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PEEFACE

rilHE purpose of the present treatise is to give a brief account

of the leading properties, at present known, of quartic

surfaces which possess nodes or nodal curves.

A surface which would naturally take a prominent position

in such a book is the Kummer surface, together with its special

forms, the tetrahedroid and the wave surface, but the admirable

work written by the late R. W. H. T. Hudson, entitled Rummer's

Quartic Surface, renders unnecessary the inclusion of this subject.

Ruled quartic surfaces have also been omitted.

For the convenience of readers, a brief summary of all the

leading results discussed in this book has been prefixed in the

form of an Introduction.

I have to express my great obligation to Prof. H. F. Baker,

Sc.D., F.R.S., who has given much encouragement and valuable

#2 criticism. Finally I feel greatly indebted to the staff of the

f~j University Press for the way in which the printing has been

^carried out.
ro

C. M. JESSOP.
BH

March, 1916.
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ADDENDA

Throughout, the vertices of the tetrahedron of reference are denoted by

AI, A 2 ,
A 3 ,

A4 : seep. 50.

pp. 38, 45. The oo 1
quadrics ^ + 2X^ + X2w2=0 touch the surface 2=icV along

quadri-quartics. They are the quadrics mentioned on p. 59.

CORRIGENDA

p. 38, line 6, for Iwty read wz
\j/.

line 9, for close-points read pinch-points.

p. 40, last line but one, for be read be taken to be.

omit foot-note.

p. 76, foot-note, insert fourth edition.



INTEODUCTION

Ch. I. Quartic surfaces with isolated singular points.

This chapter, which is based on the results of Cayley* and

Rohn, gives a method of classification of quartic surfaces which

possess a definite number of isolated nodes and no nodal curves.

The number of such nodes cannot exceed sixteen. Rohn has

given a mode of classification for the surfaces having more than

seven nodes, based on the properties of a type of seven-nodal plane
sextic curves.

The equation of a quartic surface which has a node at the point
x = y = z 0, will be of the form

2u3w + ut
= 0,

where w2
= 0, us

= 0, ut
= are cones whose vertex is this point.

The tangent cone to the quartic whose vertex is the point is

therefore

u2u4 3
2 = 0.

The section of this cone by any plane gives a plane sextic curve

having a contact-conic u^, i.e. a conic which touches the sextic

where it meets it. When the surface has eight nodes the tangent
cone whose vertex is any one of them will have seven double edges
which give seven nodes on the plane sextic.

Such sextics are divided into two classes, viz. those for which

there is an infinite number of cubics through the seven nodes, and

two other points of the curve, and those for which there is only

one such cubic. When a quartic surface is such that it has eight

nodes consisting of the common points of three quadrics, the

tangent cone from any node to the surface gives rise to a plane

sextic of the first kind : such a quartic surface is said to be

* Recent researches, etc., Proc. Lond. Math. Soc. (1869-71
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syzygetic : the equation of the surface is represented by an equation

of the form

(a$A, B, (7)
2 = 0,

where .4 = 0, B = 0, (7 = represent quadrics whose intersections

give the eight nodes.

The second, or general kind of sextic, arises from the general

type of eight-nodal quartic surface which is said to be asyzygetic.

Similarly in the case of nine-nodal and ten-nodal quartic

surfaces we have two kinds of plane sextics distinguished as

above, giving rise to syzygetic and asyzygetic surfaces.

For ten-nodal surfaces there are two varieties of asyzygetic

surfaces, one of which, the symmetroid (see Ch. ix), arises when

the sextic curve consists of two cubic curves. The tangent cone

from each of the ten nodes of this surface then consists of two

cubic cones. There are also two varieties of ten-nodal syzygetic

surfaces.

Seven points may be taken arbitrarily as nodes of a quartic

surface, but if there is an eighth node it must either be the

eighth point of intersection of the quadrics through the seven

points, or, in the case of the general surface, lie upon a certain

sextic surface, the dianodal surface, determined by the first seven

nodes
;
hence it may not be taken arbitrarily.

When an eight-nodal surface has a ninth node the latter must

lie on a curve of the eighteenth order, the dianodal curve.

Plane sextics with ten nodes and a contact-conic are divided

into three classes according as they are the projections of the

intersection of a quadric with (1) a cubic surface, (2) a quartic
surface which also contains two generators of the same set of the

quadric, (3) a quintic surface which also contains four generators
of the same set of the quadric.

The first and second types of sextics are connected with eleven-

nodal surfaces which are respectively asyzygetic and syzygetic;
the third type gives a symmetroid with eleven nodes. A fourth

surface arises when the sextic breaks up into two lines and a nodal

quartic.

Twelve nodes on the quartic surface give rise to eleven nodes

on the sextic, which must therefore break up into simpler curves
;

this process of decomposition goes on until we arrive at six straight

lines, which case corresponds to the sixteen-nodal or Kummer
surface.
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There are four varieties of surfaces with twelve nodes of which

one is a symmetroid : there are only two varieties of surfaces with

thirteen nodes and only one with fourteen nodes, viz. that given

by the equation

*Jxx' + ^lyy' + *Jzz' = 0.

An additional node arises for a surface having this equation,

when there exists between the planes x ... z' the identity

Ax + By+Cz + A'x+ B'y' + C'z' = 0,

with the condition
' = BB'=CG'.

If another such relation exists between the planes x ... z', there

is a sixteenth node.

Ch. II. Desmic surfaces.

A surface of special interest which possesses nodes and no

singular curve is the desmic surface. Three tetrahedra Alf A 2 ,
A 3

are said to form a desmic system when an identity exists of the

form

oAi + /3A2 + 7A 3
=

0,

where A; is the product of four factors linear in the coordinates.

It is easily deducible from this identity that the tetrahedra are

so related that every face of A3 passes through the intersection of

faces of A! and A 2 ;
hence we have sixteen lines through each

of which one face of each tetrahedron passes. It is deducible as

a consequence, that any pair of opposite edges of A
a together with

a pair of opposite edges of A 2 form a skew quadrilateral ;
and so

for A! and A 3 , A, and A 3 .

It also follows that if the edges A^A^, A-^A^, A^ 4 of Aj meet

the respective edges of A2 in LL', MM', NN' ;
then A l} L, A z ,

L'

are four harmonic points ;
and so for A^MA^M', A-^NA^N'. The

relationship between the three tetrahedra is entirely sym-
metrical.

Hence we may construct a tetrahedron desmic to a given
tetrahedron A, by drawing through any point A the three lines

which meet the three pairs of opposite edges of A, then if the

intersections of these three lines with the edges of A be LL', MM',
NN' respectively, the fourth harmonics to A, L, L'

\ A, M, M';

A, N, N' will, with A, form a tetrahedron desmic to A.
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The join of any vertex of A a and any vertex of A2 passes

through a vertex of A3 : there are therefore sixteen lines upon
each of which one vertex of each tetrahedron lies. Hence any
two desmic tetrahedra have four centres of perspective, viz. the

vertices of the third tetrahedron.

If Aj be taken as tetrahedron of reference the identity connect-

ing A!, A 2 ,
A3 is given by the equation

z t)(x y + z t)( x y z + t)

Closely connected with the system of tetrahedra A{ is a second

desmic system of three tetrahedra Dt . They are afforded by the

identity

(a
2 -

7/
2

) (>
2 - t

2

) + (a*
-

t*) (y*
- *2

) + (a*
-

z*) (t*
-

y*)
= 0.

The sixteen lines joining the vertices of the A; are the sixteen

intersections of the faces of the Di.

A desmic surface is such that a pencil of such surfaces contains

each of three such tetrahedra Di in desmic position. The surface

has as nodes the vertices of the corresponding tetrahedra A^;

hence the sixteen lines joining the vertices of the latter tetrahedra

lie on the surface : along each of them the tangent plane to the

surface is the same, i.e. the line is torsal
;
the tangent plane meets

the surface also in a conic, and hence there are sixteen conies on

the surface lying in these tangent planes.

There is a doubly-infinite number of quadrics through the

vertices of any two tetrahedra At-, the surface is therefore syzy-

getic ;
these quadrics meet the surface in three singly-infinite sets

of quadri-quartics ;
one curve of each set passes through any point

of the surface.

The coordinates of any point on the surface can be expressed
in terms of two variables u, v as follows :

_<7i(w) _o-a Q) _ 0-3 (M) ,_<>().
-<,&)'

Py -*z (vY
pZ ~a3 (v)'

Pt
-<r(v)>

since this leads to

z*V) + (es
- el) (a?* + y

2

+ (e2
-

which is one form of equation belonging to the surface.
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The three systems of twisted quartics are obtained by writing

respectively

v = constant, u v = constant, u + v = constant.

The generators of the preceding doubly-infinite set of quadrics

form a cubic complex which depends merely on the twelve desmic

points ;
all the lines through these points belong to the complex.

Any line of this complex meets the surface in points whose argu-

ments (u, v) are respectively

(/3 + /*, a), (0 - p t a), (a + /*, /9), (a
-

/z, /3).

The tangents to the three quadri-quartics which pass through

any point of the surface are bitangents of the surface, and their

three other points of contact are collinear.

The curves u = constant, v = constant form a conjugate system
of curves on the surface : the system conjugate to u + v constant

is 8v n = constant
;

the system conjugate to u v = constant

is Sv + u = constant
;
hence we derive the differential equation of

conjugate tangents as

dudUi + Sdvdvj^ = 0.

The points of any plane section of the surface are divided into

sets of sixteen points, lying upon three sets of four lines belonging
to the cubic complex, where each line contains four of the sixteen

points; denoting these twelve lines by a^-.a^, &!...&4 ,
cl ...ci ,

then if G is the curve enveloped by the lines of the cubic complex
in the plane, the points of contact of the lines a lie on a tangent a

of C, those of the lines 6 on a tangent 0, and those of the lines c

on a tangent <y ;
where a, ft, 7 are three concurrent lines.

If p, q, r are three lines of a cubic surface forming a triangle,

then any three planes through p, q, r respectively meet the cubic

surface in conies which lie on the same quadric; the locus of

the vertices of such of these quadrics as are cones is a desmic

surface.

Ch. III. Quartic surfaces with a double conic.

The equation of a quartic surface with a nodal conic has the

form
<

2 =
w-^r.

This may be written

(<f>
4- Xw'2)

2 = w2
(^ + 2X0 -f
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and hence can be brought to the form

<j>2
_ wzy^

where V is a quadric cone, in five ways. Each tangent plane
of the cones Ff meets the surface in a pair of conies. Among the

conies arising from any particular cone V1 there are eight pairs of

lines
;
hence the surface contains sixteen lines. The relationship

of these lines as regards intersection is the same as that of sixteen

lines of the general cubic surface obtained by omitting any of its

twenty-seven lines, p, together with the ten lines which inter-

sect p.

The coordinates of any point on the surface can be expressed
as cubic functions of two parameters by the equations

/**=/<(&, fc, &)> (i
= l,2,3,4);

so that every plane section of the surface is represented by a
4

member of the family of curves So^/i
=

;
where /i

= 0, . . .
,ft

=
i

are plane cubic curves which have five common points; hence the

surface is rational and is represented on a plane. Each of these

five points, the base-points of the representation, is the image of a

line of the surface. The other lines of the surface are represented
in the plane by the conic through the base-points and by the ten

lines joining pairs of base-points.

This method enables us to determine the varieties of curves

of different orders which can exist on the surface, by use of the

equation
N = 3n - 2of ,

where N is the order of the curve on the surface, n that of its

image in the plane, and $ the number of times the curve on the

surface meets one of the lines represented by the base-points. It

is found that the sixteen lines previously mentioned are the only

lines on the surface
;
the only conies on the surface, apart from

the double conic, are those in the tangent planes of the cones F,-.

We obtain oo 2 twisted cubics on the surface, and also oo 4

quadri-quartics together with co 3 twisted quartics of the second

species. It is seen that the quadrics

\*UtP =

touch the surface along quartics. The class of the surface is

twelve.
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The surface may also be obtained by aid of any two given

quadrics Q and H and any given point 0, as follows : the surface

is the locus of a point P such that the points 0, P, K, P' are har-

monic, P and P/

conjugate for H, and K any point of Q; P' also

lies on the surface.

The twenty-one constants of the surface are seen to arise from

those of Q and H, and the coordinates of 0. This point is the

vertex of one of the five cones Vi ;
the vertices of the other four

cones are the vertices of the tetrahedron which is self-polar for

Q and H. The double conic is the intersection of H with its

polar plane for 0.

From the foregoing mode of origin of the surface is said to

be a centre of self-inversion of the surface with regard to the

quadric H.

The surface may be related to the general cubic surface by
a (1, 1) correspondence in two ways, the relationship being a

perspective one in each case.

The surface is connected with the general quartic curve as

follows : the tangent cone drawn to the surface from any point P
of the double conic is of the fourth order, its section being the

general quartic curve
;
the tangent planes from P to the five

cones Vi, and the tangent planes to the surface at P, meet the

plane of the quartic curve in lines bitangent to this curve.

The other sixteen bitangents arise from the planes passing

through P and the sixteen lines of the surface. The cone whose

vertex is P and base a conic of the surface meets the plane of the

quartic curve in a conic which has four-point contact with the

quartic.

The general quartic surface with a double conic is obtained by

Segre as the projection from any point A of the intersection F of

two quadratic manifolds or varieties P = 0, <J> = 0, in four dimen-

sions, upon any given hyperplane S3 . Among the varieties of the

pencil F+ \<& = Q there are five cones, i.e. members of the pencil

containing only four variables homogeneously ;
each cone possesses

an infinite number of generating planes consisting of two sets,

and each generating plane meets F in a conic. These generating

planes are projected from A upon S as the tangent planes of a

quadric cone. Hence arise the five cones of Kummer, and the

conies lying in their tangent planes.

The double conic is obtained as the projection from A on S of
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the quadri-quartic which is the intersection with F of the tangent

hyperplane at A of the variety which passes through A. When A
lies on one of the five cones of the pencil F+ \<i> = Q, this quadri-

quartic becomes two conies in planes whose line of intersection

passes through A. Hence the conies are projected into inter-

secting double lines of the quartic surface. By this protective

method the lines and conies of the quartic surface may be

obtained, as also its properties generally.

Ch. IV. Quartic surfaces with a nodal conic and additional

nodes.

A quartic surface with a nodal conic may also have isolated

nodes, but their number cannot exceed four. Each such node is

the vertex of a cone of Kummer, and for every node the number

of these cones is reduced by unity. There are two kinds of

surfaces with two nodes, in one case the line joining the

nodes lies on the surface, and in the other case it does not.

Nodes arise when the base-points of the representation of the

surface on a plane have certain special positions; if either two

base-points coincide, or if three are collinear, there is a node on

the surface. If either a coincidence of two base-points or a

collinearity of three base-points occurs twice, the quartic surface

has two nodes and is of the first kind just mentioned
;
if there is

one coincidence together with one collinearity, the quartic surface

is of the second kind.

There are three nodes when two base-points coincide and also

two of three collinear base-points coincide
; finally, when the join

of two coincident base-points meets the join of two other coincident

base-points in the fifth base-point, there are four nodes.

Three coincident base-points give rise to a binode, four coinci-

dent base-points give rise to a binode of the second kind, i.e. when

the line of intersection of the tangent planes lies in the surface,

and Jive to a binode of the third species, i e. when the line of

intersection is a line of contact for one of the nodal planes.

When four base-points come into coincidence in an indeter-

minate manner we have a ruled surface
;
a special variety occurs

when the fifth base-point coincides with them in a determinate

manner.

The double conic may be cuspidal, i.e. when the two tangent

planes to the surface at each point of it coincide
;
the class of this
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surface is six. The equation of the surface may in this case

be reduced to the form

t
= 0.

The surface has two close-points C, C' given by

#! = x.2
= 17=0.

IfK be any point of CG' and TT the polar plane ofK for U = 0,

then if any line through K meets TT in L, it will meet the surface

in four points P, P'; Q, Q' such that the four points K, P, L, P'

and K, Q, L, Q' are harmonic.

The double conic may consist of two lines
;

the necessary
condition for this is that three cubics of the system representing

plane sections should be

au = 0, av = 0, fiu = 0,

where a = 0, /3
= are lines, and u = 0, v = Q are conies. Either

or both of the double lines may be cuspidal.

Segre's method (Ch. in) affords a means of complete classifica-

tion of quartic surfaces with a double conic, by aid of the theory
of elementary factors. We thus obtain seven types, each type

leading to sub- types.

There exists in the case of certain of these sub-types a cone of
the second order in the pencil (F, <I>),

i.e. a cone whose equation
contains only three variables, say x1} x2 ,

x3 ;
if the line xl

= xz
= x3>

which may be termed the edge of this cone, lies upon F, the surface

is ruled. If the point of projection, A, is so chosen that the

tangent hyperplane for A, of the variety which passes through A,
is also a tangent hyperplane of this cone of the second order, the

double conic is cuspidal.

When the pencil (F, <I>) consists entirely of cones of the first

order having a common generator, and a common tangent hyper-

plane along this generator, the surface is that of Steiner.

Segre's table, which distinguishes each surface that can arise,

is given on pp. 82-85.

Ch. V. The cyclide.

When the double conic is the section of a sphere by the plane
at infinity, we obtain the cyclide. The equation of the cyclide
is therefore S 2 + U = 0, where 8= is a sphere and U = is a

quadric.
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This equation may be written in the form

{a? + f + z* - 2X}
2 + 4 {(A, + \)x? + (A 2 + \)f + (A, + \)z

2

+ 25^ + 2B2y + 2Bsz + C- X2

}
= 0.

The second member of the left side will give a cone when X is

a root of the quintic jF(\) = 0, where F(\) is the discriminant of

the second member. We thus obtain as in Ch. in five cones F< ;

the tangent planes of each cone meet the surface in pairs of

circles.

There are five sets of bitangent spheres of the surface; each

sphere of any set cuts a fixed sphere orthogonally, and its centre

lies on a fixed quadric. The centres of the five fixed spheres are

the vertices of the cones F;.

These five spheres St . . . Ss are mutually orthogonal, and the

centres of any four of them form a self-polar tetrahedron for the

fifth sphere and its corresponding quadric Q.

The equations of a pair Si} Qi are respectively

where \ is one of the roots of F(\) = 0.

The five quadrics Q l . . . Q5 are confocal
;
the curve of intersection

of a pair Si, Qi is a focal curve of the surface.

The centre of a sphere Si is a centre of self-inversion for the

surface.

Three of the quadrics Qi are necessarily real together with

their corresponding spheres : one is an ellipsoid, one a hyperboloid

of one sheet and one a hyperboloid of two sheets.

The surface is also obtained as the locus of the limiting points

defined by Si and the tangent planes of Qf . Taking Qi as an

ellipsoid, this shows the shape of the surface to be one of the

following :

(i) two ovals, one within the other, when Si, Qi do not

intersect
;

(ii) two ovals, external to each other, or a tubular surface

similar to the anchor-ring, when the focal curve

(Si, Qi) consists of two portions;

(iii) one oval, when the focal curve (Si, Qi) consists of one

portion.
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When (X + Atf is a factor of -F(X), one of the cones V is

a pair of planes. If two roots of F'(X) are equal, one of the

principal spheres is a point-sphere. In a real cyclide only one

principal sphere can be a point-sphere. Real cyclides must possess

at least two principal spheres which are not point-spheres.

If Si = 0, . . . 85
= are any five spheres, there is a quadratic

identity between the quantities Si ... Ss ,
viz. that given by the

equation
8, Ss

= 0,

?6 TTIS -2r5

where rl ...r5 are the radii of the spheres, and
TT^-

is the mutual

power of the spheres Si = 0, Sj
= 0.

By solution of the equations

Si = x2 + f + z* + 2/! -h 20,y + 2hiZ + d, etc.,

it is seen that x* + y* + z2
, x, y, z, and unity, can be expressed

as linear functions of Si . . . S5 ;
hence the equation of a cyclide

S
Y

Sf

appears as a quadratic function of --,..., which are themselves

connected by a quadratic identity. This gives rise to seven chief

types of cyclide, by application of the theory of elementary factors
;

but only three of them give real cyclides, viz.

[11111], [2111], [311].

Each of these types and the corresponding sub-types, with the

exception of the general cyclide, arise as the inverses of quadrics.

The sub-type [(11) 111] can be expressed in terms of three

variables. It is the envelope of spheres which pass through a

fixed point and whose centres lie on a conic; contact with the

envelope here occurs along a circle. It has also two systems of

bitangent spheres, as in the general case. A variable sphere of

one of these systems makes with two fixed spheres of the first

system angles whose sum or whose difference is constant. The
inverse of this cyclide is a cone.

The cyclide [(11) (11) 1] is known as Dupiris cyclide. There

are two systems of spheres which touch the cyclide along circles
;

the spheres of each system cut one of the principal spheres at

j. Q. s. b
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a constant angle. The spheres of either system are obtained as

those which touch any two fixed spheres of the other system and

have their centres on a given plane.

S-

Denoting by xi} the equation of the general cyclide appears
*<

5^
5

as 2 ciiX? = 0, with the condition 2 x = 0.
i i

5 x .*

The system of cyclides = is confocal with the first

i at
- + X

cyclide. Three confocals pass through any point and cut ortho-

gonally.

The system of quadrics V= 0, where V=U+kS k?, which

touch the cyclide S2 + 4iU=0 along sphero-conics are such that

two of them pass through any point, three touch any line, four
touch any plane. The four points of contact of the surfaces V
which touch any given plane TT are the centres of self-inversion for

the section of the cyclide by TT.

The locus of points of contact of common tangent planes of

the cyclide and any given quadric V is a line of curvature on the

cyclide.

The Cartesian equation of the system of confocals is

where S, Q have the same form as the Si, Qi when X is substituted

for Xj.

The confocals to the given cyclide S* 4- 4tU= 0, where

S = a? + y* + *- 2X,

may be obtained as follows : when 8 + 2L = is a point-sphere

and U + L? = is a cone, the locus of the centres of these point-

spheres is a cyclide confocal with S* + 4U 0.

Ch. VI. Surfaces with a double line : Pliicker's surface.

The quartic surface with a double line is cut by any plane

through the double line in a conic also. In eight cases this conic

breaks up into a pair of lines, giving sixteen lines on the surface.

There is no other line on the surface with the exception of the

double line.

There are sixty-two planes not passing through the double

line each of which meets the surface in a pair of conies, one of

whose intersections lies on the double line. By aid of one of
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these conies c2 the surface may be represented on a plane ;
for

through any point x of the surface one line can be drawn to

meet c2 and also the double line, so that with each point of the

surface one such line is associated. This line is determined as

the intersection of two planes, each of whose coefficients contains

linearly and homogeneously three parameters ^, %2 , 3 . A third

equation, arising from the equation of the surface, is that of a

plane whose coefficients are quadratic in the &, and the inter-

section of these three planes is a point on the surface
;
hence we

obtain a (1, 1) correspondence between the points x of the surface

and the points of a plane.

There are nine base-points in the plane, eight of which we

represent by B
l

. . . B6 ; they correspond to the points of eight

non-intersecting lines of the surface, together with a point A
which corresponds to any point of the conic coplanar with c2.

These nine points cannot constitute the complete intersection

of two cubic curves.

To any plane section of the surface there corresponds, in the

plane of
,
a quartic curve having a node at A and passing through

the points BI, The cubic through the nine base-points corresponds
to the double line.

The plane image of any curve of order M on the surface is

a curve of order m, where

/3 being the number of times the curve on the surface meets the

conic corresponding to A, and Sa the total number of passages of

the image through the points Bi.

By applying Rohn's method to the surface, using any point

on the double line as that from which a tangent cone is drawn,

it is easy to see the modifications which arise when isolated nodes

exist.

The section of the tangent cone, whose vertex is any point

of the double line, is a sextic curve, meeting the double line in

a quadruple point ;
with each additional node of the surface this

curve acquires an additional node : when there are seven nodes

the sextic becomes a nodal cubic, meeting the double line in one

point together with three lines through this point. When the

surface has eight nodes, the sextic curve becomes a conic together

with four lines concurring at a point of the double line.

62
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In the case of seven nodes there are three torsal lines meeting
the double line, and each containing two nodes; also there are

four tropes meeting in the seventh node, and each containing four

nodes. If there are eight nodes we have Pliicker's surface which

has also eight tropes. The nodes form two tetrahedra, each of

which is inscribed in the other. The nodes lie in pairs on four

torsal lines meeting the double line. Through any two nodes not

on the same torsal line there pass two tropes. The tropes can be

arranged in four pairs so that the line of intersection of a pair

meets the double line in a pinch-point.

Plane sections of Pliicker's surface are represented by quartic

curves having a common node and touching, at fixed points, four

concurrent lines.

Ch. VII. Quartic surfaces containing an infinite number
of conies : Steiner's surface : the quartic monoid.

The nature of the quartic surfaces which contain an infinite

number of conies was investigated by Kummer. He showed the

existence of the following classes : surfaces with a double conic or

a double line
;
ruled quartic surfaces

;
the surface <I>

2 =
a/3j8,

where 4> = is a quadric and a, /?, 7, 8 coaxal planes ;
Steiner's

surface.

To these surfaces discussed by Kummer must be added the

surface whose equation is

[xw +f(y, z, w)]
2 =

(z, w~a)'.

The surface 4>a = aftyS has two tacnodes at the intersection

of the common axis of the planes with <I>
;

it is birationally trans-

formable into a cubic cone. The conies of the surface can be

arranged in sets of four lying on the same quadric ;
the quadric

cone whose vertex is on the axis of the planes o . . . 8, and

whose base is any conic of the surface, meets the surface in four

conies.

Steiner's surface is of the third class and has four tropes ;
the

coordinates of any point of the surface are expressible as homo-

geneous quadratic functions of three variables; conversely any
surface, the coordinates of whose points are so expressible, is a

Steiner surface. The surface has a triple point, three double

lines meeting in the triple point, and a node on each double line.

A characteristic property of the surface is that its section by any
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tangent plane breaks up into two conies. Every algebraic curve

on the surface is of even order.

The surface being determined by the equations

pxi =/< (rh , 772, y9) (i
=

I, 2, 3, 4),

we are enabled to map the surface on the plane of the 77;.

Any conic of the surface is represented on the ?;-plane by
a straight line, the pair of lines representing two conies in the

same tangent plane of the surface are represented by the

equations

r} l + m77 2 + nr)3
= 0, 77! H 773 -f

-
773
= 0.

772- 71

The surface contains oo B

quartic curves of the second species,

which are represented by the general conic in the plane of 77 ;

also oo 4

quadri-quartics having a node on one of the double lines
;

they lie on quadrics passing through two double lines, and are

represented by conies Sa^^^O, in which two of the quantities

an , a^, #33 are equal.

The conies apolar to the four conies fi
= form the pencil

Ua> + XV =
;

the conies of this pencil are inscribed in the same quadrilateral,

and form the images on the plane of 77 of the asymptotic lines of

the surface.

A form of the preceding property of the surface, that its

coordinates are expressible as homogeneous quadratic functions

of two variables, is the following : in the general quadric trans-

formation

P*i=fi(*n a*> s, a
4>,

the locus of # is a Steiner surface when the locus of a is a plane.

From this we derive the fact that Steiner's surface, and the cubic

polar of a plane with reference to a general cubic surface, are

reciprocal.

Another mode of origin of the surface, given by Sturm, is that

if a pencil of surfaces of the second class is protectively related

to the points of a line in such a way that the line meets one

conic c2 of the system in a point corresponding to c
2
,
and another

conic c'
2 in a point corresponding to c'

2
,
then the envelope of the

tangent cones drawn from the points of the line to the corresponding
surfaces is a Steiner surface.
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Weierstrass and Schroter have shown that a Steiner surface

arises as a locus connected with a known theorem for the quadric.

The theorem is that if through any given point A of a quadric

any three mutually perpendicular lines are drawn, meeting the

quadric again in L, M, N, then the plane LMN meets the normal

at A in a fixed point.

This theorem may be generalized as follows : if A be joined to

the vertices of any triangle self-polar for a given conic c2 in a given

plane a, and the joining lines meet the quadric again in L, M, N,
then the plane LMN meets the line AR in a fixed point S, where

R is the pole for c2 of the trace on a. of the tangent plane to the

quadric at A.

If now c
2
is a member of the oo 2 conies

where U=Q, F=0, TF=0 are given conies, we have a point 8
determined for each set of values of ?7i : 772 : 773. On giving these

ratios all values the locus of 8 is a Steiner surface
;
for it can be

shown that if the coordinates of S are ^ . . . y4 ,
we have

2/i
: ys : y3 : V* =/i (?) :/ 0?) :/ 0?) :ft 0),

where the ft are quadratic functions of the 77^.

Properties of Steiner's surface may be deduced by aid of the

transformation

a*yi
= p (i

= 1, 2, 3, 4),

applied to any plane Sa^ = 0, giving the cubic surface

which is the reciprocal of Steiner's surface.

Steiner's surface is one example of a type of surfaces known as

monoids, viz. surfaces of the wth order which have an (n l)-fold

point. The equation of the quartic monoid may be written

wua + u4
= 0,

where v s
= 0, u4

= are cones having their vertices at the triple

point. The surface contains twelve lines, the intersections of

w3
= and u4

= 0. The surface is projectively related to any

plane, e.g. the plane w = 0, in a (1, 1) manner, except that every

point of each of these twelve lines is represented by one point

only, viz. where the line meets the plane w = 0.
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The surface contains conies in planes through two of the

twelve lines, and twisted cubics on quadric cones passing through
five of the twelve lines. The oo l

quadric cones passing through

any four of the twelve lines meet the surface in quartic curves

having a node at the triple point ;
the oo J cubic cones passing

through any eight of the twelve lines meet the surface in quartic

curves without double points. If the lines corresponding to a

curve of each type together make up the twelve lines, these two

curves lie on one quadric. All these quartic curves are quadri-

quartics.

Quartic curves of the second species arise as the intersection

with the surface of cubic cones having six of the twelve lines as

simple lines and one of them as double line
;
there are 5544 such

quartic curves on the surface. The surface will have a line not

passing through the triple point provided that three of the twelve

lines are coplanar.

The cases of the quartic monoid of special interest are those

in which there are six nodes; here the twelve lines coincide in

pairs six times.

There are two cases of such surfaces
;
in the first case the six

nodes may have any positions, this surface is a special case of the

symmetroid ;
for the symrnetroid being the result of eliminating

the Xi from the equations

dS, dS2 9$o B$4 _

'tei

+ a
*tei

+
'aS

+ a'Sr ' (iml- 2 ' 3' 4)'

where the at are regarded as point-coordinates, the surface con-

sidered is the special case in which one of the quadrics St
= is

a plane taken doubly. The tangent cone to the surface whose

vertex is one of the six nodes breaks up into two cubic cones. In

the other case the six nodes lie on a conic whose plane is a trope
of the surface. Each kind of surface has the same number of

constants, viz. twenty-one.

Ch. VIII. Rational quartic surfaces.

The quartic surfaces with a triple point or with a double curve

have been seen to be rational, i.e. the coordinates of the points of

such a surface are expressible as rational functions of two para-

meters. Neither has shown that there are only three rational

quartic surfaces apart from them. The first of these surfaces has

a tacnode, i.e. is such that every plane through the node meets the



XXV 111 INTRODUCTION

surface in a quartic curve having two consecutive double points

at the node. The coordinates of any point x of the surface are

projectively related to the points y of a double plane by the

equations

Vo (y) Vft(v)
P*i

=
yi. /M?2

=
2/a, Px3

= y3 , pXi=- -,
2/i

where p^ (y)
= is a conic and fi (y)

= is a general quartic

curve.

Clebsch showed that the points y can be expressed as rational

functions of new variables zt in such a way as to render Vll (y)

a rational function of the Zi, viz. by equations of the form

eyi=M*\ (t
= l,2,3) f

where the curves ft (z}
= are cubics having seven points in

common. The plane sections of the surface have then as their

images, in the field of the z^ sextic curves having the seven points

as nodes and also four other common points ;
the eleven points lie

on the same cubic.

If the quartic surface has the equation

</;+2#4/3+/4=o,
we obtain

where fl (y)
= is a sextic curve. It is shown that Vfi (y) is

capable of rationalization only in the following two cases, viz.

(1) when ft(2/)
= is a sextic with a quadruple point; (2) when

ft (y)
= is a sextic with two consecutive triple points.

The transformation to the simple plane is effected by the

consideration that to plane sections through the double point
there must correspond, in the simple plane, curves of order n of

the same genus as these sections, viz. two, and intersecting each

other in two variable points. This gives the equations

n2 - 2 = Oj + 4o.2 + . . . + r2
cfr ,

where a^ is the number of points the curves in the ^-plane have

in common, a2 the number of double points they have in common,
and so on. By aid of Cremona transformations repeatedly applied,
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it is seen that these curves of order n are capable of being replaced

by one of the following types : (1) the curves c4 (a
2^ . . . 610), (2) the

curves C6 (a1

2
... ci^b^)', i.e. quartic curves with one common node

and ten common points, or sextic curves with eight common nodes

and two common points. In each case the fixed points lie on one

cubic.

The substitutions py = ct (z), py = cs (z) will then rationalize

Vfl(2/) in the two cases respectively mentioned, and hence lead

to two rational quartic surfaces.

Ch. IX. Determinant surfaces.

The quartic surface whose equation is A = 0, where A is a

determinant of four rows whose elements are linear functions of

the coordinates, depends upon thirty-three constants, one less than

the general quartic surface. Taking as its equation

r~ s,

= 0,

it is seen that the surface contains two sets of sextic curves,

viz. the curves

&
P*"abed

= 0,

Px qx rx sx A

px
' B

px
" C

v*" D

= 0.

Denoting these two kinds of curves by c6 and k6 ,
it is found

that any two curves of the same kind meet in four points, any
two curves of different kinds in fourteen points. Any two curves

of different kinds lie on a cubic surface.

The surface can be birationally transformed into itself by aid

of the three sets of equations

+ = 0,

=0,

=0;

=0,

=0,

=0;
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= 0,

=0,

=0,

where Pf
= a^ + 2_p/ + a^p" + atpj".

If we regard the Xt
- and the 04 as point-coordinates we pass, by

aid of these equations, from a point a; of A to a point X of a

surface 2, thence to a point a of a surface 2' and finally to a point

y of A.

From the preceding equations we deduce that if x is any

point of a curve c6 ,
the point x determines a trisecant of c6 whose

fourth intersection with A is the point y, which corresponds to x.

These trisecants, as x describes c6 ,
form a ruled surface of the

eighth order, whose intersection with A is c6 taken triply together
with a curve of the fourteenth order, the locus of the points y on

A corresponding to the points x of c6 .

When the determinant A is symmetrical, i.e. if

P' = <?> P" = r
> P" = s

>
e*c->

the surfaces 2 and 2' coincide; and the quantities Pi, Qi, etc. are

in this case the partial derivatives of a quantity which is quadratic
in the o^; if, changing the notation, we represent this quantity by
Si, the last set of equations take the form

on replacing X and a by a; and y respectively.

Thus the surface 2 is the Jacobian J, of four quadrics. The

surface A = 0, where A is a symmetrical determinant, is known as

the symmetroid; if in the first set of preceding equations we

replace x, X, y and a by a, x, ft and y respectively, and express
that q

=
p', etc., these equations assume the form

=* a.Sf. =* a.Sf.

2af gi
= 0, S&f^-O, (j=l,2,3,4) ...... (2).

t=l CAj t= i Of/j

The surface A, the locus of the points a, is obtained by

eliminating the #, or the yt ,
from these equations. The surface

J is seen to be the locus of vertices of cones of the system

Wi = o.
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The equations (1) express that the polar planes of any point x

of J, with regard to each of these quadrics $, ... 8^, are concurrent

in the point y of J
;
the points x, y are said to be corresponding

points on J.

The surface A has ten nodes
;
the tangent cone of A whose

vertex is any of its nodes breaks up into two cubic cones; a

characteristic property of this surface.

The surface J has ten lines
; every point of a line of J is

associated with the same point a of A, by equations (2), which

is a node of A.

The tangent plane of J at any point P is the polar plane of P',

the point corresponding to P, for the cone of the system Sa$t
-

whose vertex is P.

When x describes a line of the Jacobian, its corresponding

point y describes a twisted cubic
;
the point ft on the symmetroid

describes a curve of the ninth order having double points at each

node of the symmetroid except the one which is connected with

the locus of x.

As the point y describes the section of the Jacobian made by
the plane ay = 0, the corresponding locus of x is the sextic

= 0,

which has the ten lines of the Jacobian as trisecants. The locus

of the associated points a on the symmetroid is a curve of the

fourteenth order, passing three times through each node
;
that of

the associated points ft is a sextic curve which passes through the

ten nodes. To a plane section through two nodes of the sym-
metroid there corresponds a quadri-quartic on the Jacobian.

If the quadrics S^... S have a common point, the Jacobian

has a node and an additional node arises on the symmetroid.
Each additional common point of 8

l . . . S4 will give rise to a node

on both the Jacobian and the symmetroid. If there are six such

common points, the Jacobian becomes the surface known as

Weddle's, and the symmetroid becomes Kummer's surface.

Weddle's surface has thus the six points common to $, . . . S4 as

nodes, and contains twenty-five lines, viz. the fifteen lines joining

the nodes and the intersections of the ten pairs of planes through
the six points.
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The line joining any two corresponding points P, P' of the

surface meets the twisted cubic through the six nodes in two

points L, M such that the four points P, P', L, M are harmonic.

It follows that this cubic is an asymptotic line of the surface.

If 3
,

2
, 0, 1 be the coordinates of any point on this twisted

cubic, then the coordinates of the preceding points P, P' are

obtained as follows : let 0, </>
denote the points L, M ;

the

coordinates of P, P' are given by the equations

6

where /(a) = II (a f),
and 6l ...66 are the values of 6 relating to

i

the six nodes.

Any two points 0, 4> of the twisted cubic thus determine two

points P, P1

on the surface
; any three points 0, <f>, ty determine

three pairs PP', QQ', RR' of corresponding points which form the

vertices of a complete quadrilateral ; any four points 0, <J>, ty, %
determine twelve points which form three desmic tetrahedra,

viz.

PP'SS', QQ'TT', RR'UU'.

If in the preceding expression of the points of the surface in

terms of 0, <j>
we suppose to be constant, i.e. take all chords

through a given point of the twisted cubic, the resulting locus of

points of the surface is a quintic curve
;
these curves form a con-

jugate system on the surface. If the tangent to the twisted cubic

at the point meets the surface again in the point T, then the

locus of points of contact of the tangents from T to the surface is

one of these curves.

The surface, being defined as the locus of vertices of cones

which pass through six given points, is seen to have an equation
of the form

.PlSP& $13 ^42

provided that four nodes are taken as vertices of the tetrahedron

of reference, and
p,-*. #1* are the coordinates of the lines joining

any point of the surface to the two remaining nodes.

This equation expresses that the lines p, q meet the faces of
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the tetrahedron formed by the four nodes in two sets of four

points which have the same anharmonic ratio.

It can be deduced that a form of the equation of the

surface is

a3

64

= 0.

Any point P of the surface determines a closed set of thirty-

two points on the surface as follows : if P be joined to the six

nodes N-i ... N6 , then calling the point of second intersection of

with the surface (N^, etc., we thus obtain the six points

. . . (N6) ; secondly, by joining such a point (NJ to the nodes,

we obtain five points of second intersection (N1N2 ), etc.; there are

fifteen such points; lastly, by joining the points (NiN2) to the

nodes, we obtain the points (NiN^N^ which are only ten in

number, since

(N,N9Nt) = (N4N5NS),
etc.

The surface may be shown to be a linear projection in four

dimensions, and therefore protectively related to a Kummer sur-

face. For the Weddle surface arises as the interpretation in three

dimensions of the twofold of contact of the enveloping cone of

a cubic variety in four dimensions, whose vertex is any point of

the variety. Now, since the intersection of this cone with any

arbitrary hyperplane is a Kummer surface, we are again led to

a birational transformation between the Weddle and the Kummer
surface.

The coordinates of any point of the surface can be expressed
as being proportional to the ratios of the products of four double

theta functions : viz. the substitutions

= c 3 6l

'. 4
=

satisfy the equation of the surface.

We obtain two sets of quadri-quartics on the surface
;
the first

set is given as the intersection of two cones passing through the
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same four nodes and having the other two nodes as respective

vertices, viz. the cones

Pl2p3*
=

^PlsP42 , <?12 <?34
=

tylS <? J

the second set is given as the intersection of the quadrics

Pizpu = M<?i2<?34i PUP** = /^i3<? ;

each of these curves passes through four nodes; the equation of

the last set, expressed in terms of double theta functions, is

The coordinates of the fifteen points (A^JV2), etc. are obtained

from those of any point for which the argument is u by the addition

of one of the fifteen half-periods. The coordinates of the point

(-ATj) in which the join of P to A l meets the surface again are

found to be

, O A A ,, n {) A . A A A . f> A A A
Cfllt'2"o3"4 0V*VVM . C03 f03 (702 t7o4 . C4 P4 (7, f02 .

The fifteen other points (-^2), etc. and (N-iN^Nt), etc. are

obtained by addition of one of the fifteen half-periods to the

argument of u in these last expressions.

The equation of a plane section of the surface, referred to the

three points in which the plane of section meets the twisted cubic

through the six nodes, assumes a simple form. The tangents to

the curve at the vertices of the triangle of reference meet in one

point ;
an invariant of the curve is seen to vanish

;
the curve

contains an infinite number of configurations of points, each

configuration being formed by twenty-five points.

Bauer has investigated the surface whose equation is

l #2 #s #4 dx/d4

its origin is as follows : a point P is joined to the vertices of

a tetrahedron (taken as that of reference) and the joining lines

meet the faces of another tetrahedron (whose faces are az = 0,

ftz = 0, cx = 0, dx = 0) in four points; if these latter points are

coplanar, we obtain as locus of P the surface whose equation has

just been given.

When the two tetrahedra are in perspective, the surface is the

Hessian of the general cubic surface
;

it has ten nodes.
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When the preceding connection mentioned in the beginning
of the chapter, between the points ac and y which gives rise to the

surface A, reduces to a collineation, we obtain a surface, discussed

by Schur, whose equation is

a'/3yS' = 0,

in which a ... B' are linear in the variables
;
and the collineation is

such as to permute cyclically the planes a ... 8 and the planes
a' ... '. This surface contains thirty-two lines.

If, in addition, the faces of both tetrahedra are subject to

a collineation which leaves one face of each tetrahedron unaltered

and permutes cyclically the other three, the surface contains fifty-

two lines.





CHAPTER I

1. The singular points possessed by a quartic surface may
consist either of a certain number of isolated nodes or may form

double curves.

In the present chapter we discuss the quartic surfaces which

have an assigned number of nodes, beginning with those which

have four nodes, and give a definite method of classification for all

the cases in which the number of nodes exceeds seven.

The number of isolated nodes of a quartic surface cannot

exceed sixteen; for the class of a surface of order n which has

& double points is n (n I)
2

2B, since this is the number of points
of intersection of the surface and its first polars for two points A
and S, diminished by the number 28 of these intersections arising

from each double point (a simple point on the polars of both A
and 5). Hence if n is four, B cannot exceed sixteen.

2. Quartic surfaces with four to seven nodes.

Since the equation of the general quartic surface contains thirty-

four constants, the surface with four given nodes should contain

34 - 16 = 18 constants
;

if then A = 0, B = 0, C = 0, D = 0, E = 0,

F=Q are six linearly independent quadrics through the four

nodes, the equation

containing apparently twenty constants, is a quartic surface having
the given nodes.

The number of constants is really eighteen, since there are two quadratic
relations between the six quadrics, as may be seen by taking the four given

points as vertices of the tetrahedron of reference, in which case the quadrics

may be taken to be

between which there exist the identities

J. Q. S.
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For five nodes, taking A...E as quadrics passing through the

given nodes, the equation

containing fourteen constants, represents the general quartic

having these given nodes.

The general quartic with six nodes is represented by the

equation

where A, B, C, D are quadrics through the six nodes, and J is the

Jacobian of the four quadrics. For this equation contains ten con-

stants and J has the given points D1 ...D6 as nodes, moreover J
cannot be expressed as a quadratic function of A, B, C, D.

The following properties of J may be used to establish these results.

The surface J=0 is the locus of vertices of cones of the system

now each point of the line joining any two double points, e.g. D1 D%, is the

vertex of such a cone, hence 7 contains the join of any two double points ;

also since Z^/V-.-OiA lie on J it follows that DI is a node of 7; similarly

for DZ...DQ. Again there are ten pairs of planes passing through the points

Di...D6 ,
and each point of the line of intersection of such a pair of planes

satisfies the condition of being the vertex of a cone of the system. Hence

such a line lies upon J, which thus contains 15 + 10= 25 lines. Again, since

any quadric of the system is linearly expressible in terms of any four

members of the system, it is so expressible in terms of any four of the

previous pairs of planes ;
hence if J were expressible as a quadratic function

of A, B, C and D, we should necessarily have a relation of the form

J=(alaa',PP,yy', S8')
2
,

in which we may take the planes a, , y to contain the line D1D2 ,
while 8, S'

do not contain it, e.g.,

as (A, A, A), a's(A,A,A), etc.,

while 8= (A, />3 A), S' = (Z>2 , A, A).

Hence since J" contains AA such a relation is impossible.

The general quartic with seven nodes is represented by the

equation

where A, B, C are quadrics through the given nodes and S is any

quartic surface having the seven nodes*.

* This quartic surface may also be expressed in terms of the quartic surfaces

which have one of the given points as a triple point and the other six as double

points ; if Tj . . . T; are these surfaces, the required general quartic surface is

2^=0, t= l,...7.
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3. Quartic surfaces with more than seven nodes.

The equation of a quartic surface having a node at the point

x = y z = will be of the form

w2w2 + 2u3w + ut
= 0,

where u2
= 0, u3

= 0, u4
= are cones whose vertex is the node.

The equation of the tangent cone drawn to the surface from

this node is

u2ut u 0.

The section of this cone by any plane, e.g. the plane w =
0, is

a sextic curve with a "
contact-conic," i.e. a conic which touches it

wherever it meets it.

If the surface has any other node, the tangent cone will have

a double line passing through this new node and giving rise to a

node on this sextic
;
we obtain the different varieties of quartic

surfaces possessing nodes by consideration of all special cases of

sextic curves with a contact-conic*.

It is to be noted that the existence of a contact-conic u2
= of

a sextic implies also a contact-quartic ut
=

;
if a sextic has another

contact-conic v2 = 0, and hence another contact-quartic v = 0, an

identity exists of the form

W2M4 W3
2 = V2 V4 V3

2
.

Now by multiplying the equation of the surface by u2 we derive

(u2w + ws)
2

-I- ^w 4
- u 3

2 = 0,

hence in the present case

(u2w + u3)
2 + v2v4

- v3
2 =

(1).

Denoting by c8 the intersection of the quartic surface with

the cone v2
= 0, it is clear that v2

= meets the surface (1) in the

curve c8 and in the four lines w2 =v2
= 0; but v2 meets (1) where

it meets the twro nodal cubic surfaces

u2w + u3 v3
= Q,

u2w + u3 + v3
= 0,

hence in general c8 must break up into two quartic curves, either

of which is the partial intersection of v2 with a cubic surface which

contains also two generators of v2 . These curves are therefore

quadri-quarticsf. Hence the surface contains an infinite number
* This method is due to Eohn, see Die Flachen vierter Ordnung hinsichtlich

Hirer Knotenpunkte und Hirer Gestaltung, Leipzig, 1886.

t We denote by quadri-quartic the type of twisted quartic through which an

infinite number of quadrics pass.

12
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of quadri-quartic curves which are projected from the node into

quartic curves which touch the sextic u2u4 u/ at each point

of intersection*.

Hence if the curve u2u4 u3
2 has more than one contact-

conic it has an infinite number of contact-conies.

4. Nodal sextics-f*.

For the purpose of classification of nodal quartic surfaces

we discuss various properties of sextic curves with a contact-conic.

In the first place it may be seen that sextic curves with six nodes

lying on a conic c2 can have their equation expressed as above.

For if c3 = is any cubic through the six points, any other cubic

through them is of the form c3 + c2L = ;
and any sextic through

the complete intersection of c2 and c3 being

^2^4 i Qj Qs
= ^>

if the six points are nodes on this sextic c4 and cs
'

must be of the

form c3M+c2N, cs + c2R respectively.

Hence the required sextic takes the form

c3
2 + c2c3A + c.?B = 0,

i.e. the form K3
* -c2*V= 0,

and hence has a contact-conic.

The corresponding quartic surface is w*V+ 2wK3 + c2
2 =

;
this

has the plane w = as a singular tangent plane or trope, which

touches the surface along a conic.

Seoctics with seven nodes.

There are two different kinds of seven-nodal sextics, viz. that

for which it is possible to find a pair of points P, P' on the curve,

such that through the seven nodes D^ ... D7 and P, P' there pass

an infinite number of cubics, and the one for which it is not

possible ; considering the former kind, then if one such pair of

points exists there is an infinite number of such pairs ;
for taking

c3 and c3 as two such cubics, then c6 , the given sextic, since it

passes through the complete intersection of c3 and c3', has an

equation of the form

c,r, + csT,'=0.
* For such a point of intersection P is the projection of an actual intersection

Q of the quadri-quartic and the curve of contact of the tangent cone, and the

tangents to these curves at Q lie in the tangent plane of the surface.

t See Eohn, I.e.



Now c3 meets c6 only in Dj ... D7 , P, P' and two further points

Q, Q', hence F/ passes through Dl ...D7 and also through Q and Q';

so that two and therefore an infinite number of cubics pass through
D1 ... D7 , Q and Q'. By varying the cubic through the nine points
D

l
... D7 , P, P' we form an involution of points Q, Q' on c6 . If Q

coincides with P, Q' will coincide with P'; therefore every cubic

through the seven nodes which touches c6 once will touch it

twice.

Since F3 is seen to pass through Dl . . . D7 and since only three

linearly independent cubics pass through seven points, there is a

linear connection between c3 ,
cs', T3 and F3 ', hence the sextic which

has the property considered is represented by an equation of the

form

MWuM* *<>,

where <, ty, % are any three cubics through the given nodes.

This class of sextic always has a contact-conic
;
for if the sextic

is c6 = c<? c3'c3", let the chord joining the intersections P1} P2 of

c3
'

and c3", apart from the nodes, be /= 0, and /' = 0, /'/=

similar chords for c3", cs and cs , c/; then fca , f'ca', f"c3

"
all pass

through the thirteen points Dl ... D7 ,
P1} P2,...P2", and hence

through three other fixed points*. Hence we have a linear

relation of the form

Afc3 + Bfc3'+Cf"c3"=0,

where A, B, G are definite constants.

Now if C43 - $Afc3
-
Bf'cj = %Afc3 + Cf"c3",

we have c4
2 - i^ 2/ 2 c3

2 + BCff"c3 c3
" =

;

that is 4c4
2 -

A*f*c6 + c3V (^BCf'f"
-
A*f*) = 0.

Hence the conic 4<BCf'f" A 2

f* = Q touches c6 ,
viz. at six of

its intersections with c4 ,
the other two being the points

(/ /'), (/, /");
This conic is touched by /' and /", hence the tangents of the

contact-conic are the chords of contact of C6 and its bitangent

cubics.

We observe that in this case there is a doubly infinite number

of quartic curves c4 which pass through the seven nodes and the

six points of contact of c6 and its contact-conic.

* Since all quartics through thirteen points which do not all lie on a curve of

lower degree pass through three other fixed points and hence belong to a pencil.
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Sextics with eight or with nine nodes.

If f= is any sextic with eight nodes D1 ...D8 and = 0,

i|r
= any two cubics through them, the general sextic with the

eight given nodes is

/+ X0
2 + fjuj)-^ + v^- = 0.

If this curve has a ninth node it either degenerates into two

cubics through the nine points (which are then the complete

intersection of two cubics) or the ninth node lies on the curve

J(f> 0>'</
r
)
= 0- This is of the ninth degree and will be denoted

by c9 ;
it has each of the eight nodes as a triple point*.

The curve /=0 and the eight nodes completely determine c9 ;
if we take

any point P of intersection of / and c9 ,
and suppose < to pass through P,

then any sextic with the eight given nodes is of the form f+p<fxj)'
= where

$' does not pass through P.

Since P lies on c9 it follows from the equation of that curve that the

linear polars of P for /, <p and
<f>'

concur
;
but the first two are the tangents

at P to / and $, and the third cannot pass through P, hence / and < touch

at P, and
<f>

touches every sextic with the eight given nodes which pass

through P. Now / and c9 meet in 9x6 8x6= 6 points apart from the

nodes, hence every sextic with eight nodes is touched by six cubics through
these nodes.

If /= is any sextic with nine nodes and = the cubic

through them, /+ p0
2 = is the equation of the general sextic

with the given nine nodes. If there is a tenth node it will be

included among the points determined by the equations

f\ fz fs \ _ .

01 02 03 i

The number of solutions given by these equations is thirty-

nine, but each of the given nine nodes occurs as a triple solution.

Hence the pencil of sextics /+/30
2 = contains twelve curves

which have a tenth node (see Art. 9).

The foregoing result as to contact-cubics is modified as follows : through

any eight nodes of a sextic with nine nodes there pass four tangent cubics
;

through any eight nodes of a sextic with ten nodes there pass two tangent
cubics.

5. Sextics with ten nodes.

The following result for ten-nodal sextics is important for our

purpose: every plane sextic with ten nodes and a contact-conic is the

projection of a twisted sextic on a quadric : for choosing any centre

* As may be seen by taking any one of them as x = 0, y= 0, 2 = 0.
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of projection and any quadric whose section by the polar plane

of for the quadric projects into the given contact-conic, the

sextic cone whose base is the given sextic meets the quadric in

a curve c12 which has twenty-six actual double points, since each

node of the plane sextic gives rise to two nodes on c12 ,
and each

point of contact of the contact-conic and the sextic is the projection

of a point at which two branches of c12 touch each other. Moreover

c12 has thirty apparent double points*, hence the projection of c12

from any point has 30 + 26 = 56 nodes, and this is one more than

can be possessed by a curve of order 12 which does not break up
into simpler curves. Hence c12 must break up into two sextic

curves.

There are three varieties of twisted sextics on a quadric :

(1) its intersection with a cubic surface, (2) its partial intersection

with a quartic surface which also contains two generators of the

quadric of the same species, (3) its partial intersection with a

quintic surface which also contains four generators of the quadric
of the same species.

The following result, which may be easily provedf, is of frequent

application : through every point P of space there pass n (n 1)

double secants of the complete curve of intersection of a quadric

with any surface of order n
;
these double secants form the inter-

section of a cone of order n with a cone of order n 1, the former

cone passes through the 2w intersections of the polar plane of P
and this curve.

Let us now consider the plane ten-nodal sextic which is the

projection of the first of these three varieties. This has six

apparent double points and, since its plane projection has ten

*
Salmon, Geom. of three dimensions (fifth ed. 1912), vol. i. p. 356.

t If F=0 is the surface and U=0 the quadric, it is easy to see that the section

of the curve of intersection by the polar plane of P for U is given by the

equations
U A2F

where AU=Il x
i'~U,

i d*i
'

and x{ are the coordinates of P. Relatively to its plane the equation of this curve

is of the form

this curve contains n(n-l) nodes which arise solely from apparent double points

of the curve U=0, F=0; also vn=Q is seen to pass through the common inter-

sections of F=0, 7=0, AC7=0.
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nodes, it must have four actual double points ; by the last result

six of the nodes of the plane sextic lie on a conic
;

it is therefore

represented by an equation of the form

K3*-cfV=Q. (Art. 4.)

The second species of twisted sextic lies on a quadric and a

quartic surface, their intersection being completed by two gene-
rators of the quadric. This curve has seven apparent double

points
*

;
and therefore, to complete the number of nodes of the

plane quartic, must have three actual double points. Each

generator of the given species meets the curve four times. There

is an infinite number of quartic surfaces passing through the

sextic and any two generators of the quadric. For any quartic

surface through five points of each generator and any seventeen

points of the sextic will meet the sextic in 8 + 17 = 25 points,

and therefore contain it altogether : it will also contain the two

generators. Let us denote the twisted sextic by c6 ,
its plane

projection by c6',
and take any generator p and its consecutive

generator as the pair of generators just mentioned
;
then the cubic

cone which contains the seven double secants of c6 will touch c6
'

twicef ; hence, varying p, we obtain an infinite number of cubics

through seven nodes of c6
'

and bitangent to it.

In the third type of twisted sextic c6 is the partial intersection

of a quadric and a quintic, the residual intersection being formed

by four generators of the quadric of the same species. Each

generator of this species meets the sextic five times. It may be

shown as before that there is an infinite number of quintic surfaces

passing through the given sextic and any four generators of the

given species. The curve c6 has ten apparent double points.

We may select the four generators as follows : let p and p' be those

generators which are projected from the centre of projection into the

tangents of the contact-conic of ce
'

drawn from some node D of ce
'

;
we then

take as our four generators p, p' and the generators consecutive to them.

The line OD thus meets c6 twice, and serves as join of apparent intersections

for ce , p and for c6 , p'. The compound curve of intersection of order 10 has

twenty apparent double points, of which nine are projected into Z>, viz. one

point arising from c6 ,
two from (c6 , p) (c6 , p+ dp}, two from (c6 , p') (c6 , p' + dp')

and four from p and p'.

Hence the two cones of orders 4 and 5 through the double secants must

* After deduction of five apparent double points arising from the two lines.

f Since p gives rise to two apparent double points of the compound curve.
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each have a common triple edge ;
we therefore obtain the following results :

if D is any one of the ten nodes there exists a quartic curve which has

a triple point in D and passes through the nine other nodes and the points of

contact of the tangents drawn from D to the contact-conic
;
also there exists

a quintic curve which has a triple point in D, passes through the nine other

nodes and touches the contact-conic where it is touched by its tangents

drawn from D. This holds for each node.

6. Quartic surfaces with eight nodes.

Returning to the sextic curve w M4 us 0, derived from the

surface uzwz + 2u3w + w4
= 0, any quadric through the node is

if the quartic surface has any other node which also lies upon
this quadric, since this node also lies on the surface

uzw + u3
= 0,

it is clear that the curve u 2 t2
- 2^M3

= will pass through the

resulting node on u2u4 w
:j

2 = or c6 .

This quartic curve passes through the points of contact of c6

with its contact-conic u2 ,
and also through the nodes of c6 which

result from nodes on the quartic surface. If therefore the surface

has eight nodes we have seven nodes on c6 : to each quartic

through these seven nodes and the points of contact B1 . . . B6 of

c6 and u%, there corresponds one quadric through the eight nodes,

and vice-versa.

Now it was stated (Art. 4) that plane sextics with seven nodes

form two classes
;

in the more general case there is a singly

infinite number of quartic curves through the nodes and Bl ... B6 ,

and we obtain corresponding to this case a singly infinite number

of quadrics through the eight nodes. For the more special case

where there is a doubly infinite number of quartic curves through
the thirteen points we have a doubly infinite number of quadrics

through the eight nodes, which therefore form eight associated

points. Such a surface is represented by an equation of the form

, (7)
2 =0.

It follows that any quadric through the eight nodes meets the

quartic surface in two quadri-quartic curves which are projected

from any node into two of the oo - cubics which pass through the

seven nodes of c6 .
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These two classes of quartic surfaces will be termed asyzygetic

and syzygetic respectively*.

The equation of the general seven-nodal surface being

F=(a^A, B, 0)
2 + /oS

= (Art. 2), where A, B, G are quadrics

through the seven nodes, if there is an eighth node we obtain,

to determine it, the equations

t dF -r. dF ~ dF _^

hence the eighth node lies on the surface

A ID f*i^i i *-*! ^l

A 7? C*

A 75 f~1/1 3 -^^3 ^3

= 0.

The eighth node may therefore not be taken arbitrarily, as in

the case of the first seven nodes.

If A, B are two quadrics through the eight nodes and T any

eight-nodal asyzygetic surface, the general asyzygetic surface is

represented by the equation

= 0.

The surface J is called the dianodal surface^, and is the locus

of a point whose polar planes for A, B, C and S are concurrent,

and therefore also concurrent for every quartic surface with the

given seven nodes ;
thus if P is any point of the dianodal surface,

all the quartics through P have a common tangent line thereat,

which touches the quadri-quartic through P and the seven nodes,

as is seen by taking as the quartic a doubled quadric through P
and the seven nodes.

The dianodal surface.

The dianodal surface contains the line joining any two nodes

DI, D2 ;
for if P be any point on this line then, since we may take

the surfaces A, B, 2 which appear in the equation of the seven-

nodal quartic to pass through P, they will necessarily contain

the line D^D^, hence the tangent planes at P to A, B, 2 all pass

through DlDz and therefore the point P satisfies the equation of

* The general syzygetic surface is the envelope of the quadrics X2D + \E + F=0,
where D, E, F are quadrics through the eight nodes.

+ Cayley.
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the dianodal surface. This surface thus contains the twenty-one
lines which join any two of the nodes D^...D7 .

Again taking 2, A and B to pass through any given seventh

point of the twisted cubic determined by Dl . . . D6 ,
this cubic lies

entirely in 2 as meeting it in thirteen points, and also on A and B as

meeting them in seven points, hence the tangent planes at P to 2,

A and B will meet in the tangent line at P to the twisted cubic :

hence, as before, the point P lies on the dianodal surface. This

surface thus contains the seven twisted cubics which pass through

any six of the points Dl ... D7 .

The dianodal surface contains thirty-five plane cubics lying on

the planes which contain three of the given nodes
;
for let L be

the plane of three nodes and 8 the cubic surface which passes

through these three nodes and has the four other nodes as double

points ;
if we then write L . S for 2 in the equation of the dianodal

surface it becomes

J(A, B,C,L.S) = LJ(A, B, C, S) + SJ (A, B, C, L) = 0,

which clearly contains the cubic L = 0, S = 0. This shows that

the lines D1D2 ,
etc. are simple lines of the dianodal surface.

The twisted sextic which is the locus of the vertices of the

cones which pass through the seven given nodes, lies on the

surface
;
for this sextic is obtained by elimination of X, p from

the equations
Ai + \Bi + pCi = 0, (i=l,...4),

which clearly lies upon J (A, B, C, 2) = 0.

Each of the seven nodes is a triple point of J, for the lines

D1
D2 ,...D1D7 do not lie on the same quadric cone.

7. Quartic surfaces with nine nodes.

From the two varieties of surfaces with eight nodes we derive

two with nine nodes. Considering first syzygetic surfaces, viz.

if this surface has a ninth node it must lie upon the twisted sextic

= 0.

This curve is the locus of the vertices of the cones of the system
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A + \B + fj,C; hence, if a ninth node exist, there is a quadric cone

K whose vertex is D9 which passes through the points _Dj ... _D8 .

Taking D9 as the point from which the surface is projected by
a tangent cone (giving rise to the curve u^ut u./ = 0), this latter

curve must have eight nodes lying on a conic, and must therefore

break up into this conic and a quartic curve. Therefore K, the

quadric cone whose vertex is D9 ,
forms part of the tangent cone

from D9 ,
and touches the quartic surface along a twisted quartic.

The equation of the surface is therefore of the form

A2 + pKB = 0,

where A = is a quadric through the nine nodes and B a

quadric through the eight associated points Dl ...D8 . There is

a triply infinite number of nine-nodal syzygetic quartic surfaces.

Considering next asyzygetic nine-nodal surfaces, from the

equation of the general eight-nodal surface it is seen that a

ninth node must lie on the curve

|

A....A.

BI . . . X>4
=

0,

T T
J-i J-i

which is of the eighteenth order, the dianodal curve; the ninth

node being taken arbitrarily on this curve, there is a singly infinite

number of surfaces with the nine given nodes represented by the

equation

where A is the quadric through the nine nodes and P any quartic

surface with these nodes.

The dianodal curve.

The dianodal curve lies on each of the eight dianodal surfaces

obtained from the eight given nodes; moreover the dianodal

surfaces corresponding to A D6D7 and A . . . D6D8 intersect in

the fifteen lines joining any two of the points D
l ... D6 ,

in the

dianodal curve, and in the twisted cubic through D1 ...D6 .

Through Dn as being a triple point on each, there pass nine

branches of the curve of intersection of the two dianodal surfaces,

but of these, six branches arise from the lines D
1
DZ ... Dl

D6 and

the tangent at Dl to the cubic D1 ... D6 ;
the remaining three

branches arise from the dianodal curve which has therefore a

triple point in each of the eight nodes D l
...D8 .
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Moreover since six of the intersections of the tangent cubic

cones at A to the two dianodal surfaces lie on the quadric cone

of vertex A and passing through A . . . A> it follows that the

remaining three intersections must lie in a plane, hence the

tangents to the three branches of the dianodal curve at A are

coplanar.

The dianodal curve is seen from its equation to be the locus

of a point whose polar planes for A, B and T are coaxal. In its

equation we may take A to be the quadric through the eight

nodes and any assigned point P, then B will not pass through P,

and if T is a quartic of the system which passes through P, then

if P is on the dianodal curve, since the polar plane of B for P
cannot pass through P, it follows that A and T have the same

tangent plane at P.

We may also note the following results: (1) the dianodal

curve meets each of the lines AA twice, apart from A and

A, (2) it meets each of the seven twisted cubics D1 ...De , etc.

twice, apart from the nodes. For we may take the quadric

A and the quartic T as passing through any point P of the line

AA which will then lie on each of them, hence we have at each

point of AA a (1, 1) correspondence of tangent planes which

involves two coincidences, say at the points Q and Q', thus both

Q and Q' satisfy the equation of the dianodal curve. Next take

A and T as passing through some assigned point P of the cubic

through A A; this cubic will then lie on each of these surfaces,

so that they will also meet in a residual quintic curve which passes

through the pointsA A- Now the number of points of apparent
intersection of these curves is seen to be seven* and hence their

actual intersections are eight in number, and deducting the six

points A A we obtain two as the number of their intersections

apart from the nodes
;
at each of these points A and T touch, and

hence each point lies on the dianodal curve.

8. Quartic surfaces with ten nodes.

We have, as before, two classes of irreducible sextics with nine

nodes, viz. according as the points of the curve are or are not

conjugate in pairs with regard to any seven of the nine nodes. We
have also the sextic arising from two cubics or two lines and a

quartic. We consider in the first place these last two cases.

*
Salmon, Geom. of three dimensions (fifth ed.), vol. i. p. 358.
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It may be shown that, if the tangent cone from one node of a

ten-nodal quartic surface breaks up into two cubic cones, this

will also occur for each node. For let the tangent cone from D1

break up into the cubic cones V and V, touching the surface along
the curves c6 and c6

'

respectively, then A is a triple point on both

c6 and ce'*, and A ... Ao are ordinary points on c6 and c6'. Now
the cubic surface which has Dl and A for nodes and which passes

through A--- Ao and also through any other three points on c6 ,

will meet c6 in6 + 2 + 8 + 3 = 19 points and therefore contain c6 ;

it therefore meets the quartic surface in another curve k6 which

has A as triple point and AA Ao as ordinary points. Hence

k6 is projected from A by a cubic cone which passes through

A, A, A ...Ac-

In the same manner, by aid of c6', we obtain another sextic

curve k6

'

which projects from A by a cubic cone. Hence the lines

AA> AA-" AAo form the complete intersection of two cubic

cones, so that the sextic tangent cone to the quartic surface from

A has as double edges the complete intersection of two cubic

cones: it must therefore break up into two cubic cones. Applying
the same reasoning to each node it is seen that the tangent cone

from each of them must break up into two cubic cones. This

surface is called the symmetroid^.
In the next place, when the sextic splits up into two lines and

a quartic curve, we see that through the node x = y = z = there

pass two planes, each touching the surface along a conic
;
each is

a trope. The equation of the surface is of the form

A 2 + pxyB = 0,

where A and B are any two quadrics.

* Since any plane through Dj meets ce in three points apart from DI and

so for ce'.

t See chap. ix. It is seen from the foregoing that any cubic cone whose

vertex is a node and which passes through the nine other nodes, meets the surface

in two sextic curves having the vertex as triple point and passing through the nine

nodes.

We thus obtain ten sets of sextic curves on the surface.

Since the equation of the surface may be written

where F=ic2 u2+ 2icu3 + u4 ,
M=wuz + us , FF'= u2u4 -M3

2
,

it follows that the cubic surfaces

touch F along the sextics F=0, PW+ F'=0.
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The nodes lie on two conies : the tangent cone from each of

the eight associated nodes breaks up into a plane and a quintic

curve with four double points.

We now pass to irreducible sextics, first those whose points

are conjugate in pairs giving syzygetic surfaces with ten nodes.

Such surfaces are represented by an equation of the form

A* + pK^K2
= 0,

where Kl and K2 are cones whose vertices lie on the quadric A.

Next if P = is any asyzygetic surface with nine nodes, then

among the surfaces

A 2 + PP = 0,

there are thirteen which have a tenth node
;

for such a node is an

intersection of the dianodal surface of Dl ... D6D9 and the dianodal

curve of A ... -D8 ;
there are 6 x 18 = 108 such intersections, but

of these Dl . . . De being triple points on both the surface and the

curve count as 9 x 6 = 54 intersections, and the points D8 ,
D7 , D9

each count as three, also the two intersections of the fifteen lines

Dj-Da, etc. with the dianodal curve give thirty points, and its two

intersections with the twisted cubic D
1 ... D6 give two more points

which are not solutions; this leaves

108 - 54 - 9 - 30 - 2 = 13* solutions.

* Of these thirteen solutions one gives a symmetroid ; for if P and A have the

equations

where DI is the point x =yz= Q, we may write the equation A 2 +pP=0 in the form

wz
(tf + 2pu2 ) + 2w(tl t2 + 2pu3 ) + 2

2 + 2/3M4= ;

the sextic curve is therefore

2p (w,2 "4
- Ms

2
) + ce= 0,

where c^st^u^t^uz-^t^u^
is the projection of the curve of intersection of A and P. All these curves have

as double points the projections D2'...D9
'
of D2 ...D9 , and CQ has also as double

points those in which the generators of A through D meet the plane of projection.

All these curves touch ce twice.

Now all sextics having as nodes D2'...Dd
' and which touch c6 twice must have

an equation either of the form

where
<j>3 is a cubic through D2 ...D9 , or of the form

where
<f>3 , xs are two cubics through the nodes D2'...D9

'
of c6 which touch it.

But the first form is excluded, since no doubled cubic can occur in the pencil of

sextics
;
and the second form shows that as one curve of the pencil we have two

cubics, i.e. for one of the surfaces A2+pP0 the tangent cone from DI breaks

up into two cubic cones, and we have a symmetroid.
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9. Quartic surfaces with eleven nodes.

The three varieties of plane sextics with ten nodes (Art. 5)

lead to three types of quartic surface with eleven nodes. The

equation of the first variety was seen to be of the form

u3
* - u?K = ;

this sextic arises from the quartic surface

Kw2 + 2u3w + u2
z = 0.

The six nodes which lie on a conic are given by the equations

w= 0, uz
= 0, us

=
;
the plane w = is a trope.

The tangent cone drawn to the surface from any one of these

nodes breaks up into the plane w = and a quintic cone, the

tangent cones from the remaining five nodes are irreducible.

If P = be a quartic surface having the six coplanar points as

nodes and also five other nodes, and A a quadric passing through
four of these last five nodes and also the conic containing the six

nodes, then
P + pA* =

is a pencil of quartic surfaces having ten nodes : the equations

give forty solutions, but the given ten nodes count triply among
them, leaving ten surfaces of the pencil having eleven nodes and of

the type just mentioned. This surface may be called XIC .

The second kind of plane sextic with ten nodes has an infinite

number of bitangent cubics through seven of its nodes (Art. 5) ;

the quartic surface to which it corresponds must therefore be

syzygetic ;
the equation of the ten-nodal syzygetic surface being

A z + pKtKz (Art. 8) it may be shown that in this pencil there

are twelve surfaces which have an eleventh node. It is easy to

see that the equation of such a surface has the form

where Kl
= 0, K2 Q, K3

= Q are cones, and such that the vertex

of K! lies upon Kz K3
= 0, etc. This surface is called XI6 .

There remain two cases in which the sextic curve breaks up
into simpler curves : either into two lines and a nodal quartic or

into two cubic curves.
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In the first case the equation of the surface is

A* + pKxy = 0,

where A is a quadric and K a cone whose vertex lies on A. This

is XId .

In the second case we have a symmetroid, hence

(u2w + u3y> + vsv3

' = u2 (u2w2 + 2u3w + 1*4).

Here either v3 or v3

'

has a nodal line, arising from an eleventh

node on the surface. The tangent cone from this eleventh node

to the surface gives a plane sextic of the third variety. This case

is XIa .

10. Quartic surfaces with twelve nodes.

A surface with twelve nodes gives rise to a sextic curve with

eleven nodes: this sextic must therefore break up into simpler-

curves. The cases which provide eleven nodes are the following i

(1) a quintic with six nodes, and a straight line,

(2) a quartic with two nodes, and two straight lines,

(3) two nodal cubics,

(4) a cubic, a conic and a straight line,

(5) a quartic with three nodes, and a conic.

It may be shown that a plane quintic with six nodes and

a contact-conic may be regarded as the projection of a twisted

quintic on a quadric. The proof is exactly similar to that for the

plane sextic with ten nodes. By addition of a generator it is

easy to see that we obtain a special case of the second class of

twisted sextics on a quadric*; hence the quartic surface corre-

sponding to case (1) must be syzygetic. Moreover it will contain

six nodes on a conic. If D^ ... D6

'

are the intersections of the

plane quintic and the line, then Z)x . . . D6 lie on a conic.

Two cases occur according as four or two of the associated

nodes lie on this plane ;
in the first case since four of the

associated nodes are coplanar, so also are the other four, and

the equation of the surface is of the form

it is a case of XI^. This surface is

* A quartic surface through three generators of a quadric meets it also in

a quintic; each generator of this set meets the quintic four times, hence (Salmon,

p. 358) H=B and therefore ft' = 6.

J. Q. S. 2
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The surface has two tropes each containing six nodes : taking

them as A--- D6 and AAA--- Ao it is clear that the tangent
cones from the points AA--- Ao break up into a plane and a

quintic cone
;
the tangent cones from A and A int two planes

and a quartic cone; the tangent cone from Ai includes K, and

therefore breaks up into a quadric cone and a quartic cone with

three double edges.

When only two* of the points A A are among the eight

associated nodes, if e.g. they are A and A, then the tangent cones

from A A break up into a quadric cone and a quartic cone,

but this quartic cone must consist in part of the plane A At>
thus the tangent cone splits up into two cubic cones and we have

a symmetroid with twelve nodes. This is XIIa .

The second case, a binodal quartic curve and two straight lines,

leads in general to XIId , i.e. A 2 + pxyK=0, but if K breaks up
into two planes we obtain the surface

A* + pxyzw = ;

this is a twelve-nodal surface in which the tangent cone from

each node breaks up into two planes and a quartic cone with two

double edges. This surface is XIIC .

The cases (3) and (4) lead to the surface XIIa . Case (5) may
lead to Xlld, but if in more than two cases the tangent cone from

a node breaks up into a quadric cone and a trinodal quartic cone,

we have a special case of XI6 . In this case every tangent cone

must split up into such a quadric and quartic cone, otherwise

we should obtain one of the preceding cases, which are excluded.

The twelve nodes form three sets of eight associated points.

11. Quartic surfaces with thirteen nodes.

The plane sextics with twelve nodes divide themselves into

the following classes :

(1) three conies,

(2) a nodal cubic, a conic and a straight line,

(3) a trinodal quartic and two straight lines,

(4) a cubic and three straight lines.

* The case in which three of the six points belong to the associated nodes

cannot occur.

t The quadric cone cannot split up, as giving two tropes.
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Three conies u, v, w with a common contact-conic form a

degenerate sextic of the first kind arising as the projection of

three conies u1} v1} w upon the same quadric. The cone whose

vertex is D^ which stands on u meets this quadric in the pair
of conies u1} u^. Similarly we have the pair vl} Vi and wlt w^' ;

since Wj and vv have two apparent points of intersection, the three

conies ui} v1 and w have six which lie on a quadric cone.

This applies also to the conies

hence we have from the conies u, v, w four new conies upon which

their twelve intersections lie by sixes. Hence there are four

tropes*, and the surface is a case of XIIC , viz.

A 2 + pxyzw 0.

The thirteenth node is one of the eight solutions of the

equations
A! . x = A z . y = Aa . z = A t . w.

The tangent cones at each of the first twelve nodes break up
in each case into two planes and a quartic cone with three double

edges. This surface is XIIIa .

The plane sextic (2) consisting of a line, a conic and a nodal

cubic (all having a common contact-conic), is the projection of

the complete intersection of a quadric and a cubic surface which

have a line and a conic in common. Let D2

'

be the node;

DiDu'Du the intersections of the line and cubic; J)3'D4

'

the

intersections of the line and conic
;
D&'. . . Dlo

'

those of the conic

and cubic.

Considering the three loci on the quadric it is clear, since the

generator meets the conic once and the cubic twice, while the

conic and cubic meet three times, that there are five apparent
intersections of these curves. Let their projections from D13 be

DiD3'D5'D6'D7

'

;
then these five points lie on a conic with D2',

hence D1D2DSDSD6D7 lie on a conic.

The cone joining any point to the conic on the quadric meets

the quadric in another conic
; by associating this new conic with

the generator and twisted cubic it is easily seen that the points

AAAAAAo
lie on a conic.

* See the first variety of surfaces with eleven nodes.

22
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Hence we have that

DiD2D,DtDtDj lie on a conic, let ac - be its plane.

= 0.

It follows that three tropes pass through Dj.

Since A...DIO lie on two conies intersecting in A and D2 ,

a quadric S through Dl . . . D10 has an equation of the form

am, + yv zw =
;

hence since x = 0, y = are tropes meeting the surface in two

conies lying on S, the equation of the surface has the form

(xu + yv zwf + 4&yV 0.

But since z = is also a trope it follows that V = zw' uv ;

hence the equation of the surface is

o?u? + y*v* + z*w* lyzvw Zzxwu Zxyuv + ^xyzw' = 0.

This may be written in the form

z y u

z x v

y x w

u v w w
This surface is XIII&.

The tangent cone from Da consists of three planes and a cubic

cone; the cones from D2AA of two planes and a quartic cone

with three double edges ;
the cones from D5 . . .D18 of a plane, a

quadric cone and a cubic cone with a double edge.

Hence if the plane sextic consists of three lines and a cubic

we have XIII& ;
if it consists of two lines and a trinodal quartic

we have XIIIa or XIII6 .

12. Quartic surfaces with fourteen nodes.

The plane sextic with thirteen nodes is formed either by two

lines and two conies or by three lines and a nodal cubic
;

it will

be seen that either leads to the same fourteen-nodal quartic

surface. For in XIIIa the tangent cone from one node splits up
into three quadric cones; if there be another node one of these

cones must consist of two planes a/9 which pass through the

additional node Du . Since a/9 is a tangent cone it will pass
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through eight associated points of the nodes D1 . . , D12 ;
if the

equation of the surface is A2 + pxyzw = 0, let these eight points
be taken as the intersections of

-4=0, xy = 0, zw = Q]

then A = a/3 -\-pxy + qzw,

and the equation of the surface is

(a/3 + pxy + qzw)
2 + pxyzw = 0.

But since a/3 is a pair of tropes it follows that p
=

4<pq, hence

the surface is, with a slight change of notation,

- Izxz'x' - Zxyx'y = 0,

= 0,

2 + y
2
y'

2 + z2
z'

2

or I z y

z x

y x

x' y' z
1

or again ^1xx' + *Jyy + V
'

zz = 0.

Also the pencil of surfaces included in XIII6 ,
viz.

x*x'z + y
2

y'
2 + z^z'2

lyzy'z' 2zxz'.x' 2xyx'y' + pxyzw' = 0,

includes the preceding surface. Thus the addition of one node to

XIII or to XIII6 leads to the same fourteen-nodal surface. It is

to be observed that the surface has as tropes the planes

x = 0, x' = Q, y = 0, y'=0, z = 0, z'=Q,

and has as nodes the points

(xyz), (xy'z\ (xyz'\ (x'yz), (xy'z), (x'y'z), (x'yz'\ (x'y'z
1

)

.........(1),

together with the six points

x = x' = yy' zz' = 0, y = y'
= zz xx =0, z = z' = xx yy'

......... (2).

The tangent cone from any one of the first eight nodes consists

of three planes and a cubic cone with a double edge ;
the tangent

cone from either of the last six nodes consists of two planes and

two quadric cones.
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Surfaces with fifteen or with sixteen nodes.

Between the six planes x . . . z' there exists a singly infinite

number of linear identities; if one of them is of the form

'+C'z'=0 .........(3),

with the condition

AA' = BB'=CC f

,

then one condition is imposed upon the system of six planes ;
and

if this condition is satisfied the point given by the equations

Ax = A'x', By = B'y', Gz = G'z'

is a node of the surface. For this point is seen to lie on the

surface, and at this point the differential equation

xdx' + x'dx ydy' + y'dy zdz
1 + z'dz_

*Jxx'

giving consecutive points on the tangent plane thereat, becomes

dx dx dy
1

dy dz' dz _ _

~A:
+
T'

+~BW +
~C

+
~C'~

which vanishes identically, as is seen by differentiating the

equation (3) and using the condition AA'=BB'=CC'. Hence

this point is a node of the surface. The surface is therefore

fifteen-nodal if this condition is satisfied.

The sextic cone from any node now splits up into four planes
and a quadric cone. There are ten tropes, viz. the planes x ... z'

and the four planes

Cz + Ax + B'y
f = Q, Cz + A'x' + By =

0,

C'z + Ax + By = 0, C'z' + A'x' + B'y' = 0.

These planes are seen to be tropes since, for instance, the plane

A'x' + B'y'+CV=0
passes through the fifteenth node, the points (xyz), (x'y'z'), and

through one of each of the three pairs of nodes (2); it thus

contains six nodes and is therefore a trope.

If a second linear identity between the planes x ... z exists,

the constants of which are connected by a similar equation, there

will be a sixteenth node*, and we have the sixteen-nodal surface

of Kummer.

* See also a paper by the author, Quarterly Journal of Mathematics, 1900.
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The surfaces which have been discussed in this chapter are the

following :

Surface Number of

nodes

(a%A, By C, D, E, F? 4

(a&A, B, C, D, E)2 5

(a%A,B,C,Dy + PJ 6

+ p?, 7

, B, C? 8

PT 8

9

K being a cone whose vertex is on A
A* + PP 9

Thirteen of the pencil of surfaces A 2 + pP 10

where P is any quartic surface with nine nodes

and A passes through them
;
one of these surfaces

is a symmetroid

A* + pxyB 10

A' + pKtKi 10

where Kl and K2 are cones whose vertices lie on A

Symmetroid with eleven nodes, XIa 11

Kw* + 2wu3 + u2
2
,

XIC 11

A^ + pK.K,, XI6 ,
11

a case of preceding,

A^+pKocy, XId 11

J. 2 + pxyzw, XIIC 12

A^ + pK.K,, XH, 12

a case of preceding,

Symmetroid with twelve nodes, XIIa 12

A*+pKxy, XIId 12

A 2 + pxyzw 13

a?u? + y
2
tf + z2w2

2yzvw
- 2zxwu 2xyuv + 4>xyzw' 13

V'xx + ^yy' + v
'

zz' 14

The same, where Ax + By + Cz + A'x' + B'y' + C'sf = 0, 15

with the condition AA = BB' = CO'

The same, where an additional condition of this form 16

exists.



CHAPTER II

DESMIC SURFACES

13. An interesting type of quartic surface which possesses

nodes but not singular curves is afforded by desmic surfaces.

Desmic* surfaces are such that a pencil of such surfaces contains

the special quartics formed by three tetrahedra. The equation

of a desmic surface is

4

XAj + /LiA2 + vA 3
= 0, where Aj = H (o^ -f a/#2+ a/X + a/"^), etc.,

i

and where an identity exists of the form

aAi + A2 + 7A3
= 0.

Such tetrahedra are called desmic. They are shown to exist

by consideration of such an identity as

(a?
-
y

2
) O2 -

1*) + (a?
- t

2

) (f - z2

) + (a
2 -

z*) (V
- f) = 0. . .(1 ).

Writing the preceding identity in the form

it is clear that any face of Aj and any face of A2 are coaxal with

some face of A 3 . Hence AJ, may be written in any one of the forms

It follows that the edge (A lt A 2) of A2 meets A2 in edges of the

latter, viz. at the points A l
= A 2

= Gt
= 0, (i

= l, 2, 3, 4), and two

of these points are necessarily distinct since the faces of A 3 are not

concurrent. These two edges of A^ do not intersect, for otherwise

(Ai, A 2) would lie in a face of A2 . Also since A2
= II (C^ + K{A t)

it is clear that (A lt A 2) and (A s ,
A 4) meet opposite edges of A2 ,

i.e. (A lt A 2) and (A z ,
A t) meet the same pair of opposite edges of

A2 . Hence any pair of non-intersecting edges of one tetrahedron

meet a pair of non-intersecting edges of either of the other two

*
Seoyx6j= pencil. See Humbert, Sur les surfaces desmiques, Liouville (1891).
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tetrahedra ; also we obtain sixteen lines through each of which a

face of each tetrahedron passes.

Taking A! as tetrahedron of reference and one face of A2 as

x+y+z+t 0, the identity becomes

xyzt + (x + y + z + t) 2 3JB4 + G&Cid = ;

and the fact that any two opposite edges of A x meet two opposite

edges of A2 leads at once to the form of Bz ,
B3 and _B4 . Finally

the identity

IGxyzt

...... (2)
shows the form of C^ ... Gt .

The form obtained for A2 shows that any edge, e.g. (xy\ of A x

meets opposite edges of A 2 in two points harmonic with the points

(xyz), (xyt), hence any two vertices of Aj are harmonic with the

points in which their join meets opposite edges of A2 . Hence if A x

is given, a tetrahedron A2 desmic with it is obtained as follows:

if P be any point, draw through P a line to intersect a pair of

opposite edges of A x and let P' be the fourth harmonic to P and the

points of intersection, also let P", P'" be the two other points similarly

determined, then the tetrahedron PP'P"P'" is desmic to A x .

The identity

4 O2 + 7/
2 + z2 + P

shows that A x ,
A2 ,

A3 are self-polar for the quadric

2 + f + z* + t
2 = 0.

Hence since the intersection of any two faces of A2 and A3 lies

in a face of A x ,
it follows by reciprocation that the join of any

two vertices of A 2 and A 3 passes through a vertex of A x ;
we thus

obtain sixteen lines each of which contains a vertex of each tetra-

hedron. Therefore three desmic tetrahedra are such that any pair

of them have four centres of perspective, viz. the vertices of the

third tetrahedron. Conversely if two tetrahedra have four centres

of perspective they are in desmic position. For it is easy to see

that two such tetrahedra have the property that each pair of

opposite edges of one tetrahedron meets a pair of opposite edges
of the other tetrahedron, and this necessarily involves that the
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tetrahedra are in desmic position, as may be seen by expressing
the latter conditions.

The identity (1) affords another system of desmic tetrahedra

A> A> A closely related to that given by (2): the faces of

A> A> A are respectively

x y = 0, x + y = 0, z t = 0, z + t = 0;

x z = 0, x + z = 0, yt = 0, y + t = 0;

x- t = 0, x + t = 0, y-z=0, y + 2 = 0.

The vertices of the three tetrahedra A< which arise from (2)

being respectively

I (0001) (0010) (0100) (1000)

II (1111) (llll) (llll) (1111)

III (llll) (llll) (llll) (llll)

it may be observed that the preceding sixteen lines joining the

vertices of Af are the intersections of the faces of two tetrahedra

A (e.g. the planes x y = 0, x z = contain the three points in

the first column) ;
and that the join of two vertices of a A meets

two opposite edges of another A in two vertices of a D.

14. Desmic surfaces.

We may therefore take as the equation of the general desmic

surface the equation
aA + 6A + cD3

= 0,

where A +A +A - 0-

This may be written in the form

(a?
-

s/

2
) (z* -P) + k (#

2 - *2
) (y

z - V} = ;

it has the twelve points I, II, III, the vertices of the A f ,
as nodes

;

and contains each of the sixteen lines joining the vertices of Af by
threes.

The equation of the surface may be written in the form

where =^-y2
, /3

= #2 -22
, <y

= %*-?.

Now any quadric through the eight points II, III is clearly

An + B(3 + Cy = 0,

whence it follows that this quadric meets the desmic surface in two

quadri-quartics; and that these curves form a simply infinite system.
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Again the desmic surface may be written

\ (a?y* + zH2

) + fj, (x*z* + ft
2
) + v (x

2
t
2 + y

2z2

)
= 0, X + /* + i/ =

;

or X (xy zt)
2 + p, (xz yf + v(xt yzf = 0.

This surface is intersected by the quadrics

A (xy -zt) + B (xz -yt) + G (xt -yz) =

in pairs of quadri-quartics. These quadrics pass through the

points I, II. Similar considerations apply to the quadrics

A (xy + zt) + B (xz + yt) + G (xt + yz)
= 0,

which are those passing through the points I, III. Hence there

exist three systems of quadri-quartics on the surface. Through
each point of the surface there passes one curve of each system.

It is known that the generators of the system

as belonging to the quadrics through eight associated points, form

a cubic complex. The quadrics contain four systems of cones

having their vertices at the points I, and any line through any
one of these four points belongs to one cone of its system. Hence

every line through the points I belongs to the cubic complex, and

it is clear that every line through the points II and III belongs
to this complex, which is thus determined by the twelve points I,

II, III (for the join of any point P to these points gives twelve

lines of the complex through P). The complex is therefore the

same whichever system of quadrics be used.

Considering any line p of this complex, p is thus a generator
of a quadric of each of the three systems, hence it is a chord of

each of three pairs of quadri-quartics : thus if p meets the desmic

surface in the points a1} a.2 ,
a3 ,

a4 ,
then

and a3a4 belong to a quadri-quartic of the system I, II,

and 2 a4 ................................................... I, III,

a^t and a2 a,3 ................................................... II, III.

15. Expression of the surface in terms of cr functions.

Consider the surface denned by the equations
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# o-! (u} o-j (v) ,!, f y z i

so that - = 7-T-
-= r~ ,

with similar expressions for ^ ,

-
,
where

t tr(u) <r(v) t t

the functions <r are defined as follows :

It follows that

a?

whence eliminating g> (w), g> (#) we obtain

1 a? e^(a?- 1
2
)

= 0.

This gives on expansion

which is the form of the equation of the desmic surface previously
obtained.

Nodes, lines and quadri-quartics of the surface.

If 20!, 2&>2 are the periods of $ (6) and if wl + &>2 + o>3
= 0, then

since

r(0 + 2w\
=

crV0)
'

a(Q + 2&)

2

)

= ~
^70)

'
6tC''

rt* ?/ 2^

it follows by considering the ratios -
, 7,3, that to any point of

t t t

the surface there corresponds an infinite number of arguments of

the form

eu

ev + 2&&>] + 2A;'o>2 + ^(Uj + 4A/C02 ;
e = + 1.

We obtain the nodes I when v has the values 0, o>i, &>2 ,
a>s ,

II w v 0, 2ft)!, 2&>2 > 2o>3 ,

Ill u + v 0, 2ft)!, 2a>2 ,
2t 3 .

The sixteen lines of the surface correspond to the equations

u = 0, v = 2&&>! + 2&'&>2 ;
=

&>!, v = &>! + 2A;&)! + 2&'&>2 ;

w = <w2 ,
w = o>2 + 2^&)! + 2A;'<u2 ;

u = <u3 , v]=^<ws

where A;, k' are zero or unity.
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The well-known relations*

a (u + v)<r(u-v) = (r* (u) <r^ (y)
- <r

2
(v) <7A

2

(u),

<rx (u- v) a- (u + v)
= o> (u) vv (u) <rA (v) a (v) + CT> (v) <TV (v) o-x (w)o-(w),

<rx (u+ v) a (u
-

v)
= <rx (u) <r (u) cr^ (v) <rv (v)

- crM (u) <rv (u) <rA (v) a- (v),

lead to the following identities when the values of x, y, z, t are

inserted, viz.

o- (u + v) a- (u v} ( A B C

A (xy + zt) + B (xz + yt) + C (yz + xt)

_ a- (u + v) \A(T3 (u v) + Ba-% (u v)+ C<rl (u v)}

p* a- (v) ^(v) o-2 (V) a-3 (v)

A (xy zt) + B (xz yt)+C (yz xt)

<r(u v) {Acrs (u + v) + B<rz (u + v) + C^ (u + v)}

Hence it follows that for the quadri-quartics II, III

v = constant
;

for the quadri-quartics I, III

u v constant
;

and for the quadri-quartics I, II

u + v = constant.

It is to be observed that the curve v = a is identical with the

curve
v = + a + %hwl + 2h'w2 ',

and that u v = a is identical with

u v = a + ^shwl + 4>h'w.2 .

16. Intersection of a line of the cubic complex with the

surface.

Any line p of the preceding cubic complex is a chord of three

pairs of quadri-quartics : if (u^) ... (u4vt) are the arguments of its

four points of intersection with the surface, let a pair of curves of

the system II, III be v = a, v = /?, then we may take

Vi = v4
=

a, v2
= v3

=
ft ;

* See Harkness and Morley, Theory of Functions, p. 315.
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the Ui are then connected by the equations

u1 + a = e1 (w2 + ft), u4 + a = ez (u3 + ft),

U1 -a = e3 (MS
-

ft), 4
- a = e4 (w2

-
/3),

where e^
= + 1.

Since p is any generator of the quadric containing the curves

v = a,v = ft, the Ui each involve one indeterminate, hence on sub-

tracting the third equation from the first and the fourth from the

second and identifying the results we obtain

= 64 ,i 2> 3 4 , l 4

hence taking et
= 1 * and writing Wj = ft + //,,

the arguments of the

points of intersection are given as

itl
=

ft + /ju,
ut
= ft-p, u2

= + /*,
u3
= a

fji;

i
=

, ^4 = ,
*>2
=

/3, v3
=

ft.

17. Bitangents of the surface.

The tangents to the quadri-quartics of the three systems which

pass through the point (u, v) are bitangents of the surface
;
for

(!, vj = (ut ,
vt) if p= and then (^, v2)

=
(u3> v3) ;

(i, t>i)
= (MS, wa) if a = ft ...... (uz ,

v3)
=

(ut ,
v4) ;

(MJ, v^
=

(u3 ,
v3) if a = ft ...... (w2) ^2)5(^4, v4).

It also follows that the three bitangents of the surface deter-

mined by the point (u, v) touch it at the points (v, u), (2v u, v),

( 2,vu, v). These three points are collinear, since the join of

the points (2u u, v), ( 2v u, v) by the preceding Article meets

the surface in the points (v, u), ( 3v, u).

If p touches curves of the system II, III at P and Q so

that P is the point (a, ft) and Q the point (ft, a), then, as Q moves

to a consecutive position on the curve v = a, P takes a consecutive

position on the curve u = a
;
thus the tangent plane to the surface

at P' passes through PQ, so that the tangents at P to the curves

u = a, v = ft are conjugate, and the curves u = constant, v = constant

form a conjugate network on the surface.

Similarly it is seen that the system conjugate to u + v = const.

is 3v u = const., and that the system conjugate to u v = const, is

3v + u = const.

We can now determine the relation connecting any pair of

conjugate tangents at any given point of the surface ; for if du, dv ;

*
Taking et = - 1 gives the same form of result.
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dulf dvl correspond to this pair of conjugate tangents we have an

involutive equation of the form

dud^ +p (dudv! + du^dv) + qdvdv^ = 0,

where p and q are functions of u and v.

Expressing that this equation is satisfied by du = dv1
= Q and

by du dv = 3dVi + du = 0, we obtain that

^ = 0, ? = 3;

and the equation assumes the form

dud^ + 3dv dv! = 0.

The asymptotic lines correspond to the assumption du = dui,

dv = dv1 and their differential equation is therefore

du2 + 3dv2 = 0,

whose integrated form is

u + \/3iv = constant, u V3w = constant.

18. Plane sections of the surface.

The plane

(e2
- es) o-i (a) o-! (/3) o-! (7) o-x (S) +... + ...

-
Oi
-

eg) (e2
- e3) (es

-
e,) <r (a) a (/3) a- (7) a- (8) t =

passes through the sixteen points whose arguments are

/3 + 7 + S,; /3_ 7 _S, a; a + y + S,0; a-y-S,j3;

7-8- /3, a; S-y-@,ct; S-ay,/3', 7 - S - a, /9 ;

For two forms of the "
equation of three terms

"
of the

<r-functions are*

(eM
- ev) o-x (a) O-A (6) o-x (c) <rx (d) + (ev

- ej & (a) a;,, (b
f

) a^ (c) cr^ (d')

+ (e,
-

e.} av (a"} <rv (V) <rv (c") <rv (d")
=

;

o-x (a) OA (6) O-A (c) <rA (d)
- <7X (a') <rx (6') o>. (c') <rA (d')

+ (eA
- eM) ( x

-
*,) o- (a") o- (b") a- (c") a- (d") = ;

where 2a' = a + 6 + c + d, 2a" =a-+6+c rf,

26' = a + 6 - c - d, 26" = a + &-
2c' = a-b + c-d, 2c" =a-
2d' = - a + 6 + c - d, 2cT = a-b-c-d.

* See Harkness and Morley, Theory of Functions, p. 313.
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In the first formula taking

a =0, 6= a + /3, c = a + 7, d = @ + y,

of = a+ /3 + 7, 6' =-7, c
'

=-/3, d' = a,

a" = a, 6"= & c"= 7 ,
d" = -( + + 7),

we obtain

(<V
-

e,) <rx (a + /3) <rA (a + 7) crA (/3 + 7)

+ (e,
- eA) <rM (a + + 7) o-M (a) <rM (/3) o> (7)

+ (e*
-

M) V (a + + 7) ov () ov () o-, (7)
= 0.

In the second formula let

a = a + /3 + 7, 6 =
a, c = & d =

y,

a'=0, 6'= + 7, c' = 7+a, d7

=-( + ),

a" = 7, 6"=
, c"= a, d" = a+/S + 7,

we then obtain

<rx (a + y9 + 7) o* (a) crA (/S) OA (7)
- <7X (/S +7) <rA (7 + a) <rA (a + y9)

+ (eA
-

<V) (^ -O o- (a) <r (/S) <7 (7) o- (a + /3 + 7) = 0.

On substitution from the previous result it follows that

(eM
- ev) crx (a + yS + 7) <rx (a) cr^ (y3) O-A (7)

+ (e v
- eA) o-M (a + /3 + 7) o-M (a)^ (/3) <rM (7)

+ (^ - eM) o-, (a + ft + 7) o-, (a) o-, (/9) cr, (7)

-
(eA

- eM) (eM
- er) (ev

- eA) o- (a + /3 + 7) o- (a) <r (/3) o- (7) = 0.

This shows that the preceding plane passes through the point

_ a-, (a + /3 + 7) _o-2 (a + /3 + 7) _ o-3 (q + /3 + 7)

01(8) cr,(8) crs (8)

^_

Since the function a-t-(w) is an even function, it follows that the

plane passes through the four points in the above table for which

v = 8
; similarly it must pass through the other twelve points.

The fact that these sixteen points are coplanar may also be

seen as follows* : denote the points by the notation a#, where the

first suffix relates to the row and the second to the column: on

comparing with the arguments of the four points on a line of

the cubic complex, it follows that the four points a^, j2 , a^, a^
* See Humbert, loc. cit.



18] DESMIC SURFACES 33

are on such a line and also the points ali} a.2i, a^, a^; and four

lines are given by the following groups of four points, viz.

Also the four points au ,
a12 ,

a2i, a^ are coplanar, since they
have the same argument for v and the sum of the arguments for u

is zero*.

It follows that the sixteen points are coplanar. They lie upon
three sets of four lines of the cubic complex. Varying a we obtain

an infinite number of such sets of sixteen points on any given

plane.

The three systems of four lines touch a curve of the third class,

to each of its tangents there corresponds an elliptic argument of

periods O, fi' say. Let the three sets of four lines have arguments

a>i, bi and Ci respectively, then expressing that through each point

cbik there pass three lines, one of each set, we have

c4
=

0,

+ cs
=

0,

a + bs + c2
=

0,

Oj 4- 64 + GI = 0,

Consider the determinant

<TI (MI)

0-1 (w2)

0"! (U4)

regarded as function of MJ it is doubly periodic with periods 4wj , 4o>2 , and has

four poles in a parallelogram of periods which are congruent to

hence it has four zeros congruent to

Hence, expressed in terms of ^--functions, the determinant has a factor
4

a (ui + uz + us+ Uj). Therefore, if Sw
i=0, four points for which the v is the same

i

are coplanar.

J. Q. S. 3
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02 + &! + cs
=

0, a3 + &! + c2 = 0, a4 + 6j 4- G!
=

0,

2 + 62 -f c4
=

0, as + 62 + cx
=

0, a4 + 62 + c2
=

0,

2 + 63 + GI = 0, as + 63 + c4 = 0, a4 + 63 + c3
=

0,

2 + &4 + c2 = 0, as + 64 + c3 = 0, a4 + 64 + c4
=

0,

whence we deduce that

2oi = 2a2 = 2as
= 2a4 , aj + c^ =02 + 03,

26j
= 262

= 263
= 264 , ^ + &4

= &a + 63 ,

2^ = 2c2
= 2c3

= 2c4 , d + c4
= c2 + c,.

The solution of these equations is seen to be

n
.
of n

a n'

tt-j C//2 (* ~T~ Q y Cvg
"" Ct "T~ "7T" j C&4

"""" Ou "T" ~v~ "T~
""

j

7 11 J / 7 7 7-

n iy iy n

with the condition a + b + c = 0.

Now the arguments of the lines at are seen to be those of the

four tangents at the points in which the tangent of argument 2a

meets the curve*; similarly for the lines bi} ct ,
hence we have the

result that if C is the curve of the third class which is touched by
the twelve lines a^, 6j, Cf, the three sets of four points of contact

with G of the lines ai, b{ and C; lie on three tangents to C which are

concurrent.

Hence we derive a desmic configuration as follows. From any

point P of the plane draw three tangents to a given curve G of the

third class
;
each tangent meets G in four points in addition to its

points of contact ;
the tangents at these points give rise to a desmic

configuration of sixteen points Q ; conversely if C and one of the

points Q are given, the point P is uniquely determined.

If P describes a straight line the points Q describe a curve K
of order /*; and since two different points P cannot give rise

to the same point Q, two curves K can only have in common the

sixteen points Q arising from the point of intersection of the two

lines which give rise to these curves; hence p? = 16, i.e. K is of

the fourth order.

*
Clebsch, Vorlesungen uber Geometric, p. 607.



18-20] DESMIC SURFACES 35

Conversely, every quartic curve through the sixteen points of

a configuration can be generated in this manner. For if P be the

point of the plane which corresponds to the given sixteen points,

then one line through P can be chosen such that the quartic curve

deduced from the line by this method meets the given quartic

curve in any assigned point of the latter
;
the two quartics hence

intersect in seventeen points and are therefore identical.

19. Sections by tangent planes.

We now consider the form of the section of the surface by
a plane which touches the surface at any point P.

From P six tangents can be drawn to touch the curve of

section
;

it has been seen that the points of contact of three of

these tangents are collinear, viz. the tangents to the three quadri-

quartics through P.

Hence the curve must have an equation of the form

z*xy + a/37 (ax + by + cz)
= 0,

where the inflexional tangents at P and the line joining the

points of contact of the above three tangents form the triangle

of reference. If (xyz) is a point near P, we may (Art. 17) take

x Bu i V3 Bv, y = Su + i V3 8v,

and, since the directions of a, ft, y are respectively given by

Bv = 0, Su Bv = 0, 8u + Bv = 0,

it follows that

x y w = -

Hence the equation of the curve of section by a tangent

plane is

+ (a? T/
S

) (ax + by + cz)
= *.

20. If p, q, r are three lines of a cubic surface, forming a

triangle, any three planes through p, q, r respectively meet the

surface also in conies which lie on a quadric. Cremona has shown

that the locus of the vertices of such of these quadrics as degenerate
into cones is a desmic surface. This will now be proved.

The points of contact of the other three tangents from P to the curve are

32
seen to lie on the line ax + by + ^z =
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For let the cubic surface be

ft + xyz = 0,

then, if x = x at, y'
= y fit, z = z yt,

the equation of the surface may be written

t{f+ ayz + $zx + yxy afizt
-

ayyt
-

fiyxt + aj3<yP] + x'y'z'
= 0.

Denoting by F the coefficient of t, F= is the quadric which

contains the three conies
;

if F is a cone the coordinates of its

vertex are given by the equations

-
&yt =

yx ajt = 0,

ay-a#0,
ft aftz ayy $<yx + 2aj3yt

= 0.

Eliminating a, ft, 7, we obtain as the required locus

2 =/2 ~
ytfyfz

-
ztfzfx

~
vyfxfy

-
tfxfyfz + xyzft

=
-

If 8 =ft + scyz, we have the identity S'2 - 8xSyS2 =^.t2
.

This shows that 2 has as nodes the points of contact of tangent

planes to S drawn through the lines oo = t = 0, y = t = Q, z = t = 0',

provided that such points of contact do not lie on 2 = 0. Now
there are twelve such points of contact, since through any line

of S five such tangent planes can be drawn. We have to show

that these twelve points of contact form a desmic system. This is

seen as follows : it is known that the equation of any cubic surface

may be written in the form

abt + xyz =

in 120 ways ;
if n be the number of cases in which any particular

tritangent plane t appears, we have, since the number of tritangent

planes is forty-five,

nx 45 = 120x6, hence ?i = 16.

Hence we may write the equation of the cubic surface in the

form
abt + (x- at) (y

-
/3t) (z -jt) =

in sixteen ways ;
the point of contact of the tangent plane x at

lies on the line (a, 6) ;
and so for the planes y fit, z

<yt.
We

therefore have twelve points arranged in three groups of four

points such that there are sixteen lines each containing one point
of each group.
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Hence the tetrahedra formed by the points of any two groups
have four centres of perspective, viz. the points of the third group ;

the twelve points therefore form a desmic system (Art. 13).

21. The sixteen conies of the surface*.

Along any one of the sixteen lines of the surface three of the

coordinates have the same absolute value. Take e.g. the line

y = z = t
;

it is easy to see that along this line the tangent plane
to the surface is \y + fj,z+ z4 = 0; the line is therefore torsalf and

the tangent plane meets the surface also in a conic. The surface

therefore contains sixteen conies. If the sixteen lines are given,

and also the tangent plane along one of them, the surface is

determined.

If p is any one of the sixteen lines and TT a plane through it,

three nodes of the surface lie on p and through each node there

pass three of the sixteen lines other than p ;
thus six of the six-

teen lines do not meet p ;
if y = z = t is the line p, these six lines

lie on the quadric
x2 + yz + yt + zt =

;

this quadric is the locus of the conic corresponding to p for

different surfaces of the pencil.

The two conies corresponding to two of the sixteen lines which

pass through the same node meet in two points, for the line of

intersection of their planes passes through the node and meets

the surface in two other points lying on these conies. It follows

that the four conies which correspond to four lines which intersect

each other lie on a quadric ;
since these lines may intersect in the

same node or lie in the same plane, there are twenty-four quadrics
each of which meets the surface in four conies.

*
Bioche, Sur les surfaces desmiques du quatri&me ordre, Bull. Soo. math, de

France (1909).

t A line at each point of which the tangent plane is the same is said to be

torsal.

450621



CHAPTER III

QUARTIC SURFACES WITH A DOUBLE CONIC

22. In Chapter I we investigated the quartic surfaces which

possess a certain number of isolated singular points; we now
consider quartic surfaces which have a double conic.

Any quartic surface with a nodal conic is represented by an

equation of the form *

02
= 4w2

i/r,

where = 0, <//
= are quadrics and w = is the plane of the

double conic. This surface is a variety of syzygetic surface, but

the four points given by ^> -^r
= w = are here close-points on

the double conic. At each of them the two tangent planes of

the surface coincide with the tangent plane of = 0.

This equation may be written

(0 + Xw2
)
2 - w2

(i/r + 2X0 + X2w2

)
=

0,

where X is arbitrary.

The system of quadrics ty + 2X0 + X2^2 includes five cones
;

every tangent plane of each cone meets the quartic surface in a pair

of conies : for each generator of such a cone is bitangent to the

quartic surface, and hence any one of its tangent planes meets

the surface in a quartic curve having four nodes, viz. two on the

generator of the quadric cone and two where this tangent plane
meets the double conic

;
this quartic curve, therefore, breaks up

into two conies, two of whose intersections are collinear with the

vertex of the cone.

This may also be seen analytically : for if B2 AC = is the

equation of one of these cones V1} the equation of the surface is

where ZTj
= + XjW

2
.

* Kummer, Ber. Akad., 1863.
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It is seen that the equation of the surface involves twenty-one

independent constants.

The surface arises as the intersection of two corresponding
members of the pencils of quadrics

Ul wB = pwA, Ul + wB = -- wC.
P

Each of these quadrics passes through the double conic
;
the

quadrics therefore intersect in another conic, whose plane a is

given by
p*A + 2pB + (7=0,

and this plane is tangent to Fj. The surface is also generated as

the intersection of the quadrics

H! wB = - wC, U-i + wB = pwA,

giving the other conic in the plane a.

Hence the tangent planes of Vl meet the surface in pairs

of conies. A similar result arises in connection with each of the

cones F2 . . . F5 . Thus the surface contains five sets of <x>
l

pairs of

conies. The conies which lie in the tangent planes a of Fx belong
to two classes, viz. those given by

= 0, Ul
= w(B

and those given by the equations

It is clear that two points of intersection of the conies in the

plane a lie on the double curve
;
the other two points lie on the

line a = B + pA = 0, hence they lie on the generator along which

a. touches F,.

By considering the conies in two different tangent planes

a, y8 of F! it is seen that the conies of the same class do not

intersect, and that therefore two conies of different classes inter-

sect twice in points lying on the line (a, /3). Among each class

of conies which lie in the planes a there are four pairs of lines,

arising from those planes a which touch

Ul -w(B + pA) = and U1 + w(B + pA) = Q

respectively. For the condition of tangency gives a quartic for p
in each case. Hence the surface contains sixteen lines.

Each cone F2 ... F5 gives rise to eight pairs of lines, but as will be seen,

these sets of sixteen lines are the same as the foregoing but differently

arranged.
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23. Expression of the coordinates in terms of two

parameters.

If the cone Vz has as its equation B' 2 A'G' = 0, we obtain as

before two classes of conies on the surface, viz. the intersection of

the plane a' or <r
zA' + 2a-B' + C' = with the quadrics

U2
= w (B

f + <rA'\ U2
= -w(B' + <rA'\

where U2
=

^> + \^w2
.

There cannot be more than one point common to a conic in

the plane a and a conic in the plane a', and therefore each conic in

a meets each conic in a! in one point. For instance, a point

common to the conic

a = p*

and to the conic

a = a*A' + Za-B' + C" = 0, U2
= w (B' + aA),

must also lie in the plane

(\-\2)w = B-B' + pA- <rA',

and since this plane is not in general coaxal with a and a' there is

only one common point.

The coordinates of this point can thus be expressed in terms

of two parameters p and a- by aid of the last equation and the

equations a = 0, a' = 0. Also the ratios of p, cr, and unity are those

of three rational functions of the coordinates #;*.

We thus obtain equations of the form

Xi = Ft 0V, PV, pa
2
,

. . .) ; (i= 1, 2, 3, 4) ;

the Ft being thus polynomials of the fourth degree in p and <r.

These equations in general assign to any given pair of values

for p and <r one point Xi on the quartic surface, but for such

a pair of values of p and a as make the three planes

a = 0, a' = 0, (\l -\s)w = B-B' + pA-<rA
f

,

coaxal we have a line on the quartic surface, which is the

intersection of a and a. The condition that these planes should

be coaxal gives eight sets of values for (p, cr) ;
so that if A and A'

be a pair of planes which meet in a line of the quartic surface,

then p = oo
,
<r = oo gives a line on the surface, and hence in each

* For another proof that a quartic surface with a double conic is rational, see

Baker, Proc. Lond. Math. Soc. 1912, p. 36.
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of the equations KXi Fi, the coefficient of p
2
cr* must be zero*,

thus giving four equations

KXi = Fi (p, or)

in which the Ft are cubic functions of p and cr.

Making these expressions homogeneous, we obtain

**t=/i(fc,&, &), (t
= 1,2,3,4),

wherein the ft are of the third degree in the &, which we may
regard as the coordinates of the points of a plane. Since any line

meets the quartic surface in four points it follows that the curves

of the set Sa^/i
= can have only four variable points of inter-

section, and hence must have five points in common.

We therefore obtain a (1, 1) correspondence between the points x

of ike surface and the points of the plane, in which plane sections

of the surface correspond to, or have as their images, plane cubic

curves with five common points^.

The surface belongs, therefore, to the class of rational surfaces.

24. Mapping of the surface on a plane.

Conversely, starting with the quartic surface which is deter-

mined by the equations

Pxi=fi(^i> &, &),

where the curves fi have five points in common, we can show

that it possesses a double conic
;
for these equations establish a

correspondence of such a character that to a plane section there

corresponds a plane cubic curve, and since the deficiency of the

plane cubic is unity, so also is that of the plane section; the

surface, therefore, possesses a double curve of the second order,

which must be a conic, since, if it were a pair of non-intersecting

straight lines, the surface would be ruled}.

To each of the five common points of the cubic curves, the

base-points of the representation, there corresponds a line on the

surface
;

to the points of such a line correspond the points

indefinitely near to its corresponding base-point; hence these

five lines cannot intersect.

* Otherwise p=oo , <r= oo would give a point of the surface.

f This correspondence is taken by Clebsch as the starting point of his investi-

gation of the surface, see Crelle's Journal, 1868.

J For in this case the line drawn through any point P of the surface to meet

these two lines would meet the surface in five points and therefore lie wholly on

the surface.
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If a curve in the plane passes through the five base-points

respectively Oj . . . a5 times, its image on the surface meets the five

lines i . . . Of5 times respectively. Let n be the order of any plane
curve and N the order of its image on the surface, then since the

image of any plane section of the surface is a cubic through the

base-points, and since to each point of intersection of the plane
curves (not a base-point) there corresponds a point of intersection

of their images, we obtain the equation

N = 3n - 2a.

This equation enables us to determine the curves of different

orders which can exist on the surface.

If the curve considered on the surface is a line, JV
r= 1, hence

l = 3n 2 a,

but each a is either unity or zero, so that the following cases are

possible :

w = l, 2a = 2; n = 2, 2a=5.

In the first case the image of a line on the surface is a line

joining two base-points ;
this gives ten lines on the surface. In

the second case the image is the conic through the base-points.

There are, therefore, sixteen and only sixteen lines on the

surface.

Each of the sixteen lines is seen to intersect five others,

viz. those with which it is paired in the five cones respectively.

These five lines do not intersect, as is seen by taking as the image
of the first line the conic through the five base-points. It is easy
to see, from consideration of the images of the sixteen lines, that

they form forty pairs of intersecting lines and forty pairs of

twisted quadrilaterals.

25. Conies on the surface.

If in the previous equation we have N=2, we obtain a conic

on the surface. Now since none of the or; can be greater than 2,

n = 4 would give a plane quartic with five nodes, so that this case

must be rejected. Similarly n = 3, giving Sa = 7, requires that

at least two of the f should be greater than unity, giving a

plane cubic with two nodes
;
hence the only cases which can

arise are :

(i) n = 2, one $ equal to zero, the remainder equal to unity ;

(ii) n = 1, one 0^ equal to unity, the remainder equal to zero.
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Hence the image of a conic on the surface is either a conic

through four base-points or a line through one base-point.
This gives the ten varieties of conies on the surface previously

considered. The two conies in a tangent plane of a cone V cor-

respond to a conic through four base-points and a line through the

remaining base-point.

The circumstances of intersection of these various conies are

easily deducible from this mode of representation.

The double curve.

The double conic is the only plane section of the surface whose

points are not uniquely represented on the plane ;
its image is

a cubic of the family 2cti/;
= 0. The line p whose image is the

conic c2 through the base-points meets the double curve in a point

Q which has two images, one P' on c
2 and the other P not on c2 .

Every plane section through p meets the surface in a residual

cubic through Q; the image of this cubic is a line through P,

which forms with c
2 the image ofp and the residual cubic. Hence

to the cubic in plane sections through p there corresponds the

pencil of lines through P.

26. Cubic curves on the surface.

Any plane through one of the sixteen lines meets the surface

also in a plane cubic whose image is seen to be either a line

through P, or a conic through three base-points, or a cubic

through four base-points.

To find the twisted cubics on the surface we again use the

equation

N=3n-Za;
since none of the sixteen lines can meet such a cubic in more

than two points none of the $ can be greater than two
; hence, if

N=S, n is at most equal to four, which would require that four

of the c/i should be equal to two, thus giving a plane quartic with

four nodes. Hence the only cases are :

(i) n = 3, one a
f equal to two, the remaining o^ equal to unity ;

(ii) n 2, three 0; equal to unity, the remaining t

-

equal to zero
;

(iii) n = 1
,
each at zero.

This gives sixteen sets of oo 2 twisted cubics on the surface;
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viz. five in the first system, ten in the second and one in the

third, each set consisting of oo 2 cubics.

Two cubics of the same system meet once, cubics of the first

and third systems meet three times, cubics of the second and third

systems meet twice.

27. Quintic and sextic curves on the surface.

By consideration of the equation N=3n 2,0. we obtain the

curves of various orders on the surface. A quadric through
a twisted cubic of the first system meets the surface also in a

quintic curve whose image (a curve w = 3, Sa = 1 + 1 + 1 + 1) has

deficiency unity ;
there are co 5 such systems of quintics ;

we
denote them by A. The cubics of the second and third systems

similarly give rise to systems .of quintics, B and C respectively;

their images

(n = 4, Sa = 2 + 2 + 1 + 1 + 1) and (n = 5, 2a = 2 + 2 + 2 + 2 + 2)

are of deficiency unity.

There are also three types of oo 4

quintics, A', B' and C'*,

such that there is one cubic surface which contains a member
of A', a conic of the surface and also a member of A

;
so also

for the systems B' and C'. A system D of oo 4

quintics exists

such that one cubic surface can be determined to contain a

quintic of this system and also two non-intersecting lines of the

surface.

One cubic surface exists which contains any sextic curve on the

quartic surface
;

it will meet the surface in another sextic. We
obtain three varieties of sexticsf, viz. :

oo 5 sextics lying in pairs on the cubic surface whose images
have deficiency zero,

x 6 sextics lying in pairs on the cubic surface whose images
have deficiency unity,

oc 7 sextics lying in pairs on the cubic surface whose images
have deficiency two.

* Their images are respectively given by

7i= 4, 2a= 3 + l + l + l + l
; rc= 3, Sa= 2 + l + l

;
n= 2, Sa= l.

t Their images are

n= 2, So = 0; n= 3, Sa=l + l + l ; n= 4, Sa=
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28. Quartic curves on the surface.

Assuming the existence of a twisted quartic curve on the

surface, an infinite number of quadrics will pass through it if it

is of the first species and one quadric if it is of the second species ;

thus at least one other twisted quartic exists on the surface.

Each quartic on the surface gives rise to an image and since the

order of the image of the complete curve of intersection of the

surface and any quadric is six *, the sum of the orders of the images
of the two quartics is also six

;
therefore the image of a twisted

quartic is of the order 2, 3 or 4.

Since no af can be greater than two/the equation 4 = 3n 2

allows of the following solutions :

(1) n = 2, two a-i equal to unity, the rest equal to zero
;

(2) n = 4, three o^ equal to two, two at equal to unity ;

(3) n = 3, three af equal to unity, one o^ equal to two, one at
-

equal to zero
;

(4) n = 3, each a^ equal to unity.

This gives rise to forty-one sets of twisted quartics ;
viz. from

(1) and (2) arise ten sets, (3) gives twenty, (4) gives 1. The

quartics in (1) and (2) lie in pairs on a quadric, those in (3) lie

in pairs on a quadric. The quartics (4) arise as the intersections

with the surface of the quadrics through the double conic.

Each class consists of oo 3 members except class (4) which

contains oo 4
.

In each of the first three classes the corresponding quartics

are of the second species ;
for through three points of intersection

4

(not base-points) of any two curves of the system %k{fi
= one

curve of each of the first three systems can be drawn
;
hence the

corresponding quartic curves possess a trisecant and therefore

belong to the second species. But any cubic of the fourth class

which passes through three points of intersection of two curves
4

of the system 2&;/i = must itself belong to this system and
i

therefore correspond to a plane curve
;
hence the fourth class does

not possess trisecants.

From consideration of the curves whose images belong to either of the

cases (1), (2), or (3) it is clear that two curves belonging to the same set

* Since if n and n' are the orders of the two images, 8= 3 (n + n')
- 10.
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intersect in two points, two curves on the same quadric in six points. Two
quadri-quartics on the same quadric intersect in eight points, but since their

images intersect in only four points, it is clear that they meet on the double

curve, but on different sheets of the surface, four times.

29. Class of the surface.

The class of the surface is twelve: for if a plane through a

given line touches the surface its curve of intersection with the

surface has a node at the point of contact
;
hence the corresponding

cubic curve has a node, therefore the number of tangent planes of

the surface through a given line is equal to the number of nodal

cubics of the family

subject to the two conditions Sx^aj = 0, SXi&j = ;
that is to the

number of nodal cubics of the pencil S + pS' = 0, where S = 0, S' =
are two members of the family. Now if S + pS' = has a node its

discriminant vanishes, and this discriminant is of degree twelve in

p ; hence the required class of the surface is twelve.

30. The sixteen lines of the surface.

It will now be shown that the relationship between the sixteen

lines of the surface, as regards mutual intersection, is identical with

that which exists between sixteen lines selected in a certain manner*
of the general cubic surface.

For the equation of the general cubic being

a

a'

a"

b c

b' c'

b" c"

= 0,

where a, 6, ... are linear in the variables, is equivalent to the

following :

fca" + &6" + &c!" = 0.

The last equations lead, on solving for x1 ... xt , to the equations

pXi=fi(Zi, &, &), pa=/a(fi, a, &),

* See Geiser, Ueber die Flachen vierten Grades welche eine Doppelcurve zweiten

Grades haben, Crelle, LXX.
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in which the fi are of the third degree, and the curves fi
= have

six points in common (this follows from the fact that any line

meets the cubic surface in three points, and therefore any two

members of the family S/Q/i
= have three variable points of

intersection).

We thus establish a (1, 1) correspondence between the points

of the cubic surface and those of the plane, and since such a

correspondence is already established between the plane and the

quartic surface the points of the cubic and quartic surfaces are

themselves so connected.

In the transformation expressed by the last equations there

are thus six base-points P: ... P6 ,
the first five of which we may

suppose to be base-points in the transformation connected with

the quartic surface : denoting the surfaces by C3 and (74 respectively,

to the pointsPl ...P5 there correspond in the two surfaces the lines

TTj . . . 7T5 and pl ... ps respectively ;
since the equation N = 3n ^a

holds also for the cubic surface we deduce as in the case of (74 that

to the joins of Px . . . Ps there respectively correspond the lines

X12 ...X45 in (73 ,
and In ...l45 in (74 ; finally to the conic through

P1 ... P5 there correspond the lines A6 and L6 .

Hence the sixteen lines on the two surfaces are connected as

follows: to

PI p5 ; Jw u> ;
L6

there correspond

Thus the relationship of the sixteen lines on C3 as regards
intersection is the same as that of the corresponding lines on (74 ,

being deduced in both cases from the relationship of the base-

points and lines in the plane.

Now the sixteen lines of C3 are obtained by omitting from its

twenty-seven lines, 7r6 and the ten lines which meet 7r6 ,
hence the

sixteen lines of the quartic surface are obtained by omitting from
the twenty-seven lines of a general cubic surface any one of these

lines and the ten lines which intersect it.

31. Determination of the surface by aid of two quadrics

and a given point.

The surface may be obtained by aid of any two given quadrics

and a given point, a^. For let P, P' be two points #;, x{ collinear
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with <*i and conjugate for a given quadric H, let K be the fourth

harmonic point for <%, P, P/

; then ifK is the point yt we have

.
* dH

ai xi> where Aff = Sot; ^ .

i OXi

These equations lead to

pyt^vtbH-otH, <t
= 1,2,3,4).

If now K describes the quadric Qy
= 0, we have

which may be written in the form

(2HQa
- AtfAQ)

2 = (A#)
2

{(AQ)
2 -

4Q.Q.}.

This represents a general quartic surface with a double conic

whose plane is the polar plane of $ for H
;
one of the cones of

Kummer is the tangent cone to Q whose vertex is a^.

Writing this equation, as before, in the form

4&Q - 2X (2HQa

then if X^f+ Q = W, we obtain finally an equation of the form

U* = (A#)2

{(A If)
2 - 4Qa W}.

If W is one of the four cones through the intersection of H
and Q, the last factor is a quadric touching W along two lines,

i.e. it is a cone with the same vertex: hence, the vertices of thefour

remaining cones of Kummer are those of the tetrahedron self-polar

for Q and H*.

The following result may be deduced : the five lines joining any

point P on the double conic to the vertices of the cones of Kummer
and the tangent to the double conic at P, lie on a quadric cone.

If Q and H touch, the point of contact is a node of the quartic

surface, for the equation of the latter being

&H(Q&H-H&Q) + H*Qa = 0,

if Q and H touch, their point of contact is a node of the cubic

surface Q&HH&Q = Q, and hence a node on the quartic

surface f.

*
Bobek, Ueber Flachen vierter Ord. mit einem Doppelkegelschnitte, Sitzb. d. K.

Akad. Wien, 1884.

f It is easy to see that this cubic surface is the locus of points P, P' which are

collinear with a
t
and conjugate for both Q and H.
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From the foregoing method it is seen that both P and P' lie

on the quartic surface.

When K describes a line p of one regulus belonging to Q, then

P and P' lie on a conic for which p is the polar line of at ;
when

K describes the line p' lying in the plane (p, a) and belonging to

the other regulus of Q, the points P, P' describe another conic in

this plane. We thus obtain the two sets of conies lying in the

various tangent planes to Q which pass through c^. These planes

envelop the tangent cone to Q whose vertex is c^.

Coincidence of the points P, P' occurs at the points in which

p meets the conic
;
both these points lie on Q and on If. If p

touches H it will follow that the intersections of the conic and its

polar line for a come into coincidence; hence the conic must in

this case become a pair of lines. Since four of the lines of any

regulus touch any quadric, we obtain the sixteen lines of the

surface.

Three pairs of lines belonging to one of the two classes asso-

ciated with a cone of Kummer determine the surface; for every
conic of the other class meets each of the six lines (Art. 25), hence

the oo 1

planes through the intersection of the planes of the three

pairs of lines such that each plane meets the lines in six points on

a conic will envelop the corresponding cone of Kummer, and the

surface is determined.

Assuming the six lines to have general positions, the number
of constants involved is twenty-one* (Art. 22).

The quadric Q meets the surface in two quadri-quartic curves, one of

them Q=HQ is the curve of contact of the residual tangent cone drawn to

the surface from the vertex of the cone of Kummer.

32. Perspective relation with a general cubic surface.

It has been seen (Art. 23) that a (1, 1) correspondence can be

established between a quartic surface with a nodal conic and a

plane.

Two methodsf have been given of establishing a (1, 1) per-

spective correspondence between the points of a general cubic

surface and the quartic surface. Two points x, x' are collinear

*
Weiler, Ueber Fldchen vierter Ord. mil Doppel- und mit Cuspidal-Kegelschnitten,

Scblomilch Zeitsch. xxx.

f Geiser, I.e.; Cremona.

J. Q. S. 4



50 QUARTIC SURFACES WITH A DOUBLE CONIC [CH. Ill

4

with A t
* and conjugate for the quadric ^^ = if the coordinates

i

are connected by the equations

pXi
= X^Xi, pX2

= X2 X4', pX3
= 0)3X4,

px,
= - (x^ + x2

'* + x3'*).

Taking any cubic surface through the curve

fl/4 SL/I "T" *^2 "T~ ^3 ^~ ^

which does not pass through A t ,
and whose equation is therefore

of the form
#4U + (^ + x2

z + xs
2

) L = Q,

where U= is any quadric and L = any plane ;
on transformation

Xj
2 + x2

* + x3
* becomes a?/

2
(a;/

8 + a?a

'a + a?3

'2
),
L = becomes a quadric

through the conic

and U=0 becomes a quartic surface having this conic as double

curve
; omitting the factor a?/

2 + x2
/z + x3

'z we therefore obtain a

quartic surface with the double conic

a-/ = a? + xz
z + x3

'2 = 0.

The second transformation is the following : the points x, x' are

connected by the equations

xl : x2 : x3 : x = ^ (x) : S2 (x') : Ss (x') : S4 (x
f

),

where the quadrics Si (x) = all pass through a given conic and

touch each other at a given point on this conic.

By linear combination it is seen that this is equivalent to the

transformation

SO-^ 1^2 wg *//^ wj w/j tv2 "'i ^3 ^2 ^4
~
^3 3

from which we deduce that

S0\ t*'2 3 4 \ 2 " 2 * 2 *^3 * ^1 *^4 i" ^yT*

In this case the centre of projection, the point J. 4 ,
lies on the

conic. This transformation is of the (1, 1) character, the exceptions

being that to the point A t for x there corresponds the plane a?/, to

the point A t for x' there corresponds the plane x2 ,
and to any

point on x2 ,
which is not also on the conic x2

=
a?ja;4 + a;3

2 = 0, there

corresponds the same point A t in the field of x'.

To the planes in the field of x there correspond quadrics which

pass through the fixed conic in the field of x', but to a plane
*

Here, and elsewhere, the vertices of the tetrahedron of reference will be

denoted by A^ ... A t .
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through A t in one field there corresponds the same plane in the

other field.

Having given a general cubic surface / in the field of x which

contains the conic x2
= xl a;4 + a;<?

= Q, it is seen as before that f is

projected into a general quartic surface F with the nodal conic

The section of/by xz consists of the given conic together with

a line a to which the point A 4 corresponds in the field of x. Let

the ten lines of f which meet a be denoted by

(bi, Ci), (b*, Ca), (b3 , Cs), (64 , C4 ), (65 , C8 ).

Consider the plane through 6j and c^ it corresponds to a

quadric through the double conic in the field of x' which therefore

meets F in a twisted quartic which accordingly must consist of two

conies, each passing through A 4 .

Hence to the sections of / by the planes (A i} 6j), (A 4 , d)

correspond four conies through A 4 ;
hence we have twenty conies

through A. But if d is a line of /which meets the conic

wy -
iX/j tX/4 ~]~ wjj

*"*~
\/j

then to the section of /by the plane (A i} d) there corresponds the

section of F by the same plane which therefore meets F in a line

and a cubic, since all the sections through A 4 consisting of two

conies are given by the twenty preceding conies.

Since there are sixteen lines such as d, it follows that the

sixteen lines of the quartic surface are thus projectively derived

from the sixteen lines of /
The ten sets of conies on F are the images of the conies of/ in

the ten pencils of planes whose axes are the lines bl ... c5 .

33. Protective formation of the surface.

Bobek* has developed a method of treatment of the surface depending

upon its formation from two pencils of quadrics projectively related. If

\ab+ ad+ 7=0, pac+ ae U= 0,

represent two pencils of quadrics each passing through a fixed conic (a, U)
and through two other fixed conies respectively, then any two members of

these pencils intersect in another conic whose plane is

this plane passes through the fixed point 6 = c=
If the pencils are connected by a given lineo-linear relation between X and

/x,

it is clear that the locus of intersection of corresponding members of the two

* Loc. cit.

42
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pencils is a quartic surface with (a, U) as double conic. Moreover the above

planes will in this case touch a cone whose vertex is the aforesaid fixed point,

and the conies in these planes will form the conies on the quartic surface.

Taking the equation of the quartic surface in the form

a

the foregoing two pencils are

\ab= [7

with the relation X/LI=!.

Any line through the point b=c=d=0, the vertex of the cone of Kummer

selected, meets the first pencil of quadrics in pairs of points in involution
;
if

U=aK+V, the double points of this involution are obtained from the

equation
F=a2,

which is also the locus of double points of the involution determined on lines

through the vertex by quadrics of the second pencil. It is the surface H
previously given.

The surface Q appears as the locus of the line of intersection of the polar

planes of a pair of corresponding quadrics for the vertex of the given cone.

34. Connection of properties of the surface with those

of plane quartics.

Zeuthen* has investigated the plane quartic which is the

section of the tangent cone to the surface from any point of the

double conic, and showed its relationship to the surface.

Taking the equation of the surface as being Uz + zzW= we

may assume any point P on the double conic as that through
which the coordinate planes x, y, z pass, and take the polar plane

of P for W as the fourth coordinate plane t =
;

let the tangent

plane to U at P be the plane y = 0.

The equation of the surface then becomes

Writing this in the form

t
2

(bz
z + at/

2

) + Ztatyy + a^ + b$z*
=

0,

the tangent cone from P to the surface has as its equation

(f> (af + bz2
) + a^ = 0.

This is a general quartic cone, having the planes ay
2

-1- bz* = 0,

the tangent planes to the surface at P, as bitangent planes.

Hence any plane quartic may be regarded as the "projection"
of a nodal quartic surface from any point on the double conic.

* Sulle superficie di quarto ordine con cornea doppia, Ann. di Mat. n. xiv. (1887).
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Now having given any pair of bitangents ay
2 + bz2 = of a

quartic curve, the equation of the curve may be written in the

form

(ay* + bz2

) aft = V2

in five ways*, giving a group of six bitangents, and in consequence
the equation of the surface may be written in the form

a
(<i/r + yt)

2 + bz2
(a/3 + t

2

)
= 0,

giving five pairs of planes a, /9 through P which meet the surface

in a pair of conies. They are the tangent planes from P to the

five cones of Kummer, and bitangent planes of the tangent cone

of vertex P.

There remain sixteen of the twenty-eight bitangents of the

quartic curve, giving rise to sixteen bitangent planes of the cone
;

each plane meets the surface in a quartic curve having four double

points (of which one is at P, and another is the second intersection

of the plane with the nodal conic). This curve will consist of

a line and a cubic curve having a node at P
;
thus the existence

of the sixteen lines of the surface becomes manifest.

If again three coordinate planes be taken as passing through
the vertex of one of the cones of Kummer, the plane x being that

which does not pass through the preceding point P, the equation
of the surface may be taken to be

(<f> + xLJ = z* (yt + x2

).

The equation of the preceding tangent cone of vertex P is then

yt(z
2 -L2

)
= p ........................ (1).

Now the cone

p
2

y(L + z)-
<

2p4>-t(L-z) = ............... (2)

touches the cone (1) along four lines, and the plane

p
2

y + 2px -t =

meets the cone (2) in a conic which is seen, by elimination of p,

to lie on the quartic surface.

Regarding the equations (1) and (2) as representing curves, it

is seen that the four-point-contact conies (2) are the projections

from P of a system of conies of the surface.

The other system connected with this cone of Kummer gives rise to the

four-poiut-contact conies

Theorems relating to the four-point-contact conies of a quartic

curve are thus connected with theorems concerning this quartic
* See Salmon, Higher Plane Curves.
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surface; e.g. take the theorem: the eight points of contact with the

quartic of any two conies of such a system lie on one conic*.

We obtain the theorem for the quartic surface : the two

pairs of principal tangents at a point P of the double conic and

the points of contact with the surface of the two planes through P
which touch the same cone of Kummer, lie on a quadric cone^.

Again in Art. 31 it was seen that the intersection of the

tangent planes at P to the surface and the vertices of the five

cones of Kummer lie on a quadric cone whose vertex is P
;
hence

we derive the result for quartic curves that the six intersections

of pairs of bitangents of a group lie on a conic.

It has been seen that the group of six pairs of bitangents
determined by the tangent planes to the surface at P gives four-

point-contact conies which are the projections from P of the conies

of the surface. It will now be shown that the other four-point-

contact conies are projections of cubics on the surface.

Refer the surface to coordinate planes consisting of the plane of

the double conic and three tangent planes of a cone of Kummer of

which one, x, contains two lines of the quartic surface; the equation
of the surface is then of the form

{AB + z(y-t) + xLY = z- {x
2 + y

z + t
2 -

2xy
- 2xt - 2yt}.

The equation of the quartic tangent cone whose vertex is P is then

{y (z + L) + 1 (z
- L) + AB} 2 = kABt (z

-
L) ;

of which a four-line-contact cone is

p*At + p {y (z + L) + 1 (z
- L) + AB} + B (z

- L) = 0.

This meets the cubic surface

ZAztp = (L-z) {x (L + z} -f AB}
in the line L + z=Q, pt + B = 0,

which passes through P, and also in a quintic curve having a triple

point at P and which lies on the quartic surface.

Hence the preceding quadric cone also meets the quartic

surface in a cubic curve passing through P.

* For the quartic (z
2 - L2

) \fs
=

<f>

2 may be written

(z
2 - i2

) (XV + 2\<f> + 22 - L2
)
=

(\<f> +z
n-- L2

)
2

.

The points of contact are given as the intersections of the conies

moreover the conic X/u^ + (X + p.) <f> + z3 - L2= passes through them and also through
the four points similarly obtained on replacing X by p.

t The principal tangents being z2 -L2=0 = 0, and taking ij/syt and X= oo,

X= successively.
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35. Segre's method of projection in four-dimensional

space.

Segre has shown* that if F=Q, <I> = are two quadratic

manifolds or varieties in flat space of four dimensions St ,
the

projection upon any hyperplane S3 of their intersection F, is a

quartic surface with a double conic. For if A, or x', be any point
of $4 the substitution of #/ + pxi for Xi in F=0 gives the two

intersections of the line (x, x) with F. The elimination of p
between the equations

x = 0,

gives the "cone" joining A to the points of F. The intersec-

5

tion of this cone with the hyperplane S3 or S o^ = 0, gives a
i

surface in S3 represented by the equation

- (3>DF - FD3>)(F'D3> - &DF) = I onaa = 0.
i

Taking F to be/, that member of the pencil (F, <3>) which passes

through A, since f(x')= 0, we may write as the equation of the

projected surface

/f -
Df(fD<f>

-
</>!>/)

= I eta* = 0;

that is

(2/f
-
Df. DW -

(D/)
2

{(Zty)
2 - 4^'} = I * = f.

This is a quartic surface with the nodal conic

It is seen that the double conic is obtained as the intersection

off and Df, since the only cases in which the line joining A to

any point x meets F in two points are when the foregoing quadratics

in p become identical, we then have

Fx-3> x
-^Fx = 0, F'D3> - 3>'DF = 0.

These equations represent respectively the variety / through A
and its tangent hyperplane Df. Their intersection gives a quadric
cone in three dimensions which meets any variety of the pencil

*
Surfaces du quatrieme ordre a conique double, Math. Ann. xxiv. For many

details the reader is referred to this important memoir.

t Compare with Art. 31.
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(F, <l>), and therefore F, in a twisted quadri-quartic k*. This

quartic k* is projected upon S3 as a conic
; any generator of

the cone meets k* in two points P, Q ;
the tangent planes to F at

P and Q are projected into the tangent planes of the quartic

surface at a point of this conic.

Among the generators of the cone (/, Df) there are in general

four which touch k* (viz. at the points where the plane Df= 0,

D<f>
= meets F). It follows that there are four pinch-points on

the double conic.

There are in general five cones in the pencil (F, <). For if

F and 4> are not specially related to each other we may take

i

the pencil therefore contains the five cones

Ol) #3
2 + (4 - l) #4

2 + (5 - l) 5
2 = 0, etc.

If f is a cone, i.e. if A lies on one of the cones of the pencil

(F, <1>),
we have two double lines instead of a double conic. For

the hyperplane Df meets f in two planes*, the intersection of

these planes with F will consist of two conies having two common

points lying on a line through x'. These conies are projected from

x' into two intersecting double lines of the quartic surface.

Any one of the five cones of the pencil (F, <>) may be represented
4

by an equation of the form 2 dixf = 0, whence by comparison

with the general three-dimensional quadric it is seen that this

cone possesses two sets of generating planes, each generating

plane of one set meets each generating plane of the other set in

a line, the two planes therefore lie in the same hyperplane, while

two generating planes of the same set intersect only at the vertex

of the conef.

4
* For we may take the cone / to be 20f^sO, the tangent hyperplane to this

i

4

cone at a point x' is Zo^s/scO; interpreting these equations to represent a
i

quadric and its tangent plane at x', since the plane meets the quadric in two lines,

the hyperplane Df will meet /in two planes whose intersection contains x'.

t It will be seen hereafter (see Art. 49), that the pencil (F, <t>) may contain, in

certain cases, a cone of the second species, i.e. a cone whose equation contains only

three variables, e.g. xl ,
x2 , x3 ; in this case the generating planes consist of a simply

infinite set of planes passing through the line xi = xz=xa
= 0.
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Each generating plane of a cone meets F in a conic; con-

versely each conic, c
2
,
of F lies in a generating plane of a cone of the

pencil (F, <1>); for the variety of a pencil which passes through any

point P in the plane of c2 and not upon c
2
,
must contain the plane

entirely, and a variety which contains a plane is necessarily a

cone*.

Hence F contains oo 1 conies belonging to five sets, each set con-

taining two classes (corresponding to the two systems of generating

planes of a cone).

The hyperplane through any generating plane a of a cone and A
meets the cone in another generating plane a'

;
for taking the cone

as x^xz #3#4
= 0, and the generating plane as

#! fJLX3
=

[JLXv #4
= 0,

the hyperplane is

X4 X1

' -
iXs = ...... 1 .

By comparison with the three-dimensional quadric it follows

that this hyperplane also contains another generating plane of

belonging to the other system. Since a and
'

belong to the

same hyperplane (through A), it follows that they are projected
from A into the same plane @ of S3 ,

and in /3 there lie two conies

of the quartic surface. The envelope of /? is seen from (1) to

be a quadric cone whose vertex is the projection of the vertex

(00001). Thus we regain the pair of conies in each tangent

plane of a cone of Kummer; the points of intersection of such

a pair lying on the generator of the cone along which the plane
touches the cone.

Other leading properties of the quartic surface considered are

readily obtained by the method of Segre. We obtain the sixteen

lines of the surface as follows :

The surface F is determined by the equations

by a change of the coordinate system these equations may be

replaced by
X1X2-X3Z4

= ..................... (a)

* Since its equation is expressible in the form xiA +x2B= Q, if %i = x
z
= is the

given plane.
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Every plane Xt
= \XZ , X4

= \X2 (a generating plane of (a)),

will meet (6) in a conic, which reduces to two lines, if

(a&Xlt X2 ,
X3> Xrf

is reduced to a perfect square ;
this leads to a biquadratic in X.

Hence four generating planes of this system meet T in two

lines, and similarly four generating planes of the other system
meet F in two lines

;
this gives sixteen lines on T, and therefore,

by projection, on the nodal quartic surface.

It follows also that eight tangent planes of each cone of

Kummer contain a pair of these lines.

Each of the sixteen lines p on F lies on each of the five cones

of the system ;
the plane through p and a vertex of one of these

cones is a generating plane of that cone and therefore meets F
in another line, hence each of the sixteen lines is met by five

others.

Cubics and Quartics on the surface.

Any hyperplane through one of the sixteen lines meets F in

a cubic curve, and since there are oo -

hyperplanes through any line

we thus obtain sixteen sets of oo 2 cubic curves on the surface.

In $4 there are oo 4

hyperplanes and each of them meets F
in a quadri-quartic, any two of these quadri-quartics intersect in

four points, lying in the plane common to the two hyperplanes ;

through these four points there pass oo l

quadri-quartics deter-

mined by the pencil of hyperplanes through the plane of the

four points.

Since four non-coplanar points determine one hyperplane, ifc

follows that one quadri-quartic of the surface passes through any
four non-coplanar points of a nodal quartic surface.

Any hyperplane 2=0 cuts the quadri-quartic k* whose projection

is the double conic, in four points lying in the plane of intersection

of this hyperplane with Df, the tangent hyperplane at A.

Let Ql . . . Q4 be these four points and a. their plane, and Qi ... Q4

'

the points in which AQ, etc. again meet k*. Let /3 be the polar

plane of A for the system of quadrics through k* and p the line

(a/3); then the planes (pA), a, /3, (pQi) are harmonic and the plane

(pQi) must pass through Q2

'

...Q4 ',

i.e. the points Qi ...Q4

'

are

coplanar. Hence we have oo 1

quadri-quartics, arising from the

hyperplanes 2 + XD/= 0, through Q^ ... Q4 ,
and oo 1

quadri-quartics

through Qi ...Qi. It follows on projection that each of the oo 4
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quadri-quartics of the projected surface cuts the double conic in four

points of which three determine the fourth; and through four such

points there pass oo 1

quadri-quartics on one sheet of the surface and

oo 1

quadri-quartics on the other sheet of the surface.

Among the oo 4

hyperplanes of St ,
oo 3

pass through A ; these

hyperplanes meet F in quadri-quartics which are projected into

plane sections of the projected surface.

Quadrics inscribed in the surface.

Let ^=0 be any variety of the pencil (F, <I>); its intersection

with the polar hyperplane of A for F is given by DF= 0, F=Q,
and is a quadric A; the intersection of F with A is a quadri-

quartic c
4
. Let X be any point of c4

;
the tangent plane to

F at X is given by the equations

and the tangent plane to A at X is given by

each of these tangent planes lies in the hyperplane 2Jff r = 0,
OXi

which passes through A since X is a point on DF=0. Hence

the tangent planes to F and to A at X lie in the same hyper-

plane through A, they are therefore projected into the same

plane of S3 .

Thus the projection of A touches the projection of F along
a quadri-quartic, the projection of c

4
.

Now F is any member of the pencil (F, <3>),
hence oo *

quadrics
touch the quartic surface along quadri-quartic curves.

36. Fundamental inversions.

As in the case of the quadric in three dimensions where the

points of contact of the tangent lines to a quadric < which pass

through a point lie on a plane, so the points of contact of tangents

passing through a point of $4 lie on a hyperplane, the polar hyper-

plane of the point. If C is the vertex of a cone of the pencil

(F, 4>), the polar hyperplane of C is the same for each member of

the pencil, e.g. if the system is determined by the two equations

2^ = 0, 20^ = 0,
i i

the polar hyperplane of the point (10000) is x = 0, and so on.
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Let a be the polar hyperplane of G, A the centre of projection,

and f the member of the pencil which passes through A. Then

any plane through the line (C, A) meets / in a conic passing

through A : this conic is met by a = in two points B, B' whose

join is the polar line of C for this conic; so that if any line

through C meets the conic in two points Q, Q' then, by elementary

geometry, {A, BB'QQ'} = - 1.

Now there are two generators of the cone whose vertex is G
which lie in the plane of this conic

;
each of these generators meets

the conic in two points of F, since the points lie both on /=
and on the cone, and the conic is projected from A into a line

of $3 , hence denoting by a the quadric which is the projection of

the quadric a = 0, /= 0, and the projection of C by C" (which is the

vertex of a cone of Kummer), it follows that any line through C"

meets a- in two points Bl} BI and the projected quartic surface in

two pairs of points Qlt Q/; Rlt jR/ such that both Ql} Q/ and

jRi, RI are harmonic with regard to Bl} B^.

Hence C' is said to be a centre of self-inversion of the projected

quartic surface*.

37. Plane representation of the surface.

To represent F, and therefore the projection of F, upon a plane,

we take the oo 2

planes through a line p of F, any one of these

planes meets any two varieties of the pencil (F, <) in p and two

other lines respectively, the intersection, Q, of these latter lines lies

on F
;
hence the plane through p meets F in one other point, viz. Q.

Moreover it meets any given plane K in one point Q', thus there

arises a (1, 1) correspondence between the points of F and K.

The five lines of F which meet p have as images the five

base-points; if q be one of the ten lines which do not meet p,

the hyperplane through p and q meets K in a line, and since this

hyperplane meets F in two non-intersecting lines p and q, it must

also meet it in two other lines which meet both p and q. Hence

the image of q is a line passing through two base-points.

If xl
= 0, #2

= are tangent hyperplanes to F at any two

points of p, and #3
= 0, xt

= the tangent hyperplanes to <$> at

these points, the tangent plane to F at any point of p is repre-

sented by
xl + \x2

= 0, x3 + X#4
= 0.

* The quadric a is the quadric H of Art. 31.
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As \ varies, the intersection of this plane with the given plane
K is clearly a conic

;
hence the points of T contiguous to p are

represented by the points of a conic which passes through the five

base-points, i.e. the image ofp is this conic.

Again the oo 2

hyperplanes through p meet F in oo 2 cubics

and K in oo 2
lines, i.e. the lines of K are the images of oo 2 cubics

of T.

Any hyperplane meets F in a quadri-quartic and also meets

each of the five lines which meet p, moreover it meets any cubic

of F in three points, hence the image of the section of F by this

hyperplane is such that it is met by any line of K in three points ;

it is therefore a cubic which passes through the five base-points.

The oo 3

hyperplanes through A which give rise to the plane
sections of the projected surface (Art. 35) meet F in quadri-quartics

such that through any three points of F there passes one such

quadri-quartic, hence among the oo 4 cubics of K through the

base-points there are oo 3 cubics forming a net or linear set
; these

are the images of the plane sections of the projected surface.



CHAPTER IV

QUARTIC SURFACES WITH A NODAL CONIC AND
ALSO ISOLATED NODES

38. A quartic surface with a nodal conic may have in addition

one or more isolated nodes
;
such a node is the vertex of a cone of

Hummer, for taking the node as a vertex of the tetrahedron of

reference, the equation of the surface is

where A = 0, U are cones whose vertex is the node, and L =
is a plane through the node; we may write this equation

hence the node is the vertex of a cone of Kummer.

This result may also be seen from the fact that any tangent plane drawn

to the surface from the node meets the surface in a quartic curve with four

nodes, and if the surface is not ruled this section must consist of two conies.

The sextic tangent cone whose vertex is the node D, here

consists of the cone V of Kummer of vertex D and the cone U
(counted twice); the latter cone meets the surface in the double

conic and in the four lines given by A = U= 0.

The surface contains twelve lines; for if the foregoing four lines

meet the double conic in P^ ...P4 , through the line DP we can draw

two tangent planes to V each of which meets the quartic surface

in two conies, and in each plane there is therefore one other line

in addition to DP^. similarly for the tangent planes drawn to

V through the lines DPZ ,
DP3 ,

DP4 . Hence we have in all

4 + 8=12 lines on the surface.

There are only three cones of Kummer in addition to V, for if

we take the vertices of the triangle self-polar for the sections of
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U and V by #4 as vertices of reference, the equation of the surface

may be written

(ax? + bzj + ex? + 2xi (#! + /&c2 + 7#3) + 2X#4
2

j

2

= 4#4
2

[x* (1 + Xa) + x? (1 + X6) -f x? (1 + Xc)

and the values of X for which the quadric on the right is a cone

are given by the cubic equation

1+Xa 1+X6 1+Xc'

If there is a second node D', then if the cone V contains D'

it will have a double edge and therefore consist of two planes, and

the equation of the surface is

If V does not contain D' then U must contain it, and since the

line DD' meets the double conic it therefore lies on the surface.

The equation of the surface may be written in either of the forms

where D, the vertex of V, lies upon U=0, and D', the vertex of V,
lies upon U' = 0.

In this case two of the lines DP . . . DP must coincide, since otherwise

jy could not be a double point of the curve of intersection of U and the

quartic surface, consisting of four lines. In fact the tangent plane at any

point of DD meets the surface in a section which contains four nodes lying

on DD, hence the section consists of the line DD' taken doubly together with

a conic. The tangent plane at any point of DD' is the same since otherwise

this line would be a double line of the surface. The line is torsal.

If there are three nodes the section of the surface through
these nodes contains five double points and therefore consists of two

lines and a conic
;
one line joining a pair of nodes does not lie on

the surface, whose equation may be written in either of the forms

(w
2 + V-pqf = 4w2

F, (V-pq- w2
)
2 = 4>w2

pg,

where the vertex of Flies upon w* pq = 0. The lines joining the

vertex of V to the two nodes each meet the double curve, hence

the plane through these two lines meets the surface in each of

them doubly.

If there is a fourth node two lines joining a pair of nodes do

not lie on the surface, and four lines joining pairs of nodes lie on

the surface, whose equation is therefore

(w
2 + rs pqf = 4wVs.
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If the nodes on the lines (p, q] and (r, )
are DI, Z)2 ,

and D3 ,
D it is clear

that the lines DiD3 , D^D^ D2D3 , D^D^ lie on the surface.

There cannot be more than four nodes, for if D be the node

which is the vertex of a cone V, then V cannot contain more than

one other node, hence the remaining nodes must lie on U, and it

was seen that each node on U causes the coincidence of a pair of

the lines _DPa . . . DP4 : hence U cannot contain more than two

nodes of the quartic surface apart from its vertex D*.

39. Special positions of the base-points.

It will now be shown that singularities of the surface arise

from special relative positions of the base-points. If a node

exists, any line through it meets the surface in two points apart

from the node, hence any two cubic curves ft which correspond

to plane sections of the surface through the node meet in two

variable points only.

In order that this may be possible one of the two following cases

must arise : Either, in the lirst case, these cubics must have a

common node and intersect in three other fixed points, e.g. if

pa;3
=

f,Zr, + 23 , p#4
=

s LI + 24 ,

where the Li are quadratic in
, 2 and the 2f cubic in 15 2 . The

point (1000) will then be a node to which the point
= f2

= will

correspond. The system of cubic curves will touch at the point
=

2
=

0, so that two base-points coincide. Thus the coincidence

of two base-points leads to a node on the quartic surface.

The four lines through the node correspond to the following :

the point consecutive to ^ = 2
= upon A = 0, and the joins of

this point to the three other base-points.

Or, in the second case, three base-points are collinear, and we

may take as equations of Clebsch

where u z
= Q,ut

= 0, ut
= are conies having two common points,

which also lie upon yi
= 0. The base-points are then given by

yj
= a = and the two other common points of the system.

* These surfaces have been investigated by Korndorfer, Die Abbildung einer

Flache vierter Ord., etc., Math. Ann. i. and n.
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The point (1000) is seen to be a node, for if

be any line through it, the points in which this line meets the

surface have as their images the intersections of the conies

% Us tf

A~B~ C'

which are two in number, apart from the two base-points.

Hence if three base-points are collinear the surface has a node.

The image of the node is here the line a = 0.

Two nodes on the surface may arise in three ways : first if

the base-points are doubly collinear, e.g. when the join of the

base-points 1, 5 meets the join of the base-points 2, 4 in the

point 3; secondly when two base-points are coincident and three

are collinear
; thirdly if there is a double coincidence of two base-

points.

Considering the first case, let a = 0, /3
= be the lines (1, 5)

and (2, 4) ;
the equations of Clebsch are here

px1
=

CLU, px2
=

ajSL-L, px3
= a/3L2 , pxt

=
/9-y,

where u = 0, v = 0, are conies through two base-points ;
L

and L2
= are any lines.

Thus as in the case of one node the points A l} A 4 are nodes, the

line @ corresponds to A and a to J. 4 ; to the point a = /3
= corre-

sponds the line A^A 4 which lies on the surface.

There are nine lines on the surface whose images are the base-

points and the lines 12, 45, 14, 25
;
those which correspond to the

base-points 1, 3, 5 pass through one node and those to 2, 3, 4

through the other node.

There are three sets of pairs of conies : first those which have as

their images the pencils of lines whose centres are the base-points
1 and 5, these conies pass through a node of the surface which

is the vertex of a cone of Kummer; secondly those correspond-

ing to the pencils of lines whose centres are 2 and 4, these

conies also pass through a node which is the vertex of a cone

of Kummer : lastly those which are represented by the conies

through the base-points 1, 2, 4, 5 and the pencil of lines whose

centre is 3.

j. Q. s 5
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That there are only three cones of Kummer may also be seen thus :

referring to the equation of Art. 38 ;
if D is the vertex of the cone

and D' the vertex of

.r
2 (l+Xa)+y

2

the line DD' is

g(l+Xc)

and since DD' meets the double conic we have

aa2
6/S

2
cy

2 _
(l+Xa)

2
+
(1+X6)

2 +
(l+Xc)

2 '

which is the condition that the cubic equation for X should have a pair

of equal roots.

40. When three base-points are collinear and two are coin-

cident the appropriate equations are

where the Li are quadratic and 8 cubic in 2 > &
Here the node 6f corresponds to the line x

= 0, and the node

a* to the point 2
=

3
= 0. Thus the join of the nodes does not lie

on the surface. The number of lines of the surface is easily seen

to be eight. There are three cones of Kummer, as is seen by

forming the discriminant of

the surface being Uz =
4<w*pq.

When a coincidence of two base-points occurs twice we obtain

the same surface as in the first case, for, as before, if a and b are

the points at which coincidence occurs, each of these points will

correspond to a node of the surface, and the line joining them is

the image of a line on the surface.

The case of three nodes arises when the join of two consecutive

base-points, say 1 and 5, passes through another base-point, say 3,

the points 2 and 4 being coincident. The three nodes correspond
to the line (1, 5) and to the points 1 and 2. There are six lines

on the surface.

When the join of the (coincident) points 2 and 4 passes

through 3 we have four nodes. The only lines on the surface are

the four which respectively correspond to the point 3, the line 12

and the base-points consecutive to 1 and 2.
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41. Coincidence of more than two base-points.

When three of the cubics have a common node and a common

tangent thereat, e.g. if

ft =&*L t + foPt (i-1, 2, 3),

where the Li} Pi} a, 0, 7 represent lines through the point

fc-1,-0;

this common node counts as five intersections of any two of these

three cubics. If S be any cubic passing through the points (g3 , ),

(&> 7) an(l having a as its tangent at ( 15 2), the system of cubics

intersect in three consecutive points at (&, 2) and pass through
two other fixed points. Here, therefore, three base-points are

coincident.

Among the curves of the system appear (i) (3<yP = 0, where P
is a line through the point |i

= |2
= 0; and (ii) a (j;3 ci + cfiy)

= 0.

Each of these curves is intersected by any curve ft in one point only

apart from the base-points ;
hence the node is biplanar with the

planes (say a?2 ,
#3) corresponding to (i) and (ii) as tangent planes

thereat.

When the nodal cubics ft have three consecutive points

common at ( 1( f2 ) on the branch whose tangent is a, and one

other common point, they are of the form

&*(piJ3 + a) + 7 (#/3
2 + r^p + sfa) = ;

where we have pt/qi the same for each cubic.

Hence the preceding cubic (i) is ayP = and the planes a.2 ,
x3

intersect in the line of the surface given by a = 0: the binode is

therefore of the second species.

If S = is a cubic through the three consecutive points and
3

the additional point, the cubics S + 2 \ifi
= intersect in four

consecutive points at (^, 2); here, therefore, four base-points are

coincident.

Lastly when the nodal cubics fi have four consecutive points

common at ( 1( 2) on the branch whose tangent is a, they are of

the form

,a (pi/3 + a) + qip + n/3*a + Si a2 + fca = 0,

with the conditions, qt
= Api} ri = B+ Cpi.

52
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Hence the curve (i) is a2
P, and the plane x2 therefore touches

the quartic surface along the line (x2 ,
x3).

The binode is of the

.3

third species. The cubics S + 2 \fi = have five consecutive
i

points in common, and the base-points all coincide.

The equation of a surface with a binode is of the form

F 2 - 2 YX^XI + x?x2x3
= 0,

where F= is a quadric cone whose vertex is the binode.

From consideration of the base-points the surface is seen to

contain eight lines.

If there is a further node Q, then as in Art. 38, the line joining

Q to the biplanar node P lies in the surface, and hence in one of

the planes #2 ,
x3 , say x2 ;

also as before the lines of intersection of

a?2 and V coincide, and hence xz touches both V and the surface

along the line PQ.

Conversely if x2 touches the surface along a line the surface

has a further node on that line *.

42. Uniplanar node.

When four base-points coincide in one point A, and the fifth

base-point lies on the tangent at A to the cubics of the system,
we have a uniplanar node. For let S be any particular cubic of

the system and /3 the tangent to S at A, then any cubic of the

system is represented by

where P,- = is a pair of lines through A.

The line ft
= corresponds to the node

;
the equations

/^ = /9(&/3 + Pi), (
= 1,2,3)

represent plane sections through the node.

One derivable equation is px = j&a, and the line a? = 0, #i = 0,

meets the surface in one point only; this holds only for the plane

x=0, hence the node is uniplanar, with # = as its tangent plane.

43. Ruled surfaces.

If all the cubic curves of the system have a common node and

one other common point, three of the base-points become indeter-

minate, viz. three of them come into coincidence with the fourth

*
If x, also touches V we have a second node.
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in an indeterminate manner. The equations of Clebsch are of

the form

where LI, Mi are quadratic in 1} 2 and where we must assume two

linear relations between the Li to secure that the four cubics have

all the four consecutive points in common. We may therefore

take as equivalents of these equations the following, viz.

pacj,
=

3 i , P#2
= 3^2 + Mz , pxs

= &M,, px = M4 .

It follows that to each line of the pencil 2
= Xi there corre-

sponds a line on the surface, which is therefore ruled. Since each

cubic is nodal and has therefore zero deficiency the surface must

possess a double line in addition to the double conic.

To the line x
= 0, however, there corresponds the line

x3
= x4

= 0, which is such that any plane through it meets the

surface in two lines; hence the line (#3,#4) is the double line;

through each point of the double line there pass two generators,

viz. those obtained by giving any constant value to Li/L.2 .

If the fifth base-point coincides in a definite way with the

point in which the other four base-points become coincident, the

equations of Clebsch are of the form

Hence if we join any point on the line p determined by the

equation pXi
= Li, to the corresponding point on the cubic curve

given by the equations pXi
= PiQiRi, we obtain a generator of the

surface
;
hence through each point of p, the double line, there

passes one generator of the surface.

44. Cuspidal double curve.

We now consider special cases of the quartic surface with a

nodal conic arising from peculiarities of the double curve. Taking
the surface to be x? V + U'z = 0, we obtain the two tangent planes

at any point of the double curve by writing Xi + %i for xt in

this equation and selecting the terms of the second order in

the : this gives as their equation %? V + (A/7)
2
=0, where

These planes coincide at each point of the double curve when U
is a cone of which 3^ = is a tangent plane ;

the double curve is
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then a line which is said to be bidouble (Segre); the corresponding

equation of the quartic surface being then

x?U + (xl x3 + xff = 0.

This may be written in the form

There are two triple points on the bidouble line, viz. those given by

xl
= x2

= V= 0.

The sections through this line consist of conies passing through the triple

points which in a number of cases reduce to a pair of lines. Take the plane

#2 as containing such a pair and the tangent planes to V at the triple points

as the planes x3 ,
xt ;

the equation of the surface is then

which may also be written

This shows that there are four planes through the bidouble line which

contain a pair of lines of the surface.

Again the tangent planes will coincide at each point of the

double curve for the case in which V contains the double curve :

the surface is then

which may be reduced to the form

x?xz + U 2 = 0.

The tangent planes at each point of the cuspidal double conic

also touch U and hence meet in the pole of U for the plane xl .

The plane xz is a trope.

The surface has two "close-points" G, C'
, viz. those given

by x-i
= x2

= U = 0. Taking the planes 8, 8' which touch U at

C and G' as the planes x3 ,
x4 ,

U takes the form

x3 x^ + (xl ,
#2$ a)

2
.

It is clear that the planes 8, 8' each contain four lines of the

surface, those in 8 passing through C, those in 8' passing

through C'.

45. Involutory properties: class of the surface*.

Let us take any point x in CC' and its polar plane <r for U,

<r being then the plane x4 g3 + x3 ^4
=

;
so that if X be any point

* See Bela Totossy, Ueber die Flachen vierter Ordnung mil Cuspidalkegel-

schnitt, Math. Ann. xix. (1882).
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of cr the line \Xi + Xi meets the surface in the points given by
the equation

X2#3#4 + Ux= \l-XfXz.

Denoting these points by P, P'
; Q, Q it is clear that we thus

obtain two sets of four harmonic points, viz., x, X, P, P' and

x,X,Q,Q'; hence the surface is in involutory central collineation

with itselffor any point K of CO' as centre, and with the polar plane

of K for U as plane of collineation. From consideration of a

quadric which touches the surface at P and P', it is clear that

the tangent planes at P and P' meet in a line of a. If the line

through x touches the surface, the points P, P' and X all coincide
;

hence the point of contact of any tangent line to the surface

through x lies on a plane section of the surface
; any such section

is of class six since it possesses two cusps. Now the class of

a tangent cone is equal to the class of its plane section, which is

in this case six; and the complete tangent cone from x to the

surface consists of the plane ocz ,
the plane xl taken thrice, and a

quartic cone of class six; hence six must be the class of the

tangent cone from any point to the surface
;
the surface is there-

fore of class six.

46. Cuspidal conic and additional node.

Any plane through the line CC' meets the surface in a pair of conies

touching at C and C'
;

if there exists a node D of the surface outside the

cuspidal conic, one of these conies must reduce to the lines DC, DC' which

touch the residual conic of the section by the plane (DCC'} at C and C"

Two of the lines in 8 coincide and pass through D, similarly for 8', hence the

surface is a special case of those represented by the equation

=0.

The planes 8, 8' touch the surface along the lines DC, DC' respectively

and cut it also along two pairs of lines passing respectively through C and C'

and meeting on the line (8, 8
/

).

The equation of the tangent cone of the surface at D is

(xl
- kx^ (k, l$a)

2 Xf+ x3xt FY=0,

where X^ is the point D ; if the node is biplanar we must have (, l$a)
2 = 0, and

the equation of the surface reduces to

(xi-kxtfL+ x3xt {xz
xt+ (xl ,

xzWf} =0,

where L= Q is a plane through C, C'.

Hence the planes 8, & osculate the surface along the lines CD, CD' and

each contains one other line of the surface.
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47. Double conic consisting of two lines.

When the double conic is a pair of lines the surface is repre-

sented by an equation of the form

V= being a cone
;

if x2 is any tangent plane of V, the foregoing

may be written

(x x + x A )
2 = x 2 (C 2 + x B\

Let #2 be one of the tangent planes of V which meets the

surface in a pair of lines and a conic
;
one of these lines will meet

one double line and the other will meet the second double line.

Taking these four lines as edges of the tetrahedron of reference

and expressing that the lines (xz ,
x3 ), (x2 ,

xt) lie on the surface, the

equation of the latter may be written in the form

If any point on a double line be joined to any point on a

simple line of the surface, this join meets the surface in one

further point ;
this affords a means of representation of the surface

on a plane ;
for if we write

--
J; 3

SI

the equation of the surface shows that

pzi
= iv, px2

= ^2 u, px3 =^u, px4
= |3w;

where u = 0, v are conies such that one of their intersections is

the point ( 2> 3). and where u passes through the point (glt 3). The
five base-points consist of the points (u, v) and the point ( n s).

The case of additional nodes arises as in the case of the surface

with a nodal conic.

Either or both of these lines may be cuspidal. The equation of the

surface in the latter case is

{xzx -
Xi (axl+ bxz)}

2=x^xz .

An additional node exists if 4a6= l.

48. Classification of quartic surfaces with a nodal conic.

The method of Segre (Art. 35) affords a means for the classifi-

cation of quartic surfaces with a nodal conic. The two four-

dimensional varieties F=Q, <E> = are reduced by the method of

Elementary Factors* of Weierstrass to their canonical forms,

* See Quadratic Forms, etc., Bromwich, Camb. Math. Tracts; or the Author's

Treatise on tJie Line Complex.
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leading to various types and each type to sub-cases. Each pair

of forms thus arising affords one species of the quartic surface

considered.

An elementary factor (\-\i)
ep of F+\<& gives rise, if ep is

greater than unity, to a group of terms in ep variables, viz.,

\\ e . . . ep\>

in F and <>
respectively, so that F + \i<& is a cone of the pencil

(F, <E>) whose vertex lies on each variety of the pencil ;
at this point

the varieties have a common tangent hyperplane (K1 ;
this point is

therefore a double point of F.

We now consider the principal types, indicating them as in

Segre's notation by

{11111}, {2111}, {221}, {311}, {23}, {41}, {5}.

The surface which is the projection of T is denoted by

[11111], etc., but if the point of projection A lies on a cone of

(F, <>) the projected surface is represented by [11111], and so on.

The general type [11111] has been already considered in the

preceding chapter ;
we may find its class by aid of this method.

Taking F = S arf
a

,
3> = Sa^2

,

i i

the required class is equal to the number of tangent planes of the

projected surface which can be drawn through any line p of St ;

but if the projection of a plane IT from A on 83 passes through p,

then A, p and IT must lie in the same hyperplane ;
our problem is

therefore to find the number of hyperplaries through the plane

(A, p) which contain tangent planes of P. If the plane (A, p) is

given by the equations

the condition requires that

where <
= Ai + \B^. Thus we obtain

Oi), (i
= 1

, 2, 3, 4, 5),
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whence

and therefore

These equations show that the last equation, considered as a

quartic in -
,
has equal roots

;
and forming its discriminant, which

is of degree six in a;
2

, we obtain an equation of degree twelve in X.

The class of the projected surface is therefore twelve.

We now proceed to consider the remaining six principal types.

The canonical forms corresponding to the type {1112} are

-t* = &'i -J- X% -f- 3/3 -f- ^X^X^,

At the point (00001) which is a double point of T, F and 4>

have the common tangent hyperplane #4
= 0. The tangent cone

of F at this point is

#4 = (! ^4) #1
2 + ( 2 4) #2

2 + (3 ^4) #3
2 = 0.

This cone contains the four lines

a3#3
2 = 0,

which also belong to F.

If there is any additional line on F, the plane through it and

the vertex of the cone <I> atF must lie on this cone. Now

through any generating line of a cone in 8t we can draw two

generating planes (one of each set), Art. 35, and hence through
each of the preceding four lines

;
such a plane meets F in a conic

which therefore reduces to two lines. Hence corresponding to

each of the four lines through the double point we have two other

lines of F. Therefore the surface [1112] has a conical node with

four lines passing through it, and eight other lines. The class of

the surface is ten, being diminished by two from that of [11111]

owing to the additional node.

In [1112] the same applies, the double conic being here two

intersecting lines.

In [1112] the point of projection lies on the cone 4> a4F; the

double point of F is projected into the intersection of the two
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double lines, and this point is now triple*; the tangent cone at it

consists of the plane of the double lines and the projection of the

tangent cone of F at its node.

If T is of the type (122}, F and 3> have the forms

Jf = X^" -|- AX^XS ~r X4X$)

Here F has two nodes, viz. (00100), (00001) ;
the tangent cones

thereat being

#2 = (i a) x? + 2 ( 3 a2) x4xs + x? = ;

and

The line joining the nodes belongs to F, and along this line

the plane xz
= #4

= touches both F and <I> and therefore F.

Through the first point there pass the two lines

#2
== xf + 2x4 (K5

= c^a?!
2 + 2a3#4#5 + #4

2 =
;

similarly two lines pass through the second point.

As in the case {1112} each of these additional four lines gives

rise to a line of F; hence F contains nine lines in all.

The nature of the surfaces [122], [122], [122] is therefore

determined.

For the type {113} we have

_* i^
t//j r" ^2 l" t

*-'4 ~T" ^'"-'S'^'Sj

The point (00001) is a double point of F; the tangent cone at

it, which is represented by

x3
= 0, (ax a3 ) x? + (a2 a3) x<?

= 0,

breaks up into two planes /wl5 /i2 ,
whose intersection does not lie

on F. The point is therefore biplanar. It is easily seen that

through the double point there pass four lines of F, of which two

TI, r/ lie in ^ and two r2 ,
r2

'

in
//,2

- Through rl there passes a

generating plane of the cone <1> asF= 0, of the same system as /^ ;

* For any plane a passing through A and the vertex K of the cone corresponding

to 2 meets that cone in two lines, and each of these meets T in one other point

giving two points Q, R of F on a. The plane a is projected from A on S
3 into

a line r passing through K' the projection of K and Q, R are projected into the

two other points in which r meets the surface. If however A lies on the cone, one

of the two previous lines must pass through A, and r thus meets the surface in one

point only (apart from K') ; the point K' is therefore triple.
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and so for the three other lines r/, r,2 ,
r2'; hence each of these four

planes meets F in an additional line, giving rise to four new lines

*1> *1 > ^2> ^2

Hence applying to the surface [113] we have a surface of

the ninth class* which has a biplanar node and contains eight
lines.

For the type {23} we have

F = 2x^2 + 2x3x5 + #4
2
,

<E> = 2o1#1#2 + Xj
2 + a2 (2xsx5 + x?) + 2x3 X4.

From consideration of the cases {1112}, {113} it is seen that F

possesses a conical node at D and a biplanar node at D' at which

the tangent cone breaks up into two planes /^ and
yu,2

. The line

Diy is given by xl x3
= x^ = ;

and the plane /^ is #t
= x3

=
;

this touches F along the line DD'. As in {113} there are two lines

r2 ,
r2

'
in the plane /JL 2 .

The section of F by its tangent hyperplane a^ at D is

$7j
-

tmiOuQtJC^ ~\ OC^
-

CC^CU^ \) .

and is therefore the line DD' together with one other line. The

two generating planes of the cone whose vertex is D which pass

through the latter line, meet the surface in two new lines. These

six lines constitute all the lines of the surface.

The nature of the surfaces [23], [23], [23] follows immediately;

they are of the seventh class, the first has a conical node and a

biplanar node, the second has a conical node and a triplanar point,

the third has a biplanar node and the intersection of the double

lines as a triplanar point.

For the type {14} we have

F = x? + 2x2xs + 2x3 X4,

<J> = a^!2 + 2a2 (x2x5 + #3#4) + 2x2x4 + x/.

The double point D, or (01000), is here biplanar, and the two

nodal planes intersect in a line which lies on F
;
the biplanar point

is therefore of the second kindf.
The nodal planes meet F also in two lines rlf r2 through D.

In the two other generating planes of the cone whose vertex is D
which pass through TI and r2 respectively there are two other lines

* A biplanar node of the first kind reduces the class of the surface by three.

Salmon, Geom. of three dimensions, p. 489.

t See Salmon, I.e.
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of F (say) sz and s2 ,
which meet r^ and r2 respectively ;

and since

the line of intersection of these latter planes meets s: and sz it

must therefore meet them in the same point. Hence we have

four lines on F forming a skew quadrilateral, together with

another line through D.

The preceding defines the surfaces [14], [14], [14] which are

of the eighth class.

For the type {5} we have

F = 2#
1 #, + 2#2#4 + #3

2
,

The (one) cone of the pencil meets xl in the two planes

#! = #2
=

;
xl
= x3

=
;

and these planes meet in a line r of F. The first plane touches F

along r
;
thus since one of the nodal planes touches F along r, the

biplanar point is of the third species.

The other nodal plane meets F in a line r, through D.

Another generating plane of the cone passes through r' which

meets F in a line s. The lines r, r' and s are the only lines on F.

The properties of the surfaces [5] and [5] follow
; they are of

the seventh class
;

the latter has two double lines meeting in

a triplanar point.

49. Cones of the second species.

In the preceding types the pencil (F, <i>) contains cones, the

equation of each cone being expressible in terms of four variables.

When, however, two elementary factors are equal, the equation of

the corresponding cone <l> a,iF= contains not more than three

variables and the cone is said to be of the second species ; e.g. in

{(11) 111} we have

<J> - OvF = (a,
- xf + (a4

- ax) x? + (a5
-

Oj) xs*.

This cone has oo 1

generating planes through the line

QC% #/4
=:

t27g
== \)

In the previous types there were seen to be two systems of

generating planes given as the intersection of a cone with its

tangent hyperplanes. In the present case we have one system of

generating planes obtained as the intersection of the cone with its

tangent hyperplanes which all pass through the line
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the edge of the cone. In each generating plane there is one conic

ofr.
"

Each of these conies passes through the two points of inter-

section of the edge of the cone with F. At either of these points
there is a tangent hyperplane common to the pencil ; these points

are therefore double points of F.

If the group considered is (11) there are two such double

points; if it is (21), (31), (41) the points coincide, as is seen by
reference to the corresponding forms.

In the cases {1 (22)}, {(23)} the edge itself is seen to lie on F
;

in these cases since each generating plane of the cone meets F in

the edge and one other line, there arise oo 1 lines on F, which is

therefore a ruled surface, having the edge as a double line.

We can easily determine the number of lines on F in the

other cases
;

for any line of F must lie on this cone of the second

species and therefore meet the edge in one of the double points of

F upon it. The tangent hyperplane at either of these double

points meets the pencil (F, <E>) in a pencil of ordinary quadric cones

having the double point as vertex
;
the lines of intersection of

two of these cones will be the lines of F through the point. Hence

these surfaces cannot have more than eight lines.

Projecting F on S3 gives us the surface we are investigating.

In this case, however, the point of projection A may lie on a cone

of the pencil (F, 3>) of the second species. Here only one generating

plane of this cone passes through A, which cuts F in a conic

which is projected from A on S3 into a line which will be a double

line of the projected surface. Reference to Art. 35 shows that

if y= is a cone of the second species, the double line of the

projected surface, given by /= Df= 20^:= 0, is therefore to be

regarded as arising from the coincidence of two double lines*.

This line contains two triple points (distinct or coincident), the

projections of the two double points of F which lie on the edge a

of F. For the generating planes off cut F in conies through the

two double points, hence their projections from A meet 83 in conies

through the projections of these points which are therefore triplef.

Each of the oo 2

hyperplanes through the edge of the cone

meets the cone in two planes ;
each tangent hyperplane of the

*
Segre calls this line bidouble, see page 70.

+ Since any line through one of these points on the projected surface meets the

surface in one other point only ; see page 75, footnote.



49, 50] AND ALSO ISOLATED NODES 79

cone meets it in a generating plane counted twice, and hence

touches F in a conic. If /= is the variety of the pencil (F, <1>)

which passes through A, and cx = any hyperplane, the inter-

section of / and cx is projected from A upon S3 into the quadric
5 5

cxDfcX'f=0, ]y*i#; = 0; where 0^ = represents 83 . This
i i

quadric passes through the double conic /= Df= 0. Now let cx

be one of the preceding hyperplanes through the edge of the cone

of the second order; we obtain on projection oo 2
quadrics through

the double conic and the two double points ; each meets the quartic

surface in two conies.

If cx is one of the oo ]

tangent hyperplanes of the cone of the

second species we obtain on projection oo *

quadrics touching the

quartic surface along a conic and passing through the double conic.

Through any point of $4 there pass two of these tangent

hyperplanes, hence through any point of S3 there pass two quadrics

containing the double curve which touch the quartic surface along
a conic. Thus the quartic surface is the envelope of a system of

quadrics simply infinite and of the second order which pass through
the double conic and the two double points of the quartic surface*.

The existence of this set of quadrics is peculiar to those

surfaces which have a cone of the second species. For such a

quadric is the projection from A of the intersection of some hyper-

plane cx with/, the variety through A. This hyperplane therefore

touches F along a conic, and hence cx meets the pencil (F, 3>) in

a pencil of quadrics which touch along this conic; among these

quadrics is therefore included the plane of the conic counted

twice
;

if cx dx = is this plane, it is seen that among the

varieties of the pencil (F, <I>) there is one of the form dx2 + cx ex ,

and this is a cone of the second species.

50. Quartic surfaces with a cuspidal conic.

It was seen (Art. 35) that if /= is the variety of the pencil

(F, 4>) which passes through A (or x'}, and
<j> any variety of the

pencil, the equations of the projection of F from A on S3 are

= (Dfy

cci
= 0.

* For the surface
<f>

2
4w^pq, the quadrics are p?wp + /j.(p + wq = Q. We have also,

as in the general case, the quadrics \2
u>2 + \<f> +pq = 0, which touch the surface along

quadri-quartics.
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Let x be any point on the double conic and x + f a point on

the surface contiguous to x
; substituting x + g for x and retaining

only terms of the second order in
,
we obtain as one of the

equations of the two tangent planes to the surface at x,

where L and M are the terms of the first order in f< arising from

/and Df respectively.

If these planes coincide we have

' = 0.

This equation together with /= 0, Df= 0, 2<Zi#i = 0, gives the

four pinch-points on the double conic. These planes coincide at

each point of the double curve if the tangent cone to
<f>
= from

x' contains the three-dimensional cone /= 0, Df= 0. Hence we
have an identity of the form

i.e. 4</>f -Af =
(D(f>)* + XDf.

This shows that the pencil must contain a cone of the second species.

Thus having given a pencil (F, <) which contains a cone ty of

the second species, the surface F projected from A on S3 has a

cuspidal conic provided that A is so chosen that the tangent

hyperplane at A of the variety through A is also a tangent

hyperplane of ty.

The equations of the surface given at the beginning of this

article may therefore, when a cuspidal conic exists, be written

in the form

,
= 0, (2/f - DfDtf = (Z>/)

2

{Af+ XDf} ;

i

the latter equation is

A

where ^ = </>
+ TV//, and L is linear in the variables. This is the

TrQ)

equation obtained in Art. 44.

The close-points.

The two intersections of the edge of a cone of the second

species with F were seen, in the general case, to give rise to two

nodes on the projected surface
;
when a cuspidal conic exists, since
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the tangent hyperplane of the variety through P passes through

the edge of this cone, these two intersections are therefore pro-

jected into two points on the cuspidal conic; they are the two

close-points.

Quartic surfaces with a bidouble line.

If A (or x') lies on a cone of the second order
i/r
= 0, then

D\jr
= touches ty along a plane TT, also IT meets

</> (any variety of

the pencil) in a conic c
2 on F. The tangent plane to F at any

point x of c
2 is given by the equations

3

If we suppose, as is permissible, ty to be of the form Sa<|i
2 = 0,

it is seen that the first of these hyperplanes is identical with

Zhjr
= 0, since for each point x of TT we have

1 2 3

iCj $?2 X

Hence the tangent plane of F at any point of cs lies in the

fixed hyperplane D\|r
= 0, and is therefore projected from A into-

the same plane of S3> viz. Zty = 0, Scc^ = 0. The pair of tangent

planes at each point of the bidouble line coincide.

51. Of the sub-types arising from the equality of elementary
factors the first is

{(11)111}.

As stated in Art. 49 we have two nodes on F
;
the line joining

them does not belong to F. Hence there arises the surface

[(11) 111], treated in Art. 38, possessing two nodes whose join

does not lie on the surface. This includes the special case of

a cuspidal double conic.

Other special cases are [1(11)11], [(11)111] having respec-

tively two double lines and two nodes, and a cuspidal line containing

two triple points.

The characteristics of the various other sub-types are given in

the table at the end of this chapter*.

52. Steiner's surface.

The pencil (F, 3>) may consist entirely of cones of the first

order having a common generator and a common tangent hyper-

plane along this generator.
* For many details see Segre, loc. cit.

J. Q. 8. 6
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Such a system, for instance, arises from the cones

=0 >

.a).

The line upon which the vertices of these cones lie is

xl
= xz

= x3
= 0,

this line is a double line of F. Through A, the point of projec-

tion, there passes one cone of the system, its two generating

planes through A intersect on a line which meets the double line

of F in the vertex of this cone. Hence the projected surface has

three concurrent double lines, viz. the projection of the double line

of F and the projections of the conies in the two generating

planes through A.

Each of the oo 1 cones has two sets of generating planes

meeting F in conies, hence arise oo 2

pairs of conies in plane
sections of the projected surface. Three of the points of inter-

section of such a pair of conies lie on the three double lines, the

fourth point is a point of contact of the plane with the surface.

The surface is therefore a Steiner's surface (Chapter vn).

53. We add Segre's Table which contains a complete list

of the different kinds of quartic surfaces with a double conic

(including two lines or a bidouble line).

Class of the

Index surface Character of the surface

[11111] 12 General surface

[2111] 10 One node

[311] 9 Biplanar point of the first species

[221] 8 Two nodes ; the line joining them belongs to the

surface

[41] 8 Biplanar point of second species

[32] 7 One node and a biplanar point of first species

[5]
7 Biplanar point of third species

[(11) 111] 8 Two nodes
;

the line joining them does not

belong to the surface

[(21) 11] 8 A biplanar point of the second species

[(11) 21] 6 Three nodes; the lines joining two of them to

the third belong to the surface

[(21) 2] 6 A node aud a biplanar point of the second species

[(31) i]
6 A uniplanar point of the first species

[(11) 3] 5 Two nodes and a biplanar point of the first

species

[(41)]
5 A uniplanar point of the second species
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Class of the
Index surface Character of the surface

[(11) (11) 1] 4 Two pairs of nodes

[(21) (11)] 4 A pair of nodes and a biplanar point of the

second species

[(22) 1] 4 Ruled surface (class II of Cremona)

[(32)] 4 Ruled surface (class IV of Cremona)

Surfaces with a cuspidal conic.

[(11) 111] 6 General case

[(21) 11] 6 The close-points of the double conic coincide

[(11) 21] 4 One node

[(21) 2] 4 The close-points coincide, one node

[(31) 1] 4 There is a point in which the two close-points
coincide with a node

[(11) 3] 3 A biplanar point of the first species

[(41)] 3 A singular point of coincidence of the close-points
with a biplanar point

Surfaces with two double lines (meeting in a point
which is not a triple point).

[11111] 12 General case

[1211] 10 One node

[131] 9 A biplanar point of the first species

[122] 8 Two nodes ;
the line joining them belongs to the

surface

[14] 8 A biplanar point of the second species

[1 (11) 11] 8 Two nodes

[1 (21) 1] 8 A biplanar point of the second species

[1 (11) 2] 6 Three nodes

[1 (31)] 6 A uniplanar point of the first species

[I (11) (11)] 4 Two pairs of nodes

[T (22)] 4 Ruled surface with three double lines

Surfaces with a double line and a cuspidal line.

[122] 8 General case

[14] 8 The close-points coincide

[1(11)2] 6 One node

[I (31)] 6 The preceding node lies on the cuspidal line

[1(1 1) (11)] 4 Two nodes

[T (22)] 4 Ruled surface with two double lines and a

cuspidal generator

[1 (22)] 4 Ruled surface with two coincident directrices

and a double generator

62
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Surfaces with two cuspidal lines.

Class of the
Index surface Character of the surface

[1J11) 2] 6 General case

_[1 (31)] 6 Particular case

[1 (11) (11)] 4 One node

Surfaces with a triple point through which two double lines pass.

[2111] 10 General case
;

the tangent cone at the triple

point consists of the plane of the double

lines and a quadric cone

[311] 9 The triple point is triplanar

[221] 8 One node

[41] 8 The triple point is a special triplanar point

[23] 7 A biplanar point of the first species

[32] 7 One node
;
the triple point is triplanar

[5] 7 The triple point is a special triplanar point

[2_(11) 1] 6 Two nodes

[2 (21)] 6 A biplanar point of the second species

[3(11)] 5 The triple point is triplanar; there are two

nodes

Surfaces with a triple point through which there pass a double

line and a cuspidal line, or two cuspidal lines.

[32] 7 One double and one cuspidal line

[5] 7 The close-point coincides with the triple point

[3 (11)] 5 One node

[3 (11)] 5 Two cuspidal lines

Steiner's surface.

3 General case

3 Two of the double lines coincide

3 The three double lines coincide

Surfaces with a bidouble line (containing two triple points

distinct or coincident).

[(IT) 111] 8 General case
;
the tangent cone at each triple

point breaks up into a plane and a quadric
cone

[(2l) 11] 8 The triple points coincide in a triplanar point

[(IT) 21] 6 One node

[(2l) 2] 6 The triple points coincide
;
one node

[(11) 3] 5 A biplanar point of the first species

[(41)] 5 The double nodal plane of the triple point of the

last case but one touches along a simple line

[(IT) (11) 1] 4 Two nodes

[(II) (21)] 4 A biplanar point of the first species

[(2l) (11)] 4 The two triple points coincide; two nodes
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Surfaces with a cuspidal line of the second species.

Class of the
Index surface Character of the surface

[(21) 2] 6 General case ; the cuspidal line contains a triple

point and a point of osculation of the two
sheets

[(41)] 5 The points just mentioned coincide in a triple

triplanar point

[(21) (11)] 4 One node

Ruled surfaces with a triple line.

[(22) 1] 4 General case (class III of Cremona)

[(32)] 4 Ruled surface (special case of class X of Cremona)



CHAPTER V

THE CYCLIDE

54. When the double conic is the section of a sphere by the

plane at infinity we obtain the surface known as the cyelide*.

The equation of a cyclide in Cartesian coordinates is therefore

S* + u =
;
where $= represents a sphere, and u = is a quadric.

Taking the centre of S as the origin and the axes in the

directions of the principal axes of u, we obtain as the equation of

the surface

(a? + y* + z*J + 4 (A^a? + A 2y* + A 3 z* +2^ + 2B2y + 2B3z

As in Chapter III we may write this equation in the form

O2 + t/
2 + z* - 2A,)

2 + 4 {(A, + X) #
2 + (A, + X) y* + (A, + X) *2

+ 25^ + 2B2y + 2B3z + C- \2

}
= 0.

The second member of the left side will be a cone, F= 0, if its discri-

minant is zero : this condition may be written in either of the

forms

We thus obtain five values for X, giving five cones. If one such

cone V be XT Z2 =0, where L=Q is any plane through its

vertex, the equation of the surface is

(^ + 2/
2 + ^-2X)2 + 4(ZF-Z2)=0 ............ (1).

As before (Chapter in) any tangent plane of the cone meets

the surface in two circles, and every circle on the surface lies in a

tangent plane to one of the five cones.

* For an extensive discussion of this surface see the work by Darboux entitled

Sur une classe remarquable de courbes et de surfaces quelconquet.

The intrinsic interest of this surface justifies a special discussion by use of

Cartesian coordinates, showing the various real forms of the surface.
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Again the sphere
t? = 2(L + \) .................. (2)

meets the surface in a pair of circles lying on X = 0, Y=Q re-

spectively ; the points of intersection of these circles being points
of contact of the sphere and surface. Hence the surface is the

envelope of these bitangent spheres. Moreover every bitangent

sphere must arise in this manner
;
for if a? + y

2 + z2 = 2 (X +M)

be a bitangent sphere it will meet the surface in a pair of circles

and we may take the plane of one of them to be X = 0, whence

M= (L + kX\ i.e. the surface may be written in the form

(^ + y
* + z* _

2X)o + 4 (XY' - M'2

)
= 0.

If L = OLX + fiy + yz + 8, the condition that L = passes through
the vertex of V gives

and this is the condition that this bitangent sphere should cut

orthogonally the sphere whose equation is

25 ar 2B2 ZB3z< + 2X=0...(3).

Again since

(A, + X) x
2 + (A z + X) ,v

2 + (A 3 + X)

considering only terms of the second degree it follows that

(A l + X) a? + (A z + X) y
1 + (A, + X) z2 + (ax + @y + 72

must break up into linear factors, hence

ff 7
2

,i_ *~ + +

Hence the cyclide may be generated in five ways as the

envelope of a sphere whose centre lies on one offive fixed quadrics

Qi...Qs and which cuts a fixed sphere^ orthogonally.
The quadrics Qt are seen to be confocal. At each point of

intersection of a quadric Q; with the corresponding sphere Si we
have a bitangent sphere of zero radius

;
its centre is therefore a

focus of the surface
;
hence arise five focal curves.

* The cone F is the reciprocal of the asymptotic coce of this quadric.

t This sphere is one of the quadrics H of Art. 31 ; its centre is the vertex of the

cone F.
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55. The five spheres Sj, . . . S5 are mutually orthogonal ;
for the

condition that any two of them, corresponding say to Xz and X,,

should be orthogonal is

(A, + XOCZI+A5 (A 2 +
Z

^A/i Zt\in ^ \J .

which follows at once from the equation

Consideration of the equation F (X)
= shows that it has in

general at least three real roots; since, taking A l} A 2 ,
A 3 as

in ascending order of magnitude, there lie an odd number of roots

in each of the three intervals

oo... A lt A 1 ...A 2 , A^...A 3 .

Hence there are in general at least three real pairs Si, Qi and

there may be five.

Important relationships between the spheres Si and the

quadrics Qi are the following : the centres of any four of the spheres

form a self-polar tetrahedron for the remaining sphere and for

its corresponding quadric. For expressing that the spheres

corresponding to \ and X3 are orthogonal we obtain an equation

similar to the last
; subtraction, and division by Xj X3 gives us

,

+ 1 = 0,

which is the condition that the centre of the sphere S3 should lie

in the plane

B3z

(A, + \0 (A, + X2) (A 9 + Xx) (A 9+ X,,) (A, + XO (A, + X2)

But the last equation represents the polar plane of the centre of

S2 with regard to Qt . Similarly this plane passes through the

centres of S4 and $6 ;
and the centres of S2 ... S5 form a self-polar

tetrahedron with regard to QT .

Again representing any one of the spheres Si by the equation

x* + y* + z* + 2/> + tyy + 2h{z + d = 0,
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we derive, from the fact that the spheres are mutually orthogonal,

the equations

A/a + 9i92 +Ma = ^-

hence /2 (/ -/5) + #2 (gl
- gs) + h2 (h,

- h5)
= ^-

5

,

which is the condition that the polar plane of the centre of $5 for

,, i.e.

-A (x +/0 -ffid/ + ffi) -h5 (z + AO +A +&y +M + <a
= o

or !-

should pass through the centre of $2 .

Similarly this plane passes through the centres of $3 and $4 .

Thus the tetrahedron formed by the centres of $2 . . . $5 is self-

polar for 6\.

56. Inverse points on the surface.

It is obvious from the form of its equation that the cyclide is

inverted from any general point into another cyclide. If the centre

of inversion be the centre of one of the principal spheres Si,

then since the surface is the envelope of spheres which cut Si

orthogonally, it is clear that the bitangent spheres are inverted

into themselves (if the constant of inversion be the radius of Si).

Hence it follows that the two points of contact of a bitangent

sphere of this system are collinear with the centre of Si, and the

surface is inverted into itself. This can also be seen as follows:

the centres of the bitangent spheres in the neighbourhood of a

point P of the quadric Q{ lie in the plane TT tangent to Qi at P,

and these spheres all pass through the same two points M, M' of

the cyclide ;
since Si cuts all these spheres orthogonally its centre

must be collinear with M and M ', and the line OMM' is per-

pendicular to the plane of their centres, i.e. TT, and

if Ri is the radius of S{.

Thus M and M'
are inverse points on the surface.

Again, all the spheres whose centres lie in TT and which cut

the sphere Si orthogonally, will also cut orthogonally every sphere

through the intersection of Si and TT, and in particular the two
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point-spheres which pass through the intersection of Si and TT.

The centres of these point-spheres are therefore the points M and

M'. Hence the surface may be defined as the locus of the limiting

points determined by Si and the tangent planes to Qi.

The points of Qi which give rise to real points of the cyclide

are therefore those the tangent planes at which do not meet St in

real points. Taking the tangent planes common to Si and Qi we
have a curve or curves determined on Qi denning the region on Qi

which gives rise to real points of the cyclide.

Bitangent spheres whose centres lie on the same generator of a

principal quadric.

The spheres which cut Si orthogonally and whose centres lie

on a line p, a generator of Qi, will pass through the points of

contact P, P' of the tangent planes to Si through p ;
hence if G

is the point of intersection ofp and a plane through the centre

of Si perpendicular to p, each of these spheres will pass through
the circle whose centre is C and radius GP (or OP'). The circle

lies on the cyclide ;
for considering all the planes through p, the

limiting points M, M' which arise in connection with Si, lie in the

plane of this circle, also CM = CM' = GP = GP.
Hence real circles arise from those generators of Qi which do

not meet Si in real points.

Taking all the planes through perpendicular to each generator of the

system to which p belongs we obtain oo 1 sections of the cyclide consisting of

two circles.

Conversely all the spheres which meet the cyclide in the same

real circle will meet it again in circles and will be bitangent

spheres ;
since their centres lie on the same real line, the quadric

to which they belong must be a hyperboloid of one sheet
;
hence

this type of quadric alone will give rise to real circles on bitangent

spheres. We observe that of the three real quadrics Qi which in

all cases exist, one is an ellipsoid, one a hyperboloid of one sheet

and one a hyperboloid of two sheets, corresponding respectively to

the three real values of X mentioned in Art. 54.

57. Roots of fundamental quintic. Focal curves.

It has already been seen (Art. 55) that in the general case in

which F (X) = does not possess equa.l roots, it has an odd

number of real roots in each of the intervals

QO...
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where we suppose A 1} A 2 ,
A z arranged in ascending algebraic

order of magnitude.
If three roots only are real then two are conjugate imaginary;

it may be shown that any two corresponding real surfaces Si, Qi

meet each other in a curve consisting of one portion only ;
for

since three centres of spheres Si are real and two conjugate

imaginary, we may in three ways select a real pair Si, Q{ so that

their self-polar tetrahedron has two vertices real and two conjugate

imaginary. If Si, Qi form such a pair, it may easily be seen that

two of the four cones passing through their curve of intersection

have equations of the form

#i
2 +p (#3

2 #4
2

) + 2qtK3x4
= 0,

#2
2

+p' (a?8
a -

4
2

) + ZtfxtXt
= 0.

Each generator of the first cone meets this curve in two points,

which coincide if

- p' (#s
2 -

#4
2
) + 2q'xsx4

= 0.

If the two real planes thus determined be #4
= a^, #4

= 0^X3 where

ai2 = 1, substituting in the first equation we have four solutions,

viz. those given by

and by x? + x/ {p (1
-

a,
2
) + 2g 8 }

= 0,

i.e. by a? -^ {p (1
-

a?) + fya,}
= 0.

"i

Hence we have two real solutions only, i.e. there are only two

real tangents to the curve of intersection from the vertex of either

cone on which it lies. Hence the curve consists of one portion only.

In the case therefore in which only three roots of F (X)
= are real

three focal curves are real and consist in each case of only one portion.

If five roots of F (\) = are real, any pair Si, Qi have a real

self-polar tetrahedron
; by the method immediately preceding it

can be at once seen that their intersection is either imaginary or

consists of two detached portions. Two focal curves are real *.

58. Different forms of the eyclide.

It was seen (Art. 54) that there is always one real pair of surfaces

Si, Qi consisting of a sphere and an ellipsoid. It will now be

shown that if this sphere and ellipsoid have no real intersections

* See Art. 63.
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the cyclide consists of two ovals, one within the other. For since

the points of the surface are the limiting points of Si and the

tangent planes to Qt (Art. 56), if Si lies wholly within Qi we
obtain two sets of points M, M' one within Si and the other

without Qi, each set forming an oval surface.

When Si lies wholly without Qi let a-^ be the curve along which

the transverse common tangent planes of Si and Qt
- touch Qi ,

and

<r2 the corresponding curve for direct common tangent planes ;

then the region between ^ and <r2 gives rise to no real points of

the cyclide ; the region enclosed by erl gives rise to an oval which

cuts Si orthogonally, the region enclosed by <r2 gives rise to an

oval cutting Si orthogonally and enclosing the first oval, since the

tangent planes in the case of o-2 are more remote from Si than

those for tr1} so that if a line through meets the surface in the

pairs of points Ml} MJ; Mz ,
M2

'
it is seen that M2 is nearer

than either M
l or MI, and M2

'

is more distant from than either

M! or MI. Hence one oval encloses the other.

If the focal curve (Si, Qi) is real and consists of two portions

<T!, o-2 , the portion of Qt included within Si may consist of one

connected portion (as in the case of a sphere meeting a spheroid
whose axis of revolution is its greater axis), the portions of Qi

giving rise to real points of the cyclide are entirely separated, and

it consists of two separated ovals (each meeting St orthogonally) ;

or the portion of Qf within St may consist of two separate portions

(as in the case of a sphere meeting a spheroid whose axis of

revolution is its minor axis) ;
here the portion of Qt giving rise to

real points of the cyclide is one connected region ;
the cyclide

consists of a tubular surface similar to an anchor-ring or tore.

Finally, if the focal curve (Si, Qi) consists of one portion only, we
have one oval cutting Si orthogonally.

59. Equal roots of the fundamental quintic.

If (\ + A-tf is a root of F(\}, then V (Art. 54) is a pair of planes ;

for if the Ai are all unequal, then we must have

= 0,

B,

0-4?

which makes V a pair of planes when X + A l
= 0.
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The equation of the surface is S 2 + aft = ; inverting from one

of the points (S, , /3) we obtain a cone K
;
three sets of bitangent

spheres of the surface are therefore the inverses of spheres passing

through a pair of circular sections of K.

Again, if A^ = A 2 ,
then if (X + A-^ is a factor of F(\), we must

have J?!
2 + 52

2 =
0, i.e. Bt

= Bz in a real cyclide, and the surface .

has an equation of the form

where a and a' are parallel planes.

The oo 2

spheres S+ Xa + pa! = meet the surface in pairs of

circles. These spheres consist of all spheres having their centres on

a given line. The surface has also three sets of bitangent spheres.

When A-L = A 2
= A 3 ,

the equation of the surface may be written

S 2 + ka = 0.

The oo 2

spheres S = Xa + p, which are all spheres having their

centres on a given line, meet the surface in pairs of circles.

In each of these cases, therefore, one of the five cones V is a

pair of planes*.

In a real cyclide only one of the principal spheres can be a point-

sphere. For it has been seen (Art. 55) that if the Ai are unequal
there lie an odd number of roots of jF(X) = in each of the three

intervals

oo... AI, AI ... A 2 ,
A 2 ... A 3 .

Hence coincidence of roots of F(\) = can only occur once.

Again, if two of the A { are equal, say A 1
= A 2 , then, excluding

the case which has been already considered in which (X + A^ is a

factor of F(\), we have

where
xjr (X) is seen as before to have an odd number of real roots

in each of two intervals. It therefore follows that F (X) may have

one double root or one triple root
;

in each of these cases the

remaining roots are real.

If Ri be the radius of the principal sphere Si,

=
*'

* The surface is of the type [(11) 111], see Art. 67.
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and since F(\) does not possess (X + J. t-)

z as a factor, a principal

point-sphere will arise from equal roots of J^(X), which, it has

been seen, can occur for only one value of X..

In all cases, therefore, a real cyclide can have only one principal

point-sphere ;
the case in which one of the cones V is a pair of

planes will be discussed later (Arts. 66, 67).

60. Power of two spheres.

If S-L
= 0, . . . S5

= are any five spheres, the system of five

equations

a? + f + z* + 2/jas0 -I- 2g^w + Zh^w + ^w* = pSlt

a? + y
1 + z* + 2fsxw + 2052/w + 2hszw + c5w2 = pS5>

wherein w =
1, enables us to solve for #2 + y

1 + z2
, xw, yw, zw, w2 in

terms of 8l ...Ss ;
this gives rise to a quadratic identity between

the quantities $1 . . . $8 . These five quantities may be employed as

coordinates to determine the position of a point, a homogeneous

quadratic relationship existing between the coordinates. These

coordinates are known as the pentaspherical coordinates of a

point. The nature of this quadratic relationship can be most

readily determined from considerations relating to the mutual

power of two spheres. If two spheres of radii r1} r2 cut one

another at an angle 6, we have

2r,r2 cos = rx
2 + r2

2 - (/ -/2)
2 -

(g,
-

2)
2 - (^ - A2)

2

The right-hand side of these equations is real for real spheres

whether their intersection be real or otherwise
;
taken negatively

it is known as the mutual power, 7T12 ,
of the two spheres, thus

Forming the product of the two determinants*

1 2/ 20, 2Ai c

1 2/a 202 2^j c

1 2/3 203 2/*3 c

1 2/4 204 2// 4 c

1 2/5 206 2/? 5 c

1 2/6 206 2A6 c

^7
~
ft 9^

~
h? 1

rv / 1 ~t

C\ /> /* n 7i 1

c10 /io 7io ^10 1

Or _/ _/7 _/, 1
\J t/^j / jj //H ""11 -*-

V Cij y 12 *7l2 "-12 A

Lachlan, On systems of circles and spheres, Roy. Soc. Trans. (1886).
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)8
7T

1)9 7Tj >10 7TI|U

,
8 ^2,9 7T2.10 ""a, 11

95

12

T6.12

, 6'

= 0.

/I L<\

This equation may be denoted by TT ( ,_

" '

9 j

= 0.

Now, denoting the spheres $:
and S7 by x and t/, and supposing

that the spheres S2 . . . S6 are respectively identical with the spheres

>S^8 ... S12 ,
we have on slightly altering the notation

'x 1 ... 5>
7T

y

which, expanded, is equivalent to

7T,,

=
.(1).

If we now suppose 8x ~Sy ,
we obtain the relationship existing

between the powers of any sphere Sx with regard to five fixed

spheres, viz.

-2rs

-2r4
2

- 2r,

If this equation is such that TTXI occurs only in the term involving
irxl

2
,
the sphere $j cuts S2 . . . S5 orthogonally ; for the coefficients of

r

^'xi'7rx2, '- ^xi^xs all involve 7r12 ,
... 7r15 linearly and homogeneously,

hence if they all vanish we have either

or

Ti2 ==
7^13

==
""14

== TIB == 0,
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But the last condition cannot be fulfilled since the determinant

on the left side is equal to the coefficient of TT^, taken negatively,
and this is by hypothesis not zero.

If the sphere Sx is a point-sphere, its powers with respect to the

spheres S1 ... S5 are obtained by substituting the coordinates of its

centre (#, y, z) in the expressions S^ . . . S5 ;
hence we obtain the

required identical relation between any five spheres ^ =
0, . . . Ss

= 0,

which is therefore

- 2rV 7r12

_ 9v 2
L.TS

9r 2^? 4

s* -2r5
2

= 0.

It follows, as in the case just above, that if Si occurs only in the

form 8f, the sphere Si cuts orthogonally the remaining four spheres.

If all the quantities ir^ (i =j) vanish, the identical relation becomes

and the five spheres are mutually orthogonal.

By virtue of this equation, the equation of the sphere S1 (say)

may be written in the form

(&--
\^*

,

4- 4.+ 4-+ = 0.

This shows that the planes of intersection of Sl with $2 , $3 , 84,

and >S^5 form a self-polar tetrahedron for Sl . Now the radical plane

of Si and $2 contains the centres of Sat S4 and S5 , and so on
;
hence

we again obtain the result of Art. 55 that the centres of any four

spheres form a self-polar tetrahedron for the fifth sphere.

We observe that if four of the spheres S{ , supposed mutually orthogonal,

are real, the fifth sphere is also real but the square of its radius is negative.

Also we see that on inverting from any point not upon one of the spheres

S^ the form of the relationship is not altered, since

ft r
i
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But if the centre of inversion be a point of intersection of three spheres

Si, S2 ,
S3 , they are inverted into three planes which we may take to be

S-
coordinate planes, and since <x 2%, etc., we obtain the identity

where R2 and R? are the squares of the radii of the spheres into which St

and S5 are inverted.

When the identical relation has the form

A&& + BS3
* + CS4

* + DS5
* =

0,

it follows from the preceding case that ra
= r2 = 0, hence ^ and $2

are point-spheres whose centres are the intersections of the spheres
S5 , S4 and S5 .

When the relation is

$! and $2 are point-spheres, and also S3 and St . The centres of one

pair of point-spheres lie on the intersections of the other pair;

hence one pair is real, the other is conjugate imaginary; the

centres of all four point-spheres lie on S6 .

61. Sphere referred to five orthogonal spheres.

The equation of any sphere S may be expressed in terms of

any five mutually orthogonal spheres, thus if

8 = a? + y
2 + z2 + 2/a? + 2gy + c = 0,

5

and also if &s2<fyS; then, denoting by Tra . the power of S with

regard to the sphere Si, we have

hence, from the fact that ^ . . . Ss are mutually orthogonal

Hence 7ra .

= pa^f, cos 6i = craiTi.

Introducing into equation (I) the angles ^, ^ at which two spheres
intersect any five spheres Si ...S5 ,

then if ^ be the angle at which the two

spheres intersect, we obtain

cos\|f cos &i cos 6

cos
(/>!

1 cos 12

cos< 5

=0.

J. Q. s.
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If the spheres Si ... S6 are mutually orthogonal this reduces to

5

cos
>//
= 2 cos &i cos 0j.

i

5 5

If the two spheres are identical we obtain 2 cos2^= l; if they are
1 i

5 5

SbiSi=0, and cut orthogonally we have from above 2ai &i ri
2 =0.

i i

If S is orthogonal to one sphere of the orthogonal system
4

Oi.^.S,, say to $5 ,
the equation of S is 2a;$f

= 0. In this case
i

the volume of the tetrahedron whose base is the triangle formed

by the centres of S2 ,
S3 ,

St and whose vertex is the centre of St is
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condition ^A ik aiak = 0. Since by the last article the c^ are the
i

coordinates of the centre of this sphere, we obtain the cyclide as

the envelope of a sphere which cuts a fixed sphere orthogonally and

whose centre lies on a quadric.

63. Canonical forms of the equation of the cyclide.

The equation of the cyclide being quadratic in five variables

x
l . . . cc5 which are themselves connected by an identical equation ;

we may use the method of Elementary Factors* to obtain the

various types of canonical forms of the cyclide.

Denoting by <l> = the equation of the cyclide and by O =
the identical relation connecting the coordinates, we obtain by
this method seven types, viz.

[11111], [2111], [311], [221], [41], [32], [5];

each type giving rise to sub-types. It will also be seen that only
the first three forms relate to real cyclides.

Writing these forms at length, we obtain by the usual method

+
riinn

~
l 2 *

J
"(n

=
! + x* + x* + x*

[21111 J" 2Xl^2

lil = 2x x +

J

[2211

T411
-1

-*

ft = 2 (^^4

= \ (2a?, xs + 2
2
) + Zadasa + 2X4 4 5 + x?,

= A, (2a?x a;5 + 2#2#4 + x/)
=

Zanies + 2x3X4 + 3
Z

-

We now pass to consideration of the type [11111]; the form

of ft shows that here the coordinate spheres form an orthogonal

* For discussion of the method see Bromwich, Quadratic forms and their

classification by means of invariant factors (Cambridge Tracts), or the Author's

Treatise on the Line Complex. See also Bocher's Potential Theorie.

72
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system: eliminating one of the variables, say C5 ,
we obtain an

equation of the form

xjflf.-.ti ..................... (i).

The surface is therefore the envelope of the spheres
4

^CLiXi =
1

subject to the condition

(2).

The generating sphere is orthogonal to x6
=

;
and since the i

are the coordinates of its centre for the tetrahedron formed by the

centres of Si...S4 (Art. 61), the equation (2) represents the

quadric Q& .

We obtain similarly the other four sets of generating bitangent

spheres. Moreover, assuming the cyclide to be real, and since it

was seen (Art. 54) that the only bitangent spheres are those

arising from a pair Si , Qi of this cyclide, it follows that the spheres

#i = can be no other than the spheres Si which a real cyclide

possesses. Hence it follows that of these spheres at least three are

real, while two may be either real or conjugate imaginary; so that

this applies to the variables a?t
-

;
and if e.g. #4 and x5 are conjugate

imaginary, so also are X4 and X8 ;
if all the Xi are real, so also are

the Xf .

The five focal curves are determined by the equations

together with four other similar pairs of equations.

It was seen (Art. 57) that if two of the principal spheres are conjugate

imaginary three of the focal curves are real and consist of one portion.

Consider now the case in which all the principal spheres ^ are real and let

#5=0 be that sphere the square of whose radius is negative, so that ai ...a4 are

real and a6=a5 r5 is imaginary. One of the focal curves is then given by

\ T N N ' N -V
V

J

A2
~
AI A3 AI A^ ~~

Aj Ag
~~

Aj

5

2

This curve is then real or imaginary according as the cone

9 A2 AS . A.q AS A 4 A

* sAI A2 AI A3

24 5=0

does or does not contain real points apart from its vertex.
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We obtain in this way criteria for the reality or otherwise of four focal

curves
;
the fifth, which lies upon

20^= 0,

is of course imaginary.
To discriminate in the four cases we may suppose the quantities X x ... X4 to

be in algebraic order of magnitude and moreover we have as a condition

of reality of the surface that the quantities

^1 ^5j ^2 ^5> ^3~~^5' ^4 ^5

cannot all have the same sign. We may take X5 equal to unity, in which case

AI X5 must be positive, and then the three possible distributions of signs to

X2
-

1, X3 1, X4
- 1 are

+ + -, +- -, ---
Inserting these signs in the equations of the four cones obtained as above it

is seen that in all cases two of them are real and two are imaginary.

64. Form of the cyclide.

In the case in which the variables are all real, scs being that

principal sphere the square of whose radius is negative, the

equation of the surface is

If we invert the surface from one point of intersection of the

spheres xlt x2 ,
x3 and take as new coordinate planes those into

which these spheres are inverted, the equation of the new surface

is (Art. 60)

or V + (X4
- X5) S 2 = 0.

We may assume X 4 X5 to be positive ;
different forms of the

surface will then arise according as one, two, or three of the remaining
coefficients are negative.

If one of them is negative then every line through the origin

and within the cone V meets the surface in four real points ;
hence

the surface consists of two ovals, one within each portion of V. If

two of them are negative, then every line through the origin and

without the cone V meets the surface in four real points; the

surface is ring-shaped. If all are negative, then every line

through the origin meets the surface in four real points; hence
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the surface consists of two ovals, one within the other, and each

surrounding the origin.

Hence the form of the original surface is also determined in

this manner by the signs of the quantities Xj X5 . When all the

variables are real, the inverted surface is seen to be derived from

the general cyclide by taking B1} B2 and B3 all zero and C positive

(Art. 54). This is one form of cyclide with three planes of symmetry.
The other form in which C is negative corresponds to the case

when two of the variables are imaginary ;
for in this case we have

in which we may take

a?i
= & + *'&, #2 = fi

-
i%* ;

substituting these values for xl and #2 the identical relation

assumes the form

2(fc+^-&)+i*f-0.
3

Hence + 2 and 2 are point-spheres.

If we make the same substitution in the equation of the

cyclide, it assumes the form (in which only real quantities occur),

that is

Inverting from an intersection of the spheres <c3 ,
x4 ,

x6 ,
i.e.

from the centre of one of the point-spheres + f-2 , 1 f2 >
the

equation of the inverse surface is seen to be of the form

(ar
2 + y> + *2

)
2 + (X, + *) of + (X4 + ) f + (X5 + /c) 2

2 - m2 = 0.

In this case every line through the origin meets the surface in

two real and in two imaginary points.

65. The type [2111].

The equations determining the second type show that it

represents a cyclide which can be generated in four ways ;
viz. in

three ways by bitangent spheres orthogonal to three given spheres

respectively, and once by a sphere passing through a given point,

which is one of the intersections of the spheres x3 ,
#4 and xs .

Two of the principal spheres, Sl and $2 of the general case, here
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coine into coincidence with the point-sphere xl . It follows from

Art. 59 that the principal spheres are all real.

That this is a degenerate case of the general case may be seen as follows :

let us change the notation and write

5 5

i i

and let X2
= X1 + e, x2=Xi + fX.2, where e is small.

5

Then Q

If we now assume that

i+ 2
=

0, a2 e
=

l, 0,3=0,4=0,5 !,

we obtain the second type. See Bocher, Potential Theorie.

The surface has a node, the centre of the point-sphere x^.

If we invert the surface from this node, we obtain the quadric

(Xs -\)af+ (X4
- XO t/

2 + (XB
-

X,) z2 + h2 = 0.

Hence, if the node is isolated the surface is the inverse of an

ellipsoid; otherwise it will be ring-shaped if it is the inverse of

a hyperboloid of one sheet
;

it will consist of two sheets united at

the node if it is the inverse of a hyperboloid of two sheets.

That the cyclide is the inverse of a quadric when one of the

principal spheres reduces to a point, may also be seen as follows :

if Q is the quadric associated with the point-sphere 0, the surface

is the envelope of spheres passing through and having their

centres on Q ;
all the spheres whose centres are consecutive to any

point P of Q will pass through the point 0' which is the image
of for the tangent plane of Q at P. Hence the surface is similar

to the pedal surface of Q for 0, and is therefore similar to the

inverse of the reciprocal polar of Q for 0.

66. The type [311].

The equations connected with this type of cyclide show that

it is generated in three ways ; twice as the envelope of a sphere

cutting orthogonally two given spheres respectively ;
and once as

the envelope of a sphere passing through a given point; the

spheres xz ,
x3 of the general case come into coincidence with the

point-sphere x1 .

The equation of the surface being

(A4
- Xx ) x? + (X5

- \) xs
2 + 2.r1#2

= 0,
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the centre of the point-sphere x^ is seen to be a node, and since

the spheres xz ,
x4 ,

x6 pass through this point and cut orthogonally,

the tangent cone of the cyclide at the point consists of two planes.

Inverting the surface from the node, we obtain as the inverse

surface, the paraboloid

(X,- X,)*
2 + (X,

-
Xj) 7/

2 + 2kz =
;

which is elliptic or hyperbolic according as the biplanar node has

imaginary or real tangent planes.

The four remaining types give rise to cyclides which are

imaginary ;
for the quintic F (X) = may have either one double

root or one triple root, but no other coincidence of roots can occur

in a real cyclide (Art. 59)*.

67. The sub-type [(11)111].

The sub-types arising from the above three chief types, as for

instance [(11) 111], are such that the equation of the surface can

be expressed in terms of only three variables
;
thus [(11) 111] has

an equation of the form

Ax? + Bx? + Cx? = 0.

The common characteristic of all the sub-types is that one of

the five cones V should be a pair of planes, real or imaginary.

For, if in the equation

(0&&,&,'4P<1
we substitute $2

= a28l + a, S3
= a3 $i + /3, where a and ft are

linear in the coordinates, we obtain an equation of the form

(flfi + 7)
1 = (&$,);

7 being linear in the variables.

The surface [(11) 111] has two nodes which may be either real

or imaginary. If the nodes are real, on inverting the surface from

one of them we obtain a quadric cone.

The cyclide Axs
2 + Bx? + Cx? is the envelope of the

spheres 3#3 + a4#4 + asx6
= 0, subject to the condition

n 2 2 n 2C
i + i +

0(
i = o mA + B + C

The contact of these spheres and their envelope occurs along
a circle instead of at two points.

* The cyclide S2=
a/3 (Art. 59) is always expressible in the form (Sl ,

S
2 ,
S3$a)

2
=0,

where S
1 , S2 ,

S3 are three mutually orthogonal spheres ; hence it cannot belong to

one of the types [221], [41], [32], [5].
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These spheres cut both x
l and x2 orthogonally, hence they pass

through the two limiting points of x1} acz ,
so that their centres lie in

a plane ;
since they also lie on the cone (1) they lie on a conic. This

surface is therefore the envelope of a sphere which passes through a

faced point and whose centre lies on a conic.

Two systems of bitangent spheres coincide with this system,
the other three, which may be called the proper systems, remaining
as before. They are obtained by writing the equation of the

cyclide in the form

(B - A) x? + (G-A)x*-A (x? + xf) = 0,

showing that the surface is the envelope of the spheres

subject to the condition

a 2 a 2 a 2 a 2

~J + ~A T> A 7 J = " (*/

Now in the preceding equation (1) we may assume

3
2 + 4

2 + 5
2 =

1,

hence it is equivalent to

,B-A G-A
4
2 - + 5

2 -=1 .................. (3).

Also in equation (2) we may assume that

ttj
2 + a2

2 + 4
2 + 5

2 = 1
;

hence it is equivalent to

7? C*

These equations (3) and (4) hold respectively for generating

spheres of the special system and a proper system.
Now take two fixed generating spheres of the special system

whose coordinates are (0, 0, v1} zlt wx ), (0, 0, v2 ,
z2 ,
w2),

and a variable

sphere of the system to which (4) relates whose coordinates are

(x, y, 0, z, w); then if
</>1;

< 2 respectively are the angles at which

the variable sphere cuts the fixed spheres, we have (Art. 61)

COS <>x
= ZZi -f WWl

B B-A / G G-A
~~

/<
'-A 1 V G

cos d>2 zz2 + ww.2

I

v
G-A
C
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Hence by virtue of equations (3) and (4) we may take fa and

fa to be the angles which a variable line makes with two fixed

lines in its plane ;
hence

fa fa = constant.

Therefore the sum or difference of the angles which a variable

sphere of one of the three proper systems makes with two fixed

spheres of the special system is a constant.

The corresponding result for the general cyclide is the following: the

angles which any generating sphere of one set makes with three fixed

generating spheres of another set, are equal to the angles which a variable

line makes with three fixed lines.

68. Dupin's cyclide.

The surface [(11) (11)1] is known as Dupin's cyclide', its

equation takes either of the forms

(\x
-

X,) (x* + xj) + (X8
-

X,) x5
* =

0,

(X,
- Xx) (#3

2 + *4
2

) + (X.
- XO x? = 0.

It has four nodes, of which at least two are conjugate

imaginary, since at least two lie upon that sphere the square of

whose radius is negative.

Inverting from a node (supposed real) we obtain a cone of

revolution.

The spheres which touch the surface along circles form two

systems, one of the systems is given by the equations
5 /2_l_/y2 n 2

0;
3

hence aB is constant and equal to * r^ ,
so that these spheresV A.5 A,3

cut the sphere a?5 at a constant angle. If they lie within a?5 ,
a6 is

positive and greater than unity, say equal to sec ft ;
the spheres

will therefore touch each of the fixed spheres (sin ft, 0, 0, 0, cos ft),

(0, sin ft, 0, 0, cos ft). Hence Dupin's cyclide is the envelope of

spheres having their centres on a fixed plane and touching each

of two fixed spheres. The fixed spheres are not unique, since

they are any two of the singly infinite set (A 1} A 2 , 0, 0, cos ft) where

A^ + A^ = sin2
ft; whose centres lie in the radical plane of x3

and x4 .

We obtain the same cyclide as the envelope of spheres cutting

Xi and xt orthogonally ; they have their centres on a second conic
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whose plane is perpendicular to the line joining the centres of

#3 and x4 . Since the join of the centres of xl and x2 is perpen-
dicular to the join of the centres of xa and x4 these two conies lie

in perpendicular planes. These spheres form the previous set

(A 1} A 2 , 0, 0, cos /3) ;
for they are a.lxl + a2x2 + a5x5

= 0, with the

condition ~ - l =
8
2 tan2

/9.

This cyclide was originally defined as the envelope of a sphere touching
three fixed spheres, but such spheres form four distinct sets, each set

enveloping a cyclide.

The equation of the tore or anchor-ring is

{a? + y
2 + z* + c2 - a2

}

2 = 4c2
(#

2 + f),

where c is the distance of the centre of the revolving circle from

the axis of revolution, and a its radius
; inverting from any point

we obtain

#5
2 + A 3

2 + xf) = 0.

If c is greater than a, then x5 is a sphere the square of whose

radius is negative and the cyclide is a Dupin's cyclide with no

real nodes; if c is less than a we then obtain a Dupin's cyclide

two of whose nodes are real.

69. We add a list of the various distinct real types of cyclide ;

the remaining forms consist merely of pairs of spheres, etc.

Inverse surface Nodes

[11111] General cyclide :

Surface either has Cyclide with three

two sheets or is planes of symmetry

ring-shaped (constant term posi-

tive)

Surface has one Cyclide with three

sheet planes of symmetry

(constant term ne-

gative)

[(11) 111] Cone 2

[(11) (11) 1] Cone of revolution 4 (two imaginary)

[2111] Ellipsoid 1 (isolated)

Hyperboloid of one 1

sheet

Hyperboloid of two 1

sheets

[2 (11) 1] Ellipsoid or hyperbo- 3 (two imaginary)

loid of revolution
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Inverse surface Nodes

[(21) 11] Elliptic or hyperbolic cylinder 1

[(21) (11)] Circular cylinder 3 (two imaginary)

[311] Paraboloid 1 (biplanar)

[3(11)] Paraboloid of revolution 3 (two imaginary)

[(31) 1] Parabolic cylinder 1 (uniplanar)

70. Tangent spheres of the cyclide.

5

The equation S (c^ + X) x^ = 0, where the xi are the coordi-
i

5

nates of a point of the cyclide 2 a;#i
2 = 0, represents the oo 1

tangent
i

spheres of the cyclide at the point #;.

Hence* if 2 m^yt = is a tangent sphere of the cyclide, we have

o 2
m *

=

Eliminating X between these equations, we have the relation

fulfilled by the coordinates mt
- of a tangent sphere of the cyclide.

m -2

It arises by expressing that the equation 2 l = should have

a double root. The equation being of the fourth degree in X its

discriminant will be of the twelfth order in the m^.

Let
yjr (m) = represent this equation, m^ + pra/ represents the

oo 1

spheres passing through the intersection of any two spheres

mi and m^, and we obtain those spheres which touch the cyclide

by means of the equation

fy (m + pm') = 0,

which is of the twelfth degree in p. Hence through any given
circle twelve spheres may be drawn to touch the cyclide.

If the spheres m and m' are concentric,

and the equation i/r (m + pm') = gives the twelve spheres having
the given point as centre, which can be drawn to touch the

cyclide, i.e. twelve normals can be drawn from any given point to

a cyclide.

* See Darboux, Sur une classe remarquable, etc., p. 275.

S-
t Since S J= constant.

rt
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Bitangent spheres.
5

If in the spheres l̂ (ai + \)a;iyi
= we take \ to be suc-

i

cessively a1 ...as,we obtain the five bitangent spheres which

touch the cyclide at the point x
; e.g. if X + a^ = 0, the corre-

sponding sphere touches the cyclide in the two points x1,x2 ...xs .

5

The Cartesian coordinates of the centre of the sphere Sm^ =
i

are clearly equal to the expressions

v mi V mtfi /S*
mi V mihi /V i .

l J '-' I ** > ** / ** 5

where the point ( fi, ffi, hi) is the centre of the fundamental

sphere S{.

Hence the coordinates of the centres of the set of spheres

mt
- + \w/ are each of the form -g ~

,
i.e. the cross-ratio of anyM + AO

four of these points is equal to the cross-ratio of the corresponding
values of X.

Applying this to the spheres T (at
- + X.) Xiyi= 0, and taking \

to be successively <x>, al ...as ,
the corresponding centres are

the point x and five points in which the normal to the cyclide at

the point x meets the five fundamental quadrics Qi ... Qs ;
it

follows that the cross-ratio of any four of the following six points

on the normal at any point P of a cyclide is constant, viz. the pointP
and the centres of the bitangent spheres which lie on the normal at P.

71. Confocal cyclides.

If the bitangent sphere is also a point-sphere #, its centre is

a focus of the surface. Taking one system we have for instance

zl
= 0, Zi = (at

- cO xi} (i
= 2, ... 5),

i

with the condition 2 z? = 0.

i

5 z
The equations z1

= 0, i - = 0, give the focal curve.
2 &i &i

If- is substituted for a; in the last equation, its form is

not thereby altered, since af al is transformed into

1 1 Oi f

tti+ fJi ! + /A (Of +
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Hence the equation becomes

i^+^Mf.o,
2 di Oi

which leads to the original equation

X
Hence the cyclides 2 - = are confocal with the original

cyclide 2 aixf = 0. They form therefore a confocal system in

which the original cyclide is included as corresponding to the

value infinity for X.

Through any point there pass three confocal cyclides, since the
5 x $.

equation 2 ^r = 0, regarding the art
- as given, constitutes a cubic

i o>i + A,

5

in A, (since 2 x? = 0).
i

These cyclides cut each other orthogonally, for if \lt X2 refer to

two cyclides through the point x, then since tangent spheres at

this point to them respectively are

^ Xjyt _ Q y Xjyj _ _

"*

if these spheres are orthogonal we have

2 T r-r = 0, (Art. 61).

But this is merely another form of the equation

ff 2 rr2

2 - 2 * = 0.

The three cyclides through any real point are all real
;
for the

variables x? may be all real, in which case the square of one of them,

say x, is negative, so that if we suppose the quantities i ... at in

order of magnitude, the cubic determining X has a root in each of

the intervals a
1

. . . a2 ,
az ... a3 ,

as . . . a4 . Again, if

xl and xz ,
and consequently a1 and 2 ,

are conjugate imaginary, the

cubic has a real root in each of the intervals a3 . . . a4 , a4 . . . as ,

and therefore possesses three real roots.
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Corresponding points on confocal cyclides.

The equations

<
= !, ...5),

establish a (1, 1) correspondence between the point x on the

7/-
2

cyclide S a^-2 = and the point y on the cyclide 2 = 0.

di -f* A,

5

Denoting by /(X) the product II (X + a^), by resolving into

partial fractions the expressions

X3 X2 XI
/(X)' /(X)' /(X)'

it is seen that

2(^i -s* Q>i ^ Q>i
^>

,-.

// , c & _// / \ ^* // / r ^ // , c v.

/(-<) / (
-

f) / (
-

Oi) f (- at)

Hence the equations S a^i2 = 0, 2, acf= Q, are identically satis-

fied by the substitutions

f(-*i}

These equations express the coordinates of any point x of the

cyclide in terms of two parameters Xj and X2 ,
so that if we take

Xi =

it follows that

The quantities X1} etc. are seen to be the roots of the cubic in

X giving the three confocals through the point y.

The above expressions for the y{ in terms of \lt X2 ,
X3 may be directly

obtained by considering the cubic in the form

-/2 6 11 .2

and hence it follows that

four other equations of like form are obtained similarly.
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The curves \ = constant, X^ = constant are the lines of curva-

ture on the surface S o^;2 = 0, for from the equation

it follows that if #; + dxt be the consecutive point on the curve

X, = constant, we have

hence

+ dxi)
=

(di + Xj) Xi ( 1 -
'

'-j
,

neglecting quantities of the second order; therefore a tangent sphere
at asi, viz. 2 (a; + Xi)#;;z/i

=
0, is also one of the tangent spheres

at the consecutive point on the curve X 2
= constant, and is there-

fore a principal sphere at the point x.

Thus the two confocals through any point of the surface

&iX? = intersect it in its lines of curvature
;
which is other-

wise manifest from Dupin's theorem.

72. The sixteen lines of the surface.

It is known that every general quartic surface with a double

conic contains sixteen lines (Art. 24). The existence of these

lines on the cyclide is made evident by the equations

/(

V
,.,

/'(-en)

For if we suppose X! = X2 ,
we obtain for any point sc of the

curve Xj = Xa the equations

pxi
= At\! + Bit (i=l, 5) ;

whence if
, 77, are the corresponding Cartesian coordinates of

the point x,

fcgl *! + =
' **

hence the curve is a straight line.

By taking all combinations of signs in the ambiguities in

equations (1) we obtain the sixteen lines. These lines are all

imaginary, since as in the general case of the quartic surface with

a nodal conic, a line on the surface must form part of a conic on
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the surface, and in the case of the cyclide all such conies are

circles.

73. Centre of a cyclide.

The locus of mean distances of points of intersection of a series

of parallel chords with an algebraic curve of degree n is called a

diameter
;
when the terms of degree n 1 in the equation of the

curve f(x, y}
= are lacking, all diameters pass through the

origin, the centre of the curve. The equation of a cyclide being
written in the form

2 + 2/

2 + s2

)
2 + 4t/' = 0,

we proceed to consider the centres of its sections. Since the

coordinate planes may have any directions, we may consider

the section of the surface by the plane z = h\ it is seen that

the diameter corresponding to chords of the section parallel to

the axis of x is the axis of y, and vice-versa. Hence the line

x = y = Q is the locus of centres of sections parallel to the plane
z = 0, so that the locus of centres of sections parallel to any plane
is a line through the origin perpendicular to that plane. The

origin is therefore termed the centre of the surface.

Sphero-conics on a cyclide*.

The sphere S=2L (where L = ax + (By + yz + 8, S = x* + y
2 + zs

)

meets the cyclide S
2 + 4sU= in a curve given as the intersection

of the sphere and the quadric U+ L2
;

it is therefore a sphero-
conic a-

; the centre of the sphere is termed the centre of <r. Now

denote by H the quadric U + L 2 + -
(8 - 2L) = ;

the inter-
T

section of H with the cyclide consists of a together with another

sphero-conic a-' which lies on the sphere 8 + 2L X = 0.

Hence any quadric through a- meets the cyclide in another

sphero-conic a-'. The line joining the centres of cr and a is

bisected at the centre of the surface, hence all quadrics through
a given sphero-conic cut the cyclide in another sphero-conic whose

centre is fixed.

If L is a constant k, the centres of a- and a-' coincide with the

origin ;
if 4& = X, the spheres and therefore a and cr' coincide, and

H becomes the quadric V, where

* The results of the present and following Articles were given by Humbert,
Sur les surfaces cyclides, Journal de 1'ecole polytechnique, LIV. (1884).

J. Q. S. 8
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this quadric V touches the cyclide along a sphero-conic lying on the

sphere S2k = 0. For these quadrics V it is easy to see that

in general two pass through any point, three touch any given line

and four touch any given plane*.
If ^correspond to any given value ofk, and if in the equation of

H previously given we suppose the quantity \ to be 4k, it is seen

that

hence H touches V along a conic.

The spheres S1} 2 2 which contain the curves a-, a-' of inter-

section of H and the cyclide are then

while the sphere S3 passing through the curve of contact of V
and the cyclide is S3

= S - 2k.

These three spheres have a circle in common in the plane
X k =

; hence, every quadric If which cuts a cyclide in two

sphero-conics or, <r' touches one of the quadrics V along a conic ; the

spheres which respectively contain a-, cr' and the curve of contact of V
and the cyclide have a circle in common whose plane is that of
contact of V and H.

Now take a generator of H through any point P of the conic

L k = V= ;
this lies in the tangent plane ofH at P and meets

the curves <T, a' in points A, B ; C, D ;
also

PA . PB = power of P for 21} PO.PD = power of P for 2,,

and since P lies on the common radical plane of 2i, 22 ,
23 we

have

PA.PB = PC.PD = power of P for 2 S
= x* + y

z + z2 - 2k
;

where (x, y, z) are the coordinates of P.

By giving different values to the constants in L we obtain all

quadrics H which touch V at P
;
hence the result holds for any

tangent line to V at P, from which we deduce the result : the

point of contact of V with any of its tangent planes IT is a centre of

self-inversion for the section of the cyclide by TT
;
and since four

quadrics V can be drawn to touch any given plane we thus obtain

the four centres of self-inversion of the section of the cyclide by

any plane.

* The quadrics V correspond to the quadrics ^ + 2\0 + X2
M?

2=0 for the general

quartie surface <p*
=

w*ij/.
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74. Conjugate points.

Two such points A, B on a tangent to V are called conjugate

for the system V. Any two points of the cyclide are conjugate for

one quadric V and for one only ;
for since three quadrics V touch

any given line which meets the cyclide in the points A, B, 0, D,

these points can be arranged in two pairs in three ways, each

arrangement corresponding to one quadric V.

If from any point A of the cyclide tangents be drawn to a given

quadric V the conjugates of A lie upon the cone and also upon the

cyclide ;
since the cone has as its equation VV P 2 where P is

the polar plane of A (or x', y', z'\ it follows that this cone meets the

cyclide in two sphero-conics a-, a but only one of them is formed by
the conjugates of A. For since V = U+ kS k* we obtain the

intersection of this cone with the surface $ 2 + 4t/" = by writing
in the equation of the cone 4F= (8 2k)

2
, giving as the two

spheres through the curves a-, a-'

(8-2k)(S'-2k)=4!P-

one of these spheres passes through (x', y', z), since

(S'-wy~~
Let Si be the sphere which passes through A, then if Q is any

point (a, y, z) on the conic along which the cone touches V, and

therefore lying on the plane P = 0, the line AQ meets S t in

a second point B such that

QA.QB = power of Q for ^ = #2 + y
z + z2 - 2k.

Hence B is conjugate to A
;
and cr is composed of the conjugates

of A.

The direction cosines of the normals to the cyclide and the

sphere Si, at A, are easily seen to be the same. Hence the locus of
the conjugates of a point A for a given quadric V lies on a sphere

touching the surface at A.

75. Cartesian equation of the system of confocal cyclides.

The equation
2 + - W

4
f^9, -

v
= 0, where

(A, + X) (A 2 + X) (A 3 + X)

* See Art. 54.

82
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represents in Cartesian coordinates the system confocal to the

given cyclide. For it is, when reduced, of degree eight in X, and

since

it is seen that X + A^ is a factor of the reduced equation; similarly

for X + A 2 ,
X + A s . Moreover the coefficients of X8 and X7

vanish,

hence we have a resulting cubic X of the form

where the 2f are cyclides. Since for the roots Xj . . . X4 of F(\) =
the surface reduces respectively to 8-^ ... S4

2
,

it follows that the

cubic in X can be expressed in the form

where the are cubic in X
;
and therefore in the form

, ... !
_ 0>

X ~~
Xj X *~ X4

But since S& is included, for X = Xs , it follows that

KI : K.2 '. KS : K4
= X5 \i : X8 X2 : X5 X^ : X 5 X4 ,

r .

whence we finally obtain 2 l = 0.
-

i X Xt
-

The following result is given by Humbert*
; when the sphere

S + 2L = is a point-sphere, and the quadric U + L2 = is a cone,

the locus of the centre of this point-sphere is a cyclide confocal with

Let S = x2 + f + z* + d,

17= a^a? + a2y* + as z
2 + 2px + 2qy + 2rz + c,

L = ax + $y + yz + 8.

Then S + 2L = is a point-sphere if

2
+/9

2 + 7
a -d-28 = 0;

the quadric U + L- = is a cone if

a2An + 2a/9A]2 + ... + A = 0,

where A is the discriminant of U, and An , etc. its first minors.

* Sur les surface* cyclides, Journal de l'6cole polykchnique, LIV. (1884).
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Now denoting by (x, y, z) the centre of the point-sphere so that

x a, etc. the last equation becomes

On inserting the value of S we obtain as the required locus

2qy Zrz 7\-iZ- + --- d)
2 3 /

2qy Zrz 7\
2 4A

-iZ- --- - - - - = 0.

On writing *
= A t + \ p = Bly q = B2 ,

r = B3 , d = 2\, c = C- X2
,

the cyclide S2 + 4U takes the form given (Art. 54) and the

locus is seen to be a confocal cyclide.

76. Common tangent planes of the cyclide and a tangent

quadric.

If we take any plane touching the cyclide at a point and an

inscribed quadric F at a point P, the line PO touches a line of

curvature of the cyclide at 0. For if the plane be taken as the

plane 2 = and the line PO as the axis of x, the equation of the

surface assumes the form

(x
2 + y

2 + zz + 2ax + 2by + Icz + A;)
2

+ 4 (AX* + By
2 + Cz2 + 2Dyz + ZEzx + ZFxy

kax kby + Zrz
-j- J

= 0,

with the conditions F+ ab = 0, A + a2 =
;
the second member of

the left side representing V.

But in the equation of the indicatrix of the surface at the

coefficient of the term involving xy is F+ ab, hence the line PO
is a tangent to a line of curvature at 0. The tangent to the

other line of curvature is OQ, where Q is the point of contact of

the other inscribed quadric V which can be drawn to touch the

plane (the two other inscribed quadrics which touch the plane

coincide here with that which touches the cyclide at taken

doubly).

Thus the locus of the points of contact with a cyclide of a

plane which touches the cyclide and a fixed quadric V, is a line

of curvature of the cyclide, the intersection with it of a confocal

cyclide.



CHAPTER VI

SURFACES WITH A DOUBLE LINE : PLUCKEE/S SURFACE

77. The equation of a quartic surface with a double line may
be written in the form

x<?W = 0,

where U= is a quadric and F=0, W = Q are cones whose vertex

is the point A l . Since twenty-two constants enter linearly into

this equation, and since four conditions determine a line, the

surface depends upon twenty-five constants.

The section of the surface by a plane xl
= A#2 through the

double line consists of the double line together with a conic
;
the

cone of vertex A l through this conic has as its equation

where U' is the result of substituting \xz for x-^ in U. The co-

efficients of #2
2
,
#3

2
,
#4

2
,
#2#3 ,

xzx4 ,
ac3x4 in the last equation are

functions of X of degrees 4, 2, 2, 3, 3 and 2 respectively; hence it is

a pair of planes for eight values of X, eight of the sections through
the double line consisting of a pair of lines. The surface thus

contains sixteen lines
;

it contains no line which does not

intersect the double line, unless U, V, W have a common

generator.

78. In addition to the conies in planes through the double

line the surface contains certain other conies. The origin of these

conies is seen by application of the following theorem : if seven

lines p^ ...p7 are all intersected by an eighth line p, there is one

conic which intersects the eight lines.

This result may be proved as follows : consider five lines

pl . . . p6 all intersected by p which we may take as the edge
A 3A 4 , any arbitrary line p' being A 1 A%, then there are three planes

through p' which meet the lines pl ... ps ,
A 3A 4 in points of a conic

;
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for the plane xs X#4
= meets any one of the lines p^ . . . ps in a

point whose coordinates are

AOL, By, X, 1,

where a = aX + b and a,b,A,B are constants connected with the line;

project these five points from A 4 upon the plane o4 , giving points

AiOi, B&, X, (1=1,2,3,4,5);
the condition that these five points and A 3 should lie upon a

conic is then

^af Bfaf X2
Ajui! B^y, A&af

': I : : 1 :
= 0.00100

Omitting the irrelevant factor X2 we obtain an equation of

degree eight in X. But five of these values of X relate to the five

planes through p' and the points (j>;, A 3 A 4): hence we have

finally three planes through p' meeting pi...ps ,
A 3A 4 in points

of a conic.

Hence the planes meeting p, pt
. . . p5 in points of a conic

envelop a surface of the third class.

This surface contains each of the lines px . . . p5 ;
for the plane

through p1 and the second transversal of p1} p.2 , ps , pt ,
meets the

lines p, Pi-..p5 in six points lying on two lines.

Similarly for p 1 and the lines p3,p4,p5 , etc.; hence four tangent

planes of the surface can be drawn through p1} i.e. p lies on the

surface; similarly for p2 ... ps . For the same reason p lies on

the surface. Now consider the three surfaces thus formed with

P, PI, Pz, PS, Pt and p5 , pe , p7 respectively; applying the known

results* for the intersections of three cubic surfaces which have

four lines in common, it is seen that there is one tangent plane

common to the three surfaces.

Construct, therefore, the conic which meets the double line and

also one line of each pair out of seven pairs of lines
;
this conic meets

the surface in nine points and therefore lies upon it. The plane of

this conic meets the surface in another conic, the two conies have

one intersection upon the double line
;
each conic meets one of the

two lines forming the eighth pair of lines.

By taking all possible selections of seven lines in accordance

with the foregoing method, we obtain 2 7 = 128 conies lying in

64 planes; each plane being a tritangent plane of the surface.

*
Salmon, Geom. of three dimensions, 5th Ed., Vol. i. p. 371.
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79. Mapping of the surface on a plane.

Any one of the foregoing conies affords a means of representing
the points of the surface upon a plane*. For if (7=0 is such a

tritangent plane, the equation of the surface may be written

(xj A - x2B) faA' - x2 B')
- C [Px*

- 2Nx,x2 + Mx^} = 0,

where A, B, ... M are linear functions of the coordinates.

We may therefore express any point of the surface in terms of

two parameters, viz. the ratios of gl} f2 , ,, as follows:

(1) fl#l + f2#2 = 0,

(2) &B+M+&0-0,
(3) & (B& + A'& + Mtf + 2N&& + P& =

;

giving a (1, 1) correspondence between any point x of the surface

and a point f of any assumed plane.

For any assigned point ,
the first two equations give a line

which intersects the double line and also the conic

0=0, xlA-x2B = Q,

its fourth point of intersection with the surface being the point
x which corresponds to f. Conversely each point x of the

surface determines such a line and hence one point . For any

point x, however, of one of the eight lines of the surface which

intersect this conic, the same point ( is determined
;
we have

therefore eight principal points of the correspondence which we

denote by B^ ... B8 ,
each of them corresponds to all the points of

one of the eight lines.

If in the preceding equations connecting x and we have

(7 = 0, then either x1A-x2B = 0, or ^=0, 2
= 0; hence to the

points of the conic in the plane (7 = which does not meet the

line determined by (1) and (2), there corresponds the single point

gi 0, 2
= 0, which we denote by A.

To any plane section of the surface there corresponds in the

field of a quartic curve : since this section meets each of the

above eight lines, and also twice meets the conic just referred to,

it follows that this quartic curve passes through the eight principal

points and also passes twice through the point A. Hence we have

a system of quartics having a common node and eight common

points f.

*
Clebsch, Ueber die Abbildung algeb. Fllichen, Math. Ann. i.

t The condition of possessing a node at a given point and eight fixed points is

equivalent to eleven conditions, leaving a linear system triply infinite of quartic
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To the conic (7 = 0, flxl + 2x2
= 0, ^B + %.2A = there corre-

sponds a quartic curve obtained by substituting for the coordinates

x their values in (3), in terms of x : 2 ;
hence this quartic possesses

a triple point at A,

The pencil of lines through the point A corresponds to the conies

in sections through the double line; the cubic curve through the

nine principal points corresponds to the double line. This cubic is

obtained by writing ^ = a;2
= in (2) and (3), and hence is given as

the intersection of a pencil of lines x3K + #4K' = 0, and a pencil of

conies #3U + #4V =
;
to any given point #3/#4 of the double line

correspond two points P, P of this cubic collinear with the point

-=J5T'=0,orQ.

Writing a^ = #a
= in (2) and (3) and eliminating j~3 we obtain

(ftJBo + Mo)(,' + M.') - C (Po& + 2JVO&& + -M.&
1

)
= 0,

in which B is the result of writing xl
= <v2

= in 5, etc.

This gives the pair of lines joining P, P' to the point ^ = f2
=

;

the corresponding pair of planes through the double line is

faAo - x2B ) (odAo
- x2B ')

- C (P ^2 - 2 JZV a?1 a:a + M*xf) = 0,

which is the pair of tangent planes at the stated point #3/#4 of

the double line. Hence the conies in these tangent planes are so

related that their corresponding lines meet the cubic, the image of

the double curve, in points P, P' collinear with the point 0.

From four tangents can be drawn to this cubic, hence at four

points of the double line the tangent planes coincide, giving four

pinch-points.

80. We add a table containing the preceding results :

On the surface lu the field of

Eight lines of the surface which meet Eight principal points lying on a

the conic G=XI A x2B=0, or c2
2

quartic having a triple point at

6-6-0
The second conic in the plane (7=0, A principal point A (^1

=
^2
=

0)

or C!
2

The conies in the planes through the Lines of the pencil whose centre is

double line the point A

The double line A cubic passing through the nine

principal points

A point Q on the double line Two points P, P' in this cubic collinear

with a fixed point on the cubic
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On the surface In the field of

The conies in the pair of tangent Two lines AP, AP'

planes to the surface at Q
Four pinch-points on the double line The four points of contact of the

tangents from to the cubic

The nine principal points cannot be the complete intersection

of two cubic curves u = 0, v =
;

for if so the image of every

plane section would be of the form Lu + Mv = 0, where L, M, u, v

concur at A. Hence the equations connecting x and would be of

the form

pxl Pu, px2
= Pv, px3

= Qu, px4 Qv,

leading to the quadric surface x-^x^
= x2x3 .

The curve on the surface which corresponds to any line in the

plane of is a twisted quartic of the second species. For to

any line aj of the plane there will correspond a curve lying on

the quadric

j a2 a s

1

BAG
= 0;

this quadric meets the quartic surface in the double line and also

in the conic c2
2

;
hence it also meets it in a twisted quartic. Since

the line a$ = meets the cubic corresponding to the double line

three times, the double line meets the quartic curve three times
;

this quartic is therefore of the second species.

To any line of the pencil whose centre is the point of the

cubic curve corresponds a quartic which passes through the point

of the double line corresponding to and which has a double point
in the single point corresponding to the points P, P'.

81. Curves on the surface.

By aid of this representation of the surface on a plane the

various algebraic curves on the surface can be readily deter-

mined.

If M and m are the orders of a curve cx on the surface and

the corresponding curve c$ in the plane, cx is met by any plane
section ax in M points, and Cf is met by a$ in 4m. points;

while if cx meets Cj
2

y3 times* and the eight lines ^ ... a8 times

*
Excluding an intersection at the point where q2 meets the double line.
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respectively, these points, though not intersections of cx and ax ,

give rise to intersections of c^ and a^, hence

If = 4m 2/3
- 2a.

By aid of this equation we can obtain the various species of curves

on the surface*.

The sixteen lines are represented by the eight principal points

Bi and the lines joining the point A to these eight points.

The conies of the surface are obtained by taking /3
= 0, 1, 2, 3

successively :

$ = requires that m=l, S = 2; this gives the joins of the

eight principal points Bi} which are twenty-eight in number.

/3
= 1 requires that m = 1 or m 2

;
in the first case 2a =

and we have the pencil of lines through the point A ;
in the

second case Sa = 4 and we have conies through A and four

principal points; there are seventy such conies.

@ = 2 requires that m = 3; this gives 2a = 6, and we have thus

cubics having a node at A and passing through six principal

points; there are twenty-eight such cubics.

/3
= 3 requires that m 4 and hence So = 8

;
this gives a.

quartic having a triple point at A and passing through the

eight principal points. This quartic corresponds to c2
2
.

The case @ = 4 cannot arise. We have thus, counting the

point A, obtained the images of all the conies of the surface,

including those in sections through the double line; apart from

the latter there are

1 + 28 + 70 + 28 + 1 = 128

conies on the surface
;

i.e. there are no conies other than those

already obtained.

* Limits within which m must lie are derived from the fact that m ^ ft+ 1 and

from the equation

(ro-lHm-2) /8(j8-l) _o(a-l)
2 ~2~ 2

'

where p is the deficiency of the plane curve, if we suppose the curve on the surface

not to possess multiple points ; and also from the inequality

_
2 2

It follows that

hence m^M+p - 1 + /3.
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Cubics on the surface.

The case M= 3 gives rise to curves in the plane of which

particulars are stated in the following table. We notice that

since the coordinates of a point on a twisted cubic are expressible

as cubic functions of a parameter, the corresponding curve in the

plane is unicursal, so that for it p = 0.

/32am
I 1 1 Eight pencils of lines through JBi...B8

II 5 2 56 conies through five of the points Bi

III 1 3 2 56 sets of oo 1 conies through A and three

points Bt

IV 1 7 3 168 cubics through A and five points Bt and

having a sixth point Bi as node

V 2 5 3 56 sets of oo 1 cubics with a node at A and

passing through five points Bi

VI 2 9 4 168 quartics having nodes at A and at two

points Bi and passing through five other

points Bi

VII 3 7 4 Eight sets of oo 1
quartics having a triple point

at A and passing through seven points Bi

VIII 3 11 5 56 quintics having a triple point at A, passing

through five points Bi and having nodes at

three points Bi

Any conic of class III intersects the cubic corresponding to the double

line in two points* apart from the principal points, hence the corresponding
cubic on the surface meets the double line twice. The same applies to the

cubics corresponding to class V. And any conic of class III meets any cubic

of class V in four points apart from A, if they together pass through the

eight points Bf. Hence if c3
,
cf3 are any two such cubics on the surface repre-

sented in classes III and V respectively, we can pass one quadric through
the double line, their points of intersection, and one point on each re-

spectively t
;
this quadric will contain each cubic. It follows therefore that

any two cubics thus represented by classes III and V respectively lie on the same

quadric ; there are oo 2
quadrics which meet the surface in the double line and

two twisted cubics.

Similarly any two curves of classes I and VII which together pass through
the eight points Bi will intersect in four points and meet the cubic corre-

sponding to the double line in two points. Hence they also lie on one of

oo 2
quadrics. The 448 simple cubics in classes II, IV, VI and VIII arise as

the intersection with the surface of the 448 quadrics which pass through
three non-intersecting lines of the surface and the double line.

* These two points are not collinear with as is seen by taking the pair of lines

ABlt B2
B3 and the corresponding line and conic on the surface.

t Any quadric through the double line contains six available constants.
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Quartic curves of each species exist on the surface : their

images in the plane will have deficiency either zero or unity.

The following table gives the varieties of such images:

,3=0
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degree in W. The tangent cone to the surface from A t is then

V2 UW=0; its section by ^ = is a sextic curve having a

quadruple point at A z . The class of this sextic is 30 12=18,
hence ten tangents can be drawn to it from A 2 . The two

tangents from A l to the conic in any plane section through the

double line touch it in points P, P' which are projected from A 1

into points Q, Q' collinear with A z ;
such a pair of points Q, Q'

coincide, as just seen, ten times
;
such a coincidence arises from

the pair of conies which pass though A 1} these two tangents are

the lines U=Q, they lie in the two tangent planes to the surface

at AI ;
and also when a conic becomes a pair of lines

;
hence there

are eight pairs of lines meeting the double line.

If the surface has a node external to the double line, a node

arises on this sextic curve, hence its class is reduced by two, and

the number of pairs of lines is reduced by unity.

If there are five nodes the sextic necessarily breaks up into

a quintic having a triple point at A 2 and three nodes, together
with a line through A 2 ;

for it cannot break up into a quartic with

a triple point and a conic, or into two cubics with a common
double point, since in both cases no tangent can be drawn to the

compound curve to touch it at a point outside A 2 ,
while there

should be two, corresponding to the two conies through A t .

Hence two nodes must lie in a plane through the double line, and

their join meets the double line. The tangent cone from A 1 breaks

up into a quintic cone together with the plane through the double

line and the line p joining the nodes. This plane touches the

surface along the line p : there is no part of the surface in this

plane except the double line and p; for any line in the plane
meets the surface twice where it meets p and twice where it meets

the double line and therefore at no other point ;
the line p is

therefore torsal.

If there are six nodes the sextic becomes a trinodal quartic

having one of its nodes at A 2 and two lines through A 2 ;
here we

have two torsal lines. If there are seven nodes the sextic becomes

a nodal cubic through A 2 and three lines through A 2 ; finally, if

there are eight nodes, we have a conic and four lines through A 2 .

It should be noticed that if there are four coplanar nodes their

plane is a trope of the surface. For the conic through the four

nodes and the point in which the plane meets the double line

meets the surface in ten points, and hence lies wholly on the
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surface. The two conies of the section here become coincident,

and the plane is a trope.

Consider next the case of seven nodes
;

six of them, as has

been seen, lie in pairs on three lines meeting the double line, let

them be B1} B^ lying on bj, B2 ,
B2

'

lying on b2 ,
B3 ,

B3

'

lying on 63 ,

and a seventh node _B4 . Take as the point AI that in which the

plane B2B3B^ meets the double line
;
the sextic curve consisting

as above, of a cubic through A 2 with one node, the projection of

B4 , together with three lines through A z ,
will for this position

of A! have its node collinear with the projections of B2 and B3 ;

hence it must consist in part of the line joining these two points,

and upon this line the projection of another node, /, must lie.

The residual part of the cubic is a conic. Hence it follows that

the nodes BiB2B3B^ are coplanar.

Taking the other combinations

we obtain in all four planes, each containing four nodes. The

surface has therefore four tropes.

If there is an eighth node Bt', then the sextic curve, consisting

in the previous case of three lines through A 2 and a nodal cubic,

here receives an additional double point, the projection of 54',

hence the sextic consists of four lines through A 2 and a conic.

There are therefore four torsal lines, viz. B1} B on b1} B2 ,
B2 on 62 ,

B3 ,
B3 on b3 ,

and -B4 , J3/ on 64 .

By combining B4

'

with the nodes Bl ... B3 as before, we obtain

four more tropes, viz. the planes

B&B&, B&BW, BWBM, Bl B,'Bt'B4'.

It follows that the points Bt and the points BJ form two tetrahedra,

each of which is inscribed in the other.

If we take as the point A^ that in which B2B3Bt

'

meets the

double line, the sextic curve consisting of four lines through A 2

and a conic will have three collinear nodes on the latter, viz., the

projections of B2 ,
B3 ,

and Bt', hence this conic will consist of two

lines, each containing four nodes, viz. those lying in the tropes

(B^fljfl/) and (B.'B^'B^

The line of intersection of these tropes thus meets the double

line in A l ;
and since the tangents from A z to this (degenerate)

conic coincide, it follows that the tangent planes at A
l
will
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coincide and A t is a pinch-point. Hence we have four pairs of

tropes whose four lines of intersection meet the double line at

pinch-points.

83. Pliicker's surface.

The surface with a double line and eight nodes is known as

Pluckers surface. One form of its equation may be obtained as

follows: through two nodes on different torsal lines there pass

two tropes, and there is one quadric 8 which contains the conies

in which these tropes meet the surface and also the double line.

If the double line is A^A Z and the tropes are taken as the

planes x^ and x2) the equation of the surface is necessarily of

the form

S'-f^ #278 = 0,

where 7 = 0, 8 = are two planes through the double line also

meeting the surface in torsal lines.

Taking the two nodes as the vertices A 3 and A 4 of reference

we obtain the equation of the surface in the form

(#!<* + #2$ + nxsx^
2 + x^oyB = 0,

where a, /3, 7, 8 are planes through the double line.

There are two further conditions to be satisfied, viz. that each

of the planes x3 and xt meets the surface, apart from the double

line, in a torsal line
;
hence if

then writing successively x4
= and x3

= 0, we obtain as the

required conditions

4a3 63
= c3d3) 4>a4bt

= c4d4 ,

giving two torsal lines as

xi
= xl a3 x.J)z = 0, x3

= x^4 x.2 b4 = ;

the other two being

7 = =
,

8 = =

The above form of equation of the surface shows that the

plane x1
= touches the conies lying in sections through the

double line.

Hence each trope touches each of these conies.

By aid of this form of the equation of the surface we can

obtain the form assumed in the case of Pliicker's surface by the

previous equations connecting a point x of the surface with
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a point f of a plane ;
for the equation of the surface is seen to be

identically satisfied if we write

where A, B, C, D are the results of substituting and f2 for

#3 and #4 respectively in a, /3, 7 and 8.

The cubic corresponding to the double line is

it touches the lines (7=0, D =
0, and by aid of the preceding

conditions it follows that it also touches the lines

= 0, 2
= 0.

The quartic representing any plane section has a node at

the point =
2
= 0, and touches the lines = 0, 2

= in given

points. It also touches the lines (7=0, D = where they

respectively meet 3
= 0. If E1EZE3 is the triangle of refer-

ence in the field of and the principal points on E3E2 ,
E2El are

Q! and Q2 ,
those on ^^2 are Q3 and Q3', the correspondence

between points x and f is of the (1, 1) character with the following

exceptions: any point on E3E2 corresponds to the node A 4 with

the exception of Q1} which corresponds to a torsal line, and the

point E3 which corresponds to any point of the conic in the trope

#j; similarly for E
r
E3 and the point Q2 ]

while to any point of

C = 0, D =
correspond the other two nodes in x respectively, but

to Q3 and Q3 the other two torsal lines respectively correspond.

The equation M = 4>m - 2/3
- 2cc

as before connects the order of a curve on the surface and the

corresponding curve in the plane, where ft is the number of

intersections of the former curve with the conic in the plane #j

exclusive of intersections at nodes in that plane.

It is easily seen from this equation that no line can exist on

the surface except the four torsal lines, which are represented by
the four principal points Q, and the double line. To obtain the

conies of the surface we may take /3 = giving m 1, 2 = 2
;
so

that six conies are represented by the lines joining the principal

points Qlf Q2 , Q3 , Q3 ;
or we may take ft

= 1, giving either

j. Q. s. 9



130 FLICKER'S SURFACE [CH. vi

ra = 1, 2 = 0, so that the conies in planes through the double

line are represented by the pencil of lines through E3 ;
or

m = 2, S = 4, which gives the conic through the five principal

points. If we add the conic represented by E3 we obtain all

the conies on the surface.

The existence on the general surface with a double line, of

conies whose planes do not contain the double line, and the fact

that the surface is rational, have been shown very simply by Baker*

as follows : consider the quadric cones

u v /n Ny=-, t ........................ (1),y w w

where u = 0, v = are pairs of planes through the double line

x =. z =
;
and w = is a plane through it

;
these cones intersect

in a conic which meets the double line at one point only.

The equation of the surface being

if in A, S, G we substitute for y and t from (1), we obtain a sextic

in acjz ;
and the seven arbitrary constants in u, v and w may be so

chosen as to make this sextic vanish identically. Hence the

surface contains at least one conic which meets the double line

once only.

V i /
U/\

The substitution t + r[y -- ) enables us to express yw V wj
nr*

rationally in terms of T and -
;
and hence also t; i.e. we can express

the coordinates of any point on the surface as rational functions of

two variables.

* Some recent advances in the theory of algebraic surfaces, Proc. Lond. Math.

Soc., Series 2, Vol. xn. p. 36.



CHAPTER VII

QUARTIC SURFACES WITH AN INFINITE NUMBER OF

CONICS : STEINER'S SURFACE : THE QUARTIC MONOID

84. The property of containing an infinite number of conies

has been seen to be possessed by all quartic surfaces with a double

conic or a double line; in the present chapter we consider all

surfaces which have this property.

The determination of the quartic surfaces which contain an

infinite number of conies was made by Kummer*.
The following is a brief account of his investigation. If the

plane section of a quartic surface has four double points it will

consist either of two conies or of a line together with a nodal

cubic, in the latter case three double points are collinear. If the

section consists of two conies, each of their points of intersection

is either a double point of the surface or a point of contact of the

surface and the plane section.

Consider first the case in which no point is a point of contact.

Let two of the double points be fixed f; the surface must then

possess a double conic, the equation of such a surface is

<|>2 = 4p2^,

where <I> = 0, M* = are quadrics. If the surface contain also two

double points whose join does not lie on the surface, M* must

break up into two linear factors (Art. 38), and the surface is then

<E>2 = Qtpiqr,

whose sections by planes through the line (q, r) are pairs of conies.

If the surface has another pair of nodes, its equation will

be (Art. 38)

(p
2 + qr- st)

2 =

or (p
2 -

qr + st)
2 =

* Ueber die Fltichen vierten Grades auf welchen Schaaren von Kegelschnitte

liegen, Crelle, LXIV.

t The cases in which none or only one of the double points are fixed lead only to

a quartic surface consisting of two quadrics, or a cone.

92
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In this case we have two sets of conies lying in planes whose axes

are (q, r) and (s, t).

If three of the double points are fixed they necessarily lie on

a double line
;
the sections of a surface having a double line by

planes through the double line form a set of conies.

If certain of the double points coincide we are led to special

cases of the surface <I>
2 =

4>p*qr, except in one case, viz. that in

which the surface touches itself at two points ; any plane section

through these points gives a quartic curve which touches itself

twice, and therefore necessarily consists of two conies having
double contact.

The equation of such a quartic surface is 3>2 =
a/:ty8 where

a = 0, /3
= 0, 7=0, 8 = are four coaxal planes ;

the intersection

of their axis with 4> = gives the two double points having the

above property ; they are usually called tacnodes.

Consider next the case in which one of the four double points

is a point of contact of the plane and the surface
;

if none of the

three remaining points are fixed the surface possesses a double

curve of the third order, which, when a twisted cubic, a line and

a conic, or three lines, gives rise to a ruled surface, and the section

by a tangent plane to a line and a cubic, excepting only in the

case in which the three lines are concurrent. The surface then

has the equation

Aq*r
2 + Br~p

2 + Cp
2

q
2 + Zpqrs

= 0.

This surface is known as that of Steiner.

If next one of the double points is fixed, the surface must have

a double conic and one node. Its equation is then (Art. 38)

<|>2 = 4^2^
where = is a cone whose vertex lies upon O = 0. This cone

touches the surface along the curve (<l>, ^), the tangent planes
of M? thus meet the surface in pairs of conies.

Lastly let two of the points be points of contact, the surface

has a double conic, its equation may be written

We may determine X in five ways so that

+ xo> + \Y = o

is a cone V (Art. 22) ;
V has double contact with the surface

;

hence the tangent planes of five cones are bitangent planes of the

surface and meet it in pairs of conies.
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In the case of ruled quartic surfaces, the bitangent planes
contain two generators and therefore meet the surface also in

a conic.

85. The quartic surfaces which have respectively a double

conic and a double line are discussed in Chapters III VI, that

which has three concurrent double lines (Steiner's surface) in the

course of this chapter.

To return to the surface 3>2 = 0/378, where a, fi, 7, 8 are coaxal

planes ;
this surface has been shown by Nother* to be birationally

transformable into a cubic cone. For if the axis of the planes

a, /3, 7, 8 be the line z = 0, w = 0, and the planes x = 0, y = are

the tangent planes to <X> where the line (z, w) meets 4>, then <l>

may be written xy + (z, w\af, and the surface becomes

{xy + (z, w$
2

}

2 =
(z, w~$b)\

Choose as new variable w one of the factors of (z, w]&)
4
,
the

quartic surface becomes {xy + (z, w]a)
2

}

2 = w (z, wQb)
3

;
then by aid

of the transformation

x:y:z\w x'w' (z, w'^cCf : y''
2

: y'z : y'w',

x : y' : z' : w' = xy + (z, w\af : yw : zw : up,

we obtain x'zw' = (z', w'~$b)
3

;
a non-singular cubic cone.

The system of conies on the surface may be represented as

foliowsf :

Writing the equation of the surface in the form

* J

then if (z, wQa)
4 = a z* + a^z

3w + a^z^w
2 + a

(z, wl^by = b z2 + b^w + 62w2
,

the system of conies is

with the condition

b
fjt
-

1) \
4 -

(a1/A
2 + b./j.) \

3 + (a2 (M
2 + bap) X

2

a4 /A
2 = 0.

From these equations it is seen that the conies of the surface

can be arranged in sets of four, lying on the same quadric. By
*
Eindeutige Raumtransformation, Math. Ann. in.

t Sisam, Concerning systems of conies lying on cubic, quartic and quintic surfaces,

American Jour. Math. 1908.
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suitable choice of b
,
b1} 62 we may replace the first two of the

preceding equations by

z + \w = 0, z* + pxy = 0,

and we obtain the result: the quadric cone whose vertex is any

point of the line cc = y = Q* and which contains any conic of the

system will meet the surface in four conies.

To the foregoing surfaces described by Kummer we must add

the surface whose equation is

{xw +f(y, 2, w)}
2 =

(z, w$a)
4
.

This may be regarded as a geometrically^ limiting case of the

last surface when the two tacnodes coincide in the point (y, z, w).

Its sections by planes through (z, w) consist of pairs of conies.

The equation of the surface may be written

(xw
-

7/
2

)
2 + 2 (xw - y

2

) (z, wQa)
2 + z (z, w~$b)

s =
;

and by application of the transformation

x : y : z : w = y'
z + z'x' : y'w' : z'w : w'2,

x' : y \ z' : w' = xw y* : yz : z- : zw

the surface is transformed into the cubic cone

z'x'* + 2x' (z', w'^af + (z,

86. Steiner's surface.

The surface of the third class with four tropes was first

investigated by Steiner . In accordance with this definition we

may take as its equation in plane-coordinates1111- + - + -+- = 0.

U^ U2 U3 U4

* Since 2=0, w = are any two planes through the given line z = 0, w=0.

t It cannot be derived from it by giving any particular values to the constants.

See Berry, On quartic surfaces which admit of integrals of tJie first kind of total

differentials, Camb. Phil. Soc. Trans. 1899.

J This quartic surface is discussed by de Franchis, Le superficie irrazionali di

quarto ordine di genere geometrico-superficiale nullo, Rend. Circ. Mat. di Palermo, xiv.

It is there shown that the irrational quartic surfaces for which pg (the geometrical

genus) is zero are either cones or birationally transformable into cones : they

include the two surfaces last discussed, also the ruled quartic surface with two

non-intersecting double lines, the surface {xio+f (y, z, w)}
2 =

(z, w>$a)
4 where / con-

tains y only to the first degree (this is a ruled quartic with a tacnodal line), and also

two special quartic surfaces. See also Berry, loc. cit.

The surface is also known as Steiner's Roman Surface.
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The equation of the surface in point-coordinates is seen to be

The coordinates of the points of the surface may therefore be

expressed in terms of the coordinates TJ of the points of a plane

by means of the equations

/ \2 / / i i \2

By changing to a second tetrahedron of reference, desmic to

the first (Chap, n), i.e. by writing

2/4
== $1 T #?2 *^3 i ^"4j

we finally obtain

0-2/1
=

2772773, 0-2/2
=

277377!, 0-7/3
=

277J772, 0-7/4
=

?7i
2 + 772

2 + 773
2

.

This method of representing the surface on a plane was first

given by Clebsch*. Eliminating the 77^ we obtain as the equation

of the surface

2/2

2

2/s

2 +
2/3

2
2/i

2 + 2/i

2

2/2
2 ~

27/i2/22/ 3 2/4
= 0.

This latter form of the equation of the surface shows the

existence of a triple point A 4 (yi y2 y3
=

0), three double lines,

and three nodes. The section of the surface by any tangent plane
contains four nodes, and hence breaks up into two conies', a

characteristic property of this surface.

There are no lines on the surface other than the three double

lines
;
for there is clearly no other line passing through A 4> and if

there were a line not passing through A 4 then the section by the

plane through this line and A 4 would possess a triple point at A 4 ,

i.e. would consist of this line together with three other lines

through A.
The correspondence between a point yt of the surface and

a point rji of the 77-plane is of the (1, 1) character, the only

exceptions to this being for points of the three double lines; to

such a point there correspond two points of the 77-plane, e.g. for

a point of the line y1
= y2 =Q we have

_ Q 2^4 _ ^i
2 + 7?2

2
.

2/3

giving two points on 773
= 0, for which the values of - - are

reciprocal. * Ueber die Steinersche Flache, Crelle, LXVII.
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87. Curves on the surface.

To a curve <(?;)
= of order n on the i;-plane there corresponds

a twisted curve of order 2n on the surface, this being the number

of points in which
</> (17) meets any conic

%* + 22aai7i% = 0.

To the straight lines of the ij-plane there correspond the

oo 2 conies of the surface; to conies in the Tj-plane correspond

twisted quartics which are either of the second species or are

nodal and of the first species ;
this is seen from consideration of

the rank of such curves, i.e. the number of their tangents which

meet any given straight line, e.g. Oy
=

/3y
= 0, i.e. the number of

planes Oy + \/3y
= which touch the curve. Denoting the results

of substitution for the yt in terms of the tji in Oy, fty by u and v,

we have to determine the number of conies u + \v which touch <,

giving the equations

+ X - = a- (i = 1 2 3)
drji drji drji

The required points of contact are given as the intersections of

du dv
d(f> _

and are n (n + 1) in number if
<f>

has no singular points. We thus

obtain six as the rank of twisted quartics on the surface, which

therefore belong to one of the two classes previously mentioned.

88. The equations

n/r . f.(-n 'n >n \ (i 1 9 ^ 4,\
L/tASl

"

/ 1 \ *l\ ) */2 > /3/ \ ^ ""~~ *
3 3 "> /

determine a Steiners surface, if the curves fi
= are conies.

This may be seen as follows :

The conies apolar to each of four conies

form the pencil

the members of which are all inscribed in the same quadrilateral ;

if pn is one side of this quadrilateral then p* = is apolar to

wa
2 and up

2
,
and therefore belongs to the linear system (1), or



87, 88] STEINER'S SURFACE 137

hence this system includes the squares of four lines
; by proper

selection of the triangle of reference these lines may be repre-

sented by the equations

% + *7 + *?3
=

0, -171 + 172 + ^3=0, r)l- Vz + 1)3
=

, 1)i + ??2
-

TJ3
= 0,

whence we again arrive at the equations connecting a point x of

Steiner's surface and a point 77 of the plane.

The conies of the pencil (2) are the images of the asymptotic
lines of the surface

*
; this may be seen as follows :

The pairs of tangents drawn from each point P of the plane -17

to the conies (2) form an involution; if p, p are the double lines

of this involution, then since they are harmonic with each pair of

tangents, the line-pair pp' belongs to the system (1), hence its

image is a pair of coplanar conies on the surface. These conies

intersect on each of the three double lines, and their fourth inter-

section Q corresponds to P. Moreover, since p, p' are the tangents
at P to the two conies of (2) which pass through P, it follows

that the line-elements of the asymptotic lines at Q correspond to

the line-elements at P of the pair of conies belonging to (2) which

pass through P. This being true of every pair of corresponding

points Q, P the result follows as stated above f.

* See Cotty, Sur les surfaces de Steiner, Nouv. Ann. 1908 ; Lacour, Nouv. Ann.

de Math. 1898.

t Analytically we may proceed as follows : let

( ^ +- % + -
r]3 }

= u . v
\ III it /

3
be a line-pair belonging to the system 'Zrii

2+ 2'Saik r]i -r]k Q
;

if u + du be the line
l

consecutive to u passing through the point on u consecutive to (u, v) we have

and hence since Si^tZr/^O, it follows that ST^W^= so that the lines
, v, du are

concurrent, i.e.

v
i
= au

i+ pdui
.

From comparison with the values of u
f ,

v
i given above we have

1
m --

dm _ m
dn

= T'
n

n

This gives m2 - l = k (n-
-

1),

k being an arbitrary constant. Hence the image of an asymptotic line is a conic

touching the four lines

m=l, n=l.
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We obtain sub-cases of Steiner's surface when the conies

ua
2

, Up
2 of (2) are related in certain ways, the four sub-cases which

arise are the following :

(i) When two common tangents of the pencil (2) coincide,

i.e. the conies of the pencil touch two lines and touch a third line

at a fixed point ;

(ii) three common tangents coincide, i.e. the conies osculate

at a fixed point and also touch a fixed line
;

(iii) the conies touch two lines where a third line meets

them
;

(iv) the conies have four consecutive points common.

The cases (iii) and (iv) lead to cubic surfaces.

In case (i) take the intersection of the two lines as vertex

A l of the triangle of reference, the fixed point as A s and the fourth

harmonic to A^A 3 and the two lines as the third side, the equation
of the pencil is then

2\uw + w* - tf - 0.

The conies apolar to this pencil are

Ay? + B (n + 1)./) + 2(^173 + Wr)2r)3
= 0.

The equations connecting a point x of the quartic surface with

the point 77 of the plane are therefore

Pi = V> px*
-

*?2
2 + %2

, pt = fyi-nt, P#4
=

2773773 ;

giving as the equation of the surface

#3
4 4a;1 ar2 a;s

a + kxfx? = 0.

The surface has a triple point through which there pass two

double lines, along one of which one sheet of the surface touches

the plane #j . The surface has two tropes x2
= #4 ;

the plane #a

meets the surface in the line (xl} #3) alone, this line is thus

torsal.

In case (ii) the conies (2) are

v* - 2uw + 2\vw = 0,

giving as the apolar conies

AK* + B (7? 2
2 + 277^3) + cv + 2D7?1

7
7

.2
= o.

The connecting equations are here

The equation of the surface is

z
= 0.
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The surface has one trope, the plane aca . Along the double line

xl
= x

4> 0, the surface touches the plane x1
= 0.

As previously stated, when the conies of the pencil (2) touch

two lines at given points, or have four consecutive points in common,

we obtain a cubic surface : this is easily seen, by application of the

present method.

89. Modes of origin of the surface.

The connection of the previous mode of representation of the

surface and the method of treatment of the surface by Reye* by

pure geometry is shown as follows :

If we have any quadric transformation

pxi =fi (! , 2 , 3 , 4), 0'
= 1, 2, 3, 4),

it has been seen that the locus of the point x as the point a

describes a plane is a Steiner surface.

Now the preceding equations place two spaces 2, 2j in

4

correspondence, so that to each set of quadrics 2X-/< = in S

there corresponds a plane in 2 15 to each pencil of quadrics in 2 a

pencil of planes in 21} and to each set of eight associated points

in 2 a point in 2j.

From the foregoing we deduce also the following result :

Steiner 's surface and the cubic polar of a plane with reference

to a general cubic surface are reciprocal ; for if U = is any
cubic surface, from the equations

fiU" / -> r, i\

pui=^, (t- 1,2,3,4),

we deduce by aid of the preceding that as x describes a plane,

u' envelops a surface which is the reciprocal of a Steiner surface,

and the u-i are the coordinates of the polar plane of x with regard
to U.

The following method of derivation of the surface is due to

Sturm f. Having given a pencil of quadrics and a pencil of

planes projective to it, the locus of intersection of a plane and

quadric which are in correspondence is a general cubic surface.

If we make the further assumptions that the axis of the planes
touches two of the cones contained in the pencil of quadrics, and

* Geom. der Lage.

t R. Sturm, Ueler die E'dmische Flache von Steiner, Math. Ann. in.
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that each plane through the axis and the vertex of one of these

two cones corresponds to that cone, the surface becomes the

general cubic surface with four nodes. For these conditions

are seen to be satisfied by assuming as equations of the two

pencils

where V1} V2 are the cones considered and where

V1
= aa + as1 ft, V2 =y* + x2 S.

The surface is therefore

x, (7
2 + x2 B)

- x2 (a
2 + a^/8)

= 0,

which has the four nodes

a = x
l
= T

2 + #2 (8 /3)
= 0, 7 = #2

= a2 xl (B ft)
= 0.

Reciprocating, it follows that if a pencil of surfaces of the

second order is projectively related to a row of points on a

straight line, the envelope of the tangent cones drawn from the

various points of the line to the corresponding quadrics is a

surface of the third class with four tropes, provided that the line

meets one conic c2 belonging to the system in a point A and one

conic c'
2 in a point A', and so that A corresponds to c 2 and A'

to c'
2
.

Curves on the surface.

The following theorem regarding Steiner's surface is specially

noticeable :

Every algebraic curve on the surface is of even order*.

Let a curve cm of order m on the Steiner surface $4 pass p times

through the triple point and let r, r, r" branches respectively

touch the double lines of St at the triple point, and if pl} p2 , p3

other branches respectively touch the three tangent planes at the

triple point, then

p = r + r' + r" + p1 + p2 +p3 .

Denoting the double lines by a, a, a" it is seen that in the plane

(a, a) p + r + r'+p! points of c
m

lie at the triple point, the other

mpi r'pl points of intersection of $4 with this plane
must therefore lie on a and a, suppose that q lie on a, and hence

q'
= m p r r p^ q lie on a'. Similarly on a" there lie

q" = m p r r" p2 q points. The cone which projects c
m

* See Sturm, loc. cit.
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from the triple point is of order m p and has a as (q + r)-fold

line, a' as (q' + r')-fold line, a" as (q" + r")-fold line
;
these lines

being double on $4 count 2 (q + r + q + r + q" + r") times in the

intersection of the cone and S4 ,
hence

4 (m p) = m + 2 {q + r + q' + r' + q" + r"},

hence from the preceding

ra= 2 [r+pl +p2 + q\-

If the curve cm does not pass through the triple point then

p = 0, and hence

p1 =p2 =p3
= r = r' =r" = 0,

and we have m =
2q.

Thus a curve of order 2n which does not pass through the triple

point meets each double line in n points. Hence a curve of the

fourth order meets each double line twice
;
if these points of inter-

section coincide we have a quartic curve of the first species with a

double point (Art. 87).

90. Quartic curves on the surface.

We now consider further the quartic curves on the surface.

Every quartic curve c4 which does not pass through the triple

point meets each double line twice
; through c

4 there passes at

least one quadric which meets the surface in another quartic

curve c'
4 which also meets the double lines twice and necessarily in

the same pairs of points, excluding at present the case in which

the quadric contains one of the double lines.

If the conic 2o<fc%9?ft*0 represents c4
,
the conic which repre-

sents c'
4 must be

2^ +2S?** =
(

. ^
an auakk

For if P, P' are the points in which c
4 meets a double line, the

first conic passes through one of the two points corresponding toP
and one of the points corresponding to P', while the conic repre-

senting c'
4

passes through the other two points corresponding to

P and P' respectively. But if e.g. the double line is that which

is represented by rj s
= 0, it was seen that the values of ^/^

corresponding to P are reciprocals (Art. 86), and so also for P'

hence the form of the second conic follows.

Each of these quartic curves is of the second species, since each

has three apparent double points.
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If we form the product of the left sides of the equations repre-

senting these conies the terms which arise are of the type

hence on substitution we obtain the equation of the quadric which

contains both c4 and c'
4
*.

Unless two of the quantities an are equal, the conies c2, c'
2 do

not intersect on a side of the triangle of reference. From this it

follows that the quadric containing c
4 and c'

4 cannot be a cone. For

if possible let such a cone be AC B2 = 0, where A, B are common

tangent planes of the cone and quartic surface at two intersections

of c4, c'
4

;
on substituting in this equation for the xi in terms of the

tji we obtain

aof . bb' u- =

as the equation of the pair of conies c2, c'
2

;
where a, a' and b, b' are

tangents to the respective conies at two of their intersections
;

but from the form of this equation the lines a ... b' must be

bitangents of the quartic curve c2 . c'
2
,
which is impossible.

If for the curve c4 we have a = a^, it meets one double line

in two coincident points. The quadric cone having its vertex at

this point and passing through c
4 will meet the surface in

another quartic curve c'
4
. These quartics are of the first

species f.

Any quadric through two double lines meets the surface also

in a quartic curve of this latter variety, having a double point on

the third double line. There is a quadruply infinite number of

such nodal quartics on the surface.

In the first case the quadric containing a pair of quartic curves touches

the surface four times
;
in the second case the cone touches the surface twice.

Let U and V be two quadrics through a quartic c4 of the first

species ;
if the conic c

2

corresponds to c
4 and if c'

2
, c"2 be the conies

* This quadric is found to be Z2 + I,AikXi
Xk =Q, where

1
|

/ 1 IN /I 1 \ /I 1 \ 1Z= x + -= ^a12 l H-- )^3 + i3( +
) #2+ 0,3 1 H-- xA,

2
I

15Vn <W 13
\11 3S/ \a22 "as/ ]

the A
ik

are the minors of the discriminant of Zaik r)i r]k , and

Xl =
\S2

"
Om)

*
1 '

X^\^
~ W 'T2> A'3=

\Ti
"
*m)

*3 '

f For if e.g. a
ll
= a 2̂

= \ the curve c4 will also lie on the quadric

x3 (xi + a12 x3 + a13 2 + 023 Xi) + %XiX2 (a33
-

1)
= 0.
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related to the residual intersections of the surface by V and V,

we have from above
U=c2

.c'
2

, V=c*.c"2
,

(where in the conies the iji are replaced by the xj).

Hence U + \V= c2

(c
/2 + Xc"2

),

so that the quadri-quartics associated with the pencil of quadrics

are thus represented by a pencil of conies and therefore pass

through four fixed points. This is a characteristic property of these

curves.

The conic through one vertex of the triangle of reference

u = aasjifc* + am i} 9
* + SSoatyifc = 0, (t 4= k),

represents a quartic curve through the triple point ;
it is clear that

if in the product
/ 2a12 2als \

^
(
r}l+ '^~^2 + ^~ V*

I
u

\ "22 "33 /

we substitute for the % in terms of the yi we obtain an equation

containing the latter variables only, and in the second degree.

This quadric hence passes through a double line, a conic of the

surface and a curve c4 through the triple point ;
this curve is of

the second species, since one set of generators of the quadric

meet c
4 in three points. There exist oo 4 curves c

4

passing through
the triple point.

If the representative conic passes through two vertices of the

triangle of reference, i.e. is of the form

77s
2 + 2200,^% = 0, (t =f k),

we obtain as a quadric which contains it the cone

y\y* + 2
2/s (i22/3 + is2/2 + a23 2/i)

= 0.

These curves are the intersection with the surface of cones through
two of the double lines

;
there are oo 3 such curves.

Finally, the conies through each vertex of the triangle of

reference correspond to the plane sections through the triple

point.

91. A mode of origin of Steiner's surface is obtained, as

shown by Weierstrass*, from consideration of a well-known pro-

perty of a quadric. This property is the following : if through any

given point A 4 of a quadric Q three mutually perpendicular lines

*
Schroter, Ueber die Steinersche Fldche vierten Grades, Crelle, LXIV.



144 STEINER'S SURFACE [CH. vn

are drawn to meet Q again in points L, M, N; the normal at At
to Q meets the plane LMN in a fixed point. The theorem may
be restated in a general form as follows : if A 4 be joined to the

vertices of any triangle self-polar to a conic c2 in a given plane #4 ,

and the three joining lines meet the quadric again in points

L, M, N, then the plane LMN meets the line A 4R in a fixed

point S, if R is the pole for c2 of the trace on #4 of the tangent

plane to Q at A t .

If c2 is a member of the set of oo 2 conies of = 0, where

a* = ^U + r)2V+ r)3 W,

then by giving all values to the % the resulting locus of S is a

Steiner surface.

Let the equation of Q be
3

xtax + ^uikXiXk = 0, (i =f= k).
i

Also let two vertices A l} A 2 of the tetrahedron of reference be

self-conjugate
* for each of the conies U, V

, W, and therefore

for a2

;
let 333
U = JLaikXiXk ,

V = %bikxixk , W = ^cikXiXk .111
Now if x is the point which forms with A l and A 2 a self-polar

triangle for a2
,
we have

#in + #3ai3
= 0, a;2 a22 + ^3 23

= ............... (1),

where aik= rj,aik + r)2 bik + ^ cik .

Let R, or y, be the pole of ax for a2
,
then

23j/3 0,3^ + 0533/2

It will now be shown that if A 4x meets Q in x', and A 4y meets

the plane (A lA 2 x') in y' (8), then the locus of y is a Steiner

surface.

For, from equations (1) and (2) we obtain the xt and yi as

quadratic functions of the
r) { ,

thus

yi-y*' 2/3 =/i (17) :/2 0?) :/3 (n) ;

also, it is easy to see from equations (1) and (2) that =^
.

#3 Ctji Ot22

* If A
l ,
A 2 do not both lie on the section of Q by the plane of c2, we can replace

them by the intersections of A tA lt A 4A 2 with Q, and c- by its projection on any

plane through these two new points.
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Again

from
>
" OII1

2/3

where jf4 (77) is a quadratic function of the %. Hence

y/ : y/ y,' : y/ =/i (1?) :/ (^) : /a (1?) : /* (*?)-

92. Eckhardt's method.

A method of point-transformation applied by Eckhardt* leads

easily to properties of the cubic surface with four nodes, and

hence by reciprocation to the surface of the third class with four

tropes, which is Steiner's surface. This transformation is the

following :

XiTJi
=

p, (*'=!> 2, 3, 4).

By use of this method there corresponds to any given plane

2;#; = 0,

the surface 2 = 0,
y<

which is a cubic surface having the vertices of the tetrahedron

of reference as nodes. The equation of the surface in plane
coordinates being

S Va^Mi = 0,

it is seen to be of the fourth class.

The four tangent cones of the surface at the nodes are

-<-:S^ = 0, (
=

1, 2,3,4).
y* i y*

They are the tangent cones from the nodes to the quadric

which touches the edges of the tetrahedron of reference
;
the

intersection of this quadric with the plane

* Math. Ann. v.

J. Q. S. 10
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is a conic c2 which lies on the cubic surface
;

for by squaring
and subtracting from the equation of the quadric we obtain

Ml M*

as a quadric through c
2

, and this quadric is easily seen to arise by

combining the equation of the plane with that of the cubic surface.

Hence the curve of intersection of the quadric and the cubic

surface consists of three conies lying respectively in this plane and

in two others of similar form.

To a quadric through the vertices of the tetrahedron of

reference corresponds a quadric through the same points, and

if one quadric is a cone so also is the other (since the discriminant

of ^aux^xz is equal to that of ^a^x^). Now through four points

two quadric cones can be drawn to touch a given plane and to have their

vertices at a given point of that plane*, we therefore obtain for the

cubic surface as the corresponding theorem : through anypoint oftlie

surface two quadric cones can be drawn to have their vertices at the

point and to touch the surface : otherwise, the tangent cone to the

surface having its vertex at any point of it breaks up into two

quadric cones. Reciprocating, we again obtain the result for

Steiner's surface that its curve of intersection with any tangent

plane consists of two conies.

Again we have the theorem that eight quadrics can be drawn

through any four given points to touch a given quadric along a

conic ;
for taking the given points as vertices of the tetrahedron of

reference and the given quadric as Sa^^t^A = 0, the latter may be

written in the form

aaxtf + 22
(ctflfc

-
Va^-ajfcfc) xtxk = ;

whence the eight planes of the conies of contact are seen to be

taking all combinations of the ambiguities.

If the given quadric consists of two planes, the conies of

contact break up into pairs of lines, and hence the tangent

quadrics must be cones whose vertices lie upon the line of

intersection of the two planes; it follows therefore that through

* For the cones which pass through the four points and have their vertices at

a given point form the pencil V1 + \V%=Q where V1 and V^ are two cones fulfilling

these conditions, and the cones of this pencil which touch a given plane are given

by a quadratic in X.
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four given points there pass eight quadric cones which touch two

given planes ; by application of the transformation it is seen that

if two cubic surfaces have four nodes in common there are eight

quadric cones which touch each surface along two twisted cubics
;

otherwise, the common tangent developable of two cubic surfaces

with four common nodes breaks up into eight quadric cones whose

vertices lie upon the curve of intersection of the cubic surfaces.

By reciprocation we obtain that if two Steiner's surfaces have four

tropes in common, their curve of intersection consists of eight
conies whose planes touch the common tangent developable of the

two surfaces.

93. Quartic surfaces with a triple point.

The quartic surface with a triple point has been discussed by
Rohn*; it belongs to the type known as the monoid, i.e. the

surface of order n with an (n l)-fold point.

We may take as its equation

wu3 + u4
= 0,

where us
= 0, w4

= are cones of orders 3 and 4 respectively,

having their vertices at the triple point x = y = 2 = Q.

These cones intersect in twelve lines lying on the surface.

These lines meet the plane w = in twelve points which we

may call principal points in the representation of the points of the

surface by their projections on this plane from the triple point.

This gives a (1, 1) correspondence of points between the surface

and the plane, in which, however, all the points of one of the

twelve lines are represented by one principal point.

In the general case there is no conic on the surface whose

plane does not pass through the triple point A 4 ;
for this would

require the quadric cone of vertex A and base the conic, to contain

six of the twelve lines of the surface, in order to complete its curve

of intersection with the surface. There are sixty-six conies lying

in the planes passing through two of the twelve lines; they are

represented by the lines joining pairs of principal points.

The quadric cone through five of the twelve lines meets the

surface also in a twisted cubic passing through A 4 \
we obtain

792 such cubics which are represented by conies through five of

the principal points. The system of oo x conies through any four

* Ueber die Fldchen viertar Ordnung init dreifachem Punkte, Math. Ann. xxiv.

102
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of the principal points represents a system of quartic curves on

the surface, each quartic having a node at A 4 . Such a quartic

must have two apparent double points, since its plane projection

from any point must have zero deficiency, being in (1, 1) corre-

spondence with a conic. Hence it is of the first species (a

quadri-quartic with one node).

The oo 1 cubics through eight principal points represent

twisted quartics without a node, which pass through A 4 and

have the same tangent at that point ; they have two apparent
double points, their plane projections being in (1, 1) correspond-

ence with non-nodal plane cubics; hence they are of the first

species.

Any quartic of the first type and any quartic of the second

type lie on the same quadric, provided that the twelve lines with

which they are associated are all different. For the conic and

plane cubic respectively corresponding to them intersect in six

points (none of which coincide with principal points), hence if

we take that member of the pencil of oo 1

quadrics through the

quartic of the second type which also contains any given point

of the first quartic, it will meet the latter in 6 + 2 + 1 = 9 points,

i.e. will contain it.

We also have quartics of the second species, obtained as the

intersection with the surface of cubic cones having six of the

twelve lines as simple lines and a seventh as double line
; they

are represented by the plane cubics through six principal points

which have a node at a seventh principal point and are 5544 in

number. These cubics pass through A t and are seen to be of the

second species, since they have three apparent double points.

The surface will also possess a line not passing through the

double point if three of the twelve lines are coplanar. The

maximum number of such lines is nineteen*.

The surface may possess a node D
;

in that case the line

joining it to A 4 must lie on the surface arid hence is one of

the twelve lines of the surface. Moreover, in this case, two of

the twelve lines must coincide. For in this case any section

through A tD consists of this line together with a cubic passing

through D; we may take A tD as the line y = z = Q and the

equation of the surface as

w [y (cue
2 + ...) + z(ba? + ...)} + y (co? +...) + z (do? + ...)

= 0;
* See Kohn^ loc. cit.
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the condition that all such cubics should meet on y=z = Q is

ad = be,

which is the condition that the curves us
= 0, w4

= should have

the same tangent at the point where A 4D meets the plane w = 0.

Hence two of the twelve lines coincide. It is also easily seen

that if these curves touch, there is a node at the point

y = z wa + ex = 0.

The surfaces with six nodes are of special interest : they are of

two types ;
in the one type the nodes have any position, in the

other they lie on a conic.

The equation of a surface of the first type, which has a triple

point at A and nodes at six points which we may represent by

1, 2, 3, 4, 5, 6, is of the form

where K= is a quadric cone whose vertex is A and which passes

through the points 1 ... 5; F=0 is a quadric through the seven

points A, 1 ... 6
;
P = is the plane through the points A, 4, 5 ;

V = is the cubic surface with four nodes, viz. at A, 1, 2, 3

respectively, and which passes through the points 4, 5, 6.

There remain three undetermined constants, viz. two in F,

together with p. It can easily be shown that they can be deter-

mined so as to give the required surface. For the conditions that

the point 6 should be a node are seen to reduce to the following :

<^.^ = <^.9v_8.F > av_aF <

av = F-
"dx

'

dx "dy "by ~dz
'

dz dw
'

dw
" K '

wherein the coordinates of the point 6 are substituted.

These conditions express that F= 0, V = should touch at the

point 6, and the two undetermined constants in F are thus found
;

finally p is uniquely determined.

We thus obtain one surface whose equation depends only on

the coordinates of its singular points.

A remarkable property of the surface is that the sextic tangent

cone, whose vertex is any one of the six nodes, breaks up into two

cubic cones, each having a double edge passing through the triple

point.

For the equation of the surface may be written

#2 (wA + B) + 2x (wG + D)

if the node considered is the point (1000).
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The tangent cone whose vertex is this point is then

(wC + D)
2 = (wA + B) (wE + F) ;

this is seen to have a fourfold edge passing through A 4 . It also

has five double edges passing through five nodes. Now one cubic

cone whose vertex is this node can be drawn to contain these five

edges, to have the other edge as double edge, and to contain any
other edge of the sextic cone. It therefore intersects the latter

cone in 4x2 + 2x5 + 1 = 19 edges, and hence forms part of it.

The foregoing property is also possessed by the symmetroid

(Art. 8). It is easy to see that the surface we have just considered

is a special case of the symmetroid. For the latter surface is seen

(Chap, ix) to arise when from the equations

expressing that the quadric ^ + @S2 + yS3 + B8t
= should be a

cone, we eliminate the variable Xi, and regard the
, ft, 7, 8 as

point-coordinates.

If we now take the special case in which 8j. is a plane ax 0,

taken doubly, we obtain as the required surface

= 0.

This surface has the point (1000) as triple point, since for this

point all the second minors of the determinant vanish.

The surface has a node for such values of a ... B as make

a pair of planes XY\ and for such points we have

/3SZ + jS3 + 88. = XY- aaj,

i.e. f3S.2 + 7$, + S$4
=

represents a cone whose vertex lies on ax ;

and there are six such cones since the vertices of all cones which

pass through the eight fixed points $ = S.2 = S3
= 0, lie on the

sextic curve

>- + S^
4 = 0, (^1,2,3,4).

Moreover the preceding surface represents the most general

quartic monoid with a given triple point and with six nodes.
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For the equation of such a surface involves 34 10 6 = 18

constants; and the determinant involves thirty-four constants

which can be reduced to eighteen on multiplying by an arbitrary

determinant of four rows.

The second type of quartic monoid with six nodes is repre-

sented by the equation

where K is a quadric cone, F = a cubic cone with the same

vertex, and P = any plane.

For this surface has clearly a triple point and has the six nodes

given by the equations P = F = K = 0.

It contains twenty-one constants, the same number as the

surface last considered* when the triple point is arbitrary.

* For a full discussion of many special cases of the quartic monoid the reader

is referred to the memoir by Bohn recently quoted.



CHAPTER VIII

THE GENERAL THEORY OF RATIONAL QUARTIC SURFACES

94. The quartic surfaces so far considered, with a double

curve, have been found to be rational, i.e. the coordinates of a

point on such a surface are expressible as rational functions of

two parameters. Surfaces with a triple point are rational, as is

seen by projecting the surface from the triple point on any plane.

We shall now investigate the other types ofquartic surfaces with

a double point which are rational*. If the double point be a

tacnode, i.e. such that every plane through meets the surface in

a quartic curve having two consecutive double points at Of, the

equation of the surface has the form

x?x? + x4xl fe (a?,, #2 ,
a?s) + %4 (#1 , a , #) = 0.

Projecting the points x of the surface by lines through to

meet the plane #4 in points y, we obtain

where 1 (y) = fo (y)}
2 -

4%4 (y).

The points a; of the surface are thus related to points y of a double

plane] we now obtain rational expressions of the ^ in terms of

new variables zi which render Vll (y) rational in the 2,-J.

The equation of the general quartic curve 1 (y)
= may be

taken as

H uia 1/13 W

= 0,
'VI U22 U23

^31 ^32 ^33

'41 W42 1/43

where uik
=

Ujd, the uik being linear functions of the y^.

*
Nother, Ueber die rationalen Flachen vierter Ordnung, Math. Ann. xxxni.

t Selbstberiihrungspunkt.

J Clebsch, Ueber Fldchenabbildungen, Math. Ann. in.

Hesse, Crelle's Journal, XLIX.
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A system of cubic curves having six-point contact with fl is

Wn 1ti2 W J3 Mj4 fli

11 ti *)i It ft
41 42 43 44 4

! a, as a4

Denoting this system by <j> (y, a), there are eight systems of

oo 2 nodal cubics
; through every point 6< of the plane there passes

one member of each system having a node at 6^. For if $(y, )

has a node at bi, the equations

give eight sets of values for the a*.

Again consider the quadrics

F(y, X) = ^uikXiXk
=

y.F, + y,F, + y3F3
=

;

if fi be one of the eight points of intersection ofFl
= 0, F^ = 0, F3

= 0,

the coordinates of the tangent planes to the quadric F(b, X) at the

eight points ,form the preceding eight sets of values of the ;.

For let quantities 77 1-, 04 be connected by the equations

i
=

ii (6) 1/1 + "is (b) f), + u is (b) 773 + un (b) 7?4 , (i
= 1, 2, 3, 4),

then it is seen that

$ (b, a)
= - F (b, i7)fl(6).

If now rji
=

{, the plane e^ touches -P(6, X) at the point ,
and

since F(6, f) vanishes for all values of the bt we have

, a) _
'

/_
'

Thus the eight different sets of oo 2 nodal cubics belonging to

the curves
<f> (y, a) are obtained by taking for the quantities c^ the

coordinates of the oo 2

planes through the eight points .

We now select one of these eight points , and denote the

others by ', f", .... It is seen that to each quadric F (y, X) there

corresponds one point y and conversely ;
and since there is one

quadric F which contains a line s through ,
therefore to each

such line s there corresponds one point y, but each point y
determines one quadric F which has two generators s through ,
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i.e. to each point y there correspond two lines s. These two lines

coincide if F is a cone, i.e. if we have

uilXl + UfoX.,. + ui3X3 + 11^X4 = 0, (i I, 2, 3, 4),

giving the points y of fl.

Considering the points z the sections of the sheaf of lines s

by the plane which is the field of y, we thus obtain the following

relationship between the points y and z
; to each point z there

corresponds one point y, to each point y there correspond two

points z, which coincide when y lies on fl.

To the quadrics F which touch a given plane af ,
but not at

,

correspond points y lying on the curve <p (y, a), and these quadrics

give rise to a pencil of lines * lying in a
; hence to points z lying

on a line p correspond points y lying on the curve < (y, a). To

points y lying on a line p' correspond points z lying on a curve c

of order k; since p' meets
</>

in three points, c must meet p in

the corresponding points, i.e. k = 3.

Hitherto s has been taken as a line through f which does not

pass through any of the seven points f, ", etc. But if s passes

through
'

then to s will correspond a pencil of quadrics F which

determine a line of points y. Denoting by A t the points in

which
', ", etc. meet the plane of reference, then to each point

A{ there corresponds a line, this line meets p' in one point, hence

c passes through each of the seven points AI.

Thus the curves c which correspond to lines in the field of y
form a system of oo 2 cubics through seven fixed points. Such a

system is represented by the equation

/. + /.+#=<>.
where f\,fz,f are three cubics having seven points in common.

The relationship between the points y and z is therefore expressed

by the system
<nti=M*l (t'

=
l, 2, 3),

where the seven points have a general position. Any curve of

the system which passes through a given point Q will also pass

through a point Q', where Q, Q' correspond to the same point y ',

the pair of points z which correspond to a point y lie on the

same cubic through the seven fixed points.

This transformation rationalizes Vft (y) ;
for if A (z)

= be the

curve which corresponds to H (y)
= 0, since fl is the locus of

points y for which the corresponding pair of points z coincide,
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i.e. for which curves of the system fa touch each other, we

have

?1 dz2

9^3

9/3

'dzl

-n-U
5

a sextic curve having nodes at the seven points.

When o-
4

H(y) is expressed in terms of the variables z we

obtain an expression of order 12 in the Zi\ hence it must be

identical with (A(^)}
2 save as to a constant factor.

The required expression of the surface is therefore

P'VI
=

/i OX p'%2
=
f* (*), px3 =/3 0), p'x,

= ~*

where
i/r
= x2 (/i,/2,/3), and /c is a constant.

Since H (y)
=

%2
2

(y)
- 4^4 (y),

A (^) |

2 -
[%2 {/(^)}]

2 = - 4%4 {/(^)

%2) ( A +%) = - 4X4 {/(} .

/\

we have

or

The plane sections of the surface are represented by two sets

of sextic curves, viz.

ft/? + A/1/2 + &/1/3 +&(-^ *A) = 0.

Also yi(^)
= meets %4 {/0)} =0 in eight points, apart from the

seven fixed points, of which four lie upon /cA % = 0, and four

lie upon /cA + ^ = ;
hence the preceding sextic curves are seen

to have the seven fixed points as nodes and to pass through four

other fixed points, all of which lie on one cubic curve.

This surface may be referred to as $4
(1)

.

95. The rational quartic surfaces $4
(2) and $4

(3
'.

In addition to the rational quartic surface just considered

there are two others only, apart from the surfaces which have

a double curve or a triple point*. For if the surface is

as before its points may be projected from A 4 upon a double plane,

the plane,a 4 ;
if the surface is rational the points yt

- of a4 are such

Nother, Ueber die rat. Fldchen vierter Ordnung, Math. Ann. xxxin.
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rational functions of the coordinates zi of a simple plane, as

rationalize

,
or Va

In this mapping of the surface upon the plane of the ziy to plane

sections through A 4 ,
or lines in the ^/-plane, will correspond, in

the simple plane, curves of order n, of the same genus as the

plane sections, viz. two, and intersecting each other in two variable

points only. Hence if these curves have in common c^ points,

a, double points, . . . ar points of multiplicity r, we have

n2 -2 = a1 + 4o2 + ..,+r2^ .................. (1),

n(w + 3) r(r + l)^- / -l= 1 + 3ga +...+ ar ......... (2),

whence we derive

371 = 0^ + 202+...+ ra,................... (3).

By use of the quadratic transformation

1 2 3
*"~"

2 3 S **1 * ^1 j2 j

where the vertices of the triangle of reference are the three

multiple points of highest order r, s and t, these curves are

transformed into curves of order 2n i s t, of genus two, and

which meet in two variable points. The transformed curves have

three corresponding multiple points of orders

n s t, n i t, n r s

respectively, and other multiple points of the same orders as

those of the original curve. Since r + s + 1 is in all cases* greater
* For from equations (1) and (3) we have

If r^ 3 it is seen that the right-hand side is greater than 2, i.e. r>-. If r=2 one
o

solution of (1) and (3) is n=6, aj
= 2, a2=8; if n>6 there is no solution. Next let

r, t and t be not all equal, then if r= t + a, s = t + j3, a =4=0, we have

3n - r - s = ai + 2a2 + . . . + 1a
t ;

hence (3n
- r - s) t > ?i

2 - 2 - r2 - *2
,

(3n
- 2f - a - /3)

t > n2 - 2 - 2t2 - 2 1 (a + /3)
- a2 - /3

2
,

, n*-2-o-j8whence t >

therefore

If /S=0 the numerator of the fraction is positive when n>4; if /34=0, since

n>r+g it follows that n=>2 + a+/3 and the numerator is positive, i.e.

r + s + 1 > n.
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than n, by repeated application of the process we finally arrive

at curves C6 (a1

z
... a8

861 62) or at curves C4 (a
261 62 b10)*. It will

now be seen that the curves c4 (a
26x . . . 610) rationalize Vn when

H = is a sextic curve with a quadruple point, and the curves

cs (a^ ... c^&j&a) rationalize Vli when 11 = is a sextic curve with

two consecutive triple points.

The curves c4 (a
a
&i ... 610 ).

By hypothesis these curves form a linear system of oo 3
curves,

hence there is one member of the system which has a node at

&! (say), this curve cannot be irreducible, for then its genus would

be unity and not two as required. Hence it consists of a cubic and

a straight line
;
this requires that the eleven points a^ ... 610 should

lie on the same cubic. The system of curves consists therefore of

linear combinations of the curves zl c, z^c and f, where f is any

quartic of the system, c the cubic through the eleven points,

and zl} z2 any two lines through the point a.

It can be shown that this system rationalizes Vfl when ft =
is a sextic curve with a quadruple point. For let 1 = be such a

sextic with a quadruple point at A 3) K = a conic passing

through A s and having four-point contact with H, L = a cubic

having a node at A 3 and passing through the four points of

contact of K and 1
;
L thus contains two parameters. The

curves fl aL2= have A 3 as quadruple point and touch K in the

previous four points ;
if now a be so determined that O oZ* =

passes through an additional point of K = 0, it must contain K
as a factor, i.e. we have

= L* - KM,
where M=Q is a quartic curve having a triple point at A s and

touching ft in six points.

Taking A 3 as the point yt
= 0, yz

=
0, we have

where Kl is linear in yl} yz ,
etc.

Now if t
= 21 zfa -

where n X 2 ,
... are the result of substituting zl} zz for y1} yz in Klt

*
Nother, Ueber eine Clatse von Doppelebenen, Math. Ann. xxxm.
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Lz ,
. . .

,
we have such a transformation

;
so that to the lines of the

2/-plane correspond curves c4 (a
2
6j . . . 6JO) in the s-plane, the point a

being A $ and the points bt the other intersections of the curves

z3
2
Ki 2,23X2 + ^ = 0, 3

2
/ea 22-3X3 + /^4

= 0.

This transformation rationalizes VH, for if A (z)
= be the

curve corresponding to XI = 0, then since

J (z,N, zz N, zfa - 2*3X3 + /**)
= ^A (z),

it follows that A (z)
= is a sextic curve.

Moreover, since

a(y) = 2/3
2/4 + 7/3/s +/6)

we have p
6 fl (y)

= N* x power of A (z) ;

and the transformation shows that this power is the square : hence

The curves ce (al
2

... a8
2
&i&2)-

As before, since there are oo 2 curves forming a linear system

/i + a/2 + /3/s
= 0, the system will contain one curve having a node

at &! (say), i.e. a curve of genus unity, this curve must therefore

break up and consist of two cubics of which one passes through
the ten points (^...ty&xfti and the other through the points

bl> a1 ...a8 . If y is the former, and /' any cubic of the pencil

through the points Oj... aa ,
and < any sextic of the family, the

oo 2 sextics are included in the system

/2 + ff + /3</>.

The transformation effected by means of this system is

pyi =/ 2
0)> P2/2 =/(*)/' 0)> P2/3

=
</> 0).

The curve H (y) is, as before, the locus of points y for which the

pairs of points z come into coincidence f. The curve A (z) which

corresponds to l(y} is the Jacobian of/,/' and
<f>;

it is a curve of

order 9 having a^ ... a8 as triple points and not passing through

&! or bz . Since any curve of the above system meets A (z) in

54 - 48 = 6 points,

any line will meet fl (y} in six points, hence ft (y) is a sextic

*
If a= \2M4-^3/ltj> 26 = K2M3-KiM4 c= \3 K1 -\2K2, we find that

hence p
3\/O=p3 \/L2 -

f Uebergangscurve, Clebsch.
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curve. Since O (y) and A (z) have the same genus, that of the

former is seen to be four.

Moreover, the point y1
= 0, y.2

= is a triple point on 11 (y),

because the pencil /+ af = meets A (z) in three variable points

only; and sincef2 + aff'= meets A (z) in three variable points

and fixed points (corresponding to yl
= 0, ?/2

=
0),f 2 meets A in the

latter points only, hence the line y1
= touches each of the three

branches of O (y) at the triple point and hence meets fl (y) only

at that point ;
therefore fl (y} has an equation of the form

ysy* + y?y*Q* + yiya Q* + Qs
=

;

where Qi is of order i in yl , y2 *.

Applying the transformation to fl (y) we find that

p
6Q (y) is equal to/"

6

(z) x some power of A (z),

and this power is seen to be the square, hence

pn(y) ={/(*)} (A (*)}'.

The transformation, therefore, rationalizes Vf2 (y).

96. The surfaces S4
<2 > and S4

(3
>.

It remains to determine the surfaces $4 which arise from the

two preceding cases for fl (y), i.e. S4 being

#4
2/2 Oi> #2, #8) + 2^/3 Oi, a, #3) +/4 (#1, #2, afe)

=
;

the preceding results require that the curve li should either

have a quadruple point or two consecutive triple points, where

Now writing

/a
= a#3

2 +^3^j + J 2 ,

/3
=

/3^3
3 + ^^ + a;3Bs + B3 ,

/4
= yxs

* + x/C, + x/C, + x, + C4 ;

(1) If fl has #j = 0, x2
= as a quadruple point the following

identities must hold :

- aC1
- jA, = 0,

2
- a.C2 - A& - yA, = 0,

- a(73
- A,C2

- A 2 G, = 0.

* The absence of the term yiy^y^ gives rise to two consecutive triple points;

thus making the genus of 0(t/) four, as required.
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By considering the possible values for a, /3, 7 we obtain* when

a^O, ft = 0, 7= 0, the surface

St
n = x* (x, + BJ* + x, (x, + BJ (A? - A,x, + 2 2)

a surface having a tacnode in ^ = #2
= #4

= 0, i.e. the surface

already arrived at.

For a = /3
= 7 = we have surfaces with either a double line

or a triple point and therefore excluded.

For a = /3 0, 7 =^ we obtain either a surface with a triple

point or the surface

+ 2x4B3 + x3*Cz + x3C3 + Ct
= 0.

(2) When fl has two consecutive triple points, and hence an

equation of the form previously given, we obtain the identities

/3
2 -a7 = 0,

2/95,
- aC, - yA, =

0,

BS + 2{3B2
- aC2

-A& - yA 2
=

0,

2(3B3 + 25^8 - aC, - A,C2
- A.& = x*,

- aC4
- A,C, - A 2C2 = x^Q9)

By examining the various possible cases we are led to the one

surface

S< = xfx? + 2#4 (x3x,Dl + B3)

- X3
3
X, + X?CZ + ^3^3+^4= 0.

The surfaces $4
(1)

,
<S4

(2)
,
St

(3} are thus the only rational quartic

surfaces apart from such surfaces as have a multiple curve or a

triple point.

* See Nother, loc. cit., p. 152. The reader is referred to this important memoir

for details of the mapping of these surfaces on the plane.



CHAPTER IX

DETERMINANT SURFACES

97. The surfaces of the second and third orders may have

their equations expressed in the form A = 0, where A is a deter-

minant having respectively two and three rows, and whose con-

stituents are linear functions of the coordinates. In the case,

however, of surfaces of the fourth order, the surface A = 0, i.e. the

surface whose equation is

q*

p*

p.

= o,

where the px ,
etc. are linear functions of the coordinates, depends

upon thirty-three constants, one less than the number connected

with the general quartic surface. For A contains sixty-four

constants, of which one may be taken to be unity, and if we

multiply A by two determinants of four rows, whose elements are

arbitrary constants, first by rows and then by columns respectively,

we introduce thirty new arbitrary constants; the number of

disposable constants contained in A is thus seen to be

63 - 30 = 33.

The surface A = may be obtained in two ways as the locus

of points common to four collinear systems of space, viz. either by
aid of the equations

f

t
!

(i),

J. Q. S. 11
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by elimination of A^ ... A4 , or similarly by elimination of ax ... 4

from the equations

*iPy + **Pv + a*Py" + **Py" =

Q-lTy + =0
ttlSy + =0;

the resulting surface being in each case

| pq' r
"
s
'"

|

= 0.

If we introduce an additional equation

where a...d are constants, the equations (1) give rise to four

collinear sheaves of planes ;
the points in which four corresponding

planes intersect form a sextic curve lying upon A, viz.

P*

= 0.

n "'
<?

'"

PX sxabed
This set of oo 3 sextics will be denoted by c6 .

Similarly we obtain the oo 3 sextics ks ,
viz.

Py Pv Pv" Py"

=0.

A B C D

Any two curves c6 ,
k6 lie on the same cubic surface, viz.

Px sx A

px sx B

px
"

sx
" C = 0.

/// f// TTk

P* S* D
a b c d

Any two curves ce intersect in four points, since this is the

number of solutions common to the equations (1) and the

equations

for eliminating the #t
- from equations (1) we obtain what may
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be regarded as a quartic surface in the \t which meets the line

given by the last two equations in four points.

Similarly any two curves k6 meet in four points.

Any two of the preceding cubic surfaces will meet A in curves

C6 >
k6 , c6', k6

'

; hence if ra is the number of intersections of ce and k6',

we have 2m + 8 = 36
; hence ra = 14.

98. Correspondence of points upon the surface.

The preceding equations (1) and (2) establish a (1, 1) corre-

spondence of points upon the surface
;
for by aid of the equations

^ipx +^qx + \rx + \4 sx = 0, jpy + c^py + a3py" + ^py
'" = 0,

\px + ..................... =0, *iqy + ........................ = 0,

\px" + ..................... =0, a
1
ry + ........................ =0,

XiK" + ..................... =0, a1 sy + ........................ =0;
and also of the equations

\p3 + ..................... = o

XiP< + ..................... =O
where Pl

= a^ + o^/ + asp" + a^'", etc.
;

having given any point x of the surface, a set of values of the Xt
-

are determined and hence one set of values for the Oj, and finally a

point y of the surface.

Regarding the \i as point-coordinates, and also the Oj, it is

seen that by aid of these equations we pass from a point x of A to

a point A. of a quartic surface 2, and thence to a point a of a

similar surface 2', and finally to a point y of A.

Hence as the point A, describes a plane section of the surface S,

the point x describes a curve c
fi
of A, and the point a describes a

curve c6
'

of 2'. The point y describes on A a curve which, as seen

in the next Article, is of the fourteenth order.

If A is a symmetrical determinant, i.e. if

p'
=

q, p" = r, p'"
=

s, etc.,

the surfaces 2, S' coincide, A becomes the surface known as the

symmetroid (Art. 8), and 2 the Jacobian of four quadrics.

99. Trisecants of c6 *.

Effecting any linear substitution for the \i merely alters the

form of the px , etc., hence any curve c6 will be represented by the

*
Schur, Math. Ann. xx.

112
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curve obtained by taking A,4
= as the linear relation connecting

the \ ;
this gives the sextic curve

P -P
= 0.

r ... r

Now the three planes

MJ/+ =
wv + . . =0

.(4)

will be coaxal if equations (3) are satisfied with X4 equal to zero
;

and since ce may be written in the form

p' p" p'"

M + = 0,

the axis of the three planes will intersect c6 in three points, viz.

where it meets the cubic surface

| p'q"r'" |

= 0.

This axis meets A in a fourth point y for which, in addition to

equation (4), we have the equation

So that any point x of c6 determines one set of values (Xx ,
X2 ,

X3 , 0),

and hence one set of values for the f which makes the planes (4)

coaxal, and therefore one trisecant of c6 ; this line meets A in a

fourth point y, viz. the point which corresponds to x.

As x describes c6 ,
these trisecants form a ruled surface of the

eighth order whose intersection with A is c6 counted thrice, together

with a curve of the fourteenth order, the locus of the points y.

For two of the planes (4) being

their intersection will meet any line p^ if

where the of which occur in the Pf , Qi satisfy the equation

Q
R

= 0.



99, 100] DETERMINANT SURFACES 165

Hence the points a which give the number of trisecants which

meet the line p^ are apparently twelve in number, but of these

points four are those determined by the equations

P
Q

= o,

and these points do not in general satisfy the equation

and hence must be excluded. The ruled surface is therefore of

the eighth order. It meets A in c6 ,
and also in a curve a- whose

intersection with any plane A y
= is equal to the number of

intersections of

P

Q = 0,

and
| PQSA \

= 0,

excluding again the four points

P

Q
since the four planes444

= 0;

in which the coordinates of one of these latter four points o are

substituted in the Pi} Ri} Si, do not in general concur.

Hence the order of o- is 18 4=14; and ce is a triple curve on

the surface formed by the trisecants.

100. The Jacobian of four quadrics and the sym-
metroid.

The determinant A becomes a symmetrical determinant if

between its constituents there exist the identities

The surface S' or
| PtQ+RfSi = 0, is the Jacobian of four quadrics,

for it is seen to be a consequence of the above identities that

Pi, Qi, Ri, ^ are the respective partial derivatives of a quadratic

expression in the quantities a. The surface S' is easily seen to be

identical with 2. By change of notation, replacing \ and Of by
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Xi and yi respectively, the preceding equations (3) may therefore

be written, if Pf
= ^, Q; = r*, etc.,

*=i

they express that the polar planes of the point Xi for the four

quadrics Slt 82 ,
S3 , 84 meet in the point y, and reciprocally; we

have therefore determined on the Jacobian of four quadrics a

connection between pairs of its points; they are termed corre-

sponding points on the Jacobian. The previous equations (1) and

(2) may be then written, replacing xit \, y{ , ^ by Of, xi} &, yi

respectively,

2 -L /Q
3 -L /Q 4

Regarded as arising from these last equations the Jacobian

may be defined as the locus of vertices of the cones included in the
4

set of oo 3

quadrics 2i$i = 0.

The surface A arising from elimination of the Xi (or yi} is

called the symmetroid*; its equation may be written in the

form

Jll Jl-2 /13 JU

/12 /22 ./ 23 /24

y is jw j33 y 34

f f f fJU J2A JM J44

being derived from the last equations, which may be written

/3)=0, (j
= l,2,3,4).

= 0,

It is to be noticed that these equations establish a (1, 1)

correspondence between points a, /3 of the symmetroid through
the intervention of a pair of corresponding points, x, y, on the

Jacobian.

The Jacobian has ten lines and the symmetroid ten nodes.

To show that this is the case, if we write ^0*$ = ^a^xix^, the

*
Cayley.
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condition that ^c^Si should be a pair of planes requires a

threefold condition between the coefficients a^, and the number of

solutions in the quantities ^ is equal to the number of pairs

of planes. Establishing between the aik six arbitrary linear

relations gives a ninefold relation sufficient to determine the

quantities aik . Taking these six relations to express that the

quadric should pass through any six given points, the problem is

reduced to determining the number of plane-pairs which pass

through six given points and this is clearly ten*.

The axis of such a plane-pair clearly lies on the Jacobian, hence

this surface contains ten lines.

For such a point f the four planes

or 2,^/^= 0,
i

are coaxal, hence all the first minors of
| f& \

vanish for this

point, which is therefore a node on the symmetroid f; hence the

symmetroid has ten nodes
;
to each node a one line of J corresponds.

101. Distinctive property of the symmetroid.

The tangent cone of the symmetroid whose vertex is at a node

splits up into two cubic cones. For taking a node as the vertex A^
of the tetrahedron of reference for the a{ ,

the equations giving the

surface may without loss of generality be taken to be

-

{! (x*

The equation of the surface is then

atS4]
= 0, (i

=
1, 2, 3, 4).

J\2 --L ' J "ft J "" ./ *

Jl3 J23 J33 J34

f f f f
/14 JlA JU /44 I

wherein the /# are linear functions of the coefficients of S2 ,
S3 , S4

and the variables 2 >
as> 4-

This is, when expanded,

/33 /34

/34 /44

*
Cayley.

t Since the tangent plane of the surface at the point is seen to be indeter-

minate.
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where A is the determinant
| /# |

and Fq is the coefficient of /^
in A. The tangent cone from A l is therefore

ys4 /

but from a known property of determinants

/ f

fu fu
hence the tangent cone is

and thus consists of two cubic cones*.

It was seen that if the tangent cone whose vertex is one node

of a ten-nodal quartic surface breaks up into two cubic cones, then

the tangent cone for every other node will also break up into two

cubic cones (Art. 8).

In forming the Jacobian surface determined by any four quadrics

we may suppose these quadrics replaced by any four pairs of

planes belonging to the system ;
and the general Jacobian surface

is formed by aid of any four pairs of planes. The surface there-

fore contains twenty-four constants
;
hence so also does the

symmetroid. The number of constants determining the sym-
metroid is also seen to be twenty-four from the fact that this is

the number of arbitrary constants remaining after expressing that

the surface has ten nodes.

102. Construction for the tangent plane at any point

of the Jacobian of four quadrics.

The vertices of the cones included in the system 2;$; are

given by the equations

a
as
1+

as
2+a d_s, + a

as
4=0l

da;1 9#!
a

'dac1

4
9a?1

as,
,

te,
+

*
Cayley, Coll. Math. Papers, vn.
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Let y be the point corresponding to x on the Jacobian;
differentiate these equations and multiply the results respectively

by y^ ...
2/4,

then by addition we have, since

i=l

which is seen to be the same as

But the polar plane of y for the cone of the system whose vertex

is x is

^,. dSi Vf. dS2 _->,. 9^ ^,,. dS4

..Sf^
+ ^Sf,- +a>Sf,_ +a.Sf

<3
- =

0,

it passes through a?, and, from the preceding equation, through

every point on the Jacobian consecutive to x
;

it is therefore the

tangent plane to the Jacobian at the point x*.

Hence, the tangent plane of the Jacobian at any point P is

the polar plane of P', the corresponding point, for the cone of the

system of quadrics whose vertex is P.

Two geometrical definitions of the Jacobian of four quadrics

have been already obtained : since the line joining two corre-

sponding points is divided harmonically by any quadric of the

system, then assuming arbitrarily any six pairs of corresponding

points, the surface may also be defined as the locus of vertices of

cones which divide harmonically six given segments f. Two other

definitions arise as interpretations of the equations

viz. that the surface is the locus of points of contact of quadrics

of the system, or that it is the locus of points which have the

same polar plane for any two quadrics of the system.

103. Cubic and quartic curves on the Jacobian.

When the point x describes any line of the Jacobian surface,

its corresponding point y describes a twisted cubic on the surface :

* See Baker, Multiply Periodic Functions, p. 68.

t Cayley.
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for let Xi = at + pbi} and P^, Pa
2
,
Pa

3 be the polar planes for any

point a of three quadrics of the system ;
the locus of y as given

by the preceding equations is derived from

giving a twisted cubic : this cubic will not intersect the locus of x
but is seen to intersect any other line on the surface twice*.

There are ten of these cubics
; they are connected with the

preceding (1, 1) relationship between points a, /3 of the symme-
troid, which is seen to have exceptional points in that to each

node QLi of the symmetroid there corresponds a curve the locus of

fti, which is of the ninth order and has double points at each of

the other nodes. For, taking the node as the vertex A r of the

tetrahedron of reference, to A l there corresponds a line on the

Jacobian, to this a cubic on the Jacobian, and finally to the latter

a curve passing through each of the other nodes twice. To find

the order of the curve, the locus of ft, we may take its section by
the plane /3X

=
;
the number of points of section is equal to the

number of intersections of the cubic curve

i= 4 3$.
xt
= a{ + pbt ,

2 *,p = o, (j
= 2, 3, 4),

i=\ vyi

with the sextic curve

> *r~ o >

l 9
2/2 92/3

_
/ _ o Q /n

"> \* * "> */ '

and these are seen to be the nine points of intersection of this

cubic curve with the cubic surface

= 0, (i,j=2, 3,4).

Another set of cubic curves on the Jacobian arise as corre-

sponding to plane sections of the symmetroid through three

nodes
;
these curves intersect the three corresponding lines on the

Jacobian twice
;
there are thus 120 cubics of this kind.

To a plane section through two nodes of the symmetroid

correspond on the Jacobian two lines and a twisted quartic, inter-

secting the two lines twice. These quartics may be determined

analytically as follows : taking the plane-pairs which respectively

* This is seen by taking the quadric S
1
as the pair of planes intersecting in

another line of the surface.



103, 104] DETERMINANT SURFACES 171

meet on the two lines as uv, u'v' and 83 , S4 any two quadrics of the

system, the Jacobian is derived from the equations

dS3 ds4W + a3 ^-
3 + a,~ = 0,

du du

<, 4

,,/ + , +,_=().

If in addition we have the relation 4
= kas ,

then writing

9 9
5,

,9 , 9 .,

v a
-- u 57 = $ * 5I> tt 5T> s *
9# 9w> 9v 9w

the foregoing may be written

BS3 + &SS4
= 0, ZS3 + kS'Si = 0.

This gives the Jacobian as the locus of oo J

quadri-quartics, each of

which twice meets the lines (u, v) t (u
r

, v') (and no other line of

the Jacobian).

Any quadric through such a quartic meets the Jacobian in

another quartic which twice intersects each of the remaining
lines of the surface. In this manner we obtain forty-five pairs of

systems of quartics on the surface.

104. Sextic curves on the surfaces.

The points yi of the section of the Jacobian by the plane ay =
have as corresponding points Xi, the points of the curve

j 9$2 9$3 dS4 /
. 1 O Q /1\

, ^ ,
=

, , at 0, (i
= 1, 2, 6, 4).

i dtti 6xi oxi

This curve has the ten lines of the surface as trisecants*.

The locus of associated points o^ on the symmetroid is a curve

of the fourteenth order passing three times through each nodef.

For the number of points of section of this curve by any plane
l>a = is the number of intersections of the preceding sextic with

the sextic

{ i ,

'
= 0, (.

= 1,2,3,4);

* This is easily seen by taking S1 to be the pair of planes which intersect in one

of the ten lines.

t See Art. 99 for the case of CH in the general surface A.
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and the number of intersections of these curves was seen to be

fourteen (Art. 97). Since the sextic curves lie on the same cubic

surface, the latter sextic does not meet any of the ten lines.

Again the curve =

may be represented by the equations (Art. 99)

dS2 dS4 _

da 3
--h ...... + 4 ^- =0,
3#4 das4

hence it is the locus of vertices of cones of the system

i.e. the locus of vertices of cones which pass through eight

associated points.

The locus of the points & when ay = 0, is the sextic

II Jilt /ifci Ji3> Jilt ai J v,

which passes once through each of the ten nodes. On the sym-
metroid the curves ce and k6 are of the same kind, each passes

through the ten nodes, they therefore intersect in four other

points.

105. Additional nodes on the symmetroid.

If (Sij, $2 , $3 and $4 have a common point, by taking it as a

vertex of the tetrahedron of reference we may write

On = On = Cu = (In

in the equations of the respective quadrics, so that the highest

power of Xi involved in the Jacobian is the second, hence this

point is a node on the surface. Moreover fu = in the equation

of the symmetroid, so that each term of the equation of this

surface contains as factors two of the expressions flz , fl3 and fu ;

hence the intersection of these planes is an additional node on the

symmetroid.

Similarly if Si ... $4 have two, three or four points in common
we have additional nodes arising on the symmetroid. Take the case

in which the quadrics have two points in common
;

if they are the
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vertices A l} A 2 of the tetrahedron of reference we have/u =fw = 0,

and it is seen that the plane /12
= is a trope of the symmetroid,

also that the line joining the two nodes on the Jacobian lies on

the surface. Hence if the Si have k common points (k = 1, 2, 3, 4)
k (k 1)

the Jacobian has additional lines and the symmetroid

*(*-!) ,
^-5 tropes.M

If k = 4 the equation of the symmetroid assumes the form

v/2/34 + VAA + v/^3 = o.

The condition that this surface should have an additional node

was seen to be the existence of an identity of the form

Afa + A'f* + Bfn + B'f^ + Cfu + C'fu
=

0,

where AA' = BK = GC' (Art. 12).

This condition may be written in the form

A : A' : B : B' : C : G' = c^ : C3 c4 : c^Cg : C2 c4 : crft : C2 c3 ,

the Ci being constants.

On reference to the values of the fik ,
if we take Sl

=
t̂ aikxi a;k)

i ^ k, etc., the preceding identity is seen to lead to the equation

^12^1^2 i ^34^04 T C^sCjCj + tt24C2C4 + Q'ltCiCi ~T d^sC^Cs ^ U,

with three others obtained by writing respectively bik , cik , dik

for afc ;
and these equations express that the quadrics Si . . . St

have an additional point d in common; hence the Jacobian has

an additional node. If the number of common points of the Si

is six, the symmetroid has sixteen nodes and is therefore a

Kummer surface
;
the Jacobian has then twenty-five lines in all,

viz. the original ten and the joins of the six additional nodes

(Art. 2).

106. Weddle's surface.

The Weddle surface is the locus of vertices of cones of the
4

system Sa{$i = 0, where $! = 0, ..., $4
= are quadrics having

six points in common. Hence the surface is the locus of vertices

of cones which pass through six given points. From the definition

it is clear that the surface contains the fifteen lines joining the

six points in pairs and also the intersections of the ten pairs of
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planes which can be drawn through the given points. The surface

therefore contains twenty-five lines *. Since through each of the six

given points five lines of the surface pass, each of these points is a

node of the surface. Since the quadrics have six common points,

there are three linearly independent quadrics containing the twisted

cubic through the six points ; through P any point of the surface

draw a chord of the cubic meeting it in L and M, the chord

will meet the polar plane of P for each of these three quadrics

in the same point P', viz. the fourth harmonic to P, L and M
;

hence the line joining two corresponding points (Art. 100) P and

P' of the surface is a chord of the twisted cubic and is cut

harmonically by it.

Since any chord of the cubic is cut harmonically by the

surface, any tangent to the cubic meets the surface in three

consecutive points, and hence the cubic is an asymptotic line of

the surface.

107. Parametric representation of the surface.

The coordinates of any point on the twisted cubic may be

represented in terms of a parameter by the relations

xl : xz : ac3 : x4
= 6s

: 6Z
: 6 : 1.

If Ay B are any two points on the twisted cubic having parameters

6, <f>,
then if L, M are the two corresponding points of the surface

on A, B their coordinates are given by the relations

xl : ac2 : xs : x = md3 + n<j)
3

: md'2 + ntf? : md + n(f> : m n"\ ;

since L, M divide A, B harmonically.

Let Saijfe#i#jfc
= be any quadric through the six points, then

L, M are conjugate points for this quadric; expressing this fact

we at once derive the equation

m2
(au

6 + 2a 12
8
+...) = n>(au <f>

6 + 2a12 <
5 + ...);

also if B! . , . # are the parameters of the six points, then

on 1

6 + 2a12 1

5 +... = 0,

with five similar equations ;
it follows that

n* -f(0)
'

where /(a) = (a
-

0,) (a
-

2) (a
-

0,) (a
-

0.) (a
-

0.) (a
-

6 ).

* See Art. 2. t Richmond.
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Hence the points of the surface are parametrically represented

by the equations

COi . tX/2 I QG
*

(K^ 11
108. Systems of points on the surface

-f^.

If we represent the quantity (18
s + ra02

-f n9 + pflf(6) \)jF(6),
then F(6) F(<j>)

= is the tangential equation of a pair of corre-

sponding points on the surface. Let 6, <f), -ty
be the parameters

of any three points on the twisted cubic
; they give rise to three

pairs of points

naf = F(^-F(^\ /3ff = F(f) - F (ff), 77
X =

F(0) - F($)

connected by the relation

' + /3$' + 77'
= 0.

This shows that the six points lie by threes on four coplanar lines,

i.e. are the vertices of a plane quadrilateral. Moreover if eta,

yS/3' are two pairs of corresponding points in a plane, they are

conjugate for all quadrics of the system ;
hence the remaining

two vertices of the complete quadrilateral of which they are

vertices are also conjugate, and therefore are corresponding points

on the surface. Any plane meets the twisted cubic in three points,

showing that there are only three pairs of corresponding points

on the surface in any given plane.

If 6, (f>, i/r, ^ are parameters of any four points on the cubic,

we obtain six pairs of points

aa' = F(((>)-F(^), axe' = F (ff)
- F(X\

ftff = F(V) - F(e\ yy'
= F (#,)

- F(x),

77'
= F (6)

-
F(4>), zz' =FW - F(X),

whence arises the relation

aaxx' + @/3'yy' + yy'zz'
=

0,

showing that the tetrahedra whose vertices are (a, a', x, x'),

(0, /3', y, y'\ (7, 7', z, z') respectively form a desmic system

(Art. 13).

* For another method of obtaining these equations see Bateman, Proc. Land.

Math. Soc., Series 2, Vol. in. p. 227.

t See Bateman, loc. cit.
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Conjugate quintic curves on the surface.

Let S, S' be two consecutive points on the twisted cubic

through the six nodes, R any other point on this cubic; then

the sides of the triangle RSS' will meet the surface again in three

pairs of points PQ, P'Q', TT' lying by threes on four lines. Hence

PP' and QQ' which are ultimately tangents at P and Q intersect

in a point T on the surface, and since the corresponding point T'

ultimately coincides with S, the polar planes of S with regard to

quadrics through the six nodes meet in the point T which lies

upon the tangent at S.

As R moves along the cubic the point T remains fixed, the

points P, Q describe the curve of contact of the tangents from T
to the surface.

Again if U be the point derived from R in the same way that

T was derived from S, and R is fixed while S varies, the points

P, Q will describe the curve of contact of the tangent cone from U ;

TP, TQ are the tangents at P and Q to this curve of contact.

Now UP, UQ are generators of this cone; hence PU, PT are

conjugate tangents to the surface at P; thus the curves obtained

by keeping one point on the cubic fixed form a conjugate system.
To find their order we insert the coordinates of P in any plane

f
=

;
if 6 be constant we obtain

(c^fl
8 + 0,20* + as + a4)

2

which is a sextic in
</>,

but rejecting the solution =
<j>
we obtain

five as the number of points of intersection with any given

plane.

As in the case of the Jacobian of any four quadrics the tangent

plane at any point P of the surface is the polar plane of the

corresponding point P' for the cone of the system whose vertex

is P. It is determined analytically as follows : the plane

&B! + mx2 + nx3 +pxt
=

will pass through the point (#, <) on the surface if

16s + mfr + n6 + p _ l<f>

3 + mty + n<f>+p

It will pass through the consecutive point (6 + SO, <f>
+ S(f>)

for all

values of 86 :
8<f> provided that
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1. (W
3 + m^2 + ne +

P\ _ o
80V VTPT /

A fty
3 + ra</>

2 + ft(ft
+ A _

8^V V/(^) /"

and will then be the tangent plane at (6, <).

These equations show that if 6 has a given value and
</> varies,

the tangent plane always passes through the point

_ 8 / &A
\ 8 f_B

a
\ 3

*4
~

: :

If in the preceding, S is the point 6, then the coordinates just

given are those of the point T. It is easily seen that the locus of T
is a rational curve of the seventh order.

It follows from the preceding equation of the tangent plane
that the equation of Weddle's surface in plane coordinates is

obtained by expressing that the equation

(W
s + m<92 + nd + p)

2 -
kf(0)

=

should have two pairs of equal roots for some value of k.

The differential equation of the asymptotic lines may be

arrived at in the following manner : the tangent plane at (6, <f>)

will pass through a consecutive point (6 + 80, <j)+8(f>) if

g &_ \

80'
I

Also, since (Imnp) is a tangent plane, we may write

(la? + mo? + nx +p\
2

_ , _ \(a>- 0)* (x
-

</>)

2

(x
-

a) (as
-

/3)

t jjije) )

'

/(>
Differentiate this equation twice with respect to x and then write

x = 6; since

d_
{IB

3 + mB* + uB + p] _
w\ ~3}\6) r

we obtain

W3 + mB2 + n0+p 82

{16
s~~

together with a similar equation in < : hence the differential

equation of the asymptotic lines becomes

-/3)
rf
,,

J. Q. S. 12
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where a and ft may be regarded as defined in terms of 6 and $ by
the fact that

kf(as) + \(x- 0)
2

(x
-

</>)
2
(x
-

a)O -
/3)

is a perfect square.

109. Forms of the equation of the surface.

The surface being defined as the locus of the vertices of cones

through six given points, let pik denote the coordinates of the line

joining x to the point a, and g# the coordinates of the line joining

x to the point b, the other given points being the vertices of the

tetrahedron of reference. Then since the six lines (x, a), (x, b),

(x, AI) ... (x, A 4) lie on a quadric cone, the anharmonic ratio of the

pencil formed by the planes (p, A-^)...(p, A t) is equal to the

anharmonic ratio of the pencil (q, A^) ...(q, A t). But these two

anharmonic ratios are determined by the ratios

PvPu. : _Pl3^>42 : PuP'23

and <fa 34 :
<?is <?42

:
<?i4 23

respectively ;
hence the equation of the surface is

Pl2ff34^gl2gs4 .*

PisPu tflS 242

"

The surface may therefore be defined as follows : if B^ . . . Bt are

six given points, then the locus of a point P such that the

anharmonic ratio of the four planes

(PBtB,), (PBt
Bt), (PB.B,), (PB.B.)

is equal to that of the four planes

(PB,B3\ (PB2Bt), (PB,B5), (PBZB6)

is a Weddle surface which has Bl . . . B6 as nodes. By von Staudt's

theorem, this may also be stated : if the anharmonic ratio of the

four points in which PBl meets the faces of the tetrahedron B3 ... Bs

is equal to that of the points in which PB2 meets this tetrahedron,

the locus ofP is a Weddle surface with Br
... B6 as nodes.

The point
-

,
or x', is seen to lie on the surface

;
since

X{

writing x' for x in the p^, q^ of equation (1) merely interchanges
the right and left sides of the equation (1).

* See also Hierholzer, Ueber Kegelschnitte im Raume, Math. Ann. n., and Ueber

tint Fldche vierter Ordnung, Math. Ann. iv.
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The coordinates of the line joining a and x' are seen to be

qik ;
if this line intersects the line joining b and x, or q, we

must have

which we may write in the form

Now expressing the pik in terms of the xi and a in equation (1)

we obtain

that is Fuq^qm + Fwqwq& + F14q 14qK = 0,

since q^q^ + q\zq& + quq-a
= 0.

Hence the line (a, x') intersects the line (b, x). Expressing
that these four points are coplanar we obtain as the equation
of the surface

^6j ft2 ^2 &3&3 ^464
/y /y

O/j U/2

X\ M/2

ax a2

=
(2).

The surface is thus seen to be completely determined when the

six nodes are given. It therefore depends upon eighteen constants.

The conditions of possessing six nodes and of containing the joins

of five of them require a surface to be a Weddle surface
;
for the

number of constants of the surface remaining arbitrary is

34 - 6 x 4 - 10,

which is zero.

On the surface there lie two systems of quadri-quartics, viz.

those given by the equations

^12^34
= ^3^42, gi2 234

=
Ml3<?42 ;

and therefore the intersection of two cones passing through four

nodes, and having their vertices at a and b respectively ;
and those

given by the equations

^12^34
=

^12?34, .PlS ^42
= ^^42 ',

which represent two quadrics through four nodes.

122
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The point x' lies on the curve of the first system determined

by the point x. The curves of the first system include, as a special

case, the line joining the nodes a and b, together with the twisted

cubic through the six nodes.

110. Group of thirty-two points on the surface.

It was seen (Art. 109) that the lines (a, as) and (b, x') intersect;

denote their point of intersection by X, so that we have

pa,i + icXi = xi , abi + rXi x{, (i
= I, . . .4) ;

and since Xix{ = a^-, it follows that

(pat + icXi) (crbi + rXi) = aibi, (i
= 1, . . . 4).

These last equations express that the point X lies on the surface.

Similarly, the lines (a, x') and (6, x} meet in a point X' on the

surface, such that XiXj= af 6f . This leads to a system of twenty-
two points on the surface ;

viz. the point x, six points such as

X, X' on the lines joining the six nodes to x, and fifteen points

such as x, viz. one in each plane through a pair of nodes and the

point x. From any one of these points the remainder may be

derived.

Another system of ten points connected with these twenty-two

points is obtained as follows : the nodes being N l . . . N6) then

denoting the remaining intersection of the line (N1} x) with the

surface by (N-^), and the remaining intersection of the line
{

with the surface by (NM), and of {N3 , (N.N^} by (N
it will be shown that the points (NjN^Ns) and (N4N5N6) are

identical.

To show this we have to find the coordinates of the point in

which the line joining a vertex of the tetrahedron of reference

meets the surface again. Denoting by A^ (x) the determinant

it is easy to see that A,^ (x} : Ay^ (x) has the same value for each

set of suffixes i, j, k; denote its value by H (x}.

The equation to determine the point acAi ,
in which the line

(x, A^ meets the surface, is
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hence the coordinates of xAl are as the quantities

/-/ / /y | /ft /y np
J.JL \Jj J . U/2 "^3 t</4

181

x3

H(xAi }, the line (xAi ,A 2) meets the surface in

i.e.

also since }

the point
/y> j~f ( /v i nt* i~i ( "71 I T* //

"

A/J J..1, l w ^ vt/2 -*-
\**

// l*/ 3 **/4 5

finally the point (A 1} A 2 ,
A 3) has the coordinates

xl'H(x) : x^H(x) : x3 H(x) : x4 .

Moreover the line (A^, x) meets the surface in a point whose

coordinates are
-'-.'. as.'. H(r\
fcC^ */2 *^S 4 yw /

Hence(^ 2l 2 , 4 3)= (a, 6, J. 4),
since H(x} H(x'} = 1. We thus arrive

at a closed system of thirty-two points on the surface, from any
one of which the others may be derived.

111. Cartesian equation of the surface *.

If we take four nodes as being situated at the origin and at

the points at infinity of the (Cartesian) axes of coordinates, the

others being A and B, the equation of the surface assumes the form

(iib1 a.2 bz u3 b3

= 0.

If the point P, or x, be joined to the points at infinity on the

axes and to the origin, these joining lines will, as has been seen,

meet the surface again in the points

(!&! rr/ , )

~H(x), x2 , SB,},
(
Xl )

Let X be the point in which the line PB meets the surface

again, then transferring the origin of coordinates to A, the new

coordinates of x, 0, and B respectively are

*
Baker, Elementary note an the Weddle quartic surface, Proc. Lond. Math. Soc.,

Ser. 2, Vol. i. (1903).
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Hence, for the former origin, the coordinates of the point in

which OX meets the surface again will be

i _
' T O'i

(x-
\

^-d i

J
= di (di -bi)-)

from which we find

Now denoting by 6(x), <(#), -^r(x) the three points derived

from Xi by the transformations

it is seen that these points all lie on the surface, and the eight

points derived from P by its projection from the nodes 0, A and B
form the four couples

x (Oab)

or

(ba) (0)

*()

abH ab

ID

x

H x

(aO)

(x a)

(a) (60)

x b

ab a(x 6)

X x a,

These show, as above, that the point (0, a, b) is identical with

(P, Q, R), where the latter point is that obtained by successive

projections of x from the points P, Q, R, at infinity on the axes.

112. Geiser's* method of obtaining the surface.

Let H! = 0, . . . u6
= be the tangential equations of the six given

nodes, then the six quadrics Ur? 0, . . . u/ = are linearly inde-

pendent and are apolarf to any quadric through the six points.

Hence the general equation of a quadric apolar to the system
of quadrics through the six points is

*
Geiser, Crelle's Journal, LXVII. (1867).

t Two quadrics whose equations in point and plane coordinates are 2aikxi
x

lc
= 0,

l
= are said to be apolar when the invariant Za^a^ is zero. When the

second equation represents two points, it easily follows that they are conjugate.
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When this equation represents two points they are conjugate
for all quadrics through the six points and are therefore corre-

sponding points on the Weddle surface. We then have an equation
of the form

LL' = 2 kin*.

Now let M = 0, iV=0 be two points which divide the points

L, L' harmonically, hence an identity exists of the form

It is easily seen that this is the necessary condition in order

that any quadric through seven of the eight points M, N,UI ...u6

should pass through the eighth point*; hence every quadric through

M! . . . u6 and M will pass through N, and every pair of points on

LL' which possesses this property divides LL' harmonically. Such

a pair of points can only coincide at one of the points L, L'. It

is therefore seen that the Weddle surface arises as the locus of

points M such that the point conjugate to M in this manner for

the six given points Ui coincides with M"\. From this point of

view the surface has been shown as a linear projection in four

dimensions I; and projectively related to Rummer's surface.

For if we write

a be, a = b'c, ft
= ca, ft = c'a, 7 = ab', y = a'b,

the equation of the general quadric surface through the six nodes

of the Weddle surface in Cartesian coordinates (Art. Ill), wherein

we write a, b, c for a1} a2 ,
a3 ; 1, 1, 1 for bly b2 , 63 ;

also x, y, z for

#1, %2, #3 and x, y, /, a, b', c' for 1 x, 1 y, 1 z, 1 a, 1 6,

1 c, is

NOW | + 7?+ =' + ,/ + ',

so that if we interpret (, rj, , f ', 77', ^) as homogeneous point-
coordinates in four dimensions, we have a (1, 1) correspondence
between the points of our original space and those of a cubic

variety in four dimensions. Again those of the quadric surfaces

*
Serret, Geometric de Direction, Nouv. Ann. iv. (1865).

t See Bateman, loc. cit. p. 228.

Baker, Zoc. cit., also Hudson, Rummer's Quartic Surface.
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which pass through a seventh point (X, ylt z^ or Pl} have as their

equation

{A K' -
a'f) + BW -

/3'r,) + C -
7'0} (|^ -^\

\p p 7 7

where = ^ */, . . .

' =
ar/yi

These quadrics all pass through an eighth point (x, y, z) or P,

such that

7-7

These three equations determine the four- dimensional line

joining (a/3, . . . ) to (^i%, . . . ); the remaining intersection of this line

with the cubic variety is the point (a + Xf,, ...) where A, is given

by the equation

x (eftfcgi + 0ri& + 7^171
- v&' - ^Ci

7

?/
- y?iV)

+ f^7 + ^i7a + i
- ^'/SV - 77/7'a'

-
f/a'yS' =

and corresponds to the eighth intersection P of the quadrics. The

points P, PI therefore coincide when this straight line touches

the cubic variety, this requires that X should be infinite, so

that

if we insert =
yi^i, etc. we obtain another form of equation of the

Weddle surface.

This surface thus arises as the interpretation in three dimen-

sions of the twofold of contact of the enveloping cone of a cubic

variety in four dimensions, whose vertex is an arbitrary point of

the variety. It has been shown* that the intersection of this

cone with an arbitrary planar threefold in space of four dimensions

is a Kummer surface. We are therefore led to a birational trans-

formation between the Weddle and Kummer surfaces in the

form of a projection ;
the point (x, y, z) of the Weddle surface

being birationally connected with the point (, 77, , ', 77', ') of the

twofold of contact which is projected into a point of the Kummer
surface.

*
Richmond, Quarterly Journal, xxxi., xxxiv.
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113. Sextic curves on the surface.

Any quadric through the six nodes meets the Weddle surface

W in an octavic curve. This quadric corresponds, as just seen,

to a planar threefold and hence the octavic curve to a plane
section of the Kummer surface K. If the quadric is a cone its

vertex P lies on the Weddle surface W, hence the octavic has a

node at P, and therefore the plane section of K is a tangent plane
whose point of contact Q corresponds to P. It was also seen that

a system of quadrics through the six nodes and one other point

corresponds to planar threefolds passing through a line, and hence

to plane sections of K through a fixed point A (the intersection

of this line with the planar threefold containing K}. Hence the

sextic curve which is the locus of vertices of cones of the system
will therefore correspond to the curve of contact of the tangent
cone from A to K.

Since to any two quadrics S, 8' through the six nodes there

correspond two planes in the space in which K exists, it follows

that the vertices of the four cones determined by 8 and 8' corre-

spond to the points of contact of four coaxal tangent planes of K.

When the quadric contains the twisted cubic through the

six nodes, the octavic breaks up into this cubic and a quintic

curve. If the quadric is a cone these quintics become identical

with those discussed in Art. 108*.

Another set of sextic curves is seen to arise as the inter-

section with W of any cubic surface having nodes at four nodes

of W and therefore containing the lines joining those nodes in pairs;

for the curve of intersection consists of the six joins of the four

nodes and a sextic curve.

114. Expression of the coordinates as double Theta

functions.

The coordinates of any point on a Weddle surface can be

expressed in terms of double Theta functions f. For the equation
of the surface (Art. 109) is satisfied by the substitutions

x- : x : x : #4
= col B01 30^0O

' c2#<9## : C ^^^^ : CQQ

* This is seen at once since the point whose coordinates are - =t / , etc.,Jm
for 6 constant, lies on tlie cone (x.2

-
Ox.^

2=
(xj

- 8x2) (x3 6x4).

t Caspary, Ueber Thetafunktionen mil zwei Argumenten, Crelle, xciv.
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where c is the result of attributing zero values to the variables in

# (u\ etc., as will now be shown.

In the first place we see that the coordinates of the point x'

or - - are derived from those of x by increasing the argument by
Xi

^(rc + d)*; since this interchanges Olt #01 ;
#2 > #02, etc. Again,

as before, let pilc denote the coordinates of the line (a, x) and qik

those of the line (b, x) ;
we find on substitution

PwP&l _ VC5C12 t7oit/02 C C34 17
j
l/2 ) ( C5 C34 U03 C/04 C Cjg "3 6/4) C23 CJ4 ,.. ,

P\zP#l (Cl2Cl4 C'o! #3 C-23 CM C703 C/j) (C12C^ C/4 C/02 C 14 C34 #2 #04) Cfl C5

If
gs-fc

denote the line joining x to a, it is easily seen that

13 5^ 42

792t^ byand the latter ratio is formed, as stated above, from

increasing the argument of the #'s by ^(rc + d).

It will now be shown that this change does not affect the right

side of equation (1). For, as is well known, the determinant

5 5 000
C4

GO C

-C

forms an orthogonal matrix, from which we may therefore derive

the equations
C Cj

"
C7j2 C CM l/o C/34

= C4 Cfl3 "4 t

.(2).
C12 C]4 C712C'14 ^23 CM t/23

"
34
= C2 C4 U.2 "4

Ci2 C2S t/i2 C/23 C 14 C34 C/ 14 1/34
= C i Cos "oi "o

Increasing the arguments in each of these equations by the

respective half-periods

(rd + 6), (TO, + a), ^ (TO. + &), (ra + a),

the left sides are transformed into the quantities which appear on

*
Using the notation of Hudson, Rummer's Qnartic Surface, p. 178. We com-

pare for convenience Hudson's notation with that just given

it <l it tl it t) il it A ft A fl Q A A ft

"5 12 n "M "23% ff14 ff24 ^4 * y04 P3 " "02 "l V-l

dd ad cd bd dc ac cc be da aa ca ba db ab cb bb.

The equations for the addition of characteristics being

a+a=b+b=c+c=d+d=d;
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the right side of equation (1), save as to an exponential factor in

each case, and we therefore derive that

P\zPu _ _ 023^13- #13^14 _ _ #23^14

PltPia, #0 #13- #13 #5 #0#5
'

the exponential factors having cancelled out.

Now the increase of the argument of the B's by (re + d) does

f)

not affect the value of J
3 "

,
hence

v v5

and the point x is seen to lie on the Weddle surface.

By considering the expressions of the p^ and qik it is seen that

the two systems of quadri-quartics on the surface are given by the

equations

(i) M = X0M ,

(il) 023#14 = P&Q0S, @12034= V0 65 , 0^6^ = ff6^6u .

The quantity H is seen to have the value

v\ "01 C/2 C/02 "3 C/03 C/4 1/04 -r- CQ C$ C12CMGU Cyj .

The thirty-two points forming a closed system are derived as

follows : fifteen of them arise from adding to the argument u for P,

the fifteen half-periods (TO, + b), etc. These are the fifteen points

(^JVa). The other sixteen points arise in the following manner:

since the coordinates of N1} the other intersection of the line PA^
with the surface, are

JJL M/J . t&g *Vg * t//^ j

it follows, from the above value of H, that the coordinates of

N! are
/>/3/3/) 4 Q O . * ) f) A f fi ft A
^Ol U03^2^4 ^o P" "3 "to t/03 PflS "02 ^04 ^4"4 us"02)

since #j divides out.

The other five points (N{) and the ten points (^N^N^) are

derived from (N-i) by the addition to its argument of the fifteen

half-periods*.

* Weddle's surface is a case of a class of surfaces investigated by Humbert,
Theorie generate des surfaces hyperelliptiques, Journal de Math., serie 4, t. ix. (1893).

These surfaces are termed hyperelliptic surfaces, the coordinates of any point are

uniform quadruply periodic functions of two parameters ; see also Hudson,
Kummer's Quartic Surface, pp. 182-187.

Baker has shown that the coordinates of any point on the Weddle surface may
be expressed as derivatives of a single variable (Multiply Periodic Functions, pp. 39,

40, 77).



188 DETERMINANT SURFACES [CH. IX

115. Plane sections of the surface.

The equation of the plane section of a Weddle surface may be

simply expressed. Take as triangle of reference the three points
in which the given plane meets the twisted cubic through the six

nodes. Each side of this triangle meets the curve of section in

two vertices and also in two points harmonic with these vertices.

Hence we obtain as the equation of the surface

a2x?y + a3a?z + bsy
sz + b^x + dzsx + c2z

s

y
+ Sxyz (lx + my + nz) = 0.

Also, since the three pairs of points lying on the sides of the

triangle of reference lie by threes on four lines (Art. 108), we have

the condition

= 0.

From the last condition we infer that the tangents at the

vertices of the triangle of reference are concurrent.

If we form for this quartic the invariants A and B* we find

A = 12lmn +12 (Ib^ + wc2a2 + na3 bs),

I a3 a.2

63 m &!

C2 G! n

Hence for any plane section we have the invariant condition

A 2 + 144 = 0.

An infinite number of configurations of points can be obtained

on the plane section as follows : let the Weddle surface be deter-

mined by four quadrics Si, $2 >
S3 ,

St , of which we may suppose the

first three to contain the same twisted cubic. Then the section

considered contains the following set of twenty-five points, viz.

the fifteen points in which the join of two of the nodes N! ... N6

meets the plane, and the ten points in which the ten lines

(NiN^Ns, NtN5N6) meet the plane. The first set of fifteen

points lie by threes on twenty lines, viz. the intersection with the

given plane of the planes (NiN2Na\ etc.

Now consider the Weddle surfaces formed by aid of Sl} S2 , S3

and S4 + \a?, where a = is the plane of the section. These

surfaces form a pencil whose nodes lie on the same twisted cubic,

and all containing the same section lying in a=
;
from each surface

*
Salmon, Higher Plane Curves, 3rd Ed. p. 264.
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one configuration, of the kind just mentioned, arises,

have an infinite number of such configurations *.

Hence we

116. Bauer's surfaces.

If in the foregoing four collinear systems (Art. 97) each plane

system reduces to a sheaf, and is such that each plane joining the

centres of three sheaves is a self-corresponding plane for three

systems, we obtain the surface discussed by Bauerf. The equation
of such a surface is accordingly

b
t

'2 ~6,
/*
O/Q

X.i x.

This equation may also be written in the form

= 0.

T I 1 T~
dx

wherein ax ,
bx , cx , dx are linear functions of the coordinates.

The foregoing equation may also be obtained as follows : a

point P (or x) is joined to the vertices of a given tetrahedron A
(taken as that of reference) and the joining lines PA 1} etc., meet
the faces of any other given tetrahedron A' (whose faces are

ax = 0, . . . dx = 0) in points Qi ... Qt ',
then if the points Qt are

coplanar the locus of P is the surface just given. For the coordi-

nates of Qj are seen to be xl
--

-, x, xz ,
ac4 ,

and expressing that the
O.J

points Qi are coplanar, we obtain the foregoing equation.

The second form of equation of the surface shows that the

edges of A' lie on the surface and also the intersections of corre-

sponding faces of A and A', as x = 0, ax = 0, etc.
;
the vertices

of A' are seen to be nodes of the surface. The surface therefore

possesses ten lines and four nodes.

Denoting the lines (#1, ax), etc. by plt etc., if two lines p
* See Morley and Conner, Plane sections of a Weddle surface, Amer. Journ. of

Math. xxxi.

f Bauer, Ueber Flachen 4. Ordnung deren geom. Erzeugung sich an 2 Tetraeder

knilpft, Sitz. d. Konig. Akad. d. Wiss. Miinchen, 1888.
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intersect, their point of intersection is seen to be a node of the

surface
;
if each line p meets every other line p, then the lines

p lie in one plane, say the plane z = 0, also each edge of A meets

the corresponding edge of A' and the two tetrahedra are in per-

spective. In this case the equation of the surface assumes the

form

x bx cx ]
= ax bx cxdx ,

where the Xf are constants. For in this case we may write

bx ,
etc.

The surface is the Hessian of the general cubic surface
;

it has

ten nodes of which six lie in z = 0.

Let now an edge of A intersect the edge of A' opposite to the

corresponding edge, e.g. let the line (x1} x2) intersect the line (cx ,
dx) ;

in this case it is easily seen that (xlt x2) lies on the surface
;

if this

occurs in every case the surface will contain also the six edges of

A and have the vertices of A as nodes *.

Lastly we may assume that both sets of conditions are satisfied,

viz. that each edge of one tetrahedron intersects a pair of opposite

edges of the other. The tetrahedra are then in desmic position

(Art. 13).

The equation of this surface, viz.

.

xl

+- - - +--- + 1=0,
X3 + Xt a?j +

may be reduced either to the form

Z (XiXzX3 + XzXs%t + XsXtXl

where z = "S,Xi, or to the form

VJ1 + VF2 +

where

Zl
= (xl + #2) (x3 + xt),

* The equation of this surface may be written in the form

AZ* +BZ2
*+ CZ3

2+DZ^t+EZ^Z3+FZ3Zl
= 0,

where the Zi
are pairs of planes through opposite edges of A'.
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117. Schur's surfaces.

A particular case of the surface A arises when the foregoing

correspondence between points x, y of A is reduced to a collinea-

tion*. It has been seen (Art. 99) that as x describes a curve

c the corresponding point y describes a curve which is the locus

of the fourth intersection with A of the trisecants of c6 ,
but since

the points x, y are to be in this case linearly connected, y must

also describe a curve of order six, hence the intersection with A of

the surface formed by the trisecants must include eight of these

trisecants ^...ag, in order to complete the order, 14, of the

complete intersection of the surfaces apart from c6 . Similarly

every k6 has eight trisecants b^ ... bs which lie upon A.

The lines a and b are distinct and no two lines a intersect

each other
; similarly no two lines b intersect. For, in this case,

to the point x of c6 which gives rise to a line a there corresponds
an infinite number of points y, viz. the points of at

-

;
hence the

four planes
a4p'"

= 0,

=0,

=0,

must be coaxal
; by effecting a linear transformation of the o^ we

may take four of these points a as vertices of the tetrahedron of

reference, in which case the four planes p, q, r, s are coaxal
;

similarly for the four planes p', q', r', s', etc.

The eight lines b arise from such values of the \i as make the

following four planes coaxal :

\i> + \2<? + X3r + X4 s = 0,

........................... =0,

........................... =0,

xy+ .................. = o.

It is clear that any line b must meet each of the four

preceding lines a except e.g. when the \ are such that

\p + X2 <?
+ "h*r + A.4 s = ;

and there cannot be more than two such identities, for in that

case the four planes p, q, r, s would coincide, and A would break

* F. Schur, Ueber eine besondre Classe von Flachen vierter Ordnung, Math.

Ann. xx.
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up into factors. Hence it follows that the line (p, q, r, s) must

meet at least six lines b
;
so that if the lines (p, q, r, s), (p'} q, r', s')

intersect there must be at least four lines b which meet each of

them, which is impossible since the order of A is four.

Hence no two lines a can intersect
;

it follows that the lines a

are different from the lines b. Moreover a line a cannot meet

more than six lines b, for suppose it meets seven lines b, then since

any three lines a would meet a common set of five lines 6, the

quadric through these eight lines would meet any k6 in fifteen

points, since every bi is a trisecant of every k6 ,
and hence would

contain it. Therefore any line a meets exactly six lines b
;
simi-

larly any line b meets exactly six lines a. In a case in which a

line b does not meet a line a, e.g. (p, q, r, s), an identity exists of the

form

A^? + A2 <f
+ A3r + A4 .s

=
0,

so that p may be replaced by zero in equations (1), Art. 97.

Take therefore four lines 6j ... 64 such that each of them does

not meet two of the lines a1 ...a4 , e.g. 0% and a3 ,
a3 and at ,

a4 and a1} c^ and a^ respectively, then equations (2), Art. 97,

may be reduced to the form

+ a4p'"
=

0,

......... = 0,

............... a3s" + at s"' = 0.

The required surface is therefore

pq'r"s'"
=

p'"qr's"

This surface being susceptible of collineation into itself, if it be

represented by A + A' = 0, then either A and A' are interchanged

by the collineation, or the planes which constitute A are cyclically

permuted : similarly for A'. An instance of the former is given

by the surface

x (a?! x2 + xs
- #4) (xl xz #3 + #4)

=
;

if this be written in the form

IGx^XsXi + ax bx cxdx = 0,

it is seen to be unaltered by the collineation

%l :x.i :x3 :x4
= ay :by : cy : dy .

The surface is desmic.
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In the latter case, viz. when the faces of A are cyclically

permuted by the collineation, the latter must be of period four;

taking A as tetrahedron of reference the collineation is then of

the form

By a change of the coordinate system we may take each &f to be

unity.

The equation of the surface is now seen to be

A + A' = Kx
1
x2x3Xi + aja2a3

a4
= 0,

where !
= u lx1 + u2x2 + u3x3 + u4 x+,

Wg ^^ tt'gwi ~T" tvjjtvg ~i tt^wQ ~~f~~ Ztj w/4 j

=

Conjugate tetrahedra.

4

Denoting by 4>j the quadric 2^^ = 0, where
i

jj = C\ T X ~\~ ^iX^X^, &2 ^= ^ \X^

= x.

it is clear that the planes Oj ... 4 are the polar planes of the

vertices A^ ... A 4 of A for the quadric ^>
1 . Two tetrahedra such

that the faces of one are the polar planes for a quadric of the

vertices of the other, may be termed conjugate. Again it is easily

seen that A and A' are conjugate for the quadric

and hence for each of the quadrics

<I>3 = u^s + u2 St + u3Sl + u4S2
= 0,

w2$! + u3S2 + uS3
=

;

since 3>3 ,
<E>4 are the quadrics obtained by submitting ^ and 3>2 to

the given collineation.

Hence A and A' are conjugate in four ways.

Now it can be shown that when the tetrahedra A, A' are

j. Q. s. 13
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conjugate, four faces of A meet four faces of A' in four lines

which belong to the same regulus* of a quadric.

Now since A, A' are conjugate with regard to each of four

quadrics, it occurs four times that four intersections of their faces

are co-regular. But if a quadric 2 meet a non-ruled quartic

surface F4 in four lines of a regulus, it will meet F* in four other

lines of the complementary regulus ;
since if c4 be this residual

curve of intersection, from each point of c4 a line can be drawn to

meet the four given lines, this line therefore lies upon F', hence

c4 must consist of four lines of the other regulus of S. Therefore

corresponding to each way in which A, A' have four intersections

co-regular we obtain four lines of A, giving, in addition to the

sixteen lines of intersection of A and A', sixteen other lines upon
the surface.

The existence of these thirty-two lines upon the surface may
also be seen from the expression of the surface in the form

pqY's'" = p'"qr's" ;

for this shows the existence of eight lines not included in the

eight lines a or the eight lines b, e.g. p = r' = 0, etc.

If we had started with the other four lines a and b we should

have obtained a second form of the equation of the surface in the

form

A^A^U,
where Al5 A/ are two new tetrahedra; they again yield eight
lines not included in the eight lines a and b.

* For A being the tetrahedron of reference, and the quadric with regard to

which A and A' are conjugate being 2aacxi
xk =Q, the four lines just referred to are

j=:0, Oj2 a:2 H- 0,3X3+ a14x4
= 0, etc.

If the join of two points A', Y meets this line we have

hence if pac=Xi
Yk - Xt Yit it follows that

The conditions that pik should meet the other three lines are seen to be,

similarly,

42 +1>43 43
=

5

and since jp<l
= -p^, aik=aki ,

the four equations are equivalent to three; hence

an infinite number of lines p meet the four given lines which therefore belong to

the same regulus.
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118. Tetrahedra subject to two collineations.

We now consider the case in which a collineation of period

four permutes the faces of A, and a collineation of period three

permutes three of these faces and leaves the fourth unaltered ;
the

tetrahedron A' being similarly affected.

Taking the collineations as

<ei = yi, <ra%
=

y,i,
(rx3 = yt , <rxt = y<>

......... (II),

it is seen that the surface

Ax:xzxzx4 + (mx-L + #2 + x3 + x4) (x^ + mx.2 + x3 + #4) (...)(...)
=

is unaffected by each collineation.

There are six planes each containing two intersections of faces

of A and A' and two other lines, viz. the planes

#1 + #2 + m (x3 + #4)
= 0.

The surface therefore possesses 16 + 12 = 28 lines; it has six

4

coplanar nodes, viz. the points x
l
= x.2 ^Xi = 0, etc.

i

Next consider the collineation

pXi
=

V2, px2
= -y*, px =

y4, p^ = yi ...... (Ill),

the collineation (II) being as before.

The surface

Aae^assXi + (x2 + x3 + #4) (xl x2 + x3) (xl
-xs + #4) (#] + xz x4 )

=

is unaffected by the collineations (II) and (III).

The tetrahedra A, A' are conjugate in nine ways; in six ways

arising from the six quadrics

#3
2

x? + 2#i (x3 + &'4) 2 2 (#3 #4) + 2#x#2
= 0, etc.,

and in three ways arising from the three quadrics

#i
2 #2

2 + #s
2

#4
2 + 2#1#2 + 2#3#4 + 2x2xs 2#!#4

= 0, etc.
;

each manner in which A and A' are conjugate gives rise to four

lines on the surface, which is thus seen to possess 16 + 9x4 = 52

lines in all. Each of the tetrahedra A, A' is inscribed in the

other.
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