TECHNICAL REPORT ARLCB-TR-85007

A MORE ACCURATE SOLUTION TO THE ELASTIC-PLASTIC PROBLEM OF PRESSURIZED THICK-WALLED CYLINDERS

PETER C. T. CHEN

FEBRUARY 1985

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The use of trade name(s) and/or manufacture(s) does not constitute an official indorsement or approval.

DISPOSITION
Destroy this report when it is no longer needed. Do not return it to the originator.

COMPONENT PART NOTICE

THIS PAPER IS A COMPONENT PART OF THE FOLOWING COMPILATION REPORT:
TITE: Transactions of the Army Conference on Applied Mathematics and Computing (2nd) Held at Washington, DC on 22-25 May 1984.

TO ORDER THE COMPL.ETE COMPILATION REPORT, USE AD-A154 047
The COMPONENT PART is Provided here to allow users access to individually authored sections of Proceeding, Annals, SMmposia, etc. However, the COMPONENT SHOULD BE CONSIDERED WITHIN THE CONTEXT OF THE OVERALL COMPILATION REPORT AND NOT AS A STAND-ALONE TECHNICAL REPORT.

The follow?ng COMPONENT PART numbers comprise the COMPILATION report:
AD\#: \qquad ADH: \qquad
AD\#: \qquad ADH: \qquad
ADH: \qquad AD\#: \qquad

[^0]| Accession For |
| :--- |
| NTIS GRA\&I |
| DTIC TAB |
| Unanncinies |
| Justification |
| By |
| Distribution/ |
| Availability Codes |
| Dist Avall and/or |
| Special |

OPI: DTIC-TID

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER ARLCB-TR-85007 2. GOVT ACCESSION NO.	3. RECIPIENT's Catalog number
4. TITLE (end Sudetitio) A MORE ACCURATE SOLUTION TO THE ELASTIC-PLASTIC PROBLEM OF PRESSURIZED THICK-WALLED CYLINDERS	5. TYPE OF REPORT \& PERIOD COVERED Final
7. AUTHOR(0) Peter C. T. Chen	8. CONTRACT OR GRANT NUMEER(9)
9. Performing organization name and address US Army Armament Research \& Development Center Benet Weapons Laboratory, SMCAR-LCB-TL Watervliet, NY 12189-5000	10. PROGRAMELEMENT, PROJECT, TASK AMCMS No.6111.02.H600.011 PRON NO. 1A325B541A1A
11. Controlling office name and address US Army Armament Research \& Development Center Large Caliber Weapon Systems Laboratory Dover NJ 07801-5001	12. REPORT DATE February 1985 13. Number of pages
14. MONITORING AGENCY NAME \& ADORESS(If different from Controlline Offlic)	is. SECURITY CL.ASS. (of the foport) UNCLASSIFIED
	15a. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of thif Report) Approved for Public Release; Distribution Unlimi	
17. DISTRIBUTION STATEMENT (of the abetract onterod in Block 20, 14 differme from	Roport)
Presented at the Second Army Conference on Appli Troy, NY, 22-24 May 1984. Published in the Conf	d Math \& Computing, RPI, rence Proceedings.
19. KEY WORDS (Continue on reverte sfde If neceeeary and ldentlty by block number) Strain-Hardening Materials Pressurized Thick-Walled Cylinders Residual Stresses Finite-Difference Method	
 A new method has been developed for solving the part thick-walled cylinders made of strain-hardening or subjected to any combination of internal pressure, loads. The incremental strains are chosen as the b finite-difference formulation. The incremental siz are determined automatically and no iteration is ne	tially plastic problems of ideally-plastic materials external pressure, and end asic unknowns in the es of the applied loading eded. Complete solutions (CONT'D ON REVERSE)

20. ABSTRACT (CONT'D)

for the stresses, strains, and displacement have been obtained and all numerical results are very accurate. This approach is also efficient and simple, yet quite general, when compared with many solutions in the literature.

Peter C. T. Chen
U.S. Army Armament, Munitions, and Chemical Command Armament Research and Development Center Large Caliber Weapon Systens Laboratory Benet Heapons iaboratory Watervliet, MY 12189

ABSTRACT. A new method has been developed for solving the partially plastic problems of thick-walled cylinders made of strain-hardening or Idealiy-plastic materials subjected to any combination of internal pressure, external pressure, and end loads. The increnental strains are chosen as the basic unknowns in the finitedifference formulation. The incremental sizes of the applied loading are deternined autonatically and no iteration is needed. Complete solutions for the stresses, strains, and displacement have been obtained and all numerical results are very accurate. This approach is also effle lent and simple, yet quite general, when coapared with many solutions in the Licerature. \qquad

TABLE OF CONTENTS

Page
INTRODUCTION 1
BASIC EQUATIONS 2
FINITE-DIFFERENCE FORMULATION 3
OPTIMAL INCREMENTAL LOADING 6
CONVERGENCE STUDY 7
ADDITIONAL RESULTS 10
REFERENCES 14
TABLES
I. ELASTIC SOLUTION FOR A CLOSED-END TUBE 8
II. INITIAL YIELDING SOLUTION FOR A PLANE-STRAIN TUBE 8
III. ELASTIC-PERFECTLY PLASTIC SOLUTION FOR A PLANE-STRAIN TUBE 9
IV. INCOMPRESSIBLE, IDEALLY-PLASTIC SOLUTION FOR A PLANE-STRAIN 10 TUBE
V. ELASTIC-PLASTIC SOLUTION FOR A PLANE-STRAIN TUBE 11
VI. ELASTIC-PLASTIC SOLUTION FOR AN OPEN-END TUBE 12
VII. ELASTIC-PLASTIC SOLUTION FOR A CLOSED-END TUBE 13

INTRODUCTION

The partially plastic problem of pressurized thick-walled cylinder is of practical importance to pressure vessels and the autofrettage process of gun barrels. Many solutions for this problem have been reported (refs 1-7). For thick tubes under very high pressure operation, the elastic-plastic material model should be represented by the von Mises' yield criterion, Prandt1-Reuss' incremental stress-strain laws, the strain-hardening, and compressibility (ref 8). However, a closed-form solution exists only in the plane-strain case neglecting strain-hardening and compressibility.

For the generalized'plane-strain problems considered here, numerical solutions were reported by the finite-difference method (refs 4,7) and finfteelement method (ref 5). The incremental displacements were used as the basic unknowns and a displacement function was assumed in the finite-element method (ref 5). The incremental stresses and strains were used in Reference 4 as the basic unknowns, but only the incremental strains were used in Reference 7 . The spatial discretization used in References 4 and 7 was based on the forward difference scheme and a fixed sequence of incremental loading was used.

In this report, a new method is developed and more accurate numerical results are obtained. The incremental strains are chosen as the basic unknowns in the finite-difference formulation. Both strain-hardening and ideally-plastic materials can be considered. The spatial discretization is based on the central difference scheme and the incremental sizes of the applied loading are detemined automatically in the program. The incremental

References are listed at the end of this report.
results are calculated directly and no iteration is needed. The convergence of the approach will be discussed and more accurate results will be reported.

BASIC EQUATIONS

Assuming small strain and no body forces in the axisymmetric state of generalized plane-strain, the radial and tangential stresses, σ_{r} and $\sigma \theta$, must satisfy the equilibrim equation,

$$
\begin{equation*}
r\left(\partial \sigma_{r} / \partial r\right)=\sigma_{\theta}-\sigma_{r} \tag{1}
\end{equation*}
$$

and the corresponding strains, ε_{r} and ε_{θ}, are given in terms of the radial displacement, u, by

$$
\begin{equation*}
\varepsilon_{r}=\partial u / \partial r, \quad \varepsilon_{\theta}=u / r \tag{2}
\end{equation*}
$$

It follows that the strains must satisfy the equation of compatibility

$$
\begin{equation*}
r\left(\partial \dot{\varepsilon}_{\theta} / \partial r\right)=\varepsilon_{r}-\varepsilon_{\theta} \tag{3}
\end{equation*}
$$

If the material is assumed to be elastic-plastic, obeying the Mises' yield criterion, the Prandtl-Reuss flow theory, and the isotropic hardening law, the stress-strain relations are (ref 1):

$$
\begin{gather*}
d \varepsilon_{1}^{\prime}=d \sigma_{1}^{\prime} / 2 G+(3 / 2) \sigma_{1}^{\prime} d \sigma /\left(\sigma H^{\prime}\right) \tag{4}\\
d \sigma \geqslant 0 \text { for } 1=r, \theta, z \\
d \varepsilon_{m}=E^{-1}(1-2 v) d \sigma_{m} \tag{5}
\end{gather*}
$$

where E, V are Young's modulus, Poisson's ratio, respectively,

$$
\begin{gather*}
2 \mathrm{G}=\mathrm{E} /(1+\nu), \\
\varepsilon_{\mathrm{m}}=\left(\varepsilon_{\mathrm{r}}+\varepsilon_{\theta}+\varepsilon_{\mathrm{z}}\right) / 3, \quad \varepsilon_{\mathrm{I}}^{\prime}=\varepsilon_{\mathrm{I}}-\varepsilon_{\mathrm{m}} \\
\sigma_{\mathrm{m}}=\left(\sigma_{\mathrm{r}}+\sigma_{\theta}+\sigma_{\mathrm{z}}\right) / 3, \sigma_{\mathrm{I}}^{\prime}=\sigma_{\mathrm{I}}-\sigma_{\mathrm{m}} \\
\sigma=(1 / \sqrt{2})\left[\left(\sigma_{\mathrm{r}}-\sigma_{\theta}\right)^{2}+\left(\sigma \theta-\sigma_{z}\right)^{2}+\left(\sigma_{\mathrm{z}}-\sigma_{\mathrm{r}}\right)^{2}\right]^{1 / 2} \geqslant \sigma_{0} \tag{6}
\end{gather*}
$$

and σ_{0} is the yield stress in simple tension or compression. For a strainhardening material, H^{\prime} is the slope of the effective stress/plastic strain
curve

$$
\begin{equation*}
\sigma=H\left(\int \mathrm{~d} \varepsilon^{\rho}\right) \tag{7}
\end{equation*}
$$

For an ideally-plastic.material ($\mathrm{H}^{\prime}=0$), the quantity ($3 / 2$)do/(oH') is replaced by $d \lambda$, a positive factor of proportionality. When $\sigma<\sigma_{0}$ or $d \sigma<0$, the state of stress is elastic and the second term in Eq. (4) disappears. Following Yamada et al (ref 9), Eqs. (4) and (5) can be rewritten in an incremental form

$$
\begin{equation*}
d \sigma_{1}=d_{i j} d \varepsilon_{j} \text { for } 1, j=r, \theta, z \tag{8}
\end{equation*}
$$

and

$$
d_{i j}=2 G\left[v /(1-2 \nu)+\delta_{1 j}-\sigma_{i}^{\prime} \sigma_{j}^{\prime} / S\right]
$$

where

$$
\begin{equation*}
S=\frac{2}{3}\left(1+\frac{1}{3} H^{\prime} / G\right) \sigma^{2}, \quad H^{\prime} / E=\omega /(1-\omega) \tag{9}
\end{equation*}
$$

ωE is the slope of the effective stress-strain curve, and $\delta_{1 j}$ is the Kronecker delta.

This form was used in the finite-element formulation for solving elasticplastic thick-walled tube problems (ref 5). In the following section, the incremental stress-strain matrix will be used in the finite-difference formulation.

FINITE-DIFFERENCE FORMULATION

Consider a thick-walled cylinder of inner radius a and external radius b. The tube is subjected to inner pressure p, external pressure q, and end force f. The elastic solution for this problem is well-known and the pressure p^{*}, q^{*}, or f^{*} required to cause initial yielding can be determined by using the Myses' yield criterion. For loading beyond the elastic limit, an incremental approach of the finite-difference formulation is used. The cross-section of
the tube is divided into n rings with $r_{1}=a, r_{2}, \ldots, r_{k}=p, \ldots, r_{n+1}=b$ where p is the radius of the elastic-plastic interface. At the beginning of each increment of loading, the distribution of displacements, strains, and stresses are assumed to be known and we want to determine $\Delta u, \Delta \varepsilon_{r}, \Delta \varepsilon_{\theta}, \Delta \varepsilon_{z}, \Delta \sigma_{r}, \Delta \sigma_{\theta}$, $\Delta \sigma_{z}$ at all grid points. Since the incremental stresses are related to the incremental strains by the incremental form (Eq. (8)) and $\Delta u=r \Delta \varepsilon_{\theta}$, there exists only three unknowns at each station that have to be determined for each increment of loading. Accounting for the fact that the axial strain ε_{z} is independent of r, the unknown variables in the present formulation are $\left(\Delta \varepsilon_{\theta}\right)_{i}$, $\left(\Delta \varepsilon_{r}\right)_{i}$, for $i=1,2, \ldots, n, n+1$, and $\Delta \varepsilon_{z}$.

The equation of equilibrium (1) and the equation of compatibility (3) are valid for both the elastic and the plastic regions of a thick-walled tube. A first-order-correct finite-difference analog of these two equations at $1=$ 1,..., n has been given in References 4 and 7. Other finite-difference forms can be written. In this report, the difference equations given below are second-order-correct. The equation of compatibility (3) and equation of equilibrium (1) are replaced, respectively, by
and

$$
\begin{align*}
& c_{11}\left(\Delta \varepsilon_{\theta}\right)_{1}+c_{21}\left(\Delta \varepsilon_{r}\right)_{1}+c_{31}\left(\Delta \varepsilon_{\theta}\right)_{1+1}+c_{41}\left(\Delta \varepsilon_{r}\right)_{1+1}=c_{51} \tag{10}\\
& c_{11}\left(\Delta \sigma_{r}\right)_{1}+c_{21}\left(\Delta \sigma_{\theta}\right)_{1}+c_{41}\left(\Delta \sigma_{r}\right)_{1+1}+c_{41}\left(\Delta \sigma_{\theta}\right)_{1+1}=c_{61} \tag{11}
\end{align*}
$$

where

$$
\begin{gathered}
c_{11}=-\frac{3}{2}+\frac{1}{2} \gamma_{1}, c_{21}=\frac{1}{2}-\frac{1}{2} \gamma_{1} \\
c_{31}=\frac{3}{2}-\frac{1}{2} \gamma_{1}, c_{41}=-\frac{1}{2}+\frac{1}{2} \gamma_{1} \\
c_{51}=-c_{11}\left(\varepsilon_{\theta}\right)_{1}-c_{21}\left(\varepsilon_{r}\right)_{1}-c_{31}\left(\varepsilon_{\theta}\right)_{1+1}-c_{41}\left(\varepsilon_{r}\right)_{1+1} \\
c_{61}=-c_{11}\left(\sigma_{r}\right)_{1}-c_{21}\left(\sigma_{\theta}\right)_{1}-c_{31}\left(\sigma_{r}\right)_{1+1}-c_{41}\left(\sigma_{\theta}\right)_{1+1}
\end{gathered}
$$

and

$$
\begin{equation*}
\gamma_{i}=r_{1+1} / r_{1} \tag{12}
\end{equation*}
$$

With the ald of the incremental stress-strain relations (8), Eq. (11) can be written as

$$
\begin{equation*}
c_{71}\left(\Delta \varepsilon_{\theta}\right)_{1}+c_{8 i}\left(\Delta \varepsilon_{r}\right)_{1}+c_{91}\left(\Delta \varepsilon_{\theta}\right)_{i+1}+c_{101}\left(\Delta \varepsilon_{r}\right)_{i+1}+c_{11 i}\left(\Delta \varepsilon_{z}\right)=c_{6 i} \tag{13}
\end{equation*}
$$

where

$$
\begin{gather*}
c_{71}=c_{11}\left(d_{12}\right)_{1}+c_{21}\left(d_{22}\right)_{1}, c_{81}=c_{11}\left(d_{11}\right)_{1}+c_{21}\left(d_{21}\right)_{1} \\
c_{91}=c_{31}\left(d_{12}\right)_{1+1}+c_{4_{1}}\left(d_{22}\right)_{1+1}, c_{101}=c_{31}\left(d_{11}\right)_{1+1}+c_{41}\left(d_{22}\right)_{1+1} \\
c_{111}=c_{11}\left(d_{13}\right)_{1}+c_{21}\left(d_{23}\right)_{1}+c_{31}\left(d_{13}\right)_{1+1}+c_{41}\left(d_{23}\right)_{1+1} \tag{14}
\end{gather*}
$$

The boundary conditions for the problem are

$$
\begin{gather*}
\Delta \sigma_{r}(a, t)=-\Delta p, \Delta \sigma_{r}(b, t)=-\Delta q \\
\pi \sum_{i=1}^{n}\left[r_{i}\left(\Delta \sigma_{z}\right)_{1}+r_{i+1}\left(\Delta \sigma_{z}\right)_{i+1}\right]\left(r_{i+1}-r_{1}\right)=\mu \pi a^{2} \Delta p+\Delta f \tag{15}
\end{gather*}
$$

where μ is zero for open-end tubes, and one for closed-end tubes. Using the incremental relations (8), we rewrite Eq. (15) as

$$
\begin{gather*}
\left(d_{12}\right)_{1}\left(\Delta \varepsilon_{\theta}\right)_{1}+\left(d_{11}\right)_{1}\left(\Delta \varepsilon_{\mathrm{r}}\right)_{1}+\left(d_{13}\right)_{1} \Delta \varepsilon_{\mathrm{z}}=-\Delta \mathrm{p} \tag{16}\\
\left(\mathrm{~d}_{12}\right)_{\mathrm{n}+1}\left(\Delta \varepsilon_{\theta}\right)_{\mathrm{n}+1}+\left(\mathrm{d}_{11}\right)_{\mathrm{n}+1}\left(\Delta \varepsilon_{\mathrm{r}}\right)_{\mathrm{n}+1}+\left(\mathrm{d}_{13}\right)_{\mathrm{n}+1} \Delta \varepsilon_{\mathrm{z}}=-\Delta \mathrm{q} \tag{17}
\end{gather*}
$$

and

$$
\begin{align*}
\sum_{i=1}^{n}\left[c_{121}\left(\Delta \varepsilon_{\theta}\right)_{i}\right. & +c_{131}\left(\Delta \varepsilon_{r}\right)_{1}+c_{141}\left(\Delta \varepsilon_{\theta}\right)_{1+1}+c_{151}\left(\Delta \varepsilon_{r}\right)_{i+1} \\
& \left.+c_{161}\left(\Delta \varepsilon_{z}\right)\right]=\mu^{2} \Delta p+\Delta f / \pi \tag{18}
\end{align*}
$$

where

$$
\begin{gather*}
c_{121}=\left(r_{1+1}-r_{1}\right) r_{1}\left(d_{32}\right)_{1}, c_{131}=\left(r_{1+1}-r_{1}\right) r_{1}\left(d_{31}\right)_{1} \\
c_{141}=\left(r_{1+1}-r_{1}\right) r_{1+1}\left(d_{32}\right)_{1+1}, c_{151}=\left(r_{1+1}-r_{1}\right) r_{1+1}\left(d_{31}\right)_{1+1} \\
c_{161}=\left(r_{1+1}-r_{1}\right)\left[r_{1}\left(d_{33}\right)_{1}+r_{1+1}\left(d_{33}\right)_{1+1}\right] \tag{19}
\end{gather*}
$$

Now we can form a system of $2 \mathrm{n}+3$ equations for solving $2 \mathrm{n}+3$ unknowns, $\left(\Delta \varepsilon_{\theta}\right)_{i}$, $\left(\Delta \varepsilon_{r}\right)_{1}$, at $1=1,2, \ldots, n, n+1$ and $\Delta \varepsilon_{z}$. Equations (16), (17), and (18) are
taken as the first and last two equations, respectively, and the other $2 n$ equations are set up at $1=1,2, \ldots, n$ using Eqs. (10) and (13). The final system is an unsymmetric matrix of arrow type with the nonzero terms appearing in the last row and column and others clusteing about the main diagonal, two below and two above. In the computer program which was developed, the dimensionless quantities r/a, $\mathrm{E} \varepsilon_{r} / \sigma_{0}, \mathrm{E} \varepsilon_{\theta} / \sigma_{0}, \mathrm{E} \varepsilon_{z} / \sigma_{0}, \sigma_{r} / \sigma_{0}, \sigma_{\theta} / \sigma_{0}, \sigma_{z} / \sigma_{0}$, $p / \sigma_{0}, q / \sigma_{0}, f /\left(\pi a^{2} \sigma_{0}\right)$ were used in the formulation and the Gaussin elimination method was used to solve these equations. All calcilations were carried out on IBM 4341 with double precision to reduce round-off errors.

OPTIMAL INCREMENTAL LOADING
Given any combination of incremental-loading ($\Delta \mathrm{p}, \Delta \mathrm{q}$, or Δf), we can now detemine all incremental results (displacements, strains, and stresses) directly. No iteration is needed, while in Reference 4, many iterations in each step were required because a value for $\Delta \varepsilon_{z}$ was assumed. The sizes of incremental-loading should be chosen properly in order to obtain accurate results at a reasonable cost. When the total applied pressure p is given, it is natural to divide the loading path in mequal fixed increments such as $\Delta p=$ ($p-p^{*}$)/m. Larger values of m give more accurate results. A sequence of decreasing load-increments is a better choice than that of equal increments. In order to increase the efficiency without affecting the accuracy, an adaptive algorith has been implemented on the basis of a scaled incrementalloading approach (ref 5).

In each step, a dummy load-increment such as Δp is applied and the incremental results $\Delta \sigma_{1}$ for $1=r, \theta, z$ at all grids are determined. For all
grid points at which $\sigma=\left\|\sigma_{i}\right\|<\sigma$, we compute the scaler α 's by the formula

$$
\begin{equation*}
\alpha=\frac{1}{2}\left\{\Gamma+\left[\Gamma^{2}+4| | \Delta \sigma_{1} \|^{2}\left(\sigma_{0}^{2}-| | \sigma_{1} \|^{2}\right)\right]^{1 / 2}\right\} /\left|\left|\Delta \sigma_{1}\right| \|^{2}\right. \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma=\left\|\sigma_{i}\right\|^{2}+\left\|\Delta \sigma_{i}\right\|^{2}-\left\|\sigma_{1}+\Delta \sigma_{1}\right\|^{2} \tag{21}
\end{equation*}
$$

and $\left|\left|\sigma_{i}\right|\right|,\left|\left|\Delta \sigma_{i}\right|\right|,\left|\left|\sigma_{i}+\Delta \sigma_{i}\right|\right|$ are computed by

$$
\begin{equation*}
\left\|\sigma_{1}\right\|^{2}=\frac{1}{2}\left[\left(\sigma_{r}-\sigma_{\theta}\right)^{2}+\left(\sigma_{\theta}-\sigma_{z}\right)^{2}+\left(\sigma_{z}-\sigma_{r}\right)^{2}\right] \tag{22}
\end{equation*}
$$

Let λ be the minimum of the α 's. Then λ is the load-increment factor just sufficient to yield one additional point. A sequence of $\lambda(j)$ can be determined for all steps $j=1,2, \ldots$ m and the updated results are

$$
\begin{gather*}
p(j)=p(j-1)+\lambda(j) \Delta p(j) \\
\sigma_{1}(j)=\sigma_{1}(j-1)+\lambda(j) \Delta \sigma_{i}(j), \text { etc. } \tag{23}
\end{gather*}
$$

This sequence of incremental loading is optimal for the present problem because all the coefficients c's in Eqs. (12), (14), and (19) are functions of the previous stresses and strains.

CONVERGENCE STUDY

In order to demonstrate the accuracy of the approach, four convergence studies are made. Consider a thick-walled tube of wall ratio $b / a=2$ and subjected to internal pressure only. The cross-section of the tube is divided into n rings of equal thicknesses, i.e., $h=(b-a) / n$. The first problem is a closed-end tube loaded in the elastic range with $G=10^{5} / 3 \mathrm{psi}, v=0.3, p=5$ psi. The numerical results with $n=10,20,50,100$ are shown in Table I together with the Lame' solution for the hoop stresses and strains at the boundaries a and b. The numerical results are correct up to four digits with $\mathrm{n}=100$.
table I. ELASTIC SOLUTION FOR A CLOSED-END TUBE

$$
\left(b / a=2, G=10^{5} / 3 \mathrm{psi}, v=0.3, p=5 \mathrm{psi}\right)
$$

The second problem is the initial yielding solution for a plane-strain tube with $E / \sigma_{0}=200, \nu=0.3, \varepsilon_{z}=0$. The numerical results with $n=10,20$, 50, 100, 200, are shown in Table II together with the exact solution for the dimensionless $p=p / \sigma_{0}, \sigma_{\theta}=\sigma_{\theta} / \sigma_{0}, \varepsilon_{\theta}=\left(E / \sigma_{0}\right)\left(\varepsilon_{\theta}\right)$ at $r=a$ and b.
table il. INITIAL YIELDING SOLUTION FOR A PLANE-STRAIN tUBE
$\left(b / a=2, E / \sigma_{0}=200, v=0.3\right)$

	n	\bar{p}	$\bar{\sigma}_{\theta \mid a}$	$\overline{\sigma_{\theta \mid b}}$	$\bar{\varepsilon}_{\theta \mid a}$	$\bar{\varepsilon}_{\theta \mid \mathrm{b}}$
Exact	-	. 43229	. 72049	. 28820	. 82424	. 26226
FDM	10	. 00110	-. 00107	-. 00216	-. 00054	-. 00065
	20	. 00028	-. 00027	-. 00054	-. 00014	-. 00016
	50	. 00005	-. 00004	-. 00009	-. 00002	-. 00003
	100	. 00001	-. 00001	-. 00003	-. 00001	-. 00001
	200	. 00001	. 00000	-. 00001	. 00000	. 00000

The third problem is the elastic-perfectly plastic solution for a planestrain tube with $b / a=2, E / \sigma_{0}=200, v=0.3, \omega=0, \varepsilon_{z}=0$. The numerical results with $n=10,20,50,100,200$ are shown in Table III for the pressure and displacement at the bore corresponding to 50 percent and 100 percent overstrain, 1.e., $\rho / a=1.5$ and 2.0 .

TABLE III. ELASTIC-PERFECTLY PLASTIC SOLUTION FOR A PLANE-STRAIN TUBE

$$
\left(b / a=2, E / \sigma_{0}=200, v=0.3\right)
$$

The numerical results converge and are accurate up to four digits with $n=$ 100. There is no closed-form solution available for comparison. The famous paper by Hodge and White (ref 2) has been used quite often as a basis for assessing the accuracy of other approximate methods. However, the numerical integration is cumbersome. The present fomulation is much simpler and seems more accurate. In order to further demonstrate the accuracy of the present approach, a convergence study for an incompressible, ideally-plastic thick tube in plane-strain condition has been made and compared with exact solution (ref 2). The numerical results for a nearly incompressible material ($V=$
0.49999) are shown in Table IV together with the exact solution ($V=1 / 2$) for the internal pressure and the displacement at the bore corresponding to 50 percent and 100 percent overstrain.

TABLE IV. INCOMPRESSIBLE, IDEALLY-PLASTIC SOLUTION FOR A PLANE-STRAIN TUBE

$$
\left(b / a=2, E / \sigma_{\theta}=200, \quad v=0.49999\right)
$$

I	50\% Overstrain		100\% Overstrain	
n	-	-	-	-
	p	$\left.\varepsilon_{\theta}\right\|_{a}$	P	$\varepsilon_{\theta} l_{a}$
10	. 72069	1.95714	. 80015	3.48806
20	. 72077	1.95072	. 80034	3.47012
50	. 72078	1.94891	. 80038	3.46509
100	. 72078	1.94865	. 80038	3.46437
Exact	. 72078	1.94856	. 80038	3.46410

We may thus conclude that exact solutions can be obtained by this numerical approach.

ADDITIONAL RESULTS

After establishing the convergence and accuracy of this new approach, the qumerical results for more general problems have been obtained. Some of the additional results are documented here for future comparison by others. All numerical results presented here are for a thick-walled tube with wall ratio $\mathrm{b} / \mathrm{a}=2, E / \sigma_{0}=200, \nu=0.3, \mathrm{n}=100, \omega=\mathrm{E}_{\mathrm{t}} / \mathrm{E}=0.1$. The numerical results are accurate up to four or five digits. Table V shows the results of the dimensionless quantities $p / \sigma_{0}, \sigma_{\theta} / \sigma_{0}, \sigma_{z} / \sigma_{0},\left(E / \sigma_{0}\right) \varepsilon_{r},\left(E / \sigma_{0}\right) \varepsilon_{\theta},\left(E / \sigma_{0}\right) \varepsilon_{z}$ at
the inside or elastic-plastic boundary ρ for $\rho / a=1.0,1.1,1.2, \ldots, 2.0$ in a plane-strain tube with strain-hardening parameter $\omega=0.1$. Tables VI and VII show the similar results of the dimensionless stresses, strains, displacement at the bore or elastic-plastic boundary for various stages of elastic-plastic loadings in an open-end or closed-end tube, respectively.

TABLE V. ELASTIC-PLASTIC SOLUTION FOR A PLANE-STRAIN TUBE
$\left(b / a=2, E / \sigma_{0}=200, v=0.3, E_{t} / E=0.1, n=100, \varepsilon_{z}=0\right)$

TABLE VI. ELASTIC-PLASTIC SOLUTION FOR AN OPEN-END TUBE

ρ / a	p / σ_{0}	σ_{θ} $--1 \rho$ σ_{0}		$\stackrel{\sigma}{z}_{--1 a}^{\sigma_{0}}$	${\stackrel{\sigma}{\sigma_{z}}}_{--1 \rho}$	$\frac{\mathrm{E}}{\sigma_{0}} \varepsilon_{r}{ }^{\text {a }}$	E U_{a} $-\sigma_{0}$ -	$\stackrel{E}{--} \varepsilon_{\text {o }}$
1.0	. 42857	. 71429	. 71429	0.0	0.0	-. 64286	. 84286	-. 08571
1.1	. 50697	. 66772	. 74089	-. 02818	. 00090	-. 86384	1.01920	-. 10234
1.2	. 57515	. 63143	. 76928	-. 05498	. 00334	-1.09744	1.21679	-. 11883
1.3	. 63434	. 60489	.79916	-. 08033	. 00689	-1.34207	1.43368	-. 13552
1.4	. 68546	. 58744	. 83021	-. 10392	. 01106	-1.59572	1.66769	-. 15275
1.5	. 72929	.57829	. 86195	-. 12542	. 01529	-1.85584	1.91616	-. 17089
1.6	. 76641	.57659	. 89385	-. 14463	. 01895	-2.11934	2.17590	-. 19034
1.7	. 79730	. 58141	. 92520	-. 16147	. 02135	-2.38245	2.44299	-. 21149
1.8	. 82236	.59175	. 95517	-. 17604	. 02181	-2.64070	2.71271	-. 23466
1.9	. 84191	. 60652	. 98280	-. 18862	. 01965	-2.88902	2.97950	-. 26008
2.0	. 85630	. 62457	1.00708	-. 19963	. 01432	-3.12192	3.23718	-. 28781

ρ / a	p / σ_{0}	α_{θ} $-\alpha_{0} 1 \rho$	σ_{θ} $-\sigma_{0} \mid \rho$	$\frac{\sigma_{z}}{--1 a}$	$\frac{\sigma_{z}}{-\sigma_{0}}$	$\left.\frac{E}{\sigma_{0}} \varepsilon_{r} \right\rvert\, a$	$\frac{\mathrm{E}}{-\mathrm{o}} \mathrm{O}_{\mathrm{o}} \frac{\mathrm{U}_{\mathrm{a}}}{\mathrm{a}}$	$\frac{E}{\sigma_{0}} \varepsilon_{z}$
1.0	. 43301	. 72169	. 72169	. 14434	. 14434	-. 69282	. 80829	. 05774
1.1	. 51408	. 66902	. 75199	. 11139	. 17341	-. 94569	. 98359	. 06863
1.2	. 58514	. 62897	. 78518	. 07731	. 20331	-1.21580	1.18564	. 07861
1.3	. 64758	. 60074	. 82124	. 04394	. 23449	-1.50300	1.41370	. 08814
1.4	. 70247	. 58332	. 86014	. 01276	.26717	-1807142	1.66712	. 09746
1.5	. 75069	. 57573	. 90186	-. 01509	.30145	-2.12799	1.14532	.10665
1.6	. 79290	. 57710	. 94636	-. 03887	. 33724	-2.46525	2.24773	. 11566
1.7	. 82963	. 58672	. 99359	-. 05811	. 37437	-2.81846	2.57373	. 12432
1.8	. 86323	. 60610	1.04858	-. 07381	.41641	-3.22466	2.95874	. 13314
1.9	. 88833	. 62834	1.09583	-. 08243	.45136	-3.56994	3.29352	.13946
2.0	. 91091	. 65936	1.15052	-. 08775	. 49023	-3.96597	3.68518	. 14507

1. Hill, R., Mathematical Theory of Plasticity, Oxford University Press, 1950.
2. Prager, W. and Hodge, P. G., Theory of Perfectly Plastic Solids, Johr Wiley \& Sons Publication, Inc., 1951, Chapter 4.
3. Hodge, P. G. and White, G. N., "A Quantitative Comparison of Flow and Deformation Theories of Plasticity," J. Appl. Mech., Vol. 17, 1950, pp. 180-184.
4. Chu, S. C., "A More Rational Approach to the Problem of an Elastoplastic Thick-Walled Cylinder," J. of the Franklin Institute, Vol. 294, 1972, pp. 57-65.
5. Chen, P. C. T., "The Finite Element Analysis of Elastic-Plastic ThickWalled Tubes," Proc. of Army Symposium on Solids Mechanics, 1972, The Role of Mechanics in Design Ballistic Problems, pp. 243-253.
6. Elder, A. S., Tomkins, R. C., and Mann, T. L., "Generalized Plane-Strain in an Elastic, Perfectly Plastic Cylinder, with Reference to the Hydraulic Autofrettage Process," Tran. 21st Conference of Army Mathematicians, 1975, pp. 623-659.
7. Chen, P. C. T., "Generalized Plane-Strain Problems in an Elastic-Plastic Thick-Walled Cylinder," Trans. 26th Conference of Army Mathematicians, 1980, pp. 265-275.
8. Davidson, T. E. and Kenda11, D. P., "The Design of Pressure Vessels for Very High Pressure Operation," Watervliet Arsenal Report WVT-6917. Also in Mechanical Behavior of Materials Under Pressure, (H.L.D. Pugh, Ed.), Elsevier Co., 1970, Chapter 2.
9. Yamada, Y., Yoshimura, N., and Sakurni, T., "Plastic Stress-Strain Matrix and Its Application for the Solution of Elastic-Plastic Problems by the Finite Element Method," Int. J. Mech. Sci., Vol. 10, 1968, pp. 343-354.
NO. OF
COPIES
CHIEF, DEVELOPMENT ENGINEERING BRANCH ATTN: SMCAR-LCB-D 1
-DA 1
-DP 1
-DR 1
-DS (SYSTEMS) 1
-DS (ICAS GROUP) 1
-DC 1
CHIEF, ENGINEERING SUPPORT BRANCH
ATTN: SMCAR-LCB-S 1
-SE 1
CHIEF, RESEARCH BRANCH ATTN: SMCAR-LCB-R 2
$-R$ (ELLEN FOGARTY) 1
-RA 1
$-R M$ 2
-RP 1
-RT 1
TECHNICAL LIBRARY 5ATTN: SMCAR-LCB-TL
TECHNICAL PUBLICATIONS \& EDITING UNIT 2ATTN: SMCAR-LCB-TL
DIRECTOR, OPERATIONS DIRECTORATE 1
DIRECTOR, PROCUREMENT DIRECTORATE 1
DIRECTOR, PRODUCT ASSURANCE DIRECTORATE 1 OF ANY ADDRESS CHANGES.

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST

NO. OF
NO. OF
COPIES
COPIES

ASST SEC OF THE ARMY RESEARCH \& DEVELOPMENT
ATTN: DEP FOR SCI \& TECH
THE PENTAGON
WASHINGTON, D.C. 20315
COMMANDER
DEFENSE TECHNICAL INFO CENTER
ATTN: DTIC-DDA
CAMERON STATION
ALEXANDRIA, VA 22314

COMMANDER
US ARMY MAT DEV \& READ COMD
ATTN: DRCDE-SG
5001 EISENHOWER AVE
ALEXANDRIA, VA 22333
COMMANDER
ARMAMENT RES \& DEV CTR
US ARMY AMCCOM
ATTN: SMCAR-LC
SMCAR-LCE
SMCAR-LCM (BLDG 321)
SMCAR-LCS
SMCAR-LCU
SMCAR-LCW
SMCAR-SCM-O (PLASTICS TECH
EVAL CTR, BLDG. 351N)
SMCAR-TSS (STINFO)
DOVER, NJ 07801
DIRECTOR
BALLISTICS RESEARCH LABORATORY
ATTN: AMXBR-TSB-S (STINFO)
ABERDEEN PROVING GROUND, MD 21005

MATERIEL SYSTEMS ANALYSIS ACIV
ATTN: DRXSY-MP
ABERDEEN PROVING GROUND, MD 21005

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONT'D)

	NO. OF COPIES		$\begin{aligned} & \text { NO. OF } \\ & \text { COPIES } \end{aligned}$
COMMANDER		DIRECTOR	
US ARMY MATERIALS \& MECHANICS		US NAVAL RESEARCH LAB	
RESEARCH CENTER	2	ATTN: DIR, MECH DIV	1
ATTN: TECH LIB - DRXMR-PL		CODE 26-27, (DOC LIB)	1
WATERTOWN, MA 01272		WASHINGTON, D.C. 20375	
COMMANDER		COMMANDER	
US ARMY RESEARCH OFFICE		AIR FORCE ARMAMENT LABORATORY	
ATTN: CHIEF, IPO	1	ATTN: AFATL/DLJ	1
P.O. BOX 12211		AFATL/DLJG	1
RESEARCH TRIANGLE PARK, NC 27709		EGLIN AFB, FL 32542	
COMMANDER		METALS \& CERAMICS INFO CTR	
US ARMY HARRY DIAMOND LAB		BATTELLE COLUMBUS LAB	1
ATTN: TECH LIB	1	505 KING AVENUE	
2800 POWDER MILL ROAD		COLUMBUS, OH 43201	
ADELPHIA, MD 20783			
COMMANDER			
NAVAL SURFACE WEAPONS CTR			
ATTN: TECHNICAL LIBRARY	1		
DAFLGREN, VA 22448			

COPIES COPIES
MANDERWATERTOWN, MA 01272US ARMY RESEARCH OFFICEP.O. BOX 12211
RESEARCH TRIANGLE PARK, NC 27709
command
ATTN: TECH LIB2800 POWDER MILL ROADADELPHIA, MD 20783
COMMANDERATTN: TECHNICAL LIBRARYCODE X212
DAHLGREN, VA 22448
DIRECTORATTN: DIR, MECH DIV
1
CODE 26-27, (DOC LIB) 1
AIR FORCE ARKAEN LABORATORY
EGLIN AFB, FL 32542BATTELLE COLUMBUS LAB1
COLUMBUS, OH 43201

.2
WASHINGTON, D.C. 20375
COMMANDER
AFATL/DUJ
AFATL/DUJ 1
METALS \& CERAMICS INFO CTR1

[^0]: Ihis dooument has been approved p.os public release and sale; its ilis:- ibution is "ulimited

