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1. ABSTRACT

Oligodendrocyte Progenitor Cells (OPCs) first 
appear at mid embryogenic stages during development 
of the mammalian CNS and a mitotically active population 
of them remains present even into late adulthood. During 
the life-time of the organism they initially proliferate and 
migrate in order to populate the whole nervous tissue, 
then they massively generate oligodendrocytesand finally 
they switch to a less mitotically active phase generating 
new oligodendrocytes at a slow rate in the adult brain; 
importantly, they can regenerate acutely or chronically 
destroyed myelin. All the above depend on the capacity of 
OPCs to regulate their cell cycle within different contexts. 
In this review we describe the development of OPCs, 
their differential mitotic behavior in various conditions 
(embryo, disease, ageing), we discuss what is known 
about the mechanisms that control their cell cycle and 
wehighlightfew interesting and still open questions.

2. INTRODUCTION

The generation of Oligodendrocytes (OLs) from 
Oligodendrocyte Progenitor Cells (OPCs) constitutes 
a crucial step during the development of the Central 
Nervous System (CNS). Every OL extends multiple 
processes, each one of which wraps around a neuronal 
axon in order to form a membranous multilayered 
sheath called myelin, thus ensuring the integrity and 
trophic support of the axon, as well as the successful 
propagationof neuronal activity via saltatory conduction. 
OPCs are derived from different areas of the ventral 
and dorsal embryonic neuro-epithelium (1), they are 
massively generated after mid-gestation in the mouse 
embryo and subsequently populate the whole CNS 
through extensive proliferation and migration. Myelination 
of axons largely occurs in the early postnatal stages and 
with its completion the majority of perinatal OPCs have 
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exited the cell cycle in order to terminally differentiate into 
mature OLs. However, a subpopulation of OPCs survives 
for the life span of the organism (both in humans and 
rodents) as adult OPCs scattered throughout the grey 
and white matter where it represents approximately 
5% of all cells (2) (Figure 1). Recent experimental work 
in the mouse has revealed that adult OPCs probably 
sustain myelin homeostasis by continuing to proliferate 
and to generate new OLs in the adult brain (3-5); 
albeit exhibiting a gradually slower cell cycle and with 
a fraction of them eventually entering senescence (6). 
Importantly, in response to demyelination (as in the 
context of multiple sclerosis) adult OPCs can drive a 
robust endogenous repair process called remyelination 
during which denuded axons are ensheathed by newly-
formed OLs. This is achieved through the proliferation 
and differentiation of local OPCs and the recruitment of 
more distant progenitors that rapidly migrate to the area. 
Failure of remyelination can lead to impaired integrity and 
function of the axon and subsequent neuropathologies 
(reviewed in Franklin &ffrench-Constant)(7). In addition 
to their role in repair, adult OPCs –for example in the 
grey mater- might also contribute in the homeostasis of 
neurons through a range of functions, such as metabolic 
support (8, 9).

As in other types of stem and progenitor cells, 
cell cycle regulation is crucial for OPCs to achieve 
their developmental role, as well as to maintain their 
population in the adult and aging CNS so as to contribute 
to homeostasis and to respond efficiently in cases of 
degeneration. In this review we will discuss the cell cycle 
characteristics of OPCs throughout development, ageing 
and disease and we will summarize the key controlling 
mechanisms. Most of the information we will refer to is 
derived from experimental work in mice and rats; however, 
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reference to the human CNS will be made whenever 
possible. It should also be noted that here we pool 
together published information that has been generated 
by experiments in which cells expressing a subset from 
a range of OPC-specific markers (such as A2B5, NG2, 
Nkx2.2., Olig2, O4 and Sox10) are investigated each 
time, even though there is evidence that differences 
might exist amongst different OPC subtypes(10).

3. OPCS REMAIN MITOTICALLY ACTIVE 
THROUGHOUT THE LIFESPAN OF THE 
ORGANISM

3.1. Development
During embryogenesis of the mouse the first 

OPCs emerge at around embryonic day 12 (E12) at the 
ventral neuroepithelium of the spinal cord (pMN domain), 
generated from the same progenitors that had previously 
generated motor neurons. Few days later, at E15 a second 
wave of OPCs emerges from the dorsal neuroepithelium 
of the spinal cord (11-13), while a third less well-
characterized wave of OPC generation occurs around 

birth (14). In the forebrain, the bulk of OPCs emerge 
after the peak of neurogenesis, again in three waves: 
the first is driven by neuroepithelial cells of a transient 
proliferative zone called medial ganglionic eminence at 
E12, the second from progenitors of the lateral ganglionic 
eminence at around E15 and the third perinatally from 
progenitors of dorsal location (1). In the human brain 
OPCs are already detectable at 5 gestational weeks and 
it is suggested that a subpopulation is generated from 
dorsal proliferative zones (15). Interestingly, the switch in 
lineage commitment of forebrain neural progenitors from 
neurogenesis to oligodendrogenesis is accompanied by 
a significant change in their mode of proliferation, with 
an increase in the number of symmetric self-renewing 
divisions. This phenomenon has been observed in single-
cell cultures in vitro; thus must be an inherent property of 
these progenitors (Figure 2A-C) (16).

Embryonic OPCs migrate long distances whilst 
continuing to proliferate and eventually populate the 
whole CNS, although this process is not homogeneous. 
For example, in the spinal cord OPCs of ventral origin 

Figure 1. OPCs and Oligodendrocytes in vitro and in vivo.(A) Microphotograph of OPCs isolated from adult rat brain and kept in growth medium after 
immunostaining for the proteoglycan NG2 (in red) that is a characteristic marker of OPCs and for the key oligodendroglial lineage transcription factor 
Olig2 (in green). Arrowheads point to the characteristic bipolar morphology of an OPC in culture. (B) Microphotograph of a premyelinatingoligodendrocyte, 
as identified by the expression of Myelin Based Protein (in red). The arrow indicates one process that is in contact with a neuronal axon (axons are 
marked by neurofilament staining, in blue). Expression of EYFP (in green, both in B and C) indicates that this cell is derived from adult neural stem cells 
located in the subependymal zone stem cell niche (OPCs generated by stem cells isolated from hGFAP-CreERT2 x Rosa26-EYFP mice were co-cultured 
with dorsal root ganglion cells). (C) Microphotograph of a myelinatingoligodendrocyte, as identified by the expression of Myelin Based Protein (in red) 
and the formation of characteristic myelin sheaths surrounding neuronal axons (characteristic examples are indicated by arrows, axons are marked by 
neurofilament staining, in blue). (D) Microphotograph of chains of oligodendrocytes, as identified by expression of both Olig2 (in white) and CC1 (a marker 
of mature oligodendrocytes, in red). An astrocyte (marked by expression of GFAP, in green) is intercalated, whilst the two cells indicated by the yellow 
arrowhead express only Olig2 and are probably OPCs (with no expression of CC1).
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are more mobile than those of dorsal origin (13, 17). 
As gestation progresses the length of the cell cycle of 
OPCs gradually increases from 6h at E13, to 15h at 
E15 only to reach 22h at E17(18). This, in combination 
with the initiation of differentiation and the increase in 
levels of apoptotic cell death, leads to a plateau in the 
number of OPCs within the early postnatal CNS, as 
revealed by pulses of BrdU labeling (18). Two main 
hypotheses were proposed in order to explain the 

mechanism by which this deceleration of the cell cycle 
is controlled: i) that it is an inherent property of OPCs, 
in concert with results that revealed that the switch from 
neurogenesis to oligodendrogenesis is maintained in 
single-cell cultures (19), or ii) that it is controlled through 
the concerted effects of mitogenic and anti-mitogenic 
extracellular stimuli. In order to address this question 
transgenic mouse in which expression of platelet-
derived growth factor (PDGF) was either decreased 

Figure 2. Patterns of proliferation and differentiation of single neural progenitors and OPCs. (A) Proliferation and differentiation tree of a clone 
generated in vitro by a single embryonic cortical neural progenitor. Note that all differentiated cells that were generated were neurons. (B)Proliferation 
and differentiation tree of a clone generated in vitro by a single embryonic cortical neural progenitor that gave rise exclusively to oligodenrocytes. (C) 
Proliferation and differentiation tree of a clone generated in vitro by a single embryonic cortical neural progenitor that gave rise in both neurons (marked 
by “N”) and oligodendrocytes (marked by “-“). Note that the generation of oligos coincided with additional symmetrical divisions of the progenitors. (D) 
Proliferation and differentiation tree of clones generated in vivo by single adult cortical OPCs using time lapse imaging. Note that the main pattern within 
the 40-day chase period was that of proliferation without differentiation events. (E) Proliferation and differentiation tree of clones generated in vitro by 
single adult NSCs isolated from the SEZ using time lapse imaging. Note that -bearing in mind the in vitro/in vivo differences- NSC-derived cells seem to 
have significantly shorter cell cycle. ((A,C) Reproduced with permission from (19); (B) reproduced with permission from (16))
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or increased were investigated. PDGF acts on OPCs 
via activation of PDGFRα signaling and enhances 
their migration, proliferation and survival (20-22). In 
mice deficient for PDGF the population of OPCs was 
found to be significantly reduced, leading to severe 
hypomyelination (18, 23). In contrast, over-expression 
of PDGF resulted in increased numbers of OPCs in the 
spinal cord, caused by a shortening of the cell cycle 
during early developmental stages (E13-E15). Notably 
though, at E17 cell cycle duration of OPCs was similar 
when comparing transgenic and wild-type animals (18). 
These results strongly suggest that cell cycle length in 
OPCs is regulated by mitogens and that its deceleration 
is caused by the limited access to PDGF, although other 
factors (increased levels of anti-mitotic molecules and 
inherent properties) must also participate in the regulation. 
Interestingly, the overpopulation of the spinal cord with 
OPCs did not translate into excess numbers of OLs due 
to increased levels of apoptosis in premyelinating OLs. 
Therefore, although cell cycle exit is directly coupled 
with initiation of differentiation in embryonic and perinatal 
OPCs, an increase in the proliferative capacity of the 
overall OPC pool in the normal brain is not linearly 
linked with increased myelination activity. In contrast, 
in cases of perinatal hypoxia (for example in premature 
births), in which large-scale apoptosis occurs in OPCs 
leading to delayed expansion of their population and to 
hypomyelination (24, 25), the induction of proliferation in 
OPCs can restore the pathology (24).

Many other growth factors, morphogens and 
intracellular pathways have been identified to control 
proliferation of OPCs and this is normally coupled with 
inhibition of differentiation (26) (Table 1). Notably, the 
same growth molecule can induce proliferation of OPCs 
in one developmental stage and stimulate differentiation 
in another, with PDGF and neuregulin being two such 
examples (18, 27). In the case of neuregulin, this switch 
is promoted by the regulated alteration in the expression 
of integrins in OPCs and is manifested as a change in the 
neuregulin-induced intracellular signaling cascade from 
the phosphatidylinositol-3-OH kinase (PI(3)K) pathway 
to that of the mitogen-activated kinase (MAPK)(27). 
Nevertheless, in Erk2-/- conditional mice (ERK2 is a 
prototypic member of the MAPK family), in which ERK2 
was knocked out specifically in neural progenitors, 
no defect in OPC proliferation was observed (28). 
The emergence of OPCs from their ancestral neural 
progenitors is largely dependent on fibroblast growth 
factor (FGF) signaling (29), a factor that controls their 
proliferation also in later stages (30). Similarly, insulin-
like growth factor-I (IGF-I) is important both in the initial 
specification/expansion stages of OPC development and 
during their main proliferative phase (31, 32). Another 
intriguing process that controls OPC proliferation is 
neuron-derived signaling. Although this appears to be 
a major regulating factor, since myelination involves 
the coupling of OPCs and neurons, not much is still 

known after the seminal work of Barres and Raff (33) 
(and see Table 1). In a recent study, in vivo optogenetic 
stimulation of deep layer cortical neurons resulted in 
significant local increases in OPC proliferation, as well 
as to increased differentiation (34). Therefore, although 
this suggests the existence of a direct link between 
electrical activity and OPC division and complements 
earlier reports of synaptic activity on OPCs (35), it is still 
impossible to rule out a primary effect on differentiation 
subsequently leading to the proliferation of OPCs in 
order to maintain their numbers (43). Nevertheless, the 
significance of the neuron-OPC communication in the 
control of OPC proliferation seems to be an evolutionary 
conserved mechanism that in Drosophila is mediated by 
the DNA-binding protein Prospero that is important in the 
control of asymmetric divisions of neuroblasts (36).

OPEN QUESTIONS: The expression of 
molecules such as NG2 (37) and integrins (27) has 
been shown to be important in the regulation of OPC 
proliferation. What other molecules with auto- and para-
crine function are expressed in OPCs? Are they necessary 
only for the fine tuning of OPC mitotic behavior?

3.2. Adult brain homeostasis and pathology
After the completion of myelination at the 

early postnatal period (only in few areas -such as the 
corpus callosum- myelination continues in adulthood 
in rodents) (38) a fraction of perinatal OPCs retain 
their progenitor properties and survive in the brain 
parenchyma as adult OPCs (39-41). Recent work using 
BrdU or EdU pulse-chasing protocols has revealed that 
all adult OPCs remain mitotic with cell cycle lengths 
significantly longer than those of perinatal OPCs (3, 42). 
Furthermore, both the length of the cell cycle and the 
mode of division (whether eventually resulting in new 
OPCs or in OLs) are area-dependent. In juvenile mice 
the cell cycle varies from ≈3 days in the corpus callosum 
to ≈20 days in the cortex and it slows down further 
with ageing reaching ≈10 days in the corpus callosum 
and ≈35 days in the cortex (3, 43). Hence, OPCs are 
considered to be a relatively quiescent progenitor 
population in rodents (44) and the same seems to apply 
for the human brain, in which almost all cycling cells are 
OPCs proceeding through a long G1 phase (45). Recent 
experimental work in which cortical OPCs were imaged 
in situ revealed that they remain in a dynamic and motile 
state, constantly extending and withdrawing processes 
that allow them to sense their microenvironment (46). 
The disappearance of one OPC either due to cell death or 
due to differentiation induces a neighboring cortical OPC 
to undergo cell division in order to maintain cell density. 
These cell mitoses are only rarely directly coupled with 
the initiation of differentiation as the majority of them 
leads to two OPCs that can differentiate within a range of 
time scales (4, 43, 46, 47). In that way the pool of OPC 
remains capable to react in future challenges, although it 
still remains elusive if injury or myelination-derived stimuli 
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might also affect directly the proliferative behavior of OPC. 
The existence of wide differentiation time-frames for adult 
OPCs observed by Hughes et al. (43) is in concert with 
the conclusions of another recent report (48) in which 
the distribution of myelin in different layers of cortical 
pyramidal neurons was meticulously explored and that 
revealed that although OPCs are in similar abundance 
throughout all layers significant differences in the levels 
of myelin are maintained. Notably, morphological studies 
of proliferating OPCs in adult brain slices and in vivo on 
one side confirmed the existence of symmetric divisions 
of adult OPCs and showed that these cell retain their 
structural and even electrophysiological properties 
during the cell cycle (49) and on the other side revealed 

a significant proportion of divisions with very early signs 
of asymmetry between sister cells (50).

In contrast, in white matter tracts, such as the 
corpus callosum, the cell generation pattern seems 
to be substantially different, as within a 65-day chase 
experiment the majority of OPCs were found to generate 
myelinating oligodendrocytes and not to self-renew (4, 47). 
These area-specific differences in the mitotic behavior of 
adult OPCs could again be intrinsic or extrinsic and the 
investigation of this question is still pending, one reason 
being the lack of protocols allowing the isolation of 
sufficient numbers of adult OPCs. Recent experimental 
work revealed that areas such as the corpus callosum 

Table 1. Summary of the effects of different factors in the proliferation/differentiation of OPCs
Factor Effect on OPC proliferation and/or differentiation Reference

PDGF Enhances and is necessary for OPC proliferation in vitro and in vivo. Blocks cell cycle exit and 
preservees OPCs in an immature progenitor state.

(18, 20, 23, 93, 107)

FGF-2 Increases the expression of PDGFR-A, thereby indirectly enhancing sensitivity to PDGF signalling (30, 108, 109)

IGF-1 Increases proliferation of OPCs in vitro through regulation of G2/M progression in vitro (31, 32, 56, 85, 86, 110)

Insulin Higher concentrations, i.e., in cell culture medium lead to an activation of IGF1-receptor, promotes 
survival of OPCs in vitro

(111)

CNTF Can act synergistically with PDGF-AA. Increases survival of OPCs in vitro (111)

BDNF Enhances OPC proliferation in vitro synergistically with NT-3, increased OPC proliferation in a spinal 
cord contusion model in rats

(112)

NT-3 Enhances OPC proliferation in vitro, acts synergistically with PDGF-AA, block of NT-3 signalling 
with anti-NT-3 antibodies reduced the number of proliferating OPCs in the optic nerve during 
development in rats, promotes proliferation of OPCs in a contused spinal cord model in adult rats

(111-113)

Il-6 Enhances OPC survival (111)

LIF Enhances OPC survival (111, 114)

GGF2/neuregulin Enhances OPC proliferation in vitro. Enhances OPC proliferation in EAE models (115, 116)

TGF-beta Promotes OPC differentiation, ihibits progenitor proliferation (117)

cAMP Promotes OPC differentiation (88, 118-120)

Wnt3/3a Promotes specifically the proliferation of oligodendrogneic adult NSCs

Beta-adrenergic 
receptor agonists

Promotes OPC cell cycle exit in G1 and blocks S phase entry in vitro (87)

Glutamate Promotes OPC cell cycle exit in vitro and in cerebellar slice cultures (87)

Thyroid hormones 
(T3 and T4)

Important for OPC differentiation in vitro and in vivo, promotes cell cycle exit and blocks OPC 
proliferation in vitro

(121-124)

Electrical activity Enhances OPC proliferation in vivo (33, 34)

M1 polarised 
macrophages

Conditioned medium from M1 polarised macrophages enhanced proliferation of OPCs in vitro (125)

M2 polarised 
macrophages

Conditioned medium from M2 polarised macrophages enhanced proliferation and differentiation of 
OPCs in vitro

(125)

BDNF: Brain-Derived Neurotrophic Factor; cAMP: cyclic Adenosine MonoPhosphate; CNTF: CiliaryNeuroTrophic Factor; FGF-2: Fibroblast Growth 
Factor 2; GGF2: GliaGrowth Factor 2; IGF-1: Insulin-like Growth Factor 1; Il-6: Interleukin-6; LIF: Leukemia Inhibitory Factor; NT-3: Neurotrophin-3; 
PDGF: Platelet-Derived Growth Fcator; TGF-beta: Transforming Growth Factor beta
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retain a higher level of plasticity in teenagers with 
myelination patterns being altered in response to external 
stimuli such as learning or abuse (51-53). However, it 
is far from clear whether this plasticity depends on the 
proliferative capacity of OPCs, or on changes in rates 
of differentiation and of OL survival. The performance of 
heterotopic transplantation experiments, in which grey 
and white matter OPCs were grafted into white and grey 
matter, respectively, confirmed the existence of intrinsic 
properties that underline the higher capacity of white 
matter OPCs to generate myelin; albeit, this capacity was 
not linked to significant differences in their proliferation 
or survival abilities (54). In the rodent brain, specific 
areas of the corpus callosum have also been shown to 
be populated by OPCs of a totally different origin. Those 
generated by oligodendrogenic adult Neural Stem Cells 
(NSCs) that are located in the stem cell niche found 
within the Subependymal Zone (SEZ) of the lateral walls 
of the lateral ventricles (55). When isolated and cultured 
in vitro, these SEZ-derived OPCs exhibit a very active 
proliferative behaviour, with cell cycle duration much 
shorter that those described for the parenchymal OPCs 
in vivo. Similarly to embryonic OPCs, growth factors 
such as IGF-I and EGF enhance mitotic activity of adult 
OPCs (56), whilst exercise was shown to result in further 
slow-down of their cell cycle in contrast to its effects in 
adult neurogenic progenitors (43). An interesting, but 
still largely unexplored, mechanism of control of OPC 
behavior seems to be the release of neurotransmitters 
(mainly of glutamate) from neurons. OPCs have been 
found to express NMDA receptors but it still remains to be 
elucidated whether and how glutamate signaling affects 
proliferation or differentiation (57, 58).

Although the mammalian CNS is often referred 
to as a non-plastic tissue with minimal capacity for 
regeneration, experimental and clinical work over the 
last decades has clearly shown that this does not 
apply to the myelin component. Both in cases of acute 
demyelination, such as after traumatic brain injury, but 
also in chronic demyelinating diseases, such as multiple 
sclerosis, there is strong evidence that substantial or 
even full repair of myelin (remyelination) occurs (59-62). 
In experimental models of focal demyelination (induced 
by cortical injury or the intra-CNS administration of 
toxins such as lysolecithin and ethidium bromide that 
damage OLs and OPCs) it has been shown that OPCs 
local to the lesion exit quiescence by reducing the G1 
phase time-length (43) and become highly mitotic, often 
reaching cell densities higher than normal (63-65). Mitotic 
activation of OPCs is also observed in the periphery of 
the lesion (63, 66) and experiments in which OPCs are 
depleted locally using X-ray radiation have shown the 
repopulation of the lesioned areas by OPCs recruited from 
non-depleted areas (67,68). Similar mitotic activation of 
OPCs has been described in experimental models of 
multiple sclerosis (such as in Experimental Autoimmune 
Encephalomyelitis) (69). Defects in the control of 

proliferation or of the mode of division (a bias towards 
symmetric expansive divisions, Figure 2D)(70) in adult 
OPCs have been suggested to result in the formation of 
human low-grade and aggressive gliomas(71-73) and in 
highly invasive rodent gliomas (74). Importantly, inhibition 
of the EGFR signaling pathway prevented OPC-driven, 
but not adult neural stem cell-driven, tumorigenesis 
suggesting new possible therapeutic strategies (72).

The ensheathing of neurons by specialized glial 
cells is important for their function, as suggested by the 
fact that this type of cell-cell interaction has emerged at 
least three times –independently- during evolution (75) 
and myelination of nerve fibers is considered to be a 
key factor in the evolution of mammalian and primate 
cognitive abilities (76,77). As a consequence it has been 
hypothesized that the cognitive decline observed during 
ageing and especially in the context of pathologies such 
as late-onset alzheimer’s disease might be caused by 
a failure to maintain myelin homeostasis (77-79). To 
what extend this involves defects in the mitotic capacity 
of OPCs thatcould lead to the occurrence of OPC-poor 
areas in the brain remains contradictory. According to a 
recent study, a fraction of OPCs enters senescence in 
the ageing brain (6) and decreased proliferation of OPCs 
in response to demyelination has been observed in the 
aged mouse brain (80). On the other hand the self-
renewing potential of OPCs is not exhausted upon serial 
demyelinating insults (81), and even high losses of OPCs 
can be efficiently compensated by massive migration 
of progenitors from unaffected areas (82). Rather than 
caused by a defect in proliferation of OPCs, perturbations 
in their differentiation capacity are more likely responsible 
for the age-related decline in remyelination(47, 81, 83, 
84). Importantly, the mitotic capacity of OPCs in the 
aged rodent brain can be rejuvenated upon exposure to 
young milieu, as has been demonstrated in parabiosis 
experiments(80).

OPEN QUESTIONS
1. What defines when and how many perinatal OPCs 

will switch to the adult OPC fate (with slower cell 
cycle, different mode of division)?

2. Is the proliferative behavior of OPCs a major cause 
for the failure of remyelination in diseases such as 
multiple sclerosis?

3. Is OPC exhaustion a major cause for cognitive 
decline in the ageing brain and in degenerative 
diseases?

4. Do adult OPCs retain an element of plasticity as 
to their mitotic behavior that might underlinethe 
plasticityin myelination observed during learning?

4. MECHANISMS OF CONTROL OF MITOSIS 
IN OPCS

In mammals progression through G1 and 
entry into S phase of the cell cycle is mainly controlled 
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by three different protein families and their activity. The 
key process involves the sequential phosphorylation of 
the Retinoblastoma protein (Rb) by two cyclin/cyclin-
dependent kinase (CDK) complexes. In the middle of 
the G1 phase cyclinDs can form a protein complex with 
CDK4/6 that phosphorylates Rb which is then targeted for 
additional phosphorylation by the cyclinE-CDK2 complex. 
The phosphorylated RB inhibits the sequestration of E2F 
transcription factors and leads to the expression of S 
phase specific genes that promote the G1/S transition. 
On the other side this transition can be blocked by the 
activity of cell cycle inhibitory proteins –the most important 
belonging to theINK4 and the Kip/Cip families- that often 
function as tumor suppressors. In OPCs FGF-2 and 
IFG-I dependent stimulation of proliferation is mediated 
through different intracellular pathways (GSK3β and 
ERK1/2) that converge in the activity of cyclin D1 (85, 86) 
and neurotransmitters have also been shown to affect 
directly cell cycle inhibitors(87, 88).

Regarding OPCs, based on single progenitor 
cultures Temple and Raff proposed the intrinsic clock 
hypothesis, according to which each OPC can divide 
8 times before initiating differentiation (89). This was 
subsequently refined as it was revealed that the clock 
was measuring time rather than number of divisions(90)
with PDGF being essential for its operation (21). Notably 
though, the degree to which the operation of such a 
clock mechanism controls the behavior of OPCs in vivo 
remains controversial. From one hand there is evidence 
for a close association between OPC birth-date and the 
timing of their differentiation. Dorsally-derived OPCs in 
the spinal cord are born later than their ventrally-derived 
counterparts and they start generating oligodendrocytes 
with a similar delay and irrespective of whether ventral 
OPCs (and the oligodendrocytes they generate) are 
genetically ablated (91,92). On the other hand we 
now know that adult OPCs remain ubiquitously in the 
cell cycle (3, 93), that they proliferate in response to 
demyelination, that their numbers are not exhausted even 
after repeated degenerative insults (81) and that they 
can be rejuvenated (80). A central hypothesis formed to 
explain how the clock model works was that cell cycle 
inhibitory factors gradually accumulate, leading -once 
over a threshold- into mitosis inhibition. However, long-
term culture experiments of perinatal OPCs revealed that 
the accumulation p21cip/kip, p27cip/kip and p57cip/kipcyclin 
kinase inhibitors and of p53 was counterbalanced by 
gradual increases in the expression of CDKs 2, 4 and 
of cyclins D1, D3 and E(93). Indeed, the operation of 
such compensatory mechanisms, either at a cellular or 
molecular level, safeguards normal developmental and 
myelination programs. Mice deficient for p27cip/Kip did 
not show a major defect in myelination and were only 
characterized by an increased number of progenitor 
cells that still differentiated appropriately in vivo(94). 
Furthermore, in cdk2knockout mice myelination was 
completely unaffected, possibly due to over expression of 

CDK4 (24). Notably, expression of CDK4 is downregulated 
after postnatal day 15 in the mouse brain and proliferation 
of adult OPCs in response to demyelination is decreased 
incdk2-/- mice (95). In the adult rodent brain OPCs are 
also generated from neural stem cells located within the 
subependymal zone (SEZ) cytogenic niche (96-99) and 
the proliferation of SEZ-derived OPCs is also impaired in 
cdk2-/- mice(95); thus one of the features distinguishing 
embryonic/perinatal and adult OPCs is the dependency 
of the latter to CDK2 due to the absence of compensatory 
mechanisms. Embryonic/perinatal fast-cycling and adult 
slowly-cycling OPCs also differ to their dependency on 
cyclinD1, with only the adult ones being significantly 
affected in cdkD1-/- mice (100,101). As discussed 
above, during development it is necessary to couple 
the exit of OPCs from the cell cycle with the initiation of 
differentiation and the engagement with neuronal axons 
in order to generate myelinating OLs at the correct place 
and time. This requires the operation of multiple layers of 
fine regulation and the study of several knockout mice, 
in which expression of various transcription factors (such 
as Olig2, Nkx2.2., Sox5 and 6, Id2 and 4) is perturbed, 
has shown that the usual effect is not a total block of 
self-renewal or a total block of exit from the cell cycle 
(indicating exhaustion or expansion of OPCs), as a clock 
mechanism would dictate, but rather defects in the fine 
tuning resulting in delayed or incomplete formation of 
myelin (102-106). This coupling apparently become 
less important during adult brain homeostasis, when 
differentiation is not tightly linked to cell cycle exit, and this 
might be why there are fewer compensatory mechanisms 
in adult OPCs (rendering them more vulnerable to cdk2 
knocking out) and why remyelination can often be 
inadequate.
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