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PART I        The effect of spin on dispersion during boost and after 
separation 

PART II       The equations of motion and their solution during 
burning 

PART III      A solution for the motion after burning 

APPENDIX A     Evaluation of integrals 

nummary 

From the equations of motion of a rotating rocket, closed solutions 
are obtained for the ballistic dispersion during boost under the assumption 
that the angular acceleration is constant - Part II and Appendix A. 

These solutions are evaluated numerically for the two cases: 

(a) launching spin zero 

(b) angular acceleration zero. 

and the results are presented and discussed in Part I.  By comparing the 
dispersion with that of a non-rotating round, the effectiveness of spin 
as a means of reducing dispersion can be assessed in each case. 

In case (a) it is found that reductions in the dispersion by a 
factor of 3 are theoretically possible by off-setting the nozzles of a 
multiple boost system tangentially by less than 5°•       To achieve larger 
reductions by this method, the nozzle off-set must be increased in 
proportion to the square of the reduction sought. 

In case (b), the constant spin case, it is found that a spin of 
just less than 1 rev/sec is in general sufficient to reduce the dispersion 
by a factor of 3.  For higher spins the reduction varies linearly with 
the spin. 

In Part III closed solutions are obtained for the dispersion of tho 
dart due to unclean separation and aerodynamic malalignments.  From those 
solutions the maximum dispersions that can arise are then deduced.  The 
results are presented in Part I, and it is concluded that dispersion of 
the dart from these causes wi.11, be small compared with the dispersion at 
the end of boost. 
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PART I 

THE EFFECT Off SPIN ON DISPERSION DURING 
.BOOST AND AFTER SEPARATION 

1    Introduction 

1.1  G-eneral remarks 

The trajectory followed by a guided missile during the initial 
uncontrolled part of its flight cannot be predioted with certainty on 
account of a number of effects of unknown magnitude that influence its 
motion, e.g. thrust variation of boosts.  The trajectories of a large 
number of similar rounds, i.e. rounds manufactured to the same design, 
will therefore give a certain distribution of trajectories about the 
mean (or standard) trajectory.  A measure of the 'spread' of this 
distribution, e.g. the standard deviation or the radius of the 95$.zone, 
is called the dispersion of the round. 

When the dispersion is known the percentage of rounds whose 
trajectories are acceptable to the particular guidance system considered 
can be determined;, or alternatively, the requirements of a particular 
guidance system' can be stated for which only a certain small percentage 
(say 5%) of the missiles is lost.   In this respect some guidance systems, 
such as a non-directional command link, are ideal because they could be 
made tc operate for all positions of the round in space.  At the other 
extreme there is beam-riding guidance, which operates only as long as 
the missile lies within the narrow cone of the radar-tracking beam.   In 
this case an ancillary guidance system is necessary to shepherd the 
rounds into the tracking beam.  The larger the angle of this gathering 
beam however the longer the transfer time of the missile to the narrow 
beam and hence the greater the minimum engagement range.   On this 
account it is important to utilise a gathering beam whose angle is as 
small as possible.   This demands a knowledge of the dispersion of the 
round and the relative importance of the various factors upon which the 
dispersion depends. 

In Ref. 3 the contributions of these various factors to the total 
dispersion are discussed for Seaslug:  the ballistic dispersion is found 
to be the most important single factor upon which the width of the 
gathering beam will depend.   This fact has received recent support 
from firings of 502/STV's: a random dispersion of about 8° for the 3% 
zone was observed.  (This value is higher than was expected and suggests 
that previous estimates of the ballistic dispersion for a wrap-round 
boost are in error by a factor of 2 or 3.  There is evidence however that 
the thrust variation for 7g-" boost motors is greater than previously 
thought, and this may well explain the discrepancy between the estimated 
and observed ballistic dispersions.) 

Ref. 2 deals with the ballistic dispersion of various non-spinning 
boost configurations and shows that for a given layout the most profitable 
method of reducing the ballistic dispersion during boost is to increase 
either the aerodynamic stability of the round or the length of launcher 
from which it is fired.  In practice there is clearly a limit to which 
such steps can be taken without introducing formidable constructional 
problems.   In addition the theory shows that beyond a certain point 
these measures become less and less effective.  Also, the gain from 
increased stability will be off-set in the limit by certain dispersions, 
e.g. wind error dispersion, which increase with the stability of the 
configuration. 
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A further means of reducing dispersion that warrants consideration 
is that of spinning the round.   It would be expected that even a small 
spin amounting to one revolution within the first half-wavelength of yaw 
would prevent the accumulation of malalignment dispersions in any one 
direction.  This statement presupposes that the malalignments themselves 
remain independent of the spin.  It must be assumed, for instance, that 
with a tandem boost the 'unknown factor1, i.e. the factor between the 
observed dispersion and that predicted from the measured angular displace- 
ment of the nozzle axis from the rocket axis, is the same for a rotating 
round as for a non-rotating round.   This point has received practical 
confirmation from a series of firings of 3" rockets". 

The introduction of sj)in into the problem makes the theoretical 
treatment much more complicated and leads to integrals which are not at 
all suitable for numerical evaluation on account of their highly 
oscillatory integrands.  Approximate evaluations of these integrals 
for the ballistic dispersion have been obtained in Ref. 1 in certain 
special cases,, and depend on the launching spin being sufficiently large. 
This form of solution - an asymptotic solution - is modified in the 
present report (App. A) to cover other cases of possible guided-weapon 
interest with somewhat improved accuracy.   In order to deal with zero 
launching spin - the case most relevant to present guided-weapon work - 
a new solution has been derived that is exact' for a neutrally stable round 
and approximately correct in general for sufficiently large rates of 
change of spin at launch.  The discovery of this solution, called the 
approximate solution in App. A, was one of the most difficult obstacles 
to be overcome before a complete study of the effect of spin could be 
undertaken.  When' the spin and rate of change of spin at launch are 
both large the asymptotic and approximate solutions are in agreement. 

The evaluation of the dispersion of the dart after separation has 
also required a great deal of now work, involving the formulation of the 
equations of motion with the inclusion of the aerodynamic malalignments in 
Part II and their evaluation and simplification in Part III.  Part I 
presents the results obtained from the theoretical investigations of 
Part II and Part III, quoting the appropriate formulae. 

It has not been necessary to lay down any definite missile configur- 
ation but only to consider the values over which certain fundamental 
parameters are likely to range.  Results are given for a wide range of 
these parameters and so do not relate to any specific design, although 
their application to a Seaslug-type missile is considered. 

'• It has been assumed throughout that the round has symmetry of order 
three or more (as defined in Ref. 1.5). 

1.2  Methods of imparting spin during boost 

No detailed consideration is given in this note to the various 
ways and means by which spin could be imparted to a round.  Instead 
results are obtained for two types of spin-form, to which most spin-forms 
occurring" in practice are likely to .•approximate..' .These are 

•-'••• (a)   constant angular acceleration withi zero rate of rotation at 
launch, and ., 

(b)  constant rate of rotation after launch. . . 

Type (a) can be identified closely with the spin arising from off-set 
boost nozzles of a multiple boost system,, and type (b) with the spin of a 
round projected from a spiral or rotating launcher, particularly during 
the first part of the boost period.   The method of spinning by off-sotting 
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boost nozzles has been applied to test vehicles with wrap-round boosts 
and is the only method in use at the present time.   This method might 
also be applicable to a tandem boost with multiple nozzles, or to a boost 
of the bircumferential1 type (for description' see Ref. 2),  particularly 
if the stabilising fins are offset to delay their damping out of the 
spin until later in the boost period. 

The method of imparting spin by off-set fins alone is unsatisfactory, 
because the rate at which the spin builds up is then smallest when the 
velocity is low, and hence when the largest dispersion occurs: besides 
this disadvantage the structural requirements of the fins-would become 
severe with increasing size and off-set angle.  Rounis with large 
stabilising fins often generate a small spin of 1 or 2 revs/sec due to 
a slight deformation in the fins, but this spin does not build up until 
near the end of the.boost and so does not produce any. effective reduction 
in the dispersion. 

The spin-forms arising from off-set boost nozzles, and spin at launch 
and combinations of both are the subject of para. 2.  ' The maximum value 
that the spin attains during boost can be related to the damping properties 
of the round in spin and to the magnitude of the boost oouple. 

1.3  Causes of dispersion during boost 

The various causes of dispersion can be divided into two classes: 

(a)  nialalignments inherent in the round, and 

(3)  external causes, e.g. initial launching conditions and wind. 

The dispersions due to (3) depend on the. spin only in so far as it 
produces a processional motion.  For sufficiently small spin this effect 
is negligible:  the exact criteria are contained in assumptions B.l and 
B.2 page 49> an<^ require that 

32r2 < < n2V2 

and 

Sr < < n V /a, 

where 23 = M of I in roll/M of I in pitch 

r =' spin 

V = velocity 

a = acceleration 

2y2 _ aerodynamic restoring moment/incidence 
M of I in pitch 

These conditions almost certainly hold for spins of the magnitude 
arising in practice with guided weapons, say of less than 5 revs/sec. 
When the precessional effects are neglected, the motion becomes identical, 
with that of the non-rotating round and so is not considered in this note. 
See Ref. 1.1. 
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The dispersions due to (.a) on the other hand are all reduced by 
spin, except for the dispersion arising from malalignment of the princi- 
pal axis of inertia, v/hich increases with increasing spin.  It is 
therefore very necessary to form some idea of the value of the spin for 
which the inertia axis dispersion becomes comparable with the remaining 
dispersions due to (a), as no advantage is gained with higher spins. 

l.h-      Dispersion due to malalignment of the principal axis of inertia 

The effect of a malaligned inertia axis on the motion of a rocket 
is equivalent to that of a destabilising couple.   If CLQ  is the small 
angle made by the principal longitudinal axis of inertia with the axis 
of symmetry, the component of angular momentum in the transverse plane 
has magnitude Arac, where A is the M of I in pitch, and lies in the 
plane containing the longitudinal axes of symmetry and inertia.  The 
rate of change of this vector, which'is equal to the couple produced, 
has magnitude AT^OQ and lies in the transverse plane in the destabilising 
sense.  For a round with constant spin, i.e. type (b), the inertia 
axis dispersion is therefore identical with that of a constant destabilising 
couple ArnxQ, and can be readily compared vriLth that due to a constant 
boost destabilising couple of magnitude | G-p j .  The dispersions from these 
two causes are then equal when the spin is rOJ where 

•ro2 ~  \^P\  / A aC • 

It is shown later in para. 5.13 that the dispersion due to a constant 
destabilising.:moment varies inversely with, r (for values of r not 
near zero).   It can then be proved that when r = rQ the resultant 
of these two dispersions is actually a minimum.   This result was found 
to be in reasonable agreement with the dispersions observed in the seriec 
of firings of 3" solid fuel rockets from spiral projectors".  A minimum 
dispersion was obtained with a launcher pitch of 8 feet, giving a 
launching spin of 16 revs/sec. 

If h is the moment arm, | Gp |/thrust, r0 can be expressed by 

rQ
2 - ha / kp2 ac , 

where k is the radius of gyration in pitch.   For a round -with a tandem 
boost  h is roughly equal to the thrust malalignment angle arp times the 
distance of the boost nozzle exit plane from the C.'G.  Hence h is 
approximately V~3 k„ a,j,, and 

r0
2 = V3 a <xT / kp aG 

The values of aT,. a0 for the 95^> zone obtained from the 3" rocket firings 
were 0.0.02+3 and O.OOO75 radians.  If these values are taken to be 
appropriate to a guided weapon, the value of r0 for a round of 30 ft 
length and 600 ft/sec acceleration is then U-.k- revs/sec. 
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For a missile with a wrap-round boost h and kp depend on the 
positioning of the boosts along the body.  From values given in Ref. 2 
for a typical wrap-round configuration "with a 10° venturi radial off-s 
(see Figs. 3 and 6 in Ref. 2), h/kp

2 is found to be about 0.00077 ft 
for all boost positions considered.  Taking 0CQ = 0,00075 radians and 
a = 600 ft/sec2, the above equation gives 1+.0  revs/sec for rn. 

et 

The dispersion arising from any malalignment is clearly greatest 
when the velocity is least, i.e. at the beginning of the boost period. 
It is therefore necessary to limit the spin only during this initial 
period.   In practice this amounts to a limit on the launching spin and, 
to a lesser extent, on the initial angular acceleration.  The value 
of >+  revs/sec estimated above for this limit is large enough to show that 
the use of spin merits further consideration:  the object of this note 
is then to find out how effectively the remaining dispersions due to (a) 
are reduced by smaller initial spins.  In view of the uncertainty of this 
value we proceed under the assumption that for the values of spin under 
consideration the dispersion irom  the inertia axis malalignment is 
negligibly small compared with the other dispersions due to (a).  The 
reductions in dispersion recorded may therefore be slightly optimistic. 

1.5  Dispersions due to boost and aerodynamic malalignments 

The principal remaining dispersions arise from 

A.   destabilising moments due to 

(i)  boost malalignment 

(ii)  aerodynamic malalignment, and 

3.    transverse forces due to 

(i)  boost malalignment 

(ii)  aerodynamic malalignment. 

During the boost period the magnitudes of A.(i) and B.(i) will 
vary in some unknown manner with irregularities in the boost thrust. 
If however a large number of firings is taken into consideration A.(i) 
and B.(i) can be replaced by constant values, depending on their 
statistical distribution for the batch of rounds, and the resulting 
dispersions can be evaluated. 

The variation of A.(ii) and B.(ii) during boost is more definite, 
provided aero-elastic effects are neglected, being proportional to the 
square of the velocity.  The resulting dispersions can then be 
represented' in terms of integrals, which are however not soluble in 
any convenient 'closed form';  and numerical evaluation would be tedious 
on account of the highly oscillatory integrands.  In practice it should 
be possible to keep the aerodynamic malalignments to within a limit for 
which the resulting dispersions are small compared with the ballistic 
dispersions A. (i) and B.(i).   In Ref. 2 it has been shown that in the 
case of an unspun round the dispersion from A.(ii) will be small compared 
with that from all other causes provided the aerodynamic malalignment 
angle is kept well below 1°.  -The introduction of spin will reduce 
aerodynamic dispersions more than ballistic dispersions, because A, (ii,) 
and B.(ii) are very much smaller at launch, when the spin might still 
be building up, than at the end of boost (say 100 times greater) when the 
spin is established.  For this reason a more detailed examination of 
the aerodynamic dispersions has not been undertaken. 

•  9. 
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The boost malalignment dispersions A.(i) and B.(i) are considered 
in para, k  for the case of constant angular acceleration with zero 
launching spin (type (a)), and in para. 5 for the case of constant spin 
(type (b)).  It is assumed that the launch is perfect, i.e. that the 
malalignments do not alter the initial conditions at launch.   By 
launching a found already spinning much greater reductions in dispersion 
are obtainable than by spinning only after launch within practical 
limits.  Since however certain dispersions are not reduced by spin., 
e.g. dispersion due to wind error, there is a limit to the reduction 
it is worthwhile trying to achieve.  This point is illustrated in detail 
in para. 6 for the case of a Seaslug type missile.  If this limit can 
be attained with say off-set nozzles, then no advantage is gained by 
launching with spin from say a spiral or spinning launcher.  Besides 
this point, it is likely that in most cases the structural problems 
associated with a spiral launcher would militate against its introduction; 
such considerations as these are not taken to be within the scope of this 
note. 

1.6  Dispersions arising after separation 

In'paras. 7 and 8 consideration is given to the dispersions arising 
after boost separation and before the round comes under control.  The 
object of these paragraphs is to deduce limits within which the aero- 
dynamic malalignments of the dart must lie if large dispersions are to 
be avoided:  dispersions arising from 'unclean' separation are also 
discussed.  The method of approach naturally requires a number of 
approximating assumptions to be made:  it is assumed, for example, that 
the spin is constant.   This assumption is however justifiable, since 
in theory the spin will quickly tend to a constant value, depending 
on the malalignment incidences of the aerodynamic surfaces.   The other 
important parameters which determine the motion are the lift and stability 
properties of the round. 

It is found that should the spin be zero, the dispersions can 
increase indefinitely, and so a limit must be imposed on the time of 
uncontrolled flight if large dispersions are to be avoided.  The 
presence of even a small spin reduces the dispersions appreciably. 

2    Spin-form . . 

2.1  Two methods of imparting spin 

Spin may be imparted to a round ^oy  either or both of the following 
methods. 

(a) By off-setting the nozzles of a multiple boost assembly. 

(b) By projecting the round from a spiral launcher. 

By method (a) the round is angularly accelerated from the instant it ceases 
to be constrained by the launcher, and continues to accelerate until the 
aerodynamic spin damping moment builds up.  During the latter half of 
the boost stage the spin will in general decrease slightly according to 
the magnitude of this damping moment.  When the decrease in boost thrust 
sets in, the spin decreases rapidly. . With method (b) the spin is 
appreciably constant just after launch, but decreases with increasing 
velocity and damping moment. 

Since the dispersion is most affected by the spin-form immediately 
after launch, it is desirable that the spin should build up as quickly 
as possible.  In.practice however the angular acceleration and rate of 

10. 
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rotation are limited for structural reasons. With a spiral launcher the 
spin is of course greatest at launch, while the angular acceleration when 
on the launcher is 

* = (roA0)a, (1) 

where rQ and V are the spin and velocity at launch and a is the 
acceleration.  This equation shows that r is proportional to a and so 
will be roughly constant in practice, reaching a maximum by launch. 

The spin-forms produced by methods (a) or (b) or combinations of 
both are derived in the following sub-paragraphs, 

2.2  Solution for spin 

2.21 Prom the equation of motion in spin, namely, 

Cr + TR = G, (.2) 

where G is the magnitude of the boost couple 

• C is the M of I in roll 

and  r ft is the magnitude of the aerodynamic damping moment in spin 
r^ft, defined in 11.3.22*, 

we see that at launch when TR is small compared to G,  the initial 
acceleration is 

r0 = G/C, (3) 

and that until Tft becomes comparable with    G,     the  spin equation i is 

r = r0 + (G/C)(t - t0), (4) 

where tQ is the time at the instant of launch. 

2.22 To solve for the spin over the whole boost range, it is 
assumed that 

rR=YRVr, (5) 

read as Part II paragraph 3.22. 

11. 
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where YR is constant over the range where rR is comparable with G. 
This assumption has been justified by an analysis of S.T.V.I spin-forms. 
From three similar spin-forms the maximum value attained by the spin 
was read off, and YR found by the relation 

YR = G/(Vr).  . 
r=0 

Using this value of YR (0.30 lb ft) and taking into account the fall-off 
in G just before separation, the spin obtained by integration of equation 
(2) showed complete agreement with the firings. 

2.23 The solution of equation (2), when the acceleration is assumed 
constant, can be written non-dimensionally as (sec II.9.3) 

. 0 ,.-, 2\    2 

rAG = (r0/rG) e'(T "^ }
+ e~

T [E(T) - E (T0)] ,        (6) 

where    T2 = YRs/C 

rG = k G/C (7) 

x 

E(x)     =  /    eu2  du 

k    =    v/2C/aYR (8) 

and the time    t    is given by 

t = kT. (9) 

For launcher lengths of the order of those occurring in practice, the terms 
in T0 in this equation are negligibly small, on account of the smallness 
of the aerodynamic damping at launch. 

2.24 In Fig. 1 all curves are plotted for sQ = 0.  The curve A is 

_T2 
r/rG = e   E(T) 

and so denotes the spin-form when rQ =s 0.  This equation shows that the 
spin at any instant is proportional to G and hence to the nozzle 
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offset angle in the tangential plane AN.  The maximum value reached by the 
spin is seen froiT1 the graph to be 

(r)max = °-5^ rG 

='0.54 k r   by equations (3) and (7),   (10) 

and occurs at T = 0.93, 

i.e. at time 
t = 0.93 k 

by equation (9). 

Combining this curve with any of the B curves, 

r/rCr  = rQ/ra  e 
-T' 

shown for ?0/rQ.  equal to 0.50, 0.75 and 1.00, we find the spin obtained 
when both methods (a) and (b) are used together. 

Curves B determine the spin obtained by method (b) alone, namely, 

r/ro = c 
-T<= 

2.3  Estimation of spin damping moment 

2.31 In order to determine YR for a given design of missile it 
is assumed that 

(i)   the contribution to the damping moment from the wings (or 
fins) is very much greater than from any other part of the body, 

and 
(ii)  the lift distribution across the wings (or fins) + body is 
elliptic. 

It can then be shown that 

YR = o kL (2d-L)' (11) 

where for cruciform wings 

1 - 
26n  sin40r 

2% 
/8 

13.. 
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sin oo = a^ (13) 

2dQ = maximum 'body + boosts' diameter 

2d-^ s wing-span 

and 

k^ a lift constant = lift/incidence x (velocity) . 

This formula shouia give good results at subsonic velocities for wings of 
high aspect ratio.  For very low aspect ratios however, assumptions 
(ij and (ii), particularly (ii), are scarcely justified and this equation 
for c becomes unreliable, although YR would still be expressible in the 
form of equation (ll). 

For the S.T.V.I equation- (12) was found to lead to a value of YR 
in reasonable agreement with that determined from the maximum spin, 
see para. 2.22.   The wing-span is 3 feet, and the maximum radial 
distance swept through by the boosts is 10.5 in}  taking k^, obtained 
by low-speed wind-tunnel tests^ to be 0,48 lb.ft" , equation (ll) 
gives 

YR = 0.38 lb.ft. 

2.32 An approximate expression for k, defined by equation (8), 
can be obtained by taking 

C = m d0
2/2 

approximately. 

Then by equations (8) and (ll) 

k = f(6n)/V^  , (14) 

where 

f(e0)   =V2  sin 0o/x/l - 2G0A +  sin KQQ/2% 

I  = kL/m (15) 

m = mass of projectile. 

f(60) is plotted in Fig. 22. 

3    Dispersions arising from boost rnalalignments 

3.1  Definitions and notation 

The angular deviation is the angle between the axis of the launcher 
and the direction of motion of the C.G-. of the round.  The dispersion 
is a statistical measure for the angular deviations of a number of rounds, 
e.g. the root mean square or the siae of the 35%  zone. 

The angular displacement is the angle at the launcher between its 
axis and the direction of the C.G-. of the round.  If the angular 
deviation increases monotonically with distance it follows that the 
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angular displacement is less than the angular deviation;  the two in 
fact become equal at -infinity.   (in practice the angular deviation will 
not necessarily be a monotonic function, but it can usually be considered 
as such plus oscillations of small amplitude which do not invalidate 
this result).  The. value of the angular deviation at any point therefore 
sets an upper limit to the width of beam required to gather a round 
coming under control at that point, and so is as useful a quantity as 
the angular displacement.  Besides this, the integration of the angular 
deviation to give the angular displacement can be carried out only in a 
few special cases and so in general is not readily obtained.  No further 
mention will be made of the angular displacement in this note. 

For a non-rotating round the motion lies in a fixed plane, through 
the axis of the launcher, and so the angular deviation can be denoted 
by a single quantity.  When however the round is rotating the motion 
can be resolved on to two fixed perpendicular planes through the launcher 
axis, and two quantities are needed to define the angular deviations in 
these two planes.  If these quantities form the real and imaginary 
parts of a complex number Z, the total angular deviation is approximately 
|Z| fcr small angles and is independent of the orientation of the two 
reference planes. 

If Zrp, ZQ. are the complex angular deviations due to malaligned 
boost force and malaligned boost couple respectively, we can write 

ZT = uTZT(s) (16) 

Z& = uGZG(s)/n. (17) 

Zip(s) and ZG(s) are functions of the range s, and of certain parameters 
defining the aerodynamic and ballistic properties of the missile:  they 
are dimensionless quantities obtained by solving the equations of 
motion.  u ^ and uG are constants proportional to the malalignment 
angles, and for convenience include all those parameters of the round 
not occurring inseparably in ZT(S) and ZG(s).  uT and JJ^ are of course 
complex quantities whose arguments determine the orientation about the 
missile axis of |Tpl and |Gp |, the components of the boost thrust and 
boost couple perpendicular to the missile axis.  The expressions for 
|MT 1 and |MQ.| used here, and to which the values of ZT(s) and ZG(s)/n 
given later correspond, are 

|HT| = |TP|/T (18) 

|uG( = |Gpl/Tkp
2, (19) 

where T is the boost thrust and kp is the radius of gyration of the 
round in pitchc 

It is sometimes found convenient to express [Tp| and |Gp| as • 

|Tp| = TABaT (20) 

|Gp| = TOBaG, (21) 

15. 
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where Ag is the offset angle of each nozzle in the radial plane 

Z-Q  is the distance of each boost thrust axis from the C.G. 

and <*T>aG are ^e malolignment angles defined by these equations. 

3.2  Parameters in problem 

In order to obtain any reasonably simple closed solution for the 
dispersion functions ZT(S) and ZQ.(S), quite a number of simplifying 
assumptions have been introduced, which leave these functions dependent 
on only the few most influential parameters.  The spin-form, for 
example, has been defined to the extent of the first two terms of 
its series expansion, i.e. by the spin at launch r0 and the angular 
acceleration at launch rQ.  This is justified because the dispersion 
functions tend rapidly to a limit.  It is found' that the number of 
parameters can then be reduced to four, namely n, s0, nj_ and no.  The 
linear acceleration occurs in n^_ and n2 and is not an additional parameter 
in the dispersion functions.  The definitions of these parameters are 
as follows:- 

n is a measure of the stability of the configuration and is 
defined by 

0 o  aerodynamic restoring moment/incidence 
n2 V2 =   ; (22) 

M of I in pitch 

s    is the 'effective launcher length'  defined by 

5Q = VQ
2/2a ; (23) 

nl>n2 depend on the spin and are defined by 

n-L = Jl/l r0 - 2 n2 VT0 (2k) 

n2 = V
a- (25) 

The equation for the spin is 

r = ro + ^o (* - "to) (26) 

and corresponds to the solution obtained in para. 2.2 under the assumption 
that the aerodynamic damping moment in spin is negligibly small.  Inte- 
gration of equation (26) leads to the expression for the total angle 0* 
turned through by the round about its axis, 

o-(s) - <T0 =  n2 (s - s0) + m (/a - Vs0). (27) 

lb. 
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Prom the «/ straight-line spin-forms represented by equation (26), 
two sets of families will be considered.  These are defined by 

(a)  r0 = 0 

0>)  rQ = 0, • 

and correspond respectively to methods (a) and (b) for imparting spin 
discussed in para. 2.1. 

4    Case (a) - Launching spin aero, constant angular acceleration 

4.1  Expressions for the dispersion functions 

4.11 ZT(s) and Z&(s) 

For case (a) rQ is zero and Zip(s) and ZQ_(S) depend only on the 
three parameters n, sQ and n2-  The evaluation of these functions is 
presented in Part II para. 12.2 and is valid only for small values of 
n/n2 (say less than -g);  these results are now quoted. 

We can write 

ZT(s) = n£T(s) - 5T(s) 

Zr(s) = n£G(s) - eG(8) 

where * 

£T(s) = -i  1 

•     II.12.1 (4), 

L  «i       Pi J L  <*! Pi  '  - 

iff. 

11.11.3(H) 

%(s) = - 
Ja^so>s)  J(3 C so *s) 

l_  a- 
+ 1 

D(ar.  ) — D(^J  V 
_ Wo 

L. a- P- 
'- r(s) 

11.11.3(12) 

irr 
. e r 

«TW-2^t 
?(« s) D(Ps)" 

_ «1  + Pi _ 

i|>(s)-Oo] D(«G0)  -in(s-s0)  D(Psn) in( 

L_  «i Pi 

11.10.2(8) 

s-^| j 

Cfi(s) = 

io:a 

2i/t 

-•D(as) D@s)- 

l_ a. Pn 

i|>(s)-<| "p(ge0)  -in(a-^ D(P^ in(s-3Q)  ^—  e  R 

   11.10.2(9), 

A bar over a quantity denotes its complex conjugate. 
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where 

ioV 

J>(sn,s)   = 
le 

V°o %r1 

i[o-(u)-cr0] D(YU) - DOTU - K\) 

for  % = a or |3 , A.3.32(39) 

£X(s)   =  (21/8^     D(53  )  - B(5  )   e 
in (s~sn) 

j ...       11.11.2(10) 

(28) 

D(u)  = e 
-i^u2 

1 + i 
?      i £ x2 

e dx A.l.l(l) 
and    (2) 

(29), 

where 

a-,   = V2(n? + n)A 

Pi - v/2(n2 - n)A 

Yx a \l2n2/K 

&j_  = \/ 2nA 

a_ = [(n9  + n)  /s - n2VT] /A(n?  + n)/2 

Ps =  [(n2 - n)/s - n2-/s0]/y7;(n2 - n)/2 

>11.10. 
2(6) 

Ys = \/2n2A   (Vs - /BQ)       11.12.21(6) 

6s =y/2ns/R 

Ka = ~ 
n       /2n?sn 

Ko - 

n2 + n 

n / 

% 

 2 ,Q, 

n2 "*' n K 

    11.11.2(7)- 
(9) 

11.12.21(7) 

11.12.21(8). 

As    s    increases ag, (3S, Ys, 8 s increase,  and so |D(OCS)|,   |D(Pa)|, 

|D(YS)|   and  |D(8S)|   decrease and the amplitudes of all  oscillatory terms 
"become zero at infinity.       From tables of D(u)   it is found that |D(U)|   has 
decreased to one-tenth of | D(0) |,  i.e.   of l/V2, when u = L..5.       The 
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amplitudes of the rotational terms, i.e. terms in e*- ^s'~ °\ are there- 

fore small when as, $s, and Ys are greater than about 4.5. When n is 

much smaller than n2, we see that as, 3S and Ys are approximately equal, 

and are greater than If. 5 when 

Vs > Vi*0 + k.5 \J%/2nr 

^ J%  + 5.6/Vn?. 

When s0 = 0, n.2  = 0.05 ft"1, this condition requires that s >  640 ft. 
+in(s-s0) 

The amplitudes of the terms in e        oocurring in ZT(S) and 

Zp(s) are found from the above equations to decrease like |Di(&s)|, 

where 

Ei(u) =-i-- D(u). 
7VU 

From tables it is seen that |E;j_(u) | tends to zero very much more rapidly 

than |D(u)| as u tends to infinity, and equals |D(0)|/10 at about 

u = 1,0.  This means that the effect of the yawing on the dispersion 
is small when 6S is greater than 1.0 i.e. when 

s > 7i/2n, 

i.e. after the first half wavelength of yaw.   Taking n = 0.005 ft  this 
condition requires that s> 320 ft. 

It has been shown in this paragraph that, for most practical oases, 
Zrp(s) and ZQ(S) have converged sufficiently near to Zrpfc) and Zp(~) after 
the first few hundred feet of flight.  This fact is illustrated by Fig. 9 
which shows Zn(s)/n for the typical case s0 = 10 ft, n = 0.0075 ft"

1 and 
n2  = 0.05 ft"^.  The corresponding yaw function ^-(s)/n is given in Fig,10. 
and does not converge with the same rapidity; as s •* » , £Q.(S) •* 0. 

If. 12 ZT0) and ZG(» ) 

The equations of para, 4.11 simplify somewhat on putting s = °° , 
Is is seen that 

?T(-) =£&(-) = 0, 

19. 
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and that 

5r(») = -  X 
"Jg(s0f")     Jft(sQjw) 

L_     «l P- 

r;D(as )D(6fl )    D(3fl )D(6fi )' 
+ x 

al6l M lul 

iCn (30) 

11.12.22(16) 

«&(-) = - 
'Ja(s0>")    Jp(s0*ra)' 

aI h 
•D(«B )E(6fl )    D(Pq.)D(Sa ) 

0 . zn a o_ aih hh 
iov 

(31) 

11.12.22(17), 

where now 

Jx(s0,-)  = - i eX°o [D(0) - D(-«x)]  / T^K^ 

for  X = a or p. 

When sQ = 0,  we have  K> = 0  (X =  a or P)  and hence 

iou 
Jx(0,co)  = - i e    ° D'(0)  /T;YI 

10% 
= x e /   KYi. 

Since KQ is positive, D(-Ko) can he evaluated from tables by using the 
relation 

%      9 

D(-K(3) = e      (1 + i) - D(KP). 

4.13 Approximate expressions for |Zm(w)'| and |ZQ(«)|/n 

Although equations (30) and (31) can be evaluated numerically for 
given values of the parameters n, B_, and n2 without too much difficulty, 
particularly simple expressions for ^(co) ana £Q(CO) are obtainable from 
these equations for sufficiently large values of n^.  It is shown in 
11.12.23 that 

~icro v / N   (1 + i)rc G    Sl(co) =  A(6SJ 
2f 

11.12.23(23) 
n2n 

20, 

CONFIDENTIAL 



CONFIDENTIAL 

Technical Note No.  G.W.  177 

-arv 
S

E« - - = + ^=L-   B(6BJ 
n2 2Vnn 11.12.23(24), 

where B(u) and A(u) are the real and imaginary parts of D(u). 

It is then easily seen that 

|ZT(cc)| = ul^jCeo)! = 7c/n/2n2 A(8B ) 

|Z&(»)|/n = |^(~)| =^B(6So)/A2n^n 

  11.12.24(28) 

(32) 

  11.12.24(29) 

(33) 

for large n^. 

In Table I the values of |Zrp(«»)| and |ZQ.(»)|/n given by equations 
(32) and {33)  are compared with the more accurate values obtained from 
equations (30) and (3l). 

TABLE.I 

n2 n so Wn/2n2 A(&a0) 
'accurate' 

IV-) 1 ^(5s0)/
V2n2n 

'accurate' 
|zGWl/n 

ft"1 

0.05 

ff1 

0.0025 

0.01 

ft 
0 

30 
0.25'      •• 
0.23 

•   0,25 
0.23 

ft 

99 
63 

ft 

86 
54 

0 
30 

0.50 
0.42 

0.49 
0.37 

50 
20 

37 
13 

0.10 

0.0025 

0.01 

0 
30 

0.18 
0.17 

0.17 
0.16 

70 
45 

64 
40 

0 
30 

- 0.35 
0.29 

0.35 
0.27 

33 
14 

•        30 
11 

0.15 

0.0025 

0.01 

0 
30 

"0.14 
0.14 

0.14 
0.13 

57 
36 

55 
33 

0 
30 

0.29 
0.24 

0.29     . 
0.23 

29 
12 

26 
.   10 

4.2  Dispersion due to boost destabilising couple - Results 

In Pigs. 2 to 4 the values of |ZQ.(«)|/n, obtained from the 
accurate equations of para. 4.12, are plotted against n in the range 
0.0025 <  n S 0.01 ft"1 for s0 = 0, 10, 20 and 30 ft and n2 = 0.05, 0.10 
and 0.15 ft"1. 
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The values of the launching velocities corresponding to these values 
of sQ are 0, 100, 140 and 170 ft/sec when the acceleration is 500 ft/sec

2. 

The values of boost offset angle A^- corresponding to the above 
values of nj can be arrived at as follows.  By equations (3) and (25) 

. , •  , • ;        rig = G/Ca 

= mA^N/C, (34) 

where &JJ is the. distance of the centre of each nozzle exit plane from 
the missile axis, and m is the mass of the round.  Putting 

C = m^2/2  (roughly), 

equation (}l+) becomes 

n2 = 2Aj/eN .    • (35) 

When £JJ equals 1 foot, the values of AJJ corresponding to n2 = 0.05, 0,10 
and 0.15 ft"1 are 1.5°, 3.0° and 4..5° respectively. 

In Figs. 5 to 8 the same results are plotted to show the reduction 
of |ZQ.(M)|/II with increasing no.  The range of no has been continued 
down to zero, by taking the values of |ZQ.(°°)|/n for the non-rotating round 
given in Ref. 2, Fig, 9.  For values of rv, greater than 0.15, |ZG(«>)j/n 
is determined by equation (33)  with good accuracy.   This equation shows 
that the dispersion decreases like 1/Vrv,, i.e. inversely as the square 
root of the nozzle offset angle. 

The absolute value of the dispersion can be obtained from these 
graphs if \\±n\  is known.  This factor depends on the type of configuration 
considered, and in particular on Ag and the position of the boosts which 
affects t-Q  and k .  An analysis is given in Ref. 2 of the various 
malalignments contributing to |u£},and typical numerical values of 
|UQ.| kp2 (equal to lGp|/T by equation (19)) are given in Ref. 2, para. k-.h. 
for tandem, circumferential and wrap-round boosts. 

4.3  Dispersion due to transverse boost force - Results 

. In Fig. 11 jZrp(<*>)| is plotted against h - for the particular case 
no = 0.05 ft"*-'-; IZmf0") I is seen to increase with n.  The same figure 
shows |Zrp(s]_){ where s-, = 2,800 feet for a non-rrotating round.  The 
dispersion of a rotating round is seen to be less than that of the 
same round unrotated by a factor of from 5 to 10 in this particular case. 
In fact, for a non-rotating round Zip (s) •*» as s -* », and for values 
of s greater than 2,800 feet the dispersion is increased by •§• log s/2800 
approximately. 

A rough estimation will now be made of the largest dispersion likely 
to arise with a wrap-round boost.  The two main causes of a transverse 
boost force are: 

(i)  inequalities in the inclinations of boost thrusts to the mean 
thrust direction, and 
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(ii)  inequalities in individual thrusts. 

(i) arises from 

(a)  failure of the individual thrust axes to coincide with the 
nozzle axis, and 

(b)  inequalities in A 

The order of magnitude of (i) for a four boost assembly corres- 
ponding to a 95?o zone is about 0.001 radian. 

(ii) is proportional to the radial inclination of the boosts Ag. 
Taking the fractional variation in thrust of a four boost assembly to 
have a 95/o zone of l/40, and taking Ag = 20o, the contribution from (ii) 
turns out to be-0.01 radian.  Thus for large values of Ag, say 10° to 
20°, (ii) will predominate and if we write jurjj as 

|UT|  = AgOCrp 

by equations (18) and (20), then a^ can be interpreted as the fractional 
variation in thrust. 

With Ag equal to 20°, |HT| is about 0.01, and Pig. 11 gives 
|Zj(si)| at s-j_ = 2300 feet to be about 2.0 for the non-rotating round. 

Hence the. dispersion at s±  = 2800 feet is 0.02 radian i.e. just over 1°. 
A nozzle offset corresponding to n2 = 0,05 ft"

1 would reduce this 
dispersion to less than ^°.  Larger offsets would reduce the dispersion 
still further. 

It seems that dispersion from a' transverse boost force will usually 
be small compared with dispersions from other causes. 

5  • Case (b) -• Constant Spin 

5.1  Expressions for the dispersion functions 

5.11 ZT(s) and Z&(s) 

The angular acceleration is zero in this case, and so by equations 
(24) and (25) we have that n2 = 0 and n-± =  Tl/a r0.  The dispersion 

functions Zrp(s) and ZQ.(S), which now depend only on the parameters n, s0 
and nj_, are evaluated in Part II para. -12.3 for'sufficiently large values 
of rQ.   The solutions obtained take on different forms for values of  s 
less than and greater than sp = (n-i/2n)2.   (When n-j_ is greater than 

2yn/rc N, the error is less than 2/%N^  except near s = So where it is less 
than l/N). 

When .•..'-... 

s„ ^ s o 
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-io", 2 e"lu° ZT(s)  = 
D(as) (1-   -  1\.DW   (1    -   1 

L   «i   V^    VV       Pi1    V^    /sAJ 
i[°-(s)-cr0] 

rD(«a )      D(-0_  ') 

L_     «1 P-l 1" -1 

1        i sin n(s-sn)       .       y  /  \ 

(3 ^s /if 

o o 

1-     an 3/    JL      /s 

cos n(s-s  ) 
- n ^(s) 

11.12.31(30) 

2 e^o ZG(s)  . 
D(«s)/l   _ jj\     D(-Ps')   A   . _1 

L «i    V/"s"/Sct/
+     pxi   "Us      Vs^/J 

,i[c(s)-ob] 

'+ i 
•D(asJ      D(H3S^) 

1_    «i Pi' 1        -1 

rD(«s_)      D(-PR »)- 

•] isinn(s-s  ) 
+  - in^(s) 

3 /s~A /s 

+ 1 
l_    «i 3/     J 

cos n(s-s ) 
— + n^(s) 

/s 

11.12.31(31) 
(36) 

and when So < s 

2 e"icro zT(s)  = -^^1    ^ ^/i    1 
L    ax    Vsa      VsV hr    V/s   " VS 

i[cr(s)-o-0] 

P(«s0)      D(-3So')- "2,        :"i   S^11  n(s-s
0) 

__ .  T   j.ll(Q 

/B 
+ in£9(s) '] 

V      J 
cos n(s-sQ) 

/s 
- n^(s) 

_       i[c(s )-a] ' r_ _, s 
+ 2D(o)eL   V    °*f   ^+f^D(8u)l e-(-

sp)l 
Pi' LLvu   h     UJ J 

15 

11.12.34(45) 
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+ a D(as0)     D("Psn'n 
L.    al Pi'   J 

1      i sin n(s-s,-.) 
 x  — - xn 

-   Vs7 Vs 
%(s)] 

+   X 
D(«s0)       D(-Ps0')" 

L   ON 

cos n(s-sn) 

Pi1    J L /s 
+n «L(s) 

+ 2i 
D(o)  e  l K

 &      OJ 

pl 

1     2in       .     . 
- +    D(6n) 

in(u-so) 

* 

       11.12.34(46) 

where £-, (s)   and £2(
s)   are the real anci imaginary parts of £ (s)   defined 

"by equation (28),  D(u)   is defined by equation (29),   and 

2ns "l 
«a = Hr  + 

\/2%n 

3S- =2n3 ^ 
/2rcn 

63 =72nsA 

a-L = 3q!   = 6-]_ -\J2n/% 

Vs^ = -Vsl = - ni/2n. 

All arguments of E>(u)   in these equations are positive, and the bar denotes 
the complex conjugate. 
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5.12    ZT(oo)  and ZG(oo) 

A particularly simple solution for Zm(») and ZQ.(M) is obtainable 
when Vs^ << Vsp a  n]/2n.  This condition will almost certainly hold for 
values of n^ to which the equations of para. 5til are applicable.  In 
11.12.35 it is then shown that, on taking o~0 = 0, 

Z„,(») = iVlwi 
A(5Bo) 

nn 

11.12.35(51) 
and (52) 

%(-) 

n nl 

2    \2*  B(8a ) 
-s- + il  

v n *1 
11.12.35(53) 
and (54), 

where the real part of Z&(«>)/n is small compared with the imaginary part. 

5.13 Approximate formulae for Zj(s) and Zn(s) 

If in addition to the assumption that T/~S « -/sn,  we restrict Vs to 
the values very much less than VSQ which satisfy 

,—     2 
2n (Vs7 - Vs) » 1 , 

the equations for Zj(s)   and Z&(s)  given in para.   5.11  can be simplified. 
It is shown in 11.12.32 that,   on taking cr0 = 0, 

HI ZT(s) 
3xno* (a) 
nj_Vs 

Im    Zrn(s)    H     
1       nl 

cosn(s-s0)- ooscr(s) 

/s 
-   n^1(s) 

Rl 
ZG(s) 

n m (37) 

Im 
ZG(s) 

.n nl 
KM - 

sinn(s-s0) 

n £ 
(38) 
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where ^(3) and £2(
s) are 

^(s) =T/2V« [-A(6S ) +A(8?) cosn(s-s0) +B(6S) sinn(s-sQ)] 

II. 12.32 (W) 

^(s) = V2Vn [B(5SQ) +A(6S) s:hm(s-s0) -B(6S) cosn(s-s0)] 

11.12.32(41). 

In 11.12.33 it is shown that 

Zri(s) 

n 
* Im 

ZG(s) 

n 

The above equation for ImZ&(s)/n then agrees with that given in Ref.1.6 
i.e. 

Zr.(s) 

n 

2T; G(6So,6s) 
(39) 

n-. 

where 

&(5s0,5s)-B(6sJ-AiCes.) sin J (8S
2-6S 

2) - B(8a) cos ^L (8S2-8S 2) 

11.12.32(43). 

If we let s tend to infinity in the above equations for ZT(s) and 

ZQ.(S), it is found that their limits, Zrj(») and ZQ.(<*>) , are the same as 
those of para. 5.12.  The reason for this is that when s approaches 
Sg, Z^(s) and ZQ.(S) are no longer dependent on s to any appreciable 
extent; hence the expressions for Zj(s) and ZQ.(S) given in this 
paragraph then hold for all values of s, 

5.2  Dispersion due to boost destabilising couple - Results 

The formula used for evaluating the dispersion due to a boost 
destabilising couple is equation (39) above.  This equation should be 
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reasonably accurate for values of n±  down to 0.5 or 0.3 ft 2 depending 
on n.  It has the advantage that since n±  does not occur in G( 4 ,&=•), 
the function ni|ZQ.(s) 1/n can be plotted in terras of n and sQ only for 
various values of the range 3.  This has been done in Fig. 12 for n 
in the range 0.0025 to 0.01 ft"1, for s = 0, 10, 20 and 30 ft and for 
two values of s, s = 500 ft and It appears that at s = 500 ft 
|ZG(s)j has already converged close to the limit | ZG(<») |, showing that 
the greater part of the dispersion arises in the first few hundred feet. 

In Figs. 13 to 15 |ZG-(°°) l/n is plotted against n-j for s a 0, 10 
and 30 ft and the three values of n, 0.005, 0.0075 and '0.01 ft"1.  The 
range of n]_ has been extended down to zero by using the values of 
|ZQ.(oo)|/n for a non-rotating round given in Ref. 2, Fig. 9.   It is seen 
that as n-, ranges from 0 to 1.5, the dispersion of a non-spinning round 
is reduced in most cases by a factor of about 10.  For values of nq 
above 1.5 the reduction will be proportional to Vnq by equation (39), 
i.e. the dispersion varies inversely with the rate of rotation of a round. 

The function Zg.(s)/n is shown accurately evaluated in Fig. 16 for 
the particular case when n = 0.0075 ft"1, sQ = 10 ft and nq = 1.5 ft~2. 
The values of ZG(s)/n determined by the approximate formula, equation (36), 
for this case oscillate from side to side of the correct values and do 
not differ from them by more than 0.2 ft.  The values determined by 
the more approximate formula, equations (37) and (38), lie on the 
straight line Rl ZG(s)/n = 2,/(l.5)

2 = 0.9 ft, with Im ZG(s)/n varying 
from 0 at launch to 6,1 ft at infinity. 

Fig. 17 shows the yaw corresponding to Fig. 16.  The convergence 
of the yaw to zero as s •* °° is slow compared with the rate of convergence 
of the dispersion. 

6    Choice of Spin during Boost 

6.1  It has been seen in paragraphs 1+ and 5 that malalignment dispersions 
can be considerably reduced by sufficiently large spins.  The question 
that will now be considered is - 'By what factor is it worthwhile 
decreasing the dispersions of the non-spinning round?'  To answer this 
it is necessary to compare the malalignment dispersion for a non-rotating 
round with its other dispersions which are not affected by the initial 
spin-form.  This will now be done for a Seaslug-type missile with 
a wrap-round boost.  The results given in Refs. 2 and 3 state that for 
an unspun round the various dispersions likely to occur are: 

Malalignment dispersion 

10° venturi offset angle 

20° venturi offset angle 

Other dispersions 

Wind (10'/sec error) 

Separation dispersion 

Tracking Beam displacement 

dispersion 

3hc - 6°  depending on position of boosts 

4-°    for most boost-positions 

2° 

1° - 2C 

.2° 

2° 

(possible maximum) 

due to avoiding action of 
enemy 

due to variations in time 
of burning. 

The resultant dispersion is found to be from 5° to 7^7°• 
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For a rotating round  the following table gives the resultant 
dispersion when the malalignment dispersion is reduced by a factor of 
2,3, or k. 

Factor by which malalignment 
dispersion is reduced 

Resultant Dispersion 

I 

2 

3 

k 

5°  - 7i° 
h-0     - 5° 
3i° - 4i° 
3i° - a° 

It is seen that there is no great advantage in decreasing the malalignment 
dispersion by more than a factor of 2 to 3.  This conclusion naturally 
depends on the values for the various dispersions taken above: if for 
instance' the deviations due to wind and tracking beam displacement have 
been overestimated, then a greater deduction in the malalignment dispersion 
would give a greater proportional drop in the resultant dispersion.  How- 
ever this drop does not appear appreciable unless the errors have been 
grossly overestimated, and this is not considered likely.  For example, if 
the wind and tracking errors were halved and the separation dispersion 
taken to be zero, the resultant dispersion would be - 

Factor by which malalignment 
dispersion is reduced 

Resultant Dispersion 

3 

k° - 6^u 

2^° - *±o 
->2 

2° - 030 
^4 

2° _ 2i° 

From these figures it is 3eeri to be hardly worthwhile aiming at a factor 
of reduction greater than 3* 

6.2  By way of example it is now shown how the ballistic dispersion of an 
unspun round can be reduced by a factor of 3 by employing methods (a) and 

para. 2.1, of imparting spin. 

6.21 Method'(a) - Offset nozzles 

(b), 

Fig. 18 gives the reduction R in dispersion, achieved by offsetting 
the boost nozzles of a round, in terms of the parameter n? which is related 
to the offset angle by equation (35).  For values of sQ other than 10 ft 
the corresponding graphs can be obtained from Figs. 6 to 8 and will not be 
greatly different from Fig. 18. 

For R = 
0.005 to 0 

R = 3 and n corresponding to the above Seaslug figures, say 
.007 ft"1, we find that n^  lies between 0.06 and 0.075 ft • 

The corresponding nozzle offset angle is.2.0° to 2.5°, and the corres- 
ponding angular acceleration at launch is 24 to 30 rad/sec2, taking -the 
acceleration to be 4-00 ft/sec2. 

The maximum value attained by the spin during boost can be found 
by equations (10) and ilk),  which give 

(r) max = o.5k f (e0) VvT 
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where a is the acceleration, 0o and I   are defined by equations (13) 
and (l5), and f(0Q) is the function plotted in Fig. 22.  Talcing 
0O = K/6, i.e. d^d-L = 0.50, l  -  0.00040 ft

-1 (a value appropriate to the 
502/STV), we find that 

max 

i.e. 

Wmax ~ 25 to 31 rads/sec, 

= 4 to 5 revs/sec, 

for an offset angle of 2.0° to 2.5°. 

6.22 , Method (b) - launching with spin from a spiral launcher 

Fig. 19 shows R against ru, which is proportional to the constant 
spin r0, in the case when s0 = 10 ft, and n = 0.005, 0.0075 and 0.01 ft"

1. 

When R = 3 and n ranges from 0.005 to 0.007 ft"1,- we find that 
nj_ lies between 0.30 and 0.38 ft"2.   The value of the spin corresponding 
to an acceleration of 4-00 ft/sec^ then turns out to be 

r0 = 4.2 to 5.4 rads/sec, 

i.e is somewhat less than 1 rev/sec. 

The angular acceleration of the round when moving up the launcher 
is greatest when the acceleration is greatest, i.e. at launch, and is 
equal to an-j_/2Vs^ by equations (l) and (23).  For s0 = 10 ft and the 
above values of a and ni_> the maximum angular acceleration of the round 
is from 19 to 24 rads/sec . 

6.23 To summarise we can say that with both methods (a) and (b) the 
round must be subjected to angular accelerations of the same order, about 
3 to 4 revs/sec^, but that the maximum rate of rotation for method (b) is 
only 1 rev/sec compared with 4 revs/sec for method (a). 

7    Dispersion following separation - Values of parameters 

•The chief parameters affecting the dispersion of the dart after 
separation are its lift and stability properties and its spin-form.  In 
this paragraph we consider in turn the values that these parameters are 
likely to assume in practice. 

7.1  Lift 

If Nm^g be the maximum sea-level lift that the dart can develop at 
velocity V and wing incidence 6 , then we can write 

Lift = kLV25  = Nm0g, (40) 
» 

where kjj is supposed constant.   •'•        .   •••,:,;'•. 
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If m    is the mass of  the dart at separation and if we define I by 

* = kiA)» 

we can use equation (4-0) to express £ in terns of N, thus 

I =  Ng/v^o . 

Taking    N    to range from 25 to 100 when V = 2500 ft/sec and   6 = 20°, 
we find that £   lies between 0.0002+. and 0.0016 ft"1. 

7.2       Stability 

The stability constant of  the dart is defined as 

n = 7ed/kp, 

where d = distance of C.P. aft of C.G. 

.kp = radius of gyration in pitch of dart at separation. 

This definition coincides with that given for the complete weapon during 
boost in para. 3.2. 

If we put 

d = eL 

k = L/2V3  approximately, 

where L is the length of the projectile, we have 

n2 = 12e4/L. 04) 

or values of L between 16 and 25 feet and of I    between O.OOOi*. and 
.0016 ft-1, we find that n lies in the range 0.0024- to 0,01 ft"1 when 

F1 

0 
e = 1/12. 

7.3  Spin-form 

During the fall-off of thrust at the end of the boost period and 
during the consequent separation, the spin will rapidly decrease towards 
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zero on account of the large damping affect of the wings.  In practice 
a small spin usually remains due to aileron or wing malalignment incidence; 
this spin may be in the opposite direction to the original spin. 

It was found in a number of S.T.V.I firings that the spin of the 
dart remained fairly constant and rarely exoeeded 1 rev/sec. 

A solution for the spin/velocity ratio is obtainable when the 
retardation is assumed proportional to (velocity)2.  Integration of 
equation 111.4.12(4) yields 

v W,0 
_d_/r 

.at \v. 
1 - e 

-YR(s-s0)/C 

YRV0 
(42) 

where the suffix o now denotes the value of a quantity at separation, 
and where 

C = M of I of dart in roll 

YR = damping moment in spin/Vr (supposed constant). 'E 

Equation (42) shows that as s-sQ increases above about C/YR, r/V tends 
rapidly to the constant value 

y)o+ YRV0 

•a fr 
dt VV 

which is zero when no malalignment incidences are present. 

In view of the above remarks the ratio spin/velocity will be 
supposed constant and denoted by Y. 

8    Estimation of dispersions arising after separation 

8.1  Definitions, etc. 

The dispersion of a round at any point after separation is defined 
as the angle between the direction of motion of the C.G-. of the round and 
its direction at separation.   The components of the dispersion on two 
perpendicular planes through this direction are taken as the real and 
imaginary parts of the complex dispersion Z;  |Z|  is then the angular 
dispersion. ' • 

The dispersion arising from an initial yaw 3^Q at separation is 
denoted by Z^_ and lies in the plane containing the initial direction of 
motion and the missile axis. . The dispersion arising from an initial 
rate of turn of missile oxis £Q at separation is denoted by Z;j and lies 
in the plane containing the initial instantaneous oscillations of the 
axis. 
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The aerodynamic lift and moment malalignment angles a-^ and ay[  are 

defined as the angles which the air flow makes with the axis of the round 
(at infinity) when the aerodynamic lift and moment are zero.  Z^ and Zy[ 
are used to denote the complex dispersions that arise. 

In Part III the coasting equations cf motion are solved to give 

Zj_, Z2, Z^ and ZJJ when the ratio spin/velocity is constant.  We now make 

use of the results of the simplified solution of III.5.  For sufficiently 
large values of the range s-s0, it is found that certain transient terms 
become negligibly small leaving particularly simple expressions for the 
dispersions.  The condition is that s-sQ should be greater than about 2/6. 
The error in the solution can then be about i+.0$ at s-sQ = 2/6, 15?S at 
s-s0 a hr/l    and 5$ at s-sQ = 6/e etc. 

8.2  Dispersion caused by unclean separation 

We now consider the possibility of asymmetrical detachment of the 
boosts producing a dispersion.  The dispersion arising from an initial 
yaw is shown in III.5.4 to be entirely transient.  The dispersion due to 
an initial rate of turn £Q  of the axis, on the other hand, becomes 

Z2 . h0l/n
2  Vo, (W) 

where V is the velocity at separation, hence 

|Z2| = \iQ\   L/l2e VQ by equation (41). 

Taking VQ =, 1,500 ft/sec, e = l/l2 and L = 16 to 25 feet, this gives 

|Z2j =0.6 |4Q| to 1.0 |4J degrees 

(when £Q is expressed in rads/sec). 

An alternative expression for this dispersion can be obtained by 
expressing £Q in terms of the maximum yaw that it would give rise to in the 
ensuing motion.  Prom 111.4.(13), (15") and (l0) , and III.5.l(l), the 
solution for the yaw is 

—. = (£0/P V e       sin PCS-S0), 

where p2 = n    -  fe/2)2       111.5.1(2). 
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This equation shows that the maximum yaw ^r-i  is 
M 

M= (yP.V0) e 

O    0 

for values of £ and n in the ranges considered, in paragraphs 7.1 and 7.2. 

Equation (l±3)  now gives 

|Z2U | SM| £/n = | 3,M| Jll/12 e  by equation (iO-). 

Taking s =• l/l2, £ = O.OOOlf to 0.0016 ft"1, and L = 16 to 25 feet, we find 
that 

Z2| = 0.08|3:M|to 0.2 | SM|. 

This shows that for a dispersion of 2° to arise the first oscillation 
in yaw after separation would have to have an amplitude of 10° to 25° 
corresponding to the range of values of the parameters taken here. 

8.3  Dispersion due to lift malalignment 

The maximum value that the angular dispersion |Z-r| ever attains 
is shown in III.5.2 to be 

iZ I   - 
1 Llmax~' |Y| 

1 * ! L 

^/(n2_Y2)2+Y2e2. 
(44) 

where •&' and • n are the lift and stability constants already discussed, 
and Y is the ratio spin/velocity. 

As the range increases after separation the locus of Z^ in the 
complex plane tends to a circle whose radius is the second term on the 
right hand side of this equation and whose centre is at a distance from 
the origin given by the first term. 

Pig. 20 shows |ZL |   /<xL plotted against |Y | A for various values 

n/&.  All curves lie below the curve 
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|ZL|      /aL = 2e/|Y|, 
max 

which corresponds to an infinitely stable round, i.e. n = «., 

It is seen from Fig. 20 that |ZTI   is less than 
a
T for all values 'max 

of    n   provided Y > 2£,   (i.e. provided the spin is greater than 1,2 to 4-.8 
rad/sec,   taking the velocity to be 1500'/

S
<3CJ»   and   t  to lie between 

O.OOOZf and 0.0016 f if"1).     For smaller spins    ZT,| is less than aT   only 
•" max •"   J 

over a limited range of values of s-s0.  Thus for a non-spinning round, 
it can be shown that 

|zL| = aLe [e/n
2 + U-s0)] , 

and from this it follows that JZT| <a^ provided 

s-sn < (i - e2/n2)/e 

*l/l 

for values of &    and n arising in practice, i.e. provided s-s0 is less 
than 625 to 2500 ft, corresponding to I  from 0.0016 to 0.0004 ft"1. 

8,4-  Dispersion due to moment malalignment 

The: locus of Z^ in the complex plane is shown in Part III, para. 5.3 
to tend to a circle as the range increases after separation.   The maximum 
Value attained by |ZJJ| is found to be 

M max   Y 
i* £ 

7(n2-Y2)2 + Y2e2 ~ 

Curves of iZ^I^^/o^ against |Y|/& are shown in Fig. 21 for various values 

of n/fi.  The equation of the envelope is 

jZj        /aM.   [l+U2 +Y2]/iY| 
max 

-1 

for sufficiently large values of |Y| /•&.  It is easily seen that for 
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smaller spins   1%^    is only less than <*M over a limited range of s-s 

Thus for a non-rotating round 

\\\   = aMe[(s-s0)  -6/n2]   , 

and so it is required that 

s-sQ   < (l  +Z2/n2)/l 

1/4. 

The results of para. 8.3 and 8.If can be summarised by saying that 
provided the spin is not too small the dispersion is less than the 
malalignment angle.  For small spins this is only true over a limited 
flight-range, which is about l/fc if there is no spin present at all. 

9    Conclusions 

9.11 If the aerodynamic spin damping moment' is neglected the spin of a 
round rotated by offset boost nozzles increases linearly with time, the 
angular acceleration being proportional to the couple produced by the 
nozzles.  With guided weapons conditions are usually such that the 
aerodynamic damping moment exceeds the boost couple towards the end 
of the boost period, causing the spin to decrease.  Good agreement 
has been found between practical and theoretical spin-forms. 

9.12 When the launching"spin is zero the spin of a given round at each 
instant of the boost period can be shown to be proportional to the boost 
couple. .: : • 

9.13 For the. purpose of evaluating the angular deviation a knowledge of 
the spin-form" over the first part of. the flight only is necessary, as 
it is while the' velocity is low that the greatest part of the deviation. 
arises.  Trajectories from 502/STV firings confirm this fact: the 
angular deviation scarcely changes after the first 500 ft of the 3250 ft 
of boost range.  The spin damping properties of a missile are therefore 
of secondary importance and can be justifiably neglected in any evaluation 
of the angular deviation. 

9.21 Of the various dispersions arising during boost that due to a boost 
destabilising couple has been most fully treated, as thi3 is of overriding 
importance for a guided weapon.  The decrease of dispersion when spin is 
imparted by offset boost nozzles is shown in Figs. 5 to 8, and when imparted 
by the launcher is shown in Figs.15 to 17. For large offset angles the 
dispersion decreases roughly as the square root of the offset angle, and 
for large launching spins the dispersion is inversely proportional to 
the spin. 

9.22 The faotor by which it is worthwhile reducing the ballistic dispersion 
is limited by the existence of dispersions that are not reduced by spin. 
For a Seaslug-like missile there seems to be no advantage in a reduction 
of more than 3.  According to the theory reductions of this magnitude 
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can be produced in general by offsetting the boost nozzles by less than 5 . 
With a spiral launcher a reduction by 3 coulu be attained with a launching 
spin of just less than 1 rev/sec. 

9.23 It should be noted that the malalignment lispersion cannot be reduced 
by spin below a certain value on account of malalignment of the principal 
longitudinal axis of inertia, the effect of which increases with spin. 
An estimate made at the outset (para. 1. if) showed that in a typical case 
the maximum reduction would occur at about 4 revs/sec.  As this value is 
much higher than that required for the worthwhile reduction of 3 mentioned 
above, the effect of inertia axis malalignment is of no importance. 

9.2if It is appreciated that considerable engineering difficulties would be 
associated with the use of a spiral launcher.  A great advantage of such 
a launcher is however that the maximum spin, i.e. the launching spin, would 
be much less than the maximum spin produced by offset nozzles for the same 
reduction in the malalignment dispersion.  For Seaslug the maximum spir. 
would be about 0.8 rev/sec compared with 1+  revs/sec.  If the maximum spin 
produced by offset nozzles were unacceptably large, it would then be 
necessary to use a spiral launcher to achieve the desired reduction in 
dispersion. 

9.25  It should be pointed out that the value 3 for the reduction factor 
mentioned abo.   spends on the relative importance of malalignment 
dispersions and dispersions due to wind error and other errors not affected 
by spin, and should be revised in the light of future information about 
these quantities.  Should larger reductions by a factor of 5 or more be 
indicated, then a spiral launcher would be the only means of achieving 
them. 

9.31 With regard to dispersion of the dart due to asymmetrical detachment 
of the boosts at separation, it can be shown that dispersion will be small 
so long as the dart is not set wildly oscillating with large angles of yaw 
of more than about 10 .   In view of the successful operation of the 
separating device in test vehicles it is not likely that such a large 
disturbance to the motion will in general occur, and so it is concluded 
that dispersion from this source will be negligibly small. 

9.32 Dispersions arising from the aerodynamic asymmetry of the dart 
naturally depend rather critically on the 3£)in.  By assuming the spin 
to be constant, simple expressions have been obtained for the maximum 
dispersions due to lift and moment malalignment angles cc-^ and a**. 

It is found that so long as even a small spin is present the malalignment 
dispersions will not exceed a^ and a^ respectively.   This means that if 

the malalignment angles can be kept down to the order of 0.1° the resulting 
dispersions should be negligibly small. 

9.33 When the spin is zero a limit must be imposed on the range of 
uncontrolled flight if large dispersions are to be avoided.   From the 
condition to be satisfied in this case it is found that when otv and a^ 

equal 0.1°, the dispersion is less than 1° provided the uncontrolled 
range is less than 6,250 ft to 25,000 ft, according to the lift properties 
cf the round.   If the velocity is in the region of 1,500 ft/sec during 
this period, the time of uncontrolled flight will in no case be required 
to be less than about 4 sees.   In view of the practicability of roll- 
stabilising a round and bringing it unaer control within 1 or 2 sees 
after separation, it can be concluded that no lar/e dispersion from this 
cause is to be expected. 
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PART II 

THE EQUATIONS OF MOTION AHD THEIR SOLUTION DURING BURNING 

1    Introduction 

During the last 15 years a considerable amount of work has been done 
in this country on the subject of rocket motion with a view to applying it, 
in the most part, to small rockets of the fin - and spin-stabilised type. 
The mathematical part of this work has been published in Ref 1:  the general 
equations of motion of a body losing mass are formulated and the equations 
of motion of a rocket in flight are deduced and solved, the assumptions 
being clearly stated at each stage.  The objeot of Part II of this note 
is to adapt and extend this work to apply to a guided weapon during 
uncontrolled boost. 

The equations of motion formulated in Ref. 1 include all conceivable 
effects to which a guided weapon might be subjected during boost, apart 
from aerodynamic asymmetry.  This will now be introduced, and other 
effects which are small for contemporary guided weapons will be omitted: 
these include Magnus effects and those malalignment effects that become 
appreciable only at high spins, such as the principal axis of inertia 
malalignment effect (see 1,1.4) which is possibly the most important of 
them. 

In Ref. 1 the reduction of the equations of motion to a form suitable 
for solution proceeds under the assumption that the drag and gravity force 
are negligible compared with the thrust.  Although this, holds in practice 
for guided weapons during boost, it is not essential for the manipulation 
of the equations of motion along the lines of Ref. 1 (provided the direction 
of launch is not near the vertical).   The equations so obtained then hold 
for the motion after burning as well, and no reformulation of the equations 
of motion is required for Part III. 

A solution of the equations of motion in terms of integrals is 
obtainable under any set of assumptions for which the wavelength of yaw 
is constant:  in Ref. 1 it has been assumed that the ratio spin/velocity 
is constant - an assumption that is not generally valid for a guided 
weapon.  If instead it is assumed that the spin is so small that the 
precessional effects are negligible, a solution is obtainable that is 
applicable to a slowly rotating projectile.  The method of solution here 
will therefore follow the lines of Ref. 1 with the precessional terms 
omitted, but with the spin-form as an arbitrary function. 

The evaluation of these integrals for the ballistic deviations forms 
the remainder of Part II of this note.  It is assumed that 

(i)  the linear acceleration is constant, 

(ii)  the angular acceleration is constant, and 

(iii) the component of thrust perpendicular to the trajectory is 
large compared with the lift. 

On account of the larger aerodynamic surfaces of a guided weapon, (ii) 
and (iii) are valid only at the beginning of the boost period in general. 
Any angular deviation of. the round will however quickly tend to a limit 
on account of the increasing spin and velocity, and can still be accurately 
evaluated under these assumptions. 
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The integrals for the yaw, the axis inclination and the angular 
deviation are evaluated in terms of the functions of App.A.  These 
functions have already been used in Ref.l with positive arguments, and 
they are now extended to negative and imaginary arguments in the 
appendix.  The evaluation of the yaw integrals can be carried out 
exactly. The double integrals occurring in the angular deviation cannot 
be evaluated in general for all values of the angular acceleration. Two 
approximate methods are developed which cover all cases except small or 
zero launching spin together with small or zero angular acceleration. 
The solution for a non-rotating round is of course already known1'^, 
and by interpolation all practical cases can be evaluated with good 
accuracy. 

2    Axes and notation 

2.1 The motion is referred to axes OX, Y, Z whose directions are 
fixed in space and which are defined as follows: 

0   is the C.G. of the missile 

OZ  lies in the direction of the axis of the launcher, making 
a Q.E. of a with the horizontal plane 

OX  lies in the vertical plane through 0Z_ and is perpendicular 
to 0Z_ in a downwards direction. . 

OY  completes the right-handed set of mutually perpendicular . 
axes and thus lies horizontally to the left when looking 
along OZ. 

The points X, Y, Z are taken to lie on the unit sphere centre 0. 

2.2 If OP is any vector meeting the unit sphere at P, and of PJJ is 

the projection of P on to the plane OXY, then OP is determined by z, 
the complex number whose real and imaginary parts are the coordinates 
of PJJ referred to axes OX, OY.  In fact, P is located by the 
relations XZP = X0% = arg z and ZP (= ZOP) a sin-1 0PN = sin"

1 |z|. 
The following axes and directions are defined by complex numbers in 
this manner. 

2.21 0T_ is the direction of the velocity V ;  it is the tangent 
to the trajectory of the projectile.  The angular deviation is ZT and 
is determined by the complex number Z. 

2.22 0A is the missile axis, defined in 3.12; its 'inclination' 
ZA is determined by the complex number £ . 

2.23 The yaw TA is determined by the complex number '^.  By 
solving the spherical triangle TAZ, 7~» can °f course be related to Z 
and £ , 

The solution of the motion in the plane 0X1 is considerably 
simpler when the following assumption is made;  a linear theory is 
then obtained, 

A.l It is assumed that, the sines and cosines of |z|, |£|, | t-^-. | , 

and all the malalignment angles a^, arc replaceable by |z|, \K,\,   \ t^-i \, 
<*!• and unity respectively to sufficient accuracy, and that the 
derivatives of these quantities with respect to time arc of the same 
order of magnitude. 

39. . • 
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The relation between Z, £ and £=[) is then 

Z = £ - S C1) 

2.3       AOA'   is a reference plane fixed    arbitrarily in the missile. 

2.31 The total angle     o~   turned through by the missile  about its 
axis is  the  angle between the planes AOA'   and ZOX. 

2.32 OAp is  the direction of  the axis of the r 0Xl asymmetry.    AAr 

is  called the malalignment angle and is denoted by  otj,.      A'AAj.,  denoted 
by ^   ,  determines the orientation of the asymmetry in the missile. 

Notation      In the following paragraphs a letter is underlined to denote 
a vector.      The  same letter not underlined denotes  the complex number 
determining this vector in the manner described in 2.2. 

3 Aerodynamic forces and couples 

3.11 A.2    It is assumed that the   shell of a perfectly manufactured 
missile possesses geometrical symmetry of order greater than 2  (see 
Ref.1.5)  about a longitudinal axis OA. 

When the missile lies in an air stream flowing in the direction AO 
at a great distance away, it follows from A.2 that the aerodynamic force 
R and couple  _T     will both lie  in the  direction OA. 

3.12 An imperfectly manufactured missile   on the other hand has 
small asymmetries in its geometrical shape which prevent the axis from 
being defined as  the axis of  symmetry.     The definition given here depends 
on the  implicit assumption that both perfect and imperfect missilus can 
be launched from the same launcher.      This means  that there is a set of 
points (of more   than 2)  on any given missile   (namely the points  of  contact 
between missile  and launcher) which can be brought into spatial coincidence 
with the  same  set of points on a perfect missile.      The axis of the given 
missile  is then defined as the  direction through its C.G-. parallel to the 
axis of the perfect missile. 

3.13 Two directions OA^ OAjj can be determined in the body of the 
missile such  that,  when the  airflow is in the     direction kjO at a great 
distance  away,   the resultant force  is parallel to OAj,,   and when in the 
direction Aj^O  the resultant couple  is parallel to OAJJ.       For  a.perfect 

missile both these directions coincide with OA.      The angles AA^   AA^ 
are  the  lift and moment malalignment aigles and are denoted by a-^,   cty[ 
respectively. 

3.2      The components of    R    and    _T    along the missile  axis R_^,   TA  and 
perpendicular  to  the missile  axis Rp,  fp are  analysed as follows; 

3.21 R^ is  termed the air resistance  and is equal  in magnitude 
axial drag k-jJf  . 

3.22 f^ can be divided  into two parts,   r_/\p due  to fins   (or wings) 
having an offset,   and f/jp the  restoring couple   that arises when the 
missile   is   spinning.     If  the magnitudes  of P^p,   T^p are  taken  to be 
YpV2,   -YRVr along OA,   then 

-(YRVr + YFV2)  0^    , (1) 

where    r    is the spin,   i.e. 

r    -     <£ 
dt 
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3.23 Rp arises from the yaw;  it is not quite the same as the 
lift which is taken perpendicular to the airflow.  To the accuracy of 
A.1 the component of Rp in the plane OXX has magnitude |Rp|, and so 
when referred to axes'OX, OY is determined by the complex number 

Rp = kpV
2 ^ . (2) 

If L is the component of the lift force in the plane OXY, referred to 
axe's OX, OY, then 

L = Rp - iRjJ^ (3) 

a kLV
2 £ , (4) 

where kL = kp - k^. (5) 

±<py 
A missile with lift malalignment «L e   will experience an additional 
lift force whose component in the OXY plane, referred to axes OX, OY is 
determined by • 

^ . rf  c,L o
i((J^> . (6) 

(2) gives the normal force on an aerodynamically symmetrical 
missile. When the definition of Rp is extended to include (6) we 
have 

Rp = kpv
2 £r; + LL 

= L + LL + [RAIS by (3).   (7) 

3.24 Fp consists of 

(i)  a stabilising moment Ty, due to the yaw and moment malalign- 
ment . 

and  (ii)  a damping moment YQ  due to the cross-spin. 

hi. 
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'" The component of Ty- in the plane OXY is "determined in magnitude 

and direotion'by 

i(^M+o)^ ij 
rY •= - kP a -vf \^j + «M e--   / e  »       (8) 

where d is the distance of the C,<G.. ahead of .the C.P. 

The component of TQ in the plane OXY is determined in magnitude 

and direction by 

i % 

Tc = - kQ. d V &    e ?  ,      ,'        (9) 

3.3      To the accuracy of A,l the components of R^, ^ along OZ have 

magnitudes -P-, -V  and in the plane OXY, referred to axes OX, OY, are 
determined by -R£, -1%} where 

Also the components of Rp, Tp along OZ are of the second'order, and 
the components in the plane OXY, referred to axes OX, OY, are determined 
by Rp, fp, where 

rp = rY + rc .  , • •  , ,       (n) 

2f    Force and Couple produced by Boosts 

if.l  Let the boost thrusts be reduced to a force T    acting at the C.G. and 
a resultant couple G. Let T^,Tp"arid" G^, Gp be the components of T_ and & 

along the axis and perpendicular to~tne"axis respectively.   Then to the 
accuracy of A.l, the components of Tp, Gp in the plane OXY, referred to 

axes OX, OY, are expressible as 

i(0T+<r) , N 
Tp = TABaT e  

x (l) 

.  •       Op-.WB^i1*^.^- •  (2) 

where T, = | T^ |;  aT>   OQ are  the  thrust and couple malalignment angles; 
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(J3m>   <fh  are the thrust and couple malalignment orientations; £g is the 
distance of each thrust axis from the C.G., and Ag is the radial offset 
of each nozzle. 

4.2 To the accuracy of A.l, the components of TA. G^_ along OZ have 

magnitude T, G and in the plane QXT are determined by Tg, G£, when 
referred to axes OX, OY; where G = 1^"A 1* 

The components of Tp, Gp along OZ are of the second order, and the 

components in the plane OXY are determined by Tp, Gp, when referred to 
axes OX, OY. 

4.3 Expressed in terms of: 

w  the effective gas efflux •velocity 

Q  the total rate of loss of mass from the system 

6JJ  the distance of the centre of each nozzle from the missile axis 

and A^j  the offset angle of each boost nozzle axis in the tangential 
plane, 

T and G  can be written 

T = Qw ,  G = T % AN. (3) 

5    Jot damping; couple J 

5.1 This is the restoring couple that arises when the missile is- rotating, 
due to the additional sideways velocity with which the boost gases are 
ejected.  The magnitude of the axial component J^ is therefore 

J = Qke r, (1) 

and acts in the opposite sense to the spin; ke is the radius of gyration 
of the boost exit planes about the missile axis. 

5.2 The component of J_& along OZ is -J, and the component in the 
plane OXY is determined by -J£. 

5.3 The .Qpmponent of the transverse jet damping couple Jp in the plane 
OXY is determined by 

Jp • " Q *L ^ a ? , (2) GN dt 

where £QJJ is the distance of the centre of each boost nozzle exit plane 

from the centre of gravity. 

The component of Jp along OZ is of the second order. 

6    Equations of Linear Motion 

6.1  These are obtained by equating total force to mass times accelera- 
tion in three £ 
OX, OY, and 0ZZ 
tion in three fixed mutually perpendicular directions, chosen-here to be 

7,4.1 
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In the OZ direction, the forces acting are components of thrust, drag 
arid gravity.   The equation of motion is • 

mf = T - R - mg sin a, (l) 

where 

m = total mass of missile at time t 

f = acceleration dV/dt. 

In the plane 0X1, the two equations of motion are written as one 
in terms of the complex quantities introduced. The forces acting are 
gravity and components of T^, Tp, R^, Rp which have already been 

mentioned.  Accordingly the equation of motion is 

m A.  (VZ) = (T - R)£ + Tp + Rp + mg cos a. (2) 
dt     . r r 

6.2      The appropriate forms for T, R,   etc., will now be substituted in 
(l)   and  (2).       Writing 

a = T/m (3) 

(1)  b ecomes 

in 
f = a - — V2 - g sin a, {!+) 

and by equations  (l),   2.23(l),  and 3.23(7)   and    3.3(lO),   equation (2) 
becomes 

V dZ/dt = aS +  (Tp + L + L^/m + g(cos a + Z  sina). (5)' 

When    a <4-5    the term g sin a Z may be neglected by A.l.   When if5    < a <90c 

we assume that 

either  (i)      |z|  «  cot a A.3 

or (ii)  g <<  a. 

* The inclination of the trajectory to the horizontal, usually denoted 
by  0,   is equal  to • a - 3 where 2 is .the  real part of Z.     The  component  of 
gravity perpendicular  to  the  trajectory is 

g cos 0  = g(cosa+ 3 sin  a + 0(2 )) 

for small 2. 
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A.3(i)  is likely to hold in certain cases for a near 70° or 80 > but 
for near-vertical firing (ii) becomes necessary. 

By equations lf.l(l), 3.23(4), and 3,23(6), equation (5) becomes 

dZ  /a   Y  .•   a e1  g cos a rr\ 

ds  \V2   /        v2     V2 

where £ = kj/m (7) 

up a uT + uL (8) 

i0T •' ••:.-••• , 
UT = AgOrj e x (9) 

and  u n -ev2aT e^/a . - (l0) 

The first term on the right-hand side of equation (6) arises from 
the transverse component of thrust when yawing and the lift.  The 
second term arises from the thrust and lift malalignments, and the last 
term from gravity. 

7    Equations of Angular Motion 

7.1  To the accuracy of A.l, the component of angular momentum of the 
missile in the direction 0Z is Or, and the component in the plane OXY, 
referred to axes OX, 0Y is determined by Or? + i A d^/dt; C, A are the 
moments of inertia about the missile axis and any transverse axis 
respectively. 

The equations of motion are found by equating the rate of change 
of angular momentum to the couples acting in the three directions 0X,0Y and 
OZ^'2 viz, 

-1 (Or)   « G - r - J (1) 
dt 

',:  — LGJPS + i A:%,(S.» r - J)S + Gp + rp + Jp •        (2) 
dt    v. dt J JT jr x- 

7.2      By equations 3.22(l),  3.3(lO)  and 5.l(l),   (l) becomes 

d(Cr)/dt + (YRV + Qke
2)r = G - YpV2. (3) 

45. 
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This equation gives r when V is known, we get 

I Or - CQr0 =  /  I (G - Yp,V
2) dt, 

*o 

(4) 

where 

t 

I = exp f   (YRV + Qke
2)C dt. (5) 

"O 

The suffix o is used to denote the value of a quantity at launch. 

7.3  The reduction of (2) to a convenient form is quite lengthy.  Firstly 
(2) can be written by equations (l), 3.3(ll),  3.24(9) and 5.3(2) as 

32w^2 a2g/dtz +  xas/at = (&p + rY)/u, (6) 

where 

AX = 2AK - i Cr + kcdV (7) 

2AK = Q eGN2 + dA/dt; (8) 

by equations 4.l(2)  and 3.24(8)-,   the right-hand  side of  (6)   is 

(Gp .+ rY)/i/V = a u0 e1    - n2V2 _S, (9) 

where 

^C  = ^G + ^M (10) 

|Gp|      ^G T6B ^G n^B i^G 

^ = nre   --1ir.>e   -^Ta&e       (11) 

^M = -n%Me% (12) 

and n2 = kpa/A    . (13) 

46. 
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Next putting £= pl^ + Z in (6)  andseliminating dZ/dt using 6.2(6), we 
obtain 

d2^     d^_ Gp + rY dZ     d2Z 

dt2 dt iA dt "' dt2 (lif) 

= au0 el0L n
2V2S - \    fe +e\ (V^J)+ n 

ae10"      g cos or 
  +   

V V 

i°\ ae    \        g cos a -](!•*)h(v3)*<vS)£(£•«)••£ (M?S£.) - 
V •2      J 

(15) 

Expressed in terms of V3TJ as dependent variable and of    s    as 
independent variable,  the left-hand side of  (lit-)   is 

d2^ dS      d2(V3D dOCT,) 
2~+ *• TT = V    , 2      +  (\- - ) atr dt ds V        ds 

-v2 h dt \v2yj 
(v^) (16) 

Equations (15)  and (l6)  now combine  to give 

a2(vs5      ',, ,d2(v,^) 
ds^ + 2P'(s)^^   +F(8)(vS)--T(s) +5^fL^*-x),     (i7) 

where   2P'(s) 

F(s) 

T(s) 

Il(s) 

%(•) 

« + \A + (a - f)A2 (18) 

n2 + e1   + 4\A +  X(a - f)A3    +  d[(a - f)A2]/ds         (19) 

T1(s)+T2
,(s) (20) 

a e*  (VF - V^)A2 (2l) 

a eicfrFA (22) 

and dash denotes differentiation with respect to s. 

hi. 
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Changing the dependent variable in (17) to H by the substitution 

vS=He 
-P(s) 

(23) 

we obtain 
• : 

d2H         ,   v 
  + G-(s)  H = 
ds2 

-gnosa (H -T(s) [v2 P(s) 
(2k) 

where 

G(s) =P(s) -[P'(s)]2 - P'(s) 

= nZ-A2(s) +A'(s) , 

(25) 

(26) 

where 

2A(s) = I  - VV + (a - f )A2 (27) 

Further, by equations 6.2(7), 6.2(0, and 3.23(5), we can write 

2 P(s) = to + \ 
m  V 

g Gin a Ids 
V* 

(28) 

and 

„, / N  
kP  X  g sm a 

2A(s) = ^ +  5— 
m  V   V2 

P'(s) - A(s) =\/V. 

(29) 

(30) 

The order of solving the equations of motion is: 

6.2(4) for V 

7.2(0 for r 

7.3(24) for H, and thence^ from 7.3(23) 

and finally 6.2(6) for Z. . 

48. 
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8    General Solution by integrals 

8.1 In this paragraph the equations of motion are solved for the case 
when G-(s) is real and constant. We begin by deriving conditions under 
which this is true.  Equation 7.3(26) is 

G(s) = n2 - A(s) + A'(s) , 

where by equations 7.3(29) and 7»3(7) A(s) can be expressed as 

A(s) = a1 + ^ + T2> (l) 

where 

2ax = kp/m - kQ d/A (2) 

^ = -  (K - d£r)/V ;     £ =  C/2A (3) 

T2 = g sin. a/2V2 (A) 

It is clear that jx-J ' and {t^l can be considered negligible only for 
sufficiently large values of V.  It might be expected however that, 
if the velocity of launch is low and the acceleration is high, the time 
during which jx-jj ix2| are not negligible will be so short that the 
solution for the ensuing motion will be unaffected by omitting them. 
This is confirmed in the next paragraph. 

8.2  8.21 Let VQ and VQ be the velocities at which Ix^l = l^i* an<3- 
x     2 

l^l1 I = |T2'I respectively.  It is assumed that VQ and VQ are uniquely 

determined, then |X-L| >  |x2 \  for v > VQ and jt-^' I > W^1 I f°r V> VQ . 

It is assumed that 

B.l  (0^ + |x-, j + |T j)2_a 2  -j_s negligible compared to n
2 

for all V> VCl 

B.2      l^i'l   + |Tp'| is negligible compared to n2 

for all V >Vc 

8.22    When VQ> Max (VQ    VQ ) we can then put 

A2(s)  = a-L2 , A'(s)   = O-L' (5) 

kS. 

CONFIDENTIAL 



CONFIDENTIAL 

Technical Note No. G.W. 177 

in 7.3(26) giving 

2    ? 
G-(s) = n - a-,  + a- *1 T "1 

8,23 When V < Max (VQ, VQ ) it is further assumed that 

B.3  g sin a    is negligibly small compared to a, 

Then g since is negligible in 6.2(4-)-and will not appear in equation 7.3(29). 
In other words the motion is unaffected by neglecting It^l in A(s), and IT^'I 
in A!(s).  But when V0<V^Vo  |Tl| ^ fel » and- so *-n  ttl^s ranSe of v 

l^ll will not affect the motion.  Similarly neither will |TQ_'| in the 
range VQ< V< VC2. 

8.21+    The assumptions B.1 and B.2 put a restriction on the magnitude 
of the spin; when' B.I and B.2 hold the spin is called 'small'. 

8.25 It is further assumed that 
, . . 

B.4  k^/m, kp/m, kpd/A, kpd/A are constant. 

Then A(s) is constant and 

G-(s) = n2 - c^2 = P2, say. (6) 

8.3  8.31 The solution for V, by 6.2(if), is 

° 2kp(u-s )/m 
2 -2kD(s-s0)/m    -2kD(s-s0)/m / e (a - g sin a)  du. 

V^ = V  e + 2 e o 
rZ 

(?) 

8.32 When a is constant (7) give£ 

f. f0 ,-^(-0)/- (6) 

and 

v2-vo
2
=fo[l_G-2k^-o)A]/(ki/m). (9) 

30'-... 
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8.4  8.41 The general solution of 7.3(24), when G(s) equals p , is 

s 

H(s) =K-^ cos p(s-s0) + ICp sin p(s-s0) - —   / e   T(U) sin p(s-u) du, 
P 

(10) 

where Kj_ and Ko are constants depending on the initial conditions. 
The contribution to H(s) of the gravity term has been omitted as the 
formulae, for gravity drop are given in Ref. 1.1. 

Substituting 7.3(20) into (lO) and integrating by parts we have 

i 
f 

fUs)^ cos p(s-s0)+K, sin p(s-sQ)-- / e   [pT2(u) cos p(s-u)-T,(u) sin p(s-u)] du, 

So 

(11) 

where 

K3 = *2 + T2(so)/P ^12) 

T3(s) = -Tx(s) + P'(s)T2(s). (13) 

Further it is seen from (ll) to (13) that 

*y 7.3(23) Ki=vo'^o' (it) 

by 2.23(1),   6.2(6),  7.3(22)   and (5) K3 = (t0 - ct^S0)/p3     (15) 

and      by 7.3(2l),   7.3(30),   7.3(22)   and (5)       ^(3) »   a e^fuQ + a^] A- (16) 

Substituting for K-^, Kj,   T2(u)   and T?(u)   in equation (ll), we obtain 

H(s)  = /2a 1^ - cos [p(s~so)   +n] + -/2a L2  sin p(s-sQ) 

f    P(u)+icr(u)r^c                                                     , •     -1 audu 
+    /   e                      — sin p(s-u) -HPS cos [p(.s-s0) + n ]       > 

J                  LP                          P J   VU 
so 

(17) 

51. 
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VTa L± = V0 S0 (18) 

/2a L9  B £/p '2 - *V 

-1 
TI   =  tan      «i/p 

(19) 

(20) 

Hence equations (l7)and 7^3(23)  give 

»— T      ^ + I*, 
= lag1(s)  + ^(s)   + ?*  (s,Hp)   +5c(s,  -£), (21) 

where 

,-P(B) 

E   (s)   =      -    cos[p(s-sQ)   +il] 
1 V/V2a 

(22) 

52(s)   =      sin p(s-so) 

v//2a 
(23) 

Er(s,n)  = 
e-P(s)       s. p(u)+io<u) 

V 
/ u (u)   e cm p (s-u) 

audu 
(24) 

r + t       \           e"P(s)       ; P(u)+icr(u)   n a„du        ,    . 
£   (s,n)  = / u(u)   e § cos [p(s-u)   +n] -JJ— .     (25) 

V J Vu 

8.42    Differentiating equations 2.23(l)   and  (21)   to   (25)  we 
obtain for d£/ds, 

dg/ds = dZ/ds + d^/ds 

dZ 

ds 

' f 1 e"P(s) 
~ + P«(s)    'S-LL—    n sin[p(a-s )  + n] 

.V2 J V/V2a 

1 °"P(s) r    1 + L?  ———•    P  cos p(s-sJ + 
-P(s) 

p_e       /^.eP(u)+iXr(u
CoSP(s-u)f^ 

V /   P vu 

e-
p(s)     /•          P(u)+icr(u)           rf                 audu      a e^ 

+ n     / |i F e sin [ p(s-u) + r)J -» ^5- uF  ; 
7 V V2 

u 

52. 

CONFIDENTIAL 



CONFIDENTIAL 

Technical Note No.  G.W.  177 

i.e. by equations 6.2(6),  7»3(l3)  and 7.3(27) 

i   ^    «i _, 
£ = li^s)   +   [L2^(s)  - I^s)] +      5S(a#p)  - gp(L, ^Y 

PdsP ^ L \p/ 
,     (26) 

where 

%(s)  =   cos p(s-s0) 
V/V2a 

(27) 

e~P(s)     n 
£+(s) a     - sin [p(s-s ) +n] 

2 V/V2a      p 
(28) 

£W) =  —:     M*)   e J sin [p(s-u)   + "n]-£- 
v V / P V.. u 

(29) 

5F(s,u) = - 
e-P(s)     sr      t  y     p(u)+i0-(u) 

V 
n(u) cos p (a-u) 

audu 

V. u 

(30) 

On substituting for 3J (a) from equation (2l)  and rearranging,   equation 
(26)  becomes 

1 d£      T  p*l ^+ 
p ds      "    p     1N 2W + L, ^i ?2(s)   +^(3) 

a,     + a - <a, «g 

i.e. by equations  (22)   to  (25)   and  (27)   to   (30) 

? • &= [L2 ?i(s)" Li ^(s)] + % (3^F) " 5F (s> *7 , (31) 

where 

5j(a) 
e-P(a) 
^—— J cos [p(s-s ) -n]. 
V//2a P 

(32) 

^(a,ji) = 
3-P(a) 

•V 
H(u) 

P(u)+icr(u) n audu 
3 - cos [p(s-u) -TJ] —— • 03) 

5}. 
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The solution for   £   can now be written 

£ - S 

H 
ifl - L^B)   + L^U)   * ^(s,MF)   + «£  (s,  ^ , (34) 

where 

s 

&L(S)  = -    /   %(u)   du (35) 

so 

Sj(a)  =    f   5~(u)  du (36) 

s0 

s 

«5(s>n)  = -    / Sp  (u,n)  du (37) 
so 

s 

SF(s,u)  •   / 5Q  (U,M)  du. (38) 

so 

8.1+3    The  solution for Z is now obtainable from equations  (2l)  and 
(34) j  using the relation 

z-zo = («- «y-(s:-s0). (39) 

9    Assumptions required for evaluation of integrals 

9.1 In order to evaluate the integrals of para. 8, it is necessary 
to make certain additional assumptions.  Expressions for the yaw, axis 
inclination and angular deviation due to boost malalignment can then 
be found in a suitable form for numerioal evaluation. 

The assumptions introduced refer mostly to the aerodynamics of the 
round and are valid only over a limited range of velocity.  This 
restriction is implicit in 3.4-, as the wavelength of yaw is constant for 
a range of subsonic velocities only.  The angular deviation can in 
general be evaluated accurately under these assumptions without intro- 
ducing aerodynamic terms that are of only secondary importance and in 
any case difficult to assess reliably. 

9.2 It is assumed that 

C.l  The acceleration is constant between launch and all-burnt 
and denoted by a. 
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Then 

V - V = a(t - tn) (l) o 

V2 - Vo
2 = 2a(s - s0). (2) 

If the instant of ignition is taken 'at t = 0, equations (l) and (2) give 

Vo = a*o (3) 

Vo
2 = 2aso.  ' (k) 

t is the 'effective time of launch' and s0 the 'effective launcher length'; 
tney are defined by (3) and (l+)  in terms of the launching velocity V0 
and acceleration a.  The 'actual launcher length' required for the same 
launching velocity VQ is usually somewhat greater than so because the 
thrust build-up is not instantaneous on ignition.  The word 'effective' 
is often omitted when the context is clear.  Prom (2) and (l+)  we have 

V2 = 2as . (5) 

9.3  It is assumed that 

9-2 C.2  YpV , Qk r can be neglected in comparison wxth Y^Vr or G-. 

C.3  Y-n, C and G can be taken constant. 

From 7.2(1)-) and 7.2(5) it follows that the solution for the spin, 
expressed non-dimensionally, is 

r/rG . (ro/rfc) e~{T  "T° K  e"T [B(T) - S(T0)] , (6) 

where 

T2 = YRS/G (7) "H 

^',1L'1 

aYE 
(8) 

X 

E(x) = [   e
U" du. (9) 
,2 

0 
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In order to evaluate the integrals containing o" in 8.2+1 and 8.2+2 it 
is assumed that 

C.2+.  the range of integration can be dissected in such a way that the 
change in Yj^Vr in each interval is negligibly small compared with | G - Y^Vr |. 

G- - YoVr can then be replaced by G - YgV^r^ in the i-th interval, 
where V.j_ and r^ are mean values of V and r over this interval. 
7.2(3) now leads to 

r = a- = h± , (10) 

where 

h± = (G - rRY±r±)/C . (n) 

Integrating equation (10) we obtain 

°* - V a n2i (3 " soi) + nli (/s " ^)> ^ 

where 

ngi = h±U (13) 

nli = ^ (roi - h. toi) (12+.) 

and o* ., s j_ and t ±   are the values of cr, s and t at the beginning of 
the i-th interval. 

For convenience the suffix i will now be omitted. 

9.2+.  Finally it is assumed that 

C.5  |P(s)| is negligible compared with unity. 

C.6  Urp, UQ, 0J and <^. are constant. 

C.7  a-j_ is negligibly small compared with p. 

C.5  is the condition for P(s) to bo neglected in the solution of 
para. 8.2+..  It is effectively a restriction on the values of s for whioh 
these solutions are valid. 

C.6  is justified when the malalignment angles and orientations are 
statistical measures for a number of homogeneous rounds: for an individual 
round they will vary in an irregular and unpredictable manner, 

C.7  is not essential for the evaluation of 3-! > £ an(3- Z* undertaken 
in the following paragraphs, but will be adopted at this stage for simpli- 
city.  Equation 8.25(6) then gives n = p, and from equation 8.2+l(20) 
we have r\ = 0.  The symbols g , g and g; are now no longer distinct in 
the equations of para. 8.2+.. 
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10       .Solution for the yaw £E^ 

10.1    By the assumptions of para.  9 we can write 8.2+l(2l)  as, 

SSS-I^ Sx(s)   + L2 g2(s)  • nT gT(.)   + -£   4G(s)   , (1) 

where 

^(s)   = 
oos n(s-s0) 

(2) 

-   / x       sxn n(s-s0) 
• •   £2^) = ;  

Vs 
(3) 

£T(s)  = - y      /    e10"^^  cos n(s-u)  dVu (4) 

%(s)  = I   j    e^W sin n(s-u)  dVu (5) 

cr(u)  - <rQ    = n2(u-s0)  + n^/u - Vs^) by 9.3(12) 

Vu
2 = 2au 

o'x> 

by 9.2 (5) 

by 8.41(18) and 9.2 (4) 

by 8.U(19)  and 9.2  (4) 

10.2    In terms of the yaw integrals Ia (s,sQ), I3(s,s0)  defined in A.4 
and of the functions as and 3S defined by 

as - 
2(n?+n)s H]_ 

+ TC 
y2^(n2+n) 

2(n?-n)s n2 
ft    = /      •   2 + Ks    J 71 

\/2n;(n2,-n) 

(6) 
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the solutions of (if) and (5) are 

%(s) = - 

%(s) - - 

,iob r 4 * - 2 

2Vs 

eioo 

2iVs 

•4,V,-. ^--^^^--^Vip^,.). I«(-So»s) e + e 
in(s-s_) 

. -2- 1^,*) e"^8-^- e-1^2!^.) .^^ 

(7) 

Equations (7) can be written by A. A-.2.(U.)-(15) and A.4.l(3)-(5) as 

^(s) = 
e^o 

Vs 

D(«s) xD(Ps) 

»1J L«l 

i[o(s)-Q3] pD(«s0) -in(s-s0) D(P3o)  in(s-s0)~ 

Oh L "1 

(8) 

2iSG(s) = 
eioo 

Vs 

i[0T(s)-cr] D(as ) -in(s-s0) D(33 )  in(s-sor 
 £2— e "— e 
_ *L Pi -lJ 

(9) 

This form of the solution is convenient when as, 3S are real and positive. 
In other cases, i.e. when otg, (3S are negative or imaginary, the most 
convenient forms of (8) and (9) are readily found by putting the 
alternative expressions for I\(s0,s). given by A,2.l(l+.) to (8), in 
equation (7).  For example, when (i.^ is negative (=-|3^ ) anc^ s < 3g> 

(8) and (9) would be expressed for evaluation as 

J3J 

2gT(s). 

10% 

Vs 

D(«a) p(-fe')' 

L ai " ^  J 
i[°*(s)-crjrD(as ) -in(s-s0) D(-3L) in(a-sj" 

-.  »— e      •* — "- e 
L «l Pi' 

J 

(1C) 

2^GC«^ 
ofp(«s) D(-Ps') 

VsLLax     ^ 
^_~|ei[o-(s)-<4b] p^sp) g-An(a-s0) D(-3BO') ^(s-sjlj 

-a, 3l»  
€     JJ al 

(11) 

10.3 Constant spin 

Putting n2 zero the equations (6) become 
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txs = ^2n/% V"s + rtj/ZaiiK (12) 

Ps«   » - 1PS = 72nA Vs - i^/VS^T. (13) 

Equation's (12) ana (l3)/ show that ag is always positive and that Ps' 
is negative for all values of s less than n-i An2 (i.e. Sg). 

We shall now find an approximate solution under the following 
assumptions: 

(a) Vs «Vs~fl 

(b) nx
2/2n » 1. 

(a) restricts the range in which this approximate solution is valid- 
the larger the spin the greater the range of validity.  Equations (l2) 
and (l3j are then 

«B - ". V = nl/^^ • c^) 

The object of introducing (b) is to allow the function D(u) to be 
replaced by the first term of its asymptotic expansion (see Ref. 1.4), 
namely '',..• 

o u •%   2 

D(u) =e  2 liii-   e 2   dx~5/TOI.        (15) 

The error in (15) is about IQffo  at u a 1, 2%  at u -- 2 and quickly 
decreases.  Like (a),- (b) requires that the spin should not be too 
small.  By equations "(lif) and (15) we then have 

-P(as) *?(-3s-\) = 0 (16) 

D(«s)-»(-3s')=f  /f   . (17) 

Substituting (l6)  and (17)   into  (lO)   and (ll) we obtain 

•     10b 
eT(a) - 2 

n-j_ V"s   *— 

i e    ° 

i -cos  n(s-s0) (18J 

5&(s)   =     sin n(s-s ) . (19) 
n^ Vs 
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11 Solution for  the axis inclination   K, 

11,1    Under the assumptions of para.   9,  equation 8.42(34-) becomes 

Z<o ii G 
n 

= ITL S1(S)   + L2 £2(s)   + uT ST(s)   + -2   £&(s), (1) 
n 

where 

S-LCS)   = -   7 £2(u)   du (2) 

S?(s)     =        /    SnCu)     dU (3) 

o 

3 

^T^S)   =     /  5G(U)   du 

So 

s 

S(j(») = -   / ^T(
U

) 
du- 

(4) 

(5) 

11.2    £-> (s)   and ^(s)  will now be evaluated.       Write 

£*(s)  = ^(s)   + i £2(s) 

a 

^a   J 
in(u-s0) 

dV by 10.l(2)-(3), (6) u 

then this integral can be evaluated by putting "K^  = 8U, where 

6u = 61 /u + 5c 

5-,2 = 2n/x 

(7) 

(8) 

°o = °> 

in. equations A.2.1l(l) and (3).  It is then found that 

(9) 

*•> -fe 
D(6s0)  -D(6S)   e 

60. 
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Since 5    is always positive,  equation  (10)   is  in a form convenient for 

numerical evaluation for all values  of    s. 

11.3    ST(s),  £G(s)  are  found by  substituting 10.2(8)-(9),   into   (/f)  and 
(5).       In terms of the  integrals Ja(s,sQ),   Ja(s,s0)   of A.3 and £x(s), 
have 

2i£T(s)   =  2 

we 

"Jq(so>s)     J|3(so,s) 

i_   «i H    J 

2^(s)=-2 
'Ja(s0»s)    Jp(s0»s)" 
 +  

L-      al 3i      - 

-a 

+ i 

D(«s  ) D0S  ) 
-g*(s)+ —2-^(8) a1 

-D(«s  ) 

«1 
5x(s) 

Pi 

DCPsJ 

Pi 

3xr. 
(11) 

^X(s) 
icr„ 

.(12) 

Ja(s , s),  JQ(S0,S)  can be found by one  of two approximate methods 

according as either    n-i,   i.e.   spin r , is sufficiently large   (the 
asymptotic  solution)  or    n2,   i.e.   angular acceleration r^ is  sufficiently 

large   (the approximate  solution).      The appropriate formulae are given 
in A,5  together with estimates of their  accuracy. 

It is found that when V~s^     (or VSQ)   is positive and greater than Vs^ 
there are  two expressions for  the asymptotic  solution according as 
sQ <   s <   sa  (or SQ)  or  s  >  sa   (or sa),       For     example,   suppose VsZ  is 

positive and greater than Vs"0 and that $±    is negative   (this is  case   (d) 

in    A..5),   then by A.5.35(34)   and A.1.1(3)  we  find that 

2 e-icro Jp(So,3)+iD((3s  )S
X(s)= (-2) 

D(-3   «)  e 
i[cr(u)-cr0] 

T s 

2 n2 Via + n^ 
+ D(-0    •) t (s) 

so 

 (13) 

when SQ^ s <s  and by A.5.35(35), A.5.34(31), A.l.l(3) and 11.2(7) 

-1ST 
e  o Jp(so,s)+iD0So)^(s) = 2 

"D(-*B ')  DO .).iCtf«-<roI 
12n2J SQ +1^  2n2/s + ^ 

+D(-fc »)t GO 

+2D(o) e i[
ff(^)-°o] 2(n2-n)/nn1 + (2i/61) D(SS) 

in (SH^) 

(14) 

when s« ^ s. 

Substituting in (ll) and (12) for Ja(sQ,s) from A.5.3l(l3) and for 
Jo(s0,s) from (13) and (11+)  we obtain 
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h' 2n9/u + nx 

(15) 

-1CT, 
2e      °^,(s) = 21- 

D(au)   D(H3u') 

L ai      h   J 2n Vu + n-. 

is 

Ui r-^r(s)+ ^-s(s) 
<*1 P1 

(16) 

when s    <   s <   Sg ,  and 

D(«s)     D(^«) 
2ie"l0°2 Vs^- ai     0i' 

i^Cs)-^ 

2n2^s+n-i 
+ 2i  g_+ o_ 

«l       01' 2np^o+nl 

- i 

•D(«s   ) _ D(-0S  <) 
 2-£x(s) ^-SX(s) 

•    «i 0i' 

i[<r(^)-tf0) 

+i2D(o) —j [2(n2-i)/nn1+(2^1)|^(8s) e     '       p -D^f] 1 
In(s-sp) 

(17) 

•iff 2 e"xu°SG(s) = 2i 
JD(«a)    D(3S') 

al + ~07~ 
it0"^)-^] 
2n Vs + n. 

-2i  o bo 

«1       '   0i' 2n2^o"+nl 

+  1 
D(«s0) H(-%   *) 

+i2D(o) 
Pi' 

2(n2-n)/nni+ (21/5!) 
.     .   in(s-6fl)    ,      " 

D(8s)e 0'-D(6S0) 
* 

- 

(18) 

when so   $  s. 

12 Solution for   the angular  deviation    Z 

12.1    By equations 8.4-3(39),   10.l(l)  and ll.l(l) we have 
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Z - ZQ = Lq Z1(s) + L2 Z2(s) + ^ ZT(s) + •£ ZG(s) ,       (l) 

where Z^s) m n^(s) - [^(B) - SL(S0)] (2) 

Z2(s) =nS2(s) -?2(s) (3) 

Ze(s) = n SQ (S) - 50 (s)  for 6 = T, G . (if) 

12.2 Zero Launching spin, n/n„ small 

12.21 In this case rQ is zero and 

n±  = - 2^/^ . (5) 

Hence equation A.5*52(47.) "becomes 

Y = /^A (vu - Vs^) , (6) u 

showing that Yu is zero initially and positive for u > s 

By equations A.5.52(48) - (49), we have 

Ka  - ~ 
n   2 ng so 

n2 + n v   ^ 

n   2ii2 sc 
Kft B   ' 1— P   no - nV   * 

(7) 

(8) 

It is seen from equations (7) and (8) that ^  is negative and Kg is 
positive.  The arguments of D(YU) and D(YU - *«) in A.5.52(45) are 
therefore positive, but the argument of D(YU - KQ) in A.5.52(46) is 
negative for values of s near s0.  Provided -KA is greater than -O.j 
the error in A.5.52(46) will "be less than 20/o by A.3.34. 

... From A. 4.1(12)-(13) we have 

Vs~ n i^vs^/^ + n) (9) 

^0 - ^^/(^ - n) . (10) 
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(9)   shows that V"s^ ^ Vs^,  which means that   ocs > 0 for s >  sQ.       (lO)   shows 

that Vsl~ is slightly greater than Vs^,   GO that in the range Vs~~ < Vs < -/sTji 

3S will be negative. 

12.22 Setting s =», we have the following results 

= 0 by 10.1  (1)  - (5)   (11) 

«*(-)  = (21/8!)   D(8So) by 11.2 (10)   (12) 

cTl0o Ja(s0,~) =   i(n2 +n) [D(o) - P(-"a)] / 2•^^ by A.5.52  (45)   (13) 

e-3cro J(3(soyJo) = -i(n2 -n)[D(o)- D(-Kp)] / 2nn2Vs^ by A.5.52(46),   (.14) 

where  «a, Kg are given by  (7)  and  (8). 

When  SQ  is zero,   Ka and Kg are zero by equations  (7)   and  (8) 

and equations  (13)  and  (14)  becomes 

-iff> -iff, 0 Ja(o,~) = e'1 o J3(0,co)  = 1/72^2 by A.3.32  (41).   (15) 

The solution for £T(°°)   and £G(°°)  are obtainable from 11.3. (ll)  -  (12); 
they are 

-iff -iff. ie      ° £T(~) = e "u° Ja(s0>°°)        J3(S0>°°) 

- «1   "    Pi J 

D("s0)D(5s0) _ D(3a0)D(6SQ) 
(16) 

"icro y   /   >> -^o e      °£G(~)=-e     ° 
pa(s0,»)    Jp(s0>»)-]fD(aao)D(6So)    DPBQWBQ)-] 

"-     al 3X   J ai6i Pi5i 
,(17) 

where Ja(so>°°)>  J(3(s0,«>)   are given by  (13)   and (14)  or by  (15),  and where 

D(PS0)   can be expressed for the purpose of evaluation as 

D(3s0)   = e"1 f Pso2(l  + i)  - D(-3So) 
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By (l+)  and (ll), Zo(°°) is now given by 

Ze(«) B nZQ(r) (18) 

for e = T and G. 

12.23 -It ia shown in A.5.5 that the maximum error in (13) and (14) 
is n/2n2 and that in most cases it is likely to be considerably less.  If 

that 

we sacrifice a certain amount of this accuracy by neglecting n compared 
with ng, (16) and (17) can be simplified. More explicitly, if we assume 

(a) n/iV) can be neglected compared with 1 

(b) /Ai7=25& (=u) is so small that 2A(+u)-l and 2B(+u)-l 

are negligible compared with 1, 

then by (a) we "have 

%a Aa < /— 
fn2x 

/2nsQ 

F /¥ Ka     B-Kp=- 
jn2\ > 

0^ = P1 = y2n2A (19) 

(20) 

• (21) 

and hence by (b)   and (20),   (2l)  we see that B(-Ka)  and D(-Kp)  as well 
as D(as0)  D(-Ps )   can be replaced by D(o).      Equations (l3)  and (lij.)   then 
become 

e"*10^  Ja(sQ, ») =e"1(To  Jp(s0,-)   = i/V^ . (22) 

By equations  (l9)  and  (22),   equations  (l6)   and (17)  become 

e^o^)   =^L^   A(6    ) (23) 
,,,., . 2/n2n ° 

.-*-•. £flW   . . i +  (^L    B(«ao) . (2,) 
*2J 

Equations (23) and (22f) become exact as JW*  °°.  Condition (b) above 
requires n^ to be fairly large because B(u) changes rapidly with u at 
u a 0,  Equations (l6) and (17) on the other hand would give quite good 
accuracy even for n/n2 equal to /3 or /2. 
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12.24 When cQ is taken as zero,  the solutions of Zr£(»)   and ZQ.(°°) 
are by equations (l8),    (23)   and  (2^-), 

Rl ZT(co)   = Im ZT(«)   = IJjL A(6So) (25) 

Rl 
ZG(«) % 

n 2Vnon B(6sJ (26) 

Ira 
Zr(») 

n 2Vn2n 
5=   B(6,)  -1-  . Jo       a- 

(27) 

For large r^,   the  real and imaginary parts of ZQ.(°°)   are  equal;  we have 

|ZT(-)| ^P^A(6SO) 
2n- 

(28) 

lZ&W| 
= 7^=r    B(8S )     . 

n v^n so 
(29) 

12.3    Constant Spin 

12.31 When  sQ< s^ sg the  solutions for ZT(s)   and Zp(s)  follow from 

O),  10.2(l0)-(ll),   and 11.3(l5)-(l6)  with n2 = 0. 

-10", 
2e      °Z^s) = 

D(as)/'l       1  'N  D(-3S')/
/_1__1 

L ai v^ /s/ • ^'   VsJ3 
i[o{s)-cr0] 

S("80)     D(-3s0')" 

"1     + Pi*  J 
1      i sin n(s-s0) 

+ i n ^(s) 

D(aSo)    D(-3Bo')" 

•— a Pi'      J 

cos n(s-s0) 

L       Vs 
" n ^(s) (30) 
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-icrn      ... P(«s)A        1 \    ~(-Ps') A        1 
2e     \(^ = 

al  Va   Vs/       -^i     Vs    V^/J 

i[cr(s)-<r0] 

+ x ~D("30)     D(-fe0')- 

_   *L ft.'   - 

1      i sin n(s-s(J 
+ -  " -  i n^(s) 

_ Vs^ Vs 

+ i 
D(«s0)     D("PP0')" 

L   al     +        Pi' 
cos n(s-s0) 

Vk 
+ n 5j_(s) (3D 

where 

a,  - pL1  = van/"1 

Vs7= -  T££ = - nx/2n 

The functions  og>   ftg«   are  defined by 10.3(l2)-(l3). 

12.32 For values of     s     somewhat less  than  SA it is possible to 
simplify (30)   and (31) by using the asymptotic expansion of D(u),  namely 

D(u)   «f-i- 
V   2 I 
> ft   U' 

H   7111  (        "   ^U^ 

x.e. D(u)   4= i/rcu        when %u    »   1  . 

(See Ref.1.4) 

If we assume that 

(a)  s lies in the range for which 

,2 2n (Vs^ - Vs) ~ >> 1 (say > 1+), 

the asymptotic expansions of D(-0' ) and D(as) are valid, and we have 

D (O f-f - ±X  - D(-Ps« )(±--L-)=ilZ2. (32) 

A further simplification is obtained by assuming that 

(1=)  VT. « ViT , 
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then 

D(as )  =-D(-3B »)  a A. m 
n-j_ 4 % (33) 

by the asymptotic expansion. 

Substituting (32)   and  (33)   into  (30)   and  (3l)  we get 

e-iff° Zl(s) .. A. 
cos n(s-s0)       e i[cr(s)-aj 

ni L     Vi /a 
- n^i(s) (34) 

-icr o ^(s)  = i 
1        i sin n(s-s0) 

L7^ /s + i n £2(
s) (35) 

Patting a"    = 0 and dividing (34)   and (35)  into real and imaginary parts 
we have 

Rl ZT(s)  = 
sin <s) 

n^Vs 
(36) 

Im ZT(s)   =A-pQ3n(s-s0)-coso(s)     _ (-) 
nlL Vs 

(37) 

Rl 
2G(S) 2 

n nl 
(38) 

Im 
ZG(s)       1 

n iXi l_ n-, 
«2(.)   - Sinn(s'S°)' 

nvfe 
(39) 

where £j_(s),   £g(s)  are given by 11.2(l0),   i.e. by 

£[»   U -hvjn [-A(6So) +A(6S)   COS n(s-s0) + 3(5a)   sin n(s-s0)] (40) 

^(s)  = ^/n [B(6So) +A(6S)   sin n (s-s0) - B(6S)   COS n(s-s0) ] . (U) 

68. 

CONFIDENTIAL 



CONFIDENTIAL 

Technical Note No. G.W. 177 

Equations (39) and (41) combine to give 

n   \i n    n. 

where 

0(6-0,6B)-B(6^)-A1(6B) ^in^(6s
2-5So

2)-B(8s) 00. £ (6a
2-6./)  (43) 

and 

A (u) B JL - A(u) . 
x      7CU 

12.33 It can be shown that for sufficiently large s 

|.ZG(*)-| . ._ za(f). . M Im 
n n 

This follows because A-,(u), B(u) are rapidly decreasing functions such 

that, when 5S has increased to about 1 or 2, A-j_(5s), B(6S) are negligibly 

small compared to B(5S ) (which is | or a little less).  We then have 

ZG(s)     ZG(«)   1 U 
Im — ? Im  =: — — 

n        n    nlv'2n 
> 

and hence 

a Mi / * M£ . L §i 
n        n    n-j_ v 

< v"2/fo 

because n]_ satisfies A.5.41 (36), where N is large. 

Hence 

ZG(s)       lZG(s)| ZG(S) 
Im  <  4  Im 

n n n  v     N2y 

which proves (44) • 
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12.34 When so  <  s,   the  solutions for Z~(s)   and ZQ.(S)   oan be obtained 
from (2+.) by substituting equations 10.2(l0)-(ll)   and 11.3(l7)-(l8)  in it. 

-IOV, 
2e ZT(s) = 

D(as)^l      1\_D(M/1       l_Snei[<s)-a-0] 

_   al  \/!Ta   -fsj      ^     Vs    ^Z 

| >KQ)+^(-eSo')i 
«- h* 

1      i sin n(s-s:)) 
+ 1 

:(3 /fl 
n ^(B)J 

E(asJ     D("Ps  'D 

L_   «! 3T«   -1 

cos n(s-s0) 
L    v£ 

- n ^(s) 

+ 2D(o)_eiCo-(3p)-o-0]rfl_ + 2in    D({.J 

H j/u      5l 

ein(u-sph
s 

(«) 

2 e"^0 ZQ.CS) = i 
~r("s) A _ 1 ypQa')/! 1 i[o(s)-cr ] 

+ x 
3( as0)    D(-fe0')" 

L«i   "" Pi* - 

1      i sin n(s-s0) " 
 x n ^(.sj 

—   Via VS 

.+   X 
D(«s0)  ^(-Psp')" 

i_   a 

cos n(s-s0) 

Vs 
+ n £-|_(s) 

+ 2^o) eiKv--o]rrL+^D(6)iein(^)T . M 

P 
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-icr, 

12.35 As    s    tends to infinity (45) and (46)  give 

1 2 e xoo z^) = 
D(«sn)   ^("PspTl 

ll '1       -1 
+ i n C,(°°) 

P(«s0)     D(-3s0')" 

«! (3^ 
n ^(c) 

^Dl.),11^1 

J5&sf 

+ i D( 6
S$) (47) 

2 e"lcro z&(co) s - i P(«so)     D(-feo'>l 
L ax ^'     J 

r 
=• + i n S5(») 
sfi J s 

+ 1 
L «i   +"   3 '   J 

n   «L(-) 

_^U(o)   ^oty^J 
Pi' *5S, 

+ i D(6sp)_ (48) 

Substituting CE]_ = 0-^'   = 5-j_ = v2n/rc    and assuming as before  that 

V~I^ <<  Vs7,   equations  (47)   and  (48)   can be simplified to give 

sp 2 
(49) 

-. j£L .^ ^ (l+i) ^ + ^^^J . (50) 
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It is now shown that when (49),   (50)  are valid,  i.e.  when 
A.5.4l(36)  holds,  the A-j_(^ft)-, B(o    )-terms are small compared with 

the A(6SO)-, B(5S)-terms.      By condition A.5.41(36) we have 

S     >   ^HJL > 2 for N   > 5, 

and hence B(5a ) = l/%   Og^    by the asymptotic expansion  (Ref.1.4). 
Therefore B 

2 6stJ B^&s  )    *   '^'u^2 *  °'°3 fQrN>   5, 

and hence is very much less than A(§s  ) B(5S  )   (which are usually just o ° 
less than £),       Likewise,  for 6S    >   2, A1(6S  )   is  less than B(5S  )  and 

so  is very much less than A(8S  )   and    B(6S  ).       Equations   (49)  and  (.50) 

then give,   on taking o'0 = 0, 

Rl ZT(oo)     =    0 (51) 

A(6S  ) 
Im ZT(«)     =   V^TOi  — (52) 

(T  ' 2 
Rl      •    —s- (small) (53) 

n nl 

ZG(-) /£    B<6B0> Im-i^L   .    /£i    2_. (54) 
n V n xi\ 

12.36 For values of s < so not satisfying condition 12.52(a) it 
is usually found that in (30) and (31) the terms in e l-0^ ' oJ and in 
A-j_(6s), B(6S)  are  small compared with A(8S  )-,  B(6S )-terms.       When these 

terms are neglected the  solutions reduce to   (51)  - (54) #      The   same is 
true of   (45) and (46) when  s> sg;     and so   (.3^)  -  (39)  can be taken to hold 
for all    s.       The  error in these  equations arises mostly when    s    is 
near s0 since  this is when the  approximate  terms are largest.       For 
such values of -/s  (i.e.   « VSQ)  it is shown in A.5.41 that the error is 
less than ft/2N2,   i.e. an/r0. 
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PART III 

A SOLUTION FOR THE MOTION AFTER BURNING 

1 Introduction 

Part III of this note is concerned with the flight of a missile 
in the interval between separation of its expended boost and the first 
application of control.  During this time dispersions may arise from 

(i)  faulty detachment of the boosts, and 

(ii) aerodynamic asymmetry of the round. 

The effect of (i) can be evaluated in terms of the initial conditions, 
i.e. the initial yaw and initial angular velocity of the missile;  the 
effect of (ii) can be evaluated in terms of the lift and moment 
malalignment angles.  These causes of dispersion have already been 
introduced in Part II, and so little further work is necessary to 
obtain the equations of motion.   In fact, under assumptions for which 
the wavelength of yaw is constant, the solution by integrals given in 
II.8 can be taken over at once with the thrust equal to zero. 

When tha spin/velocity ratio is constant the yaw and angular 
doviation can be evaluated.  Finally, the non-transient terms in the 
angular deviation are considered under simplifying assumptions. 

2 The equations of motion 

The equations of motion after burning are found by putting T and 
hence a equal to zero in the equations of motion during boost, namely 
in equations II. 6.2 (if) and (6), 11.7.2(4) and (5) and 11.7.2(24).   It 
is understood that the parameters in these equations now refer to the dart 
alone.  We obtain 

f 2. V2 - g sin a (l) 
m 

ds 

dj>L+a-(s)] 
^ + aL e 

t 

+ g C0S g (2) 
V2 

2 

I(t) r- r =- / I(ir) ^_Z-dT (3) 

where 

J G 

t 

l(t) = exp / -JL_ dx 
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^ + G(s)H=r      ft  ,\ m,_n.« 
ds2 L     V2       \V / J 

e (4) 

The suffix o now denotes the value of a quantity at the end of the 
separation, i.e. when contact between all boosts and the dart has broken. 
By 11.7.3(26), (29) and (30) 

G(s) a n
2 -A2(s) + A'(s) (5) 

2A(s) «= kp/m - VV + g sin a/V2 (6) 

2P(s) = kp/m + Vv + g sin a/v2, (7) 

and by 11.7.3(7) and (8), 

X = - i(G/iOr + kQdV/A . (8) 

We shall also-write 

2OL  =  kp/m - kQd/A   as before in II.8.1 (9) 

20U a kp/m + kf-jd/A . (lO) 

3    General Solution by Integrals 

3.1 The procedure here is similar to II.8; assumptions are introduced 
which permit G(s) to be taken constant; then 2(4) can be integrated and 
the yaw obtained.   It is assumed that 

D.l  kp/m, kp/m, kpd/A, k^a/A are constant, and 

D.2  A(s) is constant and denoted by A. 

Then by 2(5) we have 

G(s) = n2 - A2 

= p  a constant. (l) 
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It is readily seen from 2(6) and 2(8) that D.2 implies the following 
alternative assumptions:- 

(a) either (i) spin/velocity ratio constant, 
or (ii) spin sufficiently small. 

(b) either (i) velocity constant, 
or  (ii)   sinft sufficiently  small. 

In practice  (a)(i)   and(b}(i)  hold for a short interval after separation, 
while  (a)(ii)  and (b)(ii) will almost always be satisfied even when 
sin a = 1. 

3.2      In view of D.l the following solution for    V    is obtained from 2(l) 

ir2       ir 2    -2k-n(s-sn)/m       rn -2kn( S~Sn)/m n .       i, /-\ V    = V^ e      ^      o"    - [l - o      UK      °"    J mg sina/kp. (2) 

Hence 

f = f    e~2kD(s~°o)/m (3) 
o w/ 

and 

V2 - Vo2 „ f Q tl _ e-^D(«>] Xkr/ra). (0 

3.3  The solution for H is obtained by the method of II.8.4, which 
will not' be repeated here.   The only malalignments now present are due 
to the aerodynamic asymmetry. 

From equations II.8.41 (18) - (25), II.6.2 (8) - (lO) and II.7.3 
(10) - (12), we have 

Y   \ C 
:0ej(s) +^-s2(s) +cL?j(s) +-f ^(S), (5) 

where 

-P(s) 

£i(s) =    -   cos [p(s-s0)  + T)] (6) 
V„e n 

V P 

g2(s)   = -2     sin p(s-s ) (7) 

75. 
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e"p(s)   f  P(u)+icr(u) 
£+(s) = /  e li cos [p(s-u)+T)]v, du      (8) L        V    J P 

so 

s 
- t  ^    e"P(a)   /•  P(u)+io"(u) , . 
^M(

S
) = •— / e      sln P(S-U) Xidu       w) 

0L = ^«L e 
L (10) 

OM = n2 «M .** (11) 

n = tan"1 A/p . (12) 

The angular deviation can be obtained'by. integrating equation 2(2), 
where the yaw is given by equation (5). 

if    'Spin proportional to velocity' solution 

l+.l      Wo now make the following assumptions under which it will he proved 
that the spin/velocity is always constant. 

E.l  kj-y/m + g sin" a/V^ constant 

E.2  Y-p, Y^ constant 

E.3  At the end of separation A. I  £ ) = 0, i.e. £° = _2. .   (l) 
ds \ V/ r  v 

o  o 

4.U E.l implies either that the change in V is small or that the 
drag k-r,V is very much larger than the component of gravity mgsin a. 
2(l) gives 

V . Vn e"
5^-3^ (2) 

where 

8 = kj/m + g sina/V2   . (3) 
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4.12    By E.2 and  (2),  2(3)   gives the solution for the spin, 

[r(YR - 08)  + YpV] . [ro(YR - 06)   + YpV 0 ] e^*-^^ , 

and  this equation can be  written as 

V\V    r/   VA' J       r 
0^0        o 

(0 

= 0 by equation (l) 

Therefore 

r/V = ro/Vo = Y say 

and 

o-(s) - cr0 = Y(s-s0) . (5) 

1+.2      Comparing 2(6) and 2(7) it follows by D.2 and 2(8) that P*(s) is 
also constant.  Write 

P«(s) = Pl + ip2 (6) 

where 

p-L = a2 +  g sin o/2V 2 (7) 

p9 = -PY     , 0 = C/2A. (8) 

By (2) and (6), we have 

VeP(s)=V„oBW (9) 
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B(s)  = (p1'   + ip2)(s-s0) (10) 

where 

Pl»  = Pl - 6 

a2'   - g sin a/2VQ      "by (3), 

(11) 

a  '   = a2 - kr/m 

= (kL _ kD)/2m + k^A   by 11.3.23(5)       (12) 

4.3        The   solution for    3u ,   3.3(5),  can be written using  (9)  as 

L6JW   +i>-   g2(B)   +CLC(s)   + St 6,1(8), (13) 

where 

g+(s)   = e"     °    H cos  [p(s-sQ)   + TI] (14) 

g2(s)   a e sin Pls-s0j (15) 

s 
Kx/  s -B(s)      f     B(u)+icr(u)   n r  f       v       •• 
5j(s)   = -e    *   '     /     e  v '       w  H cos [p(a-u)   +n] riU 

(16) 

s 
K   /   v -B(s)     f      B(u)+icr(u) . , 
fcM(s)   =-e /     e sin p(s-u)   du (17) 

and 0"(u)  is given by (5). 
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The functions ?y(s) and £JJ(S) will now be evaluated.  Write 

HQ =  Pl« + ih0 = Pl' + i(p2 + Y) (18) 

^ = Pl' + ^ = p1' + i(p2 + Y - p) (19) 

Hg = Pl« + ih2 = Pl' + i(p + Y + p) (20) 

= p - iA   = n e' 51 = I 
-it) (21) 

g2 = p + iA   = n e 
+i"n 

(22) 

Vs-s )      /   ^(u_so) 
and let e(X), E(\) denote e    ° and / e     du respectively, so 

so 
that in general 

e(\l.) e(X2) = e(^i + "h) (23) 

and 

E(K)  = [e(\) - 1]A • (24) 

In this notation  (l6)   can be written 

2pe~iC"(s)^(s) = - e(-H0)[g2  e(iP)  E(HX) + g± e(-ip)   E(H2)] 

=e(-H0) 12 e(ip) +§L e(-ip) 
L?i tt- 

-e(-HJ ^ e(ip) o(H^3 ef*) e$y 
LH1 

"!ae(_Hl)+!l  e^j 
a. a, 

l2.+ gl 

_H1    H2J 

 by (24) 

by (18)  -  (20), 
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i.e. 

2pe"     °5T
+(s) = 8 

-B(s) 
"2ae(ip)+SL e(-ip) 
Bi 1> 

"62    Si" 
H1+H2J 

i[*(»)-*o]. (25) 

Similarly  (17)  becomes 

-B(s) 
2ieU°Us) = Mv 

~e(ip)     e(-ip)" 

H-, Hr 

"_1_   _1 

-%    H2- 

^W^J . (26) 

If.if      Prom 2(2),  Z is given by 

Z - Z0 = 4 / ^ (u)   du + CL ei0-(u)   du     ; (27) 

the term giving the gravity drop has been omitted.  Equation (27) can 
be written 

0 If Z - Zo = '^(s) + I^Z,, (s) + CLZL(s) + — Z^s), 
P 

(28) 

where 

H! = e;z •—t) (29) 

^2 = « ^VP (30) 

Z]_(s) = / Hj(u) du 

Z«(s) = 

ZT(s) . 

Vs) 

f %(u) du 

+, N   ic(u)~l 
I £f (u) + e wJdu 

0 
s 
*5M(u) du 

(3D 

(32) 

(35) 

(34) 
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To evaluate  (31)  - (34)  write 

Ko = Pi'   + iko = Pi'   + ^2 (35) 

K-L B Pl«   + ik-L = Pl»   + i(p2 - p) (36) 

K2 = Pl'   + ik2 = P-L'   + i(p2 + p), (37) 

Then 

2pZ1(s)   = g2E(-K1)   + glE(-K2) (38) 

2iZ2(s)  = E(-K1)  - EC-I^) (39) 

-io", 2pe_luo Zj/sM 
1 E(-Kl) +|i E(-K2)" 

Hi He 
*/&+Sl\-2p 

Hl    H2 
E(iY) (¥)) 

2ie      ° %(s)=* j^W"^-1^ -C 
LHX   H2J 

E(iY)     . (hi) 

4.5       To evaluate ZL(s),  %(s)  write 

H^ =  (p1>  - A) + ih0 - ig2 = g0 - ig2 (42) 

H2 » (Pl«   - A)+ ihp + igl = g0  + igl (43) 

where 

% = (Pl'  - A) + ik0 - ig2 =  (gQ - iY) - ig2 (kit) 

K2 =   W  ~ A^+ iko + igi = (go " iY)   + igl    ' ^ 

So =  (Pl1  ~ A)   + i(p2 + Y). 

81. 
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The following relations are readily obtained from  (l+2)   -   {kb), 

g2H2  + *ft =  go(gl + g2} (lf7) 

'% + SlVl =  ^go2 "  iYgo "  Sjfi^ ^gl + g2^ ^8) 0 

H^ = g0
2 + ig0(gl - g2) + gxg2 (49) 

KXK2 = (go - iY)
2 + i(g0 - iY)(gl - g2) + gl g2 ,    (50) 

and from (2l) and (22) we obtain 

gl + S2 = 2P ^ 

g± "  g2 ~ "2iA (52) 

and 

gxg2 = P
2 + A2 (53) 

= n2 by 3.1(1) . (54) 

Then evaluating (40) by (21f) we obtain 

e"l0"o ^(a) = (Cx - C2) - [o±  e(-K1) + c2 eC-Kg)] + C2 e(iY),   (55) 

v/here 

G-^ = C]_ + c2 

..= JL/_i2_ + Jl^ (56) 
2p Vl^ H2K2 
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c2 . 
2p \E±    H2 / J 

/1Y (57) 

Ci = 
e     g2 
2p HlKl 

(58) 

C2 = 
e     *L 
2P H2K2 

(59) 

By (4-7) "to (54-) C-j^ and C2 are found to be 

C1 = - I (n
2 + iYgo - go

2) / H^Kg (60) 

C2 = (n
2 + iYg0) / iY H-^ (61) 

where 

and 

H1H2 = n2 + 2Ago  + g0
2 by (4-9),(52) & (54-) 

     (62) 

K XK2  = n2 + 2A(gQ -  iY)   +  (go - iY)2    by  (50),(52)  &  (54-) 

      (65) 

go - iY = k^d/A - 2i3Y- 5 by (4-6),(11),2(6) & 2(7). 

     (60 

Likewise  evaluating   (4l) by (24)  we have 

-icr, 
e      ° ZyCs)   =  (DJL - D2) -[d1 e(-K-L) - dg e(-K2)]   + D2 e(iY), (65) 
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Dl = dl - d2 

6   f 1 1 
2i VHLEL    H2K2 

(66) 

J2 
2Y\kH1    Kg 

(67) 

2i Hn Kl 

(68) 

21 ^ 

(69) 

Equations  (66)   and  (67)   can be  evaluated in terms of g0,   Y   and A   as 

% = P* [2g0 - iY + 2A]/HLH2K1K2 (70) 

D 2 = i pe / Y H^ (71) 

where H-jHp,  K-jK2 are given by (62)  and (63). 

4.6   .   The solutions for Z1(s),  Z2(s)   are, by (38),   (39)   and (24), 

2pZl(s)   -^SL+SLV 
e(-Ki) e(-Kg) 

g2 ~ • + gx 

-        Kl *2 

(72) 

2i z2(s) -fi-i-V 
^ VK1    K2 

-e^)     e(-Kg) 

Ki K2 

(73) 
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where by 0+4), (45) and (51) 

!r+!ra z*(*> -iY) /KiK2 Kl K2 
(74) 

Kl K2 
= 2ip / KXK5 (75) 

5  Simplified solution for the angular deviation 

5.1 We now assume that 

F.l  The velocity is constant 

F.2  The gyroscopic effects are negligibly small, i.e. small spin 

F.3  The cross-spin damping is negligibly small. 

It then follows from these assumptions that 

5, kp/m, sin a,  0, and kQd/A 

may bo put zero in the preceding equations:  the following simplifying 
relations are then found to hold. 

A = A(s) = P'(s) = kp/2m by 2(6) - (8) 

= ai   by 2(9) 

= «2   by 2(10) 

= P-L   by 4.2(7) 

= P1
l  by 4.2(11) 

= kj^/Sm since k^ is zero 

= e/2 , 

and      po = 0 

P2 . n2 - («/2)2 

g« = iY 

by 4.2(8) 

by 3.1(1) 

by 4.5(64) 

35. 
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Hence by If. 5(62) and 4.5(63) 

E,H2 = (n
2 - Y2) + iY£ (4) 

KXK2 - n
2 , (5) 

and by 4.5(60), 4.5(6l) and (5) 

cx = - e/%H2 (6) 

G2 = (n
2 - Y2) / iY ^Hg . (7) 

By 4.5(70) and (71), 

D1 = p6 (4 + iY) / n
2 HXH2 (8) 

D2 = ip£ / Y Ejfe , (9) 

and by 4.6(74) and (75) 

^ + ^=.0 (10) 
Kl  K2 

1_      1_ 
Kl  K2 

2ip/n2. (11) 

5.2  It is seen from 4.5(55) that Zj(s) is the sum of three terms; 
a constant, a transient and an oscillatory term.  The damping factor in 

the transient term is e" vs"so-// f  an(i for sufficiently large s-sQ 
the contribution from this term is negligibly small.   The locus 

ZL - ZLo = °L ZI>) 
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then becomes a circle 
I
G

LI   lcl - °2 I from the 
of  radius   ICjJ    I Coj   whose centre  is a 
e origin.       By  (l+),   (6)  and  (7)  we fi 

at a distance 
find that 

|GL|   |C2|  = aLe   )n2-Y2|/   M /(n2 - Y2)2 + YV (12) 

|CL|   IC-L - G21 = «L VM     . (13) 

In the   special  case Y = 0,   h-.5i.55) becomes 

c-l0o  ZL(S)   =  (01)r=Q  +  (iYC2)Y=Q   (s-sQ) (14) 

for sufficiently large s-sQ.  Hence 

2L-2Lo-ViM#2^-o)] • (15) 

In this case as s increases the angular deviation will increase 
indefinitely.   The negative sign in (13) appears on account of the 
way the lift malalignment is defined in 11,3.13. 

5.3  Likewise the angular deviation locus due to moment malalignment 
is seen by equation J+.3(65) to be a circle for sufficiently large values 
of s-sn.  The radius of the circle is 

distance 

that 

CM 

CM |LV,|and its centre is at a 

I13! ~ D2l from the origin.^ By (l+),   (8) and (9) we find 

P 
|D2|=oMen

2    /  |Y|  An2 -Y2)2 +Y2£2 (16) 

P 
l^-Dgl =aMe /|Y|    . (17) 

For a non-spinning round     Y   is zero and 4.5(63)  becomes 

-iov,  „  /  v P£ p_e 
2 n 

- -K  +    (s-S J 
n 
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The angular deviation is then determined "by 

0, M iCVO 
ZM-ZMO - —^(B)-- 

aH e  M ° « - — + (s-s0) 
n 

(18) 

5.4  The angular deviation due to an initial yaw r^',0  is, by equations 
4.4(28) and 4.4(29) 

Zl ' Zlo = ^o* h^ 

s 0    for sufficiently large s-sc 

by equations 4.6(72) and (lO).   This shows that the angular deviation 
is entirely transient. 

5.5  The angular deviation due to an initial rate of turn of axis £0 is 

Z2 " Z2o Z2(s)  by 4.4(28) and 4.4(30). 

For sufficiently large s-s  equations 4.6(73) and (ll) give 

Z (s) = P/IC^ 

hence 

- p/n2 ; 

Z2 - Z2o -K  * / n2 Vc (19) 
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APPENDIX A 

EVALUATION OF INTEGRALS 

1 Fresnel functions 

1.1      Write 

e(u)  = C(u)   + i S(u)  ml     zXlZ       dx (1) 

o 

for real u, and define D(u) by the equation 

. %   2 

D(u) = B(u) + i A(u) = e  '  [(l + i) / 2 - s(u)]       (2) 

for all real u.  It can then be shown that 

(a)  B(u) and A(ii) are monotonic decreasing functions for positive 
values of u (Refs. 1.3 and 4.3) and so can be conveniently 
tabulated. 

(b) 

D(-u)  = e-i2U (1 + i) - D(u)   = 2 e_i2U D(o)  - D(u) 

and 

D(-u)     : ex2U  (i . i)  _ D(U)    =   2 e 
lSua5(o)-S(u), 

>     (3) 

where the bar denotes the complex conjugate.  Equations {})   show 
that B(u) and A(u) are oscillatory for negative u. 

(c) D'(u)=.[l + ixu D(u) ] • (k) 

D^Xu) = - iff [uD^Cu) + (n - 1) D(n-2)(u) ]   n > 1 (5) 

(d) u|D'(u) |< |D(u) I for all finite positive u (6) 

(e) |D*(u) I <^ |D(u)| for all positive u (7) 

1.21 From now on we shall be concerned mainly with fuotions and integrals 
of D(u) where u is of the form 

u =  \s = \  Vs + ^o , (8) 

where ^ > W> are rea-^-  constants, and \^ denotes the positive square 
root of \]_ •   Then, XQ ±a  real or imaginary according as \^ is real 
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or imaginary; and >.g is real or imaginary according as "K^  is positive 
or negative. 

Yfaen ^s is imaginary, write 

\  = i V > '(9) 

where 

a "1  ° T ° 

and 

\. i = \ ' Vs + \ ' (10) 

iV  = \x  , iXn«  : (11) 
O      O 

1.22 Let (l) and (2) define e(v) and D(v) for imaginary arguments' v 
equal to iu.   It then follows that 

s(iu) = ie(u) (12) 

and 

D(iu) = il)(u) . (13) 

2    Integrals occurring in Yaw functions 

2.11  The integral 

f     io (V^s ^J -i- A, * 
I   ° °    avu«VSe   2%   IX(3OJS) , (1) 
so 

where 

Vu
2 =2 a u  ,,.... (2) 

can be  evaluated in terms of Fresnel functions. 
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By 1.21(8),   (l)   and  (2)   give 

*\(s0,s)   = 
1_ 

\ 

iX2 
2" e  ^ a.\ 

1 

^7 
i— ?*a ^ ^     2~1 

D(XSo)   e2      °    -D(Xa)   e^ 

by l.l(l)-(2). 

(3) 

2.12    We define s>  to be the value of    s    for which \   is zero,   then 
"Y^\ = ~^,

c/^l«       When Vs^, </s^  it becomes convenient  to apply l.l(3)   to 
(3)   to  obtain the  alternative form 

^(S0(S)=-^-[D(-XSO) 
.K i   2 i5v2' 

3
A2\.D(,)e-2^ <   s   < *    M 

^"o.*) --£• D(-\   )   e1?^2 _ D(\ 
• % y   2 ~1 

3)   e^3    +  (1 + i)J sQ< s^<s« 

(5) 

2.13    When \s is imaginary, \   '   is real and is negative for s<s^. 

The alternative forms of equation (3) in this case are 

^(so,a) = rr [D(V )  G"±2 ^   - D^V) 
-1: 

K  -v   I 

V 
V    S0 <  S ^ 

I\(s0,s)=- 
V 

D (*aJ)  e^?^2   -D(-V)   e"1^'2 
s  < s<sx    (7) 

ft -v     '2 ft ., '2 I\(so^)  =-^(-7,So')   e'^^o    -D(V)   e-i^>6
+(l-i)Jao<sx<s.     (8) 

93. 

CONFIDENTIAL 



CONFIDENTIAL 

Technical Note No. G.W. 177 

3    Integrals occurring in lispersion functions 

3.H We now evaluate the integral 

s 
i[o-(u)-<ro]  ,        _ -i*c I    ei[cr(u)-^0] DW ^=/_ e-^0 ^(SOJS)>        (l) 

where 

o-(u) - cr a n2(u - s0) + ri;L(Vu - V5^)  .        (2) 

It appears very unlikely that this integral can be evaluated exactly 
for general values of the parameters.  For the present paragraph it is 
supposed that \u  is real and positive in (s ,s); the other oases are 
dealt with in paras. 3.21 - 3.26. 

3.12  Equation (l) can be expressed as 

Y 2 

.•^uU-Jf   f ^H)»(MI))!,   (3) 
0 

by the substitution 

* - *a
2  .   *o  -  YSo

2   , 

where 

Y„ = Y-,   Vu +  Yn (4) lu    -    lX     »U    T       ,Q 

Y^ = 2n2A (5) 

YlYo = V"   ' (6) 

so that 

<u)-cr0=f (Yu
2-YSo

2). 
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3.13 Case_j_Ys positive for s> sQ i.e. no positive 

Partial integration of (3) gives 

iCn 
J\(so>s)~ <G 

2Yi 

R 
p+1 

p=0 \ /   dxp -  /x •] 

x=Yc 

> as 1+ », 

=Y 2 *o=^s 

provided Y]_ * 0. (7) 

This series does not converge as R •> », being an asymptotic series. 

As far as the second term equation (7) is 

) — f e10^ -,\V.S»0) rc  Y. 

-»S 

1
 i.i J 

(8) 

where Tu stands for the second term, namely 

*u"l ^W-^,(V 
Y U Yl 

/ 2YU
5 (9) 

The condition  that   }TU[    should be less than l/N-th of   |2D(*u)/rcYu|,   the 
first term in equation (8),   is that 

-1+h iY  E'W Mu
2   <  l/N. (10) 

By l.l(7),   (10)  holds if 

vT^>   TTTY 

and 

Ys 
2   -  (V*2 N\ /KYi)   Ys    - N/w >  0 

(11) 
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3.1!+   Case ; Y„ negative for all s > SQ i.e. n? negative 

Write 

and substitute y = Y  '2 and y    = Ys  '2 in  (l), 

v <2 

i^-(y-yn) 
e     2 

2V     Y. i2 

D<Vy>> £ (12) 

The first two terms of the asymptotic expansion give 

J\(so>s)' 
1      r io-(u) 

2Y-L1 

"21    i)(\J 
%       Y   ' 'u 

—I    -vS 

V 1      as Ys   ,2->«,       (13) 
i 

where 

T  '   =    £ T(\i) 

Y 'U 
Y T^J /    2Y   ,: 

u 
(14) 

The  condition equivalent  to   (ll)   if 

V"s7> -/s" 

and 

Ys   '2 _  (V2 NXj_ /TCY1
I
)   YS   '   - NA  >  0 

(15) 

3.15     The  evaluations of   (3)   given in    3.13 and 3.14 can be expressed 
as follows.        If 

£(u)  = i e AYXYU (16) 
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^r s   >• Vs o y 

(17) 

Ws„2|  -  ¥* !«!    /   "lYj)   |Ya   | - N A   »   0, 

the solution of (3) can be taken as 

Jx(s0,s) = D(XSo) S(s0) - D(\s) Z(s) 

with an error of less than l/N. 

3.16  \7hen Y-, = 0, it can be shown that for sufficiently large n^ 

(18) 

Jx(s0,s) = D(\So) 2(s0) - D(\a) 2(s) , (19) 

where 

. .   . icr(s) , 
2(s) = 1 e     /rxi (20) 

The condition of validity for (19), corresponding to (17) is that 

|nx| > V2 NX]_ . (21) 

It is seen that (20) and (2l) agree with (l6) and (17) with Y^2 = 0, 

YlY0 = nxA • 

3.21  So far in this paragraph, Xu has been assumed real and positive. 
This is case (a) below.  The other three cases have still to be 
considered. 

(a) \u real and Vsl negative or less than VsT 

(b) \u imaginary and VsT negative or less than vs^ 

(c) (i)  \    real, s < s*.  and • s < ss s.% 

(ii) Xu real, s < s^ and sQ < s Si<S 

(d)   (i)  X^  imaginary, sQ < s^ and sQ < s '< s. 

(ii) \u imaginary, 
s
0 < s^ and sQ < s^< s. 
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3.22    Case  (b) 

By 1.22(1.3 ) we can write  (l)  a£ 

72"a e^o Jx(3o,s)   a i|'    ei[^^o]5 (V)   dVu (22) 

and carry out the work of 3.13 - 3.16 with D(XU) replaced by Dfo. ')• 

The result would then be 

Jx(s0,s) = i[D(Xa ») S(s0) - D(V) S(s)] (23) 

provided 

o    Y 

|YS 
2| - (^2 NX « A lYJ) lYc I - V* > 1  o 1        -1      o 

(22,) 

When n? = 0, this condition becomes 

jnij > V2 N\1' (25) 

3.23 Case (c)(i) 

By l,l(3) we can write   (l)   a£ 

•^ V2ae     °Jx(^s) = a)(o)e 
-ITT-XC./    f    3-2 ^u ~^S- ' •2"""sc dVu-/    e 

i«u)-cro] 
D(^) dVu 

(26) 

where 

1 Ms„    -   ^Yu        Ysn '       ^u 
As„ J Hu te0   ^   ^'u *s0 
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The first integral on the right hand side of (26) can be evaluated by 
2,ll(l), and the second integral by the method of 3«11 to 3.16,  We 
obtain 

Jx(s0,s) CK)J(U) -2D(o) -~- 0 
D(jiu)  i{o-(u)4^u

2] 

H 
-'S, 

(28) 

provided  (17)   holds. 

3.24    Case  (c)(ii) 

Put  8 3 s^in (28)   and s s^ in   (l8)   and add - 

J\(sQ,s)   = Jx(s0,sX)   + Jx(sx,s) 

= K(3o,^)  "   H-KJ ?(s0)   + D^s)   S(s)]  ,     (29) 

where. 

K(80,s^)«2D( o) [2(^)4. 1 
Pi 

i^< 2 i£^2li[l 
(us ) e *   ^0 -D(|is )c?s4 

i_   '   ^o 
^>-f\2]} 

(50) 

provided  (17)  holds. 

3.25     Case  (d)(i) 

By l.l(3)  we  can write  (22)   as 

V2ae    ° Jx(s0,s)=2iU(o j .if^ / 5^2^o\Vi J ^^.^ 

(31) 

where, by  (27)   and 1.2l(9), 

,,   2 _   ..    2 ^   fY 
2 - Y    2)   +  (\  ,2 -   X.   l2) 

99. 
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(3l)  can be evaluated to give 

J\(so>s)  = i D(-\u»)   S(u)  - 2 D(o) 
D(Kis)      it^H + IV2! 
Hi 

(33) 

provided  (21f) holds. 

3.26    Case  (d)(ii) 

Jx(s0,s)  = K(s0,sx)   - i[D(-?^o')E(s0)  + D(Xs«)E(s)] (34) 

provided  (2if)  holds. 

3.3       The  approximate  solution 

3'3^-    An approximate evaluation of J\ (s0,s)  can be  obtained when either 

2 9 
(a)    Yn   , X   ~ are positive and X-,   is nearly equal to Y,. 

? 2 
or (b)    Y-^', X-,'     are positive and 7u'   is nearly equal to Y '. 

In case   (a) Y    ,  X„^ are  never negative and in (b)  are never 

positive.       In  (a) Y„,   X,, may be positive  or negative,  and in  (b) 
Ys',   \J   may be positive  or negative according    as Vs is  greater  or 

less than ^"sy,  Vs* . 

(a)   and  (b)  are divided into  two  cases 

(i)       ^SJ   always positive   i.e.   Vs^ <  Vs^. 

(ii)     X^  always  or  sometimes negative   i.e.   Vs0   <*   *S\» 

3.32    Case   (a)(i) 

Write 

K 3  *(! ~ £\) 

Yu B  x + KX 

where   E-\,  K>  are chosen so  that 

sA  =   s 
A. 

= 1 -XJ/YJ, 

«:>.= K  =   (Y^ -Y1X0)A1     , 

(35) 

(36) 
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then (l)   can be written 

e~X*° J^so>s) 
„A      Te4[(-K)2-^o-)2]D(x(l-E))dx. 

Yl      V" 
(37) 

By the mean value theorem applied to D(u) WO have 

B(x(l-s)) - B(X) a -S X B»(X) + 0(e?) 

A(x(l-e)) - A(x) a -e x A1 (x) + 0(s2) 

and hence that 

|D(x(l-e))  -D(x)|   <ex |D«(X)|   +  lo(s2)| 

< e|D(x)|      +   l0(s2)| (38) 

by 1.1(6) since x is positive. • 

If D(x(l-e)) is replaced by D(x) in (37), (38) shows that the 
fractional error is not greater than e for s sufficiently small. 
With this approximation made, it is easily checked using 1.1 (A.) that 
(37) °a-n t>e evaluated to give 

iffa)  i3(Yu) - D(YU-K?Q 
—iS 

(39) 

In the special case e^ = 0, equation (39) is exact.  By {,35) ,(36)  wo 
then have X-, = Y]> \ = Y0 ~ ^ > and so (39) can be written 

•^Cso>3) -=r! 
rio(u) D(YU) - D(X.U) 

7Cf 1 

—iS 

Y "* X 'o   o 

(¥)) 
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In the special case when KU  = 0,   (40 ) becomes X 

Jx(s0,s) =^ 
Ttf- 1 L_ 

i<r(u)  .  • 
D'(YU) (41) 

In the case K\ = 0, s?\. * 0, we see from (39) that the solution is given 
"by (4l), but now only approximately. 

3.33    Case (b)(i) 

V/rite 

V =y(i~e\«) (42) 

Y„! = y + *V u (43) 

where s> , K»' are chosen so that 

/ ^ e' =1-\L«/Y1' = (44) 

CX' = K' = (Yo^l'-Yl^o^A!1 = "iK ,       (45) 

then, by 1.22(13), (l) can be written 

y'-K1 

-xcr 
J\U0,s) = :rf 

Yn 

-i|[(y^')2-(y0+K')
2]_ 

3  2 °     D(y(l-e'))  3y.  (46) 

so 

Since y is positive in the range of integration, (38) holds with x 
replaoed by y, and we can evaluate (j+6)  approximately to give 

J\(so>s) = -o> •     , 
KYi 

icr(u) D(YU')-D(YU'^KX') 

*X 
(47) 

with an error not greater than   s. 
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By 1.21(11), 1.22(13) and (45) it is seen that (47) reduces to (39) 

$.31+ Case (a)(ii) 

When "KQ is negative it is possible to evaluate (37) hy this method 
only when the minimum value of ^„, i.e. 7^ , is fairly near zero. This 
is because the inequality 

|D(u(l-e)) - D(u)| < 8 |D(u)|  , (46) 

which is used to evaluate (37) , does not hold for all negative arguments. 
Let u = u (e) be the value of u (negative) for which the equality holds 
in (48), then if Xg >   uc the method of 3.32 is still valid.  The value 

of uc(i) is about -0.5. 

3.35 Case (b)(ii) 

If \s • > uc, (47) still holds with a maximum error e for suffi- 

ciently small s . 

3.if  An approximate solution of J^,(SQ,S) can be obtained when X-, is 
small compared with Yj_,   It can easily be verified that 

s 

Hi J\(s0,s) + Vu(vs) :   e    DW D(HU) (49) 

s0 

where |au is given by (2/).  Y/hen ^ is nearly equal to Y]_, ^(SQJS) is 

given by (39);  (49) then gives J^(sQ,s). 

A similar result holds when \-. ' is small compared with YT ' . 

The maximum error is 

I^U ll-^/Yi I 

* \2/2Yl
2      or     X1»2/2Y1«2 

4 The Yaw Integrals I<x(s0,s),   I^(s0,s) 

4.1       These are  denoted by 

^ e °     Ia(s0,s)   =    fc e dVu (l) 

so 
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• K  a 

/2a e     z  '   °    Ip(s0,s)   = 
-±n(u-s0)    i[c<u)-o-0] 

aVu, (2) 

where 

and 

cr(u) - crQ = n2(u-s0)  + n± (Vu - V^) 

V^= 2au 

(3) 

Write 

| (au
2 " as 2)  • ("2 + n) (u - B0)  + ^(Vu - Vi^) (4) 

and 

? 0„2 -  Ps 
2)   = (n2 - n)(u - a0)   + ni(/u - VT0) (5) 2    ^U "3, 

au = a-j_ Vu + a (6) 

Pu =  ^L /U
 

+  Po     » (7) 

then 

a,     a 2(ng + n)  /% 

«l«o = nl /* 

(8) 

(9) 

Px
2 = 2(n2 - n)  /* (10) 

W0 - n±/% (11) 

10^. 
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If s    is the value of    u    for which au = 0,   then 

VS^ = - n1/2(n2 + n)   . (12) 

Similarly 

Vs^ = -  n^Cng - n) (13) 

4.2       The  evaluation of   (l)   and  (2)   is,  by 2.1l(3), 

-i* rt, 2 12CCso 

^(SQ^)   =~LD(^ e   ' "D(0ts) 

iu a 2n 
^ as 

(14) 

I«(sn,s) FT 1 L 

i^3<   2 71 - 2- 

>0So)e-*"        -DOs)  eS^ (15) 

When    a       ps are negative or imaginary,   (14)  and  (15)   can be transformed 
by 2.1(4)  - 2.l(8)   so  that all arguments are positive. 

5 The  integrals Jg(sQ,s),   Jft(s0, s) 

5.1       These integrals are 

V2a e Ja(s  ,s)   = I)(au)  dV (l) u 

so 

^^^,1= j^M-&^K)mu, (2) 

so 

where o"(u)   and Vu are given by 4.1 (3),  and au and (3U by 4.1 (6) 
• 

- 4.1(H). 
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5.2      Conditions for  the validity of  the Asymptotic Solution 

The  conditions under which the asymptotic solution holds with an 
error of less than 1/N are given by 3.15(17)   or 3.22(2^);     they can both 
be written as 

vT~ >  VsT 
Y 

i    , (3) 

lYs0
2| "  (/2 NKI   /*   M    lYs   1 " N^  *    ° 

where \,   now stands for either ot]_ or 3i« 

By 3.12(0   to 3.12(6) we have 

|YS1  = J2|n2| /%      (Vs + n± / 2n2) (4) 

when    s >  sY ,  and 

vs" = - 1^ / 2n5 (5) 

By 11.9.3(13)  -  (14) and 11.9.2(3) - (h),   equations (h)  and (5)  give 

|YS   I   -  |r0|   /^ajtigj (6) 

V^-VT=-ro/n2v
r2a (7) 

Equation (3) then requires that 

r /ng>   0 (8) 

and 

Nrc l+^-S<    ro 
n2 Va |n2|Na 

(9) 
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If we choose r    to be positive,   then  (8)   requires n^  to be positive and 

(9)   gives 

2rQ /^r^2   >\\1\  N / Vn^ +  (JA^N2/^ + iOO*  • (10) 

Of the two values for \X-^ j, ^(np+n)/* and J2 (ng-n \/n,   the former is the 

larger since n is positive;  substituting it into (10) we have 

*. /^>J! 4f^l+[(1 • £)+ff] •    w 

In the particular case when n/n2 is small and N is large, (ll) gives 

r 2 > 2 a n0 IT /TC . 
0       ^ 

(12) 

There has been no loss of generality in taking r to be positive: 
if it were assumed negative, (8) and (9) would lead to the same equation 
as (ll) with r and n? replaced by -r and -n0. 

5.3  The Asymptotic Solution - Expressions for J„(s0js), JQ(S >S). 

When the conditions of 5.2 hold the evaluation of J^(s , s), for 
X - a  or 3, is given by the results of 3.11 to 3.26.  These solutions 
will now be written out.  There are four cases (see 3.2l). 

5.31 Case (a) : a^2 (or P>±
2)  positive, and a^  (0r 3S) positive 

for all s >  s 

Prom 3.15(16), 3.15(18) and 3.12 (4)-(6), we have 

-ic, 
0 J\(so>s) =- ± 

H\L)   
e 
i[cr(u)-cr0] 

2iv> Vu + n-j^ 
(13) 

for X =  a or $ . 

5.32    Case  (b) :  o^2  (or P-j2)   negative,  and as'   (or 31)  positive 

By 3.22(23) 

for all  s  > s  . 

-io", 
e  -   ° J^(s0,s)   = 

DOS,')   o1^"^ 

for  A =   a or (3, 

2n£ Vu + 

107. 
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5.33 In cases (c) and (d) the results can be somewhat simplified. 
Prom 3.23(27) we have 

^1 ~ Yi   \ (13) 

^o = YlYo - W (16) 

and hence from 3.12(5) - (6) and 2f.l(8) - (ll) equations (15) and (l6) 
become 

u-j2 = - 2nA (X = a) 

2n/%    (X = p) 
(17) 

^c = 0     (X = a or P ) . (18) 

If we write 

8]_ = + V2nA (19) 

6S = o^s (20) 

and 

Kft* Z*(*0,B)   = (21/5-L) D(6S ) - D(6.) e 
in(s-s-) 

(21) 

we find using 1.22(13), and (17) - (2l) that 

D(as) e * 
S -D(aSo) e 2  ° - Hx 

-ms„ — 
^X(s) /2i  (X- a) (22) 

ins 
= -ux e  °r(s) /2i  (X-P) .   (23) 
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2,2 Hence since o~(u) - %(\±'  + H ) / 2 is independent of u 

1*1 

TC., 2 

D OO eiC°"(u)"^U"] 
*„ 2i 

(-i/2) 6 (B) a    2  °   (X . a) (24) 

= (i/2)^(S)e
i[Cro"|3ao2] ,  (W)  (25) 

and in the particular case when 3 = ss, 

t [ 0K, .'K' ^ .if V] e'^^-Ci,*,* (Sa) .^o"?^     (X. a)    (26) \\ 

=(-1/2^(33) e1^0  2  So2J   :(Km 3).   (27) 

5.34    Oaso(c)(i);    a±
Z   (or (3-^)  positive and as  (or 3S)   negative. 

Prom 3.23 (28)   and  (2if),   (25) 

-10", 
J<x(s0,s)   = i 

D(-ctu) 
^crCuJ-crJ 

[_   2n2 v"u + n-j_ 
+   iD(o)  Us)  e'12"^0      (28) 

-M?r 
J(3(s0,s)  = i 

D<-*u> 
jL[c(u)-<£] 

2n2  Vu + nj 
- i D(o)  *%)   e^2  fe°  .   (29) 
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Case  (c)(ii) ;       oc-^    (or 0X )  positive and   o^  (or  0g)  positive. 

From    3.22^30)  and (26),   (27) we have ^ 

i[cr(sa)-0"o] -i~as
2^ 

o"iffoK(s0,s^2B(o) p— -- + |-f(Sa)a    2     0 
v- n n1/(n2+n) 

(\ - a)    (30) 

= - 2D(o) 

iC°"Cso)—o*c3 i e H 

n n-j/^-n) 
+ I * (-0)  ^ ° (X- 3) ,(31) 

and from 3.2k (29) 

e      ° JX(s     s)   = e K(s0,S?}-  1 
D(\ )   e 

s D(-V) 

2n2^s"0+nj_        2n2Vs+ni 

i[o<s)^r0] 

(32) 

for X = a or 0. 

5.35    Case  (d)(i);     a2  (or 0X
2)  negative and as (or 0g)   negative. 

Prom   3.25(33)  and (24),   (25) 

e   ' ° JK(soJs)   = 
5(-<) ,*1*<"KJ 

-ICn J0(so>s)   = " 

- D(o)   f (s) e 

+ T5(o)  Sx(s) e 2     °    . 

(33) 

(34) 
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Case  (d)(ii) i     a±    (or p^2)  negative and ag  (0r Ps)  positive. 

Prom 3.26(34) 

-iff -icr„ 
J\(s  ,s)  = e       D K(s0,s\)   + 

H(-V)     5(V)eiF(s)-ffJ 

2n2Vs^+n1 2n2/s+n]_ 
(35) 

-icr 
for \ = aor (3, where e '  K(sQ,s^) is given by ($0)  or (3l). 

5.4  Asymptotic Solution in Constant Spin Case 

5.41 When ru is zero, the condition corresponding to (9) is, 
by 3.16(21) and 3.22(25), 

n±\   > V2 N jX-LJ (36) 

where |)t-|J now equals \/2n/rc, and nj_ equals v2/a rQ. 

It should be noted that when \g stands for <xs and n-j_ is positive, 

or when \3  stands for 3S and n-^ is negative, the error is usually much 
less than l/N;  this is shown in the following. 

By 4.1(8) - (9) 

2 ns   n, 
cr =   + —±- 

% &Ki nrc 

> n-j/V^nft 

since n-j_ is supposed positive 

> V2 N/n (37) 

by (36). 

For values of ag of this size  (i.e.    >l)   the asymptotic expansion of 

D(u)  holds with an error of less than 10fo,  and gives (see Ref.   1.4) 

JD'(u) /D(u)|   = 1/u 

111. 
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Hence the error in the asymptotic solution 3:. 16(19), which in general is 
the left hand side of equation 3.13(lO), is seen in this case to be 

_i  ,  s' ,  which is less than %/ 2 N2 by (36), (37) and (38); i.e. 
nl D(«s) 
the error is very much less than l/N. 

Similarly when \    stands for (3 and n, is negative we have 

M 

/2n ,    nn 
V =J-  Vs   =1 

2n^ 

by A.l(lO) - (11) 

-ni/V2 n% 

since nj_ is supposed negative. 

By the same argument as above the asymptotic solution 3.22(23) 
has an error less than %/2  N . 

In the remaining cases: when v stands for as and n-j_ is negative, 

and when \s stands for |3S and n^ is positive, we can say that 

and 

- os > V2 N/TC, when n-^ < 0, provided Vs « -n-^/2n = -fs~ 

-  j3 ' > /2 N/K, when n^ > 0, provided Vs «  n,/2n = V^o- 

Hence only when Vs is very much less than Vs"~ for Vsg) will the error 
be as small as %/2  N.  As s approaches sa (or sJ the error increases 
to its maximum value l/N, since at s = s„ (or So) the equality sign holds 
in l.l(7).  As s increases above 2sa (or 2SQ), <XS (or S) exceeds 
/2 N/TC and the error becomes less than %/2  N^ again.  The error in the 
asymptotic solution is therefore less than %/2  N2 except when s and s 
are near sa (or so), where the error is l/N.  It is usually found that  _^ 
when (36) holds Vs^<<VsT (or Via);  for example, if N = 5 and xn = 0.02ft, 
sa (°r V * 1200 ft" 

5.42 From i+..l(8) and (10) it is seen that ai     is positive and 
(3r]_2 is negative;  therefore if rQ is chosen in a positive sense n^ is 
positive, and hence (Xs is positive for all s > sQ, while 3S' is negative 
for s < s < so and positive for s > s„.  Hence J (s0,s) falls under 
case (a) and <Lj(s0,s) under case (d).  By (13) we have 

-±crr 

nl 
DCau) 

i[<r(u)-o-j- 
(39) 
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and by (34) and (35) 

B~ICr° Ja(so-s) = - r P       ni 
"5(-Pu') e 

i[o-(u)-<r0] s 
+ 

s. 

!*& 
i2 

D(n)£X(s) e 2^0     sQ ^ s < sp    (40) 

r^ L   so     s J        P n K 

(41) 

5.5  The Approximate Solution 

5.51 This solution holds in the case when Vj/Y]_ or Tin'/V-,' 

(X]_ B ct-j^ or Pi) ^s near unity.  The maximum error in the solution is 
then 

|i| a \i-\Zrj\ = |i -V /Yx' I 

By 4.l(8) and (lO), and 3.12(5), VLAI =Jl+  n/n2 in the two cases, 

showing that this solution holds when n/n2 is small.  The maximum 
error is then 

I e j 4= n/2n2 . 

It should be noted that the error will usually be much less than this value. 
The reason is that when the integrands of Ja(s,s0), Jg(s,s0) are largest 
au>   ^u w^-l ^e near zero - where the approximation to D(x(l-s)) in 
para. 3.32is most accurate.   The error in the integrands only approaches 
|e| when au, 0„ tend to infinity by l.l(6);  i.e. when the integrands 
of Ja(s,s0), Jg(s,s0) approach zero. 

There is a further condition which is required to hold when ou> 
«„', $s or 3S' 'are negative. In 3.3, this is discussed as case (ii). 
In most practical examples it is almost certain to be satisfied. The 
condition is that ccs etc., should not be 'too negative', but greater 
than about -0.5. When n2 is positive it is seen from 4.l(8) to (ll) , 
11.9.3(13) - (14) and II.9.2(3)-(4) that <x3 and (3S are greater than -0.5 
provided 

2nVs^ + ^2/1  r0 > - J% (n2 + n)/2 (42) 

-2n/T0 + V2/a rQ >   - Jn(n2 - n)/2    . (43) 
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If r0 is zero or positive (42) will always be satisfied.  When rQ is 
zero (this is the particular case for which this method is used to obtain 
the results of Pt.l), (43) requires that 

^e- % 
l6n )s I 

(44) 

Hence if n = 0.01 ft" , e = 0.1 (44) requires that sQ < 200 ft. When n2 
is negative, the required conditions are those obtained by replacing 
r0, n£ by -rQ, -n2 respectively in (42) and (43). 

5.52 Choosing n2 positive, the solutions for Ja(s,s0), JQ(S,S0) 
are given by 3.32(39).  It is found that 

-itf   ,   N  i(n2 + n) f . ifc-(u)-crl "] 

J. (45) 

-icro        /          x             i(n2  -  n)  f r     /     \ / \1        i[cr(u)~°o] 
3      °J(3(s0,s)= 2 I [D(YU) -D(YU-Kp)]     eL 

1 
,(46) 

•**o 

vrtiere by 3.12(4)  -  (6)   and 3.32(36) 

Y     =  (2ng Vu + n1) / V2^> (47) 

Ka = n n,   / V2 TCng  (n2 + n) (48) 

KD    = n nx / V2 xn^  (n2 - n)     . (49) 

5.53    If    n    is negligible in comparison with JV  equations 
4.1(8)  - (ll) and 3.12(4) - (6)   show that 

S =  ^Ysi (30) 

hence Ja(s ,s) and Jp(s ,s) are equal and independent of n. 
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Prom equations (47) to (49) it is found that both Yu - Kaand 

Y - Kg tend to Yu as n/r^ tends to zero, so that in the limit equations 

(45) and (46) become 

-io-n  ,   . 
9      J\(S0,S) = xr1   L 

i["o-(u)-o\l 
-l3 

(X = a, 3).    (51) 

5.54 If the launching spin is Sufficiently large D(YU) can be 

replaced by the first term of its asymptotic expansion (Ref. 1.4).  The 
required condition is 

7tY< 2 »1 

i.e. ro
2/a n2 >> 1 

by 5.2(6). 

Then 

and from (5l) 

Dflrj = I/*YU 

-ix? 

° ^o*)   =~Z2 ^Yi 

i[o-(u)-<r0] 

1 L  Y. u 

(\ » a, 3).     (52) 

In this case however, when both n2/n and r /a n2 are very much 

greater than unity, the asymptotic holds in view of the condition 5»2(12). 
By equations (50), 3.15(l6) and 3.15(18) we obtain 

-iov 
e    °\  ^ao J\  (so>s) = - 

%Y±   L 

^[^(u)-^ pyu) 
—]S 

Y  -J u  s0 

(X = a^), 

which agrees with (52) asymptotically. 
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