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INTRODUCTION: Evolution is constrained by the
mutations accessible to natural selection. The
benefits and costs of these mutations are de-
scribed by the distribution of fitness effects
(DFE). The DFE governs the tempo andmode
of adaptation by capturing the fitness landscape
of the local mutational neighborhood and re-
flects the mutational robustness of genotypes.
However, the DFE need not remain static over
evolution; with every accumulating mutation,
the effects and accessibility of subsequent mu-
tationsmay change throughgenetic interactions.

Understanding how the DFE changes is impor-
tant for models that seek to explain the speed
of adaptation,maintenance of genetic diversity,
and pace of the molecular clock.

RATIONALE: We quantified the effects of hun-
dreds of thousands of insertion mutations in
12 populations of Escherichia coli through
50,000 generations of experimental evolution.
We generated high-coverage transposon inser-
tion libraries in the ancestral and evolved strains
and measured the fitness effects of these mu-

tations in bulk competitions.We characterized
both the statistical properties of the DFEs and
the effects of mutations in specific genes.

RESULTS:We saw no systematic change in the
deleterious tail of the DFE. By contrast, the frac-
tion of beneficial mutations declined rapidly,
with its form approaching an exponentially
distributed tail. At the gene level, we saw fre-
quent changes in the fitness effects of inser-
tion mutations in specific genes. Both the
genetic identity and effect sizes of beneficial
mutations changed over time. In the delete-
rious tail, there were frequent changes in the
costs of specific mutations and even in gene
essentiality. These changes often evolved in
parallel across lineages and the changes in
essentiality were only partially explained by
structural variation. Despite pervasive changes
in the fitness effects of particular mutations
over time, many targets of selection could still
be predicted by combining gene length with
the ancestral DFE, owing to the benefit con-
ferred by loss-of-function mutations during
early adaptation.

CONCLUSION:Overall, the high-level features of
the fitness landscape were largely unchanged
over this multi-decade evolution experiment,
except for truncation of the beneficial tail
of the DFE. Over the short term, the driv-
ers of adaptation were often predictable from
the gene-level details of the DFE, especially
combined with the length of genes available
for beneficial mutations. As the populations
accumulated more mutations over longer time-
scales, pervasive epistasis led to changes in
the magnitude and even the sign of the fit-
ness effects of many mutations, making some
previously advantageous mutations delete-
rious and vice versa. Consequently, some evo-
lutionary paths that were inaccessible to the
ancestor became accessible to the evolving
populations, while others were closed off. More-
over, many of the changes in the fitness ef-
fects of particular mutations, both beneficial
and deleterious, occurred in parallel across the
replicate populations. Thus, some features of
the DFEs changed repeatedly and predictably
over time, even as the overall form of the fit-
ness landscape was largely unchanged. Taken
together, our results demonstrate the dynamic—
but often statistically predictable—nature of
mutational fitness effects.▪
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Changing distribution of fitness effects over evolution. Transposon mutagenesis of E. coli strains from
a long-term evolution experiment and bulk fitness assays enable characterization of genome-wide and
gene-level distribution of fitness effects (DFE). The overall shape of the DFE is conserved, except for a
declining beneficial tail, while the effects of specific mutations and gene essentiality often evolve in parallel
across populations. The ancestral DFE, combined with gene length, predicts drivers of adaptation.
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Alejandro Couce1,2,3*†, Anurag Limdi4†, Melanie Magnan1, Siân V. Owen4, Cristina M. Herren4,5,
Richard E. Lenski6,7, Olivier Tenaillon1,8*‡, Michael Baym4*‡

The distribution of fitness effects of new mutations shapes evolution, but it is challenging to observe how
it changes as organisms adapt. Using Escherichia coli lineages spanning 50,000 generations of evolution,
we quantify the fitness effects of insertion mutations in every gene. Macroscopically, the fraction of
deleterious mutations changed little over time whereas the beneficial tail declined sharply, approaching
an exponential distribution. Microscopically, changes in individual gene essentiality and deleterious
effects often occurred in parallel; altered essentiality is only partly explained by structural variation. The
identity and effect sizes of beneficial mutations changed rapidly over time, but many targets of selection
remained predictable because of the importance of loss-of-function mutations. Taken together, these
results reveal the dynamic—but statistically predictable—nature of mutational fitness effects.

E
volution in asexual populations is a local
process because selection can only act on
mutants generated from existing geno-
types. Thus, information about the rela-
tive fitness of the genotypes that can arise

in the mutational neighborhood of the current
population is essential for predicting future
evolution. The distribution of fitness effects
(DFE) captures the properties of an organism’s
mutational neighborhood: the proportion and
magnitude of beneficial mutations determines
the tempo andmode of adaptation, whereas the
fraction of neutral and deleterious mutations
defines the organism’s robustness to mutational
perturbations. Indeed, the DFE lies at the core
of many theories describing fundamental evo-
lutionary phenomena, including the speed of
adaptation (1), fitness decay in small popula-
tions (2), the maintenance of genetic variation
(3), the probability of parallel (4) versus diver-
gent (5) evolution, the pace of the molecular
clock (6), and the evolution of sex (7) and mu-
tation rates (8). However, it is unclear if the
general properties of local mutational neighbor-

hoods remain static over long periods of
evolution because with each successive muta-
tion in a lineage, the accessibility and effect of
subsequent mutations can be altered through
genetic interactions (i.e., epistasis) (9, 10).
The evolution of the overall shape of the DFE

has received much theoretical and empirical
attention. The beneficial tail of a DFE is ex-
pected to shorten as beneficial substitutions
accumulate in an evolving population. Indeed,
experiments with microbes show that the speed
of adaptation steadily declines during adapta-
tion to a constant environment (11–13), but it
is generally unclear whether this deceleration
reflects a decline in the availability or magni-
tude of new beneficial mutations (13). Besides
becoming shorter, Extreme Value Theory pre-
dicts, using simple statistical principles, that
the beneficial tail should become exponentially
distributed as the population approaches a
fitness peak (14–17). Although many studies
support this model (18–20), some have reported
non-exponential distributions of beneficial ef-
fects and it is unclear whether these exceptions
represent populations far away from their fit-
ness peak or, alternatively, the inadequacy of
the theory (21–23). The picture is even more
complicated for the deleterious tail of the DFE
(24, 25). Selection can favor mechanisms con-
ferring increased robustness tomutational per-
turbations, especially at high mutation rates
and in large populations (26–29), an idea with
mixed support from studies with viruses and
yeast (30–32). By contrast, recent theoretical
work suggests that the genetic architecture of
complex traits may lead tomutations being on
averagemore detrimental on fitter genetic back-
grounds (33), consistentwith empirical data from
crosses among diverse yeast strains (34).
However, these predictions address only the

global (i.e., macroscopic) form of the DFE, with

little attention to the fine-scale (i.e., microscopic)
processes underlying changes in its overall
shape. In the beneficial tail, the microscopic
details may determine the extent to which ad-
aptive pathways are predictable (35). For exam-
ple, in the absence of interactions among
mutations, adaptations will shorten the bene-
ficial tail simply by the process of sampling
without replacement, and therefore a complete
DFE would suffice to specify the probabilities
of all possible adaptive pathways in a given
environment. By contrast, if each accumulated
mutation changes the fitness effects and rank
order of the remainingmutations (36), then pre-
dicting adaptive pathways would be impossible
beyond the very short term.
In thedeleterious tail, themicroscopic details

may reveal which physiological processes and
genes are important or essential for fitness and
how those processes and genes might change
over time. Further, those details may provide
evidence bearing on whether changes in the
deleterious tail are the product of natural
selection acting directly onmutational robust-
ness or, alternatively, a byproduct of selection
on related physiological processes (26). More-
over, the extreme end of this tail contains the
set of essential genes whose loss would render
the organism inviable. Prior work has shown
that gene essentiality can vary greatly between
species and even between strains of the same
species (34–39). For instance, about a third of
the essential genes in Escherichia coli are non-
essential in Bacillus subtilis, and vice versa
(40). Essentiality is also malleable over shorter
timescales: in Saccharomyces cerevisiae and
Staphylococcus aureus, many essential genes
become nonessential following selection for
suppressors (41, 42), and horizontal gene trans-
fer alters the essentiality of some core genes
in E. coli (39). To what extent gene essentiality
remains constant in the absence of direct
selection, environmental change, or recombina-
tion is unclear. However, this issue has broad
fundamental interest (e.g., understanding
species’ ecological and geographic ranges) (43)
and applied consequences (e.g., the quest for
the “minimal genome”) (44).
Empirical studies of the DFE have generally

been either small in scale (45) or focused on
narrow genomic regions (46), and they typi-
cally lack detailed information on the level of
adaptation of a given population to the test
environment. Consequently, it has been diffi-
cult todistinguish among competinghypotheses
about the evolution of the DFE during the
course of adaptation, both at the macroscopic
andmicroscopic levels. Toaddress this challenge,
one would ideally like to measure the relative
fitness of the complete set of genome-wide
mutants at multiple time points along a well-
characterized adaptive trajectory. To do so, we
turned to the Long-Term Evolution Experiment
(LTEE), in which twelve populations of E. coli
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have been serially propagated in a glucose-
limited minimal medium (47) for over 75,000
generations.
To quantify changes in the DFE, we gen-

erated genome-wide transposon insertion li-
braries in strains isolated at several time points
from the LTEE, and we measured relative fit-
ness values using high-resolution, bulk compe-
titions. Such insertions typically lead to losses
of function; by their nature, spontaneous loss-
of-functionmutations occur readily and so our
approach surveys a large (but not complete)
portion of the fitness landscape accessible by
single-step mutations. Of note, we also ob-
served two types of more subtle effects. First,
an insertion in the C terminus of a gene may
cause only a partial loss of function or even a
change in function (48). We observed several
examples of this outcome, including insertions
in this region that were notmerely tolerated but
conferred large fitness benefits (fig. S1). Sec-
ond, the positions of many beneficial insertions,
including in intergenic regions and genes up-
stream of known targets of adaptation in the
LTEE, suggest impacts ongene expression (fig. S1).
Our experimental system covered a large fit-

ness gradient (>70% gains) which was gener-
ated by selection of spontaneousmutations in a
constant environment, with no horizontal gene
transfer (11). It is therefore suitable for detect-
ing evolutionary trends in mutational robust-
ness and the size of the essential gene set.
Moreover, the most important mutations driv-
ing adaptation have been identified from
signatures of parallelism in whole-genome
sequences (49, 50), allowing predictions based
on the DFE at one time point to be compared
with the actual fate of mutations observed
during later evolution. Lastly, by comparing
patterns in changing fitness effects across mul-
tiple independently evolving lineages, we can
characterize the extent to which changes in
the DFE are idiosyncratic or parallel.

Results
High-throughput insertion mutagenesis and
fitness measurements

We performed two sets of experiments that
analyzed the DFEs of many clones from the
LTEE. In one experiment, we focused on changes
inmutational robustness and gene essentiality
during evolution. To do so, we constructed
high-coverage transposon libraries in the LTEE
ancestors (REL606 and REL607) and a clone
isolated from each population (Ara+1 to Ara+6
and Ara−1 to Ara−6) at 50,000 generations. In
the other experiment, we focused on the early,
rapid changes in the properties of the benefi-
cial tail. To that end, we made transposon li-
braries in the ancestor and clones sampled at
2000 and 15,000 generations from two pop-
ulations (Ara+2 and Ara−1), when fitness had
increased by ~25 and ~50%, respectively (11).
In both experiments, we obtained >100,000

unique insertions, disrupting >78% of the
genes with >95% overlap in genes disrupted
in the ancestral and evolved libraries (fig. S2).
We estimated the fitness effects of all these

mutants as selection coefficients, which we
calculated from the frequency trajectories of
every allele based on high-throughput sequenc-
ing during bulk competition assays under the
same conditions as in the LTEE (Fig. 1, Fig. 2A,
and Methods). This sequencing-based approach
resolves the identity of each mutant at the
molecular level; it allows us to interrogate both
overall trends and the microscopic details of
the locally accessible mutational landscape.
We inferred fitness effects relative to a set of
reference mutations, which consisted of inser-
tions in known or presumed neutral loci, in
the same transposon library (Fig. 1D and
Methods). This approach allows relative fit-
ness effects to be compared across the LTEE
strains. The resulting fitness estimates were
highly reproducible between technical repli-
cates and consistent with independent esti-
mates obtained from pairwise competitions
between engineered deletion mutants and
their unmutated parents (fig. S3 and data S1).

No systematic changes in the overall
shape of the DFE

To investigatewhether the overall formchanged
over time, we first compared the DFEs of the
two LTEE ancestors and a clone from each of
the 12 populations evolved independently for
50,000 generations. We excluded two evolved
samples from further analyses because their
fitness measurements were unreliable for tech-
nical reasons and therefore not comparable to
the ancestor. In Ara+4, the within-gene mea-
surement variability for fitness was extremely
high and the correlation between technical
replicates was poor (fig. S4A). In Ara–2, a few
insertionmutations increased rapidly and out-
competed other mutations (fig. S4, B and C),
whichmade themeasurements unreliable and
systematically biased [see supplementary mate-
rials (SM), text 1, formore details]. The exclusion
of populations Ara-2 and Ara+4 from further
analyses does not substantively alter our con-
clusions (fig. S5). Overall, most mutations are
nearly neutral (within ~2 to 3% of neutrality, de-
pending on the strain), but in all cases having a
much heavier tail of deleterious mutations than
beneficial mutations (Fig. 2B), consistent with
previous results (30–32). The aggregate DFEs
for the ancestors and evolved lineswere nearly
identical, except for an excess of mutations
that are beneficial (s > 0.03, an effect reliably
distinguishable from measurement noise) in
the ancestral over the evolved backgrounds
(0.9 versus 0.5% of all mutations, respectively;
Fig. 2C, note the logarithmic scaling). This dif-
ference in the supply of beneficialmutations and
its evolutionary significance are examined in
depth in our second experiment (see below).

There was no systematic directional trend
in how themeans of the DFEs changed during
evolution (t-test based on population means:
P = 0.37). Although the mean fitness effect dif-
fered significantly between the ancestor and
several evolved lines considered individually
(Fig. 2D), these differences varied in their di-
rection (two evolved clones had higher means
than the ancestor and three had lowermeans),
and they are primarily driven by noisy mea-
surements in the deleterious tail (fig. S6). There-
fore, robustness measured as the overall mean
of the DFE of insertion mutations did not sys-
tematically change during the 50,000 genera-
tions of adaptation.
The constancy of the deleterious tail we ob-

serve over time stands in contrast to a study
that measured the DFE for 91 insertion muta-
tions in hybrid yeast genotypes with fitness
values spanning ~20%, in which deleterious
effects were significantly worse in the more-fit
backgrounds (34). A potentially important dif-
ference is that the fitness variation among the
yeast backgrounds was generated by crossing
two distantly related strains, whereas we use a
series of backgrounds from lineages undergoing
adaptation to the same environment in which
we assessed the fitness effects of the newmuta-
tions. In any case, theoretical predictions about
the tail of deleterious mutations differ substan-
tially and have been guided mostly by plausi-
bility arguments (24, 25), and so these studies
collectively help refine currentmodels by clari-
fying their assumptions and narrowing the range
of parameters.

Parallel changes in fitness effects
over evolution

A conserved macroscopic distribution does
not preclude microscopic changes in the
effects of individual mutations. Therefore, we
examined whether and how the fitness effects
of the same insertion mutations varied between
the ancestor and evolved strains.We restricted
this analysis to insertions with fitness effects
s > –0.3 in both the ancestor and evolved
strain, as measurements of extremely delete-
rious effects have more measurement noise.
The fitness effects of some mutations differed
between the ancestral and evolved strains,
with some becoming more deleterious and
others less so (Fig. 3A). Depending on the
evolved strain, between 3 and 6% of the muta-
tions had significantly different fitness effects
from those in the ancestor (Fig. 3B) and 13%
had differential effects in at least one evolved
strain.
We observed significant parallelism across

the independent lineages in the genes with
fitness effects that changed significantly over
evolution. We first examined this possibility
through hierarchical clustering of mutations
that were roughly neutral in the ancestor (s >
–0.05) and clearly deleterious in an evolved
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strain (–0.3 < s < –0.15), and vice versa (Fig. 3,
C and D). Although many such changes were
specific to individual lineages, many others
occurred in parallel across multiple lineages.
To assess whether the observed parallelism
was greater than that expected by chance,
we compared the two complementary cumu-
lative distributions of differential effects of
gene disruptions inmultiple lineages against a
null distribution, whichwe generated by shuffl-
ing the fitness profiles of each population
10,000 times. Both the neutral-to-deleterious
and deleterious-to-neutral transitions occurred
in parallel more often than expected by chance
(Fig. 3E). This outcome was insensitive to the

chosen cutoff values (fig. S7). These parallel
changes across independent lineages indicate
that selection acted, directly or indirectly, to
influence those changes.

Parallel changes in gene essentiality
over evolution

Moving toward the extreme deleterious tail,
we next investigated gene essentiality. Strict
lethality or an absolute inability to replicate
is often difficult to distinguish from extreme
growth defects. For this analysis, we therefore
define a gene as differentially essential between
the ancestor and an evolved clone if (i) the
fitness effect of disruption s > –0.15 in one

strain and s < –0.3 in the other, or (ii) mutants
were absent in the library prior to the bulk
competition in the LTEE medium DM25,
suggesting that the gene was essential in LB
(see SM). This approach ensured that small
changes in fitness effects (say from –0.31 to
–0.29) were not counted as changes in essen-
tiality. Also, our choice of s < –0.3 emerged
from simulated competitions, which indicated
that mutations with deleterious effects of
this magnitude or larger could not be reliably
distinguished from lethality (fig. S8). Using
the cutoff s < –0.3, we detected 557 genes
that were essential in DM25 in the ancestor
(see SM).

Fig. 1. Schematic representation of mutagenesis and fitness assay
pipeline. (A) The Long-Term Evolution Experiment (LTEE) is an ongoing
experiment in which 12 populations of E. coli evolve in and adapt to a glucose-
limited minimal medium. (B) We created transposon libraries in the LTEE
ancestors and clones from the evolving populations by transferring a mariner
transposon with a kanR resistance gene, and selecting transconjugants on
medium containing kanamycin. (C) We then propagated the resulting insertion

libraries for several days in the same minimal medium as used in the LTEE
and quantified the abundance of mutants over time using sequence data.
(D) The abundance trajectories of a set of neutral loci were used to normalize
coverage depth across time points, providing an internal reference to estimate
selection coefficients of mutations (left). The fitness effects for these neutral
loci were closely centered around zero (right). Panels (A) to (C) were created
partially with Biorender.com.
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We found genes that went from non-
essential to essential and vice versa in all the
LTEE lines (Fig. 4A and data S2). We con-
firmed two examples of differential gene essen-
tiality in DM25 using clean deletionmutants in
the ancestor REL606 and Ara−1 (fig. S9 and
data S1). In total, 77 nonessential genes became
essential in at least one evolved lineage and
97 essential genes became nonessential in at
least one lineage, corresponding to ~17% of
the essential genes in the ancestor. However,
many more genes became nonessential in
Ara−6 than in the other evolved lines (Fig.
4C) as a result of gene duplications discussed
below. If we exclude Ara−6, then the non-
essential-to-essential transition ismore common.
Indeed, across the other LTEE populations,
we observed a significant tendency for more
nonessential genes to become essential than
the reverse change (P = 0.0008, Mann-Whitney
U test). This asymmetry suggests that mutation-
al robustness in terms of gene essentiality
typically decreased during the LTEE. Both the
essential-to-nonessential and nonessential-to-
essential transitions occurred in parallel much
more often than expected by chance (Fig. 4D).
This outcome was insensitive to the exact cut-
off values for essentiality (fig. S10) and it per-
sistedwhenwe partitioned essentiality changes
by the culture medium (fig. S11). This parallel
evolution in gene essentiality again implies that
these changes result from selection. It is unclear
how selection would act directly on essentiality;
instead, this parallelism is presumably a cor-
related response to selection on gene expression
or other metabolic traits.
Gene essentiality has previously been asso-

ciatedwith highly expressed genes (51–53). We
therefore examined whether changes in gene
essentiality were associated with altered ex-
pression levels. We used a recently published
RNA-Seq dataset for the LTEE ancestor and
evolved strains at 50,000 generations (54).
Consistent with previous findings, essential
genes have higher expression levels on average
than nonessential genes (fig. S12A). However,
for those genes that became essential or non-
essential during the LTEE, we find no signifi-
cant differences in the normalized expression
levels in the ancestor and evolved strains (fig.
S12B). This result implies that changes in essen-
tiality are not generally related to altered levels
of gene expression.
Changes in gene essentiality could also arise

as by-products of other mutations, especially
losses or gains of other gene functions. Gene
duplications can give rise to robustness by
providing functional redundancy (55), whereas
deletions can increase the essentiality of other
genes by eliminating existing redundancies.
We examined these possibilities by sequencing
the ancestors and 50,000-generation clones
with high coverage (>60-fold) to identify all
large deletions and duplications in the evolved
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Fig. 2. The overall distribution of fitness effects (DFE) is largely unchanged after 50,000 generations.
(A) Frequency trajectories of the whole mutant library in the ancestor (left), and mapping of estimated
fitness effects along the chromosome (right). Colors indicate fitness effects, from deleterious (red) to
beneficial (blue). (B) Ridge plot of the overall DFE in the two LTEE ancestors (Anc, REL606; Anc*, REL607)
(gray), which differ by a neutral marker, and 50,000-generation clones sampled from each population
(blue). We excluded two strains (Ara–2 and Ara+4) from further analyses (see text and fig. S4). The
histograms were smoothed using kernel density estimation and are shown with a linear y-axis. DFEs are only
shown for fitness effects ranging from –0.1 to 0.05, as the density outside these regions is very low.
(C) Comparison of the aggregated DFEs of the ancestral and evolved strains. Here the histograms are plotted
with a logarithmic y-axis to show more clearly the deleterious and beneficial tails of the DFEs. (D) Means
of the DFEs: error bars indicate the 95% confidence interval in the estimate of means given the associated
measurement noise in the bulk fitness assays. Statistically significant differences between the evolved
lines and ancestors after Bonferroni correction for multiple tests are indicated (Z-test; ***P < 0.001, **0.001 <
P < 0.005, *0.005 < P < 0.05).
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nonessential genes (s > –0.3) between the ancestor (REL606) and each evolved
strain. Purple, more deleterious in the ancestor; green, more deleterious in the
evolved strain; Bonferroni corrected P-value < 0.05 (two-tailed Z-test). (B) Fraction
of mutations (with s > –0.3 in both the ancestor and the evolved strain) with
significant differences in fitness effects between the ancestor and each evolved
clone (Bonferroni corrected P-values < 0.05). (C and D) Clustered heatmaps
showing fitness effects (scale at right) of gene disruptions that became roughly

neutral (s > –0.05) or clearly deleterious (–0.3 < s < –0.15) in at least one 50,000-
generation strain. Genes that were deleted during evolution are shown in white.
Genes with mutations conferring fitness effects below –0.3 (the threshold for
essentiality) were set to –0.3 for the clustering and visualization. (E) Parallel changes
in fitness effects. We estimated the expected number of parallel changes from
chance alone by shuffling the profile of changes in fitness effects 10,000 times and
counting how often the same genes had parallel changes (neutral to deleterious
or deleterious to neutral) in at least m populations. The expectation is an average
over 10,000 simulations and therefore can be < 1.
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genomes. We then asked whether changes in
gene essentiality were associated with these
structural variants and their potential effects
on redundancy given homologs in the ancestral
genome (data S3). We found some cases where
structural variantswere associatedwith changes
in gene essentiality. These cases included par-
allel deletions in most lineages that spanned
the rfb operon and caused insertions in some
paralogs to become essential in the evolved
clones (fig. S13A). Formost newly essential genes,
however, we found no evidence that essential-
ity was caused by loss of redundant genes.With
respect to duplications, the genome from pop-
ulation Ara–6 has two large duplications
spanning ~300 and ~25 genes (fig. S13B).
Ara–6 alone accounts for the majority of
transitions from essential-to-nonessential genes
and most of those transitions are found in the
duplicated regions (fig. S13C). Further details
and analyses are provided in the SM (see “Gains

and losses of functional redundancy explain
some, but not most, changes in essentiality”).

Rapid contraction of the beneficial tail
of the DFE

Our first experiment showed substantial changes
in the small but critically important beneficial
tail of the DFE. We therefore conducted ad-
ditional experiments focused specifically on this
tail and how it changed over evolution. Half of
the ~70% fitness gain typically seen at 50,000
generations of the LTEE had already occurred
by 5000 generations (11). We decided therefore
to create transposon libraries in clones sampled
at 2000 (2K) and 15,000 (15K) generations,
when fitness had increased by ~25 and ~50%,
respectively. To increase our resolution near
selective neutrality, we divided each locus into
five segments of equal length and then pooled
the insertions within each segment. This ap-
proach expands the range of potentially

observable beneficial mutations by enabling
detection of polar effects within transcription
units, effects linked to regulatory intergenic
regions, and potentially subtle effects of in-
sertions in theC-termini of protein-coding genes
(fig. S2). As an added benefit, comparing the
fitness effects among segments of the same
locus helps identify potential artifacts and
provides a within-experiment control to quan-
tify the reproducibility of the fitness estimates
(see SM, fig. S14).
We first focused on samples obtained from

population Ara+2. Figure 5, A to C, shows that
the fraction of beneficial insertion mutations
is substantially larger in the ancestor than in
the evolved backgrounds [6.8% for ancestor
(Anc) versus 4.3 and 3.2% for 2K and 15K,
respectively; P < 0.044 both cases, two-sample
Kolmogorov–Smirnov (K-S) test]. By contrast
and in agreement with what we observed for
the 50,000-generation clones, the deleterious
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Fig. 4. Extensive and parallel changes in gene essentiality over evolution.
(A) Number of genes that are differentially essential between the ancestor and
each evolved strain. (B and C) Clustered heatmaps showing fitness effects (scale
at right) of genes that evolved to become essential or nonessential in at least
one 50,000-generation strain. Genes that were deleted during evolution are
shown in white. Genes with mutations conferring fitness effects below –0.3

(the threshold for essentiality) were set to –0.3 for the clustering and visualization.
(D) Parallel changes in gene essentiality. We estimated the expected number of
parallel changes from chance alone by shuffling the profiles of changes in gene
essentiality 10,000 times and counting how often the same genes had altered
essentiality in at least m populations. The expectation is an average over 10,000
simulations and therefore can be < 1.
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fraction is essentially constant across the three
backgrounds (20.5% for Anc versus 21.0% and
19.6 for 2K and 15K, respectively; P > 0.076
both cases, two-sample K-S test). These pat-
terns are consistent with analyses at the level
of individual genes for both beneficial and dele-
terious mutations (Fig. 5D and fig. S15). To exa-
mine whether these results depend on the
particular lineage, we also measured the DFEs
for clones sampled at 2000 and 15,000 gen-
erations from population Ara–1, which accumu-
lated a different set of beneficial mutations
along its independent adaptive trajectory (see
SM, table S1). At least two major features dis-
tinguish the evolutionary history of this line-
age from that of Ara+2. First, Ara–1 fixed a
mutation in topA early in the LTEE.Mutations
in this gene confer among the largest fitness
benefits seen in the LTEE for any single sub-
stitution (56); they fixed in 5 of the 12 popula-
tions but never reached detectable frequency
in Ara+2. Second, Ara–1 evolved a mutator
phenotype whereas Ara+2 retained the low
ancestral mutation rate throughout the exper-
iment; however, Ara–1 became hypermutable
only after ~21,000 generations and hence poses
no added complications to our analysis of the
evolved clones from earlier generations. De-
spite independent histories, we obtained sim-
ilar results for these two lineages, at both the
macroscopic and microscopic levels (fig. S16).
Our findings demonstrate that the contraction
of the beneficial tail of the DFE occurred early
and quickly as adaptation proceeded. Specif-
ically, the small number of beneficial muta-
tions that accumulated during the first 2000
generations were sufficient to have a signif-
icant impact on the adaptive landscape of the
evolving population.

An exponential tail of beneficial mutations
emerged during adaptation

Extreme Value Theory predicts on statistical
grounds that the effects of beneficial mutations
should be exponentially distributed when a
population is well-adapted to its environment
(1, 14). Despite some empirical support (18–20),
the evidence remains inconclusive owing to a
severe limitation of most studies: without
detailed knowledge of a population’s evolu-
tionary history, it is difficult to characterize its
level of adaptation to a particular environment
(21–23). Our data, by contrast, can test these
ideas. We found that beneficial mutations in
the evolved genetic backgrounds are well fit by
an exponential distribution whereas this dis-
tribution is decisively rejected for the ancestor
(P < 0.001 for Anc versus P = 0.571 and P =
0.852 for Ara+2 clones 2K and 15K, respectively;
one-sample K-S test). We considered alternative
distributions, but the exponential provides the
best fit for the evolved backgrounds (see SM,
table S2). Note that the exponential distri-
bution is a special case of both theWeibull and

gamma distributions, so it is not surprising
that the data also fit well to them. These two
distributions can be thought of as natural
transitional shapes before reaching the limit-
ing case of the exponential distribution. In-
deed, the beneficial tail for the ancestor was
fit to different degrees by both gamma and
Weibull distributions (P = 0.035 and P = 0.29,
respectively; one-sample K-S test), consistent
with previous studies of viral and bacterial
genotypes thought to be poorly adapted to
their test environments (19, 21). Overall, our
results support the view that, after an early
period of rapid adaptation to a new environ-
ment, the distribution of beneficial mutations
becomes exponential. Thus, by analyzing changes
in the DFE in a temporal series of genetic
backgrounds becoming better adapted to
their environment, we have reconciled other-
wise disparate pieces of evidence relevant to
general models of adaptation.

Changing identity of beneficial mutations and
sign epistasis

We next sought to understand how changes in
the DFE’s macroscopic structure emerged from
changes at the level of genes andmutations.We
found that during the early phase of adapta-
tion, deleterious mutations typically exhibit
only slight epistasis across the three focal
genetic backgrounds of the Ara+2 lineage
(fig. S15). That is, themagnitude of their harm-
ful effects may vary, but deleterious mutations
in the ancestor tend to remain deleterious in
the evolved backgrounds, consistent with the
observed constancy of the deleterious tail (see
fig. S17 for more details). By contrast, benefi-
cial mutations are dominated by strong sign-
epistatic interactions (Fig. 5D). Only 5.9% of
the mutations beneficial in the ancestor are
still beneficial at 2000 generations, with most
becoming effectively neutral (76.9%) and some
deleterious (17.2%) (Fig. 5E at left). This pat-
tern also holds in the reverse direction: most
beneficial mutations at 2000 generations are
neutral (72.5%) or deleterious (17.9%) in the
ancestor (Fig. 5E at left). Similar patterns oc-
curwhen comparing how fitness effects changed
between 2000 and 15,000 generations (Fig.
5E at right). Given the transitory nature of
beneficial effects, we asked whether the overall
DFE of the initially beneficialmutations retains
even a slightly positive tendency at the later
time points. In fact, it does not. The DFE of mu-
tations that were beneficial in the ancestor
becomes indistinguishable from a random sam-
ple of the parent distribution (Fig. 5F at left), and
the same holds for the reverse scenario (Fig. 5F
at right) (P > 0.085 both cases; two-sample K-S
test). This regression to the mean persists even
whenweaccount formeasurementnoise around
neutrality (fig. S14, C and D).
What explains this turnover in the identity

of the beneficial mutations? In a previous study,

the first five mutations to fix in one LTEE
population were shown to exhibit diminishing-
returns epistasis, such that their benefits de-
clined in magnitude as the background fitness
increased (56). However, it was unlikely a priori
that these five mutations would show sign
epistasis because they were chosen precisely
because their combination was favored by
natural selection (57). By contrast, another study
analyzed the co-occurrence of fixed mutations
across 115 lines of E. coli that evolved under ther-
mal stress and found that sign epistasis was
common (58). Moreover, that study found that
the prevalence of different types of epistasis re-
flected themodular architecture of cellular traits:
mutations affecting different modules tended
to have additive effects whereas those impact-
ing the same module tended to be redundant.
We therefore investigated the extent of mod-
ularity in our data and found that beneficial
mutations in the ancestral background often
occurred repeatedly in the same operons (see
SM, P < 0.01). Mutations in the same operon
typically alter the same cellular process and
often in similar ways and therefore the po-
tential for redundancy at this functional level
provides a simple explanation for why large
sets of beneficial mutations disappear and
other sets emerge as adaptation proceeds. More
generally, the increased prevalence of sign
epistasis with adaptation has also been pre-
dicted from general properties of the genotype-
to-fitness map (59).

Target size is an important predictor of the
genes that accumulate beneficial mutations

We identified a large set of loci that can
produce beneficial mutations, including some
known targets for adaptation in the LTEE
(e.g., topA, pykF, nadR) (49). However, the
fate of beneficial mutations in the course of
evolution is determined not only by their indi-
vidual fitness effects but also by their occurrence
rate and the nature of their interactions with
other beneficial mutations (34, 36, 60–63).
Consequently, only a fraction of all possible
beneficial mutations will contribute to adap-
tation in an evolving population. To gain further
insight into this issue, we compared our data
with metagenomic data previously obtained by
sequencingwhole-population samples from the
12 LTEE populations over the course of 60,000
generations (50). We see a significant but fairly
weak correlation between our fitness estimates
for mutations in the ancestor and the abun-
dance of corresponding alleles during the LTEE
(r = 0.26, Fig. 6A), and this correlation largely
disappears when using the beneficial effects
estimated in the evolved backgrounds. By
contrast, the abundance of alleles in the meta-
genomic data correlates more strongly with
the target size of the locus (r = 0.71, Fig. 6, B
and C, and SM). These patterns are consistent
with intense competition among independently
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arising beneficial mutations (i.e., clonal interfer-
ence), a pervasive phenomenon in the LTEE
(50, 64). Under intense clonal interference, the
rate at which particular beneficial mutations
occur may shape genomic evolution even more
than their fitness effects (65). In any case, the
best linear model includes target size as the
most explanatory single variable but also in-
cludes significant contributions from the fit-

ness effects in both the ancestral and 2000-
generation genetic backgrounds (Fig. 6C and
table S3). Finally, we note that a potentially
important factor contributing to the observed
weak correlations is that our methods involve
insertion mutations, which usually, but not al-
ways (fig. S1), cause losses of function. Although
losses of unused functions have contributed to
adaptation in the LTEE (49, 66), subtle changes

that typically require point mutations have
also been important in refining some func-
tions (35, 49, 67).

Predicting future beneficial mutations as
adaptation proceeds

Given that sign epistasis is widespread, it is
natural to ask for how long the information
about theparticular loci in the beneficial tail of a

Fig. 5. Rapid contraction of the beneficial fraction over the first 15,000
generations. (A) DFEs in the ancestor (black), 2K (red) and 15K (blue)
backgrounds from population Ara+2. Note that the logarithmic scaling of the
y-axis exaggerates minor, nonsignificant differences in the extreme deleterious
tails. (B) Only the beneficial tails underwent substantial changes during evolution,
as indicated by comparing the cumulative fitness distributions for the ancestor
and 2K evolved strain (left), and for the ancestor and 15K strain (right). Shaded
areas show 95% bootstrapped confidence intervals. (C) Beneficial tails rapidly
became exponentially distributed. Histograms show the best fits to exponential
distributions (dashed lines) in the ancestor (gray), 2K (red), and 15K (blue). Note that

all three x-axes use the same scale. (D) The genes and intergenic regions with the most
beneficial alleles in the ancestral background and their fitness effects in the 2K (red)
and 15K (blue) backgrounds. Gray shaded areas indicate members of the same
transcription unit. (E) Most of the beneficial mutations available to the ancestor became
neutral or deleterious in the 2K background (black arrows), whereas most beneficial
mutations available in the 2K background were neutral or deleterious in the ancestor (red
arrows). The same general pattern occurs when comparing beneficial mutations in the
2K and 15K backgrounds (right panel). (F) More than 90% of initially beneficial
mutations became neutral or deleterious in later generations (left), and >90% of
beneficial mutations from later generations were neutral or deleterious in the ancestor.
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DFE can successfully predict the subsequent
steps of adaptation. To address this question,
we used the metagenomic data to record the
alleles nearing fixation through time and
calculated how many corresponded to loci for
whichwe detected beneficial effects.We found
that the ancestral DFE predicted most of
the loci where mutations became dominant
early in the LTEE populations; the predictive
power decays rapidly but it was still evident
for ~15,000 generations (Fig. 6D). This decay
was largely driven by lineages that evolved
hypermutability early in the LTEE; when
these mutator populations are excluded from
the analysis, the ancestral DFE retained sig-
nificant predictive power through 50,000
generations (fig. S18A). In turn, the DFEsmea-
sured in the evolved backgrounds had lower
predictive power and it took longer for their
predictions to materialize; the latter effect
may reflect the declining rate of adaptation.
These patterns corroborate work showing

that parallel genomic evolution was more com-
mon early in the LTEE than in later generations
(49, 68).
Finally,whydoes the ancestral DFEhave such

predictive power, when it is based on inser-
tion mutations that represent only a limited
set of all possible mutations from a functional
standpoint? To address this question, we quan-
tified how many loci with frequent beneficial
mutations in the LTEE include mutations with
presumed loss-of-function effects. To that end,
we assumed that nonsense, frameshift, dele-
tions, and insertions cause losses of function.
We find that these presumptive inactivating
mutations contribute most (>50%) of the early
adaptive mutations in the LTEE, and they
continue to be a sizable fraction over the long
run (~25%, fig. S18B). Of note, another study
withMethylobacterium extorquens adapted to
use methanol as the sole carbon source also
found that most early beneficial mutations
appear to disrupt functions (69). These results

support the “coupon-collecting” model of
rapid evolution (50, 60), in which “rough-and-
ready” loss-of-function mutations dominate
the early phase of adaptation to a new envi-
ronment owing simply to their high rates of
occurrence. Under this model, many initially
beneficial mutations also become redundant
because they inactivate the same functional
module. This model implies that fitness effects
alone are inadequate for predicting adaptive
fixations, but taking target size into account
compensates for this uncertainty. This inter-
pretation satisfactorily explains our findings
that the initial drivers of adaptation are pre-
dictabledespitewidespreadand strong epistasis,
and that target size is an important predictor
of beneficial alleles that fix early when a pop-
ulation encounters a new environment.

Conclusions and Discussion

This paper began as two separate projects per-
formed by two different teams, using similar
but not identical methods. As we discussed
our findings together, we discovered that each
project reinforced and complemented the
other. They reinforce one another by finding
the same evolution of the overall form of the
DFE; they are complementary because one proj-
ect delved deeply into the fine-scale genetic
changes in the deleterious tail while the other
did so for the beneficial tail. Thus, together we
have characterized changes in the DFE over
the course of long-term evolution in a new envi-
ronment at high resolution, including both the
distribution’s overall form and the effects of
specific mutations. At a macroscopic scale, the
idiosyncratic shape of the beneficial tail of the
DFE became truncated, leading to an expo-
nential distribution as predicted by some mod-
els (14, 15). By contrast, there was no discernible
change in the deleterious tail of the DFE, and
mutational robustness—measured as the mean
of the DFE across the replicate populations—
was also unchanged over adaptation, suggesting
that robustness was not under strong direc-
tional selection. With the notable exception of
a population that evolved large duplications
encompassingmany genes, we observed a ten-
dency formore genes to become essential than
nonessential, lending some support to the
“increasing costs”model of epistasis (33, 34),
but this effect disappeared whenwe examined
the entire DFE. Overall, our results paint a
complex picture of changing fitness effects
that no simple model adequately captures.
At a microscopic scale, we found frequent

changes in the fitness effects of particular
mutations, even as the overall statistical prop-
erties of the DFE remained nearly constant.
In the deleterious tail, there were frequent
shifts in the effects of specificmutations (~13%
of those in nonessential genes) over 50,000
generations, with some mutations becoming
more deleterious and others less so. Similarly,

Fig. 6. Determinants of evolutionary outcomes. (A and C) The prevalence of the observed beneficial
mutations in the LTEE is better explained by the mutational target size [(A) area and color of dots represent
fitness] than by the magnitude of beneficial fitness effects measured in the ancestor [(C) area and color
of dots represent target size]. (B) The best linear model for mutation prevalence includes fitness but is more
strongly dependent on the mutational target size (area of dots represents target size and color represents
fitness). (D) The predictive capacity of DFEs as a function of time in the LTEE. Values show the fraction
of numerically dominant alleles at each generation that were captured by the DFE measured in the ancestor
(black), 2K (red), and 15K (blue) backgrounds. For the ancestor, we measured this fraction across all 12
LTEE populations; for the evolved backgrounds, the fraction includes only the focal population. Shaded areas
show the null expectations based on randomly sampled neutral and deleterious mutations.
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we also observed frequent changes in the
identity of beneficial mutations over time, even
over just 2000 generations. This dynamic pat-
tern implies that the beneficial tail of the DFE
is continually replenished by new and function-
ally differentmutations as adaptation proceeds,
even as other mutations lose their advantage.
This shifting set of beneficial mutations over
time helps to explain the sustained gains in
fitness observed over tens of thousands of gen-
erations in the LTEE.
Prior work has shown that gene essentiality

is not a static property of a species; however,
the rate at which it changes is unknown
(37, 41, 42). Here we show that ~3% of the
genome had altered essentiality, which is
similar to the variation in essentiality across
diverse strains of E. coliwhen tested in three
environments and often involving horizontally
transferred genes (39). By contrast, the changes
in gene essentiality that we observe in the
LTEE happened over a much shorter evolu-
tionary timescale, in the absence of any hori-
zontal transfer, and without applying direct
selection to suppress or enhance essentiality.
Our demonstration of the fluid nature of essen-
tiality indicates that the foundation of a mini-
mal autonomous genome should not rely on a
static snapshot of essentiality, because deleting
genes can impact the potential for further
genome reductions.
The ability to predict evolution remains

elusive, in part because it requires a deep
understanding of fitness landscapes and how
they change. We found that the beneficial tail
of the ancestral DFE is strongly predictive of
the actual targets of selection in the LTEE, as
inferred from the mutations nearing fixation
inmetagenomic data, particularly during early
adaptation. This predictability reflects the prom-
inent role that loss-of-function mutations had
early in the LTEE, which seems applicable to
other model systems (60, 61, 63, 69). Over the
long-term, however, pervasive epistasis resulted
in declining predictability of these driver muta-
tions, as the fitness effects of many mutations
changed in magnitude and even their sign.
Consequently, evolutionary paths that were
inaccessible to the ancestor became available,
whereas others were closed off, as reported
recently in protein evolution (70). Because
natural selection has steeredmost of the LTEE
populations along similar trajectories, the paths
that open or close are often the same across
independently evolving lineages. Although we
have shown that insertions capture the effects
of a substantial fraction of the beneficial muta-
tions in the LTEE, other types of mutations
occur in the LTEE that might have more com-
plex effects. For example, point mutations and
structural rearrangements may be more likely
to generate gains or changes of function, which
could lead to more unpredictable outcomes, as
seen with the evolution of citrate utilization in

one of the 12 LTEE lines (71). Taken together,
our results demonstrate the dynamic, but sta-
tistically predictable, nature of mutational fit-
ness effects; they show that some features of
evolutionary trajectories change repeatedly and
predictably over time, even as the macroscopic
features of the fitness landscape remain largely
unchanged.

Methods

We used two suicide-plasmid delivery systems
to construct the transposon libraries in the
ancestor and several evolved clones from the
E. coli long-term evolution experiment (LTEE)
(Table S4). We then passaged the transposon
libraries in DM25, the medium in which the
populations have evolved (47), for 4 to 8 days,
and we then isolated genomic DNA from the
pool of mutants. In the first set of experiments
discussed in the main text, we followed an
approach we refer to as UMI-TnSeq that uses
the mariner transposon carried by the pSC189
plasmid (72, 73). We used this method to dis-
rupt all genes in the ancestor and the 50,000-
generation clonal isolates from all 12 LTEE
populations. The genomic regions adjacent
to the insertion site were captured using a
tagmentation-based approach. To control for
potential PCR bias, we attached unique mo-
lecular identifiers (UMIs) to individual mole-
cules during PCR amplification (see Detailed
Experimental Protocols in SM). In the second
set of experiments, we used the INSeq meth-
odology (74), focusing on the ancestor and the
2000- and 15,000-generation clones from two
LTEE populations, called Ara+2 and Ara–1. We
chose these populations because they neither
evolved hypermutability nor diversified into sta-
bly coexisting lineages during the first 15,000
generations. Many other LTEE populations
evolvedoneorbothof these features,whichwould
complicate testing our hypotheses (50).
After estimating the frequency of insertion

mutants in the transposon libraries from bulk
sequencing over the course of the fitness assays,
we estimated the relative fitness of eachmutant
using linear regression of ln(frequency) of each
mutant against the number of generations of
selection during the assay. In the UMI-TnSeq
analysis, we calculated the fitness effects of
disrupting a given gene by averaging over all
insertion sites in its interior (excluding the
initial 10 and final 25% of the gene). In the
INSeq analysis, we calculated fitness effects
at the level of sub-genic regions by dividing
each locus into five equally sized segments,
while requiring a minimum size of 100 bp
per segment.
There are twomain differences between the

UMI-TnSeq and INSeq approaches. First, polar
effects within transcription units are expected
to bemore accentuatedwith the INSeqapproach,
because the 1.5-Kb insert carries two transcrip-
tional terminators after the kanamycin resist-

ance gene. The second difference concerns how
regions adjacent to the insertion site are iden-
tified. The INSeq transposon encodes recogni-
tion sequences for the restriction enzymeMmeI,
which cuts 20 bp away from its binding site and
thus allows the capture of the 14 bp adjacent to
the insertion site (fig. S19). This approach should
minimize PCR bias because the genomic frag-
ments are of uniform length, thus reducing the
need to add UMIs during PCR. We also per-
formed a replicate experiment with the Ara+2
samples to show that applying the UMI-TnSeq
methodology to the INSeq transposon libraries
yields essentially the same results (fig. S20).
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