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Chapter 1 
Introduction 

Until quite recently, the Army (and many other customers for that matter) selected and contractually 

mandated specific, statistical reliability test plans. With the advent of acquisition reform, the contractor 

often selects or designs test plans and is encouraged to be innovative in doing so. For this reason, 

sequential test plans, rarely used in recent years, have gained favor since they offer markedly reduced 

test lengths compared with fixed-length plans. The design and analysis of sequential test plans is 

computationally challenging. During the past year or so, urgent requirements arose on a number of 

Army programs for timely analysis of proposed sequential test designs as well as for the design of new 

or alternative plans. It became apparent that new methods, and the implementation of both new and 

established methods in commercial mathematics software, was urgently needed. The purpose of this 

report is to disseminate recent progress in this area. 

This report documents the design and/or analysis of sequential test plans for four Army systems. The 

first three case studies illustrate the application of these methods to reliability qualification testing. 

Important benefits to each program were realized. The fourth case study illustrates a new, simulation- 

based method for designing a hypergeometric test plan for acceptance of maintenance troubleshooting 

procedures based on sequential sampling. 

A key accomplishment included in this report concerns the exact-analysis method for exponential 

sequential test designs. Previously, such exact-analysis methodology was, for all practical purposes, 

restricted to the statistical research community. Indeed, little practical use was found for these methods 

during the past forty years. It was possible to re-formulate and implement the exact-analysis method in 

modern mathematics software in a form that, for the first time, can be routinely used by test planners. It 

was deemed decisively advantageous to undertake this effort because of the resurgence of truncated 

exponential sequential test designs, the properties of which are very difficult to obtain otherwise. 

The test designs and analyses contained within this report constitute a basic set of electronic templates 

for sequential test planning in the future. The electronic form of each chapter and appendix of this 

report is a Mathematica 4 notebook. All of the methodology, computations and graphics in this report 

are Mathematica executables. The results were generated and inserted by Mathematica. Thus the 

technical content of this report is "live" in the sense that it can be re-executed as desired by readers 

working with the electronic version (provided they have a copy of Mathematica 4). Please refer to The 
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Mathematica Book [Wolfram 1999] for information on this software. Additional information, including 

a free reader, is available at http://www.wolfram.com/. 
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Chapter 2 
Analysis and Confirmation of a Proposed Exponential 

Sequential Test Plan: Case Study 1 

Introduction 

An Army imaging system was to be subjected to a fixed-configuration reliability demonstration test. The 

required Mean Time Between Failures (MTBF) was 503 hours and the consumer risk (i.e., the worst- 

case risk of the Army accepting the system if the true MTBF is lower than 503 hours) was not to appre- 

ciably exceed 20%. The contractor proposed the following exponential sequential test design: 

■ lower-test MTBF = 503 hours 

• upper-test MTBF = 2*503 = 1006 hours 

■ consumer risk = producer risk = 20% 

■ decision rules given by the following table: 

Failures Reiect Time (hours') < Accept Time ("hours) > 

0 N/A 1395 

1 N/A 2092 

2 N/A 2789 

3 697 3487 

4 1395 4184 

5 2092 4881 

6 2789 5578 

7 5578 N/A 

The Army test planners and evaluators needed to quickly analyze the proposed test plan, verify that the 

consumer risk met requirements and calculate the properties to include obtaining the operational- 

characteristic and expected test time curves. 

We analyzed the proposed decision rules using two methods and the results were compared. The rules 

were first simulated and then an exact analysis was performed. The simulation functions and results are 
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provided in this chapter as are key results of the exact analysis. The exact-analysis details are provided 

in Appendix A. 

Simulation 

The decision rules are simulated for two values of the true MTBF. The true MTBF is first assumed to be 

equal to the lower-test MTBF of 503 hours and is then assumed to be equal to the upper-test MTBF of 

1,006 hours. Each simulation produces an approximate value for the acceptance probability, expected 

quantity of failures and expected test time. This provides approximate values for the consumer and 

producer risks since the former is defined as the acceptance probability if the true MTBF equals the 

lower-test MTBF and the latter can be defined as one minus the acceptance probability when the true 

MTBF equals the upper-test MTBF. 

It should be noted that many of the executable cells in this chapter have been designated as initialization 

cells. As a result, all of the simulations (except for the timing experiments) can be executed by directing 

the kernel to evaluate the initialization cells. 

■ Define and Plot the Decision Rules 

First let's define and plot the proposed rules for arriving at accept and reject decisions. The rules for 

arriving at an accept decision provided in the introduction of this chapter are (hours): 

accept[0] =1395; 

accept[1] = 2092; 

accept[2] = 2789; 

accept[3] = 3487; 

accept[4] = 4184; 

accept[5] = 4881; 

accept[6] = 5578; 

The rules for arriving at a reject decision provided are (hours): 
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reject[3] = 697; 

reject[4] =1395; 

reject[5] = 2092; 

reject[6] = 2789; 

reject[7] = 5578; 

Plotting the decision rules helps one visualize them. We will use the function MultipleListPlot 

which is defined in the standard add-on package Graphics *MultipleListPlots. This package 

must be loaded first. 

Needs["Graphics"MultipleLis tPlotx"] 

In order to make the decision rules conform to the syntax requirements of MultipleListPlot, we 

will generate a list of time-failure pairs for first the accept rules and then the reject rules. 

acceptpoints = Table [{accept [i], i}, {i, 0, 6}] 

{{1395, 0}, {2092, 1}, {2789, 2}, 
{3487, 3}, {4184, 4}, {4881, 5}, {5578, 6}} 

re jectpoints = Table [{reject [i], i}, {i, 3, 7}] 

{{697, 3}, {1395, 4}, {2092, 5}, {2789, 6}, {5578, 7}} 

Now we can plot the rules using triangles for the accept points and boxes for the reject points. 
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MultipleListPlotfacceptpoints, rejectpoints, 

Symbol Shape-»{PlotSymbol[Triangle, 5], PlotSymbol[Box, 3]}, 

Symbol S tyle-♦ {RGBColor[0, 1, 0], RGBColor[l, 0, 0]}, Frame-»True, 
FrameLabel-» {"test time, hours", "cumulative failures"}, 

GridLines -» Automatic] ; 
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Identification of the reject, continue and accept regions can be overlaid thus: 

Show[%, Graphics[{Text["Reject", Scaled[{0.2, 0.8}]], Text["Continue", 

Scaled[{0.4, 0.5}]], Text["Accept", Scaled[{0.7, 0.2}]]}]]; 
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■ Define Simulation Function 

In this section we will define a function which simulates exponential sequential tests. Since the function 

uses random-number generation defined in the standard add-on package statistics v Continuous - 

Distributions", we must first load this package. 
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Needs["Statistics'ContinuousDistributions~"] 

Now we define the new function ExponentialSequentialSimulation. 

ExponentialSequentialSimulation[trueMTBF ?Positive, 

acceptfun_Symbol, rejfun_Symbol, trials_Integer? Positive] : = 

Module[{cumtermtime = 0, cumfail = 0, cumaccept = 0, i, testtime}, 

Do[i = 0; testtime = 0; While [reject [i] < testtime < accept[i - 1] , 

testtime += Random [ExponentialDistributionf 11 • i+ + l • 
1 trueMTBF J J '   J' 

If[testtime Z accept[i - 1] , cumtermtime += accept[i - 1] ; 

cumfail += i - 1; cumaccept++, cumtermtime += testtime; cumfail += i] , 

,,. •,1.o r.     _              cumtermtime 
{trials}J;{AverageTerminationTime-»  , 

trials 
„ ., cumfail 

AverageFailureQuantity -»  , 
trials 

AverageAcceptFraction -» ■ — \ 1 
trials     'i 

ExponentialSequentialSimulation provides an approximate average for the fraction of tests 

that result in an accept decision. The fraction of tests that result in a reject decision may be calculated by 

subtracting this result from one. ExponentialSequentialSimulation also provides average 

values for the unconditional test-termination time and failure quantity. 

It should be noted that a different approach to exponential sequential simulation is taken in Appendix B. 

The approach taken in this chapter is more efficient in terms of execution time and memory usage, thus 

it permits one to perform larger simulations. The approach taken in Appendix B is easier to setup and 

saves more simulation data at the expense of additional execution time and memory. 

It should also be noted that the function in the standard add-on package statistics * Continuous - 

Distributionss for generating machine-precision, pseudorandom numbers from the exponential 

distribution is used here but not in Appendix B. In Appendix B, arbitrary-precision pseudorandom 

numbers are generated in order to obtain highly-accurate results as recommended by McCullough 

(2000), the penalty for which is increased execution time. 
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■ Identify and Define Additional Rules 

In order for the simulation function ExponentialSequentialSimulation to run correctly, there 

must be an appropriate accept and reject time at any potential quantity of failures that may be encoun- 

tered during the simulation. 

First let's consider the accept rules. An accept time is needed for the i - 1 failure where / ranges from 0 

to the maximum quantity of failures allowed by the rules. The maximum quantity of failures allowed by 

subject test plan is 7. A review of the accept rules already defined reveals that the only additional rule 

we need is when i equals 0. This corresponds to a failure quantity of-1, a physically impossibility. This 

is a computational precondition for the simulation to begin. An accept time of 1 for the failure quantity 

of-1 will work for any test plan. 

accept[-1] = l; 

An additional rule would have been needed if any accept rules were missing for failure quantities 

greater than or equal to zero. There must be an accept time for any physically possible quantity of 

failures. If there are accept rules missing, the next rule should be used. For example, if there's no failure- 

free accept time, the failure-free and one-failure accept times should be equated. 

Now let's consider the reject rules. A reject time is needed for the i th failure where / ranges from 0 to 

the maximum quantity of failures allowed by the rules. The maximum quantity of failures allowed by 

subject test plan is 7. A review of the reject rules already defined reveals that additional rules are needed 

when / equals 0, 1 and 2. This is not unusual. With many exponential sequential test designs, there may 

not be a way to reject with a small quantity of failures. It is computationally convenient to assign a time 

of-1 for these cases. 

reject[0] =-1; 

reject[l] =-1; 

reject[2] =-1; 
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Simulation Timing Experiment 

It would be wise to determine how long a simulation will take with the accept and reject rules defined 

herein. This will help us determine how large a simulation is practical on a given computer. We will use 

a value midway between the lower- and upper-test MTBFs as the assumed true MTBF. The simulation 

execution time should increase linearly with the quantity of trials. First let's time a 10,000 trial simula- 

tion. 

Timing[ 

ExponentialSequentialSimulation[1.5*503, accept, reject, 10000]] 

{l. 93 Second, {AverageTerminationTime -»2753.86, 

AverageFailureQuantity -* —r-~,  AverageAcceptFraction -»      )} 
625 3 c 10000 ' ' 

This took approximately 2 seconds on a computer with a 1.2 GHz Athalon processor and 128MB of 

RAM. Let's try 100,000 trials next. 

Timing[ 

ExponentialSequentialSimulation[1.5*503, accept, reject, 100000]] 

{19.12 Second, {AverageTerminationTime ->2751.59, 

AverageFailureQuantity -> -zrrr—r,  AverageAcceptFraction-» 53559 )} 
20000 r 100000 ' ' 

This took approximately 20 seconds. A simulation of 1,000,000 trials should require approximately 200 
seconds. Let's check. 

Timing[ 

ExponentialSequentialSimulation[1.5*503, accept, reject, 1000000]] 

{196.46 Second, {AverageTerminationTime -»2753.95, 

AverageFailureQuantity-» rr^rrz^rr ,  AverageAcceptFraction-» 532747 

1000000       3     r 1000000 

The execution time was as predicted. 

Simulation When True MTBF Equals Lower-Test MTBF 

In this section we will run four simulations assuming that the true MTBF equals the lower-test MTBF of 

503 hours. Each will simulate 1,000,000 exponential sequential tests using the rules defined earlier. The 

results of the 1,000,000-trial simulations are assigned as the value of the symbols lowertestsiml, 

lowertestsim2, lowertestsim3 and lowertestsim4. 
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Nflowertestsiml = 

ExponentialSequentialSimulation[503, accept, reject, 1000000]] 

{AverageTerminationTime -> 2260.46, 

AverageFailureQuantity-* 4.49458, AverageAcceptFraction->0.190786} 

N[ lowertestsim2 = 

ExponentialSequentialSimulation[503, accept, reject, 1000000]] 

{AverageTerminationTime -> 2261.22, 

AverageFailureQuantity -»4.4934, AverageAcceptFraction-» 0.191338} 

N[lowertestsim3 = 

ExponentialSequentialSimulation[503, accept, reject, 1000000]] 

{AverageTerminationTime -> 2262.59, 

AverageFailureQuantity^ 4.4951, AverageAcceptFraction-» 0.191233} 

N[lowertestsim4 = 

ExponentialSequentialSimulation[503, accept, reject, 1000000]] 

{AverageTerminationTime -> 2261.58, 

AverageFailureQuantity-^ 4.4966, AverageAcceptFraction-* 0.190735} 

The consumer-risk values, sorted from smallest to largest, are: 

N[Sort[AverageAcceptFraction / . 

{lowertestsiml, lowertestsim2, lowertestsim3, lowertestsim4}]] 

{0.190735, 0.190786, 0.191233, 0.191338} 

With an average of: 

Apply[Plus, %] 

Length[%] 

0.191023 

This is close to the desired consumer risk of 20%. 

The values for expected test time, sorted from smallest to largest, are: 
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N[Sort[AverageTerminationTime / . 

{lowertestsiml, lowertestsim2, lowertestsim3, lowertestsim4}]] 

{2260.46, 2261.22, 2261.58, 2262.59} 

With an average of: 

Apply[Plus, %] 

Length[%] 

2261.46 

The values for quantity of failures, sorted from smallest to largest, are: 

N[Sort[AverageFailureQuantity /. 

{lowertestsiml, lowertestsim2, lowertestsim3, lowertestsim4}]] 

{4.4934, 4.49458, 4.4951, 4.4966} 

With an average of: 

Apply[Plus, %] 

Length[%] 

4.49492 

■ Simulation When True MTBF Equals Upper-Test MTBF 

In this section we will run four simulations assuming that the true MTBF equals the upper-test MTBF of 

503*2 = 1,006 hours. Each will simulate 1,000,000 exponential sequential tests using the rules defined 

earlier. The results of the 1,000,000-trial simulations are assigned as the value of the symbols 

uppertestsiml, uppertestsim2, uppertestsim3 and uppertestsim4. 

N[ uppertestsiml = 

ExponentialSequentialSimulation[1006, accept, reject, 1000000]] 

{AverageTerminationTime -» 2687.38, 
AverageFailureQuantity-»2.67365, AverageAcceptFraction-»0.7634 62} 
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N[uppertestsim2 = 

ExponentialSequentialSimulation[1006, accept, reject, 1000000]] 

{AverageTerminationTime-»2 688.54, 

AverageFailureQuantity-» 2.67251, AverageAcceptFraction -»0.764113} 

N[uppertestsim3 = 

ExponentialSequentialSimulation[1006, accept, reject, 1000000]] 

{AverageTerminationTime ->2685.47, 

AverageFailureQuantity -»2.67121, AverageAcceptFraction -> 0.7 63396} 

N[uppertestsim4 = 

ExponentialSequentialSimulation[1006, accept, reject, 1000000]] 

{AverageTerminationTime -» 2686.77, 

AverageFailureQuantity -»2.6692, AverageAcceptFraction -»0.7 6427 7} 

The producer-risk values, sorted from smallest to largest, are: 

N[Sort [1 - AverageAcceptFraction / . 

{uppertestsiml, uppertestsim2, uppertestsim3, uppertestsim4}]] 

{0.235723, 0.235887, 0.236538, 0.236604} 

With an average of: 

Apply[Plus, %] 

Length[%] 

0.236188 

This is fairly close to the desired 20% producer risk. One should realize that it is not possible to design a 

truncated, exponential sequential test that will provide exactly the consumer and producer risks desired. 

(It's possible but quite difficult to do this in the untruncated case.) 

The values for expected test time, sorted from smallest to largest, are: 

N[Sort[AverageTerminationTime / . 

{uppertestsiml, uppertestsim2, uppertestsim3, uppertestsim4}]] 

{2685.47, 2686.77, 2687.38, 2688.54} 
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With an average of: 

Apply[Plus, %] 

Length[%] 

2687.04 

The values for quantity of failures, sorted from smallest to largest, are: 

N[Sort[AverageFailureQuantity /. 

{uppertestsiml, uppertestsim2, uppertestsim3, uppertestsim4}]] 

{2.6692, 2.67121, 2.67251, 2.67365} 

With an average of: 

Apply[Plus, %] 

Length[%] 

2.67164 

Key Results from and Comparison with Exact Analysis 

An exact analysis was performed and may be found in Appendix A. Key results are included in this 

section for discussion and comparison. 

The stage-by-stage acceptance, continuation and rejection probabilities assuming the true MTBF equals 

the lower-test MTBF are: 
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1. 697. 0. 

2. 1395. 0 .06245 

3. 2092. 0 10578 

4. 2789. 0 13583 

5. 3487. 0 15705 

6. 4184. 0 17223 

7. 4881. 0 18313 

8. 5578. 0. 19095 

0 .83695 

0 60771 

0 43784 

0 31508 

0 22654 

0 10829 

0 03129 

0. 

ltMTBFtable 

Time  2 Accept Pr.  2 Continue Pr.  2 Reject Pr. 

0.16305 

0.32984 

0.45638 

0.5491 

0.6164 

0.71948 

0.78559 

0.80905 

Each row in the table above sums to one as it should. The acceptance probability at the last stage (i.e., 

the consumer risk) is approximately 19.10%. This is in agreement with the consumer-risk value of 

19.10% simulated earlier in this chapter. A larger simulation would provide agreement with the exact 

analysis to additional decimal places, if desired. These results essentially validate the claim that this is a 

20%-consumer risk test design. 

The stage-by-stage acceptance, continuation and rejection probabilities assuming the true MTBF equals 

the upper-test MTBF are: 

utMTBFtable 

Time  2 Accept Pr.  2 Continue Pr.  2 Reject Pr. 

1. 697. 0. 

2. 1395. 0.2499 

3. 2092. 0.42322 

4. 2789. 0.54339 

5. 3487. 0.62834 

6. 4184. 0.68907 

7. 4881. 0.73263 

8. 5578. 0.76392 

0 96672 

0 68401 

0 48587 

0 34754 

0 .2494 

0. 15185 

0. 06257 

0. 

The rejection probability at the last stage (i.e.,the producer risk) is approximately 23.61%. This is very 

close to the producer-risk value of 23.62% simulated earlier in this chapter. These results essentially 
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validate the claim that this is a 20%-producer risk test design. 

The expected quantity of failures plot as a function of true MTBF is: 

Show[expectedfailuresPlot]; 

Exact-Analysis Curve 

500  1000 1500 2000- 2500 3000 
True MTBF, hours 

The expected quantity of failures if the true MTBF equals the lower-test MTBF is 4.49 which agrees 

with the simulated value of 4.49. The expected quantity of failures if the true MTBF equals the upper- 

test MTBF is 2.67 which agrees with the simulated value of 2.67. 

The plot of expected quantity of test time as a function of true MTBF is: 

Show[expectedtesttimePlot]; 

Exact-Analysis Curve 
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£ 2500 
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True MTBF, hours 

The expected test time if the true MTBF equals the lower-test MTBF is 2,261 hours which agrees with 

the simulated value of 2,261. The expected test time if the true MTBF equals the upper-test MTBF is 
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2,686 hours which agrees with the simulated value of 2,687. 

The operational-characteristic curve (i.e., the acceptance probability as a function of true MTBF) from 

appendix A is: 

Show[ocPlot]; 

Exact Operational-Characteristic Curve 
1 i 

^ 0.8 

o 
£0.6 

+J 

&0.4 
u 
o 
< 

0.2 

0 / 
0   500  1000 1500 2000 2500 3000 

True MTBF, hours 

The exact analysis was highly beneficial since it provided the operational-characteristic curve, an 

important test-planning graph. Otherwise, simulations would have been needed at many more than two 

points in order to characterize the curve. 

2-14 



Summary 

This chapter contains simulations of the outcomes of exponential sequential tests which use a proposed 

collection of exponential sequential decision rules. Two values of the true MTBF are considered. The 

true MTBF is first assumed to be equal to the lower-test MTBF and then is assumed to be equal to the 

upper-test MTBF. Based upon 4,000,000 trials, the consumer risk is approximately 19.1%. This is 

consistent with the assertion that the plan was designed to provide a consumer risk of 20%. Based upon 

4,000,000 trials, the producer risk is approximately 23.6%. This is consistent with the assertion that the 

test plan was designed to provide a producer risk of 20%. This is as close as one can usually get when 

designing truncated exponential sequential tests. Approximate values were also produced for the 

expected quantity of failures and expected test time. In all cases, the simulation results are in close 

agreement with the results of the exact analysis documented in appendix A. The test planners and 

evaluators were advised that the proposed test plan was as advertised and were provided with the key 

graphs and tables. 

This chapter can serve as a template for the verification of truncated exponential sequential test plans. 

Indeed, the author has already had occasion to do so many times. 
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Chapter 3 
Reliability Test Design Mistake that can Result in High 

Consumer Risk: Case Study 2 

Introduction 

The case study in this chapter is based on a recent, contractor-proposed exponential sequential test 

design that contained a critical, but not infrequent mistake. This chapter was prepared in order to clearly 

illustrate this mistake and thereby help test designers avoid it in the future. 

Test Design 

Let's assume that the one-parameter exponential distribution satisfactorily models the time-to-failure of 

a product. Let us further suppose that we need to design a test with a lower-test value for 0, the exponen- 

tial distribution parameter, and a not-to-exceed value for consumer risk. We'll choose a lower-test 6 of 

1480 hours and a consumer risk of 20% in order to work through a concrete example. This implies that 

if our test is just barely passed, then our 1480 hour requirement will be demonstrated with at least 100 - 

20 = 80% one-sided, statistical confidence. In order to design such a test plan, one might proceed as 

suggested in [Kececioglu 1993, section 7.10]. We begin by calculating the length of a time-terminated 

test that will result in the desired lower-confidence limit on 0 if no failures occur. We need functions for 

the x2 distribution in order to proceed. Functions for the x2 distribution are available in the standard 

add-on package Statistics'NormalDistributionx which we now load: 

Needs["Statistics'NormalDistributiorT"] 

We can implement [Kececioglu 1993, equation 7.34] as follows: 

6 Quantile[ChiSquareDistribution[2 r + 2], conf] 
chiSquareEqn = 

2 

6 InverseGairanaRegularizedf—  (2 + 2 r) ,  0, conf] 
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where r is the quantity of failures and 100*co«/is the desired, one-sided statistical confidence level. The 

function Quantile is used in order to obtain percentage points for a distribution. Assuming that the 

required 6 equals 1480 hours, then for the case where r equals 0 and con/equals 0.8 we have: 

chiSquareEqn /. {e-* 1480, r-» 0, conf-> 0.8} 

2381.97 

We can continue this process and calculate the test times (rounded off to the closest integer) that corre- 

spond to failure quantities up through five and table our results: 

TableFormfchiSquareTbl= 

Table [{Round [chiSquareEqn/. {conf-»0.8, 6-* 1480}], r} , {r, 0, 5}], 
TableHeadings-> {None, {"Time", "Failures"}}! 

Time Failures 
2382 0 
4432 1 
6333 2 
8162 3 
9947 4 
11701 5 

Perhaps it would be correct to interpret the table above as a sequence of decision rules to use in a single 

test plan as follows: 

■ accept at 2382 hours if 0 failures have occurred, 

■ accept at 4432 hours if 1 failure has occurred, 

■ accept at 6333 hours if 2 failures have occurred, 

■ accept at 8162 hours if 3 failures have occurred, 

■ accept at 9947 hours if 4 failures have occurred, 

■ accept at 11701 hours if 5 failures have occurred and 

■ reject if 6 failures occur before 11701 hours are accumulated. 

Let's analyze these decision rules and determine whether they satisfy our consumer-risk requirement. 
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Exact Analysis 

An exact method was developed by Epstein, Patterson and Quails [1963] for analyzing a sequence of 

decision rules such as the one obtained in the previous section. Regardless of how the rules were 

obtained, they constitute an exponential sequential test plan. This section contains an analysis of the 

exact stage-by-stage acceptance, continuation and rejection probabilities resulting from the sequence of 

decision rules. Included are the important special cases that arise at the last stage: consumer risk and 

operat,onal-characteristic curve. Mathematica symbolics are used to obtain results with the parameter B 

held symbolic until a numerical value is supplied. The stage-by-stage calculations are performed in such 

a way that numerical errors that would otherwise accumulate are entirely avoided. The results of all 

calculations are "exact" but include occurrences of the exponential function. Numerical approximations 
to any desired precision are provided as well. 

Functions contained in the standard add-on package statistics' DiscreteDistributions ~ 
are needed by this method which we load now: 

Needs["Statistics ^DiscreteDistributions *"] 

■ Formulate Reliability Test Plan Decision Rules 

In order to apply the exact-analysis method, we need to construct a list of accept points from these 

decision rules. Each pair will be of the form {/, /} where the first pair defines the zero-failure accept 

tune, the second pair defines the one-failure accept time, etc. Fortunately, chiSquareTbl is structured in 
exactly this form so we will simply assign it as the value of accept. 

accept = chiSquareTbl 

{{2382, 0}, {4432, 1}, {6333, 2}, {8162, 3}, {9947, 4}, {11701, 5}} 

We need to construct a list of reject points from these decision rules. Each pair will be of the form {/ i} 

where the first pair defines the shortest reject time and the corresponding quantity of failures, the second 

defines the second-shortest reject time and the corresponding quantity of failures, etc. We can obtain a 
list of reject points and assign them as the value of the reject as follows: 

reject = chiSquareTbl /. {t_Integer, f_Integer} - {t, 6} 

{{2382, 6}, {4432, 6}, {6333, 6}, {8162, 6}, {9947, 6}, {11701, 6}} 
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It would be helpful to graphically depict the decision rules for this test design. We will need functions 

contained in the standard add-on package Graphics 'MultipleListPlot * which we load : i now: 

Needs["Graphics'MultipleListPlot*"] 

The decision rules are plotted as follows: 

ListPlot[Join[accept, Reverse[reject]], PlotJoined^ True, 
PlotRange-* {{0, 14000}, {0, 7.5}}, Frame-♦ True, 
FrameLabel-» {»test time, hours», »cumulative failures»}, GridLines 
Automatic, PlotStyle -* {Thickness[0.005], RGBColor[0, 0, 1]}]; 
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We've obtained a typical exponential sequential plot. Identification of the reject, 
regions can be overlaid thus: 

continue and accept 
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decisionPlot = Show[%, 

Graphics[{Text[»Reject», Scaled[{0.22, 0.90}]], Text[»Continue», 

Scaled[{0.5, 0.6}]], Text["Accept", Scaled[{0.75, 0.2}]]}]]; 
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■ Define Function for Stage Times 

In this step, we will construct a stage-time function. First, a list is needed of the times for each stage 

The stage times are comprised of the accept and reject times joined into a single list and sorted from 

shortest to longest. The list of stage times is constructed as follows: 

timeValues = 

Sort[Unicn[First[Transpose[accept]], First[Transpose[reject]]], Less] 

{2382, 4432, 6333, 8162, 9947, 11701} 

It should be noted that the times are expressed as exact numbers (i.e., either as integers or rational 

numbers) in order to avoid approximations until after the stage-by-stage calculations are complete. If the 

times are expressed in decimal form, Mathematica will treat them as approximate and will use machine- 
precision (unless many zeroes are used). 

It should also be noted that the function Union was used to eliminate any repeats occurring as the two 
lists were combined. 

The quantity of stages is: 

Length[timeValues] 
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A function which will provide time values as a function of stage, except for the special case of stage 

zero, is: 

t[stage_Integer /; stage > 0]  := timeValues[[stage]! 

The initial condition for time [Epstein, et al. 1963, equation 16]: 

t[i_// i == 0]  := 0 

■ Construct Accept-Number Function 

In this step, we will construct an accept-number function. First, we will generate an Interpolating- 

Function object from accept: 

fA =Interpolation[accept, InterpolationOrder -> 1] 

InterpolatingFunction[{{2382,  11701}}, <>] 

Now, we define a function which will provide an integer-valued accept number for each stage using 

Epstein, et al. 1963, equation 11: 

a[stage_Integer /; stage > 0]  := -1 /; t[stage] < First[First[accept]] 

a[stage_Integer /; stage > 0]  := Floor[fA[t[stage]]] 

A special case of the accept-number function is defined for the initial condition at stage zero [Epstein, et 

al. 1963, equation 16]: 

a[stage_Xnteger /; stage ==0]  := -1 

■ Construct Reject-Number Function 

In this step, we will construct a reject-number function. First, we will generate an Interpolating- 

Function object from reject: 

fR = Interpolation[reject, InterpolationOrder-*1] 

InterpolatingFunction[{{2382, 11701}}, <>] 

Now, we define an function which will provide an integer-valued   reject number for each stage using 

Epstein, et al. 1963, equation 12: 

3-6 



r[stage__Integer /; stage > 0] := Ceiling[fR[t[stage]]] 

A special case of the reject-number function is defined for the initial condition at stage zero: 

r[stage_ /; stage == 0] :=1 

Tabulation of Accept, Continuation and Reject Points 

In this step, we generate a table of accept, continuation and reject numbers. This is done to provide a 

convenient stage-by-stage listing of the test plan to be analyzed. The table is generated as follows: 

TableFonn [Transpose[{Range[Length[timeValues]], 

Table[N[t[stage]], {stage, 1, Length[timeValues]}], 

Table[a[stage], {stage, 1, Length[timeValues]}], 

Append[Table[a[stage] +1, {stage, 1, Length[timeValues] -1}], NA] , 

Append[Table[r[stage] -1, {stage, 1, Length[timeValues] -1}], NA], 

Table[r[stage], {stage, 1, Length[timeValues]}]}], 

TableHeadings-> {None, {"Stage", "Time", "Accept", 

"Continue (min)", "Continue (max)", "Reject"}}, 

TableSpacing -* {1, 1.5}, TableAlignments -> Center] 

Continue (min)   Continue (max)  Reject 
1 5 6 
2 5 6 
3 5 6 
4 5 6 
5 5 6 

NA NA 6 

■ Construct Function for Acceptance/Continuation Probability for a Quantity of Failures 

In this step, we construct a function for calculating acceptance/continuation probabilities for a quantity 

of failures [Epstein, et al. 1963, equation 17]: 

ACProbability[stage_, failure_, trueTheta_] /; 

And[stage>0, (a[stage-l] +1) s failure s r[stage] - 1] : = 

aclist[stage, failure, trueTheta] 

ACProbability[stage_, failure_, trueTheta_J /; 

And[stage> 0, Not[(a[stage - 1] + 1) s failure £ r[stage] - 1]] := 0 

Two initial conditions for this function are also needed [Epstein, et al. 1963, equation 16]: 

Stage Time 
2382. 

Ac cej Dt 
1 0 
2 4432. 1 
3 6333. 2 
4 8162. 3 
5 9947. 4 
6 11701. 5 
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ACProbability[0, 0, trueTheta_] :=1 

ACProbability[0, failure_Integer /; failure > 0, trueTheta_] := 0 

Up-front Calculation of Acceptance/Continuation Probabilities 

In order to reduce execution time, stage-by-stage calculations of acceptance and continuation probabili- 

ties are developed in this step. 

A function for building up the calculations is: 

aclistfunction[stage_Integer, failure_Integer, trueTheta_] := 

aclist[stage, failure, trueTheta] = 
failure 

/f        ACProbability[stage- 1, j, trueTheta] 
jaa[stage-l]+l 

r r t [stage] - t [stage - 1] , 
PDF PoissonDistribution | —-1 , failure - i 1 1 l trueTheta J J 

An indexed variable aclist is used to build up the acceptance and continuation probabilities. 

The acceptance and continuation points for the stages are: 

Map[aclistfunction[l, #, trueTheta] &, 

Apply [Range, {a[i-l] +1, r[i] - 1} /. i-»l]] 

9009 „-2382/trueTheta 
f -2382/trueTheta ±30*-  e 

trueTheta 
2836962 e-2382/trueTheta       2252547828 e-2382/trueThGta 

trueTheta2 ' trueTheta3 ' 
1341392231574 e-2382/trueTheta       3195196295609268 e-2382/trueTheta } 

trueTheta4 ' 5 trueTheta5 ' 

Map[aclistfunction[2, #, trueTheta] &, 
Apply [Range,  {a[i-l] +1, r[i] -1} /. i-»2]] 

r 2382 e-4432/trueTheta       7720062 e-4432/trueTheta       13073497428 e-4432/trueTheta 

trueTheta trueTheta2 ' trueTheta3 

15340486306474 e-4432/trueTheta      69741890180605268 e-4432/trueTheta 

trueTheta4 ' 5 trueTheta5 } 
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Map[aclistfunction[3, #, trueTheta] &, 
Apply[Range,  {a[i-l] +1, r[i] - 1} /. i-» 3] ] 

r 772 0062 e-6333/trueTheta      27749335290 e-6333/trueTheta 

*■ trueTheta2 ' trueTheta3 

54142588804933 e-6333/trueTheta      377862055671928093 e-6333/trueTheta 

trueTheta4 ' 5 trueTheta5 ' 

Map[aclistfunction[4, #, trueTheta] &, 
Apply[Range,  {a[i - 1] + 1, r[i] - 1} /. i-» 4]] 

r 27749335290 e-8162/trueTheta 

"■ trueTheta3 

104896123050343 e-8162/trueTheta      1105066565630177603 e-8162/trueTheta ■, 
trueTheta4 ' 5 trueTheta5 ' 

Map[aclistfunction[5, #, trueTheta] &, 
Apply [Range,  {a[i - 1] + 1, r[i] - 1} /. i -» 5]] 

r 104896123050343 c-"
47/true,rheta      2041264463854488878 e-9947/trueTheta ^ 

* trueTheta4 ' 5 trueTheta5 ' 

Map[aclistfunction[6, #, trueTheta] &, 
Apply[Range,  {a[i- 1] + 1, r[i] - 1} /. i-* 6] ] 

j- 2041264463854488878 e-11701/trueTheta , 

"■ 5 trueTheta5 * 

■ Construct Function for Acceptance Probability for a Quantity of Failures 

In this step, we construct a function for calculating acceptance probabilities for a quantity of failures 

[Epstein, et al. 1963, equation 18]: 

AcceptanceProbability[stage_Integer, failure_Integer, trueTheta_]  := 
ACProbability[stage, failure, trueTheta] 

■ Construct and Use Function for Acceptance Probability for Each Stage 

In this step, we construct and use a function for calculating stage-by-stage acceptance probabilities 

[Epstein, et al. 1963, equation 20]: 
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AcceptanceProbability[stage_Integer, trueTheta_] := 

a[stage] 

y AcceptanceProbability[stage, failure, trueTheta] /; 
f ailure=a[stage-1]+1 

a[stage - 1] <a[stage] 

AcceptanceProbability[stage_Integer, trueTheta_] := 

0 /; Not [a [stage - 1] < a [stage] ] 

The acceptance probability as a function of the true 6 is the sum of the probabilities of acceptance at 

each stage. This is given by Epstein, et al. 1963, equation 14: 

AcceptanceProbability[trueTheta_] : = 
n 

j  AcceptanceProbability[trueTheta_, i_] 

Cumulative Acceptance Probabilities for Each Stage When the True ffis Symbolic 

The cumulative acceptance probability for stage one when trueTheta is left symbolic is: 

l 

V AcceptanceProbability[stage, trueTheta] 
stages1 

-2382/trueTheta 

The result above is exact but partially symbolic. An exact result can be obtained for a specific value of 

trueTheta such as 1480 hours as follows: 

% / . trueTheta -»1480 

=,1191/740 

This is an exact result. A numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

0.19999569064135527 97549 

Requesting a numerical approximation greater than 16 decimal places forces Mathematica to perform 

arbitrary-precision arithmetic rather than rely upon the math co-processor. If the math co-processor is 

used, Mathematica can't guarantee the result. The additional execution time required is negligible for 
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the calculations in this chapter. 

The cumulative acceptance probability for stage two when truelheta is left symbolic is: 

2 

T1 AcceptanceProbability[stage, trueTheta] 

-2382/trueTheta  ,    2382 C 

stage=l 

-4432/trueTheta 

trueTheta 

The result above is exact but partially symbolic. An exact result can be obtained for a specific value of 

trueTheta such as 1480 hours as follows: 

% / . trueTheta -»1480 

1191 1 
+ 

740 e554/185       eii9i/740 

This is an exact result. A numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

0.2805602 681208591005752 

The cumulative acceptance probability for stage six, the final stage, when trueTheta is left symbolic will 

be generated. This is also known as the operational-characteristic function. 

6 

OCfunction= j     AcceptanceProbability[stage, trueTheta] 
stage=l 

e-2382/trueTheta +  2041264463854488878 e-11701/trueTheta  + 

5 trueTheta5 

104896123050343 e-"
47/trueTheta       27749335290 e-8162/trueTheta 
  +  + 

trueTheta trueTheta 
7720062 p-6333/trueTheta 2382 e_4432/trueTheta 

+ 
trueTheta2 trueTheta 

OCfunction provides the exact acceptance probability as a function of trueTheta. The exact operational- 

characteristic curve can now be plotted: 
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Plot[OCfunction, {trueTheta, 100, 5000}, GridLines-* Automatic, 

Frame-»True, FrameLabel-* { "True 6,   hours", "Accept Prob.", 
"Exact Operational-Characteristic Curve" , None}, 

PlotStyle -> RGBColor [0, 0, 1 ] ] ; 

Exact Operational-Characteristic Curve 
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Cumulative Acceptance Probabilities for Each Stage men the True 0Equals 1480 Hours 

It would be useful to generate a list of cumulative acceptance probabilities for all six stages. The parame- 

ter trueTheta will be left symbolic in order to be consistent with up-front calculations. The desired list is 

generated but display of the output is temporarily suppressed. 

mycumacc = Table[ 

stagelin 

^T AcceptanceProbabilitylstage, trueTheta], {stagelim, 1, 6}] ; 
stage-l 

Now a table is generated which displays our calculations. A rule is used to replace trueTheta with 1480 

hours in the cumulative acceptance probabilities stored in the list mycumacc: 
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NumberForm[ 

TableForm[{N[timeValues, 4], N[mycumacc / . trueTheta-» 1480, 4]}, 

TableDirections -> {Row, Column}, 

TableHeadings -> {{"Time", "2 Accept Pr."}, Automatic}, 

TableAlignments-> Center] , {6, 5}] 

Time  2 Accept Pr. 

1. 2382. 0.2 

2. 4432. 0.28056 

3. 6333. 0.32939 

4. 8162. 0.36386 

5. 9947. 0.39021 

6. 11701. 0.4114 

We can observe that the probability of acceptance is 20% at the first stage and accumulates ultimately to 

approximately 41%. 

In order to calculate just the final cumulative acceptance probability, we can use OCfunction from the 

previous section and employ a rule to replace trueTheta with 1480 hours. 

OCfunction / . trueTheta-* 1480 

102 063223192724 4 439 104896123050343 
17752052992000000 e11701/"^       4797852160000 e9947'1480 

2774933529 3860031 1191 1 
324179200 e4081/740   +  1095200 e6333'1480  +  740 e554'185  +  e

1191/74° 

This is an exact result. A numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

0.4114 009662 053622390212 

This is the consumer risk since the consumer risk is defined as the acceptance probability when the true 

6 equals the lower-test 6. 

Construct Function for Continuation Probability for a Quantity of Failures 

In this step, we construct a function for calculating continuation probabilities for a quantity of failures 

[Epstein, et al. 1963, equation 19]: 
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ContinuationProbability[stage_Integer, failure_Integer, trueTheta_]  := 
ACProbability[stage, failure, trueTheta] 

■ Construct and Use Function for Continuation Probability for Each Stage 

In this step, we construct and use a function for calculating stage-by-stage continuation probabilities 

[Epstein, et al. 1963, equation 21]: 

ContinuationProbability[stage_Integer, trueTheta   ]  := 
r[stage]-1 

/,     ContinuationProbability[stage, failure, trueTheta] /; 
failure=a[stage]+l 

a[stage] +1< r[stage] 

ContinuationProbability[stage_Integer, trueTheta ] := 

0 /; Not [a [stage] + 1 < r [stage]] 

The continuation probability for stage zero with zero failures is, by definition, one: 

ContinuationProbability[0, trueTheta] 

1 

Cumulative Continuation Probabilities for Each Stage When the True ffis Symbolic 

The cumulative continuation probability for stage one when trueTheta is left symbolic is: 

ContinuationProbability[1, trueTheta] 

3195196295609268 e-2382/trueTheta       1341392231574 e-2382/troeThets 

 —  + ———  + 
5 trueTheta" trueTheta4 

2252547828 e~2382/trueTheta       2836962 e~2382/trueTheta       2382 e~2382/trueTheta 

 3    +    ——    +     
trueTheta trueTheta trueTheta 

This is an exact symbolic result. An exact result for the case where trueTheta is 1480 hours is: 

% / . trueTheta -»1480 

35229506356658217 
8876026496000000 e1191'7« 

This is an exact result. An numerical approximation accurate to 22 decimal places is: 
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N[%, 22] 

0.7 937954509181623006374 

The cumulative continuation probability for stage two when trueTheta is left symbolic is: 

ContinuationProbability[2, trueTheta] 

69741890180605268 e-4432/trueTheta       15340486306474 e-4432/trueTheta 
  +  ;  + 

5 trueTheta5 trueTheta" 
13073497428 e-4432/trueTheta       7720062 e-4432/trueTheta 

 3   +  2  trueTheta trueTheta 

This is an exact symbolic result. An exact result for the case where trueTheta is 1480 hours is: 

% / . trueTheta -* 1480 

112894152208872217 
8876026496000000 e554'185 

This is an exact result. An numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

0.6366737562 65458 9956167 

The cumulative continuation probability for stage six when trueTheta is symbolic is: 

ContinuationProbability[6, trueTheta] 

0 

This is clearly correct since the continuation probability at the last stage must be zero. 

Cumulative Continuation Probabilities for Each Stage When the True t9Equals 1480 Hours 

The cumulative continuation probability for stage one when trueTheta equals 1480 hours is: 

ContinuationProbabilitytl/ trueTheta] /. trueTheta -» 1480 

35229506356658217 
8876026496000000 e1191'740 

This is an exact result. An numerical approximation accurate to 22 decimal places is: 
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N[%, 22] 

0.7 937954509181623006374 

It would be useful to generate a list of cumulative continuation probabilities for all six stages. The 

parameter trueTheta will be left symbolic in order to be consistent with up-front calculations. The 

desired list is generated but display of the output is temporarily suppressed. 

mycumcon = 

Table[ContinuationProbability[stage, trueTheta], {stage, 1, 6}]; 

Now a table is generated which displays our calculations. A rule is used to replace trueTheta with 1480 

hours in the cumulative continuation probabilities stored in the list mycumcon. The cumulative accep- 

tance probabilities for the case where the true 0 equals 1480 hours are also provided for reference. 

NumberForm[ 

TableForm[{N[timeValues, 4], N[mycumacc/. trueTheta-*1480, 4], 

N[mycumcon / . trueTheta -»1480, 4] } , 

TableDirections -* {Row, Column}, TableHeadings-> 

{{"Time", "2 Accept Pr.", "2 Continue Pr."}, Automatic}, 

TableAlignments-> Center], {6, 5}] 

Time 2 Accept Pr. 2 Continue 

1. 2382. 0.2 0.7938 

2. 4432. 0.28056 0.63667 

3. 6333. 0.32939 0.42243 

4. 8162. 0.36386 0.21336 

5. 9947. 0.39021 0.0693 

6. 11701. 0.4114 0. 

Calculate Rejection Probability for Each Stage 

In this step, we calculate stage-by-stage rejection probabilities using Epstein, et al. 1963, equation 22: 

n 

T"  (ContinuationProbability[stage - 1, trueTheta] - 
etagesl 

ContinuationProbability[stage, trueTheta] - 

AcceptanceProbability[stage, trueTheta]) 
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Cumulative Rejection Probabilities for Each Stage When the True Gis Symbolic 

The cumulative rejection probability for stage one when trueTheta is left symbolic is: 

l 

V (ContinuationProbability[stage - 1, trueTheta] - 
8tage=l 

ContinuationProbability[stage, trueTheta] - 

AcceptanceProbability[stage, trueTheta]) 

1 _ e-2382/trueTheta _   3195196295609268 e-2382/trueTheta   ^ 

5 trueTheta5 

1341392231574 e-2382/trueTheta  _  2252547828 e-2382/trueTheta  _ 

trueTheta4 trueTheta3 

2836962 e~2382/,trueTheta       2382 e-2382/trueTheta 

trueTheta2 trueTheta 

This is an exact, but partially symbolic result. An exact result can be obtained for a specific value of 

trueTheta such as 1480 hours is as follows: 

% / . trueTheta -»1480 

44105532852658217 
8876026496000000 e1191/740 

This is an exact result. A numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

0.00620885844 0482419607709 

Next, the cumulative rejection probability for stage six when trueTheta is symbolic will be generated. 

This is one minus the operational-characteristic function. 
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rejfunction=  V  (ContinuationProbability[stage - 1, trueTheta] 
stages1 

ContinuationProbability[stage, trueTheta] - 

AcceptanceProbability[stage, trueTheta]) 

1 - e ■2382/trueTheta _  2041264463854488878 e-11701/trueTheta 

5 trueTheta5 

104896123050343 e-9947/trueTheta       27749335290 e-B162/trueThets 

trueTheta4 trueTheta3 

7720062 e"6333/,trueTheta       2382 e~4432/trueTheta 

trueTheta trueTheta 

rejfunction provides the exact rejection probability as a function of trueTheta. This function can now be 

plotted: 

Plot[rejfunction, {trueTheta, 100, 5000}, GridLines-»Automatic, 

Frame-»True, FrameLabel-» {"True ©, hours", "Reject Prob.", 

"Exact-Analysis Curve" , None}, PlotStyle-*RGBColor[0, 0, 1]]; 
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Cumulative Rejection Probabilities for Each Stage When the True ^Equals 1480 Hours 

It would be useful to generate a list of cumulative rejection probabilities for all six stages. The parameter 

trueTheta will be left symbolic in order to be consistent with up-front calculations. The desired list is 

generated but display of the output is temporarily suppressed. 

3-18 



stagelim 
mycumrej =Table[    V     (ContinuationProbability[stage - 1, trueTheta] - 

stages1 

ContinuationProbability[stage, trueTheta] - 

AcceptanceProbability[stage, trueTheta]), {stagelim, 1, 6}] ; 

Now a table is generated which displays our calculations. A rule is used to replace trueTheta with 1480 

hours in the cumulative rejection probabilities stored in the list mycumrej. The cumulative acceptance 

and continuation probabilities for the case where the true 6 equals 1480 hours are also provided for 

reference. 

NumberForm[ 
TableForm[{N[timeValues, 4], N[mycumacc/. trueTheta -»1480, 4], N[ 

mycumcon/. trueTheta-»1480, 4], N[mycumrej /. trueTheta-»1480, 4]}, 

TableDirections-> {Row, Column}, TableHeadings-> 

{{"Time", "2 Accept Pr.", "2 Continue Pr.", "2 Reject Pr."}, 

Automatic}, TableAlignments-> Center], {6, 5}] 

Time  2 Accept Pr.  £ Continue Pr.  £ Reject Pr. 

0.7938 0.00621 

0.63667 0.08277 

0.42243 0.24818 

0.21336 0.42278 

0.0693 0.54048 

0. 0.5886 

Each row in the table above sums to one as it should. In order to calculate just the final cumulative 

rejection probability, we can use the rejfunction from the previous section and employ a rule to replace 

trueTheta with 1480 hours. 

rejfunction / . trueTheta -* 1480 

1020632231927244 4 39        104 896123050343 

1. 2382. 0.2 

2. 4432. 0.28056 

3. 6333. 0.32939 

4. 8162. 0.36386 

5. 9947. 0.39021 

6. 11701. 0.4114 

1 17752052992000000 e11701/1480       4797852160000 e9947'1480 

2774933529 3860031 1191 1 
324179200 e4081/740       1095200 e6333/1480       740 e554/185       e

1191/74° 

This is an exact result. A numerical approximation accurate to 22 decimal places is: 
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N[%, 22] 

0.5885990337 94 6377 609788 

The consumer risk equals one minus the rejection probability when the true 9 equals the required 6. This 
is one minus the answer above: 

1 - % 

0.4114009662053622390212 

It would also be helpful to overlay the accept and reject probabilities on the decision-rule plot generated 

earlier for the case where the true 6 equals 1480 hours. First a graphics object will be generated but 

temporarily suppressed for the accept points. The accept points will be represented by triangles. 

acceptProbPtsPlot = MultipleListPlot[Table[{N[t[stage]], a[stage]}, 
{stage, 1, Length[timeValues]}], SymbolShape -> 

PlotSymbol[Triangle, 5], SymbolStyle -* RGBColor [0, 0, 0], SymbolLabel -» 

{Map[NumberForm[#, 2] &, N[mycumacc / . trueTheta-» 1480] ] , None}, 
PlotRange-» {{0, 14000}, {0, 6.8}}, Frame-»True, 

FrameLabel-♦ {"test time, hours", "cumulative failures"}, 
GridLines -» Automatic, DisplayFunction -» Identity] ; 

Next a graphics object will be generated but temporarily suppressed for the reject points. The reject 

points will be represented by boxes. 

rejectProbPtsPlot= MultipleListPlot[Table[{N[t[stage]], r[stage]}, 
{stage, 1, Length[timeValues]}], SymbolShape -> 

PlotSymbol [Box, 3], SymbolStyle-> RGBColor [0, 0, 0] , SymbolLabel-» 

{Map[NumberForm[#, 2] &, N[mycumrej /. trueTheta -*1480]], None}, 
PlotRange-» {{0, 14000}, {0, 6.8}}, Frame-»True, 

FrameLabel-»{"test time, hours", "cumulative failures"}, 

GridLines -* Automatic, DisplayFunction -» Identity] ; 

Now we will display the accept and reject points overlaid on the decision-rule plot. 
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Show[decisionPlot, acceptProbPtsPlot, rejectProbPtsPlot, 

PlotRange-*{{0, 14000}, {0, 8}}, DisplayFunction-* $DisplayFunction]; 
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Calculate Expected Quantity of Failures and Test Time 

We need to define a function for the probability that the test will terminate with an accept decision at a 

specified number of failures [Epstein, et al. 1963, equation 33]. First the general case and then the 

special case: 

AccProbabilityF[failure_Integer, trueTheta_] := 

Module[{stage = 1}, Whileffailure > a [stage] , stage + + ] ; Which[ 

failure > Last[Last[accept]], 0, 0 £ failure £ Last[Last[accept]], 

AcceptanceProbability[stage, failure, trueTheta]]] /; 

failure S a[Length[timeValues]] 

AccProbabilityF[failure_Integer, trueTheta_] := 

0 /; failure > a[Length[timeValues]] 

Now, we will define a function for the probability that the test will terminate with a reject decision at a 

specified number of failures [Epstein, et al. 1963 equation 34]: 
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RejProbabilityF[failure_Integer, trueTheta_] := 

Module[{reJGctlist}, rejectlist= 

Select[Table[{stage, r[stage]}, {stage, 1, Length[timeValues]}], 

#H2J == failure &] /. {st_Integer, rej_Integer} -» st; 

Which[Length[rejectlist] ==0, 0, Length[rejectlist] > 0, 

Sum[(ContinuationProbability[stage - 1, trueTheta] - 

ContinuationProbability[stage, trueTheta] - 

AcceptanceProbability[stage, trueTheta]), 

{stage, First[rejectlist], Last[rejectlist]}]]] 

The probability that the test will terminate with zero failures and a reject decision is: 

RejProbabilityF[0, trueTheta] 

0 

This is obviously correct since the only path to rejection is if six failures occurs. The probability that the 

test will terminate with one failure through five failures and a reject decision is: 

RejProbabilityF[l, trueTheta] 

0 

RejProbabilityF[2, trueTheta] 

0 

RejProbabilityF[3, trueTheta] 

0 

RejProbabilityF[4, trueTheta] 

0 

RejProbabilityF[5, trueTheta] 

0 

The probability that the test will terminate with six failures and a reject decision is: 
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RejProbabilityF[6, trueTheta] 

x _ e-2382/trueTheta _ 2041264463854488878 e-11701/t"eTheta _ 

5 trueTheta5 

104896123050343 e-9947/trueTheta  _ 27749335290 e-8162/trueTheta  _ 
trueTheta4 trueTheta3 

7720062 e~6333/trueTheta       2382 e~4432/,trueThets 

trueTheta2 trueTheta 

If trueTheta is equal to 1480 hours, the probability that the test will terminate with six failures and a 

reject decision is: 

% / . trueTheta -» 1480 

1020632231927244439        104896123050343 
1 - 17752052992000000 e11701/1480       4797852160000 e9947/1480 

2774933529 3860031 1191 1 
324179200 e4081'740       1095200 e6333/^80       740 e554/i85       eii9i/740 

This is an exact result. A numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

0.5885990337946377609788 

Now, we will define a function for the probability that the test will terminate in either acceptance or 

rejection with a specified number of failures [Epstein, et al. 1963 equation 35]: 

TerminateProbability[failure_Integer, trueTheta_]  := 
AccProbabilityF[failure, trueTheta] + 
RejProbabilityF[failure, trueTheta] 

The probability that the test will terminate with zero failures is: 

TerminateProbability[0, trueTheta] 

-2382/trueTheta 

The probability that the test will terminate with one failure is: 

TerminateProbabilityfl, trueTheta] 

o-opo e-4432/trueTheta 

trueTheta 
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The probability that the test will terminate with between zero and six failures is: 

e 
/t     TerminateProbability[failure, trueTheta] 

failure=0 

This result is obviously correct since it's not possible for the test to continue beyond the sixth failure. 

Next, we will define a function for the expected termination failure quantity [Epstein, et al. 1963 

equation 36]: 

ExpectedTerminationFailure[trueTheta_] : = 
r [ Length [ timeValues] ] 

/ failure TenninateProbability[failure, trueTheta] 
failure=0 

A function for the expected termination failure quantity with trueTheta left symbolic is: 

expectedfailurefunction = ExpectedTerminationFailure[trueTheta] 

6 (1 _ e-2382/trUeTheta _  2041264 4 63854 4 88878 e-11701/trueTheta  _ 

5 trueTheta5 

104896123050343 e-9947/trueTheta       27749335290 e-8162/trueTheta 

trueTheta4 trueTheta3 

7720062 e~6333/trueTheta       2382 e-4432/trueTheta \ 

trueTheta2 trueTheta J 

2041264463854488878 e-11701/trueThet=       419584492201372 e-"
47/trueTheta 

+ 
trueTheta" trueTheta4 

83248005870 e-8162/trueTheta 
  + 

trueTheta 
15440124 e"6333/trueTheta       2382 e"4432/trueTheta 

+ 
trueTheta2 trueTheta 

Now we can plot this function: 
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Plot[expectedfailurefunction, 

{trueTheta, 100, 5000}, GridLines -* Automatic, Frame-»True, 

FrameLabel-* { "True Ö, hours", "Exp. Failure Quantity", 

"Exact-Analysis Curve" , None}, PlotStyle-»RGBColor[0, 0, 1]]; 
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In order to calculate the expected failure quantity for a true 6 of 1480 hours, we could use expectedfail- 

urefunction and a rule to replace trueTheta with 1480. 

expectedfailurefunction / . trueTheta -»1480 

6 1 
1020632231927244439 104896123050343 

17752052992000000 e11701/148°       4797852160000 e9947/14B0 

2774933529 3860031 1191 1 
324179200 e4081/74°       1095200 e6333/1480       740 e554/185       e

1191/74° 
1020632231927244439 104 896123050343 

3550410598400000 e11701'1480       1199463040000 e9947/148° 
8324800587 3860031 1191 

324179200 e4081/740  +  547600 e6333/1480  +  740 c554/185 

This is an exact result. A numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

4.024572455177141012839 

Next, we will define a function for the expected test time [Epstein, et al. 1963 equation 41]: 
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ExpectedTestTime[trueTheta_] := 

trueTheta ExpectedTerminationFailure[trueTheta] 

A function for the expected test time with trueTheta left symbolic is: 

expectedtesttimefunction = ExpectedTestTime[trueTheta] 

-2382/trueTheta      2041264463854488878 e-11701/trueTheta 

6    1 - e" 
5 trueTheta 

104896123050343 e-"
47/trueTheta       27749335290 e-8162/trueTheta 

trueTheta trueTheta' 
7720062 e"6333/trueTheta       2382 e~4432/trueTheta 

trueTheta trueTheta 

2041264463854488878 e-11701/trueTheta       419584492201372 e-"
47/trueTheta 

  +  —,  + 
trueTheta"" 

83248005870 e-B162/trueTheta 15440124 e 
trueTheta 

2382 e~4432/trueTheta 

trueTheta 
•6333/trueThetc 
 -,   + 

trueTheta 

trueTheta 
trueTheta 

Now we can plot this function: 

Plot[expectedtesttimefunction, 

{trueTheta, 100, 5000}, GridLines -* Automatic, Frame-»True, 

FrameLabel -» {"True 6, hours", "Exp. Test Time, hours", 

"Exact-Analysis Curve" , None}, PlotStyle-» RGBColor [0, 0, 1]]; 
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In order to calculate the expected test time for a true 6 of 1480 hours, we could use expectedtesttimefunc- 

tion and a rule to replace trueTheta with 1480. 
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expectedtesttimefunction / . trueTheta-»1480 

1020632231927244 4 39        104 896123050343 
1480    6    1 

17752052992000000 e11701''1480       4797852160000 e99il'liS0 

2774933529 3860031 1191 1 
324179200 e4081/74°       1095200 e6333/1480       740 e554/185       e

1191/740 

102063223192724 4 439 104 896123050343 
3550410598400000 e11701/1480       1199463040000 e9947/148° 

8324800587 3860031 1191 
324179200 e4081'740       547600 e6333'1480       740 ©554/185 

This is an exact result. A numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

5956.367233662168699002 
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Summary & Conclusions 

An analysis of the exact stage-by-stage acceptance, continuation and rejection probabilities, including 

the impact of truncation, resulting from a sequence of reliability test plan decision rules was performed. 

An exact operational-characteristic function was obtained and plotted. Exact functions for expected 

failure quantity and test time were obtained and plotted as well. 

The probability of accepting a product with a true 9 or MTBF equal to the lower-test value of 1480 hours 

at the first stage is 20%. If acceptance does not occur at the first stage, there is a possibility of accep- 

tance at each subsequent stage except the last. The total probability of accepting such a product (i.e., the 

consumer risk) is the sum of the acceptance probabilities at each stage. The consumer risk was found to 

be 41.1%, approximately twice the desired 20% value. 

The sequence of decision rules analyzed herein was also simulated for 400,000 trials in Appendix B. 

The results of the simulated tests are consistent with the results obtained in this notebook and thus 

constitute a rough double-check of the exact analysis. 

The interpretation of the procedure from [Kececioglu 1993, section 7.10] considered herein is thus 

rejected. As a result, a contractor-proposed test plan that contained this serious error was rejected. This 

chapter illustrates this mistake and its impact in the hope this may help test designers avoid it in the 

future. 

It should also be noted that Butler and Lieberman (1980) recognized that a plan developed as described 

in the beginning of this chapter would have a total consumer risk roughly twice the consumer risk at the 

first accept point, as we saw. They developed a method for designing a sequential test plan containing 

multiple acceptance points and a single, final reject point that has a more desirable level of consumer 

risk. 
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Chapter 4 
Design & Analysis of a Truncated Exponential Sequential 

Test: Case Study 3 

Introduction 

Test planners were considering various options for a reliability demonstration test on a tactical terminal. 

It was requested that AMSAA develop a truncated exponential sequential test plan that would meet the 

following requirements: 

• lower-test MTBF = 2200 hours 

« upper-test MTBF = 4400 hours 

■ consumer-risk goal = producer-risk goal = 20% 

Sequential test designs can often reduce test time by a factor of two compared with fixed-length designs 

thus they are highly beneficial to use when practical. 

This chapter documents the design of a truncated exponential sequential test design that approximately 

meets the requirements above. The impact of the truncation can only be determined through subsequent 

analysis of the test design. For this reason, an exact analysis was performed and may be found in 

Appendix C. Key results of the exact analysis, including stage-by-stage acceptance, continuation and 

rejection probabilities, actual consumer and producer risks and operational-characteristic curve, are 

included in this chapter. The exact analysis was checked with a simulation which is not included in this 

report due to considerations of report length. 

Define Requirements 

• Lower-test MTBF = 2200 hours. We'll assign this as the value of the symbol lowertest since it will be 

used numerous times in this example. 

lowertest = 2200 

2200 
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• Upper-test MTBF = 4400 hours. We'll assign this as the value of the symbol uppertest. 

uppertest = 4400 

4400 

• Consumer risk = 20%. We'll assign this as the value of the symbol conrisk. First we'll convert 20% to 

an exact rational number. If we specify any input as a Real number, Mathematica will use finite- 

precision arithmetic for each calculation. Errors will propagate and grow with each successive calcula- 

tion. In order to avoid inaccuracies in statistical analyses, McCullough [2000] recommends that Real 

inputs be converted to Rationals. If we convert Reals to Rationals, exact arithmetic will be used (i.e., no 

approximations or roundoffs will occur). Mathematica will provide approximate numerical results only 

when the user insists. 

conrisk = Rationalize[.2] 

5 

• Producer risk = 20%. We'll assign this as the value of the symbol prodrisk. 

prodrisk = Rationalize[.2] 

1_ 
5 

Setup 

The code to be used in this chapter is contained in the new package ExponentialSequentialTestDesign.nl 

(Appendix D) and the standard add-on packages MultipleListPlot.m and DiscreteDistributions.m, These 

packages are loaded thus: 

Needs["Statistics"DiscreteDistributions""] 

Needs["Graphics'MultipleListPlot'"] 

Needs["Reliability'ExponentialSequentialTestDesign""] 

The version ofExponentialSequentialTestDesign.m used in this test design is determined next. 
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? ExponentialSequentialTestDesign 

ExponentialSequentialTestDesign.m (version 0.8.0) is a 
package which contains a collection of functions useful for 
sequential test design based on the Exponential distribution. 

Accept Function 

First, we need an accept function. The accept function provides cumulative failures for acceptance as a 

function of cumulative test time, given values for lower-test MTBF, consumer risk, upper-test MTBF 

and producer risk. The new function ExponentialAccept implements the accept equation derived 

by Epstein and Sobel (1955). Providing the values in this case as arguments to ExponentialAccept 

and leaving the argument time symbolic yields: 

acceptfun= 

ExponentialAccept[lowertest, conrisk, uppertest, prodrisk, time] 

time      Log[4] 
4400Log[2]   Log[2] 

This is the function for the non-truncated segment of the accept line. One use of the accept function is to 

calculate the minimum test length for an accept decision to be reached (i.e., the quantity of time that, if 

reached before a single failure occurs, triggers an accept decision). Acceptance occurs between failures 

if the accumulated test time meets or exceeds the corresponding value given by the accept function. The 

shortest path to acceptance can be determined by setting the quantity of failures equal to zero and 

solving for time. 

Solve [ acceptf un == 0, time] //N 

{{time-> 6099.7}} 

Thus, the shortest path to an accept decision is when no failures have occurred and the accumulated test 

time > 6099.7 hours. 
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Reject Function 

Next, we need a function for the non-truncated segment of the reject line. The reject function provides 

cumulative failures for rejection as a function of cumulative test time, given values for lower-test MTBF, 

consumer risk, upper-test MTBF and producer risk. The Wald intercept, an approximation, will be used 

for this line.The new function ExponentialReject implements the reject equation derived by 

Epstein and Sobel (1955). Providing the values of the arguments in this example to ExponentialRe- 

ject, leaving the argument time symbolic and setting the option ConstantAMethod -»Wald yields: 

rejectfun = ExponentialReject[lowertest, conrisk, 

uppertest, prodrisk, time, ConstantAMethod -»Wald] 

time     Log[4] 
4400Log[2]   Log[2] 

This is the function for the non-truncated segment of the reject line. One use of the reject function is to 

calculate the minimum test length for a reject decision to be reached. A rejection decision is triggered by 

the occurrence of a failure. When a failure occurs, if the accumulated test time is less than or equal to 

the corresponding value given by the reject function, rejection occurs. The shortest path to failure is the 

smallest quantity of failures which results in a positive rejection time. This can be determined by setting 

the quantity of failures equal to zero and solving for time. 

Solve[rejectfun == 0, time] //N 

{{time -* -6099.7}} 

The quantity of time corresponding to zero failures is negative which is not a physically meaningful 

answer. We will increment the failure quantity and repeat this calculation until we first obtain a positive 

quantity of time: 

Solve[rejectfun ~ 3, time] // N 

{{time-» 3049.85}} 

The shortest path to rejection occurs if the third failure occurs and the accumulated test time < 3049.85 

hours. 
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Truncation 

Next, we'll address the truncation rules. First we'll calculate the truncated-reject criterion using the 

Epstein [1954] truncation method which is implemented by the new function ExponentialTrunca - 

tionFailures. We'll assign the result as the value of the symbol failtrunc: 

failtrunc = 

ExponentialTruncationFailures[lowertest, conrisk, uppertest, prodrisk] 

7 

Now, we'll calculate the corresponding Epstein truncated-accept criterion timetrunc by using the new 

function ExponentialTruncationTime with the upper-test MTBF = uppertest, producer risk = 

prodrisk and failures = failtrunc. We'll do this so as to avoid excess test time. In general, when the 

accept time for the (failtrunc - 1) failure is less than the value of timetrunc, excess test time exists (i.e., 

test time which it would be impossible to reach). This quantity of excess test time is misleading and it is 

desirable to remove it. In order to avoid erroneous test time, we first calculate the accept time for the 

(failtrunc - 1) failure and assign the result as the value of oneminusaccepttime: 

N[oneminusaccepttime = 

First[time / . Solve[acceptfun == failtrunc - 1, time]]] 

24398.8 

Next we calculate the Epstein truncation time and assign the result as the value of epsteintimetrunc: 

N[epsteintimetrunc= 

ExponentialTruncationTime[uppertest, prodrisk, failtrunc]] 

20828.1 

If oneminusaccepttime is less than epsteintimetrunc, we will assign oneminusaccepttime as the value of 

timetrunc. Otherwise, we will assign epsteintimetrunc as the value of timetrunc: 

If[oneminusaccepttime < epsteintimetrunc, 

timetrunc = oneminusaccepttime, timetrunc = epsteintimetrunc] // N 

20828.1 
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Determine Domain of Functions and Generate Decision-Rule Plot 

Now we are almost ready to plot the test plan. We will generate, but temporarily suppress, a graphics 

object for each of the four straight lines needed on the final plot (i.e., non-truncated accept, non-trun- 

cated reject, truncated accept and truncated reject). Then we will plot the graphics objects together. It 

may be helpful to refer to the plot at the end of this example as we proceed. 

First, let's generate a graphics object for the non-truncated segment of the accept line using the Expo- 

nentialAccept function. We will limit the independent variable time to the domain of zero and 

timetrunc (where the truncated segment of the accept line begins) and we will use the PlotRange 

option to restrict the range of the function so that it will not plot below zero: 

acceptPlot= Plot[acceptfun, {time, 0, timetrunc}, 

PlotStyle-» RGBColor[0, 1,0], DisplayFunction-» Identity] ; 

Next, let's generate a graphics object for the non-truncated segment of the reject line using the Exponen- 

tialReject function with the Wald intercept selected. First, we need to determine where to truncate 

the reject line along the time axis (i.e., where the truncated segment of the reject line begins). We can 

determine this by using the ExponentialReject function, leaving the time argument symbolic, and 

solving for the quantity of time which corresponds to the truncation value offailtrunc failures. 

N[rejecttimetrunc = First[time / . Solve[rejectfun == failtrunc, time]]] 

15249.2 

Now we can generate the graphics object for the non-truncated segment of the reject line using the 

ExponentialReject function while limiting the independent variable time to the domain of zero 

and rejecttimetrunc hours. We will use the PlotRange option to trigger plotting of the range of the 

function so that it is consistent with the generation of the other graphics objects. 

rejectWaldPlot= Plot[rejectfun, {time, 0, rejecttimetrunc}, 

PlotStyle-» RGBColor[l, 0, 0] , DisplayFunction-»Identity]; 

Next, let's generate a graphics object for the truncated segment of the reject line. Since we reject at 

failtrunc failures between rejecttimetrunc and timetrunc hours, the truncated segment of the reject line 

is a horizontal line at failtrunc failures over this domain: 
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rejectTruncationPlot = 

Plot[failtrunc, {time, rejecttimetrunc, timetrunc}, 

PlotStyle-»RGBColor[l, 0, 0], DisplayFunction-*Identity]; 

Now we need to generate a graphics object for the truncated segment of the accept line. This segment is 

a vertical line at timetrunc hours which extends from the end of the non-truncated segment of the accept 

line to the truncated-reject criterion of failtrunc failures. Before we can generate this graphics object, we 

must determine where the non-truncated segment of the accept line ends in terms of the failure axis. We 

can obtain this failure quantity by using ExponentialÄccept and supplying timetrunc hours as the 

time argument. 

N[acceptf ail trunc = acceptfun / . time -» timetrunc] 

4.82923 

Now we can generate a graphics object for the truncated segment of the accept line. This is a vertical 

line at timetrunc hours between acceptfailtrunc and failtrunc failures. 

acceptTruncationPlot=Graphics[{RGBColor[0, 1,0], 

Line[{{timetrunc, acceptfailtrunc}, {timetrunc, failtrunc}}]}]; 

The final plot is obtained by displaying all of the graphics objects together: 

Show{acceptPlot, rejectWaldPlot, rejectTruncationPlot, 

acceptTruncationPlot, PlotRange-*{{0, 25000}, {0, 7.5}}, Frame-»True, 

FrameLabel-»{"test time, hours", "cumulative failures"}, 

GridLines-» Automatic, DisplayFunction-* $DisplayFunction]; 
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Identification of the reject, continue and accept regions can be overlaid thus: 

decisionPlot = Show[%, 

Graphics[{Text["Reject", Scaled[{0.28, 0.85}]], Text["Continue", 

Scaled[{0.4, 0.5}]], Text["Accept", Scaled[{0.7, 0.2}]]}]]; 

Reject 

/ 
/     Cont inue 

/ 

Accept 
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5000   10000   15000   20000   25000 
test time, hours 

Tabulate Accept and Reject Times 

It would also be helpful to generate a table of decision rules for this test plan. First, we will generate a 

list of failure quantities but temporarily suppress the display since it will be presented in a table below 

(where it will be the first column): 

failurelist = Range[0, failtrunc]; 

Next, we will generate a list of accept points calculated as discussed above for the accept-time column. 

accepteqn = First[time / . Solve[acceptfun == r, time]]; 

acceptlist = Flatten[{Table[Which[(accepteqn / . r-*failure) £ timetrunc, 
accepteqn / . r -► failure,   (accepteqn / . r -* failure) > timetrunc, 
timetrunc],  {failure, 0, failtrunc - 1}] , "NA"}]; 

Next, we will generate a list of reject points calculated as discussed above for the reject-time column, 

rejecteqn = First[time / . Solve[rejectfun == r, time]]; 
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rejectlist = Flatten [{Table [Which [N[ (re jecteqn/. r-» failure)] * 0, "NA", 

(rejecteqn /. r-» failure) * timetrunc, (rejecteqn /. r -> failure), 

(rejecteqn / . r-» failure) > timetrunc, timetrunc], 

{failure, 0, failtrunc - 1}], timetrunc}]; 

Now we display the entire table: 

TableForm[Transpose[{failurelist, N[rejectlist], N[acceptlist]}], 

TableHeadings-*{None, {"Failures", "Reject Time (hours) i", 
"Accept Time, (h ours) £." }}, TableAlignments -»Center] 

Failures Rej€ ct Time (hours) ^ Accept Time, (hours) a 
0 NA 6099.7 
1 NA 9149.54 
2 NA 12199.4 
3 3049.85 15249.2 
4 6099.7 18299.1 
5 9149.54 20828.1 
6 12199.4 20828.1 
7 20828.1 NA 

Rejection is triggered by the occurrence of a failure provided the accumulated test time is less than or 

equal to the value specified in the second column above. Acceptance occurs between failures if the 

accumulated test time meets or exceeds the values specified in the third column above. 

Overlay Accept and Reject Times on Decision-Rule Plot 

It would be helpful to overlay the decision points from the table above on the decision-rule plot. First a 

graphics object will be generated but temporarily suppressed for the reject points (excluding any points 

which are not numerical). 

rejectPtsPlot = MultipleListPlot[ 

Select [Transpose [{rejectlist, failurelist}], (#PI >0&&#|[2]] > 0) &], 

SymbolShape-*PlotSymbol[Box, 3] , 

SymbolStyle-»RGBColor[l, 0, 0], DisplayFunction-»Identity]; 

Next a graphics object will be generated but temporarily suppressed for the accept points (excluding any 

points which are not numerical). 
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acceptPtsPlot = MultipleListPlot[ 

Select [Transpose [{acceptlist, failurelist}] , (#11]] > 0 &&#pj > 0) &], 

SymbolShape-» PlotSymbol[Triangle, 5] , 

SymbolStyle-»RGBColor[0, 1,0], DisplayFunction-*Identity]; 

Now we will display the accept and reject points, represented by triangles and boxes, respectively, 

overlaid on the decision-rule plot. 

ShowfdecisionPlot, rejectPtsPlot, 

acceptPtsPlot, PlotRange-»{{0, 25000}, {0, 7.5}}]; 
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Approximate Operational-Characteristic Curve 

It is also customary to plot the operational-characteristic function (i.e., acceptance probability as a 

function of true MTBF) for a test design. Epstein and Sobel (1955) derived a pair of equations which 

can be used to obtain an approximate operational-characteristic function. This function is approximate 

even in the untruncated case and does not account for truncation at all. The more truncated the test plan, 

the less accurate the approximation. 

Two new add-on functions are based on these approximate Epstein and Sobel equations, Exponential- 

AcceptProbability and ExponentialTrueMTBF. Obtaining answers from ExponentialAc- 

ceptProbability as a function of the true MTBF requires that values for the exponent h be 

obtained from ExponentialTrueMTBF. Numerical root-finding is used to obtain values for h since 

ExponentialTrueMTBF is an implicit equation in terms of A (i.e., h cannot be isolated on the left- 

hand side of the equation and solved for analytically). ExponentialTrueMTBF will do this automati- 

cally provided a reasonable starting point is provided for the numerical root-finding algorithm. An easy 

way to obtain a reasonable starting point is by plotting ExponentialTrueMTBF versus h as follows: 

Plot[ExponentialTrueMTBF[lowertest, uppertest, h] ,   {h, -5, 5}, 
PlotRange-> All, Frame-»True, FrameLabel-» { "h", "true MTBF,   hours"}, 
PlotStyle -* RGBColor[0, 0,1], GridLines -»Automatic]; 
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Upon inspection of the plot above, it would seem that -4 would be a reasonable starting point for true 

MTBF values in the 1000 to 8000 hours range. It is important to avoid zero as a starting point since the 

equation is indeterminate there. Now we can generate an approximate operational-characteristic func- 

tion by plotting ExponentialAcceptProbability versus true MTBF using the starting point just 

obtained. 

approxOC = Plot[ExponentialAcceptProbability[ 

lowertest, conrisk, uppertest, prodrisk, trueMTBF, -4] , 

{trueMTBF, 500, 8000}, PlotRange -* Automatic, Frame-♦ True, 
FrameLabel-* {"True MTBF, hours", "Accept Prob.", 

"Approximate Operational-Characteristic Curve" , None}, 

PlotStyle-»RGBColor[0, 0,1], GridLines -> Automatic] ; 

Approximate Operational-Characteristic Curve 

2000    4000    6000 
True MTBF, hours 

8000 

Key Results from Exact Analysis 

An exact analysis was performed and may be found in Appendix C. Key results are included in this 

section for examination of the test design. The stage-by-stage acceptance, continuation and rejection 

probabilities assuming the true MTBF equals the lower-test MTBF are: 
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ltMTBFtable 

Time  2 Accept Pr.  2 Continue Pr.  2 Reject Pr. 

0.83678 0.16322 

0.60776 0.32975 

0.43781 0.45638 

0.31504 0.54912 

0.22658 0.61632 

0.10829 0.71944 

0. 0.77757 

Each row in the table above sums to one as it should. The acceptance probability at the last stage (i.e., 

the consumer risk) is approximately 22.2% which is fairly close to the consumer-risk goal of 20%. It's 

not possible to get exactly the desired consumer or producer risk when truncating. 

The stage-by-stage acceptance, continuation and rejection probabilities assuming the true MTBF equals 

the upper-test MTBF are: 

utMTBFtable 

Time  2 Accept Pr.  2 Continue Pr.  2 Reject Pr. 

1. 3050. 0. 

2. 6100. 0 06249 

3. 9150. 0 10581 

4. 12199. 0 13584 

5. 15249. 0 15709 

6. 18299. 0 17227 

7. 20828. 0 22243 

1. 3050. 0. 0.96668 0.03332 

2. 6100. 0.24998 0.68394 0.06608 

3. 9150. 0.42326 0.48583 0.09091 

4. 12199. 0.5434 0.34752 0.10909 

5. 15249. 0.62839 0.24936 0.12225 

6. 18299. 0.6891 0.15182 0.15907 

7. 20828. 0.80273 0. 0.19727 

The rejection probability at the last stage (i.e., the producer risk) is approximately 19.7%. This is quite 

close to the producer-risk goal of 20%. 

The expected quantity of failures as a function of true MTBF is: 
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Show[expectedfailuresPlot]; 

Exact-Analysis Curve 
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The expected quantity of failures if the true MTBF equals the lower-test MTBF is 4.46. The expected 

quantity of failures if the true MTBF equals the upper-test MTBF is 2.63. 

The expected quantity of test time as a function of true MTBF is: 

Show[expectedtesttimePlot]; 

x 7000 

Exact-Analysis Curve 

2000    4000    6000    8000 
True MTBF, hours 

The expected test time if the true MTBF equals the lower-test MTBF is 9,811 hours. The expected test 

time if the true MTBF equals the upper-test MTBF is 11,553 hours. 

The operational-characteristic curve (i.e., the acceptance probability as a function of true MTBF) is: 
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Show[ocPlot]; 
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The exact operational-characteristic curve can be overlaid on the approximate one: 

ShowfapproxOC, ocPlot]; 
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The approximate operational-characteristic curve was quite good in this case due to the modest level of 

truncation. 

4-15 



Summary 

Test planners and evaluators were provided, in a timely fashion, with a truncated exponential sequential 

test plan that fairly closely met their requirements. They were also provided with key results of an exact 

analysis of the test design, including stage-by-stage acceptance, continuation and rejection probabilities, 

actual consumer and producer risks and operational-characteristic curve. 

The sequential test designed in this chapter would likely result in a markedly shorter test length com- 

pared with a typical fixed-length test. This chapter can serve as an electronic template for future test 

designs. 
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Chapter 5 
Simulation-Based Hypergeometric Sequential Test Plan: 

Case Study 4 

Introduction 

There are 310 troubleshooting procedures for the maintenance of a new Army vehicle in need of evalua- 

tion. Evaluating each of the procedures would be costly in terms of cost and schedule. A statistically- 

sound method is desired whereby the procedures can be progressively evaluated and, if they are found to 

be highly error-free, all 310 procedures can be accepted based on a sample. If the procedures are not 

sufficiently error-free, acceptance based on a sample will not occur therefore all of the procedures will 

have to be reviewed and corrected. 

The hypergeometric distribution, not the binomial, is applicable to this problem since we will be sam- 

pling without replacement from a finite population and each troubleshooting procedure will be judged to 

be acceptable or defective. In contrast to conventional sequential test plans, which ultimately lead to 

either acceptance or rejection, rejection is not possible with the plan designed in this chapter. If the 

procedures are not sufficiently error-free, all 310 procedures will be evaluated and subsequently cor- 

rected. It doesn't appear that test-design methodology is available in the literature for this case. Conse- 

quently, the approach taken here is to develop a hypergeometric sequential simulation and then use it to 

approximately characterize the behavior of the hypergeometric sequential decision rules. We can 

through trial-and-error arrive at an acceptable test plan. 

Potential Test Plan Decision Rules 

We will need functions for the hypergeometric distribution which are defined in the standard add-on 

package DiscreteDistributions which is loaded thus: 

Needs["Statistics *DiscreteDistributions *"] 

The usage message for the hypergeometric distribution is: 
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? HypergeometricDistribution 

HypergeometricDistribution[n, nsucc, ntot] represents the 
hypergeometric distribution for a sample of size n, drawn without 
replacement from a population with nsucc successes and total 
size ntot.  A HypergeometricDistribution[n, nsucc, ntot] random 
variable describes the number of successes occuring in the sample. 

It's important to note that random samples must be drawn without replacement at each stage of the test 

plan! 

The entire population of troubleshooting procedures is 310. After some discussion with the test planners 

and evaluators, it seems prudent to design a test plan where the probability of acceptance based on a 

sample of the 310 procedures will not appreciably exceed 20% if the number of troubleshooting proce- 

dures containing errors is 31 or more. 

Let's assume we have 310 troubleshooting procedures 31 of which contain errors (i.e., 90% are error- 

free). If we draw a sample of 15, the probability of obtaining 0 procedures with errors is: 

PDF[HypergeometricDistribution[15, 31, 310], 0] //N 

0.198032 

This is the first increment of consumer risk. This value is too high since the test plan should grow stage- 

by-stage towards 20%, not start there. Let's try a sample of size 20: 

N[PDF[HypergeometricDistribution[20, 31, 310], 0]] 

0.113213 

This is a more reasonable starting point. It's roughly half of the desired cumulative acceptance probabil- 

ity of 20%. The greatest acceptance probability will occur at the first stage. 

Several sequences of decision rules were simulated as described in the rest of this chapter and the 

following rules were eventually arrived at: 

Stage Procedures Cumulative Accept if 

to Examine Procedures Examined Cumulative Errors < 

1 20 20 0 

2 20 40 1 
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3 20 

4 20 

5 20 

6 20 

7 20 

8 20 

9 20 

10 20 

11 20 

12 20 

13 20 

14 20 

15 30 

60 2 

80 3 

100 4 

120 5 

140 6 

160 7 

180 8 

200 9 

220 10 

240 11 

260 12 

280 13 

310 N/A 

Simulations of these rules are provided in subsequent sections of this notebook. Let's graph these accept 

decision rules. The values for the cumulative number of procedures examined at stages 1 through 14 are: 

xaxispts=Range[20, 280, 20] 

{20,  40,  60,  80,  100,  120,  140,  160,  180,  200,  220, 240, 260, 280} 

A list of the decision rules is then: 

pts=Transpose[{xaxispts, Range[0, 13]}] 

{{20,  0},   {40,  1},   {60, 2},   {80,  3},   {100,  4},   {120,  5},   {140,  6},   {160,  7}, 
{180,  8},   {200,  9},   {220,  10},   {240,  11},   {260,  12},   {280,  13}} 

Functions defined in the standard add-on package MultipleListPlot will be needed so we'll load 

the package now. 

Needs["Graphics'MultipleListPlot*"] 

The decision-rule plot is: 
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MultipleListPlot[pts, 

SymbolShape -> PlotSymbol[Triangle, 4] , Frame-* True, 

Axes -» False, FrameLabel-» {"Cumulative Procedures Examined", 

"Cumulative Rejects Found", "Accept Decision Rules", None}, 

GridLines -* {xaxispts, Range[0, 13]}]; 
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Identification of the reject, continue and accept regions can be overlaid thus: 

decisionPlot=Show[%, Graphics[{Text["Continue", Scaled[{0.4, 0.7}]], 

Text["Accept", Scaled[{0.7, 0.2}]]}]]; 

T3 
Accept  Decision Rules 

C 
p  12 o -^ 

co 10 
■p 

1 1  —A- 

A .   . 
"nr ti 1U€ ■ i       i V         \ 

u 
a>    8 
-n 

A..._ 

i i 

*    6 
0) 

j\ 

I k 

k 

$    4 1 j k 

l L 

r-j 

e 
Z   o 

\ 
i \ I ice apt 

1       A ̂  \       * 
-. ▲ 1 

0    50   100   150   200   250 
Cumulative Procedures Examined 

It is intended that these decision rules will be used thus: 

■ Select 20 procedures at random from the population of 310. 

■ If 0 rejects are found, stop the test and accept all the procedures. 

■ Otherwise continue to the next stage by randomly selecting 20 procedures from the remaining 

290. 

5-4 



■ If the cumulative number of rejects equals 1, then stop the test and accept all the procedures. 

■ Otherwise continue to the next stage by randomly selecting 20 procedures from the remaining 

270. 

The decision rules are defined for use in simulations later in this notebook. 

accept[0] =-1; 

Do[accept[i] =i-l,  {i, 1, 15-1}] 

Here are the rules: 

? accept 

Global'accept 

accept[0] =-1 

accept [1] =0 

accept [2] =1 

accept [3] = 2 

accept [4] = 3 

accept [5] = 4 

accept [6] = 5 

accept [7] = 6 

accept[8] = 7 

accept [9] = 8 

accept [10] = 9 

acceptfll] = 10 

accept[12] =11 

accept[13] =12 

accept[14] =13 
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Development of Simulation for Potential Decision Rules 

In this section, we develop functions needed for simulating hypergeometric sequential test plans. In the 

next section these functions will be used to simulate and approximately characterize the decision rules 

proposed herein. 

The samples that will be taken from the original population of 310 (unless acceptance occurs) are 

assigned as the value of the symbol sample: 

sample=Append[Table[20,  {14}], 30] 

{20, 20, 20,  20, 20, 20, 20, 20, 20, 20, 20,  20, 20, 20,  30} 

The quantity of samples is: 

Length[sample] 

15 

The quantities of unexamined procedures at stages 0 through 15 are assigned as the value of the symbol 

proc: 

proc = 310 - FoldList[Plus, 0, sample] 

{310, 290, 270, 250, 230, 210, 190, 170, 150, 130, 110, 90, 70, 50, 30, 0} 

The number of such quantities is: 

Length[proc] 

16 

The initial quantity of defective procedures is assigned as the value of the symbol initdef. 

initdef = 31; 

Next we will define a function that will increment the stage number by one and add a hypergeometric 

random variable to the running total of defective procedures discovered during the test. 
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fun[{stage_Integer, cuntdef_Integer}]  : = 
{stage + 1, cumdef + Random[HypergeometricDistributionf 

sampleIstagetl]], initdef - cumdef, procIstage+1j ] ] } 

Now we will define a function that will be used to test the simulation against the acceptance rules. The 

simulation will continue as long as the running total of defective procedures exceeds the acceptable 

quantity for that stage. 

testfun[{stage_Integer, cumdef_Integer}] := accept[stage] <cumdef 

Let's reset the pseudorandom number generator using the integer one as a seed. This will allow a 

repeatable result which is helpful when de-bugging code. 

SeedRandom[1] 

Now we can simulate a single hypergeometric sequential test plan as follows: 

NestWhileList[fun, {0, 0}, testfun, 1, Length[sample]] 

{{0, 0}, {1, 2}, {2, 5}, {3, 8}, {4, 8}, {5, 12}, {6, 14}, {7, 17}, {8, 21}, 
{9, 21}, {10, 23}, {11, 25}, {12, 27}, {13, 28}, {14, 28}, {15, 31}} 

This simulation went the distance. After some experimentation, it was found that using the integer 10 as 

the seed results in a stage-one acceptance: 

SeedRandom[10] 

NestWhileList[fun, {0, 0}, testfun, 1, Length[sample]] 

{{0, 0}, {1, 0}} 

In the next section, much larger simulations will be run using the functions just defined. 

Simulation of Decision Rules 

Assume Defect Quantity Equals 40 

If 40 of the 310 procedures are defective, then the percentage of defectives is 
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40 
//N 

310 

0.129032 

and the percentage of non-defectives is 

1 - % 

0.870968 

The initial quantity of defective procedures is assigned as the value of the symbol initdef: 

initdef = 40; 

The pseudorandom number generating function is: 

fun[{stage_Integer, cumdef_Integer}]  := 

{stage + 1, cumdef + Random [HypergeometricDistribution[ 
samplei[8tagetlj , initdef-cumdef, procIatagB+1J] ] } 

The function that will test the simulation against the acceptance rules is: 

testfun[{stage_Integer, cumdef_Integer}] :=accept[stage] < cumdef 

The desired quantity of simulated hypergeometric sequential tests is assigned as the value of the symbol 

simqty: 

simqty =25000; 

A simulation of 25,000 hypergeometric tests is generated as follows: 

simlist = Table[ 

Length[NestWhileList[fun, {0, 0}, testfun, 1, Length[sample]]] -1, 
{simqty}]; 

The symbol simlist contains a list of the stages that the simulations ended at. The quantity of termina- 

tions at each stage are assigned as the value of simlist40: 

simlist40 = 

Table[Length[Select[simlist, #1 = i &]], {i, 1, Length[sample]}]; 
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The filename hypersimfile3 will be assigned as the value of the symbol simfile. 

simfile= "hypersimfile3"; 

The simulation results are saved to this file so that they can be retrieved for subsequent analysis if need 

be. 

Save[simfile, simlist40] 

These simulation results may be easily retrieved thus: 

<< "hypersimfile3"; 

Stage-by-stage termination probabilities are: 

r r r r simlist40 
TableForm TransposeNRange[1, 15], N  1} , 1 L l L  simqty    J 

TableHeadings-»{None, {"Stage", "Termination Probability"}}, 

TableAlignments-♦ Center] 

Stage     Termination Probability 

1 0 05824 
2 0 00896 
3 0 00228 
4 0 .0004 
5 0 00004 
6 0 00008 
7 0. 
8 0. 
9 0. 
10 0. 
11 0. 
12 0. 
13 0. 
14 0. 
15 0.93 

The terminations at stages 1 - 14 are acceptances. The terminations at the last stage are simulations that 

went the distance. Cumulative termination probabilities are: 
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simlist40 
TableForm[Transposef{Range[0, 15], NfFoldListfPlus, 0,  11)1» L ll L        l simqty 

TableHeadings -» 

{None, {"Stage", "Cumulative Termination Probability"}}, 

TableAl: Lgnments -» Center] 

Stage Cumula it. ive Termination Probability 

0 0. 
1 0.05824 
2 0.0672 
3 0.06948 
4 0.06988 
5 0.06992 
6 0.07 
7 0.07 

8 0.07 
9 0.07 

10 0.07 
11 0.07 
12 0.07 
13 0.07 
14 0.07 
15 1. 

The stage 1 acceptance probability is: 

PDF[HypergeometricDistribution[20, 40, 310], 0] //N 

0.0573767 

The stage 1 acceptance probability obtained by simulation is consistent with the numerical result above. 

The final cumulative acceptance probability is the stage 14 termination probability, i.e., approximately 

7%. 

Simulation of Additional Defect Quantities 

Appendix E contains the bulk of the simulation results for the hypergeometric sequential test plan 

designed in this chapter and was executed in conjunction with it. Appendix E contains simulations 

assuming the number of defective procedures in the population of 310 was 4, 7, 10, 13, 16, 19, 22, 25, 

28, 31, 34 and 37. 
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Stage-by-Stage Acceptance Probabilities 

In this section, stage-by-stage acceptance probabilities will be plotted. 

First let's retrieve the simulation results: 

<< "hypersimfile3"; 

Lists of the cumulative acceptance points for each case simulated will be obtained next: 

simlist40 n n 
cumacc40 = N[DeletefFoldListIPlus, 0,  1, {{1}, {16}}II 1      L       L simqty 

{0.05824, 0.0672, 0.06948, 0.06988, 0.06992, 
0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07} 

simlist37 
cumacc37 = N [Delete [FoldListf Plus, 0,  ], {{1}, {16}}]] 1      l        L simqty 

{0.07104, 0.08424, 0.08796, 0.08892, 0.08912, 0.08916, 
0.08916, 0.0892, 0.0892, 0.0892, 0.0892, 0.0892, 0.0892, 0.0892} 

r        simlist34 .. n 
cumacc34 = N [Delete [FoldList [Plus, 0,  ], {{1}, {16}}]] 1      l        l simqty ' 

{0.09204, 0.111, 0.11652, 0.11896, 0.11964, 0.12, 0.12008, 
0.12008, 0.12008, 0.12008, 0.12008, 0.12008, 0.12008, 0.12008} 

simlist31 .. 
cumacc31 = N [Delete [FoldList [Plus, 0,  ], {{1}, {16}}]] 1      L        L simqty 

{0.115, 0.1462, 0.156, 0.16008, 0.16152, 0.16188, 0.16208, 
0.16212, 0.16212, 0.16212, 0.16212, 0.16212, 0.16212, 0.16212} 

simlist28 ., 
cumacc28=N[Delete[FoldList[Plus, 0,  ], {{1}, {16}}]] 11        L simqty 

{0.14216, 0.18124, 0.1954, 0.202, 0.20524, 0.20636, 0.20696, 
0.2074, 0.2074, 0.2074, 0.2074, 0.2074, 0.2074, 0.2074} 
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simlist25 
cumacc25 = N[Delete[FoldListfPlus, 0,  1, {{1}, {16}}11 

1      l        l simqty J J 

{0.17484, 0.2296, 0.2542, 0.26608, 0.27372, 0.27872, 0.28084, 

0.28168, 0.28228, 0.2824, 0.28244, 0.28244, 0.28244, 0.28244} 

r        r r SimllSt22 
cumacc22 = N[DeleteIFoldListfPlus, 0,  1, {{1}, {16}}11 

simqty  J J J 

{0.22056, 0.29716, 0.33464, 0.35728, 0.3714, 0.38032, 0.38584, 

0.38948, 0.3918, 0.39264, 0.39296, 0.39308, 0.39316, 0.39316} 

r r r Simlistl9 , , , 
cumaccl9 = N[Delete[FoldList[Plus, 0,  1, {{1}, {16}}11 

simqty J J 

{0.26868, 0.37168, 0.42664, 0.46164, 0.48568, 0.50348, 0.51712, 

0.5268, 0.53392, 0.53944, 0.5428, 0.54484, 0.546, 0.54632} 

r r r SimÜStl6 - 
cumacclö=N[Delete[FoldList[Plus, 0,  ], {{1}, {16}}11 

simqty J J 

{0.33352, 0.46376, 0.53612, 0.58772, 0.62432, 0.65468, 0.68032, 

0.7004, 0.71812, 0.73352, 0.74772, 0.76104, 0.77324, 0.7828} 

r        r r SimllStl3 
cumaccl3 = N[Delete[FoldList[Plus, 0,  1, {{1}, {16}}]] 

simqty  J J J 

{0.41144, 0.575, 0.66796, 0.73096, 0.77728, 0.81316, 0.84472, 

0.8718, 0.89688, 0.91956, 0.94104, 0.96092, 0.98216, 1.} 

r r r SintllStlO , . , 
cumacclO= N[Delete[FoldList[Plus, 0,  ], {{1}, {16}}11 

1 simqty  J J J 

{0.50552, 0.701, 0.8024, 0.86652, 0.90868, 

0.94004, 0.9636, 0.97984, 0.99068, 0.9974, 1., 1., 1., 1.} 

r        r r Simlist7 
cumacc7 = N[Delete[FoldList[Plus, 0,  1, {{1}, {16}}]] 

simqty 

{0.6214, 0.82416, 0.91408, 0.95992, 

0.98368, 0.9944, 0.999, 1., 1., 1., 1., 1., 1., 1.} 
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simlist4 
cumacc4 =N [Delete [FoldListfPlus, 0,   1,  {{1},  {16}}]] 1 l l simqty 

{0.7682,  0.93672,  0.9854,  0.99832,  1.,  1.,  1.,  1-,  1.,  1.,  1-,  1-,  1-,  !•) 

We'll plot just the cumulative acceptance probabilities for the cases where the true fraction of error-free 

procedures was 90% or higher. 

MultipleListPlot[Transpose[{xaxispts, cumacc4}], 

Transpose[{xaxispts, cumacc7}], Transpose[{xaxispts, cumacclO}], 

Transpose[{xaxispts, cumaccl3}], 
Transpose[{xaxispts, cumaccl6}] , Transpose[{xaxispts, cumaccl9}], 

Transpose!{xaxispts, cumacc22}], Transpose[{xaxispts, cumacc25}] , 

Transpose[{xaxispts, cumacc28}], Transpose[{xaxispts, cumacc31}], 

Axes -» False, Frame -» True, FrameLabel -* 

{"Cumulative Procedures Examined", "2 Early Accept Prob.", 

"Assuming 9_% of Procedures are Error-Free", None}, 

PlotLegend-» {"99%", "98%", "97%", "96%", "95%", "94%", 

"93%", "92%", "91%", "90%"}, SymbolShape-* 
{PlotSymbol[Diamond, Filled-♦ False], PlotSymbol[Diamond, 
Filled-»True], MakeSymbol[RegularPolygon[5, 3]] , PlotSymbol[ 

Triangle, Filled-♦ True] , PlotSymbol[Triangle, Filled-»False], 

PlotSymbol [Box, Filled -» True] , PlotSymbol [Box, Filled -» False] , 

PlotSymbol [Star, Filled-» True] , PlotSymbol [Star, Filled-* False] , 

MakeSymbol[RegularPolygon[5, 3]]}]; 
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We'll also tabulate the cumulative acceptance probabilities for all cases simulated: 
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TableForm[ 

Prepend[Transpose[{Range[l, 14], xaxispts, Round[100 cumacc40] , 

Round[100 cumacc37] , Round[100 cumacc34] , Round[100 cumacc31] , 

Round[100 cumacc28] , Round[100 cumacc25] , Round[100 cumacc22] , 

Round[100 cumaccl9] , Round [100 cumaccl6] , Round [100 cumaccl3] , 

Round[100 cumacclO] , Round[100 cumacc7] , Round[100 cumacc4] }] , 

{"Stage", "2 Proc.", "40", "37", "34", "31", "28", "25", 

"22", "19", "16", "13", "10", "7", "4"}], 

TableHeadings-»None, TableDirections-» {Column, Row}, 

TableAlignments -» Center, TableSpacing -»1.3] 

Stage L  Proc. 403734312825221916 13 10 

1 20 6   7   9  12  14  17  22  27  33 41 51 

2 40 7   8  11  15  18  23  30  37  46 57 70 

3 60 7   9  12  16  20  25  33  43  54 67 80 

4 80 7   9'  12  16  20  27  36  46  59 73 87 

5 100 7 9 12 16 21 27 37 49 62 78 91 

6 120 7 9 12 16 21 28 38 50 65 81 94 

7 140 7 9 12 16 21 28 39 52 68 84 96 

8 160 7 9 12 16 21 28 39 53 70 87 98 

9 180 7 9 12 16 21 28 39 53 72 90 99 
10 200 7 9 12 16 21 28 39 54 73 92 100 

11 220 7 9 12 16 21 28 39 54 75 94 100 

12 240 7 9 12 16 21 28 39 54 76 96 100 

13 260 7 9 12 16 21 28 39 55 77 98 100 

14 280 7 9 12 16 21 28 39 55 78 100 100 

7 4 

62 77 

82 94 

91 99 

96 100 

98 100 

99 100 
100 100 

100 100 
100 100 

100 100 

100 100 

100 100 

100 100 

100 100 

Operational-Characteristic Curve 

In this section, an approximate operational-characteristic curve will be generated. First, the points are: 
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40 
Nfocpts = {{l , Last[cumacc40]}, 

37 

310 
31 

310 
25 

310 

, Last[cumacc37] 

, Last[cumacc31] 

, Last[cumacc25] 
310 
19 

4 1 - , Last[cumaccl9] 
310 
13 

"iiö 
7 

, Last[cumaccl3] 

'{*- 

'{1- 

'{*- 

34 

310 
28 

310 
22 

310 
16 

, Last[cumacc34] 

, Last[cumacc28] 

, Last[cumacc22] 

[l f  Last[cumaccl6] 
1   310 

10 
(1 , Last[cumaccl0] 
1   310 

, Last[cumacc7]l-, {l , Last[cumacc4]}} 
310 J  l   310 JJ 

{{0.870968, 0.07}, {0.880645, 0.0892}, {0.890323, 0.12008}, 
{0.9, 0.16212}, {0.909677, 0.2074}, {0.919355, 0.28244}, 
{0.929032, 0.39316}, {0.93871, 0.54632}, {0.948387, 0.7828}, 
{0.958065, 1.}, {0.967742, 1.}, {0.977419, 1.}, {0.987097, 1.}} 

The points can be formatted in a table thus: 

TableForm[N[ocpts] , 
TableHeadings-» {None, {"True Fraction Correct Procedures", 

"Acceptance Probability' }}, TableAli gnments -♦ Center] 

True Fraction Correct Procedures     Ac cept ance Probability 

0.870968 0.07 
0.880645 0.0892 

0.890323 0.12008 

0.9 0.16212 

0.909677 0.2074 

0.919355 0.28244 

0.929032 0.39316 
0.93871 0.54632 

0.948387 0.7828 

0.958065 1. 
0.967742 1. 

0.977419 1. 
0.987097 1. 

Now an approximate operational-characteristic curve is generated: 
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MultipleListPlot[ocpts, 

Symbol Shape -» PlotSymbol [Triangle, 4] , Frame -> True, Axes -» False, 

FrameLabel -» {"True Fraction of Procedures Correct", 

"Approx. Early Accept. Prob.", 

"Operational-Characteristic Curve", None}]; 

Operational-Characteristic Curve 
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If 90% or fewer of the 310 procedures are correct, the probability of acceptance based on a sample will 

not appreciably exceed 16%. If 95% or more of the procedures are correct, the probability of acceptance 

based on a sample exceeds 75%. And if 96, 97 or 98% of the procedures are correct, its likely that 

acceptance will occur by stage 3 (60 procedures examined), stage 2 (40 procedures examined) or stage 1 

(20 procedures examined), respectively. 
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Summary 

A hypergeometric sequential test plan was proposed and examined in this notebook. Simulations were 

performed assuming the number of defective procedures in the population of 310 was 4, 7, 10, 13, 16, 

19, 22, 25, 28, 31, 34, 37 and 40. An approximate operational-characteristic curve was plotted. Approxi- 

mate stage-by-stage acceptance probabilities were obtained and plotted as well. The test plan designed in 

this chapter is very good at not accepting troubleshooting procedures (based on sampling) when the 

percentage of correct procedures is less than 90%. The plan is also very good at acceptance if the true 

percentage of correct procedures is greater than or equal to 95%. And if the true percentage of correct 

procedures is greater than or equal to 96%, acceptance should occur quickly. 

This chapter documents a new, simulation-based hypergeometric sequential test design for evaluating 

maintenance or troubleshooting procedures. The method was developed for a new Army vehicle. The 

quantity of troubleshooting procedures was large enough that evaluation of all procedures would be 

costly in terms of cost and schedule. Yet the quantity of procedures was too small to use binomial 

sequential test methods available in the literature. A statistically-sound method was developed whereby 

the procedures can be progressively evaluated and, if they are found to be highly error-free, all proce- 

dures can be accepted based on a sample. If the procedures are not sufficiently error-free, acceptance 

based on a sample will not occur. Thus the new test-design method provides for accept-continue deci- 

sion-making, not the traditional accept-continue-reject decision-making. 
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Chapter 6 
Summary 

Sequential test plans can be highly beneficial because expected test lengths and sample sizes can be 

often reduced by up to half compared with the more common fixed-length test plans. The design and 

analysis of sequential test plans is quite challenging. The purpose of this report is to document and 

disseminate recent improvements in order to help the Army take advantage of sequential test plans 

while avoiding the pitfalls. 

A key accomplishment included in this report concerns the exact-analysis method for exponential 

sequential test designs. Previously, such exact-analysis methodology was for all practical purposes 

restricted to the statistical research community. Indeed, little practical use was found for these methods 

for the past forty years. It was possible to re-formulate and implement the exact-analysis method in 

modern mathematics software in a form that can, for the first time, be readily used by test planners. It 

was deemed decisively advantageous to undertake this effort because of the resurgence of truncated 

exponential sequential test designs, the properties of which are very difficult to obtain otherwise. 

Chapter 2 contains a case study of a contractor-proposed exponential sequential test design for an 

imaging system. The test design was both analyzed exactly and simulated in order to rapidly character- 

ize it, including assessing the impact of truncation. The test planners were then able to confidently 

accept the plan. This chapter can serve as a template for the verification of such test plans. Indeed, the 

author has already had occasion to do so many times. 

Chapter 3 contains a case study that illustrates a critical but not infrequent error contained in a recent, 

contractor-proposed exponential sequential test design for another imaging system. The proposed test 

plan would have resulted in a risk to the Army of 41%, approximately twice the Army's not-to-exceed 

value of 20%. This chapter was prepared in order to clearly illustrate this mistake and thereby help test 

planners avoid it in the future. 

Chapter 4 contains the design and exact analysis of a truncated, exponential sequential test plan for a 

tactical terminal. The sequential test design would likely result in a markedly shorter test length com- 

pared with a typical fixed-length test. A test design that met the program's requirement was provided in 

a timely fashion. This chapter can serve as template for future test designs. 
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Chapter 5 documents a new, simulation-based hypergeometric sequential test design for evaluating 

maintenance or troubleshooting procedures. The method was developed for a new Army vehicle where 

the quantity of troubleshooting procedures was large enough that evaluation of all procedures would be 

costly in terms of cost and schedule. Yet the quantity of procedures was too small to use binomial 

sequential test methods available in the literature. A statistically-sound method was developed whereby 

the procedures can be progressively evaluated and, if they are found to be highly error-free, all proce- 

dures can be accepted based on a sequence of samples. If the procedures are not sufficiently error-free, 

acceptance based on sampling should not occur. Thus the new test-design method provides for accept- 

continue decision-making, not the traditional accept-continue-reject decision-making. 
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Appendix A 
Exact Analysis of Proposed Exponential Sequential 

Decision Rules from Chapter 2 

Introduction 

An exact method was developed by Epstein, Patterson and Quails [1963] for analyzing a sequence of 

decision rules such as the one simulated in chapter 2. This appendix contains an analysis of the exact 

stage-by-stage acceptance, continuation and rejection probabilities resulting from the sequence of 

decision rules. Included are the important special cases that arise at the last stage: consumer risk and 

operational-characteristic curve. Mathematica symbolics are used to obtain results with the true Mean 

Time Between Failures (MTBF) held symbolic until a numerical value is supplied. The stage-by-stage 

calculations are performed in such a way that numerical errors that would otherwise accumulate are 

entirely avoided. The results of all calculations are "exact" but include occurrences of the exponential 

function. Numerical approximations to any desired precision are provided as well. 

Setup 

Functions contained in the standard add-on package Statistics'DiscreteDistributions' 

are needed by this method which we load now: 

Needs["Statistics"DiscreteDistributionss"] 

Formulate Reliability Test Plan Decision Rules 

In order to apply the exact-analysis method, we need to construct a list of accept points from the deci- 

sion rules provided in chapter 2. Each pair will be of the form {//, /} where the first pair defines the zero- 

failure accept time, the second pair defines the one-failure accept time, etc. The accept rules are 

assigned as the value of the symbol accept: 
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N[accept= {{1395, 0}, {2092, 1}, 

{2789, 2}, {3487, 3}, {4184, 4}, {4881, 5}, {5578, 6}}] 

{{1395., 0.}, {2092., 1.}, {2789., 2.}, 
{3487., 3.}, {4184., 4.}, {4881., 5.}, {5578., 6.}} 

We need to construct a list of reject points from these decision rules. Each pair will be of the form {r„ /} 

where the first pair defines the shortest reject time and the corresponding quantity of failures, the second 

defines the second-shortest reject time and the corresponding quantity of failures, etc. The reject rules 

are assigned as the value of the symbol reject: 

N[reject= {{697, 3}, {1395, 4}, {2092, 5}, {2789, 6}, {5578, 7}}] 

{{697., 3.}, {1395., 4.}, {2092., 5.}, {2789., 6.}, {5578., 7.}} 

It would be helpful to graphically depict the decision rules for this test design. We will need functions 

contained in the standard add-on package Graphics "MultipleListPlot' which we load now: 

Needs["Graphics^MultipleListPlot*"] 

The decision rules, with the accept and reject points represented by triangles and boxes, respectively, are 

plotted as follows: 
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decisionPlot= 

MultipleListPlot[accept, Reverse[reject], PlotJoined -> False, 

PlotRange-* {{0, Automatic}, {0, Automatic}}, Frame-»True, 

FrameLabel-»{"test time, hours", "cumulative failures"}, 
GridLines -* Automatic, 

SymbolShape-»{PlotSymbol[Triangle, 5], PlotSymbol[Box, 3]}, 

SymbolStyle-»{RGBColor[0, 1,0], RGBColorfl, 0, 0]}]; 
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Identification of the reject, continue and accept regions can be overlaid thus: 

Show[%, Graphics[{Text["Reject", Scaled[{0.2, 0.8}]], Text["Continue", 

Scaled[{0.4, 0.5}]], Text["Accept", Scaled[{0.7, 0.2}]]}]]; 
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Define Function for Stage Times 

In this step, we will construct a stage-time function. First, a list is needed of the times for each stage. 

The stage times are comprised of the accept and reject times joined into a single list and sorted from 

shortest to longest. The list of stage times is constructed as follows: 

timeValues= 

Sort[Union[First[Transpose[accept]], First[Transpose[reject]]], Less] 

{697, 1395, 2092, 2789, 3487, 4184, 4881, 5578} 

It should be noted that the times are expressed as exact numbers (i.e., either as integers or rational 

numbers) in order to avoid approximations until after the stage-by-stage calculations are complete. If the 

times are expressed in decimal form, Mathematica will treat them as approximate and will use machine- 

precision (unless many zeroes are used). 

It should also be noted that the function Union was used to eliminate any repeats occurring as the two 

lists were combined. 

The quantity of stages is: 

Length[timeValues] 

8 

A function which will provide time values as a function of stage, except for the special case of stage 

zero, is: 

t[stage_Integer /; stage > 0] := timeValues[stagej 

The initial condition for time [Epstein, et al. 1963, equation 16]: 

t[i_/; i == 0]  :=0 

Construct Accept-Number Function 

In this step, we will construct an accept-number function. First, we will generate an Interpolating- 

Function object from accept: 
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fA =Interpolation[accept, InterpolationOrder -* 1] 

InterpolatingFunction[{{1395, 5578}}, <>] 

Now, we define a function which will provide an integer-valued accept number for each stage using 

Epstein, et al. 1963, equation 11: 

a[stage_Integer /; stage > 0] := -1 /; t[stage] < First[First[accept]] 

a[stage_Integer /; stage > 0] := Floor[fA[t[stage]]] 

A special case of the accept-number function is defined for the initial condition at stage zero [Epstein, et 

al. 1963, equation 16]: 

a[stage_Integer / ; stage ==0]  := -1 

Construct Reject-Number Function 

In this step, we will construct a reject-number function. First, we will generate an Interpolating- 

Function object from reject: 

fR = Interpolation[reject, InterpolationOrder -»1] 

InterpolatingFunction[{{697, 5578}}, <>] 

Now, we define an function which will provide an integer-valued  reject number for each stage using 

Epstein, et al. 1963, equation 12: 

r[stage_Integer /; stage > 0]  := Ceiling[fR[t[stage]]] 

A special case of the reject-number function is defined for the initial condition at stage zero: 

r[stage_ / ; stage == 0]  :=1 

Tabulation of Accept, Continuation and Reject Points 

In this step, we generate a table of accept, continuation and reject numbers. This is done to provide a 

convenient stage-by-stage listing of the test plan to be analyzed. The table is generated as follows: 
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TableForm[Transpose[{Range[Length[timeValues]], 

Table[N[t[stage]], {stage, 1, Length[timeValues]}], 

Table[a[stage], {stage, 1, Length[timeValues]}], 

Append[Table[a[stage] +1, {stage, 1, Length[timeValues] -1}] 

Append[Table[r[stage] -1, {stage, 1, Length[timeValues] -1}] 

Table[r[stage], {stage, 1, Length[timeValues]}]}], 

TableHeadings-> {None, {"Stage", "Time", "Accept", 

"Continue (min)", "Continue (max)", "Reject"}}, 

TableSpacing -* {1, 1.5}, TableAlignments -» Center] 

NA], 

NA], 

Staae Time Accept Continue 

1 697. -1 0 
2 1395. 0 1 
3 2092. 1 2 
4 2789. 2 3 
5 3487. 3 4 
6 4184. 4 5 
7 4881. 5 6 
8 5578. 6 NA 

(min)       Continue   (max)       Reject 
2 3 
3 4 

4 5 

5 6 
6 7 
6 7 
6 7 

NA 7 

Construct Function for Acceptance/Continuation Probability for a Quantity of 
Failures 

In this step, we construct a function for calculating acceptance/continuation probabilities for a quantity 

of failures [Epstein, et al. 1963, equation 17]: 

ACProbability[stage_, failure_, trueMTBF_] /; 
And[stage>0,   (a[stage - 1] + 1) £ failure £ r[stage] - 1]  : = 

aclist[stage, failure, trueMTBF] 

ACProbability[stage_, failure_, trueMTBF_] /; 
And[stage > 0, Not[ (a[stage - 1] + 1) £ failure £ r[stage] - 1] ]  := 0 

Two initial conditions for this function are also needed [Epstein, et al. 1963, equation 16]: 

ACProbability[0, 0, trueMTBF_]  :=1 

ACProbability[0, failure_Integer /; failure > 0, trueMTBF  ]  := 0 
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Up-front Calculation of Acceptance/Continuation Probabilities 

In order to reduce execution time, stage-by-stage calculations of acceptance and continuation probabili- 

ties are developed in this step. 

A function for building up the calculations is: 

aclistfunction[stage_Integer, failure_Integer, trueMTBF_] := 

aclist[stage, failure, trueMTBF] = 

failure 

V   ACProbability[stage- 1, j , trueMTBF] 
j=a[stage-l]+l 

t[stage] -t[stage-l] 
PDF|PoissonDistribution[    , failure - j 1 L trueMTBF J J 

An indexed variable aclist is used to build up the acceptance and continuation probabilities. 

The acceptance and continuation points for the stages are: 

Map[aclistfunction[1, #, trueMTBF] &, 

Apply[Range, {a[i-l] + 1, r[i] - 1} /. i-» 1]] 

ficn c-697/trueMTBF        corona ~-697/trueMTBF 
|e-697/trueMTBF       "^ ' e         4»3auy e -, 

i '    trueMTBF   '    2 trueMTBF2    ^ 

Map[aclistfunction[2, #, trueMTBF] &, 

Apply[Range, {a[i- 1] + 1, r[i] - 1} /. i->2]] 

innc „-1395/trueMTBF 
|    -1395/trueMTBF       1-533 e  

^ ' trueMTBF 
1946025 e-1395/trueMTBF      1188048001 e-1395/trueMTBF , 

2 trueMTBF"1 3 trueMTBFJ J 

Map[aclistfunction[3, #, trueMTBF] &, 
Apply[Range,  {a[i-l] +1, r[i] - 1} /. i-»3]] 

, i3 95e-2092/trueMTBF      38 90655 e-2092/trueMTBF 

>■ trueMTBF ' 2 trueMTBF2 ' 
4239172471 e-2092/trueMTBF        7 Q93185960133 e-2092/trueMTBF 

3 trueMTBF3 ' 12 trueMTBF4 
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Map[aclistfunction[4, #, trueMTBF] &, 

Apply [Range,  {a[i - 1] + 1, r[i] - 1} /. i-» 4] ] 

, 3890655 e-2789/trueMTBF      16613704547 e-2789/trueMTBF 

^ 2 trueMTBF2 ' 6 trueMTBF3 

12291172226983 e-2789/trueMTBF      1730036199487099 e-27S9/trueMTBF , 

6 trueMTBF4 ' 2 trueMTBF5 ' 

Map[aclistfunction[5, #, trueMTBF] &, 

Apply [Range,  {a[i - 1] + 1, r[i] - 1} / . i -» 5] ] 

, 16613704547 e-3487/trueMTBF      23887538000789 e-3487/trueMTBF 

•• 6 trueMTBF3 ' 6 trueMTBF4 

5938826155984575 e-3487/trueMTBF      11337723855460591714 e-3487/trueMTBF 

2 trueMTBF5 ' 9 trueMTBF6 

Map[aclistfunction[6, #, trueMTBF] &, 

Apply[Range,  {a[i- 1] + 1, r[i] - 1} /. i-» 6]] 

r 23887538000789 e-4184/trueMTBF 

*• 6 trueMTBF4 

1723304 622725182 9 e-4184/trueMTBF      154673751220700754709 e-4184/trueMTBF , 

3 trueMTBF5 ' 36 trueMTBF6 ' 

Map[aclistfunction[7, #, trueMTBF] &, 

Apply[Range,  {a[i- 1] + 1, r[i] - 1} /. i-4 7]] 

, 17233046227251829 e-4881/trueMTBF      298810949865435052465 e-4881/trueMTBF -, 

* 3 trueMTBF5 ' 36 trueMTBF6 ' 

Map[aclistfunction[8, #, trueMTBF] &, 

Apply[Range,  {a[i - 1] + 1, r[i] - 1} /. i-» 8]] 

r 298810949865435052465 e-5578/trueMTBF -, 

* 36 trueMTBF6 ' 

Construct Function for Acceptance Probability for a Quantity of Failures 

In this step, we construct a function for calculating acceptance probabilities for a quantity of failures 

[Epstein, et al. 1963, equation 18]: 

AcceptanceProbability[stage_Integer, failure_Integer, trueMTBF_] := 

ACProbability[stage, failure, trueMTBF] 
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Construct and Use Function for Acceptance Probability for Each Stage 

In this step, we construct and use a function for calculating stage-by-stage acceptance probabilities 

[Epstein, et al. 1963, equation 20]: 

AcceptanceProbability[stage_Integer, trueMTBF_]  := 

a[stage] 
V     AcceptanceProbability[stage, failure, trueMTBF] /; 

failure=a[stage-1]+1 

a [stage-1] < a [stage] 

AcceptanceProbability[stage_Integer, trueMTBF_] := 

0 / ; Not[a[stage - 1] < a[stage] ] 

The acceptance probability as a function of true MTBF is the sum of the probabilities of acceptance at 

each stage. This is given by Epstein, et al. 1963, equation 14: 

AcceptanceProbabilityttrueMTBF_] := 
n 
V AcceptanceProbability[trueMTBF_, i_] 

Cumulative Acceptance Probabilities for Each Stage When trueMTBF is Symbolic 

The cumulative acceptance probability for stage one when trueMTBF is left symbolic is: 

l 

Y1 AcceptanceProbability[stage, trueMTBF] 
stage=l 

0 

This result is obviously correct since the first opportunity for acceptance to occur is at stage two. The 

cumulative acceptance probability for stage two when trueMTBF is left symbolic is: 

2 

y AcceptanceProbability[stage, trueMTBF] 
stage-l 

e-1395/trueMTBF 

The result above is exact but partially symbolic. An exact result can be obtained for a specific value of 

trueMTBF such as the lower-test MTBF as follows: 
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% / . trueMTBF -> 503 

=,1395/503 

This is an exact result. A numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

0.062 45182365757103602325 

An answer accurate to 22 decimal places was elicited not because an answer this precise was needed, but 

in order to trigger Mathematica to use arbitrary-precision arithmetic. Otherwise, machine-precision 

arithmetic will be performed in hardware in which case Mathematica doesn't guarantee accuracy. 

The cumulative acceptance probability for stage eight, the final stage, when trueMTBF is left symbolic 

will be generated. This is also known as the operational-characteristic function. 

e 
OCfunction=  V AcceptanceProbability[stage, trueMTBF] 

Btage=l 

-1395/trueMTBF     298810949865435052465 e-5578/trueMTBF 

36 trueMTBF6 

17233046227251829 e-"881/trueMTBF       23887538000789 e-4184/trueMTBF 
 . _ + .—.— + 

3 trueMTBF" 6 trueMTBF4 

16613704547 e-3487/trueMTBF       3890655 e-2789/trueMTBF       1395 e-2092/trueMTBF 

+    ; —   + 
6 trueMTBFJ 2 trueMTBF/ trueMTBF 

OCfunction provides the exact acceptance probability as a function of trueMTBF. The exact operational- 

characteristic curve can now be plotted: 
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ocPlot = Plot [OCfunction, {trueMTBF, 1, 3000}, GridLines -» Automatic, 

Frame-»True, FrameLabel -* {"True MTBF, hours", "Accept Prob.", 

"Exact Operational-Characteristic Curve" , None}]; 

Exact Operational-Characteristic Curve 
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It should be noted that the operational-characteristic plot is a key test-design graphic thus the plot above 

was assigned as the value of the symbol ocPlot so it could be readily inserted in Chapter 2. 

Cumulative Acceptance Probabilities for Each Stage When trueMTBF Equals the Upper-Test 
MTBF 

It would be useful to generate a list of cumulative acceptance probabilities for all eight stages when the 

true MTBF equals the upper-test MTBF. The parameter trueMTBF will be left symbolic in order to be 

consistent with up-front calculations. The desired list is generated but display of the output is tempo- 

rarily suppressed. 

mycumacc = Table[ 

atagelini 

V  AcceptanceProbability[stage, trueMTBF], {stagelim, 1, 8}] ; 
stages1 

Now a table is generated which displays our calculations. A rule is used to replace trueMTBF with the 

upper-test MTBF in the cumulative acceptance probabilities stored in the list mycumacc: 

A-13 



NumberForm[ 

TableForm[{N[timeValues, 4], N[mycumacc / . trueMTBF-» 2 * 503, 4]}, 

TableDirections-> {Row, Column}, 

TableHeadings -> {{"Time", "2 Accept Pr."}, Automatic}, 

TableAlignments-> Center] , {6, 5}] 

Time  2 Accept Pr . 

1. 697. 0. 

2. 1395. 0.2499 

3. 2092. 0.42322 

4. 2789. 0.54339 

5. 3487. 0.62834 

6. 4184. 0.68907 

7. 4881. 0.73263 

8. 5578. 0.76392 

In order to calculate just the final cumulative acceptance probability, we can use OCfunction from the 

previous section and employ a rule to replace trueMTBF with the upper-test MTBF. 

OCfunction / . trueMTBF -» 2 * 503 

298 81094 98654 35052 4 65 17233046227251829 
37315596221521295616 e2789'503  +  3091086499463328 e^si/iooe  4 

23887538000789 16613704547 
6145301191776 e2092/503   +   6108649296 e3487'1006   4 

3890655 1395 1 
2024072 e2789/100e  +  1006 e1046/503  +  e

1395/1006 

This is an exact result. A numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

0.7 639210932754 9991802 96 

The producer risk equals one minus the acceptance probability when the true MTBF equals the upper- 

test MTBF. The producer risk is then one minus the answer above: 

1 -% 

0.23607 890672 4 5000819704 
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Cumulative Acceptance Probabilities for Each Stage When trueMTBF Equals the Lower-Test 
MTBF 

It would be useful to generate a table of cumulative acceptance probabilities for all eight stages when the 

true MTBF equals the lower-test MTBF. The list mycumacc, which was generated in the previous 

subsection, can be used for this purpose. A rule is used to replace trueMTBF with the lower-test MTBF 

in the cumulative acceptance probability expressions stored in the list mycumacc: 

NumberForm[ 

TableForm[{N[timeValues, 4], N[mycumacc / . trueMTBF-»503, 4]}, 

TableDirections -> {Row, Column}, 

TableHeadings-> {{"Time", "Z Accept Pr."} , Automatic}, 

TableAlignments-> Center] , {6, 5}] 

Time  2 Accept Pr. 

1. 697. 0. 

2. 1395. 0 06245 

3. 2092. 0 10578 

4. 2789. 0 13583 

5. 3487. 0 15705 

6. 4184. 0 17223 

7. 4881. 0 18313 

8. 5578. 0 19095 

In order to calculate just the final cumulative acceptance probability, we could use the OCfunction from 

the previous section and use a rule to replace trueMTBF with the lower-test MTBF. 

OCfunction / . trueMTBF -» 503 

29881094 9865435052465 
583056190961270244 e5578/503 

17233046227251829       23887538000789 
96596453108229 e4881/503  384081324486 e4184''503 

16613704547        3890655 1395 
763581162 e3487'503       506018 e278^503       503 e2°92/503       e

1395/503 

This is an exact result. A numerical approximation accurate to 22 decimal places is: 
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N[%, 22] 

0.1909520124005275184 4 68 

This is the consumer risk since the consumer risk is defined as the acceptance probability when the true 

MTBF equals the lower-test MTBF. 

Construct Function for Continuation Probability for a Quantity of Failures 

In this step, we construct a function for calculating continuation probabilities for a quantity of failures 

[Epstein, et al. 1963, equation 19]: 

ContinuationProbability[stage_Integer, failure_Integer, trueMTBF_] := 

ACProbability[stage, failure, trueMTBF] 

Construct and Use Function for Continuation Probability for Each Stage 

In this step, we construct and use a function for calculating stage-by-stage continuation probabilities 

[Epstein, et al. 1963, equation 21]: 

ContinuationProbability[stage_Integer, trueMTBF_]  := 
r[stage]-1 
V     ContinuationProbability[stage, failure, trueMTBF] /; 

failure=a[stage]+1 

a[stage] +1< r[stage] 

ContinuationProbability[stage_Integer, trueMTBF_] := 

0 /; Not [a [stage] + 1 < r [stage] ] 

The continuation probability for stage zero with zero failures is, by definition, one: 

ContinuationProbability[0, trueMTBF] 

1 

Cumulative Continuation Probabilities for Each Stage When trueMTBF is Symbolic 

The cumulative continuation probability for stage one when trueMTBF is left symbolic is: 
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ContinuationProbability[1, trueMTBF] 

.pcono „-697/trueMTBF         fiq7     -697/trueMTBF 
e_697/trueMTBF +   4»5BUb> e   +   6a< e  

2 trueMTBF2 trueMTBF 

This is an exact symbolic result. An exact result for the case where trueMTBF is the lower-test MTBF is: 

% / . trueMTBF -* 503 

1693009 
506018 e697/503 

This is an exact result. An numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

0.83694624 97111678019507 

The cumulative continuation probability for stage eight when trueMTBF is symbolic is: 

ContinuationProbability[8, trueMTBF] 

0 

This is obviously correct since the continuation probability at the last stage must be zero. 

i Cumulative Continuation Probabilities for Each Stage When trueMTBF Equals the Upper-Test 
MTBF 

The cumulative continuation probability for stage one when trueMTBF equals the upper-test MTBF is: 

ContinuationProbability[l,  trueMTBF] /. trueMTBF-»2 * 503 

3912245 
2024072 e697'1006 

This is an exact result. An numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

0.96672337 6320214 0309518 

It would be useful to generate a list of cumulative continuation probabilities for all eight stages when the 

true MTBF equals the upper-test MTBF. The parameter trueMTBF will be left symbolic in order to be 
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consistent with up-front calculations. The desired list is generated but display of the output is tempo- 

rarily suppressed. 

mycumcon = 

Table[ContinuationProbability[stage, trueMTBF], {stage, 1, 8}]; 

Now a table is generated which displays our calculations. A rule is used to replace trueMTBF with the 

upper-test MTBF in the cumulative continuation probabilities stored in the list mycumcon. The cumula- 

tive acceptance probabilities for this case are also provided for reference. 

NumberForm[ 

TableForm[{N[timeValues, 4], N[mycumacc / . trueMTBF -» 2 * 503, 4], 
N [mycumcon / . trueMTBF -» 2 * 503, 4] } , 

TableDirections-» {Row, Column}, TableHeadings-> 
{{"Time",  "Z Accept Pr.",  "2 Continue Pr."}, Automatic}, 

TableAlignments-> Center],  {6, 5}] 

Time      2 Accept   Pr.     Z  Continue   Pr. 

1. 697. 0. 0.96672 

2. 1395. 0.2499 0.68401 

3. 2092. 0.42322 0.48587 

4. 2789. 0.54339 0.34754 

5. 3487. 0.62834 0.2494 

6. 4184. 0.68907 0.15185 

7. 4881. 0.73263 0.06257 

8. 5578. 0.76392 0. 

■ Cumulative Continuation Probabilities for Each Stage When trueMTBF Equals the Lower-Test 
MTBF 

The cumulative continuation probability for stage one when trueMTBF equals the lower-test MTBF is: 

ContinuationProbabilityfl, trueMTBF] /. trueMTBF -> 503 

1693009 
506018 e697/503 

This is an exact result. An numerical approximation accurate to 22 decimal places is: 
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N[%, 22] 

0.83694 624 9711167 8019507 

It would be useful to generate a table of cumulative continuation probabilities for all eight stages when 

the true MTBF equals the lower-test MTBF. The list mycumcon, which was generated above, can be 

used for this purpose. A rule is used to replace trueMTBF with the lower-test MTBF in the cumulative 

continuation probability expressions stored in the list mycumcon. The cumulative acceptance probabili- 

ties for this case are also provided for reference. 

NumberFormfTableForm[{N[timeValues, 4] , 

N[mycumacc / . trueMTBF -* 503, 4] , N[mycumcon / . trueMTBF -* 503, 4] } , 

TableDirections-» {Row, Column}, TableHeadings-> 

{{"Time", "S Accept Pr.", "2 Continue Pr."}, Automatic}, 

TableAlignments -> Center], {6, 5}] 

Time  Z Accept Pr.  S Continue Pr. 

1. 697. 0. 0.83695 

2. 1395. 0.06245 0.60771 

3. 2092. 0.10578 0.43784 

4. 2789. 0.13583 0.31508 

5. 3487. 0.15705 0.22654 

6. 4184. 0.17223 0.10829 

7. 4881. 0.18313 0.03129 

8. 5578. 0.19095 0. 

Calculate Rejection Probability for Each Stage 

In this step, we calculate stage-by-stage rejection probabilities using Epstein, et al. 1963, equation 22: 

n 

V  (ContinuationProbability[stage - 1, trueMTBF] - 
stage=l 

ContinuationProbability[stage, trueMTBF] - 

AcceptanceProbability[stage, trueMTBF]) 

Cumulative Rejection Probabilities for Each Stage When trueMTBF is Symbolic 

The cumulative rejection probability for stage one when trueMTBF is left symbolic is: 
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V  (ContinuationProbability[stage - 1, trueMTBF] - 
stage=l 

ContinuationProbability[stage, trueMTBF] - 

AcceptanceProbability[stage, trueMTBF]) 

/pconn „-697/trueMTBF         cnn „-697/trueMTBF 
,   _     -697/trueMTBF _   ^o JOU^ C   ^   by I e  

2 trueMTBF' trueMTBF 

This is an exact, but partially symbolic result. An exact result can be obtained for a specific value of 

trueMTBF such as the lower-test MTBF as follows: 

% / . trueMTBF -» 503 

_ 1693009 
506018 e697/503 

This is an exact result. A numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

0.1630537502 8 8 83219804 93 

Next, the cumulative rejection probability for stage eight when trueMTBF is symbolic will be generated. 

This is one minus the operational-characteristic function. 

8 

rejfunction= ^  (ContinuationProbability[stage - 1, trueMTBF] - 
8tage=l 

ContinuationProbability[stage, trueMTBF] - 

AcceptanceProbability[stage, trueMTBF]) 

1 _ e-i395/trUeMTBF _  298810949865435052465 e-5578/trueMTBF _ 

36 trueMTBF6 

17233046227251829 e-4881/trueMTBF       23887538000789 e-4184/trueMTBF 

3 trueMTBF5 6 trueMTBF4 

16613704547 e-3487/trueMTBF       3890655 e-2789/trueMTBF       1395 e-2092/trueMTBF 

6 trueMTBF3 2 trueMTBF2 trueMTBF 

rejfunction provides the exact rejection probability as a function of trueMTBF. This function can now be 

plotted: 
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Plot[rejfunction, {trueMTBF, 1, 3000}, GridLines-» Automatic, 

Frame-»True, FrameLabel-» {"True MTBF, hours", 

"Reject Prob.", "Exact-Analysis Curve" , None}]; 

Exact-Analysis Curve 
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Cumulative Rejection Probabilities for Each Stage When trueMTBF Equals the Upper-Test MTBF 

It would be useful to generate a list of cumulative rejection probabilities for all eight stages when the 

true MTBF equals the upper-test MTBF. The parameter trueMTBF will be left symbolic in order to be 

consistent with up-front calculations. The desired list is generated but display of the output is tempo- 

rarily suppressed. 

stagelim 

mycumrej =Table[ V  (ContinuationProbability[stage - 1, trueMTBF] - 
stages1 

ContinuationProbability[stage, trueMTBF] - 

AcceptanceProbability[stage, trueMTBF]), {stagelim, 1, 8}] ; 

Now a table is generated which displays our calculations. A rule is used to replace trueMTBF with the 

upper-test MTBF in the cumulative rejection probabilities stored in the list mycumrej. The cumulative 

acceptance and continuation probabilities for this case are also provided for reference. 
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utMTBFtable = NumberForm[ 

TableForm[{N[timeValues, 4], N[mycumacc/. trueMTBF -» 2 * 503, 4], 

N [mycumcon / . trueMTBF -» 2 * 503, 4 ] , 

N[mycumrej /. trueMTBF -* 2 * 503, 4]}, 

TableDirections -> {Row, Column}, TableHeadings -> 

{{"Time", "2 Accept Pr.", "2 Continue Pr.", "2 Reject Pr."}, 

Automatic}, TableAlignments-> Center], {6, 5}] 

Time  2 Accept Pr.  Z Continue Pr.  £ Reject Pr. 

1. 697. 0. 0.96672 0.03328 

2. 1395. 0.2499 0.68401 0.06609 

3. 2092. 0.42322 0.48587 0.09091 

4. 2789. 0.54339 0.34754 0.10908 

5. 3487. 0.62834 0.2494 0.12227 

6. 4184. 0.68907 0.15185 0.15908 

7. 4881. 0.73263 0.06257 0.2048 

8. 5578. 0.76392 0. 0.23608 

Inspection of the table above reveals that each row sums to one as it must. The table of stage-by-stage 

accept, continue and reject probabilities is a key test-design graphic, thus it was assigned as the value of 

the symbol utMTBFtable so it could be readily inserted in Chapter 2. 

In order to calculate just the final cumulative rejection probability, we can use rejfunction from the 

previous section and employ a rule to replace trueMTBF with the upper-test MTBF. 

rejfunction / . trueMTBF -» 2 * 503 

2 9881094 98654 350524 65 
1 - 

37315596221521295616 e2789/503 

17233046227251829        23887538000789 
3091086499463328 e4981/1006  6145301191776 e2092/503 

16613704547 3890655 1395 
6108649296 e3487/1006       2024072 e2789'1006       1006 e1046/503       e

1395/1006 

This is an exact result. A numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

0.23607 8906724 50008197 04 
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This is the producer risk. 

■ Cumulative Rejection Probabilities for Each Stage When trueMTBF Equals the Lower-Test MTBF 

It would be useful to generate a table of rejection acceptance probabilities for all eight stages when the 

true MTBF equals the lower-test MTBF. The list mycumrej, which was generated in the previous 

subsection, can be used for this purpose. A rule is used to replace trueMTBF with the lower-test MTBF 

in the cumulative rejection probability expressions stored in the list mycumrej. The cumulative accep- 

tance and continuation probabilities for this case are also provided for reference. 

ltMTBFtable = NumberForm[ 

TableForm[{N[timeValues, 4], N[mycumacc / . trueMTBF ->503, 4], 

N[mycumcon/. trueMTBF-» 503, 4], N[mycumrej /. trueMTBF-» 503, 4]}, 

TableDirections -> {Row, Column}, TableHeadings -> 

{{"Time", "2 Accept Pr.", "2 Continue Pr.", "S Reject Pr."}, 

Automatic}, TableAlignments-> Center] , {6, 5}] 

Time  2 Accept Pr.  2 Continue Pr.  2 Reject Pr. 

1. 697. 0. 0.83695 0.16305 

2. 1395. 0.06245 0.60771 0.32984 

3. 2092. 0.10578 0.43784 0.45638 

4. 2789. 0.13583 0.31508 0.5491 

5. 3487. 0.15705 0.22654 0.6164 

6. 4184. 0.17223 0.10829 0.71948 

7. 4881. 0.18313 0.03129 0.78559 

8. 5578. 0.19095 0. 0.80905 

Each row sums to one as it should. The table is assigned as the value of the symbol ltMTBFtable so that 

it can be easily inserted in Chapter 2. 

In order to calculate just the final cumulative rejection probability, we could use the rej function 

from the previous section and use a rule to replace trueMTBF with the lower-test MTBF. 
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rejfunction / . trueMTBF -» 503 

29881094 98654 350524 65 
1 - 583056190961270244 e"78/503 

17233046227251829 23887538000789 
96596453108229 e^ei/sos       384081324486 e4184/50? 

16613704547 3890655 1395 1 
763581162 e3487''503       506018 e2789/503       503 e2^2'^'-       ei395/503 

This is an exact result. A numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

0.8090479875994724815532 

The consumer risk equals one minus the rejection probability when the true MTBF equals the lower-test 

MTBF. This is one minus the answer above: 

1 - % 

0.190952 012 4 005275184 4 68 

Calculate Expected Quantity of Failures and Test Time 

We need to define a function for the probability that the test will terminate with an accept decision at a 

specified number of failures [Epstein, et al. 1963, equation 33]. First the general case and then the 

special case: 

AccProbabilityF[failure_Integer, trueMTBF_] := 

Module[{stage = 1}, While[failure > a[stage], stage + + ] ; Which[ 

failure > Last [Last [accept] ] , 0, 0 <, failure i Last [Last [accept] ] , 

AcceptanceProbability[stage, failure, trueMTBF]]] / ; 

failure £ a[Length[timeValues]] 

AccProbabilityF[failure_Integer, trueMTBF_] := 

0 /; failure > a [Length [timeValues] ] 

Now, we will define a function for the probability that the test will terminate with a reject decision at a 

specified number of failures [Epstein, et al. 1963 equation 34]: 
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RejProbabilityF[failure_Integer, trueMTBFJ := 

Module[{rejectlist}, rejectlist= 

Select[Table[{stage, r[stage]}, {stage, 1, Length[timeValues]}], 

#12]] == failure &] /. {st_Integer, rej_Integer} -> st; 

Which[Length[rejectlist] ==0, 0, Length[rejectlist] >0, 

Sum[(ContinuationProbability[stage - 1, trueMTBF] - 

ContinuationProbability[stage, trueMTBF] - 

AcceptanceProbability[stage, trueMTBF]), 

{stage, First[rejectlist], Last[rejectlist]}]]] 

The probability that the test will terminate with zero failures and a reject decision is: 

RejProbabilityF[0, trueMTBF] 

0 

This is obviously correct since the first path to rejection is if three failures occur quickly. The probability 

that the test will terminate with one or two failures and a reject decision must also be zero: 

RejProbabilityF[l, trueMTBF] 

0 

Rej ProbabilityF[2, trueMTBF] 

0 

The probability that the test will terminate with three failures and a reject decision is: 

Rej ProbabilityF[3, trueMTBF] 

anhand p-697/trueMTBF         rnn ,,-697/trueMTBF 
,   _ e-697/trueMTBF _   4oooU^ e blj I e  

2 trueMTBF2 trueMTBF 

If trueMTBF is equal to the lower-test MTBF, we have: 

% / . trueMTBF -» 503 

_ 1693009 
506018 e697'503 

This is an exact result. A numerical approximation accurate to 22 decimal places is: 
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N[%, 22] 

0.1630537502 8883219804 93 

Now, we will define a function for the probability that the test will terminate with a specified number of 

failures [Epstein, et al. 1963 equation 35]: 

TerminateProbability[failure_Integer, trueMTBF_] := 

AccProbabilityF[failure, trueMTBF] +RejProbabilityF[failure, trueMTBF] 

The probability that the test will terminate with zero failures in either acceptance or rejection is: 

TerminateProbability[0, trueMTBF] 

-1395/trueMTBF 

The probability that the test will terminate with between zero and seven failures is: 

7 

V      TenninateProbability[failure, trueMTBF] 
failure=0 

This result is obviously correct since it's not possible for the test to continue beyond the seventh failure. 

Next, we will define a function for the expected termination failure quantity [Epstein, et al. 1963 

equation 36]: 

ExpectedTerminationFailure[trueMTBF_]  : = 
r[Length[timeValues] ] 

V      failure TerminateProbability[failure, trueMTBF] 
failuresO 

A function for the expected termination failure quantity with trueMTBF left symbolic is: 
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expectedfailurefunction = ExpectedTerminationFailure[trueMTBF] 

2 9881094 98654350524 65 e-5578/trueM,rBF _ 

36 trueMTBF6 

17233046227251829 e-4881/trueMTBF       1730036199487099 e-2789/trueMTBF 

3 trueMTBF5 2 trueMTBF" 

23887538000789 e-4184/t"eMTBF  +   12291172226983 e-2789/trueMTBF 

6 trueMTBF4 6 trueMTBF4 

16613704547 e"3487/trueMTBF       16613704547 e-2789/trueMTBF 

  +  -  | + 
6 trueMTBF' 6 trueMTBF 

298810949865435052465 e-5578/trueMTBF      1730036199487099 e-2789/trueMTBF 

36 trueMTBF6 2 trueMTBF5 

12291172226983 e-2789/trueMTBF      7093185960133 e-2092/trueMTBF _ 

6 trueMTBF4 12 trueMTBF4 

16613704547 e-2789/trueMTBF       4239172471 e-2092/trueMTBF 

 _  +  
6 trueMTBF 3 trueMTBF 

3890655 e"2789/trueMTBF       3890655 e-2092/trueMTBF 

 .  +  | + 
2 trueMTBF 2 trueMTBF 

17233046227251829 e-4881/trueMTBF _  7093185960133 e-2Q92/trueMTBF 

3 trueMTBF5 12 trueMTBF4 

4239172471 e-2092/trueMTBF       1188048001 e-1395/trueMTBF 

 ,  +  _ _  
3 trueMTBF 3 trueMTBF 

3890655 e-2092/trueMTBF 1946025 e-1395/trueMTBF 
 + _  

2 trueMTBF 2 trueMTBF 
1395 e-2092/trueMTBF 1395 e-1395/trueMTBF 

+  : TT^rr:  I + 
trueMTBF trueMTBF 

,   _ e-697/trueMTBF + 
16613704547 e-3487/trueMTBF 

6 trueMTBF3 

485809 e"697/trueMTBF       697 e"697/trueMTBF 

' + 
2 trueMTBF2 trueMTBF 

„-1395/trueMTBF ,   „-697/trueMTBF ,    23887538000789 e  

6 trueMTBF 

1188048001 e-1395/trueMTBF      1946025 e-i395/trueMTBF 
- + 

3 trueMTBF3 2 trueMTBF2 

485809 e-697/trueMTBF 1395 e-1395/trueMTBF gg7 e-697/trueMTBF 
+ 

2 trueMTBF2 trueMTBF trueMTBF 
38 90655 e-2789/trueMTBF 1395 e-2092/trueMTBF 

trueMTBF2 trueMTBF 

Now we can plot this junction: 
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expectedfailuresPlot = Plot[expectedfailurefunction, 

{trueMTBF, 1, 3000}, GridLines -* Automatic, 
Frame-»True, FrameLabel -» {"True MTBF, hours", 

"Exp. Failure Quantity", "Exact-Analysis Curve", None}]; 

Exact-Analysis Curve 
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The plot above, since it is a key test-design graphic, is assigned as the value of the symbol expectedfail- 

uresPlot so that it can be easily inserted in Chapter 2. 

In order to calculate the expected failure quantity for a true MTBF equal to the lower-test MTBF, we 

could use expectedfailurefunction and a rule to replace trueMTBFwith this value: 
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expectedfailurefunction / . trueMTBF -♦503 

29881094 98654350524 65   _ 
583056190961270244 e5578/503 

17233046227251829       23887538000789 

96596453108229 e4881'503  384081324486 e4184''503 

16613704547       15575985002365669 

763581162 e3487'503  193192906216458 e2789/503 

298810949865435052465       8530700217643112 
583056190961270244 «5578/503  96596453108229 e2789/503 

7176208452385 
256054216324 e2092/503 
17233046227251829       7886338933045        7430333057 

3    1 + 

96596453108229 e4881/503       256054216324 e2092/503       763581162 e1395'503 

16613704547 1693009 
763581162 e3487/503       506018 e897'503 

23887538000789 8193914219 1693009 
384081324486 e4184'503       763581162 e^'503       506018 c897''503 

3890655 1395 
253009 e2789'503       503 e2092/503 

This is an exact result. A numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

4.4 9420957 6902 633303992 

In order to calculate the expected failure quantity for a true MTBF equal to the upper-test MTBF, we 

could use expectedfailurefunction and a rule to replace trueMTBF with this value. 

expectedf ailuref unction / . trueMTBF -» 2 * 503 

29881094 98654350524 65   _ 
37315596221521295616 e2789/503 

17233046227251829        23887538000789 
3091086499463328 e4881'1006   6145301191776 e2092'503 

16613704547 11456231651244629 

6108649296 e3487'1006  2060724332975552 e2789/1006 

29881094 98654350524 65        15417339472366109 
37315596221521295616 e2789'503  2060724332975552 e2789/1006 

47776513524917    \  _ /    17233046227251829 

■)"(■ 

3   1 + 

12290602383552 ei°48/503 / \ 3091086499463328 e4881'1006 

64819645060757 4179985193 
12290602383552 e1046/503  +  1527162324 e1395/1006 

16613704547 3912245 \ 
6108649296 e3487'1006       2024072 e«97'1006 / 
23887538000789 5707147517 3912245 

6145301191776 e2092/503       1527162324 e1395/1006       2024072 e697'1006 

3890655 1395 
1012036 «2789/1006 1006 e1046/503 
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This is an exact result. A numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

2.67 018004 9154 00107 0836 

Next, we will define a function for the expected test time [Epstein, et al. 1963 equation 41] 

ExpectedTestTime[trueMTBF_] := 

trueMTBF ExpectedTenninationFailure [trueMTBF] 

A function for the expected test time with trueMTBF left symbolic is: 
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expectedtesttimefunction = ExpectedTestTime[trueMTBF] 

2 9881094 98654 350524 65 e-5578/trueMTBF _ 

36 trueMTBF6 

17233046227251829 e-4 88i/trUeMTBF      1730036199487099 e'2789/trueMTBF 

3 trueMTBF5 2 trueMTBF5 

23887538000789 e-4184/trueMTBF      12291172226983 e-2789/trueMrBF 

6 trueMTBF4 6 trueMTBF4 

16613704547 e-3487/trueMTBF       16613704547 e-2™9/trueMTBF 
+ 

6 trueMTBFJ 6 trueMTBFJ 

29881094 98654350524 65 e-5578/trueMTBF _  1730036199487099 e-2789/trueMTBF 

36 trueMTBF6 2 trueMTBF5 

12291172226983 e-2789/trueMTBF      7093185960133 e-2092/trueMTBF _ 

6 trueMTBF4 12 trueMTBF4 

16613704547 e~2789/trueMTBF       4239172471 e-2092/trueMTBF 

  +  .  
6 trueMTBF" 3 trueMTBFJ 

3890655 e"2789/trueMTBF       3890655 e-2092/trueMTBF 

+ 
2 trueMTBF2 2 trueMTBF^ 

17233046227251829 e-4881/trueMTBF _  7093185960133 e-2092/trueMTBF 

3 trueMTBF5 12 trueMTBF4 

4239172471 e-2092/trueMTBF       1188048001 e-1395/trueMTBF 

  +  =  
3 trueMTBF3 3 trueMTBF" 

3890655 e-2092/trUeMTBF       i946025 e-1395/trueMTBF 

  +  
2 trueMTBF 2 trueMTBF 

1395 e-2092/trueMTBF 1395 e-1395/trueMTBF 
+ 

trueMTBF trueMTBF 

16613704547 e-3487/trueMTBF 
,   11       --697/trueMTBF 

6 trueMTBF3 

485809 e-697/trueMTBF       697 e""697/trueMTBF 

2 trueMTBF2 trueMTBF 

23887538000789 e-4184/trueMTBF 
_e-1395/trueMTBF  „-697/trueMTBF + 

6 trueMTBF4 

1188048001 e-1395/trueMTBF       1946025 e-1395/trueMTBF 

- + 
3 trueMTBF3 2 trueMTBF2 

485809 e"697/trueMTBF       1395 e"1395/trueMTBF       697 e"697/trueMTBF 

+     I + 
2 trueMTBF2 trueMTBF trueMTBF 

3890655 e"2789/trueMTBF 1395 e-2092/trueMTBF 
+      trueMTBF 

trueMTBFz trueMTBF 

Now we can plot this function: 
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expectedtesttimePlot = Plot[expectedtesttimefunction, 

{trueMTBF, 1, 3000}, GridLines-» Automatic, 

Frame-»True, FrameLabel-» {"True MTBF, hours", 

"Exp. Test Time, hours", "Exact-Analysis Curve", None}]; 

Exact-Analysis Curve 
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The plot above, also a key test-design graphic, is assigned as the value of the symbol expectedtesttime- 

Plot so that it can be easily inserted in Chapter 2. 

In order to calculate the expected test time for a true MTBF equal to the lower-test MTBF, we could use 

expectedtesttimefunction and a rule to replace trueMTBF with this value. 

expectedtesttimefunction / . trueMTBF -»503 

503 7 - 
2 9881094 98 654 350524 65 

583056190961270244 e5578/503 

17233046227251829 23887538000789 
96596453108229 e4881'503       384081324486 e"ie<s/S03 

16613704547 15575985002365669 
763581162 e3487'503       193192906216458 e2789'503 

2 9881094 98654 350524 65 85307 00217 64 3112 
583056190961270244 e5578/503 

7176208452385 
256054216324 e2092'503 

7886338933045 

+ 5 

96596453108229 e2789/503 

17233046227251829   _ 
96596453108229 e488i/503 

7430333057   \ 

3    1 + 

256054216324 e2°92'503 
16613704547 

763581162 e3487'503 

23887538000789        _ 
384081324486 e4184'503 

3890655 1395 

763581162 e1395/503 

1693009 
506018 e697/503 

8193914219 1693009 
763581162 ei

395/503       506018 e"7'^ 

253009 e2789^03 503 e2092/503 
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This is an exact result. A numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

2260.587417182024551908 

In order to calculate the expected test time for a true MTBF equal to the upper-test MTBF, we could use 

expectedtesttimefunction and a rule to replace trueMTBF with this value. 

expectedtesttimef unction / . trueMTBF -» 2 * 503 

29881094 98654350524 65 
1006 7 

37315596221521295616 a2789'503 

17233046227251829        23887538000789 
3091086499463328 e4881'1006  6145301191776 e2092'503 

16613704547 11456231651244629 
6108649296 e3487'1^   2060724332975552 e2789'1006 

29881094 98 654350524 65 15417339472366109 
37315596221521295616 e2789/503  2060724332975552 e2789/1006 

47776513524917    \    /    17233046227251829 
+ 5 

12290602383552 e1046/503 /   I 3091086499463328 e4881/1006 

64819645060757 4179985193 

3    1 + 

12290602383552 e1046'503       1527162324 ©1395/1006 
16613704547 3912245 

6108649296 e3487-'1006       2024072 e697/1006 

23887538000789 5707147517 3912245 
6145301191776 e2092/503       1527162324 e1395/1006       2024072 e697/1006 

3890655 1395 
1012036 e2789/1°o«       1006 ei°46/503 

This is an exact result. A numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

2686.20112 94 4 8 9250772 61 
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Summary & Conclusions 

An analysis of the exact stage-by-stage acceptance, continuation and rejection probabilities (including 

the impact of truncation) resulting from a sequence of reliability test plan decision rules was performed. 

An exact operational-characteristic function was obtained and plotted. Exact functions for expected 

failure quantity and test time were obtained and plotted as well. 

The risks calculated in this appendix are consistent with the 20% consumer- and producer-risk goals 

stated by the test planners. The actual consumer and producer risks, respectively, are 19.1 and 23.6%. 

The exact-analysis results are consistent with the simulation documented in chapter 2. 
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Appendix B 
Simulation Supplement to Chapter 3 

Introduction 

This notebook is a simulation supplement to the exact analysis contained in Chapter 3. In this notebook, 

the following sequence of decision rules will be simulated in order to determine their properties when 6 

is assumed to be equal to the lower-test value of 1,480 hours. Of particular interest is to determine 

whether the acceptance probability exceeds the 20% consumer-risk requirement. 

The sequence of decision rules to be simulated is: 

■ accept at 2,382 hours if 0 failures have occurred, 

■ accept at 4,432 hours if 1 failure has occurred, 

■ accept at 6,333 hours if 2 failures have occurred. 

■ accept at 8,162 hours if 3 failures have occurred, 

■ accept at 9,947 hours if 4 failures have occurred, 

■ accept at 11,701 hours if 5 failures have occurred and 

■ reject if 6 failures occur before 11,701 hours are accumulated. 

Simulation Preparation 

In this section, we'll structure the decision rules so that they can be conveniently used in a simulation in 

the next section. First, we'll define the accept times for each potential failure quantity: 

accept[f_ /; f == 0] = 2382 

2382 

accept[f_ /; f == 1] = 4432 

4432 
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accept[f_ /; f == 2] = 6333 

6333 

accept [f_ /; f == 3] = 8162 

8162 

accept[f_ /; f == 4] = 9947 

9947 

accept[f_ /; f == 5] = 11701 

11701 

Next, we'll define the reject times for each potential failure quantity: 

reject [ff_ /; f == 6] = 11701 

11701 

Simulations 

In this section, simulations are performed on the decision rules developed for this test plan using a true 6 

value of 1.480 hours. Approximate consumer risks are obtained as are approximations for the expected 

test time and failure quantity. 
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Simulation Description 

Before the simulation starts, an empty list is assigned as the value of acceptlist and rejectlist thereby 

initializing these lists. 

During the simulation, the following steps are performed for each exponential-sequential trial: 

«The within-test failure counter / is initially assigned the value 1. 

■ The first pseudo-random failure time is generated and assigned as the initial value of ttf. 

« While it's not the case that ttf meets or exceeds the accept rule for the i -1 failure or ttf is less than or 

equal to the reject rule for the /th failure, then an additional pseudo-random failure time is added to ttf 

and / is incremented by 1. 

■ The While loop stops when the condition above no longer holds. Test termination has occurred. 

■ If the test terminated in acceptance, then the termination failure quantity is / - 1 and the termination 

time is the / -1 accept time. This pair of values is appended to acceptlist. 

* If the test terminated in rejection, then the termination failure quantity is ;' and the termination time is 

ttf. This pair of values is appended to rejectlist. 

After the simulation ends, acceptlist contains the final failure quantity and test time of each simulated 

exponential-sequential test that ended in an accept decision, rejectlist contains the final failure quantity 

and test time of each simulated test that ended in a reject decision. If the true 0 was assumed equal to the 

lower-test 8, the consumer risk is calculated as the fraction of tests that ended in acceptance. If the true 6 

was assumed equal to the upper-test 8, the producer risk is calculated as the fraction of tests that ended 

in rejection. The average quantity of failures is calculated by summing the quantity of failures that 

occurred during the simulation and dividing by the quantity of trials. The average test time is calculated 

by summing the termination times that occurred during the simulation and dividing by the quantity of 

trials. 

The simulation function is defined next: 

simulation[trueTheta_, trials_, prec_] := 

Do[i = 1; ttf = - trueTheta * Log [Random [Real, {0, 1}, prec] ] ; 

While [Not [ (ttf i. accept [i - 1] ) V TrueQ [ttf S reject [i] ] ] , 

ttf = ttf + - trueTheta * Log [Random [Real, {0, 1} , prec] ] ; i++] ; 

If [ttf i. accept[i - 1] , acceptlist = {acceptlist, {i - 1, acceptfi - 1] }} , 

Null, Null] ; 

If[ttf s reject[i], rejectlist = {rejectlist, {i, ttf}}, Null, Null], 

{trials}] 
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It should be noted that a different approach to exponential sequential simulation is taken in Chapter 2. 

The approach there is more efficient in terms of execution time and memory usage, thus it permits one 

to perform larger simulations. The approach taken here is easier to setup and saves more simulation 

data at the expense of additional execution time and memory. 

It should also be noted that the function in the standard add-on package Statistics " Continuous - 

Distributions' for generating machine-precision, pseudorandom numbers from the exponential 

distribution is not used in this appendix. Instead arbitrary-precision pseudorandom numbers are gener- 

ated in order to obtain highly-accurate results as recommended by McCullough (2000). Machine- 

precision pseudorandom number generation is illustrated in Chapter 2. 

First Simulation 

In tins and the next three subsections, four simulations are performed assuming that the true 6 equals 

L480 hours. 

Start an empty list for accept decisions. 

acceptlist= {} 

O 

Start an empty list for reject decisions. 

rejectlist = {} 

{} 

Run the simulation with A = j= -j—^ for 100.000 trials using 30-digit pseudorandom number 

generation: 

simulation[1480,  100000,  30] 

Clean up the extra braces in acceptlist: 

Short[acceptlist= Partition[Flatten[acceptlist], 2], 10] 

«1» 

Clean up the extra braces in rejectlist: 
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Short[rejectlist=Partition[Flatten[rejectlist], 2], 10] 

{{6, 8537.69800687837419363744723035}, 
{6, 5831.50636013128589753836751135}, 
{6, 8739.07156713021255510916582548}, 
{6, 1559.22505886098 966165718481491}, 

{6, 5851.15605192525127001761852342}, 
«58912», {6, 5068.29563539870014048753917524}, 

{6, 10993.24289103998388702813974853}, 
{6, 6473.40224673736399544755268559}, 
{6, 6457.82157476877450541070947341}} 

Calculate the acceptance probability. Since the true 6 was assumed equal to the lower-test 9 of 1480 

hours, this is the consumer risk: 

Length[acceptlist] 
conriskl =  ——  

Length[acceptlist] + Length[rejectlist] 

41079 

100000 

A machine-precision result is: 

% //N 

0.41079 

Calculate the average number of failures: 

avgfaill = Apply[Plus, Transpose!Join[acceptlist, rejectlist] ] [[1]] ] / 

(Length[acceptlist] + Length[rejectlist]) 

402349 

100000 

A machine-precision result is: 

% //N 

4.02349 

Calculate the average test time: 
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avgtimel=Apply[Plus, Transpose[Join[acceptlist, rejectlist] ] [[2]]] / 

(Length[acceptlist] + Length[rejectlist]) 

5947.242 5052109729460322195137 9 

i Second Simulation 

Start an empty list for accept decisions. 

acceptlist = {} 

{} 

Start an empty list for reject decisions. 

rejectlist = {} 

{) 

Run the simulation with A =  ±=  -JL_  for 100.OOO trials using 30-digit pseudorandom number 

generation: 

simulation[1480,  100000, 30] 

Clean up the extra braces in acceptlist: 

Short[acceptlist = Partition[Flatten[acceptlist], 2] , 10] 

«1» 

Clean up the extra braces in rejectlist: 

Short[rejectlist = Partition[Flatten[rejectlist], 2] , 10] 

{{6, 5162.60719670216594857814330874}, 
{6, 7015.31813030520066570126135719], 
{6, 7778.81698391397922605050399099}, 
{6, 10930.8817 6054092107 978 535274730}, 
{6, 4431.4758523267458956721191718 6}, 
«58888», {6, 9027.41326938859144830674926850}, 
{6, 4820.7 92 92001755882006361727 7 48}, 
{6, 3265.81785620505039178932445653}, 
{6, 7177.462988322164399078 66782325}} 
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Calculate the acceptance probability. Since the true 0 was assumed equal to the lower-test 9 of 1480 

hours, tins is the consumer risk: 

. , „           Length[acceptlist] 
conrisk2 =  : -     r i_ 

Length[acceptlist] + Length[rejectlist] 

41103 
100000 

A machine-precision result is: 

% //N 

0.41103 

Calculate the average number of failures: 

avgfail2=Apply[Plus, Transpose [Join [acceptlist, rejectlist] ] |[1]| ] / 
(Length[acceptlist] + Length[rejectlist]) 

201261 
50000 

A machine-precision result is: 

% //N 

4.02522 

Calculate the average test time: 

avgtime2 = Apply[Plus, Transpose[Join[acceptlist, rejectlist]] |[2]| ] / 
(Length[acceptlist] + Length[rejectlist]) 

5951.34 690133309716840900501972 

Third Simulation 

Start an empty list for accept decisions. 

acceptlist = {} 

O 
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Start an empty list for reject decisions. 

rejectlist = {} 

O 

Run the simulation with A =  ±=  -JL  for 100.000 trials using 30-digit pseudorandom number 

generation: 

simulation[1480, 100000, 30] 

Clean up the extra braces in acceptlist: 

Short[acceptlist = Partition[Flatten[acceptlist] , 2], 10] 

{{3,  8162},   {0,  2382},   {5,  11701},   {5,  11701},   {2,  6333},   {0,  2382}, 
{5,  11701},   {0,  2382},   {3,  8162},   {0, 2382},   {1,  4432},   {0, 2382}, 
{4,   9947},   {0,   2382},   {0,  2382},   {5,  11701},   {0,  2382},   {1,  4432}, 
{0,  2382},   {0,  2382},   {0,  2382},   {1,  4432},   {1,   4432},   {0,  2382}, 
{0,  2382},   {0,  2382},   {0,  2382},   {1,  4432},   {5,   11701},   {0,  2382}, 
«41033»,   {0,  2382},   {0,  2382},   {2,   6333},   {0,  2382},   {3,  8162}, 
{1,   4432},   {0,  2382},   {0,  2382},   {2,   6333},   {2,   6333},   {2,   6333}, 
{2,   6333},   {1,  4432},   {3,  8162},   {0,  2382},   {0,  2382},   {1,  4432}, 
{0,  2382},   {0,  2382},   {1,  4432},   {0,  2382},   {0,  2382},   {1,  4432}, 
{1,  4432},   {4,   9947},   {0,  2382},   {2,  6333},   {1,  4432},   {1,  4432}} 

Clean up the extra braces in rejectlist: 

Short[rejectlist= Partition[Flatten[rejectlist], 2], 10] 

{{6, 4989.934437 91169813927095470199}, 
{6, 9183.66085780104 64 97 93699554344}, 
{6, 7123.75822296922105532263911550}, 
{6, 5470.74752829537519826036407409}, 
{6, 8308.092881612 97634725094340221}, 
«58899», {6, 5624.09504810958894651445883619}, 
{6, 6681.59087905510638457726550302}, 
{6, 9874.16045391830694099308355778}, 
{6, 11139.33039233748814435876856077}} 

Calculate the acceptance probability. Since the true 6 was assumed equal to the lower-test 0 of 1480 

hours, this is the consumer risk: 
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. ,            Length[acceptlist! 
conrisk3 =  1_ 

Length[acceptlist] + Length[rejectlist] 

10273 
25000 

A machine-precision result is: 

% //N 

0.41092 

Calculate the average number of failures: 

avgfail3=Apply[Plus, Transpose[Join[acceptlist, rejectlist]]pj] / 
(Length[acceptlist] + Length[rejectlist]) 

403253 
100000 

A machine-precision result is: 

% //N 

4.03253 

Calculate the average test time: 

avgtime3 = Apply[Plus, Transpose!Join[acceptlist, rejectlist]][2]1] / 
(Length[acceptlist] + Length[rejectlist]) 

5966.7450356448848629985826682 6 

Fourth Simulation 

Start an empty list for accept decisions. 

acceptlist = {} 

{} 

Start an empty list for reject decisions. 
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rejectlist = {} 

{} 

Run the simulation with A =  1=  -L  for 100.000 trials using 30-digit pseudorandom number 

generation: 

simulation[1480,  100000, 30] 

Clean up the extra braces in acceptlist: 

Short[acceptlist = Partition[Flatten[acceptlist], 2] , 10] 

«1» 

Clean up the extra braces in rejectlist: 

Short[rejectlist= Partition[Flatten[rejectlist], 2], 10] 

{{6, 8926.08352364327 643191597133723), 
{6, 9523.05054518 911528036632730384}, 
{6, 4934.00253410276477355948947100}, 
{6, 5257.43660580122580093609253988}, 
{6, 7 821.800508 9691999789167 9184 687}, 
«58642», {6, 6491.44002345079453726472144300}, 
{6, 6577.75308534811470059153659672}, 
{6, 6468.04634771090018997591283277}, 
{6, 9335.30224483235148240318828980}} 

Calculate the acceptance probability. Since the true 0 was assumed equal to the lower-test 0 of 1480 

hours, this is the consumer risk: 

.   , . Length[acceptlist] 
conrisk4 = — .       :  

Length[acceptlist] + Length[rejectlist] 

41349 
100000 

A machine-precision result is: 

% //N 

0.41349 
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Calculate the average number of failures: 

avgfail4 = Apply [Plus, Transpose [Join [acceptlist, rejectlist] ] |[1]|] / 

(Length[acceptlist] + Length[rejectlist]) 

50133 
12500 

A machine-precision result is: 

% //N 

4.01064 

Calculate the average test time: 

avgtime4 = Apply[Plus, Transpose[Join[acceptlist, rejectlist]][2])] / 

(Length[acceptlist] + Length[rejectlist]) 

5936.23414113906857 9202 94835131 

■ Combined Results from True 9 Equals 1,480 Hours Simulations 

It appears that the consumer risk is approximately between 

Min[{conriskl, conrisk2, conrisk3, conrisk4}] //N 

0.41079 

and 

Max[{conriskl, conrisk2, conrisk3, conrisk4}] //N 

0.41349 

The exact answer of 41.14% from Chapter 3 falls within this interval. The average consumer risk for all 

400,000 trials is: 

conriskl + conrisk2 + conrisk3 + conrisk4 
  //N 

4 

0.411558 
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It appears that the expected quantity of failures is approximately between 

Min[{avgfaill, avgfail2, avgfail3, avgfail4}] //N 

4.01064 

and 

Max[{avgfaill, avgfail2, avgfail3, avgfail4}] //K 

4.03253 

The exact answer from Chapter 3 of 4.025 falls within this interval. The average quantity of failures for 

all 400.000 trials is: 

avgf aill + avgf ail2 + avgf ail3 + avgf ail4 

4 

4.02297 

It appears that the expected test time is approximately between 

Min[{avgtimel, avgtime2, avgtime3, avgtime4}] //N 

5936.23 

and 

Max[{avgtimel, avgtime2, avgtime3, avgtime4}] //N 

5966.75 

The exact answer from Chapter 3 of 5,956 hours falls within this interval. The average test time for all 

400,000 trials is: 

avgtimel + avgtime2 + avgtime3 + avgtime4 

4 

5 950.39214583200588916068888827 
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Summary 

When the true 6 equaled the lower-test value of 1.480 hours, the following results were obtained from 

400,000 simulation trials: 

■ acceptance probability (i.e., consumer risk) is approximately between 41.1 and 41.3% (compared with 

41.14% obtained from the exact analysis), 

• expected quantity of failures is approximately between 4.01 and 4.03 (compared with 4.025 obtained 

from the exact analysis), 

■ expected quantity of test time is approximately between 5,936 and 5,967 hours (compared with 5,956 

obtained from the exact analysis). 

The results from these simulations are entirely consistent with, and thus constitute a rough double-check 

of, the exact analysis in Chapter 3. 
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Appendix C 
Exact Analysis of Exponential Sequential Test Plan 

Designed in Chapter 4 
This notebook contains an analysis of the exact stage-by-stage acceptance, continuation and rejection 

probabilities resulting from the exponential sequential test designed in Chapter 4. Included are the 

important special cases that arise at the last stage: consumer risk, producer risk and the operational- 

characteristic curve. Mathematica symbolics are used to obtain results with the Mean Time Between 

Failures (MTBF) parameter held symbolic until a numerical value is supplied. The stage-by-stage 

calculations are performed in such a way that numerical errors that would otherwise accumulate are 

entirely avoided. The results of all calculations are "exact" but include occurrences of the exponential 

function. Numerical approximations to any desired precision are provided as well. 

The exact-analysis method implemented in this notebook was developed by Epstein, Patterson and 

Quails [1963]. 

Setup 

The code used in this appendix is contained in the standard add-on packages MultipleListPlot and 

DiscreteDistributions.m, which are loaded thus: 

Needs["Graphics^MultipleListPlot%"] 

Needs["Statistics^DiscreteDistributions""] 

Extract Reliability Test Plan Decision Rules 

In order to apply the exact-analysis method we need to construct a list of accept points from the deci- 

sion rules designed in Chapter 4. Each pair will be of the form {tt, ;'} where the first pair defines the 

zero-failure accept time, the second pair defines the one-failure accept time, etc. The accept rules are 

assigned as the value of the symbol rawaccept. 
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N[rawaccept= {{6100, 0}, {9150, 1}, {12199, 2}, 

{15249, 3}, {18299, 4}, {20828, 5}, {20828, 6}}] 

{{6100., 0.}, {9150., 1.}, {12199., 2.}, 
{15249., 3.}, {18299., 4.}, {20828., 5.}, {20828., 6.}} 

There are two occurrences of the last accept time. Since we can only use unique times, one repeat is 

eliminated and the pair with the highest quantity of failures is retained. The result is assigned as the 

value of the symbol accept. 

N[accept = Delete[rawaccept, {{6}}]] 

{{6100., 0.}, {9150., 1.}, {12199., 2.}, 
{15249., 3.}, {18299., 4.}, {20828., 6.}} 

We need to construct a list of reject points from these decision rules. Each pair will be of the form {/,, /} 

where the first pair defines the shortest reject time and the corresponding quantity of failures, the second 

defines the second-shortest reject time and the corresponding quantity of failures, etc. 

N[reject = {{3050, 3}, {6100, 4}, {9150, 5}, {12199, 6}, {20828, 7}}] 

{{3050., 3.}, {6100., 4.}, {9150., 5.}, {12199., 6.}, {20828., 7.}} 

The decision rules, with the accept and reject points represented by triangles and boxes, respectively, are 

plotted as follows: 
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decisionPlot = 

MultipleListPlotfrawaccept, Reverse[reject], PlotJoined-» False, 

PlotRange -> { {0, Automatic} , {0, Automatic}} , Frame -» True, 

FrameLabel-»{"test time, hours", "cumulative failures"}, 

GridLines-» Automatic, 

SymbolShape->{PlotSymbol[Triangle, 5], PlotSymbolfBox, 3]}, 

SymbolStyle-» {RGBColor[0, 1, 0], RGBColor[l, 0, 0]}]; 
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Define Function for Stage Times 

In this step, we will construct a stage-time function. First, a list is needed of the times for each stage. 

The stage times are comprised of the accept and reject times joined into a single list and sorted from 

shortest to longest. The list of stage times is constructed as follows: 

timeValues= 

Sort[Union[First[Transpose[accept]], First[Transpose[reject]]], Less] 

{3050, 6100, 9150, 12199, 15249, 18299, 20828} 

It should be noted that the times are expressed as exact numbers (i.e., either as integers or rational 

numbers) in order to avoid approximations until after the stage-by-stage calculations are complete. If the 

times are expressed in decimal form, Mathematica will treat them as approximate and will use machine- 

precision (unless many zeroes are used) arithmetic. 

It should also be noted that the function Union was used to eliminate any repeats occurring as the two 

lists were combined. 

The quantity of stages is: 

Length[timeValues] 

7 

A function which will provide time values as a function of stage, except for the special case of stage 

zero, is: 

t[stage_Integer /; stage > 0] : = timeValuesJstageJ 

The initial condition for time [Epstein, et al. 1963, equation 16]: 

t[i_/; i==0]  :=0 

Construct Accept-Number Function 

In this step, we will construct an accept-number function. First, we will generate an Interpolating- 

Function object from accept: 
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fA = Interpolation[accept, InterpolationOrder -»1] 

InterpolatingFunction[{{6100, 20828}}, <>] 

Now, we define a function which will provide an integer-valued accept number for each stage using 

Epstein, et al. 1963, equation 11: 

a[stage_Integer /; stage > 0] :=-1 /; t[stage] < First[First[accept]] 

a[stage_Integer / ; stage > 0] : = Floor[fA[t[stage]]] 

A special case of the accept-number function is defined for the initial condition at stage zero [Epstein, et 

al. 1963, equation 16]: 

a[stage_Integer / ; stage ==0]  : = -1 

Construct Reject-Number Function 

In this step, we will construct a reject-number function. First, we will generate an Interpolating- 

Function object from reject: 

fR = Interpolation[reject, InterpolationOrder -♦ 1] 

InterpolatingFunction[{{3050, 20828}}, <>] 

Now, we define an function which will provide an integer-valued  reject number for each stage using 

Epstein, et al. 1963, equation 12: 

r[stage_Integer/; stage > 0]  := Ceiling[fR[t[stage]]] 

A special case of the reject-number function is defined for the initial condition at stage zero: 

r [stage_ / ; stage ==0]  : = 1 

Tabulation of Accept, Continuation and Reject Points 

In this step, we generate a table of accept, continuation and reject numbers. This is done to provide a 

convenient stage-by-stage listing of the test plan to be analyzed. The table is generated as follows: 
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TableForm[Transpose[{Range[Length[timeValues]], 

Table[N[t[stage]], {stage, 1, Length[timeValues]}], 

Table[a[stage], {stage, 1, LengthftimeValues]}], 

Append[Table[a[stage] +1, {stage, 1, Length[timeValues]-1}], NA], 

Append[Table[r[stage] -1, {stage, 1, Length[timeValues] -1}], NA], 

Table[r[stage], {stage, 1, Length[timeValues]}]}], 

TableHeadings-> {None, {"Stage", "Time", "Accept", 

"Continue (min)", "Continue (max)", "Reject"}}, 
TableSpacing -* {1, 1. 5}, TableAlignments -» Center] 

Stage Time Ac :cept Cont inue (min)   Continue (max) Reject 
1 3050. -1 0              2 3 
2 6100. 0 1              3 4 
3 9150. 1 2              4 5 
4 12199. 2 3              5 6 
5 15249. 3 4              6 7 
6 18299. 4 5              6 7 
7 20828. 6 NA              NA 7 

Construct Function for Acceptance/Continuation Probability for a Quantity of 
Failures 

In this step, we construct a function for calculating acceptance/continuation probabilities for a quantity 

of failures [Epstein, et al. 1963, equation 17]: 

ACProbability[stage_, failure_, trueMTBF_] /; 

And[stage>0,   (a[stage - 1] + 1) s failure i r [stage] - 1]  : = 
aclist[stage, failure, trueMTBF] 

ACProbability[stage_, failure_, trueMTBF_] / ; 

And[stage > 0, Not[ (a[stage - 1] + 1) s failure i r[stage] - 1] ]  := 0 

Two initial conditions for this function are also needed [Epstein, et al. 1963, equation 16]: 

ACProbability[0, 0, trueMTBF_]  :=1 

ACProbability[0, failure_Integer / ; failure > 0, trueMTBF_]  : = 0 
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Up-front Calculation of Acceptance/Continuation Probabilities 

In order to reduce execution time, stage-by-stage calculations of acceptance and continuation probabili- 

ties are developed in this step. 

The calculation of acceptance/continuation probabilities at stage / use the results from stage / -1 [Ep- 

stein, et al. 1963, equation 17]. The most natural approach with Mathematica may be to proceed from 

the last stage to the first using recursion. This approach results in execution times that grow exponen- 

tially with the number of stages required by the test plan under analysis. Acceptance/continuation 

probabilities calculated at one stage are needed many times at later stages. Consequently, it was neces- 

sary to calculate and store the acceptance/continuation probabilities for each stage in succession from 

stages 1 through n. 

A function for building up the calculations is: 

aclistfunction[stage_Integer, failure_Integer, trueMTBF ] := 
aclist[stage, failure, trueMTBF] = 

failure 

/,    ACProbability[stage- 1, j, trueMTBF] 
j=a[stage-l]+l 

^„r^ ■ . t[stage] - t[stage - 1] 
PDF[PoissonDistribution[ — — - - L]    faiiure - -il 

trueMTBF J ' ■" 

An indexed variable aclist is used to build up the acceptance and continuation probabilities. 

The acceptance and continuation points for the stages are: 

Map[aclistfunction[l, #, trueMTBF] &, 
Apply[Range,  {a[i-l] +1, r[i] - 1} /. i-*l]] 

re-3050/trueMTBF(    3050 e-3050/trueMTBF      4651250 e-3050/trueMTBF 1 

trueMTBF ' trueMTBF2 ' 

Map[aclistfunction[2, #,  trueMTBF] &, 
Apply [Range,   {a[i-l] +1, r[i] -1} /. i-»2]] 

fe-6100/trueMTBF        P±UU C  ^^^ 

* ' trueMTBF ' 
18605000 e"6100/trueMTBF      99304187500 e"6100/trueMTBF 

trueMTBF2 ' 3 trueMTBF3 > 
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Map[aclistfunction[3, #,  trueMTBF] &, 

Apply[Range,  {a[i-l] +1, r[i] - 1} /. i-»3]] 

, 6100 e"9150/trueMTBF      37210000 e~9150/trueKTBF 

i trueMTBF '   " trueMTBF^ ' 

354657812500 e"9150/trueMTBF      216341265625000 e-9i5o/trueMTBF 

3 trueMTBF' ' trueMTBF4 

Map[aclistfunction[4, #, trueMTBF] &, 

Apply [Range,  {a[i- 1] +1, r[i] -1} /. i-» 4] ] 

r 37210000 e-i2i89/trueMTEF      695017682500 e-12199/trueMTBF 

trueMTBF: ' 3 trueMTBF1' ' 

2249254089002500 e-i2i9s/trueMTBF      4154747817367926250 e-12199/trueMTEI" 

3 trueMTBF4 ' 3 trueMTBF- ' 

Map[aclistfunction[5, #,  trueMTBF] &, 

Apply[Range,  {a[i-l] +1, r[i] -1} /. i-* 5] ] 

r 695017682500 e"15249/trueMTBF      1456352673542500 e-i5249/trueMTBF 

3 trueMTBF3 ' trueMTBF4 

14247 673784553676250 e-15249/trueMTBF 

3 trueMTBF- "' 

79261209810305940812500 e-15249/trueMTEF , 

9 trueMTBF6 > 

Map[aclistfunction[6, #,  trueMTBF] &, 

Apply [Range,   {a[i-l] +1, r[i] -1} /. i-* 6]] 

, 1456352673542500 e-18299/trueKIBF      27573300747467551250 e-18299/trueMTBF 

trueMTBF4 ' 3 trueMTBF"' " 
270592168294303056625000 e-i8299/trueMTBF 

9 trueMTBF6 J 

Map[aclistfunction[7, #, trueMTBF] i, 

Apply [Range,   {a[i-l] +1, r[i] - 1} /. i-» 7] ] 

r 27573300747467551250 e'
20628/trueMTBF 

"■ 3 trueMTBF5        ~ ~~'' 

479790801065339367958750 e-20828/trueMTBF 

9 trueMTBF" 

C-10 



Construct Function for Acceptance Probability for a Quantity of Failures 

In this step, we construct a function for calculating acceptance probabilities for a quantity of failures 

[Epstein, et al. 1963, equation 18]: 

AcceptanceProbability[stage_Integer, failure_Integer, trueMTBF_] := 
ACProbability[stage, failure, trueMTBF] 

Construct and Use Function for Acceptance Probability for Each Stage 

In tins step, we construct and use a function for calculating stage-by-stage acceptance probabilities 
[Epstein, et al. 1963, equation 20]: 

AcceptanceProbability[stage_Integer, trueMTBF   ]   := 
a[stage] 

2_,     AcceptanceProbability[stage, failure, trueMTBF] / ; 
£ailure=a[stage-1]+1 

a [stage- 1] < a [stage] 

AcceptanceProbability[stage_Integer, trueMTBF   ]   := 
0 /; Not [a [stage- 1] < a [stage]] 

The acceptance probability as a function of true MTBF is the sum of the probabilities of acceptance at 

each stage. This is given by Epstein, et al. 1963, equation 14: 

AcceptanceProbability[trueMTBF  ]  := 
n 

jtAcceptanceProbability[trueMTBF   , i   ] 

■ Cumulative Acceptance Probabilities for Each Stage When trueMTBF is Symbolic 

The cumulative acceptance probability for stage one when trueMTBF is left symbolic is: 

/ ,    AcceptanceProbability[stage,  trueMTBF] 
stage=l 

0 
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This result is correct since the first opportunity for acceptance to occur is at stage two. The cumulative 

acceptance probability for stage two when truehJTBF is left symbolic is: 

2 

/ \    AcceptanceProbability[stage, trueMTBF] 
stage=l 

-6100/trueMTEF e 

The result above is exact but partially symbolic. An exact result can be obtained for a specific value of 

trueAfTBF such as the lower-test MTBF as follows: 

% /. trueMTBF-» 2200 

This is an exact result. A numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

0.0624 9134119438 650269595 

An answer accurate to 22 decimal places was elicited not because an answer this precise was needed, but 

in order to trigger Mathematica to use arbitrary-precision arithmetic. Otherwise, machine-precision 

arithmetic will be performed in hardware in which case Mathematica doesn't guarantee accuracy. 

The cumulative acceptance probability for stage seven, the final stage, when trueMTBF is left symbolic 

will be generated. This is also known as the operational-characteristic function. 

7 

OCfunetion=  V AcceptanceProbability[stage, trueMTBF] 
stage=l 

e-6100/trueMTBF +    47 9790801065339367958750 ^20828/trueMTBF 

9 trueMTBF6 

27573300747467551250 e-20828/trUeMTBF       1456352673542500 e-16299/trueMTBF 

  + 
3 trueMTBF- trueMTBF4 

695017682500 e-15249/trueMTBF       37210000 e~12199/trueMTBF       6100 e"9150/trueMTBF 

+ 
3 trueMTBF- trueMTBF2 trueMTBF 

OCfunetion provides the exact acceptance probability as a function of trueMTBF. The exact operational- 

characteristic curve can now be plotted: 
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ocPlot = Plot [OCfunction, {trueMTBF, 500, 8000}, GridLines -» Automatic, 

Frame-»True, FrameLabel -* {"True MTBF, hours", "Accept Prob.", 

"Exact Operational-Characteristic Curve" , None}]; 

Exact Operational-Characteristic Curve 

2000      4000      6000 
True MTBF, hours 

8000 

It should be noted that the operational-characteristic plot is a key test-design graphic thus the plot above 

was assigned as the value of the symbol ocPlot so it could be readily inserted in Chapter 4. 

Cumulative Acceptance Probabilities for Each Stage When trueMTBF Equals the Upper-Test 
MTBF 

It would be useful to generate a list of cumulative acceptance probabilities for all seven stages when the 

true MTBF equals the upper-test MTBF. The parameter tnteAJTBF will be left symbolic in order to be 

consistent with up-front calculations. The desired list is generated but display of the output is tempo- 

rarily suppressed. 

mycumacc= Table[ 

:agelim 

/,     AcceptanceProbability[stage, trueMTBF],  {stagelim, 1, 7}]; 
stage1im 

z 
stagc=l 

Now a table is generated which displays our calculations. A rule is used to replace trueMTBF with the 

upper-test MTBF in the cumulative acceptance probabilities stored in the list mycumacc: 
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NumberFonn [ 

TableForm[{N[timeValues, 4], NJmycumacc/. trueMTBF-* 4400, 4]}, 
TableDirections -> {Row, Column}, 

TableHeadings-> {{"Time", "Z Accept Pr."}, Automatic}, 

TableAlignments-> Center], {6, 5}] 

Time  T,  Accept Pr . 

1. 3050. 0. 

2. 6100. 0.24998 

3. 9150. 0.42326 

4. 12199. 0.5434 

5. 15249. 0.62839 

6. 18299. 0.6891 

7. 20828. 0.80273 

In order to calculate just the final cumulative acceptance probability, we can use OCfunction from the 

previous section and employ a rule to replace trueMTBF with the upper-test MTBF. 

OCfunction / . trueMTBF -»4400 

61364245158684439597 582541069417 
4749587251200000000 e5207/1100   +   149923840000 e18299'4400   4 

278007073 3721 61 1 
102220800 c15249''4400   +  1936 e1109*"100   +   44 e

183/88   + "e^TTTT 

This is an exact result. A numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

0.80272 7 0619907 664 067 051 

The producer risk equals one minus the acceptance probability when the true MTBF equals the upper- 

test MTBF. The producer risk is then one minus the answer above: 

1 -% 

0.1972 72 9380092335932 94 9 
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Cumulative Acceptance Probabilities for Each Stage When trueMTBF Equals the Lower-Test 
MTBF 

It would be useful to generate a table of cumulative acceptance probabilities for all seven stages when 

the true MTBF equals the lower-test MTBF. The list mycumacc, which was generated in the previous 

subsection, can be used for this purpose. A rule is used to replace trueMTBF with the lower-test MTBF 

in the cumulative acceptance probability expressions stored in the list mycumacc: 

NumberForm[ 

TableForm[{N[timeValues, 4], N[mycumacc/. trueMTBF -> 2200, 4]}, 
TableDirections -> {Row, Column}, 

TableHeadings-> {{"Time", "Z Accept Pr."}, Automatic}, 
TableAlignments -> Center], {6, 5}] 

Time 2 Accept Pr 

1. 3050. 0. 

2. 6100. 0.06249 

3. 9150. 0.10581 

4. 12199. 0.13584 

5. 15249. 0.15709 

6. 18299. 0.17227 

7. 20828. 0.22243 

In order to calculate just the final cumulative acceptance probability, we could use the OCfunction from 

the previous section and use a rule to replace trueMTBF with the lower-test MTBF. 

OCfunction / . trueMTBF -» 2200 

48129060799900014997 582541069417 
74212300800000000 a5207'550  +  9370240000 e18299'2200  + 

278007073 3721 61 1 
12777600 e1524^22«™  +  484 e1109'200  +  22 e^3/u  +  e6i/22 

This is an exact result. A numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

0.22243002 64 82 6413065622 
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This is the consumer risk since the consumer risk is defined as the acceptance probability when the true 

MTBF equals the lower-test MTBF. 

Construct Function for Continuation Probability for a Quantity of Failures 

In this step, we construct a function for calculating continuation probabilities for a quantity of failures 

[Epstein, et al. 1963. equation 19]: 

ContinuationProbability[stage_Integer, failure_Integer, trueMTBF ] := 
ACProbability[stage, failure, trueMTBF] 

Construct and Use Function for Continuation Probability for Each Stage 

In this step, we construct and use a function for calculating stage-by-stage continuation probabilities 

[Epstein, et al. 1963. equation 21]: 

ContinuationProbability[stage_Integer, trueMTBF   ]   := 
x[stage]-1 

/ ,     ContinuationProbability[stage, failure, trueMTBF] / ; 
failure=a[stage]+1 

a[stage] +1< r[stage] 

ContinuationProbability[stage_Integer, trueMTBF ] := 
0 /; Not [a [stage] + 1 < r [stage]] 

The continuation probability for stage zero with zero failures is, by definition, one: 

ContinuationProbability[0, trueMTBF] 

1 

■ Cumulative Continuation Probabilities for Each Stage When trueMTBF is Symbolic 

The cumulative continuation probability for stage one when trueAJTBF is left symbolic is: 

ContinuationProbability[l, trueMTBF] 

3050/trueMTBF 4651250 e-3050/trueMTBF 3050 e-3050/trueMTBF 
e 

trueMTBF^ trueMTBF 
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This is an exact symbolic result. An exact result for the case where trueAJTBF is the lower-test MTBF is: 

% / . trueMTBF -* 2200 

12961 
3872 e61/<u 

This is an exact result. An numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

0.8367834552340778454066 

The cumulative continuation probability for stage seven when trueMTBF is symbolic is: 

ContinuationProbability[7, trueMTBF] 

0 

This is obviously correct since the continuation probability at the last stage must be zero. 

Cumulative Continuation Probabilities for Each Stage When trueMTBF Equals the Upper-Test 
MTBF 

The cumulative continuation probability for stage one when trueMTBF equals the upper-test MTBF is: 

ContinuationProbability[l, trueMTBF] /. trueMTBF -*4400 

29945 
15488 e61/eB 

This is an exact result. An numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

0.9666826831862179957211 

It would be useful to generate a list of cumulative continuation probabilities for all seven stages when 

the true MTBF equals the upper-test MTBF. The parameter trueMTBF will be left symbolic in order to 

be consistent with up-front calculations. The desired list is generated but display of the output is tempo- 

rarily suppressed. 
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mycumcon = 

Table[ContinuationProbability[stage, trueMTBF], {stage, 1, 7}]; 

Now a table is generated which displays our calculations. A rule is used to replace trueMTBF with the 

upper-test MTBF in the cumulative continuation probabilities stored in the list mycumcon. The cumula- 

tive acceptance probabilities for this case are also provided for reference. 

NumberForm[TableForm [{NftimeValues, 4] , 

N[mycumacc /. trueMTBF->4400, 4], N[mycumcon / . trueMTBF-»4400,  4]}, 
TableDirections-» {Row, Column}, TableHeadings-> 

{{"Time",  "2 Accept Pr.",  "2 Continue Pr."}, Automatic}, 
TableAlignments-> Center] ,  {6, 5}] 

Time       2 Accept   Pr.     2  Continue   Pr. 

1. 3050. 0. 0. .96668 

2. 6100. 0.24998 0. .68394 

3. 9150. 0.42326 0. .48583 

4. 12199. 0.5434 0. .34752 

5. 15249. 0.62839 0. .24936 

6. 18299. 0.6891 0. .15182 

7. 20828. 0.80273 0. 

Cumulative Continuation Probabilities for Each Stage When trueMTBF Equals the Lower-Test 
MTBF 

The cumulative continuation probability for stage one when trueMTBF equals the lower-test MTBF is: 

ContinuationProbability[1, trueMTBF] /. trueMTBF -»2200 

12961 
3872 e61^44 

This is an exact result. An numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

0.8367 83455234 0778454066 

It would be useful to generate a table of cumulative continuation probabilities for all seven stages when 

the true MTBF equals the lower-test MTBF. The list mycumcon, which was generated above, can be 
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used for this purpose. A rule is used to replace trueMTBF with the lower-test MTBF in the cumulative 

continuation probability expressions stored in the list mycumcon. The cumulative acceptance probabili- 

ties for this case are also provided for reference. 

NumberForm[TableForm[{N[timeValues, 4] , 

N[mycumacc/. trueMTBF-»2200, 4], N[mycumcon / . trueMTBF->2200, 4]}, 

TableDirections-» {Row, Column}, TableHeadings-> 

{{"Time", "2 Accept Pr.", "2 Continue Pr."}, Automatic}, 

TableAlignments-> Center] , {6, 5}] 

Time S Accept Pr. S Continue Pr. 

1. 3050.       0. 0.83678 

2. 6100.     0.06249       0.60776 

3. 9150.    0.10581       0.43781 

4. 12199. 0.13584 0.31504 

5. 15249. 0.15709 0.22658 

6. 18299. 0.17227 0.10829 

7. 20828. 0.22243 0. 

Calculate Rejection Probability for Each Stage 

In this step, we calculate stage-by-stage rejection probabilities using Epstein, et al. 1963, equation 22: 

n 

/,  (ContinuationProbability[stage- 1, trueMTBF] - 
fi-tagesl 

ContinuationProbability[stage, trueMTBF] - 

AcceptanceProbability[stage, trueMTBF]) 

Cumulative Rejection Probabilities for Each Stage When trueMTBF is Symbolic 

The cumulative rejection probability for stage one when trueMTBF is left symbolic is: 

l 

/,  (ContinuationProbability[stage - 1, trueMTBF] - 
stage=l 

ContinuationProbability[stage, trueMTBF] - 

AcceptanceProbability[stage, trueMTBF]) 

1 _ e-3050/trueMTBF _  4651250 e-3050/trueMTEF _  3050 e-305Q/trueMTBF 

trueMTBF2 trueMTBF 
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This is an exact, but partially symbolic result. An exact result can be obtained for a specific value of 

trueMTBF such as the lower-test MTBF as follows: 

% / . trueMTBF -» 2200 

12961 
1 - 

3872 e61/4< 

This is an exact result. A numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

0.1632165447659221545934 

Next, the cumulative rejection probability for stage seven when trueMTBF is symbolic will be generated. 

This is one minus the operational-characteristic function. 

rejfunction= £     (ContinuationProbabilityfstage - 1, trueMTBF] 
stage=l 

ContinuationProbability[stage,  trueMTBF] - 

AcceptanceProbability[stage,  trueMTBF]) 

± _ e-6ioo/trueMTEF _   47 9790801065339367958750 e-20e28/trueMTEF 

9 trueMTBF1" 

27573300747467551250 e-20e28/trueMTEr       1456352673542500 e-ie29S/trueMTEF 

3 trueMTBF5 trueMTBF4 

695017682500 e-152"9/trueMTEF       37210000 e-12199/trueMTBF       6100 e-9150/trueMTBF 

3 trueMTBF"" trueMTBF2 trueMTBF 

rejfunction provides the exact rejection probability as a function of trueMTBF. This function can now be 

plotted: 
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Plot[rejfunction, {trueMTBF, 500, 8000}, GridLines-*Automatic, 

Frame -» True, FrameLabel -» {"True MTBF, hours" , 

"Reject Prob.", "Exact-Analysis Curve" , Kone}]; 

Exact-Analysis Curve 

2000      4000      6000 
True MTBF, hours 

8000 

Cumulative Rejection Probabilities for Each Stage When trueMTBF Equals the Upper-Test MTBF 

It would be useful to generate a list of cumulative rejection probabilities for all seven stages when the 

true MTBF equals the upper-test MTBF. The parameter trueMTBF will be left symbolic in order to be 

consistent with up-front calculations. The desired list is generated but display of the output is tempo- 

rarily suppressed. 

stagelim 

mycumrej =Table[ ^T  (ContinuationProbability[stage - 1, trueMTBF] - 
stage=l 

ContinuationProbability[stage, trueMTBF] - 

AcceptanceProbability[stage, trueMTBF]), {stagelim, 1, 7}]; 

Now a table is generated winch displays our calculations. A rule is used to replace trueMTBF with the 

upper-test MTBF in the cumulative rejection probabilities stored in the list mycumrej. The cumulative 

acceptance and continuation probabilities for this case are also provided for reference. 
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utMTBFtable = NumberForm[ 

TableForm[{N[timeValues, 4], N[mycumacc / . trueMTBF-» 4400, 4], 

N[mycumcon /. trueMTBF-» 4400, 4] , N[mycumrej /. trueMTBF-» 4400, 4]}, 

TableDirections-> {Row, Column}, TableHeadings-> 

{{"Time", "2 Accept Pr.", "Z Continue Pr.", "2 Reject Pr."}, 

Automatic}, TableAlignments-> Center], {6, 5}] 

Time  £ Accept Pr.  S Continue Pr.  2 Reject Pr. 

1. 3050. 0. 0.96668 0.03332 

2. 6100. 0.24998 0.68394 0.06608 

3. 9150. 0.42326 0.48583 0.09091 

4. 12199. 0.5434 0.34752 0.10909 

5. 15249. 0.62839 0.24936 0.12225 

6. 18299. 0.6891 0.15182 0.15907 

7. 20828. 0.80273 0. 0.19727 

Inspection of the table above reveals that each row sums to one as it must. The table of stage-by-stage 

accept, continue and reject probabilities is a key test-design graphic, thus it was assigned as the value of 

the symbol utMTBFtable so it could be readily inserted in Chapter 4. 

In order to calculate just the final cumulative rejection probability, we can use the rejfunction from the 

previous section and employ a rule to replace trueMTBF with the upper-test MTBF. 

rejfunction / . trueMTBF -* 4400 

61364245158684 439597 582541069417 1 
4749587251200000000 e5207'1100       149923840000 e182"/440C 

278007073 3721 61 1 
102220800 elb249/4A00       1936 e1109/400       44 ei83/88  ~  e6i/44 

This is an exact result. A numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

0.1972 72 938 0092335932 94 9 

This is the producer risk. 

C-22 



■ Cumulative Rejection Probabilities for Each Stage When trueMTBF Equals the Lower-Test MTBF 

It would be useful to generate a table of rejection acceptance probabilities for all seven stages when the 

true MTBF equals the lower-test MTBF. The list mycumrej, which was generated in the previous 

subsection, can be used for this purpose. A rule is used to replace trueMTBF with the lower-test MTBF 

in the cumulative rejection probability expressions stored in the list mycumrej. The cumulative accep- 

tance and continuation probabilities for this case are also provided for reference. 

ltMTBFtable = NumberForm[ 

TableForm[{N[timeValues, 4], N[mycumacc / . trueMTBF-» 2200, 4], 

N[mycumcon / . trueMTBF-* 2200, 4], N[mycumrej /. trueMTBF -» 2200, 4]}, 

TableDirections -> {Row, Column}, TableHeadings -> 

{{"Time", "2 Accept Pr.", "2 Continue Pr.", "2 Reject Pr."}, 

Automatic}, TableAlignments-> Center], {6, 5}] 

Time  2 Accept Pr.  2 Continue Pr■  2 Reject Pr. 

1. 3050. 0. 0.83678 0.16322 

2. 6100. 0.06249 0.60776 0.32975 

3. 9150. 0.10581 0.43781 0.45638 

4. 12199. 0.13584 0.31504 0.54912 

5. 15249. 0.15709 0.22658 0.61632 

6. 18299. 0.17227 0.10829 0.71944 

7. 20828. 0.22243 0. 0.77757 

Each row sums to one as it should. The table is assigned as the value of the symbol ltMTBFtable so that 

it can be easily inserted in Chapter 4. 

In order to calculate just the final cumulative rejection probability, we could use the rej function 

from the previous section and use a rule to replace trueMTBF with the lower-test MTBF. 

rejfunction / . trueMTBF -* 2200 

4 81290607 99900014 997        582541069417 
1 74212300800000000 e5207/550       9370240000 e

18299/2200 

278007073 3721 61 1 
12777600 e15249/2200       484 e1109/200       22 e183/44       e61/22 

This is an exact result. A numerical approximation accurate to 22 decimal places is: 
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N[%, 22] 

0.7775699735173586934378 

The consumer risk equals one minus the rejection probability when the true MTBF equals the lower-test 

MTBF. This is one minus the answer above: 

1- % 

0.2224300264826413065622 

Calculate Expected Quantity of Failures and Test Time 

First, we need to define a function for the probability that the test will terminate with an accept decision 

at a specified number of failures [Epstein, et al. 1963. equation 33]. First the general case and then the 

special case: 

AccProbabilityF[failure_Integer, trueMTBF ] := 

Module[{stage = 1}, While[failure > a[stage], stage + + ] ; Which[ 

failure > Last[Last[accept] ] , 0, 0 s failure s Last[Last[accept]], 
AcceptanceProbability[stage, failure, trueMTBF]]] / ; 

failure 1 a[Length[timeValues]] 

AccProbabilityF[failure_Integer, trueMTBF_] := 

0 /; failure > a[Length[timeValues]] 

Now. we will define a function for the probability that the test will terminate with a reject decision at a 

specified number of failures [Epstein, et al. 1963 equation 34]: 

RejProbabilityF[failure_Integer, trueMTBF_] := 

Module[{rejectlist), rejectlist = 

Select[Table[{stage, r[stage]}, {stage, 1, Length[timeValues]}], 

#H2]| == failure S] /. {st_Integer, rej_Integer} -» st; 

Which [Length [rejectlist] ==0, 0, Length [rejectlist] >0, 

Sum[(ContinuationProbability[stage - 1, trueMTBF] - 

ContinuationProbability[stage, trueMTBF] - 

AcceptanceProbability[stage, trueMTBF]), 

{stage, First[rejectlist], Last[rejectlist]}]]] 

The probability that the test will terminate with zero failures and a reject decision is: 
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RejProbabilityFfO, trueMTBF] 

0 

This is obviously correct since the first path to rejection is if three failures occur. The probability that 

the test will terminate with one or two failures and a reject decision must also be zero: 

RejProbabilityF[l, trueMTBF] 

0 

RejProbabilityF[2, trueMTBF] 

0 

The probability that the test will terminate with three failures and a reject decision is: 

RejProbabilityF[3, trueMTBF] 

± _ e-305o/trueMTBF _  4651250 e-3050/trueMTBF       3050 e-3050/trueMTBF 

trueMTBF2 ~~      trueMTBF 

If trueKJTBF is equal to the lower-test MTBF, the probability that the test will terminate with three 

failures and a reject decision is: 

% / . trueMTBF -» 2200 

12961 
1 - 

3872 e61^ 

This is an exact result. A numerical approximation accurate to 22 decimal places i is: 

N[%, 22] 

0.1632165447659221545934 

Now, we will define a function for the probability that the test will terminate with a specified number of 

failures [Epstein, et al. 1963 equation 35]: 

TerminateProbability[failure_Integer, trueMTBF ] := 

AccProbabilityF[failure, trueMTBF] +RejProbabilityF[failure, trueMTBF] 
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The probability that the test will terminate with zero failures is: 

TerminateProbability[0, trueMTBF] 

„-6100/trueMTBF 

The probability that the test will terminate with between zero and seven failures is: 

•7 

/ ,  TerminateProbability[failure, trueMTBF] 
£ailure=0 

1 

This result is obviously correct since it's not possible for the test to continue beyond the seventh failure. 

Next, we will define a function for the expected termination failure quantity [Epstein, et al. 1963 
equation 36]: 

ExpectedTerminationFailure[trueMTBF   ]   := 
r[length[timeValues] ] 

2J      failure TerminateProbability [failure, trueMTBF] 
failure=0 

A function for the expected termination failure quantity with trueMTBF left svmbolic is: 
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expectedfailurefunction = ExpectedTerminationFailure[trueMTBF] 

4797 90801065339367 958750 e"20828/trueMTBF 

9 trueMTBF6 

27573300747467551250 e-20828/trueMTBF 

 . . h 
3 trueMTBFJ 

4154747817367 926250 e-12199/trueMTBF 

3 trueMTBF5 

1456352673542500 e-18299/trueMTEF      2249254089002500 e-12199/trueMTBF 

 - — +  
trueMTBF- 3 trueMTBF4 

695017682500 e-15249/trueMTBF       695017682500 e-12199/trueMTBF 

 ;        +        _ 
3 trueMTBF- 3 trueMTBF-' 

47 97 90801065339367 9587 50 e-20828/trueMTBF 

9 trueMTBF6 

4154747817367 926250 e-12199/trueMTBF 

3 trueMTBF5 

2249254089002500 e-12199/trueMTBF      216341265625000 e-9i50/trueMTBF 
 .  +  .  

3 trueMTBF trueMTBF 
695017682500 e-i2i99/trueMTBF       354657812500 e-9i50/trueMTBF 
 ;        +               _ 

3 trueMTBF- 3 trueMTBF" 
37210000 e-12199/trueMTBF       37210000 e-9i50/trueHiBF \ 
 _ +  _     + 

trueMTBFz trueMTBF^ j 

27573300747467551250 e-20828/trueMTBF       216341265625000 e-9150/trueMTBF 

3 trueMTBF" trueMTBF4 

354657812500 e-9150/trueMTBF       99304187500 e-6ioo/trueMTBF 

3 trueMTBF- 3 trueMTBF3 

37210000 e-9150/trueMTBF       18605000 e-6100/trueMTBF 

trueMTBF2 trueMTBF2 

6100 g-siso/trueMTBF       6100 e"6100/',:rueMTBF 

trueMTBF + trueMTBF 

3   I 1   _ g-3050/trueMTBF -3050/trueMTBF   .     695017 682 500 e-"249/trueMTBF 

3 trueMTBF3 

4651250 e-305°/trueMTBF 3050 e-SOSO/t-rueMTBF 

trueMTBF2 trueMTBF 
+ 

e-6ioo/trueMTBF + e-3050/trueMTBF +  1456352673542500 e-18299/trueMTBF 

trueMTBF4 

99304187500 e-6100/trueMTBF       18605000 e-6100/trueMTBF 

3 trueMTBF3 trueMTBF2 

4651250 e-305°/trueMTBF 6100 e-610°/trueMTBF 3050 e-305°/trueMTBF 

trueMTBF2 trueMTBF     "   trueMTBF 
74420000 e-l2199/trueMTBF 6100 e-915°/tr"eMTBF 

trueMTBF2 trueMTBF 

Now we can plot this function: 
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expectedfailuresPlot = Plot[expectedfailurefunction, 

{trueMTBF, 500, 8000}, GridLines-*Automatic, 

Frame -* True, FrameLabel -* { " True MTBF, hours " , 

"Exp. Failure Quantity", "Exact-Analysis Curve" , None}]; 

Exact-Analysis Curve 

2000      4000      6000 
True MTBF, hours 

8000 

The plot above, since it is a key test-design graphic, is assigned as the value of the symbol expectedfail- 

uresPlot so that it can be easily inserted in Chapter 4. 

In order to calculate the expected failure quantity for a true MTBF equal to the lower-test MTBF, we 

could use expectedfailurefunction and a rule to replace trueKJTBF'with it. 

expectedfailurefunction / . trueMTBF -* 2200 

481290607 99900014 997 582541069417 
74212300800000000 e5201-'550   9370240000 e

182S9/220° 
278007073 3324531305726247 

12777600 e^249'2200  41229056000000 e
1109/Z00 

34893876441115590397       3641500969726247 
74212300800000000 e

6207/550 

630259259 
41229056000000 e

1109/200 

22488576 e183/44 

22058640597974041 

3    1 + 

123687168000000 e5207''550 

278007073 

692613947 

22488576 e183-""5 

12961 

4970707 

511104 e61/22 

12777600 e15249/220c 

582541069417 
9370240000 e

18299/220C 

3721 61 

3872 e61/44 

5481811 

511104 e61/22 

242 e1109/200       22 e183/44 

12961 
3872 e61 
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This is an exact result. A numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

4.459530562623423959919 

In order to calculate the expected failure quantity for a true MTBF equal to the upper-test MTBF, we 

could use expectedfailurefunction and a rule to replace trueMTBF with it. 

expectedfailurefunction / . trueMTBF -» 4400 

61364245158684439597 582541069417 
4749587251200000000 es207/noo   149923840000 e

18299/440° 
278007073 22005606513743141 

102220800 e
15249/4400.  3957989376000000 e1109/40° 

3489387 6441115590397 2961287 8449743141 
4749587251200000000 e

520ini0°       3957989376000000 e
1109/40° 

1398615991 
359817216 e183/88 

22058640597974041        1897453495       11186851 

3    1 + 

3957989376000000 e5207''1100       359817216 e183/88       4088832 e61/44 

278007073 29945 
102220800 e15249/4400       15488 e61/88 

582541069417 15275683 29945 
149923840000 e18299/4400       4088832 e61/44       15488 e61/88 

3721 61 
968 e1109/40°       44 e183/8e 

This is an exact result. A numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

2.625630136024280527324 

Next, we will define a function for the expected test time [Epstein, et al. 1963 equation 41]: 

ExpectedTestTime[trueMTBF_] : = 

trueMTBF ExpectedTerminationFailure [trueMTBF] 

A function for the expected test time with trueMTBF left symbolic is: 
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expectedtesttimefunction = ExpectedTestTime[trueMTBF] 

47 97 90801065339367 958 7 50 e-2Qe2s/trueMTBr 

9 trueMTBF" 

27 5733007 474 67551250 e-20828/trueMTBE' 

3 trueMTBF" 

4154747 817367 926250 e-12199/trueKTE; 

3 trueMTBF" 

1456352673542500 e-iS299/trueMTBF       2249254089002500 e-12199''trueMTEr 

•  +  _  
trueMTBF4 3 trueMTBF4 

695017682500 e-15249/trueMTEF       695017682500 e-12199/trueMTEF 

 ; —     +      _ 
3 trueMTBF- 3 trueMTBF-1 

47 9790801065339367958750 e'20S2B/trueMTBF 

' 9 trueMTBF1' 

4154747817367 926250 e-12199/trueMTEF 

3 trueMTBF" 

2249254089002500 e-i2i99/trueMTBr      216341265625000 e-9150/trueMTEF 

+ 
3 trueMTBF' trueMTBF4 

695017682500 e-12199/trueMTBr       354657812500 e-9150/trueMTEr 

3 trueMTBF' 3 trueMTBF- 
37210000 e-1219S/trueMTBF       37210000 e-9150/trueMTBF 

trueMTBF" trueMTBF" 

27573300747467551250 e-2082e/trueMTpr       216341265625000 e-9150/trueMTBF 

3 trueMTBF trueMTBF4 

354657812500 e-9150/trueMTEF       99304187500 e-6100/trueMTBF 

+ 
3 trueMTBF-" 3 trueMTBF1 

37210000 e-9150/trueMTEF       18605000 e-6ioo/trueMTBF 
+ 

trueMTBF" trueMTBF2 

6100 e-9150''trueMTBF       6100 e-6100/trueMTBF 

+ 
trueMTBF trueMTBF 

3 (i _ e-305o/trueMTBF +   695017682500 e'15249/trueMTEF 

3 trueMTBF1" 
4651250 e-3050''trueMTBF      3050 e~3050/trueMTEF 

trueMTBF" trueMTBF 

4 [_e-6ioo/trueMTBl + e-305o/trUeMTBF +   1456352673542500 e-1B299/tr"eMTEt 

I trueMTBF4 

99304187500 e-6100/trueMTBF       18605000 e-6100/trueMTBF 

3 trueMTBF3 trueMTBF2 

4651250 e-3050/trueMTBF       6100 e~6100/trueMTEF       3050 e-3°5o/trueMTBF 

trueMTBF2 trueMTBF trueMTBF 

74420000 e"12199/trueMTEF       6100 e-si50/trueMTBF 

trueMTBF" trueMTBF 
trueMTBF 

Now we can plot this function: 
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expectedtesttimePlot = Plot[expectedtesttimefunction, 

{trueMTBF, 500, 8000}, GridLines-» Automatic, 

Frame-»True, FrameLabel-* {"True MTBF, hours", 

"Exp. Test Time, hours", "Exact-Analysis Curve" , None}]; 
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O 
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10000 
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9000 

8000 

7000 

2000      4000       6000 
True MTBF, hours 

8000 

The plot above, also a key test-design graphic, is assigned as the value of the symbol expectedtesttime- 

Plot so that it can be easily inserted in Chapter 4. 

In order to calculate the expected test time for a true MTBF equal to the lower-test MTBF multiple, we 

could use expectedtesttimefunction and a rule to replace trueA-fTBF it. 

expectedtesttimefunction / . trueMTBF -* 2200 

2200 7 - 
48129060799900014997 582541069417 

74212300800000000 e5207/550   9370240000 e
18299/2200 

278007073 3324531305726247 
12777600 e

15249/2200  41229056000000 e1109'200 

3489387 6441115590397       36415009 69726247 
74212300800000000 e

5207/550 

630259259 
41229056000000 e1109-'200 

22488576 e183/44 

22058640597974041 
123687168000000 e5207-'550 

278007073 
1 + 

692613947 
22488576 e

183/44 

12961 

4970707 
511104 e61/22 

12777600 e15249/2200 

582541069417 
9370240000 e182"/2200 

3721 61 
242 e1109/200      22 e183/44 

3872 e61/44 

5481811 12961 
511104 e61'22  3872 e61'44 
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This is an exact result. A numerical approximation accurate to 22 decimal places is: 

K[%, 22] 

9810.967237771532711822 

In order to calculate the expected test time for a true MTBF equal to the upper-test MTBF. we could use 

expectedtesttimefunction and a rule to replace trueAfTBF with it. 

expectedtesttimefunction / . trueMTBF -» 4400 

„ n  /' /     61364245158684439597 582541069417 
4400 7 

4749587251200000000 e5207/1100  149923840000 e18299-"1400 

278007073 22005606513743141 
102220800 e

15249/440Cl  3957989376000000 e"09/400 
3489387 6441115590397        29612878449743141 

4749587251200000000 e
5207m0G  3957989376000000 e1109-"500 

1398615991 
359817216 e183/88 

22058640597974041        1897453495       11186851 

3    1 + 

3957989376000000 e5201-'1100       359817216 e183/8f       4088832 e61/44 

278007073 29945 
102220800 e15249/440r       15488 e61/88 

582541069417 15275683 29945 
149923840000 e18299/440C       4088832 e61/44       15488 e61/88 

3721 61 
968 e1109/40°       44 e183/88 

This is an exact result. A numerical approximation accurate to 22 decimal places is: 

N[%, 22] 

11552.77259850683432023 

Summary 

An analysis of the exact stage-by-stage acceptance, continuation and rejection probabilities (including 

the impact of truncation) resulting from the exponential sequential test design of Chapter 4 was per- 

formed. An exact operational-characteristic function was obtained and plotted. The consumer risk is 

approximately 22.2% and the producer risk is approximately 19.7%. Exact functions for expected 

failure quantity and test time were obtained and plotted as well. 
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Appendix D 
Exponential Sequential Test Design Package 

This notebook documents the development of sequential test design functions for the Exponential 

distribution. 

Reference 

Title 

Exponential Sequential Test Design Package Development 

Author 

John A. Sereno and Michael J. Cushing 

Summary 

This notebook serves two purposes. First it documents the development of the Exponential Sequential 

Test Design package. Second, it serves as the master for the Exponential Sequential Test Design 

package (i.e., it automatically generates the package). 

Copyright 

Not copyrighted. 

Notebook Version 

0.8.0 

Mathematica Version 

3.0 

History 

This notebook was developed to provide functions and graphical plotting which allow for an automated 

capability for designing exponential sequential tests. 
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Keywords 

reliability, exponential sequential test design, Exponential distribution, operational-characteristic curve, 

sequential probability ratio test, probability ratio sequential test 

Source 

Aroian, L.A., "Sequential analysis, direct method", Technometrics, vol. 10, no. 1, pp. 125-132, Feb. 

1968. 

Aroian, L.A., Robinson, D.E., "Direct methods for exact truncated sequential tests of the mean of a 

Normal distribution", Technometrics, vol. 11, no. 4, pp. 661-675, 1969. 

Dvoretsky, A., Kiefer, J., Wolfowitz, J., "Sequential decision problems for processes with continuous 

time parameter: Testing hypotheses", Annals of Mathematical Statistics, vol. 24, pp. 254-264, 1953. 

Epstein, B., Sobel, M., "Sequential life tests in the exponential case", Annals of Mathematical Statistics, 

vol. 26, pp. 82-93, 1955. 

Epstein, B., "Truncated life tests in the exponential case", Annals of Mathematical Statistics, vol. 25, 

pp. 555-564, 1955. 

Epstein, B., Patterson, A., Quails, C, "The exact analysis of sequential life tests with particular applica- 

tion to AGREE plans", Proc. Joint A1AA-SAE-ASME Aerospace Reliability and Maintainability Confer- 

ence, May 1963, pp. 284-311. 

Kapur, K. & Lamberson, L. Reliability in Engineering Design, John Wiley & Sons, 1977. 

Kececioglu, D., Reliability & Life Testing Handbook Vol 2, PTR Prentice Hall, 1994. 

Maeder, R., Programming in Mathematica, 3rd ed. Addison-Wesley, 1996. 

Rao, S. Reliability-Based Design, McGraw-Hill Inc, 1992. 

US Military Handbook 781, Handbook for Reliability Test Methods, Plans and Environments for 

Engineering, Development, Qualification and Production, version A, Apr 1996. 

Wald, A., "Sequential tests of statistical hypotheses", Annals of Mathematical Statistics , June 1945, pp. 

117-186. 

Wald, A., Sequential Analysis, John Wiley & Sons, 1947. 

Warnings 

Note: all cells marked as "InitializationCell" will be written to the Auto-Save package. This package can 

then be read in programs that use it with Needs [ "Template " "] . Cells not intended to belong to the 

package do not have this property. 
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Limitation 

At present, the impact of truncation cannot be analyzed using the functions in this package. We have 

stand-alone examples which implement the exact-analysis method of Epstein, Patterson and Quails 

[1963] in Mathematica. We also have stand-alone, Mathematica-based simulation examples. 

Discussion 

None. 

Requirements 

The package utilities* FilterOptions * is used by this package. 

Interface 

This section declares the publicly visible functions, options, and values. 

■ Set up the package context, including public imports 

BeginPackage["Reliability"ExponentialSequentialTestDesigrT ", 

"Utilities* FilterOptions""] 

■ Usage messages for the exported functions and the context itself 

ExponentialSequentialTestDesign::"usage"= 

"ExponentialSequentialTestDesign.m (version 0.8.0) is a 

package which contains a collection of functions useful for 

sequential test design based on the Exponential distribution." 

ExponentialAccept::"usage"= 

"ExponentialAccept[ltmtbf,j8,utmtbf,a,time] provides cumulative 

failures for acceptance as a function of cumulative test 

time given specified values for lower-test MTBF, ß   ( 
consumer risk), upper-test MTBF and a   (producer risk)." 

ExponentialReject::"usage"= 

"ExponentialRej ect[1tmtbf,ß,utmtbf,a,time,opts] provides 

cumulative failures for rejection as a function of cumulative 

test time given specified values for lower-test MTBF, ß   ( 
consumer risk), upper-test MTBF and a   (producer risk)." 
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ExponentialAcceptProbability::"usage" = 

"ExponentialAcceptProbability[1tmtbf,ß,utmtbf,a,h,opts] calculates 

the acceptance probability given specified values for lower- 

test MTBF, ß   (consumer risk), upper-test MTBF, a   (producer 

risk) and the exponent h. ExponentialAcceptProbability[ 

1 tmtbf,/3,utmtbf,a,truemtbf,startpt,opts] calculates the 

acceptance probability given specified values for lower- 

test MTBF, ß,   upper-test MTBF, a, true MTBF and startpt ( 

FindRoot starting point for the exponent h). This function 

provides approximate results in the non-truncated case." 

ExponentialExactAcceptProbability::"usage"= 

"ExponentialExactAcceptProbability[1tmtbf,ß,utmtbf,a, 

truemtbf,a] calculates the exact acceptance probability 

for the non-truncated case given specified values for 

lower-test MTBF, ß   (consumer risk), upper-test MTBF, a ( 

producer risk), true MTBF and the constant a (Log[A]) ." 

ExponentialTrueMTBF::"usage"= 

"ExponentialTrueMTBFfltmtbf,utmtbf,h] is an implicit equation which 

relates the true MTBF to the lower-test MTBF, upper-test MTBF 

and the exponent h. It is approximate in the non-truncated case 

and is used in conjunction with ExponentialAcceptProbability." 

ExponentialExpectedFailures::"usage"= 

"ExponentialExpectedFailures[1tmtbf,ß,utmtbf,a,truemtbf, 

startpt,opts] calculates the expected quantity of failures 

given specified values for lower-test MTBF, ß   (consumer 
risk), upper-test MTBF, a   (producer risk), true MTBF and 

startpt (FindRoot starting point for the exponent h). It 

provides approximate results in the non-truncated case." 

ExponentialTruncationFailures::"usage" = 

"ExponentialTruncationFailures[ltmtbf,ß,utmtbf,a] calculates 

the quantity of failures which would result in a truncated 

reject decision given specified values for lower-test MTBF, 

ß   (consumer risk), upper-test MTBF and a (producer risk)." 

ExponentialTruncationTime::"usage"= 

"ExponentialTruncationTime[utmtbf,a,failures] calculates 

the quantity of time which would result in a truncated 

accept decision given specified values for upper-test 

MTBF, a (producer risk) and truncation failures." 
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ConstantAMethod::"usage" = 
"ConstantAMethod is an option for specifying the approximation 

method for the constant A that appears in the reject-line 

intercept. Alternatively, a numerical value can be supplied for A." 

Epstein::"usage"= 
"Epstein is a choice for the option ConstantAMethod. 

ConstantAMethod -> Epstein causes the Epstein and 

Sobel approximation to be used for the constant A." 

Wald::"usage"="Wald is a choice for the option 

ConstantAMethod. ConstantAMethod -> Wald causes the Epstein 

and Sobel approximation to be used for the constant A." 

Error messages for the exported objects 

See subsections of each of the exported functions for a discussion of error trapping and messages. 

ExponentialAccept 

ExponentialAccept::"comparg"= "No arguments may be complex numbers." 

ExponentialAccept::"rangearg"= 
"No MTBF or risk values may be £ 0 and no risk values may be S: 1." 

ExponentialAccept::"revrel"= 

"Lower-test MTBF may not be i.  upper-test MTBF." 

ExponentialAccept::"possym"= 
"Test length is expected to be either symbolic or positive." 

ExponentialReject 

ExponentialReject::"comparg"= "No arguments may be complex numbers. 

ExponentialReject::"rangearg"= 

"No MTBF or risk values may be S  0 and no risk values may be i.  1. 

ExponentialReject::"revrel"= 

"Lower-test MTBF may not be i  upper-test MTBF." 
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ExponentialReject::"possym"= 

"Test length is expected to be either symbolic or positive." 

ConstantAMethod 

ConstantAMethod::"methopt"= 

"Method setting is expected to be either Wald or Epstein. 

The default setting for this option will be used instead." 

ExponentialTrueMTBF 

ExponentialTrueMTBF::"comparg"= "No arguments may be complex numbers." 

ExponentialTrueMTBF::"rangearg"= 

"No MTBF or risk values may be S  0 and no risk values may be i.   1." 

ExponentialTrueMTBF::"revrel"= 

"Lower-test MTBF may not be i.  upper-test MTBF." 

ExponentialAcceptProbability' 

ExponentialAcceptProbability::"comparg"= 

"No arguments may be complex numbers." 

ExponentialAcceptProbability::"rangearg" = 

"No MTBF or risk values may be 3 0 and no risk values may be ü 1." 

ExponentialAcceptProbability::"revrel"= 

"Lower-test MTBF may not be fc upper-test MTBF." 

ExponentialAcceptProbability::"frns"= "The numerical 

root-finding starting point is expected to be numeric." 

ExponentialExactAcceptProbability 

ExponentialExactAcceptProbability::"comparg" = 

"No arguments may be complex numbers." 

ExponentialExactAcceptProbability::"rangearg" = 

"No MTBF or risk values may be £ 0 and no risk values may be i.  1." 
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ExponentialExactAcceptProbability::"revrel" = 

"Lower-test MTBF may not be i  upper-test MTBF." 

ExponentialExpectedFailures 

ExponentialExpectedFailures::"comparg"= 

"No arguments may be complex numbers." 

ExponentialExpectedFailures::"rangearg"= 

"No MTBF or risk values may be i 0 and no risk values may be i.  1." 

ExponentialExpectedFailures::"revrel" = 

"Lower-test MTBF may not be £ upper-test MTBF." 

ExponentialExpectedFailures::"frns"= "The numerical 

root-finding starting point is expected to be numeric." 

ExponentialTruncationFailures 

ExponentialTruncationFailures::"comparg" = 

"No arguments may be complex numbers." 

ExponentialTruncationFailures::"rangearg" = 

"No MTBF or risk values may be £  0 and no risk values may be i.  1." 

ExponentialTruncationFailures::"revrel"= 

"Lower-test MTBF may not be i.  upper-test MTBF." 

ExponentialTruncation Time 

ExponentialTruncationTime::"comparg" = 

"No arguments may be complex numbers." 

ExponentialTruncationTime::"rangearg" = 

"No MTBF or risk values may be £  0 and no risk values may be £ 1." 

ExponentialTruncationTime::"possym"= "Test length is 

expected to be either symbolic or a positive integer." 

ExponentialTruncationTime::"possym"= 

"Test length is expected to be either symbolic or positive." 
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Implementation 

This part contains the actual definitions and any auxiliary functions that should not be visible outside. 

Begin the private context (implementation part) 

Begin["*Privatev" ] 

Unprotect any system functions for which definitions will be made 

Not applicable. 

Definition of auxiliary functions and local (static) variables 

aK 

1-/3 
aK[/3   , a   ]  : = 

aK[ltmtbf_, ß_, utmtbf_, a]  := - 
o (2 utrotbf) 

ltmtbf 

bK 

ß 
bK[/3_, o_]  : = 

1-a 

denom 

utmtbf 
denom [ltmtbf   , utmtbf   1  :=Logf 1 LltmtbfJ 

hsubO 

Log[bK[/3, a]] 
hsubO [ltmtbf   , ß_, utmtbf_, a_]  : = 

denom[1tmtbf, utmtbf] 

hsubl 

hsubl [ltmtbf_, ß_,  utmtbf_, a_, method_] : = 

Which [method === Wald, Log[aK[/3, a]], 

method = = = Epstein, Log [aK[ ltmtbf, ß,  utmtbf, a]], 

NumericQ[method], Log[method]]/denom[1tmtbf, utmtbf] 
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slope 

slope[ltmtbf   , utmtbf  ]  := 
denom[ltmtbf, utmtbf] 

trueMTBF 

t   UTJPTJ>r   \ I 

trueMTBF [ltmtbf   , utmtbf   , h   ] ltmtbf 

h . __i l      » 
* ltmtbf   ~   utmtbf ' 

acceptProb 

acceptProb[ltmtbf_, ß_,  utmtbf_, a_,  h_] :: 
<aK[/3, a])h-l 

<aK[/3, a])h- (bK[/3, a])h 

acceptProbtltmtbf_, ß_,  utmtbf_, a_,  truemtbf_, startpt_, opts ] : = 

acceptProb[ltmtbf, ß,  utmtbf, a, h] /. 

FindRoot[trueMTBF[ltmtbf, utmtbf, h] == truemtbf, {h, startpt}, opts] 

epdenom 

1 1 
epdenom [ 1 tmtbf   , utmtbf   ]  :: 

ltmtbf      utmtbf 

ephO 

-Log[bK[j8, a]] 
ephO[ltmtbf_, ß_, utmtbf_, a_]  :=  — ———  

epdenom[ltmtbf, utmtbf] 

ephl 

Log[aK[£, a] ] 
ephl [ltmtbf   , ß   , utmtbf   , a   ]  : = 

epdenom[ltmtbf, utmtbf] 

eps 

Log [»SSL] 
eps [ltmtbf   , utmtbf   ] ltmtbf 

epdenom[ltmtbf, utmtbf] 
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■ Definition of the exported functions 

ExponentialAccepl 

ExponentialAccept [ltmtbf_, ß_,  utmtbf_, a_, time_] : = 

hsubO[ltmtbf, ß,  utmtbf, a] + time slope [ltmtbf, utmtbf] /; 

If[FreeQ[N[ltmtbf] ££N[/3] &£N[utmtbf] &SN[a] &&N[time], Complex], 

True, Message[ExponentialAccept: :"comparg"] ; False] && 

lf[! (TrueQ[N [ltmtbf] i. N [utmtbf ]]) , True, 

Message [ExponentialAccept: :"revrel"] ; False] && 

If [! (TrueQ[N[ltmtbf] £ 0 | | N[0] £ 0 | | N[/3] fc 1 | | N[utmtbf] S 0 | | N[a] ü 0 | | 

N[a] *1]), True, Message[ExponentialAccept::"rangearg"]; 

False] && If[Positive[time] | | 1 (FreeQ[time, _Symbol]), 

True, Message [ExponentialAccept: :"possym"] ; False] 

ExponentialReject 

Options [ExponentialReject] = {ConstantAMethod -* Epstein) 

ExponentialReject[ltmtbf_, ß_,  utmtbf_, a_,  time_, opts ] : = 

Module[{kAMethod}, kAMethod = 

ConstantAMethod/. Flatten[{opts}] /. Options[ExponentialReject]; 

If [kAMethod = 1 = Wald SS kAMethod = ! = Epstein && ! NumericQ [kAMethod] , 

Message[ConstantAMethod::methopt]; 

kAMethod = ConstantAMethod / . Options[ExponentialReject]]; 

hsubl [ltmtbf, ß,  utmtbf, a, kAMethod] + time slope [ltmtbf, utmtbf]] / ; 

If [FreeQ[N [ltmtbf] &&N[/3] &&N [utmtbf] &&N[a] &&N[time], Complex], 

True, Message [ExponentialReject: :"comparg"] ; False] && 

If[! (TrueQ[N[ltmtbf] Z N[utmtbf]]), True, 

Message[ExponentialReject::"revrel"]; False] && 

If [! (TrueQ[N[ltmtbf] S 0 | | N[0] £ 0 | | N[J3] * 1 | | N[utmtbf] £ 0 | | N[a] S 0 | | 

N[a] fcl]), True, Message[ExponentialReject::"rangearg"]; 

False] &&If[Positive[time] | | ! (FreeQ[time, _Symbol]), 

True, Message [ExponentialReject: :"possym"] ; False] 

ExponentialTrueMTBF 

ExponentialTrueMTBF[ltmtbf_, utmtbf_, h_] := 

trueMTBF[ltmtbf, utmtbf, h] / ; 

If[FreeQ[N[ltmtbf] &&N[utmtbf] &&N[h], Complex], True, 

Message [ExponentialTrueMTBF: :"comparg"] ; False] && 

If[! (TrueQ[N[ltmtbf] ü K[utmtbf]]), True, 

Message[ExponentialTrueMTBF::"revrel"]; False] && 

If [! (TrueQ [N [ltmtbf ] £ 0 | | N[utmtbf ] SO]), True, 

Message [ExponentialTrueMTBF: : "rangearg"] ; False] 
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ExponentialAcceptProbability 

Options[KxponentialAcceptProbability] = Options[FindRoot] 

ExponentialAcceptProbability[ltmtbf_, ß_,  utmtbf_, a_, h_] : = 

acceptProb[ltmtbf, ß,  utmtbf, a, h] / ; 
If [FreeQ[N[ltmtbf] &&N[J3] &&N[utmtbf] &&N[a] &&N[h], Complex], True, 

Message[ExponentialAcceptProbability::"comparg"]; False] && 

If[! (TrueQ[N[ltmtbf] * N[utmtbf]]) , True, 
Message[ExponentialAcceptProbability::"revrel"]; False] && 

If [I (TrueQ[N[ltmtbf] ü 0 | | N[/3] iO | | N[/3] ül || 

N[utmtbf] iO||N[o]iO||N[a]il])( True, 
Message[ExponentialAcceptProbability::"rangearg"]; False] 

ExponentialAcceptProbability[1tmtbf _, 

/3_, utmtbf_, a_, truemtbf_, startpt_, opts ] : = 

acceptProb[ltmtbf, ß,  utmtbf, a, truemtbf, startpt, opts] / ; 

If [FreeQ[N[ltmtbf] &&N[/3] &&N [utmtbf] &S 

N[a] &&N[truemtbf] && N[startpt] , Complex], True, 
Message [ExponentialAcceptProbability: :"comparg"] ; False] && 

If[! (TrueQ[N[ltmtbf] i. N[utmtbf]]) , True, 
Message [ExponentialAcceptProbability: :"revrel"] ; False] && 

If [! (TrueQ[N[ltmtbf] i 0 | | N[J3] S0\\ N[/3] & 1 | | N[utmtbf] S 0 | | 

N[a] £ 0 | | N[a] * 1 | | N[truemtbf] SO]), True, 
Message[ExponentialAcceptProbability::"rangearg"]; False] && 

If[NumericQIstartpt], True, 
Message[ExponentialAcceptProbability::frns]; False] 
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ExponentialExactAcceptProbability 

ExponentialExactAcceptProbability[ltmtbf   , ß   , 

utmtbf_, a_, truemtbf_, a_]  :: (l^) 
1 ltatbf ~ utrntkt ' 

(-D1 

z 
i=0 

(wiiHExp[- 
x1 \ 

I '     t™—tM(_i ! | 

'"—"*'TEST-«SET > 
{ uantbf 1 

i ! / 

Ceiling 12 i| 

Z 
i=0 i I (-1)1 Exp[ 

truerotbf (      '„ L— ) 
, r  wtmtbf  i 

/ 

truemtbf ( 
ltmtbf utmtbf 

Log [ -HSSS* ] y l ltmtbf J 

/; 

If [FreeQ[N [ltmtbf] &&N[/3] &&N[utmtbf] &£N[a] && N[truemtbf ] &&N[a], 

Complex] , True, 

Message[ExponentialExactAcceptProbability::"comparg"]; False] && 

If[! (TrueQ[N[ltmtbf] *N[utmtbf]]), True, 

Message[ExponentialExactAcceptProbability::"revrel"]; False] && 

If [! (TrueQ[N[ltmtbf] S 0 | | N[/3] S 0 | | N[/3] * 1 | | N[utmtbf] S 0 | | 

N[a] S0|| N[a] Z 1 | | N[truemtbf] SO]), True, 

Message[ExponentialExactAcceptProbability::"rangearg"]; False] 

ExponentialExpectedFailures 

Options[ExponentialExpectedFailures] = Options[FindRoot] 
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ExponentialExpectedFailures[ltmtbf_, 

/3_, utmtbf _, a_, truemtbf_, startpt_, opts ] : = 

Module[{ap}, (ephl[ltmtbf, ß, utmtbf, a] - ap (ephO[ltmtbf, ß,  utmtbf, a] + 

ephl[ltmtbf, ß,  utmtbf, a])) / (eps[ltmtbf, utmtbf] - truemtbf) /. 

ap-»acceptProb[ltmtbf, ß,  utmtbf, a, truemtbf, startpt, opts]] / ; 

If [FreeQtN[ltmtbf] &&N[/3] &&N[utmtbf] &£N[a] && 

N[truemtbf] && N[startpt], Complex], True, 

Message[ExponentialExpectedFailures::"comparg"]; False] && 

If[! (TrueQ[N[ltmtbf] i. N[utmtbf]]) , True, 

Message[ExponentialExpectedFailures::"revrel"]; False] && 

If [! (TrueQfN[ltmtbf] iO | | N[ß] <, 0 | | N[/3] *1\\ N[utmtbf] <. 0 | | 

N[a] s0|| N[a] i. 1 | | N[truemtbf] £ 0]), True, 

Message[ExponentialExpectedFailures::"rangearg"]; False] && 

If[NumericQ[startpt], True, 

Message[ExponentialExpectedFailures::frns]; False] && 

(eps[ltmtbf, utmtbf] # truemtbf | | Head[truemtbf] == Symbol) 

ExponentialExpectedFailures[ltmtbf_, 

ß_,  utmtbf_, a_, truemtbf_, startpt_, opts ] : = 

ephO [ltmtbf, ß,  utmtbf, a]  ephl [ltmtbf, j8, utmtbf, a] 

eps[ltmtbf, utmtbf]2 
/; 

If [FreeQ[N[ltmtbf] &&N[/3] &&N[utmtbf] && 

N[a] &&N[truemtbf] && N[startpt] , Complex], True, 

Message[ExponentialExpectedFailures::"comparg"]; False] && 

If[! (TrueQ[N[ltmtbf] Z N[utmtbf]]), True, 

Message[ExponentialExpectedFailures::"revrel"]; False] && 

If [! (TrueQ[N[ltmtbf] <; 0 | | N[/3] S 0 | | N[ß] ^ 1 | | 

N [utmtbf] <. 0 | | N[a] S 0 | | N[a] i 1 | | N [truemtbf] iO]), 

True, Message[ExponentialExpectedFailures::"rangearg"]; 

False] && If[NumericQ[startpt], True, 

Message[ExponentialExpectedFailures::"frns"]; False] && 

eps[ltmtbf, utmtbf] == truemtbf 
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ExponenüalTruncationFailures 

ExponentialTruncationFailures[ltmtbf_, J3_, utmtbf_, a_] : = 

InverseGammaRegularized[-^p , 0, a] 
Module[{df}, df= l;While[ 

InverseGammaRegularized[ — , 0, 1-/3] 

ltmtbf .df 
ufantbf ' ++df]/Return [Ceiling [ — ]]] /; 

If [FreeQ[N [ltmtbf] &&N[/3] &&N[utmtbf] &&N[a], Complex], True, 

Message[ExponentialTruncationFailures::"comparg"]; False] && 

If[! (TrueQ[N[ltmtbf] i. Nfutmtbf ] ]) , True, 

Message[ExponentialTruncationFailures::"revrel"]; False] && 

If [! (TrueQ[N[ltmtbf] i 0 | | N[/3] i, 0 | | N[/3] * 1 | | 

N[utmtbf] S 0 | | N[a] <, 0 | | N[a] Z 1]) , True, 

Message[ExponentialTruncationFailures::"rangearg"]; False] 

ExponentialTruncation Time 

ExponentialTruncationTime[utmtbf_, a_, failures_] := 

utmtbf InverseGammaRegularized [failures, 0, a] / ; 

If [FreeQ [Nfutmtbf] £&N[a] && N [failures] , Complex], True, 

Message[ExponentialTruncationTime::"comparg"]; False] && 

If [! (TrueQ[N [utmtbf] S 0 | | N[a] S 0 | | N[a] il]), True, 

Message[ExponentialTruncationTime::"rangearg"]; False] && 

If[(Positive[failures] && IntegerQ[failures]) || 

! (FreeQ[failures, _Symbol]), True, 

Message[ExponentialTruncationTime::"possym"]; False] 

■ Definitions for system functions 

Not applicable. 

■ Restore protection of system symbols 

Not applicable. 

■ End the private context 

End[] 

Epilog 

This section protects exported symbols and ends the package. 
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■ Protect exported symbol 

Protect[ExponentialAccept, ExponentialReject, ConstantAMethod, Epstein, 

Wald, ExponentialAcceptProbability, ExponentialExactAcceptProbability, 

ExponentialTrueMTBF, ExponentialExpectedFailures, 

ExponentialTruncationFailures, ExponentialTruncationTime] 

■ End the package context 

EndPackage[] 
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Appendix E 
Simulation Supplement to Chapter 5 

Introduction 

This appendix contains the bulk of the simulation results for the hypergeometric sequential test plan 

designed in chapter 5 and was executed in conjunction with it. Chapter 5 contains the simulation assum- 

ing the defect quantity equals 40. The simulations assuming the number of defective procedures in the 

population of 310 was 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34 and 37 are in this appendix. This appendix 

must be read in conjunction with Chapter 5 in order to be properly understood. 

Simulation of Decision Rules 

■ Assume Defect Quantity Equals 37 

If 37 of the 310 procedures are defective, then the percentage of defectives is 

37 
//N 

310 

0.119355 

and the percentage of non-defectives is 

0.880645 

The initial quantity of defective procedures is assigned as the value of the symbol initdef. 

initdef = 37; 

The pseudorandom number generating function is: 
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fun[{stage_Xnteger, cumdef_Integer}]  := 
{stage + 1, cumdef + Random[HypergeometricDistribution[ 

BamplelBtaoe+1J , initdef - cumdef, procIllta9e+1]1] ] } 

The function that will test the simulation against the acceptance rules is: 

testfun[{stage_Integer, cumdef_Integer}]  := accept[stage] <cumdef 

A simulation of 25,000 hypergeometric tests is generated as follows: 

simlist = 

Table[Length[NestWhileList[fun, {0, 0}, testfun, 1, Length[sample]]] -1, 
{simqty}]; 

The symbol simlist contains a list of the stages that the simulations ended at. The quantity of terminations 

at each stage are assigned as the value of simlist37: 

simlist37= 

Table[Length[Select[simlist, #1 = i&]], {i, l. Length[sample]}]; 

The simulation results are appended to the simulation file so that they can be retrieved for subsequent 

analysis if need be. 

Save[simfile, simlist37] 

These simulation results may be easily retrieved thus: 

<< nhypersimfile3"; 

Stage-by-stage termination probabilities are: 
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r r r r Simlist37 
TableFormlTranspose {Range[l, 15], N  111, 

1  simqty  J J J 

TableHeadings-> {None, {"Stage", "Termination Probability"}}, 

TableAlignments-» Center] 

Stage     Termination Probability 
1 0.07104 
2 0.0132 
3 0.00372 
4 0.00096 
5 0.0002 
6 0.00004 
7 0. 
8 0.00004 
9 0. 
10 0. 
11 0. 
12 0. 
13 0. 
14 0. 
15 0.9108 

The terminations at stages 1 - 14 are acceptances. The terminations at the last stage are simulations that 

went the distance. Cumulative termination probabilities are: 

. .     r        rr r       r        simlist37 
TableForm[Transpose[{Range[0, 15], N[FoldList[Plus, 0,  1111, 

simqty  J J J J 

TableHeadings -» 

{None, {"Stage", "Cumulative Termination Probability"}}, 

TableAlignments -» Center] 

Staqe Cumulative Termination Probability 
0 0. 
1 0.07104 
2 0.08424 
3 0.08796 
4 0.08892 
5 0.08912 
6 0.08916 
7 0.08916 
8 0.0892 
9 0.0892 
10 0.0892 
11 0.0892 
12 0.0892 
13 0.0892 
14 0.0892 
15 1. 
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The stage 1 acceptance probability is: 

PDF[HypergeometricDistribution[20, 37, 310], 0] //N 

0.0721509 

The stage 1 acceptance probability obtained by simulation is consistent with the numerical result above. 

The final cumulative acceptance probability is the stage 14 termination probability, i.e., approximately 

9%. 

■ Assume Defect Quantity Equals 34 

If 34 of the 310 procedures are defective, then the percentage of defectives is 

34 
//N 

310 

0.109677 

and the percentage of non-defectives is 

1-% 

0.890323 

The initial quantity of defective procedures is assigned as the value of the symbol initdef: 

initdef = 34; 

The pseudorandom number generating function is: 

fun[{stage_Integer, cumdef_Integer}]  := 
{stage + 1, cumdef + Random [HypergeometricDistribution[ 

samplel8tage+1, , initdef - cumdef, proCj8tage+1], ] ] } 

The function that will test the simulation against the acceptance rules is: 

testfun[{stage_Integer, cumdef_Integer}]  :=accept[stage] <cumdef 

A simulation of 25,000 hypergeometric tests is generated as follows: 
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simlist = Table[ 

Length[NestWhileList[fun, {0, 0}, testfun, 1, Length[sample]]] -1, 
{simqty}]; 

The symbol simlist contains a list of the stages that the simulations ended at. The quantity of termina- 

tions at each stage are assigned as the value of simlist34: 

simlist34= 

Table[Length[Select[simlist, #1 == i &]],  {i, 1, Length[sample]}]; 

The simulation results are appended to the simulation file so that they can be retrieved for subsequent 

analysis if need be. 

Save[simfile, simlist34] 

These simulation results may be easily retrieved thus: 

<< "hypersimfile3"; 

Stage-by-stage termination probabilities are: 

TableForm[Transpose[{Range[1, 15], N[ — 111, 
simqty  "' i ■* ' 

TableHeadings -* {None, {"Stage", "Termination Probability")>, 
TableAlignments -» Center] 

Stage Termination Probability 
1 0.09204 
2 0.01896 
3 0.00552 
4 0.00244 
5 0.00068 
6 0.00036 
7 0.00008 
8 0. 
9 0. 
10 0. 
11 0. 
12 0. 
13 0. 
14 0. 
15 0.87992 
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The terminations at stages 1 - 14 are acceptances. The terminations at the last stage are simulations that 

went the distance. Cumulative termination probabilities are: 

TableForm[Transpose[{Range[0, 15], N[FoldList[Plus, 0,   - 11}1, 
simqty  J J JJ 

TableHeadings -» 

{None, ("Stage", "Cumulative Termination Probability"}), 
TableAlignments -» Center] 

Stage Cumulative Termination Probability 
0 0. 
1 0.09204 
2 0.111 
3 0.11652 
4 0.11896 
5 0.11964 
6 0.12 
7 0.12008 
8 0.12008 
9 0.12008 
10 0.12008 
11 0.12008 
12 0.12008 
13 0.12008 
14 0.12008 
15 1. 

The stage 1 acceptance probability is: 

PDF[HypergeometricDistribution[20, 34, 310], 0] //N 

0.0904941 

The stage 1 acceptance probability obtained by simulation is consistent with the numerical result above. 

The final cumulative acceptance probability is the stage 14 termination probability, i.e., approximately 

12%. 

Assume Defect Quantity Equals 31 

If 31 of the 310 procedures are defective, then the percentage of defectives is 

31 
//N 

310 

0.1 
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and the percentage of non-defectives is 

1-% 

0.9 

The initial quantity of defective procedures is assigned as the value of the symbol initdef: 

initdef = 31; 

The pseudorandom number generating function is: 

fun[{stage_Integer, cumdef_Integer}]  := 

{stage + 1, cumdef + Random [HypergeometricDistribution[ 
sample|l8tagetlj , initdef-cumdef, proC|,8tage+1j ] ] } 

The function that will test the simulation against the acceptance rules is: 

testfun[{stage_Integer, cumdef_Integer} ]  := accept[stage] <cumdef 

A simulation of 25,000 hypergeometric tests is generated as follows: 

simlist = Table[ 

Length[NestWhileList[fun,  {0, 0}, testfun, 1, Length[sample]]] -1, 
{simqty}]; 

The symbol simlist contains a list of the stages that the simulations ended at. The quantity of termina- 

tions at each stage are assigned as the value of simlist31: 

simlist31= 

Table[Length[Select[simlist, #1 = i &] ] , {i, 1, Length[sample]}]; 

The simulation results are appended to the simulation file so that they can be retrieved for subsequent 

analysis if need be. 

Save[simfile, simlist31] 

These simulation results may be easily retrieved thus: 

« "hypersimfile3"; 
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Stage-by-stage termination probabilities are: 

_ ,_■,   ~       r rr . simlist31 ,,, 
TableForm[Transpose[{Range[1, 15], N[ ]}], 

simqty 

TableHeadings-»{None, {"Stage", "Termination Probability"}}, 

TableAlignments-» Center] 

Stage Termination Probability 
1 0.115 
2 0.0312 
3 0.0098 
4 0.00408 
5 0.00144 
6 0.00036 
7 0.0002 
8 0.00004 
9 0. 
10 0. 
11 0. 
12 0. 
13 0. 
14 0. 
15 0.83788 

The terminations at stages 1 - 14 are acceptances. The terminations at the last stage are simulations that 

went the distance. Cumulative termination probabilities are: 
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r ,, r r Simlist31 , , , , 
TableForm I Transpose I {Range [0, 15], N FoldList Plus, 0,  I |}|/ 

simqty  J J J J 

TableHeadings -» 

{None, {"Stage", "Cumulative Termination Probability"}}, 

TableAl Lgnments -» Center] 

Stage Cumula t ive Termination Probability 
0 0. 
1 0.115 
2 0.1462 
3 0.156 
4 0.16008 
5 0.16152 
6 0.16188 
7 0.16208 
8 0.16212 
9 0.16212 
10 0.16212 
11 0.16212 
12 0.16212 
13 0.16212 
14 0.16212 
15 1. 

The stage 1 acceptance probability is: 

PDF[HypergeometricDistribution[20, 31, 310], 0] //N 

0.113213 

The stage 1 acceptance probability obtained by simulation is consistent with the numerical result above. 

The final cumulative acceptance probability is the stage 14 termination probability, i.e., approximately 

16%. 

Assume Defect Quantity Equals 28 

If 28 of the 310 procedures are defective, then the percentage of defectives is 

28 
//N 

310 

0.0903226 

and the percentage of non-defectives is 
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1 - % 

0.909677 

The initial quantity of defective procedures is assigned as the value of the symbol initdef: 

initdef = 28; 

The pseudorandom number generating function is: 

fun[{stage_Integer, cumdef_Integer}]  := 

{stage + 1, cumdef + Random [HypergeometricDistribution [ 
sample|l8tage+1]|, initdef - cumdef, procIstage+1, ] ] } 

The function that will test the simulation against the acceptance rules is: 

testfun[{stage_Integer, cumdef_Integer}]  := accept[stage] <cumdef 

A simulation of 25,000 hypergeometric tests is generated as follows: 

simlist = Table[ 

Length[NestWhileList[fun,  {0, 0}, testfun, 1, Length[sample]]] -1, 
{simqty}]; 

The symbol simlist contains a list of the stages that the simulations ended at. The quantity of termina- 

tions at each stage are assigned as the value of simlist28: 

simlist28= 

Table[Length[Select[simlist, #1 = i &]], {i, l, Length[sample]}]; 

The simulation results are appended to the simulation file so that they can be retrieved for subsequent 

analysis if need be. 

Save[simfile, simlist28] 

These simulation results may be easily retrieved thus: 

<< "hypersimfile3"; 

Stage-by-stage termination probabilities are: 
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r r r r simlist28 ,,, 
TableForm[Transpose[{Range[1, 15], N[ ]}], 

simqty  J J J 

TableHeadings-» {None, {"Stage", "Termination Probability"}}, 

TableAlignments-» Center] 

Stage Termination Probability 
1 0.14216 
2 0.03908 
3 0.01416 
4 0.0066 
5 0.00324 
6 0.00112 
7 0.0006 
8 0.00044 
9 0. 
10 0. 
11 0. 
12 0. 
13 0. 
14 0. 
15 0.7926 

The terminations at stages 1 - 14 are acceptances. The terminations at the last stage are simulations that 

went the distance. Cumulative termination probabilities are: 

TableForm[Transpose[{Range[0, 15], NfFoldList[Plus, 0, Slm   1111, 
simqty  J J J J 

TableHeadings -» 

{None, {"Stage", "Cumulative Termination Probability"}}, 
TableAlignments -» Center] 

Stage Cumulative Termination Probability 
0 0. 
1 0.14216 
2 0.18124 
3 0.1954 
4 0.202 
5 0.20524 
6 0.20636 
7 0.20696 
8 0.2074 
9 0.2074 
10 0.2074 
11 0.2074 
12 0.2074 
13 0.2074 
14 0.2074 
15 1. 
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The stage 1 acceptance probability is: 

PDF[HypergGometricDistribution[20, 28, 310], 0] //N 

0.141285 

The stage 1 acceptance probability obtained by simulation is consistent with the numerical result above. 

The final cumulative acceptance probability is the stage 14 termination probability, i.e., approximately 

21%. 

Assume Defect Quantity Equals 25 

If 25 of the 310 procedures are defective, then the percentage of defectives is 

25 

310 
//N 

0.0806452 

and the percentage of non-defectives is 

1 -% 

0.919355 

The initial quantity of defective procedures is assigned as the value of the symbol initdef. 

initdef = 25; 

The pseudorandom number generating function is: 

fun[{stage_Integer, cumdef_Integer}]  := 

{stage + 1, cumdef + Random [HypergeometricDistribution[ 
sample|tstagetlI, initdef-cumdef, procl8tage+1, ] ] } 

The function that will test the simulation against the acceptance rules is: 

testfun[{stage_Integer, cumdef_Integer}]  :=accept[stage] < cumdef 

A simulation of 25,000 hypergeometric tests is generated as follows: 
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simlist = Table[ 

Length[NestWhileList[fun, {0, 0}, testfun, 1, Length[sample]]] -1, 
{simqty}]; 

The symbol simlist contains a list of the stages that the simulations ended at. The quantity of termina- 

tions at each stage are assigned as the value of simlist2'5: 

simlist25 = 

Table[Length[Select[simlist, #1 = i &] ] , {i, 1, Length[sample]}]; 

The simulation results are appended to the simulation file so that they can be retrieved for subsequent 

analysis if need be. 

Savefsimfile, simlist25] 

These simulation results may be easily retrieved thus: 

<< "hypersimfile3"; 

Stage-by-stage termination probabilities are: 

TableForm[Transpose[{Range[1, 15], N[ ]}], 
simqty   J J 

TableHeadings-»{None, {"Stage", "Termination Probability"}), 
TableAlignments -> Center] 

Stage     Termination Probability 
1 0.17484 
2 0.05476 
3 0.0246 
4 0.01188 
5 0.00764 
6 0.005 
7 0.00212 
8 0.00084 
9 0.0006 
10 0.00012 
11 0.00004 
12 0. 
13 0. 
14 0. 
15 0.71756 
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The terminations at stages 1 - 14 are acceptances. The terminations at the last stage are simulations that 

went the distance. Cumulative termination probabilities are: 

TableForm[Transpose[{Range[0, 15], N[FoldList[Plus, 0,  —^-^ 11)1, 
simqty  J J i J 

TableHeadings -» 

{None, {"Stage", "Cumulative Termination Probability"}}, 
TableAlignments -* Center] 

Stage Cumulative Termination Probability 
0 0. 
1 0.17484 
2 0.2296 
3 0.2542 
4 0.26608 
5 0.27372 
6 0.27872 
7 0.28084 
8 0.28168 
9 0.28228 
10 0.2824 
11 0.28244 
12 0.28244 
13 0.28244 
14 0.28244 
15 1. 

The stage 1 acceptance probability is: 

PDF[HypergeometricDistribution[20, 25, 310], 0] //N 

0.175889 

The stage 1 acceptance probability obtained by simulation is consistent with the numerical result above. 

The final cumulative acceptance probability is the stage 14 termination probability, i.e., approximately 

28%. 

Assume Defect Quantity Equals 22 

If 22 of the 310 procedures are defective, then the percentage of defectives is 

22 
//N 

310 

0.0709677 
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and the percentage of non-defectives is 

1-% 

0.929032 

The initial quantity of defective procedures is assigned as the value of the symbol initdef: 

initdef = 22; 

The pseudorandom number generating function is: 

fun[{stage_Integer, cumdef_Integer}]  := 
{stage + 1, cumdef + Random [HypergeometricDistribution[ 

sample|[8tage+1j , initdef - cumdef, proctt8tage+1j ] ] } 

The function that will test the simulation against the acceptance rules is: 

testfun[{stage_Integer, cumdef_Integer}]  := accept[stage] < cumdef 

A simulation of 25,000 hypergeometric tests is generated as follows: 

simlist = Table[ 
Length[NestWhileList[fun,  {0, 0}, testfun, 1, Length[sample]]] -1, 
{simqty}]; 

The symbol simlist contains a list of the stages that the simulations ended at. The quantity of termina- 

tions at each stage are assigned as the value of simlist22: 

simlist22= 

Table[Length[Select[simlist, #1 == i &]], {i, 1, Length[sample]}]; 

The simulation results are appended to the simulation file so that they can be retrieved for subsequent 

analysis if need be. 

Savefsimfile, simlist22] 

These simulation results may be easily retrieved thus: 

« "hypersimfile3"; 
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Stage-by-stage termination probabilities are: 

TableForm[Transpose[{Range[1, 15], N[ — 111, 
simqty    J 

TableHeadings-> {None, {"Stage", "Termination Probability"}), 
TableAlignments -» Center] 

Stage Termination Probability 
1 0.22056 
2 0.0766 
3 0.03748 
4 0.02264 
5 0.01412 
6 0.00892 
7 0.00552 
8 0.00364 
9 0.00232 
10 0.00084 
11 0.00032 
12 0.00012 
13 0.00008 
14 0. 
15 0.60684 

The terminations at stages 1 - 14 are acceptances. The terminations at the last stage are simulations that 

went the distance. Cumulative termination probabilities are: 
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r r r r r SimllSt22 
TableForm Transpose1Range[0, 15], N FoldList Plus, 0,  1} , 

simqty 

TableHeadings -* 

{None, {"Stage", "Cumulative Termination Probability"}}, 

TableAlignments -» Center] 

Stage Cumulat ive Termination Probability 
0 0. 
1 0.22056 
2 0.29716 
3 0.33464 
4 0.35728 
5 0.3714 
6 0.38032 
7 0.38584 
8 0.38948 
9 0.3918 
10 0.39264 
11 0.39296 
12 0.39308 
13 0.39316 
14 0.39316 
15 1. 

The stage 1 acceptance probability is: 

PDF[HypergeometricDistribution[20, 22, 310], 0] //N 

0.21845 

The stage 1 acceptance probability obtained by simulation is consistent with the numerical result above. 

The final cumulative acceptance probability is the stage 14 termination probability, i.e., approximately 

39%. 

Assume Defect Quantity Equals 19 

If 19 of the 310 procedures are defective, then the percentage of defectives is 

19 
  //N 
310 

0.0612903 

and the percentage of non-defectives is 
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1 - % 

0.93871 

The initial quantity of defective procedures is assigned as the value of the symbol initdef: 

initdef =19; 

The pseudorandom number generating function is: 

fun[{stage_Integer, cumdef_Integer} ]  : = 

{stage + 1, cumdef + Random [HypergeometricDistribution[ 
sample|[8tage+1]1, initdef -cumdef, proC|[stagetl]| ] ] } 

The function that will test the simulation against the acceptance rules is: 

testfun[{stage_Integer, cumdef_Integer>]  :=accept[stage] < cumdef 

A simulation of 25,000 hypergeometric tests is generated as follows: 

simlist= Table[ 

Length[NestWhileList[fun,  {0, 0}, testfun, 1, Length[sample]]] -1, 
{simqty}]; 

The symbol simlist contains a list of the stages that the simulations ended at. The quantity of termina- 

tions at each stage are assigned as the value of simlist19: 

simlistl9 = 

Table[Length[Select[simlist, licit]], {i, i, Length[sample]}]; 

The simulation results are appended to the simulation file so that they can be retrieved for subsequent 

analysis if need be. 

Save[simfile, simlistl9] 

These simulation results may be easily retrieved thus: 

« "hypersimfile3"; 

Stage-by-stage termination probabilities are: 
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r rr r Simlistl9 ,,, 
TableFormI Transpose I {Range [1, 15], Nf 1)1, 

simqty    J 

TableHeadings-» {None, {"Stage", "Termination Probability"}}, 

TableAlignments -» Center] 

Stage     Termination Probability 

1 0.26868 

2 0.103 

3 0.05496 

4 0.035 

5 0.02404 

6 0.0178 

7 0.01364 

8 0.00968 

9 0.00712 

10 0.00552 

11 0.00336 

12 0.00204 

13 0.00116 

14 0.00032 

15 0.45368 

The terminations at stages 1 - 14 are acceptances. The terminations at the last stage are simulations that 

went the distance. Cumulative termination probabilities are: 

[r r                                p       p       simlistl9 
Transpose[(Range[0, 15], NfFoldList[Plus, 0,  11)1, 

11 simqty iul 

TableHeadings -* 
{None, {"Stage", "Cumulative Termination Probability"}}, 

TableAlignments -+ Center] 

Stage     Cumulative Termination Probability 

0 0. 
1 0.26868 
2 0.37168 
3 0.42664 
4 0.46164 
5 0.48568 
6 0.50348 
7 0.51712 
8 0.5268 
9 0.53392 
10 0.53944 
11 0.5428 
12 0.54484 
13 0.546 
14 0.54632 
15 1. 
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The stage 1 acceptance probability is: 

PDF[HypergeometricDistribution[20, 19, 310], 0] //N 

0.270679 

The stage 1 acceptance probability obtained by simulation is consistent with the numerical result above. 

The final cumulative acceptance probability is the stage 14 termination probability, i.e., approximately 

55%. 

Assume Defect Quantity Equals 16 

If 16 of the 310 procedures are defective, then the percentage of defectives is 

16 
//N 

310 

0.0516129 

and the percentage of non-defectives is 

1-% 

0.948387 

The initial quantity of defective procedures is assigned as the value of the symbol initdef. 

initdef =16; 

The pseudorandom number generating function is: 

fun[{stage_Integer, cumdef_Integer}]  := 
{stage + 1, cumdef + Random[HypergeometricDistribution[ 

samPl6Estage+ij / initdef - cumdef, procIstage+11 ] ] } 

The function that will test the simulation against the acceptance rules is: 

testfun[{stage_Integer, cumdef_Integer}]  := accept[stage] <cumdef 

A simulation of 25,000 hypergeometric tests is generated as follows: 
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simlist = Tablet 

Length[NestWhileList[fun, {0, 0}, testfun, 1, Length[sample]]] -1, 
{simqty}]; 

The symbol simlist contains a list of the stages that the simulations ended at. The quantity of termina- 

tions at each stage are assigned as the value of simlistl 6: 

simlistl6 = 

Table[Length[Select[simlist, #1 == i &]], {i, 1, Length[sample]}]; 

The simulation results are appended to the simulation file so that they can be retrieved for subsequent 

analysis if need be. 

Save[simfile, simlistl6] 

These simulation results may be easily retrieved thus: 

« "hypersimfile3"; 

Stage-by-stage termination probabilities are: 

TableForm[Transpose[{Range[1, 15], N[-^-^ ]\1 
simqty  J J 

TableHeadings-+ {None, {"Stage", "Termination Probability"}}, 
TableAlignments -» Center] 

Stage Termination Probability 
1 0.33352 
2 0.13024 
3 0.07236 
4 0.0516 
5 0.0366 
6 0.03036 
7 0.02564 
8 0.02008 
9 0.01772 
10 0.0154 
11 0.0142 
12 0.01332 
13 0.0122 
14 0.00956 
15 0.2172 

E-23 



The terminations at stages 1 - 14 are acceptances. The terminations at the last stage are simulations that 

went the distance. Cumulative termination probabilities are: 

TableForm[Transpose[{Range[0, 15], N[FoldList[Plus, 0,   Slm       1111/ 
simqty  J J J J 

TableHeadings -» 

{None, {"Stage", "Cumulative Termination Probability"}}, 
TableAlignments -» Center] 

Stage Cumulative Termination Probability 
0 0. 
1 0.33352 
2 0.46376 
3 0.53612 
4 0.58772 
5 0.62432 
6 0.65468 
7 0.68032 
8 0.7004 
9 0.71812 
10 0.73352 
11 0.74772 
12 0.76104 
13 0.77324 
14 0.7828 
15 1. 

The stage 1 acceptance probability is: 

PDF[HypergeometricDistribution[20, 16, 310], 0] //N 

0.334635 

The stage 1 acceptance probability obtained by simulation is consistent with the numerical result above. 

The final cumulative acceptance probability is the stage 14 termination probability, i.e., approximately 

78%. 

Assume Defect Quantity Equals 13 

If 13 of the 310 procedures are defective, then the percentage of defectives is 

13 

310 
//N 

0.0419355 
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and the percentage of non-defectives is 

1 -% 

0.958065 

The initial quantity of defective procedures is assigned as the value of the symbol initdef: 

initdef =13; 

The pseudorandom number generating function is: 

fun[{stage_Integer, cumdef_Integer}] := 

{stage + 1, cumdef + Random[HypergeometricDistribution[ 

samplel8tage+1j , initdef - cumdef, procIstage+11 ] ] } 

The function that will test the simulation against the acceptance rules is: 

testfun[{stage_Integer, cumdef_Integer}]  := accept[stage] < cumdef 

A simulation of 25,000 hypergeometric tests is generated as follows: 

simlist = Table[ 

Length[NestWhileList[fun, {0, 0}, testfun, 1, Length[sample]]] -1, 
{simqty}]; 

The symbol simlist contains a list of the stages that the simulations ended at. The quantity of termina- 

tions at each stage are assigned as the value of simlistl3: 

simlistl3 = 

Table[Length[Select[simlist, #1 = i &] ] , {i, 1, Length[sample]}]; 

The simulation results are appended to the simulation file so that they can be retrieved for subsequent 

analysis if need be. 

Save[simfile, simlistl3] 

These simulation results may be easily retrieved thus: 

« "hypersimfile3"; 
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The terminations at stages 1 - 14 are acceptances. The terminations at the last stage are simulations that 

went the distance. Cumulative termination probabilities are: 

™ ,_■■ „   r_        rr r simlistl3 ,s, TableForm[Transpose[{Range[1, 15], N[ 1)1, 
simqty  J J 

TableHeadings-+ {None, {"Stage", "Termination Probability")), 
TableAlignments -» Center] 

Stage Termination Probability 
1 0.41144 
2 0.16356 
3 0.09296 
4 0.063 
5 0.04632 
6 0.03588 
7 0.03156 
8 0.02708 
9 0.02508 
10 0.02268 
11 0.02148 
12 0.01988 
13 0.02124 
14 0.01784 
15 0. 

Cumulative termination probabilities are: 
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r rr r r simlistl3 , , , , 
TableFormITransposef {Range[0, 15] ' N[FoldList[Plus, 0,  11}1/ 

simqty    J 

TableHeadings -» 

{None, {"Stage", "Cumulative Termination Probability"}}, 

TableAlignments -» Center] 

Stage Cumulative Termination Probability 

0 0. 
1 0.41144 

2 0.575 

3 0.66796 
4 0.73096 
5 0.77728 
6 0.81316 
7 0.84472 
8 0.8718 
9 0.89688 
10 0.91956 
11 0.94104 
12 0.96092 
13 0.98216 
14 1. 
15 1. 

The stage 1 acceptance probability is: 

PDF[HypergeometricDistribution[20, 13, 310}, 0] //N 

0.412781 

The stage 1 acceptance probability obtained by simulation is consistent with the numerical result above. 

The final cumulative acceptance probability is the stage 14 termination probability, i.e., approximately 

100%. 

Assume Defect Quantity Equals 10 

If 10 of the 310 procedures are defective, then the percentage of defectives is 

10 
  //N 
310 

0.0322581 

and the percentage of non-defectives is 
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1-% 

0.967742 

The initial quantity of defective procedures is assigned as the value of the symbol initdef. 

initdef = 10; 

The pseudorandom number generating function is: 

fun[{stage_Integer, cumdef_Integer}]  := 

{stage + 1, cumdef + Random [HypergeometricDistribution[ 
samplel8tage+1I, initdef - cumdef, proc[stage+1]| ] ] } 

The function that will test the simulation against the acceptance rules is: 

testfun[{stage_Integer, cumdef_Integer}]  := accept[stage] <cumdef 

A simulation of 25,000 hypergeometric tests is generated as follows: 

simlist = Tablef 

Length[NestWhileList[fun,  {0, 0}, testfun, 1, Length[sample]]] -1, 
{simqty}]; 

The symbol simlist contains a list of the stages that the simulations ended at. The quantity of termina- 

tions at each stage are assigned as the value of simlist 10: 

simlistlO = 

Table[Length[Select[simlist, #1 = i s] ] , {i, 1, Length[sample]}]; 

The simulation results are appended to the simulation file so that they can be retrieved for subsequent 

analysis if need be. 

Save[simfile, simlistlO] 

These simulation results may be easily retrieved thus: 

« "hypersimfile3"; 

The terminations at stages 1 - 14 are acceptances. The terminations at the last stage are simulations that 

went the distance. Cumulative termination probabilities are: 
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TableForm[Transpose[{Range[1, 15], N[-^-^ 1)1, 
simqty J s i ' 

TableHeadings-» {None, {"Stage", "Termination Probability")), 
TableAlignments-» Center] 

Stage Termination Probability 
1 0.50552 
2 0.19548 
3 0.1014 
4 0.06412 
5 0.04216 
6 0.03136 
7 0.02356 
8 0.01624 
9 0.01084 
10 0.00672 
11 0.0026 
12 0. 
13 0. 
14 0. 
15 0. 

Cumulative termination probabilities are: 

TableForm[Transpose[{Range[0, 15], N[FoldList[Plus, 0, ° 111], 
simqty  J J JJ' 

TableHeadings -» 

{None, {"Stage", "Cumulative Termination Probability")), 
TableAlignments -» Center] 

Probability Stage Cumulative Termination 
0 0. 
1 0.50552 
2 0.701 
3 0.8024 
4 0.86652 
5 0.90868 
6 0.94004 
7 0.9636 
8 0.97984 
9 0.99068 
10 0.9974 
11 1. 
12 1. 
13 1. 
14 1. 
15 1. 
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The stage 1 acceptance probability is: 

PDF[HypergeometricDistribution[20, 10, 310], 0] //N 

0.508067 

The stage 1 acceptance probability obtained by simulation is consistent with the numerical result above. 

The final cumulative acceptance probability is the stage 14 termination probability, i.e., approximately 

100%. 

Assume Defect Quantity Equals 7 

If 7 of the 310 procedures are defective, then the percentage of defectives is 

7 
//N 

310 

0.0225806 

and the percentage of non-defectives is 

1- % 

0.977419 

The initial quantity of defective procedures is assigned as the value of the symbol initdef. 

initdef = 7; 

The pseudorandom number generating function is: 

fun[{stage_Integer, cumdef_Integer} ]  : = 

{stage + 1, cumdef + Random[HypergeometricDistribution[ 
sample|Istage+1, , initdef-cumdef, proc,[Stagetlj ] ] } 

The function that will test the simulation against the acceptance rules is: 

testfun[{stage_Integer, cumdef_Integer}]   :=accept[stage] < cumdef 

A simulation of 25,000 hypergeometric tests is generated as follows: 
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simlist = Table[ 

Length[NestWhileList[fun, {0, 0}, testfun, 1, Length[sample]]] -1, 

{simqty}]; 

The symbol simlist contains a list of the stages that the simulations ended at. The quantity of termina- 

tions at each stage are assigned as the value of simlist7: 

simlist7 = 

Table[Length[Select[simlist, #1 == i &] ], {i, 1, Length[sample]}]; 

The simulation results are appended to the simulation file so that they can be retrieved for subsequent 

analysis if need be. 

Save[simfile, simlist7] 

These simulation results may be easily retrieved thus: 

« "hypersimfile3"; 

The terminations at stages 1 - 14 are acceptances. The terminations at the last stage are simulations that 

went the distance. Cumulative termination probabilities are: 

si.mli.st7 
TableForm [Transpose I {Range [1, 15], N[ 111, 1 simqty J *i 

TableHeadings-*{None, {"Stage", "Termination Probability"}}, 

TableAlignments -» Center] 

Stage     Termination Probability 
1 0.6214 
2 0.20276 
3 0.08992 
4 0.04584 
5 0.02376 
6 0.01072 
7 0.0046 
8 0.001 
9 0. 
10 0. 
11 0. 
12 0. 
13 0. 
14 0. 
15 0. 
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Cumulative termination probabilities are: 

TableForm[Transpose[{Range[0, 15], N[FoldList[plus, 0,     ""llll, 
simqty ■'■'■'•'' 

TableHeadings -» 

{None, {"Stage", "Cumulative Termination Probability")>, 
TableAlignments-» Center] 

Stage Cumulat ive Termination  Probability 
0 0. 
1 0.6214 
2 0.82416 
3 0.91408 
4 0.95992 
5 0.98368 
6 0.9944 
7 0.999 
8 1. 
9 1. 

10 1. 
11 1. 
12 1. 
13 1. 
14 1. 
15 1. 

The stage 1 acceptance probability is: 

PDF[HypergeometricDistribution[20, 7, 310], 0] //N 

0.624015 

The stage 1 acceptance probability obtained by simulation is consistent with the numerical result above. 

The final cumulative acceptance probability is the stage 14 termination probability, i.e., approximately 
100%. 

Assume Defect Quantity Equals 4 

If 4 of the 310 procedures are defective, then the percentage of defectives is 

4 

310 
//N 

0.0129032 

and the percentage of non-defectives is 
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«ft 

1-% 

0.987097 

The initial quantity of defective procedures is assigned as the value of the symbol initdef: 

initdef = 4; 

The pseudorandom number generating function is: 

fun[{s tage_Integer, cumdef_Integer}]  : = 

{stage + 1, cumdef + Random[HypergeometricDistribution[ 
samplettBtage+1j, initdef - cumdef, proc,[Stage+1j ] ] } 

The function that will test the simulation against the acceptance rules is: 

testfun[{stage_Integer, cumdef_Integer}]  := accept[stage] <cumdef 

A simulation of 25,000 hypergeometric tests is generated as follows: 

simlist =Table[ 

Length[NestWhileList[fun,  {0, 0}, testfun, 1, Length[sample]]] -1, 
{simqty}]; 

The symbol simlist contains a list of the stages that the simulations ended at. The quantity of termina- 

tions at each stage are assigned as the value of simlist4: 

simlist4 = 

Table[Length[Select[simlist, #l = i&]], {i, 1, Lengthfsample]}]; 

The simulation results are appended to the simulation file so that they can be retrieved for subsequent 

analysis if need be. 

Save[simfile, simlist4] 

These simulation results may be easily retrieved thus: 

« "hypersimfile3"; 

The terminations at stages 1 - 14 are acceptances. The terminations at the last stage are simulations that 

went the distance. Cumulative termination probabilities are: 
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TableForm[Transpose[{Range[1, 15], N[      —]}], 
simqty J JJ 

TableHeadings-+ {None, {"Stage", "Termination Probability"}}, 
TableAlignments -» Center] 

Stage Termination Probability 
1 0 .7682 
2 0. .16852 
3 0. .04868 
4 0. ,01292 
5 0. 00168 
6 0. 
7 0. 
8 0. 
9 0. 
10 0. 
11 0. 
12 0. 
13 0. 
14 0. 
15 0. 

Cumulative termination probabilities are: 

simlist4 
TableForm [Transpose [ {Range [0, 15], NfFoldListfPlus, 0,  lm ist4 i -i •>-i 

1 simqty J J J J ' 
TableHeadings -» 

TableAl: ignments -» Center] 

Staqe Cumula t ive Termination Probability 
0 0. 
1 0 .7682 
2 0. 93672 
3 0 .9854 
4 0. 99832 
5 1. 
6 1. 
7 1. 
8 1. 
9 1. 
10 1. 
11 1. 
12 1. 
13 1. 
14 1. 
15 1. 
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The stage 1 acceptance probability is: 

PDF[HypergeometricDistribution[20, 4, 310], 0] //N 

0.764823 

The stage 1 acceptance probability obtained by simulation is consistent with the numerical result above. 

The final cumulative acceptance probability is the stage 14 termination probability, i.e., approximately 

100%. 
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7 Defense Technical Information Center 
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15 Director 
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