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Abstract

Relic gravitational waves, generated by strongly first-order phase transitions in the early
Universe, can serve as cosmological probes for new physics beyond the Standard Model.
We investigate phase transitions at temperatures between the electroweak and the GUT
scale in two extensions of the Standard Model for their possibility to provide detectable
gravitational radiation. First, we study theZ2 symmetry breaking phase transition in the
Standard model extended by a real gauge singlet. The analysis yields that the gravitational
wave amplitude of the first-order phase transition with a thermally induced barrier is several
orders too small for being detectable. The second model we discuss is a left-right symmet-
ric model based on the gauge groupSU(2)L ⊗ SU(2)R ⊗ U(1)B−L generating a first-order
phase transition already due to the emergence of a barrier inthe tree-level potential. We de-
rive an upper bound on the peak amplitude of the gravitational wave spectrum of the order
h2

oΩ̃GW ≃ 3·10−11. Hence, for very strong phase transitions a detection with the spaceborne
interferometer LISA will be possible, whereas the sensitivity of the (cross-correlated) BBO
detector will even allow to observe the gravitational wave spectrum within the whole pa-
rameter range of the model. By using the correlation betweenthe characteristic parameters
α andβ of the gravitational wave spectrum, we finally compute the lower bounds onα

(
T∗

)

in dependence of the tunneling temperatureT∗ which are necessary for a detection of the
model spectrum by the specific detectors.

Zusammenfassung

Relikt-Gravitationswellen, die während Phasenübergängen erster Ordnung im frühen Uni-
versum erzeugt wurden, sind kosmologische Phänomene, die dazu dienen können Konzepte
neuer Physik jenseits des Standardmodells zu überprüfen. Wir untersuchen die Phasenüber-
gänge zweier Erweiterungen des Standardmodells bei Temperaturen im Bereich zwischen
der elektroschwachen Skala und der Skala der Großen Vereinheitlichung im Hinblick auf
ihre Möglichkeit detektierbare Gravitationswellen zu generieren. Zuerst analysieren wir
einenZ2-Symmetrie brechenden Phasenübergang in einem Modell, dasdas Standardmod-
ell um ein reelles Eichsinglett erweitert. Unsere Rechnungt zeigt, dass die Amplituden
der Gravitationswellen, die durch einen thermisch induzierten Phasenübergang erster Ord-
nung generiert wurden, für eine Detektion mehrere Größenordnungen zu klein sind. Als
zweites untersuchen wir ein links-rechts-symmetrisches Modell basierend auf der Eich-
gruppeSU(2)L⊗SU(2)R⊗U(1)B−L, das einen Phasenübergang erster Ordnung bereits durch
eine Barriere in der niedrigsten Ordnung des effektiven Potentials erzeugt. Wir erhalten für
die Amplituden der Gravitationswellen eine obere Grenze von h2

oΩ̃GW ≃ 3·10−11. Demnach
wird es im Fall starker Phasenübergänge möglich sein, das Gravitationswellenspektrum mit
dem weltraumgestützten Interferometer LISA zu beobachten, worüberhinaus die Sensitiv-
ität des (korrelierten) BBO-Detektors eine Detektion der Spektra des gesamten Parameter-
bereichs erlauben wird. Unter Ausnutzung der Korrelation der charakteristischen Parameter
α undβ bestimmen wir abschließend die für eine Messung der Spektradurch die spezischen
Detektoren erforderlichen unteren Grenzenα

(
T∗

)
in Abhängigkeit der TunneltemperaturT∗ .
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Introduction

Preface

A direct detection of gravitational waves (GWs) will probably become reality in the near
future. Currently, the first generation of ground-based interferometric GW detectors, such
as LIGO [8, 7] and VIRGO [52, 9], is already operational, while the second generation of
spaceborne interferometers like LISA [67, 68, 69, 22, 153] and BBO [107, 139] is planned
to be launched within the next years. On the one hand, these experiments aim to search for
GW signals from individual astrophysical events as for instance coalescing binary systems
[21, 2, 5] (e.g., white dwarf binaries), continuous gravitational sources [4] as rotating neu-
tron stars or orbiting black hole systems as well as GW wave bursts [20, 3]. On the other
hand, the searches focus on (stochastic) GW backgrounds of astrophysical sources [90, 44]
such as core collapse of supernovae, but also of cosmological origin.
Stochastic GW backgrounds of cosmological origin are constituted by (redshifted) relic
gravitational waves from the early stages in the evolution of the Universe, carrying un-
altered information about the state of the universe at the time of their production. Thus,
these gravitational waves can serve, in case of their detection, as cosmological probes for
fundamental concepts of particle physics at unexplored high energies which will never be
reachable by accelerator or collider experiments.
Possible cosmological sources for the production of stochastic gravitational waves com-
pose inflation [17, 197, 14], preheating after inflation [151, 79, 78, 95], first-order phase
transitions [138, 125, 49, 103, 112], a pre-big-bang phase of expansion [42, 96], cosmic
topological defects [201, 202, 45, 46, 30] (e.g. vibration of cosmic strings) or dynamics
of extra dimensions [189, 59, 60]. Among these hypothetical sources, the GW production
during inflation (by quantum generation of gravitons) is theoretically strongly motivated.
A detection of the relic gravitational waves from inflation,which will be achievable by the
space interferometer BBO, would be a smoking-gun signal from inflation and would in par-
ticular allow to test the paradigm of inflation as an era of exponential expansion in the early
Universe.1

1The WMAP constraint on the energy scale of the inflaton requires at least a GW amplitude ofh2
oΩGW .

10−14 . . . 10−15 of the inflationary GW spectrum [191]. The detection of this relic GW background from

1



Introduction

We will however focus on the stochastic background of gravitational waves produced by
cosmologicalfirst-order phase transitions. In a first-order phase transition the Universe
finds itself in a metastable state (the symmetric “true vacuum” state) which is separated
from the false vacuum state (the broken phase) by a barrier inthe potential of the order
parameter, usually a scalar fieldφ [23, 167]. The phase transition from the true to the false
vacuum state proceeds by nucleation of true-vacuum bubblesvia quantum tunneling. If the
rate of bubble nucleation exceeds the expansion rate of the Universe, the bubbles percolate
leaving the Universe in the broken-symmetry phase.
During first-order phase transitions stochastic gravitational waves can be produced by col-
liding phase boundaries (bubble collisions) [207, 137, 136, 167, 50, 112], turbulent motion
of the plasma [135, 77, 48, 99] or magnetic fields [110, 199, 11, 39, 48]. We will focus on
the production of gravitational waves by bubble collisions. In this case, the vacuum energy
(latent heat) gained in the phase transition is transferredto kinetic energy of the bubble wall
and bulk motion of the plasma. A large amount of the vacuum energy is stored close to
the bubble walls. When bubble collisions break the spherical symmetry of the individual
bubbles, this energy is partially released into gravitational waves.
Quantitatively, a first-order phase transition is characterized by the phase transition strength.
The phase transition strength is defined as ratio of the vacuum expectation value (VEV) of
the regarded scalar fieldφ at the critical temperatureTC of the phase transition to the latter.
For a strongly first-order phase transition the phase transition strength has to lie above the
lower bound [61]

〈φ(TC)〉
TC

& 1. (0.1)

Note that this is the same condition as required for viable baryogenesis avoiding sphaleron
washout [87, 88].2

Within the thermal evolution of the Universe a number of phase transitions are expected
to have been occurred. In particular, the QCD phase transition proceeded at a temperature
TQCD = 150 MeV [118, 188, 187]. Above this temperature the deconfinement of quarks
and gluons generates a quark-gluon plasma. At temperaturesof TEW = 102 GeV the sponta-
neous breakdown of theSU(2)L⊗U(1)Y symmetry toU(1)

em
induces the electroweak phase

transition (EWPT) [75, 74, 43]. Further phase transitions could have occurred even earlier
at temperatures up to the grand-unification (GUT) scale of the orderTGUT = 1016 GeV [19].
Based on the fact that the running couplings of the Standard Model unify to a single gauge
coupling at the temperaturesTGUT = 1016 GeV, the key idea of GUTs is to describe the
fundamental interactions by a unique gauge groupG including the Standard Model gauge

inflation will be one of the main goals of the space interferometer BBO (“Big Bang Observer”).
2Two possible combustion modes of the energy liberated by bubble collisions exist, deflagration and detona-

tion. The latter allows large production of gravitational waves if the bubble wall velocity is bigger than the
speed of sound. This is the same condition for “local baryogenesis” (B andCPviolating processes close to
the bubble wall) to dominate “non-local baryogenesis” (only CP violating processes). As the subsequently
expanding bubbles can drive the primordial plasma out of thermal equilibrium, these requirements allow
to fulfill the Sakharov conditions for successful baryogenesis. To avoid sphaleron washout, the sphaleron
process need to be sufficiently suppressed in the broken phase leading to the condition in (0.1).

2



symmetry as a subgoup (for a review see for instance [142]). Via a pattern of the sponta-
neous symmetry breaking during the thermal evolution of theUniverse, this symmetry is
subsequently broken down to the Standard Model gauge symmetry. Hence, in extensions
of the Standard Model phase transitions might have been occurred at considerably higher
temperatures [89].
Due to the failure in providing an explanation on open issuesas dark matter and dark en-
ergy, the origin of neutrino masses, the baryon asymmetry ofthe Universe or the hierarchy
problem, an extension of the Standard Model is necessarily required. The Standard Model
itself can be rather considered as an effective theory with a low physical cutoff, which can
be probed with current particle physics experiments as for instance the LHC.
In the Standard Model the EWPT is neither strong enough for viable baryogenesis, nor
for production of detectable gravitational waves . Indeed,the requirement of a strongly
first-order phase transition in the Standard Model imposes an upper bound on the Higgs
mass which is below the current experimental bound and therefore excluded [35]. Non-
perturbative lattice simulations revealed that the phase transition is not of first order, but
rather a smooth crossover (between first and second order) [123, 181, 66].
Partially motivated by the importance for baryogenesis, the EWPT has been studied in
extensions of the Standard Model such as the Minimal Supersymmetric Standard Model
(MSSM) [98, 166, 86, 41], the Next-to-Minimal Supersymmetric Standard Model (NMSSM)
[172, 70, 111, 158], where an additional gauge singlet in the Higgs sector is introduced,
and its restricted version, the nMSSM [168, 71, 158, 114] solving theµ-problem of the
NMSSM3, or the Standard Model with dimension-six Higgs potential [105, 104, 36]. In the
MSSM a strong enough phase transition requires light Higgs and stop masses leaving only
marginally possibilities for viable baryogenesis [179], whereas the N(n)MSSM provides a
phase transition which is strong enough for baryogenesis. Simultaneously, the lightest neu-
tralino could simultaneously provide the dark matter of theUniverse.
Detectible relic gravitational waves from first-order phase transitions can give a hint for the
physics beyond the Standard Model. In particular, it has been investigated if the EWPT in
the MSSM, N(n)MSSM and the Standard Model with dimension-six Higgs potential pro-
vide the possibility of observable gravitational waves. Inthe MSSM a detection of the
GW spectrum is excluded [23]. Whereas in the N(n)MSSM and the Standard Model with
dimension-six Higgs potential the gravitational radiation will be not detectable by LISA
(possessing a minimal sensitivity ofh2

oΩGW ∼ 10−11), but only by the cross-correlated BBO
(h2

oΩGW ∼ 10−17) in case of extremely strong phase transitions [113]. However, for a wide
range of the model parameter space a detection is excluded even for BBO. This is partially
caused by the correlation between the strength of the phase transition and the peak frequency
of the GW spectrum: Strongly first-order phase transitions are required for generating a
peak amplitude of the GW spectrum which overlaps with the minimal sensitivity the GW
detectors and hence will be detectable. Since stronger phase transitions proceed at lower

3The MSSM suffers from the so-calledµ-problem due to domain walls. For consistency of the theory the mass
mixing termµ between the two Higgs doublet in the superpotential has to beof the order of the electroweak
scale being much smaller than the GUT scale and additionallystable under perturbative corrections. An
elegant way to solve this problem consists in introducing anadditional gauge singlet in the Higgs sector so
that the the mass term is generated dynamically as the singlet develops its VEV.

3



Introduction

temperatures and create larger bubbles, the peak frequencyof the GW spectrum is simulta-
neously shifted to lower frequencies which might lie beyondthe experimentally accessible
frequency range [113, 112]. (The spaceborne detectors as LISA and BBO are sensitive in
the frequency rangef ≃ 10−4 ... 1 Hz, while a frequency range off ≃ few Hz...few kHz is
accessible by ground based detectors like LIGO and VIRGO [156].)

Concept of the Thesis

Our motivation in this thesis is therefore to investigate first-order phase transitions in ex-
tensions of the Standard Model which are assumed to proceed at temperatures between the
electroweak and the GUT scale,

TEW < T < TGUT. (0.2)

Due to this high temperature scale the peak frequency of the GW spectrum, arising from
bubble collisions during the first-order phase transition,will lie in the high-frequency part
of the experimentally accessible frequency range. If we additionally require the phase tran-
sition to be strongly first-order so that a high peak amplitude is generated, the GW spectrum
might light in the experimentally sensitive range an hence would be detectable. In turn, the
gravitational waves could serve as cosmological probes of the underlying physical concep-
tion of the model.

Within the framework of this thesis, we will explicitly investigate two extensions of the
Standard Model, which provide different mechanisms for generating a strongly first-order
phase transition, with regard to their possibility of providing detectable gravitational waves.
The most studied mechanism to achieve a first-order phase is based on inducing the neces-
sary barrier between the true and the false vacuum thermallyby using the bosonic finite-
temperature one-loop corrections to generate a cubic term in the effective potential. We will
apply this mechanism to the Standard model extended by an additional real gauge singlet.
The importance of this model is due to the fact that a large variety of extensions of the Stan-
dard Model contain elements which transform non-triviallyunder a hidden sector gauge
group, but as singlets under the Standard Model gauge group [83, 84]. The Standard Model
Higgs field plays a special role with respect to the hidden sector since the only renormaliz-
able interaction of such scalars with the Standard Model occurs via the Higgs sector. This
can in consequence serve as window into the hidden sector andmight provide important
theoretical and phenomenological implications [186, 170, 38].
The second model we will discuss is the left-right symmetricmodel which is based on the
gauge symmetry groupSU(2)L⊗SU(2)R⊗U(1)B−L [169, 163, 190]. Besides its original con-
ception for explaining parity violation by incorporating it as spontaneous broken symmetry
[162], the left-right symmetric model associates a physical meaning to theU(1) generator
arising as theB−L quantum number and provides additional sources forCPviolation . The
extension of the gauge group is associated with an enlargement of the Standard Model par-
ticle content by right-handed (Majorana) neutrinos as wellas right-handed massive gauge
bosons. Since these right-handed particle escape experimental detection, the right-handed

4



particles have to acquire their masses during L-R symmetry breaking at large scale. As the
left-right symmetric model incorporates a barrier of the effective potential already at tree-
level (and not due to thermal corrections), the associated phase transition will be strongly
first-order and hence suitable for a possible generation of detectable gravitational waves.

This thesis is structured as follows. InPart I we will develop the theoretical framework
necessary to investigate gravitational waves from first-order phase transition at high tem-
perature scales. Therefore, we will first review the conceptions of thermal field theory (cf.
Chap.1). As the study of spontaneous symmetry breaking at finite temperature can be re-
duced to the investigation of the effective potential of a field inside a thermal bath, we will
compute the effective potential, including zero-temperature and finite temperature correc-
tions to the tree-level potential, up to the one-loop order.Afterwards, we will determine in
Chap.2the GW spectrum from bubble collisions during first-order phase transitions and in
particular discuss the key parameters characterizing the GW spectrum.
In Part II, we will apply the derived formulae to the cases of the singlet extension of the
Standard Model (cf.Chap.3) and the left-right symmetric model (cf.Chap.4). For both
models, we will compute the effective potential in order to investigate the phase transition.
In detail, we will determine the critical temperature and the corresponding VEV of the ef-
fective potential and discuss the parameter constraints necessary to generate a physically
viable phase-transition scenario in the specific model. Afterwards, we will compute the
parameters characterizing the GW spectrum arising from theconsidered phase transition.
Finally, we will perform a numerical analysis of the gravitational wave spectrum to discuss
whether the physical conception of the model can be probed bythe detection of gravita-
tional waves. We will summarize and discuss our results in the Conclusions.
In the Appendixwe compute the bosonic thermal masses for the singlet extension of the
Standard Model (cf.Chap.A). These are needed to generate the thermal barrier for the first-
order phase transition. Besides, the field-dependent gaugeboson masses for the left-right
symmetric model are derived inChap.B.
To be able to compare the GW spectra derived from the models tothe experimental sensitiv-
ities, we review inChap.Cthe different types of interferometric GW detectors and compute
their sensitivity curves from the experimental data.

Notations and Conventions

As usual in particle physics, we will work in natural units where the reduced Planck constant
~, the speed of lightc as well as the Boltzmann constantk equal

~ = c = k = 1. (0.3)

We will display Lorentz indices by small Greek letters as forinstanceµ, ν = 0, 1, 2, 3,
whereas Latin indices, e.g.i, j = 1, 2, 3, . . ., will refer to conventional summations. In ad-
dition, we will use the Einstein summation convention by implicitly summing over repeated
indices.
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Chapter 1

Thermal Field Theory

In order to investigate first-order phase transitions proceeding at high temperatures in the
early stages of the Universe, we have to use the framework ofthermalquantum field theory.
In comparison to the classical field theory, quantum field theory at zero temperature involves
virtual particles (in form of internal loops) which affect the field energy density by emission
and reabsorbing processes. To include these quantum corrections, the classical field theory
is generalized to an effective theory. The corresponding potential density is called the effec-
tive potential. Moreover, in thermal field theory, thermal fluctuations of the quantum fields
have to be taken into account. Therefore, a generalization of the effective potential at finite
temperature is required.
As the study of spontaneous symmetry breaking can be reducedto the determination of the
nature of the ground state of the effective potential, i.e. the vacuum state of the theory, the
effective potential will provide our basic tool for the investigation of phase transitions at
finite temperature. In this chapter, we will discuss the mainaspects of thermal field the-
ory related to the effective potential. If not marked otherwise, we will thereby refer to the
reviews [31, 126, 40, 175, 177, 178, 180].

1.1. Effective Potential at Zero Temperature

The fundamental quantity of quantum field theories is the Lagrangian densityL = L
[
φi , ∂µφi

]
,

which is usually referred to simply as Lagrangian. It is a functional of the space-time de-
pendent quantum fieldsφi(xµ) ≡ φi(x) and their derivatives∂µφi.1 In general,φi(x) might
represent scalar, vector and fermion fields.
The integral of the Lagrangian density over the four dimensional space-time defines the
actionS as a functional of the quantum fieldsφi ,

S
[
φi

]
=

w
d4xL

[
φi , ∂µφi

]
. (1.1)

1We will denote functions by parentheses, e.g.φi(x), and functionals, such asL = L
[
φi , ∂µφi

]
, by square

brackets.
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Chapter 1 Thermal Field Theory

1.1.1. Generating Functionals

Consider now a theory described by one realscalarfield φ(x) with LagrangianL
[
φi , ∂µφi

]
.

The Lagrangian is required to be intrinsically invariant with respect to the underlying gauge
symmetry. In the presence of an external fieldJ(x) however, the coupling of the fieldφ(x)
to the external source causes a symmetry breaking term in theLagrangian [121],

L
[
φi , ∂µφi

]
→ L

[
φi , ∂µφi

]
+ φ(x) J(x) . (1.2)

The determination of the vacuum expectation value (VEV) of the fieldφ(x) in the pres-
ence of the external sourceJ(x) can be reduced to a pure variational problem by using the
analogy between the vacuum-transition amplitude of theS-matrix in quantum field theo-
ries and the partition functionZ in statistical mechanics [37]. In the Feynman path-integral
representation [91] this analogy reads

〈0+|0−〉J = Z[J] ≡
w
Dφ exp

(
i
w

d4x
{
L
[
φi , ∂µφi

]
+ φ(x) J(x)

})
, (1.3)

whereZ[J] constitutes the generating functional of the source field.The definition of the
free energy functionalW[J] by

Z [J] ≡ exp(i W[J]) (1.4)

(in analogy to the free energy in statistical physics) allows for deriving the VEV of the
field φ(x) in the presence of the external sourceJ, defined as the classical fieldφcl(x), by
functional variation

φcl(x) ≡ 〈0
+|φ(x) |0−〉J
〈0+|0−〉J

= −δW[J]
δJ(x)

=

r
Dφφ(x) exp

(
i
r

d4x
{
L
[
φi , ∂µφi

]
+ φ(x) J(x)

})

r
Dφ exp

(
i
r

d4x
{
L
[
φi , ∂µφi

]
+ φ(x) J(x)

}) .

(1.5)

It is convenient to perform a Legendre transformation ofW[J] to introduce the effective ac-
tion Γ

[
φcl

]
(constituting the quantum analogy to the Gibbs free energy in statistical physics)

as a functional of the classical fieldφcl,

Γ
[
φcl

] ≡W[J] −
w

d4x
δW[J]
δJ(x)

J(x)

=W[J] −
w

d4x φcl(x) J(x) .
(1.6)

Expanding the energy functionalW[J] and the effective actionΓ
[
φcl

]
in a Taylor series in

terms ofJ andφcl, respectively,2

iW[J] =
∞∑

n=0

in

n!

w
d4x1 . . . d

4xn J(x1) . . . J(xn) Gc
(n)(x1, . . . , xn) , (1.7)

Γ
[
φcl

]
=

∞∑

n=0

in

n!

w
d4x1 . . . d

4xn φcl(x1) . . . φcl(xn) Γ(n)(x1, . . . , xn) , (1.8)

2Alternatively, the effective actionΓ
[
φcl

]
can be expanded in powers of momentum about the point with

vanishing external momenta, i.e. about an constant valueφcl of the classical fieldφcl(x) [205, 64].
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1.1 Effective Potential at Zero Temperature

points out their physical importance. The energy functional W[J] constitutes the gener-
ating functional for the connected Green’s functionsGc

(n)(x1, . . . , xn), while the effective
action arises as generating functional for the one-particle irreducible (1PI) Green’s func-
tionsΓ(n)(x1, . . . , xn), defined as the sum of all connected Feynman diagrams, which cannot
be disconnected by removing a single internal line, and evaluated without propagators on
the external lines [205].
If we now perform a Fourier transformation ofΓ(n)(x1, . . . , xn) to momentum space and re-
quire the classical field to be space-time independent,φcl(x) ≡ φcl, (1.8) becomes [175]

Γ
[
φcl

]
=

∞∑

n=0

1
n!
φn

cl
(2π)4 δ(4)(0) Γ(n)(pi = 0) =

w
d4x

∞∑

n=0

1
n!
φn

cl
Γ(n)(pi = 0) . (1.9)

Thereby, we have used the integral definition of the Diracδ-function in the last step. The
comparison of the above equation with the effective potentialVef f (φcl), which is defined in
analogy to (1.1) by

Γ
[
φcl

] ≡ −
w

d4x Vef f (φcl) (1.10)

as a function of the classical fieldφcl, finally allows for deriving a general expression of the
effective potential,

Vef f (φcl) = −
∞∑

n=0

1
n!
φn

cl
Γ

(n)(pi = 0) . (1.11)

Since the classical fieldφcl in the absence of an external source equals the VEV of quantum

field φ (cf. (1.5)) and
δΓ[φcl]
δφcl

= −J (cf. (1.6)), the condition for spontaneous symmetry
breaking reads

δΓ
[
φcl

]

δφcl
= 0 for φcl , 0 (1.12)

or equivalently by using (1.10)

∂Vef f (φcl)

∂φcl
= 0 for φcl , 0. (1.13)

Hence, the study of spontaneous symmetry breaking can be reduced to the computation of
the effective potential whose minimum will determine the nature ofthe ground state [205].

1.1.2. Functional Evaluation of the Effective Potential at Zero Temperature

According to (1.11), the calculation of the effective potential requires the summation of
infinite series of Feynman diagrams at vanishing external momentum. However, it is possi-
ble by usage of the path-integral formalism to deduce a formula representing the effective
potential as a series expansion to a given loop-order, wherein each order contains afinite
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Chapter 1 Thermal Field Theory

number of Feynman diagrams [119]. Define therefore a Lagrangian̂L(φcl;φ(x)) by shifting
the scalar fieldφ(x) by the constant classical fieldφcl

w
d4xL̂(φcl;φ(x)) ≡ S

[
φcl + φ(x)

] − S
[
φcl

] −
w

d4xφ(x)
δS

[
φcl

]

δφcl
, (1.14)

where the subtraction of the shifted actionS
[
φcl

]
ensures the vacuum energy to be zero and

the last term is required for canceling the tadpole part of the shifted action.
Next we decompose the LagrangianL̂(φcl;φ(x)) into a free term, containing the quadratic
field contributions and providing the propagatorD(φcl; x− y) of the shifted theory, and an
interaction term for the higher-order field contributions,

L̂(φcl;φ(x)) = L̂0(φcl;φ(x)) + L̂int (φcl;φ(x)) . (1.15)

By using the fact that the propagator in the shifted theoryD(φcl; x− y) also satisfies the
relation

iD−1(φcl; x− y) =
δS

[
φ
]

δφ(x) δφ(y)

∣∣∣∣∣∣
φ=φcl

(1.16)

and performing a Fourier transform of the inverse propagator to iD−1(φcl; p), the effective
potential finally reads

Vef f (φcl) = V0(φcl) −
i
2

w d4p

(2π)4
ln

[
det

{
iD−1(φcl; p)

}]

+ i
〈
exp

[
i
w

d4xL̂int (φcl;φ(x))
]〉

= V0(φcl) + VT=0
1 (φcl) + VT=0

n≥2 (φcl) .

(1.17)

Therein, the zero-loop contributionV0(φcl) just equals the classical (tree-level) potential,
whereas the second term is the zero-temperature one-loop correction to the effect potential
and the last term summarizes all higher-order loop corrections.

1.1.3. One-Loop Effective Potential at Zero Temperature

Scalar Fields. Since we calculated (1.17) from the premise of a theory described by one
real scalar fieldφ(x) (cf. Sec.1.1.1), the shifted propagator in the one-loop contribution of
the above equation is given byiD−1(φcl; p) = p2 −m2(φcl), containing theshiftedmass

m2(φcl) ≡
∂2V0(φ + φcl)

∂φ2

∣∣∣∣∣∣
φ=0

. (1.18)

After inserting the propagator in (1.17) and performing a Wick rotationp0 = ip0
E with

pE ≡
(
−ip0, ~p

)
to Euclidean four-dimensional space-time3, we obtain the final expression

3In the following, we will omit the explicit notation of the subindexE, denoting the Euclidean momenta.
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1.1 Effective Potential at Zero Temperature

of the one-loop contribution to the effective potential for one real scalar field as4

VT=0
1S

(φcl) =
1
2

w d4p

(2π)4
ln

[
p2 +m2(φcl)

]
. (1.19)

The generalization of this equation to the case of multiplecomplexscalar fieldsφi with
LagrangianL = ∂ µφk ∂µφ

†
k −V0(φi), i, k ∈ {1, . . . ,NS}, implies the existence ofNS classical

fields φicl and hence the replacing of the shifted mass by a mass matrixM2
S

(
φicl

)
whose

elements are defined by [205]

(
M2

S
(
φicl

))
kl
= mkl

2(φicl

) ≡
∂2V0

(
φi + φicl

)

∂φkcl ∂φlcl

∣∣∣∣∣∣∣∣
φi=0

for k, l ∈ {1, . . . ,NS} . (1.20)

Consequently, (1.19) transforms into

VT=0
1S

(
φicl

)
=

1
2

w d4p

(2π)4
Tr

(
ln

[
p2 +M2

S
(
φicl

)])
, (1.21)

where the trace acts on the field-space indicesk, l (cf. (1.20)).
The computational methods ofSec.1.1.1andSec.1.1.2can be analogously applied all pre-
vious procedures applied to derive the one-loop contribution to the effective potential in
theories containing fermions and gauge bosons.

Fermion Fields. For multiple fermion fieldsψa, describing the fermionic sector of a the-

ory by the LagrangianL = iψkγ ∂ψ
k−ψk

(
M2

f

)k

l
∂ψl with k, l ∈

{
1, . . . ,Nf

}
, the mass-matrix

elements arise as linear combinations of the Yukawa couplingsΓk
l to the classical scalar field

φcl ,
(
M2

f

(
φcl

))k

l
= Γk

l φcl. In this case, the one-loop contribution to the effective potential is
calculated to be

VT=0
1f

(
φcl

)
= −λ

w d4p

(2π)4
Tr

(
ln

[
p2 +M2

f
(
φcl

)])
, (1.22)

whereinλ = 1 for Weyl fermions andλ = 2 for Dirac fermions [175].

Gauge-Boson Fields. Consider a theory where gauge-bosons are implemented by a con-

tribution L = −1
4Tr

(
FµνFµν

)
+ 1

2

(
Dµφ

)†
(Dµφ) to the Lagrangian (Fµν denotes the field-

strength tensor andDµ the covariant derivative of the corresponding symmetry group). The
gauge-boson one-loop contribution in the Landau gauge, requiring no ghost-field compen-
sating terms yields

VT=0
1gb

(
φcl

)
=

3
2

w d4p

(2π)4
Tr

(
ln

[
p2 +M2

gb
(
φcl

)])
. (1.23)

4The zero-temperature one-loop contribution to the effective potential is usually refered to as Coleman-
Weinberg contribution since Coleman and E. Weinberg initially performed calculations of the effective
potential at one-loop order [65, 205]. Higher order computations were first done by Jackiw [119].

13



Chapter 1 Thermal Field Theory

In a theory with scalar, fermion and gauge-boson fields the full finite-temperature one loop
contribution at zero-temperature arises as the sum of (1.19), (1.22) and (1.23), multiplied
by the degrees of freedomgi of the corresponding particle. The degrees of freedomgi

constitute the product of the particle’s spin-, color- and charge-state degrees.

1.1.4. Renormalization

As the zero-temperature one-loop contributions (1.19), (1.22) and (1.23) are ultraviolet
(UV) divergent, we have to apply the conventional renormalization procedure to make the
theory finite and hence physically meaningful. In the process of regularization the UV
divergences are absorbed by appropriate counterterms in the Lagrangian, whereby the pa-
rameters of the theory getrenormalized.The theory written as function of the renormalized
parameters is finite. Depending on the choice of renormalization conditions, different renor-
malization schemes exist.
We will use dimensional regularization which has been introduced by t’Hooft and Veltman
[196]. This regularization scheme bases on an analytic continuation procedure of the Feyn-
man integrals to the complex plane in the number of space-time dimensionsD, wherein the
singularities of the integrals arising as poles in1D−4 have to be subtracted out. By intro-
ducing the regulatorε > 0, we can compute the integrals in the zero-temperature one-loop
contributions (1.19), (1.22) and (1.23) in D = 4− ε dimensions with infinities parametrized
by 1

ε
. The resulting expressions read

VT=0
1 (φcl) =

1

64π2

∑

i

gi ai m4
i (φcl)

ln

m2

i (φcl)

µ2

 −Ci −CUV + O(ε)

 , (1.24)

where the summation indexi refers to all bosonic and fermionic particles of the theory and
µ2 denotes the mass scale introduced to balance the dimension of the integration measure.
The constantsai , Ci andCUV are defined as

(ai ,Ci) ≡



(
1, 3

2

)
for scalars(

−2λ, 3
2

)
for fermions(

3, 5
6

)
for gauge-bosons

, (1.25)

Cuv ≡
(
1
ε
− γE + ln (4π)

)
, (1.26)

containing the Euler-Mascheroni constantγE ≃ 0.5772 [101].
Subsequently, the regularized effective potential of (1.24) has to be renormalized. In the
context of effective potentials one usually uses theMS (modified minimal subtraction)
scheme wherein the divergent term proportional toCUV is absorbed by the counterterms
and thus subtracted from the regularized potential,

VT=0
1 (φcl) =

1
64π2

∑

i

gi ai m4
i (φcl)

ln

m2

i (φcl)

µ2

 −Ci

 . (1.27)
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1.2 Effective Potential at Finite Temperature

If we additionally introduce modified degrees of freedom as

ḡi ≡ gi ai , (1.28)

to incorporate the constantai ,5we can summarize the full one-loop contribution to the ef-
fective potential at zero-temperature by

VT=0
1 (φcl) =

1

64π2

∑

i

ḡi m4
i (φcl)

ln

m2

i (φcl)

µ2

 −Ci

 , (1.29)

where the constantsCi are defined in (1.25).

1.2. Effective Potential at Finite Temperature

As conventional quantum field theory describes particle interactions in a surrounding vac-
uum, it is suitable to be applied to interactions taking place in nearly perfectly shielded
accelerators. However, in the early stages of the Universe particles interactions proceeded
in a thermal bath of matter and radiation with a non-negligible temperature and density.
A description of these interactions thus requires a modification of quantum field theory to
incorporate finite-temperature effects.
The formalism of thermal field theory was developed by Weinberg [206], Bernard [33] as
well as Dolan and Jackiw [76], while finite-temperature effects in quantum field theory and
their cosmological implications (such as inflationary models and phase transitions) were
first considered by Kirzhnits and Linde [130, 131, 132, 146, 148].6

1.2.1. Generating Functionals and Thermal Green’s Functions

The methods of thermal field theory are closely related thoseof thermodynamics and quan-
tum statistical physics due to the fact that the background state for the particle interactions
constitutes a thermal bath at the temperatureT of the universe. The finite-temperature gener-
ating functionalsZT [J], WT[J] andΓT[

φcl
]
are defined analogously to the zero-temperature

case ofSec.1.1.1, but include thethermalGreen’s functions defined as grand canonical av-
erage of the time-ordered product of then field operators [175]

GT (n)(x1, . . . , xn) ≡
Tr

(
e−βH T{φ(x1) , . . . , φ(xn)}

)

Tr
(
e−βH) , (1.30)

whereβ ≡ 1
T . Two particularly appropriate appropriate ways for the computation of the

thermal Green’s functions are given by the imaginary and real time formalism [31, 126].

5The introduction of modified degrees of freedom ¯gi will be in particular useful for the summarization of
finite-temperature contributions to the effective potential (cf. (1.48) and (1.50)).

6Kirzhnits and Linde suggested in particular symmetry restoration to occur in relativistic field theories above a
critical temperatureTC by drawing an analogy to the Meissner-Ochsenfeld effect in superconductors [146].
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Chapter 1 Thermal Field Theory

Zero temperature Finite temperature

Boson propagator i
p2−m2 , pµ =

(
p0, ~p

) i
p2−m2 , pµ ≡ (

iωbn, ~p
)

Fermion propagator i
γ·p−m, pµ =

(
p0, ~p

) i
γ·p−m, pµ ≡ (

iωbn, ~p
)

Loop integral
r d4p

(2π)4 iT
∑∞

n=−∞
r d3p

(2π)3

Vertexδ-function (2π)4 δ(4)(∑
i pi

) (2π)3

iT δ
(∑

i ωi
)
δ(3)(∑

i ~pi
)

Table 1.1: Comparison of Feynman rules at zero temperature and at finitetemperature in
the imaginary time formalism.The Matsubara frequenciesωbn andω fn for bosonic and
fermionic fields are given by (1.31) and (1.32), respectively.

The basic idea of theimaginary time formalismconstitutes in expressing the grand canon-
ical averages of the thermal Green’s functions as VEVs in ordinary quantum field theory
evolved by an imaginary timet = iβ. This results merely in a change of boundary condi-
tions in Minkowski space-time in comparison to the zero-temperature case. In Euclidean
space-time however the change of boundary condition entails the remarkable consequence
that the thermal Green’s functions become periodic for bosonic fields and antiperiodic for
fermionic field with periodβ ≡ 1

T . The periodicity in Euclidean time direction directly im-
plies a replacement of the continuous frequenciesip0 by the discrete bosonic and fermionic
Matsubara frequencies [157]

ωbN = 2πnT, (1.31)

ω fn = (2n+ 1) πT, (1.32)

and hence a modification of the Feynman rules at finite-temperature. The finite-temperature
Feynman rules arising in the imaginary time formalism are summarized inTab.1.1.
In the real time formalismthe straight time contour from real initial timeti to ti − iβ is
replaced by a contour fromti to real final timet f before going suitable backti − iβ. The
piecewise composition of the resulting complex time contour leads to more complicated
Feynman rules, but avoids the analytic continuations required in the imaginary time for-
malism. Besides, the propagators computed in the real time formalism are automatically
separated into a zero- and finite-temperature part.
Since the propagators and Feynman rules in the imaginary andreal time formalism how-
ever give the same physical results, we will choose the imaginary time formalism for the
computation of the effective potential at finite temperature.

1.2.2. One-Loop Effective Potential at Finite Temperature

In this section we will use the Feynman rules derived in the imaginary time formalism to
compute the effective potential at finite temperature up to the one-loop order. Generally,

16



1.2 Effective Potential at Finite Temperature

Figure 1.1: Scalar tadpole diagram.The derivative of the effective potentialVT
1S

(φcl) in
(1.34) with respect to the classical fieldφcl corresponds to a scalar tadpole diagram.

the one-loop effective potential can be written as the sum of the tree-level potentialV0(φcl)
corrected by the one-loop contribution at finite temperature VT

1 (φcl),

Vef f (φcl) = V0(φcl) + VT
1 (φcl) . (1.33)

As we will explicitly see, the one-loop correction at finite temperature can be separated
into a temperature-independent part, equaling exactly thezero-temperature one-loop con-
tribution VT=0

1 (φcl) of Sec.1.1.2, and a temperature-dependent partVT,0
1 (φcl) which will be

computed in the following.

Scalar Fields. According to the finite-temperature Feynman rules, depicted in Tab.1.1,
the zero-temperature one-loop contribution of (1.19) for a single real scalar field transforms
into

VT
1S

(φcl) =
T
2

∞∑

n=−∞

w d3p

(2π)3
ln

[
ω2

bn
+ ω2

]
, (1.34)

with the bosonic Matsubara frequenciesωbn, defined in (1.31), andω2 ≡ ~p2 + m2(φcl).
Different ways for the evaluation of the above equation exist. The infinite sum can be for
instance evaluated by the use of summation identities, whereas a possible solution for the
integral is obtained by closing the integration interval inthe complex plane to subsequently
apply the residues theorem [76].
A subtle way for the evaluation of (1.34) consists however in computing its derivative in

the shifted theory,
dVT

1S
(φcl)

dφcl
, and subsequently re-integrating [175]. Diagrammatically the

derivative of the effective potential corresponds to the tadpole diagram depicted inFig.1.1.
Since only the shifted massm2(φcl), included in the definition ofω2, depends on the classical
field φcl, the computation can be equivalently performed with respect to the shifted mass,

dVT
1S

(φcl)

dm2(φcl)
=

T
2

∞∑

n=−∞

w d3p

(2π)3

1

ω2
bn
+ ω2

. (1.35)
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Chapter 1 Thermal Field Theory

By use of several series representations (for details see [175]) the infinite sum can be trans-
formed into an infinite integral which can be computed by analytic continuation to the com-
plex plane. Thereby, the integral naturally separates intoa temperature-dependent and a
temperature-independent part given by

dVT
1S

(φcl)

dm2(φcl)
=

1
2

w d3p

(2π)3

(
1

2ω
+

1
ω

1

e
ω
T − 1

)
. (1.36)

After integration with respect tom2(φcl), the final results arises as

VT
1S

(φcl) =
w d3p

(2π)3

(
ω

2
+ T ln

[
1− e−

ω
T

])

=
1
2

w d4p

(2π)4
ln

[
p2 +m2(φcl)

]
+

T4

2π2
JB

(
m2(φcl)

T2

)

≡ VT=0
1S

(φcl) + VT,0
1S

(φcl) ,

(1.37)

wherein the temperature-independent part exactly equals the zero-temperature one-loop
contributionVT=0

1S
(φcl) of (1.19). The finite-temperature one-loop contribution,7

VT,0
1S

(φcl) =
T4

2π2
JB

(
m2(φcl)

T2

)
, (1.38)

is expressed in terms of the thermal bosonic functionJB

(
m2(φcl)

T2

)
defined as

JB

(
m2(φcl)

T2

)
≡
∞w

0

dx x2 ln

1− e
−

√
x2−m2(φcl)

T2

 . (1.39)

In the limit m2(φcl)
T2 ≪ 1 the thermal bosonic function can be expanded as

JB

(
m2(φcl)

T2

)
≃ −π

4

45
+
π2

12
m2(φcl)

T2
− π

6

(
m2(φcl)

T2

) 3
2

− 1
32

(
m2(φcl)

T2

)2

ln

[
1
aB

m2(φcl)

T2

]

− 2π
7
2

∞∑

l=1

(−1)l ζ(2l + 1)
(l + 1)!

Γ

(
l +

1
2

) (
1
4π

m2(φcl)

T2

)l+2

,

(1.40)

including the constantaB ≡ 16π2 e
3
2−2γE as well as the Riemannζ-function and theΓ-

function. Therefore, the finite-temperature one-loop contribution of (1.38) possesses a high-
temperature expansion which will be useful for the investigation of phase transitions. Note

7As in the case of the zero-temperature one-loop contribution a generalization to the case of multiple scalar
fieldsφcli is achieved by replacing the shifted mass by the mass matrixM2

S

(
φcli

)
(cf. (1.20)).
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1.2 Effective Potential at Finite Temperature

Figure 1.2: Fermion tadpole diagram.The depicted tadpole diagram corresponds to the
derivative of the effective potentialVT

1f
(φcl) in (1.41) with respect to the classical scalar

field φcl.

in particular that the high-temperature expansion of the thermal bosonic functionJB incor-

porates a monomial cubic mass term∝
(
m2(φcl

))3/2
. This term will be crucial for generating

first-order phase transitions as it allows to induce a thermal barrier in the effective potential.

The finite-temperature one-loop contributions to the effective potential for theories contain-
ing fermionic and gauge-boson fields can be derived by an analogous calculation procedure.

Fermion Fields. Applying the finite-temperature Feynman rules in the imaginary time
formalism, given inTab.1.1, to a theory with fermion fields, the zero-temperature one-loop
contribution of (1.22) is converted to

VT
1f

(
φcl

)
= −λT

∞∑

n=−∞

w d3p

(2π)3
ln

[
ω2

fn
+ ω2

]
, (1.41)

where the fermionic Matsubara frequencies are defined in (1.32) andω2 ≡ ~p2+M2
f (φcl). In

analogy to the case of scalar fields, the one-loop contribution at finite temperature VT
1f

(
φcl

)

can be evaluated by computing the tadpole diagram ofFig.1.2in the shifted theory and re-
integrating.Thereof, the final expression for the fermionic one-loop contribution at finite
temperature arises as

VT
1f

(φcl) = −2λ
w d3p

(2π)3

(
ω

2
+ T ln

[
1− e−

ω
T

])

= −λ
w d4p

(2π)4
ln

[
p2 + M2

f (φcl)
]
− λT4

π2
JF


M2

f (φcl)

T2



≡ VT=0
1f

(φcl) + VT,0
1f

(φcl) ,

(1.42)

including the zero-temperature one-loop contributionVT=0
1f

(φcl) of (1.22). The finite-temperature
one-loop contribution

VT,0
1f

(φcl) = −λ
T4

π2
JF


M2

f (φcl)

T2

 (1.43)
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Chapter 1 Thermal Field Theory

Figure 1.3: Gauge-boson tadpole diagram.In a theory with gauge-boson fields the deriva-
tive of the effective potentialVT

1gb
(φcl) with respect to the classical scalar fieldφcl dia-

grammatically corresponds to a gauge-boson tadpole diagram.

includes the thermal fermionic functionJF

(
M2

f(φcl)

T2

)
which is defined as (cf. (1.39))

JF


M2

f (φcl)

T2

 ≡
∞w

0

dx x2 ln

1+ e−
√

x2+
M2

f(φcl)
T2

 . (1.44)

As the thermal fermionic function can be expanded in the limit
M2

f(φcl)

T2 ≪ 1 as

JF


M2

f (φcl)

T2

 ≃ −
7π4

360
+
π2

24

M2
f (φcl)

T2

− 1
32


M2

f (φcl)

T2



2

ln


1
aF

M2
f (φcl)

T2



− π
7
2

4

∞∑

l=1

(−1)l ζ(2l + 1)
(l + 1)!

(
1− 2−2l−1

)
Γ

(
l +

1
2

) 
1
π2

M2
f (φcl)

T2



l+2

(1.45)

with constantaF ≡ π2 e
2
3−2γE , a high-temperature expansion of the fermionic finite-temperature

one-loop contributionVT,0
1f

(φcl) in (1.43) exists. Note that the high-temperature approxi-
mation of the thermal fermionic functionJF , in contrast toJB (cf. (1.40)), does not include
a cubic term. Therefore, thermally induced barriers in first-order phase transitions arise
merely from the bosonic finite-temperature one-loop contribution.

Gauge-Boson Fields. The gauge-boson one-loop contribution to the finite-temperature
effective potential is obtained by computing the tadpole diagram of Fig.1.3in the shifted
theory and re-integrating. After evaluating the tadpole expression the final expression is
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1.2 Effective Potential at Finite Temperature

given by

VT
1gb

(φcl) =
3
2

w d4p

(2π)4
ln

[
p2 + M2

gb(φcl)
]
+ 3

T4

2π2
JB


M2

gb(φcl)

T2



≡ VT=0
1gb

(φcl) + VT,0
1gb

(φcl) ,

(1.46)

where the zero-temperature one-loop contributionVT=0
1gb

(φcl) equals the expression derived
in 1.23, while the finite-temperature one-loop contribution,

VT,0
1gb

(φcl) =
T4

2π2
JB


M2

gb(φcl)

T2

 , (1.47)

includes the thermal bosonic functionJB, defined in (1.39) and possessing a high-temperature
expansion given in (1.40). Note that the finite-temperature one-loop contribution of gauge-

boson fields also provides a cubic term∝
(
m2(φcl

))3/2
due the high-temperature expansion of

the thermal bosonic function.

In a theory containing scalar, fermion and gauge-boson fields the finite-temperature one-
loop contribution arises as the sum of (1.38), (1.43) and (1.47) multiplied by the degrees
of freedom of the single particles. By use of the definition ofmodifieddegrees of freedom
gi in(1.28) the full finite-temperature one-loop contribution to the effective potential can be
summarized as

VT,0
1 (φcl) =

T4

2π2

∑

i

ḡi JF,B


m2

i (φcl)

T2

 , (1.48)

wherein the summation indexi refers to all bosonic and fermionic particles of the theory.

1.2.3. Ring-Diagram Contributions to the Effective Potential

The emergence of the subleading term of order3
2 in the high-temperature expansion of the

thermal bosonic functionJB (cf. (1.40)) is a manifestation of the breakdown of perturbative
expansion in thermal field theory. At finite temperature infrared (IR) divergences, generated
by long-range fluctuations [195], break down the perturbative expansion in terms of small
coupling constants. Thus, the finite-temperature one-loopcontribution to the effective po-
tential is incomplete as higher-loop corrections of the same order appear in the IR limit [76].
The dominant contribution of these multi-loop correctionsarises from the ring diagrams (or
so-called daisy diagrams [72]) which constituteN-loop diagrams with(N − 1) loops ring
attached to the remaining one (cf.Fig.1.4). The ring diagrams are taken into account in the
effective potential by using propagators resummed in the IR limit of vanishing momenta,
ωn = ~p = 0, leading to a shift of the bosonic field-dependent massesm2

i (φcl) by the self-
energyΠi(φcl,T) in the IR limit. Therefore, the field-dependent masses are replavced by
thermalfield-dependent masses (so-called Debye masses) [53],

M2
i (φcl,T) ≡ m2

i (φcl) + Πi(φcl,T) . (1.49)
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+ + + +  . . .

Figure 1.4: Ring diagrams to leading order.In this figure, the solid lines of the ring dia-
grams are assumed to represent scalar, fermion as well as gauge-boson fields. The small
loops correspond to thermal loops in the IR limit, being separately IR divergent, but IR
finite when summarized.

Note that only the bosonic sector of the theory demonstratesthe breakdown of perturba-
tion theory since only the zero-mode of the bosonic Matsubara frequenciesωbN = 2πn T,
behaves as a massless degree of freedom and generates IR divergences at high tempera-
ture, whereas the fermionic Matsubara frequenciesω fn = (2n+ 1) πT for n = 0 behave as
non-negligible mass contributions of orderT. Furthermore, in the IR limit the gauge-boson
polarization tensor can be expressed in terms of the longitudinal projection tensor [53].
Consequently, only the longitudinal polarization of the gauge bosons acquire a thermal-
mass correction.
In the so-called self-consistent method [25] the ring diagrams are implemented in the ef-
fective potential by shifting all Matsubara modes for the bosonic fields by the self-energies.
This shift generates a temperature dependency of the UV divergent parts so that the UV
behavior of the theory becomes dependent on the IR dynamics what does not introduce cal-
culational errors, but contradicts physical intuition. Alternatively, only the zero-modes of
the bosonic Matsubara frequenciesωbN = 0, incorporating the leading contribution of the
ring diagrams at one-loop order, can be shifted. After resummation of zero-mode of the
propagator in the IR limit, the ring-diagram contribution to the effective potential reads [72]

Vring(φcl,T) = − 1
12π

T
∑

i=bosons

ḡi

[(
M2

i (φcl,T)
)3/2 −

(
m2

i (φcl)
)3/2

]
, (1.50)

wherein the summation indexi includes all bosonic particles of the model. In particular,the
longitudinal and transversal polarizations of the gauge bosons have to be taken into account
separately. As the transversal polarizations of the gauge-boson self-energies in the IR limit
are zero,Πgbt (φcl,T) ≃ 0, (1.50) leads only to a thermal shift of the longitudinal polariza-
tions of the gauge bosons.
The ring-diagram contribution to the effective potential modifies the cubic terms by replac-
ing the field-dependent masses by thermal masses and is therefore crucial for the analysis
of the phase transition.

22



1.3 Summarization of Contributions to the Effective Potential

1.3. Summarization of Contributions to the Effective Potential

The summarization of the contributions to the effective potential in of (1.29), (1.48) and
(1.50) yields the full finite-temperature one-loop effective potential

Vef f (φcl) = V0(φcl) + VT=0
1 (φcl) + VT,0

1 (φcl) + VT=0
ring (φcl)

= V0(φcl) +
1

64π2

∑

i

ḡi m4
i (φcl)

ln

m2

i (φcl)

µ2

 −Ci



+
T4

2π2

∑

i

ḡi JF,B


m2

i (φcl)

T2



− 1
12π

T
∑

i=bosons

ḡi

[(
M2

i (φcl,T)
)3/2 −

(
m2

i (φcl)
)3/2

]
,

(1.51)

including all bosonic and fermionic particles of the theory. The constantsCi and the mod-
ified degrees of freedom ¯gi are defined in (1.25) and (1.28), respectively. The above ex-
pression will provide the basic formula for the computationof the effective potential in the
models investigated inPart II.
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Chapter 2

Gravitational Waves from
First-Order Phase Transitions

The behavior of the effective potential in dependence on the temperature determines the
dynamics of the phase transition. First-order phase transitions, characterized by a barrier
separating the metastable symmetric phase and the broken phase,1 proceed via nucleation
of true-vacuum bubbles inside the false-vacuum phase. In this chapter we will review the
two main production mechanisms of gravitational waves during first-order phase transitions,
namely bubble collisions and turbulence, and provide the necessary equations for the com-
putation of the parametersα andβ which characterize the GW spectrum. Finally, we will
discuss the GW spectrum from bubble collisions.

2.1. Production Mechanisms of Gravitational Waves during
First-Order Phase Transitions

During a first-order phase transition the Universe finds itself in a metastable symmetric
phase (the “false vacuum” state) separated from the “true vacuum” broken state by a barrier
in the effective potential [167]. The phase transition from the symmetric to the broken state
proceeds by nucleation of true-vacuum bubbles inside the “sea” of false vacuum. Inweakly
first-order phase transitions bubble nucleation occurs by quantum tunneling and by thermal

1According to theEhrenfest classification, the ordern of a phase transition corresponds to those lowest-
order derivative of the free energyF which is discontinuous with respect to a thermodynamic variable, for
instance the temperatureT [193, 34]. As the Ehrenfest classification however does not take account of
phase transitions where divergences in the derivative of the free energy occur, themodern classification
[34] distinguishes only between first-order (discontinuous) and second-oder (continuous) phase transitions.
Cosmological first-order phase transitions involve in particular a latent heatL ≡ −T ∆S originating from a
discontinuity in the entropyS = ∂F(T)

∂T . This discontinuity arises due to a barrier in the effective potential
which separates the true and the false vacuum. The emergenceof a barrier distinguishes first-order phase
transitions from second-order ones, which are for instanceconsidered in the so-called new inflationary
models [149, 16, 15].
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Chapter 2 Gravitational Waves from First-Order Phase Transitions

fluctuations, whereas instronglyfirst-order phase transitions bubbles are merely nucleated
via quantum tunneling [156, 103].
If the size of the nucleated bubbles is smaller than a critical size, their volume energy is not
sufficient to overcome the shrinking effect of surface tension. However, as the cosmic tem-
perature decreases due to the expansion of the Universe, bubbles which are larger than the
critical size can be nucleated below a certain critical temperatureTC. Since the nucleated
bubbles in this case start expanding, a part of the energy gained in the transition from the
false to the true vacuum is released into the plasma raising its temperature, while the other
part is converted into kinetic energy stored close to the bubble walls and bulk motions of
the fluid.2 The bubble wall velocity and energy of the expanding bubblesincrease the more
regions of space convert to the ground state. Simultaneously, the bubble walls become thin-
ner so that the energy density of the wall grows rapidly. However, the spherical symmetry
of the bubbles forbids energy to be directly transferred into gravitational waves [129]. If
however two or moresbubbles collide, the spherical symmetry is broken allowing to release
energy into gravitational radiation. Note that the breaking of spherical symmetry is a neces-
sary condition for gravitational wave production. The emitted radiation does not depend on
the internal structure of the colliding bubbles, but only onthe kinetic energy stored in the
uncollided bubble regions, i.e., it is only dependent on theshape of the uncollided regions
[137]. This provides the basis for the so-called envelope approximation [136, 103, 112].
Two possible combustion modes for the energy liberated by the bubble collisions exist.
These depend on the strength of the phase transition and hence on the velocity of the bub-
ble walls: If the bubble wall profile propagates slower than the speed of sound, which is
cS = 1/

√
3 in a relativistic thermal bath, gravitational waves are produced bydeflagration

[194, 137, 138, 136]. However, the amount of kinetic energy stored close to the bubble
walls and hence the characteristic bubble wall velocities are so small that gravitational
wave production is strongly suppressed [167]. Besides, deflagration is not stable against
non-spherical hydrodynamic perturbations [124]. If the bubble boundaries in contrast prop-
agate faster than the speed of soundcS, the combustion of energy proceeds viadetonation
[194, 125], associated by a large production of gravitational waves.The bubble expansion
proceeds via detonation in case of strongly first-order phase transitions (which are required
for a detectable GW signal) so that we will restrict our considerations to this combustion
mode in the following. Besides, this ensures the thin-wall approximation (cf.Sec.2.2.2) to
be valid (cf. [129]).
Additionally, the bubble expansions cause macroscopic motions in the cosmic plasma. If
at least two bubbles collide, anisotropic stirring of the plasma develops at a length scale
comparable to the bubble radii at the collision time andturbulent motionsarise. Turbulent
motions constitute another possible mechanism of GW production. [135, 77, 48, 99].

The total stochastic GW background from first-order phase transitions is the sum of the con-
tributions from bubble collisions and turbulent motions. At low frequencies the dominant
contribution to the GW spectrum arises from turbulence, whereas the high-frequency part

2Expanding bubbles constitute a possible source to drive thehot plasma in the early Universe out of equi-
librium. Departure from thermal equilibrium is in turn required by the Sakharov conditions for viable
baryogenesis.
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of the spectrum is mainly determined by the contribution from bubble collisions [167]. For
stronger phase transitions the peak frequency of the GW spectrum is shifted to lower fre-
quencies which might lie below the experimentally sensitive range (see for instance [113]).
Therefore, the high-frequency part of the GW spectrum dominated by bubble collisions be-
comes particularly important with regard to detectability.
As the turbulence contribution to the GW spectrum is still discussed and different ap-
proaches lead to different peak frequencies, we will focus on the contribution from bubble
collisions here.

2.2. Characteristic Parameters of the Gravitational Wave
Spectrum

The GW spectrum from first-order phase transitions is generally characterized by two es-
sential parameters, namelyα

(
T∗

)
andβ

(
T∗

)
, evaluated at the tunneling temperatureT∗ of the

phase transition. In the following, we will provide the necessary formulae for the calculation
of the parametersα andβ which will subsequently determine the GW spectrum.

2.2.1. Parameterα

The parameterα is defined as the ratio of the false-vacuum energy densityǫ(T) and the
thermal energy densitye(T) of the symmetric phase [125],

α ≡ ǫ(T)
e(T)

. (2.1)

Commonly, the symmetric (high-temperature) phase is described by the equation of state of
a relativistic gas with thermal energy density

e(T) =
π2

30
g∗T

4. (2.2)

Therein, the temperature-dependent quantityg∗ counts the total number ofeffectivedegrees
of freedom including only the relativistic particle species with massesmi ≪ T [133],

g∗ =
∑

i=bosons

gi

(Ti

T

)4

+
7
8

∑

i= f ermions

gi

(Ti

T

)4

, (2.3)

wheregi denotes the degrees of freedom of the corresponding particle (cf. Sec.1.1.4) and
the relative factor78 originates from the difference in Fermi and Bose statistics. Since the
summation only includes those particles with massmi ≪ T, the number of effective degrees
of freedom depends on the temperature3. For temperaturesT & 300 GeV however, all

3For most of the evolution of the Universe all particle species had a common temperatureT. Only after the

decoupling of the neutrinos, i.e., forT ≪ 1 MeV, the neutrino temperatureTν evolves asTν =
(

4
11

)1/3
T and

has to be taken into account separately.
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Standard Model particles can be regarded as extremely relativistic. In this case the total
number of effective degrees of freedom for the Standard Model yieldsg∗SM

= 106.75.
According to the definition in statistical mechanics, the false-vacuum energy densityǫ(T),
which provides the energy available to be transferred to GWs, [129]

ǫ(T) ≡ ∆Vef f (T) − T∆S

= ∆Vef f (T) − T
∂∆Vef f (T)

∂T
.

(2.4)

arises as the Legendre transformation of the difference in free-density

∆Vef f (T) ≡ Vef f (φ−,T) − Vef f (φ+,T) (2.5)

with φ− andφ+ denoting the false and the true vacuum, respectively. At thecritical tem-
peratureTC the false-vacuum energy density equals the latent heat,L = ǫ (TC), since
the degeneracy of the true and the false vacuum leads to a vanishing potential difference
∆Vef f (TC) = 0,

L ≡ −TC
∂∆Ve f f (T)

∂T

∣∣∣∣∣∣
T=TC

. (2.6)

between the false vacuum energy (latent heat) density and the plasma thermal energy den-
sity, computed at the transition temperatureT∗ , α

(
T∗

)
. It gives a measure of the transition

strength: Forα ≪ 1 the phase transition is very weak, forα ∼ O(1) the phase transition is
very strong.

2.2.2. Parameterβ

The second essential parameter for the determination of theGW spectrum, namelyβ, cor-
responds to the rate of (time) variation of the bubble nucleation rateΓ itself. Hence, this
parameter is related to the durationτ of the phase transition approximately byτ ≃ β−1 and
to the typical radius of the colliding bubbles, setting the length scale of the problem, by
〈R〉 ∝ vbτ ≃ vb

β .4

At finite temperature the bubble nucleation rate per unit volume is given by [103]

Γ(t) ∼ Γ0(t) e−S(t), (2.7)

where the prefactorΓ0(t) ∼ T4 andS(t) ≃ S3
T . Therein,S3 denotes the three-dimensional

Euclidean action. Consequently, the parameterβ which is defined as [167]

β ≡ − dS
dt

∣∣∣∣∣
t=t∗

≃ 1
Γ

dΓ
dt

∣∣∣∣∣
t=t∗

, (2.8)

4Different choices for〈R〉 are possible. Using for instance the maximum of the bubble volume distribution
in momentum space approximately yields〈R〉 ≃ 5vbτ, whereas referring to the size of the largest bubble
leads to〈R〉 ≃ vbτ. The different choices of the length scale are one possible cause of the uncertainty in the
contribution from turbulence to the GW spectrum [113].
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constitutes the logarithmic time derivative of the bubble nucleation rate. If we expand
S(t) ≃ S

(
t∗
) − β (

t − t∗
)

about the transition timet∗ and take the approximate adiabatic
expansion of the universe into account,dT

dt = −T H(t), where the Hubble parameterH(t)
describes the expansion rate of the universe, we obtain from(2.8) the normalized dimen-
sionless parameter

β

H∗
= T∗

d
dT

(
S3(T)

T

) ∣∣∣∣∣∣
T=T∗

, (2.9)

wherebyT∗ is the tunneling temperature of the phase transition In detail, T∗ corresponds to
the temperature where the probability for nucleating one bubble per horizon volume and
time approaches 1,Γ

H4
∗
∼ O(1). This guarantees that bubble percolation arises even for an

inflationary expansion of the universe [104]. Since the Hubble parameter arises from the
Friedmann-Lemaître equations as

H2
∗ =

8πG
3

ρtot =
8π3g∗T

4
∗

90 M2
Pl

(2.10)

and hence theH2
∗ ∝

T4
∗

M2
Pl

, the condition Γ
H4
∗
∼ O(1) translates into

S3(T∗)
T∗
≃ 4 ln

(
MPl
T∗

)
.

If we assume temperatures of the electroweak scaleT∗ ≃ 102 GeV and approximate the
Planck mass byMPl ≃ 1019 GeV, the probability of a single bubble to be nucleated in a
horizon volume of orderO(1) is well approximated in the Early Universe by

S3
(
T∗

)

T∗
≃ 140. (2.11)

Note that the exponential factor of the tunneling probability ensures this approximation

to be valid for a broad temperature range [129]. According to
S3(T∗)

T∗
≃ 4 ln

(
MPl
T∗

)
, the

dimensionless quantityβH∗ depends only logarithmically on the temperature scale. While the
size of the bubbles increases by orders of magnitude betweenthe nucleation and percolation,
the temperatureT∗ and hence the parametersα and β

H∗
nearly remain unchanged [104].

Euclidean Action

According to (2.9), it is necessary to compute the Euclidean actionS3(T) to determine the
normalized parameterβH∗ . At zero temperature the Euclidean action reads [150]

S3 ≡
w

dτd3x


1
2

(
∂φ

∂τ

)2

+
1
2

(
~∇φ

)2
+ Vef f (φ)

 (2.12)

with Euclidean timeτ. In the case of field theory at finite temperatureT, the Euclidean field
theory is periodic in imaginary time with period1T (cf. Sec.1.2.1). As the temperature of
the universes decreases by evolution in time, the Euclideanaction acquires additionally a
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dependence on cosmic timet. Therefore, it has to be computed in the space of functions
periodic in Euclidean (Wick rotated) timeτ = it so that [23]

S3 =

1
Tw

0

dτd3x


1
2

(
∂φ

∂τ

)2

+
1
2

(
~∇φ

)2
+ Vef f (φ,T)

 , (2.13)

whereVef f (φ,T) is the effective potential which has to be shifted toVef f (0,T) = 0) for the
computation [23]. For large temperaturesT however, the Euclidean ActionS3 becomes
time-independent. Hence, for tunneling in a thermal system, theO(4) symmetry of (2.13)
is replaced by an O(3) symmetry and the corresponding Euclidean action reads

S3(T) =
w

d3x

[
1
2

(
~∇φ

)2
+ Vef f (φ,T)

]

= 4π
∞w

0

d̺ ̺2


1
2

(
∂φ(̺)
∂̺

)2

+ Vef f (φ(̺) ,T)

 ,
(2.14)

where we have assumed spherical symmetry by defining̺ ≡
√
~x2 in the last step.

In the semi-classical theory of tunneling [63, 47, 150], the tunnel probability depends on the
action of the so-called bounce solution. This configurationfulfills the classical Euclidean
equation of motion. In the case of tunneling at finite temperature the equation of motion is
given by [10, 147, 150]

d2φ

dφ2
+
γ

̺

dφ
d̺
=

dVef f (φ,T)

dφ
(2.15)

with damping coefficient γ = 2.5 It has to be solved for theinverted potential and the
boundary conditions

dφ(̺)
d̺

∣∣∣∣∣
̺=0

= 0, lim
̺→∞

φ(̺) = φ−, (2.16)

whereφ− denotes the symmetric minimum (false vacuum) of the potential Vef f (φ,T).

By generalizing the thermal case ton scalar fields,~φ ≡ (φ1, . . . , φn), (2.14) transforms into

S3(T) = 4π
∞w

0

d̺ ̺2


1
2


∂~φ(̺)
∂̺


2

+ Vef f

(
~φ(̺) ,T

)
 , (2.17)

where
(
∂~φ(̺)
∂̺

)2
=

∑n
i=1

(
∂φn(̺)
∂̺

)2
. The correspondingn equations of motion

d2~φ

dφ2
+

2
̺

d~φ
d̺
= ~∇Vef f

(
~φ,T

)
(2.18)

with ~∇ =
(
∂
∂φ1
, . . . , ∂

∂φn

)
can be interpreted as classical particle moving in then-dimensional

inverted potential with a time-dependent damping term [134].

5In the case of tunneling in vacuum the damping coefficient equalsγ = 3.
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Thin-Wall Approximation. If the bubble radiusR(T) becomes much larger than the

thickness of the walld ≡ ∂2
φVef f (φ,T)

∣∣∣∣
φ=φ+

[102], R(T) ≫ d, it is possible to neglect the

second term in the equation of motion (2.15). In this thin-wall regime, where the maxima of
the inverted potential are almost degenerate,Vef f (φ+,T) ≃ Vef f (φ−,T), the finite-temperature
Euclidean action of (2.14) can be approximated by [150]

S3(T) = −4π
3

R(T)3∆Vef f (T) + 4πR(T)2 S1(T) , (2.19)

where∆Vef f (T), defined in2.5, denotes the difference between the two maxima of the in-
verted potential and

S1 =

∞w

0

d̺


1
2

(
∂φ(̺)
∂̺

)2

+ Vef f (φ(̺) ,T)

 (2.20)

≃
φ−w

φ+

dφ
√

2V(φ(̺)) (2.21)

is the one-dimensional Euclidean actionS1(T) in the thin-wall approximation. As the
temperature-dependent radius of the bubble, determined according to Hamilton’s principle
of least action by variation of (2.19), is given by

R(T) =
2S1(T)
∆Vef f (T)

, (2.22)

an explicit expression for the three-dimensional Euclidean action at finite temperature can
be derived by inserting (2.22) in (2.19),6

S3(T) =
16πS1(T)3

3
(
∆Vef f (T)

)2
. (2.23)

Note that equating (2.11) and (2.23) allows to directly determine the tunneling temperature
T∗ . Furthermore, (2.11) can be used to derive for the parameterβ

H∗
the expression (cf. (2.9))

β

H∗
≡ T∗

d
dT

(
S3(T)

T

) ∣∣∣∣∣∣
T=T∗

= −S3
(
T∗

)

T∗

1+ 2
T∗

∆Ve f f

(
T∗

)
d∆Ve f f (T)

dT

∣∣∣∣∣∣
T=T∗



≃ −280
T∗

∆Ve f f

(
T∗

) d
dT

(
∆Ve f f

(
T∗

)

T∗

) ∣∣∣∣∣∣
T=T∗

,

(2.24)

6By an analogously performed calculation the three-dimensional Euclidean action at zero temperature in the
thin-wall approximation emerges as

S3 =
27π2S1(T)4

3
(
∆Vef f

(T)
)3
.
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where we have assumed in the second step that the term corresponding to the logarithmic

derivative of
∆Ve f f(T∗)

T∗
is the dominant contribution in the sum. (We will see explicitly in

Sec.4.5andSec.4.6that this is justified.)

2.2.3. Parametersvb and κ

Apart from α and β, two additional parameters are in principle needed for determining
the GW spectrum from bubble collisions, namely the expansion velocity vb of the bubble
walls and the fractionκ of false-vacuum energy density (latent heat) transformed into fluid
kinetic energy (bulk motion) instead of heating the plasma.In general, the determination
of vb and κ requires to take friction effects into account due to departures from thermal
equilibrium in the vicinity of the bubble walls [198, 165, 120]. However, in the case of
denotation, where the bubble walls propagate faster than the speed of sound, these quantities
are merely functions ofα, vb(α) andκ(α), independently on the microphysics driving the
phase transition [167]. For strongly first-order phase transitions the velocity of the bubble
walls in the case of detonation is approximately given by [194]

vb(α) =

1√
3
+

√
α2 + 2

3α

1+ α
, (2.25)

constituting an increasing function in terms ofα which varies between the speed of sound
cS =

1√
3

(in a relativistic thermal bath) and the speed of lightc = 1. As the exact value ofvb

however is dependent on the underlying theory (vb may be affected for instance by particle
scatterings with the bubble wall) , we will assume for the purpose of this work

vb(α) ≃ 1. (2.26)

(As we require strongly first-order phase transitions to allow for a detectable GW signal,
this constitutes an appropriate assumption.)
The efficiency factorκ(α), indicating the ratio of false vacuum-energy density transferred
into kinetic energy of the bulk fluid, can be determined numerically as a function of the
parameterα yielding [125]

κ(α) ≃ 1
1+ 0.715α

0.715α +
4
27

√
3
2
α

 . (2.27)

The efficiencyκ(α) increases with the enlargement ofα by varying betweenκ(α) = 0 . . . 1.
As (2.27) is only approximately numerically determined and we require strongly first-order
phase transitions, we will assume in the following

κ(α) ≃ 1. (2.28)

32



2.3 Gravitational Wave Spectrum from Bubble Collisions

2.3. Gravitational Wave Spectrum from Bubble Collisions

The GW spectrum is in general expressed in terms of the energydensity of gravitational
wavesρGW per logarithmic frequency interval, normalized to the critical energy densityρC

for a close universe [156, 167]

ΩGW( f ) ≡ 1
ρC

dρGW

d ln ( f )
. (2.29)

As the critical energy density, arising from the Friedmann-Lemaître equations as

ρC =
3H2

0

8πG
, (2.30)

incorporates an experimental uncertainty in the Hubble parameterH0 = h0 · 100 km
s·Mpc (with

h0 parametrizing the experimental uncertainty), the GW spectrum is usually described by
the dimensionless quantityh2

oΩGW( f ).
In the following, we will first derive the peak frequencỹf and the peak amplitudẽΩGW

of the GW spectrum, which have been redshifted from the time (or equivalently the tem-
perature) of their production during the phase transition to the present time. Subsequently,
we will express the GW spectrumh2

oΩGW( f ), which is observable today, in terms off̃ and
Ω̃GW.

Peak frequency f̃ . If we work in the Friedmann-Robertson-Walker (FRW) metric in-
cluding the cosmological scale factora(T) and assume a radiation-dominated Universe at
the time of the phase transition, the frequency scales asa(T)−1. Therefore, the redshifted
frequency of the gravitational waves, produced at the temperatureT∗ with a frequencyf∗ ,
arises at the present time as

f =
a
(
T∗

)

a(T0)
f∗ =

(
gS0

g∗

) 1
3 T0

T∗
f∗ , (2.31)

where we used the fact that the entropy per comoving volume remains constant in an adi-
abatic expanding Universe,S(T) ∝ a(T)3 gS(T) T3. Thereby, the relativistic degrees of
freedomgS related to the entropyS(T) (not to the thermal energy densitye(T)) emerge
from (2.3) by replacing the quartic power terms ofT by a cubic ones. At the present
time the relativistic degrees of freedom aregS(T0) ≃ 3.91 (for three neutrino species)
[103], whereas the temperature of the cosmic microwave background (CMB) is given by
T0 = 2.725 K = 2.348 · 10−13 GeV [92]. Inserting this in (2.31) and expressing the fre-
quency f∗ in terms of the Hubble parameterH∗ yields the redshifted frequency observed
today

f ≃ 6 · 10−3 mHz

(
f∗
H∗

) (
T∗

100 GeV

) ( g∗
100

) 1
6
. (2.32)
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Using this relation, the peak frequency of the GW spectrum atthe present time emerges as

f̃ = 16.5 · 10−3 mHz

(
f∗
β

) (
β

H∗

) (
T∗

100 GeV

) ( g∗
100

) 1
6
, (2.33)

where the functionf∗
β

is numerically approximated as [112]

f̃∗
β
≃ 0.62

1.8− 0.1vb(α) + v2
b(α)

. (2.34)

As we assumevb(α) ≃ 1 where f̃∗
β ≃ 0.23, the peak frequencỹf in dependency of the

characteristic parameterβH∗ , the tunneling temperatureT∗ and the degrees of freedomg∗
finally reads

f̃ = 3.79 · 10−3 mHz

(
β

H∗

) (
T∗

100 GeV

) ( g∗
100

) 1
6
. (2.35)

Note that if we assume the phase transition to proceed at the electroweak scaleT ∗ ≃
102 GeV and choose typical values for the other parameters,β

H∗
≃ 102 . . . 103 andg∗ ≃ 100,

the resulting peak frequency is̃f = 0.5 . . . 10 mHz [103], which remarkably coincides with
the most sensitive frequency range of the GW detector LISA (cf. Chap.C).

Peak amplitude Ω̃GW . In the FRW metric the energy density scales likea(T)−4 [103],
whereas the critical energy density evolves asH(T)2 (cf. (2.30)),

ρGW =

(
a
(
T∗

)

a(T0)

)4

ρGW∗ , ρC =

(
H0

H∗

)2

ρC∗ . (2.36)

Using these relations and the expression for the Hubble parameter from the Friedmann-
Lemaître equations of (2.10), the gravitational waves, which have been produced at the
temperatureT∗ with a peak amplitudẽΩGW∗ , arise at present time with a peak amplitude (cf.
(2.29))

Ω̃GW =

(
a
(
T∗

)

a(T0)

)4 (
H∗
H0

)4

Ω̃GW∗

≃ 1.67 · 10−5
(
100
g∗

) 1
3 1

h2
0

Ω̃GW∗ .

(2.37)

Since the peak amplitudẽΩGW∗ of the gravitational waves at the time of the proceeding of
the phase transition can be written as [125]

Ω̃GW∗ = ∆̃ κ(α)2
(
H∗
β

)2 (
α

α + 1

)2
, (2.38)
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the peak amplitude which would be observed today is obtainedby redshifting from (2.37),

h2
oΩ̃GW = 1.67 · 10−5 Ω̃GW∗

(
100
g∗

) 1
3

= 1.67 · 10−5 ∆̃ κ(α)2
(
H∗
β

)2 (
α

α + 1

)2
(
100
g∗

) 1
3

.

(2.39)

Therein, the dimensionless functioñ∆ has to be determined numerically. According to
[112], it is approximately given by

∆̃ ≃
0.11v3

b(α)

0.42+ v2
b(α)

, (2.40)

yielding ∆̃ ≃ 0.08 forvb(α) ≃ 1. Assuming additionallyκ(α) ≃ 1, (2.39) finally leads to the
expression

h2
oΩ̃GW = 1.29 · 10−6

(
H∗
β

)2 (
α

α + 1

)2
(
100
g∗

) 1
3

(2.41)

for the peak amplitude of the GW spectrum.

Graviational Wave Spectrum from Bubble Collisions

Following [112], we parametrize the GW spectrumΩGW∗
(
f∗
)

generated by bubble collisions
during a first-order phase transition in the envelope approximation as

ΩGW∗
(
f∗
)
= Ω̃GW∗

(a+ b) f̃ b
∗ f a

∗

b f̃ (a+b)
∗ + a f (a+b)

∗

, (2.42)

where the exponents lie in the rangea ∈ [2.66, 2.82] andb ∈ [0.90, 1.19]. For a strongly
first-order phase transition withvb(α) ≃ 1, the numerical simulation for a large number of
colliding bubbles in [112] yields a ≃ 2.8 andb ≃ 1.0 so that the GW spectrum rises asf 3.0

∗
for low frequencies and falls off as f −1.0

∗ for high frequencies. Note that the decrease of the
GW spectrum including multi-bubble collisions is considerably slighter than in the case of
two colliding bubbles where the spectrum falls off as f −1.8

∗ [125].
With a ≃ 2.8 andb ≃ 1.0 and by redshifting the peak frequency and amplitude according
(2.35) and (2.41), the GW spectrum which is observed at the present time reads

h2
oΩGW( f ) = h2

oΩ̃GW
3.8 · f̃ f 2.8

f̃ 3.8 + 2.8 · f 3.8
(2.43)

with

h2
oΩ̃GW = 1.29 · 10−6

(
H∗
β

)2 (
α

α + 1

)2
(
100
g∗

) 1
3

, (2.44)

f̃ = 3.79 · 10−3 mHz

(
β

H∗

) (
T∗

100 GeV

) ( g∗
100

) 1
6
. (2.45)

35



Chapter 2 Gravitational Waves from First-Order Phase Transitions

The peak amplitudeh2
oΩ̃GW of the GW spectrum is independent of the tunneling temperature

T∗ and hence does not depend on the energy scale of the phase transition. As the peak
amplitude includes however the dimensionless parametersα and β

H∗
, it rather depends on the

shapeof the effective potential at the temperatureT∗ , but not onT∗ itself. The parametersα
and β

H∗
are correlated by their dependence on∆Ve f f

(
T∗

)
. In detail, bigger values of∆Ve f f

(
T∗

)

lead to an increase of the parameterα (cf. (2.4)) and a simultaneous decrease ofβ
H∗

(cf.
(2.24)). For generating a peak amplitude within the experimentally accessible sensitivity
range,α and β

H∗
roughly have to be of order [103]

α ∼ O(1) , β
H∗
∼ S3(T∗)

T∗
∼ O(100) . (2.46)

Stronger phase transitions generally lead to a decrease of the parametersT∗ and β
H∗

(and
hence an increase ofα) [113, 112]. The equations (2.44) and (2.45) display explicitly that
the peak amplitudeh2

oΩ̃GW is consequently enlarged, whereas the peak frequencyf̃ is low-
ered. For a detection of the GW spectrum it is required that both, the peak amplitudeh2

oΩ̃GW

as well as the peak frequencỹf , lie in the experimentally accessible region. Our intention
will be therefore to consider phase transitions which are required to bestrongly first-order,
generating a high peak amplitudeh2

oΩ̃GW, and which additionally proceed athigh tempera-
tures(TEW < T∗ < TGUT), shifting the peak frequencỹf to the high-frequency range.

In Part II, we will investigate whether the gravitational waves from the first-order phase tran-
sitions in two extensions of the Standard Model will be detectable under these conditions
and hence could serve as cosmological probes for the theoretical conception of the models.
Thereby, the formulae in (2.43), (2.44) and (2.45) will constitute our main equations for the
calculation of the GW spectra.
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Chapter 3

Singlet Extension of the Standard
Model

In this part we will study first-order phase transitions in two extensions of the Standard
Model to investigate their possibility of providing detectable gravitational waves. The first
model we will consider will be the minimal extension of the Standard Model by a real
scalar gauge singletS. Although there exists a large variety of Standard Model extensions,
the importance of this model lies in the fact that many extensions contain hidden sectors
whose elements transform non-trivially under a hidden sector gauge group, but as singlets
under the Standard Model group [83, 84]. Since the only renormalizable interactions of such
scalars occur via the Standard Model Higgs sector, these interactions can serve as window
(“portal”) into the hidden sector [186, 170, 38]. In the following, we will therefore assume
the additional singletS to couple only to the Standard Model Higgs doubletΦ.

3.1. Tree-Level Scalar Potential

In the singlet extension of the Standard Model the Lagrangian of the Higgs and singlet
sector is given by

LΦ,S =
(
DµΦ

)† (
D µΦ

)
+

1
2

(
∂µS

) (
∂ µS

) − V0(Φ,S) , (3.1)

whereDµ ≡ ∂µ+i g
2σa Aa

µ+i g′

2 Y Bµ is the covariant derivative of the Standard ModelSU(2)L⊗
U(1)Y gauge group [176, 174]. The complex Higgs doublet

Φ =
1
√

2

(
χ1 + iχ2

h+ iχ3

)
(3.2)

contains the physical scalar Higgs fieldh and the three massless Goldstone fieldsχ1,2,3.
V0(Φ,S) denotes the tree-level potential consisting of the Standard Model Higgs potential
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VH(Φ) = −µ2
h

(
Φ†Φ

)
+ λh

(
Φ†Φ

)2
with µ2

h > 0 andλh > 0, a Higgs-singlet contribution
VHS(Φ,S) and a pure singlet potentialVS(S). The most general (renormalizable) ansatz for
the tree-level potential consists in [26, 82]

V0(Φ,S) = VH(Φ) + VHS(Φ,S) + VS(S)

= −µ2
h

(
Φ†Φ

)
+ λh

(
Φ†Φ

)2

+
a1

2

(
Φ†Φ

)
S +

a2

2

(
Φ†Φ

)2
S2

+ b1 S +
b2

2
S2 +

b3

3
S3 +

b4

4
S4,

(3.3)

where we require all parameters to be real.1 To obtain the tree-levelscalarpotential in terms
of the physical Higgs fieldh and the singletS, the complex Higgs doubletΦ of (3.2) has to
be expanded about its (zero-temperature) VEV [171, 174]

〈Φ〉 = 1
√

2

(
0
v

)
(3.4)

so thatΦ†Φ = |Φ|2 = 1
2 (v+ h)2. Inserting this in (3.3) and removing the field-independent

(and hence physically unimportant) constant terms, yieldsthe scalar tree-level potential
V0(h,S). If we require additionally the potential to be invariant under the discreteZ2 sym-
metry transformationS → −S, the odd-power terms inS vanish. Hence, the scalar tree-
level potential takes the form

V0(h,S) = −
µ2

h

2
h2 +

λh

4
h4 −

µ2
S

2
S2 +

λS

4
S4 +

λm

4
h2S2, (3.5)

where we have redefineda2 ≡ λm , b2 ≡ −µ2
S andb4 ≡ λS (with µ2

S > 0, λS > 0). The
real parameterλm is generally not restricted to be either positive or negative. In our further
considerations we will assumeλm > 0.
The singletS is stable until thermal fluctuations induce the spontaneousbreaking of the
Z2 symmetry which is associated by a phase transition. To investigate this phase-transition
scenario, we will next compute the effective potential.

3.2. Effective Potential

We will determine the effective potential in the singlet extension of the Standard Model
up to the one-loop order at finite temperature by including the zero-temperature Coleman-
Weinberg contributionsVT=0

1 (h,S), the finite-temperature correctionsVT,0
1 (h,S) and the

contributionsVring(h,S) from the ring diagrams. The tree-level potential correctedby these
terms composes the full one-loop finite-temperature effective potential (cf. (1.51))

Vef f (h,S,T) = V0(h,S) + VT=0
1 (h,S) + VT,0

1 (h,S,T) + Vring(h,S,T) . (3.6)

We start with computing the zero-temperature Coleman-Weinberg contributionsVT=0
1 (h,S,T).

1The normalization factors of the parameters are chosen withregard to the simplicity of the Higgs and singlet
couplings arising from the tree-level potential.
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3.2 Effective Potential

3.2.1. One-Loop Effective Potential at Zero Temperature

According to (1.29), the one-loop correction to the tree-level potential at zero temperature
in the MS renormalization scheme is given by

VT=0
1 (h,S) =

1
64π2

∑

i

ḡi m4
i (φcl)

ln

m2

i (h,S)

µ2

 −Ci

 , (3.7)

where the constantsCi and the modified degrees of freedom ¯gi are defined in (1.25) and
(1.28), respectively. Hereby, the summation over the indexi includes all particles of the
model, i.e. the Standard Model fermions and bosons as well asthe additionalS-boson.
Since the dominant mass contributions will emerge from the top quarkt, the gauge bosons
W± andZ, the Goldstone bosonsχ1,2,3, the Higgsh and the singletS, we will restrict our
considerations to the latter and neglect all other (fermionic) particle contributions in the
following.

To compute the one-loop contributionVT=0
1 (h,S) of (3.7), we have to determine the modi-

fied degrees of freedomgi and the field-dependent massesmi(h,S) for the considered parti-
cles.
The degrees of freedom arise as the product of the particle’sspin-, color- and charge-state
degrees. According to (1.28) in Sec.1.1.3, the modified degrees of freedom for the regarded
particles are

ḡt = −12, ḡχ = 3,

ḡW = 6, ḡh = 1,

ḡZ = 3, ḡS = 1.

(3.8)

Note that we have used the modified degrees of freedom to by absorb the prefactor(−1) of
the zero-temperature one-loop contribution for the top quark.
Due to the restriction of theS-boson coupling to the Higgs field, the field-dependent masses
for the top quarkt and the gauge bosonsW±, Z are independent of the singlet field and hence
remain unchanged in comparison to the Standard Model [176]

m2
t (h) =

y2
t

2
h2,

m2
W(h) =

g2

4
h2,

m2
Z(h) =

g2 + g′2

4
h2,

(3.9)

whereyt denotes the top-quark Yukawa coupling, whileg andg′ are theSU(2)L- andU(1)Y-
couplings of the Standard Model gauge group, respectively.2

The field-dependent masses of the Goldstone bosonsχ1,2,3, the Higgsh and the singletS are

2At high temperatures theZ-boson and the photon are not mass eigenstates. As discussedin [72], treating
them as such in the computation however gives the correct results.
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on the contrary affected by the Higgs-singlet interactions. They are derived as eigenvalues
of the field-dependent mass matrixM2(h,S), defined in (1.20), with respect to the tree-level
potentialV0(h,S). The diagonalization of the mass matrix

M2(h,S) =

(
m2

hh(h,S) m2
hS(h,S)

m2
Sh(h,S) m2

SS(h,S)

)
≡


∂2V0(h,S)

∂h2

∂2V0(h,S)
∂h∂S

∂2V0(h,S)
∂S ∂h

∂2V0(h,S)

∂S2

 , (3.10)

whose elements are given by

m2
hh(h,S) = −µ2

h + 3λh h2 +
λm

2
S2,

m2
SS(h,S) = −µ2

S + 3λS S2 +
λm

2
h2,

m2
hS(h,S) = m2

hS(h,S) = λm hS,

(3.11)

yields the physical Higgs and singlet eigenmasses

m2
h,S(h,S) =

1
2

{
m2

hh(h,S) +m2
SS(h,S) ∓

√[
m2

hh(h,S) −m2
SS(h,S)

]2
+ 4m2

hS(h,S)
}

=
1
2

{
−µ2

h − µ2
S +

(
3λh +

λm

2

)
h2 +

(
3λS +

λm

2

)
S2

∓

√
[
−µ2

h + µ
2
S +

(
3λh −

λm

2

)
h2 −

(
3λS −

λm

2

)
S2

]2

+ 4λm hS
}
.

(3.12)

The field-dependent masses of the Goldstone bosons equal thepure Higgs contribution in
the mass matrix ,m2

χ(h,S) = m2
hh(h,S).

Thus, we have determined the Coleman-Weinberg contribution VT=0
1 (h,S) in the singlet

extension of the Standard Model by the degrees of freedom of (3.8) and the field-dependent
masses of (3.9) and (3.12). Next, we will have to derive the finite-temperature one-loop
contributionVT,0

1 (h,S,T).

3.2.2. One-Loop Effective Potential at Finite Temperature

Since we will investigate the phase transition in the singlet model for temperatures between
the electroweak and the GUT scale, it is justified to use the high-temperature expansion(
m2

i (h,S)≪ T2
)

of the finite-temperature one-loop contribution (cf. (3.32)),

VT,0
1 (h,S,T) =

T4

2π2

∑

i

ḡi JF,B


m2

i (h,S)

T2

 , (3.13)

and to include only the dominant contributions from the thermal bosonic and fermionic
functionsJB (1.40) andJF (1.45),

JF


m2

i (h,S)

T2

 ≃
7π4

360
− π

2

24

m2
i (h,S)

T2
,

JB


m2

i (h,S)

T2

 ≃ −
π4

45
+
π2

12

m2
i (h,S)

T2
− π

6


m2

i (h,S)

T2


3
2

,

(3.14)
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in the calculation of the effective potential. By inserting the above expressions forJB andJF

in (3.15), we determine the finite-temperature one-loop contribution in the singlet extension
as

VT,0
1 (h,S,T) =gt

[
−7π2

720
T4 +

1
48

T2m2
t (h)

]

+
∑

i=W,Z,γ,χ,h,S

ḡi

[
−π

2

90
T4 +

1
24

T2m2
i (h,S) − 1

12π
T

(
m2

i (h,S)
) 3

2

]
.

(3.15)

Note that the thermal bosonic functionJB, in contrary toJF, includes a contribution∝(
m2

i (h,S)
)3/2

being crucial for the investigation of the phase transition. As this term gener-
ates a cubic contribution of the singlet fieldS in the effective potential, it leads to a thermally
induced barrier and hence provides the necessary ingredient for a first-order phase transi-
tion.
However, the emergence of the monomial term of order3

2 reveals the breakdown of per-
turbation theory in the high-temperature expansion due to IR divergences. As explained in
(Sec.1.2.3), we consequently have to include the contribution of the ring diagrams in the
calculation of the one-loop effective potential.

3.2.3. Ring-Diagram Contributions to the Effective Potential

Due to the ring-diagram contribution to the effective potential (cf. (1.50))

Vring(h,S,T) = − 1
12π

T
∑

i=Wl,t ,Zl,t ,γl,t ,χ,h,S

ḡi

[(
M2

i (h,S,T)
)3/2 −

(
m2

i (h,S)
)3/2

]
, (3.16)

the field-dependent massesm2
i (h,S) of the finite-temperature one-loop contribution are re-

placed by thethermalfield-dependent masses, defined in (1.49) as

M2
i (h,S,T) ≡ m2

i (h,S) + Πi(h,S,T) , (3.17)

whereinΠi (h,S,T) denotes the self-energy of the bosonic fieldi in the IR limit. In the
gauge-boson sector, only the longitudinal polarizations are thermally shifted as the transver-
sal polarizations of the self-energies in the IR limit are zero, Πt(h,S,T) ≃ 0. The longitu-
dinal and transversal components of the modified gauge-boson degrees of freedom for the
gauge bosons are given by

ḡWl
= 2, ḡWt

= 4

ḡZl
= 1, ḡZt

= 2,

ḡγl
= 1, ḡγt

= 2.

(3.18)

Note that the only contribution of the massless photon to thering-contributions emerges due
to the non-vanishing longitudinal polarization of the self-energyΠγl .
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The computation of the self-energies in the singlet extension of the Standard Model, which
is explained in detail inSec.A.1, yields the following results

ΠWl =
11
6

g2 T2,

ΠZl = −
g2

4
h2 +

11
6

g′2 T2 = −m2
W (h) +

11
6

g′2 T2,

Πγl =
g2

4
h2 +

11
6

g2 T2 = m2
W (h) +

11
6

g2 T2,

(3.19)

for the longitudinal components of the gauge bosons (cf. (A.10), (A.11)) and

ΠSS =

(
λS

4
+
λm

6

)
T2,

Πhh = Πχ =

(
λh

2
+
λm

24
+

3g2 + g′2

16
+

y2
t

4

)
T2,

ΠhS = ΠSh≃ 0,

(3.20)

for the Higgs and singlet contributions (cf. (A.6)).Thereof, the physical Higgs and Singlet
thermal masses,M2

h(h,S,T) andM2
S(h,S,T) are computed as eigenvalues of thermal mass

matrix

M2
thermal

(h,S,T) =

(
M2

hh(h,S,T) M2
hS(h,S,T)

M2
Sh(h,S,T) M2

SS(h,S,T)

)
, (3.21)

where the single elements are given by

M2
SS(h,S,T) = m2

SS(h,S) + ΠSS(T) ,

M2
hh(h,S,T) = m2

hh(h,S) + Πhh(T) ,

M2
Sh(h,S,T) = M2

hS(h,S,T) ≃ m2
hS(h,S) .

(3.22)

with m2
SS(h,S), m2

hh(h,S) andm2
hS(h,S) given in (3.11). After diagonalization of

M2
thermal

(h,S,T), the thermal Higgs and singlet eigenmasses emerge, in analogy to the non-
thermal case, as

M2
h,S(h,S,T) =

1
2

{
M2

hh(h,S) + M2
SS(h,S) ∓

√[
M2

hh(h,S) − M2
SS(h,S)

]2
+ 4m2

hS(h,S)
}

.

(3.23)

Finally, by summarizing the one-loop corrections to the tree-level potential (3.5) at zero-
and finite temperature, (3.7) and (3.15), respectively, and including the ring-diagram con-
tributions of (3.16), the full one-loop effective potential at finite temperature in the singlet
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extension of the Standard Model reads

Vef f (h,S,T) = V0(h,S) + VT=0
1 (h,S) + VT,0

1 (h,S,T) + Vring(h,S,T)

= −
µ2

h

2
h2 +

λh

4
h4 −

µ2
S

2
S2 +

λS

4
S4 +

λm

4
h2S2

+
1

64π2

∑

i=t,W,Z,γ,χ,h,S

ḡi m4
i (h,S)

ln

m2

i (h,S)

µ2

 −Ci



+ gt

[
−7π2

720
T4 +

1
48

T2m2
t (h)

]

+
∑

i=W,Z,γ,χ,h,S

ḡi

[
−π

2

90
T4 +

1
24

T2m2
i (h,S)

]

− 1
12π

T
∑

i=Wl,t ,Zl,t ,γl,t ,χ,h,S

ḡi

(
M2

i (h,S)
) 3

2 .

(3.24)

In the following, we will neglect the constant terms∝ T4 in the effective potential. As these
terms arefield-independent, they are neither physically important for the phase-transition
scenario (cf.Sec.3.3.2) nor for the spectrum of gravitational waves (cf.Sec.3.5.1).

3.2.4. High-Temperature Approximation of the Effective Potential

Our intention is to investigate whether the first-order phase transition in the singlet model
provides the possibility for detectable gravitational waves at temperatures between the elec-
troweak and the GUT scale.
Within this temperature range, the dominant corrections tothe tree-level potential will
arise from the temperature-dependent one-loop and ring contributions. To derive a high-
temperature approximation of the effective potential, zero-temperature Coleman-Weinberg
corrections can be neglected. Additionally, the restriction to the high-temperature scale
leads to a natural decoupling of the singlet fieldS from the low-energy sector of the model.
This allows in particular to neglect the contributions of the Higgs fieldh to the effective po-
tential, including the dependency of field-dependent (thermal) masses onh. Consequently,
the field-dependent masses of the Standard Model particles vanish, while the Higgs and
singlet eigenmasses are reduced to a pure dependency onS.
Following this considerations, the full one-loop effective potential of (3.24) reads in the
high-temperature approximation

Vef f (S,T) ≃ V0(S) + VT,0
1 (S,T) + Vring(S,T)

≃ −
µ2

S

2
S2 +

λS

4
S4

+
∑

i=χ,h,S

ḡi

[
1
24

T2m2
i (S) − 1

12π
T

(
M2

i (S,T)
) 3

2

]
.

(3.25)
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Therein, the field-dependent Higgs and singlet eigenmasses, computed in (3.12), reduce to

m2
h(S) = m2

χ(S) ≃ −µ2
h +

λm

2
S2, (3.26)

m2
S(S) ≃ −µ2

S + 3λS S2, (3.27)

and lead to the thermal eigenmasses (cf. (3.23))

M2
h(S,T) = M2

χ(S,T) ≃ −µ2
h +

λm

2
S2 + ch T2, (3.28)

M2
S(S,T) ≃ −µ2

S + 3λS S2 + cS T2. (3.29)

with

ch ≡
(
λh

2
+
λm

24

)
, (3.30)

cS ≡
(
λS

4
+
λm

6

)
. (3.31)

Note in particular that the neglection of the Higgs fieldh diagonalizes the mass matrices
(3.10) and (3.21) so that the Higgs and singlet (thermal) eigenmasses can be directly read
off from the diagonal elements, for instancem2

h(S) ≡ m2
hh(S) andM2

h(S,T) ≡ M2
hh(S).

Insertingḡχ = 3, ḡh = 1 andḡS = 1 in (3.25) finally yields for the effective potential in the
high-temperature approximation

Vef f (S,T) =
1
2

(
−µ2

S + cST2
)
S2 +

λS

4
S4 − 1

24

(
4µ2

h + µ
2
S

)
T2

− 1
12π

T

[
4
(
M2

h(S,T)
) 3

2
+

(
M2

S(S,T)
) 3

2

] (3.32)

with M2
h,S(S,T) given in (3.28) and (3.29). This expression for the effective potential con-

sists our basic equation for the further investigation of the phase transition.

3.3. Investigation of the Phase Transition

3.3.1. Phase-Transition Scenario

We will consider the following phase-transition scenario in the singlet extension of the Stan-
dard Model: Due to the symmetry restoration at high temperatures, the symmetric phase
S(T) = 0 initially constitutes the absolute stable minimum of the effective potential. When
the temperature is lowered, a local minimum, separated fromthe symmetric phase at the
origin by a barrier in the effective potential, occurs atS(T) , 0. As long as the temperature
is larger than the critical temperatureTC, where both minima become degenerate, the sin-
glet is stable. Thereafter, thermal fluctuations can inducethe spontaneous breaking of the
Z2-symmetry and the phase transition from the false to the truevacuum proceeds, whereby
the singlet acquires a (non-vanishing) VEV. The emergence of the barrier in the effective
potential thereby restricts the phase transition to be of first order.
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3.3 Investigation of the Phase Transition

3.3.2. Conditions for a First-Order Phase Transition

A first-order phase transition necessarily requires two conditions to be fulfilled.3 These
can be used to determine the critical temperatureTC of the phase transition and the corre-
sponding singlet VEV〈S(TC)〉 ≡ ±SC (with SC > 0). At first, the emergence of a barrier
between the true and the false vacuum state requires the development of a second minimum
apart from the origin [178],

∂Vef f (S,T)

∂S

∣∣∣∣∣∣
S,0

= 0 with
∂2Vef f (S,T)

∂S2

∣∣∣∣∣∣∣
S,0

> 0, (3.33)

whereof the temperature-dependent singlet VEV〈S(T)〉 , 0 can be derived. Secondly,
the definition ofTC as the temperature where both minima become degenerate leads to the
condition [178]

∆Vef f (T)
∣∣∣
T=TC
= 0 (3.34)

with (cf. (2.5))

∆Vef f (T) ≡ Vef f (S = 0,T) − Vef f (S = 〈S(T)〉,T) . (3.35)

From 3.34 the critical temperatureTC of the phase transition and subsequently the corre-
sponding singlet VEVSC can be computed. The ratio betweenSC andTC defines in turn
the strength of the phase transition. For astronglyfirst-order phase transition it has to lie in
the range [61]

SC

TC
& 1. (3.36)

The effective potential of (3.25) only allows to determine the critical temperature and the
singlet VEV numerically due to the emergence of the terms of order 3

2 containing the ther-
mal masses. However, it is possible to derive an approximateanalytical solution for these
quantities which will reveal their functional dependence on the model parameters.

Analytical Approximation of the Critical Temperature and t he Singlet VEV

We will consider two approximations of the effective potential in (3.25) which allow to
determine the critical temperature and the singlet VEV analytically. The first approximation
will consist in the neglection of the thermal masses of the Higgs and the singlet, whereas
the second approximation will base on a constraint imposed on the Higgs thermal mass by
still neglecting the singlet contribution.

3Reviews on finite-temperature phase transitions, where thecharacteristics of first- and second-order phase
transitions are discussed, can be found for instance in [175, 177, 178, 180, 133].
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Tp TC

T = TC

T = 0

SC ¹ 0
S

Veff HS,TL

(a) First-order phase transition.

T = TC

Tp TC

T = 0
SC = 0

S

Veff HS,TL

(b) Second-order phase transition.

Figure 3.1: Comparison of first- and second-order phase transitions in the singlet extension
of the Standard Model.The barrier between the true and the false vacuum in the effective
potential, which is generated in the singlet model by a thermally induced cubic, distin-
guishes first-order and second-order phase transitions. (Note that we have only depicted
the effective potential forS > 0.)

Neglection of the Higgs and Singlet Thermal Masses. If we neglect the thermal masses
of the Higgs and the singlet,

M2
h(S,T) = 0, M2

S(S,T) = 0, (3.37)

the effective potential of (3.32) becomes

Vef f (S,T) =
1
2

(
−µ2

S + cST2
)
S2 +

λS

4
S4 − 1

24

(
4µ2

h + µ
2
S

)
T2. (3.38)

with cS defined in (3.31). In this approximation the thermally induced cubic term∝ S3,
which is contained in the thermal mass contributions and generates the barrier between the
true and the false vacuum state, vanishes. Therefore, the phase transition is not of first-order
any more, but reduces to a second-order phase transition [175]. As depicted inFig.3.1, the
temperature-dependent singlet VEV, derived as minimum of the effective potential (3.38),
yielding

〈S(T)〉 = ±

√
µ2

S − cST2

λS
, (3.39)

collapses with the symmetric phase to an inflection point in the origin at the critical temper-
ature,

〈S(TC)〉 = 0, (3.40)
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3.3 Investigation of the Phase Transition

implying SC = 0. At T = TC the quadratic term∝ S2 in the effective potential of (3.38)
thus changes in sign, so that the critical temperature can bedetermined as4

∂2Vef f (S,T)

∂S2

∣∣∣∣∣∣∣
S=0,T=Tc

= 0 ⇒ TC =

√
µ2

S

cS
. (3.41)

The strength of the second-order phase transition (at the critical temperature) therefore van-
ishes,SC

TC
= 0.

The considered case of the second-order phase transition reveals the relevance of the ther-
mally induced barrier for the phase-transition scenario. In the second approximation, we
will therefore include the Higgs thermal mass to generate a barrier between the degenerated
minima, but still neglect the singlet thermal mass to preserve the possibility for deriving an
analytical solution for the critical temperature and the singlet VEV. (The physical motiva-
tion on which these assumptions are based will be explained in Sec.3.3.3.)

Neglection of the Singlet Thermal Mass. If we assume the thermal masses of the Higgs
and the singlet to take the form

M2
h(S,TC) =

λm

2
S2, M2

S(S,TC) = 0 (3.42)

at the critical temperature, a pure cubic singlet contribution ∝ S3, providing the barrier for
the first-order phase transition, arises in the effective potential (cf. (3.25))

Vef f (S,TC) =
1
2

(
−µ2

S + cST2
C

)
S2 − 1

3π

(
λm

2

) 3
2

TC S3 +
λS

4
S4

− 1
24

(
4µ2

h + µ
2
S

)
T2

C.

(3.43)

In analogy to the “Mexican hat” form of the Higgs potential [100], the above equation can
be rewritten by the ansatz

Vef f (S,TC) =
λS

4
(S − SC)2 S2

=
λS

4
S2

C S2 − λS

2
SC S3 +

λS

4
S4

(3.44)

(where the physically irrelevant last term in (3.43) could be included as constant in the
ansatz, but has been ignored here). The comparison of the terms∝ S2 and∝ S3 in (3.43)
and (3.44) yields the singlet VEV, the critical temperature and the strength of the phase

4Note that the condition∆Vef f (T)
∣∣∣
T=TC

= 0 with ∆Vef f (T) given in (3.34), generally determines the critical

temperature regardless of the order of the phase transitionand hence yields the same result as obtained by
(3.41).
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transition,

SC = ±

√
2
(
−µ2

S + cST2
C

)

λS
=

√√√
2

36π2 λS

λ3
m
cs − 1

µ2
S

λS
, (3.45)

TC =

√√√
µ2

S

cS − 1
36π2

λ3
m
λS

, (3.46)

SC

TC
=

√
2

6π
λ

3
2

m

λS
(3.47)

with cS given in (3.31). Thereby, the additional term− 1
36π2

λ2
m
λS

in the expression for the
critical temperature corresponds to the correction to the effective potential arising from the
thermal Higgs mass (the cubic singlet term). Although it reduces the critical temperature
only marginally (due to the suppression by the factor1

36π2 ), it is essential for generating a
singlet VEVSC , 0.
Note that dimensional reasons require the singlet VEVSC and the critical temperatureTC

to be proportional to the dimensionful parameterµ2
S. The choice ofµ2

S will therefore set the
temperature scale for the phase transition. Consequently,the strength of the phase transition,
defined as ratio ofSC andTC, is independent of the temperature scale, but only depend on
the (small) couplings (cf. (3.47)). This is a general feature of first-order phase transitions
generated by thermally induced barriers [82].

Based on this considerations, we will determine numerically the singlet VEV, the critical
temperature and the phase transition strength for the full effective potential of (3.32),

Vef f (S,T) ≃ 1
2

(
−µ2

S + cST2
)
S2 +

λS

4
S4 − 1

24

(
4µ2

h + µ
2
S

)
T2

− 1
12π

T

[
4
(
M2

h(S,T)
) 3

2
+

(
M2

S(S,T)
) 3

2

] (3.48)

including both the Higgs and singlet thermal massesM2
h(S,T) andM2

S(S,T) of (3.28) and
(3.29), respectively. In the numerical analysis, we have to regard the constraints on the
model parameters to obtain a physically viable phase-transition scenario. We will discuss
these parameter constraints in the following section.

3.3.3. Parameter Constraints

The choice of model parameters for the numerical analysis isrestricted to those regions
in parameter space which preserve the physical relevance ofthe model. These regions are
determined by the following parameter constraints:

Vacuum Stability. The zero-temperature tree-level potential of (3.5),

V0(h,S) = −
µ2

h

2
h2 +

λh

4
h4 −

µ2
S

2
S2 +

λS

4
S4 +

λm

4
h2S2 (3.49)
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with µ2
h,S > 0 andλh,S,m > 0, has to be bounded from below to guarantee the vacuum

stability of the theory. Thus, the potential is required to reach infinity when the Higgs and
singlet field become infinite in any direction [12], i.e.,

V0(h,S)→ ∞ for


h→ ∞ or S→ ∞
h→ ∞ and S→ ∞

. (3.50)

Since the large-field behavior of the tree-level potential is dominated by the quartic contri-
butions in terms of the fieldsh andS, vacuum stability is ensured if the constraint

λh λS > λ
2
m (3.51)

is fulfilled.

Higgs mass and VEV. The low-energy features of the singlet model are dictated bythe
Standard Model phenomenology. In particular, the StandardModel Higgs potential has to
be regained at temperatures of the electroweak scale whereT ≪ µ2

S. Furthermore, the
singlet model has to reproduce the experimentally determined (zero-temperature) VEV and
mass of the Higgs boson correctly.
At zero temperature the singlet VEV yields approximately (cf. (3.39)) 〈S(0)〉 ≡ S0 =√
µ2

S/λS . By inserting this expression in the tree-level potentialV0(Φ,S) given in (3.3), a
redefined Higgs potential

V̄H(Φ) = V0(Φ, 〈S〉) = −µ2
h

(
Φ†Φ

)
+ λh

(
Φ†Φ

)2
(3.52)

can be derived. Therein, the contributions of the singlet VEV to the tree-level potential have
been absorbed by introducing the parameter

µ2
h ≡ µ2

h −
λm

2

µ2
S

λS
. (3.53)

The Higgs VEVv =
√
µ2

h/2λh and the squared Higgs massm2
h = 4µ2

h = 8λhv2 emerge from
the vanishing first derivative and the second derivative of the redefined Higgs potential with
respect to the Higgs field, respectively. By settingv = 250 GeV andmh = 125 GeV,5 the
last equation transforms into the constraint

λh =
m2

h

8v2
=

1
32
≃ 0.03. (3.54)

Since this constraint includes the ratio between the Higgs VEV and the respective mass, it
determines the parameterλh independently of the temperature scale. The Higgs massmh

and hence the Higgs VEVv, in contrary, are negligible at temperatures significantlyabove
the electroweak scale, requiring the redefined parameterµ2

h to vanish as well. Inserting
µ2

h ≃ 0 in (3.53) then yields as a second constraint

µ2
h ≃

µ2
S

2
λm

λS
. (3.55)

5This choice of the Higgs mass is in accordance with the current experimental results [57, 1, 32].
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Parameter Constraint Free

λh λh =
m2

h
8v2 =

1
32 ≃ 0.03 (3.54) ×

λS λS =
λ2

m
6λh−λm

(3.57) ×
λm /

√

µ2
h µ2

h =
µ2

S
2

λm
λS

(3.55) ×
µ2

S /
√

Table 3.1:Free and constrained parameters in the singlet extension ofthe Standard Model.
Since the parametersµ2

h, λh andλS are restricted by either phenomenological or model
constraints, the remaining free parameters of the singlet model areµ2

S andλm. The di-
mensionful parameterµ2

S will determine the symmetry breaking scale, while the choice
of λm will be the crucial ingredient for determining the strengthof the phase transition.

Thermal Higgs mass. The above equation relates the parameterµ2
h to the symmetry

breaking scale set byµ2
S. As µ2

S likewise determines the scale of the critical temperature
TC, we require these contributions in the Higgs thermal mass tocancel each other at the
critical temperature,µ2

h = ch T2
C. This generates a strong cubic term∝ S3 in the effec-

tive potential by the reduction of the Higgs thermal mass to apure singlet contribution (cf.
(3.28)),

M2
h(S,TC) =

λm

2
S2. (3.56)

After insertingµ2
h, given in (3.55), andTC, approximated by (3.41), in the conditionµ2

h =

ch T2
C, we solve the resulting equation forλS and obtain the constraint

λS =
λ2

m

6λh − λm
. (3.57)

Free and Constrained Parameters in the Singlet Extension ofthe Standard Model

The parameter constraints for the singlet extension of the Standard Model are summarized
Tab.3.1. As the two parametersµ2

h andλh are constrained by the Higgs phenomenology and
the model constraint on the thermal Higgs mass restricts theparameterλS, two of the five
model parameters, namelyµ2

S andλm, remain free to choose. (As we will see inSec.3.4.1,
the upper bound imposed onλm by the requirement of vacuum stability will be implicitly
fulfilled.) The choice of the dimensionful parameterµ2

S will determine the symmetry break-
ing scale and hence the order of magnitude of the critical temperatureTC as well as of the
singlet VEVSC. The strength of the phase transitionSC

TC
, which is consequently dimension-

less, cannot depend on the parameterµ2
S, but only on the couplings. Therefore, the choice

of the free parameterλm will be dominantly determine the strength of the phase transition.
As the determination of the critical temperature, the singlet VEV and the phase transition
strength for the full effective potential of (3.48) is not achievable by analytical means, we
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will next perform a numerical analysis by taking into account the derived parameter con-
straints.

3.4. Numerical Analysis of the Phase Transition

Our intention for the numerical analysis of the phase transition is to investigate whether
the parameter constraints allow for a choice of parameters appropriate to provide a strongly
first-order phase transition in the singlet extension of theStandard Model. Since stronger
phase transitions in general generate GW spectra with higher peak amplitudesh2

oΩGW, this
requirement will be crucial with regard to the detectability of the gravitational radiation.

3.4.1. Determination of the Parameter Space

Which regions of the parameter space are allowed to choose for the parameters in the sin-
glet extension of Standard Model? The space of parameters isconfined by the parameter
constraints guaranteeing a physical viable phase-transition scenario. These determine the
parametersλh, λS andµ2

S, whereas the parametersλm andµ2
S are not constrained. In the

following, we will discuss the allowed range for the choice of λm and will set the scale for
the symmetry breaking to occur by choosingµ2

S.

Range ofλm. In general, the renormalizability of the theory restricts the couplingsλh, λS

andλm to values< 1. While the parameterλh is dictated by the low-energy Higgs phe-
nomenology,λh ≃ 0.03 (cf. (3.54)), the parameterλS will be determined by the constraint
(3.57) in dependency onλm. By requiringλS < 1, we can thus derive an upper bound on
the parameterλm,

λm < 0.16 (3.58)

(where we consider only the caseλm > 0). Note that this upper bound additionally ensures
the condition for vacuum stability in (3.51) to be implicitly fulfilled. Besides, it guarantees
λS > 0 sinceλm < 6λh (cf. (3.57)).
Since the couplingsλh andλS are confined by the parameter constraints, the choice ofλm

will determine the strength of the phase transition. (As discussed before, the dimensionless
phase transition strength cannot depend on the dimensionful free parameterµ2

S.) According
to (3.36), a strongly first-order phase transition requires a strength of at leastSC

TC
& 1. For

very large values ofSC
TC

the phase transition is however expected to never be completed [81].

Therefore, we require the strength of the phase transition to be SC
TC
. 4. By inserting the

constraint (3.57) on λS in the approximate analytical expression (3.45) for the strength of
the phase transition, the demandSC

TC
. 4 transforms into a lower bound onλm,

λm & 1.24 · 10−5. (3.59)

For the numerical analysis, we will thus varyλm in the range 0.16> λm & 1.24 · 10−5.
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Choice of µ2
S

In the singlet extension of the Standard Modelµ2
S is the only parameter

which is neither confined by a parameter constraints nor is restricted to a certain range of
parameter space. This allows in particular a free choice of the symmetry breaking scale
set byµ2

S. Since our intention is to investigate the phase-transition at a temperature scale
between the electroweak and the GUT scale,TEW < T∗ < TGUT with TEW ≃ 102 GeV and
TGUT ≃ 1016 GeV , we will choose

µ2
S = 1010 (GeV)2 (3.60)

for the further analysis, leading to values of the critical temperature in the rangeTC ≃
105 ... 107 GeV. We will discuss the results of the numerical analysis indetail in the follow-
ing section.

3.4.2. Results of the Numerical Analysis

A selection of the results from the numerical analysis is given in Tab.3.2. We compare
the numerical solutions to the corresponding solutions obtained from the approximately
analytical determined expressions (3.45)-(3.47) for critical temperature, the singlet VEV
and the strength of the phase transition.
The numerical as well as the approximate analytical analysis yield results for the critical
temperatureTC of the phase transition which only differ marginally. However, the numerical
and analytical solutions for singlet VEVSC deviate the stronger, the bigger the value ofλm.
This deviation originates from the contribution of the thermal Higgs mass at the critical
temperature,M2

h(S,TC) = λm
2 S2 (cf. (3.56)), which has been included for the numerical

determination ofSC, but was neglected for deriving an approximate analytical solution. For
small values ofλm the contribution of the thermal Higgs mass is negligible in comparison
to the one of the singlet thermal mass. Thus, the solution forSC derived numerically from
the full effective potential is well approximated by the analytical solution of (3.45) for small
values ofλm.
Since the strength of the phase transition is defined as ratioof SC andTC, it displays the
same behavior as the singlet VEV. This is depicted inFig.3.2. For values ofλm close
to the upper bound, the numerical results differ from those derived from the approximate
analytical solution, while the functional dependence of the strength of the phase transition
is well approximated by the analytical solution (3.47),

SC

TC
=

√
2

6π
λ

3
2

m

λS
, (3.61)

for small values ofλm. If λm≪ λh, the parameter constraint onλS, given in (3.57), reduces

to λS ≃ λ2
m

6λh
. Hence, the dominant functional dependence of the phase transition strength on

the model parameters arises asSC
TC
∝ 1√

λm
.
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3.4 Numerical Analysis of the Phase Transition

Numerical solution Appr. analytical solution
λm SC [GeV] TC [GeV] SC

TC
SC [GeV] TC [GeV] SC

TC

2 · 10−5 1.73 · 108 5.49 · 107 3.15 1.72 · 108 5.49 · 107 3.15
6 · 10−5 5.75 · 107 3.17 · 107 1.82 5.74 · 107 3.17 · 107 1.82
1 · 10−4 3.45 · 107 2.45 · 107 1.41 3.44 · 107 2.45 · 107 1.41
2 · 10−4 1.72 · 107 1.73 · 107 0.99 1.72 · 107 1.73 · 107 0.99
6 · 10−4 5.72 · 106 9.99 · 106 0.57 5.71 · 106 9.99 · 106 0.57
0.001 3.42 · 106 7.73 · 106 0.44 3.41 · 106 7.73 · 106 0.44
0.01 3.27 · 105 2.36 · 106 0.14 3.13 · 105 2.36 · 106 0.13
0.1 2.76 · 104 4.78 · 105 0.06 9.76 · 103 4.70 · 105 0.02

Table 3.2:Results of the numerical analysis for the first-order phase transition in the singlet
extension of the Standard Model in comparison with the results of the approximate ana-
lytical expressions.For the numerical analysis we have chosen the free parameterµ2

S to
beµ2

S = 1010 (GeV)2 yielding critical temperatures of the order 105 ... 107 GeV, whereas
the parameterλm has been varied in the allowed range leading to different values of the
phase transition strength. The highlighted values composethe lower bound for a strongly
first-order phase transition.
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Figure 3.2: Functional dependency of the phase transition strength on the parameterλm.

For investigating whether the phase transition in this model provides the possibility of de-
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Chapter 3 Singlet Extension of the Standard Model

tectable gravitational waves, we require it to be strongly first-order. For achieving a phase
transition strength, lying in the range 1. SC

TC
. 4, the dependence ofSC

TC
on λm forces us

to choose very small values for the parameterλm. In detail, we obtain a phase transition
strengthSC

TC
= 0.99 for λm = 2 · 10−4 (cf. Tab.3.2), while even a value ofλm = 2 · 10−5 is

necessary for a considerable strongly first-order phase transition with SC
TC
= 3.14.

Hence, to generate a strongly first-order phase transition by a thermally induced barrier in
the singlet-extension of the Standard Model, it is necessary to choose (unnaturally) small
values of the couplingλm. In the following section, we will discuss if observable gravita-
tional waves could be induced from this phase-transition scenario and could in consequence
serve as cosmological probes for the physical conception ofthe singlet model.

3.5. Gravitational Waves as Cosmological Probes

The characteristic features of the GW spectrum are the peak frequency f̃ and the peak
amplitudeh2

oΩ̃GW (cf. Sec.4.5.3). If the peak frequency lies in the experimentally sensitive
frequency range and the peak amplitude additionally is higher than the minimal achievable
sensitivity of the GW detectors, the GW spectrum will be detectable.6

The peak frequency, given by (2.45) as

f̃ = 3.79 · 10−3 mHz

(
β

H∗

) (
T∗

100 GeV

) ( g∗
100

) 1
6
, (3.62)

is determined (apart fromg∗) by the parameterβH∗ and the tunneling temperatureT∗ where
the phase transition proceeds. Thus, the chosen temperature scale has a direct impact on the
position of the peak frequency. Since we are allowed to choose the parameterµ2

S, setting the
temperature scale, we will be able to adapt the position of the peak frequency by variation
of µ2

S to the experimentally accessible frequency range.
In contrast, the dimensionless peak amplitudeh2

oΩ̃GW (cf. (2.44)),

h2
oΩ̃GW = 1.29 · 10−6

(
H∗
β

)2 (
α

α + 1

)2
(
100
g∗

) 1
3

, (3.63)

cannot depend on the tunneling temperatureT∗ itself, but only on the dimensionless param-
etersα

(
T∗

)
andβ

(
T∗

)
. Hence, these will be determined by the choice ofλm. As stronger

phase transition in general lead to GW spectra with higher peak amplitudes, we will con-
sider the parameterλm in the rangeλm = 2 · 10−4 . . . 2 · 10−5 allowing for a phase transition
strengthSC

TC
= 0.99 . . . 3.15. For detectable gravitational radiation, the parametersα and β

H∗
are required to adopt values of the order (cf. (2.46))

α ∼ O(1) , β
H∗
∼ O(100) . (3.64)

6In Sec.C.2the different GW experiments are briefly reviewed and the sensitivity curvesh2
oΩGW( f ) are com-

puted from the experimental data.
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3.5 Gravitational Waves as Cosmological Probes

In the following we will determine the parameterα for different strengths of the phase tran-
sition. We will in particular derive an upper bound onα in the singlet extension of the
Standard Model. Since the parametersα and β

H∗
are correlated by the dependency on the

potential barrier, as discussed inSec.2.3, we will be able to estimate the order of magni-
tude of β

H∗
corresponding to the value of the upper bound onα. This will consequently

allow to anticipate whether the first-order phase transition in the singlet model provides the
possibility of detectable gravitational waves.

3.5.1. Numerical Determination of the Parameterα

At first, we will derive the formulae necessary for the determination of the parameterα in
the singlet model. Afterwards, we will explicitly computeα for different model parameters.

Determination of the Parameterα

According to (2.1), the temperature-dependent parameterα(T) is defined as the ratio of the
false-vacuum energy densityǫ (T) and the thermal energy densitye(T) of the symmetric
phase,

α ≡ ǫ (T)
e(T)

. (3.65)

Thereby, the thermal energy density,e(T) = π2

30g∗T
4, includes the total number of effective

degrees of freedomg∗ of the singlet model. As the extension of the Standard Model by an
additional singletS enlarges the number of degrees of freedom bygS = 1 (cf. (3.8)), we
obtain from (2.3) a valueg∗ = g∗SM

+ gS = 107.75 for the singlet model.
The false-vacuum energy density (2.4),

ǫ (T) ≡ ∆Vef f (T) − T
∂∆Vef f (T)

∂T
, (3.66)

for the singlet extension of the Standard Model is derived from the potential difference
∆Vef f (T) between the symmetric and the broken vacuum state. For the full effective potential
of (3.48), including the Higgs and singlet thermal masses, (3.28) and (3.29), respectively,
this potential difference reads

∆Vef f (T) ≡ Vef f (S = 0,T) − Vef f (S = 〈S(T)〉,T)

=
1
2

(
µ2

S − cST2
)
〈S(T)〉2 − λS

4
〈S(T)〉4

− 1
12π

T
∑

i=χ,h,S

gi

[(
M2

i (0,T)
) 3

2 −
(
M2

i (〈S(T)〉,T)
) 3

2

]
.

(3.67)

For characterizing the GW spectrum, the temperature-dependent parameterα
(
T∗

)
has to

be evaluated at the tunneling temperatureT∗ where the proceeding of the phase transition
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Chapter 3 Singlet Extension of the Standard Model

SC

TC
TC [GeV] L

[

(GeV)4
]

e (TC)
[

(GeV)4
]

α(TC)
3.15 5.49 · 107 2.98 · 1026 3.21 · 1032 9.274· 10−7

1.82 3.17 · 107 3.31 · 1025 3.56 · 1031 9.274· 10−7

1.41 2.45 · 107 1.19 · 1025 1.28 · 1031 9.273· 10−7

0.99 1.73 · 107 2.97 · 1024 3.20 · 1030 9.272· 10−7

Table 3.3: Results of the numerical analysis for parameterα characterizing the GW spec-
trum of the singlet extension of the Standard Model.For the analysis we have chosen a
value ofµ2

S = 1010 (GeV)2 setting the temperature scale of the phase transition. In par-
ticular, this choice determines the order of magnitude of the latent heatL and the false
vacuum energye, evaluated at the critical temperature. The values for the parameterα
are however independent on the choice of the temperature scale, but merely depend on
the strength of the phase transition.

starts. However, the rather slight temperature dependenceof α (in comparison to those
of β

H∗
) allows for an approximate evaluation ofα at the critical temperature of the phase

transition by assumingT∗ ≃ TC. Since the degeneracy of the minimum states causes a
vanishing potential difference∆Vef f (TC) = 0 (cf. (3.34)) at the critical temperature, the
false-vacuum energy consequently equals the latent heat,ǫ (TC) = L, which is defined in
(2.6). After inserting (3.67) in the above equation, the evaluation of (3.65) yields α(TC).
As α(TC) cannot be calculated analytically in the singlet extensionof the Standard Model,
we will perform a numerical analysis by determiningα(TC) for different model parameters
under the presumption of a strongly first-order phase transition.

Results of the Numerical Analysis

The results of the numerical analysis are presented inTab.3.3. Note that the latent heat and
the thermal energy density both are proportional to the temperature scale so that the values
for the parameterα, defined as the ratio of the latent heat and the thermal energydensity,
are not dependent on the temperature scale, but are related to the strength of the phase tran-
sition. As can been seen inTab.3.3, stronger phase transitions lead to an enlargement of
the parameterα. However, the dependency ofα on the phase transition strength is only
marginal in this model. In the rangeSC

TC
= 0.99 . . . 3.15 the values for alpha only increase

in the rangeα = (9.272 . . . 9.274) · 10−7. Thus, we obtain in the singlet extension of the
Standard Model an upper boundα . 9.274 · 10−7. This maximal value forα is more than
six orders of magnitude smaller thanO(1). Due to the correlation ofα and β

H∗
, the value for

the parameterβH∗ will simultaneously be several orders of magnitude bigger thanO(100).
Hence, the peak amplitude of the GW spectrum arising from thefirst-order phase transition
in the singlet extension will be significantly too small for lying in the sensitive range of the
GW detectors so that the GW spectrum will not be observable. Consequently, gravitational
waves cannot serve as probe for the physical conception of the singlet model.
For inducing a strongly first-order phase transition in the singlet model by taking into ac-
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3.5 Gravitational Waves as Cosmological Probes

count the parameter constraints, it is necessary to choose the values for the free parameter
λm unnaturally small. As the parameterα (via the potential difference∆Vef f (T)) incorpo-
rates a dependency on the parameterλm, this will cause extremely small values of alpha.
Physically, this means that the barrier induced by the thermal masses in the effective poten-
tial is significantly to low for generating detectable gravitational waves.
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Chapter 4

Left-Right Symmetric Model

The most studied mechanism to achieve a strongly first-orderphase transition is based on
inducing a thermal barrier by the bosonic finite-temperature one-loop contributions. How-
ever, as we have seen explicitly in the case of the singlet extension of the Standard Model,
the effect of thermally induced barriers is mostly too small to generate strongly first-order
phase transitions providing the possibility of detectablegravitational waves. Therefore, we
will study the left-right symmetric model of weak interactions in this chapter. The left-right
symmetric is not only one of the most promising extensions ofthe Standard Model being
theoretically well motivated, but additionally provides abarrier in the effective potential
already at tree-level.

4.1. Concept of Left-Right Symmetric Models

Which basic idea motivates left-right symmetric models? The concept of left-right sym-
metric models was originally developed with regard to one ofthe remaining open questions
of the Standard Model: the origin of parity violation in weakinteractions [162]. While
parity violation has to be incorporated in the Standard Model a posteriori by formulating a
chiral electroweak gauge theory, it arises naturally as a spontaneously broken symmetry in
left-right symmetric models.

Within the framework of gauge theories, minimal left-rightsymmetric models are imple-
mented by extending the electroweakSU(2)L ⊗ U(1)Y gauge group of the Standard Model
to a more naturally appearing

SU(2)L ⊗ SU(2)R⊗ U(1)B−L (4.1)

symmetry [169, 163, 190].1 The extension of the gauge group is associated with an en-
largement of the Standard Model particle content by right-handed (Majorana) neutrinos as
well as right-handed massive gauge bosonsW±R andZR. These can give rise to new physical

1Assuming the underlying gauge symmetry to beZ2 ⊗ SU(2)R ⊗ SU(2)L ⊗ U(1)B−L, two stages of symmetry
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Chapter 4 Left-Right Symmetric Model

impacts.
Since the Lagrangian possesses a discrete left-right symmetry under exchange of theSU(2)L

andSU(2)R field content, it is intrinsically parity-invariant. By assuming parity symme-
try to be spontaneously broken at an energy scale much above the electroweak scale, left-
right symmetric models hold the important feature to reproduce the Standard-Model phe-
nomenology correctly at low energies: The right-handed massive gauge bosons would not
be experimentally detectible due to their high masses, acquired during the spontaneous par-
ity breaking. Below the symmetry-breaking scale parity violation occurs and thus leads to
the observedV − A structure of weak interactions at low energies.

Another deficiency of the Standard Model is the missing physical meaning of the hyper-
chargeY as generator of theU(1) symmetry. Within left-right symmetric models on the
contrary, all generators of the electroweak sector have a direct physical meaning, since the
B − L quantum number arises asU(1) generator [161]. The electric charge formula in the
left-right symmetric model [29],

Q = IL3 + IR3 +
B− L

2
, (4.2)

(with IL,R3 denoting the third component of the weak isospin) is therefore modified in com-
parison to the Standard Model whereQ = IL3 +

Y
2 [18].

Depending on the restriction to exact or merely close-to-exact left-right symmetry and on
the definition of the Higgs sector, different classes and variants of left-right symmetric mod-
els exist. In general, the extension of the gauge group for including parity as spontaneous
broken symmetry entails an enlargement of the Higgs sector.The additional Higgs repre-
sentation is required to preserve theL − R symmetry and to generate the correct symmetry
breaking pattern, in particular providing the (large) VEV for the generation of the right-
handed gauge-boson masses. While all variants of left-right symmetric models include a
bidoublet fieldΦ, the further composition of the minimal Higgs sector to fulfill the above
requirements differs. If the Higgs sector, apart from the bidoublet field, is composed of an
additional left- and as well as right-handed Higgsdoublet,the model fails to incorporate
a natural explanation for the smallness of the observed neutrino masses via the see-saw
mechanism [160, 161]. Since this requirement is however fulfilled in case of left- and right
handedtriplet Higgs fields∆L,R, we will consider a left-right symmetric model with such a

breaking are required to obtain the Standard Model electroweakSU(2)L ⊗ U(1)Y symmetry [55, 54],

Z2 ⊗ SU(2)R ⊗ SU(2)L ⊗ U(1)B−L →
gL,gR

SU(2)R ⊗ SU(2)L ⊗ U(1)B−L →
MWR,ZR

SU(2)L ⊗ U(1)Y

where the spontaneous breakdown of the parity symmetryZ2 at the first stage leads to different gauge
couplingsgL , gR [162]. (The left-handed gauge bosons obtain their masses in the subsequent EWPT
SU(2)L ⊗ U(1)Y →

MWL ,ZL

U(1)
em

.)
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4.2 Tree-Level Potential

minimal Higgs sector [190, 159]

Φ =

(
φ0

1 φ+1
φ−2 φ0

2

)
=̂

(
1
2
,

1
2
, 0

)
,

∆L =



δ+L√
2

δ++L

δ0
L − δ+L√

2

 =̂ (1, 0, 2) ,

∆R =



δ+R√
2

δ++R

δ0
R − δ+R√

2

 =̂ (0, 1, 2) .

(4.3)

Therein, the electric charge of the single Higgs field components is indicated. The quan-
tum numbers with respect to theSU(2)L, SU(2)R, andU(1)B−L gauge group are denoted in
parentheses as convention.
The gauge-boson sector of left-right symmetric models consists of two triplet fieldsWµ

L,R
and a singlet fieldBµ with the following assignment to theSU(2)L ⊗ SU(2)R ⊗ U(1)B−L

gauge group [62]

Wµ
L =̂ (3, 1, 0) , Wµ

R =̂ (1, 3, 0) , Bµ =̂ (1, 1, 0) . (4.4)

Furthermore, theSU(2)L,R charge is assigned to the quarks (and likewise the leptons) in
accordance to the left-right symmetry as [28]

ΨiL =

(
ui

di

)

L

=̂

(
2, 1,

1
3

)
,

ΨiR =

(
ui

di

)

R

=̂

(
1, 2,

1
3

)
,

(4.5)

whereini = 1, 2, 3 constitutes the generation index. The correct electric charges are obtained
from these quantum numbers by use of (4.2).

4.2. Tree-Level Potential

In the considered model, the Lagrangian is required to be intrinsically invariant under the
discrete left-right symmetry

ΨL ↔ ΨR , ∆L ↔ ∆R , Φ↔ Φ†, (4.6)

wherebyΨL andΨR denote any left- and right-handed fermionic field of the theory. In
the most general renormalizable form, fulfilling the requirements of gauge-invariance and
discrete left-right symmetry, the Lagrangian decomposes into

LL−R = L f +Lgb +LH . (4.7)
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Therein, the contributionL f contains the fermionic kinetic energy terms and Yukawa cou-
plings, whereasLgb incorporates the kinetic terms of the gauge bosons. The Higgs contri-
bution to the LagrangianLH consequently includes the kinetic energy terms of the scalar
sector as well as the scalar interaction terms arising in thetree-level potential. Since we will
need the Higgs contribution for further calculations, we deduce its explicit form

LH =Tr
[(

DµΦ
)† (

DµΦ
)]
+ Tr

[(
Dµ∆L

)† (
Dµ∆L

)]
+ Tr

[(
Dµ∆R

)† (
Dµ∆R

)]

− V0(Φ,∆L,∆R) ,
(4.8)

where the covariant derivatives of the left-right symmetric SU(2)L⊗SU(2)R⊗U(1)B−L gauge
group are given by

DµΦ ≡ ∂µΦ + i
g
2

(
σaWa

LµΦ − ΦσaWa
Lµ

)
,

Dµ∆L ≡ ∂µ∆L + i
gL

2

(
σaWa

Lµ ∆L − ∆L σaWa
Lµ

)
+ i

g′

2
Bµ∆L,

Dµ∆R ≡ ∂µ∆R+ i
gR

2

(
σaWa

Rµ ∆R − ∆RσaWa
Rµ

)
+ i

g′

2
Bµ∆R.

(4.9)

For deriving a general ansatz of the tree-levelV0(Φ,∆L,∆R) in (4.8), the requirements of
gauge-invariance and left-right symmetry have to be fulfilled. The non-zeroB− L quantum
number of the triplets∆L and∆R (cf. (4.3)) additionally forbids trilinear left-right symmetric
terms, likeΦ∆†L∆R, in the tree-level potential restricting the allowed termsto quadratic

combinations such as∆†L∆R or ∆†LΦ∆RΦ
†. The most general form of the tree-level potential

V0(Φ,∆L,∆R) using the parametrization of [62] reads

V0(Φ,∆L,∆R) = VΦ(Φ) + VΦ∆(Φ,∆L,∆R) + V∆(∆L,∆R) , (4.10)

decomposed of a pure Higgs-bidoublet potential

VΦ(Φ) = −µ2
1 Tr

(
ΦΦ†

)
− µ2

2

[
Tr

(
Φ̃Φ†

)
+ Tr

(
ΦΦ̃†

)]

+ λ1

[
Tr

(
ΦΦ†

)]2
+ λ2

{[
Tr

(
Φ̃Φ†

)]2
+

[
Tr

(
ΦΦ̃†

)]2}

+ λ3

[
Tr

(
Φ̃Φ†

)]
·
[
Tr

(
ΦΦ̃†

)]

+ λ4

{
Tr

(
ΦΦ†

) [
Tr

(
Φ̃Φ†

)
+ Tr

(
ΦΦ̃†

)]}

(4.11)

with Φ̃ ≡ σ2Φ
∗σ2 [28], a bidoublet-triplet contribution

VΦ∆
(
Φ,∆†L,∆

†
R

)
= α1

{
Tr

(
ΦΦ†

) [
Tr

(
∆
†
L∆
†
L

)
+ Tr

(
∆
†
R∆
†
R

)]}

+ α2

{
Tr

(
Φ̃†Φ

) [
Tr

(
∆
†
L∆
†
L

)
+ Tr

(
∆
†
R∆
†
R

)]}

+ α∗2
{
Tr

(
Φ̃Φ†

) [
Tr

(
∆
†
L∆
†
L

)
+ Tr

(
∆
†
R∆
†
R

)]}

+ α3

[
Tr

(
ΦΦ†∆†L∆

†
L

)
+ Tr

(
ΦΦ†∆†R∆

†
R

)]

+ β1

[
Tr

(
Φ∆
†
RΦ
†∆†L

)
+ Tr

(
Φ†∆†LΦ∆

†
R

)]

+ β2

[
Tr
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RΦ
†∆+L
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RΦ̃
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R
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(4.12)
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and a pure triplet potential

V∆
(
∆
†
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†
R

)
= −µ2
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(4.13)

Note that the imposed left-right symmetry, as defined in (4.6), restricts the single terms
of the tree-level potential to be self-conjugate and consequently the occurring parameters
(exceptα2)2 to be real.

4.2.1. Mean-Field Approximation

In order to investigate phase-transition scenarios arising from the above tree-level potential
V0(Φ,∆L,∆R), it is essential to study the potential’s behavior in dependence of the scalar-
sector VEVs〈Φ〉, 〈∆L〉 and 〈∆R〉. Thus, we will use the mean-field approximation, by
expressing the tree-level potential in terms of the VEVs, inour further considerations.
When the left- and right-handed triplets∆L and∆R acquire their VEVs, spontaneous break-
ing of theB − L quantum number and additionally of parity symmetry, in caseof 〈∆L〉 ,
〈∆R〉, occurs. Because of electric charge conservation, only theneutral components of the
three scalar fields,φ0

1, φ0
2, δ0

L andδ0
R, are allowed to acquire VEVS which we denote by the

real parametersk1, k2,vL andvR, respectively. Therefore, the most general ansatz for the
VEVs of the scalar fields reads [94, 184]

〈Φ〉 =
(

k1 0
0 k2

)
, 〈∆L〉 =

(
0 0
vL 0

)
, 〈∆L〉 =

(
0 0
vR 0

)
, (4.14)

wherein the phenomenologically required separation of theL −Rsymmetry-breaking scale
from the electroweak scale imposes the constraintvR≫ k1,2.3

In our further considerations, we will need the explicit form of the pure triplet contribution
to the tree-level potential, given in (4.13) in the mean-field approximation and therefore
display it here separately. After inserting the VEVs of the scalar fields of (4.14) in (4.11),
the only non-vanishing terms, arising to be Tr

(
〈∆†L〉〈∆L〉

)
= v2

L, Tr
(
〈∆†R〉〈∆R〉

)
= v2

R, reduce
the triplet contribution to the effective potential in the mean-field approximation to

V∆(vL, vR) = −µ2
3

(
v2

L + v2
R

)
+ ̺1

(
v4

L + v4
R

)
+ ̺3 v4

L · v4
R (4.15)

2The parameterα2 has to be taken real by requiring the tree-level potential tobe initially CP invariant allowing
for spontaneous CP violation [73].

3Spontaneous CP violation is achieved by including a non-vanishing phase factoreiθ, θ ∈ R, in the ansatz for
the bidoublet VEV〈Φ〉 [93, 62].
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Chapter 4 Left-Right Symmetric Model

4.3. Effective Potential

In this section we will determine the one-loop effective potential at finite temperature which
will be our main tool for the investigation of phase-transition scenarios arising in the left-
right symmetric model. According to (1.51), the one-loop effective potential consists of the
tree-level potential, given in (3.3)-(4.13) for the left-right symmetric model, complemented
by the zero- and finite-temperature one-loop corrections including the ring-diagrams

Vef f (Φ,∆L,∆R,T) = V0(Φ,∆L,∆R) + VT=0
1 (Φ,∆L,∆R)

+ VT,0
1 (Φ,∆L,∆R,T) + Vring(Φ,∆L,∆R,T) .

(4.16)

We will focus on phase transitions occurring at theL−Rsymmetry breaking scale, which is
assumed to lie significantly above the electroweak scale ,TL−R > TEW. Hence, the behavior
of the effective potential will be dominated by the dependence on the left- and right-handed
triplet fields∆L,R so that the Higgs-bidoublet sectorΦ in the effective potential can be ne-
glected,Vef f (Φ,∆L,∆R,T) ≃ Vef f (∆L,∆R,T) . This results in particular in a reduction of the
tree-level potentialV0(Φ,∆L,∆R) (cf. (4.10)) to the pure triplet potentialV∆ (∆L,∆R), given
in (4.13).

Due to the high temperature scale of theL−R symmetry breaking, the dominant correc-
tion to the tree-level potential will arise from the finite-temperature one-loop contribution
VT=0

1 (∆L,∆R), including the quadratic field-dependent mass-terms∝ T2 m2
i (∆L,∆R). There-

fore, we will neglect the zero-temperature one-loopVT=0
1 (∆L,∆R) (cf. (3.32)) in the calcu-

lation of the effective potential.
In the following chapter we will study a phase-transition scenario in the left-right symmet-
ric model where the barrier between the minima of the effective potential is not induced
by the cubic terms of the finite-temperature corrections, but arises already within the tree-
level potential. In this case, it is sufficient to consider only the leading-order terms of the
finite-temperature one-loop correction, ignoring the cubic terms of the field-dependent and
thermal masses, respectively [82]. Thus, we will not have to regard the ring-diagram cor-
rectionsVring(∆L,∆R,T) including the thermal masses in the effective potential.
Given the previous conditions, the effective potential atL− Rsymmetry-breaking tempera-
tures reduces to

Vef f (∆L,∆R,T) ≃ V∆(∆L,∆R) + VT,0
1 (∆L,∆R,T) , (4.17)

where the bidoublet tree-level potential in the mean-field approximation is derived in (4.15).
For determining the explicit form of the effective potential, we now have to compute the
thermal one-loop correctionVT,0

1 (∆L,∆R,T) to the tree-level potential.

4.3.1. One-Loop Effective Potential at Finite Temperature

The general form of the one-loop contribution in the high-temperature expansion arises as
(cf. (3.32)),

VT,0
1 (Φ,∆L,∆R,T) =

T4

2π2

∑

i

ḡi JF,B


m2

i (Φ,∆L,∆R)

T2

 , (4.18)
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where ¯gi denotes the modified degrees of freedom of the correspondingparticle and the
summation indexi includes all fermions and bosons of the left-right symmetric model with
corresponding fermionic and bosonic functionsJB,F, in dependence of the field-dependent
massesm2

i (Φ,∆L,∆R).
However, at the left-right symmetry breaking scale, the sumover the model’s particle con-
tent will be dominated by the mass-contributions of the left- and right-handed gauge bosons,
W±L , W±R, ZL andZR.4 Consequently, only the latter will be included in the calculation of the
thermal one-loop correction.
According to (1.40), the high-temperature expansion of the bosonic functionJB, including
terms up to leading-order in the field-dependent masses, is given approximately given by

JB


m2

i (Φ,∆L,∆R)

T2

 ≃ −
π4

45
+
π2

12

m2
i (Φ,∆L,∆R)

T2
. (4.19)

Hence, by neglecting the Higgs-triplet sectorΦ and proceeding to the mean-field description
in dependence of the VEVsvL andvR, the one-loop finite-temperature correction consists
in

VT,0
1 (vL, vR,T) =

∑

i=W±L,R,ZL,R

ḡi

[
−π

2

90
T4 +

1
24

T2m2
i (vL, vR)

]
. (4.20)

The modified degrees of freedom remain unchanged for the left-handed gauge bosons in
comparison to the Standard Model (cf. (3.8)). Due to the imposed left-right symmetry, the
right-handed gauge bosons are provided with degrees of freedom identical to those of the
corresponding left-handed particles so that

ḡWR
≡ ḡWL

= 2 · 3 = 6,

ḡZR
≡ ḡZL

= 3.
(4.21)

In Sec.B.1of the appendix, we compute the field-dependent masses for the gauge-bosons in
the left-right symmetric model. The resulting expressionsin the mean-field approximation
are given by

m2
WL

(vL) =
g2

L

4
v2

L ,

m2
WR

(vR) =
g2

R

4
v2

R ,

m2
ZL,R

(vL, vR) =
1
8

{(
g2

L + g′2
)

v2
L +

(
g2

R+ g′2
)

v2
R

∓
√[(

g2
L + g′2

)
v2

L +
(
g2

R+ g′2
)

v2
R

]2
+ 4g′4 v2

Lv2
R

}
.

(4.22)

4In analogy to the Standard Model, the photonsγ remains massless in the left-right symmetric model (cf.
Sec.B.1).
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After inserting (4.21) and (4.22) in (4.20) and simplifying the terms arising from the gauge-
boson masses, we obtain the final expression for the one-loopfinite-temperature contribu-
tion to the effective potential

VT,0
1 (vL, vR,T) = −π

4

5
T4 +

1
8

T2
[
2m2

WL
(vL) + 2m2

WR
(vR) +m2

ZL
(vL, vR) +m2

ZR
(vL, vR)

]

= −π
4

5
T4 + T2


3g2

L + g′2

32
v2

L +
3g2

L + g′2

32
v2

R

 .

(4.23)

In conclusion, the complete effective potential in the mean-field approximation, providing
the basic ingredient for the further investigation of phase-transition scenarios in the left-
right-symmetric model, arises as (cf. (4.17))

Vef f (vL, vR,T) ≃ V∆(vL, vR) + VT,0
1 (vL, vR,T)

= −µ2
3

(
v2

L + v2
R

)
+ ̺1

(
v4

L + v4
R

)
+ ̺3 v2

L · v2
R

− π
4

5
T4 + T2


3g2

L + g′2

32
v2

L +
3g2

L + g′2

32
v2

R

 .
(4.24)

4.4. Investigation of the Phase Transition

Which phase-transition scenarios can we expect from this potential? The conception of
left-right symmetric models incorporates in general two distinct phase transitions, theL−R
symmetry breaking phase transition and the EWPT. The latterhas been treated in several
variants of the left-right symmetric model [73, 58, 29, 115, 116] (including supersymmetric
and unified extensions [55, 54, 184] and with regard to different cosmological implica-
tions such as CP violation [56, 28], baryogenesis via leptogenesis and bounds on the neu-
trino masses [164, 93, 94, 183, 27, 117, 182] or topological defects such as domain walls
[143, 209, 208, 62].
Our intention however is to study theL − R symmetry breaking phase transition at temper-
atures between the electroweak and the GUT scale and to investigate whether the gravita-
tional waves, generated by a strongly first-order phase transition, can serve as cosmological
probes for the physical concept of the left-right symmetricmodel. A possibility for en-
hancing the strength of a phase transition significantly is provided by considering the phase
transition in the case of flat directions of the effective potential, as proposed in [82] for
the singlet extension of the Standard Model. In the following section, we will apply this
scenario of flat directions to the left-right symmetric model.

4.4.1. Phase-Transition Scenario

For the left-right symmetric model we will discuss the phase-transition scenario which is
shown inTab.4.1. Due to symmetry restoration at very high temperatures, theabsolute sta-
ble minimum of the effective potential is initially located at the origin(∆L,∆R) = (0, 0). As
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4.4 Investigation of the Phase Transition

the temperature is lowered, the left-handed triplet field∆L develops a second minimum of
the effective potential. At a certain critical temperatureTL both minima become degener-
ate inducing a phase transition(0, 0) → (vL (TL) , 0), whereby the left-handed triplet field
acquires a VEVvL (TL). (Note that we will restrict our considerations in the left-right sym-
metric model, due to simplicity, to positive values of the VEVs. In general, the left- and
right-handed triplet fields can acquire VEVs±vL,R(T).)
By the decrease of the temperature, the left-handed minimum(vL (T) , 0) of the effective
potential is lowered. Simultaneously, the right-handed triplet-fields∆R forms a minimum
leading to the emergence of a barrier. When both minima become degenerate at the critical
temperatureTR ≡ TC a first-order phase transition from the pure left-handed minimum state
to the pure right-handed one,

(vL (TC) , 0)→ (0, vR (TC)) , (4.25)

proceeds so that the right-handed triplet field acquires a VEV vR (TC). This will be the
phase transition we will investigate in detail in the further sections. Below the critical
temperature, the right-handed minimum at(0, vR (T)) evolves with the temperature to its
zero-temperature value.5

The phase-transition scenario described above requires inparticular a small deviation from
the exactL − R symmetry in the tree-level potential of (4.24) to allow for a successive
development of the left- and right-handed minimum. (Otherwise both minima would be
degenerated at any temperature).6If we therefore replace the parameterµ2

3 in the tree-level
potential by two distinct parametersµ2

L , µ
2
R (with µ2

L,R > 0), (4.24) transforms into

Vef f (vL, vR,T) =

−µ2
L +

3g2
L + g′2

32
T2

 v2
L +

−µ2
R+

3g2
R + g′2

32
T2

 v2
R

+
λ

4

(
v4

L + v4
R

)
+
λm

4
v2

Lv2
R,

(4.26)

where we have additionally neglected the physically irrelevantT4-term and have redefined
the parameters as̺1 ≡ λ

4 and̺3 ≡ λm
4 with λ, λm ∈ R. Since the tree-level potential has to

be bounded from below to ensure vacuum stability, the restriction λ > 0 is required. The
parameterλm in generally can be either positive or negative. We will henceforth consider
the case whereλm > 0. Note in particular that the termλm

4 v2
Lv2

R generates the tree-level
barrier in the effective potential determining the phase transition to be of first-order.

4.4.2. Conditions for a First-Order Phase Transition

We will now derive the functional dependence of the VEVsvL,R and the critical temperature
TC on the model parameters. Their form is imposed by the conditions for generating the

5At T = TEW, the spontaneous breakdown of theSU(2)L ⊗ U(1)Y symmetry toU(1)
em induces the EWPT,

wherein the bidoublet fieldΦ (cf. (4.14)) acquires a left-handed VEV providing the masses for the left-
handed gauge-bosons.

6 A possible reason for a deviation from exactL−Rsymmetry could be for instance a suppression of terms at
theL − Rbreaking scale if the model is descended from another unifiedmodel [62].
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Scale T Physical behavior
Minimum of Veff

at (∆L, ∆R)
GUT Scale TGUT ≃ 1016 GeV

≫ TL Symmetry restoration (0, 0)

TL

Phase transition (0, 0) → (vL (TL) , 0)
(left-handed triplet acquires (degenerated minima)

VEV vL)
L − R

Symmetry < TL Left-handed triplet VEVvL (vL (T) , 0)
Scale

TR ≡ TC

First-order phase transition, (vL (TC) , 0)→ (0, vR (TC))
(right-handed triplet acquires (degenerated minima)

VEV vL)

< TR Right-handed triplet VEVvR (0, vR (T))
EW Scale TEW ≃ 102 GeV

Table 4.1: Considered phase-transition scenario in the left-right symmetric model.We
will investigate the first-order phase transition from the pure left-handed minimum state
to the pure right-handed one proceeding at the critical temperatureTR ≡ TC. (Note that
we have denoted only positive VEVs of the left- and right-handed triplet fields.)

desired phase-transition scenario. In particular, the emergence of a barrier at the critical
temperature, separating the left- and right-handed VEV, classifies the phase transition to be
of first order. Thus, we will have to apply the conditions in (3.33) and (3.34) of Sec.3.3.2
to the effective potential of (4.26). The starting point of our calculations will be the deter-
mination of the temperature-dependent left- and right-handed local minima of the effective
potential.

Temperature-Dependent Left- and Right-Handed Minima

The left- and right-handed VEVs form degenerated minima of the effective potential
Vef f (vL, vR,T) at the critical temperature of the phase transition. They emerge as temperature-
dependent non-zero stationary pointsvL,Rstat of the effective potential and are located on
curvesDL,R (T) with vanishing first derivative of the effective potential [82],

∂Vef f (vL, vR,T)

∂vR
= 0 ⇒

{
v2

Rstat
= 0, v2

Rstat
≡ D2

R (vL,T)
}
, (4.27)

∂Vef f (vL, vR,T)

∂vL
= 0 ⇒

{
v2

Lstat
= 0, v2

Lstat
(vR,T) , 0⇒ v2

R ≡ D2
L
(
vLstat,T

)}
. (4.28)
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If we parametrize the curves with vanishing first derivative, arising from the effective po-
tential of (4.26), in terms ofvL andT,

D2
R (vL,T) =

1
2λ

4µ2
R− λm v2

L −
3g2

R + g′2

8
T2

 , (4.29)

D2
L(vL,T) =

1
λm

4µ2
L − 2λ v2

L −
3g2

L + g′2

8
T2

 , (4.30)

their functional behavior becomes evident: They constitute parabolas which differ in the
widths,7 but possess a common symmetry axis atvL = 0. With increasing temperature
T the curves approach this axis so that symmetry restoration(vL = 0) is ensured at high
temperatures. At the intersection points of the parabolas,D 2

L (vL,T) = D 2
R (vL,T) , the

effective potential develops coinciding left- and right-handed stationary points,v2
Lstat

(T) and

v2
Rstat

(T) (determined via4.28). These constitute left- and right-handed minima of the form

vL(T) =

√√√
1

4λ2 − λ2
m

4
(
2λ µ2

L − λmµ
2
R

)
−

3
(
2λg2

L − λm g2
R

)
+ (2λ − λm) g′2

8
T2

,

vR (T) =

√√√
1

4λ2 − λ2
m

4
(
2λ µ2

R− λmµ
2
L

)
−

3
(
2λg2

R − λm g2
L

)
+ (2λ − λm) g′2

8
T2

,

(4.31)

if additionally the sufficient condition for local minima of (4.40) is fulfilled by requiring
λ > λm

2 .

Critical Temperature

The critical temperatureTC for the considered phase transition (cf.Tab.4.1) from the pure
left-handed minimum state to the respective right-handed one,(vL (TC) , 0) → (0, vR (TC)),
can now be calculated from the condition of degeneracy of theminima: At T = TC the
left- and right-handed minimum become degenerate so that their potential difference has to
vanish (cf. (3.34))

∆Vef f (T)
∣∣∣
T=TC
= 0. (4.32)

Therein, the difference∆Vef f (T) ≡ Vef f (vL(T) , 0,T) − Vef f (0, vR (T) ,T), arising from the
effective potential of (4.26) by insertion of the left- and right handed minima in (4.31), is
given by

∆Vef f (T)
∣∣∣
T=TC
=

λ

4λ2 − λ2
m

[
c1(g) T4

C − c2

(
g, µ2

)
T2

C + c3

(
µ2

)]
(4.33)

7Note that the case of identical widths, where the curvesDL,R (vL,T) overlie each other, gives rise to flat
directions of the effective potential. We will discuss this in more detail inSec.4.4.3.
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with

c1(g) ≡ 3
256

(
g2

R − g2
L

) [
3
(
g2

R+ g2
L

)
+ 2g′2

]
,

c2

(
g, µ2

)
≡ 1

4

[
3
(
g2

Rµ
2
R− g2

L µ
2
L

)
+ g′2

(
µ2

R− µ2
L

)]
,

c3

(
µ2

)
≡ 4

(
µ2

R− µ2
L

)
.

(4.34)

(Herein, we have indicated the functional dependence of theprefactorsc1,2,3 on gL,R andg’
by “g” and onµ2

L,R by “µ2”.)
Consequently, (4.32) yields a quartic equation with respect toTC. Due to the restriction to
TC > 0 and by requiring consistency with the total symmetric caseµ2

R ≡ µ2
L (cf. (4.24)),

where the minima are degenerated at any temperature and hence TC = 0, the four solutions
of (4.32) for the critical temperature reduce to one unique result

TC = 4

√√√√2
(
µ2

R− µ2
L

)

3
(
g2

R− g2
L

) , (4.35)

where the conditionsgR > gL andµ2
R > µ2

L, emerging from the parameter constraints in
Sec.4.4.3, have to be satisfied (and guaranteeTC to be real).

Left- and Right-Handed VEVs at the Critical Temperature

By inserting (4.35) in the expressions for the left- and right-handed minima (cf. (4.31)), we
can subsequently determine the VEVs of the effective potential at the critical temperature
TC. The left-handed false vacuum and the right-handed true vacuum turn out to possess
identical values at the critical temperature (so that the potential difference of the pure left-
and right handed minimum state per se vanishes). We are therefore able to summarize the
expressions for the VEVs at the critical temperature byvC ≡ vL(TC) = vR (TC) where

vC =

√√√√
1

2λ + λm

4
[
3
(
g2

Rµ
2
L − g2

L µ
2
R

)
− g′2

(
µ2

R− µ2
L

)]

3
(
g2

R− g2
L

) . (4.36)

Strength of the Phase Transition

The determination of the critical temperature and the respective VEVs allows for calculating
the strength of the phase transition, defined according to (3.36) as the ratio of the broken
phase VEV and the critical temperature

vC

TC
=

1
4

√
1

2λ + λm

3
g2

Rµ
2
L − g2

L µ
2
R

µ2
R− µ2

L

− g′2
. (4.37)
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Note that in contrast to the singlet extension of the Standard Model, where the strength
of the phase transition only depends on the (dimensionless)small couplings (cf. (3.47)),
(4.37) includes the dimensionful parametersµ2

L,R setting the temperature scale. But since
the strength of the phase transition is dimensionless, it cannot depend on the temperature
scale itself, but only on the ratio betweenµ2

L andµ2
R.8 This fact will be crucial with regard

to the detectability of the GW spectrum from the considered phase transition in the L-
R symmetric model: We will choose an appropriate temperature scale generating a peak
frequency f̃ within the detectable frequency region, but will be able, bythe choice of the
ratio betweenµ2

L andµ2
R, to enlarge the strength of the phase transition and hence the height

of the GW amplitudeh2
oΩ̃GW independently from the temperature scale.

4.4.3. Parameter Constraints

The choice of parameters is restricted by the parameter constraints necessary to preserve
the physically relevant features of the appearing quantities and for the considered phase-
transition scenario. In detail, the following parameter constraints emerge in the left-right
symmetric model:

Vacuum Stability. To ensure the vacuum stability of the theory, the tree-levelpotential
V0(vL, vR) of (4.26),

V0(vL, vR) ≡ −µ2
L v2

L − µ2
R v2

R+
λ

4

(
v4

L + v4
R

)
+
λm

4
v2

Lv2
R (4.38)

with µ2
L,R, λ, λm > 0, has to be bounded from below. Analogously toSec.3.3.3, it has to

reach infinity when the mean-fieldsvL,R become infinite in any direction. The large-field
behavior of the tree-level potential is determined by the quartic contributions of the fields
vL,R. Since we have chosenλm > 0 in Sec.4.4.1, vacuum stability is maintained in case of

λ > λm. (4.39)

Sufficient Conditions for Local Minima. In addition to the necessary conditions, given
in (4.27) and (4.28), the left- and right-handed minimum have to fulfill the sufficient condi-
tions

∂2Vef f (vL(T) , vR,T)

∂ v2
R

∣∣∣∣∣∣∣
vR=〈vR(T)〉

> 0,
∂2Vef f (vL, vR (T) ,T)

∂ v2
L

∣∣∣∣∣∣∣
vL=〈vL(T)〉

> 0. (4.40)

Both inequalities turn out to be satisfied in case of

λ >
λm

2
. (4.41)

8This can be easily seen by expressingµ2
L asµ2

L = x · µ2
R with

µ2
Lmin

µ2
R
≤ x ≤ µ2

Lmax

µ2
R

(where the allowed range ofx

will have to be determined by the parameter constraints).
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As we will see inSec.4.4.3, the limiting case of flat directions arises forλ = λm
2 so that we

will choose the parameters randomly in accordance with the constraint (4.41). Hence, this
constraint consists an improvement of the bound derived in (4.39).

Consistency with the Standard Model. At low energies, the left-right symmetric model
has to reproduce the phenomenology of the Standard Model. Since we have assumed the
bidoublet field to acquire a left-handed VEV at the electroweak scale (cf.Sec.4.4.1) evolv-
ing with T down to the (experimentally determined) zero-temperatureHiggs VEV, the ob-
served left-handed gauge boson masses will arise correctlyif the parametersgL andg′ equal
their Standard Model values [58],9

gL ≃ 0.64, g′ ≃ 0.35. (4.42)

Physically Viability of the Critical Temperature. To be a physically viable quantity, the
critical temperature in particular has to be real, i.e.T2

C > 0. Since the physical concept of
the left-right symmetric model bases on the assumption that

gR > gL, (4.43)

the critical temperature, as computed in (4.35), is real if additionally the constraint

µ2
R > µ

2
L (4.44)

is fulfilled.

Physically Viability of the VEV vC. The same condition for physical viability holds true
for the VEV vC. The requirement of a real VEV,v2

C > 0, applied to the result of (4.36)
imposes alower bound on the parameterµ2

L,

µ2
L >

3g2
L + g′2

3g2
R + g′2

µ2
R ≡ µ2

Lmin
. (4.45)

In case ofµ2
L = µ

2
Lmin

the VEVvC vanishes.

Broken Right-Handed Minimum. For temperaturesT ≤ TC the right-handed minimum
is required to form the broken vacuum state. The condition for the phase transition to
proceed, guaranteeing the right-handed minimum to be the deepest, yields [82]

d2∆Vef f (T)

dT2

∣∣∣∣∣∣∣
T=TC

> 0 (4.46)

9Note that we do not take account of running couplings in this context. The above couplingsgL andg′ are
given at theZ-pole.
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Parameter Constraint Free

λm /
√

λ λ > λm
2 (4.41) ×

gL gL ≃ 0.64
(4.42)

×
g′ g′ ≃ 0.35 ×
gR gR > gL (4.43) ×
µ2

R /
√

µ2
L

µ2
Lmax

> µ2
L > µ

2
Lmin

with

µ2
Lmax
≡ 3(3g2

L+2g2
R)+5g′2

3(3g2
R+2g2

L)+5g′2
µ2

R (4.47) ×

µ2
Lmin
≡ 3g2

L+g′2

3g2
R+g′2

µ2
R (4.45) ×

Table 4.2: Free and constrained parameters in the left-right symmetric model. The re-
maining free parameters of the left-right symmetric model areλm andµ2

R. While λm will
dominantly determine the strength of the phase transition,the parameterµ2

R will set the
temperature scale. Apart from the parametersgL andg′, which are dictated by their Stan-
dard Model values, we will choose the parametersλ, gL andµ2

L randomly with respect to
the parameter constraints.

with ∆Vef f (T) given in (4.33)-(4.34). By including the conditionλ > λm
2 and assuming

gR > gL, the above expression transforms into anupperbound onµ2
L,

µ2
Lmax
≡

3
(
3g2

L + 2g2
R

)
+ 5g′2

3
(
3g2

R + 2g2
L

)
+ 5g′2

µ2
R > µ

2
L, (4.47)

which in particular impliesµ2
R > µ2

L. In combination with the lower bound in (4.45), this
constraint restricts the parameterµ2

L to a distinct range,µ2
Lmax

> µ2
L > µ2

Lmin
.10 Note that the

allowed range forµ2
L (in terms ofµ2

R) is only determined by the couplingsgL,R andg′ and
thus independent of the parametersλ andλm.

Free and Constrained Parameters in the Left-Right Symmetric Model

The discussed parameter constraints emerging in the left-right symmetric model are sum-
marized inTab.4.2. As two of the seven model parameters are dictated by Standard Model
values(gL, g′) and three further parameters are restricted by model bounds

(
λ, gR, µ

2
L

)
, two

(completely) free parameters, namelyλm andµ2
R, remain. Analogously to the singlet exten-

sion of the Standard Model,λm will be the crucial parameter to determine the strength of the
phase transition and hence the GW amplitudeh2

oΩ̃GW, while the choice of the dimensionful
parameterµ2

R will set the temperature scale and subsequently the peak frequency f̃ of the
GW spectrum.

10Setting the upper bound in relation to the lower bound,µ2
Lmax
≥ µ2

Lmin
yields the constraint 3

(
g2

R + g2
L

)
+4g′2 ≥ 0

which is automatically fulfilled forgL,R,g′ > 0.
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Furthermore, we will choose the relation between the parametersλ andλm (cf. (4.41)), gR

andgL (cf. (4.43)) as well asµ2
L andµ2

R (cf. (4.45) and (4.47)) randomly in consistency
with the parameter constraints to generate a strongly first-order phase transition. Their rel-
evance for the strength of the phase transition will become evident in the next section. As
we will see, the limiting case of these parameter constraints will lead to flat directions of
the effective potential.

6.4.3 Flat Directions

Flat directions of the effective potential develop in the particular limiting case where the
curvesD2

R(vL,T) andD2
L(vL,T), defined in (4.29) and (4.30), are completely identical and

overlie each other [82]. In this case, the curves correspond to flat directions in the effective
potential. Hence, the condition for flat directions to ariseconsists in

D2
R(vL,T) = D2

L(vL,T) . (4.48)

By inserting (4.29) and (4.30) in this expression and comparing the coefficients of the terms
on the left- and right-hand side, we derive the parameter conditions for flat directions of the
effective potential. These are

µ2
R =

2λ
λm

µ2
L, λ =

λm

2
, gR =

√
1
3

[
2λ
λm

(
3g2

L + g′2
)
− g′2

]
. (4.49)

If we subsequently use the second conditionλ = λm
2 of (4.49) to simplify the other two

equations, the first equation reduces toµ2
R = µ

2
L, while the third one becomesgR = gL.

As displayed byTab.4.2, the parameter constraints however requireλ > λm
2 , µ2

R > µ2
L and

gR > gL so that the above conditions for flat directions correspond to the particularlimiting
caseof the parameter constraints, but are excluded per construction of the model.
In the case of flat directions the strength of the phase transition can be significantly enlarged
[82]. (This will be explicitly discussed inSec.4.6.) Therefore, we will approach close to the
flat directions by choosingλ > λm

2 randomly in consistency with the parameter constraints.
Thus, the constraintsµ2

R > µ
2
L andgR > gL will be automatically reproduced correctly from

the first and third condition of (4.49) by insertingλ > λm
2 .

4.5. Gravitational Waves as Cosmological Probes

After having discussed the characteristics of the first-order phase transition in the left-right
symmetric model, we are now ready to investigate its cosmological implications. Partic-
ularly, we will determine the GW spectrum from bubble collisions, characterized by the
parametersα(T) andβ(T). In contrast to the singlet extension of the Standard Model,it will
be possible for the left-right symmetric model to perform the calculation ofα andβ analyt-
ically. This will allow to display explicitly their dependence on the model parameters. At
first, we will determine the parameterα.
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4.5.1. Analytical Determination of the Parameterα

The parameterα(T) is defined as the ratio of false-vacuum energy densityǫ(T) to thermal
energy densitye(T) = π2

30g∗T
4 of the symmetric phase (cf. (2.1)),

α ≡ ǫ (T)
e(T)

. (4.50)

The false-vacuum energy density (cf. (2.4)),

ǫ (T) ≡ ∆Vef f (T) − T
∂∆Vef f (T)

∂T
, (4.51)

in the left-right symmetric model is derived from the potential difference∆Vef f (T) between
the left- and right-handed temperature-dependent minima,given in (4.33), and yields

ǫ (T) =
λ

4λ2 − λ2
m

[
−3c1(g) T4 + c2

(
g, µ2

)
T2 + c3

(
µ2

)]
(4.52)

with c1(g), c2

(
g, µ2

)
, c3

(
µ2

)
given in (4.34). At the critical temperatureTC the false-vacuum

energy density equals the latent heatL, defined in (2.6)), since the degeneracy of the minima
leads to a vanishing potential difference∆Vef f (TC) = 0. By inserting (4.52) in (2.6), we
derive for the latent heat in the left-right symmetric modelthe expression

L ≡ −TC
∂∆Vef f (T)

∂T

∣∣∣∣∣∣
T=TC

=
2λ

4λ2 − λ2
m

[
−2c1(g) T2

C + c2

(
g, µ2

)]
T2

C

=
3
8

λ

2λ − λm

(
g2

R− g2
L

)
v2

CT2
C,

(4.53)

revealing a direct proportionality to the VEVvC and the critical temperatureTC, L ∝ v2
CT2

C.

The result for the false-vacuum energy density of (4.52) in general determines the parameter
α ≡ ǫ(T)

e(T) for the left-right symmetric model and will be used for the numerical analysis.
However, we can derive a physically more intuitive expression forα by approximating the
false-vacuum energy density by the latent heat,ǫ (T) ≃ L. From the resulting equation

α (T) =
45

4π2g∗

λ

2λ − λm

(
g2

R − g2
L

) v2
CT2

C

T4
, (4.54)

it becomes directly apparent thatα (TC) → ∞ for the limiting case of flat directions where
λ = λm

2 . Hence, by approaching the flat directions in consistency with the parameter con-
straintλ > λm

2 , it will be possible to enlargeα(T) significantly. This will be essential with
regard the detectability of the GW spectrum, as will be discussed in detail inSec.4.5.3.
For the calculation of the gravitational wave spectrum, theparameterα(T) has to evaluated
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at the tunneling temperatureT∗ . Sinceα is not at all as strongly temperature-dependent as
β

H∗
(what will be confirmed by the numerical analysis inSec.4.6), even the approximate

evaluation ofα atT ≃ TC,

α (TC) =
45

4π2g∗

λ

2λ − λm

(
g2

R− g2
L

) ( vC

TC

)2

, (4.55)

generates suitable results. In this approximation, the relation between the strength of the
phase transitionvC

TC
and the parameterα is simply described by the proportionalityα ∝

(vC/TC)2. Hence, stronger phase transitions will lead to larger values ofα and hence higher
peak amplitudes of the GW spectra. Note that this is generally valid [125, 112].

4.5.2. Analytical Determination of the Parameterβ

After having computed the parameterα in the left-right symmetric model in the previous
section, we will now calculateβ as second parameter characterizing the GW spectrum.
According to (2.24), the parameterβ

(
T∗

)
renormalized to the Hubble parameterH∗ at the

tunneling temperatureT∗ is given by

β

H∗
≡ T∗

d
dT

(
S3(T)

T

) ∣∣∣∣∣∣
T=T∗

≃ −280
T∗

∆Ve f f

(
T∗

) d
dT

(
∆Ve f f

(
T∗

)

T∗

) ∣∣∣∣∣∣
T=T∗

(4.56)

with S3(T) denoting the three-dimensional Euclidean action for thermal tunneling in thin-
wall approximation (cf. (2.23)),

S3(T) =
16πS1(T)3

3
(
∆Vef f (T)

)2
, (4.57)

and∆Ve f f (T) defined in (4.33)-(4.34). For an analytical determination ofβH∗ , we expand
∆Ve f f (T) in a Taylor series aboutTC up to the first order (the zeroth order vanishes since
∆Ve f f (TC) = 0),

∆Ve f f (T) ≃
∂∆Ve f f (T)

∂T

∣∣∣∣∣∣
T=TC

= − L
TC

(T − TC) , (4.58)

containing the latent heatL of (2.6). By inserting this equation in (4.56), we obtain an
expression forβH∗ which is only dependent on the critical temperatureTC and the tunneling
temperatureT∗ ,

β

H∗
= 280

T∗
TC − T∗

= 280

(
1
δ
− 1

)
. (4.59)

78
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In the last step, we have rewritten the tunneling temperature asT∗ = TC (1− δ) by intro-
duction of the parameterδ. Since the tunneling temperature is required to be equal to or
smaller than the critical temperature,TC ≥ T∗ ≥ 0, the parameterδ is constrained to the
range 0≤ δ ≤ 1.
Note the approximate expression forβH∗ as well as the exact equation in (4.56) with (4.57)

become divergent forT∗ = TC. Hence, βH∗ is strongly temperature-dependent and it will be
crucial to determine the tunneling temperatureT∗ .

Analytical Determination of the Tunneling Temperature

The tunneling temperatureT∗ can be derived from the three-dimensional Euclidean action.
Since the dominant temperature dependency ofS3(T) is contained in the potential difference
∆Vef f

(
T∗

)
(causing in particular its divergence at the critical temperature), we approximate

(4.57) by use of (4.58) as

S3
(
T∗

)

T∗
≃ 16πS1(TC)3

3TC

(
∆Vef f

(
T∗

))2

≃ 16π
3

S1(TC)3

L2

TC(
T∗ − TC

)2 ,
(4.60)

where we have evaluated the one-dimensional Euclidean action at the critical temperature,
S1

(
T∗

) ≃ S1(TC), and have divided byTC instead ofT∗ on the right-hand side. Relating

(4.60) to the general expression
S3(T∗)

T∗
≃ 140 (cf. (2.11)) subsequently yields the tunneling

temperature,

T∗ = TC −

√
16π

3 · 140
TC S1(TC)3

L2

= TC (1− δ) ,
(4.61)

where the parameterδ emerges as

δ ≡

√
16π

3 · 140
S1(TC)3

TC · L2
. (4.62)

To determine the tunneling temperature in terms of the modelparameters, it remains to
compute the one dimensional Euclidean actionS1(TC) in the left-right symmetric model.

One-dimensional Euclidean Action. The one-dimensional Euclidean actionS1 in the
left-right symmetric model is given by [81]

S1 =

∞w

−∞
dτ


1
2

(
∂vL(τ)
∂τ

)2

+
1
2

(
∂vR (τ)
∂τ

)2

+ Vef f (vL(τ) , vR (τ) ,T)

 (4.63)
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with Euclidean timeτ and boundary conditions imposed by the phase-transition scenario,

vL(τ = −∞) = vC, vL(τ = ∞) = 0, ∂τvL(τ) |
τ=±∞0,

vR (τ = −∞) = 0, vR (τ = ∞) = vC, ∂τvR (τ) |
τ=±∞0.

(4.64)

According to Hamilton’s principle of least action, the tunneling of the fieldsvL,R proceeds
along the pathϕ(τ) for which the Euclidean action becomes stationary. If we parametrize
the Euclidean actionS1 by the pathϕ(τ), we can derive the thin-wall approximation from
the equation of motion, as explained inSec.2.3,

S1 =

∞w

−∞
dτ


1
2

f (ϕ(τ))

(
∂ϕ(τ)
∂τ

)2

+ Vef f (ϕ(τ) ,T)

 (4.65)

≃
ϕ(∞)w

ϕ(−∞)

dϕ
√

2 f (ϕ) Vef f (ϕ,T). (4.66)

Therein, we have defined the function

f (ϕ) ≡
(
∂vL(ϕ)
∂ϕ

)2

+

(
∂vR (ϕ)
∂ϕ

)2

. (4.67)

To compute the Euclidean actionS1 from the above equations, we choose the following
ansatz for the parametrization of the tunneling pathϕ(τ) [81]

vL(ϕ) = vc cos
[
ϕ(τ)

]
, vR (ϕ) = vc sin

[
ϕ(τ)

]
, ϕ(τ) =

π

4

(
1+ tanh

[
τ

d

])
, (4.68)

wherein we have normalized the Euclidean timeτ to the wall thicknessd.. Note that this
parametrization fulfills the boundary conditions in (4.64). Besides, the parametric function
f (ϕ) becomes constant,f (ϕ) = v2

C.
As the one-dimensional Euclidean action reveals only a slight dependency on the tempera-
ture, we will perform the calculation by approximatingS1

(
T∗

) ≃ S1(TC). The dependency
of the one-dimensional Euclidean action on the temperatureis contained in the contribution
of the effective potentialVef f (ϕ(τ) ,T) ≡ Vef f (vL(ϕ) , vR (ϕ) ,T) (cf. (4.65) and (4.66)). Con-
sequently, we can evaluate the effective potential, given in (4.26), at the critical temperature.
At first, we determine the exact solution of the one-dimensional Euclidean actionS1,E(TC)
without thin-wall approximation. By inserting the effective potential (4.26) at T = TC in
(4.65) and solving the integral for the parametrization ansatz of(4.68), we obtain the result

S1,E(TC) = NE

√
2λ − λm v3

C, (4.69)

where the constant

NE =
π

4

√
γE − Ci (2π) + ln (2π)

12
≃ 0.35 (4.70)
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includes the Euler-Mascheroni constantγE and the cosine integral Ci(x). Next, we can
analogously determine the one-dimensional Euclidean action in the thin-wall approximation
S1,A(TC) by computing the integral (4.66). The result

S1,A(TC) = NA

√
2λ − λm v3

C (4.71)

with constant

NA =
Si(π)

2
√

2
≃ 0.65, (4.72)

containing the sine integral Si(x), reveals the same functional dependence on the model pa-
rameters as the exact solutionS1,E(TC) differing only by a factorNA

NE
≃ 1.85 of the constant.

For the numerical analysis we will therefore use the exact result of (4.69)-(4.70).

The determination of the one-dimensional Euclidean actionfinally allows to compute the
tunneling temperatureT∗ and the parameterβ

(
T∗

)
. After inserting the latent heatL of (4.53)

as well as the results of (4.69) and (4.71), respectively, in the definition of the parameterδ

in (4.62),

δ ≡ 16
3

1

g2
R − g2

L

(2λ − λm)
7
4

λ

√
πN3

E,A

105

(
vC

TC

)5

, (4.73)

the tunneling temperature (cf. (4.61)) takes the form

T∗ = TC (1− δ)

= TC

1−
16
3

1

g2
R− g2

L

(2λ − λm)
7
4

λ

√
πN3

E,A

105

(
vC

TC

)5
 ,

(4.74)

while the parameterβ
(
T∗

)
, according to (4.59), arises as

β

H∗
= 280

(
1
δ
− 1

)

= 280


3
16

(
g2

R − g2
L

) λ

(2λ − λm)
7
4

√
1
π

(
105
NE,A

)3 (
TC

vC

)5

− 1

 .
(4.75)

The strength of the phase transitionvC
TC

is given in (4.37). Note that the parameterδ is

directly proportional to the strength of the phase transition, δ ∝ (vC/TC)5/2. A stronger phase
transition will therefore result in an increase of the parameterδ within the range 0≤ δ ≤
1. This will lead in turn to a decrease of the tunneling temperatureT∗ as well as of the
parameterβH∗ . Hence, the peak amplitude of the GW spectrum,h2

oΩ̃GW ∝ (β/H∗)
−1, will be

enlarged, whereas the peak frequency,f̃ ∝ T∗ (β/H∗), will be simultaneously lowered. By
this behavior the above equations directly reflect an important generic feature of the GW
spectrum arising from phase transitions: In general, stronger phase transitions proceed at
smaller peak frequencies due to the decrease ofT∗ and β

H∗
[113, 112]. In the next section,

we will discuss the consequences of this feature for the detectability of the GW spectrum.
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4.5.3. Gravitational Wave Spectrum from Bubble Collisions

After having calculated the parametersα and β
H∗

at the tunneling temperatureT∗ , the spec-
trum of gravitational waves generated by bubble collisionsduring the first-order phase tran-
sition (cf. (2.43)-2.45),

h2
oΩGW( f ) = h2

oΩ̃GW
(a+ b) f̃ b f a

b f̃ (a+b) + a f (a+b)
(4.76)

with

h2
oΩ̃GW = 1.29 · 10−6

(
H∗
β

)2 (
α

α + 1

)2
(
100
g∗

) 1
3

, (4.77)

f̃ = 3.79 · 10−3 mHz

(
β

H∗

) (
T∗

100 GeV

) ( g∗
100

) 1
6
, (4.78)

is determined. (We will assume the total number of degrees offreedom in the left-right
symmetric model to be approximatelyg∗ ≃ 100.)
As discussed before, stronger phase transitions generallylead to a decrease of the param-
etersT∗ and β

H∗
so that the peak frequencỹf of the GW spectrum (cf. (4.78)) is lowered,

whereas the peak amplitudeh2
oΩ̃GW (cf. (4.77)) is enlarged. Note that the peak amplitude

besides is enhanced by an increase of the parameterα. As discussed inSec.2.3, the param-
etersα and β

H∗
are correlated by the potential difference∆Vef f . Smaller values ofβH∗ entail in

particular bigger values ofα. Besides, the increase ofα for stronger phase transitions is in
particular revealed by (4.55) whereα ∝ (vC/TC)2.
Based on the considerations inSec.2.3, we will therefore require the phase transition in
the left-right symmetric model to bestrongly first-order

(
vC
TC
& 1

)
and to proceed at ahigh

temperature scale(TEW < T∗ < TGUT) for generating a peak amplitudeh2
oΩ̃GW and a peak

frequency f̃ which both lie in the sensitive range of the GW detectors. In this case, the
GW spectrum from the first-order phase transition in the left-right symmetric model will be
detectable.
Taking this conditions into account, we will perform a numerical analysis of the GW spec-
trum in the following section.

4.6. Numerical Analysis

Our intention for the numerical analysis is to investigate whether gravitational waves from
the considered first-order phase transition can serve as cosmological probes for the physical
properties of the left-right symmetric model. Therefore, we will have to analyze if the pa-
rameter space consistent with the constraints inSec.4.4.3allows for detectable gravitational
waves.
The necessary condition for the detection is in the first place the overlap of the spectral
peak amplitudeh2

oΩ̃GW with the sensitivity range of the GW experiments, reaching from
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h2
oΩGW ∼ 10−6 [156] for the ground-based Advanced LIGO detector, toh2

oΩGW ∼ 10−11

andh2
oΩGW ∼ 10−17 [113] for the planned spaceborne interferometers LISA and (corre-

lated) BBO, respectively.11 We will discuss the parametric dependence of the quantitiesα

and β
H∗

for determining the highest possible peak amplitudeh2
oΩ̃GW arising from the first-

order phase transition in the left-right symmetric model.
The second condition to be necessarily fulfilled for detectable gravitational waves requires
the peak frequency of the GW spectrum to lie in the frequency range accessible by the
GW detectors. While the ground-based detectors like LIGO and VIRGO are sensitive in
the high frequency regionf ≃ few Hz...few kHz, the sensitivity of the spaceborne interfer-
ometers LISA, BBO and DECIGO covers the low-frequency rangef ≃ 10−4 ... 1 Hz [156]
(cf. Sec.C.1). Since the peak frequency of the GW spectrum (independently of the peak
amplitudeh2

oΩ̃GW) can be shifted to higher or lower frequencies by varying thetunneling
temperature, we will determine the temperature scale by thechoice of the model parameters
with regard to the experimentally accessible frequency region.

4.6.1. Determination of the Parameter Space

To derive an upper bound on the peak amplitudeh2
oΩ̃GW of the GW spectrum arising from

the first-order phase transition in the left-right symmetric model, we first have to determine
the parameter space consistent with the constraints and then have to choose the parameters
randomly.
For generating a high spectral peak amplitude, its functional dependence, given in (4.77) re-
quires a large value ofα coinciding with a smallβH∗ . As displayed by the derived expression

for α of (4.55), and β
H∗

of (4.75) in the left-right symmetric model, this is directly achieved
by requiring a strongly first order phase transition. Note that the contribution of the phase
transition strength (α ∝ (vC/TC)2, δ ∝ (vC/TC)5/2) dominates the functional dependence ofα

and β
H∗

on the model parameters.12 Thus, we have to choose the values for the parameters
in the numerical analysis with regard to the parametric dependence of the strength of the
phase transition given in4.37as

vC

TC
=

1
4

√
1

2λ + λm

3
g2

Rµ
2
L − g2

L µ
2
R

µ2
R− µ2

L

− g′2
. (4.79)

Choice of gR. From the requirement of renormalizability of the theory we are restricted
to values< 1 for the couplings. While the parametersgL andg’ are dictated by the Standard
Model values,gL = 0.64 andg′ = 0.35 [58], the parametergR is free to choose.
The conception of the left-right symmetric model requires the parameter constraintgR > gL

11In Chap.C, we review the different types of GW detectors and compute their sensitivity curves in terms
of h2

oΩ̃GW, using either the experimental data from the operational detectors or the instrumental design
parameters of the planned missions. The values for the best sensitivities of the specific GW detectors are
summarized inTab.C.2.

12As will be confirmed by the numerical analysis, the influence of the parameters appearing as prefactors inα

andδ is only marginal.
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gR
vC

TC
α
(

T
∗

) β

H∗
h2

oΩ̃GW

1.00 2.17 0.1333 607 4.52 · 10−14

0.95 1.95 0.0810 690 1.42 · 10−14

0.90 1.73 0.0454 806 3.49 · 10−15

0.85 1.48 0.0225 985 6.02 · 10−16

0.80 1.21 0.0091 1 312 5.74 · 10−17

0.75 0.87 0.0025 2 175 1.54 · 10−18

0.70 0.33 0.0001 15 472 7.69 · 10−23

Table 4.3: Dependence of the quantities characterizing the peak amplitude h2oΩ̃GW on the
parameter gR. For the numerical calculation we have chosenλm = 0.1, λ = 0.09, µ2

R =

1016, µ2
L = 0.87 · µ2

R in consistency with the parameter constraints. In the further analysis
we will setgR = 0.95.

(cf. Tab.4.2), leaving the range 0.64 < gR < 1. As revealed by equation (4.79) and in
Tab.4.3, the strength of the phase transitionvC

TC
(and hence the peak amplitudeh2

oΩ̃GW) is
larger for bigger values ofgR. For the further analysis we therefore choose

gR = 0.95. (4.80)

Choice ofµ2
L
. In Sec.4.4.2we have discussed that the dimensionless strength of the phase

transition cannot depend on the dimensionful parameterµ2
L itself, but only on the ratio

betweenµ2
L andµ2

R .
The choice ofgR determines the range ofµ2

L in dependence ofµ2
R arising from the parameter

constraints. By inserting the values forg’, gL andgR in the lower and the upper bound of
in (4.45) and (4.47), respectively, the allowed range forµ2

L turns out to be 0.48µ2
R < µ2

L <

0.88µ2
R. Since the strength of the phase transition strongly increases for enlarging the ratio

betweenµ2
L andµ2

R, as shown inFig.4.1, we approach close to the upper bound by setting

µ2
L = 0.87µ2

R. (4.81)

Choice ofλ. According toSec.4.4.3, the effective potential develops flat directions in the
limiting caseλ = λm

2 , raising the strength of the phase transition tovC
TC
→ ∞. To fulfill

the parameter constraints, we are however restricted toλ > λm
2 in our choice of the relation

betweenλ andλm. Thus, a strongly first-order phase transition in consistency with the
parameter constraints is achieved if we choose this relation randomly.13 For the further
discussion, we therefore assume

λ = 0.55λm. (4.82)

13Note that the physical scenario of the phase transition requires the tunneling temperatureT∗ = TC (1− δ) of
(4.74) to be bigger than the critical temperatureTC. The resulting constraintδ ≤ 1 transforms into an upper
bound on the relation ofλandλ,, namelyλ < 1.40λm, by inserting the already chosen parameters in (4.73).
For approaching the case of flat directions, the upper bound is fulfilled in any case.
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Figure 4.1: Dependence of the phase transition strength on the ratio ofµ2
L and µ2

R for
different values ofλm. Herein, we have assumed the relationλ = 0.9 · λm. Note that the
lower bound onµ2

L leads per construction to a valuevC = 0 and hence a vanishing phase
transition strength.

Range ofλm. Apart from µ2
R, the only remaining undetermined model parameter isλm.

After having chosen the couplingsgL,R, g’ and set the ratio betweenµ2
L andµ2

R as well asλ
andλm, the value of the strength of the phase transition is only dependent on the choice of
λm. Althoughλm in principle is a free parameter of the model, the physical properties of the
phase transition restrict its choice to a distinct range. Onthe one hand, the lower bound in
this range arises from the condition for a strongly first-order phase transition withvC

TC
. 1.

On the other hand, the phase transition is expected to never be completed for very large
values of vC

TC
[81]. Therefore, we restrict the strength of the phase transition to be vc

TC
. 4.

Transforming these bounds via (4.79) into a range ofλm reads

0.02& λm & 0.38. (4.83)

By the determination of the range ofλm, all necessary parameters for the calculation of the
peak amplitudeh2

oΩ̃GW of the GW spectrum are set. Since the peak amplitude is higherfor
stronger phase transitions, the upper bound onλm simultaneously yields an upper bound on
the order of magnitude of the spectral peak amplitude arising from the considered phase
transition in the left-right symmetric model.

In the following section, we will give the results of the numerical analysis for the above
choice of parameters by varyingλm in the range of (4.83) and discuss whether the phase
transition provides the possibility of detectable gravitational waves.
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vC

TC
α

β

H∗
h2

oΩ̃GW

3.97 1.79 1.31 · 102 3.09 · 10−11

3.55 0.95 1.96 · 102 7.94 · 10−12

2.75 0.29 3.76 · 102 4.52 · 10−13

1.95 0.08 7.05 · 102 1.40 · 10−14

1.38 0.02 1.17 · 103 6.65 · 10−16

1.04 0.01 1.69 · 103 7.12 · 10−17

Table 4.4: Results of the numerical analysis for the temperature-scale independent quan-
tities α, β

H∗
andh2

oΩ̃GW. From the first-order phase transition in the left-right symmetric

model we obtainh2
oΩ̃GW ≃ 3.09· 10−11 as upper bound on the peak amplitude of the GW

spectrum.

Thereby, we will use the only remaining free parameterµ2
R to determine the temperature

scale and hence the peak frequencyf̃ of the GW spectrum with regard to the detectability.

4.6.2. Detectability of Gravitational Waves

Does the first-order phase transition in the left-right symmetric model give rise to detectable
gravitational waves? If yes, at which temperature would thephase transition have to proceed
for generating gravitational radiation within the experimentally accessible range?
The first necessary condition for the detectability of the GWspectrum requires the spectral
peak amplitudeh2

oΩ̃GW to lie in the sensitive region of the GW detectors. To derive an
upper bound on the peak amplitude, we perform the numerical analysis for the choice of
parameters discussed above by restricting the phase transition strength to the range 1.
vC
TC
. 4. The results of the numerical analysis for the quantitiesα, β

H∗
andh2

oΩ̃GW are listed
in Tab.4.4. From the discussed first-order phase transition in the left-right symmetric model
we derive an upper bound on the peak amplitude yielding

h2
oΩ̃GWmax ≃ 3.09 · 10−11. (4.84)

If we compare this bound to the sensitivity range of the ground-based GW detectors GEO600,
VIRGO, LIGO, LCGT and the upgraded experiments Advanced VIRGO and Advanced
LIGO (cf. Tab.4.5), it turns out that that the derived value for the peak amplitude is much
smaller than the maximal sensitivities achievable by theseexperiments. In particular, it
is six orders of magnitude too small to be detectable by the LCGT/KAGRA detector(
h2

oΩGW ∼ 10−5
)

and still five orders of magnitude smaller than the best sensitivity antici-

pated for the Advanced LIGO detector
(
h2

oΩGW ∼ 10−6
)
. Hence, the GW spectrum arising

from the first-order phase transition in the left-right symmetric model will not be detectable
by the ground-based detectors.14

14Even a detection by the cross-correlated Advanced LIGO (including the last upgrade LIGOIII [108], allowing
for a minimal sensitivity ofh2

oΩGW ∼ 10−10 [103]) would be excluded.
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4.6 Numerical Analysis

Detector f [Hz] h2
oΩGWmax

GEO600 [97] 1, 09 · 102 9.75 · 10−1

VIRGO [203] 4, 37 · 101 2.41 · 10−3

LIGO [144] 1, 30 · 102 1.61 · 10−3

Advanced VIRGO [204] 4, 68 · 101 1.50 · 10−5

LCGT / KAGRA [122] 6, 90 · 101 1.04 · 10−5

Advanced LIGO [145] 3, 22 · 101 5.48 · 10−6

Table 4.5: Minimal sensitivities of several ground-based GW detectors. The values for
the best sensitivities have been computed from the data which has been taken from the
indicated references. This is explained in detail inSec.C.2. (The maximal sensitivity
of the planned Advanced LIGO and LCGT/KAGRA detectors are based on anticipated
sensitivity curves.)
Since the sensitivity may change slightly for different data runs and with respect to the
current experimental status, these values should serve as rough orientation for the order
of magnitude of the sensitivities achievable by the ground-based detectors.

Detector f [Hz] h2
oΩGWmax

LISA 2, 09 · 10−3 1.30 · 10−11

FP-DECIGO 1, 02 · 10−1 4.63 · 10−13

BBO /
2, 35 · 10−1 1.13 · 10−13

TDI-DECIGO
Correlated BBO 2, 76 · 10−1 8.84 · 10−17

Ultimate DECIGO 1, 70 · 10−1 1.60 · 10−17

Table 4.6: Minimal sensitivities of several spaceborne GW detectors.The values for the
best sensitivities for the spaceborne interferometers have been computed from the data of
the anticipated sensitivities curves generated by use of [152]. This is explained in detail
in Sec.C.2. As before, these values are given to estimate the order of magnitude of the
experimentally achievable sensitivities.

This becomes clearly evident inFig.4.2, depicting the GW spectra for the sets of model
parameters given inTab.4.7. For obtaining a peak frequencỹf of the GW wave spec-
trum which lies in the frequency range accessible by the ground-based detectors,f =
few Hz...few kHz, we have chosenµ2

R = 6.02 · 1013 (GeV)2 setting the critical tempera-
ture toTC = 1.32 · 107 GeV. However, the peak amplitudeh2

oΩ̃GW of the GW spectrum
from the left-right symmetric model is several orders of magnitude smaller than the maxi-
mal sensitivities of the ground-based GW detectors and hence will not be observable at this
temperature scale and in this frequency range, respectively.
Although the experimental observation of the model spectraby the ground-based detectors
is excluded, the comparison ofTab.4.4with Tab.4.6reveals that a detection by the planned
spaceborne interferometers LISA, BBO and TDI-/FP-DECIGO, including Ultimate DE-
CIGO and the cross-correlated BBO detector, however will bepossible.
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Set α
β

H∗
h2

oΩ̃GW T
∗ [GeV] f̃ [Hz]

(A1) 1.79 1.31 · 102 3.09 · 10−11 6.48 · 106 3.22 · 101

(A2) 0.95 1.96 · 102 7.94 · 10−12 7.18 · 106 5.34 · 101

(A3) 0.29 3.76 · 102 4.52 · 10−13 8.53 · 106 1.21 · 102

(A4) 0.08 7.05 · 102 1.40 · 10−14 9.89 · 106 2.64 · 102

(A5) 0.02 1.17 · 103 6.65 · 10−16 1.08 · 107 4.81 · 102

(A6) 0.01 1.69 · 103 7.12 · 10−17 1.14 · 107 7.29 · 102

Table 4.7:Set of parameters corresponding to the GW spectra from the left-right symmetric
model which are depictedFig.4.2. For generating a model peak frequencyf̃ within
the frequency range accessible the ground based detectors,we have chosenµ2

R = 6.02 ·
1013 (GeV)2 setting the critical temperature toTC = 1.32 · 107 GeV.
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Figure 4.2: GW spectra from the first-order phase transition in the left-right symmetric
model at a critical temperature of TC = 1.32 · 107 GeV in comparison with the sensitive
region of the ground-based GW detectors.The maximal peak amplitude derived from the
first-order phase transition in the left-right symmetric model does not lie in the sensitive
region of the ground-based detectors GEO600, VIRGO, LIGO, LCGT / KAGRA and the
upgraded experiments Advanced VIRGO and Advanced LIGO. Thus, an experimental
detection of the model spectrum by the ground-based detectors is excluded.
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Figure 4.3: Shift of the GW spectrum to the low-frequency range.The upper bound on the
peak amplitude derived for the left-right symmetric model is too low to allow for detec-
tion of the GW spectrum by the ground-based GW detectors, which are sensitive in the
frequency rangef = few Hz...few kHz. However, the GW spectrum will be observable
by the planned spaceborne detectors in the low-frequency range f = 10−4 ... 1 Hz.
By demanding the detectability of the GW spectrum, the phasetransition is therefore
restricted to proceed at a smaller temperature resulting ina shift of the spectral peak fre-
quency to a lower frequency range. The areas of the figure highlighted in blue refer to
the range of the peak amplitudes given inTab.4.4.

The best sensitivity of the Ultimate DECIGO (cross-correlated BBO) detector, which is of
the orderh2

oΩGW ∼ 10−17, will even allow for detection of the GW spectrum (nearly) within
the whole parameter range 1. vC

TC
. 4. However, in case of really strong phase transitions

with vC
TC
& 3.70 even a detection with LISA

(
h2

oΩGW ∼ 10−11
)

will be achievable.15

The second condition for detectability requires the peak frequencyf̃ of the GW spectrum to
lie in the frequency range accessible by the GW detectors. Since the order of magnitude of
the GW spectrum restricts its detectability to the spaceborne detectors, the peak frequency
has to be shifted to the low-frequency rangef ≃ 10−4 ... 1 Hz, as shown inFig.4.3.
A shifting to lower frequencies is achieved by restricting the phase transition to proceed at
smaller temperatures. If we for instance set the critical temperature toTC = 8.56· 102 GeV,
by choosingµ2

R = 2.55·105 (GeV)2, the maximal peak amplitude arises at a peak frequency

15For a phase transition strength ofvC
TC
≃ 3.70, the numerical analysis yields a peak amplitude ofh2

oΩ̃GW ≃
1.30 · 10−11, which corresponds to the approximated maximal sensitivity h2

oΩGWmax of the LISA detector
given inTab.4.6. For stronger phase transitions withh2

oΩ̃GWmax & h2
oΩGWmax the respective GW spectra will

be detectable by LISA.
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(a) GW spectra from the left-right symmetric model in comparison with the sensitive region of the
spaceborne GW detectors.At a critical temperature ofTC = 8.56 · 102 GeV the peak frequency
f̃ of the GW spectra lie within the frequency range accessible by the spaceborne interferometers.
Since the corresponding peak amplitudesh2

oΩ̃GW additionally are in the sensitive region of these
GW detectors, the GW spectrum will be detectable.

TC = 8.56×102 GeV
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(b) Detectable region of the GW spectra from the left-right symmetric model. Within the detectable
region, which is highlighted in blue, the model spectra lie in the sensitive region of the GW detec-
tors. The Ultimate DECIGO (cross-correlated BBO detector)allows to detect spectra from (nearly)
the whole parameter range, while the detection by LISA is restricted to spectra with peak amplitude
h2

oΩ̃GW close to the upper bound.

Figure 4.4: GW spectra from the first-order phase transition in the left-right symmetric
model at a critical temperature of TC = 8.56 · 102 GeV in comparison with the sensitive
region of the spaceborne GW detectors.
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Set α
β

H∗
h2

oΩ̃GW T
∗ [GeV] f̃ [Hz]

(B1) 1.79 1.31 · 102 3.09 · 10−11 4.21 · 102 2.09 · 10−3

(B2) 0.95 1.96 · 102 7.94 · 10−12 4.67 · 102 3.47 · 10−3

(B3) 0.29 3.76 · 102 4.52 · 10−13 5.55 · 102 7.90 · 10−3

(B4) 0.08 7.05 · 102 1.40 · 10−14 6.43 · 102 1.72 · 10−2

(B5) 0.02 1.17 · 103 6.65 · 10−16 7.06 · 102 3.13 · 10−2

(B6) 0.01 1.69 · 103 7.12 · 10−17 7.42 · 102 4.74 · 10−2

Table 4.8:Set of parameters corresponding to the GW spectra from the left-right symmetric
model which are depictedFig.4.4. For generating a spectral peak frequencyf̃ within
the frequency range accessible by the spaceborne detectors, we have chosenµ2

R = 2.55 ·
105 (GeV)2 setting the critical temperature toTC = 8.56 · 102 GeV.

of f̃ = 2.09· 10−3 Hz and thus will be in particular detectable by LISA. This is illustrated in
Fig.4.4for the sets of model parameters given inTab.4.8. In comparison withFig.4.2, the
critical temperature inFig.4.4has been lowered by more than four orders of magnitude.

In which temperature range does the phase transition hence have to proceed for providing
observable gravitational radiation?
Fig.4.4displays that the GW spectrum for peak amplitudes close to the upper bound will
even be detectable by the cross-correlated BBO and UltimateDECIGO detector if the peak
frequency reaches the lower frequency limit of 10−4 Hz of the experimentally accessible
range. However, the numerical analysis yields in this case temperatures of the electroweak
scale for the phase transition to proceed. Below 10−4 Hz the sensitivity of the spaceborne
detectors is expected to drop considerably [113, 112] so that we exclude a detection of
gravitational waves at even lower frequencies.
Physically more interesting will be the upper bound on the tunneling temperature derived
from the demand of detectability of the GW spectrum. We determine this upper bound
on tunneling temperature from the peak frequencyf̃ at which the maximal peak amplitude
h2

oΩ̃GWmax intersects the sensitivity curveh2
oΩGWdetector( f ) of the Ultimate DECIGO and cross-

correlated BBO detectors, i.e.h2
oΩ̃GWmax

(
f̃
)
= h2

oΩGWdetector( f ) with f̃ = f . For Ultimate

DECIGO we compute an upper bound on the tunneling temperature ofT∗ = 1.73 · 106 GeV(
TC = 2.53 · 106 GeV

)
, whereas we obtain for the cross-correlated BBO detector a maximal

temperature ofT∗ = 2.31 · 106 GeV
(
TC = 4.69 · 106 GeV

)
. Thus, the GW spectrum from

the considered phase transition in the left-right symmetric model will be detectable for
tunneling temperaturesT∗ . 106 GeV.

Detectable Range ofα
(

T∗
)

For determining the upper bound on the tunneling temperature, we have shifted the peak
frequency f̃ of the GW spectrum to the upper limit of the detectable frequency range, but
have assumed the peak amplitudeh2

oΩ̃GW to be maximal and hence constant. Now, we
will consider instead a constant tunneling temperatureT∗ (and hence peak frequency) by
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varying the peak amplitude. Since the parametersα and β
H∗

depend on each other (cf.

Sec.2.3), we can numerically determineβH∗ in dependency ofα for different sets of model

parameters. Expressing the results as a functionβ(α)
H∗

, the GW spectrum (in this model) is
only dependent on the parametersα andT∗ . For different, but constant values ofT∗ we can
subsequently determine the minimal value ofα

(
T∗

)
where the peak amplitude of the GW

spectrum intersects the sensitivity curve of a specific detector and hence will be detectable.
For the computation ofα(T) the data of the sensitivity curves for the spaceborne detectors
generated by use of [152], on the basis of the input parameters ofTab.C.1in Chap.C, has
been used. The results for minimal values forα

(
T∗

)
allowing for detection of the GW

spectrum from the phase transition in the left-right symmetric model are summarized in
Tab.4.9, while the corresponding curvesα

(
T∗

)
are depicted inFig.4.5andFig.4.6.. Therein,

the dashed lines refer to the uncertainty with respect to thenumerically determined relation
β(α)
H∗

. For being detectable by LISA, the GW spectrum is required topossess a minimal

valueα
(
T∗

)
= 1.481 atT∗ = 3.23 · 102 GeV. Note that this temperature lies slightly above

the electroweak scale
(
TEW ≃ 102 GeV

)
due to the correlation of the parametersα and β

H∗
.

In detail, a decrease in the parameterα leads to an enlargement ofβH∗ . This effect, revealed in
[103, 113, 112], has already been discussed inSec.4.5.3. The optimal tunneling temperature
for Ultimate DECIGO, providing a minimal value ofα

(
T∗

)
= 0.013 for the detectability of

the GW spectrum, emerges asT∗ = 2.08·103 GeV, while a detection by the cross-correlated
BBO detector will be possible for at leastα

(
T∗

)
= 0.024 atT∗ = 4.47 · 103 GeV.
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4.6 Numerical Analysis

Detector T
∗ [GeV] α

(

T
∗

)

LISA 3.23 · 102 1.481 (cf.Fig.4.5)
Ultimate DECIGO 2.08 · 103 0.013 (cf.Fig.4.6)
Correlated BBO 4.47 · 103 0.024 (cf.Fig.4.6)

Table 4.9: Minimal values ofα
(
T∗

)
allowing for detection of the GW spectrum from the

first-order phase transition in left-right symmetric modelfor different spaceborne GW
detectors.
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Figure 4.5: Lower bound on the parameterα
(
T∗

)
from the GW spectrum in the left-right

symmetric model allowing for detection by the LISA detector. The minimal values of
α
(
T∗

)
generating a GW peak amplitude within the experimentally detectable range can

be computed from the data of the sensitivity curve (cf.chapter C). The dashed lines refer
to the uncertainty with respect to the numerically determined relationβ(α)

H∗
.

The sensitivity range of the LISA detector requires a minimal value of α
(
T∗

)
= 1.481

at a tunneling temperature ofT∗ = 3.23 · 102 GeV for the GW spectrum in the left-right
symmetric model to be detectable.
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(a) Lower bound on the parameterα
(
T∗

)
in the left-right symmetric allowing for the detection of the

GW spectrum by the Ultimate DECIGO and cross-correlated BBOdetector.For being detectable
by Ultimate DECIGO, the GW spectrum is required to possess a minimal value ofα

(
T∗

)
= 0.013

at a tunneling temperature ofT∗ = 2.08 · 103 GeV (cf. 4.6b), whereas a detection of the GW
spectrum by the cross-correlated BBO detector will be possible for a value of at leastα

(
T∗

)
= 0.024

atT∗ = 4.47 · 103 GeV (cf. 4.6c).
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(b) Lower bound on the parameterα
(
T∗

)
in the left-right

symmetric allowing for detection of the GW spectrum
by Ultimate DECIGO.
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(c) Lower bound on the parameterα
(
T∗

)
in the left-right

symmetric allowing for detection for detection of the
GW spectrum by the cross-correlated BBO detector.

Figure 4.6: Lower bound on the parameterα
(
T∗

)
from the GW spectrum in the left-

right symmetric model allowing for detection by the Ultimate DECIGO and the cross-
correlated BBO detector.The curve of minimal values for the parameterα

(
T∗

)
, leading

to a GW peak amplitude within the experimentally accessiblerange, has be computed
from the data of the sensitivity curves (cf.Chap.C). The uncertainty with respect to the
numerically determined relationβ(α)

H∗
is depicted by dashed lines.
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Conclusions

First-order phase transitions constitute one possible source of the stochastic background of
cosmological origin. As these relic gravitational waves carry unaltered information from the
state of the Universe at the time of their production, they can serve as cosmological probes
for new physics at energy scales inaccessible by particle physics experiments. Hence, their
detection allows to prove the underlying physical conceptsin extensions of the Standard
Model. The detection of the stochastic GW background requires a preceding strongly first-
order phase transition. Since stronger phase transitions proceed at lower temperatures by
creating larger bubbles, they lead to a shift of the spectralpeak frequency to frequencies
which might lie outside the experimentally accessible frequency region

(
f . 10−4 Hz

)
and

therefore does not allow for detection (even in case of sufficient height of the peak ampli-
tude). Therefore, our intention in this thesis was to investigate first-order phase transition in
extensions of the Standard Model which are assumed to take place at temperatures between
the electroweak and the GUT scale with regard to the possibility of detectable gravitational
waves.

First-order phase transitions are characterized by a barrier separating the false from the true
vacuum state. The most studied approach is to induce a thermal barrier by the bosonic finite-
temperature one-loop contributions in the effective potential. We used these mechanism to
investigate theZ2-symmetry breaking phase transition in the Standard Model extended by
a real gauge singletS. The physical relevance of this model bases on the fact that various
extensions of the Standard Model contain elements transforming non-trivially under a hid-
den sector gauge group, but as singlets in the Standard Model. As the only renormalizable
interaction of such scalars with the Standard Model occurs via the Higgs sector, we assumed
the additional singlet to couple only to the Higgs field.
To investigate theZ2-symmetry breaking phase transition we computed the effective poten-
tial at finite temperature up to the one-loop order. Thereby,we have in particular taken into
account the ring contributions to generate a thermally induced barrier by the cubic contribu-
tions in terms of the thermal masses. As the singlet naturally decouples from the low-energy
Standard Model sector at temperatures between the electroweak and the GUT scale, where
theZ2-symmetry breaking phase transition is assumed to proceed,we derived a high tem-
perature approximation of the effective potential for the investigation of the phase transition.
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Conclusions

For obtaining a physically viable phase transition scenario we imposed constraints on the
model parameters restricting the free parameters toµ2

S andλm. By the choice ofµ2
S we

set the critical temperature of the phase transition toTC = 105 . . . 107 GeV and used the
parameterλm to determine the strength of the phase transition. For generating a strongly
first-order phase transition with a strength of at leastSC

TC
≃ 1, the couplingλm has to be

chosen small. The parametersα and β
H∗

characterizing the GW spectrum do not merely
depend on the phase transition strength, but also incorporate a further dependency on the
model parameters (as we have explicitly seen in the case of the left-right symmetric model).
Subsequently, the extremely small couplingλm leads to values ofα significantly smaller
thanO(1) as required for a detectable signal. As the parametersα and β

H∗
are correlated via

the dependency on the potential difference between the true and the false vacuum state, the
parameterβH∗ is simultaneously expected to be several magnitudes of order large than the

necessary orderO
(
102

)
for detectable gravitational waves. Hence, the investigated phase

transition scenario in the singlet extension of the Standard Model does not provide the pos-
sibility of detectable gravitational waves so that its physical conception cannot be probed
by gravitational waves. The reason for this is that the thermally induced barrier, which is
typically proportional to the couplings of the model, is toosmall for obtaining a first-order
phase transition resulting in detectable gravitational waves.
Due to the smallness of the thermally induced barrier our further motivation was to study
a model providing a barrier in the effective potential already at tree-level. Therefore, we
investigated the left-right symmetric model being theoretically well motivated and consti-
tuting one of the most promising extensions of the Standard Model. Apart from explaining
parity violation by including parity as a spontaneous broken symmetry, the left-right sym-
metric model provides a physical meaning to theB − L quantum number as generator of
theU(1) gauge symmetry and incorporates additional sources forviableCP violation. As
the model includes right-handed massive gauge bosons escaping experimental detection the
L − R symmetry breaking phase transition has to proceed at an energy scale much higher
than the electroweak scale. The occurrence of a strongly first-order phase transition, due
to the emergence of a barrier in the tree-level potential, which proceeds at temperatures be-
tween the electroweak and the GUT scale makes it suitable to be investigated with regard
to the detectability of gravitational waves. After the calculation of the effective potential
in the mean-field approximation, we derived in particular ananalytic expression for the
strength of the phase transition influencing the GW spectrumby being incorporated in the
parametersα and β

H∗
. As the left-right symmetric model allows for an analyticaldetermi-

nation of the parametersα and β
H∗

as well as the tunneling temperatureT∗ , we were able
to study the functional dependence of these quantities on the model parameters. For de-
termining an upper bound on the GW amplitude we have subsequently chosen the model
parameters randomly in consistency with the parameter constraints, but also with regard
to the limiting case of flat directions which enhances the phase transition strength sig-
nificantly. Based on this, we performed a numerical analysisof the GW spectrum for
different sets of model parameters. From the first-order phase transition in the left-right
symmetric model, we derived an upper bound on the peak amplitude of the GW spectrum
yielding h2

oΩ̃GWmax ≃ 3.09 · 10−11. Although this bound is below the best sensitivity the
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ground-based detectors such as Advanced VIRGO, LCGT/ KAGRA and Advanced LIGO(
h2

oΩGW ∼ 10−5 . . . 10−6
)

and even below the sensitivity range of the cross-correlated Ad-

vanced LIGO (LIGOIII) detector
(
h2

oΩGW ∼ 10−10
)
, a detection of the GW spectrum with

the spaceborne interferometers will be possible. For very strongly first-order phase transi-
tions with peak amplitudes close to the upper bound the GW spectrum will be observable by
LISA

(
h2

oΩGW ∼ 10−11
)
. The sensitivity of the Ultimate DECIGO and cross-correlated BBO

detector
(
h2

oΩGW ∼ 10−16 . . . 10−17
)

even allows a detection of the GW spectrum within the
whole parameter range of the model. However, the restriction of the GW spectrum to be
detectable only by the spaceborne interferometers imposesan upper bound on the peak fre-
quency and hence on the temperature of the phase transition to proceed. The GW spectrum
will be detectable for temperatures belowT∗ . 106 GeV by assuming the parameterβH∗ to be

close to the lower bound (generating the maximal peak amplitudeh2
oΩ̃GWmax) of the model.

Finally, we have determined the minimal values ofα
(
T∗

)
which are required for a detection

of the GW spectrum. Therefore, we have numerically determined the dependency of the
parameterβH∗ onα for expressing the peak amplitudeh2

oΩ̃GW merely as function ofα. For a
given temperatureT∗ setting the peak frequency of the spectrum, we computed the minimal
value of alpha necessary for a detection of the GW spectrum. Thereby, we related the nu-
merical analysis on the experimental sensitivity curves ofthe specific detectors. For LISA
we derived a lower bound ofα

(
T∗

)
= 1.481 atT∗ = 3.23 · 102 GeV. The value lies slightly

above the electroweak scale as the correlation betweenα and β
H∗

leads to an enlargement of
β
H∗

by decreasing values ofα. For the Ultimate DECIGO detector we obtain a lower bound

α
(
T∗

)
= 0.013 at a temperatureT∗ = 2.08 · 103 GeV, while the minimal valueα

(
T∗

)
= 0.024

atT∗ = 4.47 · 103 GeV is needed for a detection with BBO.

Our results are visualized inFig.4.2, Fig.4.4as well asFig.4.6and 4.6a.
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Appendix A

Singlet Extension of the Standard
Model

A.1. Bosonic Self-Energies in the Infrared Limit

In this chapter of the appendix we will compute the bosonic finite-temperature self-energies
(polarization tensors)Πi (h,S,T) for the singlet extension of the Standard Model. These are
needed to determine the bosonic thermal masses (cf. (3.17))

M2
i (h,S,T) ≡ m2

i (h,S) + Πi(h,S,T) , (A.1)

i = Wl,t,Zl,t, γl,t, χ, h,S, appearing in the ring-diagram contributions to the effective poten-
tial in Sec.3.2.3.

A.1.1. Finite-Temperature One-Loop Contributions to the Self-Energies

We will compute the self-energiesΠi (h,S,T) at finite temperature in leading order. The
one-loop diagrams contributing to the bosonic self-energies in the singlet model arise from
quartic interactions, from interactions with fermion fields (i.e. t-quark fields) and from cubic
interactions with the scalars (cf.Fig.A.1). The corresponding one-loop integralsIb

(
m2

i

)
,

I f

(
m2

i

)
andKb

(
m2

i ,m
2
j

)
[200] have to be evaluated at finite temperature. After dimensional

regularization their values are given by

Ib

(
m2

i

)
= Tµ2ǫ

+∞∑

n=−∞

w d3−2ǫ p

(2π)3−2ǫ

1

ω2
bn
+ ω2

≃ − T
4π

m(h,S) +
T2

12
− 1

16π2

[
1
ǫ
+ γE − log

(
4πT2

µ2

)]
m2

i ,

(A.2)
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Appendix A Singlet Extension of the Standard Model

(a) Quartic interactions.

(b) Interactions with fermion fields.

(c) Cubic interactions with scalars.

Figure A.1: One-loop contributions to the bosonic self-energies in thesinglet extension
of the Standard Model.In the above diagrams the solid external lines are assumed to
represent scalar and gauge-boson fields.

I f

(
m2

i

)
= Tµ2ǫ

+∞∑

n=−∞

w d3−2ǫ p

(2π)3−2ǫ

1

ω2
fn
+ ω2

≃ −T2

24
− 1

16π2

[
1
ǫ
+ γE − log

(
4πT2

µ2

)]
m2

i ,

(A.3)

Kb

(
m2

i ,m
2
j

)
= Tµ2ǫ

+∞∑

n=−∞

w d3−2ǫ p

(2π)3−2ǫ

1
[
ω2

bn
+ ~p2 +m2

i

] [(
~p− ~p j

)2
+ ω2

bn
+m2

j

]

= −
1w

0

dx
∂Ib(α(x))
∂α(x)

; α(x) ≡ −x (x+ 1) p2
j + (1− x) m2

i + x m2
j

≃ −T2

8π

1w

0

dx
√
α (x)

− 1
16π2

[
1
ǫ
+ γE − log

(
4πT2

µ2

)]

(A.4)

with mass scaleµ andω2 ≡ ~p2+m2(h,S). The bosonic and fermionic Matsubara frequencies
ωbb andω fn are defined in (1.31) and (1.32), respectively. Since the dominant contributions
of the integrals (A.2) and (A.3) to the self-energies at high temperatures emerge from the
terms∝ T2, we will neglect the other terms (and in particular the termsarising from (A.4))
in the computation of the self-energies.
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A.1 Bosonic Self-Energies in the Infrared Limit

A.1.2. Self-EnergiesΠi (h, S,T)

For the computation of the self-energies the integral contributions have to be multiplied
by the corresponding couplings and the appropriate combinatorial and symmetry factors
of the Feynman diagrams. Apart from the Standard Model couplings of the gauge-boson
and fermion fields to the Higgs (and Goldstone) fields and the Higgs field self-couplings
[51], the additional couplings arising in the singlet extendedmodel from the singlet self-
interactions and the Higgs-singlet interactions are provided by the tree-level potential in
Sec.3.1.

Self-Energies of the Scalar Fields. The self-energyΠSS(h,S,T), constituting the thermal
correction to the pure singlet mass matrix elementm2

SS(h,S) (cf. (3.22)), arises for instance
as the sum of the self-energy contributions from the singletself-interaction as well as the
singlet interactions with the Higgs and Goldstone fields,

ΠSS(h,S,T) ≃ 3λS Ib

(
m2

SS

)
+
λm

2
Ib

(
m2

hh

)
+ 3 · λm

2
Ib

(
m2
χ

)

≃ (3λS + 2λm)
T2

12

=

(
λS

4
+
λm

6

)
T2.

(A.5)

Analogously, we can compute the further scalar self-energies leading to the results

ΠSS =

(
λS

4
+
λm

6

)
T2,

Πhh = Πχ =

(
λh

2
+
λm

24
+

3g2 + g′2

16
+

y2
t

4

)
T2,

ΠhS = ΠSh≃ 0,

(A.6)

Self-Energies of the Gauge-Boson Fields.Next we will derive the self-energies of the
gauge-boson sector. Therefore, we write the gauge-boson polarization tensorΠAB

gb of the
original (Standard Model)SU(2)L andU(1)Y gauge fieldsAa

µ andBµ (cf. Sec.3.1) in matrix
form. In the IR limit only the longitudinal components of thegauge bosons receive a thermal
mass correction from the self-energy contributions in the polarization tensor [53]. The
polarization tensor reduces in this limit to a diagonal matrix

ΠAB
gb =



ΠA1
µ

0 0 0

0 ΠA2
µ

0 0

0 0 ΠA3
µ

0

0 0 0 ΠBµ


, (A.7)

whose elements contain the self-energies of the gauge fieldsAa
µ andBµ. Analogously to the

previous computations, these are computed arise as the sum of the self-energy contributions
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from the gauge-boson fields, the Higgs fields and the t-quark fields yielding

ΠAa
µ
=

11
6

g2 T2, ΠBµ =
11
6

g
′2 T2. (A.8)

To obtain the self-energies in the basis of the mass eigenstates, i.e. thephysicalgauge-
boson fieldsW±µ , Zµ andAµ, we have to diagonalize the thermal mass matrixM2

gb (h,T) ≡
M2

gb (h) + ΠAB
gb (h,T) containing the zero-temperature (Standard Model) mass matrix of the

gauge-boson fieldsAa
µ andBµ

M2
gb (h) =

h2

4



g2 0 0 0
0 g2 0 0
0 0 g2 −gg′

0 0 −gg′ g′2


. (A.9)

In the charged gauge-boson sector, where the physical gauge-boson fields are per convention
defined asW±µ ≡ 1√

2

(
A1
µ ± iA2

µ

)
, the thermal mass matrix appears already in diagonal from.

This allows to directly read off the corresponding thermal massesM2
Wl

(h,T). The self-
energies equal in particular

ΠWl =
11
6

g2 T2. (A.10)

Since the thermal mass matrix in the neutral gauge-boson sector however possesses off-
diagonal elements, it has to be diagonalized by an orthogonal rotation matrixR connecting
the neutral gauge-boson fields

(
A0
µ, Bµ

)
to the physical fields

(
Zµ,Aµ

)
corresponding to the

mass eigenstates of the neutral gauge-bosonsZ and γ [25, 85]. After diagonalizing the
respective thermal masses arise as eigenvalues (diagonal elements) of the thermal mass
matrix. Since these can be written as

M2
Zl

(h,T) = m2
Z(h) −m2

W(h) +
11
6

g
′2 T2,

M2
γl

(h,T) = m2
W(h) +

11
6

g2 T2,

(A.11)

we can identify the self-energies as thermal corrections tothe field-dependent masses1

ΠZl = −m2
W(h) +

11
6

g
′2 T2,

Πγl = m2
W(h) +

11
6

g2 T2.

(A.12)

Due tom2
γ(h) = 0, the only contribution of the photon to the ring-diagram correction in the

effective potential arises from the non-vanishing self-energy in the thermal mass.

1Note that our results for the self-energiesΠWl , ΠZl andΠγl are consistent with those in [72]. The deviation
of the prefactors is only caused by the different definitions of the (zero-temperature) Higgs VEVs (cf.
Sec.3.3.3).
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Appendix B

Left-Right Symmetric Model

B.1. Gauge-Boson Masses

In this chapter of the appendix we compute the masses of the gauge bosonsW±L,R andZL,R

in the left-right symmetric model.
The masses of thephysicalgauge-boson fields correspond to the eigenvalues of the mass
matrices derived from the covariant derivatives in the Higgs-field contribution to the La-
grangian. Hence, the latter will be the starting point for our calculations.

Gauge-Boson Mass Matrices

The Higgs sector of the Lagrangian, as defined in (4.8), is given by

LH =Tr
[(

DµΦ
)† (

DµΦ
)]
+ Tr

[(
Dµ∆L

)† (
Dµ∆L

)]
+ Tr

[(
Dµ∆R

)† (
Dµ∆R

)]

− V0(Φ,∆L,∆R) ,
(B.1)

Therein, the covariant derivatives of the bidoublet and triplet fieldsΦ, ∆L and∆R (cf. (4.9)),

DµΦ ≡ ∂µΦ + i
g
2

(
σaWa

LµΦ − ΦσaWa
Lµ

)
,

Dµ∆L ≡ ∂µ∆L + i
gL

2

(
σaWa

Lµ ∆L − ∆L σaWa
Lµ

)
+ i

g′

2
Bµ∆L,

Dµ∆R ≡ ∂µ∆R + i
gR

2

(
σaWa

Rµ ∆R− ∆RσaWa
Rµ

)
+ i

g′

2
Bµ∆R,

(B.2)

consist of a kinetic term (∂µΦ, ∂µ∆L and∂µ∆R, respectively) complemented by a gauge-
invariance preserving term which will provide the gauge-boson masses.

Substituting the Higgs sector VEVs of (4.14),

〈Φ〉 =
(

k1 0
0 k2

)
, 〈∆L〉 =

(
0 0
vL 0

)
, 〈∆L〉 =

(
0 0
vR 0

)
, (B.3)
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for the scalar fields in (B.2) and inserting this in (B.1) generates the gauge-boson mass terms
Lm in the Higgs-sector Lagrangian

LH ∋ Lm =
g2

L

4

(
k2

1 + k2
2

) [(
W1
µ L

)2
+

(
W2
µ L

)2
+

(
W3
µ L

)2
]

+
g2

R

4

(
k2

1 + k2
2

) [(
W1
µR

)2
+

(
W2
µR

)2
+

(
W3
µR

)2
]

+
g2

L

4
v2

L

[(
W1
µ L

)2
+

(
W2
µ L

)2
]
+

v2
L

4

(
gL W3

µ L − g′ Bµ
)2

+
g2

R

4
v2

R

[(
W1
µR

)2
+

(
W2
µR

)2
]
+

v2
R

4

(
gR W3

µR− g′ Bµ
)2
.

(B.4)

The above equation can be separated into two parts, providing the mass terms for the
charged and neutral gauge-bosons, respectively

Lm = Lm,c +Lm,n. (B.5)

Charged Gauge-Boson Sector. By defining thephysicalcharged gauge-boson fields per
convention asW±µ L,R ≡

1√
2

(
W1
µ L,R∓W2

µ L,R

)
(equivalently to the Standard Model), we can

write the part of the Lagrangian containing the mass terms for the charged gauge-bosons in
the form

Lm,c =
(
W+µ L, W+µR

)
M2

c (vL, vR)


W−µ L

W−µR

 , (B.6)

and derive the elements of the charged gauge-boson mass matrixM2
c (vL, vR) from (B.4)

M2
c (vL, vR) =

1
4


g2

L

(
k2

1 + k2
2 + v2

L

)
−2gLgR k1k2

−2gLgR k1k2 g2
R

(
k2

1 + k2
2 + v2

R

)
 . (B.7)

Since the (squared) gauge-boson masses correspond to the eigenvalues of the mass matrix
in the basis of the mass eigenstates (the physical gauge-boson fields), they can be obtained
by diagonalizing the mass matrix and reading off the diagonal elements.
However, the neglection of the Higgs-bidoublet contributionsk1,k2, as motivated in (Sec.4.3),
already reduces the mass matrix of (B.7) to a diagonal matrix,

M2
c (vL, vR) =

1
4

(
g2

L v2
L 0

0 g2
R v2

R

)
, (B.8)

so that the masses of the charged gauge-bosonsW±L,R directly arise as

m2
WL

(vL) =
g2

L

4
v2

L, m2
WR

(vR) =
g2

R

4
v2

R. (B.9)
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Neutral Gauge-Boson Sector. For computing the neutral gauge-boson masses, we derive
from (B.4) and(B.5) the Lagrangian containing the corresponding mass terms,

Lm,n =
1
2

(
W3
µ L, W3

µR, Bµ
)
M2

n (vL, vR)



W3
µ L

W3
µR

Bµ

 , (B.10)

where the neutral gauge-boson mass matrixM2
c (vL, vR) emerges as

M2
n (vL, vR) =

1
4



g2
L

(
k2

1 + k2
2 + v2

L

)
−gLgR

(
k2

1 + k2
2

)
−gLg′ v2

L

−gLgR

(
k2

1 + k2
2

)
g2

R

(
k2

1 + k2
2 + v2

R

)
−gRg′ v2

R

−gLg′ v2
L −gRg′ v2

R g′
(
v2

L + v2
R

)


. (B.11)

Despite the neglection of the Higgs-bidoublet VEVs, leading to

M2
n (vL, vR) =

1
4



g2
L v2

L 0 −gLg′ v2
L

0 g2
R v2

R −gRg′ v2
R

−gLg′ v2
L −gRg′ v2

R g′
(
v2

L + v2
R

)

 , (B.12)

the neutral gauge-boson mass matrix possesses off-diagonal terms so that a mixing between
the gauge boson fieldsW3

µ L, W3
µR and Bµ of the neutral sector occurs, in contrary to the

charged gauge-boson sector (cf. (B.8)).
To obtain the physical masses of the neutral gauge bosons, the mass matrixM2

n (vL, vR)
has to be diagonalized (as in the Standard-Model case) by an orthogonal rotation matrix
R connecting the neutral weak fields

(
W3
µ L, W3

µR, Bµ
)

to the corresponding physical fields(
Zµ L, ZµR, Aµ

)
of the neutral weak sector. The calculation yields the following results for

the neutral gauge-boson masses1

m2
ZL,R

(vL, vR) =
1
8

{(
g2

L + g′2
)

v2
L +

(
g2

R + g′2
)

v2
R

∓
√[(

g2
L + g′2

)
v2

L −
(
g2

R+ g′2
)

v2
R

]2
+ 4g′4 v2

Lv2
R

}
,

m2
γ(vL, vR) = 0.

(B.13)

Note that the photonγ remains massless in the left-right symmetric model like in the Stan-
dard Model as well and consequently does not appear in the mass-dependent thermal one-
loop correction of (4.18) and (4.23), respectively. Additionally, by setting eithervL or vR

to zero, theZL,R-boson mass equation takes an analogous form as in the Standard Model,

m2
ZL,R

(
vL,R

)
=

g2
L,R+g′

4 v2
L,R.

Finally, the LagrangianLm of (B.4) in terms of the physical gauge-boson fields and masses
reads

Lm =m2
WL

(vL) Wµ+
L W−µ L +m2

WR
(vR) Wµ+

R W−µR

+
1
2

m2
ZL

(vL, vR) Zµ+L Z−µ L +
1
2

m2
ZL

(vL, vR) Zµ+R Z−µR.
(B.14)

1From our calculation form2
ZL,R

(vL, vR) we reobtain exactly the result of [58], when assuminggL ≡ gR ≡ g and
g≫ g′.
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Appendix C

Sensitivity Curves of the
Gravitational Wave Detectors

Current and future GW experiments aim to search for gravitational waves of astrophysical
and cosmological origin. The searches mainly focus on gravitational waves from coalescing
binary systems (cf. for instance [21, 2, 5]), continuous gravitational waves sources (e.g.,
rotating neutron stars) [4], GW bursts [20, 3] as well as (stochastic) GW backgrounds [44,
6]. Phase transitions in the early evolution of the Universe constitute a possible production
mechanism for stochastic GW backgrounds of cosmological origin. Among the different
types of GW detectors (for instance cryogenic resonant bars[173]), the GW interferometers
possess a frequency range suitable for the detection of gravitational waves of cosmological
origin [156].

In this appendix we will briefly review the different classes of interferometric gravitational-
wave detectors. Afterwards, we will generate the sensitivity curves or different GW detec-
tors in terms of the strain sensitivitỹhf ( f ) and the normalized GW energy densityh2

oΩGW( f )
by use of the experimental data.

C.1. Interferometric Gravitational Wave Detectors

C.1.1. Ground-Based Interferometers

In general, two classes of interferometric gravitational-wave detectors exists. The first gen-
eration of interferometers comprises ground-based detectors of large scale as for instance
the currently operational “Laser Interferometer Gravitational-Wave Observatory” (LIGO)
[8, 7] with arms of 4000 m length or the comparable VIRGO detector [52, 9] possessing an
arm length of 4000 m. An important improvement of the sensitivity has been and will be
achieved by the upgraded experiments Advanced VIRGO [204] (operational) and Advanced
LIGO [108] (planned).
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The GEO600 detector [154, 155] (600 m arm length) is marginally smaller than LIGO and
VIRGO, but uses advanced techniques (as narrow-banding [156]) which will be important
for the future generations of detectors. Currently still under construction is the Japanese
LCGT detector [141, 24, 140, 192] (renamed as KAGRA due to its location at Kamioka),
whereas the so-called “Einstein Telescope” (ET) [80, 109, 185] is proposed as detector of
the third generation.
The ground-based detectors are sensitive in the frequency range [156]

f ≃ few Hz... few kHz. (C.1)

While the upper bound on the frequency is set by the domination of the laser shot (position)
noise, the lower bound arises from the seismic noise level. For covering the low-frequency
range, which is inaccessible on Earth due to the seismic noise, future GW detectors will
therefore operate as spaceborne interferometers.

C.1.2. Spaceborne Interferometers

The future spaceborne interferometers will be sensitive inthe frequency range [156]

f ≃ 10−4 ... 1 Hz. (C.2)

The first proposed cornerstone mission, the “Laser Interferometer Space Antenna” (LISA)
[67, 68, 69, 22, 153],will be a detector with three arms of 5· 109 m length in a respective
angle of 60◦, can be thought of as two interferometers sharing a common arm. As planned
follow-on mission of the LISA detector, the “Big Bang Observer” (BBO) [107, 139] and
the Japanese DECIGO detector [127, 128] have been proposed. In addition to LISA, BBO
and the original DECIGO detector, which will implement the so-called time-delay interfer-
ometry (TDI), a Fabry-Pérot (FP) type spaceborne interferometer [139], adopting the same
technique as used by the ground-based interferometers, named FP-DECIGO, has been sug-
gested. (To distinguish between the two types of DECIGO detectors, we will refer to the
original DECIGO detector as TDI-DECIGO). As an observational limitation we will con-
sider the Ultimate DECIGO detector which is conceptionallysimilar to TDI-DECIGO, but
whose sensitivity is assumed to be only limited by quantum noises.
The instrumental design parameters for the different spaceborne interferometers are listed
in Tab.C.1.

C.2. Sensitivity Curves

C.2.1. Strain Sensitivity h̃ f ( f )

The experimental sensitivity of the GW detector is expressed in terms of the strain sensitiv-
ity h̃f ( f ) which is linear in the noise density and has dimension

[
h̃f

]
= 1/
√

Hz. The strain
sensitivity is defined as [156]

h̃f ( f ) ≡
√

Sn( f ), (C.3)
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Parameter LISA BBO TDI-DECIGO FP-DECIGO Ultimate

[152] [106, 107] [14] [13] DECIGO [ 14]

Arm Length L [m] 5 · 109 5 · 107 5 · 107 106 5 · 107

Arm Angle α [°] 60 60 60 60 60

Telescope
D [m] 0.3 2.5 1 1 1

Diameter

Laser
λ [nm] 1064 355 532 532 532

Wavelength

Laser Power P [W] 1 300 10 10 10

Optical
ǫ 0.3 0.3 0.3 0.3 0.3

Efficiency

Acceleration √
Sacc

[
m

s2
√

Hz

]
3 · 10−15 3 · 10−17 3.9 · 10−17 [139] 7.9 · 10−17 [139] 3 · 10−19 [139]

Noise

Position Noise
√

Spos

[
m√
Hz

]
2 · 10−11 1.5 · 10−17 1.2 · 10−16 [139] 2.2 · 10−18 [139] 3 · 10−19 [139]

Table C.1: Instrumental Parameters for the Spaceborne Interferometers. The design pa-
rameters for the space interferometers are taken from the respective references given in
the headline of the table, if not marked otherwise. They are used as input for the gener-
ation of the sensitivity curves by using [152]. Note that the mission design of BBO in-
cludes different variants of instrumental parameters and hence the sensitivity may change
slightly in the final design.

whereSn( f ) denotes the square spectral noise density. A significant reduction of the overall
sensitivity is achieved by cross-correlating the signals of several separated detectors [139].
The cross-correlation strain sensitivity for a two-detector constellation is given by [14]

h̃f ,cross( f ) ≃ S NR
2 h̃f

(2T∆ f )
1
4

. (C.4)

Therein,S NRcorresponds to the signal-to-noise ratio of the stochasticGW background
over the frequency rangef + ∆ f andT denotes the observation time. We have explicitly
computed the strain sensitivitỹhf ,cross( f ) for a cross-correlated BBO constellation. Accord-
ing to [156], we have assumed for the BBO detector a frequency resolution ∆ f = f

10 and
have chosenS NR= 1, T = 1 yr.

whereS NRis the signal-to-noise ratio of the stochastic gravitational wave background over
the frequency rangef + ∆ f andT is the observation time. According to [156], we assume
for the BBO detector a frequency resolution∆ f = f

10 andS NR= 1, T = 1 yr.

For generating the sensitivity curves in terms of the strainsensitivityh̃f ( f ) for the ground-
based interferometers, we have taken the experimental data[144, 203, 204, 97] of LIGO,
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Detector f [Hz] h̃ f

[

1
√

Hz

]

h2
oΩGWmax

LISA 2, 09 · 10−3 2.06 · 10−20 1.30 · 10−11

FP-DECIGO 1, 02 · 10−1 1.14 · 10−23 4.63 · 10−13

BBO / TDI-DECIGO 2, 35 · 10−1 1.62 · 10−24 1.13 · 10−13

Correlated BBO 2, 76 · 10−1 3.55 · 10−26 8.84 · 10−17

Ultimate DECIGO 1, 70 · 10−1 3.12 · 10−26 1.60 · 10−17

GEO600 [97] 1, 09 · 102 1.73 · 10−21 9.75 · 10−1

VIRGO [203] 4, 37 · 101 1.08 · 10−22 2.41 · 10−3

LIGO [144] 1, 30 · 102 1.71 · 10−23 1.61 · 10−3

Advanced VIRGO [204] 4, 68 · 101 7.66 · 10−24 1.50 · 10−5

LCGT / KAGRA [122] 6, 90 · 101 3.56 · 10−24 1.04 · 10−5

Advanced LIGO [145] 3, 22 · 101 8.10 · 10−24 5.48 · 10−6

Table C.2: Minimal sensitivities of different GW detectors read off from the experimen-
tal data. The points of best strain sensitivitỹhf from the experimental data were used
to compute the sensitivityh2

oΩGW via (C.6). For the ground-based interferometers the
sources of experimental data are indicated, while the data of the anticipated sensitivity
curves for the spaceborne interferometers has been generated by use of [152] on the basis
of Tab.C.1.
The sensitivities may change slightly for different data runs and with respect to the current
experimental status. Therefore, these values should be considered as rough orientation
for the order of magnitude of the achievable sensitivity. Werefer to these figures in the
numerical analysis ofSec.4.6.

VIRGO, Advanced VIRGO and GEO600 as well as the data [145, 122] anticipating the
sensitivity curves of the Advanced LIGO upgrade and the LCGT/ KAGRA detector.
Besides, we have taken the instrumental parameters ofTab.C.1as input to generate data of
anticipated sensitivities for the future spaceborne interferometers LISA, BBO, TDI-/ FP-
DECIGO and Ultimate DECIGO by using [152]. Thereof, we have computed in particular
the sensitivityh̃f ,cross( f ) via (C.4) for the cross-correlated BBO detector.
The resulting strain-sensitivity curves are depicted inFig.C.1, Fig.C.2andFig.C.3.

C.2.2. Sensitivityh2
oΩGW( f )

A stochastic GW background of cosmological origin is usually characterized by the (nor-
malized) energy density per unit logarithmic frequency interval, h2

oΩGW( f ). In particu-
lar, we express the GW spectra arising from cosmological phase transitions as functions
h2

oΩGW( f ). For a comparison of the GW spectra with the experimentally accessible sensi-
tivity range it is therefore necessary covert the strain sensitivity h̃f ( f ) into the dimensionless
quantityh2

oΩGW( f ).
A stochastic GW background will manifest itself in a GW detector as an excess in noise.
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C.2 Sensitivity Curves

Hence it will be observable at a frequencyf if spectral GW densitySh( f ) exceeds the spec-
tral noise densitySn( f ), Sh( f ) > 1

F Sn( f ), whereF is the angular efficiency factorF of the
GW detector. Inserting this equation in the relation [156]

h2
oΩGW( f ) =

4π2

3H2
o

f 3Sh( f ) (C.5)

and expressing the Hubble parameter asH0 = h0 · 100 km
s·Mpc, we can derive a minimal

detectable value for the detectable energy density,1

h2
oΩ

min
GW( f ) ≃ 1

F
· 10−2

(
f

100 Hz

)3 
h̃f

10−22 (1/
√

Hz)

 . (C.6)

(We will refer to the energy density of the GW detectors simply as sensitivity.) The angular
efficiency factor for interferometric GW detectors is given by

F =
2
5

sin2(α) (C.7)

with α denoting the angle between the interferometer arms. For theground-based interfer-
ometers LIGO, VIRGO, GEO600 and LCGT/ KAGRA α = 90°, yielding an efficiency
factor of F = 2

5. The arms of the spaceborne interferometers LISA, BBO and DECIGO
comprise an angle ofα = 60° (cf. Tab.C.1) so thatF = 3

10.

We have used (C.6) to convert the experimental data (cf.Sec.C.2.1), given in terms of
the strain sensitivitỹhf ( f ), into values of energy density,h2

oΩGW( f ). From the data, we
have determined the best sensitivities, i.e. the minimal values ofh̃f andh2

oΩGW, achievable
by the different GW detectors. The results are listed inTab.C.2. For the ground-based
detectors we obtain a minimal sensitivity ofh2

oΩGW ∼ 10−6 achievable by the advanced
LIGO detector, while the best sensitivities for the spaceborne interferometers reach from
h2

oΩGW ∼ 10−11 for LISA up to h2
oΩGW ∼ 10−17 for the Ultimate DECIGO and cross-

correlated BBO detector. The orders of magnitude of these bound equal the values given in
[113, 112] and are used in the numerical analysis ofSec.4.6.
Besides, we have generated the energy-density sensitivitycurvesh2

oΩGW( f ) for the ground-
based and spaceborne interferometric GW detectors. These are depicted inFig.C.4, Fig.C.5
andFig.C.6.

1Note that the relation between the energy density and the strain sensitivity incorporates a factor∝ f 3. Thus,
the values of energy density for the spaceborne interferometers, which are sensitive in the low-frequency
region, are several orders of magnitude smaller in comparison with those of the high-frequency ground-
based detectors.
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Figure C.1: Strain-sensitivity curves̃hf ( f ) for different ground-based and spaceborne interferometric GW detectors. The spaceborne
interferometers LISA, BBO, TDI-/ FP-DECIGO, Ultimate DECIGO and the cross-correlated BBO detector are sensitive in the low-
frenquency range, while the ground based interferometers LIGO, VIRGO, GEO600, LCGT/ KAGRA, Advanced LIGO and Advanced
VIRGO cover the higher frequency range. 11
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Figure C.2: Strain-sensitivity curves̃hf ( f ) for the spaceborne interferometric GW detec-
tors LISA, BBO, TDI-/ FP-DECIGO, Ultimate DECIGO and the cross-correlated BBO
detector.
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Figure C.3: Strain-sensitivity curves̃hf ( f ) for the ground-based interferometric GW detec-
tors LIGO, VIRGO, GEO600, LCGT/ KAGRA, Advanced LIGO and Advanced VIRGO.
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Figure C.5: Sensitivity curves h2oΩGW( f ) for the spaceborne interferometric GW detectors
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