
--- ------ ----- --- SR30-0436-1 - - ---- ------------_ .-

IBM Series/1
Event Driven Executive
Licensed Program

Study Guide

111111111111
1111111111111111

11111111111111111111
11111111111111111111111111
11111111111111111111111111
11111111111111111111111111
11111111111111111111111111
11111111111111111111111111

111111111111
111111111111
111111111111
111111111111
111111111111
111111111111
·111111111111
111111111111
111111111111
111111111111
111111111111
111111111111
111111111111

--- ------ --------- ----- ----- S R30-0436-1 -------_.-

IBM Series/1
Event Driven Executive
. Licensed Program

Study Guide

Second Edition (September 1980)

This edition is a major revision of, and obsoletes, SR30-0436-0. It contains material in
support of IBM Series/1 Event Driven Executive version 3.

Changes are periodically made to the information herein; any such changes will be
reported in subsequent editions.

Use this publication only for the uses stated in "Section 1. Introduction to This Course."

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

This publication could contain technical inaccuracies or typographical errors.

A form for reader's comments is provided at the back of this publication. If the form
has been removed, address your comments to IBM Corporation, General Systems Division,
Technical Publications, Department 796, P.O. Box 2150, Atlanta, Georgia 30055. IBM
may use and distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course, continue
to use the information you supply.

©Copyright International Business Machines Corporation 1979,1980

c

c'

c

o

",--....,
\,

Section 1. I ntroduction to This Course 1-1
Course Overview 1-1
Material Requirements 1-3
Study Tips 1-3
Course Objectives 1-4
Event Driven Executive Components-Version 3 .. 1-4

Basic Supervisor and Emulator (5719-XS3) 1-4
Event Driven Executive Utilities (5719-UT5) ... 1-5
Event Driven Executive Macro Library/Host

(5740-LM4) 1-5
Event Driven Executive Program Preparation

Facility (5719-XX4) 1-5
Event Driven Executive Macro Library

(5719-LM7) 1-6
Event Driven Executive - An Operational

Overview . 1-6

Section 2. Instruction Format 2-1
Event Driven Executive Basic Instruction Format .. 2-1
Language Syntax/Coding Conventions 2-1
Instruction Format . 2-2
Instruction Format Review Exercise - Questions .. 2-5
Instruction Format Review Exercise - Answers 2-6

Section 3. ProgramlTasks 3-1
Program/Task Concepts and Structure 3-1

Single Task Program 3-2
Multiple Task Programs 3-3
Multiple Program Structure 3-5
Overlay Program Structure 3-7

Program/Task Definition 3-10
Program/Task Execution 3-12

Program Loading 3-12
Program Synchronization 3-15
Task Synchronization 3-18

Queuable Resources 3-21
WAIT/POST Operation 3-24
Attention Lists 3-26
Programs/Tasks Review Exercise - Questions ... 3-29
Programs/Tasks Review Exercise - Answers 3-32

Section 4. Data Definition 4-1
DATA Statement 4-1
BUFFER Statement 4-6
TEXT Statement 4-8
Data Definition Review Exercise - Questions '" 4-11
Data Definition Review Exercise - Answers 4-12

Contents

Section 5. Data Manipulation 5-1
Integer Arithmetic 5-1

Optional Operands . 5-2
Floating Point Arithmetic 5-3
Data Movement Instructions 5-4
Logical Instructions 5-6
Data Manipulation Review Exercise - Questions . 5-10
Data Manipulation Review Exercise - Answers .. 5-12

Section 6. Queue Processing 6-1
DEFINEQ 6-2
LASTQ/FIRSTQ/NEXTQ 6-4
Queue Processing Review Exercise - Questions ... 6-7
Queue Processing Review Exercise - Answers 6-8

Section 7. Program Control 7-1
Subroutines 7-1
SUB ROUT Statement 7-1
CALL Statement 7-2
Passing Subroutine Parameters 7·2
USER Statement 7-5
Program Control Review Exercise - Questions 7-9
Program Control Review Exercise - Answers 7-10

Section 8. Program Sequencing 8-1
GOTO Statement . 8-1
I F Statement . 8-4

Relational Conjunctions 8-6
DO Statement 8-7
Program Sequencing Review Exercise -

Questions 8-11
Program Sequencing Review Exercise - Answers . 8-14

Section 9. Timers 9-1
GETTIME Instruction 9-1
INTIME Instruction 9-2
STIMER Instruction 9-3
Timing Functions - Coding Example 9-4
Timers Review Exercise - Questions 9-7
Timers Review Exercise - Answers 9-8

Section 10. Disk/Diskette I/O 10-1
Devices Supported - Diskette. 10-1
Devices Supported - Disk 10-1
Devices Supported - Tape 10-1

Disk Volume Definition 10-2
Diskette Volume Definition 10-3

Contents iii

Tape Volume Definition 10-3
Data Sets 10-3
Records 10-4
Record/Sector Relationship 10-4

PROGRAM Statement DS= Operand 10-4
READIWRITE Statements - Disk/Diskette 10-6
READIWRITE Statements - Tape 10-1.0
NOTE/PO I NT Statements 10-11
Disk/Diskette I/O Coding Examples 10-11
Tape I/O Examples 10-17
Load-Time Data Set Definition 10-17
Disk/Diskette I/O Review Exercise - Questions . 10-23
Disk/Diskette I/O Review Exercise - Answers .. 10-28

Section 11. Terminal I/O 11-1
TERMINAL Statement 11-1

Roll Screens 11-2
NHIST=Operand 11-2
Static Screens 11-3

ENQT /0 EQT Instructions 11-4
10CB Statement .. 11-6
Data Representation 11-8
PRINTEXT Instruction 11-8
READTEXT Instruction 11-16
Operator Control of Program Execution 11-19

PF and Attention Key Handling 11-19
QUESTION Instruction 11-21
WAIT KEY Instruction 11-22
HARDCOPY PF Key 11-23

Static Screen Coding Example 11-24
ERASE Instruction. 11-26
TERMCTRL Instruction 11-27

RDCURSOR Instruction 11-43
PR INTNUM/GETVALUE Instructions. 11-43
PRINTIME/PRINDATE Instructions 11-52
Terminal I/O Review Exercise - Questions 11-53
Terminal I/O Review Exercise - Answers 11-56

Section 12. Data Formatting 12-1
Data Conversion .. 12-1
CONVTD Instruction 12-2
CONVTB Instruction 12-3
CONVTD/CONVTB Coding Examples 12-4
GETEDIT/PUTEDIT Introduction 12-7·
PUTEDIT/GETEDIT Instructions 12-10
FORMAT Statement 12-11
Data Formatting Review Exercise - Questions.. 12-19
Data Formatting Review Exercise - Answers . .. 12-20

Section 13. Sensor I/O 13-1
Sensor Based I/O 13-1

Digital Input/Output 13-4
Analog Input/Output 13-4

Event Driven Executive Sensor I/O Support 13-6

iv SR30-0436

10DEF Statement 13-8
SB 10 Statement .. 13-10

Sensor I/O Coding Examples 13-12
Sensor I/O Review Exercise - Questions 13-19
Sensor I/O Review Exercise - Answers. 13-20

Introduction to Sections 14 Through 18

Section 14. Utility Programs 14-1
Operator Commands 14-1

$A 14-1
$B•.... 14-2
$C 14-2
$0 and $P 14-2
$CP•.............. 14-2
$E 14-3
$S 14-3
$T and $W 14-3
$VARYON and $VARYOFF 14-4

Operator Command 14-4
System Utility Programs - Introduction 14-6
Data Management/Maintenance Utilities 14-7

$DASDI 14-7
$1 N ITDSK 14-9
$DISKUT1 14-11
$DISKUT2 14-12
$COPY 14-14
$COPYUT1 14-15
$MOVEVOL 14-17
$COMPRES 14-17
$TAPEUT1 14-18

Terminal I/O Utilities 14-19
$TERMUT1 14-19
$TERMUT2 14-21
$TERMUT3 14-25
$PFMAP , 14-25
$FONT 14-26

Miscellaneous Utilities 14-36
$IMAGE .. 14-36
$IOTEST 14-43
$PREFIND 14-44

Program Preparation Utilities 14-46
$EDIT1N 14-46
$UPDATE 14-49
$FSEDIT 14-50

Other Utility Programs 14-80
BSC Utilities 14-80
$BSCTRCE 14-80
$BSCUT1 14-80
$BSCUT2 14-80

Display Processor (Graphics) Utilities. 14-81
$DIUTIL 14-81
$DICOMP 14-81
$0 liNTER _ 14-81

c

c

C)

o

Host Program Preparation Utilities. 14·81
$HCFUTl 14·82
$EDIT1/$UPDATEH 14·82
$RJE2780/$RJE3780 14·82
$PRT2780/$PRT3780 14·83
$DEBUG 14·83

Section 15. System Installation 15·1
Objectives .. 15·1
Machine Readable Material. 15·1

5719·XS3 Basic Supervisor and Emulator 15·1
5719·UT5 System Utility Programs , 15·1
5719·XX4 Program Preparation Facility 15·1
5719·LM7 Macro Library. 15·2
5740·LM4 Macro Library/Host 15·2

Starter System Installation Overview 15·2
Installing the Starter System. 15·3
User System Generation 15·5
SYSGEN Overview 15·5

Allocate Required Data Sets 15·5
Edit System Configuration Statements 15·7

$IOTEST 15·7
SYSTEM Statement 15·10
TIMER Statement 15·11
DISK Statements 15·11
TERMINAL Statement 15·12
System Communications Area 15·13

Select Supervisor Support Modules 15·15
Edit $JOBUTI L Procedure File '. 15·19
Assemble/Link/Format 15·20

Designate Tailored Supervisor 15·24
IPL Tailored Supervisor. 15·26

Section 16. Program Preparation Using
$EDXASM 16·1

Program Preparation Overview 16·1
$EDXASM 16·3
$EDXLlST 16·5
$LINK 16·5
$JOB UTI L 16·7

Program Preparation Example 16·12
Problem Description 16·12

Create/Modify Source Module 16·13
Assemble Source Module 16·22
Produce Assembly Listing 16·24
Link Edit Object Modules 16·25
Format Object Module 16·28
$EDXASM Copy Code Function 16·30
Job Stream Procedure 16·37

Section 17. Program Preparation Using
$S1ASM 17-1

Objectives .. 17·1
$Sl ASM Machine Readable Material 17·1
Installing $S1ASM 17·2
$SlASM Operation , 17·2

Data Set Requirements 17·3
$SlASM/$JOBUTI L Interface 17·5

Section 18. Session Manager 18·1
Objectives .. 18·1
Session Manager Overview 18·1
Session Manager Operating Concepts 18·6

Definition of Terms 18·6
Using the Session Manager 18·10
Loading the Session Manager 18·10

Data Set Allocation 18·12

Appendix A. SYSGEN Listings A·l

Appendix B. Program Preparation Listings B·l

Contents v

This page intentionally left blank. c

vi SR30-0436

G

COURSE OVERVIEW

Section 1. Introduction to This Course

This course is intended to give Series/1 personnel a general knowledge
of the concepts and theory incorporated in the Event Driven Executive
system Version 3. Upon completion of this course, the student should
be able to install, generate and maintain an Event Driven Executive
system as well as write and execute basic application programs.

The prerequisite for this course is successful completion of Introduction
to Smaller Systems Student Text (SR30-0185) or equivalent experience.
Programming experience using high level languages is also strongly
recommended.

The Event Driven Executive instruction set and system support
programs have been divided into several broad functional groups,
each group constituting a section of this study guide. An attempt
has been made to organize the sections in a logical sequence for
study. Each section, however, is also as modular as possible, and
can be studied as a separate unit, or in a sequence other than
presented, if desired.

Section 1. Introduction to This Course
Contains introductory material, as well as a brief operational
overview of the Event Driven Executive system.

Section 2. Instruction Format
Coding conventions/syntax rules for coding Event Driven
Executive instructions.

Section 3. Programs/Tasks
This section covers program/task structure, application program
design considerations, and all of the Event Driven Executive
instructions used for task control and synchronization.

Section 4. Data Definition
Section 5. Data Manipulation
These two sections cover all of the basic instructions required to
define, move, or perform logical or arithmetic operations on data
in storage.

Section 6. Queue Processing
Discussion and illustration of the queue definition and processing
instructions.

Section 7. Program Control
How to define and use both Event Driven Executive subroutines,
and subroutines written in Series/1 Assembler Language.

Introduction to This Course 1-1

1-2 SR30·0436

Section 8. Program Sequencing
Discussion and illustration of I F and DO structures, and the
relational statements used with them.

Section 9. Timers
Instructions to access the system's 24 hour clock and the elapsed
time clock, and to wait for a time delay are discussed.

Section 10. Disk/Diskette I/O
Discussion and examples of defining and accessing data sets from
an appl ication program.

Section 11. Terminall/O
Section 12. Data Formatting
The comprehensive terminal I/O support provided by the Event
Driven Executive is discussed in detail, with several coding
examples. Data Formatting support is used with terminals, and
therefore immediately follows.

Section 13. Sensor Input/Output
This section includes some basic sensor I/O concepts, as well as
how to incorporate the sensor I/O support in a supervisor and to
access sensor I/O devices from a user program.

Section 14. System Utilities
All of the system utilities are described. Those utilities required
most often are discussed in detail.

Section 15. System Installation
This section covers installation of the supplied supervisor and system
programs as received from PID, and generation of a tailored supervisor,
using the online Program Preparation Facility.

Section 16. Program Preparation Using $EDXASM
$FSEDIT (text editor), $EDXASM (Event Driven language assembler),
$LlNK (link editor), $UPDATE (object module formatter), and
$JOBUTI L (job stream processor) are used to prepare a program for
execution. Included are examples of the use of the COpy CODE
assembler feature and the AUTOCALL link editor option.

Section 17. Program Preparation Using $S1 ASM
This optional topic is for those users who will be assembling Series/1
assembler language and/or Event Driven language programs using
$S1ASM, the Series/1 Macro Assembler (Licensed Program 5719-ASA).

Section 18. Session Manager
Organization and operation of the Session Manager programmer pro
ductivity tool.

c

c

o

o

MATERIAL REQUIREMENTS

STUDY TIPS

Course Materials

* I BM Series/1 Event Driven Executive
Licensed Program Study Guide

Additional Materials

*1 BM Series/1 Event Driven Executive
System Guide

*1 BM Series/1 Event Driven Executive Operator's
Reference, Messages and Codes

*1 BM Series/1 Event Driven Language
Reference

**IBM Series/1 Macro Assembler Language
Reference

***IBM Series/1 Event Driven Executive
Communications and Terminal
Application Guide

***IBM Series/1 Event Driven Executive
I nternal Design

* Required to complete this course.

Form No.

SR30-0436

SC34-1702

SC34-1703

SC34-1706

SC34-Q317

SC34-1705

LY34-0202

**Not required to complete course, but may be a useful
reference for users who will be preparing programs
written in Series/1 assembler language, using the
Series/1 Macro Assembler (5719-ASA) (optional topic
in Study Guide).

***Not required to complete this course. These manuals address
topics that are not covered in the study guide, but which may
be of interest to some students.

Each section has a set of objectives. Read the objectives carefully so
that you understand what you should be learning in that section.
For each topic you will find a READING ASSIGNMENT. Read the
reading assignment and then continue in the Self Study Guide. At the
end of most sections you will find a Review Exercise. Try to complete
it prior to looking at the correct answers and be sure you understand
your mistakes before proceeding to-the next topic or section.

The total amount of study time you will need is estimated at 50 to
60 hours. This may extend over a period of two or three weeks if
your study periods are brief and somewhat separated because of
other duties.

Introduction to This Course 1-3

COURSE OBJECTIVES

For best results, set a short time goal rather than a long one and then
make every effort to meet that goal. Study sessions should be about
2 hours long but use whatever time you wish. You may find that
several short sessions are more productive than one longer session.

The student upon completion of this self-study course should be able
to:

1. Describe the major components and facilities of the Series/1
Event Driven Executive system

2. Install an Event Driven Executive system on a Series/1

3. Use the util ity programs to maintain a system

4. Invoke Supervisor utility functions from a terminal

5. Use most of the Event Driven Executive instructions
necessary to code application programs

6. Load application programs from a terminal, or from other
programs

7. Understand the use of overlay programs, multitasking, and
task/program synchronization

EVENT DRIVEN EXECUTIVE COMPONENTS-VERSION 3

The Event Driven Executive software offering consists of five
licensed programs:

1. Basic Supervisor and Emulator (5719-XS3)

2. Event Driven Executive Utilities (5719-UT5)

3. Event Driven Executive Macro Library/Host (5740-LM4)

" 4. Event Driven Executive Program (5719-XX4)
Preparation Facility

5. Event Driven Executive Macro (5719-LM7)
Library

Basic Supervisor and Emulator (5719-XS3)

1-4 SR30-0436

Event Driven Executive application programs are made up of instructions
coded in the Event Driven Language. At execution time, the assembled
output of these instructions is passed to the emulator portion of the
Supervisor/Emulator, and the Emulator links to the system routines
required to perform the functions. The Supervisor portion of the
Supervisor/Emulator manages system and I/O resources for application
programs in execution.

(~
-- .. ~.

o
Event Driven Executive Utilities (5719-UT5)

The system utilities also operate ur.der the control of the supervisor.
They provide online, interactive support for a tailored supervisor
generation, source module preparation, disk initialization, data set/
volume maintenance, etc.

Event Driven Executive Macro Library/Host (5740-LM4)

This is a set of libraries and procedures to be installed on a host
System/370, so that Event Driven Executive or Series/1 assembler
programs can be assembled on the host machine. The macros support
all of the Event Ddven Executive functions supported by the Event
Driven Executive Program Preparation Facility (5719-XX4).

Prerequisites for host program preparation include:

• A binary synchronous communications line between the Series/1
and the host

• Use of either the S/370 Event Driven Executive Host Communi
cations Facility IUP (5796-PGH) or the RJE utility supplied
with Event Driven Executive Utilities (5719-UT5), for transfer of
data sets between the two systems

e On the host, installation of the S/370 Program Preparation
Facilities for Series/1 FDP (5798-NNQ)

c) Event Driven Executive Program Preparation Facility (5719-XX4)

The Event Driven Executive Program Preparation Facility consists
of programs which allow the user to assemble and link edit appli
cation programs concurrently with the execution of other pro
grams (including other program preparation programs). The user
can also reconfigure, assemble, and link edit custom supervisors
online.

The Event Driven Executive assembler, $EDXASM, (part of 5719-XX4)
is used to assemble application programs written in the Event Driven
language. As long as no Seriesl1 assembler language code is included
in application source code (USE R exit routines), this is the only
assembler required for program preparation.

Licensed program 5719-ASA, (separately orderable program, not part of
5719-XX4) the Series/1 Macro Assembler, also runs under the Event
Driven Executive system, and is used to assemble programs written in
Series/1 assembler language. When installed under the Event Driven
Executive, the Series/1 Macro Assembler is called $S1ASM. If the
Series/1 Macro Library (5719-LM7) is also installed, $S1ASM may be
used to assemble Event Driven Executive supervisors and programs
written in the Event Driven Language, as well as programs written in
Series/1 assembler language.

Introduction to This Course 1.5

Event Driven Executive Macro Library (5719-LM7)

This library contains the macro prototypes for the Event Driven L~·
instruction set, and all the macros necessary to build a supervisor .-
tailored to a particular system configuration. This library is used when
preparing programs using the Series/1 Macro Assembler $S1 ASM (not
required if system generation/program preparation is done with
$EDXASM).

EVENT DRIVEN EXECUTIVE - AN OPERATIONAL OVERVIEW

1-6 SR30-0436

The Event Driven Executive component that controls execution
of user-written applications is the Supervisor/Emulator. It is a multi
programming supervisor, capable of controlling concurrent program
execution.

The basic unit of work for the supervisor is an instruction. Instructions
are combined to form tasks, each of which has an assigned priority,
used by the supervisor to allocate system resources.

An application program may have more than one task (multitasking).
Each task competes for system resources with every other task in the
system, based on task priority. Each task runs independently of all
other tasks.

Programs/tasks are made up of Event Driven Executive instructions
that have been processed by an assembler and prepared for execution
by the link/formatting system utilities. At execution time, the
Supervisor/Emulator analyzes an instruction's assembled format, and (I
links to the appropriate supervisor routine to perform the operation. ~
Following the completion of each instruction, the supervisor processes
the next sequential instruction in the highest priority task that is
ready.

The Supervisor/Emulator occupies the lowest 10 to 40+ K bytes
of Series/1 storage, depending on what support is included. The rest
of storage is available for user application programs. Programs may be
loaded by a terminal operator request, or by execution of a LOAD
instruction in a currently executing program. Programs are loaded
dynamically, using a relocating loader, into the smallest available
area of storage of sufficient size to contain them.

Other functions/services performed by the supervisor include task
dispatching (starting/ending tasks), I/O interrupt handling, program/
task synchronization, and provision for inter-program communication
via a global common area.

c

C"
I

(\
V

Section 2. I nstruction Format

EVENT DRIVEN EXECUTIVE BASIC INSTRUCTION FORMAT

OBJECTIVES: After completing this topic, the student should be
able to describe the basic format used in coding Event Driven
Executive instructions.

LANGUAGE SYNTAX/CODING CONVENTIONS

The Event Driven Executive instruction set was originally imple
mented as a macro library, using a macro assembler on the native or
a host machine to process application source modules. $EDXASM
is an online Event Driven Executive language assembler, not a macro
assembler, and does not utilize a macro library to process application
source modules. Although macros are not used, macro assembler
language syntax and coding conventions are still followed, thereby
retaining compatibility with previous releases.

If required, Series/1 macro assembler language syntax/coding con
ventions may be reviewed in the Series/1 Macro Assembler Language
Reference (SC34-0317).

Instruction Format 2-1

INSTRUCTION FORMAT

2-2 SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "General I nstruction Format."

The basic Event Driven Executive instruction format is:

1 abel op opndl,opnd2, opndn,KEYWORD=,Pl=,P2=, ... Pn=

where

1 abe 1 identifies the location of a particular instruction and
can be referenced by other instructions.

op is the operation to be performed by the Series/1 (MOVE,
ADD, etc.)

opndl , opnd2, opndn are positional operands. The
meaning of each parameter or operand is defined by its
position in the operand field of the instruction. The number
of positional operands varies with each instruction type.

opndl

opnd2

KEYWORD=

Pl=,etc

is normally the lito" or target location.

is normally the "from" or source loaction.

are keyword operands. The keyword (PREC, RESULT,
EVENT, etc.) specifies a particular parameter to be
used in that instruction's execution.

are keyword operands that allow positional operand
modification at execution time. c

c

o

o

Figure 2-1 shows the relationship of the various parts of a source
statement to the general instruction format. (The ADD instruction
is discussed in detail in "Section 5. Data Manipulation", and
is used here only to illustrate the basic instruction format.) In this
example, three positional operands are used. FIE LD is the name of the
"to" or "target" location, DATA is the "from" or "source" location,
and the third positional operand is the integer value "1", the "count"
operand. A keyword operand, PREC= is also coded; in this case, the
"s" indicates "single precision."

Ar
OP
(operation
to be
performed
by
computer)

FIELD,DATA,l,PREC=S

! '" ~ opnd1 opnd3 KEYWORD
(to or (count) OPERAND
target
location) opnd2

(from or
source location)

(specifying single
precision)

Figure 2·1. Source statement/general instruction format relationship

For the ADD instruction, the count and PREC = operands are not
required; they have values to which they will default if not coded
(the values coded in the illustration are, in fact, the default values
for these operands). In the ADD, the "count" operand applies to the
first positional operand only (the number of consecutive values,
beginning at location FIELD, to which the value in DATA is to be
added), and the "PREC =" operand, as coded, applies only to the
first positional operand and the result (which is also the first
operand, in this example).

Other instructions may not have a count or PREC= operand or, if
they do, they may apply to other than the first positional operand.
The general syntax of an Event Driven Executive instruction adheres
to the basic format just discussed; the meaning of the operands,
and the number of operands allowed differs depending on the
instruction type.

Instruction Format 2·3

This page intentionally left blank.

c
2-4 SR30-0436

o
INSTRUCTION FORMAT REVIEW EXERCISE - QUESTIONS

1. I n the study guide, and in the reading assignment, the terms
"operand" and "parameter" are both used. These terms
are interchangeable, and both refer to labels/names/values
in the operand field of an instruc~ion.

True

Fplse __ _

2. In the operand field of an instruction, all positional operands
used must precede (from left to right) any keyword operands
used.

True

False __ _

3. All instructions have the same number of positional operands,
but the number of keyword operands varies from instruction
to instruction.

True

False __ _

4. In the operand field of an instruction, positional operands are
separated by commas, but keyword operands may be separated
by blanks or by commas. o True

False __ _

5. The meaning of a positional operand, in a given instruction,
is determined by its position (first, second, etc.), while the
meaning of a keyword operand is determined by the keyword
used.

True

False __ _

6. Labels beginning with "$" have a special meaning to the system,
and are reserved for system use.

True

False __ _

Instruction Format 2-5

INSTRUCTION FORMAT REVIEW EXERCISE - ANSWERS

2-6 SR30-0436

1. True. Both terms are used interchangeably, throughout the
study guide and the manuals. For example,

parameter one
parameter 1
first parameter
parm1
operand one
operand 1
first operand
opnd1

are all used at one time or other to refer to the first positional
operand in an operand field being discussed.

A possible area of confusion might be an instance when "parameter"
is used to describe information passed to another program or a
subroutine, rather than to reference an element of an operand
field. Normal attention to the context in which the term is used
will usually prevent any misunderstanding.

2. True. All positional operands must be coded before (to the left
of) the first keyword operand. After all positional operands have
been coded, mUltiple keyword operands may be coded in any
sequence desired; all keywords are analyzed in light of the meaning
of the keyword itself, rather than its position within the operand
field.

3. False. Different instructions vary in the number of required
positional operands (must be coded, no default), optional
positional operands (will default to predetermined value if
not coded), and required/optional keyword operands.

4. False. All operands, keyword or positional, are separated
by commas, with no imbedded blanks allowed. When the first
blank is detected, all further information is considered a comment.

In the situation where two or more optional positional operands
are allowed, and you skip one and code the other, the skipped
(defaulted) operand must be indicated by a comma if the coded
operand follows it in position.

c'

0
,
'\

1 abel

o

o

Example:

op 7~pnd~..,.nd4
REQUIRED OPTIONAL

VALID OPERAND STRUCTURES

opndl,opnd2
REQUIRED OPERANDS ONLY - OPTIONAL OPERANDS
(opnd3, opnd4) TAKE DEFAULT

opndl,opnd2,opnd3
REQUIRED OPERANDS PLUS FIRST OPTIONAL OPERAND
(opnd3) CODED - opnd4 TAKES DEFAULT VALUE

opndl,opnd2,opnd3,opnd4
REQUIRED AND OPTIONAL OPERANDS CODED

opndl,opnd2"opnd4
REQUIRED AND LAST OPTIONAL OPERAND (opnd4)
CODED, SKIPPED OPERAND (opnd3) INDICATED BY A
COMMA

INVALID OPERAND STRUCTURES

opndl,opnd2,opnd4
THE VALUE YOU THOUGHT YOU CODED FOR opnd4
WI LL BE ASSIGNED TO opnd3, AND opnd4 WI LL TAKE
THE DEFAULT

5. True. Self explanatory.

6. True. There is no system enforced discipline preventing a user
from defining storage locations with labels beginning with the 11$"
character. However, because system defined functions/locations/
resources have labels beginning with this character that may be
referenced by operands in user-written instructions, confusion can
be avoided if users restrict their own definitions to labels not
beginning with "$".

Instruction Format 2-7

c

This page intentionally left blank. c

c
2-8 SR30-0436

c)

o

Section 3. Program/Tasks

OBJECTIVES: Upon successful completion of this topic, the student
should be able to:

1. Describe programs and tasks as used in an Event Driven Executive
System

2. Define an application program structure that fits system and
application requirements

3. Use the Event Driven Executive program and task definition
statements

4. Understand and use the task synchronization statements

5. Include operator attention routines in a program

PROGRAM/TASK CONCEPTS AND STRUCTURE

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
System Guide (SC34-1702) "Program/Task Concepts and Structure"
through "Multiple Program Structure." IBM Series/1 Event Driven
Executive Language Reference (SC34-1706), "Task Control."

System resources in an Event Driven Executive system are allocated
to tasks according to the priorities of the tasks. A task is a unit of work,
defined by the application programmer. A program is a disk- or
diskette-resident collection of one or more tasks, that can be loaded into
storage for execution. Although "program" and "task" are sometimes
used synonymously, the basic executable unit for the supervisor is
the task.

Task priority is assigned by the application programmer when the task
is coded. Valid priorities range between 0 and 511, with 0 being the
highest possible priority, and 511 the lowest. Tasks with priorities
between 0 and 255 execute on hardware level 2, and those between
256 and 511 on level 3.

Program/Tasks 3-1

Single Task Program

3-2 SR30-0436

For most applications, an elaborate program structure is not
required, and programs will consist of a single task, as shown in
Figure 3-1.

PROGA PROGRAM AS SINGLE TASK
• NO EXECUTION OVERLAP WITHIN PROGRAM
• PROGRAM COMPETES FOR SYSTEM RESOURCES

WITH OTHER TASKS CURRENTLY IN SYSTEM

Figure 3-1. Single task program structure

Figure 3-2 is an example of the type of application that lends itself
to the single task program structure. The job is sequential in nature,
and will be waiting for operator input most of the time. There is no
requirement for asynchronous execution of mUltiple functions or
I/O overlap with processing, and nothing to be gained by a more
complex structure.

UPDATE

OPERATOR REQUEST LOADS
"CUSTOMER FILE UPDATE"
PROGRAM

1. GET CUSTOMER NAME FROM TERMINAL
(OPERATOR INPUT)

2. SEARCH CUSTOMER FILE FOR NAME

3. READ CUSTOMER RECORD

4. DISPLAY CUSTOMER RECORD ON TERMINAL

5. ACCEPT UPDATE FROM TERMINAL (OPERATOR
INPUT)

6. WRITE UPDATED RECORD TO CUSTOMER FILE

7. GO BACK TO STEP 1 IF MORE RECORDS TO
UPDATE

8. ELSE, END UPDATE PROGRAM

Figure 3-2. Single task application example

c

Multiple Task Programs

C)

Figure 3-3 illustrates a multitasking program structure. PROGA is
started up by the system when the program is loaded, and is called the
PRIMARY TASK. The other tasks shown will not start up until a user
coded command is executed that tells them to begin. PRIMARY
TASKS go into execution as a result of the program's being loaded into
storage, while initiation of SECONDARY TASKS is a user responsibility.
Once in execution, all tasks with in a program compete for system re
sources with one another, and with all other tasks active in the system.
The supervisor considers each task as a discrete unit of work, and
assigns resources based on task priority, regardless of which tasks are
PRIMARY or SECONDARY.

PROGA

TASKX

TASKY

TASKZ

PROGRAM MADE UP OF MULTIPLE TASKS
• CONCURRENT (ASYNCHRONOUS) EXECUTION

OF TASKS WITHIN PROGRAM
• TASKS COMPETE FOR SYSTEM RESOURCES

WITH ALL OTHER TASKS CURRENTLY IN SYSTEM

Figure 3-3. Multitasking program structure

Figure 3-4 is an example of an application that makes use of multi
tasking. The program repetitively reads a group of Analog Input
points, performs calculations on the data and stores the results in an
output area on disk.

Program/Tasks 3-3

3-4 SR30-0436

AIRDUCE

START "AISCAN" TASK

OPERATOR REQUEST
LOADS "A/I DATA
REDUCTION" PROGRAM

WAIT FOR "AISCAN" TASK TO COMPLETE

READ A/I VALUES FROM DISK INTO WORK AREA

START "AISCAN" TASK

PERFORM DATA REDUCTION ON DATA IN WORK
AREA

WRITE RESULTS TO OUTPUT AREA ON DISK

GO BACK TO STEP 2

AISCAN

1. READ All POINTS INTO STORAGE

2. WRITE A/I VALUES TO DISK

3. TASK "AISCAN" COMPLETED

Figure 3-4. Multitasking application example

To take advantage of multitasking, the reading of the Analog Input
points has been defined as a separate task, which also buffers the collec
ted data to disk. When the program is loaded into storage, the supervisor
starts up the primary task, AI RDUCE. The first step in AI RDUCE is
to start up the secondary task AISCAN. AI RDUCE then waits for
completion of the reading and buffering of the first set of Analog
I nput values.

When AISCAN completes, AI RDUCE starts up again, and retrieves
the buffered data from disk. AISCAN is restarted and, while the
first set of values is being processed, the second set is being col
lected; the two functions are overlapping.

c

o Multiple Program Structure

o

As already mentioned, an application program consists of a user
written collection of one or more tasks that has been prepared
for execution and stored under a unique name on disk/diskette.
A terminal operator can request that a program be loaded into
storage and placed in execution by entering a request for the super
visor load utility $L and supplying the program name.

Programs may also be loaded by executing a LOAD instruction in
another program that is already in execution (use of the LOAD
statement is discussed later in this section). When the supervisor
receives a request to load a program, either from a terminal or a task
already in execution, it finds the program on disk/diskette, finds a
section of unused storage large enough to accommodate the program,
loads the program from disk/diskette, relocates it into the storage
area, and starts up the program's initial task. When a program com
pletes execution, the supervisor releases the storage it occupied so
that the area can be used to load other programs.

Because programs are dynamically relocated into storage as load
requests are received, the size and structure of the programs can have
an effect on system throughput. To illustrate this, assume there is
a payroll application consisting of the following functions:

Function
SORT

PART-TIME
WAGES

FULL-TIME
WAGES

SALARIED
WAGES

WRITE
CHECKS

Description

Separate part-time hourly, full-time hourly,
and salaried employee data into three
separate fi les.

Process all records in part-time employee
file

Process all records in full-time employee
file

Process all records in salaried employee file

Print checks for all employees

Program/Tasks 3-5

3-6 SR30-0436

Although the payroll job just described is a fairly straightforward
application, which could be coded as a single program, there may
be valid reasons for breaking it up into multiple programs. One con
sideration is the size of a program, in relation to the storage available
on the system and the number and size of other programs that may
need to run concurrently. If the size of PAYROLL in relation to the
total storage available for user programs is as depicted in Figure 3-5,
you can see that, once PAYROLL is loaded, little storage will be left
for loading other programs.

SERIES/1
STORAGE

SUPERVISOR

(AVAILABLE
STORAGE)

PAYROLL

Figure 3-5. Program structure

Conversly, if other programs are already in execution when the load
of PAYROLL is requested, there may be some delay before enough
contiguous storage to accommodate so large a program becomes
available and the load can again be attempted.

Below is a redefinition of the payroll application with each function
coded as a separate program.

Program Name

SORTIME

PARTIME

FULLTIME

SALTIME

CHECKS

Description

Separate part-time hourly, full-time hourly,
and salaried employee data into three
separate files

Process all records in part-time employee file

Process all records in full-time employee file

Process all records in salaried employee file

Print checks for all employees

c

Overlay Program Structure

o

As can be seen in Figure 3-6, each of the programs is now much
smaller than the entire PAYROLL program. As each program
completes execution, it would request the load of the succeeding
program. The probability of there being enough storage to load
other applications is greatly increased, and the chance of having to wait
for storage to become available so that you can again attempt to load
a program there was previously no room for, is reduced.

SERIES/1
STORAGE

SUPERVISOR

(AVAILABLE
STORAGE)

SORTIME

PARTIME

FULLTIME

SALTIME

CHECKS

Figure 3·6. Program structure

If system activity were very high (several other applications in
concurrent execution), a lack of contiguous storage availability
could still cause some difficulty in the loading of the next se
quential program. I n a payroll application, this is acceptable,
because it is not "time-critical"; a delay in execution of a succeeding
step will not invalidate the final result.

Some appl ications are time constrained; for example, those involving
the processing of data acquired in realtime, where a delay in execution
might result in data being lost or overwritten. This type of application
must have a reasonable expectation of being loaded quickly when
requested and, once loaded, of running to completion with minimal
delay.

Program!Tasks 3·7

3-8 SR3Q-Q436

Coding a time-critical application as a single program ensures rapid
execution, once it is loaded, but, if the program is large, the same
problems exist as in the single-program payroll application (possible
delay in load due to large amount of storage required; tying up system
once loaded). Breaking up the program into separate programs takes
care of the problem of size, but the requirement for nearly continuous
execution once in operation, is still not met. Again, the level of activity
within the system could result in a delay in loading the next in a se
quence of programs, a condition that cannot be tolerated in this type
of app lication.

Using the OVE R LAY PROG RAM technique, both the requirement
for a reasonable sized program and minimum execution delay can
be met. In Figu re 3-7, the application is split into separate programs.

PHASE1
APPLICATION
PROGRAM
~----""T'"----------I PHASE1

:~~~~~~~~~~~ ==:::::~~l PHASE2 I
E]HASE3

~------------ ----- ..:::-..:: ::.:: .. :::: - ---
~------~-______ ~~-~I -P-H-A-S-E4----1

Figure 3-7. Program overlays

PHASE 1 is the initial program, and will load PHASE2, PHASE3,
and PHASE4, as required. PHASE2, PHASE3, and PHASE4 are
defined as OVERLAY PROGRAMS. When PHASE1 is loaded, the
loader recognizes that overlay programs are referenced. The loader
looks at each program that is designated as an overlay, and then
reserves enough storage to hold PHASE 1 plus the largest overlay
program.

c

c=

o

o

SPACE FOR

PHASE 1 PLUS {
OVERLAY AREA
RESERVED
WHEN PHASE1
IS LOADED

SERI ES/1
STORAGE

SUPERVISOR

PHASE1
1------- ----

(OVERLAY
AREA)

(AVAILABLE
STORAGE)

Figure 3-8. Program overlays

}

OVERLAY AREA LARGE
ENOUGH FOR 'PHASE3'
THE LARGEST OVERLAY
PROGRAM

When PHASE 1 is loaded and in execution, and requests that
PHASE2 be loaded, the system immediately loads PHASE2 into the
overlay area already reserved and starts it into execution. There is no
contention for the storage in the overlay area with other applications
waiting to be loaded, because the overlay area is reserved for the
exclusive use of PHASE 1 overlay programs.

As each overlay program completes, PHASE 1 loads the next, until
all required programs have run. When PHASE 1 terminates execu
tion, the storage reserved for both PHASE 1 and the overlay area
is released.

To summarize, application program structure (single program/multiple
programs/overlays) and task structure within programs (single task/
multitasking) is determined by

1. type of application (time/non-time critical)

2. size of application

3. system storage size

4. operating environment (system activity/loading)

I n general, a user should choose the simplest structure that will
support the application's requirements.

ProgramlTasks 3-9

PROGRAM/TASK DEFINITION

3-10 SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "PROGRAM", "ENDPROG",
"END", "TASK", IIENDTASK."

Every Event Driven Executive application program must have a
PROG RAM statement as the first statement in the program. The
PROG RAM statement defines the basic operating environment of the
program, including any data sets that the program will be using, the
names of overlay programs to be loaded, the priority of the program,
etc.

LOCATION OF FIRST EXECUTABLE

INSTRUCTION IN PRIMARY\K

EXECUTION
PRIORITY

/
INITASK PROGRAM BEGIN,200,DS=MASTER,PGMS=OVLAYI ,

NAME OF
PRIMARY
TASK

~ENDPROG
~.END

LAST TWO STATEMENTS
IN EVERY PROGRAM

Figure 3-9. Program definition

/ t
NAME OF A
DISK DATA SET

NAME OF AN
OVERLAY
PROGRAM

The label of the PROG RAM statement is the name of the primary task
(the only task, if multitasking is not used). The Event Driven Executive
system generates a control block for the primary task (and for every
other task defined), and assigns the first word of that control block to
the symbolic task name. As I/O and other operations are performed
during execution of the task, return codes and status indicators are
placed in this word, and may be examined by instructions referencing
the symbolic task name.

c

C
-··,

)

o

All Event Driven Executive programs must end with an EN DPROG
statement, followed by an END. These two statements must be the
last two statements in the program.

Tasks within programs (other than the primary task) are defined by the
TASK statement, and must end with the ENDTASK statement. The
TASK statement performs the same functions for a task that the
PROG RAM statement did for a program except that the data files
and overlay programs defined in the PROG RAM statement apply for
all tasks defined in that program, and are not specified in the TASK
statement.

INITASK PROGRAM

TASK2 TASK

!
NAME OF
SECONDARY TASK

/

ENDTASK
ENDPROG
END .

LAST EXECUTABLE STATEMENT
IN EVERY SECONDARY TASK

Figure 3-10. Task definition

BEGIN,200,DS=MASTER,PGMS=OVLAYI

START ~

\

NO PRIORITY SPECIFIED
DEFAULT = PRIORITY 150

LABEL OF FIRST
EXECUTABLE
INSTRUCTION

Program/Tasks 3-11

PROGRAM/TASK EXECUTION

Program Loading

3-12 SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706) "PROGSTOP", "LOAD", "WAIT",
"ECB",IIATTACH."

Event Driven Executive programs are readied for execution at the
time they are loaded into storage from disk or diskette (a given program
will not immediately go into execution unless its primary task has a
higher priority than other currently executing tasks). Programs are
loaded by a terminal operator, using the $L operator command,
or by execution of a LOAD statement in a task already in execution.
I n both cases, the program to be loaded is referenced by the name
under which it is stored on disk/diskette, and is either entered by
a terminal operator, or specified as a LOAD statement operand.
Note: The name of a program on disk has no relationship to the
name of that program's primary task. Illustrations in this study
guide frequently show both names the same, but this is not a
requirement of the system.

PROGA PROGRAM STARTA

PROGSTOP
ENDPROG
END

PROGB PROGRAM STARTB

PROGSTOP
ENOPROG
END

STORAGE

SUPERVISOR

~ PROGB

PROGB

PROGA

'-~-I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I I

/A II /
: I I :
" / I "
! / / " 1/ / I

1/
1/

1/ PROGRAMS
'/ LOADED BY $L

SUPERVISOR
UTILITY FUNCTION

Figure 3-11. Program loading from terminal

As shown in Figure 3-11, copies of the same program may be in storage
and active at the same time. The single copy of a program on disk/
diskette may be loaded as a separate program from one or more
terminals (as shown) as a separate program from one or more programs
already executing, or as an overlay by a currently executing program
or programs. c

o

Figure 3-12 is a simple example of one program loading another. The
program consists of the single task INITASK, which will start execution
at location BEGIN. No priority is coded on the PROGRAM statement,
so this program will run at the default priority of 150.

INITASK

BEGIN

END

PROGRAM

LOAD

PROGSTOP
ENDPROG
END

Figure 3-12. LOAD statement

BEGIN

PTHREE

User disk/diskette I/O will not be performed in this program (DS=
not coded in PROGRAM statement), and no overlay programs will
be loaded by this program (PGMS= not coded).

Execution of the LOAD statement at location BEGIN requests that
a program named PTH R E E be loaded into storage and readied for
execution. The loading program will wait for the completion of the
attempt to load PTH R EE before continuing execution.

The last statement to be executed in the loading program is the
PROGSTOP at location END. The PROGSTOP statement must be
the last executable statement in all programs. When PROGSTOP
is executed, the supervisor is notified that this program's primary task
is to be detached (made not active), various system resources that
were assigned to this program can now be made available to other
tasks, and the storage occupied by this program can be released for
the loading of other programs.

I n the oversimpl ified example shown in F igu re 3-12, the loading task
does not check to make sure the load operation was successfu I. In
actual practice, the user wou Id want to know if the operation fai led,
and if it did, the reason for the failure.

Program/Tasks 3-13

3-14 SR30-0436

I n Figure 3-13, the program location ABO RT is specified in the
ER RO R= keyword operand. If the load is successful, execution con
tinues with the statement following the LOAD. If the load operation
fails, control is transferred to the location specified by the E R RO R=
keyword operand. In this example, ABORT is the label on a
PROGSTOP statement and failure of the load operation would
resu It in term ination of the loading task. (I n actual application pro
grams, error routines are likely to be much more complex.)

INITASK

BEGIN

ABORT

PROGRAM

LOAD

PROGSTOP
ENDPROG
END

Figure 3-13. LOAD statement

BEGIN

PTHREE,ERROR=ABORT

Every task has a Task Control Block (TeB) associated with it. A task's
TeB is automatically generated during the program preparation process
when a task definition statement is encountered. A TeB consists of
those pointers, save areas, work areas, and indicators required by the
supervisor for controlling execution of the task in storage.

The first word of a task's TeB is used by the supervisor to pass
information from the system to the task, regarding the outcome of
various operations the task has initiated. Depending on what operation
was attempted, the value set in the first word of the TeB by the super
visor could indicate an arithmetic exception condition, the result of
an attempted I/O operation, or, as in Figure 3-13, a load operation
completion code.

When a TeB is generated, the location of the first word is assigned
the label on the task definition statement: the "name" of the task.
In this study guide, and in Event Driven Executive reference docu
mentation, this label is referred to as the "taskname," and the first
word of the TeB is called the "task code word." In Figure 3-13,
the task code word would be referenced by the taskname INITASK.
If ABORT (specified in ERROR= keyword operand of LOAD
statement) were the label of a user-written error routine, instructions
in that routine could get the load operation completion code by
using I N IT ASK to locate the task code word. Appropriate operator
messages could then be printed out or alternative actions taken,
based on the precise meaning of the completion code.

c

o
Program Synchronization

o

At this point, the instructions required to examine the task code word
have not been discussed; however there will be examples illustrating
this technique in later sections of this course.

Assuming the LOAD operation was successful, and PTHREE does
go into execution, the loading program illustrated in Figure 3-13
has no way of telling when PTH R EE finishes execution. For some
applications, there is no need for a loading program to be notified
of a loaded program's completion, but there are cases where syn
chronizing the execution of programs or tasks is required. This can
be accomplished by defining an event, and waiting for that event to
happen.

The "wait on event" facility is a signalling mechanism whereby a
task or program can be notified when a certain event has occurred,
and can wait or suspend execution until it does occur. Events in
clude such things as the expiration of a time delay, completion of
an I/O operation, or termination of a task or program. Events may
be user defined or, for some frequently required functions, may
be predefined by the system.

Completion of program execution is a predefined event, invoked by
coding the EVENT= keyword operand in the LOAD statement. In
Figure 3-14, the event has been named DON E3, which is also the
label of an Event Control Block (ECB) that is used by the supervisor
to keep track of whether the event has or has not occurred.

INITASK

BEGIN

ABORT
DONE3

PROGRAM BEGIN

LOAD PTHREE,EVENT=DONE3,ERROR=ABORT

WAIT DONE3

PROGSTOP
ECB
ENDPROG
END

Figure 3-14. LOAD statement

Program/Tasks 3-15

3-16 SR30-0436

Note: If preparing programs using $S1 ASM, the Series/1 Macro
Assembler, coding the EVENT= keyword operand in a LOAD state
ment causes an ECB with the proper label to be automatically gen
erated. When preparing programs using the Event Driven language
assembler $E D XASM, the ECB must be coded, as shown in Figure
3-14.

When. the LOAD statement is executed, the supervisor recognizes
that an event has been defined in the EVENT= keyword operand.
The supervisor finds the ECB named DON E3, and sets it to indicate
that the event has not occurred.

After PTHREE has been loaded, both PTHREE and the loading program
are in execution concurrently. Eventually PTHREE will complete
execution (execute a PROGSTOP) and, at that time, the supervisor
will set the ECB at location DONE3 to indicate that the event has
occurred.

When the WAIT statement in the loading program is executed, the
supervisor will see that the waited-on event is DONE3. The supervisor
checks the ECB at location DONE3 to see if the event has occurred.
If it has, execution continues with the next statement following the
WAIT. If it has not, the loading program is placed in a w~it state,
and execution will not resume until PTHREE completes. When an
event occurs, and the associated ECB is set to indicate that it has
occurred, the supervisor also checks to see if there are any tasks in
wait state, waiting on that event. If there are, the supervisor changes
them to the ready state, and they resume normal execution, based on
priority.

For examples of how user-written events are defined and used, see
the discussion titled "WAIT/POST" later in this section.

One instance where waiting on a "completion of execution" event
such as was just described must be done is when a program loads an
overlay. It is a user responsibility to ensure that a program that loads
an overlay program does not execute a PROGSTOP until the overlay
program has completed execution.

I f a program has loaded an overlay program that is now executing,
and the loading program issues a PROGSTOP, the storage occupied
by the loading program and the overlay area is released to the system,
and made available for loading other programs. Although the overlay
area contains a program still in execution, the loader believes the
storage is available, and may, in response to a load request, load
another program into the same area, with completely unpredictable
results.

c

c'

o

o

In Figure 3-15, PTHREE is defined as an overlay program in the
PGMS= operand of the PROGRAM statement. Up to nine overlay
programs may be defined in a PGMS= list.

INITASK

BEGIN

ABORT
DONE3

PROGRAM

LOAD

WAIT
PROGSTOP
ECB
ENDPROG
END

Figure 3-15. LOAD statement

BEGIN,PGMS=PTHREE

PGMl,EVENT=DONE3,ERROR=ABORT

DONE3

The LOAD statement requests the load of PGM 1. This is a positional
keyword reference to the PGMS= list in the PROGRAM statement. If
multiple overlay programs were defined in the PGMS= operand, and
you wished to load the second program in the list, the LOAD state
ment would be coded to load PGM2; for the third program, PGM3,
and so on up to the maximum of PGM9.

Note that the EVENT= keyword operand in the load statement is
coded, and that the loading program waits for completion of the
overlay program before issuing a PROGSTOP.

A program's primary task is started into execution (placed in a ready
state) by the system at the time the program is loaded. Secondary
tasks within a program are readied for execution by an ATTACH
instruction, issued from the primary task or another secondary task
previously attached and running.

In Figure 3-16, a secondary task called TASK1 is defined. TASK1
will be started up by the ATTACH in the primary task, at location
BEGIN. Once TASK1 has been attached, TASK1 and INITASK, the
primary task, execute concurrently and independently.

Program/Tasks 3-17

Task Synchronization

3-18 SR30-0436

INITASK

BEGIN

TASKI

PROGRAM

ATTACH

WAIT
PROGSTOP

TASK

ENDTASK
ENDPROG
END

Figure 3-16. TASK statement

BEGIN

TASKl,110

TASKDONE

START,EVENT=TASKDONE

I n this example, TASK 1 actually runs at a higher priority than the
primary task, and would receive preference in the allocation of system
resources. The P ROG RAM statement has no priority coded, so the
primary task runs at the default priority of 150. There is no priority
coded in the TASK statement, so TASK 1 also defaults to 150, but the
ATTACH instruction specifies priority 110, which overrides any
coded or defaulted priority in the TASK statement

It is just as undesirable for a primary task to release storage (execute
PROGSTOP) containing an executing secondary task, as it is for a
program to release storage containing an overlay program still in
execution. The TASK statement therefore has an EVENT= operand
that is used by the attaching task in the same manner as the loading
program used the LOAD statement's EVENT= operand.

The example in Figure 3-17 uses many of the concepts you have just
studied. Beginning with the PROG RAM statement at location
INITASK, the starting address of the primary task is BEGIN; the
primary task wi" run at priority 1 00; and two overlay programs are
defined in the PGMS= list, PTHREE and PFIVE. At the time the
program in Figure 3-17 is loaded into storage, enough storage will be
reserved to hold the program plus the largest of the two overly
programs.

C~

o

Now assume that the program has been loaded, and the system has
attached the primary task, IN IT ASK. Execution starts at location
BEGIN. This statement requests the load of overlay program PFIVE,
because PFIVE is the second program in the PGMS= list of the
PROG RAM statement, and the LOAD statement specifies PGM2.
If the load of this first overlay fails, the ERROR= operand of the
LOAD statement will cause a transfer of control to location
OUT5BAD, the label of the PROGSTOP, and execution will
terminate.

INITASK

BEGIN
L4

Al

W5
L3

W3
OUT3BAD
OUT5BAD

DONE5
DONE3

TASKI

PROGRAM

LOAD
LOAD

ATTACH

WAIT
LOAD

WAIT
WAIT
PROGSTOP

ECB
ECB

TASK

ENDTASK
ENDPROG
END

Figure 3-17 _ Task/program synchronization

BEGIN,IOO,PGMS=(PTHREE,PFIVE)

PGM2,EVENT=DONE5,ERROR=OUT5BAD
PFOUR

TASKI

DONE5
PGMI,EVENT=DONE3,ERROR=OUT3BAD

DONE3
TASKDONE

START,EVENT=TASKDONE

Program/Tasks 3-19

3-20 SR30-0436

If PFIVE loads properly, the next statement executed would be the
LOAD instruction at location L4. This statement requests that pro
gram PFOU R be loaded into whatever storage is available (not in
overlay area). As it is coded here, any errors encountered in attempt
ing to load PFOUR will be ignored, and execution will continue with
the statement following the LOAD.

At location A 1, the primary task attaches the task defined at location
TASK 1, at a priority of 150 (default taken, and no override coded in
the ATTACH). At this point, the primary task IN ITASK is executing,
the secondary task TASK1 is executing, the primary task of PFIVE, and
any secondary tasks it attached are running in the overlay area, and if
PFOU R loaded successfully, it is also in execution.

Before attempting to load overlay program PTH R EE (LOAD statement
at location L3), a WAIT at location W5 is executed, waiting on the
completion of execution event defined in the LOAD statement which
previously loaded PFIVE (EVENT=DONE5). If PFIVE has not
finished, the execution of IN IT ASK is suspended at this point. When
PFIVE completes, or if PFIVE were already through when the WAIT
at W5 was issued, the LOAD at location L3 is attempted.

This is a load of PTHREE, the first (PGM1) overlay program defined
in the PGMS= list of the PROGRAM statement. Notice that if the
load operation fails, the E R ROR= operand of the LOAD statement
would cause a transfer of control to location OUT3BAD, which is a
WAIT for the completion of TASK1, rather than to OUT5BAD, the
PROGSTOP. If the load of PTHREE were unsuccessful, the primary
task is assured that no program is executing in the overlay area, but
the secondary task TASK 1 could still be in operation. Any overlay
program in execution, and all attached tasks, must run to completion.
before PROGSTOP is executed by the primary task.

Note: I n the figures in the study guide, no user-coded ECBs are shown
for event control blocks named in the EVENT= operands of TASK state
ments. When programs are prepared using the Event Driven language
assembler $EDXASM, the system will automatically generate the
required ECB with the TCB created by the TASK statement, and a
user-coded ECB is not allowed (will cause assembly errors). Users pre
paring programs under the Series/1 macro assembler may also allow the
system to assign the ECB, or may code an ECB of that name, and the
system will use the explicitly coded ECB instead of assigning one.

If disk or diskette I/O is used in a program, the data sets to be accessed
must be defined in the P ROG RAM statement's DS= operand, in much
the same manner as overlay programs are specified using PGMS=. This
topic will be discussed in the DISK I/O section of this study guide.

c

c

aUEUABLE RESOURCES

o

o

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "ENQ", "DEQ."

A resource is a physical or logical entity within the system. Examples
of resources include a subroutine or data area existing within a parti
cular program, or perhaps a data set or I/O device known broadly
across the system.

A shared resource is one that may be required by multiple tasks at
the same time. For instance, a table of constants might be referenced
from two or more asynchronously executing tasks within a program.
Since, by definition, the values in the table are " constant" (not being
altered by the tasks using them), access to the table (resource) is
unrestricted.

Unrestricted access to some shared resources may have undesirable
results. As an example, if a program were printing a report on a
printer, and other programs had free access to the printer resource,
the report could end up with printed output from the other programs
interspersed with report lines. I n this case, the printer is a shared
resource, but is also what is called a serially reusable resource; one
that should be used by only one task at a time.

The ENQ/DEQ instructions provide a mechanism by which user tasks
may gain exclusive use of a serially reusable shared resource, and retain
control over that resource until explicitly releasing it for use by other
tasks.

Figure 3-18 is an example of how queuable resources are defined
and used. The program consists of the primary task INITASK, and two
secondary tasks, TASKA and TASKB. Assume that both TASKA and
TASKB have a requirement for a 500-word work area.

I nstead of putting a 500-word work area in both T ASKA and T ASKB,
the programmer has chosen to save some storage, and define only
one work area. This single work area is designated as a queuable
resource, and will be shared by TASKA and TASKB, using the ENQ
and DEQ instructions.

The 500-word work area is defined in the DATA statement at location
CALCTABL (DATA statements are discussed fully in a later section).
The Queue Control Block for this resource is defined in the QCB
statement at location CA LCQ.

Note: If preparing programs using the Series/1 macro assembler, coding
an ENO statement causes the automatic generation of a OCB with the
same label as specified in the operand of the ENO. When preparing
programs using the online assembler ($EDXASM), users must code the
QCB; it is not automatically generated.

Program/Tasks 3-21

3-22 SR30-0436

INITASK

STARTUP

WI
W2

CALCTABL

PROGRAM

ATTACH
ATTACH

WAIT
WAIT
PROGSTOP

DATA

CALCQ QCB

TASKA
ASTART

TASKB
BSTART

TASK
ENQ

DEQ
ENDTASK

TASK
ENQ

STARTUP

. TASKA
TASKB

AFINISH
BFINISH

500F ' O'

ASTART,EVENT=AFINISH
CALCQ

CALCQ

BSTART,EVENT=BFINISH
CALCQ

DEQ CALCQ
ENDTASK
ENDPROG
END

Figure 3-18. ENQ/DEQ/QCB

c

o

When the program begins execution, the primary task attaches both
T ASKA and T ASKB. T ASKA and T ASKB have agreed to the con
vention that any time either of them needs to use the work area
CALCTABL, they will enqueue that resource by issuing an ENQ
instruction referencing the QCB called CALCQ. Assuming that
T ASKA issues the ENQ first, the supervisor checks the QCB at
CALCO, finds that no other task is currently enqueued, and gives
exclusive control of the work area to TASKA. TASKA can now use
CA LCT AB L without fear of TASKB altering its contents in mid
execution.

While TASKA has the work area enqueued, TASKB, which is also in
execution, attempts to gain control of the work area by issuing its own
ENO of CALCO. The supervisor checks the OCB, finds that TASKA
is already using the resource represented by CALCO, and therefore
places TASKB in the wait state, waiting upon availability of the
requested resource.

When T ASKA is finished with the work area, it issues a 0 EO of
CALCO. The supervisor checks the OCB, and finds that TASKB
is waiting on that resource. T ASKB is placed back in the ready state,
and the OCB is changed to indicate TASKB's "ownership" of the
resource represented by CALCO.

An additional operand, not shown in the example, may be coded on
the ENO statement. This is the keyword operand BUSY=. It would be
coded if, when attempting to ENO a resource and the resource was
busy (enqueued by another task), you did not want to suspend, waiting
for the resource to be dequeued. You may code the label of an instruc
tion in the BUSY= operand (BUSY=label), and control will be
transferred to that location if the resourr.e is already enqueued when
your task tries to ENO it.

Note that ENO/DEO provides protection from simultaneous access
of a serially reusable resource only if all users requiring the resource
agree to employ it. In the example in Figure 3-18, if one of the two
tasks were to use the CALCTAS L work area without first enqueuing
for it, neither the supervisor nor the other task has any way of
detecting or preventing it.

Program/Tasks 3-23

WAIT/POST OPERATION

3-24 SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706) "POST", "RESET", "WAIT."

Figures 3-14 through 3-17 illustrated how a program or task can
synchronize execution with a loaded program or attached task by using
a WAIT on the ECB named in the associated LOAD or TASK statement's
EVENT= operand. The EVENT= operand is a convenient means of
synchronizing the execution termination sequence of loading and
loaded programs or attaching and attached tasks, but programs and
tasks often require synchronization at other points in their execution.
This can be accomplished through user-defined events, and the
WAIT/POST mechanism.

In the example in Figure 3-19, assume that the primary task, WAITPOST,
at some point in its execution, requires a certain set of numeric values
in order to continue. These values are the result of the execution of
a calculation routine in XTASK, an attached secondary task, the primary
task must therefore make sure that the calcu lation routine in XT ASK
has been executed, before proceeding with its own execution.

The primary task could wait on the EVENT= operand in the TASK
statement XTASK (EVENT=TASKDONE), and be assured that the
required values had been calculated. This method would work, but
the entire secondary task would have to run to completion before
WAITPOST could resume execution. Depending on what else
XTASK has to do in addition to the calculation routine, there
could be a considerable amount of time in which the required values
were ready for use, but WAITPOST is still in a wait state.

Defining the completion of the calculation routine in XTASK as a user
event allows XTASK to signal the primary task as soon as the required
values have been generated. The event is called CALCDONE, and an
ECB of that name is coded. ECBs for user-defined events are initially
set up to indicate "event occurred." A WAIT issued against such an
ECB will act as though the event has happened (fall through). There
fore, a R,ESET of the ECB must be executed before a WAIT is
issued against it. The RESET instruction at location IN ITGO sets the
ECB to indicate "event has not occurred."

c

('~ "-/1

o

WAITPOST
INITGO
Al

WI

W2

XTASK

PI

CALCDONE

PROGRAM
RESET
ATTACH

WAIT

WAIT
PROGSTOP

TASK

[ca/cu/~tionJ
Routme

POST

ENDTASK
ECB
ENDPROG
END

Figure 3-19. WAIT/POST

INITGO
CALCDONE
XTASK

CALCDONE

TASKDONE

TASKGO,EVENT=TASKDONE

CALCDONE

I n the example, execution begins with the RESET command at
location INITGO, which changes the ECB at CALCDONE from
its initial indication of "event occurred" to "event has not occurred."
At location A 1, the secondary task XTASK is attached.
WAITPOST and XTASK are now in concurrent but asynchronous
execution. When XTASK finishes calculating the values required by
the primary task, the POST instruction at location P 1 is executed,
and the ECB at location CALCDONE is set to indicate "event
occurred."

Program/Tasks 3-25

ATTENTION LISTS

3-26 SR30-0436

At the time the POST is issued, the supervisor checks to see if there
are any tasks waiting on this event. If the WAIT at W1 had already
executed, the primary task would now be in a wait state, and the super
visor would place WAITPOST back in a ready state. If the WAIT had
not yet occurred, WAITPOST would continue executing until it was
encountered. When the WAIT was issued, the supervisor would check
CALCDONE, and, finding the event already complete, would allow
WAITPOST to continue execution.

The instructions following the WAIT at W1 in the primary task, and the
instructions following the POST at P1 in the secondary task can now
continue executing concurrently; the primary task did not have to wait
until the secondary task terminated before using the required values.
(Notice that the proper termination sequence for an attaching and
an attached task is still necessary, and is provided for in the example
by the WAIT on EVENT=TASKDONE at location W2.)

The RESET instruction is used with user-defined events. System-defined
events, such as those declared in the EVENT= operand of LOAD or
TASK statements, are automatically initialized by the system. The use
of RESET with a system-defined event may result in improper or un
predictable operation.

Note: When preparing programs using the Series/1 macro assembler,
declaring an event name in the operand of a POST statement results
in the automatic generation of an ECB of the same name. Users of the
Event Driven language assembler $EDXASM must code an ECB with a
label matching the name in the POST operand; ECB generation is not
automatic.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "ATTNLIST", "ENDATTN."

The ATTN LIST capability provides a means for an operator to
communicate with a program using a terminal. The ATTN LIST state
ment is used to specify operand pairs, each pair consisting of a
1- to 8-character operator command, and a label in the user program,
which wi" receive control when that operator command is entered.

I n the example in Figure 3-20, the ATTN LIST statement defines a
single operand pair, STOP, XTHREE. (Note that ATTN LIST, like
ECB and QCB, is not an executable statement, and must not be coded
within an executable code sequence.) The first "name" in the operand
pair defines an operator command to be entered from a terminal, and
the second is the label of the instruction in the user program that wi"
be executed when that command is entered.

o

o

o

EXMPATTN

QUIT

XTHREE

Figure 3-20. Attention list

PROGRAM
ATTNLIST

PROGSTOP

ENDATTN

ENDPROG
END

BEGIN
(STOP,XTHREE)

Assume the program in the example has been loaded and is in execu
tion. An operator can now press the ATTENTION key on the
terminal (the terminal used to load the program), enter the command
STOP (defined in the ATTN LIST statement), press the ENTER key,
and the attention routine at location XTH REE will be executed. The
attention routine in this example, and every attention routine defined,
must end with an ENDATTN statement.

Program/Tasks 3-27

3-28 SR30-0436

Attention routines usually set a program indicator that can be checked
by the user task; execution-time decisions (end execution, restart the
program, load another program) can then be made, based upon the C'
value in the indicator. The instructions necessary to set storage _ .. /
locations (program indicators) or check them for specific values have
not yet been discussed, and are therefore not shown in Figure 3-20.
For further discussion and complete examples, see the topic
"Operator Control of Program Execution" in "Section 11. Terminal
I/O."

c'

C)

o

PROGRAMS/TASKS -REVIEW EXERCISE -QUESTIONS

1. Most applications can be programmed as a single task. What
type of application would justify the use of the more complex
multitasking structure illustrated in Figure 3-3?

Answer: ______________________ _

2. What are the advantages of loading a program as an overlay,
rather than just loading it into available storage?

Answer: ______________________ _

3. What disadvantages are there to the overlay program structure?

Answer:, ______________________ _

4. How does a program's primary task get started up?

Answer: ______________________ _

5. What statement must be executed to release the storage occupied
by a program?

Answer: ______________________ _

Program/Tasks 3-29

c

This page intentionally left blank. c:

c
3-30 SR30-0436

u

o

6. Fill in the blanks in the following paragraph, using words or
phrases from the list below. (Some items in the list may be used
more than once, and some not at all.)

a. ENDTASK f. PROGRAM
b. ATTACH g. ENDPROG
c. entry point h. PROGSTOP
d. TASK i. END
e. shared resource j. primary task

"The first statement in all programs is the statement.
The label of this statement establishes the name of the program's
____ . The last two statements in every program must be
____ and . The statement
must be the last statement in a primary task to be executed. The first
statement in a secondary task is the statement. The
statement which defines the end of a secondary task, and which is also
the last to execute, is "

7. What is the purpose of ENQ/DEQ and the QCB?

Answer: _______________________ _

8. The proper execution termination sequence of loading/loaded
programs and attaching/attached tasks is an automatic function
of the Event Driven Execution supervisor.

True

False __ _

9. In Figure 3-20, assuming the program is in storage and executing,
and the operator enters QU IT after pressing the Attention key
on the terminal, which of the following would be true?

a. The program would immediately execute the PROGSTOP
instruction, terminating execution.

b. The program would execute the attention routine at
location XTH REE.

c. The entry would not affect program execution.

d. The program would be placed in a wait state, waiting
for the operator to enter XTH R E E.

e. None of the above.

Programs/Tasks 3-31

PROGRAMS/TASKS REVIEW EXERCISES - ANSWERS

3-32 SR30-0436

1. A user might consider multitasking where speed of execution is of
primary importance, and the nature of the job is such that certain
functions may be overlapped (i.e., I/O and processing).

2. When loading an overlay program, the loading program is assured
that space is available, because it is reserved at the time the
loading program itself is loaded. Also, the load of an overlay
program is faster than the load of the same program into available
storage would be. This is because information about the overlay
program which the loader requires in order to load it is looked up
at the time the loading program is loaded, and not at the time the
LOAD command is executed, as is the case when loading a non
overlay program.

3. The storage occupied by a program that loads overlays is always
equal to the size of the loading program plus the size of the largest
overlay. If the loading program executes without requiring any
overlays, the overlay area, although unused, is still unavailable
to the rest of the system.

4. The primary task is "attached" (made ready for execution) by
the system (actually the loader) at the time a program is loaded
to storage. Activation of secondary tasks is a user responsibility,
accomplished by execution of ATTACH instructions in already
running primary or secondary tasks.

5. Execution of PROGSTOP makes the storage now occupied by
a program available to the system, and terminates (detaches)
the program's primary task.

6. The first statement in all programs is the f) PROG RAM state
ment. The label of this statement establishes the name of the
program's j) primary task. The last two statements in every pro
gram must be g) ENDPROG and i) END. The h) PROGSTOP
statement must be the last statement in a primary task to be
executed. The first statement in a secondary task is the d) TASK
statement. The statement which defines the end of a secondary
task, and which is also the last to execute, is a) ENDTASK.

7. ENQ and DEQ are used to protect against the concurrent use of
a serially reusable shared resource by asynchronously executing
tasks.

8. FALSE. This is a user responsibility. The system provides the
WAIT/EVENT=/ECB to accomplish it (and WAIT/POST for
user events), but the user must code the requ ired statements.

9. Choice c. is correct. The ATTN LIST in Figure 3-20 defines
the character string STOP as the operator input required to
execute the attention routine at location XTH R E E. Any other
entry is ignored.

c

DATA STATEMENT

o

Section 4. Data Definition

OBJECTIVES: After completing this section, the student should
be able to:

. 1. Define data constants for the following data types:

a. EBCDIC d. Fixed Point

b. Hexadecimal e. Floating Point

c. Binary f. Address Constant

2. Define symbolic data areas using the TEXT and BUFFER
statements

3. Define a text message using the TEXT statement

Data definition statements are used to define arithmetic values or
character strings (constants and messages) and to reserve areas of
storage for use during program execution (I/O buffers, work areas).

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706) IIDATA."

The DATA statement is the Event Driven Executive equivalent of the
Series/1 assembler language Define Constant (DC) statement. Although
all of the examples in this study guide use DATA statements, DC state
ments could be coded in their place, with the same results.

Note: This is the only instance where a Series/1 assembler language
statement may be coded in an Event Driven Executive program without
employing the USE R statement. See "Section 7. Program Control"
of this study guide for discussion and examples of the USE R instruction.

Data Definition 4-1

4-2 SR30-0436

The format for the DATA statement is shown in Figure 4-1.

OPTIONAL REQUIRED

/~
label DATA duptypelength'value'
t y~' ~ I~

name of
first data
constant
defined

duplication
factor

number of
bytes reserved
for each data
item defined

type of

data being
defined

nominal value
of data item(s)

Figure 4-1. Data statement

The DATA statement is made up of at least two ("type" and "value")
or as many as four parts. The first three parts ("dup," "type," and
"length") are data descriptors or modifiers. The last part, "value,"
is coded with the actual data being defined. All parts of the DATA
statement are coded contiguously; no separators, such as blanks or
commas, are allowed.

dup duplication factor. This optional operand modifier is coded
as an integer value, indicating how many repetitions of the
data item defined by the rest of the operand should be
generated. If not coded, dup defaults to 1 (one).

type data type. This defines the type of data being defined, and
must be coded in every DATA statement. Nine data types
are supported by the system, each one represented by a
different alpha character. The type of data desired is indi
cated by coding the appropriate character in the type
portion of the operand.

length number of bytes to be used for each data item. The length
modifier is supported for only hexadecimal (data type X)
and EBCDIC (data type C) data, and is optional for those.
Every data type (including hexadecimal and EBCDIC) has
an implicit length associated with it. This length is the
number of bytes required to hold the assembled output of
the data constant defined. For example, every EBCDIC
character is represented by an 8-bit (one byte) binary code.
Therefore, when EBCDIC character strings are defined in
DATA statements, the assembled output requires one
storage location (one byte) for each character in the string
(upper example in Figure 4-2). The length modifier over
rides this implicit length of one byte per character. The
assembled output of the character string is placed in the
number of bytes specified in the length modifier, with
truncation or padding of the character string if required. c

o
value

EBCDATA DATA C'ABC '

EBCDATA ~1

ASSEMBL~ ~~
OUTPUT ~ __ __

WITH IMPLICIT
LENGTH LENGTH

MODIFIER

/
EBCDATA DATA CL5 I ABC I

EBCDATA C 1

ASSEMBLED ~ C 2
OUTPUT WITH C 3

LENGTH MODI FI ER 40

40

Figure 4·2. Length modifier

The length modifier is coded as Ln, where n = the number
of bytes. In the lower example in Figure 4-2, a three-byte
character string is placed in a five-byte field (length = L5),
and the two extra bytes are padded with EBCDIC blanks
(hex 40).

nominal value of constant. The last part of the DATA
statement operand is 'value'. When the DATA statement is
assembled, the assembler initializes the number of data
elements indicated (dup) of the desired type (type code)
to the value coded in the 'value' part of the operand.
Note that 'value' must always be coded, and for all data
types other than address data (type code A), the value
is enclosed in apostrophes.

The following examples illustrate the interaction of three parts of the
DATA statement operand. (Length, since it is used with only two data
types, will be ignored for the remainder of this discussion.)

DCON DATA FlO'

The example shown will define a one-word integer value, initialized
to zero. The optional dup is not coded, so the length will default to
the implicit length of the data type, which is one word for F type data.

Data De(~nition 4·3

4-4 SR30-0436

CCON DATA 5C 'A'

The example shows a data type of C (EBCDIC), and the duplication
factor is 5. This statement would generate a five byte field of the
EBCDIC.representation of the character A (in hex, C1C1C1C1Cl).
The duplication factor applies to the data defined within the enclosing
apostrophes of the value portion of the operand. If the DATA
statement is written as follows;

CCON DATA 5C ' ABC '

a fifteen-byte field would be defined, containing five repetitions of the
ABC E BCD I C character string. Although the implicit length of an
EBCD I C character is 1 byte, three characters are defined, so the duplica
tion factor applies to the three-byte field.

The operand formats described do not apply when coding address (A
type) data constant. An A-type data constant is a single word in length,
because it contains a Series/l storage address.

ACON DATA A(FLCl)

The statement shown above wi" define a one-word constant at location
AeON, containing the address of location FLC1. Note that the name
of the location whose address you want in ACON is enclosed in paren
theses, rather than apostrophes.

The DATA statement conforms to the rules for the Define Constant (DC)
instructions in the BPPF Assembler. If you are not familiar with r
defining constants, it is recommended that you review the data -~/
definition section in the Series/l Macro Assembler Language
Reference (SC34-0317).

c

o

Here is a summary of the supported data types. The implicit
length generated by the assembly of each different type code is
indicated under Length.

1. Fixed Point Arithmetic Data

Type Code

H

F

D

Length

1 BYTE

2 BYTES (1 word)

4 BYTES (doubleword)

H, F, or D type codes define signed, fixed point values of the
indicated length and are used in integer arithmetic operations.

2. Floating Point Arithmetic Data

Type Code

E

L

Length

4 BYTES

8 BYTES

E and L type codes generate standard or extended precision float
ing point constants, respectively. Floating point data is used in
floating point arithmetic operations (Series/1 Floating Point
hardware feature required).

3. Address Data Definition

Type Code Length

A 2 BYTES (1 word)

The contents of the location defined will contain the address of a
symbolic program location.

4. Hexadecimal/Binary

Type Code

X

B

Length

4 BITS

1 BIT

These allow definition of binary bit strings in storage, which are
commonly used in logical operations and when using digital sensor
I/O (DI/DO/PI). Note: Binary constants (type code B) cannot
be defined if program preparation is being done using the online
Program Preparation Facility, $EDXASM.

5. Character Data

Type Code

C

Length

1 BYTE/CHARACTE R

Defines EBCDIC characters in storage, for use with EBCDIC I/O
devices (displays, printers).

Data Defin ition 4-5

BUFFER STATEMENT

4-6 . SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706) "BUFFER."

The BUFFER statement provides a convenient way to define
contiguous, named, storage areas in a program, for use in I/O operations,
as work areas, etc. The BUFFER statement reserves space in
storage, but does not initialize storage to a user-specified value. When
the statement is assembled, the storage reserved is set to binary zeros,
and wi II be zeros when the program containing the statement is
initially loaded.

Figure 4-3 illustrates the format for the BUFFER statement, and shows
what is generated in storage as a resu It. The label of the B U F FER
statement is the symbolic name of the first data item. I n storage this
is preceded by two words of control information. The first word is
called the INDEX, and may be symbolically referenced by the name
you code in the INDEX= keyword operand of the BUFFER statement.

INDEX is used with SBIO and INTIME instructions to place data in
sequential buffer positions automatically, and would not be coded
unless the buffer being defined were intended for that purpose.
See ItSection 9. Timerslt in this study guide for an example of the use
of the INDEX operand.

The second word is the count, containing the buffer length you
specified in the count operand. This count will be the number of words
or bytes defined, depending on whether you coded BYTES for the item
operand.

c

)

o

TYPE OF ITEMS
IN THE BUFFER
(MAY CODE "BYTES",
OR I F NOT CODED,
DEFAULTS TO "WORDS") OPTIONAL

\ ~OPERANDS
1 abel BUFFER count, item, INDEX=name

II
NAME ASSIGNED
TO FIRST DATA
ITEM

Figure 4-3. BUFFER statement

SIZ!a(~
BUFFER / /

NAME ASSIGNED
TO INDEX VARIABLE
IF CODED

~-

-
0
0
0
0
0
0

0
0
0
0
0
0

--....,
0 0
0 0
0 0
0 0
0 0
0 0

THE NUMBER
OF WORDS
(OR BYTES
IF SPECIFIED)
EQUAL TO
"COUNT."

Data Definition 4-7

TEXT STATEMENT

4-8 SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "TEXT."

The TEXT statement is used to generate character buffers, and operates
in conjunction with the terminal instructions READTEXT, PRINTEXT,
GETEDIT, and PUTEDIT. Figure 4-4 shows the format for the TEXT
statement, and what is generated in storage.

o label TEXT

fJ ENDMSG TEXT

Figure 4-4. TEXT statement

'message',LENGTH=,CODE=

'RUN ENDED' ,LENGTH=12,CODE=EBCDIC

DC

Gr-----~I
U
N

E
N
D
E
D

}et

: }e

c

C'I

C)

o

C)

In Figure 4-4, the TEXT statement format at 0 is shown coded
at fJ . The message operand is the text 'RUN ENDED' in this
example, but may be any character string you wish, up to 254
characters. The LENGTH= operand is coded as 12, indicating the total
length of the text buffer. The CODE= operand is EBCDIC, which is
also the default. The standard internal representation for character data
is always EBCDIC. The system automatically converts the EBCDIC
character strings to the code required by a particular terminal.

The CODE= operand could be coded ASCII. This is for special cases
where you do not want the system to do any conversion from and to
EBCD IC, but wish to transmit the exact code pattern in the buffer.
An example is the graphics support, which drives a device employing
an ASCII interface where certain ASCII characters perform graphics
control functions.

The TEXT statement at fJ would generate the storage configuration
shown just below it. The total storage utilized would be the 14 bytes
shown by the brackets at O. The actual text buffer is defined within
the brackets labeled Q ' encompassing 12 bytes (LENGTH=12). The
data buffer is preceded by two bytes of control information, labeled e. The first byte defines the total length of the buffer (hex DC),
12 bytes. The second byte is the length of this message, nine bytes,
the total number of characters (including blank characters) in the
'message' operand. Unused character positions at the end of the
buffer (i) are padded with blanks (EBCDIC for blank = hex '40').
The label of the TEXT statement points to the first byte of
character data G .
For both input and output operations, the count (second byte at
location e) cannot exceed the text buffer length (first byte at e).
If you attempt to output a message that is larger than the buffer, or
read a character string from a device that is longer than the buffer, the
message will be truncated to fit within the defined buffer length.

The contents of the character buffer defined by a TEXT statement
is not confined to the character string that was coded when it was
assembled. Different messages may be moved into the buffer at dif
ferent times during execution of a program. If data is moved into a
TEXT buffer using the PUTEDIT command, the count byte is auto
matically adjusted to reflect the message length. When data is read
from a terminal with a GETEDIT or a READTEXT command, the
count reflects the number of input characters read. If a character
string is moved into a TEXT buffer by any instructions other than
these (i.e., MOVE), the count must be adjusted by the user before
issuing a PRINTEXT referencing that TEXT buffer.

Data Definition 4-9

This page intentionally left blank. c'

C~'
--'

4-10 SR30-0436

) c
DATA DEFINITION REVIEW EXERCISE - QUESTIONS

1.

2.

Match the type with the data representation

a. Extended precision floating point 1. C

b. Address 2. X

c. Character 3. B

d. Double word fixed point 4. F

e. Half word fixed point 5. H

f. Full word fixed point 6. 0

g. Binary 7. E

h. Hexadecimal 8. L

i. Standard precision floating point 9. A

Using the following instruction

MSG2 TEXT LENGTH=20

answer the following questions:

a. How many characters could be stored in the text buffer
defined?

b. How many words would be reserved?

c. How could you address the first character in the buffer?

3. How many words are reserved by the following instruction?

BUF3 BUFFER 16,BYTES

4. When coding a TEXT statement, if no 'message' is defined
(LENGTH= only coded), the text buffer will be initialized
to binary zeros.

True __

False __ _

Data Definition 4-11

DATA DEFINITION REVIEW EXERCISE - ANSWERS

4-12 SR30-0436

1. a. 8

b. 9

c.

d. 6

e. 5

f. 4

g. 3

h. 2

i. 7

2. a. 20 characters

b. 11 (20 bytes, one for each character, plus 2 bytes (one for
length, one for cou nt).

c. By referencing the label MSG2

3. 10 words are reserved; 8 for the 16 data positions, and the two
control words which precede the data.

4. False. Undefined text buffer locations are initialized to
EBCDIC blanks (hex 40).

('
'----'

c

'.

INTEGER ARITHMETIC

o

Section 5. Data Manipulation

OBJECTIVES: After successful completion of this topic, the student
should be able to:

1. Understand the Event Driven Executive arithmetic instructions
which operate on signed integer variables

2. List the Event Driven Executive arithmetic instructions which
operate on floating point data

3. Use the Event Driven Executive data movement instructions to:

a. Replace the contents of one variable with that of another

b. Replace the contents of a variable with the address of another

c. Replace the contents of a data field with the contents of
another data field

4. Determine the result of executing any of the Event Driven Execu
tive logical instructions, given the values represented by operand1
and operand2

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "Data Manipulation", "Data
Representation", IIMixed Precision Operations", "ADD", IIADDV",
"SUBTRACT", "MULTIPLY", "DIVIDE."

Figure 5-1 shows the basic format of instructions that operate on
integer arithmetic variables.

I
I
I
I

I
I
I
I
I

1 a be 1 :
I

ADD
SUBTRACT
ADDV
MULTIPLY
DIVIDE

opndl ,opnd2
1

,count,RESULT= ,PREC=
I
I

" ,I I
OPTIONAL!

I '---------~,------~ I OPTIONAL
I

MUST BE CODED

Figure 5·1. Integer arithmetic instruction format

Data flow is from opnd2, to opnd1; in the ADD or SUBTRACT
instructions, the data represented by opnd2 is added to or subtracted
from the data represented by opnd 1, and the resu It of the
operation replaces the contents of the location specified by opnd 1.

Data Manipulation 5·1

Optional Operands

5-2 SR30-0436

In the MULTIPLY or DIVIDE instructions, the data in opnd1 is
multiplied or divided by the data in opnd2, and the product or
quotient replaces the contents of opnd1 (for DIVIDE; the remainder
is stored in the task code word, and wi II be overlaid by the next
DIVIDE, I/O or floating point operation).

The optional operands (count, R ESU L T=, and PREC=) allow the appli
cation programmer to control the number of variables involved in the
operation, where the result of the operation should be placed, and to
specify the size of the variables (word, doubleword) used. The following
examples illustrate how the optional operands affect instruction
execution. An ADD operation is used as an example, but the principles
also apply for SUBTRACT, MULTIPLY, and DIVIDE.

EXAMPLEI ADD VALl,CONWORD

This first example uses no optional operands, and is the most basic
form. The word at location CONWORD will be added to the word at
location VAL 1. The results of the operation will replace the contents
of VAL 1. Both VAL 1 and CONWORD are assumed to be single pre
cision,(word-Iength) signed integer variables, because word-length is the
default when no other precision is specified.

EXAMPLEI ADD VALl,CONWORD,5

The count operand is coded as a 5. The count operand references
opnd1, and specifies how many variables, beginning at the location
specified in opnd1, the contents of opnd2 should be added to. In the
example shown, the word at location CONWORD would be added to
the word (still the default precision) at location VAL1, to the word at
location VAL 1+2 (two bytes = one word), at VAL 1+4, and so on
through location VAL 1+8. Each of the words in the five word field
beginning at location VAL 1 would be increased by the value of the
contents of location CONWO RD.

EXAMPLEI ADD VALl,CONWORD,5,RESULT=RFIELD

Without changing anything else, the keyword operand R ESU L T=
has now been added. This statement will execute the same way as did
the previous example except that the resu Its of the operation will be
placed in a five-word field beginning at location R FIE LD. The five
words beginning at location VAL 1 will remain unchanged.

The only remaining optional operand is the keyword PREC=, which
allows the programmer to specify the precision of the opnd1 and opnd2
variables. Again using our example, if the field of data beginning at
location VAL 1 were double precision integers, and we wanted to add a
single precision integer at location CONWO R D to each of them,
PREC=D would be coded.

EXAMPLEI ADD VALl,CONWORD,5,RESULT=RFIELD,PREC=D c

o

o

o

The results (double precision integers) would be placed in a ten word
field beginning at location R FIE LO, leaving the original contents of
VAL 1 undisturbed.

The 0 in PREC=D signifies that opnd1 is double-precision. DO would
have indicated that both opnd1 and opnd2 were double precision. See
"Mixed Precision Operations" in the Language Reference manual for
allowable opnd 1 /opnd2 precision combinations.

Thus far, the count optional operand referred to opnd1 only. The
vector addition capability is an exception to that rule. The ADDV
statement adds the corresponding components of two vectors
together, and therefore the count operand specifies the number of
components in both vectors (opnd 1 and opnd2).

FLOATING POINT ARITHMETIC

The format for Floating Point instructions is similar to that for the
arithmetic instructions handling integer variables, except that the
optional count operand is not allowed. Floating point operations
involve the two discrete values represented by opnd1 and
opnd2 only; neither may be vectors.

I
I
I

1 a be 1 :
I

'-.,--II
OPTIONAL:

FADD
FSUB
FMULT
FDIVD

I
I
I

opndl,opnd2~RESULT=,PREC=
I I \ ___ -., .. ".-___

I OPTIONAL
I

MUST BE CODED

Figure 5-2. Floating point arithmetic instruction format

The floating point instructions are not software simulations of floating
point hardware; the Series/1 Floating Point hardware feature must
be installed to utilize the floating point capability.

Support for both standard and extended precision variables
(PR EC= operand), and all precision combinations are allowed.

For an example of the use of floating point instructions, see Example 6
in the Language Reference, SC34-1706.

Data Manipulation 5-3

DATA MOVEMENT INSTRUCTIONS

5-4 SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "MOVE", "MOVEA."

The MOVE statement has the following format:

count
-or-

1 abel MOVE opndl,opnd2 ,precision
-or-

c

'-v---I
OPTIONAL

(count,precision)

OPTIONAL

MUST BE CODED

Figure 5-3. MOVE instruction format

Unlike the integer and floating point arithmetic instructions, the
R ESU L T= optional keyword operand is not used; the data specified
by opnd1 is always replaced by that represented by opnd2. The
following statement,

MOVE OLDATA,NEWDATA

would replace the word (default precision) at location OLDATA with f'",
the word at NEWDATA. \ '

,---'
The same operation, coded with the count operand=3,

MOVE OLDATA,NEWDATA,3

would move the three words starting at location NEWDATA into the
three words starting at location 0 LDAT A.

For MOVE statements, precision is indicated by the keywords BYTE,
WORD (default) or DWORD (doubleword). If count is not coded
(default count = 1), then precision is coded by itself. If count is
coded, precision is included as a sublist element in the count operand.

c

(\
'I
I

"i

o

MOVE

MOVE

Neither count nor precision
coded; count default=1;
precision default=WORD

OLDATA,NEWDATA\

OLDATA,NEWDATA,5

count alone
coded; precision
defau It=WQ R 0

precision alone coded;
count default=1

MOVE OLDATA,NEWDATA,DWORD----=====------'

MOVE OLDATA,NEWDATA,(5,DWORD)

count and precision
both coded; precision
included as a sublist
element in count operand

Figure 5-4. MOVE optional operands

Move operations move data from a field of specified length, to a field
of equal length, so count applies to both opnd1 and opnd2.

The following examples illustrate the MOVE instruction optional
operand variations. Each of the instructions is logically equivalent,
moving four bytes of data from opnd2 to opnd1.

MOVE OLDATA,NEWDATA,(4,BYTE)

MOVE OLDATA,NEWDATA,2

MOVE OLDATA,NEWDATA,(2,WORD)

MOVE OLDATA,NEWDATA,DWORD

MOVE OLDATA,NEWDATA,(l,DWORD)

The MOVEA instruction moves the address of the location specified in
opnd2 into the location specified by opnd 1.

MOVEA DATADRS,DATA

Data Manipulation 5·5

I n the example shown, the address of location DATA replaces the
contents of location DATADRS. No optional operands are allowed
with the MOVEA statement, because:

a. opnd1 is always the target of the move, so R ESU L T= is
not valid

b. the data being moved is a Series/1 storage address, which is,
by definition, word-length; precision is therefore always WO R 0
(no PREC= coded)

c. only a single address at a time is moved, so count is always
= 1, and is therefore not coded.

LOGICAL INSTRUCTIONS

5-6 SR30·0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "AND", "lOR", "EOR",
"SHIFTL", "SHIFTR."

The logical instructions AND (AND), OR (lOR), and exclusive OR
(EOR) operate upon selected bits within a bit field. Opnd2 operates on
opnd1 in the manner summarized in Figure 5-5.

AND (AND)

m(l ,0 0 1
I

OPERAND 2

RESULTS

[Q]~
[Q3~

OPERAND 1

OR (lOR)

OPERAND 2 [Q]~ 1 0 0
I I
I I

OPERAND 1 W~l 0 1 0

t i i
RESULTS [Q3~ 1 0 1 1

Exclusive OR (EOR)

OPERAND 2 m~l 0

OPERAND 1 @3~ 1 0

RESULTS rn~o 0

I F A BIT IS A 1 IN THE SECOND
OPERAND, AND THE CORRES·
PONDING BIT IS A 1 IN THE
FIRST OPERAND, THAT BIT WI LL
BE A 1 IN THE RESULT.

0

1

IF A BIT IS A 1 IN EITHER THE
SECOND OR THE FI RST OPERAND,
THE CORRESPONDING BIT IN
THE RESULT WILL BE A 1.

1 I IF A BIT IS A 1 IN ONE OF THE
I TWO OPERANDS, BUT NOT IN I
01 THE OTHER, THE CORRESPOND-

i i ING BIT IN THE RESULTWILL

1 I 1 BE A 1.

NOTE: RESULTS OF AND, lOR, EOR OPERATIONS WILL REPLACE THE
CONTENTS OF OPERAND 1, OR WILL BE PLACED IN THE LOCATION
SPECIFIED IN THE RESULTS= OPERAND, IF IT IS CODED.

Figure 5-5. AND/OR/exclusive OR

C~

C)

o

o

The instruction format for AND, lOR, and EOR is shown in Figure 5-6.
As with MOVE operations, precision may be BYTE, WORD (default), or
DWORD. The precision applies to opnd1, opnd2, and to RESULT=,
if coded. The count optional operand applies to opnd1 and
R ESU L T= only; count for opnd2 is always = 1.

I I count
I AND I
I I

1 abe 1 : IOR opnd 1, opnd2 I
I EOR I

-or-

,precision ,RESULT=
-or-

I :
~I I

(count,precision)

OPTIONAL'------------·----------~J
MUST BE CODED

Figure 5·6. Logical instruction format

.
OPTIONAL

If RESU LT= is coded, the contents of opnd1 are unchanged by the
operation. The following illustrates the use of the optional operands.

AND XDATA,ZDATA

Since count, precision, and R ESU L T= are not coded, count defau Its
to 1, precision defaults to WORD, and the contents of XDATA will
be replaced by the word-length bit-field resulting from the AND
of the 16 bits in the word at ZDATA with the 16 bits in the word at
XDATA.

AND XDATA,ZDATA,3

The contents of XDATA, XDAT A+2, and XDATA+4 will be replaced
by the results of the AND of the 16 bits in the word at ZDATA with
each of the 16 bits beginning at XDAT A. Note that the same word at
ZDATA is consecutively ANDed with the three-word bit field beginning
at location XDATA. The precision (default=WORD) determined
how many bits at a time to AND (opnd2 size), and the count operand
how many consecutive groups of bits of that size to perform the
operation against.

AND XDATA,ZDATA,(3,BYTE)

The above is the same as the operation shown before, except that the
a bits specified in opnd2 (BYTE precision) are successively AN Ded
against the three a-bit groups in opnd1, beginning with the byte at
location XDATA.

Data Manipulation 5-7

5-8 SR30·0436

AND XDATA,ZDATA,(3,BYTE),RESULT=YDATA

When the statement above is executed, the three bytes, beginning at
location YDATA, will be replaced by the results of the AND of the
byte at location ZDATA with the three bytes in XDATA, XDATA+l,
and XDATA+2.

Event Driven Executive logical instruction capability also includes
logical shift operations, for both shift left (SHI FTL) and shift right
(SHIFTR). (See Figure 5-7.) Logical shifts, like the other logical
instructions, operate on bit-fields (bit-strings).

I I
I I

1 abe 1 i SHI FTR opndl,opnd2 I
I SHIFTL I

count
-or-

,precision ,RESULT=
-or-

I I
I I (count,precision)

'-.,--I I I
OPTIONALI,~--________ ~ ____________ ~} '~ ________ ~ ________ ~

MUST BE CODED OPTIONAL

Figure 5·7. Shift instruction format

In shift operations, opnd2 is coded as an absolute value or as a variable
name. The absolute value, or the contents of the variable, contains the
shift count (the number of bit positions, to the right or left, that the
contents of the bit field which begins at location opndl, should be C
shifted). /

The optional operands have the same meaning, and are coded in the
same way, as for AND, lOR, and EOR (note that if opnd2 is a variable
name, that variable has the same precision (BYTE,WORD,DWORD)
as the variable opnd 1).

C\
~.

o

o

o

A SH I FTL instruction shifts bits out of the high-order (most significant)
position of a bit field, and fills vacated low-order (least significant) bit
positions with zeroes. Similarly, SHI FTR shifts bits out of the low
order position, and zero-fills vacated high-order positions. Figure 5-8
illustrates the operation of both SHI FTL and SHI FTR.

~FIRSTOP SHIFTL
/COUNT=S BIT POSITIONS

FIELDA,5,.......-WORD PRECISION (default)
D------~~ MOVE SCNT,l
~SECONDOP SHIFTR FIELDB,SCNT

~word at SCNT used
for shift count

seNT
~FIELDA
"--'FIELDB

DATA
DATA
DATA

F'O'
B'1111000011110000'
B'0001111000000000'

o Before execution of the Shift Left at FI RSTOP, the contents of
FIELDA and FIELDB are exactly as coded

zeros filled in
fJ After execution of the Shift Left at F.~ vacated bit positions

FIELDA =~OOOI 1110 0006 0006
",,~

1111 rf Shifted out of
high order position

II After execution of the MOVE operation, location SCNT=1

D After execution of Shift Right at SECONDOP,

FIELDA = 0001 1110 0000 0000, unchanged,

and FIELDB = noaa 1111 0000 OOOO· n hOf d f If- --u site out 0
I'

zero fi lis" low order bit
vacated position position

Figure 5-8. Shift operation

Data Manipulation 5-9

DATA MANIPULATION REVIEVV EXERCISE - QUESTIONS

5-10 SR30-0436

1. Fill in the value for X, Y, and Z after execution of each of the
instructions below. In each case, assume that before execution,

. X=20, Y=30, and Z=O.

a. ADD X,Y

Answers: X= ___ _ Y=--- Z= __ _

b. ADD X,Y,RESULT=Z

Answers: X= ___ _ Y=--- Z= __ _

c. ADD X,50

Answers: X= ___ _ Y=--- Z= __ _

2. Analyze the two arithmetic operations below, and explain how
they would differ when executed.

a. ADD X,Y,2 b. ADDV X,Y,2

ANSWER: _________________ _

u

o

XDATA
ZDATA

3. Analyze the two data movement operations below, and explain
how they would differ when executed.

a. MOVE X, Y b. MOVEA X,Y
ANSWER: __________________________________ ___

4. Below is a coding example using all five logical instructions. Each
instruction uses the II R ESU L T=" optional keyword operand to place
the result in a different location (opnd1 is undisturbed). Fill in
(in binary) what the "R ESU L T=" locations would be after execution
of the coding example.

AND
lOR
EOR
SHIFTR
SHIFTL

DATA
DATA

ANSWERS:
. After execution,

a. ANDRSLT=

b. IORRSLT=

c. EORRSLT=

BI

BI

BI

d. RITERSLT=B 1

e. LEFTRSLT=B 1

XDATA,ZDATA,BYTE,RESULT=ANDRSLT
XDATA,ZDATA,BYTE,RESULT=IORRSLT
XDATA,ZDATA,BYTE,RESULT=EORRSLT
ZDATA,7,BYTE,RESULT=RITERSLT
XDATA,3,BYTE,RESULT=LEFTRSLT

B1 11010010 1

BI 10011001 1

Data Manipulation 5·11

DATA MANIPULATION REVIEW EXERCISE - ANSWERS

5·12 SR30-0436

1. a. X50 Y30 2Q.

b. X20 Y30 250

c. X70 Y30 20

2. Example a. (ADD operation) would add the contents of storage
location lIy" to storage location IIX" and to storage location
"X+2". The "count" operand (2) applies to opnd1 only.
Example b. (ADDV operation) would add the contents of storage
location "Y" to storage location II X" , and the contents of storage
location "Y+2" to the contents of storage location "X+2". The
IIcount" operand of the ADDV instruction applies to both opnd1
and opnd2 (also for MOVE).

3. Example a. (MOVE operation) would replace the contents of
storage location IIX" with the contents of storage location lIy"
(move Y to X). Example b. (MOVEA operation) would replace
the contents of storage location "X" with the address of the
storage location "Y" (move the address of Y to X).

4. a. ANDRSLT=B ' I00I0000 '
b. IORRSLT=B ' II011011 1

c. EORRSLT=B ' OIOOI011 '

d. RITERSLT=B ' OOOOOOOl l

e. LEFTRSLT=B ' I00I0000 '

!~

\
"-... _ ... ""

C'

o
Section 6. Queue Processing

OBJECTIVE: After completing this topic, the student should be
able to:

1. Define an empty or a full queue

2. Add entries to a queue

3. Retrieve the oldest entry from a queue

4. Retrieve the newest entry from a queue

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "Queue Processing."

The queuing instructions discussed in this section are used to define
queues and access entries in queues. The size of a queue (the number
of entries it can hold) is specified by the user. A queue entry is one
word in length. The contents of this word may comprise the queue
entry in its entirety, or as in the examples used in this section, may
be the address of a larger data area (buffer).

A useful example of queue definition and processing is buffer pool
management. If several tasks within an application program have the
possibility of performing I/O operations, a queue of I/O buffers
(buffer pool) can be established. Using the queue processing
instructions, a task requiring an I/O buffer obtains it from the
pool, and, when the I/O has completed, returns it to the pool. No
physical movement of the buffer is involved; the queue entry that is
acquired and returned is actually the address of the buffer in storage.

Another example of the use of queue processing is a "data spooling"
operation, where mUltiple units of data are placed in a direct access
data set, with the record numbers of the first record of each unit stored
as a data element (entry) in a queue for later processing. I n this
instance, the single-word queue entry is the queued data item itself,
rather than a pointer to a storage location or buffer.

Queue Processing 6·1

DEFINEQ

6-2 SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), IIDEFINEQ."

For this discussion, a queue is the system mechanism and control
blocks necessary to logically connect and manage a chain of queue
entries. F igu re 6-1 shows the format of the DE FIN E Q statement,
which is used to establish a queue.

I

1 abel CQUNT=isIZE=
l~

----------------------~/OPTIONAL

DEFINEQ

MUST BE CODED

Figure 6-1. DEFINEQ format

The label of the DEFINEQ statement is a required field. It is the
symbolic name of the queue, and will be used by queue processing
instructions to access the queue. The CQUNT= keyword operand
(coded as an integer value) determines the number of Queue Control
Elements (QCEs) and therefore, the possible number of associated
buffer pool elements the queue may reference. QCEs are three-word
system control blocks, which are logically (contain address pointers)
chained together in active or free QCE chains. QCEs in the active
chain include data entries; free chain QCEs contain no data entries,
and are connected to other free QCEs.

In addition to QCEs, the DEFINEQ statement also generates a single
Queue Control Block (QCB). The QCB is three words long, and the
first word is assigned the label of the DE FIN EQ statement. The
QCB contains address pointers to the active and free chains of
QCEs. When an entry is added to a queue, the QCB address pointers
are adjusted to remove a QCE from the free chain and attach it to
the active chain.

SIZE= is an optional keyword operand. It may be coded to cause
the generation of a pool of data buffers associated with the queue
being defined. The number of such buffers will equal that specified
in the CQUNT= operand. The size of each buffer (in bytes) is
specified by the integer value coded in the SIZE= operand. If
SIZE= is not coded, no buffer pool will be generated, and all QCEs
will initially be defined to be in the free chain (empty queue). If
SIZE= is coded, all QCEs will be in the active chain (full queue),
and the entry in each active QCE will point to one of the buffers in
the buffer pool.

o

In Figure 6-2, the SIZE= operand is not coded, so an empty queue
is defined (all aCEs in free chain). In figure 6-2, and in the rest of the
illustrations in this section, aCEs in the free chain are shown as shaded.

QTHREE DEFINEQ COUNT=3\

OCB

OTHREE

OCEs

Figure 6-2. Empty queue

No entries are in the queue, but there is space (free aCEs) available
for the addition of three entries.

In Figure 6-3, a full queue (all aCEs in active chain, with queue
entries pointing to buffer pool elements) is defined. Each buffer pool
element is four bytes in length (SIZE=4). No more entries may be
added to this queue, as all aCEs are already active.

Queue Processing 6-3

QTHREE

OTHREE ~
OCB

- OCB POINTER

DEFINEQ COUNT=3,SIZE=41

-

L OCEs

~ OCB POINTER ::;:-
~

~

ENTRY ~ -

:t ,-

ENTRY :J
--:;;: ~

OCB POINTER

ENTRY ~

OPTIONAL
BUFFER
POOL

Figure 6-3. Full queue

LASTO/FI RSTO/NEXTO

6-4 SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "NEXTO", "FIRSTO", "LASTO."

The queue processing instructions allow the user to add (NEXTO) or
retrieve (LASTO, F I RSTO) entries in a queue defined by the
DE FIN EO statement. The format for all three queue processing
instructions is similar:

I I
I FIRSTQ I I I

1 abel I NEXTQ qname, 1 OC, FULL=
l LASTQ IEMPTY=
I I ~C~ ____________ ~ __________ ~/~ ___ __

OPTIONAL MUST BE CODED OPTIONAL

Figure 6-4. Queue processing instruction format

F I RSTO and LASTO are used to retrieve entries from a queue; N EXTO
places an entry in a queue. The label of a DE FIN EQ statement is
coded as qname, specifying which queue is being accessed.

c

C)

o

o

The loc operand is the label of a one-word storage location. This word
will be set to the cont~nts of the entry being retrieved from the queue
by a FI RSTO or LASTO instruction. Before executing a NEXTO
instruction, the user must ensure that this word contains the entry
(data item, such as a record number; or address of a buffer pool
element) being added to the queue.

The EMPTY= keyword operand is coded as the label of the instruction
that will receive control if the queue referenced by a F I RSTO or
LASTO instruction has no active entries. FU LL= performs the same
function for the N EXTO instruction in the event there is no room in
the queue to add an entry. If EMPTY= or FU LL= is not coded, and
the queue is erroneously empty or full, execution will continue with
the instruction following the F I RSTO/LASTO or N EXTO. A +1
will be returned in the task code word (taskname), and may be
checked by the user.

Entries are placed in a queue one at a time. Therefore, queue entries
differ in their relative age, as some are queued before others. Both
F I RSTO and LASTO retrieve entries from a queue, but they differ
in the age of the entries they retrieve.

LASTO retrieves the last, and therefore the most recently entered,
entry in a queue. This is often called "Last In, First Out", or
LI FO queue processing. It is also referred to as stack processing.

Queue Processing 6-5

This page intentionally left blank.

6-6 SR30-0436

o

o

QUEUE PROCESSING REVIEW EXERCISE-QUESTIONS

1. Including all control blocks, how many bytes of storage will be
reserved by the DEFINEQ statement below?

QEXAMP DEFINEQ CQUNT=5,SIZE=256

Answer: ____ bytes

2. What instruction would you execute to:

a. Retrieve the oldest entry in a queue _________ _

b. Add an entry to a queue _____________ _

c. Retrieve the most recent entry in a queue _______ _

3. Figure 6-4 shows the format for the Queue Processing instructions.
What optional keyword operand would be used to branch to a user
routine:

a. When you attempt to retrieve a queue entry and there are no
active entries _________________ _

b. When you attempt to add an entry to a full queue ___ _

Queue Processing 6-7

QUEUE PROCESSING REVIEW EXERCISE-ANSWERS

6-8 SR30-0436 ' <,'

1. 6
30

1280
1316 bytes

2. a. FIRSTa

b. NEXTa

c. LASTa

3. a. EMPTY =

b. FULL =

aCB 3 words, 2 bytes/word
aCEs 5 aCEs, 3 words, 2 bytes/word
BUFFERS 5 of 256 bytes each

c

c

o

SUBROUTINES

SUBROUT STATEMENT

o

Section 7. Program Control

OBJ ECTI VES: Upon successful completion of this topic, the student
should be able to:

1. Explain the use and execution of subroutines in an application
program

2. Incorporate Assembler language routines in an Event Driven
Executive program

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "SUBROUT", "CALL", "RETURN."

In many programs, there are certain functions that are required
repeatedly at different points in the program's execution. Examples
might include conversion of data from one code to another or a
particular sequence of arithmetic calcu lations.

Rather than code the sequence of instructions that perform the desired
function each time the program needs that function, the function is
coded once, and defined as a subroutine. The subroutine can then be
entered and executed from as many different points in the application
program as required.

Subroutines are defined using the SUBROUT statement whose format
is shown in Figure 7-1.

I I
I I

label !SUBROUT namel,parI, par5
" .. ' '------,..------" ''----.._---

OPTIONAL MUST BE CODED OPTIONAL

Figure 7·1. SUBROUT format

The name operand is coded with the symbolic name of the subroutine
and will be referenced by other instructions. The label field is
optional, and should not be confused with the subroutine name
specified in the name operand.

Program Control 7·1

CALL STATEMENT

Par1 through par5 are names of parameters that may be passed to
the su brouti ne when it is entered.

The format of the CALL statement is shown in Figure 7-2. The
CALL is used to enter a subroutine defined in a SUB ROUT
statement.

: I
label l CALL namet ,parI, par5 '-.--' ' A. I

OPTIONAL MUST BE CODED OPTIONAL

Figure 7-2. CALL format

The name operand is coded with the symbolic name specified in the
name operand of the SUB ROUT statement defining the subroutine
you wish to execute. Par1 through par5 may be coded as single
precision integer values, as the symbolic names (labels) of single
precision integer values, or as the addresses of program variables or
data areas.

PASSING SUBROUTINE PARAMETERS

7-2 SR30-0436

Figure 7-3 illustrates basic subroutine operation. Note that the
CALL at location START is a call to CALC, not to SUB 1, the label
on the SUB ROUT statement. The last executable statement in
this and every subroutine is a RETURN. The RETURN instruction
provides the linkage back to the calling task, where execution resumes
at the instruction following the CALL. Subroutines execute as part
of, and at the same priority as, the calling task. Subroutines are not
re-entrant, so if a subroutine is called from mUltiple tasks, ENO and
DEO should be used to ensure serial execution.

SUBEXAMP
START

INTEGERA
INTEGERB
SUM
SUBI

ENDIT

PROGRAM
CALL

PROGSTOP
DATA
DATA
DATA
SUBROUT
ADD

RETURN
ENDPROG
END

Figure 7-3. Subroutine operation

START
CALC

FllO I

FI15 1

FIOI
CALC
INTEGERA,INTERGERB,RESULT=SUM

The subroutine CALC in Figure 7-3 adds two integer values together
and stores the result at location SUM. Since CALC is part of
program SUBEXAMP, all labels within the program are known to
the subroutine, and may be referenced by instructions within the
subroutine. In this example, location SUM would contain 25 after
the subroutine has been executed.

When a subroutine uses specific labels in the program, the data that
the subroutine will operate on must be moved into the storage
addresses represented by those labels before the subroutine is called.
The same result can be achieved more easily by using the parameter
passing capability. Parameters may be actual values (integer numbers),
or may take the form of pointers to data that the subroutine will
be using.

In figure 7-4, the SUB ROUT statement at location SUB 1 specifies two
parameters, XVAL and YVAL. The names used to define parameters
in SUB ROUT statements must be unique throughout the program
(cannot appear in the label field of any statement). They are
positional symbol ic references to parameters that are passed in the
CA L L statement.

Program Control 7-3

7-4 SR30-0436

SUBEXAMP
START

C2

INTEGERA
INTEGERB
SUMI
SUM2
SUBI
Al

PROGRAM
CALL

CALL

PROGSTOP
DATA
DATA
DATA
DATA
SUBROUT
ADD
RETURN
ENDPROG
END

Figure 7-4. Integer parameters

START
CALC,50,SUMI

CALC,SUMI,SUM2

F'IO'
F'15 1

FlO'
F'O'
CALC,XVAL,YVAL
INTEGERA,XVAL,RESULT=YVAL

In the first CALL (location START), the first parameter is the single
precision integer value 50. This corresponds to the first parameter
defined in the SUBROUT statement, XVAL, as does program location
SUM1 to the second parameter definition YVAL. When the ADD
instruction at location A 1 executes as a result of this call, the value
50 will be substituted when XVAL is referenced, and location SUM 1
will be used in place of YVAL. Location SUM 1 will be set to 60,
the sum of INTEGERA and 50.

The second CALL at C2 will result in 70 being put in location SUM2,
the sum of SUM1 and INTEGERA. Notice that although
INTEG E RA is used by the subroutine, it need not be passed as a
parameter, since it does not change from CALL to CALL.

Up to this point, the parameters illustrated have been restricted to
single precision integer values. By passing an address of a data area
as a parameter, and utilizing the software registers (#1, #2) within
the subroutine, any data area or data array may be accessed.

In Figure 7-5, the address of the data area SUMAREA is passed as the
first parameter of the CA L L (label is enclosed in parentheses to
specify address rather than content of address). When the subroutine
executes the address is loaded into software register #1. The results
of the ADD operations are moved into SUMAR EA using the contents
of #1 as a base address. After execution, SUMAR EA will contain 50,
and SUMAREA+2 will contain 25.

c

c

o

C)

USER STATEMENT

SUBEXAMP
START

SUMAREA

INTEGERA
INTEGERB

Sl

PROGRAM
CALL

PROGSTOP
EQU
DATA
DATA
DATA
SUBROUT
MOVE
ADD
MOVE
ADD
MOVE
RETURN
DATA
ENDPROG
END

Figure 7·5. Address parameter

START
CALC,(SUMAREA),40,INTERGERB

*
2F ' 0'
F' 10 '
F' 1S '
CALC,ADDRSLT,XVAL,YVAL
#l,ADDRSLT
INTEGERA,XVAL,RESULT=Sl
(0,#1) ,Sl
INTEGERA,YVAL,RESULT=Sl
(2,#1),Sl

When employing this technique, you should keep in mind that
the software registers used by subroutines are those associated
with the calling task, and therefore, the subroutine may be
reouired to save them on entry and restore them to their original
values before returning.

Note: If a subroutine is assembled as a separate module for later
link editing, the subroutine name must be declared in an ENTRY
statement.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "USER."

At some time you may require a function not provided by the Event
Driven Executive. Such functions can be coded in Series/1 assembler
language (assuming that you have the appropriate assembler language
background) and included in an Event Driven Executive program
as a user exit routine. The USE R statement provides the linkage
between the Event Driven Executive code and the Series/1 assembler
language routine.

Program Control 7-5

7-6 SR30-0436

I I
I I

label IUSER name:,PARM=(parml, .•. parmn)
~ , J' If' f

OPTIONAL MUST BE CODED OPTIONAL

Figure 7-6. USER format

The name operand is coded as the label of the entry point {label of
first executable instruction} of the assembler language routine. The
PARM= keyword operand is coded as a list of parameters, with each
parameter as a sublist element.

When executing Event Driven Executive code, the user is limited to the
two software registers, #1 and #2. In Series/1 assembler language, the
hardware registers are available. Since the Event Driven Executive
system uses these hardware registers also, certain conventions must be
observed when execution switches from Event Driven Executive code
to Series/1 assembler language and back again. First, hardware
register 2 {R2} is always pointing to the Task Control Block of the
task currently in execution, and must not be disturbed. Second, hard
ware register 1 {R 1} is used by the system to provide linkage to and
from Event Driven Executive instructions. When a user exit routine
is entered {branched to by a USE R instruction}, R 1 is pointing to the
next instruction following the USE R statement, where Event Driven
Executive language execution will resume when the assembler
language routine completes. If parameters are passed by the USE R
statement {PARM= coded}, R 1 will be pointing to the location con
taining the first parameter. Before exiting from the assembler
language code, the user must increment R 1 past all parameters so
that it points to the Event Driven Executive instruction following the
USE R statement.

The program in Figure 7-7 includes the user exit routine S1CODE.
When the USER statement at location START is executed, a branch
to label S1 CODE is performed.

Two parameters are coded in the PARM= parameter list of the USE R
statement. As with the CALL statement, each parameter is one word
in length, consisting of an integer value or the address of a program
location. Upon entry to S1 CODE, R 1 is pointing to the first para
meter, which contains the integer value 9. The MVW at location
S1CODE moves the integer value to location F RSTPARM.

The second parameter is the address of program location XV A L.
Using the indirect addressing capability, R 1 is again used to move
the parameter into the subroutine.

r '" ~ .. /

c

J

o

USERXAMP
START
Al

XVAL
P3
FIVEB

SICODE
GET2

UPDATE
OUT
FRSTPARM
SECDPARM

PROGRAM
USER
ADD

PROGSTOP
DATA
DATA
DATA

MVW
MVW

ABI
B
DC
DC
ENDPROG
END

Figure 7-7. User exit routine

START
SICODE,PARM=(9,XVAL)
P3,FIVEB

FIOI
FIOI
FIOI

(RI,O),FRSTPARM
(RI,2)*,SECDPARM

4,RI
RETURN
FIOI
FIOI

To go back to Event Driven Executive code from a user exit routine,
you must branch to label RETURN (B RETURN), as shown at location
OUT. The system routine RETURN expects to find R 1 pointing to the
next Event Driven Executive instruction following the USE R statement.
The ABI instruction, at location UPDATE, increments R1 past the
two words in the parameter list, so that it points to the ADD
instruction at location A 1.

Program Control 7-7

7-8 SR30-0436

User exit routines can only be assembled by $S1ASM (Series/1 macro
assembler) or host macro assemblers. To incorporate a user exit
routine into a program prepared using the Program Preparation
Facility, the routine must be first assembled using $S1 ASM or the
host assembler, and the resulting object module linked to the Event
Driven Executive main program using $ LI N K. The user exit
routine entry point should be defined in an ENTRY statement, and
the same entry point must be coded in an EXTRN statement in the
main program with which the routine will be linked.

c

o

PROGRAM CONTROL REVIEW EXERCISE - QUESTIONS

1. What statement is coded to transfer control to a subroutine
written in Event Driven Executive language?
Answer: ___________________ _

2. Event Driven Executive subroutines begin with a ____ _
statement, and the last statement to be executed must be a
______ statement.

3. Why can't user exit routines be assembled using $EDXASM?

Answer: ___________________ _

4. How does executing a subroutine differ from executing a
secondary task?

5.

6.

Answer: ___________________ _

What statement is used to transfer control to a user exit
routine?
Answer: ____________________________ _

How can you pass more than five parameters to an Event
Driven Executive subroutine?
Answer: _______________________ _

Program Control 7-9

PROGRAM CONTROL REVIEW EXERCISE - ANSWERS

7-10 SR30-0436

1. CALL

2. SUBROUT, RETURN

3. User exit routines are written in Series/1 assembler language,
and the $EDXASM assembler can assemble Event Driven
Executive language only. User exit routines are assembled
using the Series/1 Macro Assembler $S1 ASM, or a host macro
assembler.

4. A secondary task executes concurrently with the attaching
task, and may be run at a different priority. A subroutine
executes on the priority of the calling task, and "in-I ine" with
the execution of the calling task.

5. USER

6. Use one of the five parameters to pass the address of a data
area to the subroutine. The data area can contain as many
additional parameters as required.

c

C")

o

GOTO STATEMENT

Section 8. Program Sequencing

OBJECTIVES: Upon successful completion of this topic, the student
should be able to:

1. explain the operation and use of

a. unconditional GOTO

b. indirect GOTO

c. computed GOTO

2. define an IF/THEN/ELSE/ENDIF structure

3. define a DO/ENDDO structure

4. explain the use of relational statements with I F and DO statements

5. combine IF, DO, and GOTO statements in logical code sequences

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "Program Sequencing", "GOTO."

Almost all programs have multiple execution paths. A different
sequence of execution may be necessary because of the characteristics
of the input data, the results of a calculation, or the occurrence
of an exception or error condition. One of the Event Driven
Executive instructions providing the means to transfer control to an
alternate section of code is the GOTO statement.

Figure 8-1 is an example of the most basic form of the GOTO state
ment. This is an unconditional GOTO, used to branch around a
section of non-executable code (e.g., data definitions) that are
imbedded within the executable code.

Program Sequencing 8-1

8-2 SR30-0436

PROGI
START

EXECUTION

II
PROGRAM

__ -------------GOTO
TABLEI DATA

DA.TA
NEXTSTEP --ADDV

:u
Figure 8-1. Unconditional GOTO

ENDPROG
END

START,lOO

NEXTSTEP
5F ' 256 1

C' 000256 I

TABLl,Vl,5

Control is transferred from the GOTO statement to the statement at
location NEXTSTEP, skipping over the two DATA statements which
start at TABLE1. I

Figure 8-2 illustrates another form of GOTO. In this example, the
operand is enclosed in parentheses, indicating an indirect GOTO.
During P ROG 1 program execution, but prior to executing the
GOTO instruction, the address of the desired IIbranch to" location
(Address of NEXTSTEP) is moved 0 into location BRNCHADR D .
BRNCHADR is the name defined within parentheses in the operand
of the GOTO statement iJ. When the GOTO is executed, control
is transferred to the instruction at NEXTSTEP D, indirectly
through the contents of BRNCHADR.

The indirect GOTO can serve as an unconditional branch to any
label in a program, as long as the address of the desired destination
is'first moved into the indirect address location coded as the operand
of the GOTO.

c;.
......_ /

0

u

o

PROG1
START

fll
'BRNCHADR

D,",
NEXTSTEP

PROGRAM

fm~MOVEA

ml~GOTO
DATA

ADD

ENDPROG
END

Figure 8-2. Indirect GOTO

START, 100

BRNCHADR,NEXTSTEP

(BRNCHADR)
FIOI

ZVALU,BVALU

A third form of GOTO statement is the computed GOTO, whose format
is shown in Figure 8-3.

I

label: GOTO (locO,loc1, locn),index
~ : \ ______________ ~--------------~I

OPTIONAL MUST BE CODED

Figure 8·3. Computed GOTO format

I n the first operand, locO through locn are the symbolic addresses of
instructions to which control may be transferred. The second
operand is an index variable. The address to which control is trans
ferred is determined by the value of the index variable.

The first address (locO) in the list of addresses which form the first
operand is the address to which you want control transferred if the
index variable exceeds the extents of list loc 1-locn.

The next address in the list, loc 1, wi II get control if the index variable
is equal to 1, loc2 if the index variable is equal to 2, etc.

Figure 8-4 illustrates the operation of a computed GOTO with an
index variable outside the range of the list. The index variable is VAL 1
and is set to zero by the MOV E statement at location liST ART".
Zero is outside the range of loc1-locn (NDX1, NDX2 in this case),
and the computed GOTO transfers control to the address at locO
(ER ROR).

Program Sequencing 8·3

IF STATEMENT

8-4 SR30-0436

PROGl

START

VALl

NDXl

NDX2

Figure 8-4. Computed GOTO

PROGRAM

MOVE

GOTO
DATA

PROGSTOP
ENDPROG
END

START

VALl,O

NDXl,NDX2),VALl

The same thing would happen if the index variable were greater
than 2. In this example, the only valid values for the index variable
are 1 or 2, which wou Id result in a transfer of control to location
NDX1 or NDX2.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "IF", "ELSE", "ENDIF."

The GOTO statement gives you the ability to transfer control to
another part of a program; I F statements provi.de a means of deter
mining when a transfer or branch is required.

The format for an I F statement is shown in Figure 8-5.

C

C:,

C

J

C)

o

I F (relational statement) ,GOTO,loc
.. .. I

1 abe 1
'-.--I

OPTIONAL MUST BE CODED OPTIONAL

Figure 8-5. IF Format

The first operand is a relational statement, and all I F statements must
have at least one relational statement. A relational statement expresses
a comparative relationship between two variables, or between a
variable and an explicit value. An I F may be coded to include a GOTO
(second operand) and a specified location (third operand). For
instance, (Figure 8-6);

TEST1 IF (A,EQ,B),GOTO,STEP3

Figure 8-6. IF/GOTO example

This statement may be interpreted as "Transfer control to location
STEP3 if the value in location A is equal to the value in location B."
If A is not equal to B, execution will continue with the instruction
following the I F. The"l F with GOTO" is the simplest form of IF
that can be coded. I F statements may also take the form of
structures, in which entire code sequences may be executed or
skipped, depending on whether the relationship expressed in
the relational statement is true or not. The basic I F structure is
illustrated in Figure 8-7.

IF

:}
ENOl F

END OF "I F"
STRUCTURE

_-"";.t.=.=-~I R E LATI ONA L
STATEMENT

EXECUTED IF THE
RELATIONSHIP
EXPRESSED IN THE
RELATIONAL STATE
MENT IS TRUE

RELATIONAL
MNEMONIC
CAN BE:

EQ EQUAL
NE NOT EQUAL
GT GREATER THAN
LT LESS THAN
GE GREATER OR EQUAL
LE LESS OR EQUAL

IF RELATIONSHIP EXPRESSED
IN THE RELATIONAL STATEMENT
IS NOT TRUE, "TRUE" CODE
WITHIN "1 F" STRUCTURE IS
SKIPPED, AND EXECUTION
CONTINUES WITH FIRST
INSTRUCTION FOLLOWING
"ENDI F" STATEMENT

Figure 8-7. IF structuro

Program Sequencing 8-5

Relational Conjunctions

8-6 SR30-0436

All IF structures must end with an ENDIF statement, except when
using GOTO. In the example, the code between the I F statement
and the ENDIF will be executed if the relationship expressed in the
statement is true (A is equal to 8). If the relationship is not true,
the true code will be bypassed, and execution wi II continue with the
statement following the ENDIF.

In Figure 8-8, one more statement is added to the I F structure. The
ELSE statement starts the false code; these instructions will be
executed if the relationship expressed in the statement is not true,
bypassing the "true" code. True code begins following the I F in an
I F structure, and ends with the EN D I F if no ELSE statement is coded
(Figure 8-7), or ends with an ELSE statement if one is used (Figure
8-8).

NOT REQUIRED, BUT MAY BE
CODED FOR DOCUMENTATION

~

IF (A,EQ,B),THEN

ELSE

"TRUE" L EXECUTED IF A = BI
CODE Jl .

"FALSE" }-1 EXECUTED I F A # B I
CODE

ENDIF
~------i EXECUTION CONTINUES HERE

AFTER EITHER "TRUE" OR
"FALSE" CODE WITHIN "I F"
STRUCTURE HAS EXECUTED

Figure 8-8. IF/THEN/ELSE

False code begins with an ELSE statement, and ends with the
ENDIF, which defines the end of that IF structure.

As you found in the reading assignment, I F structures can be very
complex. Figure 8-9 is an example of a structure using logical con
junctions and nesting. A logical conjunction forms a logical link
between two or more relational statements. A nested IF
structure is one that appears within the true or false code of a
previous I F structure.

c

c····
j

DO STATEMENT

o

IF

LOGICAL CONJUNCTION OF
RELATIONAL STATEMENTS

(A,EQ,B),AN ,(C,EQ,O),THEN

GOTO ALL EQUAL

ELSE

IF (A,EQ,B)

MOVE C,O

ELSE

r~OVE A, B

ENOIF

ENOl F

Figure 8-9. Complex IF structure

NESTED "I F"
STRUCTURE

A transfer to ALLEQUAL will take place only if both 1) A=B and
2) C=D. The false code is another I F structure, nested within the
first, with its own true and false sections. Notice that each IF
structure is ended with its own ENOl F statement.

READING ASSIGNMENT: IBM Sereis/1 Event Driven Executive
Language Reference (SC34-1706), "DO", "ENDDO."

The DO instruction alters the sequence of program execution by
causing repetitive execution of the same section of code. The DO
statement establishes the start of a DO loop, and the end of the loop
is defined by an ENDDO statement. The code that is repeatedly
executed is the instruction or instructions that are coded between the
DO and ENDDO statements.

One form of the DO statement is illustrated in Figure 8-10. The
count operand is an integer value, or the label of a storage location
containing an integer value, indicating the number of times you want
to execute the loop.

Program Sequencing 8-7

8-8 SR30-0436

I I
I I

label : DO count', TIMES,INDEX=
"--....-' ' I ,'-__ --.J

OPTIONAL MUST BE CODED OPTIONAL

Figure 8-10.

TIMES has no function other than documentation, and does not
have to be coded. The INDEX= keyword operand may be coded as
the label of a word of storage. Before the DO loop is executed for
the first time, the storage location is reset to zero. Then, before
execution of the first instruction following the DO statement, and
with every succeeding pass, 1 is added to the storage location. In the
event that a branch out of the loop is done before the count has
gone to zero, the location specified in the INDEX= operand can be
checked to see how many executions occurred.

Figure 8-11 is a flowchart representing the execution sequence of the
DO count,TIMES form of DO loop. (If the INDEX= operand is
not coded, the top two blocks would not apply.)

DO COUNT

SET INDEX
LOCATION
TO ZERO

ADD+l
TO INDEX
LOCATION

EXECUTE CODE
BETWEEN "DO"

SUBTRACT
1 FROM
COUNT

CONTINUE EXECUTION
WITH INSTRUCTION
FOLLOWING "ENDDO"

Figure 8-11. "DO count" operation c

o Notice that a post-execution escape mechanism is used (trailing
decision loop). The count is not checked for zero until the loop
has completed the first execution. Therefore, if count is initially
zero, one execution would still occur.

There are two other forms of the DO statement, both employing
relational statements. DO WH I LE will repetitively execute the
instructions within the loop while the relationship expressed remains
true. DO UNTI L will keep on executing the loop until the relation
ship expressed in the relational statement becomes true. The
format for these two instructions is illustrated in Figure 8-12.

1 abel I,: DO WHI LE. :
'-...--' '\. __ U_N_T_I_L_' _re~la_tl_o_na_l_st_at_e_m_e_nt..,l;

OPTIONAL MUST BE CODED
Figure 8-12. WHILE/UNTIL format

The relational statements are coded the same way as those used with
the I F statement, and like the IF, two or more relational statements
may be formed into a statement string, using the logical conjunctions
AND and OR.

DOWHILE

EXECUTE CODE
BETWEEN "DO"
AND "ENDDO"

CONTINUE EXECUTION
WITH INSTRUCTION
FOLLOWING "ENDDO"

Figure 8-13. WHILE/UNTIL operation

DO UNTIL

EXECUTE CODE
BETWEEN "DO"
AND "ENDDO"

CONTINUE EXECUTION
WITH INSTRUCTION
FOLLOWING "ENDDO"

Figure 8-13 illustrates the execution sequence of DO WH I LE and
DO UNTI L. DO WHI LE has a pre-execution (leading decision loop)
escape mechanism. The relational condition is checked before the
first execution and, if not true, no execution takes place. DO UNTI L,
like DO count, does not check until completing the first execution
of the loop. Even if the relational condition is true, one execution
will occur.

Program Sequencing 8-9

8·10 SR30-0436

In combination, the GOTO, IF, and DO statements provide the
application programmer with the tools necessary to make execution
time decisions, and to alter program execution flow if required. C
Figure 8-14 is an example of all three statements used together. In the
course of program execution, the variable D IFF is set to zero 0 .
When the I F statement is executed D, a transfer of control to loca-
tion DONE will occur if variable A is equal to variable B. If the transfer
to DONE takes place and DIFF (difference between A and B) is checked,
the difference wi II be zero.

MOVE DIFF,O --D

fJ ~ IF (A,EQ,B),GOTO,DONE
IF (A,GT,B),THEN

t-o
DO UNTIL,(A,EQ,B)

ADD DIFF,l
ADD B,l

ENDDO
II ELSE

DO UNTIL,(A,EQ,B) t-o ADD DIFF,l
ADD A,l

ENDDO
ENDIF .. m

DONE

Figure 8-14. IF/GOTO/DO

If A is not equal to B, execution continues with the I F structure II .
The true code of the I F is a nested DO loop II which wi II repetitively
execute, accumulating the difference between A and B in DI FF until
the two variables are equal. This code will execute only if the variable
A were greater than B when the I F statement was executed.

If B were greater than A, the false code of the I F structure II ,

r--""
(I

\...._ .. /

another nested DO loop, would repeatedly execute, and again, the differ
ence between A and B is accumulated in DI FF.

In all cases, when execution continues at location DON E, A will be
equal to B, and 01 FF will contain the absolute difference that existed
between A and B at the outset. Notice that the 1 F structure must end
with an ENOIF II.

c

C")

o

PROGRAM SEQUENCING REVIEW EXERCISE - QUESTIONS

IFIST
IF2ND

ELSE2ND

END2ND
ELSEIST

ENDIST
COMPGO

Using the coding example below, answer the questions which follow.

IF (A,NE,B)
IF (A,GT,B),THEN

SUB A,B
MOVE VAL 1 ,A

ELSE
SUB B,A
MOVE VALl,B

ENDIF
ELSE

GOTO EXIT4
ENDIF
GOTO (ERR,EXITl,EXIT2,EXIT3),VALl

1. Assuming that A=5, and 8=3, the next statement to be executed
after execution of the code in the example is at location

a. ERR

b. EXIT1

c. EXIT2

d. EXIT3

e. EXIT4

2. Assuming that A=22, and 8=23, the next statement to be exe
cuted after execution of the code in the example is at location

a. ERR

b. EXIT1

c. EXIT2

d. EXIT3

e. EXIT4

3. Assuming A=O, and 8=-5, the next statement to be executed
after execution of the code in the example is at location

a. ERR

b. EXIT1

c. EXIT2

d. EXIT3

e. EXIT4

Program Sequencing 8-11

8-12 SR30-0436

4. The "true" code for the I F structure beginning at location IF 1 ST
consists of

a. the code starting at I F2ND and ending at E LSE2N D

b. the code starting at IF2ND and ending at END2ND

c. the code starting at IF2ND and ending at END1ST

d. none of the above

5. If control is transferred to location EXIT4, then the following.is
true;

a. VAL1=4

b. A is greater than B

c. B is greater than A

d. A and B are equal

e. none of the above

6. How many times will the DO loop below execute?

DO 17,TIMES,INDEX=TWO

ENDDO

Answer: __ __

o

C)

C)

7. Using the coding example below, pick the correct statement from
the list of statements which follow

001
002
003

ENDD03
ENDD02
ENDD01

DO UNTIL,(X,EQ,Y),OR,(Y,GT,X)
DO WHILE,(X,EQ,Y)

DO UNTIL,(X,NE,Y)
ADD Y,l

ENDDO
ENDDO

ENDDO

Assume when execution begins, X=Y.

a. All three DO loops will execute one time.

b. The first two DO loops will execute once, but the innermost
DO loop (003 to ENDD03) will not be executed.

c. None of the DO loops will execute, because X is equal to Y
when the first DO statement is encountered (001).

d. Question is not valid, because DO loops cannot be nested.

Program Sequencing 8-13

PROGRAM SEQUENCING REVIEW EXERCISE - ANSWERS

1.

2.

3.

4.

5.

6.

7.

8-14 SR30-0436

The correct answer is choice c. A is not equal to B, so the "true'~
code following the I F at location IF 1 ST will be executed. A is \.~_/
greater than B, so the "true" code of the nested I F at I F2N D is
executed. VAL 1 is set to 2, the result of the SUBTRACT oper
ation. Execution continues at location COMPGO, skipping the
"false" code of the nested I F and the fi rst IF. VA L 1, the index
variable of the computed GOTO at location COMPGO was set to
2 by the statements in the preceding I F structure, so control is
transferred to location EXIT2.

The correct answer is choice b. A is not equal to B, so the "true"
code of IF 1 ST is executed. A is not greater than B, so the "false"
code of the nested IF (E LSE2ND to END2ND) is executed, and
the difference between A and B is placed in VA L 1 (VA L 1 = 1).
The computed GOTO at COMPGO will transfer control to loca
tion EXIT1.

The correct answer is choice a. Execution proceeds exactly
as in the answer to question 2 above (A=#B,A<B), but the difference
between A and B is 5. When the computed GOTO at COMPGO
is executed, the index variable, VAL 1, contains a value which
exceeds the range of the list, and therefore control is transferred
to location ERR.

Choice b is the correct answer. "True" code is everything between
the I F and the ELSE statement/or the I F and the EN D I F if ELSE
is not coded. ('

Choice d is correct. If A and B are equal, the relational statemerk,~_/i
in the I F at location IF 1 ST is false, and the "false" code is
executed. The "false" code is the unconditional GOTO at loca-
tion EXIT4.

The DO loop will execute 17 times. The index variable, TWO, will
be set to zero before the first execution of the DO loop, and
assuming that the code within the DO loop does not contain any
GOTO statements, the loop will execute 17 times, and the index
variable TWO wi II contain 17 after the DO loop is exited.

The correct answer is choice a. Although X and Yare equal at the
time the first DO statement is executed (DO 1), the relational con
dition associated with a DO UNTI L statement is not checked until
after the first execution of the DO loop.

The second DO loop (D02) starts with a DO WH I LE statement.
The DO WH I LE checks for the relational condition before execut
ing for the first time, but since the condition is true, execution
drops to the second nested DO loop at D03.

c

o

'I 0
,

The innermost DO loop is another DO UNTI L, this time with a
"NOT EQUAL" relational mnemonic. The ADD operation
within the loop makes the two variables, X and V not equal,
thereby satisfying the exit condition for 003, the innermost
loop.

The exit condition for the second loop, 002 (first nested loop)
is also satisfied, because it is supposed to execute only as long as
X is equal to Y, which is no longer true.

The first loop will also exit, because although X is not equal to V,
which is the relational condition specified in the first part of the
relational statement, V is greater than X, which is specified in
the second part of the relational statement, and the two parts
are joined by the 0 R conjunction. All three loops will therefore
exit after a single execution.

Note: The relational statement used with the DO at location DO 1
cou Id have been coded as:

001 DO UNTIL,(Y,GE,X)

and wou Id have executed with the same effect as the form used in
the examp Ie.

Program Sequencing 8-15

c

This page intentionally left blank.

C'
/'

8-16 SR30-0436

o

GETTIME INSTRUCTION

o

Section 9. Timers

OBJECTIVES: After completing this topic, the student should be
able to:

1. Use the GETTIME instruction to access the time-of-day and
date from an appl ication program

2. Use the INTIME instruction to measure time intervals

3. Cause user-defined delays in task execution by using the
STIMER instruction along with the "WAIT on timer"
capability

If you have the hardware timer f-eature installed on your Series/1
4955 Processor, or your processor is a 4952 (has self-contained timer),
you can include support in your Event Driven Executive supervisor,
which provides several time/timing functions that may be used by
application programs. I n addition to maintaining a time-of-day clock,
the system also provides a time interval (elapsed time) clock, and has
the capability to suspend task execution (go into wait state) for
specified lengths of ti me.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "GETTIME."

The time-of-day (TOO) clock is maintained in hours, minutes, and
seconds. At initial program load (I PL), the clock is all zeros and begins
running. It may be set to actual clock time using the $T operator
command, and will maintain clock time from that point on.

The GETTIME instruction is used to move the TOO values into a
user program. The GETTIME format is;

label
'-.--'

OPTIONAL

I I
I I

:GETTIME locl,DATE=
~~----~.~----I'-.--'
MUST BE CODED OPTIONAL

Figure 9-1. GETTIME format

Timers 9-1

INTIME INSTRUCTION

9-2 SR30-0436

The hours, minutes, and seconds are maintained by the system in three
storage words in the supervisor. The user must define a three word f'
storage area in the application program issuing the GETTIME, into \ ___ /
which the hours, minutes, and seconds can be moved. The loc
operand is coded as the label of the first position of the three word user
defi ned area.

The $T operator command also allows you to enter the date in the form
of month-day-year or day-month-year (depending on how the
DATE FMT= keyword operand of the SYSTEM statement was coded
during system generation). If the DATE= keyword operand is coded
DATE=YES, the GETTIME instruction will transfer the date as well
as the time into the application program. Three words are also required
for the date, and these must be contiguous with and following the
three word area defined to hold the time.

Each of the six words in the TOO and date locations are direct binary
equivalents of the information they represent. For instance, the third
word of TOO information (loc+4) is seconds, and when it reaches 59,
the next increment resets it to zero, and the minutes word is increased
by 1 (loc+2). Hours is increased by 1 when 60 minutes have elapsed,
days by 1 at midnight, etc. By using GETTIME, an application pro
gram can time stamp reports, transactions, or any system event in
which information as to the actual time of occurrence is useful.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "INTIME."

Some applications need to measure elapsed time: how long it takes
for a certain code sequence, task or program to execute, or how much
time has passed between the occurrences of events. These time intervals
may be very short, and therefore, cannot be accurately measured using
TOO values, whose resolution is only to the nearest second.

In addition to the TOO clock, the system maintains a relative time
clock. It consists of a double precision (two-word) integer, which is
initialized to zero at system IPL. Every millisecond thereafter, this
value is incremented by 1, and at any given instant, therefore, con
tains the elapsed time in milliseconds since the system IPL. (A double
precision integer will contain a count of milliseconds comprising
approximately 49 days elapsed time, before rolling over to zero and
starting again.)

The INTIME instruction is used to read the relative time clock
value into a user program. The format for the I NTI ME statement
is shown in Figure 9-2.

1 abel
~

OPTIONAL

I

: INTIME
i

reltime,loc : ,INDEX \ __________ ~--------_I ~
MUST BE CODED OPTIONAL

Figure 9-2. INTIME format

STIMER INSTRUCTION

o

The reltime operand is coded as the label of a user-defined double
precision integer variable into which the relative time value will be
moved. The loc operand is coded as the label of a user-defined single
precision integer, which will be set to the number of milliseconds
that have passed since an INTI M E instruction, referencing this reltime·
location, was executed in this program. (A single-precision integer will
hold approximately 65 seconds elapsed time in milliseconds, before
rolling over to zero and starting again.)

The INDEX keyword, if coded, indicates that automatic indexing
is to be used in conjunction with a BUFFER statement. If INDEX
is coded, the loc operand must be the label of a B U F FER statement,
instead of a single-word integer. When automatic indexing is used,
repetitive executions of an INTIME instruction result in the storing
of successive elapsed time values in successive buffer positions. The
use of INTIME with automatic indexing is illustrated at the end of
this section, along with the other timer instructions.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), liST 1M E R."

Every task has a software timer associated with it. This timer will
time out after a user-specified number of milliseconds has elapsed
(60 seconds or 60,000 milliseconds maximum). The desired time
interval is set and the timer started by the STI ME R instruction,
whose format is illustrated in Figure 9-3.

1 abel
~

OPTIONAL

I I
I I

:STIMER count: ,WAIT \ ________ ----~I~
MUST BE CODED OPTIONAL

Figure 9-3. STIMER format

The count operand is coded either as the number of milliseconds you
want to elapse before the timer expires, or as the label of a word of
storage containing the desired number of milliseconds. If the WAIT
keyword is coded, the task will go into the wait state until the specified
time interval has passed. Execution will resume with the instruction
following the STIMER.

The WAIT does not have to be coded as part of the STIMER instruction,
but may appear later as an explicit WAIT on the keyword operand
TIM E R. This acts in the same manner as a wait on an event, the event
being expiration of the time delay. Using this method, the timer-is
started, and execution continues with the instruction following
STIMER. When the WAIT on TIMER is encountered, the WAIT
will fall through if the time interval has already passed, or the task
will go into a wait state for the amount of time remaining.

Timers 9-3

TIMING FUNCTIONS - CODING EXAMPLE

9-4 SR30-0436

Figure 9-4 is a program that exercises all of the timing functions
previously discussed in this section. The first instruction in the pro
gram is GETTIME at location STARTIME. It will place the TOO
values for hours, minutes, and seconds into the three words defined
at location STARTED.

The DO loop starting at DOSTART and ending at DOEND will
execute three times. Each time, the I NTI ME instruction at location
11 will place the time elapsed since IPL in the double precision
integer at SINCEIPL, and will put the time that has elapsed since the
last INTIME execution in the next successive buffer location of the
buffer defined at TIMEBUF. Both values are in milliseconds.

The STIMER instruction at location S1 causes a 5 second delay
(5000 milliseconds = 5 seconds) in each execution of the DO loop.
After the third delay, the DO loop exits, and the STIMER at location
S2 executes. This starts a 10 second timer running but, since the
WAIT operand is not coded, execution continues.

TIMETEST PROGRAM STARTIME
STARTIME GETTIME STARTED
DOSTART DO 3,TIMES
II INTIME SINCEIPL,TIMEBUF,INDEX
Sl STIMER 5000,WAIT
DOEND ENDDO
S2 STIMER 10000
12 INTIME SINCEIPL,LASTIME
ENDWAIT WAIT TIMER
G2 GETTIME STOPPED,DATE=YES

PROGSTOP
STARTED DATA 3F ' 0 '
SINCEIPL DATA 2F 1 01
TIMEBUF BUFFER 3
LASTIME DATA FIOI
STOPPED DATA 6F ' 0'

ENDPROG
END

Figure 9-4. Timing functions

The INTIME instruction at 12 places the elapsed time since IPL
into SINCEIPL again, and puts the elapsed time since a previous
INTIME instruction referencing SINCEIPL was executed into the
single precision integer at LASTIME (INDEX not coded). The WAIT
at ENDWAIT puts the program in a wait state, until the expiration
of the 10 second time delay that was started by the STIMER at S2.

l'
'.~-_./

C~

(
"

)

o

When the 10 seconds are up, the GETTIME at G2 executes, and the
program ends. This time DATE=YES is coded, so a six-word area
is defined at location STOPPED. Hours, minutes, and seconds will
be placed in the first three words, and month, day, and year in
the next th ree.

When using INTIME to time events where a few milliseconds
difference is critical, keep in mind that the time values retrieved by
your program represent the time that the I NTI ME instruction is
executed. I f the task issu i ng the I NT 1M E is of a lower priority than
other tasks active in the system at the same time, a delay in execution
of the INTIME may result, and will be reflected in the clock value
retrieved.

Timers 9-5

c

This page intentionally left blank. c

c:
9-6 SR30-0436

o
TIMERS REVIEW EXERCISE - QUESTIONS

All of the questions in this Review Exercise refer to the program in
Figure 9-4. For simplicity, assume that no time is used to execute
instructions, no other tasks are running in the system, and system
overhead is zero.

At the time that the program begins execution, the date has been set
at January 1st, 1979, and it is exactly 5 p.m. (1700 hours). The system
IPL was at exactly 4 p.m.

1. What will be in the three words beginning at location STARTED
after execution of the GETTIME at location STARTIME?

Answer: STARTED
STARTED+2 ____ _
STARTED+4 ____ _

2. What will be the values in the double precision integer at
SINCEIPL and the buffer at TIMEBUF after the first
execution of the INTIME instruction at 11?

Answer: SINCEIPL
TIMEBUF
TIMEBUF+2 ____ _
TIMEBUF+4 ____ _

3. After the second execution?

Answer: SINCEIPL
TIMEBUF
TIMEBUF+2 ____ _
TIMEBUF+4 ____ _

4. After the third execution?

Answer: SINCEIPL
TIMEBUF
TIMEBUF+2 ____ _
TIMEBUF+4 ____ _

5. What will be in SINCEIPL and in LASTIME after execution
of the INTIME instruction at location 12?

Answer: SINCEIPL _____ _

LASTIME

6. What will be in the six words' beginning at location STOPPED
after execution of the GETTIME at location G2?

Answer: STOPPED
STOPPED+2
STOPPED+4
STOPPED+6
STOPPED+8
STOPPED+10 ____ _

Timers 9-7

TIMERS REVIEW EXERCISE - ANSWERS

9-8 SR30-0436

1. STARTED
STARTED+2
STARTED+4

17

° °
The TOO clock is kept using military time, on a 24 hour-a-day
basis. Five p.m. is therefore 17 hours, ° minutes, and ° seconds.

2. SINCEIPL
TIMEBUF
TIMEBUF+2
TIMEBUF+4

3,600,000

° ° o
If the system IPL was at 4 o'clock, and it is now 5 o'clock, the
relative time clock has been running for one hour, or 3,600,000
milliseconds. (1 hr x 60 minutes x 60 seconds x 100 milliseconds/
second). The first word in TI M EB U F is zero, because the elapsed
time from the last time an I NTI ME instruction referencing
SINCEIPL was executed is zero; this is the first time the
INTIME has executed.

3. SINCEIPL
TIMEBUF
TIMEBUF+2
TIMEBUF+4

3,605,000

° 5,000
o

The second time through, the 5 second delay at S 1 has occurred.
Total elapsed time since IPL has increased by 5,000 milliseconds

c

(SINCEIPL), and the time elapsed since the first INTIME execution, (~I
also 5000 milliseconds, is automatically indexed into TIMEBUF+2. \._/"

4. SINCEIPL
TIMEBUF
TIMEBUF+2
TIMEBUF+4

3,610,000
o
5,000
5,000

A second 5 second delay has occurred, increasing SI NCE I PL
by another 5000 milliseconds, and placing 5000 milliseconds
in the third buffer position, TIMEBUF+4.

5. SINCEIPL
LASTIME

3,615,000
5,000

Before exiting the DO loop, an additional 5 second delay occurred,
adding another 5000 milliseconds to SINCEIPL. Because the
INTI M E instruction references the same "reltime" operand as the
last INTI ME execution (SI NCE I P L), LASTI M E is set to 5000
milliseconds. If the INTIME at 12 had a different "reltime"
operand, it would be treated as a first execution, and LASTI ME
would indicate zero elapsed time.

c

6.

0
STOPPED 17 5p.m.
STOPPED+2 a a minutes
STOPPED+4 25 25 seconds
STOPPED+6 1 January
STOPPED+8 1 1st
STOPPED+10 79 1979

Fifteen seconds in the DO loop, plus the 10 second delay at
S2 have elapsed.

Timers 9-9

This page intentionally left blank.

9-10 SR30-0436

C)

o

Section 10. Disk/Diskette I/O

OBJECTIVES: Upon successful completion of this topic the student
should be able to:

1. Understand the logical layout of disk, diskette and tape

2. Define data sets in a PROG RAM statement

3. Read records using the READ statement

4. Write records using the WR ITE statement

5. Use NOTE and PO I NT to access and set the next record
indicator

6. Pass data set definitions to programs loaded from a terminal
or from another program

7. Pass data set definitions to an overlay program from the program
loading the overlay

DEVICES SUPPORTED - DISKETTE

The Event Driven Executive supports both the 4964 Diskette Storage
Unit, and the 4966 Diskette Magazine Unit. Diskettes used with the
Event Driven Executive can be Diskette 1 (single-sided), Diskette 2
(double-sided) or Diskette 2D (double-sided double-density) diskettes.
EDX supports all diskettes formatted 256 bytes/sector and Diskettes 1
and 2 formatted 128 bytes/sector. Diskette 2D can only be used in the
4966 Diskette Magazine Unit.

DEVICES SUPPORTED - DISK

The 4962 Disk Storage Unit and the 4963 Disk Subsystem are non
removable direct access storage devices, available in several capacities,
with or without fixed-head capability. All models of both devices are
supported by the Event Driven Executive.

For information on the physical layout of any of the disk/diskette
storage devices, see the appropriate General I nformation manual for
that device.

DEVICES SUPPORTED - TAPE

The Event Driven Executive supports all models of the 4969 Magnetic
Tape Subsystem utilizing 800 or 1600 bpi magnetic tape.

Disk/Diskette Input/Output 10-1

Disk Volume Definition

10-2 SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "Disk I/O." IBM Series/1 Event
Driven Executive System Guide (SC34-1702), "Direct Access Storage
Devices" and "DISK Configuration Statement."

Event Driven Executive direct access storage has an hierarchical
structure. The largest logical unit in the hierarchy is the volume. A
volume is named contiguous area on disk/diskette, starting and
ending on a cylinder boundary. .

Disk devices are identified to the supervisor by the DISK system con
figuration statement at system generation time. The DISK statement
defines the type of disk and hardware address of disks to be supported
by the supervisor.

Volumes on disk are defined by the $INITDSK utility. Before allocat
ing any volumes, a user must initialize the disk device. This device
initialization creates a volume directory which will contain control
information about volumes that are subsequently allocated on the
device. Once the volume directory is created, volumes can then be
allocated. Before using a newly created volume, it must be initialized;
that is, a directory must be created to contain the control information
about data sets that will subsequentially be allocated in the v.olume.

c·

Diskette Volume Definition

o

Tape Volume Definition

Data Sets

Logical volumes defined on disk devices exist on a non-removable
storage medium. The names used to symbolically reference these
disk volumes (EDX002, ASMLI 8, etc.) are recorded in the volume
directory of the device. Diskettes, being removable, also have the
volume name written on them.

A DISK statement is used to define a diskette device (4964 or 4966),
and to establish the device hardware address. This generates the
physical device tables the supervisor requires to operate the device.

A logical volume on diskette encompasses the entire diskette. A
diskette volume mounted on a 4964 device is considered to be a logical
volume, as only a single diskette may be mounted and online at a time.
With the 4966 Diskette Magazine Unit, up to twenty-three volumes
may be online.

Diskette volumes are created (volume name written, directory created,
etc.) by the $INITDSK utility. As many volumes as required may be
created.

Each magnetic tape is a volume which is allocated by the $TAPEUT1
utility. Only one volume is defined tor each physical tape drive known
to the system. The actual volume label is determined by the system
when the tape is placed on line ($VARYON).

Data sets are members of a library. A data set is a named contiguous
space whose length is determined by the user when the data set is
created. Disk or diskette data sets are allocated by the user, using
utility program $DISKUT1, or, in some cases, automatically allocated
by certain special purpose system utilities. Data sets may be defined
with program organization or data organization, depending on what is
to be stored. Program organization is used for data sets that will
contain executable (Ioadable) Event Driven Executive programs. Data
organization is used for work files ($EDIT1N, $FSEDIT, $LINK,
$EDXASM, $S1ASM work files), user source modules and application
data sets.

Tape data sets are allocated by the user using the $TAPEUT1 utility.
Data sets can only be defined as data organization. Programs cannot
be loaded and executed from tape.

Disk/Diskette Input/Output 10-3

Records

Record/Sector Relationship

When a data set is allocated, an entry is made in the directory of the
logical volume in which the data set is defined. The directory entry will
contain such information as the data set name, organization (program
or data), location of the data set starting point within the volume, and
the length of the data set, in records.

A record is 256 bytes in length, and is the smallest logical unit in the
Event Driven Executive direct access storage hierarchy. A record is the
basic unit that is accessed from user and system programs. Data sets
are named, contiguous groups of 256-byte records.

Diskettes used as Event Driven Executive logical volumes can be for
matted in 128-byte or 256-byte sectors. When formatted in 128-byte
sectors, two diskette sectors constitute a single 256-byte logical record.
On a 4962 disk, physical sectors and logical records are the same length,
256 bytes. The physical sector size on 4963 disks is 512 bytes,
allowing two logical 256 byte records in each physical sector.

I n all cases, user access to direct access storage is at the logical 256-byte
record level. System routines compensate for physical sector/logical
record mismatches, making the hardware differences between devices
transparent to the user.

Figure 10-1 summarizes the direct access storage logical layout.

PROGRAM STATEMENT OS= OPERAND

10-4 SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "PROGRAM Statement."

Data sets accessed from user programs must be preallocated on disk or
diskette ($0 I SK UT1 utility), and must be named in the DS= keyword
operand of the using program's PROG RAM statement. Figure 10-2
shows how the DS= operand is coded for data sets residing on the I PL
or other logical volumes.

c

o

o

VOLUME
CREATED BY
$INITDSK

4964/4966

VOLUME { DI RECTORY _
CONTAINS ~ +
LIBRARY DATA SETS

DATA SET CONTAINS
RECORDS, EACH
256 BYTES

TWO 128-BYTE OR
ONE 256-BYTE
SECTOR(S) ON
DISKETTE DEPEND
ING ON HOW
FORMATTED

0 1 _----'
• o

I
Figure 10-1. Disk/diskette logical layout

4962/4963
CONTAINS CONTROL
INFORMATION ABOUT {
VOLUMES ON DISK

VOLUMES ALLOCATED
BY $INITDSK

ONE SECTOR
ON 4962

-~
% SECTOR
ON 4963
(TRANSPARENT
TO USER)

Disk/Diskette Input/Output 10-5

DSEXAMPI PROGRAM

"FI LEA" IS ONLY DATA SET
USED, AND IS ON THE IPL
VOLUME - NO PARENTHESES
REQUIRED, NO VOLUME RE
QUI RED (DEFAULTS TO IPL)

GO,DS=FIL6

MULTIPLE DATA SETS, ALL
ON IPL VOLUME-ENCLOSE
LIST IN PARENTHESES, VOLUME
DEFAULTS TO IPL

DSEXAMP2 PROGRAM GO,DS=(FILEA,FILEB)

"FILEA" AND "FILEB" HAVE NO
VOLUME SPECIFIED-DEFAULT
TO IPL VOLUME

DSEXAMP3 PROGRAM

Figure 10-2. OS= operand

"FI LEX" ON DI FFERENT
VOLUME-VOLUME MUST
BE SPECI FI ED

ENTIRE LIST
ENCLOSED IN
ADDITIONAL
PARENTHESES

The IPL volume is the volume where the currently loaded (IPL)
supervisor resides. The system will assume that data sets specified
in the DS= operand list also reside on the IPL volume, unless a different
volume is explicitly coded. Up to nine data sets may be coded in a
DS= operand list.

At the time a program is loaded, the loader ($LOADE R) looks up all
the data sets named in the PROG RAM statement's DS= operand list,
and logically opens them for use by the program. If a named data set
does not exist (w~s never allocated by $DISKUT1), resides on a volume
other than that specified in the DS= operand entry, or is program
rather than data organization, the load operation is terminated and an
error message resu Its.

READ!WRITE STATEMENTS - DISK/DISKETTE

10-6 S R 30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "READ", "WRITE."

C)

The 256-byte records in data sets are transferred from disk/diskette
to storage or storage to disk/diskette by READ and WR ITE instructions.
The format for READ and WRITE statements is illustrated in Figure 10-3.

DSx is the operand specifying which data set to use. The x in DSx is
coded as an integer value between 1 and 9, and is a positional reference
to one of the 9 possible data sets named in the DS= list of the PROG RAM
statement.

I I
I I
I I

label : READ DSx,loc:,count,relrecno,END=,ERROR=,WAIT=,PREC= __ ~~ __ ~ WRITE : ~~ ________________ ~ ________________ ~
OPTIONAL ""-..... ---~--- OPTIONAL

MUST BE CODED

Figure 10-3. READ/WRITE format-disk/diskette

DS1 would refer to the first data set in the list, OS2 to the second,
continuing through DS9, referencing the ninth data set defined.

The loc operand is coded as the label of the first byte of the (one or
more contiguous) 256 byte storage area(s), into or from which the
disk/diskette record(s) will be read/written.

I
I

I
I
I : READ

· 1 abel I WRITE DSx,loc:,count,relrecno,END~,ERROR=,WAIT=,PREC==
~I

I
I J

I
OPTI 0 NA L '------.,v,,-------- OPTIONAL

MUST BE CODED

Figure 10-4_ READ/WRITE count operand

The optional count operand is coded as an integer value (or as the
label of a program location containing an integer value) indicating
the number of 256-byte records to be read or written. The user
must ensure that adequate storage is reserved (beginning at location loc)
to accommodate the number of records specified in count. If count
is not coded, the system will defau It the count operand to 1, indicating
that a single record will be read or written. If count is set to 0, the
READ or 'NR ITE will not be performed (execute as a no-op), and
execution will continue with the next sequential instruction following
the READ/WRITE.

I I
I I•. <

~Ii~~~~::~~ jq~~~19!"'!~C(j,u~t~ re 1 recno ,;~~~9¥~~~g9~~,fH~,If¥i]~Jq~
OPTIONAL ,~ .. -... ---....Y'---~ ... OPTIONAL

MUST BE CODED

Figure 10-5_ READ/WRITE relrecno operand

Disk/Diskette Input/Output 10-7

10-8 SR30-0436

The relrecno operand is the relative record number (relative to the
origin of the data set) to be read or written. It is coded as an integer,
or as the label of a location containing an integer, which is the
relative record number you want to access. The relrecno operand
will default to 1 (indicating the first record in the data set) if it is
left uncoded.

For each data set used by a program (D51, 052, etc.), the system
maintains a next-record pointer. This pointer is an indicator of the
next sequential record in the data set and, at the time a program is
loaded (before disk/diskette I/O has been performed), has an initial
value of 1. It is updated by +1 after each READ or WRITE in which;

a. relrecno is not coded

b. relrecno is coded as a
c. the location specified by the label in relrecno is equal to a

Successive executions of R EAD/W RITE instructions in which
relrecno has a value of a or is not coded will therefore result in
sequential access of the data set; i.e., the relative record number of
the next record read/written will automatically be 1 greater than the
last record read/written. A READ or WRITE with relrecno coded
as an integer greater than 0, or with the contents of the location
specified by the label in relrecno greater than a does not disturb
(increment) the next-record pointer.

I , .. I

. . ·.···1.::·, •. ' .·•·· .. :.i .. ·· .. : .. ·.: , .. ': ': : ..

}.1 ... ~ •. READ
..... :·WR!TE··

, .. Ii' .'..>«<)
. DSx,l DC ~; c(jyn~,rE:l r~9ngi EN 0= •. L. ... " .. "" I . . :: ,.:: ... :" ... ,.,~.,.,'.,., , .. ,:••.. ,.,' .. :: ~ .. , .. .

~I············ I

OPTIONAL ~""---......-----~ OPTIONAL
MUST BE CODED

Figure 10-6. READIWRITE END= operand

The E ND= keyword operand is coded with the label of the instruction
that you wish control transferred to when an attempt to READ or
WR ITE a record outside the physical boundaries of the data set is
detected. This condition may occur because of a normal end-of-data
set condition (attempting to READ or WRITE the next sequential
record in a data set, when the last record read or written was the last
physical record in the data set), or may be caused by a program logic
error (for example, a READ or WRITE with relrecno erroneously
set to a negative value).

Note: A "logical-end-of-data" facility for READ operations is provided
by a system subroutine called SETEOD. This subroutine will allow a
user to set a given record number in a data set as the last logical record
in that file. An attempt to read a record beyond the last logical record
(although still within the physical boundaries of the data set) would
result in a transfer to the label coded in the READ statement's END=
keyword operand. c

SETEOD is supplied as a system COPYCODE source module, and may
be copied into user programs using the COpy assembler instruction.

Figura 10-7. READ/WRITE ERROR= operand

The E R RO R= keyword operand is coded with the label of the instruction
that you wish to get control if an error is detected whi Ie executing a
disk/diskette READ or WRITE operation. If END= is not coded and
E R RO R is coded~ an end-of-data set condition wi II resu It in a transfer
to the E R RO R= location. If EN D= is coded and E R RO R= is not, all
abnormal conditions other than end-of-data set will result in contin
uation of execution with the next sequential instruction following the
READ or WR ITE. If neither is coded, execution continues with the
next sequential instruction in all cases.

After each disk/diskette READ or WRITE operation, a completion
code is returned to the user program (see Reading Assignment for a
description of completion codes). The completion code is placed in
the task code word (taskname) of the task issuing the READ or WRITE,
and is also placed in a system control block that may be referenced
by the symbolic positional data set name (OS1, OS2, etc.). This
completion code can be accessed and analyzed by the user program
to determine if the operation was successfu I and, if not, why it fai led.

I I

iI~:~~~:~:~1;lt~~f;i~;8$~~";j"~g;!C:'~§\tta~~'i~,i'i~~~d::::I:~::dR~·.i\~AI T = , •• ~.'Rt2:,
MUST BE CODED

Figure 10-8. READ/WRITE WAIT= operand

While a disk/diskette I/O operation is executing, there is an implied
wait for the issuing task. Task execution is suspended (the task is
placed in a wait state) until the I/O is complete. If the WAIT=
operand is coded as WAIT=NO, the wait does not occur; while the
I/O operation is in progress, task execution proceeds with the next
sequential instruction following the READ or '.lVR ITE, overlapping
I/O with processing. Also, if WAIT=NO is coded, the EN D= and
E R RO R= keyword operands are not allowed. Checking for errors
is entirely a user responsibility (completion code in taskname or DSx).

Disk/Diskette Input/Output 10-9

In addition, the user must issue an explicit WAIT instruction, waiting
on the completion of I/O event. This is a predefined system event, and (~
the associated ECB is referenced (in the operand of the WAIT statement) "'-____
by the symbolic positional data set name (DS 1, DS2, etc.) for the data
set used. When the waited on ECB is posted complete, the I/O operation
has finished, and the completion code is available for inspection.

, I

:;":: :,: :.:;:;::::::>.:: ::;:', :;" :/ :: =::;:', ::.: . .:.:;:.::;,;·:1 ;: ~ ':.::,:: ',.;' ';';"::,': -'..;'::.:': ',\:: ' '.'. '. "::,, ':.: "::';' :,:;'/:",:.: ::::: .:". ::: ,;:,:.:,:.:.,. ,', . .. •... ;.: '::':',:.: :: ... :;:'::.:::~ .. :: "';' ':", : ... ','. . ,' .. " '::, :.:: .. : ... ~.:{.);:::J

~t,o/j~~~~ ,l;\P~&~:t~~1~gg@~ffE!i~8ig;[(%t19~ii~Bgg!~$,W8fi~~g~g~]
OPTIONAL " OPTIONAL

MUST BE CODED

Figure 10-9. READ/WRITE PREC= operand

The PREC= keyword operand further defines the relrecno operand. If
PREC= S (single precision) the relative record number is limited to a
value of 32767. If PREC= D (double precision) is specified relative
record numbers up to 231 _1 can be specified. If no PREC= operand is
specified the default assumed is S (single precision).

READ/WRITE STATEMENTS - TAPE

10-10 SR30-0436

Records in data sets are transferred from magnetic tape to storage or
storage to magnetic tape by READ and WR ITE instructions. As with
disk/diskette, the DSx operand specifies the data set to be used. The (\
format of the READ and WRITE statements is shown in Figure 10-10. ',-_./

, I
I ,

: READ I label I WRITE DSx,locl,count,blksize,END=,ERROR=,WAIT=
~I ,..... "

I ,

OPTIONAL ~"""'---'Vy---~" OPTIONAL
MUST BE CODED

Figure 10-10. READ/WRITE format-tape

All the operands as discussed previously for disk/diskette apply to tape
R EAD/WR ITE operations. Tape records can be variable in length and
are normally read sequentially; therefore, a bl ksize operand is used
instead of the relrecno operand. BLKSIZE indicates the number of
bytes to be read from or written to tape. I f no B LKSI ZE is specified,
it will default to 256. Since the maximum size of a tape record is
32767 bytes, the PR EC= operand does not apply.

NOTE/POINT STATEMENTS

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "NOTE", "POINT."

The system-maintained next record pointer changes value (increments)
each time a READ or WR ITE (without a user-specified relrecno
greater than 0) is executed. Using the NOTE instruction, a user
program can find out the current value of the next record pointer.
The next record pointer may be set to a user-specified new value
using the POI NT instruction.

NOTE
I , POINT __ --I,

OS lac PREC-x'relrecno' -1 abel

OPTIONAL~~------------------J
MUST BE CODED

Figure 10-11. NOTE/POINT format

I n Figure 10-11, the DSx operand is the symbolic positional reference
to the data set whose associated next record pointer is to be retrieved
(NOTE) or set (POINT). The second operand is coded as the label
of a storage location that the NOTE instruction will move the
current value of the next record pointer into, or that contains the
new value which the POI NT instruction will use to set the next
record pointer. (When using the PO I NT instruction, the second
operand may be coded as an integer value rather than the label of a
storage location.)

DISK/DISKETTE I/O CODING EXAMPLES

The programs depicted in the next four figures (Figure 10-12 through
10-15) are not meant to be practical examples of how to code disk/
diskette I/O operations in a user program. They are intended only to
illustrate some of the concepts already discussed.

In Figure 10-12, the READ instruction at location GO will execute
as a no-operation. Execution will continue with the instruction
following the READ, and no I/O is performed. The count operand
is coded as storage location CTR. When the program is first loaded,
location CTR contains zero, and a zero count indicates no records
are to be read (or written, for a WRITE instruction).

Disk/Diskette Input/Output 10-11

10-12 SR 30·0436

OISKPGM
GO

R1

SET7

R2

PROGRAM
READ

READ

POINT
MOVE
READ
PROGSTOP

GO,OS=WORKFILE
DS1,BUFF,CTR,END=ENOOUT,ERROR=E1

DS1,BUFF,ENO=ENOOUT,ERROR=E1

OSl,7
CTR,3
OSl,BUFF,CTR,END=ENOOUT,ERROR=E1

ENOOUT :ENO-OF-:OATASEil
I ROUTINE I 1 ________________ J

E1

BUFF
CTR

fERRORRoufiN£I 1 _____________ .J

BUFFER
DATA
ENOPROG
END

768,BYTES
FlO'

Figure 10-12. Count operand use

The READ at location R 1 has no count operand coded, so count
defaults to 1, indicating a single record wi II be read. Since relrecno
is not coded, the relative record number defaults to the current value C
of the next record pointer. The next record pointer has not yet been --,'
altered, and is therefore at its initial value of 1, indicating the first
relative record in the data set. The READ at R 1 will read the first
record in WORKFI LE into the first 256 bytes of the 768 byte area
BUFF. After the I/O operation, the next record pointer is incre-
mented to 2 (automatic system function).

The POINT instruction at location SET7 changes the next record
pointer to point to the seventh relative record in the data set. The
MOVE which follows sets location CTR to a value of 3. When the
READ at R2 is executed, three 256 byte records (count = CTR = 3),
beginning with relative record number 7 (relrecno defaults to next
record pointer which was set to 7) will be read into storage, beginning
at location BU F F. After the operation, the next record pointer wi II
have a value of 10.

In Figure 10-13, all count operands are left uncoded, so all READ
operations will be single record reads (default count = 1). I n the first
READ (location GO), relrecno is coded as location RECNBR, which
has an initial value of 2. The second relative record in WO R KF I LE
will be read into BUFF. The ADD instruction following the READ
updates the user-maintained relative record number in R ECNB R by
adding 3. When the READ at R2 is executed, relative record number
5 will be read into BUFF.

The MOVE operation preceding the READ at R3 sets the relrecno
location RECNB R to zero. A zero relrecno value causes a default
to the next record pointer maintained by the system. c

\ 0'"

DISKPGM
GO

R2

R3

R4

PROGRAM
READ
ADD

READ

MOVE
READ

READ

PI PROGSTOP

GO,DS=WORKFILE
DSI,BUFF"RECNBR,ERROR=ERROUTN,END=OUT
RECNBR,3

DSI,BUFF"RECNBR,ERROR=ERROUTN,END=OUT

RECNBR,O
DSI,BUFF"RECNBR,ERROR=ERROUTN,END=OUT

DSI,BUFF,ERROR=ERROUTN,END=OUT

OUT IEND-OF-Dj(fA-SEil
L __ fl_QUJl fY. € ____ J

ERROUTN [(~BQ~KQQfliJ.EJ

BUFF
RECNBR

BUFFER
DATA
ENDPROG
END

256,BYTES
F'21

Figure 10-13. "relrecno" operand use

The two previous READ operations (at GO and R2) both used a user
defined relrecno value greater than zero, so the next record pointer was
not affected, and is still at its initial value of 1. The READ at R3
will therefore read the first relative record in WORKFI LE, because
the MOVE operation preceding sets RECNBR to zero.

The READ at R4 has no relrecno coded, and will also default to
the next record pointer for a relative record number. This READ
will read relative record number 2, since the next record pointer
was incremented by 1 after the preceding READ at R3.

In Figure 10-14, all count and relrecno operands are left uncoded, so
all READ commands will read a single record, and the next record
pointer will be used for the relative record number.

The READ statement at GO has both END= and ERROR= operands
coded. An end-of-data set condition will cause a transfer to location
END R, and an error condition will result in execution of the instructions
beginning at ERTN. If the operation is successful, relative record
number 1 will be read into BUFF.

Disk/Diskette Input/Output 10-13

10-14 SR30-0436

· In the READ statement at R2, only the END= operand is used. Error
checking is therefore a user responsibility, and is performed in this
example by the I F statement immediately following the READ. The
symbolic positional data set name, DS1, is checked for a completion
code of -1. A -1 indicates a successful or normal operation. If the
completion code is other than -1, control is transferred to the error
routine at E RTN. If the operation was successful, relative record
number 2 wou Id be read.

DISKPGM PROGRAM GO,DS=WORKFILE
DSl,BUFF,END=ENDR,ERROR=ERTN GO READ

R2

R3

R4

DONE
ENDR

EO
ERTN

BUFF

READ
IF

READ

READ
IF

PROGSTOP

DSl,BUFF,END=ENDR
(DSl,NE,-l),GOTO,ERTN

DSl,BUFF,ERROR=EO

DSl,BUFF
(DSl,NE,-l),GOTO,EO

r--------------,
:PRINTOUT"END l
L QI:.. '24 [4§fr:Y§§J

GOTO DONE
IF (DSl,EQ,lO),GOTO,ENDR

r:--------------,
: PRINT OUT "DISK:
I ERROR" MSG I l _____________ .J

GOTO
BUFFER
ENDPROG
END

DONE
256,BYTES

Figure 10·14. END= and ERROR= use

c

c

c

C)

o

The E R RO R= operand is coded in the READ statement at R3, but the
END= is not. An end-of-data set condition will therefore be considered
an error, and will cause a transfer to the label coded in the E R RO R=
operand, location EO. When END= is not coded, but you do not wish
to treat end-of-data set as an error, the specific condition code that
indicates end-of-data set must be checked for in the error routine. The
I F statement at location EO checks for a completion code of 10, which
is the completion code signifying an end-of-data set (relative record
number outside range of data set) condition. If the code is 10, control
transfers to the end-of-data set routine at EN D R, rather than
continuing execution of E RTN. Relative record number 3 is read
if normal operation occurs.

The READ at R4 has neither END= nor ERROR= coded. Operation
is the same as the previous READ at R3, except that the user must check
for abnormal completion; there is no automatic transfer to an error
routine, as is provided by the E R RO R= operand. The completion
code is checked by the I F statement following the READ, and transfers
to EO (as did the E R RO R=EO in the READ at R3) if other than normal
completion is detected. Normal completion results in a read of relative
record number 4.

Figure 10-15 illustrates the use of the WAIT= operand. The READ
at location START is the same as the READ statements you are
already familiar with. It will read a single record (count defaults to 1),
the first relative record in data set WO R KF I LE (relrecno defau Its to
next record pointer = initial value of 1), into BUF 1. If an error occurs,
the ERROR= operand will transfer control to E1, the start of the
error routine. (END= is not required because, by definition, if
WORKF I LE exists, it has at least one record in it. Since this is a
read of the first record in WORKFI LE, end-of-data set will not occur.)

While the READ at START is in progress, task DISKPGM is in a
wait state (WAIT= operand not coded - default is WAIT=YES).
After successful completion of the READ, the MOVE at location
SETUP is executed, moving the 256 byte record in BUF1 into
WRKAREA (128 words = 256 bytes).

Now a second READ is issued (location R2), with the WAIT= operand
coded as WAIT=NO. Since the READ at START used the next record
pointer for a relative record number, it now has a value of 2. The
READ at R2 will therefore read relative record number 2 into BUF1,
updating the next record pointer to 3 upon successful completion.

While the READ operation at R2 is in progress, execution of task
D ISKPGM continues, because the WAIT=NO operand prevents
the implied wait for 1/0 completion from taking effect. While the
next sequential record (relative record 2) is being read into BUF1,
the program is operating on the data in the previous record, which is
now in WRKAREA. Program execution is overlapping with the 1/0.

D isk/D iskette I nput/Output 10-15

10-16 SR30-0436

DISKPGM PROGRAM START,DS=WORKFILE
BUFI BUFFER 256,BYTES
WRKAREA DATA 128F ' O'
START
SETUP
R2

WI
IFI
IF2

El

STOP
OUT

READ DSl,BUFFl,ERROR=El
MOVE WRKAREA,BUFFl,128
READ DSl,BUFFl,WAIT=NO

r----- - ------- -------,
: PROCESS THE DA TA IN:
I "WORK AREA" I L _________________ -I

WAIT
IF
IF

DSI
(DSl,EQ,-l),GOTO,SETUP
(DSl,EQ,lO),GOTO,OUT

r----- ---------,
: PRINT DISK ERROR ~

l MESSAGE : .--- ______________ J

PROGSTOP
r----- - - -- -- - -----,
: PRINT END OF DA TAl
: SET MESSAGE : L _________________ I

GOTO STOP
ENDPROG
END

Figure 10-15. WAIT=NO

When WAIT=NO is coded, as illustrated in the READ at R2, the
ERROR= and ENO= operands cannot be used. Error checking is
therefore entirely a user responsibility. The I/O operation com
pletion code is not available until the I/O operation is finished. To
find out when the I/O is complete and the completion code is avail
able, and also to resynchronize processing with I/O, the user must
issue a WAIT on the completion of I/O event.

The WAIT at location W1 uses the symbolic positional data set name
OS1 as the event name. The ECB is not coded, because it already
exists in the TCB established by the PROG RAM statement. When the
READ operation at R2 completes, the completion code is posted in
location OS1. OS1 is the symbolic address of the first word of the
associated ECB, and therefore the completion of I/O event is marked
as having occurred.

C

o

o

o

TAPE I/O EXAMPLES

After the WAIT, execution continues with the I F statement at
location IF 1. If the I/O completed normally (condition code = -1),
control is transferred to SETUP, which moves the new record into the
work area. The READ at R2 starts the read of the next sequential
record into BU F 1, and the entire process continues to repeat until
all records have been processed (end-of-data set) or an error occurs.

If other than a normal completion is detected at IF 1, the I F at I F2
executes. An end-of-data set condition (completion code = 10) will
cause a transfer to location OUT, the end-of-data set routine. Any
other completion code is an error, and execution wi II continue with
the error routine E 1, immediately following the IF.

For comprehensive sample programs of magnetic tape operations,
review the examples in the "Tape Management" section of the System
Guide (SC34-1702).

LOAD-TIME DATA SET DEFINITION

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "LOAD", "PROGRAM."

In all of the disk/diskette I/O examples thus far, data sets to be used
by a program are named in the DS= list of the PROG RAM statement.
Th is is adequate for very stable applications, where the program
always uses the same data sets, and the names of those data sets are
known at the time the program is written.

A stable situation is not always possible. At the time a particu lar
program is being coded, data set naming conventions may not yet
have been established, and data set names therefore would not be
known. Also, the program could be a generalized file routine, de
signed to perform certain updating or maintenance functions on any
of several similar data sets, a different data set (and data set name)
each time the program is executed.

By coding ?? in place of a data set name (in the DS= list of the
PROG RAM statement), data set names can be specified at the time
a program is loaded for execution, rather than when it is coded. In
Figure 10-16, the first entry in the DS= list is coded as ??, and the
second entry as the data set name F I LEA.

Disk/Diskette Input/Output 10-17

10-18 SR30-0436

PROGA
ASTART
RD2

PROGRAM
READ
READ

PROGSTOP

ENDPROG
END

ASTART,DS=(??,FILEA)
DSl,BUFl,END=El,ERROR=E2
DS2,BUF2,END=El,ERROR=E2

Figure 10-16. Terminal load - data set passing

c

Assuming this program is stored on disk/diskette under the name
PROGA (same as initial task name), a terminal operator would re
quest that the program be loaded by hitting the ATTENTION key,
and entering "$L PROGA". The system loader, recognizing that the
first entry in the requested program's DS= list specifies a file to be C
defined at load time, will query the terminal operator with the .. .//
prompt DS1=(NAME,VOLUME):. The operator would then respond
with the name of the data set to be used as DS1 in the format
NAME,VOLUME, if the data set resides on other than the IPL volume,
or with just NAME if the data set is IPL volume resident. For example,
if the operator enters FI LEX in response to the prompt (FI LEX is
on the IPL volume), PROGA, when loaded, will execute as though
the DS= list in the PROGRAM statement were coded DS=(FI LEX,
F I LEA). T"he READ at location AST ART will read from F I LEX,
and the READ at R D2 from. F I LEA.

Load time file definition is also possible when programs are loaded by
other programs, rather than from a terminal. I n Figure 10-17,
PROGA and PROGB both have a data set to be defined at load time
(?? entry in DS= lists). Assuming PROGA is loaded from a terminal,
the terminal operator will supply the missing data set name for PROGA.
PROGB, however, is loaded by PROGA, and therefore PROGA must
pass PROGB's missing data set name.

At location LD1 in PROGA, FI LEZ is defined in the DS= list of the
LOAD statement. When the LOAD is executed, F I LEZ will be sub
stituted for the ?? entry in the PROG RAM statement's DS= list for
PROGB.

c

o

o

PROGA PROGRAM ASTART,DS=(??,FILEA)
ASTART

LDI
LD2

LOAD
LOAD

PROGSTOP

ENDPROG
END

PROGB,DS=(FILEZ),ERROR=E3
PROGB,DS=(DSl),ERROR=E3

PROGB PROGRAM BSTART,DS=(FILEB,??)
BSTART READ DSl,BUF,END=ENDB,ERROR=ERRB

WRITE

PROGSTOP

ENDPROG
END

DS2,BUF,END=ENDB,ERROR=ERRB

Figure 10-17. Program load - data set passing

PROGB will READ from FI LEB, and WRITE to FI LEZ. Note that
data set names defined in the DS= list of a LOAD statement do not
have to exist in the loading program's PROGRAM statement DS=
list.

Disk/Diskette Input/Output 10-19

10-20 SR30-0436

Data set names that are in the DS= list of the loading program's
PROG RAM statement can be passed using the actual name, or by using ~,
the symbolic positional reference DSx. At LD2 in PROGA (Figure \
10-17), PROG B is again loaded, passing the data set DS1. This refers -_ ... /
to the first entry in the DS= list in PROGRA's PROGRAM statement,
which is coded as ?? Again assuming this data set name was supplied
by a terminal operator when PROGA was loaded, that same name will
be passed through to PROGB, becoming the data set used by PROGB
for the WRITE operation. If DS2 instead of DS1 were coded, FI LEA
wou Id have been passed.

When programs using disk/diskette I/O are loaded as overlays, all
names of data sets used by the overlay program must be passed by the
loading program, and the data set names that are passed must be
entries in the DS= list of the loading program's PROG RAM statement.
In Figure 10-18, the PROGRAM statement for PROGA defines
PROGB as an overlay program (PGMS=PROGB). The LOAD state
ment at LD3 will load PROGB as an overlay, because the program
name specified is PGM 1, a positional reference to the PGMS= list.
PROGB uses two data sets, so two data set names are passed to
PROGB in the LOAD statement's DS= list: DS2 and DS1, which
reference F I LEA and ?? in the DS= list for P ROGA. When passing
data set names to an overlay program, the LOAD statement must
use the DSx positional references.

All data sets used by an overlay program must be passed to the
overlay by the loading program, and therefore all data set names
in the DS= list of the PROG RAM statement of a program loaded
as an overlay are treated as though they were ?? entries. For
example, if PROGB is loaded as an overlay, FI LEB will not be
used, unless it is passed by the LOAD statement in the loading
program.

C,
_./

c

PROGA PROGRAM ASTART,DS=(??,FILEA),PGMS=PROGB
ASTART

LD3
WTl

BOONE

LOAD PGMl,DS=(DS2,DSl),ERROR=E3,EVENT=BDONE
WAIT BOONE
PROGSTOP
ECB

ENDPROG
END

PROGB PROGRAM BSTART,DS=(FILEB,??)
DSl,BUF,END=ENDB,ERROR=ERRB BSTART READ

C',:" WRITE DS2,BUF,END=ENDB,ERROR=ERRB

o

PROGSTOP

ENDPROG
END

Figure 10-18. Overlay load - data set passing

Disk/Diskette Input/Output 10-21

10-22 SR30-0436

I n Figure 10-18, if the terminal operator loading PROGA ($L PROGA)
responds to the DS1=(NAME,VOLUME): prompt by entering
FI LEC, PROGA will execute as though the DS= list in the ~=
PROGRAM statement were coded DS=(FI LEC,FI LEA). In the
DS= list of the LOAD at LD3, the first entry is DS2. This first
position in the LOAD statement's DS= list corresponds to the first
position in the DS= list for PROGB. The DS2 references the second
entry in the DS= list of PROGA's PROG RAM statement, which is
coded as F I LEA. The data set name F I LEA is therefore passed to
PROGB as the first entry of the DS= list in the PROG RAM statement
for PROGB. Similarly, the second entry in the LOAD statement's
DS= list will pass F I LEC, the DS1 data set name entered by the
operator, to the second entry in the DS= list for PROGB. PROGB
will execute as though the DS= list in the PROG RAM statement
were coded as "DS=(FI LEA,FI LEC)". The READ will be from
F I LEA, and the WRITE to F I LEC.

c

c

o

DISK/DISKETTE I/O REVIEW EXERCISE-QUESTIONS

1. How many volumes may be defined on a 4962/4963 Disk Storage
Unit? __ ____

2. Which of the following choices, when used to complete the
statement below, makes the statement not true?

"The DS= list in a PROG RAM statement ...

a. . .. must contain an entry for each data set used by the
program."

b. . .. may contain up to nine entries."

c. . .. may specify data sets resident on other than the I P L
volume."

d. . .. is used to define the names of any overlay programs that
may be loaded by the program."

e. . .. may have entries for data sets that will not be defined
until load time."

All of the remaining "Questions for Review" refer to the coding
example in Figure 10-19.

Disk/Diskette Input/Output 10-23

10-24 SR30-0436

PROG1
GO
RD2
IF1
IF2
Nl
LD1
LD2

BUFA
DS3VAL
NBR
RCRD

PROGRAM
READ
READ
IF
IF
NOTE
LOAD
LOAD
PROGSTOP
BUFFER
DATA
DATA
DATA

ENDPROG
END

GO,DS=(DSET1,DSET2,DSET4,DSET9),PGMS=P2
DS3,BUFA,NBR,RCRD,END=E1,ERROR=E2

(, ,),GOTO,E1
(--- ,-- ,--),GOTO,E2
DS3~DS3VA[
P2,DS=(,),ERROR=LDERR

,DS;{=_=~===, ___),ERROR=LDERR

,BYTES
FTQ'
F'21
F' 5 1

P2 PROGRAM PGO,DS=(??,DSET3,??)
PGO READ DS3,BUFF

PR2 READ DS1,BUFF

PR3 READ DS2,BUFF

PROGSTOP
BUFF BUFFER 128

ENDPROG
END

Figure 10-19. Review problem

c'

3. a. How many records will be read by the READ at location GO?
,..--.....

) b. What is the name of the data set used?
,-/

o

o

c. What is the relative record number of the first record that wi II
be read?

d. What should be coded as the first operand of the BUFFER
statement at location BUFA?

Answers: a. _____ _

b. _____ _

c. _____ _

d. _____ _

4. Code the READ at R 02 to read a single record (let count take
default) into BU FA. The record should be the first relative
record (let relrecno take default) in data set DSET4. Do not
code the END= or ERROR= operands. Code the IF at IF1
to check for end-of-data set condition, and the I F at I F2 to
check for other errors.

Answer:

RD2
IF1
IF2

READ
IF
IF

(___ , __ , __) ,GOTO,E 1
(___ , __ , __),GOTO,E2

5. After executing the NOTE instruction at N 1, what will be the
value of location DS3VAL?

Answer: ______ _

6. Code the LOAD instruction at location LD 1 so that when program
P2 executes, the READ at PGO will use data set DSET5, the
READ at PR2 will use DSET9, and the READ at PR3 will read
from DSET3.

Answer:

LD1 LOAD P2,DS=(___ , _____),ERROR=LDERR

Disk/Diskette Input/Output 10 :?:l

c

This page intentionally left blank.

10-26 SR30-0436

o

7. Code the LOAD at location LD2 to load P2 as an overlay
program. In program P2, the READ at PGO should use
DSET1, the READ at PR2 data set DSET2, and the READ
at PR3, data set DSET4.

Answer:

LD2 LOAD ____ ,DS=(___ , ___ , ___),ERROR=LDERR

8. The LOAD at LD2 is a load of an overlay program. What
must be added to PROG 1 to ensure the proper termination
of-execution sequence between P2, the overlay program,
and PROG1, the loading program?
Answer: __________________________________ ___

Disk/Diskette Input/Output 10-27

DISK/DISKETTE I/O REVIEW EXERCISE-ANSWERS

1. Each 4962/4963 may have as many volumes as required defined, C within the physical size limitations of the device.

2. All choices except choice "d" will complete the statement
truthfully. The "PGMS=" keyword operand is used to
define the overlay programs.

3. a. 2 records will be read (count=NBR=2)

b. DSET4 will be used. DSET4 is the third entry in the DS=
list, and is referenced by DS3 in the READ at GO.

c. relative record number 5 (relrecno=RCRD=5)

d. 512 or more, because two 256 byte records are being read
(NBR=2).

4. RD2 READ DS3,BUFA
IF1 IF (DS3,EQ,1 O),GOTO,E 1
IF2 IF (DS3,NE,-1),GOTO,E2

5. DS3VAL will/contain 2, because the next record pointer is
updated by +1 following the READ at R2.

6. LD1 LOAD 11:>2,DS=(DS4, DSET5), ERR 0 R= LD ERR

7. LD2 LOAD PGM1 ,DS=(DS2,DS3,DS1) ,ERROR=LDE RR

8. The LOAD at LD2 should have the EVENT= operand coded,
declaring an event name. An ECB with that event name should C also be coded, and a WAIT on that event name should occur
prior to the PROGSTOP.

c
10-28 SR30-0436

C)

TERMINAL STATEMENT

o

Section 11. Terminal I/O

OBJECTIVES: After completing this section, the student should be
able to:

1. Describe roll screen and static screen operation

2. Use PRINTEXT, PRINTIME, PRINDATE, and PRINTNUM
instructions to display data on a terminal

3. Use READTEXT and GETVALUE instructions to read data
from a terminal

4. Understand the purpose of specialized terminal instructions
such as QUESTION, TERMCTRL, etc.

The Event Driven Executive terminal support is designed to be as
device independent as possible. With few exceptions, the user need
not be concerned with what type of device is being driven by terminal
functions coded in the program. The same sequence of terminal
output instructions, for instance, may be used to print data on a
matrix or line printer, on a locally attached TTY device or a remote
ACCA terminal, or to display the data on an electronic display
screen device.

The specific terminal suppo'rt applies to the IBM 4978, 4979 and 3101
displays. The 3101 Models 10, 11, 12 and 13 operate in character (roll
screen) mode. A 3101 operating in character mode, attached via the
teletypewriter adapter card, can be used as the system console. The
3101 Models 20, 21, 22 and 23 can operate in either character mode or
block (static screen) mode. To be used as a static screen (block mode)
device, the 3101 M2 must be attached via the single line or multiline
asynchronous communications adapter card. Discussions in this section
which refer to a 3101 operating in block mode will be designated as
3101 M2.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
System Guide (SC34-1702), "TERMINAL Configuration Statement."

Terminals are defined to the system using the TERMINAL system
configuration statement. This statement generates system control
blocks and tables containing the logical and physical variables
necessary to operate the terminal. Among the physical variables
described in the TERMINAL statement operands are the type of
terminal (TTY, printer, display, etc.), its hardware address, the type
of transmission code used, and other hardware related parameters
unique to the device being defined.

Terminall/O 11-1

Roll Screens

NH IST= Operand

11-2 SR30-0436

The high degree of device independence is achieved in part by treating
all terminals as though they were line printers, differing only in their
page sizes (forms length) and margin settings, also defined by
TERMINAL statement operands.

The page size for an IBM 4978/4979/3101 terminal is 24, the maximum
number of lines that can be displayed on the screen. The
4978/4979/3101 Displays can be operated as roll screen or static screen
devices (SCREEN= operand in TERMINAL statement). A roll
screen device operates in much the same way as a typewriter.
Assuming a blank screen (clean page in typewriter) to start, data
is displayed line by line, beginning with line 0 at the top of the
screen and continuing through line 23 at the bottom of the screen,
just as a typewritten page is filled from top to bottom. When a
page being typed is full, the completed page is removed, a clean
page is inserted, and typing continues at the top of the new page.
When a roll screen device's screen is full (all 24 lines used), an
attempt to display the next line results in removal of the old screen
(screen is erased) and display of the new line on line 0, at the
top of the screen.

Unlike a typewriter, the display is not a hardcopy device, and therefore
the information on the old screen (previous page) cannot be referred
to after it has been erased. If an operator entry is expected and the
operator prompts describing that entry were displayed on a now-erased
previous screen, time could be wasted in looking up the input request
in a reference book, or in requesting that the program repeat the
display of the prompt.

This potential problem is avoided by coding the NHIST= operand of
the TERMINAL statement to reserve part of the screen as a history
area. N H IST= is the number of history lines you wish to reserve.
For example, if NHIST=12 is coded, the top twelve lines of the
screen are reserved for a history area (physical lines 0 through 11), and
the bottom twelve lines (physical lines 12 through 23) as a work area,
operating in the normal roll screen fashion. (The 4979 Display
supported by the starter system is defined with NH IST=12, and
NHIST=12 will be the default for user defined 4978/4979 displays if
NHIST= is left uncoded. NHIST defaults to 0 for 3101.)

Since all terminals, including electronic display screens, are treated
logically as printers, forms control commands are used to position
displayed output on a screen, just as lines and spaces may be skipped
on a printout to position a print line on a page. Although physically
(with NH IST=12) the work area occupies lines 12 through 23, logically,
for purposes of forms control interpretation, they are treated as
lines 0 through eleven. Display information directed to line 0 will be
displayed on physical line 12, the top of the work area.

(;,
'--'/

c

o

Static Screens

Again beginning with a blank screen, successive lines are displayed
starting at the top of the work area, and continuing to the bottom
of the screen. With the work area full, an attempt to display the
next line will cause:

1. the information displayed in the "work area" to be moved up
into the "history area", (physical lines 0 through 11).

2. the "work area" (lines 12-23) to be erased

3. display of the new line on physical line 12, the top of the
work area.

Each time the work area is exceeded, the information displayed there
is moved up into the history area, thereby retaining some past history
for viewing. The work area and history area do not have to be of
equal size; you may code NH IST= to retain as few as 0 lines of
previous data, or as many as 23 lines.

Terminals operated as roll screen devices are usually used in an
interactive mode, to communicate between a program and an
operator. Operator prompts and their associated responses are ex
changed on a line by line basis. The display of a new line, or the read
of an operator entry is usually initiated by the operator pressing a
terminal control key such as ENTE R or one of the program function
keys, indicating that the operation can proceed. A common example
is the series of prompts and replies that are exchanged between
program and operator when using the Event Driven Executive
utilities.

When a 4978/4979/3101 M2 Display is defined as a static screen device
(SCREEN= operand in TERMINAL statement), the screen is treated
as a page of information. The screen may be formatted with pre
determined operator prompts (input field names), and these areas
may be designated as "protected", preventing accidental overlay
by input data. The input fields of a static screen are usually
filled in by the operator without interaction with the program.
Terminal operation keys such as TAB, BACKSPACE, or the cursor
positioning keys are used to move the cursor to the required input
field positions.

When all required input fields have been entered, the operator
presses the ENTE R key (or a designated Program Function key)
to signal the program that the page is complete. The program then
reads all the information on the screen, erases the screen, and dis
plays a new page (screen with prompts, but blank input fields) for
the operator to fill.

Terminals operated as static screen devices must be either IBM 4978,
4979 or 3101 M2 Displays, as some of the specialized instructions used
with static screens can be interpreted only by the 4978/4979/3101 M2
hardware. Other electronic display screen devices and, of course, all
hardcopy terminals, are operated as roll screens.

Terminal I/O 11-3

ENOT/DEOT INSTRUCTIONS

11-4 SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), IIENOT", "DEOT."

When a program is loaded from a terminal, that terminal is dynami
cally designated by the system as the terminal to be used by terminal
I/O instructions in the program. Each terminal I/O instruction auto
matically has exclusive use of the terminal during the execution of
that individual operation; only one task at a time is allowed to per
form I/O on the terminal.

If more than one task is using the terminal, terminal operations
from different tasks cou Id become interspersed. I n cases where this
is undesirable, the ENOT (enqueue terminal) facility may be used to
reserve the terminal for the exclusive use of a task, thereby pre
venting other tasks from using the terminal until the task issuing
the ENOT releases it (DEOT).

I I
I I
I I

label l ENQT: name,BUSY=
'--..--' 'I I

OPTIONAL MUST BE CODED OPTIONAL

Figure 11-1. ENQT format

If ENOT is coded without the optional name operand, the default
is to the terminal that loaded the program. The task issuing the
ENOT will acquire exclusive control of the loading terminal, and will
retain control until executing a DEOT instruction. If the terminal is
busy (enqueued by another task) when the ENOT is executed, the
task issuing the ENOT is placed in a wait state, queued up waiting for
the terminal to become available. If you do not wish to be queued
if the terminal is busy, the BUSY= operand should be coded with the
label of the instruction to which you wish control transferred.

The ENOT may also be used to gain exclusive control of a terminal
other than the loading terminal. The symbolic name assigned to a
terminal is the name coded as the label of the TERMINAL statement
defining the device. Coding a name in the label field automatically
defines the terminal to the system as a global resource that may be
enqueued by user programs (ENOT). There are three symbolic ter
minal names that have special significance, as they are used by the
supervisor or system utility programs:

1. $SYSLOG this is the name of the system logging device or
operator station, and must be defined in every system. In the
system configuration statements used to generate the supplied
supervisor, $SYSLOG is the label of a TERMINAL statement
defining a 4978 Display.

c

~

(~,
.............. J"~'

c

o

2. $SYSLOGA This is the name of the alternate system logging
device. I n the event that unrecoverable errors prevent use of
$SYSLOG, the system will use the $SYSLOGA terminal as the
system logging device/operator station. If defined ($SYSLOGA
is optional), this device should be a terminal with keyboard
capability, not just a printer. The supplied supervisor
$SYSLOGA terminal is a TTY device.

3. $SYSPRTR This is the name of the system printer, and is also
optional. If defined, the output from some system programs will
be directed to this device. In the supplied supervisor,
$SYSPRTR is defined as a 4974 matrix printer.

I n addition to being used by the system, these devices may also be
enqueued (ENQT) by user programs. In Figure 11-2, the ENQT/DEQT
coding example refers to the terminals defined in the TERMINAL
configuration statements shown at the top of the illustration. For
simplicity, only the required TERMINAL statement operands are
coded; all other operands are default values.

$SYSLOG TERMINAL oEVICE=4979,AooRESS=04
$SYSPRTR TERMINAL oEVICE=4974,AooRESS=Ol
$SYSLOGA TERMINAL oEVICE=TTY,AooRESS=OO
oSPLY1 TERMINAL oEVICE=TTY,AooRESS=10,ENo=YES

TERMTASK PROGRAM START
START ENQT

01
E2
E3

oEQT
ENQT
ENQT

02 oEQT
PROGSTOP
ENoPROG
END

SSYSPRTR,BUSY=E3
$SYSLOG

Figure 11-2. ENQT/OEQT operation

Assuming that the loading terminal is the TTY device DSPL Y1, the
ENQT instruction at location START will acqu ire exclusive control
and retain control until execution of the DEQT at 01. No name
operand is coded for the ENQT, so the loading terminal DSPL Y1
is enqueued, thereby preventing other tasks from using DSP L Y 1.

TerminalllO 11-5

IOCB STATEMENT

11-6 SR30-0436

The .ENQT at E2 is directed at the 4974 matrix printer, $SYSPRTR.
If the matrix printer is already in use (enqueued), control is trans
ferred to the next instruction at location E3 (BUSY=E3). This is an
attempt to enqueue the 4979 display terminal $SYSLOG. If
$SYSLOG is already enqueued, TERMTASK will be placed in a wait
state, waiting until the terminal becomes available. In effect, the two
ENQT statements at E2 and E3 may be interpreted as "try to get the
system printer; if it is in use, get $SYSLOG instead and use it."

If the ENQT at E2 executes successfully, acquiring control of $SYSPRTR,
the ENQT at E3 will execute as a no-op. When an ENQT for a given
terminal has successfully executed and enqueued that terminal,
ensuing ENQTs issued by the same task directed to terminals other than
the terminal already enqueued are ignored. The system allows anyone
task to enqueue only a single terminal at a time. To switch from an
already enqueued terminal to a different terminal, a DEQT must be
issued before the ENQT for the new device· is executed. DEQT
commands are non-specific (no "name" operand), acting upon
whatever terminal is currently enqueued by the issuing task.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "IOCB."

One of the system control blocks generated by assembly of the
TERMINAL system configuration statement is called an Input
Output Control Block (IOCB). A terminal IOCB contains infor
mation such as the terminal's forms configuration (page size, margins),
operating mode (static, roll), and history area size (N H IST= operand).
A terminal is not restricted to the values coded for these parameters
in the TE RM I NAL statement; they can be dynamically changed by a
user program.

In Figure 11-3, a 4979 Display called DSPL Y1 is defined in the
TERMINAL statement at the top of the illustration. As you know from
the previous discussion of roll screen operation, the NH IST=
default value (for 4978/4979 Displays) is 12, dividing the screen
into a history area and a work area of twelve lines each.

In TERMPROG (Figure 11-3), assume the user wants a screen that
operates so that each new line is displayed on the last (bottom) line of
the screen, forcing the previously displayed 24 lines up one for each
new line displayed. This will cause the screen to act as a continuous
scroll, with each new line forcing the oldest previous line off the,
screen at the top.

CI

C)

C)

DSPL Y 1 TERMINAL DEVICE=4979,ADDRESS=20

TERMPROG
NEWHIST
SCROLL

PROGRAM
IOCB
ENQT

DONE DEQT
PROGSTOP
ENDPROG
END

Figure 11·3. IOCB/ENQT

SCROLL
DSPLYl,NHIST=23
NEWHIST

To operate in this way, a history area of 23 lines is required, leaving
a one line work area for new entries. At location N EWH 1ST is a
user-coded IOCB, which references terminal DSPL Y1, and defines
NHIST= as 23. The ENQT at SCROLL references the IOCB label
NEWH 1ST. Execution of the ENQT acquires exclusive control of,
and puts the user-coded IOCB in effect for, the named terminal,
DSPL Y1. (If no terminal name is coded, the system will default to
the loading terminal.) Until execution of the DEQT at DONE, DSPL Y1
will operate with NHIST=23. The DEQT will cause DSPL Y1 to revert
back to the IOCB values generated by the TERMINAL system
configuration statement.

I n the same manner, 4978/4979 Displays that are defined in
TERMINAL statements as roll screen devices (SCREEN= default is
RO LL) may be dynamically enqueued for static screen operation by
a user program. Because Event Driven Executive system and utility
programs expect a roll screen configuration on terminals they commu
nicate with, you should define the terminals as roll screen devices
in the TE R M I NA L statements, and enqueue them for static screen
operation (ENQT/IOCB) when required. The exception is where a
terminal is never used to communicate with the supervisor or system
utilities (always used exclusively as a user static screen application
terminal).

The only terminals that may be enqueued directly, by coding the
label of the TE RM I NAL statement in the name operand of an ENQT
statement, are the two special system terminals, $SYSLOG
and $SYSPRTR. User-defined terminals and $SYSLOGA are enqueued
by coding the label of the TERMINAL statement in the name operand
of an IOCB statement, and referencing the IOCB label in the ENQT
name operand.

Terminal I/O 11·7

DATA REPRESENTATION

In general, alphameric (text) data to be written to a terminal is
represented in storage as an EBCDIC character string. The system
automatically converts this character string into the code required
by a specific terminal, when an output operation directed to that
terminal is executed. (For some specialized terminals employing
unique control characters imbedded within the text, translation can
be inhibited.)

In a similar manner, input from a terminal is translated into an
EBCD IC character string by terminal read operations. For both input
and output operations involving text data, a user-defined storage area
is used to hold the EBCDIC character string. This storage area may
be implicit, as when an output message (prompt) is coded as an
integral part of an output or input command, or explicit, when an
output or input operation specifies the label of a user-defined
TEXT statement.

PRINTEXT INSTRUCTION

11·8 SR30·0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "PRINTEXT."

The PRINTEXT instruction is used to print (display) messages on a
terminal, and/or to control forms movement (position display/
cursor on screen).

1 abel
~

PRINTEXT

OPTIONAL MUST BE CODED

Figure 11·4. PRINTEXT format

msg,SKIP=,LINE=,SPACES=,MODE=,PROTECT=

AT LEAST ONE
OPERAND
MUST BE CODED

At least one of the PRINTEXT operands must be coded. The msg
operand may be coded as the actual data (enclosed in apostrophes),
or may be the label of a TEXT statement containing the message.

In Figure 11-5, both PRINTEXT instructions will execute the same;
the message "READY FOR INPUT" will be written to the loading
terminal (ENQT with no terminal name or IOCB label specified).

c

c

o

o

TERMPROG PROGRAM

START
PI

P2

Tl

ENQT
PRINTEXT

PRINTEXT
DEQT
PROGSTOP
TEXT
ENDPROG
END

Figure 11·5. "msg" operand

START

'READY FOR INPUT '

Tl

'READY FOR INPUT '

I n the P R I NTEXT at P1 the storage area containing the E BCD I C
character string READY FOR INPUT is implicitly generated (assembled)
as part of the PRINTEXT instruction; the PRINTEXT at P2 references
the user-defined (explicit) string at location T1.

Terminals are buffered devices. Data to be displayed on a terminal
is transmitted to the terminal's buffer, and remains in the buffer until
some condition occurs that forces the contents of the buffer to be
displayed. Among the several buffer forcing conditions that can cause
the contents of a buffer to be displayed or printed is the execution
of a PRINTEXT with the LlNE= or SKIP= forms control operands
coded.

label PRINTEXTmsg,SKIP=,LINE=,SPACES=>MODE~tPROT~CT~

Figure 11·6. Forms control operands

The SPACES= forms control operand positions the message or cu rsor
within a line, but does not force the device buffer. SKIP=, LlNE=,
and SPACES= may be coded as the only operand(s), or may be used
with other operands, including msg. When coded with msg, the forms
control operation is executed before the msg text is transmitted to
the buffer.

In Figure 11-7, assume the loading terminal is $SYSLOG, a 4979
Display. To better illustrate the effect of the forms control operands,
the ENQT at START references an IOCB which sets N H IST= to o.
The entire screen will now operate as a roll screen work area.

Terminal I/O 11·9

11·10 SR30-0436

TERMTEST PROGRAM
START ENQT
PI PRINTEXT
P2 PRINTEXT
P3 PRINTEXT
P4 PRINTEXT
P5 PRINTEXT
P6 PRINTEXT
P7 PRINTEXT
P8 PRINTEXT
pg PRINTEXT

Tl
T2
IOCBl

DEQT
PROGSTOP
TEXT
TEXT
IOCB
ENDPROG
END

START
IOCB1
LINE=O
'MESSAGE 1 ',SPACES=10,LINE=5
'MESSAGE 2 ',SPACES=20,SKIP=2
'MESSAGE 3 ',SPACES=70

MESSAGE 4 ',SKIP=l
'MESSAGE 5 ',SPACES=5
T1
T2
'TEST ENDED' ,SKIP=l

'MESSAGE 6 ',LENGTH=15
'MESSAGE 7 1

$SYSLOG,NHIST=O

Figure 11·7. PRINTEXT example

The PR I NTEXT at P1 illustrates a forms control operand coded
without the msg command. Since the example is using a 4979
Display, this command readies the screen for display on line O. If
directed to a hardcopy device, this would be the equivalent of a
page eject command.

The P R I NTEXT at P2 has both msg operand (text) and forms control
operands coded. The forms control operation wi II be executed first.
The LI N E=5 forces the contents of the buffer onto line 0, and clears
the buffer. (Because no msg operand was coded in the previous
PRINTEXT (P1), the buffer is empty, and nothing is displayed on
line 0.) Next, the terminal is readied for display on line 5.

The SPACES=1 0 skips over the first ten buffer positions, and
MESSAGE 1 goes in the next ten buffer positions (11 through 20).
The text MESSAGE 1 is still in the buffer; no data has yet been
displayed.

The PR I NTEXT at P3 performs the following functions:

1. The SKIP=2 forms control operand forces the buffer, displaying
MESSAGE 1 on line 5.

2. The cursor is positioned for line 7 (SK I P=2), and the text
MESSAGE 2 is placed in buffer positions 21 through 30,
skipping over the first 20 buffer positions (SPACES=20).

After execution of the PR I NTEXT at P3, the display screen is as
shown in F igu re 11-8.

c

C')

C)

C)

LINES

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

~HARACTER
POSITIONS

MESSAGE 1

11111111112222222222333333333344444444445555 66677777777778
123456789012345678901234567890123456]8901234567890123 78901234567890

Figure 11-8. After P3 execution

The PRINTEXT at P4 (Figure 11-7) has no LINE= or SKIP=
operands coded, so the buffer is not forced out. The text M ESSAG E 3
is concatenated to the cu rrent contents of the buffer, M ESSAG E 2.
MESSAGE 2 is in buffer positions 21 through 30. The SPACES=70
operand in the PRINTEXT at P4 skips over 70 buffer positions,
beginning with position 31. The text M ESSAG E 3 wi II therefore
occupy buffer positions 101 through 110.

The display screen is only 80 positions wide. Text data positioned
outside the line length of a terminal is truncated, and therefore
MESSAGE 3 will not be displayed. (OVFLlNE=YES must be coded
in the TERMINAL statement to allow display of text positioned
outside the right margin.)

The PRINTEXT at P5 (Figure 11-7) performs the following functions.

1. displays MESSAGE 2 in positions 21 through 30 on line 7
(SK I P= 1 forces the buffer).

2. specifies line 8 for the next output line (SKIP=1) and places
MESSAGE 4 in the first fifteen buffer positions. Figure 11-9
shows the screen after execution of the P R I NTEXT at P5.

Terminall/O 11-11

11-12 SR30-0436

LINES

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

MESSAGE 1

MESSAGE 2

CHARACTER 11111111112222222222333333333344444444445555 66677777777778
POSITIONS 12345678901234567890123456789012345678901234567890123 78901234567890

Figure 11-9_ After P5 execution

The PRINTEXT at P6 (Figure 11-7) skips buffer positions 16 through
20 (SPACES=5) and concatenates the text M ESSAG E 5 into positions
21 through 30.

Explicitly defined text is also concatenated. The PR INTEXT at
P7 references the TEXT statement at T1. MESSAGE 6 is added to
the buffer in positions 31 through 40. Although the text buffer at T1
is 15 characters long (LENGTH=15), only the data between the
apostrophes is moved into the buffer. The P R I NTEXT at P8 adds
M ESSAG E 7 in positions 41 through 50.

When the PR I NTEXT at pg executes, the buffer contents are dis
played on line 8, and the cursor is moved to line 9 (SK I P= 1).
TEXT ENDED is placed in the first ten buffer positions. The screen
now looks like Figure 11-10.

o

C
-...,
)

o

LINES

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

MESSAGE 1

MESSAGE 2
MESSAGE 4 MESSAGE 5 MESSAGE 6 MESSAGE 7

CHARACTER 11111111112222222222333333333344444444445555 66677777777778
POSITIONS 12345678901234567890123456789012345678901234567890123 78901234567890

FiglJre 11-10. After P9 execution

There is no PR I NTEXT with a forms control operand following the
PRINTEXT at P9, but the TEST ENDED message will still be trans
ferred from the buffer and displayed. Execution of a DEOT, like
a LI NE= or SKIP= forms operation, is a buffer-forcing condition.

In the example in Figure 11-7, the program would still execute
correctly if the DEOT were not coded. The PROGSTOP statement
will dequeue the terminal (implicit DEOT) and force the buffer. You
should still get in the habit of coding explicit DEQTs, because the system
cannot be relied upon to perform such housekeeping chores in all cases.
For example, if the terminal instructions in Figure 11-7 were part of
a secondary task and the DEOT were left out, the terminal would
remain enqueued and unavailable to the rest of the system after the
secondary task completed execution. Unlike the PROGSTOP,
execution of an ENDTASK instruction does not automatically
issue a DEOT.

TerminalllO 11-13

11 -14 SR 30-0436

T1
Sl
PI
P2
D

LINES

__ --_0 o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

MESSAGE 1

MESSAGE 2
MESSAGE 4 MESSAGE 5 MESSAGE 6 MESSAGE 7

TEST ENDED

CHARACTER 11111111112222222222333333333344444444445555 66677777777778
POSITIONS 12345678901234567890123456789012345678901234567890123 78901234567890

Figure 11-11. After P1 through DEQT

Figure 11-11 shows the screen after all PRINTEXT instructions and the
DEQT have been executed.

When writing to roll screen devices, an at sign (@) imbedded in the
text will be interpreted as a new line or "carriage return" control
character. I n Figure 11-12, the programs T1 and T2 are logically
equivalent.

PROGRAM
ENQT
PRINTEXT
PRINTEXT
DEQT
PROGSTOP
ENDPROG
END

Sl

'FIRST MSG'
'2ND MSG' ,SKIP=l

T2 PROGRAM
S2 ENQT
Xl PRtNTEXT
X2 PRINTEXT
X DEQT

PROGSTOP
ENDPROG
END

S2

'FIRST MSG'
'@2ND MSG'

Figure 11-12. @ operation

The PRINTEXT statements at P1 and X1 are identical, and will put
the text FI RST MSG in the buffer. In program T1, the SKIP=1
operand in the PRI NTEXT at P2 will force the buffer, displaying
FIRST MSG on the current line, and move the display position to the
next line. 2ND MSG will be placed in the buffer.

r' '-_./

c

o

The @ imbedded in the msg operand of the PRINTEXT at X2 (program
T2) has the same effect as SKIP=1, forcing the buffer contents onto
the current line, and moving the display position to the next line. Unlike
the SK I P= and LI N E= operands, the @ or new line operation is executed
at the time it is encountered in the character buffer. The SKIP=1
operand in task T1 executes before 2N D MSG is transferred to the
buffer, because SKIP= and LlNE= operations always execute before
the buffer transfer. The new line operation in task T2 is also
executed before 2N D MSG is transferred to the buffer because the
@ precedes the 2ND MSG text. Were the @ imbedded further along
in the text string, characters to the left of the @ would be con-
catenated to the FIRST MSG text and displayed on the same line as
FI RST MSG, while characters to the right of @ (as shown in Figure
11-12) would be displayed on the next line.

In both T1 and T2, the 2ND MSG text is moved out of the buffer
and displayed by execution of the DEOT (D or X).

label . PRINTEXT msg ,SKIP=,LINE;;~SPACES;; ,MODE= ,PR9TECT:=

Figure 11-13. MODE= operand

When you want the @ character to act as a normal text character
(not to be interpreted as a new line character), the MODE= keyword
operand should be coded as MODE=LlNE.

The MODE= operand has a special function when used with
PR I NTEXT instructions directed to static screen devices (4978s or
4979s) with protected data areas.

label PRINTEXT msg,SKIP=,LINE=,SPACES=,MODE=,PROTECT=

Figure 11-14. PROTECT= operand

Protected data is written to a static screen by coding the PROTECT=
keyword operand as PROTECT=YES. If MODE=LlNE is coded in a
subsequent PR I NTEXT that is writing to a line containing protected
data, the protected areas are automatically skipped over when the
buffer is transferred to the screen.

Terminall/O 11-15

READTEXTINSTRUCTION

11-16 SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "READTEXT."

The R EADTEXT instruction is used to read an alphameric text
string, entered by a terminal operator, into a user-defined text buffer
in storage.

I
I

I
I

1 abe 1
'-v-I

OPTIONAL

:READTEXT locJpmsg,PROMPT=,MODE=,SKIP=,LINE=,SPACES=
~----~----~I ,~---------------v----------------~~

MUST BE CODED OPTIONAL

Figure 11-16_ READTEXT format

1 abel

The loc operand is the label of the first location of the storage area
that will receive the EBCDIC character string from the terminal.
The READTEXT instruction (also PRINTEXT) operates with TEXT
statements, using the length and count control bytes that precede a
character buffer generated by a TEXT statement assembly. The loc
operand is, therefore, usually the label of a TEXT statement; if it
is coded as the label of a character buffer not generated by a TEXT
statement, the user must set up the control bytes preceding the
buffer to meet TEXT statement conventions.

READTEXT loc,pmsg,PROMPT=,MODE=,SKIP=,LINE=,SPACES=

Figure 11-17. pmsg and PROMPT= operands

label

The pmsg operand is the prompt message (enclosed in apostrophes)
or the label of a TEXT statement containing the prompt message
you wish displayed before pausing to accept the operator input. The
pmsg operand works in conjunction with the PROMPT= keyword
operand. If PROMPT= is coded as PROMPT=UNCOND (which is the
defau It if it is not coded), the prompt message specified by the pmsg
operand will always be written. If PROMPT= is coded as
PROMPT=COND, advance input is allowed, and the prompt message
mayor may not be written. Advance input allows an operator to
enter more information on a line than is suggested by the prompt
message for that line. An operator familiar with a certain prompt/
response sequence can enter all items in response to the first prompt,
thereby skipping succeeding prompt messages. The use of
PROMPT=COND will be illustrated in an example later in this section.

READTEXT loc,pmsg,PROMPT=,MODE=~SKIP=,LINE=,SPACES=

Figure 11-18. MODE= operand

c

c

o

label

The MODE= operand may be coded MODE=WORD (the default,
if not coded) or MODE=LlNE. If MODE=WORD is coded, transfer
of data from a terminal buffer to a user text buffer is terminated by:

1. a blank (space) character in the input field

2. exhaustion of the character count in the user text buffer (input
exceeding input buffer length - truncation of input occurs)

3. if directed to a static screen, the beginning of a protected field.

If MODE=LlNE is coded, the input data may contain imbedded
blanks without terminating the transfer. If a READTEXT with
MODE=LlNE is directed to a static screen, protected areas do not
occupy user TEXT buffer positions; only the unprotected areas are
read.

REAOTEXT loc,pmsg,PROMPT~~MOOE=,SKIP~,LINE~,SPACES=

Figure 11-19. Forms control operands

The SKIP=, LlNE=, and SPACES= operands perform the same function
as with the PR I NTEXT instruction, specifying the line and position
within the line where the next operation will take place.

READTEXT operation, including some of the operand variations
just discussed, is illustrated in Figure 11-20. Assuming the program
is loaded from a 4979 Display, the ENQT at START changes the
(defaulted) history area from 12 lines to none, and enqueues the
terminal. The LI N E=3 operand in the R EADTEXT at R 1 readies
the terminal for display on line 3, and the loc operand specifies a
20-character text buffer at location T1 as the storage area that will
receive the input data.

The R EADTEXT at R2 specifies T2 as the input buffer. The pmsg
operand is the label of the TEXT statement T3, containing the
prompt message ENTER PART NBR:.

When the R EADTEXT at R 1 executes, the prompt message ENTE R
PART NAME will be displayed on line 3, the cursor will be positioned
just following the colon in the prompt message, and task TE RM will
be suspended, waiting for operator input.

As an operator keys an entry onto the screen, there is no program
involvement. The actual input operation (transfer of terminal buffer
information to storage) does not begin until the program is signalled
that the input is complete. When the operator is satisfied that the
input is correct, he/she will press the ENTER key, initiating the
actual transfer. (The Program Function keys are also interrupt
generating, and are frequently used in operator/terminal communica
tion. They will be covered later in this section.)

Terminal 1/0 11-17

11-18 SR30-0436

Assume that the operator, in response to the ENTER PART NAME:
prompt, enters B RACKETS, and then presses the ENTE R key. The ~
READTEXT at R1 will transfer the contents of the terminal buffer to "-.. /
the text buffer at T1. TheREADTEXT at R2 will then display the
prompt message ENTER PART NBR: on the next line, and TERM
will again be suspended, waiting for operator input.

The operator then enters 105636, and presses E NTE R again. The
READTEXT at R2 transfers 105636 to the text buffer at T2, and the
program runs to completion.

TERM
lOCB1
START
R1
R2

T1
T2
T3

PROGRAM
lOCB
ENQT
READTEXT
READTEXT
DEQT
PROGSTOP
TEXT
TF.:XT
TEXT
ENDPROG
END

START
NHlST=O
lOCB1
T1,'ENTER PART NAME:' ,LlNE=3
T2,T3,PROMPT=COND

LENGTH=20
LENGTH=6
'ENTER PART NBR:'

Figure 11-20. R EADTEXT operation

If the operator knows that the prompt ENTER PART NBR: will ~
follow the first prompt of ENTER PART NAME:, he may make both \'
the part name and part number entries on the same line (line 3), in _./
response to the first prompt. The READTEXT at R2 has PROMPT=
COND coded, meaning that the prompt message ENTER PART NBR:
will be issued conditional on the absence of advance input in the
previous operation.

If the operator entered BRACKETS 105636 when the first prompt
ENTER PART NAME: was displayed, the READTEXT at R2 would
detect advance input, and would transfer the second part of the entry
(the advance input, 105636) into the text buffer at T2, without
issuing the prompt message ENTER PART NBR:, and without
suspending TERM to wait for the ENTER key.

The presence of advance input is indicated by an imbedded blank
within an input character string. PROMPT=COND will, therefore,
not work if the previous operation (the operation where advance
input is expected) has MODE=LlNE in effect, allowing imbedded
blanks. In this case, the operation would not terminate when a
blank in the input is found.

c

C)

Since advance input (PROMPT=COND) can only be used when
MODE=WORD is also used, care must be taken that no blanks,
other than those separating entries, appear in the input string.
For example, if the operator wished to use advance input, but
mistakenly entered WALL BRACKETS 105636, the first input
operation (READTEXT at R1) would terminate with the blank
between WALL and B RACKETS, and WALL would be transferred
to the text buffer T1. The R EADTEXT at R2, operating with ad
vance input because of the imbedded blank, would transfer BRACKE
into text buffer T2, would not issue the prompt at T3, and would
terminate due to exhaustion of the character count of 6 in the input
buffer. The actual part number 105636 would never be read.

OPERATOR CONTROL OF PROGRAM EXECUTION

. PF and Attention Key Haf1dling

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "Terminal I/O - Attention
Handling", "ATTN LIST", "ENDATTN."

Attention routines are user routines that service interrupts generated
by pressing the ATTENTION key on a terminal (review Attention
Lists in Section 3). The ATTN LIST statement is used to define oper
ator entries and corresponding program locations that will receive
control when the defined entries are made.

The Program Function keys on 4978/4979/3101 M2 Displays generate
interrupts similar to those generated by the ATTENTION key and the
entry points of routines to service these PF interrupts may also be
defined using the ATTN LIST statement.

The ATTN LIST statement in Figure 11-21 defines three attention
routine entry points. SET1, the first entry point, operates with the
ATTENTION key. If an operator presses ATTENTION, enters
the characters ONE, and then presses the ENTER key, location SET1
receives control.

Terminall/O 11-19

11-20 SR30-0436

PROG

START

BACK
PRINT

PFPRINT

SET1

PI

END

OUT
SWITCH

PROGRAM
ATTNLIST
IF
IF
IF

GOTO
MOVE
PRINTEXT
PRINTEXT
GOTO
MOVE
PRINTEXT
PRINTEXT
GOTO
MOVE
ENDATTN
MOVE
ENDATTN
MOVE
ENDATTN
PROGSTOP
DATA
ENDPROG
END

Figure 11-21. Attention routines

START
(ONE,SET1,$PF1,P1,$PF,END)
(SWITCH,EQ,l),GOTO,PRINT
(SWITCH,EQ,2),GOTO,PFPRINT
(SWITCH,EQ,3),GOTO,OUT

START
SWITCH,O
'ATTENTION INTERRUPTI
SKIP=l
START
SWITCH,O
IPROGRAM FUNCTION KEY #1 1

SKI P= 1
START
SWITCH,l

SWITCH,2

SWITCH,3

FIOI

Program Function keys are identified in an ATTN LI ST statement by
the system convention "$PFx", where x is an integer between 1 and
6, corresponding to Program Function keys PF 1 through PF6. I n this
example, location P1 will get control when PF1 is pressed. (The
x = integer between 1 and 6 applies to the 4979 Display. When using
the 4978 Display, many more interrupting keys are available, and the
PFx in an ATTN LIST statement may range between PF1 and PF254.)
The 3101 M2 has 8 program function keys available.

When $PF is used without a specific number, it is interpreted as all
PF keys not previously defined (to the left of this entry) in this
ATTNLIST statement. In Figure 11-21, Program Function key 1 is
previously defined (middle operand pair $PF1,P1), so location END
will get control if PF2 through PF6 is pressed, and P1 will get control
if PF 1 is pressed. If the second and third operand pairs in the
ATTN LIST statement were coded in reverse order, END would get
control when any PF key was pressed, including PF 1; control would
never be transferred to P 1.

Attention routines execute as part of the system keyboard task, not
as part of the user task within which they appear. Since user inter
ference with system keyboard task execution is clearly undesirable,
certain I/O and task control instructions are not allowed within
attention routines. See the reading assignment for a list of excluded
instructions.

(~ ,
'--.~/

QUESTION Instruction

C)

When the keyboard task detects an ATTENTION or PF key interrupt
for a task with the appropriate entry points defined in an ATTN LIST
statement, part of the response process is to briefly enqueue the
interrupting terminal (ENQT). If the user task has an ENQT already
in effect, the keyboard task is prevented from getting in. For an interrupt
resulting from the operator's pressing the ATTN key, the system cannot
present the> prompt character until the user program issues a DEQT,
at which time the> will be displayed. For interrupts generated by
depression of PF keys or the ENTE R key (while the terminal is
enqueued by the user), the system returns an identifying code to the user
program. This code can be examined by user instructions to determine
which key was pressed. All PF keys and the ENTER key will present
identifying codes; the user is not restricted to those PF keys defined
in an ATTN LIST statement whose function has been temporarily
inhibited by a user ENQT. Examples later in this section will illustrate
how to retrieve and use the identification codes resulting from PF
key or ENTE R key interrupts.

Attention routines execute on hardware level 1, thereby automatically
preempting execution of all user tasks on levels 2 and 3. They should,
therefore, be kept very short and are usually limited to the setting
of a program switch (or posting an ECB) which is checked during
normal program execution. The example in Figure 11-21 illustrates
this.

This program checks a program indicator for a value, and branches
to different program locations, depending on what value is found.
In this case, the indicator is the word at location SWITCH, which
has an initial value of zero. As long as SWITCH remains zero, the
program will loop between START and BACK.

Pressing the ATTENTION key and entering ONE results in execution
of the attention routine at SET1, altering the value of SWITCH to = 1.
When the I F statement at START is next executed, control will be
transferred to PRINT, and the message ATTENTION INTERRUPT
will be displayed. Pressing PF 1 wi II set SWITCH=2 (attention
routine at P1), and result in a transfer to PFPRINT, which will display
PROGRAM FUNCTION KEY #1. Pressing any Program Function key
other than PF1 will end the program (SVVITCH=3, transfer to location
OUT). Note that the attention routine at location END (PF2 through
PF6) only sets location SWITCH to cause a later transfer to the
PROGSTOP; PROGSTOP is one of the instructions excluded from
attention routines, and cannot be issued from within the attention
routine itself.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "QUESTION."

The QUESTION statement provides another way of altering program
execution through terminal input. QUESTION displays a prompt
message, usually in the form of a question, and branches to a specified
location based on the response entered on the terminal.

Terminal I/O 11-21

WAIT KEY Instruction

11-22 SR30-0436

label
~

OPTIONAL

I I
I I

: QUESTION pmsg!VES=,NO=,SKIP=,LINE=,SPACES=
"-__-___ ' , 1'''-___ -...--___ _

MUST BE CODED AT LEAST
ONE MUST
BE CODED

OPTIONAL

Figure 11-22. QUESTION format

The pmsg operand is coded as the prompt message, contained within
apostrophes, or as the label of a TEXT statement containing the
prompt message.

The YES= and NO= operands are coded with the labels of the program
locations which are to get control if a YES or a NO response is
entered. The only valid responses to a QUESTION prompt are Y and
N (or any character string beginning with Y or N). Either YES= or
NO= may be left uncoded, but not both. Entering the uncoded
response will result in transfer to the instruction following the
QUESTION statement.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "WAIT."

I n addition to the implied wait for operator input that is provided ~
by the R EADTEXT and QUESTION instructions, the user can wait \"._.)
for the ENTE R key or PF keys at any time, using a special variation
of the WAIT statement, WAIT KEY. This instruction suspends the
issuing task until the ENTER key or one of the PF keys is pressed,
at which time the WAIT terminates, and execution continues with the
instruction following the WAIT KEY. There is no automatic transfer
to an attention routine; execution of a WAIT KEY instruction enqueues
the terminal and temporarily inhibits the ATTN LIST capability during
the time the task is suspended due to that WAIT instruction, just as the
ATTN LIST function is inhibited while an ENQT is in effect.

WAIT KEY is most often used by tasks operating terminals as static
screen devices. In the roll screen examples shown before, issuing a
READTEXT command caused a suspension of the issuing task, waiting
on operator input. Execution resumed, and the input operation com
pleted only when the operator signalled the program that the input data
was available by pressing the ENTER key.

When operating with static screens, the ENTE R key signals that an
entire page (screen) of input data is available. R EADTEXT instructions
directed to a static screen terminal therefore do not cause the issuing
task to wait; the input data is expected to be present, and is transferred
immediately.

WAIT KEY allows a task with a terminal enqueued as a static screen
device to wait on the ENTER key (or PF keys), even though the implied f'.'
wait with R EADTE XT is not operative. "

C'~:, HARDCOPY PF Key

o

Note: When operating with static screen devices, the implied wait with
READTEXT is inoperative only when the READTEXT has no prompt
message coded. Terminal input operations that are obviously intended
for operator dialogue, such as a R EADTE XT with the pmsg operand
coded, or a QUESTION instruction, still work the same as with roll
screens, automatically suspending the issuing task.

As already noted, the ATTN LIST capability is inhibited when a
terminal is enqueued by a task as either a roll screen or static screen
device, and/or when the task is suspended by a WAIT KEY instruction.
Although automatic transfer to individual attention routine entry
points associated with specific PF keys is no longer possible, the user
can find out which key was pressed, and do the routing personally.
An integer value equal to the numeric designation of the PF key is
passed back to the user task in the second word of the task's TCa
(taskname+2), and may be examined by the user program. The code
passed back for the ENTE R key is zero. For PF1, taskname+2
wi II contain a 1, for P F2 a 2, and so on through 6 for P F6. The code
can be checked, and a transfer decision made, using I F statements or
a computed GOTO.

(Note: When using the 4978 Display, many more interrupting keys and
corresponding identification codes are available than with the 4979
terminal discussed above. See the topic "$PFMAP" in Section 14.
Utility Programs for an aid in determining the identification codes
associated with particular 4978 interrupting keys.)

One of the operands in the TE RM I NAL s!atement defining 4978/4979
Displays is HDCOPY=. This is coded with the symbolic name of a
hardcopy terminal and a PF key number, in the format HDCOPY=
(termname,keynbr). The termname must be coded. If keynbr is not
coded, it defaults to 6, indicating Program Function key PF6.

Whenever the PF key specified in the HDCOPY= operand is depressed,
the present screen contents are pri nted out on the designated hardcopy
device. The default for the 4979 supported by the supplied supervisor
is HDCOPY=($SYSPRTR,6), causing the screen contents to be printed
on the 4974 Matrix Printer whenever PF6 is depressed.

Not knowing which PF key you may designate to activate the
hardcopy system function, all examples in this section address Program
Function keys PF 1 through PF6 (as though H DCOPY= were coded
H DCOPY=($SYSPRTR,6)).

In coding your own programs, you should be aware that the key you
specify in the HDCOPY= operand is not available to you for other
purposes. If specified in an ATTN LIST statement, the associated
entry point will never receive control nor will pressing the hardcopy
PF key terminate a WAIT KEY operation, or present its code in
taskname+2.

Terminal I/O 11-23

STATIC SCREEN CODING EXAMPLE

11-24 SR30-0436

I n the following several illustrations (Figures 11-23 through 11-43),
a simple static screen program is developed, using most of the terminal
instructions already discussed, and introducing some new instructions
applicable only to static screen operation.

The initial portion of this program operates the terminal as a roll
screen device, with NH IST=O. The rest of the program uses the
terminal in the static screen mode. An IOCB will be required for
each of the two modes.

Operator instructions are displayed requiring the operator to (1) end
the program, or (2) bring up the entry screen (static screen) and proceed.
The operator's decision is communicated to the program using the
ATTN LIST facility, so an ATTNLIST statement will also be required.

Figure 11-23 shows the two IOCBs, the ATTN LIST statement, and
the associated attention routines.

XMPLSTAT
IOCB1
IOCB2

OUT

STATIC

ATTNECB

PROGRAM
IOCB
IOCB
ATTNLIST

POST
ENDATTN
POST
ENDATTN
ECB

ENDPROG
END

Figure 11-23. 10CB/ATTNLIST

START
NHIST=O
SCREEN=STATIC
(END,OUT,$PF,STATIC)

ATTNECB,l

ATTNECB,-l

Figure 11-24 is the entire roll screen portion of the program. Execution
begins at location START, with the ENOT directed to IOCB1. The
IOCB changes NHIST=12 to NHIST=O for the loading terminal (no
terminal name specified in the IOCB, default to loading terminal, and
assuming loading terminal is a 4979 with NH IST=12 normally in
effect).

Now that the loading terminal is enqueued, the five PRINTEXT
statements following the ENOT display the program title and
operator directions on the screen. Since operator control has been
defined through an ATTN LIST, and ATTN LIST is inhibited while
the terminal is enqueued, the last PRINTEXT is followed by a DEOT,
placing the ATTN L 1ST in effect.

0

o

XMPLSTAT PROGRAM START
IOCB1 IOCB NHIST=O
IOCB2 IOCB SCREEN=STATIC

ATTNLIST (END,OUT,$PF,STATIC)
START ENQT IOCB1

PRINTEXT I CLASS ROSTER PROGRAM ' ,SPACES=15,LINE=1
PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2
PRINTEXT I THE PROGRAM '
PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO' ,SKIP=2
PRINTEXT I BRING UP THE ENTRY SCREEN '
DEQT

CHECK WAIT ATTNECB,RESET
IF (ATTNECB,EQ,l),GOTO,ENDIT

ENTRY ENQT IOCB2

ENDIT PROGSTOP

OUT POST ATTNECB,l

ATTNECB,-l
ENDATTN

STATIC POST
ENDATTN

ATTNECB ECB

ENDPROG
END

Figure 11-24. Roll screen portion

The ECB at location ATTNECB assembles with an initial value in the
first word of -1 indicating "event complete". The WA IT at location
CHECK is coded with a RESET operand, which resets the first word
of the ECB at ATTNECB to zero before the WAIT is executed. A zero
in the first word of an ECB indicates "event not occurred," so the
WAIT at CHECK will suspend task XMPLSTAT, waiting on event
ATTNECB. If the WAIT has been coded without the RESET operand,
the WAIT would have executed as a no-op.

If the operator presses ATTENTION, enters END and presses
RETU RN, the attention routine at OUT will execute, posting the
ECB at ATTN ECB with a +1 (first word = 1). A value other than
zero in the first word of the ECB indicates "event complete," and
the WAIT operation terminates. Execution continues with the IF
statement following the WAIT, which will transfer control to location
ENDIT.

Terminal I/O 11-25

ERASE Instruction

11·26 SR30·0436

If the operator wants to proceed with the CLASS ROSTER PROGRAM
and presses a PF key, ATTNECB will be posted with a value of -1 by
the attention routine at STATI C. The WAIT will terminate, the IF
that follows will not transfer control to ENDIT (ATTNEBC NOT = +1),
and execution will continue with the ENOT at location ENTRY, which
is the beginning of the static screen portion of the program.

After the program title and operator instructions have been written
to the terminal (while the program is waiting at CHECK for the
operator response), the screen looks like Figure 11-25.

LINES

t
o

6
7

10
11
12
13
14
15
16
17
18
19
20
21
22
23

CLASS ROSTER PROGRAM

HIT 'ATTN' AND ENTER 'END' TO END THE PROGRAM

HIT ANY PROGRAM FUNCTION KEY TO BRING UP THE ENTRY SCREEN

--~
CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778
POSITIONS-12345678901234567890 123456789012345678901234567890 123456789012345678901234567890

Figure 11·25. Initial operator instructions

Assuming the operator pressed a PF key, execution now continues
at location ENTRY (Figure 11-26). The ENOT enqueues the terminal
as a static screen device.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "ERASE."

An automatic erase of a roll screen is performed by the system each
time the page size of the screen is exceeded. Erasure of a static screen
device is a user responsibility, and the E RASE instruction is,
therefore, valid only for static screens.

You can select how much you want to erase, from as little as a single
character position to the entire screen. In Figure 11-26, the ERASE
following the ENOT will erase the entire screen. The MODE= operand
defines the ending point of the erase operation; in this case, the end of
the screen. The starting point of the erase is determined by SKIP=,
LlNE=, and SPACES= forms operands, in this example defaulting to
LlNE=O, SPACES=O. TYPE= specifies whether only unprotected
data should be erased (TYPE=DATA) or if the erase applies to C'
protected data also (TYPE=ALL). _/

o

TERMCTRL Instruction

o

XMPLSTAT PROGRAM
IOCBl IOCB
IOCB2 IOCB

ATTNLIST
-TnO_T __ ~E~N~O~T ____ -

START
NHIST=O
SCREEN=STATIC uNCTION KEY
(END,OUT ~~ .~ ~NTRY SCREEN'

~ --AI NECB,RESET

ENTRY
IF
ENQT
ERASE
TERMCTRL
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT

ENDPROG
END

(ATTNECB,EQ,I),GOTO,ENDIT
IOCB2
MODE=SCREEN,TYPE=ALL
BLANK
'ENTER KEY = PAGE COMPLETE' ,LINE=1
, PFI = DELETE ENTRY I'

PF2 = DELETE ENTRY 2'
'PF3 = DELETE ENTRY' 3
'PF4 = DELETE ENTRY 4'

, ,SKIP=1

Figure 11-26. Operator directions

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "TERMCTRL."

TERMCTRL is used for several specialized functions, most of which are
device/hardware feature dependent control operations. The 3101
operating in block mode uses an attribute byte {prefixed to the data
field} to define the display mode as low or high intensity, blinking or
non-display. The TE RMCTR L statement is used to set the character
istics of the attribute byte. In Figure 11-26, the TERMCTR L BLANK
instruction blanks the 4979 display screen.

The remainder of this portion of the program is going to format the
display screen by executing a series of PR I NTEXT instructions. When
several operations are performed sequentially, the 4979 screen exhibits
a flickering that some people find annoying. Issuing the TE RMCTR L
BLAN K turns off the display capability of the screen, allowing the
series of output operations to take place without visible flicker. After
the formatting has been completed, another TE RMCTR L function will
be used to display the finished screen.

The five PRINTEXT instructions following the TERMCTRL will write
some operator guides at the top of the screen. When these instructions
have executed, the screen would look like Figure 11-27 {assuming an
unblanked screen}.

Terminal I/O 11-27

11-28 SR30-0436

LINES

t
o
1 ENTER KEY = PAGE COMPLETE

PF3 = DELETE ENTRY 3
3
4

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

PFI = DELETE ENTRY 1
PF4 = DELETE ENTRY 4

PF2 = DELETE ENTRY 2

'-----------~------------------------------------~
CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778
POSITIONS -12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 11-27. Operator directions/screen

In Figure 11-28, execution continues with the PRINTEXT at location
HD R. This instruction writes a screen-wide (80 character) line of
hyphens, separating the operator guide area just written from the
rest of the screen. The text buffer referenced by this instruction
(location DASH ES) is not the label of a TEXT statement, but is a
user-defined text buffer. Since PR I NTEXT uses the control bytes
that precede text buffers generated by TEXT statements, the user
must code the control bytes when defining non-TEXT statement
text buffers.

The DATA statement preceding location DASH ES is coded as
X'5050', establishing a length byte of 80 and a count byte of 80
(hex 50=decimal 80). This tells the P R I NTEXT at H D R that the
buffer is 80 character positions long, and that all 80 positions
contain data.

o

(j

o

XMPLSTAT PROGRAM
IOCBl IOCB
TOCB2 IOCB

ATTNLIST

PRINTEXT
PRINTEXT

HDR PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
MOVE

DATA
DASHES DATA

ENDPROG
END

- ~AGE COMPLETE I ,LINE=1
rfl = DELETE ENTRY 11
PF2 = DELETE ENTRY 21

'PF3 = DELETE ENTRY 3 ',SKIP=1
'PF4 = DELETE ENTRY 41
DASHES,PROTECT=YES,LINE=3
'CLASS NAME: ',LINE=4,PROTECT=YES
I INSTRUCTOR NAME: I ,LINE=4,PROTECT=YES,SPACES=32
DASHES,PROTECT=YES,LINE=5
LINENBR,6

XI 5050 1

80C 1
-

1

Figure 11-28. Non-standard text buffer

The PROTECT=YES operand specifies that the line of hyphens be
written as protected data. Protected data cannot be altered by
operator input.

The next PRINTEXT places CLASS NAME: in the first eleven
positions of line 4, and the following one puts INSTRUCTOR NAME:
on the same line, with both messages protected.

The last PR I NTEXT in Figure 11-28 writes another separator line
of hyphens, again using the user-defined text buffer at DASHES.
Figure 11-29 shows how the screen would look if it were displayed
at this point.

Terminal 1/0 11-29

11-30 SR30-0436

LINES
t
o

ENTER KEY = PAGE COMPLETE
PF3 = DELETE ENTRY 3

PFI = DELETE ENTRY 1
PF4 = DELETE ENTRY 4

PF2 = DELUE ENTRY 2

3
4

--- --- -- -- ---------- - --- -- -- ---- -- - - -- --------------- ---- -- ---- --- ------ -- -----

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

CLASS NME:: INSTRUCTOR NM'lE:

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778
POSITIONS-12345678901234567890 1234567890 123456789012345678901234567890 12345678901234567890

Figure 11-29. Header

The rest of the screen formatting section of the program is shown in
Figure 11-30. This portion will format the remainder of the screen
into four data entry areas.

First, the variable LlNENBR is set to 6. Next, a DO loop is defined,
specifying four executions of the loop, corresponding to the four
data entry areas to be formatted.

All PRINTEXT instructions within the loop have the LINE= operand
coded, with the variable name LINENBR, rather than as an integer
constant. Before this first execution of the DO loop, LINENBR
was initialized to 6. The first PR I NTEXT writes the protected
characters NAME: into the first 5 positions of line 6, and the second
PRINTEXT leaves 25 unprotected spaces following NAME:, and
writes STREET: to the same line.

c

c

o

o

XMPLSTAT PROGRAM
IOCBl IOCB

IOCB
llTTNLIST

START
NHIST=O
SCREEN=C:T

•

(n,l~
~---

I •• ;=-_ ---::_,\.)RES ,PROTECT=YES, LINE=3
PRINTEXT 'CLASS NAME: ',LINE=4,PROTECT=YES
PRINTEXT 'INSTRUCTOR NAME:' ,LINE=4,PROTECT=YES,SPACES=32
PRINTEXT DASHES,PROTECT=YES,LINE=5
MOVE LINENBR,6
DO 4,TIMES
PRINTEXT 'NAME: ',LINE=LINENBR,PROTECT=YES
PRINTEXT 'STREET: ',LINE=LINENBR,SPACES=30,PROTECT=YES

Al ADD LINENBR,1
PRINTEXT 'CITY : ',LINE=LINENBR,SPACES=30,PROTECT=YES

A2 ADD LINENBR,1
PRINTEXT 'STATE :',LINE=LINENBR,SPACES=30,PROTECT=YES
ADD LINENBR,3
ENDDO
PRINTEXT LINE=4,SPACES=11
TERMCTRL DISPLAY

WAITONE WAIT KEY

LINENBR DATA F'O'
ENDPROG
END

Figure 11-30. Finish formatting the screen

Next, the ADD at A1 increases LlNENBR by 1, and the PRINTEXT
that follows is directed to line 7, LlNENBR is again incremented
(ADD at A2), and the last PRINTEXT is directed to line 8. The
ADD just preceding the ENDDO increases LlNENBR by 3, skipping
down to the next data entry area to be formatted.

After four executions of the DO loop, the P R I NTEXT immediately
following the ENDDO statement is executed. This PRINTEXT
positions the cursor just to the right of the CLASS NAME: message
in the screen header, above the four data entry areas just formatted
in the DO loop. The TERMCTRL DISPLAY command removes
the blanking from the screen, and displays the cursor at the position
determined by the previous PRI NTEXT. Figure 11-31 shows the
fu Ily formatted screen that is now displayed.

Terminal I/O 11-31

11-32 SR30-0436

LINES

o
ENTER KEY = PAGE COMPLETE PFl = DELETE ENTRY 1 PF2 = DELETE ENTRY 2

2 PF3 = DELETE ENTRY 3 PF4 = DELETE ENTRY 4
3 - -- --- - - --- - --- - --- - ---- -- -- - - ------- -- -- - - ---- - ------- -- - - - - -- - -- -- --- ---- ----
4 CL.ASS NM:E: - 1 NSTRUCTOR NAi'lE:
5 -- -- -- - - - - -- --- --- -- ------ ---- - ---- - --- --- -- - -- -- - --- ---- --- -- -- - - -- ---- - --- ---
6 NAME:
7
8
9
10
11 'lA~1E:

12
13
14
15
16 NAr~E:
17
18
19
20
21 iAt~E:
22
23

STREET:
CITY :
ST,lITE :

SH~EET:
CITY :
STATE :

STREET :
CITY
STATE :

STREET:
CITY :
STATE :

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778
POSITIONS 12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 11·31. Completed format

The program is in a wait state, suspended by execution of the
WAIT KEY at location WAITONE. The program will not be
activated again until the operator presses the ENTE R key or one of
the PF keys.

The screen is now completely formatted, and ready for data entry.
Figure 11-32 shows the complete screen formatting portion of the
program. c

o
XMPLSTAT PROGRAM
IOCBl IOCB
IOCB2 IOCB

ENTRY

HDR

Al

A2

WAITONE

ENQT
ERASE
TERMCTRL
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
MOVE
DO
PRINTEXT
PRINTEXT
ADD
PRINTEXT
ADD
PRINTEXT
ADD
ENDDO
PRINTEXT
TERMCTRL
WAIT

DATA
DASHES DATA

START
NHIST=O
SCREEN=STATIC

IOCB2
MODE=SCREEN,TYPE=ALL
BLANK
'ENTER KEY = PAGE COMPLETE' ,LINE=1
, PFI = DELETE ENTRY I'

PF2 = DELETE ENTRY 2'
'PF3 = DELETE ENTRY 3 ',SKIP=1
'PF4 = DELETE ENTRY 4'
DASHES,PROTECT=YES,LINE=3
'CLASS NAME: ',LINE=4,PROTECT=YES
'INSTRUCTOR NAME:' ,LINE=4,PROTECT=YES,SPACES=32
DASHES,PROTECT=YES,LINE=5
LINENBR,6
4,TIMES
'NAME:' ,LINE=LINENBR,PROTECT=YES
'STREET:' ,LINE=LINENBR,SPACES=30,PROTECT=YES
LINENBR,1
'CITY :' ,LINE=LINENBR,SPACES=30,PROTECT=YES
LINENBR,1
'STATE :',LINE=LINENBR,SPACES=30,PROTECT=YES
LINENBR,3

LINE=4,SPACES=11
DISPLAY
KEY

X'5050'
80C'-'

LINENBR DATA F'O'
ENDPROG
END

Figure 11-32. Screen formatting section

The operator may position the cursor at will, and enter data in any
unprotected area of the screen. Positioning the cursor at LI N E=4,
SPACES=11 (PRINTEXT following ENDDO), is a convenience to
the operator, not a required function - the operator could have used
the cursor positioning keys to move the cursor to the same position.

Terminal I/O 11-33

11-34 SR30-0436

Some cursor-positioning functions are automatically provided by the
hardware. Assume that the operator enters SERIES/1 HARDWARE
in the space immediately following the protected CLASS NAME:

message, and then presses the tab right key ((~I))' The cursor

will automatically skip over the protected INSTRUCTOR NAME:
field, and position itself at the beginning of the unprotected area
which follows, as shown in Figure 11-33.

LINES

t
o

ENTER KEY = PAGE COMPLETE
PF3 = DELETE ENTRY 3

PFI = DELETE ENTRY 1
PF4 = DELETE ENTRY 4

CLASS ['W'1t:: SERIES/l HARDWARE INSTEUCTOR Ni\i'l[:-

NAME: STREET:

10
11 NAf'T:
12
13
14
15
16 f-1PJ1E:
17
18
19
20
21 NM'lE:
22
23

CITY
STi'\E :

~,H<EET:

Cl1Y
STATE" :

STR[LT :
CITY
SLYIE :

:'iTEl::ET:
CIn :
STATE :

PF2 = DELETE ENTRY 2

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778
POSITIONS - 123456789012345678901234567890 12345678901234567890123456789012345678901234567890

Figure 11-33. Cursor movement (1)

After entering the instructor name, the next tab right key depression
results in the cursor position shown in Figure 11-34, ready for the
first student name entry.

LINES

• o
ENTER KEY = PAGE COMPLETE
PF3 = DELETE ENTRY 3

PFI = DELETE ENTRY 1
PF 4 = DELETE ENTRY 4

P F2 = DELETE ENTRY 2

r:lJIS:) ;jM·UC.: SERIES/l HARDWARE INST!~UCrCm ~:N·1[: JOHN JONES

10

12
13
14
15
16 tiN'iE:
17
18
19
20

22
23

STRCU:
crn
SHIH.' :

STHEFT:
(,lTY
STr~TE :

STREET:
(TTY
Sf idE

S1 REt::
CITY
STATE

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778
POSITIONS -- 1234567890123456789012345678901234567890 1234567 8901234567 8901234567890 1234567 890

Figure 11-34. Cursor movement (2)

c~

c

c:

o
Each successive tab key depression results in an automatic skip
of the cursor to the beginning of the next unprotected area on the
screen. In this example, the cursor will successively tab to NAME:,
STREET:, CITY:, and STATE:, and then down to the NAME: in
the next data entry area, as shown in F igu re 11-35.

LINES

ENTER KEY = PAGE COMPLETE
PF3 = DELETE ENTRY 3

PFI = DELETE ENTRY 1
PF4 = DELETE ENTRY 4

PF2 = DELETE ENTRY 2

t
o
1
2
3
4 CLASS j·JAt'lE: SERIES/1 HARDWARE 1 NSTRUCTOil Ni\i~E; JOHN JONES
5

6 NAt'iE: JOHN JAMES
7
8
9
10

11 tW1E:-
12
13
14
15

16 NAr-1E:
17
18
19
20

21 NM1E:
22
23

S TilEET: 111 GRANT AVENUE
CITY : ENDICOTT
STATE: NEW YORK 13760

STREET:
CITY
STATl:: :

STfIEET :
cr TY
STt~ IE :

STR[ET:
CITY :
rTATr. .

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778
POSITIONS - 12345678901234567890123456789012345678901234567890 1234567890 12345678901234567890

Figure 11-35. Cursor movement (3)

With no interaction with the program, an entire screen of information
can be prepared for input, and transferred at one ti me. Th is is what
is meant by static screen operation, in contrast to the transactional
prompt/reply dialogue typical of roll screen operation.

Figure 11-36 shows a completed input screen. The operator is
now at the point where the program must be signalled to proceed.

LINES
t
o

ENTER KEY = PAGE COMPLETE
PF3 = DELETE ENTRY 3

PFI = DELETE ENTRY 1
PF4 = DELETE ENTRY 4

P F2 = DELETE ENTRY 2 1
2
3
4 CLAss -r1A~E~-sERIEs71- -HARDwARE--- I~sTf~uc~oR -f:Af~F.; -JOHN-SONES ---- -------------- --
5
6
7
8
9
10

NAr~E: JOHN JAMES

11 NM1E: JAMES JONES
12
13
14
15
16 i'lA~lE: JIM JOHNS
17
18
19
20
21 NAt.1E: JOAN J IMSON
22
23

STREET: 111 GRANT AVENUE
eIH : ENDICOTT
STATE : NEW YORK 13760

STREf::T: 255 ALHAMBRA CIRCLE
CITY : CORAL GABLES
STATE : FLORIDA 33135

smEET: 140 EAST TOWN STREET
CITY : COLUMBUS
STATE : OHIO 43215

STi~EET: 6216 WASHINGTON AVENUE
(ITY : RACINE
:;TATF : WISCONSIN 53406_

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778
POSITIONS - 12345678901234567890 123456789012345678901234567890123456789012345678901234567890

Figure 11-36. Full screen

Terminall/O 11-35

11-36 SR30-0436

In Figure 11-37, the WAIT KEY at WAITONE will be terminated
by pressing the ENTE R key or a PF key. The computed GOTO
following the WAIT KEY will transfer control to various entry
points, depending on the return code in "taskname+2." A return
code of zero, from the ENTE R key, will cause a transfer to location
READ. PF 1 through PF4 will return codes of 1 through 4, and result
in transfers to E 1 through E4, respectively. (With the GOTO coded
as shown, a PF key higher than PF4 will cause a transfer to READ,
as the return code would be outside the valid range of Index values
1-4, just as the zero returned by the ENTER key is outside that range,
and also results in a transfer to READ.)

For now, assume the operator presses the ENTER key, signalling
the program that the page is complete, and transferring control to
READ.

XMPLSTAT PROGRAM START
NHIST=O
SCREEf}!-'

IOCB1 IOCB
10CB2 IOCB

ATTNLIST (C:~'·_...:4, SPACES= 11
~I~L-I ,\I-IV-I-I\-L..~ lJ I SP LAY

WAITONE WAIT
GOTO

READ

CLEANUP

QUESTION
ERASE
ERASE
PRINTEXT
TERMCTRL
GOTO
ERASE
DEQT
GOTO START

ENDPROG
END

Figure 11-37. ENTER key

KEY
(READ,E1,E2,E3,E4),XMPLSTAT+2

'MORE ENTRIES ?',LINE=2,SPACES=55,NO=CLEANUP
MODE=LINE,LINE=2,SPACES~55,TYPE=DATA
MODE=SCREEN,LINE=6
LINE=6,SPACES=5
DISPLAY
WAITONE
MODE=SCREEN,TYPE=ALL

In a real program, the routine at location READ would contain the
READTEXT instructions necessary to read all the data entered on
the screen. In the application illustrated here, that data would
presumably be collected and used to print a class roster for the
SERIES/1 HARDWARE course taught by JOHN JONES.

Assuming that the contents of the screen has been transferred, the
QUESTION instruction at READ displays the prompt message
MORE ENTRIES? in the operator guide area at the upper right of
the screen, as shown in Figure 11-38.

c

o

C)

o

LINES

+ o
ENTER KEY = PAGE COMPLETE
PF3 = DELETE ENTRY 3

PFl = DELETE ENTRY 1
PF4 = DELETE ENTRY 4

PF2 = DELETE ENTRY 2
MORE ENTRIES? _

3 ---------------------- "--

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

CUISS W\r-~E: SERIES/1 HARDWARE njSTHlIl~lUf(rU,;-I[: JOHN JONES

NM1E: JOHN JAMES

N,\i-1[: JAMES JONES

NM~[: JIM JOHNS

~:!U!,[: JOAN J I MSON

S"j 1~r:ET: 111 GRANT AVENUE
un : ENDICOTT
STML : NEW YORK 13760

:,TfU:Li: 255 ALHAMBRA CIRCLE
CITY ; CORAL GABLES
S;:\l1 : FLORIDA 33135

~,;r([TT: 140 EAST TOWN STREET
CIT Y : COLUMBUS
:)1/Hf. : OHIO 43215

STHlU: 6216 WASHINGTON AVENUE
(ITY : RACINE
:;TiYT[: WISCONSIN 53406

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778
POSITIONS-12345678901234567890 123456789012345678901234567890 123456789012345678901234567890

Figure 11·38. After ENTER key

The MORE ENTRIES? query is asking the operator, IIAre there
more students to add to this roster, or are the students just read from
the current screen the last ones at this time?"

The QUESTION statement is coded with NO=CLEANUP. YES=
is not coded, and therefore a YES response will result in execution of
the ERASE instruction following the QUESTION. Assume there are
more students, and YES is the response. The first E RASE following
the QUESTION clears the prompt and reply from the operator guide
area, and the second E RASE clears all unprotected data from the
four data entry areas in lines 6 through 23. The SERIES/1
HARDWARE and JOHN JONES entries in the header area are left
undisturbed, since the student names and addresses to be entered are
still for the same class.

The PRINTEXT following the second ERASE (Figure 11-37) positions
the cursor at the first unprotected entry field for the first data entry
area. The TERMCTR L DISPLAY that follows displays the cursor,
resulting in the screen shown in Figure 11-39.

Terminal I/O 11-37

11-38 SR30-0436

LINES

+ o
ENTER KEY = PAGE COMPLETE
PF3 = DELETE ENTRY 3

PF 1 = DELETE ENTRY 1
PF4 = DELETE ENTRY 4

PF2 = DELETE ENTRY 2

3
4 CI.ASS NAME5ERIES/l HARDWARE I NST Rue TOR t.JN'lE ~OHN JON ES

7
8
9
10
11 Ni\t4E:
12
13
14
15
16 NM'iL:
17
18
19
20
21 ~.u\t·1r:
22
23

s mEET:
ClTY :
STflTE :

STREr:T :
CITY
:ir lITE :

:;n;f:TT:
ClTY :
STlln: :

smFET:
CITY :
STAT[:

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778
POSITIONS-12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 11-39. Reply YES to QUESTION

If there were no more students to enter for this roster, and the
response to the MORE ENTRIES? prompt were NO, the
QUESTION statement (Figure 11-37) would transfer control to
location CLEANUP, which erases both protected and unprotected
areas of the entire screen, dequeues the terminal, and goes back to
the beginning of the program (STA RT), bringing up the roll screen
with the initial operator directions, as shown in Figure 11-40.

LINES

+ o
CLASS ROSTER PROGRAM

HIT 'ATTN' AND ENTER 'END' TO END THE PROGRAM
4
5 HIT ANY PROGRAM FUNCTION KEY TO BRING UP THE ENTRY SCREEN

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778
POSITIONS_12345678901234567890 123456789012345678901234567890123456789012345678901234567890

Figure 11-40. Reply NO to QUESTION

c

c~

C~

o

o

In Figure 11-41, assume the program is again suspended by the WAIT
KEY at WAITONE, with the completed screen depicted in Figure 11-36.
The transfer to location READ and the MORE ENTRIES? prompt from
the QUESTION statement resulted from the operator's pressing the
ENTE R key. The WAIT KEY may also be terminated by a PF key.

There are no pre-assigned functions for PF keys, other than the
hardcopy facility already discussed. Therefore, the purpose of a
particular PF key in any program is defined by the instructions coded
in the routine to which control is transferred when that PF key is
depressed.

In the example in Figure 11-41, PF1 through PF4 have been assigned
as delete functions for the four data entry areas, as shown by the
operator guides at the top of the screen (Figure 11-36).

XMPLSTAT PROGRAM
IOCB1 IOCB
10CB2 IOCB

ATTNLIST

START
NHIST=O
SCREEN=STATTI"'
(END ~. _ -------y -Ll,SPACES=ll

TI:.KIVll., I KL

WAITONE WAIT
GOTO

E1 MOVE
GOTO

E2 MOVE
GOTO

E3 MOVE
GOTO

E4 MOVE
DELETE ERASE

ADD
ERASE
ADD
ERASE
SUBTRACT
PRINTEXT
TERMCTRL
GOTO

DISPLAY
KEY
(READ,E1,E2,E3,E4),XMPLSTAT+2
LINENBR,6
DELETE
LINENBR,ll
DELETE
LINENBR,16
DELETE
LINENBR,21
MODE=LINE,TYPE=DATA,LINE=LINENBR
LINENBR,l
MODE=LINE,TVPE=DATA,LINE=LINENBR
LINENBR,l
MODE=LINE,TVPE=DATA,LINE=LINENBR
LINENBR,2
LINE=LINENBR,SPACES=5
DISPLAY
WAITONE

LINENBR DATA FIOI
ENDPROG
END

Figure 11-41. PF keys

Terminal liD 11-39

11-40 SR30-0436

Assume that for some reason, the student JIM JOH NS, the third entry
on the screen, is not supposed to be on the class roster; the operator,
therefore, presses P F3.

In Figure 11-41, the PF key terminates the WAIT KEY, and the
computed GOTO transfers control to E3. The MOVE at E3 initializes
the LlNENBR variable to 16, which is the top line of the third data
entry area. Control is then transferred to DE LETE, where successive
ERASE operations and adjustments of the LINENBR variable result
in erasure of the unprotected portions of the third data entry area.
Before returning to the WAIT KEY, the cursor is positioned and dis
played at the first entry field of the erased data area, as shown in
Figure 11-42.

LINES

+ o
ENTER KEY = PAGE COMPLETE
PF3 = DELETE ENTRY 3

PF1 = DELETE ENTRY 1
PF4 = DELETE ENTRY 4

PF2 = DELETE ENTRY 2

CLASS ri,\f';t: SERIES/l HARDWARE INSTRUCTOR NN·1E: JOHN JONES

6 ~nr'T: JOHN JAMES

10
11 iUl,HE: JA~lES JONES
12
13
14
15
16 ~~r~~1t":

17
18
19
20
21 ~AM[: JOAN JIMSON
22
23

STREET: 111 GRANT AVENUE
CITY ; ENDICOTT
SlMF.: : NEW YORK 13760

STREET: 255 ALHAMBRA CIRCLE
C! TY : CORAL GABLES
STAlE : FLORIDA 33135

:,[Rf.TT:
CITY
STt\;[.

SrF:n.T: 6216 WASHINGTON AVENUE
CITY : RACINE
STATE : WISCONSIN 53406

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778
POSITIONS-12345678901234567890 12345678901234567 8901234567890 123456789012345678901234567890

Figure 11-42. After P F3

For your reference, the program example used in the foregoing dis
cussion is shown in its entirety in Figure 11-43.

c

c

c

o

C)

XMPLSTAT PROGRAM START
IOCBl IOCB NHIST=O

SCREEN=STATIC
(END,OUT,$PF,STATIC)
IOCB1

IOCB2 IOCB

START

CHECK

ENTRY

HDR

Al

A2

ATTNLIST
ENQT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
DEQT

'CLASS ROSTER PROGRAM' ,SPACES=15,LINE=1
'HIT "ATTN" AND ENTER "ENDII TO END' ,SKIP=2
, THE PROGRAM'
'HIT ANY PROGRAM FUNCTION KEY TO' ,SKIP=2
, BRING UP THE ENTRY SCREEN'

WAIT ATTNECB,RESET
IF (ATTNECB,EQ,I),GOTO,ENDIT
ENQT IOCB2
ERASE MODE=SCREEN,TYPE=ALL
TERMCTRL BLANK
PRINTEXT 'ENTER KEY = PAGE COMPLETE' ,LINE=1
PRINTEXT' PFI = DELETE ENTRY I'
PRINTEXT' PF2 = DELETE ENTRY 2'
PRINTEXT 'PF3 = DELETE ENTRY 3
PRINTEXT 'PF4 = DELETE ENTRY 4'
PRINTEXT DASHES,PROTECT=YES,LINE=3

, ,SKIP=l

PRINTEXT 'CLASS NAME: ',LINE=4,PROTECT=YES
PRINTEXT 'INSTRUCTOR NAME:' ,LINE=4,PROTECT=YES,SPACES=32
PRINTEXT DASHES,PROTECT=YES,LINE=5
MOVE LINENBR,6
DO 4,TIMES
PRINTEXT 'NAME:' ,LINE=LINENBR,PROTECT=YES
PRINTEXT 'STREET: ',LINE=LINENBR,SPACES=30,PROTECT=YES
ADD LINENBR,1
PRINTEXT 'CITY : ',LINE=LINENBR,SPACES=30,PROTECT=YES
ADD LINENBR,1
PRINTEXT 'STATE: ',LINE=LINENBR,SPACES=30,PROTECT=YES
ADD LINENBR,3
ENDDO
PRINTEXT LINE=4,SPACES=11
TERMCTRL DISPLAY

WAITONE WAIT KEY
GOTO (READ,El,E2,E3,E4),XMPLSTAT+2

Figure 11·43. Complete program (1 of 2)

Terminal I/O 11-41

El MOVE LINENBR,6
GOTO DELETE C E2 MOVE LINENBR,ll
GOTO DELETE

E3 MOVE LINENBR,16
GOTO DELETE

E4 MOVE LINENBR,21
DELETE ERASE MODE=LINE,TVPE=DATA,LINE=LINENBR

ADD LINENBR,l
ERASE MODE=LINE,TVPE=DATA,LINE=LINENBR
ADD LINENBR,l
ERASE MODE=LINE,TVPE=DATA,LINE=LINENBR
SUBTRACT LINENBR,2
PRINTEXT LINE=LINENBR,SPACES=5
TERMCTRL DISPLAV
GOTO WAITONE

READ QUESTION IMORE ENTRIES ?',LINE=2,SPACES=55,NO=CLEANUP
ERASE MODE=LINE,LINE=2,SPACES=55,TVPE=DATA
ERASE MODE=SCREEN,LINE=6
PRINTEXT LINE=6,SPACES=5
TERMCTRL DISPLAV
GOTO WAITONE

CLEANUP ERASE MODE=SCREEN,TVPE=ALL
DEQT
GOTO START

ENDIT PROGSTOP
DATA X' 5050 ' C,' DASHES DATA 80C 1

-
1

OUT POST ATTNECB,l
ENDATTN

STATIC POST ATTNECB,-l
ENDATTN

ATTNECB ECB
LINENBR DATA F'O'

ENDPROG
END

Figure 11-43. Complete program (2 of 2)

11-42 SR30-0436

o
RDCURSOR INSTRUCTION

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "RDCURSOR."

Another instruction applying only to static screens, but not used in
the foregoing programming example, is RDCURSOR. This instruction
will store the line number and indent from the left margin (SPACES)
corresponding to the cu rrent cursor position, in user program variables.
It can be used as an additional means of communication between
program and operator. For example, if a prompt displayed on a
particular screen is unusually cryptic, an operator unfamiliar with the
application might not know what data should be entered in the associ
ated data entry field. If a particular PF key is designated as the
help function, and results in a transfer to a routine which executes
a RDCURSOR instruction, the operator can position the cursor in
the data entry field whose purpose is in doubt, and press the help
PF key. The RDCURSOR command could then sense the cursor
position, find out which field is causing the confusion by comparing
the sensed position to the known data entry field locations, and
display explicit instructions for the field in question.

PRINTNUM/GETVALUE INSTRUCTIONS

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "PRINTNUM", "GETVALUE."

The PRINTEXT and READTEXT instructions are used to transfer
EBCDIC character strings to and from terminals. PRINTNUM
and G ETVA LUE instructions perform the same functions for
numeric values. PR I NTN UM takes a numeric value in storage,
automatically performs the conversion from internal (binary)
representation, and transfers it to a terminal for display or
printing.

TerminalllO 11·43

PRlNTNUM can display a single value, c
~RINTNUM loc]

Pl PROGRAM START
START PRINTEXT 'VALUE == '

PRINTNUM IVAL
PRINTEXT SKIP=l
PROGSTOP

IVAL DATA F'31416'
ENDPROG
END

11-44 SR30-0436

o

o

- or a single PRINTNUM statement can be used to display mUltiple
values. When more than one value is displayed by the same
PR I NTN UM, the values can be displayed on separate lines,

I PRINTNUM loc,count,nl ine I

PI PROGRAM START
START PRINTEXT 'VALUES '

PRINTNUM IVALS,3,I,SKIP=1
PRINTEXT SKI P= 1
PROGSTOP

IVALS DATA F' 31416 1
DATA F' 500 '
DATA F 1171
ENDPROG
END

Terminal 110 11-45

_. or can be displayed on the same Hne. ~ -" /
PRINTNUM loc,cOunt,nline

Pl PROGRAM START

START PRINTEXT 'VALUES '
PRINTNUM IVALS,3,3,SKIP==1
PRINTEXT SKIP==l
PROGSTOP

IVALS DATA F' 31416 1

DATA F' 500 '

DATA F'17 1

ENDPROG
END

C 1

_ ",/'

'-' , ...

11-46 SR30-0436

C' ..
J

o

When multiple values appear on the same line, you can control the
spacing between values.

I PRINTNUM loc,count,nline,nspace I

PI PROGRAM START
START PRINTEXT 'VALUES = '

PRINTNUM IVALS,3,3,IO
PRINTEXT SKI P= I
PROGSTOP

IVALS DATA F'31416'
DATA F'500'
DATA F'17'
ENDPROG
END

Terminal 1/0 11-47

11·48 SR30.0436

If desired, values may be displayed in hexadecimal rather than
decimal form.

PRINTNUM loc,count,nline,space,MODE=

PI
START

IVALS

PROGRAM
PRINTEXT
PRINTNUM
PRINTEXT
PROGSTOP
DATA
DATA
DATA
ENDPROG
END

START
'VALUES = I

IVALS,3,3,IO,MODE=HEX
SKIP=1

F' 31416 1

F' 500 '
F'171

o @

~
\\

c

o

GETVA LU E transfers a numeric text string, input by an operator,
into storage, automatically converting to internal (binary) representation.

I GETVALUE loc I

PI PROGRAM START
START GETVALUE IVAL

PROGSTOP
IVAL DATA FIOI

ENDPROG
END

TerminalllO 11-49

11-50 SR30-0436

As with R EADTEXT, a prompt message may be issued prior to the
input operation.

I GETVALUE loc,pmsg I

PI PROGRAM START
START GETVALUE IVAL,'ENTER VALUE: I

PROGSTOP
IVAL DATA F'O'

ENDPROG
END

r
ENTER VALUE: 31416

c

CI

o

Multiple values can be read by a single GETVALUE instruction,

I GETVALUE 1 OC, pmsg, count I

PI PROGRAM START
START GETVALUE IVALS,'ENTER VALUES: 1,3

PROGSTOP
IVALS DATA 3F ' O'

ENDPROG
END

Terminal I/O 11-51

- and hexadecimal input can be accepted.

,I GETVALUE loc,pmsg,count,MODE= I

PI
START

IVALS

PROGRAM
GETVALUE
PROGSTOP
DATA
ENDPROG
END

START
IVALS,'ENTER VALUES: ',3,MODE=HEX

3F ' O'

Forms control operands (SKIP=, LINE=, and SPACES=) serve the
same purpose and are used the same way with PRINTNUM and
GETVALUE as for PRINTEXT and READTEXT. See the reading
assignment for how to use PRINTNUM and GETVALUE with
double precision integers, standard and extended precision floating
point values, and the external data formatting option.

PRINTIME/PRINDATE INSTRUCTIONS

11-52 SR 30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "PRINTIME", "PRINDATE."

PRINTIME and PRINDATE are pre-defined terminal output
operations. PR I NTI ME will display the current value of the system
24 hour clock in the format HH:MM:SS. PRINDATE displays the
date as MM/DD/YY or DD/MM/YY depending on the option selected
on the SYSTEM statement when the supervisor was generated.

c

o

TERMINAL I/O REVIEW EXERCISE - QUESTIONS

1. Describe the program states or conditions which, while in
effect, inhibit the ATTN LIST capability.

a.

b.

2. List three buffer forcing conditions.

a.

b.

c.

3. Assume the following two instructions are executed, directed at
a static screen.

4.

PRINTEXT
PRINTEXT

'ENTER: ',LINE=3,PROTECT=YES
'NEXT ENTRY: I ,SPACES=lO,PROTECT=YES

What character position wi II the N in N EXT occupy?

Answer: __ __

On the left are listed the interrupt generating terminal keys.
I n the space following each key, list the letter(s) designating
the statement(s) on the right that apply to each key. More
than one statement may be true for each key, and each state
ment may apply to more than one key.

PF keys ___ _

ATTN key __ _

ENTER key __

a. will terminate a WAIT KEY operation

b. used with ATTN LIST, not with WAIT
KEY

c. used with WAIT KEY, never with
ATTN LIST

d. will not terminate a WAIT KEY operation

e. can be used with ATTN LIST, and will
also terminate a WAIT KEY

5. List the special system terminals that may be enqueued by
coding their names as the operand of an ENQT instruction.

Answer: ______________________________________ ___

Terminal I/O 11-53

c

This page intentionally left blank. c'

11-54 SR30-0436

o

o

6. Below on the left is a list of five operator entries. Each entry is in
response to the GETVALUE prompt in the program given.

On the right are spaces for the values that wou Id be displayed
by execution of the PRINTNUM immediately following the
GETVALUE in the program. Fill in what the PRINTNUM
would display after each of the entries on the left (each operator
entry/PRINTNUM display pair should be considered a new loadl
execution of the program).

PI
START

VAL

PROGRAM
GETVALUE
PRINTNUM
PRINTEXT
PROGSTOP
DATA
ENDPROG
END

OPERATOR
ENTRY

a. 1492

b. -3

c. 39000

d. NO ENTRY

START
VAL, 'ENTER NBR: '
VAL
SKIP=I

F'O'

PRINTNUM
DISPLAY

(ENTER KEY ONLY)

e. 1BA3

Terminall/O 11-55

TERMINAL I/O REVIEW EXERCISE - ANSWERS

11-56 SR30-0436

1. a. program has the terminal enqueued

b. program is suspended by a WAIT KEY operation

2. Any three of the following:

a. IILINE=" in a succeeding operation

b. IISK I P=" in a succeeding operation

c. DEQT execution

d. an "@" character imbedded in the text of this or of a
succeeding operation, with MODE=WORD in effect

e. TERMCTRL DISPLAY execution

f. "change of operation direction", such as a PRINTEXT
followed by a GETVALUE or READTEXT

3. Character position 21, line 3. The "SPACES=10"
leaves 1 0 unprotected spaces between the end of the pre
ceding protected field, and the beginning of the
"NEXT ENTRY" text.

4. PF keys a, e PF keys (a) will terminate a WAIT KEY
operation, and, when a program is not suspended by a WAIT KEY,
and the terminal is not enqueued, may also be used in an
ATTN LIST (e).

ATTN key b, d The ATTN key will not terminate a WAIT
KEY operation (d). When the program is not in a WAIT KEY,
and the terminal is not enqueued, the ATTN key may be used
by the ATTNLIST function (b).

ENTER key a, c The ENTER key terminates a WAIT KEY (a)
(as well as the implied wait of a READTEXT/GETVALUEI
QUESTION), and cannot be used with ATTN LIST (c).

5. Answer: $SYSPRTR, $SYSLOG The third "special
system terminal", $SYSLOGA may be enqueued by user
programs, but only by using the "ENQT/label of IOCB"
convention, or by an ENQT with no IOCB label reference,
when $SYSLOGA is the "Ioading" terminal.

c

c

6.

~,

.~

C~

o

OPERATOR PRINTNUM
ENTRY DISPLAY

a. 1492 1492

b. -3 -3

c. 39000 0

d. NO ENTRY
(ENTER KEY ONLY) 0

e. 1BA3

Entries a. and b. operate normally. Entry c. is too large to be
contained in a single word integer, so VAL is left undisturbed,
as it is for d., when no entry is made. Entry e. is an attempt to
enter a hexadecimal value, when "MODE=HEX" is not coded
in the GETVALUE operand field. The input operation
terminates when the first non-numeric character is encountered
in the input field.

Terminal I/O 11·57

c

This page intentionally left blank.

c
11-58 SR30-0436

o

C
'"

I

./

C)

DATA CONVERSION

Section 12. Data Formatting

OBJECTIVES: After completing this topic, the student should

1. Understand when to use the data form'atting/conversion
instructions

2. Be able to convert numeric character strings to binary values using
CONVTD

3. Be able to convert binary values to EBCDIC character strings using
CONVTB

4. Understand the operation of GETEDIT/PUTEDIT instructions, and
their relationship to FORMAT and TEXT statements

For purposes of this discussion, data conversion refers to the process of
converting arithmetic values from internal representation (binary) into
external representation (EBCDIC character strings), or the reverse.

You are already familiar with some forms of data conversion. As illus
trated in Figure 12-1, the assembler performs data conversion when
assembling arithmetic constants, defined in DATA statements. The
binary values generated during the assembly are the internal equivalents
of the externally represented values coded in the source statements.

INTEGER VALUE131,4161

DEFINED IN DATA STATEMENT ...

FLOATING POINT VALUE 13.14161

DEFINED IN DATA STATEMENT ...

IIVAL DATA F'31416' 1

CONVERTED BY THE ASSEMBLER INTO
A 1-WORD BINARY NUMBER, HEX 7AB8

0111 1010 1011 1000

Figure 12-1. Assembler data conversion

I FVAL D.ATA E'3.1416' I
CONVERTED BY THE ASSEMBLER INTO A
2-WORD (STANDARD PRECISION) BINARY
FLOATING POINT NUMBER, HEX 4132 43FE

0100 0001

Data Formatting 12-1

CONVTD INSTRUCTION

12-2 SR30-0436

While the DATA statement can only be used to convert constants
known at assembly time, GETVALUE converts data entered at a
terminal, in "realtime." GETVALUE, and in the reverse direction,
PRINTNUM, not only convert arithmetic values, but carry
the operation one step further by performing the I/O as well (see
"Section 11. Terminal I/O").

These instructions, while useful, do not meet all data conversion
requirements. For example, a numeric value read into a text buffer by
a READTEXT instruction rather than by a GETVALUE, will be in the
form of an EBCDIC character string, which must be converted to
internal representation before the program can operate on it.

Similarly, it may not always be desirable to convert an internally
represented constant or variable and immediately display or print it,
as occurs with PRINTNUM. You may instead want to convert it to an
EBCDIC character string, and hold it for later output by a PR I NTEXT.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "CONVTD."

CONVTD converts an EBCDIC character string into a binary arithmetic
value. Single and double precision integers, and standard and extended
floating point internal formats are supported.

I ::

~l C,-O_N_V_TD __ 0-v~n_d_l_,_o_pn_d_2j ~t ~,-O_R_t~_AT_: __ _

OPTIONAL MUST BE CODED

Figure 12-2. CONVTD format

REQUIRED IF
opnd1 IS
OTHER THAN
SINGLE PRE-
CISION
INTEGER

The first operand (opnd1) is the label of the first byte of the storage
area that will contain the binary equivalent of the EBCDIC string after
it has been converted. The user must reserve enough space to hold the
results of the conversion. This may be two bytes, for a single precision
integer variable, four bytes, for double precision integer or standard
precision ~Ioating point values, or eight bytes for extended precision
floating point variables.

The second operand (opnd2) is the label of the first character of the
EBCDIC character string to be converted. Leading blanks or zeros are
allowed.

C""
\,

j

=(

The PREC= operand describes opnd1 (Figure 12-3).

opnd1 Description

Single Precision Integer (default)

Double Precision Integer

PREC= Operand

PREC=S

PREC=D

PREC=F

PREC=L

Standard Precision Floating Point

Extended Precision Floating Point

Storage Required

1 Word (2 Bytes)

2 Words (4 Bytes)

2 Words (4 Bytes)

4 Words (8 Bytes)

Figure 12-3. PREC= operand

The FORMAT= operand is coded as a list containing three sublist
elements, all enclosed in parentheses. The three elements describe the
EBCDIC character string pointed to by the label in opnd2, as shown
in Figure 12-4.

FORMAT=(W,D,T) where;

... Width of the D'" Number of T
EBCDIC character positions to the right
string in bytes of the decimal point.

Corle "0" if integer.

· .. Code "I" if integer)
· .. Code "F" if real
number

· .. Code "E" if real
number in "E" notation

Figure 12-4. FORMAT= operand

CONVTB INSTRUCTION

If not coded, FORMAT= defaults to FORMAT=(6,O,I), indicating a
six-byte EBCDIC field containing an integer number. '

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "CONVTB."

CONVTB converts values in internal representation (binary) form to an
EBCDIC character string.

I I

1 abe 1 J CONVTB opnd 1, opnd2 i ,PREC=
~I -..... ____ ...,.-____)., •

I

~ FORMAT= .A ''-____ ---'

OPTIONAL MUST BE CODED REQUIRED IF REQUIRED IF opnd1
opnd1 IS IS OTHER THAN A
OTHER THAN 6-BYTE FIELD
SINGLE PRE-
CISION
INTEGER

Figure 12-5. CONVTB format

Data Formatting 12-3

Since the direction of the operation is the reverse of CONVTD, the
meaning of opnd1 and opnd2 is also reversed. The label of the left
most byte of the storage area, which will receive the EBCDIC string
resulting from the conversion, is opnd1 and opnd2 is the label of the
storage location containing the variable.

The PREC= and FORMAT= operands are coded the same way for
CONVTB as for CONVTD; because opnd1 and opnd2 are reversed,
PREC= now applies to opnd2 and FORMAT= to opnd1.

CONVTD/CONVTB CODING EXAMPLES

12·4 SR30-0436

I n Figure 12-6, the CONVTB at C1 is converting the constant at loca
tion CON1 into an EBCDIC character string, which will be stored in the
text buffer EBC1.

CCODE
CI

PI

END
CNVTERR

EBCI
CONI
CODE

PROGRAM
CONVTB
IF
PRINTEXT
PRINTEXT
PRINTEXT
PROGSTOP
MOVE
PRINTEXT
PRINTNUM
PRINTEXT
GOTO
TEXT
DATA
DATA
ENDPROG
END

Figure 12·6. Return code = -1

CI
EBCI,CONI
(CCODE,NE,-I),GOTO,CNVTERR
ITEXT=I
EBCI
SKIP=1

CODE,CCODE
ICONVERT ERROR,CODE=I
CODE
SKIP=1
END
LENGTH=6
FI14398 1

FIOI

Completion codes for CONVTB and CONVTD operations are returned
in the task code word {taskname}. The I F statement immediately
following the CONVTB is checking the return code for Normal Comple
tion {-1}. In this example, the operation will be successful, and the
PR INTEXT instructions beginning at P1 will display TEXT=14398.

I n Figure 12-7, the CONVTB is attempting to convert a value of
21,000,000, in location CON2, and store the resulting text string in the
text buffer at EBC2. The text buffer is not large enough to hold the
character string generated by the conversion, and wi II be set to zeros.
The completion code will be a 3, indicating Conversion Error, and the
I F statement following the CONVTB will transfer control to location
CNVTERR.

The error routine beginning at CNVTE R R will display an error message
and the completion code resulting from the operation. The first instruc
tion moves the completion code from taskname into the user-defined
program variable CODE.

c

(~
'----

C)

o

CCODE PROGRAM C2
CONVTB EBC2,CON2,PREC=DWORD
IF (CCODE,NE,-I),GOTO,CNVTERR

PI PRINTEXT ITEXT=I
PRINTEXT EBC2
PRINTEXT SKIP=1

END PROGSTOP
CNVTERR MOVE CODE,CCODE

PRINTEXT 'CONVERT ERRROR, CODE='
PRINTNUM CODE
PRINTEXT SKIP=1
GOTO END

EBC2 TEXT LENGTH=6
CON2 DATA 01 21000000 1

CODE DATA F'O'
ENDPROG
END

Figure 12-7. Return code = 3.

This is a standard convention, and is necessary because other operations,
such as 1/0, also post completion codes in taskname, and will overlay
the code you want to display. For instance, were the I F statement
following the CONVTB replaced by the statement

I

FRINTNUM CCODE

in an attempt to display the return code from the conversion operation,
the code displayed would be the completion code resulting from execu
tion of the PRINTNUM itself, not the code returned by the CONVTB.

When the error routine at CNVTE R R completes execution, the message
CONVERT ERROR, CODE=3 will be displayed. A -1, for Normal
Completion, or a 3, indicating Conversion Error, are the only comple
tion codes generated by CONVTB operations.

In Figure 12-8, a CONVTD operation is attempting to convert the
EBCDIC string in EBC3 to a binary value to be stored in location CON3.
The EBCDIC string consists of blanks and the delimiter II ,". This
results in no conversion, and a completion code of 2, indicating Field
Omitted. Commas and slashes (/) are considered arithmetic delimiters
and, if found in a text string during CONVTD execution, Will terminate
the conversion. In this example, since the delimiter (comma) was pre
ceded oldy by blanks, the Field Omitted completion code is generated
and the program will complete execution with CONVERT ERROR,
CODE=2 displayed.

Data Formatting 12-5

12=6 SR30=043G

CCODE PROGRAM C3
C3 CONVTD CON3,EBC3

IF (CCODE,NE,-I),GOTO,CNVTERR
PI PRINTEXT 'VARIABLE='

PRINTNUM CON3
PRINTEXT SKIP=I

END PROGSTOP
CNVTERR MOVE CODE,CCODE

PRINTEXT 'CONVERT ERROR, CODE='
PRINTNUM CODE
PRINTEXT SKIP=I
GOTO END

EBC3 TEXT , , LENGTH=6 ,
CON3 DATA F'O'
CODE DATA F'O'

ENDPROG
END

Figure 12·8. Return code = 2

If the text buffer at EBC3 had contained numbers (in EBCDIC code),
all numbers to the left of the delimiter would have been converted,
and a completion code of -1 returned. For instance, 12,391 in the text
buffer would convert to the binary equivalent of 12. Any non-numeric
character imbedded within the text field will end the conversion.

C

I n Figure 12-9, the CONVTD at C4 is attempting to convert the blank
text field at EBC4. This will result in a return code of +1, which
indicates No Data In Field. The example will complete with the message r
CONVERT ERROR, CODE=1 displayed. ~./

CCODE PROGRAM C4
C4 CONVTD CON4,EBC4

IF (CCODE,NE,-I),GOTO,CNVTERR
PI PRINTEXT 'VARIABLE='

PRINTNUM CON4
PRINTEXT SKIP=I

END PROGSTOP
CNVTERR MOVE CODE,CCODE

PRINTEXT 'CONVERT ERROR, CODE='
PRINTNUM CODE
PRINTEXT SKIP=I
GOTO END

EBC4 TEXT LENGTH=6
CON4 DATA F'O'
CODE DATA F'O'

ENDPROG
END

Figure 12·9. Return code = 1

c

C)

GETEDIT/PUTEDIT INTRODUCTION

GETEDIT and PUTEDIT instructions combine several of the I/O and
conversion operations already discussed. For review, Figure 12-10
summarizes the instructions used to move data from a terminal into
storage (READTEXT, GETVALUE) and convert it to internal
representation (CONVTD, or implicit with GETVALUE).

----~. GETVALUE ----........ 110011101100\

\
READTEXT rONVTD

~t-------t ~

PERFORMS
I/O OPERATION

READTEXT

GETVALUE

CONVERTS TO
INTERNAL FORMAT

GETVALUE

CONVTD

Figure 12·10. External to internal summary

USES TEXT
BUFFER

CONVTD

READTEXT

Data Formatting 12·7

12-8 SR 30-0436

I n Figure 12-11, the reverse operations are shown, converting and
moving data directly to a terminal (PRINTNUM), or first converting it
to external format (CONVTB), and then displaying it (PRINTEXT).

1101110of-------+--- PRINTNUM -----~~ ,01

CONVTB

~
LENGTH
COUNT
~

PERFORMS
I/O OPERATION

PRINTEXT

PRINTNUM

CONVERTS TO
EXTERNAL FORMAT

PRINTNUM

CONVTB

Figure 12-11_ Internal to external summary

o ~)

PRINTEXT

USES TEXT
BUFFER

CONVTB

PRINTEXT

4

PUTEDIT and GETEDIT perform all of the functions shown in
Figures 12-10 and 12-11. The I/O plus conversion provided by
GETVALUE and PRINTNUM is supported, but with the addition of
the use of a text buffer. The value is therefore displayed/read (I/O),
and is available both in external format (as EBCDIC string in text
buffer) and in internal format.

c

c

o

J] -----~~ ~~~~~H I _____ ~~ 110011101100\ lQJ
GETEDIT

? 1 I

LENGTH
COUNT -~~,d 11011011/ ____ ~ 0 ~

1.

2.

3.

~
PUTEDIT

Performs I/O operation (optional)

Performs conversion

Uses text buffer

Figure 12-12. PUTEDIT/GETEDIT summary

Viewed another way, the transfer of an EBCDIC string to or from a
terminal as provided by PRINTEXT and READTEXT is supported,
but with the addition of conversion to or from internal representation
(CONVTD/CONVTB functions).

Data Formatting 12-9

PUTEDIT/GETEDIT INSTRUCTIONS

label GETEDIT

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "GETEDIT", "PUTEDIT."

To perform a conversion, four items of information are required:

1. Direction of conversion (from internal representation to external,
or the reverse). This is implicit when GETEDIT (external to
internal) or PUTE D IT (internal to external) is coded.

2. Conversion specification. Length of character string and type of
data item to be converted to or from. This information is coded
in a FORMAT statement, and the location (label) of the FORMAT
statement is the first operand of the GETEDIT or PUTEDIT.

3. Character buffer location. The second operand is the name of the
character buffer (usually the label of a TEXT statement) that
contains the character string to be converted (GETEDIT) or will
hold the results of the conversion (PUTEDIT).

4. Storage variable location. The named program storage location(s)
containing the internally represented data item(s) that are the
input to (PUTEDIT) or results of (GETEDIT) the conversion.
Figure 12-13 summarizes the operand format just discussed, using
GETEDIT as an example. (GETEDIT is used in most of the
following illustrations, but the concepts demonstrated are equally
valid for PUTEDIT operations, if the direction of conversion is
taken into account.)

name of
FORMAT
statement

name of TEXT
statement
(location of
character buffer)

(variable name)
-or-

((~~~aeble ,type))

-or-

((~~~eble,count))
-or-

((~~~aeble ,count,type))

,
LABEL OF THE FORMAT
STATEMENT THAT DESCRIBES
THE EBCDIC DATA IN THE
CHARACTER BUFFER TO BE
CONVERTED (ALPHA? ARITH
METIC? "E" NOTATION? etc.)

LOCATION (LABEL
ON TEXT STATEMENT)
OF THE BUFFER
CONTAINING THE
CHARACTER STRING
TO BE CONVERTED

1
LOCATION(S) IN
STORAGE WHERE
CONVERTED VALUE(S)
WI LL BE PLACED,
AND THE TYPE
(pRECISION) OF THE
VALUES, IF ARITH
METIC

Figure 12-13. GETEDIT format

12-10 SR30-0436

c

c

C)

C
"

\,

I

o

FORMAT STATEMENT

1 abel GETEDIT

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "FORMAT."

Figure 12-14 illustrates the basic layout of the FO R MAT statement,
and shows how it is referenced by a GETEDIT.

name of
FORMAT
statement

name of TEXT
statement
(location of
character buffer)

(variable name)
-or-

((~~~a:le,type))
-or-

((~~~aeble,count))
-or-

((~~~eble,count,type))

CGET GETEDIT FL TFORM ,

FLTFORM FORMAT (1 ist) ,gen

DATA
CONVERSION
SPECIFICATION
MAY BE: "I II INTEGER NUMERIC

"F" FLOATING POINT
NUMERIC

"E" FLOATING POINT
NUMERIC - "E"
NOTATION

"H" LITERAL ALPHA-
MERIC DATA

"X" BLANKS
"A" VARIABLE ALPHA-

MERIC DATA

Figure 12-14. FORMAT statement

~
MAY BE: "PUT" - THIS FORMAT STATE

MENT USED WITH PUTEDIT
COMMANDS ON L Y
"GET" - THIS FORMAT STATE
MENT USED WITH GETEDIT
COMMANDS ON L Y
"BOTH" - MAY BE USED WITH
BOTH PUTEDIT AND GETEDIT
(DEFAULT)

Data Formatting 12-11

Note that among the various types of data items that are allowed in the
data conversion specification list are type F and type E. The type F
indicates floating point numeric. Do not confuse this with the fixed
point binary designated by the F that is used in DATA statements.
Similarly, the E means E-type notation, and not standard precision
floating point, as did the E used with DATA statements. By specifying
E-type notation in the FORMAT list, the variable being described is
implicitly considered to be a floating point value.

Figure 12-15 is an example of a FORMAT statement, whose list
describes a single variable, with data conversion specification type E.
Detailed explanations of all the available data specification types, and
examples of their use, may be found in the reading assignment.

FORMAT
- SPECIFIES THE TYPE OF CONVERSION TO BE PERFORMED

WHEN DATA IS TRANSFERRED FROM STORAGE TO A TEXT
BUFFER BY A PUTEDIT COMMAND, OR FROM A TEXT
BUFFER TO STORAGE BY A GETEDIT COMMAND.

EXAMPLE: WRITE A FORMAT STATEMENT THAT WILL ALLOW
CONVERSION TO AND FROM FLOATING POINT NUMBERS
WITHIN THE RANGE OF -9.9999 TO +9.9999, USING "E" TYPE
NOTATION.

FLTFORM FORMAT (Ell.4),BOTH

CONVERSION TYP/ ~ MAY BE USED BY

FLOATING POINT, E
NOTATION

BOTH PUTEDIT AND
GETEDIT

LARGEST POSSIBLE VALUE
SMALLEST POSSIBLE VALUE

E NOTATION TAKES UP

Figure 12-15. FORMAT statement E type

12-12 SR30-0436

+9.9999
-9.9999 ---...-
1234567

,--"
7 CHARACTER

NUMBER OF POSITIONS

DECIMAL POINT

4 :~~::C~:R (E ~ ~ ~)
POSITIONS N I I

- T T

11 POSITIONS REQUIRED -----"

c

c

o

The second operand in the GETEDIT statement (Figure 12-16) is the
location of the character buffer. The length of this buffer must be
large enough to accommodate the largest character string anticipated,
or truncation will result (254 characters maximum).

1 abel GETEDIT
name of
FORMAT
statement

name of TEXT
statement
(location of
character buffer)

~

(variable name)
-or-

((~~~eble,type))
-or-

((~~~:Ie ,count))

-or-

((~~~eble ,count,type))

CGET GETEDIT FLTFORM,FLOATEXT 7----
~

FLOATEXT TEXT LENGTH=18

2

FLOATEXT --~I

o 0

4 0

FLOATEXT + 1

FLOATEXT + 2

~
FLOATEXT + 17

r--------t

4 0

4 0

4 0

Figure 12-16. Character buffer location

LENGTH OF
BUFFER (HEX 12 = DEC 18)

COUNT OF NUMBER OF
INPUT CHARACTERS
RECEIVED OR OUTPUT
CHARACTERS TO TRANSMIT

SPACE FOR 18
CHARACTERS
RESERVED
(18 BYTES)
INITIALIZED TO
EBCDIC BLANKS
(HEX 40)

Data Formatting 12-13

label GETEDIT

CGET

Figure 12-17 summarizes the third operand, the variable list. The
variable names used must previously have been defined in the program
(DATA statements).

name of
FORMAT
statement

GETEDIT

name of TEXT
statement
(location of
character buffer)

(variable name)
-or-

((~:~eble,type))

-or-

_ ((~:~aeble,count))
-or-

((~:~aeble,count,type))

/
FLTFORM,FLOATEXT,((name, count, type))

/
--_#~

STORAGE LOCATION
TO PUT VALUE
CONVERTED FROM
CHARACTER STRING
IN BUFFER

MULTIPLE LOCATIONS IF
MULTIPLE CONVERSIONS

TYPE/PRECISION
OF VARIABLE
"S" OR "0" INDICATES
SINGLE OR DOUBLE
WORD INTEGER
(DEFAULT=SINGLE)
"F" OR "L" INDICATES
STANDARD OR EXTENDED
PRECISION FLOATING POINT
(DEFAULT=STANDARD)

Figure 12-17. Third operand summary

12-14 SR30-0436

(~
'-.- ,/

c

o

If arithmetic variables are being converted, the data type specified must
agree with the data conversion specification in the FORMAT statement
(F or Lin GETEDIT must have either F or E in FORMAT statement,
and S or D in GETEDIT corresponds with I in FORMAT statement).

The completed GETEDIT statement is shown in Figure 12-18, with all
three operands-coded. To illustrate the optional I/O capability, a
fourth operand, ACTION= is also coded. The more common usage
(and the default) is ACTION=I/O, meaning a GETEDIT or PUTEDIT
would implicitly issue a READTE=XT or PRINTEXT. With
ACTION=STG, the GETEDIT or PUTEDIT assumes the user will take
care of transferring the EBCDIC character string from or to the
terminal by issuing explicit READTEXT or PRINTEXT commands as
required.

GETEDIT

- GETS EBCDIC CHARACTER STRING FROM A CHARACTER
BUFFER SET UP BY A TEXT STATEMENT

- CONVERTS EBCDIC CHARACTER STRING ACCORDING TO
SPECIFICATIONS IN FORMAT STATEMENT, AND PLACES
RESULT OF CONVERSION IN STORAGE

- MAY OPTIONALLY ISSUE A READTEXT COMMAND TO
TRANSFER EBCDIC CHARACTERS FROM A TERMINAL
INTO THE CHARACTER BUFFER, BEFORE BEGINNING
CONVERSION

EXAMPLE: CONVERT THE EBCDIC CHARACTER STRING IN THE
CHARACTER BUFFER DEFINED BY THE TEXT STATEMENT AT
LOCATION "FLOATEXT" INTO A STANDARD PRECISION
FLOATING POINT NUMBER, ACCORDING TO THE SPECIFICA
TIONS OF THE FORMAT STATEMENT AT LOCATION "FLTFORM".
STORE THE RESULT AT LOCATION "FVAL".

CGET GETEDIT FLTFORM,FLOATEXT,((FVAL,F)),ACTION=STG

~~7\ '" LOCATION OF LOCATION OF OUTPUT OUTPUT CONVERT ONL Y-
FORMAT CHARACTER DATA DATA DO NOT ISSUE
STATEMENT BUFFER (TEXT LOCATION TYPE READTEXT

STATEMENT) (FLOATING COMMAND

Figure 12·18. Completed GETEDIT

POINT) BEFORE
CONVERSION
STARTS

Data Formatting 12-15

12-16 SR30-0436

As a comparison, the same operation in reverse is illustrated in
Figure 12-19.

PUTEDIT

- CONVERTS DATA IN STORAGE INTO EBCDIC CHARACTER
STRING, ACCORDING TO SPECIFICATIONS IN FORMAT
STATEMENT

- PLACES EBCDIC CHARACTER STRING IN CHARACTER
BUFFER SET UP BY TEXT STATEMENT

- MAY OPTIONALLY ISSUE A PR INTEXT COMMAND TO
TRANSFER CONTENTS OF THE CHARACTER BUFFER TO
A TERMINAL DEVICE AFTER CONVERSION

EXAMPLE: CONVERT THE STANDARD PRECISION FLOATING
POINT VARIABLE AT STORAGE LOCATION "FVAL" INTO AN
EBCDIC CHARACTER STRING, ACCORDING TO THE SPECIFICA
TIONS IN THE FORMAT STATEMENT AT LOCATION "FLTFORM".
PLACE THE EBCDIC STRING IN THE CHARACTER BUFFER DE
FINED BY THE TEXT STATEMENT AT LOCATION "FLOATEXT".

CPUT PUTEDIT FLTFORM,FLOATEXT,((FVAL,F)),ACTION=STG

-----------~ / \ " LOCATION OF LOCATION OF
FORMAT CHARACTER
STATEMENT BUFFER (TEXT

STATEMENT)

Figure 12-19. Completed PUTEDIT

LOCATION OF INPUT
INPUT DATA DATA

TYPE
(FLOATING
POINT)

CONVERT
ONLY-DO
NOT ISSUE
PRINTEXT
COMMAND
AFTER
CONVERSION

All operands are in the same position, and have the same meanings for
PUTEDIT as for GETEDIT; only the operation direction is reversed.

Figure 12-20 is an overview of a complete GETEDIT operation using
the same examples of GETEDIT, TEX1', and FORMAT as you have
seen in the previous figures. FollowinQ the numbers on the illustration,
the characters entered at the terminal II , are transferred to the text
buffer by the READTEXT instruction 1fJ. In this example, the
READTEXT is issued by the user sometime prior to execution of the
GETEDIT. If ACTION=I/O were coded in the GETEDIT (or not
coded, and allowed to default), the READTEXT would be automatically
issued by the GETEDIT.

c

c

o

o

o OPERATOR ENTERS
CHARACTERS II. 31416E 01 11

D [READTEXT FLOATEXT I

TRANSFERS EBCDIC STRING 114BF3F 1 F 4F 1F6C 540FOF 111
FROM TERMINAL INTO TEXT BUFFER

01 FLOATEXT TEXT LENGTH=lSI

LENGTH

COUNT

FLOATE XT

1 2

o A

4 B

F 3

F 1

F 4

F 1

F 6

C 5

4 0

F 0

F 1

4 0
/C'"

FLOA TEXT + 17 -l±E
Figure 12-20. GETEDIT overview

illCGET GETEDIT FLTFORM,FLOATEXT,((FVAL,F)),ACTION=STG I

CONVERTS EBCDIC CHARACTER STRING INTO
BINARY FLOATING POINT NUMBER-STORES
AT LOCATION "FVAL"

o I FL TFORM FORMAT

iii FVAL ~
~

(El1.4),BOTH I

Data Formatting 12·17

12-18 SR30-0436

The GETEDIT D, using the FORMAT statement FL TFORM II ,
converts the EBCDIC character string in the text buffer at FLOATEXT
III into a standard precision floating point value, which is stored at
FVAL II.
Note: Support for GETEDIT/PUTEDIT/FORMAT instructions is
supplied in the form of object modules. When a user program
containing GETEDIT/PUTEDIT/FORMAT statements is assembled,
$EDXASM automatically generates corresponding EXTRN records
for use by the link edit utility $LI N K.

After an object module has been produced by $EDXASM, it must be
processed by $LINK to include the data-formatting object modules.
The user must code the AUTO= parameter in the link edit OUTPUT
control statement as AUTO=$AUTO,ASMLlB. $AUTO is the name of
a system-supplied data set on ASM LI B, which contains an autocall
list, including entries for the GETEDIT/PUTEDIT/FORMAT
support modules.

c

o

DATA FORMATTING REVIEW EXERCISE-QUESTIONS

Match the instructions on the left with the statements on the right. The
instructions may apply to more than one statement, and the same
statement may be true for more than one instruction, or not true for
any.

a. CONVTD

b. PRINTNUM

c. GETEDIT

d. CONVTB

e. PRINTEXT

f. GETVALUE

g. PUTEDIT

h. READTEXT

1. __ always requires a text buffer.

2. __ used to read numeric values from
a terminal and convert them to
internal (binary) representation.

3. __ may optionally perform I/O.

4. __ cannot be used for internal/external
or external/internal conversion.

5. __ never performs I/O.

6. -- used to convert an EBCDIC string
in a text buffer to a binary value.

7. __ never requires a text buffer.

8. __ always performs I/O.

9. __ may be used to convert both float
ing point or integer values.

Data Formatting 12-19

DATA FORMATTING REVIEW EXERCISE-ANSWERS

12-20 . SR30-0436

1. CONVTD (a), GETEDIT (c), CONVTB (d), PUTEDIT (g), and
READTEXT (h) always require a text buffer. PR INTEXT (e)
usually uses a text buffer, but may be used to issue forms control
commands without any transfer of text. GETVALUE usually
uses a text buffer, either implicit, as the pmsg operand, enclosed
in apostrophes, or as an explicitly coded TEXT statement but
may be coded without a prompt message, and therefore no text
buffer.

2. GETEDIT (c) and GETVALUE (f) may be used to read numeric
values from a terminal and convert them to internal (binary)
representation. GETEDIT can read and convert multiple values,
integer and floating point or mixed integer and floating point, of
varying external format. GETVALUE can read multiple single
precision integers. If the external format of the input value is
other than single precision integer (double precision integer,
standard or extended precision floating point in either F or E
format), then the format of the input variable must be specified
in the FORMAT= operand, the internal format must be specified
in the TYPE= operand, and only one value can be read and
converted by execution of a single GETVALUE instruction.

3. GETEDIT (c) and PUTEDIT (g) may optionally perform 1/0. If
the ACTION= operand is coded as ACTION=STG conversion will
be performed between the internally represented variables and
the text buffer specified, but no data transfer to or from a terminal
will take place.

4. PR INTEXT (e) and READTEXT (h) cannot be used for internall
external or external/internal conversion of numeric values. These
two instructions deal in the transfer of text strings between storage
and terminals exclusively. There may be code conversion per
formed, from the EBCDIC representation in a text buffer to or
from whatever unique code a particular terminal requires, but this
is an automatic function of the system, is transparent to the user,
and is not the conversion of arithmetic values which was defined
as data conversion in this section.

5. CONVTD (a) and CONVTB (d) never perform I/O. These instruc
tions always operate between variables and text buffers in storage.
All other instructions listed either always, or optionally may
perform 1/0.

6. CONVTD (a) and GETEDIT (c) are used to convert an EBCDIC
string in a text buffer to a binary value. The GETEDIT may also
have read the value into the text buffer from a terminal
(ACTION=I/O).

C)

7. PR I NTN UM (b) never requires a text buffer. The conversion
is from the binary value to the code required by the terminal, with
no user defined text buffer employed. GETVALUE (f) does not
require a text buffer for the conversion, but may use one for the
prompt message if the pmsg operand is coded.

8. PRINTNUM (b), PRINTEXT (e), GETVALUE (f), and
READTEXT (h) always perform I/O. I/O is optional with
GETEDIT (c) and PUTEDIT (g).

9. CONVTD (a), PRINTNUM (b), GETEDIT (c), CONVTB (d),
GETVALUE (f), and PUTEDIT (g), all handle single and double
precision integers, and standard or extended precision floating
point numbers in F or E notation external formats. PR I NTEXT
(e) and READTEXT (h) do not perform any conversion, and
therefore do not apply.

Data Formatting 12-21

c

This page intentionally left blank.

c
12-22 SR30-0436

SENSOR BASED I/O

G

Section 13. Sensor I/O

OBJECTIVES: Upon successful completion of this topic, the student
should be able to:

1. Define the sensor I/O requirements in an application program.

2. Understand how to obtain digital and analog data from external
devices.

3. Understand how to send digital and analog output signals from the
Series/1 to external devices.

4. Use the facilities provided to service process interrupts on a
Series/1.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
System Guide (SC34-1702), "Sensor I/O."

"Data Processing I nput/Output" refers to the exchange of information
between a computer and a data processing I/O device. An example of
this is shown in Figure 13-1 in the form of an operator entry at a
terminal, which the program in the computer then transfers into stor
age, and acts upon.

SERIES/1
STORAGE

SUPERVISOR

APPLICATION
PROGRAM

Figure 13-1. Data processing I/O

Sensor 1/0 13-1

13-2 SR30-0436

Depending on what the input means to the program, an information
message or guidance prompt may be sent back to the terminal operator
in response.

I n Figure 13-2, the same example has been put into an applications
context. Assume that the program is a "flow monitoring" application,
related to some industrial process. A gauge is connected to a pipe,
indicating the rate of flow through the pipe .. The rate of flow can be
adjusted using the valve.

SERIES/1

STORAGE

SUPERVISOR

APPLICATION

PROGRAM

Figure 13-2. Flow monitoring

In response to a prompt from the program, the operato, reads the
gauge, and enters the rate of flow at the terminal. The program trans
fers the information into storage and checks the entered flow rate
against predetermined limits or targets. If the flow rate is too high or
too low, the program sends a message to the terminal instructing the
operator to adjust the valve down or up.

I n the example just discussed, a computer program is used to analyze
a measurement of some physical property (in this case, rate of flow in
pipe), and based on that analysis, request that a mechanical action take
place (turn the valve up or down). The human operator, using the
terminal, provided the flow rate information to the program, and as a
result of a message on the terminal, provides the power to turn the
valve.

c

C~

o

o

SERIES/1
STORAGE

SUPERVISOR

APPLICATION
PROGRAM

Using the "Sensor Based I nput/Output" features of the Series/1, the
same application can be performed without using an operator or a
terminal. In Figure 13-3, the gauge has been replaced by another flow
monitoring device, which translates flow rate into a voltage propor
tional to the rate of flow, rather than into movement of a needle
around a dialface. The voltage produced is therefore an analog of the
rate of flow within the pipe.

SENSOR
BASED
INPUT/
OUTPUT

Figure 13-3. Sensor based 1/0 flow monitoring

The voltage is sensed by the Series/1 Analog I nput (A/I) feature, and
converted to a digital value (binary). This value can then be arithmeti
cally compared with known limits or targets, and a decision can be
made whether to decrease or increase the valve opening.

The manually operated valve has been replaced by a motorized unit.
The direction and amount of rotation of the motor drive can be con
trolled by the Digital Output (0/0) sensor I/O feature.

The entire "flow-monitoring" application can now be directly con
trolled by the program, from acquisition of the flow-rate information
(A/I), through the performance of the corrective mechanical.adjust
ment (0/0). The delays and errors inherent in operator participation in
the process no longer exist.

Sensor I/O 13-3

Digital Input/Output

Analog Input/Output

13-4 SR30-0436

Sensor I/O is used in a variety of application areas, including process
control, laboratory automation, and plant automation. Sensor I/O
devices available on the Series/1 are as follows;

A digital unit of sensor I/O is a physical group of 16 contiguous points.
The entire group of sixteen points is accessed as a unit at the I/O in
struction level; Event Driven Executive programming support allows
logical access down to the single point level. Each point of Digital Input
(0/1) or Digital Output (0/0) may be operated (turned on/off) inde
pendently. 0/1 is usually used to acquire information from instruments
which present binary-encoded output, or to monitor contact/switch
status (open/closed). % is used to control electrically operated de-
vices through closing relay contacts, pulsing stepping motors, etc.

Process Interrupt (P/I) is a special form of 0/1. If a point of 0/1
changes state, and then changes state again, without an intervening
READ operation from the program, the status change will be undetected.
With P/I, a point changing from the off state to on generates a hardware
interrupt, which is then routed, through software support, to an inter
rupt servicing user program which can respond to the external event
which caused the interrupt. P/I is often used for monitoring critical or
alarm conditions, which must be serviced quickly, and whose occur
rence must not go undetected.

A physical unit of Analog Input (A/I) may be a group of 8 points or 16
points, depending on the type. Analog Output is installed in groups of
2 points. Each point of A/I and A/O is accessed separately, at both the
I/O instruction and Event Driven Executive support level.

Analog I nput is used to monitor devices that produce output voltages
proportional to the physical variable or process being measured. Ex
amples include laboratory instruments, strain gauges, temperature sen
sors, or other "non-digitizing" instruments. Digital I nput was des
cribed as monitoring an on/off status; only one of two conditions were
possible. With A/I, the intelligence is carried in the amplitude of the
voltage sensed rather than in its presence or absence.

C)

SERIES/1

SUPERVISOR

APPLICATION
PROGRAM

Analog input voltages are converted to corresponding binary equiva
lents for use by the system, by the use of an Analog to Digital (A to D)
converter. Figure 13-4 is a schematic of the analog input conversion
mechanism.

POINT SELECT

ANALOG TO
DIGITAL
CONVERTER

D

D

Figure 13-4. Analog to digital conversion

The address of the point to be "read" (sensed) is sent to a multiplexor
o which selects the requested point. The voltage at the selected
point fJ is routed through the mUltiplexor to the Analog to Digital
Converter II . The A to 0 converter changes the voltage into an
equivalent binary value, which can then be used in the Series/1 a .
With Analog Output, this process is reversed. I n Figure 13-5, a binary
value 0 which is the equivalent of a desired voltage, is converted to
that voltage by a Digital to Analog Converter fJ , and transferred to
the specified output point II.
For more detailed information about Series/1 Sensor I/O Features, see
"I 8M Series/1 4982 Sensor I/O Unit Description" (GA34-0027).

SERIES/1

SUPERVISOR

APPLICATION
PROGRAM

D

fJ

DIGITAL TO
ANALOG
CONVERTER

Figure 13-5. Digital to analog conversion

II

Sensor I/O 13-5

EVENT DRIVEN EXECUTIVE SENSOR I/O SUPPORT

SERIES/1

SUPPLIED
SUPERVISOR

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
System Guide (SC34-1702), "SENSORIO Configuration Statement."

The Event Driven Executive supplied supervisor as sent from PI 0 con
tains no support for sensor I/O. If you wish to use these devices, you
must do a "tailored system generation" to include the required support
modules in your own supervisor. (See the "System Generation" section
of this study guide for more information on generating a "tailored
supervisor" .)

Figure 13-6 is a graphic depiction of how sensor devices are connected
to a Series/1. The devices themselves (0/1, 0/0, P/I, A/O, A/I) attach
to a controller, which in turn attaches to the Series/1. The sensor I/O
attachment (controller), and each of the devices attaching to it, have
unique hardware addresses. In this illustration, the physical connec
tions are there, and the hardware addresses are assigned (wired in), but
the supplied supervisor in storage lacks the support necessary to operate
the devices.

SENSOR I/O
ATTACHMENT

ADDRESS48

0/0 GROUP
ADDRESS 50

0/1 GROUP
ADDRESS 51

0/1 GROUP
ADDRESS 52

Figure 13-6. Sensor device connections

13-6 SR30-0436

C.:

c

o

o

SERIES/1

TAILORED
SUPERVISOR

SENSOR I/O
DEVICE
TABLES

SYSTEM
CONTROL
BLOCKS

SENSOR I/O
CONTROL
ROUTINES

Figure 13-7_ SENSORIO

Building a "tailored supervisor" involves the assembly of a series of sys
tem configuration statements that reflect the I/O configuration and
application requirements you wish to support. The system configura
tion statement which allows you to define sensor I/O devices is
SENSORIO. Figure 13-7 illustrates the results of a tailored sysgen,
using the SENSORIO system configuration statement to generate the
necessary control blocks, and with sensor I/O supervisor support mod
ules included.

TAILORED SYSGEN

SENSORIO ADDRESS=48,DEVICE=4982,DO=50,DI=(51,52)

SENSOR I/O
ATTACHMENT
(4982)

ADDRESS 48

D/O GROUP
ADDRESS 50

ADDRESS 51

D/I GROUP
ADDRESS 52

Sensor' /0 13-7

IODEF STATEMENT

13-8 SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), flIOOEF."

The SENSORIO statement defined the hardware device addresses for
the supervisor. When programs reference I/O devices, they use sym
bolic references, rather than actual addresses. The 100EF statement
(I/O Definition) establishes the logical link between the addresses de
fined in the supervisor, and the symbols used to read from and write to
the devices at those addresses from within an application program.

Figure 13-8 illustrates an lODE F statement. Each different logical
sensor device that may be used by a program must be defined in an
10DEF statement. In the example, the first operand is the symbolic
name of the device, "001". The flOO" portion of "001" is required,
if you are defining a Digital Output device. The numeric portion may
be any number you wish, from 1 through 99 (the fl1" in fl001" does
not mean fl1st DO device on the adapter". It is simply a symbolic
reference number, used to differentiate between multiple logical
devices of the same type.)

Each kind of sensor I/O is designated in the same manner; the alpha
portion of the symbolic reference indicates the type of device (0/0,
0/1, A/O, A/I, P /1), and the numeric portion differentiates between
logical devices of the same type, and is user assigned.

The second operand in the example is coded as flTYPE=G ROUP". This
means that the logical digital output device, whose symbolic name is
''~O 1" consists of an entire group of % points (16 points in a group).
The third operand specifies that the hardware address of this group is
50, which ties back to the hardware address for this group defined in
the supervisor, during system generation.

You do not have to define a logical % or 0/1 device as consisting of
all sixteen points of a hardware group. The second operand may be
coded as flTYPE=SUBG ROUP", in which case a fourth operand must
be coded (B ITS=), indicating which bit, or group of bits, within the
hardware group of 16 at this address, constitutes the logical device de
fined by operand 1. You can therefore have multiple logical devices
defined in the 100EF statement, all referencing the same physical ad
dress (group of points).

c

c

c

o

SERIES/l

TAILORED
SUPERVISOR

SENSOR I/O
DEVICE
TABLES

SYSTEM
CONTROL
BLOCKS

SENSOR I/O
CONTROL
ROUTINES

APPLICATION
PROGRAM

10DEF DO
10DEF 01
10DEF 01
10DEF 01

Figure 13-8. 10DEF statement

SENSOR I/O
ATTACHMENT
(4982)

ADDRESS 48

0/0 GROUP
ADDRESS 50

0/1 GROUP
ADDRESS 51

0/1 GROUP
ADDRESS 52

SENSORIO ADDRESS=48,DEVICE=4982,DO=50,DI=(51,52)
'--v-I

"ADDRESS=50" IN
10DEF CORRESPONDS
TO THE % GROUP AT
ADDRESS 50 THAT
WAS DEFINED IN THE
SUPERVISOR BY THE
"SENSORIO"

IODE:11~~= 0

THE KIND OF SENSOR I/O SYMBOLIC "GROUP" INDICATES THAT
BEING DEFINED (DO IS REFERENCE A REFERENCE TO "001"
DIGITAL OUTPUT, 01 IS NUMBER INCLUDES ALL 16 POINTS
DIGITAL INPUT, ETC.) OF THE % GROUP AT

.....

"001" USED FOR SYMBOLIC
REFERENCES IN PROGRAM

ADDRESS 50

Sensor I/O 13-9

S810 STATEMENT

13-10 SR 30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Language Reference (SC34-1706), "S810."

Now that the supervisor can access the hardware (SENSORIO, system
generation), and you have defined the logical sensor I/O devices that
will be symbolically referenced in your application program (lODE F),
you are ready to do sensor I/O operations.

All sensor-based input/output operations are performed by execution
of an S810 statement. The type of operation is determined by the
type of device referenced in the S810 (READ=DI, AI, WRITE=DO,
AD). In the example in Figure 13-9, the contents of location "ACON"
will be written to the symbolic device 11001", turning on the first eight
digital output points of the % group at address 50, and turning off
the second eight bits. The symbolic reference to logical device 11001"
in the S810 statement is linked to the definition of 11001" in the
10DEF statement, which relates that device to the sixteen digital out
put points of hardware address 50, through the supervisor support set
up at sysgen.

c

c

o

o

SERIES/1

TAILORED
SUPERVISOR

SENSOR I/O
CONTROL
ROUTINES

SENSOR I/O
DEVICE
TABLES

SYSTEM
CONTROL
BLOCKS

APPLICATION
PROGRAM

10DEF DO
10DEF 01
10DEF 01
10DEF 01

~
SBIO

Figure 13·9. S810 statement

DOWRITE

ACON

SENSOR I/O
ATTACHMENT
(4982)

ADDRESS 48

0/0 GROUP
ADDRESS 50

0/1 GROUP
ADDRESS 51

0/1 GROUP
ADDRESS 52

SENSORIO ADDRESS=48,DEVICE=4982,DO=50,DI=(51,52)
~

IODEF

SBIO

~
DATA

~

"ADDRESS=50" IN
10DEF CORRESPONDS
TO THE % GROUP AT
ADDRESS 50 THAT
WAS DEFINED IN THE
SUPERVISOR BY THE
"SENSORIO"

D01,TVPE=GROUP,ADDRESS=50

)

"001" IN SBIO
COR RESPONDS TO
"001" IN 10DEF

D01,ACON

Sensorl/O 13·11

Sensor I/O Coding Examples

Digital Input

13-12 SR30-0436

Following are a few 100EF/SB10 coding examples using various sensor C
I/O features. I n all cases, assume that a tailored sysgen has been accom- _ .. /
plished using a SENSORIO statement which supports the addresses
referenced in the 100EF statements in the examples.

10DEF D1l,TVPE=SUBROUP,ADDRESS=66,B1TS=(0,8)

SB10 D1l,D1G1Nl

D1G1Nl DATA FlO I

Figure 13-10. D/I example

The lODE F defines "011" as being the first 8 bits of the 0/1 group at
hardware address 66. The SBIO instruction will read these 8 bits, right
justified into location "0IGIN1". .

c~

Process Interrupt

C)

o

The interrupting digital input (process interrupt) provides a hardware
interrupt to the Series/1 when a contact closure is detected. These
interrupts are serviced by your supervisor by POSTing that the event
(interrupt) has occurred. You must interrogate in your program for
event completion. When you define a process interrupt (IODEF) the
symbolic reference (Pix) is the label on the event control block (ECB)
for that process interrupt point(s). You can check to see if the event
has occurred by either checking the ECB (it will be a non-zero value if
the interrupt has occurred) or by WAITing on the process interrupt.
The following shows how you can check the ECB.

IODEF PIl,ADDRESS=68,BIT=lO

RESET PII
INTPTIM STIMER lOOO,WAIT - LABEL ON ECB

CHECK IF (PI~NE,O),GOTO,INTSERV

GOTO INTPTIM

INTSERV RESET PII

INTERRUPT

SERVICING

ROUTINE

GOTO INTPTIM

Figure 13-11. PII example 1

Sensor I/O 13-13

13-14 SR30-0436

In the previous example we are checking every second to see if an inter
rupt has occurred. The program must be invoked and remain resident
for the duration of checking for interrupts. The following shows a
more efficient way of accomplis~ing the same thing.

IODEF PIl,ADDRESS=68,BIT=15

INTROUT WAIT PIl,RESET

ECB LABEL
SERVICING

ROUTINE

GOTO INTROUT

Figure 13·12. PII example 2

I n this example, the WAIT is issued against the ECB itself, rather than
checking after a time delay.

In both cases the process interrupt is handled by the supervisor and the
user services the interrupt in a resident application program.

For some applications, the overhead involved in allowing the supervisor
to service and route the interrupt is not acceptable. Using the SPECPI
statement, the user can direct that the interrupt bypass the supervisor
and be handled by a user written assembler language routine within the
application program. This approach provides minimum delay from the
time the interrupt occurs until the user program is entered, but also
requires the user to issue the I/O instructions which read and reset the
P/I group, and to interface properly with the supervisor at the assembly
language level.

c

c

Digital Output

C)

o

Digital Output is similar to 0/1 in terms of coding the 100EF and 5810
instructions with one exception. % has the capability to send pulses,
turn a % point on or off for a period of time, then reverse its state.
This is useful in driving pulse-operated devices such as stepping motors.

IODEF DOl,TVPE=SUBGROUP,ADDRESS=67,BITS=(15,1)

SBIO DOl,(PULSE,UP)

Figure 13-13. % example

The above example would send a pulse to the device attached to bit 15
of the digital output group at hardware address 67. As shown, bit 15 is
assumed to be off, or in the "OOWN" state when the operation begins.
The IIUP" says IIturn bit 15 on, and then back off". liON" may be sub
stituted for IIUP", and if going in the other direction, "OFF" may be
used instead of "DOWN" when coding % pulse operations.

Sensor I/O 13-15

External Sync

13-16 SR30-0436

Both 0/1 and % may be used with external synchronization. The
hardware has the capability of being "triggered" by a signal generated
by a user device external to the Series/1.

10DEF D1l,TYPE=EXTSYNC,ADDRESS=66

S810 D1l,D1WORD,l

DIWORD DATA FIOI

Figure 13-14. External synchronization

In the example shown above, the group at hardware a,ddress 66 will be
read into location "OIWO R D" only when the external synchronization
signal is received.

The third operand in the SBIO statement is the number of times
(count) you wish the 0/1 group read (how many external sync signals
are to be waited for) before the supervisor posts the ECB, and execution
continues.

('
\ /

c

Analog Input

o

IODEF AIl,ADDRESS=62,POINT=2,RANGE=5V

SBIO AIl,AIVAl

AIVAl DATA FIOI

Figure 13·15. Analog input (All) example

The example above shows the reading and conversion of A/I point 2,
defined in the 10DEF as symbolic A/I device "AI1". When the conver
sion is complete, an I/O interrupt is generated, and the supervisor posts
an ECB so that execution may continue.

The electrical value is between ±5 volts (range). To further carry out
the example, let's say the point had a value of 2.5 volts. The converted
digital value in the word "AIVAL" is shown below.

SIGN BIT
O=POSITIVE
l=NEGATIVE

1 000 0 0 0 0 0 0 0

BINARY REPRESENTATION
OF CONVERTED VOLTAGE
(+2.5V SHOWN)

Figure 13-16. All conversion

NOT
USED

For a more detailed description of A/I voltage conversion values refer to
"I BM Series/1 4982 Sensor I/O Unit Description" (GA34-0027).

Sensor I/O 13·17

Analog Output

13-18 SR 30-0436

Analog Output sends a voltage to an external user device. The program
provides the binary (digital) equivalent of the desired output voltage to
the A/O device, which then converts it to voltage and puts it out to the
specified point.

10DEF AOl,ADDRESS=64,P01NT=0

SB10 AOl,VOLTOUT

VOLTOUT DATA X' 7FCO '

Figure 13-17. Analog output (A/O) example

The above illustrates the IIwriting" of +5.0 volts to analog output point
zero. A/O does not generate an interrupt upon completion or employ
external synchronization.

The format of the output word at location IIVOL TOUT" is shown be
low.

~I~E~ I~OR I 0 1,1 1 1 1 : 1 1 1 :J 0

BIPOLAR/' BINARY EQUIVALENT
AIO IS OF OUTPUT VOLTAGE
INSTALLED (+5V SHOWN)

Figure 13-18. AlO conversion

000 0

UNUSED
BITS

For a more detailed description of A/O voltage conversion values refer
to "I 8M Series/1 4982 Sensor I/O Unit Description" (GA34-0027).

c

c

c

o

SENSOR I/O REVIEW EXERCISE - QUESTIONS

1. Can a user access Sensor I/O devices executing under the Starter
Supervisor? (Yes or No)

2. Using

10DEF AI1,ADDRESS=70,POINT=2

what will the following instruction accomplish?

a .. SBIO AI1,TABLE,2

b. SBIO AI1,TABLE,2,SEQ=YES

3. Using

10DEF DI10,ADDRESS=71,TYPE=SUBGROUP,BITS=(8,2)

what will the following instruction do?

SBIO DI10,DATA 1

4. Using

10DEF D09,ADDRESS=72,TYPE=EXTSYNC

what will the following instruction do?

SBIO D09,DATA,1

Sensor 1/0 13-19

SENSOR I/O REVIEW EXERCISE - ANSWERS

13-20 SR30-0436

1. No (you must generate a tailored supervisor to access Sensor I/O).

2. a. Will read AI point 2 at address 70 two times and store the
converted values at the two locations at TABLE.

b. Will read AI points 2 and 3 once each and store the converted
values at the two locations at TABLE.

3. Will read bits 8 and 9 of DI group at address 71 into storage
location DATA 1 (right justified)

4. Will write out the contents of storage location DATA to DO
group at address 72 upon receipt of an external signal (pulse).

C:

C
--..,·
)

o

Introduction to Sections 14 Through 18

The last five sections of this study guide are:

Section 14. Utility Programs
Section 15. System Installation
Section 16. Program Preparation Using $EDXASM
Section 17. Program Preparation Using $S 1 ASM
Section 18. Session Manager

These topics address areas of the system that are most subject to
change when new operating system versions are released. New utility
programs may be added, or existing utilities changed or expanded in
function. Almost any change to the system will also change the
system installation process to some extent. Maintenance and/or
enhancement of the assemblers may alter the way certain assembler
functions are invoked, or change the appearance of assembler output
listings.

OPERATOR COMMANDS

$A

o

Section 14. Utility Programs

OBJECTIVES: Upon successful completion of this topic, the student
should be able to:

1. Describe the purpose of each of the operator commands and system
utility programs

2. Use the most often required utilities

When the ATTN key on a terminal is pressed, the system responds with
the prompt character" >". An operator may then enter a character
string defined in an application program's ATTN LIST statement,
thereby executing a user attention routine.

There are also several operator commands that may be entered in
response to the> prompt, which will cause execution of supervisor
utility functions. The $L entry is one example with which you are
already familiar. $L enqueues the system loader in preparation for
loading a user or system program to storage.

Other system commands that may be entered in response to the ">"
ATTN key prompt are: ..

Terminals are logically assigned or linked to particular partitions in
storage, by the PART= operand of the TERMINAL system configura
tion statement. (For systems with < 64K of storage, all terminals
are assigned to partition 1 by default.) When $A is entered in response
to the II >" prompt, the system will display the names and load points
of all programs that are active within the partition to which the request
ing terminal is· currently assigned (see "$CP" discussion below for how
to dynamically change the partition assignment for a terminal). The
command $A ALL will display all partitions, their sizes, origins and all
active programs.

Utility Programs 14-1

$8

$C

$D and $P

$CP

14-2 SR30-0436

During normal system operation, there may be occasions when a 4978/
4979/3101 Display screen becomes cluttered with residual displays
from previous program executions. An example might be some pro
tected data areas left by an application program that terminated with
out issuing an E RASE command. The $8 operator command will com
pletely erase (blank) all protected and unprotected areas of the screen
of the requesting terminal.

This operator command is the cancel program function, and is provided
as a last resort to force a program to end execution and release the
storage it occupies. It is not a normal means of terminating program
execution, and, depending on what the cancelled program is doing
when the cancel is issued, may result in unpredictable errors. It
is designed as a debug aid, and should be used with discretion.

$C is effective only within the partition assigned to the requesting
terminal. The operator will be prompted for the name of the program
to be cancelled, and also for the load point, if multiple copies of the
program are in execution at the same time.

These two commands are on-line debug aids, which allow an operator
to display ($0) the contents of storage in hex, or to patch ($P) storage
locations from the terminal. These commands will prompt the
terminal operator for starting addresses, number of words, etc., and like
$A and $C, are effective only within the assigned partition.

The $L, $A, $C, $0, and $P functions are all r~stricted to the assigned
partition, as specified in the PART= operand of the TE RMI NA L
system configuration statement defining a particular terminal. The $CP
entry is the "change partition" command, allowing dynamic reassign
ment of a terminal to a partition. When $CP is entered, the operator is
prompted for the number of the partition to be assigned to the term inal
requesting the partition change. When the reassignment is made, all
of the assigned partition only functions are effective for the new
partition. See the topic "Operator Command Example" later in this
section for an illustration of how the $CP function, along with $A and
$C, may be used.

c'

c

$E

$S

$T and $W

When system utility or application program output is directed to
$SYSPRTR, the forms are usually not advanced far enough, when
the output is finished, to allow the operator to tear off the complete
report. The $E function advances $SYSPRTR to the top of form
(page eject), allowing the operator to adjust the forms position until
the complete output may be removed.

The Spooling facility provides the function of routing printer output
to disk for later printing. Using the $S operator command, a user can
control the actions of the Spool facility.

The $T entry is the set date and time command for the 24 hour system
clock/calendar. This command may only be issued from the terminals
designated as $SYSLOG or $SYSLOGA. The date and time may be set
anytime, as illustrated below.

>[TI]

DATE(M. D. Y)rJ!it 781
T H1 E (H . M): 13. 6

DATE = 10/06/78 TIME = 13:06:36

Figure 14-1. $T command

Note: In Figure 14-1, and in all illustrations in this section, depicting
operator/utility prompt/response sequences, operator entries wi II be
shown enclosed in boxes.

The $W command displays the 24 hour clock and the date, and may
be entered from any terminal.

>[ig]

DATE = 10/06/78 TIME 13:06:53

Figure 14-2. $W command

Utility Programs 14-3

$VARYON and $VARYOFF

OPERATOR COMMAND

14-4 SR30-0436

The $VARYON and $VARYOFF commands allow a terminal operator
to place tape or diskette devices in an online ($VARYON) or offline
($VARYOFF) status. $VARYOFF might be useful in a situatio'n where
program testing and development are going on, and the operator wishes
to make certain that production data residing on a diskette is inaccess
ible to the test programs.

$VARYON is frequently used to place diskette volumes online. At
system IPL, if a diskette is not mounted in the diskette drive, the
diskette device is placed offline. When a diskette is mounted, or when
a mounted diskette volume is removed and another volume mounted,
the operator must issue a $VARYON to place the device and volume
online.

Figure 14-3. $VARYON command

In Figure 14-3, the diskette volume ASMVOL has been mounted, and
placed online with a $VARYON command.

Notice that $VARYOFF and $VARYON prompt the operator for an
I/O Device Address (IODA=). These commands are effective at a device
level, and across the entire system.

The following is a hypothetical situation designed to illustrate the use of
the $A, $C, and $CP operator commands.

We have made two assumptions:

1. A three partition Event Driven Executive system with partition 1
assigned to a 4979 ($SYSLOG), partition 2 assigned to a 4978,
and partition 3 assigned to a TTY device

2. Program debug and testing is going on in partition 1, a production
job is running in partition 2, and partition 3 is currently not in use.

The application programmer using partition 1 has just produced a load
module named TESTPROG, which he now wishes to test. The
TESTPROG load module just produced is stored on volume EDX002.
An earlier version of TESTPROG resides on volume EDX003. The
programmer inadvertently loads the old version of TESTPROG, which
goes into execution.

r .,-" .. ,

c

c

o

C)

C)

> ISL TESTPROG,EDX0031
TESTPROG 10P,13:10:27, LP 5FOO
Figure 14-4. 1st load

The programmer soon realizes the wrong TESTPROG has been loaded,
and without terminating the program, presses the ATTN key and
requests the load of the new version of TESTPROG, this time using the
proper volume.

> ISL TESTPROG,EDX0021
TESTPROG 12P,13:12:00, LP = 6900
Figure 14-5. 2nd load

The new version of TESTP ROG begins execution. The program
enqueues for the loading terminal, and before a DEQT is issued, a pro
gram logic error causes an execution loop. The ATTN key produces
no response, because the requesting terminal is enqueued. The pro
grammer cannot, therefore, cancel ($C) either TESTPROG from this
terminal. If the system were re-IPLed to recover, the production job
running in partition 2 would have to be terminated, a possibility that
mayor may not be practical.

Since the TTY device assigned to partition 3 is not in use, the pro
grammer moves to the TTY, and wanting to know what partition it is
assigned to, enters the following;

>~
PROGRAMS AT 13:13:14
IN PARTITION #3 NONE
Figure 14-6. P3 $A

The TTY is still assigned to partition 3, the IPL configuration specified
in the TERMINAL statement defining the TTY terminal. No programs
are presently active in partition 3.

The programmer now switches the TTY to partition 1, and displays
the programs there.

> I$Cpl
PARTITION # ? UJ
>1M1
PROGRAMS AT 13:14:46
IN PARTITION #1
TESTPROG 5FOO
TESTPROG 6900
Figure 14-7. P1 $A

Utility Programs 14-5

Both versions of TESTPROG are displayed, along with their load points
in partition 1. The next step is to cancel the looping program, freeing
up the enqueued $SYSLOG.

> [ill
PGM NAME: ITESTPROG I
LOAD POINT = 169001
TESTPROG CANCELLED AT 13:15:12

>[RJ
PGM NAME: ITESTPROG 1
TESTPROG CANCELLED AT 13:15:59
>lscpl
PARTITION # ? [l]
Figure 14-8. "$C"

The system prompts for load point on the first cancel, because two
programs of the same name are in the partition. I f the fi rst program
cancelled were the one which had the 4979 enqueued, the operator
could then go back to the 4979, which would now respond to the ATTN
key, and terminate the remaining version of TESTPROG normally, or
cancel it, if necessary. In this example, he continues with a cancel of
the other TESTPROG from the TTY. Note that no load point is
required when only one program of that name is active in the partition.

The TTY is then switched back to partition 3. I F this is not done,
future operator commands, including $L, issued from the TTY would
still apply to partition 1.

Note: $A ALL could have been used to display all partitions. $A was
used to show the use of the $CP command.

SYSTEM UTILITY PROGRAMS -INTRODUCTION

14-6 SR30-0436

I n this section, the Event Driven Executive utility programs are dis
cussed under five major groups:

1. Data Management/Maintenance Utilities

2. Terminal Utilities

3. Miscellaneous Utilities

4. Program Preparation Utilities

5. Utilities supporting system facilities and features not covered in
this study guide.

c

c\

Groups 1 through 4 include all of the most commonly used utility pro
grams pertaining to facilities or topics discussed in this study guide. For
the most part, Event Driven Executive utilities are self-tutoring; entry
of a "?" in response to a COMMAND (?): prompt will result in a display
of all the command options avalTilble for that utility. Most command
options are self-explanatory. Discussion of the simpler utilities will be
limited to an illustration of the command options available (terminal
output resu Iting from "?" command response), with a brief explanation
of complex/obscure commands if required. Numerous examples of
actual utility operation may be found in the reading assignments, and
are not duplicated here.

Some utilities have specialized and/or seldom used functions. Where
this is the case, utility operation is discussed and illustrated in full.

Group 4 consists of those. utilities required for source program prepar
ation. Some are covered in this section, but for most, discussion is
reserved for "Section 16. Program Preparation Using $EDXASM."
Group 5 are those utilities supporting communications/graphics
facilities, topics which are not addressed in this course. Discussion
is limited to a brief description; no illustrations are provided, and
instead of a READING ASSIGNMENT, there will be a READING
REFERENCE, often in a system reference manual (SR L) not listed
as one of the three manuals required for completion of this course.

DATA MANAGEMENT/MAINTENANCE UTILITIES

C) $DASDI

o

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Utilities, Operator's Reference, Messages and Codes (SC34-1703),
"$DASD I Utility Program."

Before Event Driven Executive logical volumes can be defined on disk
or diskette, the magnetic surface of the disk/diskette must be prepared
for use. This preparation consists of a surface analysis, wherein test
data is written, and then read back and checked for accuracy. If
defective sectors are found, they are flagged, and alternates are assigned.
Sector addresses are written, and in the case of diskettes, 128 byte
sectors are established.

The Event Driven Executive utility used for disk/diskette surface prepar
ation is $DASDI. Figure 14-9 is the prompt/response sequence reSUlting
from initialization of a diskette mounted on a 4966 Diskette Magazine
Unit.

Utility Programs 14-7

> I$L $DASDII
. $DAS 01 . 7P, 05: 30: 55, LP= 7600
DI~ECT ACCESS DEVICE INITIALIZATION

DISK INITIALIZATION OPTIONS:
O=CREATE STAND-ALONE DUMP DISKETTE 4964/4966
1=4964, 4966 DISKETTE INITIALIZATION·
2=4962 DISK INITIALIZATION
3=4963,'DISK INITIALIZATION
4=EXIT DISK INITIALIZATION

ENTER DISK INITIALIZATION OPTION: [TI

**
* DISKETTE FORMATTING PROGRAM *
* IF FORMATTING IS IN PROGRESS, DO NOT *
* CANCEL ($C) THIS PROGRAM. INSTEAD, *
* ENTER ATTN/$IDSKETT TO FORCE TERMINATION. *
**

ENTER DISKETTE ADDRESS IN HEX [ZlI

INITIALIZE FOR USAGE WITH THE IBM EVENT DRIVEN EXECUTIVE? OU
DEVICE VARIED OFFLINE

** WARNING **
FORMATTING WILL DESTROY ALL DATA ON THE DISKETTE IN SLOT 1. CONTINUE? lYI
IBMEDX VARIED ONLINE

FORMATTING COMPLETE

',LOAD $IN ITD'SK?
. Figure '14-9. Diskette surface preparation

The 4966 has a capacity of 23 diskettes, 2 magazines of 10 diskettes
each, plus three slots for individual diskettes. The three individual slots
are the first three slots in the device. $DASD I operates on slot 1 only;
any diskette on which surface preparation is to be run must first be
mounted in slot 1.

After surface analysis is complete, $DASDI writes the volume label
I BMEDX, on the diskette. The next step after preparing a diskette
surface is usually to create a logical volume for use with the Event
Driven Executive. Logical volumes are created (directories established,
etc.) with the $INITDSK utility. $DASDI therefore gives you the
option of going directly into $INITDSK execution, without having to
end $DASDI and issue the $L command for $INITDSK yourself.

Surface analysis, sector address writing, and alternate sector assign
ment for 4962 and 4963 disks is done at the factory. When you
receive your disk unit it is ready to go; you do not have to run
$DASDI before running $INITDSK.

While running your system (after logical volumes have been created),

c

('\
'---.. '

it is possible that a sector on disk may go bad. If this occurs, $DASD I C·
can be used to flag the defective sector and assign an alternate,
without disturbing the rest of the data on the disk.

14-8 SR30-0436

$INITDSK

o

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator's Reference, Messages and Codes (SC34-1703), "$1 N ITDSK
Utility Program."

$1 N ITDSK is the utility program used to establish libraries on Event
Driven Executive logical volumes. Figure 14-10 illustrates the initial
prompt/response sequence when $1 N ITDSK is loaded.

> I$L $ IN I TDSKI
$INITDSK 58P, LP= 8COO

COMMAND {?}: ?
10 - INITIALIZE DEVICE
AV - ALLOCATE VOLUME
AF ALLOCATE FIXED HEAD VOLUME
SV SPLIT VOLUME
IV INITIALIZE VOLUME
II INITIALIZE IPL TEXT
VV VERIFY VOLUME
LV LIST VOLUMES
DV DELETE VOLUME
EN END PROGRAM
Figure 14-10. $INITDSK options

Figure 14-11 illustrates the step by step procedure of using $INITDSK
to set up a disk prior to installing an EDX System. The 10 command
creates a volume directory for a disk at address 03. Three volumes
(EDX002, ASM LI Band EDX003) are allocated. Directories are
created for each volume capable of handling 500 data sets each. A
nucleus ($EDXNUC) is allocated in EDX002 and IPL text is written
pointing to $EDXNUC as the supervisor to be loaded at IPL time.

Utility Programs 14-9

14·10 SR30·0436

$INITDSK 58P, LP= 8000

COMMAND (?): U

INITIALIZE DEVICE WILL DESTROY ALL DATA
CONTINUE? lYl
DISK INITIALIZED
ALLOCATE A VOLUME? DO
VOLUME: IEDX0021
SIZE IN RECORDS: \100001
EDX002 ALLOCATED
INITIALIZE THE VOLUME JUST ALLOCATED? DO
MAXIMUM NUMBER OF DATASETS: 15001
DO YOU WANT WRITE VERIFY FOR THIS VOLUME? un
ALLOCATE $EDXNUC? DO
VOLUME INITIALIZED
INITIALIZE IPL TEXT? [YJ
IPL TEXT WRITTEN
ALLOCATE ANOTHER VOLUME? [YJ
VOLUME: IASMLI BI
SIZE IN RECORDS: 1100001
ASMLIB ALLOCATED
INITIALIZE THE VOLUME JUST ALLOCATED? DO
MAXIMUM NUMBER OF DATASETS: 15001
DO YOU WANT WRITE VERIFY FOR THIS VOLUME? ail
ALLOCATE $EDXNUC? [ill
VOLUME INITIALIZED
ALLOCATE ANOTHER VOLUME? [YJ
VOLUME: IEDX0031
SIZE IN RECORDS: 1158801
EDX003 ALLOCATED
INITIALIZE THE VOLUME JUST ALLOCATED? OU
MAXIMUM NUMBER OF DATASETS: 15001
DO YOU WANT WRITE VERIFY FOR THIS VOLUME? ~
ALLOCATE$EDXNUC? [[]
VOLUME INITIALIZED

COMMAN 0 (?): [ill

$INITDSK ENDED
Figure 14·11. Using $INITDSK

c

c

$DISKUT1

o

o

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator's Reference, Messages and Codes (SC34-1703), "$D ISKUT1
Utility Program."

> I$L $DISKUTll
$DISKUTl 37P, LP= 6300

USING VOLUME EDX002

COM~1AND (?): I1J
AL ALLOCATE SPACE
CV ---- CHANGE VOLUME
DE ---- DELETE MEMBER
EN ---- END THE PROGRAM
LA *--- LIST ALL (DS/PGM)
LACTS * LIST ALL (CTS MODE)
LD *--- LIST DATA SETS
LDCTS * LIST DATA SETS (CTS MODE)
LM ---- LIST 1 MEMBER
LP *--- LIST PROGRAMS
LPCTS * LIST PROGRAMS (CTS MODE)
LS ---- LIST SPACE
LV *--- LIST THROUGH VOLUMES (DS/PGM)
LISTP - DIRECT LISTING TO $SYSPTR
LISTT - DIRECT LISTING TO TERMINAL
RE ---- RENAME A MEMBER

*--- PREFIX (OPTIONAL)
COMMAND, (?):

Figure 14-12. $DISKUT1 commands

$D ISKUT1 provides many of the most frequently required DASD
storage management furfttions. Those functions annotated as
PREFIX (OPTIONAL) indicate that if a 1 to 8 character text string is
entered with the command, the command will apply to those members
whose name begins with that text string.

When the utility is first loaded, commands apply to the IPL volume,
but may be switched to other volumes with the Change Volume (CV)
command. The only exception is the List Through Volumes (LV)
function, which lists the data sets and programs in all volumes currently
online, without requiring entry of CV to switch from one volume to
another.

Utility Programs 14-11

$DISKUT2

14·12 SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator's Reference, Messages and Codes (SC34-1703), II$D ISKUT2
Utility Program."

> $L $DI5KUTZ
$OISKUT2 46P,06:57:29, LP= 0000

USING V1LUME ~C(002

COtt.!MANO(?): ?

CD - CLEAK DATA SET
CV - C~ANGE VOLUME
DP - DUMP OS OR PGM ON PRINTE~
au - OU~P OS OR. PGr.1 or" COt'IJSOLE

(-CA- WILL CA~CEL)

PA - PATCH OS OR PGM
5S - SET ?R8GRAM STURAGE PARM
LP - LIST D~ GN PRINTER
LU - LIST OS ON CONSOLE
PL - LIST LOG ON PRINTER
LL - LIST LUG ON CON~OLE
EN - EN) PQ,DG~A~

Figure 14·13. $DISKUT2 commands

In addition to the functions listed in Figure 14-13, all of which normally
operate on symbolically named data or program members, $DISKUT2
has the capability to operate on absolute record numbers within a
volume. If, when prompted for data set name, the operator enters the
special system name $$EDXVOL, the operation will then be directed
to absolute record numbers, rather than symbolic data/program memo
ber names, with record number 1 being the first record in the volume.

Similarly, if the special system name $$EDX LI B is entered, absolute
record numbers will be used, and the first record in the directory will
be considered record 1. For most volumes, $$EDXLlB and $$EDXVOL
will both reference the same record, as libraries on volumes usually
begin at the first record in the volume.

Figure 14·14 illustrates the use of the absolute record capability.

c

C)

> I$L $DISKUT21
$DISKUT2 46P, LP= 6300

USING VOLUME EDX002

COMMAND(?): IDU $$EDXLIBI
$$EDXLIB IS A DATA SET
FIRST RECORD: ~
LAST RECORD: 1
FI RST WORD: 1
WORDS / RECORD: 128
(D)EC OR HE(X): X

F\ECOF\l! 1
1 7BCO
9 0000

17 5BC5
25 0003
:~3 !5BC2
41 0003
49 5BC2
57 0003
65 !.:iBC2
73 0003
81 5BC3
B9 0003
97 5BF4

105 0001
11:~ 5BC9
121 0003

DUMP COMPLETE
ANOTHER AF!EA?

73CO
0000
C4E7
0000
E2C3
0000
E2C3
0000
E2C3
0000
D6D4
0000
F9F'7
0100
D6E3
0000

Figure 14-14. Absolute record capability

0036 0001 003C 351C 0000 0000 ;: 1

0000 0000 0000 0000 0000 0000 II II I
1I5E4 C340 003C O:l.3~t 0000 0000 $I::DXNUC I
7C3C 0230 0000 0000 0000 0000 II .. (~ II II

1::3119 C3C5 013C 0:1.43 0000 0000 $BSCT.~CE .. II

0568 0000 0081 0000 0000 0000 u II II II II

1::4E3 .: 140 0144 0159 0000 0000 $BSCUTl
115a 0000 OlC:; 0000 0000 0000 E
1:::41::3 F240 015A 01134 0000 0000 $13SCUT2 II ! " II .. II II ..

4AC8 0000 0'JA6 0000 0000 0000 C.I·~a ... II ... "

1.17 [IS' C51::2 01B5 01.C4 0000 0000 ~;COMF'F\ES. II II 11
OC60 0000 0152 0000 0000 0000 .. II II - II It .. II

F8C3 E2FO 01C5 01.D4 0000 0000 $4978CSO.E..M
0000 0000 0000 0000 0000 0000 II II II II " II II " .. II

C~:,E2 1:::340 01[15 01.F6 0000 0000 SIOTEST liN .. 6
lB'iC '1040 02BO 0000 0000 0000 II .. II II II II II II

Using the special system name $$EDXLI B, the operator is able to dis
play the first record in the directory of volume EDX002.

Uti I i tv Programs 14-1 3

$COPY

14-14 SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator's Reference, Messages and Codes (SC34-1703), "$COPY
Utility Program."

> ~l flC'JPY
t C ~JP y 33P,06:54:21, lP= Joao

c O"~ :--1 A i\J 0 (?): ?

co - CO~y ~ATA SLT
C V - COP Y V:

oo
; L U ~ C

;J,C - CC'>Y FR():~i :3.\SIC EXC~o\Nj~·E

Ii,::: - eepy TO RA<JIC EXeH/,r<Gr-
(-(,.\- "JILL Cl\~JCF.L)

~:\ - C- N) ? R J G K A ;~
C 0" i\'}~ "lC (?):

Figure 14-15. $COPY commands

c'

When using $COPY to copy library members, the target member must
already exist (allocate using $DISKUT1), and must be of the same
organization as the source member. When copying program members,
the target member must be of equal or greater size than the source mem
ber. When copying data members an entire member may be copied,
0lfr 0hnly a .selectedbnuF'!"ber of recordds (partial copy) may be copied. C

t e entire mem er IS to be copie , the target data member must be
equal to or larger than the source. If doing a partial copy, the target
member need not be as large as the source, but must have enough
space following the starting target record number to accommodate
the number of records being copied from the source number.

The Copy Volume (CV) command allows entire volumes to be copied,
providing a volume back-up capability. A disk volume may be
copied to another disk volume, a diskette volume to another diskette
volume, or a diskette volume to a pre-allocated data set of appropriate
size (949 records for Diskette-1, 1924 for Diskette-2) on disk. (For
disk volume to diskettes, see $MOVEVOL later in this section.) Note
that copy volume operations do not add the members in a source
volume to the target volume; the original contents of the target volume
are replaced, including the directory.

o

$COPYUT1

o

If you have two or more 4964 Diskette Units, or a 4964 and a 4966
Diskette Magazine Unit, diskette volume copies between diskette
devices are possible. If you have a single diskette drive and a disk,
diskette volume copies may be performed using the following procedure:

1. Allocate a target data set on disk of 949 records (Diskette 1) or
1924 records (D iskette 2)

2. Using the CV command, copy the diskette volume to the disk
data set

3. Mount the target diskette on the diskette device and vary
(> $VARYON) online

4. Using the CV command, copy the contents of the disk data set
to the target diskette

If you have a single 4966 Diskette Magazine Unit and a disk, the
above procedure is also recommended. Diskette volume copies between
different slots of a 4966 are allowed, but are very time consuming due
to the slowness of the magazine diskette selection mechanism.

$COPY, like $DISKUT2, has an absolute record capability, using the
special system names $$EDXLIB and $$EDXVO,L. This allows copying
of any record relative to the beginning of a volume ($$EDXVOL) or
relative to the beginning of a library ($$EDXLI B). This capability
might be used, for example, when copying one diskette volume to
another. The CV function of $COPY does not copy the first cylinder
on diskette. If the source diskette were an IPL volume (has IPL text
and $EDXNUC), the IPL text, contained in the first record of the
first cylinder, would not be copied to the target diskette, and the
target diskette volume, although containing a supervisor in $EDXNUC,
would not be able to load the supervisor when the IPL key was pressed.

To copy the IPL text to the target diskette, the CD function of $COPY
can be used, with $$EDXVOL specified as the data set name, and
record 1 specified as the first and last record to be copied.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator's Reference, Messages and Codes (SC34-1703), "$COPYUT1
Utility Program."

$COPYUT1 is used extensively in system installation and maintenance
activities, such as installing the various system libraries received from
PID, and in applying PTF fixes distributed on diskette, $COPYUT1
differs from $COPY in that operations are performed on entire mem
bers only; partial copies are not allowed, nor are volume copies or
absolute record operation.

Utility Programs 14-15

14-16 SR30-0436

CM---COPY MEMBER FROM SOURCE TO TARGET
------ MULTIPLE COpy COMMANDS------
CALL--COPY ALL MEMBERS FROM SOURCE TO TARGET
CAD---COPY ALL DATA MEMBERS FROM SOURCE TO TARGET
CAP---COPY ALL PROGRAMS FROM SOURCE TO TARGET
CG----COPY ALL MEMBERS STARTING WITH TEXT FROM SOURCE TO TARGET
CNG---COPY ALL MEMBERS NOT STARTING WITH TEXT FROM SOURCE TO TARGET
------ END OF MULTIPLE COpy COMMANDS------
SQ----SET PROMPT MODE FOR ALL MULTIPLE COpy COMMANDS
NQ~---RESET PROMPT MODE FOR ALL MULTIPLE COpy COMMANDS
--CA-- WILL CANCEL MULTIPLE COpy COMMANDS
CV---CHANGE SOURCE AND TARGET VOLUMES
ROLLON -SET SCREEN = NO PAUSE
ROLLOFF -RESTORE PAUSE CHARACTERISTICS
EN---END PROGRAM
? ---HELP
Figure 14-16. $COPYUT1 commands

This utility will copy data or program members from a source volume
to a target volume, and:

1. Will delete a member from a target volume, if a member exists
with the same name as the member being copied from the
source volume

2. Will allocate a member on the target volume of the same size
and data organization as the source member - prea"ocation
not required

3. Will copy multiple members with a single command (a", all data,
a" program, generic, non-generic), with or without a prompting
pause

c

o $MOVEVOL

$COMPRES

C)

> I$L $COPYUTll
$COPYUTl 48P,OO:00:14, LP= 6000

WARNING MEMBERS ON TARGET VOLUME WILL BE OVERWRITTEN

THE DE FI NED SOURCE VOLU~1E IS EDX002, OK? INO I
ENTER NEW SOURCE VOLUME: IEDX0031
THE DEFINED TARGET VOLUME IS EDX002, OK? IYESI
MEMBER WILL BE COPIED FROM EDX003 TO EDX002 OK? IYESI

COMMAND (?): [§J

ENTER GENERIC TEXT:IAREC\
ARECPGMl COpy COMPLETE
ARECPGM5 COpy COMPLETE
ARECPGM3 COpy COMPLETE

COMMAND (?):
Figure 14-17. Generic copy

300 RECORDS COPIED
100 RECORDS COPIED

50 RECORDS COPIED

Figure 14-17 is an example of a generic copy without a prompting
pause. The warning message indicates that existing members with the
same name as any of those being copied will be deleted.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator's Reference, Messages and Codes (SC34-1703), "$MOVEVOL
Utility Program."

$MOVEVOL is a dump/restore utility, used to dump entire disk
volumes to diskette or restore disk volumes from diskette, where the
volumes may span several diskettes.

A dumped volume consists of a control diskette containing the volume
directory and control information, and as many data diskettes as are
required to hold the rest of the information in the volume. See the
reading assignment for information on creating the control and data
diskettes, and for examples of $MOVEVO L operation.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator's Reference, Messages and Codes (SC34-1703), "$COMPR ES
Utility Program."

During normal system usage, data sets in Event Driven Executive
volumes will be deleted, leaving "holes" (free space) between members.
The $COMPRES utility consolidates all available free space within an
Event Driven Executive volume into one contiguous area.

Utility Programs 14·17

$TAPEUT1

14-18 SR30-0436

> I$L COMPRESI
$COMPRES 17P,00:32:48, LP= 6900

COMPRESS SYSTEM LIBRARY
WARNING! SHOULD BE RUN ONLY WHEN
NO OTHER PROGRAMS ARE ACTIVE

VOLUME LABEL = IEDX0031

COMPRESS LIBRARY ON EDX003? ~

DIRECTORY HAS BEEN SORTED BY MEMBER IN ASCENDING ORDER.
$EDXNUC COPIED
DATAl COPIED
PROGl COPI ED
PROG2 COPIED
THE LIBRARY IS COMPRESSED.

ANOTHER VOLUME? lliQ]

$COMPRES ENDED AT 00:34:39

Figure 14-18. $COMPRES example

The example shows compressing the members in volume EDX003.
Never compress a volume when any other program is active. You can

(
'--. .. /

determine what programs are active by using the $A operator command. C
If the compress was performed on the volume that contained the super- _/
visor you IPLed from, and if the $LOADER program's location was
changed, you must re-IPL.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
.Operator's Reference, Messages and Codes (SC34-1703), "$TAPEUT1
Utility Program."

C) TERMINAL I/O UTILITIES

$TERMUT1

. -----

> $L $TAPEUTl
$TAPEUTl 20P,01:21:58, LP= 0000

COMMAND (?): [l]

CD COpy TAPE DATASET
CT CHANGE TAPE ATTRIBUTES
DP DUMP TAPE
EN END $TAPEUTl
EX EXERCISE TAPE
IT INITIALIZE TAPE
LT LIST TAPE DRIVES AND ATTRIBUTES
MT MOVE TAPE
RT RESTORE DISK/VOL FROM TAPE
ST SAVE DISK/VOL ON TAPE
TA ALLOCATE TAPE DATASET

COMMAND (?):

Figure 14·19. $TAPEUT1 options

$TAPEUT1 provides many of the most frequently required tape man
agement functions. When invoked, the utility displays information
about tapes defined to the system. The functions provided allow a
user to initialize taxes, allocate and copy tape data sets, and print tape
records as well as providing a save/restore facility for disk devices.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator's Reference, Messages and Codes (SC34-1703), "$TE RMUT1
Utility Program."

This is a general purpose terminal utility, used to perform several
terminal-related functions .

Utility Programs 14·19

> S L $ T Ef{ \AUT 1

> I$L $TERMUTII .
$TERMUTI 19P,Ol:12:29, LP= 5FOO

*** TERMINAL CONFIGURATOR ***

COMMAND(?): IT]

LA -- LIST TERMINAL ASSIGNMENTS
RE RENAME
RA -- REASSIGN ADDRESS
RH -- REASSIGN HARDCOPY
CT -- CONFIGURE TERMINAL
EN -- END PROGRAM

COMMAND(?):
Figure 14-20. $TERMUT1 options

The current terminal name, hardware address, and terminal type may
be displayed using the LA (list assignment) function.

STER~UT1 19 D,03:50:41, LP= 0000

0 TERMINAL CONFIGURATOR ***
: OM MA NC (?: LA

::=) ~SYSLOG

I)SPLY1
SSYSLOGA
SSYSLOGB
LINEPRTR
SSY5PRTR

(aMMA~C(?): EN

AODRF=SS

04
06
00
Ot\
21
01

TYPE

4979
4976
TTY
ACC 1
4973
4974

PARTITION HARDCOPY

2
3
1
2
1
1

SSYSPRTR
$SYSPRTR

(3101 BLOCK ~ODE)

$TER~UTl ENOfO AT 03:57:24

14-20 SR30-0436

Figure 14-21. LA

Terminals may be renamed, using the R E function. For instance, if
the 4973 printer in Figure 14-21 were mistakenly referenced (ENQT) in
a program as LlNPRNTR the name could be temporarily changed from
LlNEPRTR to LINPRNTR to test the program, and then changed back.

COMMAN D (?): lBIl
OLD, NEW TERMI NAL NAMES: ILIN EPRTR LI NPRNTRI

COMMAN D (?) :
Figure 14-22. RE

c

o

$TERMUT2

0

o

Terminal hardware addresses (RA), hardcopy device/hardcopy PF key
designations (R H), and page format configuration parameters (CT)
may all be reassigned using $TE RMUT1. Reassignments remain in
effect until reassigned again, or until the next IPL, which will cause all
terminals to revert to the assignments in the TE RMI NAL system
configuration statements.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator's Reference, Messages and Codes (SC34-1703), "$TERMUT2
Utility Program."

4978 Displays have a control store and an image store, which are
loaded from disk or diskette datasets. At IPL, the system auto
matically loads all 4978s with the control store data set $4978CSO
and the image store data set $4978IS0. These may be the standard
system-supplied data sets, or may be user-created control/image
store data sets that have been renamed $4978CSO or $4978IS0.

> I ! :... li T •. !-I '.lIJ T 2 I
·tTr~""JT2 34?,···)6:Sd:'56, lP= dOde·

C :J ~H~ 1\ '1 ') (?): W
AD - ASSIC~ DEFIN~ KEY
C - ·:p.6~h:;E i<.EY I)EFINITION
E
LC - l r ;... ::~ c C\~ T c.-: a l S T n ~ ~:
L I - LOAQ I~A~l STJ~f

SC - SAVE CJ~TRCl STC~E

51 - :) A V r: I nAG ',~. S T :~ :\ E
R .. c - R~STJR~ 4974 T1 SlO. s~ CH~R. SET

CC~~'1 .. \ ";D (?):

Figure 14-23. $TERMUT2 options

After IPL, $TERMUT2 can be used to load a control or image store
from user-defined control/image data sets (LC and LI commands),
or to read the control or image store in a display, and write it to a
user-allocated data set (SC and SI commands). Control store data
sets require 16 records, and image store data sets, 8 records.

The 4978 hardware supports the DEFINE function, which allows keys
to be defined with special character strings that have meaning to a
particular application or job. In order to define a key with special
characters, DEFINE mode must be entered. This is accomplished by
pressing the DEFINE key on the 4978 keyboard.

Uti lity Programs 14-21

Assuming a standard 4978 keyboard is installed, the $4978CSO control
store supports the keyboard shown in Figure 14-24. (The unshaded ~
keys are those that will produce hardware interrupts.) (, __ .-/

D~DDDDDDDD
DDDDDDDDDD

Figure 14-24. 4978 keyboard, RPQ 002056

As can be seen, there is no key permanently designated as the
DEFINE key. However, using the AD command of $TERMUT2,
you may assign a key of your choice as the DEFINE key.

Figures 14-25 and 14-26 are taken from the General Information
manual for the 4978 keyboard (RPQ D02056). Similar charts are
in the General Information manuals for whichever keyboard you
have installed.

In Figure 14-25, each key position is assigned a reference number.
Figure 14-26 is the first page of several which list the hex scan
code, function I D code, local function code, and interrupt code
which comprises the control store information for each key. The
identifying numbers on the keys in Figure 14-25 correspond to the
key position numbers on the chart in Figure 14-26.

Figure 14-25. Keyboard reference assignments

14-22 SR30-0436

C:

c

Control Store Data

o Downshift - Unshifted Ups/lilt - Shifted

K Scali code K Scan code
e

FlinctionlD code
e

y y Function ID code

p C/zaracter/local function code p Character/local function code

a Interrupt code
Key top a Interrupt code

Key top
s symbol s symbol
i Character image table i Character image table
t t
i Row i Row
a a
11 0 1 2 3 4 5 6 7 11 0 1 2 3 4 5 6 7

1 01 20 00 01 1 81 20 00 01 -r---

3 02 20 00 02 3 82 20 00 02
4 03 20 00 03 4 83 20 00 03
6 04 20 00 04 6 84 20 00 04
7 05 20 00 05 7 85 20 00 05
9 06 20 00 06 9 86 20 00 06
10 07 20 00 07 10 87 20 00 07
12 08 20 00 OB 12 88 20 00 OB
13 09 20 00 OC 13 89 20 00 OC
15 OA 20 00 00 15 8A 20 00 00
17 OB 20 00 OE 17 8B 20 00 OE
19 OC 20 00 OF 19 8C 20 00 OF
20 00 20 00 10 20 80 20 00 10
22 OE 20 00 11 22 8E 20 00 11
23 OF 20 00 12 23 8F 20 00 12
25 10 20 00 13 Note 1 25 90 20 00 13 Note 1
26 11 20 00 14 26 91 20 00 14
28 12 20 00 15 28 92 20 00 15
29 13 20 00 16 29 93 20 00 16
31 14 20 00 17 31 94 20 00 17
32 15 20 00 18 32 95 20 00 18
34 16 20 00 19 34 96 20 00 19
35 17 20 00 lA 35 97 20 00 lA
37 18 20 00 IB 37 98 20 00 IB
39 19 20 00 lC 39 99 20 00 lC
41 lA 20 00 10 41 9A 20 00 10
42 IB 20 00 IE 42 9B 20 00 IE
44 lC 20 00 IF 44 9C 20 00 IF
61 10 20 00 20 61 90 20 00 20

~
63 IE 20 00 21 63 9E 20 00 21
64 IF 20 00 22 64 9F 20 00 22
~6 20 20 00 23 66 AO 20 00 23
67 21 70 00 00 00 00 QO 00 00 00 00 00 (Blank) 67 Al 70 00 00 00 00 00 00 00 00 00 00 (Bla~-
68 22 00 Fl 00 02 06 02 02 02 02 07 00 1 68 A2 00 SA 00 07 30 30 02 02 00 02 00 !
69 23 00 F2 00 07 48 01 30 04 40 78 00 2 69 A3 00 7C 00 07 48 58 58 40 40 3C 00 @

70 24 00 F3 00 78 01 10 31 08 48 07 00 3 70 A4 00 7B 00 05 78 05 OS 78 05 00 00 #
71 25 00 F4 00 28 28 OC 48 78 08 08 00 4 71 AS 00 5B 00 08 3C 50 07 28 71 40 00 $
72 26 00 F5 00 78 40 71 08 08 48 07 00 5 72 A6 00 6C 00 4C 45 10 02 20 00 49 00 %
73 27 00 F6 00 02 20 04 47 48 48 07 00 6 73 A7 00 4A 00 10 3C 50 50 50 3C 10 00 t
74 28 00 F7 00 78 01 10 02 20 04 40 00 7 74 A8 00 50 00 30 05 30 06 50 41 78 00 &
75 29 00 F8 00 30 05 30 05 48 48 07 00 8 75 A9 00 5C 00 00 05 30 78 30 05 00 00 *
76 2A 00 F9 00 07 48 48 OF 01 10 02 00 9 76 AA 00 4D 00 10 02 20 20 20 02 10 00 (
77 2B 00 FO 00 30 05 48 4A 48 05 30 00 0 77 1 AB 00 5D 00 20 02 10 10 10 02 20 00)

Figure 14-26. Control store data

o
Utility Programs 14-23

14-24 SR30·0436

In Figure 14-24, assume you want to make the key at m the
DEFINE key. In Figure 14-25, that key position has a reference
number of 66. In Figure 14-26, the operator is prompted for the scan
code of the key to be assigned as the DEFINE key. On Figure 14-26,
the scan code for key position 66 is hex 20. After the scan code and
terminal name have been entered (Figure 14-27), $TERMUT2 reloads
the control store of the display, with key position 66 assigned as the
DEFINE key.

COMMAN 0 (?): Uill1
ENTER SCAN CODE OF THE KEY TO BE ASSIGNED

AS THE DEFINE KEY (HEX): [2]]
ENTER TERMINAL NAME (CR OR * = THIS ONE): IOSPLYli

Figure 14-27. AD command

Back on Figure 14-24, the operator presses the DEFINE key at m
key is the key which will be redefined. Assume the operator wishes
to redefine Program Function Key 1, and presses it (iii on Figure
14-23). Now all key depressions, until the DEFINE key is again
depressed, will be assigned to PF 1.

The'operator enters the character string $L $FSEDIT EDITWORK,
and then presses one of the two ENTE R keys. He or she then presses
the DEF I N E key again, ending the redefinition of PF 1, and taking the
4978 out of DEFINE mode.

The character string entered is a request to load the text editing utility
program $FSED IT, along with the name of a text edit work data set,
EDITWORK.

Counting the depression of the ATTN key required to get the> prompt,
and the ENTE R key depression following the load request, this line of
text normally takes 21 keystrokes to enter into the system. Now that
PF 1 has been redefined as th is I ine of text, only two keystrokes are
required; the ATTN key, resulting in the> prompt, followed by PF1,
which enters $L $FSEDIT EDITWORK and the ENTER key~ which
was also part of the redefinition string.

For normal terminal usage, an active DEFINE key is not desirable.
I f it is depressed inadvertently, altering of the control store wi II resu It.
In Figure ,14-28, the C command is used to change key position 66
back to its original control store configuration, using the chart in
Figure 14-26 to supply the codes.

COMMAND (?): 1II
ENTER TERMINAL NAME (CR OR * = THIS ONE): IDSPLylI
ENTER SCAN CODE OF THE KEY TO BE REDEFINED (HEX): ~
ENTER FUNCTION 10 (HEX): 1m
ENTER CHARACTER/FUNCTION CODE (HEX): ~
ENTER INTERRUPT CODE (HEX) : [2J]
ANOTHER KEY? ill]

Figure 14-28. C command

c

c

$TERMUT3

$PFMAP

o

At the conclusion of the C operation, the control store of 4978
DSPL Y1 still has PF1 defined with the text editor load request
character string, but with no DEFINE key designated. The SC
operation in Figure 14-29 reads the control store, and stores it in a
16 record data set named 4978ED IT, which must be preallocated.
Any time a user desires a keyboard with PF 1 redesignated as a text
editor load request, the LC command of $TERMUT2 can be used to
load the control store from 4978EDIT.

COMMAND (?): ~
SAVE DATA SET (NAME, VOLUME): 14978E01TI
ENTER TERMINAL NAME (CR OR * = THIS ONE): IDSPLY11

COMMAND (?): IENDI

STERMUT2 ENDED AT 01:27:44

Figure 14-29. SC command

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator's Reference, Messages and Codes (SC34-1703), "$TE R MUT3
Utility Program."

$TERMUT3 is used to enter a text message and send it to another
named terminal. See the reading assignment for examples and operating
instructions.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator's Reference, Messages and Codes (SC34-1703), "$PF MAP
Utility Program."

When a WAIT KEY operation is terminated by pressing a Program
Function key, an identifying code for the key is placed in taskname+2,
which may be examined by user instructions (see the topic ".STATIC
SCREEN CODING EXAMPLE" in "Section 11. Terminal I/O"). For
a 4979 terminal, PF keys PF1 through PF6 return identifying codes of
1 through 6. Since only the ENTE R key and the six PF keys present
identifying codes, determining what code to check for is a simple matter.

The 4978 keyboard has a great many more interrupting keys than does
the 4979, and determining which key is associated with a particular
identifying code is, therefore, more difficult. In fact, by using the
DEFINE feature, even the normal alphameric data entry keys and
cursor positioning keys may be redefined as interrupting keys.

When $PFMAP is loaded, it displays, in both decimal and hexadecimal
form, the identifying code returned by any interrupting key pressed
while $PFMAP is in execution (with the exception of the ENTER key,
which ends the utility). Using this utility, an application programmer
can easily find out what code is associated with a particular key and,
therefore, what to check for in taskname+2.

Utility Programs t4-25

$FONT

14-26 SR30-0436

READING ASSIGNMENT: IBM Series/l Event Driven Executive
Operator's Reference, Messages and Codes (SC34-1703), "$FONT
Utility Program."

As already noted in the discussion of the $TERMUT2 utility, the 4978
Display has both a control store and an image store. The combination
of Scan code, Function I D. code, Character/local function code, and
Interrupt code which is assigned to each key determines what function
each key will perform if pressed. This function definition information
is contained in the 4978 control store.

One of the functions which may be assigned to a key is that of display
able character (Function I D code = 00). Each key defined as a display
able character key will have an EBCDIC code associated with it
(character/local function code in control store), which will be generated
when that key is pressed.

The 4978 also has an image store, containing the bit patterns which,
when interpreted by the hardware, result in the display of characters
on the screen. Each character bit pattern is associated with an EBCDIC
code. When, for example, the "1" key is pressed on the keyboard and
a "1" appears on the screen, it is only because of the following
circumstances:

1. I n the control store, the fu nction I D code for that key position
has been defined as 00, assigning that key as a displayable
character, and the character/local function code is defined as
the E BCD I C character code Fl.

2. In the image store, the bit pattern associated with EBCDIC Fl
will, when interpreted by the hardware, result in the display of
the figure we recognize as the arabic numeral 1.

In the discussion of $TERMUT2, an example of the CHANGE KEY
DEFINITION function was given, whereby control store key definitions
could be altered. If, for example, the character/local function code for
the 1 key were changed from EBCDIC Fl to EBCDIC C2, pressing the
1 key would result in the display of the alpha character B, because the
image store bit pattern associated with C2 is B.

Similarly, the bit patterns in the image store may also be changed to
alter the appearance of the characters displayed, or if desired, to create
entirely new characters. $FONTis the utility program used to mani
pulate image store bit patterns.

4978 image stores, like control stores, may be loaded from disk/diskette
data sets. An image is 2K bytes in size, requiring a data set 8 records
in length.

~:

o

o

> ISL SDISKUTlI
SDISKUTl 28P,09:23:01, LP= 7800

USING VOLUME EDX002

COMMAHD (?): IAL MYIMAGE 81
DEFAULT TYPE = DATA - OK? [Xl
MY I MAGE CREATE 0

COMMAND (?): IlliQ]

$DISKUTl ENDED AT '09:23:48

Figure 14-30. Allocate image store data set

Allocation of a user image store data set is not a prerequisite to using
$FONT. The system-supplied image store data set $4978150 can be
used with $FONT. $4978150 is, however, automatically loaded to
every 4978 supported by the supervisor at IPL, and modifications
made will be reflected in all the displays, which may not be desired.

When $FONT is loaded, the name of an image store data set must be
supplied. If not supplied as advance input, as in Figure 14-31, the
operator will be prompted to enter it.

> I$L $FONT MYIMAGEI
$FONT 22P,09:27:03, LP= 7800

COMMAND(?): III
DISP -- DISPLAY TABLE
EDIT -- ENTER EDIT MODE
SAVE -- SAVE TABLE
PUT -- LOAD TABLE INTO DEVICE
GET -- READ TABLE FROM DEVICE
END -- END PROGRAM

COMMAND(?): DISP

Figure 14-31. $FONT commands

Utility Program" 14-27

14-28 SR30-0436

The DISP command will display all 256 EBCDIC codes on the scree~,
along with the characters that are generated for each code by the
associated bit patterns in the image store. If DISP were entered at
this point, $FONT would display the image store in the image store' .
data set MYIMAGE. Since MYIMAGE was just allocated, and does
not yet contain an image table, a meaningless display would result .. To
acquire an image table to work with, a GET command may be entered
to read an image table from a 4978.

Figure 14-32. GET command

The utility now has an image table, and DISP can be used to display
that table.

00 10 ;,~o ~~o 40 so &60 _70 ilel 90 AO eo CD {DO JEO FO 0
01 11 21 31 'fl 51 61 ;71 Isl 91 AI .. 1)1 C1 A [lJ J E 1 'Fl 1
02 12 22 32 4;2 :;3 6~: 72 132 92 /\2 [~2 C2 B D2

m
S F~ 2

OJ 13 23 33 43 53 63 73 ~3J 93 {,3 [n C3 C 03 T F., 3
lli Z4 34 44 54 (4 74 B4 9,1 A4 B4 C<1 Ofi'i ra 4 04

~r~ 05 15 2:) 3~j 45 :;5 65 75 i:~5 9~; !~5 G5 C5 E D'j 5
06 16 26 36 4(, 56 66 7C B6 96 A6 [;6 C6 F DC,

~ f7
6

07 17 27 37 47 57 67 77 c~7 97 t~7 8i C7 G D7 P L f 7
Oil IS ~'.) 3il 4~3 Sg 6ii 78 tli3 98 At3 88 C8 H Dcl Q [8 y Fii 8 i.,(.)

09 19 29 39 ,19 59 69 79 ~ :30 99 f,y CS C9 I D9 RE9 Z F9 9
0.'; 111 2A 31~ 4A c '.ii\ ! 6r1 7f~ :8A 9P1 AA BA CA DA t:i\ FA

013 1\3 2r~ 38 '~I) 58 S6B " "iB itBB 93 f\{) l)B C3 DB £J~ Fr.:

OC lC 2C 3C 4C <5C * 6C y. 7C (lBC S~C ,1)..(BC CC DC EC Fe
Of) lD 2D 3D 4f) (5D) fj[) 7D I ~~D 9D AD BD CD DD ED FD

DE lE 2E 3E 4t: + 5E ; 6E >7E = ilE 9[AE BE CE DE. EE FE

OF 1 F 2F ,:'It" 4r I Sf "-I6F ? 7F " i3F 9F f\F GF CF Dr E.F FF

Figure 14-33. Image table

c

c

c

o

The characters are displayed to the right of the EBCDIC codes with
which they are associated. To illustrate how the bit patterns which
generate these characters may be altered, assume that the operator
wishes to alter the appearance of the character "T" by extending the
ends of the crossbar at the top of the character downward. In Figure
14-33, the character "T" is associated with EBCDIC code "E3." To
modify or create a character, EDIT mode must be entered. Display
mode is ended by pressing the ENTER key. The COMMAND (?):
prompt will again appear, whereupon the operator can enter the
EDIT command, which will cause the screen in Figure 14-34 to
appear.

~ TAB FOR:,ARD
j~~ -- TAC BACK
IF3 --iIEXTLlllE
PF4 -- Ii1VERT DOT
GHU! -- ~'[T PlHn::rrJ
\'F 5 _. (0i1i'1l\:W i'10:'jr,

CODE _ (od

Figure 14-34. EDIT mode (1)

.................
I I

•••••••••••• 1 •••• 1

I I
•••••••• • ••• 1 •••• 1

I I
•••••••••••• 1 •••• 1

I I
•••••••••••• 1 •••• 1

I I
•••••••••••• 1 •••• 1

I I
I 1 •••• 1

I I I
I 1 •••• 1

I I I
I •••••••••••• 1 •••• 1

When EDIT mode is first entered, the cursor will be positioned just to
the right of the CODE prompt on the bottom left of the screen. The
utility is waiting for the operator to enter a character in the present
cursor position, or to move the cursor to the right and enter an
E BCD I C code between the parentheses. Assu me the operator enters
the character "T", and presses the ENTER key.

Utility Programs 14-29

14-30 SR30·0436

Figure 14-35. ED IT mode (2)

. rfr r rr fff n . r ffrrf f . II 111111111 1111111
i I 1111 I
1 •••• 1 • .1111 •• 1 ••••
I I 1111 I
I •••• / • .1111 •• 1 ••••
1 I 1111 I
/ 1··1111 .. 1 ••••

I I 1111 I
I •••• 1. '1111 • ·1 ••• ·
I I 1111 I
1····1··1111 ."\- •••
I •••• 1 • .1111 •• 1 ••••

I I I I
1 •••• 1 •••• 1 •••• 1 ••••

T

$FONT fetches the bit pattern for the entered character, displays the
character image in the image grid at the right, and places the cursor in
the top left-hand square of the 4 by 8 character image grid. The
EBCDIC code for the character entered, "E3", is placed in the parentheses
to the right of the CODE prompt. The character entered is also displayed
below the character image grid (4978 only - not 4979).

The cursor is moved about within the character image grid by the special
PF key functions described on the screen. For example, pressing PF 1
one time will move the cursor forward (left-to-right, and top-to-bottom)
across the grid one position, as shown in Figure 14-36.

I~' F1 - - Ti\g f'OR~4ARD
·'··2 -- TAB G,~Cf:
pr3 -- NEXT LINE
PF4 -- liWERT DOT
ENTER - - SET PATTERN
F'F5 -- CO~li~A'W ~10DE

CODE T f3)

Figure 14-36. EDIT mode (3)

'ITrlfrrrr Trrrrrrrr'
I1111 III I 111111I
I I I I I I
/ •••• 1 .. 1 I .. 1 1
1 I I I 1 I
1 1 .. 1 1··1 •••• 1
I I I III I I
1 •••• 1··1 11 .. 1 1
I I I II I I
1 1 ..

1
11 •• / •••• 1

I I I II I 1 1 1 •• 1 11 •• 1 •••• 1
I I I II I 1 1 •••• 1.. ..1 •••• 1
I I I I I
1 •••• 1 •••• 1 •••• 1 •••• 1

T

c

c

o

o

o

PF2 will move the cursor backwards within the grid (right-to-Ieft and
bottom-to-top). PF3 will move the cursor from its present line down to
the next line, and position it in the leftmost square of the new line.
Figure 14-37 shows the screen after PF3, the "next line" key, has been
pressed once.

r· --TAB FORvJARD
'f::: -- TAB GACI:
F3 -- NEXT LINE

PF4 -- INVEHT DOT
ENTER -- SET PATTERN
PF5 -- COt,11'lNW fl;ODE

I1111111 I 11111111
11111111 11111111
I _ I I I
1 •••• 1.. 1··1 ••.•
I I I I
1 •••• 1.. 1··1 ••••

CODE T (E3) I I I I
1 •••. 1.. 1··1 ••••
I I I I
1 •••• 1.. 1··1 ••••
I I I I
1 ••• ·1.. 1··1
I I I I
1 •••• 1 •• 1111··1 ••••
I I I I
1 •••• 1 •••• 1 •••• 1 ••••

T

Figure 14·37. EDIT mode (4)

At the outset of this exercise, the stated objective was to alter the
appearance of the character "T" by extending ends of the top crossbar
downwards. The cursor is now in a position to do that. By hitting
PF4, the dot pattern in the first square of the second line is inverted,
which extends the left end of the crossbar downwards.

rrl -- TAC FOR\~A.'RD
)F? -- TAB BACK
F3 -- NEXT LINE

PF4 -- INVERT DOT
ENTER -- SET PI\TTERN
PF5 -- cOt'1r,WHl i-lOPE

CODE T (E3)

Figure 14-38. EDIT mode (5)

i 'l'I'I'I'((I'I'(I'I'I'I'I'(I'I'I'li
1111I1111111111111111
Illtll 1I111 i' I
III 11 •• 11111 •• 1 •••• 1
I I 11111 I I
I •••• 1 •• 11111 •• 1 •• ··1
I I I1II1 I I
I •••• 1 •• 11111 •• 1 •.•. 1
I I I11II I I
I •••. 1 •• 11111 •• 1 •••• 1
I I I1111 I I
I •••• 1 •• I1II ~ .1 •••• 1
I I III1I I I
I •••• 1 •• 1111 L.I •••• I
I I I I I
1 •••• 1 •••• 1 •••• 1 •••• 1

'T

Utility Programs 14-31

14-32 SR 30-0436

Notice that as modifications are made within the grid, they are reflected
in the actual-size character below the grid.

The cursor is now moved forward by pressing PF1 repeatedly until it is
at the other side of the grid, as shown in Figure 14-39.

r -rAG FORWARD
F2 -- TAB BACK

'F3 -- NEXT LINE
PF4 -- INVERT DOT
ENTER -- SET Pf\TTERN
f'F5 -- cowwm ~10DE

CODE T (E3)

Figure 14·39. EDIT mode (6)

i
l

'I'I'I'I'I'I'I'I'I'I'I'I'I'I~I'I'I'I'I'II

I 11111111111111111111
11111 11111 I _

I 11111·· 1I 1··1 •••• 1
I I II I I I
I •••• 1 •• II I· .1 •••• 1
I I III I I I
I 1 .. III I· .1 1
I I III I I I
I 1 .. III I· .1 .•.• 1
I I III I I I
I 1 .. III I· .1 1
I I III I I I
I 1 .. III I· .1 1
I I I I I
1 •••• 1 •••• 1 •••• 1 •••• 1

T

By pressing PF4 again, the other end of the crossbar is extended.

~
r -. TAB F"ORI~i\R[)

r F2 -- TAB BACK
. F3 -- NEXT LINE
P1'4 -- INVERT DOT
ENTER - - SET PATTERN
PF5 -- CQi·if,v.'IND NODE

CODE T (Ej

'1'

Figure 14-40. EDIT mode (7)

c

r""',
l\,

----/

c

o

The intended modification is now complete. Pressing the ENTE R key
results in the screen in Figure 14-41.

SET _T (E3)

iliiiiiiii'i IJIIIIII
11111111 I 11111111

111111 I I 111111

1""1"11 .. \"111
1 •••• 1··1 I •• 1 •••• 1
1 I I I I I
1 •••• 1··1 I •• 1 •••• 1
I I I I I I
1 •••• 1··1 I •• 1· •• ·1
I 1 I I I I
1 •••• 1··1 I •• 1 •••• 1
1 I I I I 1

\ ... "\".1 I ·t···\

~
-- All FORHARD

F2 -- TAG BACK
F3 -- NEXT LlNE

PF4 -- INVERT DOT
ENTER -- SET PATTERN
PF5 -- cor·II'IAND I·K10E

1 •••• 1 •••• 1 •••• 1 •••• 1
'1'

Figure 14-41. EDIT mode (8)

At this point, the operator can "set" the character just composed into
the image table. If ENTER is' pressed, the modified T will replace the
normal T. The operator also has the option of associating the
modified T with a different key or EBCDIC code. If, for example,
the operator typed an A on top of the T next to the SET prompt,
and then pressed ENTER, the modified T'would replace the character
A. If the operator moved the cursor to the right, and overtyped the
E3 within the parentheses with, for example, the EBCDIC code for 0,
Fa, the modified T image would replace that for O.

Assume the operator presses ENTE R without altering the character or
the EBCDIC code, resulting in the screen in Figure 14-42.

Util ity Programs 14-33

14-34 SR30-0436

~
. -- FIG F·ORWARD

)[2' -- T;'.8 BACK
)F3 -- NEXT LINE
PF4 -- INVERT DOT
ENTER -- St:T PATTERN
PF5 -- COWWHl NODE

CODE T (E3)

Figure 14-42. EDIT mode (9)

i i ii iii iii i i ii iii iii i
111111111111111111111
111111 11111 111111
111111 •• 11111 •• 111111
I I 11111 I !
1 •••• 1 •• 11111 •• 1 •••• 1
I I 11111 I I
i I .. lllll .. I !
I I 11111 I I
1 •••• 1 •• 11111 •• 1 •••• 1
I I 11111 I I
I •••• 1 •• 11111..1 •••• 1
I I 11111 I I
I •••• 1 •• 11111. .1 •••• 1
I I I I I
1 •••• 1 •••• 1 •••• 1 •••• 1

The character has been set, the CODE prompt is again displayed, and
the program is waiting for another character or EBCDIC code to be
entered. The operator presses PF5, exiting EDIT mode, and reentering
command mode.

I f you want to be able to load a modified image store to a 4978 at a
future time, it must be stored on disk/diskette. The operator therefore
enters the SAVE command.

COMMAND(?): rn
DISP -- DISPLAY TABLE
EDIT -- ENTER EDIT MODE
SAVE -- SAVE TABLE
PUT -- LOAD TABLE INTO DEVICE
GET -- READ TABLE FROM DEVICE
END -- END PROGRAM

COMMAND(?): ~

COMMAND (?) :

Figure 14-43. SAVE command

c

c

o

C)

C)

Notice that no data set name is asked for when the SAVE command is
entered. The table will always be saved in the data set specified when
the utility was loaded; in this case, MYI MAGE.

The only commands not yet exercised are PUT and END. Assuming
that this utility session is being conducted on a 4978 named DSPLAY1,
a PUT to that 'device name will load this device with the altered image
store, replacing normal "T" characters with new.

COMMAND(?): Iil

DISP -- DISPLAY TABLE
EDIT -- ENTER EDIT MODE
SAVE -- SAVE TABLE
PUT -- LOAD TABLE INTO DEVICE
GET -- READ TABLE FROM DEVI CE
END -- END PROGRAM

COMMAND(?): !SAm

COMMAND(?) :

Figure 14-44. PUT command

This 4978 will continue to display the modified "T" until such time as
its image store is again loaded with a different image table ($TE RMUT2,
$FONT, or IPL).

Since the $FONT utility employs a static screen, this utility can only be
used by 4978s or 4979s.

Utility Programs 14-35

COMMAND(?): III

DISP -- DISPLAY TABLE
EDIT -- ENTER EDIT MODE
SAVE -- SAVE TABLE
PUT -- LOAD TABLE INTO DEVICE
GET -- READ TABLE FROM DEVI CE
END -- END PROGRAM

COMMAND(?): ISATII

COMMAND(?): ~

$FONT ENDED AT 09: 57: 44

Figure 14-45. END

MISCELLANEOUS UTILITIES

$IMAGE

14-36 SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator's Reference, Messages and Codes (SC34-1703), "$IMAGE
Utility Program."

$IMAGE is used to create formatted screen images for use with
terminals that support static screen functions. The images (formatted
screens) are stored in disk or diskette data sets for later retrieval by
application programs. Stored images may also be retrieved by $IMAGE
for modification/maintenance.

In "Section 16. Program Preparation Using $EDXASM", the application
program used as a program preparation example is the same program
used in "Section 11. Terminal I/O" under the topic "STATIC SCREEN
CODING EXAMPLE" (see Figure 11-43). In Section 16, the program
is modified to retrieve a stored screen image, rather than formatting the
screen by executing instructions within the program. The following
is a $IMAGE utility session in which the image that will be used by the
modified program is created and stored.

c

c

\
I, C

--·,"

· A formatted screen created by $IMAGE is stored in a disk or diskette
data set that must first be allocated by the user. The formatting
information and text are stored in a special packed format to conserve
space. A logical screen may be of any size from one character position
up to an entire physical screen, and therefore the amount of space on
disk or diskette required to store a given screen image will vary. For
most logical screens, a data set two records in length will be adequate.

The screen image that will be created in this utility session is shown in
Figure 14-46 (same as that shown in Figure 11-31). Since it encom
passes an entire physical screen and contains several lines of text, a
data set three records in length will be required to store it.

LINES

+ --o

4
5

10

ENTER KEY = PAGE COMPLETE
PF3 = DELETE ENTRY 3

11 ~'U\i~E:
12
13
14
15

17
18
19
20

PFI = DELETE ENTRY 1
PF4 = DELETE ENTRY 4

CITY
STi\E :

Sf l\r:ET:
CITY
~)Tr\T[:

s n~EET;
CITY :
~·~Tr'\ TE :

21 rJAr'IE: STREE.T:
22 CITY .

P F2 = DELETE ENTRY 2

23 '-________________ ~S1~A~,Tf~:~: __________________________ J

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777 777778
POSITIONS_1234567890 1234567890 1234567890 12345678901234567890123456789012345678901234567890

Figure 14-46. Screen image

Before beginning the $1 MAGE utility session, a data set 3 records long,
named VI DED1 is created using $DISKUT1.

>I$L $DISK@j , ,
$DISKUTI 37P,00:32:06~ LP= 5FOO

USING VOLUME EDX002

COMMAND (?): IAL VIDEOI 31·,
DEFAULT TYPE = DATA - OK?IYESI
VIDEOI CREATED

COMMAND (?): IENDI

$DISKUTI ENDED AT 00:32:33

Figure 14-47. Allocate image data set

Utility Programs 14-37

14-38 SR30-0436

Now the $IMAGE utility can be loaded, and the utility session began.
Entering a "?" in response to the COM MAN D (?): prompt results in a
list of the $1 MAG E commands.

> I$L $IMAGEI
$IMAGE 76P, LP= 8000

COMMANO(?) : l1J
ATTR - DEFINE ATTRIBUTE CHARACTERS
DIMS - DEFINE SCREEN DIMENSIONS
EDIT - EDIT SCREEN FORMAT
FTAB - DISPLAY FIELD TABLE
HTAB - SET (HORIZONTAL) TABS FOR EDIT
KEYS - DISPLAY USE OF PF KEYS
NULL - DEFINE NULL CHARACTER
PRNT - PRINT SCREEN IMAGE AND TABLES
SAVE - SAVE SCREEN FORMAT(S) IN DATASET
VTAB - SET (VERTICAL) TABS FOR EDIT
END - END PROGRAM

COMMAND(?): IATTR I

ATTRIBUTE CHARACTERS WITH MDT OFF:

LOW INTENSITY (NOW IS I I) = %

HIGH I NTENS I TY (NOW I S I I) = *

BLINKING

NONOISPLAY

(NOW IS I I) = $

(NOW IS I I) = #

DO YOU WISH TO DEFINE
ATTRIBUTE CHARACTERS WITH MDT ON? Oil

COMMAND(?): IDIMS 24 801

COMMAND(?): IHTAB 311

COMMAND(?): INULL II
COMMAND(?): IEDITI

Figure 14-48. $IMAGE commands

c

o

o

The ATTR command allows you to define the characters that define the
attribute bytes for the 3101 M2 screen. When creating a screen, the
display mode of a field (protected or unprotected) can be set by pre
fixing the field with an attribute byte. In the example placing a $ in
front of a field will cause that field to blink when the screen is dis
played. Attribute bytes are specified when defining protected or un
protected nu II fields.

The DIMS command allows you to define the dimensions of the logical
screen you are creating. The example shows a logical screen of 24 lines
and 80 characters specified, which is equal to the entire physical screen.

HT AB is the horizontal tab settings you wish to have in effect while you
are creating the screen. If not entered, HT AB defaults to 10, 20, 30 etc,
through 80. The example defines a single HTAB setting of 31.

VT AB defines vertical tabs. The default is one vertical line for each
vertical tab key depression. Since VT AB is not entered in this example,
one-line vertical tabs will be in effect.

The NULL command allows you to define the null character. When in
EDIT mode, a null character is entered in each character position you
want to display unprotected data in, or in which operator-entered data
is to be accepted, when the completed screen is used by an application
program.

The KEYS command lists the functions of PF1, PF2, and PF3 (func
tions valid when EDIT mode is entered).

Utility Programs 14-39

14-40 SR30-0436

PF 1-define protected fields
PF2-define data fields (unprotected)
PF3-return to COMMAN D mode

Figure 14-49. KEYS

All of the commands listed in Figure 14-48 may only be entered in the
COMMAND mode. The last command entered (Figure 14-48) is EDIT,
which places the $IMAGE utility in EDIT mode. If an existing screen
image were to be edited, the data set name and volume of that image
would be entered with the EDIT command. Since this session is creat
ing a new screen, EDIT is entered without reference to a data set.

When EDIT mode is entered, PF1, PF2, and PF3 have the functions
listed in Figure 14-49. Before pressing any of the PF keys, the screen
is entirely blank, and the cursor is in the lower left corner.

The logical screen being created in this example contains both protected
and unprotected data. The operator prompts on lines 1 and 2 are unpro
tected, and the rest of the prompts are protected (see Figure 14-46).
When the completed screen is displayed, the unprotected areas will
appear brighter than those that are protected, highlighting the prompts
at the top of the image.

When both protected and· unprotected text is to appear on a screen
created by $IMAGE, the protected data must be entered first. There
fore PF1 is depressed, signalling to the utility that protected fields are

c

to be defined. The cursor now moves to the first available character C
position, which is line 0, space 0, in this example. _,/

As soon as either PF1 or PF2 is pressed, after entering EDIT mode, the
function of PF1 and PF2 is redefined. PF1 is now used as the horizontal
tab key, and PF2 as the vertical tab key. Since no text appears on line
0, the vertical tab key PF2 is pressed, moving the cursor down to the
first position of line 1.

When defining the protected areas of a screen image, all characters
entered, other than the null character, will be protected data. The
operator prompts on lines 1 and 2 are supposed to be unprotected.
Therefore, the actual text of the prompts cannot be entered until the
data definition portion of this utility session, after all protected fields
have been defined. However, since these areas of the screen will contain
unprotected text, null fields must be established, so that when the
unprotected data definition is done, the text entered will be accepted.
Figure 14-50 shows the screen after the null characters for the unpro
tected operator prompts at the top of the screen have been entered.

c

o

o

o

LINES

t
o
1 ///////////////////////// // / / / / // / / / // / // / / / / // / / // // / / // / / // / ///
2 ///////////1//////// / / / / // / / / // / // / / //// // // // // /1// // // // //
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778
POSITIONS-12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 14-50. NULL entries

Now the rest of the screen can be formatted. All areas of the screen not
containing null characters will be protected when the screen is com
pleted. Note that any field meant to receive operator input when the
screen is used must be defined using the null character.

Figure 14-51 is the screen after all protected data has been defined.

LINES

+ o
1 ///////////111111111111/1 IIIIIIII III IIIIIIIII 11111/1/11/1111/111/

/1/111111/1//1/11111 IIII IIII 11/ IIIII II/I 11111/11/1/11/ // ////

CLASS NAME: 1// / / / I I I 1/ / / I / / I NSTRUCTOR NAME: / / I 1/ I / / 1/ / / / / / / / / / / 1/ / / / /

NAME:///////////I/I/////I/II STREET:I I I / I I I II 1// / / / / / I / // / / / / // I I I / I I / I /1 /
CITY :/ I I I I / / // II I I / I 1/ / / / / I / 1/ /1 1/ /1 / / I / // /
STATE : I I I I I I / I / I I / / I / / / / / / / / / / / / / 1/ / / / / 1/ / / I

10
11 NAME: I I I I I I I I I I I / I III I / I I I I I STREET:I I I /1 I I 1/ I / II // I / / I I I I I I I II I II/ 1/ II I II
12 CITY :11 I I I / / / / / I / I I I I I I I / I / / / / / / / / / / / / I / / I I
13 STATE : I I I I / / / / / / / 1/ / / / / / I I / 1/ / / / I / / / / / / / / / / /
14
15
16 NAME: 1/ / / / I / / / I I I 1/ 1/ I / I / / I / STREET: / I I I I I I I I 1/1 I / 1// I /
17 CITY :11/// / / I / I / I / / / I / I / I I I / // / / / / / / 1/ 1/1/ I
18 STATE :/111// I I // I / 1/ I / /1 I / II / / / / II // / 11/ I I II
19
20
21 NAME: / 1/ / I / / / / / / / / / I I I / 1/1/ / STREET:I/ / /1 I / / / /1 // / / / / II / / / / / / I / // // // / II/I
22 CITY . / / / / / / / / / // / / / / / / I / / // / // // 1/ // // I /1 1/
23 STATE : / / / I / / / I / 1/ / / / I I / / / I / / / I / / / / / I I / / / /1 I I

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778
POSITIONS-12345678901234567890 123456789012345678901234567890123456789012345678901234567890

Figure 14·51. Protected entries

Pressing the ENTER key takes the utility out of protected field defini
tion, back to EDIT mode (the situation as it was before a define pro
tected field or define data field decision was made). PF1 and PF2 again
have the meanings printed out by the KEYS command (Figure 14-49).
The ENTE R key also causes the screen, as defined up to this point, to
be displayed as pictured in Figure 14-52.

Utility Programs 14-41

14-42 SR30-0436

LINES

+ o

2
3
4
5
6
7
8
9
10

Cl../\SS N/\t'lE:

NA~lE :

I NSTRUCTC!R NAt'T:

STREET:
CITY
STATE :

11 NAr'iE: STRECT:
12
13
14
15

CITY :
STATE :

16 NN'1E: STREET:
17
18
19
20

CITY
STATE :

21 Nt\t,1E: STREET:
22 CITY :
23 STATE :

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778
POSITIONS_12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 14-52. Partially completed image

If the desired screen image were now complete, PF3 would be pressed
to get back into COMMAND mode, so that it could be saved. In this
example, however, there is still unprotected data to be defined, so
PF2 is pressed. PF2 brings back the same screen image as in Figure
14-51, with the unprotected fields defined as null characters.

The unprotected null fields in the operator prompt area at the top of
the screen are now filled in. The other null fields are input fields that
will be used when the screen is used by an application program, so are
left undisturbed during screen creation.

After all unprotected text is defined, the screen looks like that shown
in Figure 14-53.

LINES

+ o
1
2
3
4
5

7
8

'9

10
11
12
13
14
15
16
17
18
19
20

ENTER KEY = PAGE COMPLETE
PF3 = DELETE ENTRY 3

CLASS NM'H:,: / / / / / / / / / / / / / / / /

PFI = DELETE ENTRY 1
PF4 = DELETE ENTRY 4

P F2 = DELETE ENTRY 2
////////// // // // // //

INSTRUCTOR ~i/\HE: // // / / / / / / // / / / / // // / / / / / /

N!'\tiE:I / STREET:/ / / / / / / / / // / / / / / / / / // / / / / / / / / / // / / / / / /
C ITI :I /
STJ\TE :/

tW1E 1/ STREET:/
CITY :/
STATE :/

NAME/////////////////////// Sl~EETj/////////////////////////////////////
c r TY :/
SU\ TE :/

21 N.lii4E{/ //// / /////// // // ///// STREET:/// ////// ///// /// // // ////// /////// / ///
22 CITY :/
23 STATE :1/////////////////////////////////////

CHARACTER 11111111112222222222333333333344444444445555555555666666666677777777778
!'OSITIONS-12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 14-53. Complete image

c

c

c

o

$IOTEST

o

When ENTE R is pressed, the completed screen is displayed (Figure
14-46). Any desired changes can be made by again pressing PF 1, for
protected fields, or PF2, for unprotected ones. Assuming that the
image is correct, the operator will press PF3 to return to COMMAND
mode.

PF3 will blank the screen, and prompt for a command entry.

COMMAND(?): ISAVE VIDEOll

COMMAN 0 (?): I E NO I
Figure 14-54. Save image

The operator enters the SAVE command, followed by the name of the
data set that was allocated for this purpose. The $1 MAG E utility
session is then ended.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator's Reference, Messages and Codes (SC34-1703), "$IOTEST
Utility Program."

$IOTEST is an exerciser program for the digital and analog sensor I/O
features of the Series/1. The operator is prompted for various operating
parameters, and the $IOTEST utility then repetitively executes the
requested exercising operations. See the reading assignment for
examples of the use of this program.

The LD function will list all the hardware devices, and their hexadecimal
addresses, for the Series/1 on which $IOTEST is running. The LS
command will list the hardware devices and addresses supported by the
supervisor currently in operation. These two functions are particularly
useful during system generation. By comparing the output produced
by the LD and LS commands, the operator can easily spot devices
attached but not supported, supported and not attached, or attached
and supported, but assigned the wrong address. Use of these $IOTEST
options is illustrated in "Section 15. System Installation."

Utility Programs 14-43

$PREFIND

READING ASSIGNMENT: IBM Series/1 Event Driven Executive C
Operator's Reference, Messages and Codes (SC34-1703), "$PR E FIN D ---_ .. /
Utility Program."

If a program uses data sets or overlay programs (DS= and PGMS=
keyword parameters in P ROG RAM statement), the assembly process
creates control blocks in the program header for each data set and
overlay program specified. Space is reserved in these control blocks
for the physical disk/diskette addresses of the data sets and overlay
programs defined.

After completion of the program preparation process ($LI N K if
required, and then $UPDATE), the executable load module may be
loaded to storage. The system program that performs the load
operation is $LOADE R, and part of that operation includes filling in
the actual physical addresses of data sets and overlay programs in the
control blocks of the program header. When a large number of data
sets and/or overlay programs are defined, this can be a time-consuming
process, as $LOADE R must search a volume directory for each data
set/program used.

To illustrate, the example program in Figure 14-55 has been assembled
and formatted ($UPDATE), and stored on disk under the name MAl N.

00001
00002

PFNDEXMP PROGRAM START,DS=(DMY1,DMY2,DMY3,DMY4,DMY5),PGMS=(OVLY1, c

00003 START
00004
00005

OVLY2,OVLY3,OVLY4,OVLY5)
PROGSTOP
ENDPROG
END

Figure 14-55. Source for MAIN

14-44 SR30-0436

This program has five data sets and five overlay programs defined. Since
any data sets or overlay programs used by a program must exist at the
time the program is loaded, five 1-record data sets, DMY1 through
DMY5 have been created using the AL function of $DISKUT1.

Figure 14-56 is the source used to create the overlay programs.

00010 OVLYPROG PROGRAM START
00020 START PROGSTOP
00030 ENDPROG
00040 END
Figure 14-56. Overlay source

C,
--./

C)

o

The object module produced by assembly of this source has been
successively processed by $UPDATE five times, each time providing a
different load module name, OVL Y1 through OVL Y5.

Figure 14-57 is a load request for program MAl N.

LOAD REQUEST ENTERED

> ,r-:-$ L-MA-I---'NI
./ AT 01 :00:20

MAIN 4P,01:00:43, LP= 7800

MAIN ENDED AT 01:00:43
Figure 14-57. Load request

The amount of time elapsed, from the time the ENTER key is pressed
to enter the $L MAl N command to the time the load message is
returned, is 23 seconds by stopwatch. The majority of this time was
taken in looking up the data set and overlay program locations for the
control blocks in the program header.

$PREFIND allows data set and overlay programs to be located prior
to program load time, and written directly into the program header on
disk/diskette. When the program is loaded, the information required
is already present, and load time is therefore reduced. In Figure 14-58
the example program MAIN is processed by $PREFIND.

> I$L $PREFI NDI
$PREFIND 26P,00:57:40, LP= 7800
COMMAND (?): [1]

PF PRELOCATE DATA SETS AND OVERLAYS
DE DELETE PRE-FOUND STATUS
EN END THE PROGRAM

COMMAND (?): [IT!
PG~1(NAME ,VOLUME): IMAIN\
ENTER DATA SET NUMBERS: 0= 1 2 3 4 5
ENTER OVERLAY PGM. NUMBERS: P=(ALL

COMMAND COMPLETED
COMMAND (?): lEN 01
Figure 14-58. $PREFIND operation

In Figure 14-58, the "D=" entry could have been "ALL", just as it is
for the "P=" entry, with the same effect. If you don't want all data
sets or programs prelocated, you can selectively pre-find only those
you wish, by entering the desired positional reference numbers and
leaving out those you want the loader to find at load time.

After the operation shown in Figure 14-58, load time for program
MAl N is under three seconds.

Utility Programs 14-45

Once a program has been processed by $PREFIND and "pre-found"
status is established, the system makes no further checks to verify
the validity of the data set/overlay program addresses in the program
header. The AL and DE functions of $DISKUT1, or operations
involving use of $COPYUT1, $UPDATE, and $COMPR ES can alter
program/data set locations, and therefore invalidate a program's pre
found addresses. This could result in reading the wrong data, writing
over important data, etc. $PREFI ND is therefore not appropriate
for use in test/development environments, and even in "stable"
application environments should only be used with care.

PROGRAM PREPARATION UTILITIES

$EDIT1N

14·46 SR30·0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator's Reference, Messages and Codes (SC34-1703), "$EDIT1
and $ED IT1 N Utility Programs."

The $EDIT1 N text editing utility is used to create and edit source
programs and other text data records such as the procedure files used
with $JOBUTI L, or the control record files for $LI NK. $EDIT1 N
(and also $EDIT1 and $FSEDIT) uses a data member as an edit work
area. This work file must be preallocated by the user ($DISKUT1),
and must be of sufficient size to contain the largest source program
anticipated. The required size can be calculated as follows: number
of text lines (n) divided by 30 times 11 plus 1 (n/30 x 11 + 1). The
four primary text editor commands are:

1. READ - get the contents of a data set on a specified logical
volume and store it in the work area data set.

2. LIST - list the contents of the work area on the system printer
(for the starter system on the matrix printer).

3. END - terminate the text editor.

4. EDIT - go into edit mode allowing the user to use any of the
edit subcommands.

c

o

o

Figure 14-59 is an example of a text edit session, demonstrating several
of the EDIT mode subcommands. $EDIT1N is also used to edit the
system configuration statements and link editor I NCLUDE statements
during system generation. See the topic "USE R SYSTEM
GENERATION" in "Section 15. System Installation."

EXAMPLE:

EDIT
IDE 10 250~
TOP OF DATASET

IINPUTr--D
INPUT r--------------, 00010 %PRINT%NOGEN
00020 PGM1%PROGRAM4%START,100
00030 START%PRINTEXT%TXT1,SKIP=2
00040 %ATTACH%TASK1
00050 %WAIT%E1,RESET
00060 %PROGSTOP
00070 TXT1%TEXT%'PROGRAM STARTED'~I~
00080 TXT"%TEXT%'TASK1 RUNNING '
00090 TASK1%TASK%GO,EVENT=E1
00100 TASK1%TASK%GO,EVENT=E1
00110 GO%PRINTEXT%TXT2
00120 %ENDPROG
00130 %END

~=---------~ 001401

EDIT
CHANGE 80
DELETE 100~-----=.
INPUT 115 4 ~
INPUT
00115 r--"':I %-EN---D--:TA:--S---'K I
INPUT TER~nNATED

Figure 14-59. $EDIT1 N (1 of 2)

Utility Programs 14-47

14·48 SR30·0436

EDIT
l1IJ..gJ
00010
00020 PGM1
00030 START
00040
00050
00060
00070 TXT1
00080 TXT2
00090 TASK1
00110 GO
00115
00120
00130
END OF DATA
~

PRINT
PROGRAM4
PRINTEXT
ATTACH
WAIT
PROGSTOP
TEXT
TEXT
T,\SK
PRINTEXT
ENDTASK
ENDPROG
END

NOGEN
START,100
TXT1,SKIP=2
TASK1
E 1, RESET

'PROGRAM STARTED I

'TASK1 RUNNING '
GO,EVENT=E1
TXT2

ENTER VOLUME LABEL: EDX001
ENTER MEMBER NAME: COpy
END AFTER 13

IODA,CTS= 002,047013,049010

READY...;m
~

$EDITIN ENDED AT 00:23:11

Figure 14·59. $EDIT1N (2 of 2)

COMMENTS:

D The Text Editor is loaded.

D A preallocated data set to be used as a work area is specified.

II If you were updating a source module you would issue a READ
indicating the data set name and volume that contain the file. In
this example a new source module is being created, so ED IT
mode is invoked without a preceding READ.

D This DE LETE removes text lines remaining from a previous editing
session (clears the work area) and positions the editor at the
beginning (TOP) of the work area.

II To enter source statements you must issue the INPUT subcommand.

II The source statements entered are shown. The % in the text is used
as the default TAB character.

fJ To end the INPUT subcommand depress the ENTER key or
carriage return without entering any data.

II An error was made in the original entry on line 80. The slash is
the delimiter between the change fields. Any non-numeric

c

c'

(except blank, TAB character or *) can be used as the delimiter. (' .. '
Here T2 replaces "T" in line 80.

$UPDATE

o

D Another error was made in the original input. Line 90 and 100 are
the same. Line 100 is deleted.

Em The user forgot to end the task with an ENDTASK instruction.
It is now entered as line 115.

m Using the EDIT subcommand LIST, the contents of the work area
are listed on the terminal. A LIST subcommand issued when not
in EDIT mode will list the work area on the system printer.

IE The data in the work area is now saved in a preallocated user data
set. The SAVE operation translates the source statements from
the text editor format, in which they exist in the work area, into
the normal source statement format which can be accepted by
the assembler. The save is not destructive; the data is retained in
the work area.

EEl When the SAVE is complete, EDIT mode terminates.

m To terminate the text editor, key in END.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator's Reference, Messages and Codes (SC34-1703), "$UPDATE
and $UPDATEN Utility Programs."

$UPDATE is the utility used to format object modules into relocatable
load modules, which can be loaded to storage and executed.

COMMAND: RP

FUNCTION: Read a program and convert it to a relocatable load
module.

EXAMPLE: >I$L $UPDATEI
$UPDATE 33P,00:00:20, LP= 5100

THE DEFINED INPUT VOLUME IS EDX002, OK?CYJ
THE DEFINED OUTPUT VOLUME IS EDX002, OK?OD

COMMAND (?): [Bf]

OBJECT MODULE NAME: IDEMOI

OUTPUT PGM NAME: IFMTI
FMT REPLACE? IT]
FMT STORED

Figure 14-60. $UPDATE

Utility Programs 14-49

$FSEDIT

$FSEDIT Primary Options

14-50 SR 30-0436

COMMENTS: This example shows the formatting of an object module,
DEMO. The executable output program, FMT, is stored. If a program
member with the same name exists, you will be asked if it is to be
replaced. If it does not exist, the utility will allocate the space for the
executable program. The program, FMT, in the example can now be
loaded by the $L operator command or by a LOAD instruction in a
program.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator's Reference, Messages and Codes (SC34-1703), "$FSE D IT
Utility Program." .

This utility provides full-screen text editing capability for the Event
Driven Executive. $FSEDIT operates the terminal as a static screen
device, and therefore must be run from a terminal with static-screen
capability (4978/4979/3101 M2).

Data Set Requirements. $FSEDIT requires a preallocated work data
set for use as a text edit work area. Text data (source statements)
within this work data set are in a special text editor format, identical
to that used by the $EDIT1 N text editor; data within a text edit work
data set may be edited by either $EDIT1 N or $FSEDIT.

At the conclusion of a text edit utility session, it is important to save
the contents of the edit work data set in a source data set on disk or
diskette (automatic translation from text editor format to source
statement format is performed).

$FSEDIT is loaded using $L operator command (the operator must
provide the name of a text edit data set when the load request is
entered). The operator will be prompted for the names of input/output
source data sets during the utility session, at the time a READ or
WR ITE option is selected

When $FSEDIT is first loaded, the screen shown in Figure 14-61 will be
displayed, with the cursor positioned just to the right of the SE LECT
OPTION arrow. An option is selected by entering a number corres
ponding to the desired option, and pressing the ENTE R key.

c

o

C)

o

------------------------ $FSEDIT PRH1ARY OPTION rlENU
SELECT OPTION ===>_

1 BROWSE - DISPLAY DATASET
2 EDIT - CREATE OR CHANGE DATASET
3 READ - READ DATASET FROM HOST/NATIVE (H/N)
4 I·/RITE - WRITE DATASET TO HOST/NATIVE (H/N)
5 SUBMIT - SUBMIT BATCH JOB TO HOST SYSTEM
6 LIST - PRINT DATASET ON SYSTEM PRINTER
7 ~'ERGE - MERGE DATA FROM A SOURCE DATASET
8 END - TERMINATE $FSEDIT
9 HELP - DISPLAY TUTORIAL

Figure 14-61_ $FSEDIT (1)

Option 5: SUBM IT is used to submit a job to a host program prepara
tion system, and will therefore not be discussed in this section. The
rest of the options will be illustrated in the order in which they would
normally be required, not in the numerical sequence in which they
appear in Figure 14-61.

Creating A Source Statement File

When the Primary Option Menu is displayed (Figure 14-61), entering a
2 places the utility in EDIT mode. EDIT mode is used to modify an
existing source data set, or to create a new one. When modifying an
existing data set, a READ (option 3) of the file to be modified, into
the edit work data set, must first be performed. This will be illustrated
later. At this point, assume a new source statement file will be created.

Invoking EDIT mode with an empty edit work data set will result in
display of the screen in Figure 14-62. Because the work data set is
empty, the editor assumes insertion (creation) of lines is desired, and
the I NSE RT function is therefore active. The five dots to the left of
the cursor will contain the statement number of the new line once it
has been entered. The cursor is positioned at character position 1 of
the insert line.

Utility Programs 14-51

14·52 SR30·0436

EDIT --- EDITWORK. EOX002 O(270)---------------------- COLmmS 001 072
COMMAND INPUT ===> SCROLL :",:::HALF
***** ***** TOP OF DATA **
;.,;.,;.,;.,;._

Figure 14-62. $FSEDIT (2)

The top line of the screen, from left to right, displays the mode the
utility is in (EDIT), the name and volume of the work data set
(EDITWORK,EDX002), the number of source statements in the work
data set, and in parentheses, the total number of statements the data
set wi II hold.

In Figure 14-63, a line of asterisks and spaces has been entered on the
insert line, and the ENTER key pressed. The utility numbers the
entered line and sets up for the next insert line.

EDIT --- EOITWORK, EDX002 1(270)---------------------- COLUMNS 001 072
CO~lMAND INPUT ===> SCROLL =::=~HALF
***** ***** TOP OF DATA **
00010!* *1

Figure 14-63. $FSEDIT (3)

(,,- .-'

o

Option 4: WRITE

o

Notice that the "number of sou'rce statements in work data set" value
on the top line has incremented.

Continuing in this manner, with a new insert line readied each time the
preceding line has been entered (ENTE R key), the 18 comment state
ments (asterisk in position 1) shown in Figure 14-64 are created. The
insert operation is terminated by pressing the ENTE R key without
entering anything on the new insert line.

EDIT --- [D!TlIOR:,,--·- .- -.-. vln
COf'Ht,Mm WPUT ==)·lENU I ===> HALF
***** ***** TOP OF DATA **
00010 *
00020 *
00030 * THIS SET OF COf1l1ENT STATEflENTS DEMONSTRATES THE ABILITY TO CREATE
00040 * A SOURCE FILE. BEGINNING WITH AN EMPTY HORK DATA SET. WHEN
00050 * CorWLETE. THIS SET OF STATEI~ENTS W.ILL BE !4RITTEN TO THE PRE-
00060 * ALLOCATED .DATA SET "MGRDATA" ON VOLUME EDX002. A PORTION OF DATA
00070 * SET "MGRDATA"HILL BE USED LATER TO ILLUSTRATE THE "MERGE"
00080 * PRIMARY OPTION OF $FSEDIT.
00090 *
00100 *
00110 *
00120 * I1ERGE DATA
00130 * MERGE DATA
00140 * I1ERGE DATA
00150 * MERGE DATA
00160 * tlERGE DATA
00170 *
00180 *
***** **** BOTTOll0F DATA **

Figure 14-64. $FSED IT (4)

The cursor is automatically positioned to the right of the COMMAN D
I NPUT arrow d'n the second line from the top of the screen. To return
to the Primary Option Menu, the command "MEN U" is entered, and the
ENTE R key pressed. This brings back the screen shown in Figure 14-61.

The source statements just created will now be saved as a source data
set. The WR ITE primary option is selected, and the operator is
prompted for the target data set/volume on the bottom half of the
screen, as shown in Figure 14-65.

Utility Programs 14-53

Option 3: READ

14-54 SR30-0436

-------------------4N-- $FSEDIT PRIMARY OPTION MENU --------------------------
SELECT OPTION ===>

1 BROWSE - DISPLAY DATASET
2 EDIT - CREATE OR CHANGE DATASET
3 READ - READ DATASET FROM HOST/NATIVE (H/N)
4 ~'IRITE - WRITE DATASET TO HOST/NATIVE (H/N)
5 SUBr1IT - SUBrtIT BATCH JOB TO HOST SYSTEtl
6 LIST - PRINT DATASET Drl A SYSTEM PRINTER
7 I1ERGE - MERGE DATA FR0I1 A SOURCE DATASET
8 END - TERfUNATE $FSEDIT
9 HELP - DISPLAY TUTORIAL

ENTER DATASET (NAME,VOLUME): I SOURCE, ASMVOL I

Figure 14~5. $FSEDIT (5)

After the contents of the work data set have been written, the prompt
will be replaced by an ending message indicating how many statements
had been written; in this example END AFTER 18. The cursor is re
turned to the SE LECT OPTION input area.

To edit an existing source file, it must first be transferred to the edit
work data set. A diskette volume called ASMVOL is mounted, which
contains a data set named SOURCE. By entering 3 and responding
to the resulting prompts as shown in Figure 14-66, this file is read into
the edit work data set.

c

c

o

Option 6: LIST

o
Option 1: BROWSE

o

--------------------3--- $FSEDIT PRIMARY OPTION MENU --------------------------
SELECT OPTION ===>

1 BRO:~SE - DISPLAY DATASET
2 EDIT - CREATE OR CHA~GE DATASET
3 READ - READ DATASET FROM HOST/NATIVE
4 WRITE - WRITE DATASET TO HOST/NATIVE
5 SUBMIT - SUBMIT BATCH JOB TO HOST SYSTEM
6 LIST - PRINT DATASET ON SYSTEM PRINTER
7 14ERGE - ~lERGE DATA FRor·, A SOURCE DATASET
8 END - TERMINATE $FSEDIT

READ FROM NATIVE? IYES I

Figure 14.06. $FSEDIT (6)

Entering primary option 6 will list the contents of the work data set on
the system printer. The data set SOURCE on ASMVOL contains the
source file for the program used as an example in "Section 11. Terminal
I/O". Listing the contents of the edit work area will produce the same
listing as that shown in Figure 11-43, but with statement numbers
printed to the left of each statement.

The B ROWSE option is used to examine a source file in the edit work
data set, while precluding the possibility of changing it. Paging response
will generally be faster in this mode. If option 1 is entered with the
work data set containing the file from data set SOURCE, the screen in
Figure 14-67 will be displayed. Note again the top line of the screen,
indicating the operating mode (BROWSE) and the size of the file
being examined (75 statements).

Utility Programs 14·55

14-56 SR30-0436

BROWSE - [DITWORK, EDX002 75(270)---------------------- COLUMNS 001 072
cm,lf,1Mm INPUT ===> SCROLL ===> PAGE

***** ***** TOP OF DATA **
00010 XMPLSTAT PROGRAI1
00020 IOCB1 IOCB
00030 IOCB2 IOCB
00040 ATTNLIST
00050 START ENQT
00060 PRINTEXT
00070 PRINTEXT
00080 PRINTEXT
00090 PRINTEXT
00100 PRINTEXT
00110 DEQT
00120 CHECK WAIT
00121 IF
00140 ENTRY ENQT
00150 ERASE
00160 TERMCTRL
00170 PRINTEXT
00180 PRINTEXT
00190 PRINTEXT
00200 PRINTEXT
00210 PRINTEXT

Figure 14-67. $FSEDIT (7)

START
NHIST=O
SCREEN=STATIC
(END,OUT,$PF,STATIC)
IOCB1
'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2
'THE PROGRAM'
'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2
'BRING UP THE ENTRY SCREEN'

ATTNECB,RESET
(ATTNECB,EQ,l),GOTO,ENDIT
IOCB2
MODE=SCREEN, TYPE=ALL
BLANK
'ENTER KEY = PAGE COMPLETE',LINE=l
, PF1 = DELETE ENTRY I'
, PF2 = DELETE ENTRY 2'
'PF3 = DELETE ENTRY 3 ',SKIP=l
'PF4 = DELETE ENTRY 4'

This file, as with most source files, is too large to be displayed in its
entirety on the screen. In Figure 14-67, only the first 21 of the 75
statements which make up the file are in view.

To allow viewing of all parts of a file, both BROWSE (option 1) and
EDIT (option 2) modes have a "scrolling" function, invoked by pressing
PF keys. PF3is used to scroll down in the data set, from top to
bottom, and PF2 to scroll up, from bottom to top.

In Figure 14-67, the scroll size is displayed at the extreme right of the
second line. In BROWSE mode, the normal scroll size is PAGE; 22
lines of data. In Figure 14-68, PF3 has been pressed, displaying the
next 22 lines in the work area (statements 220 through 430).

c'

o

BROI/SE - EDITWORK. EDX002
CO~lMAND INPUT ===>

00220 PRINTEXT
00230 PRINTEXT
00240 PRINTEXT
00250 HDR PRINTEXT
00260 r~OVE
00270 DO
00280 PRINTEXT
00290 PRINTEXT
00300 Al ADD
00310 PRINTEXT
00320 A2 ADD
00330 PRINTEXT
00340 ADO
00350 ENDDO
00360 PRINTEXT
00370 TERMCTRL
00380 IIAITONE \~AIT
00390 GOTO
00400 El MOVE
00410 GOTO
00420 E2 MOVE
00430 GOTO

Figure 14-68. $FSEDIT (8)

75{ 270)---------------------- COLUMNS 001 072
SCROLL ===>PAGE

DASHES,PROTECT=YES,LINE=3
'CLASS NAME: ',LINE=4,PROTECT=YES
'INSTRUCTOR NAME: ',LINE=4,PROTECT=YES,SPACES=32
DASHES,PROTECT=YES,LINE=5
LlNENBR,6
4, TIMES
'NAME: ',LINE=LINENBR,PROTECT=YES
'STREET:,LINE=LINENBR,SPACES=30,PROTECT=YES
LlNENBR.l
'CITY : '.LINE=LINENBR.SPACES=30.PROTECT=YES
LlNENBR.l
'STATE :'.LINE=LINENBR.SPACES=30.PROTECT=YES
LlNENBR.3

LlNE=4 .SPACES= 11
DISPLAY
KEY
(READ.El.E2.E3.E4}.XMPLSTAT+2
LlNENBR.6
DELETE
LlNENBR.11
DELETE

The scroll size may be defined as HALF by moving the cursor to the
scroll size area and entering HALF where PAGE now is. HALF indicates
half a page, or 11 lines. In Figure 14-69, scroll size has been defined as
HALF, and PF3 has been pressed, displaying 11 new lines of data.

BROHSE - EDIHJORK. EDX002
COMMAND INPUT ===>

00330 PRINTEXT
00340 ADO
00350 ENDDO
00360 PRINTEXT
00370 TERMCTRL
00380 WAITONE WAIT
00390 GOTO
00400 El MOVE
00410 GOTO
00420 E2 MOVE
00430 GOTO
00440 E3 MOVE
00450 GOTO
00460 E4 MOVE
00470 DELETE ERASE
00480 ADO
00490 ERASE
00500 ADO
00510 ERASE
00520 SUBTRACT
00530 PRINTEXT
00540 TERMCTRL

Figure 14-69. $FSEDIT (9)

75(270)---------------------- COLUMNS 001 072
SCROLL ===::ffiNIl

'STATE :'.LINE=LINENBR.SPACES=30.PROTECT=YES
LINENBR.3

LINE=4.SPACES=11
DISPLAY
KEY
(READ.El.E2.E3.E4}.XMPLSTAT+2
LINENBR.6
DELETE
LINENBR.11
DELETE
LINENBR.16
DELETE
LINENBR.21
MODE=LINE. TYPE=DATA.LlNE=LINEBR
LINENBR.l
MODE=LINE.TYPE=DATA.LINE=LINENBR
LINENBR.l
MODE=LINE. TYPE=DATA. LlNE=LINENBR
LINENBR.2
LINE=LINEBR.SPACES=5
DISPLAY

The third and last scroll size option is MAX. With MAX, the scroll will
be all the way to the top (PF2) or bottom (PF3) of the data set. After
the MAX scroll operation, scroll size reverts to the normal scroll size
for the mode in effect (normal scroll size for B ROWSE mode is
PAGE, and for EDIT mode is HALF).

Utility Programs 14-57

14-58 SR30-0436

While in B ROWSE mode, the primary command LOCATE can be
used to position the displayed data beginning at a specific statement
number. In Figure 14-70, the primary command LOCATE 450 is
entered into the command input area on the second line.

BROWSE - EDITWORK, EDX002 75{ 270)---------------------- COllJr.1NS 001 072
Cor~I-1AND INPUT ===> I LOCATE 450 I SCROLL "'==> PAGE

***** ***** TOP OF DATA **
00010 XMPLSTAT PROGRAt1
00020 lOCB1
00030 lOCB2
00040
00050 START

100060
'00070
00080
00090
00100
oono
00120 CHECK
00121
00140 ENTRY
00150
00160
00170
00180
00190
00200
00210

lOCB
lOCB
ATTNLIST
ENQT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
DEQT
WAIT
IF
ENQT
ERASE
TERMCTRL
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT

Figure 14-70. $FSEDIT (10)

START
NHIST=O
SCREEN=STATIC
(END,OUT,SPF,STATIC)
IOCB1
'CLASS ROSTER PROGRAr1' ,SPACES=15,LINE=1
'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2
'THE PROGRAM'
'HIT ANY PROGRAt1 FUNCTION KEY TO' ,SKIP=2
'BRING UP THE ENTRY SCREEN'

ATTNECB,RESET
(ATTNECB,EQ,l),GOTO,EMDIT
10CB2

,MODE=SCREEN,TYPE=ALL
BLANK
'ENTER KEY = PAGE COMPLETE',L1NE=1
, PF1 = DELETE ENTRY I'
, PF2 = DELETE ENTRY 2'
'PF3 = DELETE ENTRY 3 ',SKIP=l
'PF4 = DELETE ENTRY 4'

When the enter key is pressed, the screen in Figure 14-71 will be dis
played starting with statement 450.

BROWSE - EDITWORK, EDX002
C~d~~~D INPUT ="'(iOTO

75(270)--------------------- COLUMNS 001 072
SCROLL ===>PAGE

DELETE
00460 E4 MOVE
00470 DELETE ERASE
00480 ADD
00490 ERASE
00500 ADD
00510 ERASE
00520 SUBTRACT
00530 PRINTEXT
00540 TER~lCTRL
00550 GOTO
00560 READ QUESTION
00570 ERASE
00580 ERASE
00590 PRINTEXT
00600 TERMCTRL
00610 GOTO
00620 CLEANUP ERASE
00630 DEQT

LINENBR,21
. MODE=LINE,TYPE=DATA,LINE=LINENBR

LINENBR,l
MODE=LINE, TYPE=DATA ,LINE=LINENBR
LINENBR,l
MODE=LINE, TYPE=DATA, LINE=LINENBR
LINENBR,2
LINE=LINENBR,SPACES=5
DISPLAY
I-IAITONE
'MORE ENTRIES ?',LINE=2,SPACES=55,NO=CLEANUP
MODE=LINE,LINE=2,SPACES=55,TYPE=DATA
MODE=SCREEN,LINE=6
LINE=6,SPACES=5
DISPLAY
WAITONE
MODE=SCREEN,TYPE=ALL

00640 GOTO START
00650 ENDIT PROGSTOP
00660 DATA X' 5050'

Figure 14-71. $FSEDIT (11)

c

o

o

o

The "FIND" primary command performs the same type of positioning
function using a text string instead of a statement number. In Figure
14-72 the command, FIND /ENDIT P/FI RST, is entered in the
command input area.

The FIRST option means look for the text string beginning with the
first statement in the data set. If FIRST is not specified, the search will
begin with the first statement of the currently displayed screen. In this
example, because the current screen is also the top of the data set, both
options have the same effect.

BROWSE - EDlTI~ORK, EPXOQ? 75(?ZQ) ____ u_h ________ u __ COLU/INS 001 072
COm-1AND INPUT ===> I FINDJENDIT PI FmST I SCROLL ===> PAGE

***** ***** TOP OF DATA ***
00010 XMPLSTAT PROGRMI
00020 IOCB1
00030 IOCB2
00040
00050 START
00060
00070
00080
00090
00100
00110
00120 CHECK
00121
00140 ENTRY
00150
00160
00170
00180
00190
00200
00210

lOCB
IOCB
ATTNLIST
ENQT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
DEQT
WAIT
IF
ENQT
ERASE
TERMCTRL
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT

Figure 14·72. $FSEDIT (12)

START
:-lHIST=O
SCREEN=STATIC
(END,OUT,$PF,STATIC)
IOCB1
'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
'HIT "ATTN" AND EIHER "END" TO END' ,SKIP=2
, THE PROGRAM'
'HIT ANY PROGRAI1 FUNCTION KEY TO' ,SKIP=2
, BRING UP THE ENTRY SCREEN'

ATTNECB,RESET
(ATTtlECB ,EQ, 1) ,GOTO ,ENDIT
IOCB2
MODE=SCREEN, TYPE=ALL
BLANK
'ENTER KEY = PAGE COMPLETE',LINE=l
, PF1 = DELETE ENTRY I'
, PF2 = DELETE ENTRY 2'
'PF3 = DELETE ENTRY 3 ',SKIP=l
'PF4 = DELETE ENTRY $'

When the ENTE R key is pressed, the screen in Figure 14-73 will be
displayed. The first statement is the statement containing the text
string defined in the F I NO command. The cursor will be positioned
under the first character of the target string.

Utility Programs 14·59

Option 7: MERGE

14-60 SR30-0436

BROWSE - EDITUORK. EDX002
COtl!<1A:W PIPUT ===>

00650 E~DIT PROGSTOP
00660 DATA
00670 DASHES DATA
00680 OUT POST
00690 ENDATTtl
00700 STATIC POST
00710 ENDATTN
00720 ATTNECB ECB
00730 LINENBR DATA
00740 ENDPROG
00750 END

75(270)----------------______ CHARACTERS FOUND

X '5050'
80C'-'
ATTNECB,l

ATTNECB,-l

F'O'

SCROLL =:.:::> PAGE

***** ***** BOTTOM OF DATA **

Figure 14-73. $FSEDIT (13)

If you want to find more than one occurrence of the same text string,
the FIN 0 command does not have to be reentered for each search. The
first occurrence of the text string will be displayed as already illus
trated. If PF4 is pressed, the search will continue. Each time the string
is found, the statement containing the string will be displayed at the
top of a new screen. Each time PF4 is pressed the search will continue,
until the end of the data set is reached.

LOCATE, FIND, and MENU are the only primary commands recognized
by BROWSE mode. MENU brings up the Primary Option Menu, shown
in Figure 14-61.

Option 7 allows you to combine (merge) two or more source data sets
in the same edit work area: To demonstrate this option, a portion of
the set of source statements created earlier (Figure 14-66) and stored
in data set MRGDATA (Figure 14-65) will be merged with the current
contents of the work area.

When option 7 is entered, you will be prompted on the lower half of
the screen as shown in Figure 14-74. With the responses shown, state
ments 100 through 180 of data set MRGDATA will be merged into the
present contents of the work data set following statement 30.

c

C,
./

o

Option 2: EDIT

o

--------------------7--- $FSEDIT PRIMARY OPTION MENU --------------------------
SELECT OPTION ===>

1 BROI~SE - DISPLAY DATASET
2 EDIT - CREATE OR CHANGE DATASET
3 READ - READ DATASET FROM HOST/NATIVE
4 vlRITE - WRITE DATASET TO HOST/NATIVE
5 SUBI·IIT - SUBMIT BATCH JOB TO HOST SYSTEM
6 LIST - PRINT DATASET ON SYSTEM PRINTER
7 14ERGE - MERGE DATA FROM A SOURCE DATASET
8 END - TERMINATE $FSEDIT
9 HELP - DISPLAY TUTORIAL

MERGE DATA FROM (NAME,VOLUr1E): IMRGDATA,EDXa021 LlNES- 1ST LAST B@ 1801
ADD AFTER LINE #: 30

Figure 14-74. $FSEDIT (14)

When option 2 is entered, the screen in Figure 14-75 is displayed.
Notice that the merged statements have been inserted, and the entire
data set renumbered.

EDIT --- EDITWORK,EDX002 841 270\---------------------- COLUMNS 001 072
CQi::'li";:m INPUT ~==> ICHANGE /EN0.20UIT ,/FIRST 1 SCROLL ===>HALF
***** ***** TOP OF DATA ***
00010 XrlPLSTAT PROGRAM START
00020 IOCB1 IOCB NHIST=O
00030 IOCB2 IOCB SCREEN=STATIC
00040 *
00050 *
00060 * r·1ERGE DATA
00070 * '1ERGE OATA
00080 * MERGE DATA
00090 * tlERGE DATA
00100 * r4ERGE DATA
00110 *
00120 *
00130 ATTNLIST (END,OUT,$PF,STATIC)
00140 START ENQT IOCB1
00150 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
00160 PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2
00170 PRINTEXT 'THE PROGRAM'
00180 PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2
00190 PRINTEXT 'BRING UP THE ENTRY SCREEN'
00200 DEQT
00210 CHECK !IAIT ATT~IECB ,RESET

Figure 14·75. $FSEDIT (15)

Utility Programs 14-61

14-62 SR30-0436

In addition to LOCATE, FIND, and MENU, EDIT mode recognizes the
CHANGE, RENUM, and RESET primary commands. In Figure 14-75,
the primary command "CHANGE /END/QUIT/FIRST" is entered in
the command input field. This command will look for the first occur
rence of the text string END, starting with the first statement in the data
set (FI RST). If NEXT is entered, the search would begin with the first
statement on the current screen (the two statements have the same
results in this example). When the text string END is found, it will be
replaced with the text string QUIT. The first occurrence of END is in
the ATTN LIST statement, at statement number 130 (Figure 14-75).
In Figure 16-17, the ENTER key has been pressed, END has been
changed to QUIT, and the first line displayed is the line the change
occurred in. By pressing PF5, the CHANGE command can be repeated,
with the search beginning with statement 130.

EDIT --- EDITWORK,EDX002
COt1MAND INPUT ===>
00130 ATTNLIST
00140 START ENQT
00150 PRINTEXT
00160 PRINTEXT
00170 PRINTEXT
00180 PRINTEXT
00190 PRINTEXT
00200 DEQT

84 (270)----------- ---------------- TEXT CHANGED
SCROll ===::HAlF

(QUIT,OUT,$PF,STATIC)
IOCB1
'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2
, THE PROGRAM'
'HIT ANY PROGRArl FUNCTION KEY TO' ,SKIP=2
, BRING UP THE ENTRY SCREEN'

00210 CHECK WAIT ATTNECB,RESET
00220 IF (ATTNECB,EQ,l),GOTO,ENDIT
00230 ENTRY ENQT IOCB2
00240 ERASE MODE=SCREEN,TYPE=ALL
00250 TER~lCTRL BLANK
00260 PRINTEXT 'EflTER KEY = PAGE COMPLETE' ,L1NE=l
00270 PRINTEXT' PF1 = DELETE ENTRY I'
00280 PRINTEXT' PF2 = DELETE ENTRY 2'
00290 PRINTEXT 'PF3 = DELETE ENTRY 3 , ,SKIP=l
00300 PRINTEXT 'PF4 = DELETE ENTRY 4'
00310 PRINTEXT DASHES,PROTECT=YES,LINE=3
00320 PRINTEXT 'CLASS NM1E:' ,L1NE=4,PROTECT=YES
00330 PRINTEXT 'INSTRUCTOR NAME:'L1NE=4,PROTECT=YES.SPACES=32
00340 HDR PRINTEXT DASHES,PROTECT=YES,LINE=5

Figure 14-76. $FSEDIT (16)

If you want to change every occurrence of a text string in the entire
work area, ALL should be entered in place of FI RST or NEXT.

When in EDIT mode, changes to the displayed data may be entered,
directly onto the screen. In Figure 14-77, the QUIT in statement
130 has been changed back to END by overtyping.

c

c

c

o

o

EDIT --- EOITWORK. EDX002
Cor~b\Nfo INPUT ===~TTNLIST

00140 START ENQT
00150 PRINTEXT
00160 PRINTEXT
00170 PRINTEXT
00180 PRINTEXT
00190 PRINTEXT
00200 DEQT

84 (270)------------------------ TEXT CHJt.tWlIfD
(END,OUT,$PF,STATIC) SCROLL ===>
IOCB1
'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2
, THE PROGRAM'
'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2
, BRING UP THE ENTRY SCREEN'

00210 CHECK I~AIT ATT~ECB,RESET
00220 IF (ATTNECB,EQ,l) ,GOTO,ENDIT
00230 ENTRY ENQT IOCB2
00240 ERASE MODE=SCREEN,TYPE=ALL
00250 TERMCTRL BLANK
00260 PRINTEXT 'ENTER KEY = PAGE COMPLETE',LINE=l
00270 PRINTEXT' PFl = DELETE ENTRY I'
00280 PRINTEXT' PF2 = DELETE ENTRY 2'
00290 PRINTEXT 'PF3 = DELETE ENTRY 3 , ,SKIP=l
00300 PRINTEXT 'PF4 = DELETE ENTRY 4'
00310 PRINTEXT DASHES,PROTECT=YES,LI~E=3
00320 PRINTEXT 'CLASS NAME: ',LINE=4,PROTECT=YES
00330 PRINTEXT 'INSTRUCTOR NArlE:',LHlE=4,PROTECT=YES,SPACES=32
00340 HDR PRINTEXT DASHES,PROTECT=YES,LINE=5

Figure 14-77. $FSEDIT (171

The statements in the work data set may be renumbered using the
RENUM primary command. In Figure 14-78, the RENUM command
is used to renumber the data set in increments of 5, with the first
statement assigned a statement number of 1.

T u_ EDITH~~~-: Erdrnlm 1 53f (270)--_nn __ nnhn_u __ COLUMNS 001 OAALF
NfP1**-fOP OF DATA **********************************~*-*'"''*********

00010 XMPLSTAT PROGRAM START
00020 IOCB1 IOCB NHIST=O
00030 IOCB2 IOCB SCREEN=STATIC
00040 *
00050 *
00060 * tlERGE DATA
00070 * ~1ERGE DATA
00080 * flERGE DATA
00090 * tlERGE DATA
00100 * MERGE DATA
00110 *
00120 *
00130 ATTNLIST (END,OUT ,$PF ,STATIC)
00140 START ENQT IOCB1
00150 PRINTEXT 'CLASS ROSTER PROGRAM' ,SPACES=13,LINE=1
00160 PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END',SKIP=2
00170 PRINTEXT 'THE PROGRAH'
00180 PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO' ,SKIP=2
00190 PRINTEXT 'BRING UP THE ENTRY SCREEN'
00200 DEQT
00210 CHECK I~AIT ATTNECB,RESET

Figure 14-78. $FSEDIT (181

Figure 14-79 is the resulting display, after the ENTER key has been
pressed.

Utility Programs 14-63

Edit Mode Line Commands

14-64 SR30-0436

EDIT --- EDIn/ORK. EDX002
cmlMAND INPUT ::=>

84(270)---------------------- COLUMNS 001 072
SCROLL ::=> HALF

***** ***** TOP OF DATA **
00001 XMPLSTAT PROGRAM START
00006 IOCB1 IOCB NHIST=O
00011 IOCB2 IOCB SCREEN=STATIC
00016 *
00021 *
00026 * I1ERGE DATA
00031 * MERGE DATA
00036 * I1ERGE DATA
00041 * 1·1ERGE DATA
00046 * MERGE DATA
00051 *
00056 *
00061 ATTNLIST (END,OUT,$PF,STATIC)
00066 START ENQT IOCB1
00071 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
00076 PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END',SKIP=2
00081 PRINTEXT 'THE PROGRAM'
00086 PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2
00091 PRINTEXT 'BRING UP THE ENTRY SCREEN'
00096 DEQT
00101 CHECK WAIT ATTNECB,RESET

Figure 14-79. $FSEDIT (19)

The RESET primary command is·used in conjunction with the EDIT
mode line commands, and will be illustrated later.

In addition to modification of text strings using the CHANGE primary
command, and the modification of any displayed data on the screen
by overtyping, EDIT mode also allows whole lines, or blocks of lines to
be manipulated, using the EDIT mode line commands. For example,
the INSERT (I) command allows a new line to be inserted between
existing lines. In Figure 14-80, an "I" is entered to the left of statement
40, indicating that the operator wishes to insert between statement 40
and 50.

c

o

o

o

EDIT --- EDITWORK, EDX002 84(270)---------------------- COLUMNS 001 072
CmlMA!'ID INPUT ===> SCKOLL ~':::"~ALF

***** ***** TOP OF DATA **
00010 Xt1PLSTAT PROGRAM START
00020 IOCB1 10CB NHIST=O
00030 IOCB2 10CB SCREEN=STATIC
00040 *
00050 *
00060 * 11ERGE DATA
00070 * 11ERGE DATA
00080 * :1ERGE DATA
00090 * MERGE DATA
00100 * MERGE DATA
00110 *
00120 *
00130 ATTNLIST (END,OUT,$PF,STATIC)
00140 START E!lQT IOCB1
00150 PRINTEXT 'CLASS ROSTER PROGRAr1' ,SPACES=15,LlNE=1
00160 PRINTEXT 'HIT "ATTN" AND EtHER "END" TO END' ,SKIP=2
00170 PRINTEXT 'THE PROGRM1'
00180 PRItHEXT 'HIT ANY PROGRAM FUNCTION KEY TO' ,SKIP=2
00190 PRINTEXT 'BRING UP THE ENTRY SCREEN'
00200 DEQT
00210 CHECK HAlT ATTrlECB,RESET

Figure 14-80. $FSEDIT (20)

When ENTER is pressed, the screen comes back as pictured in Figure
14-81, with the insert line displayed, and the cursor in the first charac
ter position, ready for entry.

EDIT --- EOITWORK, EOX002
COMr~AND INPUT ===>

84(270)---------------------- COLurlNS 001 072
SCROLL '==lfALF

***** ***** TOP OF DATA **
00010 XMPLSTAT PROGRMI START
00020 10CB1 IOCB NHlST=O
00030 IOCB2 10CB SCREE~=STATIC
00040 *

00050 -:;
00060 * MERGE DATA
00070 * t1ERGE DATA
00080 * ~1ERGE DATA
00090 * MERGE DATA
00100 * ~lERGE DATA
00110 *
00120 *
00130 ATTNLIST (END,OUT,$PF,STATIC)
00140 START ENQT 10CB1
00150 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
00160 PRINTEXT 'HIT "ATTfI" A~D EtHER "HID" TO E~D' ,SKIP=2
00170 PRINTEXT 'THE PROGRAM'
00180 PRINTEXT 'HIT ANY PROGRMI FUNCTION KEY TO' ,SKIP=2
00190 PRINTEXT 'BRING UP THE ENTRY SCREEN'
00200 DEQT

Figure 14-81. $FSED IT (21)

When the insert line is complete, the operator presses the ENTE R key,
the new line is assigned a statement number, and another insert line is
readied (Figure 14-82).

Utility Programs 14-65

14-66 SR30-0436

EDIT --- EOlTWORK, EDX002 8S(270)-------------------- __ COLUMNS 001 072
CO~l1'lll.~D INPUT ===> SCROLL ===>HALF

***** ***** TOP OF DATA **
00010 X~lPLSTAT PROGRAM START
00020 IOCBl IOCB NHIST=O
00030 IOCB2 IOCB SCREEN=STATIC
00040 *
00041 * II~SERT SINGLE LINEI

00050 "*
00060 * MERGE DATA
00070 * MERGE DATA
00080 * I1ERGE DATA
00090 * f.1ERGE DATA
00100 * MERGE DATA
00110 *
00120 *
00130 ATTNLIST (END,OUT,$PF,STATIC)
00140 START E~QT IOCBl
00150 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
00160 PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2
00170 PRINTEXT "THE PROGRAM'
00180 PRINTEXT 'HIT AllY PROGRAM FUNCTION KEY TO' ,SKIP=2
00190 PRINTEXT 'BRING UP THE ENTRY SCREEN'

Figure 14-82. $FSEDIT (22)

The operation terminates when ENTE R is pressed with no characters
entered on the insert line.

The INSERT BLOCK (II) command generates a block of 21 insert
lines. In Figure 14-83 the "II" to the left of statement 50 indicates
the operator wants to generate the insert block following statement
50.

EDIT --- EDITWORK, EEX002 85(270)---------------------- COLUMNS 001 072
COfiMAND INPUT ="'=> SCROLL =="'> HALF

***** ***** TOP OF DATA **
00010 XMPLSTAT PROGRAM START
00020 IOCBl IOCB NHIST=O
00030 IOCB2 IOCB SCREEN=STATIC
00040 *

[!]00050 *
00060 * MERGE DATA
00070 * MERGE DATA
00080 * MERGE DATA
00090 * MERGE DATA
00100 * I1ERGE DATA
00110 *
00120 *
00130 ATTNLIST (END.OUT,$PF,STATIC)
00140 START ENQT IOCBl
00150 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=IS.LINE=1
00160 'PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END'.SKIP=2
00170 PRINTEXT 'THE PROGRAM'
00180 PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO' .SKIP=2
00190 PRINTEXT "BRING UP THE ENTRY SCREEN'
00200 DEQT

Figure 14~3. $FSEDIT (23)

When ENTER is pressed, the screen in Figure 14-84 is displayed.

o

o

o

EDIT --- EOITWORK. EDX002
CQtlMAND INPUT ===>

00050 *

Figure 14-84. $FSEDIT (24)

85(270)---------------------- COLUtlrlS 001 072
SCROLL ='==>HALF

The operator may now fill in the screen as required, without pressing
ENTER for each line (Figure 14-85).

EDIT --- EDITHORK. EDX002
COMMAND INPUT ===>

00050 :_---",,.,,..........---.

Figure 14-85. $FSEDIT (25)

8S(270)---------------------- COLUMNS 001 072
SCROLL ",==>HALF

When as much data as desired has been entered, the ENTE R key is
pressed.

Unused insert lines are removed, the insert lines used are assigned
statement numbers, and the screen appears as shown in Figure 14-86.

Utility Programs 14-67

14-68 SR30-0436

EDIT --- EDITWORK, EDX002
CS~rcr~~D*INPlJT ===>
00051 * INSERT
00052 * MULTIPLE
00053 * LINES
00060 * MERGE DATA
00070 * MERGE DATA
00080 * I1ERGE DATA
00090 * r·1ERGE DATA
00100 * MERGE DATA
00110 *

B8(270)---------------------- COLUMNS·OOI 072
SCROLL ===>HALF

00120 *
00130 ATTN LI ST (END,OUT ,$PF ,STATIC)
00140 START ENQT IOCB1
00150 PRrrnEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
00160 PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END',SKIP=2
00170 PRINTEXT 'THE PROGRAM'
00180 PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2
00190 PRINTEXT 'BRING UP THE ENTRY SCREEN'
00200 DEQT
00210 CHECK WAIT
00220 IF
00230 ENTRY ENQT

Figure 14-86. $FSEDIT (26)

ATTNECB,RESET
(ATTNECB ,EQ, 1) ,GOTO,ErlDIT
IOCB2

The MOVE (M) line command will move a line from one location in
the work data set to another. In Figure 14-87, an "M" is entered to
the left of the line to be moved, statement 50. The "A" at statement
140 specifies the destination of the MOVE as after line 140.

EDIT --- EDI1HORK, EDX002 88(270]------------------------ DATA RP1W:S[RE!:'
cm1hwm 1 ~IPIJT ===> SCROll ·===)HALF
***** *~**~ TOP OF DATA **
00010 X~1PLSTAT PROGRAr1 START
00020 IOCB1 ~HIST=O
0003Q IOCB2 SCREEN=StATIC
00040 *

(ffio0050 * INSERT SI!'lGLE LINE
00060 *
00070 *
00080 *
00090 *
00100 *
00110 *
00120 *
00130 *

[MJ0140 *
00150 *

Ii'lSERT
1·1UL TlPLE

LINES
I1ERGE DATA
r1ERGE DATA
t1ERGE DATA
1·1ERGE DATA
r1ERGE DATA

00160 *
00170 ATTNLIST (END,OUT.$PF,STATIC)
00180 START ENQT IOCB1
00190 PRINTEXT 'CLASS ROSTER PROGRAM' ,SPACES=15,LHIE=1
00200 PRINTEXT 'HIT "ATTN" AND EtITER "END" TO END' ,SKIP=2
00210 PRINTEXT 'THE PROGRAH'

Figure 14-87. $FSEDIT (27)

Figure 14-88 is the screen displayed after ENTE R is pressed. The line
is moved, and the data set renumbered.

c

c.

o

C)

EDIT --- EDIHJORK. EDX002 SS(270)------------------------ DATA REtWI·1BERED
COnMA:lD r'lPllT ==.,.> . SCROLL ===>HALF
00130 * MERGE DATA
00140 * INSERT SINGLE LINE
00150 *
00160 *
00170 ATTNLIST (E~D,OUT,$PF,STATIC)
00180 START (;lQT lOCB1
00190 PRINTEXT 'CLASS ROSTER PROGRAf.1' ,SPACES=15,LIIIE=1
00200 PRIflTEXT 'HIT "ATTN" AND EtITER "END" TO END' ,SKIP=2
00210 PRINTEXT 'THE PROGRAM'
00220 PRINTEXT 'HIT AllY PROGRAtl FUNCTION KEY TO' ,SKIP=2
00230 PRINTEXT 'BRING UP THE ENTRY SCREEN'
00240 DEQT
00250 CHECK WAIT ATTNECB,RESET
00260 IF (ATTNECB,EQ,l),GOTO,EN!lIT
00270 EfHRY ENQT IOCB2
00280 ERASE HODE=SCREE~l, TYPE=ALL
00290 TERMCTRL BLANK
00300 PRINTEXT 'ENTER KEY = PAGE COMPLETE',LINE=l
00310 PRIHTEXT' PF1 = DELETE ENTRY I'
00320 PRINTEXT' PF2 = DELETE ENTRY 2'
00330 PRINTEXT 'PF3 = DELETE ENTRY 3 ',SKIP=1
00340 PRINTEXT 'PF4 = DELETE ENTRY 4'

Figure 14-88. $FSEDIT (28)

. The MOVE BLOCK line command (MM) is illustrated in Figure 14-89.
The MM to the left of statements 60 and 80 define the inclusive start
and end points of a block of statements to be moved. The B defines
the desti nation of the block as before statement 150. (E ither A or B
can be used with M and MM.)

EDIT --- EDITWORK,EDX002 8B(270)----------------------- COLut'1NS 001 072
CO~l~WW INPUT ===> SCROLL ===> HALF

00020 IOCBl IOCB NHIST=O
00030 IOCB2 IOCB SCREEN=STATIC
00040 * * * * * * * * * * * * * * * * * y * * * * * * * * * * * * * * * * * *
00050 *

Iffi] 00060 * INSERT
00070 * MULTIPLE

ffi] 00080 * LINES
00090 * MERGE DATA
00100 * MERGE DATA
00110 * r4ERGE DATA
00120 * MERGE DATA
00130 * MERGE DATA
00140 * INSERT SINGLE LINE .

1I]00150 *
00160 *
00170 ATTNLIST (END,OUT,$PF,STATIC)
00180 START ENQT IOCBl
00190 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
00200 PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END',SKIP=2
00210 PRINTEXT 'THE PROGRAM'
00220 PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2
00230 PRINTEXT ',BRING UP THE. ENTRY SCREEN'

Figure 14·89. $FSEDIT (29)

After ENTE R is pressed, the screen in Figure 14-90 is displayed.

Utility Programs 14·69

14·70 SR30·0436

OIT --- EDITWORK, EDX002
COMNAND INPUT "'''=>

S8(270)--------------- BLOCK -- DATA RENUtlBERED
SCROLL "'==>

00110 * INSERT SINGLE LINE
00120 * INSERT
00130 * MULTIPLE
00140 * LINES
00150 *

HALF

00160 *
00170 ATTNLIST (END,OUT,$PF,STATIC)
00180 START ENQT IOCB1
00190 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
00200 PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2
00210 PRINTEXT 'THE PROGRAM'
00220 PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2
00230 PRINTEXT 'BRING UP THE ENTRY SCREEN'
00240 DEQT
00250 CHECK WAIT ATTNECB,RESET
00260 IF (ATTNECB,EQ,l),GOTO,ENDIT
00270 ENTRY ENQT IOBC2
00280 ERASE MODE=SCREEN,TYPE=ALL
00290 TERMCTRL BLANK
00300 PRINTEXT 'ENTER KEY = PAGE COMPLETE',LINE=l
00310 PRINTEXT' PF1 = DELETE ENTRY I'
00320 PRINTEXT' PF2 = DELETE ENTRY 2'

Figure 14·90. $FSEDIT (30)

The MOVE and MOVE BLOCK commands removed statements from
one part of the work data set and placed them in another. The COPY
(C) and COpy BLOCK (CC) line commands reproduce an exact copy
of the designated statement(s) at another location in the data set with
out disturbing the original. In Figure 14-91, statement number 110 is
to be copied after statement 40.

IT --- EDITWORK, EOX002
INPUT =-==>

BB(270)---------------------- COLUMNS 001 072
SCROLL ,,==>

HALF
***** ***** TOP OF DATA **
00010 XMPLSTAT PROGRAM START
00020 IOCB1 IOCB NHIST=O
00030 IOCB2 IOCB SCREEN=STATIC

-@p0040 *
00050 *
00060 * MERGE DATA
00070 * MERGE DATA
00080 * MERGE DATA
00090 * MERGE DATA
00100 * MERGE DATA

@0110 * INSERT SINGLE LINE
00120 * INSERT
00130 * MULTIPLE
00140 * LINES
00150 *
00160 *
00170 ATTNLIST (END,OUT,$PF,STATIC)
00180 START ENQT IOCB1
00190 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
00200 PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END",SKIP=2
00210 PRINTEXT 'THE PROGRAM'

Figure 14·91. $FSEDIT (31)

In Figure 14-92, the operation is complete (ENTER key has been
pressed).

c

c

o

o

o

EDIT --- EDITWORK, EDX002 89(270)------------------------ DATA REr@>1BERED
CO~lMAND INPUT ===> SCROLL ==~.> HALF

00040 *
00050 *
00060 *
00070 *
00080 *
00090 *
00100 *
00110 *
00120 *
00130 *
00140 *
00150 *
00160 *

INSERT SINGLE LINE

MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
INSERT SINGLE LINE
INSERT

MUL TIPLE
LINES

00170 * * * * * de *
00180 ATTNLIST (END,OUT,$PF,STATIC)
00190 START ENOT IOCB1
00200 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
00210 PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2
00220 PRINTEXT 'THE PROGRAM'
00230 PEINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2
00240 PRINTEXT 'BRING UP THE ENTRY SCREEN'
00250 DEOT

Figure 14·92. $FSEDIT (32)

In Figures 14-93 and 14-94, the same operation is performed with the
COPY BLOCK (CC) line command, copying statements 130 through
150.

EDIT --- EDmWRK, EDX002 89{ 270)----------------------~ DATI~ RENW~W}:ED

C~'(J'lMtP*Ir~r4..T *==.t>;' * ~C~0t...L *='';~ * *
I8l 00050 * INSERT SINGLE LINE

00060 *
00070 *
00080 *
00090 *
00100 *
00110 *
00120 *

fCb0130 *
00140 *

[gJ0150 *
00160 *

MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
INSERT SINGLE LINE
INSERT

MUL TIPLE
LINES

00170 *
00180 ATTNLIST (END,OUT,$PF,STATIC)
00190 START ENOT IOCB1

Figure 14·93. $FSEDIT (33)

Utility Programs 14·71

14-72 SR30-0436

EDIT --- [DITWORK. EDX002
CO~lr~MlD r NPUT ="'->

00050 *
00060 *
00070 *
00080 *
00090 *
00100 *
00110 *
00120 *
00130 *
00140 *
00150 *
00160 *
00170 *
00180 *
00190 *

INSERT SINGLE LINE
INSERT

MUL TIPLE
LINES

MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
INSERT SINGLE LINE
INSERT

MUL TIPLE
LINES

92(270)--------------- BLOCK -- DATA RENUMBERED
SC!~OLL ="'''>HALF

00200 *
00210 ATTNLIST (END,OUT,$PF,STATIC)
00220 START ENQT IOCB1
00230 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
00240 PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2
00250 PRINTEXT 'THE PROGRAM'
00260 PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO' ,SKIP=2

Figure 14-94. $FSEDIT (34)

When the INSERT LINE(I) and INSERT BLOCK (II) line commands
were discussed (Figures 14-80 through 14-85), the I command resulted
in the display of a blank insert line. This insert line is actually an insert
mask, initialized to blanks. The insert mask may be displayed using the
MASK line command. In Figure 14-95, the MASK command is typed
in over the first four digits of the sequence number of statement 40.
It does not matter what statement's sequence number is overtyped;
the data on that line is not destroyed.

EDIT --- EDITWORK, EDXOO? _ 92(270)-------------------- COLUMNS 001 072
CQr/:1>lAND HlPUT"''''''> SCROL L -===> HALF

***** ***** TOP OF DATA **
00010 XMPLSTAT PROGRAM START
00020 IOCBl IOCB NHIST=O
00030 IOCB2 IOCB SCREEN=STATIC
~***********************************
00050 * INSERT SINGLE LINE
00060 * INSERT
00070 * MULTIPLE
00080 * LINES
00090 *
00100 *
00110 *
00120 *
00130 *
00140 *
00150 *
00160 *
00170 *
00180 *
00190 *

MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
INSERT SINGLE LINE
INSERT

MUL TIPLE
LINES

00200 * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * *
00210 ATTNLIST (END,OUT,$PF,STATIS),

Figure 14-95. $FSEDIT (35)

c

o

o

o

When the ENTE R key is pressed, the insert mask is displayed. As you
can see in Figure 14-96, the insert mask is the line of blanks that was
inserted every time you entered the I command.

EDIT --- EDITWORK, EDX002 92(270)---------------------- COLUMNS 001 072
COMNAND INPUT ===> SCROLL "'---> HALF

***** ***** TOP OF DATA **
00010 XMPLSTAT PROGRAM START
00020 IOCB1 10CB NHIST=O
00030 IOCB2 10CB SCREEN=STATIC
00040 *
MASK
00050 * INSERT SINGLE LINE
00060 * INSERT
00070 * MULTIPLE
00080 * LINES
00090 *
00100 *
00110 *
00120 *
00130 *
00140 *
00150 *
00160 *
00170 *
00180 *
00190 *

MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
INSERT SINGLE LINE
INSERT

MUL TIPLE
LINES

00200 *

Figure 14-96. $FSEDIT (36)

(Notice that statement 40, whose sequence number was used for the
MASK command input field, is intact.)

You can redefine the insert mask to be any character string you wish.
In Figure 14-97, the mask has asterisks entered in the leading and
ending character positions.

EDIT --- EOITWORK, EDX002 92(270)---------------------- COLUMNS 001 072
COMMAND INPUT ""=> SCROLL ,~""> HALF

***** ***** TOP OF DATA **
00010 XMPLSTAT PROGRAM START
00020 IOCB1 10CB NHIST=O
00030 IOCB2 IOCB SCREEN=STATIC
00040 *
MASK 1**********1 1**********1
00050 * INSERT SINGLE LINE
00060 * INSERT
00070 * MULTIPLE
00080 * LINES
00090 *
00100 *
00110 *
00120 *
00130 *
00140 *
00150 *
00160 *
00170 *
00180 *
00190 *

MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
INSERT SINGLE LINE
INSERT

MUL TIPLE
LINES·

00200 *

Figure 14-97. $FSEDIT (37)

Utility Programs 14-73

14-74 SR30-0436·

To get out of this insert mask display/definition mode, move the cursor
to the primary command input area on the second line of the screen,
type in the primary command RESET, and press ENTER.

The RESET primary command is also used to reset undesired but
already entered line commands, and to reset error conditions resulting
from improper use of line commands.

Now that the insert mask display has been RESET, a Line Insert com
mand is entered (Figure 14-98).

EDIT --- EDITWORK, EDX002 92(270)---------------------- COLUMNS 001 072
COMf4AND INPUT = .. ~"'> SCROLL ==<> HALF

***** ***** TOP OF DATA **
00010 XMPLSTAT PROGRAM START
00020 IOCB1 IOCB NHIST=O
00030 IOCB2 IOCB SCREEN=STATIC
00040 *
00050 * INSERT SINGLE LINE
00060 * INSERT
00070 * MULTIPLE
00080 * LINES

ill 00090 *
OOlDO *
00110 *
00120 *
00130 *
00140 *
00150 *
00160 *
00170 *
00180 *
00190 *

MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
INSERT SINGLE LINE
INSERT

MUL TIPLE
LINES

00200 *
00210 ATTNLIST (END,OUT,$PF,STATIC)

Figure 14-98. $FSEDIT (38)

When the insert line appears, the line contains the redefined mask
characters (Figure 14-99).

c

c

c

o

C)

o

EDIT --- EoITWORK, EoX002
COM~WJl) INPUT ===>

92(270)---------------------- COLUMNS 001 072
SCHOLL =::'<'HALF

***** ***** TOP OF DATA **
00010 XMPLSTAT PROGRAM START
00020 IOCB1 IOCB NHIST=O
00030 IOCB2 IOCB SCREEN=STATIC
00040 *
00050 * INSERT SINGLE LINE
00060 * INSERT
00070 * MULTIPLE
00080 * LINES
00090 *

********** **********
00100 *
00120 *
00130 *
00140 *
00150 *
00160 *
00170 *
00180 *
00190 *

MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
INSERT SINGLE LINE
INSERT

MUL TIPLE
LINES

00200 *

Figure 14-99. $FSEDIT (39)

Each time another insert line appears, the mask characters are displayed.
You can enter data on top of them if desired, or in the blank areas
between them, as in Figure 14-100.

EDIT --- EDIIWORK, EDX002
COMMAND INPUT ===> .

95(270)---------------------- COLUMNS 001 072
. SCROLL =,,=> HALF

***** ***** TOP OF DATA **
00010 XMPLSTAT PROGRAM START
00020 IOCB1 IOCB NHIST=O
00030 IOCB2 IOCB SCREEN=STATIC
00040 *
00050 * INSERT SINGLE LINE
00060 * INSERT
00070 * MULTIPLE
00080 * LINES
00090 *
00091 ********** WITH THE INSERT MASK DEFINED, EACH TIME AN **********
00092 ********** INSERT LINE IS DISPLAYED, THE MASK CHARACTERS **********
00093 ********** ARE DISPLAYED ON THE SAME LINE. **********

00100 *
00110 *
00120 *
00130 *
00140 *
00150 *
00160 *
00170 *
00180 *

MERGE DATA
MERGE DATA
MERGE DATA
MERGE DATA
MERGE
INSERT SINGLE LINE
INSERT

MUL TIPLE
LINES

Figure 14·100. $FSEDIT (40)

The DELETE Line (D) and DELETE Block (DD) line commands
remove statement(s) from the work data set. In Figure 14-101, the
D command is entered to the left of line 50.

Util ity Programs 14-75

14-76 SR30-0436

ED[T --- [OITWORK, EDX002
COMMAND INPUT ===>

95(270)---------------------- COLUMNS 001 072
SCROLl .. · ·'~">I_IALF

***** ***** TOP OF DATA **
00010 XMPLSTAT PROGRAM START
00020 IOCB1 10CB NHIST=O
00030 IOCB2 10CB SCREEN=STATIC
00040 * mJ 00050 * INSERT S INGLE LINE
00060 * INSERT
00070 * MULTIPLE
00080 * LINES
00090 *
00091 ********** WITH THE INSERT MASK DEFINED, EACH TIME AN **********
00092 ********** INSERT LINE IS DISPLAYED, THE MASK CHARACTERS **********
00093 ********** ARE DISPLAYED ON THE SAME LINE. **********
00100 * MERGE DATA
00110 * MERGE DATA
00120 * MERGE DATA
00130 * MERGE DATA
00140 * MERGE DATA
00150 * INSERT SINGLE LINE·
00160 * INSERT
00170 * MULTIPLE
00180 * LINES

Figure 14-101. $FSEDIT (41)

After the ENTER key is pressed, the screen in Figure 14-102 appears
with line 50 deleted.

EDIT --- EDITWORK, EDX002 94(270)---------------------- COLUMNS 001 072
CO~l~lAND INPUT ===> SCROLL ===)j-fALF
***** ***** TOP OF DATA **
00010 XMPLSTAT PROGRAM START
00020 IOCB1 IOCB NHIST=O
00030 IOCB2 IOCB SCREEN=STATIC
00040 *
00060 * INSERT
00070 * MULTIPLE
00080 * LINES
00090 *
00091 ********** WITH THE INSERT MASK DEFINED, EACH TIME AN **********
00092 **********. INSERT.LINE IS DISPLAYED, THE MASK CHARACTERS **********
00093 ********** ARE DISPLAYED ON THE SAME LINE. **********
00100 * MERGE DATA
00110 * MERGE DATA
00120 * MERGE DATA
00130 * MERGE DATA
00140 * MERGE DATA
00150 * INSERT SINGLE LINE
00160 * INSERT
00170 * MULTIPLE
00180 * LINES
00190 *

Figure 14-102. $FSEDIT (42)

In Figure 14-103, the first statement of a block delete is defined with
the DD command.

o

o

o

EDIT --- EDITWORK, EDX002
CONI-1Atm INPUT ===>

94(270)---------------------- COLUMNS 001 072
SCROll ===> HALF

***** ***** TOP OF DATA **
00010 XMPLSTAT PROGRAM START
00020 IOCB1 IOCB NHIST=O
00030 IOCB2 IOCB SCREEN=STATIC

1IlIiD0040 *
00060 * INSERT
00070 * MULTI PLE
00080 * LINES
00090 *
00091 ********** WITH THE INSERT MASK DEFINED, EACH TIME AN **********
00092 ********** INSERT LINE IS DISPLAYED, THE MASK CHARACTERS **********
00093 ********** ARE DISPLAYED ON THE SAME LINE. **********
00100 * MERGE DATA
00110 * MERGE DATA
00120 * MERGE DATA
00130 * MERGE DATA
00140 * MERGE DATA
00150 * INSERT SINGLE LINE
00160 * INSERT
00170 * MULTIPLE
00180 * LINES
00198 *

Figure 14·103. $FSEDIT (43)

The ending statement to be deleted is not displayed on this screen, so
PF3 is pressed, scrolling down a half-page, to the screen displayed in
Figure 14-104.

EDIT --- EDITWORK, EDX002 94(270)--------------- BLOCK COMMAND INCOMPLETE
com-lAND INPUT ===> SCHOLL ===> HALF

00093 ********** ARE DISPLAYED ON THE SAt~E LINE. **********
00100 * MERGE DATA
00110 * MERGE DATA
00120 * MERGE DATA
00130 * MERGE DATA
00140 * MERGE DATA
00150 * INSERT SINGLE LINE
00160 * INSERT
00170 * MULTIPLE
00180 * LINES
00190 *

~0200 *
00210 ATTNLIST (END,OUT,$PF,STATIC)
00220 START ENQT IOCB1
00230 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
00240 PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2
00250 PRINTEXT 'THE PROGRAM'
00260 PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2
00270 PRINTEXT 'BRING UP THE ENTRY SCREEN'
00280 DEQT
00290 CHECK WAIT ATTNECB,RESET
00300 IF (ATTNECB,EQ,l),GOTO,ENDIT

Figure 14·104. $FSEDIT (44)

(The scope of the C, CC, M, MM, 0, and DO line commands extends
from the beginning to the end of the data in the work area, not just the
data on the current screen.)

The end of the Delete Block is entered at statement 200 (Figure 14-104).

Utility Programs 14· 77

Option 8

14-78 SR30-0436

After the command is entered, the screen in Figure 14-105 is displayed.
All statements merged, inserted, cOPiehd or move~ ~Urihng the course ~f C'
this exercise have been deleted, and t e data set IS In t e same state It
was in when it was first read from SOURCE.

EDIT --- EDITWORK, EDX002
COMMMm INPUT ===>

75(270)---------------------- COLlJ~lNS 001 072
SCROLL ---> HALF

00210 ATTNLIST (END,OUT,$PF,STATIC) ---
00220 START ENQT IDCBl
00230 PRINTEXT
00240 PRINTEXT
00250 PRINTEXT

'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2
, THE PROGRAM'

00260 PRINTEXT
00270 PRINTEXT

'HIT ANY PROGRAM FUNCTION KEY TO' ,SKIP=2
, BRING UP THE ENTRY SCREEN'

00280 DEQT
00290 CHECK WAIT ATTNECB,RESET
00300 IF (ATTNECB,EQ,I),GOTO,ENDIT
00310 ENTRY ENQT IOCB2
00320 ERASE MODE=SCREEN,TYPE=ALL
00330 TERMCTRL BLANK
00340 PRINTEXT 'ENTER KEY = PAGE COMPLETE',LINE=1
00350 PRINTEXT' PFI = DELETE ENTRY I'
00360 PRINTEXT' PF2 = DELETE ENTRY 2'
00370 PRINTEXT 'PF3 = DELETE ENTRY 3 , ,SKIP=1
00380 PRINTEXT 'PF4 = DELETE ENTRY 4'
00390 PRINTEXT DASHES,PROTECT=YES,LINE=3
00400 PRINTEXT 'CLASS NAME: ',LINE=4,PROTECT=YES,SPACES=32
00410 PRINTEXT 'INSTRUCTOR NAME:',LINE=4,PROTECT=YES,SPACES=32
00420 HDR PRINTEXT DASHES,PROTECT=YES,LINE=5

Figure 14-105. $FSEDIT (45)

The MENU primary command is entered in the command input field, .
and ENTE R pressed.

EDIT --- EDITWORK, r,.D.mO.2
COM~lAND INPUT ===> It[llilJ

00210 ATTNLIST
00220 START ENQT
00230 PRINTEXT
00240 PRINTEXT
00250 PRINTEXT
00260 PRINTEXT
00270 PRINTEXT
00280 DEQT

75(270)---------------------- COLUMNS_~~l nl~F
(END,OUT,$PF,STATIC) SCROLL --->
IDCBl
'CLASS ROSTER PROGRAM' ,SPACES=15,LINE=1
'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2
, THE PROGRAM'
'HIT ANY PROGRAM FUNCTION KEY TO' ,SKIP=2
, BRING UP THE ENTRY SCREEN'

00290 CHECK WAIT ATTNECB,RESET
00300 IF (ATTNECB,EQ,I),GOTO,ENDIT
00310 ENTRY ENQT IOCB2
00320 ERASE MODE=SCREEN,TYPE~ALL
00330 TERMCTRL BLANK
00340 PRINTEXT 'ENTER KEY = PAGE COMPLETE',LINE=1
00350 PRINTEXT' PFI = DELETE ENTRY I'
00360 PRINTEXT' PF2 = DELETE ENTRY 2'
00370 PRINTEXT 'PF3 = DELETE ENTRY 3 , ,SKIP=1
00380 PRINTEXT 'PF4 = DELETE ENTRY 4'
00390 PRINTEXT DASHES,PROTECT=YES,LINE=3
00400 . PRINTEXT 'CLASS NAME:',LINE=4,PROTECT=YES
00410 PRINTEXT 'INSTRUCTOR NAME:',LINE=4,PROTECT=YES,SPACES=32
00420 HDR PRINTEXT DASHES,PROTECT=YES,LINE=5

Figure 14-106. $FSEDIT (46)

The only Primary Option remaining to be discussed is option 8.

c

c

o

C)

o

-SELECT-OPTioN-:::;-~-
$FSEDIT PRIMARY OPTION MENU

1 BROWSE - DISPLAY DATASET
2 EDIT - CREATE OR CHANGE DATASET
3 READ - READ DATASET FROM HOST/NATIVE
4 WRITE - WRITE DATASET TO HOST/NATIVE
5 SUBMIT - SUBMIT BATCH JOB TO HOST SYSTEM
6 LIST - PRINT DATASET ON SYSTEM PRINTER
7 MERGE - MERGE DATA FROM A SOURCE DATASET
8 END - TERMINATE $FSEDIT
9 HELP - DISPLAY TUTORIAL

Figure 14·107. $FSEDIT (47)

$FSEDIT ENDED

Figure 14·108. $FSEDIT (48)

Utility Programs 14·79

OTHER UTILITY PROGRAMS

BSC Utilities

$BSCTRCE

$BSCUT1

$BSCUT2

14-80 SR30-0436

The following utility programs are used with system facilities not
addressed as topics in this study guide.

READING REFERENCE: ,IBM Series/l Event Driven Executive
Communications and Terminal Applicat'ions Guide (SC34-1705),
II$BSCTRCE Utility Program," "$BSCUTl Utility Program," and
"$BSCUT2 Utility Program."

This utility traces I/O on a specified BSC line, and stores the trace data
in a data set on disk or diskette. The data set must be preallocated by
the user, and the name supplied to the $BSCTRCE utility at the time
the utility is loaded. Trace information includes condition codes, status
words, data transferred, and other indicators/information associated
with BSC I/O operation.

Trace information written by$BSCTRCE is retrieved and formatted
into an easily understood report by $BSCUT1, and then directed to a
specified terminal or print device.

This utility is a BSC exerciser, used to,test the BSC hardware adapter,
and the match between the actual hardware configuration and what
has been specified in the BSC LI N E system configuration statement.
Several BSC access method commands may be invoked to exercise
various hardware/system software combinations.

c~

c

c

o
DISPLAY PROCESSOR (GRAPHICS) UTILITIES

$DIUTIL

$DICOMP

READING REFERENCE: IBM Series/1 Event Driven Executive
Operator's Reference, Messages and Codes (SC34-1703), IIGraphics
Utilities."

The Display Processor facility allows the user to generate, store, and
display information in graphic or report format. The information is
contained in a data base created expressly for, and util izing, data
organization and data formatting conventions unique to the Display
Processor. Display Processor support consists of three utility programs,
which are used to create/maintain the data base, create or alter data
members, or display a graphic or report data member.

This utility provides all data base maintenance functions for the Display
Processor data base, including initialization, member deletion/allocation,
data base compression, and member/data base copy.

A member within the Display Processor data base is called a display
profile. This utility allows the operator to compose a display profile, or
to alter (maintain) existing display profiles.

o $DIINTR

o

A completed display profile (data base member) is made up of coded
information representing an image or report. The $DIINTR utility
retrieves a specified display profile, interprets the coded commands/
data it contains, and displays the resulting image.

Note: Terminals used as graphics devices must have ASCII point-to
point vector graphics capability.

HOST PROGRAM PREPARATION UTILITIES

READING REFERENCE: IBM Series/1 Event Driven Executive
Communications and Terminal Appl ications Guide (SC34-1705),
"$HCFUT1 Utility Program."

Utility Programs 14-81

$HCFUT1

$EDIT1/$UPDATEH

$RJE2780/$RJE3780

14·82 SR30·0436

When program preparation is performed on a host System/370, the Host ~.
Communications Facility I UP (5796-PG H) must be installed on the '--... ./'
host system. On the Series/1 side the $HCFUT1 utility program is used.

$HCFUT1 is the basic Event Driven Executive utility program used to
transfer data sets associated with program preparation between the
Series/1 and a host system. The four functions available are;

1. READ a source/object data set from a host into a Series/1 data set

2. WR ITE a Series/1 source/object data set to a host data set

3. SUBM IT a program preparation job to the host job stream

4. SET/FETCH/RELEASE a record in the host System Status data
set

These are the host preparation equivalents of the native preparation
text editing and object module formatting utilities $EDIT1 Nand
$UPDATE. They differ from the native versions only in the commands
used to store and retrieve source and object module data sets. For the
native versions, any operation involving a data set transfer (READ/
SAVE/RP) requires that both the from and to data sets be resident on
the Series/1. With the "host prep" versions, both will be resident on
the host.

$EDIT1 and $UPDATEH invoke the READ and WRITE (also SUBMIT
for $EDIT1) functions of $HCFUT1 without the operator's having to
load $HCFUT1 explicitly. If the operator does load $HCFUT1 and uses
it for the necessary data set transfers, then the editing/formatting
opnrations would be done with $EDIT1N and $UPDATE.

Note: $FSEDIT, the full screen text edit utility, includes host prep data
set transfer functions in its normal command menu; no separate
version for host program preparation is required.

READING REFERENCE: IBM Series/1 Event Driven Executive
Communications and Terminal Application Guide (SC34-1705),
"$RJE2780 and $RJE3780 Utility Programs" and IJ$PRT2780 and
$PRT3780 Utility Programs."

c

These utilities provide an alternative method of transferring data sets
between a Series/1 and a host program preparation system. The
$RJE2780 and $RJE3780 simulate the IBM 2780 and IBM 3780
Remote Job Entry stations. Using the Series/1 BSC capability,
$RJE2780 and $RJE3780 interface to System/360 or System/370
systems with the Remote Job Entry facility installed (5796-PG H not
required). C

$PRT2780/$PRT3780

o
$DEBUG

o

These utilities print the RJE printer output spool files created when
$RJE2780/$RJE3780 is used with the spooling option invoked.

READING REFERENCE: IBM Series/1 Event Driven Executive
Operator's Reference, Messages and Codes (SC34-1703), "$DE BUG
Utility Program."

$DEBUG is the Event Driven Executive online debugging utility.
$DEBUG may be used to debug any program instructions that execute
as a task, including instructions written in Series/1 assembler language.
$DEBUG capabilities include setting/resetting of breakpoints and trace
ranges; display and modification of storage locations; Series/1 hardware
registers, and task software registers; and alteration of task execution
sequence.

Utility Programs 14·83

This page intentionally left blank.

c
14-84 SR30-0436

o

OBJECTIVES:

Section 15. System Installation

After completing this section, the student should be able to generate a
tailored supervisor for a given sample configuration, using the pro
grams/utilities provided in the Event Driven Executive Program Prepara
tion F aci I ity .

MACHINE READABLE MATERIAL

The Event Driven Executive software offering for the Series/l is com
prised of five separately orderable programs:

1. 5719-XS3 Event Driven Executive Basic Supervisor and Emulator

2. 5719-UT5 Event Driven Executive Utility Programs

3. 5719-XX4 Event Driven Executive Program Preparation Faci lity

4. 5719-LM7 Event Driven Executive Macro Library

5. 5740-LM4 Event Driven Executive Macro Library/Host

5719-XS3 Basic Supervisor and Emulator

Diskette XS3001 contains the supplied starter supervisor and the neces
sary utilities to install the product.

Diskette XS3002 contains supervisor object modules used during the
system generation process.

Diskette XS3003 contains object modules that support various system
functions.

5719-UT5 System Utility Programs

Diskettes UT5001-2 contain the link editor, the utility programs and
session manager programs.

5719-XX4 Program Preparation Facility

Diskette XX4001 contains the EDX program preparation modules.

Diskette XX4002 contains copy modules (DSOPEN,SETEOD, etc.) for
inclusion in user application programs.

System' nstallation 15-1

5719-LM7 Macro Library

5719-LM7 is a library containing source macro definitions for the ('
Event Driven Executive instruction set and system configuration state- \, _/
ments. This macro library is used when assembling Event Driven
Executive programs using the Series/1 Macro Assembler, 5719-ASA.
It is not required, and cannot be used by the Event Driven language
assembler $EDXASM, as $EDXASM is not a macro assembler.

5740-LM4 Macro Library/Host

This library is distributed on tape for installation on host S/370s,
which will be used to assemble Event Driven Executive programs.
Included are source macro definitions for the Event Driven Executive
instruction set, as well as procedures/JCL prototypes to aid in host
installation.

STARTER SYSTEM INSTALLATION OVERVIEW

15-2 SR30-0436

Note: This discussion, and the "USER SYSTEM GENERATION" topic
which follows, will be limited to the Basic Supervisor and Emulator,
the Utility Programs, and the Program Preparation Facility. The Macro
Library (5719-LM7) and Macro Library/Host (5740-LM4) licensed pro
grams will not be addressed.

I nstallation is supported for:

• 4962 Model 1 or 2 (9.3MB)

• 4962 Model 1 F or 2F (9.3M B with fixed heads)

• 4962 Model 3 or 4 (13.9MB)

• 4963 Model 1 (29MB)

• 4963 Model 1 F (23M B with fixed heads)

• 4963 Model 2 (64MB)

• 4963 Model 2F (58MB with fixed heads)

An Event Driven Executive supervisor, to IPL, must reside in a data
set named $EDXNUC. As shipped from PID, diskette XS3001 con
tains the starter supervisor in a data set named $EDXNUC. The first
step in starter system inst"allation requires that an IPL of the starter
supervisor from diskette XS3001 be performed. Therefore, the Series/l
on which the starter system is being installed

MUST HAVE EITHER A

OR A

4964 Diskette Unit at hardware address
X'02'

4966 Diskette Magazine Unit at hard
ware address X'22'

wired as an IPL device (PRIMARY or ALTERNATE).

C' ___ /i

Note: If a 4966 is the IPL device, an IPL can be performed from disk- C
ette slot 1 only. ..-'

o

o

The object of starter system installation is to transfer the programs and
utilities supplied on the PI D diskettes to a disk device. Among the
programs transferred is $EDXNUC, the starter supervisor itself, so that
an I P L can be performed from disk rather than diskette. Therefore,
the Series/1 on which the starter system is being installed

MUST HAVE EITHER A

OR A

4962 (any model) installed at hardware
address X'03'

4963 (any model) installed at hardware
address X'48'

wired as an IPL device (PRIMARY or ALTERNATE). In addition, the
supplied supervisor assumes certain terminal device availability and
hardware address assignments. The Series/1 on which the starter system
is being installed

MUST HAVE EITHER A

ORA

AND MAY HAVE A

INSTALLING THE STARTER SYSTEM

TTY device at hardware address '00'

4978 or 4979 Display at hardware
address '04'

4974 Matrix Printer at hardware address
X'01'

The procedures and instructions for installing the starter system
received from PI D are contained in the Program Directory which is
shipped with the licensed program diskettes. As new versions or
modification levels of the system are released, details of the installation
process may change. This discussion is therefore limited to the major
steps i nvo Ived.

Step 1: IPL the Starter Supervisor from XS3001. When the starter
supervisor is first loaded (I P L) and goes into execution, it searches for a
4963 Disk at hardware address x'48'. If there is no 4963 Disk the
supervisor searches for a 4962 Disk at address x'03'. If found, it reads
the device I D (which contains information about the device) and alters
the device data block (DDB) for the associated disk.

Step 2: Initialize Logical Volumes. Before copying any data sets, a
volume directory must be written on disk, volumes allocated and direc
tories created. Review the example in the $IN ITDSK portion of the
Utilities Section of this document. See the Program Directory for
recommended volume and directory sizes.

Step 3: Copy Starter Supervisor, Utility Programs and System Support
Modules. The utility program $COPYUT 1 is now used to copy the
Starter Supervisor $EDXNUC on XS3001 to $EDXNUC on EDX002.
Some of the system utility programs are also copied to EDX002. The
system support modu les are copied from diskette XS3003 to volume
ASMUB on disk.

System Installation 15-3

15-4 SR30·0436

Step 4: IPL Starter System from Disk and Cbmpletelnstallation. The
IPL SOURCE switch can now be set to, IPL from disk, and the starter

'. system again loaded, this time from the disk IPL volume.

EDX002. $COPYUT1 is again loaded, this time from EDX002 to
which it was copied in the previous step. $COPYUT1 is used to copy
the remaining system programs on the PI D diskettes tothe various
libraries on disk.

Source Target
Diskette Volume Description

UT5001-2 EDX002 , Remaining utilities and Session
Manager modu les

XX4001 ASM~IB Program Preparation modules

XX4002 ASMUB, Copy Code Modu les

The Starter Supervisor as suppl,ied by IBM supports the following:

64 KB Storage

4962 Disk at address 03

or

4963 Disk at address 48

4964 Diskette Unit at address 02

4962 Diskette Magazine at address 22

4978 or 4979 Display at address04

TTY Device at address 0

3101 Model 2X in block mode

at address 08 via asynchronous communications single line
adapter

afaddress 60'via asynchronous communications multiline
adapter' '

at address 68 via programmable communication adapter

The Starter Supervisor does not support:

Timers

Sensor I/O

Communications

I nteractive Debug

Magnetic Tape

Series/1 to Series/1

General Purpose Interface Bus (GPI B)

Spooling

Floating Point Arithmetic

Users who have different requirements from those provided by the
Starter Supervisor mustgenerate a tailored system that will satisfy
their needs.

c

c

C)

o

USER SYSTEM GENERATION

SYSGEN OVERVIEW

Allocate Required Data Sets .

READING ASSIGNMENT: IBM Serie's/1 Event Driven Executive
System Guide (SC34-1702) "System Generation." (ALL)

Creating a supervisor tailored to a specific user configuration consists of
the following tasks:

1. Creating a set of system configuration statements reflecting the
configuration of the system that the supervisor being generated is
to run on.

2. Selecting the supervisor object modules that are required to support
the desired I/O devices and system features.

3. Assembling the system configuration statements created in Step 1,
above.

4. Link editing the object module produced by the assembly in Step
3 with the supervisor object modules selected in Step 2 to produce
a tailored supervisor.

In order to demonstrate how these tasks may be accomplished, the
remainder of this section will go through each step of an actual system
generation.

After completion of starter system installation, the system programs are
installed, but no user-allocated data sets have yet been defined. The
system generation process requires the use of several system utility/pro
gram preparation programs that require data sets for use as work areas
or input/output files. These data sets must be allocated by the user
before SYSGEN can proceed. Data set allocation is done with the
$DISKUT1 utility program.

System Installation 15-5

".

15-6 SR30-0436

>I$L $DISKUT11
$DISKUT1 37P, LP= 5700

USING VOLUME EDX002

COMMAND (?): IAL EDITWORK 200 DI~--------D
EDITWORK CREATED

COMMAND (?): IAL ASMOBJ 250 D~D
ASMOBJ CREATED

COMMAND (?): I AL ASMWORK 250 I
ASMWORK CREATED

COMMAND (?): IALSUPVLINK 60001- II
SUPVLINK CREATED

COMMAND (?): IAL LEWORK1 40.0 DI~.. . D
LEWORK1 CREATED

COMMAND (?): IAL LEWORK2 150 01
LEWORK2 CREATED

COMMAND (?): IENDI

$DISKUT1 ENDED

Figure 15-1. Allocate data sets

c

o

o

D EDITWORK is the name of a work file that wi'li be required by
$EDIT1 N or $FSEDIT text editing utilities.

II These data sets are used by the assembler program $EDXASM.
ASMOBJ is the data set in which the object module output of the
assembler will be stored, and ASMWORK is an assembler work
file. Note: In the Program Directory, it is suggested that you
assemble the sample program CALCSRC to verify starter system
installation. If you performed that step, ASMWO R K and
ASMOBJ have already been allocated, and need not be allocated
here.

D SUPVLlNK is the data set where the link editor, $LINK, will store
the linked object module output from the supervisor link edit.

II LEWORK1 and LEWORK2 are $LlNK work data sets.

EDIT SYSTEM CONFIGURATION STATEMENTS

$IOTEST

Before proceeding, you must know the configuration of the system you
intend to run the supervisor on, and what features you want to support.
You can generate a supervisor for a system other than the one used for
SYSG EN, but for this discussion, assume the tailored supervisor being
built is for the system you are now running on.

One of the operands you must specify in all of the system configuration
statements defining 1/0 devices is the device hardware address. The
system utility program $IOTEST can be used to find out which devices
are installed on your system and what their addresses are (Figure 15-2).

System I nstallation ~ 5-7

15·8 SR30·0436

>I$L $IOTESTI
$IOTEST 32P, LP= 8FOO

COMMAND (?): LD

ACTUAL SERIES/1 HARDWARE CONFIGURATION

ADDRESS DEVICE TYPE

00 = TELETYPEWRITER ADAPTER
01 = 4974 PRINTER
02 = 4964 DISKETTE UNIT
03 = 4962 DISK MDL3
04 = 4979 DISPLAY STATION
06 = 4978 DISPLAY STATION
08 = SINGLE LINE ACCA
21 = 4973 PRINTER
40 = TIMER FEATURE
41 = TIMER FEATURE

Figure 15·2. $IOTEST LD

In Figure 15-3 below, the LS command is used to list the hardware
devices supported by the starter supervisor under which $IOTEST is
running.

COMMAND (?): DJD
HARDWARE DEVICES SUPPORTED BY THIS SUPERVISOR

ADDRESS DEVICE TYPE

00 = TELETYPEWRITER ADAPTER
01 = 4973 PRINTER
02 = 4964 DISKETTE UNIT
03 = 4962 DISK MDL3
04 = 4978 DISPLAY STATION
08 = SINGLE LINE ACCA MODE 3101B
22 = 4966 DISKETTE MAGAZINE UNIT
60 = FOUR LINE ACCA MODE 3101B
68 = FOUR LINE ACCA MODE 3101B

COMMAND (?): IENDI

Figure 15·3. $IOTEST LS

c

c

c

c)

o

o

By comparing Figures 15-2 and 15-3, you can see that the starter
supervisor does not support the 4978 Display at address 06, the 4973
printer at address 21 or the timers at address 40 and 41.

After the tai lored system generation is complete and the new supervisor
is loaded, the LS command of $IOTEST should result in a printout of
supervisor-supported devices and address assignments, which matches
the LD command output shown in Figure 15-2.

Now you are ready to bui Id a system configuration statement source
file that reflects the I/O and system features you wish to support. This
file can be created using either $EDIT1 N or $FSEDIT.

During the installation procedure, a data set reflecting the configuration
statements used in generation the starter supervisor was copied to disk.
The data set is $EDXDEF on volume ASMLlB. If you load the Text
Editor, read the data set and list it, the contents would be as shown in
Figure 15-4.

00010 $EDXDEF CSECT
OJ020 DATA F'O'
OuO 30 ;':
00040 * fVENT DRIVEN EXECUTIVE - V~~SION 3, MODIFICATION LEVEL 0
00050 t.=

00060 * THE FbLLOwI~G DEFINES THE STARTEQ SUPERVISOR AS SHIPPED ON THE
00010 * DISKETTE LABELE0 XSJOOI. F~R CO~PLETE DESCRIPTIONS OF THESE
OOO~O * STATE~ENTS OR A~Y OTHER SYSTEM OEFJ~ITION STATEMENTS, ~EFER TO
00090 * THF EOX VERSIUN 3 SYSTE~ GUIDE: SC34-1702
00100 :::
00110 5YSTE'", STORAGE=64,,~AXPKOG=10,PAqTS=32

DG120 DISK OEVICe=4963-23,AOORESS=48
00130 DI5~ DEVICE=4964,AODRESS=02
00140 DISK OEVICE=4966,ADGRESS=22,END=YES
00150 $SYSLOG TER~1INAL DEVICE=491B,ADDRESS=04,HDCOPY=$SYSPRTR
00160 $SYSLOGA TER~INAL OEVICE=TTY,ADDRESS=OO,CROELAY=4,PAGSIZE=24,
00170 ~aT~=23,SC~EE~=YES

00180 SSYSLOG3 TERMINAL DfVICE=ACCA,ADOREss=oa,~JDF=3101~,A0APTER=SINGLE,
00190 BITRATE=1200,RANGE=HIGH
OU200 $SYSLOGC TER~INAL DEVICE=ACCA,ADDRESS=60,~OO~=31013,AOAPTER=FOUR,
00210 :~lTRATt=1200,RANGE=HIGH
00220 $5YSLOGD TERMINAL OEVICE=ACCA,ADORESS=6~,~ODE=11019,COOTYPE=ASCII.
00230 ATTN=1368,ADAPTER=FOUR,LF=OA,CR=00,PF1=lU61,
OU2~0 3ITRAT~=1200,RANGE=HIGH
00250 $~Y5PRTR TER~INAL DEVICE=4914,AOORESS=Ol,END;YES
00260 $SYSCeM CSECT
0,)270 -Jed
00idO QC3
00290 EC~

00300 ECd
00310 ~NTRY $EOXPTC~

00320 $EOXPTCH DATA 12AF'O' SYSTE~ PATCH AR~A

DO 330 ENU

Figure 15-4. Contents of $EDXDEF

C

C

C

C
C

System Installation 15-9

SYSTEM Statement

15-10 SR30-0436

The configuration statements shown match the hardware devices listed
in Figure 15-3. You must edit this file to reflect your requirements
(Figure 15-2). The 4963 DISK statement and $SYSLOG TERMINAL
statement must be modified. The 4966 DISK statement, the
$SYSLOGC and $SYSLOGD TERMINAL statements for the 4978 at
address 06 and a TIMER statement must be added to complete the new
correct configuration. The configuration statements are now discussed
in more detail.

The SYSTEM statement (statement 110 in Figure 15-4) defines a 64K
system (STORAGE=64), with a maximum of 10 programs executing
concurrently (MAXPROG=10). Now, assume that the system this
supervisor is being generated for has 128K of storage.

When a system has storage greater than 64K, multiple partitions must
be defined, because of the way the software utilizes the hardware
feature that addresses storage above 64K. Each partition defined is a
separate relocatable program area, just as the space between the end
of the supervisor and the end of storage is a relocatable area in systems
with 64K or'less.

The STORAGE= operand in the SYSTEM statement must be changed
to STORAGE=128. Up to 8 partitions may be defined, and for this
example, assume that 3 partitions are desired. The MAXPROG= oper
and will now be changed to MAXPROG=(10,10,10), with each sublist

. element in the operand list corresponding to the maximum number
of programs allowed to execute in partition 1, partition 2, and parti-
tion 3, respectively. 10 programs in concurrent execution in anyone
partition is enough to exceed most application requirements, but this
can be coded to meet your own application needs. (Note: All partitions
do not have to have the same MAXPROG= value; MAXPROG=(6,3, 10),
for example, is valid.)

When using multiple partitions, a third operand, PARTS= must be coded.
PARTS= is used to' specify the size of each partition. Partitions can be
up to 64K in size with the exception of Partition 1 which is restricted
to 64K minus the size of the supervisor.

Partitions are defined in increments of 2K blocks (2048 bytes each).
The first 64K of storage is represented by 32 such 2K blocks. If we
estimate our supervisor to be 40K, we have 88K or 44-2K blocks of
storage available for partitions. The largest size for partition one would
be 24K (64 - 40K).

Let's assume in our system we desire partitions of 16, 32, and 40K.
Using the text editor, the SYSTEM statement would be modified to

SYSTEM STORAGE=128,MAX PROG=(lO,lO,lO),PARTS=(8,16,20)

c

o TIMER Statement

DISK Statements

o

One of the devices to be supported by the new supervisor is Timers.
The starter supervisor has no TIMER statement, so one must be added
using the INSERT function of the Text Editor.

Although both timers will be supported, only one TI ME R statement is
entered. The system knows that the two timers have contiguous
addresses, so a single TIMER statement specifying the address of the
first timer is all that is required.

Note: For 4952 processors, the timer is part of the processor, not a
feature and no TI ME R system configuration statement is used.

The DISK configuration statement is used to define disk and diskette
devices to the system. The configuration file (Figure 15-7) shows
3 DISK statements (4963 Model 23,4964 Diskette and 4966 Diskette
Magazine). Based on our hardware configuration, we must change the
Disk to 4962-3 and delete the 4966 Diskette Magazine DISK statement.

To run disk/diskette devices, the system generates a system disk task
which it attaches to perform disk or diskette I/O. As with any other
task, the system disk task is not reentrant; it may only be attached by
one user at a time. When multiple direct access devices are supported,
where I/O requests to the high data rate disk could be suspended, wait
ing for the disk task to complete a request for one of the relatively
slower diskette devices.

By coding TASK=YES in the DISK statements defining the diskette
devices, a separate task is generated for each device.

After editing the configuration file, the DISK statements would be:

DISK DEVICE = 4962-3,ADDRESS=03
DISK DEVICE = 4964,ADDRESS=02,TASK=YES,END=YES

System Installation 15-11

TERMINAL Statement

00150 SSVSLOG
00160 SSVSLOGA
00110
00180 S.SYSLOGB
00190
00200 SSYSLOGC
00210
00220 $SYSLOGC
00230
00240
00250 SSYSPRTR

TERMINAL
TERMINAL

Figure 15-5 below shows a list of the TERMINAL system configura
tion statements for the supplied supervisor.

OEVICE=4919,AODRESS=04,HDCOPY=SSVSPRTR
~EVICE=TTV,AODRESS=OO~CRDELAV=~,PAGSIZE=24,

dGTM=23,SCREEN=YES
TfRMI NAL OEVICE=ACCA,AODRESS=08,MODE=3101S,AOAPTER=SINGLE,'

6IfRATE=120Q,RANGE=HIGH
TERMINAL OEVICE=ACCA,ADDRESS=60,~JDE=3101B,AOAPTER=FOUR,

~ITRATE=1200,RANGE=HIGH

C

C

" 'C

OEVICE=ACCA,ADDRESS=68,MODE=3161B,COOTYPE=ASCII~'
" ,

TERMINAL C
ATTN=lB68,AOAPTER=FDUR,lF=OA,CR=OD,PF1=lS61, C
dlfRATE=120Q,RANGE=HIGH

TER~lNAL DEVICE=4914,AODRESS=Ol,E~O=YES

Figure 15-5. Starter TERMINAL statements

15-12 SR30-0436

In a multiple partition system,terminals are assigned to partitions.
When a terminal is assigned to a partition, operator commands invoked
from that terminal are directed to the assigned partition. See the
1I0PERATOR COMMANDS" topic in "Section 14. System Utilities"
for a discussion on how terminal/partition assignments may be changed
online. For this SYSGEN, $SYSLOG (statement 150) will be assigned
to partition 1, a'nd the TTY device (statements 160 and 170) will be
assigned to partition 2. In statement 170 (the continuation of statement
160), the SCREEN= operand is coded as SCREEN=YES. This indicates
that the supplied supervisor assumes that the TTY is an electronic
display screen device.

SCREEN=YES causes a pause after every 24 lines of output, so that the
data on the screen can be read by the operator. To display the next 24
lines, the operator must press the ENTE R key.

Assume the TTY device on this system is not an electronic display
screen device, but is a hardcopy TTY with continuous forms. The
pause after every 24 lines is not required, and is in fact an annoyance,
so SCREEN=YES should be changed to SCREEN=NO.

Using the delete function of the Text Editor, the $SYSLOG and
$SYSLOGD statements can be removed from the file.

Next, the 4978 Display at address 06 and the 4973 Printer, neither of
which is supported by the supplied supervisor, are added to the
TE RMI NAL definitions. The 4978 is named DSPL Y1, and the 4973
LlNEPRTR. The names used are not predefined; you must name the
devices anything you wish.

c

C
-'"

)

o

00150 ~SYSLOG
001i1 DSPLYl
00160 SSYSlOGA
00170
OOldO $SYSLOGi3
00190
00250 LINEPRTR
00251 $SVSPRTR

After editing the configuration file, the TERMINAL statements would
be:

TERMINAL OEVICE=4979,ADDRESS=04,HQCOPV=SSVSPRTR,PART=2
TEk~INAL DEVICE=4979,ADuRESS=06,HOCOPY=$SVSPRTR,PART=3
TERMINAL OEVICE=TTV,AOORESS=OO,CRDELAY=4,PAGSIZE=24,

~OTM=23,SCREEN=VES

TEkMINAL DEVICE=ACCA,ADDRESS=08,MOOE=3101B,AOAPTER=SINGLE,
dITRATE=9600,RANGE=HIGH

TERMI~AL OEVICE=4973,AODRESS=21
TE~MINAL DEVICE=4974,ADORESS=Ol,ENO=YES

C

C

Figure 15-6. Modified TERMINAL statements

System Communications Area

The system communications area is the area known by the system
global name $SYSCOM. It is used for communication and synchroni
zation between programs. The supplied supervisor already has a 128
word area called $EDXPTCH, which can be used as part of $SYSCOM.

For this example, $SYSCOM will consist of two QCBs and two ECBs,
plus the already existing 128 word area, $EDXPTCH.

This completes the modifications to the system configuration source
file. Figure 15-7 provides a listing of the changes made for the hardware
specified earlier.

System Installation 15-13

00010 SF.DXDEF CSECT
00020 DATA F'O'
00030 *
00040 * EVENT DRIVEN EXECUTIVE- VERSION 3, MODIFICATION LEVEL 0
00050 *
OOObO *
00070 *
00080 ::=
000':10 *
O~lOO *
01) 110

THE FOLLOWI~G DEFINeS THE STARTER SUPERVISOR AS SHIPPED ON THE
DISKETTE LABELED XS3001. FOR COMPLETE DESCRIPTIONS OF THESe
STATlMENTS OR ANY OTHER SYSTEM DEFINITION STATF~E~TS, REFER TJ
THF EDX VtRSION 3 SYSTEM GUIDE: SC34-1702

00120
00130·
00140

SYSTEM STOKAGE=64,MAXPROG=10,PARTS=3Z
DI~K DEVICE=4963-23,AD~RESS=48
0ISK DEVICc=4964,ADDRESS=02
015K DEVICE=4966,ADDRESS=22,END=YF.S

OulS0 \SY5LO"; TEKMINAL OEVICE=491B,AODRESS=04,HOCOPY=$SYSPRTR
TERMINAL DEVICE=TTY,AODRESS=00,CRDELAY=4,PAGSIlE=24, 00lbO

00110
O·J 1 dO
OOl'~O

00200
OU210
00220
00230
0~240

00250
OU260
00270
01)2jO
00290
00300
OJ 310
00320
00330

$SY 5LOGA

$SYSLOGd

$SYSLOGC

$5YSLOGO

$SYSPRTR
~SYSCOM

~QTM=23,SCREEN=YES

TERMINAL D~~ICE=ACCA,AODRESS=08,~OOE=3101B,AOAPTER=SINGLE,

BITRATE=1200,RANGE=HIGH
TE~MINAL OEVICE=ACCA,AOORESS=60,MOOE=31JIB,AOAPTER=FOUR,

oITRATc=1200,RANGE=HIGH
TfRMINAL OEVICE=ACCA,ADORESS=68,MOOE=31318,COOTYPE=ASCII,

AT1N=lB68,AOAPTER=FOUR,LF=OA,CR=on,PF1=lH61,
dITRATE=120Q,RANGE=HIGH

TERMINAL DEVICE=4974.ADORESS=Jl,ENO=YES
C S tC T
QC~

~Cd
EC'~

fC~

ENTRY
~EDXPTCH DATA

END

$EDXPTCH
12dF'O' SYST~M PATCH AREA

Figure 15-7. Starter configuration

The completed,·edited file must be stored in a data set $EDXDEFS on
volume EDX002.

EDX002

ASMUS

~
$EDXDEF

Figure 15-8. Configuration file update

15-14 SR30{)436

C

C

C

C
C

c

c

o

o

SELECT SUPERVISOR SUPPORT MODULES

The next step is to choose the supervisor support object modules
required to support your configuration. These object modules are
specified in link editor I NCLUDE statements, which reside in a link
edit control statement file. ,/

As with the system configuration statements, you do not have to enter
each INCLUDE record you need. Data set $LNKCNTL on volume
ASMLlB contains all possible supervisor INCLUDE statements. You
must choose those required for your configuration. Figure 15-9 is a
listing of the $LI N KCNTL data set that shows the modules that were
included in the generation of the starter supervisor. The statements
that have an asterisk in Column 1 are understood by the link editor to
be comments rather than a control record.

00010 ~:

00020 *
00030 ;':

EVENT O~IVE~ EXECUTIVF - VF~SION 3, ~ODIFICATION L~VfL 0

00.)30
00140
00150
001bO *
00170

OUTPUT
INCLUDE
I~~CLUOE

I~CLUCF.
INCLUDE"
UK LUOt:
INCLUOr::
INCLUDE
INC LUDl:
I"JC LU Dc
INC LUDE
INCLUDE
INCLUDE
INCLUDf
II'~CLUOE

INCLuDE
INCLUC~

INCLUCE
INCLUOF
INCLUDE
Ij~CLUDE

INCLUDE
INCLUDE
INCLUDf
INCLUDE

01) 1:10 *
00190
00200
00260
00270
00280
00290
OU350 *
00410 *
00420
00430 *
00440
00450 *
00460
OC470 *
08430
00490
00300
OO~10
OuS20
00530
00540

* INCLU:::E=
* INC LUiJE:

00550 *
00560 *
OO?70 *
O~630

00640
00650 *
Ou660 *
00720 *
00780 *
007'JO *
00850 *
00860 *
00870 *

INCLUDE
INCLUDf.
I~CLUDE
INCLUDE
INCLUD~
P~CLUDE
INCLUiJE
rr~CLUDE
INCLUDE
I"CLUDE
INClUCf:
I~CLUDE

INCLUDE

5UPVLINK,::DX002
Ff) x S Y:), x $ 3002
AS~J~J,EDX002

f)X)VCX,XS3002
E:OXSVCXU,XS3002
SO RUG;,jUC. x S)Ol12

''=OXALU,XS3002
EDXSTART,XSJ002
DIS:<"IO,)t.S3C02
a49624,X<.i30u2
04963~, XS30,)2
D4966A,XS300?
O':'969A.,XS30()2
fOXTIO,XS30G2
EDXTIOU,XS3'}02
EDXTERr-"'\a"XS3002
f.~XTR~1QU, XS 3002
IOS4979,XS3002
IOS4979U,XS3002
IOS4974,XS3002
IOS4914U,XSJ002
IOSTEK~,XS3002

IUSTTY,XS30fJ2
IOSACCA,XS3002
I 0 S31") 1 , X S 3 ;) 02
IOSS1S1,XS300~
IOSGPI5,XS3002
I oj S4 C' 1 "3 , X S 3 'J 0 2
IOS2741,XS3002
IOSVIRT,X53002
TRASCII,XS3002
TRE~ASC,XS30()2

TRE3CD.XS)002
TRCRS?XS3002
ICSPOOL,XS30U2
€:OXTI...,E::<,XS3002
EDXTIMR2,XS3002
BSC A~ ,XS 3002
B 5 C A MU • X S 300 2
TPCOM,XS3002

Figure 15·9. Starter Link file (1 of 2)

E:NTt{Y=~START

00* SYSTf~ TABLES AND WOqK AR~AS

0 OUTPUr FROY USfR SYSTEM GENERATION
*O,KO TASK SUPERVISOR (XL)
~,L TASK SUPERVISOR (UN-XL)
G RESIOENT SOEBUG SUPPORT
0 EDL INSTRUCTION E~ULATOR
0 INITI~LIZATION ~ ~RROR HANDLER
M BASIC.DI5K(ETTE) SUPPJRT
*MO 4962/4964 OI5K(ETTE) SUPPORT
M 4963 SUjSYSTEM SUPP~PT
M 4966 ~AGAlI~E SUPPCRT
~ 3ASIC TAPE SUPPURT
*1,K::: BASIC TERMINAL SUPPORT (XL)
*1,LO ~ASIC TERMINAL SUPPORT (UN~XL)

l,K EN0T/DEUT & TERMI~AL QUfUEI~G (XL)
1,L E~QT/DEQT & TERMINAL QUEUEI~G (UN-XL)
M,K 4978/4979 DISPLAY SUPPORT (XL)
M,L 497~/4979 DISPLAY SUPPORT (UN-XL)
*~,KO 4973/4974 PRINTER SUPPORT (XL)
~,L 4973/4974 PRINTEQ SUPPO~T (UN-XL)
2 REQUIRED FO~ TTY, ACCA, 4013 & 2741
~ ASO 33/35 T~LETYPE~RITER SUPPORT
3 ASCII ACCA TERMINAL SUPPORT
OM,O* 3101 ~LOCK MODE SUPPORT
OM* SE~IES/l - SE~I~S/l SUPPORT
M GPI8 SUPPJ~T
M DIGITAL I/O T~RMINAL SUPPORT
~ 2741 TcR~INAL SUPPORT
M,N VIRTUAL TERMINAL SUPPORT
4,~ TELETYPEWRITER TRANSLATION
03,P* MIRROR I~AGE ASCII TRANSLATION
~ 2741 fBOC TRANSLATION
~ 2741 CORRESFONOENCE TRANSLATION
*~O SPOOLING SUPPORT
6 4953/4955 TI~ER (7840) SUPPORT
6 4952 TIMER SUPPORT
7.K BISYNC COMM. ACCESS SUPPORT (XL)
7.L BISYNC CUMM. ACCESS SUPPORT (UN-XL)
8 H~ST COMMUNICATION SU?PORT

System Installation 15·15

00930 *
00940 0

00950 *
00960 0
00970 0

00980 *
00990 *
01::150 0
01110
01110 0
01130
01190 *
~1200

01110 *
01220
01230 ';:
01240
01300
01310
01320 *
01330
01340
~1350

01360
01370 :::
013dO
01310 :.':
01400 *
01410*
111420 *
01430 :::
01440 *
01450 *
02060

INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
I~CLUDE
INCLUDE
INCLUDE
INCLUDE
I~CLUDE

I \lC LUCE:
INC LUDE
I ~C i..UOE
INCLUCE
INCLUDE
INCLUDE
INCLUDF
i'~CLUDE
I \4C LU DE
INCLUDE
I NC LUGE
INCLUDE
INCLUDF
It-.!ClLJOE
INC LU Of.
INC i..lJ DE
INCLUCE
I \IC lU DE
I NC LUO~
I :'~C LU DE
INCLUDE
I NCLUCE
END

S~CO~,X$30C2 *9*
IOLOADER,XS3002*9,K*
IOLOAJRU,XS3002 *9,L*
SbAI,XS3002 *MO
SBAO,XS3002 *M*
SBOIOO,XS30u2 *M*
S8PI,XS3002 *M*
IOSEXIO,XS300l *M*
5YSLOG,XS3002 *A*
NOSYSLOG,XS3002 *A*
CIRCrUFF,XS3002 *~*
RLOADER,XS3002 *C,KO
~LOAOiRU,XS3002 *C,L*
EDXFLOAT,XSJ002 *0*
~OFLOAT,XS3002 *D*
EBFLCVT,XS3002 *E*
QUEUFIO,XS3002 *F*
EI)X PH T, X S3002 Otl*
DIS~I~HT,XS3802 :.':~~:.':

TAPEI~IT,XS3002 *M*
LOAOINTT,XS3002 *C*
RW4963IO,X53002 *M*
TERMI~IT,XS)002 *1*
INIT4?7B,XS3002 *M*
I~IT4013,XS3002 *~*
$ACLA~A~,XSj002 *3*
BSCINIT,XS3002 *7*
TPINIT,XS30~2 *3*
TIM~INIT,XS3n02 *6*
CLOKINIT,XS3002 *6*
SdIOINlf,XS3002 *M*
~XIOINIT,XS3002 *M*
SlS1INIT,XS3002 *~,J*

BASIC SEN50~ 1/0 SUPP~RT
SF.NSO~ I/O DEVICE OPEN (XL)
SENSOR 1/0 :jEVICE OPEN (UN-XL)
ANALOG INPUT SUPPORT
ANALOG OUTPUT SUPPORT
DIGITAL INPUT/QUTPUT SUPPORT
PROCESS INT~RRUPT SUPPORT
EXIO DEVICE CU~TROL SUPPORT
1/0 ERROR LOGGING
NO .1/0 eRROR LOGGING
?ROGRA~/MACHINE CHECK LOGGI~G
RELOCATING PROGRAM LOADER (XL)
RELOCATIN~ PROGRAM LOADER (UN-XL)
FLOATING PJINT ARITHMETIC
FOP SYSTEMS ~ITHOUT FLOATING POINT
ERCDI~/FLOATING pnINT CONV.
CUEUE PROCESSING SUPPURT
SUPE~VISOR INITIALIZATION
OISK(ETTE) INITIALIZATION
TAP~ I~ITIALIlATION
PROGRAM LJADE~ INITIALIZATION
4963 FIXED HEAD REFRESH SUPPORT
TERMINAL INITIALIlATIO~

497d ·DISPLAY INITIALIZATION
DIGIT~L 1/0 T~RMINAL I~ITIALIZATIUN
ACCA ~ULTI-LINE ADAPTER RAM LOAD
BISYNC (uSCAM) INITIALIZATION
~ C F (T P C r "11 I.'H T I A LIZ A T I 0 \j
49~3/49~5 Tl~fR I~ITIALIZATION
4QS2 TIMER INITIALIZATION
SENSOR 1/0 INITIALIIATION
EXIO INITI~LIZATI~~

S151 I~ITIALIZATIO~

Figure 15·9. Starter Link file (2 of 2)

15·16 SR30.()436

Instead of deleting undesired INCLUDE statements, it is preferable to
insert an asterisk in column 1. The asterisk causes the link editor to
treat the statement as a comment statement rather than a control
record. This gives you a record of what support you have decided to
leave out, which can be helpful if problems develop with the generated
supervisor.

The support available for some system functions is provided in two
versions-untranslated or translated- specified on the INCLUDE state
ment comments as UN-XL and XL respectively. The untranslated
modules support systems with a memory of 64K or less while trans
lated modules support systems with greater than 64K of memory.

c

o

o

o

00020 *
00030 *
00090
00140
001S0
00160
00170 *
00180
00190
00200
00260
00270
00280 *
00290 :(:
00350 :(:
00410
00420 *
00430
00440 *
00450
00460 :(:
00470
00480 *
00490
00500
00510
00520
00530 *
00540 *
00550 *
00560 *
00570 *
00630
00640
00650 *
00660 *
00120
00180
00190 *
00950 *
OJ860 *
00930 *
00940 *
00950 *
00960 *
00910 :(:
009~0 *
00990 *
01050 *
01110
01120 *
01130
01190
01200 *
01210
0.1220 *

The completed INCLUDE file is shown in Figure 15-10. Those state
ments with asterisks in column 1 are for features that are not desired
or for I/O devices not installed.

EVFNT DRIVEN EXECUTIVE - VERSION 3,'MOOIFICATI0~ LEVEL o·

OUTPUT
INCLUDE
INCLl~DE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INC LUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
I~CLUCE

INC LUCE
INCLUDE
INCLUCE
INC LUOE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INC LUDE
INCLUDE
INC LUDE
INCLUDE
INCLUDE
INCLUDE

SUPVLINt<,EDX002
EOXSYS,XSJ002
ASMOBJ, EOXOu2.
EDXSVCX,XS3002
EOXSVCXU,XS3002
$OBUGNUC,XS3002
EDXALU,XS3002
EOXS'rART,XS3002
DISKIO,XS3002
049624,XS3002
04963A,XS3002
O ... 966A,XS3002
04969A,XS3002
EOXTIO,XS3002.
EDXTIOU,XS3002
EDXTERMQ,XS3002
EDXTRMQU,XS3002
IOS4979,XS3002.
IOS4979U,XS30U2
IOS4974,XS3002
IOS4974U,XS)002
IOSTERM,XS3002
[OSTTY,XS3002
IOSACCA,XS3002
IOS3101,X53002
IOSSlSl,XS3002
IOSGPIB,XS3002
IOS4013,XS3002
IOSl741,XS3002
IOSVIRT,XS3002
TRASCII,XS3002
TREBASC,XS3002
TREBCO,XS3002
Ti{CRSP,XS3002
10 SPOOL, X S3!J02
EOXTIMER,XS3002
EDXTIMRl,XS3002
BSCAM,XS3002
BSCAMU,XS3002
SBCaM,XS300~

IOLOADER,XS3002
IOLOADRu,XS3002
SBAI,XS3002
SBAO,XS3002'
SBOIOO,XS3002
SBP I ,XS3002
IOSE:X[O,XS3002
SYSLOG,;(S3002
NOSYSLOG,XS3002
CIRCBUFF,XS3002
p.LOADER, XS3002
RLOAOERU,XS3002
EOXFLOAT,XS3002
NOFLOAT,XS3002

ENTRY=$START
0 SYSTEM TABLES AND WORK AREAS
0 OUTPUT FROM ,USER SYSTE~ GEN~RATION
O,K TASK SUPERVISOR (XLI
O,L TASK SUPERVISOR (U~-XL)

*Go RESIDENT $DEBUG SUPPORT
0 EDL INSTRUCTION EMULATOR
0 INITIALIZATION & ERROR HANDLER
M BASIC DISK(ETTE) SUPPORT
M 4962/4964 OISK(ETTE) SUPPORT
M 4963 SUilSYSTE~ SUPPORT
K 4966 MAGAZINE SUPPORT
M BASIC TAPE SUPPORT
l,K BASIC TERMINAL SUPPORT (XL)
l,L BASIC TERMINAL SUPPORT (UN-XL)
1,K ENQT/DEQT & TERMINAL QUEUEING (XL)
l,L ENQT/DEQT & TER~INAL QUEUEING (UN-XL)
M,K 4918/4979 DISPLAY SUPPORT (XL)
M,L 4978/4979 ~ISPLAY SUPPORT (UN-XL)
M,K 4913/4974 P~INTER SUPPORT (XL)
M,L 4973/4914 PRINTER SUPPORT (UN-XL)
2 REQUIRfO FOR TTY, ACCA, 4013 t 2141
~ ASR 33/35 TELETYPEWRITER SUPPORT
3 ASCII ACCA TER~INAL SUPPORT
M,O 3101 aLOCK MODE SUPPORT
*MO SERIE~/l- SERIES/l SUPPORT
M GPlb SUPPORT
M DIGITAL I/O TER~INAL SUPPORT
*M~ 2741 TERMINAL SUPPORT
M,N VIRTUAL TERMINAL SUPPORT
4,P TELETY~EWRITER TRANSLATION
*3,PO MIRROR IMAGE ASCII TRANSLATION
5 2741 E80C TRANSLATION
5 2741 CORRESPONDENCE TRANSLATION
M SPOOLING SUPPURT
6 4953/4955 Tl~ER (7840) SUPPORT
6 4952 TIMER SUPPORT
*7,KO BISYNC COMM. ACCESS SUPPORT (XL)
7,L BISYNC COM~. ·ACCESS suppeRT (UN-XL'
~ BASIC SENSOR I/O. SUPPORT
-1,;(.. SENSOR I/O DEVICE OPEN (XL)
9,L SENSO~ I/J ~EVICF OPEN (UN-XL)
M ANALOG INPUT SUPPORT
OM* . ANALOG OUTPUT SUPPORT
M DIGITAL INPUT/OUTPUT SUPPURT
M PROCESS INTERRUPT SU~PORT
M EXIO DEVICE CJNTROL SUPPORT
A I/O ERROR LOGGI~G
CA* NO I/O ERROR LOGGING
8 PROGRAM/MACHINF. CHECK LOGGING
*e,KO RELOCATING PROGRAM LOADER (XL)
C,L RELOCATING PROGRAM LCADER (UN-XL)
0 FLOATING POINT ARITH~ETIC
00* FOR SYSTEMS WITHOUT FLOATING POINT

Figure 15-10. Updated Link file (1 of 2)

System Installation 15-17

01230 INCLUDE EBFLCVT,XS3u02 *E* EBCDIC/FLOATING POINT CONV.
01240 INCLUDE QUEUEIO,XS3002 :C:F* QUEUE PROCESSING SUPPORT
01300 ·INCLUDE EDXINIT,XS3002 ('H:C: SUPERVISOR INITIALIZATION
01310 I~CLUCE OISKINIT,XS3002 *M:C: DISKCETtE) INITIALIZATION
01320 * INCLUDE TAPEINIT,XS30u2 */1* TAPE INITIALIZATION
01330 INCLUDE LOADINIT,XS3002 *c* PRQGRAf~ LGADER INITIALIZATION
01340 :C: INCLUDE ~W4q63ID,XS3002 *M:): 4963 FIXED HEAD REFRESH SUPPORT
01350 INC LLJOE TERMINIT,XS3002 *1* TERMINAL INITI.ALIZATIJN
01360 I~CLUCE INIT4978,XS3002 *,01::: 4978 DISPLAY INITIALIZATION
01370 * INC LUDE I r-J IT 40 13 , X S 3 0 0 2 *J'Io1(: DIGITAL I/O TERMIN~L INITIALIZATION
01380 ~ INC LtJDE $ACCARAM,XS3002 *3* ACCA MULTI-LINf ADAPT ER RAt-' LOAD
01390 ... INCLUDE BSCINIT,XS3002 *7* 8ISYNC (8SCA l Q r NIT I ,~ l I l A T I ON ...
01400 ... INCLUCE TPINIT,XS3002 *8(: HCF (TPCO,"'" INITIALIZATION ',-

0141,0 INCLUDE TIMRINIT,XS3002 (:6* 4953/4955 TIMER IN! T I A LIZ A T I o:~
01420 *·INCLUDE CLOKINIT,XS3002 :::6* 4952 T I:"'ER INITIALIZATION
01430 * INCLUDE S 9 10 P'JI T ,X 53002 :::M* SENSOR I/O INITIALIZATION
01440 * INCLUDE ~XtJIT\IT,XS3002 :'.:M* J:XIO PdT tAL r ZA TI O"J
01450 * I'CLUGE 51 SlI:\~Ir,XS30n2 ::!~,I t ~::: SlSl I ~H T I A L I lilT LJ N
02060 END

Figure 15·10. Updated Link file (2 of 2)

The completed file is now saved to the LI N KCNTL data set on
volume EDX002.

Figure 15-11 summarizes operations up to this point.

ASMLlS

EDX002 EDX002

$FSEDIT

Figure 15·11. Link fila update

15·18 SR30.Q436

('
"--_./

c

o

o

EDIT $JOBUTIL PROCEDURE FILE

00010 *

Now that $EDXDEFS contains your system configuration statements,
and LINKCNTL contains the edited INCLUDE file, you are ready to
assemble the configuration statements, and link edit the resulting object
module with the supervisor support object modules specified in
LI N KCNTL. The linked object module will then be formatted by the
$UPDATE utility to form an executable supervisor.

The assemble, link, and formatting steps will be performed under
control of the job stream processing utility $JOBUTI L. You could
load the assembler $EDXASM, provide the data set names required
yourself, and do the assembly, then in turn do the same for $LIN K and
$UPDATE, but using $JOBUTI L, all three steps may be accomplished
with a single entry.

$JOBUTI L operation is controlled by a procedure file of job control
statements. For SYSGEN, a procedure file named $SUPPREP is
supplied on volume ASMUB. Figure 15-12 presents a listing of that
procedure file.

If, when you allocated data sets at the beginning of SYSGEN, you had
used other than the names/volumes recommended, you would now have
to edit this procedure file to reflect the names/volumes you used.

00020 * EVFNT DRIVEN EXECUTIVE - VERSION 3, ~OOIFICATION lEVEL a
000)0 *
00040 lOG
OOOSO JOB
00060 ~EMARK
00070 REt-'ARK
OODF30 Kf:~ARK

00090 RE""ARK
OJI00 KEl,~ARK

OGI10 PAUSE
00120 PROGR A'"
01)130 f\;1)"4SG

00140 PAR~'

00150 OS
001'>0 OS
00170 OS
001 gO r XtC
O"l190 JUtAP
O:)~OG Pi~OGF' AM
00210 \O~SG
0:J2l0 PAKM
00230 OS
0024a OS
a02S0 OS
OO?~O f.XEC
00270 JU'~?
OOlRO PROGRAM
00210 NOf.4SG
00300 PARM
00310 F XEC
OJ32C lABEL
0C!330 (-OJ

SSYSPRTR
SSUPPREP
** ENTER -GO- AFTER -X~3002- HAS BEEN VARIED O~lINE **
** AND AFTER THE FallOWING MEMBEKS **
** HAVE BEEN ALLOCATEe ON VOLUME EOXQ02: **
** AS~~ORK,AS~UBJ,LEWORK1,lEWORK2,SUPVLINK **
** - SIZES AS PRESCRIBED I~ PROGRAM DIRfCTURY - **
SEOXASM,ASMLI6

$F.:::>XDEFS,EDX002
ASt--'.,oJORK,E-OX002
ASMOBJ,EJX002

E:N9J09,GT,4
SL INK, EOXO'')2

£SYSPRTR
LINKCNTL,E~X002

LE I'JO~K 1, E~X002
LE\~ORK2, EOX002

ENOJ08,GT,4
$UPOATf,EDX002

EJX ASSEMBLtR P~UGRAM

CO~FIGURATION STATEME~TS QATA SET
ASSE~ElER WORK JATA SET
OBJECT CUTPUT nATA S~T

LINK EOITOR PROGRA~

LINK EDITOR CONTROL STATEMENTS
LINK EDITOR WORK DATA SET
LINK EDITOR wORK DATA SET

UPDATE (FORMAT) PROGRAM

SSYSPRTR SUPVlINK,EDX002 $EOXNUCT,EDX002 YES

ENDJOB

o Figure 15·12. $JOBUTIL procedure

System Installation 15·19

EDX002

E3
EDITWORK

For example, if you had called the assembler work file ASMWRK1
instead of ASMWORK, you would have to change the name in the OS
statement number 160.

All files allocated for this SYSGEN used the recommended names and
volumes, so the editor work data set is saved in the data set SUPPREPS
on EDX002. The editing portion of SYSGEN is complete, and is
summarized in Figure 15-13.

EDX002

$FSEDIT

Figure 15-13. Procedure file update

ASSEMBLE/LINK/FORMAT

15-20 SR30{)436

Note: Because there were no changes required in the $JOBUTI L pro
cedure file, the transfer of $SUPPREP on ASMLIB to SUPPREPS on
EDX002 could have been accomplished using $COPY or $COPYUT1,
rather than with the READ and WRITE text editor commands.

To assemble, link edit, and format the tailored supervisor, load
$JOBUTI L, and supply the name of your procedure file, as illustrated
in Figure 15-14.

>I$L $JOBUTILI
$ J OB UTI L 4P, L P =~6 O=-=O:-=-O-=-=-:::~~~
ENTER PROCEDURE (NAME, VOLUME) : ISUPPREPS ,EDX002\

$JOBUTIL ENDED

Figure 15-14. $JOBUTll

o
1,,-..... ,/

c

o

$JOBUTIL
(EDX002)

EDX002

Figure 15·15. $EDXASM

...

The procedure file has specified $SYSPRTR as the log device, so the
first thing that happens is that the procedure file statements controlling
the assembly operation print out on the system printer (see Appendix
A, Figure A-1). $JOBUTI L loads the assembler, $EDXASM, which
assembles your system configuration source file, $EDXDEFS.

" " " " " "

'~L----J $EDXASM
(ASMUB)

EDX002

A~8J~

The resulting object module is stored in data file ASMOBJ on volume
EDX002, which you created. The listing produced as a result of the
assembly prints out on the system printer, preceded by assembler
statistics (see Appendix A, Figure A-2L

Next, $JOB UTI L loads the link editor, $L1NK. (Appendix A, Figure
A-3.) Using the object module from the assembly (ASMOBJ) and the
file of link control records (INCLUDE statements) you stored in
L1NKCNTL, the $L1NK program brings in the supervisor object modules
specified in LI N KCNTL and link edits them with the system control
blocks generated by the assembly (ASMOBJ object module).

System Installation 15·21

$JOBUTIL
(EDX002)

EDX002·

Figure 15-16. $LlNK

15-22 SR30-0436

\
\ ,

\

" ,

\

EDX002',

EDX002

,
" " "

\ ,

" "

\
\

\

\~------------~~ 14-----
$lINK
(EDX002)

XS3002 . o
I

SUPERVISOR
OBJECT
MODULES

EDX002

~
SUPVlINK

The data set SUPVLI N K, which you allocated for link edit output, is
used to store the resulting linked module. The link editor prints out
the LINKCNTL file (Appendix A, Figure A-4) and any unresolved .
references resulting from the link edit on the system printer. There
will be several unresolved weak external references (WXTRN) for
supervisor support modules you did not want to include, but no
unresolved EXTRN messages should appear.

$JOBUTI L now loads $UPDATE to format the linked supervisor into
a loadable module (Appendix A, bottom of Figure A-4).

c

o

$JOBUTIL
(EDX002)

Figure 15-17. $UPDATE

$UPDATE
(EDX002)

. o
I

SUPERVISOR
OBJECT
MODULES

EDX002

~
SUPVLlNK

\ EDX002

C$E~UC~

The formatted load module is placed in $EDXNUCT, a supervisor data
set allocated automatically by $UPDATE. $UPDATE ends (Appendix
A, Figure A-5) and $JOBUTI L completes.

System Installation 15-23

Designate Tailored Supervisor

Before you can test the new supervisor, it must be desig$nated as the one ('
to be loaded at IPL time. To do this you must invoke INITDSK and "-. ... /
write a new IPL text record (command II) designating $EDXNUCT on
EDX002 as the new supervisor.

Figure 15-18 summarizes the tailored system generation process.

c~

15·24 SR30·0436

o

o

o

$JOBUTIL
(EDX002)

\'

\\',
\ \, EDX002
\' '-

E3
EDITWORK

~-\--\--',,-

\' "-\' "-\ \ ,
\' "-

ED0002', "-,

EY
ASMWORK

EDX002

\
\ , , ,

$FSEDIT
(~DX002)

$EDXASM
(ASMUB)

EDX002

\~---------------.~~-----

~
LEWORK1

LEWORK2

Figure 15-18. SYSGEN overview

\
\

\

\

$UNK
(EDX002)

$UPDATE
(EDX002)

$COPY
(EDX002)

.--------,
XS3002 . o SUPERVISOR

OBJECT
MODULES I

EDX002

~
SUPVUNK

EDX002

EDX002

~
$EDXNUC

System Installation 15-25

IPL Tailored Supervisor

15·26 SR30·0436

When you IPL the tailored supervisor, the IPL message shown in
Figure 15-19 is displayed.

*** EVENT DRIVEN EXECUTIVE *** VER 3.0

IPL = SEDXNUCT,EDX002

STORAGE MAP
PART; START SIZE

1 404411 161196
2 57344 327611
3 90112 40960

SET DATE AND TIME USING COMMAND ST
EDX INITIALIZATION COMPLETE

Figure 15·19. IPL message

The message on the $SYSLOG device indicates that $EDXNUCT is the r
supervisor that was loaded and that it is 40K bytes in size. Partition .~. __ ;/
sizes are as shown. Users may now execute programs under the tailored
system.

c

o

Section 16. Program Preparation Using $EDXASM

OBJECTIVES: After completing this section, the student should be
able to;

1. Describe the steps required for application program preparation

2. Understand the operation of the online utilities/programs used
for program preparation (5719-XX2)

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
System Guide (SC34-1702), "Program Preparation."

PROGRAM PREPARATION OVERVIEW

The steps required to prepare an Event Driven Executive application
program for execution are outlined in Figure 16-1.

STEP 1: CREATE SOURCE MODULE
Source program modules are created using either $EDIT1 N or
$FSEDIT, the text editing utilities.

STEP 2: ASSEMBLE SOURCE MODULE
$EDXASM, the assembler program, produces object modules
from source modules. An object module may be input to the link
edit program $LINK or, if no references to external modules are
made, it may be input to the formatting utility $UPDATE.

STEP 3: PRODUCE ASSEMBLY LISTING
This is a subfunction of the assembly, STEP 2. The listing can be
suppressed entirely, or errors only printed. The listing may be
directed to a device other than the system printer, if desired. The
listing is produced by $EDXLIST, a separate program loaded by
$EDXASM as required.

STEP 4: LINK EDIT OBJECT MODULES
The $LINK program is used to combine object modules to form a
complete program. This step is not required if the object module
produced by an assembly is already a complete program in itself
(no references to external modules included in the assembly).

STEP 5: FORMAT OBJECT MODULE
Program object modules produced by $EDXASM or $LIN K are
not in executable form. They must first be processed into relo
catable load modules by the utility program $UPDATE.

Program Preparation Using $EDXASM 16-1

- - --- - -------------- - ----- - - ----:- -.'-

$EDIT1N
$FSEDIT STEP 1: CREATE/MODIFY SOURCE MODULE

--- -------------- --------- ---------------

$EDXASM

I

STEP 2: ASSEMBLE SOURCE
MODULE (PRODUCE OBJECT
MODULE)

- - ----- - ---- T - -- -- - - - - - - --- - - ----
$EDXLlST
(OPTIONAL)

STEP 3: PRODUCE
ASSEMBL Y,LlSTING
(OPTIONAL)

-------- - ----------------------------

STEP 4: LINK EDIT
OBJECT MODU LES
(IF REQUIRED)

$LlNK
(AS REQUIRED)

--------- ----------------1------ -------

STEP 5: FORMAT OBJECT MODULE INTO
RELOCATABLE LOAD MODULE
(EXECUTABLE PROGRAM)

$UPDATE

$JOBUTIL
RUN STEP 2, STEP 3, STEP 4, AND
STEP 5 AS BATCH JOB STREAM

Figure 16-1. Program preparation overview

$JOBUTIL: BATCH JOB STREAM PROCESSOR
At the bottom of Figure 16-1 is areference to $JOBUTI L, the
batch job stream processor. Th is is a program preparation produc
tivity aid which allows the assembly, link edit, and formatting
steps to be run as a continuous sequence of job steps, without
operator intervention.

I n this section, the features and operating characteristics of each of the
programs/utilities required for program preparation is discussed

C\
/ . .-/

c

separately. Following the discussion is a comprehensive example, using f'
each utility in preparing a program for execution. \.. ___ ,

16-2 SR30-0436

$EDXASM

o

o

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator's Reference, Messages and Codes (SC34-1703), "$EDXASM."

$E DXASM is the system program used for assembly of source pro
grams written in the Event Driven Executive language. $EDXASM,
along with other program preparation programs, resides on volume
ASMLlB.

Data Set Requirements. $EDXASM is loaded using the II$L" supervisor
utility functic.n. The operator will be prompted for required data set
names, as shown in Figure 16-2.

>/$L $EDXASM,ASMLIBI

SOURCE (NAME,VOLUME): SRCINPUTI
WORKFILE(NAME,VOLUME): WORKSET/
OBJECT (NAME,VOLUME): OBJOUTI

Figure 16-2. $EDXASM (1)

the SOURCE data set is the input source module to be assembled. The
statements in this file are created using $EDIT1 N or $FSEDIT.

For WORKFILE, enter the name of a data set to be used as an
assembler work area. This file must already be allocated, and usually
ranges between 100 and 500 records in size, with 250 about average.

The OBJECT data set is the preallocated data set in which the object
module resulting from the assembly will be stored. This object module
will be input either to $LlNK, if it is to be combined with other object
modules, or to $UPDATE, if it is a complete program (no references
to external modules).

In Figure 16-2, all three data sets reside on the IPL volume, as no
volume names are supplied. Were the data sets resident on other
volumes, each data set name would be followed by the volume, separ
ated by a comma.

The loader ($L function) is a serially reusable resource. I n Figure
16-2, the loader is enqueued, and therefore unavai lable to other users
and to the system, as soon as the ENTE R key is pressed to enter the
first line, $L $EDXASM,ASMLlB. It remains enqueued throughout
the prompt/response sequence that follows, a length of time which
may be considerable, depending on how familiar the operator is with
the data set names requested, and how fast they can be entered.

Program Preparation Using $EDXASM 16-3

16-4 SR30'()436

>I$L $EDXASM,ASMLIB SRCINPUT WORKSET OBJOUT\

Figure 16-3. $EDXASM (2)

Figure 16-3 illustrates an alternate way of entering the same load
request. When the ENTER key is pressed, all required data set names
are available on the same line, and enqueue time for the loader is
greatly reduced. For $EDXASM, and all other utilities accepting
advance input, the advance input form should be used where possible.
Note: Utilities accepting advance input have no way of "knowing"
the purpose of a data set, other than by the position of the data set
name on the advance input line. The data set names must be supplied
on the advance input line in the same sequence as the utility would
prompt for them were advance input not employed.

I n addition to source, work, and object data sets, whose names must
be supplied at load time, $EDXASM also uses a language control data
set. The language control data set supplied with the system is called
$EDXL and contains the assembler error messages and an "op code
to processing module" specification for each of the standard Event
Driven Executive instructions. If users wish to modify the instruction
set or add error messages, $EDXL may be changed, or a new language
control data set produced (the language control data set is in source
statement format, and can be modified using $EDIT1 N or $FSEDIT).

$EDXASM supports the copycode function, which allows source code
residing in data sets to be included in an assembly by coding a
COpy statement in the source program. The language control data
set is used to define disk or diskette volumes containing copycode
data sets to the assembler.

$EDXL, the system-supplied language control data set, already con
tains *COPYCOD statements which define disk volumes ASM LI B
and EDX002 as volumes containing copycode data sets. If a user
written copycode data set resides on either of these volumes, no
change to $EDXL is required to use the COpy statement in a user
source program assembly. However, if a user copycode data set
resides on a volume other than ASMUB or EDX002, $EDIT1N or
$FSEDIT must be used to add a *COPYCOD statement to $EDXL
which defines the new volume as one which may contain copycode
data sets.

After $EDXASM has been loaded the SE LECT OPTIONS (?): prompt
will appear. A "?" response will list the available options, as shown in
Figure 16-4.

SELECT OPTIONS (?) : III
LIST - SPECIFY LIST DEVICE
NOLIST - DO NOT PRINT LISTING
ERRORS - LIST ERRORS ONLY
CONTROL - SPECIFY CONTROL LANGUAGE
END - END OPTION SELECTION

('ATTN - CAl TO CANCEL ASSEMBLY)

Figure 16-4. $EDXASM (3) c

o

u $EDXLIST

$LINK

o

LIST You can specify the name of the device that will be used
for the assembly listing (name=label in TERMI NAL system
configuration statement). If the LIST option is not
entered, the list device will default to $SYSPRTR.

NOLIST This option suppresses the listing entirely, but assembly
statistics will be displayed on the loading terminal.

E R RO RS Only statements causing assembly errors, along with their
error messages, will be listed. The operator will also be
prompted for the name of the error list device.

CONTROL You can specify the name of your own language control
data set. If it is not entered, this option defaults to
$EDXL on volume ASMLlB.

EN D Once any option is entered in response to the SE LECT
OPTIONS (?): prompt, the operator will continue to be
prompted until END is entered, or until the ENTER key is
depressed with no entry. I f no response is made to the
first SELECT OPTIONS (?): prompt (ENTER key with
nothing entered), the assembly will start without END's
being entered, $EDXL on ASMLlB will be used as the
language control data set, and the fu II listing will appear
on the system printer ($SYSPRTR).

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator's Reference, Messages and Codes (SC34-1703), "$EDXLIST."

The assembly listing is produced by the assembly list processing program
$EDXLIST. Though usually run as part of the assembly process,
$EDXLIST may be loaded directly ($L) and run after the assembly is
finished, as long as the assembler work data set has not been disturbed
(used in another assembly). See the reading assignment for operating
instructions.

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator's Reference, Messages and Codes (SC34-1703), "$LlNK
Linkage Editor."

$LI NK is used to combine two or more object modules into a single
output object module. I nput object modules may be produced by
$EDXASM, by the Series/1 macro assembler ($S1ASM), by the PL/I,
FORTRAN or COBOL compilers, or by the Host Assembler. The
output object module produced by $LI N K must be processed by
$UPDATE before it can be loaded and executed.

Program Preparation Using $EDXASM 16-5

16-6 SR30-0436

Data Set Requirements. When $LIN K is loaded, the operator is
prompted for the names of three data sets. The first is the link control
data set, which will contain control records specifying the object
modules (names of object module data sets) that will be linked together.
The other two data set names are the names of link edit work data sets,
used as work areas during the linkedit process.

> I $L $LINK I
LINKCNTL(NAME,VOLUME): LINKCNTL
LEWORKI (NAME,VOLUME): LINKWRKI
LEWORK2 (NAME,VOLUME): LINKWRK2

$LINK 76P,OO:40:39, LP= 5FOO

ENTER DEVICE NAME FOR PRINTED OUTPUT
I$SYSPRTRI

Figure 16-5. $LINK (1)

See the reading assignment for recommended work data set sizes.

The link control data set (LI N KCNTL) controls overall link edit opera
tion. The control records are produced using $EDIT1 N or $FSEDIT.
The first control record in all LINKCNTL data sets is an OUTPUT
statement, specifying the data set that will be used to store the output
object module resulting from the link edit. This data set (as well as
the work data sets) must be allocated before the link operation is

c

attempted. In Figure 16-6, the output statement specifies data set C\"
L1NKOUT on the IPL volume (if no volume is specified, default=IPL)
as the output data set for the linked object module.

OUTPUT LINKOUT
INCLUDE AS~OUTl,EDX003
INCLUDE ASMOUT5
END

Figure 16-6. $LlNK (2)

The output object module will be produced by linking the input object
module in ASMOUT1 on volume EDX003 with the object module in
ASMOUT5 on the IPL volume, as specified by the two INCLUDE
statements following the OUTPUT record. The first INCLUDE record
must specify an object module that contains an initial task, produced
by an assembly of a source module beginning with a PROG RAM state
ment with the MAIN= operand coded as (or defaulted to) MAIN=YES.
Subsequent INCLUDE records cannot specify object modules con
taining initial tasks.

In addition to those object modules explicitly named in INCLUDE
statements, $L1 N K can also include object modules through the
AUTOCALL option. Using the AUTO= operand of the OUTPUT
control record, an autocall definition data set may be named. This data
set contains the names (and volumes, if not IPL resident) of autocall C
object modules, along with their entry points. -,'

o

c)
$JOBUTIL

o

OUTPUT LINKOUT AUTO=MYAUTO'EDX003~
INCLUDE ASMOUTA
INCLUDE ASMOUTB
END

RENBR,EDXOOI RENUMI RENUM2
ABTERM ABENT **END

Figure 16·7. $L1NK (3)

In Figure 16-7, a reference to RENUM1, RENUM2, or ABENT from
within object module ASMOUT A or ASMOUTB cannot be resolved
by linking ASMOUTA with ASMOUTB. Because AUTO= is coded,
$LIN K goes to the autocall data set MY AUTO, and tries to find the
referenced name in the list of entry points specified in the autocall
definition records. If a match is found, $LINK will link the associated
autocall object module with ASMOUT A and ASMOUTB.

The **END in the last autocall definition record performs the same
function for the autocall definition data set as does the EN D record
for the link control data set.

I n addition to the link control and work data set names, the operator
is also prompted for the name (label of TERMI NAL system configura
tion statement) of the terminal which is to receive the $LI N K output
messages (see Figure 16-5). $LI N K prints out the link control state
ment file, and a map of the linked object module (see the reading
assignment for an example).

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator's Reference, Messages and Codes (SC34-1703), "$JOBUTI L -
Job Stream Processor."

$JOBUTI L is the batch job stream processor utility. $JOBUTI L uses a
user-created ($EDIT1 N, $FSEDIT) job processor procedure file to
sequentially execute a series of programs. To illustrate basic $JOBUTI L
operation, a procedure file to invoke the online assembler, $EDXASM
wi II be created.

Procedure command statements are stored two statements per record,
so a data set size of 15 or 20 records is usually adequate. For this dis
cussion, assume a data set called MYPROC is allocated on the IPL
volume.

Using $EDIT1 N or $FSEDIT, the procedure command file can now be
created. An asterisk in column 1 defines an internal comment command.

~
~ $JOBUTIL / $EDXASM EXAMPLE

Figure 16-8. $JOBUTIL (1)

Program Preparation Using $EDXASM 16· 7

16-8 SR30·0436

The entire statement is treated as a comment, and may appear anywhere
within the procedure command file. The internal comment statements
are for procedure$file documentation only; they are not printed out or C
displayed during JOBUTI L operation.

All the other procedure commands have a defined positional format.
The commands must appear in character positions 1 through 8, starting
in 1; operands in 10 through 17, starting in 10; and comments in 18
through 71.

* $JOBUTIL / $EDXASM EXAMPLE
* 'LOG' COMMAND - $JOBUTIL LOG DEFINITION
LOG ON
~

Figure 16·9. $JOBUTIL (2)

The LOG command controls the printing of $JOB UTI L procedure com
mands, with LOG coded as shown in Figure 16-9, procedure com
mands will be displayed on the terminal used to load $JOBUTI L, as
they are read from the procedure file. Other operand options are either
OF F , for no logging of procedure commands, or terminal name specify
ing the name of a terminal to which you wish the $JOBUTI L procedure
commands directed.

?
* $JOBUTIL / $EDXASM EXAMPLE
* 'LOG' COMMAND - $JOBUTIL LOG DEFINITION
LOG ON
* 'REMARK' COMMAND - DISPLAYS MESSAGE
* ON LOADING TERMINAL
REMARK OPERATOR MESSAGE
~
Figure 16·10. $JOBUTIL (3)

The REMARK command will display on the terminal used to load
$JOBUTIL. REMARK commands may be placed anywhere within a
procedure file. The JOB command, like the REMARK command, is
optional. In Figure 16-11, theJOB command is the first command in
the procedure data set, but could follow the LOG or the REMARK.
The JOB command displays a "job started" message on the loading
terminal, with the time and date. Both JOB and REMAR K operate
without regard to LOG (LOG OFF has no effect).

C· ... /'

c

o

o

JOB ASMPLE
* $JOBUTIL / $EDXASM EXAMPLE
* 'LOG ' COMMAND - $JOBUTIL LOG DEFINITION
LOG ON
* 'REMARK' COMMAND - DISPLAYS MESSAGE
* ON LOADING TERMINAL
REMARK OPERATOR MESSAGE
* 'PROGRAM ' COMMAND DEFINES THE PROGRAM
* TO BE LOADED
PROGRAM $EDXASM,ASMLIB
~
Figure 16-11. $JOBUTIL (4)

The PROG RAM command defines the program name/volume that
$JOBUTI L is to load (if the JOB command is used, it must appear
before PROG RAM).

JOB ASMPLE
* $JOBUTIL / $EDXASM EXAMPLE
* 'LOG ' COMMAND - $JOBUTIL LOG DEFINITION
LOG ON
* 'REMARK' COMMAND - DISPLAYS MESSAGE
* ON LOADING TERMINAL
REMARK OPERATOR MESSAGE
* 'PROGRAM ' COMMAND DEFINES THE PROGRAM
* TO BE LOADED
PROGRAM $EDXASM,ASMLIB
* 'DS ' COMMANDS DEFINE DATA SETS THE
* LOADED PROGRAM REQUIRES
DS SCRMAT
DS ASMWORK
DS ASMOUT2
J
Figure 16-12. $JOBUTIL (5)

"OS" commands define data sets to the program being loaded. Only
one data set may be defined with each OS statement, and the defini
tions must appear in the same order as the responses to load-time data
set definition prompts would be entered, were the program loaded
using the "$L" operator command.

Following the OS commands, any additional information required by
the program being loaded is passed using the PARM command. In
Figure 16-13, PARM is coded with no operand. This is equivalent to
responding to the SELECT OPTIONS: prompt by pressing the ENTER
key without entering an option, when $EOXASM is loaded using $L.

Program Preparation Using $EDXASM 16·9

16-10 SR30-0436

JOB ASMPLE
* $JOBUTIL / $EDXASM EXAMPLE
*. 'LOG' COMMAND - $JOBUT1L LOG DEFINITION
LOG ON
* 'REMARK' COMMAND - DISPLAYS MESSAGE
* ON LOADING TERMINAL
REMARK OPERATOR MESSAGE
* 'PROGRAM' COMMAND DEFINES THE PROGRAM
* TO BE LOADED
PROGRAM $EDXASM,ASMLIB
* 'OS' COMMANDS DEFINE DATA SETS THE
* LOADED PROGRAM REQUIRES
OS SCRMAT
OS ASMWORK
OS ASMOUT2
* 'PARM' COMMAND PASSES PARAMETERS TO
* THE LOADED PROGRAM
PARM
~
Figure 16-13. $JOBUTIL (6)

The program to be loaded now has all the information required to load
and execute. In Figure 16-14, the "EXEC" command issues the load
request for the program defined in the preceding PROG RAM command.

JOB ASMPLE
* $JOBUTIL / $EDXASM EXAMPLE
* 'LOG' COMMAND - $JOBUTIL LOG DEFINITION
LOG ON
* 'REMARK' COMMAND - DISPLAYS MESSAGE
* ON LOADING TERMINAL
REMARK OPERATOR MESSAGE
* 'PROGRAM' COMMAND DEFINES THE PROGRAM
* TO BE LOADED
PROGRAM $EDXASM,ASMLIB
* 'OS' COMMANDS DEFINE DATA SETS THE
* LOADED PROGRAM REQUIRES
OS SCRMAT
OS ASMWORK
OS ASMOUT2
* 'PARM' COMMAND PASSES PARAMETERS TO
* THE LOADED PROGRAM
PARM
* 'EXEC' COMMAND ISSUES LOAD REQUEST FOR
* THE PROGRAM
EXEC
* 'EOJ' ENDS THE PROCEDURE COMMAND FILE
EOJ
Figure 16-14. $JOBUTIL (7)

c

c

c'

o

I 0
""

o

The "EOJ" command following the EXEC indicates end of job, and
terminates the job stream processor utility. If another job were to be
run before ending this procedure, appropriate PROGRAM, DS, PARM
and EXEC statements would precede the EOJ.

When the text editing session that created the procedure is complete,
the procedure is stored in the data set MYPROC. The job can be run
by loading $JOBUTI L, and specifying procedure file MYPROC, as
shown in Figure 16-15.

> I$L $JOBUTI L I
$JOBUTIL 3P,OO:OO:17, LP= 5FOO
ENTER PROCEDURE (NAME, VOLUME): IMYPROCI
Figure 16-15. $JOBUTIL (8)

In Figure 16-16, each of the procedure command statements in pro
cedure file MYPROC (without the internal comments) is related to the
equivalent operator responses for a $L load of the assembler.

JOB
LOG
REMARK

ASMPLE
ON

$L I$EDXASM,ASMLIBI ~PROGRAM
OPERATOR MESSAGE
$EDXASM,ASMLIB
SCRMAT SOURCE (NAME, VOLUME): ISCRMAT I :DS

WORKFI LE (NAME, VOLUME) : ASMWORKI DS
OBJECT (NAME,VOLUME): .ASMOUT2. OS

ASMWORK
ASMOUT2

$EDXASM 76P,OO:46:58, LP= 5FOO ~PARM
___________ ~EXEC

Figure 16-16. $JOBUTIL (9)

'---------I~ E OJ

Other $JOBUTI L commands allow job steps to be skipped/executed
based on the completion code returned from a previous step, the
invoking of nested procedures in other procedure data sets, and the
entering of procedure commands from the loading terminal. For a
comprehensive example of $JOBUTI L capabilities, see the Program
Preparation Example topic that follows.

Program Preparation Using $EDXASM 16-11

PROGRAM PREPARATION EXAMPLE

PROBLEM DESCRIPTION

16-12 SR30-0436

In the remainder of this section, a source module will be assembled,
link edited, and formatted. Each step will first be treated separately,
and then all steps will be combined under control of the batch job
stream processor utility $JOBUTI L.

In "Section 11. Terminal I/O", a program was developed, which, using
a series of PR I NTEXT instructions, formatted a data entry screen (see
the topic Static Screen Coding Example in Section 11). I n "Section
14. Utility Programs," the $IMAGE screen formatting utility was· used
to create the same screen, and to save it in a screen image data set
·named VIDE01.

Supplied with the Event Driven Executive system are a group of super
visor subroutines which allow user programs to access stored screen
images produced by $IMAGE. The goal of this exercise is to replace
the user-written formatting instructions (PRI NTEXTs) in the program
developed in Section 11, with the appropriate subroutine calls to access
the stored screen image in data set VI DE01.

c

c

o
Create/Modify Source Module

C)

o

$EDIT1N
$FSEDIT STEP 1: CREATE/MODIFY SOURCE MODULE

STEP2:. ASSEMBLE SOURCE
MODULE (PRODUCE.OBJECT

'MODULE) . '.' •.

STEP 3; PRODUCE
'AsSEMBLY LISTING
. (OPTIONAL) . .

,,: ':' < '< ".,' ,., ",,',: '

-----~-~--........<-<"-----'~---" ,< i, ,~

Figure 16·17. Step 1: Create source module

Data Set Requirements.

I UTILITyl

$FSEDIT INPUT
DATA

VOLUME .§.E.I-

EDXOO2
ASMVOL SOURCE

OUTPUT
DATA
SET

STATSRC

Figure 16·18. Data set requirements (1)

WORK
DATA
SET

EDITWORK

CONTROL
DATA
SET

The source module to be modified is SOU RCE on volume ASMVO L.
Using $FSEDIT, the program is read into the text edit work data set
(Figure 16-19).

Program Preparation Using $EDXASM 16·13

16·14 SR30-0436

--------------------3--- SFSEDIT PRIMARY OPTION MENU --------------------------
SELECT OPTION ===>

1 BROWSE - DISPLAY DATASET
2 EDIT - CREATE OR CHANGE DATASET
3 READ - READ DATASET FROM HOST/NATIVE
4 WRITE - WRITE DATASET TO HOST/NATIVE
5 SUBMIT - SUBMIT BATCH JOB TO HOST SYSTEM
6 LIST - PRINT DATASET ON SYSTEM PRINTER
7 MERGE - MERGE DATA FROM A SOURCE DATASET
8 END - TERMINATE SFSEDIT
9 HELP - DISPLAY TUTORIAL

ENTER DATASET (NAME,VOLUME) : ISOURCE,ASMVOLI

Figure 16·19. Program preparation (1)

The screen formatting code begins at statement 140. In Figure 16-20,
DO is entered to the left of statement 140, defining the start of a
block delete.

EDIT --- EDITWORK, EOX002 75(543)---------------------- COLur~NS 001 072
CO~iMAND INPUT ===> SCROLL ===)HALF
***** ***** TOP OF DATA ~**
00010 XMPLSTAT PROGRAM
00020 IOCB1 IOCB
00030 IOCB2 IOCB
00040 ATTNLIST
00050 START ENQT
00060 PRINTEXT
00070 PRINTEXT
00080 PRINTEXT
00090 PRINTEXT
00100 PRINTEXT
00110 DEQT
00120 CHECK WAIT
00130 IF

[WJ0140 ENTRY ENQT
00150 ERASE
00160 TERMCTRL
00170 PRINTEXT
00180 PRINTEXT
00190 PRINTEXT
00200 PRINTEXT
00210 PRINTEXT

START
NHIST=O
SCREEN=STATIC
(END,OUT,$PF,STATIC)
IOCB1
'CLASS ROSTER PROGRAM',SPACES=15,LINE=I
'HIT "ATTN" AND ENTER "END" TO END',SKIP=2
, THE PROGRAM'
'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2
, BRING UP THE ENTRY SCREEN'

ATTNECB,RESET
(ATTNECB,EQ,I),GOTO,ENDIT
IOCB2
MODE=SCREENTYPE=ALL
BLANK
'ENTER KEY = PAGE COMPLETE',LINE=I
, PFI = DELETE ENTRY I'
, PF2 = DELETE ENTRY 2'
'PF3 = DELETE ENTRY 3 ',SKIP=I
'PF4 = DELETE ENTRY 4'

Figure 16·20. Program preparation (2)

Scrolling down through the work area, the end of the formatting code
is statement 370 where DD defines end of block delete.

c

o

o

o

EDIT --- EDI1WORK, EDX002
Cmlt~MW I tWUT ='"<>

00220 PRINTEXT
00230 PRINTEXT
00240 PRINTEXT
00250 HDR PRINTEXT
00260 MOVE
00270 DO
00280 PRINTEXT
00290 PRINTEXT
00300 Al ADD
00310 PRINTEXT
00320 A2 ADD
00330 PRINTEXT
00340 ADD
00350 ENDDO
00360 PRINTEXT

[QjJJ0370 TERMCTRL
00380 WAITONE WAIT
00390 GOTO
00400 E1 MOVE
00410 GO TO
00420 E2 MOVE
00430 GOTO

75(543)--------------- BLOCK COMMAND INCOMPLETE
SCROLL =='=>HALF

DASHES,PROTECT=YES,LINE=3
'CLASS NAME:',LINE=4,PROTECT=YES
'INSTRUCTOR NAME:',LINE=4,PROTECT=YES,SPACES=32
DASHES,PROTECT=YES,LINE=5
LINENBR,6
4, TIMES
'NAME:' ,LINE=LINENBR,PROTECT=YES
'STREET:' ,LINE=LINENBR,SPACES=30,PROTECT=YES
LINENBR,l
'CITY : ',LINE=LINENBR,SPACES=30,PROTECT=YES
LINENBR,l
'STATE :',LINE=LINENBR,SPACES=30,PROTECT=YES
LINENBR,3

LINE=4, SPACES= 11
DISPLAY
KEY
(READ,E1,E2,E3,E4),XMPLSTAT+2
LlNENBR,6
DELETE
LINENBR,l1
DELETE

Figure 16-21_ Program preparation (3)

After ENTE R has'been pressed and after you have scrolled back to the
top of the data set, you will see the screen in Figure 16-22 with state
ments 140 through 370 deleted.

EDIT --- EDITWORK, EDX002
cm·1MAND INPUT "'''=>

51(543}---------------------- COLU~l:~S 001 072
SCROLL ='==> HALF

***** ***** TOP OF DATA ***
00010 XMPLSTAT PROGRAM
00020 IOCBl
00030 IOCB2
00040
00050 START
00060
00070
00080
00090
00100
00110
00120 CHECK
00130,
00380 WAITONE
00390
00400 El
00410
00420 E2
00430
00440 E3
00450 . '

IOCB
IOCB
ATTNLIST
ENQT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
DEQT
WAIT
IF
WAIT
GOTO
MOVE
GOTO
MOVE
GOTO
MOVE
GOTO

START
NHIST=O
SCREEN=STATIC
(END,OUT ,$PF ,STATIC)
IOCB1
'CLASS ROSTER PROGRAM',SPACES~15,LINE=1
'HIT "ATTN" AND ENTER "END" TO END' ,SKIP=2
, THE PROGRAM'
'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2
, BRING UP THE ENTRY SCREEN'

ATTNECB,RESET
(ATTNECB,EQ,l),GOTO,ENDIT
KEY
(READ,El,E2,E3,E4),XMPLSTAT+2
LINENBR,6
DELETE
LINENBR,l1
DELETE
LINENBR,16
DELETE

Figure 16-22. Program preparation (4)

By using the insert function of EDIT mode, the statements required to
access the screen image in data set VIDE01 can now be added.

Program Preparation Using $EDXASM 16-15

$IMOPEN

16-16 SR30.Q436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
System Guide (SC34-0312), "Formatted Screen Images."

The first step in using a stored screen image is to read the image data
set into the user program.

~
IMAGEBUF BUFFER 768,BYTES
DSETNAME TEXT 'VIDEOl,EDX002'
~
GETIMAGE CALL $IMOPEN,(DSETNAME),(IMAGEBUF)
~
Figure 16-23. Program preparation (5)

Using subroutine $IMOPEN, the data set is read into a user buffer. The
name of the data set is specified in a TEXT statement, and the label of
the TEXT statement is passed to $IMOPEN as the first parameter in the
CALL. The second parameter is the label of the buffer which will
receive the image. Both parameters must be enclosed in parentheses.

The buffer is defined by a BU F FER statement, in bytes. Data set
VIDE01 is three records in length, so IMAGEBUF is defined as 768
bytes.

$IMOPEN returns a completion code in "taskname+2", and it is a
user responsibility to check for proper completion (-1 completion
code). In Figure 16-24, the completion code check and error routine
have been added.

IMAGEBUF BUFFER
DSETNAME TEXT

GETIMAGE CALL
IF

MOVE
PRINTEXT
PRINTNUM
GOTO

ENDIF

ERRCODE DATA
ERRQUERY QUESTION

768,BYTES
'VIDEOl,EDX002'

$IMOPEN,(DSETNAME),(IMAGEBUF)
(XMPLSTAT+2,NE,-1)

ERRCODE,XMPLSTAT+2
'@IMAGE OPEN ERROR, CODE ='
ERRCODE
ERRQUERY

FlO'
'@RETRY OPEN? ',YES=GETIMAGE,NO=ENDIT

Figure 16-24. Program preparation (6)

c'

c

$IMDEFN

o

') C
'··

$IMPROT/$IMDA TA

o

Before the screen can be displayed, the terminal must be enqueued as a
static screel1 device. In Figure 16-25, the ENOT IOCB2 is preceded by
a CALL to subroutine $IMDEFN. This subroutine fills in the user-coded
IOCB with the screen dimensions of the screen image in the buffer.
The CALL to $IMDEFN is not a required function; the IOCB may be
enqueued without first calling the subroutine. By calling $1 MDEFN,
you are assured that the IOCB will have the proper screen dimensions
for the screen in the buffer. If $IMAGE is used to change the dimen
sions of the stored screen image, the new dimensions will be placed in
the IOCB by $IMDEFN when the program next accesses that screen,
with no change in the user program code required.

IMAGEBUF BUFFER
DSETNAME TEXT

IOCB2 IOCB

GETIMAGE CALL
IF

MOVE
PRINTEXT
PRINTNUM
GOTO

ENDIF
CALL
ENQT

ERRCODE DATA
ERRQUERY QUESTION

768,BYTES
'VIDEOl,EDX002'

SCREEN=STATIC

$IMOPEN,(DSETNAME),(IMAGEBUF)
(XMPLSTAT+2,NE,-1)

ERRCODE,XMPLSTAT+2
I@IMAGE OPEN ERROR, CODE ='
ERRCODE
ERRQUERY

$IMDEFN,(IOCB2),(IMAGEBUF)
IOCB2

FlO'
'@RETRY OPEN? I,YES=GETIMAGE,NO=ENDIT

Figure 16-25. Program preparation (7)

Now that the terminal is enqueued, the screen image in the buffer can
be displayed. In Figure 16-26, the TERMCTRL BLANK following
the ENOT blanks the screen, preventing flicker while the image is
written. The CALL of subroutine $IMPROT transfers all the protected
data from the image buffer to the screen, and the call to $1 MDAT A
transfers the unprotected data. (If a screen image consists of all pro
tected or all unprotected data, only the appropriate subroutine need
be called.)

Program Preparation Using $EDXASM 16-17

16-18 SR30-0436

IMAGEBUF BUFFER
DSETNAME TEXT

IOCB2 IOCB

GETIMAGE CALL
IF

MOVE
PRINTEXT
PRINTNUM
GOTO

ENDIF
CALL
ENQT
TERMCTRL
CALL
CALL
PRINTEXT
TERMCTRL

ERRCODE DATA
ERRQUERY QUESTION

768,BYTES
'V I DEOl,IDX002 '

SCREEN=STATIC

$iMOPEN,(DSfTNAME),(IMAGEBUF)
(XMPLSTAT~2,NE,-1)

ERRCODE,XMPLSTAT+2
'@lMAGE OPEN ERROR, CODE ='
ERRCODE
ERRQUERY

$IMDEFN,(IOCB2),(IMAGEBUF)
IOCB2
BLANK
$IMPROT,(IMAGEBUF),O
$IMDATA,(IMAGEBUF)
LINE=4,SPACES=11
DISPLAY

F'O'
'@RETRY OPEN? ',YES=GETIMAGE,NO=ENDIT

Figure 16-26. Program preparation (8)

The PRINTEXT following the last CALL positions the cursor at the
first data entry field, and TERMCTR L DISPLAY unblanks the
screen.

The second parameter of the CALL $IMPROT statement (Figure 16-26)
is coded as O. This could be coded as the label of a BUFFE R statement,
in which case the $IMPROT subroutine will build a table of the location
and sizes of all unprotected (data entry) fields on the screen. Each table
entry is three words in length. The first word will contain the line
number and the second, the starting position of the field within the
line (spaces from left margin of screen). The third word will contain
the length of the field. These entries can be used to read/write data
entry fields on the screen.

c

c

c

o

o

o

The "$IM" subroutines are supplied as object modules. Because they
are object modu les, they are combined with the user program in the link
edit step, not during assembly. They must therefore be declared as
external references in an EXTRN statement.

Figures 16-27 and 16-28 are listings of the edit work data set after the
edit session is complete. The EXTRN statement is statement 20, with
the image buffer and screen image data set name definition following
at 30 and 40. Other added statements include the "$1 M" code from
170 to 300, and the two statements at 670 and 680. The source
module modification is complete. The work data set is written to
STATSRC on volume EDX002 ($FSEDIT Primary Option 4), complet
ing Step 1 of the program preparation process.

Program Preparation Using $EDXASM 16-19

00010 XMPLSTAT
00020
00030 IMAGEBUF
00040 DSETNAME
00050 IOCB1
00060 IOCB2
00070
00080 START
00090
00100
00110
00120
00130
00140
00150 CHECK
00160
00170 GETIMAGE
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310 WAITONE
00320
00330 E1
00340
00350 E2
00360
00370 E3
00380
00390 E4
00400 DELETE
00410
00420 .
00430
00440
00450
00460
00470
00480
00490 READ

PROGRAM
EXTRN
BUFFER
TEXT
IOCB
IOCB
ATTNLIST
ENQT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
DEQT
WAIT
IF
CALL
IF

MOVE
PRINTEXT
PRINTNUM
GOTO

ENDI F
CALL
ENQT
TERMCTRL
CALL
CALL
PRINTEXT
TERMCTRL
WAIT
GOTO
MOVE
GOTO
MOVE
GOTO
MOVE
GOTO
MOVE
ERASE
ADD

,ERASE
ADD
ERASE
SUBTRACT
PRINTEXT
TERMCTRL
GOTO
QUESTION

Figure 16-27. Program preparation (10)

16-20 SR30-0436

START
$IMOPEN,$IMDEFN,$IMPROT,$IMDATA
768,BYTES
'VIDE01,EDX002 1

NHIST=O
SCREEN=STATIC
(END,OUT,$PF,STATIC)
IOCB1
'CLASS ROSTER PROGRAM' ,SPACES=15,LINE=1
'HIT II ATTN II AND ENTER "END" TO END' ,SKIP=2
1 THE PROGRAM 1

'HIT ANY PROGRAM FUNCTION KEY TO' ,SKIP=2
1 BRING UP THE ENTRY SCREEN'

ATTNECB,RESET
(ATTNECB,EQ,l),GOTO,ENDIT
$IMOPEN,(DSETNAME),(IMAGEBUF)
(XMPLSTAT+2,NE,-1)

ERRCODE,XMPLSTAT+2
'@IMAGE OPEN ERROR,CODE ='
ERRCODE
ERRQUERY

$IMDEFN,(IOCB2),(IMAGEBUF)
IOCB2
BLANK
$IMPROT,(IMAGEBUF),O
$IMDATA,(IMAGEBUF)
LINE=4,SPACES=11
DISPLAY
KEY
(READ,E1,E2,E3,E4),XMPLSTAT+2
LINENBR,6
DELETE
LINENBR,ll
DELETE
LINENBR,16
DELETE
LINENBR,21
MODE=LINE,TYPE=DATA,LINE=LINENBR
LINENBR,l
MODE=LINE,TYPE=DATA,LINE=LINENBR
LINENBR,l
MODE=LINE,TYPE=DATA,LINE=LINENR
LINENBR,2
LINE=LINENBR,SPACES=5
DISPLAY
WAITONE
'MORE ENTRIES ?I ,LINE=2,SPACES=55,NO=CLEANUP

c

c

o

o

00500
00510
00520
00530
00540
00550 CLEANUP
00560
00570
00580 ENDIT
00590
00600 DASHES
00610 OUT
00620
00630 STATIC
00640
00650 ATTNECB
00660 LINENBR
00670 ERRCODE
00680 ERRQUERY
00690
00700

ERASE
ERASE
PRINTEXT
TERMCTRL
GOTO
ERASE
DEQT
GOTO START
PROGSTOP
DATA
DATA
POST
ENDATTN
POST
ENDATTN
ECB
DATA
DATA
QUESTION
ENDPROG
END

MODE=LINE,LINE=2,SPACES=55,TYPE=DATA
MODE=SCREEN,LINE=6
LINE=6,SPACES=5
DISPLAY
WAITONE
MODE=SCREEN,TYPE=ALL

X' 5050 '
80C ' - '
ATTNECB,l

ATTNECB,-l

F'O'
F'O'
'@RETRY OPEN? ',YES=GETIMAGE,NO=ENDIT

Figure 16-28. Program preparation (10 continued)

--------------------4-- $FSEDIT PRIMARY OPTION MENU ---------------------------
SELECT OPTION ===>

1 BROWSE - DISPLAY DATASET
2 EDIT - CREATE OR CHANGE DATASET
3 READ - READ DATASET FROM HOST/NATIVE
4 WRITE - WRITE DATASET TO HOST/NATIVE
5 SUBMIT - SUBMIT BATCH JOB TO HOST SYSTEM
6 LIST - PRINT DATASET ON SYSTEM PRINTER
7 MERGE - MERGE DATA FROM A SOURCE DATASET
8 END - TERMINATE $FSEDIT
9 HELP . - DISPLAY TUTORIAL

ENTER DATASET (NAME. VOLUME) : I STATSRC.EDXQ02 I

Figure 16-29. Program preparation (11)

Program Preparation Using $EDXASM 16-21

Assemble Source Module

c

Figure 16·30. Step 2: Assemble source module

Data Set Requirements

IUTILlTyl

INPUT OUTPUT WORK CONTROL
$EDXASM DATA DATA DATA DATA

SET SET SET SET
VOLUME

EDXOO2 STATSRC ASMOUT ASMWORK
ASMLlB $EDXL
ASMVOL

Figure 16·31. Data set requirements (12)

c
16·22 SR30-0436

o

o

o

In Figure 16-32, the load request for the assembler is entered. Since
the prompting sequence for the data set required by the assembler is
known, these data set names are entered as advance input on the
same line as the input request.

>I$L $EDXASM,ASMLIB STATSRC ASMWORK ASMOUTI
$EDXASM 76P,03:14:35, LP= 7FOO

SELECT OPTIONS (?): IENDI
Figure 16-32. Program preparation (12)

Because no options are selected, a full listing will be produced on the
system printer, and the language control data set used for this
assembly will be $EDXL. When the assembler finishes, the resulting
object module will be stored in ASMOUT on volume EDX002.
$EDXASM will then load $EDXLIST to produce the assembly listing.

Program Preparation Using $EDXASM 16·23

Produce Assembly Listing

Figure 16-33. Step 3: Produce assembly listing

Data Set Requirements

IUTILITyl

$EDXLlST
INPUT OUTPUT
DATA DATA

VOLUME SET SET

EDXOO2 ASMWORK
STATSRC

ASMLlB

Figure 16-34. Data set requirements (3)

16-24 SR30-0436

WORK
DATA
SET

CONTROL
DATA
SET

$EDXL

c

c

c

o

Link Edit Object Modules

o

In this example, $EDXLIST is loaded by $EDXASM. If the response
to the SELECT OPTIONS (?): prompt had been NOLlST, $EDXLlST
would not have been invoked by $EDXASM, but can still be loaded as
a separate program by the operator. For example, if NOLIST were
selected, and the assembly statistics displayed on the loading terminal
at the end of the assembly indicated that there were assembly errors,
$EDXLlST can then be loaded to print a listing. $EDXLIST will
prompt for the source data set and the assembler work data set, and
will get the name of the language control data set from the work data
set, in which it is stored, at the end of the assembly. As long as an
intervening assembly has not altered the contents of the assembler
work data set, and you have not modified the source or language
control data sets, $EDXLIST will produce the same listing when loaded
by the terminal operator after an assembly as it would were it loaded
by $EDXASM as part of the assembly step.

The assembly listing produced by the assembly requested in Figure
16-32 is shown in Appendix 8, Figure 8-1.

""::':::'-,.- ...:;,~::.-::. --'=~':;=~~'::::==1

'I

,..:...;...:..-:-.-..:----.;, ·,.,.ii>;;;<} .•.• -----~-~~~
STE~ 2;',l\S$EMBLEsOURcg: . ,,' .' <,' I
M9DULE(P'R~p~d~:;'OBJEct<;; :' .: ',:;

MODULE)") , ";";'; ~ '_' _",:",t
'.; <;"; :,>, ','i ... ----- 1

..•..• '. SEOXLIST .' STE~'3'PROOUCE '. '.' .' ••••

. • (OPTIONALI ASSEMBLY LISTING '. '. .·.·1
, , ' "", ,', " " (OPTfONP.L), " .,', '., t

b .• ;,;"~-:"",:,:":"";;~;,,;,;,,,.'""';';"':"-':",,,,,",,-l~." ... '-.::::::.~-:="::::,:==~-~",=,:,~=-'--': ' ~~~-=--=~-=-~..::.'. ' -'_=.:!

STEP 4: LINK EDIT
OBJECT MODULES
(IF REQUIRED)

SLINK
L--_____ ~ (AS REQUIRED)

Figure 16·35. Step 4: Link edit object modules

Program Preparation Using $EDXASM 16·25

Data Set Requirements

16-26 SR30-0436

IUTILITyl

$LlNK

VOLUME

EDX002

ASMLlS

INPUT
DATA
SET

ASMOUT

$AUTO
$LEMSG
$IMGEN
$IMOPEN

OUTPUT WORK CONTROL
DATA DATA DATA
SET SET ~S~ET~ __ __

LlNKOUT LlNKWRK1 LlNKSTAT
LlNKWRK2

Figure 16-36. Data set requirements (4)

The screen formatting subroutines ($IMOPEN, $IMDEFN, $IMDATA,
$IMPROT) used by the source program are distributed in the form of
object modules. To include these subroutines in the program, the
object module output of the assembly (data set ASMOUT) must be
linked with the screen formatting support object modules.

c:'

I nstead of requiring that INC LUDE control records for the screen
formatting object modules be user-defined, they are system-defined in
the system-supplied autocall data set $AUTO, and may be included
using the autocall option. C
00110 $GPLIST,AS~LI8 £GPlIST
00020 $PUHC ,A S~L I.i $P'JHC
001'130 $GEPP-l,ASMLI6 $Gt::PM
00040 $GEA(,ASMLI~ $GEAC
00050 1,$CHI,ASMLr~ $$G IN
00 ')6 0 'tPUFC,Ai~LIt, $PUFC
00070 t p u XC, A S M L I .~ $PUXC
OJC30 $ GEE:Q, A :;ML E~ $GEER
00090 $GEXC ,A S~L J:j :J.GEXC
OCll on $'£5L~ [EN, AS"tL I ~ $$SCRF~"l

0:)110 tPUIC,ASMLlf\ $PUIC
00120 t, PUS C , A ~ M L I :~ $PUSC
O~) 130 f.(iESC ,~SMLIB $GfSC
OJ140 $r,EfC,ASMLI~ ~ GF. FC
OOl~C $PUAC,AS~LI'? SPUAC
Oi;160 t PUt C , A 5 M L I ;~_ t PI) EC
0:) 1 70 $G~Ir,A5'1LIf\ $G~;IC

GJ l'jO $ $ P (, r ,'J, AS M LIe to $PG P,;
O')l-JO ~ $(1.1:'-ICI\ T, A S:-IL I A $$CONC~T

0(;200 $'iiXYPLOT,ASMLI~ i.$XYPLOT
0"210 $~F~L,ASMLItJ ~MFSL
OIl?20 $JI"r:f1\;, AS~L I? j, 1'-1:: tF '.,j $IMPkOT !. r ~r; 0\ T A
0 . .12)0 tPACK,ASMLI;J tPACK
OJ?40 '$UNPf.CK,ASMLIB i>U~~FACK

OO,??O $ I ""r)PE"! ,A S~L I ~\ £IMOPEN nSUPE:N
OJ260 $£RETURN,AS,~LIB i<ETURr.J
~02 70 $£SVC,AS~LIi-\ SVc.
(H)230 $ P~OTYP E, A SML I ~ t.IHOTYPF

C 00290 $~O:.(AT5R,ASML IB SETDUSY SUPfxIT **cNO
Figure 16-37. Program preparation (13)

o

o

o

Figure 16-37 is a listing of $AUTO, the system-supplied autocall data
set. The screen formatting support modules are specified in autocall
definition statements 220 and 250.

If you wished to have your own autocall definitions, you could add
them to this data set, and continue to use the system-supplied autocall
data set $AUTO, or build your own autocall data set. In either case,
the last statement in the data set must contain the "**END" text,
indicating the end of the autocall data set.

The output object module data set, the autocall data set (if required),
and the object modules to be linked are passed to the link editor in the
link control data set. The link control data set used for this example
is named LINKSTAT. In Figure 16-38, the link control statements
required for this link edit are listed, along with some preceding comment
lines explaining their function.

00010 * THIS LINK EDIT CONTROL DATA SET SPECIFIES:
00020 * 1) THE LINKED OUTPUT OBJECT MODULE WILL

. 00030 * BE STORED IN 'LINKOUT ' ON EDX002
00040 * 2) THE AUTOCALL DATA SET IS '$AUTO ' ON
00050 * VOLUME ASMLIB (SYSTEM SUPPLIED)
00060 * 3) 'ASMOUT ' ON EDX002 IS THE ONLY INPUT
00070 * OBJECT MODULE TO BE INCLUDED
00080 *
00090 OUTPUT LINKOUT AUTO=$AUTO,ASMLIB
00100 INCLUDE ASMOUT
00110 END
Figure 16-38. Program preparation (14)

This control statement file is created using $EDIT1 N or $FSEDIT, and
stored in LI N KSTAT using the SAVE/WR ITE function at the end of
the text edit session.

>I$L $LINK,EDX002 LINKSTAT LINKWRKI LINKWRK21
$LINK 76P,03:31:45, LP= 7FOO

ENTER DEVICE NAME FOR PRINTED OUTPUT
I$SYSPRTR I
Figure 16-39. Program preparation (15)

Program Preparation Using $EDXASM 16-27

Data Set Requirements

o

o

o

IUTILlTyl

$UPDATE INPUT
DATA

VOLUME SET

OUTPUT
DATA
SET

EDX002 L1NKOUT STATPROG

Figure 16-41. Data set requirements (5)

WORK
DATA
SET

CONTROL
DATA
SET

Before a linked (or assembled) object module can be executed, it must
first be processed by $UPDATE. This utility formats the object
module into a relocatable load module, acceptable to the system loader.

> I$L $UPDATEI
$UPDATE 33P,03:33:10, LP= 7FOO

THE DEFINED INPUT VOLUME IS EDX002, OK?~
THE DEFINED OUTPUT VOLUME IS EDX002, OK?UU

COMMAND (?): IRP LINKOUT STATPROG I
Figure 16-42. Program preparation (16)

The "RP" command means "Read Program", and is followed by the
name of the object module to be formatted, and the name of the
resulting executable program. If data set STATPROG is not already
allocated, $UPDATE will create it. The program STATPROG can be
loaded and executed when this step is completed.

Program Preparation Using $EDXASM 16-29

$EDXASM Copy Code Function c

.16·30 SR30-0436

In the discussion of the link edit step, object modules were auto
matically included in the link edit, using the autocall feature of $LI N K.
In a somewhat similar manner, source statements may be merged into
a source module at assembly time, using the "copycode" capability of
$EDXASM.

During the assembly operation, $EDXASM uses a language control data
set. Figure B-3 in Appendix B is a listing of the system-supplied lan
guage control data set $EDXL. This data set consists of thre.e main parts.
Statements 10 through 2520 are error messages that may be required
during assembly. Statements 2530 through 2880 are *OVE R LAY
definitions. These are special control statements, used by the system
loader to find the appropriate assembler overlay for each source instruc
tion encountered during an assembly.

The third section consists of the two *COPYCOD definitions, statements
2890 and 2900. $COPYCOD statements define logical volumes which
may contain source data sets used as "copycode" source modules. The
logical end of the language control data set is the **STOP**, statement
2910.

The system-supplied language control data set, $EDXL, has volumes
ASMLIB and EDX002 defined as copycode volumes. When a COpy
statement specifying the name of a source data set is encountered during
the assembly of a source module, $EDXASM will search ASM LI Band
EDX002 for a data set of that name, and will include the source state-
ments in that data set in the assembly, if found. User source data sets C
stot.ed .. on ASMLIB or EDX002 may be used as copycode modules in -_./
assemblies using $EDXL for a language control data set. If copycode
data sets reside on other logical volumes, $EDXL must be modified
(*COPYCOD statements added) to define those volumes to $EDXASM
as copycode volumes, or a user-defined language control data set con-
taining the new *COPYCOD definitions must be used for the assembly.
A user-defined language control data set might be preferred to avoid
altering $EDXL.

Figures 16-43 through 16-50 will illustrate how to set up a user-defined
language control data set, and how to code the COpy function in a user
program.

In Figures 16-43 through 16-45, the system-supplied language control
data set, $EDXL, is modified to establish volume EDX003 as a copycode
volume. The modified version is stored in the user-defined language
control data set STATEDXL, leaving $EDXL undisturbed. Using
$FSEDIT, the system-supplied language control data set $EDXL is read
into the edit work data set, and EDIT mode (Primary Option 2) is
entered. After scrolling to the bottom of the data set, the screen in
Figure 16-43 is displayed.

c

o

C)

o

EDIT --- SEDXL , ASMLIB
C01~MArm INPUT ,=:::=>

291(1089)---------------------- COLUMNS 001 072
SCHOLL :::"''''> HALF

02720 *OVERLAY $ASMOOOB ASMLIB
02730 *OVERLAY $ASMOOOC ASMLIB
02740 *OVERLAY $ASMOOOD ASMLIB
02750 *OVERLAY $ASMOOOE ASMLIB
02760 CONVTD
02770 *OVERLAY $ASMOOOG ASMLIB
02780 CON CAT TP STATUS
02790 *OVERLAY $ASMOOOH ASMLIB
02800 BSCLINE
02810 *OVERLAY $ASMOOOI ASMLIB
02820 *OVERLAY $ASMOOOQ ASMLIB
02830 *OVERLAY $ASMEXIO ASMLIB
02840 *OVERLAY $ASMOOOS ASMLIB
02850 *OVERLAY $ASMOOOT ASMLIB
02860 *OVERLAY $ASMOOOU ASMLIB
02870 *OVERLAY $ASMOOOF ASMLIB
02880 *OVERLAY $ASMOOOM ASMLIB
02890 *COPYCOD ASMLIB
02900 *COPYCOD EDX002
02910 **STOP**

SBIO IODEF
FIND FINDNOT
FPCONV FADD FSUB FMULT FDIVD
PRINTNUM GETVALUE READTEXT PRINTEXT CONVTB

PLOTGIN GIN SCREEN XYPLOT YTPLOT

BSCREAD BSCWRITE BSCOPEN BSCCLOSE BSCIOCB

FORMAT
FIRSTQ LASTQ NEXTQ
EXIODEV IDCB DCB
SYSTEM STOREMAP DISK
TERMINAL
HOSTCOMM SENSORIO DDBSIO
ASMERROR $IDEF OTE
WHERES TCBGET TCBPUT

DEFINEQ
EXOPEN
TIMER

EXIO
TAPE

GETMAIN FREEMAIN
SLE

***** **** BOTTOM OF DATA **

Figure 16-43. Program preparation (17)

Using the insert line command, a copycode definition is placed in front
of the * *STOP* * statement.

EDIT --- SEDXL
COMr.'ANO INPUT

ASjllUB 291(1089)--------------_------- COLUMNS 001 072
SCROLL'"'" ,=> HALF

02720 *OVERLAY $ASMOOOB ASMLIB
02730 *OVERLAY $ASMOOOC ASMLIB
02740 *OVERLAY $ASMOOOD ASMLIB
02750 *OVERLAY $ASMOOOE ASMLIB
02760 CONVTD
02770 *OVERLAY $ASMOOOG ASMLIB
02780 CONCAT TP STATUS
02790 *OVERLAY $ASMOOOH ASMLIB
02800 BSCLINE
02810 *OVERLAY $ASMOOOI ASMLIB
02820 *OVERLAY $ASMOOOQ ASMLIB
02830 *OVERLAY $ASMEXIO ASMLIB
02840 *OVERLAY $ASMOOOS ASMLIB
02850 *OVERLAY $ASMOOOT ASMLIB
02860 *OVERLAY $ASMOOOU ASMLIB
02870 *OVERLAY $ASMOOOF ASMLIB
02880 *OVERLAY $ASMOOOM ASMLIB'
02890 *COPYCOD ASMLIB
02900 *COPYCOD EDX002
..... *COPYCOD EDX003
02910 **STOP**

SBIO IODEF
FIND FINDNOT
FPCONV FA DO FSUB FMULT FDIVD
PRINTNUM GETVALUE READTEXT PRINTEXT CONVTB

PLOTGIN GIN SCREEN XYPLOT YTPLOT

BSCREAD BSCWRITE BSCOPEN BSCCLOSE BSCIOCB

FORMAT
FIRSTQ LASTQ NEXTQ DEFINEQ
EXIODEV IDCB DCB EXOPEN EXIO
SYSTEM STOREMAP DISK TIMER TAPE
TERMINAL
HOSTCOMM SENSORIO DDBSIO GETMAIN FREEMAIN
ASMERROR $IDEF OTE SLE
WHERES TCBGET TCBPUT

***** **** BOTTOM OF DATA ***

Figure 16-44. Program preparation (18)

Program Preparation Using $EDXASM 16·31

~' .---

16-32 SR30-0436

EDX003 is now defined as a copycode volume. The edit work data set
is now written into data set STATEDXL, which was previously allocated
for this purpose.

--------------------4-- $FSEDIT PRIMARY OPTION MENU ---------------------------
SELECT OPTION ===>

1 BROWSE - DISPLAY DATASET
2 Eon - CREATE OR CHANGE DATASET
3 READ - READ DATASET FROM HOST/NATIVE
4 WRITE - WRITE DATASET TO HOST/NATIVE
5 SUBMIT - SUBMIT BATCH JOB TO HOST SYSTEM
6 LIST - PRINT DATASET ON SYSTEM PRINTER
7 MERGE - MERGE DATA FROM A SOURCE DATASET
8 END - TERMINATE $FSEDIT
9 HELP - DISPLAY TUTORIAL

ENTER DATASET (NAME.VOLUME) : !STATEDXL,EDX002!

Figure 16-45. Program preparation (19)

c

c

o

o

o

In Figures 16-46 and 16-47, a portion of code is extracted from the
source data set STATSRC and stored on volume EDX003 in a data set
named ROLL. This data set will be used as a copycode module.

Again using $FSEDIT, the roll screen instructions from STATSRC
are read into the work area, and identifying comments inserted at the
beginning and end of the data set. This is accomplished by:

1.

2.

3.

READ (Primary Option 3) STATSRC into work data set,

EDIT (Primary Option 2) and block delete statements 10 through
70, then statements 150 through 700 leaving only the IIro ll
screen" statements

Insert comments at top and bottom, resulting in the screen shown
in Figure 16-46.

EDIT --- EDITWORK, EDX002 13(243)----------------------- COLUMNS 001 072
COMMAND INPUT ===> SCROLL ===).HALF
***** ***** TOP OF DATA **
00010 *
00020 * START OF "COpy CODE" MODULE
00030 *
00040 START
00050
00060
00070
00080
00090
00100
00110 *

ENQT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
DEQT

IOCB1
. 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
'HIT "ATTN" AND ENTER "END" TO END',SKIP=2
, THE PROGRAM'
'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2
, BRING UP THE ENTRY SCREEN'

00120 * END OF "COPYCODE" MODULE
00130 *
***** **** BOTTOM OF DATA **

Figure 1646. Program preparation (20)

Program Preparation Using $EDXASM 16-33

;

'.

16-34 SR30-0436

Now the COpy CODE module is written to data set ROLL (Figure
16-47).

--------------------4--- $FSEDIT PRIMARY OPTION MENU -------------------------
SELECT OPTION ===>

1 BROWSE - DISPLAY DATASET
2 EDIT - CREATE OR CHANGE DATASET
3 READ - READ DATASET FROM HOST/NATIVE
4 WRITE - WRITE DATASET TO HOST/NATIVE
5 SUBMIT - SUBMIT BATCH JOB TO HOST SYSTEM
6 LIST - PRINT DATASET ON SYSTEM PRINTER
7 MERGE - MERGE DATA FROM A SOURCE DATASET
8 END - TERMINATE $FSEDIT
9 HELP - DISPLAY TUTORIAL

ENTER DATASET (NAME,VOLUME) : IROLL,EDX0031

Fi.gure 16-47., Program preparation (21)

In Figures 16-48 through 16-50, STATSRC is again read into the edit
work area, and modified to use the COpy function.

In Figure 16-48, STATSRC has been read into the work data set, and
ED IT mode has been entered.

EDIT --- EDITWORK, EDX002 70(243)---------------------- COLUMNS 001 072
CO~~MAND INPUT """=> SCROLL =,,=> HALF

***** ***** TOP OF DATA **
00010 XMPLSTAT PROGRAM
00020 EXTRN
00030 IMAGEBUF BUFFER
00040 DSETNAME TEXT
00050 IOCB1 IOCB
00060 IOCB2 IOCB
00070 ATTNLIST

~0080 START ENQT
00090 PRINTEXT
00100 PRINTEXT
00110 PRINTEXT
00120 PRINTEXT
00130 PRINTEXT

mw0140 DEQT
00150 CHECK WAIT
00160 IF
00170 GETIMAGE CALL
00180 IF
00190 MOVE
00200 PRINTEXT
00210 PRINTNUM

START
$IMOPEN,$IMDEFN,$IMPROT,$IMDATA
768,BYTES
'V IDEOl, EDX002 '
NHIST=O
SCREEN=STA TI C
(END,OUT,$PF,STATIC)
roCB1
'CLASS ROSTER PROGRAM',SPACES=15,LINE=1
'HIT "ATTN" AND ENTER "END" TO END',SKIP=2
, THE PROGRAM'
'HIT ANY PROGRAM FUNCTION KEY TO' ,SKIP=2
, BRING UP THE ENTRY SCREEN'

ATTNECB, RESET
(ATTNECB,EQ,l),GOTO,ENDIT
$IMOPEN,(DSETNAME),(IMAGEBUF)
(XMPLSTAT+2,NE,-1)
ERRCODE, XMPLSTAT+2
'@IMAGE OPEN ERROR, CODE ='
ERRCODE

Figure 16-48. Program preparation (22)

c

c

c

o

o

o

The "DD" to the left of statement 80 and 140 will perform a block
delete of the statements that will be brought in as copy code. In
Figure 16-49, the ENTER key has been depressed, and the delete is
done.

EDIT ~-- EDITWORK, EDX002 63(243)---------------------- COLUMNS 001 072
COt'1r'lAND 1 NPUT ===-> SCROLL ="'=> HALF

***** ***** TOP OF DATA **
00010 XMPLSTAT PROGRAM
00020 EXTRN
00030 IMAGEBUF BUFFER
00040 DSETNAME TEXT
00050 IOCB1 IOCB
00060 IOCB2 IOCB
00070 ATTNLIST
00150 CHECK WAIT
00160 IF
00170 GETIMAGE CALL
00180 IF
00190 MOVE
00200 PRINTEXT
00210 PRINTNUM
00220 GOTO
00230 ENDIF
00240 CALL
00250 ENQT
00260 TERMCTRL
00270 CALL
00280 CALL

START
$IMOPEN,SIMDEFN,$IMPROT,$IMDATA
768,BYTES
'VIDE01,ASMVOL'
NHIST=O
SCREEN=STATIC
(END,OUT,$PF,STATIC)
ATTNECB,RESET
(ATTNECB,EQ,l),GOTO,ENDIT
$IMOPEN, (DSETNAME), (IMAGEBUF)
(XMPLSTAT+2 ,NE ,-1)
ERRCODE,XMPLSTAT+2
'@IMAGE OPEN ERROR, CODE ='
ERRCODE
ERRQUERY

$IMDEFN, (lOCB2) , (lMAGEBUF)
IOCB2
BLANK
$IMPROT, (IMAGEBUF) ,0
$IMDATA,(IMAGEBUF)

Figure 16-49. Program preparation (23)

In Figure 16-50, a COPY command is inserted, naming the copy code
module ROLL. When the assembler encounters the COPY statement,
it will go to the language control data set to find the copy code volume
definitions and locate the data set containing the copy code module.
The source statements in ROLL will be inserted at this point in the
source module, and assembled as part of ST ATSRC.

Program Preparation Using $EDXASM 16-35

16-36 SR30-0436

HALF
***** ***** TOP OF DATA **
00010 XMPLSTAT PROGRAM
00020 EXTRN
00030 IMAGEBUF BUFFER
00040 DSETNAME TEXT
00050 IOCB1 10CB
00060 IOCB2 10CB
00070 ATTNLIST
00071 *
00072 COpy
00073 *
00150 CHECK WAIT
00160 IF
00170 GET IMAGE CALL
00180 IF
00190 MOVE
00200 PRINTEXT
00210 PRINTNUM
00220 GOTO
00230 ENDIF
00240 CALL
00250 ENQT

START
$IMOPEN,$IMDEFN,$IMPROT,$IMDATA
768,BYTES
'V IDE01, EDX002'
NHIST=O
SCREEN=STATI C
(END,OUT,$PF,STATIC)

ROLL

ATTNECB,RESET
(ATTNECB,EQ,l),GOTO,ENDIT
$IMOPEN,(DSETNAME),(IMAGEBUF)
(XMPLSTAT+2,NE,-1)
ERRCODE,XMPLSTAT+2
'@IMAGE OPEN ERROR, CODE ='
ERRCODE
ERRQUERY

$IMDEFN,(IOCB2),(IMAGEBUF)
IOCB2

Figure 16-50. Program preparation (24)

The edit work data set is saved back into ST ATSRC using the WR ITE
function (Primary Option 4), and the source module is ready for
assembly.

c

Job Stream Procedure

o

\ U--'

o

You have seen how, once a source module has been created ($EDIT1 N
or $FSEDIT), the assembler ($EDXASM), linkage editor ($LINK), and
load module formatter ($UPDATE) may each be invoked in turn, using
the $L facility. Using a procedure file and $JOBUTI L, all three steps
may be run as a single job stream.

~ RUN STEP 2, STEP 3, STEP 4, AND

~ STEP 5 AS BATCH JOB STREAM

Figure 16-51. Job stream procedure

Appendix B, Figure B-4, is a listing of a batch job stream processor
($JOBUTI L) procedure file. The statements in a procedure file are
created using $EDIT1 N or $FSEDIT, and saved in a data set. In this
example, the procedure data set is STATPROC on EDX002.

When $JOBUTI L is loaded, the operator is prompted for the name of
a procedure file.

> I$L $JOBUTILI
$JOBUTIL 4P,OO:05:32, LP= 5FOO
ENTER PROCEDURE (NAME, VOLUME): I~ST=-:A:-=T=-=PR:-:-O~C I
Figure 16-52. Program preparation (25)

Program Preparation Using $EDXASM 16-37

16-38 SR30-0436

In Appendix B, Figure B-4, the JOB command at statement 10 causes
the display of a "job started" message on the loading terminal.

> I$L $JOBUTIL!
$JOBUTIL 4P,00:05:32, LP= 5FOO
ENTER PROCEDURE (NAME,VOLUME): I~ST~A~TP~R-O~cl
*** JOB - STATIC - STARTED AT 00:05:55 00/00/00 ***

JOB STATIC
Figure 16-53. Program preparation (26)

The LOG command (statement 20, Figure B4) will cause the procedure
file statements (other than internal comments) to print on the system
printer. Statements 120 through 190 will load and execute the
assembler. The source, work, and output data sets are specified in the
OS commands. The PARM command at statement 170 directs the
assembly listing to the system printer, and specifies STATE OX L as the
language control data set for this assembly (STATE OX L contains the
*COPYCOO statement for volume EOX003, where ROLL is stored).
The NOMSG command following the PARM prevents the $EOXASM
load message from being displayed on the loading terminal, but the
REMARK at statement 130 will appear.

> I$L $JOBUTI LI
$JOBUTIL 4P,00:05:32, LP= 5FOO
ENTER PROCEDURE (NAME,VOLUME): ISTATPROcl C
*** JOB - STATIC - STARTED AT 00:05:55 00/00/00 *** /1

JOB STATIC
REMARK ASSEMBLY OF. 'STATSRC' STARTED
Figure 16-54. Program preparation (27)

The normal completion code for an error-free assembly is -1. The
JUMP command !5tatement 200) tests the assembler completion code.
If it is not equal to minus 1, the JUMP will transfer control to the
label BAOASM, which is defined by the LABE L command at state
ment 410. The REMARK at 420 would be displayed on the loading
terminal, and the JUMP at 430 would transfer to label END, ending
the job.

c

o

o

o

Assuming normal assembler operation, $JOBUTI L would continue
with statements through 350, the link edit step.

Through the PAUSE command, $JOBUTI L allows input of job control
commands by an operator. To illustrate this capability, the link control
data set is not specified in a DS command. Instead, the PAUSE at state
ment 300 will allow entry of the link control data set name. When the
link procedure is entered, the two REMARK statements preceding the
PAUSE will be displayed, along with the PAUSE operator instructions,
and $JOBUTIL will wait for the operator to press ATTENTION and
enter a command.

> I$L $JOBUTIU
$JOBUTIL 4P,00:05:32, LP= 5FOO
ENTER PROCEDURE (NAME,VOLUME):I ~ST~A~T~PR~O~cl
*** JOB - STATIC - STARTED AT 00:05:55 00/00/00 ***

STATIC
ASSEMBLY OF 'STATSRC ' STARTED

JOB
REMARK
REMARK
REMARK

LINK EDIT OF 'ASMOUT ' OBJECT MODULE STARTED
NAME OF LINK CONTROL DATA SET ?

PAUSE-*-ATTN:GO/ENTER/ABORT

PAUSE
Figure 16-55. Program preparation (28)

The operator can continue (GO), enter a job control command
(ENTER), or abort the job stream processor and end the job (ABORT).
In this example, the operator wants to enter a command, so ENTER is
req"uested. The operator is prompted for the command and the com
mand operand. When GO is entered in response to the COMMAND
prompt, $JOBUTI L continues.

Program Preparation Using $EDXASM 16-39

> I$L $JOBUTI LI
$JOBUTIL 4P,00:47:17, LP= 5FOO C
ENTER PROCEDURE (NAME,VOLUME): ISTATPROcl ~/
*** JOB - STATIC - STARTED AT 00:47:26 00/00/00 ***

JOB
REMARK
REMARK
REMARK

STATIC
ASSEMBLY OF 'STATSRC ' STARTED
LINK EDIT OF 'ASMOUT ' OBJECT MODULE STARTED
NAME OF LINK CONTROL DATA SET ?

PAUSE-*-ATTN:GO/ENTER/ABORT

PAUSE
> IENTERI

ENTER COMMAND ~

ENTER OPERANDILINKSTAT\

ENTER COMMAND [§ill

Figure 16~6. Program preparation (29)

$JOBUTI L allows secondary or nested procedures to be invoked from
a primary procedure. To illustrate, the formatting job control state
ments have been defined as a nested procedure, stored in data set
FORMPROC.

00010 **
00020 * THIS IS A "NESTED" PROCEDURE, INVOKED FROM
00030 * I STATPROC I BY THE 'PROC ' COMMAND. $JOBUTIL
00040 * SUPPORTS ONE LEVEL OF NESTING.
00050 *
00060 REMARK FORMATTING OF 'LINKOUT ' STARTED
00070 PROGRAM . $UPDATE
00080 PARM $SYSPRTR LINKOUT STATPROG YES
00090 NOMSG
00100 EXEC
00110 EOP
Figure 16-57. Program preparation (30)

16-40 SR30-0436

c

c

o

o

o

The primary procedure (Appendix B, Figure B-4), after testing for a
successful link edit (JUMP command at statement 360), invokes the
nested procedure FORMPROC by the PROC command at statement
370. At the conclusion of the formatting step, control is returned to
the primary procedure at statement 380. If $UPDATE executed
properly, the job is ended without displaying the error message
(REMARK at 390).

>I$L $JOBUTILI
ENTER PROCEDURE (NAME, VOLUME): ISTATPROC I
*** JOB - STATIC - STARTED AT 00:05:55 00/00/00 ***

STATIC JOB
REMARK
REMARK
REMARK

ASSEMBLY OF 'STATSRC ' STARTED
LINK EDIT OF 'ASMOUT ' OBJECT MODULE STARTED
NAME OF LINK CONTROL DATA SET?

PAUSE-*-ATTN:GO/ENTER/ABORT

PAUSE
> IENTER I

ENTER COMMAND ~

ENTER OPERAND ILINKSTATI

ENTER COMMAND IGOI
REMARK FORMATTING OF 'LINKOUT ' STARTED

$JOBUTIL ENDED AT 00:10:18
Figure 16-58. Program preparation (31)

Figure B-5 in Appendix B is the $SYSPRTR output resulting from exe
cution of the $JOBUTI L procedure file STATPROC, including the
assembly listing with the ROLL copy code statements successfully
merged.

Program Preparation Using $EDXASM 16·41

c

This page intentionally left blank.

c

16-42 SR30-0436

o

o

o

OBJECTIVES

Section 17. Program Preparation Using $S1ASM

After completing this section, the student should be able to use
$S1ASM to assemble application programs written in Series/1
assembler and/or Event Driven language.

$SlASM MACHINE READABLE MATERIAL

Licensed program 5719-ASA is distributed from PID on a diskette with
a volume name of ASA001. Included on the diskette are the following
components:

1. Series/1 macro assembler ($S1ASM)

2. Linkage editor ($LI N K)

3. System definition file, procedure file, and link control file, for
use in system generation using $S1 ASM (5719-LM7 Macro
Library is a prerequisite for system generation using $S1ASM).

4. Source, procedure, and link control files for an installation
verification test program.

$S1 ASM, unlike $EDXASM, is a macro assembler. It will assemble
programs coded in Series/1 assembler language, such as USE R exit
routines, and when an operation code not in the Series/1 instruction
set is encountered, it wi II search a macro library for a macro of that
name. Licensed program 5719-LM7 is the macro library containing
macro prototypes for all the Event Driven language statements, and
must be installed if $S1ASM is to be used for assembling Event
Driven language programs, or to build tailored supervis~rs.

$S1 ASM runs under control of the Event Driven Executive supervisor,
so the system on which $S1ASM assemblies are run must also have the
Event Driven Executive Basic Supervisor and Emulator installed.
Program preparation aids and utilities are provided by the Event Driven
Executive Utilities.

Output object modules produced by $S1ASM assemblies must be
processed by $LINK before being formatted into executable load
modules by $UPDATE.

Program Preparation Using $Sl ASM 17-1

Note: For users who will be coding programs in the Event Driven lan
guage, the Pro~ram Preparation Facility is recommended. $EDXASM
is a direct assembler for the Event Driven language; no macro processing
is involved, and therefore performance is much higher than with
$S1ASM and the 5719-LM7 Macro Library.

INSTALLING $S1ASM

I nstallation procedures for the Series/1 macro assembler are in the
Program Directory, shipped with the program from PI D. As with the
other Event Driven Executive program offerings, the $COPYUT1
utility is used to transfer the contents of PI D diskettes to disk. If the
installation instructions in the Program Directory are followed, .
$S1ASM will reside on logical volume ASMLIB on disk.

$S1ASM OPERATION

$EDIT1N
$FSEDIT

/
/

/

$JOBUTIL

/

/
/

/

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Utilities, Operator Commands, and Program Preparation (SC34-0313),
"Program Preparation Using $S1ASM."

F igu re 17-1 out I i nes the steps requ i red to prepare programs for execu
tion using the $S 1 ASM macro assembler.

STEP1: CREATE SOURCE MODULE. MAY BE
SERIES/1 ASSEMBLER LANGUAGE CODE
AND/OR (IF 5719-LM7 MACRO LIBRARY IS
INSTALLED) EVENT DRIVEN LANGUAGE

$S1ASM

I

/
/

/

/

,

/
/

STEP 2: ASSEMBLE SOURCE MODULE
(PRODUCES OBJECT MODULE)

$L1NK

STEP 3: LINK EDIT OBJECT
MODULE (REQUIRED)

/ STEP 4: FORMAT OBJECT MODULE
INTO RELOCATABLE LOAD MODULE $UPDATE

--------------..
-------~

Figure 17-1. $S1ASM program preparation overview

1 Z-2 SR30-0436

C1

/'

c

c

o

Data Set Requirements

o

o

The program preparation steps illustrated in Figure 17-1 closely
parallel those required for program preparation using $EDXASM
(see Section 16, Figure 16-1), but with the following differences:

1. The source module may contain Series/1 assembler language
code and/or have references to user-written macros.

2. The link edit step is mandatory, even if the assembled program has
no external references. The object modu Ie produced by a
$S1 ASM assembly cannot be formatted into a load module by
$UPDATE without first being processed by $LINK.

$S1ASM uses three work data sets, which must be allocated by the
user.

> I$L $DISKUT11
$DISKUT1 37P,00:21:02, LP= 8300

USING VOLUME EDX002

COMMAND (?): AL ASAWORK1 2000
DEFAULT TYPE = DATA - OK? Y
ASAWORK1 CREATED

COMMAND (?): AL ASAWORK2 2000
DEFAULT TYPE = DATA - OK? Y
ASAWORK2 CREATED

COMMAND (?): AL ASAWORK3 800
DEFAULT TYPE = DATA - OK? Y
ASAWORK3 CREATED

COMMAND (?): lEND I

$DISKUT1 ENDED AT 00:22:13

Figure 17-2. Allocate work files

The file sizes shown in Figure 17-2 are not unusually big for $S1 ASM
work data sets, and may have to be increased to accommodate a large
assembly. Note that WORK1 and WORK2 must be of equal size.

In addition to the three work files, $S1ASM also requires:

• A source data set containing the statements to be assembled

• An object output data set in which the object module produced by
the assembly will be stored

• If the source file contains macro references (Event Driven language
statements or references to user-coded macros), at least one, and
optionally two volume names must be supplied, on which reside the
macro prototypes referenced in the source module

Program Preparation Using $Sl ASM 17-3

0 1_--'
• o

I

SOU RCE MODU LE

-OR-

CC>~

$S1ASM

-OR-

o ,--I _----I

• o
I

MACLIB 1

OBJECT MODULE
OUTPUT (I NPUT
FOR $L1NK)

AT LEAST ONE
REQUIRED IF MACRO
INSTRUCTIONS
CODED IN SOURCE
MODULE

Figure 17-3. $S1ASM data set requirements

17-4 SR30-0436

At load time, the operator is prompted for source, work, and output
data set names.

MACLIBl (?)= IEDX0031

MACLIB2 (?):

ENTER OPTIONS (?):

SlSOURCE
ASAWORKl
ASAWORK2
ASAWORK3
ASMOBJI

LP= 8300

ENTER OUTPUT DEVICE NAME:

CPAOOOI ASSEMBLER STARTED
Figure 17-4. $S1ASM load

c

o
In Figure 17-4, volume EDX003 is specified as MACUB1. When
macro references are encountered in source data set S1 SOU RCE,
volume EDX003 will be searched for the appropriate macro. Assuming
S1S0URCE contains Event Driven language statements, EDX003
would contain the Event Driven Executive Macro Library.

If required, a second volume may be specified (MACLI B2 (?): prompt),
in which case the second volume would be searched if a required macro
were not found on the volume specified as MACLlB1.

In Figure 17-4, the default assembler options are taken, and the output
is defaulted to $SYSPRTR (null response to both prompts). With the
default assembler options, $S1ASM printed output can be voluminous,
so you may wish to exercise options to suppress certain parts of the
listing (see reading assignment for available options).

$S1ASM/$JOBUTIL INTERFACE

$S1 ASM, like $EDXASM, may be executed under control of the job
stream processor, $JOBUTI L, using job control statements in a proce
dure file. In Figure 17-5, the job control statements in the procedure
file at the right are the equivalents of the operator response sequence
at the left.

JOB JSPEXMPL
~--r:~~~t-------------~ROGRAM $S 1 ASM ,ASML I B

S SlSOURCE SlSOURCE D
ASAWORKl S ASAWORKl
ASAWORK2 D S ASAWORK2
ASAWORK3 D S ASAWORK3
ASMOBJI D S ASMOBJ

LP= 8300 PARM ~EDX003
+~EO~X~EJCC /

MACLIBl (?)::EDX003~ ____ ~

MACLIB2 (?): _ .r----
ENTER OPTIONS (?): L-_---1"------

ENTER OUTPUT DEVICE NAME:

Figure 17·5. $JOBUTIL procedure

All program preparation steps other than the actual assembly are
identical for $S1ASM and for $EDXASM. See the appropriate topics
in "Section 16. Program Preparation Using $EDXASM" for informa
tion on creating a source module, the link edit step, and formatting
a linked object module into a relocatable load module.

Program Preparation Using $S1ASM 17·5

c

This page intentionally left blank. c

c
17-6 SR30-0436

o

o

OBJECTIVES

Section 18. Session Manager

At the conclusion of this section, the student should be able to:

1. Describe basic Session Manager operation

2. Use the Session Manager to run system utilities/program
preparation programs

SESSION MANAGER OVERVIEW

Throughout this study guide, you have seen numerous examples of the
use of the $L operator command to load programs and system utility
programs, as illustrated in Figure 18-1.

> $L $UTILITY,volume dsname,volume

SUPERVISOR

$UTILITY

Figure 18-1. Load utility using $L

Session Manager 18-1

18-2 SR30·0436

In general, the following statements are true about the use of the $L
operator command:

1. All data sets required by the program or utility being loaded,
using the $L command, must be allocated by the user, prior to
the load operation, using $DISKUT1.

2. All data set names referenced by the program or utility to be
loaded (which are not already specified in the DS= list of the
PROG RAM statement) must be supplied by the operator each
time the program or utility is loaded, even in a repetitive execu
tion environment such as program assembly and debug.

3. All execution time options, such as output device, listing options,
etc., are requested with each load of the program/utility, even if
the responses are identical to previous executions and/or even
if the default options (null entry) are acceptable.

In "Section 16. Program Preparation Using $EDXASM", you were
introduced to $JOBUTI L, the job stream processor utility. Byalloca
ting ($DISKUT1) and then creating ($FSEDIT, $EDIT1N) a job control
procedure data set, a job can be run under control of $JOBUTI L,
as illustrated in Figure 18-2 below.

> $L $JOBUTIL,volume procname,volume

PROGRAM
OS
EXEC
EOJ

$UTILITY,volume
dsname,volume

Figure 18·2. Loading utility using $JOBUTI L

SUPERVISOR

$JOBUTIL

$UTILITY

c

o

o

o

$JOBUTI L, therefort::, relieves the operator of the burden of having to
remember and reenter each data set name and execution option with
each reload of a uti lity or program. The data set names and options
need only be entered once, into the job control procedure file. As
long a r the data sets and options described in the procedure file
match the execution environment desired, all the operator needs to
know is the name of the procedure file.

Although $JOBUTI L provides obvious productivity advantages over
the direct loading of programs and utilities using the $L operator
commands, a certain level of knowledge about the system must be
attained before it can be used.

A thorough understanding of $JOBUTI L operation, the meaning and
organization of job procedure statements within a procedure file, and
which programs or utilities might most profitably be run under
$JOBUTI L are necessary before procedure files can be created.

A procedure file, once created, is useful only so long as all data sets
and operating parameters within that file exactly match the desired
operation. If a single data set name or execution option is to be
changed, the operator must

1. Use the $L command to load the program or utility directly,
in which case, not only the changed data set name or option,
but all data set names and options must be entered

or
2. Use $FSEDIT or $EDIT1N to make the required change in

the procedure file

I n summary, the $L command is the most flexible facility for loading
programs and utilities. At each load, the operator has the opportunity
to change any or all options or data set names required by the program
being loaded. The drawbacks of this method are that a large number
of keystrokes is required, with the attendant possibility of operator
input error; the operator must remember what may be a large number
of data set names, all of which must be spelled correctly; and that all
of the above is true each ti me the load is repeated, whether changes
are required or not.

On the other hand, $JOB UTI L, with its associated job control proce
dure files, is the most efficient means of loading programs and
utilities, but lacks flexibility. If a change is required, the user must
revert to the $L facility, or edit a procedure file, and must have a
fair amount of system experience to create the procedures initially.

The Session Manager is a productivity aid designed to take advantage
of the efficiencies of $JOBUTI L, without losing the flexibility of the
$L operator command.

Session Manager 18-3

18-4 SR30-0436

The overall concept of Session Manager operation is illustrated in
Figures 18-3 and 18-4. When a terminal user logs on (loads) the
Session Manager, a menu of options is displayed on the screen. The
operator enters the number associated with the option desired (Part A,
Figure 18-3).

A

___ Jo

)1 ----" -
1. LOAD $UTI LI TY

2. -------

3.-------
I
I
I
I
I

, I ,
, I ,

'\1-'

ENTER DATA
B SET NAME:

c

S
PROGRAM
OS
EXEC
EOJ
~

$UTILITY,volume
dsname,volume

Figu re 18-3. Session manager overview (1)

SUPERVISOR

SESSION MANAGER

SESSION MANAGER
CONTROL PROGRAM

PROCESS MENUS

BUILD JOB
CONTROL
PROCEDURE FILE

If the utility being loaded requires data set names or execution param
eters, the Session Manager will display a parameter entry screen (Part B,
Figure 18-3).

The Session Manager uses the operator input from the option and
parameter entry screens to build a $JOB UTI L job control procedure
file (Part C, Figure 18-3).

c

c

o

C
-_···,

I
I

o

After all inputs required to complete the procedure file have been
entered, the Session Manager loads $JOBUTI L, passes it the procedure
file, and the program is loaded, and executed under control of the job
stream processor (Figure 18-4).

PROGRAM
OS
EXEC
EOJ

Figure 18-4. Session manager overview (2)

SUPERVISOR

SESSION MANAGER

$JOBUTIL

$UTILITY

The next time the same option is chosen (Part A, Figure 18-3), the
Session Manager will again display the parameter entry screen (Part B,
Figure 18-3), allowing the operator to make changes, if desired. If
no change from the previous execution is required, the operator just
presses ENTE R (null entry), and the Session Manager uses the parameters
established in the previous execution again.

Without knowledge of job stream processor operation or job control
procedure statements, the operator is able to take advantage of the
efficiencies of running under $JOBUTI L, while retaining the flexibility
of easy alteration of execution parameters.

Session Manager 18-5

SESSION MANAGER OPERATING CONCEPTS

Definition of Terms

Menus

Decision Tables

Procedures

18-6 SR30-0436

READING ASSIGNMENT: IBM Series/1 Event Driven Executive
Operator's Reference Message and Codes (SC34-1703), "Session
Manager."

Note: The following discussion is intended to convey the general
concepts of Session Manager organization and operation, not the
actual detail. The menus, procedures, and decision tables shown in
the illustrations are abbreviated and simplified for clarity.

I n discussing the Session Manager, the term "menu" is frequently used,
usually in the context of "Primary Option Menu", "Secondary Option
Menu", or "Parameter Selection Menu." A menu is nothing more than
a full screen image on a 4978/4979/3101 M2 Display. Primary and
secondary option menus usually consist of a numbered list of possible
functions. To invoke a function, the operator enters the number of
that option. For parameter selection menus, the operator fills in data
entry areas with data set names, run parameters, etc., for the utility
being invoked.

Decision tables are associated with option menus, and are used by the
Session Manager to decide what to do when a given option in an
option menu is selected. For every option in an option menu, there
is a corresponding entry in that menu's associated decision table. That
decision table entry may direct the Session Manager to display another
option menu, to display a parameter selection menu, or, if the option
selected requires no further menus, to submit a procedure file to
$JOBUTI L for execution.

A procedure is a $JOBUTI L procedure file used by the Session
Manager to execute programs/utilities selected by entry of menu
options. Parameters and data set names required by some utilities are
filled in with entries from parameter selection menus, and the proce
dure is passed to $JOBUTI L and executed as a result of option menu
decision table entries.

c

c

c

o

-., 0
-""

o

The relationship between option menus, option menu decision tables,
parameter selection menus, and $JOB UTI L procedures is illustrated
in Figures 18-5 through 18-7. In Figure 18-5, the operator has
selected option 1, Text Editing, from the primary option menu. The
corresponding entry in the primary option decision table directs the
Session Manager to pass a procedure control file to $JOBUTI L
which will load the full screen text editor, $FSEDIT. No secondary
option menu is necessary, because $FSEDIT is the only text editor
that the session manager supports, and therefore no choice
of editors need be made.

PRIMARY OPTION MENU PRIMARY OPTION DECISION TABLE

.----.\ 1 ------1._
----,,'
1. TEXT EDITING
2. PROGRAM PREP
3. DISK UTI LlTI ES
etc.

1. EXECUTE$FSEDITPROC~E=D=U~R~E=-______________ __
2. DISPLAY PROG PREP SECONDARY OPTION MENU
3. DISPLAY DISK UTILITIES SECONDARY OPTION MENU
etc.

$JOBUTIL PROCEDURE FILE

PROGRAM}
DS LOAD THE FULL SCREEN
EXEC EDIT UTILITY $FSEDIT
EOJ

Figure 18-5. Session manager operation (1)

$FSEDIT needs no parameters, so a parameter selection menu is not
required. '

Note: $FSEDIT does require an edit work data set, but this data set
is automatically allocated by the Session Manager when the terminal
operator "Iogs on" to the session manager, and the name of the data
set is automatically passed to the $FSED IT procedure control file, so
the operator is not required to supply the edit work data set name
when the Text Editing (option 1) function is requested.

I n Figure 18-6, the operator has chosen option 3, Disk Utilities, on
the primary option menu. Since there are several disk utility programs,
the primary option decision table entry for option 3 directs the Session
Manager to display a secondary option menu, so that the operator may
choose which disk utility program to load.

Session Manager 18·7

PRIMARY OPTION MENU

----\ 3
----,.' ---
1. TEXT EDITING
2. PROGRAM PREP
3. DISK UTI L1TI ES
etc.

----\ 1 ___ -yO _-__

1. $DISKUT1
2. $DISKUT2
3. $COPYUT1
etc.

PRIMARY OPTION DECISION TABLE

1. EXECUTE $FSEDIT PROCEDURE
2. DISPLAY PROG PREP SECONDARY OPTION MENU
3. DISPLAY DISK UTILITIES SECONDARY OPTION MENU
etc.

SECONDARY OPTION DECISION TABLE

1. EXECUTE $DISKUT1 PROCEDURE
2. EXECUTE $DISKUT2 PROCEDU RE
3. EXECUTE$COPYUT1PROCEDURE
etc.

$JOBUTIL PROCEDURE FILE

PROGRAM}
EXEC
EOJ

LOAD DISK
UTI L1TY DISKUT1

Figure 18-6. Session manager operation (2)

c

On the secondary option menu for the disk util ities, the operator has C
chosen option 1, $DISKUT1. Because $DISKUT1 requires no execution
parameters or data set names, the secondary option menu decision

18-8 SR 30-0436

table entry for option 1 directs the Session Manager to pass the
$DISKUT1 load procedure to $JOBUTI L, which will result in the
load of $DISKUT1.

In Figure 18-7, the operator has chosen primary option 2, Program
Preparation. Several different programs and utilities may be used
in program preparation, so the primary option menu decision table
entry directs the Session Manager to display the program preparation
secondary option menu.

c

o

" 0
,

o

PRIMARY OPTION MENU PRIMARY OPTION DECISION TABLE

----\ 2
----,' ~~

1. TEXT EDITI NG
2. PROGRAM PREP
3. DISK UTILITIES
etc.

SECONDARY OPTION MENU

1. EXECUTE $FSEDIT PROCEDURE
2. DISPLAY PROG PREP SECONDARY OPTION M;;;.;EN~U:;;......-__

3. DISPLAY DISK UTILITIES SECONDARY OPTION MENU

etc.

------\ 1 --------.1',
----,,' 1. DISPLAY $EDXASM PARM SELECTION MENU
1. $EDXASM ASSEMBLY - EXECUTE $EDXASM PROCEDURE

====~~--------~
2. $S1ASM ASSEMBLY 2. DISPLAY $S1ASM PARM SELECTION MENU
3. $COBOL COMPILE - EXECUTE $S1ASM PROCEDURE

etc. 3. DISPLAY $COBOL PARM SELECTION MENU
- EXECUTE$COBOLPROCEDURE

PARAMETER SELECTION
MENU

SOURCE --- ;·S1S0URCE
OUTPUT :-::1:. ASMOB~
OPTIONS :=:~:. NOLlST~

etc.

Figure 18-7. Session manager operation (3)

$JOBUTIL PROCEDURE FILE

PROGRAM
DS
DS
DS
PARM
EXEC
EOJ

LOAD
$EDXASM
ASSEMBLER

On the secondary option menu, the operator chooses option 1,
$EDXASM assembly. Since input and output data set names, as well
as execution options may vary from one assembly to the next, the
first part of the secondary option menu decision table entry for
option 1 directs the Session Manager to display a parameter selection
menu for $EDXASM.

If no previous assembly has been done, the data set name and option
entry areas on the screen will appear blank, and will be filled in at
this time by the operator. If a previous assembly has been done, the
data set names and assembler options used for the last assembly will
be displayed. The operator may change items as necessary, or, if
everything is the same as the previous assembly, may use all the same
parameters, by pressing ENTE R (null entry).

Session Manager 18-9

I n any event, when the ENTE R key is pressed, the Session Manager
transfers the data from the parameter selection menu to the job control C
procedure. Then, under direction of the second part of the secondary .. /
option menu decision table entry for option 1, the procedu re is passed
to $JOBUTI L for execution.

USING THE SESSION MANAGER

The Session Manager is, to a large extent, self-tutoring, and is most
easily learned by actually using it. However, in an attempt to convey
at least an idea of what it is like to use the session manager, the three
option selection sequences illustrated in Figures 18-5 through 18-7
will be repeated, this time using actual screen images that an operator
would see while performing these operations.

LOADING THE SESSION MANAGER

18-10 SR30-0436

A 4978/4979/3101 M2 terminal is logically attached to the Session
Manager by entering the $L command shown in Figure 18-8.

> $L $SMMAIN

Figure 18-8. Session manager example (1)

Note: The Session Manager may be automatically brought up on all
4978/4979/3101 M2 terminals on the system, at IP L. See the reading
assignment for details.

c

o

o

o

When the load command is honored, the LOGON screen in Figure 18-9
will appear. The session manager requires a unique 1 to 4 character
user 10 for each user. For this exercise, the characters XMP L are
entered.

1SMMLOG: THIS TERMINAL IS LOGGED ON TO THE SESSION ~1ANAGER u; __ u ___ u_u ____ u

ENTER 1-4 CHAR USER 10 ==> ~ 02:12:17
(ENTER LOGOFF TO EXIT) 00/00/00

ALTERNATE SESSION MENU ==>
(OPTIONAL)

Figure 18-9. Session manager example (2)

The "ALTERNATE SESSION MENU" prompt below the user 10
prompt would be used if you had created your own menus, decision
tables, and procedures for use with the Session Manager.

Session Manager 18-11

Data Set Allocation

18-12 SR 30-0436

After entering the user I D and pressing the ENTE R key, the screen
shown in Figure 18-10 appears.

SESSION MANAGER ALLOCATI NG WORK DATA SETS

Figure 18-10. Session manager example (3)

When a user logs on to the Session Manager, the Session Manager
allocates six data sets on EDX003. The names, sizes, and functions
of these data sets are shown in Figure 18-11.

o

c

o SIZE
(records)

$SMPxxxx 30

$SMWxxxx 30

$SMExxxx 400

SSM 1 xxxx 400

$SM2xxxx 400

$SM3xxxx 250

USED BY THE SESSION MANAGER TO SAVE
PARAMETERS ENTERED FROM PARAMETER
SELECTION MENUS DURING PREVIOUS SESSIONS
UNDER SAME USER ID

USED BY SESSION MANAGER TO SUBMIT PROCE
DURES TO $JOBUTI L FOR EXECUTION

USED AS A WORK FILE FOR:

$ $ $ $
F E S L

S D 1 I
E X A N

D A S
I S M
T M

X

X X X

X X

X

K

$ $ $
C F P

0 0 L
B R I

0 T
L R

A
N

X X X

X X X

X X

o Figure 18-11. Session manager data set allocation

o

The first four characters of each data set name is as depicted in
Figure 18-11. The last 1 to 4 characters will be the user I D entered
on the LOGON screen (Figure 18-9). I n this case, the data sets
would be named $SMPXMPL, $SMWXMPL, etc.

When attempting to allocate data sets, the Session Manager first checks
to see if the data sets already exist, and if they do, will use those already
there. If a user has allocated data sets (with the proper names) using
$DISKUT1, the user-allocated data sets will be used.· This allows a
user to define larger data sets than would the Session Manager, if the
siz.es allocated by the Session Manager prove too small.

Session Manager 18-13

18·14 SR30·0436

After data sets have been allocated, the primary option menu in
Figure 18-12 will appear. -

~~~. SESSION MANAGER PRIMARY OPTION MENU ---------------------------------
ENTER/SELECT PARAMETERS: PRESS PF3 TO EXIT 

SELECT OPTION ==>m 

1 - TEXT EDITING 
2 - PROGRAM PREPARATION 
3 - DATA MANAGEMENT 
4 - TERMINAL UTILlTlES 
5 - GRAPHICS UTILITIES 
6 - EXEC PROGRAM/UTI LITY 
7 - EXEC SJOBUTI L PROC 
8 - COMMUNICATION UTILITIES 
9 - DIAGNOSTIC AIDS 

Figure 18·12. Session manager example (4) 

XMPL 

The operator enters option 1 for TEXT EDITING, and the screen in 
Figure 18-13 appears. 

SFSEDIT 30P, LP= 9100 

DSl HAS NOT PREVIOUSLY BEEN USED 
AS AN EDIT WORK DATA SET. 

IS IT OK TO USE IT NOW? m 

Figure 18·13. Session manager example (5) 

c 

c 

c 



o 

o 

o 

The "IS IT OK TO USE IT NOW?" prompt appears because $SMEXMPL, 
the text editor work data set, was just allocated, and the data is not 
in a format $FSED IT recognizes. After once being used for this purpose, 
the prompt will not reappear. 

After responding YES to the prompt, the primary option menu for 
$FSEDIT is displayed, just as it would if $FSEDIT had been loaded 
using the $L operator command (Figure 18-14). 

------------------------- $FSEDIT PRIMARY OPTION MHJU -----------------------------
SELECT OPTI ON ===> 

1 llROWSE - DISPLAY DATASET 
2 EDIT - CREATE OR CHANGE DATASET 
3 READ - READ DATASET FROM HOST/NATIVE 
4 WRITE - I.JRITE DATASET TO HOST/NATIVE 
5 SUGMIT - SUllMIT GATCH JOG TO HOST SYSTEM 
6 LIST - PRINT DATASET ON SYSTEf4 PRINTER 
7 ~\ERGE - MERGE DATA FROM A SOURCE DATASET 
!l END - TERMINATE $FSEDlT 
9 HELP - DI SPLAY TUTOR) AL 

Figure 18-14. Session manager example (6) 

When option 8, "TERMINATE $FSEDIT" is entered, the screen in 
Figure 18-15 appears. 

srSEDIT EfWED AT 02:13:38 

SJOGUTIL EfWED AT 02:13:38 

DEPRESS EtHER KEY TO RETURfJ 

Figure 18-15. Session manager example (7) 

Session Manager 18-15 



18-16 SR30-0436 

After a utility loaded by the Session Manager is ended, the ENTE R 
key must be pressed. to return to Session Manager control. Control is 
returned to the last Session Manager menu displayed before the utility 
was loaded, in this case, the Session Manager primary option menu 
(Figure 18-16). 

,"';1 .;11: SESSION r~ANAG[R PRINARY OPTION NEfW ---------------------------------
NTERISELECT PARAt-1ETERS: PRESS PF 3 TO EXIT 

SELECT OPTION'·<> OJ 

I - TEXT EOITING 
2 - PROGRAt-l PREPARATION 
'3 - DATA f1.I\NAGEt-iENT 
'I - TEHmNAL UTILITIES 
~i - GRAPHICS UTILITIES 
6 - EXEC PROGRAf-1jUTlLlTY 
7 - EXr.C $JOBUTIL PROC 
t~ - COMt'lUNI CAT ION UTI L1T1 ES 
9 - DIAGNOSTIC AIDS 

Figure 18-16. Session manager example (8) 

XMPL 

This time, the operator enters option 3 for DISK UTI LITIES, bringing up 
the data management util ities' secondary option menu in Figure 18-17 . 

... _. ,ESSION MANAGER DATA MANAGEMENT OPTION MENU----------------------------
~mRlsELECT PARAMETERS: PRESS PF3 TO RETURN 

SELECT OPTION ==> ill 

1 - $DISKUTl (DISK(ETTE) ALLOCATE, LIST DIRECTORY) 
2 - $DISKUT2 (DISK(ETTE) DUMP ILIST DATASETS) 
3 :. $COPYUTl (DISK(ETTE) COpy DATASETS/VOLUMES) 
4 - $COMPRES (DISK(ETTE) COMPRESS A VOLUME) 
5 - $COPY (DISK(ETTE) COpy DATASETS/VOLUMES) 
6 - $DASDI (OISK(ETTE) SURFACE INITIALIZATION) 
7 - $INITDSK (DISK(ETTE) INITIALIZE/VERIFY) 
8 - $MOVEVOL (COpy DISK VOLUME TO MULTI-DISKETTES) 
9 - $IAMUTl (INDEXED ACCESS METHOD UTI LITY PROGRAM) 

10 - $TAPEUTl (TAPE ALLOCATE, CHANGE. COPY) 

WHEN ENTERING THESE UTILITIES, THE USER IS EXPECTED 
TO ENTER A COMMAND. IF A QUESTION MARK (?) IS ENTERED 
INSTEAD OF A COMMAND, THE USER WI LL BE PRESENTED WITH 
A LIST OF AVAILABLE COMMANDS. 

Figure 18-17. Session manager example (9) 

c 

c 

c 



o 

o 

o 

Entering option 1 on the secondary option menu results in the load of 
$DISKUT1, as shown in Figure 18-18. 

$DISKUTl - DISK(ETTE) DATA MANAGEMENT UTILITY 
*** JOB - $DISKUTl - STARTED AT 02:14:4900/00/00 *** 

JOB $DISKUT1 (SSMP030l) USERID=XMPL 

USING VOLUME EDX002 

COMMAND (?): [ffQ] 

$DISKUTl ENDED AT 02: 15:00 

$JOBUTIL ENDED AT 02:15:01 

DEPRESS ENTER KEY TO RETURN 

Figure 18·18. Session manager example (10) 

When the utility is ended, and the ENTER key depressed, the Session 
Manager regains control, returning to the last screen displayed 
(Figure 18-19). 

$SMM03: SESSION MANAGER DATA MANAGEMENT OPTION MENU----------------------------
ENTER/SELECT PARA~IETERS: PRESS PF3 TO RETURN 

SELECT OPTION ==> 

1 - $DISKUTl (DISK(ETTE) ALLOCATE. LIST DIRECTORY) 
2 - $DISKUT2 (DISK(ETTE) DUMP/LIST oATASETS) 
3 - $COPYUTI (DISK(ETTE) COpy DATASETS/VOLUMES) 
4 - SCOMPRES (DISK(ETTE) COMPRESS A VOLUME) 
5 - SCOPY (01 SK(ETTE) COpy DATASETS/VOLUMES) 
6 - SDASDI (oISK(ETTE) SURFACE INITIALIZATION) 
7 - $INITDSK (DISK(ETTE) INITIALIZE/VERIFy) 
8 - $MOVEVOL (COPY 01 SK VOLUME TO MULTI -01 SKETTES) 
9 - $IAMUn (INDEXED ACCESS METHOD UTILITY PROGRAM) 

10 - $TAPEUTl (TAPE ALLOCATE, CHANGE, COPY) 

WHEN ENTERING THESE UTILITIES. THE USER IS EXPECTED 
TO ENTER A COMMAND. IF A QUESTION MARK (?) IS ENTERED 
INSTEAD OF A COMMAND, THE USER WILL BE PRESENTED WITH 
A LIST OF AVAILABLE COMMANDS. 

Figure 18·19. Session manager example (11) 

Session Manager 18-17 



18-18 SR30-0436 

To do Program Preparation, the operator now must return to the primary 
option menu. To return to a previous screen, press PF3 (Figure 18-20). 

,J.)i';.' i1~: SESSiON ~lANAGER PRIMARY OPTION NENU ---------------------------------
ENTEfl/~,ELECT PARf-It4ETERS: PRESS PF 3 TO EX IT 

SEl.ECT OPTION .0:> 

1 - TEXT EDlT1NG 
? - PROGfW1 PREPARATION 
3 - OAIA ~~NAGEi-1ENT 
4 - TERMINAL UTILITIES 
S - GRAPHICS UTILITIES 
6 - EXEC PROGR;",M/UTILITY 
7 - EXEC $JOBUTI L PROC 
fl - COMMl.INICflTlON UTILITIES 
9 - D!t,GNOSTIC P,IDS 

Figure 18-20. Session manager example (12) 

XMPl 

When option 2 is entered on the primary option menu, the program 
preparation secondary option menu is displayed (Figure 18-21). 

S:>M~·102: SESSION ~iMltIGER PR(jGRA~l P;~EPARi\TION OPTION t·1ENlI------------------------
ENTER/SELECT P,IIRilt';ETERS: i'Rt.:..S pr3 TO HETURN 

SELECT OPTION ,,=> 

1 - SEDXASt·l Cor~PIl.EH 
2 - SS lASH AS SEM!lL Ef~ 
3 - SC0130L COt,~P! LER 
4 - SFOHT FORTRAN CO~'PILER 
~i - SLIW: LlNKtlGE EDITOR 
6 - $UPD;\TE 
7 - SUP[)l\TEH (HOST") 
g - $PR£FIND 
':1 - SEDXAS~1iSLlNY-I$tJPDflTE. 

I() - SPLl CO~lPILERISLlNK/SUPDATE 

Figure 18-21. Session manager example (13) 

c 

c 



o 

o 

o 

The operator enters option 1, the $EDXASM assembler, and the 
$EDXASM parameter selection menu is displayed (F igure 18-22). 

~$$i'iM20I. SESSION MANAGER $EDXASt~ PARAMETER INPUT MENU-------------------------
NTER/SElECT PARAMETERS: PRESS PF3 TO RETURN 

SOURCE INPUT (NAME, VOLUME) ==> 

OBJECT OUTPUT (NAME,VOLUME) ==> 

OPTIONAL PARAMETERS ==> 
(SELECT FROM THE LIST BELOW) 

--AVAILABLE -PAAAMETERS~--- --------- ------------ ------------ ----------------- ----
NOLIST 
LIST TERMINAL-NAME (WHERE TERMINAL-flAME IS OPTIONAL) 
ERRORS TERMINAL-NAME (WHERE TERMINAL-NAHE IS OPTIONAL) 
CONTROL DATASET, VOLUME 
OVERLAY (iI) (WHERE l' IS NUMBER OF ,~REAS FROH 1 TO 6) 

DEFAUL T PARAMETERS: 
LIST $SYSPRTR 

Figure 18-22. Session manager example (14) 

I n Figure 18-22, the source input, object output, and optional 
parameter entry areas are blank. This indicates that this is the first 
time that $EDXASM has been invoked under this user ID (XMPL). 
The Session Manager saves input parameters between executions of 
a program within a session, and across sessions of the same user I D 
(data set $SMPxxx in Figure 18-11). If $EDXASM had previously 
been used with user I D XMPL, the previously entered parameters 
would appear in Figure 18-22. 

Session Manager 18-19 



18-20 SR30-0436 

The operator enters the parameters as shown in Figure 18-23. 

~Ol: SESSION MANAGER $EDXASM PARAMETER INPUT MENU-------------------------
~NT£R/SELECT PARAMETERS: PRESS PF3 TO RETURN 

SOURCE INPUT (NAME,VOLUME) "'=> SOURCE 

OBJECT OUTPUT (NAME. VOl.UME) ,~,,> ASMOUT 

OPTIONAL PARAMETERS ==> NOLIST 
(SELECT FROM THE LIST [)ELOW) 

AVAI LABLE PARAMETERS; 
NOLIST 
LIST TERMINAL-NAJ'.lE (WHERE TER."1INAL-NAJ'.lE IS OPTIONAl.) 
ERRORS TERMINAL-NAME (WHERE TERNINAL-NI'JlE IS OPTIONAL) 
CONTROL DATASET. VOLUME 
OVERLAY (Ii) (WHERE r I S NU~lBER OF AREAS FROM 1 TO 6) 

DEFAULT PARAMETERS: 
LIST SSYSPRTR 

Figure 18-23. Session manager example (15) 

Before pressing the ENTE R key, assume the operator notices that 
the output data set name is ASMOUT, when it should actually be 
ASMOBJ. The operator can, using the cursor movement keys, position 
the cursor so as to correct the erroneous spelling, or can press PF2, 
resulting in the screen in Figure 18-24. 

SNM0201: SESSION J'.lANt,GER $EDXAS~l PARA~lETER INPUT MENU-------------------------
E'TER/SELECT PARAMETERS: PRESS PF3 TO RETURN 

SOURCE INPUT (NAME. VOLUME) ==> 

OBJECT OUTPUT (NAME, VOLUME) ", .... > 

OPT! ONAL P,l'lRAMETEf!S ""> 
(SELECT FROM THE LIST BELOW) 

AVAILABLE PARA~lETERS: 
NOLIST 
LIST TERMINAL-NAME (WHERE TERMINAL-NANE IS OPTIONAL) 
[flRORS TERMINAL-NAME (WIIERE TERMINAL-NA."1E IS OPTIONf,L) 
CONTROL DATASET. VOLUME 
OVERLAY ( .. ) (WHERE:: IS NU~lBER OF AREAS FROM 1 TO 6) 

DEFAULT PARAMETERS: 
LIST $SYSPRTR 

Figure 18-24. Session manager example (16) 

c 

c 

c 



o 

o 

o 

PF2 returns a menu to the state it was in when it was initially displayed, 
before operator entries were made to alter it. PF2 may be pressed any 
time before pressing ENTE R, which signals completion of entry to 
a screen. 

After reentering the parameters, this time with the correct spelling for 
the object output data set name, the $EDXASM parameter selection 
menu looks like Figure 18-25 . 

. S~~tt1201: SESS!Oii /<1J\NAGER $EDXf'\Si~ PARAr-1ETER INPUT f,1ENU---------------------
[:fIU/SELECT PARAt·'EiEf~S: DEPRESS PF3 TO RfTURi. 

SOURCE INPUT (NAt'1E, voum:) ==> SOURCE 

Og,lECT OUTPUT (NAl-lE, vou;;,;E) =~> ASMOBJ 

02: 17: 20 
00100100 
XMPL 

ENTER OPTIONAL PARAt'HERS BY POSITION ==> [.;oUST 
1------- --2-- --- - ---
LlS T PRINER rUlnE: 
tWUST 
ERRORS 

DEFAULTS ARE:: LIST $SYSPRTR 

Figure 18-25. Session manager example (17) 

Notice that the operator is not required to enter the name of a work 
data set. The Session Manager will supply the name of one of the work 
data sets that were automatically allocated during LOGON of the session. 

Session Manager 18-21 



18-22 SR30-0436 

Before pressing ENTE R, assume the operator has mounted a diskette 
volume in the diskette device at address X'02', and wishes to bring the 
vAolum.e on ISine .. ThiMS requires acce~s td~ thle sYdstemh operator commands. C 

ny time a esslon anager menu IS ISP aye , t e operator can get 
into system command mode by pressing PF1. When PF1 is pressed, 
the currently displayed menu is replaced with the screen shown in 
Figure 18-26. 

ENTERING SYSTEM COMMAND MODE -
TO REENTER THE SESS ION MANAGER. 
DEPRESS THE ATTN KEY AND ENTER "SSM" 

Figure 18-26. Session manager example (18) 

The operator varies the volume on line, and enters $SM to return to the 
Session Manager. 

ENTERING SYSTEM COMMAND MODE -
TO REENTER THE SESS ION MANAGER. 
DEPRESS THE ATTN KEY AND ENTER "SSM" 
> ISVARYON 021 
SMVOL ONLINE 
>~ 

Figure 18-27. Session manager example (19) 

C 

c 



o 

o 

o 

When the ENTE R key is pressed to enter the $SM command, the 
Session Manager returns to the same menu that was displayed at the 
time system command mode was entered (PF1 was pressed). 

SSMt-10201: SES~)lON t~N;r,GEH SEDXP,~)M PMV\t'~ETER INPUT ~lENU-------------------------
NTERISELlCT PARM·1U ERS: PRESS pr3 10 RETURN 

SOlncc INPUT (NAME, V0lll/-l£:) ---,> SOURCE 

OB.lECT OUHllJT (NA~1[,VOLUt-1E) ".,> ASMOBJ 

Oi.lTIONAL PAPt,t-iETEL<S =-~> NOLIST 
(SELlCT FRC~' TilE UST BELOH) 

AVA! LMlLE PARAMET!:RS: 
NOUST 
LIST Tl:H,'4INAL-tlAM( (\'iHERE TERI~IiiAL-NM-1E IS OPTIONfIL) 
ERRORS TERMJrJr\L-;\M~E (I~riEf(E TERMl NAL-Ni\NE 15 DPTlCN/\L) 
corn fWL DATASET, VOLU~l[ 
OVERLAY (0) OmERE " IS NUI·mER OF AREi'\S FRor-' I TO 6) 

DEFAULT PPIi~AMETEflS; 

LIST SSYSPRTR 

Figure 18·28. Session manager example (20) 

Since all $EDXASM parameters have been entered, the operator 
presses the ENTER key to submit the job for execution. 

ASSEMIlLE SOURCE TO ASMOBJ 
*** JOB - $EDXASM - STARTED AT 02:18:14 00/00/00 *** 

JOIl $EDXASI1 ($St1P0201) lfSERID=XMPL 
$EDXASr~ 70P,02:18:18~ LP= 8AOO 

$JOBUTIL ENDED AT 02: 18: 51 

DEPRESS ENTER KEY TO RETURN 

Figure 18·29. Session manager example (21) 

Session Manager 18-23 



18-24 SR30-0436 

After the assembly is complete, the operator presses ENTER to return 
to the Session Manager, which brings up the $EDXASM parameter 
selection menu, the last menu displayed. 

"'--=,;,m, ,':'nl: SESSION MArMGER $EOXAS~l PARM'1ETER INPUT t~EtW-------------------------
EtHER/SELECT PARANETERS: PRESS PF3 TO RETURN 

SOURCE I NPur (NAME, VOLUME) ==> SOURCE 

OBJECT OUTPUT (NAME,VOLUt1E) =<" ASMOBJ 

OPT IOWU. PARAMETERS ,,'''> NOLIST 
(SELECT FRO:,' THE' LI ST BELOW) 

!,VAIl.ABLE PARN1ETERS: 
NOLlST 
LIST TERMINAL-NA~\E (WHERE TERMINAl-NANE IS OPTIO:{AL) 
ERRORS TER~HN!,L-NAME (WHERE TERMINAL-NAr~E IS OPTIONAL) 
CONTROL DAr {ISET , VOLUt1E 
OVERLr,Y ("J (WHERE" [S NUMBER OF AREAS FROM 1 TO 6) 

DEFAULT P/\RAr'1ETERS: 
Ll 5T 55 YSPRTR 

Figure 18·30. Session manager example (22) 

Pressing PF3 twice backs out through the two previous screens, as 
shown in Figures 18-31 and 18-32. 

S5~lM02: SESSION MANAGER PROGRAM PREPARI\Tro~i OPTION tmw------------------------
nITER/SELECT PARi\METERS: PRESS PF3 TO RETURN 

SELECT OPT ION =<> 

1 - SEDXAS~1 COMP I LER 
2 - SSl,A~~l ASSENBL£R 
3 - $C080L COtw I l. E R 
4 - SFORT FORTRAN CONPIl.ER 
S - SLINK LINKAGE EDITOR 
6 - SlJPDATf. 
7 - SUPDATEH (HOST) 
il - SPREFIND 
9 - SE[)XAS/>1/SLltH,/SUPDf~TE 

10 - $PLl COMPILER/SLlNf:/SUPDATE 

Figure 18-31. Session manager example (23) 

c 

c\ 

c 



o 

o 

o 

$,:>MMPRIM: SESSION MANAGER PRIMARY OPTION MENU ---------------------------------
:NTER/SElECT PAIlAMETERS: PRESS PF3 TO EXIT 

SELECT OPT I ON ==.' 

1 - TEXT (OlTl NG 
2 - PROGRAM PREPARATION 
3 - DATA MANAGEMENT 
4 - TERMINAL UTILITIES 
5 - GRAPHICS UTILITIES 
6 - EXEC PROGRAM/UT III TV 
7 - EXEC SJOBUTI L PROC 
Ii - COMMUNICATION UTILITIES 
9 - DIAGNOSTIC AIDS 

Figure 18-32. Session manager example (24) 

XMPL 

To end the session, the operator again presses PF3, while the primary 
option menu is displayed, which results in the prompt in Figure 18-33. 

TERMINATING SESSION MANAGER 
00 YOU WISH TO SAVE WORK DATASETS (YIN): 

Figure 18-33. Session manager example (25) 

Session Manager 18-25 



18-26 SR30-0436 

· If the operator replies YES to the prompt, none of the data sets 
allocated under this user I D at the beginning of the session will be 
deleted. If, for example, you had allocated work data sets larger than 
those normally allocated by the Session Manager (using $DISKUT1), to 
accommodate particularly large assemblies or compiles, entering YES 
would prevent those data sets from being deleted, and the next time 
you wished to log on with the same ID, you would not have to first 
use $DISKUT1 to allocate your oversize work files. 

Entering NO results in deletion of all the data sets under this I D except 
for $SMPxxxx. This data set is retained, and used to save parameters 
for future sessions under the same I D .. For example, if the operator 
were ever again to log on with I D XMPL, and through the option 
menus, choose program preparation and $EDXASM assembly, when the 
$EDXASM parameter selection menu was displayed, the parameters 
would be those last entered during this session. 

Assuming NO was entered, the message in Figure 18-34 would be dis
played during deletion of the data sets, followed by the LOGON 
screen in Figure 18-35. 

SESS ION MANAGER DELETING WORK DATA SETS 

Figure 18-34. Session manager example (26) 

c' 

c 

c 



o 

o 

o 

,TIllS TERHINAL IS LOGGED Or! TO TlJE SESSIOtJ MANAGER ------__________ _ 

02:02:10 
ENTER 1-4 CHAR USER 10 :=:>ILOGOFFI 00/00/00 
(£tITER LOGOFF TO EXIT) 

ALTERflATE SESS IOU 1,1£1lU =~> 
(OPTIONAL) 

Figure 18-35. Session manager example (27) 

To terminate the session, the operator enters LOGOFF in the command 
input area, and presses ENTER (Figure 18-36). 

SESSION MANAGER TERMINATED 
ENTERING SYSTEM COMMAND MODE 
TO RELOAD THE SESSION MANAGER: $L $SMMAIN 

Figure 18-36. Session manager example (28) 

Session Manager 18-27 



C' 
/' 

This page intentionally left blank. c 

c 
18-28 SR30-0436 



o 

o 

0 

Appendix A. SYSGEN Listings 

LOG SSYSPRTR 
*** JOB - SSUPPREP - STARTED AT 03:22:45 00/00/00 *** 
JOB 
PROGRA'" 
NOMSG 
PARM 
OS 
OS 
OS 
EXEC 

SSUPPREP 
SEOXASM,ASMLIB 

SEOXDEFS,EDX002 
ASMWORK,EDX002 
ASMOBJ,EDX002 

Figure A-1. Procedure file statements controlling assembly 

EOX ASSEMALER STATISTICS 

SOURCE INPUT - SEDXDEFS,EQX002 
"ORK DATA SET - ASMWORK ,EDX002 
OBJECT MODULE - ASM03J ,EDX002 
DATE: 00/00/00 AT 03:23:32 
ASSE~8LY TIME: 35 SECONDS 
STATEMENTS PROCESSED - 30 

NO STATEMENTS FLAGGED 

LOC 

OOuO 
0000 

0002 
0052 
005C 
006b 
0070 
007A 
0084 
008E 
0098 
00A2 
OOAC 
0086 
OOCO 
OOCA 
0004 
OODE 
00E8 
00F2 
OOFC 
0106 
0110 
OllA 
0124 
012E 
0138 
0142 
014C 
0156 
Ol60 
albA 
0174 
017£ 
0189 

0000 

0000 
OOOA 
0000 
0008 
0000 
0140 
01A4 
0198 
FFFF 
8000 
FFFF 
8000 
FFFF 
8000 
FFFF 
8000 
FFFF 
SOOO 
FFFF 
8000 
FFFF 
8000 
FFFF 
8000 
FFFF 
8000 
FFFF 
8000 
FFFF 
8000 
FFFF 
8000 
FFFF 

0000 0000 
OOOA OOOA 
0000 0000 
0010 0014 
0000 0000 
Ol94 0198 
00E8 Ol3C 
019C OlAO 
3000 FFFF 
FFFF 8000 
dOOO FFFF 
FFFF 8000 
8000 FFFF 
FFFF 8000 
8000 FFFF 
FFFF 8000 
8000 FFFF 
FFFF 8000 
8000 FFFF 
FFFF SOOO 
8000 FFFF 
FFFF 8000 
8000 FFFF 
FFFF 8000 
8000 FFFF 
FFFF 13000 
dOOO FFFF 
FFFF 8000 
8000 FFFF 
FFFF 8000 
aouo FFFF 
FFFF 8000 
8000 FFFF 

0000 0000 
0000 0000 
0020 FFFF 
0000 0000 
11098 OOEC 
019C OLAO 
0190 Ol94 
01A4 0000 
8000 FFFF 
FFFF 8000 
8000 FFFF 
FFFF 8000 
8000 FFFF 
FFFF 8000 
SOOO FFFF 
FFFF 8000 
80UO FFFF 
FFFF 8000 
8000 FFFF 
FFFF SOOO 
8000 FFFF 
FFFF 8000 
8000 FFFF 
FFFF 8000 
8000 FFFF 
FFFF 8000 
8000 FFFF 
FFFF 8000 
8000 FFFF 
FFFF 8000 
8000 FFFF 
FFFF 8000 
8000 FFFF 

SOURCE STATEMENT SEDXDEFS,EDX002 (5719-XX41-V3.0.0 

SEDXDEF CSECT 
DATA F'O' 

'" * EVENT DRIVEN EXECUTIVE - VERSION 3, MODIFICATION LEVEL a 

'" * THE FOLLOWING DEFINES THE STARTER SUPERVISOR AS SHIPPED ON THE 
,- DISKETTE LABELED XS300l. FOR COMPLETE DESCRIPTIONS OF THESE 
'" STATEMENTS OR ANY OTHER SYSTEM DEFINITION STATEMENTS, REFER TO 
'" THE EDX VeRSION 3 SYSTEM GUIDE: S04-1702 

* SYSTEM STORAGE=12S,MAXPROG=(lO,10,101,PARTS=(S,l6,201 

Figure A-2. Assembly statistics and listing (1 of 6) 

0/00/ a 3:23 

00000010 
00000020 
00000030 
00000040 
00000050 
00000060 
00000070 
00000080 
00000090 
00000100 
00000110 

SYSGEN Listings A-l 



0192 8000 FFFF 8000 FFFF 8000 
019C FFFF- aOJO FFFF 0000 FFFF 
01A6 8000 0003 0000 FFFF 

C OlAE 0000 0028 2440 0000 0000 TIMER AOORESS=40 00000111 
01B8 'JuOCl OOJO 0000 0000 0000 
01C2 COOJ 0000 0000 03E8 4EIF 
01CC IFIC IFIE IFIE IFIF lElF 
0106 lElF 0000 0028 2441 0000 
DIED 6E41 0000 6441 0000 6141 
OlEA 0000 01A8 0000 0000 0000 
01F4 OBS8 EA60 
01F8 0800 0000 5~C4 C4C5 FOF3 01 SK OEVICE=4962-3,ADORESS=03 00000120 
0202 0000 011)9 0000 02FO FFFF 
020C 0000 0000 0000 0000 020E 
0216 022b 0003 003C 0000 0000 
0220 0000 0000 OuOO 0000 OOCA 
022A 0000 0400 0000 01F8 030e 
0234 0000 0000 03CC 0000 0000 
023E C'lJOO 0000 0000 OCOO 0000 
0252 0000 0000 1003 0001 8001 
025C 0000 0000 0000 0000 026A 
0266 0000 0000 8005 0000 0000 
0270 0000 0000 021A 0000 0000 
027A 2009 0000 0000 0000 0000 
0284 02eA 0000 0000 0000 0000 
028E 0000 0000 0000 0000 0000 
0298 0000 lF03 029E 2000 0000 
02A2 0000 0000 0000 0000 0008 
02AC 02AE 0000 0000 0000 0000 
02b6 OOOu 0000 0000 0000 0000 
020E 0000 0000 0000 0000 0000 DISK OEVICE=4964,AJORESS=02,TASK=YES,ENO=YES 00000130 
02E8 00011 0000 0000 0000 FFFF 
02F2 0000 0000 0000 0000 aDDU 
02FC 030e 0000 0000 0000 OOOu 
03U6 0000 0000 0000 0000 OlOb 
0310 0000 0000 0000 alOE 0000 
031A 0000 0000 044C 0000 0000 
0324 GOOO 0000 0000 0000 0000 
0338 0000 0000 1002 0001 8001 
0342 0000 0000 0000 0000 0350 
034C 0000 0000 8005 0000 0000 
0356 0000 0000 0360 0000 0000 
03bO 2009 0000 0000 0000 0000 
03bA 0310 0000 0000 0000 0000 
0314 0000 0000 0000 0000 0000 
031E 0000 7F02 0384 2000 0000 
0388 0000 0000 OJOO IJOOO 0008 C 0392 0394 0000 0000 0000 0000 
039C 0000 OOClO 0000 0000 0000 
03C4 0606 4040 4040 4040 0000 
03CE 0000 0000 0000 0000 0000 
03D8 0000 030A 03CC 0000 0000 
03E2 ('000 0000 0000 0000 0001 
031::C 0096 0000 0000 FFFF 0000 
031'-6 0000 03F8 0000 0000 03FA 
04JO 58C4 DE2 :J2Fl 4040 0000 
040A 0000 0000 0000 0000 0000 
0414 0000 FFFF 0000 \lOa~ 0000 
041E 0000 00 au 03CC 0000 0000 
0428 0000 0000 0000 0000 0000 
0446 0000 03CC 0080 0000 0000 
0450 0000 0000 0000 0000 0000 
045A 045A 044C 0000 0000 0000 
0404 0000 0000 0000 0001 0096 
046E 0001) 0000 FFFF 0000 0000 
0418 0418 0000 0000 141A 56C4 
04132 fJE'Z 02F2 4040 0000 0000 
04ac 0000 0000 0000 0000 O~Or) 
0496 FFFF 0000 OQOO 0000 0000 
04AO 0000 044C 0000 0000 0000 
04 Aft. 0000 0000 01)00 0000 0000 
04CE! C44C 0080 
04CC 052E 0000 0000 0000 0000 SSYSLOG TEKMINAL DEVICE=4919,AOORESS=04,HOCOPY=SSYSPRTR,PART=2 00000150 
04[,6 OOOf) 0000 0000 0000 0000 
04E:O oaol1 0000 6004 0003 6F04 
04EA 0000 2004 0406 7004 04D4 
04F4 lF04 0404 0000 0000 0006 
04FE 0400 0000 0000 OOOC 0011 
0508 0010 0050 OCOO 0050 aooc 
0512 0011 0018 0050 OCOO 0050 
051C 1·~5\) 5BE2 E8E2 0306 (,140 
0526 0001) FFFF 0000 0108 0000 
0530 0406 0000 0000 FFFF 0000 
053A 6c60 0020 6F03 0000 0000 
0544 0582 FFFF 4324 052E 6302 
054E 0'34C 5000 C3A5 C012 6F03 
0558 0000 0000 0582 6'340 0012 
0562 4324 052E 5600 6E60 004E 
050C 6F03 0000 0000 0628 0000 

Figure A-2. Assembly statistics and listing (2 of 6) C 
A-2 SR30-0436 



0576 43Z4 OS2E 6802 057A 06Zd 
0580 OFAC 0000 0000 0000 FFFF 

0 
05dA COOO 0000 0000 0000 0000 
0594 0000 0000 0100 0100 0000 
059E 0000 0000 0000 0000 0000 
05C6 0000 0000 0000 0000 0506 
0500 OS06 0000 0000 0000 0000 
050A 0000 0000 0000 0000 0000 
062A 0000 0000 0000 0000 0000 
0634 0000 0000 062'3 0000 0000 
063E 0000 0000 0000 'JOOO 0001 
0648 OOOA 0000 OJ 00' FFFF 0000 
0652 0000 0654 0:)00 0000 0656 
065C OZC2 E3Cl E202 0065 0000 
0666 000') oaoo 0000 0000 0000 
0670 DODO FFFF 0000 0000 052E 
067A JOOO 000(' 0628 0000 0000 
0684 0000 0000 0000 0000 0000 
0698 0000 0001 0000 QOOO 0000 
06A2 OUOO 0628 0080 
06AB 0000 0000 0000 0000 0000 OSPLYI TERMINAL OEVICE=4979,ADOPESS=06,HOCOPY=SSYSPRTR,PART=3 00000151 
06ElC 0000 6006 0003 6F06 0000 
06C6 2006 0406 7006 06AE 7F06 
0600 06AE 0000 0000 0006 0400 
060A ('000 0000 OOOC 0017 00113 
06E4 0050 OCOO 0050 oooe 0017 
06EE 0018 0050 OCOO 0050 1850 
06FB (itE2 0703 EBrl 4040 0000 
0702 FFFF 0000 08CC 0000 040E 
070C 0000 0000 FFFF 0000 6E:6!> 
0716 0020 6F03 0000 0000 075C 
0720 FFFF 4324 0709 6802 0720 
072A 5000 CBAS 0072 6F03 0000 
0734 0000 075C 6a40 007Z 4324 
073E 0708 5600 6E60 004E 6F03 
0748 0000 0000 0802 0000 4324 
0752 0708 6802 0754 0802 OFAC 
075C 0000 0000 0000 FFFF 0000 
0766 0000 0000 0000 0000 0000 
0770 OOOJ 0100 0100 0000 0000 
077A 0000 0000 0000 0000 0000 
07A2 0000 0000 0:)00 0780 07BO 
07AC 0000 0000 0000 0000 0000 
0606 0000 0000 0000 0000 0000 
0810 0000 0802 OIJOO 0000 0000 
OH1A 0000 0000 0000 0001 OOOA 

0 0824 0000 0000 FFFF 0000 0000 
OA~E 082E 0000 0000 0830 oze2 
0838 F3C 1 EZ02 0066 0000 0000 
OB42 0000 0000 0000 0000 0000 
084e FFFF 0000 OiJOO 0708 0000 
0856 0000 OB02 0000 UOOO 0000 
OB60 0000 :)000 0000 :)000 0000 
0874 0002 0000 0000 0000 0000 
097:: 080~ ooao 
Obil2 6000 0003 61=00 0000 200,] $SYSLOGA T~RMINAL OEVICE=TTY,ADOREss=00,eROELAY=4,PAGSIlE=Z4, eOOOOO160 
08Be 0000 5000 0000 1000 0000 dOT~=23,SCREEN=YES 00000170 
01'196 7F03 OOiJA C600 0400 0000 
08AO 0000 0000 0017 001A 0050 
03AA 0000 0050 0000 0017 0018 
03»4 0050 0000 0050 4250 5BE2 
OB3E EaE2 D306 OC1 0000 FFFF 
03C8 aDDu DADE OiJOO 0010 OOOJ 
0302 0000 FFFF 00:)0 bE60 0020 
OBOC 6F03 0000 DODO 0920 FFFF 
OilE6 4324 08ee 6802 08EA 5000 
08;:0 CtlA5 0072 6F03 0000 :)000 
oaF" 0920 t>1340 0072 43Z4 03CC 
:)9U4 5600 6E60 004t 6F03 OOOll 
090E CODa 09CI) 0000 4324 OSCC 
0918 1)802 091& 0ge6 0000 ooao 
092Z COOO 0000 F"FF 'JOOO 0000 
onc Dono 0000 O'JOO 0000 0000 
0936 l~OO 0000 0000 ll'lOO 000;) 
0940 Door) 0000 0000 0000 0000 
0968 CODa 0000 097~ OQ74 0000 
0972 ooou 0000 0000 0000 0000 
09CC COOO 0000 0000 0000 'JOOO 
0906 09C6 0000 0000 0000 0000 
09EO 1)000 0000 01)01 uOOA 0000 
09EA "OO!) FFFF 0000 0000 09F2 
09F4 0000 0000 19F4 02C2 E3C 1 
09FE E2J2 0067 0000 0000 0000 
OA08 0000 0000 0000 0000 FFFF 
OA12 OUOU 0000 08ce 0000 0000 
OA1C O-K'> 0000 0000 0000 0000 
OA26 QOOO oooe 0')00 0000 0000 
OAJ'\ 0000 0000 0000 0000 09Co 

0 Figure A-2. Assembly statistics and listing (3 of 6) 

SY SG ENlist i ngs A-3 



OA44 OOAO 
OA46 0000 0000 0000 0000 0000 SSYSLOGB TERMINAL OEVICE=ACCA,AOoRESS=OB,MOOE=3101B,AOAPTER=SI~GLE, COOOOOIBO 
OASO 0000 UOOO 0000 C400 0000 SITRATE=9600,RANGE=HIGH 00000190 

C OA5A 0000 0000 0000 7008 OA64 
OA64 2004 0000 0000 0000 OOOU 
OA6E 0000 0002 0386 0002 0002 
OA78 OOOA 0002 0000 0000 0000 
OA82 0000 0010 07FE bOBO BOEO 
OA8C 80BO 0000 0,)00 0000 6008 
OA96 0003 6F08 0000 200B 0000 
OAAO 7008 OA84 7FOd OAB4 FEI0 
OAAA BOSO 0200 0440 0007 0000 
OA34 0000 0017 0018 0050 0000 
OABE OOCd 0000 0017 0018 0050 
OAC8 0000 ooca 1850 5t3E2 E8E2 
OA02 0306 C7C2 0000 FFFF 0000 
OAOC 0094 0000 1002 0000 0000 
OAE6 FFFF ooao 6E6D 0020 6F03 
OAF a 0000 0000 0832 FFFF 4324 
OAFA CAoE 6802 OAFC 5000 CBA5 
0604 J072 6F03 0000 0000 OB32 
OBOE 6840 0072 4324 DADE 5600 
OB18 6E60 004E 6F03 0000 0000 
OBll OCAA 0000 4324 OAJE 6802 
OB2C 0.~2A OCAA 0000 0000 0000 
OB36 0000 FFFF 0000 0000 0000 
OB40 0000 0000 0000 0000 0816 
OB4A 0886 0000 0000 0000 0000 
0654 0000 0000 0000 0000 0000 
OB7C 0000 OElB6 0~86 0000 0000 
0896 0000 0000 0000 0000 0000 
OCB2 0000 0000 0000 0000 OCAA 
OC[~C 0000 0000 OJ 00 0000 0000 
OCC6 0000 0001 OOOA 0000 0000 
OCOO FFFF 0000 0000 OC06 0000 
OCOA 0000 OC08 02C2 E3Cl E202 
OCE4 0068 0000 0000 0000 0000 
OCEE 0000 0000 0000 FFFF 0000 
OCF8 oooa DADE 0000 0000 OCAA 
0002 0000 0000 0000 0000 0000 
0020 0000 0000 0000 OCAA 0080 
002A 0000 0000 0000 0000 0000 LINEPRTR TERMINAL OEVICE=4973,AOORESS=21 00000250 
0034 0000 0000 0000 0080 0000 
003E 0000 0000 0000 0000 0000 
0048 0000 6021 0003 6F21 0000 
0052 2021 0206 7021 003A lF21 

C 005C ODH 0000 0000 0000 0020 
00b6 0000 0000 0003 033E 0042 
0070 0084 0300 0084 0003 033E 
001A 0042 0084 0300 0084 FF84 
0084 03C9 O5C5 0709 E309 0000 
008E FFFF 0000 OFAC 0000 0306 
0098 0000 0000 FFFF 0000 6E60 
OoA2 0020 6F03 0000 0000 ODE8 
OoAC FFFF 4324 0094 6802 0082 
0006 ~000 CBA5 0'172 6F03 0000 
00(,0 0000 DOES 6640 0072 4324 
OOCA OD94 5600 6E60 004E 6F03 
00D4 0000 0000 OEC2 OOUO 4324 
OOOE OD94 6902 oDeD 0[C2 0000 
ODE8 COOO 0000 0000 FFFF 0000 
ODF2 0000 0000 0000 0000 0000 
DOFC 0000 0100 0000 0000 0000 
0((16 0000 0000 0000 0000 0000 
OE2E 001)0 0000 0000 OE3C onc 
OE3S 0000 0000 0000 0000 0000 
OEC4 0000 ooao 0000 0000 0000 
OECE 0000 0000 OEC2 0000 0000 
OEDS 0000 0000 0000 0000 0001 
OEE2 OOOA 0000 0000 FFFF 0000 
OEEC 0000 OEEE 0000 0000 OEFO 
OEF6 02U E3Cl E202 0069 0000 
OFOO 0000 0000 0000 oeoo 0000 
OFOA 0000 FFFF 0')00 0000 0094 
OF14 0000 0000 OEC2 0000 0000 
OFlE 0000 0000 0000 uOOO 0000 
onc C\)OO OEC2 MSO 
JF42 0000 0000 0000 0000 0000 $SYSPRTR TERMINAL OEVICE=49l4,AOORESS=01,ENO=YES 00000251 
OF4C 0000 0000 0000 0080 0000 
OF56 0000 0000 0000 0000 0000 
OF60 0000 6001 0003 6FOl 0000 
OF6A 20Cl 0206 7001 OF52 7FOl 
OF74 OF52 0000 0000 0000 0020 
OF7F. 0000 0000 0')03 033E 0042 
OFd8 0084 0300 0084 0003 033E 
OF92 0042 00a4 030J 0084 FFS4 
OF9C 56Et? EBE2 0709 E309 0000 
OFA6 FFFF 0000 0000 0000 0206 
OFdO 0000 0000 FFFF 0000 6E60 

Figure A-2. Assembly statistics and listing (4 of 6) C 
A-4 SR30-0436 



0 
OF9A 0020 6F03 0000 0000 1000 
OFC4 FFFF 4324 OFAC 6602 OFCA 
OFCE 5000 CBAS 0072 6F03 0000 
OF08 0000 1000 6640 0072 4324 
OFE2 OFAC 5600 6E60 004E 6F03 
OFEC 0000 0000 100A 0000 4324 
OFF6 OFAC 6602 OFFd 100A 0000 
1000 0000 0000 0000 FFFF 0000 
100A 0000 0000 0000 0000 0000 
1014 0000 0100 0000 0000 0000 
IDlE 0000 0000 0000 :)000 0000 
1046 0000 0000 0000 1054 1054 
1050 0000 0000 0000 0000 0000 
100C 0000 0000 0000 0000 0000 
10E6 0000 OOJO 100A 0000 0000 
10FO 0000 0000 0000 0000 0001 
10FA OOOA 0000 0000 FFFF OOCO 
1104 0000 1106 0000 0000 1108 
llOE OlC2 E3C1 El02 006A 0000 
l11B 0000 0000 0000 0000 0000 
1122 0000 FFFF 0000 0000 OFAC 
lllC 0000 0000 100A 0000 0000 
1136 0000 0000 0000 0000 0000 
1154 0000 100A 0060 
ll5A SSYSCOM CSEC T 00000260 
115A FFFF 0000 0000 0000 0000 QCB 00000270 
1164 FFFF 0000 0000 0000 0000 QCB 00000280 
llbE FFFF 0000 0000 ECB OJOO0290 
1174 FFFF 0000 0000 ECB 00000300 
117A ENTRY SEOXPTCH 00000310 
117A CODa 0000 0000 0000 0000 SEOXPTCH DATA 128F'O' SYSTEM PATCrl AREA 00000320 
1274 0000 0000 0000 
127A END 00000330 

~XTER~AL/UNOtFINEO SY~dOLS 

SEDXDEf ENT"Y 0000 
SVC ~XTRN 
SUPEXIT EXTRN 
S!.:T,jUSY EXTRN 
R;:TUR"l EX TRN 
SVC 1 WXTRN 
POST h'XTRN 
$SVCI8UF ENTRY 0002 
SVC8F E\lTRY 0002 

0 SVC!jFENo ENTI{Y .0052 
SlNITPRT ENTRY DIM 
SINITMOO ENTRY OlAC 
SSTORAGE E""TRY 0052 
STORE:~Ai> ENTRY 0076 
SBLOCKCT ENTRY 0052 
"lAP END ENTRY 00tl6 
SMEM:iIlE ENTRY 0062 
SPARTSZE E:-.IT~Y 0066 
OATt:FMT ENTRY 0064 
SI1APAREA ENTRY 0096 
S"4UMPART ENTRY 01A8 
EDXSYS EXTRN 
TIMEROoB ENTRY OlAE 
TIMERO ENTRY OlAE 
TIMERI ENTRY 0106 
TIMEROIA EXTRN 
TI"'ER 11 A EXTRN 
OMVJL ENTRY 01F6 
oMooB ENTRY 0226 
o49624AT EXTRN 
OISKIOOO EXTRN 
o"lIPL ENTRY 03C4 
TER,'10EFS ENTRY 04CC 
FIRSTCCB ENTRY 04CC 
wAIT EXTRN 
ATT ACH EXTRN 
KBTASK EXTRN 
SSYSLOG ENTRY 052E 
IA4979 EXTRN 
104979 EXTRN 
SSYSPRTR ~NTRY OFAC 

Figure A-2. Assembly statistics and listing (5 of 6) 

o 
SYSGEN Listings A-5 



DSPL Yl ENTRY 0708 
IA4978 EXTRN 
TRASCII EXTRN 
SSYSLOGA ENTRY 08CC 
lATTY EXTRN 
IOTER,.. EXTRN 
TRE3ASC EXTRN 
SSYSLOGB ENTRY OADE 
IAACCA EXTRN 
103101 EXTRN 
LINEPRTR ENTKY 0094 
lA4913 EXTRN 
104914 EXTRN 
IA4914 EXTRN 
SSYSCOM ENTRY ll5A 
SEDXPTCH ENTRY ll7A 

COMPLETION CODE = -1 

Figure A·2. Assembly statistics and listing (6 of 6) 

JUMP 
PROGRAM 
NOMSG 
PARM 
OS 
OS 
OS 
EXEC 

ENDJOB.GT,4 
SLINK,EDXOOZ 

SSYSPRTR 
LINKCNTL ,EDX002 
LEWoRK1,EDXOOZ 
LEIIORKZ.EDXOOZ 

Figure A·3. Loading link editor 

SLINK EXECUTION CONTROL RECORDS 
FROM LINKCNTL,EOXOOZ 

* * EVENT DRIVEN EXECUTIVE - VERSION 3. MOOIFICATION LEVEL 0 

* **************************************************** 
* COMMENTS MAY BE INCLUDED BY AN '*' IN COLUMN 1 * 
* USE THIS TECHNICUE TO OMIT UNNEEDED MODULES * 
**************************************************** 

OUTP.UT SUPVLINK.EOXOOZ ENTRY=SSTART 

**************************************************** 
* SUPERVISOR SUPPORT * 
**************************************************** 
* INCLUDE 

INCLUDE 
INCLUDE 

* INCLUDE 
INCLUDE 
INCLUDE 
INCLUDE 

EDXSYS,XS300Z 
ASM09J.EDXOOZ 
~DXSVCX,XS3uOZ 

EDXSVCXU.XS3002 
SDBUGNUC,XS3DOZ 
EOXALU,XS3002 
EOXSTART,XSJ002 

*0* SYSTEM TABLES AND WORK AREAS 
*0* OUTPUT FROM USER SYSTEM GENERATIO~ 
*O,K* TASK SUPERVISOR (XLI 
*O,L* TASK SUPERVISOR (UN-XLI 
*G* RESIDENT SDEBUG SUPPORT 
*0* EDL INSTRUCTION EMULATOR 
*0* INITIALIZATION & ERROR HANDLER 

* **************************************************** 
* DEVICE SUPPORT -- DISKIETTEIS * 
**************************************************** 
* INCLUDE 

INCLUDE 
* INCLUilE 
* INCLUDE 

* 

DISKIO,XS3002 
049624.XS3002 
04963A,XS3002 
o4966A,XS3002 

BASIC DISKIETTEI SUPPORT 
4962/4964 DISK(ETTEI SUPPORT 
4963 SUBSYSTEM SUPPORT 
4966 MAGAZINE SUPPORT 

**************************************************** 
* DEVICE SUPPORT -- TAPE * 
**************************************************** 

* * INCLUDE o4969A,XS300? *M* BASIC TAPE SUPPORT 

**************************************************** 
* DEVIc.E SUPPORT -- TER~[NALS * 
**************************************************** 

INCLUDE 
* INCLUDE 

EQXTIO,XS3002 *l,K* BASIC TERMINAL SUPPORT (XLI 
EDXTIOU.XS3002 *l,L* BASIC TERMINAL SUPPORT (UN-XLI 

Figure A·4. Link control file (1 of 8) 

A-6 SR30-0436 

C 

c 



o 

o 

INCLUDE EDXTERM'J,XS3002 *1,K* ENQT/DEQT t TERMINAL QUEUEING I XLI 
* INCLUDE EDXTRMQU,XS3002 *1,L* ENQT/DEQT & TERMINAL QUEUEING IUN-XL I 

INCLUDE IOS4979,XS3002 *M,K* 4918/4979 DISPLAY SUPPORT I XLI 
* INCLUDE IOS4979U,XS3002 *~1t L* 4918/4919 DISPLAY SUPPORT IUN-XL I 

INCLUDE IOS4974,XS31102 *~,K* 4913/4974 PRINTER SLIP PORT I XU 
* INCLUDE: IOS4974U,XS3002 *M,L* 4913/4914 PKINTER SUPPORT IUN-XLI 

INCLUDE IOSTERM,XS3002 *2* REQUIRED FOR TTY, ACCA, 4013 & 2141 
INCLUDE IOSTTy,XS3002 *1'1* ASR 33/35 TELETYPEWRITER SUPPORT 
INCLUDE IOSACCA,XS3002 *3* ASCII ACCA TERMINAL SUPPORT 
INCLUDE IOS3101,XS3002 *M,O* 3101 BLOCK MODE SUPPORT 

* INCLUDE IOSSIS1,XS300Z *M* SERIES/1 - SERIES/1 SUPPORT 
* INCLUDE IOSGPII3,XS3002 *M* GPIB SUPPORT 
* INCLUDE IOS4013.XS3002 *M* DIGITAL 1/0 TERMINAL SUPPORT 
* INCLUDE IOS2141,XS300Z *1'1* 2141 TERMINAL SUPPORT 
* INCLUDE IOSVIRT,XS3002 *M,N* VIRTUAL TERMINAL SUPPORT 

* **************************************************** 
* TERMINAL SUPPORT -- TR~NSLATION TABLES * 
**************************************************** 
* INCLUDE 

INCLUDE 
* INCLUDE 
* INCLUDE 

TRASCII,XS3002 
TREBASC,XS3002 
TREBCD,XS3002 
TRCRSP,XS3002 

*4,P* TELETYPEWRITER TRANSLATION 
*3,?* MIRROR IMAGE ASCII TRANSLATION 
*5* 2741 EB0C T~ANSLATION 
*5* 2741 CORRESPONDENCE TRANSLATIO~ 

**************************************************** 
* TERMINAL SUPPQDT -- SPOOLING * 
****************************************************' 

INCLUDE IOSPOOL,XS3002 *M* SPOOLING SUPPORT 

*¢~************************************************* 
* DEVICE suppnRT -- TIMERS * 

INCLUDE 
* INCLUDE 

EDXTIMER,XS3002 *6* 
EDXTIMR2,XS3002 *6* 

4953/4955 TIMER (18401 SUPPORT 
4952 TIMER SUPPORT 

* 
******************************~'***O********************* 
* DEVICE SUPPORT -- BINARY SYNCHRONOUS COMMUNICATIONS * 
******************************************************** 
* * INCLUDE 
* INCLUDE 
* INCLUDE 

BSCA~,XS3002 

BSCAMU,XS3002 
TPCO~,XS3002 

*1,K* BISYNC COMM. ACCESS SUPPORT (XLI 
*1,L* BISYNC COMM. ACCESS SUPPORT (UN-XLI 
*s* HOST COM~UNICATION SUPPORT 

* 
*********0****************************************** 
* DEVICE SUPPORT -- SENSOR INPUT/OUTPUT * 
**************************************************** 

* INCLUDE SBCOM,XS3002 *9* BASIC SENSOR I/O SUPPORT 
* INCLUDE I OLOADER, X S3002 ('9,KO SENSOR I/O DEVICE OPEN (XLI 
* INCLUOE IOLOADRU,XS3002 *9,L* SENSOR I/O DEVICE OPEN (UN-XLI 
* INCLUDE SBAI,XS3002 *M* ANALOG INPUT SUPPORT 
*' INCLUDE SBAO,XS3002 *M* ANALOG OUTPUT SUPPORT 
* INCLUDE SBDIDO,XS3002 ~'M* DIGITAL INPUT/OUTPUT SUPPORT 
* INCLUDE SBPI,XS3002 *M* PROCESS INTERRUPT SUPPORT 
* 
*************************O*************O~*********** * DEVICE SUPPORT -- EXIO CONTROL * 
**************************************************** 
* * INCLUDE IOSEXIO,XS3002 OM* EXIO DEVICE CONTROL SUPPORT 

* 
**************************************************** 
* SYSTEM SUPPORT -- ERROR LOGGING * 
**¢***************************************~********* 
* INCLUDE 
* INCLUDE 

INCLUDE 

* 

SYSLOG,XS3002 *A* 
NOSYSLOG,XS3002 *A* 
CIRCBUFF,XS3002 *B* 

I/O ERROR LOGGING 
NO I/O ERROR LOGGING 
PROGRAM/~ACHINE CHECK LOGGING 

**************************************************** 
* UPTIONAL FUNCTION SUPPORT * **************************************************** 
* INCLUDE 
* INCLUDE 

INCLUDE 
* INCLUDE 

INCLUDE 
INCLUDE 

* 

RLOADER,XS3002 
RLOADERU,XS3002 
EDXFLOAT,XS3002 
NOFLOAT,XS3002 
E8FLCVT,XS3002 
QUEUEIO,XS3002 

*C,K* RELOCATING PROGRAM LOADER (XLI 
*C,L* RELOCATI~G PRJGRAM LOADER (UN-XLI 
*0* FLOATING POINT ARITHMETIC 
*0* FOR SYSTEMS WITHOUT FLOATING POINT 
oEo EBCDIC/FLOATING POI~T CONV. 
*F* QUEUE PROCESSING SUPPORT 

* SYSTEM SUPPORT -- INITIALIZATION * 
**************************************************0* 
* INCLUDE 

INCLUDE 
EDXINIT,XS3002 *H* 
DISKINtT,XS3002 *M* 

Figure A-4. Link control file (2 of 8) 

SUPERVISOR INITIALIZATION 
DISK( ETTEI INITIALIZATION 

SYSGEN Listings A-7 



(: INC LUDE TAPEINIT,XS3002 *11* TAPE INITIALIZATION 
INCLUDE LOACINIT,XS3002 *c* PKOGRAM LOADER INITIALIlATIO~ 

* INCLUDE RW4963ID,XS3002 *M* 4963 FIXED HEAD REFRESH SUPPORT 
INCLUDE TfRMINIT,XS3002 *1* TERMINAL INITIALIZATION 
INCLUDE INIT497B,XS3002 */1* 4978 DISPLAY INITIALIZATION 

* INCLUDE I NIT40 13, XS3002 *M* DIGITAL I/O TER.MINAL INITIALIZATION 
INCLUDE SACCARAM, XS3002 *3* ACCA MULTI-LINE ADAPTER RAM LOAD 

* INCLUDE BSCINIT,XS3002 *7* BISYNC ( BSCAMI INITIALIZATION 

* INCLUDE TP I NIT, XS 3002 *8* HCF ITPCOHI INITIALIZATION 
INCLUDE TIMRINIT,XS3002 *6* 4953/4955 TI MER INITIALIZATION 

* INCLUDE CLOKINIT,XS3002 *6* 4952 TIMER INITI ALI ZATION 
::: INCLUDE 5BIOINIT,X53002 *101* SE~SOR I/C INITIALIZATION 
* INCLUDE EX lOIN IT ,XS3002 *M* EXIO INITIALIZATION 
* INCLUDE S 151 I NIT ,XS3002 *~,Q* S1S1 INITULIZATION 

END 
***** UNRESOLVED EXTeRNAL REFERENCES 

\o4XTRN EXOPEN 
WXTRN SAOA 
~XTRN BSCENTRY 
WXTR~ SDIX 
WXTRN S8P I 
WXTR~ SOlS 
WXTRN SDOX 
WXTRN SAl X 
WXTRN SDOS 
WXTRN SAIS 
WXTR~ SBSCFDD~ 
WXTRN SDI 
i-iXTKN SAOX 
WXTRN SDOP 
WXTR~! SOD 
WXTRN SAl 
iWXTRN IOV IRT 
WXTRN EXIO 
WXTRN STP 
WXTRN SAO 
iWXTRN STPDVADR 
WXTRN SOIA 
WXTRN SEXIODDq 
WXTRN SODA 
WXTRN SAIA 
'~XTRN rOlOAD 
WXTRN SPROGl 
WXTRN D49b3IH1 
WXTRN CNTLBUSY 
WXTRN VRY4966 
WXTRN 049668 
WXTRN TAPEIO 
WXTRN VRY4969 
WXTRN CNTLEND 
WXTRN R02741 
WXTR"'4 R04::J13 
WXTRN WR2141 
WXTRN WR4013 
WXTRN EXIOCLEN 
WXTRN OEQBSC 
WXTRN ACLOSE 
WXTRN IOU~LOAO 
WXTRN SSVCSIA 
WXTRN TPINIT 
WXTRN INIT4013 
WXTRN BSC INIT 
WXTRN TAPEINIT 
WXTRN SBIOINIT 
WXTRN SSVCLSB 
WXTRN EXIOINIT 
WXTRN RW4963ID 
WXTRN D4963ATN 
WXTRN DOBFIX 
WXTRN CCBFIX 

OUTPUT NAME= SUPVLINK 
ESD TYPE LABEL ADDR LENGTH 

CSECT 
ENTRY 
ENTRY 
ENTRY 
ENTRY 
ENTRY 
ENTRY 
ENTRY 
ENTRY 
E"lTRY 
ENTRY 
ENTRY 
ENTRY 
ENTRY 
ENTRY 
ENTRY 

EDXSYS 
SST ART 
RETURN 
SDMDDB 
SIPLVOL 
STIMRTBL 
STESTADR 
STPDDB 
SBSCADDR 
EDXFLAGS 
SVCFLAGS 
SSBPITAB 
LCBA 
SDMVOl 
SVCBFIN 
SVCBFOUT 

0000 
0230 
0238 
0260 
0262 
0264 
0268 
026A 
0290 
0298 
029A 
029C 
029E 
02AO 
02BO 
02B2 

Figure A-4. Link control file (3 of 8) 

A-8 SR30-0436 

052E 

C,I 

c 

c 



ENTRY SVCRTRN Ol84 
ENTRY SVCLl Ol86 

0 
ENTRY SVCLT OlB6 
ENTRY SVCL2 OlSE 
ENTRY SVCL3 OlC6 
ENTRY SVCLSB OlCE 
ENTRY SVCIAR OlCE 
ENTRY SVCAKR OlOO 
ENTRY SVCLSR Ol02 
ENTRY SVCRO 0204 
ENTRY SVCRI 0206 
ENTRY SVCR2 0208 
ENTRY SVCR3 020A 
ENTRY SVCR4 020C 
ENTRY SVCR5 020E 
ENTRY SVCR6 02EO 
ENTRY SVCR7 02E2 
ENTRY SVC lIAR 02E4 
ENTRY SVCILSB 02E4 
ENTRY SVC IAKR OlE6 
ENTRY SVCILSR 02E8 
ENTRY SVCIRO OlEA 
ENTRY SVCIR1 02EC 
ENTRY SVCIR2 02EE 
ENTRY SVCIR3 OlFO 
ENTRY SVC IR4 02F2 
ENTRY SVCIR5 02F4 
ENTRY S VC I R6 02F6 
ENTRY SVC IR7 02F8 . 
ENTRY UNCHAKRl 02FA 
ENTRY UNCHSAV6 02FC 
ENTRY SVCPARHS 0300 
ENTRY CMOTAaLE 0306 

CSECT SEOXOEF 052E 122A 
ENTRY SVCBF 0530 
ENTRY SSVClljUF 0530 
ENTRY SVCBFENO 0580 
ENTRY SSTORAGE 0560 
ENTRY SBlOCKCT 0580 
ENTRY 5HHISIZE 0590 
ENTRY OATEFMT 059l 
ENTRY SPARTSlE 0594 
ENTRY STOREMAP 05A4 
ENTRY MAPENO 05B4 
ENTRY S!oIAPAREA 05C4 

0 
ENTRY SNUMPART 066b 
E~TRY $INITPRT Ob88 
ENTRY SlNITMOO 066A 
ENTRY TIHERODB 068C 
ENTRY T l"o\ERO 06SC 
ENTRY T H1ER 1 06B6 
ENTRY DHVOL 0606 
ENTRY OMODB 0704 
ENTRY oHI PL 08A.2 
ENTRY FIRSTCCB 09AA 
ENTRY TERHDEFS 09AA 
ENTRY SSYSLJG OAOC 
ENTRY DISPLAY1 OBE6 
E"lTRY SSYSLOGA OOAA 
ENTRY SSYSLOGB OFBC 
ENTRY SSYSPRTR 1272 
ENTRY MATRL< 148A 
ENT~Y SSYSCOM 1638 
ENTRY SEOXPTCH 1658 

C SECT EDXSVCX 1758 OSBO 
ENTRY SVC 1758 
ENTRY SVCA 178A 
ENTRY SETBUSY 1704 
ENT~Y SVC I 17DC 
ENTRY WAIT 1828 
ENTRY ENQ IH6 
ENTRY OEQ 18813 
ENTRY POST 1898 
ENTRY A TTACHX 190E 
ENTRY ATTACH 19E2 
ENTRY DETACH lA44 
ENTRY SUPEXIT lA7b 
ENTRY SUPEXTRL lASC 
ENTRY SUPLVlXO lAE4 
ENTRY SATTACH 189'> 
ENTRY SOE TACH lREO 
E"lTRY SCwAIT lC02 
ENTRY SWAIT lClb 
ENTRY SPOST lC2E 
ENTRY SRE SETEY lC4E 
ENTRY SENQ 1C5A 
PHRY SDE.;;) lCAO 
E"lTRY STPTASKl lCCO 
E"lTRY STPTASK2 lCC4 

0 Figure A·4. Link control file (4 of 8) 

SYSGEN Listings A-9 



ENTRY UNCHAIN lCE3 
E:NTRY SCP 1040 

ENTRY LPGMXPI lODe C ENTRY LPGMXP2 IEC4 
CSECT S08UGNUC 2008 018A 

ENTRY HESTCOM 2008 
ENTRY STESTIN 20lE 
eNTRY STESTOUT 20B6 
ENTRY S TRCSIA 210A 
ENTRY STRCLSB 217A 

CSECT EoXALU 2192 oa5E 
ENTRY :: IFB 219l 
ENTRY t!IFoW 2196 
ENTRY :: IFW 219A 
ENTRY I:IFTES T 219C 
E"ITRY SCOMPE 21CA 
ENTRY SCOMPNE 210E 
ENTRY $FINoE ZlFO 
ENTRY SFINONE 2216 
ENTRY CGOTD 2234 
ENTRY BRANCH 2250 
ENTRY SEXEC 2266 
ENTRY :JNOP 226A 
ENTRY CMOSETUP 226C 
ENTRY CMOSTEST 2272 
ENTRY SOOLOOP 22CA 
ENTRY scorHINU 220A 
ENTRY SAV222CR 22E8 
ENTRY SAV424CR 22FO 
ENTRY SAV444CR 2304 
ENTRY SAV224CR 230E 
ENTRY SAX222 232E 
ENTRY SA222C 2334 
ENTRY SA222 2338 
ENTRY SSX222 234A 
ENTRY SS222C 234E 
ENTRY SS222 2352 
ENTRY SM222 2364 
ENTRY SM222C 2368 
ENTRY S0222 237C 
ENTRY S0222C 2390 
ENTRY GETPAR3 23C6 
ENTRY GETCNT 230E 
ENTRY SA424 23EC 
ENTRY SA424C 23F6 

C ENTRY SS424 241A 
ENTRY SS424C 24lE 
ENTRY SM424 2442 
ENTRY SM424C 2446 
ENTRY S0424 2460 
ENTRY S0424C 2464 
ENTRY SX444 2401: 
ENTRY SX444C 2494 
ENTRY SX224R 2482 
ENTRY SX224CR 24BA 
E''HRY S0422R 24F2 
E"'lTRY S0422CR 24F8 
ENTRY II,OVI 2654 
ENTRY MOVlC 26SC 
ENTRY ANOl 267A 
ENTRY ANOIXX 2684 
ENTRY IORl 2690 
ENTRY IORIXX 2694 
ENTRY EORI 269C 
ENTRY EORlXX 26A4 
ENTRY SHRI 26AC 
ENTRY SH~lXX 26CO 
ENTRY SHU 2602 
ENTRY SHLlXX 26E2 
ENTRY MQV2 26FC 
ENTRY MOV2C 2704 
ENTRY AN02 2726 
ENTRY AN02XX 2730 
ENTRY IOR2 273C 
ENTRY IOR2XX 2740 
ENTRY EOR2 2748 
ENTRY EOR2XX 2750 
EI\TRY SHR2 2758 
ENTRY SHR2XX 2768 
ENTRY SHL2 2776 
ENTRY SHL2XX 2786 
ENTRY MOV4 27AO 
ENTRY MOV4C 27B8 
ENTRY AN04 27E2 
ENTRY AN04XX 27EE 
ENTRY IOR4 2804 
ENTRY IOR4XX 2008 
ENTRY EOR4 2810 

Figure A-4. Link control file (5 of 8) C' 
A-l0 SR30-0436 



ENTRY EOR4XX 2818 
ENTRY SHR4 2820 

0 
ENTRY SHR4XX 2830 
EI\jTRY SHL4 283C 
ENTRY SHL4XX 264C 
ENTRY MOVEXP 2BDE 
ENTRY SCALL 2942 
ENTRY SRETURN 2966 
ENTRY 9FRCK 296A 
ENTRY USER 29BC 
ENTRY EOXLOJP 29EO 

CSECT EDXSTART 29FO 05C6 
ENTRY INITTASK 29FO 
ENTRY PCHKSIA 2C24 
ENTRY PCHKLS8 2EIA 
E"'TRY SFTKSIA 2E3E 
ENTRY STARTPGM 2EFt! 

CSECT DISKIlJ 2FB6 0608 
ENTRY OISKRW 2FB6 
ENTRY DISKRflOS 3072 
ENTRY TAPE060 10C4 
ENTRY DISKIOOO 313E 
E'ITRY OCBRETRN 3224 
ENTRY o ISKFLIH 32EA 
tNTRY OFLIH04 '13lE 
ENTRY OISKERRI 332A 
ENTRY o ISKERR2 332E 
ENTRY DISKERR3 3332 
ENTRY DISKERRS 33"1(, 
ENTRY DISKER6B 333A 
ENTRY OISKERR7 333E 
ENTRY 01SKER13 3366 
ENTRY DISKPOST 3384 
ENTRY VARYON 3394 
E~TRY VARYOFF 339C 
E~HRY VARYWORO 34F2 
ENTRY VARYQCB 34F4 
ENTR.Y VARYDSCB 34FE 

CSEC T 049624 368E OSEl2 
ENTRY 049624A.T 360E 
ENTRY 049621H1 3704 
ENTRY OFLIH50 39B2 
ENTRY DFLIH54 39FA 
ENTRY D1SKATTN 3A24 
ENTRY OATTNOO 3A2E 

0 
CSEC T EOXTIO 3C40 1348 

ENTRY $OPENO 3E52 
ENTRY PRSKSP 3E80 
ENTRY CURCTL 3F2E 
ENTRY CTLXFER 3FE6 
ENTRY PRTEXT 404E 
ENTRY NXTCOMD 4000 
ENTRY RDTEXTL 40EE 
ENTRY ROTEXT 40F2 
ENTRY QUESTION 4lEA 
ENTRY PRTNUM2S 4246 
ENTRY PRTNlJM2 424C 
IONTRY PRTNUM4S 426C 
ENTRY PRTNUM4 4272 
ErHRY GETVAL2 4348 
ENTRY GETVAL4 4366 
ENrRY KBTASK 4456 
ENTRY ENOATTN 4502 
ENTRY TERMOUT 4718 
ENTRY TERMl'H 48FO 
ENTRY DECSCA~ 4BOE 
ENTRY FLDCLEAR 4C1C 
ENTRY BOCWORO 4C36 
ENTRY DC9WORD 4DCA 
ENTRY E8BICVT 4E6C 

CSECT EOXTERMQ 4F88 03A2 
ENTRY ENQT 4F83 
ENTRY DEOT 5llC 
ENTRY QUTERMIN 5172 
ENTRY QUTERM 517A 
ENTRY DCTERM 51EC 
ENTRY OQTERMIN 5224 
ENTRY OCTERMB S25E 
ENTRY DEQTERMS S2CE 

CSEC T IOS4979 532A 090A 
ENTRY 104979 532A 
ENTRY 104978 532A 
ENTRY IA4979 5B20 
ENTRY IA4978 5820 

CSEC T 1054974 5C34 02EO 
ENTRY 104974 5C34 
ENTRY 104973 5C34 
ENTRY IA4973 5E06 
ENTRY 1 A4974 5ED6 

0 Figure A-4. Link control file (6 of 8) 

SYSGEN Listings A-11 



CSECT IDS TERM 5F14 02lA 

C ENTR.Y IOTERM 5F14 
CSECT IOSTTY 612E 02CE 

ENTRY WRTTY 612E 
ENTRY RDTTY 6168 
ENTRY lATTY 61CA 

CSECT 10SACCA 63FC 0596 
ENTRY IoIRACCA 63FC 
ENTRY ROACCA 654A 
ENTRY I AACCA 6102 
ENTRY I AOELAY 6818 
ENTRY ACCALS 6882 

CSECT IOS3101 6992 01B8 
ENTRY 103101 6992 

CSECT ASC 1 ITAB 114A 0202 
ENTRY TRASCII 114A 

CSECT EBA SC 11 134C 0202 
ENTRY TREBASC 134C 

CSECT 10SPOOL 154E 04DA 
ENTRY 10SPNQT 154E 
ENTRY 10SPDQT 1616 
ENTRY IOSPWR 174C 
ENTRY 10SPCMD 180C 
ENTRY IDS PCLOS 1932 
ENTRY IOSPENO 195A 
ENTRY IOSPTtR 19EE 

CSECT EDXTIMER 1A28 0484 
ENTRY TIMEROIA 1A28 
ENTRY T IMERlIA 7A98 
ENTRY SETIMER 1814 
ENTRY WAITIMER 1C6A 
ENTRY INTIMEX 1CSE 
ENTRY INTIME 7C9C 
ENTRY GTIMDATE 1CF4 
ENTRY PRINTIME 1020 
ENTRY WHA TIME 109E 
ENTRY SETCLOCK 10C8 

CSECT SYSLOG 1EAC 0162 
ENTRY lca 1EAC 
ENTRY SLOGIA 1EBC 
ENTRY SLOGTSK 1F2C 
ENTRY ISlOGIA 1FC6 
ENTRY SSLOGTSK 1F02 
ENTRY SSlOGPRM 8000 

CSECT C IRCBUFF 800E OOFe C ENTRY CIRSTR 800E 
ENTRY CIRIN 8010 
ENTRY CIRENO 8012 
EtHRY CIRCNT 8014 
ENTRY C IRESIZ 8016 
ENTRY C IRESTR 8018 

eSECT RlOADER 810A 121E 
ENTRY LOAOPGM SlOA 
ENTRY LPGMXPA 8150 
ENTRY LOAOPGMO 81BC 
ENTRY LOADEXIT 8386 
ENTRY LPGMXPB 83FA 
ENTRY ENoeOOE 84AA 
ENTRY LOAOQCB 84AC 
ENTRY LOAOORG 84B6 
ENTRY LCMOKEY 840A 
ENTRV LCMOTGT B4DC 
ENTRY LOAOFHFL 84E2 
ENTRY GETMAIN 88FO 
ENTRY FREEMAIN 890A 
ENTRY SACTIVE BA1E 
ENTRY GOTOTABL 8050 
ENTRY SCANCEL BOCC 
ENTRY STOP 8F96 
ENTRY SToPTASK 900A 

CSECT EDXFLOAT 9388 0264 
ENTRY FAOOOIO 9388 
ENTRY FAOOOOO 9388 
ENTRY FAOOlOO 9388 
ENTRY FADOOOI 9396 
ENTRY FADOOll 93A4 
ENTRY FAOOlOl 93B2 
ENTRY FAODllO 93CO 
ENTRY FADOlll 93CE 
ENTRY FSUBOOO 930C 
ENTRY FSUB100 93DC 
ENTRY FSUBOOl 93EA 
ENTRY FSUBOIO 93F8 
ENTRY FSUBOll 9406 
ENTRY FSUBIOl 9414 
ENTRY FSUBllO 9422 
ENTRY FSUBlll 9430 
ENTRY FLOAT ERR 9468 

C ENTRY FMPYOOO 9418 

Figure A-4. Link control file (7 of 8) 

A-12 SR30-0436 



ENTRY FHPYOO1 9486 
ENTRY FMPY010 9494 

0 
ENTRY FMPYOll 94AZ 
ENTRY FHPYllO 9480 
ENTRY FMPY100 9480 
ENTRY FHPYlll 94BE 
ENTRY FMPY101 94BE 
ENTRY FOIVOJO 94CC 
ENTRY FDIVOOl 94DA 
ENTRY FDIV010 94E8 
ENTRY FoIVOll 94F6 
ENTRY FoIVllO 9504 
ENTRY FoIV100 9504 
ENTRY FoIV111 951Z 
ENTRY FoI VUH 9512 
ENTRY FLTCONV 9520 
ENTRY MOVFP4 9574 
ENTRY MOVFP8 958A 
ENTRY IFFLOAT 95B8 
ENTRY IFFLOATL 9500 
ENTRY EDXFLEND 95E8 

CSECT EBFLCVT 95EC 065C 
ENTRY EBFLD3L 95EC 
ENTRY EBFLSTD 95EC 
ENTRY FLEBDBL 9906 
ENTRY FLE8STD 9908 

CSECT OIO 9C48 0104 
CSECT EDXINIT 9D4C OlBe 

ENTRY START 904C 
ENTRY SEDXINIT 9016 
ENTRY INITEXIT 900A 
ENTRY SSBIOINT 9E16 
ENTRY STERMINT 9E18 
ENTRY SDISKINT 9E1C 
E~TRY STAPEINT 9E1E 
ENTRY S4Q18INT 9E80 
ENTRY S4013INT 9ERZ 
ENTRY SLOADINT 9E84 
ENTRY SPGMCINT 9E86 
ENTRY SHOST INT 9E6A 
ENTRY saseAINT 9E8C 
ENTRY SEXIOINT 9E8E 
ENTRY STIMEINT 9E90 
ENTRY INITFEAT 9F04 

CSECT o ISKINIT 9F08 0098 

0 
ENTRY DSKPREPZ A136 
ENTRY DSKINITl AZ3E 
E~TRY D66INIT A344 

ENTRY PREPIDCB A40b 
ENTRY oISKBUFR A418 
ENTRY OSOPEN A69A 
ENTRY GETVOL A14E 
Et-..TRY ENQVOL AB60 
ENTRY OEQVOL ABC6 
ENTRY SoSNFNo AC02 
ENTRY SDSBIODA AC04 
ENTRY sosaVOL AC06 
ENTRY SoSBLI8 Ae08 
ENTRY SoSIOERR ACOA 
ENTRY SDSNVTOC ACOC 
ENTRY SSEXIT ACOE 
ENTRY SDSDCEA AC10 
ENTRY oSS AC5C 

eSECT LOAoINIT ACAO 0610 
CSECT TERMINIT B2BO 0200 

ENTRY NEXTER'" 841Z 
ENTRY TERMER~X 8418 

eSEC T INIT4918 6580 06AO 
CSECT SACCA RAM Be20 01F6 
CSECT TPIRINIT 8E16 0158 

MODULE TEXT LENGTH= BF6E, RLo COUNT= 3131 
SUPVLINK ADDED TO EDXOOZ 

SLINK COMPLETION CODE= -1 
AT ON 

SLINK ENDED AT 
JUMP ENDJOS.GT,4 

Figure A-4. Link control file (8 of 8) 

o 
SYSGEN Listings A·13 



PRO~RAM SUPDATE,EDX002 
NOMSG 
PARM SSYSPRTR SUPVLINK,EDX002 SEDXNUCN,EDX002 YES 
EXEC 
SeDXNUCN STORED 

SUPDATE ENDED AT 
LABEL ENDJOB 

Figure A~. End of SYSGEN 

A·14 SR30·0436 

c 

c 

c' 



Appendix B. Program Preparation Listings 

o 
EOX ASSEM3LER STATISTICS 

SOURCE INPUT - STATSRC,EOXOoZ 
~ORK DATA SET - ASMWORK,EOXOOZ 
OBJECT ~OOULE - ASMOUT,EOXOOZ 
STATE~ENTS PROCESSED - 70 

NO STATEMENTS FLAGGED 

LOC .0 .2 ·4 .6 ·8 SOURCE STATEMENT STATSRC , EOX002 157l9-XX41-V3.0.0 

0000 0008 0709 O6C7 o9CI 0440 XMPLSUT PROGRAM START 00000010 
OOOA 0000 05E4 0370 0000 0000 
0014 06E6 0000 0000 0000 0100 
ODIE 06E4 oooe 0000 0000 Ob64 
0028 0000 0000 OUOO 0000 0000 
0032 0000 
0034 EXTRN $I~OPEN,$IMOEFN,$IMPROT,$IMUATA 00000020 
0034 0000 0300 0000 0000 0000 IHAGEisUF BUFFE~ 7613,BYTES 00000030 
003E 0000 0000 0000 0000 0000 
0336 0000 
0338 OEOO E5C9 C4C 5 06Fl bUCI DSETNAME TEXT 'VI DEDI, ASMVOL ' 00000040 
0342 E204 E:5D6 0340 
0348 4040 4040 4040 4040 80ro IUCBI IOCB NHIST=O 00000050 
0352 DOFF 0000 7FFF 0000 0000 
015C 4040 4040 4040 4040 8800 IOca2 IOCB SCREEN=STATIC 00000060 
0366 OOFF 0000 7FFF 0000 0000 
0370 ~OO2 04u3 C505 C440 O,B? A TTNLI ST IENO,OUT,$PF,STATICI 00000070 
OHA 0403 5B07 Cb40 05BA 

0 
0382 902~ 0348 START ENOT IllCBl 00000130 
0386 B02A 0001 OOOF B02b 1414 PRINTcXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=1 00000140 
0390 (303 CIE2 E240 0906 F2E3 
039A C5J9 4007 0906 C709 CI04 
03A4 902A 0002 0000 8026 2020 PRINTEXT 'HIT "~TTN" AND E~TER "ENO"TO ENO',SKIP=2 00000150 
03AE C8C9 E340 70Cl E3E3 0570 
03~8 40C 1 O5C4 40C5 OSI:3 C509 
03C2 4010 CS05 C470 E3J6 40C, 
03CC O5C4 
03CE 8020 OCOR E3Cil C540 0709 PRINTEXT ' THE PROGRAM' 00000160 
0308 060 09Cl 0440 
030E 902A 000" 0000 8026 20lF PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2 00000170 
03ES CdC9 £:340 CIo5 E840 0709 
03F2 06C1 o9Cl 0440 C6E4 OSC3 
03FC f3C9 0605 4002 CSE8 40El 
04116 0640 
0408 13026 lAlA 40C2 09C9 05C7 PRINTEXT , BRING UP THE ENTRY SCREEN' 00000180 
0412 40E4 0140 E3C8 C540 C505 
041C E309 E940 E2C3 O9C5 9 05 
0426 OOB~ OEQT 00000190 
0418 0018 05C2 CHECK WAIT ATTNECI3,RESET 00000240 
042C AOAZ 05C2 0001 OS5C IF IATTNECB,EQ,l),GOTO,ENOIT 00000250 
0434 C29E 0000 DBA 0038 GETIMAGE CALL $IMOPEN,IOSETNAME),IIMAGEBUFI 00000260 
043C AOA2 05E6 FFFF 0472 IF IXMPLSTAT+2,NE,-11 00000270 
0444 005C 05CA 05E6 110VE' ERRCOOE,X~PLSTAT+2 00000280 
044A 8026 lA1A 7CC9 04C1 C7(5 PRINTfXT '~IMAGE OPEN ERROR, CODE = , 00000290 
0454 4006 07C5 0540 C.S09 0906 
045E 0968 40C3 06C4 CS40 7E40 
0468 002tJ OS('A 0001 PRI~TNUM ERRCOOE 00000300 
046E OOAJ 05CC GOTO ERR QUERY 0000~1,0 
0472 ENOIF 0000 320 
0472 C29E 0000 0348 0038 CALL SIMOEFN,I IOCBl! ,I IMAGEBUF) 00000330 
047A 9025 035C ENQT IOCB2 00000340 
041E 1430 TEI\MCTRL BLANK 00000350 
0480 C29E 0000 0038 0000 CALL SIMPROT,IIHAGEBUFI,O 00000360 
0488 819E 0000 01)38 CALL SIMDATA,IIHAGEBUF) 00000370 
048E f\02A 0004 OOOB PRINTEXT LINE=4,SPACES=11 00000380 
0494 lOLl TERMCTRL DISPLAY 00000390 
0496 2030 WAITONE wAIT KEY OLl000400 
049B OOAI 05E6 0004 :),;OE 04AA GOTO IRfAO,El,E2,E3,E41,XMPLSTAT~2 00000410 
04A2 0432 04ac 04C6 
04A8 '105C 05C6 0006 E1 ,'lOVE LINLN~lR,6 OUOO04£'0 
04AE OOAO 04CC GOTD DELET E 00000430 
04d2 B05C 05C~ OJO:; f2 MOVE LI"'IP'dR,ll 00000440 

0 Figure B·1. Assembler statistics and listing (1 of 2) 

Program Preparation Listings 8·1 



0488 OOAO 04CC GOTO DELETE 0')000450 
04~C 805C 05C8 0010 E3 MOVE LINENeR,16 00000460 
04C2 OOAO 04C( (;OTO OELETE 0'.)000410 C 04C6 805C 05C8 0015 E4 ~OVE LINEN:IR,21 00000480 
04CC E02A 05e9 0000 F030 0004 OELE:TE ERASE ~aOE=LINE,TYPE=OATA,LINt=LI~ENBR 00000490 
04U6 2000 
0408 8032 05C8 0001 ADD lINE"It3R,l 00000500 
04DE E02A 05C8 COOO F030 0004 EPAS!: ~OOc=LINE,TYPE=OATA,LI~E=LINEN~R 00000510 
04E8 2000 
04EA 8032 u5CR 0001 ADD LIUENiIR,l 00000520 
04FO E02A 05e8 0000 F030 0004 ERASE ~OOE=LINE,TYPE=DATA,LINE=LINENeR 00000530 
04FA 2000 
04FC AO],) 05C8 OJ02 SUBTRACT LINHI~R,2 00000540 
0502 AOlA 05C8 000:> PRINTEXT LINE=LINENBR,SPACES=5 00000550 
0509 1 C "H,) T;::RMC TRL OISPLAY 00000560 
050A OOM 0496 GOTO W4I TONE 0:)000570 
050F= F02A 0002 0037 C026 100F READ QUESTION 'HORE ENTRIES? ',LINE=Z,SPACES=55,NO=CLEANUP OJOO0580 
051IJ 0406 D9C5 40C5 05E3 Dge9 
0522 C5E2 40bF 4040 B02E 0551> 
052C F02A 0002 0037 F030 0004 ERASE MODE=LINE,LINE=Z,SPACES=55,TYPE=OATA 00000590 
0536 ;?OOO 
0538 F02A 0006 0000 F030 COOO ERASE ~~DE=SCREEN,LINE=6 OOOOO~OO 
0542 2000 
0544 e02A 000t- 0005 PRINTEXT LI~F.=6 ,SPACE S=5 00000610 
054A lC30 TERMCTRL o ISPL AY 00000620 
054C OOAO 0496 GOTe. WAITONE 00000630 
0550 F030 0001 2000 CLEANUP ERASE ~OOE=seREEN,TYPE=ALL 00000640 
0556 0097. OEIJT 00000&50 
0558 OOAO 038l GOTO START 00000660 
055C 002? FFFF ENDIT PROGSTOP 00000670 
:1560 5050 DATA X'~050' 00000680 
0562 6060 6060 6060 6060 6060 DASHES DATA 80C'-' 00000690 
05132 0019 05(2 0001 OUT I'OST ATTNEca,l 00000700 
0~R8 ~010 ENDATTN 00000710 
056A 0019 05(2 FFFF STATIC POST ATTNEea,-l 00000720 
05CO 0010 ENOATTN 00000130 
05C2 FFFF 0000 0000 ATTNECB EeB 00000740 
05C8 0000 LIfIIENUR DATA F'O' 00000750 
05CA 0000 ERReODE DATA F'O' 003000760 
05CC C026 OEOE 7(09 C5E3 D9E8 ERRIJUERY QUESTION ' GlRETRY OPEN? ',YES=GETIMAGE,NO=ENDIT 00000170 
0506 4006 07(5 0540 6F40 C02E 
05EO 0434 055e 
05E4 0000 0000 0000 0234 0000 ENDPROG 00000180 
OSEE 0000 0000 0382 051:4 0000 
05FB 0000 0000 0000 0000 0000 
0602 0002 0096 0000 0000 FFFF C 060C 0000 0000 0610 0000 0000 
0616 0612 E7D4 0703 E2E3 elE3 
0610 0000 0000 0000 0000 0000 
062A 0000 0000 FFFF 0000 0000 
0634 0000 0000 0000 05E4 0000 
063E 0000 0000 0000 0000 0000 
065C COOO 0000 05E4 0080 0000 
0606 0000 0000 0234 0000 0000 
0670 0000 0000 0664 0000 0000 
067A 0000 0000 0000 0000 0001 
0684 OOOA 0000 0000 FFFF 0000 
068E 0000 0690 0000 0000 0692 
0698 56C 1 E3E3 e lE2 0240 0000 
06A2 0000 0000 0000 0000 0000 
06AC 0000 FFFF 0000 0000 0000 
0606 0000 0000 05E4 0000 0000 
06eo 0000 0000 0:100 0000 0000 
060E 0000 0664 0080 0000 0000 
06E8 000:1 0000 0000 0000 0000 
06F2 0000 0000 0000 0000 
06FA END 00000790 

EXTERNAL/UNDEFINED SYMdOLS 

SVC WXTRN 
SUPEXIT WXTRN 
SETBUSY WXTRN 
SIMOPEN EXTRN 
SIMOEFN EXTRN 
SIMPROT EXTRN 
SIMoATA EXTRN 

COMPL2TION CODE = -1 

Figure B-1. Assembler statistics and listing (2 of 2) 

c 
B-2 SR30-0436 



o 

o 

o 

SLINK EXECUTION CONTROL RECORDS 
FROM LINKSTAT,EDX002 

* THIS LINK CONTROL DATA SET SPECIFIES: 
* 1.1 THE LINKED OUTPU~ OBJECT MODULE ~ILL 
* SF. STORED IN 'LINKOUT' ON EDX002 * 2.1 THE AUTOCALL DATA SET IS 'SAUTO' ON 
* ASMLIB (SYSTE~ SUPPLIEDI 
* 3.1 'ASMOUT' ON EDX002 IS THE ONLY INPUT 
* OeJECT MODULE TO BE INCLUDED 
OUTPUT LINKOUT AUTO=SAUTO,ASMLIB 
J NCLUDE ASHOUT 

INCLUDE SIHaPEN,A~MLIB 
INCLUDE SIMGEN,ASHLIB 
INCLUDE SIMDTYPE,ASHLIB 
INCLUDE SSRETURN,ASMLIB 
INCLUDE SUNPACK,ASHLIB 
END 

VIA AUTDCALL 
VIA AUTOCUL 
VIA AUTOCALL 
VIA AUTOCALL 
VIA AUTOCALL 

***** UNRESOLVED EXTERNAL REFERENCES 
WXTRN SVC 
WXTRN SUPEXIT 
WXTRN SETBUSY 

OUTPUT NAME= LINKOUT 
ESC TYPE LABEL AODR LENGTH 

CSECT 0000 06FA 
CSECT 06FA 09E6 

ENTRY SIMOPEN 06FC 
ENTRY SFILE 0908 
ENTRY DISKBUFR 095C 
ENTRY OSOPEN OA7A 
ENTRY SDSNFND OFE2 
ENTRY SDSBIODA OFE4 
ENTRY SDSBVOL OFE6 
ENTR.Y SDSBLIB OFE8 
ENTRY SDSIDERR OFEA 
ENTRY SDSNVTOC OFEC 
ENTRY SSEXIT OFEE 

(SECT 10E2 OE2A 
ENTRY SIHDEFN 10E4 
ENTRY SIMPROT 1180 
ENTRY SIMDATA 1908 
ENTRY SADDRTBL lEA8 
ENTRY SATTRT~L lEF8 

CSECT lFOC 0074 
ENTRY SIMDTYPE lFOE 

CSECT lF80 0028 
ENTRY RETURN 1F80 

CSECT lFA8 0040 
ENTRY SUNPACK lFAA 

MODULE TEXT LENGTH= lFE6, RLD COUNT= 1015 
LINKDUT ADDED TO EOX002 

SLINK COMPLETION CODE= -1 
AT 06:38:12 ON DO/DO/DO 

SLINK ENDED AT 06:38:12 

Figure B·2. Link edit listing 

00010 08 *** TOO MANY POSITIONAL OPERANDS WERE SPECIFIEO 
00020 08 *** AN INVALID KEYWORO PARAMETER WAS SPECIFIED 
00030 DB *** ONE OR MORE UNDEFINED LABELS WERE REFERENCED 
00040 08 *** INVALID NO. OF ELEMENTS IN OPERAND - SHOULD BE 1 
00050 08 *** INVALID INDEX REGISTER SPECIFICATION - NOT ~1 OR 
00060 08 *** R.ESULT= OPERAND MUST BE SPECIFIED 
00070 06 *** INVALID PRECISION FOR REGISTER OPERATION 
00080 08 *** OPERAND 1 IS MISSING 
00090 08 *** OPERAND 2 IS MISSING 
011100 08 *** 'COUNT' IS NOT ALLOWED WITH INDEX REGISTERS 
00110 08 *** INVALID OR UNDEFINED OPERATION CODE 
00120 08 *** TASK NAME NOT SPECIFIED 
00130 08 *** TOO MANY DATA SETS SPECIFIED 
00140 08 *** TOO MANY OVERLAY PROGRAMS SPECIFIED 
00150 08 *** INVALID PARAMETER COU~T 
00160 08 **c: START= OPERAND MUST BE SPECIFIED 
00170 08 *** DS#= OPERAND MUST BE SPECIFIED 
00180 08 *** DSNAHE= OPERAND MUST BE SPECIFIED-
00190 08 *** DSLEN= OPERAND IS INVALID 
00200 08 *** INVALID PRIORITY SPECIFICATION 
00210 as *** INVALID LEVEL SPECIFICATION 
00220 08 *** OPERAND FIELD IS TOO LARGE 
00230 08 *** INVALID PREC= SPECIFICATION 
00240 09 *** UNBALANCED PARENTHESIS IN OPERAND 
00250 08 *** SYMBOL IS MULTIPLY DEFINED 

Figure B·3. $EDXL listing (1 of 4) 

OR 2 
tJ2 

Program Preparation Listings B·3 



Ou260 
00270 
002BO 
00290 
00300 
00310 
00320 
00330 
00340 
00350 
00360 
00370 
00380 
00390 
00400 
00410 
00420 
00430 
00440 
00450 
00460 
00470 
00480 
00490 
00500 
00510 
00520 
00530 
00540 
00550 
00560 
00570 
00580 
00590 
00600 
00610 
00620 
00630 
00640 
00650 
00660 
00670 
00660 
00690 
00700 
00710 
00720 
00730 
00740 
00750 
00760 
00770 
00780 
00790 
00800 
00810 
00820 
00830 
00840 
00B50 
00860 
00870 
00880 
00890 
00900 
00910 
00920 
00930 
00940 
00950 
00960 
00970 
00980 
00990 
01000 
01010 
01020 
01030 
01040 
01050 
01060 
01070 
01080 
01090 
01100 
01110 
01120 
01130 

08 ~** SYMBOL EXCEEDS 8 CHARACTERS IN LENGTH 
08 *** INVALID SELF-DEFINING TERM 
08 *** I/O BUFFER ADDRESS NOT SPECIFIED 
08 *** OUERY MESSAGE ~UST BE SPECIFIED 
08 *** INVALID DS= SPECIFICATION 
08 *** INVALID PGM= SPECIFICATION 
08 *** INVALID PARM= SPECIFICATION 
08 *** INVALID LENGTH= SPECIFICATION 
08 *** TEXT MESSAGE IS NOT A VALID CHARACTER STRING 
08 *** INVALID SYNTAX IN OPERAND FIELD 
08 *** NULL OR INVALID BRANCH TABLE ENTRY 
08 *** EVENT NAME NOT SPECIFIED 
08 *** COpy CODE MODULE NOT DEFINED 
oa *** A COpy STATEMENT IS NOT ALLOWED WITHIN COpy CODE 
08 *** EITHER YES= OR NO= MUST BE CODED 
08 *** INVALID PROMPT= SPECIFICATION 
08 *** INVALID MODE SPECIFICATION 
08 *** LABEL MUST BE SPECIFIED 
08 *** INVALID MODE SPECIFICATION 
08 *** MORE THAN ONE LOCAL 'ATTNLIST' HAS BEEN COOED 
08 *** MORE THAN ONE GLOBAL 'ATTNLIST' HAS BEEN CODED 
08 *** ATTNLIST: SCOPE= MUST BE 'LOCAL' OR 'GLOBAL' 
08 *** ILLEGAL NUMBER OF OPERANDS - MUST BE EVEN 
08 *** ATTNLIST COMMAND STRING MUST BE 1-8 CHARACTERS IN LENGTH 
08 *** NO ACTIVE 'IF' OR 'DO' STRUCTURE 
08 *** OPERAND IS NOT 'GOTO' OR 'THEN' 
oe *** IF/DO NESTING LIMIT EXCEEDED 
08 *** INVALID CONJUNCTION SPECIFED IMUST BE 'AND' OR 'OR" 
08 *** INVALID RELATIONAL OPeRATOR SPECIFIED 
08 *** CONDITION MUST BE 'EO' OR 'NE' FOR 'STRING COMPARE' 
08 *** ACTIVE STRUCTURE IS NOT 'IF' 
08 *** 'DO WHILE' OR 'DO UNTIL' MUST HAVE EVEN NUMBER OF OPERANDS 
08 *** ACTIVE STRUCTURE IS NOT 'DO' 
08 *** AN 'IF/ELSE/ENDIF' OR 'DO/ENDDO' CLAUSE HAS NOT BEEN TERMINATED 
08 *** ERRQR 60 IRESERVED FOR 'DO" 
08 *** SPECIFY 'WAIT=YES' OR 'WAIT=NO' FOR DISK OPERATIONS 
08 *** IF 'WAIT=NO', 'ERROR=' AND 'END=' MAY NOT BE SPECIFIED 
08 *** UNBALANCED OUOTES IN OPERAND 
08 *** INVALID PRO~PT MESSAGE 
08 *** 'COUNT' MUST 9E A POSITIVE SELF-DEFINING TER~ 
OS *** INVALID DATA TYPE SPECIFIED 
08 *** 'COUNT' MAY ND1 BE MORE THAN Z WITH REGISTER OPERANDS 
08 *** OAT A TYPE ~UST BE 'WORD' WITH REGISTER OPERANDS 
08 *** 'RESULT=' MAY NOT BE SPECIFIED WITH 'Move' OR 'MOVEA' 
08 *** INVALID 'BUSY' SPECIFICATION 
09 *** SECOND OPERAND NOT 'RESET' OR 'CLEAR' 
DB *** NO JTHER OPERANDS ALLOWED WITH 'TIMER' OR 'ENTER' WAIT 
08 *** REGISTER SPECIFICATION INVALID 
08 *** INVALID RESOURCE SPECIFICATION 
08 *** ·CODE' MUST BE SELF-DEFINING TER~ 
08 *** 'NLINES' ~UST BE POS., SELF-DEFINING TERM 
08 *** 'NLINES' REQUIRED WITH 'NSPACES' SPECIFICATION 
08 *** 'NSPACES' MUST ~E pas •• SELF-DEFINING TERM 
08 *** INVALID OPERAND SPECIFIED ON 'TERMCTRL' 
08 *** INVALID 'TYPE=', MUST BE 'DATA' OR 'ALL' 
08 *** INVALID 'MODE=', ~UST BE 'FIELD', 'LINE', OR 'SCREEN' 
08 *** INVALID FORMAT IN OPERAND 1 
08 *** NO CYARACTER STRING SPECIFIED 
08 *** OPERAND 3 IS MISSING 
oa *** INCOMPATIBLE ~ARGINS 
08 *** INVALID SPECIFICATION FOR 'SCREEN' 
oa *** INVALID SPECIFICATION FOR 'OVFLINE' 
06 *** NO STORAGE ADDRESS SPECIFIED 
08 *** NO aRANCH ADDRESS SPECIFIED 
08 *** INVALID SENSOR INPUT/OUTPUT TYPE 
08 *** INVALID 'ERROR=' SPECIFIED 
08 *** 'SITS=' INVALID FOR 'AI' AND 'AO' 
08 *** INVALID 'SEQ:' FOR 'AI' 
08 *** INVALID 'BITS=', ~UST HAVE THE FORM 'BITS=(U,VI' 
08 *** INVALID 'Lsa' SPECIFIED 
06 *** INVALID 'PULSE' SPECIFICATION 
08 *** INVALID 'EOB' SPECIFIED 
Og *** INVALID 'TERMINAL NAME', ~UST BE 1-6 CHARACTERS 
08 *** INVALID HEXADECIMAL CONSTANT SPECIFIED 
09 *** NEITHER POSITIONAL NOR KEYWORD PARAMETERS WERE SPECIFIED 
08 *** A DATA ADDRESS MUST BE SPECIFIEO 
DB *** INVALIO OR UNSPECIFIED LENGTH OPERAND 
OR *** ore TYPE MUST BE SPECIFIED 
06 *** INVALID DUPLICATION FACTOR 
08 *** INVALID 'FORMAT=' SPECIFICATION 
06 *** DATA TYPE MUST BE 'WORD' OR 'BYTE' 
08 *** ILLEGAL CONTINUATION - DATA MUST START IN COLU~N 16 
OB *** 'BITS=' MUST BE SPECIFIED WITH 'TYPE=SUBGROUP' 
OB *** PCS NOT SPECIFIED 
08 *** INVALID 'ADDRESS=', MUST BE BETWEEN '00' AND 'FF' 
08 *** INVALID 'TYPE=' SPECIFIED 
OB *** INVALID 'BIT=', MUST BE BETWEEN '0' AND 'IS' 
OH *** 'SPECPI=' MUST aE SPECIFIED FOR 'TYPE=GROUP' AND 'TYPE=BIT' 

Figure 8-3. $EDXllisting (2 of 4) 

8-4 SR30-0436 

c' 

c 

c 



o 

o 

01140 
OLl50 
01160 
OLl70 
01180 
01190 
01200 
01210 
01220 
01230 
01240 
01250 
01260 
01270 
01280 
01290 
01300 
01310 
01320 
01330 
01340 
01350 
01360 
01370 
01380 
01390 
01400 
01410 
01420 
01430 
01440 
01450 
01460 
01470 
0J.480 
01490 
01500 
01510 
01520 
01530 
01540 
01550 
01560 
01570 
01590 
01590 
01600 
01610 
01620 
01630 
01640 
01650 
01660 
01670 
01680 
01690 
01700 
01710 
01720 
01730 
01740 
01750 
01760 
01770 
01780 
01790 
01800 
01810 
01820 
01830 
01840 
01850 
018bO 
01870 
01880 
01890 
01900 
01910 
01920 
01930 
01940 
01950 
01960 
01970 
01980 
:H990 
02000 
02010 
02020 

08 
08 
08 
OS 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
09 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
03 

*** INVALID 'POINT=', MUST BE '0-15' FOR AI OR '0-1' FOR AO 
*** 'ADC' ADDRESS SPECIFIED INSTEAD OF 'MULTIPLEX~R' ADDRESS 
*** INVALID 'RA~GE=', MUST BE 5V,500MV,200MV,100~V,50MV,20MV,OR,10MV 
*** INVALID 'lCOR=', ~UST aE 'YES' OR 'NO' 
*** INVALID OR HISSING COUNT= SPECIFICATION 
*** INVALID OR HISSING SIZE= SPECIFICATION 
*** INV4LID 'LOGHSG=', MUST BE 'YES' OR 'NO' 
*** INVALID 'OS=' ON LOAD 
*** INVALID 'OS=' ON OVERLAY LOAD, ~UST HAVE THE FORM 'DSX' 
*** NO OPEN 'TASK' STATEMENT FOR THIS 'ENDTASK' 
*** TYPE CO~NT MUST BE BETWEEN 0 AND 255 
*** INVALID GPIB OPERATION 
*** INDEX REGISTER IS AN INVALID OPERAND 
*** INVALID FIRST CHARACTER IN PREC= 
*** INVALID SECOND CHARACTER IN PREC= 
*** INVALID THIRD CHARACTER IN PREC= 
*** MAXIMUM OF 3 PREC= SPECIFICATIONS 
*** INVALID COUNT= PARAMETER 
*** INVALID PRECISION FOR IMMEDIATE OPERAND 2 
*** INVALID DATA TYPE COMBINATION 
*** TOO FEW PREC= SPECIFICATIONS 
*** INVALID FORHAT= SPECIFICATION 
*** MAXIHUM OF 8 HEXADECI~AL DIGITS 14 BYTES) PER OPERAND 
*** DATA TYPE SPECIFICATION IS NOT RECOGNIZED 
*** FLOATING POINT CONVERSION ERROR OR EBFLCVT NOT IN SUPERVISOR 
*** I~VALID KEYWORD COM3INATION 
*** STORAGE SIZE MUST BE SPECIFIED 116K - 256K) 
*** MAX. NUMBER OF PROGRAMS NOT BETWEEN 1 AND 100 
*** INVALID TP= SPECIFICATION' 
*** MAXPRDG= AND PARTS= DO NOT MATCH 
*** PARTITION SIZE EXCEEDS 32 BLOCKS 
*** INVALI~ DISK= OPE~AND 
*** OUT OF SEQUENCE, END=YES PREVIOUSLY SPECIFIED 
*** TYPE=DSECT IS NOT SUPPORTED 
*** INVALID OR MISSING DEVICE TYPE SPECIFIED 
*** A DEVICE ADDRESS MUST BE SPECIFIED 
*** DEVICE ADDRESS MUST BE FROH X'OO' TO X'FF' 
*** VOLUME LABEL MUST BE SPECIFIED 
*** VOLUME LA8EL IS MOR~ THAN 6 CHARACTERS 
*** INVALID LIBRARY ORIGIN SPECIFICATION 
*** INVI\LID OR MISSING VOLUME ORIGI.N SPECIFICATIO~ 
*** INVALID OR MISSING VOLUME SIZE SPECIFICATION 
*** INVALID OR MISSING FIXED HEAD VOLUME SPECIFICATIO~ 
*** SECONDARY VOLUMES NOT ALLOWED FOR 4964 
*** RECORDS PER VOLUME EXCEEDS 32760 
*** COUNT TOO HIGH IN 'PARM=' OPERAND 
*** ONLY 1 HOSTCOMM STATEMENT IS ALLOWED 
*** INCONSISTENT TOP MARGIN 
*** INCONSISTENT BOTTOM MARGIN 
*** INVALID LEVEL SPECIFICATION 
*** TOO MANY PI= ENT~IE5 
*** INVALID SPECIFICATION FOR ECHO 
*** STATIC SCREENS ARE NOT SUPPORTED FOR THIS TERMINAL TYPE 
*** THE SECOND PI ENTRY IS INVALID 
*** THE TWO PI ENTRIES ARE EQUAL 
*** THE FIRST PI ENTRY IS INVALID 
*** THIS ADDRESS HAS BEEN PREVIOUSLY DEFINED 
*** INVALID AITYPE= 
*** INVALID 4982 FEATURE ADDRESS 
*** INVALID 4982 BASE ADDRESS 
*** REQUIRED PA~AMETER IS MISSING 
*** SCAN= PARA~ETER IS INCORRECT 
*** ACTION= PARAHETER IS INCORRECT 
*** INVALID PARAMETER IN DATA LIST 
*** FORMAT SPECIFICATION IS INVALID 

*** 
0..1 *** 
08 *** 

*** 

FORMAT CO~VeRT SPECIFICATION IS INVALID 
FORMAT - PARENS SPECIFICATION IS INVALID 
FORMAT - DElIMITE~ SPECIFICATION IS INVALID 
FORMAT - X-TYPE SPECIFICATION IS INVALID 
FORMAT - f-TYPE SPECIFICATION IS INVALID 
FORMAT - I-TYPE SPECIFICATION IS INVALID 
FORMAT - A-TYPE SPECIFICATION IS INVALID 
FORMAT - NUMERIC SPECIFICATION IS INVALID 
FORMAl - H-TYPE SPECIFICATION IS INVALID 
FOR~AT - I-TYPE SPECIFICATION IS INVALID 
FORMAT - LIST SPECIFICATION IS INVALID 

08 
08 
lJd 
06 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
OB 
08 
08 

*** 
*** *** 
*** 
*** *** 
*** 
*** *** 
*** 
*** 
*** 
*** 
*** 
*** *** 
*** 
*** 
*** 

FORMAT - EXCeEDS MAXIMUM NUMBER OF SPECIFICATIONS 1401 
FORMAT - MAXIMUM CHARACTER STRING IS 254 
INVALID BSCREAO/BSCwRITE TYPE SPECIFICATION 
INVALID TIMEOUT OPERAND 
INVALID ADDRESS OPERAND 
INVALID RETRIES OPERAND 
INVALID MC OPERAND 
INVALID TYPE OPERAND 
INVALID BSCIOCS ADDRESS SPECIFICATION 
THE TOTAL NUMBER OF OPERAND DELIMITERS EXCEEDS MAXIMUM 
INSUFFICIENT STORAGE AVAILABLE FOR TERMINAL PROCESSING 
LOADER ERROR wHILE PROCESSING TERMINAL STATEMENT 
COUNT NOT BETWEEN a AND 32761 

(50) 

Figure B·3. $EDXL listing (3 of 4) 

Program Preparation Listings 8·5 



02030 
02040 
02050 
020bO 
02010 
02080 
02090 
02100 
02110 
02120 
02130 
02140 
02150 
OilbO 
02170 
Ol180 
02190 
02200 
02210 
02220 
02230 
02240 
02250 
022bO 
02270 
02280 
022:J0 
02300 
02310 
Ol320 
02330 
02340 
02350 
02360 
02370 
02360 
02390 
02400 
02410 
02420 
02430 
02440 
02450 
02460 
02410 
02460 
02490 
02500 
02510 
02520 
02530 
02540 
Ol550 
02560 
02510 
02560 
02590 
02600 
02610 
Ol620 
02630 
02640 
02b50 
02660 
02610 
02660 
02690 
02100 
02110 
02120 
02130 
02140 
02750 
02760 
02170 
02180 
02190 
02800 
02810 
02620 
02630 
02840 
02850 
02660 
02810 
02880 
Ol890 
02900 
02910 

OB *** FORMAT SPECIFICATION NOT ALLOWED WITHIN GET/PUTEDIT 
OB *** INVALID BIT RATE/RANGE SPECIFICATION 
OS *** ~UST HAVE LINEDEL OR CR OR ATTN OR COD SPECIFIED 
08 *** CRDELAY SPECIFIED INCORRECTLY 
08 *** NAM~ SUBLIST .GT. PARM SUBLIST 
08 *** PART NOT ALLOkED WITH PARAMETERS, EVENT: OR OVLY PROGRAMS 
08 *** PART NOT ALLOwED WITH START: OR LOADPT= 
06 *** PART NOT ALLOWED WITH DSX SPECIFICATIONS 
06 *** INVALID I~MEDIATE OPERAND IN STRING COMPARE 
DB *** INVALID COPYCODE LI8RARY NAME 
OP *** DISK I/O ERROR DURING OPEN OF COPYCODE DATA SET 
08 *** DATA SET NAME S$--- NOT PER~ITTED FOR COPYCODE 
08 *** SPECIFIED COPYCODc MODULE IS NOT A DATA SET 
08 *** 'COMMAND=' MUST BE SPECIFIED 
08 *** 'ADDRESS=' MUST BE SPECIFIED 
08 *** INVALID 'COMMAND=' 
08 *** 'LEVEL' MUST BE EITHER 0, 1, 2, OR 3 
OB *** 'IBIT' MUST BE EITHER 0 OR 1 
08 *** INVALID HEXADECIMAL ENTRY 
DB *** 'Dca' ADDRESS MUST BE SPECIFIED 
08 *** 'MOD4' MUST BE SPECIFIED 
08 *** 'DEVMOD=' MUST BE SPECIFIED 
08 *** 'IOTYPE=' MUST BE 'INPUT' OR 'OUTPUT' 
08 *** 'DATADDR=' ~UST BE SPECIFIED 
OB *** 'CHAINAD=' MUST BE SPECIFIED 
08 *** INVALID 'END:' MUST BE 'YES' OR 'NO' 
08 *** 'MAXDCB=' OUT OF LIMITS 
OB *** 'RSd=' ~UST BE EVEN 
08 *** 'RS~=' OUT OF LIMITS 
DB *** 'PCI:' MUST BE 'YES' OR 'NO' 
oa *** 'XD=' MUST 3E 'YES' OR 'NO' 
06 *** 'SE:' MUST BE 'YES' OR 'NO' 
08 *** 'DEVADDR ' POSITIONAL PARAMETER MISSING 
OB *** 'ECBADDR ' POSITIONAL PARAMETER MISSING 
08 *** 'IDCBADDR ' POSITIONAL PARAMETER MISSING 
08 *** INVALID NUMERIC OPERAND 
06 *** TO KEY SPECIFIED WITH #1 OR ~2 
06 *** FROM KEY SPECIFIED WITH #1 OR #2 
08 *** INVALID PRECISION SPECIFIED WITH FROM KEY OR TO KEY 
08 *** FROM KEY SPECIFIED WITH I~MEDIATE OPERAND 
06 *** #1 OR #2 USED I~ FRO~ KEY OR TO KEY 
06 *** IA BUFFER LENGTH ~OT BETWEEN 10 A~D 100 
OB *** INVALID 'ADAPTER=' ~PERANO CODED 
oe *** INVALID VCLJME LABEL ON *COPYCOD RECORD IN SFDXL 
00 *** OPERAND FIELD LENGTH EXCEEDS 254 CHARACTEi{S 
08 *** 10= MUST BE SPECIFIED, AND A UNIQUE 1-6 CHARACTER LABEL 
06 *** LABEL= MUST BE EITHER SL, NL, OR BLP (DEFAULT=SLI 
08 *** DENSITY: ~UST BE EITHER 600, 1600, OR DUAL IDEFAULT=16001 
08 *** INVALID 'INITPART' OR 'INITMOD' PARH ON 'SYSTEM' 
06 *** INVALID TCS LABEL ON 'TCBGET' OR 'TC3PUT' 

*OVERLAY SASM0006 ASHLIU IF DO ELSE ENDIF 
SHIFTR 
USER 

~OVE ~IOVEA AND lOR EOR SHIFTL 
*OVERLAY SASMOOOI ASMLIS ENCT DEQT COpy 
*COMMENT 
*OVERLAY SA5M0002 ASMLIB 
SUB GOTO RESET 
*COM~ENT 
*OVERLAY SAS~0003 ASMLIB 

ASMLIB 
HASHVAL 
ASMLIB 
ENDATTfIj 
ASMUS 
IOCB 
ASMUS 
ASMUB 

ADD 
STI~t:R 

PPOGRAM 

DIVIDE 
RETURN 

LOAD 

~ULTIPLY '4ULT 
INTIr-1E GETTIME 

DSCB 

PRINDATE PRINTIME ~UESTION TEXT 

ENDPROG 

DC 
EXTRN 
READ 
~AIT 

ENDTASK 

EQU 
WXTRN 
WRITE 
POST 

GETEDIT PUTEDIT 
SBIO IOOEF 
FIND FINDNOT 

PROGSTOP TASK 

DATA 
ENTRY 
NOTE 
ENQ 

Eca 
CSECT 
POINT 
DEQ 

ENDDD 

SQRT 

SUBTRACT 
ADD V 

ERASE 

ATTACH 

QCB 

CONTROL 
CALL 

*COMMENT 
*OVERLAY 
ROCURSOR 
*OVERLAY 
DETACH 
*OVERLAY 
BUFFER 
*OVERLAY 
*OVERLAY 
SUBROUT 
*DVERLAY 
*OVERLAY 
*OVERLAY 
*OVERLAY 
*OVERLAY 
CONVTD 

SASM0004 
TERHCTRL 
SASM0005 
ATTNLIST 
SASM0001 
OS 
SASMOOOB 
SASM0009 
CALLFORT 
SASMOOOA 
SASMoooa 
SASMOOOC 
SAS~OOOD 

SASMOOJE 

ASMLIB 
ASMUS 
ASMUb 
ASMLIB 
ASMUS 

FPCONV FADD FSUB F~ULT FDIVD 

*OVERLAY SASMOOOG ASMLIB 
CONCAT TP STATUS 
*OVERLAY SASMOOOH ASMLIB 
BSCU NE 
*OVERLAY 
*OVERLAY 
*OVERLAY 
*OVERLAY 
*OVERLAY 
*OVERLAY 
*OVERLAY 
*OVERLAY 
*COPYCOD 
*COPYCOO 
**STOP** 

SASMOOOI 
SASMOOOQ 
SASMEXIO 
SASMOOOS 
SASMOOOT 
SASMOOOU 
SASMOOOF 
SASMOOOM 
AS:-IU9 
EDXOOZ 

ASMLI& 
ASMLIe 
ASMLIS 
ASMLIB 
ASMUB 
ASMLlS 
ASMLI3 
ASMUS 

PRINTNUM GETVALUE READTEXT PRINT EXT CONVTB 

PLDTGIN 

BSCREAD 

FORMAT 
FIRSTQ 
EXIODEV 
SYSTEM 
TERMINAL 
HOSTCOMM 
ASMERROR 
WHERES 

GIN SCREEN 

BSCWRITE 8SCOPEN 

LASTQ NEXTC 
tDCB DCB 
STORE/UP DISK 

SENSORIO DDoSIO 
$IDEF OTE 
TCBGET TCBPUT 

XYPLOT YTPLOT 

eSCCLOSE eSCIOCB 

DEFINEQ 
EXOPEN 
TIMER 

GEnlAIN 
SLE 

EXIO 
TAPE 

FREEMAIN 

Figure B-3. $EDXL listing (4 of 4) 

8-6 SR30-0436 

c 

c 

c 



o 

C:: 

o 

00010 JaR 
00020 LOG 
00030 I) 

STATIC 
SSYSPRTR 

00040 I) THIS ASSEMBLY USES A COPY CODE MODULE NA~ED ROLL 
00050 I) ON EDX003. THE I)COPVCODE DEFINITION STATEMENT 
00060 I) DEFINI~G EDX003 AS THE CoPYCoDE VOLUME IS IN A 
00070 * USER DEFINED LANGUAGE CONTROL DATA SET NAMEO 
00080 * 'STATEDXL'.'STATEDXL' IS A COpy OF THE SYSTE~ 
00090 * SUPPLIED LANGUAGE CONTROL DATA SET 'SEDXL', 
00100 I) WITH THe *CoPYCODE STATE~ENT FOR EDX003 ADDED. 
00110 I) 

00120 P~OGRAIA 
00130 REMARK 
00140 OS 
00150 OS 
00160 OS 
00170 PARI1 
00180 NOMSG 
00190 EXEC 
00200 JUMP 
00210 I) 

SEDXA SM, A SHU B 
ASSEMBLY OF 'STATSRC' 
STA TSRC 
AS14WoRK 
IISMOUT 
LIST SSVSPRTR 

STARTED 

STATEDXL 

00220 I) THIS LI~K INCLUDES THE 'SIM' SUBROUTINE SUPPORT BY 
00230 I) USE OF THE AUTOCALL OPTIoN.THE AUTOCALL DEFINITION 
002~0 I) STATE~ENTS FOR THE 'SIM' SUPPORT ARE IN THE SYSTE" 
00250 I) SUPPLIED AUTOCALL DATA SET 'SAUTO' ON ASMLI8. 
00260 I) 

00270 PROGRAM SLINK,EDX002 
002dO REMARK LINK EDIT OF 'ASMOUT' OBJECT MODULE STARTED 
00290 REMARK NAME OF LINK CONTROL DATA SET 7 
00300 PAUSE 
00310 OS 
00320 as 
00330 PARM 
00340 NOMSG 
OU350 EXEC 
00360 JUMP 
00370 PROC 
00380 JUMP 
00390 REMARK 
00400 JUMP 
00410 LABEL 
00420 REMARK 
00430 JU'1P 
00440 LABEL 
00450 REMARK 
00460 LABEL 
00470 ['OJ 

LINKWRK 1 
LINI<WRK2 
SSYSPRTR 

BAOLINK,NE,-l 
FORMPROC 
END,EQ,-l 
FORMAT STEP FAILED 
END 
BADASH 
ASSEMBLY STEP FAILED 
END 
BADLINK 
LINK EDIT STEP FAILED 
END 

Figure 8-4. $J08UTI L listing 

LOG 
PRO~RAM 

OS 
OS 
OS 
PARM 
NoMSG 
EXEC 

SSYSPRTR 
SEDXAS~,ASMLIB 

STATSRC 
AS~WoRK 
AS"IoUT 
LIST SSVSPRTR 

EDX ASSEMP.LER STATISTICS 

SOURCE INPUT - STATSRC ,EDX002 
~ORK DATA SET - ASMWORK ,EDX002 
OBJECT MODULE - ASMoUT ,EDX002 
STATc~ENTS PROCESSED - 77 

NO STATEMENTS FLAGGED 

STATEDXL 

LOC SOURCE STATEMENT 

0000 
OOOA 
0014 
OOlE 
0028 
0032 
0034 

0006 0709 D6C7 09C1 044u XMPLSTAT 
0000 05E4 0370 0000 OOOJ 
06E6 0000 0000 0000 0100 
06E4 0000 0000 0000 0664 
0000 0000 0000 0000 0000 
0000 

Figure 8-5. STATPROC execution output (1 of 4) 

PROGRAM 

EXTRN 

PAGE 

STATSRC ,EDX002 15719-XX41-V).0.0 

START 00000010 

SIMoPEN,SIMDEFM,SIMPRoT,SIMDATA 00000020 

Program Preparation Listings 8-7 



0034 0000 0300 0000 0000 0000 IMAGEBUF BUFFER 768.BYTES 00000030 
003f 0000 0000 0000 0000 0000 
0336 0000 

C 0338 OEOO E5C9 (4C5 06F1 6BC 1 OSETNAME TEXT 'VIOEOl.ASMVOL' 00000040 
0342 E204 E506 0340 
0348 4040 4040 4040 4040 8000 IOCBl 10CB NHIST=O 00000050 
0352 OOFF 0000 7FFF 0000 0000 
035C 4040 4040 4040 4040 8800 IOCB2 IOCB SCREEN=STATIC 00000060 
0366 OOFF 0000 7FFF 0000 0000 
0370 0002 0403 C505 C440 05B2 ATTNLIST eENO,QUT,SPF.STATIC) 00000070 
037A 0403 5B07 C640 05BA 

COpy ROLL 00000130 

* 00000001 
*START OF "COPYCOOE" MODULE 00000002 

* 00000003 
0382 9025 0348 START ENOT IOCBl 00000130 
0386 B02A 0001 OOO~ 8026 1414 PR1NTEXT 'CLASS ROSTER PROGRAM',SPACES=15,L1NE=1 00000140 
0390 OD3 C lE2 E240 0906 E2E3 
039A C509 4007 0906 C709 CI04 
03A4 902A OCl02 0000 8026 2020 PRINTEXT 'HIT "ATTN" AND ENTER "ENO"TO ENO'.SKIP=2 00000150 
03AE C8C9 E340 70Cl E3E3 0570 
03B8 40C 1 05C4 40C5 05E3 C509 
03C2 4070 C505 C470 E306 40C5 
03CC 05C4 
03CE 8026 OCOB E3C8 C540 0709 PRINTEXT 'THE PROGRAM' 00()00160 
0308 06C7 09C1 0440 
030E 902A 0002 0000 8026 201F PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2 00000170 
03E8 C8C9 E340 CI05 E840 0709 
03F2 06C7 09Cl 0440 C6E4 05C3 
03FC E3C9 0605 4002 C5E8 40E3 
0406 0640 
0408 8026 lAlA 40C2 09C9 05C7 PRINTEXT ' BRING UP THE ENTRY SCREEN' 00000180 
0412 40E4 0740 E3Ca C540 C505 
041C E309 E840 E2C3 09C5 C505 
0426 00B2 OEQT 00000190 

* 00000200 
* END OF "COPYCOOE" MODULE 00000210 

* 00000220 
0428 0018 05C2 CHECK WAIT ATTNECB,RESET 00000240 
042C AOA2 05C2 0001 055C IF eATTNECB.EQ,ll,GOTO,ENOIT 00000250 
0434 C29E 0000 033A 0038 GETIMAGE CALL SIMOPEN,IOSETNAMEI,eIMAGEBUFI 00000260 
043C AOA2 05E6 FFFF 0472 IF eXMPLSTAT+2,NE,-1) 00000270 
0444 OJ5C 05CA 05E6 MOVE ERRCOOE.XMPLSTAT+2 00000280 
044A 8026 lAlA 7CC9 04C1 C7C5 PRINTEXT '@IMAGE OPEN ERROR, CODE = , 00000290 
0454 40D6 07C5 0540 C509 0906 
045E 096B 40C3 06C4 C540 7E40 

C 0468 0028 05CA 0001 PRINTNUM ERRCODE 00000300 
046E OOAO 05CC GOTO ERR QUERY 00000310 
0472 ENOIF 00000320 
0472 C29E 0000 0348 0038 CALL SIMOEFN,IIOCBll,IIMAGE5UFI 00000330 
047A 9025 035C ENOT IOCB2 00000340 
047E 1430 TERMCTRL BLANK 00000350 
0480 C29E 0000 0038 0000 CALL $IMPROT,eI~AGEBUFI,O 00000360 
0488 819E ooao 0038 CALL SIMOAT4,IIMAGEBUF) 00000370 
048= B02A 0004 oooa PRINTEXT LINE=4,SPACES=11 00000380 
0494 1(30 TERMCTRL DISPLAY 00000390 
0496 2030 WAITONE WAIT KEY 00000400 
0498 OQAl 05E6 0004 050E 04A8 GOTO IREAO,E1,E2,E3,E4),XMPLSTAT+2 00000410 
04A2 04B2 04!3C 04C6 
04A8 805C 05CfI 0006 El MOVE LINENBR ,6 00000420 
04AE OOAD 04CC GOTO DELETE 00000430 
04:32 805C 05C8 000t3 E2 MOVE LINEN:~R, 11 ")0000440 
04t38 OOAD 04CC GOTO DELETE 00000450 
04llC 805C 05C8 0010 E3 MOVE LINENBR,16 00000460 
04C2 OOAO 04CC GOTD OELETE 00000470 
04C6 805C 05C8 0015 E4 MOVE LINt:NBR.21 00000480 
04CC F.02A 05C8 0000 F030 0004 DELETE ERASE MOOE=LINE,TYPE=DATA,LINE=LINENBR 00000490 
04D6 2000 
0408 8032 05C8 0001 ADD LINENBR,l 00000500 
040E E02A 05C8 0000 F030 0004 ERASE MOOE=LINE,TYPE=OATA,LINE=LINENBR 00000510 
04E8 200'j 
04EA 8032 05C8 0001 ADD LINEN!3R,1 00000520 
04FO E02A 05C8 0000 F030 0004 ERASE ~OOE=LINE,TYPE=DATA,L1NE=LINENBR 00000530 
04FA 2000 
04FC 8035 05C8 0002 SUBTRACT LINENBR,2 00000540 
0502 A02A 05C8 0005 PRINTEXT LINE=LINENBR,SPACES=5 00000550 
0508 lC30 TERMCTRL DISPLAY 00000560 
050A OOAO 0496 GOTD WAITONE 00000570 
050E F02A 0002 0037 C026 100F READ QUESTION 'MORE ENTRIES? ',LINE=2,SPACES=55,NO=CLEANUP 00000580 
0518 0406 O9CO; 40C5 05E3 09C9 
0522 C5E2 40&F 4040 802E 0550 
052C F02A 0002 0037 F030 0004 E~ASE MOOE=LINE,LINE=2,SPACES=55,TYPE=OATA 00000590 
0536 2000 
0538 F02A 0006 0000 FOlO 0000 ERASE MOOE=SCREEN,LINE=6 00000600 
0542 2000 
0544 P02A 0006 0005 PRINTEXT LINE=6,SPACES=5 00000610 
054A 1(30 TERMCTRL DISPLAY 00000620 
054C OOAO 0496 GOTD WAITONE 00000630 
0550 F03l) 0001 2000 CLEANUP ERASE MOoE=SCREEN,TYPE=ALL 00000640 

C Figure 8-5. STATPROC execution output (2 of 4) 

B-8 SR30-0436 



0 

0 

o 

OSS6 00B2 DEOT 
OSS8 OOAO 0382 GOTO 
U5SC 0022 FFFF END IT PROG:)TOP 
0560 <;OSO DATA 
OS62 6060 6060 6060 6060 6060 DASHES DATA 
OS132 0019 OSC2 0001 OUT POST 
05d8 0010 ENOATTN 
05BA 0019 05C2 FFFF STATIC POST 
05CO 0010 ENDATTN 
05C2 FFFF 0000 0000 ATTNECB Eca 
OSC8 0000 LINE:NOR DATA 
OSCA 0000 ERRCODE DATA 
05CC C026 OEJE 7CD9 C5E3 D9E8 ERROUERV QUESTION 
OSD6 4006 Ll7C5 DS40 6F40 COZE 
05EO 0434 055C 
05E4 0000 0000 0000 0234 0000 ENDPROG 
OSEE ,)ODCl 0000 0382 05E4 0000 
05F8 GOOD 0000 0000 0000 0000 
0602 0002 0096 0:)00 0000 FFFF 
060C 0000 0000 0610 0000 0000 
0616 0612 t:7!J4 07£'3 E2E3 CIE3 
0620 OJOO 0000 0000 0000 0000 
06i'.A aOOJ 0000 FFFF 0000 0000 
0634 000) 0000 0000 OSE4 0000 
063E 0000 0000 0000 0000 0000 
065C 0000 0000 OSE4 OOAO 0000 
0666 0000 0000 0234 0000 0000 
0670 0000 0000 0664 0000 0000 
067A 0001 0000 0000 0000 0001 
0664 OOOA 0000 0000 FFFF 0000 
J6df 0000 0690 0000 0000 0692 
0698 5BC1 E3 E3 C 1EZ 0240 0000 
06A2 0000 0000 0000 0000 0000 
06AC 0000 FFFF 0000 0000 0000 
06il6 0000 0000 05E4 0000 0000 
06CO 0000 0000 0000 0000 0000 
060E 0008 0664 0080 0000 0000 
06E8 DODO 0000 0000 0000 0000 
06F2 0000 0000 0000 0000 
06FA END 

EXTERNAL/UNDEFINED SYMBOLS 

COMPLETION CODE = -1 
JUMP BADASM,NE,-l 
PROGRAM SLINK,EOX002 
OS LINKSTAT 
OS LINKWRKI 
OS LINKWRK2 
PARM SSVSPRTR 
NOMSG 
EXEC 

SVC WXTRN 
SUPEXIT WXTRN 
SETBUSV WXTRN 
SIMOPEN EXTRN 
$lMDEFN EXTRN 
SIMPROT EXTRN 
SUWATA EXTRN 

SLINK EXECUTION CONTROL RECORDS 
FROM LINKSTAT,EDX002 

* THIS LINK CONTROL DATA SET SPECIFIES: 
* 1.1 THE LINKED OUTPUT OBJECT MODULE WILL 
* BE STORED IN 'LINKOUT' ON EDX002 
* 2.1 THE AUTOCALL DATA SET IS 'SAUTO' ON 
* ASMLIB (SYSTEM SUPPLIEDI 
* 3.1 'ASMQUT' ON EDXOOZ IS THE ONLY INPUT 
* OBJECT MODULE TO BE INCLUDED 
UUTPUT LINKOUT AUTO=SAUTC,ASMLIB 
INCLUDE AS~OUT 

INCLUDE SIMOPEN,ASMLId 
INCLUDE SIMGEN,ASMLIB 
INCLUDE SIMDTVPE,ASMLIB 
INCLUDE SSRETURN,ASMLIB 
INCLUDE SUNPACK,ASMLI5 
END 

VIA AUTOCALL 
VIA AUTOCALL 
VIA AUTOCALL 
VIA AUTOCALL 
VIA AUTOCALL 

Figure 8-5. STATPROC execution output (3 of 4) 

000006S0 
START 00000660 

00000670 
X'SOSO' 00000680 
80C'-' 00000690 
ATTNECS,l 00000700 

00000710 
ATTNECB,-l 00000720 

00000730 
00000740 

F'O' 000007S0 
F'O' 00000760 
'~RETRY OPEN 1 ',VES=GETIMAGE,NO=ENDIT 00000770 

00000780 

00000790 

Program Preparation Listings 8-9 



***** UNRESOLVED EXTERNAL REFERENCES 
WXTRN SVC 
WXTRN SUP EXIT 
WXTRN SE:rBUSY 

OUTPUT NAME: LINKOUT 
ESD TYPE LABEL ADDR LENGTH 

CSECT 0000 06FA 
CSECT 06FA 09E8 

ENTRY SIMOPEN 06FC 
ENTRY SFILE 0908 
ENTRY DISKBUFR 095C 
ENTRY DSOPEN OA1A 
ENTRY SOSNFND OFEZ 
ENTRY SOSBIODA OFE4 
ENTRY SDSBVOL OFE6 
ENTRY SOSBLIB OFE8 
ENTRY SDSIOERR OFEA 
ENTRY SDSNVTOC OFEC 
ENTRY SSEXIT OFEE 

CSECT 10EZ OEZA 
ENTRY SIMDEFN 1QE4 
ENTRY SIMPROT 1180 
ENTRY SIMOATA 1908 
ENTRY SAOORTBL lEAS 
ENTRY SATTRTBL 1EF8 

CSECT lFOC 0014 
ENTRY SIMDTYPE lFOE 

CSECT 1F80 0028 
ENTRY RETURN lF80 

CSECT lFA8 0040 
ENTRY SUNPACK 1FAA 

MODULE TEXT LENGTH= 1FEB, RLD COUNT= 1015 
LINKOUT ADDED TO EDXOOZ 

SLINK COMPLETION CODE: -1 

SLINK 
JUMP 
PROGRAM 
PARM 
NO~SG 
EXEC 
STATPROG 

SUPDATE 
JUMP 
LABEL 

ENDED 
BADLINK,NE,-l 
SUPDATE 
SSYSPRTR LINKOUT 

STORED 

ENDED 
END,EQ,-l 
END 

STATPROG YES 

Figure B·5. STATPROC execution output (4 of 4) 

B·l0 SR30·0436 

c 

c 

c 



o 

c) 

IBM Series/1 
Event Driven Executive 
Licensed Program 
Study Guide 

READER'S COMMENT FORM 
SR30-0436-1 

Please use this form only to identify publications errors or request changes to publications. Inaccurate or mis

leading information in this publication may be corrected by your comments. 

Technical questions or suggestions about IBM systems, programming changes or requests for additional publi
cations should be directed to your IBM branch office. 

List specific errors, omissions, suggestions, additions, and deletions by page number in the space provided. 

COMMENTS 

IBM may use and distribute any of the information you supply in any way it believes appropriate without 
incurring any obligation whatever. You may, of course, continue to use the information you supply. 

If you wish a reply, be sure to print your name and address: 

Name 
Address 
____________ . __________________________________ ZipCode 

I BM Branch office: No. _______________ City 

Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 
FOLD ON TWO LINES, SEAL AND MAIL 



Fold and tape Please Do Not Staple Fold and tape 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... 

Fold and tape 

BUSINESS REPLY MAIL 
FI RST CLASS PERMIT NO. 40 ARMONK, NEW YORK 

POSTAGE WILL BE PAID BY ADDRESSEE 

I nternational Business Machines Corporation 
Technical Publications, Dept. 796 
P. O. Box 2150 
Atlanta, Georgia 30055 

NO POSTAGE 
NECESSARY 
IF MAl LED 

IN THE 
UNITED STATES 

e 

, 
4 

. . . . . . . . . . . . . . . . . . . . . .......................... . 
Please Do Not Staple Fold and tape 

c 

c 



o 

o 

IBM Series/1 
Event Driven Executive 
Licensed Program 
Study Guide 

READER'S COMMENT FORM 
SR30-0436-1 

Please use this form only to identify publications errors or request changes to publications. Inaccurate or mis
leading information in this publication may be corrected by your comments. 

Technical questions or suggestions about IBM systems, programming changes or requests for additional publi
cations should be directed to your I BM branch office. 

List specific errors, omissions, suggestions, additions, and deletions by page number in the space provided. 

COMMENTS 

IBM may use and distribute any of the information you supply in any way it believes appropriate without 
incurring any obligation whatever. You may, of course, continue to use the information you supply. 

If you wish a reply, be sure to print your name and address: 

Name 
Address 
_______________________ Zip Code _____ _ 

IBM Branch office: No. _________ City ____________ _ 

Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 
FOLD ON TWO LINES, SEAL AND MAIL 



Fold and tape Please Do Not Staple Fold and tape 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 

Fold and tape 

III 
BUSINESS REPLY MAIL 

FI RST CLASS PERMIT NO. 40 ARMONK, NEW YORK 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Technical Publications, Dept. 796 
P. O. Box 2150 
Atlanta, Georgia 30055 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

. . . . . . . . . . . . . . . . . . . . . . ......................... . 
Please Do Not Staple Fold and tape 

c 

c 

c 



--------------- ---- - - ---
==-=~= ® 

SR30-0436-1 
Printed in U.S.A . 

J 


