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ROYAL ATRCRAFT ESTABLISHMENT , FARNBOROUGH

Dispersion of a Ground-launched
Rotating Missile

- o

by
G.V. Groves, i...

R.A.B. Ref:G.W. S/147/105

PART I The effect of spin on dispersion during boost and after
separation

PART II The cquations of motion and thelr solution during
burning

PART III 4 solution for the motion after burning

LPPENDIX A Evaluation of integrals

'
Suwmmary

From the equations of motion of a rotating rocket, closed solutions
are obtained for the ballistic dispersion during boost under the assumption
that the angular acceleration is constant - Part ITI and Appendix A,

These solutions src¢ evaluated numerically for the two cases:

(a) launching spin zero

(b) angular ascccleration zero,
and the results are prescnted and discussed in Part I. By comparing the
dispersion with that of a non-rotating round, the effectiveness of spin
as a means of reducing dispcrsion can be assesscd in ecach case.

In case (a) it is found that reductions in the dispersion by a
factor of 3 arc theorctically possible by ofi-setting thc nozzlcs of a
multiple boost system tangentially by less than 5°. To achieve larger
reductions by this method, the nozzle ofl-sct must be increased in

proportion to the square of the reduction sought.

In case (b), thc constant spin casc, it is found that a spin of

v just less than 1 rev/scc is in gencral sufficicent to reduce thc dispersion
by a factor of 3. For higher spins the reduction varies linearly with
the spin.

In Part IIT closcd solutions arc obtaincd for the dispersion of the
dart duc to unclcan scparation and aerodynamic malalignments. From these
solutions the maximum dispersions that can arise arc then deduced. The
results are presented in Part I, and it is concluded that dispcrsion of
the dart from these causcs will be small compared with the dispersion at
the e¢nd of boost.
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BARIT I

THE FFFECT OF SPIN ON DISP.RSION DURING
BOOST AND AFTER SEPARATION

ils Introduction

iliaedl: General remarks

The trajectory followed by a guided missile during the initial
uncontrolled part of its flight camnot be predicted with certainty on
account of a number of effects of unknown magnitude that influence its
motion, e.g. thrust variation of boosts. The trajectories of a large
number of similar rounds, i.e. rounds manufactured to the same design,
will therefore give a certain distribution of trajectories about the
méan (or standard) trajectory. A measure of the 'spread' of this
distribution, e.g. the standard deviation or the radius of the 95% zone,
is called the dispersion of the round.

When the dispersion is known the percentage of rounds whose

trajectories arc aeeceptable to the particular guidance system eonsidered

can be determined; or alternatively, the requirements of a particular

uidance system can be stated for which only a certain small pereentage

%say 5%) of the missiles is lost. In this respect some guidance systems,

such as a non-directional command link, are ideal because they could be
made to .operate for all positions of the round in space. At the other S
extreme there is beam-riding guidancc, whieh operates only as long as e
the missile lies within the narrow conc of the radar—-tracking beam. In

this casec an ancillary guidanee system is necessary to shepherd the

rounds into the tracking beam. The larger the angle of this gathering
beam however the longer the transfer time of the missile to the narrow
beam and hencec the greater the minimum cngagement range. On this
account it is important to utilise a gathering beam whose angle is as

small as possible. This demands a knowledge of the dispersion of the
round and the relative importance of the various factors upon which the
dispersion dcpends.

In Ref, 3 the contributions of these various faetors to the total
dispersion are discussed for Seaslug: the tallistic dispersion is found
to be the most important single factor upon which thc width of the
gathering beam will depend. This fact has received recent support
from firings of 502/STV's: a random dispersion of about 8° for the 95%
zone was observed. (This valuec is higher than was expected and suggests
that previous estimates of the ballistic dispersion for a wrap-round
boost arc in crror by a faetor of 2 or 3. There is evidenee however that
the thrust variation for 7%" boost motors is greater than previously
thought, and this may well explain the disercepancy between the estimated
and observed ballistic dispersions. )

Ref., 2 deals with the ballistie dispersion of various non-spinning
boost eonfigurations and shows that for a given layout the most profitable
method of redueing the ballistie dispersion during boost is to increase
either thc aerodynamic stability of the round or the length of launcher
from which it is fired. In practice therc is clearly a limit to which
such stcps can be takcn without introducing formidable constructional
problems, In addition the theory shows that beyond a ccrtain point
these measures become less and lcss effective. Also, the gain frem
increased stability will be off-set in the limit by certain dispersions,

‘e.g. wind error dispersion, which increase with the stebility of the

configuration.

5
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4 further means of reducing dispersion that warrants consideration g
is that of spinning the round. It would be expected that even a small
spin amounting to one revolution within the first half-wavelength of yaw
would prevent the accumulation of malalignment dispersions in any one
direction. This statement presupposes that the malalignments themselves
remain independent of the spin. It must be assumed, for instance, that
with a tandem boost the unknown factor', i.e. the factor between the
observed dispersion and that predicted from the measured angular displace—
ment of the nozzle axis from the rocket axis, is the same for a rotating
round as for a non-rotating round. This point hag received practical
confirmation from a series of firings of 3" rockets®.

The introduction of spin into the problem makes the theoretical
treatment much more complicated and leads to integrals which are not at
all suitable for numerical evaluation on account of their highly
oscillatory integrands. Approximate evaluations of these integrals
for the balligtic dispersion have been obtained in Ref, 1 in certain
special cases, and depend on the launching spin being suftf'iciently large,
This form of solution - an asymptotic solution - is modified in the
present report (App. A) to cover othér cases of possible guided-weapon
interest with somewhat improved accuracy. In order to deal with zero
launching spin - the case most relevant to present guided-weapon work —

a new solution has bcen derived that is exact for a neutrally stable round

and approximately correct in general for sufficiently large rates of

change of spin at launch. The discovery of this solution, called the
approximate solution in App. A, was one of the most difficult obstacles

to be overcome before a complete study of the effect of spin could be

undertaken, When thc spin and rate of change of spin at launch are &
both largc the asymptotic and approximate solutions arc in agreement.

The evaluation of the dispersion of the dart after separation has it
also required a great deal of new work, involving the fermulation of the
equations of motion with the inclusion of the aerodynamic malalignments in
Part II and their evaluation and simplif'ication in Part IIL. Part 1
presents the results obtained from the theoretical investigations of
Part II and Part III, quoting the appropriate formula<z.

It has not been nccessary to lay down any definite missile configur-
ation but only to consider the valucs over which certain fundamental
parameters are likely to range. Results are given for a wide range of
these parameters and so do not relatc to any specific design, although
their application to a Seaslug-type missile  is considered.

It has been assumed throughout that the round has symmetry of order
three or more¢ (as defincd in Ref. 1.5).

1.2 Methods of dmparting spin during boost

No detailed consideration is given in this note to the various
ways and means by which spin could be imparted to a round. Instead
results are obtained for two types of spin-form, to which most spin-forms
ocourring in practice are likely to approximate.: . These are
(a) constant angular acctleration with: zero rate of rotation at -
" lauhch, and :

(v) constant ratc of rotation after launch.
Type (a) cah be identificd closely with the spin arising from off-set
boost nozzles of a multiplc boost system, and typc (b) with the spin of a
round projectcd from a spiral or rotating launcher, particularly during

the first part of the boost perioed. The method of spinning by off-sotting

6.
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boost nozzles has been applied to test vehicles with wrap-round boosts
and is the only method in use at the present time, This method might
also be applicable to a tandem boost with multiple nozzles, or to a boost
- of the tircumferential' type (for description see Ref. 2), particularly

if . the stabilising fins are offset to delay their damping out of the

spin until later in the boost period.

The method of imparting spin by off-set fins alone is unsatisfactory,
beecause the rate at which the spin builds up is then smallest when the
velocity is low, and hence when the largest dispersion occurs: besides
this disadvantage the structural requirements of the fins would become
severe with increasing size and off-set angle, Rounds with large
stabilising fins often generate a small spin of 1 or 2 revs/sec due to
a slight deformation in the fins, but this spin does not build up until
near the end of the. boost and so does not produce any effective reduction
in the dispersion.

The spin-forms arising from off-set boost nozzles, and spin at launch
and combinations of both are the subject of para. 2.  The maximum value
that the spin attains during boost can be related to the damping properties
of the round in spin and to the magnitude of the boost ecouple.

1.3 Causes of dispersion.during boost

The various causes of dispersion can be divided into two classes:

() malalignments inherent in the round, and

v
(3) external causes, ¢,g. initial launching conditions and wind.
. The dispersions due to (B) depend on the. spin only in so far as it
produces a precossional motion., For sufficiently smell spin this effect
is negligible: the exact criteria are contained in assumptions B.l and
B.2 page 49, and require that
B2r2 < < 722
and
2
Br << n VB/a,
where 2B = M of I in roll/i of I in pitch
L A=¥Spdim
V = velocity
4 :
a = acceleration
n2V2 _ aerodynamic restoring moment/incidence )

: M of I in pitch

Thesc conditions almost certainly hold for spins of the magnitude
arising in practice with guided weapons, say of less than 5 revs/sec.
When the precessional effects are neglected, the motion becomes identical
with that of the non—rotating round and so is not considered in this note.
Seel Refis 151

{e
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The dispersions due to (&) on the other hand are all reduced by
spin, except for the dispersion arising from malalignment of the princi-
pal axis of' inertia, which increases with increasing spin. It is
therefore very necessary to form some idea of the value of the spin for
which the inertla axis dispersion becomes comparable with the remaining
dispersions due to (a), &S No a&vantage is gained with higher spins.

1.4 Dispersion due to malaligrnment of the principal axis of inertia

The effect of a malaligned inertia axis on the motion of a rocket
1s equivelent to that of a destabilising couple. It ag is the small
angle made by the prinecipal longitudinal axis of inertia with the axis
of symmetry, the component of angular momentum in the transverse plane
has magnitude Arag, where A is the M of I in pitch, and lies in the
plane containing the longitudinal axes of symmetry and inertia, The
rate of change of this vector, which'is equal to the couple produced,
has magnitude Arlegy and lies in the transverse planc in the destabilising
sense. For a round with constant spin, i.e. type (b), the inertia
axis dispersion is thercfore identical with that of a constant destabilising
couple Arzag, and can be readily compared with that due to a constant
boost destabilising couple of magnitude \GP | The dispersions from thesec
two causes are then equal when the spin is r,, where

2= \Gp| / 4 ag

It is shown -later in para. 5.13 that the dispersion due to a constant
destobilising moment varies inversely with. r (for values of r not
near zero). . Lt can then be proved that ‘when r = ro the resultant

of these twe dispersions is actually a minimum, This result.was found
to be in reasonable agrecment with the dispersions observed in the series
of firings of 3" solid fuel rockets from spiral projectors®. A minimum
dispersion was obtained with a launcher pitch of 8 feet, giving a
launching spin of 16 revs/sec.

If h is the moment arm, |GP|/thrust, ro can be expressed by

=ha / k2 ag

where is the radius of gyration in pitch. For a round with a tandem
boost “h is roughly equal to the thrust malaligrment angle aqp times the
distance of the boost nozzle exit plane from the C.G. Fence h is

approximately v3 k anp, and
r2=v3aa / k, «
o 2l ToRa Ot

The values of ag, ag for the 95% zone obtained from the 3" rocket firings
were 0.0048 and 0.00075 radians. If these values are taken to be
appropriate to a guided weapon, the value of rg for a round of 30 ft
length and 600 ft/sec® acceleration is then L.l revs/scc,

8
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For a missile with a wrap-round boost h and depend on the
positioning of the boosts along the body. From valués given in Ref. 2
for a typical Wwrap-round configuration with a 100 venturi radial off-fet
(see Figs. 3 and 6 in Ref. 2), h/kp2 is found to be about 0,00077 £t
for all boost positions considered. Taking an = 0,00075 radians and
a = 600 ft/ses2, the above squation gives 4.0 revs/sec for o 9

The dispersion arising from any malalignment is clearly greatest
when the velocity is least, i.e. at the beginning of the boost period.
It is therefore necessary to limit the spin only during this initial
period. In practice this amounts to a limit on the launching spin and,
to a lesser extent, on the initial angular acceleration. The value
of k4 revs/sec estimated above for this limit is large enough to show that
the use of spin mérits further consideration: the object of this note
is then to find out how effectively the remaining dispersions due to (o)
are reduced by smeller initial spins. In view of the uncertainty of this
value we procced under the assumption that for the values of spin under
consideration the dispersion Irom the incrtia axis malalignment is
negligibly small compared with the other dispersions due to (a). The
reductions in dispersion recorded may therefore be slightly optimistic.

1.5 Dispersions due to boost and acrodynamic malalignments

The principal remaining diépcrsions arise from
A, destabilising moments duc to

(i) boost malalignment

(ii) aerodynamic malaligrment, and
B, transverse forces due to

(i) boost malalignment

(ii) aerodynamic malalignment.

During the boost period the magnitudes of A,(i) and B.(i) will
vary in some unknown manner with irrcgularities in the boost thrust.
If however a large number of firings is taken into consideration A.(i)
and B.(i) can be rcplaccd by constant valucs, depending on their
statistical distribution for the batch of rounds, and the resulting
dispecrsions can be evaluatcd.

) The variation of 4.(ii) and B.(ii) during boost is more definite,
provided acro-clastic effecus arc neglected, being proportional to the
square of the veloclty. The resulting dispersions can then be
represented in terms of integrals, which are however not soluble in
any convenient 'closed form'; and numerical evaluation would be tedious
on account of the highly oscillatory intcgrands. In practice it should
bec possible to keep the aerodynamic malalignments to within a 1limit for
which the resulting dispersions arc small compared with the ballistic
dispersions Ad(i) and B.(i). In Ref. 2 it has been shown that in the
casc of an unspun round the dispersion from A.(ii) will te small compared
with that from all other causes provided the acrodynomic malaligrment
anglc is kdépt well below 1°. The introduction of spin will reduce =
acrodynamic dispersions more than ballistic dispersions, because A:(ll)
and B.(ii) are very much smaller at launch, when the spin might still
be building up, than at the end of boost (sey 100 ?imes gregter) when the .
spin is established. For this reason a more detailed examination of
the aerodynamic dispersions has not been undertaken.

‘9.
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The boost malalignment dispersions Z.(i) and B.(i) are considered
in para. 4 for the case of constant angular acceleration with zero
launching spin (type (a)), end in pare. 5 for the case of constant spin
(type (b%). It is assumed that the launch is perfect, i.e. that the
malaligmments do not alter the initial conditions at launch. By
launching & round already spinning much greater reductions in dispersion
are obtainable than by spinning only after launch within practical
limits. Since however certain dispersions are not reduced by spin,

e.g. dispersion due to wind error, there is a limit to the reduction

it is worthwhile trying to achieve, This point is illustrated in detail
in para. 6 for the case of a Seaslug type missile., If this limit can

be attained with say off-set nozzles, then no advantage is gained by
launching with spin from say a spiral or spinning launcher. Besides
this point, it is likely that in most cases the structural problems
associated with a spiral launcher would militate against its introduction;

such considerations as these are not taken to be within the scope of this
note,

1.6 Dispersions arising after separation

In paras. 7 and 8 consideration is given to the dispersions arising
after boost separation and before the round comes under control. The
objert of these paragraphs is to deduce limits within which the aero-
dynamic malalignments of the dart must lie if large dispersions are to
be avoided: dispersions arising from 'unclean' separation are also
discussed. The method of approach naturally requires a number of
approximating assumptions to be made: it ig assumed, for example, that
the spin is constant. This assumption is however Jjustifiable, since
in theory the spin will quickly tend to a constant value, depending
on the malalipgniaent incidenccs of the aerodynamic surfeces. The other
important paramcters which determine the motion are the 1ift and stability
properties of the round. :

It is found that should the spin be zero, the dispersions can
increase indefinitely, and so a limit must be imposed on the time of

uncontrolled flight if large dispersions are to be avoided. The
presence of even a small spin reduces the dispersions appreciably.

2 Spin-form

2.1 Two methods of imparting spin

Spin may be imparted to a round by either or both of the following
methods.

(a) By off-setting the nozzles of a multiple boost assembly.
(b) By projecting the round from a spiral launcher.

By method (a) the round is angularly accelerated from the instant it ceases
to be constrained by the launcher, and continues to accelerate until the
aerodynamic spin damping moment builds up., During the latter half of

the boost stage the spin will in general decrease slightly according to

the magnitude of this damping moment. Wnen the decrease in boost thrust
sets in, the spin decreascs rapidly.  With method (b) the spin is
appreciably constant just after launch, but decreases with increasing
velocity and damping moment.

Since the dispersion is most affected by the spin-form immediatcly
after launch, it is desirable that the spin should build up as quickly

as possible, In practice however the angular acceleration and rate of

THox
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rotation are limited for structural reasons. With a spiral launcher the
spin is of course greatest at launch, while the angular acceleration when
on the launcher is '

r = (ro/Vr))a: (l)

where r_ and V_ are the spin and velocity at launch and a is the
acceleration, This equation shows that ! is proportional to a and so
will be roughly constant in practice, reaching a maximum by launch.

" The spin-forms produced by methods (a) or (b) or cembinations of
both are derived in the following sub-paragraphs.

252 Solution for spin

2.2l From the equation of motion in spin, namely,

Ct + Ty = G, (2)

where G d1s the magnitude of the boost couple
C is the M of I in roll

and Ty ‘is the magnitudc of the aerodynamic damping moment in spin
Tpps defined in IL,3.22%,

we see that at launch when TR is small compared to G, the initial
acceleration is

i‘o = G/C, (5)

and that until T'y becomes comparablc with G, the spin equation is

r=r,+ (G'/C)(t = to).- (h—)

where ty 1s the time at the instant of launch.

2.22 To solve for the spih over the whole boost range, it is
assumed that

FR = YRVI‘ 5 (5)

read as Part II paragraph 3.22.

abiks
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where YR 1s eonstant over the range where TR is eomparable with G.

This assumption has been justified by an analysis of S.T.V.l spin-forms,
From three similar spin-forms the maximum value attained by the spin
was read off, and Yr found by the relation

YR = G/(Vr).r=O -

Using this value of YR (0.30 1b £t) and taking into aeeount the fall-off

in G Jjust before separation, the spin obtained by integration of equation
(2) showed eomplete agrecment with the firings.

2.23 The solution of equation (2), when the aeeeleration is assumed

eonstant, ean be written non-dimensionally as (sec 11.9.3)

r/rg = (r/rg) e . ©° +e [B(D) - E ()], (6)

where T2'=‘{Rs/0

il

k G/C

x

2
/' eu du
‘0

k = J2o/avy

e

(7)

i

E(x)

(8)

and the time t dis given by

t = kT, (9)

Por launeher lengths of the order of those occurring in practicc, thc terms

in T, in this equation are negligibly'small, on aeeount of the smallness
of the serodynamie damping at launeh,

2,2 In Fig. 1 all curves are plotted for s = O, The eurve 4 is

-T2
r/rG = @ E(T)

and so denotes the spin-form when r = 0.

This equation shows that the
spin at any instant is proportional to

G and hence to the nozzle

N2
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offset angle in thu tangential plane Byge The maximum value reached by the
spin is secn fror the graph to be

(r)max =EGES re

057 2 fo by equations (3) and (7), (10)

=]
1}

and occurs ot

0.93,

i.e. at time

ct
[

= 0.93 k

by equation (9).

Combining this curve with any of the B curves,

-1
I‘/I‘G = I‘O/I‘G_ c £

shown for ro/r equal to 0,50, 0,75 and 1,00, we find the spin obtained
when both methods (a) and (b) are used together.

Curves B determine the spin obtaincd by method (b) alone, namecly,

r/r0 S .

) Estimation of spin damping moment

2.31 In order to determine YR for a given design of missile it
is assumed that

(i) the contribution to the domping moment from the wings (or
fins) is very much greatcr than from any other part of the body,

and
(ii) *he 1ift distribution across the wings (or fins) + body is
elliptacs

It can then be shown that

(11)

c)

where for crucifiorm wings

el

S
=[:l B 7 o 31nh9 :]/@

1EST
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'o do/dl (13)

sin 6 =
24 = maximum 'body + boosts' diameter
23y = wing-span

and

1ift constant = l1ift/incidence x (velocity)z.

w
51
[k

This formula should give good results at subsonic velocities for wings of
h aspect ratioc. For very low aspect ratios however, assumptions
% and (ii), particularly (ii), are scarcely justified and this equation
for ¢ becomes unreliable, although Yp would still be expressible in the
form of equation (11). ;

For the S.T.V.1l equation (12) was found to lead to a value of Yy
in rcasonable agreement with that determined from the maximum spin,
see para. 2.22, The wing-span is 3 feet, and the maximum radial
distance swept through by the boosts is 10.5 in; _taking ki, obtained
by low-speed wind—tunnel tests? to be 0,48 lb.ft"l, equation (11)
gives

YR = 00,50 It

2.32 An approximate expression for k, defined by equation (8),
can be obtained by taking

C =md,2/2

approximately.

Then by equations (8) and (11)

<= £(8,)/ Vet (1)
where
£(8,) =V2 sin 6,/V1 - 26_/% + sin 4o/2x
- il m = mass of projectile.

£(6,) is plotted in Fig. 22,

3 Dispersions arising from boost malalignments

Stk Definitions and nobtation

The angular deviation is the angle between the axis of the launcher
and the direction of motion of the C.G. of the round. The dispersion
is a statistical measure for the angular deviations of a number of rounds,
e.g. the root mean square or the size of the 95% zone.

The angular displacemeﬁt is the angle at the launcher between its
axis and the direction of the C.G. of the round. If the angular
deviation increases monotonically with distance it follows that the

Lb,
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angular displacement is less thdn the angular deviation; the two in
» fact become cqual at.infinity. (In practice the angular deviation will
not necessarily be a monotonic funttion, but it can usually be considered
as such plus oscillations of small amplitude which do not invalidate
this result). The. value of the angular deviation at any point therefore
sets an upper limit to the width of beam required to gather a round
coming under control at that point, and so is as useful a quantity as
the angular displacement, Besides this, the integration of the angular
deviation to give the angular displacement can bé carried out only in a
few special cases and so in general is not rcadily obtained., No further
mention will be made of the angular displacement in this note,

For a non~-rotating round the motion lies in a fixed plane. through
the axis of the leuncher, and so the anguler deviation can be denoted
by a single quantity.  VWhen however the round i1s rotating the motion
can bec resolved on to two fixed perpendicular planes through the launcher
axis, and two quantities are needed to define the angular deviations in
these swo planecs., If thesc quantitics form the real and imaginary
parts of a complex number Z, the total angular deviation is approximately
\Zl for small angles and is independent of the orientation of the two
refercnce planes.,

If Zp, Zg are the complex angular deviations duc to malaligned
boost force and malaligned boost couple respectively, we can write

ZT.=JJTZT(S) (16)
ZG = pGZG(s)/n. (17)

Zp(s) and Zg(s) are functions of the range s, and of certain parameters
defining the aerodynamic and ballistic propertics of the missile: they
arc dimensionless quantities obtained by solving the equations of
motion. M7 and B are constants proportional to the malalignment
angles, and for convenicnce include all those parameters of the round
not occurring inseparably in Zp(s) and ZG(S), wp and p% are of coursc
complex quantitics whose arguments determince the orientation about the
missile axis of |Tp| and |Gp], the components of the beost thrust and
boost couple perpendicular to the missile axis. The expressions for
thl andl}JGl used here, and to which the valucs of ZT(S) and ZG(S)/D
given later correspond, are

lug| = |Tp| /T (18)

(el /1 (19)

e

m

wherce T dis the boost thrust and kp is the radius of gyration of the
round in ritch.

It is ‘sometimes found convenient to express |Tp| and lep| as -

T gotp (20)

|Tp| =
|Gp| = ®pag, (21)
15
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where Op is the offset angle of cach nozzle in the radial plane
¢p is thc distance of cach boost thrust axis from the C.G.
and @p,&q are the mnlalignment angles defined by these equations.

3.2 Parameters in problen

In order to obtain any reasonably simple closed solution for the
dispersion functions Zp(s) and Zg(s), quitc a number of simplifying
assumptions have been introducecd, which leave these functions depcndent
on only the few most influential paramcters, The spin-form, for
cxample, has been defined to the extent of the first two terms of
its series expansion, i,e. by the spin at lounch Ty and the angular
acceleration at launch r,,  This is justified because the dispersion
functions tend rapidly to a limit., It is found that thc number of
parameters can then be reduced to four, namely n, Sg, ny and ny.  The
‘linear acceleration ocours in nj and n, and is not an additional paramcter
in the dispcrsion functions. The definitions of these parameters arc
as follows:-

n is a measurc of the stability of the configuration and is
defined by

5 2 aerodynamic restoring moment/incidence
n~ V& = ; (22)
M of I in pitch

S, is the 'effcctive launcher length' defined by

S = Voz/Za; ‘ (23)

m,ny depend on the spin and arc defined by

m =W/—2—/—a‘ L) = 2 np '/S_o (ZLI-)
n2 = 1'?(/0.. (25)

The cquation for thc spin is

‘r Bl B = T (26)

and corrcsponds to the solution obtained in para. 2,2 under the assumption
that the aerodynamic damping moment in spin is negligibly small. Inte-
gration of cquation (26) lcads to thc expressign for the total angle o
turncd through by the round about its axis,

o(s) = 05 =mp (5= So) +m (Vs =V3,), (27)
W A
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From the e< straight-line spin-forms represented by equation (26),

two sets of families will be considered. These are defined by
(a) Ty = 0
(b) I‘q = O,

and correspond respectively to methods (a) and (b) for imparting spin
discussed in para. 2.1.

4 Case (a) - Launching spin zero, constant angular acceleration

4.1  Expressions for the dispersion functions

411 Zp(s) and Zg(s)

For case (a) r, is zero and Zm(s) and Z (s) depend only on the
three parameters n, sy and no. The t,valuatl-an of these functions is
presented in Part II para 12.2 and is valid only for small values of
n/n2 (say less than 3); these results are now quoted.

We can write

It

Zp(s) = nZp(s) - &p(s)
I . T T 12,1, ()
néG_(S) = E}(S)

i

Z@( S)

» where*

éT(S)

I

I--J (’0)‘-‘) JB(SO,S) ( “’O X “\(BSO)
~1L :] l: S 81 :

PRI = [ (G )

[uind Sach), o) imy . Sl ]
G 1 il

1

1

Za(s)

SO rs 98 L . ()

s eioa?flﬂl‘»(a g DilBg) J{o‘(s) O] LD(%;) e—in(s—so)_l_ D(Bso) ein(f‘FSc):B

gT(S)zZ\/'s Ll oy * B1 @y By

s i 01

s 3 Q - E = =,
i ) - (S): € L (“s) _“(BS)‘J Lji[O‘(s).--O‘ﬁ]“' 4 (ac ) e-ln(s-q) D(Bsc) :Ln(s- ]}
| & 2:'L\/'sL B a4 8y
aniae EEAGS(Y].
L A bar over a quantity denotes its complcx conjugate.
: 7.
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where
J. ( ) = leicb i[d(u)‘do] D(Yu) = DCYu - Kl) )
Kihe =Y A
i A S
for X= o or B, T L R e 4.3.32(39)
2¥(s) = (21/6l)f1)( 650) ~ D(8,) ein(s—so)] iee T 2008)
g (28)
"i%uz g i22‘-x2
.D(u) = e { == of & dx}.... 2;11&.1232_3
(29},
where
a; = JEZ;;—:—;$7%
Bl = \/El;_n—)_/7t
Yl =V 21’12/7E
6_]_ =\ 2n/7t
G = [(n2 +n) Vs - ng\/s_o] //n(nz +n)/2
| G}
Bg = [(np = n)Vs - nzféo]/\/am :
Yg = ’2n2/'fc (Vs = V3,) P o o % s ()
5, =V ens/x E ™ T .- b 11.11.227)—
9)
e e k- L S 1 00 )
n, +n ®
kg = — _ zniSQ ..... T8 218

As s increasesag, Bg, Yg, 05 increase, and so |D(ag)|, |D(BG),

|DCYS)| and lD(&s)‘ deorease and the amplitudes of all oscillatory terms
become zero at infinity. From tables of D(u) it is found that {D(u)| has
decreased to one~tenth of | D(0) |, i.e. of 1/¥2, when u = 4,5. The

T
CONFIDENTIAL




CONFIDENTIAL
Technical Note No, G.W. 177

. 4 . » - 0‘ —0‘
amplitudes of the rotational terms, i.e., terms in e[ (s) O], are there-
fore small when a,, By, and Yg are greater than about 4.5. When n is

mich smaller than no, we see that Qg Bg and Yg are approximately equal,
and are greater than 4.5 when

Vs > 3/5, + 4a5 |n/2ng

£ Vs + 5.6/Vﬁé.

o]

When s, = 0, ny = 0,05 ft‘l, this condition requires that s 2 640 ft.
) ) +in(s=sy)
The amplitudes of the terms in ¢ occurring in ZT(S) and
ZG(s) are found from the above equations to decrease like |Dy(8g) |,

where

Dy (u) = fﬁ - D(u).

From tables it is seen that |D;(u)| tends to zero very much more rapidly
than ‘D(u)\ as u tends to infinity, and equals lD(O)\/lO at about

u = 1,0, This means that the effect of the yawing on the dispersion
1s small when 84 is greater than 1.0 i.s. when

s> ®/on,

i

i.,e, after the first half wavelcngth of yaw. Toking n = 0,005 £t~ this

condition requires that s 2 320 ft.

It has been shown in this paragraph that, for most practical ocascs,
ZT(s) and Zg(s) have converged sufficiently near to ZTQ») and Z (w) after
the first few hundred feet of flight. This fact is illustrateg by Plg. 9
which shows Z§(s)/n for the typical case s, = 10 f£t, n = 0.0075 £+~ and
ng = 0,05 £ The corresponding yaw function EG(s)/h is given in Pig.10;
and docs not converge with the same rapidity; as s - o, EG(S)-*O.

4,12 ZT(”) and &3@o)

The equations of para. 4.ll éimplify somcwhat on putting s = « ,
Is is seen that

gT(”) = ng”) = @

19.
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and that

AT [J“(*’z’) Bl ], [D(“ e W o) e (5

@16y . B

wie Tis12.28(18)

(e = -

Tz Tglsg, )] [D(8g )5(8,) (8, )D(35) 7 o
[ a E Bl ]+[ al6l & Bl&l e (31)

vemne Bl
where now .

Blsgp) = = 1 6™ [2(0) = n(-5)] / vy,

Tor N =i or Bs

When S, = 0, we have ¥, =0 (M= o or B) and hence

I

o)
7\(0,%) = =1 ©°DH0) / mr,

i
g (o}
=k © / Y71

Since kg is positive, D(—KB) can be cvaluated from tables by using the
relation

A
el

D(-kg) = e (1 + 1) - D(xg).

4.13 Approximate cxpressions for |Zp(e)| eand |ZG@o)l/h

Although cquations (30) and (31) can be evaluated numerically for
given values of thec parameters n, s,, and np without too much difficulty,.
particularly simple cexpressions for ZT(m) and &g(=) are obtainable from

these cquations for sufficicently large values of no, It is shown in
11.12.25 that

-0 o
o o Lp(e) = IC R 4(85) PRMPARS 2 7 [ 0 )

non

205
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—1Co i (1+i)m
= A T WS i e, W
€ G,( ) n2 + ZN/HE B( SO) cse e II-12023(214)’

where B(u) and A(u) are the real and imaginary parts of D(u).

It is then easily seen that

|Zp(e)| = nl2p(e)] = w'n/2n, A(éso) PP i (NG
(32)

Zg @ /n = | g(=)| = =B(8s ) A2n,n eeves I1,12,21(29)
(33)

for large no,

In Table I the values of \ZT(M)\ and |Zg(w)\/n given by equations
(32) and (33) are compared with the more accurate values obtained from
equations (30) and (31).

TABLE .I o e ]
- ——= 'accurate! | Yaccurate!
Mg [ 0| o | min/2ng ABag) | 1z (o) [ | ®B(Bs)/Vaman | zg(e) /m
el S ~ _ - ft £t
0,0025 O 6 A il M 99 86
30 025 0.23 63 5l
0.05 0 0.50 0049 50 I
0.01 | 30 0.42 0,37 20 13
0 0.18 @.17 70 6l
it 0.17 0.16 U5 40
0.10 .
0 . 9,35 0.35 35 <30
G011 =g 0.29 0.27 i 11
0 L 0.1k 57 55
U002 01 55 0.14 0.13 | S 23
0.15 . il P BN LB © 0.29 .|| 29 26
0.01 | 30 0.2L 0:23 T g

4.2 Digpersion due to boost destabilising couple — Results

In Figs. 2 to 4 the values of |Zg()|/n, obtained from the
accurate equations of para. 4.12, arc plotted against n in the range
0.0025 ¢ n €_0.01 ££~1 for sy = 0, 10, 20 and 30 £t and mp = 0,05, 0,10
and 0,15 £t71,

2%
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The values of the launching velocities corresponding to these values
of* 8, are 0, 100, 140 and 170 ft/sec when the acceleration is 500 ft/sccz.

The values of boost offset angle Ay corresponding to the above
values of ny, can be arrived at as follows. By cquations (3) and (25)

G/Ca

1

e
= mAyby/C, (31)

where &N is the distance of the centre of each nozzlc exit plane from
the missile axis, and m 1is the mass of the round. Putting

EH= m&NZ/Z (roughly),

equation (34) becomes

Vhen &y equals 1 foot, the values of Ay corresponding to np = 0,05, 0,10
and 0.15 £17* are 1.5°, 3.0° and 4.5° respectively.

; In Figs, 5 to 8 the same results are plotted to show the reduction
of |ZG(w)[/n with increasing n,. The range of n, has been continued
down to zero, by taking the v2§ues of |Zg(=)|/n for the non-rotating round
given in Ref. 2, Fig, 9. For values of n, greater than 0,15, |Zg(~)|/n
is determined by equation (53) with good accuracy. This equation shows
that the dispersion decreases like l/VEE, i,e, inversely as the square
root of the nozzle offset angle,

The absolute value of the dispersion can be obtained from these
graphs if h1G| is known. This factor depends on the type of configuration
considered, and in particular on Ap and the position of the boosts which
affects &p and k.. An analysis is given in Ref. 2 of the various
malalignments cogtributing to higl,and typical numerical values of
|“G|kp (equal t3m¥GP|/T by equation (19§$are giwen.din: Ref: 25 para.: bl
for tandem, circumf’erential and wrap-round boosts.

L3 Dispersion duc to transverse boost force = Results

. In Pig, 11 ﬂ («Ql is plotted against n . for the particular case
s = 0705 rtd; |L 8*)| is seen to increasec with n. The same figurc
shows |ZT(51)| where s, = 2,800 feet for a non-rotating round, The
dispersion of a rotating round is scen to be less than that of the

same round unrotated by a factor of from 5 to 10 in this particular case.
In fact, for a non-rotating round Zp (s) +e as s » », and for values

of s greater than 2,800 fect the dispersion is increased by = log 5/2800
approximately. :

A rough estimsation will now be made of the largest dispersion likely
to arise with a wrap—-round boost. The two main causes of a transverse
boost force are:

(i) inequalities in the inclinations of boost thrusts to the mean
thrust direction, and

22,
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(ii) incqualities in individual thrusts.
(i) arises from

(a) failure of the individual thrust axes to coincide with the
nozzle axis, and

(b)  inequalities in S

The order of magnitude of (i) for a four boost assembly corrcs-
ponding to a 95% zone is about 0,001l radian.

(ii) is proportional to the radial inclination of the boosts Agp.
Taking the fractional variation in thrust of a four boost assembly to
have a 95% zone of l/hO, and taking A = 200, the contribution from (ii)
turns out to be-0.,0l radian., Thus for large valucs of Ay, say 10° to
20°, (ii) will predominate and if we write k| as

|kp| = Agag

by equations (18) and (20), then ap can be interpreted as the fractional
variation in thrust.

With Ag cqual to 20°, |47| is about 0,01, and Fig. 11 gives
|ZT(sl)‘at sy = 2300 feet to be about 2.0 for the non-rotating round.

Hence the dispersion at sy = 2800 feet is 0,02 radian i,c. just over 1°.
A nozzle offset corresponding to n, = 0.05 ft~1 would rcduce this
dispersion to less than £°. Larger offsets would reduce the dispersion
still further.

It seems that dispersion from a' transverse boost force will usually
be small compared with dispersions from other causes.

5 - Casc (b) = Constant Spin

5.1 Expressions for the dispersion functions

5.11 Zp(s) and Zy(s)

The angular acceleration is zero in this case, and so by equations
(24) and (25) we have that ny, = 0 and nj = V2/a r,. The dispersion
functions ZT(s) and ZG(s), which now depend only on the parameters n, s,
and nj, are evoluated in Part II para. :12.3 for-sufficiently large values
off % The solutions obtained take on different forms for values of s
less than and greater than sg = (n1/2n)2. (When ny is greater than
QVG/% N, the error is less than 2/7N2 except near s = sg where it is less
than 1/N).

When _ e e

So € 8 < 8g,

-----

23,
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2 67190 7, (s) {D(:‘ls) <7i‘2 - x—}—s—\) 2 ﬁ(gif') Qi‘e _jl_s_>}i[<r(s)—%]

+[D(aso) : 5(:'30')'—‘[&6 _isinn(s-sg) | . o 52(5):'

i Vs

+l:D(a D(- g ):I[Cog n(s-s)) él(s)]

s fatn TiL, L2 51500

:+ £D(ocS ) D(-\BDO')][ isin n(s-—s ) : inéz(s):l

: i[D(cc D(- B ]l: cos n(s-s,) . nZ_’.,l(s)J

..... 0 BB ol
(36)

and when sg < 8

o [ (- ) (- 0
{ii(zi o)  Dl(~Bs, ')] l:ﬁ & s:.n\f:(s-—s N 1n2‘_.’,2(s)]

+ (“ D("".- )] [ws a8, nél(S)_j

i[o(s )~ = o
Bj’ Uju = 1y ):] ( rs)}ﬁs

..... I1.12,34(45)

2D( e

2k,
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L 1% ® 24(e) = lE(a )L ) _D(Bs' )C; 1 )]g{a(s)-ob]

. {D(as ) = BS ):l l:__+:1n n(s- 522_- inéz(s)]
P T ][ o)

+2i'ﬁfO> ei:"'fsf’)’%] =g m(wﬁ)}ssf

1 . 2L

..... 11,12, 34(46)

where & (u) and é (s) are the resl and imagina arts of Z (s) defined

by equation (28), D(u) is defined by equation (295)

n
as :’2%2 +-—;L—
J2nn

1 2ns ny
Ps' == -
Y 2rn
8 =J2ns/7t
€y = Bl' = 61 :\/21‘1/7(

‘\[5&:- SB = - nl/2n.

£1) arguments of D(u) in these cquetions are positive,and the bar denotes
the complex conjugate,

255
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) zT(m) and Zg (e)

A particularly simple solution for Zp(») and Zg(e) is obtainsble
when Vs, << Vsg = n1/2n.  This condition will almost certainly hold for
values of n; to which the cquations of para. 5.11 are appliceble, In

IL.12,35 it is then shown that, on taking o, = 0,

A(8g,)

s e e

ZT("") = l\/—.-?._’J-\Z?l

where the real part of Z,(»)/n is small compared with the

5.13 Approximate formulac for Zp(s) and Zg(s)

If in addition to the assumption that vs_ « \/’s_ﬁ, we
the values very much less than VSpg which satis?y

on (w/—é_é— \/s)2 >> 1,

the equations for Zp(s) and ZG(S) given in para. 5.11 can
It is shown in II1.12,32 that, on taking ¢4 = O,

sing( s)
nl\/'S

il

t

II.12.35(51)
and (52)

II,12.35(53)
and (Sll-) >

imaginary part,

restrict Vs to

be simplified.

i j&_[}osrl(s—se); cosols) _ nél(s):]

nl \/.‘3
R ZG(S) = 25
n nl
" Zg(s) bl 2. (s) sinn(s-so)
g ~n1‘25.“————-nv% TE
26,
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where Z;(s) and %,(s) are

?;l(s).= Vor/n [—A‘(&so) +A(6s) c.os'n(s—so) +B(68) sinn(s—so)]

..... 1I1,12,32(40)

éz(s) =V 2xr/n [B(&so) +A(5g) sinn(s'-s.o) - B(&s) cosn(s—so)]

..... 11,12.32(41)
In II.12.33 it is shown that
Z(s) Zn(s)
S s e !
) n n
; The above equation for ImZy(s)/n then agrees with that given in Ref,1,6
i.e.
Zg(s) ox G(8s.,55)
G US s 2]
= /-,-— — (39)
n n ny
where

G(8s_,85) =B(85,) - A1(8s,) sin I (6,25, 2) = B(8,) cos & (8,28 2)
2 0 2 o]
vewee  1I,12.32(43).

If we let s tend to infinity in the above equatiens for Z (s) and

- Za(s), it is found that their limits, Zp(e) and Zg(=), are the same as
those of para. 5.12. The reason for this is that when s approaches
S8 ZT(s) and Zg( s) arc no longer. dependent on s  to any appreciable
: extent; hencc the expressions for Zp(s) and Zg(s) given in this

paragraph then hold for all values of s,

5.2 Dispersion due to boost destobilising couple - Results

The formula used for evaluating the dispersion duc to a boost
destabilising couple is equation (39? above. This ‘equation should be

27.
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1
reasonably accurate for values of ny dowh to 0.5 or 0,3 ft_a depending
on n, It has the advantage that Since n, does not occur in G(EEO,BN),

the function nl‘ZG(s)|/n can be'plotted in tecrms of n and s, only for

various velues of the range s._ This has becn done in Fig, i2 fer n
in the range 0,0025 to 0.01 £t71, for s_ = 0, 10, 20 and 30 £t and for
two values of s, s = 500 £t and s =eo, It appears that at s = 500 £t

|Za(s)| has alrendy converged closc to the limit | Zg6e) |, showing that
the greater part of thc dispersion arises in the first few hundred fect.

In Figs. 13 to 15 |Zg()|/n is plotted against n; for s, = 0, 10
and 30 £t and the threc values of n, 0,005, 0.0075 and 0.0l £2~L. = The
range of m has becn extended down to zero by using the values of

lZGQw)]/n for a non-rotating round given in Ref. 2, Fig. 9. It is scen
hat as n, ranges from O to 1.5, the dispersion of & non-spinning round
is rcduced in most cases by a factor of about 10, For values of n

above 1.5 the recduction will be proportional to l/hl by equation (39),
i.e. the dispersion varics inversely with the rate of rotation of a round.

The function ZG(s)/h is shown accurately evaluated in Fig, 16 for
the particular case when n = 0,0075 ft‘l, 8o = 10 £t and nj = 1.5 £+72,
The values of Zg(s)/n determinéd by the approximate formula, equation (36),
for this case oscillate from side to side of the correct values and do
not differ from them by more than 0,2 f't, The values determined by
the more approximate formula, equations (37) and (38), lic on the
straight line Rl Zg(s)/n = 2/(1.5)2 = 0.9 ft, with Im Zg(s)/n varying
from 0 at launch to 6,1 £t at infinity.

Pig. 17 shows the yaw corresponding to Fig. 16. The convergence
of the yaw to ztro as s 2 « is slow comparcd with the rate of convergence

of the dispersion. '

6 Choice of Spin during Boost

6.1 It has becn seen in paragrophs L4 and 5 that malalignment dispersions
can be considerably rcduced by sufficicntly large spins, Thc question
that will now be considercd is - 'By what factor is it worthwhile
decreasing the dispersions of the non-spinning round?' To answer this

it is necessary to compore the malalignment dispersion for a non-rotating
round with its other dispersions which are not affccted by the initial
spin-form, This will now be done for a Scaslug-type missile with

a wrap-round boost. The results given in Refs, 2 and 3 state that for
an unspun round the various dispersions likely to occur are:

Maolalignment dispcersion

dispersicn
10° venturi offset anglc 352 = B2 depending on position of boosts

20° venturi offget anglc e for most boost-positions

Other dispersions

Wind (10'/sec error) . 29
Separation dispersion 1° - 2°  (possible maximum)
Tracking Beam displacenment o0 due to avoiding action of
cnemy .
2= due to variations in +time

of burning.
The resultant dispersion is found to be from 5° to 740,
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For a rotating round the following table gives the resultant
dispersion when the malalignment dispersion is reduced by a factor of

B 5 SO s
Factor by which malalignment Resultént Dispersion
dispersion is reduced
d § = @
2 yor = B°
3 30 - Wl
b 3° - W0

It is seen that there is no great advantage in decreasing the malalignment
dispersion by morc than a factor of 2 to 3, This conclusion naturally
depends on the values for the various dispersions taken sbove: if for
instance the deviations due to wind and tracking beam displacement have
bcen overestimatcd, then a greater deduction in the malelignment dispcrsion
would give a greater proportional drop in the resultant dispersion. How-
ever this drop does not appcar apprcciable unless the crrors have been
grossly overestimated, and this is not considered likely. For example, if
the wind and tracking errors werc halved and thc separation dispersion
taken to be zero, the resultant dispersion would be -

Factor by which malalignment Resultant Dispersion
dispersion is reduced
¥ ) o e o
2 230 - 330
3 2o = 2g°
L 20 -~ 2o

From thcsc figurcs it is scen to be hardly worthwhile aiming at a factor
of rcduction greater than 3.

6.2 By way of cxample it is now shown how the ballistic dispersion of an
unspun round can be reduccd by a factor of 3 by cmploying methods (a) and
(b), para. 2.1, of imparting spin.

6.21 Method '(a) - Offsct nozzles

Fig. 18 gives the reduction R in dispcrsion, achicved by offsetting
the boost nozzles of a round, in terms of the parametcr n, which is related
to the offset anglc by equation (35). For valucs of S, other than 10 't
the corresponding graphs can bc obtained from Figs. 6 to 8 and will not bc
greatly different from Fig. 18.

.

For R = 3 and n corrcsponding to thc above Scaslug figures,_fay
0.005 to 0.007 ft~1, we find that n, lies butween 0.06 and 0.075 £t .
= Thc corresponding nozzlc offsct angle is.2.0° to 2,5%, and thc corres-
ponding angular acceleration at launch is 24 to 30 r&d/secz, taking -the
acceleration to be 400 ft/sec2.

The maximum valuc atteincd by the spin during boost can be found
by equations (10) and (14), which give

() oy = 0.54 £(8,) roNa ¢,
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where a 1is thc acceleration, 95 and ¢ -arc defined by equations (13)
and (15), and £(8,) is the function plottcd in Fig, 22, Taking

0o =7%/6,i.c, d,/d; = 0.50, ¢ = 0.00040 £+~1 (a valuc appropriate o tho
502/STV), we f£ind that

25 to 31 ra&s/seo,

il

() o

i

4 to 5 ruvs/scc,

for an offset angle of 2,09 to 2,5°.

6,22 Mothod (b) - launching with spin from a spiral launcher

Fig. 19 shows R against nl,IWhich'is proportional to the constant
spin ro, in the case when sg = 10 ft, and n = 0,005, 0,0075 and 0.0L f£t~L.

When R = 3 and n ranges from 0,005 to 0.007 £ft~1; we find that
ny lies between 0,30 and 0,38 ft~2. The valuec of the spin correcsponding
to an accelcration of 400 f£t/scce? then turns out to be '

Bioy = 2. Con Bris rads/scc,

l.c is somewhat less than 1 rcv/sco.

The angular acccleration of the round when moving up the launcher
is greatcst when thce acceleration is greatest, i.<. at launch, and is
equal to anl/ZVE; by ecquations (1) and (23). For sy = 10 £t and the
above values of a and ny_, the maximum angular accclcration of the round
is from 19 to 2h-rads/seo v

6.23 To summarise we can say that with both methods (a) and (b) the
round must be subjccted to angular accelerations of the same order, about
G A0) it rev;/secz, but that the maximum rate of rotation for method (b) is
only 1 rev/scc compared with 4 revs/sce for method (a).

i Dispersion following scparation - Valucg of parametcrs

The chief parameters affccting the dispersion of the dart after
separation are its lift and stability propertics and its spin-form. In
this paragraph we considcer in turn the valucs that thesc paramcters arc
likely to assume in practicc.
A L 2

If Nmgg be the maxinua sca-level Lift that the dart can develop at
velocity V and wing incidencc 6, then we can write

Lift = kgv% = Nag, (40)

where kp is supposed: comstant,
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Ir M, is the mass of the dart 2t separation and if we define £ by

4 = kL/ﬁo .

we can use cquation (40) to express € in terms of N, thus
& = Ng/v%.

Teking N +to range from 25 to 100 when V = 2500 ft/sec and & = 20°,
we find that & 1lies between 0,0004 and 0.0016 f£t-1.

7.2  Stobility

The stability constant of the dart is defined as

n = '\ffl—a/kp,

where d = distance of C.P. aft of C.G.

5

This definition coincides with that given for the complete weapon during
boost in para. 3.2.

1

radius of gyration in pitch of dart at separation,

If we put

1]

L/2v3  approximately,

L

where L is the length of the projectile, we have
n2 = 12€€/L. (L‘l)

For valucs of L Dbetween 16 and 25 fecet and of £ between 0.000éiand
0.0016 ft‘l, we f£ind that n 1lics in the range 0,004 to 0,01 £t when
g = L,

7<% ‘Spin-form

During the fall-off of thrust at the end of the boost perlod and
during the-consequent separation, the spin will rapidly decrease towards

31.
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zero on account of the large damping effect of the wings. In practice
a small spin usually remeins due to ailercn or wing malalignment incidence;
this spin may be in the oppositc direction to the original spin.

It was found in a number of S.T.V.l firings that thc spin of the
dart remained fairly constant and rarcly excceded 1 rev/scc.

A solution for the spin/velocity ratio is obtainable when the
retardation is assumed proportional to (velocity)2. Integration of
equation III.4.12(4) yiclds

<R

G 2] & o

o} o}

where thc suffix o now denotes the value of a quantity at separation,
and wherc

(!
i

M of I of dart in roll

It}

fR damping momecnt in spin/Vr (supposcd constant).

Equation (42) shows that as s-8, incrcascs abovc about CArg, r/V tends
rapidly to the constant valuc

<f> C a /r\
— + — — 5
V/o YRVO dt V_JO

which is zcro when no malalignment incidenccs arc prescnt.,

In view of the above remarks the ratio Spin/velocity will be
supposed constant and dcnoted by Y.

8 Estimation of dispersions arising after sceparation

8.1 Definitions, etec,

The dispersion of o roundd at any point after separation is defined
as the angle between the dircction of motion of the C.G. of the round and
its direction at scparation. The componcnts of the dispcrsion on two
perpendicular plancs through this dircction arc taken as the rcal and
imaginary parts of the complex dispersion Z; ‘Z‘ is then the angular
dispcrsion. * ) ' - 4

Thc dispersion arising from an initial yaw =, at separation is
dcnoted by Z7 and lics in the plane containing the initial direction of
motion and thc missilc axis. , The dispersion arising from an initial
rate of turn of missilc axis éo at scparation is-denoted by Zj and lies
in the plane containing thc initial instantancous oscillations of the
axis,
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The aerodynamic 1ift and moment malalignment angles &7 and Xy are
defined as the angles which the air flow makes with the axis of the round
(at infinity) when the aerodynamic 1ift and moment are zero. Zr, and Z)
are used to denote the complex dispersions that arise,

In Part III the coasting equations cf motion are solved to give

Z, Zo, Z1, and Zy when the ratio spin/velocity is constant. We now mako
use of the results of the simplified solution of III.5. For sufficiently
large values of the range s=8,, it is found that certain transient terms
become negligibly smell leaving particularly simple expressions for the
dispersions. The condition is that s-s  should be greater than about 2/,
The error in the solution can then be about LO% at s-s = 2/, 15% at

o8, = 4% and 5% at s-s, = 6/& ote.

8.2 Dispersion caused by unclean separation

We now consider the possibility of asymmetrical detachment of the
boosts producing a dispersion. The dispersion arising from an initial
yew is shown in III.5.4 to be entirely transient. The dispersion due to
an initial rate of turn &, of the axis, on the other hand, becomes

Zy = &ob/n? Y, (43)
where V, is the velocity at separation, hence
|Z5| = liol L/12e i by equation (41).
Taking Vo = 1,500 ft/sec, &= 1/12 and L = 16 to 25 feet, this gives
125 | = 0.6 |g0| e.1,0 léoldegrecs

(when Zo is expressed in rads/sec).

An glternative expression for this dispersion can be obtained by
expressing &0 in terms of the maximum yaw that it would give rise to in the
ensuing motion.  From IIIL.4.(13), (15{ and (10), and I1I.5.1(1), the
solution for the yaw is

g -£( - 2.
= = (éo/p V) e (8s50)/ sin p(s-s,),
B il 2
where p¢ =n" - (£/2) Yanagy SEL.5312)
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This equation shows that the maximum yaw:E:M is

Sl ., i "?‘6/11-_'9
R (tao/P.Vo) e

for values of £ and n' In the,rangeé consi@érgd in paragraphs 7.1 and 7.2.

Equation (43) now gives

lZ2\: l Eml o/n = | E‘M‘ fer/12¢€ by equation (41).

Taking & = 1/12, & = 0,000 to 0,0016 £t~L, and L = 16 to 25 feet, we find
that

[25] =0.08 =iyl 50 0i2 | =yl

This shows that for a dispersion of 2° to arise the first oscillation
in yaw after separation would have to have an amplitude of 10° to 25°
corresponding to the range of values of the parameters taken here.

8.3 Dispersion due to lift malalignment

The maximum value that the angular dispersion lZLl ever attains
1ls shown in III1,.5.2 to be

(L)

where 4 and ‘n are the 1ift and gtablllty constanto already discussed,
and Y is the ratio .,pln/Vc,loc:lty

As the range increases after scparation the locus of Zy, in the
complex plane tends to a circle whose radius is the second term on the
right hand side of this equction and whose centre is at a distance from
the origin given by the first term,

Fig. 20 shows |[Zq, lmax /aL plotted against [Y[/C for various values

_n_/&. All curves lie below the curve

i,
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2] /ey, = 2e/lx],

which corresponds to an infinitely stable round, i.e., n = o,
It is seen from Fig, 20 that \ZL\ma is less than ®; for all values
%
of n provided ¥ > 24, (i.e., provided the spin is greater than 1,2 to 4.8

rad/sec, taking the velocity to be 1500'/sec, and ¢ to lie between
0,0004 and 0.0016 £+, For smaller spins IZleax is less than @y only

over a limited range of values of s-sg,

Thus for a non-spinning round,
it can be shown that

\2p) = age [e/n? + (s-35,)] ,
and from this it .follows that \ZL\ <ay, provided
s=s, < (1 - ¢%/n?) /e
14

for values of . £ and n arising in practice, i.e., provided s~s, is less
than 625 to 2500 f£t, corresponding to ¢ from 0.0016 to 0,000k £eL.

8.4 Dispersion due to moment malalignment

The: locus of Zy in the complex plane is shown in Part III, para. 5.3
to tend to a circle as the range increases after separation. The maxinum
value attained by \ZM\ “is found to be

Curves of \ZM\max/aM against |¥|/¢ are shown in Fig., 21 for various values
of n/%. The equation of the envelope is

It

2] /ey = Lo« (8% +¥2] /Y]

=1

for sufficiently large values of |Y| /¢. It is casily seen that for
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smaller spins \ZM‘max 1s only less than @y over a limited range of s-s

O.
Thus for a non-rotating round

N2yl = ayge(s-s,) - ¢/n°]

and so it is required that
S=Sq <.(1 jxé2/n2)/6

% 1/%.

The results of para. 8.3 and 8.4 can be summarised by saying that
provided the spin is not too small the dispersion is less than the
malalignment angle. For small spins this is only true over a limited
flight-range, which is ebout 1/6 if there is no spin present at all.

9 Conclusions

9.11 If the aerodynamic spin damping mecment is neglected the spin of a
round rotated by offset boost nozzles increasses linearly with time, the
angular acceleration being proportional to the couple produced by the
nozzles, With guided weapons conditions arc usunlly such that the
aerodynamic damping moment exceeds the boost couple towards the end

of the boost period, causing the spin to decrease. Good agreement
has been found between practical and theorctical spin-forms.

9.12 Vhen the launching spin is zero the spin of a given round at each
instant of the boost period can be shown to be proportional to the boost
couple,

9.13 For the purpose of evaluating the angular deviation a knowledge of
the spin=férm over the first part of the flight only is nccessary, as
it is while the velocity is low that the greatcst part of the devlatlon

arises, Trajectories from 502/STV flrlngu confirm this fact: the
angular deviation scarcely changes after the first 500 £t of the 3250 f't
of boost rangc. The spin damping properties of a missile are therefore

of secondary importance and con be justifiably ncglected in any evaluation
of the anguler deviation,

9.21 Of the various dispersions arising during boost that due to a boost
destabilising couple has beén most fully treated, as this is of overriding
importance for a guided wespon. The deercagse of dispersion when spin is
imparted by offset boost nozzles is shown in Figs. 5 to 8, and when imparted
by the launcher is shownin Figs.1l5 to 17. For large offset angles the
dispersion decreases roughly as the squarc root of the offset angle, and

for large launching spins the dispersion is inversely proportional to

the spin.

9.22 The faotor by which it is worthwhile réducing the ballistic dispersion
is limited by the existence of dispersions that are not reduced by spin.

For a Seaslug-like missile thero seems to be no advantage in a reduction
of more than 3. According to the theory reductions of this magnitude

g
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can be produced in general by off'setting the boost nozzles by less than B
With a spiral launcher a reduction by 3 could be attained with a launching
spin of just less than 1 rev/sec.

9.23 It should be noted that the malalignment dispersion cannol be reduced
by spin below & certain value on account of malalignment of the principal
longitudinal axis of inertia, the effect of which increases with spin.

An estimate made at the outset (para.l.)) showed that in a typical case

the maximum reduction would occur at about 4 revs/scc. AS this value is
much higher than that required for the worthwnile reduction of 3 mentioned
above, the effect of inertia axis malalignment is of no importance.

9,24 It is appreciated that considerable engineering difficulties would be
associated with the use of a spiral launcher. A great advantage of such

a launcher is however that the maximum spin, i.e. the launching spin, would
be much less than the maximum spin produced by offset nozzles for the same
reduction in the malalignment dispersion. For Seaslug the maximum spir
would be about 0.8 rev/sec compared with L reve/sec., If the maximum spin
produced by offset nozzles were unacceptably large, it would then be
necessary to use a spiral launcher to achieve the desired reduction in
dispersion.

9.25 It should be pointed out that the value 35 for the reduction factor
mentioned above depsnds on the relative importance of malalignment
dispersions and dispersions due to wind error and other errors not affected
by spin, and should be revised in the light of future information about
these quantitics, Should larger reductions by a factor of 5 or more be
indicated, then a spiral launcher would be ths only means of achieving
them,

9.31 With regard to dispersion of the dari due to asymmetrical detachment
of the boosts at separation, it can be shown that dispersion will be small
so long as the dart is not set wildly oscillating with large angles of yaw
of more than about 10°, In view ot the successful operation of the
separating device in test vehicles it 1s not likely that such a large
disturbance to the motion will in general cccur, and so it is concluded
that dispersion from this source will be negligibly small,

9.32 Dispersions arising from the aerodynamic asymmetry of the dart
naturally depend rather critically on the spin, By assuming the spin

tc be constant, simple expressions have been obtained for the maximum
dispersions due to lif't and moment malalignment angles @, and Oy e

It is found that so long as even a small spin is present the malalignment
dispersions will not exceed @y, and o) respectively. This means that ir
the malalignment angles can be kept down to the order of 0.1° the resulting
dispersions should be nzgligibly small.

.35 When the spin is zero a limit must be imposed on the range of
uncontrelled flight 1" large dispersions are to be avoided. From the
condition to be satisficd in this case it is found that when ay, and ay
equal O.ln, the dispersion is less than = provided the uncontrolled
range is less than 6,250 £t to 25,000 ft, according to the 1lift properties

cf the round. IT the veleocity is in the regicn of 1,500 ft/sec during
this period, the time of uncontrolled flight will in no case be required
to bz less than about 4 secs. In view of the practicability of roll-

stabilising a round and bringing it under control within 1 or 2 secs
after separation, it can be concluded that rno large dispersion from this
cause is to be cxpected.
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PART II

THE FQUATIONS OF MOTION AND THEIR SOLUTION DURING BURNING

2t Introduction

During the last 15 years a considerable amount of work has been done
in this country on the subject of rocket motion with a view to applying it,
in the most part, to small rockets of the fin - and spin-stabilised type.
The mathematical part of this work has been published in Ref 1l: the general
equations of motion of a body losing mass are formulated and the equations
of motion of a rocket in flight are deduced and solved, the assumptions
being clearly stated at each stage. The obJeot of Part II of this note
is to adapt and extend this work to apply to a guided weapon during
uncontrolled boost.

The equations of motion formulated in Ref. 1 include all conceivable
effects to which a guided weapon might be subjected during boost, apart
from aerodynamic asymmetry. This will now be introduced, and other
effects which are small for contemporary guided weapons will be omitted:
thesc include Magnus effects and those malalignment c¢ffects that become
apprecisble only at high spins, such as the principal axis of incrtia
malalignment effect (see 1.1.45 which is possibly the most important of
them,

In Ref. 1 the reduction of the cquations of motion to a form suiteble
for solution procecds under the assumption that the drag and gravity force
are negligible compared with the thrust. Although this holds in practice
for guided weapons during boost, it is not essential for the manipulation
of the equations of motion along thc lincs of Ref, 1 (provided the direction
of leunch is not near the vertical). The equations so obtained then hold
for the motion after burning as well, and no reformulation of the equations
of motion is required for Part IIIL.

A solution of the equations of motion in tcrms of integrals is
obtainable under any set of assumptions for which the wavelength of yaw
is constant: in Ref. 1 it has been assumed that the ratio spin/velocity
is constant - an assumption that 1s not generally valid for a guided
weapon. If instead it is assumed that the spin is so small that the
precessional eéffccts are negligible, n solution is obtainable that is
appliceble to a slowly rotating projcctile. The method of solution here
will therefore follow the lines of Ref. 1 with the precessional terms
omitted, but with the spin-form as an arbitrary function.

The cevaluation of these integrals for the ballistic deviations forms
the remainder of Part II of this note. It is assumed that

(i) ~ the linear acceleration is constant,
(ii) the angular acceleration is constant, and

(iii) the component of thrust perpendicular to the trajectory is
large compered with the 1ift.

On account of the larger aerodynamic surfaces of n guided weapon, (14}

and (iii) are valid only at the beginning of the boost period in general,
Any angular deviation of the round will however quickly tend to a limlt

on account of the increasing spin and velocity, and can still be accurately
evaluated under thcse assumptions. '
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CONFIDENTIAL




CONFIDENTIAL

Technical Note No., G.W, 177

The integrals for the yaw, the axis inclination and the angular
deviation are evaluated in terms of the functions of App.A. These
functions have already been used in Ref.l with positive arguments, and
they are now extended to negative and imaginary arguments in the
appendix, The evaluation of the yaw integrals can be carried out
exactly. The double integrals occurring in the angular deviation cannot
be evaluated in general for all values of the angular acceleration., Two
approximate methods are developed which cover all cases except small or
zero launching spin together with small or zero angular acceleration,
The solution for a non-rotating round is of course already knownl-2
and by interpolation all practlcal cases can be evaluated with good
accuracy.

2 Axes and notation

2L The motion is referred to axes 0X, Y, Z whose directions are
fixed in space and which are defined as foLlows

) .O is the C.G, of the missile

.0Z lies in the direction of the axis of the launcher, making
a Q.E. of a with the horizontal plane :

0X lies in the vertical plane uhrough 0Z and is perpendicular
to 0Z in a downwards direction.

0Y completes the right-handed set of muuually perpendicular
axes and thus lies horizontally to the lef't when looking
along OZ i

The pqinté X, Y, Z are taken to lie on the wnit spherc centre 0.

2,2 If OP is any vector meeting the unit sphere at P, and if Py is
the projection of - P on to the plane OXY, then OP is determined by =z
the complex number wvhose real and imaginary parts are the coordinates
of By referned to azes OX, ‘0¥, In fact, P 1is located by the
relations X%P = XOFy = arg z and ZP (= Z0P) = sin™1 opy = sin~1 |z].
The following axes and dirccticns are defined by complex numbers in
this manner.

y

2.21 OT is the direction of the velocity V ; it is the tangent

to the trajectory of the projectile. The angular deviation is 7T and
is determined by the complex ntmber Z.

2,22 QA is the missile axis, defined in 3.12; its 'inclination!
ZA is detcrmlned by the complex number A

2,23 The yaw TA is determined by the complex number ‘=, By

solving the spherical triangle TAZ, "= can of coursc be related to 2
and Z,

The solution of the motion in thé plane OXY is considerably
simpler when the following assumptlon is made; a lincar theory is
then obtained,

Al Tt is assumed that. the sines and cosines of |z|, |4}, | =1,

'and all the malallgnment angles &, are replaceable by iZ‘, léi lE:

@, and unlty respectlvely to sufficient accuracy, and that the
derivatives of” these quantltloo with rcspect to time arc of the same
order of magnitude.
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The relation between %, § and '=' is then

i | zZ = & - = 5

2.3 AOA!' is a reference plane fixed arbitrarily in the missile,

2,31 The total angle o turned through by the missile about its
axis is the angle between the planes AOA' and ZOX.
2.32 OA. is the direction of the axis of the rth asymmetry. Alr

is called the malalignment angle and is denoted by a.. A'KAr, denoted
by ¢r’ determines the oricntation of the asymmetry in the missile,

Notation In the following paragraphs a letter is underlined to denote
a vector, The samc letter not underlined denotes the complex number
determining this vector in the manner described in 2.2,

3 Aerodynamic forces and couples

3,11 A,2 It is assum:d that the shell of a perfectly manufactured
missile possesses geometrical symmetry of order greater than 2 (see
Ref,1,5) about a longitudinal axis OA. "

When thc missile lies in an air stream {lowing in the direction AQ
at a great distance away, it follows from A.2 that the aerodynamic force
R and couple I will both lie in the direction Q4.

3.12 An imperfectly manufactured missile on the other hand has
small asymmetrics in its gecometrical shape which prevent the axis from
being defined as the axis of symmetry. The definition given here depends
on the implicit assumption that both perfect and imperfect missilcs can
be launched from the same launcher. This means that there is a set of
points (of more than 2) on any given missile (namely the points of contact
< between missilc and launcher)which can be brought into spatial coincidence

with the same set of points on a perfect missile, The axis of the given
missile is then defined as thc direction through its C.G. parallel to the
axis of the perfect missile,

3.15 Two dircctions OAy, O4y can be determined in the body of the
missile such that, when the airflow is in the direction A0 at a great
distance away, the resultant force is parallcl to OAjp, and when in the
dircction LyO0 the resultant couple is parallel to 52&1 For a.perfect
missile both thesc directions coincide with OA. The angles AlL ﬁ%l
are the 1ift and moment malalignmentangles and are denoted by ap, oy
respectively.,

3.2 The components of R and [ along the missile axis Ry, I 'and
perpendicular to the missile axis Rp, I'p arc analysed as follows:
3.21 Ry 1s termed the air resistance and is ¢qual in magnitude
to the axial drag kDVZ,
I NA Ty can be divided into two parts

s Ipp due to fins (or wings)

having an offgét, and T'pp the restoring couple that arises when the

= missile is spinning. If the magnitudes of T'pp, T,p are teken to be
g2, —y.Vr along O4, then

’ s = =(rgVr + YFVZ) o8 (1)
wherel 'z is) theuspim; e,
I‘:di.
it
40,
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J.23 Rp arises from the yaw; it 1s not quite the same as the

1lift which is tsken perpendicular to the airflow, To the accuracy of
£l the component of Rp in the plane OXY has magnitude |RP\, and so

when referred to axes 0X, OY is determined by the complex number

2

Rp = kpV™ =1, (2)

If L is the component of the 1lift force in the plane O0XY, referred to
axes 0X, 0Y, then

L=Rp - |Ry| = : - (3
o i | (%)
where ~ kp = kp - Ky (5)

: i
A missile with 1ift malalignment ay e L will experience an additional

1ift force whose component in the OXY plane, referred to axes O0X, OY is
determined by -

i Exe)
LL = kLVZ C(L el(¢L+ )

(6)

& (2) gives the normel force on an aerodynamicelly symmetrical
missile., When the defimition of Rp is extended to include (6) we
have G

2 it
RP=kPV =, +LL

L+ Iy, + |Bg) = vy (3).  (7)

3,24 PP consists of

(%) a stabilising moment Iy, due to the yaw and moment malalign-—
ment., -

and (ii) a damping moment I'c due to the cross—spin.

L
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" The component of PY in th° plane OXY is determined in magnitude
2 and direction by

, C AN Lm
PY = -~ k‘P d V2 <‘—::"‘la:L C( ) e Z q (8)

where 4 dis the distance of the C.G. ahead~of the C.P,

The component of I'; in the plane OXY is determined in magnitude
and direction by

G 0
-I‘C=~-kc.avdt & -y (9)

D To the accuracy of A,l the componcnts of Ry, Eﬂ along 0Z have

magnitudes -R, -I and in the plane OXY, referred to axes 0X, 0Y, are
determined by -Rg, -T'Z; where

R=|Rg| , T=|T]- | it (10)

Also the componentu of RP, Ip along 0Z are of the second’ order, and

the components in the plane " OXY, referred to axes OX, OY, are determined
by Rp, I'p, where

3I‘P=I‘Y+I‘C' = (:Ll)

L Force and Couple producei'by Boosts

s dl Let the boost thrusts be reduced to a force I aoting at the C.G. and
aresultant couple G, Let TA,TP and’ Gy, Cp be the components of T and &

along the axis and perpendicular to the axis respcctively. Then to the
| accuracy of A.l, the componcnts of Tp, Gp in the planc OXY, referred to

axcs 0X, 0Y, arc expressible as

= TAgtn el(¢T+G) (1)

oy

‘i(¢G—+O‘) 5 ) . (2)

Gp Tepapn c

where T = \TA|; ap, @z are the thrust and couple malalignment angles;

52,
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s ¢ are the thrust and couple malalignment orientations; &y is the
distance of each thrust axis from the C.G., and 8p is the radial offset
of each nozzle.

L.2 To the accuracy of A.1, the components of Tp, G, along 0Z have

magnitude T, G and in the plane 0XY are determined by T%, G when
referred to axes 0X, OY; wherec G = lGAl‘

The components of EP’ Gp along 0Z are of the second order, and the

components in the plane OXY are determined by Tp, Gp, when referred to
axes 0X, OY.

hag Expréssed ih terms of':
w the effective gas efflux velocity
Q the total rate of loss of mass f;om the system
¢y  the distance of the centre of each nozzle from the missile axis

and Ay the offset angle of each boost nozzle axis in the tangential
plane,

T and G can be written,
T=Qw , G=1T4%&yg by (3)

5 Jet damping couple J

Bl This is the restoring couple that arises when the missile is rotating,
due to the additional sideways velocity with which the boost gases are
ejected, The magnitude of the axial component J, is therefore

2
J = le B (l)

and acts in the opposite sens¢ to the spin; k., is the radius of gyration
of the boost exit planes about the missile axis,

5;2 The component of J, along 0Z is —J, and the component in the
plane OXY is determined by —J%.

5,2 The:gpmpon;nt of the transverse jot damping couple Jp in the plane
OXY is determined by _ =

«
2 :1-
JP=-Q4GN%%e§, (2)

where &gy is the distance of the centre of each boost nozzle exit plane
from the centre of gravity.

The component of Jp along OZ is of the second order.

6 Equations of Linear Motion

6.1 These are obtained by equating totel force to mass times ascelera-

tion in three £}fed rmutuslly perpendicular directions, chosen-here to be
0X, 0Y, and 0Z4%--,

L3,
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In the 0Z direction, the forces acting are components of thrust, drag

and gravity. The equation of motion is
mf =T - R - mg sing, (1)
where
m = total mass of missile at time t

r.b
i

acceleration dV/dt.

In the plane O0XY, the two equations of motion are written as one
in terms of the complex quantities introduced, The forces acting are
gravity and components of Tp, Tp, Ra, Rp which have already been

mentioned. Accordingly the equation of motion is
madg(VZ)=(T—R)é+TP + Rp + mg cos 0 (2)

6.2 The appropriate forms for T, R, etc., will now be substituted in
(l) and (2) Writing

= T/II]. (5)

(1) becomes

k
f =a — _B V2 - g sin &, (4)
m

and by equations (1), 2.,23(1), and 3.23(7) and 3.3(10), equation (2)
becomes

V az/dt = a™= + (Tp + L + Ly)/m + g(cosa+ Z sing), (5)*

When a <45° the term g sina Z may be neglected by A.l. When 45° < a €90°
we assume that i

either (i) |z] << cot « A3

or Gihg Sc el

* The inclination of the trajectory to the horizontal, usually denoted

by 6, is equal to-a - & where # is .ths real part of Z. The component of
gravity perpendicular to the trajectory is

g cos 9 = g(cosa+ % sin a + 0(22))

big small Z. -
or e
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£.3i) is likely to hold in certain cases for a near 70° or 80°, but
for near-verticel firing (ii) becomes necessary.

By equations 4.1(1), 3.23(4), and 3.23(6),equatiop (5) becomes

(G meag S B ©
where & = kp/m (7)
Hp-® Wp ¥ (g . o | '. A | (8)
Ky = Agag Sk | | (9)
and  pp = EVZaL ei¢L/a (10)

The first term on the right-hand side of equation (6) arises from
the transverse component of thrust when yawing and the 1ift. The
second term arises from the thrust and 1ift malaligrments, and the last
term from gravity.

i/ Equations of Angular Motion

7.1 To the accuracy of A,1, the component of angular momentum of the
missile in the direction 0Z 1s Cr, and the component in the planc O0XY,
referred to axes OX, OY is dctermined by CrZ + i A d%/dst; C, A are the
moments of inertia about the missile axis and any transverse axis
respectively.

The equations of motion are found by equating the rate of change
aggular momentum to the couples acting in the three directions 0X,0Y and
viz,

2 ©Gr)=¢g-T~J (1)
dt

d e |
e {Cr@ + 1A i (G=T - DZ «+ Gp + Tp + Jp - (2)

7.2 By equations 3.22(1), 3.3(10) and 5,1(1), (1) becomes

a(er)/at + (YRV 4 QkCZ)I‘ =G - YFV2. , )

5.
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This equatiori gives r when V 1is known, we get

T
I Crl.- Cah = / I{(G-~ YF,VZ) dt, (&)
5 ,
where
_ . '
I=exp / (YRV + lez)c at. (5
O S -

The suffix o is used to denote the value of a quantity at launch.

Jewid) The reduction of (2) to a convenient form is quite lengthy. Firstly
(2) can bte written by equations (1), 3.3(11), _3.214.(9) and 5.3(2) as

a2z/at® + NaZ/at = (Gp + Iy)/i4, (€)

where
EN = 20k = i Or + kodV (7
28k = Q 8,2 + aa/as; (8)

by equations 4.1(2) and 3.24(8), the right-hand side of (6) is

- \
(Gp #Ty)/th s aug e = n2V% =, (9)
where

g = Hg + My (10)

- lepl  ifq %3 g mg g
= = - —_— & =—-1—2a ll
My e 13 , G e. i " G € ( )
by = = n2V2<xM emM/a ‘ (12)
and n? = kpd/A . (13)

16,
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Next putting = =+ Z in (6) and.eliminating d2/dt using 6. 2(6), we
obtain

2= g Gp+ Ty g a2z
+A = e e
a2 dt 18 Cat a4t (1)

. io
10 gcos a
- g o = [ (3 ) (v B £

v

ic

a ol i gy e 4a ae g cosa :l
=+ V== (V = V) = +&) + - £l
{(v + >dS ( n—‘o) + r—--—,) dt<v7 > at (“F v > V2

(15)

Expressed in terms of V=] as dependent variable and of s as
independent variable, the left-hand side of (14) is

2= a=m B a(v=)
P e bV
'xf 4 <f :I
ol v 16
=+ Vz) 5 . (26)

Equations (15) and (16) now combine to gii'e

dii\zft") '(s)dz(” sl gt £-x> 17)

where 2P'(s) = & + MV + (a - £) V2 (18)
F(s) =n2 + &' + a0V + Na = £)/W + (e - £)/V2) /as  (19)

T(s) = Ty(s) + To'(s) (20)

7(s) = a o™ (yp - Vi, )/V2 (21)

Tp(s) = a e*%p/V (22)

and dash denotes differentiation with respect to s.

47,

CONFIDENTIAL



CONFIDENTIAL

Technical Note Noo, G.W. 177

Changing the dependent variable in (17) to H by the substitution

O _ (é3)
we obtain

% + G(s) H = [w@ s x> . T@)] eP(_S) : (21)

where
5(s) = B(s) = [2()]% - P'(2) (25)
—a —A(S)+AW® ; (26)

where
2(s) =6 = WV + (a - VA (27)

Further, by equations 6.2(7), 6.2(4), and 3,23(5), we cen write

2 B(s) = / <—1“-’i % frE g >ds. (28)

kp % 8sina

SHE i = SR (29)
: m v V2
and

P'(s) - &(8) = N/V, (30)

The order of solving the equations of motion is:

6.2(4) for V
7.2(4) for r
7.3(2L) for H, and thence =, from 7.3(23)

and finally 6.2(6) for Z..

48,
CONFIDENTIAL

I---------------------------------------;----



CONFIDENTIAL

Technical Note No, G.W. 177

8 General Solution by integrals

8.1 In this paragraph the equations of motion are solved for the case
when G(s) is real and constant. We begin by deriving conditions under
which this is true, Equation 7.3(26) is

G(s) = n® = A(s) +A'(s) ,

where by equations 7.3(29) and 7.3(7) A(s) can be expressed as

As) = & + 7 + T, (1)
where
20 =?kP/m - kg d/A (2)
T == (k- 18r)/V ; B= C/2h (3)
.'Tz = g sin o/2v2 (%)

It is clear that |7j|" and [7y| canbe considered negligible only for
sufficiently large values of V., It might be expected however that,
if the velocity of launch is low and the accecleration is high, the time
during which |7q], |T2| are not negligible will be so short that the
solution for the ensuing motion will be unaffected by omitting them.
This is confirmed in the next paragraph.

2 = BpZl Teh VGl and VG2 be the velocities at which |T1] = |'I.'2|, and

|71'| = |%2'| respectively. It is assumed that Vy and VGZ are uniquely

: 1
determined, then |m|> |7Tp| for V> vCl and |t9'|> |ty'| for Vs Voz.
It is assumed that

B.1l (al + |q;l| +'|'r:é|)2-a12 " is negligible compared to n2
for all Va Vg,

B.2 |y ' + |’rz'| is negligible comparcd to n2
for all V>V02
8.22 When Vo> Max (VGl VGZ) we can then put
12(s) = @, A'(s) = oy (5)

L9.
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in 7.3(26) giving

G(s) = n2 = a12 +aq’

8.23 When V_ < Max (Vg Vg,) it is further assumed that
B.5 g sin a is negligibly small compared to a,

Then g sina is negligible in 6, 2(4).and will not appear in cquation 7. 3(29).
In other words the motion is.unaffected by neglccting |'r2 ‘ in A(s), and lt2‘|
in A'(s). Bus when V,<Vs Mg, |ta] < 5o , and so in this range of

|T1] will not affect the motion.  Similarly neither will |Ty'| in the
range V <V < Vo,

8.24 The assumptions B.1 and B.2 put a restriction on the magnitude
of the spin; when B.T and B.2 hold the spin is called 'small',

- 8.25 It is further assumed that
B.h  kp/m, kp/m, kpd/A, kyd/h are constant,

Then A(s) is constant and

&(s) = n® - a2 = p%, say. (6)
at

8.3 8,31 The solution for V, by 6.2(4), is

2kn(u~s )/m
S (a - g sin a) du.

-2k (s—8 )/m =2k (s-—s )/m e
o D D
o V02 c = + 2 e ¢

o

(N
8.32 When a .is constant (7) gives
~ £ = £, Sl (8)
and )
| v 2=y [1 - o 2 ()
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8.4 8,41 The general solution of 7.3(24), when G(s) equals p2, is

S.
P(u
H(s) =X; cos p(s~so) +K, sin p(s-s,) - & / R )T(u) sin p(s-u) du,
. ¥ %
R (10)
where K7 and are constants depending on the initial conditions.

The contribution to H(s) of the gravity term has been omitted as the
‘formulae for gravity drop are given in Ref. 1.1,

.Substifuting 7.3(20) into’ (10') and integrating by parts we have
d

H(S):Kl cos P(s=s,)+ K3 sin pfs-éo)- % ”/ ep(u)[ pTo(u) cos p(s=u)~ Tj(u) sin p(s-u)] du,

S
(¢}

(14)

(11)
where
K3 =Ky + Tz(so)/b (12)
Tj(s) = —Tl(s) + P'(s)Tz(s). (13)
Furthep it is seen from (ll) to (lj) that
by 7.3(23) K} =V, Zs
by 2.23(1), 6.2(6), 7.3(22) and (5) K3 = (& - 4Vy=)/p, (15)

end by 7.3(21), 7.3(30), 7.3(22) ana (5) T5(s) = & ¢ [ug + agug] A7.(16)

Substituting for X;, Kz, Tz(u) and T;(u) in cquation (11), we obtain

H(S) =V2a Ll % cos [P(S-So) +n] + V22 L, sin p(s—so)

7 eP(u)+io‘(u) Ko, e e . a,du
+ s/ [—15— sin p(s-u) = pg = os [p(s~s5) + m ]:} e
p— (17)

51,
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where

V2a Ll = Vo ;E"o (18)
VB et (29)
n = tan

L ay/p. (20)

Hence equations (17)and 7.3(23) give

Sie LEY() + Tokp(s) +E0 (sup) +Egls, =, © 10 (o)
where
o~P(s) )
b =S 5 1
E.l(s) = o D cos[p(s~s ) +n] (22)
e-—~P(s)
Es(s) = sin p(s-so) (23)
VA 2a -
e—-P(S) y P(u)+i.0(u) ) apdu
E.C(S,IJ) = /u(u) e sin p(s-u) 7 (24)
v B u
e—P(s) i u)+iclu a..du
o) == S [t FHHY B s [a(em) 4m] 2L (25)
u

o]

8.42 Differentisting equations 2.23(1) and (21) to (25) we
obtain for d%/ds,

dz/ds = az/as + 4= /ds
~P(s)
dz i € .
= — - ——+P’(s)]:—:'- nSJ-n[P(S-S)+n]
ds I:Vz Ll VNZ)‘ o]
~P(s) ~P(s) U -
+Lo C " p cos p(s—so) oy = £ eP(u)+lo‘(u%osp(s~u)-a—u§E-
V/V2a v P v,
So
e"P(S) 7 P(u) +io(u) : aydu  a e
+0 Hpeo sin [ p(s=u)+ ] = == Mg}
v - Vu V
o
52.
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i.e. by equations 6,2(6), 7.3(18) and 7.3(27)

148 %1y, B +(s " /s alc]
S EL () v (8 () - ) - [ac< u5) - & (s, g)] (26)
where
-P(s)
&y (s) = cos p(s=s,) (27)
VN2
-P(s)
EX(s) = — sin s-5
5(s) pysemgl [ p(s-s,) + 1] (28)
e"'P<S) ° . Plu)+ic(u a..du
E5(sH) = = S/.H(u) e L ?'Sin [p(s~u) +m] ;d (29)
e—P(S) y u) +ic(u adus |
EF(S,H)=- = j H(u) eP() olu) cos p(s-u) Vd . (30)

(o}

On substituting for=,(s) from pq_uatlon (21) and rearranging, equation
(26) becomes '

%% 11[‘ ) e )] ; LZ[” £,(s) +¢,1(s)]
(35 o v o] [ ) o8]

i.e. by equations (22) to (25) and (27) to (30)

n

2 2_2.: [LZ €1 (s) —:Llhgz(s)]'-l;[g(] (s,Mp) -&F <s, l%?—) o |G

where
e-—P(s)
2 oos [p(s-s5) - m]. (32)

1 B VA2 P

. -P(s) u)+ic(u
g (s,1) = -———(——J (a) e . ) 2 cos [p(s~u) -n]————— = (33}

53.
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The solution for & can now be written

B B
557;—Q = Ilél(s) + L2é§(s) + ZF(S,HF) & Ca <%, E§> ’ (34)

where

g (s) H(uw) au (35)

{
|
w
0 Y

) = [ e (36)
Zo(ssm) = - /CE (u,1) qu (37)
xom) = [ 85 (i) an (38)

8.43 The solution for Z is now obtainable from equations (21) and
(34), using the relation

Z2-2, = (%-%)-(2-=). (39)

9 Assumptions required for evaluation of integrals

9.1 In order to evaluate the integrals of para, 8, it is necessary

to make certain additional assumptions. Expressions for the yaw, axis
inclination and angular deviation due to boost malalignment can then

be found in a suitable form for numerical evaluation.

The assumptions introduced refer mostly to the aerodynamics of the
round and are valid only over a limited range of velocity. This
restriction is implicit in B.4, as the wavelength of yaw is constant for
a rangc of subsonic velocities only. The angular deviation can in
general be evaluated accurately under these assumptions without intro=—
ducing aerodynamic terms that are of only secondary importance and in
any case difficult to assess rcliably.

9,2 It is assumed that

C.1 Thc acceleration is constant between launch and all=hurnt
and denoted by a,.

Sh.
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Then

<
1

<
I

a(t = to) (1)

2a(s = 5,). (2)

1t

If the instant of ignition is taken at t = 0, equations (1) ana (2) give

=
1

- ato (3)

¥ Oiiae, . ' (%)

t_ is the'effective time of launch'and s, the 'effective launcher length';
tﬁey are defined by (3) and (4) in terms of the launching velocity Vg
and acceleration a. The 'actual launcher length' required for the same

launching velocity V, is usually somewhat grcater than so because the
thrust build-up is not instantaneous on ignition. The word ‘effective’
is often omitted when the context is clear. From (2) and (4) we have

V2 = 288 . (5)

9.3 It is assumed that
C.2 YFVZ, lezr can be neglected in comparison with YRVr or G.
C.5 Yp, C and G can be taken constant.

From 7.2(4) and 7.2(5) it follows that the solution for the spin,
expressed non-dimcnsionally, is

~(12-7,2) -12
+ 0

r/rg = (v frg) © [B(T) - 5(T,)] , (6)

where

° = Ygs/c (7
o
(i &) (8)

E(x) = /x eu2 au, ' k9)
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In order to evaluate the integrals containing o in 8,41 and 8,42 it
is assumed that

C.L  the range of integration can be dissected in such a way that the
change in YRVr in each interval is negligibly small compared with |G = YRVr l

G - YRVr can then be replaced by G - YgViry in the i-th interval,
where V; and r; are mean values of V and r over this interval.
7.2(3) now leads to

i‘=&=hi’ (10)
where
hy = (G - YgV;r;)/C. (11)

Integrating equation (10) we obtain

F = g W Bpy (B Soi) + N4 Vs - Vsoi), (12)
where
mp; = bi/a (13)
my =Ve/a (rg; - n, ;) (1)
and.doi, 8,3 and t ; are the values of o, s and t at the beginning of

the i-th interval,
Fo? convenience the sufrix i will now be omitted.
9.4 Pinally it is assumed that
C.5 |P(s) | is negligible compared with unity.
C.6 Mq, Mg, $p and ¢; are constant.
C.7 a9 is negligibly small compared with p.

C.5 is the condition for P(s) to be neglected in the solution of
para. 8..L. It is effectively a restriction on the values of s for which
these solutions are valid.

C.6 is justified when the malalignment angles and orientations are
statistical measures for a number of homogeneous rounds: for an individual
round they will vary in an irregular and unpredictable manner,

C.7 1is not cssential for the evaluation of =, & and Z, undertaken
in the following paragraphs, but will be adopted at this stage for simpli-
city. EBquation 8.25(6) then gives n = p, and from equation 8.41(20)
we have m = 0, The symbols £7, £ and g are now no longer distinct in

the equations of para. 8.L.
56.
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10 .Solution.for the yaw =

10.1 By the assumptions of para. 9 we can write 8.41(21) as,

eIy al(s) + Ly Ey(s) +bqEp(s) + %G Ea(s) , (1)
where
cos n(s=sg) :
R : (2)
3 = sin n(s—so)
6y(s) = S Blzmso) (3)
P__‘,T(s) = -%- J eio‘(u) cos n(s-u) dvy, (4)
E(}(s) = %g/ eio‘(u) sin n(s-u) av, (5)
o(u) = o, =ny(u-sp) + nl(fu - fs’o) by 9.3(1:2)
V2 = 2au | by 9.2 (5)
Iy = V= ABa = Ve =y by 8.41(18) and 9.2 (&)
L, =%/n/2a =vVs 4 '/n by 8.41(19) and 9.2 (4).

10,2 In terms of the yaw integrals Iy (s,s.), Ig(s,s,) defined in Ak
and of the functions a; and B, defined by

: D
. - [2(n2+n)s N ny
. & V2r(n,+n) .
o RN (6)
6 - 2(n2-n)s X ny '
2N TR o) -

51.
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the solutions of (4) and (5) are

SN
10'0

'E 2 <17 2
& -1l7 O o ik . A
E_T(s) = = T [e 2 o Ia(so,s) . -in(s o)+ 5 i IB(SO,S) eln(s—so):|‘

1 7.‘_ S-S ~ix Bg 2 53
o w - 0 [ TR gage) O T g ]
ivs
..... (7)

Equations (7) can be written by A.4.2(14)-(15) and A.4.1(3)-(5) as

2&p(s)=

{E(as) D(85) 7] il o(s)- 5] [D(as0) —m(s—s)g(_ﬂ_sxgl in(s—sO):D

% By %,
..... (8)
| ic ifo(g)=0 : :
) e ofD(a) D(BY :[ (s) 01 D(as,) e—ln(s—soz D(Bs.) in(s-s, f
23 fo)= vs Lay A1 I: o) —_Bf— e ):”
..... (9)

This form of the solution is convenient when @y, B, are real and positive.
In other cases, il.e. when ag, B are negative or imaginary, the most
convenient forms of (8) and (9) are readily found by putting the
alternative expressions for I(s,,s) given by 4.2.1(4) to (8), in
equation (7). For example, when 312 is negative (= Bl'z) and s < sg,

(8) and (9) would be expressed for evaluation as

. mof[ as) D(—Bs)] o‘(s)-o‘o] D(@s)) _in(sdsolwein(s_so):'}

oy, . B

(10)

23¢ 9= eloj (a ) D( Bs' ):l 1[0‘(5)-05 D(ls) -ln(s-s ) D(—-Bs 1) ln("’-%):B

Vs L Bl ay
..... (11)
10.3 Constant spin
Putting n, zero the equations (6) become
58, (12)
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= V2n/m Vs + ny/ 2nx (12)

le = e iB = \/2n/7t Vs - nl/JZn’K. (13)

Equat:l.ons (12) and (13), show that & is alwayE os:.tlve and that B!
is negative for ‘a1l values of s leus than ny /p (die. sg

We shell now find an approximate solution under the following
assumptions: .

(a) w/sléﬁw/s_{é
(d) - n12/2n 5
(a) restricts the range in which.this approximate solution is valid;

the larger the spin the greater the range of velidity. Equations <12)
and (13) are then

ag =~ B! = m/Nonx . (14)

The object of introducing (b) is to allow the function D(u) to be
replaced by the first ter'm of 1ts asymptotlc expansion (see Ref. 1. 4),

namely

. iy . h 113'2
D(u) =¢ < {1_;}.-/ g = dx}fv:"-/m- (15)

The error in (15) ‘is sbout 10% at 1 = 1, 2% at u = 2 and quickly
decreases, Like (a), (b) requires that the spin should not be too
small. By equations (14) and (15) we then have

- Sanpie ) 5(—33.') =0 (16)
- D(-p 1) = 2L [2n
D(ag) = D(-By') = m \/: . (17)
Substituting (16) and_(17) into (10) and (11) we obtein
i ¢ JIG(S) o] '
En(s) = - cos n(s~-sy) 18)
i ny Vs [ :] (
5 eiGO
Ex(s) = e sin n(s—-so) & : (19)

Do,

CONFIDENTIAL



CONFIDENTIAL

Technical Note No. GeW. 177

11 Solution for the axis inclination ¢

11,1 Under the assumptions of para., 9, equation 8.42(34) becomes

20 21y 4(6) + Ty Zale) +iag £x(s) + 2 g, (1)
where
Z1(s) = - jéz(u) du (2)
le(s) = ng(u) du ' (3)
Zp(s) = J £a(uw) au (4)
200 = - [ eal) an (5)
5 11.2 él(s) and Z,Z(s) will nc;w be evaluated. ‘ Write
£*(s) = Z(s) +1i ézi(s)

s E_ /‘ ln(U—So) Vu by 10.1(2)_(3)’ (6)

~
u

then this integral can be evaluated by putting My = &, where

611 =i 61 '\/-u L 3 60 (7)
612 = 211/71 (8)
50 = 0, (9)

in equations A.2.11(1) and (3). It is then found that

&) «(8)| sy - (60 ] (10)
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Since &, is always positive, equation (10) is in a form convenient for
numerical evaluation for all values of s,

11,3 Zq(s), &;(s) are found by substituting 10.2(8)-(9), into (4) and

}(15). In terms of the integrals J,(s,s,), JB(S’SO> of 'A.3 and £*(s), we
ave

Jy (54,8 S, S D(as ) D(Bs ) !
ZiZT(S> =2[a(ao >"'JB(6; ):]_1{: lo ZX(S>+ Blo z:’x(s>]el0'o ()

1 aQ

Ja (5558) Jp(sg,s)] D(atso> = D(Bso> = ic,
Z;G(s)=-2[ - " 5 :]+1l: - ZX(s) - 5 é(s):]e PN )

Ty (so,s), JB(so,s) can be found by one of two approximate methods
according as either ny, 1.e. spin I is sufficiently large (the
asymptotic solution) or np, i.e. angular acceleration I"o’ is sufficiently

large (the approximate solution), The appropriate formulae are given
in A,5 together with estimates of their accuracy.

It is found that when vsg (or w/'é—B) is positive and greater than Vs
there are two expressions for the asymptotic solution according as
Ba e S SB> o = »isy ldr SB). For example, suppose Vs; is

B
positive and greater than Vs, and that (312 is negative (this is case (d)

in A.5), then by A.5.35(34) and A,1.1(3) we £ind that

ow)-0,) T
b(-8,') e

2 6170 35(s0,5) + D(8s (s} = (-2) +D8, 02

2n2w/'u+nl

=

o L)

when sos s € SB’ ande By 15,35 (850, Au5.5h(5), K, 1.1(3) amdt 11,27

it 58, 1) Be, 1175
2 e I (so,s)+iD(Bso)éx(s)=2 5 -

= x
_a !
n, JEO +n; 2n2‘fs +ny 0 B, )& (s)

+2B(0) ei["(sﬂ>'“°]{2(n2-n)/nnl + 21/81)| DG S)ein(s_sﬁ>-])(5 53:'}

e 8

when sg S s,

Substituting in (11) and (12) for J,(sy,s) from A,5,31(13) and for
Jg(8y,s) from (13) and (14) we obtain

61,
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-0, . ) D(“u) B(-Bu') eiET(u)—o‘(;l : .[D(aso) -ﬁ(_Bso') ]
ie " Chk)= -2 [“l 5 ] - ROR &)

Bl' 2n2\f1:.+ nj aal

..... (15)
o '[D<a> I GO SIN ECNSCF 4D ]

2¢ %%, (s) = 2i | = +4 7% (s) 4 —2— 2 (s
Gle)=2 il Bl' 2n_Vu+ ny b L By eie)
..... (16)

when s, € s < 59 and
. Da) 5(%1) ei[o'(s)-%] D(e, ) DEBg )— i
s) =—-21 - — 421 Q + 2
Z-T B ]_ Bl' 2n2\fs+nl 0 ay Bl' 2n2\/§.0+n1
Dlag ) _ 5('65 b
= © ZX(s) = ——=2—1¥%(s
! G |
1[0'(03)—0']
Ao LU e (S—SB)
+25(6) S a6 ) [0 e PDsgy) | ]
..... (L7
D(a) D 'y o)) D(ag ) D(-B,
_10‘0%(0) 21l\ : j 82 : - Do ' o) L
il 8y n,vs+ ny i, B1 2n21/é—;+ ny
Dz, ) D8 ) . ]
+ 1 - 25 () = —————g (S)J
1 B1'
i[O‘(sB)'—O' ] -~

+12D (o) e—ﬁl'—— tz (ng-n)/nny + (21/87) [D(5s) SR >’D(6SB)] }

when sB & (S

12 Solution for the angular deviation 2Z

12,1 By equations 8,43(39), 10.1(1) and 11,1(1) we have

20)

62,
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2« 7y = Tn 7)(s) ¢ By Zp(a) + py Zls) + == Zg(s) @)

where Zl(s) = n?él(s) - [E1(s) - El(so)] (2)
Z2(s) = ) éz(s) - «52(5) (3)

Zo(s) = nZg(s) ~Eg(s) for 6=1T,6 . (&)

12.2 Zero Launching spin, n/n2 small

12,21 In this case ol is zero and

nl = -~ 21’12’\/—5—0 . (5)

Hence equation A.5.52(47) becoﬁles

‘Y‘u = ./2n2ﬁ\:‘ (\fu = \/-5(_)) 9 (6)

showing that Y, is zero initially and positive for u > Sge

By equations A.5.52(48) - (49), we have

2 S
b g / nio (7)
n2+n
]2 s
« n n'20 ] (8)
B Ty " ©

It is seen from equations (7) and (8) thatk, is negative and xg is
positive. The arguments of D(Y,) and D(Yy = Kq) in A.5.52(45) are
therefore positive, but the argument of D(Y, - kg) in A.5.52(46) is
negative for values of s near sg, Provided ~xg is greater than -0.5
the error in A.5.52(46) will be less than 20% by E.}.}A.

1t

. From A.4.1(12)-(13) we have

Vsq = mVsy/(np + n) (9)
{S—B = noVs /(np = n) . (10)
R
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. (9) shows that Vs, < V8§ o» Which means that & > O for s > s,. (10) shows
that \fS—B—lS slightly greater than V8], so that in the range Vs < VB < ~/'S_B,'
-+ BS will be negative,
12,22 Sctting s = «, we have the following results
=.=0 by 10,1 (1) - (5) (11)
Z¥(w) = (21/87) D(8,) by 11.2 (10) (12)
0™ Jq(sgy=) = ilng +n)[D(o) - D(=k,)] / 2m,Vs_ by A.5.52 (45) (13)
-i .
e 0 Jg(sop) = 4(np -n)[D(0) = D(-x3)] / 2rmps, by A.5.52(46), (14)
where K, kg are given by (7) and (8).
When Sy is zero, kK, and Ky are zero by equations (7) and (8),
and equations (13) and (14) becomes
51 op ]
% a(o,°°) = e % JB(o oo) = 1/V2m2 by A.3.32 (l.nl). (15)
The solution for éT(”) and CG(‘») are obtainsble from 11,3.(11) - (12);
they are

16% gt = 10-0[5a(so,oo) JB(so,w)] LD(aso)ﬁ(%o) _D(BSO)D(BSOl] (16)

g 181 8181

539 ¢ (o) o {? i (20,%)  Ta(505 >:J{:D<aso>5(aso).Pn<sso>n(aso>:},(17)

218 B181

. where Jy(sy,2), JB(s,,~) are given by (13) and (14) or by (15), and where
D(Bso) can be expressed for the purpose of evaluation as

- 2
D(Bg,) = & 2 P50 (1 4 1) - D(-By ) .
6l.
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By (4) anda (11), Zg(») is now given by

Zg(=) = nZy(=) (18)

for © = T and G,

12.23 It is shown in A.5.5 that the maximum error in (13) and (14)
is n/2n2 and that in most cases it is likely to be considerably less. Ir
we sacrifice a certain amount of this accuracy by ncglecting n compared
with no, (16) and (17) can be simplified. More explicitly, if we assume
that N

(a) n/n2 can be neglected compared with 1

(b) jn% 2180 () is so small that 2A(+u)=<L and 2B(+u)-l
/I8
are ncgligible comparecd with 1,

then by (a) we “have

=B, = /2g2/ﬂ (19)
B 0 Jhgt] 21’130 :
so = "B = /;2 /—-—7t (20)
L \/_ﬂ 2nsmv l)
A e (2
and hence by (b) and (20), (21) we see that D(-k,) and D(-kg) as well

as D(ag,) D(—BSO) can be replaced by D(o). Bquations (13) and (14) then
become ’

R

=
{

&
[

c-‘lo'o Ja(so’ oo) :O"'lO"O JB(SO,‘?) = i/V2n27t . (22)
By equations.(l9) and (22), cquations.(l6) and (17) become

1%, £(=) = Q@+ 3)x A(éso) (23)

1’).21’).

—-ic i (l 5P l)ﬂ
(6] o ZG(OO) A ﬁ-?- + —2——@_5.—' B(éso) v (24)

Equations (23) and (24) become exact as n,* »,  Condition (b) above
requires n, to be fairly large because B(u) changes rapidly with u at
u = 0. Equations (16) and {17)_on the, other hand would give quite good
accuracy oven for n/ny equal to 1/3 or */2.

65.
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12,24 VWhen o, is taken as zero, the solutions of ZT(w) and ZG(°°)
arc by equations (18), (23) and (24),

Rl Zp(w) = Im Zp(w) = %\/;11—“—_-2— A(5So) (25)
ZG(°°) )8 S
R e
e ) - L, (27)
n 2 nyn ~o ny

For large ny, the real and imaginary parts of Zg(e) are equal; we have

Zmle) | =7 2 A(Sg 8)
| |27 () | /an ) (2
‘ZG(“’)l o i
n ~V2né}l B(630) ' (29)

12.3 Constant Spin

12.31 When s,< s < sg the solutionsfor Zr_f(s) and Zg(s) follow from
(4), 10.2(10)=(21), -and 11.3(15)-(16) with n, = 0.

26 5,() D(Z:SL) __1‘;_3_8}5(;3?')%_%)}1[0@)_ N

r—=

+L:(Zi0)+5(-ﬁgi:):l [/__Js;_é_i sin\/rsl(s-so) s ‘32(3):'

e -5(:7"' [ a-gsﬂ (30

%

66.
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20" zu(o)_ E&)—(—_r) D(-83) __f:-_)]?i[o‘(s)-o‘o]

5
(Z;%) B(- B q[r T < 5 o]
[es, (- B)][ o) Ly @], @
 vhers e
i

The functions &y, By' are defined by 10.3(12)-(13).

12.32 For values of s somewhat less than S8 it is possible to
simplify (30) and (31) by using the asymptotic expansion of D(u), namely

g 1 i o i
D(u) _< = >+7:u< ST e > (8ce Ref.l.lL)
76
L€ - Dlu) 3 i/7}:u when mu? s 1 .

If we assume that

(a) s lies in the range for which

on (\/'s—g- \/'s)?‘ >> 1 (say> L),

the asymptotic expansions of D(-B)) and D(ds) are valid, and we have

11 1 i [on

D(a.) (= -=)= - D(-B' —= )= =, (32)
( f’)<\/s Vé;) B )<\fs féé) nlw/s\/’it

A further simplification is obtained by assuming that

(b) @<<@g,

67.
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then

D(ag ) = - D(-Bg ") = & |28 (33)
Ba)

by the asymptotic expansion,

Substituting (32) and (33) into (30) and (31) we get

2l g cos 5=8 ei{o‘(s)-—so]
R ZT(S) _ _ri_ 3i o) _ - - nél(s):l (34)
3% 7.(s) = i_l[w/% i sinfz(s—S_o) 48 o (;2(3):] . (35)

Putting o = 0 end dividing (34) and (35) into real and imaginary parts
we have

RL Zq(s) = Sizgis) (36)
L 3
T Bl 1 | cos n(s-sg) -cosos) _ nél(s):l (37)
! Vs
s G %z (38)
L I I R T fm_n(s;ici] (39)
n . nvs

where & (s), %(s) are given by 11,2(10), i.e. by
Z1(s) = Vox/n [-A(&so) +£4(85) cos n(s~s,) +B(54) sin n(s-sy)] (40)

Z(s) = Y2m/n [B(éso) +4(83) sin n(s-s,) - B(8g) cos n(s-s,) J. (¥1)
68.
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Equations (39) and (41) combine to give

ZG(S) /E;( G(SSO:SS)

-t (12)

a

Im

n

where

- 2 IS
G(85,,05) =B(85 ) - 41 (85) sin = (8 2- 85,7~ B(8;) cos -~ (642~ 6502) (43)
and

SRR
Al(u)"';'m— “() .

12.33 It can be shown that for sufficiently large s

(1)

This follows because 4;(u), B(u) are rapidly decreasing functions such
that, when §5 has increased to about 1 oxr 2, Al(f)s), B(Ss) are negligibly
small compared to B(SSO) (which is % or a little less). We then have

mZG(s) - Ing(‘”) 3l /'n:

) n I 2n

and hence

n n

r 26(2) )Im Lol -‘2-]-?;?
BL
< V2/N

because np satisfies A.5.41(36), where N is large,

Hence

n n

.Im Zg(s) . |Za(s) | . ZGI(IS) (l . L )

which proves (44).

69.
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12.3k When sq < s, the solutions for ZT(S) and ZG(s) can be obtained
from (4) by substituting equations 10.2(10)-(11) and 11.3(17)-(18) in it.

, % 20(3) = (sf)(%'ﬁ> Di, )(\[S {J:éjlei[cr(s)-cro]
(“SL n(—sso )Jl:/— sin n(s ~s)) L. 42<u>_|
{L(Zi <) D( Bs, 7] cos n(o-so) = «:l(s);]

. ?g.i._) Ho(sp)- 1{%% ;(a@] ein(u'%*}; (15)

P AL e ]

Lp(as o e ’):ILCOS ns=se) . S)]

28 AlpTel [, | U*(““SB)T (16)

70,
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o 12,35 As s tends to infinity (45) and (L6) give

;i: A ag 5(-{380' '
2 ¢ *+% Zplee) = I( o) 4 I—l et gz(,,,)] -

al Bl' SB

‘E(:iO) i 5::?"' )]n al)

emy | il0(s),)
e o

+ 4 (8 B)] (47)

0 5o, e ilj?(::-o) _5(;:’?0'1 [/Js“_ﬁ o gz(wﬂ

Ev(aso) (- Bso')] 2 ()

-—

Zﬂis:'l- B(o) ei[G(SB)"Go] [l
1 7o

= + i D(SSB)J E (48)

Substituting aj = Bl' =01 = \/2n/7t and assuming as before that

w/'?o << VsB, equations (47) and (48) can be simplified to give

1[o-(sB)-0'O ]

% gy(e) = ) s B puy(8) + 33(3) o (49)
0 SB
e o .iB._..__Qg&S )l = Palos) + 1305, 18] (s0)
n nl NOS n

7]--
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It is now shovmn that when (49), (50) are valid, i.e, when
A.5.41(36) holds, the Al(SSB)-, B(8, )-terms are small compared with

the A(5so)-, B(SSO)—terms. By condition A.5.41(36) we have

4=

>2 for N 25,

and hence B(8y ) = 1/&2é¥ﬁ3 by the asymptotic expansion (Ref.l.l4).
Therefore

z 836 B\OSB) < %/LN¢ < 0.03 for N » 5,

and hence is very much less than A(&SO) B(8s,) (which are usually just
less than ). Likewise, for 85. > 2, A;(8g,) is less than B(6s,) and
so is very much less than A(&SO) and B(SSO). Equations (49) and (50)
then give, on taking o, = O,

RL Zp(w) = O (51)
ASg )
Im ZT(oo) = V2%n nlo (52)
Z,(=)
Rl G# = 22 (small) (53)
i}
Zin (oo B(és )

12,36 For values of s < sg not satisfying condit%gn 12.32(&) i
is usually found that in (30) and (31) the terms in e 5)=% and in
A(83), B(8) are small compared with A(SSO)—, B(65_ )-terms, When these
terms are neglected the solutions reduce to (51) = (54). The same is
true of (45) and (46) when s> sg; and so (36) = (39) can be taken to hold
for all s, The error in these equaticns arises mostly when s is
near s, since this is when the approximate terms are largest, For

such values of Vs (i.c. << VEE) it is shown in A.5.41 that the error is
less than %/2N2, i.e. an/r 2.

72,

CONFIDENTIAL




CONFIDENTIAL

CONFIDENTIAL



CONFIDENTIAL

Technical Note No, G.W, 177

PART IIT

4 SOLUTION FOR THE MOTION AFTER BURNING

il Introduetion

Part III of this note is eoncerned with the flight of a missile
in the interval between separation of its expended boost and the first
applieation of eontrol. During this time dispersions may arise from

(1) faoulty detachment of the boosts, and
(ii) aerodynamic asymmetry of the round.

The effeet of (i) ean be evaluated in terms of the initial conditions,
i.c, the initial yaw and initial angular velocity of the missile; the
effect of (ii) con be ovaluated in terms of the 1ift and moment
malalignment angles. These causes of dispersion have already boen
introduced in Part II, and so little further work is necessary to
obtain the equations of motion. In fact, under assumptions for which
the wavelength of yaw is eonstant, the solution by integrals given in
II.8 can be taken over at once with the thrust equal to zero.

When the spin/veloeity ratio is eonstent the yaw and angular
deviation ean be evaluated. Finally, the non-transient terms in the
angular deviation are considered under simplifying assumptions.

2 The equations of motion

The equations of motion after burning are found by putting T and
hence a equal to zero in the equations of motion during boost, namely
in equations II,6.2(4) and (6), II.7.2(4) and (5) and 11.7.2(245. It
is understood that the parameters in these cquations now refer to the dert
alone. We obtain

k ;
f o= = _Q.Vz - g sin & (L
m

'g—é‘ =5[:'+ ag, ci[¢L+0'(S)]:l " ﬁ\of_;i (2)
G Y. V2
I(t) r - ro = - / I( ) Fc dr (3)

to

where

T(E)

il

t
Vi
CXD RT ar
C
o

73,
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S aefBom (1.4 o9 | S w

ds V2

The suffix o now denotes the value of a quantity at the end of the
separation, i.e. when contact between all boosts and the dart has broken.

By II,7.3(26), (29) and (30)

6(s) = n? = 4%(s) + 4'(s) - {5
2A(s) = kp/m = M/V + g sin oz/V2 (6)
2P'(s) = ké/m + MV o+ g sin a/ve, (7)

and by I1I1.7.3(7) and (8),
M = - 1(C/Ar + kgav/a . (8)

We shall dlso-write

1!

20 k’P/m - de/A as before in I1I1.8.1 (9)

2a

kp/m + kod/A . (10)

N
]

3 General Soluticn by Integrals

3.1 The procedure herc is similar to II.8; assumptions are introduced
which pcmit G(s) to bc taken constant; then 2(4) can be integrated and
the yaw obtained, It is assumed thot

D kD/m, kP/m, de/A, kcd,/A are constant, and
D.2 A(s) is constant and denoted by A.

Then by 2(5) we have

G(s) n2 = A2

Il

= p° o constant. | (1)

T
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It is readily seen from 2(6) and 2(8) that 0.2 Lmvllvs the following
alternative assumptions:-

(a) either (i) spin/vclocity ratio constant,
or (ii) spin sufficiently small.

(b) either (i; velocity constant,
or (ii) sina sufficicntly small.

In practice (a)(i) and(bg(l) hold for o short intervol after scparation,
while (a)(ll) and (b)(ii) will almost always be satisfied even when
simo=Nils

3.2 In view of D.1 the following solution for V is obtained from 2(1)

V2 = VO2 c-'ZkD(S-SO)/m - [l - e—ZKD(S-SO)/m] mg sina/kD. (2)

Hence

S e-sz(u—so)/h ()
and

o

L A e G—Zkr(s—sgﬁn]/(kr/%o. (1)

I The solution for H is obtained by the method of II.8.4, which
will not be repeated here. The only molalignments now present are due
to the aerodynomic asymmetry.,

From equations II.8,41 (18) - (25), II.6.2 (8) - (10) and II.7.3
(10) - (12), we have

=i =, ) S i),
A s) + g (S) + C ‘ZL s) + '; E’M(S)’ (5)
where
g -P(s)
E e
g3(s) = 2—— Z cos [p(s=5o) + m] (6)
v D

Sl ©

u

75.
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C‘P(S) T P(u)+ic(u
E.E(s) i Ao ./ e Gkt g- cos [p(s~u)+n]v, du (8)
) P F Pw)eio(a)
Ey(s) = = T / e sin p(s-u) ¥ du (9)
oy, = 4o, oL (10)
CM = n2 (ZM ei¢M (ll)
n = tan”> A/D . (12)

The angular deviation can be obtained by. integrating equation 2(2),
where the yaw is given by equation (5).

)N 'Spin proportionsl to velocity' solution

4,1  Wo now make the following asswnptions under which itwill be proved
that the spin/vclocity is always constant.

E.1l kI/m + g sin a/V2 constant

E.2 YF’ YR COnSt&nt

e

(1)

<|o'

i a /r
B. 5. it sthe erd-cf sspamatien . & a0y d,e, 2=
ds \V r
(oM o

4.1l E.l implies either that the change in V is small or that the
drag k V2 is very ruch larger than the component of gravity m gsin &,
2(1) gives '

V=V, e—&(s—so) (2)

where

(og)
il

kD/m +g s:i.noc/V2 d (3)
76
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4,12 By E.2 and (2), 2(3) gives the solution for the spin,

gl s} /O
[r(Yg = €8) + Ypv] = [r (vg - C8) + YgV ] e R(5-30)/C

and this equation can be written as

r <V r ro<\.l'o T —-YR(s—so)/C
DIPS| EESSSRERSR o ) (A . e
-V- '\r r> 'V' V ro> (h“)

(@) 0

= 0 by equation (1)

Therefore

and

c(s) = o5 = Y(s-s,) . (5)

4,2 Comparing 2(6) and 2(7) it follows by D.2 and 2(8) that P'(s) is

also constant., Write

P'(s) = Py + ipp (6)
where

p) = @ + g sin a/2V 2 (7
Py = —BY g Bs O/2K, (8)

‘ By (2) and (6), we have
g )y B (9)

T |
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where
B(s) = (p;" + ipp)(s~s) (20)
pt =p =8 (11)
= a2' - g sin a/2V02 by (3);
where
a2' = 0y - kD/m
= (kg - kp)/2m + k5d/2A by 1I.3.,23(5) (12)
4.3 The solution for =7, 3.3(5), can be written using (9) as
5 + Cy ,
= ==y EI(S) ; "g" Ey(s) + 0p E[(s) + = Euls), (13)
where
~-B(s
() = % B cos [n(sms,) + 7] (1)
- -B(s) . ) (15)
52(5) = e sin p(s—-sO
s
EE(S) = -e;B(S) /’ eB(u)+lG(u) 1 cos [p(s=u) +m)du
So p
..... (16)
[ B(w)+io(w)
gM(s) = —e—B(S) / T p(s=u) du iz
8o

and o(u) is given by (5).

78.
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The functions Ei(s) and &y(s) will now be evaluated. Write

HO - pl' + ihg = pl' + i(p2 +) (18)
H =py' +1ihy =p' + i(py +Y - p) (19)
H, = pl' + ih, = pl' + i(p2 ) (20)
&5 = e 2l = e (21)
g, =p+ih =ne", (22)

A s=s Mu-s,)
and let e(N), E()\) denote e (s-50) andf e °"du respectively, so

59

that in general

e(N) e(d) = ety + M) (23)
and

EQ) = [e(M) - 11/™. (24)

In this notation (16) can be written
2058 ) = - o(-8,) g, o(in) E(Hy) + g, o(-ip) E(Hp)]

8o oy Bl By . &) i s
=e(-H,) ;{2- e(ip) +=L e(—lp)]-—e(-Ho) -ﬁf- e(ip) e(Hﬁ+H—2 el=ip) u(ﬁz):l

i 1 2
oo by (24)
=|:§_2_ o) witk e(-Hz)] = [:5&»%:] by (18) - (20),
Hy H, H H
79.
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op OEL( [52 i o b e(-lp] {: qjei[d(s)‘do]. (25)

Similarly (17) becomes

o ?;M(s)= e-B( )Le(lp) e~ leJ liHl H‘J 1[0( )= ] (26)

L.4Y From 2(2), Z is given by

S

i

Z - 7, = 6/:(u) du + Op, / oiolw) du  ; (27)

&
S
(e}
SO

the term giving the gravity drop has been omitted. Equation (27) can
be written

2- 2 =z (s) + iZy(s) + OpZpls) + %‘5 (sl (28)
where
b =8 = (29)
R A (30)
Z, (s) =_/ g (u) au | (31)
%2(8) = f Zp(w) au (32)
_ 7, (s) = J[e &1 (w) _G(u)]au (33)
2, (s) = J S (54)

80,
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To evaluate (31) - (34) write

B
t
g
'_J—
<+
P
=
f

ik, = py' + ipy (35)

Ky =p' +iky =p,' +i(p, - D) (36)

K, = py' + ik, = py' + i(p2 & 1)y (37)
Then

2pZ1(s) = g,B(-K;) + gE(-K,) (38)

2iZ,(s) = B(-K) - E(-K,) (39)

2p 6% 7;(s) =¢ E;_i E(-K,) +% E(-—KZ):l “ li(%:% +§I.:12.>-2p:|E(iY) (40)

216 00 2()=2 [Hil E(-K; )~ ;IL—Z 'E(—Kz)] -a% -Hiz-]E(iY) . (11)

4.5 To evaluate ZL<S), Zl‘:(s) write

K = (p' - A)+ihy - igy = g, - dg, (12)
Hy = (p,' - A)+ih + ig) =g, +igy (13)
K, = (pl' - A) +ik - ig, = (go - iY) - ig2 (4L)
Ky, = (py' - M)+ ik, + g, = (g, - i) + igy , (15)
where
8o = (p1' = &) + ilpy + ¥4 (46)
gl
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The following rclations are readily obtained from (42) -~ (45),

g2H2 + ngl <3 go(gl + g2)

gzﬁéKz + nglKl = (goz - iYgo = 3152)(81 + g2)

HE, = g2 +ig,(g ~ gp) * 8,8,

KK, = (g, - i7)2 + ilgy - i) (gy - &) + g &, ,

and from (21) and (22) we obtain

and

2 2
= A
£18o r- o+

N

by GldE) -

Then evaluating (40) by (24) we obtain
—io .
e 0 7 (s) = (G - G,) = [og e(-K)) +cy e(-K,)] + G, o(i¥),

where
Cl = c] + n2

B
2p \IJK, HX,

8B
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By =[1 <_g+81>:l / iy (57)
Hy
g
2p HlKl
: g
&, St e (59)
2p H2K2

By (47) to (54) G, and C, are found to be

C, = (n® + i¥g) / i¥ H H, ] (61)

where
mEH, = 0% + 288 + g 2 vy (49),(52) & (54)
)
KK, = n° + 2Mg, - i) + (g, - iY)® by (50),(52) & (5u)
..... (63)

and
g, - iY = kgd/A - 2iBY - § by (46),(11),2(6) & 2(7).

..... (64)

Likewise evaluating (41) by (24) we have

-ic

o 0 zy(s) = (Dy - Dp) -[d; e(~Ky) - dy e(=K5)] + Dy e(ir), (65)

83.
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where

- 6. <_l __l > (66)

D, = L <_1___1_> (67)

2Y

T (68)
21 HX

d, = & ! (69)
21 B,

Equations (66) and (67) can be evaluated in terms of gy, Y and A as

pe [2g, - iv + 24 /Hlele2 (70)

=
It

&)
]

1pg /v EE (71)

where HiH,, KjK; arc given by (62) and (63).

4.6 . The solutions for Zy(s), Zs(s) are, by (38), (39) and (24),

2p Z1(s) =<-§—i—+%>"l}2 e(;fl) +g, 6:12{2) ] (72)
21 2,(s) ’(ﬁ;'%;)“[ei?) 2% ] , (73)

8L,
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where by (44), (45) and (51)

g 8
g 2p(g, - 1Y) / K1Kp (72)
LK &K
B S0P / KK (75)
% = 2ip 155 g 75

5 Simplified solution for the angular deviation

5.1 We now assume that
F.1 The velocity is constant
F.2 The gyroscopic effects are negligibly small, i,e, small spin
F.3 The cross-spin damping is negligibly small.

It then follows from thesc assumptions that

8, kp/m, sin a, B, and de/A

may be put zero in the preceding cquations: the following simplifying
rclations are then found to hold.

I

A = A(s) = P'(s) = kp/2m by 2(6) - (8) \
= by 2(9)
= a, By AlE)

=p; by 4.2(7) f (1)

p' by 4.,2(11)

k]/Zm since kD is zero

=¢/2 ,
and Py =0 by 4.2(8)
p2 = % - (¢/2)%2 by 3.1(Q2) (2)
8o = i¥ by b4 5(6k) (3)

85.
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Hence by 4.5(62) and 4.5(63)

BH, = (n? - ¥2) + ive (4)

e : (5)
and by 4.5(60), 4.5(61) and (5)

Gy = ~16/Hiﬁ2 ' (6)

G, = (n® - ¥2) / 1y HH, )

By 4.5(70) and (71),

D, = pb(6 + i¥) / o® HH, (8)
and by 4.6(74) and (75)

g
SRR (10)
Ay
ak 1 i )
e =i 5 Al
q K ip/n (11)

5.2 It is seen from 4.5(55) that Z;(s) is the sum of three terms;
a constant, a transient and an oscil%atory term, The damping factor in

the transient term is e_e(s_so)/é » and for sufficiently large s-s

. . . . o
the contribution from this term is negligibly small. The locus

Zp, = Ly = O Zi{s)
86.
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then becomes a circle of radius |CL| éCnl whose centre is at a distance
lcg,| |o1 - Co| from the origin. By (4), (6) and (7) we find that

loL] [02] = o b& -v2|/ lrl /(n2 - ¥2)? 4 ¥Pg? (12)

|op] foq = 05| = o, e/l (13)
In the spccial case ¥ = 0, 4.5(55) becomes
o~1% ZL(s) = (Cl)Y=O + (iWSz)Y=O (s—so) (14)

for sufficiently large s—s Henee

A Ly, - Zpg = "o, eiwy‘r%] e[e/n® + (s=s.)] . (15)

In this casc as s increases the angular deviation will incrcase
indefinitely. The ncgative sign in (13) appears on account of the
way the 1lift malalignment is defined in II.3.13.

5.3 Likewise the angular deviation locus due to moment malalignment
is seen by cquation 4.5(65) to be a circle for sufficiently large values
cf s-s,. The radius of the circle is SM_IDzland its centre is at a

Cum

distance 3.l | Dy - Dy| from the origin.” ' By (4), (8) and (9) we find

that

C‘gﬁl I3g | = mgend /1] { (2 - ¥D)2 422 (16)

iCM

D

By e Bl =g/ el . (17)
For a non-spinning round 7Y is zero and 4,5(65) becomes

-ic Pe T ¢
= o) ZM(S) = - — Lj —§-+ (s—so):].
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The angular deviation is then determined by

Cu

. -
Ty - Ty = — Byle)= - oy el(QMJr o) ¢ [: ) + (S-So):] , (18)

b

The angular deviation due to an initial yaw /= is, by equations

5.4 =
k. 1(28) and 4.4(29)
Zy = Ly = = Zy(s)
=0 for sufficiently large s-s,

by equations 4.6(72) and (19, This shows that the angular deviation
1s entirely transient.

5.5 The angular deviation due to an initial rate of turn of axis £  is

- Z, = -gﬂf Zp(s) by Lk.4(28) and 4,4(30).

Z
2 20 oV

o]

For sufficiently large s-s,, equations 4.6(73) and (11) give

@

zz(s) = p/K;K,
= p/n? ;
hence
Zp ~ Zpg =8, 8/ 0V 1, (19)
88,
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| e APPENDIX A

EVALUATION OF INTEGRALS

| ik Fresnel functions

1.1 Write

| e(u) = C(u) + 1 8(u) _—./

e}

CR
elzxz dx (l)

‘ for real u, and define D(u) by the equation

-i“ u2
2T s e ) (2)

D(u) = B(u) + i Alu) = e

for all real u. It can then be shown that

(a) B(u) and A(ﬁ) are monotonic decreasing functions for positive
values of u (Refs. 1.3 and 4.3) and so can be conveniently
tabulated.

(o)
—i£u2 —i’—t-u.2
D(-y) =e 2 (1 +41) =D(u) =2e 2 D(o) - D(u)

and (3)
D(-u) =e 2 {1-4) -D{u) = 2e D(o) - D(u),

where the bar denotes the complex conjugate. Equations (3) show
that B(u) and A(u) are oscillatory for negative u.

() D'(w =-[1+41 muD(u)] (W)

ok = - i [V () + (n-1) DDw)] ns1 (5)

(@) u|p'(u)|< |D(u)| for all finite positive u (6)

(e) ID*(u)| <v2 |D(u)| for all positive u (7)

1.21 From now on we shall be concerned mainly with fuctions and integrals
of D(u) wher¢c u is of the form

‘ = N atie Weep b (8)

where 7»12, 7\17\-0 arc real constants, end M denotes the positive square

root of A;“.  Then, M is real or imaginary according as M is real

AL
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or imaginary; and h; is real or imaginary according as 112 is positive
or negative,

When M is imaginary, write

A = AN (9)

where

7\.8' = 7\-1' W[S + 7\-0' (10)
and

SRV AN S o N (11)

1.22 Let (1) and (2) define € (v) and D(v) for imaginary arguments v
equal to iu, It then follows that

e(iu) = ic(u) (12)
and
D(1u) = iD(w) . (13)
2 Integrals occﬁrring,in Yaw functions
2.11 The integral
5 i% (7‘-112"7\-5 2) g A 2
[ o v, =VE ¢ 2% Ly(sy,9) 1)
éo
where
B2 =2 8 s s (2)

can be evaluated in terms of Fresnel functions,

92,
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By 1.21(8), (1) and (2) give

by 1.1(1)~(2).

'2 12 We define s to be the value of s for which M is zero, then
= —7\-0/7\1 7\fhen Vs, <¥'s, it becomes convenient to apply 1.1(3) to

(3) to obtain the alternatlve form

e S22

Ih(so,s) = - %I[D(—Kso) c 2 "o . D(-N\g) e 2 S] 5o & 8 €8 (4)
S L h ol

I)\.(SO’S) = = =| D(~ 7\.5 ) &2 SO - DA e 2 e (E =) SoS 8 €84

(5)

2.13 When \g is imaginary, M ' is real and is negative for s< s,

The alternative forms of equation (3) in this case are

_ ~1Z "2 _i']_t. 2
I?\.(So’s) = %[D(?\.so') e 13 Mo - D(?\.s') o 2 % :l 5< s,¢s  (6)

TN(s,8) == | Blae) 6727967 L) 122 s < nany ()
= s 40 2
Ix(so,s) = - %lvﬁ(—xso') e 2 7\80 - D(7\- ) e +(l—1£|§3 8 €8 (8)
i
93.
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3 Integrals occurring in Zispersion functions

3.11 We now evaluate the integral

/ ATl 50 5 ar, v % (s, 9), (1)
where
o(u) - o, = n2(u - 5,) + np(Vu = ¥s3) . (2)

It appears very unlikely that this integral can be evaluated exactly
for general values of the parameters., For the present paragraph it is
supposed that A, is real and positive in (so,s); the other cases are
dealt with in paras. 3.21 - 3,26,

3.12 Equation (1) can be expressed as

io - a3 o) -
T % ik 2 o7 dx ;
c o J,")\'(SO’S) = f)—‘YT- /2 c D(?\u(x)) E ] (3)
ak Yso
by the substitution
X = Yu2 3 Xo = Ysoz 9]
where
le = 2112/7t | , (5)
YlYO = nl/r( 3 (6)
so that

o(u) -~ o =§ &
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3.13 Case : YSZ positive for s> s, i.e. n, positive

o}

Partial integration of (3) gives

R =Y 2
7 | B il =
J (S o)~ - ° 012- %o <2i> fM(X)] -> o
2 (50,8 - as x, .
2Y1 p=0 ax®
i . xo‘:YSOZ
provided Yy # 0. gy (7)

This series does not converge as R » «», being an asymptotie series,

As far as the seeond term equation (7) is

s
1 ( io(u)|2i D(M) :] :
Ja8g,8) = -— e = =+ T 8
(o0, = - 2= Lo ., (8)
lo
where T,; stands for the second term, namely
) o
o =2 2 -2 |/ el (9)
g Yy Y1

The condition that [T} should be less than 1/N-th of [2D(M,)/xv,l, the
first term in equation (8), is that

[1 :i ||Y I O‘u) :}/m 2 ¢ 1/N. (10)
By 1.1(7), (10) holds if
3
and S

2 L (2 Wy /7T Yo, = MR > 0

95.
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and substitute y = Yu'2 and ¥, = YSO'2 gt (300,

. o 12 -
~io, i / * iz 0y s ay
5) = —— . 12
= QN(SQ’ ) o, Y;'Z € ( u(y)) Vg (12)
(c)

The first two terms of the asymptotic exponsion give

-

l . T s
oo o %ww L‘ZF - Tu':” as g, 'y (13)
1 oy e

whero

i =<_2_>2 _@f_)_ - %%E D'(?\,u)] 7 2Yu'2 g (1)

KS
: R

The condition equivalent to (11) is

Vs >Vs

and : > (15)

Y. 12 - (V2 N YY) Y, ' = N/T 20
o,) ( 7\1/ ,l) SO /

3.15 The evaluations of (3) given in 3.13 and 3.14k can be expressed
as follows. g

2w =1 M Jryy (16)

96.
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then, provided Y; # 0 and

s *» Vs
v

o]

75,21 = @20/ w|Yq]) Jrg | -0 /x> 0,
~
the solution of (3) can be taken as

Jx(so,s) = D(?\.so) E(SO) - D(?s.s) z(s)

with an error of less than 1/N.

3.16 WhenY; = 0, it can be shown that for sufficiently large nj

J)\'(so)s) =] D(A’So) 2('so) = D(?\'s) E(s) p)
where

io(s
E(s):ie ()/nl.
The condition of validity for (19), corresponding to (17) is that

ny| >v2 NAq .
i, 1

It is seen that (20) and (2%) agree with (16) and (17) with le-; 0,
ik nl/&' b

(17)

(18)

(19)

(20)

(21)

3.21 So far in this paragraph, A\, has been assumed rcal and positive.

This is case ({1) below. The other three cases have still to be
considered.

(a) M, real and \/5-7\. negative or less than Vsj

(b) A, imaginary and w/'s_x negative or less than Vsg

(¢) (i) A, real, s, < 5 and s €S sy

(ii) Ay real, s, € sy and s,< SN

o}
(d) (:L) Ay imaginary, Sy < sy and Sp €S € Sy
(ii) 7\.u imaginary, So. S 8y and éo <5< S.

i
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3.22 Case (b)

By 1.22(13)we can write (1) as

J2a "% J(sy,8) = if BRSO (Ay') avy

So

(22)

and carry out the work of 3.13 - 3,16 with D(A.) rcplaced by -ﬁ()"u')'
The result would then be

Iolsgs8) = i[B(Ng ') 2(sy) - D(ng') 2(s)]

(23)
provided
w/E'O > w/'s_Y
& (24)
. ‘
i B ] = (V2 W /7 IYll) lYSO\ - N/% >0
* When n, = 0, this condltion becomes
[ny| >v2 NA! (25)
3.23 Case
By 1.1(3) we can write (1) as
b s % 2 2 . . .
. ~iXn 2 Foim(ul-u 9 ifo(w)- o]
w/'?__aewo J.)\(so,s)zzD(o)e T2 780 /o R v~ | e OD(—?\,‘J)' Wy
..... (26)
where
, j 2
uuz - Msoz = (Yuz = Ys02> = O‘uz =Ty 4
; . (27)
By = u + B,
P4
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The first integral on the right hand side of (26) can be evaluated by
2,11(1), and the second integral by the method of 3.11 to 3.16, We
obtain

. Y e
Dy ilow-z27]

(¢}
)

3, (50,5 = '[u(-vu) 2 (4) -2 1(o) (28)

|
|
i =S
provided (17) holds,

3.2, Case (c)(ii)

Put s = 54 in (28) ana S, = s9 in (18) and add -

1

JX(SC: S) J?\_( SC; S?\,) & J'}\ﬂ(:’?\., 5)

i

K(sg,5) = [(=2g)) 3 (sp) + DOvg) B(s)], (29)

where

o

S .7 2 . N . [ : _2[_ %)
imbg © At ilo (g )-SH ]:}
K<‘30’37\)=2;(°){2(S‘}\,)+p];i|; (p.so) e " 59 = \“37\) & 2 07\:]0 / 2 5y

—— (30)

provided (_L']) holds.

3.25 GCase (4)(1)

By 1.1(3) we can write (22) as

o

. B 2 2 B
~ic _, imhgte [ inp Sl ©) ifo(u)=o]_
V2ae ©Jy(s,,s)=2iD(0) e Z7% /& 2( b © i\/’u—i/e [ R ¢ ]'J)‘qu
5o

Sq

..... , (31)

where, by (27) and 1.21(9),
u? - g 2 (2= 2) e 12 - ') (32)
o
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(31) can be evaluated to give

D) ei[<r<u>+7217»u'2] ’

I (sg,8) = i |D(2,") I(u) - 2 D(o) (33)
- “l SO
provided (24) holds.
3.26 Case (d)(ii)
I (5058) = K(sg,5,) = D=2 ) 2(s,) + DO z(s)) (34)

provided (24) holds,

3.3 The approximate solution

3.31 An approximate evaluation of Jh(so,s) can be obtained when either

2 2
() Yi, I

| are positive and M is nearly equal to Yl‘

or () ¥y5, 7\1’2 are positive and A;' is nearly equal to Y.'.

In case (a) Ygz, 7"s2 are never negative and in (b) are never

positive. In (a) Y, M, may be positive or negative, and in (b)
Vah 7\8’ may be positive or negative according as Vs is greater or

l‘ess than \st, \/Ew
(a) and (b) are divided into two cases
(1) Mg, always positive i.e. ‘/'5—7\' < VSge.
(1) M, always or sometimes negative i.e, Vs, € Vs,,

()
3,32 gase (a)(3)

Write

7\-u = X(l = 87\)

”

u=X+K7\.

where 87u K")x are chosen so that

g, = e =1 =-2/¥ (35)
=k = (LM =T) /Ay s (36)
100.
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then (l) can be written

il Ys—wi’.‘.[ il NPT
% 3, (s508) = / A o p(x(1-9)) ax . (57)
Yl e
o)

By the mcan value theorem applicd to D(u) wo have

B(x(1-€)) = B(x) = =€ x 5'(x) + O()

il

Alx(1-€)) = A(x) = -€ x A'(x) + 0(e2)

1

and hence that
ID(x(1-8)) = D(x) | sex D' ()] + lo(e2)]
<e|n(x)] + loE?)] (38)

by 1.1(6) since x is positive, -

If D(x(1=g)) is roplaced by D(x) in (37), (38) shows that the
fractional error is not greater than & for e sufficiently small,
With this approximation made, it is casily checked using J..l(h.) that
(37) con be ovaluated to give

(39)

J?\,(So, S) = =
™y

'gw@%wa—gm*v]:.

(e}

In the spccial case &) = 0, cquation (39) is exact. By (35),(36) we
then have A = e B =Y = 7»0, and so (39) can be written

8

. (10)

- )i [l D(fs) - DO
% (8558) T wYy et :'

o s

0]

O,
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In the special case when Ko\ 0, (40) becomes

i

{

™

Tl ) e qu} D'(Yu):ls . (11)

In the case k9 = 0, 8\ ¥ 0, we see fram (39) that the solution is given
by (41), but now only approximately.

3.33 Casc (b)(i)

Write

Wu"= y(1-ea") (42)
et e et (43)

where ey !, x.)\' are chosen so that

! =

il
(L]
It}

c L LR AR L

K)\,' = K! (Yo'}\l'—Yl'?\-o')/kl' = -ik s (45)

il

then, by 1.22(13), (1) can be written

v _ s s +x')2—( +K|)2
& e =i'. / T ik ]5(y(1—e')) ay. (46)
Ys Uit

Since y is positive in the range of integration, (38) holds with x
replaced by y, and we can evaluate {46) approximately to give

(47)

J')\(SO,S) = :

-— -— S
555 .l:eio'(u) D(Y,") —D(’Yu'-xﬂ:l
nY 3 K?\.' 54

with an error not greater than €.

102,
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) By 1.21(11), 1.22(13) and (45) it is seen that (47) reduces to (39).
3.34 Case (a)(ii)

When Ay is negative it is possible to evaluate (37) by this method
only when the minimum value of M, i.e. Aq , is fairly near zero. This
is because the inequality E

| D(u(1~e)) = D(u)| < e |D(w)| , (48)

which is used to evaluate (37) , does not hold for all negative arguments,
Let u = uo(e) be the value of u (negative) for which the equality holds
in (48), then if Ng > ug the method of 3,32 is still valid. The value

of uo(%) is about -0,5.

3.35 Case (b)(ii)

If Mg ' > u,, (47) still holds with a maximum error e for suffi-
(e]
cicntly small €.

3,4  An approximate solution of J-)\.(so ,8) can be obtained when 7\1 is
small comparcd with Y, It can easily be verified that

. Ky Ia(sg,s) + My (s s8) = - Eic\u) D(N,) D(uu)] (49)

where u ~is given by (27).  ¥hen Hy 1s nearly equal to Yy, J“(so,s) is

given by (39); (49) then gives 5 (8058).
A similar result holds when 7\1' is small compared with Yy'.

The maximum ¢rror is
leul = ‘1 = “l/Yl |

I 2 2 2
7\-1 /2Yl or 7\.1' /2Y1'

4 The Yaw Integrals Ia(so,s), IB(SO,S>

4.1 These are denoted by

T 2 ST
i in(u~sy) i[o(u)-o,)
V2a ¢ 778 Ia(so,s) — /o T . e (1)
50
103,

CONFIDENTIAL

S I N .t e R A b 1 b



CONFIDENTIAL

Technical Note No. G.W. 177

. 2 s - : -
e e I (50,5) = j iy SO - (2)
o
where.
o(u) - o, = np(ums,) + ny (Vu = Vs)) !
and L @ (3)
V2= 2au
Write |
7.;_ (« 2 - asoz) = (np + n)(u - s;) + ny(Vu' = Vs) (&)
28282 = (np = m)(u = s55) v mWu- ) (5)
and
ay = oy Vu + o (6)
By = B W+ B (7)
then
a12 = 2(n2 +n) /% (8)
oy 0y = Dy /= (9)
B2 =2(ny = n) /= (10)
BB, = n, /x : (11)
10k,
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If s, is the value of u for which «, = 0, then

W/;x =] 1 /2(n2 S (12)
Similarly
\/'s;3 = - nl/2(n2 - n). (13)

4,2 The evaluation of (1) and (2) is, by 2.11(3),

o [ i’% ocso2 ig- asz:l
(s seis E-l- D\a%) e -D(ag) e (14)
g 2
3} 17'E'Bs Bs
IB(SO’S) = B-I D(BS() e 2 -—D(BS) € 2 :l (15)
When are negative or nnaglnary, (14) and (15) can be transformed

by 2. l(is - 2 1(8) so that all arguments are positive.

5 The integrals Ju(sy,s), Jg(sg,s)

5.1 These integrals are

e A i) = / Sy o (1)
o)

V2a e-iGO JB(SO’S) = / ei[g(u)—%]D(Bu) vy, s (2)
50

where o(u) and V, are given by 4a1(3), and ay and B, by 4.1(6) - 4.1(11).

105,
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5.2 Conditions for the validity of the Asymptotic Solution

The conditions under which the asymptotic solution holds with an
error of less than 1/N are given by 3.15(17) or 3.22(24); they can both
be written as

aF (3)

e 21 = (2 Xy | /7 lv D) rs 1= 1/% > 0

where Kl now stands for either a; or Bj.

By 3.12(4) to 3.12(6) we have

IYs| = V2l /7 (Vs + mp / 2np) | (&)

when s 2> s, , and '

k== [ omy (5)

By I1.9.3(13) = (14) and II.9.2(3) - (4), equations (4) and (5) give
| ¥s | = |l /{7 g (6)

V& -~ Vs, ==x / n,VZa . (7

o

Equation (3) then requires that

ro/r1.2 > 0 (8)

_and

fig r2
+P\'llo< Q 3 (9)

n2'fa |ny|Na

3k
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If we choose r, to be positive, then (8) requires n, to be positive and
(9) gives

. Atk

ar, MNamy > M| N/ Vi + (M 12/, + a7 . (10)

Of the two values for |M\ | yz(n2+n)/ﬂrand\/Zan—n|7;, the former is the

larger since n is positive; substituting it into (10) we have

4

2ro/\/a~n2>\/% N{\/—l_:%+|:<1+fz->+-2ﬁ’ij}. (11)

In the particular case when n/n, is small and N is large, (11) gives

ro2 > 2 a n, N2 I (12)

There has been no loss of generality in taking r_+to be positive:
if it were assumed negative, (8) and (9) would lead to the same equation
as (11) with ry and n, replaced by =Ty and ~n,.

e The fAsymptotic Solution — Expressions for Ja(so,s), JB<SO,S).

When the conditions of 5.2 hold the evaluation of J)ﬁso,s), for
A =a or B, is given by the results of 3,11 to 3.26. These solutions
will now be written out. There are four cases (see 3,21).

5.31 Case (a): al2 (or Blz) positive, and & (or Bs) positive

for all s 2 By

From 3.15(16), 3.15(18) and 3,12 (4)-(6), we have

i[O'(u)-O'O] H

s D(Ny) e
o~1% Jx(so,s) = = i M (13)
2ns vu + ny 8o
for A= aor B.
5 5.32 Case (b): a12 (or 612) negative, and ag' (or BS') positive
for all s » Sqe
. By 3.22(23)
B } S
e DAY el[G(u)-Go]
< © J7\.<SOJS) = (lLl-)
2n2'fu + ny s
o
for M= a or B. 5
g ()74
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5.33 In cases (c) and (d) the results can be somewhat simplified.
From 3.23(27) we have

Plz = le - Kl (15)

I

Hqkt 1Yo = MM (16)

o

and hence from 3.12(5) - (6) and 4,1(8) = (11) equations (15) and (16)
become

2 2 -on/x (\= q)

;_11 =
(@)
= 2n/x (N =B)
piuc):O (AN=aor B) . (18)
If we write
& =+ Jon/x (19)
8 = & (20)

and

;d:) = £%(s,,8) = (21/67) D54 ) - D(5,) ein(s—so)], )
we f£ind using 1.22(13), and (17) - (21) that

e D) .7‘2. o L =
Dlug) @ 2% Dlug) @ 2 0 =up e 0 () /2 (A=a)  (22)

i

s-py e ©2%s) /21 (n=B). (23)

108,
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Hence since o(u) - 7‘(7‘112 + p,uz) / 2 is independent of u

3

. KN 2 - et e i 2
1 LD(uu) Lozt ]:l (767 %)

o

T (-i/2) & (= a) (2u)

S0

1

(1/2) £(s) o . (n=p) (25

and in the particular case when s = S

=]

\

s
0. @ i i -T2 " O 2
Hl_1 [ Dy ) e zts N 297 o (ot 122 (54 L7z %, (A=a) (26)

i [06'7'2"6502 ]

=(-1/2)%(sg) © (= By (27)
5.34 Case(c)(i): alz (or 312) positive and ag (or Bg) negative.
From 3,23 (28) and (24), (25)
. S
—iO".\ D(—au) el[cr(u) GO] Su X —l%- Ag 2
o~ ° Jg(s,,s) =14 + 1 D(o) Z(s) e 9 L X28)
L 2n5 Vu + ng 5
ifo(w)-q] |° 2
-] D(-By) e ° ~i% B
& 20 gen ) = i - 1D{o) £(s) e Z ° . (29)
2ny, Vu + m .
=0
109,
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Case (c)(ii): alz (or 612) positive and @, (or BS) positive.

From 3.24(30) and (26), (27) we have

: i[G(Sa)‘GO]

6 1% K(s,, s)) =.2D(o) {le

7((12

e © SO} (n=a) (30)

3. =30
+ E g (Sa

n 1y /(ny+n)

el g2
= - 2D(0) o 4 (SB) e o ] (A= B) ,(31)
n nl/(nz-n)

NYFe

and from 3.24(29)

2 s o‘(s)-o‘
- Dty Day e
€ J-;\'(so,s) =e¢ CK(sy,sy- i = + 5 (32)
2n, Vs 4ng 2no Vs+n)
EonaNF =Sl oRHBS

5.35 GCese (d)(i): “12 (or 31-2) negative and ag (or BS) negative.
From 3.25(33) and (24), (25)

S

(s ifo(u)=0o,] . Za
= «at) e g " o ha g
S guse) = -] - Blo) T(s) o (53)
2n2\fu+nl 8o
' e : i[c(u)-o'o] ? 1 E 12
% e g) - - | D) + D) e P O L ()
2n2fh+nl 8o

" 110,
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Case (a)(ii): alz (or 612) negative and & (or By) positive

From 3.26(34)

sl es Sl e CaiiECe ) O D gt o
e = 5 5
B iy e 2n, Vs +m 2npVs+ny

—-io
for A= aor B, where e g K(so,s7g is given by (30) or (31).

5.4 Asymptotic Solution in Constant Spin Case

5.41 Vhen is zero, the condition corresponding to (9) is,
by 3.16(21) and 3.22(25),

Imp | > v2 N {M| (36)

where |Mq| now equals Von/r, and n; equels v2/a r,.

It should be noted that when 7»s stands for ag and ny is positive,

or when Ag stands for By and ny is negative, the error is usually much
less than 1/N; this is shown in the following.

By 4.1(8) - (9)

2ns n
e R 1
£ Znr
> nl/w/'z_ni
since ny is supposed positive
>V2 N/ = (37)

by (36).

For values of ay of this size (i.e. >1) the asymptotic expansion of
D(u) holds with an error of less than 10%, and gives (see Ref, l.k)

|Dt(u) / D(u)| = 10 . (38)
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Hence the error in the asymptotic solution 3.16(19), which in general 1is
the left hand side of equation 3.13(10), is seen in this case to be

t
1 i(ﬁa)) , which is less than n/ 2 N2 by (36), (37) and (38); i.e

the error is very much less than 1/N.

S""'-drly when A, stands for B and ny is negative we have

2n n
Bl = o o =il
S \ ’K %
by 4.1(10) - (11),
> - ny / V2un

since nj; is supposed negative

By the same argument ag above the asymptotic solution 3.22(23)
has an error less than w/z Ne,

In the remaining cases: when A, stands for ag and nl.is negative,
and when g stands for B, and nj is positive, we can say that

= g > V2 N/ﬂ, when n; < 0, provided Vs << —n1/2n = Vsa
and

- Bé > V2 N/, when ny; > 0, provided Vs << n1/2n = {EB.

Hence only when Vs 13 very much less than V"- éor V¥sg) will the error
be as small as ﬂ/2 N°. As s approaches Sa or sg) the error increases
to ites maximum value 1/N, since at s = s (or s the equallty sign holds
i e Gyl As s increases above 2sa or 2SB§ xg or B ) exceeds
v2 N/m and the error becomes less than w/2 NZ again. The” error in the
asymptotic solution is therefore less than /2 Ne except when s_ and s
are near Sy (or sg), where the error is 1/N. It is usuelly found that
when (36) holds f%o«w/* (or v8g); for example, if N = 5 and n = 0,02ft,
Sy (or Sﬁ) > 1200 ft,

5.42 From 4,1(8) and (10) it is seen that a12 is positive and
312 is negative; therefore if r, is chosen in a positive sense nj is
positive, and hence &g is positive for all s » sy, while B;' is negative
for s, € s < and pos1t1ve for s > sB Hence Jd(so,s) falls under
case ?a) and Eg(so,s) under case (d). = By (13) we have

e"'io'o JOL(S ,s) = - i D(au) ei[o-(u)—O-O] ; (39)
8 . nl[ . ]so

112.
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and by (34) and (35)

®
e,
()
o
-
(7]
|

. = s 12
-1, SRl nl— |:'5(_[3u|) ei[o‘(u) 06]]5 « D(0) &5(s) eizﬂso 3 %3S S (40)
1 Sg

= LYY Olsp -0
LI:E('BS )+« DY ei[G(s) c‘°]]+ D(o) éx(s ) e12 So - 2D(0) ei[ (SB) "] sg< s-
nl o] 5 B nl

I

..... (41)

S5 The Approximate Solution

5.51 This solution holds in the case when hl/Yl (o i Xl'/Wi'
(Kl = & or Bl) is near unity. The maximum error in the solution is
then

lef=f1 - /) =11 -2 /oyt ] s

By 4.1(8) and (10), and 3.12(5), n/Yy =J1 + n/ny, in the two cases,
showing that this solution holds when n/ny is small. The maximum
erseor' s then

‘el#n/an.

It should be noted that the error will usually be much less than this value.
The reason is that when the integrands of Ju(s,s.), J5(s,s,) are largest
%5 Bu will be near zero - where the approximation to D(x(l—e)) Fiag)

para. 3,321s most accurate, The error in the integrands only approaches
|e| when «y, B, tend to infinity by 1.1(6); i.e. when the integrands

o Ja(s,so), JB%S,SO) approach zero.

There is a further condition which is required to hold when ag,
@ ', By or B,' ‘arc negative. In 3.3, this is discussed as case (ii).
In most practical examples it is almost certain to be satisfied. The
condition is that ag etc,, should not be 'too negative', but greater
than about =0.5. When ny is positive it is scen from 4.,1(8) to (ll),
11.9.3(13) - (14) and II.9.2(3)-(L4) that gy and g, are greater than -0.5
provided )

2nvsy + ¢E7; Ea —\/K(nz T ) (42)
-2mvs; + JE7; I —\/ﬂ(nz =D ey (43)

113.
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If r, is zero or positive (42) will alweys be satisfied. When T 18
Zexro (this is the particular case for which this method is used to obtain
the results of Pt.I), (43) requires that

so<§g<?§—1>¢l6’;bl : | (4d)

Hence if n = 0,01 ft_l, e = 0.1 (44) requires that Sy < 200 ft. When np
is negative, the required conditions are those obtained by replacing
Ty, Ny by -r,, -np respectively in (42) and (43).

5.52 Choosing n, positive, the solutions for Ja(s,so), Jﬁ(s, so)
are given by 3.32(39). It is found that .

=3} i(n n . al u)= P
T 3yfage) = e (Bl 2, < 2] D] g

il

e-io'o JB(SO’S) s m { [ D(Yu) _ D(Yu X KB)] ei[ o(u)-cy) L,(%)

nnl

where by 3.12(4) - (6) and 3.32(36)

e (2n, Yu + ny) / V2mn, (47)
xa=nn1/\/27tn2 (ny + n) (48)
}c‘3=—nnl/m2(n2-n) " (49)

5.53 If n 1is negligible in comparis;Dn with nz,equations
4.1(8) - (11) and 3.12(4) - (6) show that

Gy = BS = Ys ; (50)
hence Ja(so,s) and JB(so,s) are equal and independent of n.

114,
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. From equations (47) to (49) it is found that both Y, - Kgand
Yh ~ kg tend to Yy 88 n/n2 tends to zero, so that in the limit equations
(45) and (46) become

T i e IR ] (r=u, 8. (51)

5.54 If the launching spin is Sufficiently large D(Y,) can be

replaced by the first term of its asymptotic expansion (Ref. At The
required condition is

2 5
KYSO
. 2
i.e. r.“/any, >> 1
by 5.2(6).
8 Then
. DY ) = 1/7Y,

and from (51)

-0 s ek

e % & (54,5) (= a, B). (52)

= = 2) 5
<Y G
1 u So

In this case however, when both n2/n and roz/a n, are very muoh

greater than unity, the asymptotic holds in view of the ocondition 5.2(12).
By equations (50), 3.15(16) and 3.15(18) we obtain

'KYl

19 Iy (8g,8) = = Lt s l}i[ff(u)—co] P%z_):ls (h = &80,

which agrees with (52) asymptotically,

115.

CONFIDENTIAL

s




CONFIDENTIAL

CONFIDENTIAL



GW/[P[3374 |

-2

1:0

\W A

o-8

O-6

0-4

szl‘k

% «Ra/c
At= ZCICL?R
T = SPIN
L = TIME

KEY

a0 o

A =SPIN PRODUCED BY OFF -SET NOZZLES
B = SPIN PRODUCED BY SPIN AT LAUNCH

C=A+8B

e

T.N.G.W. 177
BOOST COUPLE
M.OF I.IN ROLL
ACCELERATION
SPIN DAMPING CONSTANT

B

s

e

o

-

.

>.<——-—\

o
Yl
K
s
"

-<_

i
Ll

P

oy

oY
3

]
o
g

04

FIG.I

-6
=

SPIN -FORMS.

(PLOTTED NON- DIMENSIONALLY)

| /Y




P/3375
T.N. GW. 177

eo\ ,
ANGULAR ACCELERATION _ .. =i
2= [INEAR ACCELERATION _ O OSFT.
So = EFFECTIVE LAUNCHER LENGTH
N = STABILITY CONSTANT
60\ \
|Z (o) '
T
(@2)
g \30
I x\ \
\\ Bp s
20 . w
N
o
0-0025 0-0050 0-0075 0-0100

n (fT.70
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