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1.1: Thermodynamic Systems
A thermodynamic system—or just simply a system—is a portion of space with defined boundaries that separate it from its
surroundings (see also the title picture of this book). The surroundings may include other thermodynamic systems or physical
systems that are not thermodynamic systems. A boundary may be a real physical barrier or a purely notional one. Typical examples
of systems are reported in Figure  below. 

Figure : Examples of Thermodynamic Systems.

In the first case, a liquid is contained in a typical Erlenmeyer flask. The boundaries of the system are the glass walls of the beaker.
The second system is represented by the gas contained in a balloon. The boundary is a physical barrier also in this case, being the
plastic of the balloon. The third case is that of a thunder cloud. The boundary is not a well-defined physical barrier, but rather some
condition of pressure and chemical composition at the interface between the cloud and the atmosphere. Finally, the fourth case is
the case of an open flame. In this case, the boundary is again non-physical, and possibly even harder to define than for a cloud. For
example, we can choose to define the flame based on some temperature threshold, color criterion, or even some chemical one.
Despite the lack of physical boundaries, the cloud and the flame—as portions of space containing matter—can be defined as a
thermodynamic system.

A system can exchange exclusively mass, exclusively energy, or both mass and energy with its surroundings. Depending on the
boundaries’ ability to transfer these quantities, a system is defined as open, closed, or isolated. An open system exchanges both
mass and energy. A closed system exchanges only energy, but not mass. Finally, an isolated system does not exchange mass nor
energy.

When a system exchanges mass or energy with its surroundings, some of its parameters (variables) change. For example, if a
system loses mass to the surroundings, the number of molecules (or moles) in the system will decrease. Similarly, if a system
absorbs some energy, one or more of its variables (such as its temperature) increase. Mass and energy can flow into the system or
out of the system. Let’s consider mass exchange only. If some molecules of a substance leave the system, and then the same
amount of molecules flow back into the system, the system will not be modified. We can count, for example, 100 molecules
leaving a system and assign them the value of –100 in an outgoing process, and then observe the same 100 molecules going back
into the system and assign them a value of +100. Regardless of the number of molecules present in the system in the first place, the
overall balance will be –100 (from the outgoing process) +100 (from the ingoing process) = 0, which brings the system to its initial
situation (mass has not changed). However, from a mathematical standpoint, we could have equally assigned the label +100 to the
outgoing process and –100 to the ingoing one, and the overall total would have stayed the same: +100–100 = 0. Which of the two
labels is best? For this case, it seems natural to define a mass going out of the system as negative (the system is losing it), and a
mass going into the system as positive (the system is gaining it), but is it as straightforward for energy?

Table 

Type of System Mass
Energy

(either heat or work)

Open Y Y

Closed N Y

1.1.1
1
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Type of System Mass
Energy

(either heat or work)

Isolated N N

Here is another example. Let’s consider a system that is composed of your body. When you exercise, you lose mass in the form of
water (sweat) and CO2 (from respiration). This mass loss can be easily measured by stepping on a scale before and after exercise.
The number you observe on the scale will go down. Hence you have lost weight. After exercise, you will reintegrate the lost mass
by drinking and eating. If you have reinstated the same amount you have lost, your weight will be the same as before the exercise
(no weight loss). Nevertheless, which label do you attach to the amounts that you have lost and gained? Let’s say that you are
running a 5 km race without drinking nor eating, and you measure your weight dropping 2 kg after the race. After the race, you
drink 1.5 kg of water and eat a 500 g energy bar. Overall you did not lose any weight, and it would seem reasonable to label the 2
kg that you’ve lost as negative (–2) and the 1.5 kg of water that you drank and the 500 g bar that you ate as positive (+1.5 +0.5 =
+2). But is it the only way? After all, you didn’t gain nor lose any weight, so why not calling the 2 kg due to exercise +2 and the 2
that you’ve ingested as –2? It might seem silly, but mathematically it would not make any difference, the total would still be zero.
Now, let’s consider energy instead of mass. To run the 5km race, you have spent 500 kcal, which then you reintegrate precisely by
eating the energy bar. Which sign would you put in front of the kilocalories that you “burned” during the race? In principle, you’ve
lost them, so if you want to be consistent, you should use a negative sign. But if you think about it, you’ve put quite an effort to
“lose” those kilocalories, so it might not feel bad to assign them a positive sign instead. After all, it’s perfectly OK to say, “I’ve
done a 500 kcal run today”, while it might sound quite awkward to say, “I’ve done a –500 kcal run today.” Our previous exercise
with mass demonstrates that it doesn’t really matter which sign you put in front of the quantities. As long as you are consistent
throughout the process, the signs will cancel out. If you’ve done a +500 kcal run, you’ve eaten a bar for –500 kcal, resulting in a
total zero loss/gain. Alternatively, if you’ve done a –500 kcal run, you would have eaten a +500 kcal bar, for a total of again zero
loss/gain.

These simple examples demonstrate that the sign that we assign to quantities that flow through a boundary is arbitrary (i.e., we can
define it any way we want, as long as we are always consistent with ourselves). There is no best way to assign those signs. If you
ask two different people, you might obtain two different answers. But we are scientists, and we must make sure to be rigorous. For
this reason, chemists have established a convention for the signs that we will follow throughout this course. If we are consistent in
following the convention, we are guaranteed to never make any mistake with the signs.

The chemistry convention of the sign is system-centric:

If something (energy or mass) goes into the system it has a positive sign (the system is gaining)
If something (energy or mass) goes out of the system it has a negative sign (the system is losing)

If you want a trick to remember the convention, use the weight loss/gain during the exercise example above. You are the system, if
you lose weight, the kilograms will be negative (–2 kg), while if you gain weight, they will be positive (+2 kg). Similarly, if you eat
an energy bar, you are the system, and you will have increased your energy by +500 kcal (positive). In contrast, if you burned
energy during exercise, you are the system, and you will have lost energy, hence –500 kcal (negative). If the system is a balloon
filled with gas, and the balloon is losing mass, you are the balloon, and you are losing weight; hence the mass will be negative. If
the balloon is absorbing heat (likely increasing its temperature and increasing its volume), you are the system, and you are gaining
heat; hence heat will be positive.

1. The photos depicted in this figure are taken from Wikipedia: the Erlenmeyer flasks photo was taken by user Maytouch L., and
distributed under CC-BY-SA license; the cloud photo was taken by user Mathew T Rader, and distributed under CC-BY-SA
license; the flame picture was taken by user Oscar, and distributed under CC-BY-SA license; the balloon photo is in the public
domain. 

2. Notice that physicists use a different sign convention when it comes to thermodynamics. To eliminate confusion, I will not
describe the physics convention here, but if you are reading thermodynamics on a physics textbook, or if you are browsing the
web and stumble on thermodynamics formula (e.g., on Wikipedia), please be advised that some quantity, such as work, might
have a different sign than the one that is used in this textbook. Obviously, the science will not change, but you need to be

 Definition: System-centric

2
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always consistent, so if you decide that you want to use the physics convention, make sure to always use the physics
convention. In this course, on the other hand, we will always use the chemistry one, as introduced above. 

This page titled 1.1: Thermodynamic Systems is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Roberto
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1.2: Thermodynamic Variables
The system is defined and studied using parameters that are called variables. These variables are quantities that we can measure,
such as pressure and temperature. However, don’t be surprised if, on some occasions, you encounter some variable that is a little
harder to measure directly, such as entropy. The variables depend only on the current state of the system, and therefore they define
it. If I know the values of all the “relevant variables” of a system, I know the state of the system. The relationship between the
variables is described by mathematical functions called state functions, while the “relevant variables” are called natural variables.

What are the “relevant variables” of a system? The answer to this question depends on the system, and it is not always
straightforward. The simplest case is the case of an ideal gas, for which the natural variables are those that enter the ideal gas law
and the corresponding equation:

Therefore, the natural variables for an ideal gas are the pressure P, the volume V, the number of moles n, and the temperature T,
with R being the ideal gas constant. Recalling from the general chemistry courses, R is a universal dimensional constant which has
the values of R = 8.31 kJ/mol in SI units. 
We will use the ideal gas equation and its variables as an example to discuss variables and functions in this chapter. We will
analyze more complicated cases in the next chapters. Variables can be classified according to numerous criteria, each with its
advantages and disadvantages. A typical classification is:

Physical variables ( , ,  in the ideal gas law): independent of the chemical composition of the system.
Chemical variables (  in the ideal gas law): dependent on the chemical composition of the system.

Another useful classification is:

Intensive variables ( ,  in the ideal gas law): independent of the physical size (extension) of the system.
Extensive variables ( ,  in the ideal gas law): dependent on the physical size (extension) of the system.

When we deal with thermodynamic systems, it is more convenient to work with intensive variables. Luckily, it is relatively easy to
convert extensive variables into intensive ones by just taking the ratio between the two of them. For an ideal gas, by taking the ratio
between V and n, we obtained the intensive variable called molar volume:

We can then recast Equation  as:

which is the preferred equation that we will use for the remainder of this course. The ideal gas equation connects the 3 variables
pressure, molar volume, and temperature, reducing the number of independent variables to just 2. In other words, once 2 of the 3
variables are known, the other one can be easily obtained using these simple relations:

These equations define three state functions, each one expressed in terms of two independent natural variables. For example,
Equation  defines the state function called “pressure”, expressed as a function of temperature and molar volume. Similarly,
Equation  defines the “molar volume” as a function of temperature and pressure, and Equation  defines the
“temperature” as a function of pressure and molar volume. When we know the natural variables that define a state function, we can
express the function using its total differential, for example for the pressure :

PV = nRT (1.2.1)
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Recalling Schwartz’s theorem, the mixed partial second derivatives that can be obtained from Equation  are the same:

Which can be easily verified considering that:

and

While for the ideal gas law, all the variables are “well-behaved” and always satisfy Schwartz’s theorem, we will encounter some
variable for which Schwartz’s theorem does not hold. Mathematically, if the Schwartz’s theorem is violated (i.e., if the mixed
second derivatives are not equal), then the corresponding function cannot be integrated, hence it is not a state function. The
differential of a function that cannot be integrated cannot be defined exactly. Thus, these functions are called path functions; that is,
they depend on the path rather than the state. The most typical examples of path functions that we will encounter in the next
chapters are heat ( ) and work ( ). For these functions, we cannot define exact differentials  and , and we must introduce
a new notation to define their “inexact differentials”  and .

We will return to exact and inexact differential when we discuss heat and work, but for this chapter, it is crucial to notice the
difference between a state function and a path function. A typical example to understand the difference between state and path
function is to consider the distance between two geographical locations. Let’s, for example, consider the distance between New
York City and Los Angeles. If we fly straight from one city to the other, there are roughly 4,000 km between them. This “air
distance” depends exclusively on the geographical location of the two cities. It stays constant regardless of the method of
transportation that I have accessibility to travel between them. Since the cities’ positions depend uniquely on their latitudes and
longitudes, the “air distance” is a state function, i.e., it is uniquely defined from a simple relationship between measurable
variables. However, the “air distance” is not the distance that I will practically have to drive when I go from NYC to LA. Such
“travel distance” depends on the method of transportation that I decide to take (airplane vs. car vs. train vs. boat vs. …). It will
depend on a plentiful amount of other factors such as the choice of the road to be traveled (if going by car), the atmospheric
conditions (if flying), and so on. A typical “travel distance” by car is, for example, about 4,500 km, which is about 12% more than
the “air distance.” Indeed, we could even design a very inefficient road trip that avoids all highways and will result in a “travel
distance” of 8,000 km or even more (200% of the “air distance”). The “travel distance” is a clear example of a path function
because it depends on the specific path that I decide to travel to go from NYC to LA. See Figure .

Figure : State Functions vs. Path Functions.
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2.1: What is Thermodynamics?
Thermodynamics is the branch of science that deals with heat and work, and their relation to energy. As the definition suggests,
thermodynamics is concerned with two types of energy: heat and work. A formal definition of these forms of energy is as follow:

Work is exchanged if external parameters are changed during the process.
Heat is exchanged if only internal parameters are changed during the process.

As we saw in chapter 1, heat and work are not “well-behaved” quantities because they are path functions. On the one hand, it might
be simple to measure the amount of heat and/or work experimentally, these measured quantities cannot be used to define the state
of a system. Since heat and work are path functions, their values depend directly on the methods used to transfer them (their paths).
Understanding and quantifying these energy transfers is the reason why thermodynamics was developed in the first place. The
origin of thermodynamics dates back to the seventeenth century when people began to use heat and work for technological
applications. These early scientists needed a mathematical tool to understand how heat and work were related to each other, and
how they were related to the other variables that they were able to measure, such as temperature and volume.

Before we even discuss the definition of energy and how it relates to heat and work, it is crucial to introduce the essential concept
of temperature. Temperature is an intuitive concept that has a surprisingly complex definition at the microscopic level.  However,
for all our purposes, it is not essential to have a microscopic definition of temperature, as long as we have the guarantee that this
quantity can be measured unambiguously. In other words, we only need a mathematical definition of temperature that agrees with
the physical existence of thermometers.

1. In fact, we will not even give a rigorous microscopic definition of temperature within this textbook.
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2.2: The Zeroth Law of Thermodynamics
The mathematical definition that guarantees that thermal equilibrium is an equivalence relation is called the zeroth law of
thermodynamics. The zeroth law of thermodynamics states that if two thermodynamic systems are each in thermal equilibrium with
a third one, then they are in thermal equilibrium with each other. The law might appear trivial and possibly redundant, but it is a
fundamental requirement for the mathematical formulation of thermodynamics, so it needs to be stated. The zeroth law can be
summarized by the following simple mathematical relation:

If , and , then .

Notice that when we state the zeroth law, it appears intuitive. However, this is not necessarily the case. Let’s, for example, consider
a pot of boiling water at . Its temperature, , is about 373 K. Let’s now submerge in this water a coin made of wood
and another coin made of metal. After some sufficient time, the wood coin will be in thermal equilibrium with the water, and its
temperature . Similarly, the metal coin will also be in thermal equilibrium with the water, hence .
According to the zeroth law, the temperature of the wood coin and that of the metal coin are precisely the same 

, even if they are not in direct contact with each other. Now here’s the catch: since wood and metal transmit
heat in different manners if I take the coins out of the water and put them immediately in your hands, one of them will be very hot,
but the other will burn you. If you had to guess the temperature of the two coins without a thermometer, and without knowing that
they were immersed in boiling water, would you suppose that they have the same temperature? Probably not.
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 Definition: Zeroth Law of Thermodynamics
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2.3: Calculation of Heat
Heat ( ) is a property that gets transferred between substances. Similarly to work, the amount of heat that flows through a
boundary can be measured, but its mathematical treatment is complicated because heat is a path function. As you probably recall
from general chemistry, the ability of a substance to absorb heat is given by a coefficient called the heat capacity, which is

measured in SI in . However, since heat is a path function, these coefficients are not unique, and we have different ones

depending on how the heat transfer happens.

Processes at constant volume (isochoric) 
The heat capacity at constant volume measures the ability of a substance to absorb heat at constant volume. Recasting from general
chemistry:

The molar heat capacity at constant volume is the amount of heat required to increase the temperature of 1 mol of a substance by 1
K at constant volume.

This simple definition can be written in mathematical terms as:

Given a known value of , the amount of heat that gets transfered can be easily calculated by measuring the changes in
temperature, after integration of Equation \ref{2.3.1:

which, assuming  independent of temperature, simply becomes:

Processes at constant pressure (isobaric) 
Similarly to the previous case, the heat capacity at constant pressure measures the ability of a substance to absorb heat at constant
pressure. Recasting again from general chemistry:

The molar heat capacity at constant pressure is the amount of heat required to increase the temperature of 1 mol of a substance by 1
K at constant pressure.

And once again, this mathematical treatment follows:

which result in the simple formula:
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2.4: Calculation of Work
In thermodynamics, work ( ) is the ability of a system to transfer energy by exerting a force on its surroundings. Work can be
measured simply by evaluating its effects, such as displacing a massive object by some amount of space. The mathematical
treatment of work, however, is complicated because work is a path function. In the following sections, we will analyze how work is
calculated in some prototypical situations commonly encountered in the thermodynamical treatment of systems.

Figure : Isothermal Expansion of an Ideal Gas Against a Constant External Pressure.

Let’s consider the situation in Figure , where a special beaker with a piston that is free to move is filled with an ideal gas. The
beaker sits on a desk, so the piston is not subject to any external forces other than the external pressure, , and the internal
pressure of the gas, .  The piston is initially compressed to a position that is not in equilibrium . After the process, the piston
reaches a final equilibrium position . How do we calculate the work ( ) performed by the system?

From basic physics, we recall that the infinitesimal amount of work associated with an object moving in space is given by the force
acting on the object ( ) multiplied by the infinitesimal amount it gets displaced ( ):

where the negative sign comes from the chemistry sign convention, Definition: System-centric, since the work in Figure  is
performed by the system (expansion). What kind of force is moving the piston? It is the force due to the pressure of the gas.
Relying upon another definition from physics, the pressure is the ratio between the force ( ) and the area ( ) that such force acts
upon:

Obtaining  from Equation  and replacing it in Equation , we obtain:

and considering that  (area times infinitesimal height) is the definition of an infinitesimal volume , we obtain:

If we want to calculate the amount of work performed by a system, , from Equation , we need to recall that  is an
inexact differential. As such, we cannot integrate it from initial to final as for the (exact) differential of a state function, because:

but rather:

where the integration is performed along the path. Using Equation , we can integrate Equation  as:
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where the integral on the left-hand side is taken along the path,  while the integral on the right-hand side can be taken between the
initial and final states, since  is a state function. How do we solve the integral in Equation ? It turns out that there are many
different ways to solve this integral (perhaps not surprisingly, since the left-hand side depends on the path), which we will explore
in the next section.

 and  in processes at constant temperature (isothermal) 

At constant temperature, the piston in Figure  moves along the following PV diagram (this curve is obtained from an ideal gas
at constant  K):

An expansion of the gas will happen between  and . If the expansion happens in a one-step fast process, for example against
external atmospheric pressure, then we can consider such final pressure constant (for example ), and solve the
integral as:

Notice how the work is negative, since during an expansion the work is performed by the system (recall the chemistry sign
convention). The absolute value of the work  represents the red area of the PV-diagram:

If the process happens in two steps by pausing at an intermediate position (1) until equilibrium is reached, then we should calculate
the work by dividing it into two separate processes,  and , and solve each one as we did in the previous case. The first process
is an expansion between  and , with  constant. The absolute value of the work, , is represented by the blue area:
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The second process is an expansion between  and , with  constant. The absolute value of the work for this second
process is represented by the green area:

The total absolute value of the work for the 2-step process is given by the sum of the two areas:

As can be easily verified by comparing the shaded areas in the plots, .
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We can easily extend this procedure to consider processes that happens in 3, 4, 5, …,  steps. What is the limit of this procedure?
In other words, what happens when ? A simple answer is given by the plots in the next Figure, which clearly demonstrates
that the maximum value of the area underneath the curve  is achieved in an -step process, for which the work is
calculated as:

The integral on the right hand side of Equation  can be solved for an ideal gas by calculating the pressure using the ideal gas

law , and solving the integral since , , and  are constant:
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This example demonstrates why work is a path function. If we perform a fast 1-step expansion, the system will perform an amount
of work that is much smaller than the amount of work it can perform if the expansion between the same points happens slowly in
an -step process.

The same considerations that we made up to this point for expansion processes hold specularly for compression ones. The only
difference is that the work associated with compressions will have a positive sign since it must be performed onto the system. As
such, the amount of work for a transformation that happens in a finite amount of steps will be an upper bound to the minimum
amount of work required to compress the system.   for compressions is calculated as the area underneath the PV curve,
exactly as  for expansions in Equation .

1. For this simple thought experiment, we will ignore any external force that is not significant. In other words, we will not
consider the friction of the piston on the beaker walls or any other foreign influence. 

2. from here on we will replace the notation  with the more convenient  and we will keep in mind that the integral of an
inexact differential must be taken along the path. 

3. we use the absolute value to avoid confusions due to the fact that the expansion work is negative according to Definition:
System-centric. 

4. In contrast to a lower bound for expansion processes.
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3.1: Calculation of Internal Energy Changes
The internal energy ( ) of a system is a thermodynamic state function defined as:

Property of a system that can be either transferred or converted.

In the absence of chemical transformations, heat and work are the only two forms of energy that thermodynamics is concerned
with. Keeping in mind Definition: System-Centric, which gives the convention for the signs of heat and work, the internal energy
of a system can be written as:

which we can write in differential form by considering that the internal energy is a state function, as:

which, using eq. 2.4.4 becomes:

Internal energy in isothermal processes
To study the behavior of the internal energy in a process at constant temperature ( ), James Prescott Joule (1818–1889)
created the apparatus depicted in Figure .

Figure : The Joule Expansion Experiment.

The left side of the Joule apparatus’s inner chamber is filled with an ideal gas, while a vacuum is created in the right chamber. Both
chambers are immersed in a water bath, to guarantee isolation from the environment. When the communication channel between
the chambers is open, the gas expands and equilibrates. The work associated with the transformation is:

since the chambers are not in communication with the environment, . Thus, changes in internal energy are associated with
the heat transfer of the process, which can be measured by monitoring the temperature of the gas at the beginning, , and at the
end of the experiment . Joule noticed experimentally that if he used an ideal gas for this experiment, the temperature would not
change . Since the temperature doesn’t change, there is no heat transfer, and therefore the internal energy stays constant:

Notice that Joule’s conclusion is valid only for an ideal gas. If we expand a real gas, we do notice a change in temperature
associated with the expansion. A typical example of this behavior is when you use a pressurized spray bottle and release its
content for an extended time in the air. The container will typically get colder. We will discuss this behavior in chapter 11 when
we will study non-ideal gases.

From this simple experiment, we can conclude that the internal energy of an ideal gas depends only on its temperature.

U

 Definition: Internal Energy

U = Q+W , (3.1.1)

dU = đQ+ đW , (3.1.2)

dU = đQ−PdV . (3.1.3)

dT = 0

3.1.1

3.1.1

đW = − dV = 0,Pext (3.1.4)

= 0Pext

Ti
Tf

=Ti Tf

dU = đQ = 0. (3.1.5)

 Note
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Internal energy in adiabatic processes
An adiabatic process is defined as a process that happens without the exchange of heat. As such, , and the work associated
with an adiabatic process becomes a state function:

which can then be calculated using the formulas that we derived in section 2.4. Notice that isothermal and adiabatic are two very
different processes. While an adiabatic process happens without the exchange of heat across the system’s boundaries, this does not
mean that the system’s temperature does not change. Isothermal processes are usually associated with a heat transfer across the
boundaries to maintain the temperature of the system constant. For adiabatic processes, it is quite the opposite since they are
usually associated with a change in temperature.

Internal energy in isochoric processes

An isochoric process is a process in which the volume does not change. Therefore, , and , which using
Equation 2.3.1, becomes:

Since no work is performed at these conditions, the heat becomes a state function. Equation  also gives a mathematical
justification of the concept of heat capacity at constant volume.  can now be interpreted as the partial derivative (a coefficient)
of a state function (the internal energy):

where we have replaced the total derivative  with a partial one , and we have specified that the derivation happens at constant
volume and number of moles. Equation  equation brings a rigorous definition of heat capacity at constant volume for 1 mol of
substance:

The heat capacity of a substance, , represents its ability to absorb energy at constant volume.

Internal energy in isobaric processes
In an isobaric process, the pressure does not change, hence . Unfortunately, Equation  for this case does not simplify
further, as happened in the two previous cases. However, in section 2.3, we have introduced the useful concept of heat capacity at
constant .  was used in an adiabatic process in the same manner as  was used in the isochoric case. That is, as a coefficient
to measure the amount of heat absorbed at constant pressure. Equation  gave a mathematical definition of  as the partial
derivative of a state function (the internal energy). But if heat capacities are coefficients, and coefficients are partial derivatives of
state functions, how do we explain ? In order to do so, we can introduce a new state function, called the enthalpy ( ), as:

and its differential, calculated as:

which can be rearranged as:

Replacing Equation  into Equation :

which simplifies to:

đQ = 0

dU = đW = −PdV , (3.1.6)

đW = 0 dU = đQV

dU = đ = n dT .QV CV (3.1.7)

3.1.7

CV

= ,CV ( )
∂U

∂T V,n=1

(3.1.8)

d ∂

3.1.8

 Definition: Heat Capacity

CV

dP = 0 3.1.2

P CP CV

3.1.8 CV

CP H

H = U +PV , (3.1.9)

dH = dU +d(PV ) = dU +PdV + ,V dP
  

0

(3.1.10)

dU = dH −PdV , (3.1.11)

3.1.11 3.1.3

dH −PdV = đ −PdV ,QP (3.1.12)

dH = đ .QP (3.1.13)
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Equation  establishes that the heat exchanged at constant pressure is equal to a new state function called the enthalpy, defined
by Equation . It also establishes a mathematical justification of the concept of heat capacity at constant pressure. Similarly to 

,  can now be interpreted as the partial derivative (a coefficient) of the new state function (the enthalpy):

Equation  brings also a rigorous definition of heat capacity at constant pressure for 1 mol of substance:

The heat capacity of a substance, , represents its ability to absorb enthalpy at constant pressure.
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by Roberto Peverati via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.
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CV CP
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3.1.14

 Definition: Heat Capacity
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3.2: The First Law of Thermodynamics
We finally come to a working definition of the first law. If we take an isolated system—i.e., a system that does not exchange heat
nor mass with its surroundings—its internal energy is conserved. If the internal energy is conserved, . Therefore, for an
isolated system:

and heat and work can be easily calculated using any of the appropriate formulas introduced in either section 2.4 or 2.3.

The first law is a conservation law. It is intuitive since it comes directly from Lavoisier’s principle of “nothing is lost, nothing is
created, everything is transformed.” Considering that the only system that is truly isolated is the universe, we can condense the first
law in one simple sentence:

First Law of Thermodynamics: The energy of the universe is conserved.

This page titled 3.2: The First Law of Thermodynamics is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Roberto Peverati via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
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 Definition: First Law of Thermodynamics
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3.3: Reversible and Irreversible Processes
Let’s now consider the cycle in Figure . The process in this case starts from state 1 (system at ), expands to state 2
(system at ), and compresses back to state 1 (system back to ).

Figure : Expansion/Compression Cycle of an Ideal Gas.

Since the process starts and finishes at the same state, the value of the internal energy at the end of the process will be the same as
its value at the beginning, regardless of the path:

where the symbol  indicates an integral around a cycle. Considering the work associated with the cycle, however, the situation is
radically different because it depends on the path that the system is taking, and in general

For instance, if we perform the expansion in one step, the work associated with it will be (using Equation ):

and if we also perform the compression in 1-step: 

With a little bit of math, it is easy to prove that the total work for the entire cycle is:

or, in other words, net work is destroyed.

3.3.1 P1V1

P2V2 P1V1

3.3.1

1

∮ dU = 0, (3.3.1)

∮

đW ≠ 0.∮
path

(3.3.2)

3.3.8 2

= − ( ) < 0,W expansion
1-step P2 −V2 V1

  
>0

(3.3.3)

3

= − ( ) > 0.W compression
1-step P1 −V1 V2

  
<0

(3.3.4)

W
cycle

1-step = +W
expansion

1-step W
compression

1-step

= − ( − ) − ( − )P2 V2 V1 P1 V1 V2

= − ( − ) + ( − )P2 V2 V1 P1 V2 V1

= ( )( ) > 0,−V2 V1
  

>0

−P1 P2
  

>0

(3.3.5)
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In practice, if we want to manually perform this cycle by pushing on the piston by hand, we will notice that it requires more
energy to push down than the amount it gives back when we release it, and it moves back up.

In contrast, if both the expansion and the compression happen in a slow -step manner, the work associated with them will be 
 and , respectively, which are calculated using Equation . The total work related with the cycle will be in this

case:

which means that, in this case, work is not destroyed nor created.

In practice, if we were able to perform this cycle manually by pushing on the piston down by hand, we will notice that it
requires the same amount of energy to push down than the amount it gives back when it moves up.

This process can happen both ways without losses, and is called reversible:

Reversible Process: a process whose direction can be returned to its original position by inducing infinitesimal changes to some
property of the system via its surroundings.

Reversible processes are ideal processes that are hard to realize in practice since they require transformations that happen in an
infinite amount of steps (infinitely slowly).

1. recall that the internal energy is a state function, so its value depends exclusively from the conditions at the beginning and at the
end. In a cycle, we’re going back to the same point, so the conditions at the beginning and at the end are equal by definition. 

2. notice that the work for the expansion is negative, as it should be. 
3. notice that the work for the compression is positive, as it should be. 
4. Definition from: Sears, F.W. and Salinger, G.L. (1986), Thermodynamics, Kinetic Theory, and Statistical Thermodynamics, 3rd

edition (Addison-Wesley.)
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 Note

∞

Wmax Wmin 3.3.14

W
cycle

∞-step = +W
expansion

max W
compression

min

= −nRT ln −nRT ln
Vf

Vi

Vi

Vf

= −nRT = 0,(ln −ln )
Vf

Vi

Vf

Vi
  

=0

(3.3.6)

 Note

 Definition: Reversible Process
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4.1: Reaction Enthalpies
In chapter 3, we have discussed thermodynamical changes in energy in the absence of chemical reactions. When a chemical
reaction takes place, some bonds break and/or some new one form. This process either absorbs or releases the energy contained in
these bonds. For a proper thermodynamic treatment of the system, this extra energy must be included in the net balance.

In this chapter, we will consider the heat associated with chemical reactions. Since most chemical reactions happen at constant
atmospheric pressure (isobaric conditions) in the lab, we can use eq. 3.1.13 to replace the inexact differential of the heat with the
exact differential of the state function called enthalpy. The advantage of this transformation is that it allows us to study the heat
associated with chemical reactions at constant pressure independently of their path. If we call the molecules at the beginning of the
reaction “reactants” and the molecules at the end of the reaction “products,” the heat associated with the reaction (rxn) is defined
as:

For example, if we take a simple reaction of the form:

the heat at constant pressure is equal to the enthalpy of reaction, which is calculated as:

Using the chemistry sign convention, Definition: System-centric, reactions are classified in terms of the sign of their reaction
enthalpies as follows:

 Endothermic reaction (heat is gained by the system). 
 Exothermic reaction (heat is lost by the system).

If we expand the sample reaction to account for its stoichiometry:

where  are the stoichiometric coefficients of species . Equation  can be rewritten as:

while for the most general case we can write it:

where  is the stoichiometric coefficient of species  with its own sign. The signs of the stoichiometric are defined according to
Equation  as:

 is positive if  is a product. 
 is negative if  is a reactant.

This page titled 4.1: Reaction Enthalpies is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Roberto Peverati
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H = − .Δrxn Hproducts Hreactants

A +B → C +D,

= H = − .QP Δrxn ( + )HC HD
  

products

( + )HA HB
  

reactants

(4.1.1)

 Definition: Signs of Reaction Enthalpies

H > 0 ⇒Δrxn

H < 0 ⇒Δrxn

aA +bB → cC +dD ,

a, b, c, d A, B, C, D 4.1.1

= H = − ,QP Δrxn (c +d )HC HD
  

products

(a +b )HA HB
  

reactants

(4.1.2)

H = ,Δrxn ∑
i

νiHi

νi i

4.1.2

 Definition: Signs of the stoichiometric coefficients

νi i

νi i
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4.2: Standard Enthalpies of Formation
In principle, we could use eq. 4.1.3 to calculate the reaction enthalpy associated with any reaction. However, to do so, the absolute
enthalpies  of reactants and products would be required. Unfortunately, absolute enthalpies are not known—and theoretically
unknowable, since this would require an absolute zero for the enthalpy scale, which does not exist.  To prevent this problem,
enthalpies relative to a defined reference state must be used. This reference state is defined at the constituent elements in their
standard state, and the enthalpies of 1 mol of substance in this reference state are called standard enthalpies of formation.

The standard enthalpy of formation of compound , , is the change of enthalpy during the formation of 1 mol of  from
its constituent elements, with all substances in their standard states.

The standard pressure is defined at .  There is no standard temperature, but standard enthalpies of
formation are usually reported at room temperature, . Standard states are indicated with the symbol  and they are
defined for elements as the form in which such element is most stable at standard pressure (for example, for hydrogen, carbon, and
oxygen the standard states are , respectively).

For example, the standard enthalpies of formation of some common compounds at  are calculated from the
following reactions:

A comprehensive list of standard enthalpies of formation of inorganic and organic compounds is also reported in appendix 16.

1. An example of a known absolute zero for a scale is the zero of the temperature scale, a temperature that can be approached only
as a limit from above. No such thing exists for the enthalpy. 

2. prior to 1982 the value of  was used. The two values of  are within 1% of each other, since 1 atm = 101.325
kPa. 

3. There are some exception, such as phosphorus, for which the most stable form at 1 bar is black phosphorus, but white
phosphorus is chosen as the standard reference state for zero enthalpy of formation. For the purposes of this course, however,
we can safely ignore them.

This page titled 4.2: Standard Enthalpies of Formation is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Roberto Peverati via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
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Hi
1

 Definition: Standard Enthalpy of Formation

i Δf H
−⊖−

i i

= 100 kPa = 1 barP −⊖− 2

T = 298.15 K −⊖−

, , and H2(g) C(s,graphite) O2(g)
3

T = 298.15 K

+ →C(s,graphite) O2(g) CO2(g)

+2 →C(s,graphite) H2(g) CH4(g)

+ →H2(g)
1

2
O2(g) H2O(l)

= −394 kJ/molΔf H
−⊖−

CO2(g)

= −75 kJ/molΔf H
−⊖−

CH4(g)

= −286 kJ/molΔf H
−⊖−

H2O(l)

= 1.0atmP −⊖− P −⊖−
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4.3: Hess's Law
The calculation of a standard reaction enthalpy can be performed using the following cycle:

This process is summarized by the simple formula:

Notice how there is a negative sign in front of the enthalpy of formation of the reactants because they are normally defined for the
reactions that go from the elements to the reactants and not vice-versa. To close the cycle in Equation , however, we should go
from the reactants to the elements, and therefore we must invert the sign in front of the formation enthalpies of the reactants.
Equation  can be generalized using the same technique used to derive eq. 4.1.4, resulting in:

which is a mathematical expression of the law that is known as Hess’s Law. Hess’s law is valid at constant pressure because, at
those conditions, the heat of reaction—a path function—is equal to the enthalpy of reaction—a state function. Therefore, the
enthalpy of a reaction depends exclusively on the initial and final state, and it can be obtained via the pathway that passes through
the elements in their standard state (the formation pathway).

Calculate the standard enthalpy of formation at 298 K for the combustion of 1 mol of methane, using the data in eq. 4.2.1.

Answer

The reaction that is under consideration is:

Using Hess’s Law, Equation , the enthalpy of formation for methane is:

whose values are reported in eq. 4.2.1. Notice that the formation enthalpy of  is zero, since it is an element in its
standard state. The final result is:

where the negative sign indicates that the reaction is exothermic (see eq. 4.1.1), as we should expect. The cycle that we
used to solve this exercise can be summarized with :

Notice that at standard pressure and  water is in liquid form. However, when we burn methane, the heat
associated with the exothermic reaction immediately vaporize the water. Substances in different states of matter have
different formation enthalpies, and . The difference between the formation enthalpies of the

same substance in different states represents the latent heat that separates them. For example, for water:

reactants

−ΔfH
−⊖−

reactants

⏐

↓

⏐
⏐
⏐
⏐

"elements in 

products− →−−−
ΔrxnH −⊖−

↑

⏐

⏐
⏐
⏐
⏐

ΔfH
−⊖−

products

their standard reference state"

(4.3.1)

= − .ΔrxnH −⊖− Δf H
−⊖−

products
Δf H

−⊖−
reactants (4.3.2)

4.3.1

4.3.2

= ,ΔrxnH −⊖− ∑
i

νiΔf H
−⊖−

i (4.3.3)

 Exercise 4.3.1

+2 → +2 =?CH4(g) O2(g) CO2(g) H2O(l) Δf H
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CH4(g)

4.3.3
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−⊖−

CO2(g)
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H2O(l)
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CH4(g)
ΔfH

−⊖−
O2(g)

  
=0

O2(g)

= +2 − = −891kJ/mol.ΔrxnH −⊖− −394
  

ΔfH
−⊖−

CO2(g)

(−286)
  

ΔfH
−⊖−
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−⊖−
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↘ ↗ ΔfH
−⊖−

,CO2(g) H2(g)

, ,H2(g) C(s,graphite) O2(g)

T = 298 K

= −242 kJ/molΔfH
−⊖−
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which is the latent heat of vaporization for water, . The latent heat is positive to indicate that the system absorbs
energy in going from the liquid to the gaseous state (and it will release energy when going the opposite direction from gas
to liquid).

This page titled 4.3: Hess's Law is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Roberto Peverati via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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4.4: Calculations of Enthalpies of Reaction at T ≠ 298 K
Standard enthalpies of formation are usually reported at room temperature (  = 298 K), but enthalpies of formation at any
temperature  can be calculated from the values at 298 K using eqs. (2.4) and (3.13):

which, in conjunction with Hess’s Law (Equation ), results in:

with .

Calculate  of the following reaction at 398 K, knowing that  at 298 K is -283.0 kJ/mol, and the following 
values:  = 29 J/(mol K),  = 30 J/(mol K),  = 38 J/(mol K):

Answer

Using Equation  we obtain:

which, assuming that the heat capacities does not depend on the temperature, becomes:

As we notice from this result, a difference in temperature of 100 K translates into a change in  of this reaction of
only 0.6 kJ/mol. This is a trend that is often observed, and values of  are very weakly dependent on changes in
temperature for most chemical reactions. This numerical result can also be compared with the amount that is
experimentally measured for  of this reaction, which is –283.67 kJ/mol. This comparison strongly supports the
assumption that we used to solve the integral in Equation , confirming that the heat capacities are mostly independent
of temperature.

This page titled 4.4: Calculations of Enthalpies of Reaction at T ≠ 298 K is shared under a CC BY-SA 4.0 license and was authored, remixed,
and/or curated by Roberto Peverati via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history
is available upon request.
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CHAPTER OVERVIEW

5: Thermodynamic Cycles
The first law of thermodynamics places no restrictions on the conversion of energy from one form to another. For example, let’s
consider once again the Joule experiment (Figure 3.1.1). If we design a cycle that goes from the gas on the left chamber only to the
gas equilibrated in both chambers and backward, as in Figure , there are no restrictions imposed on this hypothetical cycle by
the first law.

Figure : Closing the Cycle in The Joule Expansion Experiment.

As we saw in section 3.1.1, states 1 and 2 have exactly the same energy at constant temperature. Restricting the analysis to the
information contained in the first law, the ideal gas could hypothetically go from state 1 (all gas in the left chamber) to state 2 (gas
in both chambers), as well as spontaneously close the cycle back from state 2 to state 1, without external intervention. While the
transformation from 1  2 is intuitively spontaneous (it’s the same transformation that we considered in section 3.1.1), the
backward transformation from 2  1 is clearly not as intuitive. In this case, the gas should spontaneously compress back to the left
side, leaving a vacuum on the right chambers, without interventions from the outside. This transformation is clearly never
observed. A gas just does not spontaneously concentrate on one side of a room, leaving a vacuum on the other side. In fact, when
we need to create a vacuum, a lot of energy must be spent. Suppose we use exclusively information contained in the first law. In
this case, there is nothing that might suggest a system’s preference to perform the transformation 1  2, while restricting the 2 
1 from happening spontaneously. Both states have the same energy, and

James Joule himself was indeed convinced that this must be the case and that we don’t observe the backward transformation in
practice only because we cannot build ideal machines.  Another scientist of that era was not convinced. William Thomson, the 1
Baron Kelvin (1824–1907), was unsure about this idea, and invested substantial resources to try to prove Joule’s wrong.

A few years later, the controversy between Joule and Kelvin was redeemed in favor of the latter, thanks to the experiments of
French military engineer Nicolas Léonard Sadi Carnot (1796–1832). The work of Carnot began in France several years before
Joule and Kelvin’s time.  At that time, the importance of steam engines was growing for industrial applications, but a theoretical
perspective was lacking. Carnot was convinced that a scientific understanding of heat engines was necessary to improve their
efficiency.

1. Either because we don’t really have ideal gases, or because we are unable to construct mechanical devices without loss, or in
general because of other experimental factors 

2. Interestingly enough, both Joule and Lord Kelvin are now recognized as key figures in the development of thermodynamics and
science in general. So much so, that the energy unit and the temperature unit in the SI system are named after them.

3. Carnot’s lone book, the Réflexions sur la Puissance Motrice du Feu (“Reflections on the Motive Power of Fire”) was published
in France in 1824, the same year Kelvin was born and just 6 years after Joule’s birth.

5.1: Carnot Cycle

5.1
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→

→

→ →

∮ dU = 0,

1 st

2
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5.2: Energy, Heat, and Work in the Carnot Cycle
5.3: Efficiency of a Carnot Cycle
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5.1: Carnot Cycle
The main contribution of Carnot to thermodynamics is his abstraction of the steam engine’s essential features into a more general
and idealized heat engine. The definition of Carnot’s idealized cycle is as follows:

A Carnot cycle is an idealized process composed of two isothermal and two adiabatic transformations. Each transformation is
either an expansion or a compression of an ideal gas. All transformations are assumed to be reversible, and no energy is lost to
mechanical friction.

A Carnot cycle connects two “heat reservoirs” at temperatures  (hot) and  (low), respectively. The reservoirs have a large
thermal capacity so that their temperatures are unaffected by the cycle. The system is composed exclusively by the ideal gas, which
is the only substance that changes temperature throughout the cycle. If we report the four transformations of a Carnot cycle on a 

 diagram, we obtain the following plot:

Figure : PV-Diagram of a Carnot Cycle.

Stage 1: isothermal expansion  

At this stage heat is released from the hot reservoir and is absorbed by the ideal gas particles within the system. Thus, the
temperature of the system rises. The high temperature causes the gas particles to expand; pushing the piston upwards and doing
work on the surroundings.

 Definition: Carnot Cycle

Th Tl

PV

5.1.1

A → B
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Figure 

Starting the analysis of the cycle from point  in Figure ,  the first transformation we encounter is an isothermal expansion at
. Since the transformation is isothermal:

and heat and work can be calculated for this stage using Equation 2.4.14:

where we denoted  the absolute value of the heat that gets into the system from the hot reservoir.

Stage 2: adiabatic expansion  
At this stage expansion continues, however there is no heat exchange between system and surroundings. Thus, the system is
undergoing adiabatic expansion. The expansion allows the ideal gas particles to cool, decreasing the temperature of the system.

5.1.2

A 5.1.1 1

Th
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Figure 

The second transformation is an adiabatic expansion between  and . Since we are at adiabatic conditions:

and the negative energy (expansion work) can be calculated using:

Stage 3: isothermal compression  

At this stage the surroundings do work on the system which causes heat to be released (qc). The temperature within the system
remains the same. Thus, isothermal compression occurs.

5.1.3

Th Tl
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Tl

Th
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Figure 

The third transformation is an isothermal compression at . The formulas are the same as those used for stage 1, but they will
results in heat and work with reversed signs (since this is a compression):

and:

where  is the absolute value of the heat that gets out of the system to the cold reservoir (  being the heat entering the
system).

Stage 4: adiabatic compression  
No heat exchange occurs at this stage, however, the surroundings continue to do work on the system. Adiabatic compression occurs
which raises the temperature of the system as well as the location of the piston back to its original state (prior to stage one).

5.1.4

Tl

Δ = + = 0 ⇒ = − ,U3 W3

 
>0

Q3

 
<0

Q3 W3

Q3

W3

= | | = nR < 0,Ql Tl ln
VD

VC

  
<0 since  <VD VC

= − = −nR ln > 0,Q3 Tl
VD

VC

| |Ql | |Ql

D → A

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://chem.libretexts.org/@go/page/414051?pdf


5.1.5 https://chem.libretexts.org/@go/page/414051

Figure 

The fourth and final transformation is an adiabatic comprssion that restores the system to point , bringing it from  to .
Similarly to stage 3:

Since we are at adiabatic conditions. The energy associated with this process is now positive (compression work), and can be
calculated using:

Notice how  because .

1.  The stages of a Carnot depicted at the beginning of each of this section and the following three ones are genetaken from
Wikipedia, and have been generated and distributed by Author BlyumJ under CC-BY-SA license. 
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5.2: Energy, Heat, and Work in the Carnot Cycle
Summarizing the results of the previous sections, the total amount of energy for a Carnot cycle is:

which is obviously zero, since . The amounts of work and heat, however, are not zero, since  and  are path functions.
Therefore:

which, considering that , reduces to:

which is negative, because  and . Negative work means that the work is done by the system. In other words, the
system is performing -work by transferring heat from a hot reservoir to a cold one via a Carnot cycle. On the other hand, for the
heat:

which, simplifies to:

and, replacing  and  with the absolute values of the heats drawn from the hot and cold reservoirs, , and  respectively:

or, in other words, more heat is extracted from the hot reservoir than it is put into the cold one. The difference between the absolute
value of these amounts of heat gives the total work of the cycle. This process is depicted in Figure .
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Figure : Carnot Cycle Diagram.

Up to this point, we have discussed Carnot cycles working in the hot  cold direction (         ), since this is
the primary mode of operation of heat engines that produce work. However, a heat engine could also—in principle—work in
the reversed cold  hot direction (         ). Write the equations for heat, work, and energy of each
stage of a Carnot cycle going the opposite direction than the one discussed in sections 5.1 and 5.2.

Answer

When the heat engine works in reverse order, the formulas remain the same, but all the signs in front of , , and  will
be reversed. In this case, the total work would get into the systems, and heat would be transferred from the cold reservoir to
the hot one. Figure  would be modified as: 
This reversed mode of operation is the basic principle behind refrigerators and air conditioning.
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5.3: Efficiency of a Carnot Cycle
The efficiency ( ) of a cycle is defined as the ratio between the absolute value of the work extracted from the cycle ( ) and
the heat that gets into the system ( ):

where the minus sign in front of the work is necessary because the efficiency is defined as a positive number. Replacing Equation
5.2.5 into eq. , we obtain:

If we go back to Equation  and we replace Equation 5.2.3 for  and Equation 5.1.3 for , we obtain:

which proves that the efficiency of a Carnot cycle is strictly smaller than 1.  In other words, no cycle can convert 100% of the heat
into work it extracts from a hot reservoir. This finding had remarkable consequences on the entire thermodynamics field and set the
foundation for the introduction of entropy. We will use eqs.  and  for this purpose in the next chapter, but we conclude
the discussion on Carnot cycles by returning back to Lord Kelvin. In 1851 he used this finding to state his statement “It is
impossible for a self-acting machine, unaided by any external agency, to convey heat from one body to another at a higher
temperature. It is impossible, by means of inanimate material agency, to derive mechanical effect from any portion of matter by
cooling it below the temperature of the coldest of the surrounding objects.”  This statement conclusively disproved Joule’s original
theories and demonstrated that there is some fundamental principle to govern the flow of heat beyond the first law of
thermodynamics.

1. Equation  can be equal to 1 only if  or , two conditions that are both equally impossible. 
2. Thomson W. Transactions of the Royal Society of Edinburgh. 1851 XX 261–268, 289–298..
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CHAPTER OVERVIEW

6: Second Law of Thermodynamics
In chapter 5, we have discussed heat engines as a means of understanding how some processes are spontaneous while others are
not. Carnot’s findings did not just simply inspire Lord Kelvin on this subject, but they also motivated Rudolf Clausius (1822–1888)
to introduce the concept of entropy.

6.1: Entropy
6.2: Irreversible Cycles
6.3: The Second Law of Thermodynamics
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6.1: Entropy
Let’s return to the definition of efficiency of a Carnot cycle and bring together eqs. 5.3.2 and 5.3.3:

Simplifying this equality, we obtain:

or alternatively:

The left hand side of Equation  contains the sum of two quantities around the Carnot cycle, each calculated as , with 

 being the heat exchanged at reversible conditions (recall that according to Definition: Carnot Cycle each transformation in a
Carnot cycle is reversible). Equation  can be generalized to a sequence of connected Carnot cycles joining more than two
isotherms by taking the summation across different temperatures:

Figure 

where the summation happens across a sequence of Carnot cycles that connects different temperatures. Eqs. \label{6.1.3} and 
show that for a Carnot cycle—or a series of connected Carnot cycles—there exists a conserved quantity obtained by dividing the
heat associated with each reversible stage and the temperature at which such heat is exchanged. If a quantity is conserved around a
cycle, it must be independent on the path, and therefore it is a state function. Looking at similar equations, Clausius introduced in
1865 a new state function in thermodynamics, which he decided to call entropy and indicate with the letter :

We can use the new state function to generalize Equation  to any reversible cycle in a -diagram by using the rules of
calculus. First, we will slice  into an infinitesimal quantity:

then we can extend the summation across temperatures of Equation  to a sum over infinitesimal quantities—that is the integral
—around the cycle:
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6.2: Irreversible Cycles
Up to this point, we have discussed reversible cycles only. Notice that the heat that enters the definition of entropy (Definition:
Entropy) is the heat exchanged at reversible conditions since it is only at those conditions that the right-hand side of Equation 6.1.5
becomes a state function. What happens when we face an irreversible cycle? The efficiency of a Carnot cycle in Equation 5.3.3 is
the maximum efficiency that an idealized thermodynamic cycle can reach. As such, any irreversible cycle will incontrovertibly
have an efficiency smaller than the maximum efficiency of the idealized Carnot cycle. Therefore, Equation 6.1.1 for an irreversible
cycle will not hold anymore and must be rewritten as:

and, following the same procedure used in section 6.1, we can rewrite Equation  as:

which can be generalized using calculus to:

Putting eqs. 6.1.6 and  together, we obtain:

where the equal sign holds for reversible transformations exclusively, while the inequality sign holds for irreversible ones. Equation
 is known as Clausius inequality.
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6.3: The Second Law of Thermodynamics
Now we can consider an isolated system undergoing a cycle composed of an irreversible forward transformation (1  2) and a
reversible backward transformation (2  1), as in Figure .

Figure : Spontaneous and Non-Spontaneous Transformations in a Cycle.

This cycle is similar to the cycle depicted in Figure  for the Joule’s expansion experiment. In this case, we have an intuitive
understanding of the spontaneity of the irreversible expansion process, while the non-spontaneity of the backward compression.
Since the cycle has at least one irreversible step, it is overall irreversible, and we can calculate:

We can then use Clausius inequality (Equation 6.2.4) to write:

which can be rearranged as:

where we have used the fact that, for an isolated system (the universe), . Equation  can be rewritten as:

which proves that for any irreversible process in an isolated system, the entropy is increasing. Using Equation  and
considering that the only system that is truly isolated is the universe, we can write a concise statement for a new fundamental law
of thermodynamics:

For any spontaneous process, the entropy of the universe is increasing.
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CHAPTER OVERVIEW

7: Calculation of Entropy and the Third Law of Thermodynamics
The Second Law can be used to infer the spontaneity of a process, as long as the entropy of the universe is considered. To do so, we
need to remind ourselves that the universe can be divided into a system and its surroundings (environment). When we calculate the
entropy of the universe as an indicator of the spontaneity of a process, we need to always consider changes in entropy in both the
system (sys) and its surroundings (surr):

or, in differential form:

7.1: Calculation of ΔSsys
7.2: Calculation of ΔSsurr
7.3: Clausius Theorem
7.4: The Third Law of Thermodynamics

This page titled 7: Calculation of Entropy and the Third Law of Thermodynamics is shared under a CC BY-SA 4.0 license and was authored,
remixed, and/or curated by Roberto Peverati via source content that was edited to the style and standards of the LibreTexts platform; a detailed
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7.1: Calculation of ΔSsys
In general  can be calculated using either its Definition: Entropy, or its differential formula, Equation 6.1.5. In practice, it is
always convenient to keep in mind that entropy is a state function, and as such it does not depend on the path. For this reason, we
can break every transformation into elementary steps, and calculate the entropy on any path that goes from the initial state to the
final state, such as, for example:

with  calculated at constant , and  at constant . The most important elementary steps from which we can
calculate the entropy resemble the prototypical processes for which we calculated the energy in section 3.1.

Entropy in isothermal processes 
For an ideal gas at constant temperature , and . Using the formula for  in either Equation (??)
or Equation (??), we obtain:

or, similarly:

A phase change is a particular case of an isothermal process that does not follow the formulas introduced above since an ideal
gas never liquefies. The entropy associated with a phase change at constant pressure can be calculated from its definition,
remembering that . For example for vaporizations:

with  being the enthalpy of vaporization of a substance, and  its boiling temperature.

It is experimentally observed that the entropies of vaporization of many liquids have almost the same value of:

which corresponds in SI to the range of about 85–88 J/(mol K). This simple rule is named Trouton’s rule, after the French scientist
that discovered it, Frederick Thomas Trouton (1863-1922).

Calculate the standard entropy of vaporization of water knowing , as calculated in Exercise 4.3.1.

Answer

Using Equation —and knowing that at standard conditions of  the boiling temperature of water is 373 K
—we calculate:

The entropy of vaporization of water is far from Trouton’s rule range of 85–88 J/(mol K) because of the hydrogen bond
interactions between its molecules. Other similar exceptions are ethanol, formic acid, and hydrogen fluoride.
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Entropy in adiabatic processes 

Since adiabatic processes happen without the exchange of heat, , it would be tempting to think that  for every
one of them. A transformation at constant entropy (isentropic) is always, in fact, a reversible adiabatic process. However, the
opposite case is not always true, and an irreversible adiabatic transformation is usually associated with a change in entropy. To
explain this fact, we need to recall that the definition of entropy includes the heat exchanged at reversible conditions only.
Therefore, for irreversible adiabatic processes . The calculation of the entropy change for an irreversible adiabatic
transformation requires a substantial effort, and we will not cover it at this stage. The situation for adiabatic processes can be
summarized as follows:

Entropy in isochoric processes 
We can calculate the heat exchanged in a process that happens at constant volume, , using Equation 2.3.2. Since the heat
exchanged at those conditions equals the energy (Equation 3.1.7), and the energy is a state function, we can use  regardless of
the path (reversible or irreversible). The entropy associated with the process will then be:

which, assuming  independent of temperature and solving the integral on the right-hand side, becomes:

Entropy in isobaric processes 
Similarly to the constant volume case, we can calculate the heat exchanged in a process that happens at constant pressure, ,
using Equation 2.3.4. Again, similarly to the previous case,  equals a state function (the enthalpy), and we can use it regardless
of the path to calculate the entropy as:

which, assuming  independent of temperature and solving the integral on the right-hand side, becomes:
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7.2: Calculation of ΔSsurr
While the entropy of the system can be broken down into simple cases and calculated using the formulas introduced above, the
entropy of the surroundings does not require such a complicated treatment, and it can always be calculated as:

or, in differential form:

where the substitution  can be performed regardless of whether the transformation is reversible or not. In other
words, the surroundings always absorb heat reversibly. To justify this statement, we need to restrict the analysis of the interaction
between the system and the surroundings to just the vicinity of the system itself. Outside of a generally restricted region, the rest of
the universe is so vast that it remains untouched by anything happening inside the system.  To facilitate our comprehension, we
might consider a system composed of a beaker on a workbench. We can then consider the room that the beaker is in as the
immediate surroundings. To all effects, the beaker+room combination behaves as a system isolated from the rest of the universe.
The room is obviously much larger than the beaker itself, and therefore every energy production that happens in the system will
have minimal effect on the parameters of the room. For example, an exothermal chemical reaction occurring in the beaker will not
affect the overall temperature of the room substantially. When we study our reaction,  will be constant, and the transfer of heat
from the reaction to the surroundings will happen at reversible conditions.

Calculate the changes in entropy of the universe for the process of 1 mol of supercooled water, freezing at –10°C, knowing the
following data: , , , and assuming both  to be
independent on temperature.

Answer

 for the process under consideration can be calculated using the following cycle:

 and  are the isobaric heating and cooling processes of liquid and solid water, respectively, and can be calculated
filling the given data into Equation 7.1.12.  is a phase change (isothermal process) and can be calculated translating
Equation 7.1.6 to the freezing transformation. Overall:

Don’t be confused by the fact that  is negative. This is not the entropy of the universe! Hence it tells nothing about
spontaneity! We can now calculate  from , noting that we can calculate the enthalpy around the same cycle in
Equation . To do that, we already have  from the given data, and we can calculate  and  using
Equation 2.3.4.
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Bringing  and  results together, we obtain:

Since the entropy changes in the universe are positive, the process is spontaneous, as expected.

1. Even if we think at the most energetic event that we could imagine happening here on earth—such as the explosion of an atomic
bomb or the hit of a meteorite from outer space—such an event will not modify the average temperature of the universe by the
slightest degree.
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7.3: Clausius Theorem
By replacing Equation 7.2.2 into 7.2 we can write the differential change in the entropy of the system as:

According to the second law, for any spontaneous process , and therefore, replacing it into Equation :

which is the mathematical expression of the so-called Clausius theorem. Eq.  distinguishes between three conditions:

Clausius theorem provides a useful criterion to infer the spontaneity of a process, especially in cases where it’s hard to calculate 
. Eq.  requires knowledge of quantities that are dependent on the system exclusively, such as the difference in

entropy, the amount of heat that crosses the boundaries, and the temperature at which the process happens.  If a process produces
more entropy than the amount of heat that crosses the boundaries divided by the absolute temperature, it will be spontaneous. Vice
versa, if the entropy produced is smaller than the amount of heat crossing the boundaries divided by the absolute temperature, the
process will be non-spontaneous. The equality holds for systems in equilibrium with their surroundings, or for reversible processes
since they happen through a series of equilibrium states. Measuring or calculating these quantities might not always be the simplest
of calculations. We will return to the Clausius theorem in the next chapter when we seek more convenient indicators of spontaneity.

1. In cases where the temperature of the system changes throughout the process,  is just the (constant) temperature of its
immediate surroundings, , as explained in section 7.2.
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7.4: The Third Law of Thermodynamics
In chapter 4, we have discussed how to calculate reaction enthalpies for any reaction, given the formation enthalpies of reactants
and products. In this section, we will try to do the same for reaction entropies. In this case, however, our task is simplified by a
fundamental law of thermodynamics, introduced by Walther Hermann Nernst (1864–1941) in 1906.  The statement that was
initially known as Nernst’s Theorem is now officially recognized as the third fundamental law of thermodynamics, and it has the
following definition:

The entropy of a perfectly ordered, pure, crystalline substance is zero at .

This law sets an unambiguous zero of the entropy scale, similar to what happens with absolute zero in the temperature scale. The
absolute value of the entropy of every substance can then be calculated in reference to this unambiguous zero. As such, absolute
entropies are always positive. This is in stark contrast to what happened for the enthalpy. An unambiguous zero of the enthalpy
scale is lacking, and standard formation enthalpies (which might be negative) must be agreed upon to calculate relative differences.

In simpler terms, given a substance , we are not able to measure absolute values of its enthalpy  (and we must resort to known
enthalpy differences, such as  at standard pressure). At the same time, for entropy, we can measure  thanks to the third
law, and we usually report them as . A comprehensive list of standard entropies of inorganic and organic compounds is reported
in appendix 16. Reaction entropies can be calculated from the tabulated standard entropies as differences between products and
reactants, using:

with  being the usual stoichiometric coefficients with their signs given in Definition: Signs of the Stoichiometric Coefficients.

The careful wording in the definition of the third law Definition: Third Law of Thermodynamics allows for the fact that some
crystal might form with defects (i.e., not as a perfectly ordered crystal). In this case, a residual entropy will be present even at 

. However, this residual entropy can be removed, at least in theory, by forcing the substance into a perfectly ordered
crystal.

An interesting corollary to the third law states that it is impossible to find a procedure that reduces the temperature of a substance to
 in a finite number of steps. 

1. Walther Nernst was awarded the 1920 Nobel Prize in Chemistry for his work in thermochemistry. 
2. A procedure that—in practice—might be extremely difficult to achieve.
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8.1: Fundamental Equation of Thermodynamics
Let’s summarize some of the results from the first and second law of thermodynamics that we have seen so far. For reversible
processes in closed systems:

Equation  is called the fundamental equation of thermodynamics since it combines the first and the second laws. Even
though we started the derivation above by restricting to reversible transformations only, if we look carefully at Equation , we
notice that it exclusively involves state functions. As such, it applies to both reversible and irreversible processes. The fundamental
equation, however, remains constrained to closed systems. This fact restricts its utility for chemistry, since when a chemical
reaction happens, the mass in the system will change, and the system is no longer closed.

At the end of the 19  century, Josiah Willard Gibbs (1839–1903) proposed an important addition to the fundamental equation to
account for chemical reactions. Gibbs was able to do so by introducing a new quantity that he called the chemical potential:

The chemical potential is the amount of energy absorbed or released due to a change of the particle number of a given chemical
species.

The chemical potential of species  is usually abbreviated as , and it enters the fundamental equation of thermodynamics as:

where  is the differential change in the number of moles of substance , and the summation extends over all chemical species in
the system.

According to the fundamental equation, the internal energy of a system is a function of the three variables entropy, , volume, ,
and the numbers of moles .  Because of their importance in determining the internal energy, these three variables are crucial in
thermodynamics. Under several circumstances, however, they might not be the most convenient variables to use.  To emphasize the
important connections given by the fundamental equation, we can use the notation  and we can term , , and 
natural variables of the energy.

1. In the case of the numbers of moles we include them in curly brackets to indicate that there might be more than one, depending
on how many species undergo chemical reactions. 

2. For example, we don’t always have a simple way to calculate or to measure the entropy. 
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8.2: Thermodynamic Potentials
Starting from the fundamental equation, we can define new thermodynamic state functions that are more convenient to use under
certain specific conditions. The new functions are determined by using a mathematical procedure called the Legendre
transformation. A Legendre transformation is a linear change in variables that brings from an initial mathematical function to a new
function obtained by subtracting one or more products of conjugate variables.

Taking the internal energy as defined in Equation 8.1.1, we can perform such procedure by subtracting products of the following
conjugate variables pairs:  or . This procedure aims to define new state functions that depend on more
convenient natural variables.  The new functions are called “thermodynamic potential energies,” or simply thermodynamic
potentials.  An example of this procedure is given by the definition of enthalpy that we have already seen in section 3.1.4. If we
take the internal energy and subtract the product of two conjugate variables (  and ), we obtain a new state function called
enthalpy, as we did in Equation 3.1.9). Taking the differential of this definition, we obtain:

and using the fundamental equation, Equation 8.1.2, to replace , we obtain:

which is the fundamental equation for enthalpy. The natural variables of the enthalpy are , , and . The Legendre
transformation has allowed us to go from  to  by replacing the dependence on the extensive variable, 

, with an intensive one, .

Following the same procedure, we can perform another Legendre transformation to replace the entropy with a more convenient
intensive variable such as the temperature. This can be done by defining a new function called the Helmholtz free energy, , as:

which, taking the differential and using the fundamental equation (Equation ) becomes:

The Helmholtz free energy is named after Hermann Ludwig Ferdinand von Helmholtz (1821—1894), and its natural variables are
temperature, volume, and the number of moles.

Finally, suppose we perform a Legendre transformation on the internal energy to replace both the entropy and the volume with
intensive variables. In that case, we can define a new function called the Gibbs free energy, , as:

which, taking again the differential and using Equation  becomes:

The Gibbs free energy is named after Willard Gibbs himself, and its natural variables are temperature, pressure, and number of
moles.

A summary of the four thermodynamic potentials is given in the following table.

Table 
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Name Symbol Fundamental Equation Natural Variables

Energy

Enthalpy

Helmholtz Free Energy

Gibbs Free Energy

The thermodynamic potentials are the analog of the potential energy in classical mechanics. Since the potential energy is
interpreted as the capacity to do work, the thermodynamic potentials assume the following interpretations:

Internal energy ( ) is the capacity to do work plus the capacity to release heat.
Enthalpy ( ) is the capacity to do non-mechanical work plus the capacity to release heat.
Gibbs free energy ( ) is the capacity to do non-mechanical work.
Helmholtz free energy ( ) is the capacity to do mechanical plus non-mechanical work.

Where non-mechanical work is defined as any type of work that is not expansion or compression ( –work). A typical example
of non-mechanical work is electrical work.

1. The mathematical condition that is fulfilled when performing a Legendre transformation is that the first derivatives of the
original function and its transformation are inverse functions of each other. 

2. The rigorous mathematical definition of conjugate variables is unimportant at this stage. However, we can relate the variables in
a pair with basic physics by noticing how the first variable in a pair is always intensive (  and ), while the second one is
always extensive (  and ). The intensive variables represent thermodynamic driving forces (as compared with mechanical
forces in classical mechanics), while the extensive ones are the thermodynamic displacements (as compared with spatial
displacements in classical mechanics). Similarly to classical mechanics, the product of two conjugate variables in a pair yields
an energy. The minus sign in front of  is explained by the fact that an increase in the force should always correspond to an
increase in the displacement (while  and  are inversely related). 

3. Even if we introduced both concepts in the same chapter, it is important to never confuse the thermodynamic potentials—which
are potential energy functions—with the chemical potential—which have been introduced by Gibbs to study heat in chemical
reactions. 

4. For the mathematically inclined, an entertaining method to summarize the same thermodynamic potentials is the
thermodynamic square.
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8.3: Free Energies
The Legendre transformation procedure translates all information contained in the original function to the new one. Therefore, 

, , and  all contain the same information that is in . However, the new
functions depend on different natural variables, and they are useful at different conditions. For example, when we want to study
chemical changes, we are interested in studying the term  that appears in each thermodynamic potential. To do so, we
need to isolate the chemical term by keeping all other natural variables constant. For example, changes in the chemical term will
correspond to changes in the internal energy at constant  and constant :

Similarly:

The latter two cases are particularly interesting since most of chemistry happens at either constant volume,  or constant pressure.
Since  is not a requirement for both free energies to describe chemical changes, we can apply either of them to study non-
isentropic processes. If a process is not isentropic, it either increases the entropy of the universe, or it decreases it. Therefore—
according to the second law—it is either spontaneous or not. Using this concept in conjunction with Clausius theorem, we can
devise new criteria for inferring the spontaneity of a process that depends exclusively on the free energies.

Recalling Clausius theorem:

we can consider the two cases: constant  ( , left), and constant  ( , right):

we can then simplify the definition of free energies, eqs. 8.2.4 and 8.2.6:

and by merging  and  from eqs.  into Clausius theorem expressed using eqs. , we obtain:

These equations represent the conditions on  and  for inferring the spontaneity of a process, and can be summarized as
follows:

H(S,P , { })ni A(T ,V , { })ni G(T ,P , { })ni U(S,V , { })ni

d∑i μi ni

S V

dU(S,V , { }) = d if dS = dV = 0.ni ∑
i

μi ni (8.3.1)

dH(S,P , { }) = d if dS = dP = 0,ni ∑
i

μi ni

dA(T ,V , { }) = d if dT = dV = 0,ni ∑
i

μi ni

dG(T ,P , { }) = d if dT = dP = 0.ni ∑
i

μi ni

(8.3.2)

1 2

dS = 0

d ≥ ⟶ TdS ≥ đQ,S sys đQ

Tsurr
(8.3.3)

V đ = dUQV P đ = dHQP

constant

TdS

TdS−dU

V :
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During a spontaneous process at constant temperature and volume, the Helmholtz free energy will decrease , until it
reaches a stationary point at which the system will be at equilibrium . 
During a spontaneous process at constant temperature and pressure, the Gibbs free energy will decrease , until it
reaches a stationary point at which the system will be at equilibrium .

Figure : Behavior of Helmholtz (red) and Gibbs (blue) Free Energies for Spontaneous Processes at Constant  (left) and
Constant  (right).

1. for example, several industrial processes in chemical plants. 
2. for example, most processes in a chemistry lab.
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8.4: Maxwell Relations
Let’s consider the fundamental equations for the thermodynamic potentials that we have derived in section 8.1:

From the knowledge of the natural variable of each potential, we could reconstruct these formulas by using the total differential
formula:

we can derive the following new definitions:

Since , , , and  are now defined as partial first derivatives of a thermodynamic potential, we can now take a second partial
derivation with respect to a separate variable, and rely on Schwartz’s theorem to derive the following relations:
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The relations in  are called Maxwell relations,  and are useful in experimental settings to relate quantities that are hard to
measure with others that are more intuitive.

Derive the last Maxwell relation in Equation .

Answer

We can start our derivation from the definition of  and  as a partial derivative of :

and then take a second partial derivative of each quantity with respect to the second variable:

These two derivatives are mixed partial second derivatives of  with respect to  and , and therefore, according to
Schwartz’s theorem, they are equal to each other:

which is the last of Maxwell relations, as defined in Equation . This relation is particularly useful because it connects

the quantity —which is impossible to measure in a lab—with the quantity —which is easier to

measure from an experiment that determines isobaric volumetric thermal expansion coefficients.

1. Maxwell relations should not be confused with the Maxwell equations of electromagnetism.
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1

CHAPTER OVERVIEW

9: Gibbs Free Energy
In this chapter, we will concentrate on chemical processes that happen at constant  and constant .  As such, we will focus our
attention on the Gibbs free energy.

1. The majority of chemical reactions in a lab happens at those conditions, and all biological functions happen at those conditions
as well.

9.1: Gibbs Equation
9.2: Temperature Dependence of ΔG
9.3: Pressure Dependence of ΔG
9.4: Composition Dependence of ΔG
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9.1: Gibbs Equation
Recalling from chapter 8, the definition of  is:

which, taking the differential at constant  and , becomes:

Integrating Equation  between the initial and final states of a process results in:

which is the famous Gibbs equation for . Using Definition: Spontaneous Process, we can use  to infer the spontaneity of a
chemical process that happens at constant  and  using . If we set ourselves at standard conditions, we can calculate the
standard Gibbs free energy of formation, , for any reaction as:

where  are the standard enthalpies of formation,  are the standard entropies, and  are the stoichiometric coefficients for
every species  involved in the reaction. All these quantities are commonly available, and we have already discussed their usage in
chapters 4 and 7, respectively.

The following four options are possible for  of a chemical reaction:

Spontaneous?

– if – + Always

+ if + – Never

–/+ if – – Depends on : 

+/– if + + Depends on : 

Or, in other words:

Exothermic reactions that increase the entropy are always spontaneous.
Endothermic reactions that reduce the entropy are always non-spontaneous.
For the other two cases, the spontaneity of the reaction depends on the temperature:

Exothermic reactions that reduce the entropy are spontaneous at low .
Endothermic reactions that increase the entropy are spontaneous at high .

A simple criterion to evaluate the entropic contribution of a reaction is to look at the total number of moles of the reactants and the
products (as the sum of the stoichiometric coefficients). If the reaction is producing more molecules than it destroys 

, it will increase the entropy. Vice versa, if the total number of moles in a reaction is reducing 

, the entropy will also reduce.

As we saw in section 8.2, the natural variables of the Gibbs free energy are the temperature, , the pressure, , and chemical
composition, as the number of moles . The Gibbs free energy can therefore be expressed using the total differential as (see
also, last formula in Equation 8.4.2):

G

G= U −TS+PV = H −TS,

T P

dG= dH −TdS = dH −TdS.−SdT
  

=0

9.1.1

dG∫
f

i

ΔG

= dH −T dS∫
f

i

∫
f

i

= ΔH −TΔS

(9.1.1)

ΔG ΔG

T P ΔG≤ 0

ΔrxnG
−⊖−

ΔrxnG
−⊖− = −TΔrxnH

−⊖− ΔrxnS
−⊖−

= +T ,∑
i

νiΔfH
−⊖−
i ∑

i

νiS
−⊖−
i

ΔfH
−⊖−
i S−⊖−

i νi
i

1

ΔG−⊖−

ΔG−⊖− ΔH−⊖− ΔS−⊖−

T

spontaneous at low T

T

spontaneous at high T

T

T

( > | |)∣∣∑products νi∣∣ ∑reactants νi

( < | |)∣∣∑products νi∣∣ ∑reactants νi

T P

{ }ni

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://chem.libretexts.org/@go/page/414069?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/The_Live_Textbook_of_Physical_Chemistry_(Peverati)/09%3A_Gibbs_Free_Energy/9.01%3A_Gibbs_Equation
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/The_Live_Textbook_of_Physical_Chemistry_(Peverati)/08%3A_Thermodynamic_Potentials/8.03%3A_Free_Energies
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/The_Live_Textbook_of_Physical_Chemistry_(Peverati)/04%3A_Thermochemistry
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/The_Live_Textbook_of_Physical_Chemistry_(Peverati)/07%3A_Calculation_of_Entropy_and_the_Third_Law_of_Thermodynamics
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/The_Live_Textbook_of_Physical_Chemistry_(Peverati)/08%3A_Thermodynamic_Potentials/8.02%3A_Thermodynamic_Potentials


9.1.2 https://chem.libretexts.org/@go/page/414069

If we know the behavior of  as we vary each of the three natural variables independently of the other two, we can reconstruct the
total differential . Each of these terms represents a coefficient in Equation , which are given in Equation 8.4.3.

1.  It is not uncommon to see values of  tabulated alongside  and , which simplifies even further the calculation. In
fact, a comprehensive list of standard Gibbs free energy of formation of inorganic and organic compounds is reported in the
appendix of this book 16. For cases where  are not reported, they can always be calculated by their constituents.
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9.2: Temperature Dependence of ΔG

Let’s analyze the first coefficient that gives the dependence of the Gibbs energy on temperature. Since this coefficient is equal to 
 and the entropy is always positive,  must decrease when  increases at constant  and , and vice versa.

If we replace this coefficient for  in the Gibbs equation, Equation 9.1.3, we obtain:

and since Equation  includes both  and its partial derivative with respect to temperature  we need to

rearrange it to include the temperature derivative only. To do so, we can start by evaluating the partial derivative of  using

the chain rule:

which, replacing  from Equation  into Equation , becomes:

which simplifies to:

Equation  is known as the Gibbs–Helmholtz equation, and is useful in its integrated form to calculate the Gibbs free energy
for a chemical reaction at any temperature  by knowing just the standard Gibbs free energy of formation and the standard
enthalpy of formation for the individual species, which are usually reported at . The integration is performed as follows:

giving the integrated Gibbs–Helmholtz equation:
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9.3: Pressure Dependence of ΔG

We can now turn the attention to the second coefficient that gives how the Gibbs free energy changes when the pressure change. To
do this, we put the system at constant  and , and then we consider infinitesimal variations of . From Equation 8.2.6:

which is the differential equation that we were looking for. To study changes of  for macroscopic changes in , we can integrate
Equation  between initial and final pressures, and considering an ideal gas, we obtain:

If we take , we can rewrite Equation  as:

which is useful to convert standard Gibbs free energies of formation at pressures different than standard pressure, using:

For liquids and solids,  is essentially independent of  (liquids and solids are incompressible), and Equation  can be
integrated as:

The plots in Figure  show the remarkable difference in the behaviors of  for a gas and for a liquid, as obtained from eqs. 
 and .
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Figure : Dependence of the Gibbs Free Energy of Formation of Liquid and Gaseous Ethanol at T = 310 K. The Curves Cross
at the Vapor Pressure of Liquid Ethanol at this Temperature, which is 0.1 bar.
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9.4: Composition Dependence of ΔG

The third and final coefficient gives the chemical potential as the dependence of  on the chemical composition at constant  and 
. Similarly to the previous cases, we can take the definition of the coefficient and integrate it directly between the initial and final

stages of a reaction. If we consider a reaction product, pure substance , at the beginning of the reaction there will be no moles of it 
, and consequently .  We can then integrate the left-hand side between zero and the number of moles of product at the

end of the reaction, , and the right-hand side between zero and the Gibbs free energy of the product, . The integral will become:

where  indicates the chemical potential of a pure substance, which is independent on the number of moles by definition. As such,
Equation  becomes:

which gives a straightforward interpretation of the chemical potential of a pure substance as the molar Gibbs free energy.

We can start from Equation 9.3.3 and write for a pure substance that is brought from  to  at constant :

dividing both sides by , we obtain:

which, for a pure substance at , becomes:

Notice that, while we use the pressure of the gas inside the logarithm in Equation , the quantity is formally divided by the
standard pressure , and therefore it is a dimensionless quantity, as it should be. For simplicity of notation, however, we
will omit the division by  in the remaining of this textbook, especially wherever it does not create confusion. Let’s now consider
a mixture of ideal gases, and let’s try to find out whether the chemical potential of a pure gas inside the mixture, , is the
same as its chemical potential outside the mixture, . To do so, we can use Equation  and replace the pressure  with the
partial pressure :

where the partial pressure  can be obtained from the simple relation that is known as Dalton’s Law:

with  being the concentration of gas  measured as a mole fraction in the gas phase . Replacing Equation 

into Equation , we obtain:

which then reduces to the following equation:

Analyzing Equation , we can immediately see that, since :
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or, in other words, the chemical potential of a substance in the mixture is always lower than the chemical potential of the pure
substance. If we consider a process where we start from two separate pure ideal gases and finish with a mixture of the two, we can
calculate the change in Gibbs free energy due to the mixing process with:

or, in other words, the process is spontaneous under all circumstances, and pure ideal gases will always mix.

1. For reactants, the same situation usually applies but in reverse. More complicated cases where the reaction does not consume all
reactants are possible, but insignificant for the following treatment.
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CHAPTER OVERVIEW

10: Chemical Equilibrium
10.1: Reaction Quotient and Equilibrium Constant
10.2: Temperature Dependence of Keq
10.3: Pressure and Composition Dependence of Keq
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10.1: Reaction Quotient and Equilibrium Constant
Let’s consider a prototypical reaction at constant :

The Gibbs free energy of the reaction is defined as:

and replacing the absolute Gibbs free energies with the chemical potentials , we obtain:

Assuming the reaction is happening in the gas phase, we can then use Equation 9.4.6 to replace the chemical potentials with their
value in the reaction mixture, as:

We can define a new quantity called the reaction quotient as a function of the partial pressures of each substance:

and we can then simply rewrite Equation  using Equation  as:

This equation tells us that the sign of  is influenced by the reaction quotient . For a spontaneous reaction at the
beginning, the partial pressures of the reactants are much higher than the partial pressures of the products, therefore  and 

, as we expect. As the reaction proceeds, the partial pressures of the products will increase, while the partial pressures
of the reactants will decrease. Consequently, both  and  will increase. The reaction will completely stop when 

, which is the chemical equilibrium point. At the reaction equilibrium:

where we have defined a new quantity called equilibrium constant, as the value the reaction quotient assumes when the reaction
reaches equilibrium, and we have denoted it with the symbol .  From Equation  we can derive the following fundamental
equation on the standard Gibbs free energy of reaction:

To extend the concept of  beyond the four species in the prototypical reaction (10.1), we can use the product of a series symbol 
, and write:

where  are the partial pressure of each species at equilibrium. Eq. (10.1.9) is in principle valid for ideal gases only. However,
reaction involving ideal gases are pretty rare. As such, we can further extend the concept of equilibrium constant and write:

where we have replaced the partial pressure at equilibrium, , with a new concept introduced initially by Gilbert Newton Lewis
(1875–1946),  that he termed activity, and represented by the letter . For ideal gases, it is clear that . For non-ideal
gases, the activity is equal to the fugacity , a concept that we will investigate in the next chapter. For pure liquids and
solids, the activity is simply . For diluted solutions, the activity is equal to a measured concentration (such as, for example,
the mole fraction  in the liquid phase, and  in the gas phase, or the molar concentration  with ). Finally

T ,P

aA +bB → cC +dD (10.1.1)
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for concentrated solutions, the activity is related to the measured concentration via an activity coefficient. We will return to the
concept of activity in chapter 14, when we will specifically deal with solutions. For now, it is interesting to use the activity to write
the definition of the following two constants:

which can then be related with  for a mixture of ideal gases using:

which then results in:

with .

Using the general equilibrium constant, , we can also rewrite the fundamental equation on  that we derived in Equation
 to be applicable at most conditions, as:

and since  depends on  and , it is useful to explore how  depends on those variables as well.

1. Notice that since we used Equation 9.4.5 to derive the reaction quotient, the partial pressures inside it are always dimensionless
since they are divided by . 

2. The subscript  refers to the fact that the equilibrium constant is measured in terms of partial pressures. 
3. Gilber Lewis is the same scientist that invented the concept of Lewis Structures.
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10.2: Temperature Dependence of Keq
To study the temperature dependence of  we can use Equation 10.1.14 for the general equilibrium constant and write:

which we can then differentiate with respect to temperature at constant  on both sides:

and, using Gibbs-Helmholtz equation (Equation ) to simplify the left hand side, becomes:

which gives the dependence of  on  that we were looking for. Equation  is also called van ’t Hoff equation,  and it
is the mathematical expression of Le Chatelier’s principle. The simplest interpretation is as follows:

For an exothermic reaction ( ):  will decrease as the temperature increases.
For an endothermic reaction ( ):  will increase as the temperature increases.

If we integrate the van ’t Hoff equation between two arbitrary points at constant , and assuming constant , we obtain the
following:

which leads to the linear equation:

which is the equation that produces the so-called van ’t Hoff plots, from which  can be experimentally determined:

Figure : Van ’t Hoff Plots for an Endothermic (Left, Blue) and an Exothermic (Right, Red) Reactions at Constant P.

1. named after Jacobus Henricus “Henry” van ’t Hoff Jr. (1852–1911).
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10.3: Pressure and Composition Dependence of Keq
While  is independent of both temperature and number of moles for an ideal gas, the same is not necessarily true for the other
equilibrium constants.

For example, it is easy to look at Equation 10.1.13 and determine that  usually depends on .  Using Dalton’s Law, Equation
9.4.7, we can also notice that the equilibrium partial pressures of the reactants and products in a gas-phase reaction can be
expressed in terms of their equilibrium mole fractions  and the total pressure . As such, we can use  to demonstrate that the
equilibrium mole fractions will change when  changes,  as it is demonstrated by the following exercise.

Calculate the mole fraction change for the dissociation of  when the pressure is increased from  to  at
constant , knowing that  and , and remembering that both of
these values are tabulated at .

Answer

Let’s consider the reaction:

We can divide the exercise into two parts. In the first one, we will deal with calculating the equilibrium constant at 
 from the data at . In the second one, we will calculate the change in mole fraction when the

pressure is increased from  to .

Let’s begin the first part by calculating  and  from:

and since  is an element in its most stable form at , its standard enthalpy and Gibbs free energy of
formation are . Therefore:

Using Equation 10.1.8 to calculate , we obtain:

We can now use the integrated van ’t Hoff equation, Equation 10.2.5, to calculate  at :

which becomes:

which corresponds to:

KP

= 0 = 0.( )
∂KP

∂P T ,{ }ni

( )
∂KP

∂ni T ,P

(10.3.1)

Ky P 1

yi P Ky

P 2
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Let’s now move to the second part of the exercise, where we increase the pressure from  to  at constant 
. We start by writing the definition of  and :

and using Equation 10.1.13:

we can calculate the initial  at , using:

and calculate the initial concentration of  and  at , recalling that 

Solving the quadratic equation, we obtain one negative answer—which is unphysical—,  and:

At the end of the process, , and we obtain:

and, using the same technique used before to solve the quadratic equation:

gives:

To summarize, when we increase the pressure from  to  at , the equilibrium constant in terms of
the mole fraction decreases from  to . This reduction is
causing a shift of the equilibrium towards the reactants, with the concentration of  increasing from  to 

 and the concentration of  decreasing from  to .

The dependence of  on  highlighted above is another mathematical expression of Le Chatelier’s principle, on this occasion,
for changes in pressure. The interpretation For a reaction happening in the gas phase is as follows:

If the total pressure increases, the equilibrium will shift towards the side of the chemical equation that contains the smallest total
amount of moles (the equilibrium in exercise  shifts toward the reactant).

1.  becomes independent of  in the particular case where , i.e., for reactions where the total number of moles of
reactants is the same as the total number of moles of the products. 

2. Keep in mind that  will not change. 
3. Notice how a positive  indicates that the dissociation of  is non-spontaneous at  and . As

such, we should expect a very small value for . 
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4. The results corresponds to , an incredible miniscule number, as we should expect given the data of . 
5. Concentration cannot be negative.

This page titled 10.3: Pressure and Composition Dependence of Keq is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Roberto Peverati via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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11.1: The Ideal Gas Equation
The concept of an ideal gas is a theoretical construct that allows for straightforward treatment and interpretation of gases’ behavior.
As such, the ideal gas is a simplified model that we use to understand nature, and it does not correspond to any real system. The
following two assumptions define the ideal gas model:

The particles that compose an ideal gas do not occupy any volume.
The particles that compose an ideal gas do not interact with each other.

Because of its simplicity, the ideal gas model has been the historical foundation of thermodynamics and of science in general. The
first studies of the ideal gas behavior date back to the seventeenth century, and the scientists that performed them are among the
founders of modern science.

Boyle’s Law 
In 1662 Robert Boyle (1627–1691) found that the pressure and the volume of an ideal gas are inversely related at constant
temperature. Boyle’s Law has the following mathematical description:

or, in other terms:

which results in the familiar  plots of Figure . As we already discussed in chapter 2, each of the curves in Figure 
is obtained at constant temperature, and it is therefore called “isotherm.”

Figure : PV-Diagram of an ideal Gas.

 Definition: Ideal Gas

P ∝ at const. T ,
1

V
(11.1.1)

P V = at const. T ,k1 (11.1.2)

P V 11.1.1 11.1.1
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Charles’s and Gay-Lussac’s Laws 

It took scientists more than a century to expand Boyle’s work and study the relationship between volume and temperature. In 1787
Jacques Alexandre César Charles (1746–1823) wrote the relationship known as Charles’s Law:

or, in other terms:

which results in the plots of Figure . Each of the curves is obtained at constant pressure, and it is termed “isobar.”

Figure : VT-Diagram of an ideal Gas.

The interesting thing about isobars is that each line seems to converge to a specific point along the temperature line when we
extrapolate them to . This led to the introduction of the absolute temperature scale, suggesting that the temperature will
never get smaller than .

It took an additional 21 years to write a formal relationship between pressure and temperature. The following relationships were
proposed by Joseph Louis Gay-Lussac (1778–1850) in 1808:

or, in other terms:

which results in the plots of Figure . Each of the curves is obtained at constant volume, and it is termed “isochor.”

V ∝ T at const. P , (11.1.3)

V = T at const. P ,k2 (11.1.4)

11.1.2

11.1.2

V → 0

− C273.15∘

P ∝ T at const. V , (11.1.5)

P = T at const. V ,k3 (11.1.6)
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Figure : PT-Diagram of an ideal Gas.

Avogadro’s Law 
Ten years later, Amedeo Avogadro (1776–1856) discovered a seemingly unrelated principle by studying the composition of matter.
His Avogadro’s Law encodes the relationship between the number of moles in an ideal gas and its volume as:

or in other terms:

The ideal gas Law 
Despite all of the ingredients being available for more than 20 years, it’s only in 1834 that Benoît Paul Émile Clapeyron (1799–
1864) was finally able to combine them into what is now known as the ideal gas Law. Using the same formulas obtained above,
we can write:

which by renaming the product of the two constants  and  as , becomes:

The value of the constant  can be determined experimentally by measuring the volume that 1 mol of an ideal gas occupies at a
constant temperature (e.g., at ) and a constant pressure (e.g., atmospheric pressure ). At those conditions, the
volume is measured at 22.4 L, resulting in the following value of :

which a simple conversion to SI units transforms into:

11.1.3

V ∝ n at const. P , T , (11.1.7)

V = n at const. P , T ,k4 (11.1.8)

P V = ⋅Tk3
 

from Gay-Lussac's

n,k4
  

from Avogadro's

(11.1.9)

k3 k4 R

P V = nRT (11.1.10)

R

T = C0∘
P = 1 atm

R

R = = = 0.082 ,
V P

nT

22.4 ⋅ 1

1 ⋅ 273

L atm

mol K
(11.1.11)
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R = 8.31 .
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11.2: Behaviors of Non-Ideal Gases
Non-ideal gases (sometimes also referred to as “real gases”), do not behave as ideal gases because at least one of the assumptions
in Definition: Ideal Gas is violated. What characterizes non-ideal gases is that there is no unique equation that we can use to
describe their behavior. For this reason, we have a plethora of several experimental models, none of which is superior to the other.
The van der Waals (vdW) equation is the only model that we will analyze in detail because of its simple interpretation. However, it
is far from universal, and for several non-ideal gases, it is severely inaccurate. Other popular non-ideal gases equations are the
Clausius equation, the virial equation, the Redlich–Kwong equation and several others.

The van der Waals equation 
One of the simplest empirical equation that describes non-ideal gases was obtained in 1873 by Johannes Diderik van der Waals
(1837–1923). The vdW equation includes two empirical parameters (  and ) with different values for different non-ideal gases.
Each of the parameters corresponds to a correction for the breaking of one of the two conditions that define the ideal gas behavior
(Definition: Ideal Gas). The vdW equation is obtained from the ideal gas equation performing the following simple substitutions:

which results in:

The parameter  accounts for the presence of intermolecular interactions, while the parameter  accounts for the non-negligible
volume of the gas molecules. Despite the parameters having simple interpretations, their values for each gas must be determined
experimentally. Values for these parameters for some significant non-ideal gas are reported below:

Ammonia 4.225 0.0371

Argon 1.355 0.03201

Carbon dioxide 3.640 0.04267

Carbon
monoxide

1.505 0.03985

Chlorine 6.579 0.05622

Freon 10.78 0.0998

Helium 0.0346 0.0238

Hydrogen 0.2476 0.02661

Mercury 8.200 0.01696

Methane 2.283 0.04278

Neon 0.2135 0.01709

Nitrogen 1.370 0.0387

Oxygen 1.382 0.03186

Radon 6.601 0.06239
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Xenon 4.250 0.05105

Joule–Thomson effect 

Figure : The Joule–Thomson Experiment.

We have already met William Thomson, also known as Lord Kelvin, and his seminal work on the second law of thermodynamics.
In conjunction with that work, Thomson is famous for developing a sensitive method for measuring the temperature changes
related to the expansion of a gas. These experiments improved on the earlier work by James Joule, and Lord Kelvin’s improved
instrument depicted in Figure  is named the Joule–Thomson apparatus. The apparatus is composed of two chambers, each
with its own mobile piston. The chambers are connected via a valve or a porous plug. The entire equipment is also thermally
isolated from the surroundings. This instrument is a more sensitive version of the Joule expansion apparatus that we already
described in section 3 (compare with Figure 3.1.1).

Thomson realized that a gas flowing through an obstruction experience a drop in pressure. If the entire apparatus is insulated, it will
not exchange heat with its surroundings ( ), and each transformation will happen at adiabatic conditions. Let’s consider an
initial condition with 1 mol of gas in the left chamber, occupying a volume , and a completely closed right chamber, for which 

. After the process completes, the volume of the right chamber will reduce to , while the volume of the right
chamber will be . Using the first law of thermodynamics, we can write:

with:

Replacing  into Equation , results in:

which, replacing the definition of enthalpy , we obtain:

or, in other words, the process is isenthalpic. Using the total differential of :
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we obtain:

or, in purely differential form:

From Equation  we can define a new coefficient, called the Joule–Thomson coefficient, , that measures the rate of change
of temperature of a gas with respect to pressure in the Joule–Thomson process:

The value of  depends on the type of gas, the temperature and pressure before expansion, and the heat capacity at constant
pressure of the gas. The temperature at which  changes sign is called the “Joule–Thomson inversion temperature.” Since the
pressure decreases during an expansion,  is negative by definition, and the following possibilities are available for :

Gas temperature: The gas will:

Below the inversion
temperature

– + – cool

Above the inversion
temperature

– – + warm

For example, helium has a very low Joule–Thomson inversion temperature at standard pressure , and it warms when
expanded at constant enthalpy at typical room temperatures. The only other gases that have standard inversion temperature lower
than room temperature are hydrogen and neon. On the other hand, nitrogen and oxygen have high inversion temperatures (

 and , respectively), and they both cool when expanded at room temperature. Therefore, it is possible to use
the Joule–Thomson effect in refrigeration processes such as air conditioning.  As we already discussed in chapter 3, the
temperature of an ideal gases stays constant in an adiabatic expansion, therefore its Joule–Thomson coefficient is always equal to
zero.

1. For more information on empirical equations for non-ideal gases see this Wikipedia page. 
2. Nitrogen and oxygen are the two most abundant gases in the air. A sequence of Joule–Thomson expansions are also used for the

industrial liquefaction of air.
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11.3: Critical Phenomena

Compressibility factors 

The compressibility factor is a correction coefficient that describes the deviation of a real gas from ideal gas behaviour. It is usually
represented with the symbol , and is calculated as:

It is evident from Equation  that the compressibility factor is dependent on the pressure, and for an ideal gas  always.
For a non-ideal gas at any given pressure,  can be higher or lower than one, separating the behavior of non-ideal gases into two
possibilities. The dependence of the compressibility factor against pressure is represented for  and  in Figure .

Figure : Non-Ideal Gases Behaviors.

The two types of possible behaviors are differentiated based on the compressibility factor at . To analyze these situations we
can use the vdW equation to calculate the compressibility factor as:

and then we can differentiate this equation at constant temperature with respect to changes in the pressure near , to obtain:

which is then interpreted as follows:

Type I gases:  molecular size dominates ( like behavior).

Type II gases:  attractive forces dominates ( like behavior).

The dependence of the compressibility factor as a function of temperature (Figure ) results in different plots for each of the
two types of behavior.
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Figure : Temperature Dependence of the Compressibility Factor.

Both type I and type II non-ideal gases will approach the ideal gas behavior as , because  as . For type II

gases, there are three interesting situations:

At low :  which is the behavior described above.

At high :  which is the same behavior of type I gases.

At a very specific temperature, inversion will occur (i.e., at  for ). This temperature is called the Boyle
temperature, , and is the temperature at which the attractive and repulsive forces balance out. It can be calculated from the
vdW equation, since  At the Boyle’s temperature a type II gas shows ideal gas behavior over a

large range of pressure.

Phase diagram of a non-ideal gas 

Let’s now turn our attention to the  phase diagram of a non-ideal gas, reported in Figure .

Figure : The Pressure–Volume Diagram of a Non-Ideal Gas.

We can start the analysis from an isotherm at a high temperature. Since every gas will behave as an ideal gas at those conditions,
the corresponding isotherms will look similar to those of an ideal gas (  and  in Figure ). Lowering the temperature, we
start to see the deviation from ideality getting more prominent (  in Figure ) until we reach a particular temperature called
the critical temperature, .
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The temperature above which no appearance of a second phase is observed, regardless of how high the pressure becomes.

At the critical temperature and below, the gas liquefies when the pressure is increased. For this reason, the liquefaction of a gas is
called a critical phenomenon.

The critical temperature is the coordinate of a unique point, called the critical point, that can be visualized in the three-dimensional
 diagram of each gas (Figure ) .
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Figure : The three-dimensional diagram. (CC By-SA 3.0 unported; Donald L. Smith via Wikipedia)

The critical point has coordinates . These critical coordinates can be determined from the vdW equation at , as:

These relations are used, in practice, to determine the vdW constants  from the experimentally measured critical isotherms.

The critical compressibility factor, , is predicted from the vdW equation at:

a value that is independent of the gas. Experimentally measured values of  for different non-ideal gases are in the range of 0.2–
0.3. These values can be used to infer the accuracy of the vdW equation for each non-ideal gas. Since the experimental  is usually
lower than the one calculated from the vdW equation, we can deduce that the vdW equation overestimates the critical molar
volume.

Notice how slicing the  diagram at constant  results in the  diagram that we reported in Figure . On the other
hand, slicing the  diagram at constant  results in the  diagram that we will examine in detail in the next chapter.

This page titled 11.3: Critical Phenomena is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Roberto Peverati
via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

 Definition: Critical Temperature

T , P , V 11.3.4 1

11.3.4

, ,Tc Pc V
¯ ¯¯̄

c Tc

= = = 3b,Tc

8a

27Rb
Pc

a

27b2
V
¯ ¯¯̄

c (11.3.4)

a, b

zc

= =( )( )( ) = = 0.375,zc

PcV
¯ ¯¯̄

c

RTc

a

27b2

3b

R

27Rb

8a

3

8
(11.3.5)

zc

zc

P T V
¯ ¯¯̄

T P V 11.3.4

P T V
¯ ¯¯̄

P P T

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://chem.libretexts.org/@go/page/414080?pdf
https://commons.wikimedia.org/wiki/File:PVT_3D_diagram.png
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/The_Live_Textbook_of_Physical_Chemistry_(Peverati)/11%3A_Ideal_and_Non-Ideal_Gases/11.03%3A_Critical_Phenomena
https://creativecommons.org/licenses/by-sa/4.0
https://www.fit.edu/faculty-profiles/p/peverati-roberto/
https://peverati.github.io/pchem1/


11.4.1 https://chem.libretexts.org/@go/page/414081

11.4: Fugacity
The chemical potential of a pure ideal gas can be calculated using Equation 9.4.5. Since we are not interested in mixture, we can
drop the asterisk in , and rewrite Equation 9.4.5 as:

For a non-ideal gas, the pressure cannot be used in Equation  because each gas response to changes in pressure is not
universal. We can, however, define a new variable to replace the pressure in Equation  and call it fugacity ( ).

The effective pressure of a non-ideal gas that corresponds to the pressure of an ideal gas with the same temperature and
chemical potential of the non-ideal one.

Equation  then becomes:

Since the chemical potential of a gas  is equal to the standard chemical potential  when , it is easy to use Equation 
 to demonstrate that:

in other words, any non-ideal gas will approach the ideal gas behavior as . This condition, in conjunction with the 
behavior obtained in the previous section, results in the following statement:

The highest chances for any gas to behave ideally happen at high temperature and low pressure.

We can now return our attention to the definition of fugacity. Remembering that the chemical potential is the molar Gibbs free
energy of a substance, we can write:

and:

Subtracting Equation  from Equation , we obtain:

which we can then integrate between  and :

Using eqs.  and  we can then replace the definition of chemical potentials, resulting into:

which gives us a mathematical definition of the fugacity, as:
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The exponential term in Equation  is complicated to write, but it can be interpreted as a coefficient—unique to each non-
ideal gas—that can be measured experimentally. Such coefficients are dependent on pressure and temperature and are called the
fugacity coefficients. Using letter  to represent the fugacity coefficient, we can rewrite Equation  as:

which gives us a straightforward interpretation of the fugacity as an effective pressure. As such, the fugacity will have the same
unit as the pressure, while the fugacity coefficients will be adimensional.

As we already saw in chapter 10, the fugacity can be used to replace the pressure in the definition of the equilibrium constant for
reactions that involve non-ideal gases. The new constant is usually called , and is obtained from:
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12.1: Phase Stability
We have already encountered the gas, liquid, and solid phases and already discussed some of their properties. These terms are
intuitive since these are the three most common states of matter.  For this reason, we have previously used the terms without the
necessity of formally defining their meaning. However, a formal definition of “phase” is necessary to discuss several concepts in
this chapter and the following ones:

A region of the system with homogeneous chemical composition and physical state.

Let’s now use the total differential of the chemical potential and the definition of molar Gibbs free energy for one component:

to write:

We can use these definitions to study the dependence of the chemical potential with respect to changes in pressure and temperature.
If we plot  as a function of  using the first coefficient in Equation , we obtain the diagram in Figure . The diagram
presents three curves, each corresponding to one of the three most common states of matter – solid, liquid, and gas. As we saw in
several previous chapters, the entropy of a phase is almost constant with respect to temperature,  and therefore the three curves are
essentially straight, with negative angular coefficients . This also explains why the solid phase has a basically flat line since,
according to the third law, the entropy of a perfect solid is zero and close to zero if the solid is not perfect. The difference between
the three lines’ angular coefficients is explained by the fact that each of these states has a different value of entropy:

and since the entropy of a gas is always bigger than the entropy of a liquid, which in turn, is yet bigger than the entropy of a solid (
), we obtain three lines with different angular coefficients that intersect each other. At each temperature, the phase

with the lowest chemical potential will be the most stable (see red segments in Figure ). At each intersection between two
lines, the two phases have the same chemical potential, representing the temperature at which they coexist. This temperature is the
temperature at which the phase change happens. Recalling from general chemistry, at the junction between the solid and the liquid
lines, the fusion (fus) process occurs, and the corresponding temperature is called the melting point . At the junction between
the liquid and the gas lines, the vaporization (vap) process happens, and the corresponding temperature is called the boiling point 

. Depending on the substance and the pressure at which the process happens, the solid line might intersect the gas line before the
liquid line. When that occurs, the liquid phase is never observed, and only the sublimation (subl) process happens at the
sublimation point .

1
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Figure : Dependence of the Chemical Potentials of Solid, Liquid, and Gas Phases on Temperature at Constant Pressure.

The effects of pressure on this diagram can be studied using the second coefficient in Equation . For the majority of
substances, , hence the curves will shift to lower values when the pressure is reduced, as in Figure . Notice
also that since , the shifts for both the solid and liquid lines is much smaller than the shift for the gas line. These shifts
also translate to different values of the junctions, which means the phase changes will occur at different temperatures. Therefore
both the melting point and the boiling point in general increase when pressure is increased (and vice versa). Notice how the change
for the melting point is always much smaller than the change for the boiling point. Water is a noticeable exception to these trend
because . This explains the experimental observation that increasing the pressure on ice causes the ice to melt

Figure : Effect of Pressure on the Chemical Potential Diagram.

Considering the intersections between two lines, two phases are in equilibrium with each other at each of these points. Therefore
their chemical potentials must be equal:

For two or more phases to be in equilibrium, their chemical potential must be equal:

If we now change either the temperature or the pressure, the location of the intersection will be shifted (see again Figure  and
the discussion above). For infinitesimal changes in variables, the new location will be:

which using Equation , simply becomes:
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Replacing the differential with the definition of chemical potential in Equation , we obtain:

which can be rearranged into:

This equation is known as the Clapeyron equation, and it is the mathematical relation at the basis of the pressure-temperature
phase diagrams. Plotting the results of Equation  on a  phase diagram for common substances results in three lines
representing the equilibrium between two different phases. These diagrams are useful to study the relationship between the phases
of a substance.

1. Other states of matter—such as plasma—are possible, but they are not usually observed at the values of temperature and
pressure that classical thermodynamics is usually applied to. Discussion of these extreme cases is beyond the scope of this
textbook. 

2. Think, for example, at the integral , for which we can assume  independent of temperature to obtain . In practice,
the entropy increases slightly with the temperature. Therefore the curves in Figure  are slightly concave downwards
(remember that they are obtained from values of , so if  increase with , the curves bend downwards.) 

3. Despite the effect being minimal, it is one of the contributing causes to the fact that we can skate on ice, but we can’t on stone.
If we increase our pressure on ice by reducing our footprints’ surface area using thin skates, ice will slightly melt under our own
weight, creating a thin liquid film on which we can skate because of the reduced friction.
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12.2: Gibbs Phase Rule
In chapter 1, we have already seen that the number of independent variables required to describe an ideal gas is two. This number
was derived by counting the total number of variables , and reduce it by one because the ideal gas law constrains the
value of one of them, once the other two are fixed. For a generic system potentially containing more than one chemical substance in
several different phases, however, the number of independent variables can be different than two. For a system composed of 
components (chemical substances) and  phases, the number of independent variables, , is given by the Gibbs phase rule:

The Gibbs phase rule derives from the fact that different phases are in equilibrium with each other at some conditions, resulting in
the reduction of the number of independent variables at those conditions. More rigorously, when two phases are in thermodynamic
equilibrium, their chemical potentials are equal (see Equation 12.1.4). For each equality, the number of independent variables—
also called the number of degrees of freedom—is reduced by one. For example, the chemical potentials of the liquid and its vapor
depend on both  and . But when these phases are in equilibrium with each other, their chemical potentials must be equal. If
either the pressure or the temperature is fixed, the other variable will be uniquely determined by the equality relation. In other
terms, when a liquid is in equilibrium with its vapor at a given pressure, the temperature is determined by the fact that the chemical
potentials of the two phases is the same, and is denoted as the boiling temperature . Similarly, at a given temperature, the
pressure of the vapor is uniquely determined by the same equality relation and is denoted as the vapor pressure, .

The Gibbs phase rule is obtained considering that the number of independent variables is given by the total number of variables
minus the constraints. The total number of variables is given by temperature, pressure, plus all the variables required to describe
each of the phases. The composition of each phase is determined by  variables.  The number of constraints is determined by
the number of possible equilibrium relations, which is  since the chemical potential of each component must be equal in all
phases. The number of degrees of freedom  is then given by

which is the Gibbs phase rule, as in Equation .

1. For a 1-component system , and no additional variable is required to determine the composition of each
phase. For a 2-component system, however, each phase will contain both components, hence  additional
variable will be required to describe it–the mole fraction.
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12.3: PT Phase Diagrams
Let’s now discuss the pressure–temperature diagram of a typical substance, as reported in Figure . Each of the lines reported
in the diagram represents an equilibrium between two phases, and therefore it represents a condition that reduces the number of
degrees of freedom to one. The lines can be determined using the Clapeyron equation, Equation 12.1.8. The interpretation of each
line is as follows:

Figure : The Pressure–Temperature Phase Diagram.

Liquid  Gas equilibrium 
For this equilibrium we can use Trouton’s rule, Equation 7.1.5, and write:

where the entropy of vaporization is always positive, even for cases where the Trouton’s rule is violated. The difference in molar
volumes is easily obtained, since the volume of the gas is always much greater than the volume of the liquid:

Replacing these values in the Clapeyron equation, we obtain:

which is always positive,regardless of violations to the Trouton’s rule. Notice how small this value is, meaning that the liquid–gas
equilibrium curve is mostly flat as .

Solid  Gas equilibrium 
If we look at the signs of each quantity, this case is similar to the previous one:

However, the Trouton’s rule is not valid for the solid–gas equilibrium, and  will be larger than for the previous case.
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Solid  Liquid equilibrium 

The final curve is for the solid-liquid equilibrium, for which we have:

since fusion is always an exothermic process, . On the other side:

In other words, the difference of the molar volume of the liquid and that of the solid is positive for most substances, but it might be
negative (for example for ). As such:

For  and a few other substances, , an anomalous behavior that has crucial consequences for the existence of life on

earth.  For this importance, this behavior is also depicted in Figure  using a dashed green line.

Since the differences in molar volumes between the solid and the liquid phases are usually small (changes are generally of the order

of ),  is always much larger than for the previous two cases. The resulting lines for the solid–liquid equilibria are still

almost vertical, regardless of the signs of their angular coefficients.

The triple point and the critical point 

The only point in the  diagram where all the three phases coexist is called the triple point. The number of degrees of freedom at
the triple point for every 1-component diagram is . The fact that the triple point has zero degrees of freedom
means that its coordinates, , are uniquely determined for each chemical substance. For this reason, the value of the
triple point of water was fixed by definition—rather than measured—until 2019. This definition was necessary to establish the base
unit of the thermodynamic temperature scale in the SI (the Kelvin).

In addition to the triple point where the solid, liquid, and gas phases meet, a triple point may involve more than one condensed
phase. Triple points are common for substances with multiple solid phases (polymorphs), involving either two solid phases and a
liquid one or three solid phases. Helium is a special case that presents a triple point involving two different fluid phases, called the
lambda point. Since the number of degrees of freedom cannot be negative, the Gibbs phase rule for a 1-component diagram sets the
limit to how many phases can coexist to just three. Therefore, quadruple points (or higher coexistence points) are not possible for
pure substances, even for polymorphs.

Another point with a fixed position in the  diagram is the critical point, . We have already given the definition of the
critical temperature in Definition: Critical Temperature. This point represents the end of the liquid–gas equilibrium curve. This
point is also semantically important to define different regions of the phase diagram, as in Figure . A gas whose pressure and
temperature are below the critical point is called a vapor. A gas whose temperature is above the critical one and the pressure is
below its critical one is called a supercritical fluid. Finally, a liquid whose pressure is above the critical point is called a
compressible liquid.

1. As is well explained by Wikipedia: “The unusual density curve and lower density of ice than of water is vital to life—if water
were most dense at the freezing point, then in winter the very cold water at the surface of lakes and other water bodies would
sink, lakes could freeze from the bottom up, and all life in them would be killed. Furthermore, given that water is a good
thermal insulator (due to its heat capacity), some frozen lakes might not completely thaw in summer.[34] The layer of ice that
floats on top insulates the water below. Water at about 4 °C (39 °F) also sinks to the bottom, thus keeping the temperature of the
water at the bottom constant.” 

2. For more information on the 2019 redefinition of the SI units, see this Wikipedia page. 
3. Notice that quadruple points are possible for 2-component diagrams. 
4. Notice that the temperature of a liquid must be below the critical point, otherwise it is no longer a liquid but rather a

supercritical fluid.
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12.4: The Clausius-Clapeyron Equation
Let’s now take a closer look at the equilibrium between a condensed phase and the gas phase. For both the vaporization and
sublimation processes, Clausius showed that the Clapeyron equation can be simplified by using:

resulting in:

Using the ideal gas law to replace the molar volume of the gas, we obtain:

which can be rearranged as:

Equation  is known as the Clausius–Clapeyron equation, and it measures the dependence of the vapor pressure of a
substance as a function of the temperature. The Clausius–Clapeyron equation can be integrated to obtain:

The integrated Clausius–Clapeyron equation shows that the vapor pressure depends exponentially on the temperature. Thus, even a
small change in the temperature will result in a significant change in the vapor pressure. In fact, we daily use the fact that the vapor
pressure of water changes drastically when we increase its temperature for cooking most of our food. For example, at an external
pressure of 1 bar, it rapidly grows from  to  when the temperature is increased from 
(around room temperature) to  (boiling point). The integrated Clausius–Clapeyron equation is also often used to
determine the enthalpy of vaporization from measurements of vapor pressure at different temperatures.

This page titled 12.4: The Clausius-Clapeyron Equation is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Roberto Peverati via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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CHAPTER OVERVIEW

13: Multi-Component Phase Diagrams
We now move from studying 1-component systems to multi-component ones. Systems that include two or more chemical species
are usually called solutions. Solutions are possible for all three states of matter:

Type: Solvent Solute Examples:

Solid solutions Solid Solid Alloys: brass, bronze

 Solid Liquid Dental amalgam

 Solid Gas Hydrogen stored in Palladium

Liquid solutions Liquid Solid Saltwater, bleach

 Liquid Liquid Alcoholic beverages, vinegar

 Liquid Gas Carbonated drinks

Gaseous solutions Gas Solid Smoke, smog

 Gas Liquid Aerosols and perfumes

 Gas Gas Air

The number of degrees of freedom for binary solutions (solutions containing two components) is calculated from the Gibbs phase
rules at . When one phase is present, binary solutions require  variables to be described, usually
temperature ( ), pressure ( ), and mole fraction (  in the gas phase and  in the liquid phase). Single-phase, 1-component
systems require three-dimensional  diagram to be described. When two phases are present (e.g., gas and liquid), only two
variables are independent: pressure and concentration. Thus, we can study the behavior of the partial pressure of a gas–liquid
solution in a 2-dimensional plot. If the gas phase in a solution exhibits properties similar to those of a mixture of ideal gases, it is
called an ideal solution. The obvious difference between ideal solutions and ideal gases is that the intermolecular interactions in the
liquid phase cannot be neglected as for the gas phase. The main advantage of ideal solutions is that the interactions between
particles in the liquid phase have similar mean strength throughout the entire phase. We will consider ideal solutions first, and then
we’ll discuss deviation from ideal behavior and non-ideal solutions.

13.1: Raoult’s Law and Phase Diagrams of Ideal Solutions
13.2: Phase Diagrams of Non-Ideal Solutions
13.3: Phase Diagrams of 2-Components/2-Condensed Phases Systems

This page titled 13: Multi-Component Phase Diagrams is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Roberto Peverati via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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13.1: Raoult’s Law and Phase Diagrams of Ideal Solutions
The behavior of the vapor pressure of an ideal solution can be mathematically described by a simple law established by François-
Marie Raoult (1830–1901). Raoult’s law states that the partial pressure of each component, , of an ideal mixture of liquids, , is
equal to the vapor pressure of the pure component  multiplied by its mole fraction in the mixture :

One volatile component 
Raoult’s law applied to a system containing only one volatile component describes a line in the  plot, as in Figure .

Figure : The Pressure–Composition Phase Diagram of an Ideal Solution Containing a Single Volatile Component at Constant
Temperature.

As emerges from Figure , Raoult’s law divides the diagram into two distinct areas, each with three degrees of freedom.
Each area contains a phase, with the vapor at the bottom (low pressure), and the liquid at the top (high pressure). Raoult’s law acts
as an additional constraint for the points sitting on the line. Therefore, the number of independent variables along the line is only
two. Once the temperature is fixed, and the vapor pressure is measured, the mole fraction of the volatile component in the liquid
phase is determined.

Two volatile components 
In an ideal solution, every volatile component follows Raoult’s law. Since the vapors in the gas phase behave ideally, the total
pressure can be simply calculated using Dalton’s law as the sum of the partial pressures of the two components .
The corresponding diagram is reported in Figure . The total vapor pressure, calculated using Dalton’s law, is reported in red.
The Raoult’s behaviors of each of the two components are also reported using black dashed lines.
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Figure : The Pressure–Composition Phase Diagram of an Ideal Solution Containing Two Volatile Components at Constant
Temperature.

Calculate the mole fraction in the vapor phase of a liquid solution composed of 67% of toluene ( ) and 33% of benzene ( ),
given the vapor pressures of the pure substances: , and .

Answer

The data available for the systems are summarized as follows:

The total pressure of the vapors can be calculated combining Dalton’s and Roult’s laws:

We can then calculate the mole fraction of the components in the vapor phase as:

Notice how the mole fraction of toluene is much higher in the liquid phase, , than in the vapor phase, .

As is clear from the results of Exercise , the concentration of the components in the gas and vapor phases are different. We
can also report the mole fraction in the vapor phase as an additional line in the  diagram of Figure . When both
concentrations are reported in one diagram—as in Figure —the line where  is obtained is called the liquidus line, while
the line where the  is reported is called the Dew point line.
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Figure : The Pressure–Composition Phase Diagram of an Ideal Solution Containing Two Volatile Components at Constant
Temperature. Both the Liquidus and Dew Point Line are Emphasized in this Plot.

The liquidus and Dew point lines determine a new section in the phase diagram where the liquid and vapor phases coexist. Since
the degrees of freedom inside the area are only 2, for a system at constant temperature, a point inside the coexistence area has fixed
mole fractions for both phases. We can reduce the pressure on top of a liquid solution with concentration  (see Figure )
until the solution hits the liquidus line. At this pressure, the solution forms a vapor phase with mole fraction given by the
corresponding point on the Dew point line, .

 phase diagrams and fractional distillation 

We can now consider the phase diagram of a 2-component ideal solution as a function of temperature at constant pressure. The 
diagram for two volatile components is reported in Figure .

Figure : The Temperature–Composition Phase Diagram of an Ideal Solution Containing Two Volatile Components at
Constant Pressure.

Compared to the  diagram of Figure , the phases are now in reversed order, with the liquid at the bottom (low
temperature), and the vapor on top (high Temperature). The liquidus and Dew point lines are curved and form a lens-shaped region
where liquid and vapor coexists. Once again, there is only one degree of freedom inside the lens. As such, a liquid solution of
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initial composition  can be heated until it hits the liquidus line. At this temperature the solution boils, producing a vapor with
concentration . As is clear from Figure , the mole fraction of the  component in the gas phase is lower than the mole
fraction in the liquid phase. This fact can be exploited to separate the two components of the solution. In particular, if we set up a
series of consecutive evaporations and condensations, we can distill fractions of the solution with an increasingly lower
concentration of the less volatile component . This is exemplified in the industrial process of fractional distillation, as
schematically depicted in Figure .

Figure : The Fractional Distillation Process and Theoretical Plates Calculated on a Temperature–Composition Phase
Diagram.

Each of the horizontal lines in the lens region of the  diagram of Figure  corresponds to a condensation/evaporation
process and is called a theoretical plate. These plates are industrially realized on large columns with several floors equipped with
condensation trays. The temperature decreases with the height of the column. A condensation/evaporation process will happen on
each level, and a solution concentrated in the most volatile component is collected. The theoretical plates and the  are crucial
for sizing the industrial fractional distillation columns.

1. Only two degrees of freedom are visible in the  diagram. Temperature represents the third independent variable. 

This page titled 13.1: Raoult’s Law and Phase Diagrams of Ideal Solutions is shared under a CC BY-SA 4.0 license and was authored, remixed,
and/or curated by Roberto Peverati via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history
is available upon request.
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13.2: Phase Diagrams of Non-Ideal Solutions
Non-ideal solutions follow Raoult’s law for only a small amount of concentrations. The typical behavior of a non-ideal solution
with a single volatile component is reported in the  plot in Figure .

Figure : The Pressure–Composition Phase Diagram of a Non-Ideal Solution Containing a Single Volatile Component at
Constant Temperature.

Raoult’s behavior is observed for high concentrations of the volatile component. This behavior is observed at  in Figure 
, since the volatile component in this diagram is . At low concentrations of the volatile component  in Figure 
, the solution follows a behavior along a steeper line, which is known as Henry’s law. William Henry (1774–1836) has

extensively studied the behavior of gases dissolved in liquids. His studies resulted in a simple law that relates the vapor pressure of
a solution to a constant, called Henry’s law solubility constants:

where  depends on the chemical nature of  and . The corresponding diagram for non-ideal solutions with two volatile
components is reported on the left panel of Figure . The total pressure is once again calculated as the sum of the two partial
pressures. Positive deviations on Raoult’s ideal behavior are not the only possible deviation from ideality, and negative deviation
also exits, albeit slightly less common. An example of a negative deviation is reported in the right panel of Figure .

Figure : The Pressure–Composition Phase Diagram of Non-Ideal Solutions Containing Two Volatile Components at
Constant Temperature.

If we move from the  diagram to the  diagram, the behaviors observed in Figure  will correspond to the diagram in
Figure .
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Figure : The Temperature–Composition Phase Diagram of Non-Ideal Solutions Containing Two Volatile Components at
Constant Pressure.

The minimum (left plot) and maximum (right plot) points in Figure  represent the so-called azeotrope.

An azeotrope is a constant boiling point solution whose composition cannot be altered or changed by simple distillation. This
happens because the liquidus and Dew point lines coincide at this point. Therefore, the liquid and the vapor phases have the same
composition, and distillation cannot occur. Two types of azeotropes exist, representative of the two types of non-ideal behavior of
solutions. The first type is the positive azeotrope (left plot in Figure ). A notorious example of this behavior at atmospheric
pressure is the ethanol/water mixture, with composition 95.63% ethanol by mass. This positive azeotrope boils at , a
temperature that is lower than the boiling points of the pure constituents, since ethanol boils at  and water at 

. The second type is the negative azeotrope (right plot in Figure ). An example of this behavior at atmospheric
pressure is the hydrochloric acid/water mixture with composition 20.2% hydrochloric acid by mass. This negative azeotrope boils
at , a temperature that is higher than the boiling points of the pure constituents, since hydrochloric acid boils at 

 and water at .
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13.3: Phase Diagrams of 2-Components/2-Condensed Phases Systems
We now consider equilibria between two condensed phases: liquid/liquid, liquid/solid, and solid/solid. These equilibria usually
occur in the low-temperature region of a phase diagram (or high pressure). Three situations are possible, depending on the
constituents and concentration of the mixture.

Totally miscible 
We have already encountered the situation where the components of a solution mix entirely in the liquid phase. All the diagrams
that we’ve discussed up to this point belong to this category.

Totally immiscible 

A more complicated case is that for components that do not mix in the liquid phase. The liquid region of the temperature–
composition phase diagram for a solution with components that do not mix in the liquid phase below a specific temperature is
reported in Figure .

Figure : The Liquid Region of the Temperature–Composition Phase Diagram of Solutions Containing Two Components that
are Completely Immiscible in the Liquid Phase.

While the liquid 1+liquid 2 region (white area in Figure ) might seem similar to the liquid region that sits on top of it (blue
area in Figure ), it is substantially different in nature. To prove this, we can calculate the degrees of freedom in each region
using the Gibbs phase rule. For the liquid region at the top of the diagram, at constant pressure, we have . In
other words, the temperature and the composition are independent, and their values can be changed regardless of each other. In the
liquid 1+liquid 2 at the bottom, however, we have , which means that only one variable is independent of the
others. The white region in Figure  is a 2-phase region, and it behaves similarly to the other 2-phases regions that we
encountered before, such as the inner portion of the lens in Figure 13.1.4. In other words, since the two components are entirely
immiscible, once we set the temperature at a value below the immiscibility line, the concentration of the two liquids will be
determined by tracing a horizontal line and by reading the concentrations on the left and right of the diagram (corresponding to
100%  and 100% , respectively).

Partially miscible 

The third and final case is undoubtedly the most interesting since several behaviors are possible. In fact, there might be components
that are partially miscible at low temperatures but totally miscible at higher temperatures, for which the diagram will assume the
general shape depicted in Figure . A typical example of this behavior is the mixture between water and phenol, whose liquids
are completely miscible at , and only partially miscible below this temperature. The composition of the 2-phases region
(white area in Figure ) is determined by tracing a horizontal line and reading the mole fraction on the line that delimits the
area, as for the previous case.
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Figure : The Liquid Region of the Temperature–Composition Phase Diagram of Solutions Containing Two Components that
are Partially Immiscible at Low Temperature in the Liquid Phase, but Completely Miscible at High Temperatures

On the opposite side of the spectrum, the diagram for a mixture whose components are partially miscible at high temperature, but
completely miscible at lower temperatures is depicted in Figure . A typical example of this behavior is the mixture between
water and triethylamine, whose liquids are completely miscible at , and only partially miscible above this temperature.

Figure : The Liquid Region of the Temperature–Composition Phase Diagram of Solutions Containing Two Components that
are Partially Immiscible at High Temperature in the Liquid Phase, but Completely Miscible at Low Temperatures.

Finally, both situations described above are possible simultaneously. For some particular solutions, there exists a range of
temperature where the two components are only partially miscible. A typical example of this behavior is given by the
water/nicotine mixture, whose liquids are completely miscible at  and , but only partially miscible in
between these two temperatures, as in the diagram of Figure .
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Figure  : The Liquid Region of the Temperature–Composition Phase Diagram of Solutions Containing Two Components that
are Partially Immiscible Only Between Two Temperatures.

Eutectic systems 
For some particular mixture, the temperature of partial miscibility in the liquid/liquid region might be close to the azeotrope
temperature. In some cases, these two regions might even overlap. These characteristic behaviors are reported in Figure .

Figure : Interaction Between the Liquid/Gas and Liquid/Liquid Equilibria.

When the azeotrope and partially miscibility temperature overlap, the system forms what is known as an eutectic. Eutectic
diagrams are possible at the liquid/gas equilibrium. Still, they are widespread at the liquid/solid equilibrium, where two
components are completely miscible in the liquid phase, but only partially miscible in the solid phase. Eutectics with completely
immiscible components in the solid phase are also very common, as the diagram reported in Figure .

13.3.4

13.3.5

13.3.5

13.3.6

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://chem.libretexts.org/@go/page/414090?pdf


13.3.4 https://chem.libretexts.org/@go/page/414090

Figure : Typical Eutectic System with Components that are Completely Miscible in the Liquid Phase and Completely
Immiscible in the Solid Phase.     

1. The only noticeable difference, in this case, is that the two concentrations will be different than 0 and 100% since the
component mix partially.
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remixed, and/or curated by Roberto Peverati via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.
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CHAPTER OVERVIEW

14: Properties of Solutions
In chapter 13, we have qualitatively described the deviation of real solutions from ideal behavior. In this section, we are discussing
it quantitatively. We will be able to do so by using a concept that we have already encountered in chapter 10: Lewis’s activity.

14.1: Activity
14.2: Colligative Properties
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14.1: Activity
For non-ideal gases, we introduced in chapter 11 the concept of fugacity as an effective pressure that accounts for non-ideal
behavior. If we extend this concept to non-ideal solution, we can introduce the activity of a liquid or a solid, , as:

where  is the chemical potential of the substance or the mixture, and  is the chemical potential at standard state. Comparing
this definition to Equation 11.4.2, it is clear that the activity is equal to the fugacity for a non-ideal gas (which, in turn, is equal to
the pressure for an ideal gas). However, for a liquid and a liquid mixture, it depends on the chemical potential at standard state.
This means that the activity is not an absolute quantity, but rather a relative term describing how “active” a compound is compared
to standard state conditions. The choice of the standard state is, in principle, arbitrary, but conventions are often chosen out of
mathematical or experimental convenience. We already discussed the convention that standard state for a gas is at ,
so the activity is equal to the fugacity. The standard state for a component in a solution is the pure component at the temperature
and pressure of the solution. This definition is equivalent to setting the activity of a pure component, , at .

For a component in a solution we can use Equation 11.4.2 to write the chemical potential in the gas phase as:

If the gas phase is in equilibrium with the liquid solution, then:

where  is the chemical potential of the pure element. Subtracting Equation  from Equation , we obtain:

For an ideal solution, we can use Raoult’s law, Equation 13.1.1, to rewrite Equation  as:

which relates the chemical potential of a component in an ideal solution to the chemical potential of the pure liquid and its mole
fraction in the solution. For a non-ideal solution, the partial pressure in Equation  is either larger (positive deviation) or
smaller (negative deviation) than the pressure calculated using Raoult’s law. The chemical potential of a component in the mixture
is then calculated using:

where  is a positive coefficient that accounts for deviations from ideality. This coefficient is either larger than one (for positive
deviations), or smaller than one (for negative deviations). The activity of component  can be calculated as an effective mole
fraction, using:

where  is defined as the activity coefficient. The partial pressure of the component can then be related to its vapor pressure,
using:

Comparing Equation  with Raoult’s law, we can calculate the activity coefficient as:

where  is the partial pressure calculated using Raoult’s law. This result also proves that for an ideal solution, . Equation 
 can also be used experimentally to obtain the activity coefficient from the phase diagram of the non-ideal solution. This is

achieved by measuring the value of the partial pressure of the vapor of a non-ideal solution. Examples of this procedure are
reported for both positive and negative deviations in Figure .
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Figure : Positive and Negative Deviation from Raoult’s Law in the Pressure–Composition Phase Diagram of Non-Ideal
Solutions at Constant Temperature.

As we already discussed in chapter 10, the activity is the most general quantity that we can use to define the equilibrium
constant of a reaction (or the reaction quotient). The advantage of using the activity is that it’s defined for ideal and non-ideal
gases and mixtures of gases, as well as for ideal and non-ideal solutions in both the liquid and the solid phase.

1. Notice that, since the activity is a relative measure, the equilibrium constant expressed in terms of the activities is also a relative
concept. In other words, it measures equilibrium relative to a standard state. This fact, however, should not surprise us, since the
equilibrium constant is also related to  using Gibbs’ relation. This is why the definition of a universally agreed-upon
standard state is such an essential concept in chemistry, and why it is defined by the International Union of Pure and Applied
Chemistry (IUPAC) and followed systematically by chemists around the globe. 
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14.2: Colligative Properties
Colligative properties are properties of solutions that depend on the number of particles in the solution and not on the nature of the
chemical species. More specifically, a colligative property depends on the ratio between the number of particles of the solute and
the number of particles of the solvent. This ratio can be measured using any unit of concentration, such as mole fraction, molarity,
and normality. For diluted solutions, however, the most useful concentration for studying colligative properties is the molality, ,
which measures the ratio between the number of particles of the solute (in moles) and the mass of the solvent (in kg):

Colligative properties usually result from the dissolution of a nonvolatile solute in a volatile liquid solvent, and they are properties
of the solvent, modified by the presence of the solute. They are physically explained by the fact that the solute particles displace
some solvent molecules in the liquid phase, thereby reducing the concentration of the solvent. This explanation shows how
colligative properties are independent of the nature of the chemical species in a solution only if the solution is ideal. For non-ideal
solutions, the formulas that we will derive below are valid only in an approximate manner. We will discuss the following four
colligative properties: relative lowering of the vapor pressure, elevation of the boiling point, depression of the melting point, and
osmotic pressure.

Vapor pressure lowering 
As we have already discussed in chapter 13, the vapor pressure of an ideal solution follows Raoult’s law. Its difference with respect
to the vapor pressure of the pure solvent can be calculated as:

which shows that the vapor pressure lowering depends only on the concentration of the solute. As such, it is a colligative property.

Boiling point elevation and melting point depression 

The following two colligative properties are explained by reporting the changes due to the solute molecules in the plot of the
chemical potential as a function of temperature (Figure ).

At the boiling point, the chemical potential of the solution is equal to the chemical potential of the vapor, and the following relation
can be obtained:

and since , the logarithmic term in the last expression is negative, and:

Equation  proves that the addition of a solute always stabilizes the solvent in the liquid phase, and lowers its chemical
potential, as shown in Figure .
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Figure : Reduction of the Chemical Potential of the Liquid Phase Due to the Addition of a Solute.

The elevation of the boiling point can be quantified using:

where  is the van ’t Hoff factor, a coefficient that measures the number of solute particles for each formula unit,  is the
ebullioscopic constant of the solvent, and  is the molality of the solution, as introduced in Equation  above. For a solute
that does not dissociate in solution, . For a solute that dissociates in solution, the number of particles in solutions depends on
how many particles it dissociates into, and . For example, the strong electrolyte  completely dissociates into three
particles in solution, one  and two , and . For cases of partial dissociation, such as weak acids, weak bases, and their
salts,  can assume non-integer values.

If we assume ideal solution behavior, the ebullioscopic constant can be obtained from the thermodynamic condition for liquid-
vapor equilibrium. At the boiling point of the solution, the chemical potential of the solvent in the solution phase equals the
chemical potential in the pure vapor phase above the solution:

from which we can derive, using the Gibbs–Helmholtz equation, Equation 9.2.4:

where  is the ideal gas constant,  is the molar mass of the solvent, and  is its molar enthalpy of vaporization.

The reduction of the melting point is similarly obtained by:

where  is the van ’t Hoff factor introduced above,  is the cryoscopic constant of the solvent,  is the molality, and the minus
sign accounts for the fact that the melting temperature of the solution is lower than the melting temperature of the pure solvent (

 is defined as a negative quantity, while , , and  are all positive). Similarly to the previous case, the cryoscopic constant
can be related to the molar enthalpy of fusion of the solvent using the equivalence of the chemical potential of the solid and the
liquid phases at the melting point, and employing the Gibbs–Helmholtz equation:

Notice from Figure  how the depression of the melting point is always smaller than the elevation of the boiling point. This is
because the chemical potential of the solid is essentially flat, while the chemical potential of the gas is steep. Consequently, the
value of the cryoscopic constant is always bigger than the value of the ebullioscopic constant. For example, for water 
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, while . This is also proven by the fact that the enthalpy of vaporization is larger than the

enthalpy of fusion.

Osmotic pressure 

The osmotic pressure of a solution is defined as the difference in pressure between the solution and the pure liquid solvent when
the two are in equilibrium across a semi-permeable (osmotic) membrane. The osmotic membrane is made of a porous material that
allows the flow of solvent molecules but blocks the flow of the solute ones. The osmosis process is depicted in Figure .

Figure : Osmotic Pressure of a Solution.

Starting from a solvent at atmospheric pressure in the apparatus depicted in Figure , we can add solute particles to the left
side of the apparatus. The increase in concentration on the left causes a net transfer of solvent across the membrane. This flow stops
when the pressure difference equals the osmotic pressure, . The formula that governs the osmotic pressure was initially proposed
by van ’t Hoff and later refined by Harmon Northrop Morse (1848–1920). The Morse formula reads:

where  is the van ’t Hoff factor introduced above,  is the molality of the solution,  is the ideal gas constant, and  the
temperature of the solution. As with the other colligative properties, the Morse equation is a consequence of the equality of the
chemical potentials of the solvent and the solution at equilibrium.

1. For a derivation, see the osmotic pressure Wikipedia page.
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CHAPTER OVERVIEW

15: Chemical Kinetics
From thermodynamics, we can determine the spontaneity of a reaction and its extent, using  and , respectively. However,
thermodynamics does not provide any information on how fast the reaction is going to happen. For example, while the reaction that
converts solid carbon from its diamond allotropic form into hexagonal graphite is thermodynamically spontaneous, it is so slow as
to be virtually non-existent. Diamond is effectively a meta-stable phase. The speed of a chemical reaction is the subject of a branch
of physical chemistry called chemical kinetics.

A chemical kinetics study aims to find the rate of a reaction and to find the microscopic steps that compose it, determining its
mechanism.

15.1: Differential and integrated rate laws
15.2: Complex Rate Laws
15.3: Experimental Methods for Determination of Reaction Orders
15.4: Temperature Dependence of the Rate Coefficients
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15.1: Differential and integrated rate laws
The rate law of a chemical reaction is an equation that links the initial rate with the concentrations (or pressures) of the reactants.
Rate laws usually include a constant parameter, , called the rate coefficient, and several parameters found at the exponent of the
concentrations of the reactants, and are called reaction orders. The rate coefficient depends on several conditions, including the
reaction type, the temperature, the surface area of an adsorbent, light irradiation, and others. The reaction rate is usually represented
with the lowercase letter , and it should not be confused with the thermodynamic equilibrium constant that is generally designated
with the uppercase letter . Another useful concept in kinetics is the half-life, usually abbreviated with . The half-life is
defined as the time required to reach half of the initial reactant concentration.

A reaction that happens in one single microscopic step is called elementary. Elementary reactions have reaction orders equal to the
(integer) stoichiometric coefficients for each reactant. As such, only a limited number of elementary reactions are possible (four
types are commonly observed), and they are classified according to their overall reaction order. The global reaction order of a
reaction is calculated as the sum of each reactant’s individual orders and is, at most, equal to three. We examine in detail the four
most common reaction orders below.

Zeroth-order reaction 
For a zeroth-order reaction, the reaction rate is independent of the concentration of a reactant. In other words, if we have a reaction
of the type:

the differential rate law can be written:

which shows that any change in the concentration of  will have no effect on the speed of the reaction. The minus sign at the right-
hand-side is required because the rate is always defined as a positive quantity, while the derivative is negative because the
concentration of the reactant is diminishing with time. Separating the variables  and  of Equation  and integrating both
sides, we obtain the integrated rate law for a zeroth-order reaction as:

Using the integrated rate law, we notice that the concentration on the reactant diminishes linearly with respect to time. A plot of 
as a function of , therefore, will result in a straight line with an angular coefficient equal to , as in the plot of Figure .

Figure : Reaction Rate Plot for a Zeroth-Order Reaction.
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Eq. (15.1.2) also suggests that the units of the rate coefficient for a zeroth-order reaction are of concentration divided by time,

typically , with  being the molar concentration in  and  the time in seconds. The half-life of a zero order reaction can be

calculated from Equation , by replacing  with :

Zeroth-order reactions are common in several biochemical processes catalyzed by enzymes, such as the oxidation of ethanol to
acetaldehyde in the liver by the alcohol dehydrogenase enzyme, which is zero-order in ethanol.

First-order reaction 
A first-order reaction depends on the concentration of only one reactant, and is therefore also called a unimolecular reaction. As for
the previous case, if we consider a reaction of the type:

the differential rate law for a first-order reaction is:

Following the usual blueprint of separating the variables, and integrating both sides, we obtain the integrated rate law as:

Using the integrated rate law to plot the concentration of the reactant, , as a function of time, , we obtain an exponential decay,
as in Figure .

Figure : Reaction Rate Plot for a First-Order Reaction.

However, if we plot the logarithm of the concentration, , as a function of time, we obtain a line with angular coefficient ,
as in the plot of Figure . From Equation , we can also obtain the units for the rate coefficient for a first-order reaction,

which typically is , independent of concentration. Since the rate coefficient for first-order reactions has units of inverse time, it is

sometimes called the frequency rate.
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Figure : Linear Plot for a First-Order Reaction. Notice that the Quantity on the y Axes is ln[A].

The half-life of a first-order reaction is:

The half-life of a first-order reaction is independent of the initial concentration of the reactant. Therefore, the half-life can be used
in place of the rate coefficient to describe the reaction rate. Typical examples of first-order reactions are radioactive decays. For
radioactive isotopes, it is common to report their rate of decay in terms of their half-life. For example, the most stable uranium
nucleotide, , has a half-life of  years, while the most common fissile isotope of uranium, , has a half-life of 

 years.  Other examples of first-order reactions in chemistry are the class of S 1 nucleophilic substitution reactions in
organic chemistry.

Second-order reaction 
A reaction is second-order when the sum of the reaction orders is two. Elementary second-order reactions are also called
bimolecular reactions. There are two possibilities, a simple one, where the reaction order of one reagent is two, or a more
complicated one, with two reagents having each a reaction order of one.

For the simple case, we can write the reaction as:

the differential rate law for a first-order reaction is:

Following the same procedure used for the two previous cases, we can obtain the integrated rate law as:

As for first-order reactions, the plot of the concentration as a function of time shows a non-linear decay. However, if we plot the

inverse of the concentration, , as a function of time, , we obtain a line with angular coefficient , as in the plot of Figure

.
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Figure : Linear Plot for a Second-Order Reaction. Notice that the Quantity on the y Axes is 1/[A].

Notice that the line has a positive angular coefficient, in contrast with the previous two cases, for which the angular coefficients

were negative. The units of  for a simple second order reaction are calculated from Equation  and typically are . The

half-life of a simple second-order reaction is:

which, perhaps not surprisingly, depends on the initial concentration of the reactant, . Therefore, if we start with a higher
concentration of the reactant, the half-life will be shorter, and the reaction will be faster. An example of simple second-order
behavior is the reaction , which is second-order in  and zeroth-order in .

For the complex second-order case, the reaction is:

and the differential rate law is:

The differential equation in Equation  has two variables, and cannot be solved exactly unless an additional relationship
is specified. If we assume that the initial concentration of the two reactants are equal, then  at any time , and
Equation  reduces to Equation . If the concentration of the reactants are different, then the integrated rate law will
assume the following shape:

The units of  for a complex second order reaction can be calculated from Equation , and are the same as those for the

simple case, . The half-life of a complex second-order reaction cannot be easily written since two different half-lives

could, in principle, be defined for each of the corresponding reactants.

Third and higher orders reaction 

Although elementary reactions with order higher than two are possible, they are in practice infrequent, and only very few
experimental third-order reactions are observed. Fourth-order or higher have never been observed because the probabilities for a
simultaneous interaction between four molecules are essentially zero. Third-order elementary reactions are also called termolelucar
reactions. While termolelucar reactions with three identical reactants are possible in principle, there is no known experimental
example. Some complex third-order reactions are known, such as:
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for which the differential rate law can be written as:

1. Notice how large these numbers are for uranium. To put these numbers in perspective, we can compare them with the half-life
of the most unstable isotope of plutonium, , which is  years. 

This page titled 15.1: Differential and integrated rate laws is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Roberto Peverati via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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15.2: Complex Rate Laws
It is essential to specify that the order of a reaction and its molecularity are equal only for elementary reactions. Reactions that
follow complex laws are composed of several elementary steps, and they usually have non-integer reaction orders, for at least one
of the reactants.

Consecutive reactions 
A reaction that happens following a sequence of two elementary steps can be written as follows:

Assuming that each of the steps follows a first order kinetic law, and that only the reagent  is present at the beginning of the
reaction, we can write the differential change in concentration of each species with respect to infinitesimal time , using the
following formulas:

These three equations represent a system of differential equations with three unknown variables. Unfortunately, these equations are
linearly dependent on each other, and they are not sufficient to solve the system for each variable. To do so, we need to include a
fourth equation, coming from the conservation of mass:

Using the first equation in Equation , we can now replace the concentration  in the second equation and solve for :

which can be simplified by multiplying both sides by :

which can then be integrated remembering that , and :

We can then use both , from Equation , and , from Equation , in Equation  to solve for :

From these results, we can distinguish two extreme behaviors. The first one is observed when , and it produces a plot of the
concentration of species with respect to time reported in Figure . This behavior is observed when a process undergoing a
series of consecutive reactions present a rate-determining step in the middle of the sequence (the second reaction, in the simple case
analyzed above). Once the process is established, its rate will equate the rate of the slowest step.

A B C−→−
k1

−→−
k2

A

dt

−
d[A]

dt
d[B]

dt
d[C]

dt

= [A] ⇒ [A] = [A exp(− t)k1 ]0 k1

= [A] − [B]k1 k2

= [B].k2

(15.2.1)

[A = [A] +[B] +[C].]0 (15.2.2)

15.2.1 [A] [B]

+ [B] = [A exp(− t),
d[B]

dt
k2 k1 ]0 k1 (15.2.3)

exp( t)k2

( + [B]) exp( t)
d[B]

dt
k2 k2

⇒
d {[B] exp( t)}k2

dt

= [A exp[( − )t]k1 ]0 k2 k1

= [A exp[( − )t],k1 ]0 k2 k1

(15.2.4)

[B = 0]0 ∫ exp(kx) = exp(kx)
1

k

[B] = [A [exp(− t) −exp(− t)].
k1

−k2 k1
]0 k1 k2 (15.2.5)

[A] 15.2.1 [B] 15.2.5 15.2.2 [C]

[C] = [A −[A] −[B]]0

= [A −[A exp(− t) − [A [exp(− t) −exp(− t)]]0 ]0 k1
k1

−k2 k1

]0 k1 k2

= [A {1 + } .]0
− exp(− t) + exp(− t)k2 k1 k1 k2

−k2 k1

(15.2.6)

≅k1 k2

15.2.1

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://chem.libretexts.org/@go/page/414096?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/The_Live_Textbook_of_Physical_Chemistry_(Peverati)/15%3A_Chemical_Kinetics/15.02%3A_Complex_Rate_Laws


15.2.2 https://chem.libretexts.org/@go/page/414096

Figure : Concentration Plot for a Process with Two Consecutive Reactions with the Second One Being the Rate-Determining
Step.

The second behavior is observed when , and it produces the plot in Figure  In this case, the concentration of the
intermediate species  is not relevant throughout the process, and the rate-determining step is the first reaction. As such, the
process has the same rate law as an elementary reaction going directly from  to .

Figure : Concentration Plot for a Process with Two Consecutive Reactions with the First One Being the Rate-Determining
Step.

Since the concentration of  is small and relatively constant throughout the process, . We can then simplify the

mathematical treatment of these reactions by eliminating it from the process altogether. This simplification is known as the steady-
state approximation. It is used in chemical kinetics to study processes that undergo a series of reactions producing intermediate
species whose concentrations are constants throughout the entire process.

Competitive reactions 
A process where two elementary reactions happen in parallel, competing with each can be written as follows:

Assuming that each step follows first order kinetic, we can write:
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The concentration of each of the species can then be plotted against time, obtaining the diagram reported in Figure . The
final concentrations of the products,  and , will depend on the values of the two rate coefficients. For example, if ,

, as in Figure , but if , .

Figure : Concentration Plot for a Process with Two Competitive Reactions.

An important relationship that can be derived from Equation  is that:

Opposed reactions 

Another case of complex kinetic law happens when a pair of forward and reverse reactions occur simultaneously:

where the rate coefficients for the forward and backwards reaction,  and  respectively, are not necessarily equal to each other,
but comparable in magnitude. We can write the rate laws for each of these elementary steps as:

which can then be integrated to:

These formulas can then be used to obtain the plots in Figure .
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Figure : Concentration Plot for a Process with Two Opposed Reactions.

As can be seen from the plots in Figure , after a sufficiently long time, the systems reach a dynamic equilibrium, where the
concentration of  and  don’t change. These equilibrium concentrations can be calculated replacing  in Equation :

Considering that the concentrations of the species don’t change at equilibrium:

where  is the equilibrium constant as defined in chapter 10. This is a rare link between kinetics and thermodynamics and
appears only for opposed reactions after sufficient time has passed so that the system can reach the dynamic equilibrium.

This page titled 15.2: Complex Rate Laws is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Roberto
Peverati via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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15.3: Experimental Methods for Determination of Reaction Orders
To experimentally measure the reaction rate, we need a method to measure concentration changes with respect to time. The
simplest way to determine the reaction rate is to monitor the entire reaction as it proceeds and then plot the resulting data
differently until a linear plot is found. A summary of the results obtained in section 15.1 and that is useful for this task is reported
in the following table:

Zeroth-Order First-Order Simple Second-Order Complex Second-Order

Differential Rate Law

Integrated Rate Law

Units of 

Linear Plot vs. 

Half-life not easily defined

However, this method works only if the reaction has few reactants, and it requires several measurements, each of which might be
complicated to make. More useful methods to determine the reaction rate are the initial rate and the isolation methods that we
describe below.

Initial rates method 
The initial rates method involves measuring the rate of a reaction as soon as it starts before any significant change in the
concentrations of the reactants occurs. The initial rate method is practical only if the reaction is reasonably slow, but it can measure
the rate unambiguously when more than one reactant is involved. For example, if we have a reaction with the following
stoichiometry:

the initial rate method can be used to determine the coefficients of the rate law:

by designing three experiment, where the initial concentrations of  and  are appropriately changed. For example, let’s consider
the following experimental data from three different experiments:

0.10 0.10 4.32

0.15 0.10 9.70

0.10 0.20 4.29

we can calculate  by taking the ratio of the rates measured in experiment 1 and 2:
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 can be calculated similarly by taking the ratio between experiments 1 and 3. Alternatively, we can also notice that the reaction
rate does not change when the initial concentration  is doubled, therefore .

Isolation method 

Another method that is widely used to determine reaction orders is the isolation method. This method is performed by using large
excess concentrations of all reactants but one. For example, if we have the following reaction with three reagents and unknown rate
law:

we can perform three different experiments, in each of which we use an excessive amount of one of the two reagents, such as:

Experiment 1:  in which the reaction order with respect to  is measured.
Experiment 2:  in which the reaction order with respect to  is measured.
Experiment 3:  in which the reaction order with respect to  is measured.

From each experiment we can determine the pseudo-order of the reaction with respect to the reagent that is in minority
concentration. For example, for the reaction above, we can write the rate law as:

and we can write the initial concentrations, , and the final concentrations, , of each of the species in experiment 1, as:

The coefficient  can then be determined by incorporating the concentration of the reactants in excess into the rate constant as:

and then determine  by verifying which order the data collected for  at various time fit. This can be simply achieved by using
the zero-, first-, and second-order kinetic plots, as reported in the table above. We can determine  and  by repeating the same
procedure for the data from the other two experiments. For example, if we find for a specific reaction that  1, , and 

, we can then say that the reaction is pseudo-order one in , pseudo-order two in , and pseudo-order zero in , with an
overall reaction order of three.

This page titled 15.3: Experimental Methods for Determination of Reaction Orders is shared under a CC BY-SA 4.0 license and was authored,
remixed, and/or curated by Roberto Peverati via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.
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15.4: Temperature Dependence of the Rate Coefficients
The dependence of the rate coefficient, , on the temperature is given by the Arrhenius equation. This formula was derived by
Svante August Arrhenius (1859–1927) in 1889 and is based on the simple experimental observation that every chemical process
gets faster when the temperature is increased. Working on data from equilibrium reactions previously reported by van ’t Hoff,
Arrhenius proposed the following simple exponential formula to explain the increase of  when  is increased:

where  is the so-called Arrhenius pre-exponential factor, and  is the activation energy. Both of these terms are independent of
temperature,  and they represent experimental quantities that are unique to each individual reaction. Since there is no known
exception to the fact that a temperature increase speeds up chemical reactions, both  and  are always positive. The pre-
exponential factor units are the same as the rate constant and will vary depending on the order of the reaction. As suggested by its

name, the activation energy has units of energy per mole of substance,  in SI.

The Arrhenius equation is experimentally useful in its linearized form, which is obtained from two Arrhenius experiments, taken at
different temperatures. Applying Equation  to two different experiments, and taking the ratio between the results, we obtain:

which gives the plot of Figure , from which  can be determined.

Figure : Arrhenius Plot Obtained Using Experimental Data at Two Different Temperatures.

From empirical arguments, Arrhenius proposed the idea that reactants must acquire a minimum amount of energy before they can
form any product. He called this amount of minimum energy the activation energy. We can motivate this assumption by plotting
energy of a reaction along the reaction coordinate, as in Figure .  The reaction coordinate is defined as the minimum energy
path that connects the reactants with the products.
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Figure : Reaction Coordinate Diagram for a Typical Reaction.

1. In theory, both  and  show a weak temperature dependence. However, they can be considered constants at most
experimental conditions, since kinetic studies are usually performed in a small temperature range. 

2. This plot is taken from Wikipedia, and have been generated and distributed by Author Grimlock under CC-BY-SA license.
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and/or curated by Roberto Peverati via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history
is available upon request.
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16.1: Introduction
Quantum mechanics is an important intellectual achievement of the 20th century. It is one of the more sophisticated field in physics
that has affected our understanding of nano-meter length scale systems important for chemistry, materials, optics, and electronics.
The existence of orbitals and energy levels in atoms can only be explained by quantum mechanics. Quantum mechanics can explain
the behaviors of insulators, conductors, semi-conductors, and giant magneto-resistance. It can explain the quantization of light and
its particle nature in addition to its wave nature. Quantum mechanics can also explain the radiation of hot body, and its change of
color with respect to temperature. It explains the presence of holes and the transport of holes and electrons in electronic devices.
Quantum mechanics has played an important role in photonics, quantum electronics, and micro-electronics. But many more
emerging technologies require the understanding of quantum mechanics; and hence, it is important that scientists and engineers
understand quantum mechanics better. One area is nano-technologies due to the recent advent of nano-fabrication techniques.
Consequently, nano-meter size systems are more common place. In electronics, as transistor devices become smaller, how the
electrons move through the device is quite different from when the devices are bigger: nano-electronic transport is quite different
from micro-electronic transport. The quantization of electromagnetic field is important in the area of nano-optics and quantum
optics. It explains how photons interact with atomic systems or materials. It also allows the use of electromagnetic or optical field
to carry quantum information. Moreover, quantum mechanics is also needed to understand the interaction of photons with materials
in solar cells, as well as many topics in material science. When two objects are placed close together, they experience a force called
the Casimir force that can only be explained by quantum mechanics. This is important for the understanding of micro/nano-
electromechanical sensor systems (M/NEMS). Moreover, the understanding of spins is important in spintronics, another emerging
technology where giant magneto-resistance, tunneling magneto-resistance, and spin transfer torque are being used. Quantum
mechanics is also giving rise to the areas of quantum information, quantum communication, quantum cryptography, and quantum
computing. It is seen that the richness of quantum physics will greatly affect the future generation technologies in many aspects. 
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16.2: Quantum Mechanics is Bizarre
The development of quantum mechanics is a great intellectual achievement, but at the same time, it is bizarre. The reason is that
quantum mechanics is quite different from classical physics. The development of quantum mechanics is likened to watching two
players having a game of chess, but the watchers have not a clue as to what the rules of the game are. By observations, and
conjectures, finally the rules of the game are outlined. Often, equations are conjectured like conjurors pulling tricks out of a hat to
match experimental observations. It is the interpretations of these equations that can be quite bizarre. Quantum mechanics
equations were postulated to explain experimental observations, but the deeper meanings of the equations often confused even the
most gifted. Even though Einstein received the Nobel prize for his work on the photo-electric effect that confirmed that light energy
is quantized, he himself was not totally at ease with the development of quantum mechanics as charted by the younger physicists.
He was never comfortable with the probabilistic interpretation of quantum mechanics by Born and the Heisenberg uncertainty
principle: “God doesn’t play dice,” was his statement assailing the probabilistic interpretation. He proposed “hidden variables” to
explain the random nature of many experimental observations. He was thought of as the “old fool” by the younger physicists
during his time. Schrödinger came up with the bizarre “Schrödinger cat paradox” that showed the struggle that physicists had with
quantum mechanics’s interpretation. But with today’s understanding of quantum mechanics, the paradox is a thing of yesteryear.
The latest twist to the interpretation in quantum mechanics is the parallel universe view that explains the multitude of outcomes of
the prediction of quantum mechanics. All outcomes are possible, but with each outcome occurring in different universes that exist
in parallel with respect to each other.

The development of quantum mechanics was initially motivated by two observations which demonstrated the inadeqacy of
classical physics. These are the “ultraviolet catastrophe” and the photoelectric effect.

1. This section was adapted in part from Prof. Weng Cho CHEW’s Quantum Mechanics Made Simple Lecture Notes available
here.
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16.3: The Ultraviolet Catastrophe
The ultraviolet (UV) catastrophe, also called the Rayleigh–Jeans catastrophe, is the prediction of classical electromagnetism that
the intensity of the radiation emitted by an ideal black body at thermal equilibrium goes to infinity as wavelength decreases (see
figure  ) .

Figure : The ultraviolet catastrophe is the error at short wavelengths in the Rayleigh–Jeans law for the energy emitted by an
ideal black body. The error, much more pronounced for short wavelengths, is the difference between the Rayleigh–Jeans law —
black—and Planck’s law—blue.

A black body is an idealized object that absorbs and emits all frequencies. Classical physics can be used to derive an approximated
equation describing the intensity of a black body radiation as a function of frequency for a fixed temperature. The result is known
as the Rayleigh-Jeans law, which for wavelength , is:

where  is the intensity of the radiation —expressed as the power emitted per unit emitting area, per steradian, per unit
wavelength (spectral radiance)—  is the speed of light,  is the Boltzmann constant, and  is the temperature in kelvins. The
paradox —or rather the breakdown of the Rayleigh–Jeans formula— happens at small wavelength . If we take the limit for 
in Equation , we obtain that . In other words, as the wavelength of the emitted light gets smaller (approaching the
UV range), the intensity of the radiation approaches infinity, and the black body emits an infinite amount of energy. This
divergence for low wavelength (high frequencies) is called the ultraviolet catastrophe, and it is clearly unphysical.

Max Planck explained the black body radiation in 1900 by assuming that the energies of the oscillations of the electrons
responsible for the radiation must be proportional to integral multiples of the frequency, i.e.,

Planck’s assumptions led to the correct form of the spectral function for a black body:

If we now take the limit for  of Equation , it is easy to prove that  goes to zero, in agreement with the experimental
results, and our intuition. Planck also found that for , the experimental data could be reproduced exactly.
Nevertheless, Planck could not offer a good justification for his assumption of energy quantization. Physicists did not take this
energy quantization idea seriously until Einstein invoked a similar assumption to explain the photoelectric effect.

1. This picture is taken from Wikipedia by user Darth Kule, and in in the Public Domain
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16.4: The Photoelectric Effect
In 1886 and 1887, Heinrich Hertz discovered that ultraviolet light can cause electrons to be ejected from a metal surface. According
to the classical wave theory of light, the intensity of the light determines the amplitude of the wave, and so a greater light intensity
should cause the electrons on the metal to oscillate more violently and to be ejected with a greater kinetic energy. In contrast, the
experiment showed that the kinetic energy of the ejected electrons depends on the frequency of the light. The light intensity affects
only the number of ejected electrons and not their kinetic energies. Einstein tackled the problem of the photoelectric effect in 1905.
Instead of assuming that the electronic oscillators had energies given by Planck’s formula, Equation 17.3.2, Einstein assumed that
the radiation itself consisted of packets of energy , which are now called photons. Einstein successfully explained the
photoelectric effect using this assumption, and he calculated a value of  close to that obtained by Planck.

Two years later, Einstein showed that not only is light quantized, but so are atomic vibrations. Classical physics predicts that the
molar heat capacity at constant volume ( ) of a crystal is , where  is the molar gas constant. This works well for high
temperatures, but for low temperatures  actually falls to zero. Einstein was able to explain this result by assuming that the
oscillations of atoms about their equilibrium positions are quantized according to , Planck’s quantization condition for
electronic oscillators. This demonstrated that the energy quantization concept was important even for a system of atoms in a
crystal, which should be well-modeled by a system of masses and springs (i.e., by classical mechanics).

This page titled 16.4: The Photoelectric Effect is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Roberto
Peverati.

E = hν

h

CV 3R R

CV

E = nhν

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://chem.libretexts.org/@go/page/416076?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/The_Live_Textbook_of_Physical_Chemistry_(Peverati)/16%3A_The_Motivation_for_Quantum_Mechanics/16.04%3A_The_Photoelectric_Effect
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/The_Live_Textbook_of_Physical_Chemistry_(Peverati)/16%3A_The_Motivation_for_Quantum_Mechanics/16.03%3A_The_Ultraviolet_Catastrophe
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/The_Live_Textbook_of_Physical_Chemistry_(Peverati)/16%3A_The_Motivation_for_Quantum_Mechanics/16.04%3A_The_Photoelectric_Effect
https://creativecommons.org/licenses/by-sa/4.0
https://www.fit.edu/faculty-profiles/p/peverati-roberto/


16.5.1 https://chem.libretexts.org/@go/page/416077

16.5: Wave-Particle Duality
Einstein had shown that the momentum of a photon is

This can be easily shown as follows. Assuming  for a photon and  for an electromagnetic wave, we obtain

Now we use Einstein’s relativity result, , and the definition of mementum , to find:

which is equivalent to Equation . Note that  refers to the relativistic mass, not the rest mass, since the rest mass of a photon
is zero. Since light can behave both as a wave (it can be diffracted, and it has a wavelength), and as a particle (it contains packets of
energy ), de Broglie reasoned in 1924 that matter also can exhibit this wave-particle duality. He further reasoned that matter
would obey the same Equation  as light. In 1927, Davisson and Germer observed diffraction patterns by bombarding metals
with electrons, confirming de Broglie’s proposition.

Rewriting the previous equations in terms of the wave vector, , and the angular frequency, , we obtain the

following two equations

which are known as de Broglie’s equations. We will use those equation to develop wave mechanics in the next chapters.

1. The previous 3 sections were adapted in part from Prof. C. David Sherrill’s A Brief Review of Elementary Quantum Chemistry
Notes available here.
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1

CHAPTER OVERVIEW

17: Classical Mechanics
Quantum mechanics cannot be derived from classical mechanics, but classical mechanics can inspire quantum mechanics.
Quantum mechanics is richer and more sophisticated than classical mechanics. Quantum mechanics was developed during the
period when physicists had rich knowledge of classical mechanics. In order to better understand how quantum mechanics was
developed in this environment, it is better to understand some fundamental concepts in classical mechanics. Classical mechanics
can be considered as a special case of quantum mechanics. We will review some classical mechanics concepts here.

17.1: Newtonian Formulation
17.2: Lagrangian Formulation
17.3: Hamiltonian Mechanics
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17.1: Newtonian Formulation
Classical mechanics as formulated by Isaac Newton (1652-1727) is all about forces. Newtonian mechanics works well for problems
where we know the forces and have a reasonable coordinate system. In these cases, the net force acting on a system at position  is
simply:

Or, in other words, if we know the net force acting on a system of mass  at position  at some time , we can use Equation 
 to calculate the position of the system at any future (or past) time. We have completely determined the dynamical evolution

of the system.

A ball of mass  is at ground level and tossed straight up from an initial position  with an initial velocity  and subject to
gravity alone. Calculate the equation of motion for the ball (i.e. where is the ball going to be after some time ?).

Answer

Since the only force acting on the ball is gravity, we can use the equation for the gravitational force to start our derivation:

with  the usual gravitational constant ( ). We can then replace this expression into Equation , to
obtain:

which can then be integrated with respect to time, to obtain:

which can be further integrated with respect to time, to give:

This final equation is the equation of motion for the ball, from which we can calculate the position of the ball at any time .
Notice how the equation of motion does not depend on the mass of the ball!

How much time will a ball ejected from a height of  at an initial velocity of  take to hit the floor?

Answer

We can use the equation of motion obtained above to solve this problem, and obtain for this specific case .
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The formula of Newtonian mechanics are not the only one we can use to solve a problem in classical mechanics. We have at least
two other equivalent approaches to the same problem that might end up being more useful in certain situations.

1. Notice that, in principle,    is the position vector and    is the velocity vector. As such, all the equation of classical
mechanics are vector equation, and not just simple numerical equation, as we present them here! For our purposes, we can
restrict ourselves to a 1-dimensional space, hence forgetting the complications of vector algebra. 

2. This example is based on Rhett Allain’s blog post that can be found (here)[https://rhettallain.com/2018/10/31/classical-
mechanics-newtonian-lagrangian-and-hamiltonian/]  

3. Can you write a python program to do this calculation?
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17.2: Lagrangian Formulation
Another way to derive the equations of motion for classical mechanics is via the use of the Lagrangian and the principle of least
action. The Lagrangian formulation is obtained by starting from the definition of the Lagrangian of the system:

where  is the kinetic energy, and  is the potential energy. Both are expressed in terms of the coordinates . Notice that for a
fixed time, ,  and  are independent variables, since  cannot be derived from  alone.

The time integral of the Lagrangian is called the action, and is defined as:

which is a functional: it takes in the Lagrangian function for all times between  and  and returns a scalar value. The equations
of motion can be derived from the principle of least action,  which states that the true evolution of a system  described by the
coordinate  between two specified states  and  at two specified times  and  is a minimum of the action
functional. For a minimum point:

Requiring that the true trajectory  minimizes the action functional , we obtain the equation of motion (Figure ).  This
can be achieved applying classical variational calculus to the variation of the action integral  under perturbations of the path ,
Equation . The resulting equation of motion (or set of equations in the case of many dimensions) is sometimes also called the
Euler—Lagrange equation:

Figure : Principle of least action: As the system evolves, q traces a path through configuration space (only some are shown).
The path taken by the system (red) has a stationary action under small changes in the configuration of the system.

Let’s apply the Lagrangian mechanics formulas to the same problem as in the previous Example.

Solution
The expression of the kinetic energy, the potential energy, and the Lagrangian for our system are:

L = K−V , (17.2.1)

K V (q, )q̇

t q q̇ q̇ q

S = Ldt,∫
t2

t1

(17.2.2)

t1 t2
1 q(t)

q = q( )q1 t1 = q( )q2 t2 t1 t2

δS = = 0
dS

dq
(17.2.3)

q(t) S 17.2.1 2

S q(t)

17.2.3
3

( ) = .
d

dt

∂L

∂q̇

∂L

∂q
(17.2.4)
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To get the equation of motion using Equation , we need to first take the partial derivative of  with respect to  (right
hand side):

and then we need the derivative with respect to  the derivative of the Lagrangian with respect to  at the hand side:

Putting this together, we get:

Which is the same result as obtained from the Newtonian method. Integrating twice, we get the exact same formulas that we
can use the same way.

The advantage of Lagrangian mechanics is that it is not constrained to use a coordinate system. For example, if we have a bead
moving along a wire, we can define the coordinate system as the distance along the wire, making the formulas much simpler than
in Newtonian mechanics. Also, since the Lagrangian depends on kinetic and potential energy it does a much better job with
constraint forces.

1. Sometimes also called principle of stationary action, or variational principle, or Hamilton’s principle. 
2. This diagram is taken from Wikipedia by user Maschen, and distributed under CC0 license 
3. The mathematical derivation of the Euler—Lagrange equaiton is rather long and unimportant at this stage. For the curious, it

can be found here.

This page titled 17.2: Lagrangian Formulation is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Roberto
Peverati.
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17.3: Hamiltonian Mechanics
A third way of obtaining the equation of motion is Hamiltonian mechanics, which uses the generalized momentum in place of
velocity as a coordinate. The generalized momentum is defined in terms of the Lagrangian and the coordinates :

The Hamiltonian is defined from the Lagrangian by applying a Legendre transformation as:

The Lagrangian equation of motion becomes a pair of equations known as the Hamiltonian system of equations:

where  is the Hamiltonian of the system, which often corresponds to its total energy. For a closed system, it is the
sum of the kinetic and potential energy in the system:

Notice the difference between the Hamiltonian, Equation , and the Lagrangian, Equation 18.2.1. In Newtonian mechanics,
the time evolution is obtained by computing the total force being exerted on each particle of the system, and from Newton’s second
law, the time evolutions of both position and velocity are computed. In contrast, in Hamiltonian mechanics, the time evolution is
obtained by computing the Hamiltonian of the system in the generalized momenta and inserting it into Hamilton’s equations. This
approach is equivalent to the one used in Lagrangian mechanics, since the Hamiltonian is the Legendre transform of the
Lagrangian. The main motivation to use Hamiltonian mechanics instead of Lagrangian mechanics comes from the more simple
description of complex dynamic systems.

Let’s apply the Hamiltonian mechanics formulas to the same problem in the previous examples.

Solution
Using Equation , the Hamiltonian can be written as:

Since the Hamiltonian really depends on position and momentum, we need to get this in terms of  and , with  for the
momentum. This is not always the case, since it depends on the choice of coordinate system. For a trivial coordinate system for
our simple 1-dimensional problem, we have:

from which we can use eqs.  to get:

These equations represent a major diffference of the Hamiltonian method, since we describe the system using two first-order
differential equations, rather than one second-order differential equation. In order to get the equation of motion, we need to
take the derivative of :

(q, )q̇

p = .
∂L

∂q̇
(17.3.1)

1

H(p, q) = p −L(q, ),q̇ q̇ (17.3.2)

=ṗ
dp

dt

=q̇
dq

dt

= −
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∂q

= + ,
∂H

∂p

(17.3.3)
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H = K+V . (17.3.4)
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and then replacing the definition of  obtained above, we get:

which—once again—is the same result obtained for the two previous cases. Integrating this twice, we get the familiar equation
of motion for our problem.

1. We have already encountered Legendre transform in The Live Textbook of Physical Chemistry 1 when transforming from the
thermodynamic energy to any of the other thermodynamic potentials.
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CHAPTER OVERVIEW

18: The Schrödinger Equation
In 1925, Erwin Schrödinger and Werner Heisenberg independently developed the new quantum theory. Schrödinger’s method
involves partial differential equations, whereas Heisenberg’s method employs matrices; however, a year later the two methods were
shown to be mathematically equivalent. Most textbooks begin with Schrödinger’s equation, since it seems to have a better physical
interpretation via the classical wave equation. Indeed, the Schrödinger equation can be viewed as a form of the wave equation
applied to matter waves.

18.1: The Time-Independent Schrödinger Equation
18.2: The Time-Dependent Schrödinger Equation

This page titled 18: The Schrödinger Equation is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Roberto
Peverati.
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18.1: The Time-Independent Schrödinger Equation
We can start the derivation of the single-particle time-independent Schrödinger equation (TISEq) from the equation that describes
the motion of a wave in classical mechanics:

where  is the position,  is time,  is the wave vector, and  is the angular frequency of the wave. If we are not

concerned with the time evolution, we can consider uniquely the derivatives of Equation  with respect to the location, which
are:

where we have used the fact that .

Assuming that particles behaves as wave—as proven by de Broglie’s we can now use the first of de Broglie’s equation, Equation

17.5.4, we can replace  to obtain:

which can be rearranged to:

The total energy associated with a wave moving in space is simply the sum of its kinetic and potential energies:

from which we can obtain:

which we can then replace into Equation  to obtain:

which can then be rearranged to the famous time-independent Schrödinger equation (TISEq):

A two-body problem can also be treated by this equation if the mass  is replaced with a reduced mass .

This page titled 18.1: The Time-Independent Schrödinger Equation is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Roberto Peverati.
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18.2: The Time-Dependent Schrödinger Equation
Unfortunately, the analogy with the classical wave equation that allowed us to obtain the TISEq in the previous section cannot be
extended to the time domain by considering the equation that involves the partial first derivative with respect to time. Schrödinger
himself presented his time-independent equation first, and then went back and postulated the more general time-dependent
equation. We are following here the same strategy and just give the time-independent variable as a postulate. The single-particle
time-dependent Schrödinger equation is:

where  represents the potential energy of the system. Obviously, the time-dependent equation can be used to derive the
time-independent equation. If we write the wavefunction as a product of spatial and temporal terms, , then
Equation  becomes:

which can be rearranged to:

Since the left-hand side of Equation  is a function of  only and the right hand side is a function of  only, the two sides must
equal a constant. If we tentatively designate this constant  (since the right-hand side clearly must have the dimensions of energy),
then we extract two ordinary differential equations, namely:

and:

The latter equation is the TISEq. The former equation is easily solved to yield

The solutions of Equation , , are purely oscillatory, since  never changes in magnitude. Thus if:

then the total wave function  differs from  only by a phase factor of constant magnitude. There are some interesting
consequences of this. First of all, the quantity  is time independent, as we can easily show:

Wave functions of the form of Equation  are called stationary states. The state  is “stationary,” but the particle it
describes is not! Of course Equation  represents only a particular solution to the time-dependent Schrödinger equation. The
general solution is much more complicated, and the factorization of the temporal part is often not possible:

1. This sections was adapted in part from Prof. C. David Sherrill’s A Brief Review of Elementary Quantum Chemistry Notes
available here.
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19: Analytically Soluble Models
The TISEq can be solved analytically only in a few special cases. In this section, we will analyze the main four. Luckily, we can
use these solutions to explain most of the effects in chemistry since we can combine them to describe the hydrogen atom upon
which we can build more complex chemical systems, as we will show in the next chapters.

This page titled 19: Analytically Soluble Models is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Roberto
Peverati.
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19.1: The Free Particles
By definition, the particle does not feel any external force, therefore , and the TISEq is written simply:

This equation can be rearranged to:

which corresponds to a mathematical problem where the second derivative of a function should be equal to a constant, 

multiplied by the function itself. Such a problem is easily solved by the function:

The first and second derivatives of this function are:

Comparing the second derivative in Equation  with Equation , we immediately see that if we set:

we solve the original differential equation. Considering de Broglie’s equation, Equation 17.5.4, we can replace , to obtain:

which is exactly the classical value of the kinetic energy of a free particle moving in one direction of space. Since the function in
Equation  solves the Schrödinger equation for the free particle, it is called an eigenfunction (or eigenstate) of the TISEq. The
energy result of Equation  is called eigenvalue of the TISEq. Notice that, since  is continuous in the eigenfunction, the
energy eigenvalue is also continuous (i.e., all values of  are acceptable).
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19.2: The Particle in a Box
Now we can consider a particle constrained to move in a single dimension, under the influence of a potential  which is zero
for  and infinite elsewhere. Since the wavefunction is not allowed to become infinite, it must have a value of zero where 

 is infinite, so  is nonzero only within . The Schrödinger equation is thus:

In other words, inside the box  describes a free particle, but outside the box . Since the Schrödinger equation
involves derivatives, the function that solves it, , must be everywhere continuous and everywhere continuously differentiable.
This fact means that the value of the wave function at the two extremes must be equal to zero:

Inside the box we can use Euler’s formula to write the wave function as a linear combination of the positive and negative solutions:

where  and  are constants that we need to determine using the two constraints in Equation . For  it is straightforward to
see that:

For  we have:

which is trivially solved by , or by the more interesting condition of . The trivial solution corresponds to a wave
function uniformly equal to zero everywhere. This wave function is uninteresting, since it describes no particles in no boxes. The
second set of solutions, however, is very interesting, since we can write it as:

which represents an infinite set of functions, , determined by a positive integer number , called quantum number. Since
these functions solve the TISEq, they are also called eigenfunctions, but they are not a continuous set, unlike in the previous case.
To calculate the energy eigenvalues, we can replace  into Equation , to obtain:

A few interesting considerations can be made from the results of Equation . First, although there is an infinite number of
acceptable values of the energy (eigenvalues), these values are not continuous. Second, the lowest value of the energy is not zero,
and it depends on the size of the box, , since:

This value is called zero-point energy (ZPE), and is a purely quantum mechanical effect. Notice that we did not solve for the
constant . This task is not straightforward, and it can be achieved by requiring the wave function to describe one particle
exclusively (we will come back to this task after chapter 23). Extending the problem to three dimensions is relatively
straightforward, resulting in a set of three separate quantum numbers (one for each of the 3-dimensional coordinate ).
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19.3: The Harmonic Oscillator
We now consider a particle subject to a restoring force , as might arise for a mass-spring system obeying Hooke’s Law.
The potential is then:

If we choose the energy scale such that  then: , and the TISEq looks:

After some effort, the eigenfunctions are:

where  is the Hermite polynomial of degree , and  and  are defined by

The eigenvalues are:

with . Notice how, once again, the eigenfunctions and eigenvalues are not continuous. In this case, however, the first

eigenvalue corresponds to , but because of the  factor in Equation , the lowest energy state is, once again, not zero.

In other words, the two masses of a quantum harmonic oscillator are always in motion. The frequencies at which they vibrate do
not form a continuous spectrum. That is, the vibration frequency cannot take any value that we can think of, but only those given

by Equation . The lowest possible energy (the ZPE) will be .
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19.4: The Rigid Rotor
The rigid rotor is a simple model of a rotating stick in three dimensions (or, if you prefer, of a molecule). We consider the stick to
consist of two point-masses at a fixed distance. We then reduce the model to a one-dimensional system by considering the rigid
rotor to have one mass fixed at the origin, which is orbited by the reduced mass , at a distance . The cartesian coordinates, 

, are then replaced by three spherical polar coordinates: the co-latitude (zenith) angle , the longitudinal (azimuth) angle ,
and the distance . The TISEq of the system in spherical coordinates is:

where  is the moment of inertia. After a little effort, the eigenfunctions can be shown to be the spherical harmonics 
.  The eigenvalues are simply:

where  is the azimuthal quantum number, and  is the magnetic quantum number.
Each energy level  is -fold degenerate in . Notice that the energy does not depend on the second index , and the
functions with fixed  have the same energy. Since this problem was, in fact, a one-dimensional
problem, it results in just one quantum number , similarly to the previous two cases. The index  that appears in the spherical
harmonics will assume some importance in future chapters.

1. For a description of the spherical harmonics see here
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CHAPTER OVERVIEW

20: The Hydrogen Atom
In this chapter we will consider the hydrogen atom as a proton fixed at the origin, orbited by an electron of reduced mass . The
potential due to electrostatic attraction is:

where  is the constant permittivity of vacuum. The kinetic energy term in the Hamiltonian is

where  is the Laplace operator (Laplacian) representing the divergence of the gradient of a function. Recall that in 1-dimension
the kinetic energy is proportional to the second derivative of the wave function with respect to the position. In 3-dimension, the
first derivative along all three dimension of space is called gradient, which is written in cartesian coordinates 

. The Laplacian is the divergence  of the gradient (effectively, it replaces the second derivatives in the 1-D

case), and can be written in cartesian coordinates as . The TISEq for the Hydrogen atom is

therefore:

which, replacing the Laplacian in spherical coordinates, becomes:

This equation seems very complicated, but comparing the term in between square brackets with the TISEq of the rigid rotor, we
immediately see some connections. Equation  is a separable, partial differential equation that can be solved by factorizing the
wave function  into , where  are again the spherical harmonics that solved the TISEq for the
rigid rotor. The radial part  obeys the equation:

which is called the radial equation for the hydrogen atom. The solutions of the radial part are:

where , and  is the Bohr radius. The functions  are the associated Laguerre functions.

The hydrogen atom eigenfunctions are:

The quantum numbers  can take the following values:
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 (magnetic quantum number).

These functions are called the hydrogen atom orbitals, and are usually first encountered in introductory chemistry textbooks.
Notice that—by definition—an orbital is a complex function (i.e., it has both a real and an imaginary component) that describes
exclusively one electron. Spherical harmonics are orthogonal to each other and they can be linearly combined them to form new
solution to the TISEq where the imaginary part is removed. (Because of the orthogonality of spherical harmonics, the energy
spectrum will not be affected by this operation.) These corresponding real orbitals are three-dimensional function that are not easily
visualized in a three-dimensional space, since they require a four-dimensional one.  Since there is no real consensus on what a
wave function represent, the interpretation of orbitals is not straightforward.  We will return on the interpretation problem in future
chapters, but for now it is important to keep in mind these following facts:

The shape of every hydrogen atom orbital—complex or real—is that of a function on the surface of a sphere (yes, this is true for
every single one of them, since they all come from spherical harmonics, which are special functions defined on the surface of a
sphere. Hydrogen  orbitals in real space do not have the shape of a dumbbell, as often is said in general chemistry textbooks.
Same goes for  orbitals.)
Each orbital is the mathematical description of one—and only one—electron (in other words, orbitals do not “contain”
electrons, they “are” the functions that describe each electron.)
Hydrogen orbitals are defined only for stystems that contain one electron. When more than one electron is present in an atom,
the TISEq in Equation  does not describe the system anymore. In these more complicated situations the TISEq cannot be
solved analytically, and orbitals cannot be easily defined (we will see in chapter 26 how we can circumvent this issue in an
approximate manner, and why general chemistry textbook talk of orbitals for every atom and molecule.)

The hydrogen atom eigenvalues are:

Notice how the eigenvalues (i.e., the energy spectrum) do not depend on the azimuthal and magnetic quantum numbers,  and .
Energy levels with the same , but different  and/or  are called degenerate states, since they all have the same energy. This is,
once again, source of misinterpretation in most general chemistry textbook:

According to the TISEq, the  and  orbitals of the hydrogen atom have the same energy.

1. If it is not clear why you need a 4-D space to visualize a 3-D function, think at the fact that we use a 2-D space (the Cartesian
plane) to visualize a 1-D function ( ). 

2. At least not as straightforward as it is given in introductory chemistry textbooks. 
3. In practice, this is not true, because of a tiny effect called the Lamb shift. The description of this effect requires to go beyond the

Schrödinger equation—and essentially beyond quantum mechanics—into the field of quantum electrodynamics. The Lamb
shift, however, is not what is usually depicted in general chemistry textbook as the  energy difference. The difference
that is usually discussed in the context of the aufbau principle is a many-electron effect, as we will discuss in chapter 10, and
does not apply to hydrogen. 
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1

CHAPTER OVERVIEW

21: Operators and Mathematical Background
So far, we have seen a few simple examples of how to solve the TISEq. For the general case, the mathematical formulation of
quantum mechanics is built upon the concept of an operator. An operator is a function over a space of physical states onto another
space of physical states. Operators do not exist exclusively in quantum mechanics, but they can also be used in classical mechanics.
In chapter 2, we have seen at least a couple of them, namely the Lagrangian, , and Hamiltonian, . In quantum mechanics,
however, the concept of an operator is the basis of the complex mathematical treatment that is necessary for more complicated
cases. In this chapter, we will discuss the mathematics of quantum mechanical operators, and we will recast the results for the
analytical cases in light of the new framework. As we will see, this framework is even simpler than what we have seen in the
previous chapter. This simplicity, however, will open the door to the “stranger” side of quantum mechanics.

21.1: Operators in Quantum Mechanics
21.2: Eigenfunctions and Eigenvalues
21.3: Common Operators in Quantum Mechanics

This page titled 21: Operators and Mathematical Background is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated
by Roberto Peverati.
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21.1: Operators in Quantum Mechanics
The central concept in this new framework of quantum mechanics is that every observable (i.e., any quantity that can be measured
in a physical experiment) is associated with an operator. To distinguish between classical mechanics operators and quantum
mechanical ones, we use a hat symbol  on top of the latter. Physical pure states in quantum mechanics are represented as unit-
norm (probabilities are normalized to one) vectors in a special complex Hilbert space. Following the definition, an operator is a
function that projects a vector in the Hilbert space onto the space of physical observables. Since observables are values that come
up as the result of the experiment, quantum mechanical operators must yield real eigenvalues.  Operators that possess this
property are called Hermitian. In the wave mechanics formulation of quantum mechanics that we have seen so far, the wave
function varies with space and time—or equivalently momentum and time—and observables are differential operators. A
completely analogous formulation is possible in terms of matrices. In the matrix formulation of quantum mechanics, the norm of
the physical state should stay fixed, so the evolution operator should be unitary, and the operators can be represented as matrices.

The expectation value of an operator  for a system with wave function  living in a Hilbert space with unit vector  (i.e., in
three-dimensional Cartesian space ), is given by:

and if  is a Hermitian operator, all physical observables are represented by such expectation values. It is easy to show that if  is
a linear operator with an eigenfunction , then any multiple of  is also an eigenfunction of .

Basic Properties of Operators
Most of the properties of operators are obvious, but they are summarized below for completeness. The sum and difference of two
operators  and  are given by:

The product of two operators is defined by:

Two operators are equal if

for all functions . The identity operator  does nothing (or multiplies by 1):

The associative law holds for operators:

The commutative law does not generally hold for operators. In general, . It is convenient to define the quantity:

which is called the commutator of  and . Note that the order matters, so that . If  and  happen to
commute, then .

Linear Operators

Almost all operators encountered in quantum mechanics are linear. A linear operator is any operator  satisfying the following two
conditions:
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(21.1.8)

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://chem.libretexts.org/@go/page/416092?pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/The_Live_Textbook_of_Physical_Chemistry_(Peverati)/21%3A_Operators_and_Mathematical_Background/21.01%3A_Operators_in_Quantum_Mechanics


21.1.2 https://chem.libretexts.org/@go/page/416092

where  is a constant and  and  are functions. As an example, consider the operators  and . We can see that  is a linear

operator because:

However,  is not a linear operator because:

Hermitian Operators
Hermitian operators are characterized by the self-adjoint property:

where the integral is performed over all space. This property guarantees that all the eigenvalues of the operators are real. Defining 
 as the eigenvalue of operator  using:

we can prove that  is real by replacing Equation  into Equation :

and since  is never negative, either  or . Since  is not an acceptable wavefunction, , and  is real.

The following additional properties of Hermitian operators can also be proven with some work:

and for any two states  and :

Taking  and  as eigenfunctions of  with eigenvalues  and  with , and using Equation , we obtain:

Thus, since , and since we assumed , we must have , i.e.  and  are orthogonal. In other words,
eigenfunctions of a Hermitian operator with different eigenvalues are orthogonal (or can be chosen to be so).

1. But they might not be strictly real. 
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21.2: Eigenfunctions and Eigenvalues
As we have already seen, an eigenfunction of an operator  is a function  such that the application of  on  gives  again, times
a constant:

where  is a constant called the eigenvalue.

When a system is in an eigenstate of observable  (i.e., when the wave function is an eigenfunction of the operator ) then the
expectation value of  is the eigenvalue of the wave function. Therefore:

then:

which implies that:

This property of wave functions is called normalization, and in the one-electron TISEq guarantees that the maximum probability of
finding an electron over the entire space is one.

A unique property of quantum mechanics is that a wave function can be expressed not just as a simple eigenfunction, but also as a
combination of several of them. We have in part already encountered such property in the previous chapter, where complex
hydrogen orbitals have been combined to form corresponding linear ones. As a general example, let us consider a wave function
written as a linear combination of two eigenstates of , with eigenvalues  and :

where  and . Then, since  and  are orthogonal and normalized (usually abbreviated as orthonormal),
the expectation value of  is:

This result shows that the average value of  is a weighted average of eigenvalues, with the weights being the squares of the
coefficients of the eigenvectors in the overall wavefunction.

1.  Imposing the normalization condition is the best way to find the constant  in the solution of the TISEq for the particle in a
box, a topic that we delayed in chapter 20. 

2. This section was adapted in part from Prof. C. David Sherrill’s A Brief Review of Elementary Quantum Chemistry Notes
available here.
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21.3: Common Operators in Quantum Mechanics
Some common operators occurring in quantum mechanics are collected in the table below:

Observable Name Symbol Operator Operation

Position Multiply by 

Momentum

Kinetic energy

Potential energy Multiply by 

Total energy

Angular momentum

 

 

 

In the sections below we analyze in details two main operators for the energy and the angular momentum.

Hamiltonian Operator

The main quantity that quantum mechanics is interested in is the total energy of the system, . The operator corresponding to this
quantity is called Hamiltonian:

where  is an index over all the particles of the system. Using the formalism of operators in conjunction with Equation , we
can write the TISEq just simply as:

Comparing Equation  to the classical analog in Equation 18.3.2, we notice how the first term in the Hamiltonian operator
represents the corresponding kinetic energy operator, , while the second term represents the potential energy operator, . For a
one-electron system—such as the ones we studied in chapter 20—we can write:

which is universal and applies to all systems. The potential energy operator  is what differentiate each system. Using Equation 
, we can then simply obtain the TISEq for each of the first three models discussed in chapter 20 by simply using:

While these three cases are trivial to solve, the case of the rigid rotor is more complicated to solve, since the kinetic energy operator
needs to be solved in spherical polar coordinates, as we will show in the next section.
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ψ = Eψ.Ĥ (21.3.2)
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Free particle: V̂

Particle in a box: V̂

Harmonic oscillator: V̂
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Angular Momentum Operator

To write the kinetic energy operator  for the rigid rotor, we need to express the Laplacian, , in spherical polar coordinates:

where  is the radial Laplacian, and  is the square of the total angular momentum operator, which is:

with  the unitary vectors in three-dimensional space. The component along each direction, , are then

expressed in cartesian coordinates using to the following formulas:

The eigenvalues equation corresponding to the total angular momentum is:

where  is the azimuthal quantum number and  are the spherical harmonics, both of which we already encountered in
chapter 20. Recall once again that each energy level  is -fold degenerate in , since  can have values 

. This means that there are  states with the same energy , each characterized by the magnetic
magnetic quantum number . This quantum number can be determined using the following eigenvalues equation:

The interpretation of these results is rather complicated, since the angular momenta are quantum operators and they cannot be
drawn as vectors like in classical mechanics. Nevertheless, it is common to depict them heuristically as in figure ,  where a
set of states with quantum numbers , and  are reported. Since , the vectors are all
shown with length . The rings represent the fact that  is known with certainty, but  and  are unknown; therefore every
classical vector with the appropriate length and -component is drawn, forming a cone. The expected value of the angular
momentum for a given ensemble of systems in the quantum state characterized by  and , could be somewhere on this cone but
it cannot be defined for a single system.
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Figure : Illustration of the vector model of orbital angular momentum.

1. This diagram is taken from Wikipedia by user Maschen, and is of public domain
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CHAPTER OVERVIEW

22: Spin
Spin is a special property of particles that has no classical analogue. Spin is an intrinsic form of angular momentum carried by
elementary particles, such as the electron.

22.1: Stern-Gerlach Experiment
22.2: Sequential Stern-Gerlach Experiments
22.3: Spin Operators
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22.1: Stern-Gerlach Experiment
In 1920, Otto Stern and Walter Gerlach designed an experiment that unintentionally led to the discovery that electrons have their
own individual, continuous spin even as they move along their orbital of an atom. The experiment was done by putting a silver foil
in an oven to vaporize its atoms. The silver atoms were collected into a beam that passed through an inhomogeneous magnetic
field. The result was that the magnetic beam split the beam into two (and only two) separate ones. The Stern–Gerlach experiment
demonstrated that the spatial orientation of angular momentum is quantized into two components (up and down). Thus an atomic-
scale system was shown to have intrinsically quantum properties. The experiment is normally conducted using electrically neutral
particles such as silver atoms. This avoids the large deflection in the path of a charged particle moving through a magnetic field and
allows spin-dependent effects to dominate.

If the particle is treated as a classical spinning magnetic dipole, it will precess in a magnetic field because of the torque that the
magnetic field exerts on the dipole. If it moves through a homogeneous magnetic field, the forces exerted on opposite ends of the
dipole cancel each other out and the trajectory of the particle is unaffected. However, if the magnetic field is inhomogeneous then
the force on one end of the dipole will be slightly greater than the opposing force on the other end, so that there is a net force which
deflects the particle’s trajectory. If the particles were classical spinning objects, one would expect the distribution of their spin
angular momentum vectors to be random and continuous. Each particle would be deflected by an amount proportional to its
magnetic moment, producing some density distribution on the detector screen. Instead, the particles passing through the Stern–
Gerlach apparatus are equally distributed among two possible values, with half of them ending up at an upper spot (“spin up”), and
the other half at the lower spot (“spin down”). Since the particles are deflected by a magnetic field, spin is a magnetic property that
is associated to some intrinsic form of angular momentum. As we saw in chapter 6, the quantization of the angular momentum
gives energy levels that are -fold degenerate. Since along the direction of the magnet we observe only two possible
eigenvalues for the spin, we conclude the following value for :

The Stern-Gerlach experiment proves that electrons are spin-  particles. These have only two possible spin angular momentum

values measured along any axis,  or , a purely quantum mechanical phenomenon. Because its value is always the same, it

is regarded as an intrinsic property of electrons, and is sometimes known as “intrinsic angular momentum” (to distinguish it from
orbital angular momentum, which can vary and depends on the presence of other particles).

The act of observing (measuring) the momentum along the  direction corresponds to the operator , which project the value of

the total spin operator  along the  axis. The eigenvalues of the projector operator are:

where  is the spin quantum number along the  component. The eigenvalues for the total spin

operator —similarly to the angular momentum operator  seen in Equation 22.3.6—are:

The initial state of the particles in the Stern-Gerlach experiment is given by the following wave function:

where , , and the coefficients  and  are complex numbers. In this initial state, spin can point in any direction.

The expectation value of the operator  (the quantity that the Stern-Gerlach experiment measures), can be obtained using
Equation 22.2.6:

(2ℓ +1)

s

2s+1 = 2 ⇒ s = .
1

2
(22.1.1)

1

2

+
ℏ

2
−

ℏ

2

z Ŝz
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2

ℏ2 (22.1.3)

ϕ = + ,c1 ϕ↑ c2 ϕ↓ (22.1.4)

↑= +
ℏ

2
↓= −

ℏ

2
c1 c2

Ŝz
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where the integration is performed along a special coordinate  composed of only two values, and the coefficient  and  are
complex numbers. Applying the normalization condition, Equation 6.2.4 we can obtain:

This equation is not sufficient to determine the values of the coefficients since they are complex numbers. Equation ,
however, tells us that the squared magnitudes of the coefficients can be interpreted as probabilities of outcome from the
experiment. This is true because their values are obtained from the normalization condition, and the normalization condition
guarantees that the system is observed with probability equal to one. Summarizing, since we started with random initial directions,

each of the two states,  and , will be observed with equal probability of .

This page titled 22.1: Stern-Gerlach Experiment is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Roberto
Peverati.
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22.2: Sequential Stern-Gerlach Experiments
An interesting result can be obtain if we link multiple Stern–Gerlach apparatuses into one experiment and we perform the
measurement along two orthogonal directions in space. As we showed in the previous section, all particles leaving the first Stern-
Gerlach apparatus are in an eigenstate of the  operator (i.e., their spin is either “up or”down” with respect to the -direction). We
can then take either one of the two resulting beams (for simplicity let’s take the “spin up” output), and perform another spin
measurement on it. If the second measurement is also aligned along the -direction then only one outcome will be measured, since
all particles are already in the “spin up” eigenstate of . In other words, the measurement of a particle being in an eigenstate of the
corresponding operator leaves the state unchanged.

If, however, we perform the spin measurement along a direction perpendicular to the original -axis (i.e., the -axis) then the
output will equally distribute among “spin up” or ”spin down” in the -direction, which in order to avoid confusion, we can call
“spin left” and “spin right”. Thus, even though we knew the state of the particles beforehand, in this case the measurement resulted
in a random spin flip in either of the measurement directions. Mathematically, this property is expressed by the nonvanishing of the
commutator of the spin operators:

We can finally repeat the measurement a third time, with the magnet aligned along the original -direction. According to classical
physics, after the second apparatus, we would expect to have one beam with characteristic “spin up” and “spin left”, and another
with characteristic “spin up” and “spin right”. The outcome of the third measurement along the original -axis should be one output
with characteristic “spin up”, regardless to which beam the magnet is applied (since the “spin down” component should have been
“filtered out” by the first experiment, and the “spin left” and “spin right” component should be filtered out by the third magnet).
This is not what is observed. The output of the third measurement is—once again—two beams in the  direction, one with “spin
up” characteristric and the other with “spin down”.

This experiment shows that spin is not a classical property. The Stern-Gerlach apparatus does not behave as a simple filter,
selecting beams with one specific pre-determined characteristic. The second measurement along the  axis destroys the previous
determination of the angular momentum in the  direction. This means that this property cannot be measured on two perpendicular
directions at the same time.

This page titled 22.2: Sequential Stern-Gerlach Experiments is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated
by Roberto Peverati.
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22.3: Spin Operators
The mathematics of quantum mechanics tell us that  and  do not commute. When two operators do not commute, the two
measurable quantities that are associated with them cannot be known at the same time.

In 3-dimensional space there are three directions that are orthogonal to each other . Thus, we can define a third spin
projection operator along the  direction, , corresponding to a new set of Stern-Gerlach experiments where the second magnet is

oriented along a direction that is orthogonal to the two that we consider in the previous section. The total spin operator, , can
then be constructed similarly to the total angular momentum operator of Equation 22.3.5, as:

with  the unitary vectors in three-dimensional space.

Wolfgang Pauli explicitly derived the relationships between all three spin projection operators. Assuming the magnetic field along
the  axis, Pauli’s relations can be written using simple equations involving the two possible eigenstates  and :

where  is the imaginary unit ( ). In other words, for  we have eigenvalue equations, while the remaining components
have the effect of permuting state  with state  after multiplication by suitable constants. We can use these equations, together
with Equation 23.1.7, to calculate the commutator for each couple of spin projector operators:

which prove that the three projection operators do not commute with each other.

Proof of Commutator Between Spin Projection Operators.

Solution
The equations in  can be proved by writing the full eigenvalue equation and solving it using the definition of
commutator, Equation 23.1.7, in conjunction with Pauli’s relation, Equations . For example, for the first couple:
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ϕ↑ Ŝzϕ↓

ℏ

2
ϕ↓

(22.3.2)

i = −1i2 Ŝz
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CHAPTER OVERVIEW

23: Postulates of Quantum Mechanics
In order to understand deeper quantum mechanics, scientists have derived a series of axioms that result in what are called
postulates of quantum mechanics. These are, in fact, assumptions that we need to make to understand how the measured reality
relates with the mathematics of quantum mechanics. It is important to notice that the postulates are necessary for the interpretation
of the theory, but not for the mathematics behind it. Regarding of whether we interpret it or not, the mathematics is complete and
consistent. In fact, as we will see in the next chapter, several controversies regarding the interpretation of the mathematics are still
open, and different philosophies have been developed to rationalize the results. Recall also that there are different ways of writing
the equation of quantum mechanics, all equivalent to each other (i.e., Schrödinger’s differential formulation and Heisenberg’s
algebraic formulation that we saw in chapter 3). For these reasons, there is not an agreement on the number of postulates that are
necessary to interpret the theory, and some philosophy and/or formulation might require more postulates than others. In this
chapter, we will discuss the six postulates, as they are usually presented in chemistry and introductory physics textbooks and as
they relate with a basic statistical interpretation of quantum mechanics. Regardless of the philosophical consideration on the
meanings and numbers of the postulate, as well as their physical origin, these statements will make the interpretation of the theory a
little easier, as we will see in the next chapter.

23.1: Postulate 1- The Wave Function Postulate
23.2: Postulate 2- Experimental Observables
23.3: Postulate 3- Individual Measurements
23.4: Postulate 4- Expectation Values and Collapse of the Wavefunction
23.5: Postulate 5- Time Evolution
23.6: Postulate 6- Pauli Exclusion Principle
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23.1: Postulate 1- The Wave Function Postulate
The state of a quantum mechanical system is completely specified by a function  that depends on the coordinates of the
particle(s) and on time. This function, called the wave function or state function, has the important property that 
is the probability that the particle lies in the volume element  located at  at time .

The wave function must satisfy certain mathematical conditions because of this probabilistic interpretation. For the case of a single
particle, the probability of finding it somewhere is 1, so that we have the normalization condition

It is customary to also normalize many-particle wave functions to 1. As we already saw for the particle in a box in chapter 20, a
consequence of the first postulate is that the wave function must also be single-valued, continuous, and finite, so that derivatives
can be defined and calculated at each point in space. This consequence allows for operators (which typically involve derivation) to
be applied without mathematical issues.
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23.2: Postulate 2- Experimental Observables
To every observable in classical mechanics there corresponds a linear, Hermitian operator in quantum mechanics. We have in part
already discussed this postulate in chapter 22, albeit we didn’t call it as such. This postulate is necessary if we require the
expectation value of an operator  to be real, as it should be.
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23.3: Postulate 3- Individual Measurements
In any measurement of the observable associated with operator , the only values that will ever be observed are the eigenvalues 
that satisfy the eigenvalue equation:

This postulate captures the central point of quantum mechanics: the values of dynamical variables can be quantized (although it is
still possible to have a continuum of eigenvalues in the case of unbound states). If the system is in an eigenstate of  with
eigenvalue , then any measurement of the quantity  will yield . Although measurements must always yield an eigenvalue, the
state does not have to be an eigenstate of  initially.

An arbitrary state can be expanded in the complete set of eigenvectors of   as:

where  may go to infinity. In this case, we only know that the measurement of  will yield one of the values , but we don’t
know which one. However, we do know the probability that eigenvalue  will occur (it is the absolute value squared of the
coefficient, , as we obtained already in chapter 22), leading to the fourth postulate below.

This page titled 23.3: Postulate 3- Individual Measurements is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated
by Roberto Peverati.
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23.4: Postulate 4- Expectation Values and Collapse of the Wavefunction
If a system is in a state described by a normalized wave function , then the average value of the observable corresponding to  is
given by:

An important consequence of the fourth postulate is that, after measurement of  yields some eigenvalue , the wave function
immediately “collapses” into the corresponding eigenstate . In other words, measurement affects the state of the system. This
fact is used in many experimental tests of quantum mechanics, such as the Stern-Gerlach experiment. Think again at the sequential
experiment that we discussed in chapter 23. The act of measuring the spin along one coordinate is not simply a “filtration” of some
pre-existing feature of the wave function, but rather an act that changes the nature of the wave function itself, affecting the outcome
of future experiments. To this act corresponds the collapse of the wave function, a process that remains unexplained to date. Notice
how the controversy is not in the mathematics of the experiment, which we already discussed in the previous chapter without
issues. The issues rather arise because we don’t know how to define the measurement act in itself (other than the fact that it is some
form of quantum mechanical procedure with clear and well-defined macroscopic outcomes). This is the reason why the collapse of
the wave function is also sometimes called the measurement problem of quantum mechanics, and it is still a source of research and
debate among modern scientists.
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23.5: Postulate 5- Time Evolution
The wave function of a system evolves in time according to the time-dependent Schrödinger equation:

The central equation of quantum mechanics must be accepted as a postulate.
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23.6: Postulate 6- Pauli Exclusion Principle

The total wave function of a system with  spin-  particles (also called fermions) must be antisymmetric with respect to the

interchange of all coordinates of one particle with those of another. For spin-1 particles (also called bosons), the wave function is
symmetric:

Electronic spin must be included in this set of coordinates. As we will see in chapter 26, the mathematical treatment of the
antisymmetry postulate gives rise to the Pauli exclusion principle, which states that two or more identical fermions cannot occupy
the same quantum state simultaneously (while bosons are perfectly capable of doing so).
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CHAPTER OVERVIEW

24: Quantum Weirdness
In this chapter, we will delve deeper into the strangeness of quantum mechanics. In particular, we will explore quantum phenomena
that don’t have a classical counterpart, starting from perhaps the most simple but also one of the most revealing: the double-slit
experiment.

24.1: The Double-slit Experiment
24.2: Heisenberg's Uncertainty Principle
24.3: Tunneling

This page titled 24: Quantum Weirdness is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Roberto Peverati.
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24.1: The Double-slit Experiment
The double-slit experiment is considered by many the seminal experiment in quantum mechanics. The reason why we see it only at
this advanced point is that its interpretation is not as straightforward as it might seem from a superficial analysis. The famous
physicist Richard Feynman was so fond of this experiment that he used to say that all of quantum mechanics can be understood
from carefully thinking through its implications.

The premises of the experiment are very simple: cut two slits in a solid material (such as a sheet of metal), send light or electrons
through them, and observe what happens on a screen position at some distance on the other side. The result of this experiment
though are far from straightforward.

Let’s first consider the single-slit case. If light consisted of classical particles, and these particles were sent in a straight line through
a single-slit and allowed to strike a screen on the other side, we would expect to see a pattern corresponding to the size and shape of
the slit. However, when this “single-slit experiment” is actually performed, the pattern on the screen is a diffraction pattern in
which the light is spread out. The smaller the slit, the greater the angle of spread. This behavior is typical of waves, where
diffraction explains the pattern as being the result of the interference of the waves with the slit.

If one illuminates two parallel slits, the light from the two slits again interferes. Here the interference is a more pronounced pattern
with a series of alternating light and dark bands. The width of the bands is a property of the frequency of the illuminating light. The
pattern observed on the screen is the result of this interference, as shown in figure .

Figure : Outcomes of single-slit and double-slit experiments.

The interference pattern resulting from the double-slit experiment are observed not only with light, but also with a beam of
electrons, and other small particles.

The individual particles experiment

The first twist in the plot is if we perform the experiment by sending individual particles (e.g, either individual photons, or
individual electrons). Sending particles through a double-slit apparatus one at a time results in single particles appearing on the
screen, as expected. Remarkably, however, an interference pattern emerges when these particles are allowed to build up one by one
(figure ) . The resulting pattern on the screen is the same as if each individual particle had passed through both slits.
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Figure : Numerical simulation of the double-slit experiment with electrons.

This variation of the double-slit experiment demonstrates the wave–particle duality: the particle is measured as a single pulse at a
single position, while the wave describes the probability of absorbing the particle at a specific place on the screen.

“Which way” experiment

A second twist happens if we place particle detectors at the slits with the intent of showing through which slit a particle goes. The
interference pattern in this case will disappear.

This experiment illustrates that photons (and electrons) can behave as either particles or waves, but cannot be observed as both at
the same time. The simplest interpretation of this experiment is that the wave function of the photon collapses into a deterministic
position due to the interaction with the detector on the slit, and the interference pattern is therefore lost. This result also proves that
in order to measure (detect) a photon, we must interact with it, an act that changes its wave function.

The interpretation of the results of this experiment is not simple. As for other situations in quantum mechanics, the problem arise
not because we cannot describe the experiment in mathematical terms, but because the math that we need to describe it cannot be
related to the macroscopic classical world we live in. According to the math, in fact, particles in the experiment are described
exclusively in probabilistic terms (given by the square of the wave function). The macroscopic world, however, is not probabilistic,
and outcomes of experiments can be univocally measured. Several different ways of reediming this controversy have been
proposed, including for example the possibility that quantum mechanics is incomplete (the emergence of probability is due to the
ignorance of some more fundamental deterministic feature of nature), or assuming that every time a measurement is done on a
quantum system, the universe splits, and every possible measurable outcome is observed in different branches of our universe (we
only happen to live in one of such branches, so we observe only one non-probabilistic result).  The interpretation of quantum
mechanics is still an unsolved problem in modern physics (luckily, it does not prevent us from using quantum mechanics in
chemistry).

1. This diagram is taken from Wikipedia by user Jordgette, and distributed under CC BY-SA 3.0 license. 
2. This diagram is taken from Wikipedia by user Alexandre Gondran, and distributed under CC BY-SA 4.0 license 
3. The interested student can read more about different interpretations HERE.
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24.2: Heisenberg's Uncertainty Principle
Let’s now revisit the simple case of a free particle. As we saw in chapter 20, the wave function that solved the TISEq:

is the equation of a plane wave along the  direction. This result is in agreement with the de Broglie hypothesis, which says that
every object in the universe is a wave. If this wave function describes a particle with mass (such as an electron), freely moving
along one spatial direction , it would be reasonable to ask the question: where is the particle located? Analyzing Equation ,
however, it is not possible to answer this question since  is delocalized in space from  to .  In other words,
the particle position is extremely uncertain because it could be essentially anywhere along the wave.

Thus for a free particle, the particle side of the wave-particle duality seems completely lost. We can, however, bring it back into the
picture by writing the wave function as a sum of many plane waves, called a wave packet:

where  represents the relative contribution of the mode  to the overall total. We are allowed to write the wave function this
way because each individual plane wave is a solution of the TISEq, and as we already saw in chapter 22 and several other places,
the sum of each individual solution is also a solution. An interesting consequence of writing the wave function as a wave packet is
that when we sum different waves, they interfere with each other, and they might localize in some region of space. Thus for a wave
function written as in Equation , the wave packet can become more localized. We may also make this procedure a step
further to the continuum limit, where the wave function goes from a sum to an integral over all possible modes:

where  represents the amplitude of these modes and is called the wave function in momentum space. In mathematical terms,
we say that  is the Fourier transform of  and that  and  are conjugate variables. Adding together all of these plane
waves comes at a cost; namely, the momentum has become less precise since it becomes a mixture of waves of many different
momenta.

One way to quantify the precision of the position and momentum is the standard deviation, . Since  is a probability density
function for position, we calculate its standard deviation. The precision of the position is improved—i.e., reduced —by using
many plane waves, thereby weakening the precision of the momentum—i.e., increased . Another way of stating this is that 
and  have an inverse relationship (once we know one with absolute precision, the other becomes completely unknown). This fact
was discovered by Werner Heisenberg and is now called the Heisenberg’s uncertainty principle. The mathematical treatment of
this procedure results in the simple formula:

The uncertainty principle can be extended to any couple of conjugated variables, including, for example, energy and time, angular
momentum components along perpendicular directions, spin components along perpendicular directions, etc. It is also easy to show
that conjugate variables in quantum mechanics correspond to non-commuting operators.

1. The time-dependent picture does not help us either, but since it is a little more complicated to work with the TDSEq, we are not
showing it here. 

2. Therefore, a simpler way of finding if two variables are subject to the uncertainty principle is to check if their corresponding
operators commute.
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24.3: Tunneling
Tunneling is a phenomenon where a particle may cross a barrier even if it does not have sufficient kinetic energy to overcome the
potential of the barrier itself. In this situation, the particle is said to “tunnel through” the barrier following a purely quantum
mechanical phenomenon (figure ).

Figure : Quantum tunneling through a barrier. The energy of the tunnelled particle is the same but the probability amplitude
is decreased.

To explain tunneling we must resort once again to the TISeq. A traveling or standing wave function incident on a non-infinite
potential barrier ( ) decays in the potential as a function of , where  is the amplitude at the boundary,  is
proportional to the potential, and  is the distance into the potential. If a second well exists at infinite distance from the first well,
the probability goes to zero, so the probability of a particle existing in the second well is zero. If a second well is brought closer to
the first well, the amplitude of the wave function at this boundary is not zero, so the particle may tunnel into that well from the first
well. It would appear that the particle is “leaking” through the barrier; it can travel through it without having to surmount it. An
important point to keep in mind is that tunneling conserves energy. The final sum of the kinetic and potential energy of the system
cannot exceed the initial sum. Therefore, the potential on both sides of the barrier does not need to be the same, but the sum of the
ground state energy and the potential on the opposite side of the barrier may not be larger than the initial particle energy and
potential.

Tunneling can be described using the TISEq, Equation 22.3.1. For the tunneling problem we can take the potential  to be zero for
all space, except for the region inside the barrier (between  and ):

To solve the TISEq with this potential, we must solve it separately for each region, but we should make sure that the wave function
stays single-valued, continuous and everywhere continuously differentiable. The general solution for each region, before applying
the boundary conditions, is:

where , and . To enforce continuity, we must have at the first boundary:

which implies that , and . At the opposite boundary:

We notice that, as  goes to infinity, the right hand side of Equation  goes to infinity, which does not make physical sense. To
reconcile this, we must set .

For the final region,  and , present a potentially intractable problem. However, if one realizes that the value at the boundary  is
driving the wave in the region  to infinity, it may also be realized that the wave function could be rewritten as 

, phase shifting the wave function by the value of , and setting the amplitude to the boundary value.
Summarizing, the wave function is:

24.3.1 1

24.3.1

V0 exp[−αx]A0 A0 α

x

V

0 a

V = .
⎧

⎩⎨
0
V0

0

if −∞ < x ≤ 0
if 0 < x < a

if a ≤ x < ∞
(24.3.1)

ψ =
⎧

⎩
⎨

A sin(kx) +B cos(kx)
C exp(−αx) +D exp(αx)
E sin(kx) +F cos(kx)

if −∞ < x ≤ 0
if 0 < x < a

if a ≤ x < ∞
(24.3.2)
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√

ℏ
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2m( −E)V0
− −−−−−−−−−

√

ℏ

A sin(0) +B cos(0) = C exp(0) +D exp(0), (24.3.3)

A = 0 B = C +D

A sin(ka) +B cos(ka) = C exp(−αa) +D exp(αa). (24.3.4)

a 24.3.4
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Comparing the wave function on the left of the barrier with the one on its right, we notice how the amplitude is attenuated by the

barrier as , where  is the width of the barrier, and  is the difference between the potential

energy of the barrier and the current energy of the particle. Since the square of the wave function is the probability distribution, the
probability of transmission through a barrier is:

As the barrier width or height approaches zero, the probability of a particle tunneling through the barrier becomes one. We can also
note that  is unchanged on the other side of the barrier. This implies that the energy of the particle is exactly the same as it was
before it tunneled through the barrier, as stated earlier, the only thing that changes is the quantity of particles going in that direction.
The rest is reflected off the barrier, and go back the way it came. On the opposite end, as the barrier width or height approaches
infinity, the probability of a particle tunneling through the barrier becomes zero, and the barrier behaves similarly to those that
contained the particle in the particle in a box example discussed in chapter 20.

1. This diagram is taken from Wikipedia by user Felix Kling, and distributed under CC BY-SA 3.0 license.

This page titled 24.3: Tunneling is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Roberto Peverati.
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if −∞ < x ≤ 0
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if a ≤ x < ∞.
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CHAPTER OVERVIEW

25: Many-Electron Atoms
When two or more electrons are present in a system, the TISEq equation cannot be solved analytically. Thus for the vast majority
of chemical applications, we must rely on approximate methods. We will explore some of these approximations in this and further
chapter, starting from the many-electron atoms (all atoms other than hydrogen). It is important to stress that because of the nature
of approximations, this is still a very active field of scientific research, and improved methods are developed every year.

The electronic Hamiltonian for a many-electron atom can be written as:

where  is the nuclear charge,  and  are respectively the mass and charge of an electron,  and  are the spatial coordinates
and the Laplacian of each electron, , and  is the distance between two electrons (all other symbols have
been explained in previous chapters). The TISEq is easily written using Equation 22.3.1.

25.1: Many-Electron Wave Functions
25.2: Approximated Hamiltonians

This page titled 25: Many-Electron Atoms is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Roberto
Peverati.
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25.1: Many-Electron Wave Functions
When we have more than one electron, the sixth postulate that we discussed in chapter 24 comes into place. In other words, we
need to account for the spin of the electrons and we need the wave function to be antisymmetric with respect to exchange of the
coordinates of any two electrons. In order to do so, we can define a new variable  which represents the set of all four coordinates
associated with an electron: three spatial coordinates , and one spin coordinate , i.e., . We can then write the electronic
wave function as , and we require the sixth postulate to hold by writing:

A very important step in simplifying  is to expand it in terms of a set of one-electron functions. Since we need to take into
account the spin coordinate as well, we can define a new function, called spin-orbital, by multiplying a spatial orbital by one of the
two spin functions:

Notice that for a given spatial orbital , we can form two spin orbitals, one with  spin, and one with  spin (since the spin
coordinate  has only two possible values, as already discussed in chapter 23). For the spatial orbitals we can use the same one-
particle functions that solve the TISEq for the hydrogen atom, (eq. 21.7 in chapter 21). Notice how each spin-orbital now
depends on four quantum numbers, the three for the spatial part, , plus the spin quantum number . We need to keep in
mind, however, that the spin-orbitals, , are not analytic solutions to the TISEq, so the resulting wave function is not the
exact wave function of the system, but just an approximation.

Once we have defined one-electron spin-orbitals for each electron in the system, we can use them as the basis for our many-
electron wave function. While doing so, we need to make sure to enforce the antisymmetry property of the overall wave function.
We will start from the simplest case of an atom with two electrons with coordinates  and , which we put in two spin-orbitals 

 and . We can write the total wave function as a linear combination of the two spin-orbitals as:

We then notice that in order for the antisymmetry principle to be obeyed, we need  and , which give:

This wave function is sufficient to describe two-electron atoms and ions, such as helium. The numerical coefficient can be

determined imposing the normalization condition, and is equal to . For the ground state of helium, we can replace the

spatial component of each spin-orbital with the  hydrogenic orbital, , resulting in:

which clearly shows how we need just one spatial orbital, , to describe the system, while the antisymmetry is taken care by a

suitable combination of spin functions, . Notice also that we commit a small inaccuracy when we say: “two

electron occupies one spin-orbital, one electron has spin up, and the other electron has spin down, with configuration: ”, as is
typically found in general chemistry textbooks. The reality of the spin configuration is indeed more complicated, and the ground

state of helium should be represented as .

In order to generalize from two electrons to , we can first observe how Equation (26.1.4) could be easily constructed by placing
the spin-orbitals into a  matrix and calculating its determinant:

x

r s x = {r, s}
Ψ( , , … , )x1 x2 xN

Ψ( , , … , ) = −Ψ( , , … , )x1 x2 xN x2 x1 xN (25.1.1)

Ψ(x)

χ(x)
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= ψ(r) (s).ϕ↓
(25.1.2)
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where each column contains one spin-orbital, each row contains the coordinates of a single electron, and the vertical bars around
the matrix mean that we need to calculate its determinant. This notation is called the Slater determinant, and it is the preferred
way of building any -electron wave function. Slater determinants are useful because they can be easily bult for any case of 
electrons in  spin-orbitals, and they also automatically enforce the antisymmetry of the resulting wave function. A general Slater
determinant is written:

where the notation  is a shorthand to indicate the Slater determinant where only the diagonal elements are reported.

This page titled 25.1: Many-Electron Wave Functions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by
Roberto Peverati.
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25.2: Approximated Hamiltonians
In order to solve the TISEq for a many-electron atom we also need to approximate the Hamiltonian, since analytic solution using
the full Hamiltonian as in Equation 26.1 are impossible to find. The most significant approximation used in chemistry is called the
variational method.

Variational method
The basic idea of the variational method is to guess a “trial” wave function for the problem consisting of some adjustable
parameters called “variational parameters”. These parameters are adjusted until the energy of the trial wave function is minimized.
The resulting trial wave function and its corresponding energy are variational method approximations to the exact wave function
and energy.

Why would it make sense that the best approximate trial wave function is the one with the lowest energy? This results from the
Variational Theorem, which states that the energy of any trial wave function  is always an upper bound to the exact ground state
energy . This can be proven easily. Let the trial wave function be denoted . Any trial function can formally be expanded as a
linear combination of the exact eigenfunctions . Of course, in practice, we don’t know the , since we are applying the
variational method to a problem we can’t solve analytically. Nevertheless, that doesn’t prevent us from using the exact
eigenfunctions in our proof, since they certainly exist and form a complete set, even if we don’t happen to know them. So, the trial
wave function can be written:

and the approximate energy corresponding to this wave function is:

where  is the ensemble of the spatial coordinates of each electron and the integral symbol is assumed as a -
dimensional integration. Replacing the expansion over the exact wave functions, we obtain:

Since the functions  are the exact eigenfunctions of , we can use  to obtain:

Now using the fact that eigenfunctions of a Hermitian operator form an orthonormal set (or can be made to do so), we can write:

We now subtract the exact ground state energy  from both sides to obtain

Since every term on the right-hand side is greater than or equal to zero, the left-hand side must also be greater than or equal to zero:

In other words, the energy of any approximate wave function is always greater than or equal to the exact ground state energy .

This explains the strategy of the variational method: since the energy of any approximate trial function is always above the true
energy, then any variations in the trial function which lower its energy are necessarily making the approximate energy closer to the
exact answer. (The trial wave function is also a better approximation to the true ground state wave function as the energy is
lowered, although not necessarily in every possible sense unless the limit  is reached).
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Approximated solution for the helium atom
We now have all the ingredients to attempt the simplest approximated solution to the TISEq of a many-electron atom. We can start
by writing the total wave function using the Slater determinant of Equation 26.1.7 in terms of spin-orbitals:

and then we can replace it into the TISEq for an -electron system. This results into a set of  one-electron equations, one for
each electron. When we attempt to solve each individual equation, however, we end up with a problem, since the potential energy
in the Hamiltonian of Equation 26.1 does not have spherical symmetry because of the electron-electron repulsion term. As such, the
one-electron TISEq cannot be simply solved in spherical polar coordinates, as we did for the hydrogen atom in chapter 21. The
simplest way of circumventing the problem is to neglect the electron-electron repulsion term (i.e., assume that the electrons are not
correlated and do not interact with each other). For a 2-electron atom this procedure is straightforward, since the Hamiltonian can
be written as a sum of one-electron Hamiltonians:

with  and  looking identical to those used in the TISEq of the hydrogen atom. This one-particle Hamiltonian does not depend
on the spin of the electron, and therefore, we can neglect the spin component of the Slater determinant and write the total wave
function for the ground state of helium, Equation 26.1.4, simply as:

The overall TISEq reduces to a set of two single-particle equations:

which can then be solved similarly to those for the hydrogen atom, and the solution be combined to give:

In other words, the resulting energy eigenvalue for the ground state of the helium atom in this approximation is equal to twice the
energy of a , , orbital. The resulting approximated value for the energy of the helium atom is , compared with
the exact value of .

The nuclear charge  in the  orbital can be used as a variational parameter in the variational method to obtain a more accurate
value of the energy. This method provides a result for the ground-state energy of the helium atom of  (only 

 lower than the exact value), with the nuclear charge parameter minimized at . This new value of the
nuclear charge can be interpreted as the effective nuclear charge that is felt by one electron when a second electron is present in the
atom. This value is lower than the real nuclear charge ( ) because the interaction between the electron and the nuclei is
shielded by presence of the second electron.

This procedure can be extended to atoms with more than two electrons, resulting in the so-called Hartree-Fock method. The
procedure, however, is not straightforward. We will explain it in more details in the next chapter, since it is the simplest
approximation that also describes the chemical bond.

This page titled 25.2: Approximated Hamiltonians is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Roberto
Peverati.
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26.1: The Molecular Hamiltonian
For a molecule, we can decompose the Hamiltonian operator as:

where we have decomposed the kinetic energy operator into nuclear and electronic terms,  and , as well as the potential
energy operator into terms representing the interactions between nuclei, , between electrons, , and between electrons and
nuclei, . Each term can then be calculated using:

where , , and  are the mass, atomic number, and coordinates of nucleus , respectively, and all other symbols are the same
as those used in Equation 26.1 for the many-electron atom Hamiltonian.

Small terms in the molecular Hamiltonian
The operator in Equation  is known as the “exact” nonrelativistic Hamiltonian in field-free space. However, it is important to
remember that it neglects at least two effects. Firstly, although the speed of an electron in a hydrogen atom is less than 1% of the
speed of light, relativistic mass corrections can become appreciable for the inner electrons of heavier atoms. Secondly, we have
neglected the spin-orbit effects, which is explained as follows. From the point of view of an electron, it is being orbited by a
nucleus which produces a magnetic field (proportional to ); this field interacts with the electron’s magnetic moment (proportional
to ), giving rise to a spin-orbit interaction (proportional to  for a diatomic.) Although spin-orbit effects can be important,
they are generally neglected in quantum chemical calculations, and we will neglect them in the remainder of this textbook as well.
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26.2: The Born-Oppenheimer Approximation
As we already saw in the previous chapter, if a Hamiltonian is separable into two or more terms, then the total eigenfunctions are
products of the individual eigenfunctions of the separated Hamiltonian terms. The total eigenvalues are then sums of individual
eigenvalues of the separated Hamiltonian terms.

For example. let’s consider a Hamiltonian that is separable into two terms, one involving coordinate  and the other involving
coordinate :

with the overall Schrödinger equation being:

If we assume that the total wave function can be written in the form:

where  and  are eigenfunctions of  and  with eigenvalues  and , then:

Thus the eigenfunctions of  are products of the eigenfunctions of  and , and the eigenvalues are the sums of eigenvalues of 
 and .

If we examine the nonrelativistic Hamiltonian in Equation 27.1.1, we see that the  terms prevents us from cleanly separating the
electronic and nuclear coordinates and writing the total wave function. If we neglect these terms, we can write the total wave
function as:

This approximation is called the Born-Oppenheimer approximation, and allows us to treat the nuclei as nearly fixed with respect
to electron motion. The Born-Oppenheimer approximation is almost always quantitatively correct, since the nuclei are much
heavier than the electrons and the (fast) motion of the latter does not affect the (slow) motion of the former. Using this
approximation, we can fix the nuclear configuration at some value, , and solve for the electronic portion of the the wave
function, which is dependent only parametrically on  (we write this wave function as , where the semicolon indicate
the parametric dependence on the nuclear configuration). To solve the TISEq we can then write the electronic Hamiltonian as:

where we have also factored out the nuclear kinetic energy,  (since it is smaller than  by a factor of ), as well as 

. This latter approximation is justified, since in the Born-Oppenheimer approximation  is just a parameter, and 
 is a constant that shifts the eigenvalues only by some fixed amount. This electronic Hamiltonian results in the following

TISEq:

which is the equation that is used to explain the chemical bond in the next section. Notice that Equation  is not the total
TISEq of the system, since the nuclear eigenfunction and its eigenvalues (which can be obtained solving the Schrödinger equation
with the nuclear Hamiltonian) are neglected. As a final note, in the remainder of this textbook we will confuse the term “total
energy” with “total energy at fixed geometry”, as is customary in many other quantum chemistry textbooks (i.e., we are neglecting
the nuclear kinetic energy). This is just  of Equation , plus the constant shift, , given by the nuclear-nuclear
repulsion.
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26.3: Solving the Electronic Eigenvalue Problem
Once we have invoked the Born-Oppenheimer approximation, we can attempt to solve the electronic TISEq in Equation 27.2.7.
However, for molecules with more than one electron, we need to—once again—keep in mind the antisymmetry of the wave
function. This obviously means that we need to write the electronic wave function as a Slater determinant (i.e., all molecules but 

 and a few related highly exotic ions). Once this is done, we can work on approximating the Hamiltonian, a task that is
necessary because the presence of the electron-electron repulsion term forbids its analytic treatment. Similarly to the many-electron
atom case, the simplest approximation to solve the molecular electronic TISEq is to use the variational method and to neglect the
electron-electron repulsion. As we noticed in the previous chapter, this approximation is called the Hartree-Fock method.

The Hartree-Fock Method
The main difference when we apply the variational principle to a molecular Slater determinant is that we need to build orbitals
(one-electron wave functions) that encompass the entire molecule. This can be done by assuming that the atomic contributions to
the molecular orbitals will closely resemble the orbitals that we obtained for the hydrogen atom. The total molecular orbital can
then be built by linearly combine these atomic contributions. This method is called linear combination of atomic orbitals
(LCAO). A consequence of the LCAO method is that the atomic orbitals on two different atomic centers are not necessarily
orthogonal, and Equation 26.2.4 cannot be simplified easily. If we replace each atomic orbital  with a linear combination of
suitable basis functions :

we can then use the following notation:

to simplify Equation 26.2.4 to:

Differentiating this energy with respect to the expansion coefficients  yields a non-trivial solution only if the following “secular
determinant” equals zero:

where  is the number of basis functions used to expand the atomic orbitals. Solving this set of equations with a Hamiltonian
where the electron-electron correlation is neglected results is non-trivial, but possible. The reason for the complications comes from
the fact that even if we are neglecting the direct interaction between electrons, each of them interact with the nuclei through an
interaction that is screened by the average field of all other electrons, similarly to what we saw for the helium atom. This means
that the Hamiltonian itself and the value of the coefficients  in the wave function mutually depend on each other. A solution to
this problem can be achieved numerically using specialized computer programs that use a cycle called the self-consistent-field
(SCF) procedure. Starting from an initial guess of the coefficients, an approximated Hamiltonian operator is built from them and
used to solve Equation . This solution gives updated values of the coefficients, which can then be used to create an improved
version of the approximated Hamiltonian. This procedure is repeated until both the coefficients and the operator do not change
anymore. From this final solution, the energy of the molecule is then calculated.
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1

CHAPTER OVERVIEW

27: The Chemical Bond in Diatomic Molecules
In this chapter we will see a couple of examples of how the concept and mathematics of quantum mechanics can be applied to
understand the chemical bond in molecules. We will start from the simplest molecule, the  molecular ion, and then we will
move on to the simplest two-electron bond in the hydrogen molecule. To simplify the notation in this chapter, we will move away
from S.I. units and use a set tailored for molecules, called atomic units (a.u.). This set of units is built by setting 

. As an example of the simplification that a.u. allows, the energy eigenvalues of the hydrogen atom,

Equation 21.8, simply becomes  in the a.u. of energy, which are called Hartrees.

27.1: The Chemical Bond in the Hydrogen Molecular Cation
27.2: The Chemical Bond in the Hydrogen Molecule

This page titled 27: The Chemical Bond in Diatomic Molecules is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Roberto Peverati.
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27.1: The Chemical Bond in the Hydrogen Molecular Cation
This system has only one electron, but since its geometry is not spherical (figure ), the TISEq cannot be solved analytically
as for the hydrogen atom.

Figure : Geometry of the hydrogen molecular cation.

The electron is at point , while the two protons are at position  and  at a fixed distance . Using the Born-Oppenheimer
approximation we can write the one-electron molecular Hamiltonian in a.u. as:

As a first approximation to the variational wave function, we can build the one-electron molecular orbital (MO) by linearly
combine two  hydrogenic orbitals centered at  and , respectively:

with:

Using Equation 27.3.2 and considering that the nuclei are identical, we can define the integrals  and 
 (while  because the hydrogen atom orbitals are normalized). The secular equation, Equation 27.3.4 can then be

written:

The expansion of the determinant results into:

with roots:

the first corresponding to the ground state, the second to the first excited state. Solving for the best value for the coefficients of the
linear combination for the ground state , we obtain:
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which gives the bonding MO:

Proceeding similarly for the excited state, we obtain:

which gives the antibonding MO:

These results can be summarized in the molecular orbital diagram of figure  We notice that the splitting of the doubly
degenerate atomic level under the interaction is non-symmetric for , the antibonding level being more repulsive and the
bonding less attractive than the symmetric case occurring for .

Figure : Molecular orbitals diagram for the hydrogen molecular cation.

Calculating the values for the integrals and repeating these calculations for different internuclear distances, , results in the plot of
figure  As we see from the plots, the ground state solution is negative for a vast portion of the plot. The energy is negative
because the electronic energy calculated with the bonding orbital is lower than the nuclear repulsion. In other words, the creation of
the molecular orbital stabilizes the molecular configuration versus the isolated fragments (one hydrogen atom and one proton).

Figure : Born-Oppenheimer energy landscape for the hydrogen molecular cation.

This page titled 27.1: The Chemical Bond in the Hydrogen Molecular Cation is shared under a CC BY-SA 4.0 license and was authored, remixed,
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27.2: The Chemical Bond in the Hydrogen Molecule

Figure : Geometry of the hydrogen molecule.

We can now examine the formation of the two-electron chemical bond in the  molecule. With reference to figure , the
molecular Hamiltonian for  in a.u. in the Born-Oppenheimer approximation will be:

where  is the one-electron Hamiltonian. As for the previous case, we can build the first approximation to the molecular wave
function by considering two  atomic orbitals  and  centered at  and , respectively, having an overlap . If we

Neglect the electron-electron repulsion term, , the resulting Hartree-Fock equations are exactly the same as in the previous

case. The most important difference, though, is that in this case we need to consider the spin of the two electrons. Proceeding
similarly to what we have done for the many-electron atom in chapter 26, we can build an antisymmetric wave function for 
using a Slater determinant of doubly occupied MOs. For the ground state, we can use the lowest energy orbital obtained from the
solution of the Hartree-Fock equations, which we already obtained in Equation 28.1.8. Using a notation that is based on the
symmetry of the molecule, this bonding orbital in  is usually called , where  refers to the  bond that forms between the two
atoms. The Slater determinant for the ground state is therefore:

where:

The energies and the resulting MO diagram is similar to that for , with the only difference that two electron will be described by
the same  MO (figure ).
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Figure \(\
PageIndex

{2}\):
Molecular orbitals diagram for the hydrogen molecule.

As for the many-electron atoms, the Hartree-Fock method is just an approximation to the exact solution. The accurate theoretical
value for the bond energy at the bond distance of  is . The variational result obtained with the wave
function in Equation  is , which is  of the exact value. The variational coefficient (i.e., the orbital

exponent, , that enters the  orbital formula ) is optimized at , a value that shows how the

orbitals significantly contract due to spherical polarization.

If we scan the Born-Oppenheimer energy landscape using the wave function in Equation  as we have done for , we obtain
the plot in figure .

Figure : Born-Oppenheimer energy landscape for the hydrogen molecule.

As we can see, the Hartree-Fock results for  describes the formation of the bond qualitatively around the bond distance
(minimum of the curve), but they fail to describe the molecule at dissociation. This happens because in Equation  both
electrons are in the same orbital with opposite spin (electrons are coupled), and the orbital is shared among both centers. At
dissociation, this corresponds to an erroneous ionic dissociation state where both electron are localized on either one of the two
centers (this center is therefore negatively charged), with the other proton left without electrons. This is in contrast with the correct
dissociation, where each electron should be localized around each center (and therefore, it should be uncoupled from the other
electron). This error is once again the result of the approximations that are necessary to treat the TISEq of a many-electron system.
It is obviously not a failure of quantum mechanics, and it can be easily corrected using more accurate approximations on modern
computers.

1. Compare this equation to (10.6) for the helium atom.

This page titled 27.2: The Chemical Bond in the Hydrogen Molecule is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or
curated by Roberto Peverati.
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CHAPTER OVERVIEW

28: The Chemical Bond in Polyatomic Molecules
The structure in space of polyatomic molecules depends on the stereochemistry of their chemical bonds and can be determined by
solving the (approximated) TISEq using the Born—Oppenheimer approximation using a method that uses a linear combination of
atomic orbitals to form molecular orbitals (LCAO-MO).

28.1: The Chemical Bond in the Water Molecule Using a Minimal Basis
28.2: Hartree-Fock Calculation for Water
28.3: Shapes and Energies of Molecular Orbitals
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28.1: The Chemical Bond in the Water Molecule Using a Minimal Basis
For a minimal representation of the two hydrogen atoms, we need two  functions, one centered on each atom. Oxygen has
electrons in the second principal quantum level, so we will need one , one , and three  functions (one each of , , and 

). Summarizing, for a minimal representation of the water wave function we need five orbitals on oxygen, plus one each on the
hydrogen atoms, for a total of 7 functions. From these atomic functions, we can build a total wave function using the LCAO
method of chapter 27, and then we can use the variational principle, in conjunction with the Hartree—Fock (HF) method, to build
and solve a secular determinant that looks is similar to that in Equation 27.3.4, with  being the total number of basis
functions. The approximated Hamiltonian operator in the HF method is called the Fock operator, and it can be divided into one-
electron integrals, comprising the kinetic and potential energy contributions:

as well as two-electron integrals describing the coulomb repulsion between electrons:

Despite the minimal basis set, the total number of integrals that need to be calculated for water is large, since , , , and  can be
any one of the 7 basis functions. Hence there are  kinetic energy integrals, and the same number of potential energy
integrals for each nucleus, resulting in . The grand total of one-electron integrals is thus 196. For the two-electron
integrals, we have  integrals to calculate. Overall for this simple calculation on water, we need almost 
integrals.

All this to find  occupied molecular orbitals from which to form a final Slater determinant (  electrons, two to an orbital, so 
orbitals). The situation sounds horrible, but it should be recognized that the solutions to all of the integrals are known to be analytic
formulae involving only interatomic distances, cartesian exponents, and the values of a single exponent in the atomic functions. If
we use slightly simpler gaussian functions instead of the more complicated hydrogenic solutions, the total number of floating-point
operations to solve the integrals is roughly . In computer speak that’s one megaflop (megaflop = million FLoating-point
OPerations). A modern digital computer processor can achieve gigaflop per second performance, so the computer can accomplish
all these calculations in under one second. An additional way in which things can be improved is to recognize that the molecule has
symmetries that can be exploited to reduce the number of total integrals that needs to be calculated.

1. The numbers computed here involve the minimum amount of uncontracted “hydrogenic” functions that can be used for
calculation on water. In real-life calculations a linear combination of simpler primitive functions (gaussians) is used to describe
a single uncontracted function. For example in the simplest case, the STO-3G basis set, each uncontracted function is composed
of 3 primitive gaussian functions. Thus, for any individual one-electron integral, there will be  separate integrals
involving the primitives. There are thus  individual primitive one-electron integrals. As for the two-electron
integrals, again, every individual integral will require considering every possible combination of constituent primitives which is

. Thus, the total number of primitive two-electron integrals is  (gulp!) Notice that
even for this small molecule the number of two-electron integrals totally dominates the number of one-electron integrals. The
disparity only increases with molecular size. Notice: Portions of this section are based on Prof. C.J. Cramer’s lecture notes
available (here)[http://pollux.chem.umn.edu/4502/3502_lecture_29.pdf]

This page titled 28.1: The Chemical Bond in the Water Molecule Using a Minimal Basis is shared under a CC BY-SA 4.0 license and was
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28.2: Hartree-Fock Calculation for Water
To find the Hartree-Fock (HF) molecular orbitals (MOs) we need to solve the following secular determinant:

with  being the overlap integrals of Equation 27.3.2, and  the matrix elements of the Fock operator, defined using the one-
and two-electron integrals in Equation 29.1.1 and Equation 29.1.2 as:

with the density matrix elements  defined as:

where the  values are the coefficients of the basis functions in the occupied molecular orbitals. These values will be determined
using the SCF procedure, which proceeds as follows: At the first step we simply guess what these are, then we iterate through
solution of the secular determinant to derive new coefficients and we continue to do so until self-consistency is reached (i.e. the 

 step provides coefficients and energies that are equal to those in the  step).

We can try to solve the SCF procedure for water using a fixed geometry of the nuclei close to the experimental structure: O-H bond
lengths of  and a valence bond angle at oxygen of . To do so, we can use a minimal basis functions composed of the
following seven orbitals: basis function #1 is an oxygen  orbital, #2 is an oxygen  orbital, #3 is an oxygen  orbital, #4 is an
oxygen  orbital, #5 is an oxygen  orbital, #6 is one hydrogen  orbital, and #7 is the other hydrogen  orbital. The
corresponding integrals introduced in the previous section can be calculated using a quantum chemistry code. The calculated
overlap matrix elements are:

There are many noteworthy features in . First, it is shown in a lower packed triangular form because every element  is the
same as the element  by symmetry, and every diagonal element is  because the basis functions are normalized. Note that, again
by symmetry, every  orbital on oxygen is orthogonal (overlap = zero) with every  orbital and with each other, but the two 
orbitals do overlap (this is due to the fact that they are not pure hydrogenic orbitals—which would indeed be orthogonal—but they
have been optimized, so ). Note also that the oxygen  orbital overlaps about an order of magnitude less with any
hydrogen  orbital than does the oxygen  orbital, reflecting how much more rapidly the first quantum-level orbital decays
compared to the second. Note that by symmetry the oxygen  cannot overlap with the hydrogen  functions (positive overlap
below the plane exactly cancels negative overlap above the plane) and that the oxygen  overlaps with the two hydrogen 
orbitals equally in magnitude but with different sign because the  orbital has different phase at its different ends. Finally, the
overlap of the  is identical with each H  because it is not changing which lobe it uses to interact. The kinetic energy matrix (in
a.u.) is:
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Notice that every diagonal term is much larger than any off-diagonal term. Recall that each each kinetic energy integral, Equation
29.1.1, involves the Laplacian operator, . The Laplacian reports back the sum of second derivatives in all coordinate directions.
That is, it is a measure of how fast the slope of the function is changing in various directions. If we take two atomic orbitals  and 

 far apart from each other, then since gaussians go to zero at least exponentially fast with distance,  is likely to be very flat where
 is large. The second derivative of a flat function is zero. So, every point in the integration will be roughly the amplitude of 

times zero, and not much will accumulate. For the diagonal element, on the other hand, the interesting second derivatives will occur
where the function has maximum amplitude (amongst other places) so the accumulation should be much larger. Notice also that
off-diagonal terms can be negative. That is because there is no real physical meaning to a kinetic energy expectation value
involving two different orbitals. It is just an integral that appears in the complete secular determinant. Symmetry again keeps 
orbitals from mixing with  orbitals or with each other. The nuclear attraction matrix is:

Again, diagonal elements are bigger than off-diagonal elements because the  operator acting on a basis function  will ensure
that the largest contribution to the overall integral will come from the nucleus  on which basis function  resides. Unless  also
has significant amplitude around that nucleus, it will multiply the result by roughly zero and the whole integral will be small.
Again, positive values can arise when two different functions are involved even though electrons in a single orbital must always be
attracted to nuclei and thus diagonal elements must always be negative. Note that the  orbitals all have different nuclear
attractions. That is because, although they all have the same attraction to the O nucleus, they have different amplitudes at the H
nuclei. The  orbital has the smallest amplitude at the H nuclei (zero, since they are in its nodal plane), so it has the smallest
nuclear attraction integral. The  orbital has somewhat smaller amplitude at the H nuclei than the  orbital because the bond
angle is greater than  (it is ; if it were  the O-H bonds would bisect the  and  orbitals and their amplitudes at the
H nuclei would necessarily be the same). Thus, the nuclear attraction integral for the latter orbital is slightly smaller than for the
former.

The sum of the kinetic and nuclear attraction integrals is usually called the one- electron or core part of the Fock matrix and
abbreviated  (i.e., ). One then writes  where  is the Fock matrix,  is the one-electron matrix, and  is
the remaining part of the Fock matrix coming from the two-electron four-index integrals (cf Equation ). To compute those
two-electron integrals, however, we need the density matrix, which itself comes from the occupied MO coefficients. So, we need an
initial guess at those coefficients. We can get such a guess many ways, but ultimately any guess is as good as any other. With these
coefficients we can compute the density matrix using Equation :
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With , we can compute the remaining contribution of  to the Fock matrix. We will not list all 406 two-electron integrals here.
Instead, we will simply write the total Fock matrix:

So, we’re finally ready to solve the secular determinant, since we have  and  fully formed. When we do that, and then solve for
the MO coefficients for each root , we get new occupied MOs. Then, we iterate again, and again, and again, until we are satisfied
that further iterations will not change either our (i) energy, (ii) density matrix, or (iii) MO coefficients (it’s up to the quantum
chemist to decide what is considered satisfactory).

In our water calculation, if we monitor the energy at each step we find:

Which means that our original guess was really not too bad—off by a bit less than  or roughly . Our guess
energy is too high, as the variational principle guarantees that it must be. Our first iteration through the secular determinant picks
up nearly , our next iteration an additional  or so, and by the end we are converged to within 1 nanohartree (

).

The final optimized MOs for water are:

where the first row reports the eigenvalues of each MO, in  (i.e., the energy of one electron in the MO). The sum of all of the
occupied MO energies should be an underestimation of the total electronic energy because electron-electron repulsion will have
been double counted. So, if we sum the occupied orbital energies (times two, since there are two electrons in each orbital), we get 

. If we now subtract the electron-electron repulsion energy
 we get . If we add the nuclear repulsion energy  to this we get a total energy . The

difference between this and the converged result above ( ) can be attributed to rounding in the MO energies, which are
truncated after 5 places. Notice that the five occupied MOs all have negative energies. So, their electrons are bound within the
molecule. The unoccupied MOs (called “virtual” MOs) all have positive energies, meaning that the molecule will not
spontaneously accept an electron from another source.

P G
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E(RHF )
E(RHF )
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E(RHF )

= −74.893 002 803 a.u. after 1 cycles
= −74.961 289 145 a.u. after 2 cycles
= −74.961 707 247 a.u. after 3 cycles
= −74.961 751 946 a.u. after 4 cycles
= −74.961 753 962 a.u. after 5 cycles
= −74.961 754 063 a.u. after 6 cycles
= −74.961 754 063 a.u. after 7 cycles
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Eh

2(−20.24094−1.27218−0.62173−0.45392−0.39176) = −45.961 060
38.265 406 −84.226 466 9.264 701 −74.961 765

−74.961 754
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28.3: Shapes and Energies of Molecular Orbitals
If we analyze the optimized coefficients of the occupied MOs reported in Equation 29.2.10, we observe that the lowest energy
orbital (by a lot!) is a nearly pure oxygen  orbital since the coefficient of the oxygen  basis function is very nearly 1 and all
other coefficients are rather close to 0. Note, however, that the coefficient is not really a percentage measure. That’s because the
basis functions are not necessarily orthogonal to one another. Let’s consider the next molecular orbital up, number 2. It has a
dominant contribution from the oxygen  basis function, but non-trivial contributions from many other basis functions as well. In
order to understand which kind of orbital it is, it is useful to try to visualize some of its properties. For example, recall that the
square of the orbital at a particular point in space represents a probability density. As such, we can map values of the square of each
orbital on a grid in 3-dimensional space, and then pick a value of probability density, say , and plot that as a contour
surface (remember that a probability density is a 4-dimensional quantity, so we need to take a slice at some constant density to be
able to plot it in 3-D). That surface is called an “isodensity” surface. In addition to the square of the function, we can also regions
where the wave function is positive blue and regions where it’s negative red. The five occupied and two unoccupied MOs mapped
from their one-electron wave functions are plotted in figuere .

Figure : Isodensity maps of the Molecular Orbitals (MOs) of water.

Going back to the Lewis structure of water as taught in general chemistry courses, it says that there is one pair of electrons in one
O–H  bond, one pair in another identical such  bond, and two equivalent pairs that constitute the lone pairs on oxygen. The two
lone pairs and the O–H bonds should by pointing towards the apices of a tetrahedron because they are all considered to be 
hybridized.

As you can see, the MOs look nothing like the Lewis picture. Instead, amongst other details, there is one lone pair that is pure 
(not ), another that is, if anything, -like, but also enjoys contribution from hydrogen  components. There is one orbital
that looks like both O–H  bonds are present, but another that has an odd “bonding-all-over” character to it.

Is it really possible that for something as simple as water all the things you’ve ever been told about the Lewis structure are wrong?
Water must have two equivalent lone pairs, right?

It turns out that the molecular orbital results can be tested with spectroscopic experiments, and suffice to say, they agree perfectly.
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But the -hybridized picture of water works well, for example, to explain its hydrogen-bonding behavior: In liquid water each
water molecule makes two hydrogen bonds to other water molecules and accepts two more from different water molecules and the
final structure has a net lattice-like form that is tetrahedral at each oxygen atom. How can the above MOs explain that? The key
point to remember is that another molecule does not see the individual orbitals of water, it just sees the final effect of all of those
electrons and nuclei together. To explain the tetrahedral H-bond lattice we can plot some constant level of electron density (i.e.
$0.02) and map onto this isodensity surface the values of the electrostatic potential. We can find these values by bringing a positive
test charge onto that surface and recording how much would it find itself attracted (because of a net negative electrostatic potential)
or repelled (because of a net positive electrostatic potential). This is done in figure . Notice how the negative potential is
entirely on the oxygen side and the positive potential entirely on the hydrogens side. Moreover, the negative potential splays out to
the tetrahedral points and the positive potential does too (those points for the purple region being roughly where the H atoms are).

Figure : Molecular electrostatic potential of water plotted on a 0.02 a.u. isodensity surface.
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CHAPTER OVERVIEW

29: Spectroscopy
The primary method of measuring the energy levels of a material is through the use of electromagnetic radiation. Experiments
involving electromagnetic radiation—matter interaction are called spectroscopies. Since the energy levels of atoms and molecules
are discontinuous, they absorb or emit light only at specific energies. These specific values correspond to the energy level
difference between the initial and final states and they can be measured as signals in spectroscopic experiments. The intensity of
the experimental signals depends on the population of the initial state involved in the transition.

Depending on the type of radiation, as well as the shape of the molecules and the inner details of the instrument that is used, some
transition might be visible by the experiment (allowed), while others might not be (forbidden). The analysis of allowed and
forbidden transition for each type of spectroscopy results into some mathematical formula that are called selection rules.

To summarize, spectroscopy is mainly the result of the following three effects:

The energy levels of the atoms or molecules (determining the position of the signals).
The population of the energy levels (determining the intensity of the signals).
The selection rules that account for the symmetry and the interaction with the instrument.

Spectroscopy is the most important experimental verification of quantum mechanics, since we can use it to validate its theoretical
results on the energy levels of atoms and molecules.

29.1: Rotational Spectroscopy
29.2: Vibrational Spectroscopy
29.3: Electronic Spectroscopy
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29.1: Rotational Spectroscopy
Rotational spectroscopy is concerned with the measurement of the energies of transitions between quantized rotational states of
molecules in the gas phase. Rotational transitions of molecules are usually measured in the range  (microwave
radiation) and rotational spectroscopy is therefore usually referred to as microwave spectroscopy.

Rotational spectroscopy is actively used by astrophysicists to explore the chemical composition of the interstellar medium using
radio telescopes.

The rotational energies are derived theoretically by considering the molecules to be rigid rotors and applying the same treatment
that we saw in chapter 20. Correction terms might be applied to account for deviation from the ideal rigid rotor case. As we saw in
chapter 20, the quantized rotational energy levels of a rigid rotor depend on the angular moment of inertia, which in turn depends
on the masses of the nuclei and the internuclear distance. Reversing the theoretical procedure of obtaining the energy levels from
the distances, we can use the experimental energy levels to derive very precise values of molecular bond lengths (and in some
complex case, also of angles). We will discuss below the simplest case of a diatomic molecule. For non-linear molecules, the
moments of inertia are multiple, and only a few analytical method of solving the TISEq are available. For the most complicated
cases, numerical methods can be used.

Rotation of diatomic molecules

Transitions between rotational states can be observed in molecules with a permanent electric dipole moment. The rigid rotor is a
good starting point from which to construct a model of a rotating molecule. It is assumed that component atoms are point masses
connected by rigid bonds. A linear molecule lies on a single axis and each atom moves on the surface of a sphere around the center
of mass. The two degrees of rotational freedom correspond to the spherical coordinates,  and , which describe the direction of
the molecular axis. The quantum state is determined by two quantum numbers  and .  defines the magnitude of the rotational
angular momentum, and  its component about an axis fixed in space, such as an external electric or magnetic field. In the
absence of external fields, the energy depends only on . Under the rigid rotor model, the rotational energy levels, , of the
molecule can be expressed as:

where  is the rotational constant of the molecule and is related to its moment of inertia. In a diatomic molecule the moment of
inertia about an axis perpendicular to the molecular axis is unique, so:

with:

where  and  are the masses of the atoms and  is the distance between them.

The selection rule for rotational spectroscopy dictate that during emission or absorption the rotational quantum number has to
change by unity:

where  denotes the lower level and  denotes the upper level involved in the transition. Thus, the locations of the lines in a
rotational spectrum will be given by

The diagram illustrates rotational transitions that obey the  selection rule is in figure .  The dashed lines show how
these transitions map onto features that can be observed experimentally. Adjacent  transitions are separated by  in the
observed spectrum. Frequency or wavenumber units can also be used for the  axis of this plot.
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Figure : Rotational energy levels and line positions calculated in the rigid rotor approximation.

The probability of a transition taking place is the most important factor influencing the intensity of an observed rotational line. This
probability is proportional to the population of the initial state involved in the transition. The population of a rotational state
depends on two factors. The number of molecules in an excited state with quantum number , relative to the number of molecules
in the ground state,  is given by the Boltzmann distribution:

where  is the Boltzmann constant and  is the absolute temperature. This factor decreases as  increases. The second factor is the
degeneracy of the rotational state, which is equal to . This factor increases as  increases. Combining the two factors we
obtain:

in agreement with the experimental shape of rotational spectra of diatomic molecules.

1. This diagram is taken from Wikipedia by user Nnrw, and distributed under CC BY_SA 3.0 license.

This page titled 29.1: Rotational Spectroscopy is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Roberto
Peverati.
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29.2: Vibrational Spectroscopy
Vibrational spectroscopy is concerned with the measurement of the energies of transitions between quantized vibrational states of
molecules in the gas phase. These transitions usually occur in the middle infrared (IR) region of the electromagnetic wave at
approximately  ( ). In the gas phase, vibrational transitions are almost always accompanied by
changes in rotational energy. Transitions involving changes in both vibrational and rotational states are usually abbreviated as
rovibrational transitions. Since changes in rotational energy levels are typically much smaller than changes in vibrational energy
levels, changes in rotational state are said to give fine structure to the vibrational spectrum. For a given vibrational transition, the
same theoretical treatment that we saw in the previous section for pure rotational spectroscopy gives the rotational quantum
numbers, energy levels, and selection rules.

As we have done in the previous section, we will discuss below the simplest case of a diatomic molecule. For non-linear molecules
the spectra becomes complicated to calculate, but their interpretation remains an important tool for the analysis of chemical
structures.

Vibration of heteronuclear diatomic molecules
Diatomic molecules with the general formula  have one normal mode of vibration involving stretching of the  bond. The
vibrational term values,  can be calculated with the harmonic approximation that we discussed in chapter 20. The resulting
equidistant energy levels depend on one vibrational quantum number :

where  is the harmonic frequency around equilibrium. When the molecule is in the gas phase, it can rotate about an axis,
perpendicular to the molecular axis, passing through the center of mass of the molecule. As we discussed in the previous section,
the rotational energy is also quantized, and depend on the rotational quantum number . The values of the ro-vibrational states are
found (in wavenumbers) by combining the expressions for vibration and rotation:

where  are the rotational levels at each vibrational state .

The selection rule for electric dipole allowed ro-vibrational transitions, in the case of a diamagnetic diatomic molecule is:

The transition with  is known as the fundamental transition, while the others are called overtones. The selection rule has
two consequences:

1. Both the vibrational and rotational quantum numbers must change. The transition  (Q-branch) is forbidden.
2. The energy change of rotation can be either subtracted from or added to the energy change of vibration, giving the P- and R-

branches of the spectrum, respectively.
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Figure : Simulated vibration-rotation line spectrum of carbon monoxide. The P-branch is to the left of the gap at 2140 1/cm,
the R-branch on the right.

A typical rovibrational spectrum is reported in figure  for the  molecule.  The intensity of the signals is—once again—
proportional to the initial population of the levels. Notice how the signals in the spectrum are divided among two sides, the P-
branch to the left, and the R-branch to the right. These signals correspond to the transitions reported in figure .  Notice how
the transitions corresponding to the Q-branch are forbidden by the selection rules, and therefore not observed in the experimental
spectrum. The position of the missing Q-branch, however, can be easily obtained from the experimental spectrum as the missing
signal between the P- and R- branches. Since the Q-branch transitions do not involve changes in the rotational energy level, their
value is directly proportional to . This fact makes rovibrational spectroscopy an important experimental tool in the determination
of bond distances of diatomic molecules.
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Figure : Schematic rovibrational energy level diagram for a linear molecule.

Vibration of homonuclear diatomic molecules

The quantum mechanics for homonuclear diatomic molecules is qualitatively the same as for heteronuclear diatomic molecules, but
the selection rules governing transitions are different. Since the electric dipole moment of the homonuclear diatomics is zero, the
fundamental vibrational transition is electric-dipole-forbidden and the molecules are infrared inactive.

The spectra of these molecules can be observed by a type of IR spectroscopy that is subject to different selection rules. This
technique is called Raman spectroscopy, and allows identification of the rovibrational spectra of homonuclear diatomic molecules
because their molecular vibration is Raman-allowed.

1.  This is just a first approximation to rovibrational spectroscopy. Corrections for anharmonicity centrifugal distortion are
necessary to closely match experimental spectra. 

2. This picture is taken from Wikipedia of anonimous user, and distributed under CC BY 3.0 license. 
3. This picture is taken from Wikipedia by user David-i98, and under public domain.

This page titled 29.2: Vibrational Spectroscopy is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Roberto
Peverati.
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29.3: Electronic Spectroscopy
Electronic spectroscopy is concerned with the measurement of the energies of transitions between quantized electronic states of
molecules. Electronic transitions are always associated with simultaneous changes in vibrational levels. In the gas phase vibronic
transitions are also accompanied by changes in rotational energy.

Electronic transitions are typically observed in the visible and ultraviolet regions, in the wavelength range approximately 
 ( ). When the electronic and vibrational energy changes are drastically different, vibronic

coupling (mixing of electronic and vibrational wave functions) can be neglected and the energy of a vibronic level can be taken as
the sum of the electronic and vibrational (and rotational) energies; that is, the Born–Oppenheimer approximation applies. The
overall molecular energy depends not only on the electronic state but also on the vibrational and rotational quantum numbers,  and

. In this context, it is conventional to add a double prime  for levels of the electronic ground state and a single prime 
 for electronically excited states.

Each electronic transition may show vibrational coarse structure, and for molecules in the gas phase, rotational fine structure. This
is true even when the molecule has a zero dipole moment and therefore has no vibration-rotation infrared spectrum or pure
rotational microwave spectrum.

It is necessary to distinguish between absorption and emission spectra. With absorption the molecule starts in the ground electronic
state, and usually also in the vibrational ground state  because at ordinary temperatures the energy necessary for vibrational
excitation is large compared to the average thermal energy. The molecule is excited to another electronic state and to many possible
vibrational states . With emission, the molecule can start in various populated vibrational states, and finishes in
the electronic ground state in one of many populated vibrational levels. The emission spectrum is more complicated than the
absorption spectrum of the same molecule because there are more changes in vibrational energy level.

As we did for the previous two cases, we will concentrate below on the electronic absorption spectroscopy of diatomic molecules.

Electronic spectroscopy of diatomic molecules

The vibronic spectra of diatomic molecules in the gas phase also show rotational fine structure. Each line in a vibrational
progression will show P- and R- branches. For some electronic transitions there will also be a Q-branch. The transition energies of
the lines for a particular vibronic transition are given (in wavenumbers) by:

The values of the rotational constants,  and  may differ appreciably because the bond length in the electronic excited state
may be quite different from the bond length in the ground state. The rotational constant is inversely proportional to the square of
the bond length. Usually , as is true when an electron is promoted from a bonding orbital to an antibonding orbital,
causing bond lengthening.

The treatment of rotational fine structure of vibronic transitions is similar to the treatment of rotation-vibration transitions and
differs principally in the fact that the ground and excited states correspond to two different electronic states as well as to two
different vibrational levels. For the P-branch , so that:

Similarly, for the R-branch , and:

Thus, the wavenumbers of transitions in both P- and R- branches are given, to a first approximation, by the single formula:

Here positive  values refer to the R-branch (with ) and negative values refer to the P-branch (with 
).
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The intensity of allowed vibronic transitions is governed by the Franck-Condon principle, which states that during an electronic
transition, a change from one vibrational energy level to another will be more likely to happen if the two vibrational wave functions
overlap more significantly. A diagrammatic representation of electronic spectroscopy and the Frack-Condon principle for a
diatomic molecule is presented in figure .

Figure : Energy level diagram illustrating the Franck–Condon principle.

1. This picture is taken from Wikipedia by user Samoza, and distributed under CC BY-SA 3.0 license.

This page titled 29.3: Electronic Spectroscopy is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Roberto
Peverati.
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30.1: Thermodynamic Data of Inorganic Substances at 298 K
Substance:     

Ag(g) 284.9 246 173 20.8

Ag(s) 0 0 42.6 25.4

Ag (aq) 105.8 77.1 73.5  

AgCN(s) 146 156.9 107.2 66.7

Ag CO (s) –505.8 –436.8 167.4 112.3

AgNO (s) –124.4 –33.4 140.9 93.1

Ag O(s) –31.1 –11.2 121.3 65.9

Ag S(s) –32.6 –40.7 144 76.5

AgBr(s) –100.4 –96.9 107.1 52.4

AgCl(s) –127.0 –109.8 96.3 50.8

AgF(s) –204.6 –187 84  

AgI(s) –61.8 –66.2 115.5 56.8

Al(g) 330 289.4 164.6 21.4

Al(s) 0 0 28.3 24.2

Al O (s) –1675.7 –1582.3 50.9 79.0

AlF (s) –1510.4 –1431.1 66.5 75.1

AlI (s) –302.9  195.9  

AlBr (s) –527.2  180.2 100.6

AlCl (s) –704.5 –628.11 112.3 91.1

Al(OH) (s) –1277    

Al(OH) (aq) –1490 –1297 117  

AlPO (s) –1733.8 –1617.9 90.8 93.2

Ar(g) 0  154.9 20.8

B(s) 0 0 5.9 11.1

B(g) 565 521.0 153.4 20.8

BH(g) 442.7 412.7 171.8 29.2

BH (g) 89.2 93.3 188.2 36.0

B S (s) –240.6  100.0 111.7

Ba(g) 180 146 170.2  

Ba(s) 0 0 62.5 28.1

BaCO (s) –1213.0 –1134.4 112.1 86.0

BaH (s) –177 –138.2 63.0  

BaBr (s) –757.3 –736.8 146.0  

BaCl (s) –855 –806.7 123.7 75.1

BaF (s) –1207.1 –1156.8 96.4 71.2

BaI (s) –602.1 –597 167.0  

ΔfH
−⊖−

[kJ/mol] ΔfG
−⊖−

[kJ/mol] S
−⊖−

[J/(mol K)] CP [J/(mol K)]
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30.1.2 https://chem.libretexts.org/@go/page/414100

Substance:     

BaO(s) –548.0 –520.3 72.1 47.3

BaSO (s) –1473.2 –1362.2 132.2 101.8

Be(g) 324 286.6 136.3 20.8

Be(s) 0 0 9.5 13.4

BeBr (s) –353.5  108 69.4

BeCl (s) –490.4 –445.6 75.8 62.4

BeF (s) –1026.8 –979.4 53.4 51.8

BeI (s) –192.5  121 71.1

BeO(s) –609.4 –580.1 13.8 25.6

Be(OH) (s) –902.5 –815.0 45.5 62.1

BeSO (s) –1205.2 –1093.8 77.9 85.7

Bi(g) 207.1 168.2 187 20.8

Bi(s) 0 0 56.7 25.5

Bi O (s) –573.9 –493.7 151.5 113.5

BiCl (s) –379.1 –315.0 177.0 105.0

Br (aq) –121.4 –104.0 82.6  

Br(g) 111.9 82.4 175 20.8

Br (g) 30.9 3.1 245.5 36.0

Br (l) 0 0 152.2 75.7

BrCl(g) 14.6 –1 240.1 35.0

BrF(g) –93.8 –109.2 229 33.0

BrF (g) –1136 1119.4 254.4 66.6

C(g) 716.7 671.3 158.1 0.8

C(s,diamond) 1.9 2.9 2.4 6.1

C(s,graphite) 0 0 5.7 8.5

CBr (g) 83.9 67 358.1  

CBr (s) 29.4 47.7 212.5  

CCl F (g) –477.4 –439.4 300.8  

CCl O(g) –219.1 –204.9 283.5  

CCl (g) –95.7 –53.6 309.9  

CCl (l) –128.2 –62.6 216.2  

CF (g) –933.6 –888.3 261.6  

CS (g) 116.7 67.1 237.8 45.4

CS (l) 89 64.6 151.3 76.4

CO(g) –110.5 –137.2 197.7 29.1

CO (g) –393.5 –394.4 213.8 37.1

Ca(g) 177.8 144 154.9 20.8

Ca(s) 0 0 41.6 25.9

ΔfH
−⊖− [kJ/mol] ΔfG

−⊖− [kJ/mol] S−⊖− [J/(mol K)] CP [J/(mol K)]
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30.1.3 https://chem.libretexts.org/@go/page/414100

Substance:     

Ca(OH) (s) –985.2 –897.5 83.4 87.5

CaBr (s) –682.8 –663.6 130  

CaCl (s) –795.4 –748.8 108.4 72.9

CaCN(s) –184.5    

CaCO (s,arag
.)

–1207.8 –1128.2 88 82.3

CaCO (s,calc.
)

–1207.6 –1129.1 91.7 83.5

CaF (s) –1228.0 –1175.6 68.5 67.0

CaH (s) –181.5 –142.5 41.4 41.0

CaI (s) –533.5 –528.9 142  

CaO(s) –634.9 –603.3 38.1 42.0

CaSO (s) –1434.5 –1322.0 106.5 99.7

Cd(g) 111.8  167.7 20.8

Cd(s) 0 0 51.8 26.0

CdBr (s) –316.2 –296.3 137.2 76.7

CdCl (s) –391.5 –343.9 115.3 74.7

CdCO (s) –750.6 –669.4 92.5  

CdF (s) –700.4 –647.7 77.4  

CdS(s) –161.9 –156.5 64.9  

CdSO (s) –933.3 –822.7 123.0 99.6

Cl (aq) –167.1 –131.2 56.6  

Cl(g) 121.3 105.3 165.2 21.8

Cl (g) 0 0 223.1 33.9

ClF(g) –50.3 –51.8 217.9 32.1

ClF (g) –163.2 –123.0 281.6 63.9

ClO (g) 89.1 105 263.7 46.0

Cl O(g) 80.3 97.9 266.2 45.4

Co(g) 424.7 380.3 179.5 23.0

Co(s) 0 0 30 24.8

CoCl (s) –312.5 –269.8 109.2 78.5

Cr(g) 396.6 351.8 174.5 20.8

Cr(s) 0 0 23.8 23.4

Cr O (s) –1139.7 –1058.1 81.2 118.7

CrCl (s) –395.4 –356 115.3 71.2

CrCl (s) –556.5 –486.1 123 91.8

CrO (g) –598    

CrO (g) –292.9  266.2 56.0

ΔfH
−⊖− [kJ/mol] ΔfG

−⊖− [kJ/mol] S−⊖− [J/(mol K)] CP [J/(mol K)]
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30.1.4 https://chem.libretexts.org/@go/page/414100

Substance:     

Cs(g) 76.5 49.6 175.6 20.8

Cs(s) 0 0 85.2 32.2

CsCl(s) –443.0 –414.5 101.2 52.5

Cu(g) 337.4 297.7 166.4 20.8

Cu(s) 0 0 33.2 24.2

Cu O(s) –168.6 –146.0 93.1 63.6

CuO(s) –157.3 –129.7 42.6  

Cu S(s) –79.5 –86.2 120.9 76.3

CuS(s) –53.1 –53.6 66.5 47.8

CuSO (s) –771.4 –662.2 109.2  

CuBr(s) –104.6 –100.8 96.1 54.7

CuBr (s) –141.8    

CuCl(s) –137.2 –119.9 86.2 48.5

CuCl (s) –220.1 –175.7 108.1 71.9

CuCN(s) 96.2 111.3 84.5  

F (aq) –335.4 –278.8 –13.8 |  

F(g) 79.4 62.3 158.8 22.7

F (g) 0 0 202.8 32.3

F O(g) 24.5 41.8 247.5 43.3

FO(g) 109 105.3 216.4 32.0

FB(g) –122.2 –149.8 200.5 58.6

Fe(g) 416.3 370.7 180.5 25.7

Fe(s) 0 0 27.3 25.1

FeO(s) –272.0 –251.4 60.7  

Fe (aq) –89.1 –78.9 –137.7 |  

Fe O (s) –824.2 –742.2 87.4 103.9

Fe (aq) –48.5 –4.7 –315.9 |  

Fe O (s) –1118.4 –1015.4 146.4 143.4

FeCO (s) –740.6 –666.7 92.9 82.1

FeS (s) –178.2 –166.9 52.9 62.2

FeCl (s) –341.8 –302.3 118 75.7

FeCl (s) –399.5 –334.0 142.3 96.7

FeBr (s) –249.8 –238.1 140.6  

FeBr (s) –268.2    

Fe C(s) 25.1 20.1 104.6 105.9

H(g) 218.0 203.3 114.7 20.8

H (aq) 0 0 0  

H (g) 0 0 130.7 28.8

ΔfH
−⊖− [kJ/mol] ΔfG

−⊖− [kJ/mol] S−⊖− [J/(mol K)] CP [J/(mol K)]
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30.1.5 https://chem.libretexts.org/@go/page/414100

Substance:     

H O(g) –241.8 –228.6 188.8 33.6

H O(l) –285.8 –237.1 70.0 75.3

H O (g) –136.3 –105.6 232.7 43.1

H O (l) –187.8 –120.4 109.6 89.1

H S(g) –20.6 –33.4 205.8 34.2

H Se(g) 29.7 15.9 219 34.7

H SO (aq) –909.3 –744.5 20.1  

H SO (l) –814.0 –690.0 156.9 138.9

H PO (l) –1271.7 –1123.6 150.8 145.0

H PO (s) –1284.4 –1124.3 110.5 106.1

HBr(aq) –121.6 –104.0 82.4  

HBr(g) –36.3 –53.4 198.7 29.1

HCl(aq) –167.2 –131.2 56.5  

HCl(g) –92.3 –95.3 186.9 29.1

HCN(g) 135.1 124.7 201.8 35.9

HCN(l) 108.9 125 112.8 70.6

HF(aq) –332.6 –278.8 –13.8 |  

HF(g) –273.3 –275.4 173.8  

HI(aq) –55.2 –51.6 111.3  

HI(g) 26.5 1.7 206.6 29.2

HNO (g) –79.5 –46.0 254.1  

HNO (aq) –207.4 –111.3 146.4  

HNO (g) –133.9 –73.5 266.9 54.1

HNO (l) –174.1 –80.7 155.6 109.9

He(g) 0 0 126.2 20.8

Hg(g) 61.4 31.8 175  

Hg(l) 0 0 75.9 28.0

Hg (g) 108.8 68.2 288.1  

HgO(s) –90.8 –58.5 70.3 44.1

HgS(s,red) –58.2 –50.6 82.4 48.4

Hg SO (s) –743.1 –625.8 200.7 132.0

HgSO (s) –707.5    

Hg Cl (s) –265.4 –210.7 191.6 191.6

HgCl (s) –224.3 –178.6 146.0 146.0

Hg Br (s) –206.9 –181.1 218.0 218.0

HgBr (s) –170.7 –153.1 172.0 172.0

Hg I (s) –121.3 –111 233.5 233.5

HgI (s) –105.4 –101.7 180.0 180.0

ΔfH
−⊖− [kJ/mol] ΔfG

−⊖− [kJ/mol] S−⊖− [J/(mol K)] CP [J/(mol K)]
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30.1.6 https://chem.libretexts.org/@go/page/414100

Substance:     

I (aq) –56.8 –51.6 106.5  

I(g) 106.8 70.2 180.8 20.8

I (g) 62.4 19.3 260.7 36.9

I (s) 0 0 116.1 54.4

HIO (s) –230.1    

IBr(g) 40.8 3.7 258.8 36.4

ICl(g) 17.8 –5.5 247.6 35.6

IF(g) –95.7 –118.5 236.2 33.4

K(g) 89.0 60.5 160.3 20.8

K(s) 0 0 64.7 29.6

K CO (s) –1151.0 –1063.5 155.5 114.4

K O(s) –361.5 –322.1 94.1  

K O (s) –494.1 –425.1 102.1  

K SO (s) –1437.8 –1321.4 175.6 131.5

KBr(s) –393.8 –380.7 95.9 52.3

KCl(s) –436.5 –408.5 82.6 51.3

KF(s) –567.3 –537.8 66.6 49.0

KI(s) –327.9 –324.9 106.3 52.9

KClO (s) –397.7 –296.3 143.1 100.3

KMnO (s) –837.2 –737.6 171.7 117.6

KNO (s) –369.8 –306.6 152.1 107.4

KNO (s) –494.6 –394.9 133.1 96.4

KSCN(s) –200.2 –178.3 124.3 88.5

Kr(g) 0 0 164.1 20.8

Li(g) 159.3 126.6 138.8 20.8

Li(s) 0 0 29.1 24.9

Li (aq) –278.5 –293.3 12.4  

Li O(s) –597.9 –561.2 37.6 54.1

LiOH(s) –487.5 –441.5 42.8 49.6

LiNO (s) –483.1 –381.1 90.0  

LiBr(s) –351.2 –342 74.3  

LiCl(s) –408.6 –384.4 59.3 48.0

LiF(s) –616 –587.7 35.7 41.6

LiI(s) –270.4 –270.3 86.8 51.0

Mg(g) 147.1 112.5 148.6 20.8

Mg(s) 0 0 32.7 24.9

MgO(s) –601.6 –569.3 27.0 37.2

Mg(OH) (s) –924.5 –833.5 63.2 77.0

ΔfH
−⊖− [kJ/mol] ΔfG

−⊖− [kJ/mol] S−⊖− [J/(mol K)] CP [J/(mol K)]
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30.1.7 https://chem.libretexts.org/@go/page/414100

Substance:     

MgS(s) –346.0 –341.8 50.3 45.6

MgSO (s) –1284.9 –1170.6 91.6 96.5

MgBr (s) –524.3 –503.8 117.2  

MgCl (s) –641.3 –591.8 89.6 71.4

MgF (s) –1124.2 –1071.1 57.2 61.6

Mn(g) 280.7 238.5 173.7 20.8

Mn(s) 0 0 32 26.3

MnO(s) –385.2 –362.9 59.7 45.4

MnO (s) –520.0 –465.1 53.1 54.1

MnO (aq) –541.4 –447.2 191.2  

MnBr (s) –384.9    

MnCl (s) –481.3 –440.5 118.2 72.9

Mo(g) 658.1 612.5 182 20.8

Mo(s) 0 0 28.7 24.1

MoO (s) –588.9 –533.0 46.3 56.0

MoO (s) –745.1 –668.0 77.7 75.0

MoS (s) –235.1 –225.9 62.6 63.6

MoS (s) –364 –354 119  

N(g) 472.7 455.5 153.3 20.8

N (g) 0 0 191.6 29.1

NF (g) –132.1 –90.6 260.8 53.4

NH (g) –45.9 –16.4 192.8 35.1

NH (aq) –133.3 –79.3 111.2  

NH Cl(s) –314.4 –202.9 94.6 84.1

NH NO (s) –365.6 –183.9 151.1 139.3

NH OH(l) –361.2 –254.0 165.6 154.9

(NH ) SO (s) –1180.9 –901.7 220.1 187.5

N H (g) 95.4 159.4 238.5  

N H (l) 50.6 149.3 121.2  

NO (g) 33.2 51.3 240.1 37.2

N O(g) 81.6 103.7 220 38.6

NO(g) 91.3 87.6 210.8  

N O (g) 11.1 99.8 304.4 79.2

N O (l) –19.5 97.5 209.2 142.7

Na(g) 107.5 77 153.7 20.8

Na(s) 0 0 51.3 28.2

Na (aq) –240.2 –261.9 58.5  

Na CO (s) –1130.7 –1044.4 135 112.3

ΔfH
−⊖− [kJ/mol] ΔfG

−⊖− [kJ/mol] S−⊖− [J/(mol K)] CP [J/(mol K)]
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30.1.8 https://chem.libretexts.org/@go/page/414100

Substance:     

Na O(s) –414.2 –375.5 75.1 69.1

Na O (s) –510.9 –447.7 95 89.2

Na SO (s) –1387.1 –1270.2 149.6 128.2

NaBr(aq) –361.7 –365.8 141.4  

NaBr(g) –143.1 –177.1 241.2 36.3

NaBr(s) –361.1 –349.0 86.8 51.4

NaCl(aq) –407.3 –393.1 115.5  

NaCl(s) –411.2 –384.1 72.1 50.5

NaCN(s) –87.5 –76.4 115.6 70.4

NaF(aq) –572.8 –540.7 45.2  

NaF(s) –576.6 –546.3 51.1 46.9

NaN (s) 21.7 93.8 96.9 76.6

NaNO (aq) –447.5 –373.2 205.4  

NaNO (s) –467.9 –367.0 116.5 92.9

NaO (s) –260.2 –218.4 115.9 72.1

NaOH(s) –425.8 –379.7 64.4 59.5

NaH(s) –56.3 –33.6 40 36.4

Ne(g) 0 0 146.3 20.8

Ni(g) 429.7 384.5 182.2 23.4

Ni(s) 0 0 29.9 26.1

Ni O (s) –489.5    

Ni(OH) (s) –529.7 –447.2 88  

NiBr (s) –212.1    

NiCl (s) –305.3 –259.0 97.7 71.7

NiF (s) –651.4 –604.1 73.6 64.1

O(g) 249.2 231.7 161.1 21.9

O (g) 0 0 205.2 29.4

O (g) 142.7 163.2 238.9 39.2

OH (aq) –230.0 –157.2 –10.9 |  

Os(g) 791 745 192.6 20.8

Os(s) 0 0 32.6 24.7

OsO (g) –337.2 –292.8 293.8 74.1

OsO (s) –394.1 –304.9 143.9  

P(g,white) 316.5 280.1 163.2 20.8

P(s,black) –39.3    

P(s,red) –17.6 –12.5 22.8 21.2

P(s,white) 0 0 41.1 23.8

P (g) 144.0 103.5 218.1  

ΔfH
−⊖− [kJ/mol] ΔfG

−⊖− [kJ/mol] S−⊖− [J/(mol K)] CP [J/(mol K)]
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30.1.9 https://chem.libretexts.org/@go/page/414100

Substance:     

P (g) 58.9 24.4 280.0  

PCl (g) –287.0 –267.8 311.8 71.8

PCl (l) –319.7 –272.3 217.1  

PCl (g) –374.9 –305.0 364.6 112.8

PH (g) 5.4 13.5 210.2 37.1

POCl (g) –558.5 –512.9 325.5  

POCl (l) –597.1 –520.8 222.5  

Pb(g) 195.2 162.2 175.4 20.8

Pb(s) 0 0 64.8 26.8

PbCl (s) –359.4 –314.1 136  

PbCO (s) –699.1 –625.5 131 87.4

PbO(s,litharg
e)

–219.0 –188.9 66.5 45.8

PbO(s,massic.
)

–217.3 –187.9 68.7 45.8

PbO (s) –277.4 –217.3 68.6 64.6

Pb(NO ) (aq) –416.3 –246.9 303.3  

Pb(NO ) (s) –451.9    

PbS(s) –100.4 –98.7 91.2 49.5

PbSO (s) –920.0 –813.0 148.5 103.2

Rb(g) 80.9 53.1 170.1 20.8

Rb(s) 0 0 76.8 31.1

RbCl(s) –435.4 –407.8 95.9 52.4

S(g,rhombic) 277.2 236.7 167.8 23.7

S(s,rhombic) 0 0 32.1 22.6

SO (g) –296.8 –300.1 248.2 39.9

SO (g) –395.7 –371.1 256.8 50.7

SO (aq) –909.3 –744.5 18.5  

SOCl (g) –212.5 –198.3 309.8  

Se(g,gray) 227.1 187 176.7  

Se(s,gray) 0 0 42.4 25.4

Si(g) 450 405.5 168.0 22.3

Si(s) 0 0 18.8 20.0

SiC(s,cubic) –65.3 –62.8 16.6 26.9

SiC(s,hexag.) –62.8 –60.2 16.5 26.7

SiCl (g) –657.0 –617.0 330.7  

SiCl (l) –687.0 –619.8 239.7  

SiH (g) 34.3 56.9 204.6 42.8

ΔfH
−⊖− [kJ/mol] ΔfG

−⊖− [kJ/mol] S−⊖− [J/(mol K)] CP [J/(mol K)]

4

3

3

5

3

3

3

2
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30.1.10 https://chem.libretexts.org/@go/page/414100

Substance:     

Sn(g,white) 301 266.2 168.5 21.3

Sn(s,gray) –2.1 0.1 44.1 25.8

Sn(s,white) 0 0 51.2 27.0

SnCl (g) –471.5 –432.2 365.8 98.3

SnCl (l) –511.3 –440.1 258.6 165.3

SnO (s) –557.6 –515.8 49 52.6

Ti(g) 473 428.4 180.3 24.4

Ti(s) 0 0 30.7 25.1

TiCl (s) –513.8 –464.4 87.4 69.8

TiCl (s) –720.9 –653.5 139.7 97.2

TiCl (g) –763 –726.3 353 95.4

TiCl (l) –804.2 –737.2 252.3 145.2

TiO (s) –944.0 –888.8 50.6 55.0

U(g) 533 488.4 199.8 23.7

U(s) 0 0 50.2 27.7

UF (g) –1598.7 –1572.7 368 91.2

UF (s) –1914.2 –1823.3 151.7 116.0

UF (g) –2147.4 –2063.7 377.9 129.6

UF (s) –2197.0 –2068.5 227.6 166.8

UO (g) –465.7 –471.5 274.6 51.4

UO (s) –1085.0 –1031.8 77.0 63.6

V(g) 514.2 754.4 182.3 26.0

V(s) 0 0 28.9 24.9

V O (s) –1550.6 –1419.5 131.0 127.7

VCl (s) –580.7 –511.2 131.0 93.2

VCl (g) –525.5 –492.0 362.4 96.2

VCl (l) –569.4 –503.7 255.0  

Xe(g) 0 0 169.7 20.8

Zn(g) 130.4 94.8 161.0 20.8

Zn(s) 0 0 41.6 25.4

ZnBr (s) –328.7 –312.1 138.5  

ZnCl (s) –415.1 –369.4 111.5 71.3

ZnF (s) –764.4 –713.3 73.7 65.7

ZnI (s) –208.0 –209.0 161.1  

Zn(NO ) (s) –483.7    

ZnS(s,sphaler.
)

–206.0 –201.3 57.7 46.0

ZnSO (s) –982.8 –871.5 110.5 99.2

ΔfH
−⊖− [kJ/mol] ΔfG

−⊖− [kJ/mol] S−⊖− [J/(mol K)] CP [J/(mol K)]
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30.1.11 https://chem.libretexts.org/@go/page/414100

Substance:     

Zr(g) 608.8 566.5 181.4 26.7

Zr(s) 0 0 39 25.4

ZrCl (s) –502.0 –386 110  

ZrCl (s) –980.5 –889.9 181.6 119.8

This page titled 30.1: Thermodynamic Data of Inorganic Substances at 298 K is shared under a CC BY-SA 4.0 license and was authored, remixed,
and/or curated by Roberto Peverati via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history
is available upon request.
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30.2.1 https://chem.libretexts.org/@go/page/414101

30.2: Thermodynamic Data of Organic Substances at 298 K
Formula: Name:     

CHBr Bromoform(g) 25 16 331 71

CHCl Chloroform(l) –134.1 –73.7 201.7 114.2

CHCl Chloroform(g) –102.7 6.0 295.7 65.7

CH O Formic acid(l) –425 –361.4 129 99

CH O Formic acid(g) –378.7    

CH Methyl(g) 145.7 47.9 194.2 38.7

CH Br Bromomethane(l) –59.8    

CH Br Bromomethane(g) –35.4 –26.3 246.4 42.4

CH Cl Chloromethane(g) –81.9 –63 234.6 40.8

CH F Fluormethane(g) –234 –210 222.9 37.5

CH I Iodomethane(l) –13.6  136.2 126

CH I Iodomethane(g) 14.4 16 254.1 44.1

CH NO Nitromethane(l) –112.6 –14.4 171.8 106.6

CH NO2 Nitromethane(g) –80.8 –7 282.9 55.5

CH Methane(g) –74.6 –50.5 186.3 35.7

CH O Methanol(l) –239.2 –166.6 126.8 81.1

CH O Methanol(g) –201 –162.3 239.9 44.1

CH N Methylamine(l) –47.3 35.7 150.2 102.1

CH N Methylamine(g) –22.5 32.7 242.9 50.1

C H Ethyne (acetylene)(g) 226.9 209 201 44

C H Ethene(g) 52.5 68.4 219.3 42.9

C H4O Acetic acid(l) –484.3 –389.9 159.8 123.3

C H4O Acetic acid(g) –432.2 –374.2 283.5 63.4

C H Br Bromoethane(l) –90.5 –25.8 198.7 100.8

C H Br Bromoethane(g) –61.9 –23.9 286.7 64.5

C H Cl Chloroethane(l) –136.8 –59.3 190.8 104.3

C H Cl Chloroethane(g) –112.1 –60.4 276 62.8

C2H NO Nitroethane(l) –143.9   134.4

C2H NO Nitroethane(g) –103.8 –5 320.5 79

C H Ethane(g) –84 –32 229.2 52.5

C H O Ethanol(l) –277.6 –174.8 160.7 112.3

C H O Ethanol(g) –234.8 –167.9 281.6 65.6

C H O Methoxymethane(l) –203,3    

C H O Methoxymethane(g) –184.1 –112.6 266.4  

C H N Ethylamine(l) –74.1   130

ΔfH
−⊖−

[kJ/mol] ΔfG
−⊖−

[kJ/mol] S
−⊖−

[J/(mol K)] CP [J/(mol K)]
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30.2.2 https://chem.libretexts.org/@go/page/414101

Formula: Name:     

C H N Ethylamine(g) –47.5 36.3 283.8 71.5

C H Cyclopropene(g) 277.1 286 244 53

C H Propyne(g) 185 194 248 61

C H Cyclopropane(l) 35.2    

C H Cyclopropane(g) 53.3 104.5 237.5 55.6

C H Propene(g) 20 62 267 64

C H O Acetone(l) –248.4  199.8 126.3

C H O Acetone(g) –217.1 –152.7 295.3 74.5

C H O Propanoic acid(l) –510.7  191 152.8

C H O Propanoic acid(g) –455.7    

C H Propane(l) –120.9    

C H Propane(g) –103.8 –23.4 270.3 73.6

C H O 1-Propanol(l) –302.6  193.6 143.9

C H O 1-Propanol(g) –255.1  322.6 85.6

C H O 2-Propanol(l) –318.1  181.1 156.5

C H O 2-Propanol(g) –272.6  309.2 89.3

C H N 1-Propanamine(g) –72 40 324  

C H 1-Butyne(l) 141.4    

C H 1-Butyne(g) 165.2 202 291 81

C H 2-Butyne(l) 119.1    

C H 2-Butyne(g) 145.7 185 283 78

C H Cyclobutene(g) 156.7 175 64 64

C H 2-Methyl–1-propene(g) –17 58 294 89

C H 1-Butene(l) –20.8  227 118

C H 1-Butene(g) 0.1 71 306 86

C H Cyclobutane(l) 3.7    

C H Cyclobutane(g) 27.7 110 265  

C H O Butanoic acid(l) –533.8  222.2 178.6

C H O Butanoic acid(g) –475.9    

C H 2-Methylpropane(g) –135 –21 295 97

C H Butane(l) –147.3   140.9

C H Butane(g) –125.7 –17 310 98

C H O 1-Butanol(l) –327.3  225.8 177.2

C H O 1-Butanol(g) –274.9    

C H O 2-Butanol(l) –342.6  214.9 196.9

C H O 2-Butanol(g) –292.8  359.5 112.7

C H 1-Pentyne(g) 144 210 330 105

C H 2-Pentyne(g) 129 194 332 99

ΔfH
−⊖− [kJ/mol] ΔfG

−⊖− [kJ/mol] S−⊖− [J/(mol K)] CP [J/(mol K)]

2 7
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3 4
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3 6

3 6
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3 6 2
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3 8

3 8

3 8
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4 6

4 6
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4 8

4 8
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30.2.3 https://chem.libretexts.org/@go/page/414101

Formula: Name:     

C H Cyclopentene(l) 4.3  201.2 122.4

C H Cyclopentene(g) 34 111 290 75

C H 1-Pentene(l) –46.9  262.6 154

C H 1-Pentene(g) –21.1 79 346 110

C H 2-Methyl–1-butene(g) –35.2 66 340 112

C H 2-Methyl–1-butene(l) –61.1  254 157.2

C H Cyclopentane(l) –105.1  204.5 128.8

C H Cyclopentane(g) –76.4 39 293 83

C H O Pentanoic acid(l) –559.4  259.8 210.3

C H O Pentanoic acid(g) –491.9    

C H 2,2-Dimethylpropane(g) –166 –15 306 122

C H 2-Methylbutane(g) –155 –15 344 119

C H Pentane(l) –173.5   167.2

C H Pentane(g) –146.9 –8 349 120

C H O 1-Pentanol(l) –351.6   208.1

C H O 1-Pentanol(g) –294.6    

C H O 2-Pentanol(l) –365.2    

C H O 2-Pentanol(g) –311    

C H O 3-Pentanol(l) –368.9   239.7

C H O 3-Pentanol(g) –314.9    

C H O Methyl tert-butyl ether(l) –313.6  265.3 187.5

C H O Methyl tert-butyl ether(g) –283.7    

C H Benzene(l) 49.1 124.5 173.4 136

C H Benzene(g) 82.9 129.7 269.2 82.4

C H N Aniline(l)    191.9

C H N Aniline(g) 87.5 –7 317.9 107.9

C H 1-Hexyne(g) 124 219 369 128

C H Cyclohexene(l) –28.5  214.6 148.3

C H Cyclohexene(g) –5 107 311 105

C H 1-Hexene(l) –74.2  295.2 183.3

C H 1-Hexene(g) –43.5 87 385 132

C H 2-Methyl–1-pentene(g) –59.4    

C H 2-Methyl–1-pentene(l) –90    

C H Cyclohexane(l) –156.4   154.9

C H Cyclohexane(g) –123.4 32 298 106

C H Methylcyclopentane(g) –106.2    

C H Methylcyclopentane(l) –137.9    

C H O Hexanoic acid(l) –583.8    

ΔfH
−⊖− [kJ/mol] ΔfG

−⊖− [kJ/mol] S−⊖− [J/(mol K)] CP [J/(mol K)]
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5 8
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30.2.4 https://chem.libretexts.org/@go/page/414101

Formula: Name:     

C H O Hexanoic acid(g) –511.9    

C H 2,2-Dimethylbutane(g) –185.9 –10 358 142

C H 2,2-Dimethylbutane(l) –213.8  272.5 191.9

C H 2-Methylpentane(g) –174.6 –5 381 144

C H 2-Methylpentane(l) –204.6  290.6 193.7

C H 3-Methylpentane(g) –171.9 –2 380 143

C H 3-Methylpentane(l) –202.4  292.5 190.7

C H Hexane(l) –198.7   195.6

C H Hexane(g) –166.9 –0.3 388 143

C H O 1-Hexanol(l) –377.5  287.4 240.4

C H O 1-Hexanol(g) 315.9    

C H O 2-Hexanol(l) –392    

C H O 2-Hexanol(g) –333.5    

C H O Phenol(s) –165.1  144 127.4

C H O Phenol(g) –96.4 –33 316 104

C H Methylbenzene(l) 12.0  220 156

C H Methylbenzene(g) 50.0 122 321 104

C H 1-Heptene(l) –97.9  327.6 211.8

C H 1-Heptene(g) –62.3 96 424 15

C H Cycloheptane(l) –156.6    

C H Cycloheptane(g) –118.1    

C H Ethylcyclopentane(l) –163.4  279.9  

C H Ethylcyclopentane(g) –126.9    

C H Methylcyclohexane(g) –154.7    

C H Methylcyclohexane(l) –190.1   184.8

C H O Heptanoic acid(l) –610.2   265.4

C H O Heptanoic acid(g) –536.2    

C H 2,2-Dimethylpentane(g) –205.7    

C H 2,2-Dimethylpentane(l) –238.3  300.3 221.1

C H 2-Methylhexane(g) –194.5    

C H 2-Methylhexane(l) –229.5  323.3 222.9

C H 3-Methylhexane(g) –191.3    

C H 3-Methylhexane(l) –226.4    

C H Heptane(l) –224.2   224.7

C H Heptane(g) –187.6 8 428 166

C H O 1-Heptanol(l) –403.3   272.1

C H O 1-Heptanol(g) –336.5    

C H Ethylbenzene(l) –12.3   183.2

ΔfH
−⊖− [kJ/mol] ΔfG

−⊖− [kJ/mol] S−⊖− [J/(mol K)] CP [J/(mol K)]
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6 14

6 14

6 14

6 14

6 14

6 14
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30.2.5 https://chem.libretexts.org/@go/page/414101

Formula: Name:     

C H Ethylbenzene(g) 29.9 131 361 128

C H 1-Octene(l) –124.5   241

C H 1-Octene(g) –81.3 104 463 178

C H Cyclooctane(l) –167.7    

C H Cyclooctane(g) –124.4    

C H Ethylcyclohexane(l) –212.1  280.9 211.8

C H Ethylcyclohexane(g) –171.5    

C H O Octanoic acid(l) –636   297.9

C H O Octanoic acid(g) –554.3    

C H 2-Methylheptane(g) –215.3    

C H 2-Methylheptane(l) –255  356.4 252

C H 3-Methylheptane(g) –212.5    

C H 3-Methylheptane(l) –252.3  362.6 250.2

C H Octane(l) –250.1   254.6

C H Octane(g) –208.5 16 467 189

C H O 1-Octanol(l) –426.5   305.2

C H O 1-Octanol(g) –355.6    

C H 2,2-Dimethylhexane(g) –224.5    

C H 2,2-Dimethylhexane(l) –261.9    

C H Propylcyclohexane(g) –192  420 242

C H Propylbenzene(g) 8 137 401 154

C H 1-Nonyne(l) 16.3    

C H 1-Nonyne(g) 62.3    

C H O Nonanoic acid(l) –659.7   362.4

C H O Nonanoic acid(g) –577.3    

C H 2,2-Dimethylheptane(g) –246    

C H 2,2-Dimethylheptane(l) –288.1    

C H Nonane(l) –274.7   284.4

C H Nonane(g) –228.2 25 506 212

C H O 1-Nonanol(l) –453.4    

C H O 1-Nonanol(g) –376.5    

C H Naphthalene(g) 151 224 336  

C H Butylbenzene(l) –63.2  321.2 243.4

C H Butylbenzene(g) –11.8    

C H 1-Decene(l) –173.8  425 300.8

C H 1-Decene(g) –123.3   301

C H Butylcyclohexane(l) –263.1  345 271

C H Butylcyclohexane(g) –213.7    

ΔfH
−⊖− [kJ/mol] ΔfG

−⊖− [kJ/mol] S−⊖− [J/(mol K)] CP [J/(mol K)]
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30.2.6 https://chem.libretexts.org/@go/page/414101

Formula: Name:     

C H O Decanoic acid(s) –713.7    

C H O Decanoic acid(l) –684.3    

C H O Decanoic acid(g) –594.9    

C H 2-Methylnonane(g) –260.2    

C H 2-Methylnonane(l) –309.8  420.1 313.3

C H Decane(l) –300.9   314.4

C H Decane(g) –249.5 33 545 235

C H O 1-Decanol(l) –478.1   370.6

C H O 1-Decanol(g) –396.6    

C H 1-Methylnaphthalene(l) 56.3  254.8 224.4

C H 2-Methylnaphthalene(s) 44.9  220 196

C H 2-Methylnaphthalene(g) 106.7    

C H 1-Undecene(g)    344.9

C H Undecane(l) –327.2   344.9

C H Undecane(g) –270.8 42 584 257

C H O 1-Undecanol(l) –504.8    

C H 1-Dodecene(l) –226.2  484.8 360.7

C H 1-Dodecene(g) –165.4    

C H O Dodecanoic acid(s) –774.6   404.3

C H O Dodecanoic acid(l) –737.9    

C H O Dodecanoic acid(g) 642    

C H Dodecane(l) –350.9   375.8

C H Dodecane(g) –289.4 50 623 280

C H O 1-Dodecanol(l) –528.5   438.1

C H O 1-Dodecanol(g) –436.6    

C H Anthracene(g) 231    

C H Phenantrene(g) 207    

C H Decylcyclopentane(l) –367.3    

C H Decylbenzene(l) –218.3    

C H Decylbenzene(g) –138.6    

C H 1-Hexadecene(l) –328.7  587.9 488.9

C H 1-Hexadecene(g) –248.4    

C H O Hexadecanoic acid(s) –891.5  452.4 460.7

ΔfH
−⊖− [kJ/mol] ΔfG

−⊖− [kJ/mol] S−⊖− [J/(mol K)] CP [J/(mol K)]
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10 20

2

10 20

2

10 22

10 22

10 22
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11 10

11 10

11 10

11 22

11 24

11 24

11 24

12 24

12 24

12 24

2

12 24

2

12 24

2

12 26

12 26

12 26

12 26
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14 10

15 30

16 26

16 26
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16 32
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30.2.7 https://chem.libretexts.org/@go/page/414101

Formula: Name:     

C H O Hexadecanoic acid(l) –838.1    

C H O Hexadecanoic acid(g) –737.1    

C H N-hexadecane(l) –456.1   501.6

C H N-hexadecane(g) –374.8    

C H Chrysene(s) 145.3    

C H Chrysene(g) 269.8    

This page titled 30.2: Thermodynamic Data of Organic Substances at 298 K is shared under a CC BY-SA 4.0 license and was authored, remixed,
and/or curated by Roberto Peverati via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history
is available upon request.
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