MEDIUM-VOLTAGE SWITCHGEAR
Fixed-Mounted Circuit-Breaker Switchgear Type NXPLUS C up to 36 kV, Gas-Insulated
siemens.com/nxplusc

Applications
Typical uses

Application:
Public power
supply system
and
offshore

Application:

Industry and offshore

MEDIUM-VOLTAGE SWITCHGEAR

Fixed-Mounted Circuit-Breaker Switchgear Type NXPLUS C up to 36 kV, Gas-Insulated

Catalog HA $35.41 \cdot 2024$
Invalid: Catalog HA 35.41 • 2023
siemens.com/nxplusc
Applications
Types, typical uses, ratings, approvals 4 and 5
Requirements
Features, safety, technology 6 and 7
Digitalization, condition monitoring
Siemens Xcelerator, available monitoringfunctionalities, digitalization solutionsfrom a single source8 and 9
Technical data
Electrical data 10 to 13
Room planning 14 and 15
Shipping data 16
Classification 17
Panel dimensions
Single busbar 18 to 27
Double busbar 28 to 30
Product range
Single-busbar panels 31 to 37
Double-busbar panels 38 and 39
Components
Panel connection 40 to 42
StandardsStandards, specifications,guidelines43 to 46

The products and systems described in this catalog are manufactured and sold according to a certified management system (acc. to ISO 9001, ISO 14001 and BS OHSAS 18001).

Applications

Circuit-breaker panel 450 mm

4 Fixed-Mounted Circuit-Breaker Switchgear Type NXPLUS C up to 36 kV, Gas-Insulated • Siemens HA $35.41 \cdot 2024$

Typical uses

Fixed-mounted circuit-breaker switchgear NXPLUS C is a factory-assembled, type-tested, metal-enclosed, SF_{6}-insulated switchgear with metallic partitions ${ }^{3)}$ for single-busbar and double-busbar applications for indoor installation.

It is used in transformer and switching substations, e.g., in:

- Power supply companies
- Power stations
- Cement industry
- Automobile industry
- Iron and steel works
- Rolling mills
- Mining industry
- Textile, paper and food industries
- Chemical industry
- Petroleum industry
- Pipeline installations
- Offshore installations
- Electrochemical plants
- Petrochemical plants
- Shipbuilding industry
- Diesel power plants
- Emergency power supply installations
- Lignite open-cast mines
- Traction power supply systems.

Ratings

Electrical data (maximum values) and dimensions								
Rated voltage	kV	7.2	12	15	17.5	24	36	38
Rated frequency	Hz	50/60	50/60	50/60	50/60	50/60	50/60	50/60
Rated short-duration power-frequency withstand voltage	kV	201)	28)	36	38	50	70	70
Rated lightning impulse voltage	kV	$60^{1)}$	752)	95	95	125	170	150
Rated peak withstand current	kA	80/82	80/82	80/82	80/82	63/65	63165	63/65
Rated short-circuit making current	kA	80/82	80/82	80/82	80/82	63/65	63/65	63/65
Rated short-time withstand current 3 s	kA	31.5	31.5	31.5	31.5	25	25	25
Rated short-circuit breaking current	kA	31.5	31.5	31.5	31.5	25	25	25
Rated continuous current of the busbar	A	2500	2500	2500	2500	2500	2500	2500
Rated continuous current of the feeders	A	2500	2500	2500	2500	2500	1250	1250
Width	mm	3004)	3004)	$3004)$	3004)	$300^{4)}$	$3004{ }^{4}$	300^{4}
	mm	450	450	450	450	450	-	-
	mm	600	600	600	600	600	600	600
	mm	900	900	900	900	900	900	900
Depth	mm	1225	1225	1225	1225	1225	1225	1225
Height	mm	2250	2250	2250	2250	2250	2250	2250

1) $32 \mathrm{kV} / 60 \mathrm{kV}$ according to some national requirements
2) $42 \mathrm{kV} / 75 \mathrm{kV}$ according to some national requirements
3) Corresponds to "metal-clad" according to former standard IEC 60298
4) Only dummy panel

Requirements

Features

Environmental independence

Hermetically tight, welded switchgear vessels made of stainless steel as well as single-pole solid insulation make the parts of the primary circuit under high voltage of NXPLUS C switchgear

- Insensitive to certain aggressive ambient conditions, such as saline air, air humidity, dust and condensation
- Tight to ingress of foreign objects, such as dust, pollution, small animals, humidity
- Independent of the site altitude.

This high degree of environmental independence cannot be achieved for the air-insulated metering panel due to the partial air insulation (block-type current transformers, block-type voltage transformers with connecting bars).

Compact design

Thanks to the use of SF_{6} insulation, compact dimensions are possible. Thus:

- Existing switchgear rooms and substation rooms can be used effectively
- New constructions cost little
- Costly city-area space is saved.

Maintenance-free design

Switchgear vessels designed as sealed pressure systems, maintenance-free switching devices and enclosed cable plugs ensure:

- Maximum supply reliability
- Personnel safety
- Sealed-for-life design according to IEC 62271-200 (sealed pressure system)
- Installation, operation, extension, replacement without SF6 gas work
- Reduced operating costs
- Cost-efficient investment
- No maintenance cycles.

Innovation

The use of digital secondary systems and combined protection and control devices ensures:

- Clear integration in process control systems
- Flexible and highly simplified adaptation to new system conditions and thus to cost-efficient operation.

Service life

Under normal service conditions, the expected service life of gas-insulated switchgear NXPLUS C is at least 40 years, taking the tightness of the hermetically welded switchgear vessel into account. The service life is limited by the maximum number of operating cycles of the switching devices installed.

Safety

Personal safety

- Safe-to-touch and hermetically sealed primary enclosure
- Cable terminations, busbars and voltage transformers are surrounded by earthed layers
- All high-voltage parts including the cable terminations, busbars and voltage transformers are metal-enclosed
- Capacitive voltage detecting system to verify safe isolation from supply
- Operating mechanisms and auxiliary switches safely accessible outside the primary enclosure (switchgear vessel)
- Due to the system design, operation is only possible with closed switchgear enclosure
- Standard degree of protection IP65 for all high-voltage parts of the primary circuit, IP3XD for the switchgear enclosure according to IEC 60529
- High resistance to internal arcs by logical mechanical interlocks and tested switchgear enclosure
- Panels tested for resistance to internal faults up to 31.5 kA
- Logical mechanical interlocks prevent maloperation
- Make-proof earthing by means of the vacuum circuit-breaker.

Security of operation

- Hermetically sealed primary enclosure independent of environmental effects (pollution, humidity and small animals)
- Maintenance-free in an indoor environment (IEC 62271-1)
- Operating mechanisms of switching devices accessible outside the primary enclosure (switchgear vessel)
- Metal-coated and plug-in inductive voltage transformers mounted outside the SF_{6} switchgear vessel
- Current transformers as ring-core current transformers mounted outside the SF_{6} switchgear vessel
- Complete switchgear interlocking system with logical mechanical interlocks
- Welded switchgear vessels, sealed for life
- Minimum fire load
- Type- and routine-tested
- Standardized and manufactured using numerically controlled machines
- Quality assurance in accordance with DIN EN ISO 9001
- More than 500,000 switchgear panels of Siemens in operation worldwide for many years.

Reliability

- Type- and routine-tested
- Standardized and manufactured using numerically controlled machines
- Quality assurance in accordance with DIN EN ISO 9001
- More than 500,000 switchgear panels of Siemens in operation worldwide for many years.

General

- 3-pole enclosure of the primary part consisting of a switchgear vessel made of stainless steel
- Insulating gas SF6 (fluorinated greenhouse gas)
- Three-position switch as busbar disconnector and feeder earthing switch
- Make-proof earthing by means of the vacuum circuit-breaker
- Compact dimensions due to SF_{6} insulation
- Hermetically tight, welded switchgear vessel made of stainless steel
- 1-pole, solid-insulated, screened busbars, plug-in type
- Cable connection with outside-cone plug-in system, or for connection of solid-insulated bars
- Wall-standing or free-standing arrangement
- Cable connection access from front
- Low-voltage door hinge on the left or right
- Installation and extension of existing switchgear at both ends without gas work and without modification of existing panels
- Option: Flexible pressure relief duct systems.

Interlocks

- According to IEC 62271-200
- Logical mechanical interlocks prevent maloperation
- Interlocking of three-position disconnector
- If the DISCONNECTING function is in CLOSED position, the READY-TO-EARTH function cannot be selected
- If the READY-TO-EARTH function is in CLOSED position, the DISCONNECTING function cannot be selected
- Interlocking of three-position switch-disconnector
- If the LOAD BREAKING function is in CLOSED position, the EARTHING function cannot be selected
- If the EARTHING function is in CLOSED position, the LOAD BREAKING function cannot be selected
- Three-position disconnector can only be operated with circuit-breaker in OPEN position
- Circuit-breaker can only be operated with three-position disconnector in end position and operating lever removed
- Locking device for "feeder earthed"
- Locking device for three-position disconnector The following interlocks can be fulfilled by placing the padlock accordingly:
- Padlock on the left: Three-position disconnector DISCONNECTING function cannot be operated, three-position disconnector READY-TO-EARTH function can be operated
- Padlock in the center: Control gate blocked, no switching operations possible
- Padlock on the right: Three-position disconnector DISCONNECTING function can be operated, three-position disconnector READY-TO-EARTH function cannot be operated
- Fuse compartment can only be closed if the fuse box is completely closed
- De-earthing lockout when the fuse cover is removed
- Option: Cable compartment cover interlocked against three-position disconnector (circuit-breaker panel)
- Option: Transformer compartment interlocked against three-position switch-disconnector (auxiliary transformer panel)
- Option: Closing lockout for mechanical CLOSING of the circuit-breaker
- Option: Closing lockout for three-position disconnector DISCONNECTING function when the cable compartment cover / instrument transformer compartment cover is removed (circuit-breaker panel, air-insulated metering panel)
- Option: Electromagnetic interlocks (-Y1, -Y5, -Y8E, -Y16, -Y32)
- Option: Mechanical pushbuttons of the circuit-breaker can be padlocked
- Option: Locking device for "feeder".

Modular design

- Panel replacement possible without SF_{6} gas work
- Low-voltage compartment removable, plug-in bus wires.

Instrument transformers

- Current transformers not subjected to dielectric stress
- Easy replacement of current transformers designed as ring-core transformers
- Metal-coated, plug-in and disconnectable voltage transformers
- Block-type current transformers and block-type voltage transformers in the air-insulated metering panel, also possible as customer supply (block-type current transformers are dielectrically stressed).

Sensors

- Current sensor as inductive current transformer in combination with precision shunt (voltage signal)
- Voltage sensor as resistor divider
- In combination with secondary devices such as
- SICAM FCM
- 7SJ81.

Auxiliary transformer

- Three-phase and single-phase dry-type transformer
- Power 40 kVA or 10 kVA
- Connection symbol Dyn1, Dyn5 or Li0
- According to Ecodesign Directive
- No. 548/2014 of the EU.

Vacuum circuit-breaker

- Maintenance-free under normal ambient conditions according to IEC 62271-1
- No relubrication or readjustment
- Up to 10,000 operating cycles
- Option: Up to 30,000 operating cycles
- Vacuum-tight for life.

Secondary systems

- Customary protection, measuring and control equipment
- Option: Numerical multifunction protection relay with integrated protection, control, communication, operating and monitoring functions
- Can be integrated in process control systems.

Standards (see page 44)

Siemens Xcelerator

Siemens Xcelerator is an open digital business platform that enables customers to accelerate their digital transformation more easily, quickly, and at scale.

Addressing key challenges in the energy sector and beyond

Maintaining grid stability - Increasing energy demands often clash with fluctuating generation. Balancing both is crucial for tomorrow's grid stability.
Our smart energy solutions simplify management, align OT and IT, and ensure a resilient, scalable, and adaptable grid.

Maximizing cyber and asset security - Power grids can be a target for cyberattacks, which may cause power outages and unpredictable results.
Our solutions incorporate security measures to remove vulnerabilities in IT components, control devices, as well as transformer substation and switchgear systems.

Reducing expenditures - Our solutions enhance competitiveness through optimized CAPEX and OPEX with asset optimization, digital planning, simulation, and flexible financing options.

Integrating distributed energy resources (DERs) - DERs are at the heart of a clean and resilient energy future. Nevertheless, a greater system flexibility is needed to consistently balance supply and demand.

Our solution offering covers the entire spectrum: from consulting through technical applications and services to tailored financing and business models.

Available monitoring functionalities for gas-insulated switchgear

Condition monitoring

Condition monitoring serves to continuously improve the resilience, reliability, and availability of maintenance-free, gas-insulated medium-voltage switchgear with an expected service life of 40 years. These values are based on the design and empirical data for switchgear assemblies, as well as on the intended use of the switchgear under normal service conditions according to IEC 62271-1.
To protect the investment (CAPEX) and reduce operational expenditures (OPEX), the extension of switchgear functions with a condition monitoring system is the appropriate way for early indication of irregularities at the switchgear and its peripheral components. This is the premise for condition-based inspection.

Temperature monitoring of the cable connections

Temperature monitoring of the cable connections ensures that the maximum permissible thermal service conditions of the gas-insulated switchgear and the cable connection set are not exceeded during operation. With the help of an intelligent correlation between the ambient air temperature, the cable connection temperature, and the switchgear utilization, anomalies can already be detected and indicated before the limit temperature is reached, based also on low-load scenarios.

Temperature and humidity monitoring of the environment (dew-point monitoring)

 Ongoing condensation would lead to corrosion at the switchgear, and reduce its service life. Specific countermeasures after strong humidity at the switchgear assembly, as well as the prevention of further condensation, can remedy the situation.
Partial discharge monitoring

Partial discharges arise if the electrical insulation is damaged or insufficient. Partial discharge monitoring offers a pre-alarming in case of a possibly insufficient electrical insulation. In most cases, partial discharges are a long-term effect of thermal overstressing or of defective or incorrectly installed peripheral components.

Digital gas density monitoring

For perfect operation of a gas-insulated switchgear, the correct gas density inside the switchgear vessel is crucial. To maintain the full scope of functions of the switchgear, immediate action is required if the gas density falls below the necessary values.

Circuit-breaker monitoring

Continuous monitoring of circuit-breaker functions enables an evaluation of the actual health status of the circuit-breaker, based on both mechanical and electrical parameters. The evaluation of performed mechanical and electrical switching operations, as well as the monitoring of other components, allows to indicate at an early stage if servicing work is necessary, or if a suitable replacement switchgear should be procured.

Load flow monitoring

Load flow monitoring provides the basis for the relation between the electrical utilization and other defined and monitored status values. Knowing the actual utilization, for example, it is possible to determine how the temperature characteristic will develop with increasing electrical utilization, and if this leads to a possible recommended action.

Technical data

Electrical data, filling pressure, temperature for single-busbar switchgear

Data of the switchgear panels

Circuit-breaker panel $630 \mathrm{~A}, 800 \mathrm{~A}$								
Rated continuous current I_{r}	at an ambient	630	630	630	630	630	630	630
	air temperature of $40^{\circ} \mathrm{C}$ A	800	800	800	800	800	800	800
Rated short-time withstand current I_{k}	for switchgear with $t_{\mathrm{k}}=1 \mathrm{~s} \quad \mathrm{sA}$	$20 \mid 25$	20\|25	$20 \mid 25$	$20 \mid 25$	20\|25	20\|25	$20 \mid 25$
	for switchgear with $t_{\mathrm{k}}=3 \mathrm{~s} \quad \mathrm{kA}$	$20 \mid 25$						
Rated peak withstand current I_{p}	50 Hz kA	50\|63	50\|63	$50 \mid 63$	50\|63	50\|63	50\|63	$50 \mid 63$
	60 Hz kA	52\|65	52\|65	52\|65	52\|65	52\|65	52\|65	52\|65
Rated short-circuit making current $I_{\text {ma }}$	50 Hz kA	50\|63	50\|63	50\|63	50\|63	50\|63	50\|63	50\|63
	60 Hz kA	52\|65	52\|65	52\|65	52\|65	52\|65	52\|65	52\|65
Rated short-circuit breaking current $I_{\text {sc }}$		$20 \mid 25$						
Electrical endurance of vacuum circuit-breakers	at rated continuous current at rated short-circuit breaking current	10,000 operating cycles						\longrightarrow
		50 breaking operations						\rightarrow
Endurance classes according to IEC 62271-100		M2, E2, C2, S2						\rightarrow
Endurance classes according to IEC 62271-102	DISCONNECTING	M1						
	EARTHING	M0, EO	MO, E0	M0, EO	MO, EO	MO, EO	MO, EO	MO, EO

The EARTHING function with endurance class E2 is reached by closing the circuit-breaker in combination with the earthing switch (endurance class EO).

The EARTHING function with endurance class E2 is reached by closing the circuit-breaker in combination with the earthing switch (endurance class EO).

Data of the switchgear panels (continued)

Disconnector panel 630 A, 800 A, 1000 A, 1250 A, 1600 A, 2000 A, 2500 A													
Rated voltage Ur		kV	7.2	12	15	17.5	24	36	38				
Rated continuous current ${ }^{3)} I_{r}$	at an ambient air temperature of $40^{\circ} \mathrm{C}$	A	$\begin{aligned} & 630 \\ & 800 \\ & 1000 \\ & 1250 \\ & 1600 \\ & 2000 \\ & 2500 \end{aligned}$	$\begin{aligned} & 630 \\ & 800 \\ & 1000 \\ & 1250 \\ & 1600 \\ & 2000 \\ & 2500 \end{aligned}$	$\begin{aligned} & 630 \\ & 800 \\ & 1000 \\ & 1250 \\ & 1600 \\ & 2000 \\ & 2500 \end{aligned}$	$\begin{aligned} & 630 \\ & 800 \\ & 1000 \\ & 1250 \\ & 1600 \\ & 2000 \\ & 2500 \end{aligned}$	$\begin{aligned} & 630 \\ & 800 \\ & 1000 \\ & 1250 \\ & 1600 \\ & 2000 \\ & 2500 \end{aligned}$	$\begin{aligned} & 630 \\ & 800 \\ & 1000 \\ & 1250 \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 630 \\ & 800 \\ & 1000 \\ & 1250 \\ & - \\ & - \\ & - \end{aligned}$				
Rated short-time withstand current I_{k}	for switchgear with $t_{k}=1 \mathrm{~s}$	kA	20\|25	31.5	20\|25	31.5	20\|25	31.5	20\|25	31.5	$20 \mid 25$	$20 \mid 25$	$20 \mid 25$
	for switchgear with $t_{\mathrm{k}}=3 \mathrm{~s}$	kA	20\|25	31.5	20\|25	31.5	20\|25	31.5	20\|25	31.5	$20 \mid 25$	$20 \mid 25$	$20 \mid 25$
Rated peak withstand current I_{p}	50 Hz	kA	50\|63	80	50\|63	80	50\|63	80	50\|63	80	50\|63	50\|63	50\|63
	60 Hz	kA	52\|65	82	52\|65	82	52\|65	82	52\|65	82	52\|65	52\|65	52\|65
Endurance classes according to IEC 62271-102	DISCONNECTING EARTHING		M1										
			MO, EO	M0, E0									

Three-position switch-disconnector/fuse combination Auxiliary transformer panel (with HV HRC fuses)													
Rated continuous current ${ }^{3)}{ }^{4)}$ Iload	at an ambient air temperature of $40^{\circ} \mathrm{C}$	A	200	200	200	200	200	-	-				
Rated short-time withstand current I_{k}	for switchgear with $t_{\mathrm{k}}=1 \mathrm{~s}$	kA	20\|25	31.5	20\|25	31.5	20\|25	31.5	20\|25	31.5	20\|25	-	-
	for switchgear with $t_{\mathrm{k}}=3 \mathrm{~s}$	kA	20\|25	31.5	20\|25	31.5	20\|25	31.5	20\|25	31.5	$20 \mid 25$	-	-
Rated peak withstand current ${ }^{4)} I p$	50 Hz	kA	50\|63	80	50\|63	80	50\|63	80	50\|63	80	50\|63	-	-
	60 Hz	kA	$52\|65\| 82$	52\|65	82	$52\|65\| 82$	52\|65	82	52\|65	-	-		
Rated short-circuit making current ${ }^{4)} I_{\text {ma }}$	50 Hz	kA	50\|63	80	50\|63	80	50\|63	80	50\|63	80	50\|63	-	-
	60 Hz	kA	52\|65	82	52\|65	82	52\|65	82	52\|65	82	52\|65	-	-
Rated transfer current TDI $_{\text {transfer }}$		A	1500	1500	1300	1300	1300	-	-				
Rated take-over current TDIto		A	1500	1500	1300	1300	1300	-	-				
Dimension "e" of HV HRC fuse-links		mm mm	$\begin{aligned} & 292 \\ & 442 \end{aligned}$	$\begin{aligned} & 292 \\ & 442 \end{aligned}$	442	442	442	-	-				
Endurance class according to IEC 62271-103			M1	M1	M1	M1	M1	-	-				

Metering panel, gas-insulated (with HV HRC fuses)													
Rated continuous current ${ }^{3)} \mathrm{Ir}_{r}$	at an ambient air temperature of $40^{\circ} \mathrm{C}$	A	-	-	-	-	-	-	-				
Rated short-time withstand current I_{k}	for switchgear with $t_{\mathrm{k}}=1 \mathrm{~s}$	kA	20\|25	31.5	20\|25	31.5	20\|25	31.5	20\|25	31.5	20\|25	-	-
	for switchgear with $t_{\mathrm{k}}=3 \mathrm{~s}$	kA	20\|25	31.5	20\|25	31.5	20\|25	31.5	20\|25	31.5	20\|25	-	-
Rated peak withstand current I_{p}	50 Hz	kA	50\|63	80	50\|63	80	50\|63	80	50\|63	80	50\|63	-	-
	60 Hz	kA	52\|65	82	52\|65	82	52\|65	82	52\|65	82	52\|65	-	-
Dimension "e" of HV HRC fuse-links		mm mm	$\begin{aligned} & 292 \\ & 442 \end{aligned}$	$\begin{aligned} & 292 \\ & 442 \end{aligned}$	442	442	442	-	-				
Endurance class according to IEC 62271-102		TING	MO	MO	MO	MO	MO	-	-				
		IING	M0, E2	M0, E2	M0, E2	MO, E2	M0, E2	-	-				

Metering panel, air-insulated								
Rated continuous current ${ }^{3)} I_{r}$	at an ambient air temperature of $40^{\circ} \mathrm{C}$	1250 8)	$1250{ }^{8)}$	$1250{ }^{8)}$	$1250{ }^{8)}$	1250 8)	-	-
Rated short-time withstand current I_{k}	for switchgear with $t_{\mathrm{k}}=1 \mathrm{~s} \quad \mathrm{~s} A$	20\|25	20\|25	20\|25	20\|25	20\|25	-	-
		20\|25	20\|25	20\|25	20\|25	20\|25	-	-
Rated peak withstand current I_{p}	50 Hz kA	50\|63	50\|63	50\|63	50\|63	50\|63	-	-
	60 Hz	52\|65	52\|65	52\|65	52\|65	52\|65	-	-
Endurance classes according to IEC 62271-102	DISCONNECTING	M1	M1	M1	M1	M1	-	-
	EARTHING	M0, E0	MO, EO	MO, EO	MO, EO	M0, E0	-	-

Technical data

Electrical data, filling pressure, temperature for single-busbar switchgear

Data of the switchgear panels (continued)									
Ring-main panel									
Rated voltage Ur		kV	7.2	12	15	17.5	24	36	38
Rated continuous current ${ }^{3)} I_{\text {load }}$	at an ambient air temperature of $40^{\circ} \mathrm{C}$	A	630	630	630	630	630	-	-
Rated short-time withstand current I_{k}	for switchgear with $t_{\mathrm{k}}=1 \mathrm{~s}$	kA	$20 \mid 25$	$20 \mid 25$	$20 \mid 25$	$20 \mid 25$	201-	-	-
	for switchgear with $t_{k}=3 \mathrm{~s}$	kA	201-	201-	201-	201-	201-	-	-
Rated peak withstand current I_{p}	50 Hz	kA	50\|63	$50 \mid 63$	50\|63	$50 \mid 63$	501-	-	-
	60 Hz	kA	52\|65	52\|65	52\|65	52\|65	521-	-	-
Rated short-circuit making current $I_{\text {ma }}$	50 Hz	kA	50\|63	$50 \mid 63$	$50 \mid 63$	$50 \mid 63$	501-	-	-
	60 Hz	kA	52\|65	52\|65	$52 \mid 65$	52\|65	521-	-	-
Endurance class according to IEC 62271-103			M1, E3	-	-				

Vacuum contactor panel with HV HRC fuses													
Rated continuous current ${ }^{3)}{ }^{4)} I_{\text {r }}$	at an ambient air temperature of $40^{\circ} \mathrm{C}$	A	450	450	450	450	450	-	-				
Rated short-time withstand current I_{k}	for switchgear with $t_{\mathrm{k}}=1 \mathrm{~s}$	kA	20\|25	31.5	20\|25	31.5	20\|25	31.5	20\|25	31.5	20\|25	-	-
	for switchgear with $t_{\mathrm{k}}=3 \mathrm{~s}$	kA	20\|25	31.5	20\|25	31.5	20\|25	31.5	20\|25	31.5	20\|25	-	-
Rated peak withstand current ${ }^{4)} I_{p}$	50 Hz	kA	50\|63	80	50\|63	80	50\|63	80	50\|63	80	50\|63	-	-
	60 Hz	kA	52\|65	82	52\|65	82	$52 \mid 65182$	52\|65	82	52\|65	-	-	
Rated short-circuit making current 4) $I_{\text {ma }}$	50 Hz	kA	50\|63	80	50\|63	80	50\|63	80	50\|63	80	50\|63	-	-
	60 Hz	kA	52\|65	82	52\|65	82	52\|65	82	52\|65	82	52\|65	-	-
Dimension "e" of HV HRC fuse-links		$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 292 \\ & 442 \end{aligned}$	$\begin{aligned} & 292 \\ & 442 \end{aligned}$	442	442	442	-	-				
Electrical endurance of the vacuum contactor panel with HV HRC fuses			100,000 or 500,000 operating cycles				\rightarrow	-	-				
Endurance class according to IEC 62271-10	DISCONNECTING		M0	M0	M0	M0	MO	-	-				
		HING	M0, E2	-	-								

Footnotes for pages 10 bis 13

1) Higher values of the rated short-duration power-frequency withstand voltage available with:
-32 kV for phase-to-phase, phase-to-earth and open contact gap, as well as
-37 kV across the isolating distance
Higher values of the rated lightning impulse withstand voltage:
-60 kV for phase-to-phase, phase-to-earth and open contact gap, as well as
-70 kV across the isolating distance
2) Higher values of the rated short-duration power-frequency withstand voltage available with:

- 42 kV for phase-to-phase, phase-to-earth and open contact gap, as well as
- 48 kV across the isolating distance

Higher values of the rated lightning impulse withstand voltage:

- 95 kV for phase-to-phase, phase-to-earth and open contact gap, as well as
- 110 kV across the isolating distance

3) The rated continuous currents apply to ambient air temperatures of max. $40^{\circ} \mathrm{C}$.
The 24 -hour mean value is max. $35^{\circ} \mathrm{C}$ (according to IEC 62271-1) 2500 A with natural ventilation
4) Depending on the HV HRC fuse-link, observe max. permissible let-through current I_{D} of the HV HRC fuse-links
5) For circuit-breaker panel 1000 A and 1250 A up to 17.5 kV , up to 31.5 kA , and 24 kV up to 25 kA , the following operating cycles are optionally available:

- 5000 operating cycles for DISCONNECTING function
- 5000 operating cycles for READY-TO-EARTH function
- 30,000 operating cycles for circuit-breaker
- 10,000 operating cycles for DISCONNECTING function
- 10,000 operating cycles for READY-TO-EARTH function
- 30,000 operating cycles for circuit-breaker

6) Optional ambient air temperature $-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ (secondary devices (e.g. protection devices, meters, measuring transducers, etc.) must be suitable for the given ambient air temperature)
7) Without mechanical closing latch: 500,000 With mechanical closing latch: 100,000
Max. 60 operating cycles per hour
8) 1095 A for version with three-position disconnector

Common electrical data, filling pressure and temperature							
Rated insulation level	Rated voltage U_{r}	kV	7.2	12	15	17.5	24
	Rated short-duration power-frequency withstand voltage U_{d} - phase-to-phase, phase-to- earth, open contact gap - across the isolating distance	$\begin{aligned} & \mathrm{kV} \\ & \mathrm{kV} \end{aligned}$	$\begin{array}{lll} 2011 \\ 23 & 11 \end{array}$	$\begin{aligned} & 2822 \\ & 322) \end{aligned}$	$\begin{aligned} & 36 \\ & 40 \end{aligned}$	$\begin{aligned} & 38 \\ & 45 \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \end{aligned}$
	Rated lightning impulse withstand voltage U_{p} - phase-to-phase, phase-to- earth, open contact gap - across the isolating distance	$\begin{aligned} & \mathrm{kV} \\ & \mathrm{kV} \end{aligned}$	$\begin{aligned} & 60 \text { 1) } \\ & 70 \text { 1) } \end{aligned}$	$\begin{aligned} & 75^{22} \\ & 85^{2)} \end{aligned}$	$\begin{aligned} & 95 \\ & 110 \end{aligned}$	$\begin{aligned} & 95 \\ & 110 \end{aligned}$	$\begin{aligned} & 125 \\ & 145 \end{aligned}$
Rated frequency f_{r}		Hz	50/60	$50 / 60$	50/60	50/60	50/60
Rated continuous current ${ }^{3)} I_{\text {r }}$	for the busbar	up to A	2500	2500	2500	2500	2500
Rated filling level pre	for gas-insulated switchgear vessels	kPa	150	150	150	150	150
Minimum functional level $p_{m e}$	for gas-insulated switchgear vessels	kPa	130	130	130	130	130
Gas leakage rate		\%	< 0.1 per year				\longrightarrow
Ambient air temperature		${ }^{\circ} \mathrm{C}$	-5 to $+55^{6)}$				\longrightarrow

Data of the switchgear panels						
Circuit-breaker panel 1000 A						
Rated continuous current ${ }^{3)} \mathrm{I}_{\mathrm{r}}$	at an ambient air temperature of $40^{\circ} \mathrm{C}$	1000	1000	1000	1000	1000
Rated short-time withstand current I_{k}	for switchgear with $t_{k}=1 \mathrm{~s}$ kA	20\|25	20\|25	20\|25	20\|25	20\|25
	for switchgear with $t_{k}=3 \mathrm{~s}$ kA	20\|25	20\|25	20\|25	20\|25	20\|25
Rated peak withstand current I_{p}	50 Hz kA	50\|63	50\|63	50\|63	50\|63	50\|63
	60 Hz kA	52\|65	52\|65	52\|65	$52 \mid 65$	52\|65
Rated short-circuit making current $I_{\text {ma }}$	50 Hz kA	50\|63	50\|63	50\|63	50\|63	50\|63
	60 Hz kA	52\|65	52\|65	52\|65	52\|65	52\|65
		20\|25	20\|25	20\|25	20\|25	20\|25
		10,000 operating cycles				\rightarrow
Electrical endurance of vacuum circuit-breakers	at rated short-circuit breaking current	50 breaking operations				\rightarrow
Endurance classes according to IEC 62271-100		M2, E2, C2, S2				
Endurance classes according to IEC 62271-102	DISCONNECTING	M1	M1	M1	M1	M1
	EARTHING	M0, E0	MO, EO	MO, EO	MO, EO	MO, EO

The EARTHING function with endurance class E2 is reached by closing the circuit-breaker in combination with the earthing switch (endurance class EO).

Incoming sectionalizer and bus coupler 1000 A, 1250 A						
Rated continuous current ${ }^{3)} I_{r}$	at an ambient air temperature of $40^{\circ} \mathrm{C}$ A	$\begin{aligned} & 1000 \\ & 1250 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1250 \\ & \hline \end{aligned}$	$\begin{aligned} & 1000 \\ & 1250 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1250 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1250 \\ & \hline \end{aligned}$
Rated short-time withstand current I_{k}	for switchgear with $t_{k}=1 \mathrm{~s}$ kA	20\|25	20\|25	20\|25	20\|25	20\|25
	for switchgear with $t_{k}=3 \mathrm{~s}$ kA	20\|25	20\|25	20\|25	20\|25	20\|25
Rated peak withstand current I_{p}	50 Hz kA	50\|63	$50 \mid 63$	$50 \mid 63$	$50 \mid 63$	50\|63
	60 Hz kA	52\|65	$52 \mid 65$	52\|65	$52 \mid 65$	52\|65
Rated short-circuit making current Ima	50 Hz kA	50\|63	50\|63	50\|63	50\|63	50\|63
	60 Hz kA	52\|65	52\|65	52\|65	52\|65	52\|65
Rated short-circuit breaking current Isc kA		20\|25	20\|25	20\|25	20\|25	20\| 25
Electrical endurance of vacuum circuit-breakers	at rated continuous current	10,000 operating cycles				
	at rated short-circuit breaking current	50 breaking operations				\rightarrow
Endurance classes according to IEC 62271-100		M2, E2, C2, S2				
Endurance classes according to IEC 62271-102	DISCONNECTING	M1	M1	M1	M1	M1
	EARTHING	MO, EO	MO, E0	MO, E0	MO, E0	MO, E0

[^0]
Technical data

Room planning

Switchgear installation

- For single-busbar applications:
- Wall-standing arrangement or
- Free-standing arrangement
- Face-to-face arrangement accordingly
- For double-busbar applications:
- Back-to-back arrangement (free-standing arrangement).

Room dimensions

See dimension drawings below.

Room height

- $\geq 2750 \mathrm{~mm}$ NXPLUS C, all technical data, all types of arrangement, with / without horizontal pressure relief duct
- $\geq 2400 \mathrm{~mm}$ NXPLUS C, wall-standing and free-standing arrangement with rear/central pressure relief duct, low-voltage compartment 761 mm , without horizontal pressure relief duct.

Door dimensions

Recommended as a minimum for the door dimensions:
Door height: $\geq 2500 \mathrm{~mm}$
Door width: $\geq 900 \mathrm{~mm}$ (for panel widths of 600 mm)

$$
\geq 1200 \mathrm{~mm} \text { (for panel widths of } 900 \mathrm{~mm} \text {). }
$$

Switchgear fixing

- For floor openings and fixing points of the switchgear, see pages 18 bis 30
- Foundations:
- Steel girder construction
- Steel-reinforced concrete with foundation rails, welded or bolted on.

Panel dimensions

See pages 18 bis 30 .

Weights

Single-busbar panels

- Panels for ≤ 1250 A: Approx. 800 kg
- Panels for > 1250 A: Approx. 1400 kg.

Double-busbar panels

- Panels for ≤ 1250 A: Approx. 1600 kg.

Switchgear installation

Wall-standing arrangement for single-busbar switchgear
All panels with cable connection at the front and pressure relief duct at the rear

[^1]

Switchgear installation

Free-standing arrangement for single-busbar switchgear
All panels with cable connection at the front and pressure relief duct at the rear

* Control aisle depending on national specifications; for extension/panel replacement:
$\geq 1400 \mathrm{~mm}$ recommended ($450 \mathrm{~mm}, 600 \mathrm{~mm}$ panels)
$\geq 1600 \mathrm{~mm}$ recommended (900 mm panels)
** Lateral wall distances on the left or on the right; for installation and maintenance (according to IEC 61936-1):
$\geq 500 \mathrm{~mm}$ recommendable
$\geq 500 \mathrm{~mm}$ required for auxiliary transformer panels
*** with lateral cable connection as end panels
*** $\geq 500 \mathrm{~mm}$ aisle for installation and maintenance
(according to IEC 61936-1)
$\geq 800 \mathrm{~mm}$ aisle for operation (according to IEC 62271-200)

Free-standing arrangement for double-busbar switchgear
All panels with cable connection at the front and central pressure relief duct

* Control aisle depending on national specifications; for extension/panel replacement:
$\geq 1400 \mathrm{~mm}$ recommended ($450 \mathrm{~mm}, 600 \mathrm{~mm}$ panels)
$\geq 1600 \mathrm{~mm}$ recommended (900 mm panels)
** Lateral wall distance $\geq 50 \mathrm{~mm}$ optionally possible on the left or on the right:
$\geq 500 \mathrm{~mm}$ for installation and maintenance (according to IEC 61936-1)
$\geq 800 \mathrm{~mm}$ for operation (according to IEC 62271-200)
$\geq 800 \mathrm{~mm}$ for panel replacement
($450 \mathrm{~mm}, 600 \mathrm{~mm}$ panels)
$\geq 1100 \mathrm{~mm}$ for panel replacement (900 mm panels)

Technical data

Shipping data

Transport

NXPLUS C switchgear is delivered in form of individual panels. Please observe the following:

- Transport facilities on site
- Transport dimensions and transport weights
- Size of door openings in building.

In case of double-busbar panels the A and B sides are supplied separately.

Packing

Means of transport: Rail and truck

- Panels on pallets
- Open packing with PE protective foil.

Means of transport: Ship and airplane

- Panels on pallets
- In closed crates (cardboard) with sealed upper and lower PE protective foil
- With desiccant bags
- With sealed wooden base
- Max. storage time: 6 months.

Dimensions, weights

Transport	Panel spacingmm	Transport dimensions			Transport weight	
		Width mm	Height mm	Depth mm	With packing kg	Without packing kg
Single busbar						
Truck or rail	1×450	1100	2460	1450	800	700
	1×600	1100	2460	1450	900	800
	1×900	1100	2460	1450	1500	1400
	1×450 (cable connection from rear)	1100	2460	2100	800	700
	$\begin{aligned} & 1 \times 600 \\ & \text { (cable connection from rear) } \end{aligned}$	1100	2460	2100	900	800
	$\begin{aligned} & 1 \times 900 \\ & \text { (cable connection from rear) } \end{aligned}$	1100	2460	2100	1500	1400
	Auxiliary power transformer	800	1200	1200	575	500
Ship or airplane	1×450	1130	2550	1450	800	700
	1×600	1130	2550	1450	900	800
	1×900	1130	2550	1450	1500	1400
	1×450 (cable connection from rear)	1130	2550	2100	800	700
	1×600 (cable connection from rear)	1130	2550	2100	900	800
	$\begin{aligned} & 1 \times 900 \\ & \text { (cable connection from rear) } \end{aligned}$	1130	2550	2100	1500	1400
	Auxiliary power transformer	800	1200	1200	575	500
Double busbar						
Truck or rail	1×450	1100	2460	1450	800	700
	1×600	1100	2460	1450	900	800
	1×900	1100	2460	1450	1500	1400
	Auxiliary power transformer	800	1200	1200	500	425
Ship or airplane	1×450	1130	2550	1450	800	700
	1×600	1130	2550	1450	900	800
	1×900	1130	2550	1450	1500	1400
	Auxiliary power transformer	800	1200	1200	575	500

Classification of NXPLUS C switchgear according to IEC 62271-200

Panel dimensions

Circuit-breaker panel, single busbar

24 kV

Legend see page 30

1) 2650 mm for higher low-voltage compartment

Legend see page 30

1) 2650 mm for higher low-voltage compartment

Legend see page 30

1) 2650 mm for higher low-voltage compartment

630 A, 800 A, 1000 A, 1250 A

Legend see page 30

1) 2650 mm for higher low-voltage compartment

Panel dimensions

Disconnector panel, single busbar

24 kV

Disconnector panel 630 A, 800 A, 1000 A, 1250 A

Legend see page 30

1) 2650 mm for higher low-voltage compartment

Legend see page 30

1) 2650 mm for higher low-voltage compartment

630 A, 800 A, 1000 A, 1250 A

Legend see page 30

1) 2650 mm for higher low-voltage compartment

1000 A, 1250 A

Legend see page 30

1) 2650 mm for higher low-voltage compartment

Panel dimensions

Bus sectionalizer, single busbar

24 kV

Bus sectionalizer 1600 A, 2000 A, 2500 A
900 mm

Legend see page 30

1) 2650 mm for higher low-voltage compartment

Legend see page 30

1) 2650 mm for higher low-voltage compartment

Legend see page 30

1) 2650 mm for higher low-voltage compartment

Legend see page 30

1) 2650 mm for higher low-voltage compartment

Panel dimensions

Switch-disconnector panel, auxiliary transformer panel, single busbar

24 kV

Switch-disconnector panel with HV HRC fuses 200 A

Legend see page 30

1) 2650 mm for higher low-voltage compartment

2) 2650 mm for higher low-voltage compartment

3) 2650 mm for higher low-voltage compartment

Legend see page 30

1) 2650 mm for higher low-voltage compartment

Panel dimensions

Metering panel, ring-main panel, single busbar

24 kV

Air-insulated metering panel without/ with three-position disconnector

Ring-main panel 630 A

Legend see page 30

1) 2650 mm for higher low-voltage compartment

Panel dimensions

Circuit-breaker panel, double busbar

24 kV

Circuit-breaker panel 1000 A

Legend see page 30

1) 2650 mm for higher low-voltage compartment

Legend see page 30

1) 2650 mm for higher low-voltage compartment

Panel dimensions

Bus coupler, double busbar

Legend for pages 18 to 30:

1 Left-side floor opening for control cables
2 Pressure relief duct
3 Fixing hole for M8 / M10
4 Fixing hole for M8 / M10 (only for resistance against shock, vibration, earthquakes)
5 Floor opening for high-voltage cables
7 Right-side floor opening for control cables (only required for zero-sequence current transformers in the cable basement)
8 Cross member
(necessary for panel replacement)

Plug-in voltage
transformer with
earthing device

24 kV Circuit-breaker panels 1000 A, 1250 A, 1600 A, 2000 A, 2500 A

1) Only for version with 10,000 operating cycles
2) Only for 1250 A

600 mm

Product range

Single-busbar panels

Three-position disconnector
 $\begin{array}{ll}8 & \begin{array}{l}\text { Plug-in voltage } \\ \text { transformer }\end{array} \\ 4\end{array}$

Surge arrester
or limiter

Longitudinal
panel
interconnection

춤
市
\vdots
Voltage sensor
(resistor divider)

24 kV Bus sectionalizers 1000 A, 1250 A, 1600 A, 2000 A, 2500 A

600 mm

1) Not for LK 2500 A

$$
36 \text { kV Bus sectionalizers } 1000 \text { A, } 1250 \text { A }
$$

900 mm

24 kV Bus sectionalizers, two-panel design, 1000 A, 1250 A, 1600 A, 2000 A, 2500 A

Product range

Single-busbar panels

$1 \text { 추 }$	Three-position disconnector
8	Voltage transformer
昰C-	Phase fixed point (spherical connection bolt)
춤	Voltage sensor (resistor divider)

P1 and P2 are terminal designations of the current transformer

24 kV Air-insulated metering panel without/with three-position disconnector

1) Only manual operating mechanism

Product range

Double-busbar panels

24 kV
Circuit-breaker panel

24 kV Incoming sectionalizer

Three-position
disconnector

Components

Panel connection

Features

- Bushings with outside cone
- With bolted contact (M16) as interface type C according to EN 50181
- For cable connection heights, see table on the right
- Max. connection depth: See side views on pages 18 to 30
- With cable bracket type C40 according to DIN EN 60715
- Option: Access to the cable compartment only if the feeder has been isolated and earthed
- For thermoplastic-insulated cables
- For shielded cable T-plugs or cable elbow plugs with bolted contact
- For connection cross-sections up to $1200 \mathrm{~mm}^{2}$
- Larger cross-sections on request
- Cable routing downwards, cable connection from the front
- For rated continuous currents up to 2500 A
- Cable T-plugs are not included in the scope of supply.

Surge arresters

- Pluggable on cable T-plug
- Surge arresters recommended if, at the same time
- the cable system is directly connected to the overhead line,
- the protection zone of the surge arrester at the end tower of the overhead line does not cover the switchgear.

Surge limiters

- Pluggable on cable T-plug
- Surge limiters recommended when motors with starting currents < 600 A are connected.

Cable compartment

Cable connection heights

Panels	Height of cable compartment	Distance between bushing and cable bracket	Distances cable - cable cable - separation wall		
	$(\mathrm{H} 2)$ mm	(H1) mm	D1 mm	$\begin{aligned} & \text { D2 } \\ & \mathrm{mm} \end{aligned}$	$\begin{aligned} & \text { D3 } \\ & \mathrm{mm} \end{aligned}$
450 mm	700	500	90	135	-
$\begin{aligned} & 600 \mathrm{~mm} \\ & 900 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 700 \\ & 570 \end{aligned}$	$\begin{aligned} & 500 \\ & 430 \end{aligned}$	$\begin{aligned} & 112 \\ & 115 \end{aligned}$	$\begin{aligned} & 188 \\ & 185 \end{aligned}$	100
Switch-disconnector panel and vacuum contactor panel with HV HRC fuses	420	250	-	-	-

Connectable cables

Cable T-plug with coupling insert
a) Panel width 450 mm
b) Panel width 600 mm
c) Panel width 900 mm

Solid-insulated bar Cable T-plug with coupling T-plug

a) Connection with 2 cables per phase
b) Connection with 2 cables per phase
c) Connection with

4 cables per phase

b) Connection with 3 cables per phase
c) Connection with 6 cables per phase

b) Connection with 4 cables per phase
c) Connection with 8 cables per phase

[^2]
Permissible cable types

Cable type	Cable sealing end			Remark
	Make	Type	Cross-section mm^{2}	

Thermoplastic-insulated cables $\leq 12 \mathrm{kV}$ according to IEC 60502-2

Single-core cable, PE and XLPE-insulated N2YSY (Cu) and N2XSY (Cu) or NA2YSY (AI) and NA2XSY (AI)	Nexans Euromold	480TB/G	35 to 300	EPDM with semi-conductive layer
		484TB/G	50 to 630	EPDM with semi-conductive layer
		489TB/G	800 to 1200	EPDM with semi-conductive layer
	NKT	CB 24-630	25 to 300	Silicone with semi-conductive layer (optionally with metal housing)
		CB 24-1250/2	95 to 500	Silicone with semi-conductive layer
		CB 36-630	35 to 400	Silicone with semi-conductive layer
		CB 36-630(1250)	240 to 800	Silicone with semi-conductive layer
		CB 42-1250/3	95 to 1000	Silicone with semi-conductive layer
		CSE-A 12630	25 to 630	EPDM with semi-conductive layer
	TE connectivity	RSTI-58xx	25 to 300	Silicone with semi-conductive layer, with capacitive measuring point
		RSTI-395x	400 to 1000	Silicone with semi-conductive layer, with capacitive measuring point
		ELBC-58xx	25 to 300	EPDM with semi-conductive layer
	Cellpack	CTS 630A 24 kV	50 to 400	EPDM with semi-conductive layer
		CTS 1250A 24 kV	500 to 630	EPDM with semi-conductive layer
	Südkabel	SET 12	40 to 300	Silicone with semi-conductive layer
		SAT 12	185 to 630	Silicone with semi-conductive layer
Three-core cable PE and XLPE-insulated N2YSY (Cu) and N2XSY (Cu) or NA2YSY (AI) and NA2XSY (AI)	Nexans Euromold	480TB/G	35 to 300	EPDM with semi-conductive layer, in combination with distribution kit
	NKT	CB 24-630	25 to 300	Silicone with semi-conductive layer (optionally with metal housing), in combination with distribution kit
		CB 24-1250-2	185 to 500	Silicone with semi-conductive layer, in combination with distribution kit
	TE connectivity	RSTI-58xx	25 to 300	Silicone with semi-conductive layer, with capacitive measuring point, in combination with distribution kit RSTI-TRFOx
		ELBC-810	25 to 500	EPDM with semi-conductive layer, in combination with distribution kit

Thermoplastic-insulated cables $15 / 17.5$ / 24 kV according to IEC 60502-2

Single-core cable, PE and XLPE-insulated N2YSY (Cu) and N2XSY (Cu) or NA2YSY (AI) and NA2XSY (AI)	Nexans Euromold	K480TB/G	35 to 300	EPDM with semi-conductive layer
		K484TB/G	50 to 630	EPDM with semi-conductive layer
		K489TB/G	800 to 1200	EPDM with semi-conductive layer
	NKT	CB 24-630	25 to 300	Silicone with semi-conductive layer (optionally with metal housing)
		CB 24-1250/2	35 to 500	Silicone with semi-conductive layer
		CB 36-630	35 to 400	Silicone with semi-conductive layer
		СВ 36-630(1250)	240 to 800	Silicone with semi-conductive layer
		CB 42-1250-3	630 to 1000	Silicone with semi-conductive layer
		CSE-A 24630	25 to 630	EPDM with semi-conductive layer
	TE connectivity	RSTI-58xx	25 to 300	Silicone with semi-conductive layer, with capacitive measuring point
		RSTI-595x	400 to 1000	Silicone with semi-conductive layer, with capacitive measuring point
		ELBC-58xx	35 to 300	EPDM with semi-conductive layer
	Cellpack	CTS 630A 24 kV	25 to 400	EPDM with semi-conductive layer
		CTS 1250A 24 kV	400 to 630	EPDM with semi-conductive layer
	Südkabel	SET 24	25 to 240	Silicone with semi-conductive layer
		SAT 24	95 to 630	Silicone with semi-conductive layer
Three-core cable PE and XLPE-insulated N2YSY (Cu) and N2XSY (Cu) or NA2YSY (AI) and NA2XSY (AI)	Nexans Euromold	K480TB/G	35 to 300	EPDM with semi-conductive layer, in combination with distribution kit
	NKT	CB 24-630	25 to 300	Silicone with semi-conductive layer (optionally with metal housing), in combination with distribution kit
		CB 24-1250-2	35 to 500	Silicone with semi-conductive layer, in combination with distribution kit
	TE connectivity	RSTI-58xx	25 to 300	Silicone with semi-conductive layer, with capacitive measuring point, in combination with distribution kit RSTI-TRFOx
		ELBC-824	35 to 400	EPDM with semi-conductive layer, in combination with distribution kit

Components

Panel connection

Permissible cable types

Cable type	Cable sealing end			Remark
	Make	Type	Cross-section mm^{2}	

Thermoplastic-insulated cables 36 kV according to IEC 60502-2

Single-core cable, PE and XLPE-insulated N2YSY (Cu) and N2XSY (Cu) or NA2YSY (AI) and NA2XSY (AI)	Nexans Euromold	M480TB/G	35 to 300	EPDM with semi-conductive layer
		M484TB/G	50 to 630	EPDM with semi-conductive layer
		M489TB/G	800 to 1200	EPDM with semi-conductive layer
	NKT	CB 36-630	35 to 300	Silicone with semi-conductive layer (optionally with metal housing)
		CB 36-630(1250)	240 to 630	Silicone with semi-conductive layer
		CB 42-1250/3	95 to 1000	Silicone with semi-conductive layer
		CSE-A 36630	50 to 630	EPDM with semi-conductive layer
	TE connectivity	RSTI-68xx	35 to 300	Silicone with semi-conductive layer, with capacitive measuring point
		RSTI-695x	400 to 1000	Silicone with semi-conductive layer, with capacitive measuring point
	Cellpack	CTS 630A 36 kV	35 to 400	EPDM with semi-conductive layer
		CTS 1250A 36 kV	400 to 630	EPDM with semi-conductive layer
	Südkabel	SET 36	70 to 300	Silicone with semi-conductive layer
		SAT 12	185 to 630	Silicone with semi-conductive layer
		SAT 24	95 to 1000	Silicone with semi-conductive layer
		SAT 36	400 to 500	Silicone with semi-conductive layer
Three-core cable PE and XLPE-insulated N2YSY (Cu) and N2XSY (Cu) or NA2YSY (AI) and NA2XSY (AI)	Nexans Euromold	M480TB/G	35 to 300	EPDM with semi-conductive layer, in combination with distribution kit
	NKT	CB 36-630	35 to 300	Silicone with semi-conductive layer (optionally with metal housing), in combination with distribution kit
		CB 36-630(1250)	240 to 630	Silicone with semi-conductive layer, in combination with distribution kit
	TE connectivity	RSTI-68xx	35 to 300	Silicone with semi-conductive layer, with capacitive measuring point, in combination with distribution kit RSTI-TRFOx

Commercially available bar systems

Bar type	Bar connection				Remark
	Make	Type	Conductor material	Max. rated current	
Solid-insulated bar	MGC Moser Glaser	Duresca DE	Copper	1250 A / 2500 A	Outer sheath made of polyamide (polyamide tube)
		Duresca DG	Copper	1250 A / 2500 A	Outer sheath made of CrNi steel or aluminum (metal sheath)
	Preissinger	ISOBUS MB	Copper	1250 A / 2500 A	Outer sheath made of epoxy resin (with heat shrinkable tube, if required)
	Ritz	SIS	Copper	1250 A / 2500 A	Outer sheath made of epoxy resin (with heat shrinkable tube, if required)

Type of service location

The switchgear can be used as indoor installation according to IEC 61936 (Power installations exceeding 1 kV AC)

- Outside lockable electrical service locations at places which are not accessible to the public. Enclosures of switchgear can only be removed with tools
- In lockable electrical service locations. A lockable electrical service location is a place outdoors or indoors that is reserved exclusively for housing electrical equipment and which is kept under lock and key. Access is restricted to authorized personnel and persons who have been properly instructed in electrical engineering. Untrained or unskilled persons may only enter under the supervision of authorized personnel or properly instructed persons.

Terms

"Make-proof earthing switches" are earthing switches with short-circuit making capacity according to IEC 62271-102 and EN 62271-102.

Dielectric strength

The dielectric strength is verified by testing the switchgear with rated values of short-duration power-frequency withstand voltage and lightning impulse withstand voltage according to IEC 62271-1 (see Technical data).

The rated values are referred to sea level and to normal atmospheric conditions ($1013 \mathrm{hPa}, 20^{\circ} \mathrm{C}, 11 \mathrm{~g} / \mathrm{m}^{3}$ humidity according to IEC 60071)

The gas insulation at a relative gas pressure of 50 kPa permits switchgear installation at an altitude of up to 4000 m above sea level without the dielectric strength being adversely affected. This also applies to the cable connection when plug-in sealing ends are used.

A decrease (reduction) of the dielectric strength with increasing site altitude must only be considered for panels with HV HRC fuses or for the air-insulated metering panel.

For site altitudes above 1000 m, a higher insulation level must be selected. It results from the multiplication of the rated insulation level for 0 to 1000 m with the altitude correction factor K_{a} (see illustration and example).

Table - Dielectric strength

Rated voltage (r.m.s. value)	kV	7.2	12	15	17.5	24	36	38

Rated short-duration power-frequency withstand voltage (r.m.s. value)

- Between phases and to earth	kV	20	28	35	38	50	70	70
- Across isolating distances	kV	23	32	39	45	60	80	77

Rated lightning impulse withstand voltage (peak value)

- Between phases and to earth	kV	60	75	95	95	125	170	150
- Across isolating distances	kV	70	85	105	110	145	195	165

Altitude correction factor K_{a}

For site altitudes above 1000 m , the altitude correction factor K_{a} is recommended, depending on the site altitude above sea level. Curve $m=1$ for rated short-duration power-frequency withstand voltage and rated lightning impulse withstand voltage according to IEC 62271-1

Example:
3000 m site altitude above sea level $\left(K_{a}=1.28\right)$,
17.5 kV switchgear rated voltage,

95 kV rated lightning impulse withstand voltage
Rated lightning impulse withstand voltage to be selected $=$ $95 \mathrm{kV} \times 1.28=122 \mathrm{kV}$

Result:
According to the above table, switchgear for a rated voltage of 24 kV with a rated lightning impulse withstand voltage of 125 kV is to be selected.

Standards

Standards, specifications, guidelines

Standards

NXPLUS C switchgear complies with the relevant standards and specifications applicable at the time of type tests. In accordance with the harmonization agreement reached by the countries of the European Union, their national specifications conform to the IEC standard.

Standards			
		IEC standard/ EN standard	Title
Switchgear		62271-1	High-voltage switchgear and controlgear: Common specifications for alternating current switchgear and controlgear
		62271-200	High-voltage switchgear and controlgear: AC metal-enclosed switchgear and controlgear for rated voltages above 1 kV and up to and including 52 kV
Switching devices	Circuit-breakers	62271-100	High-voltage switchgear and controlgear: Alternating-current circuit-breakers
	Vacuum contactors	62271-106	High-voltage switchgear and controlgear: Alternating current contactors, contactor-based controllers and motor-starters
	Disconnectors and earthing switches	62271-102	High-voltage switchgear and controlgear: Alternating current disconnectors and earthing switches
	Switch-disconnectors	62271-103	High-voltage switchgear and controlgear: Switches for rated voltages above 1 kV up to and including 52 kV
	Switch-disconnector/fuse combination	62271-105	High-voltage switchgear and controlgear: Alternating current switch-fuse combinations for rated voltages above 1 kV up to and including 52 kV
Voltage detecting systems		62271-213	Voltage detecting and indicating system (VDIS)
		62271-215	Phase comparator used with VDIS
HV HRC fuses		60282	High-voltage fuses: Current-limiting fuses
Surge arresters		60099	Surge arresters
Degree of protection		60529	Degrees of protection provided by enclosures (IP code)
		62262	Degree of protection provided by enclosures (IK code)
Insulation		60071	Insulation co-ordination
Instrument transformers		61869-1	Instrument transformers
		61869-2	Current transformers
		61869-3	Voltage transformers
		61869-6	Low-power instrument transformers
		61869-10	Low-power passive current transformers
		61869-11	Low-power passive voltage transformers
SF6		60376	Specification of technical grade sulphur hexafluoride (SF6) and complementary gases for use in electrical equipment
		60480	Specifications for the re-use of sulphur hexafluoride (SF6) and its mixtures in electrical equipment
Installation		61936-1	Power installations exceeding 1 kV a.c.
Environmental conditions		60721-3-3	Classification of environmental conditions
Operation		EN 50110	Operation of electrical installations

Operation of electrical installations

- According to IEC 62271-200 or IEC 62271-1, the rated continuous current refers to the following ambient air temperatures:
- Maximum of 24 -hour mean $+35^{\circ} \mathrm{C}$
- Maximum $+40^{\circ} \mathrm{C}$
- The current carrying capacity of the panels and busbars depends on the ambient air temperature outside the enclosure.

Internal arc classifications

- Protection of operating personnel by means of tests for verifying the internal arc classification
- Internal arcing tests must be performed in accordance with IEC 62271-200
- Definition of criteria:
- Criterion 1: Correctly secured doors and covers do not open, limited deformations are accepted.
- Criterion 2: No fragmentation of the enclosure, no projection of small parts above 60 g
- Criterion 3: No holes in accessible sides up to a height of 2 m
- Criterion 4: No ignition of indicators due to hot gases
- Criterion 5: The enclosure remains connected to its earthing point.

Resistance to internal faults

Due to the single-pole enclosure of external components and the SF6 insulation of switching devices, the possibility of faults in SF_{6}-insulated switchgear is improbable and a mere fraction of that typical of earlier switchgear types:

- There are no effects due to external influences, such as:
- Pollution layers
- Humidity
- Small animals and foreign objects
- Maloperation is practically excluded due to logical arrangement of operating elements
- Short-circuit-proof feeder earthing by means of the circuit-breaker or the three-position switch-disconnector.

In the unlikely event of a fault within the switchgear vessel, the energy conversion in the case of an internal arc fault is minor thanks to the SF_{6} insulation and the shorter arc length, approximately only $1 / 3$ of the converted energy of an arc in air insulation. The escaping gases are discharged upwards through a pressure relief duct.

Aseismic capacity (option)

The NXPLUS C switchgear can be upgraded for regions at risk from earthquakes.

For upgrading, earthquake qualification testing has been carried out in accordance with the following standards:

- IEC/TS 62271-210 "Seismic qualification for metal enclosed and solid-insulation enclosed switchgear and controlgear assemblies for rated voltages above 1 kV and up to and including 52 kV"
- IEC 60068-2-57 "Test Ff: Vibration - Time-history method"

The tested ground accelerations conform to the following required response spectrums:

- IEC/TS 62271-210 - Severity level 2, (ZPA) $=1 \mathrm{~g}$ (Figure 2)
- IEEE 693-2018 - High performance level required response spectrum, 1.0 g (Figure A.1).

For operation in regions at risk from earthquakes, the operator must ensure compliance with the national directives and legal stipulations.

The test verifications are valid for switchgear installations on even and rigid concrete or steel structure (possible building influences, such as superelevation factors, are not considered).

The operator must ensure compliance with application-specific seismic requirements.

Shock, vibration (option)

NXPLUS C switchgear can be upgraded to withstand stress caused by shock and vibration. For upgrading, shock and vibration tests have been carried out in accordance with the following standards

- ETSI EN 300 019-2-2; T2.3 Public Transportation
- IEC 60068-2-6, Environmental Testing - Part 2-6: Tests - Test Fc: Vibration (sinusoidal)
- IEC 60068-2-64, Environmental Testing - Part 2-64: Tests - Test Fh: Vibration, broad-band, random and guidance (noise spectrum according to DNV).

Color of the panel front

RAL 7035 Light grey.

Standards

Standards, specifications, guidelines

Climate and environmental influences

The parts of the primary circuit of NXPLUS C switchgear under high voltage are completely enclosed and insensitive to climatic influences.

- All medium-voltage devices (except for HV HRC fuses) are installed in a gas-tight, welded stainless-steel switchgear vessel which is filled with SF_{6} gas
- Live parts outside the switchgear vessel are provided with single-pole enclosure
- At no point can creepage currents flow from high-voltage potentials to earth
- Operating mechanism parts which are functionally important are made of corrosion-resistant materials
- Bearings in the operating mechanism are designed as dry-type bearings and do not require lubrication.

The NXPLUS C switchgear is suitable for application in indoor installations under normal service conditions as defined in the standard IEC 62271-1.

- Temperature
$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ 1) (option)
- Relative air humidity Mean value over 24 hours ${ }^{1)}$: $\leq 98 \%$ Mean value over 1 month: $\leq 90 \%$
- Condensation
- Site altitude Occasionally Frequently (degree of protection min. IP31D, with anti-condensation heater in the low-voltage part ${ }^{2}$) 4000 m
For panels with HV HRC fuses: Altitude correction factor to be considered (see page 43)

Furthermore, the high-voltage part of the NXPLUS C switchgear can be used in environmental conditions of the climatic category $3 C 2$ according to the standard IEC 60721-3-3.

NXPLUS C has been subjected to a climatic test according to IEC 60932, Level 2, and is suitable for service conditions
according to "Design Class 2". This test also meets the requirements of IEC 62271-304 for "Design Class 2".

Recycling

The switchgear can be recycled in ecological manner in compliance with existing legislation. Auxiliary devices such as short-circuit indicators have to be recycled as electronic scrap. Batteries have to be recycled professionally. Insulating gas SF_{6} has to be evacuated professionally as a reusable material and recycled (SF_{6} must not be released into the environment).

Protection against solid foreign objects, electric shock and water

NXPLUS C switchgear fulfills according to the standards

IEC 62271-1	EN 62271-1
IEC 62271-200	EN 62271-200
IEC 60529	EN 60529
IEC 62262	EN 50102

the following degrees of protection:

Degree of protection IP	Type of protection				
IP65	for parts of the primary circuit under				
high voltage		$	$	IP3XD	for switchgear enclosure
:---	:---				
IP31D	for switchgear enclosure (optional)				
IP32D	for switchgear enclosure (optional)				
IP34D	for switchgear enclosure (optional) (optional)				
IP4X	for switchgear enclosure (optional)				
IP54	Type of protection				
Degree of protection IK	for switchgear enclosure				
IK07					

For secondary devices in the low-voltage door, the stipulations of the IP degree of protection apply according to the definitions for the switchgear enclosure.

[^3]Smart Infrastructure combines the real and digital worlds across energy systems, buildings and industries, enhancing the way people live and work and significantly improving efficiency and sustainability.

We work together with customers and partners to create an ecosystem that both intuitively responds to the needs of people and helps customers achieve their business goals.

It helps our customers to thrive, communities to progress and supports sustainable development to protect our planet for the next generation.

siemens.com/smart-infrastructure

Published by

Siemens AG

Smart Infrastructure
Electrification \& Automation
Mozartstraße 31 C
91052 Erlangen, Germany
For further information, please contact
our Customer Support Center:
Phone: +49 91311743072
E-mail: support.ea.si@siemens.com
Article no. SIEA-C10084-00-7600
VO 238499 en KG 01.240 .0

For the U.S. published by Siemens Industry Inc.

100 Technology Drive
Alpharetta, GA 30005
United States

Status 01/2024

Subject to changes and errors. The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described, or which may undergo modification in the course of further development of the products. The requested performance features are binding only when they are expressly agreed upon in the concluded contract.

All product designations may be trademarks or other rights of Siemens AG, its affiliated companies or other companies whose use by third parties for their own purposes could violate the rights of the respective owner.

[^0]: The EARTHING function with endurance class E2 is reached by closing the circuit-breaker in combination with the earthing switch (endurance class E0).

[^1]: * Control aisle depending on national specifications; for extension/panel replacement:
 $\geq 1400 \mathrm{~mm}$ recommended ($450 \mathrm{~mm}, 600 \mathrm{~mm}$ panels)
 $\geq 1600 \mathrm{~mm}$ recommended (900 mm panels)
 ** Lateral wall distances on the left or on the right
 for installation and maintenance (according to IEC 61936-1)
 $\geq 500 \mathrm{~mm}$ recommendable
 $\geq 500 \mathrm{~mm}$ required for auxiliary transformer panels with lateral cable connection as end panels

[^2]: Legend
 1 Cable T-plug
 2 Coupling T-plug
 3 End adapter

[^3]: 1) Secondary devices (e.g. protection devices, meters, measuring transducers, etc.) must be suitable
 for the given service conditions
 2) Heater in the low-voltage compartment and operating mechanism box of the circuit-breaker
