument List that "Swaps"
Ones for Zeroes and Zeroes for Ones
Replacement Argument List that Becomes
Inactive with the Occurrence of a Space
Character
Argument List with Three Arguments that
Become Inactive with the Occurrence of a
Space
Memory Storage of COMP Data Items
Memory S~orage of COMP-3 Data Items
Truncation Caused by Decimal Point Alignment
Zero Filling Caused by Decimal Point
Alignment
Numeric Editing
Rounding Truncated Decimal Point Positions
Rounding Truncated Decimal Scaling Positions

x

Page

3-47
3-48
3-48

3-49
3-50

3-50

3-50
3-51

3-51

3-52

3-52

3-52
3-53

3-53
3-54

3-54
3-55

3-55
3-56
3-57
3-58

3-58

3-58

3-59

3-59
4-2
4-3
4-9

4-10
4-12
4-14
4-15

FIGURE

TABLES

TABLE

4-8

4-9

4-10

5-1
5-2
5-3
5-4

5-5

5-6

5-7

5-8
5-9
5-10
5-11
5-12
5-13

5-14
5-15
5-16
5-17
5-18
5-19
5-20
7-1
7-2
7-3
7-4

12-1
13-1

2-1
3-1
3-2
3-3
3-4

3-5

CONTENTS (Continued)

Explicit Programmer-Defined Temporary Work
Area
Arithmetic Statement Intermediate Result
Field Attributes Determined from Composite
of Operands
Arithmetic Expression Intermediate Result
Field Attributes Determined by Implementor­
Defined Rules
Defining a Table
Mapping a Table into Memory
Synchronized COMP Item in a Table
Adding a Field without Altering the Table
Size
Adding One Byte which Adds Two Bytes to
the Element Length
Forcing an Odd Address by Adding a I-Byte
FILLER Item to the Head of the Table
The Effect of a SYNCHRONIZED RIGHT Clause
Instead of a FILLER Item as Shown in
Figure 5-6
Initializing Tables
Initializing Mixed Usage Fields
Initializing Alphanumeric Fields
Literal Subscripting
Subscripting a Multi-Dimensional Table
Subscripting Rules for a Multi-Dimensional
Table
Subscripting with Data-Names
Index-Name Item
Subscripting with Index-Name Items
Relative Indexing
Index Data Item
Legal Data Movement with the SET Statement
Example of Using SEARCH to Search a Table
Unqualified Data Item Reference
Qualified Data Item Reference
General Format of a Qualified Data Reference
General Format of a Qualified Procedure
Reference
Merging Library Text
Three-Level Primary Key Index

Command Qualifiers
Legal Non-Numeric Elementary Moves
Results of the Preceding Sample Statements
Results of the Preceding Sample Statements
Values Moved into the Receiving Fields
Based on the Value in the Sending Field
Handling a Sending Field that is Too Short

xi

Page

4-21

4-22

4-22
5-2
5-3
5-4

5-5

5-5

5-6

5-7
5-8
5-8
5-9
5-10
5-10

5-11
5-12
5-13
5-13
5-15
5-16
5-16
5-21
7-10
7-11
7-12

7-13
12-3
13-4

2-3
3-9
3-19
3-21

3-24
3-25

TABLE 3-6
3-7

3-8
3-9
3-10

3-11

3-12

4-1

4-2
6-1

6-2

12-1

CONTENTS (Continued)

Results of Delimiting with an Asterisk
Results of Delimiting Multiple Receiving
Fields
Results of Delimiting with Two Asterisks
Results of Delimiting with ALL Asterisks
Results of Delimiting with ALL Double
Asterisks
Results of the Multiple Delimiters Shown
in Figure 3-29
Original, Altered, and Restored Values
Resulting from Implicit Redefinition
The Resulting ASCII Character from a Sign
and Digit Sharing the Same Byte
The Sign Tests
I/O Statements Grouped by File Organization,
Access Mode, and Open Mode
File Specification Switches for PDP-II
Compatibil i ty
COPY REPLACING Matches

Page

3-26

3-27
3-27
3-28

3-28

3-30

3-43

4-5
4-7

6-15

6-22
12-6

Commercial Engineering Publications typeset this manual using DIGITAL's
TMS-ll System.

956ALL

xii

PREFACE

MANUAL OBJECTIVES

This manual describes the VAX-II COBOL-74 compiler. It discusses the
relationships between the COBOL-74 language, the compiler, object
modules and executable images, and VAX/VMS and its utilities. The
User's Guide supplements the description of the COBOL-74 programming
language in the VAX-II COBOL-74 Language Reference Manual.

INTENDED AUDIENCE

This manual is designed for programmers who have a working knowledge
of the COBOL-74 language and who are familiar with the basic concepts
of VAX/VMS.

STRUCTURE OF THIS DOCUMENT

The User's Guide is
describe functions,
language system.

ASSOCIATED DOCUMENTS

organized
concepts,

into chapters and appendixes that
and features of the VAX-II COBOL-74

This manual refers to the following documents, which contain
supplemental information that is relevant to VAX-II COBOL-74
programming:

• VAX-II COBOL-74 Language Reference Manual

• VAX/VMS Command Language User's Guide

• VAX-II Linker Reference Manual

• Introduction To VAX-II Record Management Services

• VAX-II Symbolic Debugger Reference Manual

• VAX-II Sort Reference Manual

• VAX/VMS Operator's Guide

CONVENTIONS USED IN THIS DOCUMENT

The syntactic
discussed in
Manual.

conventions used
Chapter I of the

in general format examples are
VAX-II COBOL-74 Language Reference

xiii

ACKNOWLEDGMENT

COBOL is an industry language and is not the property of
or group of companies, or of any organization
organizations.

any company
or group of

No warranty, expressed or implied,
the CODASYL COBOL Committee as to
programming system and language.
assumed by any contributor, or
therewith.

is made by any contributor or by
the accuracy and functioning of the

Moreover, no responsibility is
by the committee, in connection

The authors and copyright holders of the copyrighted material used
herein are: FLOW-MATIC (trademark of Sperry Rand Corporation),
Programming for the UNIVAC (R) I and II, Data Automation Systems
copyrighted 1958, 1959, by Sperry Rand Corporation~ IBM Commercial
Translator Form No. F28-8013, copyrighted 1959 by IBM~ FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell.

They have specifically authorized the use of this material, in whole
or in part, in the COBOL specifications. Such authorization extends
to the reproduction and use of COBOL specifications in programming
manuals or similar publications.

Procedures have been established for the maintenance of COBOL.
Inquiries concerning the procedures for proposing changes should be
directed to the Chairman of the CODASYL COBOL Committee, P.O. Box
1808, Washington, DC 20013.

xiv

CHAPTER I

INTRODUCTION

The VAX-II COBOL-74 compiler translates ANS-74 COBOL source programs
into relocatable object modules~ it runs under the supervision of
VAX/VMS.

To run a COBOL program, you follow a four-step process:

• Prepare a source program

• Compile a source program

• Link object modules into an executable image file

• Execute the image

The VAX-II COBOL-74 compiler accepts COBOL source statements from
source input files. This means that you must manually enter your
source statements onto an acceptable medium prior to the compilation
process.

Once you have decided upon an input medium and format for your source
input files and have created them, you compile the source program.
The VAX-II COBOL-74 compiler reads source statements from the source
input file and translates them into an object module consisting of
program sections (PSECTs). It can also produce a source program
listing with optional special-purpose listings, such as a map and
cross-reference. Chapter 2 describes the procedure for compiling
programs and specifying compiler options.

The compiler can compile only one source program or subprogram at a
time. Therefore, a program that consists of a main program and one or
more subprograms requires multiple executions of the compiler. Each
compilation generates a separate listing and object module.

The compiler produces an object module, which must be linked by the
VAX-II Linker to produce an executable image file. The linker can
combine several independently compiled object modules into a single
executable image~ the ability to compile COBOL subprograms to produce
linkable object modules enables you to create modular programs.

The image is an executable form of the declarations and instructions
in your COBOL source programs. It includes subprograms that were
included by the linker as a result of your commands. It also includes
routines from the COBOL run-time system (RTS) , which is a library of
predefined generalized procedures that perform standard functions for
your program.

Figure 1-1 shows the process of preparing a COBOL program for
execution.

1-2 INTRODUCTION

VAX-11
COBOL-74
COMPILER

VAX-11
LINKER

Figure 1-1
Building an Executable Image

H-MK-00043-00

CHAPTER 2

USING THE VAX-II COBOL-74 SYSTEM

This chapter discusses the procedures for creating,
linking, and executing COBOL programs.

2.1 CREATING A SOURCE PROGRAM

compiling,

Before you can compile a COBOL program, you must decide on the source
reference format and prepare your source program for input to the
compiler.

2.1.1 Choosing a Reference Format

The VAX-II COBOL-74 compiler can accept source programs in either
conventional or terminal reference format (both are described in the
VAX-II COBOL-74 Reference Manual). However, you cannot mix reference
formats in the same source program (including text copied from a COBOL
library) .

Terminal format was designed to be easily used by programmers at
interactive terminals~ therefore, the compiler accepts terminal
reference format as a default and allows you to use a command
qualifier to specify conventional format. The terminal format can
reduce the amount of file space needed to store source programs. In
addition, it is usually easier to edit source programs written in
terminal format, because spacing requirements are more flexible.

You may want to select the conventional reference format, however, if
your COBOL program was originally written that way for another
compiler.

You can convert a terminal format program to conventional
using the REFORMAT utility, which is described in Chapter
also use REFORMAT to match the formats of source files
library files if they are not the same.

format by
8. You can

and COBOL

2.1. 2 Entering a Source Program

You can create a source program file by using the VAX/VMS CREATE
command or a text editor. CREATE can be used only for a new file;
you must use a text editor to change existing source files. Most
users rely on text editors for both creating and updating source
files.

Unless you specify a file type for the source program file in the
command line, which is described in the next section, the compiler
assumes COB as a default; therefore, you can simplify compiling by
naming source files with the default file type.

The CREATE command is described in the VAX/VMS Command Language User's
Guide; the VAX/VMS Text Editing Reference Manual discusses the SOS
and SLP text editors.

2.2 USING THE COMPILER

The VAX-II COBOL-74 compiler translates source statements into object
modules that contain relocatable code. It can also produce a listing
of source statements and other information if you use the appropriate
command qualifiers. This section describes the procedure for
compiling your source program; it discusses the COBOL command line
and the error message summary. Finally, it lists some common errors
to avoid in entering compiler command lines. Appendix C discusses the
components of the source program listing.

2.2.1 The Command Line Format

The VAX-II COBOL-74 command line has the following format:

COBOL/C74 [/command-qualifiers] file-spec

where:

COBOL/C74

/command-qua1ifiers

file-spec

specifies the VAX-II COBOL-74 compiler.

specify compiler options.

specifies the file that contains the COBOL
source program. If you do not supply a file
type in the file specification, the compiler
uses COB as the default.

Do not use wild
specification.

cards in the file

2-2 USING THE VAX-11 COBOL-74 SYSTEM

2.2.2 Command Qualifiers

VAX-II COBOL-74 provides a series of command qualifiers that you can
use to select or suppress compiler options. Table 2-1 summarizes the
qualifiers, which are then described in detail.

Table 2-1
Command Qualifiers

Qualifier

/[NO]ANSI FORMAT
/[NO]COPY:=LIST
/[NO]CROSS_REFERENCE
/[NO]DEBUG
/[NO]LIST[=file-spec]
/[NO]MAP
/[NO]OBJECT[=file-spec]
/[NO]VERB LOCATION
/[NO]WARNINGS

/ANSI FORMAT
/NOANSI FORMAT

Default

/NOANSI FORMAT
/COPY LIST
/NOCROSS REFERENCE
/NODEBUG-

/NOMAP

/NOVERB LOCATION
/WARNINGS

Indicates whether the source program is in ANSI (conventional)
format or in DIGITAL's terminal format.

For conventional format, the compiler expects 80-character images
with optional sequence numbers in character positions 1-6,
indicators in position 7, Area A beginning in position 8, Area B
beginning in position 12, and the identification area in
positions 73-80.

By default, the compiler assumes that the source file is in
terminal format: that is, Area A begins in record position 1.

/COPY LIST
/NOCOPY LIST

Controls whether statements included by COPY statements in the
source program are printed in the listing file.

/COPY LIST is the default: the compiler includes all source
statements in the source listing.

/NOCOPY LIST suppresses the listing of text copied from library
files: -only the COpy statement appears in the listing file.

/CROSS REFERENCE
/NOCROSS REFERENCE

Controls whether the source
cross-reference listing.

program listing includes a

USING THE VAX-II COBOL-74 SYSTEM 2-3

/CROSS REFERENCE produces a cross-reference listing as part of
the listing file. The compiler sorts data-names and
procedure-names into ascending order and lists them with the
source program line numbers on which they appear. On the
listing, the symbol # indicates the source line on which the name
is defined. Note that the use of /CROSS REFERENCE significantly
slows down the compilation of large programs.

By default, the compiler does not create a cross-reference
listing.

/DEBUG[=TRACEBACK]
/NODEBUG

Controls whether the compiler produces traceback information and
local symbol table information for the debugger.

/DEBUG allows you to refer to data items by data-name, and to
Procedure Division locations by line number~ it generates both
traceback and symbol table information. /DEBUG=TRACEBACK
produces traceback information only~ /NODEBUG generates neither.
The default is /NODEBUG.

Chapter 9 discusses COBOL program debugging using the VAX/VMS
Symbolic Debugger.

/LIST[=file-spec]
/NOLIST

Controls whether the compiler produces an output listing.

If you use the COBOL/C74 command in interactive mode, the
compiler, by default, does not create a listing file.

If the COBOL/C74 command is executed from a batch job, /LIST is
the default.

When you specify /LIST, you can control the defaults applied to
the output file specification by where you place the qualifier in
the command, as described in the VAX/VMS Command Language User's
Guide.

The output file type always defaults to LIS.

/MAP
/NOMAP

/MAP causes the compiler to produce the following reports in the
listing file:

• Data Division Map
• Procedure Map
• External Subprograms Referenced
• Data and Control PSECTs
• RTS Routines Referenced
• Segmentation Map

/NOMAP is the default.

2-4 USING THE VAX-II COBOL-74 SYSTEM

/OBJECT[=file-spec]
/NOOBJECT

Controls whether the compiler produces an object file.

By default, the compiler produces an object file with the same
file name as the input file and a file type of OBJ. The compiler
also uses the default file type of OBJ when you include a file
specification with the /OBJECT qualifier that does not have a
file type.

/VERB LOCATION
/NOVERB LOCATION

Indicates whether the output listing produced by the compiler
shows the object location of each verb in the source program.

The location appears on the line before the source line in which
the verb is used.

The default is /NOVERB_LOCATION.

/WARNINGS
/NOWARNINGS

Controls whether the compiler prints informational diagnostic
messages as well as warning and fatal diagnostic messages. By
default, the compiler prints informational diagnostics~ specify
/NOWARNINGS to suppress them.

Co~sider the following command line examples:

COBOL/C74/0EBUG PROGA

Produces an object module file PROGA.OBJ from the source
file PROGA. COB.

COBOL/C14/LIST/OEBUG/OBJECT=TESTB Al2

Uses the source file AI2.COB to produce object module
TESTB.OBJ and a source listing in file AI2.LIS.

COBOL/C74/LIST/CROSS_REFERENCE PAYROLL

Uses the source file PAYROLL.COB to produce object module
PAYROLL.OBJ and a source listing with cross reference in
f.ile PAYROLL. LIS.

The debugger cannot reference data items by data-name in
this module because the /OEBUG qualifier is not specified.

COBOL/C74/LIST=RPTB.REP/OEBUG/MAP REPORTB.TXT

Uses the source file REPORTB.TXT to produce object module
REPORTB.OBJ and a source listing with map in file RPTB.REP.

USING THE VAX-II COBOL-74 SYSTEM 2-5

2.2.3 Error Message Summary

If the compiler detects any errors during a compilation, it
an error message summary on the system output device.
message summary has the following format:

C74 -- nnnnn ERROR(S), nnnnn FATAL

NOTE

If any fatal errors occur, the compiler
does not generate an object file.

2.2.4 Common COBOL-74 Command Line Errors

displays
The error

Some common errors to avoid when entering COBOL-74 command lines are:

• Omitting the /ANSI FORMAT qualifier for source programs that
are in conventional format.

• Including contradictory qualifiers, such as /MAP without
/LIST.

• Omitting version numbers from file specifications when you
want to compile other than the latest version of a source
file.

• Forgetting to use a file type in the file specification when
you intend to use or create a file with other than the
default file type.

2.3 LINKING COBOL-74 PROGRAMS

After you have compiled one or more source programs to produce object
modules, you must link the object module(s) to create a program image
that can then be executed. Linking resolves symbolic references in
the object code and establishes absolute addresses for them. This
section describes the procedure for creating executable images from
object modules using the VAX/VMS LINK command. You will find further
information in the VAX/VMS Command Language User's Guide and the
VAX-II Linker Reference Manual.

To link object modules, enter a LINK command in the following format:

LINK [/command-qualifiers] file-spec(s) [/file-qualifiers]

2-6 USING THE VAX-ll COBOL-74 SYSTEM

where:

/command-qualifiers specify output file options.

file-spec specifies the input file(s) to be linked.

/file-qualifiers specify input file options.

You can enter multiple file specifications separated from each other
by commas or plus signs (which are equivalent). Regardless of how
many file specifications you specify, the LINK command produces only
one executable image.

If you
Linker
file.
OBJ.
Linker

do not specify a file type in an input file specification, the
assumes default file types, depending on the nature of the

For example, object files are assumed to have a file type of
The VAX/VMS Command Language User1s Guide discusses VAX-II
default file types in detail.

Default file types for output
Command Language User1s Guide.

files are discussed in the VAX/VMS
Consider the following command line:

LINK TESTA,TESTB,SYS$LIBRARY:C74LIB/LIB

This line causes the compiler to use two object modules (TESTA.OBJ and
TESTB.OBJ) to produce a single executable image (TESTA.EXE).

NOTE

The command line must specify the
library that contains the COBOL-74 RTS.
The examples in this chapter specify:

SYS$LIBRARY:C74LIB/LIB

You can also specify the
sharable RTS, which results in
image file and sharing of
memory when two or more COBOL
at the same time. Link
sharable RTS by specifying:

SYS$LIBRARY:C74LIB/OPT

optional
a smaller
physical

images run
with the

Before you can use this option, your
system manager must install the sharable
image, SYS$SYSTEM:C74LIB.EXE, as SHARED.
The procedure is described in the
VAX/VMS Operator1s Guide.

USING THE VAX-II COBOL-74 SYSTEM 2-7

The following discussion describes the command qualifiers and file
qualifiers that you are most likely to use for linking COBOL modules.
However, you will find complete discussions of all LINK command
qualifiers in the references already mentioned. The following
qualifiers are discussed:

Command qualifiers

/BRIEF
/[NO]CROSS REFERENCE
/[NO]DEBUG[=file-spec]
/[NO] EXECUTABLE [=file-spec]
/FULL
/[NO]MAP[=file-spec]
/[NO]TRACEBACK

File qualifiers

/INCLUDE=module-name[, ...]
/LIBRARY
/OPTIONS

Command Qualifiers:

/BRIEF

Default

/NOCROSS REFERENCE
/NODEBUG­
/EXECUTABLE

/NOMAP
/TRACEBACK

Produces a
you also
line.

brief memory allocation map file. Use /BRIEF only if
specify /MAP; /BRIEF must follow /MAP on the command

The brief form of the map contains:

1. A summary of the image characteristics.

2. A list of all object modules included in the image.

3. A summary of link-time performance statistics.

Example

LINK/MAP/BRIEF PROGA,SYS$LIBRARY:C74LIB/LIB

'/CROSS REFERENCE
/NOCROSS REFERENCE

Controls whether the Linker produces a symbol cross-reference on
the memory allocation map.

Use /CROSS REFERENCE only if you also specify
/CROSS_REFERENCE must follow /MAP on the command line.

2-8 USING THE VAX-ll COBOL-74 SYSTEM

/MAP;

Example

LINK/MAP/CROSS_REFERENCE PROGA,SYS$LIBRARY:C74LIB/LIB

The symbol cross-reference lists each global symbol referenced in
the image, its value, and all modules in the image that refer to
it.

The default is /NOCROSS_REFERENCE.

/DEBUG[=file-spec]
/NODEBUG

Controls whether the Linker includes a debugger in the image.

If the object module contains local symbol table information for
the Debugger, specify /DEBUG to include the information in the
image as well.

You can include the optional
user-defined debugger~ the
specify /DEBUG without a file
Debugger is linked with
information on using /DEBUG
Reference Manual.

The default is /NODEBUG.

file specification to specify a
default file type is OBJ. If you

specification, the default VAX/VMS
the image. You will find more

in the VAX/VMS Symbolic Debugger

Chapter 9 discusses COBOL program debugging.

/EXECUTABLE[=file-spec]
/NOEXECUTABLE

/FULL

Controls whether the
optionally supplies
file.

Linker creates an executable image and
a file specification for the output image

By default, the Linker creates an executable image with the same
file name as the first input file and a file type of EXE.

Use /NOEXECUTABLE to see the results of linking in less time than
the Linker would need to create an image file.

Examples:

LINK/EXECUTABLE=NEWPROG.IMG/MAP PROGA,SYS$LIBRARY:C74LIB/LIB

LINK/NOEXECUTABLE/MAP PROGA,SYS$LIBRARY:C74LIB/LIB

Produces a
you also
line.

full memory allocation map listing. Use /FULL only if
specify /MAP~ /FULL must follow /MAP on the command

USING THE VAX-II COBOL-74 SYSTEM 2-9

A full map listing contains:

1. All information contained in the brief listing.

2. Detailed descriptions of each program section and image
section in the image file.

3. Lists of global symbols by name and value.

Example

LINK/MAP/NOEXEC/FULL PROGA,SYS$LIBRARY:C74LIB/LIB

/MAP[=file-spec]
/NOMAP

Controls whether the Linker produces a memory allocation map
listing.

You can specify the file specification to name the map file;
otherwise, the name of the output file is the same as the name of
the first input file, with a file type of MAP.

When you specify /MAP, you can also specify /BRIEF, /FULL, or
/CROSS REFERENCE to control the contents of the map. If you
specify none of these qualifiers, the map contains:

1. All the information contained in the brief listing.

2. A list of user-defined global symbols sorted by name.

3. A list of user-defined program sections.

The default is /NOMAP.

/TRACEBACK
/NOTRACEBACK

Controls whether the Linker includes traceback information in the
image file.

By default, the Linker includes traceback information so the
system can trace the call stack when an error occurs. If you
specify /NOTRACEBACK, you will get no traceback reporting when
errors occur.

If you specify /DEBUG, the Linker also assumes /TRACEBACK.

File Qualifiers

/INCLUDE=module-name[, •..]
Indicates that the associated file specification refers to an
object module library (the default file type is OLB);
furthermore, it causes the Linker to unconditionally include only
the specified module(s).

2-10 USING THE VAX-II COBOL-74 SYSTEM

You must specify at least one module-name. Specify more than one
by separating them with commas and enclosing the list in
parentheses.

You can also specify /LIBRARY when you specify /INCLUDE to cause
the Linker to search the library for unresolved references after
it unconditionally includes the specified module(s) .

Examples:

/LIBRARY

LINK PROGA,LIBA/INCLUDE=MODA,SYS$LIBRARY:C74LIB/LIB

The Linker links PROGA.OBJ and the module
MODA from the library file LIBA.OLB to
produce PROGA.EXE.

LINK PROGA,LIBA/INC=(MODA,MODB)/LIB,SYS$LIBRARY:C74LIB/LIB

The Linker links PROGA.OBJ and the modules
MODA and MODB from the library file
LIBA.OLB. Because of the /LIBRARY file
qualifier, the Linker will also search
LIBA.OLB for any other unresolved references
in PROGA.OBJ, MODA, and MODB.

Indicates that the file specification refers to a library file to
be searched to resolve any undefined symbols in the input
file(s).

If the file specification does not include a file type, the
Linker assumes the default file type OLB. Do not specify a
library as the first input file unless you also specify the
/INCLUDE qualifier to indicate which modules in the library are
to be unconditionally included in the image. You can use both
/INCLUDE and /LIBRARY: this causes the Linker to include the
specified modules, then search the library for unresolved
references.

Examples

LINK PROGA,LIBA/LIBRARY,SYS$LIBRARY:C74LIB/LIB

The Linker searches LIBA.OLB for unresolved
references in PROGA.OBJ to create PROGA.EXE.

LINK LIBA/LIB/INCLUDE=MODI/EXEC=PROG,SYS$LIBRARY:C74LIB/LIB

The Linker includes the module MODI from
LIBA.OLB, then searches LIBA.OLB for
unresolved references in MODI. The result
is an executable image PROG.EXE.

USING THE VAX-II COBOL-74 SYSTEM 2-11

/OPTIONS
Indicates that the input file contains a list of options to
control linking. If the /OPTIONS file specification does not
include a file type, the Linker uses the default file type OPT.

The contents of the option file are described in the VAX-II
Linker Reference Manual.

2.4 EXECUTING A COBOL IMAGE

When the object modules have been linked to create an executable
image, you can use the RUN command to execute the image in the
process. If you specified SWITCH ON or OFF in the SPECIAL-NAMES
paragraph of the COBOL source program, you can specify the status of
switches before or during image execution.

2.4.1 Setting and Resetting Program Switches

COBOL program switches exist as the logical name COB$SWITCHES, which
can be defined for the process, group, or system. Use the DEFINE
command (you can also use the ASSIGN command) to change the status of
program switches:

DEFINE COB$SWITCHES "switch-list"

where switch-list is a list of one or more program switch numbers
(1-16) separated by commas. The entire list must be enclosed in
quotes. A switch is set ON if its number appears in the switch-list;
otherwise, it is set OFF.

Examples

DEFINE COB$SWITCHES "1,5"

Sets switches 1 and 5 ON; sets all others OFF.

DEFINE COB$SWITCHES "4,5,6,7,8,9,10,11,12,13,14,15,16"

Sets all switches ON except 1, 2, and 3.

DEFINE COB$SWITCHES " "

Turns OFF all switches.

The order of evaluation of logical name assignments is: process,
group, system. System and group logical name assignments (including
COBOL program switch settings) continue until they are changed (or
deassigned). Process logical name assignments exist until either they
are changed (or deassigned) or until the process terminates.
Therefore, you should be aware of system and group assignments of
COB$SWITCHES before executing an image if you do not define it
yourself in your process.

2-12 USING THE VAX-II COBOL-74 SYSTEM

You can guarantee the intended status of COBOL program switches by
setting switches just before executing an image that uses them. You
can confirm the switch settings by using the following command:

SHOW LOGICAL COB$SWITCHES

You can use the DEASSIGN command to remove the switch-setting logical
name from your process: the group or system logical name (if any) is
then active:

DEASSIGN COB$SWITCHES

You can also change the status of switches during execution:

1. Interrupt the image with CTRL/Y or a STOP literal COBOL
statement.

2. Use a DEFINE command to change switch settings.

3. Continue the image with a CONTINUE command. Be sure that you
do not force the interrupted image to exit by entering a
command that executes another image.

2.4.2 The RUN Command

Use the RUN command to execute an image:

RUN [/command-qualifierl file-spec

If you do not specify a file type
command uses the default file type

in file
EXE.

specification,

The RUN command has two optional command qualifiers:

/DEBUG

the RUN

Specify /DEBUG to request the debugger at execution time if the
image was not linked with the debugger. However, you cannot use
/DEBUG if /NOTRACEBACK was specified when the image was linked.

/NODEBUG
Specify /NODEBUG if you do not want the debugger at execution
time for an image that was linked with the /DEBUG qualifier.

Examples

RUN PROGA

RUN PROGB.ABC

RUN/NODE BUG PROGA

Executes PROGA.EXE.

Executes the image named PROGB.ABC.

Executes PROGA.EXE without the debugger
that may have been linked with it.

You can also use the RUN (Process) command to execute the image as a
separate process. (See the VAX/VMS Command Language User's Guide.)

USING THE VAX-II COBOL-74 SYSTEM 2-13

CHAPTER 3

NON-NUMERIC CHARACTER HANDLING

3.1 INTRODUCTION

COBOL programs hold their data in fields whose
their source programs. These fields are
compilation to remain the same size throughout
resulting object program.

sizes are described in
thus "fixed" during

the lifespan of the

The data descriptions of the fields in a COBOL program describe them
as belonging to any of three data classes -- alphanumeric, alphabetic,
or numeric class. Numeric class data items contain only numeric
values, alphabetic class only A-Z and space, but alphanumeric class
data items may contain values that are all alphabetic, all numeric, or
a mixture of alphabetic bytes, numeric bytes, or, in fact, any
character from the ASCII character set.

Further, these three classes are subdivided into five categories:
alphabetic, numeric, numeric edited, alphanumeric edited, and
alphanumeric. Every elementary item except for an index data item
belongs to one of the classes and further to one of the categories.
The class of a group item is treated at run time as alphanumeric
regardless of the classes of subordinate elementary items.

For alphabetic and numeric (data items) class and category are
synonymous.

An alphabetic field is a field declared to contain only alphabetic
(A-Z and space) characters.

An alphanumeric class field that is declared to contain any ASCII
character is called an alphanumeric category field.

If the data description of an alphanumeric class field specifies that
certain editing operations will be performed on any value that is
moved into it, that field is called an alphanumeric or numeric edited
category field.

When reading the following sections of this chapter, this distinction
between the class or category of a data item and the actual value that
the item contains should always be kept in mind.

Sometimes the text refers to alphabetic, alphanumeric, and
alphanumeric edited data items as non-numeric data items. This is to
distinguish them from items that are specifically described as numeric
items.

Regardless of the class of an item, it is usually possible to store a
value in the item, at run time, that is "illegal". Thus, non-numeric
ASCII characters can be placed into a field described as numeric
class, and an alphabetic class field may be loaded with non-alphabetic
characters.

To increase readability, the following sections occasionally omit the
word "class" when describing an item~ however, the reader should
regard the descriptive word, numeric, alphabetic, or alphanumeric, as
referring to the class of an item unless it applies specifically to
the value in the item.

This chapter discusses non-numeric class data and the non-arithmetic,
non-input-output operations that manipulate this type of data.

3.2 DATA ORGANIZATION

Usually, the data areas in a COBOL program are organized into group
items with subordinate elementary items. A group item is a data item
that is followed by one or more data items (elementary items) with
higher valued level numbers. An elementary item has no higher valued
subordinate level number.

All of the data areas used by COBOL programs (except for certain
registers and switches) must be described in the Data Division of the
source program. The compiler allocates memory space for these fields
and fixes them in size at compilation time.

The following sub-sections (3.2.1 and 3.2.2) discuss, on a general
level, how the compiler handles group and elementary data items.

3.2.1 Group Items

The size of a group item is the total size of
by its subordinate elementary items. The
items to be alphanumeric DISPLAY items.
manipulates group items as if they had
items, and ignores the structure of the data

3.2.2 Elementary Items

the data area occupied
compiler considers group

Thus, the software
been described as PIC X()
contained within them.

The size of an elementary item is determined by the number of
allowable symbols it contains that represent character positions. For
example, consider figure 3-1.

3-2 NON-NUMERIC CHARACTER HANDLING

01 TRANREC.
03 FIELD-l PIC X(7).
03 FIELD-2 PIC S9(5)V99.

Figure 3-1
Field Sizes

Both fields consume seven bytes of memory~ however, FIELD-l contains
seven alphanumeric bytes while FIELD-2 contains decimal digits and an
operational sign. Although certain verbs handle these two classes of
data differently, the data, in either case, occupies seven bytes of
VAX-II memory. COBOL operations on such fields are independent of the
mapping of the field into VAX-II memory words (16-bit words that hold
two 8-bit bytes). Thus, a field may begin in the left or right-hand
byte of a word with no effect on the function of any operations that
may refer to that field.

In effect, the compiler sees memory as a continuous array of bytes,
not words. This becomes particularly important when declaring a table
with the OCCURS clause (see Chapter 5, Table Handling) .

Records (a 01 level entry and all of its subordinate entries) and data
items that have a level number of 77 and all literal values given in
the Procedure Division automatically begin on even byte addresses.

I/O verbs require that records be aligned on word boundaries because
the VAX-II COBOL-74 file system reads and writes integral numbers of
words.

Non-input-output verbs do not require alignment of the data. However,
when two fields are aligned identically, the processing verb can
sometimes increase its efficiency by processing them a word at a time
rather that a byte at a time.

In all cases, automatic word alignment of literals, records, and/or 77
items increase the opportunity for more efficient processing.

3.3 SPECIAL CHARACTERS

COBOL allows the user to manipulate any of the 128 characters of the
ASCII character set as alphanumeric data even though many of the
characters are control characters, which usually control input/output
devices. Generally, alphanumeric data manipulations are performed in
a manner that attaches no "meaning" to an 8-bit byte. Thus, the user
can move and compare these control characters in the same manner as
alphabetic and numeric characters.

Although the object program can manipulate all ASCII characters,
certain control characters cannot appear in non-numeric literals since
the compiler uses them to delimit the source text. Further, the
keyboards of the console and keypunch devices have no convenient input
key for many of the special characters, thus making it difficult to
place them into non-numeric literals.

NON-NUMERIC CHARACTER HANDLING 3-3

Special characters may be placed into data fields of the object
program by placing the binary value of the special character into a
numeric COMP field and redefining that field as alphanumeric DISPLAY.
Consider the following example of redefinition. (Keep in mind that
the even byte of a word corresponds to the low-order bits of a binary
word.)

01 LF-COMP PIC 999 COMP VALUE 10.
01 LF REDEFINES LF-COMP PIC X.
01 HT-COMP PIC 999 COMP VALUE 9.
01 TAB REDEFINES HT-COMP PIC X.
01 CR-COMP PIC 999 COMP VALUE 13.
01 CR REDEFINES CR-COMP PIC X.

Figure 3-2
Redefining Special Characters

The sample coding in Figure 3-2 introduces each character as a I-word
COMP item with a decimal value, then redefines it as a single byte.
(The second byte of the redefinition need not be described at the 01
level, since redefinition at this level does not require identically
sized fields.)

Use the Character Set table in Appendix B of the VAX-II COBOL-74
Language Reference Manual to determine the decimal value for any ASCII
character.

3.4 TESTING NON-NUMERIC FIELDS

3.4.1 Relation Tests

An IF statement that contains a relation condition (greater-than,
less-than, equal-to, etc.) can compare the value in a non-numeric data
item with another value and use the result to alter the flow of
control in the program.

An IF statement with a relation condition compares two
either of which may be an identifier or a literal, except
cannot be literals. If the relation exists between the two
the relation condition has a truth value of true.

operands,
that both
operands,

Figure 3-3 illustrates the general format of a relation condition.
(The relational characters ">," "(," and "=," although required, are
not underlined to avoid confusion with other symbols such as
greater-than-or-equal-to.)

3-4 NON-NUMERIC CHARACTER HANDLING

IS [NOT] GREATER THAN
IS [NOT] LESS THAN

{
identifier-l }
literal-l

arithmetic-expression-l

IS [NOT] EQUAL TO
IS [NOT] >
IS [NOT] <

{
identifier-2 }
literal-2
arithmetic-expression-2

IS [NOT]

Figure 3-3
Relation Condition

When coding a relational operator, leave a space
reserved word. When the reserved word NOT is
considers it and the next key word or relational
relational operator that defines the comparison.
meanings of the relational operators.

before and after each
present, the software
character to be one
Figure 3-4 shows the

OPERATOR MEANING

IS [NOT] GREATER THAN The first operand is greater than
IS [NOT] > (or not greater than) the second operand.

IS [NOT] LESS THAN The first operand is less than
IS [NOT] < (or not less than) the second operand.

IS [NOT] EQUAL TO The first operand is equal to
IS [NOT] = (or not equal to) the second operand.

Figure 3-4
The Meanings of the Relational Operators

3.4.1.1 Classes of Data - COBOL allows comparison of both numeric
class operands and non-numeric class operands; however, it handles
each class of data slightly differently. For example, it allows a
comparison of two numeric operands regardless of the formats specified
in their respective USAGE clauses, but requires that all other
comparisons (including comparisons of any group items) be between
operands with the same usage. It compares numeric class operands with
respect to their algebraic values and non-numeric (or a numeric and a
non-numeric) class operands with respect to a specified collating
sequence.

If only one of the operands is numeric, it must be an integer data
item or an integer literal and it must be DISPLAY usage; further, the
manner in which the software handles numeric operands depends on the
non-numeric operand. Consider the following two types of non-numeric
operands:

1. If the non-numeric operand is an elementary item or a
literal, the software treats the numeric operand as if it had
been moved into an alphanumeric data item (which is the same
size as the numeric operand) and then compared. This causes
any operational sign, whether carried as a s€parate character
or as an overpunch, to be stripped from the numeric item;

NON-NUMERIC CHARACTER HANDLING 3-5

thus, it appears to be an unsigned quantity. In addition, if
the picture-string of the numeric item contains trailing P
characters indicating that there are assumed integer
positions that are not actually present, these are filled
with zero digits during the operation of stripping any sign
that is present. Thus, an item with a picture-stritig of
S9999PPP is moved to a temporary location where it is
described with a picture-string of 9999999. If its value is
432J (-4321), the value in the temporary location will be
4321000. The numeric digits, stored as ASCII bytes, take
part in the comparison.

2. If the non-numeric operand is a group item, the software
treats the numeric operand as if it had been moved into a
group item (which is the same size as the numeric operand)
and then compared. This is equivalent to a "group move".
The software ignores the description of the numeric field
(except for length) and, therefore, includes any operational
sign, whether carried as a separate character or as an
overpunch, in its length. (Overpunched characters are never
ASCII numeric digits, but characters in the range of from A
through R, , or .) Thus, the sign and the digits, stored as
ASCII bytes, take part in the comparison, and zeroes are not
supplied for P characters in the picture-string.

The compiler will not accept a comparison between a non-integer
numeric operand and a non-numeric operand, and any attempt to compare
these two items will cause a diagnostic message at compile time.

3.4.1.2 The Comparison Operation - If the two operands are
acceptable, the software compares them byte for byte starting at their
left-hand end. It proceeds from left to right, comparing the
characters in corresponding character positions until it either
encounters a pair of unequal characters or reaches the right-hand end
of the longer operand.

If the software encounters a pair of unequal characters, it considers
their relative position in the collating sequence. The operand with
the character that is positioned higher in the collating sequence is
the greater operand.

If the operands have different lengths, the comparison proceeds as
though the shorter operand were extended on the right by sufficient
ASCII spaces (hex 20) to make them both the same length.

If all of the pairs of characters compare equally, the operands are
equal.

3-6 NON-NUMERIC CHARACTER HANDLING

3.4.2 Class Tests

An IF statement that contains a class condition (NUMERIC or
ALPHABETIC) can test the value in a non-numeric data item (USAGE
DISPLAY only) to determine if it contains numeric or alphabetic data
and use the result to alter the flow of control in the program.

Figure 3-5 illustrates the general format of a class condition. If
the data item consists entirely of the ASCII characters 0123456789
with or without the operational sign, the class condition would
determine that it is NUMERIC. If the item consists entirely of the
ASCII characters A through Z and space, the class condition would
determine that it is ALPHABETIC.

{
NUMERIC }

identifier IS [NOT]
ALPHABETIC

Figure 3-5
Class Condition, General Format

When the reserved word, NOT, is present, the software considers it and
the next key word as one class condition that defines the class test
to be executed; for example, NOT NUMERIC is a truth test for
determining if an operand contains at least one non-numeric byte.

If the item being tested was described as a numeric data item, it may
only be tested as NUMERIC or NOT NUMERIC. (For further information on
using class conditions with numeric items, see Chapter 4.) The NUMERIC
test cannot examine an item that was described either as alphabetic or
as a group item containing elementary items whose data descriptions
indicate the presence of operational signs.

3.5 DATA MOVEMENT

COBOL provides three statements (MOVE, STRING, and UNSTRING) that
perform most of the data movement operations required by
business-oriented programs. The MOVE statement simply moves data from
one field to another. The STRING statement concatenates a series of
sending fields into a single receiving field. The UNSTRING statement
disperses a single sending field into multiple receiving fields. Each
has its uses and its limitations. This section discusses data
movement situations which take advantage of the versatility of these
statements.

The MOVE statement handles the majority of data movement operations on
character strings. However, the MOVE statement has limitations in its
ability to handle multiple fields; for example, it cannot, by itself,
concatenate a series of sending fields into a single receiving field
or disperse a single sending field into several receiving fields.

NON-NUMERIC CHARACTER HANDLING 3-7

Two MOVE statements will, however, bring the contents of two fields
together into a third (receiving) field if the receiving field has
been "subdivided" with subordinate elementary items that match the two
sending fields in size. If other fields are to be concatenated into
the third field and they differ in size from the first two fields,
then the receiving field will require additional subdivisions (through
redefinition) •

Another method of concatenation with the MOVE statement is to
subdivide the receiving field into single character fields, creating a
"table" of a single character field that occurs as many times as there
are characters in the receiving field, and execute a data movement
loop which moves each sending field, a character at a time, using a
subscript that moves continuously across the receiving field.

Two MOVE statements can also be used to disperse the contents of one
sending field to several receiving fields. The first MOVE statement
can move the left-most end of the sending field to a receiving field~
then the second MOVE statement can move the right-most end of the
sending field to another receiving field. (The second receiving field
must first be described with the JUSTIFIED clause.) Characters from
the middle of the sending field cannot easily be moved to any
rece1v1ng field without extensive redefinitions of the sending field
or a character-by-character movement loop (as with concatenation).

The concatenation and dispersion limitations of the MOVE statement are
handled quite easily by the STRING and UNSTRING statements. The
following sections (3.6, 3.7, and 3.8) discuss these three statements
in detail.

3.6 THE MOVE STATEMENT

The MOVE statement moves the contents of one field into another. The
following illustration shows the two formats of the MOVE statement.

Format I

MOVE FIELDI TO FIELD2

Format 2

MOVE CORRESPONDING FIELDI TO FIELD2

NOTE

Format 2 is discussed in Section 3.6.6.

FIELDI is the name
rece1v1ng field.
contents of FIELDI
size, class, or
items.

of the sending field and FIELD2 is the name of the
The statement causes the software to move the

into FIELD2. The two fields need not be the same
usage~ and they may be either group or elementary

3-8 NON-NUMERIC CHARACTER HANDLING

If the two fields are not the same length, the software will align
them on one end or the other and will truncate or pad (with spaces)
the other end. The movement of group items and non-numeric elementary
items is discussed below.

A point to remember when using the MOVE statement is that it will
alter the contents of every character position in the receiving field.

3.6.1 Group Moves

If either the sending or rece~v~ng field is a group item, the software
considers the move to be a group move. It treats both the sending and
receiving fields in a group move as if they were alphanumeric class
fields. If the sending field is a group item and the receiving field
is an elementary item, the software ignores the receiving field
description (except for the size description, in bytes, and any
JUSTIFIED clause): therefore, the software conducts no conversion or
editing on the receiving field.

3.6.2 Elementary Moves

If both fields of a MOVE statement are elementary items, their data
description clauses control their data movement. (If the receiving
field was described as numeric or numeric edited, the rules for
numeric moves -- see Chapter 4, Numeric Character Handling -- control
the data movement.)

The following table shows the legal (and illegal)
elementary moves.

non-numeric

Table 3-1
Legal Non-Numeric Elementary Moves

SENDING FIELD CATEGORY RECEIVING FIELD CATEGORY

ALPHABETIC ALPHANUMERIC
ALPHANUMERIC EDITED

ALPHABETIC Legal Legal

ALPHANUMERIC Legal Legal

ALPHANUMERIC EDITED Legal Legal

NUMERIC INTEGER
(DISPLAY ONLY) Illegal Legal

NUMERIC EDITED Illegal Legal

NON-NUMERIC CHARACTER HANDLING 3-9

In all of the legal moves shown above, the software treats the sending
field as though it had been described as PIC X(). If the sending
field description contains a JUSTIFIED clause, the clause will have no
effect on the move. If the sending field picture-string contains
editing characters, the software uses them only to determine the
field's size.

Numeric class data must be in DISPLAY (byte) format and must be an
integer.

If the description of the numeric data item indicates the presence of
an operational sign (either as a character or an overpunch) or if
there are P characters in the picture-string of the numeric data item,
the software first moves the item to a temporary location. During
this move, it removes the sign and fills out any P character positions
with zero digits. It then uses the temporary value (which may be
shorter than the original if a separate sign were removed, or longer
if P character positions were filled in with zeroes) as the sending
field as if it had been described as PIC X(), that is, as if its
category were alphanumeric.

If the sending item is an unsigned numeric class field with no P
characters in its picture-string, the software does not move the item
to a temporary location.

A numeric integer data item sending
justification of the receiving field.
shorter than the receiving field, the
field with spaces.

field has no effect on the
If the numeric sending field is
software fills the receiving

In legal, non-numeric elementary moves, the rece1v1ng field actually
controls the movement of data. All of the following items, in the
receiving field, affect the move: (1) the size, (2) the presence of
editing characters in its description, and (3) the presence of the
JUSTIFIED RIGHT clause in its description. The JUSTIFIED clause and
editing characters are mutually exclusive; therefore, the two classes
are discussed separately below.

When a field that contains no editing characters or JUSTIFIED clause
in its description is used as the receiving field of a non-numeric
elementary MOVE statement, the statement moves the characters by
starting at the left-hand end of the fields and scanning across,
character-by-character to the right. If the sending item is shorter
than the receiving item, the software fills the remaining character
positions with spaces.

3.6.2.1 Edited Moves - Alphabetic or alphanumeric
editing characters. Consider the following
characters. Alphabetic fields will accept only
however, alphanumeric fields will accept all three

B blank insertion position
o zero insertion position
/ slash insertion position.

3-10 NON-NUMERIC CHARACTER HANDLING

fields may contain
insertion editing
the B character;

characters.

When a field that contains an insertion editing character in its
picture-string" is used as the receiving field of a non-numeric
elementary MOVE statement, each receiving character position that
corresponds to an editing character receives the insertion byte value.
Figure 3-6 illustrates the use of such symbols with the statement,
MOVE FIELDI TO FIELD2. (Assume that FIELDI was described as PIC
X(7) .)

FIELD2

FIELDI PICTURE-STRING CONTENTS AFTER MOVE

070476 XX/99/XX 07/04/76
04JUL76 99BAAAB99 04 JUL 76
2351212 XXXBXXXX/XX/ 235 1212/ /
123456 OXBOXBOXBOX 01 02 03 04

Figure 3-6
Data Movement with Editing Symbols

Data movement always begins at the left end of the sending field, and
moves only to the byte positions described as A, 9, or X in the
receiving field picture-string. When the sending field is exhausted,
the software supplies space characters to fill any remaining character
positions (not insertion positions) in the receiving field. If the
receiving field becomes exhausted before the last character is moved
from the sending field, the software ignores the remaining sending
field characters.

3.6.2.2 Justified Moves - A JUSTIFIED RIGHT clause in the data
description of the receiving field causes the software to reverse its
usual data movement conventions. (It starts with the right-hand
characters of both fields and proceeds from right to left.) If the
sending field is shorter than the receiving field, the software fills
the remaining left-hand character positions with spaces. Figure 3-7
illustrates various data description situations for the statement,
MOVE FIELDI TO FIELD2, with no editing.

FIELDI FIELD2

PICTURE-STRING CONTENTS PICTURE-STRING CONTENTS AFTER
(AND JUST CLAUSE) MOVE

XX AB
XXXXX ABC

XXX ABC XX JUST BC
XXX XX JUST ABC

Figure 3-7
Data ~ovement with No Editing

NON-NUMERIC CHARACTER HANDLING 3-11

3.6.3 Multiple Receiving Fields

If a MOVE statement is written with more than one rece~v~ng field, it
moves the same sending field value to each of the receiving fields.
It has essentially the same effect as a series of separate MOVE
statements that all have the same sending field. (For information on
subscripted fields, see section 3.6.4.)

The receiving fields need have no relationship to each other. The
software checks the legality of each one independently, and performs
an independent move operation on each one.

Multiple receiving fields on MOVE statements provide
to set many fields equal to the same value,
initialization code at the beginning of a section of
example:

a convenient way
such as during

processing. For

MOVE SPACES TO LIST-LINE, EXCEPTION-LINE, NAME-FLD.

MOVE ZEROES TO EOL-FLAG, EXCEPT-FLAG, NAME-FLAG.

MOVE 1 TO COUNT-I, CHAR-PTR, CURSOR.

3.6.4 Subscripted Moves

Any field of a MOVE statement may be subscripted and the referenced
field may also be used to subscript another name in the same
statement.

When more than one receiving field is named in the same MOVE
statement, the order in which the software evaluates the subscripts
affects the results of the move. Consider the following two
situations:

Situation 1 MOVE FIELDl(FIELD2) TO FIELD2 FIELD3.

Situation 2 MOVE FIELDI TO FIELD2 FIELD3(FIELD2).

Figure 3-8
Subscripted MOVE Statements

In situation 1, the software evaluates FIELDl(FIELD2) only once,
before it moves any data to the receiving fields. In effect it is as
if the statement were replaced with the following statements:

MOVE FIELDl(FIELD2) TO TEMP.

MOVE TEMP TO FIELD2.

MOVE TEMP TO FIELD3.

3-12 NON-NUMERIC CHARACTER HANDLING

In situation 2, the software evaluates FIELD3(FIELD2) immediately
before moving the data into it (but after moving the data from FIELDl
to FIELD2). Thus, it uses the newly stored value of FIELD2 as the
subscript value. In effect, it is as if the statement were replaced
with the following statements:

MOVE FIELDl TO FIELD2.

MOVE FIELDl TO FIELD3(FIELD2).

3.6.5 Common Errors, MOVE Statement

A most important thing to remember when writing MOVE statements is
that the compiler considers any MOVE statement that contains a group
item to be a group move. It is easy to forget this fact when moving a
group item to an elementary item, and the elementary item contains
editing characters, or a numeric integer. These attributes of the
receiving field (which would determine the action of an elementary
move) have no effect on the action of a group move.

3.6.6 Format 2 - MOVE CORRESPONDING

Format 2 of the MOVE statement allows the programmer to move multiple
elementary items from one group item to another, by using a single
MOVE statement. When the corresponding phrase is used, selected
elementary items in the sending field are moved to those elementary
items in the receiving field whose data-names are identical. For
example:

01 A-GROUP. 01 B-GROUP.

02 FIELD1. 02 FIELD2.

03 A PIC X. 03 A PIC X.

03 B PIC 9. 03 C PIC XX.

03 C PIC XX. 03 E PIC XXX.

03 D PIC 99.

03 E PIC XXX.

MOVE CORRESPONDING A-GROUP TO B-GROUP

OR

MOVE CORRESPONDING FIELDl TO FIELD2

NON-NUMERIC CHARACTER HANDLING 3-13

The preceding examples are equivalent to the following series of MOVE
statements:

MOVE A OF FIELDl TO A OF FIELD2

MOVE C OF FIELDl TO C OF FIELD2

MOVE E OF FIELDl TO E OF FIELD2

3.7 THE STRING STATEMENT

The STRING statement concatenates the contents of two or more sending
fields into a single field.

The statement has many forms; the simplest is equivalent, in
function, to a non-numeric MOVE statement. Consider the following
illustration; if the two fields are the same size, or if the sending
field (FIELD1) is larger, the statement is equivalent to the
statement, MOVE FIELDl TO FIELD2.

STRING FIELDl DELIMITED BY SIZE INTO FIELD2.

Figure 3-9
Sample STRING Statement

If the sending field is shorter than the receiving field, an important
difference between the STRING and MOVE statements emerges: the
software does not fill the receiving field with spaces. Thus, the
STRING statement may leave some portion of the receiving field
unchanged.

Additionally,
field with
description.
fills the
insertions.

the receiving field must be an elementary alphanumeric
no JUSTIFIED clause or editing characters in its

Thus, the data movement of the STRING statement always
receiving field from left-to-right with no editing

3.7.1 Multiple Sending Fields

An important characteristic of the STRING statement is its ability to
concatenate a series of sending fields into one receiving field.
Consider the following example of the STRING statement:

STRING FIELDIA FIELDIB FIELDIC DELIMITED BY SIZE
INTO FIELD2.

Figure 3-10
Concatenation with the STRING Statement

3-14 NON-NUMERIC CHARACTER HANDLING

In this sample STRING statement, FIELD1A, FIELD1B, and FIELD1C are all
sending fields. The software moves them to the receiving field
(FIELD2) in the order in which they appear in the statement, from left
to right, resulting in the concatenation of their values.

If FIELD2 is not large enough to hold all three items, the operation
stops when it is full. If this occurs while moving one of the sending
fields, the software ignores the remaining characters of that field
and any other sending fields not yet processed. For example, if
FIELD2 became full while receiving FIELD1B, the software would ignore
the rest of FIELD1B and all of FIELD1C.

If the sending fields do not fill the receiving field, the operation
stops with the movement of the last character of the last sending item
(FIELD1C in Figure 3-10). The software does not alter the contents
nor space-fill the remaining character positions of the receiving
field.

The sending fields may be non-numeric literals and figurative
constants (except for ALL literal). For example, the following
statement sets up an address label with the literal period and space
between the STATE and ZIP fields:

STRING CITY SPACE STATE". "ZIP

DELIMITED BY SIZE INTO ADDRESS-LINE.

Figure 3-11
Literals as Sending Fields

Sending fields may also be subscripted. For
statement uses subscripts to concatenate
(A-TABLE) into a single field (A-FOUR). (I,
subscript or an index-name.)

example, the following
the elements of a table
of course, must be a

STRING A-TABLE (I) A-TABLE (1+1) A-TABLE (1+2) A-TABLE (1+3)
DELIMITED BY SIZE INTO A-FOUR.

Figure 3-12
Indexed Sending Fields

3.7.2 The POINTER Phrase

Although the STRING statement normally starts at the left-hand end of
the receiving field, with the POINTER phrase it is possible to start
it scanning at another point within the field. (The scanning,
however, remains left-to-right.)

NON-NUMERIC CHARACTER HANDLING 3-15

MOVE 5 TO P.
STRING FIELDIA FIELDIB DELIMITED BY SIZE

INTO FIELD2 WITH POINTER P.

Figure 3-13
Sample POINTER Phrase

When the POINTER phrase is used, the value of P determines the
starting character position in the receiving field. In Figure 3-13,
the 5 in P causes the software to move the first character of FIELDIA
into character position 5 of FIELD2 (the left-most character position
of the receiving field is character position 1) and leave positions 1
through 4 unchanged.

When the STRING operation is complete, the software leaves P pointing
to one character position beyond the last character replaced in the
receiving field. If FIELDIA and FIELDIB in Figure 3-13 are both four
characters long, P will contain a value of 13 (5+4+4) when the
operation is complete (assuming that FIELD2 is at least 12 characters
long) .

3.7.3 The DELIMITED BY Phrase

Although the sending fields of the STRING statement are fixed in size
at compile time, they frequently contain variable-length items that
are padded with spaces. For example, a 20-character city field may
contain only the word MAYNARD and 13 spaces. A valuable feature of
the STRING statement is that it may be used to move only the useful
data from the left-hand end of the sending field. The DELIMITED BY
phrase, written with a data-name or literal, instead of the word SIZE,
performs this operation. (The delimiter may be a literal, a data
item, a figurative constant, or the word SIZE. It may not be ALL
literal since ALL literal has an indefinite length. When the phrase
contains the word SIZE, the software moves each sending field, in
total, until it either exhausts the sending field, or fills the
receiving field.)

Consider the following example:

STRING CITY SPACE STATE ". "ZIP
DELIMITED BY SIZE INTO ADDRESS-LINE.

Figure 3-14
Delimiting with the Word SIZE

If CITY is a 20-character field, the result of the STRING operation
shown in Figure 3-14 might look like the following:

AYER ______ ~------_MA. 01432

\~ ______ 16 spaces

3-16 NON-NUMERIC CHARACTER HANDLING

A far more attractive printout can be produced by having the STRING
operation produce the following:

AYER, MA. 01432

To accomplish this, use the figurative constant SPACE as a delimiter
on the sending field; thus,

MOVE 1 TO P.
STRING CITY DELIMITED BY SPACE

INTO ADDRESS-LINE WITH POINTER P.
STRING ", " STATE ". " ZIP

DELIMITED BY SIZE
INTO ADDRESS-LINE WITH POINTER P.

Figure 3-15
SPACE as a Delimiter

This sample coding uses the pointer's characteristic of pointing to
one character position beyond the last character replaced in the
receiving field to enable the second STRING statement to begin at a
position one character past where the first STRING statement stopped.
(The first STRING statement moves data characters until it encounters
a space character a match of the delimiter SPACE. The second
STRING statement adds the literal, the 2-character STATE field,
another literal, and the 5-character ZIP field.)

The delimiter can be varied for each field within a single STRING
statement by repeating the DELIMITED BY phrase after the sending field
names to which it applies. Thus, the following shorter statement has
the same effect as the preceding example. (Placing the operands on
separate source lines, as shown in this example, has no effect on the
operation of the statement, but improves program readability and
simplifies debugging.)

STRING CITY DELIMITED BY SPACE
", " STATE ". "
ZIP DELIMITED BY SIZE

INTO ADDRESS-LINE.

Figure 3-16
Repeating the DELIMITED BY Phrase

The sample STRING statement in Figure 3-16 cannot handle 2-word city
names, such as New York, since the software would consider the space
between the two words as a match for the delimiter SPACE. A longer
delimiter, s~ch as two or three spaces (non-numeric literal), can
solve this problem. Only when a sequence of characters matches the
delimiter will the movement stop for that data item.

NON-NUMERIC CHARACTER HANDLING 3-17

with a 2-byte delimiter, the same statement can be rewritten in a
simpler form:

STRING CITY", " STATE ". " ZIP
DELIMITED BY" "INTO ADDRESS-LINE.

Figure 3-17
Delimiting with More Than One Space Character

Since only the CITY field may contain two
entire STATE field is only two bytes long),
the other fields will always be unsuccessful
same as moving the full field (delimiting by

consecutive spaces (the
the delimiter's search of
and the effect is the
SIZE) .

Data movement under control of a data-name or literal is generally
slower in execution speed than movement delimited by SIZE.

The example in Figure 3-17 illustrates a frequent source of error in
the use of STRING statements to concatenate fields. The remainder of
the receiving field is not space-filled as with a MOVE statement. If
ADDRESS-LINE is to be printed on a mailing label, for example, the
STRING statement should be preceded by the statement, MOVE SPACES TO
ADDRESS-LINE. This guarantees a space fill to the right of the
concatenated result. Alternatively, the last field concatenated by
the STRING statement can be a field previously set to SPACES. (This
sending field must be moved under control of a delimiter other than
SPACE, of course.)

3.7.4 The OVERFLOW Phrase

When the SIZE option of the DELIMITED BY phrase controls the STRING
operation and the pointer value is either known or the POINTER phrase
is not used, the programmer can tell, by simple addition, if the
receiving field is large enough to hold the sending fields. However,
if the DELIMITED BY phrase contains a literal or an identifier, or if
the pointer value is not predictable, it may be difficult to tell
whether the size of the receiving field is adequate, and an overflow
may occur.

The ON OVERFLOW phrase at the end of the STRING statement tests for an
overflow condition:

STRING FIELDIA FIELDIB DELIMITED BY "C"
INTO FIELD2 WITH POINTER PNTR
ON OVERFLOW GO TO PN57.

Figure 3-18
The ON OVERFLOW Phrase

3-18 NON-NUMERIC CHARACTER HANDLING

Overflow occurs when the recelvlng field is full and the software is
either about to move a character from a sending field or is
considering a new sending field. Overflow may also occur if, during
the initialization of the statement, the pointer contains a value that
is either less than 1 or greater than the length of the receiving
field. In this case, the software moves no data to the receiving
field and terminates the operation immediately.

The ON OVERFLOW phrase cannot distinguish the overflow caused by a bad
initial value in pointer PNTR from the overflow caused by a receiving
field that is too short. Only a separate test, preceding the STRING
statement, can distinguish between the two.

The following examples illustrate the overflow condition:

DATA DIVISION.

01 FIELDIA PIC XXX VALUE "ABC".
01 FIELD2 PIC XXXX.

PROCEDURE DIVISION.

1. STRING FIELDIA QUOTE DELIMITED BY SIZE INTO FIELD2.
2. STRING FIELDIA FIELDIA DELIMITED BY SIZE INTO FIELD2.
3. STRING FIELDIA FIELDIA DELIMITED BY "c" INTO FIELD2.
4. STRING FIELDIA FIELDIA FIELDIA FIELDIA

DELIMITED BY "B" INTO FIELD2.
5. STRING FIELDIA FIELDIA "c" DELIMITED BY "c"

INTO FIELD2.
6. MOVE 2 TO P.

STRING FIELDIA "AC" DELIMITED BY "c"
INTO FIELD2 WITH POINTER P.

Figure 3-19
Various STRING Statements

Illustrating the Overflow Condition

The results of executing the numbered statements follow:

Table 3-2
Results of the

Preceding Sample Statements

Value of FIELD2 after
the STRING operation Overflow?

l. ABC" No
2. ABCA Yes
3. ABAB No
4. AAAA No
5. ABAB Yes
6. AABA No

NON-NUMERIC CHARACTER HANDLING 3-19

3.7.5 Subscripted Fields in STRING Statements

All data-names used in the STRING statement may be subscripted, and
the pointer value may be used as a subscript.

Since the pointer value might be used as a subscript on one or more of
the fields in the statement, it is important to understand the order
in which the software evaluates the subscripts and exactly when it
updates the pointer. (The use of the pointer as a subscript is not
specified by ANS-74 COBOL. Before using it, read the note at the end
of this subsection.)

The software updates the pointer after it moves the last character out
o~ each sending field. Consider the following sample coding:

MOVE 1 TO P.
STRING "ABC"

SPACE
"DEF" DELIMITED BY SIZE
INTO R WITH POINTER P.

Figure 3-20
STRING Statement with Pointer

During the movement of "ABC" into the receiving field (R), the pointer
value remains at 1. After the move, the software increases the
pointer value by 3 (the size of the sending field literal "ABC") and
it takes on the value 4. The software then moves the figurative
constant SPACE and increases the pointer value by 1 and it takes on
the value 5. "OEF" is then moved and, on completion of the move, the
software increases the pointer to its final value for this operation,
8.

Now, consider the updating characteristics of the pointer when applied
to subscripting:

MOVE 1 TO P.
STRING CHAR(P)

CHAR(P)
CHAR(P)
CHAR(P) DELIMITED BY SIZE
INTO R WITH POINTER P.

Figure 3-21
Subscripting with the Pointer

If CHAR is a I-character field in a table, the pointer increases by
one after each field has been moved and the software will move them
into R as if they had been subscripted as CHAR(l), CHAR(2), CHAR(3),
and CHAR(4). If CHAR is a 2-character field, the pointer increases by
two after each field has been moved and the fields will move into R as
if they had been subscripted as CHAR(l), CHAR(3), CHAR(S), and
CHAR(7).

3-20 NON-NUMERIC CHARACTER HANDLING

Thus, the software evaluates the subscript of a sending item once,
immediately before it considers the item as a sending item.

The software evaluates the subscript of a receiving item only once, at
the start of the STRING operation. Therefore, if the pointer is used
as a subscript on the recelvlng fleld, changes occurring to the
pointer during the execution of the STRING statement will not alter
the choice of which receiving string is altered.

Even the delimiter field can be subscripted, and it too can be
subscripted with the pointer. The softwarere-evaluates the delimiter
subscript once for each sending field, immediately before it compares
the delimiter to the field. Thus, by subscripting it with the pointer
value, the delimiter can be changed for each sending field. This has
the peculiar effect of choosing the next sending field's delimiter
based on the position, in the receiving field, into which its first
character will fall. For example, consider the following sample
coding:

01 DTABLE.
03 D PIC X OCCURS 7 TIMES.

MOVE 1 TO P.
STRING "ABC"

"ABC"
"ABC" DELIMITED BY D(P)
INTO R WITH POINTER P.

Figure 3-22
Subscripting the Delimiter

The following table shows the value that will arrive in the receiving
field (R) from the three "ABC" literals if DTABLE contains the values
shown in the left-hand column:

Table 3-3
Results of the

Preceding Sample Statements

DTABLE Value R Value

ABCDEFG (Unchanged)

BCDEFGH AABABC

CDEFGHI ABABCABC

CCCCCCCC ABABAB

NON-NUMERIC CHARACTER HANDLING 3-21

NOTE

The rules in this section, concerning
subsc~ipts in the STRING statement, are
rules that are not specified by 1974
American National Standard COBOL.
Dependence on these rules, particularly
those involving the use of the pointer
field as a subscript, may produce
programs that will not perform the same
way on other COBOL compilers.

If the pointer field is not used as a
subscript on any of the fields in the
statement, the point at which the
software evaluates the subscripts is
immaterial to the execution of the
statement. Thus, by avoiding the use of
the pointer as a subscript, uniform
results can be expected from all COBOL
compilers that adhere to 1974 ANS COBOL.

3.7.6 Common Errors, STRING Statement

The most common errors made when writing STRING statements are:

• using the word "TO" instead of "INTO"

• forgetting to write "DELIMITED BY SIZE"~

• forgetting to initialize the pointer~

• initializing the pointer to 0 instead of l~

• forgetting to provide for space fill of the receiving field
when it is desirable.

3.8 THE UNSTRING STATEMENT

The UNSTRING statement disperses the contents of a single sending
field into multiple receiving fields.

The statement has many forms~ the simplest is equivalent in function
to a non-numeric MOVE statement. Consider the following illustration~
the sample statement is equivalent to MOVE FIELDl TO FIELD2,
regardless of the relative sizes of the two fields.

UNSTRING FIELDl INTO FIELD2.

Figure 3-23
Sample UNSTRING Statement

3-22 NON-NUMERIC CHARACTER HANDLING

The sending
alphanumeric,
field (FIELD2)
cannot specify

field (FIELDl) may be either a group item or an
or alphanumeric edited elementary item. The receiving
may be alphabetic, alphanumeric, or numeric, but it
any type of editing.

If the receiving field is numeric, it must be DISPLAY usage. The
picture-string of a numeric receiving field may contain any of the
legal numeric description characters except for P and, of course, the
editing characters. The UNSTRING statement moves the sending field to
numeric receiving fields as if th.e sending field had been described as
an unsigned integer~ further, it automatically truncates or zero
fills as required.

If the receiving field is not numeric, the software follows the rules
for elementary non-numeric MOVE statements. It left-justifies the
data in the receiving field, truncating or space-filling as required.
(If the data-description of the receiving field contains a JUSTIFIED
clause, the software right-justifies the data, truncating or
space-filling to the left as required.)

3.8.1 Multiple Receiving Fields

An important characteristic of the UNSTRING statement is its
to disperse one sending field into several receiving fields.
the following example of the UNSTRING statement written with
receiving fields:

UNSTRING FIELDI INTO
FIELD2A FIELD2B FIELD2C.

Figure 3-24
Multiple Receiving Fields

abili ty
Consider
multiple

In this sample statement, FIELDI is the sending field. The software
performs the UNSTRING operation by scanning across FIELDI from left to
right. When the number of characters scanned is equal to the number
of characters in the receiving field, the software moves the scanned
characters into the receiving field and begins scanning the next group
of characters for the next receiving field.

Assume that each of the receiving fields in the preceding illustration
(FIELD2A, FIELD2B, and FIELD2C) is five characters long, and that
FIELDI is 15 characters long. The size of FIELD2A determines the
number of characters for the first move. The software scans across
FIELDI until the number of characters scanned equals the size of
FIELD2A (5). It then moves those first five characters to FIELD2A,
and sets the scanner to the next (sixth) character position in FIELDI.
The size of FIELD2B determines the size of the next move. The
software begins this move by scanning across FIELDI from character
position six, until the number of scanned characters equals the size
of FIELD2B (5).

NON-NUMERIC CHARACTER HANDLING 3-23

The software then moves the sixth through the tenth characters to
FIELD2B, and sets the scanner to the next (eleventh) character
position·in FIELDI. FIELD2C determines the size of the last move (for
this example) and causes characters 11 through 15 of FIELDI to be
moved into FIELD2C, thus terminating this UNSTRING operation.

Each data movement acts as an individual MOVE statement, the sending
field of which is an alphanumeric field equal in size to the receiving
field. If the receiving field is numeric, the move operation will
convert the data to the numeric form. For example, consider what
would happen if the fields under discussion had the data descriptions
and were manipulating the values shown in the following table:

Table 3-4
Values Moved Into the Receiving Fields

Based on the Value in the Sending Field

FIELDI FIELD2A FIELD2B
PIC X (15) • PIC X(5) PIC S9(5)
VALUE IS: LEADING SEPARATE

ABCDE1234512345 ABCDE +12345
XXXXXOOOOIOO123 XXXXX +00001

FIELD2A is an alphanumeric field and, therefore, the
conducts an elementary non-numeric move with
characters.

FIELD2C
PIC S999V99

3450
1230

software simply
the first five

FIELD2B, however, has a leading separate sign that is not included in
its size. Thus, the software moves only five numeric characters and
generates a positive sign in the separate sign position.

FIELD2C has an implied decimal point with two character positions to
the right of it, plus an overpunched sign on the low-order digit. The
sending field should supply five numeric digits~ but, since the
sending field is alphanumeric, the software treats it as an unsigned
integer~ it truncates the two high-order digits and supplies two zero
digits for the decimal positions. Further, it supplies a positive
overpunch sign, making the low-order digit a +0 (or the ASCII
character, t). (There is no simple way to have UNSTRING recognize a
sign character or a decimal point in the sending field.)

If the sending field is shorter than the sum of the sizes of the
receiving fields, the software ignores the remaining receiving fields.
If it reaches the end of the sending field before it reaches the end
of one of the receiving fields, the software moves the scanned
characters into that receiving field. It left-justifies and fills the
remalnlng character positions with spaces for alphanumeric data, or
decimal point aligns and zero fills the remaining character positions
for numeric data.

3-24 NON-NUMERIC CHARACTER HANDLING

Consider the following examples of a sending field that is too short.
(The statement is UNSTRING FIELDI INTO FIELD2A FIELD2B. FIELD2A is a
3-character alphanumeric field, and receives the first three
characters of FIELDI (ABC) in every operation. FIELD2B, however, runs
out of characters every time before filling. Since FIELD2A always
contains the characters ABC, it is not shown.)

Table 3-5
Handling a Sending Field that is Too Short

FIELDI FIELD2B FIELD2B
PIC X(6) PICTURE IS: Value after UNSTRING Operation
VALUE IS:

ABCDEF XXXXX DEF
S99999 0024F

ABC246 S9V999 600
S9999 +0246
LEADING SEPARATE

3.8.2 The DELIMITED BY Phrase

The size of the data to be moved can be controlled
rather than by the size of the receiving field.
phrase supplies the delimiter characters.

by a delimiter,
The DELIMITED BY

UNSTRING delimiters are quite flexible~ they can be literals,
figurative constants (including ALL literal), or identifiers
(identifiers may even be subscripted data-names). This sub-section
discusses the use of these three types of delimiters. Subsequent
sections cover multiple delimiters, the COUNT phrase, and the
DELIMITER phrase. Subscripting delimiters is discussed at the end of
this section under Subscripted Fields in UNSTRING Statements.

Consider the following sample UNSTRING statement~
figurative constant, SPACE, as a delimiter:

UNSTRING FIELDI DELIMITED BY SPACE INTO FIELD2.

Figure 3-25
Delimiting with a Space Character

it uses the

In this example, the software scans the sending field (FIELDI),
searching for a space character. If it encounters a space, it moves
all of the scanned (non-space) characters that precede that space to
the receiving field (FIELD2). If it finds no space character, it
moves the entire sending field. When it has determined the size of
the sending field, the software moves the contents of that field
following the rules for the MOVE Statement, truncating or zero filling
as required.

NON-NUMERIC CHARACTER HANDLING 3-25

The following table shows the results of an UNSTRING operation that
delimits with a literal asterisk (UNSTRING FIELDI DELIMITED BY "*"
INTO FIELD2).

Table 3-6
Results of Delimiting with an Asterisk

FIELDI FIELD2 FIELD2
PIC X(6) PICTURE IS: VALUE AFTER
VALUE IS: UNSTRING

XXX ABC

ABCDEF X(7) ABCDEF

XXX JUSTIFIED DEF

****** XXX

*ABCDE XXX
A***** XXX JUSTIFIED A

246*** S9999 024F

12345* S9999 SEPARATE 2345+
TRAILING

2468** S999V9 SEPARATE +4680
LEADING

*246** 9999 0000

If the delimiter matches the first character in the sending field, the
software considers the size of the sending field to be zero. The
movement operation still takes place, however, and fills the receiving
field with spaces or zeroes depending on its class.

A delimiter may also be applied to an UNSTRING statement that has
multiple receiving fields:

UNSTRING FIELDI DELIMITED BY SPACE
INTO FIELD2A FIELD2B.

Figure 3-26
Delimiting with Multiple Receiving Fields

The sample instruction in Figure 3-26 causes the software to scan
FIELDI searching for a character that matches the delimiter. If it
finds a match, it moves the scanned characters to FIELD2A and sets the
scanner to the next character position to the right of the character
that matched. It then resumes scanning FIELOI for a character that
matches the delimiter.

3-26 NON-NUMERIC CHARACTER HANDLING

If the software fihds a match, it moves all of the characters that lie
between the character that first matched the delimiter and the
character that matched on the second scan, and sets the scanner to the
next character position to the right of the character that matched.
(The DELIMITED BY phrase could handle additional receiving fields in
the same manner as it handled FIELD2B.)

The following table shows the results of an UNSTRING operation that
applies a delimiter to multiple recelvlng fields (UNSTRING FIELDI
DELIMITED BY "*" INTO FIELD2A FIELD2B) •

FIELDI
PIC X(8)
VALUE IS:

ABC*DEF*
ABCDE*FG
A*B*****
*AB*CD**
**ABCDEF
A*BCDEFG
ABC**DEF
A******B

Table 3-7
Results of Delimiting

Multiple Receiving Fields

VALUES AFTER UNSTRING
FIELD2A FIELD2B
PIC X(3) PIC X(3)

ABC DEF
ABC FG
A B

AB

A BCD
ABC
A

OPERATION

The last two examples illustrate the limitations of a single character
delimiter. Accordingly, the delimiter may be longer than one
character and it may be preceded by the word ALL.

The following table shows the results of an UNSTRING operation that
uses a 2-character delimiter (UNSTRING FIELDI DELIMITED BY "**" INTO
FIELD2A FIELD2B):

FIELDI
PIC X(8)
VALUE IS:

ABC**DEF
A*B*C*D*
AB***C*D
AB**C*D*
AB**CD**
AB***CD*
AB*****CD

Table 3-8
Results of Delimiting

with Two Asterisks

VALUES AFTER UNSTRING OPERATION
FIELD2A FIELD2B
PIC XXX PIC XXX

JUSTIFIED

ABC DEF
A*B
AB C*D
AB *D*
AB CD
AB CD*
AB

NON-NUMERIC CHARACTER HANDLING 3-27

Unlike the STRING statement, the UNSTRING statement accepts the ALL
literal as a delimiter. When the word ALL precedes the delimiter, the
action of the UNSTRING statement remains essentially the same as with
one delimiter until the scanning operation finds a match. At this
point, the software scans farther, looking for additional consecutive
strings of characters that also match the delimiter item. It
considers the "ALL delimiter" to be one, two, thr~e, or more adjacent
repetitions of the delimiter item.

The following table illustrates the results of an UNSTRING operation
that uses an ALL delimiter (UNSTRING FIELDl DELIMITED BY ALL "*" INTO
FIELD2A FIELD2B) •

FIELDl
PIC XeS)
VALUE IS:

ABC*DEF*

ABC**DEF

A******F

A*F*****

A*CDEFG

Table 3-9
Results of Delimiting

with ALL Asterisks

VALUES AFTER UNSTRING OPERATION
FIELD2A FIELD2B
PIC XXX PIC XXX

JUSTIFIED

ABC DEF

ABC DEF

A F

A F

A EFG

The next table illustrates the results of an UNSTRING operation that
combines ALL with a 2-character delimiter (UNSTRING FIELDl DELIMITED
BY ALL "**" INTO FIELD2A FIELD2B) •

FIELDl
PIC XeS)
VALUE IS:

ABC**DEF

AB**DE**

A***D***

A*******

Table 3-10
Results of Delimiting with

ALL Double Asterisks

VALUES AFTER UNSTRING OPERATION
PIC XXX PIC XXX

JUSTIFIED

ABC DEF

AB DE

A *D

A *

3-28 NON-NUMERIC CHARACTER HANDLING

In addition
figurative
Identifiers
delimiting.

to unchangeable delimiters, such as literals and
constants, delimiters may be designated by identifiers.
(which may even be subscripted data-names) permit variable
Consider the following sample statement:

UNSTRING FIELDI DELIMITED BY DELI
INTO FIELD2A FIELD2B.

Figure 3-27
Delimiting with an Identifier

The data-name, DELI, must be alphanumeric. It may be a group or
elementary item, and it may be edited. (Since the delimiter is not a
receiving field, any editing characters will not effect its use, other
than contributing to the size of the item.)

If the delimiter contains a subscript, the subscript may be varied as
a side effect of the UNSTRING operation. The evaluation of subscripts
is discussed later in this section.

3.8.2.1 Multiple Delimiters - The UNSTRING statement has the ability
to scan a sending field, searching for a match from a list of
delimiters. This list may contain ALL delimiters and delimiters of
various sizes. The only requirement of the list is that delimiters
must be connected by the word OR.

The following sample statement separates a sending field into three
recelvlng fields. The sending field consists of three strings
separated by the following: (1) any number of spaces, or (2) a comma
followed by a single space, or (3) a single comma, or (4) a tab
character, or (5) a carriage return character. (The" "must precede
the "," in the list if it is ever to be recognized.)

UNSTRING FIELDI DELIMITED BY
ALL SPACE OR
", " OR
"," OR
TAB OR
CR
INTO FIELD2A FIELD2B FIELD2C.

Figure 3-28
Multiple Delimiters

Table 3-11 illustrates the potential of this statement. The
(represented by the letter t) and carriage return (represented by
letter r) characters represent single character fields containing
ASCII horizontal tab and carriage return characters.

NON-NUMERIC CHARACTER HANDLING

tab
the
the

Table 3-11
Results of the Multiple Delimiters

Shown in Figure 3-28

FIELDl FIELD2A FIELD2B
PIC X (12) PIC XXX PIC 9999

A,O,Cr A 0000

At456, E A 0456

A 3 9 A 0003

AttBr A 0000

A, ,C A 0000

ABCD, 4321,Z ABC 4321

t--tab character, r--carriage return character

3.8.3 The COUNT Phrase

FIELD2C
PIC XXX

C

E

9

B

C

Z

The COUNT phrase keeps track of the size of the sending string and
stores the length in a user-supplied data area.

The length of a delimited sending field may vary widely (from zero to
the full length of the field) and some programs may require knowledge
of this length. For example, if it exceeds the size of the recelvlng
field (which is fixed in size) some data may be truncated and,the
program's logic may require this information.

To use the phrase, simply follow the receiving field name with the
words COUNT IN and an identifier. Consider the following sample
statement:

UNSTRING FIELDl DELIMITED BY ALL "*"
INTO FIELD2A COUNT IN COUNT2A
FIELD2B COUNT IN COUNT2B
FIELD2C.

Figure 3-29
The COUNT Phrase

In this sample statement, the software will count the number of
characters between the left-hand end of FIELDl and the first asterisk
in FIELDl and place that value into COUNT2Ai thus, COUNT2A contains
the size of the first sending string. The software does not include
the delimiter in the count (as it is not a part of the string).

3-30 NON-NUMERIC CHARACTER HANDLING

The software then counts the number of characters in the second
sending field and places that value into COUNT2B.

The phrase should be used only where needed~ in this example the
length of the string moved to FIELD2C is not needed, so no COUNT
phrase follows it.

If the receiving field is shorter than the value placed in the count
field, the software truncates the sending string. (If the number of
integer positions in a numeric field is smaller than the value placed
into the count field, high-order numeric digits have been lost.) If
the software finds a delimiter match on the first character it
examines, it places a zero in the count field.

The count field
DISPLAY usage,
picture-string.
field according

must be described as a numeric integer, either COMP or
with no editing symbols nor the character P in its
The software moves the count value into the count

to the rules for an elementary numeric MOVE statement

The COUNT phrase may be used only in conjunction with the DELIMITED BY
phrase.

3.8.4 The DELIMITER Phrase

The DELIMITER phrase causes the actual character or characters that
delimited the sending field to be stored in a user-supplied data area.
This phrase is most useful when: (1) the statement contains a
delimiter list, (2) anyone of the items in the list might have
delimited the field, and (3) program logic flow depends on which one
found a match. In fact, the DELIMITER and COUNT phrases could be used
together and program logic flow could depend on both the size of the
sending string and the delimiter character that terminated it.

To use the DELIMITER phrase, simply follow the recelvlng field name
with the words DELIMITER IN and an identifier. (The software places
the delimiter character in the area named by the identifier.) Consider
the following sample UNSTRING statement:

UNSTRING FIELDI DELIMITED BY"," OR TAB OR
ALL SPACE OR CR
INTO FIELD2A DELIMITER IN DELIMA
FIELD2B DELIMITER IN DELIMB
FIELD2C.

Figure 3-30
The DELIMITER Phrase

After moving the first sending string to FIELD2A, the software takes
the character (or characters) that delimited that string and places it
in DELIMA. DELIMA, then, contains a comma, or a tab, or a carriage
return, or any number of spaces. Since the delimiter string is moved
under the rules of the elementary non-numeric MOVE statement, the
software truncates or space fills with left or right justification
(depending on its data description) •

NON-NUMERIC CHARACTER HANDLING 3-31

The software then moves the second sending string to FIELD2B and
places its delimiting character into DELIMB.

When a sending string is delimited by the end of the sending field
(rather than a match on a delimiter) the delimiter string is of zero
length. This causes the DELIMITER item to be space filled. The
phrase should be used only where needed~ in this example, the
character that delimits the last sending string is not needed, so no
DELIMITER phrase follows FIELD2C.

The data item named in the DELIMITER phrase must be described as an
alphanumeric item. It may contain editing characters and it may even
be a group item.

When the DELIMITER and COUNT phrases are used together, they must
appear in the correct order (DELIMITER phrase preceding the COUNT
phrase). Both of the data items named in these phrases may be
subscripted or indexed. If they are subscripted, the subscript may be
varied as a side effect of the UNSTRING operation. (The evaluation of
subscripts is discussed in section 3.8.8.)

3.8.5 The POINTER Phrase

Although the UNSTRING statement normally starts at the left-hand end
of the sending field, the POINTER phrase permits the user to select a
character position in the sending field for the software to begin
scanning. (The scanning, however, remains left-to-right.)

When a sending field is to be dispersed into multiple receiving
fields, it often happens that the choice of delimiters, the size of
subsequent receiving fields, etc. depend on the value in the first
sending string or the character that delimited that string. Thus, the
program may need to move the first field, hold its place in the
sending field, and examine the results of the operation to determine
how to handle the sending items that follow. This is done by using an
UNSTRING statement with a POINTER phrase that fills only the first
receiving field. When the first string has been moved to a receiving
item, the software updates the pointer data item with a new position
(one character beyond the delimiter that caused the interruption) to
begin the next scanning operation. The program may then examine the
new position, the receiving field, th~ delimiter value, the sending
string size, and resume the scanning operation by executing another
UNSTRING statement with the same sending field and pointer data item.
Thus, the UNSTRING statement can move one sending string at a time,
with the form of each move being dependent on the context of the
preceding string of data.

The POINTER phrase must follow the last recelvlng item in the
statement. Consider the following two UNSTRING statements with their
accompanying POINTER phrases and tests:

3-32 NON-NUMERIC CHARACTER HANDLING

MOVE 1 TO P.
UNSTRING FIELDI DELIMITED BY

":" OR TAB OR CR OR ALL SPACE
INTO FIELD2A
DELIMITER IN DELIMA
COUNT IN LSIZEA
WITH POINTER PNTR.

IF LSIZEA = 0 GO TO NO-LABEL-PROCESS.
IF DELIMA = ":"

IF PNTR > 8 GO TO BIG-LABEL-PROCESS
ELSE GO TO LABEL-PROCESS.

IF DELIMA = TAB GO TO BAD-LABEL PROCESS.

UNSTRING FIELDI DELIMITED BY .•. WITH POINTER PNTR.

Figure 3-31
The POINTER Phrase

PNTR contains the current position of the scanner in the sending
field. The second UNSTRING statement uses PNTR to begin scanning the
additional sending strings in FIELDI.

Since the software considers the left-most character to be character
position one, the value returned by PNTR may be used to examine the
next character. To do this, simply use PNTR as a subscript on the
sending field (providing that the sending field is also described as a
table of characters). For example, consider the following sample
coding:

01 FIELDI.
02 FIELDI-CHAR OCCURS 40 TIMES.

UNSTRING FIELDI

WITH POINTER PNTR.
IF FIELDI-CHAR(PNTR) = "X"

Figure 3-32
Examining the Next Character

By Using the Pointer Data
Item as a Subscript

Another way to examine the next character of the sending field is to
use the UNSTRING statement to move it to a I-character receiving
field. Consider the sample coding in figure 3-33.

NON-NUMERIC CHARACTER HANDLING 3-33

UNSTRING FIELDI

WITH POINTER PNTR.
UNSTRING FIELDI INTO CHARI WITH POINTER PNTR.
SUBTRACT 1 FROM PNTR.
IF CHARI = "X"

Figure 3-33
Examining the Next Character

By Placing It Into a I-Character Field

The program must decrement PNTR in order for this case to work like
the one illustrated in Figure 3-32, since the second UNSTRING
statement will increment the pointer value by 1.

The program must initialize the POINTER phrase data, item before the
UNSTRING statement uses it. The software will terminate the UNSTRING
operation if the initial value of the pointer is: less than one or
greater than the length of the sending field., ,(A pointer value that
is less than one or greater than the length of, the sending field
causes an overflow condition. Overflow conditions are discussed in
section 3.8.7.)

The POINTER and TALLYING phrases may be used together in the same
UNSTRING statement~ but, when both are used, the POINTER phrase must
precede the TALLYING phrase.

3.8.6 The TALLYING Phrase

The TALLYING phrase counts the number of receiving fields that
received data from the sending field.

When an UNSTRING statement contains several ,receiving fields, the
possibility exists that there may not always be as many sending
strings as the.re are receiving fields. The TALLYING phrase provides a
convenient method for keeping a count of how many fields were acted
upon.

MOVE 0 TO RCOUNT.
UNSTRING FIELDI DELIMITED BY"," OR ALL SPACE

INTO FIELD2A
FIELD2B
FIELD2C
FIELD2D
FIELD2E
TALLYING IN RCOUNT.

Figure 3-34
The TALLYING Phrase

3-34 NON-NUMERIC CHARACTER HANDLING

If the software has moved only three sending strings when it reaches
the end of FIELDI, it adds 3 to RCOUNT. The first three fields
(FIELD2A, FIELD2B, and FIELD2C) contain data from the operation, and
the last two (FIELD2D and FIELD2E) do not.

The TALLYING data item always contains the sum of its initial contents
plus the number of sending strings acted upon by the UNSTRING command
just executed. Thus, the programmer may want to initialize the tally
count before each use.

When used in the same statement with a POINTER phrase, the TALLYING
phrase must follow the POINTER phrase and both phrases must follow all
of the field names, the DELIMITER and COUNT phrases. The data items
for both phrases must contain numeric integers, that is, be without
editing characters or the letter P in their picture-strings: both
data items may be either COMP or DISPLAY usage. They may be signed or
unsigned and, if they are DISPLAY usage, they may contain any desired
sign option.

The data items for both phrases may be subscripted or indexed, or they
may be used as subscripts on other fields in the statement. (The
evaluation of subscripts is discussed in section 3.8.8.) A convenient
use of the TALLYING phrase data item is as a subscript of a receiving
field. Consider the following sample coding, which causes program
control to execute the UNSTRING statement repeatedly until it exhausts
the sending field.

PARI.
MOVE I TO PNTR, TLY.

UNSTRING FIELDI DELIMITED BY
INTO FIELD2(TLY)
DELIMITER IN DEL2
WITH POINTER PNTR
TALLYING IN TLY.

IF DEL2 = "," GO TO PARI.

Figure 3-35

II 'I , OR CR

The POINTER and TALLYING Phrases
Used Together

This sample coding causes program control to loop through the UNSTRING
statement, using the pointer, PNTR, to scan across FIELDI with
successive executions. Each comma isolates a sending string until
control reaches either a carriage return character or the end of
FIELDI. If it reaches the end of the field without encountering a
carriage return character, the software places a space into the
delimiter field, DEL2, and control falls through the IF statement and
out of the loop.

Since the TALLYING data item, TLY, is increased by I after each data
movement, it serves as a subscript on the receiving field. In effect
this causes the software to unpack the value in FIELDI into an array
of fixed-size fields. Further, an array of COUNT data items can be
supplied and loaded by the UNSTRING/TALLYING statement by adding the
COUNT IN phrase to the coding in Figure 3-35, as is shown in Figure
3-36.

NON-NUMERIC CHARACTER HANDLING 3-35

COUNT IN C(TLY)

Figure 3-36
Subscripting the COUNT Phrase

With the TALLYING Data Item

The TALLYING data item, in the above example, is one greater than the
number of receiving fields acted upon by the UNSTRING operation. This
is because the data item must be initialized to a value of one in
order to be used as a subscript for the first receiving item.

3.8.7 The OVERFLOW Phrase

The OVERFLOW phrase detects the overflow condition and provides an
imperative statement to be executed when it detects the condition. An
overflow condition exists when either of the following two situations
occurs:

1. The UNSTRING statement is about to be executed and its
pointer data item contains a value of less than one or
greater than the size of the sending field. When it detects
this situation, the software executes the OVERFLOW phrase
before it moves any data. Thus, the values of all of the
receiving fields remain unchanged.

2. The UNSTRING statement has filled all of the rece1v1ng fields
and data still remains in the sending field that has not been
matched as a delimiter or included in a sending string. When
it detects this situation, the software executes the OVERFLOW
phrase after it has executed the UNSTRING statement. Thus,
the values of all of the receiving fields are updated, but
some data has not been moved.

If the UNSTRING operation causes the scanner to move off the end of
the sending field (thus exhausting it), the software will not execute
the OVERFLOW phrase.

Consider the following set of instructions, which cause program
control to execute the UNSTRING statement repeatedly until it exhausts
the sending field. The TALLYING data item is a subscript indexing the
receiving field. (Compare this loop with the one in Figure 3-35,
which accomplishes the same thing.)

PARI.
MOVE 1 TO TLY PNTR.
UNSTRING FIELDI DELIMITED BY

INTO FIELD2(TLY)
WITH POINTER PNTR
TALLYING IN TLY

" " ,

ON OVERFLOW GO TO PARI.

Figure 3-37

OR CR

Using the OVERFLOW Phrase

3-36 NON-NUMERIC CHARACTER HANDLING

NOTE

The overflow condition also occurs if
the value of a pointer data item lies
outside the sending field at the start
of execution of the UNSTRING statement.
(The pointer value must not be less than
1, nor qreater than the length of the
sending field.) This type of overflow is
not distinguishable from the overflow
condition described at the start of this
section, except that this condition
causes the UNSTRING statement to
terminate before any data movement takes
place. Then, the values of all
receiving fields remain unchanged.

3.8.8 Subscripted Fields in UNSTRING Statements

Since the flexibility of the UNSTRING statement is enhanced by
subscripting and indexing and particularly by subscripting with other
fields within the statement (such as subscripting the receiving field
with the TALLYING data item as discussed above), it is important to
understand how often and exactly when the software evaluates these
subscripts and indexes. This sub-section discusses the frequency and
times of subscript evaluation.

The software evaluates subscripts and indexes on the following items
only once, at the initiation of the UNSTRING statement~ thus, any
change in subscript values during the execution of the statement has
no effect on these fields:

1. Sending field,

2. POINTER data item,

3. TALLYING data item.

The software evaluates subscripts and indexes on the following items
immediately before it moves data into the item. It moves the data to
these items in the order in which they are listed in the statement
(which is the same order as below):

1. Receiving field,

2. DELIMITER data item,

3. COUNT data item.

The software evaluates any subscripts and indexes on the data-names in
the DELIMITED BY phrase (delimiters) immediately before it scans each
sending string looking for a delimiter match. Thus, it re-evaluates
these data-names once for each receiving field in the statement.

NON-NUMERIC CHARACTER HANDLING 3-37

If any of the following items are used as subscripts on any receiving
fields, the programmer must be aware of the point at which these items
are updated:

• POINTER data-item,

• TALLYING data-item,

• COUNT data-item,

• Another receiving field.

Figure 3-38 illustrates, with a flow chart, the sequence of evaluation
operations:

f--
Z
w EVALUATE IF STORE CONTINUE (J)

EVALUATE w DELIMITER POINTER SCANNER IN SCANNING FOR a: ALL 0.. RECEIVING PHRASE POINTER DELIMITER REPETITIVE w FIELD PRESENT DATA ITEM (J)
SUBSCRIPTS MATCHES « SUBSCRIPT

a:
J::
0..

a:
w
~ STORE IF

ADD 1 TO SCAN ::. DELIMITER TALLYING SENDING UPDATE :; STRING IN PHRASE
TALLYING

SCANNER w DATA ITEM FIELD FOR Cl RECEIVING PRESENT DELIMITER
~ FIELD

EVALUATE f-- EVALUATE
z COUNT SENDING YES RECEIVING w
(J) FIELD FIELD EXHAUSTED FIELD w
a: SUBSCRIPT SUBSCRIPT 0..
w
(J) «
a: NO
J::
0..

MOVE SENDING f-- STORE COUNT z
STRING TO :::l VALUE IN

MORE RECEIVING 0 COUNT FIELD NO u RECEIVING FIELD ~ FIELDS

END

H-MK-00046-00

Figure 3-38
Sequence of Subscript Evaluation

3-38 NON-NUMERIC CHARACTER HANDLING

NOTE

The rules in this section concerning the
exact point at which the software
evaluates the identifiers in the
DELIMITED BY phrase and the point at
which it updates the POINTER and
TALLYING data items, a~e rules that are
specified by 1974 American National
Standard COBOL, as opposed to the STRING
statement where these are not so
specified.

3.8.9 Common Errors, UNSTRING Statement

The most common errors made when writing UNSTRING statements are:

• Leaving the OR connector out of a delimiter list;

• Misspelling or interchanging the words,
DELIMITER;

DELIMITED and

• Writing the DELIMITER and COUNT phrases in the wrong order
when both are present (DELIMITER must precede COUNT);

• Leaving out the word INTO or writing it as TO;

• Repeating the word INTO where it is not needed; thus:

UNSTRING FIELDl DELIMITED BY SPACE OR TAB
INTO FIELD2A DELIMITER IN DELIMA
INTO FIELD2B DELIMITER IN DELIMB
INTO FIELD2C DELIMITER IN DELIMC.

Figure 3-39
Erroneously Repeating the Word INTO

• Writing the POINTER and TALLYING phrases in the wrong order
(POINTER must precede TALLYING).

3.9 THE INSPECT STATEMENT

The INSPECT statement examines the character positions in a field and
counts or replaces certain characters (or groups of characters) in
that field.

Like the STRING and UNSTRING operations, INSPECT operations scan
across the field from left to right; further, like those two
statements, the INSPECT statement features a phrase which allows it to
begin or terminate the scanning operation with a delimiter match.
(Thus, the operation can begin within the field instead of at the
left-hand end, or it may begin at the left-hand end and terminate
within the field.)

NON-NUMERIC CHARACTER HANDLING 3-39

The TALLYING operation (which counts certain characters in the field)
and the REPLACING operation (which replaces certain characters in the
field) are quite versatile and may be applied to all of the characters
in the delimited area of the field being inspected, or they may be
applied only to those characters that match a given character string
under stated conditions. Consider the following sample statements,
which both cause a scan of the complete field:

INSPECT FIELDI TALLYING TLY FOR ALL "B".

Figure 3-40
Sample INSPECT .•• TALLYING Statement

This statement scans FIELDI looking for the character B. Each time it
finds a B, it increments TLY by 1.

INSPECT FIELDI REPLACING ALL SPACE BY ZERO.

Figure 3-41
Sample INSPECT ••. REPLACING Statement

This statement scans FIELDI looking for space characters. Wherever it
finds a space character, it replaces it with zero.

One INSPECT statement can contain both a TALLYING phrase and a
REPLACING phrase. However, when used together, the TALLYING phrase
must precede the REPLACING phrase. An INSPECT statement with both
phrases is equivalent to two separate INSPECT statements and, in fact,
the software compiles such a statement into two distinct INSPECT
statements. (TO simplify debugging, therefore, it is best to
initially write the two phrases in separate INSPECT statements.)

3.9.1 The BEFORE/AFTER Phrase

The BEFORE/AFTER phrase acts as a delimiter and (possibly) restricts
the area of the field being inspected.

The following sample statement would count only the zeroes that
precede the percent sign (%) in FIELDI.

INSPECT FIELDI TALLYING TLY
FOR ALL ZEROES BEFORE "%".

Figure 3-42
Sample INSPECT ••• BEFORE Statement

3-40 NON-NUMERIC CHARACTER HANDLING

The delimiter (the percent sign in the preceding sample statement) can
be a single character, a string of characters, or any figurative
constant. Further, it can be either an identifier or a literal.

• If the delimiter is an identifier, it must be an elementary
data item of DISPLAY usage. It may be alphabetic,
alphanumeric, or numeric, and, it may contain editing
characters. The compiler always treats the item as if it had
been described as an alphanumeric string. (It does this by
implicit redefinition of the item, as described in Section
3.9.2.)

• If the delimiter is a literal, it must be non-numeric.

The software repeatedly compares the delimiter characters against an
equal number of characters in the field being inspected. If none of
the characters matches the delimiter, or if insufficient characters
remain in the field for a full comparison (at the right-hand end), the
software considers the comparison to be unequal.

The examples of the INSPECT statement in Figure 3-43, illustrate the
way the delimiter character finds a match in the field being
inspected. (The portion of the field the statement ignores as a
result of the BEFORE/AFTER phrase delimiters is crossed out with a
slash, and the portion it inspects is underlined.)

INSPECT
INSPECT

INSPECT
INSPECT

INSPECT
INSPECT

INSPECT
INSPECT

INSPECT
INSPECT

The ellipsis
phrase.

INSTRUCTION FIELDl VALUE

FIELDl. .• BEFORE "Ell. ABCDEP'rt.Hl"
FIELD1 ... AFTER "E". neJ'JEFGHI

FIELD1 ..• BEFORE "K". ABCDEFGHI
FIELD1 ... AFTER "K". ABe9EY~

FIELD1 ... BEFORE "AB". ABeEEygHl
FIELD1 •.. AFTER "AB". j){~CDEFGHI

FIELDl. •. BEFORE "HI". ABCDEFGHZ
FIELD1 ... AFTER "HI". j){BC211EygHl"

FIELDl. .. BEFORE "I " ABCDEFGHI .
FIELDl. .. AFTER "I ")l(B'ePJEygH.l .
represents the position of the TALLYING or REPLACING

Figure 3-43
Matching the Delimiter Characters

to the Characters in a Field

NON-NUMERIC CHARACTER HANDLING 3-41

The software scans the field for a delimiter match before it scans for
the inspection operation (TALLYING or REPLACING), thus establishing
the limits of the operation before beginning the actual inspection.
Section 3.9.3 further discusses the importance of the separate scan.

3.9.2 Implicit Redefinition

The software requires that certain fields referred to by the INSPECT
statement be alphanumeric fields. If one of these fields was
described as another data class, the compiler redefines that field so
the INSPECT statement can handle it as a simple alphanumeric string.
This implicit redefinition is conducted as follows:

• If the field was described as alphabetic, alphanumeric
edited, or unsigned numeric, the compiler simply redefines it
as alphanumeric. This is a compile-time operation; no data
movement occurs at run time.

• If the field was described as signed numeric, the compiler
first removes the sign and then redefines the field as
alphanumeric. If the sign is a separate character, the
compiler ignores that character, essentially shortening the
field, and that character does not participate in the
implicit redefinition. If the sign is an "overpunch" on the
leading or trailing digit, the compiler actually removes the
sign value and leaves the character with only the numeric
value that was stored in it. The compiler alters the digit
position containing the sign before beginning the INSPECT
operation and restores it to its former value after the
operation. If the sign's digit position does not contain a
valid ASCII signed numeric digit, the action of the
redefinition causes the value to change. Table 3-12 shows
these original, altered, and restored values.

The compiler never moves an implicitly redefined item from its storage
position. All redefinition occurs in place.

The position of an implied decimal point on numeric quantities does
not affect implicit redefinition.

3-42 NON-NUMERIC CHARACTER HANDLING

Table 3-12
Original, Altered, and Restored Values Resulting

from Implicit Redefinition

ORIGINAL VALUE ALTERED VALUE RESTORED VALUE

{ (7B) 0 (30) t (78)
A (41) 1 (31) A (41)
8 (42) 2 (32) 8 (42)
C (43") 3 (33) C (43)
D (44) 4 (34) D (44)

E (45) 5 (35) E (45)
F (46) 6 (36) F (46)
G (47) 7 (37) G (47)
H (48) 8 (38) H (48)
I (49) 9 (39) I (49)

} (7D) 0 (30) } (7D)
J (4A) 1 (31) J (4A)
1< (48) 2 (32) K (48)
L (4C) 3 (33) L (4C)
M (4D) 4 (34) M (4D)

N (4E) 5 (35) N (4E)
0 (4F) 6 (36) 0 (4F)
P (50) 7 (37) P (50)
Q (51) 8 (38) Q (51)
R (52) 9 (39) . R (52)

0 (30) 0 (30) { (78)
1 (31) 1 (31) A (41)
2 (32) 2 (32) 8 (42)
3 (33) 3 (33) C (43)
4 (34) 4 (34) D (44)

5 (35) 5 (35) E (45)
6 (36) 6 (36) F (46)
7 (37) 7 (37) G (47)
8 (38) 8 (38) H (48)
9 (39) 9 (39) I (49)

All other values 0 (30) { (78)

3.9.3 The INSPECT Operation

Regardless of the type of inspection (TALLYING or REPLACING), the
INSPECT statement has only one method for inspecting the characters in
the field. This section describes this method.

NON-NUMERIC CHARACTER HANDLING 3-43

However, before discussing how the inspection operation is conducted,
let's analyze the INSPECT statement itself:

The

INSPECT FIELDl TALLYING TLY FOR ALL "B"

field being~ ~e ar{ument
inspected /

BEFORE "A".

T
The operation

phrase
The delimiter

phrase

Figure 3-44
Sample INSPECT Statement

The format of the INSPECT statement requires that a field be named
which is to be inspected (FIELDl above): the field name must be
followed by an operation phrase (TALLYING TLY above): and, that
phrase must be followed by one or more identifiers or literals ("B"
above). These identifiers or literals comprise the "arguments" (items
to be compared to the field being inspected). More than one argument
makes up the "argument list".

• TALLYING Arguments

Each argument in an argument list can have other fields
associated with it. Thus, each argument that is used in a
TALLYING operation must have a tally counter (TLY above)
associated with it. The software increments the tally
counter each time it matches the argument with a character or
group of characters in the field being inspected.

• REPLACING Arguments

INSPECT FIELDl REPLACING ALL "0" BY "$".
I

replacing argument

Figure 3-45
Sample REPLACING Argument

Each argument in an argument list that is used in a REPLACING
operation must have a replacement item ($ above) associated
with it. The software uses the replacement item to replace
each string of characters in the field that matches the
argument.

Each argument in an argument list (that is used with either a TALLYING
or REPLACING operation) may have a delimiter field (BEFORE/AFTER
phrase) associated with it. If the delimiter field is not present,
the software applies the argument to the entire field. If the
delimiter field is present, the software applies the argument only to
that· portion of the field specified by the BEFORE/AFTER phrase.

3-44 NON-NUMERIC CHARACTER HANDLING

3.9.3.1 Setting the Scanner - The INSPECT operation begins by setting
the scanner to the leftmost character position of the field being
inspected. It remains on this character until an argument has been
matched with a character (or characters) or until all arguments have
failed to find a match at that position.

3.9.3.2 Active/Inactive Arguments - When an argument has a
BEFORE/AFTER phrase associated with it, that argument has a delimiter
and may not be eligible to participate in a comparison at every
position of the scanner. Thus, each argument in the argument list has
an active/inactive status at any given setting of the scanner.

For example, an argument that has an AFTER phrase associated with it
starts the INSPECT operation in an inactive state. The delimiter of
the AFTER phrase must find a match before the argument can participate
in the comparison. When the delimiter finds a match, the software
retains the character position beyond the matched character string;
then, when the scanner reaches or passes this position, the argument
becomes active.

INSPECT FIELDI TALLYING TLY
FOR ALL "B" AFTER "X".

Figure 3-46
Sample AFTER Delimiter Phrase

If FIELDI in Figure 3-46 has a value of "ABABXZBA", the argument B
remains inactive until the scanner finds a match for the delimiter X.
Thus, argument B remains inactive while the software scans character
positions 1 through 5. At character position 5, the delimiter X finds
a match, and since the character position beyond the matched delimiter
character is the point at which the argument becomes active, argument
B is compared for the first time at character position 6. It finds a
successful match at character position 7 and this causes TLY to be
incremented by 1.

The examples in Figure 3-47 illustrate other situations where the
arguments and/or the delimiters are longer than one character.
(Consider the sample statement to be an INSPECT ..• TALLYING statement
that is scanning FIELDl, tallying in TLY, and looking for the
arguments and delimiters in the left-hand column. Assume that TLY is
initialized to 0.)

NON-NUMERIC CHARACTER HANDLING 3-45

ARGUMENT AND FIELDl ARGUMENT CONTENTS OF
DELIMITER VALUE ACTIVE AT TLY AFTER SCAN

POSITION

BXBXXXXBB 6 2
"B" AFTER "XX" XXXXXXXX 3 0

BXBXBBBBXX never 0

BXBXXBXXB 6 2
"X" AFTER "XX" XXXXXXXX 3 6

BBBBBBXX never 0

BXYBXBXX 7 0
"B" AFTER "XB" XBXBXBXB 3 3

BBBBBBXB never 0

XXXXBXXXX 6 0
"BX" AFTER "XB" XXXXBBXXX 6 1

XXBXXXXBX 4 1

Figure 3-47
Where Arguments Become Active in a Field

When an argument has an associated BEFORE delimiter, the
inactive/active states reverse roles: the argument is in an active
state when the scanning begins, and becomes inactive at the character
position that matches the delimiter. Additionally, regardless of the
presence of the BEFORE delimiter, an argument becomes inactive when
the scanner approaches the right-hand end of the field and the
remaining characters are fewer in number than the characters in the
argument. (In such a case, the argument cannot possibly find a match
in the field so it becomes inactive.)

Since the BEFORE/AFTER delimiters are found on a separate scan of the
field, the software recognizes and sets up the delimiter boundaries
before it scans for an argument match~ therefore, the same characters
can be used as arguments and delimiters in the same phrase.

3.9.3.3 Finding an Argument Match - The software selects arguments
from the argument list in the order in which they appear in the list.
If the first one it selects is an active argument and the conditions
stated in the INSPECT statement allow a comparison, the software
compares it to the character at the position of the scanner. If the
active argument does not find a match, the software takes the next
active argument from the list and compares that to the same character.
If none of the active arguments finds a match, the scanner moves one
position to the right and begins the inspection operation again with
the first active argument in the list. The inspection operation
terminates at the right-hand end of the field.

3-46 NON-NUMERIC CHARACTER HANDLING

When an active argument does find a match, the software ignores any
remaining arguments in the list and conducts the TALLYING or REPLACING
operation on the character. The scanner moves to a new position and
the next inspection operation begins with the first argument in the
list. (The INSPECT statement may contain additional conditions, which
are described later in this section~ this discussion, however,
assumes that the argument match is allowed to take place and that
inspection is allowed to continue following the match.)

The software updates the scanner by adding the size of the matching
argument to it. This moves the scanner to the next character beyond
the string of characters that matched the argument. Thus, once an
active argument matches a string of characters, the statement does not
inspect those character positions again unless program control
executes the entire statement again.

3.9.4 Subscripted Fields in INSPECT Statements

Any identifier named in an INSPECT statement may be subscripted or
indexed.

The software evaluates all subscripts in an INSPECT statement once,
before the inspection begins~ therefore, if the action of the INSPECT
statement alters one of the subscripts, the new subscript value has no
effect on the selection of operands during that inspection operation.
For example, consider the following illustration:

MOVE 1 TO TLY.
INSPECT FIELDI TALLYING TLY

FOR ALL X(TLY).

Figure 3-48
Sample Subscripted Argument

In this sample statement, the software evaluates the address of X(TLY)
only once, before it begins inspecting the field~ hence, it will
evaluate X(TLY) as X(l). The alteration of TLY by the action of
inspecting and tallying has no effect on the choice of the X operand.
(X(l) will be used throughout the operation.)

NOTE

When subscripting an INSPECT statement
that contains both a TALLYING and a
REPLACING phrase, keep in mind that the
statement will be compiled into two
separate INSPECT statements. Therefore,
any field that is altered by the action
of the INSPECT ••• TALLYING statement will
be in its altered state if used as a
subscript by the INSPECT •.. REPLACING
statement.

NON-NUMERIC CHARACTER HANDLING 3-47

3.9.5 The TALLYING Phrase

An INSPECT statement that
occurrence of various
conditions. It keeps the
here, a tally counter.

contains
character

count in a

a TALLYING phrase counts the
strings under certain stated
user-designated field called,

3.9.5.1 The Tally Counter - The identifier that follows the word
TALLYING designates the tally counter. The identifier may be
subscripted or indexed. The data item must be a numeric integer with
no editing or P characters~ it may be COMP or DISPLAY usage, and it
may be signed (separate or overpunched).

Each time the tally argument matches the delimited string being
inspected, the software adds 1 to the tally counter.

The programmer can initialize the tally counter to any numeric value.
(The INSPECT statement does not initialize it.)

3.9.5.2 The Tally Argument - The tally argument specifies a
character-string and a condition under which that string should be
compared to the delimited string being inspected. The following
figure shows the format of the tally argument:

{ {~~~DING}
CHARACTERS

{ i~entifier} }
Ilteral

Figure 3-49
Format of the Tally Argument

The CHARACTERS form of the tally argument specifies that every
character in the delimited string being inspected should be considered
to match an imaginary character that serves as the tally argument.
This increments the tally counter by a value that equals the size of
the delimited string. For example, the statement in the following
illustration causes TLY to be incremented by the number of characters
that precede the first comma, regardless of what those characters
might be.

INSPECT FIELDl TALLYING TLY FOR
CHARACTERS BEFORE ",".

Figure 3-50
CHARACTERS Form of the Tally Argument

3-48 NON-NUMERIC CHARACTER HANDLING

When an active argument does find a match, the software ignores any
remaining arguments in the list and conducts the TALLYING or REPLACING
operation on the character. The scanner moves to a new position and
the next inspection operation begins with the first argument in the
list. (The INSPECT statement may contain additional conditions, which
are described later in this section~ this discussion, however,
assumes that the argument match is allowed to take place and that
inspection is allowed to continue following the match.)

The software updates the scanner by adding the size of the matching
argument to it. This moves the scanner to the next character beyond
the string of characters that matched the argument. Thus, once an
active argument matches a string of characters, the statement does not
inspect those character positions again unless program control
executes the entire statement again.

3.9.4 Subscripted Fields in INSPECT Statements

Any identifier named in an INSPECT statement may be subscripted or
indexed.

The software evaluates all subscripts in an INSPECT statement once,
before the inspection begins~ therefore, if the action of the INSPECT
statement alters one of the subscripts, the new subscript value has no
effect on the selection of operands during that inspection operation.
For example, consider the following illustration:

MOVE 1 TO TLY.
INSPECT FIELDl TALLYING TLY

FOR ALL X(TLY).

Figure 3-48
Sample Subscripted Argument

In this sample statement, the software evaluates the address of X(TLY)
only once, before it begins inspecting the field~ hence, it will
evaluate X(TLY) as X(l). The alteration of TLY by the action of
inspecting and tallying has no effect on the choice of the X operand.
(X(l) will be used throughout the operation.)

NOTE

When subscripting an INSPECT statement
that contains both a TALLYING and a
REPLACING phrase, keep in mind that the
statement will be compiled into two
separate INSPECT statements. Therefore,
any field that is altered by the action
of the INSPECT ••• TALLYING statement will
be in its altered state if used as a
subscript by the INSPECT •.• REPLACING
statement.

NON-NUMERIC CHARACTER HANDLING 3-47

3.9.5 The TALLYING Phrase

An INSPECT statement that
occurrence of various
conditions. It keeps the
here, a tally counter.

contains
character

count in a

a TALLYING phrase counts the
strings under certain stated
user-designated field called,

3.9.5.1 The Tally Counter - The identifier that follows the word
TALLYING designates the tally counter. The identifier may be
subscripted or indexed. The data item must be a numeric integer with
no editing or P characters~ it may be CaMP or DISPLAY usage, and it
may be signed (separate or overpunched).

Each time the tally argument matches the delimited string being
inspected, the software adds 1 to the tally counter.

The programmer can initialize the tally counter to any numeric value.
(The INSPECT statement does not initialize it.)

3.9.5.2 The Tally Argument - The tally argument specifies a
character-string and a condition under which that string should be
compared to the delimited string being inspected. The following
figure shows the format of the tally argument:

f {~i~DING}
lCHARACTERS

{ i~entifier} }
Ilteral

Figure 3-49
Format of the Tally Argument

The CHARACTERS form of the tally argument specifies that every
character in the delimited string being inspected should be considered
to match an imaginary character that serves as the tally argument.
This increments the tally counter by a value that equals the size of
the delimited string. For example, the statement in the following
illustration causes TLY to be incremented by the number of characters
that precede the first comma, regardless of what those characters
might be.

INSPECT FIELDl TALLYING TLY FOR
CHARACTERS BEFORE ",".

Figure 3-50
CHARACTERS Form of the Tally Argument

3-48 NON-NUMERIC CHARACTER HANDLING

Thus, the first argument is initially inactive and becomes active only
after the scanner encounters an A~ the second argument begins the
scan in the active state but becomes inactive after a B has been
encountered~ and the third argument is active during the entire scan
of FIELD1.

Figure 3-55 shows various values of FIELDl and the contents of the
three tally counters after the scan. Assume that the counters are
initialized to 0 before the INSPECT statement.

CONTENTS OF TALLY COUNTERS AFTER SCAN
FIELDl
VALUE Tl T2 T3

A.C~D.E,F 1 2 1
A.B.C.D 0 1 0
A,B,C,D 3 0 0
A~B~C~D 0 0 3
*,B,C,D 0 0 0

Figure 3-55
Results of the Scan in Figure 3-54

The BEFORE/AFTER phrase applies only to the argument that precedes it,
and delimits the field for that argument only. Each BEFORE/AFTER
phrase causes a separate scan of the field to determine the limits of
the field for its corresponding argument.

3.9.5.4 Interference in Tally Argument Lists - When several tally
arguments contain one or more identical characters that are active at
the same time, they may interfere with each other (i.e., when one of
the arguments finds a match, the scanner is stepped past the matching
character(s) which prevents those character(s) from being considered
for any 'other match).

The example in Figure 3-56 illustrates two identical tally arguments
that do not interfere with each other since they are not active at the
same time. (The first A in FIELDl causes the first argument to become
inactive and the second argument to become active.)

MOVE 0 TO Tl T2.
INSPECT FIELDl TALLYING

Tl FOR ALL "," BEFORE "A"
T2 FOR ALL "," AFTER "A".

Figure 3-56
Two Tallying Arguments that

Do Not Interfere with Each Other

The two identical tally arguments in Figure 3-57 will interfere with
each other since both are active at the same time. (For any given
position of the scanner, the arguments are applied to FIELDl in the
qrder in which they appear in the statement. When one of them finds a
match, the scanner moves to the next position and ignores the

NON-NUMERIC CHARACTER HANDLING 3-51

remaining arguments in the argument list.) Each comma in FIELDI causes
TI to be incremented by I and the second argument to be ignored.
Thus, TI will always contain an accurate count of all of the commas in
FIELDI, and T2 will always be unchanged.

INSPECT FIELDI TALLYING
TI FOR ALL ","
T2 FOR ALL "," AFTER "A".

Figure 3-57
Two Tallying Arguments that
Do Interfere with Each Other

The following statement achieves the same results as the statement in
Figure 3-56. The first argument does not become active until the
scanner encounters an A. The second argument tallies all commas that
precede the A. After the A, the first argument counts all commas and
causes the second argument to be ignored. Thus, TI contains the
number of commas that precede the first A and T2 contains the number
of commas that follow the first A. This statement works well as
written, but could be more confusing to debug than the one in Figure
3-56.

INSPECT FIELDI TALLYING
T2 FOR ALL "," AFTER "A"
TI FOR ALL ",H.

Figure 3-58
Two Tallying Arguments that,

Because of their Positioning,
Only Partially Interfere with

Each Other

The preceding three examples show that one INSPECT statement cannot
count any character more than once. Thus, when using the same
character in more than one argument of an argument list, consider the
nature of the interference and choose the order of the arguments very
carefully. The solution to the problem may require two or more
INSPECT statements. Consider the following problem:

INSPECT FIELDI TALLYING
TI FOR ALL "AB"
T2 FOR ALL "BC".

Figure 3-59
An Attempt to Tally the Character B

with Two Arguments

If FIELDI contains "ABCABC", after the scan TI will be incremented by
a 2 and T2 will be unaltered. The successful matching of the argument
includes each B in the field. Each match resets the scanner to the
character position to the right of the B, and causes the second

3-52 NON-NUMERIC CHARACTER HANDLING

argument to never be successfully matched. Reversing the order of the
arguments has no effect, the results remain the same. Only separate
INSPECT statements can develop the desired counts.

Sometimes the programmer can use the interference characteristics of
the INSPECT statement to good advantage. Consider the following
sample argument list:

MOVE 0 TO T4 T3 T2 Tl.
INSPECT FIELDI TALLYING

T4 FOR ALL "****"
T3 FOR ALL "***"
T2 FOR ALL "**"
Tl FOR ALL "*"

Figure 3-60
Tallying Asterisk Groupings

The argument list in Figure 3-60 counts all of the asterisks in FIELDI
but in four different tally counters. T4 counts the number of times
that four asterisks occur together~ T3 counts the number of times
three asterisks appear together~ T2 counts double asterisks~ and TI
counts singles.

If FIELDI contains a
the argument list
them in T4. It then
TI.

string of more than four consecutive asterisks,
breaks the string into groups of four, and counts
counts the less-than-four remainder in T3, T2, or

Reversing the order of the arguments in this list causes Tl to count
all of the asterisks and T2, T3, and T4 to remain unchanged.

When the LEADING condition is used with an argument in the argument
list, that argument becomes inactive as soon as it fails to be matched
in the field being inspected. Therefore, when two arguments in an
argument list contain one or more identical characters and one of the
arguments has a LEADING condition, the argument with the LEADING
condition should appear first. Consider the following ~ample
statement:

MOVE 0 TO Tl T2.
INSPECT FIELDI TALLYING

TI FOR LEADING "*"
T2 FOR ALL "*"

Figure 3-61
Placing the LEADING Condition

in the Argument List

The placement of the LEADING condition in this sample statement causes
Tl to count only leading asterisks in FIELDl~ the occurrence of any
other character stops this counting and causes the first tally
argument to become inactive. T2 keeps a count of any remaining
asterisks in FIELDI.

NON-NUMERIC CHARACTER HANDLING 3-53

Reversing the order of the arguments in this statement results in an
argument list that can never increment Tl.

INSPECT FIELDI TALLYING
T2 FOR ALL "*"
Tl FOR LEADING "*".

Figure 3-62
Reversing the Argument
List in Figure 3-61

If the first character in FIELDI is not an asterisk, neither argument
can match it and the second argument becomes inactive. If the first
character in FIELDI is an asterisk, the first argument matches and
causes the second argument to be ignored. The first non-asterisk
character in FIELDI will fail to match the first argument and the
second argument will become inactive. (The second argument becomes
inactive because it has not found a match in all of the preceding
characters.)

An argument with both a LEADING condition and a BEFORE phrase can
sometimes sucessfully "delimit" the field being inspected:

MOVE 0 TO Tl T2.
INSPECT FIELDI TALLYING

Tl FOR LEADING SPACES
T2 FOR ALL" "BEFORE "."
T2 FOR ALL" "BEFORE "."
T2 FOR ALL " " BEFORE " "

IF T2 > 0 ADD 1 TO T2.

Figure 3-63
An Argument List that Counts

Words in a Statement

The statements in Figure 3-63 count the number of "words" in the
English statement in FIELDI. (This assumes that no more than three
spaces separate the words in the sentence and that the sentence ends
with a period.) When FIELDI has been scanned, T2 contains the number
of gaps between the words. Since a count of the gaps renders a number
that is one less than the number of words, the conditional statement
adds one to the count.

The first argument removes any leading spaces, counting them in a
different tally counter. This shortens FIELDI by preventing the
application of the second through the fourth arguments until the
scanner finds a non-space character. The BEFORE phrase on each of the
other arguments causes them to become inactive when the scanner
reaches the period at the end of the sentence. Thus, the BEFORE
phrases "shorten" FIELDI by making the second through the fourth
arguments inactive before the scanner reaches the right-hand end of
FIELDI. If the sentence in FIELDI is indented with tab characters
instead of spaces, a second LEADING argument can count the tab
characters. Figure 3-64 illustrates this technique:

3-54 NON-NUMERIC CHARACTER HANDLING

INSPECT FIELDI TALLYING
Tl FOR LEADING SPACES
Tl FOR LEADING TAB
T2 FOR ALL" "etc.

Figure 3-64
Counting Leading Tab or Space Characters

When an argument list contains a CHARACTERS argument, it should be the
last argument in the list. Since the CHARACTERS argument always
matches the field, it prevents the application of any of the following
arguments in the list. However, as the last argument in an argument
list, it can count the remaining characters in the field being
inspected. Consider the following illustration.

MOVE 0 TO Tl T2 T3 T4 T5.
INSPECT FIELDI TALLYING

Tl FOR LEADING SPACES
T2 FOR ALL "." BEFORE ","
T3 FOR ALL "+" BEFORE ","
T4 FOR ALL "-" BEFORE ","
T5 FOR CHARACTERS BEFORE ",H.

Figure 3-65
Counting the Remaining Characters

with the CHARACTERS Argument

If FIELDI is known to contain a number in the form frequently used to
input data, it may contain a plus or minus sign, and a decimal point~
further, the number may possibly be preceded by spaces and terminated
by a comma. If this statement were compiled and executed, it would
deliver the following results:

Tl would contain the number of leading spaces,

T2 would contain the number of periods,

T3 would contain the number of plus signs,

T4 would contain the number of minus signs,

T5 would contain the number of remaining characters (assumed to
be numeric), and

the sum of Tl through T5 (plus 1) gives the character position
occupied by the terminating comma.

3.9.6 The REPLACING Phrase

When an INSPECT statement contains a REPLACING phrase, that statement
selectively replaces characters or groups of characters in the
designated field.

NON-NUMERIC CHARACTER HANDLING 3-55

The REPLACING phrase names a search argument consisting of a character
string of one or more characters and a condition under which the
string may be applied to the field being inspected. Associated with
the search argument is the replacement value, which must be the same
length as the search argument. Each time the search argument finds a
match in the field being inspected, under the condition stated, the
replacement value replaces the matched characters.

A BEFORE/AFTER phrase may be used to delimit the area of the field
being inspected. A search argument applies only to the delimited area
of the field.

3.9.6.1 The Search Argument - The search argument of the REPLACING
phrase names a character string and a condition under which the
character string should be compated to the delimited string being
inspected. Figure 3-66 shows the format of the search argument:

ALL lidentifierl
LEADING literal
FIRST

CHARACTERS

Figure 3-66
Format of the Search Argument

The CHARACTERS form of the search argument specifies that every
character in the delimited string being inspected should be considered
to match an imaginary character that serves as the search argument.
Thus, the replacement value replaces each character in the delimited
string. (The replacement value, in this case, must be one character
long.)

The ALL, LEADING, and FIRST forms of the search argument specify a
particular character string, which may be represented by a literal or
an identifier. The search argument character string may be any
length. However, each character of the argument must match a
character in the delimited string before the software considers the
argument matched.

• A literal character string must be either non-numeric or a
figurative constant (other than ALL literal). A figurative
constant, such as SPACE, ZERO, etc., represents a single
character and can be written as , "0", etc. with the same
effect. Since a figurative constant represents a single
character, the replacement value must be one character long.

• An identifier must represent an elementary item of DISPLAY
usage. It may be any class. However, if it is other than
alphabetic, the software performs an implicit redefinition of
the item. (This redefinition is identical to the
BEFORE/AFTER delimiter redefinition discussed in Section
3.9.1.)

3-56 NON-NUMERIC CHARACTER HANDLING

The words ALL, LEADING, and FIRST supply conditions which further
delimit the inspection operation:

• The word ALL specifies that each match that the search
argument finds in the delimited string is to be replaced by
the replacement value. When a literal follows the word ALL,
it does not have the same meaning as the figurative constant,
ALL literal. (The figurative constant meaning of ALL "," is
a string of consecutive commas, as many as the context of the
statement requires.) ALL "," as a search argument of the
REPLACING phrase means, "replace each comma without regard to
adjacent characters."

• The word LEADING specifies that only adjacent matches of the
search argument at the left-hand end of the delimited
character string be replaced. At the first failure to match
the search argument, the software terminates the replacement
operation and causes the argument to become inactive.

• The word FIRST specifies that only the leftmost
string that matches the search argument is to be
After the replacement operation, the search
containing this condition becomes inactive.

character
replaced.

argument

3.9.6.2 The Replacement Value - Whenever the search argument finds a
match in the field being inspected, the matched characters are
replaced by the replacement value. The word BY followed by an
identifier or literal specifies the replacement value.

identifier

literal

Figure 3-67
Format of the Replacement Value

The replacement value must always be the same size as its associated
search argument.

If the replacement value is a literal character string, it must be
either a non-numeric literal or a figurative constant (other than ALL
literal). A figurative constant represents as many characters as the
length that the search argument requires.

If the replacement value is an identifier, it must be an elementary
item of DISPLAY usage. It may be any class. However, if it is other
than alphanumeric, the software conducts an implicit redefinition of
the item. (This redefinition is the same as the BEFORE/AFTER
redefinition discussed in Section 3.9.1.)

NON-NUMERIC CHARACTER HANDLING 3-57

3.9.6.3 The Replacement Argument - The replacement argument consists
of the search argument (with its condition and character string), the
replacement value, and an optional BEFORE/AFTER phrase.

ALL "." BY SPACE BEFORE "."

searCh~ T ~BEFORE/AFTER
argument phrase (optional)

replacement
value

Figure 3-68
The Replacement Argument

3.9.6.4 The Replacement Argument List - One INSPECT ••• REPLACING
statement can contain more than one replacement argument. Several
replacement arguments form an argument list, and the manner in which
the list is processed affects the action of any given replacement
argument.

The following examples show INSPECT statements with replacement
argument lists. The text following each one tells how that list will
be processed.

INSPECT FIELDI REPLACING
ALL "," BY SPACE
ALL "." BY SPACE
ALL "~" BY SPACE.

Figure 3-69
Replacement Argument List that is

Active Over the Entire Field

These three replacement arguments all have the same replacement value,
SPACE, and are active over the entire field being inspected.

Thus, this statement replaces all commas, periods, and semicolons with
space characters~ and leaves all other characters unchanged.

INSPECT FIELDI REPLACING
ALL "0" BY "1"
ALL "1" BY "0".

Figure 3-70
Replacement Argument List that

"Swaps" Ones for Zeroes and Zeroes for Ones

Each of these two replacement arguments has its own replacement value,
and is active over the entire field being inspected. This statement
exchanges zeros for ones and ones for zeroes, an~ leaves all other
characters unchanged.

3-58 NON-NUMERIC CHARACTER HANDLING

NOTE

When a search argument finds a match in
the field being inspected, the software
replaces that character string and scans
to the next position beyond the replaced
characters. It ignores the remaining
arguments and applies the first argument
in the list to the character string in
the new position. Thus, it never
inspects the new value that was supplied
by the replacement operation. Because
of this, the search arguments may have
the same values as the replacement
arguments with no chance of
interference.

INSPECT FIELDI REPLACING
ALL "0" BY "1" BEFORE SPACE
ALL "1" BY "0" BEFORE SPACE.

Figure 3-71
Replacement Argument List that

Becomes Inactive with the
Occurrence of a Space Character

This sample statement is identical to the statement in Figure 3-70,
except that, here, the first occurrence of a space character in FIELDI
causes both arguments to become inactive.

INSPECT FIELDI REPLACING
ALL "0" BY "1" BEFORE SPACE
ALL "1" BY "0" BEFORE SPACE
CHARACTERS BY "*" BEFORE SPACE.

Figure 3-72
Argument List with Three Arguments

That Become Inactive with the
Occurrence of a Space

Just as in the argument list in Figure 3-71, the first space character
causes all of these replacement arguments to become inactive. This
argument list exchanges zeroes for ones, ones for zeroes, and
asterisks for all other characters that are in the delimited area.

If the BEFORE phrase is removed from the third argument, that argument
will remain active across all of FIELDI. Within the area delimited by
the first space character, the third argument replaces all characters
except ones and zeroes with asterisks. Beyond this area, it replaces
all characters (including the space that delimited FIELDI for the
first two arguments and any zeroes and ones) with asterisks.

NON-NUMERIC CHARACTER HANDLING 3-59

3.9.6.5 Interference in Replacement Argument Lists - When several
search arguments that are active at the same time contain one or more
identical characters, they may interfere with each other, and
consequently have an effect on the replacement operation. This
interference of one search argument with the matching of other search
arguments is similar to the interference that occurs between tally
arguments.

The action of a search argument is never affected by the BEFORE/AFTER
delimiters of other arguments, since the software scans for delimiter
matches before it scans for replacement operations.

The action of a search argument is never affected by the characters of
any replacement value, since the scanner does not inspect the replaced
characters again during execution of the INSPECT statement.
Interference between search arguments, therefore, depends on the order
of the arguments, the values of the arguments, and the active-inactive
status of the arguments. (The discussion in Section 3.9.5.4
Interference in Tally Argument Lists, applies, generally, to
replacement arguments as well.)

The following rules will help minimize interference in replacement
argument lists:

1. Place search arguments with LEADING or FIRST conditions at
the start of the list;

2. Place several arguments with the CHARACTERS condition at the
end of the list;

3. Consider, very carefully, the order of
search arguments that contain one
characters.

3.9.7 Common Errors, INSPECT Statement

appearance of any
or more identical

The most common errors made when writing INSPECT statements are:

• Leaving the FOR out of an INSPECT ••• TALLYING statement.

• Using the word "WITH" instead of "BY" in the REPLACING
phrase.

• Failing to initialize the tally counter.

• Omitting the word "ALL" e.g.:

INSPECT FIELDI TALLYING TLY FOR SPACES.

3-60 NON-NUMERIC CHARACTER HANDLING

CHAPTER 4

NUMERIC CHARACTER HANDLING

This chapter discusses numeric class data and the COBOL operations
that can be performed on numeric data items. It is assumed that you
have read Chapter 3, and that you understand the concept of COBOL data
classes.

4.1 USAGES

The USAGE of a numeric class item specifies the form in which the data
is stored in memory. VAX-II COBOL-74 has four formats for numeric
data storage: DISPLAY (which is equivalent to DISPLAY-6 and
DISPLAY-7), COMPUTATIONAL (abbreviated COMP), and COMPUTATIONAL-3
(abbreviated COMP-3).

4.1.1 DISPLAY

Items with DISPLAY usage are stored as strings of characters (bytes)
in decimal radix with an assumed decimal point and optional sign.

4.1.2 COMPUTATIONAL

COMPUTATIONAL usage is the standard VAX-II binary format. A COMP item
is stored as a binary value with an assumed decimal scaling position;
it is automatically SYNCHRONIZED on a word boundary and stored in
memory (in one, two, or four words) as follows:

PICTURE RANGE

S (9) to S 9 (4)
S9 (5) to S9 (9)
S9 (10) to S9 (18)

STORAGE

1 word (2 bytes)
1 longword (4 bytes)
1 quadword (8 bytes)

Figure 4-1 indicates the significance of each byte in a COMP data item
by the number in parentheses. For example, "(1)" indicates that the
byte contains the lowest-valued bits. Observe that the computer
address (the first-referenced byte) of each COBOL data item
corresponds to the low byte of the least significant word.

The number in parentheses also indicates the order of characters if
the data item is redefined as an alphanumeric item. Consider an
example of a two-word COMP item:

01 COMP-ITEM PIC 9(9) USAGE IS COMPo
01 GROUP-ITEM REDEFINES COMP-ITEM.

03 CHARACTER-ITEM PIC X OCCURS 4 TIMES.

The subscripts of CHARACTER-ITEM correspond to the numbers in
parentheses in Figure 4-1.

high low high low high low
byte byte byte byte byte byte

(2) (1) (2) (1) (2) (1) Addressed word

One-word
COMP item

(4) (3)

Two-word
COMP item

(4) (3)

(6) (5)

(8) (7)

Four-word
COMP item

Figure 4-1

Next word

Next word

Next word

Memory Storage of COMP Data Items

4 .. 1.3 COMPUTATIONAL-3

COMP-3 specifies packed-decimal data items. They are
decimal digits per byte (byte-aligned) with an assumed
position. The sign is contained in the rightmost half
the rightmost byte.

stored as two
decimal scaling
(four bits) of

The maximum size of a COMP-3 item is 18 decimal digits, regardless of
the decimal scaling position. In the following example, both NUM-l
and NUM-2 represent COMP-3 items of maximum size:

03 NUM-l PIC S9(18) USAGE IS COMP-3.
03 NUM-2 PIC S9(6)V9(12) USAGE IS COMP-3.

The description of a COMP-3 data item must have a sign in its PICTURE
character-string.

4-2 NUMERIC CHARACTER HANDLING

When you specify an even number of digits, the value zero is stored in
the leftmost four bits of the leftmost byte.

Signs resulting from operations in which the receiving item is
specified as COMP-3 are:

"+"
"_"

binary 1100
binary 1101

hexadecimal C
hexadecimal F

The following signs are also recognized as valid, but they are not
generated as a result of program operations:

positive signs- binary 1010, hex adec imal A
binary 1100, hexadecimal C
binary 1110, hex adec imal E
binary 1111, hex adec imal F

Negative signs- binary 1011, hexadecimal B
binary 1101, hexadecimal D

Figure 4-2 represents the memory storage of COMP-3 data items of one,
two, and three digits:

1st byte

5 +

PICTURE S9
value: +5

1st byte 2nd byte

0 3 2

PICTURE S9(2)
value: -32

-

Figure 4-2

1st

2

byte 2nd byte

6 2

PICTURE S9(3)
value: +262

+

Memory Storage of COMP-3 Data Items

4.2 DECIMAL SCALING POSITION

The assumed decimal scaling position, or scaling factor, is not stored
as part of an actual numeric value. However, it is used by the RTS to
control operations on numeric data items. Consider the following
field description:

01 ORDER-PRICE PIC 99V99 COMP VALUE 12.34.

VAX-II COBOL-74 stores this item as a I-word binary number. The word
contains the integer value 1234 and another location contains the
scaling factor. In this example, the scaling factor records the fact
that this integer has two decimal fractional positions. Thus, the
COBOL RTS knows that the stored binary integer is 100 times larger
than the programmer intends it to be.

NUMERIC CHARACTER HANDLING 4-3

If the compiler encounters the following statement:

ADD 1 TO ORDER-PRICE.

it generates instructions to add a 1 to the 1234 in ORDER-PRICE. The
RTS, however, scales the literal 1 up by two decimal places and adds
the resultant literal, 100, to the number in ORDER-PRICE'. Thus, after
the ADD operation, ORDER-PRICE contains the new value 1334 (which is
actually 13.34 with the stored decimal scaling position).

Thus, the VAX-II COBOL-74 compiler and RTS manipulate the data in
DISPLAY, COMP, and COMP-3 data items in much the same way. All four
usages have exactly the same accuracy and precision, and can be freely
mixed in a program. To illustrate, if a DISPLAY usage number and a
COMP usage number are both involved in the same arithmetic statement,
the RTS converts them to a common radix with no loss of information.
It also converts the result, if necessary, with no loss of
significance.

The only effect of specifying a binary or packed-decimal usage is that
it reduces the space required for most numbers and can speed up the
execution of arithmetic statements.

4.3 SIGN CONVENTIONS

COMP-3 data items must be signed; however, DISPLAY AND COMP numeric
items can be signed or unsigned. Unsigned numbers can contain values
that range from zero to the largest positive value allowed by their
declared precision. Negative values are not allowed. All VAX-II
COBOL-74 arithmetic operations yield signed results. When the RTS
must store such a result, whether positive or negative, in an unsigned
data item, it stores only the absolute value of the result. Thus,
unsigned items always contain zero or positive values.

This guide does not recommend unsigned numbers for general use. They
are usually a source of programming errors, and are handled less
efficiently than signed quantities by the RTS.

Signed quantities always contain a numeric value and an operational
sign. The RTS stores the sign with the numeric value in a variety of
ways depending on the usage of the item and the presence of the SIGN
clause.

NOTE

If numeric data is read into a field
described using the picture character S,
then that data must include an
operational sign of the appropriate
format to pass the NUMERIC test.

4-4 NUMERIC CHARACTER HANDLING

VAX-II COBOL-74 always stores signed COMP items in two's complement
binary form. Thus, the high-order bit indicates the sign of the item.
Sign representation for COMP-3 data items is described in Section
4.1.4.

VAX-II COBOL-74 always stores signed DISPLAY items as a sequence of
byte positions containing numeric ASCII characters. It may include
the sign in the high-order byte, the low-order byte, or as a separate,
extra, byte on either the high-order or low-order end of the item.

When the RTS stores the sign as part of a byte that also contains a
numeric digit, the sign causes a value change in that byte and, hence,
changes the value of the numeric digit. Table 4-1 shows the actual
ASCII character that results when a numeric value and a sign share the
same byte.

+
SIGN

-

A byte containing
either a { or a [

A byte containing
either a I or a]

Table 4-1
The Resulting ASCII Character From a
Sign and Digit Sharing the Same Byte

DIGIT VALUE

0 1 2 3 4 5 6

{ A B C D E F

} J K L M N 0

a +0 stores as hexadecimal 7B,
depending on the printing device.

a -0 stores as hexadecimal 7D,
depending on the printing device.

7 8 9

G H I

P Q R

which prints as

which prints as

When the RTS stores the sign as a separate distinct character, the
actual ASCII character that it stores is the graphic plus sign (hex
2B) or the graphic minus sign (hex 2D).

4.4 ILLEGAL VALUES IN NUMERIC FIELDS

All VAX-II COBOL-74 arithmetic operations store legal values in their
result fields. However, it is possible, by reading invalid data or
through redefinition and group moves, to store data in numeric fields
that do not obey the descriptions of those fields. (For example, it
is possible to place signed values into unsigned fields, and to place
non-numeric or improperly signed data into signed numeric DISPLAY
fields.)

The results of arithmetic operations that use invalid data in numeric
fields are unpredictable.

NUMERIC CHARACTER HANDLING 4-5

4.5 TESTING NUMERIC FIELDS

COBOL provides the following three kinds of tests for evaluating
numeric fields:

1. Relation tests, that compare the field's contents to another
numeric value;

2. Sign tests, that examine the field's sign to see if it is
positive or negative; and,

3. Class tests, that inspect the field's digit positions for
legal numeric values.

The following sub-sections explain these tests in detail.

4.5.1 Relation Tests

A relation test compares two numeric quantities and determines if the
specified relation between them is true. For example, the following
statement compares FIELDI to FIELD2 and determines if the numeric
value of FIELDI is greater than the numeric value of FIELD2. If so,
the relation condition is true and program control takes the True path
of the statement.

IF FIELDI > FIELD2 ..•

Either field in a relation test may be a numeric literal or the
figurative constant, ZERO. (The numeric literals 0, 00, 0.0, or ZERO
are all equivalent, both in meaning and in execution speed.)

The sizes of the fields in a numeric relation test do not have to be
the same (this includes the sizes of numeric literals). The
comparison operation aligns both fields on their assumed decimal
positions (through actual scaling operations in temporary locations or
by accessing the individual digits) and supplies leading or trailing
(as required) zeroes to either or both fields.

The comparison operation always compares the signs of non-zero fields
and considers positive fields to be greater than negative fields.
However, since it does not compare them, positive zeroes and negative
zeroes are equal. (A negative zero could arrive in a field through
redefinition of the field or a MOVE to a group item.) Further, the
operation considers unsigned numeric fields to be positive.

The form of representation of the number (CaMP, COMP-3, or DISPLAY
usage) and the various methods of storing DISPLAY usage signs have no
effect on numeric relation tests.

For comparison purposes, the operation converts any illegal characters
stored in DISPLAY usage fields to zeroes. It does not, however, alter
the actual values in those fields.

4-6 NUMERIC CHARACTER HANDLING

4.5.2 Sign Tests

The sign test compares a numeric quantity to zero and determines if it
is greater (positive), less (negative), or equal (zero). Both the
relation test and the sign test can perform this function. For
example, consider the following relation test:

IF FIELDI > 0 •••

Now consider the following sign test:

IF FIELDI POSITIVE •••

Both of these tests accomplish the same thing and would always arrive
at the same result. The sign test, however, shortens the statement
and ~hows, at a glance, that it is testing the sign.

Table 4-2 shows the sign tests and their equivalent relation tests as
applied to FIELDI.

SIGN TEST

IF FIELDI POSITIVE · ..
IF FIELDI NOT POSITIVE
IF FIELDI NEGATIVE · ..
IF FIELDI NOT NEGATIVE
IF FIELDI ZERO ...
IF FIELDI NOT ZERO · ..

Table 4-2
The Sign Tests

EQUIVALENT RELATION TEST

IF FIELDI > 0 · IF FIELDI NOT > 0 · ..
IF FIELDI < 0 · IF FIELDI NOT < 0 · ..
IF FIELDI = 0 · ..
IF FIELDI NOT = 0 · ..

, ,

Sign tests have no execution speed advantage over relation tests. The
compiler actually substitutes the equivalent relation test for every
correctly written sign test. (Sections 4.2.1 and 4.2.2 discuss the
acceptable sign values and the treatment of illegal sign values.)

4.5.3 Class Tests

The class test interrogates a numeric field to determine if it
contains numeric or alphabetic data, and uses the result to alter the
flow of control in a program. For example, the following statement
determines if FIELDI contains numer ic data. If .so, the test condition
is true and program control takes the true path of the statement~

IF FIELDI IS NUMERIC

When reading in newly prepared data, it is often desirable to check
certain fields for valid values. Relation tests and sign tests can
only determine if the field's contents are within a certain range, and
these tests both treat illegal characters in DISPLAY usage items as
zeroes. Thus, some data preparation errors could pass both of these
tests.

NUMERIC CHARACTER HANDLING 4-7

The NUMERIC class test checks numeric (or alphanumeric) DISPLAY usage
fields for valid numeric digits.

If the field being tested contains a sign (whether carried as an
overpunch or as a separate character), the test checks it for a valid
sign value. If the character position carrying the sign contains an
illegal sign value, the NUMERIC class test rejects the item and
program control takes the false path of the IF statement. If the
character position contains a valid sign and all digit positions in
the field contain valid numeric digits, the NUMERIC class test passes
the item and program control takes the true path of the IF statement.

The ALPHABETIC class test checks alphabetic (or alphanumeric) fields
for valid alphabetic characters and the space character. If all of
the character positions of the field contain ASCII characters (A-Z or
space), the item passes the ALPHABETIC class test and causes program
control to take the true path of the IF statement. (For further
information concerning the ALPHABETIC class test, see Chapter 3,
Section 3.3.2.)

4.6 THE MOVE STATEMENT

The MOVE statement moves the contents of one field into another. The
following sample MOVE statement moves the contents of FIELDI into
FIELD2.

MOVE FIELDI TO FIELD2.

Section 3.5 discusses the basic MOVE statement. This section
considers MOVE statements as applied to numeric fields. These MOVE
statements can be grouped into the following three categories:

1. Group moves,

2. Elementary moves with numeric receiving fields, and

3. Elementary moves with numeric edited receiving fields.

The following three sub-sections (4.4.1, 4.4.2, and 4.4.3) discuss
each of these categories separately.

4.6.1 Group Moves

The software considers a move to be a group move
field or the receiving field is a group item.
in a group move as alphanumeric class fields and
an alphanumeric to alphanumeric elementary move.

if either the sending
It treats both fields
performs the move as

If either field in a group move is a numeric elementary item, the RTS
treats the storage area occupied by that item as a field of
alphanumeric bytes~ thus, it ignores the USAGE, sign, and decimal
point location characteristics of the numeric item.

4-8 NUMERIC CHARACTER HANDLING

Only the item's allocated size, in bytes, affects the move operation.
The RTS considers a separate sign character to be part of the item and
moves it with the numeric digit positions.

4.6.2 Elementary Numeric Moves

If both fields of a MOVE statement are elementary items and the
receiving field is numeric, the RTS considers the move to be an
elementary numeric move. (The sending field may be either numeric or
alphanumeric.) The numeric receiving field may be DISPLAY, COMP, or
COMP-3 usage. The elementary numeric move converts the data format of
the sending field to the data format of the receiving field.

An alphanumeric sending field may be either an elementary data item or
any alphanumeric literal other than the figurative constants SPACE,
QUOTE, LOW-VALUE, HIGH-VALUE, or ALL "literal". The elementary
numeric move accepts the figurative constant ZERO and considers it to
be equivalent to the numeric literal O. It treats alphanumeric
sending fields as unsigned integers of DISPLAY usage.

If necessary, the numeric move operation converts the sending field to
the data format of the receiving field and aligns the sending field's
decimal point on that of the receiving field. It then moves the
sending field digits to their corresponding receiving field digits.

If the sending field has more digit positions than the receiving
field, the decimal point alignment operation truncates the sending
field, with the resultant loss of digits. The end truncated
(high-order or low-order) depends upon the number of sending field
digit positions that find matches on each side of the receiving
field's decimal point. If the rece1v1ng field has fewer digit
positions on both sides of the decimal point, the operation truncates
both ends of the sending field. Thus, if a field described as PIC
999V999 is moved to a field described as PIC 99V99, it loses one digit
from the left end and one from the right end. Figure 4-3 illustrates
this alignment operation (the carat (A) indicates the stored decimal
scaling position):

01 AMOUNTl PIC 99V99.

MOVE 123.321 TO AMOUNT1.

Before execution 00 00

After execution 23 32

Figure 4-3
Truncation Caused By Decimal Point Alignment

NUMERIC CHARACTER HANDLING 4-9

If the sending field has fewer digit positions than the receiving
field, the move operation supplies zeroes tor all unfilled digit
positions. Figure 4-4 illustrates this alignment (the carat (A)
indicates the stored decimal scaling position):

01 TOTAL-AMT PIC 999V99.

MOVE 1 TO TOTAL-AMT.

Before execution

After execution

000 00

001 00

Figure 4-4
Zero Filling C.aused By Decimal Point Alignment

The following statement produces the same results:

MOVE 001.00 TO TOTAL-AMT.

Consider the following two MOVE statements and their resultant
truncating and zero-filling effects:

STATEMENT

MOVE 00100 TO TOTAL-AMT

MOVE "00100" TO TOTAL-AMT

TOTAL-AMT AFTER EXECUTION

100 00

100 00

Literals with leading or trailing zeroes have no significant advantage
in space or execution speed with VAX-II COBOL-74, and the zeroes are
often lost by decimal point alignment.

The MOVE statement's receiving field dictates how the sign will be
moved. A signed DISPLAY usage receiving field causes the sign to be
moved as a separate quantity. An unsigned DISPLAY usage recelvlng
field causes no sign movement. A COMP usage receiving field, whether
signed or unsigned, causes the sign to be moved~ however, if the
receiving field is unsigned, the RTS sets its value to absolute. A
COMP-3 receiving field always causes the sign to be moved.

4.6.3 Elementary Numeric Edited Moves

The VAX-II COBOL-74 run-time system considers an elementary numeric
move to a recelvlng field of the numeric edited category to be an
elementary numeric edited move. The sending field of an elementary
numerlC edited move may be either numeric or alphanumeric and, if
numeric, its usage can be DISPLAY, COMP, or COMP-3. The RTS treats
alphanumeric sending fields in numeric edited moves as unsigned
DISPLAY usage integers.

4-10 NUMERIC CHARACTER HANDLING

The RTS considers the recelvlng field to be numeric edited category if
it is described with a BLANK WHEN ZERO clause, or a combination of the
following symbols:

B Space insertion position;

P Decimal scaling position;

V Location of assumed decimal point;

Z Leading numeric character position to be replaced by a space
if the position contains a zero;

o Zero insertion position;

9 Position contains a numeric character;

/ Slash insertion position;

*

Comma insertion position;

Decimal point insertion position;

Leading numeric character position to be replaced by an
asterisk if the position contains a zero;

+ positive editing sign control symbol;

Negative editing sign control symbol;

CR Credit editing sign control symbol;

DB Debit editing sign control symbol;

cs Currency symbol ($) insertion position.

A numeric edited field may contain 9, V, and P, but combinations of
those symbols without an editing character do not make the field
numeric edited.

The numeric edited move operation first converts the sending field to
DISPLAY usage and aligns both fields on their decimal point locations,
truncating or padding (with zeroes) the sending field until it
contains the same number of digit positions on both sides of the
decimal point as the receiving field. It then moves the resulting
digit values to the receiving field digit positions following the
COBOL editing rules.

The COBOL editing rules allow the numeric edited move operation to
perform any of the following editing functions:

• Suppress leading zeroes with either spaces or asterisks;

NUMERIC CHARACTER HANDLING 4-11

• Float a currency sign and a
suppressed zeroes, inserting
field;

plus or minus sign through
the sign at either end of the

• Insert zeroes and spaces;

• Insert commas and a decimal point.

Figure 4-5 illustrates several of these functions with the statement,
MOVE FLD-B TO TOTAL-AMT. (Assume that FLD-B is described as
S9999V99.)

FLD-B

0023 00
0085 90
1234 00
0012 34
0000 34
1234 00
0012 34
0012 34
0000 00
0012 3M
0012 34

TOTAL-AMT
PICTURE STRING

ZZZZ.99
++++.99

Z,ZZZ.99
$,$$$.99
$,$$9.99

$$,$$$.99
$$9,999.99

$$$$,$$$.99
$$$,$$$.$$

++++.99
$***,***.99

Figure 4-5
Numeric Editing

CONTENTS AFTER

23.00
-85.96

1,234.00
$12.34
$0.34

$1,234.00
$0,012.34

$12.34

-12.34
$*****12.34

MOVE

The currency symbol ($) and the editing sign control symbols (+ -) are
the only floating symbols. To float them, enter a string of two or
more occurrences of the symbol.

4.6.4 Common Errors, Numeric MOVE Statements

The most common errors made when writing numeric MOVE statements are:

• Placing an incorrect number of replacement characters in a
numeric edited item.

• Moving non-numeric data into numeric fields with group moves.

• Trying to float the $ or + insertion characters past the
decimal point to force zero values to appear as .00 instead of
spaces. (Use $$.99 or ++.99.)

• Forgetting that the $ or + insertion characters require an
additional position on the leftmost end that cannot be
replaced by a digit (unlike the * insertion character which
can be completely replaced).

4-12 NUMERIC CHARACTER HANDLING

4.7 THE ARITHMETIC STATEMENTS

The COBOL arithmetic statements, ADD, SUBTRACT, MULTIPLY, DIVIDE, and
COMPUTE allow COBOL programs to perform simple arithmetic operations
on numeric data.

This section covers the use of the COBOL arithmetic statements. The
first five sub-sections (4.7.1 through 4.7.5) discuss the common
features of the statements and the last five (4.7.6 through 4.7.10)
discuss the individual arithmetic statements themselves.

4.7.1 Intermediate Results

Most forms of the arithmetic
temporary work locations,
fields, aligning the decimal
resultant values.

statements perform their operations in
then move the results to the receiving
points and truncating or zero filling the

This temporary work field, called the intermediate result field, has a
maximum size of 18 numeric digits. The actual size of the
intermediate result field varies for each statement, and is determined
at compile time based on the sizes of the operands used by the
statement.

When the compiler determines that the size of the intermediate result
field exceeds 18 digits, it truncates the excess high-order digits.
Thus, a program that requests a multiplication operation between the
following two fields,

PIC 9(18) and PIC V99.

(which would otherwise cause
intermediate result field
intermediate result field

PIC 9(16)V99.

the compiler to set up a 20-digit
9(18)V99) actually causes the following

VAX-II COBOL-74 truncates high-order digits or low-order digits to the
right of the decimal point, based on the assumption that most large
data declarations are larger than ever need be, so zeroes occupy most
of their high-order digit positions. Numeric data may be declared as
PIC 9(12) or PIC 9(15) but the values that are placed in these fields
will probably not exceed nine digits of range (1 billion) in most
applications.

When using large numbers (or numbers with many decimal places) that
are close to 18 digits long, examine all of the arithmetic operations
that manipulate those numbers to determine if truncation will occur.

NUMERIC CHARACTER HANDLING 4-13

If truncation is a possibility, reduce the size of the number by
dividing it by a power of 10 prior to the arithmetic operation. (This
scaling down operation causes the low-order end to lose digits, but
these are probably less critical.) Then, after the arithmetic
operation, multiply the result by the same power of 10.

To save the low-order digits in such an operation, move the field to a
temporary location before the scaling DIVIDE, perform separate,
identical arithmetic operations on both the original and the temporary
fields, then, after the scaling MULTIPLY, combine their results.

4.7.2 The ROUNDED Phrase

Rounding-off is an important tool with most arithmetic operations.
The ROUNDED phrase causes the RTS to round-off the results of COBOL
arithmetic operations.

The phrase may be used on any COBOL arithmetic statement.
Rounding-off takes place only when the ROUNDED phrase requests it, and
then only if the intermediate result has more low-order digits than
the result field.

VAX-II COBOL-74 rounds-off by adding a 5 to the leftmost truncated
digit of the absolute value of the intermediate result before it
stores that result.

Consider the following illustration and assume an intermediate result
of 54321.2468:

Coding: I
01 FLD-A PIC S9(5)V9999.
01 FLD-B PIC S9(5)V99. ...

ADD FLD-A TO FLD-B ROUNDED. ...

Intermediate result field: I
PIC S9(6)V9999.

The ROUNDED operation: I
Truncated

digits
Intermediate result field: 054321.24

6'LEFT-MOST
ROUNDED: (ADD) .00 50 truncated
FLD-Bls ROUNDED result: 054321.25 18 digit

Figure 4-6
Rounding Truncated Decimal Point positions

4-14 NUMERIC CHARACTER HANDLING

The following ROUNDING example rounds-off to the decimal scaling
position (P). Assume an intermediate result of 24680. (Section 4.7.4
discusses the GIVING phrase in numeric operations.)

Coding: I
01 AMOUNTl PIC 9999.
01 AMOUNT2 PIC 9999PP.

...
MULTIPLY AMOUNTl BY 10

GIVING AMOUNT2 ROUNDED

Intermediate resul t field: I
PIC 999999.

The ROUNDED operation: I
Truncated

Intermediate result field: 0246 80. dig its

ROUNDED (ADD) : 50.

AMOUNT2's ROUNDED result: 0247 30.

Figure 4-7
Rounding Truncated Decimal Scaling positions

4.7.3 The SIZE ERROR Phrase

The SIZE ERROR phrase detects the loss of high-order non-zero digits
in the results of COBOL arithmetic operations.

The phrase may be used on any COBOL arithmetic statement.

When the execution of a statement with no SIZE ERROR phrase results in
a size error, the RTS truncates the high-order digits and stores the
result without notifying the user. When the execution of a statement
with a SIZE ERROR phrase results in a size error, the RTS discards the
entire result (it does not alter the receiving fields in any way) and
executes the SIZE-ERROR imperative phrase.

If the statement contains both ROUNDED and SIZE ERROR phrases, the RTS
rounds the result before it checks for a size error.

NUMERIC CHARACTER HANDLING 4-15

The phrase cannot be used on numeric MOVE statements.
program moves a numeric quantity to a smaller numeric
inadvertently lose high-order digits. For example,
following MOVE of a field to a smaller field:

01 AMOUNT-A PIC 9(8)V99.

01 AMOUNT-B PIC 9(4)V99.

MOVE AMOUNT-A TO AMOUNT-B.

Thus, if a
field, it may
consider the

This MOVE operation always loses four of AMOUNT-A's high-order digits.
Either of the following two statements could determine whether these
digits are zero or non-zero, and could be tailored to any size field:

1. IF AMOUNT-A NOT> 9999.99
MOVE AMOUNT-A TO AMOUNT-B
ELSE •.•

2. ADD ZERO TO AMOUNT-A GIVING AMOUNT-B
ON SIZE ERROR •••

Both of these alternatives allow the MOVE operation to occur only if
AMOUNT-A loses no significant digits. If the value in AMOUNT-A is too
large, both alternatives avoid altering AMOUNT-B and take the
alternative execution path.

4.7.4 The GIVING Phrase

The GIVING phrase moves the intermediate result field of an arithmetic
operation to a receiving field. (The phrase acts exactly like a MOVE
statement with the intermediate result serving as a sending field and
the data item following the word GIVING (in the statement) serving as
a receiving field.)

The phrase may be used on the ADD, SUBTRACT, MULTIPLY, and DIVIDE
statements.

If the data item following the word GIVING is a numeric edited field,
the RTS performs the editing the same way it does for MOVE statements.

4.7.5 Multiple Operands in ADD and SUBTRACT Statements

Both the ADD and SUBTRACT statements may contain a string of more than
one operand preceding the word TO, FROM, or GIVING.

Multiple operands in either of these statements cause the RTS to add
the string of operands together and use the intermediate result of
that operation as a single operand to be added to or subtracted from,
the receiving field.

4-16 NUMERIC CHARACTER HANDLING

The following three equivalent coding groups illustrate how the
software executes the multiple operand statements:

1. Statement:

Equivalent coding:

2. Statement:

Equivalent coding:

3. Statement:

Equivalent coding:

ADD ABC D TO E F G H.

ADD A B, GIVING TEMP.
ADD TEMP, C, GIVING TEMP.
ADD TEMP, D, GIVING TEMP.
ADD TEMP, E, GIVING E.
ADD TEMP, F GIVING F.
ADD TEMP, G GIVING G.
ADD TEMP, H GIVING H.

SUBTRACT A, B, C, FROM D.

ADD A, B, GIVING TEMP.
ADD TEMP, C GIVING TEMP.
SUBTRACT TEMP FROM D GIVING D.

ADD ABC D GIVING E.

ADD A B GIVING TEMP.
ADD TEMP C GIVING TEMP.
ADD TEMP D GIVING E.

(Just as with all COBOL statements, any commas in these statements are
optional.)

Only statement 3 may have a numeric edited receiving field, since it
is the only statement containing a GIVING phrase.

4.7.6 The ADD Statement

The ADD statement adds two or more operands together and stores the
result.

The statement may contain multiple operands (with
Format 3) and the ROUNDED and SIZE ERROR phrases.
in one of the following formats:

the exception of
It may be written

Format 1. ADD FIELDI •.• TO FIELD2 FIELD3 ••.•

Format 2. ADD FIELDI FIELD2 .•• GIVING FIELD3 FIELD4

Format 3. ADD CORRESPONDING FIELDI TO FIELD2.

In Format 1, the receiving fields (FIELD2, FIELD3) are one of the
addends. These must not be in the numeric edited category.

In Format 2, the receiving fields (FIELD3, FIELD4) are not one of the
addends. They may either be numeric or numeric edited. When using
this format, omit the word TO.

NUMERIC CHARACTER HANDLING 4-17

In Format 3, the receiving field (FIELD2) is one of the addends. Both
FIELDI and FIELD2 must be group items. The corresponding elements of
FIELDI are added to the corresponding elements of FIELD2.

4.7.7 The SUBTRACT Statement

The SUBTRACT statement subtracts one, or the sum of two or more,
operands from another operand and stores the result.

The statement may contain multiple operands (with
Format 3) and the ROUNDED and SIZE ERROR phrases.
in one of the following formats:

the exception of
It may be written

Format 1. SUBTRACT FIELDI FROM FIELD2 FIELD3

Format 2. SUBTRACT FIELDI FROM FIELD2
GIVING FIELD3 FIELD4

Format 3. SUBTRACT CORRESPONDING FIELDI FROM FIELD2.

In Format 1, the rece1v1ng fields (FIELD2, FIELD3) are both the
subtrahend and the difference (the result). These must not be in the
numeric edited category.

In Format 2, the receiving fields (FIELD3, FIELD4) are used only to
store the result. They may be either numeric or numeric edited.

In Format 3, the receiving field (FIELD2) is both the subtrahend and
the difference (results). Both FIELDI and FIELD2 must be group items.
The corresponding elements of FIELD2.

4.7.8 The MULTIPLY Statement

The MULTIPLY statement multiplies one operand by another and stores
the result.

The statement may contain the ROUNDED and SIZE ERROR phrases. It may
contain multiple rece1v1ng operands. It may be written in either of
the following formats:

Format 1.

Format 2.

In Format 1,
multipliers.

MULTIPLY FIELDI BY FIELD2, FIELD3 .•••

MULTIPLY FIELDI BY FIELD2 GIVING FIELD3, FIELD4 ••••

the receiving fields (FIELD2, FIELD3) are also the
These must not be in the numeric edited category.

In Format
multiplier
edited.

2, the receiving
nor multiplicand.

fields (FIELD3, FIELD4) are neither
These may be either numeric or numeric

4-18 NUMERIC CHARACTER HANDLING

COBOL's "near English" format could cause a problem with the
statement, since it is common to speak of multiplying
(multiplicand) by another number (multiplier) and to think
result as a new value for the multiplicand; thus:

MULTIPLY EARNINGS BY 0.24.
Multiplier

Multiplicand

MULTIPLY
a number
of the

This statement is incorrect since the RTS stores the result in the
multiplier field, and this multiplier is a literal. The compiler
could diagnose this error, but would not diagnose it if the multiplier
were a data item. Consider this multiplier written as a data item:

MULTIPLY EARNINGS BY TAX-RATE.

The compiler would not diagnose this statement's error, and would
store the result of the operation in TAX-RATE. A good practice when
using MULTIPLY statements is to always write them in Format 2. This
ensures that the result is properly stored. The following two
statements safely capture their results:

MULTIPLY EARNINGS BY 0.24 GIVING EARNINGS.

or

MULTIPLY EARNINGS BY TAX-RATE GIVING EARNINGS.

4.7.9 The DIVIDE Statement

The DIVIDE statement divides one operand into another and stores the
result.

The statement may contain the ROUNDED and SIZE ERROR phrases. with
the exception of Formats 4 and 5, it may not contain multiple
receiving operands. It may be written in any of the following
formats:

Format 1. DIVIDE FIELDI INTO FIELD2 FIELD3

Format 2. DIVIDE FIRLDI INTO FIELD2 GIVING FIELD3 FIELD4 ...
Format 3. DIVIDE FIELD2 BY FIELDI GIVING FIELD3 FIELD4
Format 4. DIVIDE FIELDI INTO FIELD2 GIVING FIELD3 REMAINDER

FIELD4.

Format 5. DIVIDE FIELDI BY FIELD2 GIVING FIELD3 REMAINDER
FIELD4.

In Format 1, the receiving fields (FIELD2, FIELD3) are also the
dividends. These must not be in the numeric edited category.

NUMERIC CHARACTER HANDLING 4-19

.

In Formats 2 and 3, the rece1v1ng fields (FIELD3, FIELD4 ••.) are
neither dividends nor divisor. These may be either numeric or numeric
edited.

In Formats 4 and 5, the rece1v1ng field (FIELD3) is neither a dividend
nor a divisor. FIELD4 is the remainder. The receiving field and the
remainder may be either numeric or numeric edited.

4.7.10 The COMPUTE Statement

The COMPUTE statement computes the value of an arithmetic expression
and stores the value in the result.

The statement may contain the ROUNDED and SIZE ERROR phrases. It may
contain multiple receiving operands. The COMPUTE statement has the
following format:

COMPUTE FIELDI FIELD2 = arithmetic-expression.

The receiving fields (FIELDl, FIELD2) may be either numeric or numeric
edited.

4.7.11 Common Errors, Arithmetic Statements

The most common errors made when using arithmetic statements are:

• Using an alphanumeric class field in an arithmetic statement.

•

•

The MOVE statement allows data movement between alphanumeric
class fields and certain numeric class fields, but arithmetic
statements require that all fields be numeric.

writing the ADD or SUBTRACT
phrase, but attempting to
edited field.

statements
put the

without the GIVING
result into a numeric

writing a Format 2 ADD statement with the word TO;
example:

For

ADD A TO B GIVING C.

• Subtracting a 1 from a numeric counter that was described as
an unsigned quantity, and testing for a value of less than
zero.

• Forgetting that the MULTIPLY statement,
phrase, stores the result back into
(multiplier) .

4-20 NUMERIC CHARACTER HANDLING

without the GIVING
the second operand

• Performing a series of calculations in such a way as to
generate an intermediate result that is larger than 18 digits
when the final result will be fewer digits. (The programmer
should be careful to intersperse divisions with
multiplications or to drop non-significant digits that result
from multiplying large numbers (or numbers with many decimal
places) •

• Performing an operation on a field that contains a value
greater than the precision of its data description. This can
happen only if the field was disarranged by a group move or
redefini t ion.

• Forgetting that, in an arithmetic statment containing
multiple rece1v1ng fields, the ROUNDED phrase must be
specified for each receiving field that is to be rounded.

• Forgetting that, in an arithmetic statement containing
multiple receiving fields, the ON SIZE ERROR phrase, if
specified, applies to all receiving fields. Only those
receiving operands for which a size error condition is raised
are left unaltered. The ON SIZE ERROR statement is executed
after all the receiving fields are processed by the RTS.

4.8 ARITHMETIC EXPRESSION PROCESSING

COBOL provides language facilities for manipulating user-defined data
arithmetically. In particular, the language provides the arithmetic
statements ADD, SUBTRACT, MULTIPLY, and DIVIDE and the facilities of
arithmetic expressions using the +, -, *, I, and ** operators. In
simple terms, a given arithmetic functionality may be expressed in one
of several ways. For example, consider a COBOL application in which
the total yearly sales of a salesman are to be computed as the sum of
the four individual sales quarters. Figure 4-8 illustrates one method
of expressing a solution to this problem in COBOL:

MOVE 0 TO TEMP.
ADD 1ST-SALES TO TEMP.
ADD 2ND-SALES TO TEMP.
ADD 3RD-SALES TO TEMP.
ADD 4TH-SALES TO TEMP GIVING TOTAL-SALES.

Figure 4-8 Explicit Programmer-Defined Temporary Work Area

In figure 4-8, the COBOL programmer chooses to use a series of single
ADD statements to develop the final value for TOTAL-SALES. In the
process of computing TOTAL-SALES, a COBOL data-name, called TEMP, is
used to develop the partial sums (i.e., intermediate results). The
important point here is that the programmer explicitly defines and
declares the temporary work area TEMP in the data division of the
COBOL program. That is, the attributes (i.e., class, USAGE, number of
integer and decimal places to be maintained) are specified explicitly
by the COBOL programmer.

NUMERIC CHARACTER HANDLING 4-21

Figure 4-9 below illustrates another way of expressing a solution to
the problem:

ADD 1ST-SALES, 2ND-SALES, 3RD-SALES, 4TH-SALES
GIVING TOTAL-SALES.

FIGURE 4-9
ARITHMETIC STATEMENT INTERMEDIATE RESULT FIELD ATTRIBUTES

DETERMINED FROM COMPOSITE OF OPERANDS

IN THIS EXAMPLE, THE PROGRAMMER CHOOSES TO COMPUTE TOTAL-SALES with a
single ADD statement. Analogous to the previous example, an
intermediate result field is required to develop the partial sums of
the four quarterly sales quantities. In Figure 4-8, the programmer is
cognizant of this requirement, but chose to define the intermediate
result area TEMP explicitly in the data division of his COBOL program.
However, for the example in Figure 4-9, the compiler defines the
intermediate result field in a manner transparent to the COBOL source
pro~ram. That is, the compiler allocates storage for and assigns
var10US attributes to this "transparent" intermediate result field
according to a well-defined set of rules defined by the COBOL language
specification. In particular, the attributes of
number-of-integer-places, number-of-decimal-places, and USAGE assigned
by the software to the intermediate result field are a function of the
composite of source operands in the ADD statement. (The reader should
read the VAX-II COBOL-74 Reference Manual for details concerning the
composite of operands for the arithmetic statements.) The important
point here is that the ANS-74 COBOL language standard prescribes rules
for determining the attributes of intermediate result fields for the
arithmetic statements, and the language processor, the VAX-II COBOL-74
compiler, must implement those rules.

As a final example, consider the following solution to our problem:

COMPUTE TOTAL-SALES = 1ST-SALES + 2ND-SALES + 3RD-SALES
+ 4TH-SALES.

Figure 4-10
Arithmetic Expression Intermediate Result Field

Attributes Determined by Implementor-Defined Rules

In Figure 4-10, the programmer solves the problem by using a single
COMPUTE statement with an embedded arithmetic expression. Again, ~n
intermediate result field is required and, as in Figure 4-9, 1S
defined by the software. However, in defining the attributes of
intermediate result fields for COBOL arithmetic expressions, the
ANS-74 COBOL language standard is not as helpful to the user as it
could be. In fact, the COBOL language standard gives almost complete
freedom to the implementor in defining the attributes of the
arithmetic expression intermediate result fields. The only rules
imposed by the ANS-74 COBOL language specifications are:

4-22 NUMERIC CHARACTER HANDLING

1. Arithmetic operations are to be combined without restrictions
on the composite of operands and/or receiving fields.

2. Each implementor will indicate techniques used in handling
arithmetic expressions.

Thus, the user can and should expect differences
implementations of ANS-74 COBOL. The rest of this
how the VAX-II COBOL-74 compiler computes the sizes
result fields.

between various
section describes
of intermediate

The compiler computes the size of an intermediate result field for
each component operation of an arithmetic expression. Each operation
can be stated as:

OPI OPR OP2

where:

OPI is the first operand

OPR is an arithmetic operator

OP2 is the second operand

The size of an intermediate result is described in terms of the number
of integer places (IP) and the number of decimal places (DP). The
symbol DPEXP represents the maximum number of decimal places in the
entire arithmetic expression.

OPR

+ and - IP = max(IP(OPl) , IP(OP2» + 1
DP = max(DP(OPl), DP(OP2»

* IP = IP(OPl) + IP (OP2)
DP = DP(OPl) + DP(OP2)

/ IP = IP(OPl) + DP (OP2)
DP = max(DPEXP, max (DP(OPl) , DP (OP2) + 1»

** For exponents that convert to one-word values,
a = OP2
b = OP2 + DP(OPl)

Otherwise,

and

a = 9, if IP(OP2) = 1,
otherwise, a = 19

b = DPEXP

IP = IP(OPl) * a
DP = max (DPEXP, DP(OPl) * b)

NUMERIC CHARACTER HANDLING 4-23

CHAPTER 5

TABLE HANDLING

5.1 INTRODUCTION

with COBOL, as with any other language, any data item to which the
program refers must be uniquely identified. This unique
identification of data items is usually accomplished by assign~ng a
unique name to each item. However, in many applications this is
tedious and inconvenient~ often programs require too many names for
items that have different names but contain the same type of
information. Tables provide a simple solution to this problem.
VAX-II COBOL-74 includes full table handling capabilities as outlined
for standard COBOL in the 1974 ANSI Standards.

A table is a repetition of one item (element) in memory. This
repetition is accomplished by the use of the OCCURS clause in the data
description entry. The literal value in the OCCURS clause causes the
software to duplicate the data description entry as many times as
indicated by that value, thus creating a matrix or table.

The elements may be initialized with the VALUE clause or with a
procedural instruction. They may contain synchronized or
unsynchronized data. They may be accessed only with subscripted
procedural instructions. A subscript is a parenthesized integer or
data name (with an integer value). The integer value represents the
desired occurrence of the element.

This chapter discusses how to set up tables and access them accurately
and efficiently. It attempts to cover any problems that may be
encountered while handling tables. Read it through carefully before
setting up tables with VAX-II COBOL-74.

5.2 DEFINING TABLES

To define a table with VAX-II COBOL-74, simply complete a standard
data description for one element of the table and follow it with an
OCCURS clause. The OCCURS clause contains an integer which dictates
the number of times that element will be repeated in memory, thus
creating a table.

The OCCURS phrase has two formats:

Format 1

OCCURS integer-2 TIMES

[{ASCENDING } ...] KEY IS data-name-2 [, data-name-3] ...
DESCENDING

[INDEXED BY index-name-l [, index-name-2] ...]
Format 2

OCCURS integer-l TO integer-2 TIMES DEPENDING ON data-name-l

[rSCENDING }
DESCENDING KEY

IS data-name-2 [, data-name-3] . . .] ...
[INDEXED BY index-name-l [, index-name-2] . . .]

In either format, the system generates a buffer iarge enough to
accommodate integer-2 occurrences of the data description. Therefore,
the amount of storage allocated in either case is equal to the amount
of storage required to repeat the data entry integer-2 times.

The software will automatically map the elements into memory. When
mapping a table into memory, the software follows the rules for
mapping which depend on whether the element contains synchronized
items or not. If they do not contain synchronized items, the software
maps them into adjacent memory locations and the size of the table can
be easily calculated by multiplying the size of the element times the
number of occurrences (5X10 for the table illustrated in Figure 5-1,
or 50 bytes of memory).

01 A-TABLE
03 A-GROUP PIC X(5) OCCURS 10 TIMES.

Figure 5-1
Defining a Table

5.2.1 The OCCURS Phrase - Format 1

When Format 1 is used, a fixed length table is generated, whose length
(number of occurrences) is equal to the value specified by integer-2.
This format is useful for storing large amounts of frequently used
reference data whose size never changes. Tax tables, used in payroll
deduction programs, are an excellent example of where a Format 1
(fixed length) table might be used.

5-2 TABLE HANDLING

5.2.2 The OCCURS Phrase - Format 2

Format 2 is used to generate variable length tables. When used, a
table whose length (number of occurrences) is equal to the value
specified by data-name-l is generated.

NOTE

Data-name-l must always be a positive
integer whose value is equal to or
greater than integer-l but not greater
than integer-2.

Unlike format 1 tables, the number of occurrences of data items in
format 2 tables can be dynamically expanded or reduced to satisfy user
needs.

By generating a variable length table, the user is, in effect, saying~
"build me a table that can contain at least integer-l occurrences, but
no more than integer-2 occurrences, and set its number of occurrences
equal to the value specified by data-name-l".

Data-name-l always reflects the number of occurrences available for
user access. To expand the size (number of occurrences available for
use) of a table, the user need only increase the value of data-name-l
accordingly.

Likewise, reducing the value in data-name-l will reduce the number of
occurrences available for user access.

5.3 MAPPING TABLE ELEMENTS

As mentioned in Section 5.2, when the software detects an OCCURS
clause in an unsynchronized item, it maps the table elements into
adjacent locations in memory. Consider the following data description
of a simple table and the way it is mapped into memory:

Table Description: 01 A-TABLE.
03 A-GROUP PIC XeS) OCCURS 10 TIMES.

Memory Map:

words
bytes I I I II I III I IV I V I VI I VII I VIII I IX I X I

I } I IT' I I J I ! I
A-GROUP A-GROUP A-GROUP A-GROUP

Figure 5-2
Mapping a Table into Memory

TABLE HANDLING 5-3

The data description in Figure 5-2 causes the software to set up ten
items of five bytes each (elements) and place them in adjacent
ascending memory locations for a total of 50 character positions, thus
creating a table. Since the length of each A-GROUP element is odd
(5), the memory addresses of each subsequent element will alternate
between odd and even locations.

The SYNCHRONIZED clause causes the software to add a fill byte to
items that contain an odd number of bytes, thereby making the number
of bytes in that item even. This ensures that each subsequent
occurrence of the element will not alternate between odd and even
addresses, but will map the same (odd or even) as the first repetition
of that element. If the data description of A-GROUP contained a
SYNCHRONIZED clause, the software would map it quite differently. If
A-GROUP were synchronized, it would expand its length to three words.
The item will, by default, be synchronized to the left occupying the
first five characters of the three words. The software supplies a
padding character to fill out the third word. This padding character
is not a part of the A-GROUP element and table instructions referring
to A-TABLE will not detect the presence or absence of the character.

The padding character does, however, affect the overall length of the
group item and, hence, the table. without the SYNCHRONIZED clause,
A-TABLE required only 50 character positions; now, with the clause,
it requires 60 character positions. (This length includes the last
padding character -- following the tenth element in the table.)

Although the SYNCHRONIZED clause has little value when used with
alphanumeric fields, an understanding of the concept is essential
before attempting to use COMP and INDEX data items in tables. The
software automatically synchronizes all COMP and INDEX usage data
items, and will most probably alter the size of any table (often
drastically) that contains these data types. Consider the following
illustration of a synchronized data item being mapped by the software:

Table Description:

Memory Map:

words I I II
bytes 11 I 212

A-GROUP

01 A-TABLE.
03 A-GROUP OCCURS 20 TIMES.

05 ITEMI PIC X.
05 ITEM2 PIC S999 COMPo

IIII IV V I VI VII I VIII
1 II 212 11 I 212 11 I 212

A-GROUP A-GROUP A-GROUP

Figure 5-3
Synchronized COMP Item in a Table

5-4 TABLE HANDLING

... ...

l--ITEMI
2--ITEM2
S--SLACK

BYTE

Since the software synchronizes the ITEM2 fields (COMP), these fields
each occupy a single word in memory~ thus, a slack byte follows each
occurrence of ITEMI. Each repetition of A-GROUP consumes four bytes
of memory -- one byte for ITEMl, one byte for the slack byte, and two
bytes for ITEM2. A-TABLE, then, requires 80 bytes of memory (20
elements of four bytes each).

Now, consider the effect of adding a I-byte field to A-TABLE. If we
place the field between ITEMI and ITEM2, it will take the space
formerly occupied by the slack byte. This has the effect of adding a
data byte but leaving the size of the table unchanged. Consider the
following illustration:

Table Description:

Memory Map:

words I II III
bytes 113 212 113

01 A-TABLE.

IV
212

03 A-GROUP OCCURS 20 TIMES.
05 ITEMI PIC x.
05 ITEM3 PIC X.
05 ITEM2 PIC S999 COMPo

V VI ...
113 21~ ...

l--ITEMI
2--ITEM2
3--ITEM3

A-GROUP A-GROUP A-GROUP

Figure 5-4
Adding a Field without Altering the Table Size

If, however, we place the I-byte field after ITEM2, it has the effect
of adding its own length plus another slack byte. Now, each element
requires six full bytes and the complete table consumes 120 bytes of
memory (6X20)! This is due to the fact that the first repetition of
ITEMI falls on an even byte and, in order to keep the mapping of each
A-GROUP element the same, the software allocates each successive
repetition of ITEMI to an even byte address. Thus, it assigns ITEM3
to the even byte of the third word and adds a slack byte to guarantee
that the next element begins on an even byte. Consider the following
illustration:

Table Description:

Memory Map:

Odd or Even
words
bytes

A-GROUP

01 A-TABLE.
03 A-GROUP OCCURS 20 TIMES.

05 ITEMI PIC X.
05 ITEM2 PIC S999 COMPo
05 ITEM3 PIC X.

A-GROUP A-GROUP

Figure 5-5
Adding One Byte which Adds Two Bytes to the Element Length

TABLE HANDLING 5-5

NOTE

The illustrations in this section show
each byte with an even address (E) as
the leftmost byte, and each byte with an
odd address (0) as the rightmost byte.
(The two bytes, odd and even, are
reversed in actual memory.)

If, however, we use a FILLER byte to force the first allocation of
ITEMI to occur on an odd byte, A-GROUP again requires only four bytes
and no slack bytes. Figure 5-6 illustrates this. Since the FILLER
item occupies the even byte of the first word, ITEMI falls on an odd
byte. The software requires that each repetition of ITEMI must be an
even number of bytes in length in order to guarantee that the
synchronized item(s) will map onto word boundaries. No slack bytes
are needed and A-GROUP elements are again only four bytes long, and
A-TABLE requires only 81 bytes.

Table Description:

Memory Map:

01 A-TABLE.
03 FILLER PIC X.
03 A-GROUP OCCURS 20 TIMES.

05 ITEMI PIC X.
05 ITEM2 PIC S999 COMPo
05 ITEM3 PIC X.

odd or even ~~~~~~~~~~~==~~~~~~ __ ~~ __
words
bytes

FILLER A-GROUP A-GROUP A-GROUP

Figure 5-6
Forcing an Odd Address By Adding a I-Byte FILLER

Item to the Head of the Table

If we try to force ITEMI onto an odd byte with a SYNCHRONIZED RIGHT
clause, the software maps ITEMI into the odd byte, but prohibits all
repetitions of the element from using the even byte. Thus, the first
repetition of A-GROUP has a slack byte at its beginning and, so that
the next element can begin (with a slack byte) at an even address,
another slack byte (odd) following ITEM3. This expands the element
length to six bytes and the table length to 120 bytes.

5-6 TABLE HANDLING

Table Description:

Memory Map:

Odd or Even
words
bytes

A-GROUP

01 A-TABLE.
03 A-GROUP OCCURS 20 TIMES.

05 ITEMI PIC X SYNCHRONIZED RIGHT.
05 ITEM2 PIC S999 COMPo
05 ITEM3 PIC X.

A-GROUP A-GROUP

Figure 5-7
The Effect of a SYNCHRONIZED RIGHT Clause Instead

of a FILLER Item as shown in Figure 5-6

To determine how the software will map a given table, apply the
following two rules:

1. The software maps all items in the first
table element into memory words as with
defined with a data description, obeying
explicit synchronization requirements.

repetition of a
any item properly
any implicit or

2. If the first repetition contains any elementary items with
implicit or explicit synchronization, the software maps each
successive repetition of the element into memory words in the
same way as the first repetition. It does this by adding one
slack byte, if necessary, to make the size of the element
even.

5.3.1 Initializing Tables

If a table contains only DISPLAY items, it can be set to any desired
initial value (initialized). To initialize a table, simply specify a
VALUE phrase on the record level preceding the item containing the
OCCURS clause. The sample data definitions, below, will set up
initialized tables:

TABLE HANDLING 5-7

Table Description: 01 A-TABLE VALUE IS "JANFEBMARAPRMAY
JUNJULAUGSEPOCTNOVDEC".

Memory Map:

words
byte contents

03 MONTH-GROUP PIC XXX USAGE DISPLAY
OCCURS 12 TIMES.

~=c~~~~~~~~~~=r
MONTH-GROUP MONTH-GROUP

MONTH-GROUP
MONTH-GROUP

MONTH-GROUP

MONTH-GROUP
MONTH-GROUP

MONTH-GROUP

Figure 5-8
Initializing Tables

Often a table is too long to initialize with a single literal, or it
contains items that cannot be initialized (numeric, alphanumeric, or
COMP). These items can be individually initialized by redefining the
group level preceding the level that contains the OCCURS clause.
Consider the following sample table descriptions:

Table Description: 01 A-RECORD-ALT.

Memory Map:

05 FILLER PIC XX VALUE "AX".
05 FILLER PIC 99 COMP VALUE 1.
05 FILLER PIC XX VALUE "BX".
05 FILLER PIC 99 COMP VALUE 2.

01 A-RECORD REDEFINES A-RECORD-ALT.
03 A-GROUP OCCURS 26 TIMES.

05 ITEMI PIC X.
05 ITEM2 PIC S99 COMPo

Binary 1 Binary 2

~~~~s contents at libjI11 1111 II I B X 

initialization time A-GROUP A-GROUP 

Figure 5-9 
Initializing Mixed Usage Fields 

In the preceding example, the slack bytes in the alphanumeric fields 
(ITEMl) are being initialized to X. 

5-8 TABLE HANDLING 



Table Description: 01 A-RECORD-ALT. 

Memory Map: 

03 FILLER PIC X(30) VALUE IS 
"AAAAAAAAAABBBBBBBBBBCCCCCCCCCC". 

03 FILLER PIC X(30) VALUE IS 
"DDDDDDDDDDEEEEEEEEEEFFFFFFFFFF". 

(etc.) 

01 A-RECORD REDEFINES A-RECORD-ALT. 
03 ITEMl PIX X(lO) OCCURS 26 TIMES. 

word I I III IIIIIIV I V IVI IVlllvIIIIIX I X IXI I 
byte I A I A I A I A I A I A I A I A I A I AI B I BI B 1 B J BIB I BIB I BIB I C I C I 
contents at I I J 
i~i tial ization 
tlme • • 

ITEMl ITEMl 

Figure 5-10 
Initializing Alphanumeric Fields 

In the preceding example, each FILLER item initializes three 10-byte 
table elements. 

When redefining or initializing table elements, allow space for any 
slack bytes that may be added due to synchronization (implicit or 
explicit). The slack bytes do not have to be initialized~ however, 
they may be and, if initialized to an uncommon value, they may even 
serve as a debugging aid for situations such as a statement referring 
to the record level above the OCCURS clause or another record 
redefining that level. Sometimes the length and format of table items 
are such that they would best be initialized by statements in the 
Procedure Division. 

Once the OCCURS clauses have established the necessary tables, the 
program must be able to access the elements of those tables 
individually. Subscripting and indexing are the two methods provided 
by COBOL for accessing individual elements. 

5.4 SUBSCRIPTING AND INDEXING 

To refer to a particular element within a table, simply follow the 
name of the desired element with a parenthesized subscript or index. 
A subscript is an integer or a data-name that has an integer value~ 
the integer value represents the desired occurrence of the element 
an integer value of 3, for example, refers to the third occurrence of 
the element. An index is a data-name that has been named in an 
INDEXED BY phrase in the OCCURS clause. 

TABLE HANDLING 5-9 



5.4.1 Subscripting with Literals 

A literal subscript is simply a parenthesized integer whose value 
represents the occurrence number of the desired element. In figure 
S-ll, the literal subscript in the MOVE instruction (2) causes the 
software to move the contents of the second element of the table, 
A-TABLE, to I-RECORD. 

Table Description 

Procedural Instruction 

01 A-TABLE. 
03 A-GROUP 

MOVE A-GROUP (2) 

Figure S-l1 
Literal Subscripting 

PIC X (S) 
OCCURS 10 TIMES. 

TO I-RECORD. 

If the table has more than one level (or dimension), follow the name 
of the desired item with a list of subscripts, one for each OCCURS 
clause to which the item is subordinate. The first subscript in the 
list applies to the first OCCURS clause to which the item is 
subordinate. (This is the most encompassing level -- A-GROUP in the 
following example.) The second subscript in the list applies to the 
next most encompassing level, and the last subscript applies to the 
lowest level OCCURS clause being accessed (or the desired occurrence 
number of the item named in the procedural instruction -- ITEMS in the 
following example). 

Consider Figure S-12~ the subscripts (2,11,3) in the MOVE instruction 
cause the software to move the third repetition of ITEMS in the 
eleventh repetition of ITEM3 in the second repetition of A-GROUP to 
I-FIELDS. (For illustration simplicity, I-FIELDS is not defined.) 
(ITEMS(l,l,l) would refer to the first occurrence of ITEMS in the 
table and ITEMS(S,20,4) would refer to the last occurrence of ITEMS.) 

01 A-TABLE. 
03 A-GROUP OCCURS S TIMES. 

OS ITEMI PIC X. 
Table Description OS ITEM2 PIC 99 COMP OCCURS 20 

TIMES. 
OS ITEM3 OCCURS 20 TIMES. 

07 ITEM4 PIC X. 
07 ITEMS PIC XX OCCURS 4 TIMES. 

Procedural Instruction MOVE ITEMS(2, 11, 3) TO I-FIELDS. 

Figure S-12 
Subscripting a Multi-Dimensional Table 

5-10 TABLE HANDLING 



NOTE 

Since ITEMS is not subordinate to ITEM2, 
an occurrence number for ITEM2 is not 
permitted in the subscript list. 

Figure 5-13 summarizes the subscripting rules for each of the above 
items and shows the size of each field in bytes. 

NAME NUMBER OF SUBSCRIPTS SIZE 
OF REQUIRED TO REFER TO OF 

FIELD 

A-TABLE 
A-GROUP 
ITEMI 
ITEM2 
ITEM3 
ITEM4 
ITEMS 

* Plus a slack byte 

THE NAMED FIELD 

NONE 
ONE 
ONE 
TWO 
TWO 
TWO 
THREE 

Figure 5-13 
Subscripting Rules for a 
Multi-Dimensional Table 

5.4.2 Operations Performed by the Software 

FIELD 

1110 
222 

1* 
2 
9 
1 
2 

When a literal subscript is used to refer to an item in a table, the 
software performs the following steps to determine the exact address 
of the item: 

1. The compiler converts the literal to a I-word binary value. 

2. The compiler range checks the subscript 
not be less than 1 nor greater than the 
specified by the OCCURS clause) and 
message if the value is out of range. 

value (the value must 
number of repetitions 
prints a diagnostic 

3. The compiler decrements the value of the subscript by 1 and 
multiplies it by the size of the item that contains the 
OCCURS clause corresponding to this subscript, thus forming 
an index value~ it then stores this value, plus the literal 
subscript, in the object program. 

4. At run time, for a fixed length table, the RTS adds the index 
value (from 3 above) to a base address, thus determining the 
address of the desired item. For a variable length table 
reference, the procedure for fixed length tables is preceded 
by the procedure described in Section 5.4.6. 

TABLE HANDLING 5-11 



5.4.3 Subscripting with Data-Names 

As discussed earlier in this section, subscripts may also be specified 
using data-names instead of literals. To use a data-name as a 
subscript, simply define it as a numeric integer (COMP or DISPLAY). 
It may be signed, but the sign must be positive at the time it is used 
as a subscript. 

The sample subscripts in figure 5-14 refer to the same element 
accessed in Figure 5-12, (2, 11, 3). 

Data Descriptions 01 KEYI PIC 99 USAGE DISPLAY. 
of Subscript data-names 01 KEY2 PIC 99 USAGE COMPo 

01 KEY3 PIC S99. 

MOVE 2 TO KEYI. 
MOVE 11 TO KEY2. 
MOVE 3 TO KEY3. 

Procedural Instructions GO TO TABLERTN. 
TABLERTN. 

MOVE ITEM5(KEYI KEY2 KEY3) 

Figure 5-14 
Subscripting with Data-Names 

5.4.4 Operations Performed by the RTS 

I-FIELD5. 
TO 

When a data-name subscript is used to refer to an item in a table, the 
RTS performs the following steps at run time: 

1. If the data-name's data type is DISPLAY, the software 
converts it to a I-word binary value. 

2. For fixed length tables, the software range checks the 
subscript value (the value must not be less than 1 nor 
greater than the number of repetitions specified by the 
OCCURS clause) and terminates the image (with a diagnostic 
message) if it is out of range. For variable length tables, 
the procedure described in Section 5.4.6 is followed. 

3. The software decrements the value of the subscript by 1 and 
multiplies it by the size of the item that contains the 
OCCURS clause corresponding to this subscript, thus forming 
an index value. 

4. The software adQs the index value (from 3 above) to a base 
address, thus determining the address of the desired item. 

5-12 TABLE HANDLING 



5.4.5 Subscripting with Indexes 

The same rules apply for the specification 
subscripts except that the index must 
phrase of the OCCURS clause. 

of indexes as apply to 
be named in the INDEXED BY 

An index-name item (an item named in the INDEXED BY phrase of the 
OCCURS clause) has the ability to hold an index value. (The index 
value is the product formed in step 3 of the operations performed by 
the software for literal or data-name subscripts -- the relative 
location, within the table, of the desired item.) 

The compiler allocates a 2-part data item for each name that follows 
an INDEXED BY phrase. These index-name items cannot be accessed as 
normal data items~ they cannot be moved about, redefined, written to 
a file, etc. However, the SET verb can change their values and 
relation tests can examine their values. One part of the 2-part 
index-name item contains a subscript value and the other part contains 
an index value. Consider the following illustration: 

SUBS~~~~; :::~---"""':i...E __ -___ ....J1 
Figure 5-15 

Index-Name Item 

Whenever a SET statement places a new value in the subscript part, the 
software performs an index value computation and stores the result in 
the index part. Only the subscript part of the item acts as a sending 
or receiving field. The index part is never altered by any other 
operation and is never moved to another item. It is used only when 
the index-name is used as an index referring to a table item. The 
sample MOVE statement in Figure 5-16 would move the contents of the 
third repetition of A-GROUP to I-FIELD. (For illustration simplicity, 
once again, I-FIELD is not defined.) 

01 A-TABLE. 
Table Description 03 A-GROUP OCCURS 5 TIMES 

Procedural 

INDEXED BY IND-NAME. 

Instructions SET IND-NAME TO 3. 
MOVE A-GROUP (IND-NAME) 

Figure 5-16 
Subscripting with Index-name Items 

TO I-FIELD. 

TABLE HANDLING 5-13 



5.4.6 Operations Performed by the RTS 

The RTS performs the following steps when it executes the SET 
statement: 

1. The RTS converts the contents of the sending field of the SET 
statement to a I-word binary value. 

2. The RTS range checks the value (the value must not be less 
than 1 nor greater than the number of repetitions specified 
in the OCCURS clause) and terminates the image with a 
diagnostic message if it is out of range. 

3. The RTS decrements the value by 1 and multiplies it by the 
size of the item that contains the OCCURS clause, thus 
forming an index value. 

For fixed length tables, once the SET statement has been executed and 
the software has encountered the index-name item as an index, it only 
has to add the index value (from 3 above) to a base address to 
determine the address of the desired item. Since this is the only 
action performed, the execution· speed of a proc.edural statement with 
an indexed data-name is equivalent to a reference with a literal 
subscript. 

For a variable length table, when the index-name is encountered as an 
index, the procedure described in Section 5.4.6 is invoked before 
following the fixed length table logic. However, the SET statement 
itself is not impacted by the fixed/variable characteristic of the 
associated table. 

VAX-II COBOL-74 initializes the value of all index-name items to a 
subscript value of 1 (index value of 0), hence an attempt to use an 
index-name item as an index before it has been the receiving field of 
a SET verb will not result in an out-of-range termination. 

NOTE 

Initialization of index-name items is an 
extension to the ANSI COBOL standards. 
Users concerned with writing COBOL 
programs. that adhere to standard COBOL 
should not rely on this feature. 

5.4.7 Relative Indexing 

To perform relative indexing, when referring to a table item, simply 
follow the index-name with a plus or minus sign and an integer 
literal. Relative indexing, albeit easy to use, causes additional 
overhead to be generated each time a table item is referenced in this 
fashion. At compile time, the compiler has to compute the index value 
corresponding to the specified literal~ and transfer this index value 
to the object.file. At run time, the index value for the literal is 
added to (+) or subtracted from (-) the index value of the index-name. 

5-14 TABLE HANDLING 



The resulting index value is stored in a temporary location. The RTS 
adds this temporary index value to the base address of the table to 
determine the address of the desired table item. At this point, a 
range check is performed on the temporary index value to insure that 
the resulting index is within the permissible range for the table. 

tables, this index manipulation is relatively For fixed length 
straightforward. 
and this size is 
compare against 
if a g.iven index 

The size of the table is known at compilation time, 
passed along to the RTS in the object file. A simple 
this fixed value is all that is required to determine 
value is within the permissable range for the table. 

For a variable length table, however, the process is more involved. 
The current number of occurrences (data-name-l) for the table must be 
determined and range checked~ the index value corresponding to the 
current number of occurrences must be calculated~ then the temporary 
index value must be range checked using the current number of 
occurrence's index value. 

The run-time overhead required for the relative indexing of variable 
length tables is significantly greater than that required for fixed 
length tables. In either case, the index portion of the index-name is 
not altered. If any of the range checks reveals an illegal (out of 
range) value, execution is terminated with an apropriate error 
message. 

The sample MOVE instruction in Figure 5-17 moves the fourth repetition 
of A-GROUP to I-FIELD if IND-NAME has not been altered with a SET 
verb. 

MOVE A-GROUP(IND-NAME + 3) TO I-FIELD. 

Figure 5-17 
Relative Indexing 

The actual operation of accessing a table element is shorter at run 
time since the compiler has calculated the index value of the literal 
at compile time and has stored it in the object program ready for use. 
Relative indexing, therefore, involves two additions and a range check 
dat run time. It leaves the index-name item unaltered. 

5.4.8 Index Data Items 

Often a program will require that the value of an index-name item be 
s·tored outside of that item. It is for this purpose that VAX-II 
COBOL-74 provides the index data item. 

Index data items 
synchronization. 
of the index-name 
phrase and they 
statement. 

are I-word binary integers with implicit 
(The I-word size corresponds to the subscript part 

item.) They must be declared with a USAGE IS INDEX 
may be modified (explicitly) only by the SET 

TABLE HANDLING 5-15 



Subscript Part 

Figure 5-18 
Index Data Item 

Since index data items are considered to contain only the subscript 
part of an index-name item, when a SET statement "moves" an index-name 
item to an index data item, only the subscript part is moved. 
Likewise, when a SET statement "moves" an index data item to an 
index-name item, a new index value is computed by the software. This 
is done to guarantee that an index-name item will always contain a 
good index value. 

The only advantage gained by using index data items over numeric, COMP 
items is that the data description is shorter, easier to write, and 
more- self-documenting. Further, the restr ictions placed on access to 
index items may be usefu~in debugging the program. 

5.4.9 The SET Statement 

The SET statement alters the value of index-name items and copies 
their value into other items. When used without the UP BY/DOWN BY 
clause, it functions like a MOVE statement. Figure 5-19 illustrates 
the legal data movements that the SET statement can perform. 

NUMERIC LITERAL 

NUMERIC DATA NAME 
(COMP OR DISPLAY 

INDEX-NAME ITEM 

_ iI!:!D..!!~ ~AgTJ _ ;'_-iI;;.;;.N;.;;;D;..;;;E;;;.;X~DA;.;;.T;;;.;A..;;.....;;I;..;;T;..;;;E;.;.;;M 
(SUBSCRIPT PART) 

Figure 5-19 

INDEX-NAME ITEM 
(INDEX PART) 

( SUBSCRIPT-PART) 

Legal Data Movement with the SET Statement 

The SET statement may be used with the UP BY/DOWN BY clause to alter 
the value of an index-name item arithmetically. The numeric literal 
is added to (UP BY) or subtracted from (DOWN BY) the subscript part, 
and the index part is recalculated by the software after the 
appropriate range check against the number of repetitions for the 
table. The SET statement is not affected by whether the table is 
fixed or variable length. 

5-16 TABLE HANDLING 



5.4.10 Referencing a Variable-Length Table Element at Run Time 

At run time, when a procedural reference involves an element in a 
variable length table, the following procedure is used: 

1. Determine the number of occurrences in the table (the value 
contained in data-name-l), and verify its legality. 

(integer-l <= data-name-l <= integer-2) 

2. Verify that the subscript is within the legal range. 

(subscript <= data-name-l) 

If any of the above checks fails, execution is terminated with an 
appropriate error message. 

5.4.11 Referencing a Dynamic Group at Run Time 

A dynamic group is defined as a group item that contains a subordinate 
item that is a variable length table. At run time, when a dynamic 
group is referenced, the following procedures are followed: 

1. The number of occurrences of the subordinate variable length 
table is determined, and checked for legality~ i.e., 
integer-l<=data-name-l<=integer-2. If this check fails, 
execution terminates and the appropriate error message is 
issued. 

2. The size of the dynamic group is calculated. The number of 
occurrences of the variable length table (data-name-l) is 
multiplied by the size of one table entry. The resulting 
number is then added to the fixed size of the dynamic group. 

NOTE 

The fixed size of a dynamic group is the 
size of the group up to but not 
including the variable length table. 

5.4.12 The SEARCH Verb 

The SEARCH verb has two formats: Format 1, which performs a 
sequential search of the specified table beginning with the current 
index setting~ and Format 2 which performs a selective (binary) 
search of the specified table, beginning with the middle of the table. 

Both formats allow the programmer to specify 
within the SEARCH verb. At run time, an 
contained within a search verb is executed only 
paths (success or failure) is taken. 

imperative 
imperative 

when one of 

statements 
statement 
the exit 

TABLE HANDLING 5-17 



The failure path is defined either explicitly by the AT END statement, 
in which case the imperative statement which follows it is executed~ 
or by default, in which case control is passed to the next procedural 
sentence. In either case (success or failure), after an imperative 
statement is executed, control is passed to the next procedural 
sentence. 

5.4.13 The SEARCH Verb - Format 1 

Format 1 directs the RTS to search the indicated table sequentially. 
The OCCURS clause for the table being searched must contain the 
INDEXED by phrase. Unless otherwise specified in the SEARCH 
statement, the first index is the controlling index for the table 
search. The search begins with the current index setting, and 
progresses through the table, augmenting the index by one as each 
occurrence is interrogated. If any of the specified conditions is 
true (success), the associated imperative statement is executed~ the 
search exits~ and the index remains at the current setting. 

If the possible number of occurrences 
before any of the specified conditions 
exit path is taken. That is, either 
specified) is taken, or control is 
sentence. 

for the table is exhausted 
are met, the specified failure 

the AT END exit path (if 
passed to the next procedural 

Figure 5-20 contains an example of using the SEARCH verb to search a 
table in a serially. 

Associated with Format 1 is the optional VARYING phrase. This phrase 
can be specified by using any of the following methods: 

1. default - phrase omitted 

2. VARYING index-name-n 

3. VARYING identifier-2 

4. VARYING index-name-2 

NOTE 

The following is true regardless of which of the 
above methods is used. 

a. An index name associated with the table is methodically 
augmented by one, by the RTS, for each cycle of the 
serial search. This controlling index, when compared to 
the allowable number of occurrences for the table, 
dictates the permissible range of search cycles at run 
time. When an exit occurs (success or failure), this 
index remains at the current setting. 

5-18 TABLE HANDLING 



b. The RTS will not initialize the index when the search 
begins. It is the programmers responsibility to insure 
that the initial index setting is the appropriate one. 
The RTS will begin processing the table with the setting 
it finds when the search is initiated. 

When method 1 is used, the first index name (index-name-l) associated 
with the table is used as the controlling index. Only this index is 
set to consecutive values by the RTS serial search processor. See 
Figure 5-20, Example 2, for an example of using method 1. 

When method 2 is used, index-name-n is any index that is associated 
with the table being searched. It becomes the controlling index for 
the table. It alone is set to consecutive values by the RTS search 
processor. See Figure 5-20, Example 3, for an example of using method 
2. 

When method 3 is used, identifier-2 is augmented by one each time the 
first index (controlling index) for the table is augmented by one. 
Identifier-2 is not a substitute index. It merely allows the 
programmer to maintain an additional pointer to elements within a 
table. See Figure 5-20, Example 4, for an example of method 3. 

When method 4 is used, index-name-2 is an index that is associated 
with a table other than the one being searched. Each time the 
controlling index (1st index for the table) of the searched table is 
augmented, index-name-2 is also augmented. See Figure 5-20, Example 
5. 

5.4.14 The SEARCH Verb - Format 2 

Format 2 is used to direct the RTS to search the indicated table 
selectively. The selective (binary) search is predicated upon the 
ASCENDING/DESCENDING KEY attributes of the table being searched. 
Therefore, an ASCENDING and/or DESCENDING KEY(s) must be specified in 
the OCCURS clause that defines the table, to inform the RTS that the 
keys are stored within the table in ascending or descending order. 

The INDEXED BY phrase must also be specified. When the binary search 
is executed, the RTS uses the first or only index associated with the 
table as the controlling index for the search. The selective (binary) 
search is implemented in the RTS as follows: 

1. The RTS examines the range of permissible values for the 
index of the table being searched~ selects the median value~ 
and assigns this median value to the index. 

2. The RTS then proceeds to process the sequence of simple tests 
for equality, beginning with the first, with the index set to 
the median value. 

3. If all of the tests for equality are true (success), the 
search is terminated~ the associated imperative statement is 
executed~ the search exits~ and the index retains its 
current value. 

TABLE HANDLING 5-19 



4. If any of the tests for equality is false, the following 
results occur. 

a. The RTS determines if all of the possible occurrences for 
the table have been tested. If the table has been 
exhausted, the imperative statement which accompanies the 
AT END statement (if specified) is executed. In either 
case, control is passed to the next procedural statement. 

b. The RTS will now determine which half of the table is to 
be eliminated from further consideration. This 
dete~mination is predicated on whether the key being 
tested is in ascending or descending order, and whether 
the test failed because of a greater than or less than 
comparison. For example, if the key values being tested 
are stored in ascending order, and the median table 
element being tested is greater than the value being 
tested for equality, the RTS will assume that all key 
elements following the one tested are also greater than 
the value being tested for equality. Therefore, the 
lower half of the table, those items which follow the 
current index setting, are no longer in contention. 

c. Once the direction of search is determined, half of the 
table is eliminated from further consideration. A new 
range of permissible index values is computed from the 
remaining half of the table. 

d. Processing begins allover again from step 1. 

See Figure 5-20, Example 6, for an example of searching a table using 
Format 2 of the SEARCH verb. 

5-20 TABLE HANDLING 



FED-TAX-TAB~ES. 
02 A~LOWANCE-DATA, 

03 FILLER PIC X(70) YALUE 
0001440 
0202880 
0304320 
04057b0 
0S~7200 
0608640 
0710080 
0811520 
0912960 

"1014400". 
02 ALLOWANCE-TABLE REDEFINES ALLOWANCE-DATA, 

~3 FED-ALLowANCES OCCU~S 10 TIMES 
ASCENDING KEV IS ALLOWANCE-NUMBER 
INDEXED ev IND-l. 
04 ALLOWANCE-NUMBER PIC xx. 
04 ALLOWANCE PIC QQQY99, 

02 SINGLES-OEOUCTION-OATA, 
03 FILLER PIC X(112) YALUE 

"0250006700000016 
"0610011500061220 
"1150018]00163223 
"18]0024~0031q62t 
"240002790043932& 
"279~034000540730 
"3 4 6009Q9QQ741736". 

02 SINGLES-DEDUCTION-TABLE REDEFINES SINGLES-DEDUCTION-DATA, 
~3 SINGLES-TABLE OCCURS 7 TIMES 

ASCENDING KEV IS S-~IN-RANGE S-MAX.RANGE 
INOEXED ev INO-2, TEMP-INDEX. 
04 S-MIN-~ANGE PIC 999Y99. 
04 S-MAX-RANGE PIC QQ9YQ9, 
04 S-TAX PIC 99VQ9, 
04 S-PERCENT PIC Y99, 

02 MARRIED-DEDUCTION-DATA. 
03 FILLER PIC X(119) YALUE 

"04600096000000017 
"09600t730~008162~ 
"17300264000235b17 
"2ba0034b000390325 
"34600a3300~595328 
"4330050000A~3~q32 
"50000~9q9Q10S333~". 

02 MARRIED-OEDUCTION-TABLE REDEFINES MARRIED-DEDUCTION-DATA, 
03 MARRIED-TABLE OCCURS 1 TIMES 

ASCENDING KEV IS M-MIN-RANGE ~-MAX-RANGE 
INDEXED 8Y INO-0, IND-]. 
04 M-MIN-RANGE PIC Q99YQ9. 
04 M-MAX-RANGE PIC 999YQQ, 
04 M-TAX PIC qqQVQQ, 
04 M_PERCENT PIC Y9Q, 

TEMP-INDEX USAGE INDEX, 

Figure 5-20 
Example of Using SEARCH 

To Search a Table 

TABLE HANDLING 5-21 



Example 1 

SINGLE. 
IF TAXABLE-INCO~E c 024qq 

GO TO ENO-FED-COMP, 
SET IND-2 TO 1, 
SEARCH SING~ES-TABLE VARYING INO-2 AT END 

GO TO TABLE-2-ERROR 
WHEN TAXABLE-INCOME. S.MIN-RANGECIND-2) 

MOVE S.TAX(INO-2) TO FED-TAX-OEDUCTION OF 
OUTPUT-MASTER 

GO TO STORE-FEO-TAX 
WHEN TAXABLE-INCOME C S-MAX-RANGECINO-Z) 

SUBTRACT S-MIN-RANGECINO-2) FROM TAXABLE-INCOME 
MULTIPLY TAXABLE-INCOME BY S-PERCENTCINO-2) ROUNDED 
AOD TAXABLE-INCOME TO FEO-TAX-DEOUCTION OF 

OUTPUT-MASTER. 
Example 2 

SINGLE. 
IF TAXABLE-INCOME C 024qq 

GO TO ENO-FED-COMP, 
SET INO-2 TO 1. 
SEARCH SINGLES-TABLE VARYING IND-Z AT END 

GO TO TABLE-Z-ERROR 
WHEN TAXABLE-INCOME. S-MIN-RANGECIND-2) 

MOVE S-TAXCINO-2) TO FEO-TAX-OEDUCTION OF 
OUTPUT-MASTER 

GO TO STORE-FED-TAX 
WHEN TAXABLE-INCOME C S_MAX-RANGECINO-2) 

SUBTRACT S-MIN-RANGECIND-2) FROM TAXABLE-INCOME 
MU~TIPLV TAXABLE-INCOME BV S-PERCENTCIND-2) ROUNDED 
ADO TA~A8LE-INCOME TO FED-TAX-DEDUCTION OF 

Example 3 
OUTPUT-MASTER. 

MARRIED. 
IF TAXABLE-INCOME C 047qq 

MOVE ZEROS TO FED-TAX-DEDUCTION OF OUTPUT-MASTER, 
GO TO END-FEO-COMP. 

SET IND-] TO 1. 
SEARCM MARRIEO-TABLE VARYING IND-] 

AT END GO TO TABLE-]-ERROR 
WHEN TAXAeLE-INCOME • M-MIN-RANGECINO-3) 

MOVE M-TAXCIND-3) TO FED-TAX-DEOUCTION OF OUTPUT-MASTER, 
GO TO STORE-FEO-TAX, 

WHEN TAXAB~E-INCOME C M-MAX-RANGECIND-]) 
MOVE M-TAXCINO-]) TO FED-TAX-DEDUCTION OF OUTPUT-MASTER, 
SUBTRACT M-MIN-RANGECINO-3) FROM TAXABLE-INCOME ROUNDED, 
MULTIPLV TAXABLE-INCOME BV M-PERCENTCINO-]) ROUNDED, 
ADO TAXABLE-INCOME TO FEO-TAX~OEDUCTION 

OF OUTPUT-MASTER ROUNDED, 
GO TO STORE-FEO-TAX. 

Figure 5-20 (Cont.) 
Example of Using SEARCH, 

To Search a Table 

5-22 TABLE HANDLING 



Example 4 

SINGLE. 
IF TAXABLE-INCOME c 024q~ 

GO TO END-FED-COMP. 
SET INO-2 TO 1. 
SEA~CH SINGLES-TABLE VARYING TEMP-INDEX AT END 

GO TO TARLE-2-ER~OR 
WHEN TAXABLE-INCOME. S-MIN-RANGECINO-2) 

MOVE S-TA~CIND-2) TO FED-TAX-QEDUCTION OF 
OUTPUT-MAS TER 

GO TO STnRE-FEO-TAX 
WHEN TAXABLE-INCOME c S-MAX-RANGECINO-2) 

SUBTRACT S-MIN-RANGECINO-Z) FROM TAXAB~E-INCOME 
MULTIPLY TAXABLE-INCOME BY S-PERCENTCIND-2) ROUNDED 
ADO TAXABLE-INCOME TO FED-TAX-DEDUCTION OF 

OUTPUT-MASTER. 

Example 5 

SINGLE. 
IF TAXABLE-INCOME < 024qq 

GO TO ENn-FED-COMP. 
SET IND-2 TO 1. 
SEARCH SINGLES-TA8LE VARYING INO-0 AT END 

GO TO TABLE-2-ERROR 
WHEN TAXABLE-INCOME = S-MIN-RANGECIND-2) 

MOVE S-TAXCIND-2) TO FED-TAX-DEDUCTION OF 
OUTPUT-MAS TER 

GO TO STORE-FED-TAX 
WHEN TAXABLE-INCOME < S-MAX-RANGECINO-2) 

SUBTRACT S-MtN-RANGECINO-?) FROM TAXABLE-INCOME 
MULTIPLY TAXABLE-INCOME BY S-PERCENTCIN~-2) ROUNDED 
ADO TAXABLE-INCOME TO FED-TAX-DEDUCTION OF 

OUTPUT-MASTER. 

Example 6 

FED-DEDUCT-COMPUTATION. 
SeT INO-1 TO 1. 
SEARCH ALL FED-ALLOWANCES AT END GO TO TABLE-1-ERROR 

WHEN ALLOWANCE-NUMBERCINO-1) = NR-DEPENDENTS OF 
OUTPUT-MASTER, 

SUBTRACT ALLOWANCECIND-l) FROM GROSS-WAGE OF OUTPUT-MASTER 
GIVING TAXARLF.-INCOME ROUNDED. 

IF MARRITAL-STATUS OF OUTPUT-MASTER • "~" 
GO TO MARRIE". 

Figure 5-20 (Cant.) 
Example of Using SEARCH 

To Search a Table 

TABLE HANDLING 5-23 





CHAPTER 6 

INPUT-OUTPUT PROCESSING 

This chapter relates COBOL-74 I/O concepts to the features and 
requirements of VAX/VMS and Record Management Services (RMS) , which is 
the file and record access subsystem of the VAX/VMS operating system. 
Rather than being a complete description of RMS and COBOL-74 I/O, this 
chapter provides a bridge between the concepts and facilities of both. 
For more detailed information: 

1. The VAX-II COBOL-74 Language Reference Manual describes the 
I/O concepts and statements that are part of the COBOL 
language. 

2. The basic concepts of RMS, such as file organization, access 
modes, and the physical attributes of file devices, are 
discussed in the Introduction to VAX-II Record Management 
Services. 

Most of the following discussion relates to file handling. However, 
input-output is largely device-independent in the VAX-II system~ the 
logical name translation facility of VAX/VMS allows you to specify I/O 
in a generalized and flexible way. Therefore, sections of this 
chapter describe file naming techniques and conventions, relating them 
to both file-associated I/O statements (like OPEN, READ, and WRITE) 
and the low-volume I/O statements (ACCEPT and DISPLAY), which in many 
systems apply only to terminal devices. 

FILE ATTRIBUTES 

A file is an organized collection of records that is stored and 
maintained on an accessible medium, such as disk or magnetic tape. 
Both RMS and COBOL-74 support a variety of devices, file 
organizations, access methods, and storage techniques. Programs 
communicate with RMS by using a set of conventions and structures that 
allow compatibility of file definitions and operations among all users 
of RMS. 



File attributes are characteristics that determine 
records are organized and how they can be stored and 
attributes are specified when a file is created, either 
you write or by the RMS DEFINE Utility. 

how a file's 
accessed. The 
by a program 

RMS stores the file attributes in the file itself, so they are 
available whenever the file is accessed. When a program accesses a 
file through RMS, it must use the attributes that were defined when 
the file was created. For example, a program cannot read a sequential 
file as an indexed file, since the indexes do not exist~ it also 
cannot correctly access a file if it specifies a different blocking 
factor or record format (fixed-length instead of variable-length, for 
instance) than was originally defined. 

COBOL programs specify file attributes through a combination of 
statements in the Environment and Data Divisions: 

1. The SELECT statement specifies the file organization. 

2. File-description-entries specify record blocking and record 
format. 

3. Record-description-entries specify record sizes and can 
specify record format. 

6.1 RECORD FORMAT 

The RMS record format determines whether the size of a file's records 
can vary~ and if RMS stores control fields with records on the 
storage medium. 

The compiler determines the record format attribute from a combination 
of record-description-entries, the RECORD CONTAINS clause, and clauses 
that specify print-controlled files. 

6.1.1 Fixed-length 

Files with the fixed-length record format contain records that are all 
the same size. The compiler generates the fixed-length record format 
file attribute when: 

The file has only one record description, or it has multiple 
record descriptions, all of which are the same size~ 

AND 

The file description does not contain a "RECORD 
integer-l TO integer-2" phrase~ 

AND 

6-2 INPUT-OUTPUT PROCESSING 

CONTAINS 



The program does not specify a print-controlled file by using any 
of the following to refer to the file: 

• The ADVANCING phrase in a WRITE statement 

• An APPLY PRINT-CONTROL clause in the Environment Division 

• A LINAGE clause in the file description 

6.1.2 Variable-length 

Files with the variable-length record format can contain records that 
vary in size. RMS stores a record length field before the beginning 
of each data record. 

• For disk files, the record length field is a 2-byte (I-word) 
binary value that specifies the length of the record in bytes 
(excluding the record length field). 

• For tape files, the record length field is a 
value that specifies the length of the 
(including the record length field). 

4-byte decimal 
record in bytes 

The compiler generates the variable-length attribute for a file when: 

The file has more than one record description, and not all 
records described f~r the file are the same size; 

OR 

the file description contains a "RECORD CONTAINS integer-l 
TO integer-2" phrase. 

6.1.3 Variable With Fixed-Length Control 

Variable with fixed-length control records are similpr to 
variable-length records; however, they contain a fixed-length control 
field between the record length field and the variable-length data 
record. 

The compiler generates this attribute only for print-controlled files 
and for files that are opened by a DISPLAY statement; the RTS stores 
print-control values in the fixed-length control field, which is two 
bytes long. Section 6.1.1 describes the COBOL language specification 
of print-controlled files. 

INPUT-OUTPUT PROCESSING 6-3 



6.2 RECORD SIZE 

The space needed for a record on a storage medium depends on the 
record format, the file organization, and the size of the COBOL record 
description that is used to write the record. 

The maximum size of a record depends on record format: 

• For fixed-length records, the maximum size is the record 
size. 

• For variable-length records, the maximum size is the size of 
the file's largest record description in the COBOL program 
that created the file, plus the number of overhead bytes 
needed for the storage medium. 

In relative files, all records are stored in fixed-length "cells". 
Cell size is one byte larger than fixed-length record size~ the extra 
byte is a delete flag, which RMS uses to determine if a cell contains 
a record. For variable-length records, cell size is three bytes 
larger than the maximum record size~ it includes the delete flag and 
the 2-byte record length field. 

In sequential and indexed files, however, variable-length records can 
save space. RMS stores records contiguously whenever possible~ 
therefore, a variable-length record requires less space than a 
fixed-length record of maximum size if its length differs from the 
maximum record size by more than its variable-length overhead. 

The size of a data record written by a COBOL program is determined 
only by the effective size of the record description named in the 
WRITE statement. In the following example, the first WRITE statement 
causes 56 bytes to be written to the file specified by ACCOUNT-FILE~ 
the second WRITE statement transfers 42 bytes: 

FD ACCOUNT-FILE 

. 
01 ACCT-FLAG-REC. 

03 FILLER PIC X (40) • 
04 ACCT-FLAG PIC 9 (2) • 

01 ACCT-REC. 
03 ACCT-NUM PIC 9 (10) • 
03 ACCT-NAME PIC X(30) • 
03 ACCT-LIMIT PIC 9 (6) • 
03 ACCT-DISCOUNT PIC 99V99. 
03 ACCT-DATE PIC 9 (6) • 

WRITE ACCT-REC. 

WRITE ACCT-FLAG-REC. 

6-4 INPUT-OUTPUT PROCESSING 



If the records are written to a relative file whose maximum record 
size is 56 bytes, the RTS still transfers 56 bytes and 42 bytes~ 
however, the space needed for each record is 58 bytes, excluding the 
delete flag. For the 42-byte record, RMS transfers the 2-byte record 
length field and the 42-byte data record, leaving 14 unused (and 
inaccessible) bytes, excluding the delete flag. 

6.3 RECORD BLOCKING 

Record blocking can increase the execution speed of programs that 
perform many file I/O operations. In general terms, a block is the 
unit of data transfer between a program and a file storage device. A 
block can contain one or more records~ if it contains many records, 
I/O speed can increase -- the program requires only one transfer from 
the device to memory in order to consecutively read records in the 
same block. 

The COBOL language expresses block size in terms of records or 
characters. The actual size of the unit of data transfer is affected 
by the storage medium, record format and file organization. Because 
the term "block" can have several meanings, the rest of this chapter 
uses terminology that is more specific: 

Physical Block 

Bucket 

A group of consecutive bytes of data treated as a unit by 
the storage medium. On magnetic tape, a physical block can 
vary in size~ it is the number of bytes between two 
inter record gaps. On disk, a physical block is a 5l2-byte 
unit. 

A physical block can contain one or more records, or it can 
contain part of a record~ records can span physical block 
boundaries. 

Physical block is synonymous with the VAX-II RMS term, 
block. 

For relative and indexed files, the RMS unit of transfer 
between storage devices and I/O buffers in memory. A bucket 
can contain one or more records~ however, records cannot 
span buckets. 

Record Unit Size 
The storage medium space (in bytes) needed to store a record 
in a file. 

For fixed-length records, record unit size is the record 
length. 

For variable-length records, record unit size is the maximum 
record length plus the size of the count field. 

INPUT-OUTPUT PROCESSING 6-5 



For variable with fixed-length control records, record 
size is the sum of the maximum record length, the 
field size, and the size of the print-control field 
bytes) • 

unit 
count 

(two 

In COBOL, you can specify blocking in terms of records or characters, 
or you can use the compiler's default. The following sections discuss 
the three methods separately for each file organization. The examples 
refer to the following samples of COBOL file and record descriptions: 

Sample .A 

FD TEST-FILE 
LABEL RECORDS ARE STANDARD. 

01 REC-l PIC X(lOO). 
01 REC-2 PIC X(5ll). 

Sample B 

FD TEST-FILE 
BLOCK CONTAINS 50 RECORDS 
LABEL RECORDS ARE STANDARD. 

01 REC-l PIC X(20). 

Sample C 

FD TEST-FILE 
BLOCK CONTAINS 512 CHARACTERS 
LABEL RECORDS ARE STANDARD. 

01 REC-l PIC X(494). 

6.3.1 Sequential Files on Magnetic Tape 

Default 

The physical block size is determined when the volume is mounted: 
if the /BLOCK=n qualifier is not used with the VAX/VMS MOUNT 
command, the RMS default is 2048 characters. 

BLOCK CONTAINS n RECORDS 

The compiler computes the physical block size as n multiplied by 
the record unit size. 

Example: 

Sample Physical block size 

B 1000 bytes (50*20) 

6-6 INPUT-OUTPUT PROCESSING 



BLOCK CONTAINS n CHARACTERS 

If n is less than the record unit size, the compiler ignores n 
and uses the record unit size as the physical block size. 
Otherwise, the physical block size equals n. Records cannot span 
physical blocks~ therefore, a physical block can contain only 
complete records (regardless of record format). A physical block 
is transferred (written) to the magnetic tape device when the 
program tries to add a record that cannot fit into the I/O 
buffer~ the unwritten record begins the next physical block. 

Example: 

Sample Physical block size 

C 512 bytes (18 unused) 

6.3.2 Sequential Files on Disk 

Records are packed together in each physical block~ there are no 
unused bytes in any block, and the records can span block boundaries. 

Default 

The RMS default determines record blocking for sequential disk 
files. 

BLOCK CONTAINS n RECORDS 

The compiler computes the unit of data transfer, in terms of 
5l2-byte physical blocks, as follows: 

Unit of data transfer = 
(n*record unit size/5l2), rounded up 

Example: 

Sample Unit of data transfer 

B 2 = (50*20/512), rounded up 

BLOCK CONTAINS n CHARACTERS 

The compiler computes the unit of data transfer, in terms of 
5l2-byte physical blocks, as follows: 

Unit of data transfer = n/5l2, rounded up 

Example: 

Sample Unit of data transfer 

C 1 = 512/512, rounded up 

INPUT-OUTPUT PROCESSING 6-7 



6.3.3 Relative Files 

In each of the following methods for computing bucket size, one byte 
is added to the record unit size. RMS adds one byte to each cell in a 
relative file to indicate whether the cell contains a record or is 
empty. Bucket size is expressed in terms of 512-byte physical blocks. 

The bucket size is a file attribute~ therefore, each time you access 
the file, you must specify it the same way as when the file was 
created. 

The following examples refer to the COBOL samples presented in Section 
6.3. 

Default 

The compiler tries to make the bucket size as small as possible 
by computing it as follows: 

Bucket size = ((l+record unit size)/512), rounded up 

Example: 

Sample Bucket size 

A 2 = ((1+(2+511))/512), rounded up 

BLOCK CONTAINS n RECORDS 

The compiler computes the bucket size as follows: 

Bucket size = (n*(l+record unit size)/512), rounded up 

Example: 

Sample Bucket size 

B 3 = (50*(1+20)/512), rounded up 

BLOCK CONTAINS n CHARACTERS 

The compiler computes the bucket size as follows: 

Bucket size = n/5l2 

Where: 

• n must equal or exceed (l+record unit size). If it is less 
than that quantity, the compiler issues a warning diagnostic 
and uses the default method to compute the bucket size. 

• n must be a multiple of 512. If not, the compiler issues a 
warning diagnostic and rounds n up to the next multiple of 
512. 

6-8 INPUT-OUTPUT PROCESSING 



Example: 

Sample Bucket size 

C 1 

6.3.4 Indexed Files 

Each of the methods for computing bucket size for indexed files 
considers overhead bytes for each record and bucket: 

Record overhead = 7 bytes 
Bucket overhead = 15 bytes 

The bucket size is a file attribute~ therefore, each time you access 
the file, you must specify it the same way as when the file was 
created. 

In each of the following methods, bucket size is expressed in terms of 
s12-byte physical blocks. Again, the examples refer to the COBOL 
samples presented in Section 6.3. 

Default 

The compiler tries to make the bucket size as small as possible 
by computing it as follows: 

Bucket size = ((ls+(7+record unit size»/s12), rounded up 

Example: 

Sample Bucket size 

A 2 = ((15+(7+(2+511»)/512), rounded up 

BLOCK CONTAINS n RECORDS 

The compiler computes the bucket size as follows: 

Bucket size = ((ls+(7+record unit size)*n)/s12), rounded up 

Example: 

Sample Bucket size 

B 4 = ((15+(7+20)*50)/512), rounded up 

INPUT-OUTPUT PROCESSING 6-9 



BLOCK CONTAINS n CHARACTERS 

The compiler computes the bucket size as follows: 

Bucket size = n/512 

Where: 

• n must equal or exceed (15+(7+record unit size)). 
less than that quantity, the compiler issues 
diagnostic and uses the default method to compute 
size. 

If it is 
a warning 

the bucket 

• n must be a multiple of 512. If not, the compiler issues a 
warning diagnostic and rounds n up to the next multiple of 
512. 

Example: 

Sample 

C 

Bucket size 

2 

n*(512) is less than the minimum 
required by the first rule; there­
fore, the compiler uses the default 
method. 

6.4 CURRENT RECORD AREA 

A file's current record area is the location in which 
available to a COBOL program; it is defined by 
descriptions that follow the file description. 

records are 
the record 

COBOL I/O statements appear to transfer data directly between a 
and its current record area. Actually, I/O statements transfer 
between the current record area and the file's I/O buffer. 
manages the I/O buffers and transfers data between them and files. 

6.4.1 Effects on Output Operations 

file 
data 
~S 

The current record area includes the total area described by all of a 
file's record descriptions: it is as large as the largest record 
described for the file. 

The size of a 
determined by 
statement. 

record written by a COBOL program, however, is 
the record description named in the WRITE or REWRITE 

6-10 INPUT-OUTPUT PROCESSING 



6.4.2 Effects of Input Operations 

The RTS does not clear the current record area before executing a READ 
operation; therefore, the contents of the current record area after a 
READ are determined by the length and contents of the record. For 
example, when the program reads a record that is smaller than the 
largest record described for a file, the operation does not change the 
area beyond the end of the incoming record. 

Consider an example in which the 
characters from the first record 
returns a 12-character record, the 
not changed: 

current record area contains 20 
read from a file. If the next READ 
remaining 8 character positions are 

Current record area after first READ: 0239394CABINET, FILE 

Contents of next record: 6627402CHAIR 

Current record area after next READ: 6627402CHAIRET, FILE 

It is not considered a good COBOL programming practice to depend on 
this condition. 

6.4.3 Sharing Record Areas 

The compiler normally allocates storage space separately for each 
file's current record area. This method of current record area 
allocation has two potentially undesirable effects: 

1. Each file's current record 
program's Data Division. 
sizes of their records are 
approach COBOL-74's Data 
65,535 bytes. 

area requires storage in the 
If the number of files and the 

large, Data Division size could 
Division size limitation, which is 

2. Reading records from one file and writing them to another 
requires an intermediate data transfer from one file's 
current record area to the other. If the program processes a 
large number of records this way, the data movement 
operations could add significant processing overhead. 

Files can share current record areas, thus reducing both address space 
and processing overhead. You specify current record area sharing by 
using the SAME RECORD AREA clause in the I-O-CONTROL paragraph of the 
Environment Division. For all files named in a SAME RECORD AREA 
clause, the compiler assigns the beginning of the current record areas 
to a common location; the leftmost bytes of each current record area 
coincide in the same way that the leftmost bytes of each record for a 
file share one location. Records need not be the same size; nor must 
the maximum sizes of each current record area be the same. 

Figure 6-1 shows the effect of current record area sharing in a 
program that reads records from one file and writes them to another. 
However, it also shows a drawback: current record area sharing is 

INPUT-OUTPUT PROCESSING 6-11 



equivalent to implicit redefinition~ the records do not exist 
separately -- therefore, if the program changes the record defined for 
the output file, the original input file record is no longer 
available. Remember that you cannot access a file's I/O buffer 
directly. 

Figure 6-1 
Sharing Record Areas 

Program Without Sharing Program with Sharing 

I-O-CONTROL. 
SAME RECORD AREA FOR 

INP-FILE OUT-FILE. 

PROCEDURE DIVISION. PROCEDURE DIVISION. 

READ INP-FILE ••• READ INP-FILE ••• 

MOVE INP-REC TO OUT-REC. 
WRITE OUT-REC ••• WRITE OUT-REC ••. 

Process without Sharing Process with Sharing 

INP-REC 

OUT-REC 

WRITE 
(move) 

OUT-FILE buffer 

6-12 INPUT-OUTPUT PROCESSING 

READ 
(move) 

INP-REC 
OUT-REC 



6.5 I/O BUFFERS 

An I/O buffer is an intermediate memory storage location for data 
transfers between a program and its files. RMS assigns buffers 
dynamically, that is, it does not allocate address space for a file's 
buffers until your program opens the file. Furthermore, when your 
program closes a file, RMS releases the I/O buffer's address space. 

Using buffers, RMS can perform I/O operations with little regard to 
the program's description of records and files: it can read or write 
more data (or less) in each operation than the program requests. 

Buffer use is necessary for record blocking, for example, when your 
program reads a record that is part of a logical block, only that 
record is made available in the current record area. The rest of the 
records in the logical block are still available in the file's I/O 
buffer, and RMS can often make them available to your program without 
accessing the file again. 

Multi-buffering (allocating more than one buffer for file operations) 
can increase the speed of I/O operations. Using multi-buffering, RMS 
can reduce your program's record access time by storing large amounts 
of data in the program's address space between I/O requests. If the 
program tries to access a record that is already in the buffer, RMS 
must only move the record to the current record area, regardless of 
how the file is blocked. You can take advantage of multi-buffering by 
using the RMS defaults or by specifying multiple buffers with the 
RESERVE clause. 

6.5.1 RMS Buffer Defaults 

RMS uses default multi-buffer counts when they are not specified by 
your program. Defaults for sequential, relative, and indexed files 
can be set on a system-wide basis, however, you can also define RMS 
defaults for your process by using the SET RMS DEFAULT command. You 
can display the defaults with the SHOW RMS DEFAULTS command. The 
VAX/VMS Command Language User's Guide describes both commands. 

6.5.2 Multiple Buffers (RESERVE Clause) 

You can use the RESERVE clause in the SELECT statement to specify the 
number of I/O buffers that RMS will use for a file. The RESERVE 
clause specification overrides the RMS default, allowing you to 
reserve more buffers for programs in which I/O speed is important. 

You can specify up to 127 areas in the RESERVE clause, however, if 
record or block sizes are large, heavy multi-buffering could cause the 
buffers to take a large proportion of the process address space. 

INPUT-OUTPUT PROCESSING 6-13 



6.5.3 Sharing Buffers (SAME AREA Clause) 

The SAME AREA clause specifies that two or more files are to use the 
same memory area (I/O buffers) during processing. It is not valid to 
have more than one of the files open at the same time; the RTS 
reports a run-time error when it detects this condition. 

RMS allocates I/O buffers dynamically (when your program opens a 
file), so buffer sharing would not save resources; therefore, since 
more than one file specified in a SAME AREA clause cannot be open at 
the same time, buffers are not actually shared. However, you can use 
the SAME AREA clause to ensure that specific files are closed before 
others are opened. 

6.6 OPENING FILES 

A COBOL program must explicitly open a file before it can perform any 
I/O operation on it. You can open files in four modes: INPUT, 
OUTPUT, 1-0, and EXTEND; the choice of open mode determines which I/O 
statements you can use. This section summarizes the I/O statements 
that can be used for each open mode; it also discusses the procedures 
used by the RTS and RMS when you open files. 

6.6.1 I/O Operations 

Three conditions determine the I/O operations that a program can 
perform on a file: 

1. File organization 

2. Access mode 

3. Open mode 

The relationships among file organization, access mode, open mode, and 
I/O statements are hierarchical: file organization determines which 
access modes are valid; the combination of organization and access 
mode determines valid open modes; and the combination of all three 
enables or disables I/O statements. Table 6-1 shows these 
relationships by indicating I/O statement availability for each valid 
combination. 

6-14 INPUT-OUTPUT PROCESSING 



File 

Table 6-1 
I/O Statements Grouped by File Organization, 

Access Mode, and Open Mode 

Access Open Mode 
Organization Mode Statement INPUT OUTPUT 1-0 

SEQUENTIAL SEQUENTIAL READ Yes No Yes 
REWRITE No No Yes 
WRITE No Yes No 

RELATIVE SEQUENTIAL DELETE No No Yes 
READ Yes No Yes 
REWRITE No No Yes 
START Yes No Yes 
WRITE (No Yes No 

RANDOM DELETE No No Yes 
READ Yes No Yes 
REWRITE No No Yes 
WRITE No Yes Yes 

DYNAMIC DELETE No No Yes 
READ Yes No Yes 
READ NEXT Yes No Yes 
REWRITE No No Yes 
START Yes No Yes 
WRITE No Yes Yes 

INDEXED SEQUENTIAL DELETE No No Yes 
READ Yes No Yes 
REWRITE No No Yes 
START Yes No Yes 
WRITE No Yes No 

RANDOM DELETE No No Yes 
READ Yes No Yes 
REWRITE No No Yes 
WRITE No Yes Yes 

DYNAMIC DELETE No No Yes 
READ Yes No Yes 
READ NEXT Yes No Yes 
REWRITE No No Yes 
START Yes No Yes 
WRITE No Yes Yes 

EXTEND 

No 
No 
Yes 

N/A 

N/A 

INPUT-OUTPUT PROCESSING 6-15 



6.6.2 OPEN Statement Execution 

This section discusses the file open procedure and how it is affected 
by the following conditions: 

• File organization 

• Access mode 

• Open mode 

• RTS error detection 

• RMS error detection 

• Existence of USE procedures 

An OPEN statement causes the RTS to begin a series of procedures that 
attempt to make the file available to the program. If an error is 
detected, the OPEN fails: the RTS either performs the applicable USE 
procedure (if the program has one) or issues an error message and 
terminates the image. 

The following procedure starts when a COBOL program reaches an OPEN 
statement: 

1. The RTS checks the current status of the file. 
already open, the OPEN fails. 

If it is 

2. The RTS builds a file specification by using the contents of 
the VALUE OF 10 identifier, if any, to replace or add to the 
components of the ASSIGN clause file specification default. 

3. If the file was named in a SAME AREA clause, the RTS 
the status of all other files named in the clause. 
are open, the OPEN fails. 

checks 
If any 

4. The RTS calls RMS, requesting that it open the file. If RMS 
detects an error in its procedures, it reports the error 
condition to the RTS and the OPEN fails. 

5. RMS passes the file specification to a logical name 
translation routine, which replaces the file specification 
with the translation, if one exists. 

6. If the file specification names an invalid device, or if RMS 
detects any other error in the file specification, it reports 
the error to the RTS. 

7. If RMS cannot find the file, it notifies the RTS~ then, if 
the program specified the file as OPTIONAL (valid for 
sequential files only) and the open mode is INPUT, the RTS 
marks the file for an AT END condition, considers the OPEN 
successful, and returns control to the program. Otherwise, 
if RMS reports that it cannot find the file, the OPEN fails. 

6-16 INPUT-OUTPUT PROCESSING 



8. If the RTS detects a significant difference between 
existing file's attributes and those specified during an 
for input (such as different file organization), the 
fails. 

an 
open 
OPEN 

9. If the program is opening a sequential file for output, and 
the program contained either the LINAGE or APPLY 
PRINT-CONTROL clauses, the RTS initializes the LINAGE 
counters. 

10. Before returning control to the program after a successful 
OPEN, the RTS marks as enabled or disabled all the program's 
I/O statements that refer to the file, depending on the file 
organization, access mode, and open mode. (See Table 6-1.) 

6.7 NAMING FILES 

In a COBOL program, you refer to a file by its file-name: the name 
you specify in the FD and use in the SELECT, OPEN, READ, START, and 
CLOSE statements. However, you refer to the physical file, as it 
exists outside the program, with a file specification. The ASSIGN 
clause of the SELECT statement contains the default file 
specification~ the VALUE OF ID clause in the file description 
particularizes the file specification. 

This section discusses file specifications and logical names, which 
are described in detail in the VAX/VMS Command Language User's Guide. 
It relates the ASSIGN and VALUE OF ID clauses to the two file naming 
techniques and recommends a convention that you can follow to make 
your COBOL programs device-independent. 

NOTE 

The term "system" is used when it is not 
important to differentiate between 
VAX/VMS and its subsystems (RMS, for 
example) • 

6.7.1 File Specifications 

File specifications provide the system with all the information it 
needs to uniquely identify a file or device. 

The general form of the file specification is: 

node::device: [directory]filename.type~ver 

INPUT-OUTPUT PROCESSING 6-17 



The punctuation marks and brackets separate the fields of the file 
specification. The fields are: 

node 

device 

directory 

filename 

type 

ver 

A network node name identifies a location on 
network, if your system is connected to one. 
names are from one to six characters long. 

the 
Node 

Each hardware device in the system has a unique device 
name specification in the format: 

devcu: 

where dev is a mnemonic for the device type~ c is a 
controller designation~ and u is a unit number. 

This field names a directory file, which contains the 
identifications and locations of a user's files on a 
disk device. Directory names must be enclosed in 
either square brackets ([ and ]) or angle brackets « 
and ». 

This field, in combination with the file type and 
version number, uniquely identifies files within 
directories. The file name can be from one to nine 
characters long. 

The file type is often used to identify 
of its contents. It can be from 
characters long. For example, the 
executable images is usually EXE. 

a file in terms 
one to three 

file type of 

Version numbers are decimal numbers from 1 to 32767 
that differentiate between versions of a file. For 
example, if you create a file with the same file name 
and type as one that already exists in the same 
directory, the system assigns a version number that is 
one greater than the highest existing version. You 
must put a semicolon or a period before the version 
number. 

All fields are optional in a file specification. The system supplies 
default values for all omitted fields, except file name and type. For 
example, default device and directory names are established when you 
log in~ you can change them with the SET DEFAULT command. 

File Specification Examples: 

DBAl: [SMITH]ACCOUNT.DAT 

Refers to the latest version 
ACCOUNT.DAT in directory name 
local system (node name default) • 

6-18 INPUT-OUTPUT PROCESSING 

(default) of the file 
[SMITH] on device DBAl: 

named 
on the 



PAYROL. NEW~ 23 

Refers to version number 23 of the file named PAYROL.NEW in the 
default directory on the default device. 

File Switches 

File specifications in the ASSIGN or VALUE OF 10 clause can 
followed by "file switches". These specifications are 
defined by VAX-II RMS~ however, the RTS accepts them 
translates them to VAX-II RMS parameters. COBOL-74 accepts 
switches for compatibility with PDP-II COBOL. (They 
discussed in Section 6.8.5). 

6.7.2 Logical Names 

be 
not 
and 

file 
are 

Logical names allow you to write programs that are independent of 
physical file specifications. They also provide a shorthand way to 
specify files that you refer to frequently. 

When the system gets a file specification, it tries to find an 
equivalence name to replace the leftmost component. If the leftmost 
file specification component is not a logical name -- it might be a 
directory name, for example -- the system does not translate it. 

You can assign logical names with the ASSIGN command, which is 
described ~n the VAX/VMS Command Language User's Guide. When a 
logical name is assigned, it and its equivalence name are placed in 
one of three logical name tables, depending on whether they are 
assigned for the current process, on the group level, or on a 
system-wide basis. 

To translate a logical name, the system searches 
order (process, group, system)~ therefore, 
system-wide logical name by defining it for 
process. 

the three tables in 
you can override a 
your group or your 

Logical name translation is a recursive procedure~ that is, when the 
system translates a logical name, it uses the equivalence name as the 
argument for another logical name translation. It continues in this 
manner until it cannot translate the equivalence name. 

For example, assume that the equivalence name of FILEA is ALPHA. OAT, 
and you use the ASSIGN command: 

ASSIGN FILEA MYFILE 

If your program tries to open a file whose file specification is 
"MYFILE", the system translates "MYFILE" to its equivalence name, 
"FILEA", then uses "FILEA" as the argument for a second translation to 
"ALPHA.DAT". If you had not established "MYFILE" as a logical name, 
the system would use it as a file specification and look for a file 
named "MYFILE.". 

INPUT-OUTPUT PROCESSING 6-19 



6.7.3 ASSIGN and VALUE OF ID Clauses 

You can use the SELECT statement ASSIGN clause alone or in combination 
with the VALUE OF ID clause to supply file specifications and logical 
names for files. The ASSIGN clause literal can contain three types of 
file names: 

1. Complete file specification 

If you want the file specification to be the same whenever 
you run the program, you can use a complete explicit file 
specification in the ASSIGN clause. For example: 

SELECT WORK-FILE 
ASSIGN TO "DBAl: [WORKACCT]WORKl.TMP". 

You need not use the VALUE OF ID clause if you choose this 
technique. 

2. Partial file specification 

If part of the file specification can change from one run to 
another, you can use a partial file specification: 

SELECT INPUT-FILE 
ASSIGN TO "DBAl: .DAT". 

If you do not use the VALUE OF ID clause, the system uses the 
default directory and a null file name. However, if you use 
the VALUE OF ID IS identifier clause and use the ACCEPT 
statement to get the file name at run time, the contents of 
the identifier "fill in"or replace all or part of the 
partial file specification: 

identifier contents 

[JONES]A 
PERSONNEL 
[WILLIAMS] 
spaces 
DBAO: [SMITH]WEEK.LIS 
.TMP 

3. Logical name 

file specification 

DBAl: [JONES]A.DAT 
DBAl:PERSONNEL.DAT 
DBAl: [WILLIAMS].DAT 
DBAl: • DAT 
OBAO: [SMITH]WEEK.LIS 
OBAl:.TMP 

A logical name can look like a partial file specification 
and, in fact, can be used in the same way. However, if the 
name is not changed (by the contents of the VALUE OF 10) so 
that the system recognizes it as a file specificati~n, the 
system tries to translate it. 

6-20 INPUT-OUTPUT PROCESSING 



For example, assume that the logical name "MYFILE" translates 
to the equivalence name "PERSONNEL.DAT". If the SELECT 
statement is: 

SELECT INP-FILE 
ASSIGN TO "MYFILE". 

and the program accepts input at run time to fill the VALUE 
OF ID identifier, logical name translation mayor may not 
take place, depending on the input: 

identifier contents 

.DAT 
spaces 
[SMITH] 

file specification 

MYFILE.DAT 
PERSONNEL.DAT 
[SMITH]MYFILE. 

You can often increase program versatility and avoid "one-time" 
recompilations by using logical names in the ASSIGN clause literal. 
Consider an accounting system with 20 programs that access the same 
ten master files. It could be necessary to use the same programs to 
access another set of master files at the start of a new year, for 
example, when two accounting years are active, or when another 
organization's accounts must also be maintained. The amount of work 
involved in converting the programs would depend on the programs' file 
naming conventions: 

• If complete file specifications are used in the ASSIGN 
clause, and the programs do not accept file specifications at 
run time, all 20 programs need to be edited (ten file 
specification changes in each), linked, and probably renamed 
to avoid confusion with the originals. The obvious risk of 
error requires that the programs be tested. 

• If the programs accept file specifications at run time, they 
would not need to be changed. However, assuming they run as 
batch jobs, each command procedure needs to be changed, and 
probably renamed. If the programs run interactively, 
operators would need to be taught to use the correct file 
specifications for each program, depending on which set of 
files was to be used. In addition to being cumbersome, this 
procedure would likely result in file specification errors, 
and perhaps damage to data files. 

• If logical names are used in the ASSIGN clause, the programs 
would not need to be changed. If the programs run as batch 
jobs, the command procedures are simpler than in the previous 
case, since logical name assignments need be made only once 
at the beginning of the procedure instead of for each 
program; if multiple command procedures were used, they 
could all execute a single command procedure that does 
nothing but assign logical names. If the programs run 
interactively, the operator needs only to execute one command 
procedure to assign all logical names for the correct set of 
files. 

INPUT-OUTPUT PROCESSING 6-21 



6.7.4 File Switches (PDP-ll COBOL Compatibility) 

PDP-ll COBOL allows the use of switches (qualifiers) in file 
specifications to communicate options to the file management system, 
RMS-ll. The RTS translates these switch specifications to make them 
compatible with VAX-II RMS~ thus, you can recompile most PDP-II COBOL 
programs with VAX-II COBOL-74 and execute them without change. 

Table 6-2 describes the PDP-II COBOL file specification switches. 
Note that· some of the terminology and concepts are not the same as 
those in the VAX-ll system. Note also that numeric values are 
specified as either decimal or octal, not hexadecimal. 

SWITCH 

/AL:n 

/CL:n 

/CO:n 

/DQ:n 

/DW 

/LO 

Table 6-2 
File Specification Switches 

for Compatibility with PDP-II COBOL 

MEANING 

Allocate n disk blocks to the file when it is created. 
This ensures that n blocks are available before 
processing begins. You can also use the switch to 
ensure that the the volume can hold the entire file. If 
the rightmost character of n is a decimal point, the RTS 
interprets the value as a decimal number~ otherwise, 
the RTS treats n as an octal value. 

The blocks allocated need not be contiguous. 

The RTS treats this switch identically to the /WI 
switch. The /CL switch is included for compatibility 
with PDP-II COBOL programs running under the RSTS/E 
operating system. 

This switch complements /AL:n~ it 
that all blocks be contiguous. 
character of n is a decimal point, 
the value as a decimal number~ 
treats n as an octal value. 

further specifies 
If the rightmost 

the RTS interprets 
otherwise, the RTS 

Specifies an extension quantity of n blocks when the 
file is created. A large extension quantity minimizes 
extend operations. If the rightmost character of n is a 
decimal point, the RTS interprets the value as a decimal 
number~ otherwise, the RTS treats n as an octal value. 

Causes I/O buffers to be written only when full, as 
contrasted to the default case, in which every write 
operation causes a physical I/O operation. This option 
is available only for files that are not write-shared. 

Causes RMS to use the fill numbers specified when the 
file was created. Fill numbers can cause the file to 
contain free space to allow later record insertion. 

6-22 INPUT-OUTPUT PROCESSING 



/MI 

ISH 

/WI:n 

Table 6-2 (Continued) 

This switch optimizes the insertion (into an indexed 
file) ~f records sorted in order of ascending prime key 
values. Mass insertion eliminates the index search for 
subsequent writes. This feature is implemented in 
RMS-ll. 

Specifies sharing of the file, making it available for 
writing by other processes running concurrently with the 
COBOL program. This switch is not allowed for 
sequential files. For other types of files, the 
following rules apply: 

1. If the ISH is specified for one process sharing 
the file, it must be specified for all 
processes sharing the file. 

2. If a file is being opened for output or I/O 
with the ISH switch specified, all other 
processes currently using the file must also 
have the ISH switch specified. 

3. If a file is opened for input without the ISH 
switch set, no other process can use the file 
for output or I/O. 

4. If a file is opened for input without the ISH 
switch set, no other process currently using 
the file can have the ISH switch set. 

If access is denied because one of these rules has been 
violated, the RTS stores a value of 91 in the 
FILE-STATUS data-item associated with the file, assuming 
that the SELECT statement for the file contains a 
FILE-STATUS clause. 

Sets the number of retrieval pointers in the window used 
to map virtual block numbers to logical block numbers. 
The acceptable values range from 1 to 102 if you know 
exactly how many pointers are present on disk for the 
file, or 255, which requests assignment of pointers as 
needed. 

CAUTION 

The /WI:n switch can cause loss of data and file 
integrity if the system crashes while a buffer 
is being filled. 

INPUT-OUTPUT PROCESSING 6-23 



6.8 FILE COMPATIBILITY 

VAX-II COBOL-74 programs 
cases, therefore, your 
that was created through 
RMS-based programs can 
creates. 

use VAX-II RMS to access all files. In most 
COBOL programs can read records from any file 
(or can be accessed by) RMS: and other 
read records from files that your program 

The ability to read records, however, does not imply a universal 
ability to transfer data between programs written in different 
languages -- at least not without some special processing. The most 
common compatibility issues are differences in data types, data record 
formats, and special control characters in records that are written to 
record-oriented devices. 

6.8.1 Data Type Differences 

Not all data types are supported by all programming languages and all 
utilities. For example: 

• COBOL-74 does not support the floating point data type. 

• 

Therefore, COBOL programs cannot easily process floating 
point data (FORTRAN real variables) in files. 

VAX-II SORT does not 
Therefore, problems 
COMPUTATIONAL key whose 
S9 (18) • 

support quadword binary items. 
arise in sorting a file on a 
picture is in the range S9(10) to 

• FORTRAN does not support the packed-decimal data type. 
Therefore, COMPUTATIONAL-3 data in COBOL files cannot easily 
be used by FORTRAN programs. 

The fact that data types differ should not keep you from transferring 
data between programs written in different languages. You can use two 
techniques to overcome data type incompatibilities: 

1. Use ASCII character representation, if possible, for all data 
in files intended for use across languages: ASCII 
representation (USAGE IS DISPLAY, in COBOL) is almost 
universally recognized. All VAX-II languages and utilities 
support this data type. 

2. Convert the data in your program to a data format you can 
use. Even if you cannot use a data type directly, you can 
convert it to a usable form if you know the specifications 
for its internal representation. 

Data conversion may be complex and may prevent your operating 
on the converted data as easily as on a "native" data type. 
Nevertheless, conversion is always possible. For example, a 
FORTRAN double-precision value may have too large a magnitude 
for representation in any COBOL data type~ however, the 
fraction and exponent can be represented in COBOL by two 
COMPUTATIONAL data items. 

6-24 INPUT-OUTPUT PROCESSING 



6.8.2 Data Record Formatting Differences 

Programming languages may use different conventions to format their 
data records, causing incompatibilities in otherwise transportable 
files. For example, FORTRAN programs normally place a carriage 
control character before the first data character in a formatted file 
record. Similarly, other languages could format print-controlled (and 
other) records differently than COBOL does. 

You can avoid this incompatibility, in some cases, by not using 
print-controlled files. In FORTRAN, for example, a file can be opened 
with the "CARRIAGE CONTROL='NONE'" specification. 

If you cannot "normalize" the format of a file's records, you can 
still read it by defining record descriptions that match the actual 
format. For example, you can read data from a FORTRAN file that uses 
carriage control by defining a one-character data item before the 
first "real" data item in each record description. When you read a 
record, the one-character field will contain the carriage control 
character, which your program can either interpret or ignore. 

6.8.3 Special Control Characters 

Some characters in the computer character set have special meaning~ 
the carriage return, form feed, and line feed characters are examples 
of non-graphic control characters. 

Control characters may be included in a file's records by convention~ 
for example, COBOL-74 print-controlled records have a carriage return 
in the byte following the last data character. In other cases, a 
program can inadvertently include control characters in a record by 
using a data type other than ASCII (or DISPLAY). For example, if your 
program writes COMPUTATIONAL data to a file, individual bytes of the 
binary data could contain control characters. Consider a one-word 
COMPUTATIONAL data item that contains the value 3085, which is 
equivalent to the hexadecimal value OCOD~ taken as two bytes, OCOD 
represents a form feed followed by a carriage return, which could be 
interpreted as the end of a record. 

6.9 I/O ERROR PROCESSING 

When your program reaches a file I/O statement, the RTS begins a 
complex procedure that includes its own internal status checks and 
interaction with RMS. I/O exceptions can be detected by RMS or the 
RTS. This section briefly describes how the RTS handles exception 
conditions and the techniques you can use to handle I/O errors. 

INPUT-OUTPUT PROCESSING 6-25 



When your program reads a sequentially accessed file, RMS reports an 
AT END condition to the RTS if there are no more records to return. 
For a randomly accessed file, an INVALID KEY condition is reported 
whenever RMS determines that the file does not contain the record 
specified by the value of the key your program supplied. The AT END 
and INVALID KEY conditions are not errors~ you specify program action 
on those conditions in the AT END and INVALID KEY clauses of I/O 
statements. 

An I/O error is any other condition that causes an I/O statement to 
fail. 

If your program contains a USE procedure that applies to the file for 
which the I/O operation failed, the RTS performs the procedure, and it 
does not display an RMS error message~ otherwise, it displays the RMS 
error message and terminates the image. 

A USE procedure can sometimes avoid program termination. For example, 
if the file status data item contains the value "91", which indicates 
that the file is locked by another process, you might decide to try 
opening the file again after performing other procedures. 

In other cases, when program continuation is not desirable, the USE 
procedure can perform "housekeeping" operations that conclude 
processing in an orderly way, by saving data or informing the user, 
for example. 

Before the RTS performs a USE procedure, it places a value in the file 
status data item, if you specified one in the file's SELECT statement. 
Most file status values are defined by the 1974 ANSI COBOL Standard~ 
in most cases, they do not provide as much information as RMS error 
messages. If you need to see the RMS error message for an error that 
was handled by a USE procedure, you must recompile the program without 
the USE procedure and run it again. 

6.10 LOW-VOLUME I/O (ACCEPT AND DISPLAY) 

The COBOL language provides two statements (ACCEPT and DISPLAY) for 
low-volume I/O operations. Usually, these statements transfer data to 
and from a user's terminal device. In COBOL-74, however, the ACCEPT 
and DISPLAY statements refer to VAX/VMS logical names. 

This section discusses the association of your own mnemonic-names to 
VAX/VMS logical names~ it continues with discussions of the ACCEPT 
and DISPLAY statements. 

6-26 INPUT-OUTPUT PROCESSING 



6.10.1 Mnemonic-Names (SPECIAL-NAMES Paragraph) 

The ACCEPT and DISPLAY statements transfer data between 
and the object of VAX/VMS logical names. If you 
FROM/UPON clauses, the default logical names are 
COB$OUTPUT. 

your program 
do not use the 
COB$INPUT and 

The FROM/UPON clauses refer to mnemonic-names that you can define in 
the SPECIAL-NAMES paragraph in the Environment Division. You define a 
mnemonic-name by equating it to a "device"~ for example, the 
following clause equates STATUS-REPORT to the device LINE-PRINTER: 

LINE-PRINTER IS STATUS-REPORT 

You could then use the mnemonic-name in a DISPLAY statement: 

DISPLAY "File contains " REC-COUNT 
UPON STATUS-REPORT. 

6.10.2 Logical Name "Devices" 

The device names in the SPECIAL-NAMES paragraph represent VAX/VMS 
logical names: 

SPECIAL-NAMES Device 

CARD-READER 
PAPER-TAPE-READER 
CONSOLE 
LINE-PRINTER 
PAPER-TAPE-PUNCH 

Logical Name 

COB$CARDREADER 
COB$PAPERTAPEREADER 
COB$CONSOLE 
COB$LINEPRINTER 
COB$PAPERTAPEPUNCH 

The logical names do not necessarily represent devices. You could, 
for example, assign a logical name to a file specification with a VMS 
ASSIGN command: 

ASSIGN [ALLSTATUS]STATUS.LIS COB$LINEPRINTER 

Because a logical name does not imply a device, it carries no 
implication of "open mode"~ therefore, a program can display upon a 
mnemonic-name that refers to CARD-READER or accept from a 
mnemonic-name that refers to LINE-PRINTER. 

In COBOL, the ACCEPT and DISPLAY statements do not refer to 
file-names~ therefore, the concepts of opening and closing files do 
not apply. However, the RTS uses RMS for all I/O operations, 
including ACCEPT and DISPLAY. The RTS therefore implicitly "opens" a 
logical name when it is first used in an ACCEPT or DISPLAY statement 
in any COBOL module in the image. 

INPUT-OUTPUT PROCESSING 6-27 



NOTE 

When the RTS opens a logical name for a 
DISPLAY statement, it specifies the 
variable with fixed-length control (VFC) 
format to allow carriage control~ the 
RTS does not use VFC format when it 
opens a logical name for an ACCEPT 
statement. The record format attribute 
is used for all operations until the 
image terminates~ therefore, if your 
program contains both ACCEPT and DISPLAY 
statements that refer to the same 
logical name, it should execute a 
DISPLAY before the first ACCEPT. 
Otherwise, DISPLAY statement carriage 
control will be lost~ all DISPLAY 
statements will execute as if they 
contained the WITH NO ADVANCING phrase. 

This condition does not occur when you 
use ACCEPT and DISPLAY statements 
without the FROM/UPON clause: the 
statements refer to different logical 
names (COB$INPUT and COB$OUTPUT). 

6.10.3 ACCEPT Statement 

Format 1 of the ACCEPT statement transfers small amounts of data from 
the object of a VAX/VMS logical name to a data item. If you do not 
use the FROM clause, the RTS uses the logical name COB$INPUT~ 
otherwise, it uses the logical name implied by the key word in the 
SPECIAL-NAMES paragraph that is referred to by the mnemonic-name in 
the ACCEPT statement. In the following example, the RTS uses 
COB$CONSOLE: 

SPECIAL-NAMES. 
CONSOLE IS WHATS-HIS-NAME 

PROCEDURE DIVISION. 

ACCEPT PARAMETER-AREA FROM WHATS-HIS-NAME. 

6-28 INPUT-OUTPUT PROCESSING 



6.10.4 DISPLAY Statement 

The DISPLAY statement transfers the contents of data items and 
literals to the object of a VAX/VMS logical name. If you do not use 
the UPON clause, the RTS uses the logical name COB$OUTPUTi otherwise, 
it uses the logical name implied by the key word in the SPECIAL-NAMES 
paragraph that is referred to by the mnemonic-name in the DISPLAY 
statement. In the following example, the RTS uses COB$LINEPRINTER: 

SPECIAL-NAMES. 
LINE-PRINTER IS ERROR-LOG 

PROCEDURE DIVISION. 

DISPLAY ERROR-COUNT, " phase 2 errors, ", 
ERROR-MSG UPON ERROR-LOG. 

For the D~SPLAY statement, the RTS uses the variable with fixed-length 
control record format. 

INPUT-OUTPUT PROCESSING 6-29 





CHAPTER 7 

GOOD PROGRAMMING PRACTICES 

7.1 FORMATTING THE SOURCE PROGRAM 

Since most COBOL programs are usually long, the programmer needs 
techniques that will help him to simplify and improve the readability 
of his COBOL programs. The guidelines in this chapter, if followed, 
will help produce source programs that are easy to read and maintain. 

Before considering these guidelines, consider the reference formats 
that are available with VAX-II COBOL-74: 

1. The Conventional (ANS) format. 

2. The Terminal format. 

Although the Conventional format produces ANS compatible programs, it 
also produces source printouts that are somewhat more cluttered than 
those produced by the Terminal format. These guidelines, therefore, 
recommend the use of Terminal format and all of the following 
suggestions and examples assume the use of that format. Besides the 
obvious advantage of an uncluttered printout, the Terminal format has 
other programming advantages: 

1. It requires less storage area. 

2. It requires no line numbers. 

3. Its statements may be aligned with tab characters. 

Further,- whenever required, the REFORMAT utility program will convert 
Terminal format programs to the Conventional format. (The REFORMAT 
utility program is discussed in Chapter 8). 



The following suggestions should help to further simplify even the 
most complicated source programs. 

1. Begin division, section, and paragraph names in column 1. 
Although these names may start anywhere in Area A, aligning 
them in column 1 produces a much more readable listing. When 
required, place the * and - in column 1. (Column 1 then 
becomes column 0.) 

2. Insert a blank line, or one or more comment lines (describing 
the purpose of the file) before each SELECT statement in the 
FILE-CONTROL paragraph. Place the phrases of the SELECT 
statement on separate lines and begin each of them in column 
5 (use the tab character to skip over Area A). Consider the 
following illustration of a typical SELECT statement: 

AREA A 

1 . . . 

AREA B 

5 • • • 
SELECT MASTER-FILE 
ASSIGN TO "OBI:" 
ORGANIZATION IS RELATIVE 
ACCESS IS SEQUENTIAL. 

3. Place the phrases of the file description statement on 
separate lines and begin each of them in column 5. (Use the 
tab to skip over Area A.) Consider the following illustration 
of a typical file description entry: 

AREA A 

1 • 
FD 

AREA B 

5 • • . 
MASTER-FILE 
LABEL RECORDS ARE STANDARD 
VALUE OF 10 IS MASTER-FILE-NAME 
DATA RECORD IS MASTER-RECORD. 

4. In both the File and Working-Storage sections, begin all 01 
level items in column 1. 

Indent, by four columns, all subordinate items with 
higher-valued level numbers. (For example, if the item that 
is subordinate to a Ol-level record description is 05, begin 
the record description level number in column 1 and the 05 
level number in column 5.) Use the tab character for the 
first indentation, a tab and four spaces for the second, two 
tabs for the third, etc. When indented in this manner, the 
listing will show, clearly and neatly, the hierarchical 
relationships of all of the data names in the program as well 
as their level number values. 

Increment level numbers by 5; then later, if it becomes 
necessary to insert additional group items, they may be 
inserted without having to change the level numbers of all 
items that are subordinate to that group. 

7-2 GOOD PROGRAMMING PRACTICES 



If desired, write the level numbers as single digits (such as 
1 instead of 01). 

Use level number 01 instead of 77 in the Working-Storage 
Section. (77, as a level number has the same meaning as 01, 
and 77 may eventually be omitted from the COBOL standard.) 

Since all elementary items, except for index data items, 
require PICTURE clauses, these clauses fill a good part of 
the source program listing. However, the PICTURE clause 
itself may be simplified to enhance the listing's readability 
as follows: 

a. Use PIC as an abbreviation for PICTURE. 

b. Omit the noiseword IS. 

c. Align the PIC clauses on successive lines. (Use the tab 
character to align the clauses.) 

5. Put all paragraph name declarations in the Procedure Division 
on lines separate from the statements in the paragraph. This 
not only makes the program more readable, it also makes 
modificqtion of the first statement in the paragraph easier. 

6. Follow all imperative statements with a period, making them 
I-statement sentences. Place only one statement on a line. 
In addition to making the lines shorter and more readable, 
this will prove quite helpful when debugging the program. 
For example, if the program contains a coding error, it will 
be on one line and therefore easier to modify without 
affecting the other portions of the sentence; further, the 
diagnostic messages will refer to the correct line and their 
meanings will be clearer. 

Since left-aligned statements in any program enhance the 
readability of that program, develop the habit of starting 
all COBOL sentences in column 5. (Use the tab character to 
skip over Area A.) Some statements, however, should be 
further indented, as explained in the following paragraphs. 

7. If the true path of a conditional statement contains another 
conditional statement or more than one imperative statement, 
place all statements in the true path on lines immediately 
following the conditional statement and indent them to show 
their dependence upon that statement. Consider the following 
illustration of an IF statement and its true path: 

IF COMPUTED-TAX > TAX-LIMIT 
SUBTRACT TAX-LIMIT FROM COMPUTED-TAX GIVING EXCESS-TAX 
MOVE TAX-LIMIT TO COMPUTED-TAX 
ADD EXCESS-TAX TO TOTAL-EXCESS-TAX. 

If the statement has an ELSE (or false) path, align the word 
ELSE under the preceding IF and indent all statements that 
are dependent on the ELSE statement. 

GOOD PROGRAMMING PRACTICES 7-3 



Thus: 

IF condition 
true path statement 
true path statement 

ELSE 
false path statement 
false path statement. 

Be sure to place the period after the last statement only! 

Another good method for simplifying conditionals is to write 
only a single imperative statement in the true or false path. 
If the path requires more statements, place them in a 
separate paragraph and either PERFORM the paragraph from the 
path or GO to it. This technique avoids the possibility of 
inadvertently placing a period at the end of a statement 
within the path, thereby terminating it prematurely. 

When writing a GO TO .•• DEPENDING statement, place each 
procedure name on a separate line and indent them all. 
Consider the readability of the following sample statement: 

GO TO P35 
P40 
P45 
P60 
P65 
DEPENDING ON P-SWITCH. 

8. When grouping statements into paragraphs and sections, use 
the following organizational ideas: 

Group together logical units of processing into a section. 
Select a section name that reflects the type of processing 
being conducted within that section (such as TAX-COMPUTATION 
SECTION, PRINT-LINE-FORMATTER SECTION, etc.). Follow the 
section name with sufficient comment lines to explain the 
processing that is carried out by the statements within that 
section. 

Make paragraph names as short and simple as possible. A 
numbered abbreviation of the section name often suffices. 
Thus the paragraph names in the TAX-COMPUTATION section might 
be TCIO, TC20, TC30, etc. Use paragraph names sparingly, 
placing them only where the true and false paths of 
conditional statements require branch points for GO TO 
statements. If the temptation arises to give a paragraph a 
longer name in an attempt to reflect the type of processing 
in that paragraph, use comment lines instead. (Comment lines 
usually convey more information, more clearly.) 

When using simple numbered paragraph names, assign increasing 
numeric characters to sequential paragraphs. If the numeric 
portion of the names increases by 5 or 10, new ones may be 
inserted later without disturbing the sequence of the names. 

7-4 GOOD PROGRAMMING PRACTICES 



Do not use the PERFORM verb in the form, PERFORM a 
If the paragraphs a thru b must be performed, place 
section by themselves and PERFORM the section, thus 
the use of the THRU option. 

THRU b. 
them in a 
avoiding 

Place single paragraphs that are to be performed into 
sections and use the section name as the object of PERFORM 
verbs. Then, if future design changes introduce complicated 
conditional logic into the paragraph, requiring additional 
paragraph names, the PERFORM statements need not be altered. 

The preceding guidelines divide the Procedure Division into 
modular blocks of coding. If these guidelines are used, the 
following additional techniques may be applied. 

a. Restrict entry to all sections through the first 
statement of the section by use of a GO TO, a PERFORM, or 
a "fall through" from the preceding section. 

b. Ensure that all GO TO statements refer to only section 
names or paragraph names that are internal to the section 
containing the GO TO statement. 

7.2 USE OF PUNCTUATION 

Avoid using the COBOL punctuation characters, comma and semicolon. 
They lend little to the readability of programs that have their 
statements neatly aligned, as discussed earlier in this chapter. 
Further, it is quite easy to misuse'these characters, which can cause 
serious errors for many compilers. (Other compilers either ignore 
incorrect punctuation characters or flag them with warning messages.) 
At best, even when used correctly and in the proper places, they have 
no effect on the meaning of the program. 

7.3 USE OF THE ALTER STATEMENT 

Avoid using the ALTER statement to change the flow of control in a 
program. It is impossible to test the setting of an alterable GO 
statement except by executing it. Also, unless explicit comments 
accompany an alterable GO statement, it is difficult to tell whether 
or not it is referenced by ALTER statements or what the possible 
destinations might be. All of this makes debugging programs that 
contain these statements quite difficult. There are two other 
techniques that may be used in their place: 

1. If control branches one of two ways (i.e., a binary switch), 
write the switch as a conditional variable. Consider the 
following sample coding: 

GOOD PROGRAMMING PRACTICES 7-5 



01 P-SWITCH PIC S9 COMP VALUE O. 
88 NO-PRINT VALUE 1. 

MOVE 1 TO P-SWITCH 

IF NO-PRINT GO TO P40. 

P40. 
MOVE 0 TO P-SWITCH. 

2. If control branches more than two ways, use MOVE statements 
to place integers into a data item, and a GO TO ••• 
DEPENDING •.• statement to test the data item and branch 
accordingly. Consider the following sample coding: 

01 P-SWITCH PIC S9999 COMP VALUE O. 

MOVE 1 TO P-SWITCH 

MOVE 3 TO P-SWITCH. 

GO TO 
PART-TIME 
PIECE-WORK 
HOURLY 
SALARIED-WEEKLY 
SALARIED-OTHER 
DEPENDING ON P-SWITCH. 

* FALLTHROUGH IS A BUG 
DISPLAY "?17". 
STOP RUN. 

7.4 USE OF THE PERFORM STATEMENT 

The general rules for the PERFORM statement are augme~ted with the 
following rules: 

1. The endpoint of a section and the endpoint of the last 
paragraph in the same section are two distinct points. This 
means that it is possible to execute a PERFORM of the 
section, then while that PERFORM is still active, to execute 
a PERFORM of the last paragraph. 

2. On the start of a PERFORM, if the end point of the new 
PERFORM is the end point of an already active PERFORM, the 
RTS aborts the task and issues an error message. 

7-6 GOOD PROGRAMMING PRACTICES 



3. At the end of any procedure, a check is made to see if the 
procedure being ended is the end of the most recent PERFORM 
range. If so, the most recent PERFORM range is exited. If 
not, the end point of the most recent procedure is checked 
against the end point of all currently active PERFORMs. If 
the end point of the procedure is the end point of any 
currently active PERFORM range, the RTS issues an error 
message and aborts the task because the perform ranges are 
not being exited in the reverse of the order in which they 
were entered. 

NOTE 

The RTS error messages are discussed in 
Chapter 10. 

7.5 USE OF LEVEL-88 CONDITION-NAMES 

Condition-names provide a convenient method for testing a value or 
range of values in a field. The use of condition-names makes programs 
easier to maintain, because it ensures a uniform method of testing 
fields and helps to reduce recoding when the specifications of the 
program change. 

The following example illustrates the use of condition-names and shows 
the advantages inherent in their use. 

Suppose the records of a file each describe a student in an 
educational institution (or an employee in a corporation). Some of 
the records contain categories of information which are not present in 
other records. A "code" field, which contains a digit or letter, 
indicates the presence (or type) of some categories~ while a special 
value in the information itself (such as a numeric value being zero, 
negative, or maximum) indicates the presence of other categories. The 
processing of such a record may vary considerably depending on these 
indicator fields. The fields may require interrogation at various 
points in the program, and the interrogation may require more than a 
simple relation test. 

Consider a "code" field that holds one of seven 
mnemonic character. For example, S,I,2,3,4,G,P 
that indicate student categories of Special, 1st 
year, 4th year, Graduate, and Postgraduate. The 
follows: 

05 STUDENT-CATEGORY PIC X. 

values, coded as a 
might be seven values 
year, 2nd year, 3rd 
field is described as 

Program logic requires certain processing for enrolled undergraduates, 
different processing for special students, and still different 
processing for all students except enrolled undergraduates. 

GOOD PROGRAMMING PRACTICES 7-7 



without the aid of condition-names, statements might be written as 
follows to resolve this problem: 

IF STUDENT-CATEGORY = "s" 

IF STUDENT-CATEGORY NOT LESS THAN "1" 
IF STUDENT-CATEGORY NOT GREATER THAN "4" 

IF STUDENT-CATEGORY EQUAL TO "G" NEXT SENTENCE 
ELSE IF STUDENT-CATEGORY EQUAL TO "P" 

NEXT SENTENCE ELSE GO TO ... 

However, if various level 88 entries follow the STUDENT-CATEGORY 
description, as shown below, condition-names can simplify this coding. 

05 STUDENT-CATEGORY PIC X. 
88 UNDERGRADUATE VALUE "1" THRU "4". 
88 SPECIAL-STUDENT VALUE "S". 
88 GRAD-STUDENT VALUE "G" "P". 
88 SENIOR VALUE "4". 
88 NON-DEGREE-STUDENT VALUE "s" "P". 

Now, the following procedural statements can solve the problem: 

IF SPECIAL-STUDENT •.. 
IF UNDERGRADUATE ••. 
IF GRAD-STUDENT ••. 

Procedural statements with condition-names are much. easier to read and 
debug than those containing the complete test. For example, the 
procedural statements, IF UNDERGRADUATE ••. , and IF STUDENT-CATEGORY 
NOT LESS THAN "1" IF -STUDENT-CATEGORY NOT GREATER THAN "4" both 
accomplish the same thing, but the first statement is simpler and less 
confusing. 

In addition, the statement, IF NOT UNDERGRADUATE can test the 
category of not being an undergraduate, which is equivalent to anyone 
of the following statements: 

IF NOT (STUDENT-CATEGORY NOT < "1" AND 
STUDENT-CATEGORY NOT > "4") 

or 

IF STUDENT-CATEGORY < "1" OR 
STUDENT-CATEGORY> "4" 

or 

IF STUDENT-CATEGORY < "1" NEXT SENTENCE 
ELSE IF STUDENT-CATEGORY > "4" NEXT SENTENCE 

ELSE GO TO .•. 

Statements such as these are tedious to write and a frequent source of 
coding errors. Further, if a change creates a new student category, 
the recoding takes more time and is even more error prone. 

7-8 GOOD PROGRAMMING PRACTICES 



A careful and controlled use of condition-names forces a higher degree 
of programming control and checkout. If the program logic does 
require the modification of the STUDENT-CATEGORY field, it can even be 
named FILLER thus removing the opportunity to shortcut the use of 
condition-names. 

To apply condition-names, follow the description of the item to be 
tested with a level 88 entry. The item being tested, known as the 
conditional variable (STUDENT-CATEGORY in the preceding 
illustrations), may be either DISPLAY or COMPUTATIONAL usage, but not 
INDEX usage; it may also be a group item. 

The compiler stores all of the values supplied by the level 88 entries 
in the object program exactly as written. (They are pooled with all 
of the literals from the Procedure Division.) A value supplied by a 
level 88 entry for a conditional variabl~ of COMPUTATIONAL usage is 
stored in binary format to save conversion at run time. The compiler 
stores all other values as byte strings with the proper attributes. 
It does not make the level 88 entries equal to their 
conditional-variables in size. This means that it neither truncates 
nor pads (with spaces) non-numeric literals. Further, it neither 
truncates nor pads (with zeros) numeric literals, but stores them as 
written or, if converted to binary, in the minimum size COMP item that 
will hold the converted value. It stores signs as trailing 
overpunches on numeric DISPLAY literals, and removes and remembers 
decimal points. 

Do not enter level 88 items under group items 
entries containing any of the following 
JUSTIFIED, COMPUTATIONAL, INDEX. 

7.6 USE OF QUALIFIED REFERENCES 

7.6.1 Qualified Data References 

that have subordinate 
clauses: SYNCHRONIZED, 

The COBOL language provides facilities to define and reference 
user-defined data items. Data items are programmer-defined variables 
declared in the Data Division of a COBOL program. Such variables 
include, among others, file record descriptions and internal working 
areas. These data items are processed by procedural statements such 
as the WRITE, MOVE, and ADD statements. Procedural operations on 
these data are facilitated through references to the data items by 
name. 

GOOD PROGRAMMING PRACTICES 7-9 



For example, to update a variable, YTD-GROSS-PAY, by a weekly gross 
pay amount WEEKLY-GROSS, write the program fragment shown in Figure 
7-1. 

WORKING-STORAGE SECTION. 
01 YTD-GROSS-PAY PIC 9(S)V99. 
01 WEEKLY-GROSS PIC 999V99. 

ADD WEEKLY-GROSS TO YTD-GROSS-PAY. 

Figure 7-1 
Unqualified Data Item Reference 

In this example, YTD~GROSS-PAY and WEEKLY-GROSS are ·defined in the 
Working Storage Section of the Data Division as COBOL variables with a 
level number of 01. The variable representing the "year-to-date gross 
pay (YTD-GROSS-PAY)" is computed by incrementing its present value by 
the "weekly gross pay (WEEKLY-GROSS)" amount through reference to the 
appropriate data items in the ADD statement. References are made to 
the data items by the singular, unqualified names of YTD-GROSS-PAY and 
WEEKLY-GROSS. Since YTD-GROSS-PAY and WEEKLY-GROSS are defined with 
level numbers of 01 in the Working Storage Section, these variables 
must be unique in their spelling and, hence, can only be referenced by 
the spelling of each data item's name without any COBOL qualification. 

The example in Figure 7-1 is artificial because the data item 
representing the "year-to-date gross pay" is defined as a level 1 
variable in the Working Storage Section. More realistically, 
YTD-GROSS-PAY is defined as a field within an employee payroll record 
residing on an external master payroll file. The process of updating 
the "year-to-date gross pay" by a "weekly gross pay" amount is shown 
more appropriately in Figure 7-2. 

FILE SECTION. 
FD MASTER-IN 

LABEL RECORD IS STANDARD 
VALUE OF ID IS "MASTER.PAY". 

01 PAY-RECORD. 
03 NAME 
03 EMPLOYEE-NO 
03 YTD-GROSS-PAY 

7-10 GOOD PROGRAMMING PRACTICES 

PIC X(30). 
PIC 9(9). 
PIC 9(S)V99. 



FD MASTER-OUT 
LABEL RECORD IS STANDARD 
VALUE OF ID IS "MASTER. PAY". 

01 PAY-RECORD. 
03 NAME PIC X(30). 
03 EMPLOYEE-NO PIC 9 (9) • 
03 YTD-GROSS-PAY PIC 9(5)V99. 

WORKING-STORAGE SECTION. 
01 WEEKLY-GROSS PIC 999V99. 

PROCEDURE DIVISION. 
INIT. 

OPEN INPUT MASTER-IN. 
OPEN OUTPUT MASTER-OUT. 

ADD WEEKLY-GROSS, YTD-GROSS-PAY OF MASTER-IN 
GIVING YTD-GROSS-PAY OF MASTER-OUT. 

Figure 7-2 
Qualified Data Item Reference 

In this example, YTD-GROSS-PAY is defined as a field in both the input 
and output record descriptions. There are two separate data items 
whose spellings are identical. 

To reference each data item, it is necessary to qualify the name of 
each data item with sufficient information to constitute a unique 
reference. Thus, to reference the "year-to-date gross pay" amount in 
the output record, we write "YTD-GROSS-PAY OF MASTER-OUT" where such a 
reference is called a qualified reference. The filename MASTER-OUT is 
functioning as a qualifier in the reference. The reserved word "OF" 
is the qualification connector and may be used interchangeabely with 
the reserved word "IN" in this context. Another way of referencing 
the same data item is to write "YTD-GROSS-PAY OF PAY-RECORD IN 
MASTER-OUT". This reference is called a completely qualified 
reference because all possible qualifiers are specified in the 
reference! A reference of tpe form "YTD-GROSS-PAY" or "YTD-GROSS-PAY 
OF PAY-RECORD" is illegal since it does not uniquely identify which of 
the two data items is desired. Such a reference is termed an 
ambiguous reference. 

In the area of data item definition and referencing, COBOL is unlike 
other languages such as FORTRAN and ALGOL 60. While FORTRAN requires 
each data item to have a unique name (i.e., no two data items may have 
a name of identical spelling), COBOL relaxes this requirement to the 

GOOD PROGRAMMING PRACTICES 7-11 



extent that each data item must be uniquely referable. That is, two 
or more data items may have their names spelled identically, but there 
must exist a way to reference each distinct data item. Thus, there is 
a distinction between a data item and its name. Central to 
understanding this distinction is understanding the concept of unique 
referability. 

The functionalities of data item definition and referencing may be 
understood by stating three guidelines which relate the concepts of 
data item definition, reference format, and unique referability. 

7.6.2 Guideline 1 (Data Item Definition) 

Each data item has a name. Each name is immediately preceded by an 
associated positive integer called its level number. A name either 
refers to an elementary item or else it is the name of a group of one 
or more items whose names follow. In the latter case, each item in 
the group must have the same level number, which must be greater than 
the level number of the group item. 

7.6.3 Guideline 2 (Reference Format) 

Data-name qualification is performed by following a data-name or 
condition-name by one or more phrases of a qualifier preceded by IN or 
OF. IN and OF are logically equivalent. The general format of a 
qualified re~rence to an elementary item or group of items named 
"name-On is given in Figure 7-3. 

name-O OF name-l •.. OF name-m 

Figure 7-3 
General Format of a Qualified Data Reference 

where m >= 0 and where, for 0 <= j < m, name-j is the name of some 
item contained directly or indirectly within a group item named 
nname-j+l". A reference of the form given in Figure 7-3 is called a 
(partially) qualified reference with name-l,name-2, •.. ,name-m being 
called qualifiers. Such a reference is termed a completely qualified 
reference if " name-j+l" is the father of name-j for 0 <= j <= m-l. 

In the hierarchy of qualification, names associated with an FD 
indicator are the most significant, then the names associated with 
level-number 01, then names associated with level-number 02, .•. ,49. 
The most significant name in the hierarchy must be unique and cannot 
be qualified. Subscripted or indexed data-names, unsubscripted 
data-names, and condition variables may be made unique by 
qualification. The name of a condition variable can be used as a 
qualifier for any of its condition-names. 

7-12 GOOD PROGRAMMING PRACTICES 



Enough qualification must be mentioned to make the 
however, it may not be necessary to mention 
hierarchy as the example in Figure 7-2 demonstrates. 

7.6.4 Guideline 3 (Unique Referability) 

reference unique~ 
all levels of the 

If more than one data item is defined with the same name "name-O", 
there must be a way to refer to each use of the name by using 
qualification. That is, each definition of "name-O" must be uniquely 
referable. A data item is uniquely referable it the complete set of 
qualifiers for the data item are not identical to any partial 
(including complete) set of qualifiers for another data item. 

7.6.5 Qualified Procedure Statements 

The facility of qualification may be applied to procedure references. 
A procedure name is either a paragraph or section name. By 
definition, a paragraph name is unique only within a section 
containing the paragraph while, on the other hand, section names must 
be unique within a COBOL program. The general format of a qualified 
procedure reference is shown in Figure 7-4. 

paragraph-name OF section-name 

Figure 7-4 
General Format of a Qualified Procedure Reference 

A paragraph name may be qualified by its containing section name~ a 
section name may never be qualified in a procedure reference. When a 
paragraph name is referenced without an explicit section name 
qualifier, the paragraph name is implicitly qualified by the 
appropriate section name. 

If a paragraph name is unique within a COBOL program it is not 
necessary to qualify the paragraph name in the procedure reference. 
Finally, if a paragraph name is not unique within a COBOL program, the 
paragraph name must be qualified in a procedure reference when the 
reference is made outside of the section which contains the paragraph. 

7.6.6 Qualification and Compiler Performance 

Qualification is a powerful language facility for the development of 
COBOL programs. Used wisely, it increases the readability of COBOL 
programs. However, the user pays a price for utilization of this 
facility in terms of a slower compilation rate (i.e., COBOL source 
lines per unit of time). 

GOOD PROGRAMMING PRACTICES 7-13 



Qualification requires a tree-structured symbol table at compile-time. 
The time required for building and looking up on a tree-structured 
symbol table is considerably longer than for a non-tree-structured 
symbol table. This translates into a general degradation of compiler 
performance. If qualification is not employed in a program compiled 
by the VAX-II COBOL-74 compiler, compilation speed is not affected. 
However, when qualification is used, the compilation rate slows down 
due to the additional system overhead. 

In general, if there are deeper levels of qualification, there will be 
a slower compilation. This is especially so at the end of the Data 
Division text where duplicate data-name declarations are detected by 
the compiler. Run-time performance is not affected by usage of the 
qualification facility. 

7-14 GOOD PROGRAMMING PRACTICES 



CHAPTER a 

REFORMAT UTILITY PROGRAM 

VAX-II COBOL-74 accepts source programs that were coded using either 
the conventional aO-column card reference format or the shorter, 
terminal-oriented VAX-II cobol terminal format. The REFORMAT utility 
program reads source programs that were coded in the terminal format 
and converts them to aO-column conventional format source programs. 
The VAX-II COBOL Language Reference Manual discusses both formats in 
detail. 

Consider the two formats: 

• The terminal format is designed for ease of use with text 
editors controlled from an on-line console keyboard and is 
compatible for use with the VAX-II system. It eliminates the 
line-number and identification fields and allows horizontal 
tab characters and short lines. 

• The conventional format produces source programs that are 
compatible with the reference format of other COBOL compilers 
throughout the industry. 

REFORMAT lets you write source programs in the terminal format~ then, 
if compatibility is ever required for any of those programs, it 
provides a simple method for conversion to the conventional format. 

REFORMAT follows the following steps to expand each line of terminal 
format coding to the conventional format: 

• It generates a 6-character line number of 000010, places that 
number in the first six character positions of the line, and 
increases it by 000010 for each subsequent line. 

• It places any continuation or comment symbols (-,*, or /) into 
character position 7. 

• It places the coding from 
character positions a-72, 
conventional format coding. 

the terminal format 
thereby creating 

line into 
a line of 

• It replaces any horizontal tabs with the appropriate number of 
space characters to simulate tab stops at character positions 
5, 13, 21, 29, 37, 45, 53, 61, and 66 of the terminal format 
line. 

• It moves spaces into any character positions left between the 
last character of coding and character position 73. 



• It places either identification characters (if they were 
supplied at program initialization) or spaces into character 
positions 73-80. 

• It right justifies (at 
continued non-numeric 
literal will remain the 
format. 

position 72) the first line of a 
literal, thus guaranteeing that the 
same length as it was in the default 

• It right justifies (at position 72) the first part of any 
COBOL word that is split over two lines. 

• It creates a line containing a slash (/) in position 7 and 
space characters in positions 8 through 72 for every form-feed 
character that it encounters. 

REFORMAT Command String 

To run REFORMAT, enter the following command: 

MCR RFM 

This causes REFORMAT to begin execution. REFORMAT immediately 
requests the file specifications for the two files (input and output) 
to be processed. In response to its prompting messages, type in the 
file specifications for your two files. 

RFM-INPUT FILE SPEC: 
RFM-OUTPUT FILE SPEC: 

When the system has successfully opened both files, REFORMAT types the 
following request for an identification entry in columns 73 through 
80. If you desire an identification entry, type in from one to eight 
characters. REFORMAT places these characters, left justified, in 
columns 73 through 80 of each output line. If no entry is required, 
type a carriage return. 

RFM-COLS 73 TO 80: 

Following this response, REFORMAT reads the input file and writes it 
as 80-character records, in conventional reference format. 

When it has processed the last record in the file, REFORMAT displays 
the following messages~ the first indicating the number (nnnnn) of 
output records produced and the second requesting another input file. 

RFM-nnnnn LINES PROCESSED. 
RFM-INPUT FILE SPEC: 

If there is another file to be reformatted, follow the same sequence 
with the specifications for the next file. If not, type CTRL/Z to 
terminate execution. 

8-2 REFORMAT UTILITY PROGRAM 



REFORMAT Error Messages 

If any of the responses to the prompting messages contain detectable 
errors, REFORMAT displays the following messages indicating the 
problem. 

RFM-ERROR IN OPENING INPUT FILE 
RFM-TRY AGAIN 
RFM-INPUT FILE SPEC: 

The system could not open the input file. Either the file is not 
present on the device specified (the default device is SYS$DISK) or 
the file name is typed incorrectly. The usual I/O error messages 
precede this message. 

To continue processing that file, examine the input file spec and type 
in a corrected version. To process another file, type in a new input 
file specification. To terminate execution, type CTRL/Z. 

RFM-ERROR IN OPENING OUTPUT FILE 
RFM-TRY AGAIN 
RFM-OUTPUT FILE SPEC: 

The system could not open the output file. An incorrectly typed file 
specification usually causes this error. (The default device is 
SYS$DISK.) The usual I/O error messages precede this message. To 
continue, examine the output file specification and type in a 
corrected version. To terminate execution, type CTRL/Z. 

RFM-INPUT FILE IS EMPTY 
RFM-INPUT FILE SPEC: 

The system successfully opened the input file, but the first READ 
statement encountered the AT END condition. 

To continue, type in a new input file specification for another file. 
To terminate execution, type CTRL/Z. 

RFM-ERROR IN READING INPUT FILE 
RFM-INPUT FILE SPEC: 

The first attempt to read the input file was unsuccessful. This error 
is usually caused by an input record length exceeding 86 characters. 
(Although terminal format records should not exceed 66 characters in 
length, REFORMAT provides a record area of 86 characters and ignores 
the right-most 20 characters.) 

To continue, type in a new input file specification for another file. 
To terminate execution, type CTRL/Z. 

RFM-ERROR IN READING INPUT FILE 
RFM-REFORMATTING ABORTED 
RFM-nnnnn LINES PROCESSED 
RFM-INPUT FILE SPEC: 

REFORMAT UTILITY PROGRAM 8-3 



While reading input records (other than the 
was unsuccessful in an attempt to read 
execution and closes both files. 

To process another file, type in a new input 
continue with the prompting message sequence. 
type CTRL/Z. 

RFM-ERROR IN WRITING OUTPUT FILE 
RFM-REFORMATTING ABORTED 
RFM-nnnnn LINES PROCESSED 
RFM-INPUT FILE SPEC: 

first record), REFORMAT 
a record. It terminates 

file specification and 
To terminate execution, 

REFORMAT was unsuccessful in an attempt to write an output record. It 
terminates execution and closes both files. 

To process another file, type in a new input 
continue with the prompting message sequence. 
type CTRL/Z. 

8-4 REFORMAT UTILITY PROGRAM 

file specification and 
To terminate execution, 



CHAPTER 9 

DEBUGGING COBOL PROGRAMS 

Debugging is the process of finding and correcting errors in programs 
that have been successfully compiled and linked. In some cases, you 
need to debug a program because it produces incorrect results; other 
programs may terminate abnormally as a result of attempting illegal 
operations. 

This chapter introduces the VAX-II Symbolic Debugger (DEBUG) for 
COBOL-74 programs. You will find a complete description of the DEBUG 
facility in the VAX-II Symbolic Debugger Reference Manual; enough 
information is included here to get you started debugging a COBOL 
program. 

9.1 DEBUG CONCEPTS 

DEBUG is a module that you can include in an executable image with the 
LINK command. (See Chapter 2.) It allows you to examine and change 
the contents of you~ program's data items; you can also control the 
order of statement execution and regain control when execution errors 
occur. 

The VAX-II Symbolic Debugger is called symbolic because it allows you 
to refer to data items by the symbols you assigned, that is, 
data-names. You can refer to Procedure Division locations by source 
listing line numbers rather than VAX-II memory addresses. 

To use symbolic references, the compiler must store the symbols in the 
object module. Although this adds no address space requirement to the 
executable image, it does require space in the image file; that is 
why symbol tables are not stored automatically you must cause them 
to be stored by using the /DEBUG command qualifier when you compile a 
program. If you do not specify /DEBUG at compile time, you can still 
use the debugger, but you cannot refer to data items symbolically. 

To summarize, use the /DEBUG command qualifier at both compile time 
and link time. Then, when you execute the image, DEBUG takes control 
and prompts you for a command with the prompt: DBG>. 



9.2 PREPARING TO DEBUG A PROGRAM 

The following sections describe the commands that establish the 
environment for debugging COBOL programs. The commands are: 

SET LANGUAGE COBOL 

SET MODULE 
SHOW MODULE 
CANCEL MODULE 

SET SCOPE 
SHOW SCOPE 
CANCEL SCOPE 

9.2.1 SET LANGUAGE COBOL Command 

This command tells DEBUG that the debugging dialog applies to a COBOL 
program. It allows symbols that contain hyphens, for example. The 
format of the command is: 

SET LANGUAGE COBOL 

You may want to debug an image that contains modules written in more 
than one language~ the SET LANGUAGE command allows you to change 
language conventions during the debugging session. 

DEBUG'S default is the language of the main program. 

9.2.2 MODULE Commands: SET, SHOW, and CANCEL 

DEBUG maintains a table of symbols defined in the program with which 
it is linked~ the table contains the name of each data item defined 
in the program, its data type, and its location. The table can hold 
about 2000 symbols at a time. Therefore, if an image contains modules 
that have a total of more than 2000 symbols, the table may not be able 
to hold all of them at once. You cannot refer to a symbol unless it 
is in the active symbol table. 

Use the MODULE commands to control 
symbol table when the image you 
modules. The commands are: 

the contents of DEBUG's active 
want to debug contains multiple 

SET MODULE Places the symbols defined in the specified module 
(program) into the active symbol table. 

The format of the SET MODULE command is: 

SET MODULE module-name [,module-name] 

9-2 DEBUGGING COBOL PROGRAMS 



SHOW MODULE 

CANCEL MODULE 

Displays the names of the ~odules whose symbols are 
currently in the active symbol table. 

The format of the SHOW MODULE command is: 

SHOW MODULE 

DEBUG responds by 
linked with it; 
symbols are in the 
space they occupy. 

displaying the names of the modules 
it also indicates which modules' 

active symbol table and how much 

Removes a module's symbols from the active symbol 
table. 

The format of the CANCEL MODULE command is: 

CANCEL MODULE module-name [,module-name] 

9.2.3 SCOPE Commands: SET, SHOW, and CANCEL 

The SCOPE commands control the default that DEBUG uses to resolve 
references to symbols. When you use the EXAMINE command, for example, 
you can either name the module in which the symbol is defined, or you 
can omit the module name. If you omit the name, DEBUG uses a default; 
if it can't find the symbol in the default scope, it attempts to find 
an unambiguous symbol in the remaining modules. If DEBUG cannot 
resolve the referenc~, it displays a message. 

Until you use a SET SCOPE command, DEBUG uses as the default scope the 
name of the first module with which it was linked. 

The SCOPE commands are: 

SET SCOPE 

SHOW SCOPE 

CANCEL SCOPE 

Specifies the default module. 

The format of the SET SCOPE command is: 

SET SCOPE module-name 

Displays the current default module name. 

The format of the SHOW SCOPE command is: 

SHOW SCOPE 

Cancels the current default module name. Until you 
use another SET SCOPE command, DEBUG uses the name of 
the first module with which it was linked as the 
default. 

The format of the CANCEL SCOPE command is: 

CANCEL SCOPE 

DEBUGGING COBOL PROGRAMS 9-3 



9.3 SPECIFYING LOCATIONS 

Several DEBUG commands use locations as parameters; locations allow 
you to tell DEBUG what data you want to look at or where you want 
control transferred, for example. 

9.3.1 Location Types 

For COBOL programs, you 
specifications: 

can use three types of location 

Data-name 

Line 

Absolute 

refers to a data item in the Data Division. 
type of location is often called a symbol. 

For example: 

EXAMINE INPCHAR 

This 

tells DEBUG that you want to see the contents of the 
data item whose data-name is INPCHAR. 

You cannot qualify data-names in DEBUG commands the 
way you can in COBOL. If you refer to a data-name 
that is defined more than once in the module, DEBUG 
applies the reference to the definition that appeared 
last in the source program. 

You can use subscripts in DEBUG commands as in COBOL 
statements, except for data-names appearing in the 
Linkage Section; however, you can usually access 
Linkage Section items by referring to the 
corresponding non-Linkage Section data-name in the 
calling program. 

specifies the beginning of a source program line. 
The format of a line location is: 

%LINE n 

The value of n corresponds to a compiler-assigned 
line number on the program IS source listing. 

specifies a numeric memory address. 
absolute location as an integer. 

Specify an 

For example: 

EXAMINE 1200 

tells DEBUG to display the contents of the longword 
located at address 1200. 

9-4 DEBUGGING COBOL PROGRAMS 



9.3.2 Resolving Location Ambiguities 

Your program can consist of more than one module, as it would if a 
main program called a subprogram. If the symbols from more than one 
module are in DEBUG's symbol table, and if duplicates exist, then a 
symbol reference could be ambiguous. Furthermore, if more than one 
module were linked with DEBUG, then line numbers could also be 
ambiguous. 

DEBUG uses defaults to resolve ambiguous references. In some cases, 
however, you may want to specify the scope in an location to refer to 
other than the default module. 

For example, your program might consist of a main program, TESTA, and 
a subprogram, TESTB. If you wanted to transfer control to line 36 in 
TESTB, you might use the command: 

GO %LINE 36 

Because you did not specify a module name, DEBUG uses the default 
scope to resolve the ambiguity -- the default could be either TESTA or 
TESTB, depending on whether you had previously used a SET SCOPE 
command. 

You can override the default and resolve the ambiguity yourself by 
specifying the scope as part of the location: 

GO %LINE TESTB\36 

Similarly, you can specify the scope in symbolic data-name locations: 

EXAMINE TESTB\ACCNT-NUM 

9.4 CONTROLLING PROGRAM EXECUTION 

This section describes DEBUG commands that 
monitor, and resume program execution at 
commands are: 

SET BREAK 
SHOW BREAK 
CANCEL BREAK 

SET TRACE 
SHOW TRACE 
CANCEL TRACE 

SET WATCH 
SHOW WATCH 
CANCEL WATCH 

GO 
STEP 
CTRL/Y 

9.4.1 BREAK Commands: SET, SHOW, and CANCEL 

allow you 
specific 

EXIT 

to suspend, 
points. The 

SHOW CALLS 

The BREAK commands control the location of breakpoints in the program. 
A breakpoint is a location where you want a program to suspend 
execution and return control to you~ at a breakpoint, you can examine 
or change data values, or you can change the program's execution path. 

DEBUGGING COBOL PROGRAMS 9-5 



The BREAK commands are: 

SET BREAK 

SHOW BREAK 

CANCEL BREAK 

Specifies a location at which to suspend execution. 

The format of the SET BREAK command is: 

SET BREAK location [DO (DEBUG commands)] 

If the program reaches the specified location, it is 
suspended before executing the instruction located 
there. You can request that DEBUG perform commands 
when the breakpoint is reached by using the DO 
option. For example: 

SET BREAK %LINE 210 DO(EXAMINE TOT-AMT) 

causes DEBUG to display the contents of the data-name 
TOT-AMT whenever it suspends the program at line 210. 

Displays all breakpoints curr1ently set 
program. 

The format of the SHOW BREAK command is: 

SHOW BREAK 

Removes specified breakpoints., 

The format of the CANCEL BREAK command is: 

CANCEL BREAK/ALL 
or 

CANCEL BREAK location [,location] ... 

in the 

9.4.2 TRACE Commands: SET, SHOW, and CANCEL 

The TRACE commands control the location of tracepoints in the program. 
A tracepoint resembles a breakpoint, except that program execution 
continues after DEBUG displays the current location. Tracepoints 
allow you to monitor the sequential flow of a prog,ram. 

Tracepoints and breakpoints supersede each other; , that, is, if you set 
a tracepoint at the same location as a breakpoint, the breakpoint is 
cancelled. 

The TRACE commands are: 

SET TRACE Specifies a location at which to suspend execution, 
display location information, and continue. 

The format of the SET TRACE command is: 

SET TRACE location 

9-6 DEBUGGING COBOL PROGRAMS 



SHOW TRACE 

CANCEL TRACE 

Displays the program locations at which tracepoints 
are currently set. 

The format of the SHOW TRACE command is: 

SHOW TRACE 

DEBUG displays tracepoints in newest-to-oldest order 
-- newest is the last tracepoint set. 

Removes specified tracepoints. 

The format of the CANCEL TRACE command is: 

CANCEL TRACE/ALL 
or 

CANCEL TRACE location [,location] •.. 

9.4.3 WATCH Commands: SET, SHOW, and CANCEL 

The WATCH commands allow you to monitor program locations, called 
watchpoints, for attempts to change their contents. If an instruction­
attempts to change the contents of a watchpoint, DEBUG suspends the 
program, displays the location of the instruction, and prompts for a 
command. Watchpoints are useful when you need to know if a data item 
is being inadvertently changed. 

The WATCH commands are: 

SET WATCH Specifies locations to be monitored. 

The format of the SET WATCH command is: 

SET WATCH identifier 

The identifier specifies 
monitored. 

NOTE 

the location to 

When a watchpoint is set, DEBUG protects the 
entire memory page from write access. When 
an instruction at user mode level (your 
program) attempts to change the contents of 
any location on the protected page, DEBUG 
evaluates the access for watchpoint action; 
however, if a system service tries to write 
to a protected page, it returns an error. 
Therefore, if watchpoints are set on the same 
page as a File Section record description, 
access errors can occur during RMS input 
operations. 

be 

DEBUGGING COBOL PROGRAMS 9-7 



SHOW WATCH 

CANCEL WATCH 

Displays current watchpoints. 

The format of the SHOW WATCH command is: 

SHOW WATCH 

DEBUG displays 
newest-to-oldest 
watchpoint set. 

the current watchpoints 
order newest is the 

Removes specified watchpoints. 

The format of the CANCEL WATCH command is: 

CANCEL WATCH/ALL 
or 

CANCEL WATCH identifier 

in 
last 

9.4.4 GO and STEP Commands 

The GO and STEP commands initiate and continue program execution. 

GO Resumes program execution, either at the current 
location or another location. 

The format of the GO command is: 

GO [location] 

If you omit the location, execution starts at the 
current location. 

If you specify an location, DEBUG transfers control 
to the new location. 

You can specify the location as a source program line 
number (GO %line 38, for example)~ however, you 
cannot resume execution at a line boundary if the 
current location is other than the beginning of a 
line. If the current location is not a line boundary 

a common occurrence when watchpoints are reached 
-- use the STEP command to reach the next line 
boundary before attempting a GO %line command. 

NOTE 

Exit from DEBUG before restarting a program 
from the beginning. The results of using a 
GO command to restart a program from the 
beginning are undefined. 

9-8 DEBUGGING COBOL PROGRAMS 



STEP Continues execution at the current location for a 
specified number of steps. 

The format of the STEP command is: 

STEP [n] 

The value of n specifies the number of steps to 
execute. If you do not specify n, or you specify 0, 
DEBUG assumes a value of 1 as a default. 

DEBUG evaluates n for each step in the execution of a 
STEP command. Therefore, if n has a larg~ value, 
your program runs slower because of DEBUG overhead. 
You can reduce this overhead by using the SET BREAK 
and GO commands (instead of STEP) when you want to 
execute more than a few steps. 

9.4.5 CTRL/Y Command (Interrupting the Image) 

You can use the CTRL/Y command at any time to return to the 
system command level. Press the CTRL key and the Y key at 
time; VAX/VMS displays the $ prompt at the terminal; a STOP 
statement in your program produces the same result. You 
return to DEBUG with the DEBUG command. 

VAX/VMS 
the same 
literal 

can then 

Use the CTRL/Y command when you believe your program is in an infinite 
loop, or when you want immediate control. When you return to DEBUG, 
you can use the SHOW CALLS command to see the program's location when 
the CTRL/Y command interrupted execution. 

9.4.6 EXIT Command 

The EXIT command terminates the debugging session. 

The format of the EXIT command is: 

EXIT 

DEBUG terminates the program and returns control to the VAX/VMS system 
command level. 

9.4.7 SHOW CALLS Command 

The SHOW CALLS command displays information about the current level of 
nested calls, including performs. The content and format of the 
information are similar to the traceback display, which is described 
in Chapter 10. 

DEBUGGING COBOL PROGRAMS 9-9 



The format of the SHOW CALLS command is: 

SHOW CALLS [n] 

If you do not specify n, DEBUG displays all call levels~ otherwise, n 
determines the number of levels that DEBUG reports. 

9.5 EXAMINING AND CHANGING DATA 

This section describes commands that allow you to see and to change 
the contents of data items during program execution. You may want to 
change values to correct errors or to test a hypothesis during a 
debugging session. The commands are: 

EXAMINE 

DEPOSIT 

9.5.1 EXAMINE Command 

The EXAMINE command displays the contents of a specified location. 

The format of the EXAMINE command is: 

EXAMINE [location] 

You will usually specify the location as a data-name (EXAMINE SUBl, 
for example). However, you can display the contents of an absolute 
address (such as EXAMINE 1000). 

9.5.2 DEPOSIT Command 

The DEPOSIT command changes the contents of a specified location. 

The format of the DEPOSIT command is: 

DEPOSIT location=value 

Examples: 

DEPOSIT ITEMA=12 

Places the numeric value 12 into the data item named by 
data-name ITEMA. 

DEPOSIT WORDX="NOW IS THE TIME" 

Places the characters in the alphanumeric literal into the 
data item named by the data-name WORDX. 

9-10 DEBUGGING COBOL PROGRAMS 



DEPOSIT TOP="662K" 

Places the value -6622 into the four-digit signed numeric 
DISPLAY data item, TOP. 

NOTE 

The DEPOSIT command functions in the 
same way as the COBOL ACCEPT statement 
for DISPLAY data items. Therefore, you 
must be aware of the internal 
representation of your program's data 
items when you use the DEPOSIT command. 

9.6 SAMPLE DEBUG SESSION 

This section contains an annotated debugging session that demonstrates 
the use of many DEBUG features. Following it are sample listings of a 
COBOL program (TESTA) and a subprogram (TESTB); the debugging session 
refers to these listings. 

Program TESTA accepts a character string from the terminal and passes 
it to TESTB. TESTB reverses the character string and returns it (and 
its length) ,to TESTA. 

The following debugging session does not demonstrate the location of 
actual program errors; it is designed to show the use of DEBUG 
features. 

Responses from DEBUG and VMS appear in red. 

$ RUN TESTA 

1) We use the RUN command to start the 
session. Note that we do not need the 
/DEBUG qualifier, since the programs 
were compiled and linked with DEBUG. 
DEBUG takes control; it displays its 
standard header, showing us that the 
default language is COBOL and that the 
default scope and module are TESTA. 
DEBUG returns control by displaying its 
prompt, DBG>. 

VAX/VMS DEBUG Vl.S 04 January 1979 

%DEBUG-I-INITIAL, language is COBOL, scope and module set to 'TESTA' 
DBG> 

DEBUGGING COBOL PROGRAMS 9-11 



DBG>SHOW MODULE 
module name symbols 

TESTA yes 
TESTB no 
CBFLSW no 

total modules: 3 
remaining size: 60948. 

2) Using the SHOW MODULE command, we see 
that DEBUG's active symbol table 
contains symbols from only one module, 
the main program. The last module is 
part of the RTS: it was linked from 
C74LIB.OLB. 

language size 

COBOL 164 
COBOL 316 
BLISS 128 

3) We try to set a breakpoint at line 26 of 
TESTB. DEBUG cannot find line 26, 
because TESTB's symbols are not in the 
active symbol table. 

DBG>SET BREAK %LINE TESTB\26 
%DEBUG-W-NOLINE, routine 'TESTB' has no %line 26 

DBG>SET MODULE TESTB 

DBG>SHOW MODULE 
module name symbols 

TESTA yes 
TESTB yes 
CBFLSW no 

total modules: 3. 
remaining size: 60724. 

4) We add TESTB's symbols with the SET 
MODULE command. 

5) Then, we confirm that the symbols have 
been added. 

language 

COBOL 
COBOL 
BLISS 

size 

164 
316 
128 

6) Now, we can set the breakpoint with no 
problem. 

DBG>SET BREAK %LINE TESTB\26 

DBG>GO 

7) We resume execution. DEBUG displays the 
execution starting point. The image 
continues until TESTA displays its 
prompt and waits for a response. 

routine start at TESTA\TESTA 
ENTER WORD 

9-12 DEBUGGING COBOL PROGRAMS 



BACKWARD 

8) We enter the word 
Execution continues 
reaches the breakpoint 
module TESTB. 

to be 
until 
at 

reversed. 
the image 

line 26 of 

break at TESTB\TESTB %line 26 

9) We set two breakpoints. When line 40 of 
TESTB is reached, DEBUG will execute the 
commands in parentheses; it will 
display two data items, then resume 
execution. 

DBG)SET BREAK %LINE 40 DO(EX HOLD-WORD;EX SUB-l;GO) 
DBG)SET BREAK %LINE 34 

10) We display the active breakpoints. 

DBG)SHOW BREAK 
breakpoint at TESTB\TESTB %line 34 
breakpoint at TESTB\TESTB %line 40 DO (EX HOLD-WORD;EX SUB-l;GO) 
breakpoint at TESTB\TESTB %line 26 

DBG)SET TRACE %LINE 22 

DBG)SET WATCH DISP-COUNT 

DBG)GO 

11) We set a tracepoint at line 22 of TESTA. 
TESTA is the default scope. 

12) We set a watchpoint on the data-item 
DISP-COUNT. When the an instruction 
attempts to change the contents of 
DISP-COUNT, DEBUG will return control to 
us. 

13) We resume execution. Whenever line 40 
in TESTB is about to be executed, DEBUG 
executes the contents of the DO command 
that we entered at step 9; it displays 
the contents of HOLD-WORD and SUB-I, 
then resumes execution. 

start at TESTB\TESTB %line 26 
break at TESTB\TESTB %line 40 
TESTB\TESTB\HOLD-WORD(I:20): D 
TESTB\TESTB\SUB-l(I:2): 8 
start at TESTB\TESTB %line 40 
break at TESTB\TESTB %line 40 
TESTB\TESTB\HOLD-WORD(I:20): DR 
TESTB\TESTB\SUB-l(I:2): 7 
start at TESTB\TESTB %line 40 

DEBUGGING COBOL PROGRAMS 9-13 



break at TESTB\TESTB %line 40 
TESTB\TESTB\HOLD-WORD(1:20): DRA 
TESTB\TESTB\SUB-l(1:2): 6 
start at TESTB\TESTB %line 40 
break at TESTB\TESTB %line 40 
TESTB\TESTB\HOLD-WORD(1:20): DRAW 
TESTB\TESTB\SUB-l(1:2): 5 
start at TESTB\TESTB %line 40 
break at TESTB\TESTB %line 40 
TESTB\TESTB\HOLD-WORD(1:20): DRAWK 
TESTB\TESTB\SUB-l(1:2): 4 
start at TESTB\TESTB %line 40 
break at TESTB\TESTB %line 40 
TESTB\TESTB\HOLD-WORD(1:20): DRAWKC 
TESTB\TESTB\SUB-l(1:2): 3 
start at TESTB\TESTB %line 40 
break at TESTB\TESTB %line 40 
TESTB\TESTB\HOLD-WORD(1:20): DRAWKCA 
TESTB\TESTB\SUB-l(1:2): 2 
start at TESTB\TESTB %line 40 
break at TESTB\TESTB %line 40 
TESTB\TESTB\HOLD-WORD(1:20): DRAWKCAB 
TESTB\TESTB\SUB-l(1:2): 1 
start at TESTB\TESTB %line 40 
break at TESTB\TESTB %line 34 

DBG>DEPOSIT SUB-l=lO 

14) We deposit the value 10 into the data 
item SUB-I. Note that we do not need to 
enclose the value in quotes since SUB-l 
is a COMP item. 

15) We examine the contents of SUB-I. DEBUG 
indicates that it is displaying the 
value contained in bytes 1 through 2 
(1:2) of the data item. 

DBG>EXAMINE SUB-l 
TESTB\TESTB\SUB-l(1:2): 10 

DBG>DEPOSIT SUB-l=" " 

16) Here, we deposit another value into 
SUB-I, using a quoted string. DEBUG 
deposits the value in the same manner as 
a COBOL ACCEPT statement: as a stream 
of bytes. 

17) When we look at SUB-I, we see that it 
now has 32 as its value; 32 is the 
decimal value of the ASCII space 
character. 

DBG>EXAMINE SUB-l 
TESTB\TESTB\SUB-l(1:2): 32 

9-14 DEBUGGING COBOL PROGRAMS 



DBG)DEP05IT 5UB-2="-42" 

DBG)EXAMINE 50B-2 

18) We deposit a value into data item 
whose usage is COMP-3. The 
string is needed because usage is 
than COMPo 

5UB-2, 
quoted 
other 

19) We then examine 5UB-2, and see that its 
value is now -42. 

TE5TB\TESTB\SUB-2(1:2): -0000000000000000000000000000042 

20) We look at CHARCT, whose picture is 
99V99. DEBUG displays the contents as 
0800; it is not aware of the implied 
decimal point. DEBUG treats all DISPLAY 
data items as alphanumeric. 

DBG)EXAMINE CHARCT 
TESTB\TESTB\CHARCT(1:4): 0800 

21) We deposit four characters into CHARCT. 

DBG)DEPOSIT CHARCT="lSOO" 

22) CHARCT now has the value "ISOO" (lS.OO). 

DBG)EXAMINE CHARCT 
TESTB\TESTB\CHARCT(1:4): lSOO 

DBG)DEPOSIT CHARCT=42 

23) Here, we deposit another value, omitting 
the quotes. 

24) We examine CHARCT and see that it 
contains an asterisk (decimal value 42) 
followed by three spaces. 

DBG)EXAMINE CHARCT 
TESTB\TESTB\CHARCT(1:4): * 

DBG)DEPOSIT CHA"RCT="lS" 

2S) We deposit the quoted value "IS" into 
CHARCT. 

DEBUGGING COBOL PROGRAM5 9-15 



26) Since a quoted string is deposited 
without conversion, we see that CHARCT 
now contains "15". If we left this 
value in CHARCT (invalid for a numeric 
data item), an error would occur later 
in the run. 

DBG>EXAMINE CHARCT 
TESTB\TESTB\CHARCT(1:4): 15 

DBG>DEPOSIT CHARCT="0800" 

DBG> GO 

27) So, we deposit a valid value. 

28) We resume execution. The program TESTA 
displays the reversed word. When the 
image reaches line 22 in TESTA, DEBUG 
detects that an instruction has changed 
the contents of DISP-COUNT. Since we 
set a watchpoint on DISP-COUNT, DEBUG 
displays the old and new values, then 
returns control to us. Note that we 
don't know the current location in terms 
of line number~ the displayed location 
is in the RTS. 

start at TESTB\TESTB %line 34 
trace at TESTA\TESTA %line 22 
DRAWKCAB 
write to TESTA\TESTA\DISP-COUNT(1:2) at PC CVT P ANY+67 

old value = 
new value = 08 

29) To see the image's current location, we 
try the SHOW CALLS command. DEBUG 
displays the active call frames, but we 
still don't know the line number in our 
program. 

DBG>SHOW CALLS 
module name routine name line relative PC absolute PC 

DBG>'STEP 

CVT P ANY 
TESTA 

start at CVT P ANY+79 

22 
0000004F 
0000007C 

00001414 
00004748 

30) We use the STEP command until we reach a 
line boundary. DEBUG indicates that the 
image has reached line 28 of TESTA, the 
line following the reference to 
DISP-COUNT. 

stepped to TESTA\TESTA %line 28 

9-16 DEBUGGING COBOL PROGRAMS 



DBG)GO 

31) We resume execution. TESTA executes its 
final DISPLAY. DEBUG regains control 
when the STOP RUN is executed. 

start at TESTATESTA %line 28 
08 CHARACTERS 
%DEBUG-I-EXITSTATUS, is '%SYSTEM-S-NORMAL, normal successful completion' 

DBG)EXIT 
$ 

32) At this point, we can continue the 
session, by exam1n1ng the contents of 
data items, for example: or, we can 
terminate the image with the EXIT 
command. 

Program Listings: 

00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 

I 00027 0372 

00028 

IDENTIFICATION 
PROGRAM-ID. 
DATE-WRITTEN. 
DATE-COMPILED. 

DIVISION. 
TESTA. 
JANUARY 1979. 

15-Jan-1979 • 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. VAX-II. 
OBJECT-COMPUTER. VAX-II. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 LET-CNT PIC 9(2)V9(2). 
01 IN-WORD PlC X(20). 
01 DISP-COUNT PIC 9(2). 
PROCEDURE DIVISION. 
GETIT SECTION. 
BEGINIT. 

DISPLAY "ENTER WORD". 
MOVE SPACES TO IN-WORD. 
ACCEPT IN-WORD. 
CALL "TESTB" USING IN-WORD LET-CNT. 
PERFORM DISPLAYIT. 
STOP RUN. 

DISPLAYIT SECTION. 
SHOW-IT. 

DISPLAY IN-WORD. 
MOVE LET-CNT TO DISP-COUNT. 

POSSIBLE LOW ORDER RECEIVING FIELD TRUNCATION. 

DISPLAY DISP-COUNT " CHARACTERS". 

DEBUGGING COBOL PROGRAMS 9-17 



00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00028 
00029 
00030 
00031 
00032 
00033 
00034 
00035 
00036 
00037 
00038 
00039 
00040 
00041 
00042 

IDENTIFICATION 
PROGRAM-ID. 
DATE-WRITTEN. 
DATE-COMPILED. 

DIVISION. 
TESTB. 
JANUARY 1979. 

15-Jan-1979 • 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. VAX-II. 
OBJECT-COMPUTER. VAX-II. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 SUB-l PIC 9(2) COMPo 
01 SUB-2 PIC S9(2) COMP-3. 
01 HOLD-WORD. 

03 HOLD-CHAR PIC X OCCURS 20 TIMES. 
LINKAGE SECTION. 
01 TEMP-WORD. 

03 TEMP-CHAR PIC X OCCURS 20 TIMES. 
01 CHARCT PIC 99V99. 
PROCEDURE DIVISION USING TEMP-WORD, CHARCT. 
CONVERT-IT SECTION. 
STARTUP. 

IF TEMP-WORD = SPACES 
MOVE 0 TO CHARCT 
GO TO GET-OUT. 

PERFORM LOOK-BACK 
VARYING SUB-l FROM 20 BY -1 
UNTIL TEMP-CHAR (SUB-I) NOT = SPACE. 

MOVE SUB-l TO CHARCT. 
MOVE SPACES TO HOLD-WORD. 
PERFORM MOVE-IT 

VARYING SUB-2 FROM 1 BY 1 
UNTIL SUB-l = O. 

MOVE HOLD-WORD TO TEMP-WORD. 
GET-OUT. 

EXIT PROGRAM. 
MOVE-IT. 

MOVE TEMP-CHAR (SUB-I) 
TO HOLD-CHAR (SUB-2). 

SUBTRACT 1 FROM SUB-I. 
LOOK-BACK. 

EXIT. 

9-18 DEBUGGING COBOL PROGRAMS 



CHAPTER 10 

ERROR MESSAGES 

Errors can occur while compiling, linking, or running a VAX-II 
COBOL-74 program. This chapter defines these different errors and 
briefly discusses their associated diagnostic messages. Appendix D 
lists compile-time diagnostics~ Appendix E lists run-time error 
messages. 

10.1 COMPILE-TIME ERROR MESSAGES 

If the VAX-II COBOL-74 compiler detects an error, it will print a 
diagnostic message either before or after the erroneous source program 
line. Diagnostic messages look like this: 

X LINE ERR X--------- TEXT --------------X 

I ~error message 

~error message number 

~---------source program line number 

~-------------severity level - informational (I), warning (W), fatal 
( F) 

The following example shows diagnostic messages in the source listing 
of a program named "SAMPLE": 

00001 
00002 
00003 
00004 

IDENTIFICATION DIVISION. 
PROGRAM-ID. SAMPLE. 
ENVIRONMENT DIVISION. 
SOURCE-COMPUTER. VAX-II. 



00005 OBJECT-COMPUTER. VAX-II. 
00006 DATA DIVISION. 
00007 WORKING-STORAGE SECTION. 
00008 01 TABLE-VALUES. 
00009 05 TAB-VAL OCCURS 9 TIMES PIC X. 
00010 01 SAVE-VAL PIC X. 
00011 PROCEDURE DIVISION. 
00012 MAIN SECTION. 
00013 PARA 

I 00014 0622 TERMINATOR MISSING AF.TER PROCEDURE NAME. 

00014 IF SAVE-VAL = SPACE 
00015 ADD 1 TO SAVE-VAL • ... 

F 00015 0714 MISSING OR INVALID OPERAND FOR ARITHMETIC VERB 

I 00016 0616 PROCESSING RESTARTS AFTER TERMINATOR. 

00016 MOVE TAB-VAL (9) TO SAVE-VAL. 
00017 STOP RUN. 
00018 EXIT. 

W 00018 0103 • EXIT. WAS NOT THE ONLY VERB IN PARAGRAPH • 

10.1.1 Severity Levels 

Some errors do not affect program compilation, while others abort it. 
The compiler therefore issues three types of diagnostic messages to 
reflect varying severity levels: Informational (I), Warning (W), and 
Fatal (F). Consider the following messages, taken from the SAMPLE 
program in Section 10.1: 

I 00014 0622 TERMINATOR MISSING AFTER PROCEDURE NAME 

The compiler issues informational messages to pinpoint suspect 
conditions in your source program. In program SAMPLE, the 
paragraph name PARA does not end with a period. The compiler 
displays the message: "TERMINATOR MISSING AFTER PROCEDURE NAME." 
to describe the error. Because the compiler can recover from the 
error in a manner consistent with your intentions, it issues an 
informational message only. 

NOTE 

You can use the /NOWARNINGS command line qualifier to 
suppress informational error messages. 

10-2 ERROR MESSAGES 



W 00018 0103 .EXIT. WAS NOT THE ONLY VERB IN PARAGRAPH. 

Warnings, like informational errors, pinpoint source program 
mistakes from which the compiler can recover. In program SAMPLE, 
for instance, the warning indicates that EXIT must be the only 
statement in the paragraph. The compiler can take corrective 
action, however. But this action may not be consistent with your 
intentions, even though the code produced will be executable. 
The compiler therefore flags the object file to denote that 
warnings occurred. 

F 00015 450 REFERENCE TO UNDEFINED DATANAME. IGNORED. 

The compiler cannot recover from fatal errors in a manner that 
reflects your intentions. On line 15 of program SAMPLE, SAVE-VAL 
is defined as alphanumeric~ therefore, it cannot be used in an 
arithmetic statement. The compiler cannot take corrective 
action, so it issues a fatal error and does not create an object 
file. However, it analyzes all remaining source program lines 
and reports errors. 

NOTE 

You cannot use a command line qualifier to suppress 
warning or fatal messages -- they are always printed. 

10.1.2 Error Message Printing 

The compiler displays the diagnostic error message either before or 
after the erroneous source program line. There are two exceptions to 
this rule: 

1. Diagnostic messages can appear after the last entry in the 
DATA DIVISION before the PROCEDURE DIVISION header. These 
messages reflect errors the compiler cannot report until it 
has processed the entire DATA DIVISION text. 

2. Diagnostic messages can appear after the last line of the 
PROCEDURE DIVISION. These are messages that the compiler 
cannot issue until it has processed the entire PROCEDURE 
DIVISION. 

10.1.3 Internal Compiler Errors -- System Errors 

The compiler performs consistency checks on program flow and the 
contents of data fields. 

ERROR MESSAGES 10-3 



If the compiler detects an inconsistency, it prints a message and 
terminates compilation. The system error message format is: 

C74--<error message> 
C74--SYSTEM ERROR NNNNNN 

The six-digit system error code represents the probable 
error. When a system error occurs, the compiler closes 
and does not generate an object file. Appendix F lists 
codes and their meanings. 

cause of the 
its input file 
system error 

If an I/O error occurs during compilation, and the compiler cannot 
continue processing, an I/O system error message is displayed: the 
compiler then terminates. The format of the I/O system error message 
is: 

C74--<error message> 
C74--IO ERROR -NN 

The number (-NN) is an RSX-IIM Application Migration Executive 
(VAX/AME) code. 

10.2 SYSTEM MESSAGES 

VAX/VMS provides a centralized error message facility. When you type 
a command at your teminal or execute an image, and an error results, 
the system displays an error message. The general format for error 
messages is: 

%FACILITY-L-CODE, TEXT 
[-FACILITY-L-CODE, TEXT] 

where: 

FACILITY 

L 

CODE 

TEXT 

is a VAX/VMS facility, or component name. 
For example, %C74 represents COBOL-74. 

is a severity level indicator: it has one of 
the following values: 

Level 

S 
I 
W 
E 
F 

Meaning 

Success 
Information 
Warning 
Error 
Fatal, or severe error 

is an abbreviation of the message text. 

is a descriptive message. 

If VAX/VMS displays more than one message for an error, the additional 
message takes the form "-FACILITY-L-CODE, TEXT". 

10-4 ERROR MESSAGES 



You will find a full discussion of system messages in the VAX/VMS 
System Messages and Recovery Procedures Manual. The following 
sections discuss system messages issued for link-time or run-time 
errors. 

10.2.1 Link-time Error Messages 

The object modules produced by the compiler are nonexecutable; they 
must first be linked. Two kinds of link-time error messages occur: 
(1) warning error messages, imbedded in the object module by the 
compiler (see Section 10.1.1), and (2) errors detected by system 
facilities invoked by the linker. 

If the compiler flags an object file as having warnings, the linker 
detects the flag and issues the following diagnostics: 

%LINK-I-WRNERS, MODULE <name> has compilation warnings 
%LINK-W-DIAGSISUED, Completed but with dianostics 

If a system facility error occurs (for example, 
when the linker invokes the RMS facility), 
stack and the linker displays it. Consider the 
you typed the command line: 

if an error occurs 
it is put on a message 
following example. If 

LINK XXXX 

and no object file existed with the name XXXX, the following messages 
would appear at your terminal: 

$ LINK XXXX 
%LINK-W-OPIDERR, PASS 0 failed to open file "DBl: [ACCOUNT]XXXX.OBJ;" 
%LINK-W-UNMCOD, Initial file name was "XXXX", RMS error code = <code> 
%RMS-F-FNF, file not found 
-SYSTEM-W-NOSUCHFILE, no such file 
%LINK-E-FATALERROR, Fatal error message issued 

"%RMS-F-FNF, file not found" is generated by the VAX-II RMS system 
facility. 

10.2.2 Run-time Error Messages 

When you execute a program, errors can occur as a result of faulty 
program logic or file I/O problems. 

10.2.2.1 Faulty Program Logic Error Procedures - If errors 
run-time, the COBOL-74 run-time system (RTS) displays a 
your terminal. Additionally, the system TRACEBACK facility 
list of routines that were active when the error occurred. 

occur at 
message on 
displays a 

ERROR MESSAGES 10-5 



For example, if you create this program: 

00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 

IDENTIFICATION DIVISION. 
PROGRAM-ID. PERF. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
PROCEDURE DIVISION. 
ROUTINE-A. 

PERFORM ROUTINE-B. 
ROUTINE-B. 

PERFORM ROUTINE-C. 
ROUTINE-C. 

PERFORM ROUTINE-A. 

it will compile without any detectable errors. However, if you run 
it, the following will appear on your terminal: 

$ RUN PERF 
%C74-F-RECPERDET, recursive PERFORM detected 
%TRACE-F-TRACEBACK, symbolic dump follows 

module name 

PERF 
PREF 
PERF 
PERF 

routine 

PERF 
PERF 
PERF 
PERF 

line 

7 
11 

9 
7 

relative PC 

0000002C 
0000005C 
00000044 
0000002C 

absolute PC 

0000C678 
0000C6A8 
0000C62F 
0000C678 

The RTS displays "C74-F-RECPERDET, recursive PERFORM detected" to show 
that program PERF contains a statement (PERFORM ROUTINE-B) that, if 
executed, will cause a PERFORM statement to try and perform itself. 

If a fatal error occurs, and the program was linked with the 
/TRACEBACK qualifier (linker default), TRACEBACK will produce a 
symbolic dump of all call frames that were active when the error 
occurred. A call frame represents one execution of a subroutine CALL 
or a PERFORM statement. For each call frame, TRACEBACK displays: (1) 
the module name (program-id), (2) the routine name (program-id), (3) 
the source program line number where the error occurred, and (4) 
program-counter information. 

The initial line of the preceding TRACEBACK dump shows that the RTS 
detected a fatal error on line 7 of program PERF. A loop has been 
created that will cause the PERFORM on source program line 7 to be 
executed twice without an intervening EXIT. The remaining lines of 
the symbolic dump show the sequence in which the PERFORMs were 
executed, starting with the most recently executed statement. 

If program PERF were modified as follows, it would become a callable 
subprogram: 

00005 PROCEDURE DIVISION USING. 

10-6 ERROR MESSAGES 



A program could then be written to call PERF: 

00001 
00002 
00003 
00004 
00005 
00006 
00007 

IDENTIFICAION DIVISION. 
PROGRAM-ID. DRIVER. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
PROCEDURE DIVISION. 
PARA. 

CALL "PERF". 

If you run DRIVER, the following would appear at your terminal: 

$ RUN DRIVER 
%C74-F-RECPERDET, recursive PERFORM detected 
%TRACE-F-TRACEBACK, symbolic dump follows 

module name routine line relative PC absolute PC 

PERF PERF 7 0000002C 0000C678 
PREF PERF 11 0000005C 0000C6A8 
PERF PERF 9 00000044 0000C62F 
PERF PERF 7 0000002C 0000C678 
DRIVER DRIVER 7 0000002F OOOOC62F 

The symbolic dump now contains a fifth line, which shows the calling 
program DRIVER as the initial entry on the nested PERFORM stack. 

10.2.2.2 File I/O Error Procedures - If an error occurs during I/O 
operations, the following procedure is used: 

1. If the file status key for the file is present, the RTS sets 
it to the code for the error condition. Appendix C of the 
VAX-II COBOL-74 Reference Manual lists file status key 
values. 

2. If an INVALID KEY imperative condition is specified for the 
I/O operation, the RTS performs the associated imperative 
statement. The RTS performs no other processing in the file 
for the current statement. The USE procedure is not 
performed. 

3. If no INVALID KEY imperative condition is specified for the 
I/O operation and a USE procedure is declared for the file, 
the RTS performs the USE procedure and returns control to the 
program. The RTS performs no further processing for the 
file. 

ERROR MESSAGES 10-7 



4. If no AT END is specified for a sequential file, and a USE 
procedure is present, the RTS performs the USE procedure and 
returns control to the program. 

5. If no AT END, and no INVALID KEY, and no USE procedure is 
declared for the file, an error condition exists1 the 
program terminates with a C74 error status. Both C74 and RMS 
messages will be displayed as a result. 

The following example shows a program that does not contain a USE 
procedure for a file that is opened for INPUT: 

00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 

IDENTIFICATION DIVISION. 
PROGRAM-ID. TESTIO. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. VAX-II. 
OBJECT-COMPUTER. VAX-II. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT NOFILE ASSIGN TO IINOFILE. DAT". 
DATA DIVISION. 
FILE SECTION. 
FD NOFILE 

LABEL RECORDS ARE STANDARD. 
01 FILE-REC PIC X. 
PROCEDURE DIVISION. 
PARA. 

OPEN INPUT NOFILE. 

If you execute the program and RMS does not find the file (NOFILE.DAT) 
in the default directory on the default device, the following messages 
will appear at your terminal: 

%C74-F-OPNERRFIL, OPEN error on file: (NOFILE.DAT) 
%RMS-E-FNF, file not found 
%TRACE-F-TRACEBACK, symbolic stack dump follows 

module name routine name line relative PC 

TESTIO TESTIO 17 00000030 

10-8 ERROR MESSAGES 

absolute PC 

0000C630 



The following example shows a program that does contain a USE 
procedure for a file that is opened for INPUT: 

00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 

IDENTIFICATION DIVISION. 
PROGRAM-ID. TEST2IO. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. VAX-II. 
OBJECT-COMPUTER. VAX-II. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT NOFILE ASSIGN TO "NOFILE.DAT". 
DATA DIVISION. 
FILE SECTION. 
FD NOFILE 

LABEL RECORDS ARE STANDARD. 
01 FILE-REC PIC X. 
PROCEDURE DIVISION. 
DECLARATIVES. 
USE-SECTION SECTION. 

USE AFTER STANDARD ERROR PROCEDURE ON INPUT. 
USE-IT. 

DISPLAY "INVALID FILE OPEN". 
STOP RUN. 

END DECLARATIVES. 
PARA. 

OPEN INPUT NOFILE. 

If you execute this program and the file "NOFILE.DAT" does not exist, 
the USE procedure will display the following message: 

"INVALID FILE OPEN". 

Thus, if you use a USE procedure, the VAX/VMS error facility will not 
display error messages. 

See Appendix E for a full list of RTS error messages. 

ERROR MESSAGES 10-9 





CHAPTER 11 

SORTING IN A COBOL PROGRAM 

VAX-II SORT is a native-mode utility that provides a wide range of 
sorting capabilities and options~ it can be used as an independent 
utility program or, through COBOL-74, as a set of callable 
subroutines. VAX-II SORT is described in detail in the VAX-II SORT 
User's Guide. 

This chapter introduces the VAX-II SORT callable subroutines and 
describes how to use them to sort records in COBOL programs. 

11.1 VAX-II SORT SUBROUTINE PACKAGE 

The SORT subroutines are part of the standard VAX/VMS library, and 
they conform to the VAX/VMS calling standards. Therefore, any 
native-mode VAX-II program can call them. In COBOL, you communicate 
with the subroutines through the CALL statement. The subroutines, 
because they are in the VMS library, are linked automatically with 
modules that call them. 

VAX-II SORT provides six subroutines to perform sorting functions: 

SOR$PASS_FILES 

SOR$RELEASE_REC 

SOR$SORT_MERGE 

opens an input file and creates an output 
file. This routine is used only when files 
are sorted. 

initializes the "SORT work areas and work 
files, using the arguments you pass in the 
CALL statement. A program calls 
SOR$INIT_SORT once at the beginning of each 
sort. 

passes a record to the SORT after your 
program has processed it. A program calls 
this subroutine once for each record to be 
included in the sort. 

performs the sort-merge operation. 



SOR$RETURN_REC returns 
sorting. 
once for 
sort. 

a record to your program after 
A program calls this subroutine 

each record to be returned from the 

performs housekeeping functions at the end 
of a sort, such as closing files and 
releasing memory. A program calls 
SOR$END_SORT once at the end of each sort. 

11.2 I/O INTERFACE METHODS 

The VAX-II SORT subroutine package allows you to specify sorts in 
terms of an entire file or one record at a time; these techniques are 
called I/O interface methods. This section briefly describes the two 
I/O interface methods. 

11.2.1 File I/O Interface 

Using this method, you request VAX-II SORT to sort all records in a 
file to create a re-ordered output file. This technique is comparable 
to the SORT .•• USING .•• GIVING syntax of the ANSI-74 COBOL SORT Module. 

Call each of the following subroutines once in the order shown: 

1. SOR$PASS FILES 
2. SOR$INIT-SORT 
3. SOR$SORT-MERGE 
4. SOR$END_SORT 

The programming example in Section 11.6 uses the file I/O interface 
method for the second sort operation. 

11.2.2 Record I/O Interface 

Using this method, your program processes each record before releasing 
it to the SORT. After all records have been released, they are sorted 
into the specified order; SORT then returns one record at a time to 
the program. This technique is functionally identical to the ANSI-74 
COBOL SORT with input and output procedures. 

Call each of the following routines in the order shown: 

1. SOR$INIT SORT 
2. SOR$RELEASE REC 
3. SOR$SORT MERGE 
4. SOR$RETURN REC 
5. SOR$END_SORT 

11-2 SORTING IN A COBOL PROGRAM 



Call SOR$RELEASE REC and SOR$RETURN ~EC once for each record~ call 
the other subroutines only once in each sort. 

The programming example in Section 11.6 uses the record I/O interface 
method for the first sort operation. 

11.3 KEY DATA AND RECORD AREAS 

For the record I/O interface, the record that you pass to the 
SOR$RELEASE REC subroutine consists of the sort keys (key data) 
followed by7the record to be sorted (record area). The key data must 
contain all the key fields specified in the key buffer, which is 
described in the next section~ furthermore, you should specify the 
key fields in the same sequence and in the same way (for example, the 
same size and data type) that they appear in the key buffer. Do not 
leave space between the key fields. 

The record area immediately follows the key data. It defines the 
record that VAX-II Sort returns -- the subroutine SOR$RETURN_REC does 
not return the key data. 

You can specify from one to ten keys for each sort. If you need more 
than ten keys in a single sort, you may be able to combine some key 
fields to reduce the number of specifications. For example, if the 
first three keys were all the same type, and if they all were to be 
sorted in ascending order, you might be able to combine them this way: 

Original keys: 

01 SORT-RECORD. 
03 SORT-KEYS. 

05 SORT-KEY-l 
05 SORT-KEY-2 
05 SORT-KEY-3 
05 SORT-KEY-4 

05 LAST-KEY 
03 SORT-DATA. 

PIC X (10) . 
PIC X (5) . 
PIC X(20). 
PIC S9(5) COMP-3. 

PIC S9 (6) • 

Combined keys: 

01 SORT-RECORD. 
03 SORT-KEYS. 

05 COMBINED-KEY-l. 
07 SORT-KEY-l 
07 SORT-KEY-2 
07 SORT-KEY-3 

05 SORT-KEY-4 PIC 

PIC X (10) . 
PIC X(5). 
PIC X(20). 
S9(5) COMP-3. 

05 LAST-KEY 
03 SORT-DATA. 

PIC S9 (6) • 

SORTING IN A COBOL PROGRAM 11-3 



The total size of the key area cannot exceed 255 character positions. 
However, it is often possible to.reduce the size of fields from the 
record area by using a different data type to specify the key. 
Compare the storage requirements of the following data descriptions: 

03 ACCOUNT-NUM PIC 9(11). 
03 ACCOUNT-KEY PIC 59(11) COMP-3. 

03 COST PIC 9(7)V99. 
03 COST-KEY PIC 9(7)V99 COMPo 

Requires 11 characters. 
Requires 6 characters. 

Requires 9 characters. 
Requires 4 characters. 

The record I/O interface subroutines allow only three key data types: 
character, packed-decimal, and word or longword binary. They do not 
allow other types, such as separate sign, overpunched sign, or 
quadword binary. However, if you use the record I/O interface, you 
can define such keys in the key area with one of the allowable key 
types. In the following examples, the data descriptions on the left 
are not defined by a valid key type for the record I/O interface 
subroutines. The data descriptions on the right can be used in the 
key area for those data items: 

Description in record area Description in key data 

PIC S9(5) SIGN LEADING SEPARATE 
PIC S9(5) SIGN TRAILING SEPARATE 
PIC S9(17) COMP 

PIC S9(5) COMP 
PIC S9(5) COMP-3 
PIC S9(17) COMP-3 
PIC S9(5) COMP-3 PIC S9(5) 

11.4 KEY BUFFER 

The key buffer describes each key to the SOR$INIT SORT subroutine. 
Define it as a record (Ol-level) in the Working-Storage Section. 

The first data item in the key buffer specifies the number of 
individual keys~ define it as a one-word COMP data item -- its 
PICTURE must be in the range 9(1) to 9(4). The following example of 
the beginning of a key buffer specifies that records will be sorted on 
three keys: 

01 KEY-BUFFER. 
03 NUMBER-OF-KEYS PIC 9(4) COMP VALUE IS 3. 

Follow the number-of-keys specification with up to ten "blocks" of key 
definitions. Each block specifies one key field that you defined as 
key data preceding the record area. The block consists of four 
one-word COMP data items -- PICTURE 9(1) to 9(4): 

key type Specifies the data type of the key field. 

The following data types are valid for the. record 
I/O interface: 

1 = character (alphanumeric) 
2 = binary (COMPUTATIONAL) 
4 = packed-decimal (COMPUTATIONAL-3) 

11-4 SORTING IN A COBOL PROGRAM 



key order specifies the order for sorting this key field: 

o = ascending 
1 = descending 

start position character position in the record (not the key 
buffer) at which this key field begins. The 
value of this data item can range from 1 to the 
maximum record size. 

length specifies the size of the key field in digits, 
for packed-decimal (COMPUTATIONAL-3) items, or in 
character positions for all other data items. 

For COMPUTATIONAL items, the lengths associated 
with PICTURE ranges are: 

PICTURE 

9 (1) to 9 (4) 
9 (5) to 9 (9) 
9 (10) to 9 (18) 

key-length 

2 
4 
cann~t be sort key 

In the following example, the key buffer specifies three sort keys. 
The data items in each key definition block are assigned data-names 
for clarity; however, you can specify them as FILLER if you do not 
need to refer to them explicitly, since they are passed as a record to 
SOR$SORT_INIT. 

WORKING-STORAGE SECTION. 
01 KEY-BUFFER. 

03 NUMBER-OF-KEYS PIC 9 (4) COMP VALUE 3. 
03 KEY-I-TYPE PIC 9(4) COMP VALUE l. 
03 KEY-I-ORDER PIC 9 (4) COMP VALUE o. 
03 KEY-I-START PIC 9(4) COMP VALUE 10. 
03 KEY-I-LENGTH PIC 9 (4) COMP VALUE 25. 
03 KEY-2-TYPE PIC 9(4) COMP VALUE 4. 
03 KEY-2-0RDER PIC 9(4) COMP VALUE l. 
03 KEY-2-START PIC 9(4) COMP VALUE l. 
03 KEY-2-LENGTH PIC 9 (4) COMP VALUE 5. 
03 KEY-3-TYPE PIC 9(4) COMP VALUE 2J 03 KEY-3-0RDER PIC 9(4) COMP VALUE o. 
03 KEY-3-START PIC 9(4) COMP VALUE 35. 
03 KEY-3-LENGTH PIC 9(4) COMP VALUE 2. 

01 SORT-RECORD. 
03 SORT-KEYS. 

05 KEY-INDUSTRY PIC X (25) • 
05 KEY-NUMBER-OF-EMPLOYEES PIC S9 (5) COMP-3. 
05 KEY-DOLLAR-VOLUME PIC 9(4) COMPo 

03 SORT-DATA. (0 05 NUMBER-OF-EMPLOYEES PIC S9 (S-) COMP-3. 
05 FILLER PIC X (6) . 
05 INDUSTRY ,i) PIC X(25) . 
05 DOLLAR-VOLUME PIC 9 (4) COMPo L 

\ 

SORTING IN A COBOL PROGRAM 11-5 



11.5 SORT SUBROUTINES 

Each of the subroutines described in this section performs a separate 
and necessary function. 

The arguments for each subroutine are described as they occur. 
However, each subroutine returns a longword COMPUTATIONAL result 
value, which your program can test to detect success and failure 
conditions. The result status codes are described for each 
subroutine; however, to make them available to your program, you must 
include the otherwise optional GIVING phrase in the CALL statements. 

For example: 

CALL "SOR$END_SORT" GIVING SORT-RESULT. 

causes the result status for the clean-up routine to be available in 
the COMPUTATIONAL data item, SORT-RESULT, which you have defined in 
the Working-Storage Section with a PICTURE 9(9). 

Sorting is a set of logically ordered procedures, each of which is 
performed in VAX-ll SORT by a separate subroutine. Therefore, the 
order in which you call the Sort subroutines is important. 

Furthermore, because sorting is a set of procedures, you must 
one sort before beginning another. You can have as many 
sorts as you need in a single COBOL program; however, if you 
complete a sequence of sort subroutine calls before starting 
an error results. 

complete 
separate 

do not 
another, 

The following Sort subroutines are discussed in the order that they 
must be called. 

11.5.1 SOR$PASS_FILES 

For the file I/O interface, this subroutine passes the names of the 
input and output files to VAX-Il Sort. 

The general form of the CALL is: 

CALL "SOR$PASS FILES" 

Arguments 

USING BY DESCRIPTOR 
< input file> 
<output file> 

[GIVING <result status>] 

input file is the data-name of a data item that contains the 
file specification (or logical name) of the input 
file. 

output file is the data-name of a data item that contains the 
file specification (or logical name) of the 
output file. 

11-6 SORTING IN A COBOL PROGRAM 



Result status Values 

Hex 
Symbolic Value 

NORMAL 1 

SORT ON lC802C 

VAR FIX lC8064 

INCONSIS lC805C 

OPENIN lCl09C 

OPENOUT lClOA4 

Decimal 
Value Meaning 

1 Success. 

1867820 A sort is already in progress or 
this call is in the wrong sequence. 

1867876 You cannot change variable-length 
records to fixed-length records. 

1867868 Inconsistent data for file. 

1839260 Cannot open input file. 

1839268 Cannot open output file. 

All RMS error codes. 

11.5.2 SOR$INIT_SORT 

This subroutine begins a sort. It initializes the Sortls work files 
and areas, and it interprets the parameters (arguments) that are 
passed by the program. 

The general form, of the CALL is: 

CALL "SOR$INIT SORT" 

Arguments 

USING -
<key buffer> 
<LRL> 
[ <file size> ] 
[ <work files> ] 

[GIVING <result status>] 

key buffer is the data-name of the key buffer, which you 
have defined in the Working-Storage Section. The 
key buffer is discussed in Section 11.3.2. 

LRL 

File size 

is the longest record length - a one-word COMP 
data item, which you have defined in the 
Working-Storage Section, that specifies the 
longest record length (in character positions). 
Record length does not include the key area. 

is the data-name of a one-word COMP data item 
that specifies the size, in blocks, of the input 
file. This argument is not required, but it can 
increase Sort efficiency. 

SORTING IN A COBOL PROGRAM 11-7 



work files 

Result Status Values 

Hex 
Symbolic Value 

NORMAL 1 

SORT ON lC802C 

MISS KEY lC8004 

BAD TYPE lC806C 

BAD LRL lC8084 

LRL MISS lC8074 

BAD FILE lC808C 

WORK DEV lC800C 

VM FAIL lC801C 

WS FAIL lC8024 

NUM KEY lC803C 

KEY LEN lC80AC 

is the data-name of a one-word· COMP data item. 
that specifies the number of work files the Sort 
should use. Valid values are 0 and 2 through 10: 
the default is 2. The Sort expects this argument 
as a one-byte binary item: however, define it in 
COBOL as a one-word COMPUTATIONAL item - PICTURE 
9(1) to 9(4). 

Decimal 
Value 

1 

1867820 

1867780 

1867884 

Meaning 

Success. 

A sort is already in progress or this 
call is in the wrong sequence. 

No key definition specified. 

An invalid sort process was 
specified. 

1867908 An invalid LRL was specified. 

1867892 No LRL was specified. 

1867916 Invalid file size. 

1867788 Work file device not random 
access or not local node. 

1867804 SORT failed to get needed virtual 
memory. 

1867812 SORT failed to get needed working-
set size. 

1867836 Invalid number of keys specified. 
Must be 1-10. 

1867948 Invalid key length specified. 

All RMS error codes. 

11.5.3 SOR$RELEASE_REC 

This subroutine passes, or releases, a record to VAX-II Sort for the 
record I/O interface. Before calling SOR$RELEASE REC, your program 
must construct the sort keys in the key data- area. Usually, 
constructing the keys involves nothing more than moving their values 
from the fields in the record area to the fields in the key area. An 
exception might be when you construct keys by combining data items in 
the record area, or if you compute key values in some other way. 

11-8 SORTING IN A COBOL PROGRAM 



Call this subroutine once for each record you want to be included in 
the sort. This call is comparable to the ANSI COBOL RELEASE statement 
in an Input Procedure. 

The general form of the call is: 

CALL "SOR$RELEASE REC" 
USING -

BY DESCRIPTOR <key data> 
[GIVING <result status>] 

Argument 

key data 

Result Status 

Symbolic 

NORMAL 

SORT ON 

BAD LRL 

BAD ADR 

KEY LEN 

EXTEND 

MAP 

NO WRK 

Values 

Hex 
Value 

1 

lC802C 

lC8084 

lC8094 

lC80AC 

lC80A4 

lC809C 

lC8014 

is the record-name of the key data area. The key 
data record-name includes both the key data and 
the record area; therefore, this argument gives 
the subroutine all the information it needs to 
access both the sort keys and the data. 

Decimal 
Value 

1 

1867820 

1867908 

Meaning 

Success. 

A sort is already in progess or this 
call is in the wrong sequence. 

Record length is longer than the LRL 
that was specified to SOR$INIT_SORT. 

1867924 Invalid key area address. 

1867948 Invalid key length specified. 

1867940 Failed to extend work file. 

1867932 Internal Sort map error. 

1867796 Cannot sort data in memory. 
Need work files. 

11.5.4 SOR$SORT_MERGE 

This subroutine performs the final phases of the sort-merge process. 
For the record I/O interface, call it once, after the last record has 
been released to the Sort, and before attempting to return the first 
of the sorted records. For the file I/O interface, call 
SOR$SORT_MERGE once after calling SOR$INIT_SORT. 

The general form of the call is: 

CALL "SOR$SORT MERGE" 
[GIVING <result status>] 

SORTING IN A COBOL PROGRAM 11-9 



Al\guments 

None. 

Result Status Values 

Hex Decimal 
Symbolic Value Value Meaning 

NORMAL 1 1 Success. 

SORT ON lC802C 1867820 A sort is already in progress, or 
this call is in the wrong sequence. 

EXTEND lC80A4 1867940 Failed to extend work file. 

NO WRK lC80l4 1867796 Cannot sort data in memory. 
Need work files. 

MAP lC809C 1867932 Internal Sort map error. 

READERR lClOB4 1839284 Cannot read an input file record. 

WRITEERR lClOD4 1839316 Cannot write an output file record. 

BADFIELD lClOlC 1839132 Bad data in key field. 

11.5.5 SOR$RETURN_REC 

This subroutine returns one record to your program from the Sort. It 
places the record in the record area data item~ it also returns the 
record length. 

You cannot call 
subroutine. Call 
from the Sort. 

this subroutine before calling the sort-merge 
SOR$RETURN_REC once for each record to be returned 

The general form of the call is: 

CALL "SOR$RETURN REC" 

Arguments 

USING BY DESCRIPTOR <record area> 
BY REFERENCE <record length> 

[GIVING <result status>] 

record area is the data-name of the area into which the 
returned record should be placed. Usually, it is 
the same area from which it was released~ 
however, 'you can specify another data-name. 

record length is the data-name of a one-word COMPUTATIONAL data 
item into which the subroutine will place the 
actual size of the returned record. 

11-10 SORTING IN A COBOL PROGRAM 



Result Status Values 

Hex Decimal 
Symbolic Value Value Meaning 

NORMAL 1 1 Success. A record has been returned. 

ENDOFFILE 870 2160 No more records to return. 

MAP lC809C 1867932 Internal Sort map error. " 

EXTEND lC8084 1867940 Failed to extend work file. 

11.5.6 SOR$END_SORT 

This subroutine deletes the Sort I s work files and releases it's' 'work 
areas. You must call SOR$END SORT before beginning another sort~ 
however, it is good programming practice to call this subroutine at 
the end of any sort to release work file space and memory. 

The general form of the call is: 

CALL IISOR$END SORT II 
[GIVING <result status>] 

Arguments 

None. 

Result Status Values 

Hex, 
Symbolic Value 

NORMAL 1 

CLEAN UP lC80B4 

Decimal 
Value Meaning 

1 Success. 

1867956 Failed to delete work files 
and reinitialize work areas. 

11.6 PROGRAMMING EXAMPLE 

The program in this section reads a sequential mailing list file, 
attempts to detect duplicates, and writes a new file~ It uses the 
record I/O interface Sort technique, after constructing'an artificial 
identification key, to return identically-keyed records'together, so 
they can be compared. After it writes the new file, the program :uses' 
the file I/O interface to sort the file into its original order. 

One of the sort keys (subscription start date) is specified as 
descending order, because the designer assumes that the earliest 
record is probably the most accurate. 

SORTING IN A COBOL PROGRAM 11-11 



The comparable ANSI-74 COBOL SORT module statements are included as 
comments for comparison. 

IDENTIFICATION DIVISION. 
PROGRAM-ID. 

MLIST. 
DATE-WRITTEN. 
DATE-COMPILED. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. VAX-II. 
OBJECT-COMPUTER. VAX-II. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT MAILING-FILE 
ASSIGN TO "MAILLIST". 

SELECT NEW-FILE 
ASSIGN TO "NEWLIST". 

* SELECT SORT-FILE 
* ASSIGN TO "SORTF". 

DATA DIVISION. 
FILE SECTION. 

*SD SORT-FILE 
* LABEL RECORDS ARE OMITTED. 
*01 SORT-REC. 
* 03 S-ZIP PIC 9{s). 
* 03 S-LAST-NAME. 
* 05 S-NAME-l PIC X. 
* 05 S-NAME-2 PIC X. 
* 05 FILLER PIC X. 
* 05 S-NAME-4 PIC X. 
* 05 FILLER PIC X(12). 
* 03 S-FIRST-NAME PIC X(12). 
* 03 S-STREET. 
* 05 S-STREET-KEY PIC X(4). 
* 05 FILLER PIC X(16). 
* 03 S-CI'l'-Y. 
* 05 S-CITY-KEY PIC X(4). 
* 05 FILLER PIC X(16). 
* 03 FILLER PIC XX. 
* 03 S-START PIC 9(6). 

FD MAILING-FILE 
LABEL RECORDS ARE STANDARD. 

01 MAILING-REC. 
03 MAILING-KEY. 

05 ZIP-CODE PIC 9{s). 
05 LAST-NAME. 

07 LAST-NAME-CHAR 
OCCURS 16 PIC X{l). 

05 FIRST-NAME PIC X(16). 
05 STREET PIC X(20). 
05 CITY PIC X(20). 

03 STATE PIC X(2). 
03 SUBSCRIP-START PIC 9(6). 

11-12 SORTING IN A COBOL PROGRAM 



FD NEW-FILE 
LABEL RECORDS ARE STANDARD. 

01 NEW-REC PIC X(85). 

WORKING-STORAGE SECTION. 

01 MAILING-FILE-ID PIC X(8) VALUE "MAILLIST". 
01 NEW-FILE-ID PIC X(8) VALUE "NEWLIST". 

01 FIRST-IN PIC X(85) VALUE SPACES. 
01 FIRST-KEY. 

03 FIRST-COMPARE PIC X(14) VALUE SPACES. 
03 FILLER PIC X(6) VALUE SPACES. 

01 SORT-RECORD. 
03 SORT-KEYS. 

05 KEY-ZIP PIC S9(5) COMP-3. 
05 NAME-ADDRESS-GROUP. 

07 KEY-LAST. 
09 KEY-LAST-CHAR 

OCCURS 3 PIC X(I). 
07 KEY-STREET PIC X(4). 
07 KEY-CITY PIC X(4). 

05 KEY-START PIC 9(6). 
03 SORT-DATA. 

05 LAST-IN PIC X(85). 
05 LAST-KEY. 

07 LAST-COMPARE PIC X(14). 
07 FILLER PIC X(6). 

01 KEY-BUFFER. 
03 NUMBER-OF-KEYS PIC 9(4) COMP VALUE 3. 

03 FILLER PIC 9(4) COMP VALUE 4. 
03 FILLER PIC 9(4) COMP VALUE O. 
03 FILLER PIC 9(4) COMP VALUE 75. 
03 FILLER ~ " PIC 9(4) COMP VALUE 5. 

"" 03 FILLER ~(4) COMP VALUE I. 
03 FILLER PI (4) COMP VALUE O. 
03 FILLER PIC 9~~MP VALUE I. 
03 FILLER PIC 9(4) ·OMP VALUE II. 

'~ 

03 FILLER PIC 9 (4) COMP~I. 
03 FILLER PIC 9 (4) COMP VAL 1. 
03 FILLER PIC 9(4) COMP VALUE '80,~ 
03 FILLER PIC 9 (4) COMP VALUE 6. 

01 ORIGINAL-KEY-BUFFER. 
03 FILLER PIC 9 (4) COMP VALUE I. 

03 FILLER PIC 9 (4) COMP VALUE I. 
03 FILLER PIC 9 (4) COMP VALUE O. 
03 FILLER PIC 9(4) COMP VALUE I. 
03 FILLER PIC 9 (4) COMP VALUE 77. 

' .. 

SORTING IN A COBOL PROGRAM 11-13 



01 RESULT-STAT PIC 9(8) COMPo 
88 SUCCESSFUL VALUE 1. 
88 END-SORT VALUE 2160. 

01 LRL PIC 9(4) COMP VALUE 
01 REC-LENGTH PIC 9(4) COMPo 

01 FILE-STAT PIC 9(1) VALUE O. 
88 ENDFILE VALUE l. 

01 DUPLICATES-DELETED PIC 9(6) COMP VALUE 
01 DISPLAY-DUPLICATES PIC ZZZ,ZZ9. 
01 DISPLAY-RESULT 

PROCEDURE DIVISION. 
MAINLINE SECTION. 
SBEGIN. 

PIC 

OPEN INPUT MAILING-FILE. 

* SORT SORT-FILE 
* ASCENDING S-ZIP 
* S-NAME-l 
* S-NAME-2 
* S-NAME-4 

9 (8) • 

* S-STREET-KEY 
* S-CITY-KEY 
* DESCENDING S-START 
* INPUT PROCEDURE GET-AND-RELEASE 

105. 

O. 

* OUTPUT PROCEDURE RETURN-AND-WRITE. 

CALL "SOR$INIT SORT" 
USING -

KEY-BUFFER 
LRL 

GIVING RESULT-STAT. 

IF NOT SUCCESSFUL 
DISPLAY "INIT-SORT ERROR" 
GO TO ABORT-RUN. 

PERFORM GET-AND-RELEASE 
UNTIL ENDFILE., 

CLOSE MAILING-FILE. 

CALL "SOR$SORT_MERGE" 
GIVING RESULT-STAT. 

IF NOT SUCCESSFUL 
DISPLAY "SORT-MERGE ERROR" 
GO TO ABORT-RUN. 

OPEN OUTPUT NEW-FILE. 

PERFORM RETURN-AND-WRITE 
UNTIL END-SORT. 

CALL "SOR$END_SORT" 
GIVING RESULT-STAT. 

11-14 SORTING IN A COBOL PROGRAM 



IF NOT SUCCESSFUL 
DISPLAY "END-SORT ERROR" 
GO TO ABORT-RUN. 

MOVE DUPLICATES-DELETED TO DISPLAY-DUPLICATES. 
DISPLAY DISPLAY-DUPLICATES" Duplicates deleted". 
CLOSE NEW-FILE. 

* SORT SORT-FILE 
* ASCENDING S-ZIP 
* S-LAST-NAME 
* S-FIRST-NAME 
* S-STREET 
* S-CITY 
* USING NEW-FILE 
* GIVING MAILING-FILE. 

CALL "SOR$PASS FILES" 
USING -

BY DESCRIPTOR 
NEW-FILE-ID 
MAILING-FILE-ID 

GIVING RESULT-STAT. 

IF NOT SUCCESSFUL 
DISPLAY "PASS-FILES ERROR" 
GO TO ABORT-RUN. 

CALL "SOR$INIT SORT" 
USING -

ORIGINAL-KEY-BUFFER 
LRL 

GIVING RESULT-STAT. 

IF NOT SUCCESSFUL 
DISPLAY "INIT-SORT ERROR" 
GO TO ABORT-RUN. 

CALL "SOR$SORT MERGE" 
GIVING RESULT-STAT. 

IF NOT SUCCESSFUL 
DISPLAY "SORT-MERGE ERROR" 
GO TO ABORT-RUN. 

CALL "SOR$END SORT" 
GIVING RESULT-STAT. 

IF NOT SUCCESSFUL 
DISPLAY "END-SORT ERROR". 

STOP RUN. 

SORTING IN A COBOL PROGRAM 11-15 



GET-AND-RELEASE SECTION. 
SBEGIN. 

MOVE SPACES TO MAILING-REC. 
READ MAILING-FILE 

AT END 
MOVE 1 TO FILE-STAT 
GO TO SEXIT. 

MOVE MAILING-REC TO SORT-DATA. 

MOVE LAST-NAME-CHAR (1) TO KEY-LAST-CHAR (1). 
MOV~ LAST-NAME-CHAR (2) TO KEY-LAST-CHAR (2). 
MOVE LAST-NAME-CHAR (4) TO KEY-LAST-CHAR (3). 
MOVE STREET TO KEY-STREET. 
MOVE CITY TO KEY-CITY. 
MOVE ZIP-CODE TO KEY-ZIP. 
MOVE SUBSCRIP-START TO KEY-START. 
MOVE NAME-ADDRESS-GROUP TO LAST-KEY. 

* RELEASE SORT-REC FROM MAILING-REC. 

* 
* 
* 
* 
* 

CALL "SOR$RELEASE REC" 
USING -

BY DESCRIPTOR SORT-RECORD 
GIVING RESULT-STAT. 

IF NOT SUCCESSFUL 

SEXIT. 

DISPLAY "RELEASE-REC ERROR" 
GO TO ABORT-RUN. 

EXIT. 

RETURN-AND-WRITE SECTION. 
SBEGIN. 

RETURN SORT-FILE INTO SORT~DATA 
AT END 

MOVE SPACES TO LAST-KEY 
GO TO COMPARE-KEYS. 

MOVE (data to keys for comparison). 

CALL "SOR$RETURN_REC" 
USING 

BY DESCRIPTOR SORT-DATA 
BY REFERENCE REC-LENGTH 

GIVING RESULT-STAT. 

IF END-SORT 
MOVE SPACES TO LAST-KEY 
GO TO COMPARE-KEYS. 

IF NOT SUCCESSFUL 
DISPLAY "RETURN-REC ERROR" 

.GO TO ABORT-RUN. 

11-16 SORTING IN A COBOL PROGRAM 



COMPARE-KEYS. 
IF LAST-COMPARE NOT = FIRST-COMPARE 

AND FIRST-COMPARE NOT = SPACES 
WRITE NEW-REC FROM FIRST-IN 

ELSE 
IF FIRST-KEY NOT = SPACES 

ADD 1 TO DUPLICATES-DELETED. 

MOVE LAST-KEY TO FIRST-KEY. 
MOVE LAST-IN TO FIRST-IN. 

SEXIT. 
EXIT. 

ABORT-RUN SECTION. 
SBEGIN. 

MOVE RESULT-STAT TO DISPLAY-RESULT. 
DISPLAY DISPLAY-RESULT. 
STOP RUN. 

SORTING IN A.COBOL PROGRAM 11-17 





CHAPTER 12 

USING THE LIBRARY FACILITY 

The VAX-II COBOL-74 library facility allows you to copy COBOL source 
language text from a library file into your COBOL program during 
compilation. One COpy statement can include large amounts of library 
source text in a program, eliminating a great deal of repetitious 
coding and the errors that often go along with it. The compiler 
treats the copied text as if it were a part of the source program~ 
however, the copied material does not change the source program file 
in any way. 

The COBOL library facility provides two important benefits: 

1. Standardization of File and Coding Conventions 

A data file is usually processed by more than one program. 
Each of those programs must describe the ch~racteristics of 
the file, such as file-name, blocking factor and record 
descriptions. The programs are often written by one 
programmer, then maintained and updated by another. Because 
it is often difficult for a programmer to understand a 
program written by someone else, many organizations design 
and code standardized file descriptions, then keep them in 
COBOL libraries~ programmers then COpy the file descriptions 
into their programs, frequently without having to understand 
(or even know) their details. 

This technique also applies to Procedure Division code that 
is useq in many different programs. For example, a library 
could contain a standardized routine to convert calendar 
dates to Julian dates, or to format standard report headings. 

2. Saving Time and Reducing Errors 

Defining and coding file and record descriptions are both 
time-consuming and error-prone activities. When the 
descriptions already exist in COBOL libraries, you can easily 
COpy them into a source program~ you save time because you 
don't have to code them again, and you avoid potential errors 
in re-entering complex code. 



Changing the format of a file is another common 
time-consuming chore. When a file format changes, you 
usually must change and recompile all programs that use the 
file. If the file description is in a COBOL library, only 
the library must be changed~ individual programs often then 
need only recompilation, since the library coding changes are 
included by the COPY. 

Putting commonly used Procedure Division code in libraries 
yields the same benefits. 

12.1 Creating a COBOL Library File 

Each line of a COBOL library file must form syntactically 
COBOL text when it is merged into the source program. It 
this condition by being itself syntactically correct or by 
correct when it is merged with the source program. 

correct 
can meet 
becoming 

Library text must conform to the rules for the COBOL source reference 
format~ for example, library text that will appear in Area A of the 
source program must be in Area A in the library file. You can write 
library text using either the conventional format or terminal format~ 
however, the library text format must be the same as the source 
program into which it is merged. 

12.2 The COPY Statement 

COpy is a compiler-directing statement that merges a COBOL library 
file into a COBOL source program. The simplest form of the statement 
is: 

COpy text-name. 

Text-name must be either an alphanumeric literal or a file name. 
Remember that the COPY statement must end with a terminator period 
regardless of where it appears in the source program. 

If you specify a literal, the compiler uses its value as a file 
specification~ therefore, you can include or omit all components of 
the file specification that are allowed in the VAX/VMS command 
language, such as device, directory, file type, and version number. 
The only required component is the file name itself. 

For example: 

COpy "[ACCTLIB]ACCFIL.XYZ~3". 

causes the compiler to access version number 3 of the file ACCFIL.XYZ 
in directory [ACCTLIB] on the default device. 

If you use a file name in the COPY statement, the compiler uses .LIB 
as the default file type. 

12-2 USING THE LIBRARY FACILITY 



For example: 

COpy ACCOUNT. 

causes the compiler to access the latest version of the file 
ACCOUNT.LIB on the default device and directory. 

Only four conditions require the use of the alphanumeric literal to 
indicate the full file specification for the copy statement: 

1. When the file type is other than .LIB. 

2. When the library file is not on the default device. 

3. When the library file is not in the default directory. 

4. When the default directory contains more than one version of 
the library file and you want to copy a version other than 
the latest. 

Figure 12-1 demonstrates the use of the COPY statement to include 
Procedure Division code. Note that the format of the library text is 
maintained when it is included in the source program. 

COBOL Source Program 

PROCEDURE DIVISION. 
START-PROC SECTION. 
BEGIN-PROC. 

ACCEPT TO-DATE 
FROM DATE. 

OPEN-FILES. COpy OPENF. 
OPEN 1-0 WORK-FILE. 

INPUT-LOOP. 
READ CUST-FILE .•. 

Library File (OPENF.LIB) 

* 
OPEN INPUT CUST-FILE. 
OPEN 1-0 ORDERS. 

GET-VERSION. 

* 

DISPLAY "VERSION?". 
ACCEPT VER-NUM. 
IF VER-NUM NOT NUMERIC 

GO TO GET-VERSION. 

Resulting Source Program 

* 

* 

PROCEDURE DIVISION. 
START-PROC SECTION. 
BEGIN-PROC. 

ACCEPT TO-DATE 
FROM DATE. 

OPEN-FILES. COPY OPENF. 

OPEN INPUT CUST-FILE. 
OPEN 1-0 ORDERS. 

GET-VERSION. 
DISPLAY "VERSION?". 
ACCEPT VER-NUM. 
IF VER-NUM NOT NUMERIC 

GO TO GET-VERSION. 

OPEN 1-0 WORK-FILE. 
INPUT-LOOP. 

READ CUST-FILE ••• 

Figure 12-1 Merging Library Text 

USING THE LIBRARY FACILITY 12-3 



The COPY statement can appear anywhere that a COBOL 
a source program~ therefore, you can use it in 
different problems. For example, if a library 
contains the single entry MORTGAGE-PAYMENT-AMOUNT, 
in the Data Division: 

Source Statement: 03 COpy MTG. PIC 999V99. 

Resulting 

word is allowed in 
many ways to solve 
file called MTG 

it could be copied 

Source Statement: 03 MORTGAGE-PAYMENT-AMOUNT PIC 999V99. 

or in the Procedure Division: 

Source Statement: MULTIPLY COPY MTG. BY 12 
GIVING ANNUAL-PAYMENT. 

Resulting 
Source Statement: MULTIPLY MORTGAGE-PAYMENT-AMOUNT BY 12 

GIVING ANNUAL-PAYMENT. 

The periods following the COpy statements in these examples do not 
become part of the source text. If the library text requires 
punctuation, it must be included in the library file. 

NOTE 

The two preceding examples are not 
recommended uses of the COPY statement. 
They are included only to illustrate the 
mechanics of the COBOL library facility. 

12.3 The COPY REPLACING Statement 

It is sometimes necessary to tailor library file text for use in a 
particular program. For example, if a record description in a library 
file has level-numbers incremented by 1 (01, 02, 03, ••• ) and you want 
them to be incremented by four (01, 05, 09, ••• ), you can change the 
level-numbers as the library text is merged into the source program. 
During the copying process, the COpy statement can replace all 
occurrences of a literal or word with an alternate literal or word. 
For example: 

COpy ACCTREC REPLACING 02 BY 05, 
03 BY 09, 04 BY 13. 

This sample statement causes the compiler to scan the file ACCTREC 
searching for the character-string 02. Wherever it finds a 02, the 
compiler substitutes 05. A match occurs only if the compiler finds a 
02~ no match occurs for a 0 or a 2 alone. The compiler follows the 
same procedure for occurrences of 03 and 04. 

12-4 USING THE LIBRARY FACILITY 



The following examples COpy the library file named NEWSBOY, which 
contains this text: 

01 A. 
02 
02 
02 
02 
02 

Example 1 

Statement: 

COPY 

Result: 

01 A. 
02 
02 
02 
02 
02 

Example 2 

Statement: 

B PIC 99. 
C PIC 99 VALUE 2. 
o PIC X(5) VALUE "ABCDE". 
EPIC 99V99 VALUE 3.75. 
F PIC 99 VALUE 02. 

NEWSBOY REPLACING B BY X. 

X PIC 99. 
C PIC 99 VALUE 2. 
0 PIC X(5) VALUE "ABCDE". 
E PIC 99V99 VALUE 3.75. 
F PIC 99 VALUE 02. 

COPY NEWSBOY REPLACING 2 BY 6. 

Resul t: 

01 A. 
02 
02 
02 
02 
02 

Example 3 

Statement: 

B PIC 99. 
C PIC 99 VALUE 6. 
o PIC X(5) VALUE "ABCDE". 
EPIC 99V99 VALUE 3.75. 
F PIC 99 VALUE 02. 

COpy NEWSBOY REPLACING 02 BY 63. 

Result: 

01 A. 
63 
63 
63 
63 
63 

B PIC 99. 
C PIC 99 VALUE 2. 
o PIC X(5) VALUE "ABCDE". 
EPIC 99V99 VALUE 3.75. 
F PIC 99 VALUE 63. 

USING THE LIBRARY FACILITY 12-5 



In the last example, level-number 02 was changed to level-number 63, 
which is not legal under COBOL rules~ therefore, although both the 
COPY statement and the library text are syntactically correct, the 
merged text is incorrect and would generate syntax errors. 

The REPLACING character-string can be a literal or a word~ it must 
compare equally, character for character, with the entire 
character-string in the library text. Table 12-1 illustrates the 
results of some character-string comparisons. 

REPLACING Literal 
or Word Library Text Match? 

"ABC" "ABCD" No 

HRLY-RATE HRLY-RATE Yes 

1 1 Yes 

"2" 2 No 

" 15" "15" No 

"012" "12" No 

012 12 No 

SUBTRACT SUBTRACT Yes 

"012" "012" Yes 

ACCT ACCTI No 

Table 12-1 COpy REPLACING Matches 

12.4 The Source Listing 

Depending on how you write the COpy statement, library text can appear 
either before or after the COpy statement. The compiler nor~ally 
prints a line of source text when it scans to the end of the line~ 
however, when the compiler recognizes a completed COPY statement 
before the end of the line, it locates the library file, then: 

1. Prints the library text. 

2. Scans the rest of the source program line. 

3. Prints the entire source line. 

12-6 USING THE LIBRARY FACILITY 



Thus, if the source line contains a COpy statement followed by other 
text (including spaces), the compiler prints the library text before 
the source line containing the COpy statement~ this results in a 
somewhat confusing listing. You can cause the compiler to produce a 
more readable listing by making sure that you write each COPY 
statement as the last entry on a source program line. 

12.5 Common Errors in Using the Library Facility 

Some of the more common errors to avoid when using the library 
facility are: 

• Failing to follow the rules for the COBOL reference format 
when creating the library file. 

• Merging a library file in one format (conventional or 
terminal) with a source program written in the other. 

• Forgetting to end the COpy statement with a terminator 
period. 

• Inadvertently defining data-names in the source program when 
they are also defined in the library file, thus causing 
duplicate names. 

• writing library file text that becomes syntactically 
incorrect when it is merged with the source program. 

• Merging the wrong library file, either because multiple 
versions exist, or because of misspellings. 

• Writing source text following the COpy statement on the same 
line, thus causing confusion in the source program listing. 

• Forgetting that numeric literals (such as 02, 77, ••• ) used 
in the REPLACING option replace level-numbers, picture 
descriptions, and paragraph or section names, when they find 
matches in the library file. 

• Forgetting that a period must appear in the library file if 
it is to appear in the source program~ the terminator period 
that ends the COPY statement is replaced by library text. 

USING THE LIBRARY FACILITY 12-7 





CHAPTER 13 

OPTIMIZATION 

Optimization is the process of designing or altering 
minimize space allocation or execution time, or 
effective trade-off between the two. 

a 
to 

program 
achieve 

to 
an 

This chapter provides guidelines for optimizing performance of COBOL 
programs. It emphasizes techniques, controllable at the COBOL source 
level, for optimizing file design, program organization, and 
computation. Many COBOL programs make heavy use of file I/O. 
Consequently, your methods of designing, populating, and handling 
files can either enhance or undermine system performance. 

When optimizing COBOL programs, aim to minimize I/O activity. You can 
accomplish this. by the way you design files and stru9ture your 
program. Your answers to the following questions should influence 
your choice of file· organization, record type, buffer size and number, 
and your program organization: 

1. What kinds of I/O operations are necessary to process the 
data? 

2. How can you best place I/O operations in the program? 

3. How should you structure the file? Are multiple access keys 
necessary or desirable? 

4. For each file, are frequent record updates 
likely, or will file contents remain 
absolutely) stable? 

You can also influence computational performance, 
formatting data to avoid data conversions and 
specialized computational routines of the compiler. 

and insertions 
relatively (or 

especially by 
utilize fast, 

The following sections describe each of these optimization techniques. 

NOTE 

For more information on optimization 
techniques you can use through Record 
Management Services (RMS) facilities, 
refer to appropriate RMS documentation. 



13.1 OPTIMIZING FILE DESIGN 

This section describes the effect of file design on performance. The 
following suggestions apply to any type of file organization. 

1. Preallocate the entire file, contiguously if possible, using 
the /CO:n or /AL:n file switch (see Table 6-2) or the RMS 
DEFINE utility. 

2. Select 
file, 
(Refer 
extend 

a suitable default extend quantity when you create the 
using the /EX:n file switch or the RMS DEFINE utility. 
to RMS documentation for a description of default 
quantities and the RMS DEFINE utility.) 

3. Know the relationships between record size and file storage, 
and try to define a record size suited for efficient storage 
and retr ieval. 

4. Use the SAME RECORD AREA clause to save compute time and 
conserve address space. If records are being copied from one 
file to another, and both files share the same record area, 
no MOVE statement is needed to move record images between two 
record areas. The disadvantage is that records from both 
files cannot be available simultaneously unless one is moved 
to a work area. (Be careful not to confuse the SAME RECORD 
AREA and SAME AREA clauses~ they appear similar, but have 
different effects.) 

13.1.1 Sequential Files 

Sequential files have the simplest structure and the fewest options 
for definition, population, and handling. You can reduce the number 
of disk accesses by keeping record length to a minimum. 

with a sequential disk file, you can use the multi-block read and 
write facility to create a larger buffer area. To use this facility, 
specify the BLOCK CONTAINS n CHARACTERS clause in combination with 
ORGANIZATION IS SEQUENTIAL. If you omit the BLOCK CONTAINS n 
CHARACTERS clause, the RMS default applies. 

13.1.2 Relative Files 

For relative files: 

1. Select a record format and size that minimizes the empty 
space remaining in each record position and each bucket. 

13-2 OPTIMIZATION 



2. If you create the file by using the RMS DEFINE utility, 
select a realistic maximum record number. An attempt to 
insert a record with a number higher than the maximum will 
fail. Before inserting such a record, you must redefine and 
repopulate the file. 

3. Be aware that, before writing a record into a relative file, 
RMS must have formatted all buckets up to and including the 
bucket into which the record insertion will occur. Thus, 
write operations have variable response times, depending on 
whether preliminary formatting is required, and how much. 
You might consider writing the highest-numbered record first 
to force formatting of the entire file only once. 

13.1.3 Indexed Files 

Indexed files have the greatest potential for inefficient usage. 
Therefore, carefully consider how well the design and use of the files 
map into the application. To do this, you must first understand how 
indexed files are organized and processed. 

As the name suggests, an indexed file contains, besides data records, 
pointer information to facilitate access to the records. 

All data records and record pointers are maintained in storage units 
called buckets. The bucket is the basic retrievable element of an 
indexed file. It consists of an integral number of contiguous 
5l2-byte physical blocks, and the number of physical blocks is known 
as the bucket size. 

Every indexed file must have a primary key: a field in the record 
description that contains a unique value for each individual record. 
When RMS writes records into the indexed file, it arranges them in 
collated sequence, according to increasing primary key value, in a 
series of chained buckets. Thus, you can access the records 
sequentially, if you wish, by specifying ACCESS SEQUENTIAL. 

As RMS writes the records, it constructs and maintains a tree-like 
structure of key-value and location pointers. (See Figure 13-1.) Each 
element of the index structure is a bucket, and the buckets are 
structured into a hierarchy of levels. The highest level of the index 
consists of a single bucket, called the root bucket. The root bucket 
contains location pointers to buckets at the next lower level. Thus, 
RMS scans one bucket at each level of the index for a pointer to a 
bucket at the next level, until it reaches the bottom level of the 
index~ the bottom level is called the data level. In a primary key 
index, this level contains the actual data records of the indexed 
file. The buckets in each level above the data level are called index 
buckets. 

OPTIMIZATION 13-3 



....... 

....... ~ 
,' .... 

':.tt.. 

- ...... 
- ...... 
--~ 

I~ 
11-1 
II >< 

" II QJ 

/11 I "d 
s:: 

I I~ t H 

II >t II I QJ 
I I ~ 

I >t 
1-4 
III a 

.r-i 
1-4 
~ 

r-I 

~ 
QJ 
H 
I 
QJ 
QJ 
1-4 

.c:: 
E-t 

r-I 
I 

M 
r-I 

QJ 
1-4 ::s 
CI 

.r-i 
~ 

i=" w :J' ~ 
u W 
:::J > 

MID C'I ,.. o~ 
...II- ...I ...I ...Ie{ WO W W WI-
>0 > > >e{ 
Wa: W W we 
...1- ...I ...I ...1-

13-4 OPTIMIZATION 



RMS also constructs an 
for the file. Like 
contained in the file. 
actual data records at 
to data records in the 

index for each alternate key that you define 
the primary index, alternate key indexes are 
However, alternate key indexes do not contain 

the data level, instead, they contain pointers 
data level of the primary index. 

Successive levels of an index are numbered. The data level of the 
index is level zero, and the number of levels above level zero is the 
index depth. Thus, the level number of the root bucket equals the 
depth of the index. 

Each random access request begins by comparing a specific key value 
against the entries in the root bucket, seeking the first entry in the 
root bucket whose key value equals or exceeds the value of the access 
request key. (This search is always successful, because the root 
bucket's highest key value is the highest possible value that the key 
field can contain.) Having located the proper key value, RMS uses the 
bucket pointer associated with that value to bring the target bucket 
on the next lower level into memory. This process is repeated for 
each level of the index. RMS thus searches one bucket at each level 
of the index until it reaches a target bucket at the data level. At 
this point, the desired data record location is determined, an 
existing data record can be retrieved or deleted, or a new record 
written. Duplicate primary key values are not allowed, if a record 
insertion would cause a duplicate primary key value, the attempted 
write causes an exception condition. 

There may be insufficient room in a data level bucket to accommodate a 
new record. When this occurs, RMS inserts a new bucket in the chain, 
moving enough records from the old bucket to preserve the key value 
sequence, while making room to write the new record. This action is 
known as a bucket split. 

In summary, each index of an indexed file provides the mechanism for 
random access to records. Sequential access to records is also 
possible, because the records of the primary index, or pointers of an 
alternate index, are collated in ascending key value order. 

13.1.3.1 
following 
level. 

General 
general 

Rules 
rules 

for 
for 

Indexed Files - You can apply the 
indexed files at the COBOL source code 

1. While alternate keys are often useful, the more keys you 
define for an indexed file, the longer each WRITE , REWRITE, 
or DELETE operation takes. However, multiple keys have 
little effect on READ timing and provide multiple access 
paths. Thus, they are most useful for files that are not 
subject to frequent additions and updates and are accessed in 
many different programs. 

2. Select bucket sizes that reflect 
and provide a suitable depth 
Section 13.1.3.3, Index Depth.) 

anticipated file activity 
of index structure. (See 

OPTIMIZATION 13-5 



3. Avoid excessive duplication of key values. COBOL does not 
allow duplicates on the primary key, but permits them on 
alternate keys. 

The following subsections deal with the specifics of indexed file 
design and creation. 

13.1.3.2 Bucket Size - Bucket size selection can influence indexed 
file performance markedly. 

To RMS, bucket size is expressed 
blocks, each 512 bytes long. 
512-byte bucket, while a bucket 
bucket, and so on. 

as an integral number of physical 
Thus, a bucket size of 1 specifies a 
size of 2 specifies a 1024-byte 

The COBOL compiler passes bucket size values to RMS based on what you 
specify in the BLOCK CONTAINS clause. There, you indicate bucket size 
in terms of records or characters, not physical blocks. As a COBOL 
user concerned with file optimization, you should be aware of the 
mechanism by which COBOL record and file descriptions are used to 
derive bucket sizes, so that you can predict how RMS will treat your 
file description. 

If you express block size in records, the bucket can in some cases 
contain more records than you specify, but never fewer. For example, 
assume that your file contains fixed-length 100-byte records, and you 
call for each bucket to contain five records, as follows: 

BLOCK CONTAINS 5 RECORDS 

This might seem to define a bucket as a 512-byte block containing five 
records of 100 bytes each. However, the compiler adds RMS record and 
bucket overhead to each bucket for control purposes, as follows: 

Bucket Overhead 15 bytes per bucket 

Record Overhead 7 bytes per record (fixed-length) 
9 bytes per record (variable-length) 

Thus, in the example, bucket size is calculated as follows: 

Bucket Overhead 15 bytes 
Record Size is 100 bytes 

+ 7 bytes Record Overhead 
for each of 5 records 

Total Record Space is (100 + 7)*5, or 535 bytes 

Total Block specified by user 550 bytes 

Because physical blocks are 512 bytes long, and buckets are always 
some integral number of physical blocks, the smallest buffer possible 
(the RMS default) in this case is two physical blocks (1024 bytes). 

13-6 OPTIMIZATION 



RMS, however, is not keyed to the BLOCK CONTAINS clause from which 
this bucket specification was derived, and puts as many records as 
will fit into each bucket. The bucket actually will contain nine 
records, not five. 

The CHARACTERS option of the BLOCK 
specify bucket size more directly. 

BLOCK CONTAINS 2048 CHARACTERS 

CONTAINS clause 
For example: 

allows you to 

This calls for a bucket size of four 5l2-byte physical blocks. The 
number of characters in a bucket is always a multiple of 512. If you 
specify a value that is not a multiple of 512, RMS rounds it to the 
next higher multiple of 512. 

13.1.3.3 Index Depth - The size of data records, key fields, and 
buckets in the file determines the depth of the index. Index depth, 
in turn, determines the number of disk accesses required to retrieve a 
particular record. 

In general, performance is best with an index depth of 3 or 4. A 
shallower index will require fewer accesses, but will reduce available 
address space because of the larger buffers required. 

13.1.3.4 Overhead Accumulation - In selecting a bucket size, you 
should consider the likely frequency of random insert and delete 
operations. 

When a record is inserted, there must be sufficient room in the bucket 
to contain it. Otherwise, a bucket split occurs. Bucket splits can 
cause accumulation of storage overhead, thereby reducing usable space. 
The new bucket contains records moved from the original bucket (see 
Section 13.1.3) to make room for the new record. For each record 
moved out of the original bucket, a seven-byte pointer to the new 
location for that record remains in the original bucket. Thus, a 
bucket could accumulate overhead from bucket splits, possibly reducing 
usable space so much that it can no longer receive record insertions. 

Record deletions also can accumulate storage overhead. Under most 
circumstances, however, most of the space that was occupied by the 
original record becomes available for reuse. Because duplicate 
primary keys are not allowed, RMS can reclaim all but two bytes of the 
deleted record space. This two-byte field is a flag indicating that a 
record has been deleted. 

There are several ways to deal with the problem of overhead 
accumulation. First, determine or estimate the frequency of certain 
operations. If, for example, you expect only 100 records of a 100,000 
record file to be added or deleted in an average month, your data base 
is stable enough that you might decide to allow some wasted space from 
record additions and deletions. 

OPTIMIZATION 13-7 



However, if you expect frequent additions and deletions, try the 
following: 

1. Choose a bucket size that allows for overhead accumulation, 
if possible. Avoid bucket sizes that are an exact or near 
multiple of your record size. 

2. To optimize for record insertion performance (as opposed to 
space optimization), first define the file with a fill number 
(using the RMS DEFINE utility or a MACRO program). A fill 
number specifies the number of bytes in the buckets of the 
file that you want to contain record information when the 
file is populated. Then, populate the file, specifying the 
/LO switch (see Table 6-2 or RMS utilities documentation). 
Thereafter, the unused space is available for record 
insertions, with minimum bucket splitting. Make certain that 
programs performing such record insertions do not specify the 
/LO switch. 

13.2 OPTIMIZING PROGRAM ORGANIZATION 

Program organization can influence I/O performance greatly. This 
section suggests guidelines toward an efficient program structure. 

13.2.1 Sequential Reading of Indexed Files 

If you access an indexed file sequentially, and the file is 
write-shared (using the ISH switch), performance improves if you use 
OPEN 1-0 instead of OPEN INPUT. Using OPEN 1-0 implies a possibility 
that you will write to the file--even though you have no intention of 
doing so. 

Reading from a file that is open for input-output improves performance 
by . locking the bucket, allowing you to obtain subsequent records from 
the same bucket without rereading it. 

13.2.2 Caching Index Roots 

RMS requires at least two buffers to process an indexed file. Each 
buffer is large enough to contain a single bucket. If your COBOL 
program does not contain a RESERVE n AREAS clause, the compiler allows 
RMS to set the default. 

By including a RESERVE n AREAS clause in the SELECT statement for a 
file, you can create additional (but not fewer) buffers for the 
processing of an indexed file. At run time, RMS will retain (cache) 
the roots of one or more indexes of the file in memory. The random 
access of any record through that index will then require one less I/O 
operation. 

13-8 OPTIMIZATION 



The following rules apply for caching index roots: 

1. The file must not be shared at run time. 

2. Allocate one buffer for each key that your program uses to 
access file records, in addition to the two required buffers. 
For example, if the file contains a primary key and two 
alternate keys, and you use all of these keys to access 
records, allocate a total of five buffers. If you use only 
one key to access this file in a program, you need only one 
additional buffer area, or three in all. 

3. Use the RESERVE n AREAS clause to obtain this allocation, 
where n is two more than the number of distinct keys used for 
access. For example, the clause RESERVE 5 AREAS causes 
allocation of the two required buffers, plus three buffer 
areas for caching the roots of three distinct file access 
keys. 

13.2.3 Multi-block Reading and Writing 

The multi-block read and write facility applies only to sequential 
files on disk devices. It allows reading or writing of more than one 
5l2-byte block at a time during a single I/O operation, reducing the 
number of I/O operations needed to process a file. However, the 
single buffer used to process the file must be correspondingly longer. 

To use this facility, be sure the file has SEQUENTIAL organization and 
resides on disk. Then, in the FD entry for the file, specify: 

BLOCK CONTAINS n CHARACTERS 

where n is a multiple of 512. Each multiple represents the number of 
physical blocks to be read or written during each access of the file. 
If n is not a multiple of 512, the compiler rounds the size to the 
next multiple of 512. 

13.3 OPTIMIZING COMPUTATION 

On arithmetic (ADD, SUBTRACT, MULTIPLY, DIVIDE, and COMPUTE) and data 
movement (MOVE) operations, the compiler generates more efficient, 
specialized code if: 

1. The data items involved in the computation (including the 
receiving fields) have the same type and scaling. 

2. You omit the ROUNDED and SIZE ERROR phrases. 

3. LINKAGE SECTION data is not involved in the computation. 

Also, in the case of COMPUTATIONAL data, the data items must be the 
same size,. Otherwise, the compiler uses slower, generalized code. 

OPTIMIZATION 13-9 



Certain data types allow faster computation than others. 
types, in order of most efficient to least efficient, are: 

Signed COMPUTATIONAL 
Unsigned COMPUTATIONAL 
COMPUTATIONAL-3 
DISPLAY 

The data 

COMPUTATIONAL data items can be one, two, or four words long (see 
Chapter 4). To increase the efficiency of the generated code, define 
COMPUTATIONAL items with the same size~ if necessary, make some items 
larger than you otherwise would. COMPUTATIONAL data items can have 
different PICTURE specifications and still be the same size. Items 
with PIC 9(1) to 9(4) are I-word binary~ with PIC 9(5) to 9(9), 
2-word binary~ and with PIC 9(10) to 9(18), 4-word binary. 

On COMPUTATIONAL-3 (packed decimal) or 
most efficient when performed on 
Different data size does not force the 
these data types. 

DISPLAY data, operations are 
data items of minimal size. 
use of generalized code with 

The following situations also force the use of generalized code, as 
opposed to more efficient code: 

l. Non-matching decimal point alignment among the operands and 
receiving fields. 

2. Use of the ROUNDED or SIZE ERROR options. 

3. Data items defined in the LINKAGE SECTION of the source 
program. 

Generalized code is necessary on LINKAGE SECTION data items, because 
their addresses are not known at compile time. 

The following example illustrates the difference in execution time 
between specialized ADD code and the generalized ADD code. 

01 
01 
01 
01 

A 
B 
C 
E 

PIC S9(4) USAGE COMPo 
PIC S9(4) USAGE COMPo 
PIC S9(4) USAGE COMPo 
PIC S9(4)V9 USAGE COMPo 

Of the following two ADD statements, statement (1) typically executes 
30 to 40 times faster than statement (2): 

(1) ADD A B GIVING C. 

(2) ADD A B GIVING E. 

On MULTIPLY and DIVIDE operations, decimal point alignment has a 
different meaning than for ADD and SUBTRACT operations. Assuming that 
the data types are the same for all items involved, the compiler uses 
the more efficient code if: 

13-10 OPTIMIZATION 



1. On a MULTIPLY, the product field scale factor equals the sum 
of the scale factors of the multiplicand and multiplier. For 
example: 

01 X PIC S9(4)V9(2) USAGE COMPo 
01 Y PIC S9(4)V9(3) USAGE COMPo 
01 Z PIC S9(6)V9(S) USAGE COMPo 

MULTIPLY X Y GIVING Z. 

2. On a DIVIDE operation, the quotient scale factor equals the 
dividend scale factor minus the divisor scale factor. For 
example, using the data descriptions from the previous 
example: 

DIVIDE Z BY X GIVING Y. 

When defining data to be used as subscripts, I-word signed 
COMPUTATIONAL is the most efficient. Try to avoid referencing tables 
by indexes unless you need to perform relative index references. 

The use of arithmetic expressions increases use of temporary storage. 
It also generates larger operands, and can cause the less-efficient 
generalized code to be used unnecessarily. Avoid using the COMPUTE 
verb, and avoid using arithmetic expressions when specifying 
relational conditions. 

OPTIMIZATION 13-11 





APPENDIX A 

THE COBOL FORMAT 

COBOL NOTATION USED IN FORMATS 

• Underlined upper-case words (key words) - required words1 

• Upper-case words (not underlined) - optional words1 

• Lower-case words - generic terms, must be supplied by the user1 

• Brackets [] - enclosed portion is optional 1 if several enclosed words are 
vertically stacked, only one of them may be used1 

• Braces {} - a selection must be made from the vertical stack of enclosed words1 

• Ellipsis ••• - the position at which repetition may occur1 

• Comma and semicolon - optional punctuation1 

• Period - required where shown in the formats. 

NOTE: Shaded items represent PDP-Il COBOL extensions to the ANS-74 list of 
COBOL formats. 

IDENTIFICATION DIVISION. 

PROGRAM-ID. program-name. 
[AUTHOR. [comment-entry] ••• ] 
[INSTALLATION. [comment-entry] ••• ] 
[DATE-WRITTEN. [comment-entry] ••• ] 
[DATE-COMPILED. [comment-entry] ••• ] 
[SECURITY. [comment-entry] ••• ] 

ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 

SOURCE-COMPUTER. VAX-II. 

OBJECT-COMPUTER. VAX-II [MEMORY SIZE integer !wms ~ CHARACTERS 
MODULES 

[PROGRAM COLLATING SEQUENCE IS alphabet-name] 
[SEGMENT-LIMIT IS segment-number]. 



[SPECIAL-NAMES. 

[CARD-READER IS IlUlemonic-name-l] 
[CONSOLE IS mnemonic-name-2] 
[LINE-PRINTER IS IlUlemonic-name-3] 
[PAPER-TAPE-PUNCH IS IlUlemonic-name-4] 
[PAPER-TAPE-READER IS IlUlemonic-name-S] 

[ SWITCH integer-l {ON STATUS IS condition-name-l 
OFF STATUS IS cond1t10n-name-2 

[AlPhabet-name IS {~~~:RD-l}T . 

[CURRENCY SIGN IS literal-ll 
[DECIMAL-~ ~ ~ ].] 

[INPUT-OUTPUT SECTION. 

FILE-CONTROL. {file-control-entry} ••• 

Format 1: 

SELECT [OPTIONAL] file-name 

ASSIGN TO literal-l 

~ RESERVE integer-l 

[, ORGANIZATION IS SEQUENTIAL] 
[, ACCESS MbDE' IS SEQUENTIAL] 
[, FILE STATUS IS data-name-l] • 

Format 2: 

SELECT file-name 

ASSIGN TO literal-l 

[, RESERVE integer-l 

ORGANIZATION IS RELATIVE 

~ ACCESS MODE IS 1 SEQUENTIAL 

{ RANDOM } 
DYNAMIC 

[, FILE STATUS IS data-name-2] • 

A-2 THE COBOL FORMATS 

[, RELATIVE KEY 

RELATIVE KEY IS 

[~ STATUS IS conditiOn-name-2]}] 
[~ STATUS IS condition-name-l] 

IS data-name-l]jn 

data-name-l U 



Format J: 

SELECT file-name 

ASSIGN TO literal-l 

G RESERVE integer-l 

ORGANIZATION IS INDEXED 

~ ACCESS MODE IS 1 SEQUENTIAL ~ 
RANDOM 
DYNAMIC 

RECORD KEY IS data-name-l 
[~ ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]] ••• 
[~ FILE STATUS IS data-name-3] • 

[I-O-CONTROL. 
[SAME [RECORD] AREA FOR file-name-l {file-name-2} ••• ] ••• 
[MULTIPLE FILE TAPE CONTAINS file-name-3 [POSITION integer-I] 

[file-name-4 [POSITION integer-2] ••• ] ••• 

[~ PRINT-CONTROL ON file-name-S [file-name-6] ••• ] ••• ]J 

DATA DIVISION. 

[FILE SECTION. 
[FD file-name 

~LOCK CONTAINS [integer-l!£] integer-2 { RECORDS }] 
CHARACTERS 

[RECORD CONTAINS [integer-3 !£] integer-4 

{ RECORD IS} { STANDARD } 
CHARACTERS] 

LABEL RECORDS ARE OMITTED 

rVALUE OF ID IS {d~ta-name-l}J t--------- l1teral-l 
~ {RECORD IS } ~ATA RECORDS ARE data-name-3 

rLINAGE IS {~ata-name-s} LINES 
[ 1nteger-S 

[data-name-4] ••• r ... 
[WITH FOOTING AT ~ata-name-6}J 

1nteger-6 

[ LINES AT TOP {~ata-name-7}J [LINES AT BOTTOM 
--- 1nteger-7 

[CODE-SET IS alphabet-name]. 
[record-description-entry] ••• ] ••• ] 
[WORKING-STORAGE SECTION. 

{ ~ata-name-8 }J] 
1nteger-8 

[ 77-level-descriPtion-entryJ 
record-de scription-entry ••• ] 

THE COBOL FORMATS A-3 



[LINKAGE SECTION. 
-----r77-level-descriPtion-entry] 

Lrecord-description-entry ••• ] 
Data description entry: 
Format 1: 

{ data-narne-l} 
level-number FILLER 

[REDEFINES data-narne-2] 

[{ PICTURE } . ] PIC IS character-str~ng 

COMPUTATIONAL 
COMP 

[USAGE ISl 
COMPUTATIONAL- 3 
COMP-3 
DISPLAY 
DISPLAY-6 
DISPLAY-7 
INDEX 

[ { LEADING } 
[~ IS] TRAILING 

[ { SYNCHRONIZED} [LEFT jJ 
SYNC RIGHT 

[ {JUsTIFIED} ---
JUST RIGHT 
---u3LANK WHEN ZERO] 

[VALUE IS literal] 

[SEPARATE CHARACTER] 

[OCC~ {~nteger-l TO integer-2 
~nteger-2 TIMES 

TIMES DEPENDING ON data-narne-3} 

[{ ASCENDING } 
DESCENDING 

KEY IS data-name-4 [data-narne-S] ••• J ... 
[INDEXED BY index-narne-l [index-narne-2] ••• ]] • 

Format 2: 

66 data-narne-l 

[{ THROUGH} 
THRU 

Format 3: 

RENAMES data-narne-2 

data-narne-3]. 

88 d · t· { VALUE IS} . con ~ ~on-name ---- l~teral-l VALUES ARE 

[literal-3 [{~UGH} literal-4J] ••• 

[{ THROUGH} 
THRU ---- . 

PROCEDURE DIVISION [USING [data-narne-l] [,data-narne-2] ••• ]. 

A-4 THE COBOL FORMATS 

literal-2] 



Format 1: 

[DECLARATIVES. 
{section-name SECTION [segment-number] • declarative-sentence 
[paragraph-name. [sentence] ••• ] ••• } ••• 
END DECLARATIVES.] 
{section-name SECTION [segment-number]. 
[paragraph-name. [sentence] ••• ] ••• } ••• 

Format 2: 

{paragraph-name. [sentence] ••• } ••• 

STATEMENTS 

ACCEPT identifier 

ACCEPT identifier 

{identifier-l} [identifier-2] 
ADD literal-l literal-2 !Q identifier-m [ROUNDED] 

[identifier-n[ROUNDED]] ••• [ON SIZE ERROR imperative-statement] 

{identifier-l}~ntifier-2r[identifier-3J ~ literal-l \ literal-2 literal-3 ••• 
GIVING identifier-m [ROUNDED] [identifier-n [ROUNDED]] ••• 

[ON SIZE ERROR imperative-statement] 

ADD { CORRESPONDING } 
CORR ·identifier-l TO identifier-2 [ROUNDED] 
[ON SIZE ERROR imperative-statement] 

ALTER procedure-name-l TO [PROCEED TO] procedure-name-2 
---yprocedure-name-3 TO-rPROCEED Tor-procedure-name-4] ••• 

CALL literal 

BY VALUE ! [BY REFERENCE] j 
identifier-l [identifier-2] ••• 

BY DESCRIPTOR 

[ BY REFERENCE 
identifier-3 [identifier-4] ••. ] BY~ 

BY DESCRIPTOR 

[GIVING identifier-S] 

CLOS~ file-name-l 
[{ ~} [WITH NO ~J~ UNIT FOR REMOVAL 

;;;{~~} 
LOCK 

~ REEL} [WITH NO REWINDJ~~ 
UNIT FOR REMOVAL 

;;; {~REWIND } ... 
LOCK 

THE COBOL FORMATS A-5 



COMPUTE identifier-l [ROUNDED] [identifier-2 [ROUNDED]] ••• 
= arithmetic-expression [ON SIZE ~ imperative-statement] 

DELETE file-name RECORD [INVALID KEY imperative-statement] 

{identifier-I} [identifier-2] 
DISPLAY literal-l literal-2 

[UPON mnemonic-name] [WITH NO ADVANCING] 

DIVIDE { identifier-I} INTO identifier-2 [ROUNDED] 
literal-l 
[identifier-3[ROUNDED]] ••• [ON SIZE ERROR imperative-statement] 

DIVIDE { identifier-I} INTO {identifier-2} 
literal-l literal-2 

GIVING identifier-3[ROUNDED] 

[identifier-4[ROUNDED]] ••• [ON ~ ~ imperative-statement] 

DIVIDE { identifier-I} {identifier-2} 
literal-l BY literal-2 GIVING identifier-3[ROUNDED] 

[identifier-4[ROUNDED]] ••• [ON ~~ imperative-statement] 

DIVIDE { identifier-I} {identifier-2} 
literal-l INTO literal-2 GIVING identifier-3[ROUNDED] 

REMAINDER identifier-4[ON ~~ imperative-statement] 

DIVIDE { identifier-I} BY {identifier-2} 
literal-l literal-2 GIVING identifier-3[ROUNDED] 

REMAINDER identifier-4[ON ~~ imperative-statement] 

EXIT [PROGRAM] 

GO TO [procedure-name-l] 
GO TO procedure-name-l [proced~re-name-2] ••• procedure-name-n DEPENDING ON identifier 

IF condition { statement-l } 
NEXT SENTENCE 

INSPECT identifier-l TALLYING 

[
ELSE statement-2 ] 
~~ SENTENCE 

{ identifier-2 FOR-rrr{ {~ING} 
: \ \ I ~HARACTERS 

INSPECT identifier-l REPLACING 

{ 

CHARACTERS ~ {~~~:=~~~:r-6 } [{ :~~: ) INITIAL { ~~~:=~~~~r-7 ) ] 
{ { ~ING} {{ i~entifier-5) BY {identifier-6} [{ BEFORE} INITIAL 

FIRST 1~teral-3 literal-4 ~ 

INSPECT identifier-l TALLYING 

{ identifier-2 FOR {{ { ~DING } 
CHARACTERS 

INITIAL 

REPLACING 

""-~.;;.;.;.;;;;.;.;"- - literal-4 AFTER INITIAL 

{

CHARACTERS BY { identifier-6) ['I BEFORE ) 

{ { ~ING} {{ i~entifier-5} BY {identifier-6} 
FIRST 1~teral-3 literal-4 

{identifier-7 )J 
literal-5 

[{~} AFTER 
INITIAL 

A-6 THE COBOL FORMATS 

{ i~entifier-4}]} ••• } 
1~teral-2 

{ i~entifier-7}]} ••• } 
l1teral-5 

{ i~entifier-4)]} ••• } 
1~teral-2 

{ i~entifier-7)J} ••• } 
1~teral-5 



MOVE 

MOVE 

{ identifier-l} TO identifier-2 [identifier-3] ••• 
literal 

{ CORRESPONDING} identifier-l TO identifier-2 
CORR 

• MULTIPLY { identif ier-l } 
literal-l ~ identifier-2[ROUNDED] 

[identifier-3 [ROUNDED]] ••• [ON SIZE ERROR imperative-statement] 

{ identifier-l } 
MULTIPLY literal-l BY { identifr;r::2} GIVING identifier-3 [ROUNDED] literal-2 

OPEN 

[identifier-4 [ROUNDED]] ••• [ON ~ ERROR imperative-statement] 

{
INPUT file-name-l[WITH NO REWIND] [file-name-2 [WITH NO REWIND]] ••• } 
OUTPUT file-name-3[WITH NO REWIND] [file-name-4 [WITH NO REWIND]] ••• 
I-O file-name-S [file-name-6] ••• 
EXTEND file-name-7 [file-name-8] ••• 

PERFORM procedure-name-l [{ THROUGH} 
THRU 

p,rocedure-name-2 ] 

PERFORM procedure-name-l [{ THROUGH} 
THRU ' 

procedure-name-2] {identifier-l} 
integer-l TIMES 

PERFORM procedure-name-l [{ THROUGH} 
THRU 

procedure-name-2] UNTIL condition-l 

PERFORM procedure-name-l 

VARYING 

BY 

[~ 
BY 

[~ 

BY 

{ identifier-2 } 
index-name-l 

{ identifier-4 } 
literal-2 

{ identifier-S } 
index-name-3 

{ identifier-7} 
literal-4 

{ identifier-8 } 
index-name-S 

{ identifier-lO } 
literal-6 

[{ THROUGH} 
THRU procedure-name-2] 

rdentifier-,) 
FROM index-name-2 

literal-l 

UNTIL condition-l 

FROM ( 
identifier-6) 
index-name-4 
literal-3 

UNTIL condition-2 

FROM (
identifier-9) 
index-name-6 
literal-S 

~ condition-,]] 
READ file-name [NEXT] RECORD [INTO identifier] [AT END imperative-statement] 
READ file-name RECORo['INTO identifier] [INVALID KEY imperative-statement] 
READ file-name RECORD [INTO identifier] [;KEY IS data-name] [;INVALID KEY imperative-statement] 
REWRITE record-name[FROM identifier] [INVALID KEY imperative-statement] 

THE COBOL FORMATS A-7 



~ identifier-l [VARYING { ~dentifier-2 }] 
l.ndex-name-l [AT ~ imperative-statement-l] 

WHEN condition-l 

[WHEN condition-2 

{ imperative-statement-2} 
NEXT SENTENCE 

{ imperative-statement-3}] 
NEXT SENTENCE 

SEARCH ~identifier-l[AT ~ imperative-statement-l] 

SET 

SET 

WHEN 

{ 
data-name-l 

condition-name-l 

{ IS EQUAL TO} 
IS = I identifier-3 I} 

literal-l 
arithmetic-expression-l 

~- {
data-name-2 

condition-name-2 

{ imperative-statement-2} 
NEXT SENTENCE 

lIS EQUAL TO} 
IS = {

identifier-4 }} 
literal-2 
arithmetic-expression-2 

{identifier-l 
index-name-l 

[identifier-2] ••• } 
[index-name-2] ••• l

identifier-31 
TO index-name-3 

integer-l 

index-name-4 [index-name-S] ••• 

IS EQUAL TO 
IS = 

{ UP BY } 
DOWN ~ 

{identifier-4} 
integer-2 

START file-name KEY IS GREATER THAN 
IS > data-name 

STRING 

IS NOT LESS THAN 
IS NOT < 

[INVALID KEY imperative-statement] 

{identifier-l} 
literal-l 

[ identifier-2] 
literal-2 DELIMITED BY 

~ t1:;!i~:r-41 [i~~:;!i~~r-5] 0 0 0 DELIMITED BY 

INTO identifier-7 [WITH POINTER identifier-8] 
----[ON OVERFLOW imperative-statement] 

lidentifier-3} 
literal-3 
SIZE 

l identifier-6~ literal-6 
SIZE 

00 oJ 

SUBTRACT ~ identifier-m[ROUNDED] { identifier-l} [identifier-2] 
literal-l literal-2 

[identifier-n[ROUNDED]] ••• [ON ~~ imperative-statement] 

A-a THE COBOL FORMATS 



{ identifier-l} [identifier-2J 
SUBTRACT literal-l literal-2 FROM 

GIVING identifier-n[ROUNDED] [identifier-o[ROUNDED]] ••• 
[ON ~~ imperative-statement] 

{ CORRESPONDING} 'd 'f' 1 F 0 'd t'f' 2 SUBTRACT CORR 1 ent1 1er- ~ 1 en 1 1er-

[ON ~ ERROR imperative-statement] . 

UNSTRING identifier-l 

{ identifier-m} 
literal-m 

[ROUNDED] 

[ { identifier-2} [ {identifier-3}J ••• J 
DELIMITED BY [ALL] literal-l 2! [ALL] literal-2 
INTO identifier-4[DELIMITER IN identifier-5] [COUNT IN identifier-6] 
[identifier-7 [DELIMITER IN identifier-8] [COUNT IN identifier-9]] ••• 
[WITH POINTER identifier-lO] [TALLYING IN identifier-ll] 
[ON OVERFLOW imperative-statement] 

USE AFTER STANDARD { EXCEPTION} 
ERROR PROCEDURE ON 

[AT { END-OF-PAGE } 
EOP imperative-statement] 

{

file-name-l[file-name-2] ••• } 
INPUT 
OUTPUT 
I-O 
EXTEND 

WRITE record-name [~identifier] [INVALID KEY imperative-statement] 

COpy {text-name} 
----[ literal-3 

REPLACING {{literal-l} 
word-l BY 

NOTE: A COpy statement may appear anywhere that a word appears in the COBOL source program. 

THE COBOL FORMATS A-9 





APPENDIX B 

COMPILER IMPLEMENTATION LIMITATIONS 

This appendix describes the implementation limitations for the VAX-II 
COBOL-74 compiler system (compiler and RTS). You should not confuse 
the term "limitation" with "restriction". A restriction is a language 
facility that is not implemented or should not be used due to known 
errors in its implementation. An implementation limitation quantifies 
the limits of a language facility that is supported by the system. 

Practical implementation limitations exist in every compiler~ They 
result from the finite size of compiler tables, compiler data 
structure representations, and so on. Since the VAX-II COBOL-74 
compiler employs a Virtual Memory System to support many compiler data 
structures, the quantities specified for some implementation 
limitations are approximations. However, as a general rule, the 
following guidelines should not be exceeded in the development of a 
COBOL program. 

IMPLEMENTATION LIMITATIONS 

1. The Data Division of a COBOL program cannot be larger than 
65K bytes. A file description entry cannot be larger than 
32K bytes. 

2. A DISPLAY statement cannot contain more than 16 sending 
operands. 

3. The maximum number of data-name definitions in a COBOL 
program is approximately 2000. 

4. The maximum number of procedure-name definitions in a COBOL 
program is approximately 2000. 

5. Because file description level-numbers can range from 01 to 
49, level 88 condition-names can have no more than 50 
qualifiers (FD through 49). Data-names declared in the File 
Section can have no more than 49 qualifiers (FD through 48). 
Data-names declared in the Working-Storage and Linkage 
Sections can have no more than 48 qualifers (01 - 48). 

6. A GO TO DEPENDING statement can have no more than 16 
operands. 





APPENDIX C 

SOURCE PROGRAM LISTINGS 

This appendix contains compiler listings for two COBOL programs. The 
first, STATB, calls three subprograms: the second, DOCATS, is one of 
the subprograms. 

The examples demonstrate some of the features of VAX-II COBOL-74, such 
as: 

• The COpy statement 

• The COpy REPLACING statement 

• The CALL statement 

• The results of using the lMAP and IVERB_LOCATION compiler 
qualifiers 

The circled numbers on the source listings indicate features that are 
annotated in the text. 

Source Listing Features 

0-
0-
0-
0-

The version of the VAX-II COBOL-74 compiler. 

The source file, including file type, or extension, 
number. 

Date and time when the compilation began. 

and version 

The compiler command line. The contents of the command line can 
help to explain why the listing looks like it does and how the 
program runs. For example, this command line shows that the 
IVERB_LOCATION and IMAP qualifiers were used. 



0-

0-

0-
0-

0-

The IDENTification number assigned by the compiler. This number 
identifies the specific compilation of the program and is used as 
an additional identifier for the object module. 

Source line number assigned by the compiler. This number is used 
in RTS error message displays to indicate the location at which 
the error was detected. It also appears in error message 
displays that show nested PERFORMs. 

Sequence number. If the source file used conventional format 
(/ANSI_FORMAT), the sequence field (positions 1-6) appears here. 

Source text. This area contains the 
the compiler. If a line of text was 
appears here was processed. The 
diagnostic message when it truncates 

text that 
too long, 
compiler 

a line of 

was processed by 
only the part that 
also prints a 

source text. 

Identification field. 
format, this area 
(positions 73-80). 

If the source file used conventional 
would contain the identification field 

~ - Identifies a source line that: a) contains a COPY statement, or 
b) was copied from a library file. 

~ - COBOL verb (appears only when IVERB LOCATION qualifier is used). 
Identifies the COBOL verb that -is referred to by the other 
entries on the line. 

@- Segment number (/VERB LOCATION qualifier only). Identifies the 
program segment, or- PSECT. Notice that this is not the PSECT 
name~ it is a consecutive number assigned to all procedural 
PSECTS during compilation and duplicates the segment numbers in 
other programs. 

~ - Offset (/VERB_LOCATION qualifier only) • Specifies the 
hexadecimal offset (distance) from the beginning of the segment 
for the object code generated by the COBOL verb (number 11). 

~ - Offset (/VERB LOCATION qualifier only) • Specifies the 
hexadecimal offset in hexidecimal bytes from the beginning of the 
program entry-point (STATB). 

@- Compiler diagnostic severity code. Describes the seriousness of 
the compiler diagnostic. This diagnostic is "informational", 
which means that the compiler can take corrective action. 

~ - Diagnostic source line number. Identifies the source line to 
which the diagnostic applies. In this case, OPTIONS-AREA is 
defined as larger than CUSTOMER-FILE-ID~ therefore, truncation 

@-
occurs. 

Compiler diagnostic number. 
Use this number to find 
Appendix D. 

Identifies the specific diagnostic. 
a description of the diagnostic in 

~ - Diagnostic message. A one-line description of the condition. 

C-2 SOURCE PROGRAM LISTINGS 



@ - Data Map. 
program. 
used. 

Describes the data-names and file-names used in the 
This section appears only if the /MAP qualifier is 

@-

@­
@-

@-

@)-

Level. Contains the level-indicator or level-number of the item. 
An L preceding the level indicates that the data-name is a 
Linkage Section item. 

Name. The file-name or data-name. 

Source line. The file-name or data-name 
source line in the Data Division. 

is defined on this 

Data Division location. Identifies the hexadecimal offset of the 
file or data-name from the beginning of data PSECT. For Linkage 
Section data-names, the offset is from the Ol-level. 

Directory location. Identifies the hexadecimal offset of the 
data item's descriptor. For Linkage Section data items, the 
offset 'is from the Ol-level. The RTS uses the descriptor to 
operate on a data item. 

A directory location that contains asterisks indicates that the 
compiler did not generate a descriptor because the data-name was 
not used in the Procedure Division. 

~ - USAGE. Corresponds to the USAGE clause or implicit usage of the 
data item description. The following abbreviations are used: 

DISP 
CMP 
CMP3 
INDX 

DISPLAY 
COMPUTATIONAL 
COMPUTATIONAL-3 
INDEX 

~ - Class. Identifies the COBOL class of the data item. The 
compiler determines class from the PICTURE or level associated 
with the data-name. The following abbreviations are used: 

@­

@­
@-

@-

ALPHA 
NUM 
AN 
ANEDIT 
NMEDIT 

Alphabetic 
Numeric 
Alphanumeric 
Alphanumeric Edited 
Numeric Edited 

Occurrence level. Indicates the number of 
to refer to the data-name. 

subscripts necessary 

Length. Specifies the length of the data item in decimal bytes. 

Procedure Name Map. Describes the procedure-names that appear in 
the program. This section appears only if the /MAP qualifier is 
used. 

Procedure-name. 
Division. 

This is the name as it appears in the Procedure 

SOURCE PROGRAM LISTINGS C-3 



@­

@-

Source line. Identifies 
procedure-name is defined. 

the source line in which the 

PSECT. Identifies the name of the executable code PSECT (program 
section) in which the procedure-name appears. PSECT name 
consists of the first 11 characters of PROGRAM-ID (padded on the 
right by "$" if less than 11), followed by a three-digit number. 

~ - Offset. Specifies the hexadecimal offset (distance) of the 
location of the procedure-name from the beginning of the PSECT. 

@­

@-

Segment-number. Corresponds to the segment-number in the 
for the section in which the procedure-name appears. 

Section. An 
section-name. 

US" indicates that the procedure-name 

header 

is a 

@ - Paragraph. A Up" indicates that the procedure-name is a 
paragraph-name. 

@-

@­

@­

@-

@­
@­
@-

@­
@­
@­
@-

C-4 

Segmentation Map. 
Division section. 
is used. 

Describes the segmentation for each Procedure 
This map appears only when the /MAP qualifier 

Section Name. The name of the 
Procedure Division. 

section as it 

Segment-number. The segment-number specified 
header, or the implied segment-number 00. 

appears in the 

in the section 

PSECT Name. Indicates the name of the procedural PSECT generated 
for the section. If the generated code exceeds the code segment 
limit, the compiler generates additional PSECTs; their names are 
displayed beneath the first. 

The size of the procedural PSECT in hexadecimal bytes. 

The size of the procedural PSECT in decimal bytes. 

Compiler-Generated PSECTs. Describes the procedural PSECT's 
generated by the compiler (/MAP qualifier) to provide run-time 
execution initialization. 

PSECT name. 

The size of the PSECT in hexadecimal bytes. 

The size of the PSECT in decimal bytes. 

names of all Referenced RTS Routines. Lists the 
routines (/MAP qualifier) that 
compiler-generated code. All RTS 
C74$<name>. 

COBOL RTS 
by the 

form: 
are referenced 

routines have the 

SOURCE PROGRAM LISTINGS 



~- Data PSECT Map. Lists the nonexecutable PSECTs generated by the 
compiler (/MAP qualifier) . 

@­
@­
@­
@-

@­

@-

PSECT name. 

The size of the PSECT in hexadecimal bytes. 

The size of the PSECT in decimal bytes. 

External Subprogram References. Lists the names of all 
subprograms (/MAP qualifier) referenced by CALL statements in the 
program. 

Error Severity Code. Describes the seriousness of errors. 
Chapter 10 describes the severity codes and their meanings. 

Error Count. The number of compilation errors detected for 
severity level. 

each 

SOURCE PROGRAM LISTINGS C-S 



SlATe 0 
IDE'H, ~12~80 

INOA~S 1 ~;OR"'AT 
I/OlAP 
IDEBUG-TR1CEB1CK 

ICOPV~LIST 
IVERB.LOCATION 

G)(.;\. 
0~~01 '-!.J 
00002 
00~~3 
0000U 
0~~~5 

0~0~h 

0~007 
~~008 
~000q 

~0010 
0~011 

0~012 
~00\3 

0001U 
00015 
0~010 

~~017 
00~18 
~0~lq 

~~020 
~0~21 
~~~2C 
~0023
0002q
00~2S

0~020
0P027
0~028
M02q
0~030
00031
~0032
00~33
~00Jij

00HS
00030
00037
0~038
~00H
M04~

000"1
~00"2
J0~"3
0~0"4
2004S
~~0"0
00007
~00"8
~00"q

~0~50
~~~51 

M~5~ 
~0a53 

0~~S" 
~0~~S 
00051> 
a0057 
~~~S8 
~~~5q 

~~~h0 
~001>1
~P~02

(,0) 0~"03
~ ~~~~~

L ~~000
L ~e~b7

L 0~008

L ~~Jbq
L ~~070
L ~~J71
L ('0"72
L ~~~73
L "P~70
L 0,'<175
L ~0~7b
L ~0~77

L 0~~78
L ~PJH
L ~J~~~
L M0~1
L J0"~2

* •

• •

•
•

INOCROSS.REFERENCE ILISTaSTATS f4\
I.ARNINGS 108JECT.ST1TB~ o

IDENTIFICATION DIVISION.
PROGRAM-ID. STAT8.
AUTHOR. R FRIED.
l~STALLATION. JONES MAIL ORDER COMPANY.

10 JANUARY Iqn. DA TE-oR I TTE~.
01 Tl-COMP ILED.

Ult"Q eo".d p.oq.,m,. tht. p.og.,m d.mo",t.at ••
the effeet •• "d ,d.a"t.ge. of modul •• p.og.am
de,.'Oome"t. D.~."dt"~ On op •• ato.-.peetfi.d
OPttona and the eontent. of data •• eo.d., the
~~og~.m q."e~.t •• v.rioul out~ut ••

NAME FU~CTION

EXCEPT
OOC1TS
CREDLM

Ge"erat •• an .xc.atton reDort.
Gene •• t.a m.tling l,b.la.
Gene.,te. 'c.edtt ltmtt' l.tt ••••

•••• **.* ____ ._t. ___ ••• , ____ ••• ________ .• _ ••• __ • ____ • __ *ttt_

12-J,n-IQ7q •
E~VIRONME~T DIVISIoN. **.*._. __________ . ______ . ____ ,_._. ________ ._._. _______ t*'t_

CO~FIGURATION SECTIO~.

SOURCE-CO~PUTE~.

OBJECT-COMPUTER.
** ••• ______ t __ t _____ ••• ______________________________ '. ___ •

I~PUT-OUTPUT SECTIO~.

FILE-CONTROL.

SELECT CUSTOMER-FILE
ASSIGN TO ·CUSTOM"
OR~A~llATIO~ IS INDEXED
lCCESS MODE IS OYNAMIC
RECORD ~EY IS CUST-CUST-NU~BER
ALTERNATE RECORD ~EY IS CUST-CUSTOMER-NAME
FILE STATUS IS CUSTOMER-FILE-ST1TUS.

SELECT STATEMENT-REPORT
ASSIGN TO ·STATEM"
FILE STATUS IS ST1TEMENT-REPORT-STATUS. .e.*_._t ••• __ .t._. _________ . ________ • ______ . __________ tttt_

DATA OIVISIO~. ... *._ .. _._t __ t __ ._._. __ •••••• __ • ________ ._. __________ .t. __
FILE S.CTION.

FD CUSTOMl~-FILE
LABEL RECO.DS A~E STANOARD
VALUE UF 10 IS CUSTOMEq-FILE-IO.

COPy CUSTRC.

~I CUSTOMER-FILE-QECORO.
~3 CUST-CUST-NU M8ER PIC X(el.
~~ CUST-CYSTO·E~-~AME PIC X(31l1.
'~3 CUST-l~O~ESS-LINE-1 PIC X (3111.
~3 CUST-AOO~ESS-LINE-2 PIC X (301.
0 CUST-A~DqESS-LINE-3 PIC X (3ill.
-3 CUST-AOO~ESS-ZIP-CODE PIC X(SI.
~3 CUST-P~ONE.

~~ CUST-P~ONE-1REA-CODE PIC X(31.
~5 CUST-PHO~E-EXCH1NGE PIC X(31.
?~ CUST-PHO~E-LAST-4 PIC q(ql.

03 CUST-P~O~E-NU~BER
~EOEFINES CUST-PHO~E PIC q(I~).

~3 CU~T-ATTENTION-LINE PIC X(201.
e,l CUST-C~EOIT-LI~IT PIC q(iii I VQ'l.

C-6 SOURCE PROGRAM LISTINGS

~ 0~~83 03 CUST-~E'nER-OATA REDEFINES CUST-CREDIT-~IMIT,

~ 0008q AS FI~~ER ~IC ~(bl,
~ 001685 05 ~EXT-ACCT-NUMBER "IC Q(bl,
~ eeno 03 cun-OWE-AMT
~ ee081 PIC Q(IillVQQ,
L 0011188 03 CUST-BOUGHT
~ 00089 "IC 9ClII)VQQ,
~ 00~90 03 CUST-NEXT-ORDER-SEGUENCE PIC Q(ql,
~ 00091 03 CUST-NEXT-PAYMENT-SEGUENCE PIC '1(q),
~ 0011'12

00093 FD STATEMENT-REPO~T
000Qq ~ABE~ RECORDS ARE STA~DARO~
000'15 01 STATEMENT-REPORT-RECORO,
000Qb 03 FI~~ER PIC X(51,
00091 03 AOORESS-'INOO. ~IC XC301,
00098 01 FI~~ER PIC X (II,
01lllQQ 113 AODRESS-ZIP PIC X(51,
00100 113 FI~~ER ~IC X(25),
00101 A3 FOR~-NAME,
001162 05 FILLER PIC X (6) ,
00103 05 FOR~-OATE PIC X (81,
0010q
00105 III S.R-R-i.
0010b ~3 FI~~ER PIC ~(15) ,
00101 03 REPORT-CREDIT ~IC Z,ZZZ,ZZZ,ZZ'1,QQ,
00108 03 FI~~ER ~IC ~ (10) ,
00109 03 REPORT-nO
011110

~IC Z,ZlZ,ZZZ,ZZQ,99,

eelll 01 S-R-R-3,
00112 ~3 STA TEMENT-OA 1£ PIC ~ (12) ,
eel13 03 FI~~ER PIC X (1(6) ,
0~l1q 03 STATEMENT-CAPTION "IC ~(32) ,
00115 03 STATEMENT-BA~ANCE PIC Z,ZZZ,ZZZ,ZZQ,q'1,
16A II b
00111

** ____ •• _._._ ••• __ ._ ••• ____ ._ •• _. ________ ••• __________ ttt __

00118
eellq .DRKING-STO~AGE SECTION,
00120
00121 ~I CUSTO~ER-FI~E-STATUS PIC ~(21,

001li! 01 STATE~ENT-REPORT-STATUS PIC X(Z),
B01Z1 01 CUSTOMER-FI~E-ID PIC XClql
0012q VA~Ul 'CUSTOM,OAT",
00125 01 TODAYS-OATE PIC q(bl,
0012b 01 TOR REDEFINES TODAYS-OATE,
00127 03 TODAY-YEAR PIC '1(2),
00128 03 TODAY-MONTH PIC '1(2) ,
00129 ~3 TODAY-DAY PIC '1(2),
00130 AI TOOAYS-REPORT-DATE,
00131 03 TODAY-MONT~ PIC ZQ,
0~132 03 FI~~ER PIC ~ (Il VA~UE "I".
00133 ~3 TODAY-DAY PIC '1(2),
01i11H 03 FILUR PIC X (Il VA~UE -'''. 00135 03 TODH-YEAR PIC 'I (2) ,
0~13b
~0131 01 S lANDARD-MESSAGE PIC X(S0) V'~UE SPACES,
00138
00139 ~I DISP-~ESSAGE,
001Q0 01 FI~~ER ~IC X(30) VALUE SPACES,
001QI ~3 DISP-NUM PIC 1(5),
00U2
001q3 01 YTO-CATALOG-MI~I·U~ PIC 9(10) VA~UE 1000~,
001qq
00U5 01 ~xCE"TION-INDICATORS,

0Uq6 03 EXCEPT!ON-INDICATOR OCCURS 10 "IC qCl) ,
001q1
00U8 ~'I OPTIONS-AREA,
0~IQ'1 03 npTIoNS-A~EA-CHAR nCCURS 3~ PIC XCI) ,
~0150
00151 PI A-COUNT PIC 9(2),
00152
00153 01 OPTION-STORAGE,
0015q 03 OPTION-ENTRY OCCURS 8 PIC Q(I),
~~155 01 O~TION-VA~UES qEOEFINES OPTIO~-STORAGE,

0015b 03 FI~LER PIC 9 (I) ,
0el51 88 "'ANT-STATE·E~TS VA~UE THQU '1,
00158 ~3 flLUR PIC 9(I),
0015'1 88 'ANT-I~vOICES VALUE T~RU '1,
00160 03 FIL~ER PIC q(Il,
001bl 88 .ANT-A~~-CATALOGS VALUE T~RU '1,
00162 iii 1 FIL~ER PIC '1C!) ,
~01b3 98 >ANT-SOME-CATALDGS VALUE T~QIJ 9,
00hq ~3 FILLEt< "IC 'I (11 ,
00165 88 .ANT-CREDIT-LIMIT-LETTERS VALUE I T~"U '1,
00166 P3 FILLER PIC XClI,
00161
001b8 01 RECORD-COUNT PIC 9(51 VA~UE 0,
00169 01 STATEMENT-COUNT PIC q(5) VA~UE 0,
00170 AI INVOICE-COUNT PIC '1(5) VALUE 0,
00171 01 CREDIT-LIMIT-COUNT PIC 9(5) VALUE 0,

SOURCE PROGRAM LISTINGS C-7

USE

STOP

ACCEPT

,",OH

DISPL.AY

ACCEPT

IF

,",OVE

@@
1 011217

DISPL.AY

DISPL.AY

DISPL.Ay

DISPL.Ay

DISPL.Ay

DISPLAy

ACCEPT

HOVE

IF

DISPL.AY

I n E'00~50

I n 0~01168

03 000078

~ 03 fl000e~

® @

'~~172
~~I73

"PI7~

""175
~~17b

~~177
WI78
~~179
~PI8~

~"I ~ 1r.:'\14
~0182\t:1

(~@~"0~2~1
~:>leJ

"~I~~
(~~,~0002~)

.. ~185
1O~leb

"'~IH
("~\'0~0~~)

~~IP8
0al~9
111111190

("00000b")
0Q01 q I
0~lq2

(R~0000ft0)
0~IH
~019~

0~195
(~~1'''0080)

~1'19b

"0197
i'l01ge
<W199
0~U0
1/I~21/11
~rl'l~2
~i'203

i"!2"~
1IJ"2~5
00ZI'Ib

(00I'IIIIIJ09C)
"'~2~7

(1I'01/1""'ilR~)
0112~8

(~~e01'0E0)
0020'1
"'0210
00211
~1'21Z
00213

(00000I1EC)
0021~

(''''''1'00 \0~ I
0111ZIS

('"01'1110114)
"'11'2110

(1)100010124)
0~217

PIC '1(5) VAL.UE 0.

-* •.••• --_._ •.••••• _._--_._ •••••• _-----_ •••• _---._--.-* ... -
PROCEOUR~ OIvlSlO~.

__ t ••• ___ ._ •••• _. ____ ._. _____ • _____ • __ ••• _. ___________ tttt*

DHLAk4TIV~S.

tuSTO"-E~RO~ SEC1IO~.

USE AFTER STANDARD ERROR PROCEDURE ON CUSTOMER-FIL.E.
SRE~I".

DISPL.AY "1-0 E~ROw ON CUSTO~F.H-FIL.E, CODE C"
CUSTOMER-FIL.E-STATUS
") ".

STOP HUN.

STATE"-ERROk S~CTION.

uH AFTER STA!'IDAIlD ERROR PROC~OURE ON STATEMENT-REPORT.
SBEGI".

DISPL.AY "1-0 ERROR O~ STATEMFNT-RtPORT, CODE C"
STATEME~T-REPORT-STATUS
II)" •

STOP RUN.

tNO DECL.AHATIVES.
______ ••• ___ ._. _____ • _____ • ___ • _____________ ._. ___ ._._ ••• t_

*

Thl ••• cttO" p.~fe~~. hou •• k •• pt"g
fu"ctlo"" o"Iv.

START-UP-~OUSEKEEPING SECTION 4'1,
SBEGIN.

ACCEPT TODAYS-~ATE FRO~ DATE.

MOVE CORRESPONDI~G TOR TO TODAYS-REPORT-PATE.

MOVE SPACES TO OPTIO~S-AREA.

Get CUSTOMER-FIL.E ""m'. U •• ~.flult
If "0"1 I •• "t.~.d.

DISPL.AY • ENTE~ CUSTOMER FIL.E NAME COR CR)".

ACCEPT OPTIONS-AREA.

IF OPTIONS-AREA NOT' SPACES

MOVE OPTIONS-A~EA TO CUSTOMER_FIL.E-ID

"371 POSSIBL.E HIGH OROE~ RECEIVING FIEL.D T~UNCATIU~.

I 03 1'1000'1Q (I'I~00"IJ0)
1(10218
091ll'l
a0220
091iZl
00222
00i!23

I 03 0~00A~ (000"013C)
1110ilil4

03 01'100S8 ("01'100154)
01'225

I 11'3 0000D'" (00"'0016C)
002211

I il3 0000Ee C~~~00Ie~)
01'1~il7

03 0e01~0 (A~000I'1C)

00128
03 000118 (~0000IB~)

0022'1
I 03 II'A011~ C~0000ICC)

0~23~

03 000140 C00~00IDC)
00231

I 03 00014C C0~000IES)
0~232

e3 0~01~C C000011'1F8)
140233

*

MovE SPACE~ TO OPTIO~S-AREA.

G.t optlo". f~o~ t~. OP'~ltO. a""
.to ••••• ult •• IQ"o •• "O"-.t."d •• d
oPttO" I"put.

DISPL.AY " ENTER OPTIONSI".

DISPL.AY • • P.t"t I".olc •• ••

OISPL.AY" CA. Mit' .1' catalog.".

OISPL.AY" CO. Mill .electl •• catllog.".

ACCEPT OPTIONS-A~EA.

MOVE AL.L. ZERO TO OPTION-STORAGE.

IF OPTIONS-AREA. SPACES

C-8 SOURCE PROGRAM LISTINGS

GO

MOVE

INSPECT

DlII'LAy

l'

DISPLAy

l'

Dl$I'LAy

II"

DISPLAy

IF

Dl$I'LAy

DISPLAY

ACCEPT

II"

GO

l'

DISPLAy

ITOI'

1"

DISPLAy

MOVE

II"

DISPLAY

ACCEPT

OPEN

MOH

SURT

DPEN

READ

I 03 001174 (0~~~02IJ)
~~2H

I 13 01~17C (0~0~~2Ie)
~0235

I 03 000188 (00000224)
00236
0~217
a~238

"'~2H
00240
~~241
~~242

I 03 000248 10~00~2(4)
00243

I 13 000258 1010002F4)
00244

I 03 000270 (~00003~C)
~0245
0~246

I I] 010274 100000]10)
0"247

I 0] 00028C (00000328)
0e248

0] 0002AC (00000348)
0024'1

0] 0~02C4 10000036~)
1111/12'50

I 0] 0002E4 100000]80)
00251

03 0002FC (000003'18)
U252

I 0] 00031C (1/I~0003B81
~1il25]

I I] 1003]4 100000]00)
00254

03 000354 1000003F01
a0255

0] il00]~C 10000(408)
0025~

'03 00038C 100"00428)
00257
00258
0025'1

'03 0003AC (0~00044e)
002~0

'I] 8003C4 10000(468)
0Bi!~1

I 03 800304 lele804711
08262

'0] 180414 1000004~~)
002U

'0] 00041C (00000488)
002114

'0] 0084]C (00000408)
002~5

'03 880454 1880004F0)
082U
002117

I 03 000458 1000004F4)
002118

I 0] 000478 (000a0514)
1il011l'l

'0] 0004'10 (0000052C)
00270
00271

'03 0004AC (80000548)
""'212

'0] 8004CC (0000051181
00213

'13 laa4E4 (01000580)
00214
10il75

'13 0014F4 1008005'10)
01'12"

'13 000500 1000105'1C)
00217

'13 00050C 110000S'S)
00218
00il7'l

'83 ea0sze (001015C4)
00il8e
011lil81
00282
00il8]
00i!84
a0185

'14 01'11080 1000005E8)
00i!h
01il87

INSPtCT OPTIO~S.A~E' TALLYI~r,
OPTION·E~Tqy (Il FO~ ALL oS'
OPTIO~·E~Tqy 121 FOR ALL "I"
OPTIO~·E~TRY (3) F~R 'LL "CA'
OPTION·E~T~Y (~l FO~ ALL ·CO·
OPTIO_·E_T~V (5) FOW ALL "CL",

STOP "vN,

If •• ~T·IIIi'iOICES

DISPLAY " I~vofee.",

DISPL'Y • '" eataloQs",

DISPLAY" Selected catalog.",

IF .ANT·CKEDIT·LIHIT·LETTERS

CONFIRM·OPTIONS,

DISPLAY "CONFIR~ OPTIONS, (Y)e. o~ IN)O",

ACCEPT OPTIO~S.AREA,

GO TO CONFIR~·OPTIONS,

DISPLAY "AijORTEO ijY OPERATOR"

STOP RUN,

IF oANT-INVOICES

DISPLAY" INVOICES ~ot f~ple~e~ted'

IF .ANT-STATEMENTS

DISPLAY "E"t.~ .tateme"t me"age o. CR"

ACCEPT STAlliOARO-MESSAGt,

OPEN INPUT CUSTOMER-FILE,

MOVE ""80000" TO CUST-CUST-NU~~ER,

START CUSTOMER-FILE
~EY IS • CUST-CUST-NUMBER,

OPEN OUTPUT STATEMENT-REPORT,

***** •• *****************.*****************************_t**t

MAINLINE SECTI0lll,
58EGIN,

REAU CUSTOMER-FILE NEXT
AT END

SOURCE PROGRAM LISTINGS C-9

100

ADD

PERFORM

ADD

II'

CAL.L

ADD

MOVE

MOVE

IF

MOVE

MOVE

II'

MOVE

ELSE

IF

II'

GO

GO

CALL

ADD

C-IO

I 04 00001C

~4 0U0i!8

I 04 000038

I 04 000046

I 04 00U54

I 04 0000A4

I 04 iIil0~8C

I 04 0,001lC8

I 04 000004

04 0~01lE4

04 all 0 100

I 04 0001i!0

I 04 00013C

I P4 00014C

I 04 001111>6

I 04 000178

04 0001A4

I 04 0001C0

I 04 1l001C8

04 0001E6

04 0011204

04 0~~214

I 04 00027C

I 04 00028C

I 04 1'100Cl4

(0001l05H)
00288

(01l00~1>04)
0"'289
00Z90
01'291
00292

(0~0001>10)
00293

(000001>20)
00i!94

(000001>30)
011Z95
00i!91>
00i!97
00i!98
00i!99

(000001>3C)
00300
00301
0030Z
011303
00304

(000001>8C)
00305

(0200hA4)
~0301>

00307
00308
00309
00310

(0~0"h80)
00311

(00000I>BC)
003 Ii!

(30000I>CC)
"'0313

(000001>£8)
00114
0~315

(1'10000708)
00311>

(00000724)
00317

(00000734)
00318

(00000750)
00319

(0000071>~)
0P3i!1l

(0000077C)
003i!1

(0~00078C)
003i!i!

(00000748)
003i!3

(000007R0)
00324

(00000700)
01'1325

(000007EC)
00321>

(000007FC)
~0327
003i!8
003i!9
003H
00331
00lli!
00113

(0~0008IC)
00334
~0335
00331>

(00\l0~85C)
00337
00358
~0339
~A3Q0

(00~0081>4)
003Q1
0"'342
00343

(00000874)
~0344

(001'10088C)
00345

•

GO TO END-PROCESS,

APD I TO RECORD-COUNT,

ADD I TO STATEMENT-COUNT,

If wa ".ad I "" f 1 f"g 1 ab.l f O.
a catllog, a.f"t ft,

IF .ANT-ALL-CATALOGS
OR
.ANT-SOME-CATALOGS

AND
CUST-BOUGHT NOT c YTD-CATALOG-MINIMU~

CAL~ "DOCATS" USING CUSTOMER-FI~E-RECORO

ADD I TO CATALOG-COUNT,

C~.c' fo. dflc •• pl"Cf •• f" t~.
cu.to~.~·. record,

MOVE ALL ZERO TO EXCEPTION-INDICATORS,

IF CUST-CUSTO~ER-~A~E • SPACES

MOVE I TO EXCEPTIO~-I~DICATOR (I),

IF CUST-ADORESS-LINE-I = SPACES
OR CUST-ADORESS-ZIP-COOE NOT > "0000~"

~OVE I TO EXCEPTION-INDICATOR (2),

IF CUST-PHONE • SPACES

MOVE I TO EXCEPTION-INDICATOR (3),

MOVE I TO EXCEPTION-INDICATOR (U),

IF CUST-D.E-AMT • CUST-CREDIT-LIMIT

~OVE I TO EXCEPTION-INDICATOR (5)

ELSE

IF CUST-O.E-AMT • CUST-CREOIT-LIMIT • ~,8

MOVE I TO EXCEPTION-INOICATOR (1)),

IF EXCEPTION-INDICATORS NOT z ALL ZERO

C.L~ "EXCEPT" USING CUSTOMER-FILE-RECORD
EXCEPTIO~-INOIC'TOPS,

G." ••• te • 'e •• dft lfmft lette.'
tf t~. cu.to~er ~.I •• c •• aed or
f •• nout to •• c •• d kfl lf~tt,

IF .ANT-CREDIT-LIMIT-L.ETTERS
AND

CUST-O.E-A~T NOT. CUST-CREUIT-LIMIT • ~,8

GO TO ~O-CR,

DO-CR,

CALL "CREDLM" USING CUSTOMER-FILE-HECORD,

ADO I TU C~EDlT-LIMtT-COIINT,

SOURCE PROGRAM LISTINGS

GO

C~OSE

C~OSE

MO~E

MOVf

I)ISP~Ay

MOVE

MOVE

DISP~AY

MOVE

MOVE

DISP~AY

MOVE

"'O~E

DISP~AY

MOH

MOVE

DISP~AY

STOP

MO~E

IIOH

wRITE

MOVE

MOVE

MOVE

MOVE

~RITE

MOVE

MOH

Mon

"OVE

"DYE

wlIITE

"OVE

I ~4 ~0~2B0 (0~~~0898)
• 0346
00347
110348
110349
~U50
09351
1110352
01'351
III I!Il 54
011155

I 1115 00001110 (0~010888)
01'13511

I ~5 001111110C (00000SC4)
1110357

I 05 01111111111B (11111100080111)
1110358

I IS 11100024 (011IPIDC)
1"35'1

I IS 11'11038 (1I!1II~108FII
~1!I311111

I 05 ~0e1ll50 (1'11111111111'108)
1103111

I 1115 1110005C (111101111914)
01!13112

I 05 011111070 (11011100'28)
iJl'J3U

I 1115 1111011188 (001110111940)
011!1114

I IS 1~0094 (0~1110111'4C)
003115

I 1115 1111111110AS (1II~11II"9b0)
11031>11

I 05 001111C" (11111000'178)
01'11117

I II!~ ~1'I00CC (011010984)
011lf>8

I 05 0111 II! liE 0 (111011109'18)
003119

I 1115 ell IIIIIF A (0011111111'18111)
111103711

I 05 100104 (1II1II011111198C)
10371

I 1115 1II~1II118 (11111111111900)
110372

I 05 lIIe011" (11101110111'1E8)
111037l
11111374
111111375
111'3711
linn
eoU78
0037'1
00380
" .. 381
110182
11111'181

I AI> 011'111001'1 (01111110I11A04)
""H4

I 1111> 111III10eC (01l~IIIIIAI0)
0 .. 185

I 01> 111111111018 (00000AIC)
00381>

I 11111 1l0i1A1A (011010A34)
"~187

I 1116 1I!0001C (111~0~"A40)
00388

I 1116 00004~ (000i10A4Cl
1I!0l89

I 00 11"0054 (~0~~0A58)
~n'la

I 00 00001>~ (0~~00.bQ)
00191

I 06 00~~7C (~00'~.8al
~AH2

I 1111> 0~0~88 (p0000AAC)
"U9l

1116 00~~9Q (00V~~A98)
0~.sqQ

06 0000A~ (~~~00AA4)
il039~

I 06 00008C (~~000AC~l
003'16

I 1'16 110~~C8 (~0~0~ACCI
~0Jq7

I A6 01'100D4 (~0~00AD8)
11'1'1'18

I 01> 0~00F~ (0~~00AFQI
~~39q

GO TO ~.IIII~INE •

** ••••• ********************** ••••• **.*****.*******.*.**.--.
•
•

The CUSTOHER-FI~E h •• bee" compl.t.IV
proc •••• d. R.port .Io"tftc."t COU"t ••

END-PROCESS SECTIO~ Q7.
58EGIIII.

C~OSE CUSTOMER-FI~E.

C~OSE STATEMENT-REPORT.

~OVE "RECORD COUfIIT" TO DISP-MESSAGE.

MOVE RECORD-COUNT TO DISP-NUM.

DISP~AY DISP-MESSAGE.

HOVE "STATEMENTS" TO DISP-"ESSAGEi

MOVE STATEMENT-COUIIIT TO DISP-NUM.

DISP~AY DISP-MESSAGE.

MOVE 'INVOICES" TO DISP-MESSAGE.

MOVE INVOICE-COUfIIT TO DISP-NUH.

DISP~AY DISP-MESSAGE.

MOVE 'CATA~OGS' TO DISP-MESSAGE.

MOVE CATA~OG-COU~T TO DISP-NUM.

DISP~AY DISP-MESSAGE.

MOVE "CREDIT ~IMIT ~ETTERS" TO DISP-MESSAGE.

DISPLAY DISP-MESSAGE.

STOP RUlli.
_*** ••• _ •• _____ * _____ ._. ______ ._._ ••• __ •••• __ ._._._._.t
•
*
*
*
*

Tht •• ICttO" oe"lr.t •••• t.t.m."t
for the currl"t CUSTOMER-FI~E
".COl"'d.

PRINT-STATEMtNT SECTIOfll 48.
SBEGIN.

~OVE SPAC~S TO STATEMEIIIT-REPORT-RECORD.

wAITE STATEMENT-REPORT-RECORD AFTER ADVANCING PAGE.

MOVE SPACES TO STATEMENT-REPORT-RECORD.

~OVE CUST-CUSTOMER-NAME TO ADDRESS-MINDOw.

~OVE TOOAYS-REPOAT-DATE TO FORM-DATE.

WRITE STATE~ENT-AEPORT-RECDRD AFTER ADVANCING I ~INE.

MOVE CU5T-ADDRESS-~lfIIE-1 TO ADDRESS-wINDOw.

MOVE "ACCTI' TO FOIIM-NA~E.

HOVE CUST-CUST-~UMaEII TO FOII~-DATE.

-AITE STATEHEfIIT-AEPOIIT-RECDRD AFTER ADVAfIICING I ~INE.

MOVE SPACES TO STATEMENT-REPORT-RECORD.

~OVE CUST-ADORfSS-LINE-2 TO ADDRESS-NINDOw.

~~ITE STATEMENT-REPORT-RECORD A,TER AOVANCIN; I ~INE.

MOVE CUST-AOOIIESS-LI~E-l TO ADDRE.S-~INDO".

SOURCE PROGRAM LISTINGS C-ll

PlO~f I 116 ~"'0IHC (~0U"'80~1
~~,,~~ ~O~~ tUbT-ADORESS-ZIP-COOE TO AODIIESS-Z IP,

.. Rll1o I 0b iI~~IPII (~~I'~"~~CI
~1'ij~1 .RITE STATEMENT-REPORT-AECORD AFTER ADVANCING 1 LINE,

"OOl I ~o 00"Uij (~~P~~b2~1
~ .. q02 MO~~ SPACES TO STATEMENT-REPORT-RECORD,

PlOH r 1'16 ~~~ 13~ ("'~I'~~ln~)
~P~~3 ~'OVE tUST-CREOrT-LI"IT TO REPOAT-CREDIT,

"OVE I 01> ~0~ IQ U (~~"~"1I"81
a~~~" MOVE CUST-BOUG~T T~ NEPDNT-VTD,

~RllE I ~6 ~;:~IS~ (~~~0~SSCI

~"q~5 ~~ITE STATEME~T-REPORT-RECORO AFTER ADVANCING • LINES,
MDVE I I!~ 0~01h ("'''~~t'8781

",~q~b "OVE SPACES TD STATEMENT-REPORT-RECOHD,
.. on I 06 "'~018~ ("~P~~BRql

404n "eVE TODAVS-REPOAT-DATE TO STATE~ENT-DATE,
MOvt I ~6 "~018t ("~i'~~IIC1a)

w~"08 MOVE CUST-O~E-AMT TO STATEME~T-8ALANCE,
I'DH I 06 e;/l01.~ (~~i'0~1!,")

0V.q0q MOVE "BALAII;CE DUE" TO STATEMENT-CAPTIU~.
"RITE I 06 0~"'IAC ("'~~~~l!llal

011"10 "RITE STATEMENT-REPORT-RECORD AFTEA ADVA~CING • LINES,
P<Oyt I h e~0IC~ ("~I'I"'~BCC)

t/I"'~II ~o~E SPACES TO STATE"ENT-REPORT-RECORD,
IF I 0. 0.11010" (0t11"\!0~Oft)

111""12 IF CUST-OwE-A~T • CUST-CREOIT-LIHIT
.. avE I 011 ""UE~ (0~00~fjE81

~"~13 MOVE " •• CREDIT LIMIT EXCEEDED ...
01'414 TO ST'TE~ENT-MEPORT-RECORD

~L6E I 'Ib I'H!t/lIF~ (I'0P"'tllLlF41
11'''415 ELSE

IF I 011 il0illF8 (1'I110ll0BFC)
I/0q'" IF CUST-OwE-A~T ~ CUST-CREOIT-LIMIT t a,.

MOH I 06 ,,,,0218 ("~000CICI
I!P417 HOvE ·CONSIDER AN INCREASED CREDIT LIMIT, •
'1'1418 TO ST'TE~ENT-REPORT-RECORD

ELSE I "'6 00022" (i'~0Ii1ti1C2BI
01'41'1 ELSE

MOVE I 0. il0022C (1'I~1'I0I11C3i1)
tilP42iJ "OVE STA~O'R~-MESSAGE TO STATEMENT-REPORT-RECORD,

_RITE I 011 0"0238 (D,.'1'I00C3CI
"'1'421 MRITE STATEHENT-~EPORT-RECORD AFTER ADYANCING 4 LINES,
1/10422
"'~421 SE_IT,

E_IT I /!III 0~~25C (H""""!Cb0)
"''''42" EXIT ,

C-12 SOURCE PROGRAM LISTINGS

sun
@

1~-J."~lq7q ~AI~~115 vAX-II CO~OL-7u Vq.~"'·~'l
IDENT, 1IIIi!1l811 SfAT8.Cll~,U

DATA ~AP

?: UVEL NAME SOU~CE DOIV DIR uSAGE CLASS acc LENGTH

@ @ ~ LI~E LDCN LOC

@ @) @) @ 'D CUlT OMER-F ILf. 00~~1 0000~u (!!)
'D STATEMENT-REPORT \le093 U"ili!~
It CUSTOMER-FILE-RECORD "~~08 0~01FA ~rn0e~ DISP A., ~0 1'0200;

n CUIT-CUST-NUMBER 00011'1 il~0IFA 0d~011C DIS" AN ~~ '40~P.b

n CUIT-CUSTOMER-NAME 00V!7~ 11302:10 "'~~f1Il8 DISP AN ~0 ~~"3,J
n CUST-ADORESS-LINE-I 1110071 161'02 I E 110002U DISP AN ~1Il ~II.'3"
n CUIT-AODRESS-LINE-i! 0~1l7i! 111002}C ~111~030 OISP A'I "'" ,,0"3 ..
IS CUST-ADORESS-LINE-3 0PIl73 illl1ll25A 0~IIlI!I3C OUP A~ 00'1 "1' .. 3~
n CUIT-ADDRESS-ZIP-CODE 000711 1100i!78 ~"~~48 OISP A'I 110 ,."'''''';
IS cun-PHONE ~"'III7S "'il027!l 00~~54 OISP A" ~~ ... erll"l
15 CUIT-PHONE-AREA-COOE I<'Uh 0011270 *tttt* DlSD AN ~" A0!/1oi1l
15 CUST-'HONE-EXCHANGE 0~077 16~0281! i**tt_ (lISP AN ",,, ~"'~iU
15 CUST-PMONE-LAST-/j 1110078 0"'''283 _*tt_t DtsP NUM ~0 "0!/1~1I
n CUIT-'HONE-NUMBER 001l'79 01/10270 tttt*_ DISD NUot !/I 0 (lI!IA\.l
n CUIT-ATTENTION_LINE 1II~"'81 11002117 .. ,._- UISP 4~ ~I!' ";1"'211
n CUIT-CREDIT-LIMIT 0~08Z 0~02'1H 0"~IIU OISP ~l!'" tJl 0 "1110112
n CUIT-HEADER-DATA 110083 0UZqtj _t.-._. DISP AN t"~ """12
15 NEXT-ACCT-NUHBER 0~085 ~~0ZAI *t_.*_ DISP NUH ~~ II~001>

n CUn-OwE-AMT 1l0~a. 0",O247 0e0011C DISP "U~ ~1iI il0~12
n CUlT-BOUGHT 01'088 "~I/Il83 UI'il78 DISD 'IIU'I ~" "'''~12
n CUST-NEXT-ORDER-SEQUE~CE 300'111 0~\l2!1F

t ... OISP OJ I) II ~0 il0004
n CUST-NEXT-PAYMENT.SEQUE~CE ""0'11 0111d2C3 .t •• _. fllSP NUll 1'0 000"11

II STATEMENT-REPORT-RECORD "\'1,,'15 0002CA 0000811 DISP ,~ It0 001'8.~

n ADDRESS-WINDON 00097 frltlJIl2CF 0Q1U90 DISP '" ~0 001'3~

n AOORUS-UP 0~nq 00~2EE 011'1I1119C OISP 4~ "" "0~1I5
IS FORM-NAME ~elYJl ",003~C 01110048 DISP A~ 1'111 "0~14
15 'ORM-OATE 0Un 0~"312 "0111084 !>ISP A'I ~" 0111008

II S-R-R-i! 0U05 00UCA
t._. __

DISP A~ ~it "'0~57
n REPOAT-CREOIT 0U167 ""UD' ~00111C0 DISP N04EDIT 01" 101'10111
n REPORT-no' 001~'I e~"2F3 0&l00Ce DISP N'4EDIT ~~ "I'~I~

II I-R-A-3 "'''III ""1!2CA t.ttt. DISP A~ ~~ o I!(IJ 7 II
n STA TEHENT-DATE I1IIIIIZ 01/11i12CA "'U00A DISP A~ ~~ e~"12
n STATEMENT-CAPTION II~1I4 1II~02E0 0""0E4 DISP A" "0 P0HZ
n STATE~ENT-BALANCE ""115 1l0UIII' 00f110FtIJ DISP N~EDlT (lI0 en I b

II CUSTOMER-FILE-STATUS 00121 00031C ~0aIllFC DISP AN ~0 "0~lIl
II ITATE~ENT-REpORT-STATU8 Il~U2 0"0JIE ~1II1I108 DISP AN Pili 0i1'JV!2
II cunOMER-nLE-IO 1I!/llZl 01110320 ~"'0\ IU OISP AN \10 IIi/t~14

II TODAYS-DAlE 0eU5 il~~32E ~"'0IO!II DISP NUH ~0 ~11'~1!1I

II TOR ~"UII 111003i!E ~01Hi!e DISP A~ "'" "'01'11'11
IS TOOAY-YEAII Il'IIIU7 111003<1E llloiI~138 DISP Nuot 011 (101''''2
n TODAY-MONTH 0ilU8 0011330 ~0011111 DISP NUll ~0 01't(~02

IJ TODAY-DAY 0111 Uq 11011332 1100150 OISP NU" pll IIIl'0102
It TOOAYS-REPORT-OATE '" 130 ""'''334 "0A15t IHSP A~ 1'10 1'11114118

n TODAY-MONTH 001l! ,,!/IU311 01'101118 DISP ~~ED IT o III 00002
n TODAY-DAY fU33 000337 0014174 OISP NUot !11~ 00002
n TODAY-YUR 0~ 115 00033A 1l110l ... DISP NUH Iillil 011002

I' STANDARD-HESSAGE 01'1137 1li1hl33C U0l8C DISP AOj 0111 00050
It OUP-MUSAGE 111013q 11101131>E 0UI'l8 DISP A~ 00 i!IIItlJ35

n DlIP-NUM 110141 8011138C "''''I'll All DISP N~EDIT e0 "01'1115

" YTD-CATALO;-MINIHUM fIII1I1113 iI~1I392 0UI1I0 DISD NU04 fII~ 01h!ll!
II EXCEPTION-INDICATOAS 01111145 il016nc 0001l!C DISP A~ Rill 0!/l11l10

n EXCE'TION-INDICATOR 01'1141> lIIi1!03qC 0111101IC8 DISP NUM pi II1l'0" I
II O'TlONI-AREA 11114148 nUb !/IUIES DISP '" 011 00031'1

n OPTIONS-AREA-CHAR 0"IU 0"03AII ~~I!IF4 !)ISP AN el "'O(/101
-.I. A-COUNT 01'1151 lil~iI3C4 001ili!lij DISP NIlH 01! "''''~02
It OPT ION-STORAGE 1/10153 lI11nCI> !1I1110Zi!1oI DISP A~ 0'" 1110008

IJ OPTION-ENTIIY IIfIII54 1il~1l3CII UIil2i!C DISP N!)04 "I dilUI
II OliTiON-VALUES "'111155 "oIIllCII .***** DISP AN IIIl un8
II RECORO-COUNT 0011>8 1l0rrJlCE 1100288 DISP NU04 !/I 0 111110"'5
II IT AlEMENT-COUNT Illlllfl'l 111011304 0~Ili!C4 OISP I'4UI4 A0 01111'1115

" INVOICE-COUNT 1110170 1II~03DA 001il2DIII UISP NUH 0111 1l1l0f1l5
II CREDIT-LIMIT-COUNT 00111 00i13EfIl "ilezOC DISP 'iUM PiiI "001'15
II CATALOG-COUNT (1101 7 i! 1'I111Il3EII "'''IilZES DlSP I'4UM U 1'1 IrI 11111 5

SOURCE PROGRAM LISTINGS C-13

SUTII
IDENTI d1Z086

NAHE

@
CU8TOH·E~ROR
SBEGIN
S1 ATEI4-ERHOR
SBEGIN
S1ART.UP.HOUSEKEEPING
SBEGIN
CON'IR"·OPTlO"S
HU .. LlfllE
SBEGl ..
DO·CR
ENO·PIIOCESS
SBEU'I
PRlItIT.STATE"ENT
SBEGh
SEXn

ST ATB
IDEIIITI 11120811

~ SECTION NAI4E

CUSTOM·ERROR
STATEM·ERROR
STA"T·UP.HOUSEKEEPING
M'I"UNE
E"O·PRQCESS
PRl"T·SUTE"EltiT

sun
IDENTI 01Z081> ~

~
COMPILE~ GENERATED PSECTS

@)
P~OCEDUU NAME HAP

SOURCE PSECT OFFSET
LIN~ @ ® @h
1I~182 STAT8SSSSUUIII ~1I01lQlIII

00184 STATIIUSSSSSIIIIII (.11111'1['111111
"'01'1~ STATBSSSSSSUIlZ i!1il1!l1l1l1l
01111'1Z STATBSSSSSSSlllll2 0110111il1ll
01lZ115 STATBSnSSSUU 01111111111
IilllZilll STATBUSSSSS0B3 0UIIIIQI
0l'125f1 STAT8USSSUU3 I11I00AC
1'111284 STATBSSSSSSUilli I1Ilillllll!llll
1111285 STATBSSSSSSSU4 0111)(1I11l
IlIi13 II 1 STATBSSSSSSUU OIIIIlZ8C
1110354 SUTBUSSSSUII5 111 III oJ iii I
111111355 STATBSSSUSSIIIII5 111111'111111
IIIUU STATBUSSSSSQlIlIl 11111111111110
Inn ST ATBSSUSSSllle. 1111111111.111
IIIIlIIZl STATBUSSSSSIII". 111II1I25C

®
SE~"EIIITATION MAP

SfGMENT~

Ill'l~
II'"
4'
Ii\I"
47
118

NAME ®
S T ATBSUSSSSilill
SUTBSSUSS100Z
STATBSSSSSSS0~3
STAT8UUUUIil4
STAunSSSUilIII5
STATB$SSU"iI~b

NAME @
SUTBUSUUIIIIIIII

@) SIZE @
uni!. 000311

C-14 SOURCE PROGRAM LISTINGS

IZ.Je".I'I" 11811111115

SEG SECT PAllA

® ® @
Iii S
01 P

~" S
ill P
4' S
II' P
n P
01 S
1111 P
1111 P
47 S
47 P
48 S
48 P
48 P

IZ·Je".1'I7. 118141115 .

@) SIZE ®
1Ii1I11Il3C 1111111011
1II"''''e3C 0f111l11111
U\!5I1C 11113511
"'''''lOll 1II1!7l111
011110IIIC II 1133 i!
""1Ii!711 IIII111oZ4

VU·II COBOL·?II V •••• ·11
SUTa.COB,.

VAX·II COBOL-7. v •••• ·.,
'UTa.COB, •

VAX·II COBOL.? v •••• ·.,
SUTa.COB,.

IUTa
IDENT. 11121186

®
REFERENCED DTS ROUTINES

t7 IONE
t7QUUCC
t711IXhTIO
t7111tGPL T
t7I1SCFS"'E
t7111"CFST
t711UPRFI

C74SXOPEN
C7UXEDIS
C7/1SXINTD
C7OSCZDL.E
C741CSTGT
C70SMGNG

C74SXREDN
C711UGO
C7/11XACCS
C711SCGPLE
C7/1SCZDGT
C7I1SMGL.A

STATB
IDENT. lUll"

DAU PIECT HAP

NAME @
ITATBUUIISDAT
IUTBUtsSSlDDD
IUTBSU"'U~IO
.UTBISUUS~RK
IUTBUSSSSSLIT
IU TBSUSSSSL TD
IUTBSIISSlUDT
ITATBSSSSSUUSE
ICaxAI
ICBFDI

STUB
IDENT. 01211"

® SIZE @)
11111111.. 11111'311
1I111lllC 1111711/1
IIlJllllfilll IIIBIIIII
IIIUIIA nU6
UUCII UTa4
IIIIJIII2DVI IIIUI
IlIIlJeail Illlln0
IInnll IIU)2
UIUII ueaa
Ii!GlllII~1I UIl1l4

®
EXTERNAL SUBPROGRAM REFERENCES

DOtATS EXCEPT

sure
@.IDENT. 012986 ®

SEYERITY E~RO~ COUNT

C711SXwRJT
C74SXENDP
C74SXINJT
C7/1SCSTEII
C711SCGPGT
C711UAF2D

C74SXSTAR
C7/1SXSTPR
C 7OSCZDL. T
C7GSCFSEQ
C74S~CAD
C7I1U~G3P

C7OSXCL.OS
C711SXINSH
C7/1SCGZL. T
C7USCSTNE
C74S~JUSL.
C70SUIX I

YAX-II coeOL-711 VII"II-el
STATB,COB,II

VAX-II COBOL.-711 YII,Ia-YI
STAT8,COB,1I

VAX-II COBOL-Til YII,~0-al
sUn,COB,1I

VAX-II COeOL-711 Y4,e~-01
STAn,C08'~

SOURCE PROGRAM LISTINGS C-lS

DOCHS
IDE'T: ''12~8''

INo':;sr~F'l~MAT

I~'P
IDE~U,:r~ACE·AC'

IC O~ Y ... LlS T
IVE~~ ... LOCAT1UN

~~J" 1
~~~,,12 

}~~~l 

~~~.~ 

~~~0S 

~~~~" 
~~~~7 

~\1!.'.1~8 

~~009 

~P~I~ 

'~~~II 

~~012 
~~~ Il 
~~01~

~0~15
~~0Ib

~0~17
~r~18
~a~19
~~020
~~~21 

~0~22 
'~~023 
~~~2~ 

~~~25 

~~~2& 
0~1i!27
~~028
~0~29

~~030
00~31
~0H2
~~~13 
e~~34 

~0035 
0003& 
~~~37 

~!l~38

0"I6H
de~40
0~~41

e~1642
0~043
0~e44

1'10045
~ 1!0a~&

~ ~0047

~ 1601648
~ 00049
~ e~1!50
L. 016051
~ ~0052
~ 00053
~ ~a054
L. 160d~5
~ 1!0050
~ 001657
~ 001458
~ 161'1059
L. 00000
~ 160001
~ 016002
~ 000&3
~ 1600&4
~ 161616&5
~ 16016&6
~ 16160&7
~ 1616068
~ 160069
~ 16016716
L. 160071
~ 1601672
~ 160073

e0aH
.,01675
1601676
eal!77
001678
161'1167'1

USE I 161 e0000~ (a0~l6aa28)
16016816
1601681

VAX-II COBO~-74 V4.00-al
00CATS,COB,6

I~OCNOSS ... ~EFERf~CE ILIST'DOC~TS
I.A~'I~GS ID"JECT:OOCATS

IN.ln IFlC-TlUN DIVISIO~,
PQJG"'41'4-IfJ.

~OCATS,
DATE-.~ I T H.~,
OATE-COMPILED,

T~i. 'uh.p~o~~.m o~i~ta a m.tl(~Q label
fo. @Ich CIJSTO~ER-F1LE •• co.d " d fro,"
t"~ ca11t~o o~og~a~.

12-Jo"-IQ7Q ,
ENVIRONMENT DIVISIO~,

CONFIGURATIO~ StCTIO"
SOURCE-CO~PUTE~, VAX-II,
UBJECT-COMPUTE~, VAX-II,

INPUT-OUTPUT SECTION,
~·I~E-C~~TRO~,

SE~ECT ~A6E~-REPO~T
ASSIGN TO ·LA~E~·
FI~E STATUS IS LA8EL.-REPORT-STATUS,

~ATA DIVISIOJ"

fILE S~CTION,

FO LA~E~-p~PlJqT

~A8EL RECORDS ARE STANOARD,
~I LA~EL-~EPO~T-RECORD PIC X(40),
~I ~-~-OE"I~,

~3 FIL~ER PIC X(34),
U3 ~R-ACCOU~T PIC X(~),

~I L_R-DETAIL.-2,
~3 FILLER PIC X(32),
v3 ~R-ZIP PIC X(5),

.ORKIN~-STORAGE SECTION,

~ I ~'~EL-REpORT-STA TUS
VA~UE "xx",

LINKAGE SECTIO~,

COPy CUSTRC,

01 CUSTOMER-FI~E-RECORO,
~3 CUST-CUST-NUMBER
~3 CUST-CUSTOMER-NA~E

~3 CUST-ADDRESS-~lNE-I
P3 CUST-AODRESS-~INE-Z
03 CUST-AODRESS-~INE-3

piC X(2)

~3 CUST-ADORESS-ZIP-COOE
~3 CUST-PHO~E,

05 CUST-PHONE-AREA-COOE
05 CUST-PHONE-ExCHANGE
05 CUST-PHONE-~AST-4

03 CUST-PHO~E-NU~BER

PIC
"IC
PIC
PIC
PIC
PIC

PIC
"IC
PIC

X(o),
X(3a),
X(30),
X(30l,
X(3i1),
X(5),

XO) ,
x(3),
9(4),

REDEFINES CUST-PHONE PIC 9(10),
03 CUST-lTTENTION-~INE PIC X(Z0),
03 CUST-CRE~IT-~IMIT PIC 9(10)V99,
03 CUST-HElDER-DlTA REDEFINES CUST-CREOIT-~IMIT,

as FI~~ER PIC X(6),
05 ~EXT-~CCT-NUMBER PIC 9(6),

~3 CUST-OwE-lMT

03 CUST-BOUGHT

03
03

CUST-NExT-OROER-SEQUENCE
CUST-NEXT-PAVMENT-SECUENCE

PROCEDURE DIVISION USING
CUSTOME~-FI~E·RECORO,

OEC~ARATIVES,

REPORT-ERROR SECTION,

PIC
PIC
PIC

9(10) V99,
9(4),
9(4),

USE AFTER STANDARD ERROR PROCEDURE ON ~ABE~·REPORT,
S8EGIN,

C-16 SOURCE PROGRAM LISTINGS

OISPLAY I "I 0~000~ (0~1"~""28)
00062 nISP~AY "1-0 EQ~OR ON lA~f~-REPukT, C(JDE ("
"'0"83 ~ABE~-QEPUWT-ST'TU5

~~0a4 ") ...
~0"85
00086 ~~D DEC~ARAT IHS,
00087
00088 ~AIN~INl SECTION,
0"089 SSEGIN,

l~ I 02 0~0000 (000"0~60)
000'10 IF ~Ao~L-REPORT-STATUS = ".X'''

OPEN 02 000010 (00~00070)

0"091 OPEN OUTPUT ~AREL-"EPOOT,

HOVE I 02 00001C ("0~0007C)
000'12 ·OV~ SPAC~S TO ~A8EL-QFPOQT-~ECO~D,

MOVE 02 000028 ("00~0088)
00093 MOVE CUST-CUST-NUMHER TO L~-ACCOUNT.

~IUTE 02 000034 (0000~0'14)

001694 WRITE LA6EL-REPO~T-QEcnRD
00095 AFTER ADVANCING I Ll~~,

MOVE 02 00005~ (0000008~)
id0~9b MOVE CUST-CUSTO"ER-NAME TO LA8EL-kEPORT-RECOQD,

WRITE 02 00005C (11000008Cl
00097 .RITE LABEL-REPORT-RECORO
00098 AFHA ADVA~CING 2 LINES.

MOVE 02 000n8 (00000008)
00~99 MOVE CUST-AooRESS-LINE-1 TO LAR~L-REPORT-RECORD,

WitHE 02 000084 (0000140E4)
00U0 -RITE LA~EL-REPORT-RECORD
00101 AFTER AOv~~CING 1 LI~E,

HOVE 02 0001/lU (000~0100)
0"102 MOVE CUST-AOORESS-LINE-2 TO LAbEL-~EPO~T-R~cnRO,

.'11 TE 02 0000AC (0000010CI
00101 wRITE LABEL-REPO~T-RECORO
00104 AFTER AOVA·,e I NG 1 Ll NE,

MOVE 02 0000C8 (000160128)
0P105 MOVE CUST-ADORESS-LINE-3 TO LA~EL-REPORT-RECORD,

HOVE 112 000004 (00000134)
001~6 MOVE CUST-AOD~ESS-lIP-CODE TO LR-ZIP,

~RITE 02 0000E0 (30000140)
00107 wRlTE LABEL-REPORT-RECORD
~0108 AFTER AOV"'CI~G I LINE,

HOVE I 02 0000FC (000001~C)
00109 "'OVE SPACES TO LA8cL-REpoRT-REeO~D,

~RITE 02 000108 (~0''00108)
00110 "RITE LA8EL-~EPORT-REcnRO
~PIII AFTER AOVA~CING 2 LINES,

EXIT I 02 000124 (00000184)
0~112 ExiT PROGRAM.

DOCAfS IZ-Ja"-197Q r~141122 V AX-II CoeOL-74 V4.0~·~1

IOENT I 012086 onCATS,CO~,6
OAT A MAP

LEVEL NAME SOURC~ OOIV DIR USAGE CLASS OCC LENGTM
LINE LOCN LOC

I'D LABEL-REPORT ~0029 "'~"~20
II LABEL-REPORT-RECORD 00031 00014C 0~0000 DISP AN 0~ ~~~4~

II L-R-DETAIL 0"'032 00014C ***t*. DISP AN 00 ~0~4~

n LR-ACCOUNT 00034 0~01eE ~~00~C DISP AN "~ 00~"6
1111 L-R-OEUIL-2 0l'1035 1l1!014C ***._. OISP A~ ~~ 00037

n LA-ZIP 00017 00010C 0"'~018 OISP AN 00 ~0005
II LABEL-REPORT-STATUS 00041 000176 000024 OISP AN ~0 ~~002

LI CUSTO~ER-FILE-HECORO 00049 0000110 -*.-.. OISP A~ ,,~ ~0205
L n CUST-cun-NUM8ER 00~50 0~0000 0000"0 DUP AN 00 ~0~06
L n CUST-CUSTOMER-NAME 0~051 000"06 0~~00C DISP A~ ~~ ~003~
LU CUST-AOORESS-LJNE-I 00052 ~~0~24 '1e~01 8 DISP A~ ~0 0~~3~
L n CUST-AOORESS-LINE-2 00053 0~0042 0~0~24 OIS~ AN ,,~ ~003"
L 113 CUST-AOOA£SS-LINE-3 "'0054 000060 ~0~0H OISP AN r'0 ~003~
L n CUST-AOORESS-ZIP-CODE 0~055 0011"n ~~~03C OISP AN 0~ ~0005

L 1113 cun-pHONE 00056 0110063 - •• 111 •• DISP AN 1'0 00010
L 15 CUST-PHONE-AREA-COOE 00057 0~"'083 •• 111 ••• DISP AN P0 00003
L 15 CUST-PHONE-EXCHANGE 000~8 0.!0086 * ••••• olSP A~ ~e 00003
L 15 CUST-PHONE-LAST-4 0005'1 1600089 - 01S~ NUM 00 ~0~04

L 1113 CUST-PHONE-NUMBER 011060 000083
.t. ___

OISP ~U" ~~ 0001~
L n CUST-ATTENTION-LINE 00002 ""'0080 -. OISP AN ~0 00~20
L n CUST-tREDIT-LIMIT 00003 0000AI *t_ ••• OISP NUM 0~ 00012
L n CUST-HEAOER-OATA 00004 0000&1 till ttlll t DISP AN ~e ~0012
L 111!5 NEXT-ACCT-NUM8ER 00000 00~0A7 •• _t __ clap NUM 00 00006
L 113 CUST-O~E-AMT 00067 0000AO _._t_. DISP ~UM ~0 00012
L n CUn-BOUGHT 0~06'1 0~00B9 t_._.t DISP NUM 00 00012
L n CUST-NEXT-ORDER-SEQuENCE 011071 0000CS ttt._t OISP NUM ~0 ~~004

L 1i3 CUST-NEXT-PAYMENT-SEQUENCE ~0072 0~00C9 *tttlll_ OISP NIJM ~0 0e00ij

SOURCE PROGRAM LISTINGS C-17

DOC."
IDEi'lT, 11121810

PROCEDURE NAME HAP

NAME SOURCE
LI"E

PSECT OFFSET SEG IECT PARA

IIE"ORT-ERROR
saEGIN
MAINLINE
saEIUN

OOCUs
IDENT, I1I2I1U

0iln
11111181
1II111l88
II1II118'1

DOCATSSUISSIIIIIII
DOtATUnSSSIIJlII1
DOCAT"SS'1I1II1I2
DOCUUSSSSSlll8i!

AIUIIIIIIIII
IIIIIJIIIIIIIIII
1111111111111111
IIIIIIIIUI

SECTION NAME

RE"DU-ERROR

SEGMENTATION MAP

SEGHENT NO. NAME

MAINLINE

OOCATS
IDENT, 111121U

COM"ILER GENERATED "SECTS

N.ME

DOCUIISSUUIIII
OOCATSsUSSnU

DOCUS
IDENTi 1121U

IUII2S
111111l1li1

REFERENCED OTS ROUTINES

C?QUOPEN
CT"XSUIK

DOCUS

CT.,XWR IT
CT4IXINIT

10ENT, I1I2I1U

SIZE

IIIlIIau
111111114

CTIIUEDIS
CT4SCST"E

OAt A PIECT HAP

N.ME SIZE

DOC A TSISSSSSDU
DOC.n UDDO
OOtA TSISSSSSARG
DOCAUnSSSSWRK
DOCUSISUSSLIT
DOtAU LTD
DOtATSSU .. UDT
DOCUSnSSS.USE
'CBUI
IC8FDI

DOCUS
10ENl! 111218.

11111111178
III1I1UI
11111118
1111111 A
I III I2E
IIII111UC
111111111
11111111121
1111111l1li111
1111111

1111113711
011148
lIun
111112/1
II1II1111.
11111l1li
IlIIIn
11111132
1111l1li
l1li11111

EXTERN.L SUBPROGRAM REFERENCES

NO EXTERNAL SUBPROGRAM REFERENCES

NO ERRORS

110
11111

DOCATSu.nUGlI
DOCATUSSSUIIII/J2

C74SXGO
CT4SMJUIL

C74SXENOp
CTUMCFST

C-IB SOURCE PROGRAM LISTINGS

111111
U
III
III

111111111138
1II11!13C

S

S

SIZE

CT4SMlEXn
CT4IMGLA

P

P

YAX-II COBOL-Til YII ••• ·.'
DOCATI.COR,.

YAX-" COIOL.TII VII •• III·.'
DOCUI.Coe,.

YAX.,I COBOL-T4 VII ••••• '
DOCUS.COI,.

vu." COIOL.U YII •••••. ,
DOCATI.COI,.

VAX.II COIOL.TII VII ••• ·.I
DOCATI.COI,.

VAX·II COBOL.'II VII ••• ·II
DOCATI.COI,.

APPENDIX D

DIAGNOSTIC ERROR MESSAGES

This Appendix contains a numerical listing of the diagnostic messages
generated by the compiler. Following the text of most messages are
explanations of the diagnostics, including descriptions of the
compiler's recovery actions.

001 CONTINUE PUNCH WITH BLANK STATEMENT. IGNORED.

A blank line has a continue indicator.
The continue indicator is ignored.

002 QUOTE OR CONTINUE PUNCH MISSING. QUOTE ASSUMED.

A non-numeric literal has no quote and
the following line has no continuation
indicator. A terminal quote is assumed
at the end of the line.

003 VIOLATION OF AREA A. ASSUMED CORRECT.

The first non-blank character on a
continued line occurs in Area A. The
error is ignored.

004 LINE LENGTH EXCEEDS INPUT BUFFER. TRUNCATED.

Continuation lines cause a COBOL word to
exceed the capacity of the input buffer.
The word is truncated on the right~ the
number of characters retained depends on
the type of word being processed.

005 .10 CONTROL. WITHOUT .FILE CONTROL. IGNORED.

An I-O-CONTROL paragraph appears when no
FILE-CONTROL paragraph was present. The
I-O-CONTROL paragraph is ignored.

006 .STRING. DATA ITEM MUST HAVE DISPLAY USAGE.

A data item in a STRING statement is not
defined with DISPLAY usage. Fatal.

007 NAME EXCEEDS 30 CHARACTERS. TRUNCATED TO 30.

A character-string that appears to be a
name exceeds 30 characters in length.
The string is truncated on the right to
30 characters.

010 NUMERIC LITERAL OVER 18 DIGITS. TRUNCATED TO 18.

A numeric literal exceeds 18 digits in
length. The literal is truncated on the
right, with any necessary adjustment to
scaling. The sign is retained.

011 NUMERIC LITERAL HAS MULTIPLE DECIMAL POINTS.

A numeric literal has more than one
decimal point.

012 PICTURE CLAUSE ILLEGAL ON GROUP LEVEL. IGNORED.

A group level item has a PICTURE clause.
The clause is ignored.

013 .SELECT. NOT FOUND. SENTENCE IGNORED.

A FILE-CONTROL statement should begin
with the word SELECT, but does not. All
words up to the next period are ignored.

014 JUST.SYNC.BLANK CLAUSES WRONG AT GROUP. IGNORED.

A group level item may not contain
JUSTIFIED, SYNCHRONIZED, or BLANK WHEN
ZERO clauses. The clause is ignored.

015 FILENAME MISSING OR INVALID. SELECT IGNORED.

A SELECT statement either contains no
user name or the the user name is
invalid. The SELECT statement is
ignored.

016 USAGE CONFLICTS WITH GROUP USAGE. USES GROUP.

D-2 DIAGNOSTIC ERROR MESSAGES

The usage specified for
differs from the usage
higher group level. The
usage is used.

this
stated
group

item
at a
level

017 ILLEGAL NUMERIC DATANAME IN • STRING.

A numeric
statement
Fatal.

data item in a STRING
has an illegal description.

020 .ALL. ILLEGAL IN CONTEXT OF .STRING. STATEMENT.

An ALL literal has been used in a STRING
statement. Fatal.

021 SYNTAX ERROR OR NO TERMINATOR. CLAUSES SKIPPED.

A SELECT statement is missing its
terminating period, or an error causes
the statement to be processed before all
clauses were found. The SELECT
statement is ignored.

022 NUMERIC LITERAL ILLEGAL IN THIS STATEMENT.

A STRING, UNSTRING, or INSPECT statement
contains a numeric literal. Fatal.

023 SENDING LIST OMITTED IN • STRING. STATEMENT.

A STRING statement contains
fields before a DELIMITED
Fatal.

no sending
BY phrase.

024 MORE THAN ONE FILENAME IN .ASSIGN.

The non-numeric literal
clause contains more
specification. Only
specification is used.

of
than

the

an ASSIGN
one file

first

025 ILLEGAL DATANAME FOLLOWS .INTO. IN . STRING.

The recelvlng field of a
statement is invalid. Fatal.

026 SUBSCRIPTING DEPTH EXCEEDS 3. OVER 3 IGNORED.

STRING

The OCCURS clause is nested more than
t~ree deep. The clause is ignored.

027 VALUE ILLEGAL IN OCCURS ITEM. IGNORED.

A VALUE clause appears in an item
an OCCURS clause or in an
subordinate to an OCCURS clause.
VALUE clause is ignored.

DIAGNOSTIC ERROR MESSAGES

with
item
The

D-3

030 VALUE ILLEGAL IN REDEFINES ITEM. IGNORED.

A VALUE clause appears in an item that
either contains a REDEFINES clause or is
subordinate to an item with a REDEFINES
clause.

031 NO TERMINATOR FOR .10 CONTROL. PARAGRAPH.

The I-O-CONTROL paragraph is not
terminated by a period. The terminator
is assumed present.

032 .MAP. NO LONGER APPLICABLE. IGNORED.

An APPLY clause
not applicable
future versions
APPLY clause is

with the MAP. option
for this version

of the compiler.
ignored.

is
and
The

033 AN 10 CONTROL CLAUSE WITHOUT FILES.

034 SYNTAX ERROR IN .APPLY.

A file-name is missing in a clause of
the I-O-CONTROL paragraph. The clause
is ignored.

An APPLY clause has illegal syntax. The
clause is ignored.

035 INVALID ACCESS MODE. TREAT AS SEQUENTIAL.

The SELECT statement contains an invalid
ACCESS mode. SEQUENTIAL ACCESS mode is
assumed.

036 INVALID FILE ORGANIZATION. TREAT AS SEQUENTIAL.

037 NO SELECT STATEMENTS.

The SELECT statement contains an invalid
ORGANIZATION specification. SEQUENTIAL
organization is assumed.

A FILE-CONTROL paragraph either contains
no SELECT statements or none of those
present is valid. The FILE-CONTROL
paragraph is ignored.

040 .ASSIGN. OMITTED FROM SELECT. SELECT IGNORED

D-4 DIAGNOSTIC ERROR MESSAGES

A SELECT statement contains no ASSIGN
clause. The SELECT statement is
ignored.

041 DECIMAL PLACES TRUNCATED.

Decimal places have been truncated from
a numeric literal during conversion for
use as an integer. The integer
positions are used.

042 INTEGER EXPECTED, ZERO ASSUMED.

An integer literal was expected, but
fractional positions were found. The
literal is ignored and a value of zero
is assumed.

043 INTEGER VALUE TOO BIG. LARGEST VALUE USED.

A numeric literal is too big for
conversion as an integer in the given
context. A value of 32,767 is used.

044 ERROR IN DATA RECORDS CLAUSE. CLAUSE SKIPPED.

The word DATA is not followed by RECORD
or RECORDS in the DATA RECORDS clause.
The DATA RECORDS clause is ignored.

045 ERROR IN LABEL RECORDS CLAUSE. CLAUSE SKIPPED.

The word LABEL is not followed by RECORD
or RECORDS in the LABEL RECORDS clause.
The LABEL RECORDS clause is ignored.

046 NO INTEGER IN BLOCK CLAUSE. CLAUSE SKIPPED.

The BLOCK clause does not contain a
numeric literal. The BLOCK clause is
ignored.

047 BAD VALUE IN BLOCK CLAUSE. CLAUSE SKIPPED.

The numeric literal in the BLOCK clause
causes an illegal block size. The block
size in bytes must be greater than 0 and
less than 32768. Clause ignored.

050 NO INTEGER IN RECORD CLAUSE. CLAUSE SKIPPED.

The RECORD CONTAINS clause does not
contain a numeric literal. The RECORD
CONTAINS clause is ignored.

051 INVALID VALUE IN RECORD CLAUSE. CLAUSE SKIPPED.
~

The numeric literal in the RECORD
CONTAINS clause is not greater than
zero. The RECORD CONTAINS clause is
ignored.

DIAGNOSTIC ERROR MESSAGES 0-5

052 INVALID FILENAME. FD SKIPPED.

The word following FD is not valid as a
file-name. The FD entry is ignored.

053 FD TERMINATOR MISSING. ASSUMED PRESENT.

The file description entry contains no
period terminator. The error is
ignored.

054 KEY WORD EXPECTED. REMAINING CLAUSES SKIPPED.

A keyword that
BLOCK, LABEL,
The remainder
ignored.

begins a clause, such as
DATA, etc., is missing.
of the FD entry is

055 NO LABEL CLAUSE IN FD •• STANDARD. ASSUMED.

056 NO SELECT. FILE DELETED.

The FD entry contains no LABEL RECORD
clause. LABEL RECORD IS STANDARD is
assumed.

The FD entry's file-name has no
corresponding SELECT statement. The FD
entry is ignored. All references to the
file-name will be diagnosed as
undefined.

057 ALLOCATED SPACE EXCEEDS LARGEST RECORD.

The maximum record size specified by the
RECORD CONTAINS clause exceeds the space
required for any 01 entry under the same
file. The value specified by the RECORD
CONTAINS clause is used.

060 RECORD AREA EXTENDED TO CONTAIN LARGEST RECORD.

The space required by the largest 01
record under a file description exceeds
the space required by the RECORD
CONTAINS clause in the FD entry. The
value derived from the 01 record
description is used.

061 NO RECORD AREA. FILE DELETED.

D-6 DIAGNOSTIC ERROR MESSAGES

No record area is allocated for a file
description. The file description is
ignored. All references to the file
will be diagnosed as undefined.

062 ILLEGAL DATANAME FOLLOWS .WITH POINTER. PHRASE.

The data item used as a pointer in a
STRING or UNSTRING statement is illegal.
Fatal.

063 ILLEGAL SYNTAX IN • STRING. STATEMENT.

A STRING statement contains
syntax. Fatal.

illegal

064 77 ILLEGAL IN FILESECTION. CHANGED TO 01.

A 77 level item description has been
found in the FILE SECTION. The 77 level
is treated as an 01 level.

065 ILLEGAL WORD FOLLOWS .DELIMITED BY. PHRASE.

A data-name or literal is expected
following a DELIMITED BY phrase in a
STRING or UNSTRING statement. Fatal.

066 ILLEGAL USE OF .ALL •• IGNORED.

In the VALUE clause,
literal is detected.
the compiler.

067 CONDITION NAME MISSING OR INVALID. 88 IGNORED.

an ALL numeric
ALL is ignored by

The condition-name in an 88 level entry
is either missing or invalid. The
entire entry is ignored.

070 TWO INDEXED KEYS START AT SAME OFFSET IN RECORD.

The leftmost character position of the
RECORD KEY or ALTERNATE RECORD KEY
data-name corresponds to the leftmost
character position of some other RECORD
KEY or ALTERNATE RECORD KEY data-name.
The clause is ignored.

071 .REDEFINES. ON 01 LEVEL IN FILE SECTION INVALID.

The REDEFINES clause is present on the
01 level in the FILE SECTION, where
redefinition is implicit. REDEFINES
clause is ignored.

072 PICTURE IGNORED FOR INDEX ITEM.

An item defined as
PICTURE clause.
ignored.

USAGE INDEX has a
The PICTURE clause is

DIAGNOSTIC ERROR MESSAGES D-7

073 NONNUMERIC PIC ON COMP ITEM. TREATED AS DISPLAY.

An item defined with non-DISPLAY usage
has a picture-string with non-numeric
characters. The stated usage is
ignored. The item is treated as USAGE
DISPLAY.

074 SUBSCRIPT OUT OF RANGE. ASSUME 1.

A literal subscript is either less than
1 or greater than the maximum allowable
value. A value of 1 is used.

075 • STATUS. OMITTED FROM .FILE STATUS •• ASSUMED.

The FILE STATUS clause has incorrect
syntax. The error is ignored.

076 SOME FILES WITHOUT POSIT. NO. IN MUL. FILE TAPE.

A MULTIPLE FILE TAPE clause contains
file-names with POSITION clauses. Not
all the file-names contain POSITION
clauses. The error is ignored. File
searching during OPEN will find the
file.

077 .MULTIPLE FILE TAPE. SYNTAX ERROR.

A MULTIPLE FILE TAPE clause contains a
syntax error. The clause is ignored.

100 OPERAND CLASSES IN CONFLICT.

One or more operands in a statement have
an invalid class. Fatal.

101 POSSIBLE RECEIVING FIELD TRUNCATION.

A MOVE statement results in right-hand
truncation of the receiving field value.
This is not an error and is ignored.

102 TOO FEW SOURCE FIELDS FOR ADD .GIVING .•

At least two valid source operands must
appear in an ADD ••• GIVING statement.
Fatal.

103 .EXIT. WAS NOT THE ONLY VERB IN PARAGRAPH.

D-8 DIAGNOSTIC ERROR MESSAGES

An EXIT statement is not the only
statement in a paragraph. The EXIT
statement is ignored.

104 SENDING ITEM INVALID OR OMITTED.

A MOVE statement contains an invalid or
missing sending operand. Fatal.

105 SENDING ITEM NOT FOLLOWED BY .TO .•

A MOVE
keyword
operand.

statement does not have the
TO following the sending
Fatal.

106 RECEIVING ITEM INVALID OR OMITTED.

A MOVE statement has no valid receiving
operand. Fatal.

107 INVALID CLASS FOR DESTINATION FIELD.

The receiving operand of an ADD or
SUBTRACT statement is not numeric or
numeric edited. Fatal.

110 RELATIVE OR RECORD KEY OR STATUS NAME INVALID.

III .STOP. SYNTAX ERROR.

The name referenced in a RELATIVE KEY,
RECORD KEY, ALTERNATE RECORD KEY or FILE
STATUS clause is invalid. The clause is
ignored.

The STOP statement is not followed by a
literal or the word RUN. Fatal.

112 .SIZE ERROR. STATEMENT INCORRECT.

The word ERROR is not found in the ON
SIZE clause. Fatal.

113 .PROCEDURE DIVISION. OMITTED.

The source program does not contain a
PROCEDURE DIVISION. Fatal.

114 INTERMEDIATE RESULT TOO LARGE. HIGH ORDER TRUNC.

An arithmetic statement calls for an
intermediate result in excess of 18
digits. The intermediate result is
truncated on the left to 18 digits, with
a possible loss of high-order, non-zero
digits at execution time.

DIAGNOSTIC ERROR MESSAGES D-9

115 INTERMEDIATE RESULT TOO LARGE. LOW ORDER TRUNC.

An arithmetic expression calls for an
intermediate result in excess of 18
digits. The intermediate result is
truncated on the right to 18 digits,
with a possible loss of low-order,
non-zero digits at execution time.

116 .DIVISION. OMITTED AFTER .PROCEDURE ••

The word DIVISION is missing in the
PROCEDURE DIVISION header. The error is
ignored.

117 TERMINATOR MISSING AFTER DIVISION HEADER.

The period terminator is missing from a
division header. The error is ignored.

120 LITERAL INCOMPATIBLE WITH ATTEMPTED USAGE.

Conversion of a literal from one form to
another has failed. Fatal.

121 DATANAME MUST FOLLOW .INTO. IN THIS STATEMENT.

A valid
following
statement.

data-name is not present
INTO in a STRING or UNSTRING
Fatal.

122 NUMERIC SUBJECT OR OBJECT MUST BE INTEGER.

A numeric, non-integer subject or object
is invalid in the context of this
relation condition. Fatal.

123 OPERANDS CONFLICT IN .SET ••• TO. STATEMENT.

A SET •.• TO statement references invalid
operands. Fatal.

124 OPERANDS CONFLICT IN .SET ••• BY. STATEMENT.

A SET ••• BY statement references invalid
operands. Fatal.

125 ILLEGAL FILENAME LITERAL OR FILENAME DATANAME.

An ASSIGN statement or
statement contains
specification or
statement is ignored.

D-IO DIAGNOSTIC ERROR MESSAGES

a VALUE OF ID
an invalid file

data-name. The

126 INVALID SUBJECT OF SIGN CONDITION.

The subject of a sign condition is not a
valid arithmetic expression. Fatal.

127 ITEM IN TABLE MAY NOT BE USED AS A SUBSCRIPT.

A data item used as a subscript is
itself a table element. Fatal.

130 .POINTER. MUST FOLLOW .WITH. IN THIS STATEMENT.

A STRING or UNSTRING statement has an
invalid WITH POINTER phrase. Fatal.

131 RELATIVE KEY INVALID FOR THIS FILE. IGNORED.

A RELATIVE KEY clause has been applied
to a file that does not have RELATIVE
organization. The RELATIVE KEY clause
is ignored.

132 SUBJECT OR OBJECT OMITTED IN RELATION CONDITION.

The subject or object is omitted in a
COBOL relation condition. Fatal.

133 UNIDENTIFIABLE WORD FOUND IN SUBSCRIPT.

A subscript list contains a word that is
neither a data-name nor a numeric
literal. The remainder of the list or
sentence is ignored. Fatal.

134 INVALID SUBJECT OR OBJECT IN RELATION CONDITION.

The subject or object of a relation
condition is an invalid operand. Fatal.

135 SUBSCRIPTS OMITTED. ASSUME VALUE OF 1.

A reference to a table item contains no
subscript list. Literal subscripts of 1
are supplied as defaults.

136 RELATIVE INDEX LITERAL OUT OF RANGE. INDEX USED.

The literal value of a relative index
causes an out-of-range reference to the
table. The literal value is ignored,
and only the index-name is used.

DIAGNOSTIC ERROR MESSAGES D-ll

137 SUBSCRIPTS GIVEN WHERE NOT REQUIRED. IGNORED.

A reference is made to a non-table item,
and a subscript list follows the
reference. The subscript list is
ignored.

140 TOO FEW SUBSCRIPTS GIVEN. ASSUME 1 FOR REST.

A reference to a table item contains a
subscript list with too few subscripts.
Default literal subscripts of 1 are
supplied for missing subscripts.

141 TOO MANY SUBSCRIPTS GIVEN. IGNORE EXCESS.

A reference to a table item contains too
many subscripts in the subscript list.
Extra subscripts are ignored.

142 SUBJECT AND OBJECT USAGE MUST MATCH.

A relation condition between non-numeric
operands requires the same usage for
both operands. Fatal.

143 ARITHMETIC EXPRESSION REQUIRED IN THIS CONTEXT.

An arithmetic expression is required in
the context of the COBOL statement being
compiled. The compiler has failed to
recognize the arithmetic expression in
this context. Fatal.

144 CONDITION EXPRESSION REQUIRED IN THIS CONTEXT.

A condition expression is required in
the context of the COBOL statement being
compiled. The compiler has failed to
recognize the condition expression in
this context. Fatal.

145 ILLEGAL OPERAND FOUND IN COBOL EXPRESSION.

An invalid data-name or literal has been
found in the COBOL statement being
compiled. The class or USAGE of the
data item may be invalid here as a
reference in an expression. Fatal.

146 OPERATOR IS MISSING IN COBOL EXPRESSION.

An operator is omitted in the
specification of this COBOL expression.
The compiler cannot recognize this
expression as a syntactically valid
COBOL expression. Fatal.

D-12 DIAGNOSTIC ERROR MESSAGES

147 ABSOLUTE VALUE STORED.

A negative value has been supplied for
an unsigned numeric item. The absolute
value of the numeric literal is stored
in the item.

150 ILLEGAL WORD FOUND AFTER .NOT. IN EXPRESSION.

The compiler has detected an
expression operator following
keyword in the COBOL expression
compiled. Fatal.

151 VERB FOUND IN AREA A. ALLOWED.

illegal
a NOT
being

A statement begins in Area A. The error
is ignored.

152 EXPECTED .RELATIVE KEY. DATANAME NOT DEFINED.

The data-name given in a RELATIVE KEY
clause has not been defined in the Data
Division.

153 .LINAGE. CLAUSE DATAITEM IS TOO LONG.

A data item named in a LINAGE clause is
declared in the Data Division with more
than four decimal integer positions of
precision.

154 PROCEDURE NAME DUPLICATES DATA NAME. ALLOWED.

A procedure
data-name.
there can
references.

name is identical to a
The error is ignored, since

be no ambiguity in legal

155 STATEMENTS FOLLOWING .GO. CAN NEVER BE EXECUTED.

A statement follows an unconditional GO
statement. The statements following the
GO are compiled, but cannot be executed.

156 NONSEQUENTIAL FILE MAY NOT BE OPTIONAL.

The SELECT
OPTIONAL only
organization.
ignored.

157 FILE HAS 10 CONTROL CLAUSE CONFLICTS.

statement may specify
on files with sequential
The word OPTIONAL is

A file is given conflicting clause
specifications in the I-O-CONTROL
paragraph of the INPUT-OUTPUT SECTION.

DIAGNOSTIC ERROR MESSAGES D-13

160 FILE REQUIRES REL. KEY. TREATED AS SEQ. ACCESS.

A file with relative organization and
random or dynamic access has no RELATIVE
KEY clause. The access mode is changed
to SEQUENTIAL.

161 INVALID INDEX DATAITEM USE IN RELATIONAL.

The compiler detects the invalid use of
an index data item reference as the
subject or object of a relation
condition. Fatal.

162 UNKNOWN WORD. SCAN TO NEXT CLAUSE.

An unknown word is encountered when a
clause keyword is expected. All words
are ignored up to the next valid clause.

163 CLAUSE DUPLICATED. SECOND OCCURRENCE USED.

164 NO FD FOR THIS SELECT.

A SELECT statement contains two
occurrences of the same clause. The
second occurrence is used.

The file-name supplied in a SELECT
statement is not further described in an
FD in the Data Division. The SELECT
statement is ignored, causing the
file-name to become undefined.

165 DIFFERENT SAME REC. AREAS FOR SAME AREA.

The compiler detects a conflict between
the SAME RECORD AREA clause and the SAME
AREA clause.

166 • READ. WITHOUT .INVALID KEY •• AT END. OR .USE.

A READ statement contains no conditional
clauses, and the file being read has no
USE procedure applied to it. Fatal.

167 10 CONTROL CLAUSE HAS FILE WITH NO .SELECT.

An I-O-CONTROL clause references a
file-name that was not named in a SELECT
statement. The file-name is ignored in
the I-O-CONTROL statement.

D-14 DIAGNOSTIC ERROR MESSAGES

170 INTEGER OMITTED IN .RESERVE •• DEFAULT ASSUMED.

A RESERVE clause fails to· specify the
number of buffer areas to reserve. The
clause is ignored, and the RMS default
is used.

171 INVALID SUBJECT OF CLASS CONDITION.

The subject of a class condition is not
a data item with an acceptable class.
Fatal.

172 VALUE EXCEEDS FIELD CAPACITY. TRUNCATED.

A numeric literal supplied by a
clause exceeds the length of the
The value is right truncated and
in the field.

173 NO DATA DIVISION STATEMENTS PROCESSED.

VALUE
field.
stored

The Data
entries.

Division contains no valid
This is an observation only.

174 INVALID GRP LEV NUM. REST OF RECORD IGNORED.

A level-number is encountered that
terminates a previous group item, but
does not match any previous group item's
level-number. All data entries are
skipped until the next 01 level, level
indicator or header.

175 INVALID PROCEDURE NAME DEFINITION IN AREA A.

The compiler detects source text in Area
A of the Procedure Division that does
not conform to the rules for the
definition of a legitimate paragraph or
section name. Source text found in Area
A of the Procedure Division is
interpreted by the compiler as a user
attempt to define a new paragraph or
section name. The compiler supplies a
system-defined procedure name and
proceeds with the processing' of the
source line text containing the invalid
Area A text. The system-defined
procedure name is transparent and, thus,
inaccessible to the user.

DIAGNOSTIC ERROR MESSAGES D-15

176 MISSING QUOTE ON CONTINUE LINE. QUOTE ASSUMED.

A non-numeric literal is continued, but
the first non-space character is not a
quote. The error is ignored by assuming
a quote in front of the first non-space
character.

177 COMPARISON OF LITERALS IS NOT PERMITTED.

A relation condition has a literal as
both subject and object. Fatal.

200 COPY IGNORED WITHIN LIBRARY TEXT.

A COpy statement is
library text. The
ignored.

encountered within
COpy statement is

201 INVALID FILENAME ON COPY. COPY IGNORED.

202 COpy FILENAME NOT FOUND.

A COpy statement supplies
specification that is invalid.
statement is ignored.

a file
The COpy

A COPY statement supplies a valid file
specification, but the file cannot be
found on the specified device. The COpy
statement is ignored.

203 PERIOD OMITTED AFTER .DECLARATIVES ••

The word DECLARATIVES is not followed by
a period. The error is ignored.

204 .DECLARATIVES. OMITTED FROM .END. STATEMENT.

The word END is not followed by
DECLARATIVES. END DECLARATIVES is
assumed.

205 PERIOD OMITTED AFTER .END DECLARATIVES .•

The words END
followed by a
ignored.

206 SOURCE PROGRAM ENDS IN DECLARATIVES.

DECLARATIVES
period. The

are not
error is

The end of the source program occurs in
the Dec1aratives area. Fatal.

0-16 DIAGNOSTIC ERROR MESSAGES

207 DATANAME MUST FOLLOW .WITH POINTER. PHRASE.

A STRING or UNSTRING statement
an invalid WITH POINTER phrase.

210 . OVERFLOW. MUST FOLLOW .ON. IN THIS STATEMENT.

A STRING or UNSTRING statement
an invalid ON OVERFLOW phrase.

211 ILLEGAL SENDING FIELD DATANAME IN .UNSTRING.

contains
Fatal.

contains
Fatal.

The sending field of an UNSTRING
statement has an invalid class. Fatal.

212 ILLEGAL SYNTAX IN .UNSTRING. STATEMENT.

An UNSTRING statement
syntax. Fatal.

213 MULTIPLE SIGN CLAUSES ON THIS ITEM.

has invalid

More than one SIGN clause appears in a
data description. (SEPARATE must follow
LEADING or TRAILING.) The second clause
is used.

214 ILLEGAL SYNTAX IN COBOL EXPRESSION.

The compiler detects a syntax error of a
general nature in the COBOL expression
being compiled. Fatal.

215 SIGN CLAUSE ON NONNUMERIC ITEM.

A SIGN clause appears in
data description. The
ignored.

216 SIGN CLAUSE APPLIED TO NONDISPLAY ITEM.

a non-numeric
SIGN clause is

A SIGN clause appears in a numeric data
description with usage other than
DISPLAY. The SIGN clause is ignored.

217 SIGN CLAUSE APPLIED TO UNSIGNED DATAITEM.

A SIGN clause appears in a numeric data
description that has no "S" in its
PICTURE string. The SIGN clause is
ignored.

220 ILLEGAL DELIMITING DATA ITEM IN .UNSTRING.

An UNSTRING statement references an
invalid delimiter. Fatal.

DIAGNOSTIC ERROR MESSAGES 0-17

221 .ALL. FIGURATIVE CONSTANT ILLEGAL IN . UNSTRING.

An UNSTRING statement contains an ALL
literal reference. Fatal.

222 ILLEGAL RECEIVING DATANAME IN .UNSTRING.

An UNSTRING statement references a
receiving data item that is invalid.
Fatal.

223 .DELIMITED. CLAUSE REQUIRED IN THIS .UNSTRING.

An UNSTRING statement contains no
DELIMITED BY clause. Fatal.

224 DATANAME MUST FOLLOW .DELIMITER IN. PHRASE.

An UNSTRING statement
DELIMITER IN phrase with
reference. Fatal.

225 ILLEGAL DATANAME FOLLOWS .DELIMITER IN. PHRASE.

contains a
an illegal

An UNSTRING statement contains a
DELIMITER IN phrase referencing a data
item that is invalid. Fatal.

226 DATANAME MUST FOLLOW .COUNT IN. PHRASE.

An UNSTRING statement contains a COUNT
IN phrase with an illegal reference.
Fatal.

227 ILLEGAL DATANAME FOLLOWS .COUNT IN. PHRASE.

An UNSTRING statement contains a COUNT
IN phrase that references an invalid
data item. Fatal.

230 DATANAME MUST FOLLOW .TALLYING IN. PHRASE.

An UNSTRING statement
TALLYING phrase with
reference. Fatal.

231 ILLEGAL DATANAME FOLLOWS .TALLYING IN. PHRASE.

contains a
an illegal

An UNSTRING statement contains a
TALLYING phrase referencing a data item
that is invalid. Fatal.

232 DATANAME MUST FOLLOW • INSPECT. VERB.

A valid data-name reference does not
follow the INSPECT keyword. Fatal.

0-18 DIAGNOSTIC ERROR MESSAGES

233 IL~EGAL DATANAME FOLLOWS .INSPECT. VERB.

An INSPECT statement references a data
item that is invalid. Fatal.

234 ILLEGAL DATANAME PRECEDES .FOR. IN • INSPECT.

An INSPECT ••• TALLYING statement
references a tally data item that is
invalid. Fatal.

235 .FOR. OMITTED IN • INSPECT. STATEMENT.

An INSPECT ••• TALLYING statement has
invalid syntax. Fatal.

236 DATANAME MUST FOLLOW • TALLYING. PHRASE.

An INSPECT ••. TALLYING statement does not
reference a tally data-name. Fatal.

237 ILLEGAL WORD FOLLOWS .FOR. IN • INSPECT.

An INSPECT ••• TALLYING statement does not
state a valid search condition. Fatal.

240 DATAITEM OMITTED AFTER .ALL •• LEADING. OR .FIRST.

An INSPECT statement does not reference
a valid search argument. Fatal.

241 .ALL. FIGURATIVE CONSTANT ILLEGAL IN • INSPECT.

An ALL literal appears in an INSPECT
statement. Fatal.

242 ILLEGAL DATANAME FOLLOWS .ALL. OR .LEADING.

An INSPECT statement does not reference
a valid search argument. Fatal.

243 ILLEGAL DATANAME FOLLOWS .BEFORE. OR .AFTER.

An INSPECT statement does not reference
a valid delimiter in the BEFORE/AFTER
phrase. Fatal.

244 ILLEGAL DATANAME FOLLOWS .BY.

An INSPECT statement does not reference
a valid replacement argument. Fatal.

245 ILLEGAL DATANAME PRECEDES .BY.

An INSPECT statement does not reference
a legal data-name or literal preceding
the BY phrase. Fatal.

DIAGNOSTIC ERROR MESSAGES D-19

246 DATAITEM OMITTED IN .BEFORE. OR .AFTER. PHRASE.

An INSPECT statement does not reference
a legal data-name or literal after the
BEFORE or AFTER phrase. Fatal.

247 ILLEGAL SYNTAX IN .INSPECT. STATEMENT.

Both the TALLYING and REPLACING keywords
are missing in the INSPECT statement.
Fatal.

250 .BY. MUST FOLLOW . CHARACTERS. IN REPLACING LIST.

The INSPECT •.. REPLACING statement must
have CHARACTERS BY phrase completely
specified. Fatal.

251 DATAITEM OMITTED AFTER .BY. IN .INSPECT.

The INSPECT ... REPLACING statement does
not reference a legal data-name or
literal after BY. Fatal.

252 DATAITEM FOLLOWING .BY. EXCEEDS 1 CHARACTER.

In an INSPECT ..• REPLACING statement,
when: 1) the CHARACTERS BY phrase is
specified, or 2) a figurative constant
preceding the BY keyword of the ALL,
LEADING, or FIRST phrase is specified,
the data-name or literal after the BY
keyword must be defined as one character
in length. Fatal.

253 DATAITEMS BEFORE AND AFTER .BY. UNEQUAL IN SIZE.

In an INSPECT ..• REPLACING statement. the
data items before and after the BY
keyword of the ALL, LEADING, or FIRST
phrase must be equal in length. Fatal.

254 .BEFORE. OR .AFTER. OPERAND EXCEEDS 1 CHARACTER.

In an INSPECT •.. REPLACING CHARACTERS BY
statement, the data-name or literal
following the BEFORE or AFTER keyword
must be one character in length. Fatal.

255 ILLEGAL WORD FOLLOWS . REPLACING. IN . INSPECT.

A legal
following
statement.

0-20 DIAGNOSTIC ERROR MESSAGES

keyword was
REPLACING
Fatal.

not
in

recognized
the INSPECT

256 .BY. OMITTED AFTER REPLACING COMPARISON OPERAND.

The keyword BY is omitted in
LEADING, or FIRST phrase
separates operands to be
Fatal.

257 TOO MANY RIGHT PARENTHESES IN COBOL EXPRESSION.

the ALL,
where it
compared.

The compiler detects an excess of right
parentheses in the COBOL expression
being compiled. Parentheses must be
specified in balanced pairs; that is, a
left parenthesis must exist for each
right parenthesis specified. Fatal.

260 TOO MANY LEFT PARENTHESES IN COBOL EXPRESSION.

The compiler detects an excess of left
parentheses in the COBOL expression
being compiled. Parentheses must be
specified in balanced pairs; that is, a
right parenthesis must exist for each
left parenthesis specified. Fatal.

261 MISSING OPERAND IN ARITHMETIC EXPRESSION.

An operand is omitted in a
arithmetic expression. Fatal.

262 ILLEGAL OPERAND IN ARITHMETIC EXPRESSION.

COBOL

The compiler detects an illegal operand
in a COBOL arithmetic expression. The
class or usage of the operand may be
invalid in the context as a reference in
an arithmetic expression. Fatal.

263 NONINTEGER EXPONENT FOUND IN COBOL EXPRESSION.

The compiler detects a non-integer,
numeric exponent in a COBOL arithmetic
expression. The arithmetic expression
is considered invalid. Fatal.

264 SUBJECT OMITTED IN CLASS CONDITION.

The compiler detects the omission of the
subject in a NUMERIC or ALPHABETIC class
condition. Fatal.

265 SUBJECT OMITTED IN SIGN CONDITION.

The compiler detects the omission of the
subject in a sign condition. Fatal.

DIAGNOSTIC ERROR MESSAGES D-21

266 OPERAND MISSING IN COMPLEX CONDITION.

The compiler detects the omission of an
operand in an AND or OR complex
condition. Fatal.

267 INVALID OPERAND IN COMPLEX EXPRESSION.

The compiler detects a
operand that is not a
combined condition,
condition. Fatal.

2-70 ILLEGAL SYNTAX IN NEGATED SIMPLE CONDITION.

complex condition
simple condition,

or complex

The compiler detects illegal syntax in a
COBOL negated simple condition. Fatal.

271 INVALID NEGATED SIMPLE CONDITION.

The compiler detects the application of
the NOT keyword to an invalid simple
condition. Fatal.

272 ILLEGAL SYNTAX IN .COMPUTE. STATEMENT.

The compiler detects illegal syntax in a
COMPUTE statement. The left side of the
assignment symbol or the assignment
symbol itself may have been
omitted. Fatal.

273 .AT END. ILLEGAL FOR RANDOM • READ.

The file is specified with either ACCESS
RANDOM or ACCESS DYNAMIC without the
word NEXT being included in the READ
statement. The AT END clause is treated
as an INVALID KEY clause.

274 INVALID KEY ILLEGAL FOR SEQUENTIAL • READ.

Either the file has ACCESS SEQUENTIAL or
the READ statement contains the word
NEXT. In either case, the INVALID KEY
clause is illegal. It is treated as an
AT END clause.

275 INDEX DATA ITEM ILLEGAL AS INDEX ON TABLE.

An index data item is used as an index
for a table. The index data item
reference is ignored. A literal
subscript of 1 replaces the index data
item reference.

D-22 DIAGNOSTIC ERROR MESSAGES

276 INDEX NAME NOT DEFINED FOR THIS TABLE.

An index-name used in a subscript list
either is not defined for this table or
appears in the wrong logical position of
the subscript list for this table. The
index-name is ignored and a default
value of 1 is assumed as the subscript.

277 RELATIVE INDEX IS INVALID.

The literal component of a relative
index is zero or less in value, or is an
invalid word. Relative indexing is
ignored and only the index-name is used.

300 PROGRAM NAME OMITTED AFTER .CALL. VERB.

The program-name is omitted after the
key word CALL. Fatal.

301 LINAGE 0 OR LESS THAN FOOTING.

The LINAGE clause must specify a page
body of at least one line, and the page
body size must be equal to or greater
than the footing size specified in the
FOOTING phrase.

302 FILE CLOSED BUT NOT OPENED.

A CLOSE statement was encountered for a
file that is not opened in this program.
Fatal.

303 PRINT CONTROL ON NON SEQUENTIAL FILE. IGNORED.

An APPLY PRINT-CONTROL clause references
a file that does not have SEQUENTIAL
organization. The file-name is ignored
in the APPLY clause.

304 DATANAME OMITTED IN .KEY IS. PHRASE.

The KEY IS phrase
is not followed
prime RECORD KEY
present.

305 SECTION OR PARAGRAPH NAME MISSING.

of the START statement
by a data-name. The

data-name is assumed

The Procedure Division does not start
with a section or paragraph name, or a
section header is not followed by a
paragraph name. Fatal.

DIAGNOSTIC ERROR MESSAGES D-23

306 • PROCEDURE. MISSING IN .USE. STATEMENT. ASSUMED.

The keyword PROCEDURE is missing in the
USE statement. It is assumed and
processing is continued.

307 • START. WITHOUT .INVALID KEY. OR .USE.

The INVALID KEY option is missing from
the START statement, or no USE procedure
is declared for the referenced file.
Fatal.

310 .WRITE. WITHOUT .INVALID KEY. OR .USE.

The INVALID KEY option is missing from
the WRITE statement, or no USE procedure
is declared for the referenced file.
Fatal.

311 DATA DIVISION MUCH TOO LARGE.

Too much buffer space is being used for
the files in this program. Too many
files are declared to be OPEN
simultaneously. Fatal.

312 .REDEFINES. SPECIFIES INVALID REDEFINITION.

The compiler detects the invalid
application of REDEFINES to a data
description entry that contributes new
character positions between the data
description entry containing the
REDEFINES clause and the item being
redefined. Also, the source of e~ror
may be the definition of another data
description entry with a lower level
number appearing between the data
description entry containing the
REDEFINES clause and the item being
redefined. The compiler ignores the
REDEFINES clause and continues
processing the data description entry.

313 ILLEGAL TO REDEFINE ANOTHER REDEFINITION.

The REDEFINES clause specifies the
redefinition of a data item whose data
description entry contains a REDEFINES
clause itself. The compiler ignores the
REDEFINES clause and continues
processing the data description entry.

D-24 DIAGNOSTIC ERROR MESSAGES

314 ILLEGAL TO REDEFINE A COBOL TABLE.

The REDEFINES clause specifies the
redefinition of a data item whose data
description entry contains an OCCURS
clause. The compiler ignores the
REDEFINES clause and continues
processing the data description entry.

315 .REDEFINES. APPLIED TO VARIABLE LENGTH DATAITEM.

The compiler detects an application of
the REDEFINES clause to a data item
whose length is variable at run time
because it has a subordinate data item
whose data description entry contains an
OCCURS DEPENDING ON clause. The
application of the REDEFINES clause to
such a data item is syntactically
invalid. The compiler ignores the
REDEFINES clause and continues
processing the data description entry.

316 .OCCURS DEPENDING ON. ILLEGAL IN REDEFINITION.

The compiler detects a redefinition that
contains a data description entry
declared with an OCCURS DEPENDING ON
clause. The OCCURS DEPENDING ON clause
causes the redefinition to contain a
data item whose length is variable at
run time. The DEPENDING ON phrase is
ignored and processing continues.

317 PICTURE EXCEEDS 30 CHARACTERS. PIC X ASSUMED.

The unexpanded PICTURE string exceeds 30
characters in length. The compiler
ignores the user-supplied PICTURE and
treats the data item as alphanumeric
with a "PICTURE X" declaration.

320 FILENAME MUST FOLLOW .CLOSE VERB.

The data item following the CLOSE verb
was not a file-name. Fatal.

321 .NO. MUST FOLLOW .WITH. IT IS ASSUMED.

The keyword NO is missing in the WITH NO
REWIND phrase of the CLOSE statement.
NO is assumed present.

DIAGNOSTIC ERROR MESSAGES D-25

322 • REWIND. MUST FOLLOW

323 • REMOVAL. MUST FOLLOW

324 .LOCK. OMITTED AFTER

.NO • IT IS ASSUMED.

The WITH NO REWIND phrase of the CLOSE
statement must be completely specified.
It is assumed present.

.FOR. IT IS ASSUMED.

The FOR REMOVAL phrase of the CLOSE
statement must be completely specified.
It is assumed present.

.WITH. IT IS ASSUMED.

The keyword WITH in a CLOSE statement is
recognized but is not followed by one of
the keywords NO or LOCK. The WITH LOCK
phrase is assumed present.

325 DATANAME SPECIFIED WHERE FILENAME EXPECTED.

The name used in an I/O verb to
reference a file was not a file name but
was some other data-name. Fatal.

326 FILENAME MUST FOLLOW MODE SPEC. IN .OPEN.

The OPEN statement does not reference a
valid file name where a file-name
reference is expected. Fatal.

327 ILLEGAL MODE SPECIFIED AFTER .OPEN. VERB.

One of the OPEN mode keywords INPUT,
OUTPUT, 1-0, or EXTEND is required
immediately after the OPEN verb. Fatal.

330 .END. MUST FOLLOW .AT •• IT IS ASSUMED.

The keyword END was omitted in the AT
END phrase of the READ statement. The
AT END phrase is assumed present.

331 FILENAME MUST FOLLOW • READ. VERB.

Either the file-name was omitted
following the READ verb or the data item
following the READ verb is not a valid
file-name reference. Fatal.

332 DATANAME OMITTED AFTER .INTO. IN • READ.

The data-name reference following the
INTO keyword of the READ statement was
omitted. Fatal.

0-26 DIAGNOSTIC ERROR MESSAGES

333 RECORDNAME MUST FOLLOW .WRITE. OR . REWRITE.

The 01 record-name reference immediately
following the WRITE or REWRITE verb was
omitted. Fatal.

334 STATEMENT IGNORED DUE TO ILLEGAL RECORDNAME.

The data-name immediately following the
WRITE or REWRITE verb is not a valid 01
record-name reference. Fatal.

335 • ADVANCING. OPTION OMITTED IN .WRITE. 1 ASSUMED.

A data-name reference, numeric integer
literal reference, or the keyword PAGE
was not recognized in the BEFORE/AFTER
ADVANCING phrase of the WRITE statement.
A numeric integer literal value of 1 is
assumed.

336 .EOP. MUST FOLLOW .AT .. IT IS ASSUMED.

The keyword EOP was omitted in the AT
EOP phrase of the WRITE statement. The
AT EOP phrase is assumed present.

337 DATANAME OMITTED AFTER .FROM.

The data-name reference following the
FROM keyword of the WRITE or REWRITE
statement was omitted. Fatal.

340 .ADVANCING. INTEGER TOO BIG. TRUNCATED TO 63.

The numeric integer in the BEFORE/AFTER
ADVANCING phrase of the WRITE statement
is greater than 63. 63 is assumed.

341 .NO REWIND. ILLEGAL WITH .10. OR . EXTEND. MODE.

An OPEN statement with the 1-0 or EXTEND
mode specified cannot have the NO REWIND
phrase also specified. Fatal.

342 ILLEGAL . ADVANCING. DATANAME. 1 IS ASSUMED

The data-name in the BEFORE/AFTER
ADVANCING phrase of the WRITE statement
is not an elementary numeric integer
data-name reference. A numeric integer
literal value of 1 is assumed.

DIAGNOSTIC ERROR MESSAGES 0-27

343 FILENAME MUST FOLLOW .DELETE. VERB.

Either the file-name was omitted
following the DELETE verb or the data
item following the DELETE verb is not a
valid file-name reference. Fatal.

344 FILENAME MUST FOLLOW • START. VERB.

Either the file name was omitted
following the START verb or the data
item following the START verb is not a
valid file name reference. Fatal.

345 .LESS. OMITTED AFTER .NOT. IN . START. ASSUMED.

The keyword LESS is omitted after NOT in
the relational condition of the START
statement. LESS is assumed present.

346 DATANAME OMITTED IN .KEY IS. PHRASE. ASSUMED.

The RELATIVE KEY data-name for the
referenced file was omitted in the KEY
IS phrase of the START statement. The
RELATIVE KEY data-name is assumed
present.

347 RELATIONAL WORD OMITTED AFTER .KEY IS. PHRASE.

None of the relational keywords EQUAL,
GREATER, or NOT was recognized following
the KEY IS phrase of the START
statement. Fatal.

350 TERMINATOR IGNORED IN .10 CONTROL. PARAGRAPH.

A clause is terminated by a period, but
a header does not follow in Area A. The
period is ignored. The compiler assumes
it is still in the I-O-CONTROL
paragraph.

351 TERMINATOR IGNORED IN .SPECIAL NAMES. PARAGRAPH

A clause is terminated
is not followed by a
The period is ignored,
continues processing
paragraph.

352 .NATIVE. MISSING IN SPECIAL NAMES CLAUSE.

by a period, but
header in Area A.
and the compiler
the SPECIAL-NAMES

The alphabet-name clause does not
contain NATIVE or STANDARD-I. The
alphabet-name clause is ignored.

D-28 DIAGNOSTIC ERROR MESSAGES

353 SYNTAX ERROR IN .OBJECT COMPUTER. PARAGRAPH.

The OBJECT-COMPUTER paragraph
an unrecognizable word. The
scans over all words until a
found in Area A.

354 TERMINATOR OMITTED IN .OBJECT COMPUTER. PARA.

The OBJECT-COMPUTER paragraph
terminated by a period. The
scans over all words until a
found in Area A.

355 DATANAME FOLLOWING .KEY IS. PHRASE IS ILLEGAL.

contains
compiler
word is

is not
compiler
word is

The data-name following the KEY IS
phrase of the START statement is not a
RECORD KEY associated with the
referenced indexed file, nor is it
subordinate to a RECORD KEY whose
leftmost character position corresponds
to its own leftmost character position.
Fatal.

356 INVALID USAGE ON CONDITIONAL VARIABLE.

The level 88 condition variable cannot
be defined as USAGE INDEX.

357 ILLEGAL SEPARATOR IN COBOL STATEMENT. IGNORED.

An illegal
between two
statement.
ignored.

character was detected
consecutive words of a COBOL

The illegal character is

360 ILLEGAL CHARACTER FOUND WITHIN A COBOL WORD.

Illegal characters were found in an
alphanumeric COBOL word, but not in an
alphanumeric literal. The illegal
characters are replaced by dollar signs
in the internal representation of the
COBOL word.

361 UNRECOGNIZABLE TEXT FOUND IN COBOL STATEMENT.

In scanning the source text, the
compiler was unable to recognize an
alphanumeric COBOL word (a keyword or
user-defined word) , an alphanumeric
literal, or a numeric literal. The
error is not internally corrected and
usually will cause further error
messages.

DIAGNOSTIC ERROR MESSAGES D-29

362 COBOL WORD BEGINS WITH OR ENDS IN HYPHEN.

In attempting to recognize a keyword or
user-defined word, the compiler has
detected that the COBOL word begins or
ends with a hyphen.

363 NONNUMERIC LITERAL TOO LONG. TRUNCATED TO MAX.

An alphanumeric literal greater than 132
characters in length is detected. The
literal is truncated on the right,
retaining" the first 132 characters as
the literal.

364 COBOL SOURCE LINE TOO LONG. TRUNCATED TO MAX.

The indicated COBOL source line contains
more than 65 characters in terminal
format. The excess characters are
ignored, and only those characters in
the printed COBOL source line are
retained.

365 .BY. OMITTED IN REPLACING OPTION. COPY IGNORED.

The keyword BY was not found
COPY ... REPLACING statement.
statement is ignored.

366 TERMINATOR OMITTED IN .COPY. IT IS ASSUMED.

in a
The

The required period terminating the COPY
statement is omitted. It is assumed
present.

367 .LINAGE. CLAUSE DATANAME MUST BE AN INTEGER.

A data-name referenced in the LINAGE
clause of the FILE SECTION is defined
with decimal places in the
WORKING-STORAGE SECTION.

370 .LINAGE.CLAUSE DATANAME MUST BE UNSIGNED.

A numeric data-name referenced in the
LINAGE clause of the FILE SECTION is
defined as a signed data item in the
WORKING-STORAGE SECTION.

D-30 DIAGNOSTIC ERROR MESSAGES

371 POSSIBLE HIGH ORDER RECEIVING FIELD TRUNCATION.

Truncation of high-order information
during a MOVE or an arithmetic operation
upon a recelvlng field is possible.
This truncation could cause unexpected
results, and the message should not be
ignored.

372 POSSIBLE LOW ORDER RECEIVING FIELD TRUNCATION.

Truncation of low-order information
during a MOVE or an arithmetic operation
upon a receiving field is possible.
This truncation could cause unexpected
results, and the message should not be
ignored.

373 PD HEADER NOT FOLLOWED BY AN AREA A WORD.

The word following the PROCEDURE
DIVISION header does not begin in Area
A. The compiler scans over all words
until a word is found in Area A.

374 OPEN OPTIONAL FILES ONLY IN . INPUT. MODE.

An OPTIONAL file can be OPENed in INPUT
mode only. The compiler assumes that
the OPTIONAL file is OPENed in INPUT
mode.

375 EXPECTED .FILE STATUS. DATANAME NOT DEFINED.

A data-name referenced in a FILE STATUS
phrase of a SELECT clause in the
FILE-CONTROL paragraph is not defined in
the WORKING-STORAGE SECTION of the DATA
DIVISION.

376 EXPECTED .VALUE OF ID. DATANAME NOT DEFINED.

The data-name referenced in a VALUE OF
ID clause of an FD is not defined in the
WORKING-STORAGE SECTION of the DATA
DIVISION. Fatal.

377 EXPECTED .LINAGE. CLAUSE DATANAME NOT DEFINED.

A data-name referenced in the
clause of the FILE SECTION
defined in the WORKING-STORAGE
of the DATA DIVISION.

LINAGE
is not
SECTION

DIAGNOSTIC ERROR MESSAGES D-31

400 .RELATIVE KEY. DATANAME HAS INVALID CLASS.

A data-name referenced in a RELATIVE KEY
phrase of a SELECT clause in the
FILE-CONTROL paragraph is defined with
non-numeric class in the WORKING-STORAGE
SECTION.

401 .RELATIVE KEY. DATANAME HAS INVALID CLASS.

A data-name referenced in a RELATIVE KEY
phrase of a SELECT clause must not be
defined with INDEX usage in the
WORKING-STORAGE SECTION.

402 .RELATIVE KEY. DATAITEM IS TOO LONG.

403 .RELATIVE KEY. DATANAME

404 .FILE STATUS. DATANAME

A numeric integer data-name referenced
in a RELATIVE KEY phrase is defined with
more than eight digits of preclslon in
the WORKING-STORAGE SECTION.

MUST BE AN INTEGER.

A numeric data-name referenced in a
RELATIVE KEY phrase is defined with
decimal places in the WORKING-STORAGE
SECTION.

HAS INVALID CLASS.

A data-name referenced in a the FILE
STATUS phrase of a SELECT clause must be
defined in with DISPLAY usage in the
WORKING-STORAGE SECTION.

405 .FILE STATUS. DATA NAME HAS INVALID USAGE.

A data-name referenced in a FILE STATUS
phrase of a SELECT clause is defined
with DISPLAY USAGE in the
WORKING-STORAGE SECTION.

406 LENGTH OF .FILE STATUS. DATAITEM IS ILLEGAL.

An alphanumeric data-name referenced in
a FILE STATUS phrase of a SELECT clause
must be defined in the WORKING-STORAGE
SECTION as an alphanumeric variable
consisting of two characters.

407 .VALUE OF ID. DATANAME HAS INVALID CLASS.

A data-name referenced in a VALUE OF ID
clause of an FD is defined with
non-alphanumeric class in the
WORKING-STORAGE SECTION.

D-32 DIAGNOSTIC ERROR MESSAGES

410 .VALUE OF ID. DATANAME HAS INVALID USAGE.

A data-name referenced in a VALUE OF ID
clause of an FD must be defined with
DISPLAY usage in the WORKING-STORAGE
SECTION.

411 LENGTH OF .VALUE OF ID. DATAITEM IS ILLEGAL.

An alphanumeric data-name referenced in
a VALUE OF ID clause of an FD must be
defined in the WORKING-STORAGE SECTION
as an alphanumeric variable whose
length, L, falls in the range 9<=L<=150
characters. Fatal.

412 .LINAGE. CLAUSE DATANAME HAS INVALID CLASS.

A data-name referenced in the LINAGE
clause of the FILE SECTION is defined
with non-numeric class in the
WORKING-STORAGE SECTION.

413 . LINAGE. CLAUSE DATANAME HAS INVALID USAGE.

A data-name referenced in the LINAGE
clause of the FILE SECTION must be
defined with COMPUTATIONAL USAGE in the
WORKING-STORAGE SECTION.

414 INVALID RECEIVING OPERAND IN .SET .• IGNORED.

A receiving operand of a SET statement
is invalid. Fatal.

415 NO RECEIVING OPERAND SPECIFIED IN .SET ••

No receiving operands are specified in a
SET statement. Fatal.

416 OMITTED OR ILLEGAL OPERAND AFTER .TO. IN .SET ••

A SET statement has no valid sending
operand. Fatal.

417 ILLEGAL SYNTAX IN .SET. STATEMENT.

The words TO, UP or DOWN do not follow
the recelvlng operands of a SET
statement. Fatal.

420 .BY. MUST FOLLOW .UP. OR .DOWN •• ASSUMED.

The keyword BY does not follow the word
UP or DOWN in a SET statement. BY is
assumed present.

DIAGNOSTIC ERROR MESSAGES D-33

421 OMITTED OR ILLEGAL OPERAND AFTER .BY. IN .SET ••

422 NO OPERANDS SPECIFIED

The operand following the UP BY or DOWN
BY phrase in a SET statement is invalid
or omitted. Fatal.

No operands were recognized following
the keyword DISPLAY. Fatal.

423 SETTING INDEX NAME OUT OF RANGE •. SET. IGNORED.

A SET statement is attempting to set an
index name using a literal that is too
large. Fatal.

424 .IF. TRUE PATH OMITTED. ASSUME .NEXT SENTENCE ••

The true path code is omitted from the
IF statement. NEXT SENTENCE is assumed
as the true path of the IF statement.

425 CONFLICTING SIGN SYMBOLS IN PICTURE STRING.

The compiler recognizes both the + and -
sign symbols in this PICTURE string.
The compiler ignores the user-supplied
PICTURE and treats the data item as
alphanumeric with a "PICTURE X"
declaration.

426 ZERO SUPPRESSION CONFLICTS IN PICTURE STRING.

The compiler recognizes both the Z and *
zero suppression symbols in this PICTURE
string. The compiler ignores the
user-supplied PICTURE and treats the
data item as alphanumeric with a
"PICTURE X" declaration.

427 ILLEGAL CHARACTER IN THE PICTURE STRING.

A character that is not in the PICTURE
string character set is recognized in
this PICTURE by the compiler. The
compiler ignores the user-supplied
PICTURE and treats the data item as
alphanumeric with a "PICTURE X"
declaration.

D-34 DIAGNOSTIC ERROR MESSAGES

430 .BLANK WHEN ZERO. CONFLICTS WITH ZERO SUPPRESS.

A BLANK WHEN ZERO clause is recognized
with a zero suppression field specified
in the PICTURE string. The compiler
ignores the BLANK WHEN ZERO clause and
continues with its processing.

431 PARENTHESIZED SPECIFIER EXCEEDS 18 DIGITS.

The specification contained inside the
parentheses of a PICTURE string exceeds
18 digits in length. The compiler
ignores the user-supplied PICTURE and
treats the data item as alphanumeric
with a "PICTURE X" declaration.

432 SPECIFIER MISSING INSIDE PARENTHESES.

The specification contained inside
parentheses of a PICTURE string is
missing. The compiler ignor~s the
user-supplied PICTURE and treats the
data item as alphanumeric with a
"PICTURE X" declaration.

433 ILLEGAL SYMBOL PRECEDES LEFT PAREN. IN PICTURE.

The compiler recognizes an S, V, CR, DB,
or "." character preceding a left
parenthesis in a PICTURE string. The
error is ignored and processing
continues.

434 TERMINATOR OMITTED IN .NOTE. PARAGRAPH.

The compiler detected a NOTE paragraph
that does not end with a period.

435 INVALID OPERAND IN .VARYING. OR .AFTER. PHRASE.

The expected operand is not
reference in the VARYING or
of this PERFORM VARYING
Fatal.

436 INVALID OPERAND IN .FROM. OR .BY. PHRASE.

a valid name
AFTER phrase

statement.

The FROM or BY phrase
VARYING statement does
valid operand reference.

of a PERFORM
not contain a
Fatal.

437 TOO MANY .AFTER. PHRASES IN . PERFORM. STATEMENT.

The compiler detects more than two AFTER
phrases in the PERFORM VARYING statement
being compiled. Fatal.

DIAGNOSTIC ERROR MESSAGES 0-35

440 .FROM. OR .BY. OR .UNTIL. MISSING IN PERFORM.

The compiler detects the omission of the
keywords FROM, BY, 9r UNTIL in the
PERFORM VARYING statement. Fatal.

441 ILLEGAL CONDITION EXPRESSION IN THE PERFORM.

The compiler detects an invalid
condition expression in the PERFORM
statement. Fatal.

442 NONPOSITIVE LITERAL IN . FROM. OR .BY. PHRASE.

The compiler detects a non-positive,
numeric integer literal in this PERFORM
statement. Fatal.

443 INVALID RELATION CONDITION IN .SEARCH ALL.

The compiler detects either a syntax
error or an invalid operand in the
restricted form of a relation condition
in the SEARCH ALL statement. Fatal.

444 NONINTEGER DATA CONFLICTS WITH INDEXNAME USAGE.

The compiler detects a non-integer data
item reference in a PERFORM VARYING
statement in which the VARYING, AFTER,
and/or FROM phrase contains an
index-name reference. Fatal.

445 IMPLICIT REFERENCE TO BAD CONDITION VALUES.

Through a reference to a condition-name,
the compiler detects a reference to an
associated condition-value that is
improperly declared in the Data
Division. Fatal.

446 IMPLICIT REFERENCE TO BAD CONDITION VARIABLE.

Through a reference to a condition-name,
the compiler detects that the associated
condition-variable is improperly
declared in the Data Division. Fatal.

447 TOO MANY NAMES IN COBOL PROGRAM. RECOMPILE.

The COBOL program being compiled has too
many data-names or procedure-names.
This condition has caused a compiler
table to overflow, aborting the
compilation.

D-36 DIAGNOSTIC ERROR MESSAGES

450 REFERENCE TO UNDEFINED DATANAME OR ILLEGAL SYNTAX

The COBOL
contains a
data-name.
reference.
issued in
diagnostics
Fatal.

statement being compiled
reference to an undefined
The compiler ignores the

This diagnostic may be
conjunction with other

for the erroneous statement.

451 QUALIFIED REFERENCE ILLEGAL IN THIS CONTEXT.

The compiler detects a qualified
reference in a context in which an
unqualified reference is required. The
compiler permits the qualified reference
in this context and continues with the
compilation of the statement containing
the reference.

452 QUALIFIER OMITTED IN QUALIFIED REFERENCE.

A data-name is omitted after the keyword
OF or IN in a qualified reference in the
COBOL statement being compiled. The
reference is ignored. This diagnostic
may be issued in conjunction with other
diagnostics for the statement in error.

453 TOO MANY QUALIFIERS IN QUALIFIED REFERENCE.

The compiler detects more than 48
qualifiers in a qualified reference. The
excess qualifiers are ignored in the
reference.

454 UNDEFINED QUALIFIER IN QUALIFIED REFERENCE.

The compiler detects a quali~ied
reference in which a qualifier 1S a
reference to an undefined data-name. The
compiler ignores the entire qualified
reference. This diagnostic may be issued
in conjunction with other diagnostics
for the erroneous statement containing
the reference.

455 COBOL STATEMENT CONTAINS AMBIGUOUS REFERENCE.

The compiler detects a reference to
COBOL data that is not uniquely
referenceable through qualification. The
compiler uses a reference that satisfies
the reference in the text of the COBOL
program. This diagnostic may be issued
in conjunction with other diagnostics
for the statement in error.

DIAGNOSTIC ERROR MESSAGES D-37

456 DATANAME REFERENCE EXPECTED IN THIS CONTEXT.

The compiler detects a reference to a
data item that is not alphabetic,
numeric, alphanumeric-edited,
alphanumeric, or numeric-edited. The
context of this reference requires that
the reference be to one of these classes
of data items. This diagnostic may be
issued in conjunction with other
diagnostics for the statement in error.

457 ILLEGAL REFERENCE DETECTED IN THIS CONTEXT.

The compiler detects a reference to an
item that is invalid in the context of
its usage. This diagnostic may be
issued in conjunction with other
diagnostics for the statement in error.
Fatal.

460 PARENTHESIZED SPECIFIER LARGER THAN 65387

The specification contained in
parentheses in a PICTURE string is
greater than 65387. The compiler
assumes 65387 and continues processing.

461 EXTRA OPENING QUOTE ON LITERAL IS IGNORED.

The compiler detects a superfluous quote
at the beginning of a non-numeric
literal specification. The compiler
ignores the extra quote and continues
processing the non-numeric literal.

462 PROGRAM NAME MUST BE A NONNUMERIC LITERAL.

The program-name literal following the
key word CALL is not a nonnumeric
literal. Fatal.

464 LITERALS ARE ILLEGAL IN ARGUMENT LIST OF .CALL .•

Literals are not allowed in the argument
list of a CALL statement. Fatal.

465 ARGUMENT LIST OMITTED AFTER .USING. IN .CALL •.

The required argument list is missing
after the key word USING in the CALL
statement. Fatal.

D-38 DIAGNOSTIC ERROR MESSAGES

470 ILLEGAL SYNTAX IN .CODE SET. CLAUSE. IGNORED.

A valid alphabet-name reference is
omitted in the CODE-SET clause. The
compiler ignores the CODE-SET clause and
continues to process the remainder of
the FD.

471 DATANAME IN .KEY IS. PHRASE NOT ALPHANUMERIC.

The data-name following the KEY IS
phrase in a START statement referencing
an indexed file must be alphanumeric.
Fatal.

472 .RECORD KEY. DATAITEM LENGTH GREATER THAN 255.

A data-name referenced in a RECORD KEY
or ALTERNATE RECORD KEY phrase of a
SELECT clause in the FILE-CONTROL
paragraph must be defined in the FILE
SECTION as an item whose length is less
than or equal to 255.

473 DATANAME IN .KEY IS PHRASE IS SUBSCRIPTED OR INDEX.

The data-name
phrase in a
referencing an
subscripted or

following the KEY IS
READ or START statement
indexed file must not be
indexed. Fatal.

474 .RECORD KEY. DATAITEM MUST NOT BE A COBOL TABLE.

A data-name referenced in a RECORD KEY
or ALTERNATE RECORD KEY phrase of a
SELECT clause in the FILE-CONTROL
paragraph must not be defined in the
FILE SECTION with an OCCURS clause or be
subordinate to an item with an OCCURS
clause.

475 . RECORD. OMITTED FROM .ALTERNATE RECORD. ASSUMED.

The reserved word RECORD is missing from
the ALTERNATE RECORD KEY clause. The
error is ignored.

476 UNDEFINED .ALTERNATE RECORD KEY. DATANAME.

The data-name given in an ALTERNATE
RECORD KEY clause has not been defined
in the Data Division.

DIAGNOSTIC ERROR MESSAGES D-39

477 .ALTERNATE RECORD KEY. CLAUSES ARE SEPARATED.

In the SELECT statement the ALTERNATE
RECORD KEY clauses are interleaved among
the other clauses. The ALTERNATE RECORD
KEY clauses should follow one another
with no intervening clauses. This error
is ignored.

500 LINKAGE SECTION ITEM APPEARS TWICE IN .USING ••

A LINKAGE SECTION data
appear more than once
phrase of a PROCEDURE
header. Fatal.

501 ILLEGAL • SEGMENT-LIMIT. VALUE IGNORED.

item must not
in the USING

DIVISION USING

The segment-limit is not a numeric
literal or is a numeric literal whose
value is outside of allowed
segment-limit range.

502 INTEGER 1 BEYOND AREA A TREATED AS LEVEL NUMBER.

An 01 level item was detected beyond
Area A and accepted as if in Area A.

503 MULTIPLE PICTURES FOR SAME ITEM. LAST USED.

A data item has more than one PICTURE
clause. The compiler used the last
PICTURE clause specified.

504 CLOSING PARENTHESIS MISSING IN PICTURE.

The right parenthesis is missing in the
PICTURE string. The compiler uses the
last four characters of the PICTURE
string.

505 NOT A SUBPROGRAM • PROGRAM. IGNORED.

An EXIT PROGRAM has been detected, but
the COBOL program being compiled is not
a subprogram. Because EXIT PROGRAM is
meaningful only in a subprogram, the
word PROGRAM is ignored, and the
statement is treated as if it were a
simple EXIT statement.

D-40 DIAGNOSTIC ERROR MESSAGES

506 EXPANDED PICTURE STRING TOO LONG. PIC X ASSUMED.

The expansion of a PICTURE string
specification produces a string that
exceeds implementation limitations. The
compiler ignores the user-supplied
PICTURE and treats the data item as if
it had a "PICTURE X" declaration.

507 SPECIFIER OMITTED BEFORE LEFT PAREN. IN PIC.

The first character of a PICTURE string
is a left parenthesis. The compiler
ignores the user-supplied PICTURE and
treats the data item as alphanumeric
with a "PICTURE X" declaration.

510 SECTION NO. GREATER THAN 49 TREATED AS 49.

A segment number greater than 49 follows
the word SECTION. The segment is
treated as if it were 49.

511 INVALID ITEM LENGTH IN PARENTHESES OF PICTURE.

The parenthesized length specifier in a
PICTURE contains non-numeric characters.
The compiler ignores the user-supplied
PICTURE and treats the data item as
alphanumeric with a "PICTURE X"
declaration.

512 VALUE CLAUSE NOT ALLOWED IN LINKAGE SECTION.

The VALUE clause cannot appear in data
items in the LINKAGE SECTION. The only
place the VALUE clause can appear in the
LINKAGE SECTION is in a condition name
definition.

513 OPERAND IN • USING. MUST BE LINKAGE SE.CTION ITEM.

Only level 01 or 77 LINKAGE SECTION
items may appear in the USING phrase of
a PROCEDURE DIVISION header. Fatal.

514 MULTIPLE FLOATING FIELDS IN NUMERIC EDIT ITEM.

The PICTURE string contains multiple
floating fields. The compiler ignores
the user-supplied PICTURE and treats the
data item as alphanumeric with a
"PICTURE X" declaration.

DIAGNOSTIC ERROR MESSAGES D-41

515 MULTIPLE ZERO SUPPRESS FIELDS IN PICTURE STRING.

Multiple zero suppression fields are
detected in a PICTURE string. The
compiler ignores the user-supplied
PICTURE and treats the data item as
alphanumeric with a "PICTURE X"
declaration.

516 ZERO SUPPRESSION ILLEGAL WITH FLOATING FIELD.

The PICTURE string contains both
floating and zero suppression fields.
The compiler ignores the user-supplied
PICTURE and treats the data item as
alphanumeric with a "PICTURE X"
declaration.

517 ILLEGAL SYNTAX IN PICTURE STRING.

The PICTURE string is not specified
correctly according to the rules of
PICTURE string syntax. The compiler
ignores the user-supplied PICTURE and
treats the data item as alphanumeric
with a "PICTURE X" declaration.

520 MULTIPLE DECIMAL POINTS IN PICTURE.

The PICTURE string contains multiple
decimal point specifications (V's, pIS,
or periods). The compiler ignores the
user-supplied PICTURE and treats the
data item as alphanumeric with a
"PICTURE X" declaration.

521 OPERAND IN USING MUST BE LEVEL 01 OR 77.

522 INVALID USAGE. IGNORED.

Only level 01 or 77 LINKAGE SECTION
items may appear in the USING phrase of
a PROCEDURE DIVISION header. Fatal.

The USAGE clause contains an invalid
word. The compiler ignores the entire
USAGE clause.

523 MULTIPLE USAGE CLAUSES. LAST USED.

The defined data-name has multiple
clauses specified. The last
clause specified is used by
compiler.

D-42 DIAGNOSTIC ERROR MESSAGES

USAGE
USAGE

the

524 MULTIPLE OCCURS CLAUSES. LAST USED.

The defined data-name has multiple
OCCURS clauses specified. The compiler
uses the last OCCURS clause specified.

525 OCCURS SPECIFICATION ERROR. 1 ASSUMED.

The integer entry of the OCCURS clause
is either non-numeric or non-integer or
is not in the range 1 to 4095. The
compiler assumes an integer value of 1.

526 DATANAME OMITTED IN DATA DESCRIPTION ENTRY.

The data-name declaration is omitted
after a level-number in the data
description entry. The compiler supplies
a system-defined name and proceeds with
the processing of the data description
entry. The system-defined name is
transparent and, thus, inaccessible to
the user.

527 INVALID INDEX NAME. IGNORED.

The compiler did not recognize a valid
index name in the INDEXED BY phrase.
The compiler ignores the INDEXED BY
phrase.

530 USAGE OPTION NOT YET IMPLEMENTED. IGNORED.

The compiler detected COMP-l
USAGE clause. This option
implemented and is ignored. The
USAGE of DISPLAY is used
compiler.

531 TERMINATOR OMITTED AFTER DATAITEM DESCRIPTION.

in the
is not
default
by the

A data description entry in the DATA
DIVISION is not terminated by a period.
The compiler assumes the period is
present and continues processing.

532 INVALID SIGN IN NUMERIC PICTURE.

The sign character S is detected in a
position other than the leading
character position of a numeric PICTURE
string. The compiler ignores the
user-supplied PICTURE and treats the
data item as alphanumeric with a
"PICTURE X" declaration.

DIAGNOSTIC ERROR MESSAGES D-43

533 PICTURE CLAUSE OMITTED ON ELEMENTARY ITEM.

An elementary item is recognized with
its PICTURE clause omitted in the
description. The compiler treats the
data item as alphanumeric with a PICTURE
X declaration.

534 NUMERIC ITEM EXCEEDS 18 DIGIT MAX. TRUNCATED.

A numeric field is defined
PICTURE with more than 18

in this
digits of

field is precision. The numeric
truncated to 18 digits.

535 COMP ITEM EXCEEDS 18 DIGITS. ASSIGN 4 WORDS.

A COMPUTATIONAL data item exceeds 18
digits in its specification. The
compiler truncates it and allocates four
words for its run-time storage.

536 INDEX ITEM HAS ILLEGAL CLAUSE.

The compiler recognized a JUSTIFIED,
SYNCHRONIZED, VALUE, PICTURE, or SIGN
clause on a data-item description that
has INDEX USAGE. The compiler ignores
the offensive clause.

537 NUMERIC VALUE FOR DISPLAY ITEM. IGNORED.

The VALUE clause
initialization
data-item that is
USAGE. The VALUE

540 VALUE TOO LONG. TRUNCATED.

specifies numeric value
for a non-numeric
defined with DISPLAY
clause is ignored.

The non-numeric literal in the VALUE
clause is longer than the associated
data-item. The literal is truncated on
the right to fit in the storage
allocated to the data-item.

541 CLAUSE DUPLICATION. IGNORED.

This clause has been
recognized for this item.
clause is ignored.

542 INVALID WORD IN .BLANK WHEN ZERO •. IGNORED.

previously
The duplicate

The keyword ZERO was not recognized in
the BLANK WHEN ZERO clause. The entire
clause is ignored.

D-44 DIAGNOSTIC ERROR MESSAGES

543 LEVEL NUMS UNEQUAL IN • REDEFINES. CLAUSE IGNORED.

A REDEFINES clause attempts to redefine
two items of different level numbers.
The REDEFINES clause is ignored.

544 POSSIBLE OVERLAP OF DEPENDING ON ITEM AND TABLE.

The DEPENDING ON item and variable
length table are both defined in the
LINKAGE SECTION. Because LINKAGE
SECTION items are associated with data
items appearing in a CALL statement,
there is no ·way at compile time to
ensure that the DEPENDING ON items and
table do not overlap. The COBOL
run-time RTS does not check for overlap
of the DEPENDING ON item and the table
during execution. It is, therefore,
your responsibility to ensure that
overlap does not occur.

545 LEVEL ILLEGAL AFTER 77. TREATED AS 01.

An invalid level number (02-49) follows
a 77 level item. The 77 level item is
treated as an 01 level item. This
action can cause further diagnostics if
it is not a valid group item.

546 PERIOD OMITTED AFTER .EXIT PROGRAM.

The words EXIT PROGRAM are not followed
by a period. The error is ignored.

547 .EXIT PROGRAM. NOT LASTSTMT OF SENTENCE.

An EXIT PROGRAM statement appears in a
sequence of statements within a
sentence. But, it is not the last
statement. All of the statements
following it are compiled, but can never
be executed.

550 REDEFINING LENGTH SHOULD MATCH ORIGINAL LENGTH.

The length of a non-Ol
item is not the same
the item it REDEFINES.
is used.

551 REDEFINITION OF .OCCURS. ITEM. IGNORED.

level REDEFINES
as the length of
The new length

Items with OCCURS cannot be
redefined. REDEFINES is ignored.

DIAGNOSTIC ERROR MESSAGES D-45

552 PROCESSING RESUMES AFTER BAD FD.

Prior to issuing this message, the
compiler discovered bad syntax in the FD
of the FILE SECTION. The compiler at
that time issued an error message
identifying the syntax error. Then the
compiler attempted to recognize another
FD, the WORKING-STORAGE SECTION header
or the PROCEDURE DIVISION. Upon
recognizing one of these three language
elements, the compiler issues this
diagnostic to indicate that normal
processing has resumed.

553 INVALID CLAUSE KEYWORD. OTHER CLAUSES SKIPPED.

A reserved clause keyword was expected
at this point in a data item description
entry of the DATA DIVISION, but was not
recognized by the compiler. The
compiler skips to the next level number
data item description.

554 INVALID WORD FOLLOWING .VALUE •• IGNORED.

The VALUE clause contains an invalid
word for this data description. The
entire VALUE clause is ignored.

555 VALUE CONFLICT. GROUP VALUE USED.

The VALUE clause assigns a value to an
item subordinate to a group item that
also has a VALUE clause. The
subordinate VALUE clause is ignored.

556 LEVEL NUMBER OMITTED. ITEM IGNORED.

The level number has been omitted in a
data-item description. All source text
is ignored up to and including the next
period.

557 NO VALUE AFTER CONDITION NAME. 88 IGNORED.

An 88 level condition-name has no VALUE
clause specified. The entire 88 level
data-item is ignored.

560 SYNTAX ERROR IN SWITCH CLAUSE. CLAUSE IGNORED.

The SWITCH clause has a syntax error in
its specification. The compiler ignores
the entire clause.

D-46 DIAGNOSTIC ERROR MESSAGES

561 .NO. MISSING IN ADVANCING PHRASE. ASSUMED.

The keyword NO is missing in the
ADVANCING phrase of the DISPLAY
statement. NO is assumed present.

562 •. ADVANCING. .MISSING AFTER .NO.. ASSUMED.

The keyword ADVANCING is missing in the
ADVANCING phrase of the DISPLAY
statement. ADVANCING is assumed
present.

563 DUPLICATE DATANAME DECLARATION DETECTED.

In the ENVIRONMENT DIVISION and/or DATA
DIVISION, a data-name is defined that is
not uniquely referenceable even with
complete qualification.

564 ILLEGAL PARAGRAPH HEADER ID DIV. PAR IGNORED.

An illegal paragraph header appears in
the IDENTIFICATION DIVISION. The
paragraph is ignored.

565 ILLEGAL PARAGRAPH HEADER ENV DIV. PAR IGNORED.

An illegal paragraph header appears in
the ENVIRONMENT DIVISION. The paragraph
is ignored.

566 NUMERIC LITERAL ILLEGAL ON GROUP ITEM. IGNORED.

A numeric literal is illegal in the
VALUE clause of a group item. The VALUE
clause is ignored.

567 • ENVIRONMENT. NOT FOLLOWED BY .DIVISION ••

The word ENVIRONMENT is not followed by
the word DIVISION. DIVISION is assumed
present.

570 TERMINATOR MISSING AFTER .DATA DIVISION. HEADER.

The DATA DIVISION header is not followed
by a period. The period is assumed
present and processing continues.

571 TERMINATOR MISSING AFTER PARAGRAPH HEADER.

A paragraph header in the IDENTIFICATION
or ENVIRONMENT DIVISION is not
terminated by a period. The period is
assumed present and processing
continues.

DIAGNOSTIC ERROR MESSAGES D-47

572 • RENAMES. SPECIFIES STORAGE OVERLAP ON RIGHT.

In processing the RENAMES clause, the
compiler detects the condition in which
the end of the storage allocated to the
data-name after the THRU keyword is not
to the right of the end of the storage
allocated to the data-name after the
RENAMES keyword. The compiler ignores
the entire RENAMES data description
entry.

573 • SECTION. OMITTED FROM SECTION HEADER.

An ENVIRONMENT DIVISION section name is
not followed by the word SECTION. The
error is ignored.

574 TERMINATOR MISSING AFTER SECTION HEADER.

An ENVIRONMENT DIVISION
is not terminated by
error is ignored.

600 ILLEGAL LEVEL NUMBER. TREAT AS 01.

section header
a pp.riod. The

This level number is not an 01-49, 66,
77, or 88 level number. The level
number is assumed to be 01.

601 TERMINATOR MISSING AFTER ENV DIV HEADER.

The ENVIRONMENT DIVISION header is not
terminated by a period. The period is
assumed present and processing
continues.

602 • DATA. NOT FOLLOWED BY .DIVISION.

The word DATA is not followed by the
word DIVISION. DIVISION is assumed
present.

603 ENVIRONMENT DIVISION HEADER OMITTED.

The program contains no ENVIRONMENT
DIVISION header. The compiler resumes
processing at the next paragraph header.

604 UNRECOGNIZABLE COBOL PROGRAM FORMAT. ABORT.

" The compiler is unable to recognize the
reservep word IDENTIFICATION as the
first word required in a COBOL source
program. Failure to recognize this
required reserved word may be due to one
of the following reasons:

0-48 DIAGNOSTIC ERROR MESSAGES

(1) IDENTIFICATION is, in fact, omitted
as the first word of the source file,
(2) the user is attempting to compile a
COBOL source program in conventional
format without specifying the
conventional format switch, or (3) the
user is attempting to compile a file
that is not a COBOL source program. The
compiler issues a string of diagnostics
and then aborts the compilation.

605 • IDENTIFICATION. NOT FOLLOWED BY .DIVISION ••

The word IDENTIFICATION is not followed
by the word DIVISION. DIVISION is
assumed present.

606 TERMINATOR OMITTED AFTER .ID DIVISION. HEADER.

The IDENTIFICATION DIVISION
not terminated by a period.
is assumed present and
continues.

607 .PROGRAMID. EXPECTED AFTER DIVISION HEADER.

The IDENTIFICATION DIVISION
not followed by the
paragraph. The error is
processing continues.

610 TERMINATOR OMITTED AFTER .PROGID. PARA HEADER.

header is
The period
processing

header is
PROGRAM-ID

ignored and

The PROGRAM-ID paragraph-name is not
terminated by a period. The period is
assumed present and processing
continues.

611 INVALID PROGRAM NAME IN .PROGRAM ID. PARAGRAPH.

The program name of the PROGRAM-ID
paragraph contains an invalid character
or exceeds the maximum length. The
error is ignored and processing
continues.

612 TOO MANY FILES FOR LUNS OR TEMPORARY SPACE.

The compiler has discovered either that
more than 30 files are declared in the
program or that more than 30 SAME RECORD
AREA clauses are specified in the
program. The compiler imposes a limit
of 30 in both cas~s, because the
associated compiler and/or run time
table space is exhausted.

DIAGNOSTIC ERROR MESSAGES D-49

613 INVALID WORD SUSPENDS PROCESSING. SCAN FORWARD.

An unidentifiable word is found where a
verb is expected. The compiler scans to
a verb, period, or word in Area A.

614 PROCESSING RESTARTS ON VERB.

Due to a previous syntax error, the
compiler scanned forward for the next
verb, period, or Area A word at which to
resume compilation. The compiler
recognized a verb and resumes normal
compilation at this point. This message
is an observation only.

615 PROCESSING RESTARTS ON PROCEDURE NAME.

Due to a previous syntax error, the
compiler scanned forward for the next
verb, period, or Area A word at which to
resume compilation. The compiler
recognized an Area A word and resumes
compilation at this point. This message
is an observation only.

616 PROCESSING RESTARTS AFTER TERMINATOR.

Due to a previous syntax error, the
compiler scanned forward for the next
verb, period, or Area A word at which to
resume compilation. The compiler
recognized a period and resumes normal
compilation on the word following the
period. This is an observation only.

617 • IDENTIFICATION. KEYWORD NOT IN AREA A.

The compiler detects
IDENTIFICATION keyword is
A. The compiler ignores the
continues processing.

620 PARAGRAPH TERMINATOR ASSUMED OMITTED.

that the
not in Area
error and

A paragraph was terminated without a
period. The period is assumed and
processing continues.

621 • LINAGE. INVALID FOR THIS FILE. CLAUSE IGNORED.

The LINAGE clause must not be specified
for a file that has RELATIVE or INDEXED
organization. The LINAGE clause is
ignored.

D-50 DIAGNOSTIC ERROR MESSAGES

622 TERMINATOR MISSING AFTER PROCEDURE NAME.

A section
terminated
assumed
continues.

or paragraph name is not
by a period. The period is

present and processing

623 .ELSE DOES NOT HAVE ASSOCIATED .IF •• IGNORED.

The word ELSE has no associated IF
statement. The ELSE is ignored.

624 VERB EXPECTED TO FOLLOW ELSE ••• ELSE. IGNORED.

A sentence ends with the word ELSE. The
ELSE is ignored.

625 .JUSTIFY. WITH NUMERIC OR EDITED ITEM. IGNORED.

The JUSTIFIED clause must not be
specified for a
numeric-edited data item.
clause is ignored.

626 .BLANK WHEN ZERO. ILLEGALLY SPECIFIED. IGNORED.

numeric or
The JUSTIFIED

The BLANK WHEN ZERO clause must be
specified only for a numeric or
numeric-edited data item. The clause is
ignored.

627 INVALID OR MISSING DATANAME AFTER .REDEFINES ••

The compiler detects the omission of a
valid data-name reference following the
keyword REDEFINES. The compiler ignores
the REDEFINES clause and continues
processing the data description entry.

630 • REDEFINES. MUST FOLLOW DATA NAME. IGNORED.

The REDEFINES keyword appears in the
wrong position of a data description
entry. The REDEFINES clause is ignored.

631 DEPTH OF NESTED .IF. EXCEEDS LIMIT.

A nested IF statement has
maximum depth of 30
compiler ignores nesting
depth.

exceeded
levels.

beyond

the
The

this

DIAGNOSTIC ERROR MESSAGES D-5l

632 DUPLICATE PROCEDURE NAME DETECTED.

In the Procedure Division, a paragraph
or section-name is defined that is not
uniquely referenceable even with
qualification.

633 REFERENCE TO UNDEFINED PARAGRAPH NAME.

In the Procedure Division, an explicit
qualified reference is made to a
paragraph-name that is undefined in the
section specified by the qualifier.

634 FILENAME LITERAL TOO LONG. TRUNCATED.

A file specification in the ASSIGN
clause exceeds 150 characters in length.
It is truncated to 150 characters.

635 ILLEGAL SYNTAX IN .GO TO. STATEMENT.

The compiler detects illegal syntax in
the GO TO statement. Fatal.

636 INVALID INTEGER OR DATANAME.

In the LINAGE clause, the compiler
failed to recognize a non-negative
integer literal or a numeric integer
data-name. This phrase of the LINAGE
clause is ignored.

637 .GO TO. HAS MULTIPLE PROCEDURE NAMES.

A GO TO statement without the DEPENDING
ON phrase has more than one
procedure-name. Fatal.

640 INVALID WORD FOLLOWS .DATA DIVISION.

The word following the DATA DIVISION
header either does not start in Area A
or is not one of the reserved words
FILE, WORKING-STORAGE, LINKAGE, or
PROCEDURE. The compiler skips all
source text until one of the keywords
FILE, WORKING-STORAGE, LINKAGE, or
PROCEDURE is recognized.

0-52 DIAGNOSTIC ERROR MESSAGES

641 INVALID WORD IN FILE SECTION. SCAN FORWARD.

An invalid word was detected in the FILE
SECTION where the keyword FD is
expected. The compiler skips all source
text until one of the keywords FD,
WORKING-STORAGE, LINKAGE, or PROCEDURE
is recognized.

642 .OMITTED LABELS IGNORED WITH .VALUE OF ID.

The LABEL RECORDS
ignored if VALUE
a file. STANDARD
Warning.

643 .SECTION. EXPECTED AFTER HEADER WORD.

ARE OMITTED clause is
OF ID is specified for
labels are assumed.

The keyword SECTION is omitted after the
word FILE, WORKING-STORAGE, OR LINKAGE
SECTION. It is assumed present and
processing continues.

644 TERMINATOR EXPECTED AFTER SECTION HEADER.

The FILE SECTION, WORKING-STORAGE
SECTION, or LINKAGE SECTION header is
not terminated by a period. The period
is assumed and processing continues.

646 .OF. OR .ID. MISSING IN .VALUE OF ID •.

One or both of the keywords OF or ID is
omitted in the VALUE OF ID clause.
Their presence is assumed and processing
continues.

647 ILLEGAL WORD IN AREA A. SCAN FORWARD.

In the WORKING-STORAGE SECTION, an 01 or
77 level number or the PROCEDURE keyword
was expected in Area A, but was not
recognized. The compiler skips all
source text until one of the three
expected language elements is recognized
in Area A.

650 GROUP LEVEL .VALUE. DISALLOWED.

The VALUE clause on this group item is
not permitted because a subordinate
elementary item has a non-DISPLAY usage
specified or has a SYNCHRONIZED clause
specified. The group VALUE clause is
ignored.

DIAGNOSTIC ERROR MESSAGES D-53

651 REFERENCED LINKAGE SECTION ITEM NOT ID .PD. USING ••

This LINKAGE SECTION item has been
referenced in the PROCEDURE DIVISION.
However, neither this item nor the level
01 to which it is subordinate appeared
in the PROCEDURE DIVISION USING phrase.
Only those LINKAGE SECTION items
appearing in the PROCEDURE DIVISION
USING phrase, or items subordinate to
them, may be referenced in the PROCEDURE
DIVISION of a COBOL. program. Fatal.

652 NON-SEQ FILE IN .MULTIPLE. FILE TAPE. CLAUSE.

In the 1-0 CONTROL paragraph, the
MULTIPLE FILE TAPE clause is specified
for a file whose organization is not
SEQUENTIAL. The MULTIPLE FILE TAPE
clause is ignored for this file.

653 .VALUE. CLAUSE ILLEGAL IN FILE SECTION.

A VALUE clause is specified for a data
description entry given in the FILE
SECTION. The VALUE clause is ignored.

654 SYNTAX ERROR IN CURRENCY CLAUSE.

655 ILLEGAL CURRENCY SIGN.

The alphanumeric literal expected in the
CURRENCY SIGN clause of the
SPECIAL-NAMES paragraph is omitted. The
clause is ignored and the currency sign
defaults to the dollar sign.

The alphanumeric literal in the CURRENCY
SIGN clause is not allowed as the
currency sign either because the literal
is longer than one character or because
it is an invalid COBOL currency sign.
The CURRENCY SIGN clause is ignored, and
the currency sign defaults to the dollar
sign.

656 SPECtALNAMES CLAUSE INVALID.

An unrecognizable word appears in a
position where a SPECIAL-NAMES paragraph
clause keyword is expected. All source
text is skipped until the next keyword
is recognized.

D-54 DIAGNOSTIC ERROR MESSAGES

657 SYNTAX ERROR IN DECIMALPOINT CLAUSE.

The keyword COMMA is
DECIMAL-POINT IS COMMA
SPECIAL-NAMES paragraph.
ignored.

660 .AFTER. MISSING IN .USE. STATEMENT. ASSUMED.

omitted in the
clause of the
The clause is

The keyword AFTER is omitted in the USE
statement. AFTER is assumed present and
processing continues.

661 NO • ERROR. OR . EXCEPTION. IN .USE. ASSUMED.

One of the keywords ERROR or EXCEPTION
is omitted in the USE statement. The
missing keyword is assumed present and
processing continues.

662 NO KNOWN CLAUSES IN SPECIALNAMES.

The SPECIAL-NAMES paragraph contains no
valid clauses. This is an observation
only.

663 REDUNDANT .USE. COVERAGE. PREVo .USE. IGNORED.

Multiple USE statements have referenced
the same file. The last USE statement
specified is then applied to the
referenced file. Fatal.

664 UNKNOWN OPEN MODE IN .USE. STATEMENT.

An unrecognizable OPEN mode option was
specified in the USE statement. Fatal.

665 GROUP ITEM HAS BEEN CALLED FILLER.

A FILLER item cannot have any elementary
items subordinate to it. The compiler
replaces the FILLER declaration with a
system-defined name and proceeds with
the processing of the newly-named group
item. The system-defined name is
transparent and inaccessible to the
user.

666 MISSING ENVIRONMENT DIVISION.

The program does not contain an
ENVIRONMENT DIVISION. The compiler
skips to the DATA DIVISION and continues
processing.

DIAGNOSTIC ERROR MESSAGES D-55

667 DIVISION BY ZERO.

The divisor of a DIVIDE statement is a
literal of zero value. The error is
ignored.

670 VALUE NOT PERMITTED WITH THIS ITEM.

A VALUE clause is recognized in a data
description entry that contains a
REDEFINES or an OCCURS clause. The
VALUE clause is ignored.

671 INVALID CONSTANT OR LITERAL FOLLOWING .ALL ••

The reserved word ALL is not followed by
a non-numeric literal or a figurative
constant. ALL is ignored and processing
continues.

672 BAD FILENAME IN .USE. STATEMENT.

673 FILE NOT CLOSED.

An unrecognizable word appears where a
file-name is expected in the USE
statement. Fatal.

The referenced file was opened, but
there was no CLOSE statement detected
for this file in the program.

674 SUBJECT OF .ALTER. IS SECTION NAME.

The ALTER statement references a
name. Only paragraph names
altered. If this statement is
during execution, the program
aborted.

675 FILE COVERED BY CONFLICTING USE PROCEDURE.

section
may be
reached
will be

There was more than one conflicting USE
procedure specified for the referenced
file. Fatal.

676 DATA DIVISION EXCEEDS ADDRESS RANGE.

The maximum DATA DIVISION size is 65,535
bytes. Fatal.

677 SUPPLIED VALUE INVALID FOR NUM ITEM. IGNORED.

The VALUE clause specifies invalid value
initialization for a numeric data item.
The compiler ignores the VALUE clause.

0-56 DIAGNOSTIC ERROR MESSAGES

700 FILE ACCESSED BY VERB REQUIRING REL. OR IDX ORG.

A file whose organization is SEQUENTIAL
is referenced by the START or DELETE
verbs or by an I/O verb that has the
INVALID KEY clause specified. In all
these cases, the referenced file must
have RELATIVE or INDEXED organization.
Fatal.

701 FILE ACCESSED BY VERB REQ. SEQUENTIAL ORG.

702 VERB NOT IMPLEMENTED.

A file whose organization is RELATIVE or
INDEXED is referenced by an I/O verb
that has the AT EOP or ADVANCING clauses
specified. The referenced file must
have SEQUENTIAL organization. Fatal.

An ANS 1974 COBOL verb appears that is
not implemented in this release of the
compiler. The compiler scans to another
verb, period, or word in Area A.

704 OCCURS ILLEGAL FOR 01 OR 77 ITEM. IGNORE.

An OCCURS clause is specified for an 01
or 77 level data-name. The compiler
ignores the OCCURS clause.

705 .ACCEPT FROM. OBJECT NOT IN SPECIALNAMES.

The mnemonic-name used in the ACCEPT
statement was not defined in the
SPECIAL-NAMES paragraph. Fatal.

706 ACCEPT IDENTIFIER INVALID.

The word following the ACCEPT verb is
not a data-name or is a data-name that
has non-DISPLAY usage or invalid class.
Fatal.

707 VERB OR CONDo CLAUSE CONFLICTS WITH FILE ACCESS.

There is a conflict between the ACCESS
MODE of the referenced file and the I/O
verbs and/or condition clauses that
reference this file. Fatal.

710 DATANAME AFTER .GO DEPENDING. INVALID.

The word following the DEPENDING ON
phrase of the GO TO statement is not a
data-name or is a data-name that has
INDEX usage. Fatal.

DIAGNOSTIC ERROR MESSAGES D-57

711 INVALID CLASS OF DATANAME AFTER .GO DEPENDING.

The data-name following the DEPENDING ON
phrase of the GO TO statement is not a
numeric data-name or is a numeric,
non-integer data-name. Fatal.

712 .DISPLAY UPON. OBJECT NOT IN SPECIALNAMES.

The mnemonic-name used in the DISPLAY
statement was not defined in the
SPECIAL-NAMES paragraph. Fatal.

713 .DISPLAY. OPERAND IS INVALID.

A data item in the DISPLAY statement has
invalid class or USAGE.

714 MISSING OR INVALID OPERAND FOR ARITHMETIC VERB.

One of the
statement
Fatal.

operands of an arithmetic
is either missing or invalid.

715 MISSING OR INVALID SOURCE OPERAND.

The source operand is missing following
an arithmetic verb. Fatal.

716 MISSING OR INVALID DESTINATION OPERAND.

717 .GIVING. REQUIRED AFTER .DIV ••• BY.

The GIVING phrase INTO is missing in a
DIVIDE ••• BY statement. Fatal.

720 .GIVING. REQUIRED AFTER LITERAL OPERAND.

The GIVING phrase is
second operand of
MULTIPLY, or SUBTRACT
literal. Fatal.

721 .BY. MISSING IN .MULTIPLY.

required if the
an ADD, DIVIDE,
statement is a

The keyword BY is missing in a MULTIPLY
statement. Fatal.

722 .BY. OR .INTO. MISSING FROM .DIVIDE.

One of the keywords BY or INTO is
missing from the DIVIDE statement.
Fatal.

D-58 DIAGNOSTIC ERROR MESSAGES

723 • FROM. MISSING IN • SUBTRACT.

The keyword FROM is missing from the
SUBTRACT statement. Fatal.

724 FILE NEEDS DYNAMIC ACCESS FOR .READ NEXT ••

In a READ NEXT statement, the referenced
file must have ACCESS MODE IS DYNAMIC
specified in the FILE-CONTROL paragraph.
Fatal.

725 BAD PROCEDURE NAME IN .PERFORM ••

A missing or invalid procedure name is
recognized in the PERFORM statement.
Fatal.

726 ILLEGAL OPERAND OF .TIMES. OPTION OF .PERFORM ••

The TIMES operand of the
statement is not a numeric
data-name or numeric integer
The compiler assumes a value
the TIMES operand.

727 .TIMES. MISSING FROM .PERFORM •• ASSUMED.

PERFORM
integer

literal.
of 1 for

The PERFORM statement does not contain
the keyword TIMES but does contain the
iteration value required to execute the
PERFORM correctly. The keyword TIMES is
assumed present.

730 PROCEDURE NAME OMITTED IN .ALTER ••

A valid procedure-name was not
recognized in the ALTER statement.
Fatal.

731 ILLEGAL .ALTER. DUE TO MISSING .TO ••

The keyword TO was not recognized in the
ALTER statement. Fatal.

732 FILE HAS VAR. SIZE RECS. .READ INTO. ILLEGAL.

It is illegal for the READ
statement to reference a file that
multiple record descriptions
different lengths. Fatal.

733 FILE ACCESSED BY VERB REQUIRING .LINAGE.

INTO
has
of

A file that did not have a LINAGE clause
in its specification is accessed by an
I/O verb. Fatal~

DIAGNOSTIC ERROR MESSAGES D-59

734 .DELETE. OR • REWRITE. WITHOUT INV. KEY OR USE.

A DELETE or REWRITE statement without
the INVALID KEY phrase references a file
for which there is no USE procedure.
Fatal.

735 OPEN MODE OR NO READ PROHIBITS REWRITE OR DELETE.

A DELETE or REWRITE statement
a file that was not OPENed in
mode or that has no READ
referencing it in the program.

736 • START. CONFLICTS WITH OPEN MODE.

references
the proper
statement
Fatal.

A START statement references a file that
was not opened in the proper mode.
Fatal.

737 .WRITE. CONFLICTS WITH OPEN MODE.

A WRITE statement references a file that
was not opened in the proper mode.
Fatal.

740 . READ. CONFLICTS WITH OPEN MODE.

A READ statement references a file that
is only opened in OUTPUT or EXTEND mode.
Fatal.

741 USE NOT IN DECLAR. OR NOT FOLLOWING SECTION NAME.

The USE statement is not in the
DECLARATIVES section of the PROCEDURE
DIVISION or is not immediately following
a section name inside the DECLARATIVES.
Fatal.

742 MORE THAN 255 ALTERNATE KEYS. IGNORED.

The maximum of 255 ALTERNATE KEYS has
been exceeded. The clause is ignored.

743 INTEGER IN SWITCH CLAUSE INVALID OR OMITTED.

A SWITCH clause of the SPECIAL-NAMES
paragraph either contains an invalid
numeric integer or has omitted the
integer in its specification. A SWITCH
clause integer must be in the decimal
range 1<=n<=16. The SWITCH clause is
ignored.

D-60 DIAGNOSTIC ERROR MESSAGES

744 .IS. OMITTED IN SPECIALNAMES. ASSUMED PRESENT.

The required keyword IS is omitted in a
clause of the SPECIAL-NAMES paragraph.
IS is assumed present and processing
continues.

745 DEVICE MNEMONIC OMITTED IN SPECIALNAMES.

A valid device mnemonic-name is not
recognized in one of the CONSOLE,
LINE-PRINTER, CARD-READER,
PAPER-TAPE-READER, or PAPER-TAPE-PUNCH
clauses of the SPECIAL-NAMES paragraph.
All source text is skipped until the
next recognizable keyword.

746 TERMINATOR OMITTED IN SPECIALNAMES.

The SPECIAL-NAMES paragraph is not
terminated by a period. The period is
assumed present and processing
continues.

747 SUBJECT OF .ALTER. NOT .GO TO •• ALTER IGNORED.

The paragraph referenced by an
statement does not contain a
statement as its first statement.
ALTER statement is ignored.

750 KEYWORD OMITTED IN .SWITCH. CLAUSE.

ALTER
GO TO

The

One of the keywords OFF or ON is omitted
in the SWITCH clause of the
SPECIAL-NAMES paragraph. The SWITCH
clause is ignored.

751 CONDITION NAME MISSING IN • SWITCH. CLAUSE.

A valid condition-name is not recognized
in the SWITCH clause of the
SPECIAL-NAMES paragraph. The SWITCH
clause is ignored.

752 .CR. OR .DB. NOT AT RIGHT END OF PICTURE.

The PICTURE symbol CR or DB does not
appear at the right end of the PICTURE
string. The compiler ignores the
user-supplied PICTURE and treats the
data item as alphanumeric with a
"PICTURE X" DECLARATION.

DIAGNOSTIC ERROR MESSAGES D-61

753 .CR. OR .DB. USED WITH SIGNED ITEM.

Both the PICTURE symbols, CR or DB, and
a sign, + or , appear in the same
PICTURE. The compiler ignores the
user-supplied PICTURE and treats the
data item as alphanumeric with a
"PICTURE X" declaration.

754 MULTIPLE DEFINITION OF SWITCH. FIRST USED.

Multiple definitions of a COBOL switch
are detected in the SPECIAL-NAMES
paragraph. All but the first definition
of SWITCH are ignored.

755 • SENTENCE. ASSUMED AFTER .NEXT.

The keyword NEXT is not followed by the
keyword SENTENCE. SENTENCE is assumed
present and processing continues.

756 SUBSCRIPT NOT NUMERIC INTEGER.

A data-name used as a subscript is not
numeric in class. A default value of 1
is assumed as the subscript.

760 ILLEGAL SYNTAX IN .DIVIDE. STATEMENT.

The compiler detects illegal syntax in
the DIVIDE statement. Fatal.

761 INDEXED FILE REQUIRES .RECORD KEY. PHRASE.

Self explanatory.

762 RECORD KEY INVALID FOR THIS FILE.

The RECORD KEY clause is valid only for
indexed files.

763 .ALT RECORD KEY. INVALID FOR FILE. IGNORED.

The ALTERNATE RECORD KEY clause is valid
only for indexed files.

764 READ-AHEAD. OR. WRITE-BEHIND. NOT SUPPORTED.

The APPLY READ-AHEAD and APPLY
WRITE-BEHIND clauses are not supported
in this version of the compiler. The
APPLY clause is ignored.

D-62 DIAGNOSTIC ERROR MESSAGES

765 INTEGER INVALID IN. RESERVE AREA. CLAUSE.

The number of buffer areas
the RESERVE clause is
clause is ignored, and the
is used.

766 BAD VALUE IN BLOCK CONTAINS CLAUSE.

reserved by
invalid. The

RMS default

The numeric literal in the BLOCK clause
is less than the sum of the record size,
the record header size, and the bucket
header size. The BLOCK CONTAINS clause
is ignored.

767 VALUE IN. BLOCK CONTAINS. CLAUSE IS ROUNDED UP.

The numeric literal in the BLOCK clause
is not a multiple of 512. The value is
rounded up to the next even multiple of
512.

770 EXPECTED .RECORD KEY. DATANAME NOT DEFINED.

The data-name in a RECORD KEY clause has
not been defined in the DATA DIVISION.

771 .RECORD KEY. DATANAME HAS INVALID CLASS.

A data-name referenced
or ALTERNATE RECORD
SELECT clause in
paragraph is

in a RECORD KEY
KEY phrase of a

the FILE-CONTROL
defined with

non-alphanumeric class
SECTION.

in the FILE

,
772 .RECORD KEY. DATA ITEM CANNOT BE VARIABLE LENGTH.

A data-name referenced in a RECORD KEY
or ALTERNATE RECORD KEY phrase of a
SELECT clause in the FILE-CONTROL
paragraph is defined in the FILE SECTION
as an item whose size is variable.

773 .RECORD KEY. ITEM NOT DEFINED IN RECORD OF FILE.

A data-name referenced in a RECORD KEY
or an ALTERNATE RECORD KEY phrase of a
SELECT clause is not defined in the
record description of the associated
file.

DIAGNOSTIC ERROR MESSAGES D-63

774 FILE ACCESSED BY VERB REQUIRING INDEXED ORG.

A file whose organization is SEQUENTIAL
or RELATIVE is referenced by the READ
verb that has the KEY IS data-name
phrase specified. The referenced file
must have INDEXED organization. Fatal.

775 .KEY IS. PHRASE INVALID FOR SEQUENTIAL • READ.

Either the file has ACCESS SEQUENTIAL or
the READ statement contains the word
NEXT. In either case the KEY IS
data-name phrase is illegal. Fatal.

776 INVALID DATANAME IN .KEY IS. PHRASE.

The KEY IS phrase of the READ statement
was not followed by a data-name. Fatal.

777 .KEY IS. PHRASE NOT FOLLOWED BY RECORD KEY.

The data-name following the KEY IS
phrase of the READ statement is not a
RECORD KEY or ALTERNATE RECORD KEY for
the referenced file. The RECORD KEY
data-name is assumed.

1000 VARIABLE OCCURRENCES TABLE MUST END RECORD.

A COBOL table declared with the
DEPENDING ON phrase can be followed in
the record only by data description
entries whose level-numbers are greatei
than the level-number of this table
entry. The compiler ignores the
remainder of the record descriptor from
the point where the error is detected.
Fatal.

1001 .ASCENDING. OR .DESCENDING. DATANAME EXPECTED.

A user-defined data-name was expected,
but not found, in the ASCENDING KEY IS
or DESCENDING KEY IS phrase.

1002 RENAMED DATAITEMS NOT IN CURRENT RECORD.

The data items specified after the
RENAMES keyword (that is, the data items
being renamed) are defined outside of
the current record description. The
compiler ignores the entire RENAMES data
description entry.

0-64 DIAGNOSTIC ERROR MESSAGES

1003 MAXIMUM OCCURRENCES NOT GREATER THAN MINIMUM.

In a variable occurrence table
declaration, the integer following the
keyword TO (that is, the maximum) must
be greater than the integer following
the keyword OCCURS (that is, the
minimum) • The compiler assumes the
maximum value to be one greater than the
minimum value.

1004 . DEPENDING. IS OMITTED IN THE .OCCURS. CLAUSE.

In a variable occurrence table
declaration, the keyword DEPENDING has
been omitted. The compiler ignores the
remainder of the OCCURS clause and
treats the table declaration as an
ordinary COBOL table.

1005 A DATANAME MUST FOLLOW THE .DEPENDING. KEYWORD.

In a variable occurrence table
declaration, a valid data-name is not
found following the keyword
DEPENDING. The compiler ignores the
remainder of the OCCURS clause and
treats the table declaration as an
ordinary COBOL table.

1006 .OCCURS DEPENDING. SUBORDINATE TO AN .OCCURS.

The compiler detects a table declaration
with a DEPENDING ON phrase subordinate
to a group item that has an OCCURS
clause. The compiler ignores the
DEPENDING ON phrase and treats the
declaration as an ordinary COBOL table.

1007 MAXIMUM NO. TABLE OCCURRENCES MUST BE POSITIVE.

In a variable occurrence table
declaration, the integer following the
keyword TO (that is, the maximum) must
be greater than zero. The compiler
assumes the maximum value to be one
greater than the integer value following
the keyword OCCURS (that is, the
minimum) .

1010 EXPECTED .DEPENDING ON. DATANAME NOT DEFINED.

The data-name referenced in a DEPENDING
ON phrase was not defined in the DATA
DIVISION. Fatal.

DIAGNOSTIC ERROR MESSAGES D-65

1011 EXPECTED .ASCENDING KEY. DATANAME NOT DEFINED.

The data-name referenced in an ASCENDING
KEY phrase was not defined in the DATA
DIVISION. Fatal.

1012 EXPECTED .DESCENDING KEY. DATANAME NOT DEFINED.

The data-name referenced in a DESCENDING
KEY phrase was not defined in the DATA
DIVISION. Fatal.

1013.DEPENDING ON. DATANAME NOT A NUMERIC INTEGER.

The data-name referenced in a DEPENDING
ON phrase was not declared as a numeric
integer in the DATA DIVISION. Fatal.

1014 • RENAMES. APPLIED TO AN INVALID LEVEL OF DATA.

The RENAMES clause specifies the
renaming of data items whose level
number is 01, 66, 77, or 88. The
compiler ignores the entire RENAMES data
description entry.

1015 .DEPENDING ON. DATANAME DETECTED WITHIN TABLE.

The compiler detects a data-name, that
follows a DEPENDING ON phrase and that
defines the current number of
occurrences in a variable occurrence
table, to have its storage allocated
within the range of the table. Fatal.

1016 .OCCURS. CLAUSE ON A TABLE KEY DATANAME.

The compiler detects the presence of an
OCCURS clause on a data item that has
been declared as an ASCENDING or
DESCENDING KEY. Fatal.

1017 .SEARCH ALL. TABLE DOES NOT HAVE KEYS.

The table being searched by a SEARCH ALL
statement must have the ASCENDING KEY or
DESCENDING KEY phrase specified in its
declaration. Fatal.

1020 IMPERATIVE STATEMENT EXPECTED DURING • SEARCH.

A period or a non-imperative statement
was found where the SEARCH statement
environment is expecting an imperative
statement. Fatal.

D-66 DIAGNOSTIC ERROR MESSAGES

1021 KEYS SPECIFIED FOR .SEARCH ALL. NOT DENSE.

When a key is referenced for the SEARCH
ALL statement, all preceding keys in the
KEY clause of the table declaration must
also be referenced. Fatal.

1022 .WHEN. EXPECTED BUT NOT FOUND IN . SEARCH.

The compiler expected but failed to
recognize the WHEN keyword while
compiling the SEARCH statement. Fatal.

1023 THE KEYWORD .WHEN. ILLEGAL IN THIS CONTEXT.

The compiler detects the presence of the
keyword WHEN outside the environment of
the SEARCH statement. Fatal.

1024 THE KEYWORD . SEARCH. ILLEGAL IN THIS CONTEXT.

While compiling a SEARCH statement, the
compiler detects the presence of another
SEARCH statement. The second SEARCH
statement is detected at a point where
an imperative statement is expected.
Fatal.

1025 KEY MUST BE SUBSCRIPTED BY FIRST INDEX OF TABLE.

The SEARCH ALL statement requires that
the key referenced on the left side of
the simple condition must be subscripted
by the first index name of the table
being searched. Fatal.

1026 THE KEYWORD .SENTENCE. EXPECTED AFTER .NEXT ..

The keyword
after the
compilation
Fatal.

SENTENCE was not detected
NEXT keyword during the

of a SEARCH statement.

1027 TABLE NAME NOT FOUND AFTER . SEARCH. VERB.

The compiler failed to recognize a valid
table data item after the keyword SEARCH
or SEARCH ALL. Fatal.

1030 INVALID TABLE REFERENCE IN • SEARCH. STATEMENT.

The table data item reference following
the SEARCH or SEARCH ALL verbs must have
both the INDEXED BY and the OCCURS
clauses specified in its
declaration. Fatal.

DIAGNOSTIC ERROR MESSAGES D-67

1031 DATANAME EXPECTED AFTER • VARYING. IN • SEARCH.

No data-name reference was found after
the VARYING keyword in the SEARCH
statement being compiled. Fatal.

1032 .VARYING. ITEM MUST BE INDEX OR INTEGER.

The data-name reference following the
VARYING keyword must be an index data
item, an index-name, or an elementary,
numeric, integer data-name reference.
Fatal.

1033 .SEARCH ALL. DATA ITEM IS NOT A KEY.

The data item referenced on the left
side of the SEARCH ALL simple condition
must be declared as an ASCENDING or
DESCENDING KEY. Fatal.

1034 DATA ITEM NOT A KEY FOR THIS • SEARCH. TABLE.

The data item referenced on the left
side of the SEARCH ALL simple condition
is not a key for the table being
searched. Fatal.

1035 . RENAMES. SPECIFIES RENAMING OF A COBOL TABLE.

The RENAMES clause specifies the
renaming of an item that has an OCCURS
clause in its declaration or is
subordinate to another item having an
OCCURS clause. The compiler ignores the
entire RENAMES data description entry.

1036 • RENAMES. APPLIED TO VARIABLE LENGTH DATAITEM.

The compiler detects an application of
the RENAMES clause to a range of data
items that contains a data item whose
length is variable at run-time be€ause
is has a subordinate data item whose
data description entry contains an
OCCURS DEPENDING ON clause. The
compiler ignores the entire RENAMES data
description entry.

1037 DATANAME OMITTED AFTER 66 LEVEL NUMBER.

The data-name declaration is omitted
after a 66 level number. The compiler
ignores the entire RENAMES data
description entry.

D-68 DIAGNOSTIC ERROR MESSAGES

1040 . RENAMES. OMITTED IN LEVEL 66 DESCRIPTION ENTRY.

The RENAMES keyword is omitted in a
level 66 data description entry. The
compiler ignores the entire level 66
data description entry.

1041 SEARCH KEY NOT SUBORDINATE TO TABLE.

The compiler detects an ASCENDING or
DESCENDING data-name key that is not
defined as a data item subordinate to
the associated SEARCH table.

1042 INVALID OR MISSING DATANAME AFTER .RENAMES •.

The data-name is missing after the
RENAMES keyword or, if present, is not
recognized as a valid data item that was
previously defined. The compiler
ignores the entire RENAMES data
description entry.

1043 .OCCURS. ITEM NOT ALLOWED BETWEEN TABLE AND KEY.

The compiler detects a data item
declared with an OCCURS clause
"sandwiched" between the declaration of
another COBOL table and its associated
SEARCH key.

1044 . RENAMES. SPECIFIES INVALID NOMENCLATURE RANGE.

In processing the RENAMES clause, the
compiler detects an invalid nomenclature
range specified by identical data-names
following the RENAMES and THRU keywords,
respectively. The compiler ignores the
entire RENAMES data description entry.

1045 . RENAMES. SPECIFIES STORAGE OVERLAP ON LEFT END.

In processing the RENAMES clause, the
compiler detects the condition in which
the beginning of the storage allocated
to the data-name after the THRU keyword
is to the left of the beginning of the
storage allocated to the data-name after
the RENAMES keyword. The compiler
ignores the entire RENAMES data
description entry.

DIAGNOSTIC ERROR MESSAGES D-69

1046 INVALID OR MISSING DATANAME AFTER .THRU .•

In specifying the RENAMES clause, a
data-name is missing after the THRU
keyword or, if present, is not
recognized as a valid data item that was
previously defined. The compiler
ignores the entire RENAMES data
description entry.

1047 DATANAME MISSING AFTER • CORRESPONDING.

In the processing of an ADD, SUBTRACT,
or MOVE CORRESPONDING statement, the
compiler detects the omission of a valid
data-name reference after the
CORRESPONDING keyword. Fatal.

1050 .TO. OR • FROM. OMITTED IN .CORRESPONDING ••

In the processing of an ADD, SUBTRACT,
or MOVE CORRESPONDING statement, the
compiler detects the omission of the TO
or FROM keyword. Fatal.

1051 INVALID OR MISSING DATANAME AFTER .TO. OR .FROM.

In the processing of an ADD, SUBTRACT,
or MOVE CORRESPONDING statement, the
compiler detects the omission of a valid
data-name reference after the keyword TO
or FROM. Fatal.

1052 NO OBJECT CODE PRODUCED FOR • CORRESPONDING.

In the processing of an ADD, SUBTRACT,
or MOVE CORRESPONDING statement, the
compiler produced no object code because
no "correspondence" was found between
the two group items referenced in the
COBOL statement containing the
CORRESPONDING option. This diagnostic is
informational only.

1053 GROUP ITEM NOT REFERENCED IN • CORRESPONDING.

In the processing of an ADD, SUBTRACT,
or MOVE CORRESPONDING statement, the
compiler discovered that one of the
references is a reference to an
elementary item. Fatal.

1054 LEVEL 66 REFERENCE DISALLOWED IN • CORRESPONDING.

In the processing of an
or MOVE CORRESPONDING
compiler detects a

D-70 DIAGNOSTIC ERROR MESSAGES

ADD, SUBTRACT,
statement, the

reference to a

data-name declared at level 66. This is
an invalid reference. Fatal.

1055 .FILE STATUS. ITEM DEFINED IN .FILE SECTION.

A data-name referenced in a FILE STATUS
phrase of a SELECT clause is defined in
the FILE SECTION of the COBOL
program. The compiler ignores this error
and continues to process the FILE STATUS
data-name.

1056 INCOMPATIBLE OPERANDS FOUND IN • CORRESPONDING.

In the processing of an ADD, SUBTRACT,
or MOVE CORRESPONDING statement, the
compiler detects a pair of CORRESPONDING
data items that are incompatible. This
diagnostic is informational only.

1057 EMPTY .GO TO. WAS NOT THE SUBJECT OF AN .ALTER ••

A GO TO statement without a
reference was detected. The
is not the subject of
statement. Fatal.

1060 QUALIFIER OMITTED IN PROCEDURE REFERENCE.

procedure
empty GO TO

an ALTER

A section
keyword
procedure
statement

name is omitted after the
OF or IN in a qualified

reference of the COBOL
being compiled. Fatal.

1061 INCONSISTENT NUMBER OF ARGUMENTS IN .CALL ••

The subprogram referenced in this CALL
statement has been referenced before.
The number of arguments in the earlier
CALL differs from the number in the
current CALL.

1062 PARAGRAPH WITHOUT SECTION PRECEDES THIS SECTION.

In a COBOL program, if one paragraph is
in a section, then all paragraphs must
be in sections. In this source program,
a paragraph not within a section has
been detected preceding this section in
the source program.

1063 DUPLICATE PARAGRAPH NAME DETECTED.

In a section of the Procedure Division,
a paragraph name is defined more than
once and is not uniquely referenceable
even with qualification.

DIAGNOSTIC ERROR MESSAGES D-7l

1064 REFERENCE TO UNDEFINED PROCEDURE NAME.

The compiler detects a reference to an
undefined procedure name in the
PROCEDURE DIVISION.

1065 UNDEFINED PROCEDURE QUALIFIER REFERENCE.

The compiler detects a qualified
procedure reference that contains an
undefined qualifier in the PROCEDURE
DIVISION.

1066 ILLEGAL PROCEDURE NAME REFERENCE.

The compiler detects an
procedure name reference
PROCEDURE DIVISION.

1067 AMBIGUOUS PROCEDURE NAME REFERENCE.

invalid
in the

The compiler detects a reference in the
PROCEDURE DIVISION to a procedure name
that is not uniquely referenceable, even
through qualification.

1070 PARAGRAPH NAME DISALLOWED AS QUALIFIER.

The compiler detects a qualified
procedure reference in which the
qualifier is a paragraph name.

1071 SECTION NAME REFERENCE MAY NOT BE QUALIFIED.

The compiler detects a qualified
procedure reference in which a section
name is qualified by another sec·tion
name.

1072 AMBIGUOUS PARAGRAPH NAME REFERENCE.

The compiler detects a reference in the
PROCEDURE DIVISION to a paragraph name
that is not uniquely referenceable, even
through qualification.

1073 POSSIBLE . PERFORM. RANGE VIOLATION.

The compiler detects a PERFORM THRU
statement in which the procedure name
following THRU is defined before the
procedure name following the PERFORM.
This condition could a logic problem in
the COBOL program being compiled.

D-72 DIAGNOSTIC ERROR MESSAGES

1074 NUMERIC PROCEDURE NAME EXCEEDS 30 CHARACTERS.

A numeric string that appears to be a
numeric procedure name exceeds 30
characters in length. The string is
truncated on the right to 30 characters
and processing of the numeric procedure
name continues.

1075 NUMERIC PROCEDURE NAME CONTAINS DECIMAL POINT.

A numeric string that appears to be a
numeric procedure name contains a
decimal point. The compiler ig~ores the
presence of the decimal point and
proceeds with the processing of the
numeric procedure name.

1076 .RELATIVE KEY. ITEM DEFINED IN RECORD OF FILE.

A data-name referenced in a RELATIVE KEY
phrase of a SELECT clause is defined in
the record description of the associated
file. The compiler ignores this error
and continues to process the RELATIVE
KEY data-name.

1077 NO. OF AREAS DEFAULTS TO MAX. FOR FILE TYPE.

The number of buffer areas reserved by
the RESERVE clause is greater than the
maximum allowed for the file
organization. The compiler allocates
two areas for a sequential file and one
for a relative file.

1105 UNRECOGNIZED LITERAL TYPE ••• SYSTEM ERROR

The compiler
identify a
Fatal.

1107 .TO. OR .GIVING. MISSING IN ADD

has failed to properly
literal. System error.

The keyword TO or GIVING was not found
after the second operand in an ADD
statement. Fatal.

1110 MORE THAN 18. DIGITS IN COMPOSITE. TRUNCATING.

The length of an arithmetic composite is
greater than 18 digits. The composite
is truncated on the left to 18 digits.
Warning.

DIAGNOSTIC ERROR MESSAGES 0-73

1111 ONLY ONE DEST ALLOWED AFTER • CORRESPONDING. USE FIRST.

More than one destination data-name
follows the keyword CORRESPONDING. The
compiler ignores all but the first.
Warning.

1113 UNSIGNED COMP 3 ITEMS ILLEGAL

The PICTURE for a COMP-3 item does not
contain an S character. Fatal.

1114 ARGUMENT CANNOT BE PASSED .BY DESCRIPTOR.

The compiler detected an identifier with
COMPUTATIONAL usage, SEPARATE SIGN, or
JUSTIFIED RIGHT that is being passed by
DESCRIPTOR in the USING phrase of a CALL
statement. Such items can be passed
only by REFERENCE or VALUE. Fatal.

1115 .BY VALUE. ARG. MUST BE .COMP. LONGWORD INTEGER.

An argument passed by VALUE in a CALL
statement must be a data item that is
declared with COMPUTATIONAL usage with
no V character in its PICTURE string.
The item must have from five to nine
decimal positions; that is, its PICTURE
must be in the range 9(5) to 9(9).
Fatal.

1116 ARGUMENT OMITTED AFTER .BY. CLAUSE IN .CALL.

The compiler detected no identifier
following the keywords BY REFERENCE, BY
VALUE, or BY DESCRIPTOR in a CALL
statement. Fatal.

1117 .GIVING. ITEM MUST BE .COMP. LONGWORD INTEGER.

The identifier following the keyword
GIVING in a CALL statement must be
declared with COMPUTATIONAL usage with
no V character in its PICTURE string.
The item must have from five to nine
decimal positions; that is, its PICTURE
must be in the range 9(5) to 9(9).
Fatal.

1121 • SEARCH. VERB NOT PROCESSED

Because of an earlier diagnostic
(warning or fatal), the compiler cannot
process the SEARCH statement completely.
Fatal.

D-74 DIAGNOSTIC ERROR MESSAGES

APPENDIX E

RUN-TIME ERROR MESSAGES

This appendix describes error
COBOL-74 run-time system (RTS).

messages that are produced by
Run-time messages look like this:

the

%C74-F-CODE, TEXT [string-l] [(string-2)] [string-3]

where:

%C74

F

CODE

TEXT

string-l

(str ing-2)

string-3

is the facility code for VAX-ll COBOL-74

is the severity level (fatal).
are fatal.

All RTS errors

is the mnenomic composed of the first three
characters of the first three words of the RTS
error message.

is the body of the error message

is the character string specified in VALUE OF ID
clause

is the literal used in SELECT •.. ASSIGN entry

is the RMS error message,
printed on the line after
itself.

this messages is
the error message

Associated with each error is an eight digit hexadecimal status code
(enclosed in parenthesis). The status code is. not printed with the
run-time message, however. You can use this code to check the
completion status of DCL commands within an indirect command procedure
or batch file. For example, consider the following program:

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034

IDENTIFICATION DIVISION.
PROGRAM-ID.

SUBERR.
ENVIRONMENT DIVISION.
SOURCE-COMPUTER. VAX-II.
OBJECT-COMPUTER. VAX-II.
SPECIAL-NAMES.

CONSOLE IS CONSOLo
DATA DIVISION.
WORKING-STORAGE SECTION.
01 T-NUMBER
01 TABLE-VALUES.

PIC 9.

03 FILLER PIC X(5)
03 FILLER PIC X(5)
03 FILLER PIC X(5)
03 FILLER PIC X(5)
03 FILLER PIC X(5)

01 T-VALUES REDEFINES TABLE-VALUES.

VALUE
VALUE
VALUE
VALUE
VALUE

"ONE "
"TWO "
"THREE".
"FOUR ".
"FIVE ".

03 TAB-VAL OCCURS 5 TIMES INDEXED BY T-INDEX.
05 FILLER PIC XXXXX.

PROCEDURE DIVISION.
MAIN SECTION.
PARA.

FINISH.

DISPLAY "ENTER NUMBER : " UPON CONSOL
NO ADVANCING.

ACCEPT T-NUMBER FROM CONSOLo
IF T-NUMBER = 0

GO TO FINISH.
SET T-INDEX TO T-NUMBER.
DISPLAY TAB-VAL (T-INDEX) UPON CONSOLo
GO TO PARA.

DISPLAY "*** END OF SESSION ***" UPON CONSOLo
STOP RUN.

The program will prompt you for input - numbers from 1 to 5 (0 will
cause the program to terminate). If you enter any other number, the
program will abort, and the RTS will print "Subscript or index out of
range". If you run SUBERR from your terminal, you could resta~t the
program and continue. If you run SUBERR as part of a command
procedure or batch job you could not restart the program from your
terminal. You can, however, include commands in the file to test the
completion status of the program and take action:

E-2 RUN-TIME ERROR MESSAGES

$ ASSIGN 'PI COB$CONSOLE
$ SET NOON
$ AGAIN:
$ RUN SUB ERR
$ IF $STATUS .EQ. %XIOID800C THEN GOTO WRITER
$ EXIT
$ WRITER:
$ WRITE SYS$OUTPUT "Index must be less than 6 - type 0 to quit"
$ GOTO AGAIN

NOTE

The parameter 'PI in command
line "ASSIGN ••• " allows you to
specify a device at run-time.

If you include the preceding commands in a file named CHECKER. COM,
link SUBERR with the /NOTRACEBACK qualifier, and execute the
procedure, the following will appear at your terminal:

@CHECKER OPAO:
ENTER NUMBER :

You could now input a number from the system console:

ENTER NUMBER 3
THREE
ENTER NUMBER

If you enter a number other than 0 through 5, the following will
appear on the terminal:

ENTER NUMBER : 3
THREE
ENTER NUMBER : 6
%C74-F-SUBOUTRAN, subscript out of range
Index must be less than 6 - type 0 to quit
ENTER NUMBER :

See the VAX/VMS Command Language User's Guide for a full discussion of
command procedures and batch jobs.

The remainder of this appendix describes the run-time error messages.

BADFILNAM, bad file name string-l (string-2)
(OOID80E4)

The file specification and/or associated
switches for a file description are
syntactically incorrect.

RUN-TIME ERROR MESSAGES E-3

CLOERRFIL, CLOSE error on file string-l (string-2) string-3
(001D8094)

The execution of a CLOSE statement
failed. The accompanying RMS error code
further specifies the error.

COMGENABO, compiler generated abort
(001D8034)

The run-time system tried to execute a
part of the program that contains fatal
errors. See your source program
listing.

DELERRFIL, DELETE error on file string-l (string-2) string-3
(001D80CC)

The execution of a DELETE statement
failed. The accompanying RMS error code
further specifies the error.

ERRACC, error in ACCEPT logical-name string-3
(001D8l0C)

An error occurred while trying to ACCEPT
a record from the file associated with
logical-name. The RMS error code
further specifies the error.

"SHOW TRANSLATION logical-name" can be
use to determine the value of
logical-name.

ERRCLOUNI, error
(001D8084)

in CLOSE UNIT or REEL on file
string-l (string-2) string-3

The program executed a CLOSE UNIT or
CLOSE REEL statement that failed. The
accompanying RMS error code further
specifies the error.

ERRDIS, error in DISPLAY logical-name string-3
(001D8l04)

EXPTOOLAR, exponent too large
(001D8054)

E-4 RUN-TIME ERROR MESSAGES

An error occurred while trying to
DISPLAY a record from the file
associated with logical-name. The RMS
error code further specifies the error.

The exponent used in a COMPUTE statement
is out of range. The legal range is
-32768 to 32767.

FILALROPN, file str ing-1 already open
(00lD80SC)

The program tried to open a file that is
currently open.

FILPRELOC, file string-1 (string-2) previously locked
(001D807C)

The program tried to access a file for
which it had previously executed a
CLOSE ••• WITH LOCK statement.

FINNOTOPN, file string-1 not open
(001D8064)

The program tried to CLOSE or otherwise
access a file that is not currently
open.

INVDECDAT, invalid data in decimal data-item <address-of-error>
(001D8114)

Numeric DISPLAY item contains invalid
data value, such as non-numeric
character or invalid separate signs.
DISPLAY items must be initialized before
use.

The INSPECT statement can be used to
clean-up invalid data in existing files.

INVLINVAL, invalid LINAGE value on file string-1 (string-2)
(001D80A4)

The LINAGE clause specifies a page body
size that results in an invalid value;
the value is not greater than zero, or
it is out of range.

INVOPEFIL, invalid operation on file string-1 (string-2)
(001D806C)

The program tried to execute one of the
following I/O statements for a file that
is open in an incompatible mode:

(a) a READ for a file open for OUTPUT

(b) a WRITE for a file open for INPUT

(c) an I/O operation
with the file
ex ample, START
file) •

not consistent
organization (for

on a sequential

RUN-TIME ERROR MESSAGES E-S

NOEOFPRO, no EOF processing on file string-1 (string-2)
(OOlDBOAC)

An end-of-fi1e condition has been
detected, but the I/O statement does not
have an AT END clause, and the program
has no USE procedure for end-of-fi1e
processing.

NOTPONOPR, file string-1 (string-2) not open for operation
(001DB09C)

The program tried to execute an I/O
statement for a file that is not open.

NULGOTO, GO TO executed has not been ALTERed
(001DB02C)

The program reached an alterable GO TO
statement before assigning it a
procedure name.

NUMARGCAL, number of arguments in CALL incorrect
(001D8044)

The number of arguments received by a
COBOL subprogram does not agree with the
expected number of arguments~ that is,
the number of CALL statement arguments
in the calling program is not the same
as the number of arguments in the
PROCEDURE DIVISION USING phrase of the
called program.

OCCDEPVAL, OCCURS DEPENDING value out of range
(001D8014)

The value of the data item
the size of the table
table size range specified
clause.

that defines
is not in the
in the OCCURS

OPNCOBIN, error opening logical-name string-3
(001D80FC)

An error occurred while trying to
for ACCEPT the file associated
logical-name. The RMS error
further specifies the error.

OPNCOBOUT, error opening logical-name string-3
(001D80F4)

E-6 RUN-TIME ERROR MESSAGES

An error occurred while trying to
as DISPLAY the file associated
logical-name. The RMS error
further specifies the error.

open
with
code

open
with
code

OPNERRFIL, OPEN error on file string-l (string-2) string-3
(00lD808C)

The execution of an OPEN statement
failed. The accompanying RMS error code
further specifies the error.

PERCOUTOO, PERFORM counter too large
(001D804C)

The value of "the iteration counter used
in a PERFORM statement exceeded 32767.

REAERRFIL, READ error on file string-l (string-2)string-3
(001D80B4)

The execution of a READ statement
failed. The accompanying RMS error code
further specifies the error.

REANOTPRE, read not preceeded by rewrite or delete on file
(001D8074) string-l (string-2)

The program attempted to execute a
REWRITE or DELETE statement for a
sequentially accessed file, but the last
I/O operation on the file was not a
READ.

RECCALDET, recursive CALL detected
(001D803C)

A COBOL subprogram attempted to call
itself, either directly or indirectly.
The EXIT PROGRAM statement must be
executed in a subprogram before the
subprogram can be called again.

RECPERDET, recursive PERFORM detected
(001D8024)

The program attempted to execute a
PERFORM statement whose exit is also the
exit of a previously executed PERFORM
that is still active.

RETEXTOUT, PERFORM exited out of order
(001D80lC)

The program reached the end of an active
PERFORM while processing a more recently
executed PERFORM~ that is, the program
executed a PERFORM statement whose range
overlaps the end of the PERFORM
statement that is currently being
executed.

RUN-TIME ERROR MESSAGES E-7

REWERRFIL, REWRITE error on file string-l (string-2) string-3
(001080C4)

The execution of a REWRITE statement
failed. The accompanying RMS error code
further specifies the error.

SAMAREUSE, SAME AREA already in use when opening file
(001080EC) string-l (string-2)

The program tried to OPEN a file that
uses the same buffer area as another
open file.

STAERRFIL, START error on file string-l (string-2) string-3
(00108004)

The execution of a START statement
failed. The accompanying RMS error code
further specifies the error.

SUBOUTRAN, subscript or index out of range
(0010800C)

The subscript value for a data item, or
the value of an index-name, is not
greater than zero, or it is greater than
the maximum number of occurrences of the
table data item.

UNLERRFIL, UNLOCK error on file string-l (string-2) string-3
(0010800C)

An unsuccessful attempt has been made to
unlock a record in the file. The
accompanying RMS erro.r code further
specifies the error.

WRIERRFIL, WRITE error on file string-l (string-2) string-3
(001080BC)

1-8 RUN-TIME ERROR MESSAGES

The execution of a WRITE statement
failed. The accompanying RMS error code
further specifies the error.

APPENDIX F

INTERNAL COMPILER ERRORS SYSTEM ERRORS

This appendix lists errors that the VAX-II COBOL-74 compiler displays
if it aborts.

System errors have the following form:

C74 -- SYSTEM ERRORXXXXXX

where:

XXXXXX is a six digit error code.

ERROR MESSAGE

000000 NO MORE AVAILABLE DISK SPACE

000604

The Work File system has exhausted all
available disk space.

a. The compiler uses the longest
contiguous disk area available up to
1024 64-word blocks. If less than
1000 blocks remain, clear the disk
and start again.

b. If 1000 blocks are available, submit
a smaller job.

UNRECOGNIZABLE SOURCE FILE

The compiler could not process the
source file because:

a. /ANSI FORMAT qualifier was not used,
and -source program is not in
terminal reference format.

b. IDENTIFICATION missing

The following
compiler:

000017

000020

000065

000077

000115

errors represent internal

TOO MANY

TOO MANY

TOO MANY

COMMAND

PROCEDURE NAMES

PROCEDURE NAMES

LITERALS

BLOCK TOO

a.

LARGE

A Procedure
too large
handle.

table overflow in

Division statement
for the compiler

the

is
to

b. Reduce the number of identifiers
used in the statement.

DATA NAME TABLE OVERFLOW

The following errors occur if the operating system or the COBOL-74
compiler malfunctions. You should submit a Software Performance
Report (SPR) for any of these errors.

000001
000002
000003
000004
000005
000011
000012
000013
000014
000015
000016
000021
000023
000035
000036
000037
000055
000063
000070
000072
000075
000076

NOTE

You should include the source
program in machine readable form
for any SPR you submit.

INTERNAL WORK FILE ERROR
INTERNAL WORK FILE ERROR
INTERNAL WORK FILE ERROR
BAD USAGE CODE
ELT ALREADY DEALLOCATED
INSUFFICIENT CORE
INSUFFICIENT CORE
INTERNAL ALLOCATION ERROR
INTERNAL WORK FILE ERROR
ATTEMPT TO PROCESS MORE ELSE'S THAN IF'S
INVALID FILE CLASS
ERROR IN PROCESSING PROCEDURE TAG TABLE
ERROR IN PROCESSING PROCEDURE TAG TABLE
WORK FILE SEARCH ERROR
INDEX NAME UNDEFINED BY COMPILER
INTERNAL ERROR
WORK FILE SEARCH ERROR
DATA DIVISION SEQUENCE ERROR
ERROR IN SUBSCRIPT PROCESSING
DATA ITEM STARTING ON ODD ADDRESS
ERROR IN DISPLAY DATA ITEM
EXCEEDED STACK CAPACITY

F-2 INTERNAL COMPILER ERRORS -- SYSTEM ERRORS

000100
000101
000102
000104
000105
000106
000111
000112
000116
000120
000121
000122
000123
000124
000125
000126
000127
000130
000131
000132
000133
000134
000135
000140
000140
000141
000150
000151
000201
000201
000202
000204
000220
000221
000230
000231
000232
000233
000234
000997
000999
005000
005001
005002
005003
005004
005005
005006
005007
005010
005011
005012
005013
005014
005015

COMPILER LOOP: TOO MANY SUBORDINATE ITEMS
RECORD PROCESSING LOGIC ERROR
ERROR IN ITEM PROCESSING LOGIC
INVALID USAGE CODE
ILLEGAL LEVEL NUMBER
LEVEL 01 READ BUT DOES NOT VALIDATE
ERROR IN EDITED ITEM
ILLEGAL TYPE DATA ITEM
RESERVED WORD TABLE ERROR
DELIMITED SENDING ITEM.NOT FOUND FOR STRING CMD
ERROR IN DELIMITED SENDING ITEM FOR STRING CMD
SENDING ITEM NOT FOUND FOR STRING CMD
ERROR IN TALLYING DATA ITEM FOR UNSTRING
ERROR IN DELIMITED RECEIVING ITEM FOR UNSTRING
ERROR IN RECEIVING ITEM FOR UNSTRING
ERROR IN DELIMINTED SENDING ITEM FOR UNSTRING
DELIMITED SENDING ITEM FOR UNSTRING
DELIMITED SENDING ITEM FOR UNSTRING
INSPECT TALLYING ERROR
INSPECT TALLYING BEFORE/AFTER ERROR
INSPECT REPLACING ERROR
INSPECT REPLACING ERROR
INSPECT REPLACING BEFORE/AFTER INITIAL ERROR
EXTENDED NAME TABLE ERROR
SAME AREA RECORD CLAUSE ERROR
SAME AREA RECORD CLAUSE ERROR
INTERNAL STACK ERROR
CORRESPONDING ERROR
STACK ERROR MESSAGE
PROCESSING ERROR OCCURS DEPENDING ON CLAUSE
FRT KEY ERROR
INDEX DATA ITEM NOT FOUND
ERROR IN DESTINATION FOR SEARCH
WORK FILE READ ERROR
INVALID IBF FLAG READ
WORK FILE READ SEQ. ERROR
ERROR IN ALTER PROCESSING
INVALID LINKAGE SECTION ITEM
WORK FILE SEARCH ERROR
INTERNAL ERROR
INTERNAL ERROR
ILLEGAL OPERATOR FOR BOOLEAN OPERATION
ILLEGAL USAGE FOR OPERANDS IN RELATIONAL CODE
ILLEGAL USAGE FOR OPERANDS IN RELATIONAL CODE
ILLEGAL NUMERIC COMPARISON
ILLEGAL LITERAL IN ARITHMETIC OPERATION
ILLEGAL USAGE FOR DIVIDE OPERAND
DIVIDE ERROR
ILLEGAL USAGE FOR MULTIPLY OPERAND
MULTIPLY ERROR
ILLEGAL USAGE FOR ARITHMETIC OPERAND
ADD/SUBTRACT ERROR
ILLEGAL ARITHMETIC OPERATOR
ILLEGAL COMPARE FOR SEARCH ALL
INDEX PROBLEM IN TABLE

INTERNAL COMPILER ERRORS -- SYSTEM ERRORS F-3

APPENDIX G

PROGRAMMING EXAMPLES

This appendix contains examples of VAX-II COBOL-74 programs. The
programs do not represent real applications~ they are intended to
suggest useful techniques and their implementation with COBOL-74.

G.l CALLING A FORTRAN SUBROUTINE

COBOL-74 modules can be linked with other VAX-II native-mode modules,
even if they were written in other languages. This capability is
often useful, especially when a feature is not available in COBOL-74,
but is available in another language. One example is the square root
function, which is not available in COBOL-74 (non-integer exponents
are not allowed).

G.I.l The COBOL Program, GETROOT

This program accepts a value from the terminal, calls the FORTRAN
subroutine, SQROOT, and passes the value as a character string (BY
DESCRIPTOR, because that is how FORTRAN expects it). It then displays
the result.

COBOL-74 does not support the floating point data type~ therefore,
the FORTRAN subroutine returns the result as a character string. Note
that because the result is a character string with a decimal point,
the program uses a MOVE CORRESPONDING to place it in a numeric data
item. The second DISPLAY shows the result of editing the returned
value.

An INSPECT statement replaces all space characters in the result by
zeros~ space characters would cause a reserved operand fault when the
MOVE statement was executed.

IDENTIFICATION DIVISION.
PROGRAM-ID.

GETROOT.
INSTALLATION. DIGITAL EQUIPMENT CORPORATION.

**
* * * This program demonstrates the use of the *
* CALL statement in calling FORTRAN-IV-PLUS *
* programs. It calls a FORTRAN subprogtam *
* which returns the square root of the *
* argument. *
* *
**

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-II.
OBJECT-COMPUTER. VAX-II.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 INPUT-NUMBER.

01

03 INTEGER
03 DEC-POINT
03 DECIMAL

PIC 9(5).
PIC X (1) •
PIC 9(8).

PIC 9 (5) •
PIC 9(8).

01

WORK-NUMBER.
03 INTEGER
03 DECIMAL
WORK-NUMBER-A REDEFINES WORK-NUMBER
. "

01 DISPLAY-NUMBER

PROCEDURE DIVISION.
STARTER SECTION.
SBEGIN.

PIC ZZ,ZZ9.9999.

MOVE SPACES TO INPUT-NUMBER.

PIC 9(5)V9(8).

DISPLAY "Enter number (with decimal point): "
NO ADVANCING.

ACCEPT INPUT-NUMBER.
IF INPUT-NUMBER = SPACES

GO TO ENDJOB.
CALL "SQROOT" USING BY DESCRIPTOR INPUT-NUMBER.
IF INPUT-NUMBER = ALL "*"

DISPLAY "** INVALID ARGUMENT FOR SQUARE ROOT"
ELSE

DISPLAY "The square root is: " INPUT-NUMBER
INSPECT INPUT-NUMBER

REPLACING ALL " " BY "0"
MOVE CORRESPONDING INPUT-NUMBER TO WORK-NUMBER
MOVE WORK-NUMBER-A TO DISPLAY-NUMBER
DISPLAY DISPLAY-NUMBER.

GO TO SBEGIN.
ENDJOB.

STOP RUN.

G-2 PROGRAMMING EXAMPLES

G.I.2 The FORTRAN Program, SQROOT

This subroutine accepts a 14-character string, decodes it into a real
variable (DECODE is analogous to an internal READ). It then calls the
SQRT function in the statement that encodes the result into the
l4-character argument.

SUBROUTINE SQROOT(ARG)
CHARACTER*14 ARG
DECODE (14,10,ARG,ERR=20)VAL

10 FORMAT(F12.6)
IF(VAL.LE.O.)GO TO 20
ENCODE(14,10,ARG)SQRT(VAL)

999 RETURN
20 ARG='**************'

GO TO 999
END

G.I.3 Sample Run of GETROOT

$ RUN GETROOT <CR)
Enter number (with decimal point): 25. <CR)
The square root is: 5.000000

5.0000
Enter number (with decimal point): HELLO <CR)
** INVALID ARGUMENT FOR SQUARE ROOT
Enter number (with decimal point): 1000000. <CR)
The square root is: 1000.000000

1,000.0000
Enter number (with decimal point): 2. <CR)
The square root is: 1.414214

1.4142
Enter number (with decimal point): <CR)
$

PROGRAMMING EXAMPLES G-3

G.2 CALLING VAX-II RUN-TIME PROCEDURES

The VAX-II Common Run-time P~ocedure Library contains sets of general
purpose and language-specific procedures. The procedures are written
using the VAX-II procedure calling standard~ therefore, they are
callable by COBOL-74.

The procedures are described in the VAX-II Common Run-Time Procedure
Library Reference Manual.

G.2.l The COBOL Program, RUNTIME

This program calls two procedures in the Run-Time Library:
and FOR$DATE.

t.IB$MOVTC

LIB$MOVTC uses a translation table to translate each character in a
character string from one code form to another (EBCDIC to ASCII, for
example). This program uses LIB$MOVTC to translate all lower-case
characters to upper case and all non-graphic characters to spaces.
Note that LIB$MOVTC expects all parameters to be passed by descriptor.

FOR$DATE returns the system date. as a 9-character string.
it expects the string to be passed by reference.

IDENTIFICATION DIVISION.
PROGRAM-ID. RUNTIME.

* *
* This program demonstrates the method for *
* calling VAX-II Run-time Procedures. *
* *

DATE-COMPILED.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-II.
OBJECT-COMPUTER. VAX-II.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 INPUT-AREA PIC X(50).
01 OUTPUT-AREA PIC X(50).
01 FILL-CHAR PIC X VALUE SPACE.
01 TRANSLATION-TABLE.

SPACES.

Note that

03 FILLER PIC X(32)
03 FILLER PIC X(24)
03 FILLER PIC X(24)
03 FILLER PIC X(24)
03 FILLER PIC X(24)

VALUE
VALUE
VALUE
VALUE
VALUE

" 1 ""#$%& I () *+,-./01234567".
"89:~<=>?@ABCDEFGHIJKLMNO".
"PQRSTUVWXYZ [\] A 'ABCDEFG".
"HIJKLMNOPQRSTUvWXYZ { I } - II

01 DATE-AREA PIC X(9).

G-4 PROGRAMMING EXAMPLES

PROCEDURE DIVISION.
STARTIT SECTION.
SBEGIN.

DISPLAY "Enter string:".
MOVE SPACES TO INPUT-AREA.
ACCEPT INPUT-AREA.

CALL "LID$MOVTC" USING BY DESCRIPTOR
INPUT-AREA
FILL-CHAR
TRANSLATION-TABLE
OUTPUT-AREA.

DISPLAY OUTPUT-AREA.

CALL "FOR$DATE" USING DATE-AREA.
DISPLAY DATE-AREA.

STOP RUN.

G.2.2 Sample Run of RUNTIME

$ RUN RUNTIME
Enter string:
How do I love thee? Let me count ••. 8, 9, A
HOW DO I LOVE THEE? LET ME COUNT •.. 8, 9, A
l8-DEC-78

$

G.3 USING TERMINAL ESCAPE SEQUENCES

It is often useful to design terminal screen forms for data input
applications. You can implement forms on most terminals by using
escape sequences.

PROGRAMMING EXAMPLES G-S

G.3.1 The COBOL Program, ESCAPE

This program accepts data from a DIGITAL VTs2 terminal; it builds a
form and guides the operator by using escape-character sequences.
Other terminals have similar capabilities.

The program defines the ESC character (decimal 27, hex IB) as a
one-word COMPUTATIONAL item, and redefines it as a one-byte data item.
The same technique is used for the one-character row and column values
required for direct cursor addressing. (Chapter 4 describes the
internal format of COMP data items.)

The program contains a table that describes the format of the terminal
screen. First, the program clears the screen. It then cycles through
the table to display the prompts. During a second pass through the
table, the program "paints" the input area for each field with
underscore characters, and accepts data from the operator.

Note the use of the OCCURS .•• DEPENDING ON clause in the description
of INPUT-AREA, allowing the variable-length display.

IDENTIFICATION DIVISION.
PROGRAM-ID.

ESCAPE.

**
*
*
*
*
*

*
This program demonstrates the use of terminal *
escape ~equences, including cursor control, *
through COBOL. *

*
**

DATE-COMPILED.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-II.
OBJECT-COMPUTER. VAX-II.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 INPUT-AREA.

03 IACHAR PIC X(l) OCCURS 1 TO 30 TIMES
DEPENDING ON IASUB.

01 IASUB PIC 9(2) COMPo

01 FIELD-TABLE.
03 FILLER PIC X(24) VALUE "Os0830NAME:".
03 FILLER PIC X(24) VALUE "012024ADDRESS:".
03 FILLER PIC X(24) VALUE "180106CODE NUMBER:".
03 FILLER PIC X(24) VALUE "166019PHONE:".

01 FIELD-TAB-A REDEFINES FIELD-TABLE.
03 FIELD-TAB-ENTRY OCCURS 4 TIMES.

05 ROW PIC 9(2).
05 COLUM PIC 9(2).
05 FIELD-LENGTH PIC 9(2).
05 PROMPT PIC X(18).

G-6 PROGRAMMING EXAMPLES

01 ROW-VALUE PIC 9(3) COMPo
01 ROW-VALUE-C REDEFINES ROW-VALUE PIC X(l).

01 COLUM-VALUE PIC 9(3) COMPo
01 COLUM-VALUE-C REDEFINES COLUM-VALUE PIC X(l).

01 ESCAPER PIC 9(3) COMP VALUE 27.
01 ESCAPE-C REDEFINES ESCAPER PIC X(l).

01 CTR PIC 9(2).

PROCEDURE DIVISION.
LOOP.

* ESC H moves the cursor to the home position.
* ESC J clears from the cursor position to the
* end of the screen.

DISPLAY ESCAPE-C "H" ESCAPE-C "J".
PERFORM PROC-FIELD VARYING CTR FROM 1 BY 1

UNTIL CTR > 4.
PERFORM ACCEPT-FIELD VARYING CTR FROM 1 BY 1

UNTIL CTR > 4.
IF CTR < 90

GO TO LOOP.
STOP RUN.

PROC-FIELD.

* Compute the row and column values from the table.
* Also, set the OCCURS DEPENDING item to the length
* of the prompt.

PERFORM COMP-LEN.

* Display the prompt.

DISPLAY ESCAPE-C "Y"
ROW-VALUE-C COLUM-VALUE-C
INPUT-AREA NO ADVANCING.

ACCEPT-FIELD.

* Recompute the prompt location.

PERFORM COMP-LEN.

* position the cursor at the end of the prompt.

ADD IASUB TO COLUM-VALUE.

* Set the OCCURS DEPENDING item to the length of
* the expected input entry.

MOVE FIELD-LENGTH(CTR) TO IASUB.

PROGRAMMING EXAMPLES G-7

* Display a string of underscores the same length
* as the expected inpu.t entry.

MOVE ALL " " TO INPUT-AREA.
DISPLAY ESCAPE-C "y"

ROW-VALUE-C COLUM-VALUE-C
" " INPUT-AREA.

* Reposition the cursor to the beginning of the
* input area.

DISPLAY ESCAPE-C "Y"
ROW-VALUE-C COLUM-VALUE-C
" " NO ADVANCING.

* Set the OCCURS DEPENDING item to make INPUT-AREA
* its maximum size.

MOVE 30 TO IASUB.
MOVE SPACES TO INPUT-AREA.

* Get the input.

ACCEPT INPUT-AREA.

* Input processing code goes here.

IF INPUT-AREA = "QUIT"
MOVE 91 TO CTR.

DONOTHING.
EXIT.

COMP-LEN.

* Set the OCCURS DEPENDING item to make INPUT-AREA
* its maximum size.

MOVE 30 TO IASUB.

* Escape sequence row and column values begin with 32,
* so we add 31 to the row and column numbers.

ADD 31 ROW (CTR) GIVING ROW-VALUE.
ADD 31 COLUM(CTR) GIVING COLUM-VALUE.

* Move the prompt to the display area, then determine
* its length by locating the last character (:).

MOVE PROMPT(CTR) TO INPUT-AREA.
PERFORM DONOTHING VARYING IASUB FROM 1 BY 1

UNTIL IACHAR(IASUB) = ":".

G-8 PROGRAMMING EXAMPLES

G.3.2 Sample Run of ESCAPE

In this example of a screen during the execution of ESCAPE, the
program has just accepted the name and is waiting for the operator to
enter the address.

ADDRESS:

NAME: Robert Fried ________________ __

PHONE:

CODE NUMBER:

PROGRAMMING EXAMPLES G-9

G.4 CALLING VAX/VMS SYSTEM SERVICES

System services are procedures that the VAX/VMS operating system uses
to control resources available to processes, to allow communication
among processes, and to perform basic operating system functions.

Although most system services are used primarily by the operating
system, you can use many of them yourself in VAX-II COBOL-74 programs.
System services are described in the VAX/VMS System Services Reference
Manual.

G.4.1 The COBOL Program, SYSTSVC

This program calls two system services: $GETMSG and $TRNLOG.

$GETMSG returns the text of a system message to the caller, using the
unique identification number that is assigned to each system message.
This program uses $GETMSG to translate the return status from the
other system service, $TRNLOG.

$TRNLOG translates a logical name and returns the equivalence name
string. It aiso returns one of five return status codes.

The program accepts a logical name from the terminal. It then calls
$TRNLOG (note that the prefix, SYS, is required) to get the
equivalence name. Because the equivalence name could itself be a
logical name, the program checks the return status; it repeatedly
calls $TRNLOG until the return status indicates that no translation
occurred.

IDENTIFICATION DIVISION.
PROGRAM-ID.

SYSTSVC.
INSTALLATION. DIGITAL EQUIPMENT CORPORATION.

**
* * * This program demonstrates the use of the *
* CALL statement in calling VAX/VMS System *
* Services. *
* *
**

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-II.
OBJECT-COMPUTER. VAX-II.

G-10 PROGRAMMING EXAMPLES

DATA DIVISION.
WORKING-STORAGE SECTION.
01 LOG-STRING.

03 LOG-CHAR PIC X OCCURS 1 TO 30 TIMES
DEPENDING ON LOG-LENGTH.

01 LOG-LENGTH PIC 9(2).
01 LOG-NAME PIC X(30).
01 IN-PTR PIC 9(2).
01 NAME-LENGTH PIC S9(4) COMPo
01 EQUIV-NAME PIC X(30) VALUE SPACES.
01 PHYSICAL-TEST REDEFINES EQUIV-NAME.

03 PT-1-4.
05 PT-CHAR PIC X.
05 FILLER PIC X(3).

03 PHYSICAL-NAME PIC X(26).
01 ESCAPE-CHAR PIC 9(3) COMP VALUE 176.
01 ESCAPE REDEFINES ESCAPE-CHAR PIC X.
01 RES PIC S9(8) COMPo

88 SUCCESSFUL VALUE 1.
01 RESULT-NAME PIC X(30).
01 OUT-LENGTH PIC Z(4).
01 RESULT-DISP PIC 9(8).
01 DUMMY-ARG PIC S9(9) COMP VALUE O.

01 MESSAGE-AREA.
03 MESSAGE-CHAR OCCURS 1 TO 256 TIMES

DEPENDING ON MESSAGE-LENGTH PIC X.
01 MESS-LEN PIC 9(8) COMPo
01 MESSAGE-LENGTH PIC 9(8) COMPo
01 MASK PIC 9(8) COMP VALUE IS 15.
01 MSG-VALUE PIC X(4).

PROCEDURE DIVISION.
STARTER SECTION.
SBEGIN.

DISPLAY "ENTER LOGICAL NAME: " NO ADVANCING.
ACCEPT LOG-NAME.

SLOOP.

*
*
*

PERFORM TRANSLATE-LOGICAL-NAME.
PERFORM GET-RESULT.
IF PT-CHAR = ESCAPE

MOVE PHYSICAL-NAME TO RESULT-NAME
ELSE

MOVE EQUIV~NAME TO RESULT-NAME.
MOVE NAME-LENGTH TO OUT-LENGTH.

DISPLAY LOG-NAME "= " RESULT-NAME.

If the translation was performed,
use the result to attempt further
translation.

IF SUCCESSFUL
MOVE RESULT-NAME TO LOG-NAME
GO TO SLOOP.

STOP RUN.

PROGRAMMING EXAMPLES G-ll

* * * The following paragraph uses the contents of *
* LOG-STRING as an argument to the SYS$TRNLOG *
* System Service. The translated name is placed *
* in EQUIV-NAME and the length of·the result *
* is in RES-LEN. RES contains the status code *
* from SYS$TRNLOG. *
* *

TRANSLATE-LOGICAL-NAME.

*

*

*

*

*

MOVE SPACES TO EQUIV-NAME.

Initialize UNSTRING pointer

MOVE 1 TO IN-PTR.

Initialize DEPENDING ON subscript

MOVE 30 TO LOG-LENGTH.

Create string of exact length

UNSTRING LOG-NAME DELIMITED BY " "
INTO LOG-STRING WITH POINTER IN-PTR.

Fix up string length from pointer.

SUBTRACT 2 FROM IN-PTR GIVING LOG-LENGTH.

Delete colon from logical-name string.

IF LOG-CHAR (LOG-LENGTH) = ":"
SUBTRACT 1 FROM LOG-LENGTH.

CALL "SYS$TRNLOG"
USING BY DESCRIPTOR LOG-STRING,

BY REFERENCE NAME-LENGTH
BY DESCRIPTOR EQUIV-NAME
BY VALUE DUMMY-ARG, DUMMY-ARG, DUMMY-ARG

GIVING RES.

GET-RESULT SECTION.
SBEGIN.

MOVE 256 TO MESSAGE-LENGTH.
MOVE SPACES TO MESSAGE-AREA.
CALL "SYS$GETMSG"

USING
BY VALUE RES
BY REFERENCE MESS-LEN
BY DESCRIPTOR MESSAGE-AREA
BY VALUE MASK
BY DESCRIPTOR MSG-VALUE.

MOVE MESS-LEN TO MESSAGE-LENGTH.
DISPLAY MESSAGE-AREA.

G-12 PROGRAMMING EXAMPLES

G.4.2 Sample Run, SYSTSVC

~
\

$ RUN SYSTSVC
ENTER LOGICAL NAME: COB$INPUT
%SYSTEM-S-NORMAL, normal successful completion
COB$INPUT = SYS$INPUT
%SYSTEM-S-NORMAL, normal successful completion
SYS$INPUT = TTEl:
%SYSTEM-S-NOTRAN, no string translation performed
TTEl: = TTEl

$

PROGRAMMING EXAMPLES G-13

ACCEPT, 6-26, 6-27, 6-28
Access mode, 6-14
ADD, 4-17

mUltiple operands, 4-16
/AL:n, file specification

switch, 6-22
Alphabetic class, 3-1
Alphanumeric class, 3-1
ALTER, 7-5
Ambiguities, DEBUG, 9-5
/ANSI FORMAT, 2-3
APPLY-; 6-17
Arithmetic expression

processing, 4-21
temporary work area, 4-21

Arithmetic statements, 4-13
ASSIGN, 6-20
ASSIGN command, 2-12, 6-19, 6-27
AT END, 6-16, 6-26, 10-7
Binary, 4-1
Block, 6-5

physical, 6-5
Blocking, 6-5, 13-9
Breakpoint, DEBUG, 9-5, 9-6
/BRIEF, LINK qualifier, 2-9
Bucket, 6-5, 13-6
Buffer defaults, RMS, 6-13
Buffers, 6-13

multiple, 6-13
shar ing, 6-14

Caching index roots, 13-8
CALL, G-l, G-4, G-IO
Calling

FORTRAN programs, G-l
VAX-II tun-time procedures, G-4
VAX/VMS system services, G-IO

CANCEL BREAK, DEBUG command, 9-6
CANCEL MODULE, DEBUG command, 9-3
CANCEL SCOPE, DEBUG command, 9-3
CANCEL TRACE, DEBUG command, 9-7
CANCEL WATCH, DEBUG command, 9-8
CARD-READER, 6-27
Category, data, 3-1
Characters, special, 3-3
/CL:n, file specification switch,

6-22
Class

data, 3-1
test, 4-7

/CO:n, file specification switch,
6-22

COB$CARDREADER, 6-27
COB$CONSOLE, 6-27
COB$INPUT, 6-28
COB$LINEPRINTER, 6-27

INDEX

COB$OUTPUT, 6-28, 6-29
COB$PAPERTAPEPUNCH, 6-27
COB$PAPERTAPEREADER, 6-27
COB$SWITCHES, 2-12, 2-13
Command qualifiers, compiler, 2-3
COMP, 4-1
COMP-3, 4-2, 4-4, 6-24

signs, 4-3
COMP items in a table, 5-4
Comparison, 3-6
Compiler command

line, 2-2
qualifiers, 2-3

Compiler error, 10-3, F-l
Computation, optimizing, 13-9
COMPUTATIONAL. See COMP
COMPUTATIONAL-3. See COMP-3
COMPUTE, 4-20
Condition-names, 7-7, 7-8
CONSOLE, 6-27
Constant, figurative, 4-9
CONTINUE command, 2-13
Conventional format, 2-1, 2-3,

7-1, 8-1
COPY, 2-3, 12-1, 12-2
COpy REPLACING, 12-4
/COPY LIST, 2-3
CORRESPONDING, 3-13
COUNT, in STRING, 3-30
CREATE command, 2-2
/CROSS REFERENCE, 2-3
/CROSS-REFERENCE, LINK qualifier,

2-9-
CTRL/Y, 2-13

in DEBUG, 9-9
Current record area, 6-10
Cursor addressing, G-6

Data
category, 3-1
class, 3-1
movement, 3-7

Data Division size limitation,
B-1

Data item
elementary, 3-2
group, 3-2

Data-name limitation, B-1
DEASSIGN command, 2-13
/DEBUG, 2-4
DEBUG, 9-1
/DEBUG, LINK qualifier, 2-10
/DEBUG, RUN qualifier, 2-13
Debugging, 9-1
Decimal scaling, 4-3
DEFINE command, 2-12, 2-13

INDEX-l

INDEX (Continued)

DELIMITED BY
in STRING, 3-16
in UNSTRING, 3-25

DELIMITER, in UNSTRING, 3-31
DEPOSIT, DEBUG command, 9-10
Device, 6-18
Diagnostic error messages, 10-1
Directory, 6-18
DISPLAY, 4-1, 6-26, 6-27, 6-29
DISPLAY statement limitation, B-1
DIVIDE, 4-19
/DQ:n, file specification switch,

6-22
/DW, file specification switch,

6-22
Dynamic group item, 5-17

Edited move, 3-10, 4-10
Editing, 4-10, 4-11
Elementary

item, 3-2
move, 3-9, 4-9

Entering a source program, 2-2
Error

fatal, 2-7
I/O, 6-25
message summary, 2-7
messages, 10-1
messages, compile-time, 10-1
messages, diagnostic, 10-1
messages, link-time, 10-5
messages, run-time, 10-5
procedures, I/O, 10-7
system, compile-time, 10-3, F-l

ESC character, G-6
Escape sequences, G-6
EXAMINE, DEBUG command, 9-10
Examples, programming, G-l
/EXECUTABLE, LINK qualifier, 2-10
Executing a COBOL image, 2-12
EXIT, DEBUG command, 9-9

Figurative constant, 4-9
File

attribute, 6-1
compatibility, 6-24
design, 13-2
disk, indexed, 6-9
disk, relative, 6-8
disk, sequential, 6-7
handling, 6-1
I/O interface, in sorting, 11-2
indexed, 13-3
library, 12-2
magnetic tape, 6-6
name, 6-18

File, (continued)
record I/O interface,

in sorting, 11-2
relative, 13-2
sequential, 13-2
shar ing, 6-23
specification, 6-17, 6-18, 6-20
switches, 6-19, 6-22
type, 6-18
version, 6-18

Files
naming, 6-17
opening, 6-14

Fixed-length record, 6-2
Format

conventional, 2-1, 2-3, 7-1,
8-1

record, 6-2
reference, 2-1
terminal, 2-1, 2-3, 7-1, 8-1

FORTRAN programs
calling, G-l
files for, 6-24

/FULL, LINK qualifier, 2-10

General formats, A-I
GIVING, 4-16
GO TO DEPENDING limitation, B-1
GO, DEBUG command, 9-8
Group

move, 3-9, 4-8
Group item, 3-2

dynamic, 5-17

I/O
buffer, 6-13
error procedures, 10-7
error processing, 6-25

Image execution, 2-12
/INCLUDE, LINK qualifier, 2-10,

2-11
Index data item, 5-15
Index-name, 5-13, 5-16

initialization, 5-14
Index roots, caching, 13-8
Indexed file, 6-9, 13-3
Indexes, 5-13
Index ing, 5-9

relative, 5-14
INSPECT, 3-39
Intermediate results, 4-13, 4-22,

4-23
Interrupting image, in DEBUG, 9-9
INVALID KEY, 6-16, 6-26, 10-7
IS, 7-3

Justified move, 3-11

INDEX-2

INDEX (Continued)

Key buffer, in sort, 11-4
Key, sort, 11-3

Library
facility, 12-1
file, 12-2

/LIBRARY, LINK qualifier, 2-11
Limitations, compiler, B-1
LINAGE, 6-17
LINE-PRINTER, 6-27
LINK command, 2-7, 2-9
LINK qualifiers, 2-9
Link-time error messages, 10-5
Linking, 2-7
/LIST, 2-4
Listing, program, C-l
Literal subscripting, 5-10
/LO, file specification switch,

6-22
Locations

DEBUG, resolving ambiguities,
9-5

specifying in DEBUG, 9-4
Logical name, 6-19, 6-20, 6-27

Magnetic tape file, 6-6
/MAP, 2-5, C-2
/MAP, LINK qualifier, 2-10
/MI, file specification switch,

6-23
Mnemonic-name, 6-27
MOVE, 3-8, 4-8
Move

edited, 3-10, 4-10
elementary, 3-9, 4-9
group, 3-9, 4-8
justified, 3-11
subscripted, 3-12

MOVE CORRESPONDING, 3~13
Multiple delimiters in UNSTRING,

3-29
Multiple operands, 4-16
Multiple receiving fields, 3-12
MULTIPLY, 4-18

/NOANSI FORMAT, 2-3
/NOCOPY-LIST, 2-3
/NOCROSS REFERENCE, 2-3
Node, 6-1"8
/NODEBUG, 2-4
/NODEBUG, RUN qualifier, 2-13
/NOLIST, 2-4
/NOMAP, 2-5
/NOOBJECT, 2-6
/NOVERB LOCATION, 2-6
/NOWARNINGS, 2-6
Numeric class, 3-1

Numeric data, 4-1

/OBJECT, 2-6
OCCURS, 5-2, 5-3, 5-9, 5-13
Open mode, 6-14
OPEN statement execution, 6-16
Opening files, 6-14
Optimization, 13-1
Optimizing computation, 13-9
OPTIONAL, 6-16
/OPTIONS, LINK qualifier, 2-12
OVERFLOW

in STRING, 3-18
in UNSTRING, 3-36

Packed-decimal, 4-2
PAPER-TAPE-PUNCH, 6-27
PAPER-TAPE-READER, 6-27
PERFORM, 7-6
Physical block, 6-5, 13-9
PIC, 7-3
PICTURE, 7-3
POINTER

in STRING, 3-15
in UNSTRING, 3-32

PRINT-CONTROL, 6-17
Procedure-name limitation, B-1
Program

listing, C-l
organization, 13-8

Programming examples, G-l
Punctuation, use of, 7-5

Qualification, 7-9
limitation, B-1

Receiving fields, multiple, 3-12
Record

area, current, 6-10
areas, sharing, 6-11
blocking, 6-5
size, 6-4

Record format, 6-2
fixed-length, 6-2
variable-length, 6-3
VFC, 6-3

Record Management Services, 6-1
Record Unit Size, 6-5
Reference format, 2-1, 7-1, 8-1
REFORMAT, 8-1
Relation test, 3-4 1 4-6
Relative file, 6-8, 13-2
Relative indexing, 5-14
RESERVE, 6-13
Restarting program, in DEBUG, 9-8
RMS, 6-1

buffer defaults, 6-13

INDEX-3

INDEX (Continued)

ROUNDED, 4-14
RTS, 2-8
RUN command, 2-13
Run-time

error messages, 10-5
procedures, calling, G-4
System, 2-8

SAME AREA, 6-14, 6-16
SAME RECORD AREA, 6-11
Scaling, decimal, 4-3
Scope, DEBUG, 9-3
SEARCH, 5-17, 5-18, 5-19
SELECT, 6-20
Sequential

disk file, 6-7
file, 13-2

SET, 5-16
SET BREAK, DEBUG command, 9-6
SET LANGUAGE, DEBUG command, 9-2
SET MODULE, DEBUG command, 9-2
SET SCOPE, DEBUG command, 9-3
SET TRACE, DEBUG command, 9-6
SET WATCH, DEBUG command, 9-7
ISH, file specification switch,

6-23
Sharing

buffers, 6-14
record areas, 6-11

SHOW BREAK, DEBUG command, 9-6
SHOW CALLS, DEBUG command, 9-9
SHOW LOGICAL 'command, 2-13
SHOW MODULE, DEBUG command, 9-3
SHOW SCOPE, DEBUG command, 9-3
SHOW TRACE, DEBUG command, 9-7
SHOW WATCH, DEBUG command, 9-8
Sign test, 4-7
Signs, 4-4

COMP-3, 4-3
SIZE ERROR, 4-15
Software Performance Report, F-2
Sort keys, 11-3
Sort subroutines, 11-6
Sorting, 11-1

file I/O interface, 11-2
record I/O interface, 11-2

Source listing, C-l
Special characters, 3-3
SPECIAL-NAMES, 6-27
SPR, F-2
Statements

arithmetic, 4-13
STEP, DEBUG command, 9-9
STOP literal, 2-13

in DEBUG, 9-9
STRING, 3-14
Subroutines, sort, 11-6

Subscripted fields
in INSPECT, 3-47
in STRING, 3-20
in UNSTRING, 3-37

Subscripted move, 3-12
Subscripting, 5-9

data-name, 5-12
indexes, 5-13
literal, 5-10

SUBTRl\CT, 4-18
multiple operands, 4-16

Switches
file specification, 6-19, 6-22
program, 2~12, 2-13

SYNCHRONIZED, 5-4
SYS$LIBRARY:C74LIB/LIB, 2-8
SYS$LIBRARY:C74LIB/OPT, 2-8
System error, compile-time, 10-3,

F-l
System messages, VAX/VMS, 10-4
System services, calling, G-IO

Table
handling, 5-1

Tables
COMP items in, 5-4
defining, 5-1
initializing, 5-7
variable-length, 5-17

TALLYING
in INSPECT, 3-48
in UNSTRING, 3-34

Tape file, 6-6
Temporary work area

arithmetic expression, 4-21
Terminal escape sequences, G-6
Terminal format, 2-1, 2-3, 7-1,

8-1
Test

class, 4-7
relation, 3-4, 4-6
sign, 4-7

Traceback, 2-4, 2-10, 9-9, 10-6,
10-8

/TRACEBACK, LINK qualifier, 2-10
Tracepoint, DEBUG, 9-6, 9-7

UNSTRING, 3-22
USE procedure, 6-26

VALUE, 5-7
VALUE OF ID, 6-20
Variable-length

record, 6-3
table, 5-17

Variable with fixed-length
control record. See VFC

INDEX-4

INDEX (Continued)

VAX-II run-time procedures,
calling, G-4

VAX-II Sort, 11-1
VAX/VMS system messages, 10-4
VAX/VMS system services, calling,

G-IO
/VERB_LOCATION, 2-6, C-2

Version, file, 6-18
VFC, 6-29
VFC record, 6-3

/WARNINGS, 2-6
Watchpoint, DEBUG, 9-7, 9-8
/WI:n, file specification switch,

6-23

INDEX-S

READER'S COMMENTS

V AX-ll COBOL-74
User's Guide
AA-C986A-TE

NOTE: This fonn is for document comments only. DIGITAL will use comments submitted on this fonn at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Perfonnance Report (SPR) service, submit your comments on an SPR fonn.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you fmd errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer
o Higher-level language programmer
o Occasional programmer (experienced)
o User with little programming experience
o Student programmer
o Other (please specify) __________________________ _

Name Date _________________ _

Organization ___________________________________ _

Street ______________________________________ _

City _________________ _ State ______ Zip Code _______ _

or
Country

- - -Do Not Tear· Fold Here and Tape - - - - - - - - - - - - - - - -

mamaama 111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN: Commercial Engineering Publications MK1·2/H3

DIGITAL EQUIPMENT CORPORATION

CONTINENTAL BOULEVARD

MERRIMACK N.H. 03054

I
I
I

----1

No Postage

Necessary
if Mailed in the

United States

- - DoNotTear-FoldHereandTape - - - - - - - - - - - - - - - - --

I
I --,-

	A001
	A002
	A003
	A004
	A005
	A006
	A007
	A008
	A009
	A010
	A011
	A012
	A013
	A014
	A015
	A016
	A017
	A018
	A019
	A020
	A021
	A022
	A023
	A024
	A025
	A026
	A027
	A028
	A029
	A030
	A031
	A032
	A033
	A034
	A035
	A036
	A037
	A038
	A039
	A040
	A041
	A042
	A043
	A044
	A045
	A046
	A047
	A048
	A049
	A050
	A051
	A052
	A053
	A054
	A055
	A056
	A057
	A058
	A059
	A060
	A061
	A062
	A063
	A064
	A065
	A066
	A067
	A068
	A069
	A070
	A071
	A072
	A073
	A074
	A075
	A076
	A077
	A078
	A079
	A080
	A081
	A082
	A083
	A084
	A085
	A086
	A087
	A088
	A089
	A090
	A091
	A092
	A093
	A094
	A095
	A096
	A097
	A098
	A099
	A100
	A101
	A102
	A103
	A104
	A105
	A106
	A107
	A108
	A109
	A110
	A111
	A112
	A113
	A114
	A115
	A116
	A117
	A118
	A119
	A120
	A121
	A122
	A123
	A124
	A125
	A126
	A127
	A128
	A129
	A130
	A131
	A132
	A133
	A134
	A135
	A136
	A137
	A138
	A139
	A140
	A141
	A142
	A143
	A144
	A145
	A146
	A147
	A148
	A149
	A150
	A151
	A152
	A153
	A154
	A155
	A156
	A157
	A158
	A159
	A160
	A161
	A162
	A163
	A164
	A165
	A166
	A167
	A168
	A169
	A170
	A171
	A172
	A173
	A174
	A175
	A176
	A177
	A178
	A179
	A180
	A181
	A182
	A183
	A184
	A185
	A186
	A187
	A188
	A189
	A190
	A191
	A192
	A193
	A194
	A195
	A196
	A197
	A198
	A199
	A200
	A201
	A202
	A203
	A204
	A205
	A206
	A207
	A208
	A209
	A210
	A211
	A212
	A213
	A214
	A215
	A216
	A217
	A218
	A219
	A220
	A221
	A222
	A223
	A224
	A225
	A226
	A227
	A228
	A229
	A230
	A231
	A232
	A233
	A234
	A235
	A236
	A237
	A238
	A239
	A240
	A241
	A242
	A243
	A244
	A245
	A246
	A247
	A248
	A249
	A250
	A251
	A252
	A253
	A254
	A255
	A256
	A257
	A258
	A259
	A260
	A261
	A262
	A263
	A264
	A265
	A266
	A267
	A268
	A269
	A270
	A271
	A272
	A273
	A274
	A275
	A276
	A277
	A278
	A279
	A280
	A281
	A282
	A283
	A284
	A285
	A286
	A287
	A288
	A289
	A290
	A291
	A292
	A293
	A294
	A295
	A296
	A297
	A298
	A299
	A300
	A301
	A302
	A303
	A304
	A305
	A306
	A307
	A308
	A309
	A310
	A311
	A312
	A313
	A314
	A315
	A316
	A317
	A318
	A319
	A320
	A321
	A322
	A323
	A324
	A325
	A326
	A327
	A328
	A329
	A330
	A331
	A332
	A333
	A334
	A335
	A336
	A337
	A338
	A339
	A340
	A341
	A342
	A343
	A344
	A345
	A346
	A347
	A348
	A349
	A350
	A351
	A352
	A353
	A354
	A355
	A356
	A357
	A358
	A359
	A360
	A361
	A362
	A363
	A364
	A365
	A366
	A367
	A368
	A369
	A370
	A371
	A372
	A373
	A374
	A375
	A376
	A377
	A378
	A379
	A380
	A381
	A382
	A383
	A384
	A385
	A386
	A387
	A388
	A389
	A390
	A391
	A392
	A393
	A394

