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Abstract

The flat ΛCDM cosmological model has been demonstrated to provide a good description of
the observed properties of the Universe. However, several unanswered questions and tensions
on cosmological parameters indicate that our knowledge of the Universe still needs to be
investigated. Galaxy clusters, as tracers of the large-scale structure geometry end evolution,
are well-known powerful cosmological probes, sensitive to the properties of the initial density
field of the Universe, to the nature of dark matter and dark energy, and to the laws of gravity
on large scales. In particular, mass abundance (i.e., number counts) and spatial distribution
(i.e., clustering) of such objects are sensitive to changes in several cosmological parameters,
mainly the amplitude of density fluctuations (σ8) and the matter content of the Universe (Ωm).

Current cosmological constraints from cluster surveys are limited in redshift (z ≲ 1) and
statistics (Ncl ∼ 103). This scenario will drastically change with the advent of the next gen-
eration of wide-field photometric surveys. Among them, the future ESA space mission Euclid
(Laureijs et al. 2011) will produce cluster catalogs with ∼ 105 objects up to redshift z ≃ 2,
allowing the cosmological parameters to be constrained with unprecedented precision. In
this scenario, cosmological constraints from galaxy clusters will be almost entirely limited
by systematic uncertainties, related to both observational and theoretical aspects.

The goal of this Ph.D. thesis is to characterize the theoretical systematics of cluster cos-
mology experiments, allowing for the full cosmological exploitation of the upcoming Eu-
clid cluster survey. By analyzing 1000 Euclid-like simulated light cones, produced with the
PINOCCHIO code (Monaco et al. 2002b), we validate analytical models for the covariance
matrix of cluster number counts and real-space cluster clustering. We demonstrate that the
analytical models achieve an accuracy within 10 percent for both number counts and clus-
tering covariance matrices, and this translates to negligible impact on the figure of merit of
the cosmological parameters Ωm and σ8.

The resulting models allow us to study the response of the likelihood analysis to variations
of the covariance, and in particular to assess the relevance of the cosmology dependence of
the covariance matrix. Our results indicate that a Gaussian likelihood with full cosmology-
dependent covariance provides an unbiased inference of cosmological parameters for number
counts analyses. Also, we find that a simple Gaussian model with Poissonian shot-noise does
not correctly predict the clustering covariance, but the inaccuracy can be mitigated with the
help of few additional parameters fitted from simulations. Furthermore, we show that both
the mass dependence of the halo bias, and the cosmology dependence of the covariance help
to improve the constraining power of cluster clustering.

The final part of this work is aimed at studying the combined analysis of cluster num-
ber counts and cluster clustering for richness-selected clusters. After showing that the two
statistics exhibit negligible cross-correlation, we quantify the improvement in their joint cos-
mological constraints, as a function of scaling relation priors’ amplitude. Our analyses show
that the addition of cluster clustering brings a 20 to 90 percent improvement on parame-
ter constraints when compared with the analysis of number counts alone, depending on the
uncertainty on the scaling relation. Finally, we apply the framework validated in this work
to the analysis of the SDSS redMaPPer cluster catalog (Rozo et al. 2015), confirming that



also in real observing conditions cluster clustering yields relevant information to improve
the cosmological constraints obtained from number counts.
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Introduction

Galaxy clusters are the most massive gravitationally bound systems in the Universe, formed
through the gravitational collapse of initial perturbations of the matter density field, through
a hierarchical process of accretion and merging of small objects into increasingly massive
systems (Kravtsov & Borgani 2012). Therefore galaxy clusters have several properties that
contain cosmological information on the geometry and the evolution of the large-scale struc-
ture of the Universe. In particular, their abundance and spatial distribution are powerful tools
to constrain the amplitude of matter fluctuations on 8h−1 Mpc scales (σ8) and the matter con-
tent of the Universe (Ωm). Moreover, clusters are observed at low redshift (out to redshift
z ∼ 2), thus sampling the cosmic epochs during which the effect of dark energy begins to
dominate the expansion of the Universe; as such, the evolution of the statistical properties of
galaxy clusters allow us to place constraints on the dark energy equation of state, and inves-
tigate possible deviations of dark energy from a simple cosmological constant (e.g., Sartoris
et al. 2012). Finally, such observables can be used to constrain neutrino masses (e.g. Costanzi
et al. 2013; Mantz et al. 2015; Costanzi et al. 2019; Bocquet et al. 2019), the Gaussianity of
initial conditions (e.g. Sartoris et al. 2010; Mana et al. 2013) and the behavior of gravity on
cosmological scales (e.g. Cataneo & Rapetti 2018; Bocquet et al. 2015).

A crucial aspect for such observables to be turned into stringent cosmological constraints
concerns the accurate description of all the sources of uncertainties that characterize a cluster
cosmology experiment. First, cluster masses are not directly observed but must be inferred
through other measurable properties of clusters, e.g., properties of their galaxy population
(i.e. richness, velocity dispersion) or of the intracluster gas (i.g., total gas mass, temperature,
pressure). The relationships between these observables and clusters masses, called scaling
relations, provide a statistical estimate of masses, but require an accurate calibration in order
to correctly relate the mass proxies with the actual cluster mass. Furthermore, even if accu-
rately calibrated, scaling relations only describe cluster masses in a statistical sense due to
the combined effect of baryonic physics processes and of the different formation history of
individual clusters. As such, they are characterized by an intrinsic scatter between the true
cluster mass and mass proxies, that complicates the calibration process (Kravtsov & Borgani
2012; Pratt et al. 2019). Other measurement errors are related to the estimation of redshifts
and the selection function (Allen et al. 2011). In addition to these observational sources of
systematics, there may be theoretical systematics linked to the modeling of the statistical er-
rors: shot-noise, the uncertainty due to the discrete nature of data, and sample variance, the
uncertainty due to the finite size of the survey. Finally, analytical models describing the ob-
served distributions, such as the mass function and halo bias, have to be carefully calibrated,
to avoid introducing further systematics (e.g. Sheth & Tormen 2002; Tinker et al. 2008, 2010;
Bocquet et al. 2016; Despali et al. 2016; Castro et al. 2020).

To account for all these potential sources of systematics that can bias the cosmological
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results, it is required an accurate description of the uncertainties affecting the observables,
which are given in the form of covariance matrices. The simplest but computationally expen-
sive way to compute a covariance matrix is from measurements in a large set of simulations.
The computational costs can be reduced by generating mocks with approximate methods in-
stead of full N-body simulations (Monaco 2016) or with mixed methods such as the shrinkage
technique (Pope & Szapudi 2008). However, the resulting matrix will still be noisy unless a
large number of mocks realizations are generated. If the covariance is considered cosmology
dependent, the cost will inevitably increase as many more simulations are required to explore
the high-dimensional space of cosmological parameters with such simulations. An alternative
approach is to estimate covariances from the data itself by means of bootstrap or jackknife
techniques: these methods have the advantage of providing matrices evaluated at the true cos-
mology of the Universe, but the resampling methods tend to overestimate the true covariance,
especially for 2-point statistics (Norberg et al. 2009; Friedrich et al. 2016; Lacasa & Kunz
2017; Mohammad & Percival 2021). A third method consists in the analytic calculation of
the covariance matrix (e.g. Feldman et al. 1994; Scoccimarro et al. 1999; Meiksin & White
1999; Hu & Kravtsov 2003; Takada & Hu 2013), which provides noise-free, cosmology-
dependent matrices without requiring expensive computational resources. The limitation of
this method lies in the difficulty of describing analytically all the contributions to the covari-
ance (e.g. non-linearities, non-Gaussianities, ...). Moreover, it is straightforward to include
a treatment of systematic errors by imposing a realistic selection function to mock catalogs,
while in the case of an analytical model this is more challenging and likely to require sig-
nificant approximations. Therefore, such models have to be validated against simulations, in
order to determine which contributions are relevant at the required level of statistics. More-
over, in some cases, this validation process may indicate that an analytical description is not
sufficient to correctly describe the covariance matrix, and it is thus necessary to calibrate
model parameters that cannot be determined from first principles (Xu et al. 2012; O’Connell
et al. 2016; Fumagalli et al. 2022).

Both for computing numerical covariances and for validating analytical or semi-analytical
models, a fundamental requirement is the use of a large set of simulations. The dimension of
such set depends on the size of the data vector (i.e. the total number of bins) and the desired
accuracy. Typically, order of 103 or higher number of simulated catalogs are required (Taylor
et al. 2013; Dodelson & Schneider 2013). For this purpose, catalogs generated with N-body
simulations are hardly obtainable, due to their high computational cost. Instead, large sets of
mock data can be produced in a simpler and faster way by using approximate methods based
on perturbative theories. Although less accurate than full N-body simulations in reproduc-
ing observables, these methods are able to accurately estimate covariances requiring fewer
resources and far less computational time (Sahni & Coles 1995; Monaco 2016; Lippich et al.
2019; Blot et al. 2019; Colavincenzo et al. 2019).

The study and the control of these uncertainties is critical for future cluster surveys, as
they will provide extremely large samples of clusters associated therefore with very small
statistical errors. In this sense, only a comprehensive characterization of systematics will
allow us to thus fully constrain cosmological parameters to the precision level allowed by
these surveys. One of the main forthcoming surveys is the European Space Agency (ESA)
mission Euclid1, planned for 2023, which will map ∼ 15000 deg2 of the extragalactic sky in

1http://www.euclid-ec.org
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order to investigate the nature of dark energy, dark matter and gravity. Galaxy clusters are
among the cosmological probes that will be used by Euclid: the mission is expected to yield
a sample of ∼ 105 clusters up to redshift z = 2, using photometric and spectroscopic data and
through gravitational lensing (Laureijs et al. 2011).

In this thesis we present the validation of models of covariance for number counts and
clustering of galaxy clusters, evaluating the impact of sample variance, lightcone geometry,
and high-order terms, at the level of accuracy expected for the future Euclid survey. The
resulting models allow us to study the response of the likelihood analysis to variations of
the covariance and to provide forecasts to predict the impact of such uncertainties in the
recovered cosmological parameters for the upcoming Euclid cluster survey.

In Chapter 1, we introduce the statistical quantities relevant to the analysis of the evolu-
tion and geometry of the large-scale structure of the Universe, such as the halo mass function,
2-point correlation function, and linear halo bias. We will then present the observational and
theoretical systematics that can affect the cosmological parameter inference. The former are
mainly related to the cluster mass estimation and to the modeling of selection functions, while
the latter can arise from a wrong treatment of statistical uncertainties, such as sample vari-
ance and shot-noise. We also give an overview of the state-of-the-art of cluster cosmology:
first, we describe the standard cosmological model, the so-called flat ΛCDM, and the cos-
mological probes most frequently used to constraint the parameter values. Afterwards, the
use of galaxy clusters as cosmological probes will be described in more detail, highlighting
their dependence on cosmological parameters and the characteristics that make these objects
extremely advantageous observables in the cosmological as well as astrophysical domain.
Finally, we will summarize some of the most recent results concerning the cosmological
analysis of galaxy clusters, and we will present the properties of the upcoming Euclid mis-
sion, which will represent an important advance for investigating the cosmological model
and, in particular, for cluster cosmology.

In Chapter 2, we present the topic of numerical simulations used to describe the evolution
of cosmic structures beyond the strictly linear regime. After a brief introduction to N-body
simulations, the focus will shift to the approximate methods used to produce a large number
of catalogs relevant for the analysis of systematics. These methods are less accurate, but
also computationally less expensive than N-body simulations, thanks to the use of perturba-
tive theories such as the Lagrangian Perturbation Theory or its first-order development, the
Zel’dovich approximation, which will be described in the chapter. Finally, we will present the
PINOCCHIO algorithm and the catalogs used in this work both for the covariance validation
and for the likelihood forecasts.

In Chapter 3, we describe the methodology adopted for validating the covariance models
and for the likelihood analysis. We first describe the Bayesian inference process, focusing on
the likelihood functions that will be taken into account in this work, Then, we introduce the
concept of covariance matrix and its numerical estimation. Finally, we describe a likelihood-
based method for fitting semi-analytic covariance models from a small number of numerical
simulations (Fumagalli et al. 2022). We first describe the method and present the mathemati-
cal reasoning behind it. Then, we apply the method in two examples, one based on the 2PCF
and the other on the bispectrum (i.e., 3PCF in Fourier space), and present the results.

In Chapter 4, we describe the results of the number counts analysis presented in Euclid
Collaboration: Fumagalli et al. (2021). After describing the analytical model for the number
counts covariance, we validate it by comparison with the numerical matrix from simulations.
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We analyze the effect of the mass and redshift binning on the estimation of parameters, and
we compare the effect on the parameter posteriors of different likelihood models. We also
assess the impact of assuming a wrong cosmology in the covariance, as well as the effect
of adopting a cosmology-depended matrix. While this work is focused on the analysis of a
cluster survey similar in sky coverage and depth to the Euclid one, for completeness we also
provide results relevant for present and ongoing surveys.

In Chapter 5, we describe the results of the cluster clustering analysis presented in Euclid
Collaboration: Fumagalli et al. (2022). We introduce the analytical formalism to describe the
2PCF and its covariance, as well as the measurements of the 2PCF and the associated numer-
ical covariance. Then, we present the results of our analysis: we define the best binning in
radial separation and redshift to extract the cosmological information, and we compare the
analytical and numerical matrices, introducing additional parameters to improve the agree-
ment between the two covariances. Then, we study the impact of the non-Gaussian term, and
we evaluate the improvement obtained from the mass dependence of the halo bias. As for
number counts, we investigate the effect of a wrong-cosmology and a cosmology-dependent
matrix.

In Chapter 6, we present the validation of the covariance models in observable space, i.e.,
for richness-selected clusters. First, we demonstrate the validity of our modeling also for
richness-selected clusters. We then use the analytical covariances for computing likelihood
forecasts. We first establish that the cross-covariance between number counts and cluster
clustering is negligible, allowing us to treat the two statistics as independent quantities in the
combined analysis. Then, we study the impact of the uncertainty of mass-observable relation
parameters on the cosmological posteriors, by varying the amplitude of Gaussian priors in
the likelihood analysis. We also assess the impact of cosmology-dependent covariances,
with respect to the the broadening of posteriors in observable space. Finally, we show some
application of the method validated in this work, with particular attention to the application
of the joint number counts and clustering analysis to real data, i.e., the redMaPPer catalog
from the Sloan Digital Sky Survey (Rozo et al. 2015).

Finally, in Chapter 7 we discuss our conclusions.
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Chapter 1

Cluster cosmology

In this chapter we introduce the theoretical framework needed to model cluster number counts
and cluster clustering. After a brief introduction of the observables used to constrain the
cosmological parameters, the treatment of galaxy clusters will be explored in depth, with a
focus on the main systematics that affect such observables. We also give an overview of the
state of the art of parameter estimation, presenting the open issues and the future perspectives
of cluster cosmology, related in particular to the future Euclid space mission.

1.1 Large-scale structure of the Universe
The large-scale structure of the Universe (LSS) is defined as the distribution of matter on
scales larger than galaxies, formed by the collapse of fluctuations of the initial matter den-
sity field, driven by the gravitational field of dark matter (Kravtsov & Borgani 2012). The
left panel of Fig. 1.1 shows the dark matter distribution in a simulated cubical volume of
side 500h−1 Mpc at redshift z = 0 1. Dark matter is arranged in high-density halos of co-
moving size of ∼ 1 – 3 h−1 Mpc, connected by a network of low-density filaments of length
> 10 h−1 Mpc, that surround large void regions of size > 20 h−1 Mpc. Baryonic matter, i.e.
stars, galaxies and gas, follows the distribution of dark matter along the filaments and inside
halos, contributing to form galaxy clusters.

Galaxy clusters are the most massive gravitationally bound systems in the Universe (M ∼
1014 – 1015 M⊙) and they are composed of dark matter for 85 per cent, hot ionized gas (T ∼
107 – 108 K) for 12 percent and stars for 3 percent (Pratt et al. 2019). These massive structures
are formed by the gravitational collapse of initial perturbations of the matter density field,
through a hierarchical process of accretion and merging of small objects into increasingly
massive systems (Kravtsov & Borgani 2012).

To describe the evolution of perturbations that generate galaxy clusters and characterize
their statistics, we express the matter density field in terms of density contrast δ, defined as

δ(x, t) =
ρ(x, t)−ρ(t)
ρ(t)

, (1.1)

where ρ(x, t) is the density at the comoving position x at time t, and ρ(t) is the mean density
at time t. The initial density contrast δ0(x) originates from quantum fluctuations in the energy

1https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/
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Figure 1.1: Left panel: Large-scale structure of the Universe. The ”cosmic web” of dark matter is
shown in purple, with high density regions represented in yellow, where galaxy clusters form. Image
produced by Millennium simulation (Springel et al. 2005). Right panel:Redshift evolution of the LSS
in two different cosmological models, obtained from N-body simulations. The distribution of matter
is represented in blue, while the yellow circles identify galaxy clusters. The normalization is chosen
to have the same distribution at z = 0. The top panels describe a flat Universe with Ωm = 0.3 and
ΩΛ = 0.7, in the bottom panels Ωm = 1 and ΩΛ = 0. Image taken from Borgani & Guzzo (2001).

density, which are amplified during the inflationary epoch and become classical fluctuations
in the density of matter. This initial field is described as an isotropic, homogeneous Gaussian
random field, whose evolution is affected by pre-recombination processes and, later, by non-
linear processes. The evolution of cosmic structures can be divided into three phases:

• linear evolution (δ≪ 1), that can be described analytically;

• quasi-linear evolution (δ ∼ 1), that can be described by perturbative theories;

• non-linear evolution (δ≫ 1), that can only be analyzed through the use of simulations.

The formation of virialised structures takes place during the last phase. Within dark matter
halos, dissipative baryon physics processes occur, such as star formation and feedback from
AGN (active galactic nuclei) and supernovae, leading to the formation of galaxy clusters
(Kravtsov & Borgani 2012). However, to describe the large-scale properties of the Universe,
it is sufficient, as a first approximation, to study the properties of dark matter halos. This
makes it possible to neglect the complex processes of non-linear and baryon physics that
characterize galaxy clusters. Therefore, in the following text, the terms galaxy cluster and
dark matter halo will generally be considered as synonyms.

Galaxy clusters, as tracers of the matter density field, are useful tools for deriving prop-
erties on the geometry and evolution of the LSS, which strongly depend on the value of
cosmological parameters and contain information for determining the correct cosmological
model. The right panel of Fig. 1.1 shows the redshift evolution of the matter distribution sim-
ulated according to two different cosmological models: flat ΛCDM model (Sect. 1.3.1) in the
top panels, and Einstein de Sitter model (i.e., flat Universe with Ωm = 1) in the bottom pan-
els. The two simulations are normalized to obtain the same matter distribution at the present
time (redshift z = 0, right panels). It can be seen that the Universe model strongly influences
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the evolution of clusters (yellow circles), which constitute a fundamental resource for deter-
mining the value of cosmological parameters. In order to be exploited, the information from
galaxy clusters must be compressed into some summary statistics. In this work, the mass
abundance and spatial distribution of the clusters are considered, respectively described by
the halo mass function and the 2-point correlation function.

1.1.1 Halo mass function
The halo mass function dn(M,z) is defined as the comoving volume number density of col-
lapsed objects at redshift z with masses between M and M + dM (Press & Schechter 1974;
Bond et al. 1991; Lacey & Cole 1993),

dn(M,z)
d ln M

=
ρ

M
ν f (ν)

d lnν
dln M

, (1.2)

where ρ/M is the inverse of the Lagrangian volume of a halo of mass M, and ν = δc/σ(R,z) is
the peak height, defined in terms of the variance of the linear density field smoothed on scale
R,

σ2(R,z) =
1

2π2

∫
dk k2 P(k,z)W2

R(k) , (1.3)

where R is the radius enclosing the mass M = 4π/3 ρR3, P(k,z) the matter power spectrum,
linearly extrapolated to redshift z, and WR(k) is the filtering function; the latter usually takes
the form of a top-hat function in Fourier space:

WR(k) = 3
sin(kR)− kRcos(kR)

(kR)3 . (1.4)

The term δc represents the critical linear overdensity for the spherical collapse and contains
a weak dependence on cosmology and redshift that can be expressed as (Kitayama & Suto
1996)

δc(z) =
3
20

(12π)2/3[1+0.012299log10Ωm(z)] . (1.5)

The function ν f (ν) is called multiplicity function, whose analytical expression was first
derived by Press & Schechter (1974), basing on the hypothesis of spherical collapse and
Gaussian initial conditions. The normalization of such expression was found to be wrong by
a factor of 2, as if only half of the mass of the Universe is contained in collapsed objects, in
contrast to the predictions of the hierarchical model. A more accurate derivation has been
proposed by Bond et al. (1991) with the excursion set ansatz, who derived an expression for
the halo mass function with a k-space top-hat window, that properly solves the normalization
problem. One of the main characteristics of the multiplicity function is that its shape is
universal, meaning that it can be described in terms of a single variable, i.e. the peak-height ν,
and with the same parameters for all the redshifts and cosmological models (Sheth & Tormen
2002). A number of parametrizations have been derived by fitting the mass distribution from
N-body simulations, in order to describe such universality with the highest possible accuracy.
In reality, the analysis performed by White (2002) using N-body simulations shows that the
universality of the mass function is only approximate and depends on the estimator used to
define the mass.
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In fact, halos can be defined in different ways; the main definitions are based on the
Friends-of-Friends (FoF, Davis et al. 1985) and Spherical Overdensity (SO, Lacey & Cole
1993; White 2001) algorithms. The former consists of selecting pairs of particles with a
separation shorter than a certain linking length b and defining a halo considering that the
“friends-of-friends” will all be part of the same group. This method has the advantage of
having a single free parameter (b) and of making no assumptions regarding the center or
shape of the clusters, but it is practically impossible to compare the groups identified in the
simulations with the observed clusters. Moreover, several clusters can be erroneously merged
if characterized by a few pairs in common. The second method, on the other hand, defines
the halo as a sphere with radius containing the overdensity ∆ρ and center at a fixed point.
In this way, it is necessary to impose the center of the cluster, but the resulting object can
be in principle compared more closely with observations. Ambiguity in the mass definition,
due to both the use of different methods and the choice of different overdensities ∆ or linking
lengths b, can create ambiguities in the calibration of analytical models, such as the halo mass
function.

According to White (2002), the best result is achieved by identifying halos using the FoF
method with linking-length b = 0.2, in agreement with the results of Jenkins et al. (2001).
Also according to Watson et al. (2013) the mass function turns out to be universal only for
FoF halos, while for SO halos it presents an evolution with redshift. A further proof of the
non-universality of SO halos comes from Tinker et al. (2008), which find that the universality
is not respected within the level of accuracy of the proposed parameterisation (≤ 5%): the
shape of the mass function presents a dependence on both redshift and the overdensity used to
identify the halos. The model proposed by Despali et al. (2016), on the other hand, turns out to
be valid independently of redshift and cosmological model for halos identified by SO method
at the virial overdensity, presenting a universal shape of the virial mass function. As the
overdensity varies, some redshift dependence has to be introduced to rescale the parameters
of the model. Finally, some works as Crocce et al. (2010) and Courtin et al. (2011) show non-
universality even for FoF halos, which present redshift dependent deviations from a universal
behavior.

Since deviations from universality become more and more apparent, also because of the
increase in precision required to describe the halo properties, some works have focused on
the characterization of this non-universal mass function, demonstrating that a more complex
parametrization is able to better describe the abundance of halos (Ondaro-Mallea et al. 2021;
Euclid Collaboration: Castro et al. 2022). The difference between various parametrizations of
the multiplicity function can be observed in the left panel of Fig. 1.2, which shows some of the
models mentioned above. Non-negligible differences can be noted not only with the Press-
Schechter simple model, but also between the different models fitted on simulations. The
need to improve the accuracy and precision of the mass function calibration is revealed by the
impact that an incorrect parameterisation has on the estimation of cosmological parameters,
in particular for future surveys such as Euclid (Salvati et al. 2020; Artis et al. 2021).

Another way to predict the abundance of halos is the use of emulators, built by fitting
the mass function from simulations as a function of cosmology; such emulators are able to
reproduce the mass function within few percent accuracy (Heitmann et al. 2016; McClintock
et al. 2019; Bocquet et al. 2020). The description of the cluster mass function is further
complicated by the presence of baryons, which have to be taken into account when analyzing
the observational data; their effect must therefore be included in the calibration of the model
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Figure 1.2: Left panel: virial multiplicity function as predicted by: Press & Schechter (1974), Sheth
& Tormen (2002), Tinker et al. (2010), Despali et al. (2016), and Euclid Collaboration: Castro et al.
(2022). Right panel: halo bias from peak-background split and spherical collapse (Eq.1.23, Mo &
White 1996), peak-background split and ellipsoidal collapse (Sheth et al. 2001), and model by Tinker
et al. (2010).

(e.g. Cui et al. 2014; Velliscig et al. 2014; Bocquet et al. 2016; Castro et al. 2020).

1.1.2 Power spectrum and correlation functions
The density field of perturbations δ(x, t) is a random field representing one of the many possi-
ble realisations of the Universe. Its properties can be described by statistical quantities, given
by the ensemble average over a set of realisations. However, since we have access only to
a single realization of the Universe, the ensemble average cannot be calculated from obser-
vational data and is replaced by a spatial average: on the basis of the ergodic theorem, the
two definitions are equivalent and it is therefore possible to study the density field by aver-
aging the observed properties in different spatial regions. On the other hand, the ensemble
mean and the sample variance can be calculated theoretically through the use of numerical
simulations, which make it possible to produce different realisations of the same Universe by
changing the phases and amplitudes of the δk, to vary the fluctuations of the initial density
field. In this way, theoretical predictions can be made and compared with observations.

By definition, a Gaussian random field is fully specified by its 2-point correlation function

ξ(r) = ⟨δ(x)δ(x+ r)⟩ . (1.6)

The definition given by Eq. 1.6 is valid for a continuous field. To define the correlation
function of a discrete distribution of points, such as dark matter halos, we divide the space into
volumes ∆V such that each of them contains at most one particle, i.e., the occupation number
of a cell in x can be N(x) = 0,1. Such a sampling is called Poissonian and is completely
specified by the probability of finding an object in the cell centred in x

p(1)(x) = ⟨N(x)⟩p = [1+δ(x)]n∆V , (1.7)
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where ⟨⟩p denotes the average over the Poissonian samplings and n is the mean number
density. The joint probability of having an object in x and an object in x+ r is thus given by

d2P = ⟨p(1)(x) p(1)(x+ r)⟩ , (1.8)

where ⟨⟩ denotes the ensemble average. By inserting Eqs. (1.7) and (1.6), Eq. (1.8) becomes

d2P = (n∆V)2[1+ ξ(r)] , (1.9)

where ξ only depends on the modulus of the separation vector r due to assumption of homo-
geneity and isotropy of the Universe. From this equation it appears clear that ξ(r) quantifies
the excess probability of finding a pair of objects at comoving separation r, with respect to a
random distribution.

Equivalently, the Gaussian random field can be totally specified by its power spectrum
P(k), which describes the power assigned to the fluctuations as a function of the Fourier
modes k (at a fixed time) and is defined as

P(k) = Vu⟨|δk|
2⟩ , (1.10)

where Vu is the volume over which the perturbation field is assumed to be periodic, and δk is
the Fourier transform of the density field defined in Eq. (1.1). As for the correlation function,
also the power spectrum only depends on the modulus of the scale k.

The 2-point correlation function represents the Fourier transform of the power spectrum
and the two quantities can be written as

ξ(r) =
1

(2π)3

∫
dk3 P(k)eik·r =

1
2π2

∫ ∞

0
dk k2 P(k)

sin(kr)
kr

, (1.11)

P(k) =
∫

d3r ξ(r)e−ik·r = 4π
∫ ∞

0
dr r2 ξ(r)

sin(kr)
kr

. (1.12)

Figure 1.4 shows an example of the linear matter power spectrum and 2-point correlation
function, respectively in the left and right panel. In both the two quantities one can observe
the Baryon Acoustic Oscillations (BAO, Eisenstein et al. 2005; Cole et al. 2005), i.e., the trace
of the fluctuations in the pre-recombination baryon-photon fluid. Such feature is imprinted
in the matter power spectrum as oscillations around the scale k ∼ 0.1hMpc−1, as well as in
the matter 2-point correlation function as a peak around the scale r ∼ 110h−1 Mpc. Although
considering linear quantities, the BAO signal is subject to a non-linear damping produced
by large-scale bulk flows. This produces a broadening and a shift of the BAO peak in the
2-point correlation function (Eisenstein et al. 2007), or a damping in the oscillations of the
power spectrum. This effect can be modelled by the Infrared Resummation (IR, Senatore
& Zaldarriaga 2015; Baldauf et al. 2015): at the lowest order, the matter power spectrum is
corrected as

Pm(k,z) ≃ Pnw(k,z)+ e−k2Σ2(z)Pw(k,z) , (1.13)

where Pw and Pnw are, respectively, the wiggle and non-wiggle parts of the linear power
spectrum, and

Σ2(z) =
∫ ks

0

dq
6π2 Pnw(q,z)

[
1− j0 (qrBAO)+2 j2 (qrBAO)

]
, (1.14)
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Figure 1.3: Power spectrum (left) and 2-point correlation function (right) of the matter density field
at redshift z = 0, without (blue solid lines) and with (black dashed lines) the IR resummation. In the
bottom panels, residuals between the two quantities.

where j0 and j2 are, respectively, the 0-th and 2-nd order spherical Bessel function. The
corrected 2-point correlation function is given by the Fourier transform of Eq. (1.13). As
shown in Fig. 1.4 (black dashed lines), this damping is smaller in the power spectrum (percent
level), while it has an effect about ten times larger in the 2-point correlation function.

The given description of clustering statistics is based on the assumption that there is not
a preferred direction in the coordinate system. Although this is essentially true on the basis
of homogeneity and isotropy of the Universe, from an observational point of view the as-
sumption ceases to be valid. In fact, the radial distance is obtained indirectly through the
measurement of redshift; since galaxies have their own motion, peculiar velocities produce
an additional Doppler effect that adds to the true redshift of the object, generating distortions
on the observed distribution of galaxies, i.e., redshift-space distortions (RSD). More specif-
ically, virialized velocities on small scales produce elongations in the radial direction, the
so-called “Fingers of God”, while at large scales the galaxy distribution flattens in the radial
direction due to dynamical infall (Kaiser 1987).

The redshift-space matter power spectrum can be related to the real-space matter power
spectrum as

P(s)(k,µk) =
(
1+ fµ2

k

)2
P(k) , (1.15)

where µk = kz/k and f ∼Ωm(z)0.545 is the linear growth rate. The redshift-space power spec-
trum can also be expanded in harmonics of µk, as

P(s)(k,µk) =
∑
ℓ

P(s)
ℓ

(k) Pℓ(µk) , (1.16)
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where Pl are the Legendre polynomials, and P(s)
ℓ

are the power spectrum multipoles. In linear
regime and under the plane-parallel approximation, we can find an analytical expression for
the monopole, quadrupole and exadecapole terms, respectively given by

P(s)
0 (k) =

(
1+

2
3

f +
1
5

f 2
)

P(k) , (1.17)

P(s)
2 (k) =

(
4
3

f +
4
7

f 2
)

P(k) , (1.18)

P(s)
4 (k) =

8
35

f 2 P(k) . (1.19)

Similar expressions are obtained for the redshift-space 2-point correlation function.
In addition to the dynamical distortions, also a geometric distortion can be introduced

when assuming a wrong cosmology to convert redshifts to comoving distances (Alcock &
Paczynski 1979). This geometric distortion can be modeled by multiplying the radial scale
by a factor

α =
DV

rs

rfid
s

Dfid
V

(1.20)

where DV is the isotropic volume distance and rs is the position of the sound horizon at
decoupling (Veropalumbo et al. 2014).

1.1.3 Halo bias
The distribution of galaxy clusters does not represent a Poissonian sampling of the matter
density field, since clusters correspond to dark matter halos, which are expected to arise from
the collapse of density peaks in the linear field, exceeding a certain threshold. The distribution
of such objects is therefore affected by a bias, which in the linear regime can be described
through the parameter b. Equation (1.7) is modified as

p(1)(x) = [1+bδ(x)]n∆V . (1.21)

Defining the halo density field as δh(x) = bδ(x), we find

b2 =
Ph(k)
Pm(k)

=
ξh(r)
ξm(r)

, (1.22)

where subscripts h and m denote halos and matter, respectively.
As long as it is measured in linear regime (k ≲ 0.05hMpc−1 or r ≳ 30h−1 Mpc), the halo

bias of a Gaussian density field is independent of the scale, but depends on the mass and,
weakly, on the redshift. A theoretical model to describe the halo bias as a function of mass
and redshift can be derived from the halo mass function through the peak-background split
(Cole & Kaiser 1989; Mo & White 1996). Such formalism is based on the assumption that
the large-scale density fluctuations acts as “background” enhancement of the probability of
forming a “peak”, meaning that the halo bias depends on the relative abundance of halos in
different large-scale regions. Being related to the halo mass function, also the halo bias has a
nearly universal form if expressed in terms of peak height.
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By applying the peak-background split to the Press & Schechter (1974) halo mass func-
tion, Mo & White (1996) derived an expression for the halo bias with spherical collapse

b(ν) = 1+
ν2+1
δc
. (1.23)

Since the Press-Schechter halo mass function is incorrect, also the corresponding halo bias
does not agree with the simulations. A more accurate expression for the halo bias has been
derived by Sheth et al. (2001), that applied the peak-background split with moving barrier for
describing the ellipsoidal collapse to the Sheth & Tormen (2002) halo mass function model.
Tinker et al. (2010) showed that the peak-background split prediction is, however, only 20
percent accurate. In order to increase this accuracy, the bias function can be calibrated from
simulations in the same way of the halo mass function. Tinker et al. (2010) proposed a
parameterization accurate to about 5 percent with simulations, and showed that FoF halos
with linking length 0.2 are systematically less biased by about a 10 percent with respect SO
halos at δ= 200. Right panel of Fig. 1.2 shows the comparison between the three bias models,
highlighting the presence of significant differences.

1.2 Cosmology with galaxy clusters
As previously stated, galaxy clusters represent a powerful tool to investigate the large-scale
properties of the Universe, as they reside in dark matter halos tracing the large-scale struc-
ture’s geometry and evolution. The first step in the cluster cosmology process consists in
the cluster detection and the subsequent mass estimation; in fact, cluster masses are not di-
rectly observed but must be inferred through other measurable properties of clusters. From
an observational point of view, clusters are detectable across the entire electromagnetic spec-
trum: stars composing galaxies emit light in the optical and infrared bands, while intracluster
gas is observable in the X-band; in addition, such objects are visible through the Sunyaev-
Zel’dovich effect (millimeter band) and they can produce gravitational lensing.

In the optical/near-IR band, clusters are seen as enhancements of the background galaxy
density, and they are mainly identified by counting the number of galaxies in these over-
dense regions, i.e., through the optical richness. Richness correlates with cluster mass, but
the intrinsic scatter of such relation is wide, also suffering from projection effects that lead
to wrongly assign field galaxies along the line of sight to the cluster. To decrease such un-
certainty, richness measurements can be correlated with photometric properties of galaxies.
For instance, galaxy clusters are dominated by elliptical and lenticular galaxies, which lie
along a sequence in the color-magnitude diagram, called red-sequence (Bower et al. 1992).
Such tight relation can be exploited to obtain an unbiased identification of clusters. An ex-
ample of red-sequence based identification is given by the redMaPPer detection algorithm
(Rykoff et al. 2014). Another photometric property that can be used for cluster detection is
the luminosity profile: as performed by the AMICO detection algorithm (Bellagamba et al.
2018), the expected galaxy distribution can be modeled by combining the information from
the luminosity function and the radial density profile, assigning the appropriate weights to the
galaxies in the clusters. Finally, also spectroscopic data can provide useful observables, such
as the galaxy velocity dispersion, which is related to the cluster mass under the assumption
of virial equilibrium.
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The X-ray emission is provided by the intracluster gas that, heated to T ∼ 107 – 108 K by
the deep potential well of dark matter halos, emits light through free-free (bremsstrahlung),
free-bound (recombination), and bound-bound (line emissions) interactions, whose emissiv-
ity is proportional to the square of the electron density. The X-ray band offers the most
powerful way for cluster detection. In fact, clusters represent the only spatially extended
extragalactic X-ray sources, clearly distinguishable from the background point-like sources,
making their selection not affected by projection effects. Moreover, X-ray luminosity is well
correlated with the cluster mass, with a lower dispersion with respect to the optical observ-
ables.

The Sunyaev-Zel’dovich effect (SZ, Birkinshaw 1999) is an effect that introduces sec-
ondary anisotropies into the CMB, due to the propagation of photons through clouds of ion-
ized gas. Photons are absorbed by the high-energy electrons in the gas and re-emitted via
inverse Compton effect in a different band. This mechanism produces shadows on the CMB
due to the unobserved scattered photons, and bright regions in the bands where photons are
re-emitted. Since gas clouds are generally found within galaxy clusters, the SZ effect can be
used to detect clusters. The magnitude of the effect is proportional to the line of sight integral
of the product of the gas density and temperature, and the main observable for quantifying
the SZ signal is represented by YSZ = Mg T . This effect is independent on redshift, allowing
for an optimal detection of high-redshift clusters, and it is insensitive to projection effects.
As a disadvantage, it suffers from contamination by radio and infrared sources (Sehgal et al.
2010).

The gravitational lensing effect consists in the deflection of light by the gravitational field
of massive objects (Narayan & Bartelmann 1996; Bartelmann & Schneider 2001). As such,
the presence of a clusters on the line of sight can coherently distort and magnify the shape of
background galaxies, producing the so-called weak lensing effect that offers a way to detect
clusters and infer their masses. The advantage of gravitational lensing is that the effect de-
pends on the total mass of the system, and does not rely on any assumption on the physical
state of the cluster. Although cluster masses can be estimated only for a limited sample of ob-
jects, the information can be statistically exploited to calibrate the mass-observable relations
(MoR).

All these multi-wavelength measurements make it possible to analyze various properties
of clusters, such as the fraction of baryons, the mass abundance of clusters and their spa-
tial clustering. Galaxy clusters are therefore useful as both cosmological and astrophysical
observables.

1.2.1 Statistical quantities
The statistical quantities considered in this analysis are cluster abundance and cluster cluster-
ing. Mass abundance is described by the number counts, namely the mass function (Eq. 1.2)
integrated over over the observed volume,

Nai = Ωsky

∫
∆za

dz
dV

dzdΩ

∫
∆Mi

dM
dn
dM

(M,z) , (1.24)

where ∆za and ∆Mi represent, respectively, the redshift and mass bins, Ωsky = 2π(1− cosθ),
with θ field-of-view angle of the light cone, dn/dM is the halo mass function, and dV/dzdΩ
is the comoving volume element per unit redshift and solid angle.
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Figure 1.4: Images of the Abell 1835 cluster (z = 0.25) from X-ray, optical and SZ observations
(from left to right, respectively). The images are centered on the X-ray peak position and have a side
of ∼ 1.2 Mpc. Figure from Allen et al. (2011, and references therein).

The mass function depends on cosmology through the variance (contained in the defini-
tion of ν),

σ(M,z) = σ(M,0) D(z) ∼ σ8

(
M
M8

)−1/3

D(z) , (1.25)

where M8 is the mass enclosed within a top-hat sphere of radius R = 8h−1 Mpc. For large-
mass halos the dependence on the amplitude of the fluctuations is exponential, that means
that for high values of σ8 there is a high formation of high redshift objects. Instead, the time
evolution is related to the linear growth factor of the perturbations D(z), which depends on
Ωm through the relation

D(z) =
5
2
Ωm E(z)

∫ ∞

z
dz′

1+ z′

E(z′)3 , (1.26)

where E(z) is the normalized expansion rate, which for a flatΛCDM Universe (see Sect. 1.3.1)
is given by

E(z) =
H(z)
H0
=

[
Ωm(1+ z)−3+ΩΛ+Ωk(1+ z)2

]1/2
, (1.27)

where Ωk is the curvature parameter; for a flat ΛCDM Universe Ωk = 0 and ΩΛ = 1−Ωm.
Furthermore, cluster number counts present an additional dependence on cosmology

through the volume element
dV

dΩdz
=

c
H(z)

χ2(z) , (1.28)

where χ(z) is the comoving distance and H(z) = H0 E(z) is the Hubble parameter.
The clustering of cluster is described by the 2-point correlation function integrated in

redshift and separation bins:

ξa j =

∫
dk k2

2π2

〈
b

2
Pm(k)

〉
a

W j(k) , (1.29)

where W j(k) is the spherical-shell window function for the j-th separation bin, and
〈
b

2
Pm(k)

〉
a

is the halo power spectrum averaged on the a-th redshift bin; the 2PCF will be better described
in Sect. 5.1.2.
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Cluster clustering also shows a strong dependence on the cosmological parameters Ωm
and σ8: Ωm is found, again, in the linear growth factor describing the temporal evolution
of the power spectrum P(k,z) = D2(z) Pm(k,0), while, by definition, σ8 is related to the nor-
malization of the power spectrum through Eq. (1.3). Moreover, also the halo bias contains a
cosmology dependence, as described in Sect. 1.1.3.

Clusters of galaxies are therefore extremely sensitive to the matter content of the Uni-
verse (Ωm) and to the amplitude of the power spectrum (σ8); in particular, abundance and
clustering constitute two complementary probes, the combination of which helps to break the
degeneracy between such two cosmological parameters.

A third observable widely used in cluster cosmology is the weak-lensing signal, which
allows us to probe the projected mass distribution of clusters. Being very massive objects,
galaxy clusters deflect light crossing their gravitational filed, causing a slight tangential align-
ment of background galaxies. This coherent image distortion allows us to detect clusters
and reconstruct their mass independently of their dynamical state or through assumptions on
complex baryonic physics (e.g., Bartelmann & Schneider 2001; Schneider 2006; Hoekstra
et al. 2013). Mass estimation via weak lensing, either through individual cluster estimates
or through stacked analyses, is extremely relevant for calibrating scaling relations (see, e.g.,
Johnston et al. 2007; Murata et al. 2018; Simet et al. 2017; Melchior et al. 2017; Costanzi
et al. 2019). In addition, weak lensing masses contain a dependence on cosmological parame-
ters, depending on the angular diameter distance to the sources and the mean matter density at
the redshift of the clusters. For a flat ΛCDM cosmology, log-masses scale as a linear function
in the matter density Ωm, and can be modeled as (Costanzi et al. 2019)

log10 M̂WL(Ωm) = log10 M̂WL
∣∣∣
Ωm=0.3+

dlog10 MWL

dΩm
(Ωm−0.3) . (1.30)

Although we do not deal with weak lensing masses in most of this work, being focused on
the characterization of theoretical systematics, in Sect. 6.5 we will consider this observable
in combination with number counts and clustering, when applying the analysis to real data.

1.2.2 Systematics
The main obstacle in using clusters as cosmological probes lies in the proper calibration of
systematic uncertainties that characterize the analyses of statistical quantities.

First, cluster masses must be inferred through measurable properties of clusters; the main
mass proxies are the temperature T , mass Mg and luminosity (bolometric or X-band) of the
intracluster gas, richness, velocity dispersion of galaxies, and the quantity YSZ = MgT . The
relationships between these observables and clusters masses, called scaling relations, provide
a statistical measurement of cluster masses. As a first approximation, baryonic matter is ex-
clusively subject to the dark matter gravity, which does not have a preferred scale. Under this
assumption, and assuming that clusters are in virial equilibrium and formed from the gravi-
tational collapse of initial density peaks in an Einstein de-Sitter Universe (Ωm = 1), we can
expect clusters to follow a self-similar model (Kaiser 1986), meaning that perturbations has
not a preferred scale and clusters are identical objects when scaled by their mass (Kravtsov
& Borgani 2012). This allows the relation between the observed quantities and the cluster
mass to be expressed as a power law Q = A(z) Mα

∆
, where M∆ represents the total mass at
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the overdensity ∆, and the time evolution factor depends on the evolution of the density field
A(z) ∝ ρg(z) ∝ E2(z).

In reality, baryon physics is characterized also by non-gravitational effects, such as gas
cooling and feedback from supernovae and AGN, which introduce characteristic scales into
the problem, thus requiring an extension of the self-similar model. Moreover, scaling rela-
tions can be affected by intrinsic scatter due to the properties of individual clusters and bary-
onic physics effects that further complicate their characterization. Therefore, scaling relations
must be calibrated to determine their normalization, slope, scatter and evolution (Kravtsov &
Borgani 2012; Pratt et al. 2019). A first step is carried out by means of N-body simulations,
which allow the calibration of parameters that strictly depend on gravity. Regarding the fac-
tors related to gas physics, since the simulation of baryonic physics is difficult and often
inaccurate, an internal calibration through observational data is required. Such a calibration
can be performed with the help of weak lensing mass estimates, by fitting the gravitational
shear profile (Hoekstra et al. 2013). Although potentially very useful, this method still suf-
fers from biases and uncertainties that must be removed for a proper cosmological analysis.
Finally, mass proxies and observed redshifts are affected by measurement uncertainties that
must be taken into account through an accurate calibration of the relations between the “true”
and the observed quantities.

Another issue that requires particular attention is the cluster detection: clusters are de-
tected by exploiting different observable properties (e.g., geometrical distribution, colors, lu-
minosities, and density profiles for optical surveys, flux and spatial extent for X-ray surveys,
and CMB distortions for SZ detection). Matching cluster detections to halos can be complex,
as two halos along the same line of sight may be identified as a single cluster, or a single halo
may be fragmented into more than one cluster. The cluster detection algorithm should be
chosen appropriately to ensure the best final catalog’s completeness and purity, which means,
respectively, that it must not miss clusters that should be identified and must not identify spu-
rious clusters not associated with any halo (White & Kochanek 2002; Aguena & Lima 2018).
For this purpose, it is important to properly choose the survey selection function, i.e., the
function describing the probability of an object to be observed and included in the catalog.
The incorrect description of the selection function can introduce errors in the calibration of
the scaling relations, as shown with an illustrative example in Fig. 1.5: black dots represent
the observed objects with a value of the observable on which cluster identification is based
(luminosity in this case) above the threshold set by the selection function (blue horizontal
line). These are not correctly described by the mass-brightness relation represented in red,
which is calibrated considering also the objects excluded from the sample (green dots). If
the selection function is not considered in the calibration process, the relationship would be
affected by a bias due to the absence of low-luminosity objects.

While these are the systematics related to observational processes, cluster cosmology is
also affected by theoretical systematics. First, the incorrect parameterisation of the analytical
models describing the observed distributions, such as mass function and bias, can introduce
systematics into the analyses. As described in Sect. 1.1.1, part of the problem is associated
with the ambiguity in the definition of masses due to both the use of different methods (e.g.
FoF or SO) and the choice of different overdensities ∆ or linking lengths b, that can create
problems in the calibration of such models. It is therefore necessary to accurately study these
quantities, again through the use of numerical simulations. Furthermore, the description
of the cluster mass function is complicated by the presence of baryons, which have to be
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Figure 1.5: Effect of selection function in the calibration of the mass-luminosity relation. Black dots
represent the observed clusters, the blue dotted line represents the brightness threshold imposed by the
selection function and green dots are the clusters not observed due to the selection function. The red
line is the mass-luminosity relation, calibrated considering all points. Image from Allen et al. (2011).

included in the calibration of the model.
Figure 1.2 represents different models of halo mass function (left) and bias (right), ob-

tained through the use of simulations. It can be seen how the various parameterisations differ
from each other; the choice of a model to describe the data is therefore a fundamental step in
the analysis of observational catalogs.

Second, there may be theoretical systematics linked to the modeling of statistical errors
associated to those quantities, which require to be properly included in the form of covariance
matrices. For number counts, the main sources of statistical errors are represented by shot-
noise and sample variance. Shot-noise is the error arising from the discrete nature of the data
and describes the fluctuations in the number of objects observed around the expected value.
In the case of a Poissonian distribution, shot-noise is given by

σsn =
√

N , (1.31)

where N is the number of objects counted in a bin. Shot-noise is relevant when the number of
counts is low, while it becomes negligible as N increases. Sample variance derives from the
fact that the Universe is isotropic and homogeneous on a large scale, but on smaller scales it
presents inhomogeneities resulting from random processes; in order to “cancel” the effect of
these fluctuations it is necessary to observe a sufficiently large volume that is representative of
the entire Universe. Observing finite volumes, instead, introduces an uncertainty that, unlike
shot-noise, only depends on the size and the shape of the sampled volume. Similarly to shot-
noise, the sample variance contribution can be expressed, in terms of the number of counts N
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as

σ2
sv =
⟨N2⟩− ⟨N⟩2

⟨N⟩2
−

1
⟨N⟩
, (1.32)

where the first term is the variance of counts in random spheres and the second term is the
Poissonian contribution, and brackets indicate the ensemble average. Sample variance in-
troduces correlation between different mass and redshift ranges, while shot-noise only affects
objects in the same bin. In the past, surveys were characterized by low numbers of counts and
consequently the main contribution to the error came from shot-noise, while the sample vari-
ance term was usually neglected (e.g. Mantz et al. 2015; Bocquet et al. 2019). Nevertheless,
the most recent and upcoming surveys provide catalogs with a larger number of objects, mak-
ing sample variance comparable, or even greater, than the shot-noise level (Hu & Kravtsov
2003). An example is provided by the DES analyses, where the sample variance contribu-
tion is already taken into account when analyzing cluster number counts (Abbott et al. 2020;
Costanzi et al. 2021).

For cluster clustering the treatment of theoretical systematic is non-trivial to be modeled.
Several works have developed models for the covariance of galaxy correlation functions, both
in configuration and Fourier space (see, for instance, Scoccimarro et al. 1999; Meiksin &
White 1999; Takada & Hu 2013; Wadekar & Scoccimarro 2020; Philcox & Eisenstein 2019;
Li et al. 2019). Galaxy clustering is characterized by a Gaussian covariance, representing the
main contribution at large scales, plus a non-Gaussian term arising from nonlinear gravita-
tional instability, galaxy/halo bias and redshift-space distortions, which dominates at small
scales. In addition, the coupling between short-wavelengths modes with perturbations larger
than the survey size, also induced by non-Gaussianities, namely super-sample covariance,
contributes to the error budget on small scales. Lastly, the shape of the observed volume can
also have an impact on the covariance, requiring a convolution of the power spectrum with
the window function of the survey. Because of these non-Gaussian contributes, the error as-
sociated with the 2-point function is described through the use of high-order statistics, i.e., 3-
and 4-point functions. For cluster clustering the situation is in principle simpler, as the scales
involved are larger and mostly linear. This feature makes it possible to ignore highly non-
linear effects, such as super-sample covariance, since it dominates the non-Gaussian errors in
the weakly or deeply nonlinear regime (Takada & Hu 2013). However, the lower densities
characterizing these objects produce a different weight of the various contributions (e.g. shot
noise, Paech et al. 2017) to the covariance, compared to the case of galaxies, and this could
make non-Gaussian terms relevant even in the linear regime. Up to now, the analytical co-
variance for cluster clustering has rarely been studied (Valageas et al. 2011; To et al. 2021b),
preferring instead numerical methods or internal estimates.

1.3 Cosmological parameter estimation

1.3.1 ΛCMD model
The model that better seems to describe the observed properties of the Universe is the so-
called “flat ΛCD” model, which predicts a flat Universe in accelerated expansion, composed
by baryonic matter (∼ 4%), dark matter (∼ 26%) and dark energy (∼ 70%), plus small frac-
tions of other components, as radiation (∼ 0.01%) and neutrinos (∼ 0.1%) (Planck Collabo-
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ration VI. 2020). While baryonic matter interacts with electromagnetic radiation and can be
easily detected, the “dark” components are much more complicated to observe, so that their
nature is still unknown. According to the model, dark matter behaves like a cold collisionless
fluid, i.e., it is composed by particles that were not relativistic at the time of their decoupling
from the other components of the Universe, and that is only subject to gravitational inter-
actions. Dark energy is described as a negative-pressure fluid, consistent with being a term
of pure cosmological constant (Λ) and responsible for the accelerated expansion. Moreover,
such model assumes that general relativity is still valid on cosmological scales and that the
initial matter fluctuations have been generated as a random Gaussian field during Inflation,
i.e., a period of accelerated expansion in the primordial Universe.

Such model is defined through six parameters:

• Ωb and Ωc, respectively the baryon and dark matter density parameters, such that their
sum provides the total matter density parameter Ωm = Ωb+Ωc;

• cosmological constant density parameter ΩΛ, which for a flat Universe is such that
ΩΛ+Ωm = 1 ;

• the Hubble constant H0, usually expressed in terms of dimensionless parameter h =
H0/(100Kms−1 Mpc−1);

• normalization and slope of the matter power spectrum, respectively As and ns. Alter-
natively, the normalization can be described by σ8, i.e. the r.m.s. of matter fluctuations
on scale of 8 h−1 Mpc, derived through the definition of variance σ2

R (Eq. 1.3) and the
relation Pm(k) = As kns T (k)2, where T (k) is the transfer function.

The standard model can eventually be extended, with the addition of some parameters:

• w0 and wa, to describe an evolving dark energy equation of state (Chevallier & Polarski
2001)

P = [w0+wa (1−a)]ρ,

where a is the scale factor, and w0 =−1, wa = 0 correspond to the cosmological constant
case;

• fNL, describing non-Gaussian initial condition of the matter density field. According
to Salopek & Bond (1990), the gravitational potential fluctuations can be parametrised
as

Φ = ΦG+ fNL (Φ2
G−⟨Φ

2
G⟩) ,

where Φ is the gauge-invariant Bardeen potential of the primordial fluctuations, and
ΦG is the Gaussian component. Setting fNL = 0 recovers the standard case;

• γ, describing possible deviations from general relativity (Linder 2005), such that the
growth of perturbations follows

dln D(a)
d lna

= Ωm(a)γ ,

where D(a) is the linear growth factor as function of the scale factor. For general
relativity γ ≃ 0.55, with a weak dependence on cosmological parameters;
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• Ων, i.e. the neutrino density parameter, linked to the total neutrino mass
∑

mν by

Ων =
ρν
ρc
=

∑
mν

93.14h2 eV
,

where ρc i the critical density of the Universe. The standard model predicts three
neutrino flavors, with still unknown masses; neutrino oscillation experiments allows
a minimum value of

∑
mν = 0.06eV, to which corresponds Ων = 0.0016 (Lattanzi &

Gerbino 2018), while cosmological observations can provide an upper limit (see left
panel of Table 1.1).

Parameter estimation can be carried out through the use of different observables, which
are sensitive to variations of different parameters. One of the most important cosmological
probes is the Cosmic Microwave Background (CMB, Hu & Dodelson 2002), which repre-
sents the radiation density field immediately after the decoupling with matter (z ≃ 1100),
when photons began to propagate without interacting with baryonic particles anymore. This
observable reflects the initial conditions of baryonic fluctuations, which until the time of de-
coupling oscillated together with radiation. Once decoupled, baryonic matter continued to
evolve following the gravitational field of dark matter, independent of radiation. CMB there-
fore describes the density field of radiation, which has remained unchanged since the epoch
of recombination (except for the expansion of the Universe), and allows us to extract infor-
mation regarding baryonic fluctuations at the time of decoupling, but not their subsequent
evolution.

Another widely used observable is gravitational lensing (Narayan & Bartelmann 1996;
Bartelmann & Schneider 2001), consisting in the deflection of light by the gravitational field
of massive objects, such as galaxy clusters. In particular, cosmic shear represents the differ-
ential distortion due to the propagation of light through the LSS and is therefore sensitive to
the distribution of matter. The study of this effect is particularly advantageous because it pro-
vides direct information regarding the distribution of both dark and baryonic matter, as it is
only generated by gravity. Unlike CMB, gravitational lensing provides information about the
density field of matter at low redshift (z < 10) and is sensitive to the evolution of structures.

Other useful observables are the Baryon Acoustic Oscillations (BAO, Eisenstein et al.
2007; Cole et al. 2005), the redshift-space distortions (RSD, Kaiser 1987; Hamilton 1997),
supernovae Ia (SNIa, Perlmutter et al. 1999) and galaxy clusters (see, e.g., Allen et al. 2011).
BAO represent the trace of the acoustic oscillations of the pre-recombination baryon – photon
fluid, and are observed in both the matter, through galaxy clustering, and CMB radiation
power spectra on a scale of ∼ 110h−1 Mpc. Due to their fixed size, BAO are used as standard
rulers in calculating the distances and expansion of the Universe. RSD are the distortions of
the galaxy distribution produced by the peculiar velocities of galaxies along the line of sight.
Being related to the dynamics of galaxies, such distortions contain information about the
cosmic mass distribution, probing the growth rate of cosmic structures and gravity. SNIa are
supernovae originated from the explosion of a white dwarf in a binary system: the white dwarf
accretes mass from its companion star (or merge with anther white dwarf) until it reaches
the Chandrasekhar limit, beyond which the electron degeneracy pressure cannot compensate
for the gravitational force of the star, leading to the collapse and explosion of the system.
Since the explosion always occurs under the same conditions, all SNIa have the same peak
brightness, making them standard candles useful for estimating distances and the rate of
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expansion of the local Universe. Being sensitive to different parameters, all these observables
can be combined together to break degeneracies and obtain more stringent constraints.

Left panel of Table 1.1 shows the values of the standard model cosmological parameters
measured by Planck Collaboration VI. (2020). The reported values were obtained by com-
bining CMB measurements made by the Planck satellite with BAO and gravitational lensing
measurements. It can be seen that the uncertainties on the parameters are extremely small,
partly due to the combination of multiple observables. Right panel of Table 1.1 reports val-
ues for the extensions of the standard model, measured by Planck Collaboration VI. (2020)
through CMB, BAO and gravitational lensing, Planck Collaboration IX. (2020) from com-
bined temperature and polarization CMB data, and Mana et al. (2013) through CMB and
cluster data.

Table 1.1: Left panel: Best-fit values of parameters and 1σ uncertainties for the flat ΛCDM model,
measured by Planck Collaboration VI. (2020) through combination of CMB, BAO and lensing. Right
panel: Best-fit values of parameters and 1σ uncertainties for the extensions of flat ΛCDM model.
wa,w0,

∑
mν are measured by Planck Collaboration VI. (2020), while γ and fNL are obtained, respec-

tively, by Planck Collaboration IX. (2020) from CMB data and Mana et al. (2013) from galaxy cluster
and CMB data.

flat ΛCDM model
parameter value

Ωb h2 0.02242±0.00014
Ωc h2 0.11933±0.00091
Ωm 0.3111±0.0056
ΩΛ 0.6889±0.0056
h 0.6766±0.0042
ns 0.9665±0.0038

ln(1010 As) 3.047±0.014
σ8 0.8102±0.0060

flat ΛCDM model extensions
parameter value

w0 −0.961±0.077
wa −0.28+0.31

−0.27∑
mν < 0.12 eV
γ 0.58±0.12

fNL −0.9±5.1

1.3.2 State of the art of cluster cosmology
Regarding the state-of-the-art of cluster cosmology, number counts constitute the most widely
used observable. Some of the most recent results in the optical band have been obtained from
Costanzi et al. (2019) and Abbott et al. (2020), respectively analyzing cluster data from the
Sloan Digital Sky Survey2 (SDSS) and the Dark Energy Survey3 (DES). Another recent result
is proposed by Bocquet et al. (2019), who analyzed a sample of SZ-selected clusters by the
South Pole Telescope4 (SPT). In all these cases the relationship between cluster masses and
observables are calibrated via weak lensing observations and a flat ΛCDM model with mas-
sive neutrinos is assumed. Costanzi et al. (2021), instead, derived cosmological and scaling
relation constraints from the combination of DES cluster abundance data and SPT follow-up

2https://www.sdss.org/
3https://www.darkenergysurvey.org/
4https://pole.uchicago.edu/

24

https://www.sdss.org/
https://www.darkenergysurvey.org/
https://pole.uchicago.edu/


Table 1.2: Constraints for the cosmological parameters Ωm and σ8 from cluster number counts (NC),
alone and combined with other cosmological probes

probes Ωm σ8

Schellenberger & Reiprich (2017)
NC 0.217+0.073

−0.054 0.894+0.098
−0.095

NC + fgas +WMAP9 0.297±0.008 0.822+0.016
−0.014

Costanzi et al. (2019)
NC +WL 0.22+0.05

−0.04 0.91+0.11
−0.10

NC +WL + Planck + BAO 0.316+0.010
−0.008 0.81±0.02

Bocquet et al. (2019)
NC +WL 0.285±0.047 0.763±0.037

NC +WL + YX + Planck 0.353±0.027 0.761±0.033

Abbott et al. (2020) NC +WL 0.179+0.031
−0.038 0.85+0.04

−0.06

Costanzi et al. (2021) DES-NC + SPT-OMR 0.264+0.047
−0.073 0.795+0.045

−0.059

Salvati et al. (2022) NC + Planck 0.29+0.04
−0.03 0.76+0.03

−0.04

data, constraining the mass-observable relation with multi-wavelength data. Another exam-
ple is provided by Salvati et al. (2022), who provided the first combination of Planck and
SPT cluster catalogs. An example of an X-band result is instead provided by Schellenberger
& Reiprich (2017), through the analysis of the HIghest X-ray FLUx Galaxy Cluster Sample
(HIFLUGCS) catalog produced from the data of ROSAT All Sky Survey5 (RASS). Table 1.2
shows the constraints for the parameters σ8 and Ωm obtained from all the groups, either by
analyzing cluster abundances alone or by combining them with other data. Comparing the
results, it can be seen that the values obtained from the abundance analyses are compatible
with each other. However, the analysis of number counts from optical surveys combined with
weak-lensing masses usually presents lower values of Ωm with respect the standard values;
this topic will be further discussed in Sect. 1.3.3. Also, these results show that the combi-
nation with other complementary observables allows the level of precision to be increased,
reducing the error bars of the number counts results.

For further comparison, Fig. 1.6 shows the values of σ8 at Ωm = 0.3 found by several
authors, including those mentioned above. Blue points represent the results from number
counts, green points are the values obtained from weak lensing/cosmic shear and galaxy
clustering analyses, and red points show the constraints from CMB. The blue bands represent
the standard error (0.012, dark region) and standard deviation (0.033, light region) around the
mean (0.789), calculated from the values found from the cluster analyses. It can be seen that
all the values obtained from number counts are in good agreement with each other and with
the cosmic shear/galaxy clustering results, as well as with the CMB results obtained from
WMAP; the parameters found by Planck, on the other hand, prefer somewhat larger values
of σ8, with values that are barely contained in 1σ region.

Although still poorly exploited due to the lack of statistics, also the cluster clustering is
a powerful tool to extract cosmological information. Derivation of cosmological constraints
from the clustering of galaxy clusters was first studied by Borgani et al. (1999), in which the 2-
point correlation function of clusters in the X-ray Brightest Abell-type Cluster sample catalog

5https://heasarc.gsfc.nasa.gov/docs/rosat/rass.html
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Figure 1.6: Best-fit values and 1σ uncertainties for σ8 at Ωm = 0.3 found by various authors with
different observables: cluster number counts in blue, cosmic shear/galaxy clustering in green, and
CMB in red. Blue bands represents the standard error (dark) and standard deviation (light) with
respect to the cluster results average. Image from Pratt et al. (2019).

(XBACs) was analyzed to find constraints on σ8. The result, corresponding to 0.8 < σ8 < 2.0
for Ωm = 0.3, is in agreement with what was found by the abundance analysis, although
characterized by less stringent constraints.

The clustering of clusters presents some advantages with respect to the clustering of
galaxies. Rising from the highest density peaks of the density field, galaxy clusters are a
highly biased tracer of the large-scale structure, i.e., with a larger clustering signal easily de-
tectable also at large scales. Cluster clustering can be observed on large scales, where linear
theory is still suitable for describing its properties (i.e., k ≲ 0.05hMpc−1 or r ≳ 30h−1 Mpc).
Also, bias is primarily a function of the halo mass and can be calibrated using multi-wavelength
observations. Moreover, cosmology enters in the relation between bias and mass/redshift, in-
creasing the constraining power of cluster clustering (Mo & White 1996; Tinker et al. 2010).
Finally, Castro et al. (2020) showed that the net effect of baryons is to change the mass of
clusters with negligible impact on the clustering of matched objects in dark matter and hydro
simulations.

Although clustering analysis of clusters does not provide results as accurate as those of
other observables, cluster clustering is especially useful when combined with other probes,
such as number counts or weak gravitational lensing, for two main reasons. First, having a
different cosmology dependence, it makes it possible to break the degeneracies on parame-
ters and improve the constraining power of these observables (Schuecker et al. 2003; Sereno
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et al. 2015; Sartoris et al. 2016). Second, one of the main limitations in the cosmological
exploitation of galaxy clusters lies in the fact that cluster masses have to be indirectly in-
ferred through observable properties, such as the cluster richness, velocity dispersion, X-ray
temperature or Sunyaev-Zeldovich signal. The calibration of such mass-observable scaling
relations is affected by systematic biases and observational uncertainties (e.g. Kravtsov &
Borgani 2012; Pratt et al. 2019). Cluster clustering, presenting different degeneracies on pa-
rameters with respect to cluster number counts, can help to calibrate such relations, reducing
the uncertainties in the mass estimation and further improving the constraints on cosmolog-
ical parameters (Majumdar & Mohr 2004; Mana et al. 2013; To et al. 2021a; Lesci et al.
2022). The correlation function of galaxy clusters has also been used to identify the Baryonic
Acoustic Oscillations (BAO) in a CMB-independent way (Miller et al. 2001; Angulo et al.
2005; Huetsi 2010; Veropalumbo et al. 2014; Moresco et al. 2021).

The simultaneous analysis of abundances and clustering was first proposed by Schuecker
et al. (2003), through the analysis of the cluster catalog ROSAT ESO Flux-Limited X-ray (RE-
FLEX). The constraints on Ωm were found to have error bars reduced by a factor of 2, and by
a factor of 8.6 for σ8, compared to the analysis of abundances alone. Cluster clustering has
also been combined with other data by Mana et al. (2013): by analyzing the maxBCG cat-
alogue produced from SDSS photometric data, they showed that the joint analysis of power
spectrum and cluster counts provides an improvement on the accuracy on the constraints of
σ8 andΩm by about 50% compared to the analysis of abundances alone, which can be further
increased by including CMB data. The left panel of Fig. 1.7 shows the confidence levels on
the parameters σ8 and Ωm, found through abundance, clustering and CMB analysis. From
this plot, one can see the different degeneracy presented by number counts (blue contours)
and clustering (yellow contours) in the plane σ8 −Ωm and how this decreases by combin-
ing the analysis of the two observables (green contours). A third result has been presented by
Sereno et al. (2015), who constrainedσ8 through a combined analysis of stacked gravitational
lensing and clustering of galaxy clusters, finding that such combination allows to constrain
σ8 without any knowledge of scaling relations, selection function, or modeling of the bias.
A further result has been obtained by To et al. (2021a), who performed a joint analysis of
cluster abundances, three cluster cross-correlations (including cluster clustering), and auto
correlations of galaxy density. The results are consistent with the DES-Y1 galaxy clustering
and weak lensing analysis, and show an improvement in the constraints on both cosmolog-
ical and observable–mass scaling relation parameters. Finally, Lesci et al. (2022) analyzed
the KiDS-DR3 data (Maturi et al. 2019), showing how the cluster clustering can successfully
constrain cosmological parameters and the normalization of the mass-observable relation, if
combined with the prior information from number counts and weak lensing. Table 1.3 shows
the constraints on Ωm and σ8 obtained by the mentioned works.

1.3.3 Open issues
Although the ΛCDM model successfully explains most of the observational constraints on
cosmic expansion and growth of structures, it still suffers from some tensions between the
values of some parameters, estimated from different probes. The main examples are the value
of the Hubble constant H0 (see, e.g., Verde et al. 2019), and the value of S 8 = σ8

√
Ωm/0.3

(see, e.g., Battye et al. 2015). The former is characterized by different results from late-time
probes, such as SNIa, which measure values around 73 km s−1 Mpc−1, and CMB, measuring
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Table 1.3: Constraints for the cosmological parameters Ωm and σ8 from cluster clustering (CL),
combined or combined with other cosmological probes

probes Ωm σ8

Schuecker et al. (2003) CL+NC 0.341+0.031
−0.028 0.711+0.039

−0.031
Mana et al. (2013) CL+NC 0.215±0.022 0.84±0.04

Sereno et al. (2015) CL+WL - 0.79±0.16
To et al. (2021a) 6x2pt+N 0.305+0.055

−0.038 0.783+0.064
−0.054

Lesci et al. (2022) CL+prior from NC+WL 0.28+0.05
−0.04 0.82+0.14

−0.12

the early Universe and its growth rate, which prefers values around 67 km s−1 Mpc−1. The
discrepancy between early and local measurements is about 5σ. The latter refers to a ∼
2σ tension between measurements of the amplitude of the matter power spectrum inferred
from CMB (S 8 ∼ 0.83), and directly measured by LSS probes, such as lensing and galaxy
clustering, clusters, and redshift space distortions (S 8 ∼ 0.75).

Besides these two main tensions, there are other inconsistencies that specifically concern
galaxy clusters. As the analyses of the DES cluster catalogs show, the cosmological con-
straints from cluster counts lead to particularly low values of the matter density parameter
(Ωm = 0.179+0.031

−0.038, Abbott et al. 2020), in sharp contrast with the values found by the other
observables (Ωm ∼ 0.3). Unlike the H0 and S 8 tensions, which might indicate the incomplete-
ness of the ΛCDM model and the need to introduce new physics, these values are most likely
caused by the incorrect or incomplete treatment of the systematics affecting the cosmological
analysis of DES clusters. More specifically, cluster counts results are limited by the accuracy
of the cluster mass calibration. In fact, the weak lensing mass estimate can be biased by the
wrong treatment of selection and projection effects affecting the optical observables such as
richness (Sunayama et al. 2020; Zhang & Annis 2022; Wu et al. 2022). In particular, the
weak lensing mass estimates for richness λ < 30 drive the tension with other cosmological
results, including the constraints inferred through different observables from the DES data
(Abbott et al. 2020).

1.3.4 The Euclid mission
The study and the control of the uncertainties described in Sect. 1.2.2 are fundamental for fu-
ture surveys, which will provide large cluster samples that will allow us to constrain cosmo-
logical parameters with a level of precision much higher than that obtained so far. One of the
main forthcoming surveys is the European Space Agency (ESA) mission Euclid 6 which will
observe a large portion of the extragalactic sky in optical and infrared band, identifying about
105 galaxy clusters up to redshift z = 2 by photometric, spectroscopic and gravitational lens-
ing (Laureijs et al. 2011; Euclid Collaboration: Scaramella et al. 2022). Three-dimensional
maps of the distribution of dark and luminous matter in the Universe over the last 10 billion
years, corresponding to the period when dark energy produces the accelerated expansion,
will thus be constructed. The satellite is scheduled for launch in 2023 and the nominal mis-
sion will last six years, during which four photometric surveys will be carried out: a “Euclid

6http://www.euclid-ec.org
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Figure 1.7: Left panel: Contours at 68% and 95% confidence level on the parametersσ8 andΩm, from
analysis of cluster abundances (Counts), cluster clustering (P(k)), and CMB. Image from Mana et al.
(2013). Right panel: forecasts on the constraints at the 68% confidence level on the parameters σ8 and
Ωm from: (i) number counts (NC), (ii) number counts and clustering (NC+PS), (iii) NC+PS+ known
SR, i.e., assuming full knowledge of the nuisance parameters, (iv) NC+PS+ known SR + Planck, i.e.,
with priors from Planck data, (v) same as the previous case but with more stringent selection function.
Image from Sartoris et al. (2016).

Wide Survey”, which will cover 15000deg2 of sky uncontaminated by light from the Galaxy
and observe clusters with magnitudes up to 24.5mag in the visible band and 24mag in the
infrared band, and three “Euclid Deep Fields” of about 2 magnitudes deeper than the wide
survey, which will observe 40deg2 of the sky. Photometric observations will also be com-
plemented by spectroscopic surveys that will cover the same areas of sky and provide the
redshifts of tens of millions of galaxies.

Catalogs produced by Euclid will allow cosmological parameters to be constrained with
unprecedented precision, in order to determine the nature and properties of dark energy, dark
matter and gravity, and to acquire information on the initial conditions for the formation
of cosmic structures and the mass of neutrinos. The mission is optimised to determine the
expansion rate of the Universe and the growth rate of cosmic structures. The observables
most sensitive to these quantities are weak gravitational lensing and galaxy clustering (BAO
and RSD). In addition, other independent observables such as galaxy clusters, dark matter
density profiles and supernovae will be analyzed.

Cluster catalogs will be constructed by selecting objects with two detection algorithms:
the Adaptive Matched Identifier of Clustered Objects (AMICO, Bellagamba et al. 2018) code,
based on matched filtering, and the PZWav (Gonzalez 2014) code, based on an adaptive
wavelet approach. Their performance has been tested, along with other four independent
detection algorithms, and the two codes have been chosen to be implemented in the Euclid
pipeline, having achieved more than 80% completeness for a mean purity of 80% down to
masses of 1014 M⊙ and up to redshift z = 2 (Adam et al. 2019).

A forecast of the capability of the Euclid cluster survey has been performed by Sartoris
et al. (2016), which shows the effect of the photometric selection function on the number of
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Figure 1.8: Left panel: cluster mass selection function for the survey Euclid. The solid line corre-
sponds to the threshold N500,c/σfield = 3, while the dashed line to N500,c/σfield = 5. Right panel: Counts
(histograms) and cumulative distributions (lines) of observable clusters as a function of redshift, with
bin of ∆z = 0.1, for the two selection functions. Images from Sartoris et al. (2016).

detected objects and the consequent cosmological constraints for different cosmological mod-
els. An estimate of the selection function for the photometric survey is shown in the left panel
of Fig 1.8, representing the minimum observable mass (measured at ∆c = 200) as a function
of redshift. The two lines refer to the cases N500,c/σfield = 3 and 5, where N500,c is the number
of clusters in a sphere of radius r500,c and σfield is the standard deviation of galaxy counts in
the field, which takes into account shot-noise and sample variance. The non-constant trend is
due to the relative contribution of these terms, such that cosmic variance modifies the trend
of the function for z ≤ 0.5, while shot-noise prevails at higher redshift. The right panel of the
same figure shows the expected number of objects as a function of redshift (histograms) and
the corresponding cumulative distributions (lines) for the two selection functions. It should
be noted that, given the large statistics of galaxy clusters expected from the Euclid wide sur-
vey, an accurate description of the possible theoretical systematics is necessary. Regarding
the forecasts for the parameters constraints, the estimated confidence levels for the param-
eters σ8 and Ωm are shown in the right panel of Fig. 1.7. It can be seen that the posteriors
of cluster abundance analysis are significantly improved when number counts are combined
with the clustering analysis. The contours are further reduced by introducing priors from
CMB or by neglecting measurement uncertainties. We can also note that the constraints are
more stringent than those in the left panel of the figure, as the catalogs that will be produced
by Euclid will have higher statistics than those already available.

Finally, Köhlinger et al. (2015) show that the weak lensing systematics in the mass cali-
bration are under control for Euclid, which will be limited by the cluster samples themselves.
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Chapter 2

Cosmological simulations

In this chapter, we describe the topic of numerical simulations. In order to perform an ac-
curate statistical analysis, simulations produced with approximate methods are more suitable
than N-body simulations; this statement will be motivated in the following. We will give
a quick presentation of approximate methods and Lagrangian Perturbation Theory, which
provide the basis for generating this type of simulations. After that, we will describe the
”PINOCCHIO” algorithm used to produce the catalogs analyzed in this thesis work. Finally,
we will present the dataset used in this work, both for the validation of covariance models
and for cosmological forecasts, and the mass calibration process required before starting the
analysis.

2.1 Numerical simulations
Numerical simulations are the main tool for accurately studying the non-linear evolution of
cosmic structures. Over the years, N-body and hydrodynamic simulations made it possible to
verify and confirm several theoretical predictions in cosmology and astrophysics, such as the
formation of clusters and their clustering (Jenkins et al. 1998), the properties of intracluster
gas (Evrard 1990) and the density profiles of dark matter halos (Navarro, Frenk, & White
1996). Moreover, as described in the previous section, N-body simulations are fundamental
tools for the calibration of analytical models and scaling relations.

N-body simulations describe the evolution of dark matter under the effect of gravity, cal-
culating the forces acting on the particles, thus determining their orbits (see, e.g., Bertschinger
1998; Vogelsberger et al. 2020). In few words, initial conditions are set by imposing pertur-
bations on an initially uniform distribution of particles, at some early time (z ∼ 100); these
constitute the initial linear density fluctuation field evolving in a homogeneous expanding
background. Then, the forces acting on each particle are computed by integrating the equa-
tion of motion at each time step. The motion of dark matter particles is described by the
collisionless Boltzmann equation

d f
dt
=
∂ f
∂t
+v
∂ f
∂r
−
∂Φ

∂r
∂ f
∂v
= 0 , (2.1)

where f (r,v, t) is the phase-space density function of dark matter, and Φ is the collective
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gravitational potential satisfying the Poisson equation

∇2Φ = 4πG
∫

f dv . (2.2)

Equations (2.1) and (2.2) have to be solved in an expanding Universe, and the relativistic
gravity description can be approximately substituted by Newtonian gravity. Given a system
of N particles, the problem consists of a set of 2N coupled partial differential equations,
which cannot be solved by applying standard discretization techniques because of the high
dimensionality of the system. The equations are therefore solved numerically by integrating
them into a set of finite time steps, computing the force acting on each particle. To this
purposes, different methods can be applied (e.g., Particle-Particle code, Tree code, Particle-
Mesh code). Once forces are computed, the positions and velocities of the particles are
evolved forward in time. The accuracy and efficiency of a simulation depend on the resolution
of mass and force and the choice of time step. Firstly, particles do not represent individual
astrophysical objects (e.g. galaxies), but rather fluid elements; consequently the mass of the
particles determines the resolution of the simulation, since only objects with mass much large
than the mass of a particle can be meaningfully described in a simulation. In addition, a too
high force resolution or a too small time step can result in considerably high computational
costs, and must therefore be optimized.

The state-of-the-art of N-body cosmological simulations is continuously evolving as com-
putational resources and algorithms improve. The recent simulations have reached an un-
precedented level of detail and accuracy; among them, the Abacus Summit, is a recent ex-
ample of a large-scale N-body simulation that was run on the Summit supercomputer at Oak
Ridge National Laboratory (Maksimova et al. 2021). It was able to simulate the distribution
of dark matter, galaxies, and other structures in 150 cubical boxes of side of 2h−1 Gpc, using
more than 1012 particles. Other examples are given by the IllustrisTNG simulations (Nelson
et al. 2018), which simulate the large-scale structure of the universe including the distribu-
tion of dark matter and the formation of galaxies, in volumes of 50, 100, and 300 Mpc side
length, using more than 1010 particles, the Quijote simulations (Villaescusa-Navarro et al.
2020), a set of 44 100 full N-body simulations spanning more than 7000 cosmological mod-
els, designed to provide enough data to train machine-learning algorithms, the OuterRim
simulations (Heitmann et al. 2019), covering a volume of side of 4225 Mpc and evolving
more than 1012 particles, and the Uchuu simulations (Ishiyama et al. 2021), a set of large
high-resolution cosmological N-body simulations where the largest simulation consists of
more than 1012 dark matter particles in a box of side-length 2h−1 Gpc. These simulations
are becoming essential tools in the field of cosmology, providing the predictions that can be
tested with the upcoming high precision surveys and experiments.

N-body simulations are usually generated for describing systems that can exceed 1012

particles and can therefore be extremely expensive, from a computational point of view. A
further complication occurs when the baryonic component has to be included, as it must be
reproduced through the use of hydrodynamic simulations that are even more expensive. In
fact, not only is baryonic matter composed of collisional particles that require solving more
complex equations, but they are also subject to gas cooling, star formation, and AGN and
supernovae feedback, which further complicates the problem (Borgani & Kravtsov 2011).
Consequently, although numerical simulations provide accurate results and are indispensable
for describing the nonlinear evolution of cosmological systems, they are not the ideal tool for
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the study of systematics. Indeed, the use of large sets of simulations is a fundamental require-
ment for the accurate estimation of covariance matrices, which requires large statistics rather
than high accuracy. The dimension of such sets depends on the size of the data vector (i.e.,
the number of bins) and on the accuracy to be achieved, and typically the required number
of catalogs is around 103 or even more (Dodelson & Schneider 2013; Taylor et al. 2013).
For this purpose, approximate methods represent a valid alternative to N-body simulations:
although less accurate than full N-body simulations in reproducing the observables, these
methods are able to accurately estimate covariances requiring fewer resources and far less
computational time.

2.2 Approximate methods for catalog generation
Approximate methods (Monaco 2016; Sahni & Coles 1995) describe the evolution of dark
matter by solving the Vlasov equations via perturbative theories. The advantage in using
these methods lies in the fact that N-body simulations require a large number of time-steps to
calculate particle displacements, as these depend on time-varying forces. Approximate meth-
ods, instead, allow the displacement to be calculated only once, basing on the assumption
that the final position of particles depends only on the configuration of the potential under the
initial conditions.

Methods for catalog generation can be classified into two categories: Lagrangian meth-
ods and biased-based methods. The former involves the application of a perturbative field to
a grid of particles; thus, the particles that constitute the halos are determined, and their dis-
placement from the initial (Lagrangian) to the final (Eulerian) position is computed. These
methods are computationally advantageous compared with N-body simulations, but they re-
quire a parameter calibration in order to correctly reproduce the quantities predicted by N-
bodies. To this class belong algorithms such as PINOCCHIO (Monaco et al. 2002a), PTHalos
(Scoccimarro & Sheth 2002), and COLA (Tassev et al. 2013). The second class consists of
generating a quasi-linear density field via perturbative theory, and populating it with halos
by assuming mass function and bias models. Although they are preferable in terms of com-
putational cost over Lagrangian methods, these methods have lower predictive power and
require several calibrations through simulations. Algorithms belonging to this class include
PATCHY (Kitaura et al. 2014) and EZmocks (Chuang et al. 2015). In the following, only
Lagrangian methods will be discussed.

2.2.1 Lagrangian perturbation theory
The linear evolution of the density field can be described by perturbative theory, by means
of two different approaches: the Eulerian and the Lagrangian approach. The first method,
known as Eulerian Perturbation Theory (EPT, Bernardeau et al. 2002), describes the time evo-
lution of the density field δ(x, t) at a certain position x, assuming δ≪ 1 and that the particle
displacement from the initial position is negligible with respect to the scale R, corresponding
to the size of the smallest perturbation for which we want to follow the linear evolution. In
other words, vt≪ R, where v is the velocity of the mass element at time t. Although appropri-
ate for describing the evolution of perturbations in the linear regime, EPT becomes inaccurate
as particle displacement increases, and stops to be valid when the limit δ ∼ 1 is reached, so
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that it does not allow the evolution of perturbations to be described outside the strictly linear
regime. The second approach, called Lagrangian Perturbation Theory (LPT, Moutarde et al.
1991; Buchert 1992; Bouchet et al. 1995), follows the displacement of the fluid element with
initial position q, which moves along the trajectory x(q, t) = q+S(q, t), where the displace-
ment S represents a map between the Lagrangian coordinate q and Eulerian coordinate x.
This description is analogous to EPT, except that the condition for the perturbative expansion
is set by the displacement parameter, i.e. S≪ 1. The advantage of this second approach is
that it is also valid in the quasi-linear regime and thus allows us to describe the formation and
structure of the Universe.

The first-order LPT theory is called Zel’dovich approximation (Zeldovich 1970). It con-
sists in defining the linear displacement of the fluid element, S(q, t) = b(t)p(q), thus writing
the position of the element at time t as

r(q, t) = a(t)x(q, t) = a(t) [q+b(t)p(q)] , (2.3)

where r and x are, respectively, the proper and comoving coordinates. Imposing the mass
conservation condition ρ0(q)d3q = ρ(r, t)d3r and setting S≪ 1, we find the first-order La-
grangian density contrast

δ(q, t) ≃ −b(t)∇q p(q) . (2.4)

Given that the description must be equivalent to the EPT, which defines δ(q, t) = D(t)δ0(q)
with D(t) linear growth rate, and imposing the initial density contrast to follow the Poisson
equation for the gravitational potential δ0(q) = ∇2

qΦ0(q), we find the trajectory of the fluid
element,

x(q, t) = q−D(t)∇qΦ0(q) , (2.5)

that is, the fluid elements has a laminar linear motion with respect to the time variable D(t)
with speed −∇qΦ0(q). The structure formation occurs when the trajectories of several parti-
cles cross each other (shell-crossing regime): when two elements q1 and q2 are in the same
Eulerian position x, the displacement S no longer constitutes a biunivocal map between the
coordinates q and x and the approximation ceases to be valid. From a physical point of view,
in such a regime the two elements should interact gravitationally with each other, whereas the
Zel’dovich approximation predicts that their motion is only determined by the initial condi-
tions and is therefore unable to describe the interaction between the particles. To describe the
shell-crossing phase, we consider the deformation tensor ∂S i/∂q j that, being real and sym-
metric, can be written in a diagonal coordinate system. Then let the three eigenvalues α,β,γ
be such that α ≤ β ≤ γ ; the density contrast becomes

1+δ(q, t) =
∣∣∣∣∣∣∂S i

∂q j

∣∣∣∣∣∣−1

=
1

[1−D(t)α(q)][1−D(t)β(q)][1−D(t)γ(q)]
. (2.6)

Since D(t) grows with time, at some point it will be [1−D(t)α(q)] = 0, meaning δ→∞. The
singularity can be of three kinds:

• if α < β < γ the collapse occurs along one direction, producing a sheet-like structure
called “pancake”;

• if α = β < γ the collapse is linear and consists in a 1D singularity named “filament”;
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• if α = β = γ the collape occurs along the three directions and forms a punctual singo-
larity called “node”.

Pancakes, filaments and nodes represent the large-scale structure matter distribution.
To describe the evolution of structures beyond this point, it is necessary to extend the

approximation to higher levels, e.g. second- or third-order LPT (Bouchet et al. 1995).

2.2.2 PINOCCHIO
PINOCCHIO (PINpointing Orbit-Crossing Collapsed HIerarchical Objects) (Monaco et al.
2002a; Munari et al. 2017) is an algorithm that generates dark matter halo catalogs through
LPT and ellipsoidal collapse (e.g. Bond & Myers 1996; Eisenstein & Loeb 1995), up to third
order. The code simulates cubic boxes with periodic boundary conditions, starting from a
regular grid on which an initial density field is generated in the same way as in N-body simu-
lations. The procedure consists of two steps: first the collapse times of the mass elements are
calculated, and then the collapsed elements are assigned to individual halos. Initially, a linear
density field is generated on a cubic grid, at the vertices of which the mass elements (or ”parti-
cles”) are placed. The field is then filtered on different scales by convolution with a Gaussian
window function; about 20 logarithmically equispaced filtering scales are used. Then, for
each particle at position q and for each filtering scale, the collapse time is computed by el-
lipsoidal collapse, solved analytically by third-order truncated LPT (3LPT, Monaco 1997):
the collapse of the mass element, i.e. the orbit-crossing, is defined as the instant at which
one of the axes of the ellipsoid describing the mass element becomes zero. For each particle,
the minimum collapse time and the corresponding filtering scale are then determined. This
first step takes most of the computational time, producing a collapsed medium that must be
”fragmented” to form structures.

This second step simulates the process of forming structures by accretion of matter and
merging of halos. It is carried out in a way similar to the FoF method used in N-body simu-
lations: first, the centers of the halos are identified, considering the particles with the shortest
collapse times. All the other particles can belong to a halo only if it already contains one of
their Lagrangian neighbors, i.e. one of the first neighbors of the particle in the initial configu-
ration (consisting of a cubic grid, where each node has six first neighbors). The condition for
a mass element to belong to the selected halo is that the distance from its center, calculated
by LPT at the instant of collapse, is d < dth,a = fa RM where fa ∼ 1 is a parameter analogous
to the linking-length used to identify FoF halos and RM ≃ M1/3 is the radius of a halo with
mass M. If a particle satisfies the condition for more than one halo, it is assigned to the one
with the lowest value of d/RM, while all particles not contained in any halo constitute fil-
aments. The resulting halos can then grow by accretion or merging processes; this occurs
if the particle-halo or halo-halo distance is such that d < dth,m, where the threshold distance
dth,m ∼ RM is defined similarly to dth,a, but with different parameters. Such distance must be
calibrated so that the mass function reproduces that of N-body simulations. LPT is applied
both to move particles and halos during the formation process, and to compute their final po-
sitions in order to write the catalog. In the first version of the code (Monaco et al. 2002b,a),
both displacements were computed using ZA, later replaced with 2LPT and 3LPT in later
versions (Monaco et al. 2013; Munari et al. 2017).

The code is also able to build past-light cones (PLC), by replicating the periodic boxes
through an “on-the-fly” process that selects only the halos causally connected with an ob-
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server at the present time, once the position of the observer and the survey sky area are fixed.
The position of the observer is randomly chosen within the box, while the semi-aperture of
the cone is defined by an angle θ. The observed volume is given by the volume of a cone
with radius θ, calculated between the redshifts zstart and zstop. The box is then periodically
replicated so as to fill the entire volume. The properties of a halo, such as mass and velocity,
are recorded at the instant when that object passes through the light cone, which is found by
solving the equation

|xhalo(z)−xob| = r(z) ,

where xhalo(z) is the trajectory of the halo, calculated by LPT, xob is the center of the light
cone (i.e. the observer position), and r(z) is the proper distance at redshift z. This method
permits the generation of PLC in a continuous way, i.e. avoiding “piling-up” snapshots at a
discrete set of redshifts. Figure 2.1 shows an example of light cone (in section) with aperture
θ = 60◦ between redshift zstart = 1.5 and zstop = 0, containing the redshift-space distribution of
halos with masses M > 6.9×1012 h−1 M⊙.

Finally, PINOCCHIO also allows the reconstruction of merger histories, describing all
the merger processes that lead to the formation of a halo over time and are recorded directly
during the fragmentation and construction of the halos.

The PINOCCHIO algorithm is significantly faster than N-body simulations (by a factor
of ∼ 103, Monaco 2016), thanks to the application of perturbation theory and the fact that the
description of the orbits of the particles inside the halos is ignored. In this way, the infor-
mation about the internal structure of the halos is lost, but this does not affect the evolution
of structures on large scales. Catalogs simulated with PINOCCHIO reproduce within 5 – 10
percent accuracy the 2-point statistics on large scales (k < 0.4hMpc−1), the linear bias and the
mass function of halos derived from full N-body simulations once code parameters are suit-
ably tuned (Munari et al. 2017). The comparison between the PINOCCHIO mass function,
computed at different orders of LPT, and that obtained by N-body simulation is shown in the
left panel of Fig. 2.2. The analytical prediction by Crocce et al. (2010) is also shown. The
lower panel shows the deviations between the simulated mass functions and the analytical
model, where the black horizontal lines mark the region at ± 5% from the analytical predic-
tion. At small masses and between z = 0 and z = 1 all the three orders of LPT present and
agreement within the percent level. The agreement slightly decreases with increasing mass,
especially at high redshift.

Right panel of Fig. 2.2 shows the comparison of the 2-point correlation function of the
halos simulated by PINOCCHIO and N-body simulations, at redshift z = 1. The monopole
(red), quadrupole (blue) and exadecapole (green) terms from PINOCCHIO are obtained by
averaging over 300 boxes, while black lines represent the average measurements obtained
from 100 N-body Minerva simulations. It can be seen that in all the cases PINOCCHIO
reproduces the correlation of halos with good accuracy, especially the monopole term, and
that the differences are mainly due to sample variance.
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Figure 2.1: PINOCCHIO light cone. Section of thickness 0.5◦ of a light cone of semi-aperture
θ = 60◦ and redshift range z ∈ [0,1.5], representing the redshift-space distribution of halos with mass
M > 6.9×1012 h−1 M⊙. Image from Munari et al. (2017).

Figure 2.2: Left panel: Halo mass function M2 n(M) from N-body simulation (blue) and PINOCCHIO
(red) at different LPT orders: dotted lines for ZA, dashed lines for 2LPT, and solid lines for 3LPT.
Black lines represent the analytical fit of Crocce et al. (2010). The lower panel shows the residuals
with respect to the analytical fit, and the the ±5% region around the fit. Figure from Munari et al.
(2017). Right panel: Monopole (red), quadrupole (blue), and exadecapole (green) of the 2-point
correlation function of PINOCCHIO, averaged over 300 boxes of size 1.5h−1 Gpc at z = 1. error
bars are given by the standard deviation. Black lines represent the average results from 100 Minerva
N-body simulations. Additional information in Lippich et al. (2019)
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2.3 Simulated data and mass calibration
In this work, the data set consists of 1000 past-light cones produced by the PINOCCHIO
alghorithm 1, each covering an area of 10 313 deg2 and redshift range z = 0 – 2.5 2. The light
cones contain halos with virial masses above 3.61×1013 M⊙, sampled with more than 50 par-
ticles. The cosmology assumed in the simulations is the flatΛCDM one with parameters fixed
according to Planck Collaboration XVI. (2014) (Table 5, “Planck+WP+highL+BAO” case):
Ωm = 0.30711 for the total matter density parameter, Ωb = 0.048254 for the corresponding
contribution from baryons, h = 0.6777 for the Hubble parameter expressed in units of 100
km s−1 Mpc−1, ns = 0.96 for the primordial spectral index, As = 2.21× 10−9 for the power
spectrum normalization, and σ8 = 0.8288 for the RMS density fluctuation at z = 0 within a
top-hat sphere of 8 h−1 Mpc radius.

We also use 1000 periodic cubical boxes of side 3870 h−1 Mpc for 16 constant redshifts
fixed between z = 0 and z = 2, from which the light cones described above are extracted.
Although such boxes are not suitable for realistic analyses, they are useful for carrying out
tests where the description of complex geometry or redshift evolution has to be avoided.

To describe the mass distribution of the simulated halos we assume the halo mass function
model by Despali et al. (2016) (hereafter D16) 3,

ν f (ν) = 2A
(
1+

1
ν′p

) (
ν′

2π

)1/2

e−ν
′/2 , (2.7)

with ν′ = aν2. The values of the parameters are: A = 0.3298, a = 0.7663, p = 0.2579 (“All z
- Planck cosmology” case in the reference paper). Comparisons with numerical simulations
show departures from the universality described by this model of the order of 5−8%, provided
that halo masses are computed within the virial overdensity, as predicted by the spherical
collapse model.

To avoid complications linked to the modeling of the halo mass function, we rescale
masses to the D16 prediction. This step is required both because the PINOCCHIO accuracy
in reproducing the halo mass function is “only” 5 percent, and because its calibration has
been performed by considering a universal FoF halo mass function, while D16 define halos
based on spherical overdensity within the virial radius, demonstrating that the resulting mass
function is much nearer to a universal evolution than that of FoF halos.

Masses have been rescaled by matching the mean halo mass function of the PINOCCHIO
catalogs to the analytical model of D16. More in detail, we predicted the value for each single
mass Mi by using the cumulative mass function, i.e., Eq. (1.24) where the integral above mass
bins is replaced by an integration above a mass threshold Mi:

N(> Mi) = Ωsky

∫
∆z

dz
dV

dzdΩ

∫ ∞

Mi

dM
dn
dM

(M,z) = i , (2.8)

Here i = 1,2,3, ... and we assign such values to the simulated halos, previously sorted by pre-
serving the mass order ranking. During this process, all the thousand catalogs are stacked

1http://adlibitum.oats.inaf.it/monaco/mocks.html; the light cones analyzed are the ones labeled
“NewClusterMocks”.

2Note that our light cones are covering slightly smaller areas than the expected Euclid catalogs (∼ 10000
vs. ∼ 15000 deg2); also, the survey will cover two separate patches of the sky. For the purpose of this work, we
expect that these differences impact the results in a negligible way.

3In D16 the peak height is defined as ν = δ2c/σ
2(R,z); in such case the factor “2” in Eq. (2.7) disappears.
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together, which is equivalent to use a 1000 times larger volume: the mean distribution ob-
tained in this way contains fluctuations due to shot-noise and sample variance that are reduced
by a factor

√
1000 and can thus be properly compared with the theoretical one, preserving

the fluctuations in each rescaled catalog. Otherwise, if the mass function from each single
realization was directly compared with the model, the shot-noise and sample variance effects
would have been washed away. The masses in the original periodic boxes have been rescaled
in a similar way.

In our analyses, we considered objects in the mass range Mvir = 1014 – 1016 M⊙ and red-
shift range z = 0– 2; in this interval, each rescaled light cone contains ∼ 3× 105 halos. We
note that this simple constant mass-cut at 1014 M⊙ provides a reasonable approximation to a
more refined computation of the mass selection function expected for the Euclid photometric
survey of galaxy clusters (see Fig. 2 of Sartoris et al. (2016); see also Adam et al. (2019)).

In the left panel of Fig. 2.3 we show the comparison between the calibrated and non-
calibrated mass function of the light cones, averaged over the 1000 catalogs, in the redshift
bin z = 0.1 – 0.2. For a better comparison, in the bottom panel we show the percent residuals
between the two mass functions from simulations and the one of D16: while the original
distribution differs from the analytical prediction, with differences of up to about 50 percent,
the calibrated mass function matches the model over the entire mass range, except for some
small fluctuations in the high-mass end where the number of objects per bin is low.

We describe the halo bias with the analytical model by Tinker et al. (2010, hereafter T10)

b(ν) = 1+A
νa

νa+δa
c
+Bνb+C νc (2.9)

with parameters presented in Table 2 of the reference paper.
We tested the model of T10 to verify if the analytical prediction is in agreement with the

bias from the rescaled catalogs. To avoid complications linked to the redshift evolution or
the geometry of the light cones, we performed this test on the cubical boxes. The bias from
simulation is measured by applying the definition

b̂(z|M) =
[
ξ̂h(r,z|M)
ξm(r,z)

]1/2

, (2.10)

where ξm is the linear matter 2PCF calculated with the CAMB code (Lewis et al. 2000), and
ξ̂h is the measured 2PCF for halos with masses above a threshold M, averaged over the 1000
simulations. We use 10 mass thresholds in the range M = 1014 – 1015 M⊙. We compute the
correlation functions in the range of separations r= 30 – 70h−1 Mpc, where the approximation
of scale-independent bias is valid (Manera et al. 2010). Since the bias from simulations refers
to halos with mass above M, the comparison with the T10 model must be made with an
effective bias prediction, i.e., the linear halo bias integrated above the mass threshold M

b(z |M) =
1

n(z |M)

∫ ∞

M
dM′

dn
dM

(M′,z)b(M′,z) , (2.11)

where dn/dM is the halo mass function and n(z |M) is the mean number density of objects
above a mass threshold

n(z |M) =
∫ ∞

M
dM′

dn
dM

(M′,z) . (2.12)
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Figure 2.3: Left panel: Comparison between the halo mass function from the calibrated (red) and the
non-calibrated (blue) light cones, averaged over the 1000 catalogs, in the redshift bin z = 0.1− 0.2.
Error bars represent the standard error on the mean. The black line is the D16 mass function. In the
bottom panel, percent residuals between the mass function from simulations and the one of D16. Right
panel: Halo bias from simulations at different redshifts (colored dots), compared to the analytical
model of T10 (lighter solid lines). In the bottom panel, percent residuals between the bias from
simulations and the one of T10.

The comparison is shown in the right panel of Fig. (2.3), representing the effective bias from
boxes (dots) at various redshifts and the corresponding analytical model (lines), as a function
of the peak height. We notice that the T10 model slightly overestimates/underestimates the
simulated data at low/high masses and redshifts: the difference is below the 5 percent level
over the whole ν range, except for high-ν halos, where the discrepancy is of about 10 per
cent. At low redshift, this difference is not compatible with the error on the measurements;
however, such errors underestimate the real uncertainty, as they do not take into account the
correlation between radial bins. We conclude that, to first approximation, the T10 model can
provide a sufficiently accurate description for the halo bias of our simulations.

The calibrated light cones are used in this work both to compute the numerical covariance
matrices used to validate the analytical models, and to perform the likelihood analysis, to
forecast the impact of covariances on the cosmological posteriors. The calibrated boxes, on
the other hand, are used to perform tests where the complex effects given by redshift evolution
and light cone geometry are to be avoided.
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Chapter 3

Methodology

In this chapter we describe the methodology for the covariance matrix validation and the like-
lihood forecasts that will be applied throughout this work, to obtain the results described in
Chapters 4, 5, and 6. First, in Sect. 3.1, we introduce the Bayesian inference method used for
constraining cosmological parameters, and we describe the likelihood functions that will be
adopted in this work. In Sect. 3.2, we describe the estimator and properties of the numerical
matrix, that will be used as a reference for the validation of analytical models. Finally, in
Sect. 3.3, we propose a method for fitting additional parameters to the analytical covariance
model, and present the tests performed to show the validity of such a method. The results are
presented in Fumagalli et al. (2022).

3.1 Bayesian inference for parameter estimation
The procedure generally used to derive constraints on cosmological parameters is called
Bayesian inference and takes its name from Bayes theorem, according to which the con-
ditional probability of observing data d, once a theoretical model m characterized by a set of
parameters θ is assumed, is given by

p(θ |d) =
L(d |m(θ)) · p(θ)

p(d)
, (3.1)

where:

• p(θ|d) is the posterior probability of finding a set of parameters θ, having observed the
data d;

• p(θ) is the prior probability of the set of parameters θ;

• L(d |m(θ)) is the likelihood function, i.e., the probability of observing the data d, as-
suming a valid model with parameters θ;

• p(d) is the probability distribution of the observed data (evidence), which constitutes a
normalization factor.

The estimation of the cosmological posteriors consists of comparing an observed quantity
with the respective theoretical model, calculated by allowing some parameters to vary. The
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latter will be determined by maximizing the logarithm of the likelihood function. The like-
lihood function can take various forms, depending on the distribution of the data. The most
common shapes are the Poissonian and Gaussian likelihood.

In addition to the cosmological parameters that are to be determined, the likelihood func-
tion can contain some nuisance parameters, which are related to measurement uncertainties,
e.g. scaling relation parameters. Since the nuisance parameters are not of direct interest in the
estimation of cosmological posteriors, a “marginalisation” is performed, i.e., the likelihood
is maximized by summing over all possible values of these parameters:

p(θ |d) =
∫

dα p(θ,α |d) , (3.2)

where θ and α are, respectively, the cosmological and nuisance parameters.
Priors can be defined as uninformative priors, i.e., flat distributions spanning wide inter-

vals, or they can be based on the results obtained from other observables; this allows us to
combine different information in order to obtain more accurate constraints.

In principle, the likelihood maximization process is performed by defining a grid in the
parameter space and estimating the function at each point. The procedure thus defined is
slow and inefficient for a large number of parameters, since the number of points grows ex-
ponentially as the dimension of the parameter space increases. In order to make the posterior
estimation more efficient, the parameter space is sampled by considering only those points
where the likelihood function assumes high values. One of the most widely used methods
is called Monte Carlo Markov Chain (MCMC, Heavens 2009): points are selected by a ran-
dom walk through the parameter space, with probability distribution proportional to that of
the posteriors. In this way, the number of points selected scales linearly with the number of
parameters and the procedure is considerably faster.

In this work, we explore the posterior distribution with a MCMC approach; we use the
python wrapper for the nested sampling PyMultiNest (Feroz et al. 2009; Buchner et al.
2014), with the exception of Sect. 6.4.2 where we use zeus (Karamanis et al. 2021), and
Sect. 6.5 where we use PolyChord (Handley et al. 2015). Both MultiNest and PolyChord
are based on the nested sampling algorithm, which is a method for exploring the parameter
space and estimating the marginal likelihood of the model. The algorithm starts with an initial
set of live points, which are sampled from the prior distribution of the parameters. Then, for
each iteration of the algorithm, the worst-performing live point is removed from the set and
replaced with a new point that is sampled from the prior. The new point is accepted with a
probability that is calculated based on the likelihood ratio and the prior ratio, and this accep-
tance probability is used to ensure that the samples are distributed according to the posterior
distribution of the parameters. This process continues until a stopping criterion is met. The
algorithm can be used both to estimate the posterior distribution of the model parameters,
by considering the set of points that have been generated during the sampling process, and
to compute the evidence, by using the distribution of likelihoods of the final set of points to
estimate the integral of the likelihood over the prior. The nested sampling algorithm is de-
signed to be more efficient than traditional MCMC methods for exploring high-dimensional,
complex, or multi-modal parameter spaces. Instead, zeus is a python implementation of
the Ensemble Slice Sampling, a method for Bayesian inference that combines elements of
both slice sampling and ensemble sampling. Slice sampling defines a “heigh” parameter and
generates a random sample from the target distribution, called the “current state”. Then, it
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generates a slice by sampling uniformly from the region above the current state’s density up
to the chosen height. The method generates new samples by proposing new states within the
slice, and accepting or rejecting them based on the target distribution. Ensemble sampling,
on the other hand, uses a group of “walkers” that move in the parameter space simultane-
ously. Each walker samples the target distribution independently, and the final set of samples
is obtained by combining the samples from all the walkers. Ensemble slice sampling com-
bines both methods by introducing a set of walkers that move through the parameter space
and generate slices independently.

Regarding the choice of likelihood function, in this work we test different likelihood
functions for the number counts case: the likelihood commonly adopted in the literature
for number counts analyses is the Poissonian one, which takes into account only the shot-
noise term. To add the sample variance contribution, the simplest way is to use a Gaussian
likelihood. More specifically, we considered the following likelihood functions:

• Poissonian:

L(d |m(θ)) =
Nz∏

a=1

NM∏
i=1

mdia
ia e−mia

dia!
, (3.3)

where d = {dia} and m(θ)) = {mia} are, respectively, the observed and expected number
counts in the i-th mass bin and a-th redshift bin. Here the bins are not correlated,
since shot-noise does not produce cross-correlation, and the likelihoods are simply
multiplied;

• Gaussian with shot-noise only:

L(d |m(θ), σ) =
Nz∏

a=1

NM∏
i=1

exp
{
−1

2 (dia−mia)2/σ2
ia

}
√

2πσ2
ia

, (3.4)

where σ2
ia = mia is the shot-noise variance. This function represents the limit of the

Poissonian case for large occupancy numbers;

• Gaussian with full covariance:

L(d |m(θ),C) =
exp

{
−1

2 [d−m(θ)]TC−1[d−m(θ)]
}

√
(2π)N |C|

, (3.5)

where C is the covariance matrix, which may also depend on cosmological parameters.
In this case, the sample covariance introduces correlations between different bins, so
the individual likelihoods are no longer simply multiplied by each other.

In Sect. 4.2.2 the three likelihoods will be compared, to determine the impact of sample vari-
ance on the cosmological constraints from the cluster number counts analysis.

On the contrary, for cluster clustering the sample variance is already known to produce
non-negligible diagonal terms, and therefore a Gaussian likelihood with full covariance is
necessary to properly include the uncertainties affecting the observable.

Another consideration regarding the likelihood analysis is that each simulation represents
a random realization of the Universe. As such, the posteriors obtained for each light cone will
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be randomly shifted around the values of the input cosmology of the simulations. This effect,
known as cosmic variance, makes it difficult to detect any systematics in the analysis, which
can also appear as small, but sizeable shifts in the cosmological posteriors with respect to the
input parameter values. To remove the cosmic variance effect, we perform the MCMC anal-
ysis by maximizing the log-likelihood function averaged over all the NS simulated catalogs

lnLtot =
1

NS

NS∑
a=1

lnL(a) . (3.6)

If no systematics are present, posteriors obtained in this way will be perfectly centered on the
input parameters.

We quantify the accuracy of our covariance (error) estimates in terms of the effect on the
figure of merit (FoM, Albrecht et al. 2006) for two parameters θ1 and θ2, defined as

FoM(θ1, θ2) = |C(θ1, θ2) |−1/2 , (3.7)

where C(θ1, θ2) is the parameter covariance computed from the sampled posteriors. The FoM
is proportional to the inverse of the area enclosed by the 68 percent confidence level ellipse;
therefore, in general, a higher FoM indicates more accurate evaluation of parameters. For
the covariance comparison, however, a larger FoM could indicate an underestimation of the
posteriors amplitude, resulting from a wrong estimation of the uncertainties on the statistical
quantities entering the likelihood. We should therefore point out that we are not interested in
the absolute value of the FoM, but rather in the difference between the various cases.

We consider the cosmological parameters on which cluster number counts and cluster
clustering are more sensitive, i.e., Ωm and σ8, or equivalently As. We assume flat uninfor-
mative priors Ωm ∈ [0.2, 0.4] and log10 As ∈ [−9.0, −8.0], and then we derive the value of σ8
through the relation Pm(k) = As kns T 2(k), where T (k) is the transfer function, and the defini-
tion of variance σ2(R) (Eq. 1.3). We are interested in evaluating the variations in the FoM in
the Ωm –σ8 plane and the possible biases in the posteriors with respect to the input cosmol-
ogy. The former case means that not all the relevant sources of error are taken into account,
while the latter indicates the presence of systematics due to an incorrect analysis.

3.2 Covariance matrix
The validation of the analytical covariance model is performed by comparison with a ref-
erence covariance, computed numerically from a large set of simulations, as motivated in
Chapter 2. To compute the numerical covariance matrix, we use the estimator

Ĉi j =
1

NS−1

NS∑
s=1

(
Ô (s)

i −⟨ Ô ⟩i
) (

Ô (s)
j −⟨ Ô ⟩ j

)
, (3.8)

where NS is the number of simulations, Ô (s)
i is the observable (number counts or 2PCF in

our case) in the i-th bin measured from the s-th mock, and ⟨ Ô ⟩i is the corresponding average
value. Note that the number of indices can vary according to the binning scheme of the
observable. The uncertainty on the numerical covariance is given by (Taylor et al. 2013)

σ2(Ĉi j) =
1

NS−1

(
Ĉ2

i j+ Ĉii Ĉ j j

)
. (3.9)
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We perform a first validation of the model by directly comparing the analytical covariance
to the numerical matrix, element by element. We assume a reasonable level of agreement if
the main terms of the matrices (diagonal and firsts off-diagonal terms) have a relative differ-
ence of less than 10 percent. Once this level of agreement has been achieved, we compare
the matrices by means of likelihood analysis, to assess the impact of these differences on the
cosmological posteriors at the level of accuracy expected for Euclid.

For this test, we consider the results obtained from the numerical matrix as reference, to
be compared with the posteriors from the analytical matrix. Due to the noise present in the
former, arising from the limited number of mocks, we need to take into account a couple
of considerations. First, the inverse of the numerical matrix entering the likelihood (see
Sect. 3.1) requires to be corrected as (Anderson 2003; Hartlap et al. 2007)

Ĉ−1
unbiased =

NS−ND−2
NS−1

Ĉ−1 , (3.10)

where ND is the dimension of the data vector. Second, while this correction removes the bias
in the numerical inverse covariance, sampling noise propagates to the parameter covariance
inducing an increase of error bars by a factor (Taylor et al. 2013; Dodelson & Schneider
2013)

f = 1+
(NS−ND−2)

(NS−ND−1)(NS−ND−4)
(ND−NP) , (3.11)

where NP is the number of (cosmological + nuisance) parameters. This correction results
from a frequentist style approach concerned with results after repeated trials; for corrections
suitable for a Bayesian analysis the proper approach is described by the work of Sellentin &
Heavens (2016); Percival et al. (2022). However, this can be avoided by making the numerical
results as accurate as possible ( f ∼ 1). To this purpose, the difference between the number
of simulations NS and the number of bins ND must be maximized. This can be done, for
example, by using the minimum number of bins that properly allows all the information to be
extracted. Also, this factor can be reduced by manually setting to zero the noise-dominated
elements.

3.3 Fitting covariance matrix models to simulations
Data analysis in cosmology requires reliable covariance matrices. As stated in the previous
chapters, covariance matrices derived from numerical simulations often require a very large
number of realizations to be accurate. On the other hand, analytical models do not require
such high costs, but given the complexity of the problem, sometimes such models depend
on nuisance parameters to be determined by proper fits to numerical results. We write a
likelihood-based method for performing such a fit. We demonstrate how a model covariance
matrix can be tested by examining the appropriate χ2 distributions from simulations. We show
that if model covariance has amplitude freedom, the expectation value of second moment of
χ2 distribution with a wrong covariance matrix will always be larger than one using the true
covariance matrix. By combining these steps together, we provide a way of producing reliable
covariances without ever requiring running a large number of simulations. We demonstrate
our method on two examples. First, we measure the 2-point correlation function of halos from
a large set of 10000 mock halo catalogs. We build a model covariance with 2 free parameters,
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which we fit using our procedure. The resulting best-fit model covariance obtained from just
100 simulation realizations proves to be as reliable as the numerical covariance matrix built
from the full 10000 set. We also test our method on a setup where the covariance matrix is
large by measuring the halo bispectrum for thousands of triangles for the same set of mocks.
We build a block diagonal model covariance with 2 free parameters as an improvement over
the diagonal Gaussian covariance. Our model covariance passes the χ2 test only partially in
this case, signaling that the model is insufficient even using free parameters, but significantly
improves over the Gaussian one.

3.3.1 Covariance estimation
In this section, we discuss a hybrid approach, which builds up on recent techniques, with
the goal of obtaining covariance matrices that are simultaneously reliable and based on few
simulations. There are two insights our result is based on. The first one is that the covariance
matrix estimation is, fundamentally, an estimate of 2-point correlations of realizations of the
data vector. This is a problem that has been solved many times in various fields and for
which an exact likelihood can be written and evaluated. It can be shown that the naively
calculated numerical matrix contains all the information needed to evaluate the likelihood of
a theoretical model of the same covariance matrix. Previous work has exploited this insight
to fit a model covariance to mock simulations for the Baryon Acoustic Oscillations (BAO)
analysis of SDSS DR7 (Xu et al. 2012) and the 2-point correlation function (O’Connell et al.
2016), the bispectrum (Slepian et al. 2017) and the power spectrum (Pearson & Samushia
2016) of BOSS data. In particular, O’Connell et al. (2016) and Pearson & Samushia (2016)
have used these fits to reduce the number of mocks needed to build a reliable covariance.

The second insight is that, ultimately, any covariance matrix is used to compare some
data with a model. The fundamental quantity of interest is therefore the χ2 distribution. A
good covariance matrix produces χ2– distributed values when presented with realizations of
data vectors. A biased or inappropriate covariance matrix produces χ2 values that are not
drawn from the correct distribution. This then tells us how to test a given covariance matrix.
Applications of this idea have been investigated recently (Hall & Taylor 2019; Friedrich et al.
2021). Essentially, we propose to combine these two insights into a single algorithm to
produce reliable and cheap covariance matrices. Assuming we have 50 realizations of a data
vector of size 100, therefore corresponding to a covariance matrix of size 100× 100, we are
unable to estimate the covariance with precision, but we can both i) test candidate covariance
matrices (i.e. 50 χ2 values are sufficient to show compatibility with the correct distribution)
and ii) fit a few parameter model covariance matrices.

Covariance Matrix Estimation is Covariance Estimation

Let us assume we are interested in the covariance matrix for a quantity that can be represented
by an N dimensional vector. An example might be a measurement of the power spectrum of
galaxies in N bins, or the measurement of a bispectrum, or both.

Ultimately, we want to run a Bayesian analysis, comparing a measurement vector m (of
size N) with a theory prediction t(θm), where θm are the parameters of the model for the
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expectation value of m. Assuming a Gaussian likelihood, we have

P(θm|m) ∝ P(m|θm) = (2π)−N/2 |C|−1/2 exp
{
−

1
2

[m− t(θm)]T C−1 [m− t(θm)]
}
. (3.12)

In principle, the matrix C depends as well on the parameters θm. If such dependence is
significant, our method can be straightforwardly extended to accommodate it as well. For
now, we assume that this is not the case.

Suppose we have Nsims simulations providing as many realizations of the measurements
mi, where i = 1 . . .Nsims. We assume that these simulations are drawn from the same under-
lying theory and that the output varies only because of a different realization of the cosmic
structure and noise. In practical terms, they are identical runs except for the random seed.
By construction, the ensemble mean value of those realizations is ⟨mi⟩ ≡ m(θm,sim) where
θm,sim are the fiducial values of the parameters adopted to create the simulations. These are
assumed to be the same for all realizations. Defining di =mi −m(θm,sim), we see that the di
are normally distributed around zero with covariance C.

We can write the numerical matrix estimator

Cn =
1

Nsims

∑
i=1...Nsims

didT
i . (3.13)

Now, let us assume that we have a theoretical model for C depending on some model
parameters θ, i.e. C = C(θ). That is, for a given set of θs, we can predict all values of C. Note
that parameters θ cannot contain θm, since we have just assumed that these do not affect C.

The model for C can be either physical, based on theoretical expectation about C, but it
can also be purely phenomenological, e.g. assuming C has a Toeplitz form, or that the off-
diagonal terms beyond the second diagonal vanish. In any case, we can now use the Bayesian
theorem to write a likelihood for the covariance parameters θ as:

P(θ|d) ∝ P(d|θ)Π(θ), (3.14)

where we can put any prior information in Π(θ) and which we assume to be unity and where

L = P(d|θ) ∝
∏

i=1...Nsims

|C(θ)|−1/2 exp
[
−

1
2

dT
i C−1(θ)di

]
. (3.15)

For the classically educated cosmologist, this equation looks quite familiar. It is the equa-
tion representing the likelihood a Gaussian field. The log-likelihood function L≡ logL equals
up to a constant to

L(d|θ) = −
Nsims

2
log |C(θ)| −

1
2

∑
i

dT
i C−1(θ)di = −

Nsims

2

[
log |C(θ)|+Tr(C−1(θ)Cn)

]
. (3.16)

This is the form of the equation that we use in what follows. This equation appears in this
form already in O’Connell et al. (2016); Slepian et al. (2017), but in the context of very
concrete models for the covariance matrix. In this paper, we stress that this form is general
and that it can be applied to any model for covariance matrix and for observables beyond 2-
point correlation function, as we will do in Section 3.3.3. The most interesting aspect is that
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the likelihood can be rewritten in a form that depends only on the numerical covariance matrix
Cn. In other words, we can compress the results of Nsims simulations into a single N ×N
matrix. If Nsims > N this form offers useful information compression. It is also true if Nsims <
N, i.e. Cn can in principle be even non-invertible and still contain all the available information
at the 2-point level from the simulation suite. Given a sufficient number of simulations that
the uncertainty on θ is negligible compared to the measurement noise on m, it suffices to find
the maximum likelihood point in the θ space and use the resulting matrix.

In what follows we demonstrate this technique in practice with two examples.

Goodness of fit for covariance matrix model

After deriving the best-fit parameters for a given model of the covariance matrix, we would
like to determine if the result is indeed a useful covariance matrix. Note that this is not
a model comparison exercise, but a problem of goodness-of-fit: is the resulting covariance
matrix actually fit for purpose?

A common use of the covariance matrix is the evaluation of the χ2 for a cosmological
model likelihood. Under the assumption of Gaussianity, a good covariance matrix is the
one providing correctly distributed χ2 values. A simple test on the inverse can be done by
verifying that the residuals di = mi −m(θm,sim) are χ2– distributed with the right number of
degrees of freedom,

χ2
i = [mi−m(θm,sim)]C−1 [mi−m(θm,sim)]T . (3.17)

While one would ideally have a separate set of simulations, this test can also be performed
on the same simulations that were used to infer the parameters. This is equivalent to fitting a
theory to data and then using the same data to check the resulting χ2 without subtracting the
model degrees of freedom. This is a valid procedure where the number of simulations is much
larger than the number of free parameters in the theory. When this condition is violated, the
only safe thing to do is to split simulations into a ”training” and ”testing” subsets.

We will now consider how do the moments of χ2 distribution respond to being tested
with a wrong covariance matrix. First consider a simple model where we simply fit for the
covariance matrix amplitude, i.e.

C(θA) = θAC0. (3.18)

At this point, we make no claims of whether C0 is a good or poor approximation of the true
covariance matrix, it is simply a matrix. We have |C(θA)| = θNA |C0| and C−1(θA) = θ−1

A C−1
0 .

Plugging these expressions into Equation 3.16 we find that the maximum likelihood point is
given by

θA =
Tr(C−1

0 Cn)

N
. (3.19)

For the simulation realization i, the χ2 is given by χ2
i = dT

i C−1d (for some covariance matrix
C) and so the mean over the set of simulations is given by

Mean χ2 =
1

Nsims

Nsims∑
i=1

χ2
i = Tr(C−1(θ)Cn) = N, (3.20)

Var χ2 =
1

Nsims

Nsims∑
i

(χ2
i )2−

(
Mean χ2

)2
=

Nsims∑
i

(dT
i C−1d)2−N2, (3.21)
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The last equality of equation 3.20 comes from using solution of Equation 3.19 and doing some
straightforward manipulation. Even if C0 is a completely wrong, the terms containing trace
of C−1

0 Cn cancel exactly and so one always has Mean χ2 = N. In other words, if our model
for covariance matrix has a freedom to adjust the amplitude, then the maximum likelihood is
such that the first moment of χ2 matches the theoretical expectation. Note that in general, our
model for C will have many more parameters, but as long as there is a subspace of the model
which corresponds to a simple amplitude rescaling, this statement will be true.

There is no such simplification for variance. In this case we can calculate the expectation
value and find after some simplifications that:〈

Var χ2
〉
= 2Tr(C−1(θ)CtrueC−1(θ)Ctrue), (3.22)

where Ctrue is the true covariance matrix, i.e. the one from which vectors d are drawn. If
C(θ) = Ctrue, i.e. if our model covariance matrix is indeed true, we find the standard moment
of χ2 distribution, i.e.

〈
Var χ2

〉
= 2Tr(I) = 2N.

Next let us assume C(θ) is different from Ctrue, so that its inverse is given by C−1(θ) =
C−1

true +X. Additionally, let us assume that the first moment is correctly recovered as will
always happen when the model has the freedom to rescale the matrix. In this case we find
that

Tr(CtrueX) = Tr(CtrueC−1(θ))−Tr(CtrueC−1
true) =

〈
χ2

〉
−N = 0. (3.23)

Therefore 〈
Var χ2

〉
= 2N +2Tr(CtrueXCtrueX) > 2N (3.24)

To show the second line inequality, we note that Ctrue is a positive definite matrix and we
can always rotate it into the frame C′true where it is diagonal with its eigen values λi on the
diagonal. In this frame X becomes X′ and the second term becomes 2Tr(C′trueX′C′trueX′) =∑

ijλiλjX′2ij > 0.
Finally, let’s consider the error on the χ2 on a given data vector, which appears as a result

of using the wrong covariance matrix. For a given d

∆χ2(d) = dT C(θ)−1d−dT C−1d = dT Xd (3.25)

Using the same assumption as above it is easy to show that the first and second moment of
this quantity are 〈

∆χ2
〉
= 0 (3.26)〈

Var ∆χ2
〉
= 2Tr(CXCX) (3.27)

In other words, for data vectors drawn from the true covariance matrix, using the wrong co-
variance matrix produces additional scatter around true χ2 values. This additional scatter has
zero mean and variance given by Eq. 3.27. Since variances add, this results in a distribution
of χ2 values that is broader by the same amount.

To recap, we have shown three simple but powerful results. If the model covariance
matrix has freedom to vary in amplitude, the maximum likelihood will adjust its value so
that the expectation value of χ2 is the correct value. In that limit, the values of individual χ2

computed with a wrong covariance matrix scatter around their true values: some of them are
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lower and some of them are higher than what they should be. Because variances add, this
results in a second moment of χ2 distribution that is larger that 2N, with equality holding
when C(θ) is the correct covariance matrix.

This gives us a direct handle on accuracy of covariance matrix. If we are unwilling to
tolerate more than ∆χ2 = 1 in χ2 error, then we should really find a model in which both the
first and the second moment are reproduced to this accuracy. In practice, we might find that
a significantly more relaxed χ2 can still produce essentially unchanged constraints.

3.3.2 Test 1: 2-point correlation function
For the first test of our method, we consider the 2-point correlation function as observable,
measured from a very large number Nsims = 10000 of mock halo catalogs. Let us assume as
original problem a test of the 2-point correlation function model based on the correct recov-
ery of the cosmological parameters of the simulations. For the sake of simplicity, we only
consider Ωm and σ8. Such test requires the knowledge of the covariance matrix. Given the
large number of mocks, we can build a reliable numerical covariance matrix, Cn. Using the
method presented in Section 3.3.1, we show how we can obtain an equally reliable covariance
matrix using only a fraction of the Nsims simulations available.

The 2-point correlation function and its covariance

The basic ingredients of this test involve a model for the 2-point correlation function of halos
corresponding to t(θm) in the previous section and the model for covariance matrix corre-
sponding to C(θ).

For the purpose of testing our covariance fitting technique, we take a simple linear model
for the halo power spectrum including shot noise,

Ph(k) = b2Pm(k)+
1+α

n̄
, (3.28)

where b is the linear bias, Pm is the linear matter power spectrum, n̄ is the halo number
density and α parameterises deviations from Poissonian shot noise, 1/n̄. The corresponding
2-point correlation function is given by,

ξh(r) = b2ξm(r), (3.29)

where ξm is the Fourier transform of Pm. When comparing to simulations, we fit the linear
bias to the measurements of the 2-point correlation function. In order to compute the covari-
ance for Eq. (3.29), we Fourier transform the leading1 term of the power spectrum covariance

C(b,α) ≃
2
V

∫
dk k2

2π2

(
b2 Pm(k)+

(1+α)
n̄

)2
Wi(k)W j(k) , (3.30)

where V is the box volume and Wi(k) is the Fourier transform of the i-th radial shell

Wi(k) =
∫

d3r
Vi

j0(kr) =
r3

i,+Wth(kri,+)− r3
i,−Wth(kri,−)

r3
i,+− r3

i,−

, (3.31)

1The full covariance would include a trispectrum term (Scoccimarro et al. 1999), which we assume to be
negligible (Grieb et al. 2016).

50



where Vi =
4π
3

(
r3

i,+ − r3
i,−

)
is the shell volume, j0(kr) is the zero-th order spherical Bessel

function, and Wth(kr) is the Fourier-transform of the top-hat window function. Our model
covariance therefore depends on two parameters θ = {b,α}. A simple choice for these param-
eters would be to use the bias we fit to the 2-point correlation function measurements b ≡ b̂
and α = 0.

Description of the Data

We take advantage of a very large set of Nsims = 10000 mock halo catalogs obtained with
the PINOCCHIO code (see Sect. 2.2.2). The mock catalogs are built from 10003 dark matter
particles in a cubic box of side L = 1500, reproducing the set-up and adopting the cosmology
of the Minerva N-body simulations (Grieb et al. 2016). The mass threshold is defined requir-
ing that the large-scale amplitude of the PINOCCHIO catalogs power spectrum (including
shot-noise) matches the amplitude of the same power spectrum measured in the Minerva
simulations catalogs, the latter defined by a minimal mass of M ≃ 1.12× 1013 h−1M⊙. We
refer the reader to Oddo et al. (2020) for a more detailed description of the mock halo catalog
construction, that allows to reproduce the power spectrum and bispectrum variance within
10 percent (Oddo et al. 2020, 2021). The 2-point correlation function is measured using
the standard Landy-Szalay estimator (Landy & Szalay 1993) as implemented in the Cos-
moBolognaLib code (Marulli et al. 2016), adapted, however, to account for the box periodic
boundary conditions in the pair counting.

The numerical covariance is estimated directly from the mocks by applying the estima-
tor of Eq. (3.8), with observable given by ξh(r). The numerical covariance obtained in this
way has been compared with full simulations results, showing good agreement (but with a
different definition of the mass threshold) in Lippich et al. (2019).

We should notice that the covariance model above does not account for the specific ge-
ometry of our distribution, that is the effect of the exact number of pairs in the case of a box
with periodic boundary conditions (Philcox & Eisenstein 2019; Li et al. 2019). We therefore
expect that the recovered value of the covariance model parameters accounts in part also for
this neglected effect.

Results

In this section we outline the results of this test. The goal is to show that our model covariance
is as reliable as the numerical one obtained from a very large set of simulations. The final
test is therefore to demonstrate that cosmological parameters, in our case Ωm and σ8, are
recovered with the correct value and uncertainty using the model covariance. The procedure
can be summarized as follows:

i) Build a set of numerical covariance matrices using Eq. (3.8) for varying number of
simulations Nsims = 10000, 1000, 100, 50, and 30.

ii) Build a model covariance with free parameters, following Eq. (3.30). The free param-
eters are the linear bias b and the deviation from Poisson shot noise α.

iii) Maximize the likelihood of Eq. (3.16) varying the free parameters, using the sets of Cn
from point 1) to get a best-fit model covariance C(bfit,αfit).
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Figure 3.1: Comparison between the model Cξ (dashed lines) and numerical (solid lines) covariance,
computed with different number Nsims of simulations. Different colors represent different terms of
the matrices: diagonal in blue, first off-diagonal in red, second off-diagonal in green and fourth off-
diagonal in orange. In the bottom panels, percent residuals between numerical and model covariances.

.

iv) Verify the reliability of the model covariance matrix, and of all the numerical covari-
ance matrices, for varying number of simulations.

We proceed then with details on the maximization procedure and the check of reliability of
the model covariance. We also show results obtained by fixing the covariance parameters to
the fit to the 2-point correlation function, Cξ.

We fit our model covariance C(b,α) using the technique described in Section 3.3.1. We
perform the inference for b and α using the likelihood of Eq. (3.16). We assume flat priors
for the two parameters, b ∈ [0,5] and α ∈ [−1,1]. We repeat the fit using several subsets
of simulations Nsims = 10000, 1000, 100, 50, 30 to build the numerical covariance Cn. In
Fig. 3.1, we show a comparison between the numerical and the model covariance matrices for
three different subsets of simulations, Nsims = 10000, Nsims = 1000 and Nsims = 100. The error
bars are given by the standard deviation computed on a set of n = Nsims,tot/Nsims independent
subsets of simulations, where Nsims,tot = 10000 is the total number of available simulations.
In this case, we fix the model covariance to be Cξ, i.e. fixing b to the value fit to the 2-point
function measurements and α = 0. As we decrease the number of simulations, the model
deviates from the numerical covariance.

It is useful to show the posteriors resulting from the maximization of the likelihood, in
the left panel of Fig. 3.2. As expected, as we use an increasing number of simulations, the
contours shrink, but they are consistent with each other. Even with only 30 simulations we
can broadly constrain the parameters well within the prior. Interestingly, the data prefer a
non-zero value of the shot noise parameter, and a value of the bias that disagrees with the
one we have fit to the 2-point correlation function (dashed line). This effect is distinguishable
even with a very small number of simulations and it becomes very significant at Nsims = 10000
with an over 30 sigma tension between the standard Poisson shot noise and our measurement
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Figure 3.2: Left Panel. Contour plots at 68 and 95 per cent of confidence level for the covariance
parameters, fitted over different numbers of simulations. The gray dashed lines represent the reference
values, given by α = 0 (Poissonian shot-noise) and bias fitted from the 2-point correlation function.
Right Panel. Model covariances for the cases Nsims = 10000, 100, 30 and ξ(r) fit (respectively solid
dark, dashed light, dotted gray and black lines). In the bottom panel, percent residuals with respect to
the full numerical matrix. Color code as in Fig. 3.1.

of it. As mentioned, this is not necessarily reflecting a proper departure from the Poisson limit
of the halo distribution shot-noise, but it can include additional systematics, e.g. geometry
effects, and the incompleteness of the model.2

In Fig. 3.3 we plot the histogram of χ2 values for the model covariances built from the
subsets of simulations as described in Section 3.3.1. As a reference, we also calculate the his-
togram for the numerical covariance matrix using Nsims = 10000 simulations and the model
covariance where we fix the bias from the correlation function fit and α = 0, Cξ. All these
candidate models for the covariance are compared to the theoretical χ2 distribution for this
setup, which has mean µ = 11 and variance σ2 = 22. We calculate the mean and variance of
each histogram; their errors are estimated by bootstrap, i.e. by resampling the data and eval-
uating the confidence region from the bootstrap distribution of the resampled statistics. From
this test it is clear that our model covariance agrees reasonably well with the theoretical curve
already with only Nsims = 30 simulations, even though with large error bars. On the other
hand, the model covariance with fixed parameters is significantly away from the predicted
distribution.

The final test is to show that from the clustering analysis of the 2-point correlation func-
tion we are able to correctly recover cosmological parameters from the simulations by using
our model covariance. We consider a Gaussian likelihood for the observable, the 2-point
correlation function of halos. The theoretical model is the one given in Eq. (3.29), where

2As a further check, we have fit b and α directly on power spectrum measurements performed on the same
set of simulations. The fitted values are also in disagreement with our best-fit values found using our model
covariance. This confirms that the discrepancy is explained by the incompleteness of the model covariance,
rather than a true deviation from Poisson shot-noise.
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Figure 3.3: χ2 distribution corresponding to the fitted parameters for different numbers of simulations
(colored histograms), compared to the predicted distribution (black). In the bottom panels, comparison
with the matrix with parameters fitted from ξ(r) and the numerical matrix. The errors on the mean and
the variance are computed with bootstrap method.

Figure 3.4: Left Panel: Contour plots at 68 and 95 per cent of confidence level for the cosmological
parameters Ωm and σ8, computed with different covariance matrices: full numerical (gray), no-fit
model (pink), Nsims = 30 fit (blue), Nsims = 100 fit (yellow), Nsims = 10000 fit (red). Right Panel:
Figure of merit in the Ωm −σ8 plane for different covariance cases: the numerical covariance matrix
drawn from the full set of Nsims = 10000 simulation, our model covariance for varying Nsims where we
use the best-fit values for b and α as found from the likelihood minimization, and the model covariance
where we use b fit from the 2-point correlation function and α = 0. The error bars are computed from
an average of n = 10 realizations, as ϵ = σ/

√
n.
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we vary the linear bias and two cosmological parameters, Ωm and σ8, which enter through
the linear matter power spectrum. We choose the following flat priors for these parameters:
{b,Ωm,σ8} ∈ {[0,5], [0.20,0.35], [0.7,0.9]}. As for the covariance, we use our model covari-
ance set to the best-fit values of Fig. 3.2. Note that we allow the bias of the covariance model
to be different to the bias in the correlation function model. This is because we expect the
former to also play a role in absorbing the missing terms in the covariance model, and thus
lose its physical meaning of bias. For comparison, we also consider the case in which co-
variance and correlation function biases are the same, i.e. Cξ. All the cases are compared to
the results with the full numerical covariance Cn. The results are shown in the left panel of
Fig. 3.4. As expected, our model covariance with only Nsims = 30 simulations does not bias
the contours of the parameters with respect to the numerical one built from Nsims = 10000
simulations. By eye, the fixed model covariance seems to be as good as the others, deviating
by a small amount from the numerical one. To better evaluate the differences between the
results, in the right panel of Fig. 3.4 we show the FoM for the resulting posteriors. To take
into account the statistical uncertainty of the likelihood maximization process, we compute
the figure of merit as the average over n = 10 realizations, with errors given by the standard
error ε = σ/

√
n. Clearly, the figure of merit here is to be intended as an overall estimate of

the parameters errors and it is relevant only in its departure from the fiducial value. A good
covariance matrix would give the same FoM as numerical fit on 10,000 realizations: a higher
FoM indicates errors that are too small, while a low FoM indicates errors that are too large.
The result confirms that our model covariance works well already with Nsims = 30, and pro-
vides a perfect match for Nsims = 100 simulations. We also find a curious effect: using too few
simulations provides a covariance matrix that not only varies from one set of 30 simulations
to another, but one that is also systematically biased towards high FoM (underestimation of
the error bars). With too few simulations, the numerical matrix turns out to be inaccurate,
providing a biased fit of the model. As shown in left panel of Fig. 3.2, the covariance fit-
ted from 30 simulations underestimates the true covariance; different results can be obtained
from different subsets of simulations, as the data on which performing the fit can be biased in
the opposite direction. The inaccuracy of such fit is confirmed by the FoM of Fig. 3.4.

Finally, we see that using a covariance where we fix the bias to the fitted value to the 2-
point correlation function measurements and α= 0, i.e. Cξ, provides a ∼ 20% underestimation
of the error with respect to the numerical one, meaning that such a matrix is not accurate
enough to allow for a proper estimation of cosmological constraints.

3.3.3 Test 2: Bispectrum
As a second test, we study the bispectrum, i.e. the three-point correlation function in Fourier
space, on the same halo catalogs used for the first test. The motivation for choosing this ob-
servable as a test is twofold: first, it is an example where the covariance matrix can have very
large dimensions. As compared to the power spectrum, where the covariance matrix is built
from a data vector with typically N ∼ 20−50 components, for the bispectrum the data vector
may contain hundreds to thousands of triangles. Such a large data vector, and consequently
covariance matrix, makes it very tricky to use the numerical covariance matrix as defined in
Eq. (3.13). This is because we usually need Nsims ≫ N to beat numerical noise, Nsims being
the number of simulations and N the dimension of the data vector. Moreover, whenever the
number of simulations is lower than the dimension of the data vector, the numerical covari-
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Figure 3.5: Cross-correlation matrix ri j of the halo bispectrum covariance for the model covariance
(left) and the numerical covariance computed on Nsims = 10000 simulations (right).

ance matrix cannot be inverted. Secondly, it is a way of testing a more realistic scenario,
as the modeling of the bispectrum is significantly more involved than the one for a 2-point
function. In fact, as we will see, the model covariance we are going to use is knowingly
incomplete, and our method will not be able to perform as well as a numerical covariance
matrix drawn from Nsims = 10000 simulations. It will show, however, that a fit with param-
eters can help in building a reliable covariance matrix, even if the model is incomplete, as
compared to considering a diagonal Gaussian covariance matrix.

The bispectrum and its covariance

Let us first set the notation on the bispectrum. Differently than the previous example, we
work in Fourier space, and the bispectrum is defined as

⟨δ(k1)δ(k2)δ(k3)⟩ =
δK(k1+k2+k3)

k3
f

B(k1,k2,k3), (3.32)

where δ(k) is the discrete Fourier transform of the density contrast δ(x), δK is the Kronecker
symbol (equal to unity when the argument vanishes, zero otherwise) and k f = 2π/L is the
fundamental frequency of a cubic box of volume L3. We measure the bispectrum for all
the 10000 PINOCCHIO halo catalogs. We use unbiased estimators for the measurement of
the bispectrum following the definition of Scoccimarro et al. (1998); Scoccimarro (2015).
We implement a fourth-order density interpolation and the interlacing scheme described in
Sefusatti et al. (2016). We divide k-modes into bins of width ∆k = k f and up to a kmax = 0.12
h/Mpc, for a total of 29 k-bins and 2766 triangles.

We consider the approximation for the bispectrum covariance given by3 Sefusatti et al.
3The complete formula for the bispectrum covariance would read

CB
i j =CB,(PPP)

i j +CB,(BB)
i j +CB,(PT )

i j +CB,(P6)
i j , (3.33)

where T and P6 are the trispectrum and pentaspectrum, respectively. The “PT” term represents the product of
the power spectrum and trispectrum. As explained below, we are approximating the PT term to be proportional
to the BB term and neglect P6. See Biagetti et al. (2022) for more details.
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(2006); Biagetti et al. (2022)

CB
i j = αCB,(PPP)

i j +βδK
ki

3k j
3
CB,(BB)

i j , (3.34)

where α and β are free parameters and δK
ki

3k j
3

is a Kronecker symbol which is non-vanishing

when the two triangles i and j have the smallest side in common, i.e. ki
3 is equal to k j

3.
The first term, CB,(PPP)

i j , is the Gaussian contribution, which we write down in the thin-shell
approximation as

CB,(PPP)
i j ≃

δi j sB

k3
f Ni

tr
P(ki

1) P(ki
2) P(ki

3) , (3.35)

where sB = 6,2,1 is the symmetry factor accounting for the shape of the triangles (equilateral,
isosceles and scalene, respectively) and Ni

tr is the number of fundamental triangles in the
triangle bin

{
ki

1,k
i
2,k

i
3

}
. The second term is defined as

CB,(BB)
i j ≃ Bi B j

(
Σ11

i j +8 perm.
)
, (3.36)

where i and j indicate the triangle bins {ki
1,k

i
2,k

i
3} and {k j

1,k
j
2,k

j
3}, respectively, Bi is the bis-

pectrum for the triangle bin i and Σab
i j is a mode-counting factor that depends again on the

shape of the triangle. Both terms are computed using measurements of the power spectrum
and bispectrum directly, without using any perturbative calculation. The resulting covariance
has a block-diagonal structure, which we show in the left panel of Fig. 3.5 by plotting the
cross-correlation matrix

ri j =
Ci j√
CiiC j j

, (3.37)

which helps in visualizing the importance of off-diagonal elements with respect to diagonal
ones.

For comparison, we also plot the numerical covariance for Nsims = 10000, in the right
panel of the same figure. The numerical covariance shows a similar block diagonal struc-
ture as the modeled one. Indeed, these particular non-diagonal entries of the bispectrum
covariance are the largest terms in the non-Gaussian covariance (Biagetti et al. 2022). Based
on theoretical considerations (Barreira 2019; Biagetti et al. 2022), we expect that α ≃ 1 and
β≃ 2. In particular, β= 2 assumes that the contribution due the product of the power spectrum
and trispectrum of the field can be approximated by the term in Eq. (3.36), a good approx-
imation for squeezed triangles, but not for generic shapes. In the numerical covariance, we
can clearly see more structure outside the blocks, which Eq. (3.34) does not model.

Results

Having defined the model covariance for the bispectrum test, we can proceed with the same
steps as done for the 2-point correlation function in the Section 3.3.2.

We maximize the likelihood of Eq. (3.16) varying α and β using sets of Cn for Nsims = 30,
50, 100, 1000 and 10000 as in the previous test. We plot the contour plots for α and β in
Fig. 3.6. Interestingly, the theoretical values do not fall within the contours for Nsims = 1000
and Nsims = 10000. In fact, this is not surprising, since the model covariance is an incomplete
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Figure 3.6: Same of left panel of Fig. 3.2 for the bispectrum covariance. The parameters α and β
represent the amplitude of the Gaussian and (part of the) non-Gaussian covariance, respectively, as
defined in Eq. (3.34).

model of the full covariance, which has non-zero elements also outside the block-diagonal
structure modeled by Eq. (3.34). These non-zero elements might be sourced by a connected
6-point function, or by correlated noise. Even though these terms are small compared to the
ones we model, when considering a large number of simulations they become significant with
respect to sample noise and the fit tries to adapt shifting the central values of α and β.

Using the best-fit values for the α and β parameters obtained from maximizing the likeli-
hood, we perform the χ2 test introduced in the previous section in order to verify the perfor-
mance of our model covariance. We show results in Fig. 3.7. Differently than for the 2-point
correlation function, our model for the bispectrum covariance does not perform as well as
the numerical covariance obtained from Nsims = 10000 simulations. Indeed, even though the
mean µ of the χ2 distribution of our model covariance is in good agreement with the theo-
retical value of µ = 2766 already at Nsims = 100 simulations, the variance σ2 is significantly
off.4 Again, we can expect this given that our model covariance is incomplete. Nevertheless,
it is useful to point out that, in the absence of a theoretical prior on the free parameters, and
a numerical covariance, this method would prove useful in building a good approximation of
the true covariance. Indeed, given that the mean of the χ2 is within the theoretical value, we
expect that our model covariance does not bias strongly parameter estimation. For compari-
son, we compute the histogram also for the pure Gaussian covariance, i.e. a model covariance
built fixing α = 1 and β = 0, see Eq. (3.35). In this case, both the mean and the variance of
the histogram are significantly off from the theoretical curve.

In order to further confirm that the failure of the χ2 test is linked to the incompleteness
of the model, we perform the following test: we calculate the numerical covariance matrix

4It is interesting to point out that even the numerical covariance does not fit perfectly well the reference χ2.
We attribute this fact to the actual likelihood of the bispectrum not being Gaussian, at this volume.
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Figure 3.7: Same of Fig. 3.3, for the bispectrum covariance.

Figure 3.8: χ2 distribution for the full numerical (gray), block-diagonal numerical (blue), and model
(red) covariance.
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where we only keep the block diagonals that are modeled by our model covariance, putting all
other off-diagonal terms to zero. We then redo the χ2 test using this numerical covariance and
compare to the result that we got using the model covariance with Nsims = 10000 simulations.
We show the result of this test in Fig. 3.8. Indeed, if we only consider the blocks that we
model in the numerical covariance, the χ2 test gives a very similar result as for the model
covariance.
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Chapter 4

Cluster number counts results

In this chapter we describe the results of the covariance validation and likelihood analyses for
the number counts, presented in Euclid Collaboration: Fumagalli et al. (2021). The aim of
this work is to assess the contribution of shot-noise and sample variance to the statistical error
budget expected for the Euclid photometric survey of galaxy clusters. The expectation is that
the level of shot-noise error would decrease due to the large number of detected clusters,
making the sample variance not negligible anymore. First, in Sect. 4.1, we describe and
validate the analytical model of Hu & Kravtsov (2003) for the covariance matrix, which takes
into account both sources of statistical error. Once we verified to have a correct description
of the covariance, we move to the likelihood analysis (Sect. 4.2.2). We analyze the optimal
redshift and mass binning scheme, which will ensure to extract the cosmological information
in the best possible way. Then, we test the effects on parameter posteriors of different model
assumptions: likelihood model, inclusion of sample variance and cosmology dependence.

4.1 Covariance matrix model
To describe the covariance associated to cluster number counts (Eq. 1.24), we consider the
analytical model proposed by Hu & Kravtsov (2003) and validate its predictions against sim-
ulated data. For number counts, the total covariance is given by the sum of the shot-noise
variance and the sample covariance,

C =CSN+CSV . (4.1)

According to the model, such terms can be computed as

CSN
abi j = ⟨N⟩ai δab δi j , (4.2)

CSV
abi j = ⟨Nb⟩ai ⟨Nb⟩b j S ab , (4.3)

where ⟨N⟩ai and ⟨Nb⟩ai are respectively the expectation values of number counts and number
counts times the halo bias in the i-th mass bin and a-th redshift bin,

⟨N⟩ai = Ωsky

∫
∆za

dz
dV

dzdΩ

∫
∆Mi

dM
dn
dM

(M,z) , (4.4)

⟨Nb⟩ai = Ωsky

∫
∆za

dz
dV

dzdΩ

∫
∆Mi

dM
dn
dM

(M,z)b(M,z) . (4.5)
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The term S ab is the covariance of the linear density field between two redshift bins,

S ab = D(za) D(zb)
∫

d3k
(2π)3 P0(k)Wa(k)Wb(k) , (4.6)

where D(z) is the linear growth rate, P0(k) is the linear matter power spectrum at the present
time, and Wa(k) is the window function of the redshift bin, which depends on the shape of the
volume probed. The window function for a redshift slice of a light cone is given in Costanzi
et al. (2019) and takes the form

Wa(k) =
4π
Va

∫
∆za

dz
dV
dz

∞∑
ℓ=0

ℓ∑
m=−ℓ

(i)ℓ jℓ[k r(z)]Yℓm(k̂) Kℓ , (4.7)

where dV/dz and Va are respectively the volume per unit redshift and the volume of the slice,
which depend on cosmology. Also, in the above equation jℓ[k r(z)] are the spherical Bessel
functions, Yℓm(k̂) are the spherical harmonics, k̂ is the angular part of the wave-vector, and
Kℓ are the coefficients of the harmonic expansion, such that

Kℓ =
1

2
√
π

for ℓ = 0 ,

Kℓ =
√
π

2ℓ+1
Pℓ−1(cosθ)−Pℓ+1(cosθ)

Ωsky
for ℓ , 0 ,

where Pℓ(cosθ) are the Legendre polynomials.
The shot-noise and sample variance components described above are compared with the

corresponding numerical matrices, namely ĈSN and ĈSV, defined as

ĈSN
abi j = N̂ia δab δi j , (4.8)

ĈSV
abi j = Ĉabi j− ĈSN

abi j , (4.9)

where Ĉabi j is the total numerical matrix computed with the estimator of Eq. (3.8), and N̂ai
are the observed number counts in the a-th redshift bin and i-th mass bin.

4.1.1 Covariance model validation on spherical volumes
We test the Hu & Kravtsov (2003) model in the simple case of a spherically symmetric
survey window function, to quantify the level of agreement with the numerical matrix, before
applying it to the more complex geometry of light cones. The analytical model is simpler
than the one described above, as in this case we consider only the correlation between mass
bins at the fixed redshift of a PINOCCHIO snapshot. For the sample covariance, Eq. (4.3)
becomes

CSV
i j = ⟨Nb⟩i ⟨Nb⟩ j σ2

R , (4.10)

where the variance σ2
R is given by Eq. (1.3), which contains the Fourier transform of the

top-hat window function (Eq. 1.4).
The numerical matrix is obtained by computing spherical random volumes of fixed radius

from the 1000 periodic boxes at a given redshift; the number of spheres was chosen in order to
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Figure 4.1: Normalized covariance from simulations (upper triangle) and analytical model (lower
triangle), computed for 106 spheres of radius R = 200h−1 Mpc at redshift z = 0.506, in 10 log-spaced
mass bin in range M = 1014 – 1016 M⊙. In the left panel, relative difference between simulations and
model for the diagonal elements of the sample covariance matrix (blue) and for the shot-noise (red).

Figure 4.2: Sample variance level with respect to shot-noise, as a function of the filtering scale R, at
low mass (M = 1014 M⊙) and different redshifts.

obtain a high number of (statistically) non-overlapping sampling volumes from each box and
thus depends on the radius of the spheres. The resulting covariance, computed by applying
Eq. (3.8) to the whole set of sampling spheres, has been compared with the model, with
filtering scale R equal to the radius of the spheres.

In Fig. 4.1 we show the resulting normalized matrices, which is defined as

Rabi j =
Cabi j√

Caaii Cbb j j
. (4.11)

The covariance is computed for R = 200h−1 Mpc, with 103 spherical sub-boxes for each box,
for a total of 106 samples. The redshift is z = 0.506, and we used 10 log-spaced mass bins
in the range M = 1014 – 1016 M⊙. For a better comparison, in the right panel we show the
normalized difference between simulations and model, for the diagonal sample variance terms
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and for shot-noise. We notice that the predicted variance is in agreement with the simulated
one with a discrepancy less than 2 percent. We also notice a slight underestimation of the
covariance predicted by the model at low masses and a slight overestimation at high masses.
We ascribe this to the modeling of the halo bias, whose accuracy is affected by scatter at the
few percent level.

In Fig. 4.2 we show the (maximum) sample variance contribution relative to the shot-noise
level, as a function of the filtering scale, for different redshifts. The curves, predicted by the
model, show that the level of sample variance is lower at high redshift, where the shot-noise
dominates due to the small number of objects. Instead, at low redshift (z < 1) the sample
variance level is even higher than the shot-noise one, and increase as the radius of the spheres
decrease; this means that, at least at low redshift where the volumes of the redshift slices in
the light cones are small, such contribution cannot be neglected, not to introduce systematics
or underestimate the error on the parameter constraints.

4.1.2 Covariance model validation on the light cone
As described in Sect. 3.1, the first step of the validation process consists in the direct com-
parison of the analytical covariance with the numerical matrix. In Fig. 4.3 we show the nor-
malized covariance matrix, obtained from simulation (upper triangle) and from the model
(lower triangle). By looking at the numerical matrix (upper panel), it can be observed that
the correlation induced by the sample variance is clearly detected in the block-diagonal co-
variance matrix (i.e., between mass bins), at least in the low-redshift range where the sample
variance contribution is comparable to the shot-noise level. Instead, the off-diagonal and the
high-redshift diagonal terms appear affected by the statistical noise, which completely domi-
nates over the weak sample variance (anti-)correlation. In the lower panel we show the same
matrix computed with the analytical model: by comparing the two results, we note that the
covariance matrix derived from simulations is well reproduced by the analytical model, at
least for the diagonal and the first off-diagonal terms, where the former is not dominated by
statistical noise.

To ease the comparison between simulations and model and between the amount of cor-
relation of the various components, in Fig. 4.4 we show the covariance from model and sim-
ulations for different terms and components of the matrix, as a function of redshift: in blue
we show the sample variance diagonal terms (i.e., same mass and redshift bin, CSV

aaii), in red
and orange the diagonal sample variance in two different mass bins (CSV

aai j with respectively
j = i+1 and j = i+2), in green the sample variance between two adjacent redshift bins (CSV

abii,
b = a+ 1) and in gray the shot-noise variance (CSN

aaii). In the upper panel we show the com-
ponents of the full covariance, in the central panel the covariance normalized with respect
to the shot-noise term, and in the lower panel the normalized difference between model and
simulations. Confirming what was noticed from Fig. 4.3, the block-diagonal sample variance
terms are the dominant sources of error at low redshift, with a signal that rapidly decreases
when considering different mass bins (blue, red and orange lines), while shot-noise domi-
nates at high redshift. We also observe that the cross-correlation between different redshift
bins produces a small anti-correlation, whose relevance however seems negligible; further
considerations about this point will be presented in Sect. 4.2.2.

Regarding the comparison between model and simulations, the figure clearly shows that
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Figure 4.3: Normalized sample covariance between redshift and mass bins (Eq. 4.11), from simula-
tions (upper triangle) and analytical model (lower triangle). The matrices are computed in the redshift
range z = 0– 2 with ∆z = 0.2 and the mass range = 1014 – 1016 M⊙, divided in 5 log-spaced bins. Black
lines denote the redshift bins, while in each black square there are different mass bins.

the analytical model reproduces with good agreement the covariance from simulations, with
deviations within the 10 percent level. Such agreement was expected, as the modes responsi-
ble for the sample covariance are generally very large, well within the linear regime in which
the model operates. Part of the difference can be ascribed to the statistical noise, which pro-
duces random fluctuations in the simulated covariance matrix. We also observe, mainly on
the block-diagonal terms, a slight underestimation of the correlation at low redshift and a
small overestimation at high redshift, which are consistent with the under/overestimation of
the T10 halo bias shown in the right panel of Fig. 2.3. Nevertheless, this discrepancy on the
covariance errors has negligible effects on the parameter constraints, at this level of statistics.
This comparison will be further analyzed in Sect. 4.2.2.

4.2 Cosmological parameter estimation
In this section we presents the results of the likelihood analysis. We first determine the best
mass and redshift binning scheme for both the Poissonian and Gaussian likelihood functions.
Then, we perform the likelihood analysis to assess the impact of the difference between the
analytical and numerical covariance on the cosmological posteriors. Finally, we constrain
the cosmological parameters Ωm and σ8 with different covariance configurations, such as
shot-noise versus sample covariance, full versus diagonal matrix, and cosmology dependent
versus fixed covariance.
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Figure 4.4: Covariance (upper panel) and normalized covariance (central panel) as predicted by the
Hu & Kravtsov (2003) analytical model (solid lines) and by simulations (dashed lines) for different
components: diagonal sample variance terms in blue, diagonal sample variance terms in two different
mass bins in red and orange, sample variance between two adjacent redshift bins in green and shot-
noise in gray. In the lower panel, residuals between analytical model and simulations. The matrices
are computed in the redshift range z = 0– 2 with ∆z = 0.1 and the mass range = 1014 – 1016 M⊙, divided
in 5 log-spaced bins. The curves are represented as a function of redshift, in the first mass bin (i = 1).

4.2.1 Binning scheme
The optimal binning scheme should ensure to extract the maximum information from the data
while avoiding wasting computational resources with an exceedingly fine binning: adopting
too large bins would hide some information, while too small bins can saturate the extractable
information, making the analyses unnecessarily computationally expensive. Such saturation
occurs even earlier when considering the sample covariance, which strongly correlates nar-
row mass bins. Moreover, too narrow bins could undermine the validity of the Gaussian
approximation due to the low occupancy numbers. This can happen also at high redshift,
where the number density of halos drops fast.

To establish the best binning scheme for the Poissonian likelihood function, we analyze
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the data assuming four redshift bin widths ∆z = {0.03,0.1,0.2,0.3} and three numbers of mass
bins NM = {50,200,300}. In the left panel of Fig. 4.5 we show the FoM as a function of ∆z, for
different mass binning. Since each result of the likelihood maximization process is affected
by some statistical noise, the points represent the mean values obtained from 5 realizations
(which are sufficient for a consistent average result), with the corresponding standard error.
About the redshift binning, the curve increases with decreasing ∆z and flattens below ∆z ∼
0.2; from this result we conclude that for bin widths ≲ 0.2 the information is fully preserved
and, among these values, we choose ∆z = 0.1 as the bin width that maximize the information.
The change of the mass binning affects the results in a minor way, giving points that are
consistent with each other for all the redshift bin widths. To better study the effect of the
mass binning, we compute the FoM also for NM = {5,500,600} at ∆z = 0.1, finding that the
amount of recovered information saturates around NM = 300. Thus, we use NM = 300 for the
Poissonian likelihood case, corresponding to ∆ log10(M/M⊙) = 0.007.

We repeat the analysis for the Gaussian likelihood (with full covariance), by considering
the redshift bin widths ∆z= {0.1,0.2,0.3} and three numbers of mass bins NM = {5,7,10}, plus
NM = {2,20} for ∆z = 0.1. We do not include the case of a tighter redshift or mass binning,
to avoid deviating too much from the Gaussian limit of large occupancy numbers. The result
for the FoM is shown in the right panel of Fig. 4.5, from which we can state that also for the
Gaussian case the curve starts to flatten around ∆z∼ 0.2 and ∆z = 0.1 results to be the optimal
redshift binning, since for larger bin widths less information is extracted and for tighter bins
the number of objects becomes too low for the validity of the Gaussian limit. Also in this
case the mass binning does not influence the results in a significant way, provided that the
number of binning is not too low. We decide to use NM = 5, corresponding to the mass bin
widths ∆ log10(M/M⊙) = 0.4. According to Eq. (3.10), since we use NS = 1000 and ND = 100
(20 redshift bins and 5 mass bins), we correct the precision matrix by a factor of 0.90. Also,
from Eq. 3.11 we obtain f = 1.11, meaning an 11 percent increase of parameter error bars due
to sampling noise. However, since after the firsts off-diagonal terms the other elements are
dominated by noise (see Sect. 4.1), we can set them to zero by decreasing this factor around
unity.

4.2.2 Likelihood definition
We compare the three likelihood functions listed in Sect. 3.1, i.e., Poissonian, Gaussian with
only shot-noise, and Gaussian with shot-noise and sample variance. The cosmological pos-
teriors resulting from likelihood comparison are shown in Fig. 4.6. For the last case we com-
pute the analytical covariance matrix at the input cosmology and compare it with the results
obtained by using the covariance matrix from simulations. The corresponding FoM in the
Ωm –σ8 plane is shown in Table 4.1. The first two cases look almost the same, meaning
that a finer mass binning as the one adopted in the Poisson likelihood does not improve the
constraining power compared to the results from a Gaussian plus shot-noise covariance. In
contrast, the inclusion of the sample covariance (blue and black contours) produces wider
contours (and smaller FoM), indicating that neglecting this effect leads to an underestimation
of the error on the parameters. Also, there is no significant difference in using the covariance
matrix from simulations or the analytical model, since the difference in the FoM is below
the percent level. This result means that the level of accuracy reached by the model is suf-
ficient to obtain an unbiased estimation of parameters in a survey of galaxy clusters having
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Figure 4.5: Figure of merit for the Poissonian likelihood (left panel) and Gaussian likelihood(right
panel)as a function of the redshift bin widths, for different numbers of mass bins. The points represent
the average value over 5 realizations and the error bars are the standard error of the mean. A small
horizontal offset has been applied to make the comparison clearer.

sky coverage and cluster statistics comparable to that of the Euclid survey. According to this
conclusion, we will use the analytical covariance matrix to describe the statistical errors for
all following likelihood evaluations.

Having established that the inclusion of the sample variance has a non-negligible effect on
parameter posteriors, we focus on the Gaussian likelihood case. In Fig. 4.7 we show the re-
sults obtained by using the full covariance matrix and only the block-diagonal of such matrix
(Ci jαα), i.e. considering shot-noise and sample variance effects between masses at the same
redshift but no correlation between different redshift bins. The resulting contours present
small differences, as can be seen from the comparison of the FoM in Table 4.1: the difference
in the FoM between the diagonal and full covariance cases is about half of the effect gener-
ated by the inclusion of the full covariance with respect the only shot-noise cases. This means
that, at this level of statistics and for this redshift binning, the main contribution to the sam-
ple covariance comes from the correlation between mass bins, while the correlation between
redshift bins produces a minor effect on the parameter posteriors. However, the difference
between the two FoMs is not necessarily negligible: for three parameters, a ∼25% change in
the FoM corresponds to a potential underestimate of the parameter error barby ∼10%. The
Euclid Consortium is presently requiring for the likelihood estimation that approximations
should introduce a bias in parameter error bars that is smaller than 10%, so as not to impact
the first significant digit of the error. Because the list of potential systematics at the required
precision level is long, one should avoid any oversimplification that alone induces such a
sizable effect. The full covariance is thus required to properly describe the sample variance
effect at the Euclid level of accuracy.

4.2.3 Cosmology-dependent covariance
We also investigate if there are differences in using a cosmology-dependent covariance ma-
trix instead of a cosmology-independent one. In fact, the use of a matrix evaluated at a fixed
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Figure 4.6: Contour plots at 68 and 95 percent of confidence level for the three likelihood func-
tions: Poissonian (red), Gaussian with shot-noise (orange) and Gaussian with shot-noise and sample
variance, with analytical (blue) and numerical (black) covariance. The gray lines represent the input
values of parameters.

Figure 4.7: Same of Fig 4.6 for the Gaussian likelihood with full (blue) and block-diagonal (black)
covariance.
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Table 4.1: Figure of merit for the different likelihood and covariance cases. In the third column,
percent difference with respect to the numerical Gaussian with full covariance case.

Case FoM ∆FoM / FoMnum

Poissonian 4057193 ± 55001 + 58 %
Gaussian, SN 4010045 ± 30740 + 56 %
Gaussian, SN+SV 2561753 ± 34429 –
Gaussian, SN+SV, model 2549035 ± 24251 + 0 %
Gaussian, SN+SV, model diag 1892933 ± 37907 − 26 %

cosmology can represent an advantage, by reducing the computational cost, but may bias the
results. In Fig. 4.8 we compare the parameters estimated with a cosmology-dependent covari-
ance (black contours), i.e., recomputing the covariance at each step of the MCMC process,
with the posteriors obtained by evaluating the matrix at the input cosmology (blue contours),
or assuming wrong values for Ωm, log10 As and σ8, chosen in order to have departures from
the fiducial values of the order of 2σ from Planck Collaboration VI. (2020). Specifically, we
fix the parameter values at Ωm = 0.320, log10 As = −8.625 and σ8 = 0.884 for case A (orange
contours) and Ωm = 0.295, log10 As = −8.685 and σ8 = 0.776 for case B (red contours). We
notice, also from the FoM comparison shown in Table 4.2, that there is no appreciable differ-
ence between the first two cases. In contrast, when a wrong-cosmology covariance matrix is
assumed we can find either tighter or wider contours, meaning that the effect of shot-noise
and sample variance can be either under- or over-estimated. Thus, the use of a cosmology-
independent covariance matrix in the analysis of real cluster abundance data might lead to
under/overestimated parameter uncertainties at the level of statistic expected for Euclid. On
the contrary, the use of a cosmology-dependent covariance does not affect the amount of in-
formation obtainable from the data compared to the input-cosmology case. An alternative
way to include the cosmology dependence of the covariance is to perform an iterative like-
lihood analysis, in which a cosmology-independent covariance is updated in every iteration
according to the maximum likelihood cosmology retrieved in the previous step (Eifler et al.
2009).

Table 4.2: Figure of merit for the covariance models of Fig. 4.8

Case FoM ∆FoM / FoMnum

Gaussian, model, input cosmo 2540312 ± 55312 –
Gaussian, model, cosmo-dependent 2549035 ± 24251 + 0 %
Gaussian, model, wrong cosmo A 1571553 ± 33840 − 38 %
Gaussian, model, wrong cosmo B 4526915 ± 135452 + 78 %
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Figure 4.8: Contour plots at 68 and 95 per of cent confidence level for the Gaussian likelihood
with: cosmology-dependent covariance matrix (black), covariance matrix fixed at the input cos-
mology (blue) and covariance matrices computed at two wrong cosmologies, one with Ωm = 0.320,
log10 As =−8.625,σ8 = 0.884 (case A, orange) and one withΩm = 0.295, log10 As =−8.685,σ8 = 0.776
(case B, red). The gray dotted lines represent the input values of parameters.

4.2.4 Sample covariance on different surveys
We repeated the likelihood comparison by mimicking other surveys of galaxy clusters, which
differ in their volume sampled and their mass and redshift ranges. More specifically, we
consider a Planck-like (Tauber et al. 2010) and an SPT-like (Carlstrom et al. 2011) cluster
survey, both selected through the Sunyaev–Zeldovich effect, which represent two of the main
currently available cluster surveys. We also analyze an eROSITA-like (Predehl 2014) X-ray
cluster sample, an upcoming survey that, although not reaching the level of statics that will
be provided by Euclid, will produce a much larger sample than current surveys.

The light cones have been extracted from our catalogs, by considering the properties
(aperture, selection function, redshift range) of the three surveys, as provided by Bocquet
et al. (2016, see Fig. 4 in their paper)1. For simplicity, we neglect the survey footprints, but
consider a spherical window-function described by a fixed size opening angle.

The properties of the surveys are as follows:

SPT-like sample: we consider light cones with an area of 2500 deg2, obtained by extracting
a conical volume with an aperture of θ = 28.5◦ at the center of our Euclid light cones.
The resulting catalogs contain ∼ 1100 halos with redshifts z> 0.25 and masses M500c ≥

3× 1014 M⊙. We analyze the redshift range z = 0.25–1.5 with bins of width ∆z = 0.2
1Masses in the paper are defined at the overdensity ∆ = 500 with respect to the critical density; the con-

version to virial masses has been performed with the python package hydro mc (https://github.com/
aragagnin/hydro_mc).
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and the mass range M500c = 3×1014 – 3×1015 M⊙, divided in 10 bins for the Poissonian
case and in 3 bins for the Gaussian case.

Planck-like sample: we use the redshift-dependent selection function shown in the reference
paper. Since the aperture of the Planck survey is about twice the size of the Euclid one,
we stack together two light cones to obtain a Planck-like light cone; each of the 500
resulting samples contains ∼ 650 objects. We consider the redshift range z = 0– 0.8
with ∆z = 0.25 and mass range Mvir = 1014 – 1016 M⊙; the number of mass bins varies
for different redshift bins due to the redshift-dependent selection function, and it is
chosen in order to have non-empty bins at each redshift (at least 10 objects per bin).

eROSITA-like sample: we select halos according to the redshift-dependent selection func-
tion given by M500c(z) ≥ 2.3z × 1014 M⊙, with a mass cut at 7×1013 M⊙. We analyze
the redshift range z = 0– 2 with ∆z = 0.1 and the mass range Mvir = 1014 – 1016 M⊙ with
binning defined in order to have non-empty redshift bins, as for the Planck case. Also in
this case, we stack together four PINOCCHIO light cones to create a full-sky eROSITA
light cone, obtaining 250 samples containing ∼ 2×105 objects. For the purpose of this
analysis we did not include any sensitivity mask, to account for the different depths of
different surveyed area, due to the eROSITA scanning strategy.

In Fig. 4.9 we show the distribution of cluster masses of the three samples with their
selection function, for comparison to the full Euclid-like catalog. For both SPT and Planck,
despite the different selection functions that favor different mass and redshift ranges, the
number of objects is low, so we expect shot-noise to be the main source of uncertainty. In
contrast, the eROSITA sample contains a larger number of halos, which should lower the
level of shot-noise and make the sample variance non-negligible.

In Fig. 4.10 we show the resulting average contours for the three samples, obtained with
the Poissonian and Gaussian (full covariance) likelihood functions. for the Planck and SPT
cases, the contours from the Gaussian case coincide with the Poissonian ones, confirming that
for their survey properties, which produce a low number of objects, the shot-noise dominates
over the sample variance. Thus, the use of the Poissonian likelihood still represents a good
approximation that does not introduce significant differences at the level of statistics given
by the present surveys. Moreover, no systematic effects related to uncertainties in the rela-
tion between mass and observable (integrated Compton-y parameter in this case), have been
included in the analysis. Unlike Euclid, for these surveys such an uncertainty is expected
to dominate the resulting uncertainty on the cosmological parameters (Bocquet et al. 2016),
thus making the choice of the likelihood function conservative, since the posteriors would be
larger and the effect of theoretical systematics less significant.

For the eROSITA case, we note that there is a large difference between the Poissonian and
the Gaussian case, due to the inclusion of the sample variance effect. Such difference can be
ascribed to the mass selection of the survey, which makes the Gaussian contours wider due to
the fact that for an X-ray selection, the statistics of counts is dominated by low-redshift/low-
mass objects distributed within a relatively small volume. This makes the contribution of
sample variance becoming comparable to, or dominant over the shot-noise, and shows that
in order to obtain cosmological constraints from the analysis of eROSITA number counts
it is necessary to account for sample variance in order not to underestimate the error on
parameters.
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Figure 4.9: Mass distribution of the three samples extracted from a single light cone, with the respec-
tive selection functions: Planck in green, SPT in red and eROSITA in orange, overplotted to the full
Euclid sample in blue.

Figure 4.10: Contour plots at 68 and 95 percent of confidence level for the Poissonian (red) and Gaus-
sian with full covariance (blue) likelihood for the SPT-like (left), Planck-like (middle), and eROSITA
(right) samples samples. The gray dotted lines represent the input values of parameters.
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Chapter 5

Cluster clustering results

This work, presented in Euclid Collaboration: Fumagalli et al. (2022), represents a second
paper on a series, following Euclid Collaboration: Fumagalli et al. (2021). In this chapter, we
validate a semi-analytical model for the covariance of the 2-point correlation function of clus-
ters, by comparison with a numerical matrix. Since the final purpose is to apply this model
covariance in the analysis of photometric data, we simply consider the real-space clustering.
In fact, the redshift-space distortions of the monopole of the 2PCF are negligible with respect
to the distortion produced by the photo-z uncertainties (Veropalumbo et al. 2014; Sereno et al.
2015; Lesci et al. 2022). Note that although Euclid will rely mainly on photometric data, their
precision and accuracy should allow good estimation of 3D correlation functions. In fact, the
mean redshift is expected to be known with an accuracy of σ<z> < 0.002(1+z), and precision
of σz < 0.05(1+ z) (Laureijs et al. 2011). These estimates are comparable with the accuracy
of surveys already used to study 3D cluster clustering (e.g., Sereno et al. 2015; Lesci et al.
2022).

We test the validity of a Gaussian model, with the addition of a low-order non-Gaussian
term. We are interested in understanding whether such a simple model is suitable to describe
the covariance for the future survey of galaxy clusters to be extracted from the Euclid pho-
tometric survey, estimating the impact of the missing high-order terms and of the shot-noise.
Then, we focus our attention on the study of the cosmology-dependence of the covariance, to
determine if this dependence can help to obtain a more precise estimate of the cosmological
parameters. Lastly, we test the impact of mass binning on the cosmological constraints.

This chapter is structured as follows: in Sect 5.1 we describe the measurements of the
2PCF and the associated numerical covariance, and the analytical formalism to describe the
2PCF and its covariance. Then, in Sect. 5.2 we present the results of our analysis, concerning
both the validation of the covariance model, and the likelihood forecasts to assess the impact
of the covariance on the cosmological posteriors.

5.1 Covariance matrix model
Here we present the measurements and the theoretical predictions for the 2PCF and its co-
variance. In particular, we present an analytical model for the 2PCF covariance between
radial and redshift bins (Sect. 5.1.3), and its extensions with the inclusion of mass binning
(Sect. 5.1.4.
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5.1.1 2-point correlation function measurements
We consider radial separations in range r = 20 – 130 h−1 Mpc. Such interval includes linear
scales, where the bias is almost constant (Manera et al. 2010), plus the BAO peak. We
consider all the halos above the mass threshold Mvir = 1014 M⊙, but it is straightforward to
generalize the measurement formalism for the mass binning case.

To measure the 2PCF from simulations we use the Landy & Szalay (1993) estimator

ξ̂as
h =

DDas−2DRas+RRas

RRas
, (5.1)

where DDas, DRas, RRas are the number of pairs in the data-data, data-random and random-
random catalogs, respectively, within the a-th redshift bin and s-th separation bin, normalized
for the number of objects in the data and random catalogs, NR and ND (Kerscher et al. 2000).
The random catalog has been built by randomly extracting objects from each mock and stack-
ing them together, to obtain a catalog with NR = 10 ND objects randomly distributed inside
the light cone volume. The measurement of the correlation function is performed with the
CosmoBolognaLib package (Marulli et al. 2016).

In Fig. 5.1, we show the measured 2PCF in different redshift bins, as a function of the
radial separation, averaged over the 1000 mocks and compared with the analytical prediction
of Eq. (5.4). We associate to the average measured quantities an uncertainty given by the
standard error on the mean, which is extremely small and thus not visible in the figure. The
predicted 2PCF shows an agreement within 10 percent with the numerical one at almost all
the separations and redshifts. The differences between the various redshift bins are ascribed
to the non-perfect description of the halo bias, that is underestimated at high redshift and
overestimated at low redshift. Such difference turns out to shift the cosmological posteriors
with respect to the fiducial cosmology, indicating that an accurate description of the halo bias
is fundamental to obtain unbiased constraints from the cluster clustering. Since the calibration
of the halo bias is beyond the purpose of this paper, we simply compensate this inaccuracy
by correcting the prediction for the 2PCF in the likelihood analysis with

ξ′h(θ) = ξh(θ)
⟨ ξ̂h ⟩

ξh(θfiducial)
, (5.2)

where ⟨ ξ̂h ⟩ is the measured 2PCF averaged over the 1000 simulations, and θfiducial are the
input parameters of the simulations. In this way, by construction, we provide an unbiased
description of the 2PCF which contains the correct cosmology dependence.

In Fig. 5.1, we can also notice a smaller additional difference both at small separations
and around the BAO scale, due to some non-linear effects. This confirms the correct choice
of the radial range, which cannot be further extended to avoid introducing errors due to the
limitations of a linear model.

We compute the numerical covariance matrix by using the estimator of Eq. (3.8). In the
upper triangle of Fig. 5.2, we show the numerical correlation matrix (Eq. 4.11). The result
shows a negligible cross-correlation between redshift bins, since the off-block diagonal terms
of the matrix are only populated by noise consistent with zero signal. On the contrary, inside
each redshift bin there is a significant non-diagonal correlation, especially at low redshift.
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Figure 5.1: Top panel: measured (colored dots) and predicted (black lines) 2PCF of halos as a function
of the radial separation, for different redshift bins. Bottom panel: percent residuals of the model with
respect to the numerical function.

Figure 5.2: Numerical (upper triangle) and analytical (lower triangle) normalized covariance matrices.
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5.1.2 2-point correlation function
The halo 2PCF is defined as the Fourier transform of the halo power spectrum; following
Eqs. (1.11) and (1.22), we can write

ξh(r,z |M) = b
2
(z |M)

∫
dk k2

2π2 Pm(k,z) j0(kr) , (5.3)

where Pm(k,z) is the matter power spectrum, j0(kr) is the zero-order spherical Bessel func-
tion, r is the comoving radial separation, and b(z |M) is the effective linear bias of Eq. (2.11).
For sake of simplicity, we validate our model considering halos with mass above a fixed
threshold; in Sect. 5.1.4, we extend the discussion to the case with mass binning. As de-
scribed in Sect. 1.1.2, we correct such prediction with the IR (Eq. 1.13), to correct for the
broadening and the shift of the BAO peak.

The final expression for the real-space 2PCF of halos to be compared with observations
is obtained by averaging Eq. (5.3) over the a-th redshift bin and s-th separation bin,

ξas
h =

∫
dk k2

2π2

〈
b

√
Pm(k)

〉2

a
Ws(k) , (5.4)

where ⟨ ⟩a indicates the average over the redshift bin:

〈
b

√
Pm(k)

〉
a
=

∫
∆za

dz dV
dz n(z)b(z)

√
Pm(k,z)∫

∆za
dz dV

dz n(z)
, (5.5)

where dV/dz =Ωsky dV/dΩdz is the comoving volume per unit redshift and Ωsky is the survey
area in steradians.1 Ws(k) represents the spherical shell window function, given by

Ws(k) =
∫

d3r
Vs

j0(kr) =
r3

s,+Wth(krs,+)− r3
s,−Wth(krs,−)

r3
s,+− r3

s,−
, (5.6)

where Wth(kr) is the top-hat window function, Vs is the volume of the s-th spherical shell,
and rs,−, rs,+ are the extremes of the separation bin.

5.1.3 Covariance model
The 2PCF covariance can be obtained as the Fourier transform of the power spectrum covari-
ance. The latter is defined as

CP(k,k′) =
〈[

P̂(k)−⟨P̂(k)⟩
] [

P̂(k′)−⟨P̂(k′)⟩
]〉
, (5.7)

where
P̂(k) = V |δk|2−

1
n

(5.8)

is the estimator for the halo power spectrum, such that ⟨P̂(k)⟩= Ph(k). Here, V is the observed
volume and 1/n is the (Poissonian) shot-noise correction to the halo power spectrum Ph.

1This expression is valid for a conical geometry survey; in more generic cases, the integral over the lightcone
volume must take into account the geometry of the survey.
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Substituting the power spectrum estimator in Eq. (5.7) we obtain the expression of the
power spectrum covariance (Meiksin & White 1999; Scoccimarro et al. 1999)

CP(k,k′) =
(2π)3

V

[
Ph(k)+

1
n

]2 [
δD(k−k′)+δD(k+k′)

]
+

1

V n2

[
Ph(|k−k′|)+Ph(|k+k′|)+2Ph(k)+2Ph(k′)

]
+

1
V n

[
Bh(k,−k,0)+Bh(0,k′,−k)+Bh(k+k′,−k,−k′)

+Bh(k−k′,−k,k′)+Bh(k,k′−k,−k′)+Bh(k,−k′,k′)
]

+
1
V

Th(k,−k,k′,−k′)+
1

V n3 ,

(5.9)

where Bh and Th are, respectively, the bispectrum and the trispectrum of halos, i.e., the three
and four-point correlation functions in Fourier space. The first line represents the Gaussian
covariance, while the other lines represent the non-Gaussian component. As motivated in
Sect. 1.2.2, we do not consider the super-sample covariance.

By Fourier transforming Eq. (5.9) and integrating over separation and redshift bins (Cohn
2006), we obtain a model for the 2PCF covariance in the light cone

Casr =
2

Va

∫
dk k2

2π2

[〈
b

2
Pm(k)

〉
a
+

〈
1
n

〉
a

]2

Ws(k)Wr(k)

+
2

Va

∫
dk k2

2π2

〈
b

2
Pm(k)

〉
a

〈
1
n

〉2

a

Wr(k)
Vs
δsr ,

(5.10)

where s,r states for the two separation bins, while the a index is for the average over the
redshift bin, and Va is the volume of the redshift slice. The model in Eq. (5.10) is clearly a
simplification of the full covariance matrix based on the following approximations:

• by considering large redshift slices (∆z≳ 0.2), we assume the cross-correlation between
redshift bins to be negligible, as verified from the numerical matrix;

• we neglect the contribution from higher-order correlation functions, only including the
lowest order shot-noise contributions of the non-Gaussian covariance, in addition to the
Gaussian part;

• we do not include the terms that contribute only at zero separation (∝ δD(rs), δD(rr)),
since we consider larger scales;

• we do not account for the survey footprint, but consider a simplistic window-function
described by a fixed size opening angle.

5.1.4 Mass binning
We now extend the formalism to take into account the mass binning instead of a simple mass
threshold, in order to quantify the amount of information contained in the mass-dependence
of the halo bias.
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We rewrite Eq. (5.3) as

ξh(r,z |M,M′) = b(z |M)b(z |M′)
∫

dk k2

2π2 Pm(k,z) j0(kr) , (5.11)

and all the equations derived in Sect. 5.1.3 are modified according to this change. We obtain
the binned 2PCF by integrating Eq. (5.11) over the s-th separation bin, a-th redshift bin, and
between i-th and j-th mass bins. Note that now the integrals over mass (Eqs. 2.11 and 2.12)
are performed between the edges of each mass bin. The final binned 2PCF takes into account
both the auto-correlation inside a single mass interval, and the cross-correlation between
halos belonging to two different mass bins

ξ
asi j
h =

∫
dk k2

2π2

〈
bi

√
Pm(k)

〉
a

〈
b j

√
Pm(k)

〉
a

Ws(k) , (5.12)

Consequently, the covariance matrix is adapted to account for four kind of terms: auto-
correlation between auto-2PCFs (∝ ξ2ii), auto-correlation between cross-2PCFs (∝ ξ2i j), cross-
correlation between auto-2PCFs (∝ ξii ξ j j), and cross-correlation between cross-2PCFs (∝
ξi j ξkh), and reads as

Casr
i jkh =

C′asr
ik jh+C′asr

ih jk

2
, (5.13)

where

C′asr
i jkh =

2
Va

∫
dk k2

2π2

[〈
bi b j Pm(k)

〉
a
+

〈
δi j

ni

〉
a

]
×

[〈
bk bh Pm(k)

〉
a
+

〈
δkh

nk

〉
a

]
Ws Wr

+
2

Va

∫
dk k2

2π2

〈
bi bk Pm(k)

〉
a

〈
δi j

ni

〉
a

〈
δkh

nk

〉
a

Ws

Vr
δsr .

(5.14)

Here the lower indexes a, s, r indicate, respectively, the redshift bin and the two separation
bins, while the upper indexes i, j, k, h state for the mass bins. The terms ni and bi are defined
as Eqs. (2.12) and (1.22), with integrals computed between the edges of each mass bin instead
of the mass threshold.

5.2 Covariance model validation and likelihood forecasts
In this section we present the results of our analysis, concerning both the validation of the
model, and the likelihood forecasts. In Sect. 5.2.1 we define the best binning in spatial separa-
tion and redshift to extract the cosmological information, while in Sect. 5.2.2 we compare the
analytical and numerical matrices, introducing additional parameters to improve the agree-
ment between the two covariances. In Sect. 5.2.3 we study the impact of the non-Gaussian
term, and in Sect. 5.2.4 we investigate the effect of the cosmology-dependent matrix. In
Sect. 5.2.5 we evaluate the impact of mass binning.
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5.2.1 Binning scheme
Before starting the model validation, we are interested in defining the best binning scheme,
to properly extract the cosmological information. To this purpose, we perform the likelihood
analysis with different combinations of radial and redshift bin widths, for halos above the
mass threshold Mth = 1014 M⊙; the mass binning scheme will be studied in Sec. 5.2.5. For
this test, we consider only the covariance matrix extracted from numerical simulations, i.e.
the reference covariance.

We divide the separation range in different number of bins: Nr = 20,25,30,35 log-spaced,
plus Nr = 25 linearly spaced, to test the effect of a different spacing. For the redshift binning,
we test three bin widths, ∆z = 0.2,0.4,0.5, which properly divide the whole redshift range.
We do not consider thicker bins, to avoid the inclusion of non-negligible border effects in the
pair count procedure.

In Fig. 5.3, we show the FoM for the different number of radial bins, as a function of the
redshift bin width. To take into account the uncertainty in the inference process, we consider
the average and the standard error computed over 5 realizations for each case. We do not
observe a significant difference between the various ∆z, since all the cases are statistically in
agreement. About the radial binning, the FoM increases as the number of bins increases, sug-
gesting a more efficient extraction of the information, and stabilizes around Nr = 30, meaning
that no more information can be extracted by further increasing the number of radial bins.

In the following analyses, we adopt the values ∆z = 0.4 and Nr = 30 log-spaced as our
baseline redshift and radial bins choice. According to Eq. (3.10), by using NS = 1000 and
ND = 150 (5 redshift bins and 30 mass bins), we correct the precision matrix by a factor of
0.85. Also, from Eq. (3.11) we obtain f = 1.17. To reduce the sampling noise, as described in
Sect. 4.1, we manually set to zero the cross-correlation between redshift bins in the numerical
covariance, being dominated entirely by noise. The number of noise-affected bins in the
matrix is reduced to ND ∼ Nr = 30, providing a correction factor for the inverse covariance of
∼ 0.97 and a negligible increase of the parameter error bars ( f ∼ 1.03), allowing us to take
the numerical results as reference for the model comparison.

5.2.2 Covariance comparison and parameter fit
In this section, we present the validation of the analytical model of Eq. (5.10), through the
comparison with the numerical matrix. The two correlation matrices are represented, respec-
tively, in the lower and upper triangle of Fig. 5.2. For a better comparison, in Fig. 5.4 we
show the diagonal and two off-diagonal terms of the matrices as a function of the radial sepa-
ration, in three redshift bins. We can see that the model (solid lines) correctly reproduces the
reference values (shaded areas) only at low redshift, while at intermediate and high redshift
it underestimates the numerical matrix by about 30 percent on the diagonal and by about 50
percent on the off-diagonal terms. We ascribe this difference to three factors:

• non-Poissonian shot noise: the Poissonian prediction does not properly describe the
shot-noise affecting the halo power spectrum;

• inaccurate halo bias: the inaccuracy of the halo bias prediction propagates in the co-
variance model; 2

2Note that the correction of Eq. (5.2) does not apply to the covariance prediction. However, this does not
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Figure 5.3: Figure of merit in the Ωm –σ8 plane for different numbers of radial bins, as a function
of the redshift bin width. A small horizontal displacement has been applied to make the comparison
clearer.

• lack of higher-order terms: the contribution of tri- and four-point functions is not neg-
ligible. This effect especially regards the terms weighted by 1/n, that would give a
significant contribution at high redshift, where the shot noise increases.

We correct the inaccuracy of the predicted covariance by including some parameters in
the model. More specifically, we modify Eq. (5.10) by adding three free parameters {α,β,γ}

Casr =
2

Va

∫
dk k2

2π2

[〈
(βb )2Pm(k)

〉
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+

〈
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〉
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〈
(βb )2Pm(k)

〉
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〈
1+γ

n

〉2

a

Wr(k)
Vs
δsr ,

(5.15)

where β corrects for the halo bias inaccuracy, and α and γ correct for the non-Poissonian
nature of the shot-noise in the main and secondary term, respectively; the different weighting
of the shot-noise correction should also account for the effect of higher-order terms. We fit
such parameters from simulations in each redshift bin, assuming a constant value with scale
and redshift in each slice. We adopted the method described in Fumagalli et al. (2022, see
Sect. 3.3) to fit the free parameters α, β, and γ. In short, we constrain the covariance through
the maximization of a Gaussian likelihood evaluated at the fiducial cosmology, with free
covariance parameters. The best-fit covariance thus obtained is the one that best follows a
χ2 distribution with respect to the observed data. In the left panel of Fig. 5.5 we show the
χ2 distributions computed with respect to the measurements from the 1000 lightcones, for
the three covariance matrices: numerical covariance in blue, analytical covariance in green
and analytical covariance with fitted parameters in red. In Table 5.1 we report the mean and
standard deviation for each distribution, with the corresponding 1σ uncertainties computed

affect our results, as we treat the bias in the 2PCF and the one in the covariance model as two different quantities.
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Figure 5.4: Numerical (shaded areas), analytical (solid lines), and analytical with fitted parameters
(dashed lines) covariance matrices as a function of the radial separation, in three redshift bins (from
the left to the right panels: z = 0.0 – 0.4, z = 0.8 – 1.2, z = 1.6 – 2.0). Different colors represent different
components of the matrix: diagonal elements in blue, first off-diagonal elements in red and second off-
diagonal elements in green. In the subpanels, percent residuals of the model covariance with respect
the numerical matrix.

Table 5.1: χ2distribution test values.

mean variance
Numerical 149.0 ± 0.5 255.0 ± 11.7
Model 195.0 ± 0.7 494.0 ± 22.8
Model + fit 152.0 ± 0.6 302.0 ± 13.9
Reference 150 300

Table 5.2: Power spectrum best-fit parameters.

Redshift α β

0.5 0.012 ± 0.010 0.987 ± 0.002
1.0 0.114 ± 0.004 1.006 ± 0.002
1.5 0.104 ± 0.002 1.013 ± 0.002
Reference 0 1

with the bootstrap technique. By construction, we expect the numerical matrix to perfectly
follow the reference distribution. While this is true for the mean value, the variance differs
by ∼ 4σ from the expected value; such discrepancy is ascribed to the noise in the numerical
matrix that tightens the distribution. Anyway, since the errors are quite small, this distribution
can be considered in good agreement with the expected one. Instead, the model of Eq. (5.10)
produces a distribution that is several σ off the expectation, confirming that this model is
not suitable for describing the covariance of data. Finally, the fitted matrix turns out to be
in good agreement with the reference distribution, both for the mean value and the variance.
This proves the goodness of our fit and ensures that the resulting model is able to correctly
describe the covariance as well as, if not better than, the numerical matrix. Note that the
fit was performed using all 1000 available simulations; despite of this, we verified that the
fitting process provides consistent results even with only 100 simulations, confirming what
was found in Sect. 3.3.

In Table 5.3, we show the best-fit values of the parameters in each redshift slice3: in most

3We show the value of best-fit parameters for general considerations. However, the value of these parameters
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Figure 5.5: Left panel: χ2 distribution for the numerical, analytical and analytical with fitted param-
eters covariance matrices. Reference distribution in black. Right panel: measured (black solid lines),
predicted (darker dashed lines) and fitted (lighter dotted lines) halo power spectrum for boxes at three
different redshifts. In the bottom panel, percent residuals of the predictions with respect to the numer-
ical one.

of the cases the best-fit is not in agreement with the reference values. The correction of the
halo bias is in line with the expectation (i.e., β < 1 at low redshift to correct an overestimated
bias, and β > 1 at high redshift to correct an underestimated bias); anyway, at redshift z ≳ 1,
the values of β overestimate the 2PCF correction of Eq. (5.2) by a factor from 5 to 30 percent
depending on redshift. The shot-noise corrections also show conflicting results: the Gaussian
term of the covariance seems to prefer a super-Poissonian shot-noise (α > 0), while the non-
Gaussian term is characterized by a sub-Poissonian shot-noise (γ < 0). Such contrasts suggest
that the parameters actually absorb the effect of the wrong or missing terms of the covariance,
instead of simply describing the halo bias correction or the deviation from the Poissonian
prediction of the shot-noise.

To better explain the different values of these parameters with respect to their expectation,
we study the power spectrum, i.e. the quantity that is both affected by bias and shot-noise.
To avoid complications due to the redshift integration and the geometry of the survey, we
measure the power spectrum from the 1000 cubical boxes described in Sect. 2.3. We consider
three redshifts z = 0.5,1.0,1.5.

We compute the analytical total halo power spectrum as

Ph,tot(k) = b
2

Pm(k)+
1
n
, (5.16)

where the matter power spectrum is calculated by means of the CAMB code (Lewis et al. 2000).
We compare such quantity with the measured total power spectrum averaged over the 1000
boxes, for the three redshift values.

is not universal, but depends on the properties of the survey and must be fitted for each specific case.
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Table 5.3: Best-fit values for the covariance model parameters introduced in Eq (5.15).

Redshift α β γ

0.0 – 0.4 0.111 ± 0.008 0.979 ± 0.008 −0.027 ± 0.047
0.4 – 0.8 0.109 ± 0.008 1.055 ± 0.009 −0.083 ± 0.037
0.8 – 1.2 0.134 ± 0.008 1.181 ± 0.013 −0.129 ± 0.027
1.2 – 1.6 0.157 ± 0.008 1.270 ± 0.022 −0.199 ± 0.024
1.6 – 2.0 0.188 ± 0.008 1.460 ± 0.045 −0.263 ± 0.026
Reference 0 1 0

In the right panel of Fig. 5.5 we show the comparison of the measured and predicted
power spectra (for a better comparison, we show the halo power spectrum, i.e. the total one
minus the shot-noise): while at low redshift the two quantities are in agreement on almost all
the scales, we can observe a clear deviation between the observed and predicted spectra that
increases with redshift, up to more than 20 percent. We try to correct these discrepancies by
fitting the two parameters {α,β}, which account respectively for the correction to shot-noise
and halo bias, directly from the power spectrum; the best-fit are shown in Table 5.2, and the
resulting power spectra are shown in Fig 5.5 (dotted lines). We obtain an agreement of the
fitted power spectra within 5 percent level at all the linear scales, at all redshifts. Nevertheless,
the values deviate by several σ from the best-fit parameters found from the covariance fit in
the corresponding redshift intervals (see Table 5.3). This confirms that the parameters in the
covariance, in addition to correct for the wrong prediction of bias and shot-noise, also absorb
the effect of the missing higher-order terms in the model.

The dashed lines in Fig. 5.4 show the predictions of the model modified by the intro-
duction of the additional parameters. Now, the analytical covariance correctly describes the
numerical results at all redshifts, with an accuracy of about 10 per cent. Note that even if
the reference matrix on which the fit is performed is not perfectly accurate, due to sampling
noise; this is not a problem for the fit process, which in fact allows the model to correctly
reproduce the expected matrix without replicating that noise.

In Fig. 5.6, we show the posterior distributions resulting from the likelihood analysis
with three different covariance configurations: numerical, model of Eq. (5.10) and model
of Eq. (5.15) with the best-fit parameters shown in Table 5.3. As expected, the underesti-
mated level of covariance provided by the original model translates in tighter posteriors with
respect to the numerical case. On the contrary, the model corrected for the additional pa-
rameters recovers with good accuracy the result of the numerical matrix. The FoM obtained
from these posteriors and the percent difference with respect to the numerical case are shown
in Table 5.4: the addition of parameters decreases the deviation in the FoM from about 40
percent to only 5 percent.

5.2.3 Non-Gaussian covariance
We test here the effect of the low-order non-Gaussian term (i.e., second line in Eq. 5.10),
to evaluate its impact with respect to the Gaussian covariance. In fig. 5.7 we compare the
numerical matrix with the analytical model, with parameters fitted both from the full model
(dashed lines), and from the Gaussian model, i.e., setting to zero the non-Gaussian term and
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Figure 5.6: Contour plots at 68 and 95 percent of confidence level for the numerical (blue), analytical
(orange) and analytical with fitted parameters (black) matrices. Dotted gray lines represent the fiducial
cosmology.

fitting α and β (solid lines). Since such a term only contributes on the diagonal elements,
we compare the variance in three different redshift bins. The figure clearly shows that the
Gaussian model is unable to properly describe the numerical covariance, for two reasons:
first, the non-Gaussian term gives a significant contribution at low scales, especially at high
redshift, and neglecting this term leads to an underestimation of the diagonal terms by a factor
up to 50 per cent. Second, the Gaussian model does not have enough degrees of freedom to
provide a good fit and it is not able to absorb the effect of the missing terms, producing a
wrong fit also at larger scales.

This differences in the Gaussian fit have an impact on the cosmological posteriors, with
deviations in the FoM of about the 20 percent with respect to the numerical covariance case
(see Table 5.4).

Since the importance of this term is mainly driven by the factor n−2 that grows with de-
creasing number of objects, we expect that the impact of this term increases when considering
higher redshifts, as well as higher mass-limits. The same trend would apply to the bispectrum
terms, due to the factor n−1, while the trispectum contribution should be less relevant, given
the absence of such a factor.

5.2.4 Cosmology-dependent covariance
The impact of the cosmology dependence of the covariance in the likelihood analysis is a
topic that has been largely discussed in literature. Several works (e.g. Krause & Eifler 2017;
Eifler et al. 2009; Morrison & Schneider 2013; Blot et al. 2020; Euclid Collaboration: Fuma-
galli et al. 2021) have demonstrated that evaluating the covariance matrix at a wrong cosmol-
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Table 5.4: Figure of merit for the different covariance cases. In the third column, percent difference
with respect to the numerical case.

Case FoM ∆FoM / FoMnum

Numerical 32681 ± 514 –
Model 45510 ± 413 + 39 %
Model + fit 34307 ± 623 + 5 %
Model + fit, Gauss 38855 ± 437 + 19 %
Cosmo-dependent 86155 ± 670 + 151 %

ogy would lead to a wrong estimation of the cosmological posteriors.
To avoid this, the correct way to perform the parameter inference from a Gaussian likeli-

hood is to use a cosmology-dependent covariance, i.e., to recompute the matrix at each step of
the MCMC process. The situation gets more complicated if the Gaussian likelihood is just an
approximation of the true distribution of the data, as for the 2PCF. As pointed out by Carron
(2013), in this case the use of a cosmology-dependent covariance may lead to a wrong esti-
mation of the posteriors amplitude. To avoid this, one can use the iterative approach, which
consists in running the MCMC with a fixed covariance computed at some fiducial cosmol-
ogy, then using the best-fit parameters to construct a new covariance matrix and re-running
the MCMC process. This can be iterated until convergence of the cosmological posteriors. It
should be noted that, in the case of approximate likelihood, even this second method may not
correctly estimate the posteriors amplitude.

Given this premise, we perform a simple test to establish which is the most correct method
to extract the cosmological information from the 2PCF, with the likelihood and the covari-
ance model proposed in this work. We analyze 100 light cones in two different ways: i) we
apply the iterative method starting with a fiducial cosmology of Ωm = 0.30 and σ8 = 0.77,
and verifying that a single step is sufficient to achieve convergence; ii) we use a cosmology-
dependent covariance. The left and middle panel of Fig. 5.8 represents the result of the two
analysis: dots are the best fit values for each light cone, compared to the mean contours
obtained through Eq. (3.6). We can see the two cases exhibit a different best-fit distribu-
tion: analyzing the light cones with the cosmology-dependent covariance yields values that
are more concentrated around the input cosmology, compared to the fixed covariance case,
which instead presents a more scattered distribution. In both cases the individual values are in
agreement with the mean distribution, making it difficult to determine which of the two anal-
yses is more correct. Thus, for a better comparison, we compute the Deviance Information
Criterion (DIC, Spiegelhalter et al. 2002) from the resulting posteriors, treating the problem
as a model selection problem. The DIC is defined as

DIC(mi) = ⟨χ2⟩+ pD , (5.17)

with
pD = ⟨χ

2⟩−χ2(θinput) . (5.18)

Here χ2 = −2lnL(d|mi(θ),C) estimates the goodness of the fit and pD is the Bayesian com-
plexity, measuring the effective complexity of the model. The average is performed over the
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Figure 5.7: Variance as a function of the radial separation for three redshift bins, for the numerical
matrix (shaded area), Gaussian analytical matrix (solid lines) and full analytical matrix (dashed lines,
corresponding to the dashed lines of Fig. 5.4).

posteriors volume. Given two models m1(θ) and m2(θ), the difference ∆DIC = DIC(m2)−
DIC(m1) is interpreted using the Jeffreys’ scale presented in Grandis et al. (2016): ∆DIC = 0
means that none of the two models is preferred, −2 < ∆DIC < 0 that there is “no signifi-
cant” preference for m2, −5 < ∆DIC < −2 a “positive” preference for m2, −10 < ∆DIC < −5
a “strong” preference for m2, and ∆DIC < −10 indicates a “decisive” preference for m2. By
defining ∆DIC = DICcosmo −DICbestfit for each of the 100 simulations, we obtain the dis-
tribution shown in the right panel of Fig. 5.8, characterized by a mean value ⟨∆DIC⟩sims =

−11.5± 1.6. The analysis of the ∆DIC indicates that the model with cosmology-dependent
covariance is statistically preferred over the iterative method.

To further explore the comparison between the fully cosmology-dependent likelihood
analysis and the iterative method, we generate 100 synthetic light cones starting from a Gaus-
sian distribution, with amplitude given by the covariance model at the input cosmology. In
this way, we ensure that the Gaussian distribution is the true likelihood describing the data,
and not just an approximation. The number of mocks was chosen so as to have enough statis-
tics to compare the results. We repeat the analysis of the 100 light cones, finding a mean
value ⟨∆DIC⟩synth = −13.7±2.1, to be compared with the value from the analysis of the 100
PINOCCHIO mocks, i.e., ⟨∆DIC⟩sims = −11.5± 1.6. Moreover, by comparing the FoM of
the cosmology dependent covariance and the iterative method, we obtain a mean variation
of ⟨∆FoM⟩synth = 176±38% for the synthetic catalogs, and ⟨∆FoM⟩sims = 142±33% for the
PINOCCHIO mocks. Both the DIC and the FoM analyses indicate that the two analysis are
fully consistent. Although this result still does not define which posteriors are correct in case
the true likelihood is unknown, it shows that at least for this particular analysis the narrowing
of the posteriors does not primarily depends on some wrong approximation of the likelihood
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Figure 5.8: Left and middle panels: Contour plots at 68 and 95 percent of confidence level for input-
cosmology covariance (blue), and the cosmology-dependent covariance (orange), obtained from the
mean likelihood (Eq. 3.6). Dots are the best-fit values from 100 single light cones. Gray lines represent
the input parameters. Right panel: ∆DIC distribution of the 100 light cones. Associated mean and
error on the mean are highlighted as solid and dashed black lines. Colored regions represent the
Jefferys’ scale used to interpret the results.

function. In other words, when a Gaussian likelihood is assumed, it is possible to actually
extract information from the cosmology dependence of the covariance.

After verifying that the use of the cosmology-dependence covariance is, from a statistical
point of view, the most correct way to analyze the data, we study the impact on the (aver-
age) cosmological posteriors of a wrong-cosmology covariance and a cosmology-dependent
covariance, with respect to the input covariance case. In Fig. 5.9 the posteriors obtained by
fixing the covariance matrix at three different cosmologies. More specifically, we compare
the input-parameter case (Ωm = 0.307, σ8 = 0.829) with two choices of parameter combina-
tions, i.e. Ωm = 0.320, σ8 = 0.775 and Ωm = 0.295, σ8 = 0.871, located approximately at the
extremes of the 2σ contours of the input-cosmology posteriors, along the degeneracy direc-
tion (indicated by dots in the figure, with respect to the orange contours). Note that such
deviations from the fiducial cosmology are comparable with the 2σ values from Planck Col-
laboration VI. (2020), which represents the state of the art in the cosmological constraints. We
observe that using the covariance matrix computed at a wrong cosmology has a significative
effect on the cosmological posteriors, with variations in the FoM of the order of ∼ 30 − 40%.
We note that the recovered posterior distributions differ even if the two adopted cosmologies
lie along the Ωm –σ8 degeneracies. This result suggests that the cosmological dependence of
the covariance matrix is different from that of the 2PCF.

To test this hypothesis we compare the derived posterior distribution on the cosmological
parameters for the following three analyses:

i) We compute the covariance at the input cosmology and evaluate the expected 2PCF as a
function of cosmological parameters. This case corresponds to the standard likelihood
analysis with fixed covariance, where all the cosmological information is encapsulated
in the expected value of ξ(r,z).

ii) We evaluate the expected 2PCF at the fixed input cosmology, but let the covariance
matrix vary as a function of cosmological parameters. In this way we evaluate the
cosmology dependence of the covariance alone;
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Figure 5.9: Contour plots at 68 and 95 percent of confidence level for input-cosmology covariance (or-
ange), and two wrong-cosmology cases: A) Ωm = 0.320, σ8 = 0.775 in blue, and B) Ωm = 0.295, σ8 =

0.871 in green. Gray lines represent the input parameters.

iii) We compare the measured and expected clustering signal where both the mean value
and its covariance matrix are varying as a function of cosmological parameters. This
case corresponds to the full forward-modeling approach.

When adopting a cosmology-dependent covariance, we assume the fitted parameters α,
β, and γ to be cosmology-independent. This limitation is due to the fact that we only have
simulations for one cosmology on which perform the fit. The impact of such dependency will
be verified in detail in future analyses. However, we expect that neglecting the cosmology
dependence of these parameters would introduce a negligible error with respect to the one
that we would introduce by not including these parameters at all.

Figure 5.10 clearly highlights a tilted degeneracy direction between Ωm and σ8 posteriors
of cases i) and ii), indicating that covariance and 2PCF have a different cosmological depen-
dencies (blue versus orange contours). As a result, by varying the cosmological parameters
in both the quantities returns tighter constraints, with a FoM improved by about 150 percent
with respect to the numerical case, which reflects the standard case i) likelihood analysis (see
Table 5.4).

This different dependence on cosmology can be explained by noting that, unlike the mean
value, the covariance of the 2PCF depends on the shot-noise, which is proportional to the
inverse of the integrated mass function. Letting the cosmology vary also in the covariance
thus makes it possible to extract all the information contained in the clustering of the clusters,
and not only in the 2PCF itself.

For some additional considerations about the cosmology-dependence of the covariance,
we repeat the test described above for the cluster number counts. As shown in Sect. 4.2.3
that the use of a fixed covariance in the likelihood analysis can bring an under/overestimation
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of the FoM by more than 40 percent, if the cosmology at which the covariance is evaluated
deviates from the fiducial values of an amount of 2σ from Planck Collaboration VI. (2020).
Instead, there are not significant differences between the input and varying covariance cases,
unlike the clustering case (Fig. 5.10). As shown by the posteriors in Fig. 5.11, for number
counts the mean value is much more constraining than its covariance, making the degeneracy
direction of the latter totally irrelevant. In this case, thus, the covariance only contributes as
an estimation of the uncertainty, without adding further independent information.
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Figure 5.10: Contour plots at 68 and 95 percent of confidence level for: cosmology-dependent matrix
and fixed mean value (blue), fixed covariance and cosmology-dependent mean value (orange), and
cosmology-dependent mean value and covariance (black). Gray lines represent the input parameters.

Figure 5.11: Same of Fig. 5.10 for cluster number counts.
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5.2.5 Mass binning
We perform this analysis considering four redshift bins of width ∆z = 0.5, to allow for more
populated mass bins. We consider the case of two mass bins with cuts at log10 M/M⊙ =
{14.00,14.15,16.00}, three mass bins with cuts at log10 M/M⊙ = {14.00,14.05,14.15,16.00}
and four mass bins with cuts at log10 M/M⊙ = {14.00,14.05,14.10,14.20,16.00}, chosen in
order to have at least 4000 objects in each mass and redshift bin.

We show in Fig. 5.12 the posterior distribution from the three cases with mass binning,
compared to the mass threshold case, while in Table 5.5 we report the corresponding FoMs.
We observe an improvement in the FoM when considering the mass binning with respect
of the mass-threshold case, indicating that the information included in the halo bias can be
exploited to obtain tighter constraints on cosmological parameters. However, increasing the
number of mass bins does not improve significantly the contours: this can be attributed to the
closeness of the bins, characterized by a similar bias relation. On the other hand, selecting
more distant bins implies having less populated intervals and therefore noisier quantities.

Once we have established the advantage of considering mass binning, we validate the
corresponding covariance model presented in Eq. (5.14). For greater clarity, we consider the
simplest two mass bins case; the cases with more mass bins are analogous. In Fig. 5.13
we show the diagonal components of the analytical matrix (solid lines), compared to the
corresponding numerical terms (shaded areas). As in the mass threshold case, the model
underestimates the expected covariance, with a difference in the FoM of about the 30 percent
(see Table 5.5). Again, we correct this discrepancy by adding some covariance parameters,
fitted for each mass and redshift bin, according to Eq. 5.15. When adding the parameters
fitted from simulations, the discrepancy between numerical and analytical matrix drops to
less than 5 percent on the FoM.

Finally, we test the effect of the cosmology-dependent covariance, following the anal-
yses described in Sect. 5.2.4. In this case, the improvement in the cosmological posteriors
is even higher than the mass threshold case, reaching a difference in the FoM of about 230
percent. This is due the mass-dependence of the shot-noise, that makes the covariance more
constraining than the single mass threshold case.

Table 5.5: Figure of merit for the different mass binning cases. In the third column, percent difference
with respect to the “Mass threshold” case in the upper part, and “2 mass bins” numerical case in the
lower one.

Case FoM ∆FoM / FoMnum

Mass threshold 29759 ± 554 –
2 mass bins 36555 ± 349 + 23 %
3 mass bins 35243 ± 308 + 18 %
4 mass bins 37160 ± 497 + 25 %

Model 48500 ± 738 + 33 %
Model + fit 37980 ± 543 + 4 %
Cosmo-dependent 121921 ± 615 + 230 %
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Figure 5.12: Contour plots at 68 and 95 percent of confidence level for three cases: no mass binning
(blue), two mass bins (orange), and three mass bins (black). The numerical covariance is used.

Figure 5.13: Numerical (shaded areas), analytical (solid lines), and analytical with fitted parameters
(dashed lines) covariance matrices as a function of separation, in the redshift bin z= 1.0– 1.5. Different
colors represent the diagonal elements of different auto- and cross-correlation terms of the matrix.
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Chapter 6

Combined number counts and clustering
analysis

In this chapter we present the results of the covariance validation in observable space and of
the joint number counts and clustering analysis. The first part consists in validating the co-
variance models in a more realistic scenario, achieved by including cluster richness through a
richness-mass relation and observational uncertainties through selection functions (Sect. 6.1
and 6.2). In the second part, we forecast how the combination of cluster number counts and
cluster clustering can improve the cosmological constraints at the level of accuracy expected
for Euclid (Sect. 6.3)1. We show in Sect. 6.4 some applications of the number counts analysis,
presented in Ragagnin et al. (2021) and Castro et al. (2020). Finally, in Sect. 6.5 we apply
the whole pipeline to the SDSS redMaPPer cluster catalog in order to constrain cosmolog-
ical parameters and determine if the addition of cluster clustering can actually improve the
cosmological constraints in real data.

6.1 Observable space
Although the first steps of this analysis consist of validating covariances for mass-selected
clusters, the analysis of real data requires the clusters to be selected through some observ-
able property (see Sect. 1.2.2). Therefore, we introduce the richness, namely the number of
galaxies contained in the cluster, as mass proxy.

We model the relation between the mass and true richness of a cluster as a log-normal
distribution (see, e.g., Rozo et al. 2010; Saro et al. 2015; Costanzi et al. 2019)

P(λ|M,z) =
1

λ
√

2πσ2
lnλ

exp

− (lnλ−⟨lnλ(M,z)⟩)2

2σ2
lnλ

 , (6.1)

where the mean value and the scatter are obtained by fixing the scaling relation between
richness and mass. In this work, we assume a scaling relation of the form

⟨lnλ(M,z)⟩ = ln(Aλ)+Bλ ln
(

M
3×1014 h−1 M⊙

)
+Cλ ln

(
1+ z

1+0.45

)
, (6.2)

σ2
lnλ(M,z) = D2

λ , (6.3)

1The results in Sect. 6.2 and 6.3 have not been reviewed by the Euclid Consortium.
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with parameters Aλ = 52, Bλ = 0.9, Cλ = 0.5, Dλ = 0.15 (Costanzi et al. 2021, adapted from
M500c to Mvir).

In principle, Eq. (6.1) allows us to pass from the halo mass function to the richness counts:

dn
dλ

(λ,z) =
∫ ∞

0
dM

dn
dM

P(λ|M,z) . (6.4)

However, both richness and redshift measurements are affected by additional scatter due to
observational inaccuracy. The observed richness and redshift, respectively λob and zob, can
be related to the true richness and redshift by means of selection functions, describing the
probability for a cluster to be included in the sample. Following Abbott et al. (2020), we
model the probability distributions P(λob|λ,z) and P(zob|z,λob) as

P(λob |λ) =
1√

2πσ2
λob(λ,z)

exp

−
(
λob−λ

)2

2σ2
λob(λ,z)

 (6.5)

with scatter
σob
λ = (λ,z) = (0.9+0.1z)λ0.4 (6.6)

and

P(zob |z,λob) =
1√

2πσ2
zob(z,λob)

exp

−
(
zob− z

)2

2σ2
zob(z,λob)

 , (6.7)

with scatter

σzob(z,λob) = 0.005+0.025(z−0.2)+0.00025
⟨λob⟩

50
. (6.8)

The final prediction for the number counts in the i-th observed richness bin and in the a-th
observed redshift bin is thus

Nai = Ωsky

∫ ∞

0
dz

dV
dzdΩ

(z)ni(z)
∫
∆zob

a

dzobP(zob |z,∆λob
i ) , (6.9)

whereΩsky = 2π(1−cosθ) is the survey area, which is assumed to be independent on redshift,
and

ni(z) =
∫ ∞

0
dM

dn
dM

(M,z)
∫
∆λob

i

dλob
∫ ∞

0
dλP(λob |λ,z) P(λ |M,z) . (6.10)

Analogously, the 2PCF in the a-th redshift, s-th separation bin, and i-th and j-th richness
bins can be written as

ξasi j =

∫
dk k2

2π2

〈
bi

√
Pm(k)

〉
a

〈
b j

√
Pm(k)

〉
a

Ws(k) , (6.11)

where〈
bi

√
Pm(k)

〉
a
=

1
Nai

∫ ∞

0
dz

dV
dΩdz

ni(z)bi(z)
√

Pm(k,z)
∫
∆zob

a

dzobP(zob |z,∆λob
i ) , (6.12)
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Figure 6.1: Observed richness distribution from a lightcone, as a function of mass (left panel) and
observed redshift (right panel). Blue points represent the whole catalog, while orange points are the
clusters selected above a richness threshold (λob = 20, black horizontal line), chosen to ensure the
completeness of the sample.

with

bi(z) =
∫ ∞

0
dM

dn
dM

(M,z)b(M,z)
∫
∆λob

i

dλob
∫ ∞

0
dλP(λob |λ,z) P(λ |M,z) . (6.13)

Equations (6.9) and (6.11) substitute, respectively, Eqs. (1.24) and (5.11) for richness-
selected surveys. The two analytical covariances of Eqs. (4.1) and (5.14) are modified ac-
cording to these changes.

6.2 Covariance validation
Here we present the results of the covariance models validation in observable space. To per-
form the validation, we construct the dataset starting from the 1000 lightcones described in
Sect. 2.3. For each mock, we assign a true richness to the halo masses through a log-normal
distribution with mean and variance given by Eqs. (6.2) and (6.3). Then, we compute the
observed richness and redshift for each halo, according to Eqs. (6.5) and (6.7). An example
of the resulting sample is shown in Fig. 6.1: in the left panel we show the observed richness
distribution as a function of the halo mass, while in the right panel we show the same distri-
bution as a function of the observed redshift. To ensure the completeness of the catalogs, we
apply a richness lower limit at λob = 20. The resulting catalogs contain ∼ 2× 105 objects in
the redshift range z = 0– 2. As in the previous analyses, we use these catalogs both for the
covariance validation described in this section, and for the likelihood forecasts presented in
Sect. 6.3.

6.2.1 Covariance models validation
We validate the two covariance models as described in the previous chapters. For the number
counts we consider 10 redshift bins of width ∆z = 0.2 and 5 richness bin composed by 4
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log-spaced bins in λob = 20– 80, plus a bin up to λob = 300. The binning scheme has been
chosen in order to have at least 40 objects in each bin and to satisfy the results described
in Sect. 4.2.1 for the optimal binning selection. Although they are always sub-dominant,
the diagonal and off-diagonal terms of the sample covariance reach values comparable with
the shot-noise level, in the low-mass/low-redshift range. The comparison is shown in the left
panel of Fig. 6.2. We therefore expect this effect to be non-negligible also in observable space.
As for the model validation, we confirm the 10 percent level of agreement between analytical
model and numerical matrix. The good agreement between the two matrices can also be
observed in the right panel of Fig. 6.2, showing the χ2 distribution for the two covariances,
compared to the expected distribution.

For cluster clustering, we consider 4 redshift bins of width ∆z = 0.5, 30 log-spaced sepa-
ration bins in range r = 20–130 h−1Mpc, and 3 richness bins λob = {20,30,300}. The binning
scheme has been chosen according to the results presented in Sect. 5.2.1. Also in this case
we confirm the results obtained for mass-selected clusters: the analytical model underesti-
mates the numerical matrix, but the disagreement can be mitigated by fitting to simulations
the three parameters {α,β,γ}, as in Eq. (5.15). The results are shown in Fig. 6.3, where we
compare the three matrices, i.e., the numerical, analytical and analytical with fitted parame-
ters covariances: in the left panel we show the comparison of the diagonal elements of the
analytical matrix with and without the fitted parameters (dashed and solid lines, respectively)
with the numerical covariance, while in the right panel we show the χ2 distribution for the
three matrices.

As in previous analyses, we establish the impact of the difference between analytical and
numerical matrix on cosmological posteriors. We perform the likelihood analysis by fixing
the mass-observable relation parameters to assess the impact in the most stringent case; the
difference will be comparable or smaller in the case where these parameters are left free, as
this produces a broadening of the contours that absorbs, at least partially, the other sources
of uncertainty. For both number counts and clustering, we find ∆FoM ∼ 3% between the
numerical and analytical covariances.

6.2.2 Covariance of number counts and clustering
Before starting with the joint number counts and clustering cosmological analysis, we need to
verify if there is any covariance between the two observables. In the left panel of Fig. 6.4 we
show the total correlation matrix, computed numerically for simulations. The two diagonal
blocks correspond to the number counts and clustering auto-correlation matrices, while the
off-diagonal blocks represent the cross-correlation matrix. Since such term is only dominated
by noise, statistically consistent with zero, we can treat the two observables as independent
quantities. As a further prove of this, we compute the number counts and clustering likeli-
hoods for each light cone, and in the right panel of Fig. 6.4 we show their difference with
respect to the log-likelihood averaged over the entire sample of simulations. We quantify
the correlation by computing the Pearson correlation coefficient between the log-likelihood
residuals. To this purpose, we assume that the residuals are Gaussian distributed around zero,
with a covariance given by

C =
(
σ2

nc ρσncσcl
ρσncσcl σ2

cl

)
, (6.14)
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Figure 6.2: Left panel: same of fig. 4.4 for richness selected clusters. Right panel: χ2 distribution for
the numerical (blue) and analytical (red) covariance matrices. Reference distribution in black.

Figure 6.3: Left panel: same of Fig. 5.13 for richness selected clusters. Right panel: χ2 distribution for
the numerical (clue), analytical (green) and analytical with fitted parameters (red) covariance matrices.
Reference distribution in black.
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Figure 6.4: Left panel: normalized numerical covariance for number counts, clustering and cross-
covariance. Right panel: log-likelihood residuals of the two observables with respect to the mean
values.

where σnc and σcl are, respectively, the standard deviations computed from the number
counts and clustering residuals, and ρ is the correlation coefficient. We fit the ρ parameter by
maximizing a Gaussian likelihood, finding ρ = −0.015± 0.032. The absence of correlation
in the distribution of points confirms the absence of correlation between the two observables.
The result is consistent with the result of Mana et al. (2013). Therefore, we will assume in
the following that the total likelihood of the combined number counts and clustering probes
is defined as the product of two Gaussian likelihood functions, one for each individual probe.

6.3 Cosmological parameter estimation
In this section we present the results concerning the likelihood forecasts for the number
counts, clustering and their combined analyses. We explore the impact of three different
choices for the prior distribution on the MoR parameters. We run all the analyses with the an-
alytical cosmology-dependent covariances. Given the strong impact of cosmology-dependent
covariance in the clustering analysis (see Sect. 5.2.4, in Sect. 6.3.2) we determine the impact
of cosmo-dependent covariances in the combined analysis, and that of fixing the covariance
matrix to a wrongly assumed input cosmology.

6.3.1 Impact of MoR’s priors
We perform the likelihood forecasts by constraining the cosmological parameters Ωm and
σ8, plus the richness-mass relation parameters A,B,C,D contained in Eqs. (6.2) and (6.3).
We use flat priors on cosmological parameters, equal to Ωm ∈ [0.2,0.4] and σ8 ∈ [0.6,1.0],
and Gaussian priors on MoR parameters with amplitudes of 1, 3 and 5 %. The 5 % prior
amplitude represents the current uncertainty on the richness-mass relations calibrated from
observations, while the 3 and 1 % priors are chosen as optimistic estimations. We also con-
sider the ideal case of 0 % uncertainty, corresponding to a statistically perfect knowledge of
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Table 6.1: Figure of merit for the different prior amplitudes on richness-mass relation parameter. In
the last column, percent difference with respect to the number counts case for each prior amplitude.

MoR prior Probe FoM ∆FoM / FoMNC

0%
NC 1971760 ± 24660 –
CL 81018 ± 231 −95 %

NC + CL 2409898 ± 62519 + 22 %

1%
NC 186780 ± 4254 –
CL 50875 ± 954 −72 %

NC + CL 225765 ± 3593 + 20 %

3%
NC 39301 ± 708 –
CL 22826 ± 839 −41 %

NC + CL 64562 ± 1208 + 64 %

5%
NC 20572 ± 315 –
CL 14766 ± 253 −28 %

NC + CL 39052 ± 720 +90 %

the cluster masses. Although this does not perfectly match the mass-selected case, because
of the intrinsic scatter, it allows us to remove the uncertainty given by the lack of knowledge
of the mass-observable relation parameters.

Figure 6.5: Contour plots at 68 and 95 percent of confidence level for number counts (blue), clustering
(orange) and their joint (black) analysis for richness selected clusters, with MoR parameters fixed to
the input values.
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We study the impact of priors on parameter constraints for the number counts, cluster-
ing and joint analysis. In Figs. 6.5, 6.6, 6.7, 6.8 we show the posteriors for the number
counts (NC, blue), clustering (CL, orange) and their combined (NC+CL, black) analyses,
while in Table 6.1 we report the FoM of the various cases. For the 0 % prior case, the clus-
tering is much less constraining, but nonetheless helps to improve the cosmological param-
eter constraints if combined with number counts, with an increase in the Ωm –σ8 FoM of
∆FoM∼ 22%. When adding increasingly larger priors, the contours broaden due to the higher
uncertainty. This broadening occurs to a greater extent on number counts than on clustering,
making the combination of the two even more powerful for extracting the information, with
an improvement of up to ∆FoM ∼ 90%.

Figure 6.6: Contour plots at 68 and 95 percent of confidence level for number counts (blue), clustering
(orange) and their joint (black) analysis for richness selected clusters. Red dashed lines represent the
priors on richness-mass relation parameters, with 1 % amplitude.
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Figure 6.7: Same as Fig. 6.6 with 3 % prior amplitude.
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Figure 6.8: Same as Fig. 6.6 with 5 % prior amplitude.

6.3.2 Impact of cosmology-dependent covariances
In this section we assess the impact of fixing the covariance matrix at a wrong cosmology
and of a cosmology-dependent covariance on the joint number counts and clustering analysis.
We compare the results of the likelihood analysis by fixing the number counts and clustering
covariance at the input cosmology and by considering cosmology-dependent matrices. We
also compute the covariances at the two wrong cosmologies described in Sect. 5.2.4, i.e.,
Ωm = 0.320, σ8 = 0.775 (“wrong A”), and Ωm = 0.295, σ8 = 0.871 (“wrong B”). In Fig. 6.9
we show the resulting posteriors for the number counts and clustering combined analysis,
obtained by fixing the mass-observable relation parameters. As expected, the use of wrong-
cosmology covariances leads to under/overestimated posteriors on cosmological parameters,
with a difference in the FoM of ∆FoMA ∼ +70% and ∆FoMB ∼ −25%. On the contrary, the
use of cosmology-dependent covariances provides almost the same posteriors of the input
covariance case. The result seems to replicate the one obtained from the number counts
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Figure 6.9: Contour plots at 68 and 95 percent of confidence level for the joint number counts
and clustering analysis, with input-cosmology covariances (orange), cosmology-dependent covari-
ances (black), and two wrong-cosmology cases: A) Ωm = 0.320, σ8 = 0.775 in orange, and B)
Ωm = 0.295, σ8 = 0.871 in red. Gray lines represent the input parameters.

analysis (Fig. 4.8), while it does not show the improvement obtained by using the cosmology-
dependent covariance in the clustering analysis (Fig. 5.10). This can be explained by the
fact that cluster clustering is much less constraining with respect to number counts, so that
the improvements coming from the fully cosmology-dependent analysis does not contribute
significantly to the constraining power of the combined analysis.

We repeat the same analysis described above by setting the 5 % prior on mass-observable
relation parameters; by doing so, we evaluate the impact of wrong covariances in the worst
case. In Fig. 6.10 we can see that there is no significant difference between the various poste-
riors, with a FoM varying by less than 5 percent in all the three cases. Even if the clustering
constraining power in this case is comparable to that from number counts, the broadening of
the contours absorbs the effect of wrong covariances. In other words, the total error budget is
at this point dominated by the uncertainty on the MoR.
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Figure 6.10: Same as Fig. 6.9 with 5 % amplitude of mass-observable relation priors.

6.4 Applications
We present here some applications of the number counts analysis, performed by using the
analytical model covariance validated in this work.

6.4.1 Cosmology dependence of the HOD
We present here the first application, described in Ragagnin et al. (2021). We use the number
counts likelihood analysis validated in this chapter to estimate the impact of a cosmology-
dependent HOD (Halo Occupation Distribution, see, e.g., Kravtsov et al. 2004) on the cos-
mological parameter constraints. An HOD is the conditional probability distribution P(N|M)
that a halo of mass M has a galaxy abundance N. In the context of HOD, galaxy counting
is separated into central Nc and satellite Ns abundances, so that N = Nc+Ns. In fact, central
and satellite galaxies belong to two different populations as they experience different pro-
cesses (Guzik & Seljak 2002), as shown by both observations (Skibba 2009) and numerical
simulations (Wang et al. 2018). The satellite galaxy abundance distribution P(Ns|M) is typ-
ically modeled with a Poisson distribution at each mass bin (Kravtsov et al. 2004) and its
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average value should increase with halo mass; while the number of central galaxies Nc tends
to unity asymptotically with respect to the galaxy mass selection threshold. The average
Ns−M relation can be described by a power law at high halo masses,

⟨Ns(M)⟩ ∝ Mβ. (6.15)

Subhalo population is affected by the host halo accretion history (Giocoli et al. 2008) and
HOD normalization has a mild evolution with redshift. The log-slope β plays a key role in
galaxy formation efficiency and it is not yet well constrained.

In this section, we build an emulator, namely HODEmu2, of satellite abundance based on
cosmological parametersΩm, Ωb, σ8, h, and redshift z. We train our emulator using the Mag-
neticum3 hydrodynamic simulations that span 15 different cosmologies (labeled “Box1a/mr
C1–C15”), each over 4 redshift slices between z = 0– 0.5. Halos and their member galaxies
are identified using, respectively, the FoF halo finder and an improved version of the subhalo
finder SUBFIND (Springel et al. 2001) that takes into account the presence of baryons (Dolag
et al. 2009). For each setup we fit normalization A, log-slope β and Gaussian fractional-scatter
σ of the Ns – M relation. The emulator is based on multi-variate output Gaussian Process Re-
gression (GPR). The emulator predicts the number of satellites for a given cosmology, with
an error within ∼ 20%.

To test the cosmology-dependence of the HOD on mock catalogs, we consider the rich-
ness. We recast Eq. (6.15) in terms of a richness-mass relation:

⟨λ(M)⟩ = Aλ ·
(

M
Mp

)βλ
, (6.16)

with Aλ = A0 ·Aemu = 72.4±0.7 and βλ = β0 ·βemu = 0.935±0.038 (from table IV of Costanzi
et al. 2021). Here, Aemu and βemu are the predictions of the emulator and contain the depen-
dence on cosmology, while A0 and β0 represent the cosmology-independent part of the total
parameters.

To perform the analysis, we generate a simulated catalog of halo masses corresponding to
the C8 simulation at redshift z = 0, following the D16 analytical mass function, with fluctu-
ation assigned according to the covariance matrix validated in Sect. 4.1.1. This step ensures
to have a proper description of the mass function, in order to obtain an unbiased estima-
tion of parameters. We obtain a catalog with ∼ 2.8× 105 objects, with virial masses above
Mvir > 1013 M⊙, to which we assign richness by applying Eq. (6.16), plus a Poisson scat-
ter. To ease the analysis, we neglect the intrinsic scatter of the HOD, which is subdominant
with respect the Poisson one. In the end, we compute the number counts by considering five
richness bins, between λ = 30– 300, where the sample is complete in mass.

Then, we maximize a Gaussian likelihood to compare the mock ”observed” number
counts and the theoretical prediction, with covariance given by the model described and val-
idated in Sect. 4.1.1, adapted to take into account richness-selected object according to the
prescription described in this chapter. Since in this test we only aim to give an estimation of
the impact of the cosmology-dependent HOD, we run a simplified MCMC process with only
two free cosmological parameters, Ωm and log10 As (and thus σ8), neglecting the dependence
of the HOD on Ωb and h0, and neglecting the redshift dependence.

Following the approach of Singh et al. (2020), we compare three different cases:
2https://github.com/aragagnin/HODEmu/
3www.magneticum.org
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i) no cosmo case: we ignore the cosmology dependence of the HOD, so that Aλ = A0 and
βλ = β0. We assume flat uninformative priors both on Ωm and log10 As and on Aλ and
βλ;

ii) cosmo case: we assume flat uninformative priors on Ωm, log10 As, A0 and β0, plus
Gaussian priors on Aλ and βλ, respectively given by N(72.4,7.0) and N(0.935,0.038).
The cosmology-dependent parameters Aemu and βemu are computed by the emulator at
each step of the MCMC process, and, to take into account the emulator inaccuracy,
we randomly extract a value from a Gaussian distribution with center in the emulator
prediction and amplitude equal to σlog Aemu = 0.06 and σlogβemu = 0.09;

iii) cosmo + WL case: we add the weak lensing (WL) cosmological dependence which
affects the mass calibration in the real observations, to figure out whether the combina-
tion of the cosmology-dependent HOD with other cosmological probes could improve
the parameter constraints. We model such dependence by modifying the prior on Aλ,
which becomes a Gaussian prior with the same amplitude of the previous case, but
centered on

A′λ = Aλ− ln10∆(Ωm) (6.17)

with ∆(Ωm) = βλ
dln MWL

dΩm
(Ωm − 0.3), where dln MWL

dΩm
= −0.68 is the average value from

table I of Costanzi et al. (2019).

In Fig. 6.11, we show the posterior distributions resulting from the three analysis. As ex-
pected, the marginalized posteriors recovered by the cosmo case are similar to the ones from
the no cosmo case, but in addition the former is able to constrain the cosmology-dependent
and cosmology-independent components of the richness-mass relation separately. This can
represent an advantage, since the components of Aλ show stronger degeneracies with cos-
mological parameters with respect to the one of their combination; such degeneracies can be
exploited when combined with other cosmological probes. On the contrary, this decomposi-
tion for βλ does not present the same advantage, as the full parameter has a higher degeneracy
with cosmological parameters with respects to its components.

The third case presents similar posteriors to the simple cosmo case; to better compare the
differences, we quantify the accuracy of the parameter estimation by computing the FoM in
the Ωm –σ8 plane. The result, shown in table 6.2, indicates that the use of the cosmology-
dependent HOD allows us to obtain more constraining posteriors, further improved with the
addition of the weak lensing information. To prove that the cosmo+WL result is not achieved
only thanks to the addition of WL, we show also the FoM for the no cosmo +WL case, which
has a constraining power similar to the simple no cosmo case. By comparing the FoM of the
three cases, we obtain an improvement of about the 6 percent for the cosmo case and of about
the 11 percent for the cosmo + WL case with respect the no cosmo one.
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Table 6.2: Figure of merit in the Ωm – σ8 plane for the three cases of Fig. 6.11, plus the no cosmo +
WL case. In the right column, normalized differences with respect to the no cosmo case.

Case FoM ∆FoM/FoMnc

no cosmo 980 -
no cosmo +WL 993 + 1 %
cosmo 1044 + 6 %
cosmo +WL 1088 + 11 %

Figure 6.11: Contour plots at 68 and 95 percent of confidence level for the three cases: no cosmo
(black), cosmo (blue) and cosmo+WL (red) contours. The grey dashed lines represent the input values
of parameters.
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6.4.2 Halo mass function calibration
The cluster number counts pipeline has also been applied in Euclid Collaboration: Castro
et al. (2022), to forecast the impact of the halo mass function calibration on the cosmological
posteriors. In this work, we propose a new calibration of the halo mass function, at the level
of accuracy and precision required for the uncertainty in this quantity to be subdominant with
respect to other sources of uncertainty in recovering cosmological parameters from Euclid
cluster counts.

In our analysis, halos are defined as spherical overdensities with average enclosed density
equal to ∆vir(z) times the background density, where ∆vir(z) is the non-linear density contrast
of virialized structures as predicted by spherical collapse. We parameterize the halo mass
function for a given cosmology at a given redshift according to the fitting function introduced
by Bhattacharya et al. (2011),

f (ν) = A(p,q)

√
2aν2

π
e−aν2/2

(
1+

1
(aν2)p

)
(ν
√

a)q−1 . (6.18)

To satisfy the condition that all matter in the Universe is contained in halos, we impose the
normalization

A(p,q) =
{

2−1/2−p+q/2
√
π

[
2pΓ

(q
2

)
+Γ

(
−p+

q
2

)]}−1

, (6.19)

where Γ denotes the Gamma function. We write the parameters {a, p,q} explicitly as functions
of the matter power spectrum shape and background evolution,

a = aRΩ
az
m (z) (6.20)

p = p1+ p2

(
dlnσ
dlnR

+0.5
)

(6.21)

q = qRΩ
qz
m (z) . (6.22)

where:

aR = a1+a2

(
dlnσ
dlnR

+0.6125
)2

(6.23)

qR = q1+q2

(
dlnσ
dlnR

+0.5
)
. (6.24)

The model is calibrated against a suite of N-body simulations using a Bayesian approach
that takes into account systematic errors arising from numerical effects in the simulation. We
demonstrate the fitting function of Eq. (6.18) to be sub-percent accurate in reproducing results
from 9 different variants of the ΛCDM model, including massive neutrinos cosmologies. The
calibration process reported here does not take into account the uncertainties related to the
astrophysics of baryons, whose impact will be studied in a forthcoming work.

After testing the convergence of the halo mass function predictions from different N-body
codes, we quantify the effect of using different halo-finder algorithms, and how the resulting
differences propagate to the cosmological constraints. We generate a synthetic cluster abun-
dance data in the following way: we consider a Euclid-like light-cone covering 15000 deg2,
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with redshift range z = [0,2]. Optical richness λ is assigned to the halos according to the
richness-mass relation ⟨λ|Mvir,z⟩,

⟨lnλ|Mvir,z⟩ = ln Aλ+Bλ ln
(

Mvir

3×1014 M⊙

)
+Cλ ln

(
E(z)

E(z = 0.6)

)
, (6.25)

where E(z) is defined by Eq. (1.27). We assume a richness range λ = 20– 2000 and a log-
normal scatter given by:

σ2
lnλ|Mvir,z

= D2
λ. (6.26)

We use the following fiducial values for the parameters of Eqs. (6.25) and (6.26) Aλ =
37.8, Bλ = 1.16, Cλ = 0.91, Dλ = 0.15. These parameter values have been determined by
converting the richness-mass relation presented by Saro et al. (2015) for M500c (presented in
their Table 2) to the virial mass definition, assuming that halos have a NFW profile (Navarro,
Frenk, & White 1997) and mass-concentration relation given by Diemer & Joyce (2019). The
adopted values are in agreement with the results presented by Castignani & Benoist (2016).
Lastly, Poisson and sample variance fluctuations are added through a multivariate Gaussian
distribution with amplitude given by the covariance model described in this chapter, with the
only difference being the choice of the halo mass function (Eq. 6.18 instead of Eq.,2.7). We
generate the synthetic data assuming the calibration from the ROCKSTAR (Behroozi et al.
2013) halo finder, and we compare the calibrations obtained by SUBFIND (Springel et al.
2001, 2021), VELOCIraptor (Elahi et al. 2019), and AHF (Knollmann & Knebe 2009), by
performing a likelihood analysis. We constrain the cosmological parameters Ωm and σ8, and
the richness-mass relation parameters Aλ, Bλ, Cλ, Dλ, assuming flat priors on the cosmologi-
cal parameters and Gaussian priors with amplitudes on the mass-observable parameters of 1,
3 and 5 percent. The likelihood sampling is performed with zeus (see Sect. 3.1).

In Table 6.3, we summarize the impact of the different halo finders on the inference of the
marginalized cosmological parameters Ωm and σ8. The impact of the different halo finders’
calibrations is quantified using the index of inconsistency (IOI) (Lin & Ishak 2017), which is
calculated as:

IOI =
δtΣ−1 δ

2
, (6.27)

where δ is the two-dimensional difference vector between the best-fit and the assumed cos-
mological parameters {Ωm,σ8} = {0.30711,0.8288}. Additionally, Σ is the covariance matrix
between these parameters that we assume to be Gaussian distributed. In all cases, the tension
in the Ωm –σ8 plane increases monotonically as the priors in the richness-mass relation tight-
ens. For both VELOCIraptor and SUBFIND the tension goes from ≲ 1σ for 5 and 3 percent
priors to ≲ 2σ when the prior tightens to 1 percent. The tension for the AHF case is ≲ 1σ for
all priors considered.

In Table 6.3, we also summarize the impact of the systematic and statistical errors of our
main (ROCKSTAR) calibration and one of the auxiliary calibrations (VELOCIraptor) on the
marginalized uncertainties in the cosmological parameters Ωm and σ8. We only consider
one calibration of each group of halo finders, as this test is dominated by the number of
simulations used in the mass function calibration. As the other halo finder all use the same
number of simulations, equal to half of the set used for the ROCKSTAR calibration, they
present very similar results. We compare the FoM change in the Ωm –σ8 plane obtained
by fixing the halo mass function parameters to the calibrated values with the ones obtained
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Table 6.3: Summary statistics for the forecast of the impact of different halo finders and calibration
errors on Euclid’s cluster counts cosmological constraints on Ωm and σ8. The index of inconsistency
(IOI) quantifies the tension in the posteriors by using the ROCKSTAR calibration to create the syn-
thetic data and either the VELOCIraptor, SUBFIND, or AHF calibration for the analysis. The relative
difference of the FoM assesses the attenuation of cluster counts’ constraining power if one marginal-
izes over the halo mass function parameters assuming the calibration chain as a prior. Errors for both
statistics were estimated using bootstrap resampling.

Statistics richness-mass relation priors Analysis Synthetic catalog Value

IOI

1% 1.66±0.01
3% VELOCIraptor ROCKSTAR 0.77±0.01
5% (Fixed) 0.65±0.01
1% 1.70±0.02
3% SUBFIND ROCKSTAR 0.84±0.01
5% (Fixed) 0.61±0.01
1% 0.90±0.02
3% AHF ROCKSTAR 0.61±0.01
5% (Fixed) 0.47±0.00

∆FOM
FOM

1% 0.04±0.05
3% ROCKSTAR ROCKSTAR 0.06±0.04
5% (Marginalized) −0.01±0.02
1% −0.09±0.05
3% VELOCIraptor VELOCIraptor 0.00±0.03
5% (Marginalized) −0.02±0.03

by marginalizing over such parameters using a multi-variate Gaussian with covariance given
by the fit uncertainties. We consider again 1, 3, and 5 percent priors on the richness-mass
scaling relations. For ROCKSTAR, the statistical uncertainty only marginally affects the
cosmological inference. For VELOCIraptor, we observe that the only significant impact
happens for the 1 percent prior, where the FoM is overestimated by ∼ 10 percent when the
halo mass function parameters are left fixed.

Therefore, we conclude that differences in the halo mass function calibration associated
with different choices of the halo finder propagate into systematic effects in the measurements
of cosmological parameters that are comparable to the formal uncertainties in such parame-
ters. Also, the residual uncertainties in the halo mass function parameters have a negligible
impact on the corresponding cosmological constraints.
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6.5 Cosmological constraints from the redMaPPer SDSS clus-
ter survey

In this section we present preliminary results based on the application of the methodology
described in this chapter to the Sloan Digital Sky Survey data release 8 (SDSS DR8, Aihara
et al. 2011). This work is based on the analysis presented by Costanzi et al. (2019, hereafter
DES18), who constrained cosmological and mass-observable relation parameters using clus-
ter number counts and weak-lensing masses. We expand the DES18 analysis by including the
cluster clustering, finding that the information contained in the real-space 2PCF can improve
the constraints on both cosmological and richness-mass relation parameters.

6.5.1 Data and measurements
The dataset is composed by photometrically selected galaxy clusters identified in the SDSS
DR8 with the redMaPPer cluster finding algorithm (Rykoff et al. 2014). The algorithm uti-
lizes all five bands (ugriz) of the SDSS imaging to self-calibrate a model for red-sequence
galaxies. This model is then used to identify galaxy clusters as red galaxy overdensities, while
simultaneously estimating the probability that each red galaxy is a cluster member. The clus-
ter richness is the sum of the membership probabilities over all the red galaxies within an
empirically calibrated scale radius Rλ. We use the cluster richness λ as an observational
mass-proxy, calibrating the relation between galaxy richness and cluster mass using weak
lensing data and clustering data. Of the ∼ 14000deg2 covered by SDSS DR8, the sample is
restricted to the ∼ 10000deg2 of high quality contiguous imaging defined by the Baryon Os-
cillation Spectroscopic Survey (BOSS) experiment (Dawson et al. 2013). The sample spans
the redshift range z = 0.1– 0.3 and contains clusters with richness threshold λ ≥ 20. In numer-
ical simulations this richness threshold ensures that 99% of the redMaPPer galaxy clusters
can be unambiguously mapped to individual dark matter halos (Farahi et al. 2016). Differ-
ently from DES18, who used the v5.10 of the SDSS redMaPPer cluster catalog, we use the
v6.3, for which the cluster random catalog is available. The observed number counts of v6.3
differ from the ones of v5.10 by less than 10 percent, and the parameter posteriors do not
significantly change.

The weak lensing mass estimates employed in this analysis are a slight update of those
presented in Simet et al. (2017), and rely on the shear catalog presented in Reyes et al. (2012).
This catalog covers ∼ 9000deg2 of the SDSS footprint and contains 39 million galaxies, cor-
responding to a source density of 1.2 gal/arcmin2. Shear estimates were derived from the
SDSS imaging using the re-Gaussianization algorithm of Hirata & Seljak (2003) and the
appropriately calibrated responsivity to convert the measured shape distortions into shear es-
timates. The multiplicative shear bias appropriate for this catalog was characterized in Man-
delbaum et al. (2012, 2013). The photometric redshifts for the sources in the shear catalog
were obtained using the Zurich Extragalactic Bayesian Redshift Analyzer (ZEBRA, Feld-
mann et al. 2006), and the associated systematic uncertainties were calibrated in Nakajima
et al. (2012).

The observed number counts and weak-lensing masses are described in DES18. Number
counts are measured in five richness bins λob = {20,27.9,37.6,50.3,69.3,140} and a single
redshift bin zob ∈ [0.1,0.3]. Weak lensing masses are measured in the same richness bins,
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using the stacked weak lensing mass profiles of the clusters, assuming an NFW profile, and
accounting for the effects of cluster miscentering, halo triaxiality, and projection effects. The
cosmology dependence of weak lensing masses is modeled following Eq. (1.30); the slopes
derived from fitting such an equation to the data are listed in Table 1 of DES18, and are used
in our cosmological analysis to re-scale log10 MWL at each step of the MCMC.

The real-space 2PCF is computed by applying the Landy & Szalay (1993) estimator to
the data and random catalogs with the CosmoBolognaLib code, as described in Sect. 5.1.1.
We consider 30 log-spaced separation bins in the range r = 20– 130 h−1 Mpc and, given the
relatively low available statistics, we only consider a single richness bin.

Number counts and clustering and their covariances are modeled as described in Sect. 6.1,
while weak-lensing masses are computed as

MWL
ai =

1
Nai
Ωsky

∫ ∞

0
dz

dV
dzdΩ

(z) ⟨Mi ni⟩(z)
∫
∆zob

a

dzobP(zob |z,∆λob
i ) , (6.28)

where

⟨Mi ni⟩(z) =
∫ ∞

0
dM M

dn
dM

(M,z)
∫
∆λob

i

dλob
∫ ∞

0
dλP(λob |λ,z) P(λ |M,z) . (6.29)

To describe the halo mass function we use the model by Tinker et al. (2008), with the
addition of two nuisance parameters to account for systematic effects:

dn
dM

(M,z) =
dnT08

dM
(M,z) (s log10(M/M0)+q) , (6.30)

with log10(M0) = 13.8h−1 M⊙. According to the halo mass function, we use the halo bias
model of Tinker et al. (2010).

We consider the three quantities as independent, with Gaussian likelihoods for num-
ber counts and clustering, and a log-normal likelihood for weak-lensing masses. While
the absence of correlation between number counts and clustering has been demonstrated
in Sect. 6.3, the independence of such observables and weak lensing masses is assumed by
supposing that the dominant error sources for weak lensing masses do not affect the other
observables (see DES18). However, the possible existence of correlations between richness
and weak lensing masses is far from being excluded, and will be studied thoroughly in future
works. We constrain cosmological, mass-observable and nuisance parameters listed in Table
3 of DES18, with priors reported in the third column of the mentioned table.

6.5.2 Preliminary results
We perform four analyses, testing all the possible combinations of the three cosmological
probes: i) number counts and weak-lensing masses (“NC+MWL”), representing the standard
analysis performed by DES18, ii) number counts and clustering (“NC + CL”), iii) clustering
and weak-lensing masses (“CL+MWL”), and iv) number counts, clustering and weak-lensing
masses (“NC+CL+MWL”).

Firstly, we compare our “NC+MWL” results to the results by DES18. By comparing the
blue contours in Fig 6.12 and the corresponding best fit values shown in table 6.4 with the
results of DES18, it can be noticed that our results are slightly different from the ones of

113



DES18; this discrepancy is ascribed to numerical issues due to the use of a different code.
However, the two result are fully consistent and do not present any addition bias. This consis-
tency check ensures the absence of systematics in our analysis, confirming a good agreement
between the two results.

In fig. 6.12 we show the cosmological posteriors obtained by the four analyses described
above. It can be clearly observed a different degeneracy on parameters when the cluster clus-
tering is included, where the role of cluster clustering is particularly important in constraining
the total amount of matter (i.e., Ωm). Although the “NC+CL” combination is not particularly
constraining, cluster clustering turns out to be useful when combined with weak-lensing mass
information (orange contours). As expected by the different degeneracies, the combination
of the three observables provides the tightest posteriors (red contours), both for cosmological
parameters and to constrain richness-mass relation. In Table 6.4 we list the best-fit values
with 1σ uncertainty for each case.

In fig. 6.13, we show the observed quantities compared to the corresponding predictions,
computed at the best-fit values listed in Table 6.4. The predictions poorly match with the
observations when computed at the best-fit from the analysis without that observable. Part of
the problem is related to the fact that the prediction takes into account only the best-fit and
not the entire posterior. As seen in Fig. 6.12, the posteriors of the different observables are in
all cases compatible with each other. The reason for the tension between the best-fit values is
probably due to the presence of different systematics affecting the three quantities, and will
be investigated more thoroughly in future work. In all the three cases, the “NC+CL+MWL”
best-fit presents a good agreement between the predicted and measured quantities.

The results obtained from this analysis, although preliminary, show that cluster cluster-
ing provides relevant information for constraining both scaling relations and cosmological
parameters. This not only demonstrates the usefulness of combining different observables,
but gives confidence that the pipeline created can be used in the Euclid perspective, where
the available statistics will be even larger. Second, while the combined analysis of number
counts and weak-lensing gives values ofΩm lower than those obtained by other cosmological
probes, clustering seems to be less affected by this bias. This could make clustering a rele-
vant tool to verify the validation of weak-lensing calibration, as it is not affected by the same
systematics

Table 6.4: Best-fit values with 1σ uncertainty for cosmological and mass-observable relation param-
eters for the four posteriors of Fig. 6.12.

Case Ωm σ8 log10 Mmin log10 M1 α σintr

NC+MWL 0.20+0.06
−0.04 0.93+0.11

−0.10 11.27+0.20
−0.19 12.56+0.13

−0.15 0.76+0.07
−0.06 0.27+0.14

−0.11

NC+CL 0.29+0.03
−0.03 1.00+0.28

−0.18 11.54+0.19
−0.15 12.80+0.06

−0.08 0.79+0.08
−0.09 0.33+0.12

−0.15

CL+MWL 0.28+0.04
−0.03 0.77+0.06

−0.06 11.16+0.23
−0.25 12.43+0.18

−0.19 0.70+0.09
−0.07 0.33+0.12

−0.15

NC+CL+MWL 0.27+0.03
−0.02 0.82+0.05

−0.05 11.40+0.19
−0.11 12.74+0.03

−0.04 0.86+0.03
−0.04 0.27+0.15

−0.12
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Figure 6.12: Contour plots at 68 and 95 percent of confidence level for number counts + weak lensing
(NC+MWL, blue), number counts + clustering (NC+CL, green), clustering +weak lensing (MWL+CL,
orange), and number counts + clustering+ weak lensing (NC+MWL+CL, red) analyses. Gray dotted
lines represent the best-fit values from DES18.
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Figure 6.13: Observed number counts (upper left), weak-lensing masses (upper right), and 2PCF
(lower), compared to the corresponding predicted quantities evaluated at the best-fit cosmologies of
the contours in Fig. 6.12 (same color code).
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Chapter 7

Discussion and conclusions

Galaxy clusters are extremely relevant cosmological structures, as they are characterized by
properties that are sensitive to both the global geometry and the evolution of the large-scale
structure of the Universe. The mass and spatial distribution of galaxy clusters, as well as their
temporal evolution, exhibit a strong dependence on several cosmological parameters and are
able to provide independent constraints that are complementary to those obtained from other
purely geometric cosmological tests, such as the analysis of temperature anisotropies in the
CMB and Type Ia supernovae. This makes galaxy clusters excellent cosmological probes for
investigating the nature of the dark components of the Universe, such as dark matter and dark
energy, and the behavior of gravity on a large scale, as well as information about the mass of
neutrinos and the initial conditions of the matter density field.

In the next years, with the advent of new surveys that will observe large and deep areas
of the sky, such as Euclid, the statistics available for the analysis of these observables will
improve to such an extent that cosmological parameters can be constrained to unprecedented
levels of precision. Given the level of precision expected for the analysis of these future cat-
alogs, the estimation of parameters from observational data must necessarily be preceded by
a study of systematics, whose contribution, if not accurately quantified, may alter the results
and lead to erroneous conclusions regarding the nature of the components of the Universe.
The main systematic error that can affect cluster cosmology is linked to the estimation of
cluster masses, which must be carried out indirectly through mass proxies and calibration of
scaling relations. Also the cluster detection process and a poor modeling of selection func-
tions can introduce biases in the cosmological constraints. These factors must be carefully
calibrated through the use of numerical simulations and/or observational data.

From a theoretical point of view, the main systematics can arise from the wrong modeling
of shot-noise and sample variance effects, as well as the incorrect treatment of non-linear
quantities or geometric effects, and from the calibration of halo mass function and halo bias.
Such systematics must be taken into account in the cosmological analysis through the proper
description of covariance matrices. In particular, the analysis of theoretical systematics is
generally carried out through the use of catalogs produced with numerical simulations, in
which the cosmological parameters assumed for the realization of the simulations themselves
are known a priori: this makes it possible to determine whether the results obtained are correct
or whether, on the contrary, there are systematic effects introducing biases into the analyses.
The simulations used to carry out these analyses are produced using approximate methods
that, unlike N-body simulations, are able to provide sufficiently high statistics to lower the
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level of random errors and be able to give a correct estimate of systematic uncertainties. Such
methods take advantage of the use of perturbative theories, such as the LPT and its first-order
development, namely the Zel’dovich approximation, which allow particle displacements and
the resulting formation of halos to be calculated more quickly and computationally less ex-
pensively than N-body simulations. In this thesis work, the analysis of the systematics has
been carried out through the use of dark matter halo catalogs produced with the PINOCCHIO
algorithm, consisting of 1000 light cones with area Ωsky = 10313 deg2 in the redshift interval
z = 0– 2. Masses were rescaled following the analytical mass function of D16, calibrated
from numerical N-body simulations. We analyzed the mass distribution of dark matter halos,
i.e. the number counts as a function of mass and redshift, and their clustering, described by
the 2-point correlation function as a function of radial separation, redshift and mass. After
validating the covariance models for the two observables, we forecast the impact of covari-
ances on the cosmological constraints for both number counts and clustering analyses, and
for their joint analysis.

In Chapter 3 we present a likelihood-based method for fitting the covariance matrix pa-
rameters from a small number of simulation. In this work, we have explored a two-step
method to build a reliable and cheap covariance matrix. It is based on using two basic ingre-
dients: an even imperfect model covariance with free parameters, and a χ2-test. Upon suc-
cessfully finding the best-fit values for the free-parameters for which the χ2-test is passed, the
methods provides a reliable covariance matrix having to run a small number of simulations,
typically smaller than the data-vector itself. We have applied the method to two contexts, us-
ing the 2-point correlation function and the bispectrum of mock halo catalogs as observables.
We employed knowingly incomplete models of the covariance with two free parameters in
both cases. We have shown how to verify their reliability without relying on knowing the
true covariance via a χ2 test. In the case of the 2-point correlation function, using only 100
simulations, we are able to recover unbiased estimates of the cosmological parameters of the
simulation. We found that our covariance matrix fit prefers a non-Poisson shot noise in our
simple model. Since the effective shot noise is different when derived from covariance matrix
compared to direct power spectrum fit, the most likely explanation is that we are detecting
higher-order corrections. In the second example, using a non-Gaussian model for the bispec-
trum covariance we improve significantly with respect to a Gaussian covariance, but we are
not able to match the numerical covariance drawn from Nsims = 10000.

The main results of our analysis can be summarized as follows.

• As shown in Sect. 3.3.1 we find in both cases that the first moment of χ2 is consistent
with theoretical expectation. The second moment is correct for the case of correlation
function, but too high in the case of bispectrum. There the wrong covariance matrix
causes an extra excess on the χ2 values with RMS of ∼ 60, similar to intrinsic scatter
from χ2 distribution.

• The main strength of the method is that it can be applied to test a proposed covariance
matrix even in the case where the number of simulated universes is not sufficient to
generate even a positive-definite matrix. It relies on examining the consistency of χ2

values derived from a model covariance matrix with theoretical expectation. A simple
way of doing this is to measure mean and variance of realization χ2 values, comparing
these with expectation values for a χ2 distribution. Even when the test is performed on
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the same simulated realization used for fitting the covariance matrix, the result might
be inconsistent if the covariance model is insufficiently flexible to describe the actual
covariance. The results also quantify the badness of the covariance matrix by giving
typical expected biases in χ2 values.

• We also found that the adopted model can have intrinsic biases when fitting an insuffi-
cient number of simulations. For example, when fitting with only 30 simulations, the
derived best-fit covariance matrix not only varies with sample variance but is system-
atically underestimated (see Fig. 3.2) for this subset of simulations. Investigating this
effect further and developing covariance models that are unbiased (in the sense that
they in average produce an unbiased covariance matrix) is left to future work.

In practice we have found that even covariance matrices that have a demonstrably biased
χ2 distributions often perform well enough in practical situations, giving cosmological pa-
rameters constraints that are acceptably biased with respect to the ideal case (See Fig. 3.4).
This indicates that while our method allows for a proper propagation of covariance matrix un-
certainties coming from sample variance on the number of realizations used into cosmolog-
ical inferences, this might very rarely be used in practice. At the same time, the distribution
of simulated χ2 values might allow us to “recalibrate” the goodness of fit measures. In our
bispectrum example, the fitted covariance matrix produces a distribution of χ2 values which
is too broad. This would allow us to better quantify the goodness of fit on the real data, which
might be formally bad, but consistent with the distribution obtained with simulation with an
imperfect covariance matrix.

While our test shows in principle the potential of our method, there are several more real-
istic setups where this method could prove to be crucial. For instance, it will be important to
further test to what degree the fitting procedure can compensate for an incomplete modeling
of the covariance and if approximate phenomenological terms can be added into covariance
matrix model that absorb terms missing from the theory. A good testing ground for these tests
is the galaxy/halo bispectrum framework we introduced in Section 3.3.3, since the covariance
in this case has large off-diagonal terms for which we have only an incomplete model. We
leave these tests to future work.

In Chapter 4 we presented the results of the number counts analysis. In this work we
studied some of the theoretical systematics that can affect the derivation of cosmological
constraints from the analysis of number counts of galaxy clusters from a survey having sky-
coverage and selection function similar to those expected for the photometric Euclid cluster
survey. One of the aims of this work was to understand if the inclusion of sample variance, in
addition to the shot-noise error, could have some influence on the estimation of cosmological
parameters, at the level of statistics that will be reached by the future Euclid catalogs. In this
first part we only consider uncertainties which do not deal with observations, thus neglecting
the systematics related to the mass estimation; however Köhlinger et al. (2015) state that for
Euclid the mass estimates from weak lensing will be under control and, although there will
be still additional statistical and systematic uncertainties due to mass calibration, the analysis
of real catalogs will approach the ideal case considered here.

To describe the contribution of shot-noise and sample variance, we computed an analyti-
cal model for the covariance matrix, representing the correlation between mass and redshift
bins as a function of cosmological parameters. Once the model for the covariance has been
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properly validated, we moved to the identification of the more appropriate likelihood function
to analyze cluster abundance data. The likelihood analysis has been performed with only two
free parameters, Ωm and log10 As (and thus σ8), since the mass function is less affected by
the variation of the other cosmological parameters.

The main results of our analysis can be summarized as follows.

• To include the sample variance effect in the likelihood analysis, we computed the co-
variance matrix from a large set of mock catalogs. Most of the sample variance signal
is contained in the block-diagonal terms of the matrix, giving a contribution larger than
the shot-noise term, at least in the low-mass/low-redshift regime. On the other hand,
the anti-correlation between different redshift bins produces a minor effect with respect
to the diagonal variance.

• In Sec. 4.1, we computed the covariance matrix by applying the analytical model by
Hu & Kravtsov (2003), assuming the appropriate window function, and verified that it
reproduces the matrix from simulations with deviations below the 10 percent accuracy;
this difference can be ascribed mainly to the non-perfect match of the T10 halo bias
with the one from simulations. However, we verified that such a small difference does
not affect the inference of cosmological parameters in a significant way, at the level of
statistic of the Euclid survey. Therefore we conclude that the analytical model of Hu &
Kravtsov (2003) can be reliably applied to compute a cosmology-dependent, noise-free
covariance matrix, without requiring a large number of simulations.

• In Sec. 4.2.1, we established the optimal binning scheme to extract the maximum infor-
mation from the data, while limiting the computational cost of the likelihood estima-
tion. We analyzed the halo mass function with a Poissonian and a Gaussian likelihood,
for different redshift- and mass-bin widths and then computed the figure of merit from
the resulting contours in Ωm –σ8 plane. The results show that, both for the Poissonian
and the Gaussian likelihood, the optimal redshift bin width is ∆z = 0.1: for larger bins,
not all the information is extracted, while for smaller bins the Poissonian case saturates
and the Gaussian case is no longer a valid approximation. The mass binning affects
less the results, provided not to choose a too small number of bins. We decided to use
NM = 300 for the Poissonian likelihood and NM = 5 for the Gaussian case.

• In Sec. 4.2.2, we included the covariance matrix in the likelihood analysis and demon-
strated that the contribution to the total error budget and the correlation induced by the
sample variance term cannot be neglected. In fact, the Poissonian and Gaussian with
shot-noise likelihood functions show smaller error bars with respect to the Gaussian
with covariance likelihood, meaning that neglecting the sample covariance leads to an
underestimation of the error on parameters, at the Euclid level of accuracy. As shown
in Sec. 4.2.4, this result holds also for the eROSITA survey, while it is not valid for
present surveys like Planck and SPT.

• We verified that the anti-correlation between bins at different redshifts produces a
minor, but non-negligible effect on the posteriors of cosmological parameters at the
level of statistics reached by the Euclid survey. We also established that a cosmology-
dependent covariance matrix is more appropriate than the cosmology-independent case,
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which can lead to biased results due to the wrong quantification of shot-noise and sam-
ple variance.

One of the main results of the analysis presented here is that, for next generation surveys
of galaxy clusters, such as Euclid, as well as for the latest currently available surveys like
eROSITA, sample variance effects need to be properly included, becoming one of the main
sources of statistical uncertainty in the cosmological parameters estimation process. The cor-
rect description of sample variance is guaranteed by the analytical model validated in this
work.

In Chapter 5 we presented the results of the clustering analysis. In this work we vali-
date a covariance model for the real-space 2-point correlation function of galaxy clusters in a
survey that is comparable to that expected from the Euclid survey in terms of mass selection,
sky coverage and depth. As for the number counts, in this first step we do not account here
for the effect of selection functions and mass-observable relations.

We consider a Gaussian model plus the low-order non-Gaussian contribution, neglecting
high-order terms. This choice is motivated since we expect the non-Gaussian terms to be
minor corrections to the main Gaussian covariance. As such, great efforts to analytically
calculate these complicated terms are not computationally justified. With this premise, we
are interested in evaluating the impact of the approximations we made to compute this simple
model, i.e. the absence of three- and four-point correlation functions, at the level of accuracy
required for the future Euclid cluster catalogs.

We measure the 2PCF from the light cones with the Landy & Szalay (1993) estimator and
compare the result with the theoretical prediction of Eq. (5.4), in the redshift range z = 0– 2
and radial range r = 20– 130 h−1 Mpc. We consider, in first place, halos more massive than
Mth = 1014 M⊙. We quantify the differences between covariance matrices by performing a
likelihood analysis with different covariance configurations, and evaluating their effect on the
cosmological posteriors. To correct for the halo bias inaccuracy, we rescale the predicted
2PCF to the mean measured one, plus the cosmology dependence from theory. We constrain
the parameters Ωm and σ8, on which the cluster clustering is more strongly sensitive.

The main results of our analysis can be summarized as follows.

• In Sect. 5.2.1, we test different binning schemes, to properly extract the cosmological
information. We find negligible differences when varying the width of redshift bins. We
also observe a slight increase of the extracted information when increasing the number
of radial bins, up to Nr ≃ 30. We select the redshift bin width ∆z = 0.4 and a number of
radial log-spaced bins Nr = 30, corresponding to ∆ log10(r/h−1 Mpc) = 0.028;

• In Sect. 5.2.2, when comparing the analytical model of Eq. (5.10) with the numerical
matrix, we find that the former underestimates the covariance at intermediate and high
redshift by about 30 percent on the diagonal and more than 50 percent on the off-
diagonal terms. We ascribe this difference to the absence of high-order non-Gaussian
terms and to the inaccuracy of the Poissonian shot-noise assumption, as well as the
residual inaccuracy of the assumed model for the halo bias;

• We correct the model by adding three parameters {α,β,γ}, to correct for non-Poissonian
shot-noise and halo bias prediction, as well as to absorb the effect of the missing

121



high-order terms (Eq. 5.15). The parameters are fitted from simulations following the
method described in Sect. 3.3. We obtain an agreement within 10 percent with the nu-
merical matrix at all the redshifts. It should be noted that, even if the missing terms are
added analytically and a perfect description of the halo bias is provided, the exact value
of shot-noise cannot be predicted. Correcting the model with such fitted parameters is
therefore a well-motivated procedure;

• From the likelihood analysis we find a difference of about 40 percent between the the
model and numerical FoMs. Such difference drops to about 5 percent when adding the
fitted parameters to the model. This difference is considered to be negligible in more
complete analyses (e.g. richness-selected catalogs), most likely to be absorbed by the
broadening of the cosmological posteriors;

• In Sect. 5.2.3, we assess the relevance of the low-order non-Gaussian term, which turns
out to be non-negligible at small scales, especially at high redshift;

• In Sect. 5.2.4, we find that, in this analysis, the likelihood with cosmology-dependent
covariance is statistically preferred over the iterative method. Also, we find that eval-
uating the covariance at a fixed wrong cosmology can lead to an under/overestimated
posterior’s amplitude. Moreover, neglecting the cosmology-dependence of the covari-
ance means losing the information contained in the shot-noise term. Such information
is not contained directly in the 2PCF, but is nevertheless information that characterizes
the clustering of clusters;

• In Sect. 5.2.5, we assess the cosmological information encoded in the shape of the halo
bias by splitting our sample in mass bins, finding a significative improvement in the
FoM compared to mass-threshold case. Such improvement is expected to be even more
important for richness-selected halos, where this dependence can help to constrain the
mass-observable relation parameters in addition to the cosmological ones.

Two main results emerge from this analysis. First, for cluster clustering a pure Gaussian
model is not sufficient to correctly describe the covariance. This is due to the low num-
ber densities that characterize the spatial distribution of these objects, making non-Gaussian
terms more important as the redshift and the mass threshold increase. Despite this, a simple
semi-analytical model with parameters fitted from simulations permits to correct the inac-
curacy of the model and give an accurate estimate of the errors associated with the 2PCF.
Although this model still requires the use of simulations to fit the covariance parameters, the
number of simulations is considerably lower than the number required to compute a good nu-
merical matrix (approximately O(102) instead of O(103)). Furthermore, the resulting matrix
is completely noise-free and accounts for the dependence on cosmological parameters.

Second, the covariance of the 2PCF contains cosmological information that is not present
in the mean value. Therefore, both quantities should be taken into account in constraining
cosmological parameters, to correctly extract the information enclosed in the cluster clus-
tering, especially when the mass binning is included. Note that this may require some care
when performing a combined analysis of cluster number counts and cluster clustering, as the
cosmological information contained in the 2PCF covariance is also contained in the number
counts. We reserve to examine this issue in detail in a future dedicated work.
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In this work we show how a simple semi-analytical model can be used to accurately de-
scribe the cluster clustering covariance matrix. However, the calibration of such model is not
universal, but depends on the specific properties of the survey, such as geometry or mass and
redshift range. The fit of the covariance parameters must then be performed for each survey,
on appropriate simulations. Moreover, such parameters may contain a non-negligible depen-
dence on cosmology whose impact is still to be quantified.

In Chapter 6 we present the results of the number counts and clustering joint analysis
in observable space, and the application of the pipeline to real data. To this purpose, we
assigned a richness to the halos in our lightcones, through a richness-mass relation. We also
added observational uncertainties on richness and redshift, by means of selection functions.
For each lightcone, we obtained a final sample with ∼ 105 objects in the redshift range z = 0–
2 and with richness λob ≥ 20.

The main results of our analysis can be summarized as follows.

• In Sect. 6.2, we validated the two covariance models in observable space, confirming
the results found for mass-selected objects, i.e., both the number counts and clustering
covariances present a difference in the FoM below the 5 percent;

• In Sec. 6.2.2, we find negligible cross-correlation between number counts and cluster-
ing, with a cross-correlation coefficient ρ = −0.015±0.032, fully consistent with zero.
This indicates that the two observables behave like independent quantities;

• In Sect. 6.3, we studied the effect of MoR prior on the parameter constraints, testing
four priors’ amplitudes equal to 5, 3, 1, and 0 %. In all the cases, clustering is less
constraining than number counts, but the combination of the two observables provides
tighter constraints than number counts alone, with an improvement in the FoM from 20
to 90 %, depending on the MoR uncertainty;

• In Sect. 6.3.2 we found that the impact of wrong cosmology/cosmology-dependent ma-
trices is appreciable only if the uncertainly on the richness-mass relation parameter is
low. In this case, since cluster clustering is much less constraining than number counts,
the error in the posterior amplitude is driven by the covariance of number counts, while
the cosmology-dependence of the clustering covariance does not impact the joint pos-
teriors. When the uncertainty on the mass-observable relation is larger, the error made
by fixing the covariance to a wrong cosmology (∼ 2σ from Planck Collaboration VI.
2020) is absorbed by the broadening of the contours;

• In Sect. 6.4.1, we applied the number counts pipeline to assess the impact of a cosmology-
dependent HOD, finding that such a dependence can improve the cosmological con-
straints of the 5% for number counts alone, and up to 10% when number counts are
combined to weak-lensing information;

• In Sect. 6.4.2, we applied the number counts pipeline to forecast the impact of the halo
mass function calibration on the cosmological posteriors. The statistical uncertainties
on the halo mass function calibration presented in our analysis are significantly smaller
than the expected accuracy for the mass-observational relation of Euclid. However, the
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difference between the halo mass function of the halo-finders here studied is compara-
ble to the expected accuracy for the mass-observational relation of Euclid and, as such,
could lead to a biased inference of cosmological parameters;

• In Sect. 6.5, we applied the whole pipeline to the SDSS redMaPPer cluster catalog,
repeating the analysis performed by DES18, with the addition of cluster clustering.
We find that the inclusion of clustering can significantly break the parameter degenera-
cies, both for cosmological and mass-observable relation parameters. From the number
counts, clustering and weak-lensing masses joint analysis we obtainΩm = 0.27−0.03

−0.02 and
σ8 = 0.81±0.05.

The main result of this work is that cluster clustering actually helps to improve the constrain-
ing power of cluster number counts, despite the lower constraining power. This is true not
only for future large surveys, as shown by our forecasts, but also for the currently available
SDSS data, where the different degeneracies on parameters make cluster clustering a powerful
tool to be combined with number counts and weak lensing. However, while the independence
of number counts and clustering has been demonstrated by the absence of significant corre-
lation between the two observables, the possible correlation of these observables with weak
lensing masses has yet to be thoroughly investigated.

The results presented in this thesis work clearly demonstrate the importance of proper
modeling of theoretical systematics. In fact, the inaccurate description of covariance ma-
trices has a strong impact on the amplitude of cosmological posteriors, both in the case of
number counts and clustering. We propose valuable models for (semi-)analytically predict-
ing cosmology-dependent covariances. Also, we show the usefulness of cluster clustering as
cosmological probes combined with number counts for future surveys like Euclid, as well as
for the currently available SDSS data. We expect that the results of this analysis will have
significant implications for the derivation of cosmological constraints from number counts
and 2-point clustering statistics of the Euclid survey of galaxy clusters. Although this work
was focused on preparation for the Euclid mission, these results can also be applied to other
cluster surveys. In particular, the high statistics that characterizes the most recent and up-
coming surveys such as KiDS, DES, Vera C. Rubin Observatory LSST1, and eROSITa makes
the accurate description of covariance matrices a key ingredient for unbiased estimation of
cosmological parameters. At the same time, such catalogs will make it possible to measure
cluster clustering with growing accuracy, making the combined analysis of cluster cluster-
ing and cluster counts increasingly powerful and competitive, as shown by the results of this
work.

1https://www.lsst.org/
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