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PREFACE 

Thl^ collection Is designed for students specializing In the field 

of automatic control and servosysterns, but It may also be used by stu¬ 

dents in other specialities when studying automatic control theory. 

Since there is at present no one single text in automatic control the¬ 

ory, this collection Is not a supplement to any one book, but Is orient¬ 

ed toward several books used In higher educational institutions^ a list 

of these books has been given at the end of the collection. 

The authors also considered it desirable to give a few problems 

whose solution requires reference to the Journal literature. These prob¬ 

lems are indicated by an asterisk. 

The problem area covered by this collection Includes topics found, 

as a rule, in the automatic control theory syllabus used In many high¬ 

er educational Institutions. They Include such topics as "Equations of 

Notion of Automatic Control Systems (s.a.r.)," "Construction of Fre¬ 

quency-Response Curves," "Stability Studies," "Construction of Trans¬ 

ient-Process Curves," "Judging Control Quality," " Random Processes in 

s.a.r.," "Nonlinear Systems," and, etc. In addition, the collection 

contains problems dealing with design methods for automatic control sys¬ 

tems; they are Intended to aid the student In Independent performance 

of assignments, as well as for course and diploma design projects. These 

problems are directed toward the topics "Choice of s.a.r. Parameters 

from Required Accuracy," "Choice s.a.r. Parameters from Required Dyna¬ 

mic Properties," "s.a.r. Correction," etc. 

The collection also contains problems from several new branches of 
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automatic control theory: "Discrete Control Systems," "Linked Systems," 

and "Adaptive Systems." 

Chapters 5, 6, 7# 8 and 13 were written by V.A. Besekerskiy, Chap¬ 

ters 3 and 9 by I.P. Pal^ov, Chapters 2 and 4 by Ye.A. Fabrikant, Chap¬ 

ters 10, 11, and 12 by S.M. Fedorov, and Chapters 1 and 14 by P.I. Chin- 

ayev. 

The authors will be grateful for all critical comment.' cn the con¬ 

tents of this collection. 

The Authors 

Manu¬ 
script 
Page 
No. 

[Transliterated Symbols] 

c.a.p * s.a.r » sistema avtomatlchcskogo regulirovaniya 
automatic control system 
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Part I 

ANALYSIS OP AUTOMATIC CONTROL SYSTEMS 

Chapter 1 

EQUATIONS OP MOTION OP AlfTOMATIC CONTROL SYSTEMS 

$1. SETTINO UP THE INITIAL DIFFERENTIAL EQUATIONS AND THEIR LINEARIZA- 
TION 

!• Set UP the linearized equation of motion for the centrifugal 

sensing element whose diagram Is shown In Pig. 1# and find Its transfer 

function. 

Solution. The Input variable of the cen¬ 

trifugal device Is the angular velocity fl, and 
the output variable the translation X of the 

coupling. 

Let us set up the equation for the forces 

acting on the coupling. The moving force Is 

the centrifugal force acting on the weights. 

It Is opposed by: the elastic force of the 

spring, damping forces, and Inertial forces. 

Let us express these forces In terms of the Input and output variables, 

their velocities, and their accelerations. At the same time, we shall 

express all forces In terms of the coupling center of mass: 

1) P ■ 2 g rmfl* Is the centrifugal force due to the weights, re¬ 

duced to the coupling center of mass; 

2) Pp « cX Is the spring force; 

3) is the Inertial force due to the translating rasscs; 

4) Fd « S(P1 - P2) is the force developed by the hydraulic damper. 

On the basis of the law of equilibrium of forces, we have 

Fig. 1. Centrifugal 
sensing element. 
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(1) *Sr+JW-*V>+<X«î»; î rV. 

The quantities contained in this equation have the following meanings: 

Op is the mass of the translating parts, reduced to the coupling center 

of mass, m is the mass of the weight; S is the effective piston area; 

Pj and Pg are the pressures of the liquid above and below the piston; r 

is the distance of the weight center of mass from the rotational axis; 

a and b are the distances of the points of application of tne centrifu¬ 

gal forces, real and reduced, from the point 0. 

In the case considered, the relative rate of motion of the liquid 

through the vent is proportional to the velocity of the coupling. Thus 

the damping force may be written as 

where R Is the Reynolds number, u is the dynamic viscosity, and d is 

the vent diameter. 

The centrifugal force F entering into Eq. (1) is a nonlinear func¬ 

tion of X and ft. 

We linearize, letting ft « ft0 + ¿lî, F * F0 + AF, and X « XQ + x, 

where ftQ is the initial velocity, and X0 is so chosen that for an ini¬ 

tial velocity ft « ftQ, the condition x « 0 is satisfied; we then obtain 

~ r,Q,AQ. 

Taking i..to account the kinematic link between r and X (Fig. 2), 

we obtain 

Thus, 

àfmmim J 0î£* + 4»l i f,V2. 

Going over in the initial equation to deviations and substituting 

the force Increments found, we obtain the equation of tte centrifugal 

sensing element in deviations: 

- 4 - 



,2+^+ 
+(#- l«f lg Qjr—U« J rfi¿Q. 

Letting 

Fig. 2. Determin¬ 
ing the geometric 
relationships In a 
centrifugal sens¬ 
ing element. 

* f» 
t- M* 

4aif rA 
A—-1 

and going over to the transforms, we finally * fa¬ 

ta In 

(jy+ltp-tQjr.ttS. 
The transfer function Is 

(2) 

Am! 

A 

Fig. 3« Hydraulic dif¬ 
ferentiating device. 

•W-¿-rj.’4rí+rv- 
2. Set up an operator equation for the 

motion of a hydraulic differential device 

(Fig. 3) and find Its transfer function under 

the following initial conditions: spring 

stiffness c « 5 kg/cm; lever length n « 8 cm 

and m ■ 16 cm, vent diameter d * 0.06 cm, 

piston diameter D * 6 cm, rod diameter ó « 0.6 

cm, dynamic viscosity of the liquid ^ « 0.9 

kg*sec/m , Reynolds number R » 2000. 

Solution. The following forces act on the pistons 

1) a damping force 

where £) iz the effective piston area, and (P2 - P1) 1j the 

difference In the pressures above and below the piston. 
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2) a spring force 
•è 

f,—«. 

3) an inertial force whose effect we neglect. 

Prco the Bernoulli equation, as In our solution to Problem 1, we 

write 

where is the rate at which point D moves: 

■L —A 

while Vg is the rate at which point A moves: 

Let us now write the law governing the equilibrium of forces acting on 

the piston: 

fã+PêmmO. 

After substituting the values of the forces and dividing by the 

spring stiffness, we have 

«r 3? tá 7r 

If we take the translation of point E as the output variable: 

JmijXwxkX, 

then the equation of motion is obtained In the form 

(1) 

where the tine constant of the device Is 

After substitution of the numerical values, we obtain T - 1.7 sec and 

k * 2. The transfer function is 



3* Set up the linearized equation for the carbon-pile voltage regu¬ 

lator shown ln Fig. K, In this figure, 1 Is the carbon pile, 2 are lam¬ 

inated springs, 3 is the armature, 4 Is the coll, 5 Is the core. For the 

Input variable v;c take the voltage across the coll 4, and as the output 

variable the change In the resistance of the carbon pile 1. 

Solution. We set up the equation for the 

electrical part of the regulator. On the ba¬ 

sis of the second Klrchoff law, for the cir¬ 

cuit of coll 4 

Fig. 4. Carbon-pile 
voltage regulator. 
6) To excitation cir¬ 
cuit. 

From this we obtain 

where L Is the Inductance of the coll circuit. 

R is the Impedance of the coll circuit, U Is 

the applied voltage, and I the coll current. 

The time constant of the coll circuit Is T * L/h. This equation 

will also hold for deviations from some steady operating regime; they 

are determined by the expressions I « + 1 and U ■ Uq + u, l.e., 

(1) 
We now find the equation for the mechanical part of the carb^n- 

plle regulator. The carbon pile Is compressed by the force 

F-Fm-kA 

where Fn Is the Initial compressing force, while kj Is a coefficient of 

proportionality. Linearizing this equation, we obtain 

(2) AT—yl— 

for small Increments. 

Figure 5 shows the carbon-pile resistance as a function of the 
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Pig. 5* Character¬ 
istic curve of 
carbon pile. 

where 

compressive force. For small deviations from a 

certain steady state (F « Fq and Rc = R0), we 

can write 

(3) 

where kg Is the absolute value of the slope of 

the characteristic curve at the point F « Fq. 

Taking into account (1), (2), and (3), we 

finally have 

(4) 

The transfer function Is 

i*-* IwJ 

Fig. 6. Control circuit 
of armature-controlled 
motor. 1) U . V.5 2) arm¬ 
ature. VKn 

4. Set up the equation of motion of a 

DC electric motor armature-controlled with 

the aid of an amplifier navlng a voltage 

gain ky. The circuit Is shown In Fig. 6. 

Answer. When the load torque equals 

zero, the equation of motion may be written 

In the form 

(p.VM-V-HífV «D 
The electromagnetic time constant of the armature circuit lu 

where Lya and Rya are the resultant Inductance and armature-circuit re¬ 

sistance, with allowance for the final stage of the amplifier. 

The electromechanical time constant of the motor Is 

9 ^ __ CD* *« . R, 
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« 

« 

where J[kg»m-sec2.) Is the reduced moment of Inertia, 0D2[kg»m2) Is the 

reduced moment of gyration, nQ « [1/sec 1 Is the Ideal no-load 

angular velocity, MQ[kgm] Is the-motor starting torque, C « U Is 
— e n o 

the back emf coefficient, equaling the ratio of the motor nominal vol¬ 

tage to the Ideal no-load speed, CB ■» Is the motor torque coeffi¬ 

cient, equal to the ratio of the nominal torque to the nominal armature 

current. 

The nominal torque may be found from the motor rating plate: 

[kgm]. 

where Pn(watts) Is the rated power of the motor, nn [rpm] Is the nominal 

speed of the motor. 

The over-all transfer function of the motor together with the amp¬ 

lifier Is 

rad/v«cec. 

The motor transfer function Is 

+rJ+ • '2 

5. Set up an operator equation of motion for a field-winding con¬ 

trolled DC electric motor using an amplifier with voltage gain ku. The 

circuit Is shown In Fig. 7. 

Answer. For small deviations, the equation of motion may be repre¬ 

sented as 

P>+i)<r.V+V+i)|rf.-MMV+i>-*J *4r ( 1 ) 
The electromagnetic time constant of 

Fig. 7« Control circuit 
of field-winding con¬ 
trolled motor. 1) Arma¬ 
ture. 

the field circuit Is 

r-fc. 
where Ly and Ry are the resultant Induc¬ 

tance and resistance of the field circuit. 

- 9 - 



taking Into account the final stage of the amplifier. 

The electromagnetic time constant of the armature circuit Is 

where L Is the armature-circuit Inductance, R a Is the armature-clr- 
•r jf a 

. cult resistance, Is the series resistance. 

The electromechanical time constant Is 

where J Is the reduced moment of Inertia; IVQ Is the field current cor- 

rcwpondlng to the steady-state regime from which small deviations are 

measured; C¿ « ce/*o ls a coefficient of proportionality between the 

back emf and the product of the angular velocity by the field current; 

^ coefficient of proportionality between the torque and 

the product of the armature and fieId-circuit currents. * 

The transfer functions are 

where Iyao Is the armature current corresponding to the steady-state 

regire from which small deviations are measured; fig Is the steady-state 

angular velocity. 

When kj > kg, an Increase In the Input vol'.age corresponds to an 

Increase In the output speed, while when kx < kg, the converse Is true. 

The motor transfer function Is 

Fig. 8. DC gen¬ 
erator circuit. 

6. Set up an operator equation and determine 

the transfer function of a DC generator turning at 

constant speed and working into a pure resistance 

- 10 - 



!n (FIs* 8). As the Input variable we take the change In voltage across 

the field winding, and as the output variable the change In voltage 

across the load resistance. 

Answer. The equation for deviations may be represented In the form 

P>+«Kr/+i)i4-*%. (i) 
The armature-circuit time constant Is 

The field-circuit time constant Is 

The Inductance Ly should be found fr^m the magnetization curve at 

the point corresponding to a steady-state regime (U^ « ü1Q and U2 * 

« U20) from the expression 

«•"as** 
where ¥ Is the field-winding flux linkage, Iy Is the field current. 

The transfer function Is 
à 

where P Is the number of pole pairs, N Is the number of active armature 

conductors, a Is the number of pairs of parallel armature-winding 

branches, n Is the armature speed In rpm, c « d$/dly Is the slope of 

the magnetization curve at a point corresponding to the steady-state 

regime, $ Is the excitation flux. 
. 

The slope of the magnetization curve Is associated with the field- 

circuit inductance by the relationship 

where wy Is the number of field-winding turns per pole, o > 1 Is the 

pole leakage factor. 

The generator transfer function Is 

n - 



(2) •W-5ro+7./(i+^r 
7* Set up the equation and find the transfer function of the cross 

field anplldyne whose basic circuit Is shown In Fig, 9« V.’e assume that 

the armature-reactIon flux Is completely compensated and the amplifier 

operates Into a pure resistance. 

. Resistance. The second Klrchoff law for 

the control circuit yields 

+(#•+fli)/» *= (1) 

Fig. 9* Circuit of 
cross-field ampll- 
dyne. 

where and are the control-winding Induc¬ 

tance and resistance, and Rv Is the output 

resistance of the Input-voltage source. 

The second Klrchoff law yields 

(2) 
for the quadrature circuit, where Lg and R2 

are the quadrature-circuit Inductance and resistance, E2 Is the quadra¬ 

ture-circuit emf, c1 Is the coefficient of proportionality betvjeen the 

emf and control current. 

The emf In the direct circuit Is proportional to the current In 

the quadrature circuit, l.e., « c2*2* v°ltaSe across the load 

resistance Is 

ft— (3) 

where R^ Is the direct-circuit resistance. 

From Eqs. (1), (2), and (3) we find 

The time constants are 

- it 
'‘ET*/ 
T t 

(4) 
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The voltage gain is 

The transfer function Is 

8. Find an approximate expression for the transfer function of a 

magnetic amplifier working Into a purely resistive load with the follow¬ 

ing Initial conditions: load resistance R2 - 100 ohms, load current 

I2 - 0.5 amp. Input current « 0.01 amp, primary-circuit resistance 

- 1000 ohms, power-supply frequency f » 5OO cps. 

Solution. The power gain Is 

The voltage gain Is 

9 

With a secondary efficiency tj « 0.9, the rough value of the ar.pl 1- 

fler time constant will be 

Jec 

The magnetic-amplifier transfer function Is 

9. Solve the preceding problem where positive selffeedback is used 

In the amplifier. The feedback factor Is k e ■ O.95. 

Solution. Since the same input and output variables are used, the 

power and voltage gains remain as before. The time constant of the mag¬ 

netic amplifier will be 

The transfer function is 

’0,007 sec 
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•w-jr- rF7>-r+m?- 

10* Find the transfer function of a two-phase variable-speed in¬ 

duction motor together with its supply amplifier If the low-speed mech¬ 

anical characteristics can be approximated by parallel straight-line 

segments. 

Answer. The transfer function is 

where is the angle of rotation of the motor shaft, Uvkh is the ampli¬ 

fier input voltage. 
« 

The electromechanical time constant of the motor is 

where J is the reduced moment of inertia, Y[g»cm«sec/rad] is the slope 

of the mechanical-characteristic curves. 

In many cases we may assume in approximation that 

where and Mq are the rated and starting torques of the motor when 

supplied from the final amplifier stage, is the rated angular vel¬ 

ocity at which the motor turns. 

The transfer constant is 

the amplifier voltage gain. 

§2. DYNAMIC ELEMENTS 

11. Find the transfer function for a type one element where its 

reaction to unit input (transient response) has the form shown in Fig. 

10. 
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Answer. 

inpSay • 

12. Find the transfer function for a 

type two element. If Its transient response 

has the form shown In Fig. 11. 

Fig. 10. Transfer-res¬ 
ponse curve for Prob¬ 
lem 11. 1) Sec. 

Fig. 11. Translent- 
response curve for 
Problem 12. 1) Sec. 

Fig. 12. Weighting 
function for Problem 
13* 1) Sec. 

Answer. 

• • 

"W”r+nj>+rv“ 
__ • 

13« Find the transfer function for a 

type one element If Its unit Impulse response (weight function) has the 

form shown In Fig. 12. 

Utm 

Fig. 13. Weighting 
function for Problem 
14. 1) Sec. 

Answer. 

Fig. 14. Gain-phase 
characteristic for 
Problem 15» 1) Sec. 

• _ AS 
rp?“rFW 
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14. Do the same for the weighting func¬ 

tions 1 and 2 shown ln Fig. I3. 

Answer. 

Pig. 15* Gain-phase 
characteristic for 
Problem 16. 1) Sec. 

Pig. 16. GaIn-phase 
characteristic for 
Problem I?, l) Sec. 

In Fig. 15. 

15« Find the transfer function of an ele¬ 

ment If Its gain-phase characteristic, con¬ 

structed for positive frequencies, has the 

form of a semicircle (Fig. 14). 

Answer. 

•«“rFiÿ-rn»- 
l6. Find the transfer function for a type 

two element. If for positive frequencies Its 

gain-phase characteristic has the form shown 

40 
b ^ 4. 

Fig. 17» Logarithmic amplitude char¬ 
acteristic for Problem 18. 1) db; 2) 
sec. 

Answer. 

'<Ws 
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17. Find the transfer function of an element if its gain-phase 

characteristic is a semicircle for positive frequencies (Fig. 16). 

Answer. 

-.,s\ + Ttß _l+0,V 

18. Figure 17 shows the asymptotic logarithmic amplitude charac¬ 

teristics (l.a.kh.) for phase-minimum elements. Determine their trans- 

fer functions. 

Answer. 

rri 
0--1-çs 

Fig. 18. Pas¬ 
sive integrat¬ 
ing network. 

*C, 

n. fn\ —__ _ 100 
(‘ + Ttp)(l + Ttp) ^ (I -J- U,Qlp) (J + 0,01/») • 

(f.) - *LÍL4¡ Lp) -100(14- 0,2p). 

19. Find the transfer function of the passive 

integrating series compensating network illustrated 

in Fig. 18. 

Solution. Representing the network as a vol¬ 

tage divider, we obtain the tránsfer function 

*W—M«+W- 

Fig. 19- Pas¬ 
sive differ¬ 
entiating net¬ 
work. 

^ *t<p> 

Ut 

fb 

Fig. 20. Pas¬ 
sive lead-lag 
network. 

Fig. 21. Generalized 
diagram of series 
compensating network. 

The expressions for the divider resistances in operator form are: 

*1 (p)s Ru 

- 17 



After substitution of the expressions for the resistances, we ob¬ 

tain 

w(p)= 
W l + Tj* 

where Tx = + R2)c2 and T2 = R2C2. 

20. Find the transfer function of the passive differentiating com¬ 

pensating network of Fig. I9. 

Answer. 

whe re r.-ftc,. r.-Äc,. 0 = ^. 
^ TÄ» ' 

21. Find the transfer function of the passive lead-lag network of 

Fig. 20. 

Answer. 

w(p)> d -f 7» (1 -f Tip) 
0 + + TiP)' 

where T, = , T2 = R2C2, = T^, and Tj + = T, + + 

22. Find the transfer functions of the passive compensating net¬ 

works using the values of Problems 19, 20 and 21 for the case in which 

we cannct neglect the effect of the output resistance Ry of the preced¬ 

ing stage arid the load (input.) resistance Rn of the following stage. 

.ne generalj.zea network circuit for this case is shown in Fie. 2I. 

Answer. 

1) For the passive integrating network 

wM“0*îT%' 

where 

^ + /?" -f /?B • 

2) For the passive differentiating network 

- IB 



where 

»w=°.íí# 

0,=(¿.+«.) «."+ «,)+Ä.Ä.1 
(I+>;)W- +ÄJ+* 

r,=-¡—b ,.A p-;-r,. 

where 

Pig. 22. Differen¬ 
tiating transformer. 

(•+£j«.+*.)+*. 

3) For the passive lead-lag network 

"w“°‘ ïi+lt+V) • 

^ -f 4- /?»c.) + (/?./?, -t- A,/?. + /?./?.) C. 
• Ä. + Ä. + Ä. » 

+ + 

23. Find the transfer function of the differentiating transformer 

whose circuit is shown in Fig. 22. 

Answer. 

_•« T¿ 
», I+TJ’.» 

where = 1^/(R^ + ), L, is the inductance of the primary winding, 

M == (w2/w1)L1 is the mutual inductance, w1 and w2 are the number of 

primary and secondary turns. 

24. Show that an oscillating circuit with transfer function 

•W'T+W+Tv1 

may be represented as series-connected aperiodic and integrating net¬ 

works included in a proportional unit negative-feedback loop. 

Solution. The transfer functions of the aperiodic and integrating 

net wor ks are, respectively, 
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and 

If these networks are connected in series and have a unit feedback 

loop, the resultant transfer function will be 

w(p) mm ■-?* y__. ^ w r+»»(/>) ¡»»if) i r, 

Satisfying the condition: 

and Zl^P 
lt M. * 

we obtain a transfer function coinciding with the given transfer func¬ 

tion of the oscillating circuit. 

25. For the case In which a passive integrating compensatlng net¬ 

work is introduced into the control circuit in series with an Instan¬ 

taneously responding amplifier (Fig. l8), find the transfer function 

for the equivalent negative feedback loop taken around an Instantaneous¬ 

ly responding amplifier with voltage gain equal to k. 

00lut Ion. The transfer function of the equivalent feedback loop is 

found from the formula [3] 

(i) «'cW «»•.»(/>) * 

In our case, the transfer function of the network around which the 

feedback loop is taken will be w,,(p) = k, while the transfer function 

of the series integrating network is 

*•.»(/>) = f +T* * 

Substitution in (1) yields 

«VcO>): 
<r, - t,)p T, - T% Tip 

~kit TtP • 

Such a feedback loop can be realized, for example, by employing a dif¬ 

ferentiating capacitor and voltage divider (Fig. 23). 

The equivalence conditions (for r'r' \ 
^ r% Yrt) 

are 

20 



Fig. 23. Feedback 
loop equivalent to 
passive integrating 
network. 

> 
k 

*oc 
1*hp 

Fig. 24. Feedback 
loop equivalent to 
passive difieren- 
tiating network. 

Fig. 25. Feedback 
loop for Problem 28. 

tion 

—a- T'.~~ t.l and dcsszT fi+r, kl, *«*—'* 

We can obtain a similar result by using a 

differentiating transformier (Fig. 22) in the 

feedback loop. 

26. Do the same for the passive differ¬ 

entiating network of Fig. 19. 

Answer. The equivalent feedback loop is 

shown in Fig. 24. A type-one aperiodic ele¬ 

ment should be introduced into the feedback 

loop; it should have a transfer function 

27. Do the same for the passive lead-lag 

network of Fig. 20. 

Answer. The feedback loop should contain 

a series-connected real differentiating ele¬ 

ment (capacitor or transformer) and a series- 

connected type-one aperiodic network with over¬ 

all transfer function 

28. Figure 25 shows an amplifier with 

finite response time having a transfer func- 

•■•W=rqnr5' 
ana forming part of a negative-feedback loop containing a differentiat 

ing capacitor with transfer function 

21 



where T - RC. Find the series compensating network equivalent to this 

feedback loop. 

Solution. From the formula by which we go over to the equivalent 

series network [3], we have 

•..,00-7-r—r?__-0 +7^)(1 +7» 
l + (I -+- TtP)^ + Tp) + kip * 

The transfer function corresponds to a passive lead-lag network 

(Fig. 20). It may be represented in the following form: 

«V.0) 
_d + 7>)(i + Ttp) 
0 + 7VM» + TV) * 

where7-,.= 7-,, 7.= 7, 7,7, = 7,7,and 7, + 7, = 7, +7. + A7. 

§3* TRANSFER FUNCTIONS OF AUTOMATIC CONTROL SYSTEMS 

29. Figure 26 shows electromechanical and block diagrams of a re- 

mote-readin g servosystem with sine-cosine magslips (SKVT). In Fig. 26 

@1, are the rotation angles of the command and final-control shafts, 

e « 01 - e2 Is the error, RM is the working mechanism (object), R is a 

reducing gear, D is the motor, TG is a tachometer generator, k^[v/rad] 

is the transfer constant of the sensing element (SKVT) on the linear 

part of the characteristic curve, k2 and k^ are the amplifier voltage 

gains, k^rad/v sec] is the transfer constant of the final-control mo- 

tor, k^ = 1/n is the transfer constant of the reducing gear, n is the 

gear ratio, kg[vsec/rad] is the tachometer generator transfer constant 

ky[rad/g.cm*sec] is the slope coefficient for the motor mechanical char 

acteristic curve, T^ and T? are the time constants of the amplifier and 

motor, T = RC is the time constant of the differentiating capacitor. 

We are to determine the system open-loop transfer function, the 

system closed-loop transfer function (principal operator), the error 

transfer function for the manipulated variable, and the error transfer 

function for the disturbance variable (load torque). 
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Solution, We first determine the equivalent transfer function for 

the final amplifier together with the motor where the negative-feedback 

loop includes the tachometer generator and differentiating capacitor: 

v,(p) 
(i+Wl + Tlp) 

« . *.M.ÍP 
TUT7*nrn*)VTTp) 

M.n + rp)_ 
(I + TJ>) (I 4 Tf) (I -i-lp) -+ kjt.kjp • 

Next, for the open-loop system as shown in Fig. 26, we find the trans¬ 

fer function, which equals the product of the transfer functions of the 

series-connected elements: 

w<r)=T£=*>*<v.<p)j*- 

After substituting w^(p), we have 

W(p)= . J^+T»__ 

/10 + + + Tp) ktkjt'Tpl * 

where the velocity figure of merit (the ratio of the constant tracking 

velocity to the steady-state error) is 

- 



[l/sec]. 

The open-loop system transfer function may also be written in the 

following form: 

WÍP) * K(l + Tp) 
w p\i+Aj>-\ Wi-As'y 

where 

(1 + **V«) F-f- A -f- 7*fc 
At^T,7,+ 7,7+7,7, 
At *= 7*7|7|. 

The closed-loop system transfer function is 

Substituting W(p), 

*(p) = ■fl« tp) 

we obtain 

w<p) 
R * 

where 

__A'0 4 Tp) 
pW+TjiO + -i- //») -t-A'll f T/») ■“ 
_A«^ 4 *1 _ 
V* + <*1^' 4- UJI* 4 ^4-0» ' 

°i ~ T’,/’,-!' 
04=^+r.+o+WJ7; 

•»—1+ ÄT. a, = AT, 
>9=*KT, bt = K. 

The error transfer function for the manipulated variable is 

(p)=»T^y = f4- ir (/>) “1 — ^ C9)- 

Substitution of W(p) or .j(p) yields 

fa\ =_P L(,i:r (1 +JV)JL± 7>) + 
PÍO + r^íi 4- ^)(i 4- 4-A,*t*.r/»i4-/ai 4- r/») “* 

__QtP* 4~ QiP* 4- otp* 4- (a« — b,)p 
oj>* + PfP* + Otp*o,pat * 

The error transfer function for the disturbance variable in the 

open-loop system with an open local feedback loop is 

1P.(P) = •« (p) _ M» 
M<P) =^(l 4- W 

When the local feedback loop is closed 
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nr.«. «•.o» 
k%ktktTp 

,+ o-í-ru»H»+V^)(‘ + /» 
Mîd-j-r^d + rp)_ 

V KI + Tj>)\\ *t Ttp)\\ -f Tp)-\- k¿tk¿Tp\ 

When the main feedback loop is closed, the error transfer function for 

the disturbance variable will be 

rrip^j* 

Substitution of W^íp) and V/(p) yields 

• O (d\ __ Mîd-f 7Wt+7»_ 
■w 7M +^)(i +r^ii + Tp> + *.***.^1 + /^(1 + ^ 
_*#' -f f ^ + r,_ 

üjf* + aj>1 Otp* -f UfP + a* ' 

where 

c%=k,k\TJ. ^, = ^(7-,-7). 

The torque figure of merit (the ratio of the load torque at the sys 

tern final-control shaft to the steady-state positional error) is 

K. = = [g«cm/rad]. 
*i*i *i «i 

30. For the preceding problem, find the numerical values of the 

coefficients contained in the open-loop system transfer function with 

the following initial conditions: slope of sensing-element characteris¬ 

tic k-, = 1 v/degree = 57« 3 v/rad, amplifier gains k^ = 2.5 and k0 = BO, 

nominal motor voltage Un = 110 v, no-load speed n^h ^ = 9000 rpm, 

starting torque Mr = 55 g«cin, reduced moment of inertia of motor togeth 
2 

er with object J = 0.01 g. cm «sec , gear ratio of reduction gear n = 

•= 1000, transfer constant of tachometer generator « 0.001 v*min/rpm 

= 9-810-^ v* sec/rad, amplifier time constant T-, = 0.01 sec, differen¬ 

tiating-capad tor time constant T = C.14 sec. 

Solution. The motor transfer constant is 

h -- — J'lf.jL -s — g o rad/v • se c. *4— // — ui77 — áü-llU ' Uu iWC/g 



The slope coefficient of the mechanical characteristic curve is 

1 Mi 1mmb —l7*¿ rad/g* cm* sec. 

The motor time constant is 

y^ = «0,01.1^2^0,172 sec 

The system velocity figure of merit is 

jr«MiW»= 
57,3 • 2,5 • RO • 8,C 

“IWW A. 100 l/sec 

We next determine the coefficients. 

/1^(1 -¡-SO*8,0-0.009^)0,U -f 0.01 -f-0,172= 1,18 sec 

^ = 0,01.0,172 — 0,oi.0,H0,172-0.14 = 0.027 sec2 

^ = 0,14.0,01 -0,172 = 0,00024 sec^ 

The system open-loop transfer function is 

Vto)« __ »00(I 4 0,IV) _ 
^ # (1 4- \'ibp 4 0,027^» 4'0,Ö0024/»»j • 

Rearranging the denominator of this last expression into factors, 

the system open-loop transfer function may be represented in the follow¬ 

ing form: 

Win)—. f Ip)_ 
W /» (> 4- /^7(1 4* ry) * 

f 

where T^= l.lö sec, T^ = 0.0145 sec, and ?, = 0.8. 

The torque figure of merit is 

= 10* 5* cm/rad = 

«1700 g* cm/ang*min. 

31. Figure 27 shows the basic diagram of an automatic speed-regu¬ 

lating system for a heat engine. Here the sensing element is a centri¬ 

fugal mechanism. When the rate of rotation changes, the centrifugal 

forces cause the weights to move apart, moving the coupling. The force 

due to a spring acts on the other side of the coupling; in this system, 

the spring is the element, that sets the operating point. The magnitude 
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of the output variable of the sensing element 

is transmitted to the control slide valve UZ 

of the actuating element. The power piston SP 

of the actuating element is connected to the 

final control element RO and through the hy¬ 

draulic damper GD to the control slide valve. 

The hydraulic damper (proportional-integral 

element) provides elastic feedback. 

Fig. 27. Speed-control 
system, ij Engine; 2) 
Y axis; 3) hydraulic 
damper: 4) power pis¬ 
ton; 5) control slide 
valve; 6) final con¬ 
trol element; 7) fuel. 

The linearized equations for the system 

elements are: 

1) The engine 

(7Vp+ M-Mk ) 
where fí is the engine angular velocity, x is 

the slide-valve displacement, is the load torque, and and k2 are 

coefficients; 

Fig. 28. Block diagram of speed-con¬ 
trol system, l) Y axis. 

2) The sensing element 

(2) 
where ¿ is the displacement of the centrifugal-device coupling, T] is 

the time constant, and k^ is a coefficient; 



3) The slide valve ! 

(3) 

where z is the slide-valve displacement, y „ is the displacement of 

the feedback link; 

4) The actuating element 

px=kiz, (4) 

where k^ is a coefficient; 

5) The feedback element 

(fy-f l)jVe = *,/ur, (5) 

where T2 Is the time constant of the hydraulic differentiating device, 

and k- is a coefficient. Set up the block diagram for this system, fin 

the system open-loop transfer function and the error transfer function 

for the disturbance variable (load torque). 

Solution. Figure 28 shows the block diagram in accordance with Eq 

(1)-(5). 

We first find the transfer function of the element around which 

the feedback is taken: 

*, Ml+ 7-./») Mi 4-T» 

. F\ *~P TThp) 

where a   *«— and r — . r» 
i + * p+mT * 

We next write the system open-loop transfer function as the pro¬ 

duct of the transfer functions oi tne series—connected elements: 

jjr /p\ _ *i_h Ttp)  _ 
l + TtPl + liPPiï-t-ltPi PO + TtPiO + TiPHl-t-ltp)' 

where the over-all gain is 

*.=*,*,*,[l/seo ] 

The error transfer function for the disturbance variable in the 

open-loop system is 



IF. O* .-gQ»_ *« 
’ AUp) “ïTTv? 

and in the closed-loop system is 

a /„)_ (p)__*»n ’hTtp)(i + rtp)p_ 
r+W(P)-pO+r.p)ti+r.mr-f/'.>)+kv+rtP) • 

32. For two coupled control systems (Fig. 29), find the system 

closed-loop transfer functions if W = W(p) is the open-loop transfer 

function for one system, and a,,, a00, a,„ and a0, are coefficients of 
11 dez 1 c C.1 

proportionality. 

Fig. 29. Coupled con¬ 
trolled systems. 

Solution. In accordance with the block 

diagram shown, we have the control-system 

equations of motion: 

Xj = ÏTCV, — a,,*,) — OuWxt, 

Xt=W(yt — attxj — 

Solving them simultaneously, we obtain 

From this we obtain four system closed-loop transfer functions 

Ou (p) —= — f1 + attW) W 

Ou(p): 

’y, (p) (1+4,,1^)(1 +4,,^)-4,,4,,^ * 

(p)_ -a,tVP 
yiiP> (I i- 4,, K?) (l t 4lt W, — 4,,4,, W* * 

o (n\~x'<p)— (\ + gtlW)W 
w — (> + Wl (l + On VP) - 4,,4,, V/» • 

* in) — X'(P) —__ 
*' , (ÿ) "" (i + -,, ^) d + 4,, W^) - 4,,4,, W' * 

33* Do the same for the system whose block diagram is shown in 

Fig. 30. 

Answer. 

(p) 
,*t(p) (1 + 1T)1P-4»\P 
>,</>) (I + Wp + 4* U * ’ 

(p) = *l-(p> = -^W(] 
*'v y.o») (i + W7^4}r* • 

0 (a) = X,-(p) = Í1 tJ") «* 
y. yp) T‘ r \ry -1 ' 
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/-x *• <p) -^n-f 211-) 
l,w >*(/»> O + u/r«'^'* * 

3^4.* For a system with antisymmetric 

cross-coupling (Fig. 30) find the equivalent 

block diagram for one system and the equiva¬ 

lent closed-loop and open-loop transfer func¬ 

tions for the systems. 

Solution. For the diagram shown in Fig. 

30, we have as initial equations 

Fig. 30. System with 
antisymmetric cross- 
coupling. 

where W = W(p) is the system 

cross-coupling. We let [16] 

= a IF(y4-Jr,), (2) 

xt = Wfa - xt) - ûirty, _ *.). (2 ) 

open-loop transfer function without the 

x=xl-{-Jxi and ^=^47^- 

X 

Multiplying Eq. (2) by ^ and combining 

it with (l), we have 

Jf = IT (p) (y — jt) -ja\V(¡>)y +ja\V{p)x, 

from which we obtain 

Fig. 31. Equivalent block 
diagram. 

where <i(p, ja) is the equivalent 

The equivalent system open-loop 

•* ” J'=^ (/>• I°)y< 

system closed-loop transfer 

transfer function is 

function. 

V(p, Ja) = 4-¾¾ = W(P) 0 ~lci)- 

The block diagram is shown in Fig. 31. 

Manu¬ 
script 

Page [Footnote] 
No. 

30 To solve problems with asterisks, reference to the journal 
literature is required. 
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20 
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22 

22 
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[Transliterated Symbols] 

n ■ p * pruzhina « sprlnc 

M ■ m ® massa « mass 

H * d « dempfer *= damper 

H * n * nachal'nyy « Initial 

c * s * stolb * pile 

Bx * vkh - vkhod « Input 

« «= ya *= yakor' « armature 

u b a b mekhanlcheskly * mechanical 

fl * d « dvlgatel1 * motor 

h « n « nominal'nyy « nominal, rated 

B « V * vozbuzhdenlye « field 

fl * d » dobavochnyy « in-series 

h b n « nagruzka « load 

o.c « o.s » obratnaya svyaz* « feedback 

y * u « usilitel' « amplifier 

Ji.a.x. s 1.a.kh. « logarifmleheskaya amplitudnaya kharak- 
teristika « logarithmic amplitude charac¬ 
teristic 

n.3 b p.z « posledovatel’noye zveno « aeries element 

css [not identified] 

CKBT b SKVT * sinusno-kosinusnyy '/i’ashcha^-ushchiy t rana for¬ 
mater « sinecosine magslip 

HI b RM s rabochly mekhanizn « working mechanism 

P * R = reduktor * reduction gear 

Jl b D « dvlgatel' « motor 

TF = TO = takhogenerator = tachometer generator 

M = m b mestnyy = local 



2b 

2b 

26 

27 

27 

27 

27 

x*.x - kh.kh = kholostoy khoci = no load 

n = p = puck = start, inc 

il = m s moment = torque 

3T3 = UZ 

CP = SP 

PO = RO 

m = ao 

upravlyayushchiy zolotnik control zliucvalve 

silovoy porzhen* = power piston 

reguliruyuchchiy cr^an = control elemen* 

Cldravllcheskiy dempfer = hydraulic damp 



Chapter 2 

FREQUENCY CHARACTERISTICS OF AUTOMATIC CONTROL SYSTEMS 

§4. GAIN-PHASE CHARACTERISTICS 

35« Construct the gain-phase characteristic of an Integrating ele 

ment with transfer function 

MU 

•43' 

•|M’ ••»•if 

43 

•iß *43* 

n * 
t 

'30 40 '10 

I 

On* 
•*•00 

Fig. 32. Gain-phase characteristic 
of first-order Integrating elcmer.*. s 
(a) and second-order integrating 
elements (b). 

Fig. 33* Gain-phase characteristic of 
differentiating element, case 1. 1) Sec. 

Ansv.’er. The gain-phase characteristic coincides with the ne-'atWe 

7 



imaginary semiaxis, as shown in Fig. 32a. 

36. Construct the gain-phase characteristic for an element with 

transfer function 

Answer. The gain-phase characteristic coincides w:th the negative 

real semiaxis (Fig. 32b). 

37- Construct the gain-phase characteristic for the RC circuit 

shown in Fig. 33a; R = 1 kohm, C = 10 [if. 

Solution. The circuit frequency transfer function equals 

where 

tr (/ui) = 
TT;-/1 

T=RC= 10*. 10 '= 10'* sec 

We transform Expression (l) so that it becomes a complex number in 

algebraic form: 

(2) 
«.(/.)=«(») +Jv H = +/ 1~T;= 

IO-«»» , , 10-»« 
4+ |y 

Given individual values of co, we can use Formula (2) to compute 

several pairs of values u(o)) and v(o)); on this basis we plot the gain- 

phase characteristic of the circuit. 

Analysis of (2) shows, however, that this characteristic is deter¬ 

mined by the equation 

Ü* (w) -¡- V* (u*) = « (w) 

and for all positive frequencies may be plotted simply as a semicircle 

in the upper half plane with center at the point (0.5, ,10) and radius 

0.5 (Fig. 33b). 

It is clear from (2) that when u) = 0, w(jci>) = 0 + JO, while when 

u) = », w(Jüo) = 1 + ,10. Points corresponding to these frequencies, as 

well as to certain intermediate frequencies, are shown in Fig. 33b* 
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Pig. 34. Galn-phace characteristic of dif¬ 
ferentiating element, case 2. 1) Sec. 

Fig. 35* Gain-phase character¬ 
istic of two aperiodic elements 
connected in series. 1) Sec. 

here and in all the subsequent figures, the frequencies are given in 

rad/sec. Frequencies corresponding to intermediate points in the curve 

may be found as follows. 

The argument of the complex number (2) equals 

f s arg 0 (/») = arclg = jrctg (3) 

Thus a ray drawn from the origin at an angle ^ to the x axis will inter¬ 

sect the gain-phase characteristic at a point at which the quantity o> 

is determined in terms of *>, in accordance with (3). One such ray is 

shown in the figure. 

38. Find the equation for the curve representing the gain-phase 

characteristic of the differentiating network: shown In Fig. 34a. Con¬ 

struct the gain-phase characteristic of the network for tne case in 

which Rj - 40 kohm, = 10 kohm, C = 2.5 ^f. 

% 



Answer. The equation of the curve takes the form 

. *M+»*«=OT.i)«<-)-f. (1) 

where 

In accordance with (1), the caln-phase cl.aracterlstlc for positive 

frequencies 1:. a semicircle local eel In the upper halfplane with ccnier 

at the point and rad lu. T* Figure ¿4b shows this characteris¬ 

tic plotted for the values Indicated. 

39« Construct the caln-phaee characteristic cf a s.stem havlmr a 

transfer function of the form 

rw*rjr+J|fJI,+|yj, 

when K = 8, T1 *= SO msec, T2 « 12 msec. 

Answer. See Fig. 35. 

40. An automatic control system has the block diagram shown In Fig. 

36; ChE Is the sensing element, D Is the motor, R Is the reduction gear. 

The system cpen-locp transfer function equals 

K 
>0+ *./>(• + Up) * 

Ccnstruct the gain-phase characteristic cf Uie system when K = 400 1/sec, 

Tj « 80 msec, = 12 msec. 

Fig. 3Ó. Block diagram for Prob¬ 
lems 40 and 41. 1) Sensing de¬ 
ment; 2) motor. 

Answer. The gain-phase characteristic may b^ plotted from the ab¬ 

solute values of A(o)) given In the tibie and the argument ^(u.) of the 



frequency transfer function W(ju>) = a (wje^^) 

Fig. 
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1) a), l/sec. 

111. An automatic control system has the block diagram shown In 

36. The system open-loop transfer function takes the form 

rW“ f (* + + 1^)- (1) 

Find a method of representing the galn-ptiase ctiaracterlstic that will 

permit us to cover cases Involving various combinat lore of the system 

parameters K, T1# Tg. 

Solution. We represent Expression (1) in the form 

whe re 

The frequency transfer function corresponding to Expression (2) 

will take the form 

r <W=+j¡T¿) " *rr,r'üri“) “ (3) 
-fTMÍW+jXWr,.). 

Given a sequence of nearby values a « Tg/T^ from a*Otoas=l, 

we can cor.struct a family of gain-phase characteristics which for all 

practical purpc.cs v;111 cover all possible types of systems having the 

t ranc fe r func11 on ( 1 ). 

In Pig. 37 we have plotted a family of such universal gain-phase 

•haraeterlsticc for a = C, 0.2, 0.4, 0.6, 0.8, 1. The construction is 

carried cut cr the basis of Expression (3) using Its absolute value and 

argument for the various frequency values; along the coordinate axes we 



Fig. 37« Universal gain-phace character¬ 
istics for Problem 41. 

have plotted the quantities 

cfcM«(*rlrat/<'»)3nd V(»x 

In order to go to a characteristic corresponding to a definite val 

ue of KT1# we need only make a simple change in the scale of the univer 

sal graph, l.e., multiply the numbers plotted along the coordinate axes 

by the quantity KT.. 

By interpolation, we car. easily obtain the gain-phase characteris¬ 

tics of systems for which the values of a * are other than those 

shown In Fig. 37. 

42. Construct the gain-phase characteristics of two systems which 

have the following open-loop transfer functions. 

Lr*«->ïï7w 
• MF imX— MO • 



Pig. 38. Galn-phaje characterlutlcj for 
Problem 42. a) Curve for first system; 
b) curve for second system, l) Sec. 

Fig. 39* Block diagram for Probien. 43. 
1) Sensing element; 2) motor; 3) re¬ 
duction gear. 

Fig. 40. Gain-phase character¬ 
istic for Problem 43. 1) Sec. 

Hint. It Is possible to 1 se the curves available from the preceding 
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problem. 

Answer. Sec Fir. 38. 

43. Construct the »jaln-phase characteristic cf the system whose 

block diagram Is shown ln FI.3. 395 here ChE Is ihe sensing element, D 

Is the motor, R Is the. reductlen gear. The system open-loop transfer 

function has the form 

'h 7»?) _ 300(1 4 O.&V) _ 
PO 4 ïifM11 Kp) f (• -i OJfH11 * 

Answer. Sec Fig. ^0. 

Find ^ he equation for "he curve representing the gain-phase 

characteristic of the system having the transfer function 

Construct the gain-phase character¬ 

istic for the case In which K = 100 1/sec2 

and T = 0.2 sec. 

Solution. The frequency transfer 

function equals 

•where 

»M—5- y(->=-"• (1) 

Fig. Gain-phase char¬ 
acteristic In paraboll' 
fomi for Problem 1 ) 
Sec. 

1 1 

Fig. 42. Gain-phase characteristics for Problem 45. Scale I, K = 50 
1/sec , scale II, K » 200 l/sec^. 1) Sec. 
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Prom (l) we obtain 

0M—¿»•'•W- 

According to (l) and (2), the gain-phase characteristic for positive 

frequencies takes the form of a branch of a parabola lying in the third 

quadrant of the complex plane. 

The point on the gain-phase characteristic corresponding to any 

frequency u> is easily found as the point at which the parabola inter¬ 

sects a ray drawn from the origin and foraing the angle 

with the real axis. 

A gain-phase characteristic has been plotted for given parameters 

in Fig. 41. 

45. Construct the gain-phase characteristic for a system with the 

following cpen-lcop transfer function: 

rta.K i *04-0,1» 
f 0 ï 

where K ~ 50 1/sec2 and K = 200 1/cec2. 

Answer. See Fig. 42. 

46. Construct the gain-phase characteristic for a system with the 

following open-loop transfer function: 

for K = 200 1/sec^ and K = IOC 1/sec^. 

An ■■.■.er. Sec Fig. 43. 

47. Figure 44 snow, a tachometer feedback circuit with passive 

cctr.pcnsat ing networks; TO is a tachometer gene rat sr. Construct the gain* 

phase clnracterisiic for this circuit if* its transfer function equals 



K *= 4 vcec2/dcg, Tx « O.5 cec, T2 = 0. î sec. 

Answer. See Fig. 45, where the numbers plotted along the axes have 

the dimensions of v/degree. 

48. Construct the gain-phase characteristic for a circuit havlnr 
«■# 

the transfer function 

■_100 

Answer. See Fig. 46. 

^ • y*îM b 

Fig. 43. Gain-phase characteristics for 
Problem 4t. Scale A, K = 200 1/sec^. 
scale B, K = 100 l/sec3. l) Gee. 

Fig. UU. Diagram for Problem b/. 1) 
Tachometer generator. 

49. Construct the gain-phase characteristics of systems having the 

transfer functions 
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K
J 

r> 

FI¿. Galn-piiaje 
haracterlJtlc for 
yoter. with unstable 

el eren’.. i) Sec. 

Fig. 45. Gain-phace character¬ 
istic for tachometer feedback 
circuit of Problem 47. 1) Sec. 

(A) r«=-j_,+2fif +ri>i|(| + r<rt ; 

for the case In which K «= 5, = 0.1 sec, 

T2 « O.O5 sec, *= O.O3 sec, * O.OO6 sec. 

Answer. See Fig. 47. 

50. Construct the amplitude-phase char¬ 

acteristic of a stable oscillating element 

with transfer function 

•W“ !+*»>+ry 

when k 1, r, « 0.15, T « 0.02 sec. 

Answer. See Fig. 43. 

51. The block diagram of a gyro-slat 11- 

Ization system open at the Input of the pro¬ 

cess Ion-angle plckoff ray be represented [3I 

In the form shov/n In Fig. 49; DUP Is the pre¬ 

cession-angle plckoff, D Is the motor, R the 

reducing r.ear, G the gyroscope. V.’here an amplifier with zero response 
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Ill 

Fig. 47. Galn-phaje characteristics 
for Problem 49. 1) Gee. 

Fig. 48. Gain-phase characteristic 
cf stable oscillating element. 1) 
Sec. 

Fig. 49. Block diagram of gyro-stablllzation system; see Problems 51 
and 5S. 1) Precession-angle pickoff; 2) stabilization axis; j) motor; 
4) reduction gear; i>) precession axis; 6) gyroscope. 

time is used, the system open-loop transfe;* function may be written In 

the form 
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rw“ñt+WT7?í- 
Construct the gain-phase characteristic of this system for K * 20 1/sec, 

i m 0.15# T2 « 0.02 sec. 

Fig. 50. Gain-phase characteristics of 
gyro systems. 

Answer. See curve A of Fig. 50. 

52. The gyro-stabilization system whose block diagram is shown In 

Fig. 49 (see also Problem 51)# has the following open-loop transfer 

function when an amplifier with finite response time is used: 

fo++ ÏIP') * 

Construct the gain-phase characteristic of this system for K » 20 

1/sec, T1 = 0.2 sec, T.5 - 0.02 sec, « == 0.15. 

Answer. See curve E of Fig. 50. 

§5. REAL FREQUENCY CHARACTEKI3TICC 

53. Construct the real frequency characteristic P(a) of a closcd- 

locp automatic control system. The system open-loop transfer function 

Is * • • 

-Hi . 



n 

K « 20 1/jec, T * 0,1 zee. 

Solution. The real frequency characteristic Is constructed from 

points. These points may be found by various methods. 

1. The real frequency characterlstl • P(cu) may be plotted from Its 

analytic expression 

(2) 

where Is the system closed-loop transfer function, equal to 

♦<w= 
riM 

rrrõ=j* 

From (3) and (1), we obtain 

Aftji  KiK— f*»*) , it« 

From (4) and ( 2), we obtain 

/r« 
(¾) 

(5) a/_%  K(K~— r«**)   20 fjO — 0.1 w*) 
w UC- + «• ~ lJU - 6,1«V + „• • 

Substituting various values of a, Into (5), we obtain Table 1, 

which v;e use to plot 

TABLE 1 

Sr if* 
» 

I.M 
W 

i.m 
it 

-•.31 
I« 

<J.J J-4.V» 
» » 

-•.31 US 

» 
-Ml 

«A 

-*.i* 

1 ) u), 1/sec. 

The re il fresuer.c: characteristic Is plotted In Fig. 51a on the 

basis of the data of Table 1. 

» Xf for e .'eral saluco of t he frequency co, we have the coordi¬ 

nates U(o)) and Y(u:) of points cr. a system open-loop gain-phase charac¬ 

teristic (Table 2), then the corresponding values of P(a>) may be found 

fr».n: the fórrala 

(/»M > UJy) 

ttowtv-w • 

(6) 

For the case In which the coordinates of the points on the gain- 

phase characteristic are given In the form of the absolute value a(to) 
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TABLE 2 

% Ijw*, • » 1 m r» i i » i ; « 00 

VH 
rw i 

i 
8 

8 -1.» 
-V« i 

i 
SS
 

i 
i 

£i
 

-«.41 
-«51 

-0.13 
-0.02 

0 
• . 

1) œ, l/sec. 

i ou** 

Fig. 51. Real frequency characteriü. 
tic for Problem 53. 1) See. 

and the argument ^(a>) (Table 3) of the frequency transfer function 

W( Joi), the characteristic P(oí) may be plotted frem the formula 

j>/m1 A* (««> 4- 4 (»*>cw \ M 
' ' 'A* (••) -f ÍA l**) co* ÿ («; 1 ' 

obtained from Formula (6) by the substitution 

!/•(•)-[- V**(i»)= A’(w) and (/(v>)s= A(w)cos^(w). 

(7) 

TABLE 3 

•1 » 1 ’ 1 
10 J 20 » 40 so ¢0 00 

4(4 OD 

-90 

XV* 
-116 -123 

Ml 

-li*i 

0.1 IH 

-131 
0511 
-1«-' 

0.I.M 

-iccj 

1 
0.07M 'u.ftil 

-It»!-!». 
1 1 

0 

-ISO 

1) a, l/sec; 2) degrees. 

3. If v:e have the gain-phase characteristic for the open-loop 

tern, then It Is convenient to use the formula 
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(8) 

to plot P(ü)); thla formula Is obtained from (6) by the substitutions 

A^(o>) sa U^(u)) + V^(aj) and B^(u)) = [l + U(œ)]2 + V^(üj). The values of 

A(u>) and B(a)) for each given frequency u) are easily obtained from the 

gain-phase characteristic, since A(a) is the absolute value of the vec¬ 

tor W(Ju))# l.e.,the distance from the origin to the given point k on 

the characteristic, while B(d) It Is the distance from the point (—1, 

JO) to the point k (see Fig. 51b). 

The numbers entering Into Formula (3) and needed for plotting of 

the real frequency characteristic given îr Fig. 51a may be obtained 

from the gain-phase characteristic of the system with transfer function 

(1) shown In Fig. 30a. 

4. In plotting the real frequency cfiaracterlstlc for a system when 

we have the gain-phase characteristic (Fig. 33a), we may use a nomogram, 

called a real circle diagram. Such a nomogram Is given In Appendix 3. 

5^. Construct the real frequency characteristic P(œ) for a closed 

automatic control system If the system open-loop transfer function Is 

vr/m)___300(14- OAV)_ 
v >0 + «.ijj 0 -i u,' 

In plotting P(u;), we may use the gain-phase characteristic of the system 

show:. In Fig. no, or the following table of absolute values of A((ju) and 

the argumen’ of the system frequency transfer function. 

% */«* x| 10 1 20 30 « 30 100 ?00 300 00 

AM 
♦H 2 

00 

-90 

a;* 
-12? 

13,0 

-1» 

6A>| 4,6 

— I30j —130 

3,18 

-130 

í.» 
— !33 

0,4SS 

-136 

0.09J 

-163 

0 
-180 

1 ) u>, l/sec; 2) '¿(u>)# degrees. 

Answer. See Fig. 52. 

55. Construct the real frequency characteristic P(u)) for a closed 

system. The open-loop gain-phase characteristic of the system is shown 



Fig. 52. Real frequency charac- 
terlGtlc for Problem 5^* 1) 

Fig. 53. Saln-phaGe and real 
frequency character!jt1c for 
Problem 55« 1) Sec. 

Fig. Heal frequency charac¬ 
teristic for Problem 56. 1) Sec. 



In Pig. 53a* The data of the following table may be used In the con¬ 

struction: 

«V • 
»1« Ft » r5] 00 

4M 
«ML** 2 iao 

KW 
-175 -17» 

1.03 
-171 -177 -IBS 

0.16 
-199 

0 
-ISO 

1) ®, l/sec; 2) ÿ(o>), degree. 

Answer. See Fig. 53b. 

56. Construct the real frequency characteristic of a static 

closed-loop system. The open-loop gain-phase characteristic of the sys¬ 

tem Is given by curve B of Fig. 47. 

► V 
*4 Fig. 55. Real frequenc: 

characteristic for Problem 
57« 1) See. 

Answer. See Fig. 54. 

57« Construct the closed-loop real 

frequency characteristic for a static 

system. The system open-loop gain-phase 

characteristic is shown in Fig. 35» 

Answer. See Fig. 55. 

5Ô. Construct the closed-loop real 

Fig. 50. Real frequency 
characteristic for Prob¬ 
lem 53. 1) See. 

frequency characteristic of a system with 

third-order astatlsm. The system open- 

loop gain-phase characteristic Is given 

In Fig. 43 (scale A). 

Answer. See Fig. 56. 

§6. LOGARITHM CHARACTERISTICS 

59. Construct the logarithmic ampli¬ 

tude characteristic L(a-) = 20 log |w(Jis)| 

and the logarithmic phase characteristic 

ÿ(o>) foi* an aperiodic element with trans¬ 

fer function 

- 48 - 
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for the following two cases: 1) In universal form, suitable for any k 

or T; 2) for k - 100, T ■ 50 msec. 

Solution. The logarithmic amplitude characteristic corresponding to 

Expression (l) equals 
U é 

(2) 

The asymptotic logarithmic amplitude characteristic corresponding 

to (2) Is plotted In Fig. 57a; the quantity uT Is plotted along the x 

axis In a logarithmic scale, and L(u>) along the ¿ axis In decibels. 

The asymptotic logarithmic amplitude characteristic (l.a.kh.) has, 

according to (2) an abrupt bend at the point at which u/T * 1. To the 

left of this bend. It Is horizontal and placed at a height of 20 log k; 

to the right of the bend It has a slope of -20 db/decade. The point at 

which the characteristic curve Intersects the frequency axis, l.e., the 
• • 

cutoff frequency o> Is fsund from the condition 

cr j. 

The maximum departure cf the asymptotic characteristic from the 

exact curve occurs at the point at which o.T « 1; the deviation amounts 

to 3 db, as can be determined from Expression (2). For oJT - 0.5 and 

oiT « 2, the difference between the asymptotic characteristic and the 

exact curve equals roughly 1 db, while outside the limits cf the sec¬ 

tion u? « 1 + 1 octave, this difference is negligible. 

The phase characteristic of the element Is ietermlned, in accord¬ 

ance with (1), t;. the expression 

♦ W*3•*»*-irdc*r. (3) 

For low frequencies, 0# for frequencies -* - 90°; fur 

oil » 1, *r(uj) « - ^5°. From Expression (3), it also fallows that the 

phase characteristic is s.irmetric about the point clT ■ 1, ÿ « - 45°. 

The phase characteristic cf an aperiodic element with transfer 



Fig. 57* Logarithmic characteristics of 
stable and unstable aperiodic elements; 
see Problems 59 and 60. 1) db/decade; 2) 
degree; 3) 1/sec. 

function (1) has been plotted from (3) In the form i(uJT) In Appendix 7. 

The following table was used In the construction: 

•r » M M 1 
• 1 ‘1 M m 

< -ISO- -ir*r -M**j % k/ j-«l br -M lb- -tr i* -W 

1) degrees. 

The logarithmic amplitude and phase characteristics of an element 

with transfer function 

•W—rqpîÿç (4) 

have been plotted In Fig. 57b; the dashed line Indicates the exact amp¬ 

litude characteristic plotted from Formula (2). The frequency <u has 



been plotted along the x axis in logarithmic units# while the ¿ axis 

is in decibels and degrees. 

60. Construct the logarithmic amplitude and phase characteristics 

of an unstable aperiodic element with transfer function 

Answe •. The amplitude characteristic L(o>) is the same as for a 

stable element with transfer function (4) of the preceding example (see 

Pig. 57b). 

The phase characteristic/;(oj) is given in Figs. 57b by the plotted 

curve. 

61. An automatic control system has the block diagram shown in Fig. 

36; ChE is the sensing element, D is the motor, R is the reduction gear. 

If the amplifier is an element with zero response time, the system open- 

loop transfer function will take the form 

Construct the logarithmic amplitude characteristic L(u>) and the logar¬ 

ithmic phase characteristic i{(x) of the system when K » 400 1/sec for 

the following three cases: l) T » 25 msec, 2) T - 5 msec, 3) T *= 2.5 

msec. 

Hint. In constructing the phase characteristic, it is desirable to 

make use cf Appendix (. 

Answer. See Fig. 50; the subscripts on I (u.) and tf(ui) Indicate the 

case numbers. For the first case (T * 25 msec), the dashed line .«hows 

the exact amplitude characteristic. 

62. Construct the logarithmic amplitude and phase characteristics 

for the system having the transfer function 

Solution. In order to construct the logarithmic characterlstics, we 



4 t n a 4P «7 OJ ¿JJ MéüliVZtV 400 KS!0*¿ 

Pig. 58» Logarithmic characteristics for 
Problem 61. 1) db/decade; 2) degrees; 3) 
1/sec. 

Pig. 5)9. L garlthmlc characteristics for 
Problem 62. l) db/dceade; 2) degrees; 3) 
1/sec. 

must separate the denominator of (1) Into two factors. 

To do this, we find the roots of the denominator, which prove equal 

to -10 1/sec and -5 1/sec, and represent (l) In the form 

r<rt“ (i+ (i+0,1,) o + o,o» • (2) 
Prom this we obtain the logarithmic amplitude characteristic for 

the system 



»Iti 4 AWnWSih 

(3) 

Proli Expression (2) or (3) follows that the asymptotic l«a.kh. 

has two abrupt bends. At the points - l/r^ ■ 10 l/sec and u>2 - 1A2 * 

m 50 1/sec. The characteristic will consist of three segments: a horizon¬ 

tal segment at a height of 20 log 40 - 32 db, a segment with a slope of 

-20 db/decade, and a segment with a slope of -40 db/decade. This asymp¬ 

totic characteristic Is shown In Pig. 59« 

Since the ratio * 5# 1-e., Is greater than two octaves, it 

then follows from the solution of Problem 59 that the difference between 

the asymptotic amplitude characteristic and the exact curve In the area 

of each bend will have the same form as for the aperiodic element, and 

the deviation v;lll not exceed 3 <N>« 

The phase characteristic will have the form 

t (•) ■» — arclg O.U — *ct| 0,02-. (4) 

This last expression enables us to construct *(o>) on the basis of 

the points; it Is simpler, however, to plot 1{(u) as the sum of the y- 

axls values of the phase characteristics ^1(u>) and i2(<o) for two aper- 

Iodic elements with time constants Tx * 0.1 sec and Tg - 0.02 sec, 

since each of these characteristics is easily plotted with the aid of 

the graphs of Appendix 2. 

The phase characteristic ^(üd) of th- systems given in Fig. 59» 

63. Construct the logarithmic amplitude and phase characteristics 

oi a system having the transfer function 

»w-jnrr«'=d■ 
Answer. See Fig. Ó0. It Is clear from the figure that in plotting 

logarithmic characteristics v.e need not construct a logarithmic fre¬ 

quency grid; It is suffi •lent to make appropriate markers on the fre- 
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Fig. 60. Logarithmic characteristics 
for Problem 63. 1) db/decade; 2) de¬ 
gree; 3) 1/sec. 

quency axis. 

A slide-rule scale Is normally used to make these markers; the k 

scale of a small sllderule Is convenient to use. 

6^. Construct the logarithmic amplitude and phase characteristics 

of a stable oscillating element with transfer function 

Consider the following cases; 

1) the characteristics L(ufT) and for k = 1 and £ « 0.05* 

0.10, ..., 0.8, 1.0; 

2) the characteristics L(o>) and for k - 30* £ « 0.2, T * 50 

msec. 

Solution. 1) The frequency transfer function corresponding to (1) 

for k « 1 is 

•w—{r-Wtv/4i.- • (2) 

From (2) we find the logarithmic amplitude characteristic; 
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^“"'‘Tíí^FhHW 
(3) 

and the lo^arUhmlc phase characteristic: 

1^37 • 

Using Formulas (3) and (U), we plot the amplitude and phase char- 

acterlstlcs, using various values of £ from 0.05 to 1.0. These charac¬ 

teristic curves are given In Appendix 8. 

The amplitude characteristic (3) h**8 asymptotes: 

¿>7)^20 IgtaO for»r<l 

r(«7)« ->20tg(«7)* for •r>l. 
and (5) 

The asymptotic amplitude characteristic found from Expressions (5) 

Is plotted In Fig. 6la. 

For an oscillating element, the asymptotic amplitude cnaracterls- 

tlc may depart snarply from the exact characteristic, as we can see by 

comparing Fig. 6la with the figure given In Appendix 8. Thus for an os¬ 

cillating element It Is usual to construct an exact amplitude charac¬ 

teristic. This construction is conveniently made by summing the y-axis 

values of the asymptotic characteristic and the y-axis values of the 

curve representing the difference ÄL(u>) between the asymptotic charac¬ 

teristic and the exact characteristic; such a curve Is given in Appen¬ 

dix 9« 

2) The characteristics L(o)) and iHü)) an element with transfer 

function 

io io (6) 

are plotted with the aid of Appendices 8 and 9i they are shown in Fig. 

61b. 

65. Construct the logarithmic amplitude and phase characteristics 
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Fig. 6l. Logarithmic characteris¬ 
tics of oscillating element. 1) 
db/decade; 2) degrees; 3) 1/sec. 

Fig. 62. Logarithmic characteristics 
for Problem 66. 1) db/decade; 2) de¬ 
grees; 3) 1/sec. 

for an unstable oscillating element with transfer function 

•w- r=wiTW 

for k » 30, T - 50 msec, £ « 0.2. 

Answer. The amplituce characteristic coincides with L(a) for the 



stable oscillating element of the preceding example, which has transfer 

function (6) (see Pig, 6lb). The phase characteristic differs from tf(a) 

for the element -..11^ transfer function (6) only In the sign. 

66. Construct the logarithmic amplitude and phase characteristics 

for a system with transfer function 

Hint. The transfer function should be reduced to a fcnr. convenient 

for plotting of logarithmic characteristics, l.e., we should determine 

whether or not the quadratic polynomial In the denominator corresponds 

to two aperiodic elements or whether it corresponds to an csclllatlng 

element, and we must then find the necessary parameters of these ele¬ 

ments. 

Answer. See Fig. 62. 

6?. An automatic control system whose block diagram is set up In 

accordance with the specimen shown In Fig. 39 has the open-loop trans¬ 

fer function 

mtjk Ad + Tj\__ 
pti+r*t(I + r¿i o 4 ïj* 

Ain WH ___ ... 
Pi1 0+ u.w3wïTr • (1) 

Construct the logarlthml? asymptotic amplitude and logarithmic phase 

characteristics of the system for two values of gains K « 500 l/.;ec and 

K * 2000 l/sec. 

Solution. The frequency transfer function corresponding to (1) 

takes the form 

_ AII+/WWM _ (2) £\rfjïFzr 
From Expression (2) or from Expre J J Ion (1) It is clear t • «a t t hv. 

asymptotic amplitude characteristic takes the form sf a broker, line 

with segments having negative slopes of 20, 40, 20, 40, 60 db/decade, 
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Pig. 63. Logarithmic characteristics for 
Problem 67. 1) db/decade; 2) degree; 3) 
1/sec. 

Jlth abrupt bends at the points * l/rTl = 20 1/sec, u>2 « l/r2 * 60 

/sec, « IA3 * ^00 1/sec, o)^ * IA4 * 1000 1/sec ; the first part of 

¿he characteristic curve Is a stralght-llne se^nent with slope -20 

ib/decade cutting the frequency axis at the point ui * K. 

The as mptoile amplitude characteristics L^(<d) for the case In 

hich K * 500 1/sec and L2(a) for the case In which K « 2000 1/sec are 

hown In Fig. 63. 

The phase characteristic Is the same for both cases and, from o) 

r (2), can be found as the sum 0:’ the y-axis values of the phase char- 

cterlstlc Ÿq(<jü) of an ideal Integrating element, the phase character- 

stlcs T^(œ), ^3(0)), and of aperiodic elements with time constants 

T3, and T^, and *2(ü)) - for a differentiating element with time 

onstant T2. V ' “ 

These phase characteristics for the elements and the resultant 



phase characteristic t(o)) for the entire system are plotted in Fig. 63. 

68« Construct the logarithmic asymptotic amplitude characteristic 

L(o>) and the logarithmic phase characteristic *(o>) for a system with 

transfer function 

where K - 75 l/sec2, Tx - 200 msec, T2 - 25 msec, « 6 msec. 

Answer. See Fig. 64. 

69. Construct the logarithmic amplitude and phase characteristics 

of the system with transfer function 

Ail + W _ Alt + IOVi’ 1+>-w+wswl ***** 
for the following three cases: 1) K • 250 1/sec^, 2) K « 75 1/sec^, 

3) K « 1000 1/sec3. 

Answer. Figure 65 shows the asymptotic amplitude characteristics 

L^(u>), L2(a>), and L^(u)); here the subscripts indicate the case number; 

for case 1, the dashed line gives the exact amplitude characteristic. 

The phase characterls tic *(uj) is exactly the same for all cases. 

70. Construct the logarithmic amplitude and phase characteristics 

of a system with transfer function 

rw“»Fr<i^r»TSiWîTûji»«çfi' 

Hint. The transfer-function dencminator must be factored so as to 

reduce W(p) to a form convenient for plotting of the logarithmic char¬ 

acteristics. 

Anr.v’cr. The amplitude characteristic L(<ju) and phase characteris¬ 

tic *Ku>) are plotted lr* Fig. 66. 

71. Construct the logarithmic amplitude and phase characteristics 

for a system with transfer function 
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FLg. 6¾. Logarithmic cnaracteristics 
for Problem 68. 1) db/decade; 2) degree; 
3) l/sec. 

Fig. 65. Logarithmic characteristics 
for Problem 69. l) db/decade; 2) 
degree; 3) l/aec. 

¿here K - 0.0645 sec, « 30 msec, T2 « 7 msec, 4 * 0.2. 

Answer. See Fig. 67. 

72. Construct the logarithmic gain-phase characteristics for a sys¬ 

tem with transfer function 

Wl»\ ES + 7+) _ 
™ ItPi (I + + ttH 
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JTtl+MIVt 
*<i+oÄV)(i F«jwivui h m^) 

for the following two cases: 1) K « * 500 1/sec# 2) K * K2 * 2000 

l/sec. 

#r 4#4f i. 4 t to U 4060 too HJ 4¿0iJ0.VX,H¿ 

Fig. 66. Logarithmic characteristics for 
Problem 70. 1) db/decade; 2) degree; 3) 
l/sec. 

Solution. In order tc plot the logarithmic gain-phase character¬ 

istic 20 log |v(Ju>)I « fU(»], we first construct the logarithmic 

amplitude and phase characteristics for the system. Using these char¬ 

acteristics L^u)) and i(œ), which are shown In Fig. 63 (see Problem 67), 

we make use of the points to construct the logarithmic gain-phase char¬ 

acteristic for the case Ir. which K =* K1 = 50C l/sec. This characteris¬ 

tic is shown In Fig. 63 (Curve l). The numbers rear the markers on the 

curve Indicate the corresponding values of the frequency ou In l/sec. 

The high-frequency part of the curve for which ^(cu) < - l80° is 

replaced iy. Its mirror image with respect to the y-axls. For this part 

of the curve, shown In the figure by dashed lines, an additional scale 

of angles running frer -ISO0 to -230° Is provided on the x-axls. The 
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Fig. 67* Logarithmic characteristics for 
Probirin 71. 1) db/decaüe; 2) degree; 3) 
1/sec. 

000 220-240260 260 
fmtfioj 1 

Fig. 68. Logarithmic 
gain-phase characi.er¬ 
istics for Problem 72. 
1) Degrees. 

figure also has a scale for the phase margin, 

which equals r)(a>) = ^r(a)) + l80°. 

A similar curve for the case in which 

K = K2 = 2000 1/sec may be plotted by shift¬ 

ing all points on curve 1 upward by 12 db 

\20 log K^/^i = 12 db); see Fig. 68, curve 2. 

73* Construct the logarithmic gain-phase 

characteristics for a system with transfer 

function 

«p/.x,,  K0-\Ttp) _ #r(l4*0,3p) 
(1+77)0 + yHTO-MV)(H OMp) 

for the following two cases: 1) K » 75 1/sec2, 

2) K = 400 1/sec2. 

Hint. It is possible to make use of the 

solution for Problem 68. 
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Fig. 69* Logarithmic 
gain-phase character¬ 

istics for Problem 
73. 1) Degrees. 

Answer. See Pig. 69, where curve 1 re¬ 

fers to the first case and curve 2 to the se¬ 

cond. 

Manu¬ 
script 
Page 

No. 

31 

31 

3^ 

34 

34 

39 

41 

[Transliterated Symbols] 

BX * vkh * vkhodnoy « input 

bKx » vykh * vykhodnoy * output 

43 « ChE «* chuvstvitel'nyy element ■ sensing element 

fl » D * dvigatel' * motor 

p e R e reduktor * reduction gear 

TF * TG « takhogenerator « tachometer generator 

Hyn * DUP ** datchik ugla pretsessii ■ precession angle pick 
off 

41 F ® G « giroskop « gyroscope 

49 c * s « srez « cutoff 

53 Ji.a.x. l.a.kh. « logarifmicheskaya amplitudnaya kharak- 
teristika • logarithmic amplitude charac 

teristic 
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Chapter 3 

STABILITY DETERMINATIONS FOR LINEAR AUTOMATIC SYSTEMS 

$7* STABILITY INVESTIGATIONS USING THE ALGEBRAIC VYSHNEGRADSKIY AND 
HURWITZ CRITERIA. 

7^. The differential equation for an automatic control system has 

the form 

KV+ i)<r,F+ 1KV+u+ 
-(riF+0(7*+0/(0. 

The parameters have the following values: Tq * 0.02 sec, T^ « 0.01 sec, 

T2 « 0.05 sec, )Cq « 20, kr « 0.2. Determine the stability of the auto¬ 

matic system. 

Solution. In accordance with the differential equation, the char¬ 

acteristic equation will be 

v’+'V+v+.i-o, 

where 

10'*» •»■* T#T|+ f#Iii+ rjiMT 1,7« !0"*f 
4Basra+ra+rt*=s.io * i+=5. 

Employing the Vyshnegradskly stability criterion, we have for all 

positive coefficients 

«•>* «»>®. Äi>°. «»>0. 
•«UCIO* 

^■■IO-^SbO.A’IO 

l.e., 

Mi>«^ 

and as a consequence, the system Is stable. 

75. We are given the characteristic equation of a fourth-order au- 

64 - 



tcaatlc system 

The equation ccefflclentj have the following values: 

«•’-riO* êimmt.if, 
^«.lOOL 

Determine system stability. 

Solution. Üslng the Hun;ltz stability criterion, we see whether or 

not the detennlr.ar.ts of the matrix of characteristic-equation coeffi¬ 

cients are 

«i «b • • 
* * 4 • 

• «b di % 

are positive. 

Evaluating the determinants, we obtain: 

*• 10 ».3.10 »-*. 10 U. I0-*« 

-»§•10^-^0,020.10*'s=3j074* 10 •>§ 

«» «i o 

o •• «, 
■»Ml«» —M» —<S|-» 

• • 
•■d»(«i«i-«•«»)-«ï«*= 
-bu.io-|(mo « a io v-o io *1,3.10 io*« 
-1.47.10 •-40-10 **=-JW3 l0^<0. 

and, as a consequence, the system is unstable. 

It should be remembered that the determinant Is contained as a 

factor in the positive part of the determinant Aj and the latter 

can be positive ¿hen > 0 only where Ag > 0. Thus, for a fourth-order 

system, there is no reason to test to see that Ag is positive. Nor is 

there any need tc check the last of the determinant for systems of 

any order to see If they are- positive, since « an^ i and when > O, 

it Is sufficient to check all determinants up to to see that they 

- 65 - 



are positive. Thus, where the coefficients of the characteristic equa¬ 

tion for fourth-order system are positive, we need only check to see 

that the inequality 

is satisfied. 

For a fifth-order system with positive coefficients, the following 

two Inequalities should be satisfied: 

- «i«i) - («i«* - W>0L 

76. Using the Vyshnegradskly criterion, determine the stability of 

an automatic system whose free-motlon equation has the form 

l*/+*#*+«*+«*>**^ 

where 

4 «,«0.02; a, = 0,4; a,= 1,3; «, = 25. 
b) «,=0.02; «i=0,4; «,= 1.3; a, = 30. 
C| ««=0.01; «, = 0.2; «,= 1,5; «,=60. 

Answer: a) The system is stable, b) The system is unstable, c) The 

system is unstable. 

77. Using the Hurwitz criterion, determine the stability of an au¬ 

tomatic system whose free-motlon equation has the form 

+vH +-h «J j? *» 0. 
where 

0 «,=0,001; «, = 0.03; «,=0.4; «,= 1; «, = 20. 
b) «,=0.001; «, = 0,03; «« = 0,4; o,= I; «, = 100. 

Answer: a) The system is stable, b) The system is unstable. 

78. Determine the stability of ar. automatic system whose charac¬ 

teristic equation has the form 

tZ+'v’+v* *1 v* T <v i 
where the coefficients have the following values: 
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a) *«0,001; «•«OJOS; *«^3Ss *—l| *«t* 
*■>101 

b) *«0,001; *«^03; *«0A *«4; *«t* 
*«40. 

Answer, a) The system Is unstable, b) The system is stable. 

79* Using the Vyshnegradskly 

and Hurwitz criteria» determine the 

stability of automatic systems where 

the free equations of motion for the 

systems have the form 

Fig. 70. Voltage regulation 
system. 1) Generator; 2) OV; 
3) spring; 4) damper; 5) 
sensing element. 

KV+ i>(V+t)<r*+ o+#i *-o. 
V+»Mr#+l)+lflJr-0, 

for the following four cases: 

ai r,—i see, rt«oj2 -, ra«0Mo.cur-ia. 
bl fi«0,8.,. 4 ft«0^5 er, fa«0,04 jcj; K~ 
e) f#«ljec6 f|«W :.^ ft«0^ fs«0L3 

««10. 
^OW»« 1 s: s ;f|«0^ ec;ft«08 - 4 f,«0^-:c; 

100. 
-4 

Answer: a) The system Is stable, b) The system Is 

system Is unstable, d) The 'ystem Is stable. 

80. For the voltage-régulâtIon system of Fig. 70, 

tic equation has the form 

unstable, c) The 

the characteris¬ 

es-*- i)(V+1)( V+ r#+ i)+Mt-0. 
where the parameters have the following values: 

the time constant of the manipulated element (generator field cir¬ 

cuit) is Tq *= 0. 2 sec; the time constant of the sensing-element elec¬ 

trical circuit Is T^ = 0.05 ¿ec; the time constants of the mechanical 
2 2 portion of the sensing element are = 1 sec, T2 « 0.1 sec ; the trans¬ 

fer constant of the manipulated element is kg * 0.5 v/ohm; the transfer 

constant of the regulator is kr * 5 ohm/v. Determine system stability. 

Answer. The system is stable. 

6l. For the system of Problem 80, determine the value of the trans- 
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fer constant of the regulator kp gr, corresponding to the limit of sta¬ 

bility. 

Answer. 

Km ■■91,4 ohm/v. 

82. For the same system (Problem 80), determine the stability If 

the time constant of the system Tq Is Increased to 0.5 sec. 

Answer. The system Is stable. 

83- The closed-loop transfer function of a system has the form 

#w“TFW+W^FW 

Determine system stability. 

Answer. The system Is stable. 

8A. Determine the stability of two Interconnected automatic systems 

representable by the block diagram of Fig. 71 If the parameters have the 

following values: 
t 

fu-OiOl scc, r,a»0,09 :e ï , Jfi»*11*11 a 100 1/ c *, 
K$mmW 1/ :ec 0A •«■= 0,4. 

Solutlcn. The transfer functions for the separate open-loop systems 

will be 

r* W—4. ijj ,14.^. 

r.W-f. (1) 

In accordance with the block dlagram, we have the following system 

equations of motion 

*» — (P) (/» ~ *l) — (?) ^ /pX 
**»■■ (p) C/i—*ò—*rt(,)x¥ 

Solving Eqs. (2) simultaneously, we obtain 

_ — |l -f r,if>| r, - •¡Xi <p) «r» ip)yt 
'•V+V, c/)Hi h #'.(/ii wwrafiTr • 

**“TI+VrvÂliTit.líil^.^.^TuTw • U) 
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As a consequence, for the associated systems, the characteristic equa¬ 

tion will take the form 

li+r.WUi^r.w-^A.r.crtr.w-a (M 

Fig. 71* Block diagram of two In¬ 
terconnected automatic systems. 

As we can see from (3) and (4), the order of the differential equa¬ 

tions and the degree of the characteristic equation equal the sum of the 

orders and degrees of the equations for the separate systems. In order 

tc make a stability determination for this case, we may use either of 

the criteria. 

Substituting the values of W^p) and Vig(p) Into (4), we obtain 

fi. V+<r„++ir,<r„+r„>i,*+ 
+<*,+*^+<1 

which yields, when the value.-, of the paraneter.* are considered, 

«yoooy + 0,07/+ 2^«+. 12(y + IGOO » 0. 

Using the Hurwitz stability criterion, we check to see whether or 

not the inequal It,,* a,(a,J, —! satisfied; 

«,(«,«,-0,0,)= 120(0.07.2^-0.0005-120)« 
«¡c4 ms 0,07' • 1600 « 7,85. 

The Inequality holds and, as a consequence, the systems are stable. 

85. Determine the stability of the interconnected systems given In 



Problem 84, where the numerical values of the parameters are the same. 

but one of the links a12 or a21 Is made positive. 

Answer. The systems are unstable. 

§8. STABILITY DETERMINATIONS USING THE MIKHAYLOV CRITERION 

86. Determine the stability of an automatic system by 

Mikhaylov criterion where 

terlsttc equation has the 

where 

•.«0.04. 
••«OA 
•.-* 
4*10. 

Solution. Making the 

p = Jo> In the left side of the characteristic equation and 

the real and Imaginary parts, we obtain 

means of the 

the charac- 

form 

substitution 

separating 

«w-JM+y»* 
« 

where 

io-o>\ 
K(v)«s • (a, — a,«**) = « (2 — 0.01m*). 

Given values 0 ^ to ^ we construct the Mikhaylov curve (Fig. 72). 

Since the resultant angle cf rotation of the vector L(joo) when 

0 £ to <£ » Is 

the system Is stable. 

87. Determine the stability of an automatic system using the Mikh¬ 

aylov criterion If we are given the characteristic equation 

*001V -I10.022/ + 0.7/ -H .6, + 5 « 0. 

Answer. The Mikhaylov curve L(Ju)) » X(co) + ¿Y(u>) has the value 

X(u>) and Y(u>) given in the following table: 
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•1 i*! I* 2 8 4 S • 10 20 :- 

sj ir r 

2.21 
Zfi2 

-IJÎ 

d 

S5 
1 -11.6 -31.0 

UU 
-31.0 
-*00 

-31.0 
-U4 

The system Is stable. 

88. Using the Mikhaylov criterion, determine the stability of the 

automatic system whose block diagram and element transfer functions are 

represented In Fig. 73. The system parameters have the following values: 

. â,-«0, *««1 A*—0.1 l/sec,*1. 
f|p-0,02 jec,rt*s0,03 :ec,, 7^,-0,2sea. 

i 

Answer. The system Is unstable. 

89. The characteristic equation of an automatic system takes the 

form 
1,8-0. 

Find the stability of the system using the Mikhaylov criterion. 

Answer. The system Is stable. 

90. For an automatic system whose free motion Is described by 

differential equation 

+«/*++V +1 + ) *1—0, 
use the Mikhaylov stability criterion to determine the transfer constant 

corresponding to the limit of stablllt;. if we are given the coefficients 

4,-0.02. «1—0,25. «•—I. «1—5. 

Solution. In the left side of the characteristic equation 
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s 

1-K-o 

we sutrstltute the Imaginary quantity Ju> for £, obtaining 

*W-*<.)+yyH 
whefe 

JtW-l + K-aS+aS, 

Por the case In which undamped oscillations appear on the stability 

boundary, the value of the transfer constant K can be determined If 

the real and Imaginary parts are set equal to zero: X(u>) m 0 and Y(o)) « 

* 0 when u> / 0, l.e. , 

o 
Prom the second equation we have a) = a^/a^. Substituting the value 

of to2 Into the first equation, v¿e obtain 

+ 4 • 

which, ..hen we take Into account the numerical values of the coeffi¬ 

cients, yields K » 11. The other two conditions on the stability limit 

an = 0 and a^ = 0, are meaningless here, since aQ 0 by hypothesis, 

while the condition == 1 + K * 0 yields « — 1, corresponding to 

an Illegitimate connection of system elements. 

91. Using the Mikhaylov criterion, find the limiting value of the 

transfer constant of a regulator kp If the system characteristic equa¬ 

tion has the form 

•X++V*+*w> +1 + M,-o. 
where«! = 0.001, = 0,35. *A = \X «*=30. *, = 2. 

Answer. 

92. Using the Mikhaylov criterion, determine the stability of an 

automatic system whose free-motlon equation takes the form 
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+«•?* -f Ä^*-f «*/> + «•)O# 

where 

«,= IO*, atssOX «isssl, 
ei—iA •»■=*. 

The problem Is solved by using the root alternation condition. 

Solution. Making the substitution p « Jo» In the left side of the 

characteristic equation, we obtain 

where 

K («*)=Ä»»—+V»'- 

Setting X(u)) and Y(o)) equal to zero, we find the roots of the equations 

ljfa—O.V-i-6'lOVsO, 2-»f-f 10-VeO. 

From the first equation we have 

•»■■tX #4=3,03 1/ sec «i» U i/sec 

From the second equation, we have 

•i* V 1/sec ^=6.76 l/sec 

Since < u>2 < o>2 < ufy < o>^, l.e., the roots alternate, the system Is 

stable. 

93» Using the Mikhaylov criterion, determine the stability of an 

automatic system using the root-alternation condition, where the charac¬ 

teristic equation takes the form 

|. lO-y-i-10 V1 -r 0,12/-i- 0.VV-h *00*0. 

Answer. The system Is unstable. 

94. Using the Mikhaylov stability criterion, determine the stabil¬ 

ity of an automatic system whose free motion Is described by the dif¬ 

ferential equation 

(lO-y+J-lO V-H.S* 10 V+0,12/-f-O.V*+2/»-fr-1,7)X«0. 

Answer. The system Is stable. 

95» Using the Mikhaylov criterion, determine the stability cf an 



automatic system bavins the characteristic equation 

My-t-3'io y+*. to y+5.10 y-|- 
+iry+o -10 y+7;+so » a 

Answer. The system is unstable. 

§9. STABILITY DETERMINATICNS USING THE NYQUI3T CRITERION 

96. Using the Nyquist criterion, by constructing the gain-phase 

frequency characteristic, determine the stability of a closed-loop auto¬ 

matic system If the open-loop transfer function has '„he form 

+ (1) 

where 

£-16 1/060 7,=0102 3(:0 7;=0.03 sec 

Solution. Making the substitution p » Ju> in the transfer function, 

we obtain an analytic expression for the frequency transfer function 

r<«*=7C«f+ . (2) 

The modulus of the reduced expression equals 

4(M) CS _=8==5===== 
• »Ti-f/kmUix#* 

while the phase is found as the argument of the same expression: 

f (•)— — (90' -j- aictü 7,« aictg 7*»). 

After substituting the parameter values, we have working formulas 

for plotting the gain-phase characteristic: 

!(•)= — (901 -{- »ctg 0.02« 4- 0.03«). 

The results of a calculation using the formulas obtained are given 

In this table: 

••Mmr j 
» 1 w 1 50 1» 1 » 100 00 

TO i 

«H»« g 1 I-Tr 
l3Í I Vl 1^« i 

-icr 

~ÕÃT 

-191* 
AI 

—226* 

0 

-270* 

1) o», 1/sec;-2) ÿ(<u), degrees. 
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Pig. 7^» Open-loop 
gain-phase character¬ 
istic for Problem 96. 
1) Sec. 

Fig. 75. Voltage-reg¬ 
ulation system using VR 
tube. 1) Amplidyneï 2) 
OVO; 3) VR tube; k) 
generator. 

Prom the data of the table# we construct the 

gain-phase characteristic (Fig.7*0# which as 

we can see does not envelope the point C(-l, 

JO) on the complex plane for a variation 0 

¿ o> £ Taking into account the fact that an 

open-loop system is neutral (there is one ze¬ 

ro root in the denominator of the transfer 

function and two other negative roots), we 

conclude that the closed-loop system Is stable. 

Note. A stability determination using the 

Nyqulst criterion for third-order systems need 

not Involve construction of the frequency char¬ 

acteristic. Here It is necessary to use the 

condition that the absolute value of A should 

be less than unity for a phase *= - tt. 

If the analytic expression (2) is written 

in the form 

and, correspondingly, the formula for the 

phare characteristic in the form 

f(•)— W*— well 

then after the resulting expression has been set equal to -tt, we have 

—_A/O 

and, as a consequence, 

I-W-* ••-¿r.. 
Substituting the value of cs Into the formula for the absolute value 
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4wr^r»l-í.^v+.-(í.+ ^ 
and requiring that the condition A(a>) < 1 be satisfied, we obtain a re 

lationshlp connecting the parameters that determine the stabillt of a 

closed-loop astatic third-order system: 

K<r.+b 
97. Determine the stability of the automatic system considered In 

Problem 96 using the Nyqulst criterion If the time constant T¿ Is In¬ 

creased to O.O5 sec. 

Answer. The system Is unstable. 

98. The automatic voltage-regulation system for a DC generator us 

Ing an amplldyne as an exciter and a comparison circuit with a VR tube 

(Fig. 75) will have an open-loop transfer function under no-load cor.dl 

tlons of the following form: 

rW“0TWl + Old + Oi- 

where K = ^.s^KU*,- ape the system cpen-loop transfer constants, k 

Is the transfer constant of the comparison circuit, k-.,-. Is the trans- 
EMU 

fer constant of the amplldyne, k Is the transfer constant of the gen- 

erator, Tu, Tk2, are, respectively, the total time constant of the 

amplldyne control-winding circuits, the time constant of the amplldyne 

short-circuit loop, and the time constant of the generator field-wind¬ 

ing circuit. Determine the system closed-loop stability using the Ny¬ 

qulst criterion when the parameters have the following values: 

li—W cC, 7.,.=0,033 .7. = 0,l8.oe, 
Aw A«*=20, A,=0,5. 

Answer. The system Is stable. 

99. The system open-loop transfer function has the form 



O + + + + Tf ï' 

where the parameters have the following values: 

£■*300, .e j ,7,=0,2 .;c.:,r,**0,03.ee, 

li—0004 i x o • 

Determine the system closed-loop stability using the Nyqulst criterion. 

Answer. The system Is unstable. 

100. The automatic system consists of three structural units (Fig. 

?6). The equations for the first and third units take the form 

(J>+ t)*i ■= *1*. (V 4- x)p*i=Vf 

Fig. 76. Block diagram of automatic sys¬ 
tem for Problem 100. 1) Unit. 

Fig. 77. Gain-phase characteristics 
for units of Problem 100. 1) Sec. 

For unit II, owing to the difficulty of setting up the differential 

equation, we have used an empirical gain-phase frequency characteristic 



which Is shown in Pig. 77a« Determine the stability of the system using 

the Nyquist criterion. The parameters for the first and third units have 

the following values: 

ra—Ml sec,*.-* to. r,e0,03 1/ :c. 

Solution. To determine the system closed-lcop stability, vie con¬ 

struct its open-loop gain-phase characteristic. The gain-phase charac¬ 

teristic of the entire system is found as the product of the character 

1st les of the series-connected elements (units): 

r Ob) « r, (/-) ** (/-) Pib'-i 

Prom the equations for units I and III, their gain-phase character¬ 

istics are plotted from the analytic expressions 

+/•«/«)* 

Pig. /3. Gain-phase 
characteristic of 
system of Problem 
100. 1) Sec. 

For the given values of the parameters k^, k^, 

T1# these characteristics take the form of 

the curves shown in F'gs. 77b and o. 

In plotting the W(Jco) characteristic, we 

used the relationships among the absolute 

values and phases: 

Carrying out the calculations and con¬ 

structions for the various values of u> in the 

range 0 £ vie obtain the gain-phase fre¬ 

quency characteristic of the system (Fig. 73). 

As we can see, the point C(-l, ¿0) is enclosed 

by the gain-phase frequency characteristic. 

As a consequence, the closed-loop system is unstable. 

101. Determine the stability of the system given in Problem 100, 

using the Nyquist criterion, if we take the transfer constant of the 



first unit to be b 8 and the time constant 

cf the third unit to be ■ 0.03 sec. 

Answer. The system Is stable. 

102. Determine the closed-loop stability 

of an automatic system containing an unstable 

element, using the Nyqulst criterion. If Us 

open-loop transfer function has the form 

and the parameters have the following values: 

Ti—0,01 se?,rtss0,l sec,ra«0,09 cc, *=20 1/ es. 

Solution. As we can see from (1), the denominator for W(p) has one 

root In the left half plane, one root In the right half plane, and one 

zero root. The open-loop system Is unstable. 

Before constructing the gain-phase frequency characteristic, let 

us see whether or not the necessar;. condition for closed-loop stability 

Is satisfied. The closed-lccp characteristic equation for the system Is 

i**»«* 

which when the expression for W(p) Is taken Into account yields 

fiV+fli- T0?+WT,-1),+K-0. 

Since for the given parameter values 

r,—ft » 0,05—o,oi *= osa > o, 
ini-i«2o.o,i-i*xi>o, 

then all the coefficients of the characteristic equation are positive 

and, as a consequence, the necessary condition for stability Is satis¬ 

fied. 

In order to construct the gain-phase frequency characteristic. In 

the expression for the transfer function v/e replace £ by the Imaginary 

value jüu and find the formulas for calculating the absolute value and 

phase. 

Pig. 79« Gain-phase 
characteristic for 
unstable aperiodic el¬ 
ement. 
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Prom (1) we have 

AM- KVTTTP m .y\* 
for the absolute value. 

In order to write a formula for the phase, we must consider the 

fonn of the gain-phase frequency characteristic of the unstable aperlod 

1c element (Fig. 79) and Its phase characteristic 

M»)«-i«r+«ctc7i* 
The open-loop phase characteristic of the entire system Is deter¬ 

mined by the formula 

f(»)s»arctg TV* — 901 — »ctg 7,« — ISO’-f irclg Tj» 

or 

f (•)==■— ÎTO’-pardg Tp — arcig 7> -f- «ctg T/*. ( 3 ) 

The gain-phase frequency characteristic, ccmputed from Formulas 

(2) and (3) lo shown In Fig. 80. As we can see, for a frequency varia- 

tlon 0 £ a) £ », allowing for a rotation 

through -n/2, the vector 1 + W(jœ), which 

runs to sne zero root In the denominator of 

the transfer function, turns through an angle 

Ÿ = ir around the point C(-l, JO). Where there 

Is a single positive root In the open-loop 

characteristic equation of the system, the 

closed-loop system Is stable. 

'te see that In accordance with (2) as 

Fig. 80. Ope i-loop gain- the open-loop over-all transfer coefficient 
phase frequency charac¬ 
teristic for svstem of K of the system decreases, the absolute value 
Problem 102. 1) Cec. 

of the frequency characteristic will decrease 

while the phase relationships remain as before. Here as K decreases, 

the closed-loop system loses Its stability margin, and at a certain 

- 80 - 



value beccnes unstable. This Is characteristic of systems that are un¬ 

stable when In the opcn-locp condition# or so-called conditionally sta¬ 

ble systems. 

103. Using the Nyqulst criterion, determine the closed-loop stab¬ 

ility of the automatic system considered In Problem 102 If the open- 

loop gain Is decreased to K « 11 l/sec. 

Answer. The system Is unstable. 

104. Using the Nyqulst criterion, determine the closed-loop stab¬ 

ility of an automatic system If Its open-loop transfer function has the 

form 

WTtdl an 

wm 0+ + fif'M-l-t />>• 

and the parameters have the values: Tj « 0.5 sec, T2 ** 0.2 sec, T^ « 

0.1 sec, Tjj « O.33 sec, T^ * 0.4 sec, K - 10. 

Answer. The system Is unstable. 

105. Using the Nyqulst criterion. Investigate the closed-loop 

stability of an automatic system having two unstable elements If we are 

given the circuit open-loop transfer function 

and the following parameter values: Tj « 0.1 sec, T2 - 0.02 sec, T^ « 

» 1 sec, Tjj « O.33 sec, T^ « 0.8 sec, Tg « 0.5 sec, K « 20. 

Answer. The system Is stable. 

106. The open-loop transfer function of an automatic system has 

the form 

rw“tf+WTb»»rT77.- 

where the parameters have the following values: k ■ 25, Tj » 0.02 sec, 

T2 - 0.1 sec, T^ * 0.5 sec. Determine system closed-loop stability from 

the Inverse phase-amplitude characteristic. 
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Solution. The Inverse transfer function will be 

e<r)< 

where 

rw“r+<r.+ T.i txmt.t.i r.r.+f,w+M.V- 
and, aa a consequence, 

£W„¿ + _íl±^±»Í.,+ 
■f /.¾ ty?+y. 

Substituting In t:.e parameter values, we obtain 

£<*)«0.04 -f 0.0248/1 -j 0,00243/ T 0,00004/. 

Fig. 21. Inverse phase-ampli¬ 
tude characteristic for Problem 
10Ó. 1) Sec. 

The expression for 4 he Inverse phase-amplitude characteristic will 
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Fig. 82. Block diagram for Intercon¬ 
nected systems.- 

where 

0|»)«O,04--0,00248«' V («) ■■ 0,0248« — 0,00004«'. 

Calculating U(o)) and V(oj), we tabulate them: 

• 9 9 
» 1 1 » 90 100 SO 

ffeL. 
AJN 
• 0.11* 0,208 

-0^52 
0,17$ -3.76 —3152 

— 00 

— 00 

The hodograph of E(J<jj) of Fig. 8l has been plotted from the data 

of the table. As we can see, the hodograph of E(jo)) encloses the point 

(—1, JO) In the positive direction for the angle 9 « 3 tt/2, which cor¬ 

responds to stability of a third-order closed-loop system. 

IO?. Determine the closed-loop stability of an automatic system 

using the Inverse phase-amplitude characteristic If the system open-loop 

transfer function has the form 

ï>Hl + + Ttpiii + W 

where » 1 sec, Tg * O.O5 sec, * 0.1 sec, * 0.002 sec, K « I70. 

Answer. The system Is unstable. 

IOS. Determine the closed-loop stability of an automatic system 

using the Inverse phase-amplitude characteristic If the system open-loop 

transfer function has the form 
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r«. 
'»5<l+Wi+W*»*)’ 

where Tj » 0.5 sec, Tg « 1 sec, T, ■= 0.1 sec, Tjj = 0.03 sec, K « 50. 

Answer. The system Is unstable. 

109. Using the Nyqulst criterion, determine the stability of the 

Interconnected automatic systems ...hose block diagrams are shown In Fig. 

82 where the parameters have the following values: « 0.02 sec, Tg * 

« 0.03 sec, Kj * kiiki2 “ 10 i/sec* = *21*22 “ 20 1/sec, a^ * 0.5, 

a21 = 0.8. 

SolutIon. The transfer functions for the Isolated systems will be 

r*>“/Ti7+Tifarn>- 

r«W“7<l7TT»i7>7i} • 
• * 

In accordance with the block diagram (Fig. 82), the system equations of 

motion will take the form 

(1) 

Jfi—wt(p){yt ~x,) — «„r, (/>)*► 
«*•—r.wcxi -xj—ttltwt{p)xv 

Simultaneous solution of Eqs. (2) yields 

- g, H -f Wjp))jrt (p)f, - mt,Wt <p) r, (ß)y, 

gtmm r, (p),t 
• FPr.^iiirT * 

(2) 

(3) 

In accordance with (3), the characteristic equation for the coupled 

systems will take the form 

U+*»«lli + *•«! - «„«„r, 0») ir#o»)=0. ( 4 ) 
c* J KJ . lnee the transfer functions ’.^(p) and W(p) of the Isolated systems 

differ only In the transfer constants, eac:. of them may be written in 

the form 

»•W*-*,*« <r.W=Ar,r(rt. 

where 

*«- WïTiïTOlT) 
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Fig. 83. Gain-phase 
frequency character¬ 
istic for investigat¬ 
ing the stability of 
Interconnected auto¬ 
matic systems. 1) Sec. 

Fig. 84. Block diagram 
of Interconnected auto¬ 
matic systems for Prob¬ 
lem 110. 

Then Eq. (4) may be written as 

<-«• (5) 

From (3) we find the roots and for the 

variable W(p)ï 

Substituting in the numerical values of 

the parameters, we have 

*,«-0.0394, *,»-0.21. 
Now in order to determine the stability of the 

coupled systems [21], we need only plot the 

gain-phase characteristic U(j(o) and see that 

it does not encompass the critical points X^ 

and Xv The given characteristic, constructed 

from the expression 

is shewn in Fig. 83. As we can see, the points 

Xj and X2 are not encompassed by the gain- 

phase frequency characteristic and, as a con¬ 

sequence, the systems are stable. 

110. For the Interconnected automatic 

systems having the block diagram ^hown in Fig. 84, determine the sta¬ 

bility using the Nyquist criterion where the parameters have the fol¬ 

lowing valuesî T = 0.2 sec, K « 10 l/sec, a^ * 0.87, ^22 “ * 

= -5, aa = 0.5. 

Answer. The systems are stable. 

111. For the interconnected automatic systems considered in Prob¬ 

lem 110, use the Nyquist criterion to determine 'he stability for the 
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following parameter values: T « 0.2 sec, K = 10 l/sec, = 0.8?, a22 B 

- 8.7, a12 - 5, a21 - .2. 

Answer. The systems are unstable. 

112. For the Interconnected automatic systems of Problem 110, de¬ 

termine the stability using the Nyqulst criterion for the following pa¬ 

rameter values: T « 0.2 sec, K * 10 1/sec, an « 0.17# a22 « 1.7, a12 «= 

■* “■ 9»3# a0^ *s 0.98« 

Answer. The systems are unstable. 

113.* For interconnected automatic 

systems with crossed antisymmetric coup¬ 

ling (Fig. 85), determine the stability 

by the complex transfer-function method 

[16] If the parameters have the follow- 
2 2 ing values: T2 = 0.1 sec , Tj « 0.4 sec, 

K = 5, a = 0.5. 

Solution. Letting W(p) be the open- 

loop transfer functions of the Isolated 

systems, from the block diagram (Fig. 

8^)), we write the equations of motion: 

(1) 

(2) 

We Introduce the complex variables: 

*«*»+/*► y=yi+Jy* 
Multiplying Eq. (2) by J and combining It with (2), we have 

jr« V(r){j—x)—ja T(j>)y -{-ja T(y)xt 

and from this 

Jl,)* 

where $(p. Ja) Is the equivalent system closed-loop transfer function. 

Fig. 85. Block diagram of 
interconnected automatic 
systems for Problem 113.* 
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The equivalent system open-loop transfer function Is found by the 

usual rules: 

The Interconnected systems will be stable If and only If the equiva¬ 

lent system with open-loop transfer function W(p, Ja) Is stable and the 

gain-phase frequency characteristic does not encircle the point (-1, 

JO) on the complex plane. For the cane considered, 

*(*/»)« T iv-R • 

and the equivalent system Is stable in the open-loop state. From W(p, 

Ja) we obtain when p « ja> an analytic expression for the frequency trans¬ 

fer function: 

" rW- iJfciffijL-» 

from which v;e obtain formulas for computing the absolute value and phase: 

A— 

The results of the computations are given In the following table: 

• 1 *1 » ao 100 • 

Â 2 
—27* 

V 
-51* -icr 

IS 
-IIX 

124 Ofil 
-IW 

0.01 
-tot 

O.U< 
-2oy 

• 
-ror 

1) oi, l/sec; 2) ÿ, degrees. 

From the tabular data, we construct the equivalent system open-loop 

gain-phase frequency characteristic (Fig. 8o), which does not encircle 

the point C(-1, JO) and, as a consequence, the Interconnected automatic 

systems are stable. 

114. For the interconnected automatic systems considered in Prob¬ 

lem 113» determine the stability by the method of complex transfer func- 

tlons for the following parameter values: T2 * 0.2 sec , * 0.5 sec, 
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K «s 10# 3 m 0.7» 

Ar.jv.xr. The systems are unstable. 

115. Determine the stability of a servo 

system by the logarithmic-characteristic me¬ 

thod if we are given the open-loop transfer 

function 

rw=f(i + w\» + r*r (1) 
and parameters with the following values! 

Kß « 50 1/sec, Tj « 0.04 sec, Tg « 0.01 sec. 

If the system Is stable, then determine the system amplitude and phase 

stability margin. 

Solution. To construct the logarithmic amplitude and phase charac- 

Flg. 86. Gain-phase 
frequency characteris¬ 
tic of equivalent open- 
loop system, l) Sec. 

Fig. 8?. Logarithmic characteris¬ 
tics for Problem 115« 1) db/decade; 
2) sec. 

terlstlcs, we determine the frequencies at which the asymptotes of the 

as mptotic logarithmic amplitude characteristic bend: 

1/jec 

¿“¿T“100 1//jcc 
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Let us find the slope of the logarithmic amplitude characteristic at a 

frequency of o> * 1 l/cec, « 20 log Kß * 20 log 50 - 3*» &>• 

On the basis of the data obtained and the form of the transfer func- 

tlon (O, we construct the logarithmic amplitude characteristic (Fig. 87). 

To determine the phase characteristic we have from (l)s 

MT— arclg Tf»—irctg 7*» 

90a— «ctg 0,04« — «ctgOjOl«. 
or (2) 

Taking values of u>, we calculate the phase values as summarized In 

the table: 

y i w 1 « 1 M MOO 

-•r -l,r -IKT -211* 
• 

-263* 

1) o, 1/sec; 2) degrees. 

From the tabular data, we construct the phase characteristic. 

As we can see from Fig. 8, the logarithmic amplitude characteris¬ 

tic (l.a.kh.) takes on negative values before the phase characteristic 

reaches t - 180° and, as a consequence, the closed-loop system Is 

stable. Here the amplItude-stability margin Is ÆL * 8 db and the phase- 

stability margin * 20°. 

116. For the servo system of Problem 115# use the logarithmic- 

characteristics to determine the stability with the following parameter 

values: * 90 l/sect « 0.05 sec, Tg * 0.02 sec. 

Answer. Ihe system Is unstable. 

11?. Determine the closed-loop stability of an automatic system, 

using the logarithmic-characteristics method. If Its open-loop transfer 

function has the form 

rw*=(f+ r/ni+Wo + fruiTt*)* 

and the parameters have the following values: K = 100, » 1.2 sec. 
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Tg • 0*8 sec, • 0.2 sec, ■ 0.05 sec, *0.04 sec. 

Answer. The closed-loop system Is stable. 

118. Use the method of logarithmic characteristics to determine the 

closed-loop stability of a system with the following open-loop transfer 

function 

+ W + /»(I + 7» * 

where = 1 sec, Tg * 0.2 sec, *= 0.05 sec, K * 350 l/sec. 

Answer. The closed-loop system is unstable. 

119* Using the method of logarithmic characteristics, determine the 

closed-loop stability of a system having the open-loop transfer function 

rW"|T+ f»(l /[■*)(! + V) 

Prior to the Introduction of a compensating network and after Introduc¬ 

tion of a series compensating network with the transfer function 

if the parameters have the following values: = 0.5 sec, T2 = 0.02 

sec, - 0.0025 sec, «= 0.1 sec, = 0.4 sec, K =* 500. 

Answer, kithout the compensating network, the closed-loop system Is 

unstable. With the compensating network, the closed-loop system Is sta¬ 

ble. 

§10. DETERMINATION OF STABILITY REGIONS. D-DECOMPOSITION 

120. For the closed-loop automatic system with differential equa- 

t Ion 

K V+1 ) < r*-H ) < r*-H )+*| jr * 0 

determine the stability region with respect to the parameter T^ If the 

other parameters have the following values: T2 = 0.5 sec, = 0.05 -ec, 

K « 25. 

Solution. The system characteristic equation will be 

- 90 - 



r.r,V+(r,r,+r,r,+ r,rjv+ 
+(^1+^+^+1+^-0. 

Solving the charaoterlotlo equation for T., we obtain 

*_ r.V+(r.+Me+i+AT 
w+cí+w+r- 

Substituting the Imaginary value p » ’uj Into the expression for Tj and 

separating the real and Imaginary parts, we have 

r,--«w+;«(-). 

where 

•rcr.+r.) 
T|rK+cu+nK-i-»# 

A.rter substitution of the numerical parameter values, we obtain 

4M» 

4(-)- 

22000 
ÍTfiucqrRõo. 

S9&.0-I 4100 
• 4(M~*+ IUm] * 

Fig. 83. Curves for de- 
terr.lr.lng the ¿lability 
region with re^pe^t to 
one parameter. Problem 
12C. 1) Sec. 

Taking values - « ^ cu ^ we construct the 

curve of Fig. 88. The curve Is hatched to 

the left If we go In the direction from o> * 

* — « to <o « «o. Here the stability regions 

may be regions I and III. 

In the general case. It Is necessary 

t'o Investigate system stability under some 

criterion for values cf the parameter T^ 

corresponding to the regions I and III. For 

the problem under consideration, the system 

Is stable when » 0, since It Is described 

b.. _a second-order equation with positive coefficients, while for very 

large values of , the system Is clearly stable by the Vyshnegradskly 

criterion. As a consequence, regions I and III are stable regions for 



Pig. 89. Curve for determining 
stability region with respect 
to one parameter. Problem 121. 
1) Sec. 

values 0 < Tx < 0.047 sec and > 0.54 sec. 

121. For the closed-loop automatic system considered In Problem 

120, determine the stability region with respect to the transfer con¬ 

stant K for time-constant values of 

Ti*=0.8 so ; , r,«0,l sec , 7,*= 1 sec 

and determine the value of the transfer constant corresponding to the 

boundary of stability. 

Answer. Figure 89 shows the stability-region curve. The value of 

the transfer constant corresponding to the limit of stability Is K « 
gr 

= 19.¾. 

122. For an automatic control system whose proper motion Is des¬ 

cribed by the differential equation 

K?* -M ) < V + 7> -H )+MJ X - o. 

construct the stability region on a plane of two parameters! and the 

regulator transfer constant kp If the other parameters have the values 

fiaaOiOG JCC , r»*=0,l Jf', At«!. 

GolutIon. According to the given differential equation, the char¬ 

acteristic equation will be 

r.iV-MVW- 

The stability condition for positive coefficients of the characteristic 
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equation is determined from the Vyshnegradskiy criterion by means of the 

inequality 

(7-,7,+ 7^(7,+ Tù> Ttrt(l +Mp)> (1) 

The stability boundaries are determined by three conditions ï the 

equation obtained from (l) when the inequality is changed to an equation, 

the vanishing of the last coefficient of the characteristic equation, and 

the vanishing of the first coefficient, i.e., 

(7,7,+ 70(7,+ 10- 7,72(1 +M,). (2) 

(3) 

T,r,mmO. (M 
Solving (2) for kr, we obtain 

* ; Jl 
m 

Substituting in the numerical parameter val¬ 

ues, we have 

,. ^ r/ 
f m oòj oío* c*' 

y/ """ J,J.’S. . V 2 

Fige 90. Limits for de¬ 
termination of stability 
region with respect to 
two parameters, Problem 
122. l) Stability region; 
2) sec2. 

Taking values of T^ and computing kp, we 

construct the hyperbola of Fig. 90. 

From Condition (3)# we have 

A^-»—1, 

2 
which gives us a line parallel to the T? 

axis. 

Condition (4) yields = 0 when T1 ^ 0, 

corresponding to a line coinciding with the kp axis. 

It is clear from Inequality (1) that an increase in kr will lead to 

system instability and, as a consequence, the stability region lies be¬ 

low the hyperbola. In a case where this is not evident, it is possible 

to determine the location of the stability region with the aid of the 

"ir 
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stability criterion; to do this, we substi¬ 

tute Into the criterion values of the para¬ 

meters corresponding to the region Investi¬ 

gated. 

I23. Construct the stability region for 

the closed-loop automatic system having the 

characteristic equation 

CV+«)(V+1)X 
XCV+i)+W.-0 

on the plane of parameters and If the other parameters have the 

following values ï T2 = 0.1 sen, = 0.5 sec, k^ * 20. 

Answer. The curves for the stability boundary are shown In Fig# 91# 

The stability region Is reglen I. 

Fig. 91» Limit for de¬ 
termination of stability 
region with respect to 
two parameters. Problem 
I23. 1) Sec. 

Manu¬ 
script r 
Page ITranslitcrated Symbols] 
Nor* 

6? OB * OV * obmotka vozbuzhdeniya * field winding 

67 T * g « generator « generator 

67 np = pr « pruzhina * spring 

67 H » D *= dompfer «= damper 

67 43 « ChE « chuvstvitel'nyy element * sensing element 

67 h « n = nagruzka = load 

6? p = r * regulyator *= regulator 

68 rp « gr «= granltsa * limit, boundary 

71 o.c » 0.s ** obratnaya svyaz' = feedback 

75 3117 * EMU * elektromekhanlcheskly usllltel» = amplidyne 

75 Cx * St ■ stabilitron * VR tube 

76 cc ■ ss * skhema sravneniya « comparison circuit 

76 r ** g ■ generator « generator 



76 y ■ u » usllltel1 » amplifier 

76 K3 ■ kz ■ korotkoye zamykaniye « short circuit 

89 Ji.a.x. ■ 1.a.kh. b logarifmicheskaya amplitydnaya kharak- 
teristlka b logarithmic amplitude charac¬ 
teristic 

90 n.K * p.k b posledovatel'nyy kontur b series network 
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Chapter U 

CONSTRUCTING TRANSIENT-PROCESS CURVES FOR AUTOMATIC CONTROL SYSTEMS 

§11. THE CLASSICAL METHOD OF SOLVING DIFFERENTIAL EQUATIONS 

124. Find the law governing the voltage across a capacitance C 

If when t « 0 It Is discharged through a resistance R (Fig. 92). Before 

the circuit Is closed, = Uq. 

Solution. According to the second Klrchhoff 

law 

a+Ccasà (1) 

Since the current equals j we have 

Fig. 92. Capaci¬ 
tor -dis cha rge 
circuit. 

*e£-l-«c=o. O) 
The roct cf the circuit characteristic equation 

is 

which equals 

(3) 

According to (2) the function sought equals 

•c*= *= A*” ^ *= ^, (4) 

•where a Is the absolute value of a root of Eq. (3) 

and T » RC Is the circuit time constant. 
Fig. 93. Aper¬ 
iodic network. The constant of Integration A Is found from 

the Initial condition, which In this case ma., be written in the f^rn 

f 

<**-•«= «4. (5) 

Frcm (4) and (5) we find A = Uq; then 
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% 

(6) 

125. Find the voltage across the output of an aperiodic network 

(Fig. 93) when a voltage In the form of a unit step function l(t) is 

applied across the network Input. The capacitor has previously been 

charged to a voltage Uq. Find the step response and weighting function 

for the network. 

SolutIon. In contrast to the equation of the preceding problem, the 

network differential equation has the right side 

(i) 

Here T » RC and It Is assumed that l(t) has the dimensions of vol¬ 

tage. 

The relationship between the Initial conditions holding when t * + 0, 

l.e., directly following application of the step function, and the Ini¬ 

tial conditions that t « -• 0, l.e., directly before application of the 

step function Is given for the general case In Appendix 10. 

In the given case 

(2) 

The* solution of Eq. (l) has the form 

%-lC0+Ar"f (3) 

From this and (2) we obtain l(t) + A « Uq, l.e., A « Uq - l(t). 

Then 

(4) 

The step response A(t) Is the reaction of the network to the func¬ 

tion l(t) under the zero-condltlo\5. From (4) we have 

« 
,(/)=(1-.*T) 1(¾ (5) 

The weighting function w(t) Is the reaction of the network to the 

unit Impulse function 0(t) under the zero-conditions; From 

(5) we obtain 



(6) •CO* i'-* m 

126. Find the output variable x(t) of the system described by the 

equation 

for the following two cases. 

1. A manipulated variable governed by the harmonic law 

Is fed Into the system Input; the Initial condition Is x(0) « Xq. 

2. Under steady-state conditions corresponding to a manipulated 

variable y(t) * Yn sin tut, an abrupt shift In supply-voltage phase by 

+90° occurs; the shift takes place at the tiuie when u)t « n27T, with n 

being an Integer. 

Answer. 

« 
I. *(/)«= ^.tin .)»">, 

-i 
1 Xmco$(*t — 1) —AT.(»In*4 cos»)# r. 

127. We are given the servosystem shown In Fig. 9^» The difference 

between the manipulated variable ¿ and the output variable x is applied 

to the Input of amplifier 1. In addition, the first derivative y* of the 

manipulated variable Is applied to the amplifier. Unit 2 includes the 

motor, reducing gear, and final control element. The system Is des¬ 

cribed by the equation 

(V+F+J0*<0«<^+ #>/(* U) 

Tne time constant 7 » 5 msec, the 

manlpulated-varlable gain Is K » 40 

1/sec, the gain for the manlpulated- 

Flg. 94. Servosystem for Prob¬ 
lem 127. 

variable derivative Is Kk = 0.8. Find the law governing the change In 
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the output variable x for the following two cases: 

1. The system Is activated after an Initial error of X0 In the ab¬ 

sence of control input. 

2. The control Input takes the form of a unit step function l(t) 

with zero-conditions « X* 0 » 0. 

Solution. 1. The system differential equation for the first case 

has the form 

• <V+f+or (0.003^-1-/4-40)jr(i)s=0. (2) 

The characteristic equation 

WVM-J+w^o (3) 

has two real roots: px = - 35-3 1/sec, p2 = - 144.7 1/sec. 

For the ease of real roots, the solution to Eq. (2) has the form 

40)..4.(-^+4,-/, (*0 
where and a2 are the absolute values of the roots of the characteris¬ 

tic equation. 

The initial condition:? are : 

for imnO Jr«** 1 

i s~jr,*=o. J (5) 

From (4) and (5) wc obtain 

. 1 
—«t^»»sOL J (6) 

From (6) we find 

(7) 

The solution to the problem for the first case, i.e., for the error- 

correcting process, has the following form in accordance with (4) and 

(7): 

* W— ^—«.«- ‘O I (0 
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or 

/W—o*1*'1"**) i W (3 ) 

Expression (8) may also be obtained directly from the problem data 

if we make use of Appendix 11, which gives solutions for first-, second-, 

and third-degree homogeneous equations for both real and complex roots. 

2. The system differential equation for the second case may be 

written. In accordance with (1), In the form 

(9) 

where aQ « T * 0.005 sec, a1 = 1, a2 « K « 40 1/sec, b0 = Kk = 0.8, 

b1 « K = 40 1/sec. 

We first find the Initial conditions that apply directly before the 

unit step function Is applied to the system. 

To do this. It is convenient to make use of Appendix 10. According 

to this procedure, we find from (9) n « 2, m « 1, and obtain 

jr+,-r.,+^i{o=o+^i(o-i6oi(o 1/-00 (io) 

It is convenient to reduce the solution of Eq. (9) to the solution 

of a homogeneous equation with the came .coefficients, going over to the 

new variable 

*(O***(0-*|c* (11) 

where 

-¿¡MO-XO 02) 

Is a particular solution of Eq. (9)# i.e., the steady value of the out¬ 

put variable x. Thus, we obtain In place of (9) the equation 

(«fv+"iP(!3) 

and the initial conditions 

i+-x+-x^ zu-x; (14) 

These relationships are obtained from (11). 

- 99 - 



The solution to (13) has the form 

(1¾) 

where. In accordance w!.th the first case, « 55*3 1/sec, a2 *= IM.7 

1/cec. 

In order to find the constants of Integration and Ag, we obtain 

from (15), by (10), (12), and (14), the equations 

or 

or 

At+At=Z+=X+-X. i»» 

•— «1^1 ~ =2+,=r+ • (16) 

From (lb) we obtain 

^==5^1(0=0.171 Ity 
(IT) 

We note that a solution to Eq. (13) n^y be obtained by using Appendix 

11. 

We obtain from (15)* 1° accordance with (11), (12), and (17) 
J0)=l(O+*,,t-=<p.t7l.-M— I.I7U-H») I (0+1» 

Thus, when the unit step function l(t) Is applied to the system, the 

output variable is governed by the law 

*<0=11+0.171«-*»-,#I7U- iHtij ( l8 ) 

Equation (3) has been used to construct curve 1 of Fig. 95, and 

Eq. (18) for curve 2. 

12S. Solve Problem 127 for the following values: 

T * 0.t05 wee, K « 2C0 l/sec, Kk « 0.8. 

Answer. 

1. When the system Is In adjustment, its law of motion Is 

. jr<0*=C,lM ^-^0(173/-1-6(0 

(Curve 1 of Fig. 96). 
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VI wt v¡ ¿i ¿a dpi ¿Ha* 1 

Fig. 95« Curves for the trans¬ 
ient processes of Problem 127* 
1) System In adjustment; 2) sys¬ 
tem reaction to step Input. 1) 
Sec. 

2. When the system Is acted upon by a unit step function 

+1.059«- 1 (i) 

(Curve 2 of Fig. 96). 
* 

129. Find the weighting function w(t)î 1) for the system of Prob¬ 

lem 12?; 2) for the system of Problem 128. 

Hint. It Is possible to use the step responses obtained ln Prob- 

lemo 127 and 128 for these systems. 

Answer. 

I) w(0«(l69.2f- '«i'- 9,««-“>') I (/* 
9) v(/)s=2l2«- cos (1731 — 40,50') 1 (/). 

130. Find the step response A(t) and the weighting function w(t) 

for the system described by the equation 

Cm’+«*+««) * 

All of the equation coefficients are positive; bQ « a2; a^ > 
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Answer. 

• *■ 1 <0- 

where and Og are the absolute values of the roots of the system 

characteristic equation. 

131- We are given the static automatic control system described by 

the equation 

where aQ « 0.002 sec2, al = 0.12 sec, a2 = 5, bQ = 4. 

Find the system response to the unit step Input y(t) *= l(t). 

Answer. 

»I «io (40/ -f 53 1(011 (I). 

132. The automatic control system Is described by the equation 

^ + V+(»^ -j- (. ) 
-4 2 

where a0 = 5*10 sec , a1 = O.IO5 sec, a2 = 2.16, a^ * bx « 65.3 1/sec, 

b0 = I.16. 

Find the transient response for the following two cases: 

1. When the system Is actuated after an Initial error of Xq. 

2. When the manipulated variable takes the form of the unit step 

function y(t) ** l(t) and the zero-conditions are X « X'rt * X"« *= 0. •U -*0 »0 
Solution. 1. The characteristic equation corresponding to (l) has 

the following form for the given coefficients: 

wood/+0,103/ + 1.\6p 4- 65.3 =0. ( 2 ) 

.The roots of Eq. (2) may be found by any of the well-known methods. 

These roots equal 

*■»—•**-110 l/sec, 1 , V 

Adjustment of a system whose characterlst1c equation has one real root 
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Pig. 96. Transient-process curves 
for Problem 128; 1) System In ad¬ 
justment; 2) system step response; 
A) sec. 

and a pair of complex roots will take place In accordance with the law 

The initial conditions equal 

sQ)~X¥ ^(0)-0. (5) 

From (4) we find 

«'(Q** —M#** 4- B*m* IX coi (V+?)—T tin (W -{- J)J. 
jf#)« *M#-'+*-»%•-I1)iin(Jil+?)- 

From Expressions (4)-(6) we obtain a system of equatlor.s fur determining 

the constants of Integration A, B, 3: 

A+Jiinp«*» 
—-f ¿eos J — ïUiin J=0. 

•M + fi(l*—I1)‘in? — 2;X cos ?=0. 
(7) 

Usi'ng (3), after substitution of the quantities, a, y. A, we obtain ty 

solving System (7) 

jl*0,0246AT,. 0sl,13% p = 59150'. (y) 

Substitution of (8) into (4) yields the solution to the problem 
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MM** wma*-'*' -H.lfc-»' sin(25/ -{- 59’50*)). 

This result may be obtained directly from (2) and (5)# If we make use 

of Appendix 11. 

2# Hint for the solution of the problem In the second case: the in¬ 

itial conditions obtaining directly after the step input has been ap¬ 

plied may be found with the aid of Appendix 10. 

Answer. 

jrftsll -1-0.0541*- 1,054ùsin(25/ 88^15^)1(/). 

133* Find the transient response of the system given In the pre¬ 

ceding problem where the manipulated variable Increases In accordance 

with the linear law 

j (/) sro/KO- 

Hint. Look for a particular solution to the system differential 

equation, l.e., for a forced component of the transient response. In the 

form 

Answer. 

«(/) « (of—0,000302* * «»'— 
—0.0392a*- »* tin (25/ — 23 30) - 0.015320)1(/). 

134. An automatic control system Is described by the 

fe*-f«t)x(o**tar(4 
Find the system transient response using the Duhamel 

two types of control Inputs: 

I) jr(/)*a/1(/). 

t) 

for zero-conditions. 

The solution for the case y(t) = at l(t). 

The Duhamel Integral may be written In the form 
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4rCO^CO>(0) + 

where A(t) is the system step response. 

In order to determine A(t), we find the system response to a unit 

step Input, l.e., we solve the equation 

under the zero-conditions. 

In accordance with Eq. (5)# we find 

^,-a (6) 

Using Appendix 10, we also find 

X.-X«+^IW=^l(0. (7) 

Taking (6) and (7) into account, the solution to Eq. (5) will take the 

form 

where T « a(/al* 

Thus, the system step response Is 

For a.linear control Input (2) we have 

/(0«*. (10) 

We substitute (9) and (10) Into (4): 

(ll) 

Integrating Eq. (11), we obtain an answer for the first case of this 

problem: 
. _ • 

*»—•£<•-« T)*(0. 

Answer. For the case of an aperiodic control Input (3): 

/(t)A (<-»)*. (4) 
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*W-»4 »-«rñr^-to-yn^^fa-fW'T 

"(T-«)(!-') 
ua 

135« Find the transient response of the system described by the 

equation 

for a damped oscillatory control input 

and the zero-condltiors. 

Hint. It Is suggested that the Duhamel Integral be used. 

Answer. 

*10’ ÍH 
i -9 
10"* tin mt — COS w/ -f- Mf 

'1 a-] 1+-1 1 
where T = 

jl2. USING LAPLACE AND KARGCN-HEAVISIDE TRANSPORÍEIS 

13^. The open-loop transfer function of an automatic control system 

Is 

rWs=fT»T^f7*= Tii -t ó,«/) • (1) 

7lnd the step response A(t) and the weighting function w(t) for the 

closed-loop system. 

Solution. The system closed-loop transfer function, taking (1) In¬ 

to account, Is 

A/.%_«» _ K _ » 
W rnr^) V +/i K= f + 01 • (2) 

7he step response A(t) Is the system response to a unit step Input l(t). 

The transform X{p) of the output variable x(t) of a closed-loop sys- 

-em for a control Input y(t) whose transform Is Y(p) will be, under zero- 

:ondltlons, the product 
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The torson-Heavlslde transform cf a unit .tep function will be 1, and 

the Laplace transform l/p. Thus the step response A(t) of the system 

may be obtained as the result cf Inverse Karson-Heaviside transforma¬ 

tion of the system closed-loop transfer function, l.e.. Expression (2)i 

or as a result of Inverse Laplace transformation of the product 

In going from transform (2) and (3) to the sought preImage A(t), 

It Is necessary to factor the denominator of the transform. To do this, 

we set the denominator of (2) equal to zero: 

or OV+f+W-O (4) 

and find the roots of the resulting equation (4): 

*—*+A—»+M* 1/cec (5) 
*—*-A*=-9-yiM l/je« 

We next can write the denominator >4’ Exprc-oslon (2) In the form 

—Wlfr+V T 1*1=«.'Mr -r «' T (' W)% 
(o) 

Now In piare of (2) vie obtain 

(i.Cn “ürn^TüW- (7) 

From tables of Kapson-Heavlslde trarsf.rr.s, we select a formula corn s 

pending to Expres sion (7): 

ÇW+ j#TT?-4 “W.H-w ( J) 

Arien sue:, a tabulated formula Is selected. It should be remembered that 

the available bocks t .ese formulas are given In order of increasing 

degree of tiie polynomial Ir. £ In the transform denominator. 

For the case of real roots and f^r complex roots, separate formula 

are a.ways provided. Thus, if the roots of the denominator of tht traí... 



form (2) turn out to be rea', the tabulated formula 

should be taken In place of Formula (8); here and are the abso¬ 

lute values of the roots. 

Comparing (7) and (8), we obtain the preimage of Expression (7), 

i.e., the step response A(t) of the system: 

or 

,4(/).-(1 — 1,068^1111(13,2^69^50] 1 (/). (9) 

.emark. Care should be taken in computing the angle it from Formula 

(8), since the signs in the formulas for ÿ that are typical for the ex¬ 

pressions chosen are distinctively written. The sign of the numerator 

in the expression for the tangent of ^ is the sign of the sine of ii, 

while the sign of the denominator is the sign of the cosine of tf. Thus, 

the formula for ^ contains ar indication of the quadrant in which this 

angle lif... This enables us to avoid the ambiguity in the value for ^ 

caused by the fact that the tangents of two angles differing by tt will 

be the same. 

In the case under consideration, where tan ÿ = - 13.2/5 = - 2.64, 

of the two possible values of ^ equaling -69015' and +110°45', we should 

take he second value, since the expression ^ » arc tan a>/-k == arc tan 

13.2/-5 indicates that the angle ^ lies in the second quadrant. 

As a result we obtain from Formula (8) 

tin («rf —f)=sln (13,2/— 110 45')= — sin (13,2/ +69 15'), 

which is also considered in Expression (9)* 

The system weighting function w(t) can be found as the derivative 

of the step response (9) with respect to time. 
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The weighting function may also be found directly from the trans¬ 

fer function (2) by the Inverse Laplace transformation 

(1°) 
or by the Inverse Karscn-Heavlslde transformation of the product 

From tables of Laplace transforms of functions, we choose a formu¬ 

la corresponding to (10): 

•yt-V-tv ^ÿ«**«*. (is) 
In accordance with (7)f (10), and (12) we obtain the system weighting 

function 

9(0-14.15*-*sin (13) 

137» For the closed-loop automatic control system given In the pre¬ 

ceding problem, find the law of motion governing the adjusting process, 

l.e., the law.governing the variation In :he output variable x(t) in the 

absence of a control Input, with an Initial error x(0) « Xq, and zero 

Initial velocity. 

Solution. According to E^. (2) of the first problem, the closed- 

system differential equation has the form 

CV+/t*)'W-*>W (1) 
where y(t) Is the control Input. In order to obtain the transform of the 

output variable x(t) from (1), It Is necessary to make use of operator 

expressions for the derivatives, taking the initial conditions Into ac¬ 

count. V.’e write the:e expressions, using the Karscn-Heaviside transforms 

or. the assumption that X(p) Is the transform cf tue function x(t): 

py P) »y (/) (f) —fx (ox 
(0=-^(0—/*(0) -/^(0). ( 2 ) 

• •. 

Here x(Q) and x*(0) are the initial values of the output variable and 

Its derivative. From (1) and (2), since y(t). =* 0, we obtain 
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I 
V* W- V'(0)-^(0) +^(P)-/X(0)+KX<f)=0. 

or 

*</)• 
ß(Tp± 1)^(0)-( r^ r'tO) 

V+Ï+* (3) 

Substituting In the values of the Initial conditions *(0) = Xq and 

x'(0) = 0 and of the equation coefflc'ento T = 0.1 zee and K « 20 l/sec, 

we obtain * he Karcon-HeavlJlde representation of the system adjustment 

law; 

y/-x— DAf, _ p(Q,\p f I)X» 
.w ¢;|/,»v'i — 

. yfr+to)*. 
~ir+*f+üs * (^) 

The appropriate tabular formula (Karson-Heavlside) is: 

“ÿÿjJ4^* ^¿ V(«• — -r “ *in H(d) 

From Transfonr (4), cn the basis of Formuli (D) v;e obtain the lav; 

governing system adjustment: 

tia OWí + 63’til 

or 

*W*** I/»«#*1' sin (13,21 + cg’ia'). 

Remarks. Utillzrtlcn of tabular formulas of the type (5) Is not the 

only way of going from the transform of a function to its preimage. It 

is possible, for example» to make use of a decomposition theorem. 

Before going to the preimage x(t), we may check the legitimacy of 

the transform X(p) by several rules. It is possible, in particular, to 

check the transform in terms of its dimensions. The Karson-Heavlslde 

transform of any function, for example x(t): 

(6) 

will have the same dimensions as the preimage x(t). This Is clear, for 
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example, from the fact that the Kar son-Heaviside transform of a step 

function will equal the function Itself, l.e., Al(t) r A when t > 0. It 

follows from Expression (6) that the argument £ of the transform will 

have the dlmer.slor.s of frequency, l.e., (time)“ . The dimensions of a 

Laplace transform for a function 
• • 

jrw=U*(<)l=j*(() r** (7) 

will equal the dimensions of the preimage multiplied by time, l.e., will 

differ from the Karson-Heaviside transform dimensions by a factor (time). 

Let us use these dlmenlonal considerations to check the Karson-Heav- 

Islde transform (3) for the x coordinate of the Investigated system. The 

right side of Expression (3) should have the dimensions of the x coor¬ 

dinate. Since the dimensions of £ are (time)"*, we find that the dimen¬ 

sions of all terms In the numerator are (coordinate) x (time)"*, and of 

the denominator (tl:;.e)”*. Thus, this check gives a positive result. 

Let us go to ether types of tests for transforms. 

From Expresslcn (3)* we can directly find the Initial value of the 

preimage 

(8) 

Applying (3) to (3), we obtain x(0)= J *(0), l.e., this test also produces 

convergence. 

From Expression (3) we can also find the limit of the preimage 

x(t) when t -* «> (if this limit exists) from the formula 

(9) 

Applying (9) to (3). find jr(oo)*=j^*=Q, which Is clearly legitimate, 

since the considered system Is from Expression (1) astatic; thus the 

steady-state error equals zero. Formula (9) 1« applicable provided X(p) 

has poles only in the left half plane of the complex variable £, l.e. , 



provided the real parts of all roots of the denominator for function X(p) 

are negative. 

These types of test on the transform obtained yield only the neces¬ 

sary conditions for correctness of the result; In practice, however, 

these conditions are frequently also sufficient. 

13Ö. The open-loop transfer function of a svstem equals 

V(p)t= ■- *__?_ 
. 0+ *>)(! + TV) (1+ 0,2/.)(1 4 O.UIp, * 

Find the system closed-loop step response. 

Answer. 

4(0«= (0,750 + 0.341 e “-l,Odie-") S (/). 

139* For the system of the preceding problem find the law govern¬ 

ing motion In the absence of a control input under Initial conditions 

x(G) = X0 and x'(0) = X¿. 

Hint. The solution will be the sum of two terms one proportional to 

Xq and the other to X¿; it Is convenient to find these terms separately 

and combine the results. 

i.n wer. 

jr(0 A;| 1,455 ^—0,453* *\ + 0.0182 .f, [* ** — g-"\, 

IhO. For a servosystem with transfer function (see Problem I36) 

find the law of motion where there is a control input In the form of 

the step function b l(t) under the initial conditions x(0) = Xn and 
w 

X'(0) = 0. 

Answer. 

jr(/)*=#ll — 1.068e 9 fin (13,2/ + 60* I S')) + 

* A» l,068r * slo (13,2/ + 69 15'). 

141. For a servosystem having an open-loop transfer function 
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rw“?clTW“>(i+*Uw • 
find the output variable x(t) where there Is a control Input In the form 

of the step function y(t) = b l(t) under the Initial conditions x(0) = 

* X0, x»(0) » X¿. 

Answer 

0,01 II 

142. Find the law govemlns the variation In the output variable 

x(t) of a closed-loop servos:stem where there Is a step control input 

l(t) under the zero-conditions. The system open-loop transfer function 

Is 

(1) 

Solution. We find the system closed-loop transfer function: 

* Ktl+T+j _ 300(1 -f ¢.03^) 
+ + T+) fl» -i 

•«- 
_. _ • /T(» 4 T+)_ rrwi fi»+++/^) 

tV + 300 
(2) 

St cp The Karson-Heavlslde transfcrm for the unknown system response to a 

Input will have the form 

(3) 

Next, without regard to the suggested method for going fr^m (3) to 

the p re Image, v.,<% must find the roots of tne denominator of the transfcrm 

(?), l.e. , the roots of the equation 

«LOOM/ + 0.1 Ot^* -r I 6p t s °- () 

As a result of calculatlons which we shall not show here, the fol¬ 

lowing roc's are obtained for Eq. (4): 

». JM i; 
«M+yuMi/ (5) 

If we now consider (5) and represent the denominator of Transform 
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(2) cs the product 

CyQ006|pl-f-0(l0Cipv4- M¡p-f 5U0=s 
■b 0,0006 (p 39^) [(p -}- ÔS.S)* -j-128.5*^ 

we can obtain the preimage by means of tables of transforms. 

Here we shall use another method for obtaining the preimage - a de¬ 

composition theorem. let the unknown function x(t) have the following 

Karson-Heavislde transform: 

v/.i - *<'> _ + *m j> + / ¿ ) 

where ni ^ n and the equation D(p) = 0 has neither zeroes nor multiple 

roots. Then from the decomposition theorem, the prcImage x(t) may be 

found from the formula 

s(0 am , 
b\0)T 1 

»-• 

8(0.) 
ptO’ b’*) (7) 

where p^, ..., p^, ..., pR are the roots of the equal t on at d £)(,»). 

In accordance with (?.) and (3), we write 

13^+ W) 
^ vi—“-ÿfioüpê + ¡ip -(-¿oo 

»000(^4 33,3) 
"* 4- 20 bJOp 4 ÖJ 000 • 

Comparing (6} and (3), we obtain 

=25 000 (p +33,31 ß (0) = 833 000, 

£,(/,) z=p* -f 176,6^* -f % 650p -f 833 000. 

’ D(0) = 833,000, ¿7 (p) = 3/ + 353/» -f 26 650. 

According ^o decomposl4ion theorem (7), we obtain 

(8) 

(9) 

*<o<=i+2 
‘ 73000(/,, -4 33.31 _ 

pè{3pH ^pt-i AöOü) 
(10) 

We separately calculate the terms contained in (10) following the 

summation sign. When p^ = - 39*0 l/sec, we obtain 

--117500 ^, 
—»¿.ifwu r 0,216 (11) 

when p, « - 63.3 + J 123.5 lAec * 140e*''110010' l/sec, we obtain 
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^bfi1í*,{X%rt} *~ U* •*inM *= Q&**Hxn* + »«•«'i *-“*. (12) 

when p^ ■ - 68.8 - JI28.5 1/sec = lsóe*c11^ 101 1/sec, we obtain 

•“=0^72»-/"«> + »rr,4- «.«_ (j3) 

ExpresGlon (I3) v;aj written without calculation, directly from In¬ 

spection of Expresión (12), since the roots p2 and p^ are conjugate, 

while the coefficients of Expression (10) are purely real. Under these 

conditions, the complex expressions (12) and (13) must be conjugate. 

If all the roots of Eq. (4) had been real, then Expressions (11)- 

(13) would have contained no complex numbers, and the calculation could 

have been finished by substituting these expressions Into Formula (10). 

For the case given. Expressions (12) and (13) are complex so that 

they must be c diverted. Applying the Euler iormula 

to the sum of the conjugate expressions (12)and (13)# we obtain 

•fr.) ÜM 

MB 4072,- j,/ {infle + i»rr» (i«.w f urr >|, 

■i cos (128^ 4-W»') “ 
» — lJU5e-** cot (128^ — 25 52'). (14) 

£fU»/f*esVe'Wt-tJ^'auieafrast-^‘U'i/W 

ut qp¿ ua ao* u¿ ce» aw 

Fig. 97» Transient response of a serv«sys¬ 
tem with first-order astatlsm in the pre¬ 
sence of a step control input. 1) L'ec. 
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WhlftlÉíl liil 1MW t'. <'*(H .,.,,1:1,, 
Ir-wli« i in *j«W.i«.,4. 

Substitution of Functions (11) and (14) Into Formula (10) yields the 

final result, l.e., the system response to the step Input l(t): 

Mffiw (I-(-1)1916*-»*— 

— \M**~m* eos (128^ — 25e5201 • ('X ( 15 ) 

The separate terms of this expression and the curve for x(t) have beer 

plotted on Fin;. 97. 

143. For the closed-loop servosystem given In the preceding prob¬ 

lem, find In general form the Laplace and Karson-Heavlslde transforms 

X(p) of the output variable x(t) In terms of the transform Y(p) of the 

control Input for the nonzero Initial conditions x(0) *= Xq, x^O) = 

«= X¿, and x”(0) « Xq. 

Answer. The Laplace transfo.Tn is 

X (01- 
|B# + W» n/M-•• • K>-f # f li«x, + t« IO V 4- 0.1«..»; + •. 10- 
---- 

The Karson-Heaviside transfem Is 

XM1 
n^fn«• H>~+I«..»,frí.»-1,. 10 V»; 

TT« V wt«#* i- k/ + •«» 

. ^Ind the law governing motion of the system given In Problems 

l4f î nd 143 tr. the absence of a control Input with the Initial condi¬ 

tions x(0) = Xq, x'(0) * 0, x"(0) 8= 0. 

Answer. 

X(0««Xo(1.22Ie-"*.f 0,335*~M*sin (128,5/-41^531 

143. The servosystem given In Problem 142 has an open-loop trans¬ 

fer function 

ro+jv) _ soon4-o.ftV) 
X(I+rÿHi -R» X(i4 Ü»(| h o,ow;,,) • 

Find the output variable x(t) for the closed-loop servosystem where 

there Is a control Input in the form of the Impulse function Aõ(t). 
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Answer. 

*«-»41-1,4*-»^+ 1M.4#-«-» tin (128.5/ + rJO*)!. 

146. For the closed-loop servosystem whose opon-loop transfer 

function is 

rw“>(l+w-,(1+*MV) • 

find the output variable x(t) for a control Input that Increases In ac¬ 

cordance with the linear law y(t) «at l(t), under zero-conditions. 

Solution. The systen closed-loop transfer function Is 

The Laplace transform of the control Input Is 

W-J. (2) 

From (1) and (2), the Laplace transform of the output variable will 

equal 

W—(3) 

To find the preimage of Expression (3), we may make use of a con 

volution theorem according to which 

*«—Uw*<»—»>** (¾) 

ir 

and 

(5) 

«n#««* (6) 
*10# 4C* (7) 

In accordance with (5), Transform (3) should be decunpojed Into 

two factors so that the product of their prelmages can easily be Irte 

grated. We choose these factors as follows! 

^“iV+STh«^»/' 
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Pig. 98» Transient response of 
servoaystem with first-order 
astatlclsm under a linear con¬ 
trol Input. 1) Sec. 

l.e. , 

W» «00 A>r fifTizP+m &+*>)*+1») * 
(8) 

(9) *W-¿. 

The denominator of Expression (8) Is factored by a standard method. For 

Expressions (8) and (9), we select suitable formulas from a table of 

Laplace transforms: 

* —1 ^ ^ j 1 j 

di) 

We now find from (6)-(11) 

M,(0*=(t -1.333^ + 0,333^-^ 1(f), ( 12) 

#,(o*=«i(a (13) 
We substitute the prelmages (12) and (13) Into Formula (4) of the con¬ 

volution theorem: 

(lit) 

We Integrate (14): 
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Prom this we obtain the desired solution to the problem 

jrW--0,00277^-^0-ft04l7«l I (a 

The manipulated variable y(t) and the output variable x(t) are plotted 

on Pig* 96* 

147* The open-loop transfer function of a servosystem equals 

rw”*Pï W “fir+ïww • 
Plnd the servo-system closed-loop error e(t) * y(t) - x(t) under 

zero-conditions for two types of control Input: 

1) for a step Input y(t)« b l(t); 

2) for a control Input that Increases In accordance with a linear 

law y(t) m at l(t). 

Hint. The servo-system error transfer function equals 

Answer. 

1) «(0«*(l^33c ^^Q^33e 

Fig* 99* Graphs showing error of 
servosystem with first-order asta- 
tlsm for step (curve 1) and linear 
(curve 2) control Inputs. 1) Sec. 

2) ¢0)0^6(0,0-117 — 0,00277#”I(0t 

The errgrs fsr both cases have been plotted In Fl|j. 99. 
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WJ 

Fig. 100. Block diagram of 
servocystem for Problema 
148 and 15O. 

148. The servoayatem whcae diagram 

Is shown In Fig. 100 has an open-loop 

transfer function 

Jii ■J 

The system consists of two elements be¬ 

tween which a disturbance f(t) Is applied, 

Find the output variable x(t) for a step disturbance f(t) « d l(t) In 

the absence of control Input y(t) under zero-conditions; K « » 24 

1/sec, T « 6.7 msec, k^ - 0.01 l/sec. The last coefficient Is given on 

tne assumption that the ccordlnates x(t) and y(t) are dimensionless, 

while the input variable of the second element. Including the disturb¬ 

ance f(t) has the dimensions of voltage. 

Answer 

Jf(i)« 10^14.17-4,45^-^ + 0,278^11 (f). 

149. A scrvosystem consists of the two elements shown In Fig. 100; 

Wtãímm—S*-* nr 100 _ 
.w 7(r+1>) >”(i+o,v.'57 • 

M the 1 : ut of the second element there acts a disturbance taking the 

tYrm uf the l-rvslse function f(t) « g6(t); the control Input y(t) Is 

absent, zero Initial conditions obtain. Find the output variable x(t) 

oí the closed-loop scrvosystem. 

Answer. 

«(/)»**1,053<-w iia (60/ + 71^401 (/). 

150. Tne servo-system open-loop transfer function Is 

JTfl+W 
—lr • 

where K * 4000 l/sec", T * 0.01 sec. Find the output variable x(t) of 

the closed-loop system under a step control Input v.(t) * b l(t) and ze¬ 

ro-cond It Ions. 
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«O  ..ft*. ¡ .-rn. in mil „ -n-^•r ' tjfMWTllfTTrftllll Î T - ig»«- ..I. —,-r-nn-r-  .vi' 

Answer 
■’ lift1!: ' 

*C0—A[l + IfiUr*" Wü (60/ - TW)! 1 (fl. 

151* We are given two servosystems having the following open-loop 

transfer functions: 

1} 

2) r,«-&íL+M, 

where Kx . 100 1/sec, Tx . 25 nsec. Kg - 4000 1/sec2, T2 - 10 msec. 

Find the output variables x(t) and errors e(t) . y(t) - x(t) of the 

closed-loop servosystems for a control input t.at Increases in accord¬ 

ance with a linear law y(t) « at 1(t) under zero-conditions. Plot the 

error curves for both systems on one graph. 

is M<et* 

1 

Fig. 101. Errors for control Input y(t) ■ at l(t), servosystem with 
first-order astatism e^t) and second-order astatlsm c2(t). 1) Sec. 

Answer 

—0,01—(toi«;*-»* tia(60/-30^5(0) 1 (0. 
•f(0->«(0,01 -f 0,01C7r-^ sla (60/— 36*3(01 * Vi 
«IW ■« • (<—0.0167#-» lia 60/) I (a 
•iC0"««0iOI67#-»fln 60/1 (/). 

The curves for e1(t) and c2(t) are plotted In Fig. 101. 

152* A closed-loop automatic control system Is described b. the 

equation 
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ftMiy-HVr * W-h i7^4-20)x(o» 
.-07J¥+îO)jrW 

Find the output variable x(t) for the step control Input y(t) - b l(t) 

under zero-condltlonc. 

Answer« 

+ «.«<*- •* »U» (1.2/ - 72s) -f 

•f- (t0i9f-*11 

153- Find the output variable x(t) for the system slven In the 

preceding problem In-the absence of control Input, with initial condl- 

tlonj x(O) . X0> x'(0) . X¿, x"(0) . Xj and x"'(0) . X^'. 

Answer 

x(0»**ll.20?**y cot (1^/ — 4a*)+0,l55c*y-0/H)5e 

+AJII.112#*ysin (12/-4-5(04-0,099/^-0.00^-^14- 
-f-A«((t283/^tla (IJt— I9'30>f0,090/^-0.002/-^)4- 

. +^1^288/^110(1.2/-22^15^+0,114/^-0,004/-¾ 

15^. Find the step response A(t) and weighting function w(t) for 

the system whose transfer function equals 

where n s a positive Integer. 

Hint. Th convolution theorem should be used. 

• Answer 

* W—*[pr— 

*n-&*"**- 

§13. APPROXIMATE METHOD FOR DHTIERMINATION OF TRANSIENT RESPONGE 

A. Investigation of Real Frequency Characteristics 

155« Using the real frequency characteristic P(jj) for the control 

system (Fig. 102a), construct the transient-response curve urrier a unit 

step Input and zero Initial conditions. 

The curve P(o>) Is replaced, approximately, by several trapezoidal 
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curve j In order that the -um of the y-axis values of the trapezoids 

equal the y-axls value of the real frequency characteristic P(oî). In 

the given case« It Is possible to take four trapezoids« as shown in 

Fig. 102b; one of them is positive and the rest negative. Each trapez¬ 

oid should have the typical fo^m shown In Fig. 102c; then It will de¬ 

termined completely by three numbersî the cutoff frequency u> , the 

slope « - and the height r. The trapezoids of Fig. 102b have 

the parameters shown In Table 1. 

TABLE 1 

immmrn • 1 i • • 1 1 • 
w3t 
• % „ 
% l/N* 2 

r 

M3 
M 
un 

Ml Mf 
«M 
-M4 

M* 

-Mt 

1) Trapezoid number; 2) o>Q« 1/sec. 

Fig. 102. Approximate substitution of the sum of trapezoidal frequency 
functions for a real frequency function, and determination of trare lent- 
response curve. 1) Sec; 2) X t. 

We next should make use of tables of the function h(t0). 
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The function h(tQ) 1c the transient-response curve of a system 

whose real frequency characteristic Is a unit trapezoid having r ■ + 1 

and u>s ■ 1 1/sec. The function h(t0) has been tabled for various slopes 

¿ 1; Interpolation can be carried out If c lies between two tabu¬ 

lar values. An abridged table of such functions Is given In Appendix 23. 

We shall use a table of the h(t0)-functlon for c • 0.62 (the slope 

of trapezoid 1)# and shall write several values of the time tQ and the 

function h(tQ) (see the first two lines of Table 2). In order to obtain 

points on the transient-response curve x(t) corresponding to a trapezoid 

other than the unit trapezoid, each value of the function hjl^) must be 

multiplied by the height of the trapezoid r while the time t^ is divided 

by the cutoff frequency u;,, l.e.. 

The third and fourth lines of Table 2 give the numbers t and x^(t) for 

trapezoid 1. 

In like manner, we obtain x2(t), x^(t) and x^Jt) for the remain¬ 

ing trapezoids (see Tables 3-5). Fr^m the data of Tables 2-5, v/e have 

plotted U; curves x^t), x2(t), x^(t), and x^(t) on Pig. 102d. Adding 

the y-axis values of these curves with allowance for their signs, we 

obtain on Fig. 102d *he curve x(t).representing the transient response 

of *hc given s.stem tu a unit step function. The figure also sho^s the 

3. t It,, ATjc,~timX 

For a nonunit step Input ,(t) = b l(t), the y-axls values of the 

curve x(t) should be multiplied by b. 

156. From the real frequency response curve P(uj) of a control sys¬ 

tem (Fig. 103a), construct the transient-response curve x(t) for the 

control input y(t) » b 1(t) under zero Initial conditions. 

Answer. The curve for P(^) may be replaced by two trapezoids, shown 
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TABLE 2 
1 ffÊtmmi 

u • c M 0* t.o LI 2* M 4* U |u |V 1 IA to |lf ¡M (to 

A*> • aw aw aso a» 1.04 l#l| LW 1*16 jt.12 ¡1.07 j i*t (0*6 |0JM |o*6 J 1*0 

• 0*12 5 j 0*00 0*625 0.100 0.162 ail t|0*Siy a275(0*C0|0*.l7¡O*75¡a4M¡O.4W¡a362) 0*25 

*i<n 0|W7 0*3 11 o*s ait tfl jl.ia I.M 1*1 1.16 1.12 jl.73 |t,64 ¡1*4 ¡1*2 ¡1*6 ¡1*2 

1) Trapezoid 

TABLE 3 

U 2) t, ä :ec. 

1 >* . • 

f, MV 2' • atoo 0*11 0*64 0*46 072* j 0*22 1*0 1 1*7 

jr.(0 • • -aas -0*41 >0*67 -0*16 >0*96 j >0*91 >0*M j -0*04 

1) Trapezoid 2; 2) t, sec. 

TABLE 4 
1 Tpa««MM t 

*•*7 
0 >0*065 0*161 0*26 1 0*325 0*466 0*65 j 0*013 aooTo) ano aw 

«•<*) f >0*41 >atoi >ata )-0.194 >0*5 >0*71 ¡-0*60 >0*54 -0*42 • >0*35 

1) Trapezoid 3; 2) t, sec. 

TABLE 5 
_ 1 TpMCOlM 4 

•.y I» 0*14 0*26 0*42 0*70) 0,105 0.133 a<76¡ 0*10 0*46 0*0l| 0*16) 0*51 J 0*86) 0.456 

jr.40 i* -OjWW -ai22|-a467 -0*67 -0*26 -0A19 -0*14|-0*t4¡>0*7 >0*7 |-Q*l4(-0*9C¡-a302¡ -0*90 

X) Trapezoid 4; 2) t, sec. 

on Fig. 103a by the dasbAtf line. The values for trapezoid 1 are: k » 

« 0.?8# u>r, - 79 1/sec, r * 0.688; the values for trapezoid 2 are! 
•J 

* ■ 0.84, ci)3 » 95 1/sec, r - 0.2. 

The curves for x^[t) and x2(t) of Fig. 103b were plotted from these 

trapezoids; from the same figure, we have given the sought function 

x(t) for the case in which b » 1. When b 1, the y-axis, values for the 

curve x(t) should be multiplied by b. 

157* Construct the transient-process curve x(t) for a closed-loop 

system with the control input y(t) » l(t) under the zero initial condi¬ 

tions. The system open-loop transfer function is 
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* ma in ¿s lis ¿j ¿f¿¿, 
* .4 1 

Fig. I03. Real frequency 
responde P(u.) and trancl- 
ent-re-ponce curvej x(t) 
for Problem I56. 1) Sec: 
2) X 1 Aust* 

■nr.\_ #Tíl 4 V) 
^ +>yiTi+^MÍr^i ” 

_>(l 4t.0V) 
C^T-nSJFT-í o.^* 

Hint. It le possible to make use of 

the results obtained In solving Problems 

49 (B) and 36. 

Answer. See Fig. 104b. Curves 

Xl,2.3,4(t> have been plotted from the 

four trapezoids shown In Fig. 104a. 

158. Construct the curve x(t) for 

the closed-loop transient response of a 

system under the control Input y(t) « 

** l(t) and zero-conditions. 

The system open-loop transfer function Is 

rfrw_+ _ Mon-fo/iyi 
+ r^)(i 4 ^(V+o.i^r+o'uûÇ)■ 

äln1--. H possible to use the results obtain In solving Problems 
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43 and 34. 

Answer. See Pig. 105b. The curves Xj^2 ^(t) have been plotted from 

the three trapezoids shown In Pig. 105a. 

. B. Using the Conjugating Frequencies of the Lofrarlthmlc Amplitude Char« 
acterlstlc 

159* The open-loop transfer function of a system equals 

(1) 

0.025 sec, T3 - 0.0025 ¿ec 

Construct the approximate system error curve e(t) a y(t) - x(t) for a 

unit step Input y(t) a l(t) and zero-conditions. The construction is 

carried out on the basis of the conjugating frequencies of the logarith¬ 

mic frequency characteristic (l.a.kh.). 

Solution. The l.a.kh. of the system Is plotted In Pig. 106a. This 

l.a.kh. satisfies a condition requiring that the length of Its segment 

Intersecting the frequency axis with slope -20 db/decade should be no 

more than one decade; thus It Is possible to plot the desired curve 

from the conjugate frequencies of the l.a.kh. 

We determine the l.a.kh. cutoff frequency directly from the l.a.kh. 

or from the formula a'g = K Tg/T^ using the figure; a>s » 125 1/sec. 

In accordance with the method employing the conjugating freiuencles 

of the l.a.kh., we discard from the l.a.kh. all of It lying to the rl;ht 

of the cutoff frequency, replacing It with the horizontal segment co¬ 

inciding with the frequency axis. This new transformed l.a.kh. corres¬ 

ponds to the transfer function 

or 
(2) 

(21) 



Fis. 10^). Real frequency 
response and transient-res¬ 
ponse curve for Problem I58. 
1) Soc; 3) X 

>/ -y BIB WJ 00» 
on .- m o» imp* 

2 

ust. 

b 

Fig. 106. Logarithmic ampli¬ 
tude characteristic and tran¬ 
sient-response curve for 
Problem 159» 1) db/decade; 2) 
sec. 

where uij « lAj, ^ « lA2- 

Formulas (2) and (21) correspond to the transformed error transfer 

PunetÎ r f the system 

#•41«-JL 
W (^ + 40^+120)- (3) 

Taking Into account the Laplace transform Y(p) « i/p for the Input 

y(t) = l(t), we find the Laplace transform for the first approximation 

ej(t) cf the function e(t): 

. (4) 

From tables of Laplace transforms, we find an appropriate formula: 

Tf+«><r+i> ^ 

Formulas (4) and (5) give the answer for the first approximation of the 

system error: 

<W— UM#-'"' — 0¿S3t‘w, (6) 
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This function Is plotted by the solid line on Fig. 106b. 

To obtain the second approximation 

eg(t) to the desired solution, we must 

multlpfy the y-axls values of the curve 

ej(t) by the correction coefficient p In 

the range Tj < t < Tg# l.e., 0.0025 sec < 

< t < 0.025 sec. This coefficient Is 

found from the formula 

Hrfïfërl-* 
or, from (1) and (21), 

#- ßißi i0| 

Fig. IO?. Logarithmic amp¬ 
litude characteristic and 
transient-response curve 
for Problem loO. 1) Sec. 

#-/•» 
_| (yi» + 40»iyi25 -»• 12.¾(/iJH m i ..., 

I SOttflOMH 40)-( /1250 ÎÔ + iOXyi-’jTîwÇ l“ ,483 

The second approximation to the so¬ 

lution is plotted In Fig. 106b (dashed line). On the same figure, the 

crosses indicate points on the exact solution. 

C. Using Universal Curves for Phase-Minimum Systems with Standard Lorar- 
Ithmlc Amplitude Characteristic; 

160. The open-loop transfer function of a seçvosystem equals v*i 
Wi.\ /ro + 7» = 100(1+0,wy* _ 

Construct the graph of the output variable x(t) under a unit step con¬ 

trol function y(t) « l(t) and the zero-conditions. 

Solution. We plot the logarithmic amplitude characteristic of the 

given system (Fig. 107a). From the formulas given In Appendix 16, we 

find the base frequency of the l.a.kh. : u)q m J~K m >1100 « 10 l/sec, with 

the following relative time constants: tg « T^ujq * 0.160-10 « 1.6, 

* T2^q » 0.024-10 « 0.24, and the relatively small time constant 
« 

Tm “ ^3^0 “ 0.003-10 * O.O8, and the length of the segment of the l.a.kh. 
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having slope -20 db/decade: h » * 6‘67- 

In accordance with the computed numbers and the form of the nor¬ 

malized l.a.kh. shown In Appendix 16, we find that this l.a.kh. may be 

reduced to a normalized curve with variability Index M lying between 

1.5 and 1.7. 

Thus the sought transient-response curve x(t) should be plotted so 

as to lie between the curves x(œ0t) given In Appendix 17 f~r M * 1.5 and 

M « 1.7. In going from the normalized curve x(o>0t) for the transient 

response to x(t), the x-axls values of the normalized curve should be 

divided by üjq = 10 l/sec. 

As a result, we obtain the curve x(t) plotted In Fig. 107b. 

l6l. The open-loop transfer function of a system equals 

rw* -,_con +0.02^1_ 
i*+1 v.uv-vj^ -, u.imj 

Construct the transient-response curve 

x(t) for the closed-loop system with the 

control input y(t) « l(t) and the zero- 

conditions. 

Answer. The transient-response curve 

x(t) is close to the normalized curve 
• 

Fig. 103. Trans lent-.'osponse 
curves for Problem 162, plot¬ 
ted by three methods: from 
the normalized curve x(u>0t) - 
solid line, from the exact 
solution ~ crosses, and from 
the real froquenc;. character¬ 
istic - circles. 

x(üü0t) for an Index of variability M *= 

= 1.3; the base frequency == 79 l/sec. 

I62. The open-loop transfer function 

of a system equals 

800(1 + 0.0¾.) 
>(l + 0,1,)(1 4 * 

1. Use the normalized transient-response curves to construct the 

graph of the output variable x(t) for the closed-loop system under a 

unit step control Input and zero Initial conditions. 

2. Solve the same problem exactly (by the classical or operator 
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methods), and also make use of the real frequency characteristic of the 

system. 

Plot all three solutions on one graph. 

Hint. In the second part of the problem, the solutions obtained 

for Problems 142 ar.d 158 may be used. 

Answer. On Fig. IO8 we have plotted the curve x(t) found from the 

normalized transient-response curve with u)0 » 70.7 1/sec and M * 1.6. 

Points belonging to the exact solution are Indicated by crosses and 

points obtained from the real frequency cnaracterlstlc by circles. 

163. The open-loop transfer function of a system equals 

• «0(14 
rw“>0 4 Will VÄtl+• 

Construct the transient-process curve x(t) for the closed-loop system 

under a unit step control Input and ze.'o-sondltlonj. 

Answer. The curve x(t) may be plotted from the normalized curve 

x(u>Qt) for M « 1.3 with a base frequency uJq « 63.2 1/sec. 

D. Graphical Determination cf Transient-Process Curve by the Method of 
D.A. Bashkirov 

164. Construct the graph cf the output variable x(t) for the system 

described by the equation 

or 

(1) 

where tae control Input y(t) Is given graphlcall. I. rig. 10,‘a. x(t) 

and y{t) have the same dimensions. Hhc Initial condition Is x(0) - 2. 

Solution. We write (1) In the form 

(2) 

where the time constant Is 
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and the disturbance variable Is 

(3) 

On Pig. 109b, we plot the tvjo coordinate systems t, x(t) and t, y^t), 

having the same scale; the time axes of both systems arc the same, but 

the origin from whlc i y^(t) Is measured is shifted to the right with 

respect to the origin 0 from which x(t) is measured by the amount T. 

Using Formula (3) and Fig. 109a, we plot the function y^ft). 

Fig. 109. Construction of transient- 
process curve x(tj by the method of 
D.A. Bashkirov. 1) Sec. 

til 

We use an element of Integration At a T/n, where n is an Integer. 
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We take At « 0.020 sec and de vide the graph of Fig. 109b Into sections 

of 0.020 sec each. On the graph of the function y^Jt), we let d1# d0, 

d^, ... denote the values of these functions at the center of each sec 
* • 

tlon. On the graph of x(t)# we plot the Initial value x(0) *= - 2 and 

Join the resulting point c^ to point d^ by a straight line. The Inter¬ 

section of line Cjdj and the abscissa of the end of the first section 

yields the second point on the curve sought. Drawing line C£d2» we 

obtain point c^ at the Intersection of this line with the abscissa of 

the end of the second section, etc. The desired function x(t) is fcsnd 

from the smooth curve connecting points c^, c2, c^, ... 

165. Construct the graph of the output variable x(t) for the sys¬ 

tem described by the equation 

or 

£+>ar-líjr(0 

where 

and the control variable y(t) is given in the form of the folio ring ta 

ble (thî control input has the dlm.nslcns of the output variable): 

im* -1 1 *1 1- 
• -O/wr -O.Mîj -0A» -•Al*» 40A- ■«•An 

1* 

rw! 

I» I« m 

|+W¡tl.w)|i 
ï 

¿n.ir* jtO>T t0>» 4 0-11« 

1) t, msec. 

Answer. See Fig. 110. 

166. Draw the graph of t;.e output variable x(t) for the system 

described by the equation 

•i g!+•» J+V(0 
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or 

Qi04ly IOjt *= 3y (/) 

where 

jr(0)«~U y(0)«75 1/rec 

and the control Input y(t) la shown In Fl¿. Illa. 

w ãtt ta 4ûj sa siï ux* 
b « 

Fig. 111. Control input y(t) and 
output variable x(t) for the syjtem 
of Problem 166. 1) nuec. 

• ^he given equation should be r» duced to the form 

+ +^ *=/» (0^ 

Answer. See Fig. Hlb* 

Manu- 
serlpt 
Pace 
No. 

[TransllteratL-d Symt ols] 

99 ye? «.ust = ustanovlvshlysya * steady-state 

123 c * s « srez * cutoff 

127 /i.a.x. * 1. a. kh. * logar 1 fini cheskaya amplltudnaya kharak- 
teristlka * logarithmic amplitude charac¬ 
teristic 
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jtükb ... 

Chapter 5 

EVALUATING STEADY-STATE CONTROL PERFORMANCE 

ilk, DETERMINING ACCURACY IN THä PRESENCE OF A CONTROL INPUT 

16?. The closed-loop transfer function of a servosystem has the 

form 

Under what conditions will we haves 1) zero-order astatlsm; 2) 

first-order astatlsm; 3) second-order astatlsm? 

Answer. 

1) Agi *=* A*.! ^ 

« 

168. The open-loop transfer function of a servosystem (Fl¿. 112) 

has the form 

*♦* + •« + Afg-J»+B* 

Under what conditions will we haves 1) zero- 

order astatlsm; 2) first-order astatlsm; 3) se¬ 

cond-order astatlsm? 

Answer. Fig. 112. Servo¬ 
system. I)*.#* 

D0.-O; 
J> *.«• * *n-l ' - 

I69. The open-loop transfer function of a servosystem (Fig. 112) 

has the form 

Find the first three error coefficients as well as the velocity figure 
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of merit. 

Solution. We find the error transfer function: 

♦.W-rri- --eû+ie!ü+ü!l_. 

Dividing the numerator by the denominator, we expand this expression Into 

a series: 

»+?•+',»•+r.r*» 

(»•♦ +(v. - r* - itjv 

y-f frt + rt> »» ■»- r.r^« 

fr * * * C*1 * ** ” i) ** ^ *** 

From this we obtain the error coefficients: 

¢-% C«=¿ (ceo],^-¿(T,+r,-¿) [jcc2] 

The velocity figure of merit Is 

[ 1/sec ]. 

170. For the preceding problem, determine the numerical values of 

the error coefficients if K * 100 1/sec, « 0.01 sec and T2 * 0.005 

;ec. 

Answer. 

Qes0.01 see and ^*=0.00005 sec2 

171. Determine the steady-state error for the preceding problem 

where the servesystem moves with a velocity f¿ » 12 degree/sec. 

Answer. 

* 12 = 0,12’= 7.7. 

1/?. The closed-loop transfer function of a system has the form 

♦(f) 
V + 200 

• + u&y + tÿ» + .»ou * 

Find the steady-state error (after damping of a transient) when the In- 

put variable Is governed by the law 

^0=9 + 20/+1011. 

Solution. We find the error transfer function: 
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••W“ • ""♦(f)—.gr» 

Ve divide the nume rater by the denominator (see Problem 169)» and find 

the error coefficients: 

Qmml cec ar^ Ç»OjOOTI6 sec^ 

Ve next find the derivatives: 

rfo-M+t* 
no-» 

The expression for the error Is: 

jw-crm+a^w+t’no- 
—10-a0OT3«—0,M7i+ai/. 

173. The open-loop transfer function of a system (FIs* 112) has the 

form 

r«-aasfc. 

Find the first three error coefficients as well as the velocity figure 

of merit and the acceleration figure of merit. 

Answer* 

c-fc G-«L f-«» sec2 

The velocity figure of merit Kflthe acceleration figure of merit 

K. - 50 1/sec2. 

ITA. In a static control system (Fig. 113a)» the open-loop transfer 

function has the form 

rW-ffX-|5,V+l5»- 

Fig. 113. Static system with non- 
unity feedback. 
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Determine the transfer constant ^(p) * m for ncnunlty feedback for which 

the system will acquire first-order astatlsm, and the open-loop transfer 

function of the equivalent system v/llh unity feedback (Fig. 113b). 

Solution. The closed-loop transfer function cf the system Is 

•(p)“TF*ïirw -fjjï j (r, + T*p +1 + „/f • (1) 

The condition f^r the absence of static error Isî K * 1 + mK; from this 

we obtain 

** tC l~~k9 

Then the system closed-loop transfer function will take on the form 

* w ^ ïj*'+(rfV T,)P + a* 

and the equivalent cper.-locp transfer function cf the system with unity 

feedback will be 

■r W ___K _ JTt 
•W ÕTTTw/TTJV' “"/(l + VT* 

where the velocity figure of merit is 

and i equivalent time constant is 

r.r. 

17e). For l¡ preceding problem, find the first two error coeffi¬ 

cients for the folio.;Irg two cases: 

1) the over-all gain of the direct circuit Is stable (K = const); 

2) the over-all gain of the direct circuit Is unstable (K / const). 

Solution. For the case In which K = const, we have from (2) the er¬ 

ror transfer function 

♦,«-l “♦<>)*= TiTtP* 4~ (f» -t- Tt)p 
TtttP' [Tt-\ l»)p K‘ 

Dividing the numerator by the denominator so as to expand it into series 

(see Problem 169), we find the error coefficients: 

£«■0 and 
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Where K const, we use K * Kq + ÄK [we shall assume that ¿KAq < 1 and 

that the feedback-loop transfer constant m - 1 - (1/Kq)]. The closed- 

loop transfer function of the system (1) In this case will take the 

form 
_fc-M*_ ♦W« A*‘ f«V+<r.+ 

The error transfer function Is 

W •W+<r,+wr+*.+a*- ^ 

Expanding It Into series, we obtain 

- ’ ait A#f 

- <r.4r.)tfc-tm _ r.-t-r. 
(Í+W-J0' ^ ' 

1?6. Find the transfer function for nonunity feedback f(p) such 

that In a static control system, positional and velocity errors are 

eliminated. The block diagram of the control system with nonunity feed¬ 

back Is shown In Fig. 113a. The transfer 

funsilon Is 

rw“*ïïTT#nrn5r- 
Sífh sealIng8l^dlrect^lr- SçWtlœ. The closed-loop transfer 

Cu^t* function of a system with nonunity feed¬ 

back In the general case will have the form 

JT WM + ^ 
TS* +•••+AÍ»+a, • 

The positional error vanishes when 

V-*- 

When the additional condition 

Â%—Bi 
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is satisfied, the velocity error in the system will vanish. 

For the case ander considérâticn, eliminailcn of the positional 

and velocity errors may be achieved by introducing a filter with trans¬ 

fer function 

into the feedback circuit. Then the closed-loop system transfer function 

will have the form 

? r+tw» 
• jCCH-v) _‘ 

if*+ T,*i+ri+A“*#* * 

when 

* » m%k€ * 

and 

^C|CS f,x{. 7,-}-¾ 

êÊT 

The system will possess second-order astatlsm. The positional and velo¬ 

city errors will then vanish. 

177» For the system shown in Fig. 113* determine the first two error 

coefficients If T1 - 1 sec, = 0.02 sec, and K = 1000 ♦ 50. 

Cclution. On the basis of the formulas obtained in Problem 175, we 

have 

*- |to2.10** sec. 

17Ô» In a static control system (Fig. 114), the system open-loop 

transfer function has the form 

r<rt“ii+r>)0 A,, 

Find the transfer constant ri of the'scaler in the input or output circuit 
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that will give the system first-order astatism with respect to the con 

trol input. 

Solution. With allowance for the scaler, the closed-loop system 

transfer function will be 

•W- + V. + hi?* + iUi-Ut w; it*- 

The condition for first-order astatism Is: 

from which we obtain 

Fig. 115. Combination-control system. 
1) Tachometer generator; 2) potentio¬ 
meter 1; 3) potentiometer 2; 4) sens¬ 
ing element; 5) motor; 6) comoensatlng 
network: 7) reduction gear; 6; ampli¬ 
fier; 9) motor. 

179. For the preceding problem, find the open-loop transfer func 

tlon of the equivalent system without scaler. 

Answer. 

r*M-*ï=ï(M->r+ » TV»' 
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Pig. 116. Transformed 
block diagram of com¬ 
bination-control system. 

where the equivalent velocity figure cf mer¬ 

it Is 

¿TW. ll/iieel 
The coefficients ares 

¡ V* •f +Tj, iÍFr,+f. 
' r.r,r. 

180. For a combinat ion-centrol system (Fig. 115), determine the 

conditions for third-order astatlsm and the error coefficient Cy In 

Fig. 115# ChE Is the sensing element, which consists of the two p .ten— 

tlometers PI and P2 for the transmitting and receiving shafts, D Is the 

actuating motor, Rj and Rg are reduction gears, TG is the tachometer 

generator, KK Is the compensating network, is the turn angle of the 

transmitting shaft, ög Is the angle through which the receiving (actuat¬ 

ing) shaft rotates, and 0 * Is the error. The Initial condi¬ 

tions are: kj « 1 v/degree » 57.3 v/rad Is the slope of the sensing 

element characteristic curve, kg 25 is the voltage gain of the main- 

circuit preamplifier, k^ * 4 Is the voltage gain of the final ampllfl- 

er, = 7*3 revolutlons/v»min * 2.86 rad/v»sec Is the transfer con¬ 

stant of the Eccuating motor, k^ * 1/11 » 1/1000 Is the transfer con¬ 

stant of the reducing gear R^, k^ *= 0.055 v»min/revolutlon == O.525 

V* .ec/rad Is the transfei ccnstant of the tachometer generator, ky. Is 

the voltage gain of the compensaiIng-network preamplifier, ku = 1 = 

* 500 Is the transfer constant of reducing gear R2, Tu « O.OO5 sec Is 

the amplifier time constant, = 0.1 sec Is the time constant of the 

actuating motor, Tx » RjC and T2 * R^ C/(R1 + R2) are the time con¬ 

stants of the passive differentiating network. Here k^, T^, and T2 are 

the unknown parameters. 

Solution. The transformed block diagram for the system considered 

is shown ln Fig. II6. The transfer functions for the elements of the main 
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circuit are 

•kW—M* 

The compensating-circuit transfer function Is 

*«“*•** MÍT& 

The closed-loop transfer function of the system Is 

d) 

(2) 

where the transfer function of the initial open-loop system Is 

rw—^<1+r,H- 
The over-all gain Is 

l/zec. 

The error transfer function Is 

Substitution of (1) and (3) yields 

(3) 

(M 

(5) 

where* 

T,TtT. 
r,r.+7,*+r.r* 

4,-7,+ 7,+ 7,-M.M.M.f» 

4b»«l— 

The conditions for obtaining second-order astatlsm are: 

AgaOand #,=0. 

From this we obtain the two equations 

(6) 

üíMAMA—O— ff + fr (7) 

The three unknowns k^-, T1# and T2 enter Into the two equations (6) and 

(7). The missing third equation may be obtained on the basis of re¬ 

strictions Imposed on the value of the error coefficients following af 

- 143 - 



ter Cqí and C^t which equals zero since the system has second-order 

astatlsm. If there are no such restrictions on the subsequent error coef¬ 

ficients, the calculation may be carried out or. the basis of the fol¬ 

lowing considerations. 

For passive differentiating circuits, the time-constant ratio 

will normally equal roughly 10. Setting Tj/Tg « 10 In (6), we obtain 

the required value of amplifier gain for the ccr.pensatlng circuit: 

'’ W.i 

From (7)i we obtain the required time-constant value: 

•• _ 10.1000 .,- 

T+ffö 'FlfiSTftü.iñ *= • 

___W.W» + 0.1 
Mi***.*,*,-I ^2,86.0^-0^. ¿,34-1 

«^0117' sec 
In addition, we find 

0,005 + 0.1 0.105 
10=1 

fi« 107^0,117 sec 

When Conditions (6) and (7) are satisfied, the error transfer function 

(5) will take the form 

AhlaW_!_V + 
w {nrTTT^+WTT+^i* (á) 

Dividing the nancrator by the denominator In (8), we find the error co- 

efficient with rejpeet to the third derivative of the control Inputs 

(9) 

. 1 
mtt 

1 
HNt 

ï / Up 

"i 
'•I •• •• *• .—«C. 

Fig. 117. System with PI mech¬ 
anisms. l) PI mechanism. 

Substitution sf the numerical values yields 
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Pig. 118. Logarithmic amp¬ 
litude characteristic of 
servosystems. 1) Sec. 

6—MW-m-mM-WM 0.1.0.0117 |t|J JCC3 

Equation (9) is the missing equation, 

and it may be used for simultaneous so¬ 

lution of Eqs. (6) and (?)• 

l8l. In a control system (Fig. 117), 

two proportional-pius-floating mechanisms 

PI1 and PI2 are Introduced in order to 

increase the order of astatism. Find the 

first five error coefficients. 

Answer. 
_a _a **_a _r.r, c«_r(r,(r,+r,) (¾-¾ C*«0, Ct*=0, ^sa--. 

182. The open-loop transfer system of a serv^stem has the form 

r w “ fFTTJhiTW * 
The parameter values are: K = 20 l/sec, * 0.02 sec, and T2 « 

« O.03 sec* A harmonic input is applied to the system with amplitude 

eimax “ *0° and Per^oci Tk«7 sec. Find the error amplitude. 

Solution. 1) For the exact solution, we find the error transfer 

function: 

•»(p)**7(rn>)ti+rX" 

After combining like terms and substituting In the values of the 

parameters, we obtain 

á*u\ ••wv+a-io-VMe 
iticFÿ +'5 io y -tr + 20"• 

The error amplitude is 

Find the absolute value of the frequency transfer function with 

respect to the error when w * « 27rAk « 0.9 l/sec: 
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■«■(hLtlnrl «•»-•O'.tM »-»•(/-.f + A.. I 
I^WI“|riFiÿiji+jT|(r»ü^ji+7ÏHâû| = 

We next find 

0,043' 10 b 0,43° « 2f. 

2) Pop an approximate solution, we find the absolute value of the 

frequency transfer function of the open-loop system when u> « o^ï 

The error amplitude is 

M KHFo.s* • o,w? yl -f 0,9». o;o3* nx 

183. For a servosystem, we are ¿iven the system open-loop logarith¬ 

mic amplitude characteristic (Fig. IIS). Determine the error amplitude 

if the Input variable is governed by the law 01 *= 0iniax sl,n where 

eimax “ and ^ = 0.2 1/sec. 

Solution. From the logarithmic amplitude characteristic shown in 

Fig. 118, we determine the absolute value in decibels at a frequency 

u) = rr 0.2 1/secs 

£(^)^30114 (»*)*=: 43 db 

We next find log A(o^) = 2.25. Fren the logarithm, we find the ab¬ 

solute values 

The error amplitude is 

Jfä** I« “ 0,089^= 5,3*. 

184. Solve the preceding problem If; 

l)3tau«**0#. ••«O.l 1/sec; 
DIim.bIO*, »*=0,8 1/ sec ; 
3) ■=: 30\ •, = 0,4 1 /j e c. 

Answers 1) 0.88‘; 2) 14.2'j 3) 21.2*. 
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185. The open-loop transfer function of a servosystem has the form 

rw“#ïïTtaïï+J7r 

where K - 200 l/scc, Tj - 0.5 sec, T2 - 0.1 sec, and - 0.01 sec. De¬ 

termine the phase error In the reproduction of a harmonic input signal 
• 

with amplitude “ 20 and period ■ 1 sec. 

Solution. 1) For the exact solution, we find the frequency trans¬ 

fer function of the closed-loop system when a; « *= 6» 28 1/cec: 

__ _ 

l(f.H ^iyi-Vc 1 KTa—lW 
Substitution of the numerical parameter values yields 

W-iHOJi*. 

The phase error is 

f—wet* **—«ctf 0,03 «W —1,7». 

2) For an approximate solution, v;e make use of the fact that in the 

« 
frequency region of the input, the system open-loop frequency transfer 

function has the form 

For a value a' *= the error transfer function may be taken as 

«tu.!», y 

The phase error is 

»—‘•▼ÜS1 "SC 
w*, 
JM :-0^3Ui'as«-13\ 

I86. Determine the phase error for the preceding problem if 

1) râ«IO rê«*-ec. 

Answer 

d -or. 
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§15. DETERMINING ACCURACY IN THE PRESENCE OF A DISTURBANCE 

187. For the system used to stabilize the specïd of a heat motor 

(Problem 31)# determine the steady-state error when a constant load 

torque » const Is applied. 

Answer. 

ir»a 

183. For the servosystem shown in Fig. 26 (Problems 29 and 30), de 

termine the steady-state torque error if the load torque on the actuat- 

Ins shaft amounts to M * 2000 g*cm, and the reducing-gear efficiency is 
0.8. 

Solution. The torque figure of merit of the considered servosystem 

(see Problem 30) Is Km * I700 g*cm/ang.mln. From this we obtain the 

torque error: 

% ^ íAT. çnw’*1^-' 
189. Solve the preceding problem If we are given the load torque 

at the motor shaft * 5 

lcn- We ^termine the torque figure of merit with respect to 
the motor „haft: 

¡5a-1,7 g* cr./an,g.min 

where 1 = 1000 Is the gear ratio of the reduction gear. 

The error torque Is 

^“êí“p*=M5'- 

ISO. Determine the torque errora for servoa^tems having flrat-or- 

der aatatlam under the following Initial condltlcr.a: 

1. The velocity figure of merit la Kfl . 200 1/aec, the gear ratio 

of the reduction gear la 1 = 500, the no-load motor apeed la n. 
kh.kh 

= 6000 rpm, the atartlng torque la Mp = 100 g-em, the load torque ap- 

piled to the motor shaft Is Mn d « 30 g‘cm. 
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Pig. 119. Servo^yclems for Problem I91. 
1) Command-shaft potentiometer; 2) mo¬ 
tor; 3) tachometer generator; 4) reduc¬ 
tion gear; 5) actúating-shaft potentio¬ 
meter; 6) ccmpensatlng network. 

2. Kq « 5OO 1/sec, 1 « 10,000, ^ « 7500 rpm, M « 300 g*cm, 

d « 150 g«cm. 

Answer. 
tMOM'M.., 1440.1,14.6000 SO _Ajl. 

1 it “ nrssoRT roo " • 
• • 1»<40 «.14 .TS00 ISO_AO* 

JQÕ“0"- . 

191. Figure 119 shews the electromechanical diagramsof two servo- 

systems using different ccmpensatlng devices. The system open-loop 

transfer functions for both diagrams, taking Into account the compen¬ 

sating networks, are the same and equal to 

rw“7î^FT¡mïTv^, 
where Kß * 400 1/sec, T^ = 0.25 sec, T0 » O.O5 sec, and = 0.01 sec. 

In Fig. 119# PI and P2 are the command- and actuatlng-shaft potentiome¬ 

ters, D Is rhe motor, R Is the reduction gear, TO is the tachometer gen¬ 

erator, KK is the compensating network, an(* are the angles 

through which the command and actuating shafts turn. In both arrange- 



ments, the compensating network In the linear representation is equiva¬ 

lent in effect to a series intégrâting-different lating element with 

transfer function 

r. B(#) « + VHj + ft*» 

where Td Is the motor time constant. 

Determine the maximum error in transmission of a harmonic input 

signal with amplitude elmax * 15° and period T « 8 sec if the torque 

error caused by dry-friction forces is 0 * 2». m 
Solution. 1. For the arrangement shown in Fig. 119a, by appropriate 

use of feedback around the actuating motor, the maximum error may be 

found by summing the amplitude of the error of the control input 0a and 

the torque error 0 : m 

(D 
The first term of (1) 

(2) 
where u^. = 2tt/T * 6.28/8 « 0.7¾ 1/sec is the input angular frequency. 

Substituting the numerical coefficient values into (2), we obtain 

« 0,038’=2,3'. 

The maximum error (1) is 

1^3.3 + 2^4,^. 

2. For the arrangement shown in Fig. 119b, with appropriate use 

of feedback that does not include the actuating motor and which intro¬ 

duces a long time co:.stani» » 0.25 -sc into the channel ahead of the 

motor terminals, the maximum error may be computed from the approximate 

formula [3] 

Km *= Vitalia« Tp'm — (3) 

where Elmax “ “khmax “ °-7852-15 - 9-3 degree/sec2 = 550 ang.mln/sec2. 

Substlticn of numerical values in (3) gives 
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^MVU£.a50'0,25a'2*--2«l4.7. 

192- The external characteristic of a gen¬ 

erator (the voltage across Its terminals as a 

function of the load current) Is shown In Fig. 

120. The slope of the characteristic curve Is 

0 « 0.1 v/amp. The generator has a static vol¬ 

tage-regulating system with an over-all open- 

loop gain of K « 200. Determine the steady-state 

error under a load surge AIn « 100 amp. 

Solution. 

193* In a furnace temperature-stabilization system, a thermocouple 

Is used as the sensing element. Vlth the control system disconnected, 

an external disturbance causes a temperature deviation from the set 

value of ATq « 200°C. Determine the steady-state temperature deviation 

If a control system having an cpen-lcop transfer function 

« 

rw“ir+t*Mi+f>r 
Is used; here K « 500. 

Solution. 

[Transliterated Symbols) 

yet ■ ust « ustanovlvshlysya * steady-state 

a ■ e ■ ekvlvalentnyy * equivalent 

o.c * o.s « obratnaya svyaz* * feedback 

TP * TO » takhogenerator « tachometer generator 
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136 

138 

140 

141 
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_i—*—i—i—s 
! 9 * êO M KO 4*2 

Fig. 120. Generator 
external character¬ 
istic. 1) U, v; 2) 
I, amp. 



I4l n ■ P ■ potentsiometr * potentiometer 

l4l M3 ■ ChE ■ chuvstvitel'nyy element ■ sensing element 

141 Äfc) * D(d) ■ dvigatel* * motor 

141 KK ■ KK « korrektiruyushchiy kontur * compensating network 

l4l P ■ R « reduktor « reduction gear 

141 y ■ Ü ■ usilitel' * amplifier 

144 H2i * IM * izodromnyy mekhanizm * PI mechanism (proportional- 
plus-integral) 

148 ir « n « nagruzka * load 

148 u « n ■ moment «= torque 

148 x.x « kh.kh « kholostoy khod * no load 

148 n * p • pusk * starting 

ISO n.s * p. z * pos ledo va tel'noy e zveno * series element 

ISO a ■ a ■ ampli tuda - amplitude 
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Chapter 6 

EVALUATING DYNAMIC CONTROL PERFORMANCE 

§16. ROOT METHODS 

19^» Given the following control-cystern characteristic equations: 

130 = 0; 

1)^+2^/+27^+13.= 0-. 
0/+^/+^18/+1220^ + 808=.0-. 
0/+V+*V + ^+2.5=0. 

Determine the roots of the equation, and the system degree of stablllt; 

h, oscillation p., and damping tj. 

Answer. 

l/-tiC/M=—2±y3 1/sec A==2 1/sec 

.«=* = 1,5, 
• • 
I l/sccfM=-8±/4 1/scc A = 1 1/ see 

p=0.8. *=9WU 
8) f,=-0.5 1/ secfM= — I ±/5 l/sec 8=.0.5 l/sec 

2*8. WW* 
4) ^t=— 1 l/-ec 2**^2 l/sec ^,4 = —2±20 l/sec, 

8=1 l/sec p»IO. *=47%: 

•) J»*—I l/-c^ ^j=~*l l/ ci' JL/1,3 1/ 

8=05 I/.-* 2*3, 4=88%. 

195* Given the coni rol-system characteristic equations 

O /+V+4l*+e4-0; (1) 
O/+H/+MV +1000=0. 

Using a Vyshnegradskly diagram, determine system damping and degree of 

stability without finding the roots. 
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Solution. 1) We make the substitution p q « 4q. Then Eq. (1) 

after division by 64 will take the form 

f+f+fif+l-* 
• # 

The Vyshnegradskly parameters are ï A ® 1 and B - 41/16 « 2.56. From a 

Vyshnegradskly diagram on which lines of equal damping have been plotted 

(Appendix 1), we find tj * 70£. From a Vyshnegradskly diagram on which 

lines of equal degree of stability have been plotted (Appendix 2), we 

find the relative degree of stability h0 « 0.?5. We next determine the 

absolute degree of stability: h » 4h0 » 1 1/sec. 

2) q » 75& h « 2 1/sec. 

196. We are given the open-loop transfer function of a system with 

first-order astatlsm 

rw”—Wiir« (1) 
Find the relationship between the velocity figure of merit Kß and the 

time constant T for which the damping over one cycle will be no less 

than a given value tj. 

Solution. We find the characteristic equation of the system 

i+rw«o 

or, after substitution of (1), 

/+7/+7-0. (2) 

The roots of this equation are 

±A (3) 

whe re 

•■“17 * ancî — j}i. 

Tr.e oscillation Is connected with the damping over one period by the 

relationship 



We next find 

¡ 

• i_ *• 
► • r r («) 

i-./Or.r-1. (5) 

Simultaneous solution of (4) and (5) yields the desired condition 

At -J i| 0^3. (6) 

197. In a system with open-loop transfer function 

rW-7(iW 
the time constant is T s 0*1 sec. Determine the admissible velocity fig¬ 

ure of merit corresponding to single-period dampings tj « 90#, tj * 955$, 

Tj *= 98/2# and ^ * 100^. (See the last problem). 

Answer. 

*.-11.1 ifrc 1;., *r,=*;7 i/r»c 
«•t=w 1/ • 

1S&. The open-loop transfer function of a system with second-order 
A 

astatl n has the form 

rw=Ü£M. (1) 

Determine the relationship between the acceleration figure of merit K 
£ 

and the tíme constant T for which the single-period acceleration will 

not be less than a prescribed value 

oolutlen. We ilnd the characteristic closed-loop system equation 

i+r(f)=o 
or 

^+jC7>+ir,=o. (2) 

The roots of this equation are 

ft.,—^ sp—,±y>. (3) 
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The oscillation is 

Using the relationship between the oscillation and the damping 

we finally find 

or 

I 
XJ* <1—TTr+M* 

(6) 

(7) 

199« In ? system with the open-loop transfer function 

Vw-üí!±fiL 
the acceleration figure of merit is K « 100 1/sec2. Determine the min- 

imum time constant T corresponding to single-period damping of rj = 90^5, 

t\ « r\ ■ 98## and ^ * 100^. (See the preceding problem.) 

Answer. 

T sr O.O69 sec, T = O.O86 sec, T « 0.10? sec, T * 0.20 sec. 

200. In a static control system, the open-loop transfer function 

takes the form 

The time constants equal TQ « 1 sec and « O.5 sec. Determine the ad¬ 

missible over-all gain K for which the single-period damping will be at 

least r\ * 90$. 

Answer. 



517. TRANSIENT-RESPONSE EVALUATION 

201. A closed-loop control system is described by the differential 
equation 

or. (i) 

Determine the overshoot on the assumption that the characteristic equa 

tion has the complex roots p^2 * - a + Jß, where there is no control 

input, Y - 0. The initial conditions are X = X0 and X = 0 for t = 0. 

Answer. The transient is determined by the expression 

(cos Slnj/J» 

g-i tin (p/ irctg IJ. 

An extremum investigation yields the first value: 

(3) 

From which we obtain the unknown overshoct 

202. For the preceding problem, determine the condition for ab- 

scence of overshoot. 

Answer. This is p = 0, corresponding to satisfaction of the condi- 
tion a0 = 0.25a~. 

203. For Problem 201, determine the relationship of the coeffi¬ 

cients such that the overshoot will be õ = 105g, 6= 20£, c = 50#. 

Answer 

«.-ui.;. .,= s,«4 
204. For the contal system whose differential equation (1) was 

given in . ••oblem 201, determine the overshoot when a unit step function 

Y(t) = l(t) is applied to the input if prior to the application of the 

input signal the system has been at rest. 

Answer. The transient is determined by the expression 
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A maximum study yields 

'JT ■■ I—r* (w J* — J «U» P*). 

i —^ » 
JT.-I+# »"•rar. 

Prom this we determine the overshoot: 

jr.-t 
«P 

where 

205. For the relationship of coefficients a0 and corresponding 

to overshoots of õ = OîS, c * 1055, c * 20#, and c * 30# for adjustment 

from a fixed position (see Problems 202 and 203), determine the over¬ 

shoot when the unit step signal Y(t) = l(t) as applied to the Input, 

and compare the overshoot values. 

Answer. The overshoot values are given In the table; 

2 Cookminiic id NcnaiaN*' 
•Of* MJOKCHN«. 3 0lf«6otM MMHMIN *ro Cljf* 
WMMforo •oMrictMa.. 

«•-Ml ■; •«-*.» •• 

*>!, 

1) Type of motion; 2) adjustment from fixed 
Çosltlons; 3) tran.mlsslon of unit step 
nput. 

Fig. 121. Trapezoidal 
real frequency charac¬ 
teristic. 1) sec. * 

Fig. 122. Real characteris¬ 
tic with peak. 1) sec. 

form 

206. The closed-loop transfer function of a control system has the 
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♦M -iwM-l 

A unit step function l(t) is applied to the system Input. By plotting 

the transient curve, determine the overshoot and transient time for the 

following coefficients: 

1) ax » O.33 sec, a2 * 0.01 sec2, a^ = 1.58-10^ sec3; 

2) *l =.0.^13 sec, a2 * 0.04 sec2, a^ = 0.002 sec3; 

3) ax * 0.087 sec, a2 * 0.0025 sec2, a-j = C.i^.lO“1* sec3. 

Answer 

/. = 0.775 cc; 
9)0=26.5%. /.= 1,(7 ’ec; 
*) 0=37^4, /, = 0^7 -ec* 

207. Figure 121 shows the real frequency response of a closed- 

loop system. Determine the rough values of overshoot and transient 

time. 

Solution. The interval of real frequencies for the real character¬ 

istic is u> s 20 l/sec. This gives a transient time of 

0.1*37 sec < tp < C.C28 sec. 

The overshoot c < l3£. 

For a more accurate calculation, it is necessary to turn to the 

curve.» given in Appendix h. The slope of the real response curve (Fig. 

121) is K = 0.1;. This yields c = ICf? and tp = 7/20 = 0.?5 sec. 

208. Determine the overshoot and transient time for the real fre¬ 

quency response curve shown in Fig. 122. 

SoluOon. The high-frequency part of the characteristic corres¬ 

ponding to P(o)) < 0 may be started, since Pmln < 0.2. Then the system 

overshoot will be 
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TO I 0.41-41%. 

The transient time is 

-^^=0^)623 ¿*ec. 

For a more accurate calculation, it is necessary to turn to the curves 

of Appendix 5* By using them, we find 

•—03% a™* i.e^s.L^üsO.IS sec. 

§18. INTEGRAL ESTIMATES 

209. The open-loop transfer function of a servosystem with first- 

order astatism has the form 

rw~7ïiTWp5P 
For values of the time constants of T^ * 0.02 sec and T2 = 0.C4 

sec, find the velocity figure of merit corresponding to the minimum 

integral square estimate for transmission of a unit step input. 

Solution. The clos>ed-loop system transfer function is 

- it, +,+(/^37+7,751-- 

The Laplace transform of the output variable is 

*w “ TrF7T»inW+TOr 7 " 
_ fc « 

In accordance with Appendix 1^, we find the integral estimateî 

2 2 
where Bq = = K,, = K^. The values of tie determinants are: 

0 

••(«»«I—«««»x 
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<• •» “•» 

i —«» «• 

As & result, we heve 

í . I (Tt+T'Y ,“wr+*irnp^.Tx- 
In ord'jr to obtain the mlnlmui value of the Integral estímete, we set 

the derivative to zero! 

él t ¿L- J_L. TJ.(Tt^T,y 1 n 
ïl nr,J °* 

from which the optimum figure of merit will be 

Ja-«-r» + r» 
W+cr.+^KW • 

Substitution of the numerical values for the time constants yields 

If««*- ¡24l/rec. 
. Mr* 

210. The open-loop transfer function of a system has the form 

rw“iïïTW 

For fixed values T = 0.1 sec and velocity figure of merit 1¾ = 20 l/seCj 

determine : he value of the coefficient Kx which determines the signal 

level with rerpect to the first derivative, corresponding to the mini¬ 

mum integral square error when a control signal in the form of the 

unit impulse function Y(t) = 6(t) is applied to the system input. 

SolutIon. The system closed-loop transfer function is 

_ *• +*> 
rr«nfT • 

The transform of the control input is Y(p) =, i. The transform of the 

output variable is 

The value of the integral square estimate (see Appendix Ik) is 

- 1Ó0 - 



The coefficients equal: 

i,-*;-«. 
«»-l+AT. nò «,-n 

The values of the determinants are: 

»<«•** Air, 

We next find 

A,- 

A.- 

0 

«• 
0 

0 

«• 
0 

«, 0 

—«b «• 

•i ® 

Ai 0 

• •• 

— É, «i 

«I * 
0 —A. A 

AWr+AIAl A’.r+AI 
• + tcjr ^ + Kt> T- 

In order to find the minimum of I, we set the derivative equal to zero 

dl/dK^ * 0. As a result we have 

A5+ijr,-*«r«o. 

The solution of this equation for Kx is 

ï +A« t» 

Substitution of the numerical values yields 

*,—14-/1 + 20.0,1 *=0,73. 

211. The open-loop transfer function of a system takes the form 

rW*=A<» +W 

For a fixed value of the time constant T = C.2 sec, determine the opti 

mum velocity figure of merit corresponding to the minimum Improved in¬ 

tegral estimate 
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for the unit step input Y(t) * l(t) for values of the extremum time 

constant t * 0, t * 0.1 sec, t = 0.5 sec, and t = 1 sec. 

Solution. We separate Integral (1) Into two Integrals: 

f w ^ ^ » J jkVI+1* J i V/. 

We find the system closed-loop transfer function 

«¿'T/+V 

The transform of the output variable for Y(p) = l/p: 

In accordance with Appendix lht we find 

4«^- (2) 

The values of the coefficients are: 

ãi = Kt, «, = 1 r«nd f9 

The values of the determinants are: 

i -f*4r« r. 

Wo substitute the values found into (2): 

.^«lO+Air) i + *,r 
>9B s=~iKr~’ 

In order to find I2, we determine the transform of the rate at which 

the output variable changes: 

M*W=T5+?+5r- 
In accordance with Appendix 14, wc find 

(3) 

where = = 1^, while the determinant 
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We next have 

4 

The resulting value for the improved integral estimate is 

In order to find the optimum value of we set the first derivative 

(4) equal to zero: 

After differentiation we have 

• I 

so that the optimum velocity figure of merit Is 1¾ » l/i. The numeri¬ 

cal values are: ■fe--* ^ * 10 1/zeet % = 2 l/sec and = 1 l/sec. 

§19. FREQUENCY ESTB1ATES 

212. Figure 123 shows the gain-frequency characteristic for a 

closed-loop system. Determine the magnitude ratio. 

Fig. I23. Gain-frequen¬ 
cy curve for closed- 
loop system. 1) sec. 

Fig. 12^. Gain-phase charac¬ 
teristic for open-loop system. 
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Answer 

213» Figure 12^ shows the gain-phase characteristic of an open- 

loop servosystem. It may be plotted from the table on this page. 

Determine the system closed-lcop magnitude ratio. 

1 
¡-1.T3 -1.3 -1.Î3-1 (*—a,75| —0^ J —CC2s| 0 

**(/•) -!» |-u -1.75 —1,6 -1,4 -I.W|-0.W|-0.65(-W5 

Solution. In order to find the magnitude ratio it is necessary to 

determine the parameters of the circle tangent to the gain-phase charac¬ 

teristic. The parameters of the circle are connected with the magnitude 

ratio by the formulas 

C- JW 

where R is the radius of the circle and C the displacement of the cen¬ 

ter of the circle to the left of the origin. As result of our choice, 

we find that the tangent circle corresponds to 

M-i. ami C-{. 

The construction is given by the dashed line of Fig. 12^. 

214. The open-loop transfer function of a servosystem has the 

form 

Determine the relationship between the velocity figure of merit and 

the time constant for which, the system will have a magnitude ratio not 

exceeding a given value K. 

Solution. The system closed-loop transfer function is 

♦0 _*»> _ *t 



The system closed-loop frequency transfer function is 

The modulus is 

A maximum investigation of this expression yields a value for the mag¬ 

nitude ratio of 

(fcr i<n T > 0.5). 

From this last expression we obtain 

„ » jUM Airii’- i #**' —-j 

215* Solve the preceding problem if the system open-loop transfer 

function has the form 

where K is the.acceleration figure of merit and t is the compensating- 

network time constant. 

Ansv.er 

ê 

216. Figure 123 shows the logarithmic frequency amplitude and 

phase characteristic (1. a. kh. and 1. f. kh.) for an open-loop system. 

Determine the system closed-loop magnitude ratio. 

Solution. In order to find the magnitude ratio we must construct 

the forbidden band for the phase characteristics so that the phase 

characteristic touches this zone. The forbidden zone is plotted in ac¬ 

cordance with Appendix 2^, which gives the necessary phase margins as 

a function of the modulus in decibels for various values of the magni¬ 

tude ratio. As a result of our choice, we find that the magnitude ratio 

- 165 - 



m » 

3 

Fig. 12*3. Logarithmic amplitude char- 
acterictic and logarithmic phase 
characteristic for open-loop systems. 
1) Logarithmic amplitude characteris¬ 
tic; 2) logarithmic phase character¬ 
istic; 3) sec. 

is M = 1.2. The forbidden-zone construction is shown by the dashed 

line of Fig. 125. 

21?. Construct the logarithmic amplitude characteristic and logar¬ 

ithmic phase characteristic and determine the magnitude ratio if the 

open-loop transfer function of a system has the form: 

1000(1 OAV) 41 Vlm\— .1' ^ ' 
V fCl+O.VMU.W*»)* 

Answer: 1) M = 1.5; 2) M - 1.1; 3) M = 1.3; 4) M = l.?. 

218. The open-loop transfer function of a system has the form 

#110 +V) 

Determine the condition under which the magnitude ratio for the closed- 

loop system will not exceed unity provided the number of time constants 
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is arbitrary, i.e., n is an arbitrary integer. 

Answer 

I 
T* 

219. For the amplitude-frequency characteristic of a closed-loop 

system (Fig. 123), determíne the system passband. 

Answer 

•^■■10 l/cec cpc. 

220. For for .he logarithmic amplitude characteristic shown in 

Fig. 125, determine the rough size of the passband. 

Answer. 

In first approximation the passband of a closed-loop system may 

be taken to equal the cutoff frequency of the open-loop logarithmic am 

plitude characteristic. As a result, we have u> * œ *13 l/sec or 
p s r 

fp = 2.1 cps. 

Manu¬ 
script 
Page 
No. 

[Transliterated Symbols] 

156 n * p * perekhodnyy « transient 

158 c * s * sushchestvennyy * real, essential 

165 Ji.a.x. * 1.a.kh. » logarifmicheskaya amplitudnaya kharak- 
teristika ** logarithmic amplitude charac¬ 
teristic 

165 ji.$.x. « 1. f.kh. * logarifmicheskaya fazovaya kharakteris- 
tika « logarithmic phase characteristic 

187 n * p * propuskaniye « pass 

16? cp * "r - srez « cutoff 
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Chapter 7 

RANDOM PROCESSES IN AUTOMATIC SYSTEMS 

§20. CALCULATING CORRELATION FUNCTIONS AND SPECTRAL DENSITIES 

221. Determine the correlation function R(t) and spectral densi¬ 

ty S(o>) for a quantity varying in accordance with the harmonic law 

jre A 

Verify that integration of the spectral density over all frequencies, 

as well as the value R(0), yield the mean square (in this case it 

equals the variance) of the quantity considered. The amplitude A = 10 

and the angular frequency ß = 2 l/sec. 

Solution. The correlation function is 

ff ^ x(0jr(f-f = 

^ A1 *ta ¢/+W,,B (?*+?t + ¢) ^ Ç «os Jt, 

where Tq = 27r/f3. Substitution of the initial conditions yields R(t) = 

= 50 cos 2t, and R(0) = ‘30. 

The spectral density may be computed from the Fourier integral 

4 W - +J * « «'•' *=fl« (• - »+‘ («i ?)l 

where ¿(u>- ß) and ó(cu + ß) are unit impulse functions located at fre¬ 

quencies u) = ß and a) = - ß. 

Integration of the spectral density over all frequencies gives 

¿• J y +i l*(— 
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The integrals ôf the unit impulse functions are equal to unity! 

Vit-ft*- V »<•+»*—i. 

ãm 

i • f t \ \ 
1 : 

-«% 

Pig. 126. White spectrum 
in limited frequency 
band. 1) sec. 

Fig. 127. Correlation 
function for Problem 
222. 1) sec. 

Thus we obtain as a result 

222. For a stationary random process having a white spectrum in 
the band from -a>p to -KUp (Fig. 126), compute the moan value (mathemati¬ 

cal expectation), mean square (5600.^-order moment), and variance, and 
also find an analytic expression and plot a graph for the correlation 
function. _ 

Solution. The mean value of a random quantity equals zero, x = 0, 
since the spectral density contains no singularities of the impulse- 
function (delta-function) type fi = 0. As a result, the variance equals 
the mean square of the random quantity: 

where Ö is the mean-square deviation. We next find 

where = 2u)p is the band of angular frequencies in radians). This 

last formula may also be written in the following form: 

P-O-Nif. 

where if = itu/2tt is the frequency band (In cycles per aecond). 

The mean-square value of the random quantity is 

jr,.— 

The correlation function may be found from the transformed Four¬ 
ier integral 

*M—¿ J SMrW—iJsw COS wtrfw 

ÄW« 4 Ntù%mxd*i tin «at. 

or 



The graph of the correlation function is shown in Fis. 12?. The 

value of the correlation function at t = C is 

* (0)= llm# £ sin «V = = a 

223. For the preceding problem, determine the normalized spectral 

density and correlation function. 

Answer. The normalized spectral density for < u) < ojp is 

•(•>■= TT *=5.= ÿ. 

•Qfi-44-4/ 0 4# 4* Q6t,ee* j. 

Fig. 128. Correlation 
function of exponen¬ 
tial type. 1) sec. 

Fig. 130. Correlation func¬ 
tion and spectral density 
for Problem 225. 1) sec. 

ion for the correlation function 

Fig. 129. Spectral density 
corresponding to correlation 
function of exponential 
type. 1) sec. 

The normalized correlation function 

is 

The value of p(x) at t = 0 is 

22^. By processing an oscillo¬ 

gram for a stationary random process 

with mathematical expectation (mean 

value) of zero, we obtain an express. 
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*<«).. Or’”', 

where D * 100 Is the variance and u = 5 l/sec Is the damping factor. 

The correlation function Is plotted in Fig. 128. Find the spectral den- 

slty and plot it. 

Solution. The spectral density may be found from the Fourier in¬ 

tegral 

4» 4«» 

This last integral for the sake of convenience should be separated in¬ 

to two integrals: 

where 

sec. 

Substitution of the numerical values yields 

*W“r+wc»* 
The spectral density is plotted in Fig. 129. 

225. Solve the preceding problem if the stationary random process 

considered has a mean value (mathematical expectation) x * 5. Plot the 

correlation function and spectral density. 

Answer. The mean square of the random quantity is 

F—o+i*» 
..100+ft1 «133. 

The correlation function is 

R(t)m* Jf « 
mm 100#p,,,,+33. 

The spectral density is 

S(p)m*9*JPi(m) + I5TI(»)+ l+éyf&r* 

where ¿(œ) is the unit impulse function. The graphs are plotted in 
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Pig. 130. 

226. By procecsing of an oscillogram for a stationary random pro¬ 

cess of irregular swinging type with mathematical expectation of zero, 

an expression for the correlation function is obtained: 

*<»)«!*-*•«• «01?-.. 

where D = is the variance, ii = 0.5 l/sec is the damping factor, and 

ß = 2 l/sec is the resonant frequency. The correlation function is 

FiC« 131. Correlation func¬ 
tion for irregular swinging. 
1) sec. 

St* 

Fif* 172. Spectral dens ity 
for irregular swinging. 1) 
sec. 

frt) 

Fig. 133. Typical input 
signal for servosystem. 
1) sec. 

shown in Fig. I3I. Find an analytic 

expression for the spectral density, 

and plot it. 

Answer. The spectral density is 

+7+(1+.)1 
After substitution of numerical val¬ 

ues 

SM" 1#+”-..)» + + ■ 

The graph of the spectral density is 

shown in Fig. 132. 

22?. For approximation of the 

formula for a correlation function 

on the basis of the initial data of 

the preceding problem, the more ac¬ 

curate expression 

is used. Find the spectral density 

for this case. 
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Answer 

*W “ f D\pflf=^f+fr+lfc?] “ 

“ ,0[vri:tf* ijf+53i"+|l+'^ r 
*• 

22Ö. A» stationary random process has the form of a typical servo- 

system Input signal (Fig. 133)* The mean-square value of the consider¬ 

ed variable xsk = 2. The mean length of the segment x = const le T = 

10 sec. Find the correlation function and spectral density. 

Solution. The correlation function may be found from the express¬ 

ion 

(1) 

where is the probability for finding the multiplied y-axis values 

of the random process in one interval, where x * const, i.e., the prob¬ 

ability that there will be no change of rate on the time segment t> 

P2 = 1 — is the probability for the presence of a change of rate 

on the time segment t. 

Since for the process under consideration x * 0, then x * D' and 

Formula (1) takes the form 

«M-D/V (2) 

The probability for a change in the considered random quantity 

over the small time interval Lj may be assumed to be proportional to 

the value of and equal to At/T. The probability that there will be 

no change in the random quantity will be 1 - (At/T). The probability 

that there will be no change on the time segment t e^usls the product 

of the probabilities 

'-O-yf- (3) 
The unknown probability P^ may be found as the limit of Express¬ 

ion (3) when At ^ C; 
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Since Pjtt) = PjÍ-t), an a result we obtain the correlation function 

In the form 

*w— 

The spectral density is 

*«*= J #««■*"*>= 

Pig. 13^. Graph of 
process for Problem 
229. 1) sec. 

Piß« 135» Pulse train. 
1) sec. 

fl 0 0 fl 

Pic- 13^» Components 
of pulse train. 1) 
sec. 

« ¿j 
1 

SU 

Fig. IB?. Spectral-density 
components for Problem 230. 
1) sec. 

229. Solve the preceding problem on the assumption that we know 

that the segments x > 0 and x < 0 alternate and a change in value will 

always be accompanied by a change in sign. The graph of such a process 
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is shown In Fig. 13^. 

Answer 

23O. Determine the spectral density of a train of equidistant pos- 

Itive pulses having the same width and random amplitudes (Fig. 133) un¬ 

der the following Initial condition: the pulse spacing is T = 0.1 sec, 

the pulse width is yT = 0.01 sec, corresponding to a pulse duty cycle 

y - 0.1; the mean pulse amplitude x * 20; the mean-square value of the 

pulse amplitude ra. 

Solution. We represent the function x(t) as the sum of a periodic 

component x^(t) consisting of a sequence of pulses with constant ampli¬ 

tude of x (Fig. 136a) and a fluctuating component Xgft) consisting of 

a sequence of pulses with random amplitude and mean value of zero (Fig. 

136b). 

We expand the periodic component into a Fourier exponential series: 

*»-J£c/r. (i) 

where Is a complex number. 

The amplitudes of the harmonics 

A»*« 

so that when the Initial conditions are substituted, 

equation 

(2) 

we arrive at the 

AA»A^-«|^tlnOL3Mâ|. 

This gives the following values for the amplitudes of the harmonics: 

- 175 - 



A% *= I, 
— 1A ^ «0.73. Mm = 0.39. 

At wrn 1^6. At «0.46. /1,, = 0,43. 
At «1.7, A% «0,21, ^,, = 0.42. 
A*«1A1. A|»«0, Aus= 37 
A|«IA7, Au«0,17, and etc. 

The spectral density for the periodic component (1) may be written 

In the form (see Problem 221) 

*«=*•2 2 *(—t) (3) 
Ä 

and Is a line spectrum. It Is shown In Fie. 137a; the area of the Im¬ 

pulse function, equal to 2n Is arbitrarily shown as the amplitude 

of a pulse of finite height. 

The value of the amplitudes of the harmonics (2) may also be found 

from the expression for the envelope of the amplitudes plotted as a 

function of frequency; this can be obtained from the Fourier transform 

of a single pulse of height h and length yT. The Fourier transform for 

such a pulse is 

AW-f . 
The modulus of this expression is 

The amplitude of the kth harmonic may be obtained from (b) for a 

frequency o)^ by the substitution cû = 2ïïk/T and division of the result¬ 

ing value by the pulse spacing T: 

This expression agrees with (2). 

The spectral density of a fluctuating component may be found from 

the general expression for the spectral density of a random quantity 
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which in the case considered becomes the expression 

«(-)-{ ncA'X1. 

where F2(Jü)) is the Fourier transform of a single pulse whose root- 

mean-square value is 

.-KÏCF. 

In like manner. Formula (4) may be written 

l*(M 
id *9/ 

(5) 

From this we find the spectral density of the fluctuating compon¬ 

ent 

—I5i-• (6) 

Substitution of the numerical values yields 

•OOOtfn'O/W» 
*iW**—?—• 

The spectrum is continuous. It is shown in Fig. 137b. In shape, it 

resembles tie envelope of a line spectrum, since the spectral-density 

values are also proportional to the square of the modulus of the trans¬ 

form for the single pulse (4). 

231. The input signal of a servosystem takes the form of the typi¬ 

cal signal for a servosystem (Fig. 133), whose spectral density, writ¬ 

ten for the Input velocity, may be represented in the form 

(1) 

2 
where is the mean-square velocity. The load torque on the ac¬ 

tuating shaft is constant in magnitude (M = Mn = const), while its 

sign changes together w'th the change in sign of the actuatIng-shaft 
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velocity. We ascuae an approximation that the sien of the torque 

changes together with the sign of the input velocity; determine the 

correlation function for the low torque 82(0))> as well as the cross¬ 

correlation functions for the input velocity and load torque 

and Sgifo)). The input-velocity distributitn may be assumed to be nor¬ 

mal. 

Solution. The spectral density of the load torque may be obtained 

from the velocity spectral density of the input signal (1), if in it 

o 
we replace the mean-square velocity by the mean-square torque, M = 

5,(-) 
IfM* 

TT-'/í'* 

The cross-spectral density may be computed from the cross-correl¬ 

ation function, determined as the time average for ensemble average: 

%,(').= lim ¿I 8(1+,).M(/)««=2(/-r,),«(/), 
!■•••• ¿y 

The prebability for finding fl(t + x) and M(t) in the same interval 

(sec Problem 22$) is 

or the probability for finding them in different intervals is 

When the velocity and torque are found in different intervals, the 

average of their product equals zero. 

Where fl and M are found in the same interval, the sign of the 

torque equals the sign of the velocity. The product of the velocity 

by the torgue will then always be positive. Here, since the magnitude 

of the torque is constant, the torque need not remain under the aver¬ 

aging bar: 

- 178 - 



ffjFFPww - ai. WTï> *= 
where fls Is the average absolute value of the velocity. For a noraial 

distribution 

*•"*«« 

Thus, we have the cross-correlation function 

Hi r. (2) 
% 

The spectral density is found as the Fourier transform of (2): 

M.,=TT&=^. (3) 

In like manner, we can find that R21(t) = R12(T) and S21^a>^ = 

* S12(a>). 

§21. TRANSMISSION OF A STATIONARY RANDOM SIGNAL THROUGH A LINEAR SYS¬ 
TEM 

232. A star-tracking system consists of a phototube, instant-re¬ 

sponse amplifier, filter (a first-order aperiodic element), and an ac¬ 

tuating device in the form of a gyroscope for a tachometer drive (ideal 

integrating element). We assume that the noise at the phototube output 

is white noise with spectral density S(ü)) * N. Show that the mean- 

square fluctuation error for the system is independent of the filter 

time constant. 

Solution. The system open-loop transfer function has the form 

vw=f*Tr»' 

where K [l/sec] is the velocity figure of merit and T is the filter 

time constant. 

The closed-loop transfer function is 

The error spectral density is 



*H-, ♦<«?*<.) 

Integration of the error spectral density over all frequencle: 

(see Appendix 15) yields the mean-square error 

V 11 u-r-tx / f 

“here the equivalent white-noise passband Is • 

V—-ftcps]. 

As we can see from the resulting expressions, the mean-square er¬ 

ror does not depend on the filter time constant. 

233. For a star-tracking system (see the preceding problem), the 

mean-square noise voltage of the phototube Is UsR = 6 v In the frequen¬ 

cy band if = 10,000 ops (+30C0 cps). The slope of the phototube charac¬ 

teristic curve Is kfe = ic mv/ang.mln. Determine the permissible over¬ 

all gain (velocity figure of merit K) for which the mean-square fluc¬ 

tuation error will not exceed one minute of arc. 

solution. Me calculate the phototube noise voltage In terms of the 

equivalent mean-square angle signal at the Input: 

e„-.j&>«.|r^riecoor. 

The white-noise level at the input is 

. = (ar.j.min)2/cps. 

In Problem 2j2 it was iound that the root-mean-square eri-or is 

From this we find the value of the over-all rain: 

y ** is/ ** 0.055 l/ses. 

23^- We are given the open-loop transfer functions of a control 

system with first-order astatism: 
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P 

4 

O *«-*8 

** r(î,“iHTTOî 

** rw“7«r+7¡wim5r- 

Calculate the equivalent white-noise passband of the closed-loop 

system If the velocity figure of merit is K = 10 l/sec and the time 

constants are Tj = 0.1 sec and Tg = 0.05 sec. 

Answer 

l)V-4-;-3 cF-'! 

«V-l-J-í cpj, 
1* sps. 

235« We are given the open-locp transfer function of a control 

system with second-order astatism: 

D rw-SÜ+Jf!; 

3) 

Calculate the equivalent closed-loop white-noice paccband of the 

system if the acceleration figure of merit K = 10 l/cec2, and the time 

constants are t = 1 sec and T = 0.5 sec. 

Answer 

l) V 

*> V 

236. 

i+irt* i+ 10. i* 5.5 
I -f #h* 1 + 10.1' 
2(^=-20=0,5)-1 

-P3» 

II ops. 

Noise with spectral density 

*r.< 
T+i'i;* 

appears at the control-cystem input. Determine the system smoothing co¬ 

efficient, which equals the ratio of the mean-square r.oisc at the In¬ 

put to the mean-square error: 
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and the mean-square error e. The system cpcn-loop transfer function is 

The numerical values of the coefficients are: 

*«0,5 1/sec, *«101 7.-=0.1 sec. 

Answer 

K1+s 1^1 +6^<íj =V*i= <a 

237. Solve the preceding problem; here we assume that the open- 

loop transfer faction of the system Is 

*<P)= 

where Tj = 1 sec. 

Arcv/er 

V 7^+77+ I^FTÖJ 
4 

238. A useful signal whose velocity varies 

13s appears at the input of a servosystea. The 

terms of velocity, has the form 

in accordance w 

spectral density 

ith Fig 

, in 

*W“TT=»W' 

where - Cl^ iw the velocity variance. The mean-square velocity il ^ = 

2 degrees/sec. The mean length of cne time interval T = 1 sec. Find 

the mean-square error if the system open-lccp transfer function has the 

form 

r«-7iïSl5T- 
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The velocity figure of merit is K * 25 l/sec, and the time constant is 

T = O.05 sec. 

Solution. The error transfer function is 

_ i _ #ci + r^> 
TFTF+iT- 

The error spectral density is 

.. tri)f(!+-«rn 
AW-l^ü-ír-jr = Jl*,! r.0-j- +/.+<,' • 

We reduce it to a form convenient for integration (see Appendix 15): 

^(•) *= iTT^Ã^TíT+TjÜ-)' + ÏÏ 4* + 

Integration over all frequencies gives the mean-square error 

¥-%td& 

where the integral 
« 

• _1 Î" 
HHfl + KT)T + K} 

equals, in accordance with Appendix 15, 

The values of the coefficients are: 

«,-17* >.-0. 

•.«r+r* r; 
«,-i+icr, *,-i. 

•*-k 

As a result, we have 

. f*- «T _ r+r.+^rr? . 
“ mvrtVKí1!- 

Finally, 

i/wrF7rn?nr_ 
'“r Tfr^+TTnerr" 

"K "¿qr+oíir+Ti^nr Vu.oo(i8=o.o8j'<. y. 
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The approximate expression for the mean-square error Is: 

239* Noise of the Irregular swinging type appears with a correla¬ 

tion function 

4(0—| *to?l«|) 

and a spectral density 

The numerical values of the coefficients are: 

^*■4«I00t p«0,4 1/sec and f»3 l/sec. 

Determine- the smoothing coefficient, which equals the ratio of the 

mean-square input noise to the mean-square error at the system output: 

and the mean-square error ¢. The system open-loop transfer function is 

*«-f. 
where the system velocity figure of merit is K = C.l l/sec. 

Answer. The smoothing coefficient is 

The mean-square error is 

f BB «E -||ry-a OyS. 

240. To approximate irregular swinging, two formulas for the cor¬ 

relation function are used: 

*(t)— 

(1) 

(2) 



These correlation functions correspond to the following spectral den* 

sities: 

for Formula (1) 

*w“r<>krTF=*+FT¿7»]> (3) 
for Formula (2) 

+,'+k+w1- (4) 

Determine the variance for the rate of irregular swinging for Formulas 

(1) and (2). 

Answer: f) ft-*«* 3) A—fr'+ftA 

$22. CALCULATIONS FOB MINIMUM MEAN-SQUARE ERROR 

241. The open-loop transfer function of a control system has the 

form 

rw_£C+JÖ, 

where K * 100 l/sec is the over-all open-loop gain, and t is the time 

constant of the compensating device. A useful control signal of the 

form Y * at ♦ bt^/2 acts at the system input; where a « 10C degree/sec 

and b * 10 degree/sec , and the noise is white noise with a spectral 

density S (o>) « N * 0.2 degree /cps. Determine the compensâting-dcvice 

constant corresponding to minimum steady-state mean-square error, as 

well as the mean-square error. 

Solution. The steady-state error for the useful signal is 

f—£(«+#>+Ç*. 

where C1 and C2 are error coefficients. On the basis of the expansion 

of the error transfer function 

•'W-irW»— 
into a power series, we have D1 = 0 and Cg/2 * l/K. As a result, the 



regular error component Is 

or 

- r 
(D 

The mean-square fluctuation error (see Appendix 15) Is 

a-i ^ 

5 

(2) 
-TT ¿ IÍ-/+AÜ+A,* 

Mean-square resultant error Is 

(3) 

In order to find the minimum of the last, expression, we set the 

first derivative with respect to the time constant of the compensating 

device equal to zero: 

W-O+ltO«* 

from which we obtain 

’“rTT-pW“*1 cc- 
The mean-square error is found from (3): 

2U2. Solve the preceding problem if the system open-loop transfer 

function has the form 

where K * 100 l/sec2 and T 

Annwer 

itil + v) 

0.05 sec. 

«-r+/r+J «*0.05-f-jj0.nû'-i-u.0l =0.1« .-eo. 
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The mean-square error 1j 

_ «/ ir . h + uw.t.i^'iT . 
-r “w* 

2^3. Solve Problem 2^1 on the assumption that It Is possible to 

vary both the time constant of the compensâtinc device t and the over¬ 

all gain K. 

Solution. Differentiating Expression (3) in Problem 2*U with re¬ 

spect to t and with respect to K and setting the partial derivatives 

equal to zero, we obtain two minimum conditions: 

nmm 
7t (i) 

—JT+y (2) 

Substituting (1) Into (2) and solving the latter equation, we have 

1/sec« 

The time constant of the compensating network 1: 

iQJIS ' - I _ 1 
;-?í-7íí- 

The mean-square error Is found from (3) of Problem 2^1: 

2^4. The open-loop transfer function of a control system has the 

form 

7ÏÏTW 

where.K Is the over-all gain and is the time constant. The system 

closed-loop transfer function is 

rin _ a 
•w“TT«V7 ry+Titr- 

White noise with a spectral density Sp(w) = ll appears at the system in« 

put together with a useful signal having a spectral density 
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- 1 ■ ■ 1 ; 1 

ft r 

»üpw : fit"™ i iKvmwapmi < 

• _ tr«D 
^w*Tt5ïî‘ 

There Is no correlation between the noise and signal* The Initial con¬ 

ditions are Tx * 0.1 sec, Ts * 20 sec, D » 100 degree2, and N = 0.01 

degree /cps* Find the optimum value of over-all gain K0pt corresponding 

to minimum mean-square error, and the mean-square error for K * K0pt# 

Solution* The mean-square-error component due to the noise (see 

Appendix 1¾ is 

m_ I Î" Mim KM ^^\ 

The mean-square-error component due to the useful signal at the 

input (see Appendix 15) is 

The rr.ultant mean-square error i> 

mß Tl+Tl+*I‘T‘ 
T.+h+*';- 

i + r. + AT.f. 

(2) 

(3) 

In irdcr to ctudy the ¡nlnlaus for the nean-equare error it is nec¬ 

essary to set the derivative of the last expression with respect to 

the gain equal to zero. As a result fain 

IT pr.aj-Tfl 

The solution of the last equation yields the optimum gain: 

(») 

We find the numerical value of the optimum gain: 

l/sec. 
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Proa (3)» the sean-square error ln 

2*5. For the last problem, determine the control*systen tranfer 

function corresponding to the theoretical minimum mean-square error, 

and determine the value of the latter. 

Solution. Provided the control system is physically feasible, the 

unknown frequency transfer function for the closed-loop system may be 

represented In the form [25] 

(i) 

The denominator of (1) is found from the equation 

*•</•>-*<•>+*. Mi (2) 

where f*(Ja>) is the complex conjugate of T(Ju)). For our case. 

We expand the last expression in complex conjugate factors:* 

From this we obtain 

(3) 

(M 

where 

We next obtain the expression 

We expand the last expression into simple fractions: 
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The function B(ju>) Is determined by the terms of the expansion In sim¬ 

ple fractions corresponding to the poles Ss(a>) lying In the upper half 

plane* As a result we have 

• (5) 

The desired closed-loop frequency transfer function for the sys¬ 
tem (1) Is 

r.+iiTjc- (6) 

We find the numerical values of trc coefficients: 

r*VW&T*“20^0,032 sec» 
_ *ijo trio 

TOTTS) “ !fttb+NnTf\ •> ^ lijo “ ^ 

The 1 Inal expression for the system closed-loop transfer function will 
be 

(7) 

where T - C.C32 sec. This transfer function corresponds to the open- 

loop transfer function 

where K - 1/T = 31 l/sec Is the over-all open-loop gain (velocity fig- 
ure cf merit). 

The error transfer function is 

The error spectral density is 

_IV» tr,o , i .. 
* TV'Jr* ^ 

(9) 

(10) 
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Integrating (10) over all frequencies, we obtain the mean-square error 

^ 1 iffiy 

The mean-cquare error is 

V“ Y T^t+iír- Y yr¡-ifjr 
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Chapter 8 

SPECIAL LINEAR SYSTE3-IS 

Ç23. CONSTANT-LAC SYSTE4S 

246. The open-loop transfer function of a control system is 

r 

where K * 10 l/cec is the over-all open-loop gain. A dead-time element 

is connected in series into the control channel; it has a transfer 

function of the form e~Tp, where t is the lag. Determine the critical 

lag xk corresponding to the system closed-loop stability limit. 

^ r p*—«I Solution. We find the system open- 

T*" loop frequency transfer function: 

I-» *■•<«-£• (i) 
The cutoff frequency for which (1) will Pig. 1 8. Block diagram 

for Problem 247. 

have a modulus of unity will be o> * K. 
sr 

The phase shift at this frequency is ÿ * - 71/2. The phase stability 

margin is q x * ♦ = + tt/2. From this we find the critical lag 

-L 
T •m * «L. '^«*0.157 'ce. 

24?. Solve the preceding problem for the control system whose 

block diagram is shown in Fig. 138. 

The values of the coefficients are 

10 l/sec and rftn<V2 sec. 
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Answer 

T—Vrhryi+wn-» —r- r -  -r.-iLior sec. 

Fig. 139* Gain-phase 
characteristic for 
open-loop system. 
1) sec. 

Fig. 140. Logarithmic am¬ 
plitude characteristic and 
logarithmic phase charac¬ 
teristic for Problem 2^9. 
1) sec. 

Fig. lUl. Gain- 
phase character¬ 
istic for Problem 
250. 

248. Figure 139 shows the gain-phase char¬ 

acteristic of an open-loop system. Determine the 

critical time lag corresponding to the limit of 

stability if the dead-time element is connected 

in series into the control channel and has a 

transfer function e“Tp. 

Solution. On the complex plane, from the 

origin we draw a circle with radius unity. The 

circle is shown in Fig. 139 by the dashed line. 

At the point at which the circle intersects the gain-phase charac¬ 

teristic, we determine the cutoff frequency: o>„,. = 12 l/sec and the 

phase stability margin: q = 35° = 0.6l rad. From this we find the crit¬ 

ical time: 



mm 

.'OC. 

249. Solve the preceding problem for the logarithmic amplitude 

characteristic and logarithmic phase characteristic shown ia Fig. l4o. 

Answer 

"ec. 

250. The open-loop transfer function of a control system has the 

fora 

where K * 20 l/sec is the over-all gain. A dead-time element with 

transfer function e~TP is connected in series into the control channel. 

Find the maximum permissible lag t for which the closed-loop magnitude 

ratio will not exceed M * 1, as well as the critical value corres- 

ponding to the stability limit. 

Solution. The resultant open-loop transfer function is 

*W-(1) 

The frequency transfer function is 

_SCjmm—/** »a 
(2) 

In order to have M = 1 it is necessary for the open-loop gain-phase 

characteristic constructed from Expression (2) not go outside the line 

x * 1/2 corresponding to the forbidden zone for M = 1 (Fig. l4l). 

The transfer function (2) is represented as the sum of the real 

and imaginary parts: 

The maximum value of the real part in (3) will occur when to 0: 
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Pig. 1^2. Block diagraa for Problem 
251. 

Pig. 143. Logarithmic amplitude char¬ 
acteristic for Problem 251. 1) sec. 

The condition that must be satisfied if the forbidden zone is de¬ 

termined by the line x « — 1/2 is to remain inviolate is 

From this we obtain permissible time lag: 

irò”"0’02* sec# 

The critical lag, in accordance with the solution to Problem 246, will 

be 

^•■•0,078 -ec. 



251» Por the control system whose block diagram is shown in Fig. 

1^2, determine the parameters of the passive differentiating network 

Tg and that correspond to a system closed-loop magnitude ratio M * 

■ 1.3« The Initial conditions are as follows: over-all gain K * 200 

1/sec, Tx * 0.3 sec, 0.001 sec, * 0.002 sec and the dead time 

is t * 0.003 sec. 

Solution. The open-loop transfer function is 

+ J»(» + v + r^i • 

The asymptotic logarithmic amplitude characteristic is shown in Fig. 

143. 

The value of the logarithmic amplitude characteristic base fre¬ 

quency [3] is 

1/ sec. 

If a given magnitude ratio is to be obtained, the algebraic sum 

of the conjugating frequencies to the left of the cutoff frequency 

must satisfy a particular condition, which in the given case reduces 

to the inequality 

•1/Gee. 

From this we find the constant Tg of the differentiating network: 

W+t; IV + 
T«=0,064 sec. 

In addition, in the high-frequency region (to the right of the cutoff 

frequency), the condition 

r.+r,+r.+,<i^, 
_ « iHTiri-h 
“fl IAÏI— 0,0092 sec. 

should be satisfied. 



Proa this ve obtain the required time constant of the passive dif¬ 

ferentiating network: 

rt-Mow-(r.+ r4-ft)«otoo92- 
»fljOOl -f*0j003•{*0,003)as0,0032 sec. 

• • 

Thus, the transfer function of the differentiating network should have 

the form 

252. Construct the transient response of the control system con¬ 

sidered in Problem 250 when a unit step function Y (t) * l(t) is ap¬ 

plied to the system as a control input. The values of the coefficients 

are: over-all gain K = 20 l/sec and lag t * 0.025 sec. 

Fig. IM. Heal characteris¬ 
tic for Problem 252. 1) sec. 

M 

Fig. 1^5. Transient for 
Problem 252. 1) sec. 

Solution. The closed-loop 

Fig. 1^6. Block diagram of 
sampled data system. 

function is 

•w-rnfo1 
Hr* 
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The frequency transfer function Is 

^ ^»+#f(cw-î—yun-t) • 

The real characteristic Is 

Substitution of the nusw?rlcal values yield.; 

«-»•eBO.Ks.* 
^ W “ WT^ - «£ '« • 

The real characteristic Is plotted In P1G. 144. From the real frequen¬ 

cy characteristic, we plot the transient response (Fig. 145) by the 

trapezoid (h-function) method. 

§24. DISCRETE SYSTEMS 

253* Determine the open-loop and closed-loop z-transfer function 

for the sampled-data control system whose block diagram is shown in 

Pig. 146. We assume that the sampler generates square pulses with duty 

cycle y * 0.01. The numerical values of the coefficients are: over-all 

gain of continuous part K « 100 l/sec, time constant T^ « 0.25 sec, 

and pulse spacing of sampler T0 = 1 sec. 

Solution. The system open—loop trans¬ 

fer function equals the product of the 

sampler transfer function and the pulse- 

of^control^ystem'uflng tranSfer fUnCtlon <the contl“ 
digital computer. section at whose input the discrete func¬ 

tion generated by the sampler appears). 

The sampler transfer function may be taken to equal its duty cycle 

•*(*)—T«0,01. (1) 

The pulse-filter transfer function is found from the following general 

rule: 

r im H 

l£_ _ 
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VW (1) 

where w(kTQ) Is the weighting function of the continuous part at the 

discrete times (k * 0, 1, 2, •••) while F(z) is the z-transform of the 

waiting function. 

The transfer function of the continuous part la 

(3) 

It corresponds to the waiting function 

(4) 

This time function corresponds to the z-transform (See Appendix 13) 

w-*fc=i-7=y)~ (5) 
where 

0.01(. 

In accordance with (2) the t ansfef function of the pulse filter 

la 

(6) 

The open-loop transfer function is 

r»l—• (7) 

Substitution of the numerical values yields 

The closed-loop transfer function is 

♦<*> 
r« _ • firr.h-/)* 

rjVw +Ï-W-0-ÜÎ77T • 

Substitution of the numerical values yields 

«Mi 
?=DBsrn(jni • 



Investigate the stability of the control system considered 

In the previous example. 

Solution. The system characteristic equation is 

¿-«ynfe+flpii-a 
The stability condition Is 

M<*. 
l.e., the roots of the characteristic equation should be less than 

unity in absolute value. In a second-order characteristic equation 

this will occur under three conditions: 

i+4+*>oi !-¿+a>o. a<i. 
For the equation under investigation, we obtain three conditions: 

1—tyD3t-f<M>1«>0, l+0.0364-0.0l8>0. . 

All three conditions are satisfied; as a consequence, the system is 

stable. 

255* A control system has a digital computer (TsVM) in its cir¬ 

cuit. The system block diagram is shown in Fig. IU7. Find the system 

open-loop and closed-loop z-transfer function on the assumption that 

there is no delay in the digital computer and that we may neglect the 

effect of level quantization, i.e., we can consider the linear problem. 

The numerical values of the coefficients are as follows: over-all gain 

K * 10 l/sec, time constant * 0.05 sec, and computer sampling period 

Tq * 0.1 sec. 

Solution. The transfer function of the continuous element is 

(1) 
The system open-loop transfer function W(z) may be found from the gen¬ 

eral rule [25]: 



If , . 

(2) 

where A(kT0) is the step response of the continuous element at the dis¬ 

crete times (k * 0, 1, 2, •••), while F(z) is the z-transform of this 

function. 

The step response for (1) takes the form 

A«-*!*-* 

From a table of z-transformations we find 

(3) 

where 

'«-«[¿Ä? - T> w 

. 

Next we use (2) to find the system open-»loop transfer function 

*■ .-iíV-o l' 
Substitution of the numerical values yields 

The system closed-loop transfer function is 

IFlrt _ +0,297 •w rnr« ? • 
256. Solve the preceding problem where the continuou 

transfer function is 

(5) 

s-element 

Answer 

rw“«r+iw>*i+f?r 

í=í+7¡5r. 1=5] 
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where 

4—«"ff ani1 

257. The open-loop transfer function of a control system with a 
computer has the fora 

*«-/=! (i) 

Construct the system closed-loop transient response when a unit step 

function Y(t) . l(t) as applied to the input for KT = 1, KT = 0.5 

and KT0 « 1.5. 00’» 

Solution. Consider the case KT0 = 1. The system closed-loop trans- 

fer function is 

— ***> _■ IT. I 
(2) 

The transform of the input variable (see Appendix 13) is 

««»l-ftW-iél- (3) 

The transform of the output variable is 

f««-*WFrW»¿ lu) 

We expand the last expression into a Series by dividinG the numerator 

by the denominator: 

f—1**7-f't*■f |! "ff» “f (5) 

This Gives the followinG values of X at the output at the discrete 

times! when t = C, X = C; when t = T0, X » 1; when t = STC. X = I; when 

t = 3T0, X = 1, . and moreover X = 1 for all values t = kT0. A Sraph of 

this function is shown in Fig. 1^8 (curve 1). 

Between the discrete values of the time function at the output, 

we draw straicht lines, since the transfer function (1) corresponds to 

an ideal Intecratinc element whose step response will be a linear rela- 

tionship. 
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Fig* 148. Transient responses 
for Problem 257. 1) sec. 

A i 

o U 

•9 

Fig. 1^9» Gain-phase 
characteristic for 
Problem 258. 

In like manner, we obtain the Laurent expansion for KTq * 0.5: 

fl'ci)—J-K7äJ1 + 0,m¿ -f*W375 y + ... 

The transient curve is shown in Fig. 148 (curve 2). 

For the case in which KT0 * 1.5, we obtain 

J + + MWji -f 0^373¿ + ... 

The transient curve for this case is shown in Fig. 1¿*8 (curve 3). 

258. The transfer function of the continuous portion of a system 

with a computer has the form 

I *«-*• (i) 

where K » 50 l/sec is the over-all gain. Determine the permissible sam¬ 

pling cycle Tq for the computer for which the system closed-loop magni¬ 

tude ratio will not exceed M = 1.5* The computer has zero delay, and 

the effect of level quantization may be neglected. 

Solution. The open-loop transfer function of the system with the 

computer may be found from the general rule 

where A(KTq) is the step response of the continuous portion of (1) 
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while F(z) is the z-transform of this function. As in Problem 255, we 

obtain the system open-loop transfer function 

■'W-nn- (3) 

We construct the gain-phase characteristic of the open-loop sys¬ 

tem from Expression (3). ve make the substitution 

• » 

+7*i.rr 
As a result, we obtain the frequency transfer function 

r<*-üSE-T+t-j;“ - *1*. 
It is not difficult to see that the gain-phase characteristic is a 

straight line parallel to the imaginary axis and a distance KT-/2 away 
from it (Pig. 11*9). 

If the magnitude ratio is not to exceed a given value, the gain- 

phase characteristic must not enter the circle forming the forbidden 

zone. It is indicated on Pig. 149 by the dashed line. Prom this we ob- 

tain the condition 

icr.^ M 
T<5+1' W 

The permissible sampling cycle length is 

7 ^ II 

For the given numerical values 

mm > • o c • 

259.» The transfer function of the continuous element of a control 

system with a computer has the form 

rW-«lL+tf. (i) 

where K = IOC l/sec2 is the over-all gain of the open-loop control sys¬ 

tem while T is the time constant of the compensating device. Determine 
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Pig. 150. Logarithmic amplitude 
characteristic and gain-phase char¬ 
acteristic for Problem 259. 1) sec. 

the permissible sampling cycle T0 for the computer and the required 

compensa ting-device time constant such that the magnitude ratio will 

not exceed M * I.3 if the computer has zero delay and the effect of 

level quantization may be neglected. 

Solution. We determine the open-loop transfer function of the sys¬ 

tem together with the computer: 

(2) 

where A(KTq) is the step response of the continuous part of (1), while 

F(i) is the z-transfonn of this function. For (1) we have 

(3) 

In accordance with Appendix I3 

Next we obtain from (2) 

. *r.t 
(5) 

Turning to the w-transformation, we make the substitution 

t (6) 

As a result we obtain 



(7) 

[6] 
We now obtain the frequency transfer function by the substitution 

'/**• (8) 

where ft Is the absolute pseudofrequency. Using the substitution (8), 

we have froa (7) 

Wifi), ißtf (9) 

Th« aodulu3 of the system open-loop frequency transfer function 

is 

(10) 

and the phase is 

♦—,MP+ *rtfx2—wdf {11j 

From Expression (10), we have plotted the Icgarithnlc amplitude charac¬ 

teristic of Fig. 150. On the basis of the phase characteristic (11), 

this case reduces to a logarithmic amplitude characteristic of type C 

I3J*. As a result, we obtain the following formulas for the calcula- 

ti003: the base pseudofrequency of the logarithmic amplitude character- 

istic is 

fl**=ÿit*= to l/sec; 

the required compensât in -element time constant is 

“ii'K-ii'SS-«» »... 
the required length of the section of logarithmic amplitude character, 

istic with slope of 2C db/decade ij 



»» d—r 
,M4 1 . I^rr 7.7; 

the permissible sampling cycle length Is 

^--*0j027 sec, 

where T0 ^ 0.05^ sec. 

260. For the sampled-data control system whose block diagram Is 

shown In Fig. IkS (see Problem 253), determine the first two error co¬ 

efficients. 

Solution. The system open-loop transfer function has been obtain¬ 

ed In Problem 253s 

The error transfer function is 

* fjL. * X- fr-Dfr-rf)_ 

Substituting z * 1 into this expression (or p « 0 into the expression 

z « epT°), we obtain the coefficient CQ * 0. 

In order to obtain the coefficient Cp we find the first deriva¬ 

tive: 

k»-in» -V) > - ¿Mr * 

The substitutions z * 1 (p = C) yields the error coefficients 

',ec» 

as well as the velocity figure of merit 

I l/sec. 

261.. Design a servosystea with first-order astatlsn containing 

a computer In the circuit. The Initial conditions are: 1) maximum In¬ 

put velocity * 10 degree/sec; 2) maximum Input acceleration 

Emax “ ^ degree/sec ; 3) maximum permissible error 8 « 2'; 4) contln 
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uous eleaent contains the time constants Tj * 0.01 sec, Tg * 0.0C2 sec, 

and » 0.001 sec; 5) thé permissible magnitude ratio Is M = 1.5; 6) 

the load torque equals zero; 7) there Is no delay in the computer. It 

Is necessary to determine the parameters of the series compensating 

element connected into the continuous portion, the permissible compu¬ 

ter repetition cycle, and to plot the transient resulting from a unit 

step Input. The effect of level quantization may be neglected. 

Solution. To the left of Ll'.j cutoff frequency, the logarithmic 

amplitude characteristic of the system and computer coincides with the 

logarithmic amplitude characteristic of the continuous portion, while 

the absolute pseudofrequency = 2w/jT0 (see Problem 259) coincides 

with the real frequency cd. Thus the normal methods may be used to ob¬ 

tain the logarithmic amplitude characteristic to the left of the cutoff 

frequency (3). 

We construct the forbidden zone for the logarithmic amplitude 

characteristic from the accuracy conditions (Fig. 151). The control 

frequency is 

1/cec- 

The modulus of the system open-loop transfer function with fi = f! 

is 

1 ^iß)I*= ¡~“~VTV' ^®00 = 5Û.G db. 

Using this data, we plot the control point and the forbidden zone 

formed from lines with slopes 20 db/decade and db/decade on Fig. 

151 (sloping sections 1 and 2). 

The desired logarithmic amplitude characteristic in the low-fre¬ 

quency region is formed so that it passes above point A. by 3 db, cor- 

responding to an increase in gain by a factor of >T¿. It consists of 
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Fig. 151. Low-frequency portion of 
logarithmic amplitude characteris¬ 
tic for Problem 261. 1) sec. 

line segments with slopes 1-2-1. In the low- 

frequency region, the system open-loop fre¬ 

quency transfer function will have the form 

»«-pi»- 
We determine the parameters of the desir¬ 

ed logarithmic amplitude characteristic for 

the system open-loop transfer function in the low-frequency section. 

The base frequency of the logarithmic characteristic is 

= 1/ °c. 

The time constant of the compensating element forming the first bend in 

the logarithmic characteristic is 

Fig. 152. Transient 
for Problem 261. 1) 
sec. 

sec- 

In order to obtain the given magnitude ratio, it is necessary to 

satisfy the Inequality [3, 6] 

I- 
From this we obtain the minimum value of the second compensatlng-ele- 

1 111 M ill i il* ij¡' <111 ,in i m 
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ment time constent: 

HA 
The transfer function of the serie 

7^" 

compensating 

0,112 see. 

element is 

•mCp)**{^U ('»>'*) 

which corresponds to a passive integrating-type element. 

« 

We next determine the required over-all galni 

■a 1,41^- = 120 l/sec 

and the cutoff frequency for the logarithmic amplitude characteristic: 

mOO.0.1 i/sec# 

In accordance with the requirements imposed on the logarithmic am 

plitude characteristic in the high-frequency region [6] we have 

from which we obtain the permissible computer sampling cycle length: 

y#<,[o!;*nR - *• - - r»]=* 
“*[¿1?^""®*°*-0.002 — 0.001 |s= 0.01? sec. 

The transient curve constructed by expanding the output variable 

into a Laurent series is shown in Fig. 152. 

Manu¬ 
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K ■ k • krltlcheskly » critical 

cp ■ sr ■ srez ■ cutoff 

UBM - TsVM « tslvrovaya vychis11tel»naya mashlna ■ digital 
computer 

:î * k ■ kontrol'nyy ■ control 

K.3 ■ k.z ■> korrektiruyushcheye zveno * compensating element 
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Chapter 9 

NONLINEAR SYSTEMS 

525. GRAPHICAL CONSTRUCTION OF PROCESSES IN NONLINEAR AUTOMATIC SYS¬ 
TEMS 

262« Make a graphical plot of the transient process for free no¬ 

tion of a nonlinear automatic system with the block diagram of Fig, 

Fig* 153« Block diagram 
of nonlinear automatic 
system for Problem 262. 
1) Element. 

Fig. 15^* Static 
characteristic of 
nonlinear element 
for Problem 262. 

Pig* 155* Transient-process plot for 
Problem 262. 1) sec. 

153 lx' the parameters have the following values: 

* O.03 sec, kj^ * 5# k^ * 10, k^ » 0.1 l/sec, and 

Tj = 0.1 sec, T^ * 

the nonlinear function 
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Pfxj) corresponds to an ideal static relay characteristic (Pig. 15^) 

with c * 4. The initial conditions are: xj = 10, x^ = 0, x£ * 0. 

Solution. We use the Bashkirov method to plot the transient re¬ 

sponse. We take a solution element At = T3 = 0.05 sec and plot the time 

origin for all variables (Fig. 155). By shifting the time origin for 

x^ with respect to the time origin for Xg by the amount = O.05 sec, 

we are able to allow for the response time of the third element. In 

like manner, by shifting the time origin for x1 with respect to the 

time origin for x^ by the amount Tx = 0.1 sec, we allow for the re¬ 

sponse time of the first element. 

We give the transfer constants k^ and k^ in terms of the integra¬ 

ting element, i.e., for the integrating element we assume the transfer 

constant is K = kjk^ « 5*10*0.1 = 5 l/sec. This has no effect on the 

final solution, but only changes the scale of the graph. 

The responses for aperiodic elements are plotted by the secant 

method while the method of mean ordinates is used for integration. 

For an integrating element, we have 

*4-***« X, ** A'A/jjjr* » 

0,25 ¿ jr*. 

Multiplication of the mean ordinates x31 by a coefficient equal 

to KAt * 0.25 is most conveniently performed with the aid of an oblique 

line. To do this, we draw an oblique line at an angle arctan KAt (Fig. 

155, bottom). If we now use dividers to lay off x31 on the lower side 

of the angle from the vertex then, moving one leg of the divider from 

the angle vertex to the second side at a point on the perpendicular 

erected at the point on the lower side corresponding to the end of the 

segment x31, we obtain a segment equal to the result of integration by 
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one element: 

Mu-KUx* 

We begin construction of the response curve by plotting the ini¬ 

tial value xj = 10. This value, according to the static nonlinear char¬ 

acteristic curve for the second element, corresponds to a value Xg = 

- c = 4. For x2, we draw a line at the level of the indicated positive 

value. From the known value of Xg, we find a graphical solution for 

, in the interval of the first solution element. To do this, from the 

time origin for x^ we draw a ray to point at on Xg * c * 4, displaced 

an amount T^ + (At/2) from the time origin for Xg. The segment of this 

ray falling within the first solution element will then be the desired 

solution. The variable Xy known for the first solution element, is 

then integrated by the mean-ordinate method; we obtain a value for x^, 

which we take with* reversed sign (in virtue of the operating principle 

of closed-loop systems), i.e., we plot the result at the end of the 

first solution element with allowance for the minus sign. 

Having the solution for x^ for the first solution element, we can 

a solution within the first solution element for x^. To do this, from 

the point corresponding to the initial value x® = 0, we draw a ray to 

a point on x^ and displaced an amount T1 + fct/2) away from the xx time 

origin. 

After this, we turn to the solution for the second solution ele¬ 

ment. To do this, from the end of the solution segment for x^ corres¬ 

ponding to the first solution element, we draw a ray to a point b on 

Xg and displace by one more time element. The segment of this ray will 

then be the x^ solution for the second solution element. We next inte- 

grate x^ over the second solution element and take the result of inte¬ 

gration with allowance for the allowance sign and add it to the value 

of x^ at the end of the second solution element. From the known value 
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of xk. He find Xj In the second solution eleoent. In like Banner, we 

obtain a solution for the third solution eleaent, etc. 

In the ensiilne discussion. It should be reaeabered that when the 

variable Xj changée- sign (In our exaaple this occurs at the end of the 

fourth solution eleaent), x2 will abruptly change Its value, taking on 

a value Xg * - c =_ A. The saae procedure Is followed in continuing 

the solution with allowance for the new value of x2. If the change In 

the value of x2 occurs between Integral values of solution elements, 

then the solution for the first instant after switching should be ob¬ 

tained In terms of a fraction of the solution eleaent, just as for an 

Integral element. Here, in the Integrating circuit there will be a 

change In the coefficient Ktt; this means that the oblique line should 

be drawn at a smaller angle. Such an oblique line is shown on the Fig¬ 

ure for a case In which the solution element decreases by one half. The 

solution should then be continued In terms' of the integral solution el- 

eaent. 

•Froa the result of the solution represented ln Fig. 155 it is 

clear that In the system selfoscillation will occur; the variable x2 at 

the output of the nonlinear circuit element will oscillate with rectan¬ 

gular waveform; the variable x3 will exhibit oscillations made up of 

exponential segments; the variabler and x^ will exhibit nearly har¬ 

monic oscillations.« * 

In order to determine the oscillation amplitudes for each variable, 

it is necessary to use the steady-state equations to find the scale 

factor for each variable. Thus, for the variable x3 we have 

so that allowing for the values x2 = c = ¿I and k3 = 10, we have 

jfcMlO.I-'JÓL 
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i.e., the level x2 * ¿i corresponds to the value * 40. 

For the first circuit element under steady conditions we have 

*»— 

so that for values xx = 10, ^ * 5 we hav¿ 

l.e., the value x1 = 10 correspondj to the value x¡. = 2. 

From the curves representing the variation In all variables we 

can determine their oscillation amplitudes. Thus, for Xj we have A * 

«0.8. In like manner, we find * Ax « Ho, Ax - 0.28. The oscil¬ 

lation periods and frequencies will be the same for all variables and, 

as we can see from the graph, will be T * 0.¿*5 sec, o> * 2it/T * 14 

1/sec. 

Fig. 156. Block diagram 
of nonlinear automatic 
system for Problem 263. 

It should be noted that the graphic 

cal method ensures construction of the 

transient response for all variables sim¬ 

ultaneously. 

263. For the nonlinear system having 

the block diagram shown in Fig. 156, con¬ 

struct graphically the free-motion tran- 



I 

Pig. 158. Diagram of relay integra¬ 
ting devic-e for Problem 264. 

sient • ecponse and determine the stability if we are given the follow¬ 

ing parameters and initial values of the variables: T, = 10 sec, k = 
1 1 

0.25, 1¾ = 0.¾ 1/sec.v, c = 25 V, b = 0.01 rad, x(0) = 0.02 rad, ¢(0) = 

* 0. 
« 

Answer. The nonlinear system is stable and the process converges 

to equilibrium. The transient response is shown in Fig. I57. 

264. Por a relay integrating device (Fig. 158), plot the transient 

response Graphically. The system element equations have the forms 

(V+1)0.=V. 

C»tV+V+i))»*A 
turn for p<K 
l t for 9>k 

where (1 is the speed at which the electric motor turns, ß is the angle 

through which the contact lever of the magnetic tachometer rotates, u 

is the voltate applied through the tachometer contacts to the control 

winding of the electric motor. The parameters of the device are as fol¬ 

lows: Tx = O.33 sec is the electromechanical time constant of the motor; 

T2 = 0.1 sec, T3 = C.CI7 sec are the time constants of the magnetic 

tachometer; Umax * :0 v is the voltage across the motor control winding 

when the tachometer contacts are closed; 30 is the value of ß 
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ponding to the given sp^ed; in our example 

* k,U . 
max i max* 

e. 
max max 

4 

- 

V u o a if iß p u mm 

Pig* 159* Construction of transient 
response for Problem 26k. l) sec 

1 

bO 

Fig. l60. Basic diagram of non¬ 
linear temperature-regulation 
system for Problem 265* 1) Re¬ 
ducing gear; 2) control element; 
3) controlled system; k) polar 
relay; 5) motor. 

Fig. l6l. Block diagram and sta¬ 
tic characteristic of nonlinear 
element of temperature-regulation 
system for Problem 265. 1) Con¬ 
trolled system; 2) sensing element 
and relay; 3) drive mechanism and 
control element. 

Remark. Letting Xmia§~» we obtain the following 

system of equations: 
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<*>+■)•»=/. (r,v+ 
/<°A 

1¾ *>9A 
which wc use as the initial system for the graphical construction. 

The second-order equation for the oscillatory element may be re¬ 

presented as two equations with the additional variable if, i.e., 

CV+iXr*^ V>*=jr—jr. 

Then the construction may be carried out as for a system consisting of 

two aperiodic first-order elements, one Integrating element and one 

nonlinear element. 

Answer. The transient-response plot is shown in Fig. 159. The sys¬ 

tem will go into self-sustained oscillation under weak excitation. 

*26’ M£THODIOATION °F NOr'LI’fEAR AUTOMATIC SYSTBiS BY THE PHASE-PATH 

265. The phase-path method is used to investigate the temperature- 
regulation process in a nonlinear system with a two-por.ition polar re¬ 

lay (Fig. 160). The system parameters have the following values: T. = 

10 „ec, kQ - 10 degree/rad, k^ = 0.01, rad/sec*v. The static charac¬ 

teristic of the nonlinear element is shown in Fig. I6lb, where c = 20v 

b = 2°. 

Solution. From the given basic circuit, we set up the block dia¬ 

gram (Fig. I6la) and the equations of the system elements. 

The equation of the controlled system will be 

(V+•)♦=-** 

The equation for the drive mechanism and final-control element, 

neglecting the motor time constant, will take the form 

Pt-A,« 

where U is the voltage across the motor. 

For the sensing element together with the bridge circuit and relay, 

the values U = F(6) are determined from the static characteristic (Fig. 
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Fig. 162. Phase paths for nonlinear 
temperature-regulation system of 
Problem 265. 1) Degree/sec; 2) de¬ 
gree. 

l6lb). 

In accordance with the equations for the linear elements and the 

static characteristic of the nonlinear element, the equations for the 

entire system will take the form: 

1) for the case of rising temperatures dô/dt > 0 

+1)/4=M.' f°r •<*.! m 
+ l)/4=~M.c for l>^*, I ' ] 

2) for the case of decreasing temperatures d0/dt < 0 

(V I for *>-M (2) 
(V+l)f^*=MK for •<—*•1 

We plot the coordinate axes of the phase plane x * 0 and y * d0/ 

/dt (Fig. 162). For the half plane lying to the right of the polygon 

AECD, the equation of the system from (1) and (2) will take the form 

T»jj|+J **—*•*»<■. (3) 

while for the half plane to the left of the polygon ABCD, the system 

equation will be 

*•55+(*o 
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We find the phase-path equation for the right half plane. Taking 

X * 0 and y X d0/dt Into account, Eq. (3) may be written as 

M»*. 

Eliminating the time from Eq. (5) and dividing it by dx/dt = y, we ob¬ 

tain 

I M,r 
ft TJ* 

which after separation of variables yields 

J+M*- 

Integrating Eq. (6), we obtain 

MmmftM»iin(y-i M»0-fty+Ci. (7) 

Carrying out the same operations for Eq. (It) we obtain for the left 

half plane 

where C1 Is an arbitrary constant of integration. 

It is clear from (7) that when y =-k^c, we have x =-». As a 

consequence, all phase paths corresponding to different values of the 

arbitrary constant will have a common asymptote y =- kQkjC to which 

they tend when x-*-». in addition, from the expression for the deri¬ 

vative dy/dx it is clear that when y = 0, dy/dx =-«. This means that 

the phase paths are perpendicular to the x axis at its points of inter¬ 

section with them. The paths for the left half plane will be symmetric 

with respect to the paths in the right half plane about the origin. 

Using the properties indicated and taking various values for the 

arbitrary constant with known system parameters, we construct the 

phase paths. The working formulas for the phase paths in accordance 

with the given parameter values will have the form 
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Fig. 163. Basic diagram and char¬ 
acteristic of nonlinear element 
in speed-control system for ther¬ 
mal engine of Problem 266, 1) 
Load; 2) thermal engine; 3) ad¬ 
justment; fuel. 

* 

jr«-30ln(yf 2)- I0y-f 
jr«_30In(/-2)- I0/ + C,. 

Paths calculated from the formulas obtained are shown in Fig. 162. 

It is clear from Fig. 162 that for small initial values of temper¬ 

ature deviation x * 0 and velocity y * d0/dt, the process in the system 

will be divergent, and for large values convergent. Thus, there will be 

one phase path for a value of the arbitrary constant *- 9 in the fam¬ 

ily of integral curves corresponding to a stable limit cycle. As a con¬ 

sequence, for any initial deviations, after the system transient has 

occurred there will be self-oscillation. The temperature-deflection am¬ 

plitudes and rates of change of temperature for self-oscillation are 

easily found from the limit cycle and are Ag * ^.8°, A£ * 1.2 degree/ 

/sec. 
■i » ' ; " ' . 
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266. For an automatic system, the phase-path method Is used to In¬ 

vestigate the process of controlling the speed of a thermal engine 

(163a), where we assume, in simplified form: a) the equation of the con 

trolled system, without self-régulât ion is 

where $ is the relative deviation in angular velocity; 

b) the regulator equation neglecting mass and damping with propor¬ 

tional feedback is 

~«^-c. C=Î 

or 

where r*, Ç, and Ç are the relative deviations. 

Let the drive ¡nechanirm of the final-control element have constant 

speed with Instantaneous rwitchlnc (F1C. 163b) when the control element 

(slide valve) passes through the neutral position (c = 0), i.e.# it 

will be described by the equation 

(aesf Sign*. 

We take the following parameter values: T = 2 sec, ó = C.5, c = 

= C.l m/sec. 

Fig. 164. 
lem 266. 

Phase paths lor thermal-engine speed-control system of Prob- 
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Fig. l65* Basic diagram for nonlinear servo- 
svstea of Problem 2o7. 1) Setting adjustment; 
2) error-sensing element; 3) direct current 
amplifier; U) generator; 5) motor; 6) reduc¬ 
tion gear; 7) controlled system. 

Answer. The phase paths are parabolas (Fig. 16^) corresponding to 

the equation 

*—{{/+<*—iiy+ci. 

Drive-aechanism switching (6 = C) is deterainod by the line on 

the phase plane 

•Jr— 

and segment CD of this line with the maximum ordinate 

Jfcurfssill * 0,52= 0,05 

is a special line. Upon entering segment CD, the representation point 

will aperiodlcally approach the steady state. As a consequence, there 

will first be an oscillatory transient degenerating at the end to a so- 

called "sliding* process. 

267. The phase-path method is used to investigate the response of 

a nonlinear servosystem. Figure 165 shows the basic diagram of the 

servosystem; here Z is the setting adjustment, DR is the error-sensing 

element, UPT is a direct current amplifier, G is a generator, Dv is the 

motor, R is a reduction gear, UO is the controlled system. The equation 

for the motor, reduction gear, and controlled system as a nonlinear ele¬ 

ment is taken in the following form for the free motion of the system: 
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(1) 

-f *fti(o} == a¡i for Jwio o»* for j^-o 

and |l,|>“. 

const for J ~o and 

l.e., we allow for dry friction in all moving elements driven by the 

electric motor. For the remaining system linear elements, provided the 

system setting adjustment is not moved, the equation will take the form 

By (1) and (2), the general system equation will be 

i*f-*»i*f*•«?= — *»*«£") for J/o or 'ir=o 
and 

const furJasO'^nd j( 

(2) 

(3) 

_£•/ 

.# 

Fig. 166. Phase paths for 
nonlinear servosyrtern of 
Problem 267. 

where 

Fig. 167. Isoclines and 
phase paths for Problem 
268. 

m §k « g 
*• i • ••“y. 

The parameter numerical values are taken as 

•»«=*< l/see,«|s=5, 

Anower. In the coordinates x = ß and y = dß/dt, the phase paths 
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will be represented as the curves shown in Fig. l6ò. The system dis¬ 

plays a damped oscillatory transient response; the system equilibrium 

position is determined nonuniquely with respect to the coordinate x = 

* ß, i.e., the system may remain at any point on the critical segment 

AB. 

268. The proper motion of the nonlinear system is described by 

the differential equation 

!-io(i(1) 
Investigate the stabil! y of the automatic system using the isocline 

method. 

Solution. We write Eq. (1) in the form 

î~IO(t—«O*-*, /«ÿ. 

Making two equations from the first equation, we obtain the phase-path 

equation 

Letting 

2 M Co const. 

in the resulting expression, we find the isocline equation 

From Eq. (2) we construct the isoclines (solid lines on Fig, 167) 

corresponding to various values of C. 

Considering the properties of the phase paths, for different ini- 

ital positions of the representation point M we draw the phase paths 

so that at the intersection of the appropriate isocline the slope of 

the phase path with respect to the axis of abscissas will equal arctan 

C (dashed curves of Fig. I67). As we can see from Fig. I67, for any in¬ 

itial position of the representation point, the latter will tend to 
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aove away froa the phase-plane oriein. As a consequence, the nonlinear 

system described by Eq. (1) is unstable. 

527‘ LI:•’EARIZATI0;, TO IÍIVESTICATE HONLIN- 

269. Investigate the rheostat servosystea of Pig. IcS by the har- 

aonlc linearization method taking Into account the saturation-type non- 

Fig. 168. Basic circuit of rheostat 
servosystem for Problem 269. l) Set¬ 
ting adjustment; 2) electronic amoli- 
fier; 3) generator; ¿*) motor; 5) re¬ 
duction gear; c) controlled system. 

linearity of the chronic amplifier, if the 

element equations and parameters are given. 

!• The equation of the error-sensing 

clement is 

•=*-?. (l) 
where Q is the error angle, ux [v] is the 

voltage across the electronic-amplifier in- 

put, k^[v/rad] is the transfer constan* of 

the error-sensing element. 

2. The equation of the generator excitation circuit is 

(V+l)l* *=*1«* (2) 

where TjIsccJ Is the electrical time constant of the excitation circuit 

k2[amp/v] Is the transfer constant of the excitation circuit, equal to 

the wind Ire conductance, u2[v] is the voltaCe at the amplifier output 
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Fig. 169. Nonlinear 
static characteristic 
for electronic ampli¬ 
fier of Problem 2l9. 



with the load connected. 

3. The equation for the generator-motor armature circuit, neglec¬ 

ting inductance, is 

~ Vi - Cfl (3) 

where the transfer constant of the generator k corresponds to the 
O 

slope of the generator aagnetlzatlon curve e = f(l2) at the origin, 

while the coefficient of proportionality Cc Is found from the actor da. 

ta plate: 

C—^[v.sec]. 

Here nkh.kh ls the ldoal no-load speed, U Is the nominal armature volt- 
. 

age. 

i 

«. The equllibrlua equation for the aotor-shaft torques Is 

(it) 

where J Is the reduced aotor moment of Inertia, C = M /1 iki-.e®/ 
* a V n.ya lwG*cm/ 

/aap] Is the coefficient of proportionality between the motor torque 

and the armature current, equal to the ratio of the nominal torque to 

the nominal armature current. 

Solving (3) and (k) simultaneously, we obtain the equation of mo¬ 

tion of the motor together with the controlled device: 

or 

(5) 

where the electromechanical time constant is 

Tmmt w-* r* c/z .At!' 
Here M0 Is the motor short-circuit torque and the transfe 

stant is 
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5. Por a nonlinear element (electronic amplifier), we are given 

the static characteristic (Fig. 169). The zone of linearity Is deter, 

nined by the value b * 1 v# 

The parameters for the linear zone are: over-all gain k# * k,k k- * 
t » 1 2 3 

20 l/sec while the time constants are = 0.1 sec and Tg * 1 sec. 

Solution., Combining the equations for the linear elements, we ob¬ 

tain the equation for the linear portion of the system (for a = 0) 

(6) 
Taking into account amplifier saturation, in accordance with the 

method of harmonic linearization [2C], we replace the nonlinear charac- 

terlstic by the linear relationship 

•»—,W»i. (7) 

where the harmonic linearization coefficient for the saturation charac¬ 

teristic (see Appendix 2C) has the value 

f(A)Af for AO, I 

,(««•£(«*»■ V'-f') ‘or f (8) 

Substituting the value u2 from (7) into (6), we obtain the linear- 

izcd equation for the free motion of the system 

KV+1)<7> -I- Of -J- *,ç(A)i«, « Q, ( o) 
corresponding to the characteristic equation 

V+(r, -f r,)/»* -ff -f- (A)=o. (ic) 

We shall seek a periodic solution for the variable ux in the form 

Here In the characteristic polynomial L(p), we make the substitution 

p = >, set the real and Imaginary parts of !,(» equal to zero, and 

take Into account the fact that In this case u. = n. As result, we ob- 

tain two equations for determining the periodic solution: 

i—r,r,8*«=o. / 
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Froa the second equation of (11), we obtain a formula for finding 

the frequency of the periodic solution In terms of the system parame- 

tersî 

Substituting the values of fl and q(A) Into the first equation of (11), 

we obtain a formula connecting the amplitude of the periodic solution 

and the system parameters: 

&*»(«*. * + • j/nj) _ Îy+L. (13) 

In order to investigate the stability of the periodic solution, 

we employ an approximate criterion [20]. For this purpose, we write the 

values X(a, <i>) and Y(a, <b) from the characteristic polynomial (10) for 

P = Jü>: 

*ft. •)»** («)-<7i+ r«M 

where a and œ represent the amplitude and frequency near the periodic 

solution* 

The periodic solution will be stable if the Inequality 

®‘fcT-®-£T>‘ d.) 
holds. The asterisk indicates that after the derivatives have been ta¬ 

ken it is necessary to substitute the amplitude and frequency values 

Tor the periodic solution a = A and o> * fl. 

On the basis of the formula for q(A), we first construct a graph 

(Pig. 170) and then find the corresponding derivatives. As a result, we 

obtain • 
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(2)*-*.(sr<. fer A>». 
er* 

*{7i-r WC<«1 

i-ír.rí*. 

and alnce from (12) 

e‘“llr,' then g¿V*--í<0. 

Eaployinc Criterion (14), we have 

©•©•-©•(S' : or 4>l. 

As a consequence, following the transient, 

the system will exhibit steady-se1f-oscilla- 

tion, since for the given parameter values, 

he condition A > B is satisfied. For values 

A < B, there will be no self-oscillation. 

This is understandable, since in this case 

he amplifier will operate on the linear 

lincharmoñlc-lineari- ^1°0 °f the StatlC ^»^^eristlc. 

w?th0oacuíafU¿nnamp- ^ F°r!nUlaa (12> and (13)* we c°"- 
litude. Problem 269. struct the curves for the variation in self- 

oscillation amplitude and frequency with variation in each c:‘ :a :.-- 
• * 

tem parameters. It is clear from (12) that the self-oscillation i‘r_- 

quency will depend solely on the time constants T. and T0. Each of th« 
• 12 

time constants will affect the variation in self-oscillation amplitude 

and frequency, however. Thus the desired curves are plotted as func¬ 

tions of- the parameters k = kfku, T2, and b. 

Since Eq. (13) is transcendental in the amplitude, it is desirable 

to find expressions for the parameters in explicit form as a function 

of amplitude. 
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PIß. 171. Variations 
in self-oscillation 
amplitude and fre¬ 
quency as a function 
of system parameters. 
Problem 269. l) rad; 
2) sec; 3) region of 
stable equilibrium; 

self-oscillation 
region. 

In order to determine the effect of 

servo-system transfer constant on self-oscil« 

latIon amplitude, we obtain from (13) the 

formula 

A«S -7-*(r, + r|> 

tr.4«* » + » V'-w) 
ÍV (15) 

It is clear from (13) that for values A = b, 

the transfer constant, which we shall call 

the critical constant, will equal 

A =r»+f* * V. • 
i.e., system self-oscillation occurs only 

in a well-defined region of values of the 

transfer constant k ¿ kkr. For values A £ B, 

the servosystem may be considered to be lin¬ 

ear and the transfer constant k = k.k . Here 
£ U 

the transfer constant found from the condi¬ 

tion for limiting stability of the linear 

system will coincide with the value k, . kr* 
i.e., 

A 

Thus, the investigation of the servosystem as a linear system gives the 

result that outside the stability region there lies a region of insta- 

bility, and an investigation allowing for the saturation-type, nonlinear¬ 

ity leads to the conclusion that outside the stable-equilibrium region 

there lies a region of stability with a steady self-oscillation process. 

Formulas (12) and (I3) were obtained with the determination of 

a periodic solution for the input variable of the nonlinear element. 
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i.e., for the amplifier input voltage. It is of interest to obtain this 

solution for the angle ß at the servo-system output. 

The frequency of the periodic solu'ion will be the same for any 

variable in this system. The value of the amplifier input-voltage am¬ 

plitude is easily converted to the amplitude of angle ß by means of 

the equation of the error-sensing element 

•»“-*1?. 
and, as a consequence, 

4-Mr 

where Aß is the amplitude of the output-shaft oscillations for the ser 

vo-system reducing gear. 

The calculations carried out for 

= v/rad and the assumed parame¬ 

ter values are represented as curves 

in Fig. 171. The curves given show 

which parameters can be used to vary 

oscillation amplitude and frequency 

and to suppress (kill) self-oscilla¬ 

tion. 

For the selected parameter values, the oscillation frequency is 

ft = 3*16 l/sec and the amplitude is Aß = 0.022 rad. 

270. Use the method of harmonic linearization to investigate the 

servosystem of Problem 269 if the approximate amplifier static charac¬ 

teristic has the form shown in Fig. 172 and bx = 0.2 v, b2 = 1 v, and 

ku has its former value. 

Fig. 172. Nonlinear static 
characteristic of electron¬ 
ic amplifier. Problem 270. 

Answer. For the steady regime, there will be regions depending on 

the parameter values: a region of stable equilibrium and an oscillation 

region. There will be two periodic solutions in the oscillation region. 

Figure 173 shows the way in which the periodic-solution amplitudes and 
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Fiß* 173* Relation¬ 
ships for variation in 
amplitude and phase of 
periodic solution. 
Problem 270. 1) rad; 
2) sec; 3) stable equil¬ 
ibrium region; h) self- 
oscillation region. 

the frequency depend on the transfer con- 

stand k and time constant Tg. The bran¬ 

ches for the high-amplitude values be¬ 

long to the stable periodic solution — 

the self-oscillations. The small-ampli¬ 

tude branches belong to the unstable per¬ 

iodic solution. 

271. For the relay temperature-regu¬ 

lation system having the block diagram 

shown in Fig. 17^, use the method of har¬ 

monic nonlinearity linearization to find 

the self-oscillation region and stable 

equilibrium region; construct curves for 

the variations in temperature-oscillation 

amplitude and frequency as a function of 

the following parameters: k^, the trans- 

Fig. 17^. Block diagram of temp¬ 
erature-regulation relay system. 
Problem 271. 

fer constant of the system linear portion, and Tg, the time constant 

of the control-element drive mechanism. The nonlinear static character¬ 

istic of the relay amplifier is shown in Fie. 175. The system parame¬ 

ters have the following values: Tj = 10 sec, Tg = 0.1 sec, c = 25 v, 

b = 0.01 rad, * kjkgkj = 0.01 l/sec-v, kg = 0.01 rad/degree. 

Answer. The curves showing the variation in self-oscillation ampli¬ 

tude and frequency as a function of variation in k, and Tg are shown in 
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Fig» 175. Static 
characteristic of 
nonlinear element, 
Problem 271. 

Pig. 176. In the self-oscillation region there 

are two periodic solutions: oscillation at 

large amplitudes and an unstable periodic solu¬ 

tion for small amplitudes. 

272. For the nonlinear system having the 

block diagram shown in Fig. 177, use the method 

of harmonic linearization to determine self-os- 

Fig. I70. Variations in periodic-solution amp¬ 
litude and frequency as a function of system 
parameters. Problem 271. 1) Degree; 2) sec; 
3) stable-equilibrium regions; h) self-oscil¬ 
lation region. 

dilation amplitude and frequency with 

.ho aid o! frequency-response curves if 

the parameters of the linear elements 

Fig. 177. Block diagram of are given: T? = C.001 sec^, T, = 0.01 
nonlinear system. Problem 1 
272. sec, kx = 10, ?3 = 0.02 sec, k3 = 5, 

and the static characteristic of the 

nonlinear element is that shown in Fig. 178. 

Solution. In order to i ind the oscillations, we construct the am- 

piltuJe-phase frequency response of the linear portion of the system 

and the locus of the harmonically linearised nonlinear element 

-l/Wn(A). The point of Intersection of these curves will also correspond 



€•9 

to the periodic solution determining system 

self-oscillation for the variable x^. 

According to the block diagram, the trans¬ 

fer function of the linear portion of the sys¬ 

tem will be 

Pig. 178. Static 
characteristic 
of nonlinear ele¬ 
ment, Problem 272. 

r*W- -,r+ +r* • 

The formulas for determining the amplitude and 

phase of the frequency response for the linear 

portion will take the form 

M. 
r*i-rx/+ipjo > i*-')"* 

f »—arctg - »C,g 7*. 

After substitution of the parameter values 

5» 

♦—«dÇ-pMjmr -»rttc0.w* 

(1) 

(2) 

The amplitude-phase frequency response W^Jm) calculated from Formulas 

(1) and (2) is shov;n in Fig. 179. 

Fig. 179. Frequency character¬ 
istics for lineai’ portion of 
system and nonlinear element. 
Problem 272. 1) rec. 

which for a value c = 1C yields 

To calculate the characteris¬ 

tic -lArn(A), we take a value of 

the harmonic-linearization coeffi¬ 

cient for the ideal relay character¬ 

istic 

•Wu-fWi-a. 
We then obtain 

t __ • . 

(3) 
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Piß, l80. Block diagram of nonlin¬ 
ear system. Problem 273. l) Non¬ 
linear element. 

PIß. I81. Static 
characteristic of 
nonlinear element. 
Problem 273. 

Pig. 182. Frequency char¬ 
acteristics for linear 
part of system and non¬ 
linear element. Problem 
273. 

Taking values of A, we represent the characteristic -l/Wn(A) on the com¬ 

plex plane (Fig. 179)# which in the given case is a straight line coin¬ 

ciding with real axis. 

The point of intersection of the characteristics permits us to use 

wj(» to find the frequency of the periodic solution fi * 39 l/sec and 

to use f-l/Wn(A) to find the amplitude of the periodic solution A * 370. 
The stability of the periodic solution is determined from the con¬ 

dition that in going from small amplitudes to large amplitudes on the 

character!stic*-l/Wn(A) we go from the interior to the exterior of the 

region covered by the characteristic W^(ja)). As a consequence, for the 

problem considered, the periodic solution will be stable, i.e., there 

is self-oscillation. 

273- Use the method of harmonic linearization with the gain-phase 

characteristics for the nonlinear system having the block diagram shown 

in Fig. 180 and with the static characteristic of the nonlinear element 

shown in Fig. I8I to determine whether or not steady self-oscillation 
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occurs in the system. If self-oscillation occurs in the system, deter¬ 

mine the amplitude and frequency for the variable Xg. The system param¬ 

eters have te values: Tg = 1 sec, ^ » l.b sec, T3 = 1 sec, 4 sec 

k! s kik2k3 = 500, b = 1, c * 50. 

Answer. Self-oscillation with an amplitude A * 2.7 and frequency 

n * 0.8 1/sec will occur in the system. The gain-phase characteristics 

WjO) and -l/Wn(A) are shown in Fig. 182. 

27b. A second-order relay system with time delay (Fig. 183a) is 

given. The linear portion is described by the equation 

(*>+*> A*»«*** (1) 

while the nonlinear element is described by the equation 

(2) 

where F(x) is given in the form of an ideal static relay characteristic 

(Fig. 183b). 

Determine the forced oscillations occuring under the sinusoidal 

external input 

/(Q«ann2¿ (2) 

We take the following parameter values: k = 10 l/sec, c = lOv, Tx = 

0.01 sec, i = 0.01 sec, ny = 10 l/sec, B = 20v. 

4 

Hkßuttcä"ce 
I 9teno 

JlUHCÛHC* 
c. tuen» 
Cucmcvor 

« 

« b , 

Fig. 183. Block diagram and sta¬ 
tic characteristic for nonlinear 
element of relay system. Problem 
27^. 1) Nonlinear element; 2) lin¬ 
ear part of system. 

Solution. We seek the forced oscillations in the input variable 



of the nonlinear eleaent In the fora 

•#-4.*C!V+rt (4) 

We determine the amplitude and phase shift ? for the forced oscilla¬ 

tions. Substituting «(2) Into (1) and allowing for the face that 

we obtain the systea equation 

OÍP+1),/(/1 (5) 

The external sinusoidal Input (3) is represented In the fora 

/(/)=»«/. (<0/.; ?)-?!= 
=/»CO»?sin('_>./ ¡•,)-«*iiijc»i(?.> + j> 

Remembering that from (4) 

4?. cos ¢74.,1 

we finally obtain 

Substituting the value obtained for f(t) Into Eq. (5), we have the 

system homogeneous nonlinear equation for the variable 

—(6) 

Harmonic linearization of the ideal relay characteristic in accord¬ 

ance with the formula given in Appendix 20, with allowance for the time 

delay, yields 

r.W=-~r'’x. (7) 

The characteristic equation corresponding to Eq. (6), taking (7) into 

account, will take the form 

(V + ■>['-£(«■« ï - -^r)Jr+£/ ’'=a 

Substituting the Imaginary value p = Jßy Into the obtained equation and 

remembering that 



we obtain 

fieh. 

after substitution of the numerical values taken for the parameters, 

we have 

We make use of the graphical method described in [2C]. On the 

complex plane (Fig. lS4), we draw a circle of radius R = 20 represent¬ 

ing the right side of Eq. (8) and a line z(A^) corresponding to the 

left side of the same equation. On the line we plot the values of the 

forced-oscillation amplitudes Ay. The point of intersection of the cir¬ 

cle and the line yields a solution for Ay and We note that positive 

values of phase-shift angle are measured clockwise, since the right 

side of (8) is a vector rotating through the angle <p in a direction op¬ 

posite to that usually used to measure positive angles. As we can see. 

Fig. 18½. Graphical 
construction for de¬ 
termining forced os¬ 
cillations in non¬ 
linear system. Prob¬ 
lem 27½. 1) Bpor. 

in our case Ay * 18.2 v, $> = 380 

4 

* 

« 

4 
ê 

Fig. 185. Static 
characteristic of 
nonlinear element. 
Problem 275. 

From the completed plot, we can con¬ 

clude that for the frequency used G = 10 l/sec the minimum threshold 

amplitude for the external Input Bpor = 12.3 v, i.e., it equals the ra¬ 

dius of the circle tangent to the line Av. 
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275. For a third-order relay system with a linear portion describ¬ 

ed by the equation 

and a relay element with coordinate delay having the static character¬ 

istic shown In Fig. 185, determine the amplitude and phase of forced 

oscillations if an external sinusoidal signal is applied to the system. 

The following numerical values are assumed for the system parameters 

and the external signals k = 10 l/sec, c = lOv, b = ^v, * 0.01 sec, 

T2 « 0.02 sec, B = 20v, flv « 10 l/sec. 

Answer. Ay = 21v, 9 = 350. 

Manu¬ 
script 
Page 
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[Transliterated Symbols] 

P * R ■ reduktor « réducing gear 

R ■ D ■ dvigatel* ■ motor 

RF * DR ■ datchlk rassoglasovaniy ■ error sensor 
* 

yiTT ■ UPT • usllltel' postoyannogo toka ■ dc amplifier 

F ■ 0 « generator ■ generator 

Rb = Dv = dvigatel* = motor 

70 ■ UO > upravlyayemyy ob"yekt b controlled system 

h ■ ya ■ yakor* « armature 

x.x « kh.kh « kholostoy khod > no load 

h • n ■ nominal 'nyy * nominal 

j! b 1 » lineynyy • linear 

7 ■ u ■ usllltel* b amplifier 

xp b kr « kriticheskiy * critical 

h b n ■ nelineynyy ■ nonlinear 

b b y * vozdeystviye b input 
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b * y * vynuzhdennyy * forced 

nop ■ por ■ porogovoy - threshhold 

atoa - 



BLANK PAGE 



Part 2 

DESIGN METHODS FOR AUTOMATIC SYSTEMS 

Chapter 10 

SELECTION OF AUTOMATIC CONTROL SYSTEM PARAMETERS FROM REQUIRED 

ACCURACY IH TYPICAL MODES 

§28* CALCULATIONS FOR VARIABLES GIVEN AS TIME FUNCTIONS 

276. Determine the location of the locarlthmlc amplitude charac¬ 

teristic for an open-loop servosystem from the condition that the fol¬ 

lowing error not exceed ¿ 1.5' when the control Input Is governed 

by the harmonic law 

®laax = 25°* 

^y l/oCC • 

The block diagram of the servosystem Is shown In Fig. l86a. 

Solution. The following error due to a variation In control input 

equals 

I 
“71 + lu-j, *•— for (1) 

where W(Jüj) is the system open-loop frequency transfer function. Since, 

as a rule, in present-day servosystems 1* Is possible to use 

the approximate relationship 

a Km 
(2) 

Solving Expression (2) for 'Y(ßmm)\ we obtain the required value of 

the modulus for the system open-loop frequency transfer function at 
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Pig. 186. a) Block dia¬ 
gram of L 'rvosystem; b) 
plotting of control 
point A^. 1) Logarith¬ 
mic ampVtude character¬ 
istic; 2) sec. 

Fig. 18?. Plotting of forbidden 
region. 1) db/decade; 2) sec. 

the frequency a>. ; 

or 
I (AOi0 

"•M 
(3) 

(¾) 

Using Formula (it) we plot the so-called control point AR In a logarith- 

mlc coordinate system (Fig. l8ob): 

*1“*. 20*=Mlg-^,= 00 db. 

The required following accuracy will be attained if the logarithmic am¬ 

plitude characteristic of the system lies above point A. ; in the limit 

it will intersect this point (Fig. 186b). 

277. Determine the forbidden region for the logarithmic amplitude 

characteristic of an open-loop servosystem from the condition that the 

following error not exceed Ôffiax ¿ 1.0* under a variation in control in¬ 

put having a maximum rate of D * 40 degree/sec and a maximum accelera¬ 

tion 

•«60 degree/sec . 
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Solution» Where the law governing the variation In the control In¬ 

put Is not known, the calculations ¡nay be carried out for the equiva¬ 

lent sinusoidal Input [31* 

The parameters of the equivalent process are determined from the 

formulas 

«1« mx\fi 1/sec. 

(1) 

Here Is the angular frequency of the oscillations In the equivalent 

sinusoidal input, 0lmax Is the amplitude of the oscillations In the 

equivalent sinusoidal input. 

The coordinates of the control point AR (see the preceeding prob¬ 

lem) will equal (Fig. iS?) 

l/sec, 

I,—20 If « 20 If « JO 1 ftOO ^ C3 d L. 

In order to construct the entire forbidden region, we find the 

locus of the control points Akl corresponding to the following two 

cases: 1) when ÎÎ Is a maximum, and when e gradually drops to zero, and 

a) when e Is a maximum and-ft drops to zero. In the first case, the lo¬ 

cus will be a straight line passing with slope -^0 db/decade through 

point Ar. In the second case it will be a line with slope -20 db/decade 

(Fig. 187). 

In order to obtain the required following accuracy, the logarith¬ 

mic amplitude characteristic of the open-loop servosystem should not 

enter the forbidden zone bounded by these lines. 

278. For the servosystem whose block diagram is shown in Fig. l86a, 

construct the low-frequency portion of the desired logarithmic ampli¬ 

tude characteristic and determine the required over-all gain from the 

condition by which the required following accuracy is ensured. The sys- 
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tem possesses first-order astatlsm. The requirements for following ac 

curacy are the same as for Problem 277« 

Pig. 188. Construction of local-fre¬ 
quency portion of desired logarithmic 
amplitude characteristic. 1) sec. 

Solution. In order to simplify the problem of system damping, the 

logarithmic amplitude characteristic should be located as far as possi¬ 

ble to the left. The maximum permissible shift of the logarithmic am¬ 

plitude characteristic to the left Is bounded by the forbidden zone 

with respect to accuracy. From this viewpoint It Is desirable for the 

low-frequency branch of the desired logarithmic amplitude characteris¬ 

tic, with a slope of -«0 db/decade, to pass as close as possible to 

the line bounding the forbidden zone (Fig. 183), l.e., for u>0 = a, = 60 

l/sec and * ^/a>ic* 

The first asymptote for the logarithmic amplitude characteristic, 

however, which has a slope of -20 db/decade, should pass above the 

boundary of the forbidden region by 3 db (Fig. 188). 

If this asymptote Is continued until It Intersects the zero-decl- 

bel axis, the point of Intersection will give the over-all system 

open-loop gain (velocity figure of merit K^). 

Prom Fig. 188 we have 

l/sec. 

279- Determine the required over-all open-loop gain of a servosys- 



tem. The system has second-order astatism. The remaining data is the 

same as for Problem 278. 

Answer. The over-all open-loop gain of the system (acceleration 

figure of merit) is 

if,«3600 l/sec2* 

280. For a servosystem possessing first-order astatism, determin- 

the parameters of the low-frequency portion of the desired logarithmic 

amplitude characteristic from the condition that the required follow¬ 

ing accuracy be insured, with and without allowance for the load torque. 

The maximum following speed is ft * 24 degree/sec, the maximum acceler¬ 

ation is e = 20 degree/sec, the permissible error is 0max = 0.1°. The 

load torque at the shaft of the actuating motor is Mn = 2g»cm. The in¬ 

flexibility of the mechanical characteristic is ß = ft0/Mo = 5000*6/ 

/57.3*10 = 52.3 l/g*cm*sec (where ft0 = 5000 rpm is the no-load speed, 

M0 =* 10g*cm is the motor starting torque). The gear ratio of the reduc¬ 

tion gear is i = 1000. 

Solution. 1. There is no load torque (see Problem 278). Then 

sec, 

l/sec. 

(1) 

(2) 

2. The motor is loaded by a torque Mn = 2g*cm. The system is damp 

ed by the first method of [31, i.e., by the introduction of inverse 

feedback around the motor or of derivatives of the error angle. Then 

r,u sec, 
•« ■ 

’•Ml *■(•* 

— 338-f60«=398 l/sec 

104,6 « 57,3 

6,1 • I0UU *“ 

(3) 

where 0 i is the error at the motor shaft, 
max 

3. The motor is loaded by a torque Mn = 2g*cm. The system is damp¬ 

ed by the second method of [3], i.e., by the introduction of a time lag 
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In the aapllfler channel ahead cf the actor te-sln-.l.:. Then 

where Is the torque error In t 

(:. ) 

rrm.- or t l.e *u-• uc> t i ri; 

rig. Low-frequt.ac*., bn'inohcv o 
desired logt.rlthilc rtr.pll*..jt char¬ 
acteristic: 1) Kith n/allcvu.^ V- 
load torque; 2) with allowance her 
load torque, first daapln.., method; 
3) allowance for loai *orque, second 
damping method. A) rec. 

over-all Ga in 

ec 9 

Cf 

Pig» 190. Block diagram 
of combination-control 
servosystem. 

and 

»01,6.57.3 
140 - |0UU *=0,025» 

If the over-all gain Is Increased, for example, to 

then 

it;-300 lA-ec, 

and 

a „ m ^ 101^ -57^ 
^ “Ä)Ttoua - 0,02’ 

sec, 

* .'haft. 
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Por the sake of Illustration, en Fie* lS^ we h'.ve plotted the loc- 

arithaiic amplitude characteristic correspondinc fo the three cn.*e: con¬ 

sidered. 

281.* For a closed-loop combination-control system, determine the 

levels of the compensâtinp slrnals with respect to the first and second 

derivatives of the control input such that a system possessing first- 

order art atic ism will have no velocity error or acceleration-dependent 

error. The Mock diagram of the closed-loop combination control system 

is shown In Fig. 1^0. Tne compensating signals have the form 

where is the ratio obtained by dividing the signal slope with re¬ 

spect to the first derivative of by the signal slope with respect 

lu ‘.he error ¿, while is the ratio obtained b¿ dividing trie signal 

slope with respect to the second derivative by the signv, slope with 

respect to the first derivative of 0^. 

Solution. In a combination-control system the output variable 0^ 

is proportional not only to the error 0 but also to the compensating 

signals ^(pjGj, l.e., 

. nr. 
where C(p)=.f ir thc -y-lem open-loop transfer function neg¬ 

lecting regulatio:. with respect to the control input. 

The system closed-loop error is 

Substituting the values of W(p) and t(p)» we obtain 

+ <r,4 r,* : «1* 
** r I Jr I r r A*, 

When the condition 
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Fig. 191. Vector er¬ 
ror diagram. tion of desired logarithmic 

amplitude characteristic. 1) 
sec; 2) db/decade. 

is satisfied, there will be no velocity error in the system. When the 

additional condition 

7*1f«“ K»* i*i 

or 

1.= 7, + 7-, 

is satisfied, the acceleration-dependent error will also vanish. 

The system open-^loop equivalent transfer function W(p) corresponds 

to a system with third-order astatism [^] 

FWH +rWi _ 
I — K' (p) f (p) 

■ K* (• + «!/» + 
r, - = 

Kuirj, (i + ^tP 4* v*r') 
pT • 

282. For a control system, construct the low-frequency portion of 

the desired logarithmic amplitude characteristic if we know that for 

a control input governed by the law 01 = ôlmax sin ü)kt, where 

t|au *= 30’ 

•, = ^«12,56 l/sec, 
»■ 

the permissible following error should not exceed: in phase, A<p Io, 

in amplitude A0/0lmn^ ^ The system possesses first-order astatism. 

In the low-frequency region, the system open-loop transfer function is 
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approximated by the expresión 

. TÏT+/^,) * 

Solution. Flrure 191 'hov.v: the vector error d lacram. The follow- 

Inp error is 

where la the in-phare error component and ic the quadrature er¬ 

ror component. The phare error ir 

*?-• 

while the relative amplitude e-rror is 

If we ii«.;ume U*at at the frequency the aieiuluj tiien the 

phase error may be computed from the approximate formula 

,_ I a ®Um«_*•« 

and the relative ampli'ude error from the formula 

®I«IM _•JF» !• _ I Rc "IV*.» A* “Ai* 

Ha vine ihe phare and relative amplitude errors, v:e can determine the 

limitinc left-hand positions of the first and second asymptotes of the 

logarithmic amplitude characteristic: 

••■B |TC cs^ en 720 1/SCC, 

Figure 192 shows the low-frequency portion of the desired logarithmic 

amplitude characteristic. 

283.* Det- mine the required gain for a constant-speed tachometer 

drive (Fig,. 193). The admissible error in maintaining speed with a mo¬ 

tor-shaft load torque Mn = c.2 should not exceed 0.1# of the no- 
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Fig, 193. ConstaRt-?pccd ♦acho- 
meter drive. 1) Aapllficr; 2) 
aoior; 3) tachcr.e*er genera*©!. 

F Î 1 **i. Tear c ra t u re 
••■ 'ul'itlon . y! a. 1) 
F- *• ar; P) ®o- 
tcr; ) amplifier. 

load spead. 

Solution. The regulation errer eon.-1.-». ef two term.'« 

“ ” TTi^tB’ * TT« Vi ^ (1) 

where Is the given drive --peed. V(p) i, '.;1C Jÿ;Ua open-loop trono, 

fer function, ^(p) is the system open-locp transfer function with re« 

spect to the load torque. The first term corresponds to the error In¬ 

troduced by the selected control law, while the second term specifies 

the error component introduced by the effect of the load torque M . 
™ n 

If we take Into account the amplifier time constant Tu and the 

electromechanical time constant of the motor T Men 
2r 

and 

«ip— 

where Is the short-circuit torque develop- i ty he motor, no is 

the motor no-load speed, and K is the over-all system open-loop gain. 

The expression for the regulation error ¿T. takes the form 

ü!«ÆVÎ±?f.±T,\p *- i|e, 
iÛT#f»ri Vï k 

rp?' 
- 2^0 - 
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Usually, the system Is so adjusted as to minimize the reculât ion 

error. This condition corresponds to adjustment such that no static er¬ 

ror due to the control law appears in the static system. In order to 

eliminate the static error, the principal feedback transfer constant 

Kq.s should differ from unity and will equal (see Problem 176) 

i.e., there should be nonunity feedback in the control system (5)« 

In order to ensure the required accuracy of speed maintenance for 

a load torque Mn = 0.2 the system open-loop caîn K should br* 

chosen on the basis of the condition 

from which we obtain 

(5) 

28^, Determine the required over-all gain K for a temperature-rég¬ 

ulât ion system (Fiß, 19^) from the condition ensuring the required reg¬ 

ulation accuracy. 

The deviation of the controlled variable 0 is measured by means of 

a resistance thermometer connected into a bridge circuit. The voltage 

u from the bridge diagonal is applied to the balanced amplifier Us, 

which controls the motor Dv. The motor drives the control element 

through the reduction gear R. The control element acts on the control¬ 

led object by varying the manipulated variable y* 

The element equations have the forms 

1. The equation of the controlled object is 

0+W— 
where T^[sec] is the object time constant, and Kq are transfer con- 
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slants, P Is a disturbance. 

2. The equation of the sensing element - the bridge with resist- 

anee thermometer - ic 

■—M. 
where k2 [v/degree] is the transfer constant. 

3. The equation of the drive mechanism together with the amplifier 

is 

■ 0+V>n*-V. 

where T2 [sec] Is the electromechanical time constant and k3 [1'rcc] 

is the transfer constant. 

Solution. The over-all 

the basis of the condition 

system open-loop ¿tain should be chosen on 

jr-AaM^Sf, 

where pF Is the log governing the variation In the disturbance deriva- 

tive. 

§29. CALCULATIONS INVOLVING RANDOM EFFECTS 

285. Determine the parameters of the desired logarithmic amplitude 

characteristic of a servosystem when we know that the permissible mean- 

square error (s.k.o.) for following Is e, <; o.l°. The derivative of the 

output variable Is a stationary random process whose spectral density 

equals where 0.* = 15 degree/sec Is the mean-square rate of 

change of the Input variable. Ts = 10 sec Is the mean duration of con¬ 

stant speed at the Input. The servosystem possesses second-order asta- 

tiam. 

Solution. As the desired logarithmic amplitude characteristic we 

take a characteristic having slopes -40. -2C, .to db/decade. The posl- 

tlon and length of the section with slope -20 db/decade should be dic¬ 

tated completely by the need to ensure adequate stability margin [3]. 
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Thus, for example, for a macnltude ratio M = 1.3 [3] 

A —1i ‘It 4-1 

we have 

** WS. 

%-^r,«I^E«l3§!3pD.w^ 

•,-VZ 

We find the required over-all eain, l.e., the acceleration fleure 

of aerlt fres the condition ensuring the given following accuracy 

Since the time constant 

we obtalr.. 

T'~Z~Yt' 

K—p/ V •ÇsrwTÇ.-”,0J 1/,:'cc' 

From this we have 

r,—cc, 

^“wsssec- 

The logarithmic amplitude characteristic cutoff frequency is 

vI'ÂJ—WI'hS—ÎM 1'-ec. 

From the values computed, we have plotted the desired servo-system 
> 

open loop logarithmic amplitude characteristic in Fig. 195. 

Checking the mean-square error, we use an exact method: 

VÎT: 
The system open-loop frequency transfer function corresponding to the 

desired logarithmic amplitude characteristic (Fig. I95) has the form 
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Fig, 195« Calculated lo.’:;* 
ithmic aaplitii'ie character 
istic for Problem 2£i. 1) 
sec. 

Pitt. 19^'. Typl cal r 1 ;jna 1 
at ¿crvo-syr.tcm Ir.put. 
1) sec. 

Then 

where 

%-P,F^0.565. P€-}-fass 10,03, ^7,7^22^ 
^-^(F.+rjmioro, #t=^,=103, 

ik-n-Mr* *a—i. 

Finally, we have 0Z = C.1C70, i.e., the value obtained for the mean- 

square error does not exceed »he given value for all practical purposes 

286. For the preceding example, determine the mean-square follow¬ 

ing error with allowance for the effect of the load torque. The load 

torque at the motor shaft is Mn * 2 g«cm, the moment of inertia of the 

moving masses for the motor shaft is J * I-ICT3 g-cm-sec2. The gear ra¬ 

tio between the motor shaft and the actuating shaft is 1 * 60CO. 

Solution. The me an-square error of servosystems possessing second- 

order astatism when worklm: into a load torque may be computed from the 
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following approxIsate formula [3]s 

"b®1'6 la the aean-cquarc error when workinß with zero load 

torque, is the torque error. For the valúen given * 

ysnusnwr • 

^*|^rp£*»rÓ.l' ; U.l7iH-=0^aV. 

287. Determine the parametern of the denlred logarithmic amplitude 

characteristic if we know that the spectral density of the Input-vari¬ 

able derivative has the fora 

-jF+zigqrïzfjr• 

where Tp * 1 sec Is the time constant for the exponential law governing 

the decrease in the difference between the instantaneous and asymptotic 

values of Q. Figure I96 shows the nature of the change in the velocity 
» 

of the input signal for the considered spectral density. The remaining 

initial conditions, as well as the following-accuracy requirements are 

the same as in Problem 285. 

Answer 

K - 47.5 1/sec2. 
C» 

288. Determine the parameters of a servosystem from the condition 

that the required following accuracy be ensured. The input signal is 

of the irregular rolling type. The correlation function for the roll 

angle is approximated by the formula 

slnfcltl), 

where D0 is the variance of the roll angle, 0C is the resonant frequen¬ 

cy, and u is the damping factor. The corresponding expression for the 

- 255 - 
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spectral density will take the form 

AW ” 

~í" +?iarn?]- 
The variances of the ra‘c and anele of roll are associated by the rola, 

tlon.-.hlp n,»0:-fr^<V • Dß » l.e., the variance of tie roll 

rate equals its mean square (0Elt = 2C degree sec). The roll resonant 

frequency 0O * 1 1'sec, the daaplnp factor Is u = c.Cb 1'sec, the ad- 

olsslble aean-square follcwinc error 1. 6S ^ c.l°. The scrvosystea pos. 

aesses second-order astatlsa, and Its frequency transfer function for 

the low-frequency region takes the form 

Solution. Solution of the problem consists in findinc the values 

of and Ï2« We first determine the mean-square errors 

.i, ITTWdV -i *- 

“ ¿ _í l -TTiír+PTTÎ^*]*' (i) 
where the coefficients of the expansion equal, respectively; 

r+ »as-0^1 

*" irioi-s'i m<>i+m/i*’3*- 

_tunc+pu 

The approxiaate values of A, B, C, and 0 are given on the assump¬ 

tion that e0T2 « 1 and u < Pc. Substituting the approximate values of 

A, B, C, and D Into (X), we can find the ultimate expression for the 

mean-square error simply connecting the following error with'the quan- 

- 256 - 

# 



titles Kc and Tg? 

^«.ea^iô(.+Q+fi) 

or 

The second additional equation relating and Tg is taken in the 

fora (see Problem 285) 

Substituting in the nuacrlcal values, we have 

5 

or 

We let = x; then 

^40000(1+0^4 TOI 

j^mb40000-(- I600jr. 

2 ,¿2 In approximation x * l6 and * x¿ l6¿ » 256 l/sec. 

Manu¬ 
script 
Page 
No. 

241 

245 

246 

249 

250 

2i?0 

250 

250 

250 

[Transliterated Symbols] 

K « k = kolebanlye * oscillation or kontrol'nyy a control 

«an* nagruzka * load 

h a 0 s moment a torque 

K.3 * k.z = korotkoye zamykaniye a short circuit 

11¾ a Dv a dvigatel* a motor 

Pc = Us a usilltel’ = amplifier 

P * R * reduktor a reduction gear 

TP = TO a takhogencrator a tachometer generator 

y * u a usllitel* a amplifier 



250 

251 

252 

252 • 

252 

253 

u * a * aekhanicheskiy = mechanical 

o.c * o.s = obratnaya svyaz* = feedback 

c.k.o« * s.k.o. * srednekvadratlchnaja oshibka = root-mcan- 
square error 

c * s « srediiiy * mean 

c * s * slezhenlyc * followlnc, tracking 

c ■ s * srez * cutoff 
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Chapter 11 

SELECTING AUTOMATIC CONTROL SYSTEM PARAMETERS ON THE BASIS 

OP THE REQUIRED DYNAMIC PROPERTIES 

*30, S2HFICIEIiT METH0DS POR SELECTING AUTOMATIC CONTROL SYSTE-1 PARAME- 
TERS 

289. A carbon-stack voltage regulating system (Fig. I97) is des¬ 

cribed by the third-order equation 

Pig. I97. Voltage-régulâtion 
system using carbon regulator. 
1) PDj 2) load resistance; 3) 
generator; k) OV; 5) Rreg; 6) 
carbon stack. 

IP+WO + VKi •! 
• -CV+iHi + fW/ft 

where Tq * 0.02 sec is the time constant of the generator (controlled 

object), Kq » 36 v/ohm is t-e generator transfer constant, T^ is the 

time constant of the sensing element (electromagnet winding), Tg is the 

time constant of the regulator (carbon stack), kr * 0.iiC5 ohm/v is the 

regulator transfer constant. 

Select the variable parameters of the control system T., T5 so as 
X €m 

vi 
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to ensure a stability ¿ O.k where the transient process is oscilla¬ 
tory In fors. 

Solution. We refer to the Vyshnecradskiy diacram (Appendices 1 and 

2). The control-systesi characteristic equation has the form 

(i) 
where 

%*■ TtT%T* •• ** r#r, T%T% •• T$Tp 
r#-{- î, •• 7» «•«!•; vr 

We reduce It to normal form 

where 

and 

1^+ 

a - « —V* i M ^ /.r. V«>. V «* 

are the Vyshnegradskly parameters. 

It Is possible to solve the problem by writing preliminary values 

for A and B (for example, A * ** and B « 3) satisfying the requirements 

specified. This way of determining T^ and Tg involves solving a system 

of two cubic equations, however. It is simpler to obtain the values of 

Tj, and T2 the aethod of successive approximations, assigning numeri¬ 

cal values and observing the path of the point with coordinates A and 

B on the Vyshnegradskly diagram. 

Substituting the given values cf the parameters into (3), we ob¬ 

tain working formulas for calculating A and B: 

IjmviW • tfi'i.i; • 

The results of calculations of A and B from Formulas (¿;) with Tg vary¬ 

ing and T^ » 0.01 sec are tabulated on page 260. 

(2) 

(3) 

- 259 - 



« 1 1 I M .• 1 1 * ' 
4 
f 

U 
M 

AI 
U u* A4 

• 
A4 
A4 

1) Tg, sec. 

anu 

Pig. 198. Construction of path or Vyshne- 
gradskly diagram. 

Pig» 199» Servosystem with 
tachometer feedback. 1) sen. 
sing element; 2) input 
transformer; 3) amplifier; 
4) tachometer generator; 5) 
motor; 6) reduction gear. 

On the Vyshnegradskly diagram 

(Fig. 198), we plot the path of the 

point G(A, B). It follows from the 

graph that In order to meet the spe¬ 

cified requirement hQ > 0.4, it is 

sufficient if the condition 

(5) 

is satisfied when « 0.1 sec. This 

condition may be satisfied by an ap¬ 

propriate adjustment of the*regulator 
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daaper. If the path of G did not fall within the desired region of the 

Vyshnegradskiy diagram, it would be necessary to change the value of 

Tx and find in similar manner a new shifted path passing through the 

required section of the Vyshnegradskiy diagram. 

The parameters and T2 should be varied in accordance with the 

technical feasibility of providing the values specified. 

290. For the servosystea whose diagram is given in Fig. 199, de¬ 

termine the required amplifier gain ku and feedback-loop transfer con¬ 

stant kQ for the given values of system over-all gain * 500 l/sec 

and transient-process damping factor X * 98#. The system open-loop 

transfer function taking into account the tachometer feedback has the 

form 

SC : rca 
* w“tom 

where Tn * O.03 sec is the electromechanical time constant of the motor 

K * klktrkukdv ls the over-a11 system gain neglecting the effect of 

feedback, k^ = 0.1 v/rad is the slope of the sensing-element character¬ 

istic, ■ I/O.55 rad/sec»v is the motor transfer constant, kp ■ 

■ Vdv^o.s the feedback-loop transfer constant, ktp • 3 is the in¬ 

put-transformer voltage ratio, kQa is the feedback-circuit transfer 
constant. 

Solution. We find the system closed-loop error transfer function 

i-*«. (D 

The system closed-loop characteristic equation will be 

(2) 
where 

jr>(|-f-4|) and £«b jr-, 
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(3) 

For a damping factor X « 98^, the.condition (23] 

or 

*“To;V + W. 
should hold, from which we obtain 

The over-all system gain Is connected with the gain K by the rela¬ 

tionship 

*• “rn¿*" t*/“ (11) 

Prom this equation it follows that 

•.-ih*;-«. (5) 

We go to the numerical calculation: 

If—iT.(l-! *J=JOO(l -i-|*1j)=*7oo î/^ee, 
» _ K IMO O,VS 

TT-■='*IT- 

«= = 0.01»; ’••/l ad/sec. 

291* Using the method of standard transient curves [39] (see Ap¬ 

pendix 18), we select the control-system parameters so that the damp¬ 

ing time for the transient t ^ I.5 sec, while the overshoot e <£ 10?$. 

The system open-loop transfer function has the form 

WM s= 7+) 

where is the over-all system open-loop acceleration gain, and and 

Tg are time constants. 

Solution. The corresponding standard transfer function has the 
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form (Appeniix l8) 

«î _ 3(,+^ 

Equating this to the given transfer function, we obtain the conditions 

for parameter selection 

If the transient damping time is not to exceed the given value. It is 

necessary that 

%“í “V“* 1/sec» 

where t is the transient duration. Then 

# 

Thus, the system open-loop transfer function should have the form 

292. Using the method of standard transient curves (Appendix l8), 

select the parameters of a servosystem so that the over-all system 

open-loop acceleration gain will be 2 100 l/sec2, while the over¬ 

shoot will be e £ 10#. In general form, the system open-loop transfer 
function Is the same as that for Problem 291. 

Answer 

, sec, 

sec. 

§31. FREQUENCY METHODS FOR CHOOSING AUTOMATIC CONTROL SYSTEM PARAMETERS. 
DESIGN OF SERIES COMPENSATING NETWORKS 

293.* Construct the desired logarithmic amplitude characteristic 

and select a series compensating device for an automatic control system 
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if the system open-locp transfer function in the absence of the compen¬ 

sating network has the form 

ma %*_ . 

+ -4 r^K» + *>) • 

where Tx * 0.1 sec, Tg * 0.02 sec, T3 » 0.01 sec, = O.C05 sec. 

The control system should have first-order astatism and should 

meet the following performance characteristics: a) velocity error coef¬ 

ficient = 1/2C0 sec, b) acceleration error coefficient C« = 0.C6 
2 ® 

sec , c) overshoot c for a unit step control input should not exceed 

3°^, transient duration tffl for a unit step control input should not 

exceed 0.8 sec for a number of oscillations not to exceed two. 

Solution. In accordance with the met: od of [26], we plot on Fig. 

200 the available logarithmic amplitude characteristic L (i.e., the 

characteristic of the uncompensated system) with gain IC^, equal to the 

required gain 

*.«¿«*200 l/sec. 

Then, using the given performance characteristics, we construct the de^ 
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sired logarithmic amplitude characteristic Lzh. The first conjugating 

frequency of the desired logarithmic amplitude characteristic. In ac¬ 

cordance with Item b) Is found from the following approximate expres¬ 

sion: 

1/"«* 

In order to ensure that the condition of item c) is satisfied we need 

only ensure that the desired logarithmic amplitude characteristic L w 
zh 

has a stability margin of ±lC db in modulus and 45° in phase (Fig. 

zn). 

He now find the cutoff frequency ay Using Fig. 263 (page 348), 

we find for e * 30#, corresponding to = 1.3, 

14 l/sec. 
*• 

We draw a line through point a>s with a slope of 20 db per decade. The 

intersection of this line and the second asymptote of the desired log¬ 

arithmic amplitude characteristic with slope of 40 db per decade gives 

the second conjugating frequency a>2 = I.3 l/sec. In the example consid¬ 

ered, a>s/a>2 > 10, which is fully permissible. Thus, the desired form 

of ^zh when " < “s has been found. We turn to the selection of the form 

of Lzh when “ > concentrating on the fact that for each of these 

sections the slope of the desired logarithmic amplitude characteristic 

should deviate as little as possible from the slope of the initial log¬ 

arithmic amplitude characteristic. 

We shall attempt to satisfy the specified performance conditions, 

limiting the difference in slope between Lzh and L, not exceeding 20 db 

per decade. Then Lzh must have, as we can see from Fig. 20C, conjuga¬ 

ting frequencies = 50 l/sec and = 100 l/sec corresponding to the 

conjugating frequencies of the initial logarithmic amplitude character- 

Istlc. Beginning at a frequency »5 = 200 l/sec, the desired logarithmic 
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Pig. 201. Curve:' for 
selecting stability 
■argln for modulus t 
and phase \i, 1) De¬ 
gree. 

4 

Fig. 202. Passive 
intecral-differen- 
tial network. 

Fig. 203» a) Real closed-loop system fre¬ 
quency response; b) »anslent curve. 1) 
sec. 

amplitude characteristic coincides v.iiK ,he initial characteristic. The 

desired transfer function has the form 

\<r)' *('+&) 
¿)('+¿.)('+A)" 

The stability margin Is determined by the shape of the logarithmic 

characteristic curves in the midfrequency region, i.e., in the range 

^ my us r,ee whether or not the obtained logarithmic ampli¬ 

tude characteristic Lzh has the required phase stability margin when 

Lzh 55 16 db fa * “2^ 0 ^ (a) = cds), and -1^ db (œ = œ^). 

From Fig. 200 when Lzh = l6 db, o> * 2 l/sec and 

- 266 - 



«(I)—M-aKtf^-|-iKt(|* a_|j|> , 

This corresponds to a phase aargin of 

P—« l«0 -12, — 59'. 

When Lzh * -li* db, œ * 50 l/sec ‘ 

f (36)»- 90- «rdg£—irctg -2«clf 190* 

and, correspondingly, n * l80 - 190 = -10°. 

When Lzh * 0, a» * o>s * l/sec 

4(M)aB~-90—«rctg^g*f*df£—Mcfg^— 

—avdg^-lircts^»-. 108' 

and correspondingly, 

P“ 160— lOftss 72\ 

Of the three values obtained for ^(a») only he second does not 

fall within the required range. This may lead to a slight increase in 

the absolute value |Palnl in coaparison with that which we have taken 

{^»inl * Paax ~ 1 * 0*3)» which, as we know [26] is not important. 

Thus the logarithmic amplitude characteristic Lzh found may serve 

as the initial characteristic for synthesizing compensating devices. 

Subtracting the ordinates of L from the ordinates of the desired 

logarithmic amplitude characteristic Lzh (Pig. 2CC), we obtain the log. 

arithmic amplitude characteristic of the series compensating device, 

which is not shown in Fig. 200. For the case under consideration, it 

is necessary to use a passive integral-differential element as the com- 

pensating network (Fig. 2C2)* with a transfer function of the form 

• few 0 + + CM 0,77,)(1 4 0,1/1) 

í,+¿)(, + ¿) <TT1^,+Ü^* 
In order to check the results obtained, we construct the phase 
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20íf* Rcal frequency characteristic 
P(a>); b) cr ?h of Q = f(u)/o>Q); c) imagin¬ 
ary frequency characteristic Ç(u>). 1) sec. 

characteristic tf2h(œ) (Fíg* 2C0) and also, using the nomogram of Appen¬ 

dix 3, determine the real frequency characteristic P(o>) for the closed- 

loop system (Fig. 203a). Using the method of trapezoidal characteris¬ 

tics, we construct the graph of the transient (Fig. 203b). The tran¬ 

sient in the system satisfies the given performance criteria. 

29**. Select a Sd les compensating element for an automatic con¬ 

trol system. The open-loop transfer function of the uncompensated sys¬ 

tem has the form 

ff 

fÄöT /ÿîïïT i*)' 

where Tj = 0.05 sec, T2 * 0.1 sec, T3 = 0.2 sec. The compensated sys¬ 

tem should provide the following performance characteristics with re¬ 

spect to the transient for a step control input: a) overshoot ö ¿ 2C£; 

b) transient damping time tm ^ 0.6 sec where the number of oscillations 
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n ^ 3; c) steady-^tate error A should not exceed 3£. 

Solution. We select the compensating element with the aid of the 

gain-phase characteristics [1, 30]* In order to obtain a steady-state 

error of 3# it is necessary for the system transfer constant to be at 

least 

1-9,01 ». 

, In order co plot the gain-phase characteristic of the compensated sys¬ 

tem it is necessary to select the appropriate form of the real frequen¬ 

cy response P(o>). 

On the basis of the given performance characteristics, and a spe¬ 

cified value of the slope « * 0.7, we find with the aid of the nomo¬ 

gram of Fig. 264 (see Appendix 6) the values of the real frequency 

curve P(u>) that provide the required performance characteristics of the 

compensated system. For C = 2C£ and P,^ = 1.0, we find P . = 0.3; the 
max ' min 

modulus stability margin AR = 55#, the phase margin is A? * 40, and 

* 3»8ir/u)p as well. For a given regulation time, we obtain an inter¬ 

val of positive values 

l/sec. 

On the basis of the value of o)p and the parameters upon which the nomo¬ 

gram of Appendix 6 are based, we construct the real frequency curve 

P(o>) (Fig. 204a). 

The initial ordinate 0,97, 

0,7«90«14 i/sec, 
«0,9*20«to i/sec, 

10*= 5 \ 'sec, 

«,«25 1/rec,«,« ^ «^ «42 1 sec, 

•g«!,^«0,7*42«29 ; 'Jec. 

Using the curve 3 = f(u)/u>G) drawn for a trapezoid with height uni- 

ty v^ig. 204b), we have plotted the imaginary frequency characteristic 
, 
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Pig. 205. Gain-phanc char¬ 
acteristics: a Compensa¬ 
ted systems; uncompensa¬ 
ted systems; c) compensa¬ 
ting elements. 

. for the closed-loop system (Fig. 2C^c). 

Using the characteristic curves 

P(u>) and Q(o>), It is easy to plot th« 

gain-frequency characteristic for the 

compensated system [30]. This cu -ve 

has been plotted in Fig. 2C5a from the 

data of Table 1. In Fig. 205b, the 

dashed line shows the gain-phase char¬ 

acteristic for the uncompensated sys¬ 

tem (Table 2). 

The modulus and argument of the 

gain-phase characteristic for the com¬ 

pensating element are obtained from 

the characteristics of the uncompensated and compensated systems 

TABLE 1 

Gain-Phase Characteristic of Compensated 
System 

• 1 1 * 
» 90 40 90 

4H 
*<•> 

MT 
-nr -130* 

Oil’ 
-iacr 

AH 
-ICO* 

0.UG 
-III* 

TABLE 2 

Gain-Phase Characteristic of Uncompensa¬ 
ted System 

• 
* 1»! 1 * * 

40 90 

AM 
♦M 

A* 
-IW -MS* 

US 
-200* 

0.99 
-20V 

03 
-2.V á 5

 
1 

• 
I 
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îhe calculated data are Given in Table 3. 

TABLE 3 

Gain-Frequency Characteristic of Compen¬ 
sa tine Element 

.-1 1 “ 
so » » 40 50 

4M 
4M 

«¿3 
ar 

0.10 
or 

0.174 
TV 

0.17 
»• 

021 
Vf 

02fi 
Vf 

Prom the values found, it is possible to plot the gain-phase char¬ 

acteristic of the compensating element. 

The rest of the solution for the problem requires us to select 

the type of compensating network whose gain-phase characteristic agrees 

most closely with the calculated gain-phase characteristic for the com¬ 

pensating element. 

Fig. 2Cu. Transient 
curve for Problem 
295* 1) sec. 

We shall assume that in the 

gain-phase characteristics of the 

Fig. 207# Diagram of servo- 
svstem. 1) Sensing element; 
2) working mechanism; 3) re¬ 
duction gear; compensa¬ 
ting element; 5) motor. 

ow-and high-frequency ranges, the 

corrected and uncorrected systems 

must coincide; then we must take as the compensating network a passive 

integral-differential network with transfer function 

The gain-phase characteristic of this network is a circle with center 

at point 0l (Fig. 205c). Taking values of the modulus RR or phase *;k 
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= 1.85 CGC, T, 
2k 

for any four points, wo find the time constant.;: T,. 
X l\ 

= 0.18 sec, s 0.C8 sec, * 0,02 sec* 

295. Determine the transfer constant of a series compensating ele¬ 

ment for a servosystem whose transfer function has the form 

where - C.O^l sec, = 0.Cl sec, = C.0C2 sec. The servosystem 

should have second-order astatlsm and should satisfy the following per¬ 

formance conditions: a) the over-all acceleration gain K 2 l/sec^; 
£ 

b) the c' rshoot c ^ 30#; c) the transient damping time t < C.^5 sec. 
m 

Answer 

»«(A) *= 

0 QfiÚJSpiU 4 0>XXXv>» * 

The transient curve is shown in Fig. 206. 

296. Determine the series compensating elements and compute the 

required amplifier gain k2 for the servosystem whose block diagram is 

shown in Fig. 207* On the diagram D is the motor, KU is the compensa¬ 

ting element, R is the reduction gear, ChE is the sensing element de¬ 

termining the error, RM is the working mechanism, Ql and 02 are the an¬ 

gles through which the driving and actuating shafts turn. 

The initial values are: 

1) sensing-element characteristic slope 

kj = 10 mv/ nng. min = 3^»^ v/rad; 

2) the gear ratio of the reduction gear is 1 = 350C; 

3) the maximum following rate 0=6 degree/sec = 30C ang.min^sec; 

the maximum acceleration is 

€ = 2 degree/sec2 = 120 ang.mln/"ec25 

5) the maximum error is 0 - Vi 
max * 

6) the maximum amplifier output voltage U = 110 v 
max w * 

7) maximum motor speed with amplifier wide open r = 6OCO rpm = 
0 max ^ 
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* 630 l/sec; 

8) the starting torque with the amplifier wide open Is M0 = 100 

g*cm; the mechanical characteristics of the motor together with the am- 

pllfler are reprsented by parallel straight lines; 

9) the load torque at the motor shaft Is Mn * 10 g-cm; 

10) the moment of Inertia at the motor shaft Is J * 0,018 g*cm x 

X sec2; 

11) the amplifier time constant is Tu = 0.02 sec; 

12) the magnitude ratio is M £ 1.5; 

13) the slope of the tachometer-generator characteristic is k » 

0.05 v«sec. 

Solution. The system open-loop transfer function in the absence 

of the compensating elements equals the product of the element transfer 

. functions 

#CI + VIO 4 *“ >1* + + V> * (1) 

Pig. 208. Logarithmic amplitude char¬ 
acteristic for Problem 296. 1) Logar¬ 
ithmic amplitude characteristic of 
compensating element; 2) sec. 
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The motor transfer constant is 

*“fe“5“W3 l/v.cec. 

The slope of the mechanical characteristics of the motor tocether with 

the reducing gear is 

"«M-IQ'* 1. n*cm*sec = 

-M ang.min/c*cm*sec. 

The motor time constant is 

-ec. 

In order to determine the required over-all gain (figure of merit) 

’•''th respect to velocity we construct the forbidden zone for the 

low-frequency of the logarithmic amplitude characteristic (see Problem 

2/7)* The control frequency is 

•b«« y «sy »0,4 1 'sec. 

The ordinate of the control point is 

i. » 1° M (i inoM^w-Jw _ M db 

The limiting value of the velocity figure of merit is 

:ec. jfc „ 1+Ml c go±^!:!? ^ 363 ! 

From this data, we construct the forbidden region (Fig. 208). 

Let Uw see whether it is possible for the servosystem to operate 

without damping devices. Since the first conjugating frequency of logar- 

ittimic amplitude characteristic of the corresponding transfer function 

(1), equal to » l/Td = 10 1/sec, is considerably higher than the con¬ 

trol frequency a>k = 0.8 i/sec, it is possible to use as the ultimate val- 

ue the velocity figure of merit a value of 363 l/sec. The corresponding 

logarithmic amplitude characteristic of the 1-2-3 type is shown in Fig. 

20S. 
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The permissible sua of the time constants [3] is 

• Ar+AiiTK-l 
*7mmTÇ-1- 

J£±I¿]2EL«otOWI-ec. 

In fact, the sua of the actual time constants is 

XrfB*OJO4-0.02«0,12 rcc. 

We thus see that without daaping elements, the system will not have 

the required performance characteristics. 

Let us consider a possible method of damping tí .* system with aid 

of series elements [3]. 

If we int. u£e Into the direct channel a passive element with a 

lagging time constant, it is necessary to form the desired logarithmic 

amplitude characteristic so that the peak error in the region of velo¬ 

city sign reversal will not exceed the given maximum value 0 . The 
max 

value found for the velocity figure of merit « 363 I'sec correspond: 

to a torque figure of merit 

4^— "j* cm ang. min. 

The torque error is 

Uf-w*- 

8 4 3 
-GHB. 
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The permissible value of the first large time constant Is 

r»-M* 0.230 
KO » 0.1 

4114 l'ïâ 
¡0.16 .'ec. 

From the figure of merit KÎ * 363 1/sec and the time constant = O.16 

sec, we can construct the low-frequency portion of the logarithmic am¬ 

plitude characteristic (Fig. 208). The base frequency for this charac¬ 

teristic is 

Let us now form the low-frequency and high-frequency parts of the de¬ 

sired logarithmic amplitude characteristic, which is of the 1-2-1-2 

type. From the base frequency we determine the required second time 

constant : 

«0.0363 sec. 

The third time constant is 

• Ü+I - 0.0073 'C'C. 

From the.e values, we plot the entire desired logarithmic amplitude 

characteristic Lz^. The logarithmic amplitude characteristic of the 

compensating elements is obtained by substracting the ordinates of the 

initial logarithmic amplitude characteristic from the ordinates of the 

desired characteristic. This difference logarithmic amplitude charac¬ 

teristic is also shown in Fig. 208. From the shape of this curve it 

follow* that the damping elements of series type should consist of: 1) 

a passive integral-differential element with transfer function 

n+v)ji+7» 
0 + 

where the time constant Tv is found from the well-known property of an 
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Integral-differential element 

T,—fi^W««o.01l4 sec; 

2) a pure-dlfferentlation element with transfer function 

•wW-i+V 
and 3) a combination of a passive differentiating element and a linear 

amplifier with over-all transfer function 

ITT J *» rrt+ • 

The pure differentiation element can only be obtained by using 

tachometer generators on the main and actuating shafts, introducing the 

derivative of the error angle. 

Where the signal from the tachometer generators is applied to the 

place at which the signal from the main sensing element is applied 

(Pig. 209), the required slope of the voltagr characteristic for each 

tachometer generator will equal 

mv»sec/ang. min * 

* O.37 V»sec/revolution = O.06 y¿sc. 

The passive elements should be introduced into the amplifier di¬ 

rect channel and they may consist of RC networks. 

The amplifier gain, allowing for the additional gain needed to op¬ 

erate the passive differentiating element ku * Ty/T2 is 

Where tachometer generators cannot be used to introduce the deri¬ 

vative of the error angle, the type of compensating elements required 

may be changed. 

As we can see from ^ig. 208, the pure-differentiating element is 

obtained on the basis of the fact that the high-frequency asymptote of 

the initial logarithmic amplitude characteristic has a large slope as 
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compared with the slope of the desired logarithmic amplitude character¬ 

istic. In order to eliminate this, it is possible to change the form 

of the desired logarithmic amplitude characteristic In the high-fre¬ 

quency section, going from a 1-2-1-2 type to a 1-2-1-3 type. 

The high-frequency section of the latter logarithmic amplitude 

characteristic Is shown on Pig. 208 by the dashed line. It corresponds 

to the transfer function 

rM— «y*™ 
^ MI + ÎÏMI + W 

The time constant Tr- is found as 
3 

^>ryr s ^ sec. 

The logarithmic amplitude characteristic of the compensating ele¬ 

ments in shown for this case in Fig. 2C3 by a dashed line as well. 

Looking at this curve we can see that the series-type compensating ele¬ 

ments should consist of three passive elements: an integral-differen¬ 

tial element and two passive differentiating elements combined with a 

linear amplifier to have an over-all transfer function 

The additional gain will be greater than in the preceding case: 

^ I7*4- 

The over-all amplifier gain also turns out to be considerably * 

greater than where a pure differentiating element is used: 

,7*®îmT5Ï4 “ ,,00®0- 

Another choice is possible for the high-frequency portion of the desir¬ 

ed logarithmic amplitude characteristic; in particular, the correspond- 

ing transfer function may have the form 

._^0 +VI_ 
W + ^Mt' + r^»(i + Vi • 
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Here t T^, but their sum, as before, should equal 

n+n- 
I rAHM-h 
ü äTI—* 

Manu¬ 
script 
Page 
No. 

258 

258 

258 

2^8 

258 

258 

238 

260 

260 

260 

260 

260 

260 

261 . 

261 

261 

265 

2Ó5 

267 

269 

271 

271 

[Transliterated Symbols] 

a = e « ekvlvalentnyy * equivalent 

par = reg = regulyator = regulator 

OB « OV * obaotka vozbuzhdenlya = field winding 

» * V [* vozbuzhdenlye * field] 

7r a Ug a ugol'nyy = carbon 

rm a pD * prlvodnoy dvigatel* x drive motor 

p = r X regulyator x regulator 

M3 * ChE * chuvstvltel'nyy element x sensing element 

P x R x reduktor * reduction gear 

Bx.Tp x Vkh.Tr• = vkhodnoy transformator » input trans¬ 
former 

7c * Us * usilitel* x amplifier 

TF « TO * takhogenerator x tachometer generator 

üb = Dv = dvigatel-» x motor 

y = u * usilitel1 x amplifier 

if am* mekhanicheskiy * mechanical 

o.c * 0.s x obratnaya svyaz* x feedback 

x a zh x zhelayemyy x desired 

c « 3 x srez a cutoff 

K a k a korrektiruyushchiy = compensating 

n = p x polozhltel*nost* = positiveness 

P*J * RM x rabochiy mekhanizm = working mechaiism 

K7 « KU * korrekt iruyushcheye ujtroystvo = comperuattn,: unit 
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D * dvigatel» * motor 

d * dvigatel* * motor 

n « nagruzka * load 

= l.a.kh. = logarlfmiclieskaya amplitudnaya 
Istlka = logarithmic amplitude 
istlc 

m ® moment = torque 

V [not identified] 

kharakter 
character 
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Chapter 12 

COMPENSATION OF AUTOMATIC CONTROL SYSTEMS 

§:2. PARALLEL COMPENSATING DEVICES (FEEDBACK AND DIRECT COUPLING) 

297* Select the proportional tachometer feedback parameters for 

the servosystem whose diagram Is shown in Fig. 210. The initial data 

are the same as for Problem 296, except 

-te-í-á-v that Td = C.05 sec. 

Solution. The system open-loop trans¬ 

fer function taking into account the ef¬ 

fect of the tachometer feedback will 

take the form 

Fig. 210. Diagram of 
servosystem with propor¬ 
tional tachometer feed¬ 
back. 

"W-TiR^W,. (1) 

where = K^/l + kQ s Is the new value 

of the over-all velocity gain (velocity 

figure of merit), êam ¿nd are the coefficients of the 

equivalent second-order circuit, k0#g = k2k3ktg is the feedback-loop 

gain, ktß is the slope of the characteristic curve for the tachometer 

generator and scaler in the feedback circuit. 

•In order to provide the necessary stability margin, which Is eval- 

uated by means of the magnitude ratio, we must ensure that the inequal¬ 

ity [3] 

!• + T*-I JM* -Ml l'ïïï^T 
nfcv -1—’• (2) 

is satisfied. 
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It is also necessary to take into account the fact that introduc¬ 

tion of proportional tachometer feedback changes the slope of the mech 

anical characteristics of the actuating motor by a factor of (1 + k ’ 
' o* s 

The required velocity figure of merit, allowing for leas flexible me- 

chanical characteristics is 

K«' (3) 

Solving the last two equations simultaneously, v;e can determine 

the required feedback-loop gain: 

-rw-'+ 
where 

The required velocity figure of merit is from (3) 

1.10 »0+ 
1 f306 l/sec. 

ó-8—. 

il . » / 
. I *$•*,* 

Pig. 211. Diagram of servo- 
system with elastic tacho¬ 

meter feedback. 1) Sensing 
element; 2) reduction gear; 
3) motor; 4) compensating 

element; 5) tachometer gen¬ 
erator. 

The permissible sum of the time con¬ 

stants (2) 

tr,¿Jg±^T7rrr_„0006| 3CC. 

We have an equivalent time constant 

«—£££-^.0.0064 sec. 

Thus, the problem of selecting the 

feedback-circuit parameters may be 

considered solved. 

The open-loop transfer function 
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Pig. 212. Logarithmic amplitude characteris¬ 
tics for Problem 298. 1) sec; 2) db. 

of the damped system will have the form 

Wi.\_*• _ 306 
w /(i + 6,4.10 vnf9j: 10 y,“• 

To conclude, we determine the required ampl-ifier gain and required 

tachometer-generator characteristic slope. The over-all gain Vor the 

open-loop servosystem in the absence of feedback should be 

^<>»306.11^3360 l/scc. 

The amplifer gain is 

* _ K*1 33G0.3500 
59300. 

The required slope of the tachometer-generator characteristic, allow¬ 

ing for the scaler, is 

V#3CC' 

The low value of this transfer constant indicates that the signal from 

the tachometer generator may not be applied to the amplifier input but 

may be introduced somewhere within the amplifier channel. 

The high amplifier gain is a drawback to this way of introaucing 

feedback. 
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298. Select parameters lor elastic tachometer feedback for the 

servosystem whose diagram is shown in Fig. 211. The initial data, are 

the same as for Problem 296. The slope of the tachometer-generator 

curve ktg * 0.Ö5 vsec. 

Solution. In connection with the fact that damping is Introduced 

by the first method of [3] (see Chapter 10), the desired logarithmic 

amplitude characteristic [1. a. kh.] Lz^ may be formed so that its 

first bend coincides with the control frequency of point A. (Fig. 212), 

In this case, the l.a.kh. should go above the forbidden zone at a dis¬ 

tance of 3 db. The required velocity figure of merit will be 

l/sec. 

This makes it necessary to have an amplifier gain of 

i —fr/ ft.-. 

The base frequency of the desired l.a.kh. is 

*=10,4512 —14,3 1/sec. 

The second time constant of the desired l.a.kh. is 

Vitt **l{í]^T?=T*=0’,í 1^eC* 

The permissible sum of the time constants corresponding to the 

conjugating frequencies to the right of the cutoff frequency (6] is 

Tr i kamai- it i |^,vr-rr xr*«--^r41—— 0fl7i 

We form the desired l.a.kh. so that its high-frequency asymptote 

has the same slope as the high-frequency asymptote of the original 1. 

a.kh. Lr. In the given case, the slope is 60 db/decade. Then in the 

high-frequency part of the desired l.a.kh., there may be a double tend 

at the frequency = l/T^. The corresponding time constant should 

equal 
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In order to simplify the compensating elements, it is possible 

to continue the section having the same slope for the desired l.a.kh. 

until the high-frequency asymptotes *L¿h and Lr coincide, which is shown 

In Fig. 212 by the dashed line. This yields a certain increase in the 

stability margin. The time constant determining the double bend in the 

desired l.a.kh. may be found by direct measurement of the conjugating 

frequency (Fig. 212). It equals T^ = O.CO9 sec. 

The desired l.a.kh. constructed in this manner corresponds to a 

system open-loop transfer function 

VUlmz ., ***** *   _SI2<i+ 
^ #0 + 2,Vm1 + »yyjJF• 

The subsequent calculations shall be oriented to this simpler case. 

In iig. 21¿ we have plotted the l.a.kh. for scries compensatin' 

elements obtained by subtracting the ordinates cf Lr from the ordin- 

ates of Lzh. It corresponds to series-connected integral-differential 

and differentiating elements with transfer functions 

•L /.i— f1* y>Mi -» r,») 

The transfer function obtained is needed only as a preliminary re¬ 

sult, since by the hypothesis of the problem, compensation of the sys¬ 

tem should be carried out by means of feedback rather than by series 

elements. Thus the transfer function obtained must be recomputed in 

terms of Ue equivalent feedback. 

The transfer function of the compensating element in the tachome¬ 

ter-generator circuit may be found from the formula 

m f.i— * — 

where »«(p)*«13 thc transfer fUnction for the portion cf the 

system enclosed by feedback. 

As a result of substitution of the values w3(p) and w z(p) wc 



have 

., <*+rt4 fa4 r,♦ tr,»# + if|+ r.r^r,rt + r/,*#» + ^pi. -s» -. 

Such an element cannot be realized physically, since the degree 

of the polynomial In the numerator Is higher than the degree of the 

polynomial In the denominator. We may attempt, however, to employ a 

physically realizable element having a transfer function close to that 

desired. As a physically realizable transfer function, we may take, in 

first approximation, the function 

where 

This transfer function may be realized for a direct-current tachometer 

generator with the aid of a simple divider having transfer constant 

*0.s and a differentiating RC-network with time constant RC * Tg * 

» 0.12 sec. 

The required divider transfer constant for the feedback circuit 

equals 

It is possible to avoid the use of a special divider but in this 

case, the point at which the feedback is inserted in the amplifier 

should be so chosen that from this point to the amplifier output the 

voltage gain will be 

. 10*'« 73. 

Thus, in first approximation, the transfer function of the compen¬ 

sating element in the feedback circuit should be 

•w.W-v-'o’rpg*. 
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Let us now check to see whether this element can be used to obtain 

the required.dynamic properties (for formation of the l.a.kh. of the 

desired shape). The system or¿n-loop transfer function, taklnc into ac¬ 

count elastic tachometer feedback, will take the form 

where 

i0) #ÏÏ+v+«»+«»)• 

*»+ 
“ f| = 2,74 jec, 

sec^ 
10*» c-c . 

Factoring the denominator of the obtained transfer function, we obtain 

m _ *„(1+F» 
“ w FifTi>mi > V i èp'i “ 

__ SI2(l40.l?f) 
fU + WlÏH ü^lô'V r ü,¿s. io yi* 

In the low-frequency section, this transfer function will coincide, for 

all practical purposes, with the transfer function corresponding to 

the desired l.a.kh. Lzh. There is a small difference in the value of 

the time constant Tx * 2.7^ sec, forming the first bend in the l.a.kh. 

In the high-frequency region, the condition imposing a limit on the 

sum of the time constants is satisfied, since a * C.6.10*2 sec, while 

by hypothesis the permissible sum of the time constants is. IT = 2.h x 

X 10~2 sec. 

A check to see that the peak amplitude of the oscillating-element 

characteristic does not enter the forbidden region for the high-fre¬ 

quency portion of the l.a.kh., i.e., 

■«fl^WK-arr. 

also gives a positive result. 

If it is desirable, better agreement may be obtained between the 

resulting transfer function and the desired transfer function in the 
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low-frequency reclon, and the Inequality T i ^ may be avoided. To do 

this, we must compensate the coefficient k e and make It equal to 

Jfî'W • 10“* *= 7.4 • IO*1. 

Then ln like manner we can obtain the corrected open-loop system 

transfer function In the form • 

WM*-1 .WHMfrL. _ 
#U+a^pnrTu.6j. iu •> -i iu >•> • 

299» Determine the feedback form and parameters for the electro- 

hydrollc servosystem whose block diacram Is shown In Fig. 213. In Flc. 

213 A and B are the halves of the hydraulic regulator, GU Is the hy¬ 

draulic amplifier, PD Is the drive motor, RM Is the working mechanism, 

UD Is the control motor, ChE Is the sensing element (tachometer gener¬ 

ator), R is the reduction gear. The system open-loop .transfer function 

will take the form 

-t- Vm'i -* Itmpi • 

where Kg is the acceleration figure of merit, Td =* 0.C5 sec is the 

electromechanical time constant of the control motor, T = 0.02 sec 
gm 

is the hydromechanical time constant of the hydraulic regulator. The 

Fig. 213. Diagram of electro- 
hydraulic servosystem. 1) Sen¬ 
sing element; 2) working mech¬ 
anism; 3) reduction gear; h) 
B; 5) drive mo'-or; 6) hydraul¬ 
ic amplifier; 7) reduction 
gear 1; 8) control motor. 
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2 

Pig. 21¿*. Logarithmic amplitude character¬ 
istic for Problem 299« 1) sec ; 2) db. 

system should have an acceleration figure of merit ¿ 25 l/sec^ and 

a magnitude ratio M £ 1.8. Feedback is taken around the control motor 

and the amplifier. 

Solution. In Fig. 214, we have plotted the l.a.kh. for the initial 

system for a value Kp = 25 l/sec2. On the same figure, we have plot¬ 

ted the desired l.a.kh* Lz^ corresponding to all required performance 

characteristics for the system. 

Let us consider the sequence in which the feedback form and param¬ 

eters are determined. 

Taking into account the additional feedback, the system open-loop 

transfer function W2h(p) may be written in the form 
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where *0-s(p) Is the transfer function of the additional feedback cir¬ 

cuit, vx(p) Is the transfer function for the part of the system In ser¬ 

ies with the feedback loop, Frcm the expression given It follows that 

the l.a.kh. of the feedback circuit L e may be found from*the known 

l.a.kh. LZk and In the following manner [3, 31] j 

1) from the l.a.kh. of the initial system L., we calculate the de¬ 

sired l.a.kh. i.e., we find the l.a.kh. corresponding to the 

transfer function 1 + w fp)w (p); 

2) from the shape of the l.a.kh. L1# we construct l.a.kh. L2 cor¬ 

responding to the transfer function w (p)w (p): 
X'r/ O.S'r/ 

3) from the l.a.kh. Lg, we calculate the l.a.kh. for that part of 

the system In series with the feedback loop L ; as a result, we deter- 

mine the l.a.kh.* for the feedback circuit L • 
o. s 

In the problem as solved, the difference l.a.kh. will lie com¬ 

pletely above the C-decibel axis, which violates the minimum-phase con¬ 

dition when we go to l.a.kh. Lg [31]« Thus we should increase the gain 

of the initial system beforehand to a degree such that the difference 

l.a.kh. lies completely above the 0-decibel level or lies in the 

positive-decibel region. 

In Fig. 2lh, we have plotted the l.a.kh. of the initial system 

with an increased gain = o)¿ = 36OO l/sec2, which we designate by Lr. 

On the same figure we show the difference l.a.kh. obtained by sub- 

tracting the desired l.a.kh. Lzh from the initial l.a.kh. Lr. In order 

to determine the l.a.kh. Lg, we use a table of transformations of l.a. 

kh. (Appendix 19, transformation VII). 

Since feedback is taken around the control motor and amplifier, 

then 
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Pig. 215. Electrchydraulie 
servosystea with addition¬ 
al feedback circuit. 1) Sen¬ 
sing element: 2) working 
mechanism; 3) reduction 
gear; 4) drive motor; 5) hy¬ 
draulic amplifier; 6) con¬ 
trol motor; 7) reduction 
gear 1; 8) tachometer gener¬ 
ator. 

Fig. 216. Block diagram of 
system into which direct 
parallel coupling has been 
introduced. 

The l.a.kh. Lx corresponding to this expression is plotted in Fig. 21¿*. 

Subtracting the l«a.kh. Lx from the l.a.kh. Lg, we construct the 

initial l.a.kh L0#s; from its form, we can write an expression for the 

feedback circuit transfer function where 

WS- .Vcgh >- fy») 
iTf** 

where 

4m I 

The transfer function obtained may easily be realized by connecting a 

tachometer generator and passive integrating element (Fig. 215) into 

the feedback circuit. 

300. Determine feedback form and parameters for the system consid¬ 

ered in Problem 299 on the assumption that the feedback circuit en¬ 

closes part of the amplifier, i.e., wx(p) = kx. The remaining informa¬ 

tion is the same as for the preceding problem. 

Answer. The feedback-circuit transfer function will have the 
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fora 

This transfer function may be realized by connect Inc aperiodic 

(finite tlae-constant) and passive intecrating elements in series. 

301. Select direct parallel coupling parameters for the automatic 

control system whose block diagram is shown in Fig. 216. The open-loop 

transfer function of the initial system has the form 

WMr- w _ 
. f0+ t tj>, • 

where 1¾ = JOG l/sec, Td = 0.C3 sec, Tu = 0.02 sec. After Introduction 

of parallel direct coupling, the system should possess seccnd-order 

astatism, should have an acceleration figure of merit = 100 l/sec2, 

and a magnitude ratio M ^ 1.5. 

Solution. The system open-loop transfer function, taking into ac 

count introduction of the direct parallel coupling, is represented in 

the form 

W_tm\ — -- V *■•€ / 

■ w + f*nrrr?> • 
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where 

K.-K.*" 

Direct coupling introducing a signal proportional to the integral 

of the error (aisadjurtment) can be realized with the aid of an inte- 

grating drive. 

In Pig. 217 we have shown the l.a.kh. for the initial system 

the desired l.a.kh. Lz^, and the direct-coupling l.a.kh. L . 
p. s 

The required transfer constant for the direct-coupling circuit is 

found from the condition 

or 

*«-*¿■*£¡¡*=0,11 1/sec. 

It is desirable to make the ratio k,/k equal to l/o>0. From 
X p. s 2 

this we obtain 

In order to satisiy this condition, we must deliberately reduce the 

transfer constant of the first element within the direct parallel-coup- 

ling loop. At tie same time, the transfer constant of the second ele¬ 

ment in the amplifie!’ main channel is increased by the same factor in 

order to keep the quantity constant. 

By introducing an integrating direct-coupling loop, it Is possible 

to bring the l.a.kh. of the Initial system close to the desired form 

^zh **or I°w an(l middle frequency ranges (L* )• 
zh 

Final approximation of system l.a.kh. to the desired form may be 

obtained by compensating the l.a.kh. of the system in the middle and 

upper frequency ranges by using series differentiating elements or by 

means of equivalent direct coupling or feedback. 
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533- DISTURBANCE CONTROL (COMBINATION CONTROL) 

302.* Determine the required levels of compensating signals with 

respect to the fi'-st and second derivatives of the control variable for 

a combination-control servosystem (Fig. 218) with transfer functions 

*w-v+f?£. 

where = 0.05 sec and Tg = C.CC2 sec. The system should ensure follow¬ 

ing with an error ¿ 0.1° for a maximum following rate Q x = 15c0/ 

/sec and a maximum acceleration £max * 750 degree/sec^. The magnitude 

ratio M ^ 1.5. 

• 

j: 
V 

□j 4 

4 . 

Fig. 218. Block diagram of combination- 
control system. 

Fig. 219- Logarithmic amplitude 
characteristic for Problem ¿02. 
1) sec. 
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Solution. In Fie. 219 we have plotted the control point A. with 
K 

coordinates 

and 

l/sec. 

I,«30 |g20üJtKõ**50 

If we draw through this control point the low-frequency asymptote 

of the l.a.kh. corresponding to the transfer function of the initial 

system, then the required velocity figure of merit will be 

Km, ISO 
1500 l/sec. 

We know, however, that for a .^iven value of magnitude ratio M, the min 

imum permissible velocity figure of merit in the absence of any compen 

sating devices will be [3] 

-AM-" ITFZL ^ » iXv^T *V.4 M *" W» — 40 l/sec. 

If we introduce a signal consisting of the first derivative of 

the control variable, the servosystem will acquire the properties of a 

system with second-order astatism. 

The required acceleration figure of merit equals 

K,*= t ~p=7500 l/s- c2. 

Here the required velocity figure of merit for the initial system is 

found from the formula [^] 

#S«<r»-r fi)a;=0.052.7500 = 390 l/sec. 

i.e., is much less than Kj^. When the second derivative is also in¬ 

troduced, the required Jerk figure of merit is 

37500 l/sec3. 

The required velocity ligure of merit may be determined from the ex 
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pression [4, 29j 

Equating 1^'* and the velocity figure of merit, as may occur without 

compensating elements (¾ = be l/sec), we obtain the required value of 

the differentiating time constant: 

arrnjKi 40-0,00.0//».». 37 5WI 
10^. 10** rec* 

Pig. 220. Logarithmic ampli¬ 
tude characteristic for Prob¬ 
lem 303* 1) sec. 

m 

The time constants determining the levels of the signals Introduced are 

found from the compensation conditions [^, 29J 

0,025 -CC, 

**“ r* -f = 0.03 4-0,002 -f 0,018 = 0,070 sec. 

Thus, the transfer function of the compensating circuit should have 

the form 

The l.a.kh. of the system that corresponds to the parameters found 

is shown in Pig. 219 (lower l.a.kh.). 

303. Determine the required level of compensating signal propor- 
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tional to the first derivative of the control variable 

t(p)-=v. 

and compute the other required compensating elements for a servosystem 

whose open-loop transfer function has the form 

rw“7ïïT»ÿiïrng-r* 
where = 0.1 sec is the electromechanical time constant of the motor, 

Tu ~ 0*C5 sec ls the amplifier time constant. The system should have 

second-order astatism and should ensure following with an error 0 <r 
max 

£ 2 ang.min for a maximum following rate of 0 =30 degree/sec and 
max ° 

u maximum acceleration of eaax = 30 degree/sec2. The stability margin 

is determined by the magnitude ratio M 1.5. 

Solution. We first find the desired equivalent system open-loop 

transfer function. 

The flr^ asymptot * of the l.a.kh. is a straight line with slope 

of iiO db/decade. Its position is determined by the base frequency (Fig. 

220) 

= l/scc- 

In order to obtain a stability margin corresponding to the magni¬ 

tude ratio M, the transfer function for middle frequencies should have 

the form [3] 

ft (m) b- 

where 
O 

•J*=iC*=f00 Vsoc , 

T%wmiVlTTi^L~0‘0575 c» 

0,0375*0,0| 15 'ec. 

The desired system closed-loop transfer function i. 

♦.«—r“''' _ 
ÎTr^lfi AVt VJ* TP' r Tf' • 
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When the compensating signal is introduced, the system closed-loop 

transfer function may be represented in the form [^, 29] 

♦.ip)« J*/*-„iifll*^ iftl 
r+ *rr»A,^ ■ *= vi w r(ri 

Comparing the expressions given, we obtain 

tW—1^*= V. 

. or 

S■*7*■»0,0575 sec. 

which determines the required compensating-signal level. Further, we 

have: 

•*w“ x+^/iv i-r?-+= 

Fig. 221. Block diagram of system for 
Problem 303* 1) Motor; 2) reduction gear. 

The desired transfer function of the initial servosystem is 

I 

m X 17.4_ 
ß0 H vTV) TTTTo.ülav» 4 Ü,IXJU7>’( • 

The transfer function of the uncompensated system is 

HP /m\ 
w “* Tïï+Taf>irr“"/PTaTri• 

Comparison of the last two expressions shows that if we are to have 
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^ ^(p)* following conditionj muct be satisfied; 

it«« 17.4 1/sec, 
^+^=^-0,0193 SCC,« 

Vf =*0*^0,00072 . ec¿. 

No difficulty Is presented by the first condition, since the vel¬ 

ocity figure of merit which is the over-all transfer constant of 

the open-loop system may be arbitrary. Satisfaction of the second and 

third conditions requires the introduction of compensating elements de¬ 

creasing the coefficients on 2 ar*d p2 in brackets in the expression 

for W(p) since without the compensating elements 

74+ 7,«Q,|ft sec and 7,7, = 0,003 see2. 

This may be done by using proportional feedback around the amplifier 

and the amplifier together with the motor (Fig. 221). In this case, the 

open-loop transfer function of the circuit together with the feedback 

loops will-be 

Comparln 

that 

J14- f j_V* _.i * 

♦he last expression with tne expression for W2h(p), we find 

n^í+Tç-“*“®.®00« c2, 

fron which wc find the required Galna for the first and second feed- 

back loops (Fig. 221); 

Ak«IA 4, = 27.3. 

§3^. CARRIER-FRE^UEI.’CY ELDuETiTS 

304. Select a circuit and parameters for an alternating-current 

element whose l.a.kh. corresponds In envelope to a differentiating ele- 
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ment (Fig. 222) with transfer function 

where T1 = C.C3 sec, Tg 

31^0 l/sec. 

0.01 sec. The carrier frequency ü>n equals 

«0 
Fig. 222. Logarithmic 
amplitude characteris« 
tic of real differen¬ 
tiating element. 
1) sec. 

Fig. 223. Circuit of 
resonant RLC network. 

Fig. 22b, Circuit 
of twin-T RC network. 

SolutIon. The transfer function of a 

real alternating-current differentiating 

element with respect to the envelope fre¬ 

quency fl may be written for a fairly narrow 

band of frequencies n in the form (3] 

By the problem hypothesis, G, = T^/T^ * 

* 0.01/0.C3 = 0.125, and 0.08 sec. 

At present, the following types of differentiating elements are 

commonly used: a) twin- or parallel-T RC network; b) brldge-T R? net¬ 

works; c) bridge RC and LC networks; d) resonant RLC networks. 

Le- us consider the possibility of using a resonant RLC network 

(Fig. 22z). The transfer function of such an element with respect to 

the envelope has the form (see Appendix 21) 
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For our case 

Wc thus obtain four equations In four unknowns: 

W«2/?,C. 0.01 = 2^^-^ 
"I T K% 

. J NO =-,^. 

The resistance R¿ is usually clven (It equals the input resistance 

of the followinc eleaent). Let R2 = 100 kohm. We find R : 

HUSR.-f O.IM. 100= 100. 

Ri —*=700 koljn. 

Wc now find the capacitance C: 

^_0.W o,w A ¢-^=,-^ = 0.017 

To conclude we find the inductance L: 

uf. 

i“4e”JTw,TÍ)»ir“’'-* hen rye. 
* 

305. Find the parameters of a twin T network (Fig. 324) working 

at the carrier frequency cu = 27rf = 1/-»«■* tv,« « « ... 1 J n n The remaining conditions 

are the same as for the preceding problem. 

Solution. In order to determine the element parameters, we use 

the table given in Appendix 22. 

By the hypothesis of tie problem, the product = 25. By inte- 

Cratlnc the valuer, we can find the G0 correspondre to the obtained 

product T^. The coefficient G0 determined In this manner proves equal 

to 0.02. Thus G0 may be made smaller than the Given value of G„. This 

In turn, provided the relationship 0.C8 sec Is maintained, 

can lead to a reduction In the time constant T2 to a value T2 = T G = 

= C.08.C.02 = 0.001Ó sec. 
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As a rule, a reduction in the time constant Tg will not Impair 

the dynamic properties of a compensating system. 

Let us determine the parameters of the twin-T network. Let = 

* c2 = c3 = G Ä °.5 then (5ee Appendix 22) 

« Ift* - L 
Rê- ^ »'OO otjns, 

***= S¡& = 'fTjûT^vT^wr ^ 8000 Olims, 
o _ I • w» 
* yTmïc * *m oi • 

306. Find the parameters of a twin-T network. The differentiating 

time constant Td = 0.CC47 sec. The carrier frequency on = 27rf = like 

1/sec. Cx = C2 = C = 1 nf. 

Answer 

Gq « 0.03^, R1 = 134 ohms, Rg ^ jSc olims, R^ = 22lj ohms. 

Manu¬ 
script 
Page 
No. 

28O 

28O 

280 

280 

280 

28C 

280 

281 

282 

282 

283 

[Transliterated Symbols] 

a * d « dvigatel* « motor 

h * n * novyy * new 

o.c » o.s * obratnaya svyaz* = feedback 

y = u * usilitel1 « amplifier 

xr = tg a takhogenerator = tachometer generator 

43 = CUE . chuvstvitel'nyy element = ¿ensltlve element 

P = R * reduktor a réduction gear 

K3 = ¡C = korrektIruyujhcheye zveno = compenratlnc element 

X = zh a zhelayemyy a desired 

p=rs regulyator = regulator 

r. • a.X. a l.a.kh. a log rifmicheskaya amplitudnaya kharacter 
istika a logarithmic amplitude characto 
1st ic r- 
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283 

284 

284 

28? 

28? 

28? 

28? 

28? 
» 

288 

290 

291 

296 

297 

299 

K * k * kontrol*nyy = control 

n.3 « p.z s posledovatel*nyy element = seriej element 

c « s * sistema = system 

rm * PD = privodnoy dvipatel» = drive motor 

ry * GU = eldravllcheskly usilltel* = hydraulic booster 

PM » RM * rabochiy mekhanlzm = working mechanism 

yjl * UD = upravlyayushchiy dvlgatel* « control motor 

TM « ßüi - gldromekhanicheskiy = hydromechanical 

h * i = iskhodnyy = initial 

ne * ps = parallel*naya svyaz* = parallel coupling or pryam 
aya svyaz* = feedforward 

K = k = korrektirovanyy = compensated 

» = e = ekvivalentnyy = equivalent 

üb * Dv = dvigatel* * motor 

H = n = nesushiy = carrier 
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Chapter 13 

• SPECIAL AUTOMATIC COriTROL SYSTEMS 

535- FORCE GYROSTABILIZATIOÎJ SYSTEMS 

3C7. Fleure 225 shows the dlaercm of a single-axis force gyrosta- 

bilizer. Set up the differential equations if the base on which the 

stabilizer is mounted moves owing to rolling 

about the stabilization axis; find the sys¬ 

tem open-loop transfer function and con¬ 

struct the logarithmic amplitude character¬ 

istic [l.a.kh.]. 

Fig. 225. Diagram of 
single-axis force gy- 
rostabilizer. 1) Mo¬ 
tor; 2) DUP. 

The initial data are: 1) kinematic gy¬ 

roscope moment N * 12.9»103 g.cm«sec; 2) the 

moment of inertia of the parts involved in 

rolline, referred to the noter shaft Is J - 0.002 g-cm-sec2; 3) the mo- 

■ent of Inertia of the gyroplatform about the stabilization axis Is A . 

= 1000 g-cm-sec ; 4) the gyroscope moment of inertia about the preces¬ 

sion axis is B = 4 g*cm*sec2; 5) the load moment on the stabilization 

axis is Mx = 1000*g*cm; 6) the load moment on the precession axis is 

Mg = 0; 7) the amplifier time constant is Tu = 0.1 sec; 8) the gear ra¬ 

tio between motor and gyroplatform is n = 2C0; 9) the slope of the pre- 

cession-angle pickoff characteristic is ^ = 1 v/degree = 57.3 v/rad; 

10) the motor develops a starting torque of Mp = 20 g.cm for a voltage 

across the control winding of Un = 110 v; 11) the no-load speed is 

flkh.kh s 100C/sec for a voltage across the control winding of U = 
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* 110 v; 12) the amplifier voltage gain Is = 5. 

In the calculations we assume that the real frequency of free sta¬ 

bilizer oscillation Is less than the computed frequency by a factor of 

1*5 owing to elastic torsion and clay* 

SolutIon. We use the following definition: a Is the stabilisation 

angle (stabilization error), ß Is the precession angle, e Is the base 

roll angle, Mdv Is the torque developed by the motor, ^ and u- are 

the voltages across the amplifier Input and output. 

Then the Initial differential equations will take the form 

Bf + m=M,=0. (2) 
=»* 13 J 

■•+ (^ ) 
•1 *=*!?► (5) 

In these formulas, we Introduce the coefficients 

v/c»Cm 

v»i:ec/rad. 

In order to obtain the system open-loop transfer function, we cut 

the system as shown In Fig. 225. The angles ^ and ß2 will determine 

the system open-loop transfer function 

(6) 

The entire system will then be divided Into two elements. The first 

element Is the precession-angle plckoff. Its transfer function Is de- 

termlned from (5): 

v/rad. (7) 

The second element is all the remaining system with transfer function 

•‘«“tS- (8) 

In order to find the latter, in the system of equations (1)-(^), 
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we go over to transform:; and set the external disturbances equal to ze- 

ro (M2 = 0, Mx = 0, and S 0). .Then, substituting e2 for the angle ß, 

we obtain 

CV^ t)Mt=àéHh 

(9) 
(10) 

(11) 

(13) 
We solve the resulting system of equations for the angle ß2, discarding 

the zero root (the gyrostabilizer is considered to be uncompensated): 

• %%(! +V)(m Jp) 

The open-loop transfer function is 

r^«iT|(f»)«r4(r)= 

«•iO*)».. (13) 

T4" * 
(14) 

The quantities entering Into this formula are determined as follows. 

The over-all open-loop gain Is 

• S•    _ l/sec 
* àjí 5>~ÜJ. 10' i/ c* 

The calculated free-osclllation frequency of the gyrostabilizer 

is 

J2^; 10» 
ImmiT 300 l/sec. 

The real free-oscillation frequency is taken equal to 

f aBH^BSQ^cs 133 l/sec. 

The time constant of the motor together with the gyroscope is 

**• *>/• ** . Mr»* ^ 7^’,ü -cc. 

Substitution of the numerical values into (14) yields 

(It?) 7<i+*w(i+*»-i»>+£j'‘ 

The l.a.kh. of the open-loop system has been plotted In Fig. 226 
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Fig. 226. Logarithmic amplitude character¬ 
istic for open-loop gyro.nabilizer. 1) sec. 

in accordance with (14) and (15). 

308. Under the conditions of the preceding problem, determine the 

admissible over-all grin K and amplifier gain such that the magni¬ 

tude ratio of the closed-loop system will not exceed M = 1.5. 

Solution. From the condition that must be satisfied in order to 

assur permissible phase shift in the region of the cutoff frequency 

(Fig. 226) we have [3] 

**■7, n “çí-2-= 
a?'19,7 1/sec. 

From the condition requiring that the resonance peak not enter the for¬ 

bidden zone we have for the high-frequency part of the l.a.kh. 

Äl^pT* Î33#*2,5*lO'^O.I ** 35 1/cec. 

Finally, we con let K £ I9.7 l/sec. The permissible amplifier gain is 

ä^t 

3°9. Using the conditions of Problem 2C7, determine for a gyrosta- 

bllizer tne amplitude of the stabilization error when K * 0.8 l/sec, if 

- 305 - 



the base rolls In accordance with a harxor.lc law at period T = 5 sec 

and amplitude a * 10°. 

Answer. The amplitude of the moment component of the errer i.~ 

«.»• 10* rad = C. 

The amplitude of tie haraonic coapcnent Is 

where <i> = 2ir/T = 6.28/6 = 1.05 l/sec and . - 2 
'max = aTa = 1.1« 10 = il de- 

greec/eec • The resultant error ij 

*■•** **0.1« 0,120 ** 0,29*. 

310. In a force cirrostablllzer, find the over-all open-loop Caln 

and the steady-state precession ancle when a constant load torque M = 

1000 r.ca Is applied to the stabilisation axis. The gyrostablllsor Ls 

the followInc parameters: 1) kinetic moment of the gyroscope H = 2.10 

C'cm-secs 2) the gyroscope moment of Inertia about the precession axis 

Is B = 1.5 C'cm-sec2; 3) the gear ratio of the reduction cear is n = 

150; 4) the slope of the stabllisln^-motor torque characteristic is 

l/k2 - 0.5 g.cm/v for k2 = 2 v/g-cm; 5) the slope of the precession- 

angle plckoff curve is kx = 0.5 v/degree = 28.6 v/rad; 6) the amplifier 

voltage gain is k4 = 10. The parameter symbols agree with those of prob, 

lern 307. 

Answer. The over-all open-lcop gain 

Is 

*'■ L. 

Pig* 227. Force sta¬ 
bilizer with tachome¬ 
ter feedback. 1) Motor; 
2) tachometer generator; 
3) DUP. 

* Kff ~t~2. ,0*8 x 

The — teastate precession ■**-" * 

m ÊéXti 13. lUO 

Another expression for tr.e steady-state 

precession angle of the stabilizer 

c 

Ca
í 



is: 

a — *Mti 1^1. looa nA_ , .c 
n** iijí^íáo.jn.íi.iâ*®'0*07 !avi ~ • 

311. In a sincle-axiò stabilizer (Fig. 227), perform the calcula- 

tions for the voltage feedback circuit of a tachometer generator on 

one axis with a stabilizing motor and find the required amplifier gain 

such that the steady-state precession angle will not exceed ß * Io 

when a constant load torque Mj = ^00 g*cm is applied to the stabiliza¬ 

tion axis. The initial values, in the notation of Problem 307 are: N = 

* 6.5*10^ g.cm.sec, B = 5 g-cm.cec2, A = 800 g-cm-sec2, Tu = C, M2 * o# 

4*1 v/degree = 57.3 v/rad, k2 = v/g.cm, k3 = 0.2 vsec/rad, n = 

* 50. The permissible magnitude ratio is M = 1.3. 

Solution. The steady-state precession angle is determined frca 

the expression 

[rad3.8gStI.i5rree.-3 

Froa this we obtain the required over-all open-loop gains 

^ 1AeC* 

The time constant for the motor together with the gyroscope is 

râ. • ■“ X¡]7 ^ 47¿>Tur *= • *0 1 sec. 

The square of the free-oscillation frequency of the gyrostabilizer is 

lA-^C2. 

The permissible value of the over-all gain in the absence of tach¬ 

ometer feedback [3] 

»««Tâ.tjrfv» UK- lO’-l.n-IO 1/sec. 

This gain is considerably below the required value K = 22 l/sec. 

When the tachometer feedback is introduced, the Inequality 
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should hold. Prom this we can determine the required feedback time con- 

stant: 

H> , J7 lft , 
f'il r*-r 

10 «see. 

On the other hand, the feedback tLT.e constant equals [2J 

where is the amplifier çain for the tachometer-generator signal, 

1= the tachometer-cenerator sensitivity. From this last expression we 

can find the required value of the product: 

WKt "4.6.V. |0 » . , j 
Mi*= —,.0-  --«50#. V• sec/ras. 

Next, from the expression for the over-all open-loop gain 

M«« 
* kji 

we can find the required amplifier gain for the main signal: 

* 4*6*5.10*.?» 
*• É^î 0- 

Fig. 228. Intégrâting-drive. 1) 
Motor; 2) tachometer generator. 

When the feedback slCnal Is added to the main sicnal as shown in F1C. 

227, l.e., when k¿ = ku, the required tachomoter-ecnerator sensitivity 

will be 

v«rec/rad = C.C2fj v/rpm. 
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§3ó. INTEGRATING (TACHOMETER) DRI\rE 

312. For the integrating drive mechanism illustrated in Fig. 228, 

determine the maximum permissible open-loop Caln K such that the closed- 

loop system magnitude ratio will not exceed M = 1.3. Also find the am¬ 

plifier gain ku corresponding to the value found for K. The Initial 

values are: 1) time constant of motor together with tachometer genera¬ 

tor T0 = C.l secj 2) time constants of amplifier charnel T, = C.C1 sec 

and T2 = C.CC5 sec; 3) tachometer-generator characteristic slope k 

5*1C-3 v/rpm; 4) motor-characteristic slope kd = 10 rpm/v. 

Solution. The permissible over-all open-loop gain for the static 

system may be found from the expression [3] 

f. AP+Afl'TFTl 
2-» 

wtere TQ Is the largest time constant, ZT Is the sum of the small time 

constants. For the case under consideration, we have 

y. jM*+.ifiTrrr¡ 
^TTTT, 2 

ÇHi 2-- 

Since the over-all gain equals 

then the required amplifier gain will be 

9.2. 

■» fjt„ ÍM.J. 10 1=5 ,8*- 

313^ For the previous problem, determine the moment of inertia of 

the stabilizing flywheel on the motor shaft if it is necessary to 

bring the over-all gain to a value K = 1000, while the moment of Iner¬ 

tia of the motor together with the tachometer generator Is J = c OS 
2 d 

g»cm«sec . 

Answer 

A■*— ij =s0,03* I0S»5,4 g*cm»sec^. 
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31*. For the tachometer drive of Fic. 22:, determine the required 

cver-all open-loop cain K correspondInc to a stable speed rance D = 

10,000. The Initial values are: 1) maximum meto** speed n = oCOC 
max 

rpm; 2) voltace across motor control windln- U = 11? v, correspcndln,: 

to a starting torque M = 100 g.em and an Ideal no-load .-peed n 
F r kh.kh ~ 

* 6000 rpm; 3) maximum motor shaft load M = 20 g»cm. 

Solution [3]: 

The minimum stable system speed Is 

Cnno 
* 'll“ “ÍÜÜUJ ~ °*f* rprr‘* 

^hir speed is connected with the load torque by the relationship 

• *• 
- 2* (i) 

where is the system torque figure of merit. From (1) we find 

*=33,3 c*cm/’Tm. 

The Jerque figure of merit is connected with the over-all gain by the 

expression 

(2) 

where the slope of the mechanical characteristic of the motor is 

“i*?“60 ,'Pm/’*cm. 

From (2) wo obtain the required over-all gain: 

= ß0 .^3,3 rr. 2000. 

315. Determine the operating range of the tachometer drive D, con¬ 

sidered In the preceding problem If It Is used In Integration wl‘h a 

permissible relative reduced error 1 = 1* for tt.e .-.me load torque of 

Mni = 20 g.cm and for M - = 2 g.cm. 

Answer 

1) D| = ÔD = C.01*ia,00C = ICC; 
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2) Dx = 4D Mn2/Mnl = C.01-10,000.20/2 = 1000. 

Pig. 229* Teat circuit for in¬ 
tegrating drives. 1) 

2) TG1; 3) R15 b) LVT1; 
5) LVT25 6) R2j 7) TG2; 8) Dr 

3X6. In order to determine the 

dynamic properties of two identical 

integrating drive mechanisms, they 

are connected into a test loop 

(Pig. 229). From the test it is 

found that when the initial condi¬ 

tions are introduced into the sys¬ 

tem, divergent oscillations appear 

at a frequency f = 1 cps. After n = 

= 10 complete oscillations, the in¬ 

crement in the deflection amplitude 

is 58# of the initial value. Find 

the equivalent time constant for 
each drive mechanism. 

Solution [3] 

Tms¿ ¿ '«O+tr)**c310.½ ** ■¿s« 
sec. 

§37. SMOOTHING SYSTEMS 

SI?. The useful signal at the input of a smoothing servosystem 

takes the form of a harmonic function with amplitude 0lnax * 15° and 

period Tk * 20 sec. The noise at the input is also harmonic with ampli- 

tude elp s Io and Tp « 0.06 sec. What should be the transfer function 

of a smoothing servosystem with first-order astatism if the error in 

reproduction of the useful signal is not to exceed 0^^ = 0.1° and the 

noise-smoothing coefficient is to be at least kgg| * 10 with acceptable 

dynamic properties of the system and the simplest possible structure? 

Solution. The signal frequency is 

l/sec. 

At this frequency, the modulus of the frequency transfer function for 

the open-loop system should be no less than 

at. 

Using these values. In Fig. 230 we have plotted a control point 

In order to provide the required accuracy it is necessary that the 
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l.a.kh. of the open-loop cervocyctea remain above thij point. 

Tl*e noise frequency is 

1/rcc- 

At this frequency, the modulus of the frequency transfer function for 

the open-loop system should not exceed the value 

lr</-.) I*5 ¿7 « ¿= - 20 db. 

Pig. 23c. Logarithmic amplifier charac¬ 
teristic of smoothing system. 1) sec. 

The control point Ap has been plotted in Fig. 230 from this data. 

In order 0 provide the given smoothing coefficient it is necessary for 

the l.a.kh. of the open-loop system to remain below this point. 

Let us see whether It is- possible to use an elementary smoothing 

device [2] whose open-loop transfer function corresponds to an ideal 

Integrating element (type 1): 

If wc so select the over-all gain that the l.a.kh. of the open-loop sys¬ 

tem passes through the point Ak (the l.a.kh. of Fig. 23c), we then 

have 

*“*«bir(Kt!=0.3H-150=17 1/rce. 
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At the noise frequency u) = u)p this gives a smoothing coefficient 
\ 1 

à Éká «»i 
*"é T* (fa. À* 47 “^ 

This is lower than the required value. 

Let us see whether it is possible to use a smoothing device of 

the 1-2 type. The open-loop transfer function of such a device has the 

form 

As above, from the condition stating the required signal-repreduction 

accuracy we obtain K = 47 l/sec. We next determine the smoothing coef¬ 

ficient at the noise frequency: 

A ‘ I «i*! 

From this last expression we obtain the required time constant: 

3ec‘ 

The smoothing-device open-loop transfer function will be 

r « ” 7ÏIT fir=Td’iIW • 

The smoothing-device l.a.kh. is shown In Fig. 230 (l.a.kh. 2). 

Any stability-margin criterion may be used to check the dynamic 

properties. Thus, for example, let us find the system closed-loop mag¬ 

nitude ratio. From a well-known formula (see, for example. Problem 

214), we have when the condition KT^ = 47-0.043 = 2 > 0.5: 

j. tAT, _t.jr.B.on 
""TSfri-? *“ I'rir-wu-T ^ ** 

which is acceptable. 

318. Solve the preceding problem if the smoothing system must 

have second-order actatism. 

Answer. The open-loop transfer function of a smoothing system of 

- 313 - 



I Mül 

i 

2-1 type le 

The l.a.kh. 1; 

r*)« J™*vl 

shown in Fi>> 230 (l.a.kh. 3). 

i2^1. Electromechanical diagram of type 1 smoothinr system Rp 
nöÄ^C?i 15 2> 1; 3) Î?ûle tr,a;rorïeryï ?j ph-Je' 
Sr 2° yï’linoa^r-Tïf- t2?ica!ter ßencrator 1; C) ;calinC traSsfora- » r) linar ma^.lip o) motor; 9) reduction gear 2. 

Pi?* 2J2- Electromechanical diagram of t;pe 2-1 smcothlnr 'Wr* 

put; 2) reduction Cear 1; :) linear maGsiip 1; 4) scaling 
Í* ??tWCrîC J-’y^chronous tachometer cenerator 1; 7) motor, 
IjS) reduction Gear 2; ) linear maGslip 2; 10) scalin- traísfirmer 2- 
tor iSarlC0!l?m ?rki?{ 12' ^••Mchronou.; tachometer generator 2; l“) mol 

Hig jran^S^SM1'5 !V CUOn Sear 3í 1Ó) llnear K’ny™. 

319. Give the electromechanical diaGrams for the smoothinG systems 

of Problem 317 and 313 if they use induction elements: linear magsllps 



(LVT), asynchronous tv;o-phase motors (AD)f asynchronous tachometer gen¬ 
erators (AT), scaling transformers (MT), and phasing networks (FK). 

Answer. The diagrams are shown in Figs. 231 and 232. 

function* ^°r a 1 5fllooth^n6 device (2] with open-loop transfer 

9 

determine the relationship between the smoothing coefficient k . » 1 

for harmonic noise with period T and the observational time (sett¬ 

ling time to an angle of of the initial value). 
oversational time is found from the system equation of 

motion (exponentials with time constant of l/K): 4 

The smoothing coefficient 

We have from (1) and (2) 

or 

W-Jr.' 

U) 

(8) 

(3) 

A — (m 

fer function1" * 1_2 type S3,00thine devlce I2) “lth an open-loop tranc 

rw * 
ïîT-iiji 

determine the relationship between the smoothing coefficient k » 1 

for harmonic noise with a period Tp and an observational time Tq for 

equation?1* ^ 0886 °f aultlple roots of the closed-loop characteristic 

Answer 

538. AMPLIFIERS WITH HEAVY FEEDBACK 
322. For an operational amplifier with feedback (Fig. 233a). de¬ 

termine the exact and approximate values of the transfer function. 
Answer 

’(P) 

I 
*.<*> 

tit—l . tj—t w 

323. Select the impedances z^p) and z2(p) for the case in which 
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• k# 

Pig. 233* Operational axpllfiers. 

the transfer function of an operational amplifier with feedback (Fir, 
si^ isUaDltted)'POnd t0 Ä floatlnö“Plu::*ProPortional element (the minu 

where kj - 0.8, 1^-2 l/see, Tj = • 0.¾ see. 

Jhe <Jlacram is shown in Fiç. 23?b. The followlnc condi- 
tlons should be satisfied by the parameters: 

jç-*« ®nd 

The possible parameter values are: 

Cg * 1 uf# R2 * kohm, and * 5C0 Rohm. 

.. P2*’ f?iye th? ppoceding problem for the case in which the opera- 
tional amplifier with feedback should correspond to: 

1) an integrating element with transfer function 

where k^ * 10 l/sec; 

2) a differentiating element with transfer function 

•ktP)**V.’‘here kg * 0.2 secj 

3) an aperiodic element with transfer function 

•*Crl*Tqpjÿ. where T = C. 1 sec. 

Answer 

1) andf.Cp)«^. ¿.¿•«A, 

(occurring when Cg « 1 nf, Rx * loo kohm); 

2) and 

(occurring when C1 « 1 nf# Rg = 200 kohm); 

3) f,(p)-«, í and C,«=C4^*Ct 

RjC * T (occurring when C * 1 uf, Rx =* 100 kohm). 

u ^ the re<iulred Cain of an amplifier with heavy feed- 
the followlnß Initial conditions: 1) gain insta¬ 

bility of the amplifer without feedback ÙK/K * 5C£; 2) required accur- 



w 
?*C^?** ?aíft in the presence of 
fAPrfhnoí 0 * 0#C1*5 3) r«sultant gain with feedback present Kq « 10. 

Solution. The required feedback-loop 
gain is r 

Fig. 23h. Buffer am¬ 
plifier with heavy 
feedback. 

a KmmàfC I 3* 

t.-exm a 

3)6¿f;34j 1} kotas 2) 0h:"Ji 

The required feedback factor Is 

a . I > -0,1. 

The required amplifier gain is 

—aoooo. 

326. Design compensating networks for a buffer amplifier with 

heavy feedback having the block diagram shown in Fig. 23^; the basic 

circuit is shown in Fig. 235. The initial values ares 1) load resist- 



anee Rn = Cee ohms; 2) signal carrier frequency fn * 50C cps; 3) clos¬ 

ed-loop gain Kq » 4 ¿ 0,05^; amplifier open-loop gain with compensa¬ 

ting networks Inserted K = ^500; 5) transfer function of output trans¬ 

former together with load resistance In low-frequency range; this may 

be represented In the form 

where - 0.228«10 ^ sec; 6) the closed-loop magnitude ratio of the 

amplifier should'not exceed M « 1.5. 

Solut 1er*. The time constant corresponding to the carrier frequen¬ 

cy Is 

sec. 

The relationship between the time constants ^yykh ana ^ Is 

Jp «•-J**1** U 

The feedback factor Is 

The feedback-loop gain Is 

^4iCnO,?5*<l3Vdn||^r-<»| db. 

The time constants corresponding to the conjugating frequencies 

of the desired l*a#kh* are found from expressions given In [3]s 

»•— ^r*--*=o.w. i. v:cc> 
T-_•Tsi . 

' H+iKl'O lïTMÎl^ia “CC* 

The relative time constant entering here for the standard l.a.kh., t2. 

Is sot equal to 

’•“V'iÆi“! 
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Fig. 236. Desired logarithmic amplitude 
characteristic for buffer amplifier. 1) 
Limit of large time constants; 2) car¬ 
rier frequency; 3) limit of small time 
constants; 4) sec. 

He next find 

y. _ _ M 

The relative time constant Is set equal to 

-w*. 

where the sum of the relative small time Constants 2* is taken equal 

* 
to 0.1« The limiting value for the small time constants Is 

r -_Î&S2-_„ M ^ 
4<l+«*»)'*»«* 4(M l,4*| |'il2i 

.«^IIS.IO* ec. 

The time constants forming the low-frequency portion of the l.a.zh • are: 

' ,<r* w f r.—af,—1,4.0,32. 10 •srrO.lj. 10 * 

, c. 
jLl^LMlE2.«!BAr#Ä7.,3il.,o-.Äfj.^ . 

The limiting value for the large time constants [3] is 

W9m ri#4*» »— *».•** • 

IMlM M*|.|I23 A..A aA. 
m.-—--■ 0.H2» 10 *«aO^I see. 

>1 
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The theoretical gain (without the compensating networks) Is 

• jC««!Lr W 4300 ms to |00. 

The theoretical feedback-loop gain Is 

ft* KtK** ^4,-11 » « 2.VUI « M i b. 

Prom the values obtained for the theoretical gain and time con¬ 

stants, we have plotted In Fig. 236 the asymptotic desired l.a.kh. The 

bends in the asymptotic l.a.kh. occur owing to the time constants In¬ 

troduced into the amplifier circuit by means of three compensating net¬ 

works. The networks are shown In Fig. 235 by dashed lines. 

Network I Is a passive integrating element. Its transfer function 

is 

w igw i * r> 
T+y> • 

The lower time constant 1* * RaC2 Is taken equal to the second 

time constant T^ * 0.228*10 ^ sec (for a conjugating frequency = 

l/T1# the desired l.a.kh. should have two time constants T^ since the 

bend at this point takes place at ^0 db/decade« one of the time con¬ 

stants T^ Is Introduced by means of the output transformer). 

The upper time constant T» = R^Cg Is taken equal to Tg = 7.8 x 

X 10"° sec. 

The equivalent resistance Ra of point a in the circuit (see Fig. 

235) with respecl to ground Is calculated as the combination In paral¬ 

lel of the Internal resistance of the CZhh tube, « 750 kohm, and 

the two resistances = 100 kohm and Rq * 5IC kohm: 

m_ nr mo-5 jo 
lîè-m i 7jo-iou" *“ 75,5 koliai* 

3020.10 I* f. 
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Proa a capacitance chart, we select Cg * 3000 pf.. Then 

-ft»-10» chas. 

Proa a resistance chart we take * 2.7 koha. 

Network II is also an Integrating element. Its lower time constant 

is set equal to the first tiae constant « 0.^5010^ sec (there 

should also be two time constants T^). 

The coabination of t: e internal resitance of the 6Zh¿i tube and re- 

sistances and R^ in parallel gives the equivalent resistance of 

point b in the circuit* with respect to grounds 

*• “ norTTr^^- iiriwr - ** koha. 

Proa this we obtain the capacitance 

- r._e.*v-w• ÄAt. 
C% «0.0I i *10 • r. 

Proa a capacitance chart we take * 0.01 nf. 

The upper time constant for this network is used to coapensate 

for the parasitic time constant at the input c.’ the first tube. Taking 

the value of the input capacitance of the first tube, including the 

wiring capacitance, to equal C'vkh « fcO pf, we obtain 

y^~J^C¡«w|00*l<lMo*l0 "ml. io* sec, 

l*e., lies within the region of real tiae constants (T < T* < 
' g.a vkhv 

^ ^g.b^ ani^ ^ ®ust be cosqpensated. Proa this we deteraine the magni¬ 
tude of R10: 

Proa a resistance chart, we welect R10 * 390 ohas. 

Network III is a differentiating element. The transfer function 

of the given differentiating element has the fora 

w . 0 y**#i 
aW 
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where T* - RUC5, T « R19Cÿ, T*" =. r19c5, and T™ » Rnc9. The lower 

tlae constant of thç network T*" Is taken beyond the Halt of large 

time constants: 

r* iirofl. to •« 
'f Ce 

The upper time constant of the network Is 

3ec. 
• • 

Proa this we obtain 

Proa a capacitance chart, we take C9 » 4700 pf. The second low time 

constant of the network Is taken equal to the second time constant 

T^ = 0.45*io~3 cec- prom this we obtain 

«sifG« 10' ohms. 

From a resistance chart we take * 100 kohm. 

The parasitic time constant at the input of the second tube, for 

an input capacitance «Vkh • P**# Will equal 

7£aBl7*IOMO>IO “csO'IOI-IO • see <f#..=OtU2*IO • sec. 

The parasitic time constant at the Input of the third tube Is 

yS«9M’4O’!O‘»«O,0l5G’IO ' sec<0**«*. 10 *.;ec. 

The tlse constant for the blocking capacitor C? Is so chosen that 

It Is close to T^b » 0.91 sec. This time constant C_Rg > 0.51«l = 

0.51 sec; as a result, the bend In the asymptotic l.a.kh. appearing 

at point a will be close to the limit of large time constants. 

The bends In the asymptotic l.a.kh. rt points a and f are moved 

away as far as possible toward the limiting values for the large and 

small time constants, as Indicated In Fig. 256 by the dashed line. The 

Increase In the length of both sections of the l.a.kh. having slopes of 

20 db/decade makes It possible to Increase the stability margin over 
the value specified. 
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Manu¬ 
script 
Page 
No. 

302 

302 

302 

302 
* 

H* 

302 

302 

302 

303 

304 

304 

306 

‘ 306 

308 

310 
I 
310 

310 

311 

311 

311 
* 

311 

311 

311 

314 

314 

[Transliterated Symbols] 

: 1 i bür; 

Ji.a.x. » l.a.kh. « logarlfmlcheskaya amplltudnaya kharacter- 
Istlka * logarithmic amplitude character¬ 
istic 

1 

JOT . DUP . datchlk ueia pretsessil . precession angle sensor 

Ü * D = dvlgatel* ■ motor 

n • p * pusk * starting 

h » n * nominal*nyy * rated nominal 

* kh.kh * kholostoy khod * no load 

y * u - usllltel* « amplifier 
• 

ab > dv « dvlgatel* * motor 

A * d ® dvlgatel* motor • 

r » g » glroskop* * gyroscope 

TT * TO * takhogenerator * tachometer generator 

ycx * ust * ustanovlvshiysya * steady-state 

o.c * o.s » obratnaya svyaz* * feedback 

h * n * nagruzka * load 

il * m * moment * torque 

h * 1 * Integrlrovanlye * Integration 

P ■ R » reduktor « reduction gear 

JBT - LVT . llneynyy vrashchayushchiy transforaator = linear 
magsllp 

K * k [* kolebanlye * oscillation] 

n?p* pomekha « noise 

crn * sgl * sglazhivaniye * smoothing 

K * k * kontrol*nyy * control 

MT a MT * masshtabnyy transformator = scale transformer 

AT a AT = ®|Jn^°J2yyrtakh°Senerator * asynchronous tachome- 
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31* 

31* 

318 

318 

319 

319 

319 

319 

321 

321 

«K * FK « faziruyujhchly kontur « phase network 

Ail * AD * aslnkhkronnyy dvicatel* =* asynchronous motor 

h * n * nesushchly » carrier 

•ftx « vykh * vykhodnoy * output 

U a a » aalyy * small 

r * e = granlchnyy « limiting 

= rasch * raschetnyy « theoretical 

0 a b s bol* shoy * large 

■X * vkh a vkhodnoy * input 

X » d * differentsirovaniye * differentiation 
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Chapter Ik 

ADAPTIVE SYSTEMS 

*39. INVESTIOATIOII OF STABILITY At® PERFORMANCE OF ADAPTIVE SYSTEMS 

327. Figure 237 gives the basic circuit of a step-type optimum 

control system. Construct the block diagram of the system whose opera 

Fig. 237. Basic circuit of step-type 
ODtlaua control system. 1) Object: 
2) v; 3) field winding; h) motor 
step switch; 6) 6n8S; 7) command 
pulse generator; 8) relay. 

’•5 5) 

ting principle is as follows: the command pulse generator KO, producing 

pulses of varying length, controls the step switch ShR, which closes 

various electrical circuits. The first circuit through the object OR 

and wiper I is closed through the elements of the 6n0S tube (contact 

positions 1 and 2); the capacitors Cx are connected in parallel to them. 

Depending on which spring touches the moving contact, the left or right 

side of the tube will be inserted. Thus two values of the optimization 

index are stored, each requiring one oscillator cycle. An intermediate 
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Pig. 238. Block diacraa of step- 
type optimum system. 

*■^9* Time responses of optimum system with continuous test motion 
0f variable; b) »easureSe« õf opmi"°uõn‘ 

Index, c) aeajurenent of rate of chance of optimization index. 

oscillator cycle coincides with closure of the second circuit which 

contains the actuatinc motor D (wiper II, position 2). This circuit is 

needed for test movement of the motor, which causes a change in the 

control factor a. During the fourth cycle, the comparison is made and 

a regulator direction of motion selected with the aid of a logic ele- 

ment. 

The logic element contains two relays and Rg. Their matched op¬ 

eration always ensures that the system will 1>ve stably toward the op- 

tlmum value. 

Let us assume that at time 1 the quantity •;^ is recorded. While 

the moving contact is in the first position (I, 1), the capacitor is 



charccd. The current through ^.he tube will be proportional to the grid 

voltage, i.e., The potential of point a in the cathode circuit will 

be After position 1 has been passed, the grade circuit is opened, 

but the capacitor keeps a voltage on the grid until the next closure 

of circuit 1. In like manner is "stored" in the second half of the 

tube. 

When the moving contact passes through position (III, ^), one of 

» the relay windings of will be at a voltage ÿg — Depending on the 

sign of tfg - the contacts of relay 1 will operate, and one of 

the motor windings will receive a voltage of +27 v. At the same time, 

the position of relay Rg is determined; this in turn will determine 

the position of the contacts 1 R^, Por stable operation of the optimum 

regulator, the following conditions must be met: 

for and W*<®- 

Answer. The block diagram is shown in Pig. 238, where 1 is the ob¬ 

ject possessing the optimum properties, 2 is the first storage device, 

3 is the second storage device, is the comparison unit, 5 is the lo¬ 

gic unit performing sign inversion, 6 is the actuating element, 7 is 

the command oscillator; 1, 2, 3# ^ form the command sequence. 

328. Figure 239 shows an oscillatory process in an optimizing sys¬ 

tem with continuous test motion [35# page 644]. Here u is the manipula¬ 

ted variable, is the optimization index. Find the relationship be¬ 

tween the hunting amplitude t, search error D, hunting period t, and 
slope of the optimization characteristic. Determine the critical rever¬ 

sal voltage. The magnitudes of D, x, and £ are indicated in Fig.'239b. 

The equation for the optimization characteristic is given in the form 

Solution. Considering the variation in the optimization index 
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nd the nanlpulated variable u (Fig. 2¿9a,b), wc can conclude that the 

ayate» reverses at the points 0, 2, it, 6, etc. We assume that the sig¬ 

nal produced by the system logic element Is proportional to the rate 

of change of the optimization Index. As a consequence, U = a d-i/dt, 

where a is a coefficient of proportionality. In this case, the voltage 

at which system reversal occurs („c call It the critical voltage) will 
equal 

(D 

On the other hand,.differentiating the equation for the optimization 
characteristic * . -su, we obtain 

3“—**a* (2) 

In view of the linear nature of the variation in the manipulated 

variable (Fig. 239a), we find du/dt as the tangent of the slope angle 
of the time response u(t): 

í-íp. (3) 

Substituting (3) Into (2) and (1) with allowance for the fact that at 

the reversal points, _*_ „e flnd 
ÿi' 

«"• (4) 

Averaging ÿ over the period t, we have 

The search error 1. 

v-i it«. 

A 
A • (v) 

D-lf™-*,!-! W (6) 
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since „ * 0. max 

329* The equations for 

the optimizing system whose 

¿jfISjf 
fl .«ys-z..; 

Pig. 2^0. Block diagram 
of optimizing system. 1) 
Object; 2) optimization 
characteristic; 3) logic 
element; U\ actuating 
element. A; logic element; 
B) Information on sign of 
du/dt. 

tion characteristic 

Logic-element equation 

the processes occurring in the elements of 

block diagram is shown in Pig. 2^0 are giv¬ 

en in the form: 

equation for the process in the 

actuating element 

*-*•« 

equation for the process In the 

linear section of the controlled object 

Tjjf+x—tfr 

Equation of the object optimlza- 

Here x Is the angular velocity [l/cec], U Is the voltage [v], is 

the optimization index [v*sec], u 1' the displacement of the final con¬ 

trol element [mm], ^ is the transfer constant of the actuating element 

[mm/v*sec], kg is the transfer constant of the controlled object [1/ 

/sec»mm], ¿ is the slope of the optimization characteristic [v*sec^], 

T is the time constant of the controlled object [sec]. 

Determine the system transient response when the system has first 

been shifted away from optimum to the point M and has t: e parameters 

T » 0.5 sec, s = 2vsec3, kjk2 = 1C l/vsec2, x0 = .1 l/sec, (dx/dt)0 = 

» 0. 
Solution. After eliminating the intervening variables we obtain 

( ï * assumed £>«)• 
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Substituting In th® numerical values, we wrl’e 

My+J+40üc«=a 

The roots of the characteristic equation will be 

#0**—lA/l'T» [l/sec]. 

They correspond to the general solution 

Using the Initial conditions, we find 

Proa which we obtain 

As a consequence, 

jr— j , 

Finally, 

It should be kept in aind that for the case given, we are solving the 

problem of finding the transient response when the systta Is displaced 

for a time at which It Is on one of the sections of the optimization 

characteristic. 

330. For the optimizing system with the block diagram shown in 

Fig. 241 and the logic circuit of Fig. 2^*2, the equations for the pro¬ 

cesses occurring in the elements are given in the following forms: 

the equation for the process in the actuating element 

the equation for the process in the linear portion of the control¬ 

led object 

*ai+**=*a 



5 *ftF*e»**#*tfv 
r— 

L rBrSf^i 
Mit 

r 
r] 

+-st 
Fig. 2^1. Block diagram Pig. 242. Basic 
of optimum system. 1) Ob- circuit of logic 
Ject; 2) optimization element, 
characteristic; 3) logic 

. element; 4) actuating el¬ 
ement; 5) information on 
sign of dx/dt; 6) logic 
element. 

The equation for the nonlinear (optimization) characteristic of 

the object 

The logic-element equation 
. 

The quantities appearing and their dimensions are the same as in the 
I 
preceding problem. Detemine the phase path for the manipulated varia, 

ble of the optimization system. 

gqlutlon. After eliminating the intervening variables, we obtain 

We let dx/dt = v. Then 

or, after Integrating this equation 

•—t* (X* - xi). 

In the expression for v, the upper sign corresponds to the case in 
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Piß. 2^3. Phase 
path for Optimum 
system. 

which V > 0, and the lower sign to the case in 

which V < 0. Xq# Vq are the initial values of 

the variable x and its derivative v. The phase 

path of the system is shown in Fig. 2^3. 

§40. SELECTING PARAMETERS FOR ELEMENTS OF ADAP¬ 
TIVE SYSTEMS 

331.* The block diagram of an optimizing 

system in shown in Fig. 2Wa. The controlled ob¬ 

ject 1 possesses an Impulse response w(t) = 

“ 100e *^[mm/sec], while Its optimum proper¬ 

ties 2 are described by the analytic formula 
2 

^ «-2x , where is the optimization index and 

x the intervening output variable of the object. 

Pig. 2Uk. a) Block dia¬ 
gram of optimum system; 
b) basic circuit of logic 
element. 1) Controlled ob¬ 
ject; 2) optimization char¬ 
acteristic; 3) logic ele¬ 
ment; k) actuating element. 
A) logic element; b) infor¬ 
mation on sign of dn/dt; 
C) actuating motor. 

Fig. 2^5* Vector dia¬ 
grams for: a) Stable 
ODtimization system: 
b) unstable optimiza¬ 
tion system. 
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An external disturbance written as 

/«-*. 
acts on the object; as a result, the optimization characteristic drifts 

with a certain constant rate vp (Pig. 2^5). Considering the displace- 

ment of point M on the optimization characteristic owing to the action 

of f(t) as a translational motion [38], and its motion along the opti¬ 

mization characteristic due to the effect of the actuating element as 

a relative motion, determine the actuating-element speed dx/dt = 

* vlsp.el ^or system to move stably toward the vertex of 

the optimization characteristic, i.e., for v^n > 0, where vM is the ab¬ 

solute speed of point M and n is the vector MO (Pig. 245). 

Solution. We record the arbitrary system state. If in this case 

Vpn > 0 ««d vpvt > 0 simultaneously, then v^ > 0 for any value of vp 

and vT. Where vpn < 0 we shall have vtvp < 0 and for stability it is 

necessary that jv^l > |vp|, since if this were not the case the condl- 

Thei n 

ytéw t irfj»»*' 
1 äi J 1 T . 

whe re 

4* 

We take the rate of translational motion as vp » d^/dt. Since 

where w(t) is the impulse response, then 



Fro® this we obtain for |v I > |v I T i pi 

Substituting the Initial values Into the inequality, we find 

or 

nr. 

332. As one of the principles for adaptation, we may take self-ad. 

justaent on the basis of Indirect Indicators for dynamic properties. 

Thus, for example, if we represent the im¬ 

pulse response of a closed-loop system 

(Fig. 246), then by recording the number 

of times It passes through zero within a 

given time interval t, we can obtain Infor- 

matlon as to the magnitude ratio of the 

characteristic curve. If we also introduce 

indirect*self-adjust-f a Shlft ln the axls of absclssas (for exam- 

ber^^tîme^th^imü”" by suPP1yln8 a constant displacement 

thîoughezero!eiÇasec! V u2» etc‘)* then by varying the number 

ton 
1 

Fig. 24?. Block diagram of adaptive system with register for coantlnr 
the number of changeü in ¿ign of the impulse function. 1) Controlled V actuating element; 3) compensating element; 4) variable-co- 
erriclent element; 5) comparison element; 6) actuating element of self 
adjustment circuit; 7) pulse counter; 8) adder. A) Register. 
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of times the impulse response passes through a given level it is also 

possible to determine the Intensity of system process damping. 

Using the principle discussed, consider an adaptive system with 

the block diagram of Fig. 2*7. We know that the optimum degree of damp- 

^opt * ^*35 corresponds to three changes of sign. 

The operators Dß, and Dç indicated on the block diagram have 

the following form: 

*b-i. 
VH 

We are to determine the range of variation in kx and the number of di¬ 

gits in the register if for self-adjustment we have the condition that 

the system natural frequency u>n * l/Topt remain unchanged. We are giv¬ 

en the following system parameters: Topt * 0.0210 sec, Tx - 0.033 sec, 

Tg * 0.04¾ sec, T- * 0.2 sec, « O.OI39 sec, Çg * 0.7, * O.O33 

sec, * O.72, Tb * 0.083 sec, » 0.72, kA * 2« 10^. 

Solution. We use the root-locus method [36] and construct the root 

locus, which is the locus of system transfer-function poles when the 

coefficient kx varies (Fig. 248); pA, pB# pc are the poles of W(p). We 

see from an analysis of the locus that the system reaction is determin¬ 

ed chiefly by the poles of the actuating element. By hypothesis, the 

frequency should remain unchanged, so that we determine the optimum 

damping Cop^ and to do this we find the frequency. 

We recall that the required frequency Is found [24] as the magni¬ 

tude of the root-locus vector drawn to a point on the optimum curve, 

while the damping Is found as the cosine of the angle of this vector 

with respect to the negative real cemlaxls. Using a radius of l/T 
opt* 

we draw an arc until it intersects the root locus. This determines the 

range of variation In kv and * 0.22-C.557. 
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Pig. 2hQ¿ System root lo¬ 
cus. 

Since the number of changes In sign 

qp of the impulse response and the damp¬ 

ing lactor are Inversely proportion¬ 

al, ç s a/*c# after substitution of 

we find the true range of variation in. 

i.e. •= 1,05, 

*-¿5—-'* KÃsi * 3» fi0^2 ~~ 

Thus, a th*’ee-digit binary counter is 

sufficient for determining the number 

of transitions. The system open-loop 

Pig. 24q. Area criterion for self-adjust¬ 
ment. 1) sec. 

transfer function is 

rirt-M-fl+V«1 + vxi + y> 
MA ’ * 

From the conditions under which the locus Is drawn [36], the value of 

the transfer function at point px of the locus is 

-*4). 

Here A, B, C are the length of the vectors drawn from the zeros to 

point pj, while D, E, F, G, Hf J are the lengths of the vectors drawn 

from the poles to the same point. Taking into account the scale of the 

graph we find tha»- p^ = p2 = 43; after this we calculate the transfer- 
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function numera tor; 

|l -{-Utt'ttMI *r0/)« «).(l -í-0,2.48) = 86.(. 

and denominator: 

04<W-7.41. DmW^TJJG. Ûc(r)=î.3Sü. 

As a consequence# 

Ä fs4l • 40-41-46 * I,Î9* I04. 

In like manner, for the second point (p2 * px by the conditions of the 

construction): 

OM 41. ios.31.70.3».57 
•2JK* W.ao.47-*3,«. 10*. 

Since k. « 2.103, k = 8.95. k . 17.05. 
*1 xs 

333.* As a self-adjustment criterion, we may use the intensity 

with which the impulse response is damped; this is evaluated by means 

of the function [11] 

where is the positive area enclosed by the pulse response, while 

S_ is the negative area (Fig# 2^9)» ® is the coefficient relating the 

areas. The coefficient a is so chosen that for the desired damping ¢, 

the value of y will be zero. Where we select a system having an im¬ 

pulse response approximated by the analytic relationship 

•B“7rtr,ï ^ w 
where Ç is the damping factor and the natural frequency, the rela¬ 

tionship for y is given by the formula 

_ i— 
t“-5-"* 

Find the value of a such that self-adjustment Is accomplished when Ç = 

* 0.5# 

Answer: a = 6.06. 
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33^. Frequency filters can also be used for self-adjustment on 

the basis of aninairect estimate of transient oscillation and tran- . 

sient damping intensity [l^J. Thus, for example, if the over-all gain 

of a system (Fig. 250) kkx varies owing -ok, then by acting on k we 

can restore gain, thus restoring the dynamic properties of the system. 

Fig. 250. Structural diagram of self-ad¬ 
justing system with frequency filters. 
1) Object; 2) controller; _•) companion 
element; 4) low-pass filter; :) high-pass 
filter; 0,7) rectifiers; S) companion ele¬ 
ment; 9) actuating element. A) Input: 
B) output. r 

For many cases involving elementary sys¬ 

tems where the controlled object has the 

transfer function 

the root locus has the form shown in Fig. 251. 

We shall henceforth assume that the optimum 

process with respec* to natural frequency 

(o>n) and damping factor (^) occurs at kkx = 

1 ana 0)^-1 (Fig. 2;1). Then when kkx changes so as to increase 

(kkx > 1) we observe an increase in the natural frequency, while when 

kkx decreases (kkx < 1), conversely, there will be a decrease in the 

frequency. As a consequence, frequency variation may be used for self¬ 

adjustment. Here, however, it is necessary to ensure that the system 

frequency responses have a predetermined shape. Frequency filters are 

diagram of servosys- 
tem. 
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used to solve this problem. 

Determine the frequency responses of filters such that a system 

with a given structure will perform self-adjustment over the range 

(0.2-9)k* where k* is the optimum value, where the input signal changes 

in steps by an amount r equal to 10 if * 0.2 sec, Tg * 5 sec. In 

the calculations we assume that the minimum signal amplitude at the 

input of the actuating element is 3v. 

Solution. • From the given block diagram, we find the log-frequency 

responses for the system. The error transfer function with respect to 

the input signal equals 

Fig. 252. Logarithmic amplitude-frequen- 
cy responses of system for various gain 
values. 1) l/sec. 

Fig. 253* Block diagram of 
servosystem. 1) Servo-system 

• transfer function; 2) compar¬ 
ison element. 

Since by hypothesis y(p) = r/p, we 

obtain finally 

,wrr«/>4 ly* 
where 

When the numerical values are substituted, we find the logarithmic am- 



plltude-frequency cun-eü (Pig. 252) for throe values of kk = 0>2> 

Wtx - X, and kkx = 9. By hypothesis, for self-adjustment kkx = 1 and 

the frequency œn = 1 l/sec. 

We select the following filters* 

Then 

"'U-rÿ'r and 

where 

7*aT*'T*' 

The logarithmic amplitude characteristic for the self-adjusting 

unit has the form of cun'e 4, Indicated in the figure by the dashed 

line. The filter constants should be so selected that they transform 

the input error signal in accordance with form 5 where at a frequency 

a>n « 1 l/sec and in a small neighborhood of this frequency the output 

signal of the filter will not be reproduced by the actuating element 

while at higher and lower frequencies; on the other hand, the signal 

will appear with amplification sufficient to drive the actuating ele- 

aent of the self-adjustinc unit. 

The required values of <f, and kf arc determined Graphically, 

since the corrections to the daaplnG factors Ç are given graphically 

(see Appendix 9). The system performance condition is: 

for 

where 

» «i A «= »0 if .V u 1,0 _ jo is 

were ôjíÇ), igíífj) are» respectively, the corrections for the damping 

factors. 
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Since the given value * 3, 

and, as a consequence, 0^(Ç) = 14 db; then from the equations 

«¿«1 1 
and 

»fc*+!4-WlfV-l/W«J0lß3 

we find for kr * 0.1, Tr = 0.2 sec and T* * 5 sec. 
1 f2 

335* Figure 253 shows the block diagram of a servosystem; at its 

input there is a regular useful signal ÿ(t) » vt and random white 

noise N(t) with a cross-correlation function of the form Rn(t) = 

* a Mt), where a * 600 cm /sec • The system damping factor is Ç * 

* 0.5. The moment of inertia J » 0.02 g*cm»sec^. System operation is 

ensured when the input velocity vl £ 600 cm/sec, while the minimum per¬ 

missible signal-to-noise ratio for a velocity gauge should be k^ > 

0.5 [l1*]. Owing to the fact that the velocity of the input signal var¬ 

ies, in order to obtain the minimum over-all square error it is neces- 
' ; i * ! ^ 

sary to adjust the dynamic parameters of the servosystem - the gain k 

and coefficient of viscous friction F. It is necessary to determine 

the time constant of the velocity gauge and the functional coupling re¬ 

lationships for adjustment of the coefficients k and F from the condi¬ 

tion for the minimum mean-square error. 

Solution. Taking into account the fact that the signal and noise 

are not tolerated, determine the mean-square total error [2]: 

+J(KV, 

Here i" the square of the following error, is the mean-square er¬ 

ror due to noise, o>0 = v k/j is the frequency of undamped system oscil¬ 

lations, Ç is the damping factor. From the condition ÿë2/cku0 = C, de¬ 

termine the frequency a>* for which the mean-square error will be a min- 
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imua: 

<->0,188 

As a consequence, where the velocity v of the useful signal changes, 

the optimum frequency o>* will also vary. The optimum coupling coeffi¬ 

cients, which show how tr.e gain and viscous-friction coefficient 

should change if we are to obtain equal, respectively: 

A.,«</»=0.00071*«., 

Fm, *= *>,/= 0.003701/1 ». 

The time constant of the velocity gauge is determined for v £ 6C0 m/sec 

from the formula [Ik] 

When v = 6CC m/scc, T 

T1" adaptive servosystem. 1) Controlled object; 

The block diagram of an adaptive servosystem and the dependence 

on the input signal (variable speed v) are shown in Fig. 25^. 

336. To the input of the servosystem whose block diagram is shown 
in Fig. 255 we apply a stationary ran¬ 
dom signal li'(t) with spectral density 

^(<*>) = k /a) and stationary random 

white noise N(t) with spectral density 

SN(u)) = a . We assume that a and k can 

vary slowly. As a result, the servosys- 
tem, designed by the Weiner-Kolmogorov 
method for specific relationships'of a* 
and k* from the condition for minimum” 
mean-square error, requires adjustment 

1 

Fig. 255. Structural dia¬ 
gram of servosystem. 
1) To self-adaptation cir¬ 
cuit. 
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of the gain k^. Show that it is possible to use frequency filters for 

self-ad Jus taient and give the block diagran of the systeai. 

IB 

Pig. 256. Block diagram of adaptive servosystem. A) Self-adjustment 
unit; 3) main servosystem. 1) Variable-gain unit: 2) controlled object; 
3) drive; 4) comparison element; 5,6) filter; 7,c) rectifiers; 9) com¬ 
parison element; 10) drive; 11) servosystem. 

Pig. 257. Diagram for Invariant adaptive system. 1} Model; 2) compari¬ 
son element; 3) filter; nonlinear element; 5.,7,0) actuating elements 
of self-adjustment unit; 0) object; 9) compensating element; 10) inte¬ 
grating element; 11) model. 

Solution. According to the Weiner-Kolmogorov method, for given S^ 

and Sjj, the transfer function of the optimum servosystem ensuring mini¬ 

mum mean-square error will equal [14] 

♦tow 

where 

The value of the minimum mean-square error is computed from the formu- 
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la [14] 

Por self-adjustment we use the resultant error Ax (Fig. 255), whose 

spectral density is calculated from the formula 

«»-I i - ♦ (/-),Mi.w -f J,wi - - [fl?). 

For optimum choice of k* and a* it is necessary that S!*(u>) = a2. As a 
cl A 

consequence, the spectral density of the resultant system error in this 

case will be frequency-independent. When k and a vary, however, as in¬ 

dicated in the statement of the problem, S¿x(u>) will vary mcnotonicnl- 

ly ao a function of frequency. This permits us to use frequency filters 

with various frequency responses in the self-adjustment unit. In parti¬ 

cular, the frequency filters may be delay elements with transfer func¬ 

tions 

Thus, for this case we ¡nay also use the adaptive system havlne the 

block diagram shown in Fig. 256. 

337* Figure 257 shows the block diagram of an adaptive system. The 

system, including the self-adjustment unit, the controlled object, and 

the controller is enclosed by the dashed line. It is a so-called invar¬ 

iant element. The self-adjustment problem is to maintain the transfer 

function of the invariant element equal to unity. If the transfer func¬ 

tion equals unity, then when combined with the model of a process that 

is optimum in terms of response tine and overshoot, the system as a 

whole will provide ideal dynamic characteristics over a wide ranee. Th< 

self-adjustment system uses self-oscillation in an internal nonlinear 

circuit. The amplitude and frequency of these oscillations are such 

that they cannot be detected at the system output} their mnenitude is 

sufficient, however, to permit detection of a chance in controlled-pro- 
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cess parameters. A filter Is needed In the self-adjustment unit to fil¬ 

ter out the constant component. Here the role of the actuaring element 

In the self-adjustment circuit is played by a high-frequency oscilla¬ 

tor working into a relay element with the characteristic curves shown 

in the diagram. We are givens k2 varies within the range 3 to 9, C, * 

= 0.4, = 10 sec, = 0.33 sec, Tg = 0.02 sec. We are to 1) calcu¬ 

late the parameters of the system simulation device, ensuring that ^ = 

»0.7 and fln » 3 rad/sec in the presence of a step disturbance; 2) se¬ 

lect the range of the values for the nonlinear gain k at which system 

self-oscillation will appear with amplitude A, with self-adjustment 

taking place at A/b » 2; 3) determine the frequency of self-adjusting- 

unit self-oscillation. 

Solution. We select a model transfer function of the form 

Then provided |4(A»)(:^I we shall have 

If Y(p) * r/p, where £ is the step level, then 

We let 

Then 

• • 

and, finally. 



Since Tk * l/o>n and l/2k1Tk = Çk, then 

7*®»0,33 SeCÄ|Sss,jj^-y- S*2,H sec* 

Fig. 258. Logarithmic characteristics for 
invariant system (the dashed line indi¬ 
cates characteristics with no allowance 
for nonlinear elements). 1) Degrees; 
2) l/sec. 

In connection with the fact that the unit contains a nonlinear 

element, we use the describing function for the nonlinear element q(A) 

[20]. In this case 

(H T,*J)k,q<.\)__ 
/-(1 -t f,bu\ rv/lw_ 7V» 

^ « . (H r.wVd I (,-71 *,«;( ») * 
/-0 -i 7,-/Hi 1 2:7*,-/ 7 

lí4 |W(,jü>)| « 1, then |«I»(/,.,)¡=-l^| .¡. ry; thus <D(,1o>) * 1 if T;<a>kr « 1, 

where a>kr is the frequency limit of the controlled-object passband 

^kr * ^sr^* 8et Ä ^*^1 rec* construct (Fig. 258) the logar¬ 

ithmic characteristics W(ja>) with no allowance for k2q(A) (in Fig. 258, 

this curve is shown by the dashed line). It is clear from Fig. 258 that 

a>sr = 7 rad/sec. As a consequence, the condition « l/o>kr is satis¬ 

fied and |<D(ju>)| * 1, i.e., the invariance condition is satisfied. The 

self-adjustment problem consists, however, not only in maintaining 



|6(ju>) I * 1, but also In the fact that the unit contains high-frequen¬ 

cy self oscillations which do not affect the system. The conditions 

for existence or these self oscillations are 

rc/u)**n)»«. 
We thus select ^qfA) so that 

« 

» % r <M'{’20 )£ (A) & 

In the figure, the logarithmic amplitude characteristic Is shown by the 

solid line. The oscillation frequency equals 22 rad/sec (three times 

the maximum system working frequency). We now have only to distribute 

the linear and nonlinear gain so that A/h will be obtained. For a non¬ 

linearity of the given type we have (Appendix 20) 

»«)-£(«’'.» +x 
Setting A/b » 2 and 20 log l^qtA) « 30, we find 

(A)B=9¿(arCi|a o(5 0,51^0,75) « I7.fi. 
« 

As a consequence, 

M-V. 

Since k2 ranges from 3 to 9, then 

4-1,0-1-0,03. 

[Transliterated Symbols) 

HT * KG * komandnyy generator » command generator 

HIP » ShR * shagovoy raspredelitel* = step switch 

OP * OR a ob"yekt regullrovaniya a controlled system 

OB a 0V a obmotka vozbuzhdeniya * field winding 

JQ « D * dvigatel* a motor 

P a R * rele * relay 
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K » k 

cp m sr * sredniy « average 

icp * kr * kriticheskly * critical 

HU » ID - ispolnltel'nyy dviEatel' = actuating actor 

n * P » postoyannyy « constant 

Kcn.an . isp.ei , Ispolnltel'nyy element = actuating element 

ont * opt * optimal*nyy = optimum 

*(4>) - P(f) . fll'tr . filter 

3KB * ekv » ekvlvalentnyy = equivalent 

CC - SS - sledyashchaya sistema = servosystem 

H * m « model* * model 

cp a sr « srez a cutoff 
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APPENDICES 

1. Vyshnegradskiy diagram with liritîs of 
equal attenuation plotted in per cent per 
period 

Fig. 259* 1) Divergent process zone; 
2) monotonie process zone; 3) periodical- 
ly-convergent process zone; 4) aperiodic 
process zone. 

T 



2. Vyshnegradskiy diagram with 
lines of equal stability 

ii 

i. Nomogram for constructing real fre¬ 
quency response of closed-loop system 
from open-loop gain-phase characteris¬ 
tic (real circle diagram) 

Fig. 261 
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7 
? 

4. Curves for determining tran¬ 
sient time and overshoot from 
slope of trapezoidal real fre¬ 
quency curve 

5* Curves for determining tran¬ 
sient time and overshoot for 
real frequency curve having a 
maximum 

Pig. 263. 
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6. ttoaograa for con; truc ting real frequency 
response from given performance character¬ 
istics 

Pig. 264* 

7. Standardized logarithmic phase 
response of first-order aperiodic 
element 

Fig. 2c5. 1) Degrees. 



8. Standardized logarithmic am¬ 
plitude and phase curves for os¬ 
cillating element 

Pig. 266. 1) Degrees. 

9* Deviation of asymptotic logarithmic am 
plltude characteristic for oscillating el 
ement from exact characteristic 
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10. Initial conditions in control 
tlon of unit step function 

system directly following applica- 

The system differential equation is 

...-1 = V" •-! ...+#«)m 
where x(t) is the output variable, f(t) is-the disturbance variable. 

*-0' Xlo* xio_1) are the Sitial conditions directly before 

application of the unit step function; 

X+0* X+0* •••* ^1] are the Initial conditions directly follow¬ 

ing application of the unit step function. 

Jr..*=r* .... 

îi., _f, |x»-“_ 

i. 
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11. Solutions for first-, 
entlal equations 

second-, and third-order hoacßeneous differ- 

Note. Here c^, a2, are the absolute values of real nonmultiple roots, 

values real and Imaginary parts of complex 
ooto, Xq is the initial value of the function under investigation, 

V0 = x' (°) and wo = x"(°) are the initial values of the rate of change 

and accele nition of the function under investigation. 
1) Order of equation; 2) real roots; 3) complex roots. 
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12. Transforms of elementary functions 

1. 

r«u« 

Ejuuiruua 
•f«wnaa tjMK* 
■“••5. 

IlMniaNaa ciyncM 
«ataa fjraauMa . 

6 
HfriNMNIMla CTjr- 

•caaataa 4) mk* 

Ottacaaia fyaa- 
• • 

CarwrHHaa ascno- 
0CIIVS • • IQ. • • 

Clwycowaa n ».. 

KacaajcoMju.• 

SatyiaiHuaa cm»)- 
CMUU ••••••• 

13 
9ai)ia>Huaa roch- 
■)C04ua 

•10 

Ain 

«« 

r*t(n 

if -»TM« 

Ailf 110 

coak#|(0 

rl'ainlflCO 

r*tt* UI (o 

NmCpibm»« )U 

■I 
"ysr 

t 
TT- 

. i 
#(p+«) 

i 
?Tï‘ 

îpTïFTï1 

-JL+JL- ÇTi^+l5 

HwfatMM« 

> 

I 

«I 
y 

ft« 

i 
HT 

T+P 

f* 
7+F 

_!ç_ 
ifTirT*1 

f»-; i* 
(f 4:II* l »' 

1) Function; 2) original; 3) Laplace transform; il) Karson-Heavl-fdf» 
5) »it impulse function; 6) unit “tepVSs^^manUv 

nonpntïïîstep function; 9) exponential function; 10) mixed exî 
sinusoidal function; 12) cosinusoidal function* 

3) damped sinusoidal function; lh) damped cosinusoidal function. * 

\y 



13* Table of z-tronsform- for elementary 
time functions 

f 

7=T 

r*» 

TU(t.\ I) 

if 

é=t 
(1-0(/- är 

t tin ¡I r. 
i—^yrrrr 
7* 

td *ir.>r. 

-•r. 

1* — 2/<f cos ¿fa •(• d* 
• t9 • - td on) r# 
7* - ¿idtin flZ-Cd* 

1^. Pindinc the square integral estimate 

The Laplace transform of the controlled variable takes the form 

Xim)—4-...-4 *mpm I . 
W «»H V i...4 «V»" / ( ^ 

Then the integral estimate may be computed from the expression 

I ... I um\n 

The determinant A is found as follows; 

«i — «• ... o 

• «, — ... 0 

• -4¾ «, — •« ... 0 

• 0 —«•... 0 

t • ■•-I 

Ay(v * 0, 1, ..., m) is a determinant obtained from A by replacing the 

(v + Ij-Ui column with the following column; 

fi» d* ^.... ®. 
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The coefficients •••» Ba are calculated In the following manner 

Ä-4!. 

15. Formulas for integrating spectral density 

The desired integral is represented in the form 

-it 
where 

Q(M , 

.ÃU*)~ê9(j»r H «, W i...+4» 

The polynomial G(jcü) contains only even powers of Jo). The polynomial 

A(Jœ) should have roots in the upper half plane, corresponding to a 

stable system. 

For n 

‘-¿r M- D «. 
|«0*+«ii' * 

For n 

For n = 3 

. 1 if ^^ +».Um 
1 * J +•»>* -f«77 

, __ •» 

A.* Î* + MA.)M ».U-. ^ 
S + «.IM* «*>• + ••i* 
-•A 

*1 

* 2*" 
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For n * 4 

I* T y *A*~ 
* «i t «•/“ 4 «i • "" 

k(r~*0*4 •*•»»—«••i*,4 1 («««i- «,«,) 

~ Vi K*: +‘ 

16. Standard normalized logarithmic amplitude characteristics 

Every type of logarithmic amplitude characteristic is designated 

by a letter or a series of numbers indicating the slopes of the asymp¬ 

totes (0 corresponds to a slope of 20 db/decade, 1 to a slope of 40 db/ 

/decade, 2 to a slope of 6c db/decade, etc.). 

The transfer functions corresponding to the standard logarithmic 

amplitude characteristics and the formulas for calculating the base fre¬ 

quency are given in Table 1. 

i 
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TABLE 1 

— 
•nav«M£ 

2 

rUpei«Te<nu« ♦yweuM ywptl 
^ cacfMM HapMftMMMMprimww« Rsimm 

• 

• 

A 
#-4-/-1 

D 
#-4-/-4 

/rd + T+) 
1 
1 

+ W (» + 
• 

*(!-«■ 7V») 

(*+Mn‘+M) • 

tfd+trf) £ 
• 

. ITÇTJFîFrTïF 1 + VmI 

• 

1 

B 
/-4-/-1 

B 
/-4-/-4 

• 

K(\ + Ttp) tid+t,4) 
• 

Vn 
1(1 + lip)(l -rTtp) fd+M>d+M) 

t,d-»-t^> 
l(» + iilMi +W fd + MHl + M)1 

9 
• 

C 
1-/-4 

r 
1-/-4 

• 

j&±te . , + t,f 
• 

nr KO 4- Ty>) l+t«f 
‘PÏÏ+Tÿ? WTmP 

îL?Ü?rf? 0f !statlsni 2) type of logarithmic amplitude character- 
íâS ffäv?“Ä:r,n,r" r,““o”i 

In the normalized transfer function we go to the new variable q = 

- q/œ0, where a>0 is the base frequency of the logarithmic amplitude 
characteristic. 

« <j>0Ty 
The relative time constants ares t1 . o»^, t2 » cd^, and t3 = 

Where there are small time constants whose sum equals TB, the rela¬ 

tive sum of these small time constants rm - a>0Ta is determined. 

The parameters of normalized loßarithmic amplitude characteristics 

are shown in Table 2 for types 2-1-2 and 2-1-3. The parameters for other 

types of logarithmic amplitude characteristic in the midfrequency range 

may be taken to be the same in first approximation. 



TABLE 2 

T. 
•MM 
• 

1 

1o«lWir j. 
*««.<»• 

««J.. * ta 
M 

2 

r,- 
-/,- 

•* 

8«« aa twt '>■ 
«••MIIMI »f* 

C fa«taa ai*wi no- «latM.iMi •*•...• «i * 
k *• ***■' 

i-*» »i - «.fi 
<• 

|n -a.r. 

U 

U 

W 

u 

V2 

m 

un 

21.0 

s 

**6 

0.158 

OÍ72 

0*816 

0.101 

»12 

1*1 

101 

*1.1 

0.058 

0.172 

Or-MG 

0*801 

r 
i-#-j 

u 

IA 

U 

*08 

1.» 

1*56 

42.0 

1*9 

10 

m 

0.070 

0.I3C 

0.173 

0,202 

114 

21.3 

14.1 

10.3 

0.029 

0.0SG 

0.133 

0.152 

l) Type of logarithmic amplitude charac¬ 
teristic; 2) magnitude ratio M; 3) neglect¬ 
ing small time constants; 4) taking into 
account small time constants for t * 0.1. 

17# Jj’2113}601' curves for standard logarithmic amplitud« 
characteristics (alter Appendix 16, Fig. 269) P 

Transient processes for systems having logarithmic amplitude char¬ 

acteristics of the 0-2-1-2 and 1-2-1-2 types are practically the same 

as for the 2-1-2 type. 

The same is true for logarithmic amplitude characteristics of the 

0-2-1-3, 1-2-1-3 and 2-1-3 types with respect to logarithmic amplitude 

characteristics of the 2-1-2 type. 
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Pig. 269 

l8. Normalized system open-loop trans¬ 
fer functions 

Fig. 270. Normalized transient curves 
standard transfer functions. 

Transfer functions for various degrees n of a differential equa¬ 

tion are shown in the Table. They contain the parameter a>0 determining 

system response time. The transient curves corresponding to these trans¬ 

fer functions are shown in Fig. 270. The overshoot ö, % is given in the 

table. 
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the1 form^FÍinf J°Garlth-'nic amplitude characteristic of 
Uc 0?™!°^ U îog jo))f 3 l0CarlthaiC a"PUtude characterls- 
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1) db/decade; 2) l/cec. 
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20. Coefficients of harmonic linearization for certain nonlinearities 

Crata"*«*«. Mpt.irfattma ■tMwimr* 4MM4 ^ tw» •»«41 

4 ^^2 
"j# 4» « t 

— 
5T 

ÆLâ 

.„**«*+*• 3 

J 
1 

1 
IT 

* « ■pH 

5 

• 

etK-rxjmmt tumi 

— 

pi. 

• 

•l 
(j 

TT* 
5 •pa 

5 

4et 

5 

1) Static characteristic of nonlinear elements; 2) ideal relay; 
3) relay with dead zone; 4) relay with hysteresis loop; 5) for. 

CWf*a««ra* ffMwyftw 
■W—WWf MtM 1 

• 

•141 j rut 

• 

* VT'^ 8 

• 

« 

3>*« 

. >paM>P 

k 

* -, 1 rr • 

Jüf; * 
1 V-»./ 

• 

äfv'^+y^) 

L Bp«^>P 

% 

• 
• 

'Vi3 
# ^ 

r • 

• 

4 apa^^p 

• 

• 

r • 

• 

1) Static characteristic of nonlinear element; 2) relay of r°ner 
al type; 3) with saturation; 4) for. G 
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1) Static characteristic of nonlinear element; 
and hysteresis loop; 3) dry friction; for. 

2) with saturation 
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21. Parameters of twin-T network 

C.-G-C.-C 
£ t I 

Oq is the carrier-frequency transfer constant. 

1« 
*ß U W 

-1 1* M* 1“ 
4» 

^BCttV» Ü 4Ã • th ‘i »i: •i 4* 

peww— 

0 

• * WM •AU 0.«vî or»i •.IA) • KU 0 1/. • J.’! •m •i;« »ni 

_îJ 
M* WW O.W7 »•il • Ail »JÛ.S «01* ooi; n«.i Oto* • 

1) Frequency bandwidth, cps; 2) resonates. 

22. Required phase margin as a function 
of modulus in decibels for various mag¬ 
nitude ratios M 

1) Phase margin; 2) modulus, decibels. 
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23. Alternating-current compensating networks 

i 
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2k. Table of functions h(t0) 

i 

M •» •.M •.It •3» •» •JO •J» •.« V« •J* 0*1 
4 

0*> 
} 

fjO 
I 

M» an 0« •A •J* •» I.OJ 

•fi 

to 

t5 
to 

t5 

to 

t» 
to 

to 
to 

to 
10 

V 
to 

to 
to 
to 

KU> 

MtO 

lijo 

HO 
ItO 

ito 
ItO 

ito 

0.000 

0.1» 

0,310 

0,449 

0„W 
0^74 

0.755 

0JI4 

0,857 

0.883 

0.896 

0,900 

0.904 

0.904 

0.904 

0,907 

0.910 

0418 

0,924 

0,932 

0,939 

0446 

0417 

0449 

0460 
0400 

0460 

0,900 

0.000 

0,165 

042C 
0,469 

0,597 

0,700 

0,790 

04M 
0,896 

0423 

0,936 

0,910 

0,943 

0,942 

0,944 

0,945 

0,901 

0,956 

0,965 

0,972 

0478 

0,985 

0488 

0,988 

0488 

0489 

0,989 

0490 

6.000 

0,176 

0,340 

0,494 

0,628 

0,739 

0428 

0492 

0438 

0,960 

0478 

0,986 

0482 

0480 

0479 

0.980 

0,985 

0.989 

0,997 

1,004 

1,009 

1,013 

1,015 

1,016 

1,015 

1,013 

1,012 

1,011 

0,000 

0,184 

0.356 

0416 

0,655 

0.771 

0463 

0428 

0474 

0,997 

1,012 

1,019 

1,013 

1,009 

1,006 

1,006 

1,008 

1,010 

1,016 

1,022 

1,023 

1,028 

1,029 

1,027 

1,025 

1,022 

1,019 

1,017 

0400 

0192 

0.371 

0,538 

0,683 

0402 

0496 

0,963 

1,008 

1,029 

1,042 

1,016 

1,037 

1,030 

1,024 

1.019 

1,020 

1,021 

1,025 

1,029 

1,031 

1,033 

1,0.(1 

1,028 

1,024 

1,019 

1,015 

1,011 

0.000 

0,199 

0,186 

0,560 

0,709 

0,833 

0428 

0,994 

1,039 

1,037 

1,067 

1,067 

1,051 

1,013 

1,035 

1,025 

1,024 

1,022 
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348 
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365 

365 

[Transliterated Symbols] 

c * s = srez * cutoff 

n = p = perekhodnyy = transient 

u = m = malyy = small 

H * n = nesushchiy = carrier 

A s d [not identified] 
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