B.E.Goodrich

BOW DOME RUBBER ACOUSTIC WINDOW

INTERIM REPORT

0
0
0
6
0
0 PHASE I, FEASIBILITY

[^0]

PRESSURI2ED BOW DOME
 OF A CABLE-REINFORCED RUBBER CONSTRUCTION FOR USE WITH AN/SQS-26 SONAR

Interim Report for Phase I
 1 March 1963 to 30 April 1964

```
To
Bureau of Ships Department of the Navy
Washington, D.C. Attn: Code 1631
```


Contract NObsr 89483
Serial No. SSO41-001
Task 8156

Report No. 17
Phase I Interim Report
30 September 1964 .

FOREWORD

This report was prepared by the ASW Engineering Department of the B.F.Goodrich Company under BuShips Contract NObsr 89483. The work was administered under the direction of Code 1631, Bureau of Ships, Washington, D. C.

This report covers work conducted from March 1963 through April 1964 in completing Phase I, Feasibility of the subject contract.

Report No. 17
Phase I Interim Report
30 September 1964

ABSTRACT

This report summarizes studtes of the feashblity of = fressurized, cablereinforced, rubber acoustic window for is bonr 50% ione. The diecussion includes theoretical approaches as well as descriptions of the fabrication and testing of samples.

Due to the large size of the rubber acoustic window, tooling is a special problem. This report includes results of the tooling investigation. Several other associbted studies were also completed, and the results are presented herein. These include an anti-fouling paint system for the rubber acoustic window, an investigation of methods for transporting the window, and a study of design methods for adapting a universal window to four similar, but not identical, ship's hulls.

It was concluded that a rubber acoustic window is entirely feasible and, in fart, superior to an all-steel dome from the standpoint of acoustical performance.

The ricotctype window being designed will mate with either the DL-4, DL-5 or DIG-26 ships.
Contract NObsr 89483 1
Serial No. SS041-001
Task 8156
Report No. 17 30 September 1964
Page No.
I. Technical Discussion
A. Purpose 1
B. General Factual Data 3

1. Introduction 3
2. List of Figures 4
3. List of Tables 7
4. Identification of Personnel 8
5. References 9
C. Detail Factual Data 10
6. Introduction 10
7. Background 10
8. Design Criteria 18
a. Contract Specification 18
b. Design Guidance 20
c. Special Equipment 22
9. Pressurization Requirements 23
a. Design Pressure 23
b. Tension Waves on Acoustic Window Construction 26
c. Effects of Slaming on Pressurized Bow Dome 30
10. General Acoustic Considerations 32
11. Evolution of Heavy Cable-Reinforced Rubber Construction 33
a. Summary 33
b. Introduction 33
c. Design Study 33
d. Conclusions 49
```
Contract NObsr 89483

Report No. 17
Phase I Interim Report 30 September 1964

\section*{TABLE OF CONTENTS (Continued)}
Page No.
7. Analysis of Weftless Cable-Ratnforced Window ..... 50
a. Summa ry ..... 50
b. Introduction ..... 50
c. Strength Analyais ..... 50
d. Panel Compound Studies ..... 57
e. Acoustical Considerations ..... 67
f. Conclusions ..... 81
8. Acoustic Window Construction Study ..... 83
a. Summary ..... 83
b. Introduction ..... 83
c. Force Distribution in an Acoustic Window ..... 83
d. Ship Attachment ..... 91
e. Testing of Representative Window Section Samples ..... 97
f. Method of Window Assembly ..... 140
g. Conclusions ..... 146
9. Anti-Fouling Paint Study ..... 148
a . Summary ..... 148
b. Introduction ..... 148
c. Discussion ..... 148
d. Conclusions ..... 160
10. Prototype Test Panel ..... 161
a. Summary ..... 161
b. Introduction ..... 161
c. Patiel Design ..... 163
d. Tooling ..... 179
e. Panel Fabrication ..... 202
f. Panel Installation in Test Fixture ..... 232
g. Panel Testing Program ..... 234
h. Conclusions ..... 241
11. Universal Window Study ..... 244
a. Summary ..... 244
b. Introduction ..... 244
c. Discussion ..... 244
d. Conclusions ..... 252
Contract NObsr 89483 ..... 111
Serial No. SS041-001
Task 8156
Report No. 17
Phase I Interim Report

\section*{TABLE OF CONTEN'S (Continued)}
Page No.
12. Prototype Window Design ..... 253
a. Summary ..... 253
b. Introduction ..... 253
c. Design Study ..... 254
d. Conclusions ..... 260
13. Transportation Study ..... 261
14. Ship Modification ..... 265
a. Summary ..... 265
b. Introduction ..... 265
c. Window Attachment ..... 265
d. Pressurization System ..... 265
e. Conclusions ..... 272
D. Conclusions ..... 273
E. Recommendations ..... 274
F. Project Performance Schedule for Next Phase ..... 275
G. Appendices
I. Plane Wave Normally Incident on Plane Wall Immersed in a Liquid.
II. Ring Slot Correction for Pulse Tube
III. Acoustic Panel Analysis
IV. Bow Dome Acoustic Window Computer Programs
V. Stress Calculations on Seaming Section of Panel Mold
VI. Stress Calculations on Steel Seaming Fixture
VII. Panel Friction Requirements
VIII. Mathematical Analysis
H. Errata/Points of Clarification

\section*{BLANK PAGE}

Report No. 17
Phase I Interim Report
30 September 1964

\section*{I. Technical Discussion}

\section*{A. Purpose}

The purpose of this project is to develop a rubber Bow Dome window having characterisicics superior to the present ateel domes when used with the AN/SQS-26 sonar. To accomplish this, a three-phase program as established.

Phase I - Determine the feasibility of design approaches for a pressurized, cable-reinforced, rubber acoustic window. Design, fabricate and test a representative panel.

Phase II -- Design a complete rubber acoustic window for a Bow Dome. Design and procure the necessary tooling.

Phase III -- Fabricate, test and deliver the window.
This Interim Report sumarizes Phase \(I\) efforts and results. It has been prepared in accordance with MIL-R-978A (Ships) dated 7 December 1960 and Amendment -2 dated 8 March 1962, except that some 1 teme, uch as formulae, illustrations and measurement procedures are included in the text rather than being grouped in separate sections. This was done for clarity and continuity of presentation.

Present steel Bow Domes have evolved from several previous programs originated by the Bureau of Ships. The use of truss-reinforced steel windows has been dictated by the size and structural requirements, and compromises have been accepted in the acoustical properties. In seeking to improve sonar performance, the B.F.Goodrich Company submitted Proposal 1815-105-163 to BuShips. Therein, it was proposed that a pressurized Bow Dome window of a cable-reinforced, rubieer panel construction be considered as a replacement for the steel windows in the Bow Domes for the AN/SQS-26 sonar.

The BFG Proposal was based on experience obtained by producing rubber products for sonar applications since 1938. A series of highly efficient "acoustically transparent" rubber compounds hes been developed for these products. In addition, many special research and development programs, some Navy-sponsored but mostly Company funded, have been successfully completed. Since 1944, BFG has been producing "windows" or metal-reinforced rubber panels for use with various sonar systems.

The success of the early rubber windows led to the design and production of steel-reinforced, rubber domes, measuring 60" in length. Design improvements, some of which were conceived and developed by B.F.Goodrich,

Report No. 17
Serial No. SSO41-001
Task 8156
Phase I Interim Report
30 September 1964
have made this a very satisfactory dome and it has been in production as recently as 1963.

The satisfactory characteristics of the steel-reinforced \(60^{\prime \prime}\) dome (and of other similar B.F.Goodrich rubber products for sonar) led to the award of Contract NObsr 72595 for fabrication of a 100" pressurized rubber dome. The \(100^{\prime \prime}\) dome was, at the outset, to be designed to collapse after the transducer had been retracted into the ship's hull. This concept was introduced to permit the ship to operate in shallow water and to dock without damage to the transducer or dome.

To accomplish this deaign goal, it was necesary to replace the uaval steel trussed and steel-relnforced rubber skin construction by a flexible skin or membrane. A pressurized rubber dome, utilizing geodetically arranged reinforcing cables as shown in Figure 2, was conceived and fabricated. This dome, shown in Pigure 3, was installed on the USS Bronson and operated for two years. It was found to be very satisfactory in all respects for which it was originally designed except the requirement that it be collapsible. This reauirement was discarded when the retractable transducer did not materialize. During its service life, this \(100^{\prime \prime}\) pressuifized, cable-reinforced, rubber dome was proven superior to steel domes.

With the success of this first pressurized dome as atimulus, thoughts were turned toward the improvement of larger domes, by utilizing the cable reinforced rubber design. It was on this basis that B.F.Goodrich proposed the use of the cable-reinforced rubber construction for the large Bow Domes. Proposal 1815-105-163 suggested that the window for the Eow Dome be constructed of a number of individual rubber panels which would be assembled during installation on the shin. This BFG Proposal led to the award of this Contract Nobsr 89483 for the development of a pressurized, cablereinforced, rubber acoustic window for a sonar Bow Dome.

The advantages of a one-piece window, rather than a panelized arrangement, were recognized and efforts were immediately begun towards determining the feasibility of this concept. In order to minimize the time required to develop a one-piece acoustic window for the nonar Bow Dome, it was determined that the similarity of the operational characteristics to the \(100^{\prime \prime}\) sonar dome should be exploited. With this basic approach determined, development of the acoustic window was initiated under Contract NObsr 89483.
Contrsct NObsr 89483
Report No. 17Jerial No. SS041-001Phase I Interí ReportTask 815630 September 1964
B. General Factual Data
1. IntroductionThis report is prepared and assembled in accordance with therequirements of Military Specification MLL-R-978A (Ships)dated 7 Decamber 1960 and Amendeant -2 dated 8 merch 1962. How-ever, for the sake of clarity and continuity some items, such asformulae, illustrations and measurement procadures are includedin the text, rather than separate sections.
Pigure \(1 \quad \frac{1}{2}\) Cable-Interlacing Cable Concept ..... 15
2 Geodenic cable pattern, 100" dome ..... 16
3 100" Piessurized Dome ..... 17
4 Steel Row Dome ..... 24
5 Steel Boundary Bar Window Panel Concept ..... 34
6 Zinc Filled Groumet Attachmant of \(\}^{\prime \prime}\) Cable to Boundary Bar ..... 47
7 Strength Efficiency of Wire Rope ..... 48
8 Sound Velocity va Temperature ..... 61
9 Sound Absorption \(v\) s Temperature ..... 61
1635003 Neoprene Stress-Strain Curve ..... 63
11 Sample Window Cure Section ..... 64
12 Reflection/Tranemiseion vs Frequency of Pulse Tube Tests ..... 72
13 Acoustic Schematic of Five Ply Acoustic Win- dow Samples ..... 74
\(145^{\prime} \times 5^{\prime} \times 1^{\prime \prime}\) Acoustic Test Panel; Ply Orientation ..... 75
\(155^{\prime} \times 5^{\prime} \times 1^{\prime \prime}\) Acoustic Fanel, Subsequent to X-ray Analysis ..... 77
16 Possible External Areas Affected by High- Power Sonar Tranamission ..... 79
17 Possible Internal Areas Affected by High- Power Sonar Transmission ..... 80
18 Bar Bonding, thru Hole Bolting Attachment ..... 92
19 Steel Shim Bonding - Bolting Attachment ..... 94
20 Construction Wrap - Bolting Attachment ..... 95
21 Beaó Clamp Retention Syetem ..... 96
22 Schematic of Bead Panel Test Samplea ..... 100
23 Bead Panel Test Samplee ..... 102
24 Bead Panel Sample During Test ..... 102
25 Bead Panel Sample During Teet (Angular Pull) ..... 103
26 Tinics Olson Test Machine ..... 103
27 Composite Overlap Panel Construction ..... 104
28
Elongation-Compresaion Data from 42 SampleFlex Cycle106
29 Flex Cycle ..... 10730
Elongation-Compression Data from \$42 Sample Flex Cyciling ..... 108
31 \(30^{\prime \prime} \times 48^{\prime \prime}\) Flat Panel of Window Conatruction ..... 110
32 \(30^{\prime \prime} \times 48^{\prime \prime}\) Flat Panel Mounted in Test Fixture ..... 110
33 \(30^{\prime \prime} \times 48^{\prime \prime}\) Flat Panel During Test ..... 110
34
Stress Strain Relationship of \(30^{\prime \prime} \times 48^{\prime \prime}\)Panel 1111
35
Stress Strain Relationship of \(30^{\prime \prime} \times 48^{\prime \prime}\)Panel 2114
36 6" Sample Monitoring Equipment ..... 115

Contract NObsr 89483 - 5 -
Serial No. SS041-001
Task \(\$ 156\)

Report No. 17
Phase I Interim Report
30 September 1964
2. List of Figures (Continued)

Page No.
Figure 37 Assembly of \(6^{\prime \prime}\) Sample Test Equipment 116
38 6" Sample with Monitors Attached 116
\(396^{\prime \prime}\) Sample 11 Cross Section 119
40 Stress-Strain Graph of \(6 "\) Sample \#l (Strain gauge readings)

124
41 Stress-Strain Graph of \(6^{\prime \prime}\) Sample 1 (Motion Transducers)

125
42 6" Sample \#2 Cross Section 126
43 6" Sample \#2 Stress-Strain Curve (Strain Gauges) 130
44 6" Sample \#2 Stress-Strain Curve (Motion Transducers) 131
\(456^{\prime \prime}\) Sample \#3 Cross Section 132
\(466^{\prime \prime}\) Sample 3 Stress-Strain Curve (Strain Gauges) 134
\(476^{\prime \prime}\) Sample \#3 Stress-Strain Curve (Motion Transducers)

135
48 Elastic Stretch of Membrane and Clamp SystemExcluding Constructional Stretch 137
49 Membrane Tension vs \(1 / F\) (Elastic Stretch Factor) 138
50 Construction Stretch of Membrane and Clamp System 139
51 Dome Segment Concepts ..... 144
52 Pico Abrasion Test Machine ..... 150
53

March 1964 Paint Panel @ \(100 \%\) Elongation (x30 Mag) 156
55 July 1963 Paint Panel (x30 Mag) ..... 157
56 March 1964 Paint Panel ( \(\times 30\) Meg) ..... 157
57 Anti-Fouling Paint in Direct Light © x1200 Mig ..... 159
58 Anti-Fouling Paint in Diffused Light @ x1200 Mag ..... 159
59 Prototype Test Parel ..... 162
60 Aft Section Grid Plate Contour Member ..... 165
61 Aft Section Contour Attainment by Warp Membrane ..... 166
62 Aft Section Contour Attainment by Double Wall Construction ..... 167
63 Aft Section Contour Attainment by Rubber Fill ..... 168
64 Aft Section Contour Attainment with Compression Member ..... 169
65 Cross Section of Window Construction ..... 171
66 Radial Frame Determination ..... 172
67 Cross Section of Panel with Compression Member ..... 173
68 Prototype Panel Ply Orientation ..... 176
69 Splice Overlap Construction ..... 178
70 Tooling Flow Program ..... 182
71 Prototype Panel Mold Male Model - Bottom Side ..... 184
72 Prototype Panel Moid Male Model - Top Side ..... 184
73 Rubber Bead Extrusions for use on Model ..... 186
74 Assembly of Prototyp Panel Mold ..... 189
2. List of Figures (Continued)

Page No.
Figure 75 Assembly of Prototype Panel Mold with
Bead Clamps 189
76 Strong Back Seaming Structure 192
77 Prototype Panel Hydrostatic Test Fixture Side View
78 Prototype Panel Hydrostatic Test Fixture End View 194
BFG Dwg. 47G-27203A - Prototype Section Hydro Test Fixture 198
BFG Dwg. 47G-27240A - Hydrostatic Test Fixture - Clamp Details 199
\(\begin{array}{cc}\text { BFG Dwg. 47G-27237A - Hydrostatic Test } & \\ \text { Fixture - Plate Detail (Sectional) } & 200\end{array}\)
BFG Dwg. \(47 \mathrm{G}-27243 \mathrm{~A}\) - Hydrostatic Test Fix-
ture Clamp Subassembly
83 Panel Cross Section Fill Gum Application 204
\(\begin{array}{lll}84 & 15^{\circ} \text { Ply Lay Up and Splice Construction of } & \\ \text { Prototype Panel } & 209\end{array}\)
85 Bead Wrap Around Operation of Prototype Panel 209
86 Prototype Panel with Vacuum Bag Ready for Cure 211
87 Frototype Panel Thermocouple Locations 212
88 Panel and Mold Separated After Cure 219
89 Restraint of \(15^{\circ}\) Flies during Splice Fabrication

219
90 Bead Cable Weld for Splicing 220
91 Thermocouple Insertion during Panel Splice 220
92 Strongback in place for Splice Cure Operations 222
93 Splice Curing Operations 222
94 Thermocouple Locations during splice cure 223
95 Bead Tongs for Handling Panel 225
96 Panel in Mold Frior to Removal 226
97 Panel Removed from Mold 226
98 Top of Fanel - Exterior Surface 227
99 Bottom of Panel Exterlor Surface 227
100 X-ray Coverage of Panel 229
101 X-ray Positive of Bead Area 230
102 X-ray Positive of Splice Area 231
103 Completed Prototype Panel-80 psi-Bottom Side 233
104 Completed Prototype Panel-80 psi-Top Side 233
105 Typical Radial Frame Cross-Section of Prototype Panel

238
106 Forward Contour Comparison of Domes 249
107 Top Vlew of Dome Model 255
108 Side View of Dome Model 255
109 Comparison of DL-5 and DLG-26 Domes 256
110 Approximate Cross-Section at Frames 16 and 17
Using Existing Attachment Locations 257
111 Approximate Cross-Section at Frames 16 and 17
Using Modifled Attachment Locations
112 Chock Extensions for Ship Modification 267
113 Schematic of Froposed Pressurization System 271
1. Frequency vs \% Energy Carried in Water ..... 29
II. Ply Cable Adhesion Tests ..... 52
III. 35003 Neoprene Bonding Adhesiou ..... 53
IV. Cable Break Strenglh After AGiug ..... 56
V. Physical Properties of Neoprene - BFG Code 35003 ..... 57
VI. Physical Characteristics of Neoprene - BFG Code 35003 ..... 57
VII. The Densities and Sound Velocities ( \(P C\) ) of Various RHO-C Compounds ..... 60
VIII. Sample Window Cure Data ..... 65
IX. Wire Cable Adhesion Test Data ..... 66
X. Pulse Tube Reflection Measurements ..... 71
XI. Bead Panel Tensile Test Results ..... 101
XII. 6" Sample \#l Test Cycle ..... 121
XIII. 6" Sample \#l Actual Data Sheet ..... 122
XIV. 6" Sample \#l Test Results on Bead Clamp ..... 123
XV. §" Sample \#2 Test Cycle ..... 127
XVI. 6" Sample \#2 Actual Data Sheet ..... 128
XVII. 6" Sample \#2 Determined Stress on Bead Clamps ..... 129
XVIII. 6" Sample \#3 Test Cycle ..... 133
XiX. Cost Comparison of Dome Fabrication Concepts ..... 145
XX. Modified Pico Abrasion Test Results on Anti- Fouling Paint Sample ..... 151
XXI. Modified Pico Abrasion Test Results on Anti- Fouling Paint Sample Immersed 1 Month in Sea Water ..... 152
XXII. Modified Pico Abrasion Test Results on Anti-Fouling Paint Sample Immersed 6 Months in Sea Water ..... 153
XXIII. Coordinates of Prototype Panel ..... 175
XXIV. Lap Splice Strength ..... 177
XXV. Bead Cable Attachment ..... 179
XXVI. Prototype Panel Mold Costs ..... 181
XXVII. Prototype Panel Cure Cycle ..... 215
XXVIII. Splice Cure Temperature Cycle ( \({ }^{\circ} \mathrm{F}\) ) ..... 224
XXIX. Panel Test Cycle Record ..... 234
XXX. Prototype Panel Tests - Arc Lengths and Radil ..... 236
XXXI. Prototype Panel Tests - Arc Length Measured Along Radial Frames Between Edges of Cum Fill ..... 237
XXXII. Prototype Panel Tests - Distance From Edge of Bead Seat to Edge of Panel ..... 237
XXXIII. Drawings Utilized in Universal Window Study ..... 245
XXXIV. Cost of Universal Windows ..... 251
XXXV. Coordinates of DL-5 Acoustic Window ..... 260
XXXVI. Railroad Maximum Oversize Shipments ..... 262
XXXVII. Stress Diagram of Window Periphery ..... 268
```

Contract NObsr 89483

- 8 =
Serial No. SSO41-001
Task 8156
Report No. 17
Phase I Interim Report
30 September 1964

```
4. Identification of Personnel
    Following is a list of personnel that have and currently are
    participating in the over-all development program.
Name
J. C. Barker ..... 2
W. J. Berus ..... 1,492
R. H. Bockbiader ..... 1,376
Dr. E. H. Bollinger ..... 612
J. C. Cacioppo ..... 134
R. S. Colley ..... 1,583
Prof. J. J. Conner ..... 100
L. G. Gatton ..... 37.5
H. Gibitz ..... 27.5
Dr. R. A. Harrington ..... 216
J. C. Hess ..... 165
W. Johnson ..... 123
H. F. Neff ..... 231
R. F. Nichols ..... 52
F. A. Pedigo ..... i. 649.5
S. C. Sabo ..... 296
R. M. Sandusky ..... 1,597
R. L. Sell ..... 735
W. C. Simons ..... 354
R. D. Tubaugin ..... 1,615
P. N. Wiland ..... 1,321.5
R. C. Wise ..... 956
E. C. Wilson ..... 119
\({ }^{1}\) Hours expended tc report date but does not include anticipatory work.
```

Contract NObsr 89483

5. References

a. "Cavitation Characteristics of SQS-26 Sonar Dome for DLG-26 Class Frigate, Model 4858-1(u), Report C-1242-4. David vaylor Model Basin.
b. Louis A. Becker, "Experimental Determination of Pressure and Strain on the Bow Sonar Dome of USe Barry (DD933)", David Taylor Model Basin Reprort 1395, July 1960.
c. Kazuo Ochi, "Model Experiments on the Effect of a Bulbous Bow on Ship Slamming," DTMB Report 1360, Oct. 1960.
d. Margaret D. Bledsoe, "Experimental -uvestigation of SlamInduced Pressures on the AN/SQS-26 Sonar Dome'", DTMB Report C-950 (Confidential) Sept. 1958.
e. L. M. Brekhovskikh, 'Waves in Lazued Media" Academic Press, London, 1960.
f. Timoshinko, "Strength of Materials", 3rd Edition, Part II, P. 119.
g. Macwhyte Wire Rope Co., Catalog G-17.
Contract NObsr 89483
Serial No. SS041-001
Task 8156

Report No. 17
Phase I Interim Report 30 September 1964

C. Detail Factual Data

1. Introduction

The efforts described herein were necessary to complete the basic requirement of this program of determining feasibility of the rubber acoustic window concept. To satisfactorily accomplish this assigned task it was necessary to review the origin of pressurized rubber domes. With this background fresh in mind a highly concentrated development effort was expended in analyzing all facets of the present task. This study culminated in the satisfactory fabrication and testing of a tull size cable-reinforced prototype panel, and provided the design data required for a one piece Prototype Acoustic Window.

2. Background

In the early period of sonar needs, 1938 through 1955, the operating frequencies were in the high range extending from 20KC up to 107 KC 's. However, from this time development effort was directed at the creation of progressively lower frequencies, with associated long r wave lengths, resulting in larger and larger transducers and, of course, requiring greater size of domes as streamlined enclosures.

Many complex problems in the sonar system relegated, at that time, the dome to a lesser importance in total development plans. As the sonar gear improved, the dome became of paramount importance since it offered restrictions to optimum acoustical performance. Generally, speaking the domes:
(a) Created interfering harmonics to sonar signals.
(b) Generated or transmitted noises.
(c) Was highly susceptible to corrosion.
(d) Had inadequate reteition of anti-fouling paints.

Analysis of the actual and potential problems with steel domes suggested that the utilization of rubber construction might improve the overall performance of the sonar system.
B. F. Goodrich participation in the field of sonar domes started about 1944 with the Submarine Signal Company. This initial effort consisted of producing "windows" or panels of a metal structure embedded in a wall of rubber. The rubber was a specially compounded rubber to furnish a good acoustic match with sea water. The strength member was a metal framework of round wire rods or

Evolution of the $60^{\prime \prime}$ dome continued to keep pace with the changing requirements. The 307 series were essentially CW 177 domes with steel braces on the inside for increased structural strength. Two (2) domes, the $307 / \mathrm{U}$ and the $307 \mathrm{~A} / \mathrm{U}$ were fabricated and upon testing failed in the bow area. With the additional "blow outs" encountered, a complete redesign of the bow section was accomplished. A continuous bow was designed for the upper panels joining them about one-third back. This model was designated CW $307 \mathrm{~B} / \mathrm{J}$.

Prior to complete testing of the CW $307 \mathrm{~B} / \mathrm{U}$ sonar technology made significant strides toward larger transducers, consequently, larger domes. Interest in the $60^{\prime \prime}$ dome was diminishing as larger domes came on the scene.
b. 120" Dome

The need for bigger domes was firmly established through the successful development of larger sonar equipment. To satisfy the requirements of larger transducers the B.F.Goodrich, in cooperation with U.S. Navy personnel, designed a punch plate reinforced rubber dome $120^{\prime \prime}$ long, $48^{\prime \prime} h i g h$ and $25^{\prime \prime}$ wide. The design contour of this dome was in accordance with David Taylor Model Basin recommendations and exhibited a length to beam ratio of 5 to 1 . The general design principal was similar to the $60^{\prime \prime}$ dome without any appreciable internal strength structure. During the initial launch of this dome, free flooding was not accomplished with sufficient speed and the dome collapsed.

Redesign and reinforcement of the dome was accomplished resulting in successful testing and service use.

This dome was produced near and during the period of larger transducers and the final movement to steel domes. As far as B.F.Goodrich participation in the field of sonar domes the education, knowledge and experience gained on the smaller domes paved the way for participation in this contract directed coward development of a pressurized sonar dome.
c. $100^{\prime \prime}$ Pressurized Sonar Dome

In 1959 the B.F.Goodrich completed contract NObsr 72595 for the fabrication of a sonar dome. This dome was, at the outset, to be designed so that it would collapse after the transducer had been retracted into the ship's hull. This concept was employed
punch plates. This mesh framework resulted in a construction having interstices on the order of $1-1 / 2$ inches. The intersecting wires were "mash fused" or welded at all cross overs. Additional braces were included for structural strength either in the primary frame as molded or as post cure, post assembly operation.
a. 60' Dome

The success of the "rubber window" concept prompted Bureau of Ships and B.F.Goodrich to proceed on the design of a rubber $60^{\prime \prime}$ dome. The domes, in service at that time, were covered with a $.020^{\prime \prime}$ stainless steel window. The all steel domes falled prematurely at sot welded attachment points, as did the earlier windows. Through holes approximately $1 / 8^{\prime \prime}$ in diameter were developed which played havoc with the hydrodynamic dome design resulting in severe curtailment of sonar capabilities.

The rubber panel replacement proved vastly superior to the stainless steel, thus extreme interest was generated in a complete $60^{\prime \prime}$ dome fabricated of this construction. The $177 \mathrm{~A} / \mathrm{U}$ dome was the beginning of a full scanning dome and was henceforth referred to as the "NRL 60'. During the course of production contracts a design improvement program was omipresent resulting in improved service life.

The main problem with the initial domes was rupturing at the bow immediately adjacent to the welded seam. Examination of the defective area showed what appeared to be blowouts that ruptured the rubber and severed the grid structure. After intenaive investigation it was concluded that fatigue failure of metal under constant vibration and bombardment of sound waves was the primary cause of failure.

During this series of CW 177 domes the combination 347 stainless teel and 310 welding rod non-magnetic dome was developed. This dome, $C W 177 / \mathrm{c} / \mathrm{u}$, was mounted to the ship about one-third $(1 / 3)$ aft of the bow and off to one side of the keel. This was a change in the normal practice of on keel mounting. Ultimately, se to the ship's yaw and turning radius, severe forces were exerted against the dome sides, bending them severely.

Design meification included the addition of strong internal bracing and reducing the bending moment by lengthening the skirt. The improved design was designated Model CW 177 D/U and performed without casulties.
as a means of protection and would permit the ship to dock without fear of transducer or doge damage.

In order to accomplish the desired design goal, the usual steel truss and skin construction would be replaced by a flexible membrane. In the specifications of the flexible dome were requirements to improve the foilowing factors:
(a) Improved range and clearness of sound trasmission.
(b) Reduce self-producing noise.
(c) Hydrodynamically streamlined.
(d) Self-cleaning and non-fouling.
(e) Reduce susceptibility to damage by impact.
(f) Serve as a prototype to a 300" dome.

In essence, the requirements dictated that the flexible dome act like a rigid body, improving upon the characteristics of the steel domes and remain flexible to the point of being collapsible.

First thoughte concerning suitable constructions rurned to reinforced rubber containers rigidized by internal pressurization.

Among the ideas initially pursued were fabric (nylon, cotron, glass and rayon) reinforced rubber. Research showed that acoustically those constructions were undesirable because of high attenuation factors. This phenomonen is explainable when one realizes that air pockets are trapped within the fibers. The amount of air, with the resultant increase in attenuation, cannot be predicted accurately. This variation in acoustic properties coupled with the high and continuous creep factor, in the presence of water vapor, directed the approach toward other more accurate, acceptable and predictable constructions. It should be noted, at this point, that the possibility of a fabric reinforcement should not be discarded completely. However, an extensive research and development effort is required to thoroughly analyze all facets of this approach and determine methods of controlling the variables. Time being a critical factor in this program it was determined that the project should utilize past experiences and, in this instance, the concept of the cable-reinforcement be adopted for the $100^{\prime \prime}$ sonar dome.

The initial plan in this development was to interlace cable throughout the rubber dome, Figure $1, s o$ that loads would be distributed on the cables in a predetermined manner. Geodesic paths for the cables were obtained using a full size wood mock-up, Figure 2. The interstices of this construction were reinforced with weftless wire fabric to minimize pillowing or bulging between the load bearing cables.

The method employed to attach the cal,les to the boundary bar, which itself attached to the hull of the ship, was through the use of pulleys. The number of cables running to each pulley varied from 1 to 3 depending upon how the dome shape affected the cable layout pattern. Each cable end was wrapped around a pulley, lapped back on itself and locked in place by a crimped sleeve.

Culminetion of this study, under contract NObsr 72595, was the successful fabrication and testing of one dome. This dome, shown in Figure 3, was in operation continuously for two years and found to be very satisfactory in all respects for which it was originally designed, except the requirement to be collapsed. This original requirement for a collapsible dome was discarded when the retractable transducer did not materialize. During the service life of this pressurized dome it was proven superior to steel domes.

With the success of the first pressurized dome as a stimulus, thoughts were immediately turned toward diveloping improved and larger reinforced rubber domes. Utilizing the then current state-of-the-art of pressurized domes as a base line, and as a result of BFG Proposal 1815-105-163, the effort under Contract NObsr 89483 was enthusiastically an: vigorously initiated. Realizing the operational characteristics of the sonar bow dome are similar to the $100^{\prime \prime}$ sonar dome the basic proposal concept was aimed at pursuing the wire cable-reinforced rubber dome concept and improve upon it. This was in contrast to the alternative of attempting to conduct a research program, of the magnitude indicated by earlier studies, necessary to evaluate other constructions. A major consideration for this decision was the time factor .- the desire by B.F.Goodrich and Bu Ships to obtain an acceptable end product in minimum time. This coupled with the great success of the $100^{\prime \prime}$ dome indicated the tried and proven construction should be exploited.

Thus with this decision, and the basic approach determined, upon award of the contract the design and development efforts of a pressurized cable-reinforced rubber acoustic window were initiated.

Report No. 17
Phase I Interia Report
30 September 1964

Report No. 17
Serial No. SS041-001
Task 8156
Phase I Interim Report
30 September 1964

FIGURE 2
GEODESIC CABLE PATTERN, $100^{\prime \prime}$ DOME

3. Design Criteria

In accordance with contractual requirements, the B.F.Goodrich Company initiated a research and development program for a "Pressurized Bow Dome of a Cable-Reinforced Rubber Construction for use with AN/SQS-26 Sonar". This program is based on B.F.Goodrich proposal 1815-105-163 and encompasses guide lines outlined mutually by Bu Ships and B.F.Goodrich personnel.

The ultimate developed ecoustic window is intended for eventual use on four ships: $D L-5$, DLC - $26, D E-1040$ and $D E-1052$, Initially, the prototype developed under this contract is to fit the DL-5. However, the desirability of a universal dome is such that additional effort was expended in artempts to make one window fit all ships.

For designing the $D L-5$ or universal window the following design factors were to be cons:dered.
a. Ships Speed $=35$ knots max.
b. Ships Yaw $=0^{\circ}$
c. Sea State Calm
d. Ships Draft from ($\mathrm{DL}-5=15 \mathrm{ft}$.)

0 ft . WL to base i DLC. $26=19 \mathrm{ft}$.) line flat (full ($\mathrm{DE} \cdot 1040=14.3 \mathrm{ft}$.) load)
e. Sonar System: $=A N / S Q S-26$

Utilizing the aforementioned data, the general approach, listed in the contract, is presented below for reference.
a Contract Specifications
Program continuity and progress shall be maintained using the following contract specifications:

1) Phase I shall include an investigation of the feasibility of providing a one plece acoustic window for the AN/SQS26 sonar.
2) Should 1) above not prove feasible, determine the feasibility of directly attaching the reinforcing cables of each acoustic panel of the dome to the reinforcing cables of the adjacent acoustic panel and eliminate all vertical boundary bars of each panel and all truss support structure at each panel joint.
3) Should netther 1) nor 2) above prove feasible, determine the minimum size of truss support structure required at each acoustic panel joint, including elimination of these truss supports.
4) Should 1) above not prove feasible, investigate the method of attachment to be used at the joint between acoustic panels, with view toward assuring improved hydrodynamic characteristics, i.e., eliminate insofar as possible any portions which might present a sharp, exposed edge to the free flow of water.
5) Sections aft of E-E of BFG Drawings $5 S-1076$ and $5 S-1077$ deviate from those sections taken from existing AN/SQS-26 sonar domes. In addition, a discontinuity exists in this portion of the proposed dome, at the point of attachment between dome and ship's hull. These discrepancles are considered undesirable, and e forts directed toward their elimination or considerable improvement, are required.
6) Should design efforts specified in (5) above indicate a solution which may necessitate alippage in date of completion, the following course of action shall be considered:
a) For purposes of the prototype dome only, complete that portion of the dome forward of the vertical joint which exists in current steel domes for AN/SQS-26 (this joint is located approximately at section EE in BFG drawings 55-1076 and 55-1077.
b) Concurrently, complete the design changes necessary to overcome the objections given in 5) above, and incorporate these changes in the engineering drawings.
7) The above referenced proposal provides for acoustic test of sample panels by the contractor, and the furnishing of one sample panel for structural tests by the contractor to be followed by acoustic tests by the government. In addition, the contractor shall provide as a part of Phase I within one month after date of award, one $1-1 / 2$ inch by 5 feet by 5 feet panel or the type rubber ultimately to be used in the prototype dome, painted with two coats of rubber Tie Coat, formula 133 (per Specification MIL-P-22298) followed by two coats of Rubber anti fouling, formula 134 (per specification MIL-P-22299). This panel will be

Report No. 17
subjected to high acoustic energy levels at a Navy Laboratory to determine the adhesion characteristics of the paint under these conditions. Results of this and other tests will dictate the paint system to be used on the prototype dome.
8) At the earlicst possible date the contractor shall furnish the Bureau of Ships with lines and offsets at 2 foot water lines and 2 -foot buttock lines, taken at ship's frames (2 foot spacing). These lines and offset shall be furnished only for the acoustic window, or that portion of the dome to be manufactured under Phase III. These lines and offsets will enable the Bureac of Ships to have model constructed and cested, the results of which will determine the adviability of proceeding with Phase III.
9) The contractor shall either confirm the fact that the required hydrostatic pressure within the prototype dowe is 50 psig or prowide the Bureau of Ships with a new hydrostetic pressure requitement. An analysis of forces assumed and the computations made in determining the required pressure shall be forwarded to the Bureau of Ships at the earliest date possible, but in no case shall it be provided later than two months after date of award.
10) The prototype dome shall be constructed in a manner which will allow removal and replacement of the water within the dome while the ship is afloat, without damage to the dome or to the sonar transducer within the dome.
11) The design calculations used to determine the method of attachment between the acoustic window and the remainder of the dome shall be forwarded to the Bureau of Ships upon their completion. These shall include the tolerance required by both the contractor and the shipbuilder and shall indicate the method proposed for fairing in any mismatches or interferences.

b. Design Guidance

The following design guidance shall be considered:

1) In the design of steel components, a factor of safety of two or more on the yicld is desired.
2) The use of corrosion resistant steel should be limited to areas which are freely flushed by water, or where moisture is barred completely.
3) The following criteria shall be used for determining surface roughness, form and dome fairness:
a) Visual Check - Visual checks shall be made during construction to assure that the surface is free from irregularities such as pits, scaleand dents. Welds or mechanical fasteners should be finished smooth, and be fair with the adjacent structure.
b) Forms -
(1) Mold loft offsets specified by the contractor shall be carefully faired, and shall not depart from the Bureau's values by more than $\pm 3 / 8^{\prime \prime}$ except with specific approval of the Bureau.
(2) The mold loft offsets in the actual construction shall be followed to within $\pm 3 / 16^{\prime \prime}$ of those specified by the contractor.
(3) An inspection report shall be made to the Bureau, comparing the Burea's and contractor's mold left offsets, and also showing construction departures from the contractor's mold loft offsets.
c) Smoothness -
(1) The overall roughness height rating shall not exceed 125 m!cro-inches, as defined by MIL-STD-10A. This shall be measured on three waterlines (maximum dome thickness and, as selected by the Bureau of Ships, one typical waterline above that and one below that) and three buttock lines (centerline of dome, and, as selected by the Bureau of Ships, one typical buttock plare port and one starboard.
(2) To assure that there is no undue waviness, a batten and feeler gages shall be used. A $36^{\prime \prime}$ long-batten (wood, metal, or plastic) shall be used, with stiffness suitable for the curvature of the area being checked. With the batten held tightly against the dome at batten's ends the
```
Contract NOtsr 89483
- 22 -
Report No. 17
Serial No. SSO41-001
Phase I Interim Report
Task 8156
fairness shall be such that:
1 A feeler \(1 / 16^{\prime \prime} \pm .008^{\prime \prime}\) thick 18 excluded over the least \(75 \%\) of the length.
\(\underline{2}\) A feeler \(1 / 8^{\prime \prime} \pm .008^{\prime \prime}\) thick is excluded over the entire length.
4) The maximum cross section dimension (a diagonal, in the case of a rectangular cross section) of any metal structure within the acoustic window of the dome other than the reinforcing cables, shall be kepi to a minimum consistent with structural requirements. It is desirable that this dimension not exceed 1.7 inches. The diameter of the reinforcing cables within the acoustic window shall not exceed that necessary to support the tensile loads, and in no case shall their diameter exceed \(1 / 2\) inch.

\section*{c. Special Equipment}

Special tools and non-standard fasteners necessary for installation of the prototype dome shall be kept to an absolute minimum. However, should these be necessary, a sufficient quantity of tools and 10 percent excess of fasteners shall be upplied by the contractor with the prototype dome for use by the installing activity.
4. Pressurization Requirements

In order to fully assess the risors of anticifated environmental conditions the incernal pressure requirements within the acoustic window (similar to steel dome shown in Figure 4) wast be determined. It is a function of the membrane rigidity and the forces acting on the window. This interelated effort generates constructional requirements in turn dictating membrane composition.

Shape integrity and oacillatory control of the membrane are of prime importance in assuring a constint acceptable hydrodynamic shape.

\section*{a. Design Pressure}
```

Letting all presoures be gauge pressures, with respect to
atmospheric presaure, the amount of internal fressurization
required is derived as follows:
The externa: pressure (poi) on the acoustic window because of depth in the witer, is:

```
\[
P_{v}=\frac{d \gamma^{h}}{144}=11.2 \mathrm{psi}
\]

In which \(\quad d=\) density of water ( \(62.4 \mathrm{ibs} / \mathrm{ft}^{3}\) )
\(\sigma\) : specific gravity of sea water (1.03)
\(h=\) extreme draft
The maximam external preosure (fsi) on the acoustic window due to speed 18:
\[
P(\max )=\frac{.5 e_{C} c_{5} \max \text { U? }}{144}=24.3 \mathrm{ps} 1
\]
in which \(\rho\) density of water ( \(1.94 \mathrm{slugs} / \mathrm{ft}^{3}\) )
\[
\begin{aligned}
& \boldsymbol{O}=\text { specific gravity of sea water ( } 1.03 \text { ) } \\
& C_{p}=\text { presaure coefficient }(\max =1) \\
& \boldsymbol{U}=\text { velocity }(f t . / s e c)
\end{aligned}
\]

Report No. 17
Phase I Interim Report 30 September 1964


FIGURE 4
STEEL BOW DONE

Report No. 17

The minimum external pressure (psi) on the acoustic window due to speed is:
\[
P(m 1 n) \quad \frac{.5 P \sigma c_{p}(m 1 n) U^{2}}{144}=-12.4 p s 1
\]
in which \(C_{p}(m i n)=-.51\)
The values of the pressure coefficient, \(C_{p}\), come from the results of tow tests made at the David Taylor Model Basin².

To maintain a rigid structure under actual operational conditiona it is recommended that initially an asaurance margin of 7 psi be added. This figure is derived from existing (100") dome pressurization requiremente where satisfactory service life has resulted. Thus, the required design pressure (pil) becomes:
\[
P_{D}=P_{w}+P_{(\text {max })}+7
\]

At a peed of 35 knots, \(0^{\circ}\) yaw and calm seas, the design pressure for the DL-5 ships, which have an extreme draf: of 25 feet, 1 s
\[
P_{D}=P_{W}+P_{(\max )}+7=11.2+24.3+7=42.5 \mathrm{psi}
\]

And the design pressure for the DLG-26 ships, which have an extreme draft of 29 feet, is
\[
P_{D}=P_{W}+P_{(\max )}+7=13.0+24.3+7=44.3 \mathrm{psi}
\]

Under rough sea condit ns the speed of the ship is reduced to prevent damage. As \(l e ;\) as the dome remains under water, the hydrodynamic forces on the dome are actually less than at the highest speeds in calm seas.

In rough seas, the transverse and vertical motion has the effect of changing the aspect angle of the dome, so that the minlmum \(C_{p}\) might become -.85 instead of -.51 . However, the forward speed of the ship would be reduced to, at most, 23 knots. This speed must be added vectorially to the speed of heave,
1.Cavitation Characteristics of SQS-26 Sonar Dome for DLG-26

Clas: Frigate, Model 4858-1 (u), Report C-1242-4", David Taylor Model Easin.

Report No. 17
Serial No. SS041-001
Phase I Interim Report
Task 8156
pitch and roll, which might become as great as 10 knots in the roughest sea, to give a maximum instantaneous speed of 25 knots.

The stagnation pressure (equal to outside pressure) at 25 knots 1812.4 psi , and at \(C_{p}=-.85\), the maximm negative hydrodynamic pressure is -10.5 psi.

Thus these values are less than the similar hydrodynamic pressures at 35 knot speeds in calm seas.

\section*{b. Tension Waves on Acoustic Window Construction}

The flexural wave velocity on a rubber-wire structure is very amall since the bending stiffness of the section is amali; however, when eension is applied to such a sytem, the tenaion contribuies aignificant restoring force which gives rise to a relatively high wave velocity on this kind of system. To determine the magnitude of the effect we shall assume that a wave of fixed frequency is traveling along an infinite sheet of material whose mass per unit area ( \(\mathrm{ma}_{\mathrm{a}}\) ) is equal to that of the bow dome wali, whose tension per unit length (T) is uniform in all directions, whose thickness is negligible since the wave lengths are large compared to thickness, and which is imersed in a fluid with specific impedance \(?_{0}\) and sound velocity \(C\).

In analyzing such a system one assumes that a plane wave is incidenc upon the sheet at angle \(\theta\), referred to the norisal, and that this wave gives rise to both a transmitted and a reflected wave. The acoustic pressure and vertical component of

velocity ( \(p\) and \(\boldsymbol{r}\) respectively) are by standard methods.

\section*{c. Effects of Slamaing on the Pressurized Bow Dome}

The external pressures encountered under slamaing conditions depend upon many factors, some of them random in nature, which determine the relative speed and angle at which each area element of the dome encounters the water surface. The best estimates of these pressures come from, (a) measurements on the USS Barty \({ }^{1}\) (b) model studies at DTAB \({ }^{2}, 3\).

Measurements on USS Barry, fitted with a metal bow sonar dome, show maximum measured pressure in a state 6 sea at about 42 pil above atmospheric, at position on the centerline roughly eight feet forward of the lowest point of the sonar dome. Gauges aft of this position had become inoperative; they might have registered a somewhat greater pressure.

The measurements on models indicate that the maximum slaming pressure in a state 6 sea may be 120 psi (Ref. 2) to 310 psi (Ref. 3). The pressure observed on the models has to be multiplied by the sale factor of the experiment. The model In the Bledsoe report was scaled down by the factor 18.45, thus the 17 psi maximum observed pressure on the model corres. ponde to \(17 \times 18.45\) or 310 pet.

It must be borne in mind that: in the model studies the waves are probably much more regular than at sea and a wider range of cpeeds and angles can be tried; both factors tending to avke the observed pressures high. Also in the model studies, the models tend to be more rigid than the full-scale ship. With the very non-risid pressurized dome, we would expect the dome and its contained water to have almost exactly the aame compliarce as the surface of a wave, therefore, the maximum pressure at impact would be half what would be obtained with a rigid dome.

\footnotetext{
Louis A. Becker, "Experimental Determination of Pressure and Strain on the Bow Bonar Dome of USS Barry (DD933)", David Taylor Model Basin Report 1395, July 1960.
\({ }^{2}\) Kazuo Ochi, "Model Experiments on the Effect of a Bulbous Bow on Ship Slaming", DTMB Report 1360, Oct. 1960.
3Margaret D. Bledsola, "Experimental Investigation of Slam-Induced Pressures
on the AN/SQS-26 Sonar Eome", DTMB Report C-950 (confidential) Sept. 1958.
}

Phase I Interim Report
30 September 1964
\[
K=\frac{z_{0}}{\omega-m_{a}(j \cos \theta)} \frac{c_{0}}{c} \frac{\sin \theta}{\cos ^{2} \theta}
\]
which reduces to
\[
K=\frac{\rho_{D}}{\omega m_{a}}(\rho / c)^{2} /\left[\left(q_{c}\right)^{2}-1\right]^{3 / 2}
\]

Using the data previously determined, the ratio K and the percentage of energy carried by the water may be calculated as a function of frequency.

These values are listed in Table \(I\).

Table I
Frequency vs \% Energy Carried in Water


At the very low frequencies one is concerned about standing waves which would lead to surface irregularity. However, since most of the energy is carried in the water, a high percentage will be radiated upon reflection from any boundary. Under these conditions one would not expect standing waves to be a problem.

At high frequencies, the shear damping in the rubber-steel matrix will be sufficient to prevent the formation of standing wave systems.

Thus, a wave of high frequency, set up by local water disturbance, will lose energy rapidly through shear losses in rubber, while a low frequency wave will lose energy rapidly through reflection at dome boundaries. These energy losses will prevent the development of transverse waves of more than about \(0.2^{\prime \prime}\) amplitude.
so that the velocity of free waves on the wall immersed in water is given in terms of known constants relative to \(D\), the velocity of free waves in the wall when no medium is present.

The nominal tension in the bow dome wall under pressure is about 3,000 pounds/inch and the mass per unit ares is 2.0 \(\mathrm{gm} / \mathrm{cm}^{2}\). Thus, \(D \simeq 162\) meters/sec. Since the velocity of sound in water is \(C=1500 \mathrm{~m} / \mathrm{s}\), then the equation (4) can be written approximately as
\[
\begin{equation*}
\left[\left(\frac{D}{C}\right)^{2}-1\right] \frac{D}{C} \simeq \frac{2 \rho D}{\omega \mathrm{mma}} \tag{5}
\end{equation*}
\]
and it is immediately apparent that as \(W \rightarrow \infty \quad C \rightarrow D\) so that at very high frequencies the velocity of free wave a approaches that of the free wall, while as \(\omega \rightarrow 0\) \(c \rightarrow D\left[\omega \mathrm{~ms}_{\mathrm{s}} / \mathrm{LPD}\right]^{\text {k nd }}\) the velocity approaches zero.

It is thus apparent that no energy can be radiated from the wa I into the water since \(C<C o\) indicating that free waves occur only beyond the critical angle and total internal reflection must result. Thus, energy can only be transmitted along the wall. Effectively, a channel can be defined which runs parallel to the wall and the total energy transmitted is contained in this channel. Equation (4) can be interpreted to mean that the mass per unit area of the wall is increased by the mas of water contained in a channel about one wavelength wide, so that the velocity of waves is reduced by the increased mas loading and the energy is propagated primarily through the water.

The ratio of energy carried in the water to that carried by the wall may be easily calculated. Since the velocity amplitude on the wall is \(\mathcal{V}\) and the wave is transverse, the average energy transmitted per unit width is
\[
\#_{\Delta}=m_{a} \frac{r^{2}}{2} C
\]
while that transmitted by water is
\[
Z_{\infty} \cdot 2 \int_{0}^{\infty}\left(P_{r} V_{x}\right) d y
\]
where ( \(\mathcal{F} \mathcal{V}_{x}\) ) is the product of the real parts of the transanted pressure and \(X\) component of velocity. Performing the operations one assures at the ratio \(K=\mathbb{L}_{\omega} / \mathbb{L}_{0}\)
```

In the Bledsoe repor: , the 17 poi slamning pressure fell off
to about }6\mathrm{ psi in . 0007 sec. This length of time must be
multiplied by the square root of the scale factor for inter-
pretation to what would happen at full scale. Thus the
pressure at a point on the full scale dome would fall from
310 psi to }120\textrm{psi in . 003 sec.
This is because the severest high-pressure area would sweep forward at the rate of about 700 ft . per second (calculated from the Bledsoe report.
The pressure at any point in the dome window would be at most 160 psi and pressure this high would persist only . 003 seconds. Because the local inside pressure for such rapidly applied loading will almost match the outside pressure, no damage to the pressurized dome window or its supports wili result.
The disturbances due to slamming will be transmitted through the water inside the dome and will reach the transducer. Because of the narrowness of the high-pressure band on the outside (the region in which the pressure is greater than 60 psi as calculated from Ref. 1 is 2 ft . wide), the maximum pressure on the transducer will be about 30 psi.

```

\footnotetext{
\({ }^{1}\) Margaret D. Liedsoe, "Experimental Investigation of Slam-Induced Pressures on the AN/SQS-26 Sonar Dome", DTMB Report C-950 (confidential) Sept. 1958.
}
\[
\begin{equation*}
V_{\lambda}=-\frac{\cos \theta}{P_{0}} P_{R} \tag{1}
\end{equation*}
\]
\[
P_{T}=P_{T} e^{j \omega\left(t-x \frac{\sin \theta}{C_{0}}-y \frac{\operatorname{Cos} \theta}{C_{0}}\right)}
\]
\[
v_{T}=\frac{\operatorname{Cos} \theta}{2_{0}} P_{T}
\]

Examining a small area of the wall one finds that a differential equation may be written for the force equilibrim on the section:
\[
\begin{equation*}
\frac{T}{j w} \frac{\partial^{2} v}{\partial x^{2}}+P_{T}+P_{R}-P_{T}=M a \dot{\sim} \tag{2}
\end{equation*}
\]
where \(\mathcal{U}\) is the vertical component of velocity on the wall. From continuity conditions the vertical components of velocity in the medium mast equal that of the wall at \(y=0\) so that
\[
\overrightarrow{v_{I}}+\overrightarrow{v_{R}}=\overrightarrow{v_{T}}=\vec{v}
\]

Using these conditions and the equation for \(\mathcal{V}\)
\[
J=v_{0} e^{\left.j \omega^{\left(t-\frac{X}{e}\right.}\right)^{t}}
\]
where \(V_{0}\) is an arbitrary velocity amplitude and \(c\) the wave velocity on the wall, one arrives at the equation.
\[
\begin{equation*}
\frac{D^{2}}{C^{2}}-1=\frac{2 Z_{0}}{j \omega m_{a} \cos \theta} \tag{3}
\end{equation*}
\]
for \(C\) in terms of the known parameters of the system, \(D^{2}=T / m_{a}\) by definition and \(\operatorname{Cos} \theta=j(C \not /)^{2}-1\)
by application of Spell's Law.

Upon rearranging one finds
\[
\begin{equation*}
\left[\left(\frac{D}{C}\right)^{2}-1\right]\left[\left(\frac{D}{C}\right)^{2}-\left(\frac{D}{C_{0}}\right)^{2}\right]=\frac{2 P D}{a m_{a}} \tag{4}
\end{equation*}
\]
```

Contract NObsr 89483

- 32 -
Serlal No. SS041-001
Task 8156
Report No. }1
Phase I Interim Report
30 September }196

```

\section*{5. General Acoustic Considerations}
```

The primary acoustic consideration ls to impart no interference to transducer performance. The basic design of the cablereinforced rubber window eliminates many undesirable characteristics found in steel dome, l.e. vibration, flow noise and reflectivity. Therefore, the main consideration is to obtain a window construction with minimu attenuation characteristics. Specific discusion of acoustic requirements will be discussed as they apply during this report.

```
\begin{tabular}{ll} 
Contract NObsr 89483 & Report No. 17 \\
Serial No. SS041-001 & \(33-\) \\
Task 8156 & \\
\end{tabular}
6. Evolution of Cable-Reinforced Rubber Construction
a. Summary

The concept of a \(1 / 2^{\prime \prime}\) steel cable - neoprene coated weftless wire fabric combination for a pressurized acoustic window is acceptable from a strength and acoustic standpoint. However, the use of steel boundary bars to segment the construction is undesirable because of acoustic interference, weight and contour fairing requirements. Means of splicing the adjacent panels without steel boundary bars leads to the use of massive, cumbersome connectors which are also undesirable. Therefore, it was determined other constructions should be analyzed for this application.

\section*{b. Introduction}

The first considered design, as discussed briefly in the proposal, entails the use of veitical and horizontal steel boundary bars. The bars create a series of windows, Figure 5. composed of \(1 / 2^{\prime \prime}\) steel cables and neoprene coated weftleas wire fabric. This design eliminates all the steel truss work except at the attachment points. The boundary bar technique considered here was similar to the \(100^{\prime \prime}\) dome concept which had already proven.itself. However, things to consider are (1) degree of precision required in the ply cable lengths, (2) effect on acoustic performance, and (3) required fairing at attachment points.

In addition to the steel boundary bar concept the idea of splicing adjacent panels into a one piece window was also to be investigated. This concept, of a continuous window, is desired and mentioned in the contract.

Studies were to be taken to verify the acceptability of this concept and included (1) contour attainment, (2) strength requirements, (3) acoustical considerations and (4) cable splicing methods.
C. Design Study

Knowledge from studies made of panel reinforcing cables with regard to size, weight, strength, material and cost revealed that one family of cables laid "radially" (running vertically from boundary bar to boundary bar) would be more efficient, with less weight, cost and labor, than three families of cables laid at a crosing angle.

\author{
Contract NObsr 89483
Serial No. SSO41 001 \\ Task 8156
}

STEEL boundary bar - Window panel concept
```

Contract NObsr 89483

1) Determination of Pillowing

With this concept of a family of spaced cables comes the problem of pillowing or bulging between cables.

Two factors are involved in the determination of the amount of pillowing between the $1 / 2^{\prime \prime}$ diameter load carrying cables. The weftless fabric which bridges the $1 / 2^{\prime \prime}$ cables and the thickness of the window between the $1 / 2^{\prime \prime}$ cables resisting stretching due to pressure. Let us consider first the amount of pillowing if only the weftless fabric is present.

In the following derivations let:
$e=$ elastic stretch (in)
$T_{c}=$ tensile load on cables in weftless fabric (lb.)
D = nominal diameter of cables in weftless fabric (in.)
$F^{\prime}=\frac{D^{2}}{A E}$, where A is the cross-sectional area of cables and E is its modulus of elasticity F^{\prime} is a factor of elasticity and varies according to grade and construction of cable.

Contract NObsr 89483

- 36 -
Report No. 17
Serial No. SS041-001
Task 8156
Phase I Interia Report 30 September 1964

Thus we have:
(1) $T_{c}=P^{\prime} R=\frac{P R}{n N} \quad$ (lbs.)
(2) $R \sin 1 / 20=1 / 2 C$

The elongation of the chord, C, under tension is
e $=S-C=R \theta-C$
According to Macwhyte' formula:
$e=\frac{T_{c} C}{D^{2}} \quad F^{\prime}$
(3) Thus:
$Z=R \theta-C=\frac{I_{c} C}{D^{2}} \quad F^{\prime}$

For sall e, good approximation of sin 1/2 θ is:
$\sin 1 / 2 \theta=\frac{\theta}{2}-\frac{\theta^{3}}{48}$
Substitute this in (2)

$$
R\left(\frac{\theta}{2}-\frac{\theta^{3}}{48}\right)=1 / 2 \mathrm{c}
$$

$$
\frac{R \theta}{2}-\frac{R \theta^{3}}{48}=\frac{C}{2}
$$

$$
R \theta-C=\frac{R \theta^{3}}{24}
$$

Substitute this in (3)

$$
\frac{R \theta^{3}}{24}=\frac{T_{c} C}{D^{2}} \quad F^{\prime}
$$

which (when using the value of T_{C} from (l) can be written

$$
\frac{R \theta^{3}}{24}=\frac{P R C F^{\prime}}{n N D^{2}}
$$

Phase I Interim Report
30 September 1964

Solve for θ :
(4) $\theta=\left(\frac{24 \mathrm{PCF}^{\prime}}{\mathrm{ND}^{2}}\right)^{1 / 3}$

Find R from (2) using (4) when the amount of pillowing is determined by

$$
\begin{equation*}
H=R \pm \sqrt{R^{2}-c^{2} / 4} \tag{S}
\end{equation*}
$$

As an example let us consider two (2) plies of weftless wire fabric as pictured and determined degree of pillowing under 50 psi pressure.

The pillowing therefore is:

$$
H=9.7689-\sqrt{9.7689^{2}-\frac{2.071^{2}}{4}}=.055
$$

It may be concluded that two (2) plies of weftless wire fabric 80 oriented are not sufficient to prevent pillowing. Let us now look at the effect of the entire 1-1/2" thick membrane including $1 / 2^{\prime \prime}$ cables in resistance to pillowing.

The method of study in this case is based on that used to study beams made up of two (2) materials --"equivalent area method".

The neutral axis of the cross section is at the center of the wire fabric.

The moment of inertia of the area about the neutral axis is:

3.24×10^{-5}

Section Modulue $z=\frac{I}{C}=\frac{3.24 \times 10^{-5}}{1.175} \cdot 2.76 \times 10^{-5}$

Thus maximan atress is:
Bquation of Shear V. $-5 C X+50$
Max. $V=50$ ib. $/ 1 n .^{2}$ where $X=0$
Equation of Moment $M=-25 x^{2}+50 x+C$
When $X=0, M=0: C=0$

Max. M = 25 ft . 1 bs. where $\mathrm{X}=1$
Max. Strese $\cdot \frac{\text { Max. } M}{Z}$
Max. $S=\frac{25}{2.76 \times 10^{-5}} \cdot 9.06 \times 10^{5} \mathrm{lbs} / \mathrm{in}^{2}$
Deflection or Pillowing at $X=1^{\prime \prime}$ where $X=$ distance between 1/2" cables:
$\begin{aligned} y=\int \frac{M_{m}}{E I} d x \text { where } M & =-25 x^{2}+50 x \\ E & =30 \times 10^{6} \text { ibs./in. }{ }^{2}\end{aligned}$
$I=3.24 \times 10^{-5}$
m. eq. of bending moment due to llb. load acting vertically at $X=1^{\prime \prime}$.

Equecion of shear:
$v=.5,0<x<1$
$v=-5,1<x<2$

Equation of moment:
$M=.5 X+C_{1}$, When $X=0, M=0$, therefore $C_{1}=0$
$M=-.5 X+C_{2}$, When $X=1, M=.5$, therefore $C_{2}=1$
Therefore:
$M=.5 X, 0<X<1$
$M=-.5 X+1,1<x<2$
$E I=\left(30 \times 10^{6}\right)\left(3.24 \times 10^{-5}\right)=972$
$y=\int_{0}^{1} \frac{\left(-25 x^{2}+50 x\right)(.5 x)}{972} d x+\int_{1}^{2} \frac{\left(-25 x^{2}+50 x(-.5 x+1)\right.}{972} d x$
$=.0107^{\prime \prime}$
The calculated results indicate that pillowing is resisted mainly by the thickness of the window and should not be serious.

Verification of the above by empirical means was not attempted because of the change in window design which eliminated the $1 / \mathbf{2 ' ~}^{\prime \prime}$ cables.
2) Analyais of Constructional Strength

With few load carrying cables the resultant size and strength of the members must furnish the required strength. Having only one (1) family of cables running vertically to support the loads the equation of equilibrium becomes:
$P=\frac{T}{R}$
Where $P=$ Internal Pressure, psi
T = Tension in cable, lbs.
$R=$ Radius of curvature, inches

Report No. it
Phase I Interim Report
30 September 1964

Specifications call for a factor of safety of 2 or more on the yield of steel components be maintained in all phases of the Bow Dome construction. To maintain shape integrity it is necessary that the loads on the cables do not excecd the cable elastic limit. The elastic limit of wire cable is 55% to 65% of its yield strength. Thus, if the design of the bow dome construction is such that ainimum safety factor of 2 is maintained, then no cable will be loaded beyond it. elastic limit.

During that period of the feasibility study when one fanily of load carrying cables was under evaluation, it was determined that the expected pressure difierential would require an internal dome pressure of 50 psi. Also, the largest load carrying cable radiu* would be about 120'. Thus, the force per inch of ooundary bar would be:

$$
T=P R=(50 \mathrm{psi})(120 \text { inches })=6000 \mathrm{lbs} / \mathrm{in}
$$

The size and spacing of cables, to satisfy the above conditions, together with consideration for fabrication techniques indicates $1 / 2$ inch diameter "7 flex" cables spaced on 2 inch centers are required. This cable is rated at 26,200 lbs. strength which is satisfactory (safety factor of 2.15), considering the potential 12,000 lb. load.
3) Acoustical Considerations of Cable-Reinforced Rubber Construction

The effects of scattering and diffraction from a series of equally spaced rigid cylinders in a plane wave have been calculuted. This systen is anelogous to the large diameter cable construction originally proposed for the acoustic window. With one half (1/2) inch cables spaced on two (2) inch centers, the transulssion loss was calculated in the following paragraphs to be less than 0.1 db at anglec of incidence up to eighty degrees. Also, no diffraction images are formed since the cable spacing is mich less than a wave length and, thus, the phase difference between the scattered waves from successive cables is less than 2π radians at angles of incidence.

The structure of the acoustic window membrane, as originally conceived, corsisted of one half (1/2) ir.ih diameter steel cables on two (2) inch centers for support of the high

> tensions in the wall. To determine the acoustic effects of such a series of cables, imbedded in rubber matrix, several reasonable approximations must be made to idealize the system to one for which analytic solutions exist. Since the cables are to be imbedded in a Rho-C rubber, whose acoustic characteristics are similar to water, one can reasonably assume that the cables act as if immersed in a continuous water medium. The solution to the problem of a plane wave incident upon a ingle rigid cylinder immersed in a infinite medium is given in the literature thus the pressure distribution in the scattered wave at a distance r from the cylinder is:

where $p_{s}=$ acoustic pressure of scattered wave
z : specific impedance of medium
a = radius of cylinder
$\mu=w a / c=$ phase radius of cylinder
c. sound velocity in medium
$k=w / c$. phase constant
0 = scattering angle with respect to direction of incident wave
$\epsilon_{m}, \gamma_{m}=\begin{aligned} & \text { are associated with the eigen function for } \\ & \text { this solution }\end{aligned}$
$P_{0}=$ intensity of incident plane wave
In our particular case, the radius of the cylinder is very small compared to wave 1 length so that,

$$
\begin{aligned}
& \mu \ll 10, \gamma_{0} \simeq-\gamma_{1} \simeq \pi \mu^{2} / 4 ; \gamma_{m}=0(m \geq 2), \\
& \text { and } \epsilon_{0}=1,0, \epsilon_{m}=2,0(m \simeq 1) .
\end{aligned}
$$

$1^{\prime \prime V}$ vibration $\&$ Sound" by Philip Morse, McGraw-Hill Book Co., 1948.

Contract NObs 89í.	Report No. 17	
Serial No. S3041-001	Phase I Interim Report	
Task 8156		30 September 1964

Thus:

$$
P \rightarrow \frac{n \pi^{2}}{4} \sqrt{\frac{4 \pi F_{a}}{\pi M_{i}}} e^{i k(r \cdot c t)}(1-2 \cos \theta)
$$

and the intensity scattered in a given direction is:

$$
r_{s}=\frac{p_{5}^{2}}{2 z}=\frac{\pi_{a}}{8 r^{2}} \mu^{3} r_{0} \quad(1-2 \cos \theta)^{2}
$$

The total energy scattered in the forward direction is:

and that scattered in the backward direction is:

$$
E_{B}=\int_{\frac{\pi}{6}}^{\frac{3 \pi}{2}} r d d=(3 \pi+8)\left(\frac{\pi c \mu^{3}}{8}\right) r_{0}
$$

These apply to angle cylinder. Now let us assume that a line of these cylinders are equally spaced a distance S apart.

Then, due to symmetry, we can say that for each band of width S, there is a total incident energy $E_{I}=r_{0} S$ on a cylinder. Assuming that this represents an infinitely long line, the scattered energy for each band in F and E_{B} ae previously defined. In the far field, these scattered ${ }^{\text {B }}$ wave e mist ap algebrically to produce a plane wave in both the forward and backward directions, such that the phase of the forward scattered wave reduces the energy in the plane wave to compensate for the reflected energy. Thus E_{B} / S is the intensity of the reflected wave and T_{0} is the intensity of the incident wave so that the transmitted wave must have an intensity

$$
T=r_{0}-E_{B} / S
$$

- 1 : pis: so :

$$
\text { T. } L_{0}=10 \log _{10} \frac{r_{0}}{7}=10 \log _{10} \frac{1}{1-E_{0} / s r_{0}}=10 \log _{10}\left[\frac{1}{1-\left(3 \pi+\frac{8) \pi a \mu^{3}}{8 s}\right.}\right]
$$

> For the construction under consideration, the transmissica loss calculated according to this analysis is less than 0.1 db , totally insignificant.

The secondary scattering from the field of one element by its neighbor has been neglected since the neighbor subtend i an angle of less than 15° and less than 5% of the total energy is scattered in this manner.

At angles of incidence other than normal, we may modify this equation as shown in the diagram. The width of the plane wave-front

associated with each cylinder is reduced to so that the transmission loss

$$
T_{0} L_{0}=10 \log _{10}\left[\frac{1}{1-\frac{(3 \pi+8) \pi a \mu^{3}}{8 s \operatorname{Cos} \theta}}\right]
$$

This equation indicates little change in the transmission loss until the angle of incidence approaches 90°; however, under these conditions the neighboring cylinders begin to interfere with the forward scattered beam and the equation is no longer valid. We therefore reach the conclusion that the transmission lose is less than 0.1 db for angles of incidence up to at least 80°.

The next consideration is diffraction effects.
Let us now look at a plane wave incident upon a system of cylinders as indicated:

where α is now the angle of incidence and θ is a direction from the center of the array to a point of observation in the far field. It is possible to find a direction in which the scattered waves add in phase to produce a diffraction image similar to those produced by Fraunhofer diffraction in optics ${ }^{2}$?

The pressure amplitude at the point of observation (x, y) is

$$
P_{s} \alpha \sum_{n=-M}^{+N} \frac{e^{i k\left(r_{m}+n \sin \alpha\right)}}{\sqrt{r}}[2 \operatorname{Cos}(\theta-\alpha)-1]
$$

where n is the number associated with the $n-t h$ cylinder counting from the origin $(0,0)$ and r_{m} is the radius vector from this cylinder to (x, y).* Since we are only interested in the phase of the separate scattered waves we can neglect all factors except the exponential function. If the argument of this function indicates an integral number of wavelength phase difference between each scattered wave, then there will be a diffraction image formed which could give a false target indication. For this to be true,

$$
k\left[r_{n+1}+(n+1) \sin \alpha-\left(r_{n}+n \leq \sin \alpha\right)\right]=2 \pi p .
$$

where p is some integer.

[^1]Now $r_{n}{ }^{2}=x^{2}+(y-n s)^{2}$, and, since S is small r_{n} can be approximated by $r_{n} \sqrt{x^{2}+y^{2}}-n \sin \theta$ 80 that
ks $(\sin \alpha-\sin \theta)=2 \pi P$
is the phase difference of the scattered waves between two successive cylinders.

At the critical frequency and a pacing $S=2$ inches in water images are found only at $\theta=\alpha$ and θ. $\Gamma-\alpha$ which corresponds to the transmitted and reflected waves, and no purious diffraction images can be formed.

As a result of these tudies it was concluded, the proposed construction incorporating $1 / 2^{\prime \prime}$ diameter cables spaced $2^{\prime \prime}$ apart was acceptable acoustically.
4) Cable Attachment

One basic problem of this system is that of properly anchoring the ends of the $1 / 2^{\prime \prime}$ load carrying cables. The various techniques considered were:
(a) Wrap cable around pulley and use crimped sleeve, similar to 100' dome.
(b) Lacing cable between sheaves and $z i n c$ ends - use grommet for splice.
(c) Zinc filled ends - each cable
(d) Swedged ends - each cable

The first technique was considered initially since it is similar to that used on the $100^{\prime \prime}$ dome. The reason it was discarded was because of the sizt of the cable and the swidged fitting. It would involve a special fitting rather
than an off-the-shelf item. Furthermore the cable and fitting manufacturers would only guarantee the reliability of the swedged fitting and the assurance of full cable strength if they applied the fittings. If B.F.Goodrich were to apply these fittings, a special designed cool would be necessary which would have been cumbersome with reduced reliability.

This evolved into the interlacing design. In this approach a cable would be laid continuously from one boundary bar to the other, wrapping around a sheave at each boundary. At a aplice area between panels the continuous cable would be cut-off and its end positioned in a socket hole in the boundary bar and the cavity zinc filled. In the splice itself a grommet would be added between sheaves. (Figure 6)

Application of this technique, as in the previous technique, demands laying of the cable in its predetermined location in the mold in a non-distorted arrangement. Elimination of crimped sleeves on the ends made this procedure much more acceptable.

The radius of the sheaves around which the cable would wrap, together with the center-to-center distance of the sheaves presented a problem. The bending of the caile around the sheave in consistent or orecise radius was difficult, mainly due to the stiffness of the cable. This problem could be met by a method of pre-forming the cable at the point where it mast wrap around a sheave, but this reduces the cable strength as shown in the following graph (Pigure 7).

The greatest problem in this conception is holding the cable in its proper location so that when the rubber is being cured under pressure it would not shift or slip around the sheaves. Such movement of the cable would cause exaggerated distortions or deflections of the contour:

Thinking then returned to the individual cable concept with consideration given to a substitute for the crimped fitting. Two possible ideas came forth. The first was to use the zinc fitted socket idea, which was to be used in the splice area of the previously discussed construction concept. Special skilla and experience are essential to

- 47 -

Report No. 17
Phase I Interim Report 30 September 1964

rigure 6
ZINC FILLED GROMET ATTACHYENT
OF $1 / 2^{\prime \prime}$ CABLE TO BOUNDARY BAR

BLANK PAGE

utilize this type of cable anchoring. Consistency within the anchor, from one cable to the next, is needed to insure meeting prescribed contours. This consistency is better met through use of a swedged fitting instead of zinced socket. On each end of a cable, which has been cut to the prescribed length for apecific location in the dome, afitting would be awedged. The boundary bar would require slots or key-holes into which the swedged ands could be inserted. Through the use of an adjusting mechanism or shims, the length tolerance allowed in the original pre-fabrication of the cables could be tightened up greatly, thus assuring a better matching of the deaired contour. However, because of the larger aize of the swedged fittings and the reliability requiremente these fittings can be put on only by the fitting supplier. Special equipment is required for this function which is available only at the supply source.

In general the problems involved in a construction as previously discussed are considerable with a resultant negative effect on window installation and performance.

d. Conclusions

1) The weftless wire plies will resist the fillowing tendency between the $1 / 2^{\prime \prime}$ cables.
2) Cables $1 / 2^{\prime \prime}$ in diameter, spaced on $2^{\prime \prime}$ centers would support the loade resulting from a 50 psi internal pressure.
3) The construction, utilizing $1 / 2^{\prime \prime}$ cables, is acceptable acoustically yielding a calculated transmission loss of .1 db for angles of incidence up to 80 degrees.
4) Attachment of the $1 / 2^{\prime \prime}$ cable panel construction to the ship cannot be accomplished without a resultant negative affect on acoustical performance, weight and ease of attachment and fairing.
5) Investigations should be undertaken to eliminate the $1 / 2^{\prime \prime}$ cable and to simplify the attachment and splicing hardware.

7. Analysis of Weftless Cable-Reinforced Window

a. Summary

Following a thorough investigation atrength analysis and acoustical study it was determined that a superior acoustic window for bow dome could be fabricated from multi-ply weftless wire fabric construction. This is a fabric which has cable (14 ends per inch) running only in one direction. Consequently, all strength is in the direction of the cables with the gum coating holding the cables together along the width. These plies oriented peoperly yield a construction of proper strength to withstand expected service conditions.
b. Introduction

After determining the imitations of constructions reinforced with heavy cables, other methods were sought for obtaining the required wall strength.

The most obvious approach, which was pursued, was to utilize only the weftless wire fabrac an the strength members. This was studied with respect to acoustical performance, strength and fabrication case.

In lieu of the combination of $1 / 2$ inch diameter radial cables as atrength members and weftless wire fabric as shear plane membirs, the membrane will be constructed of plies of weftess wire fabric. They will lay at prescribed angles, to produce a window of equivalent strength as the $1 / 2^{\prime \prime}$ cable design and superior acoustic characteristics. Advantages of this design include:
(1) simplified ply lay up and boundary bar atachment technique,
(2) a more homogeneous cross-section, which will be more conducive to uniform acoustical transmission, and
(3) a more flexible structure which will reduce the problems of transportation, handing and damage during service.

c. Strength Anslysis

Mathematical calculations predict that this concept is
feasible from atrength standpoint. Three (3) plies of weftless wire fabric, each having . 048 inch diameter cartion

Phase I Interim Report
30 September 1964
steel cables, brass coated, spaced 14 ends per inch, laid radially (running vertically from boundary bar to boundary bar) will be equivalent to the strength of $1 / 2$ inch cables running radially and spaced on approximately two inch centers. The minimum breaking streagth for $1 / 2$ " diameter "7 Flex" cable is 26,200 lbs. This cable was to take the load over a $2^{\prime \prime}$ width. With the weftless wire construction each of 14 cables per inch has a minimum 355 breaking strength. Three plies of this construction yields a breaking strength over a $2^{\prime \prime}$ width of 29,820 lbs. As in the $1 / 2^{\prime \prime}$ cable design it is planned that shear plane forces be teken by number of weftiess wire fabric plies laid at 75° angles to the main reinforcement plies.

In addition to the cable tensile strength consideration, the ultimate strength of the construction is dependent upon the strength of the adhesives.

The first consideration will be the constructional adhesive evaluation. In essence this evailuacory phese is concerned with determining proper adhesives for bonding: (1) steel cables to Neoprene, (2) Uncured Neoprene to Uncured Neoprene, and (3) Cured Neoprene to Uncured Neoprene. Many adhesive aystems are available for each situation mentioned: therefore, this study is necessary to determine the best system for incorporation into the window construction.

In determining structurel sirength of the window construction, it is desirable that the full strength of the wise cable be utilized. Adhesive fallure of the Neoprene tond to the cable or the Neoprene to Neoprene bond at the splice is not considered satisfactory. Consequently, it is necessery to attain adhesive bond strengtis of such e value that faliure would not occur in these areas.

1) Cable Adhesion - Reiative cabie adhesion of potential primers was determined using the standard American Society for Testing Materials V - 186 Adhesion 3 lock Test. The procecure outlined in this test requires priming with the desired adhesives, then curing the cables in a one (1) inch square bar of the appropriate compound. Subsequent to cure, the cables are pulled from the bick in an appropitate testing machine. This value, in pounds, is recorled and gives an indication of the reietive bond strengiths.

The best system, as determined from this evaluation, is further tested in the Bead-Panel Tensile Testing phase of this program.
Test dais obtained from this program are recorded in Table II.

Contract NObsr 89483 Serial No. SS041-001
Task 8156

TABLE II
PLY GABLE ADHESION TESTS

Com-
pound

No.	Dip No. ${ }^{4}$			Load	In Po	nds			Remarks
		1	$\underline{2}$	$\underline{3}$	4	5	$\underline{8}$	Av.	
16148^{1}	018615	59	68	70	71	67	72	68	Cable Clean
16148	220	78	102	96	118	113	100	10 :	10\% Gum on Cable
16148	203-220	130	129	125	167	133	145	138	$\begin{aligned} & 50 \% \text { Gum on } \\ & \text { Cable } \end{aligned}$
$35001{ }^{2}$	018615	46	48	42	56	43	45	64	Cable Clean
35001	220	78	97	95	74	98	81	87	20\% Gum on Cable
35001	203-220	160	166	170	189	150	102	156	20\% Gum on Catle
$35003{ }^{3}$	018615	25	24	24	21	20	16	22	Cable Clean
35003	220	120	118	125	124	89	110	114	$\begin{aligned} & 50 \% \text { Gum on } \\ & \text { cable } \end{aligned}$
35003	203-220	133	112	113	118	110	96	113	$\begin{aligned} & 85 \% \text { Gum on } \\ & \text { Cable } \end{aligned}$

1. Natural Rubber Compound.
2. Rho-C type Natural Rubber Corpound.
3. Rho-C type Neoprene Compound.
4. Dip applied to brass coated carbon steel cable.

The intended compound for dome construction 1835003 Neoprene. This material is a $\&$ RHC-C Neuprene compound used in many other sonar applications. It is preferred over Natural Rubber in that greater spilice bonding strengths can be attalned.

Due to the ready availability of materiai, the original test samples and panels were constructed with the Compound 16148 - Dip 018615 System. However, upon completion of chis test progrem, and the acceptability of the combination 35003 Neoprene - 220 dip material proven, subsequent samples were fabricated from this material and tested as discussed later.
2) Compound Adhesion - As mentioned previously, there are many adhesive systems available for bonding Neoprene to itself, either cured or uncured, whatever the construction might dictate. The purpose of this program phase is to evaluate several acceptable adhesives and determine which is more acceptable for use. During this program, the ultimate goal was to obtain an adhesive system which would require Neoprene stock shearing for sample failure to occur.

Samples were fabricated end tested with resulting data in Table III, "Bonding Adnesion",

TABLE IXI
35003 NEOPRENE BONDING ADHESION ${ }^{1}$ ($1 \mathrm{bs} / \mathrm{in}$)
CURE 30° a $300^{\circ} \mathrm{F}$
Adhe-

$\begin{aligned} & \text { Adhe. } \\ & \text { sive } \end{aligned}$	Peel Test ${ }^{2}$			$3^{\prime \prime}$ Lap			Shear Test ${ }^{3}$					
	$\underline{1}$	$\underline{2}$	Ave.				5" LeE			7" Lap		
				$\underline{1}$	$\underline{2}$	Ave.	1	$\underline{2}$	Ave.	1	$\underline{2}$	Ave.
1024	58	68	63	1160	1275	1217	1590	1595	1593	1900	2000	1950
369	65	75	70	1000	1000	1000	1510	1560	1535	2155	2410	2282

1. Data in pounds pull per inch of sample width.
2. Stock sheared in all cases.
3. Stock shear in all cases except $3^{\prime \prime}$ lap.

This data coupled with considerable experience using 369 cement indicates this cement is acceptable for this application.
3) Constructional Strength - The sample testing program conducted during ship attachment design studies, Section C.8.e.1, further verified the acceptability of the strength characteristics. During those studies as shown in Table XI thruXVII the ultimate etrength of the chosen construction was found to be 11,000 to 14,000 lbs/inch. This yields an ultimate strength safety factor of approximately 4 to 1 in the panel area.

4) Effect of Salt Water on Ply Cable

The purpose of this study was to determine the effect of salt water corrosion on brass-plated wire cable cord, code $W-70100$, currently used in the construction of the prototype panel. Secondly, to evaluate wire cables of various compositions and other materials capable of performing a similar function.

The results to date disclosed that there was no deleterious effect on tensile strength, of W - 70100 wire after four monthe immersion in salt water at 80 psig, of a segment representing the standard window construction.

When the bare wire was immersed in allt water under controlled conditions, the tensile strength was reduced approximately 50% after 14 days exposure. Bare wire tested concurrently with the above in an atmosphere of salt water fog deteriorated completely within 14 days.

The attached data showed stainless steel had very good resistance to salt water spray.

Galvanized wire appeared to lose no strength, but it was postulated that this was due to the large wire size and plating thicknesu. A smaller wire haing a thinner plating would be more susceptible to corrosion.

The presence of molsture in glass cord has a severe effect on tensile strength resulting in a shearing stress on the individual filamenta in the cord. The degree of degradation was not fully exemplified in these results, primarily because the samples were partially dry at the time of tenaile testing.

Report No. 17
Phase I Interim Report 30 Septeaber 1.964

The procedure consisted of applying a hydrostatic pressure on a single ply of wire cables coated with . 020" neoprene, totaling an over-all thickness of $.075^{\prime \prime}$. Actually, the window construction is $1^{\prime \prime}$ thick with $\frac{1}{\prime \prime \prime}^{\prime \prime}$ of neoprene over the outside of the 5 wise plits. Permeation of the sea water tincu the $\frac{b^{\prime \prime}}{4}$ of neoprene furnishes a filtering action, thus when it reaches the wire it is relatively frce of salts. This, coupled with the absence of air, considerably reduces and may eliminate the problem of wire corrosion.

The single ply samples were immersed in salt water to simulate the window in its use environment. The test fixture used to contain the sample and water was a section of pipe $30^{\prime \prime}$ long $x 3^{\prime \prime}$ in diameter and capped εt each end, one of which was equipped with a $3 / 8^{\prime \prime}$ orifice used to pressurize the system to 80 psig with air. The test segment wan $15^{\prime \prime}$ long $x 1^{\prime \prime}$ (14 cables) wide.

Various uncoated materials were imersed in the selt solution reservoir of a salt spray cabinet and/or suspended in the salt spray fog in such a position that they did not overlap or shield each other. The salt spray apparatus included the following:
a) An exposure chamber with attachments for supporting samples whick would not affect the corrosiveness of the salt spray nor cause electrolytic corrosion.
b) A salt solution reservoir with a solution consisting of iodine-free NaCl and distilled water, and adjusted to a specific gravity of between 1.14 and 1.15 .
c) An atomizer consisting of an air arrangement so that it will blow across a glass tube immersed in the salt solution, and spray against a baffle plate forming a fog throughout the chamber.

1) A heater element iumersed in the salt water solution which maintained the temperature between $94-98^{\circ}$ F within the chamber.

At specific intervals, samples were removed from their environment, examined for corrosion, and the resulting strength or break load determined as indicated in Table IV.
Contract NObst 89483

- 56 -
Report No. 17
Phase I Interim Report 30 September 1964

TABLE IV

CABLE BREAK STRENGTH AFTER AGING

Data:

Material

Control-Code W-70100
(5 x 7) Brass plated Steel Dia. 0.048" 325

Code W-70100 coated and immersed @ 80 psig air 325

Ultimate tensile		Ultimate tensile	\% Tensile
streingth psi-	Aging in strength psi	Strength	
Control	Weeks	afier aging	Retained

The stock described is classified as "Rho - C rubber". The term "Rho-C" rubber was colned to describe rubber compounds developed especially by The B.r.Goodrich Company for use in sonar devices. The density and the sound velocity of the rubber clesely matches the same properties of sea water. To obtain maximum transmission and minimum reflection of sound passing through two adjacent media, it is necessary to match their acoustic impedance.

The normal claseical acoustic impedance equation can be applied to determine the approximate intensity of surface reflections. As the sound beam passes through the interfaces between media the intensity of the reflection is given by:

$$
R=\frac{P_{1} C_{1}-P_{2} C_{2}}{P_{1} C_{1}+P_{2} C_{2}}=\frac{Z_{1}-Z_{2}}{Z_{1}+Z_{2}}
$$

$R \quad=$ Percent of sound power reflected
$P_{1} C_{1}=$ Acoustic impedance of first medium (density x sound velocity
$P_{2} C_{2}=$ Acoustic impedance of second medium (density x sound velocity
$Z: P C=$ Acoustic impedance
The equation above assumes a loss free media. However, in the case of rubber, there is some hysteresls loss. This fact makes it impossible to obtain reflection - free transmission through rubber due to the reactive component present in the acoustic impedance of "lossy" medium. The impedance is shown by:

$$
z_{2}=\frac{P C}{1+r^{2}}+\frac{i r P C}{1+r^{2}}
$$

Where
$z_{2}=$ Acoustic impedance of "lossy" material
$\rho=$ Density of material
C : Sound velocity in the material
$r=\frac{a C}{\omega}=$ loss parameter
$\alpha=$ Sound attenuation in material (Nepers $/ \mathrm{cm}$)
$w=2 \pi f$

```
Contract NObsr 89483 - 57 -
Serial No. SS041-001
Task 8156
Report No. }1
Phase I Interira Report
30 September :964
d. Panel Compound Studies
The basic elastomer utilized in the proposied bow dome acoustic window is neoprene, a chloroprene polymer. This is a conpounded stock which exhibits the physical properties and characteristics noted in Tables \(V\) and VI.
```

TABLE V
PHYSICAL PROPERTIES OF NEOPRENE BFG CODE 35003

Property	Value	ASTM Reference
Tensile	2900 psi	ASTM D412-51T
300% Modulus	400 psi	ASTM D412-51T
Shore A Durometer	45	ASTM D676-49T
Compression Set	59%	ASTM D395-53T
Tear Resistance	$200 \mathrm{lbs./in}$	ASTM D624-54
Water Absorption $481-R S ~ @ ~$ $55^{\circ} \mathrm{C}$	1.63%	ASTM D471-54T

TABLE VI

PHYSICAL CHARACTERISTICS OF NEOPRENE BFG CODE 35003

Characteristic
Tear
Abrasion (Dry)*

Ozone

Mineral Oil
Castor 011

Sunlight

Weather
*Resistance to abrasion while wet is excellent since the water acts as a lubricant.

Resistance

Falr to Good

Fa1:

Good

Good

Excellent

Excellent

Excellent

The attenuation, α, is very low in most elastomers at frequencies below 100 kilocycles. However, α increases with increasing frequency, and becones appreciable in some materials at frequencies above 500 Kilocycles.

Although the sifght mis-match is of little concern to sonar design engineers, it does point up the reason for some surface feflection even though a perfect \mathcal{C} match has been obtained.

The densities and sound velocities (P) of the various RHO-c compounds are listed in Table VII.

Also, Figure 8 and 9 preaent graphs of Sound Velocity Ve. Temperature and Sound Absorption Vs. Temperature.

Sound Velocity (c) (Meters/Second)
 II^ 318vI

7961 دวquazdas 0ε

```
Contract NObsr 89483
    -61 -
Serial No. SS041-001
Task 8156
```

Report No. 17
Phase I Interim Report 30 September 1964

SOUND VELOCITY VS, TEMP.

Aalyais of the information preseated indicaten other materials listed appear to be more desirable than the chosen moprene stock. Two primarj considerations prompted the decision to use neoprene: (1) the greater leval of durabllity exhibited by neoprene with respect to ozone resistance, oll resistance and life apan and (2) the great increase of reliablifty of a neoprene bonded seam versus natural rubber bonded seam.

The stress strain curve for tae 35003 Neoprene is shown in Figure 10. With chis information a tentative cure cycle for the prototype pariel had to be establashed. However, in attemptIng to establish a cure sycle it became apparent that several unique situations tended to complicate the picture. Firet, the size of the Epoxy-glase laminated tool and second, the variation in thickness of the panel itself. Sevaral sample cures ware conducted on representative panel constructions to Imentigate the cure cycle temperasure time relationohip. A sample fabricated as shown in Plgure 11 was cured using the thermo couple monitoring system illustrated. The general concept puraued in these triala was that a standard curif for the panel thickness of $l^{\prime \prime}$ would be sufficient for the encire panel thickness. The realdual heat ramaining in the beavy $i 111$ sections vould continue the cure of this section after the normal temperature phase of cure cycle was completed. The sample illustrated was cuzed using this technique and Table VIII presents temperature deta accumulated.

FIGURE 10
35003 NEOPRENE STRESS-STRAIN CURVE

FIGURE 11
SAMPLE WINDOW CURE SECTION

| Contract NObsr 89483 | Report No. 17 |
| :--- | :--- | :--- |
| Serial No. SSOA1-001 | Phase I Interim Report |
| Task 8156 | 30 September 1964 |

TABLE VIII

SAMPLE WINDOW CURE DATA

Time	Thermocouple Temperature ${ }^{\circ} \mathrm{F}$						Remarks
	1	2	3	4	5	6	
Start	-	-	-	-	-	-	
$1 / 4 \mathrm{hr}$.	187	-	126	219	300	90	
1/2	233	-	166	258	290	113	
3/4	251	98	200	270	299	146	
1 hr .	259	113	220	276	298	170	
1/4	265	132	234	280	298	189	
1/2	269	145	243	280	292	202	
3/4	266	162	249	277	292	217	
2 hrs .	278	175	256	289	303	226	
$1 / 4$	285	178	264	295	305	236	
1/2	283	200	269	290	297	245	
3/4	282	201	271	288	291	252	
3 hrs .	281	221	273	286	290	257	
$1 / 4$	283	230	274	289	297	260	
1/2	290	239	278	296	304	265	
3/4	299	249	286	304	311	272	Start cure cycle.
4 hrs .	299	257	291	303	304	278	
$1 / 4$	297	262	292	297	300	281	Start water cool-down.
1/2	221	267	253	130	110	278	
3/4	170	269	195	95	-	250	Shut off water - drain autoclave with door closed.
5 hrs.	160	259	169	132	156	215	
$1 / 4$	165	248	172	158	158	199	Door opened.
1/2	155	239	175	159	116	194	

Analysis of these data indicate that all areas of the section, including the deep fill area, received an adequace cure. Also, heat transfer through the proposed mold-bag structure was determined and was utilized in establishing the optimum prototype panel cure.

In a panel of this thickness variation, the possibility of over cure in thin sections is very good. Over curing of neoprene stock itself for the time expected has no effect on the physical properties as seen in the Stress-Strain Curve (Figure 10) previously presented.
B.F.Contrich Aerospace and

Report No. 17

A more vulnerable trouble spot on over cure is wire cord adhesion to compound 35003. A study was established with the primary purpose of determining the effects of prolonged curing temperatures on the adhesion of neoprene to $\mathrm{W}-70100$ brass-plated wire cable with the standard Number 220 metal primer cement system.

The adhesion samples were prepared and tested according tc ASTM D-1871 - 61T procedure, except that the wire was pulled from a $1^{\prime \prime}$ block in place of a $2^{\prime \prime}$ block. The processed material was obtained by dipping the wire once in the metal primer then calendar coating with .020" (each side) 35003 neoprene. The results of this study are shown in Table IX.

TABLE IX
WIRE CABLE ADHESION TEST DATA

Cure Cycle	Load (lbs.)							
	1	2	3	4	5	6	Ave.	Remarks
20' ${ }^{\text {a } 292}{ }^{\circ} \mathrm{F}$	100	105	102	88	112	90		
40^{\prime} © $2922^{\circ} \mathrm{F}$	116	95	108	116	112 90	90 125	99.5 108.3	
60° C $292{ }^{\circ} \mathrm{F}$	85	93	110	94	116	105	100.5	85.90\% Gum
80° © $292{ }^{\circ} \mathrm{F}$	95	100	105	112	105	89	101.0	on Cable
100^{\prime} ($292{ }^{\circ} \mathrm{F}$	90	87	103	111	100	95	97.7	
120^{\prime} C $292{ }^{\circ} \mathrm{F}$	110	95	97	107	86	9	99.0	
140' C 292 ${ }^{\circ}$	100	89	91	100	90	87	92.8	75\% Gum on
160' $292{ }^{\circ} \mathrm{F}$	86	82	96	97	90	105	92.7	Cable

The results of the wire adhesion tests disclose the ultimate adhesion was obtained in 40^{\prime} © $292^{\circ} \mathrm{F}$.

Progressive exposure of the specimens at curing temperature reduced the adhesion proportionately to a maximum of 14% after 160 minutes © $292^{\circ} \mathrm{F}$. It was further determined that for a "safe" level of adhesion of the neoprene to wire in the finished part, the curing cycie of the paisel will be adjusted so that an equivalent cure at the wire-elastomer interface w111 not exceed 120° @ $292^{\circ} \mathrm{F}$.
e. Acoustical Considerations

Substitution of three plies of weftless wire fabric for the $1 / 2$ inch diameter main reinforcing cables reduces the amount of average metallic cross-sectional area about 40\%. This fact coupled with the homogeneity of the resulting cross section improves the sound transmission properties of the dome over previous designs.

The transmission loss of the pressurized acoustic window membrane of both 5 and 8 ply systems were evaluated. The 5 ply duplicates the normal panel construction and the 8 ply the maximum overlap situation adjacent to the beads. Theoretical calculations were completed and the results compared with pulse tube data, taking into consideration all the corrections required. Excellent agreement was found and thus the basis established for calculating the transmission loss of a large parel in the free field.

1) Sound Velocity in the Wall

The window wall consists of a series of closely spaced cables embedded in a neoprene compound. At the frequencies under consideration, the wave length of sound is far greater than the diameter and spacing of the wires in the matrix. Under these conditions, one would expect that the effect of the steel cables would be conveniently described as increasing the bulk modulus and increasing the density of the composite material, and that the sound-transmission properties of the composite could be calculated, using these modified properties, in the following manner.

In the homogeneous medium the sound veiocity (longituilinal waves) $C_{0}^{2}=B_{o} / P_{0}$ where B_{o} is the bulk modulus and P_{0} is the density. If, to this medium, a specifi-d volume percent (U^{-}) of incompressible material of density (d) 1 s added, then the modified bulk modulus $B^{\prime}=B_{0} /(1-v)$ and the modified density $P^{\prime}=P_{0}+\left(d-P_{0}\right) v^{\prime}$. Thus the velocity of longitudinal waves (C^{\prime}) and density (P^{\prime}) in the matrix combination are:

$$
\begin{align*}
& c^{\prime}=c_{0} \sqrt{\frac{p}{(1-d) p}} \\
& p^{\prime}=P\left[1+\left(\frac{d}{b}-1\right) v\right] \tag{1}
\end{align*}
$$

where

```
c' = longitudinal wave velocity in wire-rubber-wall
P'}=\mathrm{ = denaity of wall
c sound velocity in rubber
\rho= denalty of rubber
d = avernge denaity of incompressible flller cables
U}=\mathrm{ volume percent of flller
```

2) Transmiseion

When a plene wave is normally incident upon a plane wall of non-absorbing inaterial, ${ }^{\text {the }}$ 年ergy is both reflected and transmitted such that $R^{2}+T^{2}=1$ (where R and T are the absolute values of the reflection and transmission co--fficients).

Also:
$R / T=1 / 2\left(\frac{31}{30}-\frac{30}{31}\right) \operatorname{Sin} \frac{\text { Wa }}{C_{1}}$ (Appendix I)
where $Z_{0}=$ Specific impedance of medium
$\mathrm{X}_{1}=$ Specific impedance of wall
C_{1} a Longitudinal wave velocity in wall
$\omega=$ angular frequency

- = wall thickness

In the bow dome at frequencies below loke the pronerties of the wall are such that $w a / c<.15$ and thus $\sin w a / c \sim w a / c$.

Thus (2) becomes

$$
\begin{equation*}
R / T=\frac{\omega_{c} p}{2 R_{0}}\left[1-\left(\frac{F_{0}}{F_{1}}\right)^{2}\right] \tag{3}
\end{equation*}
$$

Since the neoprene compound used in the bow dome wall has less than $0.1 \mathrm{db} /$ inch absorption at frequencies less than lokc/sec, we may consider the wall to be of non-absorbing material. We may then measure the reflection coefficient from such a wall (this can be done far more accurately than measuring transmission).

Since $R / T=R / \sqrt{1-R^{2}}$, a plot of (R / T) versus frequency gives a straight line passing through the origin with a slope (m) and;

$$
\begin{equation*}
m=\frac{\sum_{a}}{F_{0}} P_{1}\left[1-\left(\frac{2}{2}\right)^{2}\right] \tag{4}
\end{equation*}
$$

or

$$
m=\frac{\pi_{a}}{C_{1}}\left[\frac{z_{1}}{z_{0}}-\frac{z_{0}}{z_{1}}\right]
$$

The measurements of reflection coefficient are made with a disc of the material suspended half way down a fourteen-foor vertical pulse tube. Thus, the first front surface reflection is received at the transducer, mounted at the bottom of the tube, before the return pulse from the alr-water interface at the top of the tube. In this way, accurate measurements of reflection coefficients are possible. The disc samples are molded to precise dimensions, but there is still a small gap between the periphery of the disc and the tube wall. This gap modifies both the

sound velocity and the density of the medium in accordance with the following equations (See Appendix II).

$$
\begin{align*}
& c_{1}^{\prime}=c^{\prime}\left[1+\frac{Q}{2}\left(1-\frac{c^{\prime 2}}{c_{0}^{2}}\right)\right] \tag{5}\\
& \rho_{1}=\frac{P^{\prime}}{A+\frac{\rho^{\prime}(1-A)}{\left(\theta_{0}\right.}}
\end{align*}
$$

Report No. 17
Phase I Interim Report 30 September 1964
C_{1} is the effective wave velocity
c^{\prime} the velocity in a free field
P_{1} the effective density
P^{\prime} the actual density
A the fractional area of the tube that is filled with absorber (.9662 for our system) and $0=2 \delta \rho / b \rho_{0}$
In the window construction C^{\prime} / C_{0} is approximately 1.0 and $\ll 1.0$ so that $C, \approx c^{\prime}$ and the longitudinal wave velocity is not changed. Therefore, only the density ρ must be modified.

3) Analysis of the Wall Structure

The wall structure in our present design consists of neoprene rubber (density, $P=1.32 \mathrm{~g} / \mathrm{cm}^{3}$ and velocity of sound $C=1.602 \times 10^{5} \mathrm{~cm} / \mathrm{sec}$ at $10^{\circ} \mathrm{C}$.) and steel cable with an equivalent diameter of 0.122 cm and an average weight per unit length of $0.05305 \mathrm{gm} / \mathrm{cm}$. The atrands are so tightly packed that the cable is practically incompressible. There are 14 cables/inch in a single ply, thus each ply contains $14 \times 0.05305 / 2.54=0.2925 \mathrm{gms} / \mathrm{cm}^{2}$ of steel. For the fiveply sample, whose measured density ρ^{\prime} was $2.66 \mathrm{gm} / \mathrm{cm}^{3}$ and thickness 0.785 cm , the volume fraction of steel (\sim) is 0.40 , and from (1);

$$
c_{1}=c^{\prime}=1.602 \times 10^{5} \sqrt{\frac{1.32}{(1-0.40) 2.60}}=1.458
$$

and $(s) P_{1}=2.66 /[0.9662 \times 0.0338 \times 2.66 / 1.00]=2.52 \mathrm{gm} / \mathrm{cm}^{3}$
At $10^{\circ} \mathrm{C}$ the velocity of sound in water $\left(C_{0}\right)$ is 1.431 x $10^{5} \mathrm{~cm} / \mathrm{sec}$ and $P_{0}=1.000$. Using these values in (4);

$$
\left.\begin{array}{rl}
m_{\Omega} & =\pi \frac{0.785}{1.431} \times 2.52 \\
\times 10^{3}
\end{array} 1-\left(\frac{1.431 \times 10^{5}}{2.52 \times 1.458 \times 10^{5}}\right)^{2}\right]
$$

Table X gives the measured values of R for various frequencies for boch a 5 ply and an 8 ply ample.

TABLE X

PULSE TUBE REFLECTION MEASUREMENTS

5 ply

3.15
3.94
5.01
6.32
7.96
0.125
0.148
0.175
0.212
0.281
0.126
0.188

8 ply

$\frac{R}{0.150}$

0.149
0.225
0.191
0.177
0.281
0.230
0.292
0.216
0.350
0.373
0.292

These values are ploted in Figure 12. A best-square line fit to the data gives a slope of $0.0361 \times 10^{-3} / \mathrm{sec}$ for the 5-ply sample. A similar calculation for an $8-p l y$ sample with density $P=2.58$ and a thickness of $1.30 \mathrm{~cm} g$ gives an experimental value of $\mathrm{m}_{2}=0.0589 \times 10^{-3} / \mathrm{sec}$. compared to the calculated value of $0.0590 \times 10^{-3} / \mathrm{sec}$. Thus we see that the method of calculating the longitudinal wave velocity for this structure gives excellent agrement with experimental values. These values, when used to calculate transmission loss of this struccure in a free field will be quite accurate.
4) Transmission of Acoustic Window Wall as a Function of Angle of Incidence

The analysis of a plane wave incident upon a thin plate immersed in a fluid is discussed in many places in the ifterature. Ihis detailed analysis indicates that the shear components of the waves have a negligible effect when the shetr wave velocity in the plate is much less than the longitudinal wave velocity and when the plate thickness is small compared to a shear wave-length.

[^2]ME nesiorvine

REFLECTION/TRANSMISSION VS FREQUENCY OF PULSE TUBE TESTS

Under these conditions, the transmission loss through the plate is given by
$T_{0} h_{0}=10 \log _{10}\left\{1+\left[\frac{z_{0}^{2}\left(1-c_{1}^{2} \sin ^{2} \theta / c_{0}^{2}\right.}{z_{1}^{2}}-1\right]^{2}\left(\frac{\omega a_{1}, \rho_{1} \cos \theta}{2} \frac{z_{0}}{z_{0}}\right)\right\}$

$$
\begin{aligned}
& z_{0}-\text { specific impedance of fluid } \\
& z_{1} \text { - specific impedance of plate } \\
& C_{0} \text { - longitudinal wave-velocity in fluid } \\
& C_{1} \text { - longitudinal wave-velocity in plate } \\
& a-\text { plate thickness } \\
& \rho_{1} \text { - density of plate } \\
& \theta \text { - angie of incidence }
\end{aligned}
$$

As noted earlier the sound velocity in the rubber-steel matrix is given at $10^{\circ} \mathrm{C}$ as $1460 \mathrm{~m} / \mathrm{sec}$ with the density taken as $2.66 \mathrm{gm} / \mathrm{cm}^{3}$. Using a value of $1520 \mathrm{~m} / \mathrm{sec}$ and a density of $1.03 \mathrm{gm} / \mathrm{cm}^{3}$ for sea water at $10^{\circ} \mathrm{C}$, the transmission loss (db) at the critical frequency for a 5-ply wall (a = . 785 cm) may be calculated and will be found to be insignificant.

When additional rubber is added to the wall symmetrically to make the entire thickness one inch, there is an additional mass impedance added to the wall which will increase the transmission loss. If a number of leyers exist, as shown in the diagram, the overall equation for transmission loss is

$$
T_{0} l_{0}=10 \log _{10}\left\{1+\left(\sum_{k=1}^{n}\left[\left(\frac{z_{0}}{z_{k}}\right)^{2}-1\right] \frac{w a_{k} \rho_{k}}{2 z_{0}}\right)^{2} \cos ^{2} \theta\right\}
$$

This calculation shows that the additional rubber has a very minor effect.

Acoustic Schematic of Five Ply Sample

5) Fabrication and Testing of Sample Acoustic Windcw Panel

As a means of verifying theoretical and pulse tube results a sample pancl of the proposed construction was fabricated and submitted to the Underwater Sound Laboratory, New London, Connecticut, for acoustical testing.

The panel, $l^{\prime \prime}$ thick x 5'square, consisted of 8 plies of weftless wire fabric with $.290^{\prime \prime}$ of neoprene on one side and $.150^{\prime \prime}$ of neoprenc on the other. Wire ply orientation was as shown in Figure 14 . This resulted in 4 plies of wire laid vertically, 2 plies laid 15° above the horizontal

Report No. 17
Phase I Interim Report 30 September 1964
Serial No. SS041-001

Figure 14
$5^{\circ} \times 5^{\circ} \times 1^{\prime \prime}$ ACOUSTIC TEST PANEL, PLY ORIENTATION
and 2 plies laid 15° below the horizontal. The net result, 8 plies, simulated the most extreme case of Ply overlap anticipated in the acoustic window. This overlap situation is expected in the forward area, adjacent to the bead. Plies wrapping around the bead, in addition to overlap from normal ply lay, when traversing the distance from the dome - 4^{\prime} WL (large window circumference) to l.he bead (small window circumference) will result in this situation.

Panel fabrication was accomplished by building the panel to the proper dimensions then inserting the construction in a steel mold. A soap mold release was sprayed on the surface of the mold to insure ease of panel removal. The loaded mold was placed in a 2000 psi, hydraulic ram, 5^{\prime} platen press and the panel cured © $300^{\circ} \mathrm{F}$ for 2 hours.

Subsequent to cure and prior to the final finish operations a complete $x-r a y$ analysis was made. Figure 15 depicts the panel, with the grid denoting the pattern. Viewing of the film did not uncover any defects such as voids, delaminations or broken wires.

Final finish and cleaning of the panel was accomplished to remove processing decontamination and molding marks.

Initially minor surface depressions on both sides of the panel were filled with B.F.Goodrich adhesive 429348. This is a hish solids, rubber base, waterproof adhesive. It is resistant to fresh and salt water, ages well and remains resilient to withstand impact and vibration.

The bottom surface of the panel possessed several flow marks and mold lines and it was considered desirable to buff them smooth. A skil belt sander with 80 , then 120 grit sandpaper was used for this operation.

Buffing was accomplished only on the bottom surface since the top appeared to be acceptable, with only minor mold imperfections.

The panel was washed thoroughly with Methyl Ethyl Ketone and Petroleum Naphtha and then stenciled with necessary information.

The panel was completed and shipped to the Underwater Sound Laboratory, New London, Connecticut on August 19, 1963. This panel was tested by Hazeltine Corporation

FIGURE 15
$5^{\prime} \times 5^{\prime} \times 1^{\prime \prime}$ ACOUSTIC PANEL, SUBSEQUENT TO X-RAY ANALYSIS
with results recorded in Test Report, No. EASL-AS-S dated November S, 1963, entitled "Acoustic Characteristics of Material". In essence this report states that no coustical absorption or reflection was detectable in the frequency range of interest.

Upon completion of testing by Hazeltine aditional testing of the panel was accomplished by the Underwater Sound Laboratory. Basically, this test was to determine if exposure to high power sonar transmission degrades the panel in any way. After the first 65 hours of test a cracking and discoloration was noticed. An additional 163 hours of testing was accomplished without an increase in severity of the defects noted.

A segment of the 5^{\prime} square panel was returned to The B. F. Goodrich Company for examination and an explanation of noted discrepancies.

Upon receipt of the panel segment, it was immediately examined by project personnel, consulting microscopist, and photographs taken. Figures 16 and 17 deplet the specific areas in question as indicated by the Underwater Sound Laboratory. The detalled description and explanation of defects as discovered by microscopiat is included in Appendix III. It was ascertained that the surface condition noticed was a result of a combination of conditions.
(a) Rubber flow lines - The surface neoprene plies were added in sections during construction of the panel. The resulting joint is not always perfect and rubber flow during cure is expected to fill the gap and knit adjacent plies together. The flow lines may be visible after cure because of materials on the surface, such as mold release agents or soapstone, which are carried along by the movement of the rubber. The rubber flows into gap until it is stopped by the opposing flow. This line where the flow stops may also be vible because of flo: patterns on the surface. This results in visible lines which for all practical purposes have no depth.
(b) Mold impressions - Rubber ridges and depressions apparent on the panel surface are result of machining marks on the insert plate used in the molding operation. The mold utilized was originally designed for a $1-1 / 2^{\prime \prime}$ thick paint panel, thus a $1 / 2^{\prime \prime}$ thick steel insert had to be used to obtain the desired $1^{\prime \prime}$ thickness. In addition, other slight mold surface irregularities, i.e., pits, gouges, weld droplets, etc., were also transferred to the panel.
Contract NObsr 89483

- 79 -
Serial No. SSO4l-001 Task 8156

Report No. 17
Phase I Interim Report
30 September 1964

FIGURE 16
POSSIBLE EXTERNAL AREAS AFFECTEU BY HIGH POWER SONAR TRANSMISSION

Report No. 17
Phase I Interim Report 30 September 1964

FIGURE 17
POSSIBLE INTERNAL AREAS AFFECTED
BY HIGH POWER SONAR TRANSMISSION
(c) Discoloration of filler 429348 - Surface voids were filled with the heavy rubber filler, previously discussed, which is dark gray in color. During the subsequent cleaning operation these irregularities were seemingly masked. The solvent, Methyl Ethyl Ketone, used for cleaning, becomes black from buffing dust and dissolved neoprene and acts like a paint, furnishing a uniform color to the panel surfaces. Subsequent handiling, immersion in water and etc., washed this cover off the filler yielding the original gray color.

This was accomplished without degradation to the filler.

Thorough examination of this test panel, including microscopic study resulted in the conclusion that the existing irregularities were seemingly masked during the cleaning phase and then uncovered again during subsequent handling and testing. Also, during this examination it was not possible to discover any defects such as ply separation, voids, cable migration, or other general degradation which could be construed as a direct result of acoustical energy bombardment.

f. Conclusions

1) Five plies of weftless wire fabric properly oriented, will furnish the required strength for withstanding anticipated service conditions.
2) Metal Primer 220 furnishes the best adhesion between the 35003 Neoprene and the brass plated steel wire.
3) Adhesive 369 yields the best degree of adhesion for Neoprene to Neoprene bonding.
4) There are no deleterious effects on the tensile strength of a single ply of $\mathbf{W}-70100$ wire stock after 4 months immersion in sea water at 80 psig when coated with . $020^{\prime \prime} 35003$ Neoprene.
5) The standard cure for a $l^{\prime \prime}$ panel thickness would be sufficient for the entire panel; residual heat will cure the fill sections.
```
Contract NObsr 89483
- 82 -
Report No. }1
Serial No. SS041-001
Task }315
Phase I Interim Report
30 September }196
```

6) Testing of representative acoustic window panels showed that there was no acoustical absorption or reflection detectable in the frequency range of interest.
7) Utilizing information obtained about these materials efforts can continue on determinine actual ply sequance, seaming techniques and ship attachment method.

Report No. 17
Phase I Interia Report. 30 September 1964
8. Acoustic Window Construction Study
a. Summary

The most reliable and operationally acceptable acoustic window was found to be constructed of five plies of weftless wire fabric wrapped around a bead cable. The window should be constructed of four panels ultimately spliced together to form a continuous one plece window. Attachment to the ship will be accomplished using a bead seat (welded to the ship) - bead clamp retention-sealing system.

b. Introduction

With the acceptability and desirability of the weftless wire concept proven, a prouram was established to determine the exact construction of the acoustic window. For this study aeveral separate theoretical and analytical fabrication and testing programs were conducted. These included:

1) Determination of the optimum number and orientation of the weftless wire plies
2) Method of wrapping ply cables around bead cable
3) Method of attachment to the ship
4) Means of fairing acoustic window to ship
5) Procedure, techniques and cement to be used in fabricating the window.

In performing these studies, with the utilization of representative small scale samples, certain limitations were recognized. These, arising primarily from small sample end and edge effects, would furnish somewhat erroneous results. However, realizing this, data analysis was directed toward ultimately testing a full size prototype panel. In turn, testing of this prototype panel would furnish accurate test data and permit finalization of rembrane characteristics thus permitting completion of the full size prototype acoustic window design.
c. Force Distribution in the Acoustic Window

A study of the force distribution in the rubber window membrane was necessary to accurately predict its performance under normal service conditions and permit fabrication and testing of representative sample sections.

Report No. 17

Phase I Interim Report
30 September 1964
$\Delta \mathrm{I}_{11}$ and $\Delta \mathrm{I}_{22}$ result from the movement of the dome thru the water, from cables seeking the true geodesic curve and from any changes affecting cable tension. For our purposes they are insignificant since the flexible nature of the membrane will cause them to reach a state of equilibrium.
R_{1} end R_{2} are radii of curvature.
To develop the formulas for pressure distribution on the cables, consider an element of cable length,

where $F_{R}=$ Resultant Force
I is the force at each end of $\Delta \ell$ (tangential action)
$P^{\prime}=$ pressure acting on a cable, $P^{\prime}=\frac{p}{N} \frac{1 b n \cdot / 1 n^{2}}{c a b l e s / i n}$
$F_{R}=2 T \sin \frac{1}{2} \theta=P^{\prime} \Delta l$
for small θ,
$\sin \frac{1}{2} \theta=\frac{1}{2} \theta$
Substitute this in (2) we get

$$
\begin{aligned}
& T \theta=P^{\prime} \Delta l \\
& T \theta=P^{\prime} \quad R \theta, \\
& P^{\prime}=\frac{T}{R} \quad(1 b s / i n)
\end{aligned}
$$

where R is the radius of curvature taken by $\Delta \ell$.
The equation for expressing the state of equilibrium for a pressurized flexible membrane such as the acoustic window is,

$$
\begin{equation*}
\text { Pdiff }=\frac{T_{11}}{R_{1}}+\frac{T_{22}}{R_{2}} 1,2 \tag{1}
\end{equation*}
$$

Timoshenko, "Strength of Materials", 3rd Edition, Part II, P 119.
${ }^{2}$ Equation 1 obtained by multiplying Timoshenko's expression by thickness and converting to this notation.

To derive the formulas from which strength and deflections are determinable it shall be assumed that a cross-section taken vertically or horizontally and perpendicular to the surface of the membrane shall approximate an arc of a circle.

The deflection of the membrane due to the pressure differential between the inside and outside of the dome is dependent upon the pressure coefficient factor. Although this factor varies from the top to the bottom of the dome, an average value will be taken for each vertical cross-section.

Because of the dome curvature, gathering or lapping of each ply of wire fabric stock as it is laid from the top to the bottom of the dome, is necessary for proper fit. The resulting additional build-up at the membrane boundaries will be neglected ir the calculation of deflections.

If an increment of the acoustic window, as depicted, is conidered, the total force (lbs. acting on the increment) is:

$\mathbf{F}=\mathrm{PA}$
where: $P=1 s$ pressure (lbs/in ${ }^{2}$)
A : is area of increment (in ${ }^{2}$)
T1\} is defined as the cable force per inch ($1 \mathrm{bs} / \mathrm{in}$) along X-direction acting vertically, T_{22} as the cable force per inch (lbs/in) along y-direction acting horizontally and T_{12} and τ_{21} are the cable shearing stresses which can be conaidered negligible. The nearly symmetrical construction and loading of the membrane causes the shearing stresses to be negligible in calculations of strength and deflection. The resultant of the total cable forces balance the hydrodynamic
forces.

Report No. 17
where, Pdiff is the differential pressure between the inside and outside of the dome (psi)

Tll is the force per inch of horizontal direction acting in the vertical direction (lb/in);

T22 is the force per inch of vertical direction acting in the horizontal direction (lb/in);
R_{1} is the radius of curvature of the membrane in the vertical plane (in);
R_{2} is the radius of curvature of the membrane in the horizontal plane (in).

The differential pressure between the inside and outside of the dome at any location is,

$$
\begin{aligned}
& P_{d i f f}=P_{I}-P_{0} \\
& P_{I}=P_{D}-f(\text { depth })
\end{aligned}
$$

where, P_{D} is the design pressure of the dome,
f (depth) is defined below.

$$
P_{0}=P_{W}-f(\text { depth })+P
$$

where, P_{W} is the hydroatatic pressure at the dome draft extreme (pil);
P is the hydrodynamic pressure due to the speed of the ship ($p: 1$).

The expression f (depth) is a correction factor for the hydrostatic pressure at a point on the dome located above the maximum hydrostatic pressure point.

$$
f(\text { depth })=\frac{d 6}{144} \quad h_{1}
$$

where, h_{1} is the distance of a point above the draft extreme point of the rome (ft);
d 1s the density of standard water, ($62.41 \mathrm{~b} / \mathrm{ft}^{3}$);
8 Is the acceleration due to gavity ($32.17 \mathrm{ft} / \mathrm{sec}^{2}$);
6 is the specific gravity of sea water (1.03).

Phase I Interim Report
30 September 1964

The hydrodynamic pressure is given by,

$$
P=\frac{1 / 2 d \sigma C_{p} U^{2}}{144 g}
$$

where, C_{p} is the average pressure coefficient at a point on the dome;

U is the speed of the ship (ft/sec).
Therefore,
or (1)

$$
\begin{aligned}
& P_{\text {diff }}=P_{D}-f(\text { depth })-\left[P_{W}-f(\text { depth })+P\right] \\
& P_{\text {diff }}=P_{D}-P_{W}-P
\end{aligned}
$$

The effect of the sea state upon $P_{d i f f}$ is discussed in other sections of this report.

With perspective normal to the membrane, choose the horizontal axis as X and the vertical axis as Y. The typical dome construction consists of families of cables; n_{V} families making angle β_{1} and n_{H} families making angle β, and - β respectively with the X-axi. Let the number of cables per inch for each family be N. The total number of cables per $X-$ inch ie

$$
{ }^{n_{V}} N \sin \beta_{1}+n_{H} N \sin \beta_{2}
$$

The total number of cables per Y-inch is

$$
{ }^{n_{V}} N \cos \beta_{1}+n_{H} N \cos \beta_{2}
$$

Let T_{V} be the tension in each vertically directed cable and I_{H} be the cension in each horizontally directed cable.

Then the Y-force in each cable of a family making angle β_{1} and $\pm \beta_{2}$ is,

$$
T_{V} \sin \beta_{1} \text { and } T_{H} \sin \beta_{2} \text { respectively. }
$$

The X-force in each cable is,

$$
T_{V} \cos \beta_{1} \text { and } T_{H} \cos \beta_{2} \text { respectively. }
$$

Report No. 17
Phase I interim Report 30 September 1964

Therefore,

$$
\begin{aligned}
& \quad r_{i 1}=T_{V} \sin \beta_{1}\left(r_{v} N \sin \beta_{1}\right)+I_{H} \sin \beta_{2}\left(r_{H} N \sin \beta_{2}\right) \\
& \operatorname{t}_{22}=I_{V} \cos \beta_{i}\left(r_{V} N \cos \beta_{1}\right)+i_{H} \cos \beta_{2}\left(n_{H} N \cos \beta_{2}\right) \\
& \text { Equation (1) con now be written as, }
\end{aligned}
$$

(2) $P_{\text {dIff }}=\frac{n_{V N I} \operatorname{Vin}^{2} \beta_{1}+n_{H}^{N E}}{R_{V}} A^{81 n^{2} \beta_{2}}+\frac{n_{V N 1} \cos ^{2} \beta_{V}+n_{H}^{N I} H^{\cos ^{2} \beta_{2}}}{R_{H}}$

At a point on the dome the coble tensions are related to the deflection of the membrane caused by the differential pressure et that point.

When a pressure differential is ceveiofed:

The problem is :o find the elongation, of the strip with reelect to lis original ierigeh,

$$
-\frac{e}{S}: \frac{d S}{S}
$$

The following relations are true:

$$
\begin{aligned}
& S=R_{V} \phi V \\
& C=R_{V} \sin \phi V \\
& H=R_{V}\left(1-\cos \phi_{V}\right)
\end{aligned}
$$

By differentiating, solving for $d S$ and dividing by S we get:

$$
\frac{d S}{S}=\frac{\left(\sin \phi_{v}-\phi_{v} \cos \phi_{v}\right) d H}{R_{v} \phi_{v}\left(1-\cos \phi_{v}\right)}
$$

or

$$
\frac{e}{s}=\frac{\Delta}{R_{v}}\left[\frac{\sin \phi_{v}-\phi_{v} \cos \phi_{v}}{\phi_{V}\left(1-\cos \phi_{v}\right)}\right] \approx \frac{I q^{1}}{D^{2}}
$$

where $\boldsymbol{\Delta}=\mathrm{dH}$, the deflection of the trip (in);
$F=$ elastic stretch factor ($1 \mathrm{n}^{2} / \mathrm{lb}$);
D = nominal diameter of cable (in).
(3)

$$
\text { It follows that } \approx \frac{\Delta D^{2}}{R_{v} F} \quad\left[\frac{\sin \phi_{v}-\phi_{v} \cos \phi_{v}}{\phi_{V}\left(1-\cos \phi_{v}\right)}\right] \approx T_{v}
$$

The figure shown here represents part of a horizontal cross-section. It is a plane parpendicular to the membrane surface. Before a pressure differential is developed the dimensions as shown represent those for a membrane increment strip. The ends of the strip are not anchored.

When a pressure differential is developed:

S	changes to $S+d S$
R_{H}	remains constant
R_{H}	changes to $R_{H}+d R_{H}$
H^{H}	changes to $H+d H$
C	changes to $C+d C$

The problem is to find the elongation, e, of the strip with respect to its original length,

$$
\frac{e}{S}=\frac{d S}{S}
$$

The following relation is true:

$$
s=R_{H} \varnothing_{H}
$$

[^3]Report No. 17
Phase I Interim Report 30 September 1964

By differentiating, solving for $d S$ and dividing by S we get:

$$
\frac{d S}{S}=\frac{d R_{H}}{R_{H}}
$$

or

$$
\frac{e}{s}=\frac{L}{K_{H}} \approx \frac{I F}{D^{2}}
$$

where \triangle or the deflection of the strip. Note that $d R_{H}$ of this equation equals $d H$ of equation (3).
(4) It follows that $T \approx-\frac{\Delta D^{2}}{R_{H} P} \approx T_{H}$

$$
D \pm v^{2} d e \text { (4) by (3) }
$$

$$
\begin{equation*}
\frac{I_{H}}{I_{V}}=\frac{R_{V}}{R_{H}}\left[\frac{\phi_{V}(1-\cos (v)}{\mathcal{S}_{v} R_{V}-C_{V} \cos \psi_{V}}\right]\left(\frac{F_{V}}{F_{H}}\right) \tag{5}
\end{equation*}
$$

From (2) $P_{d: f f}=I_{V}\left[\frac{N_{V} N n^{2} \beta_{1}+n_{H^{N}} \frac{T_{H}}{I_{V}} \sin \beta_{V} \beta_{2}}{R_{V}}+\frac{n_{H}^{N} \frac{T_{H}}{I_{V}} \cos ^{2} \beta_{2}}{R_{H}}\right]$

Substitute for E_{H} tron (5) and solve for I_{V} :
(6) ${ }^{2} V=$

(7) $T_{H}=\left(\frac{T_{H}}{T_{V}}\right) T_{V} ; \frac{I_{H}}{T_{V}}$ is determined by
(8) From (3):

The deflection, $\Delta=\frac{T_{V} R_{V} F_{V}}{D^{2}}\left[\frac{Q_{V}\left(1-\cos \phi_{v}\right.}{\sin \phi_{V} \phi_{V} \cos \phi_{V}}\right]$

Appendix IV presents the development of a computer program utilizing the previous discussion to analyze the stretch of the membrane when sutjected to internal pressurization. A case example is given. In addition this program was used to predict pressurized prototype panel contours as discussed in Section I.C.J.

The value of F, the factor of elastic stretch for the cable is obtainable, however, the cables in the window are not permitted to react to prescure independently. This is a result of the membrane construction. It is therefore necessary to find what the elastic characteristics of the membrane are. This was accomplished by fabricating and testing a series of tension samples duplicating the design membrane.

In the design of the membrane the following boundaries were set:

1) The maximum load to be put on a ply cable would be 110 lbs .
2) Cable plies wrapping around bead. Cable would be properly oriented so that approximate symetrical loading of che bead would result.
3) In extreme bead contour areas additional plies will be added such that the cables will uniformly distribute the loads to the bead and add strength to the membrane.

With these stipulations a minimum factor of safety of 3 is maintained for normal operational conditions. The effect of this rule places range of loading present in the dome such that the value of F, elastic stretch, is a variable, in fact, it is a function of the cable tension.

d. Sinip attachment

One of the main problems involved in this design is determining the method of attaching the acoustic window to the ships structure. During the first phase of the design study several potential methods were reviewed and the optimum method determined.

1) Bol:15.8-Bonding

One (1) possible ijea examined is illustrated in Figure 18. In this instance, depending on the shear modulus and elasticity of the stock a non-uniform load would be applied

Report No. 17
Phase I Interim Report 30 September 1964

FIGURE 18
BAR BONDING - THRU HOLE BOLTING ATTACHMENT

Report No. 17
Phase I Interim Report 30 September 1964
to the cables. This arises from the necessity of spreading ply cables to permit bolt penetration. The distorted cables would take the initial loads, possibly rupturing before the other cables fully participated. In addition to this undesirable affect, under loads the thru hole would tend to elongate and impair the seal. Also the possibility of the bolt shearing thru the end of the construction negated the use of this concept.

2) Bolt-Shim Bonding

To eliminate the necessity of inserting bolts thru the conotruction modification was accomplished as shown in Figure 19. A series of steel shims are bonded to the individual rubber plies and, in turn, bolted to the shipe structure. In this instance retention of the acoustic window relies solely on an adhesive bond. The reliability of such a system is questionable when considering length of service, environment and loads. The complex curvature of the window would require segmented shims which in turn would present a sealing problem. The undesirable features of this system prompted a further look into this area.

3) Wrap-Bolting Technique

This concept, Figure 20, was conceived as a meane of eliminating the undesirable elements of a bonding technique. An increase in mechanical retention was accomplished by wrapping the construction around a bar and then locking them together with bolts. Attachment to the ship is accomplished at the bolting point. The laad as applied to the membrane attempts to pull the bar and shear the bolts. This system again requires holes thru the construction resulting in the properties previously discussea. In addition the wrap around the bar would yield a non uniform loading with the inner plies breaking before all the cushion (layers of rubber between plies) was eliminated from the outer plies.
4) Bead Design

Experienced obtained in pressure sealing tires indicated a successful attachment system could be patterned after a tire bead. This system (Figure 21) would furnish adequate retention and sealing characteristics. However, the idea of wrapping around a bar or "bead wire" was somewhat

Report No. 17
Phase I Interim Report

FIGURE 19

FIGURE 20
CONSTRUCTIONAL WRAP - BOLTING ATTACHMENT

FIGURE 21
BEAD CLAMP RETENTION SYSTEM
Contract NObsr 89483
Serial No. SSO41-001 - $97-$
Task 8156

Report No. 17
Phase I Interim Report
30 September 1964

> distasteful due to non-uniform loading as previously discussed. A large part in perfecting the now tried and proven bead retention system was in perfecting an acceptable ply bead wrap around overlap system. With indications of a successful retention system design, fabrication and testing of samples wes inmediately undertaken.
e. Testing of Representative Window Section Samples

Determination of satisfactory design for panel construction opened the door for a thorough investigation of the bead-panel composite. As mentioned previously the complete validity of sample testing was considered somewhat questionable due to end effects of small samples. However, it was considered advantageous to proceed and obtain this test data which would be subject to a comparison with data obtained during full size prototype panel testing. Once compiled and analyzed all the data would serve to indicate membrane characteristics.

Knowledge of the physical properties of the membrane and clamping system is important in determining their behavior when under the influence of forces which cause a pressure differential. To gain this knowledge a series of tests have been conducted. Specific characteristics sought were:

1) Membrane moduli of elesticity in the vertical and horizontal directions.
2) Constructional stretch of the membrane-bead system.
3) Ultimate strength of the membrane.
4) Fatigue characteristics.
5) Stabilization characteristics and the procedure for attainment.
6) Torque required on clamp bolts.
7) Bead-clamp design evaluation.

Consideration was first given to the characteristics of the reinforcing members of the membrane, that is, the .048 diameter 5×7 IWRC carbon steel cables. Test results, as discussed, confirm the ratings published by cable manufacturers and also supply pertinent information for the proper construction defign of the dome. The cable data are:

Uitimate Breaking Strengeh.	35510 (aic)
Yleid Poine	337 10
Elastic Limit	220 1b
Elastic Modulus (based on metal cross-section)	20×10^{6} psi

Window defiection is proportional to cable tension after all constructional stretch has been removed and under loade wittin the elastic limit of the cabie. Since the elestic linit of the cable is $2201 t s$. it is deemed advisable to construct the membrane such rhat the cables are not lcaded beyond 50% of this value at $35 \mathrm{knozs}, 0^{\circ}$ yaw and caile set conditions. Thi loading stipuiation, therefore, assures a safety factor of 3 with respect to the yifeid point.

Various tesct were mede to obtan date relating to the above dome charactertstlc.

1) $2=3 / 4^{\circ}$ Bead Panel Sumfles:

Extensive testing was performed on representative samples of various conceived acoustic window constructions.

Determinstion of the most acceprabie achestve system for fabricstion of the fanel construction, permitted a concentrated design effort on actual construction problems.

One are of prime onpertance is the bead panel attachment area extending around the periftery of the panel. The function of this eres is to furnisi e mesns of claxping the panel in place and furnist a satisfactory aesil to permit dome pressurization to :he design pressure.

Mathematical analysis of stresees expected in the dome construction, during specified operating conditions (35 knots, 0° yaw and caln seas), indicate that maximum tension expected in the radial (vertical) cables ore in the vicinity of 3100 ibs/1nch of bead. Considering a uinioum safety factor of 2 , equivalent constructional strengths of teast 6200 lbsilnch of bead must be obtained.

Report No. 17
Phase I Interim Report 30 September 1964

With the previously stipulated requirements in mind, a otudy was initiated to investigate the most promising bead constructional concepts. These concepts were conceived through investigation and analysis of posaible methods, consultation with tire bead design experts, and the theoretical and mathematical analysis of stresses in various proposed constructions.

The series of constructions outlined in Figure 22, Construction Concepts, were evaluated with respect to their ultimate otrength, stress equalization tendency and producibility. This series of samples was built using the radial ply build-up only. Actual ply layup is illustrated in Figure 22 with test data and descriptive terminology shown in Table XI Bead-Panel Tensile Tests. Figure 23 shows asmple of this construction with an in procesa test hown in Figure 24. Figure 25 shows aecond bead sample being tested and Figure 26 presents the entire Tinius Olsen Test Machine.

Analysis of the test data indicates the undesirability of a simple lap splice (Sample A) and the necesity of a complex composite overlap system (Sample H). In most instances, the necessary strength was attained from the samples; however, considering the types of failures, adhesive or bond breaks were considered unsatisfactory. Although configurations C and D yielded adequate strength characteristics, the ply layup pattern make their production use impossible. Configurations E, F, G and H, although appearing quite complex, actually are easy to fabricate.

Review and analysis of pertinent test data indicates conEiguration H, detailed in Figure 27, yields the necessary strength end constructional characteristics without excessive material buildups.

Considerable effort was expended on fabricating and testing 2-3/4" wide samples to determine proper bead ply lay-up as well ae general panel ply construction. During the initial phase, necessary sample strength was of paramount importance.

Contract NObsr 89483
Serlal No. SSO41-001
Task 8156

Report No. 17
Phase I Interim Report
30 September 1964

A

E

B

F

C

G

H

Contract NObsr 89483	Report. No. 17	
Serial No. SSO41-001		Phase I Interim Report
Task 8156		30 September 1964

TABLE XI
BEAD-PANEL TENSILE TEST RESULTS

8 saple No.	Sample Conf. 1	Bead Size	Splice Overlap, \qquad	$\begin{gathered} \text { Total } \\ \text { Load } \\ 1 \mathrm{bs} / \mathrm{In} . \end{gathered}$	Remarks
1	A	1" D1a. 6×37 IWRC	1.75	3,250	Cable dietortad and equeered through retaining plates.
2	A	$\begin{aligned} & 1^{\prime \prime} D 1 \text { a. } 6 \times 37 \\ & \text { IWRC and } 1^{\prime \prime} \\ & \text { DIa. Rod } \end{aligned}$	4.6	5.090	Adhesive Eallure.
3	8	1" Rod	15	9,830	Adhesive failure.
4	C	1" Rod	30	12,810	Cable fallure beadplate contact area.
5	D	$1 " \mathrm{Rod}$	6	10,540	Panel fallure.
6	E	1" Rod	6	10,980	```Inner ply cable fallure bead-plate contact erea.```
7	\boldsymbol{F}	1' Rod	6	11.820	Cable fallure beadplate contact area.
8	F	$1{ }^{\prime \prime}$ Rod	6	11,930	Cable fallure beadplate contact area.
9	7	1-1/4" Rod	6	14,100	Cable break beadplate contact.
10	c	1-1/4' Rod	6	14,550	```3 ply break in panel area - l ply adhesive fallure.```
11	R	1-1/4" Rod	6	13,990	Panel failura.

1. 8ample configuration as illustrated in Figure 2.
2. Panel fallure is Tensile fatlure of cables in panel.

FIGURE 23
BEAD PANEL TEST SAMPLE

FIGURE 24
BEAD-PANEL TEST SAMPLE DURING TEST

FIGURE 25
BEAD-PANEL (ANGULAR PULL)
SAMPLE DURING TBST

00% -

Contract NObsr 89483
Report No. 17
Phase I Interim Report 30 September 1964

Fabric	-
$15^{\circ} \mathrm{Plites}$	

Vertical plies

COMPOSITE OVERLAP PANEL CONSTRUCTION FIGURE 27

This early study phase was considered completed with the successful testing of the present penel construction concept shown in Figure 27. Subseyuent to finalization of this cross sectional design, sample tests were resumed in an attempt to determine constructional stretch and fatigue strength on a short cycle basis. Samples of the construction 11 lustrated in Figure 27 were subjected to flex cycle tests and ultimately to burst loads.

A sample of the daca accumulated during this programis shown in Figures 28, 29, and 30 . Measurement of the exact sample elongation was found to be difficult due to the teat system, however, these data were comparable to those obtained later on the $30^{\prime \prime} \times 48^{\prime \prime}$ panel testing program. By etudying the charts it can be seen that the cycle consisted of pulling the sample to a tension of 12,500 lbs., reloading the sample at two minute intervals until there was no load loss over the two minute span. This sample required a total of 31 flex cycles to eiiminate the constructional stretch and bead slippage components. On cycle 34 the panel was burst reaching a total load of 35,850 lbs. or 2.8 times the maximum allowable design load. The modulus of elasticity of the sample based on metal cross-section varies somewhat from the 7.0×10^{6} noted at the first flex to 11.3×106 noted after the 33 rd flex. The variance cannot be completely explained due to the limited number of data sensors utilized.

The most important problea discovered during this sample program involves rubber shear in the bead-bead clamp contact area. At high sustained loads of 7000 /inch or cycle loads of 5300 /inch the rubber tends to peel off the panel cables in the opposite direction of load application. This tas occured primarily in the $2-3 / 4^{\prime \prime}$ samples where the rubber is essentially unimpeded in distorting or squeezing out from under the bead clamp. This was analyzed further during later testing.

The inclusion of metal shis. stock or high impact plastics has been evaluated for protecting the Neoprene in this area. However, more accurate assesment of the situation was made during the $6^{\prime \prime}$ sample testing program.

Report No. 17
Phase I Interim Report
30 September 1964

Contract mober 89483	Report EO. 17
8orlel wo. $88041-001$	
Tank 8156	

Report No. 17
Phase I Interim Report 30 September 1964

2) $30^{\prime \prime} \times 48^{\prime \prime}$ Flat Panel Sample Testing

A mold and a pressure test fixture was designed for testing 30 inch by 48 inch experimental flat panels. These panels were fabricated in the mold after the bead construction, boundary ber attachment configuration and skin cross-section were evaluated in the $2-3 / 4$ inch samples described above. After curing, the panel was placed in the test fixture and subjected to uniform pressure distribution by means of a pressure bag. Deflections of the panel, under progressive pressure loadings were measured.

This part of the testing program was an intermediate step between 2-3/4" sample testing and prototype panel testing. A $30^{\prime \prime} \times 48^{\prime \prime}$ flet panel, attached at the long ends with the bead design previously discussed, was utilized to obtain strength and elongation data on the proposed dome construction.

The hydrostatic test fixutre, with end support only, is designed to furnish uniform pressure against the panel without the undesirable reinforcing side effects of a fully supported panel. The water used for pressurization is contalned by a lightweight Neoprene coated Nylon bag. This bag, in turn, is restrained by metal surfaces on all sides except the top conetructional surface. As the system is pressurized, the panel will deflect and the deflections will be measured and recorded. Figures 31, 32 and 33 show the panel at various stages.

Three (3) $30^{\prime \prime} \times 48^{\prime \prime}$ flat panela were fabricated and cested. These panels were:
(a) A panel with the three (3) vertical plies extending from bead to bead.
(b) A panel with the two (2) 15° plies extending to the bead.
(c) A panel identical to the first except a $3^{\prime \prime}$ splice extends from bead to bead.

Many tests were performed on the first panel in an attempt to determine the modulus of elasticity. Figure 34 illustrates the stress-strain relationship of the various panel pressurization cycles.

FIGURE 31
$30^{\prime \prime} \times 48^{\prime \prime}$ FLAT PANEL OF WINDON CONSTRUCTION

FIGURE 32
$30^{\prime \prime} \times 48^{\prime \prime}$ FLAT PANEL-MOUNTED IN TEST FIXTURE

FIGURE 33
$30^{\prime \prime} \times 48^{\prime \prime}$?LAT PANEL DURING TEST

Contract NObsr 89483
Serial No. SS041-001
Task 8156

- 111 -

Report No. 17
Phase I Interim Report
30 September 1964

STRESS-STRAIN (METALLIC CROSS-SECTIONAL AREA) BASED ON TOTAL
MESURED DEFLECTION -30×48 PANEL-NUMBER ONE

1

Report No. 17

Review of the test data and the subsequent plotting of the curves as shown indicate certain inherent inaccuracies. These can be attributed primarily to the early bead design used in this fixture and difficulty in measuring to the desired degree of accuracy on deflection measurements which were used to calculate strain.

It was found early in the test program that the designed bead clamp, utilizing a $3^{\prime \prime}$ Snub, introduced a large potential variable in panel elongation. Specifically, as the bead clamp is tightened, tension is applied to the panel construction. After considerable experimentation it was determined this tension, as applied, was not constant. Therefore, the results obtained were somewhat inconclusive. This, in addition to the potential error resulting from the inability to read to five (5) significant figures, made this entire program an indication rather than a determination of panel modulus of elasticity.

Testing of the first panel with the vertical plies extending over the beads resulted in the curves plotted in Figure 34. It is evident from the variation that an explanation of these curves is necessary. Tests 1 through 4 were conducted concurrently without changes in the panel or test fixture. The plotted curves progress in the direction of increased strain. This can be attributed to a combination of constructional stretch and accumulative bead slippage. Loads in tests 1 and 2 were equivalent to 52 psig, test 3 to 100 psig and test 4 to 111 psis . Test 5 and 6 were conducted after removal and re-installation of the test panel. The fact that test 5 and 1 are not duplicates is concluded to be the result of permanent constructional stretch and variable clamp tensions. Test 7 was conducted rapidly from 0 to 100 psig and data taken at 8 and 100 psig. The curve itself was approximated. Notice that the curve representing test 8 is to the extreme left of previous tests. This can be attributed to bead clamp re-tightening after the previous test. Tests 9 through 12 were discarded because of an error in the test set-up. Tests 13,14 and 15 were run concurrently subsequent to panel re-installation. Increased strain noted here is due to an attempt to keep premature tension off the panel by leaving the bead clamps loose. These tests were taken to 100 psig and deflection data recorded.

It was discovered in testing the 15° panel that deflection at 25 to 30 psig was beyond the physical limits of the test fixture. Several tests as shown in Figure 35 were conducted to obtain the modulus at lower pressure ranges. The excessive ceflection can the ateributed to the fact that only two (2) strength piles are used and the strength plies ran at 15° to the load. The theoretical calculated modulus was in the same range as that determined from this test.

The splice panel, was installed in the test fixture and a test attempted. However, due to the incompatible design of this test fixture bead clamp a slight protuberance in the seam area prevented acceptable clamping action. Due to this severe problem no data were accumulated curing this test. A subjective test cycle was conducted which was inconclusive since the clamping problem magnified a contour deviation. Splice characteristics were investigated further with 6" samples.
3) $6^{\prime \prime}$ Bead-Panel Samples

In order to increase the accuracy of the determination, a $6^{\prime \prime}$ wide sample testing program was initiated. Each sample tested was monitored with displacement transducers and strain gauges. With this system each distinctly different panel area was independently evaluated permitting variables and errors experienced in other tests to be eliminated or minimized.

These samples, through more thorough monitoring, furnished additional, necessary data for use in determining panel deflection during pressurization.

The monitoring was accomplished through use of motion transducers and strain gouges. They were located such that detailed breakdown of the sample into study-areas was obtained.

A schematic of this monitoring system is shown in figure 36. The complete test setup including recording equipment is shown in Figure 37. A sample ready for cest is shown in Figure 38.

Serial No. SS041-001
Task 8156

FIGURE 37
ASSEMBLY OF $6^{\prime \prime}$ SAMPLE TEST EQUIPMENT

Report No. 17

Phase I Interim Report
30 September 1964
a) Test Equipment

The Recording Equipment used during these studies included:

Syatem No. 1 - The sytem ic manufactured by Minneapolis-Honeywell Co.

Conditioning Equipment
A. 6 channels, Model No. 119 Amplifier Syatem
8. 2 channels, Model No. 130-2C Amplifier System
C. 12 channele, Model No. HS-CS4 Gauge Control Units
D. 13 channela of Potentiometere for Motion Traneducers
2. I channel for 3 Cox \& Stevene Load Cells to reed total force.

Recordine Equipment

A. One 24 channel Model No. 1108 Vialcorder Oecillo-
graph

Systam fio. 2

Conditioning Equipment - The conditioning equipanent is manufactured by $\delta \mathcal{F}$ Instruments, Inc.
A. One 24 channel Model No. $24-202$ Bridga balancing unit.
B. One 0 to 24 volt D.C. power supply.

Recording Equipment

A. One 24 channel Model No. 1108 Visicorder Osc1110graph manufactured by Minneapolia-Honeywell Co.

During these teste the following test procedure was followed. Specimens were inetrumented as shown in Figure 36 with variations as described for each eample. The epecimene were cycled numerous timas at various loads ranging from zero to uitiaste strength and all date wes centinuously recorded on the above listed equipment.

Report No. 17
Phase I Interim Report

As mentioned abcue the mair objectives of the $6^{\prime \prime}$ sumple tests were to get more accurate phyelcal property date of the acoustic window clemp system. An additional ctjective of these expezixente wee to determine the feasibility of using strain gauges for mailoring the accustic window during service tes:s.

To check the resuits of strain gouges, corrolative data mast be knowr. It was determined thet the strair gave data would te compered with daie obtained frox motion-trensducers messuring elongstion over a speclflec leng: h.

Wren siarting the testiag it wes assumed that the steel wire wuld transmit ite erain throagh the thin leyer of rubber and the rubber wosld be acting 4 an adiew vive isyer Upon completion of the ir.1tisi tests inconsistert dete wert obtained. Rubber tes a very low modcius comperec to the :oll strain quage. Therefoze there 28 nct erough afieer stress in the rubber to irans. mit ine strasi frow the steel coble to the strain
 system is desirec fir service cests additional work will be required.

Due to ire fact that the $6^{\prime \prime}$ sfectmens were not complezely gracticsi irserumencution wes placed on both stees. When areiyzing tre data it wes eviden: that the sfeciuet vel berding, thue glvirg some tension a:d coupreseion reudirg on opposite sides
b) SEmpie Iesting

A specific refort of each $6^{\prime \prime}$ \#ampie testid is discussed in the follcwing sectiers.
(I) Semple \#

Sample $\#$, shown in Figure 39, consisted of two (2) plies of WC775 weftiegs wire fabric wrapped around the bead. In this instance, to investigete seam strengtis, e $9^{\prime \prime}$ splice was inc:uded. The purpose of these tests was to deqermine 2 piys 4 ply, ciamp and bolt, and splice charscterisfics.
Contract NObsr 89483
Serial No. SSO41-001 - 119 -
Task 8156

Report No. 17
Phase I Interim Repor:
30 September 1964

FIGURE 39
6" SAMPLE $\ddagger 1$ CROSS SECTION

Feport No. 17
Phase I Interim Report 30 September 1964

Abstract

The sample was instrumented according to Figure 36 except the following sensors were eliminated: MI ($G, H, I, J, K, L, M)$. The test cycle is shown in Table XII. The loads, In accordance with Table XII were attalned, held momentarily, then released to zero. Test data accumulated during tins test are shown in Table XIII. Table XIV shows the resulting theoretical clamp stres" compsred to the predicced. Figure 40 and 4,1 present the panel results in graphical from.

Analysis of the test data and observationa made are discussed at this time as means of presenting results. During this test cycle the ply cables cut through the neoprene at the bead clamp pressure point. The side in contact with the bead clamp was more severe than the bead seat side. It appears this condition was exaggerated by the bead end retainers bending during test permitting the construction to spread and the cables nestilng in between sub-layer cables. The motion transducer readings were questionable and one transducer (${ }^{(8) \text {) was found after test to have its shaft }}$ forced gainst the adjacent clamps. The strain gauge data recorded reflected consistency of information. Bead slippage, or movement of the bead with respect to the clamp, due co constructional and elastic stretch was $3 / 16^{\prime \prime}$. Membrane cheracteristics in the splice area are similar to those of other areas when compared on the basis of metel crose-sectionel area.
(2) Sample $\# 2$

Sample 2 shown in Figure 42 , was of the standard composize overlap construction. The purpose of this test was to determine 3 piy, 4 ply, 7 ply, clamp, bolt, bead and overali length characteristics. The sample was instrumented according to Figure 36 except the following sensors were elininated: $S S-J, Q, R$ and MT-H,I,K,L. The following ware added: $S R$ on either side of $S R-D$. The tert cycle is shown in Table XV. The loads were attained, held momentarily then released to zero. Test data accumulated are shown in Table XVI. Theoretical vs. Actual stress on the bead clamp is shown in Table XVYI.

Contract NObse 89483 Serial No. SS041-001 Task 8156	- 121 -	Report No. 17 Phase I Interim Report 30 September 1964
	TABLE XI	
	Ample \#1 TE	
Cycle	Lb./Sample	Lb./Cable
1	2914	17
2	3311	20
3	8212	49
4	8344	50
5	12980	77
6	12848	77
7	12980	77
8	15629	93
9	16159	96
10	20795	124
11	20927	125
12	25430	151
13	24901	148
14	27947	166
15	29007	173
16	33510	200
17	35497	211
Break	50463	300

TABLE XII

" SAMPLE 1 TEST CYCLE

Bolts were not torqued to any specific tightness.

BLANK PAGE

```
Contract NObsr 89483

\section*{6" SAMPLE 11 TEST RESULTS ON BEAD CLAMP}

\section*{Maximum Stresses During Test}

\section*{Theoretical}

\section*{26,000}

26,000
22,800
24,400
22,800
24,400
33,600
33,600
30,000
30,000

\section*{Experimental Comments}
\[
14,850
\]
\[
19,440
\]
\[
5,640
\]
\[
9,600
\]
\[
6,000
\]
\[
14,400
\]

Clamp Hook - bending stress K-L
Clamp Hook - bending stress S-T
\(L\) bolt \(M\)
Lbolt N
- 1,800

3,270
\(22,080 / 20^{\circ}\)
\(27,720 / 60^{\circ}\)

Iriction furce caused by bolt tightness prevented load from transferring to hook. Task 8156
- 124 - Report No 17

Phase I Interim Report 30 September 1964


Contract NObsr 89483
Ser1al No. SS041-001
Task 8156

Report No. 17
Phase I Interim Report 30 September 1964


Phase I Interim Report 30 September 1964


Fabric
 \(15^{\circ}\) Plies Vertical Plies

```

Contract NObsr 85483
- 127
Report No. 17
Phase I Interim Report
30 September 1964

```

\section*{TARLE XV}

\section*{6" SAMPLE \# 2 TEST CYCLE}
\begin{tabular}{|c|c|c|}
\hline Cycle & Lb/Sample & Lb/Cable \\
\hline 1 & 6627 & 26 \\
\hline 2 & 6362 & 25 \\
\hline 3 & 12459 & 49 \\
\hline 4 & 12989 & 51 \\
\hline 5 & 18821 & 75 \\
\hline 6 & 19218 & 76 \\
\hline 7 & 25448 & 101 \\
\hline 8 & 25315 & 100 \\
\hline 9 & 31810 & 126 \\
\hline 10 & 31545 & 141 \\
\hline 11 & 37244 & 148 \\
\hline 12 & 38702 & 154 \\
\hline 13 & 37509 & 149 \\
\hline 14 & 25183 & 100 \\
\hline 15 (held 15 min.\()\) & 25183 & 100 \\
\hline 16 & 32870 & 130 \\
\hline 17 & 31810 & 126 \\
\hline 18 (held 16 hrs.) & 33135 & 131 \\
\hline 19 & 32200 & 128 \\
\hline 20 & 31200 & 124 \\
\hline 21 & 31677 & 126 \\
\hline \begin{tabular}{l}
22 (no load for) \\
(6 days prior) \\
(to this cycle)
\end{tabular} & 25978 & 103 \\
\hline 23 ) & 26110 & 104 \\
\hline 24 & 25315 & 100 \\
\hline 25 & 25580 & 101 \\
\hline \multicolumn{2}{|l|}{torqued to \(200 \mathrm{ft},-1 \mathrm{bs}\). each.} & \[
\begin{array}{r}
\text { B.F. } \\
\text { a bivedi }
\end{array}
\] \\
\hline
\end{tabular}



\section*{BLANK PAGE}

\section*{TABLE XVII}

6" SAMPLE 2 DETERMINED STRESS ON BEAD CLAMPS
\begin{tabular}{lcc} 
& \multicolumn{2}{c}{ Maximum Stresses During Test } \\
Fixed Clamp - Side G-H & Experimental \\
Fixed Clamp - Side O-P & 26,000 & 9,360 \\
Clamp Hook - Bend Stress K-L & 26,000 & 10,800 \\
Clump Hook - Bend Stress S-T & 33,600 & NG \\
Lbolt M & 33,600 & NG \\
Lbolt N & 30,000 & \(18,600 / 70^{\circ}\) \\
\end{tabular}


Phase I Interim Report 30 September 1964
FIGURE 43
6" SAMPLE 2 STRESS-STRAIN CURVE
(STRAIN GAGES)



FIGURE 45

6" SAMPLE \#3 CROSS SECTION

Report No. 17

This sample was subjected to the same test cycle as Sample \#2 (Table XV) except for the additional 7 cycles shown in Table XVIII.

TABLE XVIII

\section*{6" SAMPLE \#3 TEST CYCLE}
(Same as Sample \#2 through Cycle \#18 then)
\begin{tabular}{ccc} 
Cycle & \(\frac{\text { Ph. /Sample }}{19}\) & I.b./Cable \\
20 & 33,100 & 131 \\
21 & 32,600 & 129 \\
22 & 33,100 & 131 \\
23 & 33,100 & 131 \\
24 & 33,100 & 131 \\
Break & 65,200 & 259
\end{tabular}

Bolts were torqued to \(200 \mathrm{ft} .-\mathrm{l}\) bs each.

The same cable migration through neoprene was preval. lent at the bead clamp pressure points. The bead end retainers were also bent again indicating a nesting action. Sample failure occurred in the tie in piy of the 5 ply area. The motion transducers and strain gauges gave very consistent readings. The constructional strain in the bead clamp area was .222 in./in. and in the panel was \(12.8 \times 10^{-4} \mathrm{in} . / \mathrm{in}\). Stabilization was reached after cycle number 9.

The data graphed are shown in Figures 46 and 47.



Report No. 17
Phase I Interim Report 30 September 1964

\section*{4) Conclusions:}

From the data collected during the various tests the following is apparent:
(a) There is some degree of correlation between results obtained from motion transducers and strain gauges. This is observed by comparison of the graphs depicting the stress-strain characteristics of the \(6^{\prime \prime}\) samples. Taking account of the explanations given for the deviations from consistency it has been concluded that a rough estimate of the adjustment factor for converting strain gauge readings into actual strain dimensions is \(.029 \pm .003\). This is true providing the amount of rubber separating the strain gauge from the load carrying cables is in the range o! \(5 / 32^{\prime \prime}\) to \(5 / 16^{\prime \prime}\). Further experimentation is desirable and recommended before much confidence in the reliability of this factor can be assumed.
(b) The elastic stretch modulus of the membrane-clamp system, with respect to the metal cross-sectional area of the load carrying cables, is \(13 \times 16^{6} \pm\) \(3 \times 10^{6}\) lbs./in.2. This modulus is applicable only after the membrane has been loaded beyond \(31 \%\) of its theoretical ultimate strength but less than the elastic limit of the membranc. Because the loads placed upon the cables during normal operating conditions will be less than \(31 \%\) of their ultimate strength, the modulus or slope of the stress-strain curve will be variable, depending upon the stress. (Figure 48)

The variable becomes linear when expressed in terms of cable tention, \(T\), and the reciprocal of the factor of elastic stretch for cables, \(1 / F\). It is this linear relationship that is used in the formulas for calculating cable tensions and deflections. Its equation is \(\frac{1}{F \times 106} \cdot .01181 \mathrm{~T}+1.782\)
Figure 49 represents a graphic presentation of this.
(c) Constructional stretch of the entire bead-panel system was found to be linear and is given by the equation: \(e_{c}: .00204 x+.188\) where \(x\) is the length of th membrane from one bead to the opposite bead. Figuie 50 gives these data.

Report No
Phase I Incerim Pepr 30 Scptember 196-

Report No. 17 30 Shase I Interim Report


Report No. 17
Phase I Interim Report
30 September 1964


Report No. 17
Phase I Interim Report
30 September 1964

The steam piping for the panels should be redundant plped to insure against valve, steam traps, etc. type of malfunction.

As the outside surface is the one the diaphragms press against during the cure, it is anticipated that some surface irregularities will occur. These surface blemishes would be smoothed out by grinding with belt sanders or drum sanders.

The cost of such a combination Jig would amount to at least \(\$ 500,000\) to attain the desired degree of accuracy and reliability necessary in such a system. This cost figure is purely an estimate.

Another possibility is to procure a large vulcanizer capable of handiling the entire part and a one price mold.
(b) Advantages of One Piece Construction
1) Scheduling of work and materials should be simplified.
2) One central location for all work effort.
3) Centralization of supervision.
4) No seams in rubber parts.
5) No seams in attachment beads.
6) No special handling and transportation problems during manufacture.
7) May alter design to completely incapsulate "banjo" area reducing attachment points and fairing requirements.
(c) Disadvantage of One Piece Construction
1) Massive, expensive and non-transportable tooling.
2) Faulty cure spoils entire dome instead of only a segment.
3) Damage to tooling would shut-down all manufacture until repaired.
4) Increased complexity of construction since \(15^{\circ}\) plies would extend possibly \(30^{\circ}\). These long plies wald be difficult to handle and would require intermediate splicing.
5) Time required to build may permit partial stock cure resulting in flow problems during heat cure.
6) Smooth surface would be on inside requiring con. siderable buffing of outside to meet contour re. quirements.
(d) Strength of the bead-panel system for the bow dome acoustic window yields approximately a 3 factor of safety.
(e) Except for crushing of rubber in the area where the clamp comes in contact with the bead there were no fatigue characteristics observed throughout all tests. This condition will be improved as a result of additional bead design.
(f) Procedures for removing cunstructional stret ih from the membrane were evaluated. The most effective was to cycle the system about 9 times at the equivalent load of \(100 \mathrm{lbs} . / \mathrm{cable}\).
(8) Bead clamp bolt torque necessary was determined to be about \(400 \mathrm{ft} .=1 \mathrm{bs}\). This torque is proper without damaging effects upon the bead and was confirmed by tests.
(h) Verification that the strength of the bead clamp is sufficient was also accomplished. Furthermore actual stresses were within those theoretically determined.
f. Method of Window assembly

The general philosophy of rubber products manufacture dictates designs, minimizing and eliminating if possible seams or attachment joints. Of course, adherence to this principle must be tempered with due sonsideration for the part to be manufactured. In this instance the size of the total part indicates thrt it would be more desirable to fabricate in smaller sections.

\section*{1) One Piece, Non-Segmented Dome Construction}

In analyzinz the possibility of fabricating a one piece dome, the following factors must by necessity, be considered:
(a) Size of Part
(b) Complexity of Construction
(c) Reliability of Part
(d) Acoustical Considerations
(e) Degree of Stabilization Required
(f) Acceptability of Alr Cure Concept

The overall size of the prototype acoustic window is 37.5 long, \(20^{\prime}\) wide and \(9^{\prime}\) igh with a general contour similar to a horseshoe. There is approximately 1059 square feet of panel surface area and 156 feet of bead peripheral length. The size of the part indicates considerable time will be required for fabrication.

The degree of quality and reliability required in this window is extremely high. Therefore, to insure an optimum construction a heat-pressure-vacuum cure should be utilized. This can be accomplished by obtaining a large combination building, curing and testing jig.
(a) Combination Building and Curing

A full size building and curing form may be constructed from concrete and steel with internal piping for steam.

The method of construction would consist of making male building forms from sheet metal (probably from stainless steel) as if making individual panels, but joining the individual panel molds together to make a full size form. On the back side of the forms piping for steam and water would be attached by welding. When all the forms are positioned and proper cross bracing and tie-rods re installed, the cavity in the center of the "horse-shoe" is cast full of concrete. The completed assembly will serve as the building form, the cuiling form - when the outside steam jacket is in place and as the hydrostatic test stand fer the proof pressure testing of the complete acoustic window.

The outside steam jacket for the building form would be constructed of bolton panels made in the manner of the present steel bow dome panels with bridge like reinforcing members. The \(1 / 4\) inch outside skin would be on the inner surface instead of the outside. Attached to the inside skin surface at the perimeters would be a diaphragm made from resin cured butyl stock approximately \(3 / 8\) inch thick. The panels would be piped for steam between the diaphragm and the inside steel skin. When in place, the steam jacket panels would operate very much like a diaphragm press.
2) One Piece, Segmented Dome

The alternative to fabrication of a non-segmented window, of course, is to build a one plece, segmented window. This can be accomplished in a multitude of sections as shown in Figure 51. The primary limiting factor to the individual segment size is the capabilities of existing facilities.

Female building forms would be procured of either steel or plastic construction of the exact part contour. They would be simple in design in that they need only contain the pari during cure. Subsequent to cure, which occurs in existing facilities the panel would be removed from the molds and assembled to the Hydrostatic Test fixture. This atructure is made primarily of concrete with a steel reinforcing structure and bead clamp to contain the panel. Upon installation of the separate panels on the test fixture they would be seamed in place, the complete window tested and prepared for shipment.

The outside surface of the panel is molded smooth and rework should be minimized.

The cost of basic tooling for this complete job would amount to approximately \(\$ 175,000\).
(a) Advantages of this system are:
(1) Minimization of expense for tooling.
(2) Faulty cure would scrap only 1 panel, and because of the contrcl of cure in vulcanization being more reliable, this possibility should be minimized.
(3) Tooling damage bould slow effort on only a limited part of project.
(4) Smaller panels would simplify handling of meterials and construction procedures.
(5) Time to build one panel is relatively short and stock problem would be minimized.
(6) Outer surface molded with resurfacing effort minimized.
(7) Actual construction time should be reduced since several sections of the window can be fabricated simultaneously.

Report No. 17
Phase I Interim Report
30 September 1964


FIGURE 51
DOME SEGMENT CONCEPTS
\begin{tabular}{lll} 
Contract NObsr 89483 & -145 & Report No. 17 \\
Serial No. SSO41-0G1 & Phase I Interim Report \\
Task 8156 & & 30 Septeinber 1964
\end{tabular}
(b) Disadvantages:
(1) Seams to assemble entire part requires additional operations.
(2) More actual pieces of tooling to accomplish job.

\section*{3) Cost Analysis}

One major consideration in this analysis is the cost of building, a non-segment versus a segmented one piece acoustic window. Table XIX presents briefly estimated figures of what costs are involved in both systems. The one price, non-segmented costs consider the use of a vulcanizer since costs associated with it are more accurate.

TABLE XIX
COST COMPARISON OF DOME FABRICATION CONCEPTS
(Hydrostatic Test Equipment Not Included)


Phase I Interim Report
30 September 1964

Considering the various influencing factors analyzed and discussed previously it can be seen that, in this instance, a segmented corstruction is more desirable

From that discussion \(1 t\) can be seen that a one (1) piece mold would require exacting surface contours and bead areas, heat sources for curing, vacuum sources for curing, and some means of exerting external pressure against the panel surfaces to insure the end product is devold of blisters, delaminations and general porosity. Means of accomplishing this will add considerable cost and complexity to the one piece tooling, with the control of this much less sensitive than a vulcanizer.

The use of a \(25^{\prime}\) diameter vulcanizer adds considerably to the cost and complexity of the operation rendering it undesirable.

On the basis of the foregoing discussion and conclusions the final recommendation of this study is to utilize the segmented concept, in this case four (4) pieces, and fabri. cate the complete dome, joining the panels at a later time.

The segmented four (4) piece dome concept is being utilized in the current development program. It has been determined that panels of the sizes intended can be cured in existing vulcanizer facilities with resulting high quality products. The seaming or splire attachment mechanisms have been evaluated and found to furnish strength levels equivalent to the panel when a \(9^{\prime \prime}\) overlap is utilized.

\section*{8. Conclusions}
1) The most reliable window retention system is a bead clampbead seat combination on the ship which ciamps the panel bead.
2) A complex composite overlap system is necessary for wrapping ply cables around the bead cable to obtaln complete ply strength.
3) A method must be devised to prevent cable migration and gum shearing.
4) The elastic stretch modulus of the membrane-clamp system, with respect to metal cross-sectional area of the load carrying cables is approximately \(13 \times 10^{6} \mathrm{lbs} / 1 \mathrm{n}^{2}\) Further data concerning this value is presented in the later section on prototype panel testing.
Contract NObsr 89483
- 147 -
Serial No. SSO41-001
Task 8156
Report No. 17
Phase 1 Interim Report
30 September 1964
5) Strength of the bead-panel system for the bow dome acoustic window yields approximately a safety factor of 3 .
6) Fabrication of the acoustic window in one piece is not economically feasible at this time.
7) Acoustic window fabrication in 4 sections and then spliced together to form a one piece onstruction is the most desirable approach.
8) Additional work is required to determine whethe: a system can be devised to permit utilizing strain gagis during later testing phases.
9) Previous studies have determined design criteria for the prototype panel thus permitting actual panel design to proceed.
9. Anti-"nuling Paint Study
a. Sumaty

Tests show that B.F.Goodrich's adhesive 423552 satisfactorily bonds the polyisobutylene ants-fouling patht to the acoustic window neoprene wall structure The resultant system rematus intact after 6 months asposure to sea water and \(139 \frac{b}{3}\) hours of acoustacal energy 'oumbidment
b. Introduction

An investigation and development program was undertaken to obtain a suitable adhesive syetem for use with a polyisobutylene anti-fouling paint system. Thas would permit utilization of the recently developed, outstanding, polyisobutylene anti. fouling paint on the acoustic window to be developed under this contract.

In essence this system required boading neoprene to polyisobutylene with a suitable, serviceable tie coat cement.
c. Discussion

A survey of potential, available materials for the asisigned task resulted in the following materials being utilized in this investigation:
(1) Adhesive R 575 T
(2) Adhesive R 1078 T
(3) Adhesive A 851 B
(4) Adhesive A 625 B
(5) Adhesive A 862 B
(6) Adhesive 423552

Sample panels of the appropriate Neoprene compound were washed thoroughly to remove all contamination. Separate sample panels were primed with two (2) spray coats of each tie-in cement. ffte the prescribed drying time two (2) spray coats of black Polyisobutylene paint (Formula No. 133) per MIL-P22298 (Ships) were applied to each panel. Then, two spray coats of Polyisobutylene anti-fouling paint (Formula No. 134), per Mil-p-22299 (Ships) were applied to each panel.
```

General spraying eod hemulurg characteristics of all tie-coat
adhesives were satistaciory However, samples A 862 B,
R 1078 T and R 575 T, when completed and dry, resulted in an
alligatoring or checking condition in the outer anti-fouling
paint coating. This may be attributed to an incompatibility
between the tie-coat and Folyisobutylene phas. s uf the system.
Determination of the telative etfectiveness of the various
potential systema was accomplished utllizing a modified Pico
Abrasion test method, Figure 52.
Essentially this procedure conststs of inserting suitable
test specimen in a rotatable retention fixture and position the
knife blades agalnst the sample with a specific force. Four
(4) revolutions of the sample constituted this test with
weight loss and surface condition recorded.
Initial data derived from this test are presented in Table XX, "Modified Pico Abrasion Test Results".

```


FIGURE 52
FICO ABRASION TEST MACHINE
\begin{tabular}{lll} 
Contract NObsr 89483 & - \(151-\) & Report No. 17 \\
Serial No. SSO41-001 & & Phase I Interim Report \\
Task 8156 & & 30 September 1964
\end{tabular}

TABLE XX
MODIFIED PICO ABRASION TEST RESULTS
ON ANTI-FOULING PAINT SAMPLE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & \[
\begin{array}{r}
\text { MODIFIED } \\
\text { ON ANT } \\
\hline
\end{array}
\] & ABRASION
ULING PAI & \begin{tabular}{l}
TEST RE \\
T SAMPL
\end{tabular} & & \\
\hline Sample & Revolutions & \begin{tabular}{l}
Initial \\
Weight
\end{tabular} & \begin{tabular}{l}
Final \\
Weight
\end{tabular} & \begin{tabular}{l}
Weight \\
Loss
\end{tabular} & Remarks & Rating \\
\hline *Control & 4 & 15.7525 & 15.7320 & . 0205 & Surface Abreded Clean & 7 \\
\hline A625B & 4 & 14.4990 & 14.4742 & . 0248 & 30\% Coating Re. mained & 3 \\
\hline A851B & 4 & 15.9117 & 15.8897 & . 0220 & Surface Abraded Clean & 6 \\
\hline A862B & 4 & 16.0310 & 16.0154 & . 0156 & 50\% Coating Remained & 2 \\
\hline R575T & 4 & 15.1616 & 15.1340 & . 0276 & 5\% Coating Remained & 5 \\
\hline R1078T & 4 & 16.2178 & 16.1994 & . 0184 & 5\% Coating Remained & 4 \\
\hline 423552 & 4 & 16.0053 & 15.9883 & . 0170 & 50\% Coating Remained & 1 \\
\hline
\end{tabular}
* Neoprene panel painted directly with Polyisobutylene coating.

Segments of the panels tested, as indicated in Table XX, were
subjected to water soakage in artificial sea water and at the
end of one (l) month the abrasion test rerun. The difference
derived from a comparison of the data obtained before and after
water soakage wouldindicate synergistic, deleterious effects,
if any, of the composite system when exposed to simulated
environmental service conditions. Data obtainer from the
second test are recorded in Table XXI and indicate the effect
of a one (l) month exposure to artificial sea water.
```

Contract NOber 89483
Serial No. SS041-001
Task 8156

- 152 =
Report No. 17
Phase I Interim Report
30 September 1964

```

TABLE XXI
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & MODIFIED ON ANT IMMERSED & ABRASION OULING PA NE MONTH & TEST RE T SAMPL SEA WA & & \\
\hline Sample & Revolutions & Initial Weight & \begin{tabular}{l}
Final \\
Weight
\end{tabular} & \begin{tabular}{l}
Weight \\
Loss
\end{tabular} & Remarks & Rating \\
\hline Control & 4 & 16.5265 & 16.5043 & . 0222 & Surface Abraded Clean & 6 \\
\hline A625B & 4 & 16.7550 & 16.7350 & . 0200 & 10\% Coating Re mained & 5 \\
\hline A851B & 4 & 16.8430 & 16.8300 & . 0130 & Surface Abraded Clean & 2 \\
\hline A862B & 4 & 16.3030 & 16.2870 & . 0160 & 50\% Coating Re mained & 3 \\
\hline R 575 \% & 4 & 16.4740 & 16.4510 & . 0230 & Surface Abraded Clean & 7 \\
\hline R1078T & 4 & 16.9550 & 16.9370 & . 0180 & Surface Abraded Clean & 4 \\
\hline 423552 & 4 & 17.3150 & 16.3020 & . 0130 & 50\% Coating Remained & 1 \\
\hline
\end{tabular}

\footnotetext{
Table XXII presents data on samples tested after 6 months exposure to artificial sea water.
}

Phase I Interim Report
30 September 1964

\section*{TABLE XXII}

MODIFIED PICO ABRASION TEST RESULTS ON ANTI-FOULING PAINT SAMPLE
IMMERSED 6 MONTHS IN SEA WATER
\begin{tabular}{llllllll} 
Sample & \begin{tabular}{l} 
Revo \\
lutions
\end{tabular} & \begin{tabular}{l} 
Initial \\
Weight
\end{tabular} & \begin{tabular}{l} 
Final \\
Weight
\end{tabular} & \begin{tabular}{l} 
Weight \\
Loss
\end{tabular} & \begin{tabular}{ll} 
Remarks
\end{tabular} & Rating
\end{tabular}

NOTE: Eramiration of samples did not uncover any signs of flaking, peeling, cracking and delamination or other types of environmentally initiated and propagated degradation.

In all iristances, except the control and A862B samples, weight loss after water exposure was less than before. As the exposure time increased to 6 months the weight loss was further reduced except as noted where it increased. It appears that the water exposure is not detrimental in all instances, except the control and \(A 862 B\) samples, and that the additional aging time actually improves system capabilities.
\begin{tabular}{ll} 
Contract NObsr 89483 & Report No. 17 \\
Serial No. SS041-001 & Phase I Interim Report \\
Task 8156 & \\
&
\end{tabular}

Adhesive 423552 furnishes the most desirable system and shall be utilized, when necessary, during this program.

As a result of the Polyisobutylene Anti-Fouling Paint Study a \(1 \frac{1}{2}{ }^{\prime \prime} \times 5^{\prime} \times 5^{\prime}\) paint panel was submitted to the Underwater Sound Laboratory for evaluation. This panel utilizes B.F.Goodrich Adhesive 423552 as the tie-coat for adhering the anti-fouling paint to the 35003 neoprene gum stock. The basic panel was a molded sheet press cured in a steel frame work.

Upon completion of \(139 \frac{1}{\frac{1}{2}}\) hours of acoustical energy bombardment, the paint panel was thoroughly examined by personnel of the Underwater Sound Laboratory. Under 40 x magnification, minor surface eruptions or bubbles were noticeable.

The test panel was returned to the B.F.Goodrich Company and subsequently examined by a consulting microscopist. This analysis entailed examination of several specially prepared panels and comparing them to the returned paint panel. Those included were:
(1) Return paint panel originally processed July, 1963.
(2) Control panel processed with paint panel July, 1963 but not subjected to test.
(3) Panel with only BFG Adhesive 423552.
(4) Panel with BFG Adhesive 423552 and Rubber Tie Coat, Formula 133 (per Mil-P-22298).
(5) Panel as (4) with Rubber Anti-Fouling Formula 134 (per M11-P-22299).

The primary concern in examining the quality of the paint on the tested panel was to study the protuberances and cracking present. This examination disclosed that:
(1) There are no blisters or bubbles originailng on the surface of the returned panel. The stock protuberances are solid particles of black adhesive substratum - either the adhesive tie coat or the polyisobutylene primer.
(2) The cracking condition noticed on the returned panel extends through the paint layers. This condition was not indicative of a general degradation of the adhesive system. Moreover, the adhesive bond between the layers of paint was extremely good. No indication of delamination, peeling, or flaking was noticed throughout the panel surface or adjacent to the cracks.
(3) The B.F.Goodrich Adhesive, 423552, used as a tie coat for adhering Polisobutylene Anti-Fouling paint to the neoprene stock, forms a smooth continuous film when applied.
(4) The black, Polyisobutylene paint (Formula No. 133) Mil-P-22298 (Ships) also forms a smooth, continuous Eiln when applied over B.F.Goodrich tie-coat adhesive, 42 j 52.
(5) The red, Polyisobutylene anti-fouling paint (Formala No. 134) per Mil-P-22299 (Ships) appears to crack as the applied film begins to dry. These cracks, initially, resemble alligatoring or mud cracking and appears to be a thinning of the paint rather than a complete separation.
(6) When specimens with the complete system applied, were bent over a \(1 / 2^{\prime \prime}\) diameter essentially no change in the surface occurred. Figures 53 and 54 presents samples, photographed at \(x 30\) magnification during elongation in the order of 100\%.
(7) The quality of recent specimens photographed at \(x 30\) magnification and compared in Figures 55, July 1963 Sample and 56 March 1964 Sample, is excellent and greatly superior to the returned panel.

In searching for any factors which could contribute to the poor quality of the paint exhibited particularly by the samples of July, 196", the large particle size of the cuprous oxide was observed. Actually there is little or no difference between the cuprous oxide of July, 1963 and March, 1964. In both cases the material is too coarse to be a good rubber reinforcing segment.

The cuprous oxide has an average particle size of about 8 microns (estimated on the basis of weight). The particles range from 1 to 12 microns in size and there is a high concentration in the 4 to 8 micron range. These sizes are well under the 325 sieve size which has an opening of 44 microns, but it would be classed


FIGURE 53
JULY 1963
PAINT PANEL a \(100 \%\) ELONGATION (X30 MAG)


FIGURE 54
MARCH 1964
PAINT PANEL a \(100 \%\) ELONGATION (X30 MAG)


FIGURE 55
JULY 1963
PAINT PANEL (X30 MAG)


FIGURE 56
MARCH 1964
PAINT PANEL (X30 MAG)
B. F.Goodrich Aerospace and Defense Products
\(\qquad\)
as a "filler" rather than as a reinforcing material. Thus if the maximum physical properties, such as a strong film, are required, it would be desirable to have a cuprous oxide substantially free from these large particles. It is assumed that the electrical properties or any other required property would be efther enhanced or at least not degraded by the use of a smaller particle size cuprous oxide.

The accompanying darkfield photomicrographs, at a magnification of \(\times 1200\), show the cuprous oxide in this paint. The preparations were made by a method used to prepare thin sections of a rubber compound. Fig. 57 is an area which is typical of the compound, showing both the smallest particles, range of sizes and those which approach the maximum. The elastomeric binder is present in about the normal quantity in this area. This was taken with direct light on the material in question.

In some other areas of the preparation, the large particles predominate because they have been literally shoved out, separated from the elastomer, by the techniques of making the preparation; actually this phenomenon is an indication of what may be called the lack of \(c\) herence of the large particles to the elastomer. One of these areas is shown in Fig. 58. This was taken by diffused light where the large particles have been pushed out of the binder and are on the surface reflecting the light.

General conclusions resulting from this specific study were:
(1) The Cuprous Oxide particle size is larger than that desired for a good rubber reinforcing segment.
(2) Improved application technique has increased the uniformity of the paint layers to an acceptable level.
(3) Future procurement of anti-fouling paint will be followed closely to insure adherence to pertinent specifications.

\footnotetext{
ANAL. Chem. JIEC. 2, 311 (1930)
}

Report No. 17
Serial No. SS041-001
Task 8156
Phase I Interim Report
30 September 1964


FIGURE 57
ANTI-FOULING PAINT IN DIRECT LIGHT a \(\times 1200\) MAG.


FIGURE 58
ANTI-FOULING PAINT IN DIFFUSED LIGHT a \(\times 1200\) MAG.

\section*{d. Conclusions}

Final conclusions resulting from this program were:
(1) B.F.Goodrich adhesive 423552 furnishes an excellent bond between the acoustic window neoprene wall and the polyisobuytlene anti-fouling paint.
(2) Extended artificial sea water soakage ( 6 months) does not deteriorate the anti-fouling paint-tie coat system.
(3) Acoustical energy bombardment up to \(139 \frac{1}{2}\) hours does not affect the coatings.
(4) Specific application procedures for the anti-fouling paint must he followed to insure uniformity of coating.
(5) B.F.Goodrich adhesive 423552 and the Polyisobutylene anti-fouling paint should be used on the prototype acoustic window for protection purposes.

\section*{10. Prototype Test Panel}
a Summary
The net result of this program was the fabrication and testing of a complete, full size, acoustic window test panel. This panel represents the aft, most complex, section of the dome and includes a splice for adjacent panel attachment. Successful testing of this panel verified the acceptability of the pressurized cable-reinforced rubber acoustic window concept.
b. Introduction

Completion of Phase I, "Determination of Feasibility" was to include the satisfactory testing of a full size prototype panel. It was desirable from this standpoint that:
(1) Test results would verify sample test data and provide precise data for design of the prototype acoustic window.
(2) Proposed construction would be tested in the best simulated condition short of full dome window evaluation.
(3) Degree of contour attainment would be determined.
(4) Atcainment of smoothness requirements could be evaluated
(5) Design and fabrication procedures could be determined prior to the prototype acoustic window program.

In considering what segment of the complete window to fabricate it was determined an aft section would be most desirable from the standpoint of beneficial results to B.F.Goodrich and the U.S. Navy. This area is the most complex of the entire acoustic window, possessing a non symmetry as well as a slight reverse curvature. To attain this configuration would surely indicete the remainder of the window can be correctly fabricated.

This panel, Figure 59 , representing the aft, starboard section of the window, includes a full size panel, a seam for attaching adjacent panels and a panel extension to remove jig reinforcing effects from the immediate seam area. With this concept it then becomes possible to test simultaneously the complete panel and splice area and obtain the necessary test data.
```

Contract NObsr 89483
Serial No. SSO41-001
Task 8156

Report No. 17
Phase I Interim Report 30 September 1964

FIGURE 59
PROTOTYPE TEST PANEL

During fabrication of the panel, separator material will be placed in the critical splice area to permit complete separation of the segments after cure. Thus, fabrication of the splice will duplicate the procedure intended for production.
c. Panel Design

(1) Contour Determination

Drawings of the DE-1040, DLG 26 and DL-4 ships were received from Bu Ships on July 26,1963 . Immediately upon receipt of these drawings maximum effort was expended in the design of the cable-reinforced rubber window for replacement of the steel plate - steel ribbing structure of the current Bow Domes. Initial plans called for completing the final design of the acoustic window (requested to use DL4 drawings for DL-5) for the DL-5 dome and then utilize an aft segment for the prototype tes: fanel. How. ever, during the course of this endeavor it was determined that a more expeditious approach would be to utilize an arbitrary contour for the prototype panel and necessary tooling and complete Phase in minimum time. The fact that the forward contour is relatively simple to attain, prompted the decision to concentrate on the aft, starboard panel.

Coordinates of the DLG-26 steel dome were layed out with water lines, frames and buttock lines. Once complete these drawings were utilized in laying out the rubber window and determining the contour for tooling design.

In the rear section of the dome, commencing at approximately the sound absorbing baffle area and aft, the curvature of any cross section becomes a composite of surves and generally not circular. A pressurized vessel, flexible in nature, such as the acoustic window, will tend to assume the maximum volume shape of a sphere. The problem then is one of taking a vessel that wants to assume spherical characteristics and constrain it to satisfy the desired contour. This problem had to be resolved prior to panel tooling deaign.

Several initial schemes were considered:

Report No. 17
Phase I Interim Report
30 September 1964
(a) Built-in grid plates - This approach, Figure 60, requires contoured grid plates fabricated into or attached to the construction. The complexity of this operation would be severe with an impalrment of acoustics.
(b) Warp Membrane by Anchoring. - This concept, Figure 61. requires attachment of restraints to the membrane wall, with resultant buckiling in some areas. Thir would require additional fill and possib:y sculpturing to contour. Penetration of the well for anchoring is undesirable with the internal cable structure possibly acting like a tuning fork.
(c) Double Construction. - This system, Figure 62, re quires a separate pressurization source for contour. Also, a multi-cavity construction would add complexity to fabrication and impede acoustic transmission.
(d) Rubber Fill. - The rubber fill idea, Eigure 63, has consideraole merit in that internal support structures are eliminated. The main detriment is magnitude of fill which might affect acoustics. Future study is planned to minimize the amount of f:ll required, detezrine affects on acoustics and obtain optimum fabrication techniques.
(e) Compression Member. - This concept, Figure 64, re quires the use of an internal contour eupport suit. ably reinforced to prevent collapse. This idea 18 not desirable acoustically, however, it minimizes alterations necessary to the acoustic window. On this basis and as means of continuing progress, it was decided this concept would be utilized in the prototype pinel. Additional effort was planned to further investigate potential methods for a mive desirable approach.

With the method of contour attainment determined for the prototype panel efforts were initiated to determine fabri cation contour. Originally, plans called for determining the complete acoustic window contour, shrinking the tooling for expected stretch of the membrane during pressurization, thus ending up with the exact steel done contour when fully inflated. Problems encouncered during

Contract NObsr 89483
Seriel No. SS041-001
Task 8156
1

FIGURE 60
AFt SECTION GRID PLATE CONTOUR MEMBER

Phase I Interim Report
30 September 1964

FIGURE 61
AFT SECTION CONTOUR ATTAINMENT BY WARP MEMíRANE

Contrect NObst 80483
Serial No. SS041-001 Task 8156

- 167 Report No. 17

Phese I Interim Report
30 September 1964

FIGJRE 62
AFT SEGTION CONTOUR ATTAIMMENT BY DOUBLE WALL CONSTRUCTION

FIGURE 63
AFT SECTION CONTOUR ATTAINMENT BY RUBBER FIY.L

FIGURE 64
AFT SECIION CONTOUR ATTAINMENT WIIH COMPRESSION MEMBER
testing, as discussed, delayed determining the stretch of the panel and obtaining necessary shrink factors. Because of this it was decided that the steel dome contour would be utilized as the base prototype panel contour. During pressurization change of panel length and radii would be monitored from the base or initial contour and additional shrink factor data obtained.

In designing a pressurized acoustic window the means and placement of the attachment mechanism is extremely important. The radius of the window, upon pressurization, would be determined by the attachment points. For proper hydrodynamic flow any mismatch of the window and ships structure must be properly faired using a gum fill. A cross section of the panel is shown in Figure 65. It can be seen that the strength members are arcs and the contour is attained by the gum fill.

The specific drafting procedure utilized can be outlined as thus:
(a) Lay out steel dome contour in frames, water 11 nes and buttock lines.
(b) Determine general location of bead centerline with respect to the steel structure.
(c) Transpose transverse frames to radial frames with respect to the 4^{\prime} WI. (Figure 66)
(d) Lay in arc depicting strength plies of rubber window and locate exact bead centerline.
(e) Determine amount of fill necessary for proper fasting
(f) Fair final contour during each applicable step so that fairness is maintained in frames, waterlines and buttock lines.

In this design of the aft panel we were required to obtain something other than a true arc. Therefore, our approach was to incoiporate a compression member and utilize three (3) separate arcs as shown in Figure 67. The separate arcs blend, resulting in a smooth uniform curvature on the outside surface.

FIGURE 67
CROSS SECTION OF PANEL WITH COMPRESSION MEMBER

cross section of window construction

Phase I Interim Report

FIGURE 66
RADIAL. FRAME DETERMINATION

Report No. 17
Phase I Intarim keport

To actually document the panel contour for tooling design and fabrication coordinate system was established. This system utilizes frames, waterlines and a "d" dimension. A reference plane was established parallel to the panel - $4^{\prime \prime}$ WL and 15° off the ship's center line. Dimension taken from this plane are "d" dimensions.

Dimensions determined from this coordinate system are illustrated in Table XXIII and were utilized in tooling design.

Panel Construcilon

Utilizing the knowledge ohtained from the sample fabrication and testing program the panel construction was finalized. It was determined the build up should consist of basically 5 wire plies and 4 neoprene plies laminated together to yield a $1^{\prime \prime}$ thickness. Actual ply orientations are shown in Figure 68. Three (3) plies are oriented vertically and two (2) plies 15° off the horizontal. In addition two (2) short 38° plies were added at each end to distribute stress concentrations at transition points. Transition points can be defined as areas where the panel ply wrap around the bead 18 changed from the vertical to 15° cables. This permits the load bearing cables at the panel ends, 15° plies to tie into the bead directly.

A $1-1 / 4^{\prime \prime}$ wire rope will be utilized as the bead core Around this core will be wrapped, using the composite cesign, the layers of wire fabric comprising the panel strength plies.

(3) Panel Seam Fabrication

Fabrication of the complete prototype acoustic sindow, utilizing available autocloves for curing the neoprene depends on the acceptability of the seams used to attach adjacent sections together. Therefore it was considered important that the initial panel be fabrio cated in two (2) pieces and spliced together. Thus, testing of the completed panel would not only furnish strangth and contour characteristics but the acceptance of the seaming technique.

BLANK PAGE

Contract NObsr 89483
Serial No. SS041-001 Task 8156

- $175=$

Coordinates of Prototype Panel

RADIAL FRAME ?

2	Y
6.000	29.625
6.250	33.687 BR
12.00	24.375
24.000	13.343
36.000	4.625
48.000	1.437
50.000	5. 032
72.000	16.503
84.000	40.250
84.375	57.875 Pre
87.750	53.00

RADIAL FRAME 11

2	Y
6.000	28.312
6.250	32.937 /x
12.000	22. 437
24.000	11.531
36.000	4.10
48. 000	1.812
60.000	3. 968
72.000	11.687
84.000	27.00
94.000	76.656 BCL
96.000	60.437
98.875	73.625

RADIAL FRAME 8

Z	Y
6.000	29.312
6.250	33.687 sd
12.000	23.875
24.000	12.75
36.000	4.312
48.000	1.406
60.000	4.468
72.000	15.406
84.000	36.437
87.187	65.625 Bd
91.125	61.687

RADIAL FRAME 12	
$-\frac{2}{6.000}$	$-\frac{Y}{Y}$
6.250	32.00
12.000	22.062
24.000	11.250
36.000	4.125
48.000	2.062
60.000	4.00
72.000	10.875
84.000	25.30
96.000	54.312
96.125	78.187 BR
100.312	75.062

RADIAL FRAMF 9

7.	Y
6.000	29.00
6.250	33.437 Bd
12.000	23.375
24.000	12.275
36.000	4.125
48.000	1.343
60.000	4.093
72.000	14.312
84.060	32.750
89.906	70.968 Cl
94.3:2	67.750

RADIAL FRAME 13	
Z	Y
6.000	27.687
6.250	32.437 Bl
12.000	21.750
24.000	11.125
36.000	4.250
48.000	2.375
60.000	4.250
72.000	10.343
84.000	23.718
96.000	49.750
97.906	79.000 BL
101.750	76.000

RADIAL FRAME 10

2	Y
6.000	28.687
6.2511	33.250186
12.000	22.937
24.000	11.781
36.000	4.10
48.000	1.437
60.000	3.306
72.000	13.00
84.000	30.00
92.062	75.500 B.C
96.000	68.375
96.750	71.500

Z	Y
6.006	27.437
6.250	32.313 Br
12.000	21.500
2土.020	11.187
36.000	4.563
48.000	2.812
60.000	4.375
72.000	9.812
84.000	22.00
96.000	45.812
99. $\$ 37$	79.000 AC
103.875	75.937

RADIAL FRAME 15	
Z	Y
6.000	27.375
6.250	32.125 BC
12.000	21.375
24.000	11.125
36.000	5.125
48.000	3.218
60.000	4.625
72.000	3.781
84.000	20.875
96.000	42.437
100.937	77.750 Br
105.500	74.812

$\frac{\text { RADIAL }}{2}$	$\frac{\text { RAME } 16}{Y}$
6. 000	27.250
6.250	32.125 Pr
12.000	21.250
24.000	11.500
36.000	5.812
48.000	4.00
60.000	5.250
72.000	9.906
84.000	19.812
96.000	39.125
102.000	75.000 R.C
106.375	72.125

RAD)IAL FRAME 17	
2	Y
6. 751	26.437
6.940	30.500 BCl
12.000	21.250
24.000	11.937
36.000	6.437
48.000	4.750
60.000	5.875
72.000	10.437
84.000	19.687
96.000	38.437
101.562	68.375 BL
105.625	64. 875

NOTE:

1. Radial frame 13 at center of splice
2. AC notation designates bead centerline

Report No. 17
Phase I Interim Report
TOP

Report No. 17
Phase I Interim Report 30 September 1964

The cable-reinforced rubber bow dome window will be fabilcated in sections and spliced together to form the complete unit. This splicing operation has been the subject of a separate study to insure sufficient strength is obtained to maintain dome integrity during service.

Representative splice sections furnishing $6^{\prime \prime}, 9^{\prime \prime}$, and $12^{\prime \prime}$ overlaps, as illustrated in Figure 69, have been investigated as part of the $2-3 / 4^{\prime \prime}$ sample test program. The data obtained are shown in Table XXIV, Lap Splice Strength.

TABLE XXIV
LAP SPLICE STRENGTH

Splice Length

$9^{\prime \prime}$ Lap
12" Lap

Strength (f/in.)
5545
6370
9410

Remarks

Neoprene stock failed.
Neoprene stock failed.

Tensile fallure of cables in panel.

Development of the computer program, Appendix V permits the computation of maximum expected tension in both the horizontal and vertical ply cables. The program output is available at B.F.Goodrich and because of its volume will not be included in this report. From this the maximum expected tension on a splice is $504 \mathrm{lbs} . / 1 \mathrm{nch}$

All splice sections tested furnish the desired strength and with the $9 " 1$ lap exhibiting approximately a 120 safety factor and the $12^{\prime \prime}$ lap a 18 safety factor. Analysis of conditions to be encountered and possible variation of strength in a full size lap indicates a $9^{\prime \prime}$ lap will suffice for this panel.
(1) Meet contcur within requirements of the contract, $\pm 3 / 8^{\prime \prime}$ of design coordinates.
(2) Smothness of mold to be within requirements of contract when 3 ft . batten is used and $1 / 8^{\prime \prime}$ feeler is excluded over 100% and $1 / 16^{\prime \prime}$ feeler over 75% of length.
(3) Mold structure to be strong enough to permit builders to Eabricate panel.
(4) Mold to be capable of cure cycles of $300^{\circ} \mathrm{F}, 90 \mathrm{PSI}$, open ateam - 10 hour duration.
(5) Life of mold to be at least 10 complete parts.

With these requirements in mind and the contour and coordinates of the panel available, final tooling design was the major outstanding effort prior to panel fabrication.

During the time panel contour was being determined, mold design was in process. The first hurdie to pass was the question of steel versus plastic tooling. In each instance either the size or shape and intent of the tocl was making als a novel item. Reliability of steel tooling is its greatest asset. However, when conoidering the contour of the part, with the corresponding tolerances, the cost and delivery of such an item are adversely affected. Plastic tooling of this size for use in an open steam autoclove is non-existant up to the present time. Therefore, the reliability and extended production use of such an item has not been determined to date.

Vendors for plastic and steel tooling were approached, the tooling discuesed, and a quotation requested. When all bids were received (as noted in Tahle XXVI) the plastic tooling was quoted at half the price of steel with delivery in about half the time. On this basis, and satisfactory testing of segments of glass-epoxy laminate, it was decided the purpose of the project could best be served by using plastic tooling.

Report No. 17

In addition to bonding adjacent membrane plies the bead cable will have to be attached together. This attachment will not be nubjected to any extreme tension load, but will restrain the ply cables from slipping thru. This action will result in a compression force from the tension exerted by the ply cables.

Samples of $1^{\prime \prime}$ diameter IWRC cable were ground at 45° and helded together. Test results are shown in Table XXV.

TABLE XXV

BEAD CABLE ATTACHMENT

Cable

1" Dia. IWRC

1" Dia. IWRC

Attachment

Welded W/55310 Rod

Brazed W/Silver Solder

Tensile Loads
42,000

17,600

Remarizs
Cable broke adjacent to weld.

Cable pulled away from braze.

Cable tensile strength is 74,400 lbs. so that at least 56% of the original strength was attained by welding. This is more than adequate for the intended purpose.
d. Tooling

To accomplish the task of building and teating a prototype panel three basic pieces of tooling were required:
(1) buildilis mold, (2) seaming fixture and (3) test fixture.
(1) Fabrication of Panel Mold

The prototype panel size, $15^{\prime} \times 10^{\prime} \times 5^{\prime}$ draft, and configuration dictates the use of a large, complex tool capable of furnishing the characteristics necessary for proper panel fabrication. In analyzing the requirements of such a tool the following were considered essential.

Report No. 17
Phase I Interim Report
30 September 1.964

TABLE XXVI

PROTOTYPE PANEL MOLD COSTS

	Portage Mold Co.	Consolidated Welding	Mandrels Inc.	Latrobe Plastics	
Cost	$\$ 27,000$	$\$ 34,000$		$\$ 10,000$	
Deilvery	8 weeks	12 weeks		8 weeks	8 week:

The general concept of tooling for this project changed periodically as our knowledge of plastic tooling increased.

The developed procedure consisted of a complex interchange of tooling use resulting in procurement of the entire set of tooling in less time, for less money and being dimensionally more accurate. The tooling utilized in the ferale building mold sequence were:
(1) Male model of mold
(2) Bead seat patterns
(3) Compression member contour wold
(4) Seaming fixture heating element mold
(5) Female building mold
(6) Master bend

An interlaced effort was accomplished utilizing one type of tooling to fabricate a second. This can be seen in Figure 70 which is a flow diagram of this effort.
(a) Male Model of Mold

Fabrication of plastic mold tooling requires the use of a full scale model as pattern. In this instance, Mandrels Inc. of Louisville, Ohio was the vendor accomplishing the work. A slab of concrete $20^{\circ} \times 20^{\prime}$ square, which was level, furnished the base for the model. Templates furnished by B.F.Goodrich were cut out of plywood and dimensionally checked prior to usc. Duririg template fabrication, a rough, indersize and approximate steel angle iron, steel rod, wire and plastic backing was assembled on site. Over this structure were placed the female

FIGURE 69
SPLICE OVERLAP CONSTRUCTION

Report No. 17
Phase I Interim Report 30 September 1964

FIGURE 70
TOOLING FLOW DIAGRMM

Report No. 17
Pheae I Interfar Report
30 September 1964

Abstract

templetes and vierean, e foren of hatd plater, ws forcec between the cimplete ect the rownt model syatece. When the (01:racal ha:denod, the templates were removed resulesinc in a sezien of ribe of cotrect height mad contout. Finiah plater wes :hen screaded in the areas befween the ILbe furnishing the rooplote smorth model shown A. Flgure 7 \& $\%$.

In the tead area a rutber entuosos of the exect alze of the cavity wes cemented end ueed for fabricat!on of the beat seat patterris.

(b) Bead Sest Pattern

The rubber extrusion pleced in the bead cevity was of the exsct size required tor bead seet fabrication. Plester patterny were constructed of an appropriate lagth, atovi 3°, on the amdel. They included a tenstion rod for addedetzengit and an atded $1 / 4^{\prime \prime}$ per !inear toot which comperiseted for shrinkage aniticlpated durlng canting. When complete, the patterma were shifped to masallion Casting Company of massillon, ohto. These teodele furnigh the exect contour nerestary to obteln the contánuous, smooth surfece necessary for edequete retention end aesling. These modela were made of the encire panel persphery and finished to a high degree of accuracy.
(c) Compreusion Mentiez Coorrous Mold

Contour of this frototype panel if highly dependent upon the sompresgion meres. Therefote, to insure the desitred shape is otialned, the upper contcur portion of the compression member was cest of Epozy to the exact surtace contour of the penfl. The mold tor this casting wat notalned by lakicg a plastic lopression of the mudel surface, then filling vith $1^{\prime \prime}$ thichness to simalate the pariel construction. rhis reaultes In the finterng! natel contour against which the compreselon rembex will reat.

FIGURE 71
PROTOTYPE PANEL MALE MODEL - BOTTOM SIDE

FIGURE 72

PROTOTYPE PANEL MALE MODEL - TOP SIDE

Report No. 17
Phase I Interim Report

(d) Seaming Fixture Heating Element Mold

During seaming of the panels a heat source will be furnished on the inside of the part. In this instance, since the heater is rigid, contour is critical. A reinforced planter cast was taken of the seam area and this, in turn, was used as the mold for the heater build up. This consisted of ixon wire mesh $3 / 8^{\prime \prime}$ opening and .105 dia. wire embedded in an epoxy build up.

(e) Female Building Mold

Upon completion of the aforementioned castings the rubber extrusion in the bead was replaced with a second extrusion which was of the panel bead configuration. The difference in the two (2) extrusions is shown in Figure 73. The decrease of the clamp cavity furnishes a compression action when the clamp is in position. This compression facilitates the initial sealing of the system.

The surface of the model was divided into distinct sections per mold design, a forward section, a aft section and a seaming mold section. The plaster model surface was then coated with wax and a layer of aluminum foll. The end sections of the mold were constructed by laminating layers of high strength glass fabric and high temperature, low shrinkage epoxy resin.

Upon completion of the lay up operation the system. was cured using heat lamps to the B stage, about 180° - $190^{\circ} \mathrm{F}$. It was interesting to note that virtually no shrinkage was measurable from the time of initial lay up until the mold was cured later at B.F.Goodrich.

The center section of the mold or seaming fixture was then fabricated. This build up used the same resin-glass system but required a considerably heavier section.

Report No. 17
Phase I Interim Report 30 September 1964

USED IN MAKING MOLD

FIGURE 73
RUBBER BEAD EXTRUSIONS FOR USE WITH MODEL

Report No. 17
Phase I Interia Report

Determination of the actual section of the seaming mold which would de subjected to additional stresses from the pressures encountered during splice curing, was accomplished as separate structural analysis. It is presented as Appendix VI to show the actual calculations.

In this analysis the flexural and normal stresses were checked. The analysis shows that the maximum flexural stress is 25% of the ultimate flexursil atrength of the material and the normal tenaile strength is 50% of the ultimate tensile strength of the material. Therefore it is concluded that the external flange of the mold splice section possesses a safety factor of about 2 for the anticipated internal, seaming, pressure.

Also built into the seaming section were provision for the heat source to be used during the seaming operation. The entire system was obtained from the Hanco International, Division of Hannon Electric Company, Canton, Ohio. It includes a Model PL-60, 20KVA, 550 Volt, single phase, Flex Power Heating transforme: with a variable heating tap switch. From the transformer the current is carried via a woven copper lead to the actual heating elements. These elements consist of two (2) pleces of stemard iron wire mesh with $3 / 8^{\prime \prime}$ openings and . $105^{\prime \prime}$ diameter wire. The bottom element was laminated into the mold surface below the top two (2) glass layers. The element emerged on each end of the mold with sufficient length for bus bar attachment. The upper element was embedded in a separate laminated structure as previously discussed which is positioned over the panel for curing.

During the lamination process tapped inserts, for attaching mold clamps to the mold, were integrated. Also, vacuum taps, for bleeding from a channel exposed on the bottom side of the mold clamps, were built into the construction. Matching holes were located in the adjacent flanges of the forward-seaming wold and seaming mold - aft sections for bulting the sections together. An " 0 " ring type channel was built in to the seaming section and ailicon seal inserted. As the sections were bolted tognther the seal became effective.

Report No. 17
Phase I Interim Report
30 September 1964

Task 8156

FIGURE 74

ASSEMBLY OF PROTOTYPE PANEL MOLD

FIGURE 75
ASSEMBLY OF YROTOTYPE PANEL MOLD WITH BEAD CLAMPS

Report No. 17
Phase I Interim Report 30 September 1964

Upon completion of the final lay up, the "eggcrate" support structures, which were fabricated as a separate sub-assembly, were bonded to thes external surface of the mold. The complete construction was then removed from the modei. During removal it was necessary to destroy the model because of back draft of contour.

Suissequent to removal from the model the mold was reassembled and an extrusion simulating the panel bead was inserted in the bead cavity. The bolts, to be used for attaching the clamps, in addition to metal clearance sleeves and washers were installed. Around this complex the mold clamps were laminated, the length of each varying from 12 to 16 inches depending on the curvature and location of the threaded inserts. Using heal lamps the clamps were cured to the B stage, removed from the mold and buffed smooth to obtaln a finished surface. The completed mold was delivered to B.F.Goudrich and assembled on site; Figures 74 and 75.

(f) Master Bead

Proper mating of the panel with the test fixture wis insured through the use of a master bead. This item was obtained directly from the mold, thus minimizing potential differences between the molded part and the test fixture.

Plaster was screeded into the bead cavicy reducing it by $5 / 16^{\prime \prime}$. This meant that the resultant cast bead would clear all theoretical surfaces of the bead cavity when it is installed in the rest fixture. Ths spacing was chosen such that when the besd seat castings are positioned using the master bead and maintaining proper colerance of $\& 1 / 4^{\prime \prime}$ the two would not contact each other. A flange was also designed into this item to assist in proper orientation of the bead seat during fabrication of the test $f i x=$ ture. The tool was simply a rigid duplication of the panel bead.

The master bead was then built using giass fabric and epoxy resin and steel reinforcement to obtain and maintain the desired configuration. A two (2) piece structure was built to permit installation and removal in the test fixture.

Report No. 17
Phase I Interim Report 30 September 1964
(8) Stabilization Cycle of Mold

Up to this time, or the B-stage of cure, the dimensions of the mold had remained virtually constant. However, the final curing cycle of the epoxy otructure had not been accomplished. This final stabilization cycle was necessary to obtain maximum dimensional stability with minimum residual stressea. The entire mold assembly, including. in place clamps, was placed in a 12° diam. vulcanizer and the atabilization cycle started. Initially the temperature was raised to $175^{\circ} \mathrm{F}$. Which is just below the original pre. cure temperature, of $180-190^{\circ} \mathrm{F}$. The temperature was held at this level until the entire mold temperature was uniform. Thermocouples had been mounted on the surface of the part and embedded in the heavy seaming mold section. Upon completion of this 4 hour heat soak period the heater temperature was ralsed in $25^{\circ} \mathrm{F}$ increments every two (2) hours. This cycle continued until the heater temperature reached $325^{\circ} \mathrm{F}$. This upper limit 1s $25^{\circ} \mathrm{F}$. above the maximum panel curing temperature $\left(300^{\circ} \mathrm{F}.\right)$ and will permit the use of the mold without fear of deformation.

Upon completion of the cycle the heater temperature reduced slowly minimizing the possibility of residual stresses remaining in the mold.

In checking dimensional stability of the mold during pre cure, pooc cure and all suosequenc cures two (2) types of checks are necessary, warpage and shrinkage. These were determined using a series of six (6) points around the mold periphery. These points were checked and showed a maximum shrinkage to be an insignificant $1 / 16^{\prime \prime}$. The actual arc lengths along the mold surface were measured and found to range from 0 to $1 / 16^{\prime \prime}$ change.
(2) Seaming Fixture

The concept pursued for the splice tooling was designed to make maximura use of other necessary equipment, specifically the building mold. The mold in the seam area was reinforced sufficiently (as discussed) to withstand the forces encountered during seaming.

Report No. 17
Phase I Interim Report
30 September 1964
Serial No. SSO41-001
Task 8156

With the mold capable of taking splicing forces, top aupporting structure, or strong-back had to be designed. This separate strength member would attach to the mold vis two $2^{\prime \prime}$ diameter steel pins. The structure designed is shown in pigure 76 . This includes a steel etructure capable of retaining a 100 psi pressura, a cavity for the pressure hose and an attachment mechanlam for coupling the mold and the strong-back. In designing the structure for sufficient otrangth the maximum operational pressure was considered to be 100 psi.

Caiculation for designing this atructure are Nhewn in Appendix VII.

Thie structure was determined to be etructurally sound With a mindmum eafety factor of 2.5 .

The etrong-beck was fit checked in the mold and atrial pressure cycle conducted prior to the actual panel eseaing operation. The water prescure in the hose was increased in 5 pei incremants until 80 pil was attained. The mold seaming etructure was visually exemined during this cycle. During and subsequent to this cycle, examination did not uncover any type of degradation and the yutem wae cunelderad acceptable for penel meaming.

(3) Hydrostatic Test Fixture

In order to adequately and eccurately aseses the relative marlts of the prototype panel a altable tewt ilxture had to be designed. During this deaign program the folloving objectivee were established.

1. Permit maximum test preseure of 150 pei .
2. Possess adequate rigidity to inaure changes in panel were not result of fixture deflection.
3. Closely imulate ship's structure to permit evaluetion of boundary bar mounting method.
4. Panel oriented on vertical and horizontal componente to ald in mesauramente.
5. Minimum cost comensurate with function.

FIOURE 76

Report No. 17

The early design efiort was involved in determining what basic concept hould be pursued. Basically, three systems were looked at: (1) Parasite attachment to an existing pressure vessel, (2) Concrete structure with steel reinforcement, and (3) Steel structure with concrete reinforcement.

The use of an already designed or fabricated pressure vessel, either cylindrical or conical, was initially considered desirable from a cost and time standpoint. Reasoning was that the necessary boundary bar system would be welded directly to the basic structure after minor reinforctag. However, after delving into this superficially it was seen that the diameter structure required with reinforced construction would incresse the cost many fold. This, coupled with the fact that the complex curvature of the panel made mating of the panel extremely difficult indicated other approaches should be investigated.

A second method looked into was the use of a concrete structure suitably reinforced to take necessary tension loads. The basic concrete block would easily absorb the hydrostatic compression forces, but tension loads would have to be handled with a steel reinforcing structure. The sost of the concrete and stee: necessary to hold the unbalanced forces acting on the atructure became prohibitive thus ruling out this concept.

The final design examined and ultimetely utilized, was that of a basic steel structure as depicted in Figures 77 and 78. The basic box consists of steel I beam, channels and plates for containing the preseurizing medium. Three basic units of the ships structure were duplicated in this fixture: (1) Diagonal Bulkhead, (2) Base plate and (3) Catwalk area. A flat plate end cap was utilized to cap off the end of the cavity formed by the three ships plates. To this structure the bead seat was welded utilizing the master bead for location purposes.

To insure satisfactory performance of the test fixture a apecification was written detailing the requirements as closely as posible. Following is a detailed list of the specifisation requirements.

Report No. 17
Task 8156

Phase I Interim Report
30 September 1964

FIGURE 77

PROTOTYPE PANEL HYDROSTATIC TEST FIXTURE
SIDE VIEW

FIGURE 78

PROTOTYPE PANEL HYDROSTATIC TEST FIXTURE
B.F.Goodrich Aerospace and Defense Products

Phase I Interin Report 30 September 1964

1. The fixture nust be capable of accommodating the bead of the bow dome section, clamping it to form pressure tight eal, and securing it in the required contoured position within the specified limits when the dome is subjected to the test pressures.
2. Maximum test pressure of 150 psi water to be applied to the fixture one time only for a period of not more than five minutes.
3. Normal pressure is 50 psi water to be applied to the fixture for extended periods and occasionally increased to 100 psi for several hours.
4. Maximum force acting perpendicular to the bead core and tangent to the curvature of the tensile elements of the dome is 15,000 lbs. per linear inch of bead when the test pressure is 150 psi .
5. Maximum leakage not to exceed five cubic inches per minute at pressure of 50 psi exclusive of seal along bead of dome section.
6. All welding to be equal in quality to that required for pressure vessels.
7. Primary fixture structure to be per assembly drawing 47G-27203-A. (Figure 79)
8. The peripheral bar to which the dome bead will be clamped is to be a continuous member with a cross-section as shown on drawing Figure 80 and so shaped and fositioned that the groove for the dome bead will follow the contour of a bead template, furnished by B.F.Goodrich Co., within a maximum tolerance of $1 / 4^{\prime \prime}$ in any direction. Further, the included angle between the side plate of the fixture and the principle face of the bar at any particular point of determination is to be within plue or minus 2 degrees of the angle specified or otherwise indicated as required for that point.

Also, the periphery of the bead groove must be equal to or not more than $1 / 2$ inch longer than the length of a gage cable to be furnished by B.F. Goodrich Co. Any adjustment needed for this length requirement may be made along the upper curved edge of end plate
Figure 81, item 2, by a departure from the normal bead contour in an amount to be approved by a B.F.Goodrich Co. engineer at the time.

Report No. 17
Phase I Interim Report 30 September 1964

Task 8156

See drawings Figure 80 and Figure 82 for typical sections representing relative positions between the peripheral bar and the side plates of the fixture. The bar is to be supported by and tied to the fixture side plates by a tension plate suitably contoured and positioned to be in line with the direction of the force applied to the clamp by the dome section. An indefinite number of gusset braces (not shown) will also be required to stabilize the bar position when it is subjected to forces not in line with the tension plate due either to initial misalignment of the plates or a change in the direction of the applied force when the dowe section is deflected by the iniernal test pressure.
9. The peripheral bar may be made from segments of any convenient length obtained as steel castings, plaster patterns for which will be furnished by B.F.Goodrich Co., or, as formed lengths of premachined rectangular steel bar, or any combination of both. Such alternatives to be subject to the following limitations -
a. Adjacent segments to be so shaped and positioned to give a smoth curve across the joint with no radius of curvature to be lesa than $3^{\prime \prime}$. Maximum initial misalignment may not exceed $1 / 16^{\prime \prime}$ and luch step must be faired out over a minimum length of $1^{\prime \prime}$ subject to the $3^{\prime \prime}$ radius of curvature ilmitation.
b. Welds joining adjacent segments to be continuous around the periphery of the section and pressure tight to 150 psi where subject to the test pressure. Such welds to be at least $1 / 4$ inch dcep.
c. Joint welds to be so positioned that they will not pass thru a clamp bolt hole.
d. Joint welds and casting surfaces in contact with dome bead to be hand smoothed to a urface finish of 125 or better.
10. The tension plates may be of any convenient length and shape with all joining welds to be full strength and pressure tight.
11. Loose clamp segments arn in he shaped substantially per item 1, shown in Figure 80. They may be individual steel castings for which a pattern will be furnished by B.F.Goodrich Co. Segments are to be so located along the peripheral bar that the gap between segments is $1 / 8^{\prime \prime}$ plus or minus $1 / 16^{\prime \prime}$ when mesaured at the centerline of the cable. Material is to be removed from one or both edges of the segments as required to obtain such positions. Clamp segments may be cut to epproximately half length when required to fit positions where bar has greatest curvature. Surfaces in contact with the dome bead to be hand smoothed to a surface finish of 125 or better. Segments and bar to be match marked with painted numerals to indicate proper position along bar.
12. Steel castings to have a minimum yield strength of 35,000 psi.
13. Clamp bolt heads to be closely parallel with the surface of the bar to effect a pressure seal with the bar and copper gasket. The bar surface may be spotfaced if required.
14. Inspection to be made by B.F.Goodrich Co. engineer at Suppliers Shop with suppliers gauging and measuring equipment prior to shipment of fixture. Final acceptance of fixture to be subject to satisfactory performance during pressure tests after installation.
15. Variations of design or construction from any of the above specifications or issued drawinge will be considered upon presentation by the supplier. Such variations may not be used, however, until specifically accepted in writing by B.F.Goodrich Co.

Figure 79
B. F. Goodricis Frawing 47G-27203A

Report No. 17
Phase I Interim Report

Figure 81
B. F. Goodrich Drawing 47G-27237A

Report No. 17
Phase I Interim Report 30 September 1964

Figure 82
B. F. Goodrich Drawing 47G-27243A
W.F.Gondrich Acrospace and Defense Producin

Report No. 17

Phase I Interim Report
30 September 1964
e. Panel Fabrication

Prior to initiation of the fabrication operation a vacuum test cycle was conducted on the mold. This consisted of isolating the mold surface, drawing a vacuum in the resultant cavity and subjecting the entire complex to sample cure cycle.

The vacuum bag had a series of vacuum lines which fed into an overall $2^{\prime \prime}$ diameter line. This in turn leads to a Water Seal Wash Pump capable of holding 24 inches of Mercury vacuum at flow rate of 100 CFM. During the course of this cure cycia vacuum was malntained at the 24 inch (Hg) level.

Examination of a fabric bleeder structure within the cavisy, subsequent to cure, indicated a slight introduction of water vapor around several edges of the bag. These leaks were attributed to seam leakage where the vacuum bag was spliced. The amount of leakage was well within the source purnp capabilities of maintaining the ultimate vacuum level. It was concluded that special care should be taken in lagging the fabricated panel to minimize this condition although no real damage would occur if it happened during panel cure.

(1) Preparation of Mold

The mold nurface was thoroughly moothed eliminating all protuberances of either epoxy or rubber in nature. Once this was completed the surface was cleaned and degreased using lethyl Ethyl Ketonc. A layer of carnuba wax was applied to all surfaces in which the neoprene would be in contact during cure. Over the wax, a layer of Flurocarbon Mold Release $S-122$ was applied. The wax-teflon syatem was mplied ss a mold release to insure the panel could be easiiy removed from the mold subsequent to cure.

A layer of B.F.Goodrich Code 935, 1.5 oz./yd. ${ }^{2}$, nylon twill fabric was cemented in place over the surface of the mold. This material further facilitates removal of the part, in addition to impressioning the surface of the panel. During application of this fabric care was taken to keep the wrinkles and bridging to a minimum.

The nylon was extended approximately eight (8) inches beyond the bead cavity for eventual wrap around the bead buildup. Also, since the mold-panel combination would be split, a two (2) inch overlap was maintained in the center

Report No. 17
Phase I Interim Report 30 September 1964
of the splice area. A layer of natural rubber cement, incompatible with the neoprene panel gum, was applied over the fabric to hold it in place during panel fabrication and to permit release after cure.

(2)

P111 Gum Application

The thick fill section shown in Figure 83 was applied in three (3) separate operations. First, a layer of gum was applied to the entire mold surface directly over the nylon impressioning fabric. Then, in the maximum volume area, using a series of contour templates, layers of $.180^{\prime \prime}$ neoprene gum were applied in a step sequence. Building cement was used between plies of the build up, both gum and wire. Extreme care was taken during this lay up to eliminate all trapped air between plies. All gum oplices were of the angle-skive variety to insure void free integrity of the fill areas.

The fill was accomplished in two (2.) sections, first the forward panel area, then the aft ponel area. A vertical separator was placed between the sections, in the fill area, to permit separation of the panel for splicing.

In the forward section of the mold a method of expediting fill installation was atempted. In this instance blocks of rubber $l^{\prime \prime}$ thick, $18^{\prime \prime}$ long, and varying depths depending on location were utilized. These sections were contoured to the curvature of the parel and laid in place using the same template procedure previously discussed. This method did not prove more efficient and in some instances may prove less effective. The larger sections presented greater problems in insuring the absence of trapped air.

Upon completion of the fill with both techniques a second 180" ply of neoprene was laid over the entire surface and firmly cemented to the substrate.

Thermocouples were placed, at the splice area, in the center of the heaviest gum section for monitoring temperatures during cure. Thermocouples were also placed between the mold surfaie and the first layer of gum.

Report No. 17
Phase I Interim Report 30 September 1964

FIGURE 83
PANEL CROSS SECTION - FILL GUM APPLICATION

The bead chafing strip of neoprene coated BFG Code 946 Nylon twill fabric, $4.9 \mathrm{oz} / \mathrm{yd}^{2}$, was applied in the bead cavity. The component is used to protect the wire fabric from abrasion by the bead clamps. The neoprene coeting 1s a high abrasion resistant stock BFG Code 65014. The actual position of this strip is shown in figure 83. This strip extended $1 / 2^{\prime \prime}$ past the bead clamp recess and terminates at the splice section.

(4) Wire Fabric Application

Actual ply orientation is shown in Figure 68 of section 10.c.2. The first vertical ply was iaid in serips which varied from $8 i x$ inches wide at the center to une inch wide at the extreme end. The reason for this vartation in width was the extreme complex curvature of the panel.

The first vertical ply was allowed tc extend past the head cavity approximately eighteen inches to permit wrap around the bead.

This extension was terminated at the point where the vertical ply, when wrapped around the bead cable, formed a 15° angle to the four foot water line. This is known as the "trsisi tion point".

Outboard of the four (4) transitions points the vertical ply was cut on a line $1-3 / 4$ inches from the bead cable. A strip of extruded fillet (BFG Number 2S-1037 and com pound 59380) was cemented along the cut edge as shown in sketch, Figure 83. In all instances where the fabric ply terminated, a fillet was installed to smooth the transition.

The section of this ply which covered the splice area was applied with a nylon separator to permit removal after cure. The ply was cut off approximately l-3/4 inches from the edge of the bead cable.

The first 15° ply was applied with the cables running from the lower bottom-forward edge area to the upper aft edge. The forward section was applied first and allowed to extend to the aft edge of the splice section of the mold. Nylon separators were used as shown on the drawing. The aft section was then applied and allowed to extend over the
forward section nine inches. This would be one series of lapped 15° plies in the completed panel.

Outboard of the transition points this ply was allowed to extend approximately eighteen inches beyond the bead cavity.

The remainder of the ply on the bottom and top edge was cut off 1-3/4 inches from the bead cable.

At this point in the fabrication the extensions of both the vertical ply and the 15° ply were stitched into the bead cavity and held there with sections of rod and eight inch " C " clamps. The extending surfaces were covered with polyethylene film to prevent inadvertent adhesion to each other.

To permit proper load distribution to the bead cable a ply mid-way between vertical and 15°, 1 .e., 38° applied twelve inches beyond what was determined to be the critical lines would suffice to distribute load perpendicular to the beads. These plies were to be applied over the first $15^{\circ} \mathrm{ply}$ and the second 15° ply after the second bead turnover to best centralize the additional build up and impart the most strength to the panel.

A ply, as explained above, was applied to each end of the panel over the first $15^{\circ} \mathrm{ply}$. The tapered fillet extrusion was applied arcund the entire periphery of each section of chis ply.

The second vertical ply was applied following virtually the same procedure as the first vertical ply. There were, however, some exceptions as follows. The transition points were difeerent owing to the 30° different angle between the first and second $15^{\circ} \mathrm{ply}$, and the plies were extended only about twelve inches beyond the bead cavity. The extening ends were stitched into the bead cavity and held in place with sections of rod and "C" clamps.

A thermocouple was placed twelve inches from the beed cable on both the top and bottom of the panel in the center of the splice section over t second vertical ply.

The second 15° ply was applied 30° from the first $15^{\circ} \mathrm{ply}$ and the edges were allowed to extend about $12^{\prime \prime}$ beyond the bead cavity fore and aft of the transition points.

Report No. 17
Phase I Interim Report
30 Sep'ember 1964

The bead tie-in ply is installed in all cases at 90° to the bead cable and extending six (6) inches inboard of the cable. Considerable difficulty was experienced in applying this ply around the extreme curvatures.

The outer edge was allowed to extend fifteen inches for future lapping.

The bead cable was cut into two (2) pieces, each long enough to extend from the center of the splice section around the periphery of the fore or aft mold and back to the center of the splice. The ends of the cable were tapered to facilitate welding at a later date when the two panels were ready for splicing.

After cutting and tapering, the cable was degreased in tri. chloroethylene vapor for approximately six hours. The cable was then laid on a holland covered tahle. supported by wood blocks and a heavy coat of 220 athesise (a metal primer) was applied. After allowing one half hour ($1 / 2$ hour) drying time the cable was coated with Code 369 neoprene cement. In the meantime the bead cavity was prepared by laying in strip of $.030^{\prime \prime} \times 35003$ neoprene stock.

The cable was then wrapped in stock liner fabric and placed in the bead cavity. Clamps were used to press the cable into position such that the tapered ends would just meet at the center of the splice section. A nine inch long l-1/4 I.D. $\times 1-3 / 40 . D$. rubber hose was split lengthwise, covered with nylon at the splice area and used as a filler in the bead cavity. An extruded fillet, BFG No. $2 \mathrm{~S}-1022$ was cemented in place. White cotton gloves were used to handle the cable during all steps after degreasing. Cable length was determined by installing a $1-3 / 4^{\prime \prime} 0.0$. rubber hose in the bead cavity prior to beginning fabrication of the panel.

It was found during this operation that, what was a relatively siraple operation during sample fabrication, was difficuit operation on the full scale panel. The cause of the difficulty arose from two (2) sources; (1) the curves which had to be negotiated and (2) the position that a person had to attain to correctly turn the cable. It is of extreme importance that the cable plies be tight around che bead cable in order to sustain the forces that will be present when the panel is pressurized. This tight wrapping required extreme effort to accomplish.

The extension beyond the bead, on the bead tie-in ply, was cemented and turned at right angles to the cable at all times. Even in this case considerable ply over lapping was present at the extreme aft section in order to keep the ply cables in a straight line.

Turning the next ply was somewhat more difficult than the bead tie-in ply since the ply cables crossed the bead cable at an angle. This caused the plies to "pile up" in the areas of extreme panel curvature. The plies were curned always keeping them tight against the cable.

The second turn over was trimmed to six inches, (the bead tie-in ply was cut to length prior to installation) after turning. "C" clamps and pieces of rod were used to assist in tightening the turn over.

The second set of 38° plies was applied approximately the same as the first set. The ply cables were orlented 76° from the first 38° plies and the area covered was only 12 to 16 inches wide.

The third vertical ply was applied exactly like the first two except that it was cut off $1-3 / 4$ inches from the bead cable around the entire periphery of the panel. The splice section was handled the same as before with separators being installed. Figure 84 depicts lay up of the 15° plies in the panel aft section. figure 85 depicts the bead wrap around being accomplished.

The final ply turnover was accomplished the same as the second ore, but with less effort, since we received an education on the earlier one. This ply was also cut after turnover and held in place with rods and "C" slamps.

The bead chafing strip was also turned at this time.
(5) Inner Neoprene Plies

The edge of this ply was skived to the shape of the panel and the ply terminated at either edge of the splice. The reason for stopping this ply at the edges of the splice was the exness splice thickness caused by lapping of plies. A.080" gum covering was laid over the ply resulting in a flush inside surface.

Contract NObsr 89483
Serial No. SS041-001
Task 8156

Report No. 17
Phase I Interim Report
30 September 1964

FIGURE 84
15° PLY LAY UP AND SPLICE CONSTRUCTION OF PROTOTYPE PANEL

FIGURE 85
BEAD WRAP AROUND OPERATION OF PROTOTYPE PANEL

Report No. 17

The inside mold clamps were then installed with .005 sheet stainless steel shims used to bridge the gaps between adjacentclamps and provide cross section continuity. The clamps were torqued down until they bottomed which resulted in the desired bead cross-section.

In several cases it was necessary to add rubber to the surface of the wire fabric or patch the ply itself with wire fabric. In the case where the surface rubber was patched the exposed cables were primed with primer 220, cemented with 369 cement and .010 , sheet 35003 applied over the exposed area.

Ir. the other case a lap of at least six inches was required to provide equivalent strength. This procedure was used in several places and should not have any detrimental effect on the panel strength.

(6)
 Preparation for Cure

"To bag" is a vernacular phrase meaning, in this case, to place in a sealed envelope. This procedure must be accomplished to provide insurance that any trapped gasses will literally be pulled from the panel.

In a practical sense the mold acts as one aide of the envelope and a heavy rubber sheet as the other. An escape route for gasses and vapors is provided by layers of corofelt (pressed wood fibers) and fiberglass or burlap fabric. Valves are provided in the rubber sheet to draw the vacuum. Figure 86 presents the panel ready for cure with the vacuum harness in position.

The procedure used in this case was as follows:
(a) Cover the panei with BFG Code 935 Nylon impressioning fabric.
(b) Cover the entire product with two plies of heavy fiberglass fabric BFG Code 994.
(c) Cut holes in the glass fabric and install the necessary thermocouples per Figure 87.
(d) Cover the product with one ply of corofelt to the edge of the mold clamp.

Contract NObsr 89483
Serial No. SS041-001

- 211 -

Report No. 17
Phase I Interim Report
30 September 1964

FIGURE 86
PROTOTYPE PANEL WITH VACUUM BAG READY FOR CURE

Contract NObs 89483
Serial No. SSO41-001
Task 8156

Report No. 17
Phase I Interim Report 30 September 1964

CONTROL THERMOCOUPLE LOCATIONS

122 CENTER OF GUMFILL
3\& 4 CENTER OF CONSTRUCTION 5 THRU 9 SURFACE OF PANEL

FIGURE 87
PROTOTYPE PANEL THERMOCOUPLE LOCATIONS

Repo No. 17

(e) Cover the corofelt with two plies of heavy fiberglass fabric BFG code 994.
(f) Fill all exposed bolt holes and other cavities with rubber.
(8) Apply cured $.060^{\prime \prime}$ bagging stock over mold clamp.
(h) Cement bagging rubber, BFG Code $139 E P 2$ on bag sealling surface around mold periphery uaing appropriate cement.
(1) Install ten valves appropriately spaced on the bag surface. Two are to be used to monitor the vacuum.
(J) Apply vacuum to the bag.
(k) When the bag has been sufficiently evacusted epply a redundant ply of bag stock to insure all leaks are sealed and minimize the posibility of pulling toles during cure.
(1) Several leaks were repaired and the mold instelled in the autoclave and vacuum recorders atteched.
(m) Bag integrity was checked by plecing the mold in the autoclave and pressurizing. The vacuum level should be maintained at least at 10 inches of mercury with 90 psig on the vulcanizer.
(n) Thermocouples were attached to the temperature recorder and the cure begun.
(7) Prototype Panel Cure

As determined earlier the prototype panel cure would be completely monitored and the actual cycle determined as the cure progressed. Once the unit was in the heater, with the proper level of vacuum and all thermocoupies operating alr pressure was introduced into the vulcanizer. With pressure increase the initial vacuum level of $28^{\prime \prime}$ of mercury held until about 40 psi was reached. At this point the vacuum level began dropping so heat was introduced as a means of softening the bag and permit elongation without tearing as it seated itself against the mold. The vacuum level continued to drop until it reached about $10^{\prime \prime}$ of mercury. As the cure progressed the bag sealed and the vacuun level attained 2?" of mercury where it remained during the actual cure time.

Report No. 17

The heater temperature was raised to $300^{\circ} \mathrm{F}$ gradually within a one (1) hour period. From this point the internal thermocouples governed the cure with the following cycle established. (Refer to Figure 87)
(a) Monitor temperature at the center of the construction (No. 3 \& 4 thermocouples) and when this temperature reaches 275° start cure period.
(b) Total cure time shall be two and one half (2h) hours.
(c) Following cure, cool part until thermocouples 3 \& 4 register $250^{\circ} \mathrm{F}$. This may be done with an intermittant water cool down.
(d) When 250° is reached allow, or force, the part to drift to 200° at the center of the fill (Thermocouples $\& \& 2$) in three (3) to four (4) hours. Water may be used to assist this conl down but maintain at least 40 psi and Euli vacuum.
(e) When 200° is reached the cure cycle may be considered complete and the heater opened.

The actual cure cycle is shown in Table XXVII following. In analyzing this data it was realized that a wide varistion of temperatures would be noticed. However, realizing a time temperature relationship is critical the data was analyzed to insure that all areas recelved a proper cure cycle. A proper cure for B.F.Goodrich Code 35003 neoprene in the construction is either: (1) 45° (d $292^{\circ} \mathrm{F}$, (2) 90° (c) 275° and 150° © 2500F. Analysis of the cure data indicates all areas received a satisfactory cure.
Contract NObsr 89483
Serial No. SS041-001
Task 8156

Report No. 17
Phase I Interim Report 30 September 1964

TABLE XXVII
PROTOTYPE PANEL CURE CYCLE

B.F.wodrich Aerospace and Defense Products
a Divison of The B F. Comedrich Campany

Contract NObsr 89483
Serial No. SS041-00.
Task 8156

Report No. 17
Phase I Interim Report 30 September 1964

TABLE XXVII (Continued)

Time	Heater Temp	1	2	3	4	5	6	7	8	9
50		272	278	282	284	285				
7 hrs .	$300^{\circ} \mathrm{F}$	274	278	283	284	285 286	282	289	293	282
10		275	279	284	283	286	283	291	295	283
Start 20		276	280	284	282	287	284	292	295	284
Cool Down 30		278	279	280	281	284	284	288	290	284
40		280	279	279	280	262	268	281	282	277
50		278	278	278	278	248	252	277	279	264
8 hrs .	$248{ }^{\circ} \mathrm{F}$	278	278	278	278	248	238	273	276	252
10		277	268	277	268	223	212	268	268	240
20		276	272	275	267	220	200	262	251	229
30		276	270	271	265	199	188	256	243	218
40		274	269	269	262	190	177	252	239	207
50		272	265	266	258	180	168	246	228	197
9 hrs .	$200^{\circ} \mathrm{F}$	271	263	262	255	171	161	239	218	189
10		269	260	259	251	165	155	236	218	180
20 30		267	257	256	248	160	150	234	219	175
30		265	255	254	245	155	145	231	218	169
40		263	251	251	241	150	141	228	217	165
50		262	248	248	237	145	138	226	212	160
10 hrs . 10	$186^{\circ} \mathrm{F}$	260	246	246	234	144	134	224	210	157
10 20		258	242	244	231	140	132	220	210	154
20		256	240	241	228	136	129	218	207	151
30		254	237	239	225	135	126	215	203	148
40		252	234	236	221.	132	124	212	200	146
50		250	2;1	234	218	130	122	200	198	143
11 hrs .	$168^{\circ} \mathrm{F}$	247	228	232	214	127	120	206	196	140
10		245	224	229	211	124	116	203	192	137
20		243	222	226	208	122	114	220	190	134
30		240	219	224	204	120	112	198	181	132
40		238	216	221	202	118	110	196	179	129
50		236	212	219	198	116	110	194	277	127
12 hrs .	154 F	234	210	216	196	115	108	192	176	124
10		231	207	214	193	113	108	190	171	123
20		229	204	212	191	113	107	189	169	121
30		227	203	210	190	112	106	185	166	120
40		224	200	207	188	111	105	188	166	118
${ }_{13} 13$ hrs		222	198	204	185	110	105	178	163	118
13 hrs .	136 F	220	196	202	183	108	102	175	157	1114
10 20		217	172	199	170	106	100	172	145	111
20 30		214	185	196	175	103	97	171	144	109
30 40		212	186	193	175	101	95	168	142	106
40		210	185	190	174	100	94	166	141	105
50		207	184	188	173	101	94	163	140	104

TABIE XXVII (Continued)

NOTE: Vacuum maintained above $20^{\prime \prime} \mathrm{Hg}$ during actual cure cycle

\#1 \& 2	Center of Fill	
3	$\& 4$	Center of Construction
5	-9	Surface of Part

FIGURE 88
PANEL 5 MOLD SEPARATED AFIER GURE

FIGURE 89
RESTRAINT OF 15° PLUS DURING SPLICE FABRICATION

Raport No. 17
Phase I Interim Roport 30 September 1964

FIGURE 90
BEAD CABLE WELD FOR SPLICING

FIGURE 91
THERNOCOUPLE DNSERTION DURING PANEL SFLICE ASSEMBLY

Report No. 17
Phase I Interim Report
30 September 1964

Panel Splicing

One main reasons for building the prototype panel was to determine the feasibility and strength of the splice construction.

Subsequent to sure the bag was removed and the panel separated Figure 88) in preparation for the seaming operation. This was accomplished and the nylon and teflon fabric separators and the vertical plies removed. Figure 89 shows the 15° piles being restrained. Uncured neoprene was cemented to the exposed vertical rubber fill edges, the horizontal plies were cleaned and the panel repositioned together. The uncured gum at the edges of the fill was positioned together and put into compression during the joining operation because of the added gun thickness. Thermocouples positioned ageinst the mold surface were installed prior to bolting the mold together.

The bead cables were electric welded cogether with the part being protected with asbestos sheeting. It was impossible to completely weld the cable at once without burning the panel so alternate welding and quenching was accomplished. The bead cable weld is shown in Figure 90 . Due to the time factor and heat build up in the panel, it was decided, in order to reduce cost and improve design, a pre-welded mechanical cuble joining method would be used in the future

After the cables were welded the part was cleaned and allowed to dry (several small fires had to be extinguished during welding and water was still present).

The same fabrication procedure was followed during splice assembly as during panel building. The only difference was replacement of separator materisl with cement. Also, the fabric was installed in two to four inch strips to assist in passing it under the cable. Appropriate thermocouples as depicted in Figure 91 were installed during building.

The top gum layer used was only . 080 thick due to the extra ply build up resulting from the horizontal ply overlaps.

Report No. 17
Phase I Interim Report

Nylon imprestioning fabric wes applied to the surface, thermocouples inatalled and a preformed electric heating eiement positioned over the surface.

Two layers of asbestos sheering and two layers of uncured butyl rubber . 180" thick were used as insulation between the heating element and the pressure hose. The strungback Figure 92, was installed. Water was iritroduced into the hose until 80 ps 1 g wso attained and the transformer turned on to start the induction heaters.

This cure Figure 93 was easentially designed to be idencical to vulcanizer cure. Thermocouples were built in and pressure monitored during the entire cure. Figure 94 shows the thermocouples locations and again the center of the construction monitors ware most eritical and controlled the cure. Table XXVIII presents temperature date collected during this cure. Two pickups were apparently not recording, therefore, the readings were discarded. The remalnder of the pickups varied considerably depending upon the size of the panel or heat sink. Heat dissipation was expected into the adjacent panel areae so the entire oplice fixture was made $4^{\prime \prime}$ wider than the actual seam. To insure a satisfactory cure throughout the critical parts of the panel it was recessary to slighsly over cure some areas. Generally speaking the splice cure was considered to be very satisfactory.

(9) Final Finish

Special tongs as illustrated in Figure 95 were used to remove the panel from the mold and generally asist in the handling operation. Actual panel release from the mold was accomplished by peeling the panel, i.e., pulling one bead toward the opposite bead.

This was accomplished from one side then the other eventually breaking the entire panel free. Once free the panel Figure 96 was removed from the mold, Figure 9%, and was inverted and positioned over several cylindrical objects. The panel at this stage can be seen in Figures 98 and 99.

Contract NObsr 89483
Serial No. SS041-001
Task 8156

Report No. 17
Phase I Interim Report 30 September 1964

STRONG BACK IN PLACE FOR SPLICE CURE OPERATIONS

FIGURE 93
SPLICE CURING OPERATIONS
Contract NObsr 89483

- 223 -
Serial No. SS041-001
Task 8156
Report No. 17
Phase I Interim Report
30 September 1964

[^4]Figure 94
Thermocouple Locations During Splice Cure

Contract NObsr 89483
Report No. 17
Phase I Interim Report 30 September 1964

TABFI XXVIII
sllice cure tempranture cyale (op)

: 47 m STME	1	2	3	4	5	6	7	8	9	10	11	12	TIME,	1	2	3	4		6						
														272	$\frac{2}{262}$	212	284	$\frac{5}{299}$	$\frac{6}{318}$	297	307	$\frac{9}{255}$	10	11	$\frac{12}{322}$
10	100	101	92	83	95	98	81	95	91	6	73	77.	In	275	264	214	287	30)	322	209	309	257			
20	133			103	128	132	126	130	115	72	76	78	18: 477 kiRS	274	264	214	286	300	322	299	309	257			327
30	163	154	1125	116	145	158	151	15i)	133	76	79	83	10	75											
40	197	187	145	135	[63	195	182	190	156	78		101		-	264	215	287	301	322	293	310	258	-	-	329
												1.4	20	F-5	265	215	287	301	323	299	310	25,		-	332
50	218	204	157	202	207	220	207	215	173	82	82	189	30	75	26.5	217	288	301	327	300	310	20)			
1 H2T	${ }^{238}$	222	${ }^{157}$	203	230	246	230	240	185	88	\% 8	204	40	476	267	218	289	302	324	300	310	261	-		334
10	25.3	237	178	241	251	217	250	262	203	-	-	218	50	476	266	218	289	302	324	300	310	261			339
20	-60	240	181	251	263	229	261	224	210	-		223	9: 778 IRRS	275	265	218	28.9	301	324	300	310	26			339
30	245	223	172	247	261	273	257	268	206	-	-	211	10	475	265	219	289	302	324	300	310	263			
40		237	181	255	266	उस	262	276	210	-	-	23	CLRE STOP	14											344
													20	463	251	211	282	295	315	293	300	258	-	-	336
3: $37 \quad 50$	26	245	188	261	273	290	2促	284	217	-	-	33	30	5	235	200	209			279					
$2 H R$	263	252	192	269	280	293	277	292	223	-	-	241	40		2					219	276	249		-	323
															-	10°	-57	461	285	263	271	239		-	313
10	257	237	186	264	277	292	273	286	214	-	-	234	30	[18	211	185	244	25:?	271	249	253	230	-	-	303
									216	-	-	234	10:479 PiRS	K07	202	179	233	239	25%	236	242	22.			295
30	252	236	188	260	270	287	267	281	218	-	-	237	30	180	177	164	203	206	222	204	208	202			
10	3	237	190	260	271	288	$2(03$	281	219			24.	1. ¢7 TOmRS	61	TST	152	182	182	196	TBI	182	2			
50	053	238	122	261	271	288	288	282	221	-		24													
4:47 3 HR	253	239	193	261	271	289	269	283	223	-		249													
10	255	241	195	262	273	290	271	384	226	-		253													
20	254	245	119	265	276	294	274	288	229			258													
30	263	249	201	26.9	280	297	279	292	2.33	-		264													
40	263	250	202	270	282	299	281	294	235			266													
50	262	248	202	270	280	299	280	293	236			267													
4 मR	F60	248	203	209	281	298	279	292	237			[681													
10	262	250	203	270	282	300	281	293	239			272													
20	-63	250	204	272	283	301	283	29.7	240			275													
30	206	246	202	269	282	299	280	292	240			275													
40	F55	242	169	267	$2 \% 9$	296	2\%'	288	238			274													
50	255	244	200	266	278	296	276	287	238			278													
6.47 51R	256	245	200	267	279	297	277	288	$23!$			28.													
10	257	24.5	300	268	280	297	278	288	240			$\angle 85$													
20	257	24\%	202	$2 \mathrm{CR}^{2}$	281	389	2\%9	289	271			28\%													
30	$\underline{2} 8$	247	202	269	282	310	280	290	242			292													
40	-58	247	202	269	282	300	281	29	244			295													
50	06	252	204	272	285	305	284	394	216			O)1													
7.47 6 181	267	256	207	276	289	319	286	297	249			307													
10	269	252	209	278	292	312	291	301	251			314													
3)	273		211	282	296	317	275	305	254			320													
30	272	261	211	283	297	318	296	306	254			320													

Report No. 17
Phase I Interim Report 30 September 1964

Closeo

OPEN

FIGURE 95
BEAD TONGS FOR HANDLING PANEL

Report No. 17
Phase I Interim Report
30 September 1964

FIGURE 96 - PANEL IN MOLD PRIOR TO REMOVAL

FIGURE 97 - PANEL REMOVED FROM MOLD

Report No. 17
Phase I Interim Report 30 September 1964

FIGURE 98 - TOP OF PANEL-EXTERIOR SURFACE

FIGURE 99 - BOTTOM OF PANEL EXTERIOR SURFACE
B.F.Goodrich Aerospace and

Report No. 17
Phase I Interim Report
30 September 1964

The condition of the panel after removal was considered to be excellent even though it had undergone severe handing during removal. However, several surface blemishes were present which apparently stemmed from porous sections of the plastic mold tooling.

In these areas during cure the air and molsture forced its way through the mold forming a cavity between the panel and the mold. Areas spproximately 30 inches square by $1 / 8^{\prime \prime}$ to $1 / 4^{\prime \prime}$ deep were present. The shallow depressions were buffed to contour while the larger were filled with an Epoxy 820 - Versamide, Elexible, alr-curing resin system and thenbuffed to contour.

Panel Inppection

Subsequent to assembly and splicing of the panel a thorough examination was made. This includes a check for delamination, blisters, voids and etc. Several voide along the edges of the fill were buffed and smoothed over with a putty type epoxy base material. This was then buffed smoother to blend with the panel sutface.

Measurement of the water line and station marks on the outside of the panel indicated the measurements were virtually the same as those in the mold.

The prototype panel was dropped over two cylindrical supports approximately two feet apart at their closest point. The weight of the panel and necessary supports prevented $100 \% \mathrm{X}$-Ray coverage, however, the most important areas, the bead periphery and the splice section were completely examined. The extent of panel coverage can be seen in Figure 100.

The actual technique utilized employed a 260 KVP Holger Andreason Andrex SMA continuous cycle portable unit mounted on a mobile hoist. Figures 101 and 102 present representative pictures obtained from the X-Ray program. Figure 101 presents bead area with the wire pattern and Figure 102 presents a panel area including part of the splice. The wire pattern is readily distinguishable and was found to be extremely uniform. A slight void $1 / 2^{\prime \prime}$ from the bead measuring approximately $4^{\prime \prime} \times 1 / 8^{\prime \prime}$ can be seen in Figure 101. There were only three isolated areas of this type of void picked up during this X-Ray process.

Report No. 17
Phase I Interim Report
i
3
4

Aft

```
Contract NObsr 89483

\section*{Serial Mo. SSO41-001}
```

Report No. 17
Task 8156
Phase I Interia Report 30 September 1964

```


FIGURE 101 X-RAY POSITIVE OF BRAD AREA

Report No. 17
Serial No. SS041-001
Phase I Interia Report
Task 8156


FIGURE 102
X-RAY POSITIVE SPLICE AREA

Report No. 17
Phase I Interim Report

\section*{f. Panel Inftalletion in Test fixture}

The panel was transpozted to the test area on several "field expedient" type handilng cradles. From the cradle, using a combination of hendifig tongs, spreader har and lifting lugs, the panel was holsted into position on the test fixture. Location of the ligs on the panel surface vas determined to permit lifting over the center of gravity. Considerable maneuvering of the panei was required to insert the bead inside the bead seat and nestled into the cavity.

The bead clamps had been placed inside the fixture prior to panel installetion. Once parel positioning was accomplished the clamp were bolted in place.

Also, prior to panel poaitioning the compression member was lowered to facilitate this operation. Upon final positioning and clamping of the panel movement of the compression member into final position was accomplished.

To ineure adequate retention of the panel and prevent sippage over the compression member coubination restraint system was utilized. A single line of rubber biscuits \(2^{\prime \prime}\) dia. and \(1 / 2^{\prime \prime}\) high were utilized to position the panel accurately over the compresifon member. A layer of Code 309 cement was applied to both the compression member surface and the inner panel surface. When the cement reached the proper tack the compression member was raised into position and the biscuits guited into their respective recesses. After completion of Inscallation the panel surface was painted with the antifouling system previously discuseed. The completed panel is shown in Figures 103 and 104 . The black strips are ereas (1) devoid of cement and (2) with black primer cement to determine effect of panel elongation on each system phane.

Upon complete inatallation and clamping of the panel in place, a vrinkle appeared at the forward end of the panel just off the compression member. The main cause of this condition is attributable to the hydrostatic test fixture being shorter than the panel mold. During final welding of the bead seat to the basic pressure structure, the heat generated from the weld caused shrinkage, wardage and other distortion in excess of those anticipated. The net result of these actions was a forward to aft messurement reduction of \(3 / 4^{\prime \prime}\) from center of bead to center of bead.

Report No. 17
Serial No. SS041-001
Phase I Interim Report
Task 8156


FIGURE 103
COMPLETED PROTOTYPE PANEL-80 PSI - BOTTOM SIDE


FIGURE 104
COMPLETED PROTOTYPE PANEL-80 PSI - TOP SIDE
B.F.Goodrich Aerospace and

Defense Products
```

Contract NObsr 89483

- 234 -
Serial No. SS041-001
Task 8156

```

Report No. 17
Phase I Interim Report 30 September 1964

\section*{8. Pancl Teating Program}

The prototype panel was subjected to a series of test conditions during a three (3) week period. In essence, pressure has bean maintainad on the panel from April 11, 1964 through April 30, 1964. Table XXIX presents the actual cycles performed on the panel during this time interval.

TABLE XXIX
PANEL TEST CYCLE REGORD


Prior to the test sequence all bead clamp bolts were tightened to 550-600 ft. -1 bs . of torque. Strain gages were mounted on the bead clamps and on both the inside and the outaide of the panel.

The fixture was then filled with water and the instruments calibrated for recording automatically the internal pressure of the panel and the strain on its various components. The internal pressure was increased to 40 psi and held for measuring arc lengths and radii, then to 80 psi and back to \(40 \mathrm{psi} ;\) maintaining each pressure for data gathering. Tables XXX through XXXII list data collected during this program. Figure 105 gives the description of the measurements. The strain gages, although an attempt was made to waterproof them, shorted out.

The surface area of the panel was buffed and blended - in part: while under pressure and in part while not under pressure. Defect and blemish areas were repalred. Where necessary for contour preservation, an epoxy repair material was used to fill. During the panel testing, flexing of the surface caused crazing (alligatoring) of the anti-fouling paint over these materials. The epoxy-amine compound became brittle and cracked under the blow of a metal mallet. Consequently the development of a flexible, compatible neoprene compound for repair purposes is being e-pedited.

The fixture was drained and specified clamp bolts were checked for their torque. Readings varied from \(375 \mathrm{ft} .-1 \mathrm{bs}\). to \(650 \mathrm{ft} .-\) lbs. for two-thirds of the perimeter and from 100 ft .-lbs. to \(600 \mathrm{ft} .-1 \mathrm{bs}\). for the remaining one-third. Upon evaluation of these results, it was discovered that for the one-third section of the bead the bolts had been tightened and torque tested individually in succession without returning to recheck the torque , \(n\) the previously tightened bolt. It is concluded, therefore, that for the section having readings ranging from \(100 \mathrm{ft},-1 \mathrm{bs}\). to \(600 \mathrm{ft} .-1 \mathrm{bs}\). of torque, the wide range of variance was due mainly to incorrect bolt tightening procedure and not entirely to the panel pressure cycle.

Several clamps were removed for inspection of the bead. No detrimental effects to the bead were found during this examination.

The clamps were replaced and bolts tightened. All bolts were checked for a minimum of \(400 \mathrm{ft},-1 \mathrm{bs}\), Then a stabilization test was performed in which the panel was cycled ten times from 10 psi to 50 psi pressure and measurements of arc lengths and radil taken. It was found that after the second series of ten cycles, the measurements repeated themselves which indicated that the panel had stabilized.
\begin{tabular}{lll} 
Contract NObsr 89483 & Report No. 17 \\
Serial No. SSO41-001 & Phace I Interia Report \\
Task 8156 & & 30 September 1964
\end{tabular}

TABIE XXX
PROTOTYPE PANEL TESTS
ARC LEMGE 9 S 6 RADII
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{RADIAL FRANES} \\
\hline crele & Preseure & & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline \multirow[t]{24}{*}{1} & \multirow[t]{6}{*}{0} & T & 14.938 & 14.594 & 14.625 & 15.063 & 14.250 & 17.032 & 14.000 & 13.688 & 13.500 & 13.375 \\
\hline & & M & 25.375 & 25.250 & 40.625 & 39.313 & 38.838 & 38.375 & 38.125 & 38.032 & 53.875 & 52.938 \\
\hline & & B & 16.625 & 16.313 & 21.938 & 20.687 & 19.562 & 18.688 & 17.500 & 16.718 & 24.750 & 22.531 \\
\hline & & m. & 102 & 89 & 85 & 72 & 69 & 65 & 62 & 60 & 53 & 51 \\
\hline & & 81 & 23 & 26 & 27 & 29 & 34 & 37 & 40 & 44 & 44 & 48 \\
\hline & & R & 61 & 69 & 75 & 79 & 78 & 83 & 85 & 87 & 86 & 79 \\
\hline & \multirow[t]{6}{*}{40} & & 15.000 & 14.625 & 14.625 & 15.063 & 14.250 & 14.000 & 13.969 & 13.688 & 13.500 & 13.375 \\
\hline & & & 25.375 & 25.219 & 40.750 & 39.344 & 39.031 & 38.500 & 38.250 & 38.156 & 54.000 & \$3.000 \\
\hline & & & 16.750 & 16.406 & 22.156 & 20.812 & 19.594 & 18.719 & 17.563 & 16.750 & 24.875 & 22.750 \\
\hline & & & 75 & 67 & 61 & 68 & 65 & 59 & 68 & 59 & W* & W \\
\hline & & & 23 & 26 & 27 & 29 & 34 & 37 & 40 & 44 & 44 & 48 \\
\hline & & & 59 & 64 & 73 & 67 & 73 & 75 & 67 & 79 & 73 & W \\
\hline & \multirow[t]{6}{*}{80} & & 15.000 & 14.625 & 14.656 & 15.125 & 14.250 & 14.000 & 13.969 & 13.688 & 13.500 & 13.375 \\
\hline & & & 25.375 & 25.250 & 40.750 & 39.375 & 39.094 & 38.500 & 38.313 & 38.188 & 54.063 & 53.063 \\
\hline & & & 16.813 & 16.438 & 22.156 & 20.781 & 19,594 & 18.750 & 17.625 & 16.750 & 24.937 & 22.750 \\
\hline & & & 66 & 61 & 59 & 64 & 61 & 57 & 66 & 57 & W & \\
\hline & & & 23 & 26 & 27 & 29 & 34 & 37 & 40 & 44 & 44 & 48 \\
\hline & & & 55 & 61 & 69 & 75 & 71 & 72 & 72 & 73 & 68 & W \\
\hline & \multirow[t]{6}{*}{40} & & 14.738 & 14.625 & 14.625 & 15.063 & 14.250 & 13.938 & 13.969 & 13.719 & 13.500 & 13.344 \\
\hline & & & 25.37 .5 & 25.188 & 40.688 & 39.313 & 39.000 & 38.438 & 38.250 & 38.125 & 54.000 & 53.063 \\
\hline & & & 16.719 & 16.375 & 22.187 & 20.750 & 19.563 & 18.687 & 17.563 & 16.750 & 24.938 & 22.625 \\
\hline & & & 79 & 69 & 64 & 70 & 67 & 60 & 63 & 61 & W & H \\
\hline & & & 23 & 26 & 27 & 29 & 34 & 37 & 40 & 44 & 44 & 48 \\
\hline & & & 59 & 65 & 78 & 82 & 78 & 72 & 82 & 83 & 76 & W \\
\hline \multirow[t]{12}{*}{6} & \multirow[t]{6}{*}{40} & & 14.938 & 14.625 & 14.375 & 15.094 & 14.250 & 13.969 & 13.969 & 13.719 & 13.438 & 13.313 \\
\hline & & & 25.312 & 25.156 & 41.000 & 39.312 & 38.969 & 38.469 & 38.219 & 38.062 & 53.968 & 52.968 \\
\hline & & & 16.938 & 16.375 & 22.125 & 20.782 & 19.719 & 18.812 & 17.750 & 17.282 & 24.875 & 22.750 \\
\hline & & & 71 & 66 & 60 & 68 & 67 & 59 & 68 & 60 & W & \[
*
\] \\
\hline & & & 23 & 26 & 27 & 29 & 34 & 37 & 40 & 44 & 44 & 48 \\
\hline & & & 60 & 58 & 75 & 77 & 79 & 76 & 76 & 71 & 76 & W \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{6}{*}{80}} & & & & & \[
14.281
\] & \[
14.000
\] & 14.000 & \[
13.719
\] & \[
13.469
\] & \[
13.375
\] \\
\hline & & & 25.344 & 25.125 & 41.125 & 39.406 & 39.157 & 38.563 & 38.281 & 38.219 & 54.094 & \[
53.031
\] \\
\hline & & & 16.968 & 16.500 & 22.125 & 20.844 & 19.656 & 18.812 & 17.844 & 17.312 & 24.937 & 22.813 \\
\hline & & & 66 & 61 & 57 & 62 & 62 & 57 & 64 & 57 & W & W \\
\hline & & & 23 & 26 & 27 & 29 & 34 & 37 & 40 & 44 & 44 & 48 \\
\hline & & & 60 & 57 & 69 & 73 & 75 & 72 & 81 & 76 & 76 & \(\omega\) \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Contract NObsr 89483 & Report No. 17 \\
Serial No. SS041-001 & Phase I Interim Report \\
Task 8156 & 30 September 1964
\end{tabular}

\section*{TABLE XXX (Continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{10}{|c|}{R RADIAL FRAMES} \\
\hline fycle & Pressure & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline \multirow[t]{6}{*}{16} & \multirow[t]{6}{*}{50} & 14.938 & 14.656 & 14.375 & 15.094 & 14.250 & 14.031 & 13.969 & 13.719 & 13.469 & 13.375 \\
\hline & & 25.343 & 25.125 & 41.000 & 39.342 & 39.094 & 38.469 & 38.219 & 38.094 & 53.969 & 52.938 \\
\hline & & 16.907 & 16.469 & 22.125 & 20.812 & 19.594 & 18.750 & 17.781 & 17.281 & 24.906 & 22.750 \\
\hline & & 75 & 66 & 60 & 67 & 66 & 59 & 68 & 172 & 24.906 & 22.75 \\
\hline & & 23 & 26 & 27 & 29 & 34 & 37 & 40 & 44 & 44 & 48 \\
\hline & & 60 & 66 & 75 & 76 & 76 & 73 & 88 & 82 & 71 & W \\
\hline \multirow[t]{6}{*}{26} & \multirow[t]{6}{*}{50} & 15.000 & 14.625 & 14.313 & 15.094 & 14.250 & 13.938 & 14.031 & 13.719 & & \\
\hline & & 25.313 & 25.219 & 41.000 & 39.344 & 39.063 & 38.562 & 14.031
38.219 & 13.719
38.094 & 13.438
54.000 & 13.406
52.969 \\
\hline & & 16.937 & 16.406 & 22.156 & 20.812 & 19.625 & 18.719 & 17.781 & 17.281 & 24.906 & 22.781 \\
\hline & & 70 & 66 & 61 & 66 & 66 & 59 & 68 & 60 & 24.906 & 22.781 \\
\hline & & 23 & 26 & 27 & 29 & 34 & 37 & 40 & 44 & 44 & 48 \\
\hline & & 62 & 66 & 63 & 76 & 76 & 73 & 75 & 79 & 71 & W \\
\hline \multirow[t]{3}{*}{30} & \multirow[t]{3}{*}{0} & 14.906 & 14.594 & 14.281 & 15.094 & 14.281 & 14.063 & 13.906 & 13.719 & & \\
\hline & & 25.313 & 25.125 & 40.969 & 39.219 & 38.969 & 38.343 & 38.094 & 37.969 & 53.875 & 13.313
52.812 \\
\hline & & 16.875 & 16.344 & 21.969 & 20.750 & 19.625 & 18.719 & 17.719 & 17.250 & 24.750 & 22.688 \\
\hline
\end{tabular}

TABLE XXXI
ARC LENGTH MEASURED ALONG RADIAL FRAMES BETWEEN EDGES OF GUM FILL
\begin{tabular}{rrrllllllllllllllll}
40 & 121.125 & 131.000 & 138.250 & 143.000 & 146.125 & 148.813 & 150.000 & 150.500 & 149.750 & 146.375 \\
80 & 121.500 & 131.250 & 138.500 & 143.250 & 146.375 & 149.000 & 150.375 & 150.750 & 151.000 & 147.750 \\
0 & 120.563 & 130.250 & 137.438 & 142.375 & 145.430 & 148.188 & 149.438 & 150.063 & 149.250 & 146.250
\end{tabular}

TABLE XXXII
DISTANCE FROM EDGE OF BEAD SEAT TO EDGE OF PANEL
\begin{tabular}{cccccc}
\multirow{6}{c}{ STATION } & \multicolumn{6}{c}{ PRESSURE } \\
\cline { 2 - 6 } & 40 & 80 & 50 & 50 & 0 \\
10 & 2.219 & 2.188 & 2.250 & 2.250 & 2.250 \\
18 & 2.219 & 2.156 & 2.188 & 2.250 & 2.500 \\
23 & 1.969 & 1.938 & 1.938 & 2.000 & 2.313 \\
31 & 2.875 & 2.844 & 2.875 & 2.875 & 3.000 \\
38 & 3.313 & 3.344 & 3.375 & 3.375 & 3.375 \\
43 & 3.344 & 3.344 & 3.375 & 3.375 & 3.219 \\
53 & 1.563 & 1.594 & 1.563 & 1.500 & 1.656 \\
60 & 2.688 & 2.469 & 2.094 & 2.531 & 2.750 \\
78 & 2.031 & 2.031 & 2.063 & 2.031 & 2.125 \\
92 & 2.594 & 2.688 & 2.750 & 2.750 & 3.000 \\
102 & 2.531 & 2.563 & 2.594 & 2.563 & 2.813 \\
112 & 3.281 & 3.313 & 3.313 & 3.250 & 3.375 \\
Cycle & 6 & 6 & 16 & 26 & 30
\end{tabular}


FIGURE 105
TYPICAL RADLAL FRAME CROSS SECTION OF PROTOTYPE PANEL

Report No. 17
Phase I Interim Report 30 September 1954

During draining of the fixture after the initial test, the breather valve was not opener. As the water drained out, a negative pressure was createl which caused the sides of the panel to partially collapse. This confirms the belief that the bow window will flex icward when evacuated of water for purposes of repairing the cransducer.

Strain gages and accelerometers were then mounted on the panel and acoustical equipment was set up by Underwater Sound Laboratory and B.F.Goodrich personnel. The intent wes to study waves in the panel as induced by internal and external excitation. In particular the vibration decay rate or damping; characteristics of the panel was of interest.

The panel was forced to oscillate by external blows with a mallet. Measurements of the dissipation of energy causing the membrane to vibrate normal to the surface of the panel were accomplished through accelerometers. It was found that the decay rate was significantly better than that found on steel domes.

The decay rate of reverberations induced by a cransducer suspended inside the test fixture was next attempted. The pressure waves induced by the transducer vibrations imposed oscillations in the panel. Results indicated that the transducer had a slower rate of decay than the panel, thus no useful information was attained.

An attempt was mude to determine the decay factor of the panel through use of strain gages. If this would be successful, then strain gages could be used instead of accelerometers at a substantial savings in cost and ease of gathering data would be enhanced. However, no success was experienced. The strain gages did not react to the vibrations induced externally or internally. Furthermore, the internal strain gages were shorting out somewhat through the water.

Within the limits of the testing procedure and instruments, the following conclusions were made:
(1) The rubber window exhibited a \(5 \%\) to \(6 \%\) critical damping factor in contrast to a \(2 \%\) factor for the 100 inch steel dome at the critical frequency.
(2) The percent critical damping was uniform over a frequency range of 100 cycles to 16 kilocycles .

Throughout all the testing to date, there has been no leakage of water through the bolt retention system, around the bead, or through the panel itself.

The next test planned for the prototype panel is a fatigue test. During this test the panel will be flexed 1000 cycles or more by automatically varying the pressure from 30 psi to 50 psi. Periodicaily, measurements will be taken for later analysis.

After the fatigue test, a 60 -day stand test at 40 psi will be performed followed by a strength test. The panel will be loaded with forces created by 125 psi internal pressure during this strength test.

According to the final design concept, the bow dome window will not utilize a compression member. It is desirable to know how the membrane will react in the tall section without it. Therefore a test without the compression member restralning the prototype panel is scheduled.

Evaluation of repair techniques on a full scale application is also deemed necessary. This will be achieved elso on the proto. type test panel.

Finally, it is significant to know the safety factor of the panel. The hydrostatic test fixture has been designed to with stand short term loads of 150 psi. Withstanding loads at this pressure magnitude will reflect a panel safety factor of 3.7 .

The stretch characteristics of the acuustic window, which were derived from samples tested, were applied to predict the contour of the prototype panel when subjected to various internel pressures. However, the panel did not react exactly as predicted and the constructional stretch was approximately \(1 / 2\) of that expected.

An explanation of this result is that the constructional and elastic stretch curves which were used to estimate the contour of the window were developed from samples which did not reflect true full-scale conditions. Most of the information for these curses was obtalned from \(2-3 / 4^{\prime \prime} \& 6^{\prime \prime}\) wide samples. At these widths the \(15^{\circ}\) horizontal plies do not help support loads, while in actual practice they do. Furthermore, the cables in the plies of these samples had a tendency to migrate and nestle inbetween each other. This was made possible because of the limited width of the sample and the somewhat

\section*{BLANK PAGE}
unrestrained condition of the wrap-around at the beati. While the existence of this circumstance was known, its affect upon the stretch characteristics as derived from the gamples could not be determined.

Another factor of undetermined magnitude was the elastic propertes of the panel. That area of the panel which is in contact with the compression nember was treated as a fixed and ricid section. To insure this condition, the compression member surface was sandblasted to prodace a better frictioned surface, biscuits of rubber were bonded to the inside surface of the panel such that they would register in pre-located holes of the compression member, and further, the contact surface of the panel and conpression nember were cemented and bonded together. Nevertheless, this portion of the panel did not react as a fired body nor was it rigid. Consequently, some strain was experienced in that part of the panel in rontact with the compression member.

Another influencing factor, because of end effects, compyession member influence and the gum fill areas, it was impossible to acquire accurate radius readings.

In spite of the relatively rough measurements, it is possible to derive the elastic properties of the prototype panel. This can be accomplished by the collecting, comparing and examining an abundance of data from future testing.
h. Conclusions
(1) A cest panel representing the aft most section of the complete window should be built. It is the most useful for confirming the feasibility of the proposed window
(2) A compression member, to hold the panel out to the desired contour, is acceptable and desirable for use on the prototype test panel. However, addicional work should be done to improve this system, acousilically and structurally, for use with the protoiype acoustic window aboard ship.

Report No. 17
Phase I Interim Report 30 September 1964
(3) A panel constructed of 5 wire plies, properly orlented, and 4 neoprene plies laminated together to form a \(1^{\prime \prime}\) thickness will withstanc the stresses expected during service.
(4) A cured splice \(9^{\prime \prime}\) wide with an interlacing of \(15^{\circ}\) plies, will hold adjacent panels together to form a one piece window.
(5) Plastic tooling will be procured for use in builiding the prototype panel. Contour attainment, cost and delivery indicisted that the use of epoxy-fiberglass laminated tooling would be more advantageous than steel.
(6) A two piece panel will be bullt and spliced together, using a reinforced seaming section in the mold and a steel strong back splicing jig over the panel.
(7) A steel-concrete hydrotest fixture wili be fabricated for testing the panel. This fixture will contain the bead seat-bead clamp system proposed for use on the ship.
(8) Extreme caution must be exercised in panel fabrication to insure uniformity and smoothness of wire lay.
(9) The cure cycle as described in Section 10 . c. resulted in very satisfactory cure of the panel.
(10) Welding of the bead cable for splicing is difficult to accomplish and this procedure shouid be replaced with a pre-welded mechanical cable joint.
(11) A more acceptable surface repair gum must be developed to assist in panel finishing operations.
(12) X-Ray examination of the panel indicated that the wire pattern was good and only 3 voids, adjacent to the bead, were present.
(13) The panel construction is structurally sound and can withstand an 80 psi internal positive pressure.
(14) The bead seat-bead clamp retention and sealing system performed successfully and can be used on the proto. type window.
Contract NObsr 89483
Serial No. SSO41-001
Task 8156 \(\quad\)\begin{tabular}{l} 
Report No. 17 \\
Phase I Interim Repor \\
30 September 1964
\end{tabular}
11. Universal Window Study
a. Summary

It is not practical to build one acoustic window to fit the DL-5. DLE-26, DE 1040 and \(D E-1052\) ships. The additional effort required to accomplish fairing operations makes this concept economically unfeasible. However, semi-universal windows, one for the DL-4 and DIG-26, and one for the DE- 1040 and \(D E-1052\) cumbination are practical and feasible. This concept will be incorporated into the DL-5 acoustic window design program.

\section*{b. Introduction}

Currently there are four (4) classes of ships which incorporate a Sonar Bow dome. These are: (1) DE~1040, (2) DE-1052, (3) DLG-26, and (4) DL-2 (DL-4 and 5 of this cluse). It was considered desirable, from a cost and logis:fce standpoint, to fabricate windows of one design for all of these en:pe. Consequently, a Universal program aimed at that end was established.
c. Discussion

Initial considerations were concerned with how such a comparison could best be made and a resultant design program initiated. To accurately and correctly tackle this program a complete set of drawings were requested for each of the ships. The drawings received are listed in table XXXiry following:

Report No. 17

TABLE XXXIII
DF.AWINGS UTILIZED IN UNIVERSAL DOME STUDY
\begin{tabular}{cl} 
Class & BuShips \\
of & Drawing \\
Ship & Number \\
\hline
\end{tabular}
\begin{tabular}{ccc}
\begin{tabular}{c} 
Origin \\
of
\end{tabular} & Drawing & Title \\
Drawing & Number & of \\
Drawing
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline DLG-26 & \[
\begin{aligned}
& 100-1994101 \\
& \text { Rev. F }
\end{aligned}
\] & Gibbs \& Cox for Bath Iron Wurks & DLG-26-1001-1 & Outside Plating Stem to FR \(441 / 2\) \\
\hline DLG-26 & \[
\begin{aligned}
& 101-1994112 \\
& \text { Rev. H } \\
& \hline
\end{aligned}
\] & Gibbs \& Cox for Bath Iron Works & DLG-26-1011-7 & \begin{tabular}{l}
CVK \& STGR Nos. 1/2 \\
- 13 3/4 FWD FR 44 1/2
\end{tabular} \\
\hline DLG-26 & \[
\begin{aligned}
& 101-1994113 \\
& \text { Rev. B }
\end{aligned}
\] & Gibbs \& Cox for Bath Iron Works & DLG-26-1011-8 & STGR No. 14-21 FWD FP \(44 \quad 1 / 2\) \\
\hline DLG-26 & \[
\begin{aligned}
& \text { 101-1994116 } \\
& \text { Rev. B } \\
& \hline
\end{aligned}
\] & Gibbs \& Cox for Bath Iron Works & DLG-26-1011-11 & TRANSV FRG FR \(1 / 2\) to \(41 / 2\) \\
\hline DLG-26 & Rev. D
101-1994118 & \begin{tabular}{l}
Gibbs \& Cox for Bath Iron Works \\
Gibbs \& Cox for
\end{tabular} & DLG-26-1011-12 & TRANSV FRG FR 5 1/2 to 19 1/2 \& Web FR 8, \(11,13,16 \& 18\) \\
\hline DLG-26 & Rev. C
\[
101-1994119
\] & Gibbs \& Cox for Bath Iron Works & DLG-26-1011-13 & \[
\begin{aligned}
& \text { TRANSU FRG FR } 201 / 2 \\
& -31 \quad 1 / 2 \text { Web FR } 23,26 \\
& \text { \& } 29
\end{aligned}
\] \\
\hline DLG-26 & \[
\frac{\text { Rev. C }}{114-1994286}
\] & Cibbs \& Cox for Path Iron Worl: \(s\) & DLG-26-1011-14 & TRANSV FRG FR 33 to 46 \& Web FR 35 \& 38 \\
\hline DLG-26 & Rev. F & Gibbs \& Cox for Bath Iron Works & DLG-26-114 \(1-2\) & TRANSV BHD 5, 8, 11, 13 \& Chain LKR BHD \\
\hline DLG-26 & \[
\begin{aligned}
& 145-1994360 \\
& \text { Rev. HH }
\end{aligned}
\] & Gibbs \& Cox for Bath Iron Works & DLG-26-1451-5 & Mold Loft Offsets (the following sheets) \\
\hline
\end{tabular}

Revisions
Index
Index
General Information Bow Profile \(4^{\prime} 0^{\prime \prime} W L\) to 0
Bow profile \(6^{\prime} 0^{\prime \prime}\) WL to \(9^{\prime} 0^{\prime \prime}\) WL
Bow Plan, Stem to Frame 13 Bow Plans Between Frames \(13 \& 27\)
Waterline lialf Breadths Baseline \& Below
Waterline Half Breadths Waterline Half Breadths Buttock Heights Buttock Heights Buttock Heights
Shell Knuckle Fwd And Half Siding Fwd
Decks \& Platforms
Decks \& Platforms
```

Coitract NObsr 89:483
Serial No. SS041-001
Task 8156

```

Report No. 17
Phase I Interim Report
30 September 1964

TABLE XXXIII (Continued)
\begin{tabular}{|c|c|c|c|c|}
\hline Class of & BuShips Drawing Number & Origin of Drawing & Drawing Number & \[
\begin{gathered}
\text { Title } \\
\text { of } \\
\text { Drawing }
\end{gathered}
\] \\
\hline DLG-26 & \[
\begin{aligned}
& 145-1994369 \\
& \text { Rev. C }
\end{aligned}
\] & Gibbs \& Cox for Bath Iron Works & DLG-26-1451-14 & Deck Sup. Compt. \& Access Inboard Profile \\
\hline DLG-26 & \[
\begin{aligned}
& \text { 404-1994384 } \\
& \text { Rev. D }
\end{aligned}
\] & Gibbs \& Cox for Bath Iron Works & DLG-26-4041-3 & \begin{tabular}{l}
Sonar Dome AN/SQS-26 \\
Sonar Equipment
\end{tabular} \\
\hline DLG-26 & \[
\begin{aligned}
& 404-1994385 \\
& \text { Rev. C } \\
& \hline
\end{aligned}
\] & Clubs \& Cox for Bath Iron Works & DLC-26-4041-4 & \begin{tabular}{l}
Soner Dome Detalls \\
AN/SQS 26 Sonar Equip.
\end{tabular} \\
\hline DLG-26 & Rev. B & Gibbs \& Cox for Bath Iron Works & DLG-26-4041-5 & Sonar Turntable Arr. \& Details \\
\hline DE-1040 & \[
\frac{\text { Rev. D }}{100-209} \frac{}{3624}
\] & \begin{tabular}{l}
Bethlehem Steel \\
Company \\
Bethlehem Steel
\end{tabular} & 5496-123-1 & \begin{tabular}{l}
Outside Plating \& Long'l \\
Framing FWD FR 78
\end{tabular} \\
\hline \(\overline{\text { DE-1040 }}\) & \[
\frac{\text { Rev. E }}{100 \sim 2093625}
\] & \begin{tabular}{l}
Bethlehem Steel \\
Company
\end{tabular} & 5496-123-2 & Outside Plating \& Long'l Framing AFT ER 78 \\
\hline DE-1040 & Rev. J & Bethlehem Steel Company & 5496-123-3 & Soner Dome \& Framing \\
\hline DE-1040 & \[
\begin{aligned}
& 101-20 y 3613 \\
& \text { Rev. F }
\end{aligned}
\] & Bethlehem Steel Compariy & 5496-122-1 & Center Keel \\
\hline DE-1040 & \[
\begin{aligned}
& 101-2093614 \\
& \text { Rev. E } \\
& \text { Sheet } 1 \text { of } 2
\end{aligned}
\] & Bethlehem Steel Company & 5496-122-3 & Bow Framing FR 14 \& FWD \\
\hline DE-1040 & \begin{tabular}{l}
\[
101-2093614
\] \\
Rev. E \\
Sheet 2 of 2
\end{tabular} & Bethlehem Steel Company & 5496-122-3 & Bow Framing FR 14 \& FWD \\
\hline \begin{tabular}{l} 
DE-1040 \\
\hline DE-1040
\end{tabular} & \[
\begin{aligned}
& \text { 101-2093616 } \\
& \text { Rev. C } \\
& 101-2093617
\end{aligned}
\] & Bethlehem Steel Company & \(5496-122-5\)
\(5496-122-6\) & Web Frames, Flours \& Intermediate Transv. Frames \(\sim\) FR 30-37 Incl. \\
\hline DE-1040 & Rev. C & Bethlehem Steel Company & 5496-122-6 & Web Frames - FR 31-44 Incl, \& Intermediate Transv. Frames \(\quad\) FR 30-37 Incl. \\
\hline DE-1040 & \[
\frac{\text { Rev. D }}{404-2093652}
\] & \begin{tabular}{l}
Bethlehem Steel \\
Company
\end{tabular} & 5496-125-5 & BHD's 14 - 53 © Chain LKK Below lst Platform \\
\hline DE-1040 & 404-2093652 & Bethlehem Steel Company & 5496-123-7 & Sonar Dome Baffle \\
\hline DE-1040 & \[
\begin{aligned}
& \text { 404-2093653 } \\
& \text { Rev. A }
\end{aligned}
\] & Bethlehein Steel Company & 5496-123-8 & Sonar Dome Transducer Turnteble, Ariangement 6 Details \\
\hline DE-1040 & \begin{tabular}{l}
800-2093601 \\
Rev. E \\
88 sheets
\end{tabular} & Bethlehem Steel Company & 5496-11-41 & Midd Loft Offsets \\
\hline DE-1040 & \[
\begin{aligned}
& 114-2093635 \\
& \text { Rev. A }
\end{aligned}
\] & Bethlehem Steel Company & 5496-125-1 & Transv BHD's 29,38 \& 53 \\
\hline
\end{tabular}

\section*{TABLE XXXIII (Continued)}


Report No. 17
Phase I Interion Report
30 September 1964

Using the furnished drawings frawes, waterlines and buttock lines were drawn comparing the contour and size of the four units in question. During this study the drawings were dis cussed with BuShip. Hull Design personnel to insure assumptions belng made were wi:hin the allowable limits of the program. Also full scale drawings of the base plate and chocks, at the frames were layed out to get a better per spective of what fairing problems had to be handled.

At first an atcempt was made to fit the DL-5 window, on which the grmatest effort had been placed up to this time, to each of the other three ships. In attempting this it became apparant that several basic design concepts should be kept in mind.
(1) The bead location and size would have to remain constant whether 2,3 or 4 ships were included in the study.
(2) The bead location would have to fit the smallest saip's dome and have a fairing member for matching other ships contours.
(3) The chocks along the "banjo" and "cat walk" would have to be standardized.

Conclusion resulting from this program indicate that the one (1) universal dome concept is not feasible. However, this study also indicates that a two (2) universal dome concept is feasible and practical. Reason for the preceeding statements are:
(1) The contours of the four (4) classes of ships cleosify themselves into two (2) basic groups as seen in Figure 111. The DL- 5 and DLG-26 dome contours appear to be similar as do the DE-1040 and DE-1052 domes. The maximum difference between the largest and the smallest critical fairing point of all four (4) domes is epprixi mately eight (8), whereas between the domes of each pair is less thar two (2) inches.
(2) The acoustic window area of the DLG~26 dome is approx:mately twelve (12) inches shorter than the other chree (3) ships. Therefore, if it is inciuded in the universal analysis, all other domes will have to be shortened and their corresponding ship's structure reworked to project the diagonal bulkhead forward the required distance or
```

Contract NObsr 89483
- <49 -
Serinl No. SS041-001
Task 8156

```

Report No. 17
Phase I Interim Report 30 September 1964

the DLG bulkhead back the required distance. With two
(2) universal domes, as previously discussed, the diagonal bulkhead need only be moved on the one DL-5 currently planned as the prototype dome.

To fully realize the economic aspects of this study with respect to individual domes Table XXXIV was generated.

Thus from an economic, and technical standpoint the feasible approach is the combination or semi-universal dome concept. With this knowledge additional effort is being expended to convert the DL- 5 window contour to permit its use with the DLG-26.

Report No. 17
Phase I Interim Report 30 Septe er 1964
table xuxiv
cast ce iniversal doles



Phase I Interim Report 30 Septemher \(19 \delta 4\)
12. Prototype Window Design
a. Summary

The prototype acoustic window will be of a semi-universal de\(81 g n\) capable of fitting ships of the DL- 5 or DLG -26 contour. Minor compromises, i.e.(1) moving the diagonal bulkhead attachment point of the DL-5 forward to match the DLC-26 bulkhead location, have been accepted. Also buffing of excess gum on each ship as necessary mist be accomplished to render this concept workable.

\section*{b. Introduction}

In order to accurately determine the final contour of the prototype acoustic window, as with the prototype panel, several decisions were necessary and certain data obtained. Additional information, as well as an upgrading of sample test data, was obtained from prototype panel testing and will be utilized. Basically finalization of the following is required:
(1) Panel Construction - Number and type of fabric-rubber plies.
(2) Bead Construction - Size and type of bnad cable and wrapping sequence of panel plies around bead wire.
(3) Panel Elongation Data - Elongation of panel construction under specific loads.
(4) Bead Construction Compressibility - Degree of Compression of fabric wrapped plies as bead clamp retains bead construction.
(5) Bead Clamp Design and Location Firm design of clamp and exact location with respect to ship's structure.
(6) Dome Operating Condition - Internal and external forces acting on dome skin.

A slight alteration in any one of these areas will result in a configuration or contour change. Therefore, it was imperative that thesi: areas be investigated thoroughly and all data possible be accumulated.

Report No. 17
Phase I Interim Report
30 Septernber 1964

\section*{c. Design Study}

Early in the program, in the interests of compressing time, and with a majority of the data available, a preliminary conlour coordinate determination was initiated. These efforts were concerned with placirg an acoustic window on a steel dome of the DLG-26 class ship. The model shown in Figures 107 and \(10 \&\) was built to assist in this program.

Basically, the task of contour determination consists of using the coordinates of the steel dome, as furnished by Bu Ships, and transposing them from perpendicula: to the dome centerline to perpendicular to the dome wall at specific points along the - \(4^{\prime}\) waterline. With the radial frame cross-sections it becomes a matter of determining; (1) bead centerline, (2) radius of curvature for strength members and (3) the amount of gum necessary to furnish desired contour. The task quichly listed entail considerable, painstakingly accurate work. Each point placed or changed on the dome required lay out in the three basic dimensions - frames, waterlines and buttock lines.

Accomplishment of this task was initially (prototype panel) extremely frustrating, however, with this past experience work on the prototype window progressed much faster.

During work on designing a DLG-26 acoustic window a change was introduced making a DL-5 ship the test vehicle. The two (2) steel domes are different as seen in Figure 109 , therefore, the entire procedure was reinitiated using the DL-5 steel dome coordinates. The ultimate goal of this program was to builda a rubber acoustic window which would match the steel dome exactly.

One major problem area 18 the aft sections, as discussed in the prototype panel section. The concept employed in the test panel, using a compression member, wes discarded because of strucrural and acoustical considerations. Additional verification of the fill concept feesibility had been done. It was determ*ned the idea of Ellling the center of the aft panels can be accomplished by laminates, extrusions or cestable materials. These are being investigated without any significant results to date.

Attempting to design the dome for attachment to existing ships contours requires the inclusion of a maximum \(10^{\prime \prime}\) (Figure 110) center fill at frames 16 and 17 . However, an alternate approach as depicted in figure 111 was determined to be desirable and reduces the maximum fill to \(6^{\prime \prime}\). The system

Contract NObsr 89483
Serial No. SS041-001 Task 8156


FIGURE 107
TOP VIEW OF DOME MODEL


FIGURE 108
SIDE VIEW OF DOME MODEL

Contract NObsr 89483
Serial No. SSO41-001
Task 8156

Report No. 17
Phase I Interim Report 30 September 1964
FIGURE 109
COMPARISON OF DL-5 + DLG 26 DOMES


Report No. 17
Phase I Interim Report 30 September 1964


Contract NObst 89483
Serial No. SSO41-CO1
Task 8156
- 258 -


FIGURE 111
APPROXIMATE CROSS-SECTION AT PRAMES 16 AND 17 USING MODIFIED ATTACHMENT LOCATIONS
requires a \(6^{\prime \prime}-12^{\prime \prime}\) extension to the chocks along the cat walk from frames 12 to 19. Reduction of this fill as much as possible will certainly improve acoustic properties and reduce fabrication time and cost. Acoustical testing of a sample exhibiting an \(8^{\prime \prime}\) gum fill will be accomplished by USN/USL.

The net result of this program was a set of coordinctes for the outside of the window and determination of the bead centerline. These coordinates are listed in Table xXXV.

As mentioned in the "Universal Window Study" a window can te fabricated to fit both the DJ,-5 and DLG 26 ships. Therefore, the set of coordinates listed in Table XXXV will be revised at a later date to reflect this change.
d. Conclusions
(1) The combination DL-5/DLG-26 Window will be designed for use as the prototype acoustic window under the coritract.
(2) Actual design of thewindow and necessary tooling for fabrication will proceed during Phase II utilizing information and data obtained during Phase I of this contract.
(3) The rubber fill concept for contour attainment is more desirable to use on the prototype window than the compression member. Additional work is required to finalize this design.
(4) The rubber window will not identically match the steel dome contour. Thercfore, when available, coordinates of the new contour will be given to the David Taylor Model Basin for evaluation with their computer program, "Thee Dimensional Potential Flow". Output from this program, determining the hydro dynamic acceptability of the window contour, will then be presented to BuShips for their approval.
TABLE XXXV
COORDINATES OF DL－5 ACOUSIIC WINDOW
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{UPPER BEAD \(\&\)} & \multicolumn{3}{|l|}{LOWER BEAD \＆} &  & 3ase & ELINE & －i＇m & \(\sim\) & W & N & \(-3^{\prime}\) & N．L & －4 & & \(-5^{\prime} \mathrm{W}\) & & & & \(-7^{\prime}\) W．L． & \(-8^{\prime} w\) & & & \(L\) & \\
\hline \[
\begin{aligned}
& \mathrm{RAD} \\
& \mathrm{FR} \\
& \hline \hline
\end{aligned}
\] & \(X\) & \(Y\) & \(z\) & X & Y & Z & RRO & \(x\) & \(Y\) & \(X\) & 1 & \(X\) & \(Y\) & \(X\) & \(Y\) & \(X\) & \(Y\) & X & Y & \(X\) & & \(X Y\) & \(X\) & \(Y\) & X & \(Y\) & \(\underset{\text { RR }}{\text { R }}\) \\
\hline E & \(15 \frac{1}{8}\) & 0 & 7 & 41 \(\frac{1}{4}\) & 0 & \(102 \frac{1}{4}\) & \(59 \frac{3}{8}\) & \(11 \frac{15}{16}\) & 0 & \(7 \frac{13}{16}\) & 0 & 3 \(\frac{3}{8}\) & 0 & \(\frac{5}{8}\) & 0 & 0 & 0 & \(1 \frac{3}{4}\) & 0 & \(6 \frac{1}{8}\) & 0 & \(13 \frac{3}{4} 0\) & \(25 \frac{1}{4}\) & 0 & 46 & 0 & \(E\) \\
\hline 2 & \(15 \frac{7}{8}\) & \(10 \frac{1}{4}\) & 7 & \(41 / \frac{9}{6}\) & \(7 \frac{1}{2}\) & \(101 \frac{15}{16}\) & 59 & \(13 \frac{1}{16}\) & \(10 \frac{5}{8}\) & \(8 \frac{7}{16}\) & \(11 \frac{1}{8}\) & \(3 \frac{15}{16}\) & 1118 & \(1 \frac{2}{8}\) & \(11 \frac{7}{8}\) & \(\frac{11}{16}\) & 12 & \(2 \frac{3}{8}\) & \(11 / 18\) & \(6 \frac{11}{16}\) & & \(14 \frac{5}{16} 110 \frac{1}{2}\) & \(25 \frac{3}{4}\) & & \(46 \frac{9}{16}\) & \(6 \frac{15}{16}\) & 2 \\
\hline 4 & \(21 \frac{11}{16}\) & \(30 \frac{1}{8}\) & 7 & \(44 \frac{1}{8}\) & \(22 \frac{17}{16}\) & 101 & \(56 \frac{13}{1}\) & \(20 \frac{1}{2}\) & 3012 & \(14 \frac{1}{2}\) & 325 & 9 \(\frac{9}{16}\) & 34 \(\frac{1}{8}\) & \(6 \frac{2}{16}\) & & \(5 \frac{18}{16}\) & \(35 \frac{3}{8}\) & \(7 \frac{1}{4}\) & \(34 \frac{2}{8}\) & \(11 \frac{1}{4}\) & \(33 / \frac{2}{6}\) & \(18 \frac{13}{16} 31 \frac{1}{8}\) & \(30 \frac{1}{8}\) & & \(49 \frac{9}{16}\) & \(21 / 16\) & 4 \\
\hline 6 & \(31 \frac{2}{8} 4\) & \(47 \frac{15}{16}\) & 7 & 49\％ & 38 \({ }^{\frac{1}{8}}\) & 793 & \(54 \frac{5}{16}\) & \(32 \frac{2}{8}\) & \(47 \frac{11}{16}\) & 24 \(\frac{5}{8}\) & 52 t & \(19 \frac{1}{3}\) & 55 & \(16 \frac{1}{8}\) & \(56 \frac{7}{4}\) & \(5^{2}\) & \(57 \frac{7}{16}\) & \(16 \frac{5}{8}\) & \(56 \frac{5}{8}\) & \(20 \frac{5}{6}\) & \(54 / 16\) & \(27 / 1650 \frac{15}{16}\) & \(37 \frac{7}{8}\) & \(4 \frac{5}{8}\) & & \(34 \frac{9}{16}\) & 6 \\
\hline 8 & \(45 \frac{1}{4} 6\) & 62 \({ }^{\frac{2}{4}}\) & 7 & \(56 \frac{7}{8}\) & \(52 \frac{1}{2}\) & 98\％ & \(52 \frac{1}{4}\) & 4 \(\frac{9}{16}\) & \(61 \frac{5}{8}\) & \(38 \frac{1}{2}\) & \(68 \frac{3}{4}\) & \(3 \frac{9}{16}\) & \(73 \frac{1}{1 / 4}\) & 30 \(\frac{7}{8}\) & 25 \(\frac{7}{8}\) & \(29 / 16\) & \(76 \frac{1}{8}\) & \(30 \frac{1}{4}\) & 76 & 33 L & 73／4 & \(39 \frac{1}{4} \cdot 8 \frac{1}{6}\) & \(48 \frac{1}{2}\) & \(59 \frac{7}{8}\) & \(64 \frac{1}{8}\) & \(46 \frac{1}{3}\) & 8 \\
\hline 10 & \(60 \frac{18}{4} 7\) & \(74 \frac{3}{8}\) & 7 & \(67 \frac{1}{8}\) & 6519 & \％\({ }^{41}\) & \(50 \frac{1}{4}\) & － \(1 \frac{7}{8}\) & 72，\(\frac{15}{16}\) & 54 \(\frac{15}{16}\) & \(2 \frac{5}{16}\) & \(50 \frac{3}{4}\) & 88 & \(48 \frac{1}{16}\) & & 47 & 23 & \(47 \frac{5}{8}\) & \(92 \frac{1}{16}\) & \(50 \frac{3}{16}\) & & & & \(12 \frac{3}{16}\) & \(74 \frac{1}{2}\) & \(55 \frac{1}{8}\) & 10 \\
\hline 12 & 717 \(\frac{7}{8}\) & \(83 \frac{1}{2}\) & 7 & 20 \(\frac{1}{8}\) & \(78 \frac{1}{8}\) & 94，\(\frac{1}{4}\) & 49 ¢ & 78.16 & \(31 \frac{7}{8}\) & \(73 \frac{3}{8}\) & \(92 \frac{3}{4}\) & 7016 & \(99 \frac{3}{4}\) & \(68 \frac{1}{8}\) & \(103 \frac{7}{8}\) & \(67 \frac{3}{8}\) & & \(67 \frac{7}{8}\) & \(104 / 16\) & \(69 \frac{14}{16}\) & \(00_{16}^{2}\) & \(22 \frac{15}{16} 933 \frac{3}{4}\) & 78／6 & \(82 \frac{7}{6}\) & \(87 \frac{1}{8}\) & － \(3 \frac{7}{8}\) & 12 \\
\hline 14 & \(96 \frac{5}{8} 9\) & \(90 \frac{1}{16}\) & 7 & 97\％ & 38／6 & \(91 \frac{7}{8}\) & \(48 \frac{1}{2}\) & 97 & \(80^{\frac{9}{6}}\) &  & 100 & 915 & \(107 \frac{3}{8}\) & \(90 \frac{3}{8}\) & \(\cdots 11 \frac{7}{8}\) & 39 \(\frac{7}{8}\) & \(113 / 16\) & \(94 \frac{1}{4}\) & 11216 & \(91 \frac{3}{8}\) & \(00 \frac{1}{4}\) & 93\％ \(101 \frac{1}{4}\) & & 8916 & 1128 & \(70 \frac{7}{16}\) & 14 \\
\hline 16 & \(116 \frac{3}{4}\) & 941 & 7 & \(116 \frac{5}{8}\) & 95－3 & 89\％\({ }^{7}\) & \(48 \frac{11}{6}\) & & \(92 \frac{7}{8}\) & \(115 \frac{5}{6}\) & \(04 \frac{13}{6}\) & \(\frac{1}{4}\) & \(2 \frac{1}{4}\) & \(13 \%\) & \(6 \frac{\square}{6}\) & 3年 & \(1 / 9 \frac{5}{9}\) & \(113 \frac{5}{8}\) & \(7 \frac{5}{16}\) & & \(13 \frac{1}{8}\) & \(15 \frac{1}{8} 1006\) & \(116 \frac{2}{4}\) & \(\frac{9}{16}\) & \(9 / 16\) & \(75 \frac{1}{8}\) & 6 \\
\hline 18 & \(138 \frac{1}{4} 9\) & \(96 \frac{3}{4}\) & 7 & \(138 \frac{1}{4}\) & \(98 \frac{1}{4}\) & \(88 \frac{3}{81}\) & \(48 \frac{11}{6}\) & 158 \({ }^{\frac{1}{8}}\) & 948 & \(137 \frac{7}{5}\) & \(1 \sim \frac{7}{8}\) & 57／16 & \(114 \frac{3}{8}\) & 377 \(\frac{3}{8}\) & \(8 \frac{19}{16}\) & \(37 \overline{4}\) & \(120 \frac{1}{2}\) & \(137 \frac{3}{6}\) & \(19 \frac{1}{4}\) & \(\frac{1}{16}\) & \(15 \frac{1}{8}\) & \begin{tabular}{l|l|l}
\(137 / 6\) & 108
\end{tabular} & \(38 \frac{1}{4}\) & 16 & \(139 \frac{1}{8}\) & \(76 \frac{1}{14}\) & 18 \\
\hline 20 & 96 & \(96 \frac{1}{16}\) & 7 & 4 & 9716 & 8 & \(48 \frac{3}{16}\) & & \(\frac{9}{16}\) & & & 161 & － 1 & \({ }^{3}\) & & & & & & 1 & & ， & & － & 59.5 & \(74 \frac{9}{16}\) & 20 \\
\hline 22 & \(183 \frac{3}{8} 9\) & \(93 \frac{7}{8}\) & 7 & 833 \({ }^{\frac{3}{6}}\) & \(91 \frac{7}{8}\) & \(\frac{13}{16}\) & \(47 / 6\) & 33咅 & 9，\(\frac{1}{16}\) & 18 & \(104 \frac{9}{16}\) & \(184 \frac{1}{4}\) & \(12 \frac{1}{16}\) & \(185 \frac{1}{6}\) & & \(185 \frac{1}{4}\) & ， & & & \(104 \frac{18}{19}\) & & & & & & \(70{ }^{1}\) & 22 \\
\hline & \(205 \frac{1}{2}\) & \(90 \frac{1}{2}\) & 7 & \(204 \frac{1}{4}\) & \(80 \frac{3}{4}\) & \(25 \frac{3}{8}\) & \(47 \frac{1}{2}\) & 20.5 ¢ & （8）\(\frac{5}{8}\) & 207 & & \(208 \frac{1}{8}\) & & & & 209 & & & & \(208 \frac{1}{4}\) & & \(7{ }^{\frac{1}{4}} 100{ }_{4}^{4}\) & 8 & & & \(63 / 16\) & 24 \\
\hline 2 & \(228 \frac{1}{2} 8\) & 858 & 7 & 22 & \(63 \frac{1}{6}\) & 98\％\(\frac{1}{8}\) & 48 & \(228 \frac{1}{8}\) & \(82 \frac{11}{14}\) & \(230 \frac{1}{4}\) & & & & \(232 \frac{9}{6}\) & & \(232 \frac{13}{6}\) & \[
0
\] & &  & & \(\frac{1}{16}\) & 61 \(\frac{1}{2} 98 / 6\) & \(8^{1 / 6}\) & － & \(\frac{1}{2}\) & \(53 \frac{1}{4}\) & 26 \\
\hline 28 & \(251 \frac{1}{87}\) & \(79 \frac{3}{4}\) & 7 & \(\mathrm{k} \mathrm{c}_{5} \frac{1}{8}\) & \(48 \frac{5}{8}\) & 98 & \(48 \frac{1}{2}\) & \(250 \frac{3}{4}\) & & \(\frac{1}{4}\) ： 9 & 91／ 16 & 2553 & \(1 \frac{1}{2}\) & \(256 \frac{1}{8} 10\) & & & & & & & & \(1 / 92\) & 5 167 & \(75 \frac{2}{8}\) & & 39 & 28 \\
\hline 30 & \(2797 / 7\) & \(73 \frac{1}{2}\) & 7 & \(24-\frac{1}{4}\) & \(38 \frac{1}{8}\) & \(96 \frac{1}{8}\) & & & \％ & 276 & & 27816 & 96 & \(279 \frac{5}{8}\) & & & & & & & & 2 & 272 & ． 516 & 261 & 16 & 30 \\
\hline 32 & & \(64 \frac{19}{6}\) & 7 & \[
288 \frac{5}{4} \frac{5}{3}
\] & \(31 \frac{5}{8}\) & 93／16 & & & & & 3 & \(301 \frac{3}{8}\) & 90 & 303 & 973 & 303 \(\frac{1}{2}\) & 99／16 & 303 & \(7 \frac{1}{8}\) & 210 \({ }^{\frac{2}{8}}\) & \(\frac{1}{4}\) & 29816 7818 & \[
3 / 6
\] & 54 & 266 & \[
\begin{aligned}
& o \\
& k \\
& k
\end{aligned}
\] & 32 \\
\hline 34 & & \(0 \frac{9}{16}\) & 7 & 310.3 & \(28 \frac{3}{16}\) & 90 & \(44 \frac{1}{2}\) & \(\frac{1}{8}\) & \(58 \frac{3}{16}\) & 214 & & \(324 \frac{5}{6}\) & & 16 & 913 & & & & & & & \(32 \frac{2}{4} 68 \frac{3}{4}\) & \(\frac{1}{2} 3\) & \(39 / 6\) & & \[
\underline{E}
\] & 34 \\
\hline 367 & 241／6 & 54 & 816 & \(4 \frac{1}{6}\) & \(28 \frac{1}{2}\) & \(85 \frac{5}{8} 4\) & \(40 \frac{7}{8}\) & \(340 \frac{2}{4}\) & 52 & \(343 \frac{7}{8}\) & \(63 / 5\) & 47－3． & \(\frac{9}{61}\) & \(39 \frac{10}{\frac{1}{6}}\) & \(\frac{3}{4}\) & ， & \(\frac{1}{6}\) & & & ， & & \(2 \frac{1}{2} \times 3\) 年 3 & 132 \({ }^{\frac{3}{4}} 2\) & & & & 36 \\
\hline 38 & \(\frac{1}{2}\) & \(48 \frac{1}{2}\) & \(11 \frac{1}{2}\) & \(360_{8}^{\frac{2}{8}}\) & \(33 \frac{1}{8}\) & \(80 / 16\) & \(34 \frac{7}{8}\) & & & 咅 & \(59 \frac{1}{16}\) & 3706 & \(69 \frac{1}{4}\) & 327 & & &  & & & & & 4 ） 47 & 42र्वु & & & & 38 \\
\hline 403 & \(38 \frac{1}{4}^{4}\) & \(48 \frac{1}{4}\) & 19 & \(387 \frac{3}{5}\) & \(43 / 16\) & \(73 \frac{1}{4}\) & \(27 \frac{1}{4}\) & \(386 \frac{1}{2}\) & 40\％\({ }^{1}\) & \(389 \frac{3}{16}\) & \(49 \sum_{-1}\) & \(392 \frac{8}{81} 6\) & & \(395 \frac{1}{2} 7\) & ＋ & & & & & & & 508 \(\frac{1}{8} \times 34 \frac{1}{16}\) & & & & & 40 \\
\hline 42 & & & & & & & & 44919 & \(355_{8}^{2} 4\) & 41216 & 434 & & \(54 \frac{1}{8}{ }^{4}\) & \(418 \frac{1}{4}\) & & & \(\frac{1}{6}\) & \(\frac{7}{16}\) & 4 & \(414 \frac{1}{2}\) & & \(404 / 16\) & & & & & 42 \\
\hline 44 & & & & & & & & 433 4 & \(3 / \frac{1}{8} 4\) & \(434 \frac{1}{3}\) 3 & \(36 / 4{ }_{6}^{4} 4\) & \(437 \frac{7}{5} 4\) & \(46 \frac{9}{9}\) & \(44 / \frac{1}{4}\) ？ & 9 & & & & & & & \(2 \frac{1}{81}\) & & & & & 44 \\
\hline 46 & & & & & & & & ，\(\frac{1}{2}\) & \(27 \frac{1}{9}\) a & \(457 \frac{1}{6}\) & \[
31 \frac{1}{8} 4
\] & \[
\frac{5}{4} 3
\] & 39.3 & 433749 & \(9 \frac{7}{8}\) & \(46 / 16\) & \(54 \frac{1}{8} 4\) & \(43 \frac{3}{4} 4\) & \(\frac{1}{6}\) & \(\frac{1}{4}\) & & & & & & & 46 \\
\hline
\end{tabular}
13. Transportation Study
a. Summary

All possible means of transporting the rubber acoustic window have been analyzed. This study included air freight, rail shipment, rail-water combination, truck transportation and helicopter assist in transit. After analysis it was determined that truck transportation is the most efficient and economical means of moving the window.
b. Introduction

A study was initiated to determine the most feasible and desirable method of transporting the prototype window from the fabrication facility to the installation facility. Realizing the true package size cannot be determined until the rubber window itself is built, the maximum non-compressed size was considered for this study.
c. Alr Freight

Personnel at Wright Patterson Air Force Rase. Dayton, Ohio were contacted relative to this problem. It was concluded that the dimensions of this unit are too great to transport by either the C-124 Globemaster or the C-133. There is one (1) aircraft, owned by Aero Spacelines, Inc of California, that is capable of near the capacity required. The aircraft is the modified Boeing 377 which has an effective internal dimension of 19.5 ft. The aircraft is currently under contract to NASA. The rate for this carrier is \(\$ 6.80\) per mile on the basis of round trip from home base. Considering the destination of the window is the Boston Naval Shipyard this concept appears to be economically unfeastble.
d. Rail Shipment

Another possible method of shipment is by rail. Regulation regarding the mode of movement is strict with maximum dimensions established as listed in Table XXXVI.

\section*{RAILROAD MAXIMUM OVERSIZE SHIPMENTS}
\begin{tabular}{|c|c|c|c|}
\hline Rai & oad & Height Above Rail & Width Permissible \\
\hline \multirow[t]{4}{*}{Erie} & Lackawana & 171 \({ }^{\prime \prime}\) & 0.011 \\
\hline & & 10'5 & \(14^{\prime} 0^{\prime \prime}\) \\
\hline & & \(9^{\prime} 5^{\prime \prime}\) & \(14^{\prime \prime} 0^{\prime \prime}\) \\
\hline & & 3* 5" (Car floor) & 10* \({ }^{\prime \prime}\) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{New York, New H Hartford}} & 15' \(5^{\prime \prime}\) & \(10^{\prime \prime} 0^{\prime \prime}\) \\
\hline & & 8' \(11^{\prime \prime}\) & \(11^{\prime \prime}{ }^{\prime \prime}\) \\
\hline & & 3' 5" (Car Floor) & \(10^{\circ} 4^{\prime \prime}\) \\
\hline \multicolumn{4}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
The extra wide loads can only be handled in a spec:al train which will entail special train charges. These charges cannot be fully determined until the time of the move. However, on an estimated basis it appears the cost would be between \(\$ 2,500.00\) to \(\$ 3,500.00\). The size restriction outlined in the table, eing considerably smaller than the rubber winciow, makes this meuns of transporta tion unusable. \\
e. Rall-Water Ccmbination \\
The concept utilizes Erie rall shipment, with the size rescrictions previously mentioned, to Pier \#l, Mar:an Dock, Jersey City, New Jersey. From this point commercial boat hauling to Boston via either Jones or Hughes, Inc. or McAllister LightWeight Line, Inc. The estimated charges for this system are \(\$ 7,000\) to \(\$ 10,000\).
\end{tabular}}} \\
\hline & & & \\
\hline & & & \\
\hline \multicolumn{4}{|c|}{f. Truck Transportation} \\
\hline
\end{tabular}

The most feasible approach in transporting the window is by truck. Fishback Trucking Company of Akron has estimated the total cost of such a shipment to be approx:mately \(\$ 1,700.00\) per unit shipped.

The cost presented was broken down in general and special charges. They were:
(1) Heavy and Specialized carriers Tariff 100-D, 14F-I.C.C. \#19, Item 120, 2.39 CWT based on 20,000 minimum weight.
(2) Oversize charges based on \(2 t\) per foot per mile for the first two feet over eight feet in width; \(5 k\) per foot per mile for the next five feet; lof per foot per mile over 15 feet.
(3) Two escort vehicles would probably have to be furnished at a rate of \(20 \&\) per mile on the round trip. Household guide mileage Akron to Bozton is 669 miles and this can vary depending on each staces routing of the carrier.
(4) Ohio will not issue a permit for any load in excess of 13 feet wide and other states have similar restrictions. In order to move a load over 13 feet in width a govern ment priority would be needed and cleared through the department of Highways, State Capitol of each state involved. This would include Ohio, Pennsylvania, New York and Massachusetts. Permit charges range from \(\$ 50.00\) to \(\$ 100.00\). To insure the necessary permits would be obtainable when necessary the Eastern Treffic Region of the Military Traffic Management Agency, Pittsburgh, Pennsylvania was contacted. Personnel there were certain that when necessary the permits would be forthcoming.

The commander, Boston Naval Shipyard has been contacted, via letter, questioning whether this size load can enter that installation. A reply indicates that the entrance gates at the shipyard are adequate to handle the load, being thirty-six (36) and thirty-two (32) feet res pectively. However, the access highways leading into the shipyard are heavily traveled and congested. Travel on the highways would have to be cleared with the department of Putlic Works, Nashua St., Boston, Massachusetts

Also the transpertation division of that shipyerd has in the past encountered considerable difficulties in transporting loads of much smaller dimeneions in the Boston and peripheral areas.

\section*{8. Helicopter Assist in Transit}

To expedite certain phases of the move it appeared desirable to investigate the possibility of helicopter assistance. A B.F Goodrich representative contacted personnel at Fort Rucker, Alabama to ascertain the capability of large army helicopters. Information received indicated Army helicopters are not capable of handiling the rubber window payload. However, we were referred to the Sikorsky Company. They posses a helicopter known as the "Flying Crane". It is based in New York and may be available if necessary Arrangements were made to contact Sikorsky and it was determined the approximate cost would be \(\$ 14.50\) per fllght hour away from the r plant, plus cost of living expenses for their crew. An estimate 15 to 20 hours would be required resulting in a rather large expense. Sikorsky is delivering four (4) S-64 cranes to the U.S. Army at Fort Benning, Ga in the fall of 1964. If considered desirable at that time, the Army will be contacted for assistance.

The net result of the transportation study indicates the most feasible and economical means of movement will be by r.ruck. This conclusion is based on the full non-compressed size of the dome, \(40^{\prime \prime} \times 20^{\prime} \times 10^{\prime}\). Handling of the prototype panel indicates the flexibility of the construction is considerable and the shipping volume should be reduced con siderably from the full size. In any case it would still appear that truck transportation is the means by winch the window will be shipped to the Boston Naval Shipyard.

\section*{h. Conclusions}

Actual ease of loading and movement cannot be determined unt:l the window has been tuilt and the minimum transportation volume determined. However, from available information it was concluded the most efficient and economical means of moving the complete prototype acoustic window is by truck.

\section*{14. Ship Modification Study}
a. Summary

Per discussions with the Structural Branch of BuShips it was determined the ship's structure is capable of taking the loads generated by the approximate 40 psi internal dome pressure. Reinforcement of the diagonal bulkhead and the cylindrical bulkhead inside the transducer will be required and is under study by BuShips.

Modification to the pressurization system must be accomplished to meet the requirements of a cable-reinforced rubber window. This is planned for study under Phase 11 of this program.
b. Introduction

The major change which necessitates modifying the ship's structure is the increase of operating pressure from 15 PSI in the all steel domes to COPSI in the rubber window domes. Becanse of this the following structural considerations must bi: analyzed:
(1) Effect of 40 PSI on remaining steel structu:e
(2) Effect of tension loads at bead seat attachment points around the window periphery.
(3) Modification of chocks along "Banjo" to permit window fit.
(4) Acceptability of pressurization system.
c. Window Attachment

BuShips personnel have and are resolving the questions involved in item (1). In discussions with persons from the Structural Branch of BuShips this problem was discussed. A survey of the structural strength of the dome has been made and it was con:luded with two (2) exceptions the structure was capable of 40 PSI with a safety factor of 2 . It was also ascertained that the diagonal bulkhead and the transducer cylinder must be reinforced to withstand the expected load. This problem has been given to the Boston Naval Shipyard for ironing out the details.

During this same gathering the tensions expected on the bead seat attachment point was introduced into the conversation. The maximum normal operating tension expected at the bead clamps is \(3,100 \mathrm{lbs} . / \mathrm{inct}\). Considering the strength of the
construction the maximum tension prior to panel rupture would be in the \(17,000 \mathrm{lb}\)./inch range. In the past BuShip strurtural personnel informed us that these loads in the 3100 lbs./in. range were within the capabilities of the structure and special precautions were not required. However, additional effort will be required to analyze the affect of the higher peak loadings.

The contour of the rubber window periphery in the aft, bottom area is that of a series of arcs. This was chosen as a means of reducing stress concentrations in the window and thus increasing its rellability. As a result of this change, as part of this program, a series of chock extensions will be designer and discussed with the shipyard. These extensions, shown in Figure 112, will in essence move the ships structure out to meet the window. It shall be comparable to the existing design and will include steel plate covering.

Table XXXVII presents necessary tensions and angles of approach to the ship's structure of load bearing members.

\section*{d. Pressurization System}

The pressurization system currently employed with steel domes utilizes a stand pipe with an inert gas atmosphere for additional pressure.

As with the structural considerations the main difference is that of pressure. It is desirable from a retrofit standpoint to utilize is much existing equipment as possible. With this in mind and the thought of the necessity of additionel rella bility required in a rubber pressurized dome this program was initiated.

Basically it appears the existing system is satisfactory in principal. However, some means of pressure compensation irternally for the change of dynamic pressure outside must be included. In addition the reservoir tank must be enlarged to compensate for stretch of the window during pressurization and relaxation during depressurizing. These two (2) considerations plus increasing the strength of each to accept the pressures are the basic tasks of this study.

A pressure control system has been conceived to maintain the internal pressure of the dome to that prescribed for proper pressure differential with respect to the outside static and dynamic pressures.


FIGURE 112
CHOCK EXTENSION FOR SHIP MODIFICATION

Contract NObsr 89483
Serial No. SS041-001
Task 8156
- 268 -
-

Report No. 17
Phase I Interim Report 30 September 1964

Table XXXVII
Stress Diagram of Window Periphery

Calculations have shown that the pressure in this case should be 40 PSI at the negative four (4) foot water line.

This pressurization system should be designed to provide:
(1) Filling of dome in two (2) hours from ship or shore with fresh or salt water.
(2) Sufficient strength to withstand at least 80 PS: at base line flat.
(3) A positive pressurization source with a minimum possibility of fallure.
(4) An automatic pressurization system.
(5) A thanual override and emergency pressure system.
(6) A capability for handing 100 gpm leakage from dome with no pressure loss.
(7) Units to be corrosion resistant.

\section*{(a) System Vescription}
A system which will accomplish the foregoing
specifications is described in the following para-
graphs. In miny instances the system description
is that of the existing pressurization system
wherever it can be used.
The dome will be filled with \(3^{\prime \prime}\) inch fire hose
frous ship or shore in 2 hours or less. A
connection to such a hose will be provided aboard
the ship in such a way that it could be connected
to an on shore fire hydrant or to the fire control
system aboard the ship. It will be necessary for
emergency leakage control, to provide a permanent
connection to the shipboard fire control system
while undervay.
Standard fittings and pipe are of sufficierit
strength to wichstand 80 pSi The filling and
pressurizetion tank will be designed to eliminate
gloshing of water within the tank while the ship
is underway.
- 270 - Report No. 17

Phase I Interim Report
30 September 1964

It is intended that the pressurization source be an inert gas. The gas will be stored in a pressurized cylinder and transferred, through a regulator, to the filling tank to provide the extra head of pressure necessary to accomplish 40 PSI. A safety pop off valve will be located above the water line in the tank to vent excess gas pressure. Water level in the tank would be maintained by an electronic system and a solenoid operated valve. A manual valve and a sight gauge will be provided and checked periodically to be sure the system is operating correctly.

Maintaining water level in the filling tank is an important task with this system since, if the water level were to be lowered enough the dome pressure might be decreased to critical level.

\section*{(b) System Operation}

A hose will be connected to the provided fitting and filling would take place through the manual valve. The automatic valve will be turned off and a vent valve in the tank opercd.

As soon as the water level reached a predetermined level in the filling tank, as shown on the sight gauge, the manual valve will be turned off.

The automatic system should be turned on and the gas pressure inserted into the tank. Pressure may be read at the filling tank and through a remote system to the bridge.

In the event a leak is experienced the level in the tank will go down and gas will fill to maintain pressure. When a predetermined low level is reached the automatic valve will open and the tank will refill. During this filling the pop off valve will open venting off excess pressure caused by gas volume decrease. This cycle will repeat until the leak is repaired. If the system should fail a man could minually operate the filler vaive and change gas tanks if necessary.

Figure 113 presents a schematic diagram of the proposed system.


5 [GURE 113
SCHEMATIC OF PROFOSED PRESSURIZATION SYSTEM

Report No. 17
Phase I Interim Report
30 September 1964

\section*{D. Conclusions}

As a result of satisfactory, design, fabrication and testing of the prototype panel the feasibility of the pressurized cable-reinforced rubber acoustic window for the AN/SOS-26 sonar has been firmly esta-
lished. In addition the following conclusions were reached.
1. The pressurization requirement for this acoustic window is 40.2 psi at the \(-4^{\prime}\) water line.
2. A structure of five (5) plies of wire fabric will furnish sufficient strength to withstand all expected operating conditions.
3. A bead type retention system furnishes the most desirable and reliable means of attachment to the ship.
4. The rubber acoustic window will be furnished to the Navy in one piece.
5. The acoustical interference of the window construction, as verifled by testing of a \(5^{\prime}\) square acoustical panel of the proposed construction, is less the . 5 db at the critical frequency.
6. The damping characteristics \((5-6 \%)\) of the cable-reinforced rubber window are far superior to those of plastic or steel domes.
7. The acoustic window should be fabricated in four pleces and spliced together to form a single unit.
8. The polyisobutylene anti-fouling paint, as verified by testing of the \(5^{\prime}\) square palint panel, adheres well to the Neoprene of the window construction when applied over 1177 tie coat adhesive. This system should be used to cover the prototype rubber acoustic window.
9. A rubber fill of varying thickness is acceptable as means of obiaining the necessary shape in all areas deviating from the normal pressurized contour.
10. The prototype window can be shipped by truck to the Boston Naval Shipyard for installation.
1. Bu Ships structural people will analyze the steel structure of the bow dome and determine what modifications are necessary to make it strong eriough for use with the rubber acoustic window.
2. The maximum normal operating tension expected at the beid clampe is 3100 lbs ./ inch with panel rupture occurring about \(17,000 \mathrm{lbs} . / 1 \mathrm{nch}\).
3. Modification of the existing pressurization system will be required to make it usable with the rubber acoustic window.
4. Additional work, including consultation with the shipyard, will be required to finalize this study and is
planned in the future.

Report No. 17
Phase I Interim Report 30 September 1964
F. Project Performance Schedule

With the completion of Phase \(I\) the future efforts involved in protow type fabrication and testing can be initiated. The second phase of this program is concerned with tooling design. The attached "Pert Control Network" is included to display the effort planned in this area.

Report No. 17
Phase I Interim Report
30 September 1964
E. Recommendations
1. With feasibility of the concept proven, it is recommended the project continue into Phase II and III, prototype window fabrication, testing and service evaluation.
2. Concurrent with these subsequent phases, testing of the prototype test panel should continue in order to obtain allinformation possible.
3. Additional development programs should continue to finalize the window construction and fabrication procedures.
4. An evaluation be conducted on the plastic tooling and determine its suitability for production use.
5. The David Taylor Model Basin study be continued to determine the acceptability of the semi-universal window contour.


BLANK PAGE

Report No. 17
Phase I Interim Report
30 September 1964

APPEND \(\& X\)
PlANE WAVE NORMALlY INCIDENT ON A PLANE WALL. IMMERSED IN A 1.1QUID


When a plane wave is normally incident on a plane sheet of materialimaersed in a fluid, the impedance \(z\) at the front surface is given by the equations
\[
\begin{aligned}
z= & z_{1} \operatorname{Coth}(\varphi+j \eta) \\
& \geqslant \operatorname{Coth} \varphi=z_{0}
\end{aligned}
\]
where \(\eta=W a / C, \quad i s\) the specific impedance of the sheet, \(C\), the velocity of longitudinal waves in the sheet, and a its thickness. These aquations may be rearranged to give
\[
z=z, \frac{z_{0}+z_{1} \operatorname{Tan} z_{j n}}{z_{0} \operatorname{Tan} \operatorname{Tin}+z}=z, \frac{z_{0}+j z_{1} \overline{\operatorname{lan}} x}{z_{1}+\sqrt{z_{0} \operatorname{Tan} x}}
\]

Now the reflection coefficient at the front surface is
\[
\bar{P}=\left(z-z_{0}\right) /\left(z+z_{0}\right)
\]

80 that
\[
\bar{P}=j\left(z_{1}^{2}-z_{0}^{2}\right) \overline{\operatorname{La}} \eta /\left[\vec{z} z_{0} \vec{z}_{1}+j\left(z_{1}^{2}+z_{0}^{2}\right) \bar{R}, \eta\right]
\]

Report No. 17
Phase I Interim Report
30 September 1964

\section*{APPENDIX I (continued)}

If the transmitted coefficient is \(\bar{T}\), then by simple energy balance, since there is no absorption, \(|\bar{R}|^{2}+|\bar{T}|^{2}=1, X^{2}+T^{2}=/\) so that \(T=/-p^{2}\)
and the transmitted energy is
\[
T^{2}=1-\left(z_{1}^{2} z_{0}^{2}\right)^{2} T_{a x} \pi /\left[4 z_{0}^{2} z_{1}^{2}+\left(z_{1}^{2}+z_{0}^{2}\right)^{2} \pi a{ }^{2} n\right]
\]
and since
\[
P^{2}=\left(z_{1}^{2}-z_{0}^{2}\right)^{2} \overline{\operatorname{Tan}} \pi /\left[4 z_{0}^{2} z_{1}^{2}+\left(z_{1}^{2}+z_{0}^{2}\right)^{2} \frac{16}{1} \pi\right]
\]
then
\[
\begin{aligned}
(R / T)^{2} & =\left(z_{1}^{2}-z_{0}^{2}\right)^{2} \operatorname{Tan}^{2} 2 /\left[4 z_{0}^{2} z_{1}+4 z_{0}^{2} z, \sqrt{2}+\pi\right] \\
& =\left(z^{2} z^{2}\right)^{2}
\end{aligned}
\]
and
\[
=\left(z^{2}-z_{0}^{2}\right)^{2} \operatorname{Sen} 2 / 4 z_{0}^{2} x^{2}, 2
\]
\[
R / T=\frac{\left(z_{1}^{2}-z_{0}^{2}\right) \sin \pi}{z>_{0} z}=1 / 2\left(\frac{z}{z_{0}}-\frac{z_{0}}{z_{1}}\right) \operatorname{sic} \frac{\sin }{c}
\]

Contract SOber 89483
Serial No. SS041-001
Task 8156

Report No. 17
Phase I Interim Report
30 September 1964

APPENDIX II
RING SLOT CORRECTION FOR PULSE TUBE

Let a cylindrical solid be surrounded by a rigid wall with a liquid filling a small gap between the solid and wall as shown in the figure. If a wave is transmitted through

the solid material parallel to its axis, then the solution of the waveequation in both the two medis yield, for the acoustic pressure,
\[
\begin{aligned}
& P_{1}=F J_{0}(k a) e^{j(\omega t-B z)} k^{2}+B^{2}=\omega^{2} / C_{1}^{2} \\
& P_{2}=F \operatorname{Cosh} m(5-x) e^{j(\omega t-B 2)}-m^{2}+B^{2}=\omega^{2} / c_{2}^{2}
\end{aligned}
\]
(1)
where \(C_{1}\) and \(C_{2}\) are the velocity of longitudinal waves in each media. Since we assume that the gap is small, we approxionse the pressure in it by the hyperbolic function rather than the Bessel! functions, valid operation as long as \(S \ll a\); and adjust the constants so that the radial particle velocity is zero at the vail. This the coordinate \(X\) is zero at \(\Omega=a\) and \(S\) at the wall.

At the interface between the solid and liquid the pressures and radial velocity are continuous. These conditions yield two equations in terms of \(A\) \(E\) and \(B\) i
\[
\begin{aligned}
& k F \frac{J_{1}\left(k_{k}\right)}{\rho} \cdot F \frac{m \sin h}{\rho_{2}} m f \\
& F J_{0}(k a)=F \cosh m \delta
\end{aligned}
\]

APPENDIX II. (continued)
since \(\delta\) is very small Cosh m \(8<1.0\) and Sinh m \(8=m \delta\) so that
\[
\begin{equation*}
(k a)^{2} J_{1} / J_{0}(k A) \simeq m^{2} a^{2} \delta P_{1} / a a_{2} \tag{3}
\end{equation*}
\]

This equation may now be solved for \(B\) since \(K\) and \(M\) are defined in terms of \(B\) by \(\left(\frac{1}{2}\right)\). If \({ }^{2}\) wave is to be propagated \(B\) must be real and since \(B^{2}=\omega^{2} / c_{2}^{2}-k^{2}=\omega^{2} / c_{2}^{2}+m n^{2}, k^{2}\) must be rest and sin than \(\omega^{2} / c_{1}^{2}\) which is small. Thus \(k^{x}\) is a sman21 number \(k^{2} \ll 1\), 0 Referring back to (3), one sees that the right hand side of the equation is much less than 1.0 since \(5 / a \ll 110\) and thus, the only possibile solution of (3) which will give real propagation constant is when \(k \in \ll \% 0\). since \(J_{0}(x) / x J_{0}(x) \rightarrow 1 / 2\) as \(x>0\); (3) gives
\[
(k a)^{2}=(m a)^{2} \varphi ; \varphi=2 \delta \rho_{1} / a p_{2}
\]
and therefore, replacing \(k\) and \(m\) in terms of \(B\),
\[
\begin{equation*}
B^{2}=\left(\frac{\omega^{2}}{c_{1}^{2}}+\frac{\varphi \omega^{2}}{c_{2}^{2}}\right) /(1+\varphi) \tag{4}
\end{equation*}
\]

Since the propagation constant is equal to \(\mathbf{W} / \mathbf{C}^{\prime}\) where \(C^{\prime}\) is the actual wave velocity,
\[
c^{\prime}=c \sqrt{(1+\varphi) /\left(1+\frac{\varphi c_{1}^{2}}{c_{2}^{2}}\right)}
\]
and when \(\varphi \ll 1\)
\[
\begin{equation*}
c^{\prime}=c,\left[1+\frac{\varphi}{2}\left(1-\frac{c_{1}^{2}}{c_{2}^{2}}\right)\right] \tag{5}
\end{equation*}
\]

Report No. 17

\section*{APPENDIX \(:\) (continued)}

Since \(k a \ll /\), the pressure distribution across the cross-section is constant and a plane wave is propagated through the solid liquid combineaction. However, since the densities of liquid and solid are different, the particle velocity in the axial direction is different in each of the two media. Referring to (1), since ka<</, o a: ma<<<
\[
\begin{equation*}
P_{1}=P_{2} \simeq F e^{j(\omega t-\beta z)} \tag{6}
\end{equation*}
\]
and, defining \(W_{i}\) as the velocity in the \(P\) direction in the \(\mathcal{A}\) medium,
\[
N_{i}=\frac{-1}{j \omega P_{i}} \frac{\partial P_{1}}{\partial z^{2}}
\]
so that, from (6)
\[
\begin{align*}
& V_{1}=\frac{B}{\omega P_{1}} A e^{j(\omega t-B z)}=\frac{1}{A_{1}^{\prime}}  \tag{7}\\
& V_{2}=\frac{B}{\omega C_{2}} A e^{i(\omega t-B z)}=\frac{1}{P_{2} C^{\prime}} P
\end{align*}
\]

Since the effective specific impedance of the combination is the quantity that is measured in the pulse tube, we must calculate the quantity. It is necessartily equal to the acoustic pressixe \(p\) divided by the velocity average over the cross-section of the tube. If \(A\) is the fraction area of tube filled with the solid cylinder then the average velocity
\[
\bar{\nu}=A v_{1}+(1-A) v_{\overline{2}}
\]
which becomes, substituting from (7)
\[
\bar{V}=\left[\frac{A}{P_{1}}+\frac{(I-A)}{P_{2}}\right] \frac{P}{C^{\prime}}
\]

Contract NObs 89483
Serial No. SSO41~001 Task 8156

\section*{APFENDIX II (continued)}
and the effective specific impedance
\[
z^{z}=\frac{P}{w}=P_{1} c^{\prime} /\left[A-(1-+1)\left(P_{1} / P_{a}\right)\right]
\]

We, therefore, define the effective density
\[
\rho^{\prime}=\rho_{1} /[9+(-x)(e / a)]
\]

\author{
APPENDIX III \\ ACOUSTIC PANEL ANALYSIS
}

This report summarizes a study of several areas on the External Surface of the B.F.Goodrich Rubber Dome Panel Which Had Been Subjected To High-Power Sonar Transmission.

The specific areas appeared on Official Photographs from the U.S. Navy Underwater Sound Laboratory External Surface Internal Surface.

Approximately half, the top half, of the panel was available for study in Akron. The panel was examined microscopically and by other means in the production area of the B.F.Goodrich Aerospace Plant.

Considering first the external surface, it was observed that the spotted areas \(7-N\) and \(7-Q\) were most obvious. The horizontal striations, \(7-V\), were much less conspicucus; these were observed under the microscope, to be slightly raised parailel ridges, (the order of 0.0005 "the "rubber reproduction") of the marks of the cutting tool on the mold surface. The marks at \(7-0\) and 7-P were rather indistinct small scratches of an unknown origin.
The areas of \(7-N\) and \(7-Q\) received the most detailed study, because the areas were large and in these areas the surface appeared to be affected most. The deviation from the normal smoth surface in these areas was a spotty condition wherein the apots appeared either darker or lighter than the surrounding surface depending on the angle of the incident light. A close inspection in a stereo microscope disclosed that the spots consist of a multitude of irregular microrcopic pits each capable of reflecting the incident light in a slightly different way from the surrounding stock.

The character of the spots having been disclosed, a technique was next employed which made it possible to examine the spots in great detail and in an easily controlled fashion; an exact reproduction was made of a portion of the surface by means of a special air-curing rubber compound. With this method, the surface details are reproduced with accuracy. The surface of one of these vulcanized rubber impressions is shown in fig. 1 and 2 at a magnification of approximately \(x 4\). It is known already that the apots appear either dark or light, depending on the lighting; this same phenomenon shows on the rubber reproduction.

\section*{APPENDIX III (continued)}

In fig. I the lighting is arranged to show the spots as dark spots on a light surface; in fig. 2 the same spots, by alight change in the lighting, appear lighter than the surrounding surface, thus behaving exactly as they behave on the panel itself.

One of the spots, at the lower center, was encircied in ink on the panel before making the rubber impression; some of this ink came off on the rubber, thus making it possible to identify this specific spot. In fig. 3 this area is observed as it appears on the panel in a glancing light at \(x 20\); the microscopic spots are seen as pits. In fig. 4 the same areas as reproduced in rubber is seen; here the tiny craters are observed as raised spots. These points should be noted:
1. Fig. 4 is a mirror image of \(£\{8.3\) and therefore all features should be reversed but in order to match the features more easily, fig. 4 has been reversed in enlarging so that the left of fig. 4 corresponde to the left of fig. 3 and so on.
2. The large panel itself is difficult to move; this was one good reason for making the rubber impressions. To use any variation 1. . the angle of lighting on the panel is difficult; the small rubber impression, in contrast, makes it possible to make any desired change in iighting; thus it is easily possible to make the craters and other features more pronounced as shown in fig. 4.
3. The vertical striations at the left side of the circle of figs. 3 and 4 are an example of the tool mirks which cause the surface feature identifled as \(7-V\) in Figure 16.

Proceeding now with a more detailed study of this spot, figs. 3 and 4, fig. 5 shows an area close to the center of the circle at a magnification of \(\times 50\); here the craters are shown vividly. Observing these craters in this picture, one immediate questions is this: how deep are these microscopic pits in the panel? On the rubber impression, it is a simple matter to measure the depth by using suitable objectives and the fine adjustment on aigh power microscope. The microscopic pits are thus found to have a nominal depth of 10 to 15 microns ( \(0.0005^{\prime \prime}\) ): the maximum found was 25 microns ( \(0.001^{\prime \prime}\) ). From these depths it would be concluded that these are not very serious surface defects.

\section*{APPENDIX III (continued)}

The next question concerns the origin of these microscopic pits. These pits have been examined in several ways in order to study their character; for example they have been observed with glareleas surface lighting (the Ultrapack Illuminator) using high power objectives, as in fig. 6 at a magnification of \(x 150\). At this magnification, these spots look very bad but actually the largest one is only about \(0.01^{\prime \prime}\).

Report No. 17
Serial No. SS041-001
Task 8156

Phase I Interim Report 30 September 1964


FIGURE I
RUBBE? IMPRESSION OF PANEL AREA 7 N and 7 Q


FIGURE 2
RUBBER IMPRESSION OF PANEI. AREA 7 N an 70 (LIGHTING DIFFERENT THAN FIGURE 1)

Contract NObsr 89483 - 5 -
Serial No. SS041-001
Task 8156

APPENDIX III (continued)

Report No. 17
Phase I Interim Report 30 September 1964


FIGURE 3
X20 MAGNIFICATION OF AREA SHOWN IN FIGURE 1 and 2


FIGURE 4
RUBBER CQST OF AREA SHOWN IN FIGURE

FIGURE 5
X50 MAGNIFICATION OF AREA IN FIGURE 3


FIGURE 6

\section*{APPENDIX III (continued)}

Considering the distribution of the spotted areas on the panel and the shape and character of the microscopic pits, it is concluded that they were probably produced during molding because of a local overabundance of droplets of mold lubricant.

The other side of this panel, the internal surface, shown in figure 17 presents different features from the external surface. The internal surface was buffed after curing and before the panel was shipped. The buffing appears to be a satisfactory and uniform job.

The most conspicuous marks on the internal surface are those labelled 7-J and 7-2. The vertical line above 7-J and the horizontai line \(7-X\) have the same cause; they consist of a thin film of rubber cement on the surface. This thin film can be rubbed off and underneath the buffing marks are uniform and good. The origin of this thin film of cement was final finish operations.

The dotted vertical line, more or less indistinct on the panel, below the mark 7-J is caused by a number of scratches in the rubber. It is possible that these were produced by a few grains dislodged from the buffing wheel. The scratches in general are in the direction of buffing but some of them lie at a slight angle. The depth of these scratches is in general around 25 microns ( \(0.001^{\prime \prime}\) ); the deepest part of the largest crack was found to be 90 microns (approx. 0.004").

This summary of the conditions on the internal surface is based on the examination of the panel itself and on the several rubber reproductions which were cast on the surface. These impressions are still available for further study if required.

It may be concluded from this study that the surface conditions on this panel are strictly superficial; it seems very unlikely that they originated from the testing operation.

\section*{BLANK PAGE}

Report No. 17
Serial No. SS041-001
Task 8156
Phase I Interim Report
30 September 1964

APPENDIX IV
SOW DOME ACOUSIIC WINDOW COMPIITER PROGRAMS
DETERMINATION OF CZRCLE CENTERS
FROM TWO GIVEN POINTS AND A RADIUS
gFG-ASD-0C70
PFOCRAM NO. 06964911
ABSTRAC:

This program determines the centers of the two circles which can be drawn through two given points with g given radius.

It was written for use in the Sons: Bow Dome prototype panel project.
METHOD
The following disgram is useful in understanding the formula derivations.


FIGURE 1.

Given are \(X_{a}, Y_{a}, X_{b}, Y_{b}\), and \(R\).
\(\overline{A B}=\sqrt{\left(X_{a}-X_{b}\right)^{2}+\left(y_{a}-y_{b}\right)^{2}}\)

\section*{ADPENDIX IV (cont:nued)}
\[
\begin{align*}
& \overline{A M}=1 / 2 \overline{A B} \ldots  \tag{2}\\
& \overline{M O}=\overline{M O^{\prime}}=\sqrt{R^{2}-\overline{A M}^{2}} \tag{3}
\end{align*}
\]

The slope of \(\overline{A B}\) is given by the following:
\(m_{A B}=\frac{Y_{a}-Y_{b}}{X_{a}-X_{b}}\)

The slope of \(00^{\prime}\) is given by the following:
\({ }^{m} 00^{\prime}=-\frac{1}{m_{A B}}\).

Therefore, from (4) and (5),
\[
\begin{align*}
\mathrm{m}_{00^{\prime}} & =-\frac{X_{a}-X_{b}}{Y_{a}-Y_{b}}  \tag{6}\\
\theta & =\tan ^{-1}\left(m_{00}{ }^{\prime}\right) \tag{7}
\end{align*}
\]
\(\Delta X=\overline{M O^{\prime}} \cos \theta\)
\(\Delta Y=\overline{M 0^{\prime}} \sin \theta\)
\(X_{M}=1 / 2\left(X_{a}-X_{b}\right) \ldots \ldots(10\) )
\(Y_{M}=1 / 2\left(Y_{a}-Y_{b}\right)\)
```

Contract NObsr 3948% R 3 - Repurt No. 17
Serial No. SS041-00?
Task 8156
Phase I Interim Report
30 September }196

```

\section*{APFENB:X Z (continued)}

The equations for the circle centers as derived from the previous equations are the followirg:

Circle I \(\left\{\begin{array}{l}X_{0}=Y_{M}-\Delta X \\ Y_{0}=Y_{M}-\Delta Y\end{array}\right.\)

Circle II \(\left\{\begin{array}{l}X_{0},=X_{M}+\Delta X \\ Y_{0} \prime=Y_{M}+\Delta Y\end{array}\right.\)

An error message will print out when \(Y_{a}=Y_{b}\) or \(X_{A}=X_{b}\). In the first case, slope \(m_{00}\) is infinite; therefore, \(00^{\prime \prime}\) is a vertical line. In the second case the slope is zero and the line is horizontal. However, the valifity of the cutput is not affected in either case.

MACHINE REQUIREMENTS
This program is written in FORTRAN 2 and uses the IEM 1620 computer with card reader-punch.

Report No. 17
Serial No. SS041-001
Phase I interim Report
30 September 1964

\section*{APPENDIX IV (continuea)}

CIRCIE THROUGH THREE POINES BFG-ASD. 0074

PROGRAM NUMBER 07964927
ABSIFAC?

This program finds the radius and center of a circle which passes through three given points. It was written for use in the Sonar Bow Dome Prototype Paral Project.

\section*{ME THOD}

Given three points, we are to find the center and radius of the unique circle through these three points.

Let the three points be denoted by \(P_{1}\left(x_{1}, y_{1}\right), P_{2}\left(x_{2}, y_{2}\right)\) and \(P_{3}\left(x_{3}, y_{3}\right)\). Denote the center by \(0(h, K)\) and the radius by \(x\). The eguation of the circle is:
\[
\begin{equation*}
(x-h)^{2}+(y-k)^{2}=r^{2} \tag{1}
\end{equation*}
\]

Expanding and rearranging this equation gives us
\[
\begin{align*}
& x^{2}-2 x h+t^{2}+y^{2}-2 y k+k^{2}=r^{2} \\
& \left(h^{2}+k^{2}-x^{2}\right)-2 x h-2 y k=\left(x^{2}+y^{2}\right) \\
& \text { let } z=h^{2}+k^{2}-r^{2}  \tag{2}\\
& z-2 x h-2 y k=-\left(x^{2}+y^{2}\right)
\end{align*}
\]

Each of the \(x-y\) coordinates of the three points must satisfy this equation. Substitute the coordinates of the points in (2.)
\[
\begin{align*}
& 2-2 h x_{1}-2 k y_{1}=\left(x_{1} 2+y_{1} 2\right) \\
& 2-2 h x_{2}-2 k y_{2}=\cdots\left(x_{2}+y_{2}\right) \\
& z-2 h x_{3}-2 k y_{3}=-\left(x_{3}+y_{3}\right) \tag{3}
\end{align*}
\]
\(h, K\), and \(Z\) can be found by solving the ebove set of three simultaneous linear equations. The radius can then be found by
\[
r=\sqrt{h^{2}+k^{2}-2}
\]
\begin{tabular}{ll} 
Contract NObsr 89483 & Report No. 17 \\
Serial No. SSO4 \(1 \cdots 001\) & Phase I Interim Report \\
Task 8156 & 30 September 1964
\end{tabular}

\section*{APPEND \(1 \times\) IV icont Inued}

MACH1NE REQUZREMENTS

The Program was witten in FORTRAN :S for the ZAM \(70 \% 4\). Elosing point hardware and three tape units bee required.

Contract NObsr 89483
Serial No. SS041-001
Task 8156
-6 Report No. 17
Phase : Interim Report
30 September 1964

\title{
APPENDIX iV (cont:nued) \\ BOW DOME MATERIAL \\ STRESS AND STRAIN PROPERTIES
}

PROGRAM NO. 0690690 :
ABSTRACT

This report describes a program for calculating stress and strain properties of the material to be used for the Bow Dome Project.

\section*{INTRODUCTION}

This program was written to assist in calc: ating results of tests run on the material to be used for the acoustic window of the bow done. A rectangular section of the material was secured along two ends and stressed by means of water pressure from a water bag under the test section. The pressure tended to raise the material in the form of an arc of circle while the chord length remained constant.

The data recorded during the test was the water pressure and the gagitta, or height of the arc.

METHOD
The equations for the radius and the angle phi are found from trig relations involving a chord of constant length and the known agitta.

MACKINE OPERATION
The IBM 1620 is used for this program.
```

Contrect NObsr 89483
-7
Serial No. SSO41-001
Task }815

```

Report No. 17
Phese I Interim Report
30 September 1964

\section*{APPENDIX IV (continued)}

PREDICIING ARG IENGTH OF SONAF BOW DOME PROTOTYPE PANEI.

BFG ASD-0065
PROGRAM NO. 07904916
ABS TRAC I

This program computes the arc length between any two points on an arc of a circle before and after expansion due to pressure, providing that the ends of the arc are fixed.

INTRODUCTION

This program was written specifically for the Sonar Bow Dome prototype panel. It was used to find the amount of arc expaneion between two fixed points on the dome due to various pressures.

The program is useful for finding arc lengths on any circle which expands between two fixed points on ita surface.

METHOD
The diagram in this section is useful. in following the derivation of the formulas used in this program.


PIGURE:.
Contract NObsr 89483
8
Serial No. SSO41-001
Report No. 17
Phase I Interim Report
30 September 1964

\section*{APYENDIX :V (continued)}

Symbols Used:


The following is a general proof of the formulis used in predicting the arc length. Refer to Figure 1.

Let,
\[
\begin{aligned}
& h=\overline{M C}, \quad h^{\prime}=\overline{M^{\prime} C} \\
& L=\overparen{A M B}, \quad L^{\prime}=\widehat{A M^{\prime} B} \\
& S=\widehat{P Q}, \quad S^{\prime}=\widehat{P^{\prime} Q^{\prime}}
\end{aligned}
\]

Phase I Interim Report 30 September 1964

\section*{APPENDIX : \(V\) (continued)}
\[
\begin{align*}
& C=\overline{A B} \\
& L=R(2 \emptyset) \tag{1}
\end{align*}
\]

From triangle \(A C O\);
\[
\begin{equation*}
\tan \emptyset=\frac{\overline{A C}}{\overline{O C}} \tag{2}
\end{equation*}
\]

But,
\[
\begin{equation*}
\overline{A C}=1 / 2 C ; \overline{O C}=R-h \tag{3}
\end{equation*}
\]

Therefore, From (2.) and (3),
\[
\tan \emptyset=\frac{C}{2(R-h)}
\]

Therefore, \(\quad \emptyset=\tan ^{-1} \quad \frac{c}{2(R-h)}\)

From (1) and (4),
\[
\begin{align*}
& L=2 R \tan ^{-1} \frac{C}{2(R-h)}  \tag{5}\\
& L^{\prime}=2 R^{\prime} \tan ^{-1} \frac{C}{2\left(R^{\prime}-h^{\prime}\right)} \tag{6}
\end{align*}
\]

Similarly,
\[
\begin{align*}
& \frac{S}{L}=\frac{S^{\prime}}{L^{\prime}} \\
& S^{\prime}=\left(\frac{S}{L}\right) L^{\prime} \tag{7}
\end{align*}
\]


FIGURE II.

Report No. 17
Ptase I Interim Report 30 September 1964

\section*{APPEND:X iV (continued)}
\(\overline{P Q}=\sqrt{\left(X_{Q}-X_{P}\right)^{2}+\left(Y_{q}-Y_{P}\right)^{2}}\)
\(\overline{P D}=1 / 2 \overline{P Q}\)
From (8) and (9),
\[
\begin{align*}
& \overline{P D}=1 / 2 \sqrt{\left(X_{q}-X_{p}\right)^{2}+\left(Y_{q}-Y_{p}\right)^{2}} \ldots  \tag{10}\\
& (\overline{P D})^{2}=1 / 4 \quad\left(\left(X_{q}-X_{p}\right)^{2}+\left(Y_{q}-Y_{p}\right)^{2}\right)  \tag{11}\\
& (\overline{D O})^{2}+R^{2}-(\overline{P D})^{2} \ldots \ldots \tag{12}
\end{align*}
\]

From (11) and (12),
\[
\begin{align*}
& (\overline{D O})=\sqrt{R^{2}-1 / 4\left[\left(X_{q}-X_{p}\right)^{2}+\left(Y_{q}-y_{p}\right)^{2}\right]}  \tag{13}\\
& \theta_{1}=\tan ^{-1} \frac{\overline{P D}}{\overline{D O}}  \tag{14}\\
& \theta_{2}=2 \theta_{1} \tag{15}
\end{align*}
\]

From (10), (13), (14) and (15);
\[
\begin{align*}
& \theta_{2}=2 \tan ^{-1} \frac{\sqrt{\left(X_{Q}-X_{p}\right)^{2}+\left(Y_{q}-y_{p}\right)^{2}}}{2 \sqrt{R^{2}-1 / 4\left(\left[X_{q}-x_{p}\right)^{2}+\left(Y_{q}-Y_{p}\right)\right.}}  \tag{16}\\
& \mathrm{S}=\mathrm{Re}_{2} \tag{17}
\end{align*}
\]

From (16) and (17).
\[
\begin{equation*}
S=2 R \tan \frac{1 \sqrt{\left(X_{q}-X_{p}\right)^{2}+\left(Q_{q}-Y_{p}\right)^{2}}}{2 \sqrt{R^{2}-1 / 4 \quad\left[\left(X_{q}-X_{p}\right)^{2}+\left(Y_{q}-Y_{p}\right)^{3}\right]}} \tag{18}
\end{equation*}
\]

\section*{APPENDIX IV (continued)}

Therefore, From (5), (6), (7) and (18)
\[
S^{\prime}=2 R^{\prime} \tan ^{-1} \frac{\sqrt{\left(X_{q}-X_{p}\right)^{2}+\left(Y_{q}-Y_{p}\right)^{2}}}{2 \sqrt{R^{2}-1 / 4\left[\left(X_{q}-X_{p}\right)^{2}+\left(Y_{q}-Y_{p}\right)^{2}\right]}} \quad \frac{\tan ^{-1} \frac{C}{2\left(R^{\prime}-h^{\prime}\right)}}{-1 \frac{C}{2(R-h)}-(19)}
\]

Where
\[
c=\sqrt{\left(X_{b}-X_{a}\right)^{2}+\left(Y_{b}-Y_{a}\right)^{2}}
\]

Equation (19) is the formula used for finding the expanded arc length.
The arc length formula is valid only for values of \(\theta_{2}<180^{\circ}\).

MACHINE REQUIREMENTS
This program is written in the FORTRAN language and uses the IBM 1620 computer.

\section*{APPENDIX IV (continued)}

\title{
ARC. LENGTH MEASUREMENT BFG-ASD-0066
}

PROGRAM NO. 06968917
ABSTRACT

This program finds arc lengths fo: any circle and sums successive arc lengths when given the circle radius and the end coordinates of each arc.

INTRODUCTION
This program was written for the purpose of finding arc lengths of a prototype panel of the Sonar Bow Dome.

METHOD

The diagram in this section is useful in following the derivation of the arc length formula.


FIGURE I.
Symbols Used:
\(A\left(X_{a}, Y_{d}\right)\) - Position at one end of arc.
\(B\left(X_{b}, Y_{b}\right)\) - Position at other end of arc.
R
- Circle radius.

H - Circle center.

\section*{BLANK PAGE}

\section*{APPENDIX IV (continued)}

C - Midpoint of chord \(A B\).
\(S\) - Arc length.
\(0_{2}\) - Included angle of arc \(S\).
\(\theta_{1}-1 / 2 \theta_{2}\)

Given are the points \(A\left(X_{a}, Y_{a}\right)\) and \(B\left(X_{b}, Y_{b}\right)\) and the radius \(R\).
Following is the proof of the arc length formula. Refer to Figure 1.
From isoceles triangle AHP:
\[
\begin{align*}
& \overline{A B}=\sqrt{\left(X_{a}-X_{b}\right)^{2}+\left(Y_{a}-Y_{b}\right)^{2}}  \tag{1}\\
& \overline{A C}=1 / 2 \overline{A \bar{B}} \cdots \cdots \cdots \tag{2}
\end{align*}
\]

From (1) and (2):
\[
\begin{align*}
& \overline{A C}=1 / 2 \sqrt{\left(X_{a}-X_{b}\right)^{2}+\left(Y_{A}-Y_{b}\right)^{2}}  \tag{3}\\
& (\overline{A C})^{2}=1 / 4 \quad\left[\left(X_{a}-X_{b}\right)^{2}+\left(Y_{a}-Y_{b}\right)^{2}\right]  \tag{4}\\
& (\overline{C H})^{2}=R^{2}-(\overline{A C})^{2} \ldots \cdots \tag{5}
\end{align*}
\]

From (4) and (5):
\[
\begin{align*}
& \overline{C H}=\sqrt{R^{2}-1 / 4}\left[\left(X_{a}-X_{b}\right)^{2}+\left(Y_{a}-Y_{b}\right)^{2}\right]  \tag{6}\\
& \theta_{1}=\tan ^{-1}-\frac{\overline{A C}}{\overline{C H}} \tag{7}
\end{align*}
\]

\section*{APRPINDIX IV (continued)}
\[
\begin{equation*}
\theta_{2}=2 \theta_{1} \tag{8}
\end{equation*}
\]

From (3), (6), (7), and (?
\[
\begin{equation*}
O_{2}=2 \tan ^{-1}-\frac{\sqrt{\left(X_{a}-X_{b}\right)^{2}+\left(Y_{a}-Y_{b}\right)^{2}}}{2 \sqrt{R^{2}-1 / 4\left[\left(X_{a}-X_{b}\right)^{2}+\left(Y_{a} \ldots Y_{b}\right)^{2}\right]}} \tag{9}
\end{equation*}
\]
\[
\begin{equation*}
S=R \theta_{2} \tag{10}
\end{equation*}
\]

From (9) and (10):
\[
S=2 R \tan \frac{\sqrt{\left(X_{a}-X_{b}\right)^{2}+\left(Y_{a}-X_{b}\right)^{2}}}{2 \sqrt{R^{2}-1 / 4}\left[\left(X_{a}-X_{b}\right)^{2}+\left(X_{a}-Y_{b}\right)^{2}\right]}
\]

The above formula is the one used for finding the arc length.
The arc length formule is valid oniy for values of \(\theta_{2}<180^{\circ}\).

\section*{MACHINE REQUIREMEN_S}

This program is written in the FORTRAN language and uses the IBM 1620 computer.

\title{
APPENDIX IV (continued)
}

EFFECTS OF WINDOW STRETCH
AND HYDRODYNAMIC FORCES
UPON THE SONAR BOW DOME CONTOUR
BFG-ASD-0076
PROGRAM NO. 07904911
ABSTRACT
This program calculates the tensions and changes in contour of the sonar bow dome. It takes into account the effects of the stretch characteristics and hydrodynamic forces.

\section*{INTRODUCTION}

The sonar bow dome is a "rain-drop"-shaped rubber housing which is fastened on the bow of a ship. It houses a sonar transducer.

The contour of the dome is changed by the stretch of the wires it contains and by the hydrodynamic forces upon it while it is in use. This program predicts the changes in contour and the tensions upon the wires.

\section*{SUMMARY}

Data concerning the parameters of the dome are first read in. This includes the number of plies, ships velocity, properties of the wire strands and other data.

Geometric properties of each radial frame are then read in. A radial frame is a vertical section of the dome taken such that it is perpendicular to the water level of maximum breadth of the dome.


Figure 1. (Plan View of Dome)

\section*{APPENDIX IV (continued)}


Figure 2. (A radial frame, Section \(A-A^{\prime}\) of figure 1)

The geometric properties of each frame which are read in are:
1. The \(x, y\) and \(z\) coordinates of the upper and lower bead points.
2. The length of the sagitta (see figure 2 ).
3. The horizontal radius (radius of curvature of the water level of maximum breadth; that is, at point \(P\) ) at the frame being studied.
4. \(X_{p}\), the \(x\)-coordinate of point \(P\), the point of maximum breadth of the radial frame (See figures 1 and 2).

\section*{APPENDIX IV (continued)}

We exclude from analysis arcs of radial circles which do not contain the point of maximum breadth. It is not permissible to use the program to study arc \(A B\) below, since it does not contain point \(P\), the point of maximum breadth.


\section*{APPENDIX IV (continued)}

The \(z\)-coordinate must be a measure of water level, that is, the \(Z\)-axis is perpendicular to the plane of the water. The \(z\)-coordinate may be either positive or negative.

The \(x-y\) axcs must determine a plane parallel to the plane of the water. The \(x\)-and \(y\)-coordinates may be positive or negative.

The origin need not be at the nose of the dome as shown in figure 1. The coordinate system could, for example, be set up in the following manner:


Figure 3.

The dome is symmetric about the center line of the ship, so it is only necessary to study one of the symmetric halves of the dome.

Data is read in for each frame to be studied. The program deals with one radial frame at a time. The following computations, which are broken up into "sections," are performed upon each radial frame.

Section A
The bead points and sagitta for the orlginal radial circle are given from input data. This original radial circle is the shape the dome should take under actual operating conditions. The center and radius of this circle are found.
\begin{tabular}{ll} 
Contract NObsr 89483 & Report No. 17 \\
Serial No. SSO41-001 & Phase I Interim Report \\
Task 8156 & \\
\end{tabular}

\section*{APPENDIX IV (continued)}

Section F
The coordinates of the points on each water level are found. These are the coordinates of the pointe labeled \(Q\) in Figure 2.

\section*{Section C}

The radial circle expands outwardly due to the constructional stretch of the window. The amount the sagitta increases is called the deflection. The water level coordinates are found for the poir.ts on the constructionally stretch circle.

\section*{Section D}

Hydrodynamic forces cause the constructionally stretshed circle to expand further. The amourt the (new) sagitta increases is called the additional deflection or velocity deflection. The water level coordinates are found on this radial circle which reflects construction stretch and the effect of hydrodynamic forces. The tensions upon the wires are computed.

\section*{Section E}

The dome will be constructed such that each radial circle will be smaller than the original radial circle. It will expand, approximately, into the shape of the original circle. The radial circle to which the dome is constructed will be called the "shrunken" circle or the "corrected" circle.

The sagitta of the shrunken circle is given by
Sagitta shrunken - Sagitta original - (deflection additional deflection)

Figure 4 illustrates the 4 circle discussed above, and two more circles which will be discussed after the figure.


Figure 4
AB Circle chord
CD Original sagitta
DE Deflection due to constructional stretch
EF Addition deflection due to hydrodymanic forces
CG Shrunken eagitta
NOTE: DF = DG
\begin{tabular}{lll} 
Contract NObsr 89483 & Report No. 17 \\
Serial No. SS041-001 & & Phase I Interim Report \\
Task 8156 & & 30 September 1964
\end{tabular}

\section*{APPENDIX IV (continued)}

Section \(F\)
The constructional stretch of the shrunken circle is found. This gives the circle with arc AHB in Figure 4. Water level coordinates are found on this circle.

Section G
The hydrodynamis forces will cause the above radial circle to expand, giving the circle with arc AIB. This should be approximately the shape of the original circle. Water level coordinates are found for this circle, which is called the expanded shrunken circle.

This can all be summed up as follows:
1. The shape of a radial frame of the dome under operating conditions aluuld be ar: ADB.
2. The radial frame will be constructed to arc \(A G B\), which will expand to arc AIB.
3. Arcs \(A D B\) and \(A I B\) are almost identical.

The control card allows the user to omit certain sections above which might not be of interest to him.

The water level coordinates of the shrunken circle and expanded shrunken cirale may be punched out. This will serve as input to other programs such as the one which computes the difference in volume between the shrunken dome and expanded shrunken dome.

\section*{APPENDIX IV (continued)}

METHOD

\section*{Section A}

Find the center of the radial circle.
The following data is given for each radial frame.
\begin{tabular}{ll} 
Upper Bead Coordinates & \(A\left(x_{a}, y_{a}, z_{a}\right)\) \\
Lower Bead Coordinates & \(B\left(x_{b}, y_{b}, z_{b}\right)\) \\
Sagitta & \(h\) \\
\begin{tabular}{l} 
x-coordinate of point \(P\), \\
the point of maximum \\
breadth on the radinl \\
frame
\end{tabular} & \(x_{p}\)
\end{tabular}

The radial line, 1 , is the line in the \(x-y\) plane determined by the radial frame.

The equation of 1 is
\[
y=m x \quad b
\]
where \(m=\frac{y}{x}=\frac{y_{b}-y_{a}}{x_{b}-\frac{x_{a}}{x_{a}}}\)
Then \(b=y-m x\)
\[
=y_{a}-m x_{a}
\]
(1)


Figure 5

Thus \(m\) and \(b\) are determined.
Difficulties arise when line 1 is parallel to the \(y\)-axis. In this
special case
\[
\begin{aligned}
x_{a} & =x_{b} \\
x & =x_{a}-x_{b} \\
& =0
\end{aligned}
\]
and the slope, \(m\), become infinite.

\section*{APPENDIX IV (continued)}

If line 1 is vertical, or nearly so, a message is printed instructing the user to interchange the \(x\) and \(y\) coordinates. This will then make the slope be zero. The problem must then be run again for this frame. Note that a new value must be entered for \({ }^{x} \mathrm{p}\).

Line 1 is considered "vertical, or nearly so" if
\[
x_{a}-x_{b} \quad 0.1
\]

We also assume that the \(x\) and \(y\) coordinates of the two beads are not the same, because if that were the case, line 1 would not be determined.

The angle is found next.
\[
\begin{equation*}
=\tan ^{-1} \mathrm{~m} \tag{2}
\end{equation*}
\]

Let \(g=\) chord of the arc of the radial circle.
\[
\begin{equation*}
g=\sqrt{\left(x_{a}-x_{b}\right)^{2}+\left(y_{a}-y_{b}\right)^{2}+\left(z_{a}-z_{b}\right)^{2}} \tag{3}
\end{equation*}
\]

Let \(r\) = radius of circle
\[
\begin{aligned}
& r^{2}-\left(\frac{1}{2} g\right)^{2}(r-h)^{2} \\
& r^{2}=\frac{1}{2} g^{2} r^{2}-r-2 r h h^{2} \\
& 2 r h-\frac{4}{2} g^{2}
\end{aligned}
\]
\[
r=8 \frac{2}{8 h^{4 h^{2}}}
\]
(4)


Figure 9 follows from figures 7 and 8.

Figure 6.

Repert No. 17
Phase I Interim Report
30 September 1964

APIENDIX IV (continued)


Figure 7



Figure 8

Find the coordinates of \(T\left(x_{t}, y_{t}, z_{t}\right)\). \(T\) is the intersection of the radial circle with the perpendicular bisector of chord \(A B\).

Points \(A, B, C, T\), and 0 all lie in the plane of the radial circle, (see figure 7), which along with (1) implies:
\[
\begin{align*}
& y_{a}=m x_{a} \\
& y_{b}=m x_{b} \quad b \\
& y_{c}=m x_{c} \quad b \\
& y_{t}=m x_{t} \quad b \\
& y_{0}=m x_{0} \quad b \tag{5}
\end{align*}
\]
\(C\) is the midpoint of chord \(A B\), therefore,
\[
\begin{align*}
& x_{c}=\frac{1}{2}\left(x_{a} \quad x_{b}\right) \\
& y_{c}=\frac{1}{2}\left(y_{n}\right. \\
& \left.y_{b}\right)  \tag{6}\\
& z_{c}=\frac{1}{2}\left(z_{a}\right. \\
& \left.z_{b}\right)
\end{align*}
\]
and
\[
h=+\sqrt{\left(x_{0}-x_{t}\right)^{2}+\left(y_{c}-y_{t}\right)^{2}+\left(z_{0}-z_{t}\right)^{2}}
\]

Considering vectors,
\[
\begin{aligned}
& C T=\left(x_{c}-x_{t}\right) i \quad\left(y_{1}-y_{t}\right) j \quad\left(z_{c}-z_{t}\right) k \\
& A B=\left(x_{a}-x_{b}\right) i \quad\left(y_{a}-y_{b}\right) j \quad\left(z_{a}-z_{b}\right) k
\end{aligned}
\]

The dot product of \(C T\) and \(A B\) is zero since the vectors are perpendicular.


Report No. 17
Ptase I Interim Report 30 September 1964

\section*{APPENDIX :V (cont:nued)}
\(A B \quad C T=\left(x_{a}-x_{D}\right)\left(x_{c}-x_{c}\right) \quad\left(y_{a}-y_{b}\right)\left(y_{c}-y_{t}\right)\left(z_{a}-z_{b}\right)\left(z_{c}-z_{t}\right)=0\)
The coordinates of \(I\) can be determined from (5), (7) and (8). We start with (7).
\[
\begin{aligned}
& h=\left(x_{c}-x_{t}\right)^{2}-\left(y_{c}-y_{t}\right)-\left(z_{c}-z_{t}\right)^{2} \\
& \left.h^{2}=\left(x_{c}-x_{t}\right)^{2}-\left(m x_{c}-b\right)-m x_{t}-b\right)^{2}-\left(z_{c}-z_{t}\right)^{2} \\
& h^{2}=\left(x_{c}-x_{t}\right)^{2}-m^{2}\left(x_{c}-x_{t}\right)^{2}-\left(z_{c}-z_{t}\right)^{2} \\
& h^{2}-\left(1-m^{2}\right)\left(x_{c}-x_{t}\right)^{2}-\left(z_{c}-z_{t}\right)^{2} \\
& h^{2}=\left(1-m^{2}\right)\left(x_{c}^{2}-2 x_{c} x_{t}-x_{t}^{2}\right)-\left(z_{c}^{2}-2 z_{c} z_{t}-z_{t}^{2}\right) \\
& 0=\left(1-m^{2}\right) x_{t}^{2}-2 x_{c}\left(1-m^{2}\right) x_{t}-z_{t}^{2}-2 z_{c} z_{t}-\left(1-m^{2}\right) x_{c}^{2}-z_{c}^{2}-h^{2}
\end{aligned}
\]

Substitutions will be made to simplify the algebra. These capital letters do not represent points here. The numerical value of all these letters are known from previous results.
\[
\begin{equation*}
A x_{t}^{2}-B x_{t}-z_{t}^{2}-C z_{t}-D-0 \tag{9}
\end{equation*}
\]

It follows from (8) that
\[
\begin{aligned}
& \left(x_{a}-x_{b}\right)\left(x_{c}-x_{t}\right)-\left(y_{a}-y_{b}\right)\left(y_{c}-y_{t}\right)-\left(z_{a}-z_{b}\right)\left(z_{c}-z_{t}\right)=0 \\
& E\left(x_{c}-x_{t}\right)-F\left(y_{c}-y_{t}\right)-G\left(x_{c}-z_{t}\right)-0 \\
& E\left(x_{c}-x_{t}\right)-F\left(m x_{c}-b\right)-\left(m x_{t}-b\right)-G\left(z_{c}-z_{t}\right)=0 \\
& E\left(x_{c}-x_{t}\right)-m F\left(x_{c}-x_{t}\right)-G\left(z_{c}-z_{t}\right)=0 \\
& (E-m F)\left(x_{c}-x_{t}\right)-G\left(z_{c}-z_{t}\right)=0 \\
& H\left(x_{c}-x_{t}\right)-G\left(z_{c}-z_{t}\right)=0 \\
& H x_{c}-H x_{t}-G z_{c}-G z_{t}-0 \\
& G z_{t}=H x_{c}-H x_{t}-G z_{c} \\
& z_{t}=H x_{c}-H x_{t}-G z_{c} \\
& G
\end{aligned}
\]

\section*{A.PPENDIX IV (continued)}
\[
\begin{align*}
& z_{t}=\frac{H x_{c}-G z_{c}}{G}-\frac{H}{G} x t \\
& z_{t}-M-N x_{t} \tag{10}
\end{align*}
\]

Substitute (10) in (9)
\[
\begin{align*}
& A x_{t}^{2}-B x_{t}-\left(M-N x_{t}\right)^{2}-C\left(M-N x_{t}\right)-D=0 \\
& A x_{t}^{2}-B x_{t}-M^{2}-2 M N x_{t}-N^{2} x_{t}^{2}-C M-C N x_{t}-D=0 \\
& \left(A-N^{2}\right) x_{t}^{2}-(B-2 M N-C N) x-\left(M^{2}-C M-D\right)=0 \\
& A X_{t}^{2}-A x_{t}-A_{0}=0 \tag{11}
\end{align*}
\]

Solve (11) by Newton-Raphson Method.
\[
\text { Let } \begin{aligned}
f(x) & =A_{2} x^{2}-A_{1} x-A_{0} \\
f^{\prime}(x) & =2 A_{2} x-A_{1}
\end{aligned}
\]
and
\[
x_{1}-1=x_{i}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{c}\right)}
\]

Use \(x_{p}\) for the initial estimate of \(x_{t}\). (See figures 7 and 8 to locate point \({ }^{P} P\) ) The \(y\) and \(z\) coordinates of \(T\) follow immediately from (5) and (10) .
\[
\begin{aligned}
& y_{t}=M x_{t}-b \\
& z_{t}=M-N x_{t}
\end{aligned}
\]

Find the angle between TC and TD (see figure 9).
\[
T C=h
\]

The coordinates of \(D\) are
\[
\begin{aligned}
& x_{d}=x_{c} \\
& y_{d}=y_{c} \\
& z_{d}=z_{t} \\
& c D=z_{c}-z_{d}
\end{aligned}
\]
\[
\begin{aligned}
& \sin \phi \cdot \frac{z_{c}-z_{d}}{h} \\
& =\frac{z_{c}-z_{t}}{h} \\
& \therefore \phi-\sin -1 \frac{\left(z_{c}-z_{t}\right)}{h}
\end{aligned}
\]

The center of the circle, point \(0\left(x_{0}, y_{0}, z_{0}\right)\) can now be found. Referring to figure 9.
\[
\begin{aligned}
z_{0} & =z_{t}-E O \\
& =z_{t}-r \sin \phi
\end{aligned}
\]

The "plus or minus" in the first equation is accounted for in the second equation since sin \(\phi\) arkes on both positive and negative values. \(\mathrm{E} \theta\) is added if \(\phi>0\); subtracted if \(\phi<0\). \(x_{0}\) will be found next. Refer to figure 9 and notice that ET = \(r \cos \phi\) and that \(x_{e}=x_{0}\).
Assume \(\theta\) and refer to the following sketch:
 down (Case II).

Report No. 17
Phase I Interim Report
30 September 1964

\section*{APPENDIX IV (continued)}

Consider first Case I. In this situation, the bead points must be to the right of the point of maximum breadth. Lot \(x_{a}\) be the \(x\)-coordinate of the bead point \(A, x_{p}\) be the \(x\)-coordinate of the point of maximum breadth.

The conditions for Cese I above are:
\[
\begin{aligned}
& \theta>0 \\
& x_{a}>x_{p}
\end{aligned}
\]

Then:
\[
\begin{aligned}
x_{\theta} & =x_{t}+\Delta x \\
& =x_{t}+E T \cos \theta \\
& =x_{t}+r \cos \phi \cos \theta \\
\therefore x_{0} & =x_{t}+r \cos \phi \cos \theta
\end{aligned}
\]


Now, cunsider Case II. By similar reasoning, the oonditions are
\[
\begin{aligned}
& \theta>0 \\
& x_{\mathrm{a}}<x_{\mathrm{p}}
\end{aligned}
\]

\section*{Then:}
\[
\begin{aligned}
x_{e}, & =x_{t}-\Delta x^{\prime} \\
& =x_{t}-E^{\prime} T \cos \\
& =x_{t}-r \cos \phi \cos \theta \\
\therefore x_{0} & =x_{t}-r \cos \phi \cos \theta
\end{aligned}
\]


Now assume \(\theta<0\). This case is represented in the following diagram:


If we reason in the same manner as before we arrive at the following: Case I: \(\quad \theta<0\)
\[
\begin{aligned}
& x_{a}<x_{p} \\
& x_{0}=x_{t}-r \cos \theta \cos \phi
\end{aligned}
\]

Cese II: \(\quad \theta<0\)
\[
\begin{aligned}
& x_{a}>x_{p} \\
& x_{0}: x_{t}+r \cos \theta \cos \phi
\end{aligned}
\]

To sum up, \(x_{0}\) can be found by one of the following equations:
If \(x_{a}>x_{p}\)
\(x_{0} \cdot x_{t}+r \cos \theta \cos \phi_{1}\)
or if
\(x_{a}<x_{p}\),
\(x_{0}-x_{t}-r \cos \theta \cos \phi\)
The \(y\)-coordinate of the center can be found easily by using equation
\((5)\)
\[
y_{0}-M x_{0}+b
\]

Thus the circle ceater has been round.

\section*{Section \(日\)}

Finding tho pointa on the radial oirole at various given water levels. The pointa are the "Q's" in Figurs 2.

The cirolo is determined by tha interceotion of a ephere, wh center \(O\) and radius \(r\), and a plane containing points \(A, B\), and \(P\). \(P\) is a point on the radial circle at given water level, I. \(P\) can be thought of as one of the 4 points in figure 2, or as point \(P\) in rigure 8.

Equation of sphere:
\[
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=x^{2}
\]

Equation of plane:
\[
y=m x+b \quad \text { (z arbitrary) }
\]

Therefore, the equation of the radial circle is:
\[
\begin{equation*}
\left(x-x_{0}\right)^{2}+\left[(m x+b)-y_{0}-\neq+\left(z-z_{0}\right)^{2}=x^{2}\right. \tag{12}
\end{equation*}
\]
where the variables are \(x\) and \(z\).
To find a point, \(P\), on the circle at water level \(L\), set \(z=L\) and solve for \(x\). The \(y\)-coordinate follows from
\[
y=m x+b
\]

Sotting \(z=\) I in equation (12)
\[
\begin{align*}
& \left(x-x_{0}\right)^{2}+\left[(m x+b)-\left(m x_{0}+D^{1}\right)^{2}+\left(L-z_{0}\right)^{2}=r^{2}\right. \\
& \left(x-x_{0}\right)^{2}+m^{2}\left(x-x_{0}\right)^{2}+\left(L-z_{0}\right)^{2}=r^{2} \\
& \left(1+m^{2}\right)\left(x-x_{0}\right)^{2}+\left(L-z_{0}\right)^{2}=r^{2} \\
& \left(x-x_{0}\right)^{2}+\frac{\left(L-z_{0}\right)^{2}-r^{2}}{1+m^{2}}=0 \\
& x^{2}-2 x_{0} x+\left[x_{0}^{2}+\frac{\left(L-z_{0}\right)^{2}-r^{2}}{1+u^{2}}\right]=0 \\
& x^{2}+R x+S=0 \tag{13}
\end{align*}
\]

Report No. 17
Serial No. SSO41-001
Phase I Interim Report
Task 8156

\section*{APPENDIX IV (continued)}

Note that there are two roots to equation (13), but only one of them is a solution to our problem. Care must be taken to insure that the correct root is found. Equation (13) is solved by the Newton-Raphson method, in which originally an estimate of the desired root is made. If the estimate is near the desired root, then it will usually converge to that root. A good estimate of the desired root will be found by a linear interpolation so the method will find the desired root of (13).

Let \(Q_{1}\) and \(Q_{2}\) be points on the circle at water levels \(L_{1}\) and \(L_{2}\), whose \(x\)-coordinate we wish to estimate. \(Q_{1}\) is on higher water level than \(T\), while \(Q_{2}\) is on a lower one. (See Figure 11). It is assumed that the upper bead is on a higher water level than the lower bead, that is, \(z_{a}>z_{b}\).

Consider \(\mathrm{Q}_{1}\), where \(\mathrm{L}_{1}>\mathrm{z}_{t}\).
Approximate \(Q_{1}\) by \(Q_{1}\),
\[
x_{q} \approx x_{q_{1}}^{\prime}
\]

It follows, by similar triangles,
\(\frac{x_{a}-x_{q}^{\prime} q l}{z_{a}-L}=\frac{x_{a}-x_{t}}{z_{a}-z_{t}}\)
\(x_{a}-z_{q 1}^{\prime}=\left(z_{a}-L\right)\left(\frac{x_{a}-x_{t}}{z_{a}-z_{t}}\right)\)
\(x_{q_{1}}^{\prime}=x_{a}+\left(L-z_{a}\right)\left(\frac{x_{a}-x_{t}}{z_{a}-z_{t}}\right)\)
\(x_{q 1} \approx x_{a}+\left(L-z_{a}\right)\left(\frac{x_{a}-x_{t}}{z_{a}-z_{t}}\right)\)


Figure 11

Now consider \(Q_{2}\) where \(L_{2}<z_{t}\)
Approximate \(Q_{2}\) by \(Q^{\prime} 2\)
\[
\begin{align*}
& x_{q_{2}} \approx x_{q_{2}}^{\prime} \\
& \frac{x^{\prime} q_{2} 0_{t}}{z_{t}}=\frac{x_{b}-x_{t}}{z_{t}-z_{b}} \\
& x_{c_{2}} \\
& x_{t}+\left(L-z_{t}\right)\left(\frac{x_{t}-x_{b}}{z_{t}-z_{b}}\right)  \tag{15}\\
& x_{t}-\left(L-z_{t}\right)\left(\frac{x_{t}-x_{b}}{z_{t}-z_{b}}\right)
\end{align*}
\]

It is necessary to find angle \(\psi\) (Figure 10) for the constructional stretch calculations.
\[
\tan \psi=\frac{A C}{C O}
\]
\[
\tan Y=\frac{1 / 28}{\sqrt{\left(x_{c}-x_{0}\right)^{2}+\left(y_{c}-y_{0}\right)^{2}+\left(z_{c}-z_{o}\right)^{2}}}
\]
\[
\begin{equation*}
\psi=\tan ^{-1}\left[\frac{8}{2 \sqrt{\left.x_{c}-x_{0}\right)^{2}+\left(y_{c}-y_{0}\right)^{2}+\left(z_{c}-z_{o}\right)^{2}}}\right] \tag{16}
\end{equation*}
\]

\section*{APPEND 1 X : \(V\) (continued)}
```

Let $f(r)=\sin \left(\frac{s}{2 r}\right)=\frac{g}{2 r}$
$\therefore F^{\prime}(r)=\left[\cos \left(\frac{s}{2 \pi}\right)\right]\left(-\frac{s}{2 \pi Z}\right)-\left(-\frac{g}{2 r^{2}}\right)$
- $\left.\frac{g}{2 r^{2}} \frac{s}{2 r^{2}} \cos \frac{s}{2 r}\right)$
$-\frac{1}{2 r^{2}}\left[g-s \cos \left(\frac{s}{2 r}\right)\right]$
and $r_{i}-1-r_{i}-\frac{f\left(r_{i}\right)}{f^{\prime}\left(r_{i}-1\right)}$

```
For the initial estimate of \(r\), use the radius of the original
circle previously found in Section \(A\).
It follows immediately that
\[
\psi=s / 2 r
\]
and \(h=r-O C\)
\[
\begin{aligned}
& =r-r \cos \psi \\
& =r(1-\cos \psi)
\end{aligned}
\]

The constructionally stretched circle has been essentially found. The center and points on various water levels can be found using methods outlined in Sections \(A\) and \(B\).

\section*{APPENDIX IV (continued)}

Section C
Constructional Stretch Calculations
The equaticns of construction stretcin in this section are empirical.
The constructional stretch is a linear function f the length of the radial circle arc \(A B\).
\[
\begin{equation*}
\text { Construction Stretch }=a \widehat{A B}+b \tag{17}
\end{equation*}
\]
a and b are constants which depend upon the type of wire used.
Let \(s^{\prime}\) represent the length of the new arc after constructional stretch.
\[
\begin{align*}
& s^{\prime}=\overparen{A B}+(a \overparen{A B}+b) \\
& s^{\prime}=\overparen{A B}(1+a)+b \tag{18}
\end{align*}
\]
where
\[
\widehat{A B}=2 r \psi
\]

It is now necessary to find the radius of the constructionally stretched circle. Using Figure 12, the following equations arise:
\[
\left\{\begin{array}{l}
s^{\prime}=2 \mathrm{r}^{\prime} \mathscr{Y}  \tag{19}\\
\sin \neq \mathrm{f}=1 / 2 \mathrm{~g} / \mathrm{r}^{\prime}
\end{array}\right.
\]

The system of equations (19) will be solved simultaneously. The primes will be dropped to simplify notation.
\[
\begin{align*}
& \psi=s / 2 r \\
& \sin \left(\frac{s}{2 r}\right)=\frac{8}{2 r} \\
& \sin \left(\frac{s}{2 r}\right)-\frac{8}{2 r}=0 \tag{20}
\end{align*}
\]


Figure 12

Equation (20) will be solved for \(r\) by the Newton-Raphson Method.

\section*{APPENDIX IV (continued)}

\section*{Section D}

Find the deflection of the dome due to hydrodynamic forces. (This is a
function of the ship's velocity and is sometimes referred to as the
"velocity deflection.")
The water pressure on the dome, \(P_{w}\), is given by
\[
P_{w}=\frac{(62.4)(S G)(\text { depth })}{144}
\]
where
depth \(=\) depth of dome
SG = specific gravity of the fluid in which the dome is immersed.
\(P_{v}\), the pressure on the dome due to the ship's movement through the water, is
\[
P_{v}=\frac{1 / 2\left(\frac{62.4}{32.17}\right)(S G) C_{p} v^{2}}{144}
\]
where
\[
\begin{aligned}
& C_{p}=\text { coefficient of pressure } \\
& V=\text { velocity of ship (ft/sec) }
\end{aligned}
\]
and
\[
\begin{aligned}
& P_{\text {diff }}=P_{d}-P_{w}-P_{v} \\
& P_{d}=\text { Design Pressure } \\
& P_{\text {diff }}=\text { Diffirential Pressure }
\end{aligned}
\]

An iteration method was derived to solve for the tensions. The deflection can then be found.

The three basic equations are:

\section*{AP, END:X IV (continued)}
\[
\begin{align*}
& P_{\text {diff }}=\frac{\eta_{V} N T_{v} \sin ^{2} E_{i}+\eta_{H} N T_{H} \sin ^{2} \boldsymbol{\beta}_{2}}{{ }^{r}{ }_{V}}+\frac{\eta_{H}{ }^{N T_{H}} \cos ^{2} \boldsymbol{\beta}_{2}}{{ }^{r_{H}}}  \tag{21}\\
& T_{v}=\frac{-\frac{d D^{2}}{r_{v}} \frac{\sin \psi}{F_{v}} \quad\left[\frac{\psi_{v} \cos \psi_{v}}{\psi_{v}\left(1-\cos \psi_{v}\right.}\right]}{]}  \tag{22}\\
& T_{H}=\frac{d D^{2}}{r_{H} F_{H}} \tag{23}
\end{align*}
\]

Where:
```

\etav = number of vertical plies.
\eta H = number of horizontal plies.
N = number of cables per inch of ply.
, }\mp@subsup{B}{1}{}=\mathrm{ angle vertical cables make with horizontal.
\mathcal{O}}=\mp@code{angle horizontal cables make with horizontal.
D = cable nominal diameter.
r}v=vercical radius
r}\mp@subsup{\textrm{H}}{}{=}=\mathrm{ horizontal radius.
\mp@subsup{\psi}{v}{}=\mp@subsup{\mathscr{V}}{\mathrm{ , one-half the central angle of the frame (see figure 12)}}{}\mathrm{ (s)}
Tv}= vertical tension
T
F
F
d = deflection (denoted by }\Delta\mathrm{ in other sections of Phase : Report)

```

\section*{APPENDIX IV (continued)}

Divide (23) by (22)
\[
\begin{equation*}
\frac{T_{H}}{T_{v}}=\frac{r_{v}}{r_{H}}\left[\frac{\psi_{v}\left(1-\cos \psi_{v}\right)}{\sin \psi_{v}-\psi_{v} \cos \psi_{v}}\right] \frac{F_{v}}{F_{H}} \tag{24}
\end{equation*}
\]

Lot \(c \psi=\frac{\psi_{V}\left(1-\cos \psi_{V}\right)}{\sin \psi_{V}-\psi_{v} \cos \psi_{v}}\)
and \(\quad F^{*}=F_{V} / F_{H}\)

Then, from (2.4)
\[
\begin{equation*}
\frac{T_{H}}{T_{V}}=\frac{r_{v}}{r_{H}} C \psi^{F *} \tag{25}
\end{equation*}
\]

From (21)
\[
\begin{align*}
P_{d i f f} & =T_{v}\left\{\frac{\eta_{v} \mathrm{~N} \sin ^{2} B_{1}+\eta_{H} N \frac{T_{H}}{T_{v}} \sin ^{2} B_{2}}{r_{v}}+\frac{\eta_{H} N \frac{T_{H}}{T_{V}} \cos ^{2} B_{2}}{r_{H}}\right\} \\
& =T_{v}\left\{\frac{\eta_{v} N \sin ^{2} B_{1}}{r_{v}}+\frac{T_{H}}{T_{v}}\left[\frac{\eta_{H} N \sin ^{2} B_{2}}{r_{v}}+\frac{\eta_{H} N \cos ^{2} B_{2}}{r_{H}}\right]\right\} \tag{26}
\end{align*}
\]

Substitute for \(T_{H} / T_{V}\) from (25) and solve for \(T_{V}\)
\[
\begin{align*}
& \mathrm{T}_{\mathrm{v}}=\frac{\eta_{\mathrm{V}} \mathrm{~N} \sin ^{2} B_{1}+\frac{r_{\mathrm{V}}}{r_{\mathrm{H}}} G \psi^{\mathrm{F}}\left[\frac{\eta_{\mathrm{H}} \mathrm{~N} \sin ^{2} \beta_{2}}{r_{\mathrm{V}}}+\frac{\eta_{\mathrm{H}} \mathrm{~N} \cos ^{2} B_{2}}{r_{\mathrm{H}}}\right]}{\mathrm{T}_{\mathrm{H}}=\left(\frac{\mathrm{T}_{\mathrm{H}}}{\mathrm{~T}_{\mathrm{V}}}\right) \mathrm{T}_{\mathrm{V}}} \tag{27}
\end{align*}
\]

The elastic stretch factors \(F_{V}\) and \(F_{H}\) are funotions of the tensions
\[
\begin{align*}
& \frac{1}{F_{v} \times 10^{6}}=M_{f} T_{v}+b_{f} \\
& \frac{1}{F_{H} \times 10^{6}}=M_{f} T_{H}+b_{f} \\
& \therefore F^{*}=\frac{F_{v}}{F_{H}}=\frac{M_{f} T_{H}+b_{f}}{M_{f} T_{v}+b_{f}} \tag{29}
\end{align*}
\]

The iteration process is begun by setting \(F\). \(=1 . T_{H}^{\prime} T\) is then found from (25), which is then substituted in (?) to find"? t. is found from (28), using the above value of \(T_{H} T_{V}\) A new value for \({ }^{\prime}\). :s calculated from the values of \(T_{v}\) and \(T_{H}\) by use of equation \(i / 9\), The process then repeats itself with this new value of \(F\).

The process repeats itself until it converges the process is considered to be converged when the difference between two successive values of \(T\) is less than \(1 / 10\). The deflection, \(d\). s then found by reartinging equation (22).
\[
\begin{aligned}
& d=\frac{T_{v} r_{v} F_{v}}{D^{2}\left[\frac{\sin \psi_{v}-\psi_{v} \cos \psi}{\psi v(1-\cos \psi / v}\right]} \\
& \left.d=\frac{T_{v}{ }_{v}{ }_{v}\left[\frac{1}{\left(M_{f} T_{v}+b_{f}\right.} \times 10^{6}\right]}{D^{?}}\right]
\end{aligned}
\]

The new sagitta is equal to the length of the previous sagitta plus the deflection d.

The center of the radial circle is then found by methods outianed in sections \(A\) and \(B\).
```

Contract NObsr 89483 - 41- Report No. 17
Seríal No. SSO41-001 Phase I Interim Report
Task 8156
30 September }196

```
APPENDIX IV (continued)

\section*{Section E}

The sagitta of the shrinken circle is found by substracting the sum of the deflections due to constructional stretch and hydrodynamic forces from the original sagitta. The center and points of the shrunken circle are then found by methods outlined in Sections \(A\) and \(B\).

\section*{Section \(F\)}

The construction stretch of the shrunken circle is foumd by methods outlined in Section \(C\). The center of this constructionally stretched shrunken circle is found by methods outlined in Sections A and B.

\section*{Section G}

The defection due to hydrodynamic forces upon the constructionally stretched circle is found by the methods outlined in Section D. Then the center and points on this expanded shrunken circle are found by methods outlined in Sections \(A\) and \(B\).

MACHINE REQUIREMENTS
The program was written in FORTRAN II for the IBM 7074. Floating point hardware and three tape units are required.

Report No. 17
Serial No. SSO41-001
Task 8156
Phase I Interim Report

APPENDIX IV (continued)


Contract NObsr 89483
Serial No. SS041-001
Task 8156

Report No. 17
Phase I Interim Report
30 Septembei 1964

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Card} \\
\hline Number & Card Type & celumas & Symbol & Description \\
\hline 1 & Identification & 2-72 & --- & Any alphanumeric description of the problem. \\
\hline \multirow[t]{8}{*}{2} & \multirow[t]{8}{*}{Parameter Card \#1} & & & NOTE: ALI numbers must have decimal points. \\
\hline & & 1-10 & DEPRES & Design pressure (p.s.1.) \\
\hline & & 11-20 & DEPTH & Depth of dome (ft.) \\
\hline & & 21-30 & VEL & Ship's velocity (kuots) \\
\hline & & 31-40 & VPL & Number of vertical plies. \\
\hline & & 41-50 & HPL & Number of horizontal plies. \\
\hline & & 51-60 & BETAI & Angle of vertical cables with horizontal (degrees). \\
\hline & & 61-70 & BETA2 & \begin{tabular}{l}
Angle of horizontal cables \\
with horizontal (degrees).
\end{tabular} \\
\hline \multirow[t]{8}{*}{3} & \multirow[t]{8}{*}{\begin{tabular}{l}
Parameter \\
Card /H2
\end{tabular}} & & & NOTE: All numbers must have decimal points. \\
\hline & & 1-10 & CPI & Number of cables per inch of ply. \\
\hline & & 11-20 & DIA & Cable nominal diameter (inchos). \\
\hline & & 21-30 & ACON & Slope \(\}\) Constructiomal \\
\hline & & 31-40 & BCON & \[
\text { Intercept } \int \begin{aligned}
& \text { stretch } \\
& \text { ractors }
\end{aligned}
\] \\
\hline & & 41-50 & FM & Slope \(\}\) Elastic \\
\hline & & 51-60 & EB & Intercept \(\left\{\begin{array}{l}\text { stretch } \\ \text { factors }\end{array}\right.\) \\
\hline & & 61-70 & DELIL & Distance between water levei.s on radial irames coordinates which are desired in the output (inches). (See Note I at the end of this section for further explanation. \\
\hline
\end{tabular}
Contract NObsr 89483
- 45 -
Serial No. SSO41-C01
Report No. 17
Task 8156
Phase I Interim Report
30 September 1964

```

APPENDIX IV (continued)

```

\section*{INPUT DESCRIPTION}

The input for each problem consists of rive types of cards placed in the order listed below:
\begin{tabular}{|c|c|c|}
\hline Type & Number of
\(\qquad\) & Descrintion \\
\hline Idontification Card & 1 & The user may place any comment on this card. It is usually used to identify the particular problem being run. \\
\hline Parameter Carda & 3 & These cards contain information about the dome being studied, such as design pressure, cable diameter, specific gravity of fluid, eto. \\
\hline Control Card & 1 & The control numbers placed on this card determine the type of output desired by the user. It will let the user decide, for exauple, whether or not he wants the points on the constructionally stretched oircle printed out, or just that circle's center and radius. \\
\hline Frame Card (s) & \begin{tabular}{l}
One card \\
for each \\
Trame \\
studied.
\end{tabular} & Information about a rrame is contained on this card, such as the coordinates of its bead points. \\
\hline Frame End Card & 1 & This card is placed after the last frame card. It contains zeros in columas 1-5. \\
\hline
\end{tabular}

If a second problem is to be run, for example on the dome at a different pressure, the cards for the second problem follow directly behind the cards of the first problem. All five types of cards must bo used in the second problem.

Additional problers may be run by placing the cards behind the carde of the preceding problems.

The input data is placed on the cards in the following manner:

APPENDIX IV (continued)
Card
Number.

APPENDIX IV (concinued)
Card
Number

> Card_Trpe Columns Symbol
\(4 \begin{aligned} & \text { Parameter } \\ & \text { Card } \# 3\end{aligned}\)
\(4 \begin{aligned} & \text { Paramete } \\ & \text { Card } \# 3\end{aligned}\)

\section*{Description}

NOTE: All numbers must have decimal points.
1-10 WLBEG The begging (lowest) water loval on a radial rama, (Inches). (See Note I at the end of this section for further explanation.)
21-20 SG The specific gravity of the rluid in whioh the dome is immersed.


```

Contract NObsr 89483
-50 -
Repurt No. 17
Serial No. SS041-001
Phase I Interim Report
30 September 1964

```
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{7}{*}{\[
\begin{aligned}
& \text { Card } \\
& \text { Number }
\end{aligned}
\]} & \multirow[t]{7}{*}{Card Type} & colums & & \\
\hline & & cruns & Symb & Description \\
\hline & & 40-46 & YB & \[
\begin{aligned}
& \text { y-coordinate of lower } \\
& \text { bead (inches). }
\end{aligned}
\] \\
\hline & & 47-54 & 28 & \[
\begin{aligned}
& z \text {-coordinate of lower } \\
& \text { bead (inches). }
\end{aligned}
\] \\
\hline & & 55-61 & SAG & Frame sagitta (Inches). (See Note V for definition of sagitta). \\
\hline & & 62-66 & COE & Coefficient of pressurc. \\
\hline & & 67-72 & HORAD & Horizontal radius (inches). \\
\hline \(n+6\) & Frame End Card & 1-5 & -- & Zeros in columns 1-5. \\
\hline ( n is the number of frames studied.) & & & & \\
\hline
\end{tabular}



\section*{APPENDIX IV (continued)}



Report No. 17
Phase I Interim Report 30 September 1964

APPENDIX IV (continued)


\section*{APPENDIX IV (continued)}

NOTES ON INPUT

NOTE I
Explanation of "distance between mater Levels" and "beginning nater level."
The program finds the coordinates of points on the radial frame. These tro variables, denoted by "DELHL" and "VLEEG" respectively, determine the \(z\)-coordinates or "water levels" of the points which will be found.

Example: Assume the upper and lower bead points are at water levels 9.8 and 1.7 feet respectively, and we mant the points on the radial rame \(1 \frac{1}{2}\) fect apart, beginning at water level 1. That is, we want points at the rollowing water levels:

1, \(2 \frac{1}{2}, 4,5 \frac{1}{2}, \ldots\) (reet)
All measurements are in inches, so the desired vater levels mould be
\(12,30,48,66, \ldots\) (inches)
Therefore, we use the rollowing values for the variables:


WLBEG \(=12\).
DELHL - 18.
The coordinate of the first point to be printed out would be of the point whose water level is \(2 \frac{1}{2}\). The : foot water level point, would not print out since it is beiow the lower bead. The last point to print out would have a water level of \(8 \frac{1}{2}\).

\section*{NOTE II}

Restrictions on progran Then results are to bo punched out (XPUNCH \(=1\) ).
If the results of a problem are to be punched out, it is not perisisible to run another problem after this problem.

NOTE III

\section*{Distinction between upper and Lower beads and restriction.}

The bead with the greatest water level (Ereatest z-coordinate) is the upper bead.

\section*{NOTE III (Continued)}

\section*{Examples:}
a) If the water levels of the beads are +10.3 and +2.3 , the bead at water level +10.3 would be the upper bead since \(10.3>1.3\).
b) If the vater levels of the beads are - 20.3 and -1.3 , the bead at water level -1.3 would be the upper bead 3ince \(-1.3>\)
10.3 .

Restriction: The \(x\) and \(y\)-coordinates of the beads may not be equal.

NOTE NV
Description of the coordinate system,
The \(x-y\) plane is parallel to the plane of the water. The :e-axis is perpendicular to the plane of the water.

NOTE Y

Derinition or saritia.
The distance between the mid-point of an arc and the mid-point of its chord in a circle. (Line CT in Figure 6)
APPERUIX IV (continued)

\section*{OUTPUT DESCRIPTION}

A list of the output from the program follows. Note the optional print-outs which depend upon the valies entered on the control card.
1. The input data - which was placed on the parameter cards.

The following is printed out for each frame.
2. The original radial frame (circie) - The frame number, coefficient of pressure, horizontal radius, sagitta, and the upper and lower bead coordinates, which were read from the frane card, are printed. The circle radius and coordinates of the circle center, which were calculated, are printed.

Optional print out \(15 \mathrm{PR}=1\) - The coordinates of the points on the radial circle at water levels determined by variables WLBEG and DELINL. (See input description)
3. The circle after constructionad atretch - The frame number, deflection, sagitta and horizontal and vertical radil are printed.

Qptional pelrt out if P2 \(=1\) - The coordinates of the center and points on the circle.
4. The circis after consiructional stretch and velocity deflection (hydrodynamic force deflection) - The frame number, additional deflection, sagitta, vertical radius, and the horizontal and vertical deflections are printed.

Qutional print out if P3 \(=1\) - The coordinates of the center and points on the circle.
5. The shrunken circie (the corrected circle) - Tho radius and sagitta are printed out.

Optionar print out if \(P 4=1\) - The coordinates of the center and points on the circle (Noto: - This is punched if \(\mathrm{XPUNCH}=1\) ).

Qption - The program prints the output described below if CHECK \(=1\); othernise it "111 do the calculations for the next frame.
6. The shrunken circie after constructional stretch- The rame number, deflection, sagitta, and horizontal and vertical radif are printed.

Qotional print-out if \(P 5=1\) - The coordinates of the center and points of the circle.
7. The shrunken circle after constructional stretch and velocity deflection (hydrodynamic force deflection), the expanded shrunken circle - The frame number, addicional deflection, sagitta, vertical radius, and the horizontal and vertical tensions are printed.

Optional print-out if \(\mathrm{P} 6=1\). The coordinates of the center and points on the circle (Note: This is punched if XPUNCH=1).

\section*{SAMPLE PROBLEM}

The input and output of a sample probiem follows.
Note that for this problem only one frame was studied, so there is only one frame card. In practice there are usually many frames to be studied, which would mean that there would be many frame cards.

All variables were given a value of 1 on the control card, so the example gives the maximum amount of print-out and in addition, the punch-out.

\section*{SAMPLE INPUT}

\section*{SAMPLE PROBLEM}


\section*{APPENDIX IV (continued).}
```

 11SL RUD PRLCR DRCGRAN CLCKUECK 213
 21 NAY 19t4 C.ATE THLKSLAY S.LO RLN
 SANPLE PRCPLEN
    ```
```

\#...NPLT cnTA
CESIGN PRESSLRE \# ...4O.COC
liEPTH \& 32.COC
VELCCITY %KNCTSCH 2C.COC
VEKTICAL PLIES 1.COC
HCPLICNIA: PGLISA 2.(ULC
BETM! TUEGREESN__SO.CJR
UETN2 %CECREESU_惪 15.COC
CNBLES PFR IMCY 14.COO
CAHLE CIANETER A C.CIP
CGISIRLCILCNAL SIREICH FACICRS
SLCPE \# 0.0r.l
I\TERCEPI C.le心
I VS. 1/'\&F|1C**65
SLCFE H 0.012
1\IERCEPT H L.l!%

```
```

SPECIFIC GRAVITYCF FLLII,"

```
SPECIFIC GRAVITYCF FLLII,"
1.030
```

1.030

```

\section*{APPENDIX IV (continued)}

CRLGIMAL RACDAL GIRGLE NC. LL

CCEF. CF PRESSURE II -C.28C

HERIZCATAL RACIUS \# 2300.CCC
VERIICAL RACIUS 49.272
SAGITA _ \(\quad 25.538\)
\(x \quad y \quad z\)

LEPFQ_HEAC_76.875 \(25.5 C O \quad-9.600\)
LCKER EEAL 8C.75C 17.250 -95.312
CIRCLE CENTER \(28.678 \quad\) CC. 371 -49.705

PCINIS CN
RACLAL CIRCLE
\begin{tabular}{|c|c|c|}
\hline 76.623 & 48.037 & - \\
\hline 73.638 & 92.393 & -84.6U0 \\
\hline 71.529 & 36.882 & -78.cco \\
\hline 69.958 & 160.142 & -72.cco \\
\hline 68.759 & 102.459 & -66.000 \\
\hline 68.193 & 103.984 & -60.000 \\
\hline 67.310 & 104.799 & -54.000 \\
\hline 67.143 & 104.942 & \(48 . \mathrm{CCO}\) \\
\hline 67. 288 & 104.420 & -42.000 \\
\hline 68. 557 & 103.208 & -36.000 \\
\hline 63.179 & 101.247 & -30.000 \\
\hline 70.307 & 9\%.418 & -24.coc \\
\hline 72.844 & 44.509 & \(-18.000\) \\
\hline 75.194 & 8.08 & -12.000 \\
\hline
\end{tabular}

\section*{APPEND X it isnnt：rued．}

EFFLCT CF CCASIRLCTICNAL STRETLF，CIFCLE ジ・•1く
－LYFLRCTICN H C 29
SAC！itA \(\quad\) 28．．く？
KEDTLCAL RACIUS H 4．9．1：し\％
＋C：I\％CATAL RACIUSH 23CC． 2 Mb

\(\qquad\)


61
Report No. ¿?
Phase I interim Report
30 September 1964

\section*{APPEND:Y :U icontinutd:}
```

CIRCLE NLNPER 12
ACDIIICNNL CHFLECIICNA
SACITIA \# \#t.72%
VERIICML RACJUJ H \&2.595
VERTICAL TENSICN \# 3?.531
HCRIZCNTAL TENSICA \# C.GC3

```
〔FFECT CF VELCCIIY CEFLEC.IICN PLUS CCNSTRUCIICNAL STREYGH

\(\qquad\)
\(\qquad\)

Contract NObsr 8948.
Seríal No. SSO41-00: Task 8156

Report No 17
Prise : interim Report 30 September 1964

\section*{APPE:OM in icont:rued.}
```

CCRYECIEC "SHRLNKENO CIPCLE NC. 12
RACLLS I: 5C.ClC
SNGIIIA H < < .149

```

CCRRECTEC \& SFPLAKENO CCCDCIANPES
\begin{tabular}{|c|c|c|c|}
\hline & \(x\) & \(y\) & 2 \\
\hline CIRCLE CENTER & 89.226 & 58.952 & -49.545 \\
\hline & 75.2.73 & 85.611 & -9c.ccc \\
\hline & 73.913 & 91.807 & -84.CCO \\
\hline & 71.93\% & 96.227 & -7と.cco \\
\hline & 710.326 & 5 5.143 & \(-72.680\) \\
\hline & 63.2101 & \(10: 742\) & -66. 200 \\
\hline & 1, H. 5312 & 103.2t) & -6c.c.co \\
\hline & 6.8 .16 .7 & 204.c日? & -54. Cc Co \\
\hline & +8.C7? & 164.21! & -48. 4 CC \\
\hline & 68.306 & 103.74\% & -4.2.cco \\
\hline & 16, - 251 & 10.2571 & -31.200 \\
\hline & 6:5.7,3 & 100.063 & -30.cc0 \\
\hline & 71.045 & 37.513 & -2.4.COC \\
\hline & 72.825 & \(0 \% .133\) & -18.cce \\
\hline & 75.277 & \(0 \% .902\) & -12.600 \\
\hline
\end{tabular}

Report No. 17
Serial No. SS041-001
Task 8156

Phase 1 Interim Report 30 September 1964

\section*{APPENDIX IV (continued).}
- UR-

EFFECT CF GCASTRLGTICNAL SIRETCH UPLA SHRUNKEN CIRCLE NU. \(1 /\)
\begin{tabular}{lrr} 
CEFLECIICA & H & 0.252 \\
SAGIITA & H & \(25.44 C\) \\
YERIICML RACIUS & 49.232 \\
HCRIRCATAL RACIUSH & \(2299.5 C 3\)
\end{tabular}
\(X \quad y \quad 2\)

CIRCLE CENTER 84.083 59.507 -49.005
\(76.750 \quad 55.760-40.000\)
\(73.812 \quad 92.022-64 . \operatorname{ccc}\)
71.125 25.145-76.100
76.265 59.701 -72.500
\(69.128 \quad 102.067-66.000\)
60.107 203.529 -60.cuo
64.0.22 164.341 -54.000
\(67.951 \quad 104.500-48.000\)
C8. \(143163.994 \quad-42\) CCC
53.740 \(162.1806-36.000\)
\(69.652 \quad 100.875-30.600\)
70.55 Sy.c54 -24.cco
\(72.75 \%-24.265-18.00 \mathrm{C}\)
15.261 世8.967 - 12.0.00

\section*{APE：min：\(Y\)（continued．}

FFFECT CF VELCCITY CEFLECTICN PLUS CCNSTRUCTICNAL STRETCH LFCN＿SHRUAKEA＿CIRCLE．． 12

\begin{tabular}{|c|c|c|c|}
\hline & \(\wedge\) & Y & 2 \\
\hline CIRCLE CENTER & 8.9 .1 .63 & CC．40？ & \(-49.707\) \\
\hline & 76.612 & 8.6 .047 & －3c．ccc \\
\hline & 73.631 & \(4 ? .140\) & －84．CCO \\
\hline & 71.522 & \％ 6.87 & －78．c．0 \\
\hline & 1：9．5sc & \(1 . C\) C． 15 ＇s & －72．C00 \\
\hline & 63.902 & 1 C 2.476 & －6t．r．cc \\
\hline & 68.145 & 10\％．ccl & －60．cco \\
\hline & \(67.90^{3}\) & 114.815 & －54．coc \\
\hline & 67.736 & 104．558 & －4i．CCO \\
\hline & 67.981 & 104．435 & －42．UCC \\
\hline & ht． 550 & 163.123 & －3t．incc \\
\hline & 69．47？ & 101．260 & －30．0：0 \\
\hline & 70.802 & ちゼ．430 & －24．cOU \\
\hline & 72.139 & 2\％．2ip & \(-13.080\) \\
\hline & 75.152 & 89.0 .34 & －12．ccc \\
\hline
\end{tabular}

Contract NObsr 89483
Serial No. SSO4;-00i
Task 8156

Report No. 17
Phase I interim Report
30 September 1964

\section*{APPEND:X is cantirued}

THE FOLLONING OUTPUT WAS PUNCHED.
CORRECTED (SKRUNKEN) COURUNATES
\begin{tabular}{rrr}
76.823 & 85.611. & -90.000 \\
73.913 & 91.807 & -84.000 \\
71.839 & 96.222 & -78.000 \\
70.326 & 99.443 & -72.000 \\
69.246 & 101.742 & -66.000 \\
68.532 & 103.262 & -60.000 \\
68.147 & 104.082 & -54.000 \\
68.072 & 104.241 & -48.000 \\
68.306 & 103.744 & -42.000 \\
68.857 & 102.571 & -36.000 \\
69.753 & 100.663 & -30.000 \\
71.045 & 97.913 & -24.000 \\
72.825 & 94.123 & -18.000 \\
75.277 & 88.902 & -12.000
\end{tabular}

EFFECT OF VELOCITY DEFLECIJON PLUS CONSIRUCIIONAL STRETYH UPON SHRUNKEN CIRCIE 12
\begin{tabular}{rrr}
10.618 & \(86.04 \prime\) & -90.000 \\
73.631 & 92.4 .06 & -84.000 \\
71.322 & 96.897 & -78.000 \\
69.990 & 100.158 & -72.000 \\
68.902 & 102.476 & -66.000 \\
68.185 & 104.001 & -60.000 \\
67.803 & 104.815 & -54.000 \\
67.736 & 104.956 & -48.000 \\
67.981 & 104.435 & -42.000 \\
68.550 & 103.223 & -26.000 \\
69.473 & 101.260 & -30.000 \\
70.802 & 9.4 .40 & -21.000 \\
72.639 & 94.518 & -18.000 \\
75.192 & 89.084 & -12.000
\end{tabular}
kg

\section*{BLANK PAGE}

The center line of the mold splice section shown in B. F. Goodrich Drawing No. 1009 is plotted in Figure 1 ; the cross section and its properties are shown in Figure 2.

To expedite the analysis the exterior flange of the mold splice section is assumed to be an arch and is considered in two portions. Refer to figure 3. Portion \(A D\) is approximated by small straight line segments and portion \(D B C\) is approximated by a portion of circular arc. Also two further assumptions are made. (1) The structure is a hinged end arch with frictionless hinges which prevent lateral deformation. (2) The structure is made of a material which follows Hook's Law. The lateral component of the hinge reaction is found by using Castigliano's Theorem. This theorem is mathematically stated as follows:
\[
\begin{aligned}
& f_{h}=\frac{\partial u}{\partial H} \\
& U=\int_{l} \frac{N^{2} d s}{2 E A}+\int_{l} \frac{M_{B}^{2} d s}{2 E I}+\int_{l} \frac{v^{2} d s}{2 e_{7} A}+\int_{l} \frac{M_{R}^{2} d s}{2 G J}
\end{aligned}
\]
\(\cup\) is the strain energy stored in the structure. The first term in \(U\) is the normal deformation contribution. The second term is the bending deformation contribution. The third term is the shear deformation contribution, and the fourth term is the twisting deformation contribution.
\(\delta_{h}\) is the horizontal deformation of the hinge which is assumed to be zero and \(H\) is the lateral reaction component of the hinge.

The structure is not subjected to torque, therefore
\[
\int_{l} \frac{M_{T}^{2} \mathrm{ds}}{2 G T}=c ; \quad \text { and } \quad \int_{l} \frac{v^{2} \mathrm{ds}}{2 \mathrm{GA}} \text { is neglected }
\]
because its contribution for this type of structure is in the order of \(1 \%\). Then the theorm reduces to:
\[
\begin{aligned}
& \delta_{h}=0=\frac{\partial U}{\partial H}=\frac{\partial}{\partial H}\left[\int_{l} \frac{N^{2} d s}{2 E A}+\int_{\ell} \frac{m_{B}^{2} d s}{2 E I}\right] \\
& \text { ails for the above calculation are given below }
\end{aligned}
\]

The details for the above calculation are given below.

Report No. 17
Phase I Interim Report
30 September 1964

\begin{tabular}{lccccc}
\hline STATION & \(\mathbf{X}\) & \(\mathrm{Y}_{1}\) & \(\mathbf{Y}_{2}\) & \(\bar{Y}\) & ds \\
\hline \(0-1\) & 15 & 0 & & \\
\(1-2\) & 30 & 35.5 & 35.5 & 17.8 & 38.5 \\
\(2-3\) & 45 & 53.5 & 53.5 & 44.5 & 23.5 \\
\(3-4\) & 60 & 64.5 & 64.5 & 59.0 & 18.5 \\
\(4-5\) & 75 & 69.5 & 69.5 & 67.0 & 16.0 \\
\(5-6\) & 90 & 68.5 & 68.5 & 69.0 & 15.0 \\
\(6-7\) & 105 & 62.0 & 49.0 & 65.3 & 16.5 \\
\(7-8\) & 116 & 44.5 & 21. & 23.3 & 23.0 \\
& & & & 26.5
\end{tabular}

FIGURE 1
ARCH CENTER LINE GEOMETRY AND COORDINATES

Report No. 17
Phase I Interim Report 30 September 1964

\section*{APPEND: \(V\) (Continued)}




FIGURE 2
SECTION AND PROPERTIES


FIGURE 3
APPROXIMATIONS FOR ANALYSIS

\section*{APPENDIX \(V\) (Continued)}

For Portion DBC (Figure 3;
Geometry \(R \approx 59 ; \varnothing 90^{\circ}\)
Vertical Reactions:
\(\mathrm{v}_{\mathrm{A}} \approx \mathrm{v}_{\mathrm{C}} \approx \frac{118 \times 1200}{2} \cdot 70,800 \mathrm{lbs}\).
Choose Redundant Force \(H\). As Shown in Figure Below.
Moment A \(\quad\) :

\(M_{\phi}=V_{C} R(1-\cos \phi)-F R^{2}(1-\cos \phi)-H R S I N \theta\)
\(=R(1-\operatorname{COS} \emptyset)\left(V_{C}-P R\right)-H R S I N \emptyset\)
\(=-\) HRSINの
Normal Force At 0 :
\(N \emptyset=\left(V_{C}-\operatorname{PR}(1-\operatorname{Cos} \theta)\right) \cos \theta+(H+\operatorname{PRSIN} \theta) \operatorname{SIN} \theta\)
- \(V_{C} \operatorname{Cos} \theta+P R\left(-\cos \theta+\cos ^{2} \theta+\sin ^{2} \theta\right)+H \operatorname{SIN} \theta\)
\(=P R+H S I N \sigma\)
Shear Force At
\[
\begin{aligned}
\mathrm{Q}_{\emptyset} & =-\left[\overline{\mathrm{v}}_{\mathrm{C}}-\mathrm{PR}(1-\cos \theta)\right] \operatorname{SIN} \theta+\left[\mathrm{H}_{\mathrm{C}}+\mathrm{PR} \sin \theta\right] \operatorname{Cos} \theta \\
& =\left[\mathrm{V}_{\mathrm{C}}+\mathrm{PR}\right] \operatorname{SIN} \theta \quad \text { PROS } \theta \operatorname{Sin} \theta+\mathrm{PRSIN} \theta \cos \theta+\mathrm{H}_{C} \cos \theta \\
& ={ }_{C} \operatorname{Cos} \theta
\end{aligned}
\]

\section*{APPENDIX V (Cont: nued)}

Summary of equations for portion DBC.
M = - HR SIND
\(N_{\emptyset}=P R+H \operatorname{SIN} \emptyset\)
Q - H \(\cos \emptyset\)

H Assumed pulling away from the hinge
Portion AD (Figures 3 ant 4)
At Section 1-1.
\[
\sum F_{y}=0:
\]
\[
V A-p(a-x)-N O S I N O-Q_{0} \operatorname{Cos} \theta=0
\]
\(\boldsymbol{E}_{\mathrm{F}}=0\) :
\[
H A+P(h-y)-N_{0} \cos \theta+Q_{0} \operatorname{SIN} \theta=0
\]

Eliminate \(Q_{0}\) from the above equations:
\[
\begin{aligned}
{\left[V_{A}\right.} & -P(a-x)] \operatorname{SIN} \theta-N_{\theta} \operatorname{SIN}^{2} \theta+Q_{\theta} \cos \theta \operatorname{SIN} \theta=0 \\
{\left[H_{h}\right.} & +P(h-y)] \cos \theta-N_{0} \cos ^{2} \theta+Q_{\theta} \operatorname{SIN} \theta \operatorname{Cos} \theta=0 \\
-N_{\theta} & \left(\operatorname{SIN}^{2} \theta+\cos ^{2} \theta\right)+\left[V_{A}-p(a-x)\right] \operatorname{SIN} \theta+\left[H_{A}+p(h-y)\right] \cos \theta=0 \\
N_{\theta} & =V_{A} \operatorname{SIN} \theta-p a S I N \theta+P x S I N O+H_{A} \operatorname{COS} \theta+p h \cos \theta-p y \cos \theta=0 \\
& =H_{A} \cos \theta+p(X S I N \theta-y \cos \theta+h \cos \theta) \\
& =H_{A} \cos \theta+p[X S I N \theta+(h-y) \cos \theta]
\end{aligned}
\]

Shear force At Section 1.1.
\[
\begin{aligned}
& v_{A}-p(a-x)-N_{0} \operatorname{SiN} \theta+Q_{0} \cos \theta=0 \\
& H_{A}+p(h-y)-N_{0} \cos \theta+Q_{0} \operatorname{SiN} \theta=0
\end{aligned}
\]

Eliminate \(\mathrm{N}_{\mathrm{e}}\) From The Above Equations:
\[
\begin{aligned}
& {\left[V_{A}-p(a-x)\right] \cos \theta-N_{0} \sin O \cos \theta+Q_{0} \cos ^{2} \theta=0} \\
& {\left[H_{A}+P(h-y)\right] \quad \operatorname{Sin} \theta-N_{0} \cos \operatorname{cosin} \theta+Q_{0} \operatorname{Sin}^{2} \theta=0} \\
& {\left[V_{A}-p(a-x)\right] \cos \theta-\left[H_{A}+p(h-y)\right] \sin \theta+Q_{0}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=0} \\
& \left(V_{A}-p a\right) \cos \theta \quad p[x \cos \theta-(h-y) \sin \theta]-H_{A} \operatorname{SIN} \theta+Q_{0}\left(\cos ^{2} \theta-\operatorname{SIN}^{2} \theta\right)=0 \\
& Q_{0}=\frac{1}{\cos ^{2} \theta}\left\{H_{A} \operatorname{SiN} \theta-p[x \cos \theta-(h-y) \operatorname{Sin} \theta]\right\} \\
& \text { Also } \quad Q_{0}=H_{A} \operatorname{CSC} 0+N \tan \theta-p(h-y) \operatorname{CSC} \theta
\end{aligned}
\]

Moment at Section 1-1.
\[
\Sigma M=M_{0}=V_{A}(a-x)-H_{A}(h-y)-\int_{0}^{2}(p d) d s
\]

Summary of Equations Portion \(A D\) (Curve fit approx.)
\(M_{0}=V_{A}(a-x) \cdot H_{A}(h-y) \cdot \int_{0}^{2}(p d) d s\)
\(N_{0}=H_{A} \cos \theta+p[x \sin \theta+(h-y) \cos \theta]\)
\(Q_{\theta}=\operatorname{SEC} 2 \theta\left\{H_{A} \operatorname{SIN} \theta-p[x \cos \theta-(h-y) \operatorname{SIN} \theta]\right\}\)
\(Q_{0}=H_{A} \csc \theta+N_{e} \tan \theta \cdot p(\operatorname{soc} y) \csc \theta\)
( Measured From D)

Report No. 17
Phase I Interim Report 30 September 1964

\section*{APPENDIX \(V\) (Continued)}

The Energy Stored in The Structure is
\[
\begin{aligned}
& U=\int_{A}^{D} \frac{1}{2 E I} M_{0}^{2} d s+\int_{A}^{D}-\frac{1}{2 E A} N_{0}^{2} d s+\int_{D}^{C} \frac{1}{2 E I} M_{0}^{2} d s+\int_{D}^{C} \frac{1}{2 E A} N_{0}^{2} d s \\
& \frac{\partial U}{\partial H}=\int_{A}^{D} \frac{1}{E I} M_{0} \frac{\partial M_{0}}{\partial H} d s+\int_{A}^{D} \frac{1}{E A} N_{0} \frac{\partial N_{0}}{\partial H} d s+\int_{D}^{C} \text { (Circular Portion) } \\
& \frac{\partial M_{0}}{\partial H}=-(h-y) \\
& \frac{\partial N_{e}}{\partial H}=\cos \theta \\
& \frac{\partial U}{\partial H}=\frac{1}{E I} \int_{A}^{D}\left[V_{A}(a-x)-H_{A}(h-y)-\int_{\theta}^{\alpha} p d d s\right][-(h-y)] d s \\
& +\frac{1}{E A} \int_{A}^{D}\left\{H_{A} \cos \theta+p[x \operatorname{SIN} \theta+(h-y) \cos \theta]\right\} \cos \theta d s \\
& +\frac{\pi R^{3}}{E I} \quad H_{A}+-\frac{\pi R}{E A} H_{A}+\frac{2 P R^{2}}{E A}=0
\end{aligned}
\]

The first two integrals are evaluated numerically using figures 4 and 5 and Table I.

From the circular portion DBA substituting numerical values we obtain:
\[
\frac{\Pi R^{3}}{E I} H_{A}+\frac{\Pi R}{E A}-H_{A}+\frac{2 P R^{2}}{E A}
\]
- \(\frac{645,000}{E I} \mathrm{H}_{\mathrm{A}}+\frac{185}{\mathrm{EA}} \mathrm{H}_{\mathrm{A}}+\frac{6940 \mathrm{P}}{\mathrm{EA}}\)


FIGURE 4
FORCE EQUILIBRIUM PORTION AD


Report No. 17
Phase I Interim Report
30 September 1964

\section*{APPENDIX V (Continued)}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{(1)} & \multicolumn{2}{|c|}{Q} & \multicolumn{2}{|c|}{(3)} & \multicolumn{2}{|c|}{(4)} & \multicolumn{2}{|r|}{(5)} & \multicolumn{2}{|c|}{(6)} & \\
\hline & & ds & d & ds & & ds & & ds & & ds & d & ds & \(\leqslant\) dds \\
\hline 1 & 10 & 10 & & & & & & & & & & & \\
\hline 2 & 18 & 20 & 8.5 & 8.5 & & & & & & & & & 432 \\
\hline 3 & 33.5 & 20 & 16. & 17. & 7.5 & 7.5 & & & & & & & 432 \\
\hline 4 & 47 & 20 & 30. & 17. & 15.0 & 15 & 6.5 & 6.5 & & & & & 998
1717 \\
\hline 5 & 58.5 & 20 & 41.5 & 17. & 26.5 & 15 & 13. & 13. & 5.5 & 5.5 & & & 2473 \\
\hline 6 & 68.0 & 20 & 51. & 17. & 37. & 15 & & 13. & 12.0 & 11 & 5 & 5 & 3240 \\
\hline
\end{tabular}

FIGURE 5
FIGURE AND TABLE TO A:D NUMERICAL INTEGRATION

Report No. 17
Phase I Interim Report
30 September 1964

\section*{APPENDIX \(V\) (Continued)}

TABLE I
NUMERICAL INTEGRATION CALSULATIONS

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \((a-x)(h-y) t s\) & \((3-y)^{2} d s\) & \(\cos ^{2} \theta d s\) & \((t-y) \cos ^{2}\) ds & \(x \sin \theta \operatorname{Cos} \theta\) ds & \(\int_{c}^{\alpha} d s\) & \[
\begin{gathered}
\left(f_{0}^{\alpha} d d s\right) \\
G(h-y) d s
\end{gathered}
\] & \(V_{A}(a \cdot x)\) & \(\int_{0}^{\alpha}(p d) d s\) & \(\mathrm{Ha}_{( }(\mathrm{h}-\mathrm{y})\) \\
\hline (1) 765 & 1450 & 3.60 & 30.7 & 402 & 100 & 17000 & 318,000 & 120,000 & 12,300 \\
\hline (2) 5400 & 9400 & 6.25 & 144. & 360 & 432 & 173000 & 980,000 & 518,000 & 34,100 \\
\hline (3) 12600 & 18400 & 7.94 & 278. & 254 & 998 & 519000 & 1,700,000 & 1,200,000 & 50,800 \\
\hline (4) 20400 & 27600 & 7.84 & 361. & 153 & 1717 & 703000 & 2,400,000 & 2,060,000 & 66,000 \\
\hline (5) 25600 & 30900 & 8.40 & 446. & 64 & 2473 & 1440000 & 3,120,000 & 2,970,000 & 76,900 \\
\hline (6) \(\frac{30800}{95565}\) & 32500 & 8.80 & 502. & \(-15\) & 3420 & 1850000 & 3,900,000 & 3,890,000 & 82,600 \\
\hline 95565 & 120250 & 42.83 & 1762. & 1248 & & 4702000 & & & \\
\hline
\end{tabular}
```

Contract NObsr 89483

APPENDIX V (Continued)

Combine these with those of Table I we obtain.

$$
\begin{aligned}
\frac{\partial U}{\partial H} & =\frac{1}{E I}\left[-95,560 \mathrm{~V}_{\mathrm{A}}+120,250 \mathrm{H}_{\mathrm{A}}+645,000 \mathrm{H}_{\mathrm{A}}+4,702,000 \mathrm{P}\right] \\
& +\frac{1}{E A}\left[43 \mathrm{H}_{\mathrm{A}}+185 \mathrm{H}_{\mathrm{A}}+300 \mathrm{~B}_{\mathrm{P}}+6940 \mathrm{p}\right]=0
\end{aligned}
$$

Solving for H

$$
\left[\frac{765,250}{E I}+\frac{228}{E A}\right] H=\frac{95,560}{E I} \quad V_{A}-\left[\frac{4,702,000}{E I}+\frac{9950}{E A}\right] P
$$

$I=224.6 \mathrm{in}^{4} ; \quad A=39 \mathrm{in}^{2}$
Substituting these values in the equation for H_{A}

$$
\begin{aligned}
{[3400+6] \mathrm{H} } & =425 \mathrm{~V}_{\mathrm{A}}-[20,900+255] \mathrm{P} \\
3406 \mathrm{H} & =425 \mathrm{~V}_{\mathrm{A}}-21155 \mathrm{P} \\
\mathrm{H} & =\frac{425}{3410} \mathrm{~V}_{\mathrm{A}}-\frac{21155}{3410} \mathrm{P}=0.125 \mathrm{~V}_{\mathrm{A}}-6.20 \mathrm{P} \\
\mathrm{H} & =0.125 \times 70,800-6.20 \times 1200 \\
& =8850-7400 \\
& =1450 \mathrm{lbs} \quad \text { (as assumed) }
\end{aligned}
$$

Substituting this values of H_{A} into equations for N_{0} and M_{e} for portions $A D$ and $D C B$, we can calculate $N_{0} A^{A}$ and M_{0} at any section of the structure. These calculations are shown on Table II and are represented graphically in figure 5. From this figure we can pick up the maximum conditions at about $20^{\prime \prime}$ and 60' from A.

BLANK PAGE

Contract NObs 89483
Serial No. SSG41-001
Task 8156

- 13 -

Report No. 17
Phase I Interim Report 30 September 1964

APPENDiX V (Continued)

Tine maximum condition stresses are ($20^{\prime \prime}$ from A.)

Inner Fibers

$$
\begin{aligned}
\sigma & =-\frac{M_{0}}{S_{t}}+\frac{N_{0}}{A} \\
& =-\frac{460,000}{37.3}+\frac{62,000}{39} \\
& =-12,300+1,600 \\
& =-10,700 \text { psi Compression }
\end{aligned}
$$

Outer Fibers

$$
\begin{aligned}
\sigma & =+\frac{M_{0}}{S_{t}}+\frac{N_{0}}{A}=+\frac{460,000}{-\frac{1}{6} .8}+1600 \\
& =+8100+1500 \\
& =9700 \text { pSI Tens on }
\end{aligned}
$$

60' From A.

$$
\begin{aligned}
& \text { Inner Fibers } \sigma=+\frac{82,500}{37,3}+\frac{72,300}{39}=+2110+1816 \\
& =3930 \text { pst Tension } \\
& \text { Outer Fibers } \sigma=-\frac{82.500}{56.8}+\frac{72,300}{39}--1450+1820 \\
& 370 \text { ps/ Tension }
\end{aligned}
$$

All of the above stresses are well within the ultimate stresses-43,000 psi flexure, 18,600 psi tension.

APPENDIX V (Continued)

TABLE II
MOMENT AND NORMAL FORCE CALCULATIONS

| | Mo | $x \sin \theta$ | $(h-y) \cos \theta$ | $\begin{aligned} & x \sin \theta+ \\ & (H-y) \cos \theta \end{aligned}$ | $H_{A} \cos \theta$ | $[y \sin \theta \cdot$ $(H-y) \cos \theta]_{p}$ | No |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | +186,000 | 46.7 | 4.30 | 51.0 | 730 | 61200 | 61930 |
| (2) | +430,000 | 35.0 | 14.30 | 49.3 | 880 | 51300 | 61900 |
| (1) | +450,000 | 23.3 | 25.3 | 48.6 | 1050 | 58400 | 59450 |
| (1) | +275,000 | 15.1 | 35.7 | 50.8 | 1130 | 61000 | 62130 |
| (5) | $+73,000$ $+73,000$ | 6.7 | 46.4 | 53.1 | 1270 | 63700 | 64970 |
| 8 | - 73,000 - 86,000 | 1.6 | 53.4 | 55.0 | 1360 | 66000 | 67360 |
| (8) | - 86,000 | | | | | | 72250 |
| (9) | - 74,000 | | | | | | 72200 |
| (10) | - 60,000 | | | | | | 72060 71620 |
| (1) | $-43,000$ $-\quad 0$ | | | | | | 71530 |
| (2) | | | | | | | 70800 |

In this analysis the flexural and normal stosces were shecked. The analysis shows that the maximum flexural stress is $i 5 \%$ of the ultimete flexural strength of the material and the noval tensile strengt! is 50% of the ultimate tensile strength of the material. Therefore, it is concluded that the external fiange of the mold splice sect oosserses a safety factor of about 2 for the anticipated internal ur suure.

The results of the analysis are shown graphically in Figure 6

Contract NObsr 89483
Serial No. SSNil-001
Task 8156

Report No. 17
Phase I Interim Report 30 September 1964

APPENDIX V (continued)

GRAPH OF MOMENT AND NORMAL FORCES

BLANK PAGE

Phase I Interim Report
30 September 1964

APPENDIX VI
 STRESS CAICULAI'YONS ON STEEL SEAMING FIXIURE

When looking at the action and reaction forces on the upper steel strongback section of the total seaming area it appears necessary to break the complex curvature into simple straight beams and assume that all joints are pivoted. This case, while not exact, permits calculations of stresses without using integration. These calculations will, in this case, indicate a more severe condition, and thus result in a structure superior to that obtained if integration fomulas were used. This in turn gives a calculated safety factor which is greatly reduced from the actual safety factor present. Sections of the structure analyzec are hown below along with the calculation of the stress obtained in each section.

A cross section of the beam used in members Nos. $1,2 \& 3$ is shown below.

FIGURE 1

Obtaining physical properties of cross section:
Finding Center of Gravity:
(A) Area
$X \quad \mathrm{Ax}$
(1) 3.75
9.25
34.6
(2) 14.00
8.50
119.0
$\bar{X}-\sum \bar{A}=\frac{217.6}{33.75}=6.45$
(3) 16.00
4.00
$\frac{64.0}{A x=217.6}$

Phase I Interim Report 30 September 1964

APPENDIX VI (Continued)

Finding Moment of Inertia of Cross-Sec:ion

$$
\begin{array}{ll}
I_{1}=1 \frac{1}{2} b_{1} h_{1}^{3}+A_{1} x_{1}^{2}=1 \frac{1}{2} \times 1 \frac{1}{2} \times\left(2 \frac{1}{2}\right)^{3}+3.75(9.25-6.45) & =1.96+10.50 \\
I_{2}=\frac{1}{2} b_{2} h_{2}^{3}+A_{2} x_{2}^{2}=\frac{1}{12} \times \frac{14}{1} \times(1)^{3}+14(8.50-6.45) & =12.46 \mathrm{in}^{4} \\
I_{3}=\frac{1}{2} b_{3} h_{3}+A_{3} X_{3}^{2}=1 \frac{1}{2} \times 2 \times 8^{3}+16(6.45-4.00) & =29.87 \mathrm{in}^{4} \\
I_{\text {tot }}=I_{1}+I_{2}+I_{3}=12.46+29.87+124.60= & =124.40+39.20 \\
& 166.93 \mathrm{in}^{4}
\end{array}
$$

To find reactive forces $R_{1} \& R_{2}$ as indicated in the sketch.

$$
\begin{aligned}
& 2 R_{1}=F \times L_{4}=1400 \times 118 . \\
& F_{s}: 1400 \quad 1 b s / 1 n . \\
& L_{4}=118 \mathrm{in} \text {. } \\
& R_{1}=R_{2}=\frac{165,000}{2} \div 87,500
\end{aligned}
$$

APPENDIX VI (Continued)

To find the maximum tension and compressive iorces that could be obtained in this statically indeterminate structure, structural members Nos. 5 and 6 wert removed one at a time and then replaced. A forca polygon was constructed for each case and the forces obtained tabulated.

TABLE I
FORCE DETERMINATION

| Structural Member | Forces with Member \#5 removed | Forces with
 Member 6 removed | $\begin{gathered} \text { Max } \\ F \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 1 | 93,000 \# comp | 80,000 \# comp | 93,000 |
| 2 | 93,000 \# comp | 60,000 \# comp | 93,000 \# C |
| 3 | 68,000 \# comp | 48,000 \# comp | 68,000 \# C |
| 4 | 4,000 \# comp | 20,000 \# comp | 20,000 \# C |
| 5 | --- | 28,000 * comp | 28,000 \# C |
| 6 | 33,000 \# comp | --- | 33,000 \# C |

Sample Stress Analysis:

Member \#1

Stresses due to Compressive Forces $=\frac{F}{A}$
Stresses due to Bending Moments $=\frac{M C}{I}$
Total Comp. Stress $=\frac{F}{A}+\frac{M c}{I}=S_{C}$
where $M=W \times 2^{\frac{2}{2}} \times \frac{L}{2}-W \times 2^{\frac{L}{2}} \times \frac{L}{4}$
$=W \times \frac{L^{2}}{4}-\frac{W \times L^{2}}{8}=\frac{W L^{2}}{8}$

| F(table I) | $=93,000 /$ |
| :--- | :--- |
| A | $=33.75 \mathrm{in}^{2}$ |
| W | $=1400 \mathrm{~F} / \mathrm{In}$ |
| L | $=56.6^{\prime \prime}$ |
| $\mathrm{C}_{\text {comp }}$ | $=4.05^{\prime \prime}$ |
| $\mathrm{C}_{\text {ten }}$ | $=6.45$ |
| I_{1} | $=166.93 \mathrm{in}^{4}$ |

Report No. 17
Serial No. SS041-001
Phase I Interim Report
30 September 1964

APPENDIX VI (Continued)

$S_{\text {comp }}=\frac{93,000}{33.75}+\frac{1400 \times(56.6)^{2}}{8} \times \frac{4.05}{166.93}$
$=2,260+13,600=15,860 \mathrm{psi}$
$S_{\text {ten }}=\underset{I}{M c_{-}}-\frac{F}{A}=\frac{W L^{2}}{8} \times \frac{C_{T}}{I_{1}}-\frac{F}{A}=\frac{1400 \times\left(\frac{56.6)^{2}}{8} \times \frac{6.45}{166.93}-\frac{93,000}{33.75}\right.}{1}$
$=21,700-2,260$
$=19,440 \mathrm{psi}$

In the calculation of the safety factor the maximum tensile and compression strength of the steel was assumed to be $55,000 \mathrm{psi}$.

$$
\begin{aligned}
& \text { S.F. }=\frac{\text { Ultimate Tensile or Com }}{\text { Actual Tensile or Comp. }} \\
& \text { S.F.T }=\frac{55,000}{19,440}=2.83 \\
& \text { S.F. }=\frac{55,000}{15,860}=3.47
\end{aligned}
$$

The stresses, lengths, loads, and safety factors for the individual members are tabulated below in Table II, showing the structure to be adequate.

TABLE II
PHYSICAL PROPERTIES OF STRONGBACK

| Member | $F \mathrm{~F}$ | ${ }^{\text {A }}$ | | L | Cc | ${ }^{C}$ | | S_{c} | ${ }^{\text {ST}}$ | 55,000 | 55,600 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | (1bs) | ($1 n^{2}$) | (\#/m) | (1n) | (1n) | (in) | (in ${ }^{4}$) | (psi) | (psi) | ${ }^{8} \mathrm{c}$ | ${ }^{\text {st }}$ |
| 1 | 93,000 | 33.75 | 1400 | 56.6 | 4.05 | 6.45 | 166.93 | 15,860 | 19,440 | 3.47 | 2.83 |
| 2 | 93,000 | 33.75 | 1400 | 58.0 | 4.05 | 6.45 | 155.93 | 16,510 | 20,440 | 3.32 | 2.69 |
| 3 | 68,000 | 33.75 | 1400 | 54.6 | 4.05 | 6.45 | 166.93 | 14.670 | 18,130 | 3.75 | 3.03 |
| 4 | 20,000 | 11.05 | * | 118.0 | - | - | - | 1,850 | - | 29 | - |
| 5 | 28,000 | 11.05 | - | 93.3 | - | - | - | 2,540 | - | 21 | - |
| 6 | 33,000 | 11.05 | - | 105.2 | - | - | - | 2,990 | - | 18 | - |

APPENDIX VII

PANEL FRICTION REQUIREMENTS

In determining the effectiveness of the compression member to maintain panel contour an analysis of tension loads had been accomplished. In this analysis it was assumed that three (3) separate arcs would be formed as shown below:

Thus, to determine loading on the panel during pressurization and the resultant components:

$$
\frac{T_{1}+T_{3}}{2}=N R_{2}+P R_{2}
$$

and:
$T_{1}-T_{3}=N \mu A$
also:

Therefore:

Thus:
$\mathrm{T}_{1}=\mathrm{PR}_{1}$
$T_{2}=P R_{2}$
$T_{3}=P R_{3}$

$$
P R_{1}+P R_{3}=2 R_{2}(N+P)
$$

$\frac{P R_{1}+P R_{3}}{2 R_{2}}=N+P$
$N=\frac{P R_{1}+P R_{3}}{2 R_{2}}-P$
Where:
P : Internal Pressure
$T_{1}=$ Tension, Upper
$T_{2}=$ Tension, Middle
Contract NObsr 89483

- 2 -
Report No. 17
Serial No. SSO41-001
Task 8156
Phase I Interim Report
30 September 1964

APPENDIX VII (Continued)

$$
\begin{aligned}
& \mathrm{T}_{3}=\text { Tension, Lower } \\
& \mathrm{R}_{1}=\text { Radius, Upper } \\
& \mathrm{R}_{2}=\text { Radius, Middle } \\
& \mathrm{R}_{3}=\text { Radius, Lower } \\
& \mu=\text { Coefficient of Friction } \\
& N=\text { Normal Force, psi } \\
& A=\text { Area } N \text { acts over }
\end{aligned}
$$

If pure friction is assumed:

$$
\begin{aligned}
& P_{1}-P R_{3}=\left(\frac{P_{R_{1}}+{ }^{P} R_{3}}{2 R_{2}}-P_{1}\right) \mu A \\
& R_{1}-R_{3}=\left(\frac{R_{1}+R_{3}}{2 R_{2}}-1\right) \quad \mu \times A \\
& \frac{R_{1}-R_{3}}{R_{1}+R_{3}} \frac{2 R_{2}}{}-1
\end{aligned}
$$

Analyzing the crcss-section at each frame with their specific radii the following frictional requirements were determined necessary to prevent panel movement. (Table I)

Contract NObsr 89483
Serial No. SS041-001
Task 8156

- 3 -
-

Report No. 17
Phase I Interim Report
30 September 1964

APPENDIX VII (Continued)

TABLE I
FRICTIONAL REQUIREMENTS

From this it was determined the maximum coefficient of friction required was 1.47. With this in mind the problem at hand was to determine methods of attaining this. Several systems were evaluated against 35003 neoprene and Included among others: (1) Exploded clay surface, (2) Extra Course Emery Cloth, (3) Resin Industrial Cloth Type 650 X , (4) Carborundum LV, (5) Sandpaper 220A, 200 C , $80 \mathrm{grit}, 120 \mathrm{grit}, \$ 2$ and 36 X . Table II presents a comparison of various systems with respect to the actual coefficient of friction obtained. It can be seen, in analyzing these data that none of the evaluated system furnished the required strength, therefore an alternate idea had to be con* sidered.

The second concept pursued was that of attaching a series of rubber biscuits to the panel surface. These in turn would mate with cavities in the compression member maintaining proper positioning of the panel. The first requirement was to determine the number of $2^{\prime \prime}$ diameter biscuits required per 3 inch width. The load exerted over this width

$$
L=\left(R_{1}-R_{3}\right) P \times 3
$$

```
Contract NObsr 89483

\section*{APPENDIX VII (Continued)}
and the number of biscuits -
\[
N=\frac{\left(R_{1}-R_{3}\right) P \times 3}{4.90 \ln .^{2} \times 200}
\]
where L Load per \(3^{\prime \prime}\) width
\(R_{1}\). Upper Radius
\(R_{3}=\) Lower Radius
\(P=\) Internal Pressure
\(N=\) No. of Biscuits
\(4.90 \mathrm{in}^{2}{ }^{2}\) = Area/biscuit
200 1bs. = Max. load/in. \({ }^{2}\)

From these equations Table II was generated showing the number of biscuits necessary at each frame.

Report No. 17
Serial No. SSO41-001
Phase I Interim Report
30 September 1964

\section*{APEEND:X VII (Cont! nued)}

TABLE II
FRICTION TESTS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Material & Weight & \multicolumn{2}{|r|}{Pull Required To Move} & \multicolumn{2}{|r|}{4 Coefficient of Friction \(\mu\)} \\
\hline & & Wet & Dry & Wet & Dry \\
\hline Exploded Clay Surface & 2.17 & & 2.5 & & 1.15 \\
\hline " & 4.17 & & 4.0 & & . 96 \\
\hline " & 6.17 & & 6.25 & & 1.01 \\
\hline " & 7.17 & & 7.25 & & 1.01 \\
\hline " & 8.50 & & 8.50 & & 1.00 \\
\hline Average Exploded Clay & 10.00 & & 10.00 & & 1.00 \\
\hline Average Exploded Clay & & & & & 1.02 \\
\hline Emery Cloth ECO15 & 5.00 & & 5.25 & & 1.05 \\
\hline & 10.00 & & 10.25 & & 1.03 \\
\hline Average Emery Cloth & & & & & 1.04 \\
\hline Resin Ind. Cloth Type 6 50X & 5.00 & & 5.00 & & 1.00 \\
\hline & 10.00 & & 10.00 & & 1.00 \\
\hline Average Ind. Cloth & & & & & 1.00 \\
\hline Carborundum LV & 5.00 & & 3.50 & & . 70 \\
\hline & 10.00 & & 8.00 & & . 80 \\
\hline Average Carborundum LV & & & & & . 75 \\
\hline Sandpaper 220A & 5.00 & 1 & 6.50 & & 1.3 \\
\hline " 280C & 5.00 & 5.50 & 7.00 & 1.1 & 1.4* \\
\hline " 1180 Grit & 7.00 & 7.50 & 7.50 & 1.07 & 1.07 \\
\hline " 120 Grit & 4.00 & - & 4.50 & & 1.12 \\
\hline " 112 & 4.00 & - & 3.75 & & . 94 \\
\hline " 36x & 4.00 & - & 4.25 & & 1.06 \\
\hline
\end{tabular}
*The sample with the largest coefficient of friction dry was tested under water to determine the friction characteristics under exact environmental conditions.

TABLE YII
NO, OF BISCUITS REQUIRED
\begin{tabular}{|c|c|c|c|}
\hline Fr & \(\mathrm{R}_{1}-\mathrm{R}_{3}\) & \(\left(R_{1}-R_{3}\right) P\) & No. of Biscuits \\
\hline 7 & 41.0 & 4,100 & 12.6 \\
\hline 8 & 18.0 & 1,800 & 5.5 \\
\hline 9 & 9.3 & 930 & 2.9 \\
\hline 10 & 4.5 & 450 & 1.4 \\
\hline 11 & 10.2 & 1,020 & 3.1 \\
\hline 12 & 20.0 & 2,000 & 6.1 \\
\hline 13 & 25.0 & 2,500 & 7.7 \\
\hline 14 & 26.7 & 2,670 & 82 \\
\hline 15 & 32.5 & 3.250 & 100 \\
\hline 16 & 28.7 & 2,870 & 8.3 \\
\hline & & & \begin{tabular}{l}
B.F.Simaltioh Momplatan \\

\end{tabular} \\
\hline
\end{tabular}

\section*{APPENDIX VII (Continued)}

A sample biscuit construction was fabricated and tested. In one instance vertical cylindrical sections were evaluated as shown in figure l. Failure of this system was at the adhesive bond. A second system evaluated utilized tapered biscuits and yield results shown in Figure 2. A graph was plotted, as shown in figure 3 displaying numbered required versus number attainable. It can be seen that at Frame 7 up to \(7-1 / 2\) the required exceeded the capacity. This coupled with the problem of notching the biscuits and recesses during compressing member positioning prompted the evaluation of a more efficient approach

The final concept evaluated and eventually adopted was that of cementing the panel to the sandblasted epoxy surface of the compression member. To determine the basic shear strength of a Code 369 -- cement bond. A sample bond of 35003 Neoprene to itself with a \(2-3 / 4^{\prime \prime} \times 3^{\prime \prime}\) bonding area was fabricated and tested. The results are shown in Figure 4. The ultimate shear strength of this sample, which failed at the cement bond in \(339.5 \mathrm{lbs} . / \mathrm{in} .^{2}\). Calculation of shear strength necessary for the cement retention system is shown in Table IV. Data obtained assumes the entire compression member is bonded to the panel.

Thus:
\[
T_{1}-T_{3}=S \times A \text { and } T_{1}=P R_{1}, T_{3}=P R_{3}
\]
or, \(\quad P R_{1}-P R_{3}=S A\)
and,
\[
\frac{P}{A}\left(R_{1}-R_{3}\right)=S
\]

Phase I Interim Report
30 September 1964



Report No. 17
Phase I Interim Report
30 September 1964

APPENDIX VII Continued).

\begin{tabular}{|c|c|c|c|}
\hline F'R & No. & FR & NO. \\
\hline 7 & 13 & 134 & 9 \\
\hline 71 & 11 & 132 & 9 \\
\hline 7! & 9 & 13-3/4 & 9 \\
\hline 7-3:4 & 7 & 14 & 9 \\
\hline 8 & 6 & \(14 \frac{1}{2}\) & 10 \\
\hline 3 & 5 & 143 & 10 \\
\hline 83 & 5 & 14-3/4 & 10 \\
\hline 8-3/4 & 4 & 15 & 10 \\
\hline 9 & 3 & \(15 \frac{1}{4}\) & 10 \\
\hline \(9 \%\) & 3 & 15\% & 10 \\
\hline \(3{ }^{2}\) & 3 & 15-34 & 10 \\
\hline 3-3/4 & 3 & 15 & 9 \\
\hline 10 & 2 & & \\
\hline \(10\}\) & 3 & & \\
\hline \(10^{\prime}\) & 3 & & \\
\hline 10-3; \({ }^{\prime}\) ( & 4 & & \\
\hline 11 & 4 & & \\
\hline 11 立 & 5 & & \\
\hline 115 & 6 & & \\
\hline 11-3,4 & 7 & & \\
\hline 12 & 7 & & \\
\hline 126 & 8 & & \\
\hline :2t & 8 & & \\
\hline 12-3/4 & 8 & & \\
\hline 13 & 8 & Tocal & 250 \\
\hline
\end{tabular}

FIGURE 3
PY.OT NO. BISCUITS REQUIRED/3 IN. WIDTH

Contract NObsr 89483
Serial No. SSC41-001 Task 8156
- 10
-

Report No. 17
Phase I Interim Report 30 September 1964

\section*{AFPENDIX VII (Continued)}


LOAD II POUNDS
\begin{tabular}{lll} 
Contract NObsr 89483 & Report No. 17 \\
Serial No. SSO41-001 & Fhese I Interim Report \\
Task 8156 & & 30 September 1964
\end{tabular}

\section*{APPENDIX Vil (Continued)}

Where:
```

P = Pressure
A = Area
R1 = Upper Radius
R3}=\mathrm{ Lower Radius
T1 = Upper Tension
T
S = Shear Strength required

```
TABLE IV
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fr & \(\mathrm{R}_{1}\) & \(\mathrm{R}_{3}\) & \(\mathrm{R}_{1}-\mathrm{R}_{3}\) & A & P/A & s & \\
\hline 7 & 102.5 & 61.5 & 41.0 & 29 & 3.45 & 143 & Max. Shear \\
\hline 8 & 88.5 & 70.5 & 18.0 & 31 & 3.23 & 58.1 & Strength Req'd. \\
\hline 9 & 83.8 & 74.5 & 9.3 & 34 & 2.94 & 37.4 & for Cement \\
\hline 10 & 74.5 & 79.5 & 4.5 & 36 & 2.78 & 12.5 & 143 psi \\
\hline 11 & 68.5 & 78.7 & 10.2 & 38 & 2.62 & 26.8 & \\
\hline 12 & 63.0 & 83.0 & 20.0 & 41 & 2.44 & 48.7 & \\
\hline 13 & 60.5 & 85.5 & 25.0 & 43 & 2.33 & 58.1 & \\
\hline 14 & 58.8 & 85.5 & 26.7 & 45 & 2.22 & 59.3 & \\
\hline 15 & 52.5 & 85.0 & 32.5 & 48 & 2.08 & 67.7 & \\
\hline 16 & 50.3 & 79.0 & 28.7 & 50 & 2.00 & 57.3 & \\
\hline
\end{tabular}

The mayimum shear strength required for the cement is 143 psi . The maximum attainable is 339.5 psi. This system furnished the necessary strength and safety factor for retaining the panel in position during testing and was used during actual testing.

\section*{BLANK PAGE}
```

Contract NOhsr 89483 Report No. 17
Serial No. SSO41-001
Task 8156
Phase I Interim Report
30 September }196

```

APPENDIX VIII
MATHEMATICAL ANALYSIS

Consulting help from the Massanhusets Institute of Technology was sought for the development of membrane equations from which the following studies could be made on the acoustic window:
(1) Effect of hydrodynamic forces.
(2) Analysis of vibration characteristics.
(3) Structural wave properties.

The several approaches presented by MIT to evaluate the effect of hydrodynamic forces on the window are included in this report. No formulas were submitted for the other two items.

Calculated results obtained through use of the MIT derivations with those obtained from BFG derivations were substantially comparable.

Contract NObsr 89483
Serial No. SSO41-001
Task 8156

Keport No. 17
Phase I Interim Report
30 September 1964

APPENDIX VIII (continued)
MEMBRANE ANALYSIS - CYLINURICAL BEHAVIOUR
1. INTRODUCTION

We consider a cylindrical membrane (Fig. 1) supported along a - \(a^{\prime}\) and \(b-\mathcal{W}\) which are parallel to the \(Z\) axis. By cylindrical, we mean that the arc length of the membrane does not vary in the \(z\) direction. We restrict this analysis to the case of a normal pressure which also does not vary in the \(\mathbb{Z}\) direction. The behaviour of the membrane will be cylindrical, that is, independent of \(\mathcal{Z}\), and we can work with a strip having a unit width (e.g. strip cd).


Report No. 17
Serial No. SSO41-001
Phase I Interim Report
Task 8156

\section*{APPENDIX VIII (continued)}
2. NOTATION AND GEOMETRIC RELATIONS

We introduce the following notation for the loaded membrane:
S = distance along curve
\(\bar{F}=\) position vector
\(\bar{\zeta}=\) undt tangent vector in direction of increasing \(S\)
\(\bar{n}=\) unit normal vector, clockwise from \(\bar{t}\)
\(K=\) curvature
\(R=\) radius of curvature \(=\frac{1}{K}\)
\(T\) = tension per unit width
\(P=\) normal pressure, positive when in direction of \(\overline{1}\)

The positive directions are shown in figure 2.


FIGURE 2

APPENDIX VIII (continued)
The tangent vector and cursativel are defined
\[
\begin{align*}
& \bar{t}=\frac{d \bar{\pi}}{d s}  \tag{2,1}\\
& K=\frac{1}{R}=-\bar{n} \cdot \frac{d^{2} \bar{\pi}}{d s^{2}}=-\bar{n} \cdot \frac{d \bar{t}}{d s} \quad(z, Z)
\end{align*}
\]

We have defined P sud, that, when R D positive tor center of curbritue io in the sugatere nomsol direction. Polar condinatis \((\eta, \theta)\) lis the most convenent agptiser for this peadlimn. From figured 3,
\[
\begin{aligned}
& \begin{array}{l}
\bar{\gamma}=x \bar{\tau}+y \bar{j} \\
\bar{C}_{\sigma}=\cos \theta
\end{array} \\
& \bar{L}_{T}=\cos \theta_{i} \bar{L}_{+}+\sin \theta \bar{j} \\
& \bar{T}_{\theta}=\sin \theta \bar{c}+\cos \theta \frac{d}{t} \\
& \bar{n}=\cos \theta \bar{\pi}-\sin \theta
\end{aligned}
\]


APPENDIX VIII (continued)
The angle B so given by (seeling. A):
\[
\begin{align*}
& \tan \beta=\frac{d r}{r d \theta}=\frac{1}{r}\left(\frac{d r}{d \theta}\right) \quad(2.4) \\
& \operatorname{ar} \\
& \sin \beta=\frac{d r}{15} \tag{2,5}
\end{align*}
\]

This general expeusion for the curvatice is:
\[
\begin{equation*}
\frac{1}{R}=\frac{d \theta}{d S}-\frac{d B}{d S} \tag{2,6}
\end{equation*}
\]
W) ken 5 so tater as the independent viable, \((2.6)\) has the form.
\[
\frac{1}{e}=\frac{\left[1-\left(\frac{d t}{d s}\right)^{2}\right]^{1 / 2}}{r}-\frac{\frac{d^{2} t}{d s^{2}}}{\left[1-\left(\frac{d r}{d s}\right)^{2}\right]^{1 / 2}}
\]
and \(\theta\) is dettemined from
\[
d \theta=\frac{1}{7}\left[1-\left(\frac{d x}{d s}\right)^{2}\right]^{1 / 2} d s
\]

U kens: \(\theta\) is Taken as the independent enviable, we
have \(d v=\left\{x^{2}+\left(\frac{d \pi}{d \theta}\right)^{2}\right\}^{1 / 2} d \theta\)
and
\[
\frac{1}{\Gamma}=\frac{1}{\left[\pi^{2}+\left(\frac{d \pi}{d \theta}\right)^{2}\right]^{3 / 2}}\left\{\pi^{2}-\pi \frac{d^{2} \pi}{d \theta^{2}}+2\left(\frac{d \pi}{d \theta}\right)^{2}\right\}
\]
B.F.Gomalrich bomber oral Defense fironlue is

APPENDI: VIII (continued)
Equilibrium Equations of othess-Strinn Pelations Whe cossidel a defferestial element of the deformed suesnbiene. (FIG, 5). The soembluare forde vector thas \(\left\{T \bar{t}+\frac{d}{d s}(T \bar{t}) \frac{15}{2}\right\}\) A the drection of the tangent \((P d s) \bar{n} \rightarrow \frac{d s}{2}+\frac{d s}{2}+(s, \theta) \quad \cdots \frac{m}{m}\) vection, \(\bar{E}\), ind mong sutude \(T\). The eptirnal foric cector \(s\) in the nomal árecetions. The vector equilićuiem equation i:
\[
P_{\bar{n}}+\frac{d}{d s}(T \bar{t})=0
\]
(3.1)

Civnersding (3.1), we obtain thefrelluring scalar uqulibuinn equatuons:
\[
\begin{aligned}
\frac{d T}{d S} & =0 \\
p-\frac{V}{R} T & =0
\end{aligned}
\]

From G8. 3.2, we Abthin
T \(=\) const.
Then, the sumed equation trecames
\[
\frac{1}{P}=\frac{P}{T} \text { wheel } T=\text { cosest. }(3.4)
\]

APPENDIX VIII (continued)
Wh ken \(P=\) ensat, the suenstrarel delosxo site a ciseular cec. Whe cossidur suept the stew-strusi calvituin.
 menthaner. Ler \(\Delta 5_{0}\) lie the mutial length and as the final length of an element. Ttern,
\[
\Delta S=\left(1+\frac{\pi}{D}\right) \Delta S_{0}
\]
\((3.5)\)

Acred \(T\) is constaret, we can intuguete (3.5) And dotam a relotios, between the invitiel and firisl lesugttes.
\[
\begin{equation*}
s=\left(l+\frac{T}{D}\right) v_{0} \tag{3.6}
\end{equation*}
\]

Equations (3.4) and (3.6) An sufficient to
 the crox where \(\theta\) is titen as the independext orristuls. The brencdacy conditires ace:
\[
\begin{align*}
& F=T, \text { at } \theta=\theta_{1}  \tag{3.7}\\
& T=\frac{T}{2} \quad \text { at } \theta=\theta_{2}
\end{align*}
\]
\[
\tau=\frac{\pi}{2} \quad \text { at } \theta=\theta_{2}
\]
\(\int_{0}^{\theta_{2}}\left[\mu^{2}+\pi^{12}\right]^{1 / 2} d \theta=\left[1+\frac{\pi}{D}\right] S_{0}\)
wheer \(r,^{\prime}=\frac{d}{\text { NO }}\) and \(\rho=\rho(\epsilon)\)


APPENDIX VIII (continued)
The tivo inetegration ennstants inerselesed on the solutions of the diffecentide equatise ( 3.8 ) nond the wnstarit, T,
 as tef indequndext vacinlles, tel lquations act:
\[
\begin{array}{ll}
\frac{\left[1-\pi^{i}\right]^{1 / 2}}{\mu}-\frac{\ddot{i}}{\left[1-i^{2}\right]^{1 / 2}}=\frac{p}{T} & (3: 10) \\
\pi=\pi \text { at } S=0 & (3: 11) \\
\pi=\pi_{2} \text { at } S=\left[1+\frac{T}{D}\right] S_{0} & \\
\theta_{2}-\theta_{1}=\int_{0}^{\left[1+\frac{T}{0}\right] S_{0}} \frac{1}{\pi}\left[1-j^{2}\right]^{1 / 2} d S & (3: 12)
\end{array}
\]
whece \(P=p, 5)\)
\[
\text { and } l \cdot=\frac{d}{d j}
\]
as this crae, the Theel constints aneditelsmened flom Go. 3.11 had 3.12.

APPENDIX VIII (continued)
Xniform Nomal Pussuel Lhe
When the nomal peessuel ismstant, the membler deforms into an ue of a circle. The zaduus of culvatuel is
\[
P=\frac{T}{P}=\text { anst } \quad \text { (\$.1) }
\]
where \(T\) is unterown. Consider the menetrane supprited at \(a, b\), and let 50 denoli the initial anc lengeth and po th anceoponding initial nadius.

Arelegeateris of \((4.1)\)
 nesulto in
\[
S=2 \times \alpha \quad(4,2)
\]

The buondary conditurn is \(R \sin \alpha=T_{0}(4,3)\) Forally, the atcus-straun echetidat 10
\[
S=S_{0}\left[1+\frac{T}{D}\right] \quad(4.4)
\]

Thel Reef foul untrosures, sarsely, P5, \(\alpha\), and T. Gigo. 4.1 itearugt 4.4 Whe costader forst the nos wheer \(\frac{T}{D}\) sueglegints writ respect to unty, Then feesn it is


APPENOIX VIII (continued)

wheep
\[
\frac{\alpha_{n} \alpha_{0}}{\alpha_{0}}=Z\left(\frac{r_{0}}{s_{0}}\right)
\]
(4.7)
(4.8)

To ortain a errection wr subotitute \(T \approx p_{0} p \mathrm{in}\)
To oftain a wrection wr eubotit
the eppresoin for 5 . Then
\[
S \approx S_{0}\left[1+\frac{R_{0} P}{D}\right]
\]
\[
\begin{aligned}
S & \approx S_{0}\left[1+\frac{R_{0} P}{D}\right] \\
\frac{\sin \alpha}{\alpha} & \approx \frac{\sin \alpha_{0}}{\alpha_{0}} \frac{1}{1+\frac{R_{0} P}{D}} \\
P & \approx\left\{\frac{\alpha_{0}}{\alpha}\left[1+\frac{R_{0} P}{D}\right]\right\} R_{0} \\
T & \approx\{(4,10) \\
& \approx\left\{R_{0}\right\}\left[\frac{\alpha_{0}}{\alpha}\left[1+\frac{R_{0} P}{D}\right]\right]
\end{aligned}
\]

The quantity, \(\frac{T}{D}\), muxt os mall for engencuenc naltecals suth is sted in ordel tor di thetacroven to he elastic. Hlas ur esormes thet \(\alpha_{0}\) o of the soler of

APPENDIX V：II（continued）
We write
\[
\alpha=\alpha_{0}(1+\epsilon)
\]
\[
(4,13)
\]
find lossuner \(\in\) is a ennatt w．R．To unity．Then
\[
\begin{aligned}
& \sin \alpha \approx \sin \alpha_{0}+\alpha_{0} \in \cos \alpha_{0} \\
& \text { while we have fates } \quad \cos \alpha_{0} \epsilon \approx 1 \\
& \sin \alpha_{0} \epsilon \approx \alpha_{0} t
\end{aligned}
\]
\[
(4,14)
\]

Let us consider Eg．A．10．V sing A．13 and 4．14，
\[
\frac{\sin \alpha}{\alpha} \approx \frac{\sin \alpha_{0}+\alpha_{0} \in \cos \alpha_{0}}{\alpha_{0}(1+\epsilon)} \approx \frac{\sin \alpha_{0}}{\alpha_{0}} \frac{1}{1+\beta} \quad(4.15)
\]
where \(B=\frac{P_{0} P}{D} \ll 1\)
\[
(4,16
\]

We solve Eff：H． 15 for \(\epsilon\) ．
\[
\epsilon \approx \frac{\beta}{1-\frac{\alpha_{0} \cos \alpha_{0}}{\sin \alpha_{0}}} \approx \frac{\frac{R_{0} p}{D}}{1-\frac{\alpha_{0} \cos \alpha_{0}}{\sin \alpha_{0}}}
\]
\[
(4.17)
\]

Now，最s．Hill f 4．12 wan he written us
\[
\begin{aligned}
& P \approx P_{0}\left\{\frac{\sin \alpha_{0}}{\sin \alpha}\right\} \\
& T \approx\left(P R_{0}\right)\left[\frac{\sin \alpha_{0}}{\sin \alpha}\right] \\
& \text { But, fern ti /4 and } 4,17, \\
& \frac{\sin \alpha_{0}}{\sin \alpha} \approx \frac{1,}{1+\epsilon \frac{\alpha_{0} \cos \alpha_{0}}{\sin \alpha_{0}}} \approx \frac{1}{1+\frac{\beta}{\frac{\sin \alpha_{0}}{\operatorname{Ren}_{0} \cos \alpha_{0}}}} \text { (4.19) }
\end{aligned}
\]


Contract Nubsr 89483
Sertal No. S:3041-001
lask 815 b
- 12 -

Refortic No. 17
Phase I Interim Report 30 September 1964

\(\qquad\)
\[
(4,20)
\]
\[
(4.21)
\]

\[
(4,22)
\]

Lhoty, we ditarmins the madal deleation at the mud puit. This io graen ify (see tig 6)
\[
\Delta=-p_{0}\left(1-\cos \alpha_{0}\right)+p(1-\cos \alpha)
\]
(4,23)
Now for a small strain,
\[
\begin{equation*}
\cos \alpha \approx \cos \alpha_{0}-\alpha_{0} \epsilon \sin \alpha_{0} \tag{4,24}
\end{equation*}
\]

Contract NObs 89483
Serial No. SS041-001
Task 8156
- 13 -

Report No. 17
Phase I Interim Report 30 September 1964

APPENDIX VIII (continued)
and then
\[
\begin{aligned}
& \Delta \approx\left(1-\cos \alpha_{0}\right)\left(P-R_{0}\right)+P\left(\alpha_{0} t \sin \alpha_{0}\right) \\
& \frac{A}{R_{0}} \approx\left(1-\cos \alpha_{0}\right)\left[\frac{\sin \alpha_{0}}{\sin \alpha}-1\right]+\alpha_{0} t \sin \alpha_{0}
\end{aligned}
\]

This reduces to:
\[
\begin{aligned}
& A \approx R_{0}\left\{( 1 - \operatorname { c o s } \alpha _ { 0 } ) \left[1-\left(\frac{\left.\left.\frac{p_{0} P}{1-\frac{\alpha_{0} \cos \alpha_{0}}{\sin \alpha_{0}}}\right)\left(\frac{\alpha_{0} \cos \alpha_{0}}{\sin \alpha_{0}}\right)-1\right]}{1}\right.\right.\right. \\
& \left.+\alpha_{0} \frac{\frac{P_{0}}{D} \sin \alpha_{0}}{1-\frac{\alpha_{0} \cos \alpha_{0}}{\operatorname{anc}_{0} \alpha_{0}}}\right\} \\
& \text { opt } Z=\frac{\frac{R_{0}}{D}}{1-\frac{\alpha_{0} \cos \alpha_{0}}{\sin \alpha_{0}}}=\frac{\frac{\rho_{0}}{D} \sin \alpha_{0}}{\sin \alpha_{0}-\alpha_{0} \cos \alpha_{0}} \\
& \Delta=\alpha_{0}\left\{\left(1-\cos \alpha_{0}\right)\left[-z \frac{\alpha_{0} \cos \alpha_{0}}{\alpha_{0} \alpha_{0}}\right]+z \alpha_{0} \alpha_{i n} \alpha_{0}\right\} \\
& =\operatorname{P}_{0}\left\{7\left[-\frac{\left(1-\cos \alpha_{0}\right) \alpha_{0} \cos \alpha_{0}}{\sin \alpha_{0}}+\alpha_{0} \sin \alpha_{0}\right]\right\} \\
& =\operatorname{To}_{0}\left\{7\left[\frac{\alpha_{0} \sin \alpha_{0}-\left(1-\cos \alpha_{0}\right)\left(\alpha_{0} \cos \alpha_{0}\right.}{\sin \alpha_{0}}\right]\right\} \\
& =\operatorname{F}_{0}\left\{\frac{\pi}{T}\left[\frac{\alpha_{0} \sin ^{2} \alpha_{0}-\alpha_{0} \cos \alpha_{0}+\alpha_{0} \operatorname{sos} \alpha_{0}}{\sin \alpha_{0}}\right]\right\}
\end{aligned}
\]

Contract liobsir 89483
Sertal No. SSu41-001
Task 31j6

APPENDIX VIII (continued)
\[
\begin{aligned}
\Delta & =p_{0}\left\{Z\left[\frac{\alpha_{0}\left(1-\cos \alpha_{0}\right)}{\sin \alpha_{0}}\right]\right\} \\
& =P_{0}\left\{\frac{p_{0} p \sin \alpha_{0}}{\sin \alpha_{0}-\alpha_{0} \cos \alpha_{0}}\left[\frac{\alpha_{0}\left(1-\cos \alpha_{0}\right)}{\sin \alpha_{0}}\right]\right\} \\
\Delta & =\frac{P_{0}^{2} p}{D}\left[\frac{\alpha_{0}\left(1-\cos \alpha_{0}\right)}{\sin \alpha_{0}-\alpha_{0} \cos \alpha_{0}}\right]
\end{aligned}
\]

Apperximate Solution-Nlor Usiform Prosue las
We ursider \(\theta\) to the the ndelpordent miable and tate the origin at the contte 'y the cucalur anc concopprndengy to the indelforned llangtat, vo. Thi oxppotb ane luatud at \(\theta= \pm 0_{0}, x=e_{0}\)


APPENDIX VIII (continued)
The septem of equations is
\[
\text { wheel }()^{\prime}=\frac{d}{d \theta}
\]
\[
(5.1)
\]

And the bunsdey conclitiones are
\[
\begin{equation*}
\pi=P_{0} \quad \text { atp } \theta= \pm \theta_{0} \tag{5,2}
\end{equation*}
\]

Now, wer let
\[
\begin{equation*}
\mu=P_{0}(l+\delta) \tag{5,3}
\end{equation*}
\]
and monciler of mall with mopect to arity.
The ekprescioses for Pands tike the toem
\[
\begin{align*}
& \frac{1}{P}=\frac{1}{P_{0}} \frac{\left(1-2 \delta+\sigma^{2}\right)-\delta^{1}(1+\delta)+2\left(\delta^{\prime}\right)^{2}}{\left[1+2 \delta+\delta^{2}+(\delta)^{2}\right] \sqrt{2}} \quad(5,4) \\
& \sigma=P_{0} \int_{\theta_{0}}^{\theta_{0}}\left[1+2 \delta+\delta^{2}+\left(\delta^{\prime}\right)^{2}\right]^{1 / 2} d \theta \tag{5,5}
\end{align*}
\]

We note that \(\sigma^{\prime}=\frac{d \delta}{d \theta}\) is approfinatily the myle betwaen the Tangents to the initid' and defrensed cweves indthuelou
 ands' au bonall weto I. Then useng the eqpendeon
B. F.Goumetrich Aeruspanc imil
\[
\begin{aligned}
& T=\text { canot. } \\
& \frac{1}{R}=\frac{P}{T} \\
& \frac{1}{p}=\frac{\pi^{2}-\pi \pi^{\prime \prime}+2 \pi^{\prime 2}}{\left[x^{2}+\pi^{\prime 2}\right]^{2}} \\
& S=\int_{-\theta_{0}}^{\theta_{0}}\left[x^{2}+\pi^{2}\right] / 2 d \theta=\left[1+\frac{\pi}{0}\right] S_{0}
\end{aligned}
\]

Contract NObs 89483
Serial No. SSO41-001
Task 8156
- 16 -

Report No. 17
Phase I Interim Report
30 September 1964

APPENDIX VIII (continued)
\[
(1+x)^{n}=1+m x+\frac{21(10-1)}{2!}+(5,6)
\]
cos Rowe
\[
\left[\begin{array}{l}
{\left[1+\left\{D S+\delta^{2}+\delta^{2}\right\}\right]^{1 / 2} \approx 1+5+\frac{1}{2}\left(\sigma^{2}+\delta^{2}\right)+\ldots} \\
{\left[1+\left\{2 \delta^{2}+\delta^{2}+\delta^{2}\right\}^{-\frac{3}{2}} \approx 1-3 \int^{2}-\frac{3}{2}\left(\delta^{2}+\delta^{2}\right)+\ldots\right.}
\end{array}\right.
\]

Now ens sane that
\[
\begin{array}{lll}
\delta^{2} \ll 1 \\
\left(\delta^{\prime}\right)^{2} \ll 1 & \delta^{\prime \prime} \ll 1 & (5.8)
\end{array}
\]

Then, Ens 5.4 and 5.5 cedruie to:
\[
\begin{aligned}
& \frac{1}{R}=\frac{1}{R_{0}}\left[1-\delta-\delta^{\prime \prime}\right] \quad(5.9) \\
& \sigma=2 P_{0} \theta_{0}+P_{0} \int_{-\theta_{0}}^{\theta_{0}} \delta d \theta=\left[1+\frac{T}{D}\right] 5_{0} \\
& (5.10)
\end{aligned}
\]

Finally, the approximate exptem y ugutiones is
\[
\begin{aligned}
& \delta^{\prime \prime}+\delta=1-\frac{E_{0} \omega}{T} \\
& \delta=0 \text { at } \theta=+\theta_{0} \\
& \int_{-\theta_{0}}^{\theta_{0}} \delta \cos ^{\prime} \theta=\frac{5_{0}}{R_{0}} \frac{T}{D}
\end{aligned}
\]

He Net
\[
P=P_{0}[1+\bar{P}(\theta)]
\]
(5.13)

APPENDIX VIII (continued)
Whee \(P_{0}\) is a constant and \(|\bar{P}(\theta)|\) is small compared to unity. Also, we let
\[
T=\left(R_{0} p_{0}\right) \frac{1}{1+\tau} \quad(5.14)
\]
where IT/ is small with respect to unity.
The equations take the form: The equations take the form:
\[
\begin{array}{ll}
\delta^{\prime \prime}+\delta=-\tilde{z}-(1+\tau) \bar{\theta} & (5.15) \\
\int_{\theta_{0}}^{\theta_{0}} \delta d \theta=\frac{S_{0} 0_{0}}{D}\left[\frac{1}{1+\tau}\right] & (5.16) \\
\delta=0 \text { at } \theta= \pm \theta_{0} &
\end{array}
\]

The solutions is:
\[
\delta=-\tau+c_{1} \cos \theta+c_{2} \cdot \sin \theta-(1+\tau) \delta_{p} \quad(5.17)
\]
where
\[
\begin{array}{r}
\delta_{p}=-\cos \theta \int_{\mu}^{\theta} \bar{p}(\theta) \sin \theta d \theta+\sin \theta \int \frac{\theta}{\bar{p}}(\theta) \cos \theta d \theta \\
(5.18)
\end{array}
\]
\(n\) altomaly,
\[
\delta_{p}=\int_{\hat{p}(\xi)} \sin (\theta-\xi) d \xi \quad(5.19)
\]

Equation (5,19) in mme convenient po momeucal
 The equations relating \(C_{1}, C_{l}\), and 2 nee:

APPENDIX VIII (cont inured)
\[
\begin{aligned}
& \text { C, } \cos \theta_{0}+c, 2+2+2+[\rho] \theta_{0}=2=\theta_{0} \\
& \text { C, } \left.\cos \theta_{0}-c_{0} \sin \theta_{0}=2+c 1+2\right)[\sqrt{p}] \theta=-\theta_{0} \text { (silo }
\end{aligned}
\]

Einatines ज.20 Reduce Lo
\[
\begin{aligned}
& \therefore \cos \theta_{0}=2+\frac{1}{2}(1+2)\left\{\left[\delta p_{0}\right]_{\theta=\theta_{0}}+\left[\sigma \sigma_{0}\right]_{\theta=-\theta_{0}}\right\} \\
& \epsilon_{2} \operatorname{ari} \theta_{0}=\frac{1}{2}(1+2)\left\{[\delta p]_{0}=\theta_{0}-[\delta p]_{\theta=-\theta_{0}}\right\} \\
& -\pi+c_{1} \frac{\sin \theta_{0}}{\theta_{0}}-\left(\frac{1+c^{2}}{2 \theta_{0}}\right) \int_{-\theta_{0}}^{\theta_{0}} \int_{p} d \theta=\frac{p_{0} p_{0}}{D}\left[\frac{1}{1+2}\right] \\
& \text { (5.21) }
\end{aligned}
\]

We see from Gpo 5.21 chat a cherishes when \(p\) ( \(\theta\) ) \(s\) an cen furstien of \(\theta\). Alas, \(c_{1}\) and 7 don ot invalue p\((\theta)\) when \(\bar{p}(\theta) s\) an odd function of \(\theta\).
We write
\[
\bar{p}=\bar{p}_{E}+\bar{p}_{0}
\]
( 0.22 )
where \(\bar{D}_{E}\) is an wen function of \(\theta\) and \(\bar{p}_{0}\) is an odd function of \(\theta\). Then,
\[
\begin{equation*}
\delta_{p}=\delta_{p, E}+\delta_{p, 0} \tag{5,23}
\end{equation*}
\]

APPENDIX VIII (continued)
Equations 5.2 n nalue to:
\[
c_{2} \sin \theta_{0}=(1+\tau)\left[\delta \rho_{0},\right]_{\theta=\theta_{0}} \quad(5,24)
\]
and
\[
\begin{aligned}
& c_{1} \cos \theta_{0}=\tau+(1+\tau)\left[\delta_{P, E}\right]_{\theta}=\theta_{0} \\
& c_{1} \frac{\sin \theta}{\theta_{0}}-\tau-\left(\frac{1+\tau}{2 \theta_{0}}\right) \int_{-\theta_{0}}^{\theta_{0}} \delta_{P_{, E}} d \theta=\frac{R_{0} \theta_{0}}{D}\left[\frac{1}{1+\tau}\right]
\end{aligned}
\]
: We will consider various pressure distubutions.
Case A - Uniform Pussuel
\[
\text { We take } \bar{p}(\theta)=0 \text {. Then, } \delta_{p}=0 \text {. Ego s.25 }
\]
catence to:
\[
\begin{gathered}
\theta_{1} \cos \theta_{0}=\tau \\
c_{1} \frac{\sin \theta_{0}}{\theta_{0}}-\tau=\frac{\theta_{0} p_{0}}{D}\left[\frac{1}{1+2}\right]
\end{gathered}
\]
\[
(5.26)
\]

Then, \(c_{1}=\frac{2}{\cos \theta_{0}}\)
(5.27)
and
\[
L^{L} \approx \frac{P_{0} \rho_{0}}{D} \frac{1}{\frac{\theta_{0} \cos \theta_{0}}{\theta_{0}}-1}
\]
\[
(5.28)
\]
\[
\begin{aligned}
& T=\left(R_{0} \theta_{0}\right) \frac{1}{1+2} \\
& \left.T=R_{0}(1+\delta) \text { wheel } \delta=\tau<\frac{\cos \theta}{\cos \theta_{0}}-1\right\}(5,30)
\end{aligned}
\]

1B.F.Cimultinh P. posprece in nd

APPENDIX VIII (continued)
This orluction ageus witt the solutions obtained en section \&!

When \(\theta_{0}=\frac{\pi}{2}\), the satiation is
\[
\tau=0
\]
\[
\begin{equation*}
c_{1}=\frac{\pi}{L}\left(\frac{R_{0} P_{0}}{D}\right) \tag{5.31}
\end{equation*}
\]
\[
\delta=\frac{\pi}{2}\left(\frac{P_{0} P_{0}}{D}\right) \cos \theta
\]
\[
T=R_{0} p_{0}
\]
\(\angle a s e\) - Linear Vaciation on Prove
We tate
\[
\begin{equation*}
\bar{\rho}(\theta)=a \frac{\theta}{\theta_{0}} \tag{5.32}
\end{equation*}
\]
whole \(a\) is a coscotant. Ire proticular solution is
\[
\delta_{p}=a \frac{\theta}{\theta_{0}}
\]

Now, \(L_{1}\) and \(z\) we given by Gie, 5,27 and 5,28 . The eqpersain for is follows film \&\&. 5.24.
\[
c_{2}=a \frac{1+2}{\sin \theta_{0}}
\]

Finally, the solution for of is:

We consider \(\tau\) to the suglagidle and ate the solution as:

APPENDIX VIII (continued)
\[
\begin{equation*}
\delta \approx a\left\{\frac{\sin \theta}{\sin \theta_{0}}-\frac{\theta}{\theta_{0}}\right\} \tag{5.35}
\end{equation*}
\]

The derivatives ace
\[
\begin{align*}
& \delta^{\prime} \approx \frac{d r}{d S} \approx a\left\{\frac{\cos \theta}{\sin \theta_{0}}-\frac{1}{\theta_{0}}\right\}(5.36) \\
& \delta^{\prime \prime}=-a \frac{\sin \theta}{\sin \theta_{0}} \tag{5.37}
\end{align*}
\]

The slope is a maximum at \(\theta=0\) and is queen ty:
\[
\delta_{\text {max }}^{\prime} \approx a\left[\frac{1}{\sin \theta_{0}}-\frac{1}{\theta_{0}}\right] \quad(5.38)
\]

The deflection is a maximum at \(\theta=\theta_{m}\) whull
\[
\begin{array}{ll}
\cos \theta_{m}=\frac{\sin \theta_{0}}{\theta_{0}} & (5.39) \\
S_{m}=a\left\{\frac{\sin \theta_{m}}{\sin \theta_{0}}-\frac{\theta_{m}}{\theta_{0}}\right\} & (5.40)
\end{array}
\]

Results per various values of of au tabulated below
\begin{tabular}{c|c|c|c}
\(\theta_{0}\) & \(\theta_{m}\) & \(8 \mathrm{~m} / a\) & \(\delta m / a\) \\
\(15^{\circ}\) & \(9^{\circ}\) & 0.003 & 0.04 \\
\(30^{\circ}\) & \(17^{\circ}\) & 0.018 & 0.09 \\
\(45^{\circ}\) & \(25.5^{\circ}\) & 0.041 & 0.14 \\
\(60^{\circ}\) & \(340^{\circ}\) & 0.078 & 0.20 \\
\(75^{\circ}\) & \(42.5^{\circ}\) & 0.134 & 0.27
\end{tabular}
B.F.Coodrich Armenary anil

APPENDIX VIII (continued)
Note that sis the nelative change in the radius and S'is the evtation of the tangerif (sedians).
on the mapris, we tau neqlected \(\int_{1}^{2}, 0^{2}\), and So" writh respect to unity. Ttl nesults listed elrue indeate thet these epperdimateres aer ceasonalle orten A is of tle vider of unity. The lemiting velue of " \(a\) " will goneally \&o dethminual ity s'm.

Case C-beneal Prusuce Dothidution We cmacien nuet th case vortue \(\bar{P}(\theta)\) is given in tatule form. The perataus areution, op, am te articied by intyuting me medfeinth

\[
\xi p(\theta)=\int_{0} \bar{p}(\xi) \sin (\theta-\xi) d \xi \quad(\sigma, / 1)
\]

Once \(\delta_{p}(\theta)\) io inneron, the numaining sittygeal,
\[
\begin{equation*}
\int_{-0_{0}}^{\theta_{0}} \delta p d \theta \tag{5.42}
\end{equation*}
\]
can the endily ditimined and the constants,\(L_{1}\), and \(T\) cun he found witt Qs 5.21 Amponsó sull can 4 creed in the sumreval intuglation. The AEtesnmentin of sp and The esencatron of Th mitingeat


APPENDIX VIII (continued)
Static Momurare Cnalypes
(shallow bhell Thory)
- Sernctic Patations Fre bugface


We the g , and \(y_{2}\) as cuevalinear crovdinates fir the stall surface, We will nomis taf the condinate lisees, \(y_{1}=\) anst and \(y=\) ancat serorthymal.
Thes cuscuces Tho nagucess
\[
\begin{equation*}
\frac{\partial \pi}{\partial y_{1}} \cdot \frac{\partial \pi}{\partial y_{z}}=0 \tag{1}
\end{equation*}
\]
whwer \(\bar{\pi}\) is the prection vactar bot sugfud. Thifiest fundanmental form for ace linth uduces \(\overline{\text { B: }}\)
\[
\begin{equation*}
d 5^{2}=\alpha_{1}^{2} d y_{1}^{2}+\alpha_{0}^{2} d y_{2}^{2} \tag{2a}
\end{equation*}
\]
where
\[
\begin{align*}
& \alpha_{1}^{2}=\frac{\partial F}{\partial y_{1}} \cdot \frac{\partial \pi}{\partial y_{1}}  \tag{2b}\\
& \alpha_{z}^{\alpha}=\frac{\partial \pi}{\partial y_{2}} \cdot \frac{\partial \pi}{\partial y_{z}}
\end{align*}
\]

APPENDIX VIII (continued)
The third Lanxisarametie, \(\alpha_{12}=\frac{\partial \pi}{\partial y} \cdot \frac{\partial \pi}{\partial y_{2}}\), sizes when the vardinate limes ane onthogond.

Moving (20), the uncut tangicat erctios and the sumer vector ace:
\[
\begin{align*}
& \overline{t_{1}}=\frac{1}{\alpha_{1}} \frac{\partial \bar{x}}{\partial y_{1}}  \tag{3}\\
& \overline{t_{2}}=\frac{1}{\alpha_{2}} \frac{\partial F}{\partial y_{2}} \\
& \bar{m}=\bar{t}_{1} \times \overline{t_{2}}
\end{align*}
\]

We do not ascunes that the coordinate loves ar ale loses of cursatwee. The diflewntation fromelas for the resit rectors have the form
\[
\begin{aligned}
& \bar{t}_{j, j}=-\frac{\alpha_{j} h}{\alpha_{h}} \bar{t}_{h}-\frac{\alpha_{j}}{P_{j j}} \bar{n} \quad(4 a) \begin{array}{l}
\gamma \neq h \\
j, h=1,2
\end{array} \\
& \bar{t}_{j, h}=\frac{\alpha_{h, j}}{\alpha_{j}} \bar{t}_{h}-\frac{\alpha_{h}}{P_{j h}} \bar{m} \quad \text { (Ab) } \begin{array}{l}
\gamma \neq h \\
j, h=1,2
\end{array} \\
& \bar{m}_{j j}=\frac{\alpha_{j}}{R_{j j}} \bar{t}_{j}+\frac{\alpha_{j}}{P_{j h}} \bar{t}_{h} \quad(4 c) \quad \begin{array}{l}
j \neq h \\
j, h=1,2
\end{array}
\end{aligned}
\]
where
\[
\begin{equation*}
\frac{1}{R_{j h}}=-\frac{1}{\alpha_{j} \alpha_{h}} \bar{n} \cdot \bar{r}_{j} h \tag{4d}
\end{equation*}
\]

APPENDIX VIII (continued)
and we haws used the strnadad notation for paction differentiation for example, \(\frac{\partial \pi}{\partial y_{2}}=\frac{\pi}{\pi}\)
with the are definition of Dj, the secured fundanuxtid form for the surface takes the form:
\[
d \bar{\pi} \cdot d \bar{n}=\frac{\alpha_{1}^{2} d y_{2}^{2}}{R_{11}}+\frac{2 \alpha_{1} \alpha_{2}}{R_{12}} d y_{1} d y_{2}+\frac{\alpha_{2}^{2}}{R_{22}} d y_{2}^{2}
\]

Fondly, the thee burrs-Colagzi Relations cord

\[
\begin{aligned}
& \alpha_{j}\left(\frac{1}{R_{j j}}\right)_{1 h}-\alpha_{h}\left(\frac{1}{R_{j h}}\right)_{, j}=\alpha_{j, k}\left(\frac{1}{R_{h h}}-\frac{1}{R_{j j}}\right) \\
&+2 \alpha_{k, j} \frac{1}{R_{j h}}(6 a) \\
& \alpha_{1} \alpha_{2}\left(\frac{1}{R_{12}}-\frac{1}{R_{1,1}}\right)=\left(\frac{\alpha_{2,1}}{\alpha_{1}}\right)_{, 1}+\left(\frac{\alpha_{1,2}}{\alpha_{k}}\right)_{, 2}(6 b)
\end{aligned}
\]

APPENDIX VIII (continued)
Guilibrium Guatarns
We unsider en element ty the sucface bunded ly the awves \(y_{1}=c_{1}, y_{1}=c_{1}+d y_{1}, y_{0}=c_{0}\),
\(y_{2}=c_{0}+d y_{2}\). The anc lingteds ane \(\alpha, d y_{1}\) and \(d_{0} d y\)
 We define \(v_{j}\) as the stess eesultast vectar per uncturdtt nsociated witt dif face wothse nomal acts in the \(\overline{\tau_{j}}\) disection.
Tcese cectors nerespecsaed in lums
 duections.
Figale \(\alpha\)
\[
\begin{equation*}
\overline{N_{d}}=N_{d}, \bar{t}_{1}+N_{d} \bar{t}_{z} \tag{5}
\end{equation*}
\]

We define Pro the enternal nomal frae per unctiona, prsiter when \(n\) the porctre nemal diection Ammong up frees in at \(\bar{t}_{1}, \bar{z}_{0}\), and \(\bar{n}\) dicections, we stain the following eqpiton of s-quilitricon equations.
\[
\begin{gather*}
\frac{\partial}{\partial y_{1}}\left(N_{11} \alpha_{2}\right)+\frac{\partial}{\partial y_{2}}\left(N_{2}, \alpha_{1}\right)+N_{12} \alpha_{1,2}-N_{22} \alpha_{2,1}=0 \quad \text { (6a) }  \tag{6a}\\
\frac{\partial}{\partial y_{1}}\left(N_{12} \alpha_{2}\right)+\frac{\partial}{\partial y_{2}}\left(N_{22} \alpha_{1}\right)+N_{21} \alpha_{2,1}-N_{11} \alpha_{1,2}=0 \quad(6 b)  \tag{6b}\\
\frac{N_{11}}{R_{11}}+\frac{N_{22}}{R_{22}}+\frac{1}{R_{12}}\left(N_{12}+N_{21}\right)=\infty \quad(6 c)
\end{gather*}
\]

APPENDIX VIII (continued)
Anssiduation of the moment iquilubuion of de

\[
N_{12}=N_{2}
\]
\[
(6 d)
\]

Itecefore, thel an Tteel vestrousp strest cesultants at a print \(N_{11}, N_{22}\), and \(N_{12}\). Gauntimins (6) appoar to l\& quite sumple in form. Heruruer, in order to solep thes ocpetinn, the freatuen af at sucfach mwedt tes tonden, thitin, we:sust Nonow or and \(W_{N}\). An concenternal thesi okel Ntwey, wo distinction s mads hetueen the deforsxed sons undeforned Genmectios, We will arsueider the case wheer the suelace s ohallow, In vedel to handele \(d\) inen othelleceisueface,
 suptim, ased the equations ael quitl impoles.

3 -Fecualiznten To Ahellow suyfaces
We tate the levestiones of the defernued sucpace
\(z=z(x, y)\)
Qo
\[
z=z(x, y)
\]
 Figuel 3
\(\infty\)
The prosecion vector to a porntixy,z)
\[
\begin{equation*}
\mu=x \bar{c}+y \bar{\gamma}+z \bar{R} \tag{8}
\end{equation*}
\]
whees \(\bar{c}\), \(\overline{\text { w }}\), \(\overline{\text { ne unertoectaio in }}\) the \(x, y, z\) dinecterns. Nrw, we cassidep \(x\) and \(y\) to be The cuverlinein cordinates.


APPENDIX VIII (continued)
\[
\begin{equation*}
\ddot{x}=y_{1} \tag{9}
\end{equation*}
\]
\[
y=y_{2}
\]

The Lance parameties are
\[
\begin{align*}
& \alpha_{1}^{2}=\frac{\partial \pi}{\partial y_{1}} \cdot \frac{\partial \pi}{\partial y_{1}}=1+z_{, x}^{\alpha} \\
& \alpha_{\partial}^{\alpha}=\frac{\partial \bar{x}}{\partial y_{2}} \cdot \frac{\partial \pi}{\partial y_{2}}=1+z_{, y}^{\alpha}  \tag{10}\\
& \alpha_{12}^{\alpha}=\frac{\partial \pi}{\partial y_{1}} \cdot \frac{\partial \pi}{\partial y_{2}}=z_{, x} z_{, y}
\end{align*}
\]

Wten the surface is shallow,
\[
z_{i x} \ll 1 \text { and } z_{y} \ll 1
\]

Thecfore, wrtare
\[
\alpha_{1}^{2} \approx 1 \quad \alpha_{2}^{2} \approx 1 \quad \alpha_{12} \approx 0 \quad \text { (11) }
\]
and corsides tes coardirate dicectionslode outhognal
\[
\begin{aligned}
& \text { The unit Targent cectom ace } \\
& \bar{t}_{1}=\frac{1}{\alpha_{1}} \frac{\partial \bar{\pi}}{\partial y_{1}} \approx \bar{L}+z, x \bar{h} \\
& \bar{t}_{2}=\frac{1}{\alpha_{2}} \frac{\partial \bar{\pi}}{\partial y_{2}} \approx \bar{j}+z, y \bar{h}
\end{aligned}
\]

Then, the surmal vector is
\[
\bar{m}=\overline{\tau_{,}} \times \overline{\tau_{2}} \approx\left|\begin{array}{lll}
\bar{c} & \bar{\gamma} & \bar{k} \\
1 & 0 & z_{, x} \\
0 & \prime & \bar{z}, y
\end{array}\right| \approx-z_{, x} \bar{\iota}-\bar{z}, y \bar{\delta}+\bar{h}<\overline{1},
\]

aske 6156

Reroil No. 11
Phase 1 Interin epoct
30 september 1964

APPENDIX VIII (continued)
Fonclly, the cwovature temss, \(P_{d h}\), suduce to:
\[
\begin{align*}
& \frac{1}{P_{1 /}}=-Z, x x \\
& \frac{1}{R_{22}}=-Z, y y  \tag{14}\\
& \frac{1}{R_{12}}=-z, x y
\end{align*}
\]

Whe consides xeet the bruss-Corlazgi Eguataxo The finst two aer indentically settífied ly tirsand (14). The thied equation invulates anserer of the radel of cucurctic! -quared ased ur have asmond teto to hes sugligille! Tlueglare, the beves-Godagei Gualions ore Antisfied tote deger of cur applaximation.
ite now upamiex ter cquelivicum equation, Toking \(\alpha_{1}=\alpha_{2}=1\) and \(N_{12}=N_{21}\), etcer equatures ceduce to
\[
\begin{array}{ll}
\frac{\partial}{\partial x} N_{11}+\frac{\partial}{\partial y} N_{1 z}=0 & (15 a) \\
\frac{\partial}{\partial x} N_{12}+\frac{\partial}{\partial y} N_{2 z}=0 & (15 b) \\
N_{11} Z_{, x x}+2 N_{1 z} Z_{, x y}+Z_{, y y} N_{2 z}+P_{=0} \tag{15b}
\end{array}
\]

Eqeuations 15 misslur I/ unterouros,
\(N_{11}, N_{12}, N_{22}\), and \(z^{2}\). We can cedece these -gerutions lig intrenencing is stecss function.

APPENDIX VIII (continued)
Let
\[
\begin{aligned}
& N_{11}=\frac{\partial^{2}}{\partial y^{2}}=F_{y y} \\
& N_{22}=\frac{\partial^{2} F}{\partial x^{2}}=F_{x x} \\
& N_{12}=-\frac{\partial^{2} F}{\partial x \partial y}=-F_{,} x y
\end{aligned}
\]
\((16)\)

With tis definituon of F, the first tas quatimes ane a
cientically settified, And the thard iseuation weduceste \(\sum_{x x} F_{y y y}-2 z x y\) Fxy \(+z, y y F x x+p=0\)

te sugface acea dennent for ite deflonned pastam is quien liy
\[
d A=\left|\frac{d \pi}{d y_{1}} \times \frac{d \pi}{d y_{2}}\right| d y_{1} d y_{2}
\]

This ceduces to
\[
d A=\left\{1+z_{1}^{2}+z, y\right\}^{1 / 2} d x d y \quad \text { (19) }
\]
 anity, eve vrite \((19)\) as
\[
d A=\left\{1+\frac{1}{2}\left(z, x^{2}+z, y^{2}\right)\right\} d z d y \quad \text { (z0) }
\]

APPENUIX VIII (continued)
Fincally, the inextenviseal nquiement takes the form
\[
\int_{x} \int_{y}\left\{1+\frac{1}{2}\left(z_{1 x}^{2}+z_{, y}^{2}\right)\right\} d x d y=140
\]

At ussains to solus Eas. ( \(\gg\) ) and (a) (and satiojly the bundary conclitions of \(\angle\) and F. We pasforne furlte Niscussion of tior equations until we have ingformation lever for ste sess cesulitants.
4. Peudtant

Tranghanation the


 Fugues 4!
 on the serfacde Det nhunt twat the stros nowltholt por unoit writh, mometid ty \(N_{r r}, N_{r n}=N_{n r}, N_{n n}\), por thesp diecectoses. The dreeaperdining vectors ace
\[
\begin{aligned}
& \bar{N}_{2}=N_{\nu r} \bar{t}_{\gamma}+N_{\nu x} \bar{t}_{n} \\
& \bar{v}_{n}=N_{n \nu} \bar{t}_{\nu}+N_{n x} \bar{\tau}_{n}
\end{aligned}
\]
 Diflense l'rumbla is

APPENDIX VIII (continued)
\[
\begin{align*}
& \bar{Z}_{V}=\cos \theta \bar{t}_{1}+\operatorname{sen} \theta \bar{t}_{2} \\
& \bar{t}_{2}^{2}=-\sin \theta \bar{t}_{1}+\cos \theta \bar{t}_{2} \tag{23}
\end{align*}
\]

The transformation law, upecssed in matrix fram is *
\[
\begin{aligned}
& {\left[\begin{array}{cc}
N_{\nu \nu} & N_{\nu n} \\
N_{n \nu} & N_{n n}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{ll}
N_{11} & N_{12} \\
N_{21} & N_{22}
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]} \\
& \text { ©panding, we tuce }
\end{aligned}
\]

Epanding, we them
\[
\begin{aligned}
& N_{\nu \nu}=N_{11} \cos ^{2} \theta+N_{22} \sin ^{2} \theta+2 N_{12} \sin \theta \cos \theta \\
& N_{n n}=N_{11} \sin ^{2} \theta+N_{22} \cos ^{2} \theta-2 N_{12} \sin \theta \cos \theta \\
& N_{\nu n}=N_{\lambda \nu}=N_{12}\left(\cos \theta \sin ^{2} \theta\right)+\sin \theta \cos \theta\left(N_{2 d}-N_{11}\right)
\end{aligned}
\]

Ance \(N_{11}, N_{-2}\), and \(N_{12}\) ace knourn, wer un find Ats stros resulitits roscriated urth any two rethegosel disecturns theregh tepaint.
* Lee "Matrix-tersor Methods is Castinuum Mecharice", - 5.F. Boug, Van Mostiand Cor, \(\$ 63\).
\[
\text { (Vert } \frac{A P P E N D I X V I I I ~(c o n t i n u e d) ~}{2 H}
\]
\[
\begin{aligned}
& \frac{\partial N_{11}}{\partial x}=-2 T_{\nu} \cos \theta \sin \theta \frac{\partial \theta}{d x}+\cos ^{2} \theta \frac{d}{d x} T_{\nu}
\end{aligned}
\]
\[
+\alpha T_{1} \sin \theta \cos \theta \frac{\partial \theta}{\partial x}+\sin ^{2} \theta \frac{\partial T_{1}}{\partial x}
\]
\[
\frac{\partial N_{11}}{\partial x}=\sin \frac{\partial \theta \frac{\partial \theta}{\partial x}\left(T_{n}-T_{L}\right)+\cos ^{2} \theta \frac{\partial T_{x}}{\partial x}+\sin ^{\alpha} \theta \frac{\partial T_{n}}{\partial x}, x^{x}}{\partial x}
\]

By analogy
\[
\frac{\partial N_{\partial \partial}}{\partial y}=\sin \partial \theta \frac{\partial \theta}{\partial y}\left(T_{\nu}-T_{\lambda}\right)+\cos ^{2} \frac{\partial \partial T_{A}}{\partial y}+\sin ^{\theta} \theta \frac{\partial T_{\lambda}}{\partial y}
\]

Also
\[
\begin{aligned}
& \frac{\partial N_{\mu}}{\partial x}=\left(T_{\nu}-T_{i}\right) \cos \partial \theta \frac{\partial \theta}{\partial x}+\frac{1}{\partial} \sin \partial \theta\left(\frac{\partial T_{\mu}}{\partial x}-\frac{\partial T_{n}}{\partial x}\right) \\
& \frac{\partial N_{1} \partial}{\partial y}=\left(T_{\gamma}-T_{n}\right) \cos \partial \theta \frac{\partial \theta}{\partial y}+\frac{1}{\partial} \sin \partial \theta\left(\frac{\partial T_{\nu}}{\partial y}-\frac{\partial T_{n}}{\partial y}\right)
\end{aligned}
\]

Es. \(15 a \quad \frac{\partial N_{11}}{\partial x}+\frac{\partial N_{12}}{\partial y}=0\)
\[
\begin{array}{r}
\left(T_{\nu}-T_{n}\right)\left\{\cos \partial \theta \frac{\partial \theta}{\partial y}-\sin \alpha \theta \frac{\partial \theta}{\partial x}\right\}-\frac{1}{\partial} \sin \theta \theta\left(\frac{\partial T_{r}}{\partial y}-\frac{\partial T_{x}}{\partial y}\right)+\cos ^{2} \theta \frac{\partial T_{1}}{\partial x}+\sin \theta \frac{\partial T}{\partial x} \\
=0
\end{array}
\]
ga 156
\[
\frac{\partial N_{12}}{\partial x}+\frac{\partial N_{\partial z}}{\partial y}=0
\]
\[
\begin{array}{r}
\left(T_{\nu}-T_{x}\right)\left\{\cos \partial \theta \frac{\partial \theta}{\partial x}+\sin \alpha \theta \frac{\partial \theta}{\partial y}\right\}+\frac{1}{\partial} \sin \alpha \theta\left(\frac{\partial T_{\mu}}{\partial x}-\frac{\partial}{\partial y} \bar{b}_{1}\right)+\sin ^{2} \theta \frac{\partial T_{t}}{\partial y}+\cos ^{2} \theta \frac{\partial T_{n}}{\partial x} \\
\text { End of war shit }
\end{array}
\]


APPENDIX VIII (continued)
Now, let es late the \(r\) and \(n\) directions \(\frac{1}{}\) coincide with the perncipel dicuctures of the vice nuxfoucement which ace assumed to be oulthogencel. We let
\[
N_{\nu \nu}=T_{\nu} \quad N_{n n}=T_{n} \quad(26)
\]
and the \(N_{\nu}=0\). The quantity, \(T_{\nu}\), is the force per unit length Noe to the vices in the \(\nu\) diction, of \(n v\) is the number of " \(V\) " wees pee unit lingett in del \(\lambda\) n dicectorn, then the force in a " \(\nu\) "cree is \(\frac{T_{K}}{n_{\nu} \text {. Amilkely, the fore in }}\) an "n" wire io \(\frac{T_{n}}{n_{n}}\). This is illustrated in the specter shams below.


Using (Ob) and (av), ur can express \(N_{1}, N_{1}\) and Wi, wTrnts of \(T_{\nu}\), \(T_{n}\), and o curare o is the angle Evitucen the \(r\) ayes and the \(y\), dicictions which muaposadote the direction of increasing \(x\) ( Refer to Fugues A)
\[
\begin{aligned}
& N_{11}=T_{\nu} \cos ^{2} \theta+T_{n} \sin ^{2} \theta \\
& N_{22}=T_{\nu} \sin ^{2} \theta+T_{r} \cos ^{2} \theta \quad(\alpha) \quad \\
& N_{1 \partial}=\left(T_{\nu}-T_{n}\right) \sin \theta \cos \theta=T_{2}\left(T_{\nu}-T_{1}\right) \sin \alpha \theta
\end{aligned}
\]

Note: To anther ( \(O>\) firm \((05)\), we criticchange vend, \(n\) and \(y_{d}\), and bites \(N_{\nu}=0\) and \(\theta=-\theta\).


APPENDIX VIII (continued)
We'will now cecnsider the equilibsim unations voing the effensions for \(N_{11}, N_{*}\), and \(N_{2}\)
5. Alturnat Agstion of Gquations - Shallow stell

We seabstitule for \(N_{1 /}, N_{2}\), and \(N_{12}\) uring (27) mito

\[
\begin{aligned}
& \quad+\cos ^{2} \theta \frac{\partial T_{\nu}}{\partial x}+\sin ^{2} \theta \frac{\partial T_{x}}{\partial x}=0 \quad\left(\operatorname{Tos} \theta \theta \frac{\partial \theta}{\partial y}-\sin \partial \theta \frac{\partial \theta}{\partial x}\right\}+\frac{1}{2} \sin \alpha \theta\left\{\frac{\partial T_{x}}{\partial y}-\frac{\partial T_{x}}{\partial y}\right\} \\
&
\end{aligned}
\]
\[
\begin{aligned}
& \left(T_{2}-T_{n}\right)\left\{\cos \alpha \theta \frac{\partial \theta}{\partial x}+\sin \alpha \theta \frac{\partial \theta}{\partial y}\right\}+\frac{1}{2} \sin \alpha \theta\left\{\frac{\partial T_{\nu}}{\partial x}-\frac{\partial T_{n}}{\partial x}\right\} \\
& +\sin ^{2} \theta \frac{\partial T_{y}}{\partial y}+\cos ^{2} \theta \frac{\partial T_{n}}{\partial x}=0 \quad(\operatorname{sis})
\end{aligned}
\]
\[
\begin{align*}
& \left\{T_{\nu} \cos ^{2} \theta+T_{r} \sin ^{2} \theta\right\} \frac{\partial^{2} z}{\partial x^{2}}+\left\{\left(T_{\nu}-T_{r}\right) \sin 2 \theta\right\} \frac{\partial^{\alpha} z}{\partial x^{2} y} \\
& \quad+\left\{T_{\nu} \sin ^{2} \theta+T_{\pi} \cos ^{2} \theta\right\} \frac{\partial^{2} z^{2}}{\partial y^{2}}+p=0 \quad(28 c) \tag{28c}
\end{align*}
\]

He abso haup the inextinsiosial andition
\[
\int_{x} \int_{y}\left\{1+\frac{1}{z}\left(\frac{\partial z}{\partial x}\right)^{\alpha}+\frac{1}{2}\left(\frac{\partial z}{\partial y}\right)^{2}\right\} d x d y=A_{0}(\partial 8 d)
\]

We haw fou quatuns celatong intorowns

APPENDIX VIII (continued)
\(T_{\nu}, T_{n}, \theta\), and \(Z\). Nole that \(\theta\) is the angle vilueen the corrclinate lines theving the mit targuof wector, \(t_{1}\), and
the 1 divetian
6. Dolations of Equations \(\frac{18}{T_{\nu}=T_{n}}=\) Constant \(=C\).

This leado to \(N_{11}=N_{\alpha_{\alpha}}=C\) and \(N_{2}=0\) Equations \(\alpha S_{C}\)
everces to ceareces \(Z_{0}\)
\(\nabla^{2} z=\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=\frac{P}{c} \quad(29 a)\)
when \(p=p(x, y)\). Givation os \(d\) cemnomis the saner.
\[
\begin{array}{r}
\int_{x} \int_{y}\left\{1+\frac{1}{2}\left(\frac{\partial z}{\partial x}\right)^{2}+\frac{1}{z}\left(\frac{\partial z}{\partial y}\right)^{2} \xi d x d y=A_{0}\right)(296) \\
(29)
\end{array}
\]

Hf हlomario दo atcu the insordaly curolitions.

Whe cursider the cesp wheer z opsescriked in the 4. Sundruies. To evfer the ivere seption, we tite n gidontle

 disectioses abtough ot pmot recesurey. We stat ing motacting
 Fignee 6. Stro pronictert will the cectanguiler of the crecprece \(o\) isorratid tig prenso pecperaticular to the E - - plere. 0

APPENDIX VIII (continued)


Figale 6.
werfuli a punct as \((\mathrm{mom}\). Thefuist tam peramono boux. nuten andth comend the y indam: of me thti mostar spuang, 4eghandig nitwer fued linow 1 (note: we aer using enctal differences):
\[
\begin{aligned}
& \left(\partial^{2} z^{2}\right) \\
& \begin{array}{l}
x=x_{n} \\
y=y_{m} \\
y_{x} \quad \frac{z^{2}(n+1, m)-2 z^{2}(n, m)+z(n-1, m)}{(30 a)}
\end{array}
\end{aligned}
\]

The difleential peuction por prit \(n, m\) ) teten the pom \(z(n+m)+z(n-1 m)+[z(n, m+1)+z(m m-1)]\left(\frac{h x}{h y}\right)^{2}\)
\(-\alpha z(m, m)\left[1+\left(\frac{h x}{h y}\right)^{2}\right]=\frac{-h_{x}}{c} \rho(n, m) \quad\) (31)
aroith lwendery endetions are
\[
\begin{array}{lll}
\text { an } x=x_{0} & z(0, j)=f_{1}(0, j) & \delta=0,2, \ldots, s \\
\text { an } y=y_{0} & z(k, 0)=g_{1}(k, 0) & t=0,0, \ldots, \text {, }(3, a)
\end{array}
\]

APPENDIX VIII (continued)
\[
\begin{array}{lll}
\text { an } x=x_{\pi} & z(r, j)=f_{2}(r, j) & \gamma=1,2, \ldots, s \\
\text { on } y=y_{5} & z(k, s)=g_{2}(k, s) & k=1, \ldots, r(32 b)
\end{array}
\]
whees \(f_{1}, f_{2}, g_{1}, g_{2}\) wel qiem funatuos, of \(x\) and \(y\). Using diffirence sporatons, the quilemuor equatian, Q9), os Aplaced by a bet of \((w-2)(v-2)\) tisum helgetraic eguations ulaling \(z(m \mathrm{~m})\) whtum \(=1,2, \ldots, \pi-1\) and \(m=j, 2, \ldots, v\), , St cafficient mateix piescentially quasi-xiagonal and is pictivalarly suited for cteentrie tectrigues such as celapation.
 ontegratern hy a ahmbation: We nell fiest that (1998) an of witten in an altemate, torm, voing beers'stteren. beces's Ttom cearuces án siea inlegral to a line intigral around the trurdary culse. of \(\varphi=\varphi(x, y)\), cten adordring to been's Ttewems,
\[
\iint_{A}\left[\varphi \nabla^{\alpha} \varphi+\left(\frac{\partial \phi}{\partial x}\right)^{2}+\left(\frac{\partial \varphi}{\partial y}\right)^{2}\right] d x d y=\oint_{c} \varphi \frac{\partial \varphi}{\partial n} d s(33)
\]
wrtel \(\frac{\partial \mathscr{L}}{\partial n}=l_{\nu} \frac{\partial \mathscr{D}}{\partial x}+m_{\nu} \frac{\partial \phi}{\partial y}=\) nomal derevetale
and \(b, m_{y}\) wee the dexction vesines for the ruturud soinnel
 protion disettion for the tire integration is thtenss cruntuclockuise.

APPENDIX VIII (continued)
The hiurdary ave foe werablim consist of four straight lines parallel to either the \(x\) or yductions. Then, denoting the corner points by \(A, B, C\), and \(D\), we have


Figure
1)
\[
\text { i) } \begin{aligned}
& A \rightarrow B \\
& l_{\gamma}=0 \quad m_{\nu}=-1 \\
& \frac{\partial z}{\partial m}=-\frac{\partial z}{\partial y} \\
& \text { 2.) } B \rightarrow c \\
& l_{\nu}=+1 \\
& \frac{\partial z}{\partial m}=+\frac{\partial z}{\partial x}
\end{aligned}
\]
3) \(C-D\)
\[
l_{\nu}=0 \quad m_{\nu}=+1
\]
\(4) \quad D \rightarrow \theta\)
\[
\frac{\partial z}{\partial m}=+\frac{\partial z}{\partial y}
\]
\[
\begin{aligned}
& f_{\nu}=-1 \quad m_{1}=0 \\
& \frac{\partial z}{\partial \infty}=-\frac{\partial z}{\alpha x}
\end{aligned}
\]

Mowing \(\nabla^{2} z=-\frac{P}{L}\), we \(x\) crete
\[
\int_{x y}\left[\left\{\frac{\partial z}{\partial x}\right\}^{2}+\left\{\frac{\partial z}{\partial y}\right\}^{2}\right] d x d y=\phi z \frac{\partial z}{\partial n} d s+\iint_{1} z \frac{D}{c} d x d y
\]


APPENDIX VIII (continued)
and the ineptensvisial nquirenxent reduces to
\[
\begin{equation*}
\iint_{A} z \frac{p}{C} d x d y+\oint z \frac{\partial z}{d x} d s=2\left(A_{0}-A^{*}\right)(35 a) \tag{356}
\end{equation*}
\]
where \(A^{*}=\int_{A} d x d y\)
It follows from Figuel 6 that
\(A^{*}=\pi 5 h_{x} h_{y}\)
We will use trued differences poe to segments \(D A\),
\(A B\), and buckuned segments for \(B C, C D\),
\[
\begin{aligned}
\prime \frac{D A}{\left(\frac{\partial z}{\partial m}\right)_{0, j}} & =-\left(\frac{\partial z}{\partial x}\right)_{0, j}
\end{aligned}=-\frac{1}{h_{x}}\{z(1, \delta)-z(0, \delta)\}, \begin{aligned}
\left(z \frac{\partial z}{\partial m}\right)_{0, \delta} & =\frac{1}{n_{x}}\{f,(0, j)-z(1, \delta)\} f,(0, j) \\
d 5 & =n_{y} \\
\delta & =0,1,2, \ldots, 5
\end{aligned}
\]
2. AB
\[
\begin{aligned}
& \left(\frac{\partial z}{\partial n}\right)_{h, 0}=-\left(\frac{\partial z}{\partial y}\right)_{k, 0}=-\frac{1}{h_{y}}\{z(k, 1)-z(h, 0)\} \\
& \left(z \frac{\partial z}{\partial n}\right)_{h, 0}=\frac{1}{h_{y}}\{g,(k, 0)-z(k,)\} g_{1}(k, 0) \\
& d S=h_{x} \quad h=0,1,2, \ldots n
\end{aligned}
\]

APPENDIX VIII (continued)

3 BC
\[
\begin{aligned}
& \left(\frac{\partial z}{\partial n}\right)_{\pi, j}=\left(\frac{\partial z}{\partial x}\right)_{\pi, j}=\frac{1}{h x}\{z(\pi, j)-z(x-1, j)\} \\
& \left.\left(z \frac{d z}{d m}\right)_{\mu j}=\frac{1}{h x}\left\{f_{2}(r, j)-z(r-1, j)\right\}_{2}, i \mu, j\right) \\
& j=0,1,2, \ldots 5 \\
& (37 C) \\
& d s=h \gamma
\end{aligned}
\]
\[
\begin{aligned}
& \text { 4. } \frac{C D}{\left(\frac{\alpha z}{\partial n}\right)_{R, s}}=\left(\frac{\partial z}{\partial y}\right)_{k, s}=\frac{1}{h y}\{z(k, s)-z(k, s-1)\} \\
& \left(z \frac{\partial z}{\partial \infty}\right)_{k, s}=\frac{1}{h_{y}}\left\{g_{2}(k, s)-z(k,-s-1)\right\} q_{1}(k, s) \\
& \mu=0,1,2, \ldots \pi \\
& (37 d) \\
& d s=h_{x}
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{l}
\text { Es } s>\text { and the trapuzadal rule, we have } \\
\& z \frac{\partial z}{\partial n} d s=\frac{1}{2} \frac{h_{x}}{h_{y}}\left[g_{1}(0,0)\left[g_{1}(0,0)-f_{1}(0,1)\right]+g_{1}(t, 0)\left[g_{1}(v)_{2}-(t, n)\right]\right.
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& +\frac{1}{2} \frac{h x}{h r}\left[g_{2}(0,5)\left[g_{2}(0,5)-f_{1}(0,5-1)\right]+g_{2}(0,5)\left[g_{2}(1,5)+(, 5)\right. \text { 弐 }\right.
\end{aligned}
\]

APPENDIX VIII (continued)
\[
\begin{align*}
& +\frac{h_{x}}{h_{y}} \sum_{k=1}^{k=g_{2}} g_{2}(k, s)\left[g_{2}(k, s)-Z(n, s-1)\right] \\
& \text { th hr } h_{x}\left[f_{1}(0,0)\left[f_{1}(0,0)-g,(1,0)\right]+f_{1}(0,5)\left[f_{1}(0,5)-g_{2}(1,5)\right]\right. \\
& \begin{array}{l}
+f(\pi, 0)\left[f_{2}(\pi, 0)-g_{1}(\pi-1,0)\right]+f_{2}(\pi, 5)\left[f_{2}(\pi, 5)-g_{2}(\pi, 0,0)\right] \\
j=5-1
\end{array} \\
& +\frac{h y}{h_{x}} \sum_{j=1}^{j=5-1} f_{1}(0, j)[f,(0, j)-z(1, j)] \\
& +f_{2}(\pi, j)\left[f_{2}(\pi, j)-z(r-1, j)\right] \tag{38}
\end{align*}
\]

We write (38) as
\[
\oint z \frac{\partial z}{\partial n} d S=A_{1}-\frac{h_{x}}{h_{y}} B_{1}-\frac{h_{y}}{h_{x}} B_{2} \quad \text { (39) }
\]
where
A, is a cosistaxt involving the products \(f ~ g\), and jg,
\[
\begin{array}{r}
B_{1}=\sum_{n=1}^{n-1}\left\{g,(N, 0) z(k, 1)+g_{2}(N, s) z(N, s-1)\right\} \\
B_{j}=\sum_{j=1}^{s-1}\{f,(0, j) z(1, j)+f(\pi, j) z(\pi-1, j)\} \\
(40 b)
\end{array}
\]

APPENDIX VIII (continued)
Ile abo use the trapegondal cals to uncuate
\[
\iint_{A} z \frac{P}{C} d x d y
\]

This deconces
\[
\begin{align*}
& \iint_{A} z p d x d y=\frac{h_{x} h y}{2}\left[\frac{1}{2}[p(0,0) g(0,0)+p(\pi, 0) g(\pi, 0)\right. \\
&+p(0,5) g_{2}(0, s)+p(\pi, S) g_{2}(\pi, 5) \\
&\left.+\sum_{h=1}^{\pi-1} p(k, 0) g(h, 0)+p(h, s) g_{2}(k, s)\right] \\
&+h_{x} h_{y}\left[\frac{1}{z} \sum_{j=1}^{5-1}\left\{p(0, j) f_{1}(0, j)+p(\pi, j) f(\pi, j)\right\}\right. \\
&\left.+\sum_{j=1}^{5-1} \sum_{k=1}^{\pi-1} p(h, j) z(N, j)\right] \tag{di}
\end{align*}
\]

We can wite (to) as
cotcer Bo wa unotent uthid simenees soily
the thendany tems

APPENDIX VIII (continued)
The ingetancinal quation theo che farn
and \(B_{1}, B_{1}\) arelancufunctiono of \(z\)
Mow w w wite
\[
z=z_{n}+\frac{1}{c} z p
\]
cutcer
\(Z^{2} n\) i the ternstgerceres solmetanof \(\nabla^{2} z^{2}=0\) which
satifileis Ate bumodrary aradeteins.
Zp is cte prevecerlat solutinn of \(T^{2} z=-p\)
Hf ur oubstitule \((4 / 5)\) si \(\left(\frac{1}{3}\right)\), we ohtain a quad
equation in \(C\). The \(B, B, B 3\) tiemes neduce to
\[
\begin{align*}
& B_{3}=B_{3}+\frac{L}{C} B_{B_{2}} \\
& B_{1}=B_{1}+\frac{1}{C} B_{2}  \tag{4/6}\\
& B_{3}=B_{1}+\frac{1}{C} B_{22}
\end{align*}
\]

(43) antes the harm
\[
\begin{aligned}
& C^{2}\left\{-2\left(A_{0}-A^{x}\right)+A_{1}-\frac{h_{x}}{h_{y}} B_{11}-\frac{h_{y}}{h_{x}} B_{21}\right\} \\
+ & <\left\{A_{2}-\frac{h_{x}}{h_{y}} B_{12}-\frac{h_{4}}{h_{x}} B_{2}+B_{3}\right\}+h_{x} h_{y} B_{32}=0(47)^{\prime \prime}
\end{aligned}
\]

APPENDIX VIII (continued)
We determice \(z_{n}\) and \(z_{p}\) as follows. The firite
difference equations see writter for each interer porit. The equatiares for prisits adeacent to the boundeies cril inculue the bundary salues of \(z\). of ur let \(\{~\)\(z_{i}\) \} equations thes theform
\[
\begin{equation*}
\left[a_{i},\right]\left\{\bar{z}_{i}\right\}=\frac{-1}{c}\left\{p_{i}\right\}+\left\{\bar{z}_{i}\right\} \tag{48}
\end{equation*}
\]
wheep the matrif, \(\{E\{\), sivalves the houndary loading. The homoegenceres and pocticular solutions
\[
\begin{aligned}
& \left\{z_{n, c}\right\}=\left[a_{i j}\right]^{-1}\left\{\bar{z}_{i}\right\} \\
& \left\{z_{p, i}\right\}=-\left[a_{i j}\right]^{-1}\left\{p_{i}\right\}
\end{aligned}
\]
(19)
(50)

The probtenn redues to deternining \(\left[a_{i j}\right]^{-1}\) which ss of order \((x-1)(5-1)\).


Contract NObsr 89483
Serial No. SSO41-001
Task 8156

Report No. 17
Phase I Interim Report
30 September 1964

APPENDIX VIII (continued)
Appeofimate Mombane analipis
The membraxe is suldicided into curvelinear Pectargular elenents such as ohwun in Fcg.1. Tht internal lacces xaing an the exiles of an eliment aer eyplaced Any Tticic cesittanto so doser in mendrane Thory. Ste foice ahoplacemust nelatinis ave ohitained fiem those ffthe membuane theory hy unsidering each cuecrilinear element ble a plase and lyy uplacing the strain's dy the relutive eptersion and chaseg of anger of the Fincte elincents.

With ats afrue epprormatiens tur canturgurus elconests ar cunsiedinet as cmnnected truing a pasit to which ith sueface fonces ane
 seoult in stifpreas equations hat in heoblued for the dirplacemurts.

Figuee 1 Peduction To Fonite Elemento

\section*{BLANK PAGE}

Report No. 17 rask 8155

APPENDIX VIII (continued)
2. Internal Fries

Fig. 2.a represents a plane cuitingular element


Fib. \(2, a\)


Fib. 2.6

Fig. at popreento te corresponding fictitious elinents akee the nival pores ae cersentiatid at prints placed at the middle if the sides of the suginal element. We have.
\[
\begin{align*}
F_{x} & =N_{x} b \\
F_{x y} & =N_{x y} b  \tag{1}\\
N_{x y} & =N_{r x}
\end{align*}
\]

APPENDIX VIII (continued)

Wher the suncrical subscript refers to the, fivit and x or y uffes to de verction. The perd Asplacemsen nelatiors tite thiform
\[
\begin{align*}
& F_{x}=E_{x} h b\left(\frac{U_{1 x}-v_{3 x}}{a}+r_{x} \frac{v_{2 y}-v_{4 y}}{b}\right) \\
& F_{y}=\sigma_{h} b\left(\frac{U_{y}-v_{3 y}}{a}+\frac{u_{2 x}-U_{4 x}}{b}\right)  \tag{4}\\
& F_{y x}=G h a\left(\frac{U_{1 y}-U_{3 y}}{a}+\frac{v_{2 x}-v_{4 x}}{b}\right) \\
& F_{y}=E_{y} h a\left(\frac{u_{2 y}-U_{4 y}}{b}+\frac{v_{y} v_{1 x}-v_{3 x}}{a}\right)
\end{align*}
\]

The matrie form y \(C\) (S) is:
\[
F=K U
\]
where
\[
F=\left[\begin{array}{l}
F_{x} \\
F_{x y} \\
F_{y x} \\
F_{y}
\end{array}\right]
\]
3. Foue dioplacement Pelations

The stross stmin setuluins for an infinitioimal sectarigular eloment ane of the form
\[
\begin{aligned}
& N_{x}=E_{x} h\left(\varepsilon_{x}+\gamma_{x} \varepsilon_{y}\right) \\
& N_{y}=E_{y} h\left(\varepsilon_{y}+\gamma_{y} \varepsilon_{x}\right) \\
& N_{x y}=N_{y x}=\sigma_{m}
\end{aligned}
\]

Whele Ev and G aee Grung's modudus, Prisan's sates ind the shar mindilio, negpectiviely. The sulbocist \(x\) and \(y\) accuunt for a non viranpoic matuial. The forci desplacerrent nelations for the pectitias ennert aer athived' Ig cyplacing the strains Fing neladiue uttonsinns ind changi of angle of the Finite elment. Letting 4 denste a dugplasement wr let
\[
\begin{aligned}
& \varepsilon_{x}=\frac{u_{1 x}-u_{3 x}}{a}, \varepsilon_{y}=\frac{v_{a y}-v_{4 y}}{b} \\
& \infty=\frac{u_{1 y}-u_{3 y}}{a}+\frac{u_{x x}-u_{1 x x}}{b} \quad \text { (3) }
\end{aligned}
\]

Report No. 17
Phase I Interim Report
30 September 1964
APPENDIX VIII (continued)
\[
\alpha=\frac{b}{a}
\] in view of a trampometion of condingte fiom the losal avie asociater with anidunet a eblel aystinn of arie stivcture, we include the thide alra of the forces and dipplecement twith reged ho of oxic empendicilec to we zet.

Contract: NObst 89483
Task 8156

APPENDIX VIII (continued)
\[
U_{1}=\left|\begin{array}{l}
U_{1 x} \\
U_{1 y} \\
U_{1 z}
\end{array}\right| \quad U_{2}=\left|\begin{array}{c}
U_{2 x} \\
U_{2 y} \\
U_{2 z}
\end{array}\right| \quad U_{3}=\left|\begin{array}{c}
U_{3 x} \\
U_{3} y \\
U_{3 z} \\
U_{3} \\
U_{4} \\
U_{4 x} \\
U_{4 z}
\end{array}\right|
\]
we can aten write
where
\[
\begin{array}{ll}
K_{11} & =\left|\begin{array}{ccc}
E_{x} h_{\alpha} & 0 & 0 \\
0 & G h \alpha & 0 \\
0 & 0 & 0
\end{array}\right| \quad K_{12}=\left|\begin{array}{ccc}
0 & E_{x} h \gamma_{x} & 0 \\
G h & 0 & 0 \\
0 & 0 & 0
\end{array}\right| \\
K_{21} & =\left|\begin{array}{ccc}
0 & G h & 0 \\
E_{y} h \gamma_{y} & 0 & 0 \\
0 & 0 & 0
\end{array}\right| \quad K_{\alpha 2}=\left|\begin{array}{ccc}
G h / \alpha & 0 & 0 \\
0 & E_{y} h / \alpha & 0 \\
0 & 0 & 0
\end{array}\right|
\end{array}
\]

APPENDIX VIII (continued)
tef \(T\) be the cracdisiats lanofemation matix ferm the lacal syptim ossouatid weth anciloneat to qlohal spotern. Is a \(3 \times 3\) matix whese Diternuriation is bscirsed in (6). IIt use an asticik For Puantities referred to the globtal system, We have
\[
\begin{aligned}
& F_{i}^{*}=T F_{i} \quad i=1,2,3,4 \\
& U_{i}^{*}=T U_{i} \\
& \text { or } \\
& U_{i}=T^{-1} U_{i}^{*}=T^{t} U_{i}^{*}
\end{aligned}
\]
\[
(11)
\]

The diffress equations for an element wrth regard othe gerbel uptum an:
\[
\left|\begin{array}{l}
F_{1}^{*} \\
F_{2}^{*} \\
F_{3}^{*} \\
F_{4}^{*}
\end{array}\right|=\left|\begin{array}{cccc}
k_{11}^{*} & k_{12}{ }^{*} & -k_{11}^{*} & -k_{12}{ }^{*} \\
k_{21}^{*} & k_{22}^{*} & -k_{21}^{*} & -k_{22}^{*} \\
-k_{11}^{*} & -k_{12}^{*} & k_{11}^{*} & k_{12}^{*} \\
-k_{21}^{*} & -k_{22}^{*} & k_{21}^{*} & k_{22}^{*}
\end{array}\right|\left|\begin{array}{l}
u_{1}^{*} \\
u_{2}^{*} \\
v_{3}^{*} \\
u_{4}^{*}
\end{array}\right| \quad \text { (12) }
\]
where
\[
K_{i j}^{*}=T K_{i j} T^{-1}=T K_{i j} T^{t}
\]

\section*{APPENDIX :III (continued)}
4) Equilelrion


APPENDIX VIII (continued)
fruit Type a
WP lat \(\angle\) nefue o che dement with noppect to when fist a D pint \(I\) and \(P\) refer to ti element with respect ot which first a is find \(\# 3\). Then,
 acting mote dement o at a is the sum of F* \(^{*} y\) the Lament 4 and of s \({ }^{\circ}\) of the dement \(P\) ?

\[
\begin{gathered}
F_{a}^{*}=\left(K_{11 L}^{*}+k_{112}^{*}\right) U_{a}^{*}+K_{12 L}^{*} U_{2 L}^{*}-K_{11 L}^{*} U_{3 L}^{*}-K_{12 L}^{*} U_{4 L}^{*} \\
-K_{11 R}^{*} U_{1 R}^{*}-K_{12 R}^{*} U_{2 R}^{*}+K_{12}^{*}<U_{4 R}^{*}
\end{gathered}
\]

Contract NObs 89483
Serial No. SS041-001
Task 8156

Report No. 7
Phase I Interim Report 30 September 1964

APPENDIX VIII (continued)

\[
\begin{aligned}
& \text { requard to which print } \\
& \text { has the numbers } 4 \text { and }
\end{aligned}
\] \(z\) respectively. Then

\[
+t_{10}^{*} v_{10}^{*}-t_{10}^{*} v_{30}^{*}-k_{20}^{*} v_{i d}^{*} v_{i d}^{*}
\]
(14)

The equilibrium of joints a \(\bar{\xi}\) 's nquiees that \(F_{a}^{*}\) and \(F_{\delta}^{*}\) Equal the eqtienal ilsods applied at paints a \(\sigma^{\prime} b\), respectively.

Report No. 17
Phase I Interim Report 30 September 1964

\section*{APPENDIX VIII (continued)}
5) Stiflowe of the Structore

Whae \(F_{r}^{*}\) is the seluon mithis ande of all, the \(e_{0}^{x}\) 's and all the \(\hat{\sigma}_{5}^{5}, V_{t}^{*}\) to the columen matisin of the disptreement compomenie of all the jocinte. \(k_{t}^{*}=\frac{0}{}\) the thlte itflnexe matis, If io somverrient to inningive the tatal etffores matives he subdinided incto ofunce blocbe, \(\operatorname{lanax}^{\prime}\) a \(3 \times 3\)




Sac elenment hae ppinte if tyee a and tho pints of पyse o the \(8 w\) sicuastiv of ore eleinent



Report No. 17
Phase I Interim Report
30 September 1964

\section*{APPENDIX VIII (continued)}
\begin{tabular}{cccc} 
add to black & add to blate \\
\(K_{11}^{*}\) & 11 & \(K_{11}^{*}\) & 33 \\
\(K_{12}^{* *}\) & 12 & \(-K_{12}^{*}\) & 32 \\
\(-K_{11} *\) & 13 & \(-K_{11}^{*}\) & 31 \\
\(-K_{12}^{*}\) & 14 & \(K_{12}^{*}\) & 34
\end{tabular}
\begin{tabular}{cccc} 
add & to flack & add to hack \\
\(K_{2 \alpha}\) & \(2 \alpha\) & \(K_{22}^{*}\) & 44 \\
\(K_{21} *\) & 21 & \(-K_{21}{ }^{*}\) & 41 \\
\(-K_{22}^{*}\) & 24 & \(-K_{22} *\) & 42 \\
\(-K_{21}\) & 23 & \(K_{21}^{*}\) & 43
\end{tabular}
oe e Fig. 3


Contract NObs 89483
Serial No．SSO41－001
Task 8156

APPENDIX VIII（continued）

Nate：As any one nav of \(K_{c}^{*}\) stere ane only 7 sun jew ofactes cricuponding to ate prints of， enctiquans elements．The flock on the main diagonal is aluseys mon gers \(K_{t}{ }^{x}\) is mat symmetric

6）Deternvinetion of the trangfomarlore muting

 A vector \(V\) is en monster－
\[
\bar{v}=V_{1} e^{\prime}+V_{2} \bar{j}+V_{3} \bar{k}=\bar{V}_{1}+\vec{e}^{2}+\bar{V}_{2} \bar{j}, \bar{V}_{3}{ }^{2} \vec{k}
\]
and
\[
\begin{aligned}
& V_{2}{ }^{*}=\bar{\jmath} i V_{1}+\bar{j} \bar{j} V_{2}+\bar{j} \bar{k} \mathscr{N}_{3} \\
& \nu_{3}=\overline{k^{*}} \bar{c} V_{1}+\overline{k^{*}} \bar{j} V_{2}+\bar{k} \times \bar{k} V_{3}
\end{aligned}
\]


\[
\begin{aligned}
& T=e^{i} e^{-j} \quad \bar{j} \vec{k} \\
& \bar{J}^{5} \vec{i} \quad j^{\pi} \bar{j}^{\bar{x}} \quad \overline{y^{m}} \\
& \text { F* } \quad \text { た*J } k * \text { 広 }
\end{aligned}
\]

\section*{APPËNDIX VIII (continued)}

Lettrng \(x_{i}, y_{i}, z\) be the flobal coovdinate of joinct \(=1\) of an element \(\left(e^{\prime}=2,3,4\right)\)
\[
\begin{aligned}
& \bar{i}+\bar{i}=\frac{x_{1}-x_{3}}{a} \\
& i^{\bar{k}} \bar{f}=\frac{x_{2}-x_{4}}{b} \\
& i^{i}+\bar{t}=\sqrt{1-\left(\frac{x_{1}-x_{3}}{a}\right)^{2}-\left(\frac{x_{2}-x_{y}}{b}\right)^{2}}
\end{aligned}
\]

\[
j^{\top} x_{i}^{\top}-\frac{y_{i}-y_{3}}{a}
\]
\[
\bar{j}=\bar{j}=\frac{y_{2}-y_{r}}{b}
\]
\[
\overline{j^{*}} k=\sqrt{1-\left(\frac{y_{1}-y_{s}}{a}\right)^{2}-\left(\frac{y_{2}-y_{y}}{b}\right)^{2}}
\]
\[
\bar{k}_{i}^{*}=\frac{33_{3}}{a}
\]
\[
k_{j}^{*}=\frac{3_{2}-3_{i}}{b}
\]
\[
k * \bar{k}=\sqrt{1-\left(\frac{z_{2}-3_{3}}{a}\right)^{2}-\left(\frac{z_{2}-3_{4}}{b}\right)^{2}}
\]

Contract NObsr 89483
Serial No. SS041-001
Task 8156

APPENDIX VIII (continued)
thon trui difinitione a 0 must sutajly
the celalrowr
\[
\begin{aligned}
& a^{2}=\left(x_{1}-x_{3}\right)^{2}+\left(y_{1}-y_{3}\right)^{2}+\left(3_{1}-y_{3}\right)^{2} \\
& b^{2}=\left(x_{2}-x_{4}\right)^{2}+\left(y_{2}-y_{4}\right)^{2}+\left(z_{2}-y_{4}\right)^{2}
\end{aligned}
\]
the eovalisiates of the y forint an sot anditing, uevining the alingroks of the lve must hove:
\[
\begin{aligned}
& \frac{x_{1}+x_{3}}{2}=\frac{x_{2}+x_{1}}{2} \\
& \frac{y_{1}+y_{3}}{2}=\frac{y_{2}+y_{y}}{2} \\
& \frac{z_{1}+y_{5}}{2}=\frac{z_{2}+z_{y}}{2}
\end{aligned}
\]
and uguining thence to be onchogonel we oblain
\[
\left(y_{1}-y_{3}\right)\left(x_{2}-x_{4}\right)+\left(y_{1}-y_{3}\right)\left(y_{2}-y_{4}\right)+\left(z_{1}-3_{3}\right)\left(3_{2}-z_{4}\right)=0
\]
7) Bounday \(\qquad\) We muider olly the conditine of guo deoplacemente it the buvendig. Amuma the joimte are the famplay an ati.the perertor
\[
k^{*} Z^{*}=F^{x}
\]

APPENDIX VIII (continued)
whue the cubscuist to in debted
can he puetitioned in the form
\[
\left|\begin{array}{ll}
K_{F P}^{*} & K_{F S}^{*} \\
K_{5 P}^{*} & K_{S S}
\end{array}\right|\left|\begin{array}{l}
U_{P}^{*} \\
U_{S}^{*}
\end{array}\right|=\left|\begin{array}{l}
F_{p}^{*} \\
F_{5}^{*}
\end{array}\right|
\]

Whue 5 ufere to euppoite or jointe,
at the Dounday and 5 ufue to the umaicing joints.
The woun devy nomaitomer axe -
the Asion loceswente \({ }^{*}=0\) sotwing

\[
K_{F P}^{*} U_{F}^{*}=F_{p}^{*}
\]
\[
F_{5}^{x}=k_{5 p} C_{p}^{7}
\]

\section*{BLANK PAGE}

\section*{H. Errata/Points of Clarification}
1. Page 2 First Para. -
- 60" dome refers to the non-magnetic sonar dome, Model *CWI77D/U with AN/UQS transducer.
- 100' pressurized rubber dome refers to the dome made for use with the AN/SQS-10 transducer on the USS Bronson. It was designated Model \(\quad\) CW-431 (XN-1)/U.
2. Page 14 Para. 3 last sentence - service life should te testing.

Para. 3 add - This dome is still usable and was removed because the ship was placed in the F.R.A.M. program. This dome is in storage at USN/USL.
3. Page 42 last paragraph algebrically should be algebraically.
4. Page 91 First paragraph - Section I.C.J. should be I.10.C.
5. Page 174 First Paragraph \(-44^{\prime \prime}\) WL should be \(-4^{\prime}\) WL.
6. Page 187 First Paragraph - Appendix \(V I\) should be \(V\).
7. Page 245 Table XXXIII Title - Dome should be Window.
8. Page 251 Table XXXIV Title - Doncs should be Windows.

DL-5 Semi-Universal - \(\$ 450,000\) should be \(\$ 150,000\).
This table indicates on a cost basis, for the first prototype window, the remi-universal concept is desirable. Also, considering a total of ten DL-5 and DLG-26 windows the added expense of designing another set of tooling for a DLG-26 window, additional space and facilities needed for two sets of tooling and handing expense of two separate windows instead of one indicates the semiuniversal window is more desirable than the individually tailored ones.
9. Page 267, Figure 112 - The chock extension discussed is aft of the radial taffle and amounts to about \(3^{\prime \prime}\). The reduction in critical scanning area is insignificant.
Contract NObsr 89483
- 2 -
Report No. 17
Serial No. SS041-001
Task 8156
Phase I Interim Report 30 September 1964
10. Page 268, Table XXXVII Stress Diagram of Hindow

Periphery - Calculated tensions based on a differential pressure of 40 psi.
11. Page 271, Figure 113 Schematic of Proposed Pressurization System - Available Water pressure source must have pressure equal to or higher than operational pressure within the dome.

\section*{BLANK PAGE}```


[^0]:    B.F.Goodrich Aerospace and Defense Products a Division of The B.F.Goodrich Company Akron, Ohio

[^1]:    * The summation from $-M$ to $N$ includes all the elements in a finite array such that $(M+N) S$ (the width of the array) is less then $r$.

[^2]:    ${ }^{1}$ The mat complete analysis is given in "Waves in Layeret Media", L. M. Brekhovskikh, Academic Press, London, 1960.

[^3]:    Supposing that the strip is a single cable Macwhyte Wire Rope Co., Catalog G-17.

[^4]:    1,2 and 3 - On Surface of Panel
    $4,5,6,7,8$ and 9 - Center of Wire Plies
    10, 11 and 12 - Between Mold and Panel

