SSS-1000 Series

Differential Pressure Flow Sensors

Description and Application

The KMC SSS-1000 series sensors are designed to sense differential pressure in the inlet section of VAV (Variable Air Volume) terminal units and fan terminal units. These sensors are most typically used in conjunction with VAV controllers for individual zone control in HVAC systems. They can also be used to sense differential pressure at other locations in the main or branch duct systems. The differential pressure read between the high "H" port and the low "L" port can be used to determine the air flow. Static pressure can also be measured using just one of the ports with the sensor rotated 90°. (See *Sample Applications on page 4*.)

Models offer up to four sensing points and sensing lengths of 3-5/32 to 9-29/32 inches to accommodate box size diameters of 4 to 16 inches.

For using SSS-100x sensors with CSC-3000 series, CSP-4000/5000 series, KMD-7000 series, and BAC-7000/8000/9000 series controllers, use a barb union adapter and appropriately sized polyethylene tubing to the sensor and controller. For maximum accuracy in the CSP-5000 series, KMD-7000 series, and BAC-7000 series controllers, the 3/8" OD tubing between the sensor and the adapter should be as short as possible, and the 1/4" OD tubing from the adapter to the controller should be 24" long (on both the High and the Low sides). Alternately, use the equivalent SSS-101x sensor and just 1/4" OD tubing (no adapter is necessary).

To find the appropriate sensor "K" factor:

- For VAV controllers needing K_{CFM} for setup, see *"Cubic Feet Per Minute" K Factors on page 2.*
- For VAV controllers needing K_{FPM} for setup, see *"Feet Per Minute" K Factors on page 3.*

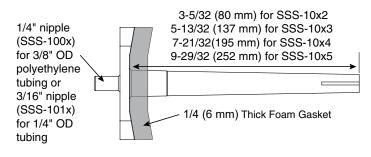
See the controller's documentation for details.

Models

SSS-100x (light gray) models have 1/4" connections for 3/8" OD polyethylene tubing

SSS-1002	One sensing point, 3-5/32" (80 mm) length
SSS-1003	Two sensing points, 5-13/32" (137 mm) length
SSS-1004	Three sensing points, 7-21/32" (195 mm) length
SSS-1005	Four sensing points, 9-29/32" (252 mm) length

SSS-101x (light almond) models have 3/16" connections for 1/4" OD polyethylene tubing


SSS-1012	One sensing point, 3-5/32" (80 mm) length
SSS-1013	Two sensing points, 5-13/32" (137 mm) length
SSS-1014	Three sensing points, 7-21/32" (195 mm) length
SSS-1015	Four sensing points, 9-29/32" (252 mm) length

NOTE: For maximum measurement accuracy, install the longest sensor that will fit in the duct.

Dimensions and Details

Mounting Holes, 3/16 (5 mm)

"Cubic Feet Per Minute" K Factors

NOTE: For the appropriate sensor "K" factor:

- For VAV controllers needing K_{CFM} for setup, see the formulas under "*Cubic Feet Per Minute*" *K Factors on page 2*.
- For VAV controllers needing K_{FPM} for setup, see the formulas "Feet Per Minute" K Factors on page 3.

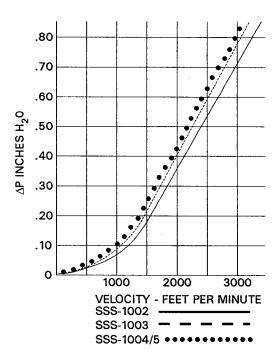
Fo	For Controllers Needing K _{CFM} for Setup				
Round	K _{CFM} Factor (CFM)				
Duct Size (Diameter)	SSS-10x2	SSS-10x3	SSS-10x4	SSS-10x5	
4	301	NA	NA	NA	
5	470	NA	NA	NA	
6	677	648	NA	NA	
7	922	882	NA	NA	
8	1204	1152	1117	NA	
9	1524	1458	1414	NA	
10	1882	1800	1745	1745	
12	2710	2592	2513	2513	
14	3688	3528	3421	3421	
16	4817	4608	4468	4468	
18	6097	5832	5655	5655	
22	9107	8711	8447	8447	
24	10838	10367	10053	10053	

Specifications

General

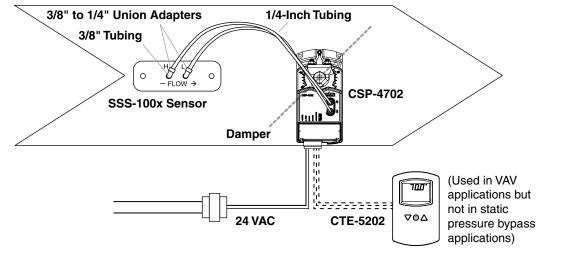
Material	Light gray (SSS-100x) or al- mond (SSS-101x) ABS/polycar- bonate (UL94-5V)
Mounting	Integral flange with gasket
Connection	
SSS-10 0 x SSS-10 1 x	1/4" (6.4 mm) nipple for 3/8 " (9.5 mm) OD polyethylene tubing 3/16" (4.8 mm) nipple for 1/4 "
	(6.4 mm) OD polyethylene tubing
Weight	1 oz. (28 grams)
Temperature Limits	
Operating Shipping	40 to 120° F (4 to 49° C) -40 to 140° F (-40 to 60° C)
Approvals	RoHS compliant

For K_{FPM}, see *"Feet Per Minute" K Factors on page* 3.


For **rectangular** ducts, $K_{CFM} = K_{FPM} \times (W'' \times H''/144)$ (with duct cross-section measurements in inches).

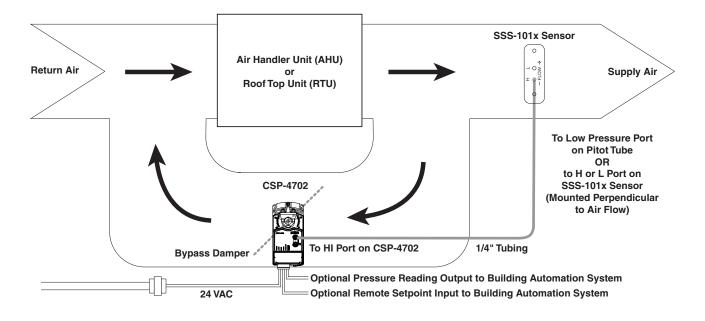
For **round** ducts, $K_{CFM} = K_{FPM} \times (\pi r^2/144)$ (with duct cross-section measurements in inches).

NOTE: To conveniently determine the radius of an installed round duct, measure the circumference with a string and tape measure and calculate radius = circumference/ 2π . The K_{CEM} values for the most common (diameter) sizes of round ducts are listed above. (Diameter = 2r.)


"Feet Per Minute" K Factors

"Feet Per Minute" K Factors			
Sensor Model	K _{FPM}		
SSS-10x2	3450		
SSS-10x3	3300		
SSS-10x4	3200		
SSS-10x5	3200		

Formulas				
For Flow		For Volume		
$\Delta \mathbf{P} = (\mathbf{FPM/K}_{\text{FPM}})^2$	$FPM = \mathbf{K}_{FPM} \mathbf{x} \ SQRT(\Delta P)$	$\Delta \mathbf{P} = \left(\frac{\mathbf{CFM}}{\mathbf{K}_{\text{FPM}} \mathbf{x} \mathbf{Area}}\right)^2$	CFM = K _{FPM} x SQRT(∆P) x Area	
Feet Per Minute in a VAV box equals the (relevant model's) K factor times the square root of the differential pressure (in "wc").		Cubic Feet per Minute in a VAV box equals the relevant sensor model's K factor times the square root of the differential pressure (in "wc") times the cross-section area (in square feet).		
NOTE: These formulas are for VAV controllers with built-in "differential pressure" sensors. The CSP-5000, KMD-7000, and BAC-7000 measure velocity FPM directly—see their respective installation guides and application guides for more information.				
NOTE: CFM (cubic feet per minute) = FPM (feet per minute) times the duct cross-section area (in square feet).				


Sample Applications

Differential Pressure Sensor for Pressure Independent VAV

For more information, see the **CTE-5202 Applica**tions Guide. **NOTE:** Adapters and 3/8" tubing not needed for SSS-101x sensors.

Static Pressure Sensor for Static Pressure Bypass Control

For more information, see the CSP-4702 Static Pressure (Bypass) Control Application Guide.

KMC Controls, Inc. 19476 Industrial Drive New Paris, IN 46553 574.831.5250 www.kmccontrols.com info@kmccontrols.com